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Electron hole in motion: The electron hole (blue and green sur-
faces) is created by extreme ultraviolet (XUV) radiation of free
electron laser FLASH. Because of the repulsion between the elec-
tron hole and the proton (orange sphere), the molecule undergoes
Coulomb explosion via non-Born-Oppenheimer mechanism.
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Zusammenfassung

Das Aufkommen der Freie-Elektronen-Laser und hohe Harmonische Lichtquellen ermöglicht
die Untersuchung der Elektronen- und Kerndynamik in Atomen, Molekülen und Fes-
tkörpern mit atomarer (räumlich) und Femtosekunden/Attosekunden (zeitlich) Auflösung.
Dank der ultrahellen und ultrakurzen Lichtpulsen im Frequenzbereich von Terahertz bis
harte Röntgenstrahlung, können Kern- und Elektronendynamiken im Zeitbereich von Femto-
bis Attosekunden initiiert, beobachtet und kontrolliert werden. Es bedarf theoretischer
Modelle, um die zugrunde liegenden Mechanismus zu beschreiben.

Diese Doktorarbeit beschäftigt sich mit der Entwicklung von theoretischen Modellen,
die auf quantenmechanischer multiconfiguration time–dependent Hartree (MCTDH) und
gemischter quanten-klassischer Methode beruhen. Diese Modellen werden zur Beschrei-
bung der Dynamik der gasförmigen Moleküle und des stark korrelierten Elektronensystems
in der Gegenwart von ultrakurzen Lichtpulsen verwendet.

Im ersten Teil dieser Arbeit liegt der Fokus auf der Bewegung der Elektronlöcher in
gasförmigen molekularen Ionen, die durch Photoionisation extremer Ultraviolettstrahlung
(XUV) entstehen, und mittels spektroskopischen Ansätzen beobachtet werden. Die XUV–
Photonen erzeugen Elektronloch in den Valenzorbitalen, das Elektronloch, als ein positiv
gelandenes Quasi–Teilchen, steht in Wechselwirkung mit den Kernen und den übringen
Elektronen, und führt anschließlich zu gekoppelter Nicht–Born–Oppenheimer-Dynamik.

Basierend auf Quantenwellenpaket und gemischter quanten-klassischer Ansätze, studiere
ich die Relaxationdynamik des Elektronlochs in Valenzionisierten molekularen Ionen von
kleiner und mittlerer Größe. Anhand der molekularen Ionen

[
H+(H2O)n

]+ zeigen wir,
dass die gekoppelte Bewegeung der Elektronlöcher und Kerne mittels transienter Röntgen-
absorptionsspektroskopie mit Auflösung von mehreren Femtosekunden ausgelesen werden
kann. Außerdem können die XUV-Photonen in speziellen Fällen kohärentes Elektronloch
erzeugen, das sein Kohärenz bis zur Zeitskala von ca. 1 Picosekunde behalten kann. Mittels
der XUV Anregung – IR Abfrage Technik, kann man die kohärente Elektronloch–Bewegung
in molekularen Ionen auflösen, und Quantenschwebung beobachten.

Im zweiten Teil studiere ich die Elektronendynamik im stark korrelierten Elektronen-
system, die durch Anregung ultrakurzer Laserpulsen ausgelöst wird. Es wird mit Nach-
druck an der Entwicklung eines effizienten Schemas für die Nichtgleichgewichts- dynamische
molekulare Feld Theorie (DMFT) gearbeitet, die Elektronendynamik langer Zeit erfassen
kann.

Alle diese Beispiele beruhen auf einem allgemeinem theoretischen Rahmen von zeitab-
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hängiger Formulierung der Schrödingergleichung.
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Abstract
The advent of free electron lasers and high harmonic sources enables the investigation
of electronic and nuclear dynamics of molecules and solids with atomic spatial resolution
and femtosecond/attosecond time resolution, using bright and ultrashort laser pulses of
frequency from terahertz to hard x–ray range. With the help of ultrashort laser pulses, the
nuclear and electronic dynamics can be initiated, monitored and actively controlled at the
typical time scale in the femtosecond to attosecond realm. Meanwhile, theoretical tools
are required to describe the underlying mechanism.

This doctoral thesis focuses on the development of theoretical tools based on full quan-
tum mechanical multiconfiguration time–dependent Hartree (MCTDH) and mixed quan-
tum classical approaches, which can be applied to describe the dynamical behavior of gas
phase molecules and strongly correlated solids in the presence of ultrashort laser pulses.

In the first part of this thesis, the focus is on the motion of electron holes in gas
phase molecular ions created by extreme ultraviolet (XUV) photoionization and watched
by spectroscopic approaches. The XUV photons create electron-hole in the valence or-
bitals of molecules by photoionization, the electron hole, as a positively charged quasi–
particle, can then interact with the nuclei and the rest of electrons, leading to coupled
non-Born-Oppenheimer dynamics. I present our study on electron–hole relaxation dynam-
ics in valence ionized molecular ions of moderate size, using quantum wave packet and
mixed quantum–classical approaches, using photoionized

[
H+(H2O)n

]+ molecular ion as
example. We have shown that the coupled motion of the electron–hole and the nuclei can be
mapped out with femtosecond resolution by core–level x–ray transient absorption spectro-
scopy. Furthermore, in specific cases, the XUV photon can create a coherent electron hole,
that can maintain its coherence to time scales of ∼ 1 picosecond. Employing XUV pump
- IR probe spectroscopy, one can resolve coherent electron-hole motion in molecular ions,
from which quantum beating can be observed.

In the second part of this thesis, I present our study on the electron dynamics of strongly
correlated solids triggered by ultrashort laser pump. The effort is devoted to develop an
efficient scheme for the nonequilibrium dynamical mean field theory (DMFT) that is able
to accurately capture long time dynamics.

All these applications are treated within a general theoretical framework from time–
dependent formulation of Schrödinger equation.



x



Contents

LIST OF PUBLICATIONS xiii

LIST OF DEVELOPED PROGRAMS xiv

1 Overview 1

2 Theoretical Framework 5

2.1 Non-Born-Oppenheimer dynamics . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Multiconfiguration time-dependent Hartree . . . . . . . . . . . . . . . . . . 10

2.3 Mixed quantum-classical dynamics . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 From quantum to classical mechanics – the Ehrenfest theorem . . . 17

2.3.2 Mixed quantum-classical dynamics . . . . . . . . . . . . . . . . . . 19

2.3.3 QDTK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Electron Hole Dynamics in Gas Phase Molecules 31

3.1 Correlated proton-hole dynamics in H+(H2O)+
n . . . . . . . . . . . . . . . . 31

3.1.1 Adiabatic potential energy surfaces of the H5O2
2+dication . . . . . 33

3.1.2 Diabatization of the Hamiltonian . . . . . . . . . . . . . . . . . . . 36

3.1.3 Quantum wave packet dynamics . . . . . . . . . . . . . . . . . . . . 39

xi



xii CONTENTS

3.1.4 Ultrafast Coulomb explosion and correlated proton-hole dynamics . 42

3.1.5 Photoionization spectrum . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.6 Kinetic energy release of the fragments . . . . . . . . . . . . . . . . 47

3.1.7 Ionization into the higher outer–valence ionic states . . . . . . . . . 48

3.2 Hole dynamics tracked by transient absorption spectroscopy . . . . . . . . 50

3.2.1 Spectra of photoionized Zundel cation . . . . . . . . . . . . . . . . 53

3.2.2 Spectra of photoionized H+(H2O)21 . . . . . . . . . . . . . . . . . . 56

3.3 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Coherent Dynamics of Electron Hole 65

4.1 Electronic coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 XUV pump IR probe study . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Vibronic quantum beating . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Electron Dynamics in Strongly Correlated Materials 85

5.1 Principles of dynamical mean field theory . . . . . . . . . . . . . . . . . . . 86

5.1.1 Nonequilibrium DMFT and Hamiltonian-based impurity solvers . . 90

5.2 MCTDH based nonequilibrium DMFT impurity solver . . . . . . . . . . . 93

5.2.1 MCTDH in electronic Fock space . . . . . . . . . . . . . . . . . . . 93

5.2.2 MCTDH for a typical SIAM . . . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Impurity Green function . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions and Outlook 107

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF PUBLICATIONS

2013 “Correlated dynamics of the motion of proton-hole wave-packets in a photoion-
ized water cluster”
Z. Li, M. E. Madjet, O. Vendrell and R. Santra
Phys. Rev. Lett. 110, 038302 (2013)

2013 “Non-Born-Oppenheimer dynamics of the photoionized Zundel cation: A quan-
tum wavepacket and surface-hopping study”
Z. Li, M. E. Madjet and O. Vendrell
J. Chem. Phys. 138, 094311 (2013);

2013 “Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effect”
M. E. Madjet, Z. Li and O. Vendrell
J. Chem. Phys. 138, 094313 (2013)

2014 “Dynamics of fluctuations in a quantum system”
Y.-J. Chen, S. Pabst, Z. Li, O. Vendrell and R. Santra
Phys. Rev. A 89, 052113 (2014)

2014 “Core-level transient absorption spectroscopy as a probe of electron hole relax-
ation in photoionized H+(H2O)n ”
Z. Li, M. E. Madjet, O. Vendrell and R. Santra
Faraday Discussions 171 (2014)

2014 “Coherent electron hole dynamics near a conical intersection”
H. Timmers, Z. Li, N. Shivaram, R. Santra, O. Vendrell and A. Sandhu
Phys. Rev. Lett. 113, 113003 (2014)

xiii

http://prl.aps.org/abstract/PRL/v110/i3/e038302
http://scitation.aip.org/content/aip/journal/jcp/138/9/10.1063/1.4793215
http://scitation.aip.org/content/aip/journal/jcp/138/9/10.1063/1.4793274
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.052113
http://pubs.rsc.org/en/content/articlehtml/2014/fd/c4fd00078a
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.113003


2014 “Multiconfiguration time-dependent Hartree impurity solver for nonequilibrium
dynamical mean-field theory”
K. Balzer, Z. Li, O. Vendrell and M. Eckstein
Submitted

2014 “Thermal and nonthermal melting of silicon under femtosecond free-electron
laser pulse irradiation”
N. Medvedev, Z. Li and B. Ziaja
Submitted

2014 “Fragmentation dynamics of H+(H2O)n under XUV irradiation”
Z. Li, M. E. Madjet and O. Vendrell
Manuscript in preparation

2014 “Dynamics of glycine molecule with double valence electron holes”
Z. Li, O. Vendrell and R. Santra
Manuscript in preparation

LIST OF DEVELOPED
PROGRAMS

M-DMFT DMFT–MCTDH Interface Program

CoIn Program for Diabatization of Electronic Potentials

QDTK Co-developer for Mixed Quantum-Classical Molecular Dynamics Package

xiv



Chapter 1

Overview

The rapid technological progress of free electron lasers (FEL) and high harmonic generation
(HHG) sources enables the investigation of electronic and nuclear dynamics of molecules
and solids with bright and ultrashort laser pulses of frequency from terahertz to hard x–ray
range.

The high energy XUV / x–ray photons with energy ranging from 0.01 to several tens
of keV provide unique access to spatial resolution down to several Ångström (Å) on the
atomic scale (1Å'12 keV), due to their short de Broglie wavelength. The FEL and HHG
sources producing high energy light pulses provide further access to temporal resolution
down to attosecond–femtosecond (10−18–10−15 s) time scales. With the help of ultrashort
laser pulses, the nuclear and electronic dynamics can be initiated, monitored and actively
controlled at the typical time scale in the femtosecond to attosecond realm.

This doctoral thesis focuses on developing theoretical tools and concepts based on full
quantum mechanical multiconfiguration time–dependent Hartree (MCTDH) and mixed
quantum classical approaches, which can be applied to describe the dynamical behavior
of gas phase molecules and strongly correlated solids in the presence of ultrashort laser
pulses.

Chapter 3 describes the dynamics of gas phase molecules in the presence of ultrashort
extreme ultroviolet (XUV) laser pulses.

Specifically, this chapter is devoted to study the dynamics in molecules following pho-
toionization. Photoionization is probably the most usual phenomena, when atoms and
molecules are exposed to the XUV or x–ray radiation. A thorough understanding of the
follow–up processes in the photoionized atoms and molecules is crucial to experiments
studying them using x–ray or XUV light, for example, the x–ray imaging, crystallography,
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2 CHAPTER 1. OVERVIEW

or XUV / x–ray pump-probe experiments.

Besides, the photoionized molecules are a natural lab for studying charge transfer in
the microscopic scale. Since charge transfer processes in molecules can be an essential
ingredient for a wide scope of natural phenomena and applications, for example charge
transport in molecular electronics, biological functions of proteins, it is definitely intriguing
to study the molecular charge transfer using novel light sources, and make molecular movies
in which the moving electron holes and protons are the actors.

The electron hole left by the ionized electron can be seen as a positively charged quasi
particle, which can be driven to move in the molecule by other charged particles due to
Coulomb force, e.g. protons, electrons or another electron hole, or by the dynamical corre-
lation of electrons. Consider a single photoionization of an N -electron molecule: provided
that the light pulse has sufficient spectral width to cover several electronic states, imme-
diately after photoionization the remaining N − 1 electrons in the molecule are no longer
at an eigenstate, instead their wave function is a superposition of several (N − 1)-electron
states, and is by the principle of quantum mechanics non–stationary. The interplay of
these (N−1)-electron states consequently leads to the effective motion of the electron hole
within the molecule.

In Section 3.1 the ultrafast fragmentation of the Zundel cation H+(H2O)2 after pho-
toionization is studied by quantum-dynamics with the MCTDH method and by surface-
hopping approaches. A picture emerges in which the correlated motion of the electron hole
and the shared proton leads to localization of the two positively charged entities at opposite
sides of the Zundel dication in less than 10 fs followed by Coulomb explosion. Electronic
non-adiabatic effects play a crucial role in the fragmentation dynamics. The photoioniza-
tion spectrum of the cluster between 20 to 24 eV is calculated quantum-dynamically and
its features explained. Two- and three-body fragmentation channels accessible by outer-
valence ionization are also calculated and the branching ratios as a function of ionization
energy are discussed. A good agreement between the quantum-dynamical treatment and
surface-hopping is obtained for observables for which both methods are applied.

Section 3.2 addresses a fundamental request of experimentally monitoring the cou-
pled nuclear and electronic dynamics associated to charge transfer processes in complex
molecules and materials, with transient x-ray absorption spectroscopy

We study the dynamics of an electron hole created by photoionization in the valence
states of protonated water clusters and its anti-correlated motion with the proton in the
hydrogen bond network, due to the intrinsic Coulomb repulsion. We show that key aspects
of the electron hole dynamics can be mapped to core level transient x-ray absorption spectra
with femtosecond resolution.
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Chapter 4 deals with a slightly different scenario for electron hole dynamics, in which the
electron hole is electronically coherent. In this chapter, I will present the joint experimental
theoretical study on the real-time evolution of a long-lived coherent electron hole following
valence ionization of a molecule, which remains an unexplored facet of the charge transfer
phenomena. Here we investigate the coherent motion of an electron hole wavepacket created
near a conical intersection in photoionized CO2. We resolve the oscillation of the electron
hole density between σ and π character, driven by the coupled bending and asymmetric
stretch vibrations of the molecule. We quantify the mixing between electron hole states
and find that the degree of electronic coherence decreases with time due to rotational
thermal dephasing. Our results demonstrate the sensitivity of ultrafast XUV spectroscopy
in probing the inner workings of coherent charge migration dynamics occurring in nature.

In Chapter 5, I present the study of electron dynamics in strongly correlated solids
by pump–probe technique, which can reveal profound features of many–body electronic
system occuring in real time, e.g. the emergence of quasi–particles on femtosecond time
scale. Besides, the solids pumped by laser can exhibit intriguing properties and hidden
phases in nonequilibrium state, which are not manifested in equilibrium. For example, one
can induce insulator–metal transition or superconductor phase transition using ultrashort
laser pulses.

The strongly correlated solids itself are also intriguing systems, in which the Coulomb
correlation between electrons dominates the electronic interactions. Due to the pronounced
many–body effects in the strongly correlated solids, their electronic structure cannot be
correctly described by energy band theory based on independent particle picture. Moreover,
the concept of strongly correlated solids cover a wide scope of materials of fundamental
and practical importance, for example the Mott insulators and high-Tc superconductors.
Thus, there is a persistent effort in the past decade devoted to understand the physical
nature of this family of materials.

The dynamical mean field theory is a state-of-the-art framework that is aimed at solv-
ing the electronic structure of strongly correlated solids beyond the independent particle
picture of energy band theory.

Our effort is devoted to developing an efficient scheme based on multiconfiguration
time–dependent Hartree (MCTDH) method to bring nonequilirbium dynamical mean field
theoretical description of strongly correlated electron dynamics in solids to a long time
scale, which is crucial to the simulation of experiments that use ultrashort laser pulses to
study the strongly correlated solids.
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Chapter 2

Introduction to Theoretical
Framework

In this chapter, I present the theoretical framework that serves as a basis for the study of
coupled electron–nuclei dynamics of gas phase molecules and strongly correlated solids in
the presence of ultrashort laser pulses.

For time–independent Hamiltonians, the time–dependent and time–independent for-
mulation of quantum mechanics can be seen as equivalent and dual pictures connected by
Fourier transformation. However, in the case where an enormous number of eigenstates
is involved, time–dependent approaches can be advantageous, because one can avoid to
explicitly solve the wave functions of these eigenstates. Instead, one can treat them con-
veniently in the wave packet pictures, as one can simultaneously pack these eigenstates in
a single wave packet [1]. In case if the system is exposed to strong time-dependent per-
turbations, for example the system is pumped by a laser pulse, time-dependent treatment
becomes indispensable. Besides, the time-dependent formulation of quantum mechanics
also offers a more straightforward connection to classical mechanics.

In the present work, the time–dependent formalism is chosen preferably to study the
molecular and electronic dynamics in gas phase molecules and solids with strong electron
correlations. For this purpose the multiconfiguration time–dependent Hartree (MCTDH)
and non–adiabatic surface hopping approaches are applied to solve the dynamical prob-
lems quantum mechanically and quantum–classically. The MCTDH and surface hopping
methods are introduced in Section 2.2 and 2.3 respectively. Both methods are applied
to simulate the molecular systems with non–Born–Oppenheimer electron–nuclei dynamics,
which I present in Secton 2.1.

5



6 CHAPTER 2. THEORETICAL FRAMEWORK

2.1 Non-Born-Oppenheimer dynamics

To give a brief introduction to non–Born–Oppenheimer dynamics, one could start from the
factorized electronic and nuclear wave function of the molecule for the given full molecular
Hamiltonian,

H(q,Q) = −
∑

a

1

2Ma

∇2
a −

1

2m

∑
i

∇2
i

+
∑
j>i

1

|qi − qj|
−
∑
ai

Za

|Qa − qi|
+
∑
a>b

ZaZb

|Qa −Qb|

= TN + Ve + Vee + VeN + VNN , (2.1)

where q and Q are the electronic and nuclear coordinates, m and Ma are the electronic
and nuclear masses, respectively. The full molecular Hamiltonian can be written in the
form of a sum of the nuclear kinetic energy and the rest terms as electronic Hamiltonian.

Hmol =
1

2
∇2

Q + He = TN + He . (2.2)

where ~∇Q is the mass weighted nuclear gradient over all nuclear coordinates, TN is the
nuclear kinetic energy operator and He = Ve+Vee+VeN+VNN is the electronic Hamiltonian.

In the original formulation of M. Born and R. Oppenheimer [2, 3], the molecular wave
function is factorized as

Ψ(q,Q) =
∑

n

χn(Q)ϕn(q,Q), (2.3)

where n is the index of electronic states.

In the case the basis functions {ϕn(q,Q)} form a complete set of eigenfunctions for the
electronic Hamiltonian He, i.e. {ϕn(q,Q)} satisfy electronic Schrödinger equation

Heϕn(q,Q) = Vn(Q)ϕn(q,Q) , (2.4)

and completeness condition

〈ϕm|ϕn〉 = δmn∑
n

|ϕn〉 〈ϕn| = 1 , (2.5)

the set of basis functions {ϕn(q,Q), χn(Q)} defines a closed representation for any given
molecular wave function Ψ(q,Q), which is called the adiabatic representation.
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Using Eq. 2.3 and 2.4, we have the Schrödinger equation for nuclei in the adiabatic
representation, which we use to simulate photoionized molecules in chapter 3, and that
describes the nuclei in a manifold of coupled electronic states,

[TN(Q) + Vm(Q)] χm(Q) +
∑

n

Λmn(Q)χn(Q) = Eχm(Q) , (2.6)

where the kinetic non–Born–Oppenheimer coupling Λmn couples different states |ϕm〉 and
|ϕn〉 via nuclear gradient ~∇Q,

Λmn(Q) = −
〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
· ~∇Q +

1

2

〈
ϕm

∣∣∇2
Q

∣∣ϕn

〉
= −~Λ(1)

mn · ~∇Q +
1

2
Λ(2)

mn . (2.7)

Setting Λmn = 0 defines the Born–Oppenheimer approximation, which could be analo-
gously viewed as assuming frictionless motion of nuclei in the electron cloud. One can easily
observe this fact, because the leading term describing non–Born–Oppenheimer electron–
nuclei coupling in the Hamiltonian ,−

〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
· ~∇Q, is proportional to momentum

of nuclei P = −i~∇Q, namely proportional to the velocity of nuclei vQ, such that

−
〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
· ~∇Q = γf(Q) · vQ , (2.8)

which is classically a non–conservative term describing friction between electrons and nuclei
in the formalism of non–canonical Hamiltonian mechanics [4], and γf(Q) is a molecular
geometry dependent friction coefficient.

As stated by Born and Oppenheimer in their seminal literature [2], the ratio of ex-
citation energies for electronic and nuclear degrees of freedom has the order of O(102),
thus the nuclear excitation can be approximately decoupled from electronic excitations,
i.e. their motions are decoupled, and the term Λmn inducing electronic transitions with
nuclear motion can be accordingly neglected in many cases. One can readily see this by
comparing the typical electronic, vibrational and rotational energy scales, which lie in the
ultraviolet (∼ 10 eV), infrared (∼ 100 meV) and far–infrared (∼ 1 meV) regimes respec-
tively. From dimension analysis, one can find the relation Evib '

√
m
M

Ee ' 10−2Ee and
Erot ' m

M
Ee ' 10−4Ee, with m

M
∼ O(10−4) being the electron nucleus mass ratio, because

Evib = ~ω '
√

1

mM

~2

a2

Erot =
~2j2

2I
' ~2

2Ma2

Ee ' ~2

ma2
, (2.9)



8 CHAPTER 2. THEORETICAL FRAMEWORK

where a is the length scale of a molecule, the playground for nuclei and electrons.

However, the electrons and nuclei in nature are indeed coupled with each other, as
they move simultaneously in the molecules. Especially, when two electronic states come
close, or degenerate due to molecular symmetry, the coupling between electrons and nuclei
can become so large or even infinite, that the kinetic energy of the nuclei can excite the
electronic degrees of freedom. It is easy to observe this fact, since the derivative coupling
term can be recast in the form using Hellmann Feynman theorem [5],

~Λ(1)
mn =

〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
=

〈
ϕm

∣∣∣~∇QHe

∣∣∣ϕn

〉
Vn − Vm

, for m 6= n (2.10)

and it diverges if Vn = Vm, i.e. when the n-th and m-th electronic states are degenerate,
the Hamiltonian in adiabatic represention is singular. In this case, one has to include the
Λnm coupling, which introduces nuclear motion mediated electronic transition, namely the
non–Born–Oppenheimer effect. The non-adiabatic energy transfer between nuclear and
electronic systems is absent in the Born–Oppenheimer approximation.

In this thesis, non–Born–Oppenheimer effect is incorporated as an essential ingredient
of all ab initio simulation, because one could find that the non–Born–Oppenheimer effect
can manifest itself significantly in the highly excited molecular ions containing electron
holes produced by photoionisation. Without incorporating the non–Born–Oppenheimer
effect, the results from ab initio simulation can be qualitatively incorrect, as I will present
in chapter 3.

For this purpose, one has to properly handle the singularities appearing in the non–
Born–Oppenheimer Hamiltonian (Eq. 2.10) in the adiabatic representation. A well estab-
lished technique to remove the singularities in the non–Born–Oppenheimer Hamiltonian is
the so-called diabatization scheme [5].

The diabatization procedure can be schematically viewed as a linear rotation U of
nuclear basis functions {χn(Q)} subject to the Born–Oppenheimer factorization ansatz
(Eq. 2.3) Ψ(q,Q) =

∑N
n=1 χn(Q)ϕn(q,Q) to a new set of nuclear basis functions {ηn(Q)}

as,
χ = Uη , (2.11)

where χ = (χ1, · · · , χN)T and η = (η1, · · · , ηN)T . Replacing Eq. 2.11 into the Schrödinger
equation (Eq. 2.6), one finds

− 1

2
U∇2

Qη − (~∇QU + ~Λ(1)U) · ~∇Qη

+

[
V U − 1

2

(
∇2

QU + 2~Λ(1) · ~∇QU + Λ(2)U
)]

η = EUη . (2.12)
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As we know from Eq. 2.10, that ~Λ(1) in the second term on the left hand side of Eq. 2.12 is
diverging at the conical intersection. With the linear rotation U , one can readily remove
this singularity by choosing specific nuclear coordinate Q–dependent local transformation
matrices U(Q), such that the second term in Eq. 2.12 vanishes [6], i.e.

~∇QU(Q) + ~Λ(1)U(Q) = 0 . (2.13)

Such a local Q–dependent transformation U(Q) is called diabatization transformation, and
the new set of nuclear basis {ηn(Q)} spans the diabatic representation.

