MassQ - quantum physics of massive objects

The laser is split by semi-transparent glas, entangling the two mirrors and measuring their movement. (Image: A. Franzen, Albert-Einstein-Institut)
One challenge of modern physics is the unification of the two in one overarching theory. To do so, we deem experiments dealing with both gravitation and quantum mechanics an important step. The aim of MassQ is the quantum mechanical entanglement of two massive mirrors which are heavy enough such that in principle their gravitational forces can be observed. The proposed experiment could potentially lead to surprising observations right at the interface of quantum mechanics and general relativity.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 339897.
Contact
Prof. Dr. Roman Schnabel
phone: +49 40 8998 5102
mail: roman.schnabel (at) physnet.uni-hamburg.de
Carolin Höld (office)
phone: +49 40 8998 5100
mail: carolin.hoeld (at) physnet.uni-hamburg.de
Torben Sobottke
phone: +49 40 8998 5110
mail: torben.sobottke (at) physnet.uni-hamburg.de
Jan Petermann
phone: +49 40 8998 5110
mail: jan.petermann (at) physnet.uni-hamburg.de
Team
Jan Gniesmer, Daniel Hartwig, Lisa Kleybolte, Amrit Pal Sing, Jan Petermann, Axel Schönbeck, Torben Sobottke.
Visit our group's website and get to know more about our team and various research projects.
Publications
13dB Squeezed Vacuum States at 1550nm from 12mW external pump power at 775nm
A. Schönbeck, F. Thies, R. Schnabel; Opt. Lett. 43, 1 (2018)
Squeezed states of light and their applications in laser interferometers
R. Schnabel; Physics Reports 684, 1–51 (2017)
Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement
Y. Ma, H. Miao, B.H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel and Y. Chen; Nature Phys. (2017)
Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation
M. Korobko, L. Kleybolte, S. Ast, H. Miao, Y. Chen, and R. Schnabel; Phys. Rev. Lett. 118, 143601 (2017)
Generalized analysis of quantum noise and dynamic back-action in signal-recycled Michelson-type laser interferometers
F. Khalili, S. Tarabrin, R. Schnabel, K. Hammerer; Phys. Rev. A 94, 013844 (2016)
Einstein-Podolsky-Rosen-entangled motion of two massive objects
R. Schnabel; Phys. Rev. A 92, 012126 (2015)
Observation of generalized optomechanical coupling and cooling on cavity resonance
A. Sawadsky, H. Kaufer, R. Moghadas Nia, Sergey P. Tarabrin, F. Y. Khalili, K. Hammerer, R. Schnabel; Phys. Rev. Lett. 114, 043601 (2015)
Interferometer readout-noise below the Standard Quantum Limit of a membrane
T. Westphal, D. Friedrich, H. Kaufer, K. Yamamoto, S. Goßler, H. Müller-Ebhardt, S. L. Danilishin, F. Ya. Khalili, K. Danzmann, R. Schnabel; Phys. Rev. A 85, 063806 (2012)
Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry
H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen; Phys. Rev. Lett. 100, 013601 (2008)