It has been shown [7] that Eq. 2.13 has non–trivial solution U(Q), which guarantees
that the diabatization transformation is well defined. Moreover, one can further show that

the term 1
2

(
∇2

Q + 2~Λ(1) · ~∇Q + Λ(2)
)

U = 1
2

(
~∇Q + ~Λ(1)

)2

U in Eq. 2.12 should also vanish,
provided the diabatization condition (Eq. 2.13) is satisfied. Inserting Eq. 2.13 into Eq. 2.12,
one could readily find [

−1

2
U∇2

Q + V U

]
η = EUη . (2.14)

It is straightforward to show that the diabatization transformation matrix U is orthogo-
nal [7], because ~Λ(1)† = −~Λ(1), we have

~∇QU + ~Λ(1)U = 0

~∇QU † − U †~Λ(1) = 0 . (2.15)

From Eq. 2.15 one finds

U †~∇QU + (~∇QU †)U = ~∇Q(U †U) = 0 , (2.16)

thus U †U = C, where C is a constant. Given a normalization factor 1/
√

C to U , one
can have a unitary diabatization matrix U , such that the Schrödinger equation in diabatic
representation reads, [

−1

2
∇2

Q + U †V U

]
η = Eη . (2.17)

Based on the discussion above, the coupled electronic nuclear Hamiltonian for molecules
can be given as

H = TN1 + W , (2.18)

where TN is the nuclear kinetic energy operator (KEO) and W(Q) = U †(Q)V (Q)U(Q)

is the potential energy matrix in diabatic representation. The technical details to im-
plement the diabatic transformation using a regularized diabatization scheme will also
be presented in Section 3.1.2, with a concrete example of constructing a singularity–free
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non–Born–Oppenheimer Hamiltonian for Zundel cation H+(H2O). The regularized diaba-
tization scheme we applied is a different strategy than directly solving Eq. 2.13, which is
only practical for very small molecules.

With the singularity–free Hamiltonian in hand, the molecular system is in principle
completely characterized, the key step forward is to solve the equations of motion associated
with the molecular Hamiltonian, in order to retrieve the dynamics of electrons and nuclei
of the molecule.

Before switching the topic to practical solutions of dynamics subject to the coupled
electronic nuclear Hamiltonian of molecules, it is worth to mention the recent effort by
E. K. U. Gross et al. [8, 9, 10], to construct singularity–free full molecular Hamiltonian
without invoking the Born–Oppenheimer factorization ansatz (Eq. 2.3 and 2.4). Instead of
using eigenfunctions {ϕn(q,Q)} subject to electronic Hamiltonian He to expand the molec-
ular wave function, the authors adopt a new set of basis functions {ΨN

mol(q,Q)}, where
ΨN

mol(q,Q) is the N -th eigenstate of the full molecular Hamiltonian Hmol (Eq. 2.2), such
that HmolΨ

N
mol(q,Q) = ENΨN

mol(q,Q). ΨN
mol(q,Q) can be factorized as a single product

ΨN
mol(q,Q) = χN(Q)ΦN(q,Q), where ΦN(q,Q) satisfies the partial normalization condi-

tion,
∫

dq |ΦN(q,Q)|2 = 1.

With the new exact factorization ansatz, the authors are able to show that the exact
electronic wave functions ΦN(q,Q) are perfectly smooth for any finite value of nuclear
mass M , such that the Hamiltonian singularities appearing in the Born–Oppenheimer
adiabatic representation occur only in the Born–Oppenheimer limit M →∞ [10], i.e. the
electron nucleus mass ratio m

M
→ 0, and the motion of electrons and nuclei is completely

decoupled. It should be an attractive direction to develop novel theoretical schemes for
non–Born–Oppenheimer dynamics based on the exact factorization representation [9].

The following Sections 2.2 and 2.3 are devoted to introduce the method I applied in
my Ph.D. work to handle to the time–dependent Schrödinger equation, using quantum
mechanical wave packet and mixed quantum–classical surface hopping approaches.

2.2 Multiconfiguration time-dependent Hartree

The MCTDH method [11, 12, 13], which we employ to simulate the non-Born-Oppenheimer
electron–nuclei dynamics of molecular ions in chapter 3, and to solve the nonequilibrium
DMFT impurity model for strongly correlated materials in chapter 5, is a general framework
that provides highly efficient solutions to the time-dependent Schrödinger equation.
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The MCTDH ansatz for the wave function can be written as

Ψ(q1, . . . , qf , t) ≡ Ψ(Q1, . . . , Qp, t)

=

n1∑
j1

· · ·
np∑
jp

Aj1,··· ,jp(t)

p∏
κ=1

ϕ
(κ)
jκ

(Qκ, t)

=
∑

J

AJΦJ , (2.19)

where f denotes the number of degrees of freedom and p the number of MCTDH com-
bined modes. Combined modes are effective degrees of freedom containing several corre-
lated coordinates, whose time–dependent basis functions are grouped together, and prop-
agated in a multidimensional subspace which they belong to. Suppose a combined mode
Qκ = {q1κ , · · · , qdκ} contains dκ primitive coordinates qiκ , which is a subset of f degrees
of freedom {q1, · · · , qf}, the mode combined SPFs ϕ

(κ)
jκ

(Qκ, t) are given as a multiconfigu-
rational expansion in terms of the time–independent primitive basis functions by

ϕ
(κ)
jκ

(Qκ, t) =

N1κ∑
i1κ

· · ·
Ndκ∑
idκ

B
(κ)
jκ;i1κ···idκ

χ
(κ,1)
i1κ

(q1κ) · · ·χ
(κ,dκ)
idκ

(qdκ) . (2.20)

Introducing combined modes helps to reduce effective degrees of freedom from f to p,
with p < f , and provide access to rearrange correlated coordinates into groups of strongly
coupled modes.

The key ingredient of the MCTDH ansatz is the introduction of time–dependent basis
functions, denoted as ϕ

(κ)
jκ

(Qκ, t) in Eq. 2.19. In the standard TDSE method, which is
developed since 1970’s, the wave function is expanded directly with the time–independent
primitive basis,

Ψ(q1, . . . , qf , t) =

N1∑
j1

· · ·
Nf∑
jf

Aj1,··· ,jf
(t)

f∏
κ=1

χ
(κ)
jκ

(Qκ) , (2.21)

One can directly observe the improvement of MCTDH method compared to the standard
TDSE method from the difference between Eq. 2.19 and Eq. 2.21. The improvement
of MCTDH lies in two aspects. Firstly, in the standard method (Eq. 2.21) there are
Nκ time–independent basis χ

(κ)
jκ

(Qκ), for the κth degree of freedom, and in the MCTDH
ansatz (Eq. 2.19) there are nκ variationally optimal time–dependent basis, called single-
particle functions (SPF). For the κth combined mode, as I will introduce in the following,
the number of basis functions required to represent the time–dependent wave function
is substantially smaller in MCTDH ansatz than that in the standard method, such that
nκ � Nκ. Secondly, the MCTDH ansatz has less degrees of freedom than that of the
standard method, i.e. p < f , thanks to the mode combination.
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Figure 2.1: Tree structure of the
MCTDH wavefunction of a system with
6 degrees of freedom, where qi are the
coordinates. The coordinates are com-
bined in groups of two. N2 refers to
the number of time–independent primi-
tive basis functions or grid points. n1 is
the number of the time–dependent basis,
i.e. the single particle functions (SPFs),
for each combined mode. This figure is
taken from Ref. [15]. Copyright c© 2011
American Institute of Physics (AIP).

The A-vector AJ ≡ Aj1,··· ,jp denotes the MCTDH expansion coefficients and the config-
urations ΦJ are products of the time-dependent SPFs. The SPFs are finally represented by
linear combinations of time-independent primitive basis functions, which can be grid basis
of various types. The contracted structure of the MCTDH wave function can be illustra-
tively viewed with a tree diagram as sketched in Fig. 2.1 [14, 15]. In the tree diagram, the
time-dependent wave function is represented by two layers of basis functions, the upper
layer consists of time-dependent SPFs that can follow the wave function, and the bottom
layer contains the support of static primitive basis functions, whose linear combinations
represent the SPFs.

Fig. 2.2 illustrates how a moving two–particle correlated wave function Ψ(x, y, t) is
represented by the time–dependent basis (the SPFs) that follow it. Correlation of the wave
function manifests itself by the fact that the wave function can only be represented by a
sum of products of basis functions, instead of a single product of functions ϕj(x, t)ϕk(y, t)

Figure 2.2: Representing a correlated
wave function Ψ(x, y) by covering its sup-
port with sum of products of single parti-
cle functions (SPFs) ϕi(x)ϕj(y). Because
the correlated Ψ(x, y) is not aligned along
the coordinate axes, several SPF prod-
ucts are required to cover its support.
This figure is taken from Ref. [16]. Copy-
right c© 2005 American Physical Society
(APS).
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in the uncorrelated case. Pictorially [16], the correlated wave function Ψ(x, y, t) should
not align along the coordinate axes, while the product functions ϕj(x, t)ϕk(x, t) are always
aligned with the axes. Several product functions are required to cover the support of
Ψ(x, y, t). In the dynamical problem, the wave function will change its position and shape
in the (x, y) plane. The MCTDH philosophy is to let the time–dependent SPFs ϕ(t) to
variationally move as linear combination of the static primitive basis, in order to optimally
cover the moving wave function Ψ(t). Provided the correlation does not considerably
increase, roughly the same number of temporally self–adjusted SPFs suffice during the
entire time window of the relevant dynamics.

Following the pictorial sketch of MCTDH method above, one sees immediately the
necessity to guide the time evolution of the time–dependent basis functions (SPFs), so
that they can evolve in an optimal way to find and cover the support of the moving
wave function. This task is done by the MCTDH equations of motion, which ensure the
motion of time–dependent basis to be variationally optimal to follow the time–dependent
wave function. The MCTDH equations of motion for expansion coefficients AJ and time–
dependent SPF basis ΦJ are derived from the Dirac-Frenkel variation principle and read [11]

iȦJ =
∑

L

〈ΦJ |H|ΦL〉AL ,

iϕ̇(κ) = (1− P (κ))(ρ(κ))−1〈H〉(κ)ϕ(κ) , (2.22)

where a vector notation, ϕ(κ) = (ϕ
(κ)
1 , · · · , ϕ

(κ)
nκ )T , is used. In Eq. 2.22, the projector P (κ)

on the space spanned by the SPF for the κth degree of freedom is defined as,

P (κ) =
nκ∑
j=1

∣∣∣ϕ(κ)
j

〉〈
ϕ

(κ)
j

∣∣∣ . (2.23)

It can be deduced that in the case nκ = Nκ, namely the number of SPFs matches the
number of the underlying primitive basis, the MCTDH equations of motion (Eq. 2.22) are
reduced to that of standard TDSE method, since P (κ) = 1 and iϕ̇(κ) = 0.

By defining single–hole function Ψ
(κ)
l as linear combination of Hartree products of (f−1)

SPFs without the SPFs for the κth degree of freedom Qκ

Ψ
(κ)
l =

∑
j1

· · ·
∑
jκ−1

∑
jκ+1

· · ·
∑
jf

Aj1···jκ−1ljκ+1···jf

×ϕ
(1)
j1
· · ·ϕ(κ−1)

jκ−1
ϕ

(κ+1)
jκ+1

· · ·ϕ(f)
jf

, (2.24)

one can write the means–field 〈H〉(κ) and density matrix ρ(κ) in compact forms as,

〈H〉(κ)
jl =

〈
Ψ

(κ)
j

∣∣∣H ∣∣∣Ψ(κ)
l

〉
, (2.25)
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and

ρ
(κ)
jl =

∣∣∣Ψ(κ)
j

〉〈
Ψ

(κ)
l

∣∣∣ =
∑
j1

· · ·
∑
jκ−1

∑
jκ+1

· · ·
∑
jf

A∗
j1···jκ−1jjκ+1···jf

Aj1···jκ−1ljκ+1···jf
. (2.26)

The computational gain of the MCTDH method is acquired via keeping the num-
ber of SPF basis optimally small compared to the underlying primitive basis, i.e., the
so-called MCTDH contraction effect. Because the SPFs are variationally optimal as in-
herently guaranteed by the MCTDH equations of motion, they are ensured to evolve tem-
porally in an optimal manner to represent the time-dependent wave function, intuitively
the time-dependent SPF basis can follow the moving wave function. Therefore often a
rather small number of SPFs allows for an accurate representation of wave packet. In
comparison, the standard time-dependent Schrödinger equation (TDSE) method based on
time-independent basis sets requires much more basis functions to cover the entire area in
Hilbert space the wave function has explored during the whole dynamical process. There-
fore, for Schrödinger equation of a system with f degrees of freedom, MCTDH leads to the
scaling of number of configurations nf , where n SPFs are used for each degrees of freedom.
Although the exponential scaling of order f remains, but to much lower base n than the
standard TDSE method using time–independent primitive basis functions, whose configu-
ration space dimension scales on the order of N f , with N � n. As I have discussed for the
MCTDH ansatz (Eq. 2.19), the efficiency can be further enhanced by combining the sev-
eral correlated degrees of freedom into physical modes Qi. One obtains this way a smaller
number of effective degrees of freedom p < f in Eq. 2.22, leading to further reduction
in the number of configurations, but the time–dependent basis functions that have to be
propagated are multidimensional. It is favorable to find mode–combination schemes that
provide an optimal balance between the computational effort of propagating the expansion
coefficients of configurations, the A–vector, and the effort of propagating multidimensional
SPFs. A natural solution to efficient propagation of multidimensional SPFs is to treat the
multidimensional SPFs in Eq. 2.20 as a time–dependent wave function-like object, and
expand the SPF further using time–dependent basis, instead of using time–independent
primitive basis as in Eq. 2.20.The resulting scheme is called the multi–layer multiconfig-
uration time-dependent Hartree (ML-MCTDH) method [14, 15, 17], where the level of
basis function expansion is dubbed the layer. The efficiency enhancement can be easily
understood, because in the ML-MCTDH scheme, the mode combined multidimensional
SPFs are themselves represented by the deeper layer of time–dependent basis functions,
the additional configuration space dimension reduction can be readily deduced from the
MCTDH contraction effect.

In a general framework, one can view the standard time-dependent Schrödinger equa-
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tion (TDSE) method with time-independent basis functions as a single layer scheme, be-
cause the wave function is directly represented by the layer of static primitive basis func-
tions. In a same manner, the MCTDH itself can be viewed as a 2–layer scheme, which
consists of the time–independent primitive basis as bottom layer and one additional layer
of time–dependent SPF basis. In this perspective, it is natural to understand that by
adding layers of basis functions to the MCTDH representation, i.e. with the family of ML-
MCTDH methods with more than two layers of basis functions, one can further enhance the
efficiency of the method [14, 15, 17]. In an N -layer MCTDH scheme, the time-dependent
wave function is represented by N − 1 layers of time-dependent basis functions, such that
the i-th layer serves the role as time–dependent and variationally optimal basis functions
to support linear expansion of basis in the upper (i − 1)-th layer, while finally supported
by the N -th bottom layer of static primitive basis.

The solution of the MCTDH equations of motion demands an efficient evaluation of
the mean fields at every time step. For this purpose we have employed the constant mean
field (CMF) scheme [11], which allows us to update the mean field 〈H〉(κ) only after a
defined time step longer than the integration step. The CMF approximation is valid as
long as the time-dependent Hamiltonian does not undergo considerable changes within the
time interval on which the mean field is kept constant. For a time-dependent Hamiltonian,
the CMF time step should be shorter than the temporal feature of the Hamiltonian. For
time-independent Hamiltonian, a larger SPF orbital space generally allows longer CMF
time steps, because the mean field does not vary less drastically in time.

Furthermore, to treat the coupled potential energy operator appearing in most molec-
ular applications, the Hamiltonian is represented as a sum of products of single mode
operators, via the POTFIT method [11, 18, 19], which allows to bring general electronic
potentials into product form comprised of basis functions called single-particle potentials
(SPPs). With the POTFIT procedure, the potential energy operator defined on the set
of grid points

{
Q

(κ)
iκ

}
for f degrees of freedom can be approximated with chosen a set

expansion orders mk as

V (Q
(1)
i1

, · · · , Q
(f)
if

) '
m1∑

j1=1

· · ·
mf∑

jf=1

Cj1···jf
v

(1)
j1

(Q
(1)
i1

) · · · v(f)
jf

(Q
(f)
if

) . (2.27)

The advantage of representing the Hamiltonian as a sum of products of single mode
operators is to circumvent the multi–dimensional integration when evaluating the Hamil-
tonian matrix elements 〈ΦJ |H |ΦL〉 and mean fields 〈H〉(κ)

jl =
〈
Ψ

(κ)
j

∣∣∣H ∣∣∣Ψ(κ)
l

〉
. The direct

evaluation of Hamiltonian matrix elements and mean fields requires f -fold and (f − 1)-
fold spatial integrations, respectively, which can rapidly hit the computational barrier.



16 CHAPTER 2. THEORETICAL FRAMEWORK

Expressing the Hamiltonian in the single–particle operator product form as

H =

f∑
κ=1

h(κ) +
s∑

r=1

cr

f∏
κ=1

h(κ)
r , (2.28)

the Hamiltonian matrix elements and mean fields involve now only a set of 1-fold integra-
tions, which can be efficiently evaluated. For example, using Eq. 2.28, one can readily find
the expression of Hamiltonian matrix elements as

〈ΦJ |H |ΦL〉 =

f∑
κ=1

〈
ϕ

(κ)
jκ

∣∣∣h(κ)
∣∣∣ϕ(κ)

lκ

〉
+

s∑
r=1

cr

f∏
κ=1

〈
ϕ

(κ)
jκ

∣∣∣h(κ)
r

∣∣∣ϕ(κ)
lκ

〉
, (2.29)

where h(κ) and h
(κ)
r denote the single–particle operators building up the separable and

correlated part of the Hamiltonian, respectively.

In most applications in molecular physics, the kinetic energy operator has normally the
required form as Eq. 2.28, and the POTFIT procedure can transform the multidimensional
electronic potential energy operator into the sum of single–particle operator products, as
illustrated in Eq. 2.27. Explicitly, the operators h(κ) and h

(κ)
r in Eq. 2.29 would correspond

to kinetic energy operator t(κ) and single–particle potentials (SPPs) v
(κ)
rκ (Q

(κ)
iκ

).

With the MCTDH machinery introduced above, one is allowed to access the coupled
electronic nuclear dynamics of molecules of medium size with fully quantum mechanical
description. However, for many molecules containing tens or even more atoms, the full
quantum mechanical treatment is not within reach due to computational barrier. One has
to invoke newtonian mechanics, in a classical or semi–classical manner, in order to study
the dynamics of large molecules. The development in this direction leads to a family of
mixed quantum–classical surface hopping approaches, as presented in the next section.

2.3 Mixed quantum-classical dynamics

The mixed quantum–classical scheme is based on the nuclear trajectories guided by newto-
nian equation, while the electronic forces on the nuclei are acquired by quantum mechanical
treatment. The dynamical phase space distribution of the system can be approximately
reconstructed from a swarm of trajectories, as sketched in Fig. 2.3

To determine the motion of nuclei according to newtonian equations, the key ingredient
is the force on the nuclei, which should be acquired from ab initio electronic potentials in
the mixed quantum–classical scheme. To establish the connection of quantum mechanical
electronic potentials and classical force on the nuclei, the natural linker would be the
Ehrenfest theorem and the correspondence principle of quantum mechanics.
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2.3.1 From quantum to classical mechanics – the Ehrenfest the-
orem

The time derivative of expectation value of a given operator O reads,

d

dt
〈O〉 =

1

i~
〈[O, H]〉+

〈
∂O
∂t

〉
. (2.30)

For time-independent operators in Schrödinger picture,
〈

∂O
∂t

〉
= 0. Applying Eq. 2.30 to

the position and momentum operators leads to the Ehrenfest theorem [20].

For the nuclei moving in the electronic potential V (Q), the Hamiltonian of nuclear
motion is simply given in terms of nuclear canonical coordinates (Q,P) in phase space,

H(Q,P, t) =
P2

2M
+ V (Q) . (2.31)

Applying the Ehrenfest theorem, the classical force on the nuclei subject to the Newton’s
second law can be expressed in the quantum mechanical context as,

d

dt
〈P〉 =

1

i~
〈[P, H]〉 =

1

i~
〈[P, V (Q)]〉 ,

given P = −i~~∇Q and nuclear wave function |χ〉, evaluating the commutator in the right-
hand side of Eq. 2.32 gives the expression of force F on the nuclei,

d

dt
〈P〉 = 〈χ|V (Q)|~∇Qχ〉 − 〈χ|~∇Q(V (Q)|χ〉)

= −〈χ|(~∇QV (Q))|χ〉

= −
〈

~∇QV (Q)
〉

= 〈F〉 , (2.32)

meanwhile
d

dt
〈Q〉 =

1

i~
〈[Q, H]〉

=
1

i~

〈[
Q,

P2

2M

]〉
=

1

M
〈P〉 (2.33)

closes the derivation of the Ehrenfest theorem.

It is worth to note the conceptual transition from classical to quantum realm illustrated
by the Ehrenfest theorem [1, 21, 22]. Despite the similarity, Eq. 2.32 does not necessarily
describe particles that obey Newton’s second law. A complete classical analogy of Newton’s
second law for a specific coordinate component should read,

d

dt
〈Pi〉 = −∂ 〈V (Q)〉

∂ 〈Qi〉
, (2.34)
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instead of given in quantum mechanics as in Eq. 2.32, which states

d

dt
〈Pi〉 = −

〈
∂V (Q)

∂Qi

〉
. (2.35)

Obviously the relation
∂ 〈V (Q)〉

∂ 〈Qi〉
=

〈
∂V (Q)

∂Qi

〉
(2.36)

does not necessarily hold, unless the wave function of the particle corresponds to a function
of single point support in phase space, namely, one assumes a classical point particle.

To illustrate this fact, one could take one-dimensional model Hamiltonian with potential

V (Q) =
1

n
kQn, (2.37)

as an example. It is easy to show that for a harmonic potential with n = 2, one has〈
∂V (Q)

∂Q

〉
= k 〈Q〉 =

∂ 〈V (Q)〉
∂ 〈Q〉

, (2.38)

Ehrenfest theorem gives almost Newton’s second law despite of the uncertainty relation
between position and momentum. Such a quantum-classical particle corresponds to the
coherent state wave packet introduced by E. Schrödinger [23], in order to establish the
transition from quantum to classical mechanics. The coherent state, with minimum uncer-
tainty ∆Q∆P = ~/2, is a quantum state that is closest to a classical state. However for
n > 2, Eq. 2.36 does not generally hold, e.g. for n = 3, one finds that〈

∂V (Q)

∂Q

〉
= k

〈
Q2
〉

∂ 〈V (Q)〉
∂ 〈Q〉

= k 〈Q〉2 . (2.39)

It is clear that in quantum mechanics 〈Q2〉 = 〈Q〉2 does not necessarily hold, it is only
valid if the wave function reduces to a function of single point support in the phase space,
namely with zero uncertainty. It implies that quantum and classical mechanics meet at the
limit of ~ → 0, or equivalently of large quantum number n →∞, since Bohr’s quantization
condition assumes the product of n and ~ is fixed at an appropriate classical action such
that n~ = S, e.g. for electron in the hydrogen atom n~ = J , where J is the angular
momentum of the electron.

For a general potential V (Q), one can expand V (Q) at the center of the wave packet
Q = 〈Q〉, denoting ∆Q = Q− 〈Q〉, one has

∂V

∂Q
=

∂V (Q)

∂ 〈Q〉
+ ∆Q

∂2V (Q)

∂ 〈Q〉2
+

1

2
∆Q2∂3V (Q)

∂ 〈Q〉3
+ · · · . (2.40)
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Because 〈∆Q〉 = 〈Q− 〈Q〉〉 = 〈Q〉 − 〈Q〉 = 0, one finds〈
∂V

∂Q

〉
=

∂V (Q)

∂ 〈Q〉
+

1

2

〈
∆Q2

〉 ∂3V (Q)

∂ 〈Q〉3
+ · · · . (2.41)

So the general condition for viewing Eq. 2.34 as analogue of classical newtonian equation,
namely the Ehrenfest equation of motion 〈F (Q)〉 =

〈
∂V (Q)

∂Q

〉
can be approximated by

newtonian equation of motion F (〈Q〉) = −∂V (Q)
∂〈Q〉 , is

∂V (Q)

∂ 〈Q〉
� 1

2

〈
∆Q2

〉 ∂3V (Q)

∂ 〈Q〉3
. (2.42)

It is easy to find the condition in Eq. 2.42 holds for potential V (Q) = 1
2
Q2, because in this

case ∂3V
∂Q3 = 0.

In a practical view, the Ehrenfest theorem can be seen as valid in the case if the size of
the wave packet is smaller than the typical size on which the potential function changes.
It guarantees that the expectation values of position and momentum follow approximately
a classical trajectory.

2.3.2 Mixed quantum-classical dynamics

In the context of mixed quantum-classical dynamics, one treats the coupled electronic
nuclear dynamics in molecules by solving the equations,

i
∂

∂t
Ψ(q;Q(t)) = HeΨ(q;Q(t))

F = M
..

Q(t) , (2.43)

where Q(t) represents a classical trajectory of the nuclei. Assume the molecular wave
function can be expanded with electronic eigenstates {|ϕj〉}

Ψ(q;Q(t)) =
∑

j

Cj(t)ϕj(q;Q(t)) , (2.44)

inserting Eq. 2.44 into Eq. 2.43, and multiplying from the left by ϕ∗
k(q;Q(t)) one has

i
.

Ck(t) =
∑

l

Cl(t)
[
Hkl(Q(t))− i〈ϕk|

.
ϕl〉
]

, (2.45)

where Hkl = 〈ϕk|He |ϕl〉. Using the chain rule ∂
∂t
≡ dQ

dt
∂

∂Q
, Eq. 2.45 can be finally recast

into

i
.

Ck(t) =
∑

l

Cl(t)

[
Hkl(Q(t))− i 〈ϕk|

∂

∂Q
|ϕl〉

.

Q

]
=

∑
l

Cl(t)
[
Hkl(Q(t))− idkl ·

.

Q
]

, (2.46)
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where dkl ≡ 〈ϕk| ∂
∂Q
|ϕl〉. The non-adiabatic coupling matrix elements σJI =

.

Q · dJI =〈
φJ

∣∣∂φI

∂t

〉
can be calculated numerically by a finite difference from the overlap of wave

functions [24, 25, 26]

σJI(t + ∆t/2) =
1

2∆t
[〈φJ(t) |φI(t + ∆t)〉 − 〈φJ(t + ∆t) |φI(t)〉] (2.47)

with linear interpolation within an integration time step ∆t.

The central task remaining to the mixed quantum–classical scheme is to efficiently
evaluate the force 〈F〉 from evolving molecular wave function Ψ(q;Q(t)), which depends
on the molecular geometry Q(t) and electronic coordinates q. This seemingly easy task
is however not trivial at all, especially when multiple electronic states are involved in
the coupled non–Born–Oppenheimer nuclear electronic dynamics. When a set of coupled
electronic states {|ϕn〉} are involved in the dynamics, one can express the force acting on
nuclei in the adiabatic representation in terms of electronic density matrix ρ as

〈F〉 = −〈Ψ| ~∇QHe(q,Q(t)) |Ψ〉
= −

∑
kl

ρkl 〈ϕk| ~∇QHe |ϕl〉

= −
∑

k

ρkk
~∇QEk +

∑
kl

ρkl(Ek − El)dkl , (2.48)

with the relation

~∇Q 〈ϕk|He |ϕl〉 = ~∇QElδkl

= 〈ϕk| ~∇QHe |ϕl〉+ 〈~∇Qϕk|ϕl〉El + 〈ϕk|~∇Qϕl〉Ek

= 〈ϕk| ~∇QHe |ϕl〉+ (Ek − El)dkl , (2.49)

where Ek is the energy of k-th electronic eigenstate, and 〈~∇Qϕk|ϕl〉 = −〈ϕk|~∇Qϕl〉.
Eq. 2.48 leads to a family of mixed quantum classical methods, dubbed Ehrenfest dy-
namics, which has been applied for nuclear dynamics of molecules [27], however it may not
always give faithful description of coupled electronic nuclear dynamics.

The reason lies in the fact that in the Ehrenfest dynamics scheme one assumes the force
can be evaluated as an averaged quantity from all electronic states during the entire dynam-
ical process, which is adequate for solids, because the time scale for the electronic states to
dephase is inverse proportional to the energy spacing between electronic states [28], i.e. the
typical time scale τik for two electronic states |ϕi〉 and |ϕk〉 to dephase from a superposition
state is τik ∝ ~

|Vii−Vkk|
.

In solids, the energy space between electronic states in the energy bands can be infinitely
small, and all potential energy surfaces are with almost parallel geometry with each other,
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which is on the line with the assumptions made in the Ehrenfest dynamics. However,
in the molecular case, when the molecular geometry is beyond the region of electronic
degeneracy, or conical intersection, the dephasing between the electronic states can rapidly
occur on the femtosecond time scale, comparable to the dynamical process itself. Thus,
although the force acting on the nuclei can be evaluated as an averaged quantity from all
relevant electronic states, when the potentials of adjacent electronic states comes close or
degenerate, e.g. in the vicinity of conical intersection, the nuclei of the molecule would
however most of the time only experience the force given by a single electronic state wave
function 〈F〉 = −〈ϕk| ~∇QV (Q) |ϕk〉 at a certain time. A successful mixed quantum–
classical scheme to evaluate the force acting on nuclei in the molecular case is the surface-
hopping approach.

The fewest-switches surface hopping (FSSH) scheme is one of the most popular method-
ologies to treat quantum-classical non–Born–Oppenheimer dynamics in molecules [29]. The
FSSH scheme generally keeps the number of switching between electronic states to be min-

Figure 2.3: The sketch of the trajectory based mixed quantum–classical scheme. The
time evolution of 2D model can be reconstructed from a swarm of trajectories, while the
electronic potentials and the non–adiabatic switch of electronic states are described in an
ab initio manner.
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imal (hence, fewest switches), with the following probability gIJ for the hopping from the
I th state to the J th state within the time interval [t, t + dt] [24],

gIJ(t, t + dt) = −2

∫ t+dt

t

dτ
<
[
CJ(τ)C∗

I (τ)
.

Q · dJI

]
C∗

I (τ)CI(τ)
. (2.50)

Suppose ζ is a uniform random number between 0 and 1. A hopping event is invoked when
the following inequality ∑

K≤J−1

gα
IK < ζ <

∑
K≤J

gα
IK , (2.51)

as well as the energy conservation condition are satisfied. In our implementation of fewest-
switches surface hopping scheme, the momentum of the nuclei are corrected immediately
after the hopping by

p→ p + n

(
nM−1p

nM−1n

)(
1−

√
1− 2∆E

nM−1n

(nM−1p)2

)
, (2.52)

in order to conserve total energy and angular momentum, where M is the mass matrix,
n = g/ |g|, and g is the gradient of the energy gap g = ~∇Q(EJ − EI) [30].

Instead of FSSH, the Landau-Zener scheme [31, 32, 33] is an alternative way to im-
plement surface hopping method. In the Landau-Zener scheme, the electronic population
dynamics is fully determined by local topologies of the potential energy surfaces. The
quantum-classical Landau-Zener formula for transition probability between adiabatic elec-
tronic states I and J is

P LZ
I,J = exp

(
−2π

∆Ea
IJ

2

~|
.

Q · ~∇∆Ed
IJ |

)
, (2.53)

where ~∇∆Ed
IJ is the gradient of the energy difference between two diabatic electronic states

I and J , and ∆Ea
IJ is the energy difference between two adiabatic electronic states I and

J . It is natural to expect that the transition probability should be maximized for a small
energy gap and a large slope of the PESs as they come close. The implementation we
used here for the Landau-Zener approach closely follows that of Jones et al. [31]. In the
practical implementation of the Landau-Zener scheme, the trajectory is monitored until a
minimum in the gap is found, and one then uses the Landau-Zener formula (Eq. 2.53) to
treat the hopping between electronic states.

Both the Landau-Zener and the fewest-switches schemes guarantee that the nuclei feel
the force on a single electronic PES when the system leaves the interaction regions of
strong non-adiabatic coupling. This scenario is physically consistent with the fact that
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in experiment the outgoing molecular fragments should be generally observed to sit on a
single electronic state at the asymptotic region, rather than to maintain superposition of
electronic states.

For the purpose of studying the influence of dimensionality to the surface-hopping
quantum-classical dynamics, we applied the RATTLE scheme [34] to impose internal con-
straints on motions of atomic nuclei. In this way, we can precisely study the same reduced
dimensionality model by both surface hopping and quantum dynamics of reduced dimen-
sional models.

Working with Cartesian coordinates, the rigid constraints are maintained by introduc-
ing implicit forces based on Lagrange multipliers. The equation of motion for the atom i

thus reads
mi

..

Qi = Fi + Gi , (2.54)

where Fi is the inherent force from electronic potential energy surface, and Gi is the force
acting on the atom i in order to satisfy the constraints. Gi is given by

Gi = −
∑

α

λiα
~∇iσiα({Q(t)}) , (2.55)

where σiα{Q(t)} = 0 are the set of general holonomic constraints imposed on atom i,
which could be functions of either Cartesian or internal coordinates while their Cartesian
derivatives ~∇iσiα({Q(t)}) are evaluated by a stable numerical differentiation, and λiα are
time-dependent Lagrange multipliers associated with the force of constraints, which are
determined by the iterative procedure of Andersen [34]. Since the constraint forces are by
construction always orthogonal to the velocity vectors of atomic nuclei, they do not impose
any work to the molecular system, and the total energy conservation is guaranteed.

2.3.3 QDTK package

QDTK (quantum-classical dynamics toolkit) is a program package developed in our group.
It is a modularized program based on Python and Fortran programming languages. The
QDTK package consists of two major modules, i.e. the full quantum dynamics module,
which is designed to treat the wave packet dynamics using MCTDH method, and the mixed
quantum-classical dynamics module, which involves implementation of methods introduced
in this section. I have contributed to the QDTK package to implement the fewest-switches
surface-hopping scheme [29] and Ehrenfest dynamics scheme with electronic dephasing [28].

The mixed quantum classical dynamics module has the following basic functions,

• Initial condition sampling for nuclear position and momentum.
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• Surface hopping dynamics.

• Ehrenfest dynamics with electronic dephasing.

• Evaluation of physical observables from trajectories, so far we have implemented a
module to compute transient absorption spectra, and to determine reaction channels.

The initial conditions for the molecules were sampled from a Boltzman distribution in
the phase space on the certain electronic PES. We have also considered sampling from a
Wigner distribution of the ground vibrational state [35]. For practical implementation, we
have adopted the orthant sampling scheme [36].

The implementation of surface hopping and Ehrenfest dynamics is based on a modular-
ized programming model, in which the modules are to the maximum extent decoupled from
each other. For example, the integration of newtonian equation stands as an independent
module, while the force on the nuclei is determined from the surface hopping or Ehrenfest
dynamics module, when either of the modules is embedded in a main program constructed
by the user.

As the dynamics develops, the program records for each trajectory the positions and
momenta of nuclei, as well as the electronic state at certain time step and the electronic
wave function, from which physical observables can be constructed.

In the mixed quantum-classical treatment, the electronic structures are solved on-the-
fly with external call to the MOLCAS ab initio quantum chemistry package [37], from which
one could acquire necessary quantities for propagating nuclear trajectories, e.g. the force
acting on the nuclei, the overlap matrix used to compute non-adiabatic coupling matrix
element (Eq. 2.47). From the MOLCAS program we also acquire the electronic wave function,
which we use for constructing physical observables subject to concrete applications.

2.4 Electronic structure

As we see from the previous sections, either quantum mechanical or mixed quantum–
classical scheme needs high quality description of electronic structure, since the electronic
wave function is the crucial ingredient to provide electronic potential and the force on the
nuclei.

The electronic strucutre theory of molecules emerged almost immediately after the
advent of quantum mechanics, following the pioneering work of F. London and W. Heitler
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to explain the nature of chemical bonding of H2 molecule in 1927, and has been a vibrant
field ever since.

In a general perspective, the ab initio electronic structure methods can be categorised
into two families, one is wave function based techniques, which includes the Hartree-Fock
and various post Hartree-Fock methods, and another is electron density based techniques,
a representative method in this family is density functional theory. In this thesis, for
the study of photoionized molecules, we rely on the wave function based techniques,
specifically on the Hartree-Fock-Koopmans and complete active space self consistent field
(CASSCF) methods, because we are mainly dealing with electronic structure of ionic states
of molecules. For this purpose, we need ab initio electronic structure methods that are suit-
able to treat excited state of electronic configurations containing electron hole.

The self-consistent solution of the Hartree-Fock (HF) equations for an N -electron closed
shell system

f̂ |φj〉 = εj|φj〉 (2.56)

provides the set of occupied molecular orbitals |φj〉 of the anti-symmetrized wavefunction
|Ψ0〉 corresponding to the HF ground electronic state as well as their orbital energies εj.
f̂ is the Fock operator consisting of the one-body terms of the electronic Hamiltonian and
the mean-field potential, which depends on all occupied orbitals. The HF energy for the
ground state of the N -electron system is

EHF = 〈Ψ0|Ĥe|Ψ0〉 (2.57)

where Ĥe is defined in Eq. 2.2. Within this context, Koopmans’ theorem shows that

− εj = 〈Ψj|Ĥe|Ψj〉 − EHF (2.58)

= Ej − EHF (2.59)

where |Ψj〉 = ĉj|Ψ0〉 is an (N − 1)-electron state constructed from the HF solution by
removing an electron from the j-th orbital, ĉj is the annihilation operator for the j-th orbital
and Ej is an approximate eigenenergy through first order in many-body perturbation
theory. If one accepts |Ψj〉 as an approximation to the j-th electronic eigenstate of the
(N − 1)-electron system, then the negative energies of the occupied orbitals obtain the
meaning of ionization potentials, which constitutes Koopmans’ approximation. Within this
approximation, the energy of the j-th ionic state is simply Ej = EHF − εj, which requires
for its evaluation only one ground state HF calculation, with the self-consistent orbitals
obtained from Eq. 2.56, 〈Ψi|Ĥe|Ψj〉 = Ejδij. Therefore, in a configuration interaction
sense and within the one-hole space, the |Ψj〉 configuration represents the best possible
approximation to the j-th (N − 1)-electron state. Of course, this is still an approximation
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to the true eigenstate. For example, orbital relaxation effects caused by the increased total
charge and the contribution of two-hole one-particle configurations, which becomes crucial
to describe inner-valence holes, are neglected. Nonetheless, the adoption of Koopmans’
approximation provides a qualitative approach and a feasible alternative to describe the
electronic structure and nuclear dynamics evolving within the large manifold of tens or
even hundreds of (N − 1)-electron outer-valence states accessible upon photoionization of
medium sized molecules and clusters.

In order to satisfy the demand to perform on-the-fly dynamics (forces are computed as
trajectories evolve) in the mixed quantum–classical scheme, one needs an efficient evalu-
ation of the gradient of the electronic energy with respect to nuclear displacements. For
non-adiabatic dynamics the coupling terms between electronic states are needed as well.
HF energy gradients are implemented in the majority of quantum chemistry packages and
are calculated from the derivatives of one- and two-body integrals and the molecular orbital
coefficients [38]. All that is needed to calculate ∂Ej

∂λ
, where λ represents an atomic displace-

ment, is the derivative of the corresponding orbital energy ∂εj

∂λ
, which is calculated from

the same integral derivatives as the total ∂EHF
∂λ

. In our calculations, we use the multiconfig-
urational capabilities of the MOLCAS [37] package to generate the electronic wavefunctions
|Ψj〉 with the orbitals from a previous HF calculation and then obtain the energy gradient
for this single configuration.

The disadvantage of Hartree-Fock theory is the missing of electron correlation effect.
In the Hartree-Fock theory, the electronic wave function is approximated by a single Slater
determinant. Exact wave functions, however, cannot generally be expressed as single deter-
minant. Since the single-determinant approximation does not take into account Coulomb
correlation, it leads to a total electronic energy that is always above the energy from the
exact solution. The energy difference ∆E = EHF − Eexact is called the correlation energy
Ecorr.

A general solution to capture the electronic correlation effect is the family of post
Hartree-Fock methods, the complete active space self-consistent field (CASSCF) method
used in this thesis is a member of post Hartree-Fock methods family, which can be viewed
as a variation of multi-configurational self-consistent field (MCSCF) method.

To describe the electron correlation effect beyond the Hartree-Fock-Koopmans level
for an (N − 1)-electron system, one could firstly follow the configuration interaction (CI)
scheme. In the CI scheme, one introduces the Slater determinents of various electronic
configurations, dubbed configuration state functions (CSFs), of higher order excitations
into the wave function ansatz, i.e. the wave function for a certain eigenstate of the (N−1)-
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electron system can be constructed from the N -electron wave function Ψ0 as

∣∣Ψ(N−1)
〉

=


∑

i

Êi︸ ︷︷ ︸
1h

+
∑
a,j<k

Êa
jk︸ ︷︷ ︸

2h1p

+ · · ·

 |Ψ0〉

=
∑

I

CI |ΨI〉 , (2.60)

where

Êi |Ψ0〉 = Ciĉi |Ψ0〉
Êa

jk |Ψ0〉 = Ca
ij ĉ

†
aĉj ĉk |Ψ0〉 . (2.61)

Indices i, j, k, · · · denote occupied orbitals, whereas indices a indicate virtual (unoccupied)
orbitals.

In a general MCSCF framework, one obtains the corresponding electronic energies by
variational optimisation of both CI expansion coefficients CI and molecular orbitals |φj〉 in
the CSFs with a self-consistent procedure. The MCSCF procedure subject to wave function
ansatz in Eq. 2.60 is known as the restricted active space self-consistent field (RASSCF)
method, since one restricts the number of electrons and electron holes in certain orbital
subspaces, called the active space.

As expressed in Eq. 2.60, in the RASSCF scheme, the quality of electronic structure
for molecular ionic states can be systematically improved. Starting from the Hartree-Fock-
Koopmans wave function, which involves the one hole (1h) configuration, one may improve
the quality of truncated CI expansion by adding accordingly the two-hole-one-particle
(2h1p) and three-hole-one-particle (3h2p) configurations to it, in order to more accurately
describe the dynamical correlation effect. A 2h1p configuration, for example, means that
one electron has been removed accompanied by an excitation of another electron into an
unoccupied orbital.

Without restricting the types of electronic excitations in the active space, one could
extend the RASSCF method to the complete active space SCF (CASSCF) method [39],
where the linear combination of all possible CSFs that arise from a particular number
of electrons in a particular number of orbitals (active space). For example, one might
define CASSCF(n,m) for a molecule, where n valence electrons are distributed between all
configurations that can be constructed from m occupied and virtual molecular orbitals.

Besides, the algebraic diagrammatic construction (ADC) [40], which combines configu-
ration interaction with perturbation theory, could be adopted for our purpose to treat the
electronic structure of ionic states.
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Same as the Hartree-Fock-Koopmans calcualtion, all CASSCF calculations involved in
this thesis were performed with the quantum chemistry package MOLCAS [37].
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Chapter 3

Non-Born-Oppenheimer
Electronic-Nuclear Dynamics of
Gas Phase Molecules Ionized by
XUV Laser

The advent of bright light sources to produce ultrashort laser pulses in the extreme ultra-
violet (XUV) and x-ray regime enables us to study the photoionization and its follow-up
processes involving valence and core shell electrons of molecules.

The photoionized molecules carry an electron hole in them, the interaction of the elec-
tron hole with nuclei and the remaining electrons can have profound impact on various
physical, chemical, and biological processes. A prominent example is the self protection
mechanism of DNA against the photo-damage of sunshine [1].

In chapter 3, I present the study concerning the motion of electron holes created in the
molecule by photoionization. Section 3.1 describes the electron hole dynamics in molecular
ions that are produced by XUV free electron laser. In Section 3.2, I show a possible route
to explicitly track the electron hole motion using transient x-ray absorption spectroscopy.

3.1 Correlated proton-hole dynamics in H+(H2O)+n

The profound effect of non-adiabatic interactions between electronic states on the time-
evolution of molecular systems has been in the central focus of excited state chemical

31
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dynamics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The non-radiative decay of
excited electronic states when a molecule approaches conical intersections or avoided cross-
ings can result in a significant amount of energy redistribution into the vibrational modes,
or even in isomerization or fragmentation processes. Electronically excited molecules and
clusters can be produced in various ways. One possibility is by strong-field ionization, in
which several photons have to be absorbed before an electron leaves the system. This re-
sults in systems that are close to the ground electronic state of the ion. Another possibility
is by one-photon absorption of extreme ultra-violet (XUV) or x-ray photons. This leaves
the system potentially in a highly excited electronic state, which can even autoionize if the
electronic energy is above the next ionization threshold of the system at hand. There is
a large body of knowledge related to the dynamics and spectroscopic characterization of
excited molecular systems after photoabsorption and photoionization [18, 19]. However,
not so much is known about the nuclear dynamics and the role of non-adiabatic effects
unfolding after XUV one-photon ionization of weakly bound clusters, for example of wa-
ter molecules [20, 21, 22]. In the case of weakly bound clusters, the charge produced by
the ionization process may lead to a fast fragmentation of the system and to fast charge
redistributions related to both electronic and nuclear degrees of freedom. Since clusters
under such conditions may often fragment, non-Born-Oppenheimer (non-BO) effects lead
to irreversible electronic relaxation processes in which the electronic excitation energy ends
up as kinetic energy of the fragments.

For a theoretical treatment of such non-adiabatic dynamics, two essential ingredients
are required. First, a set of reliable potential energy surfaces (PES) of the valence ex-
cited electronic states of the ionic system and their couplings, and second, an efficient
approach to calculate the motion of atomic nuclei on that PES. Quantum mechanical
wavepacket methods have established a rigorous basis for fully understanding the mech-
anisms of molecular processes [23, 24]. However, in order to treat medium- or large-size
molecular systems fully quantum mechanically, one has to often make compromises to re-
duce the dimensionality due to limitations in computational power, or to introduce model
Hamiltonians. Even though it is possible to break the exponential scaling of wavepacket
methods with e.g. the ML-MCTDH approach, these methods are still difficult to apply to
non-model Hamiltonians [25]. If one is ready to compromise in the description of nuclear
quantum effects, trajectory based approaches working in a Cartesian space, either based on
Gaussian wavepackets [24], semiclassical [26] or mixed quantum-classical [27] approaches
provide efficient computational strategies to treat medium to large molecular systems in
full dimensionality. However, one must realize that their reliability may break down for
processes out of their scope of applicability [28].

In our study, the Coulomb explosion of the protonated water dimer H+(H2O)2 after
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Figure 3.1: Schematic represen-
tation of the seven internal nu-
clear coordinates used in the wave
packet propagation showing in
each case the relevant atoms. This
figure is taken from Ref. [30].
Copyright c© 2013 American Phys-
ical Society (APS).

ionization by XUV radiation has been investigated using quantum wavepacket and a mixed
quantum-classical surface-hopping approach. Experiments on this fragmentation process
had been performed at the free-electron laser (FEL) FLASH [29], which provides an estab-
lished reference for our theoretical simulation.

3.1.1 Adiabatic potential energy surfaces of the H5O2
2+dication

For the quantum-dynamical calculations of H5O2
2+, the system is described by a mixed

set of polyspherical Jacobi-valence coordinates. The definition of the polyspherical coor-
dinates is described in detail in previous work of some of us [31]. The chosen coordinate
system is known to be advantageous for treating large amplitude motions [32]. The set of
polyspherical vectors is shown in Fig. 3.2. From the full set of 15 nuclear coordinates that
describe the geometry of the cluster, we choose a reduced set of 7 coordinates consisting
of {x, y, z, R, α, γA, γB}, as illustrated in Fig. 3.1, where R is the distance between oxygen
atoms of the two water monomers, the Cartesian coordinates (x, y, z) describe the posi-
tion of the central proton with origin set at the center of mass of the two oxygen atoms,
and α (internal relative rotation) and γ(A,B) (waggings) represent the Euler angles defining
the relative orientation of the two water monomers. The internal degrees of freedom of
the water monomers and their rocking motion, which possess higher moment of inertia
than that of wagging motion, were chosen to be frozen at the equilibrium positions in the
Franck-Condon region, namely in the vicinity of ground state geometry. We also adopt the
definition of the dimensionless z coordinate [33]

z 7→ z

R− 2d0

, (3.1)

which in this case with large separations of the monomers is crucial in order to adequately
avoid molecular configurations with the central proton unphysically close to the oxygen
atoms. In Eq. 3.1, d0 is chosen to be the covalent radius of the oxygen atom, 0.65Å.

We proceed by calculating the adiabatic PES on the 7D grid of the coordinates men-



34 CHAPTER 3. ELECTRON HOLE DYNAMICS IN GAS PHASE MOLECULES

Figure 3.2: Mixed Jacobi-valence de-
scription of the H5O2

2+system. The
two big circles represent the position of
the oxygen atoms, while the small cir-
cles represent the positions of the hydro-
gen atoms. This figure is taken from
Ref. [34]. Copyright c© 2013 American
Institute of Physics (AIP).

tioned above. As detailed in the next section, we then diabatize point-by-point based only
on the energy values on the grid. We apply this strategy instead of e.g. using a vibronic-
coupling Hamiltonian with a fixed expansion point because of the large amplitude motions
taking place during the fragmentation. Due to the very large number of points in the 7D
grid we construct adiabatic ab initio potential energy surfaces (PES) for the ionized states
of H5O2

2+using a high level–low level approach

Vi(Q) = Vi,high(a; x, y, z, R) + (Vi,low(Q)− Vi,low(a; x, y, z, R)) (3.2)

where i refers to the adiabatic electronic state. The high level electronic structure calcula-
tions are hence performed in the 4D subspace of the central proton displacements and the
oxygen-oxygen distance coordinates. As will be discussed later, these degrees of freedom
are the key ones to describe the fragmentation process and the involved conical intersec-
tions. In the high-level calculations the spectator degrees of freedom α, γa and γb are set
at reference positions, where a = {α0, γa,0, γb,0} corresponding to the equilibrium geometry
of H+(H2O)2 within the D2d point group. In order to accurately describe the excited state
PES of H5O2

2+in the high level subspace, we use the complete active space self-consistent
field (CASSCF) method [35, 36] employing the cc-pVTZ basis set [37]. We use an active
space with 11 electrons distributed in 8 molecular orbitals. For selected cuts we investi-
gated the effect of including dynamical correlation at the CASPT2 level, but the change
in shape of the PES was found to be small. The low-level calculations were performed at
the Hartree-Fock-Koopmans (HF-K) level

Vi,HF-K = VHF − εi , (3.3)

where VHF is the ground state Hartree-Fock energy of H+(H2O)2 and εi is the energy of the
ith orbital counting from the highest occupied molecular orbital downwards. The two-level
scheme is similar in spirit to a n-mode representation of the PES [31, 38, 39], in which
the largest possible cluster (7D) is present but computed at a lower level of theory than
smaller clusters.
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The potential energy surfaces of the three lowest–energy states of the Zundel dication
are shown in Fig. 3.3(a). The two nuclear coordinates of the 2D cut in Fig. 3.3(a) cor-
respond to the oxygen–oxygen distance (R) and to the projection of the central proton
position on the oxygen–oxygen axis (z), whereas the rest of the coordinates are held fixed.

The three low lying potential energy surfaces of the Zundel dication is illustrated in
Fig. 3.3(b) as a function of the central proton position. The shape of the surfaces is mostly
the result of the electrostatic repulsion between the positive charge density associated with
the central proton and that of the electron hole. This is made clear by noting that the
gradient of potential at the central point of conical intersection is about 6.5 eV·Å−1. This
is equivalent of two point charges of equal sign at a distance of 1.4 Å. The distance of the
central proton to one of the oxygen atoms is about 1.2 Å at the equilibrium geometry of the
molecular ion. When the central proton is displaced towards, e.g. the water molecule on
the left, the electronic state with the hole on the water molecule on the right side stabilizes,
while the state with the hole on the left side destabilizes, resulting in the conical intersection
between the electronic states as a function of the proton position. The third electronic state
of the dication can be described by an electron hole delocalized mostly around the central
proton. Therefore the potential is quite flat along the proton transfer coordinate in the
vicinity of the Frank–Condon point. When the proton is displaced towards either water
molecule, however, the electron hole eventually becomes more stable on a localized water
site, and at that geometry the third dicationic state crosses with the second one, resulting
also in a seam of conical intersection.

It is convenient to label the electronic states of interest using the C2v point group
as reference. The lowest two states are energetically degenerate when the molecule is
close to the absolute minimum in the electronic ground state of the Zundel cation, where
they belong to the E irreducible representation within D2d group, the degeneracy is lifted
in first order along the proton-transfer coordinate of B2 symmetry, resulting in a E ⊗ b

conical intersection. Intuitively, when the central proton is displaced towards e.g. the
water molecule on the left, the electronic state with the hole on the water molecule of
the right side gets stabilized, while the state with the hole on the left side is destabilized,
leading to the lifting of the degeneracy. The third electronic state of the dication can
be described by an electron hole extending mostly around the central hydrogen bond.
Therefore, the PES is relatively flat along the proton-transfer coordinate in the vicinity of
the Franck-Condon point. When the proton is displaced towards either water molecule,
the electron hole eventually becomes more stable on the water molecule opposite to the
proton side, and at that geometry the third dicationic state crosses with the second one,
resulting in new seams of conical intersections. This topology can be seen in Fig. 3.4. The
Coulomb repulsion between the proton and the electron hole, which are both positively
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Figure 3.3: (a) Potential energy surfaces of the three lowest electronic states of H(H2O)++
2

for the z (central proton position projected onto the oxygen–oxygen axis) and R (oxygen–
oxygen distance) coordinates and keeping the rest of the vibrational modes frozen. The
dot marks the Frank–Condon nuclear geoemtry. The orbitals shown represent the highest
occupied molecular orbitals at the Hartree–Fock mean field level, and the correspond to
the electron hole in the leading configuration for each of the three lowest–energy electronic
states of the dication in a multiconfigurational description. (b) Scheme of the hydrogen–
bonded system, indicating the location of the electron pairs that can be ionized and they
corresponding potential energy surfaces as the function of central proton position. Ioniza-
tion leading to the electronic states under consideration can take place from lone electron
pairs on each monomer (in red and blue, negative and positive slope curves, respectively)
or from the electrons involved in the hydrogen bonding (in green, horizontal curve). This
figure is taken from Ref. [30]. Copyright c© 2013 American Physical Society (APS).

charged, further drives the molecular fragments carrying one of them to separate from each
other. In this way, the electronic motion reacts on the nuclei, while the nuclear motion
drives non-adiabatic electronic transitions. It is worth mentioning that the PES topology
described above will be general to ionized clusters of M· · ·H+ · · ·M type featuring strong
and symmetrical hydrogen bonds, where M stands for molecules that are able to support
hydrogen bonds.

3.1.2 Diabatization of the Hamiltonian

To describe the fragmentation dynamics of H5O2
2+on the three lowest outer-valence elec-

tronic states by quantum dynamics, we construct the Hamiltonian in a diabatic represen-
tation from the adiabatic PES discussed above.

Recall the discussion in chapter 2, we have the complete Schrödinger equation from
Eq. 2.6 in the adiabatic representation. namely the representation subject to basis in the
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Figure 3.4: A schematic view of the initial photoionization process of the H+(H2O)2 cation.
The potential energy curves, labeled by B1, B2 and A1 respectively, for the excited
electronic states of the ionized H5O2

2+dication and the ground electronic state of the
H+(H2O)2 cation (X1A1) are depicted as a function of proton position z. The origin of
the potential energy was set to the energy of H+(H2O)2 cation at its equilibrium geometry
on the ground state PES. This figure is taken from Ref. [34]. Copyright c© 2013 American
Institute of Physics (AIP).

Born–Oppenheimer factorization (Eq. 2.3 and 2.4),

[TN(Q) + Vm(Q)] χm(Q) +
∑

n

Λmn(Q)χn(Q) = Eχm(Q) ,

in which the non–Born–Oppenheimer effect is introduced by the derivative coupling Λmn,
which is expressed as

Λmn(Q) = −
〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
· ~∇Q +

1

2

〈
ϕm

∣∣∇2
Q

∣∣ϕn

〉
= −~Λ(1)

mn · ~∇Q +
1

2
Λ(2)

mn , (3.4)

it is clear that Λmn couples different states |ϕm〉 and |ϕn〉, via the gradient of nuclear
coordinates.
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However, an apparent disadvantage to use adiabatic representation in a quantum treat-
ment of non–Born–Oppenheimer dynamics is that the kinetic energy coupling can be sin-
gular when the electronic states are degenerate for certain molecular geometries, e.g. at
the conical intersection, because the derivative coupling vector

~Λ(1)
mn =

〈
ϕm

∣∣∣~∇Q

∣∣∣ϕn

〉
=

〈
ϕm

∣∣∣~∇QHe

∣∣∣ϕn

〉
Vn − Vm

, for m 6= n (3.5)

diverges if Vn = Vm, i.e. the n-th and m-th electronic states are degenerate.

Thus it is usually favorable to choose the diabatic representation to treat the non–Born–
Oppenheimer dynamics. In the diabatic representation we eliminate the diverging part of
the derivative couplings of the kinetic energy term that would appear in the adiabatic
Hamiltonian operator [2], using a linear rotation in the basis function space [40]. The
kinetic energy matrix elements are made singularity–free at the conical intersections.

In the diabatic representation, the total Hamiltonian can be written as (Eq. 2.18)

H = TN1 + W, (3.6)

where TN is the nuclear kinetic energy operator (KEO) and W(Q) = U †(Q)V (Q)U(Q)

is the potential energy matrix in diabatic representation. Practically in this thesis, the
diabatic potential energy matrix W is constructed relying on a regularized diabatization
scheme [2, 41, 42, 43, 44] , which is discussed in the following.

We first adopt symmetry-adapted coordinates classified with respect to the D2d point
group, in order to take advantage of the fact that the coordinates responsible for the linear
non-adiabatic coupling should satisfy the condition

Γs ⊗ Γs
′ ⊗ Γα ⊃ Ag (3.7)

where Γs, Γs
′ , Γα are the irreducible representations of the electronic states and nuclear

coordinates, respectively [41]. The working equation for the diabatization procedure for
two states reads [41]

Wαβ = Σαβ1 +
∆αβ(Qg,Qu)√

(∆αβ
0 )2

4
+ (λαβ ·Qu)2

(
−∆αβ

0

2
λαβ ·Qu

λαβ ·Qu −∆αβ
0

2

)
(3.8)

where α, β are electronic state indices, ∆αβ
0 = ∆V αβ

0 is the energy difference between
adiabatic PES V α and V β in the reference coordinate subspace, and the coupling constants
λαβ

i were determined according to [6]

λαβ
i =

{
1

8

∂2

∂Q2
u

(V β(Qg, Qu)− V α(Qg, Qu))
2

} 1
2

∣∣∣∣∣
Qg ;Qu=0

(3.9)
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To construct the linear coupling matrix in Eq. 3.8, the coordinates were grouped by their
associated representations. G1 ≡ ( 1√

2
(x ± y), R, 1√

2
(γA ± γB)) and G3 ≡ (R, z, α) are the

sets of modes that directly enters the diagonal potential matrix elements, G2 ≡ (z, α) and
G4 ≡ ( 1√

2
(x ± y), R, 1√

2
(γA ± γB)) are the modes responsible for the off-diagonal linear

couplings between different electronic states. The coordinates in groups G1 and G2 are for
pair of states (1,2), the coordinates in groups G3 and G4 are for pairs of states (1,3) and
(2,3).

We then apply the regularized-states procedure of Eq. 3.8 to the three adiabatic states
in pairs first. The submatrix that couples diabatic states 1 and 2 is kept. From the
submatrices for states (1, 3) and (2, 3), we keep only the corresponding W13, W23, and
the two W33 elements are averaged. Now, the elements W13 and W23 from the latest
diagonalization correspond to states 1 and 2 that have not been mixed among each other.
We resolve this by applying the transformation(

W̃13

W̃23

)
= U

(
W13

W23

)
(3.10)

such that the new coupling elements now connect the diabatic state 3 to the diabatic states
1 and 2 obtained from the first diabatization procedure. In Eq. 3.10, the 2 × 2 matrix
U is the transformation matrix that diagonalizes the sub-potential-matrix W(12) for the
lowest two diabatic states, i.e. U†W(12)U = V (12).

The potential energy matrix W in diabatic representation is finally regularized through

Wreg = SV(ab intio)S† (3.11)

where S is the transformation matrix that diagonalizes W, i.e. S†WS = V. The main
purpose of this last regularization procedure is to ensure that the ab initio potential energy
data V(ab intio) in the adiabatic representation is fully reproduced via the inverse transfor-
mation from the diabatic representation used in the calculations [41]. This transformation
does not change the diabatic matrix in 1st order near the conical intersections.

After construction of the regularized diabatic potential energy matrix Wreg, the final
Hamiltonian in the diabatic representation is obtained by adding the nuclear kinetic energy
operator (KEO) into Eq. 2.18. For the sake of simplicity, we do not distinguish W from
Wreg in the following.

3.1.3 Quantum wave packet dynamics

The MCTDH method [23, 45, 46] introduced in chapter 2 is then employed to simulate
the nuclear dynamics of the molecules ions based on the electronic potentials in diabatic



40 CHAPTER 3. ELECTRON HOLE DYNAMICS IN GAS PHASE MOLECULES

representation.

In our case, the dynamics involves several electronic states, the multi-electronic state
wave functions can be written as

Ψ(Q1, . . . , Qp, t) =
ns∑

α=1

Ψα(Q1, . . . , Qp, t) |α〉 , (3.12)

where ns is the number of electronic states. We have applied the multi-state formulation
of MCTDH, in which a separate set of SPFs is propagated for every electronic state [47].

The ground state vibrational wavefunction of the H+(H2O)2 cation was obtained on the
ground state PES employing the improved relaxation method [48]. This method converges
faster than a simple imaginary time propagation and is essentially a multi-configuration
self-consistent field approach that takes advantage of the MCTDH machinery [31, 49].

The acquired ground state wave function was then directly transferred to the excited
states of the ionized H5O2

2+dication as the initial wavepacket, assuming sudden ionization
of the H+(H2O)2 cation by the FEL pulse and validity of the Franck-Condon principle [50],
as schematically depicted in Fig. 3.4. The wavepacket dynamics on the excited state
potentials were propagated up to 100 fs. Within a time period of ∼ 65 fs the major
photofragmentation process of the Zundel cation was observed in the present calculation,
yet we carried out 100 fs quantum dynamical propagation to enable full absorption of the
wave packet by the complex absorbing potentials (CAPs) for the purpose of flux analysis.

In order to enhance the efficiency of the MCTDH calculation, we made use of mode-
combination using the following four combined modes Q1 = [x, y], Q2 = [z, α], Q3 = [R]

and Q4 = [γA, γB]. The definition of the underlying one-dimensional (1D) grids and the
discrete variable representation (DVR) is provided in Table 3.1. Table 3.2 contains the
numbers of SPFs used for each degree of freedom in the MCTDH relaxation and dynamics
calculations, which gives converged dynamical results.

In the present calculation, the complex absorbing potentials (CAPs) were applied to x,
y, R, γA and γB coordinates in order to absorb the outgoing wavepacket. The CAP Vc for
coordinate qi takes the form[51]

Vc(qi) = −iη |qi − qi,c|n θ(|qi − qi,c|) (3.13)

where the strength parameter η, the order n and the threshold qi,c were chosen so as to
minimize the reflection from the CAP along the coordinate qi. The suitably chosen CAP
parameters are listed in Table 3.2.

From the time-dependent wavepacket propagations, various properties were extracted.
Since the wavepacket propagations were perfomed in a diabatic representation, the diabatic
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Table 3.1: Definition of the one-dimensional grids. N denotes the number of grid points
and xi, xf the location of the first and the last point. The DVRs are defined in Appendix
B of Ref. [23] ( Radial degrees of freedom are given in atomic units, while angular degrees
of freedom are given in radians.)

Coordinates N xi xf DVR
x 21 -3.0 3.0 sin
y 21 -3.0 3.0 sin
R 360 3.9 15.5 sin
z 63 -0.5 0.5 sin
α 26 0 2π exp
γA 21 -1.8 1.8 sin
γB 21 π-1.8 π+1.8 sin

Table 3.2: Details of the MCTDH calculation. For each combined mode Qi, the number of
single particle functions (SPFs) and the parameters for the complex absorbing potentials
(CAPs) of the form Vc(qi) = −iη |qi − qi,c|n θ(|qi − qi,c|) are given. The CAP parameters
were listed as (qi,c, η, n)qi

. Atomic units are used for radial degrees of freedom, while radians
are used for angular degrees of freedom.

Combined modes Numbers of SPFs CAP parameters
Q1 = [x, y] 10 (±2.50, 0.05, 3)x,y

Q2 = [z, α] 10 z, α are CAP free
Q3 = [R] 5 (12.30, 0.005, 3)R

Q4 = [γA, γB] 5 (±1.65, 0.05, 3)γA
, (π ± 1.65, 0.05, 3)γB

electronic state populations Pα(t) and the reduced densities ρα(qi, qj, t) of the wavepacket
for the electronic state |α〉 can be readily obtained as

Pα(t) = 〈Ψα(t) |Ψα(t)〉 (3.14)

and
ρα(qi, qj, t) =

∫
Ψ∗

α(t)Ψα(t)
∏
l 6=i,j

dql, (3.15)

respectively. In order to facilitate the comparison with surface-hopping calculations, where
the electronic populations are expressed in terms of adiabatic electronic states, we also
calculate the adiabatic populations [52]. Fot this, the wavepacket in adiabatic representation
Ψadiabatic is obtained by unitary transformation from the diabatic representation by

Ψadiabatic = S†Ψdiabatic, (3.16)
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where S is the position dependent transformation matrix of adiabatic-diabatic representa-
tions defined in Eq. 3.11.

3.1.4 Ultrafast Coulomb explosion and correlated proton-hole
dynamics

Figure 3.5 shows the electronic adiabatic states population during the first 60 fs after
photoionization. We assume that the ionization cross-section is constant over the range of
energies of the three considered electronic states and therefore the results are averaged over
propagations starting from each of the three electronic states. In Fig. 3.5a the populations
obtained from MCTDH wavepacket propagation are shown. One sees how after 10 to 20
fs the system has mostly decayed to the ground electronic state of the dication.

The agreement between the wavepacket and both types of surface-hopping calculations
shown in Figs. 3.5b and 3.5c is rather good. The non-vanishing populations of states B2

and A1 reflect the fact that the outgoing H2O+ fragment can be in its ground electronic
state in which the electron-hole corresponds to a π-type orbital, but also to some extent
in the first and second excited electronic states, in which the hole is found on the plane of
the water cation.

Fig. 3.6 depicts the reduced densities in the z and R coordinates obtained from the
MCTDH calculation after tracing over the rest of vibrational modes and electronic states.

In order to quantify the correlated proton–hole dynamics we calculate the correlation
function between the position of both particles. For the quantum mechanical case, the
correlation function is defined as

Cph = Sph/
√

SppShh , (3.17)

with Sxy = 〈x̂ŷ〉−〈x̂〉 〈ŷ〉. The proton-hole correlation function is calculated in the surface-
hopping case analogously by substituting operators by variables and wavefunction averages
by ensemble averages over propagated trajectories. Cph is bound to take values between
-1, complete anti-correlation, and +1, complete correlation. For the excess proton position
we take the projection of the central proton position onto the oxygen-oxygen axis. The
electron hole position operator is defined as

ĥ =
1

2
R̂⊗ (|r 〉〈 r| − |l 〉〈 l|) (3.18)

for the wavepacket calculations, where |l〉 and |r〉 refer to the two diabatic electronic
states with the hole localized on the left- and on the right-hand side water monomers,
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Figure 3.5: The temporal population of the three lowest-energy electronic states in adia-
batic representation, calculated from Landau-Zener/fewest-switches surface hopping and
MCTDH method, respectively. This figure is taken from Ref. [34]. Copyright c© 2013
American Institute of Physics (AIP).

respectively, and R̂ is the position operator corresponding to the oxygen-oxygen distance.
In the quantum-classical surface-hopping scenario, we represent the hole straightforwardly
as the center of the singly occupied molecular orbital associated with the electronic state
on which a particular trajectory is being propagated.

In the Coulomb explosion, as the two like-charged particles, namely the proton and
the electron-hole, should be forced to separate due to Coulomb repulsion, a general anti-
correlation should be expected that Cph ≤ 0. As shown in Fig. 3.7, the proton and hole
develop the anti-correlation rapidly within 5 fs, which is a natural consequence of the strong
Coulomb force. However, the emergence of correlation revival at ∼ 10fs appears clearly
in both quantum-classical and quantum mechanical scenario, with striking quantitative
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Figure 3.6: Reduced densities in the z (central proton position projected onto the oxygen-
oxygen axis) and R (oxygen-oxygen distance) coordinates obtained from the MCTDH
calculation after tracing over the rest vibrational modes and all electronic states. The
lower panel corresponds to the case in which non-adiabatic coupling is switched off in the
Hamiltonian, while the upper panel corresponds to the fully coupled case. This figure is
taken from Ref. [30]. Copyright c© 2013 American Physical Society (APS).

Figure 3.7: Correlation function
between proton and electron-hole
positions obtained from MCTDH
and surface-hopping calculations.
This figure is taken from Ref. [34].
Copyright c© 2013 American In-
stitute of Physics (AIP).

match of the two approaches. The revival is due to the bounce-back dynamics of both
proton and hole in the first 10 fs before the water molecules had time to separate.

Thereafter the dication breaks apart with proton and hole localized on either of the
separating fragments. This process is made explicit by direct visualization of the proton-
hole motion of one of the surface-hopping trajectories in Fig. 3.8. The time scale of 5
fs appears as a lower limit for the ultrafast response of nuclei to an electron hole in a
molecular system.
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3.1.5 Photoionization spectrum

The photoionization (PI) spectrum was computed by Fourier transform of the autocorre-
lation function of the propagated wavepacket [53]

I(E) ∼ E

∫ ∞

−∞
dt 〈Ψ(0) |Ψ(t)〉 eiEt, (3.19)

where E is the ionization energy. Since we are considering an irreversible process, the
spectral features will have an intrinsic width that directly depends on the time-scale of the
Coulomb explosion.

Figure 3.9a shows the PI spectrum obtained by propagation with the adiabatic Hamil-
tonian and neglecting the non-adiabatic coupling between the different electronic states.
The individual spectra were obtained by populating each of the electronic states at t = 0

and incoherently summing to provide the total spectrum. The dotted line relates to the
two lowest electronic states of the dication. As discussed above, ionization and further evo-
lution in the lowest electronic state leads to an ultrafast fragmentation. This corresponds
to the broad feature between 20 and 21 eV, which fully develops in the first 10 fs. In par-
ticular, the FWHM of the peak (∼ 0.6 eV) corresponds to a process with time scale of ∼
12 fs, implying rapid fragmentation after the photoionization. Above 21 eV the spectrum
abruptly transitions into a region with bound vibrational states supported above the lower
energy conical intersection. The separation between the peaks is about 650 cm−1 (81 meV),
corresponding to bound water-water vibration. The shoulder above 22 eV corresponds to
a small fraction of the wavepacket that finds its way into the fragmentation channel from

Figure 3.8: Direct visualization of motion for the proton (orange) and the electron-hole
(blue and green for positive and negative wavefunction values respectively), when initialized
from SA1 state. The geometries were taken at 0, 3, 8 and 30 fs (from left). This figure is
taken from Ref. [34]. Copyright c© 2013 American Institute of Physics (AIP).
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Figure 3.9: The photoionization spectra calculated from adiabatic dynamics (upper panel),
and from non-adiabatic dynamics (lower panel).This figure is taken from Ref. [34]. Copy-
right c© 2013 American Institute of Physics (AIP).

the first excited state of the dication. The solid line in Fig. 3.9a corresponds to ionization
into the second excited electronic state of the dication. Bound vibrational states exist on
its PES, as seen by the peaks in the spectrum at about 23 eV. Hence, even though the
H5O2

2+is doubly charged, the missing non-adiabatic coupling between nuclei and electrons
can significantly prevent the Zundel dication from fragmenting and relaxing via Coulomb
repulsion. The calculation of the PI spectrum with the full vibronic Hamiltonian results in
a broad, continuous band with three differentiated peaks in the range 20-24 eV as shown in
Fig. 3.9b. This feature arises from the strong mixing of the three lowest electronic states
of the dication, and the fact that in the coupled case the dication has no bound vibrational
states. The two peaks at higher energy are slightly narrower than the lowest energy peak,
which indicates a slightly larger fragmentation time from the continuum of states above
the region of conical intersection. By comparison to the spectrum in Fig. 3.9a, these two
broad peaks can be assigned to the continuum of vibronic states associated with the first
and second excited electronic states of the dication.
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Figure 3.10: The comparison of
the photoelectron spectra cal-
culated from the Hartree-Fock-
Koopmans potentials and from the
CASSCF-corrected potentials. An
ionization energy correction of -
0.87 eV was consistently applied
to the spectra from Hartree-Fock-
Koopmans potential.This figure is
taken from Ref. [34]. Copy-
right c© 2013 American Institute
of Physics (AIP).

To conclude this discussion, Fig. 3.10 presents the comparison of the PI spectrum
calculated on the set of PESs at the CASSCF level discussed above, and at the Hartree-
Fock-Koopmans level of theory. The latest was shifted by -0.87 eV for comparison to
the CASSCF one. It is interesting to note that the two spectra are very similar in their
features and intensities. This indicates that Hartree-Fock-Koopmans potentials reproduce
remarkably well the conical intersections and overall shape of the PES at least in the
vicinity of the Franck-Condon region. Indeed, we had already pointed out to the fact
that the outer-valence ionized electronic states under consideration are mostly of one-hole
character. This observation would open the door to the investigation of outer-valence
ionization of larger water clusters based on the use of Hartree-Fock-Koopmans PESs.

3.1.6 Kinetic energy release of the fragments

The kinetic energy release (KER) spectrum reflects the asymptotic energy redistribution
between the fragmentation mode, in this case the water-water distance coordinate, and
the internal coordinates of the fragments. In Fig. 3.11 we present the KER of the H+

3 O
and H2O+ fragments obtained from the 7D quantum dynamical calculation, as well as
from reduced 7D and full dimensional models using the surface-hopping method. In the
wavepacket calculation, the KER spectrum is obtained from the quantum flux analysis of
the outgoing wavepacket through a complex absorbing potential placed in the outgoing
channel [23].

In general, the KER spectrum can be measured in coincidence with the photoelectron
(PE), or as integrated quantity over the PE energies. The KER spectrum contains comple-
mentary information, namely how the energy initially deposited in the system redistributes
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Figure 3.11: The kinetic energy re-
lease (KER) spectra of the out-
going fragments H+

3 O and H2O+

after tracing over the three low-
est energy states, obtained from
full dimensional quantum-classical
treatment, and reduced dimen-
sional quantum-classical/quantum-
mechanical treatment, respectively.
This figure is taken from Ref. [34].
Copyright c© 2013 American Insti-
tute of Physics (AIP).

among translational energy of the fragments and the rest of degrees of freedom during the
molecular fragmentation. It is clear that there is qualitative shift of the KER profile to
higher energies in the 15D case, which indicates energy flow from internal modes of the
monomer to the relative motion between the monomers. The broader envelope of the
quantum KER spectrum is probably a consequence of the initial conditions sampling in
the surface-hopping calculations, which are not able to capture zero point energy effects.
One could also expect that the quantum mechanical KER spectrum will broaden if a full-
dimensional model would be used. This result indicates the dimensionality matters when
treating the long-time behavior of a fragmenting polyatomic system.

3.1.7 Ionization into the higher outer–valence ionic states

To a good approximation, each water molecule in the Zundel cation contributes three
outer-valence orbitals with six electrons to the cluster. Therefore, there exist three further
excited electronic states of H5O2

2+of outer-valence character above the three lowest states
considered up to now. However, it becomes increasingly cumbersome to obtain a diabatic
representation of the Hamiltonian with even more coupled states for a quantum-dynamical
treatment, and moreover the upper states lead to further fragmentation channels beyond
the two body fragmentation discussed above, which would require a full dimensional treat-
ment and very extended grids. Such type of calculations are not within reach at the mo-
ment. Therefore, we study the dynamics in the complete outer-valence set of lowest energy
electronic states of H5O2

2+using surface-hopping. The six lowest energy electronic states
of H5O2

2+span the range of ionization potential at the Franck-Condon point from 20.6 eV
to 27.4 eV calculated at the CASSCF level. The six states are predominantly one-hole
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Figure 3.12: Branching ratio
of two- and three-fragment
channels, initialized from outer-
valence ionic states. This figure
is taken from Ref. [34]. Copy-
right c© 2013 American Institute
of Physics (AIP).

states, and only states above the set of outer-valence states involve one-particle-two-hole
configurations in which one electron is further excited to an unoccupied orbital. For such
higher-energy inner-valence states the Koopmans theorem no longer applies, due to grow-
ing importance of 2-particle-1-hole (2p1h) and higher order electronic configurations as
illustrated in Eq. 2.60.

Fig. 3.12 presents the branching ratios of several two- and three-body channels calcu-
lated by surface hopping. With higher initial electronic excitation, it is natural to expect
that more channels are energetically accessible. In contrast to the dynamics initialized
from the three low-energy ionic states, which merely gives two-body fragmentation

H+(H2O)2 + γ → H2O+ + H3O+ + e−,

the branching ratio of three-body fragmentation channels

H+(H2O)2 + γ → H+ + H2O + H2O+ + e−

H+(H2O)2 + γ → H+ + OH + H3O+ + e−

H+(H2O)2 + γ → H + OH+ + H3O+ + e−

becomes important and can even exceed that of the two-body channel. We conclude that
photons under about 24 eV will lead in all cases to a fast two-body fragmentation of the
cluster. An increase in energy to about 27 eV, in which still the outer-valence is being
ionized, will lead to further fragmentation channels in which the external hydrogen atoms
of the cluster can be ejected during the Coulomb explosion.

So far we have thoroughly investigated the strongly non-adiabatic Coulomb explosion of
the Zundel cation after outer-valence ionization by XUV light. We have analyzed in detail
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the mechanism of fragmentation in the three lowest energy electronic states of H5O2
2+. For

this set of electronic states, we constructed a diabatic Hamiltonian in 7D from CASSCF
quality PESs, which was used in quantum-dynamical calculations of the fragmentation
process with the MCTDH method. We found that the three lowest electronic states are
coupled by strong non-adiabatic effects in which the motion of the central proton along
the hydrogen bond between the two water molecules plays a fundamental role. When the
dynamics after ionization were analyzed, we found a fast and anti-correlated motion of the
central proton and the electron-hole that localizes them at opposite sides of the cluster and
leads to a Coulomb explosion within femtoseconds. Exactly the same mechanism and time-
scales were reproduced by surface-hopping calculations on PESs of the same quality. The
vibrationally resolved photoionization spectrum of the cluster was also provided for the first
time in the range between 19 to 24 eV by quantum-dynamical calculations. This energy
range covers the lowest energy part of the outer-valence spectrum, which extends up to
about 27 eV. The complete outer-valence ionized states of H5O2

2+comprises six electronic
states. The dynamics in this set of coupled electronic states was calculated by surface-
hopping. We found that above the lowest three electronic states, fragmentation into other
than the two-body channel is possible and even dominant. The dynamics starting from the
upper states are also strongly non-adiabatic and a large fraction of the initially available
electronic energy is redistributed into vibrational modes, which explains the possibility of
further fragmentation channels.

The calculations provide an in-deep analysis of the coupled electronic and nuclear non-
Born-Oppenheimer dynamics in a small ionized water cluster, in which the high mobility of
proton and electron-hole plays a fundamental role. The good agreement between quantum
and surface-hopping treatments paves the way for future explorations of larger clusters and
the liquid phase.

3.2 Hole dynamics tracked by transient absorption
spectroscopy

As we can see from Section 3.1, the non-adiabatic effect can result in qualitatively differ-
ent dynamics of molecules, as compared to the case of merely taking Born–Oppenheimer
approximation. In the non-Born-Oppenheimer chemical reactions, molecular nuclei can
switch and move within multiple vibronically coupled electronic states. The ultrafast non-
adiabatic energy transfer between nuclei and electrons on the sub-100-femtosecond scale
can essentially modify the mechanisms of chemical reaction.

When a molecule is ionized, the created electron hole will undergo complex mechanism
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to relax and migrate [30, 34, 54], in order to reach energetically favorable configurations.
The electron hole dynamics, essentially non-adiabatic, has profound impact upon complex
molecular system, such as the well known DNA self-protection mechanism against the
ultraviolet component in sunlight [11].

How do the electrons and nuclei correlate, when both are in motion? A typical question
would address the transient electron hole states on which nuclear conformation variation is
taking place during electronic decay. A direct on-the-fly probing of the coupled electronic
and nuclear wave-packets should be the key to resolve the full scenario of the non-Born-
Oppenheimer dynamics in polyatomic molecules. As an example, high harmonic genera-
tion (HHG) [12, 55], Coulomb explosion imaging [56, 57], and time-resolved photoelectron
spectroscopy (TRPES) [58, 59, 60, 61] have been developed and elegantly applied as pow-
erful tools to map out the dynamics of the excited electrons and the associated nuclear
motion. Moreover, the core level transient absorption spectroscopy may be suitable to
map out the dynamics of electron holes, using the electronic transitions from core orbital
to the valence holes. Meanwhile, to probe dynamics in condensed phase bulk samples, it is
advantageous to apply the photon-absorption/scattering based methods, such as nonlinear
coherent spectroscopy [62, 63, 64, 65], x-ray absorption and Raman spectroscopy [66, 67].

In the present section, we are going to address the question, “How to directly observe the
non-Born-Oppenheimer valence hole dynamics and relaxation in an ionized complex molec-
ular system ?” Here we theoretically study the application of a photon based technique, the
core-level transient absorption spectroscopy [68, 69, 70, 71, 72, 73, 74], to disentangle the
coupled electronic and nuclear dynamics, and map out the non-adiabatic electronic decay
to time resolvable spectroscopic signatures. In core-level transient absorption spectroscopy,
a time-delayed x-ray probe pulse projects the evolving nuclear and electronic wave-packet
of the photoionized molecule onto core-hole states, and the transient absorbance is analyzed
as a function of pump-probe delay. The core-hole states are used as reference for projecting
out the electronic and nuclear components of the wave-packet. As an example, one could
simply expect a shift of absorption energy with time as electronic dynamics in the valence
shell progresses. The advantage of core-level spectroscopy relies on the fact that the deeply
embedded atomic core orbitals are less perturbed by the molecular environment than the
valence orbitals, thus the core-valence-hole transitions are element specific and offer clean
spectroscopic signatures for the on-going dynamics. Most importantly, the photon based
transient absorption spectroscopy (itself) is a general technique that can be conveniently
applied to a wide scope of atomic and molecular systems in either gas or condensed phase.
Either free-electron laser or high-order harmonics source could be applied as the probe
pulse [70].

By correlating the transient absorption spectra with the nuclear dynamics obtained
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from quantum wave-packet and quantum-classical approaches, we are able to depict a
complete mechanism for the non-adiabatic chemical reactions. The protonated water mul-
timers H+(H2O)n offer an ideal test ground for the impact of the non-Born-Oppenheimer
effect on nuclear and electronic dynamics. Despite the importance of the H+(H2O)n as
possible building blocks of aqueous acids [75, 76], the dicationic molecules created from
photoionization of H+(H2O)n will undergo an ultrafast charge separation of the proton
and molecular fragments carrying the hole, which are both positively charged, accompa-
nied by non-adiabatic electronic decay from excited ionic states [34, 77]. As a consequence
of Coulomb repulsion, the proton wave-packet is actually driven by the motion of the
valence-hole, which together produce highly coupled electronic and nuclear dynamics on
the 100 fs scale.

Nuclear dynamics of photoionized H+(H2O)n is calculated using quantum-classical sur-
face hopping scheme [27, 78], where nuclei are treated classically. The electronic structure
is computed using the quantum chemistry package MOLCAS [79]. For the Zundel dica-
tion, we had in the previous study employed multiconfigurational time-dependent Hartree
(MCTDH) method to access the quantum nuclear wave-packet dynamics [23, 46, 77]. Based
on our comparative study with quantum mechanical method [34], the quantum-classical
method is able to reliably resolve the physical scenario of electron hole relaxation in the
Zundel dication. We assume sudden ionization of the molecule, and again invoke the ex-
pansion of the wavefunction at time τ after photoionization as Eq. 2.3.The time-domain
expression for the transient absorption spectrum (TAS) of a non-stationary wavepacket
χ1(R, τ) evolving on the PES E1(R) and probed by an electronic transition to electronic
state 2 is given by [80]

σ(ω, τ) =
4πω

c

∫
dR|µ12(R)|2|χ1(R, τ)|2 Γ/2

Γ2/4 + [E1(R)− E2(R)− ω]2
,

where

µ12(R) = 〈Ψ1(r;R)|µ̂12|Ψ2(r;R)〉 (3.20)

is the transition dipole matrix element between the electronic states involved. Equa-
tion 3.20 corresponds to the so-called Lorentzian limit in which dephasing of the nuclear
wavepackets evolving on PES E1(R) and E2(R) is assumed to be fast in comparison to
the time-scale of atomic motions. A short probe pulse is also assumed in obtaining this
expression [80]. Basically, the cross-section corresponds to the transition dipole matrix ele-
ment squared between two electronic states, averaged by the probability density in nuclear
coordinate space and broadened by the lifetime of the final electronic state. This limit is
meaningful in the present situation of core-level TAS due to large topological differences
between PES of valence- and core-hole states, leading to fast dephasing, as well as the
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presence of purely electronic decay mechanisms, like Auger decay, for the core-hole final
states.

Equation 3.20 can be readily used within a surface-hopping framework. At every time
τ the integral over configurational space is substituted by a sum over the swarm of classical
trajectories. Each trajectory is found at one of the valence electronic states of the system
whose dynamics are being probed, and we denote the index of the electronic state of
trajectory J at time τ as j(J, τ). In addition, instead of a single final electronic state for
the probe step, one needs to consider all possible transitions from the valence-hole state to
core-hole states accessible in the energy range of interest. With these considerations our
final working equation for the absorption cross-section reads

σ(ω, τ) =
4πω

c

1

M

M∑
J

∑
α

{
|µj(J,τ),α(RJ)|2 Γ/2

Γ2/4 + [Eα(RJ)− Ej(J,τ)(RJ)− ω]2

}
. (3.21)

where α denotes the final core-hole electronic state, RJ ≡ RJ(τ) and M is the total
number of trajectories. For core-level TAS Γ can be chosen to be of the order of the
linewidth of the relevant core-hole state, e.g. O1s−1 in the present case. The linewidth of
O1s−1 is measured to be 160±5 meV corresponding to a lifetime of about 4.1 fs [81]. The
probability of nuclear wavefunctions |χJ(Q, τ)|2 is taken as the incoherent sum of nuclear
trajectories.

We find that the non-adiabatic electronic decay from highly excited states is cleanly
reflected by the shift of absorption to higher energies on the scale of ∼ 10 eV, which
corresponds to the energy span of outer valence states. Moreover, the spectra intensity
evolution can be considered as sensitive signature of electron hole localization following
photoionization from hydrogen bonding bridge to the water monomer, while similar elec-
tron localization phenomena have been reported in previous studies [82, 83]. We have
also observed intriguing imprints of intramolecular vibrational modes and collective mo-
tions on the spectra. All the spectroscopic features could be considered as experimentally
accessible, provided . 10 eV spectra resolution is available [70].

3.2.1 Spectra of photoionized Zundel cation

Zundel cation H+(H2O)2 is a prototypical water multimer. It is known the breakdown of
Born-Oppenheimer approximation plays a crucial role in its relaxation mechanism [29, 34,
77]. By absorbing extreme ultraviolet (XUV) photon, one is able to generate dicationic
H5O2

2+with a valence electron hole. The nuclear motion correlates after photoionization
with ultrafast electronic decay, leading to shift of transient absorption lines and evolution
of spectral intensity (Fig. 3.13).
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Figure 3.13: The schematic representation of the core level transient absorption spectro-
scopy. The spectral shift due to electronic relaxation is illustrated.

The most prominent feature of the spectra (Fig. 3.14) is the vanishing of absorption
lines initially appearing at low energies, due to the enlarged energy spacing between the
oxygen K-shell core-hole state and the valence-hole state, as the valence-hole state decays
downwards to the dicationic ground state. The total energy shift is ∼ 6 eV, correlating
very well with the energy span of the first six low-lying valence-hole states.

The variation of spectral intensity and line position can unravel more subtle scenario of
the electronic and nuclear motion. The proton and hole separate within few femtoseconds
as a consequence of strong electrostatic repulsion between them, implying rapid decay
from higher valence-hole states with overlapping proton and hole wavefunctions to lower
valence-hole states with localized proton and hole. The delocalization of the valence-hole
wavefunction is clearly reflected in the transient absorption spectra within first 15 fs. Since
the strength of transition dipole integral 〈φJ(q;Q) |µ̂|φα(q;Q)〉 can certainly be enhanced
as the wavefunction of core-hole state |φα(q;Q)〉 and valence-hole state |φJ(q;Q)〉 come
spatially close, the delocalization of valence-hole from the hydrogen bonding bridge to the
water monomers leads to rapid rise of absorption intensity. It can be made clearer by
inspecting the temporal wavefunction evolution [77], even the transient period of electon
hole localization (∼ 5 fs), delocalization (∼ 10 fs) and re-localization process is imprinted
in the tiny revival structure in the spectrogram within first 15 fs. The localization of
electron hole is reflected in the enhancement of absorption strength, since the core electron
and the valence hole come spatially close as the hole and proton reside locally on the
water monomers. The transient period features the quasi-bound state for the dication
in the Frank-Condon region, and is also reflected by the single-period oscillation of the
proton on the hydrogen bonding bridge at exactly the same time, driving the motion of
the electron hole. The dynamics is essentially originated from the fact, that the motion of
positively charged proton and electron hole are anti-correlated due to Coulomb repulsion, as
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Figure 3.14: The transient ab-
sorption spectra of the Zundel di-
cation undergoing Coulomb explo-
sion (lower panel). Reduced densi-
ties in the z (central proton po-
sition projected onto the oxygen-
oxygen axis) and R (oxygen-
oxygen distance) coordinates ob-
tained from the quantum wave-
packet calculation after tracing
over the rest vibrational modes
and all electronic states (upper
panel).

demonstrated in the proton-hole correlation function Cph(t) defined in Eq. 3.17, which also
shows quantitative agreement of quantal and quantum-classical nuclear dynamics [34, 77].

The obvious oscillation of the spectra center until ∼ 100 fs should be another intrigu-
ing feature of the transient absorption spectra for the photoionized Zundel cation. The
spectra oscillation with Fourier frequency of ∼ 3300 cm−1 (0.41 eV) can be assigned to the
modulation by coherent vibration of hydroxyl group (OH) in water molecules. It is evident
that the spectra have recorded ∼ 100 fs long vibrational quantum coherence created by
suddenly depleting the molecule to the dicationic state. Because photoionization actually
appears in much shorter (attosecond) time scale than the vibrational motion, it plays the
role in synchronization of vibrational phase of the nuclear wave-packet.
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With analog to the formation of energy bands in solids, for the multimers H+(H2O)n with
n > 2 [84], an enlarged set of molecular valence orbitals are squeezed into a slightly in-
creased energy span to build electronic states supporting the valence-hole. One could
expect the growth of stability as more water molecules are added into the multimer, since
there is more space for the proton and the electron hole to separate from each other, and
more nuclear degrees of freedom to absorb the energy released from the electronic de-
cay. The build-up of extended hydrogen-bonding network may also stablize the multimer.
For water multimers, the outer–valence shell can be thought of as being composed of 3n

molecular orbitals, where n is the number of water molecules in the multimer, because
the outer–valence shell is formed by the 3 of sp3 hybridized molecular orbitals of water,
that carry mainly O2p character. With the number of water molecules reaching 21, the
protonated 21-mer H+(H2O)21 , firstly discovered by electrospray mass spectrometry [85],
acquires intriguing magic number stability [86, 87, 88] The H+(H2O)21 molecule can be
depicted as a nearly spherical cage with an enclosed water monomer, it is an abundant
species in water vapor and may contribute to the intense terahertz emission of water vapor
under optical excitation [89].

3.2.2 Spectra of photoionized H+(H2O)21

With in-depth understanding of transient absorption spectra for the fundamental Zun-
del dication in hand, the spectra for the more complicated protonated 21-mer dication
H(H2O)2+

21 can be faithfully interpreted. Counter-intuitively, for the protonated 21-mer,
the symmetric structure of an enclosed hydronium H+

3 O cation inside the cage was not
found in ab initio search, instead the molecule favors a surface-protonated cage with a
neutral water in the center [84, 90, 91], which is confirmed experimentally [92].

The surface-protonation has a crucial impact on the nuclear dynamics and stabilization
of the protonated 21-mer after photoionization. Because the upper energy subshell corre-
sponds to the 21 valence hole states with reduced density on the lone electron pair of water
molecule, the electron hole of these valence states are associated to the hydronium cation.
As a natural consequence, the electron hole in highly excited dicationic states attaches to
the hydronium, the initial Coulomb force is directly imposed on the surface, and makes
the surface more likely to break.

The associated transient absorption spectra offers possibility to trace the whole nuclear
and electronic dynamics to its subtlety (Fig. 3.15). The most prominent character of
the spectra is the temporal shift of ∼ 10 eV to higher energies, obviously due to the
non-adiabatic electronic decay. Moreover, one could easily spot a relatively large upward
leap of spectra profile of ∼ 2 eV at ∼ 10 – 30 fs. By inspecting the electronic potential
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Figure 3.15: The potential energy of all 63 valence states of H(H2O)2+
21 dication (upper

panel), and the transient absorption spectra of the H(H2O)2+
21 dication after photoionization

(middle and lower panel). The potential energy evolution is plotted for a single trajectory
initialized from the 62th initial electronic state. The black solid curve shows the non-
adiabatic descending path in the valence shell the dicationic system follows. The spectra
are shown separately according to energy span of the initial ionization pulse (middle panel),
and as integral spectra by incoherent summation (lower panel).



58 CHAPTER 3. ELECTRON HOLE DYNAMICS IN GAS PHASE MOLECULES

energies of the H(H2O)2+
21 dication (Fig. 3.15), one can immediately observe an energy gap

of ∼ 2 eV inherited from the energy difference between the lone electron pair orbital and
the covalent bonding orbitals of the sp3 molecular orbitals in water, the latter supporting
hydrogen bonding. The valence states that associates with the orbital purely carrying
oxygen 2s character inherit large energy gap of ∼ 14 eV from the outer valence shell, thus
are excluded in the present study. The spectral profile leap can then be unambiguously
assigned to the transitions from valence hole states with reduced population in water sp3

lone pair orbitals to those in H-O covalent bonding orbitals. Analogous to the transient
absorption spectra of Zundel cation, the enhancement of spectral intensity at ∼ 100 eV
may arise from the fact that the electron hole is more localized in the molecular fragments.

Figure 3.16: The evolution of proton-hole
distance in the H(H2O)2+

21 dication after
photoionization (lower panel), the initial
positions of the proton (orange sphere) and
the electron hole (blue and green for pos-
itive and negative wavefunction values re-
spectively) are shown for the initial states
at the top (S62) and the bottom (S0) of
outer valence shell (upper panel).

Again we emphasize the underlying core mechanism dominating the whole dynamics
in H(H2O)2+

21 dication, the Coulomb repulsion between the valence electron hole and the
proton. It is easy to distinguish the hole state at the top and the bottom of the outer
valence shell by inspecting whether the electron hole is located at the same side or oppo-
site side of the excess proton. Shown in Fig. 3.16, when initializing from the top of the
outer valence shell, the two charged particles experience larger acceleration as they are
close on the sphere, since their spatial separation takes place immediately. However, the
configuration at the bottom of the outer valence shell is almost well relaxed at the be-
ginning, which exhibits oscillatory proton-hole distance in the following dynamics. Unlike
the Zundel dication, the proton in the H(H2O)2+

21 dication has delocalized nature, since
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the hydrogen atoms can move in a concerted way within the complex hydrogen bonding
network, this makes the charge separation process in the H(H2O)2+

21 dication to happen in
a more chaotic manner than that in the Zundel dication, despite the eventual relaxation
with well separated proton and electron hole.

The core-level transient absorption spectroscopy technique can open up new possibili-
ties to cleanly follow complex behavior of coupled electronic and nuclear dynamics in gen-
eral non-Born-Oppenheimer processes. By correlating the electronic transient absorption
spectra with the nuclear wave-packet, we have successfully demonstrated the clear reso-
lution of electronic decay on sub-100-femtosecond time scale, and the subtle localization-
delocalization dynamics of electronic dynamics. Since the nuclei are essentially moving in
the electronic potential, the anti-correlated proton motion associated with the valence-hole
wave-packet has been resolved in detail.

Making use of higher order photon scattering processes may also help to probe the
non-adiabatic electronic and nuclear dynamics, for example, the resonant inelastic x-ray
scattering spectroscopy (RIXS) should be a promising candidate for this purpose [93, 94,
95].
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Chapter 4

Pump-Probe Study of Quantum
Beating of Coherent Electron Hole

So far I have discussed the valence electron hole dynamics in the molecules photoionized
by the XUV laser pulses, without assuming quantum coherence between electronic states
in the process. The reason lies in the fact that in general case the coherence of the initial
wave packet can be rapidly lost, because the wave packet components subject to differ-
ent electronic potential energy surfaces usually experience contrasting local geometries
(and therefore very different forces), the relative motion between wave packet components
should result in dephasing from their superposition state. With ultrashort laser pulses,
which usually possess spectral width of ∼ 1–10 eV, one could indeed initiate the dynamics
from a coherent superposition of electronic states, since the energy spacing between elec-
tronic states lies in the range from several hundred meV to several eV in the molecules.
However, it can be expected that their superposition would be quickly destroyed, result-
ing in fast dephasing after photoionization. Nontheless, in certain cases, the coherence in
the ion core left by photoionization can indeed last long enough, that one can monitor
the time evolution of electronic coherence in the ion core with time resolved spectroscopic
techniques [1]. For example, in the case if the local geometry of several electron potential
energy surfaces resembles each other, and provided there are few states perturbing the
coherent superposition state in the way of bath-system coupling, the coherence could be
maintained for relatively long time.

Here I present a collaborative effort with experimental group at the University of Ari-
zona to study dynamics of a long lasting coherent electron hole produced by XUV pho-
toionization. We show that the coherence of the created electron hole can be maintained
for ∼ 1 picosecond and be recorded by XUV pump-IR probe technique.

65



66 CHAPTER 4. COHERENT DYNAMICS OF ELECTRON HOLE

Figure 4.1: Electron decoherence induced by nuclear motion. (a). V1 and V2 correspond
to two electronic potential energy curves of electronic state |1〉 and |2〉, a wave packet
centered at Q = 0, which contains equally weighted components on both electronic states,
is initiated at time t = 0. (b). The time evolution of coherence degree measured by
off diagonal elements of electronic density matrix, subject to two system bath coupling
strength.

4.1 Electronic coherence

Because the ultrashort ionization pulses normally have spectral width of several eV, larger
than typical electronic state spacing in the molecule, the created molecular ion should in
principle land initially on a coherent superposition state associated with several electronic
eigenstates. However, the electronic coherence can decay rapidly, unless the local geometry
of electronic potential energy surfaces are similar to each other in the Franck-Condon
region, i.e. the region of nuclear geometry subject to vertical ionization, which lies in the
vicinity of ground electronic state nuclear geometry.

In general, one should expect the spatial separation of nuclear wave packet components
subject to different electronic states can induce rapid dephasing from a superposition of
electronic states. Here one can illustrate the concept of electronic coherence loss caused by
nuclear wave packet dephasing with a simple system-bath model. In a general context, the
(Q, q1, · · · , qN) coordinates could represent vibrational and rotational degrees of freedom
of molecules, as well as electronic degrees of freedom beyond the subspace of electronic
states in which the investigated coherent superposition actually lives [2].

We will discuss later in this chapter the loss of electronic coherence caused by rotational
motion of a photoionized molecule.
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Consider a two-state model Hamiltonian with system-bath interaction,

H(Q, q1, · · · , qN) =
ωs

2
(P 2 + Q2)⊗ 1 + (γQ + δ)⊗ |2〉 〈2|

+
1

2

[
N∑
i

ωipi + ωi

(
qi −

λi

ωi

Q

)2
]
⊗ 1 , (4.1)

where |1〉 and |2〉 represent the electronic states of the system, P and Q are the momentum
and position operators subject to nuclear motion, {pi, qi} are the canonical coordinates for
the bath degrees of freedom. The nuclear degrees of freedom of the system are coupled to
an ohmic bath with a spectral density

J(ω) =
π

2
αωθ(ω − ωc) , (4.2)

and can be discretized as

J(ω) =
π

2

N∑
i

λ2
i√
ωi

δ(ω − ωi) . (4.3)

Since the wave function of the two-state model can be expressed as

Ψ(t = 0) =
2∑

i=1

χi(Q, q1, · · · , qN) |i〉 , (4.4)

the degree of electronic coherence can be characterized by the off-diagonal element ρij of
the reduced electronic density matrix, which is defined as

ρij =

∫
dQdq1 · · · dqN |i〉 〈i|Ψ∗Ψ |j〉 〈j|

= |i〉 〈χi|χj〉 〈j| . (4.5)

As shown in Fig. 4.1(a), a nuclear wave packet centered at Q = 0, which contains equally
weighted components on both electronic states i.e. |χ1〉 = |χ2〉 = 1√

2
|χ〉, is initiated at

time t = 0, such as

Ψ(t = 0) =
1√
2
χ(Q, q1, · · · , qN)(|1〉+ |2〉) . (4.6)

The wave packet component on the lower energy electronic state |1〉, denoted as χ1(t),
would mostly sit on the potential minimum of V1 at Q = 0, while the wave packet com-
ponent at higher energy electronic state |2〉, denoted as χ2(t), would oscillate around the
potential minimum of V2 at Q = 2. In the case if the system bath coupling is strong, i.e.
α coefficient of the spectral density J(ω) in Eq. 4.2 is large, the wave packet component
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Ψ2(t) should dissipate fast kinetic energy to the bath, and tends to be localized at the
potential well around Q = 2, where it could hardly oscillate.

The localization of χ2 implies its spatial separation with χ1, which can indeed induce
electronic decoherence from the initial superposition state 1

2
(|1〉+|2〉). From Fig. 4.1(b), one

could readily observe the nuclear motion induced electronic decoherence. As the system-
bath coupling strength (π/2)α rises, the coherence degree is substantially suppressed. As
χ2 is spatially localized, it manifests itself as fast decay of coherence degree.

4.2 XUV pump IR probe study

Ultrafast extreme ultraviolet (XUV) pump infrared (IR) probe spectroscopy was employed
to directly time-resolve the evolution of a valence electron hole wavepacket near a conical
intersection in a polyatomic molecule. The coherent motion of this electron hole is observed
to persist for ∼ 1 picosecond.

As illustrated in previous sections of chapter 3, a conical intersection arises when dis-
tinct electronic states become degenerate at a certain set of interatomic coordinates, leading
to the breakdown of the conventional Born-Oppenheimer approximation that serves as the
basis for the interpretation of many molecular phenomena. Near this point of degener-
acy, the electronic and vibrational degrees of freedom become strongly coupled, producing
non-adiabatic, vibronic effects [3] which serve to mediate charge transfer processes.

Owing to its small size and known structure, the CO2 molecule forms an excellent choice
for studying these non-adiabatic dynamics. The valence ionized states A2Πu(1πu)

−1 (17.3
eV) and B2Σ+

u (3σu)
−1 (18.1 eV)[4] form a conical intersection for nuclear coordinates close

to the neutral ground-state equilibrium geometry. These states couple through the joint
effect of the bending and the asymmetric stretching motions of the C-O bonds, which is the
well-known case of bilinear vibronic coupling [5]. To study the non-adiabatic electron hole
dynamics associated with these coupled states, we use the pump-probe scheme illustrated
in Fig. 4.2. A femtosecod XUV pulse prepares a σu hole wavepacket near this conical
intersection whose evolution is then monitored with a time-delayed, near-infrared (NIR)
pulse. The role of the NIR pulse is to project the B2Σ+

u state population onto a dissociation
pathway, creating CO+ ions that form the basis of our measurement.

In the experiment, a 2.4 mJ near-infrared (NIR) pulse with a temporal width of 45
fs is used. As shown in Fig. 4.3, a portion of the pulse is focused into a hollow-core
waveguide filled with Xenon gas to generate extreme-ultraviolet (XUV) femtosecond pulses
consisting of the 11th to 17th harmonic. The high harmonic spectrum is tuned such that
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Figure 4.2: The femtosecond XUV pulse photoionizes CO2 to the B2Σ+
u (3σu)

−1 ionic state.
The σu hole wavepacket associated with this state exhibits electron hole density distributed
along the CO2 bonding axis and represents a non-stationary state of the cation. Vibronic
interactions near the conical intersection result in the periodic transfer of its population to
the A2Πu(1πu)

−1 ionic state where electron hole density is distributed around the bonding
axis (πu hole). The potential energy surfaces of the B2Σ+

u (3σu)
−1 and A2Πu(1πu)

−1 states
are shown as a function of the symmetric C-O stretch, Qg, and asymmetric C-O stretch,
Qu, coordinates. Qg defines the location of the conical intersection, whereas displacement
along Qu and the bending coordinate Qρ mix the two electronic state characters. We resolve
the hole dynamics with a time-delayed NIR pulse that excites the B2Σ+

u population to the
predissociative C2Σ+

g state (19.4 eV) resulting in the formation of observable CO+ ions.

the 11th harmonic is slightly above the B2Σ+
u ionic state threshold (18.076 eV [6]). The

XUV pulse is focused using a toroidal mirror into an effusive gas jet of CO2 molecules,
where it coherently excites electronic states and launches a non-stationary wavepacket. All
harmonics in the XUV spectrum contribute to the excitation of B2Σ+

u state in a proportion
determined by the cross section shown in Fig. 4.3 (b).

The remaining NIR pulse is sent along a time-delayed probing pathway with both
polarization and intensity control. We use a probe intensity of ∼ 3 TW/cm2. The NIR
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Figure 4.3: The experimental schematic for XUV-pump, NIR-probe set up. The high
harmonic spectrum superposed with the B2Σ+

u state excitation cross-section.

probe pulse maps the B2Σ+
u state population to the the predissociative C2Σ+

g state, thus
generating an observable CO+ signal. The dissociation limit for CO+ ions is 19.4687
eV [7]. Therefore, only states above 17.89 eV can be probed in a one photon transition
(~ωNIR = 1.58 eV) to C2Σ+

g state. A few higher vibrational levels of A2Πu state also
lie in this energy range, however their excitation probability is very low compared to the
B2Σ+

u state [4, 6]. As we discuss later, the dipole excitation also favors the B2Σ+
u state

transition by a few orders of magnitude. Finally, the counts from the direct XUV excitation
and dissociation of C2Σ+

g state form a constant dc baseline, which is subtracted from our
time-dependent data.

We finally use a velocity map imaging (VMI) detector to measure the near zero kinetic
energy CO+ ions as a function of pump-probe time delay. The time-zero of the pump-probe
scan is calibrated to an accuracy of ±2 fs using a XUV+IR cross-correlation measurement
of Helium photoionization.

Fig. 4.4 (a) shows the experimental measurements of the CO+ ion yield obtained as a
function of time delay between the XUV-pump and NIR-probe pulses. We recorded the
ion yield for NIR polarizations both parallel and perpendicular to the XUV polarization.
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4.3 Vibronic quantum beating

The most interesting and striking feature in the CO+ delay-dependent data is the coherent
oscillation which exhibits a period of 115 fs. To unveil the nature of the 115 fs oscillation,
we consider the bilinear vibronic coupling Hamiltonian proposed in Ref. [5], which is

Figure 4.4: (a) Experimental traces of the CO+ ion yield as a function of XUV-pump,
NIR-probe time delay for both parallel (blue) and perpendicular (green) NIR polarizations
relative to the XUV field. Oscillations in CO+ ion yield are due to the coherent excitation
of different cationic eigenstates with mixed σ− π character. (b) Eigenstates of the ion ac-
cessible by the XUV pulse. The line height is proportional to |〈0, 0, 0; X1|X1〉〈B2Σ+

u |φj〉|2,
where |X1〉 denotes the neutral ground electronic state, |φj〉 are eigenstates of the vi-
bronic Hamiltonian of the cation and the sudden approximation for ionization is used.
The φ+ and φ− eigenstates are mostly a superposition of vibronic states |0, 0, 0; B2Σ+

u 〉
and |3, 1, 1; A2Πu〉, respectively. The small peak close to φ− is assigned to |2, 3, 1; A2Πu〉
and does not contribute to the observed signal. In our notation for vibronic state, e.g.
|ng, nρ, nu; A

2Πu〉, the quantum numbers ng, nρ, and nu correspond to the vibrational exci-
tations in C-O symmetric stretch, O-C-O bending and C-O asymmetric stretch modes. (c)
Theoretical CO+ ion traces for both parallel and perpendicular probing fields correspond-
ing to Eq. 4.16. Calculations are based on a quantum treatment of the vibronic dynamics
and a classical description of the rotational degrees of freedom. The difference between the
parallel and perpendicular ion traces reflects the role of XUV ionization-induced alignment.
The CO+ ion yield for parallel polarization is a direct reflection of the σu hole dynamics
near the conical intersection and the rapid decay in ion yield is due to the loss of alignment
in the thermal ensemble.
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expanded in the basis set |ng, nρ, nu; B
2Σ+

u 〉 and |ng, nρ, nu; A
2Πu〉. In this formalism,

(ng, nρ, nu) correspond to the quantum numbers for the excitation of the symmetric stretch,
bending, and asymmetric stretch vibrational modes. These modes are characterized by the
coordinates Qg, Qρ, and Qu respectively. The off-diagonal matrix element which results
in the mixing of the two electronic states in this Hamiltonian is VAB ∝ 〈χA|QρQu|χB〉.
In the vibronic coupling model, the coupling induced by the conical intersection manifests
as off-diagonal matrix elements of the Hamiltonian, resulting in the mixing of vibronic
states. Using symmetry considerations and a multi-configurational time-dependent Hartree
(MCTDH) numerical approach [8], we solve the vibronic coupling model, the calculation
results are shown in Fig. 4.5 (a). By taking a Fourier transform of the temporally varying
B2Σ+

u state population, we can obtain the quantum beating spectrum shown in Fig. 4.5 (b).
The peaks here correspond to the energy separation between pairs of vibronically coupled
states. We identify two vibronic states |χB〉 = |0, 0, 0; B2Σ+

u 〉 and |χA〉 = |3, 1, 1; A2Πu〉
as the vibronic states that exhibit the strongest coupling and dominate the wavepacket
dynamics.

The two vibronic states |χB〉 = |0, 0, 0; B2Σ+
u 〉 and |χA〉 = |3, 1, 1; A2Πu〉 are non-

stationary states of the vibronic Hamiltonian, however, one can define the stationary
eigenstates |φ±〉 by a representation transformation(

|φ+〉
|φ−〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(
|χB〉
|χA〉

)
, (4.7)

where the θ is the mixing angle which quantifies the strength of coupling between the two
vibronic states. The hybridization diagram corresponding to this situation is shown in
Fig. 4.4 (b). During the photoionization, the XUV pulse used in the experiment predom-
inately populates the B2Σ+

u electronic state [6], which corresponds to the formation of a
σu hole. The ionization is accompanied with production of a significantly weaker over-
tone at (0, 2, 0)B2Σ+

u [6]. This initial state represents a coherent superposition of cationic
eigenstates, |φ±〉, whose relative populations are shown in Fig. 4.4 (b). Using the known
amplitudes a± and energies E± for |φ±〉,

Since the Hamiltonian is composed of an off-diagonal perturbation, |χA,B〉 is not a
convenient basis to model the time dynamics of this system. Considering this two-state
system, we can define a mixing angle representing the strength of coupling between the
vibronic states as

tan(2θ) =
2VAB

EB − EA

, (4.8)

where EA,B are the energies corresponding to the |χA,B〉 vibronic states. With this defini-
tion, we can preform a transformation into the stationary eigenstate basis |φ±〉 as Eq. 4.7.
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Figure 4.5: (a) Temporal evolution of the B2Σ+
u state population found by using MCTDH

numerical calculations. (b) We obtain the quantum beat spectrum by taking a Fourier
transform of (a) to determine the vibronic state pairs at play in the time dynamics. The
most prominent peak at 37.6 meV corresponds to the energy difference of the |φ±〉 states,
which can be represented by the coupled vibronic states |0, 0, 0; B2Σ+

u 〉 and |3, 1, 1; A2Πu〉.
However, weaker peaks are observed at 40.1 meV, 130.7 meV, and 166.3 meV. (c) A mag-
nified plot of the energy range encompassing the 37.6 meV beating peak.
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Thus, in the experiment, our XUV pulse prepares a coherent superposition of the two
eigenstates of the vibronic Hamiltonian resulting in the time-dependent wavefunction

|Ψ(t)〉 = a+e−iE+t |φ+〉+ a−e−iE−t |φ−〉 . (4.9)

where a± are the initial excitation amplitudes into the two eigenstates with eigenenergies
E±. We can expand this wavefunction in the |χA,B〉 basis as

|Ψ(t)〉 = (sin θ cos θe−iE+t − sin θ cos θe−iE−t) |χA〉
+ (sin2 θe−iE+t + cos2 θe−iE−t) |χB〉 , (4.10)

where the amplitude coefficients a± were derived using the initial conditions cA(0) ≡
〈χA | Ψ(0)〉 = 0 and cB(0) ≡ 〈χB | Ψ(0)〉 = 1. By calculating the projection of |φ±〉
onto the basis |φA,B〉, we can numerically estimate the mixing angle to be θ = 0.195.

Because the decay of baseline of CO+ as observed in experiment (Fig. 4.4a) is missing
in the MCTDH simulation (Fig. 4.5(a)), in which only vibrational and electronic degrees
of freedom were taken into account, one may need to consider the effect of molecular
rotation, which is the cause of the baseline decay as well as for the decay of quantum
beating oscillation, as explained in the following.

Given that all CO+
2 cations excited to C2Σ+

g state will eventually dissociate to give a
CO+ ion signal, we can assume that the population in the predissociative C2Σ+

g state is
proportional to the intensity of the CO+ ion yield. Therefore, we can write the intensity
of the CO+ ion yield as

I(CO+; t) ∝
∣∣∣(E (t)~εIR ·RLM

〈
C2Σ+

g

∣∣∣ ~̂dM

∣∣∣Ψ(t)
〉)∣∣∣2 , (4.11)

where |Ψ(t)〉 is the time-dependent wavefunction of the ionized system in the molecular

frame (Eq. 4.10), ~̂dM is the dipole operator in the molecular frame, the NIR probing
field is characterized by its polarization vector in the laboratory frame ~εIR and a temporal
profile E (t), and RLM is the molecular to laboratory frame rotation matrix. The z–axis of
the lab system is set parallel to the polarization direction of the linearly polarized XUV
pulse. In order to make the notation more compact we defineDκ′

A ≡
〈
C2Σ+

g

∣∣∣d̂κ′
M

∣∣∣A2Πu

〉
and Dκ′

B ≡
〈
C2Σ+

g

∣∣∣d̂κ′
M

∣∣∣B2Σ+
u

〉
, where κ′ is one of the body-fixed axes {x′, y′, z′}. We can

now write the corresponding lab frame components of the dipole matrix elementsDx
X

Dy
X

Dz
X

 = RLM

Dx′
X

Dy′

X

Dz′
X


=

 cos α cos β sin α cos α sin β

− sin α cos β cos α − sin α sin β

− sin β 0 cos β


Dx′

X

Dy′

X

Dz′
X

 (4.12)
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where X = {A, B}, β is the polar angle of the CO+
2 system with respect to the z–axis in

the laboratory frame and α is the azimuthal angle of CO+
2 in the x, y plane. We calculated

the dipole matrix elements Dx′,y′

A and Dz′
B corresponding to processes A2Πu

xy→ C2Σ+
g and

B2Σ+
u

z→ C2Σ+
g ab initio and found that Dx′

A /Dz′
B ' 0.02 at the Franck-Condon geometry.

All other matrix elements involving these pairs of states are zero by symmetry. Hence,
from now on we consider that only B2Σ+

u
z→ C2Σ+

g is relevant for the probing step. For
the case that the probe pulse is aligned along the z–axis, ~εIR = (0, 0, 1), Eq. 4.11 results in

I(CO+, t) ∝ Dz′

B

2
cos2 β

[
cos4 θ + sin4 θ +

1

2
sin2 2θ cos(E+ − E−)t

]
(4.13)

where the term in square brackets corresponds to |cB(t)|2. A similar expression is found
for probing in the x direction of the lab frame

I(CO+, t) ∝ Dz′

B

2
sin2 β cos2 α

[
cos4 θ + sin4 θ +

1

2
sin2 2θ cos(E+ − E−)t

]
. (4.14)

Eqs. 4.13 and 4.14 explain the origin of the oscillatory ion-yield observed in the experi-
mental data and also indicate that the contribution to the signal intensity from one of the
molecules in the probed ensemble depends on its spatial orientation. As the wavefunction
evolves, the system develops a mixed σ−π electronic character. We can see from the above
equation that the energy separation E+−E− characterizes the timescale of quantum beat-
ing between the |φ+〉 and |φ−〉 eigenstates. The numerical results in Fig. 4.4 (b) show an
eigenstate energy difference of 37.6 meV, which corresponds to a timescale of 110 fs. This
timescale matches very well with the ion yield oscillation observed in experimental results
of Fig. 4.4 (a).

From Eq. 4.13, we expect the ion yield to oscillate about some constant baseline. How-
ever, in the experimental CO+ signal, the ion yield quickly decays within 400 fs. The
decay of this signal originates from the decrease in the degree of cation alignment (decay
of anisotropy) due to a finite rotational temperature of the ensemble [9, 10].

The CO+
2 ions are initially prepared as an ensemble of rigid rotors aligned through

photoionization by the XUV pulse. Assuming a dominant s-wave (l = 0) photoionization
and using total angular momentum conservation, the ionization probability W (β) can be
written as

W (β) = C(ω)

(∣∣∣Dz′(B2Σ+
u )
∣∣∣2 cos2 β +

∣∣∣D{x′,y′}(A2Πu)
∣∣∣2 sin2 β

)
∝ 1 + aP2(cos β), a ∈ [−1, 2], (4.15)

where β is the angle between the z–axis in the lab system and the molecular axis, C(ω) is
the XUV energy-dependent spectrum, and Dκ′(χ) =

〈
χ; l = 0

∣∣∣d̂κ′
M

∣∣∣X1Σ+
g

〉
are, as previ-

ously, dipole matrix elements in the molecular frame. While the XUV pulse preferentially
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prepares molecules in B2Σ+
u state aligned parallel to the XUV polarization, it also ex-

cites molecules to A2Πu state aligned perpendicular to the XUV polarization. It is well
established from synchrotron measurements [6] that the B2Σ+

u electronic state has a much
higher ionization probability than the A2Πu state at photon energies in our XUV pump
pulse. Hence, we expect the contribution from A2Πu state excitation to the total CO+ ion
yield to be negligible. Given that

∣∣D{x′,y′}(A2Πu)
∣∣2 � ∣∣Dz′(B2Σ+

u )
∣∣2, the initial 〈cos2 β〉

after XUV excitation will be close to 0.6. Therefore, the XUV ionization creates an aligned
distribution of CO+

2 ions in the B2Σ+
u (3σu)

−1 electronic configuration, which is then probed
by the NIR field.

We can now model the observed features in the CO+ ion yield by accounting for the
NIR probing step and the rotational degrees of freedom in the molecular system. Assum-
ing a dominant s-wave nature for photoionization, dipole selection rules dictate that the
ionization will preferentially occur from 3σu orbitals for molecules aligned parallel to the
XUV field. Therefore, the XUV pulse prepares an aligned distribution of CO+

2 ions in a
B2Σ+

u electronic configuration. Further, due to the dipole selection rules and bandwidth
constraints, the parallel NIR probing field exclusively maps the B2Σ+

u state population to
the predissociating C2Σ+

g state[7], resulting in the formation of CO+ ions. This transition
is forbidden for a perpendicular probing field, explaining the large discrepancy in ion yield
between the parallel and perpendicular polarizations at t = 0 fs seen in Fig. 4.4 (a).

To incorporate the effect of ionization induced alignment and the thermal rotational
effects into our simulation, we perform a trajectory calculation for the ensemble of rigid
rotors. In this approach, we compute the ensemble-averaged NIR transition dipole DB(t)

from the B2Σ+
u state to the final C2Σ+

g state. Using the time-dependent wavefunction in
Eq. 4.9, and calculating the transition strength to C2Σ+

g state, the expression for the CO+

ion yield is given by taking ensemble average of Eq. 4.13, such that

I(CO+, t) ∝ Dz′

B

2 〈
cos2 β

〉 [
cos4 θ + sin4 θ +

1

2
sin2 2θ cos(E+ − E−)t

]
(4.16)

The 110 fs quantum beating is therefore reproduced in the experimental CO+ ion yield.
Additionally, the finite rotational temperature Trot of the molecular ensemble leads to the
loss of the cation’s alignment, resulting in a time dependent 〈DB(t)〉. Figure 4.4 (c) shows
the result of Eq. 4.16 for a rotational temperature relevant to our experimental conditions
(Trot = 200 K). The computed signal intensity for parallel NIR polarization undergoes a
decay in nearly 400 fs, which matches the experimental observation in Fig. 4.4 (a). This
decay can be explained as follows: as the ensemble rotates out of alignment, a smaller
fraction of the molecules can be probed by the parallel NIR field. On the other hand, this
opens up a larger number of molecules which can be probed by the perpendicular NIR
field, resulting in the increase in ion yield for perpendicular polarization.
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Figure 4.6: (a) Change in electron hole density ∆ρhole with respect to time zero. The
dynamics shown correspond to the 110 fs quantum beat. During this period, the electron
hole density is driven from σu character along the molecular axis (blue, negative) to πu

character (orange, positive) around the molecular axis. (b) Change in the reduced density
of the vibronic wavepacket along the coupling coordinates Qu and Qρ (defined in main
text) associated with electronic states B2Σ+

u (upper panel) and A2Πu (lower panel).

With strong agreement between experiment and theory, we finally arrive at a complete
picture of coupled nuclear-hole dynamics near a conical intersection of CO+

2 (Fig. 4.6). The
XUV pulse first prepares the molecule in a coherent superposition of cationic eigenstates
with an initial σu electron hole character. The bending and asymmetric stretch motions of
the molecule coherently drive the electron hole density from the region along the molecular
axis with σu symmetry, to the region around the molecular axis with πu symmetry. The
relative electron hole density corresponding to the evolution of the wavepacket within the
first 110 fs period of quantum beating is shown in Fig. 4.6 (a). The reduced density of the
nuclear wavepacket on the A2Πu and B2Σ+

u states in terms of the asymmetric stretching
(Qu) and bending (Qρ) coordinates is shown in Fig. 4.6 (b) and demonstrates periodic
modulation in synchronization with the electron hole dynamics.

We can also monitor the evolution of quantum coherence in the cationic superposition
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by using the results in Fig. 4.4(a) and defining the time-dependent ion yield contrast as

Cexpt(τ) =
Isig(τ)− Idc(τ)

Idc(τ)
, (4.17)

where Isig(τ) is the raw CO+ ion yield and Idc(τ) is the non-oscillatory component. In Fig.
4.7 (a), we plot the delay-dependent contrast observed in the experiment. We can compare
this to the theoretical ion-yield contrast from Eq. 4.16, or

Ctheo(t) =
1
2
sin2(2θ)

cos4 θ + sin4 θ
cos(E+ − E−)t. (4.18)

Eq. 4.16 does not consider dephasing effects and the amplitude of the theoretical contrast
depends only on the mixing angle and is stationary with time, whereas the amplitude of
the experimental contrast in Fig. 4.7 (a) decays with time delay. This decay in amplitude
is indicative of the loss of coherence. In Fig. 4.7 (b), we plot the delay-dependent contrast
amplitude for the four prominent oscillation periods observed in the experiment and find
that the contrast amplitude decreases linearly with time. By extrapolation, we can extract
the initial contrast amplitude at t = 0 fs, before the onset of decoherence. Using the initial
contrast amplitude value in Eq. 4.18, we can obtain an experimental measurement of the
mixing angle, θ = 0.183 ± 0.007. This can readily be compared with the mixing angle
directly obtained from numerical results of MCTDH calculations which yield θ = 0.195.
Our work thus represents a sensitive measurement of the coupling induced by the non-
adiabatic perturbations near a conical intersection.

From the linear fit in Fig. 4.7(b), we experimentally infer the rate of decoherence to
be (0.06± 0.01) ps−1. The mechanism behind this can be understood in terms of thermal
dephasing. At a finite rotational temperature, XUV excitation from the ground state
creates an incoherent distribution of rotational levels in the |χB〉 vibronic state. Since the
rotational constants of coupled |χB〉 and |χA〉 states are appreciably different, the energy
gap between them varies with the rotational quantum number, J .

The origin of the decay in the oscillation contrast of the CO+ ion signal can be explained
considering the slightly different rotational constant in states A2Πu and B2Σ+

u due to
different mean equilibrium distances between atoms in each electronic potential energy
surface. We evaluate the impact of the rotational dynamics on the decoherence rate based
on the model Hamiltonian

Ĥ =

(
ωA + ĤA λ

λ ωB + ĤB

)
(4.19)

where ĤX = BXĴ 2, X = A, B. In this model each of the vibronic states described pre-
viously is incremented by a rotational Hamiltonian characterized by a different rotational
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constant. This causes the gap between vibronic states |χB〉 = |0, 0, 0; B2Σ+
u 〉 and |χA〉 =

|3, 1, 1; A2Πu〉 to be dependent on the rotational state of the system. The rotational con-
stants for the two electronic states are B(A2Πu) = 0.28 cm−1 and B(B2Σ+

u ) = 0.38 cm−1,
respectively, which correspond to the equilibrium geometry of the CO+

2 ion in the A2Πu and
B2Σ+

u state. T=200 K is assumed for the thermal averaging. In Fig. 4.8 the damping of
the quantum beating in the signal leads to a loss of contrast of about 50% in 500 fs, which
is consistent with our observation.

As a result, the J- dependent phases of electron hole oscillations diverge with time,
manifesting as an loss of coherence in our data. The dashed curve in Fig. 4.7 (a) represents
the results of a semi-classical, linear rotor model incorporating the effects of rotational
dephasing of a thermal distribution. The numerical contrast decays on a very similar
timescale to what is seen in the experiment. This is further exemplified in Fig. 4.7
(b), where the theoretical contrast amplitude (dashed) follows the experimental amplitude
(solid). It is interesting to note that while the thermal ensemble is fairly warm (Trot ≈ 200

K), the coherence in the weakly coupled cationic states persists for more than 500 fs.

The coupling between A2Πu and B2Σ+
u states with the cationic ground state X2Πg can

be excluded from the damping mechanism of quantum beating, by observing the large
energy gap of ∼ 4 eV between X2Πg and A2Πu /B2Σ+

u states, whereas energy gap between
A2Πu and B2Σ+

u states is 0.77 eV [11]. Since the non-adiabatic coupling matrix element
(NACME) ~Dij is inversely proportional to the energy gap, according to the Hellmann–
Feynman theorem in Eq. 2.10 [3],

~Dij =
〈
ϕi

∣∣∣ ~̂∇∣∣∣ϕj

〉
=

〈
ϕi

∣∣∣~∇Ĥe

∣∣∣ϕj

〉
Ej − Ei

, (4.20)

where |ϕi〉 = |A2Πu〉 , |B2Σ+
u 〉 ,

∣∣C2Σ+
g

〉
. It is obvious that the coupling to the X2Πg state

should be negligible comparing the to A2Πu –B2Σ+
u coupling. Fig. 4.9 illustrates the

NACMEs between A2Πu , B2Σ+
u and X2Πg states from ab initio multi-configurational

self-consistent field (MCSCF) calculation [12], the A2Πu –B2Σ+
u coupling is two orders of

magnitude stronger than the A2Πu /B2Σ+
u coupling to the X2Πg state in the vicinity of

conical intersection.

The concept of quantum coherence is playing an increasingly important role in our
understanding of chemical and biological phenomena[13, 14, 15, 16] and our results suggest
that the non-adiabatic coupling to nuclear motion provides an efficient means for mediating
coherent charge transfer in polyatomic systems.

In this study, we used an XUV-pump and NIR-probe to resolve the ultrafast and co-
herent motion of an inner-valence electron hole between σ and π orbitals. The coherent
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motion of electron hole was observed to last ∼ 1 ps, due to the reason that the potential
energy surfaces are of similar geometry at the Franck-Condon region, and the XUV ion-
ization pulses actually produce specific superposition state involving only a small set of
vibronic states, which can be approximated as a two-state system.

We quantified the coupling between electronic states due to the perturbation caused
by the conical intersection and measured the evolution of quantum coherence during the
charge oscillation. The real-time visualization of electron hole dynamics in such non-
adiabatic scenario and the understanding of the limitations of the quantum system due to
coupling with environmental degrees of freedom is fundamental in probing the inner work-
ings of charge migration processes occurring in nature. The experimental and theoretical
results we obtained here for the linear triatomic molecule represent first steps in elucidating
these dynamics and paves the way for realization of the full potential of ultrafast XUV
spectroscopy in the measurement and control of charge dynamics in complex biochemical
systems.
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Figure 4.7: (a) The experimental results for the contrast of CO+ yield oscillation for parallel
polarization. The contrast peaks and minima reflect the electronic character of the hole as
it evolves in time. The dashed curve is the theoretically calculated contrast incorporating
the effects of dephasing due to slightly different rotational constants of the A2Πu and
B2Σ+

u states and the rotational temperature of the ensemble. (b) The contrast amplitude
is plotted for the four prominent oscillation periods shown in (a) and it decays linearly
over time due to the loss of coherence. A linear fit to this data allows us to experimentally
measure the mixing angle to be θ = 0.183(7) before the onset of decoherence. The dashed
line is the theoretical calculated decay of contrast amplitude.
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Figure 4.8: The contrast of CO+ yield oscillation, assuming the difference in the rotational
constants of A2Πu and B2Σ+

u states to be the only damping mechanism.

Figure 4.9: The norm of the non-adiabatic coupling matrix element vector ~Dij between
A2Πu , B2Σ+

u and X2Πg states in the vicinity of conical intersection.



4.4. BIBLIOGRAPHY 83

4.4 Bibliography
[1] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazz-

iotti, and R. Santra, Phys. Rev. Lett. 106,
053002 (2011).

[2] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazz-
iotti, and R. Santra, Phys. Rev. Lett. 106,
053003 (2011).

[3] G. Worth and L. Cederbaum, Annu. Rev. Phys.
Chem. 55, 127 (2004).

[4] L. Wang, J. Reutt, Y. Lee, and D. Shirley,
J. Electron. Spectrosc. Relat. Phenom. 47,
167 (1988).

[5] T. Zimmermann, H. Köppel, and L. Ceder-
baum, J. Chem. Phys. 83, 4697 (1985).

[6] J. Liu, M. Hochlaf, and C. Ng, J. Chem. Phys.
113, 7988 (2000).

[7] J. Liu, W. Chen, M. Hochlaf, X. Qian,
C. Chang, and C. Ng, J. Chem. Phys. 118,
149 (2003).

[8] M. Beck, A. Jäckle, G. Worth, and H. Meyer,
Phys. Rep. 324, 1 (2000).

[9] Y. Lin, P. Pieniazek, M. Yang, and J. Skinner,
J. Chem. Phys. 132, 174505 (2010).

[10] E. Smith and D. Jones, J. Phys. Chem. A 115,
4101 (2011).

[11] D. A. Shaw, D. M. P. Holland, M. A. Hayes,
M. A. MacDonald, A. Hopkirk, and S. M.
McSweeney, Chem. Phys. 198, 381 (1995).

[12] M. W. Schmidt, K. K. Baldridge, J. A. Boatz,
et al., J. Comput. Chem. 14, 1347 (1993).

[13] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M.
Li, G.-Y. Chen, and F. Nori, Nature Phys.
9, 10 (2013).

[14] G. S. Engel, T. R. Calhoun, E. L. Read, et al.,
Nature 446, 782 (2007).

[15] P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and
A. Stolow, Nature Phys. 7, 612 (2011).

[16] C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D.
Lee, O. Geßner, C. C. Hayden, and
A. Stolow, Science 323, 1464 (2009).



84 CHAPTER 4. COHERENT DYNAMICS OF ELECTRON HOLE



Chapter 5

Electron Dynamics in Strongly
Correlated Materials
Real time DMFT-MCTDH scheme for electron
dynamics in strongly correlated materials

I have so far addressed the coupled relaxation dynamics of electrons and nuclei in molecules
under irradiation with ultrafast laser pulse that photoionises the molecule. The created
valence electron hole feels the Coulomb force from the nuclei and the rest of the electrons,
the correlated motion of electrons and nuclei then determines the dynamical behavior and
the fate of the molecule after photoionization.

In solids, the correlated motion of electron mediated by strong Coulomb interaction
can also lead to dramatic consequence – e.g. highly nontrivial phenomena such as heavy
fermion behavior, the Mott metal–insulator transition [1], and the qualitative failure of the
energy band theory to explain these experimental observations.

The exotic electron correlation behavior is known to exist in a wide scope of condensed
matter dubbed strongly correlated materials, which includes the high-Tc superconductors.
One of the most peculiar aspects of high-Tc superconductors is that their parent compounds
are Mott insulators, which are typical strongly correlated materials, and the superconduc-
tivity is achieved by introducing charge carriers into the insulating parent compounds. It is
generally believed that a comprehensive understanding of the evolution from Mott insula-
tor to superconductor holds the key to the mystery of high-Tc superconductors. Moreover,
in the high-Tc superconductors, strong Coulomb correlation essentially dominates the in-
teraction in the CuO2 plane and the formation of Zhang–Rice singlets [2] between electron

85
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holes with antiparallel spins (S = 0) in Cu 3d and O 2p orbitals.

The intriguing properties and applications of strongly correlated materials have moti-
vated methodological development beyond the energy band theory. For this purpose, the
dynamical mean field theory (DMFT) is one of the state–of–the–art tool developed to solve
the electronic structure of strongly correlated solids.

Considering the real time picture in the strongly correlated solids, their electronic nu-
clear dynamics has been studied using pump probe technique, e.g. the time–resolved optical
spectroscopy [3, 4] and the time–resolved photoemission spectroscopy [5]. The experimen-
tal spectra and theoretical results acquired using DMFT in these works illustrate striking
scenario on how the quasi–particles in solids emerge dynamically on the femtosecond time
scale [3, 4], as well as the build–up of electronic correlations after the laser pump [5]. A real
time movie of quasi–particle formation near Fermi surface can be recorded by the pump
probe spectroscopy [4]. These phenomena in condensed matter revealed by pump–probe
spectroscopy can have profound implications to understand the fundamental concepts of
many–body physics.

Besides, the solids in nonequilibrium state as they are pumped by laser can exhibit
intriguing properties and hidden phases, which are absent in equilibrium. For example, one
can induce insulator–metal transition or superconductor phase transition using ultrashort
laser pulses [6].

In this chapter, I present our work to develop an efficient impurity solver based on
multiconfiguration time–dependent Hartree (MCTDH) method in Fock space formalism,
in order to solve the single–impurity Anderson model (SIAM) with time–dependent electron
hopping parameters and local Coulomb repulsion, which is a core component for the non–
equilibrium dynamical mean field theory (DMFT) for studying femtosecond pump–probe
experiments on the strongly correlated materials.

5.1 Principles of dynamical mean field theory

This section aims at giving a brief introduction to the DMFT method, based on published
literature in the DMFT community.

A main concept of DMFT is a projection onto a set of spatially localized single–particle
orbitals, which generate a subspace of the total Hilbert space, dubbed the correlated sub-
space C, in which many–body correlation effects can be treated in a non-perturbative
manner. The correlation can essentially reshape the electronic structure near the Fermi
surface, which is treated as the non–perturbative correction to the one–electron energy
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band theory. Fig. 5.1 [7] sketches the hybrid density functional theory (DFT) – DMFT
approach, where the DMFT correction on electron density ρ(r) = ρDFT+∆ρ(r) is feed back
to the DFT, and a self–consistent procedure leads to the final solution of electronic struc-
ture. In order to understand the underlying physical scenario revealed by the pump–probe
experiments, growing theoretical effort has been devoted to establish microscopic descrip-
tion of strongly correlated lattice models out of equilibrium. A promising framework to
capture the both ultrafast dynamics and strong electronic correlation is the nonequilibrium
formulation of dynamical mean field theory (DMFT) [8, 9, 10].

In the framework of DMFT, a lattice model such as the Hubbard model is mapped onto
an effective impurity model, which consists of a single site of the lattice (impurity) coupled
to a non–interacting medium, where electrons are exchanged between the impurity site and
the medium. One of the key ingredients required for advancing DMFT to nonequilibrium
regime is to establish methods to solve the real–time dynamics of the single impurity model

Figure 5.1: The self–consistent loop for LDA+DMFT scheme. The electron density ρ

determines the DFT Kohn–Sham (KS) potential VKS, from which one acquire the KS
eigenvalues and eigenfunctions. The KS Green function is then constructed and feed to
the DMFT cycle. In the converged DMFT loop, a new electron density is generated, taking
into account the Coulomb correlation effect, the updated electron density ρ = ρKs + ∆ρ is
then passed on to the DFT. The DFT–DMFT loop is iterated until convergence of the self
energy. This figure is taken from Ref. [7]. Copyright c© 2006 American Physical Society
(APS).
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far from equilibrium. In the previous work of K. Balzer and M. Eckstein et al. [11], a ro-
bust Hamiltonian–based impurity solver scheme was established for nonequilibrium DMFT
based on the discretization effective DMFT medium into a finite number of bath orbitals.
The self consistent discretization procedure further maps the DMFT impurity model to
a single–impurity Anderson model (SIAM), which is then solved by exact diagonalization
method [11, 12]. The mapping of the DMFT impurity model to SIAM is advantageous,
because it allows us to access intermediate coupling regime, without presuming that either
on-site Coulomb interaction or hopping is small.

In this chapter, I introduce the highly efficient multiconfiguration time–dependent
Hartree method, which is originally developed for the time propagation of nuclear wave
packets in molecular dynamics [13, 14], to treat the real–time dynamics of the SIAM. De-
spite the accuracy of exact diagonalization method, which is equivalent to time–dependent
full configuration interaction (TDCI), the notorious scaling of its Hilbert subspace dimen-
sion, as a function of number of bath sites of SIAM, prohibits us to acquire faithfully
the electron dynamics at long time scales. Intuitively, as the dynamics approaches longer
times, the electrons can explore wider space in the lattice, therefore one needs more bath
sites in the SIAM to guarantee that the SIAM is a faithful mapping of the original lat-
tice Hubbard model, i.e. the growing SIAM reflects the expanding accessible area of the
electrons appearing around the impurity site.

The MCTDH method provides a route to represent the dynamical wave function with
a minimal set of time–dependent basis functions that co-move with the evolving wave
function. This feature can lead to tremendous reduction of configuration space dimension,
therefore may allows us to reach long time dynamics in nonequilibrium DMFT. Moreover,
MCTDH based impurity solver can be readily incorporated with its more powerful exten-
sion, the multi–layer multiconfiguration time–dependent Hartree (ML-MCTDH) [15, 16,
17].

In order to combine nonequilibrium dynamical mean-field theory (DMFT) [10, 18, 19]
and the multiconiguration time-dependent Hartree (MCTDH) method, which we propose
as impurity solver, I here give a brief introduction to the DMFT framework I employ in
this thesis, followed by a detailed description of the application of MCTDH to Fock space
dynamics.

From a general perspective, one is interested in the real-time evolution of a lattice
quantum many-body system like the single-band Hubbard model

H(t) =
∑
ijσ

tij(t) c†iσcjσ + U(t)
∑

i

(ni↑ − 1
2
)(ni↓ − 1

2
) , (5.1)

which is initially in thermal equilibrium at temperature T = 1/β, and evolves unitarily
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Figure 5.2: (a) DMFT impurity problem according to the action of Eq. (5.3). The arrows
illustrate the effect of the two-time hybridization function Λσ(t, t′) which describes all kind
of processes where a particle of spin σ jumps at a time t from the impurity site (red)
to a lattice site i (green), propagates forward or backward in time from site i to site j,
and at a time t′ jumps back to the impurity. (b) Representation of the DMFT bath by a
single-impurity Anderson model (SIAM) with six bath spin orbitals χlσ, l ≥ 1. (c) SIAM
degrees of freedom that enter the MCTDH ansatz of Eq. (2.19).

under the time-dependent Hamiltonian H(t). In Eq. (5.1) the operator c†iσ (ciσ) creates (an-
nihilates) an electron with spin σ on site i of the crystal lattice, niσ is the spin-density, tij(t)

is the hopping matrix element between sites i and j, and U(t) denotes the local Coulomb
repulsion. For the purpose of methodological development, we adopt a parametrized model
with given hopping matrix elements and local Coulomb repulsion. In practical material
simulation, tij and U can be determined in an ab initio manner, e.g. within the self
consistent field density functional theory–dynamical mean field theory (SC-DFT-DMFT)
scheme [7].

In our time–dependent single–band Hubbard model, the time unit is defined as the
inverse of the electron hopping parameter at the end of dynamics one considers, namely
~/t̃ij(t →∞), which corresponds to the time scale of several tens of femtoseconds. For
example, t̃ij ' 40 meV in one–dimensional organic Mott–insulator, one time unit then
corresponds to ' 16.5 femtoseconds, in transition metal oxides, t̃ij lies in the range of
7 ∼ 300 meV, the time unit in this case lies accordingly in the range of 2.2 ∼ 94.0

femtoseconds.
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5.1.1 Nonequilibrium DMFT and Hamiltonian-based impurity
solvers

In previous work by K. Balzer and M. Eckstein et al. [11], a comprehensive framework is
established for nonequilibrium DMFT, which is briefly presented in the following.

The central task of nonequilibrium DMFT based on the Keldysh formalism [20] is to
compute the local contour-ordered Green (or correlation) function

Gσ(t, t′) = −i〈TCcσ(t)c†σ(t′)〉Sloc
(5.2)

of an effective single-site impurity model which exactly replaces the original translationally
invariant lattice problem (5.1) in the limit of an infinite lattice coordination Z (and is
approximate at finite dimensions). The action Sloc of the effective model is given by

Sloc = −i

∫
C
dt

[
U(t)(n↑(t)− 1

2
)(n↓(t)− 1

2
)− µ

∑
σ

nσ(t)

]
−i

∫
C

∫
C
dt dt′

∑
σ

Λσ(t, t′)c†σ(t)cσ(t′) , (5.3)

where the first part contains the Hamiltonian of an isolated site of the original lattice at
a chemical potential µ, and the second part connects the site to a noninteracting contin-
uous bath which in nonequilibrium is defined by the hybridization function Λσ(t, t′). The
integrations are performed over the full L-shaped Keldysh contour.

In single-site DMFT, the bath incorporates retardation effects which come from a local
self-energy Σi(t, t

′) and therefore must be determined self-consistently. Specifically for a
Bethe lattice with nearest-neighbor hopping and semi-elliptical density of states, the bath
is characterized by a hybridization function of closed form [21],

Λσ(t, t′) = v(t)Gσ(t, t′)v(t′) . (5.4)

where the hopping matrix elements in Eq. (5.1) are rescaled according to tij(t) → v(t)/Z.

Unfortunately, the DMFT action of the form (5.3) does not allow for a direct solution
of the impurity problem with Hamiltonian-based methods. However an optimal represen-
tation of Sloc in terms of a time-dependent impurity Hamiltonian with finitely many bath
orbitals can be obtained by a suitable decomposition of the two-time hybridization func-
tion. Formally such a mapping requires that all impurity correlation functions 〈O(t1) . . .〉
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for Sloc are the same in the final impurity Hamiltonian H ′(t), i.e.,

Tr (TC {exp (Sloc)O(t1) . . .})
Tr (TC {exp (Sloc)})

!
=

Tr
(

TC

{
exp

(
−i
∫
C

.

H
′
(t)
)
O(t1) . . .

})
Tr
(

TC

{
exp

(
−i
∫
C

.

H
′
(t)
)}) . (5.5)

A particularly convenient mapping [11] becomes possible for the single-impurity Anderson
model (SIAM) where H ′ = HSIAM = Himp + Hbath + Hhyb with

Himp = −µ
∑

σ

n0σ + U(t)
(
n0↑ − 1

2

) (
n0↓ − 1

2

)
,

Hhyb =
L∑

l=1

∑
σ

(
V σ

0l (t)c
†
0σclσ + H.c.

)
,

Hbath =
L∑

l=1

∑
σ

(εlσ − µ)c†lσclσ . (5.6)

Here, the impurity site is coupled in a star-pattern by hopping processes of amplitude
V σ

0l (t) to L individual noninteracting bath orbitals of energy εlσ, and the operator clσ (c†lσ)
annihilates (creates) an electron in a spin orbital χlσ at bath site l for l > 0, and at the
impurity for l = 0. The hybridization function of the SIAM is given by

Λ′
σ(t, t′) =

L∑
l=1

V σ
0l (t)g(εlσ, t, t

′)V σ
l0 (t′) , (5.7)

where g(ε, t, t′) = −i[θC(t, t
′)−f(ε)]e−iε(t−t′) is the Green function of an isolated bath orbital,

f(ε) = 1/(eβε + 1) denotes the Fermi distribution and θC is the contour step function.

If the bath is initially decoupled from the impurity (this is commonly referred to as the
atomic limit), the initial state of the system is completely described by the impurity density
matrix ρ, and in Eq. (5.3) the Matsubara and mixed components of the hybridization
function vanish, ΛM = Λd = Λe = 0. The open parameters in the SIAM can then be
obtained by demanding that the greater and lesser components of the original hybridization
function Λσ(t, t′) and Λ′

σ(t, t′) of Eq. (5.7) are identical for all times t and t′ on the real
part of the contour.

In practice, this leads over to a matrix decomposition of Λσ(t, t′), where the matrix rank
Nt is defined by the discretization of the times t and t′ according to 0, δt, 2δt, . . . , (Nt−1)δt.
By choosing the bath energies of the SIAM such that the occupations f(εlσ−µ) are either 0
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or 1, the greater and lesser components can be decomposed independently of one another,

− iΛ<
σ (t, t′) =

L/2∑
l=1

V σ
0l (t)[V

σ
0l (t

′)]∗ , (5.8)

iΛ>
σ (t, t′) =

L∑
l=L/2+1

V σ
0l (t)[V

σ
0l (t

′)]∗ ,

where we have occupied the first half of the spin orbitals χlσ and left the other half empty
(note that non-uniform partitions are also possible).

It is obvious that the equality in Eq. (5.8) holds strictly only in the limit L →∞, given
the continuity of the DMFT bath. However, appropriate representations can usually be
obtained already for a rather small number of bath orbitals [22]. Furthermore, the use of
a causal low-rank Cholesky approximation in Eq. (5.8) guarantees that the representation
of the hybridization function is always correct at short times, see Ref. [11] for details. In
this context a gradual increase of L allows us to successively approach longer and longer
simulation times.
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5.2 MCTDH based nonequilibrium DMFT impurity
solver

5.2.1 MCTDH in electronic Fock space

I apply the MCTDH method [13, 14, 23], which is introduced in chapter 2.2, to the time–
dependent single–impurity Anderson model appearing in the nonequilibrium DMFT. To
this specific application, it is convenient to implement the MCTDH solver with the Fock
space formulation of electronic wave functions and Hamiltonian.

The impurity model is a system containing N electrons and can be described by a set
of M orthonormal spin orbitals {χ1(x), χ2(x), . . . , χM(x)}, where M ≥ N .

The corresponding N -electron wave function lives in the Hilbert (sub)space H(M, N)

and can be constructed from antisymmetrized products (i.e, Slater determinants) of these
basis functions. In previous work of K. Balzer and M. Eckstein [11], a Hamiltonian-based
impurity solver was developed, using the Hilbert space representation of electronic wave
function [11]. The Hilbert space formalism has also led to the development of multiconfig-
uration time–dependent Hartree for fermions (MCTDHF) [24, 25, 26, 27]. The MCTDHF
ansatz invokes fermionic symmetry in the wave function, so the f -electron wave function
is expressed as linear combination of Slater determinants, namely the configuration state
functions (CSFs). Explicitly, in MCTDHF scheme, an f -electron N -orbital wave function
is written as

Ψ(q1, · · · , qf ) =
N∑
j1

· · ·
N∑
jf

Cj1,··· ,jf
(t)

f∏
κ=1

φ
(κ)
jκ

(qκ, t) , (5.9)

where qi and φ
(κ)
jκ

(qκ, t) are electronic coordinates and orbitals, respectively. Eq. 5.9 is
slightly different from the MCTDH ansatz (Eq. 2.19), the MCTDHF coefficient Cj1,··· ,jf

(t)

carries fermionic symmetry, namely it is antisymmetric with respect to their indices. The
time propagation of electronic wave function with variationally optimal B’s and φ’s are
similar to that in MCTDH using the Dirac–Frenkel variational principle [28].

Without explicitly invoking fermionic symmetry in the wave function, an equivalent
and convenient way to implement the MCTDH method for the impurity problem is to use
the Fock space representation of fermion wave function [15]. The Fock space MCTDH
of second quantization representation, dubbed MCTDH-SQR [15], may have particular
advantage over the MCTDHF scheme, when one extends the depth of basis function lay-
ers, namely invoking ML-MCTDH scheme. As introduced in chapter 3, the extension to
ML-MCTDH scheme relies on effective mode combination. However, in the MCTDHF,
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combining coordinates of different electrons into one logical mode would face difficulty to
conserve the fermionic symmetry of the wave function. For example, suppose one has a
3–layer MCTDHF scheme, a mode combined basis φjκ(Qκ, t) with Qκ = {q1κ , · · · , qdκ} in
the 1st layer needs to be further expanded as a dκ–dimensional wave function like object
with time–dependent orbitals as in Eq. 2.20, it remains to be an open question to deter-
mine the appropriate symmetry of the expansion coefficient in the 2nd layer, such that the
fermionic symmetry of the f -electron wave function Ψ(q1, · · · , qf ) is conserved. Possible
solutions might be to carefully prepare the initial wave function in the N -layer represen-
tation, which possesses fermionic symmetry. Since the Hamiltonian operator would not
break the fermionic symmetry in the time propagation, one might be able to construct a
ML-MCTDHF scheme. Such possibility has not been investigated yet.

On the contrary, in the Fock space MCTDH-SQR of fermions does not explicitly invoke
antisymmetry in the wave function, the fermionic symmetry is instead transferred to the
Hamiltonian operator. The mode combination can be applied in exactly the same way as
the non–symmetric MCTDH, it can be straightforwardly extended to Fock space fermionic
ML-MCTDH [15]. The tree structure of the corresponding ML-MCTDH scheme is sketched
in Fig. 5.3. For M spin orbitals, the basis of the Fock space (denoted as F(M)) is given
by

|n1, n2, . . . , np, . . . , nM〉 =
M∏

P=1

(c†P )nP |01, 02, . . . , 0M〉 . (5.10)

where np = 0, 1 are the allowed occupations of the spin orbital χp, and c†P denotes the
fermionic creation operator, satisfying the anticommutation relations with the associated
annihilation operator cP ,

{cP , c†Q} ≡ cP c†Q + c†QcP = δPQ ,

{cP , cQ} = {c†P , c†Q} = 0. (5.11)

Their action on the Fock state basis is determined by Pauli exclusion principle, i.e.,

c†P |n1, n2, . . . , 0P , . . . , nM〉 =
P−1∏
Q=1

(−1)nQ |n1, n2, . . . , 1P , . . . , nM〉

c†P |n1, n2, . . . , 1P , . . . , nM〉 = 0, (5.12)

where the phase factor
∏P−1

Q=1(−1)nQ accounts for all permutations needed in order to bring
Fock state |1P , n1, n2, . . . , nM〉 to |n1, n2, . . . , 1P , . . . , nM〉.

For implementation of the impurity model in MCTDH, it is practical to represent the
primitive Fock space basis and the fermionic operators in matrix form. The occupation
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Figure 5.3: Tree structure of (a) MCTDH
and (b) ML-MCTDH wave functions of
a 6 spin orbital model, combined into
groups of two spin orbitals. The bot-
tom layer is supported by the primitive
Fock state basis. n1 and n2 by the edge
of the tree diagram represent the number
of SPFs used to represent each combined
mode. N2 = 2 for MCTDH and N3 = 2

for ML-MCTDH, which corresponds to 2
occupancy state of the spin orbital. This
figure is taken from Ref. [17]. Copy-
right c© American Institute of Physics
(AIP).

number states of spin orbital χj are described by a rank-2 vector space,

|nj = 0〉 ⇔
(

0

1

)
|nj = 1〉 ⇔

(
1

0

)
(5.13)

The matrix representation of creation operator can be written as

c†P ≡

(
P−1∏
Q=1

(−1)nQ

)
c̃†P =

(
P−1∏
Q=1

SQ

)
c̃†P

c̃†P ≡

(
0 1

0 0

)

SQ ≡

(
−1 0

0 1

)
. (5.14)

One can readily find the matrix form of annihilation operator as Hermitian conjugate of
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the creation operator ĉ†P ,

cP ≡

(
P−1∏
Q=1

(−1)nQ

)
c̃P

c̃P ≡

(
0 0

1 0

)
. (5.15)

The number of electrons in a Fock state |n1, n2, . . . , nM〉 is given by N =
∑M

P=1 nP , and
the electron number operator n̂P for spin orbital χP can be written as

n̂P ≡

(
1 0

0 0

)
. (5.16)

As an example, one may consider a spinless two orbital model, an electron hopping
operator t12c

†
1c2 in matrix representation acting on a Fock state |0112〉 could be conveniently

evaluated as

t12c
†
1c2 |0112〉 = t12c̃

†
1 (S1c̃2) |0112〉

= t12

(
0 1

0 0

)
1

⊗

(
−1 0

0 1

)
1

(
0 0

1 0

)
2

[(
0

1

)
1

⊗
(

1

0

)
2

]
= t12

(
1

0

)
1

⊗
(

0

1

)
2

= t12 |1102〉 . (5.17)

We see from Eq. 5.17 that in second quantization representation, all operators are in a
product form, which is advantageous for the treatment using MCTDH scheme.

For the benchmark calculations, we apply two-layer MCTDH as an impurity solver
and evaluate its performance on the basis of computational complexity. In the first part,
we outline the procedure for a simple test bath and compute the time-dependent wave
function of the corresponding SIAM with L bath sites for various on-site interactions U .
In the second part, we discuss the self-consistency and illustrate the computation of the
impurity Green function. Starting from the atomic limit, the impurity site q0σ is initially
decoupled from the bath and is occupied by a single up- or down-spin electron. Consistent
with the decomposition scheme outlined in Sec. 5.1.1, the bath orbitals q1σ to qLσ have
different initial populations; the first half is doubly occupied whereas the second half is
empty.

To quantify the dimension scaling in comparison to exact diagonalization (ED) we
determine the maximum time to which observables are still physically meaningful in the
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Figure 5.4: Hilbert space dimension of
the SIAM as function of the number
of bath sites L (black dashed line)
and dimension of the corresponding A-
vectors in MCTDH (colored lines) for a
setup where four bath spin orbitals are
treated in a combined mode (Nb

CM=4)
and Nb

SPF single-particle functions are in-
volved, Eq. (5.19).

SIAM model. While the dimension of the Hilbert space of the SIAM is given by

DH =

(
L + 1

L/2 + 1

)(
L + 1

L/2

)
, (5.18)

the A-vectors Aj1...jp in MCTDH have dimension

D = 22(Nb
SPF)2L/Nb

CM (5.19)

for an orbital partition scheme with Nb
CM bath spin orbitals in a combined mode and each

combined mode being represented by Nb
SPF SPFs. The impurity degrees of freedom are

treated in a single separate mode and are accounted for by the factor 22. From Fig. 5.4
we observe that (despite the exponential scaling of the configuration space with L) the
application of MCTDH can become favorable against ED for specific numbers of SPFs Nb

SPF

at fixed L, provided that the relevant observables of the impurity model are satisfactorily
resolved in time. The scaling of MCTDH can be further improved by introducing its
ML-MCTDH extension.

5.2.2 MCTDH for a typical SIAM

To assess the performance of MCTDH for a time-dependent impurity problem which is
representative for a DMFT calculation, we solve the SIAM for a bath which has temper-
ature T = β−1 = 1 and is characterized by a (noninteracting) equilibrium Green function
with semi-elliptical density of states,

g≷
σ (t, t′) = ∓i

∫
dωf≷(ω)A(ω)e−iω(t−t′) , (5.20)

where f<(ω) = f(ω) = 1/(eβω + 1), f>(ω) = 1− f(ω) and A(ω) = 1
2π

√
4− ω2.

At time t = 0, we assume a sudden switch-on of the hopping in the physical (Bethe)
lattice according to v(t) = θ(t), where θ denotes the Heavyside step function. The complex
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hopping parameters V σ
0l (t) in the SIAM then follow from a low-rank Cholesky decomposi-

tion of the bath hybridization function Λσ(t, t′) = v(t)gσ(t, t′)v(t′). Figure 5.5 shows the
resulting hopping parameters for a setup with L = 4 and L = 6 bath sites on a time
window up to t = 10; the time discretization comprises nt = 500 time steps.

To examine the MCTDH wave function |Ψ(t)〉 of the SIAM for different numbers of
SPFs, we compute the time-dependent impurity double occupancy

〈d〉(t) = 〈Ψ|n0↑(t)n0↓(t)|Ψ〉 (5.21)

for various sizes L of the bath and different on-site interactions and compare it to exact
reference data which is obtained by ED. In all calculations we group four bath degrees of
freedom (i.e., four bath spin orbitals) into one combined mode, Nb

CM = 4 in Eq. (5.19). As
each spin orbital has two degrees of freedom, the span with 24 = 16 SPFs represents the
full Fock space that is equivalent to the exact diagonalization basis space. In this case, the
SPF basis are effectively time–independent, because in Eq. 2.22 the projector P (κ) = 1 and

iϕ̇(κ) = 0. (5.22)

(A) Comparison to exact diagonalization

In Fig. 5.6a and 5.6b, we show MCTDH data for the SIAM with four bath sites and
compare the dynamics for U = 2 with those for U = 6. In both cases, the MCTDH data
for Nb

SPF = 16 (orange lines) correspond to the full configuration interaction result and
thus perfectly lie on top of the ED curves. Since the dynamics starts from the atomic limit
with a singly-occupied impurity at t = 0, the double occupation is initially zero and then
becomes finite and oscillatory; note that the density on the impurity site is a constant of
motion by construction of the hopping parameters V σ

0l (t). For Nb
SPF < 16 the MCTDH
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Figure 5.5: Time evolution of the hopping parameters V0l(t) = V ↑
0l(t) = V ↓

0l(t) for a SIAM
with (a) L = 4 and (b) L = 6 bath orbitals as obtained for a reference bath which is
governed by the equilibrium Green function of Eq. (5.20) with inverse temperature β = 1.
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Figure 5.6: Time-dependent double occupancy 〈d〉(t) of the impurity site for the SIAM
with L = 4 bath orbitals at (a) U = 2 and (b) U = 6, calculated by exact diagonalization
(ED) and MCTDH with various numbers of SPFs (Nb

SPF).

results are approximate, and we generally find that convergence towards ED [by increasing
the number of SPFs] is harder to reach as U decreases. This behavior can be attributed to
the fact that, during the time evolution at small U , the inter-site hopping of electrons (i.e.,
the influence of Hhyb in Eq. (5.6)) is more pronounced due to smaller energy gain from
localization. Consequently, the wave function expands to a larger area in configuration
space which requires an increased number of time-adjusted SPFs ϕj(t) to optimally cover
the support of |Ψ(t)〉. For strong coupling (large U) on the contrary, the wave function
implies relatively weak inter-coordinate correlation such that convergence can be reached
faster.

In summary, we expect that MCTDH can accurately capture the time evolution of
the nonequilibrium impurity model in the moderate to strong coupling regime, where U

is essentially larger than the kinetic energy. Moreover, it is worth mentioning that the
partition of spin orbitals into combined physical modes can affect the performance of
MCTDH [17], i.e., the dimension of the SPF basis space needed to converge the time-
dependent observables. In cases where the spin orbitals within a combined mode are half
filled, the initial phase of the dynamics should already involve a larger number of electronic
configurations. Thus one may need a higher-dimensional basis to achieve observables of
similar quality. A more favorable partition scheme is to group spin orbitals with the
criterion that all bath spin orbitals of a combined mode are initially either empty or fully
occupied. This guarantees that only a small set of possible electronic configurations can
be accessed within the projected Fock space of a certain combined mode.
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Figure 5.7: Comparison of MCTDH with four combined modes (NCM = 4) and NSPF single-
particle functions to exact diagonalization (ED) at an on-site interaction of U = 10: Time-
dependent impurity double occupancy 〈d〉(t) for the SIAM with (a) L = 10, (b) L = 12

and (c) L = 16 bath orbitals. The black solid line, showing the ED result for L = 14, acts
as reference data to determine the maximum time tmax in Fig. 5.8.

(B) Scaling with Hilbert space dimension

Instead of using the full 24 static SPFs of the configuration interaction picture (recall the
remark regarding the time dependence of the SPFs in Sec. 5.2.1), the dynamics of the
double occupancy in Fig. 5.7b is well reproduced already with 12 to 14 time-dependent
SPFs. In terms of the dimension of the MCTDH Hilbert space this means a reduction from
DH = 1024 to 576 (784) for Nb

SPF = 12 (14). However, in this size regime of the SIAM the
corresponding ED subspace with dimension DH = 100 is still much smaller, cf. Fig. 5.4.

To define the regime where MCTDH potentially starts to become superior, we perform
calculations around the limit of exact diagonalization, i.e., around L = 14 bath sites in
our implementation (DH = 41409225). Also we confine ourselves to the case of strong
coupling where MCTDH converges most rapidly. Figure 5.7a-c shows the time evolution
of 〈d〉 for SIAMs with L = 10, 12 and 16 bath orbitals at U = 10. To analyze the result
we first discuss the additional ED data which are given by the black lines. In all panels,
the black solid line indicates the dynamics for the bath [described via Eq. (5.20)] which is
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Figure 5.8: Maximum physical time tmax that can be reached in the time evolution of the
SIAM with exact diagonalization (colored points) and MCTDH (black dots) at Hilbert
space dimension DH(L) respectively DH(L, NSPF), allowing for a maximum error between
1 and 10 percent in the double occupation 〈d〉(tmax); compare with Fig. 5.7a-c. The error
bars for the MCTDH results are taken from the (extrapolated) difference of the ED data
for 1% and 10% deviation, cf. the red and orange lines.

approximated by 14 SIAM sites and is thus valid to longer times than the black dashed
lines in Fig. 5.7a and 5.7b that refer to 10 and 12 bath sites, respectively. Comparing
the ED results for L ≤ 12 with the one for L = 14 (which is used as reference) we can
extract a maximum physical time tmax which can be reached in the calculation with a
certain computational effort measured by the assigned Hilbert space dimension. Allowing
for a maximum error of 1-10% in the time-dependent double occupancy (hard cutoff), the
colored points in Fig. 5.8 indicate the scaling between tmax and DH for exact diagonalization,
systematically including also the simulation results for smaller L.

From the plot it becomes clear that it is exponentially hard to reach long times with
a Hamiltonian-based representation of a DMFT bath. However, the interesting question
is if a MCTDH partition scheme with fewer and optimally time-evolving SPFs can lead
to a more favorable scaling behavior. We obtain indications about this by analyzing the
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MCTDH results of Fig. 5.7 for a minimum number of SPFs for which 〈d〉(t) is still sat-
isfactorily described within an error of about 5%. While in panels Fig. 5.7a and 5.7b we
can directly compare the corresponding ED result with the same number of bath orbitals
(see the black dashed lines), in Fig. 5.7c we only have the L = 14 data as reference; here
we estimate a maximum time of about tmax = 9 up to which the oscillation in the double
occupancy for Nb

SPF = 8 is still decaying as function of time.

The result of the analysis is presented by the black dots labeled by (L, Nb
SPF) in Fig. 5.8.

Indeed, we find a deviating scaling for MCTDH which roughly follows the delineated gray
band as function of tmax. With eight SPFs the calculation for L = 16 also marks the first
point where the effective Hilbert space dimension (DH ≈ 6.7 × 107) is clearly reduced in
comparison to exact diagonalization (DH ≈ 5.9× 108).

5.2.3 Impurity Green function

For a successful manifestation as out-of-equilibrium impurity solver, MCTDH must be
capable to access the two-time Green function G0σ(t, t′) on the impurity site of the SIAM
in a self-consistent manner. From this Green function one can then directly obtain, e.g.,
the self-energy of the system, the time-dependent momentum distribution or spectroscopic
observables of pump-probe experiments [5, 11].

To demonstrate the general procedure and its feasibility we follow Ref. [11] and consider
the real-time dynamics of the Hubbard model on the Bethe lattice, starting from the atomic
limit and a zero-temperature initial state (T = 0). More precisely, we fix the on-site
interaction to U=4 and study the dynamics of the paramagnetic phase at half-filling when
the nearest-neighbor hopping in the infinite-dimensional lattice is ramped up from zero
to v(t1) = 1 with a cosine-shaped profile; in the Hubbard Hamiltonian (5.1) we consider
tij(t) = δ〈ij〉v(t)/

√
Z in the limit of infinite coordination number Z.

The DMFT action of the lattice Hubbard model is mapped onto a SIAM with an
initial state as in the previous section, i.e., it contains an equal number of empty and
doubly-occupied bath sites with energy εl = 0 and a singly-occupied impurity. Further,
the hopping parameters V σ

0l (t) are spin-independent and are determined self-consistently
via the bath hybridization function Λσ(t, t′) = v(t′)G0σ(t, t′)v(t′), where G0↑ = G0↓ for all
times on the contour. To generate an initial guess for Λσ(t, t′) we use the Green function
of Eq. (5.20).

From the time-dependent MCTDH wave function |Ψ(t)〉 of the SIAM, the two inde-
pendent (lesser and greater) components of the impurity Green function, G>

0σ and G<
0σ, are
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defined as the overlaps

G>
0σ(t, t′) = −i〈Ψ(t)|Ξ>(t, t′)〉 , (5.23)

G<
0σ(t, t′) = i〈Ψ(t′)|Ξ<(t′, t)〉 ,

where the states
∣∣Ξ≷(t, t′)

〉
are defined by |Ξ>(t, t′)〉 = c0σU(t, t′)c†0σ |Ψ(t′)〉, |Ξ<(t, t′)〉 =

c†0σU(t, t′)c0σ |Ψ(t′)〉 and U(t, t′) = Tte
−i

R t
t′ ds H′(s) denotes the time-evolution operator for

the impurity model (5.6). In practice, we evaluate the two time Green functions as

G>
0σ(t, t′) = −i〈Σ>(t)|Σ>(t′)〉 , (5.24)

G<
0σ(t, t′) = i〈Σ<(t′)|Σ<(t)〉 ,

where
∣∣Σ≷(t)

〉
are defined as |Σ>(t)〉 = U(0, t)c†0σ |Ψ(t)〉, and |Σ<(t)〉 = U(0, t)c0σ |Ψ(t)〉.

Furthermore, since the original Hubbard model we start from has intrinsic particle-hole
symmetry but the derived SIAM with a singly-occupied impurity exhibits this symmetry
only in the bath subspace, we use an adapted initial state which is a superposition of
two degenerate states: One has a spin-up electron occupying the impurity site, and the
other has a spin-down electron on the impurity site. An alternative scheme, which we have
also implemented to restore electron-hole symmetry, is to first construct Green functions
GA(t, t′) and GB(t, t′) with interchanged particle numbers (i.e., N↑ ↔ N↓), and then to
average over the two Green functions according to G(t, t′) = 1

2
[GA(t, t′) + GB(t, t′)].

In Fig. 5.9 I present results for the self-consistent impurity Green functions where
the hybridization Λσ(t, t′) is approximated on a time window t ∈ [0, 4] by a SIAM with
L = 8 bath sites. One can clearly see that while the density in the system, 〈nσ〉(t) =

Im G<
σ (t, t) = 0.5, is a constant of motion, the time-off-diagonal components of the Green’s

function containing the spectral information develop as a function of the two times (see the
black arrows). Moreover, for times t, t′ & 1.5 where the double occupation in the system
approaches a stationary value, also the Green’s functions attain quasi static structure as a
function of the physical (center of mass) time (t + t′)/2.

To bring the results to convergence, we have implemented the self-consistency loop in
two ways, either iterating on the full (t, t′)-mesh or using the time propagation scheme
described in Ref. [11]. While the former approach was simpler to implement, the latter is
found to be much more efficient because the self-consistency is established for each time
slice separately allowing for essentially fewer iterations. Finally, we remark that the tiny
changes in the Green’s function at later times (t & 3) are due to discretization of the DMFT
bath with only eight bath sites, see, e.g., the red arrow in Fig. 5.9c and compare to the time
evolution of the doubly occupancy in Fig. 5.9d which also deviates from the steady state
(dashed line) for times t > 3. Though still more expensive in terms of configuration space
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Figure 5.9: (a) Imaginary part of the Green’s function g≷
σ (t, t′) of Eq. 5.20 which is used

to compute the initial guess for the hybridization function in the first DMFT iteration.
Panels (b)-(d): Self-consistent results for the local impurity Green’s function G≷

0σ(t, t′) as
obtained from an MCTDH calculation with L = 8 bath orbitals in the single-impurity
Anderson model; the on-site Coulomb repulsion is U = 4. The black arrows indicate the
early time domain where the transient dynamics due to the switch-on of the hopping is
most pronounced. Furthermore, the red arrow in panel (c) points to the formation of small
artifacts in the final steady state which are due to the representation of the DMFT bath
with finitely many bath orbitals. Furthermore, in panel (d), the black solid line shows the
time evolution of the double occupation 〈d〉 in the system.

dimension for L = 8, the calculation of Fig. 5.9 shows that MCTDH can be successfully
embedded as an impurity solver in nonequilibrium DMFT.

So far we have devised an efficient methodology to solve impurity model of nonequilib-
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rium DMFT based on multiconfiguration time-dependent Hartree method. The MCTDH
method provides a variationally optimized representation of time-dependent fermionic wave
function, which can tremendously reduce the dimension of basis function space. This is a
crucial feature to overcome the notorious exponential scaling barrier that hinders the access
to long time dynamics of nonequilibrium DMFT. We have implemented the MCTDH im-
purity solver based on the Fock space second quantization formalism, with help of matrix
representation of fermionic operators and Fock state basis. This formalism can be readily
extended to the more flexible ML-MCTDH scheme [15], which can bring the dynamics of
nonequilibrium DMFT impurity model to even longer time scale.

We have illustrated the feasibility and efficiency of the MCTDH based impurity solver
by applying it to a nonequilibrium Hubbard model on Bethe lattice. The numerical con-
sistency of impurity site double occupancy and real-time Green functions obtained from
MCTDH and exact diagonalization proves the successful integration of MCTDH into the
nonequilibrium DMFT framework. Furthermore, we have shown the MCTDH based im-
purity solver can indeed go beyond the capability of exact diagonalization, by providing
dynamics of L = 16 SIAM, which is not feasible to be solved by exact diagonalization with
reasonable computational cost.

Nevertheless, the flexibility offered by the (multi-layer) multiconfiguration time-dependent
Hartree formalism in the Fock space second quantization representation can lead to a
promising new methodology to faithfully treat equilibrium or nonequilibrium many-body
problems with strong correlation, especially for many important model problems in con-
densed matter physics.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

The application of ultrafast lasers to initiate, watch and control the motion of electrons
and nuclei in real time is a rapid developing field. The recent technological advancement in
novel light sources as free electron laser and high harmonic source is pushing the ultrafast
physics to cover the femtosecond and attosecond realms, which correspond to the time
scale of electronic and nuclear motion.

In this thesis, the ultrafast electronic nuclear dynamics has been studied based on a
general theoretical framework of time-dependent formulation of Schrödinger equation, and
mixed quantum classical dynamics.

Explicitly, I have studied coupled electronic nuclear non–Born–Oppenheimer dynam-
ics of molecules after valence photoionization and the characterization of the non–Born–
Oppenheimer dynamics using transient absorption spectroscopy. In a joint experimental
and theoretical study, we have observed and explained the coherent electron hole dynamics,
also in the context of coupled electronic nuclear dynamics. Furthermore, I have investi-
gated the electron dynamics in strongly correlated solids, using nonequilibrium DMFT
with MCTDH based impurity solver.

It is shown that the direct time–dependent formulation of Schrödinger equation, as
a dual formalism to the time–independent treatment for time–independent Hamiltonian,
provides intuitive and convenient access to describe the underlying dynamics in atoms,
molecules and solids generated by the ultrafast laser pulses.

107
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Electron hole dynamics in gas phase molecules

On the molecular scale, we have shown that the motion of valence electron hole created
by the extreme ultraviolet (XUV) photoionization can strongly couple to the motion of
nuclei via the non–Born–Oppenheimer effects. Since photoionization is probably the most
usual phenomena when molecules are exposed to XUV or x–ray radiation, it is crucial to
understand the dynamics of molecular and electronic structure after photoionization, if
one uses XUV or x–ray based techniques to study molecules, for example x–ray imaging
crystallography, XUV / x–ray pump probe spectroscopy. Besides, the photoionization can
also initiate intriguing charge transfer process, as the electrons respond to the electron hole
left by the photoionized electron.

Through the non–Born–Oppenheimer coupling enabled electronic relaxation, the en-
ergy can flow from the highly excited electrons to the relatively colder nuclei, causing large
amplitude vibration or dissociation of the molecule. For the purpose to simulate the cou-
pled electronic nuclear dynamics, the state–of–the–art multiconfiguration time–dependent
Hartree (MCTDH) and mixed quantum classical surface hopping methods have been ap-
plied.

It is shown from the simulation, that the non–Born–Oppenheimer effect can open new
reaction channels, compared to the calculation adopting Born–Oppenheimer approxima-
tion. The inter-electronic state transistion induced by nuclear motion can set free wave
packet components which are trapped on one of the electronic potential energy surfaces.

For the molecules of medium and large size, the non–Born–Oppenheimer effect can
become more pronounced, since the molecular orbitals are more closely packed and start
to form quasi continuous band structure, as the scale gradually transit from atomic (wave
vector k = 0 in reciprocal space) to molecular (discrete k) and finally into the solid
state (continuous k) realm. The intersection between adjacent electronic potential energy
surfaces can become the dominant feature for the geometry of a set of potential energy
surfaces. Thus the nuclear motion mediated electronic state transition can occur more
frequently and may dominate the coupled electronic nuclear dynamics. For this reason,
it is necessary to take the non–Born–Oppenheimer effect into account, especially when
treating excited state dynamics of medium and large size molecules.

It is further shown that the non–Born–Oppenheimer relaxation process of electron hole
created by photoionization can be faithfully probed in real time using core–level transient
x–ray absorption spectroscopy technique.

The x–ray photon induces core to valence transition, where a core shell electron is
resonantly excited to fill the electron hole initially produced by photoionization. As the
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electronic system relaxes by exchanging energy with the nuclei, the electron hole would
float towards the top of valence shell orbitals, the core to valence transition energy is
thus enlarged accordingly, since the energy level of core orbitals is rarely effected by the
structure of outer valence shell. In time resolved absorption spectra, this scenario exhibits
as a monotonic shift to higher energy, as the relaxation dynamics develops on a time scale
of ∼ 100 femtoseconds. The spectral intensity, on the other hand, reflects the degree of
localization of the electron hole inside the molecule, since the core orbitals are normally
localized on individual atoms.

For specific cases, where the electron hole can maintain its coherence for sufficient long
time, we have studied the resulted quantum beating of ∼ 1 ps in a CO+

2 cation, which
is recorded with XUV pump – IR probe technique in a joint experimental–theoretical
study. The quantum beating is explained with the vibronic coupling mechanism, by which
an electron hole carrying the superposition of two electronic state characters is sent to
motion, driven by the nuclear vibrations. The coherent motion of electron hole in the CO+

2

cation can be viewed as a charge transfer process, since the electron hole carries electronic
character of both π and σ type, the quantum beating implies its shape oscillates between
these two types of molecular orbitals. Pictorially, the positive charge of the electron hole
would shift from the spatial area along the molecular axis (σ symmetry) to the spatial
area surrounding the molecular axis (π symmetry) and vice versa. Together with the
explanation of the rotation induced decay of quantum beating and signal baseline, we have
given a complete picture to understand the experiment.

Electron dynamics in strongly correlated materials

On the solid state scale, we have further studied the electron dynamics in solids out of equi-
librium. The nonequilibrium electron dynamics is initiated and watched using ultrashort
laser pulses. Solid state materials that are driven out of equilibrium can reveal intriguing
phenomena and hidden phases that are not accessible for solids at equilibrium state. Be-
sides, the time evolution of solid state electronic structure also appears as the scenario for
pump probe spectroscopy of solids with ultrashort laser pulses.

On the theoretical side, the nonequilibrium dynamical mean field theory (DMFT) is
one of the state-of-the-art framework to treat the time evolution of strongly correlated
solid state electronic structure that is driven out of equilibrium.

In this thesis, the multiconfiguration time–dependent Hartree (MCTDH) method has
been applied to solve the time evolution of single impurity Anderson model, which is
a discretized representation of the complex lattice Hamiltonian describing the strongly
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correlated electron system, and is one of core components in the non–equilibrium dynamical
mean field theory.

The long time dynamics in the nonequilibrium DMFT formalism implies single impurity
Anderson model with increasing number of bath site, which sets the major challenge to
develop impurity solver, since one would rapidly hit the computational barrier due to
notorious dimension scaling of electronic configuration space.

A promising way braving this challenge is to apply the MCTDH method, which is
one of the most efficient methods to handle time–dependent Schrödinger equation. We
have shown that MCTDH can be successfully embedded into the nonequilibrium DMFT
framework by providing two-time Green functions which are the key quantities for the
DMFT self-consistent iteration procedure. The reduction of configuration space dimension
brought by MCTDH may enable the access to long time dynamics, which can be crucial
in simulation of the pump–probe experiment of strongly correlated materials.

The particular advantage in the Fock space MCTDH formalism employed in this thesis,
which guarantees the fermionic symmetry of electronic wave functions in MCTDH mode
combination, would enable further extension to more efficient ML-MCTDH scheme, which
can definitely push the limit of nonequilibrium DMFT to even longer time scale dynamics.

6.2 Outlook

Electron hole dynamics in gas phase molecules

So far in this thesis, the electron hole considered is in the shallow outer valence shell
subjected to photoionization by sub-keV extreme ultraviolet (soft x–ray) radiation. In
many x–ray physics applications, for example the x–ray crystallography, the photon energy
lies however in the keV or even hard x–ray (> 10 keV) range. When the molecule is exposed
to x–ray photons, the core hole creation becomes the dominant process. The electron
hole in the deep core shell of molecules can initiate various secondary cascade processes
of electrons, for example Auger decay, which build the theatre for abundant dynamics
involving coupled motion of electrons and nuclei.

To treat the deep core shell electron hole and the dynamical processes initiated by
it, one needs to have a good electronic structure tool, which can appropriately describe
the electron correlation, since e.g. the valence electrons would immediately respond to
the presence of a deep core hole in order to screen its positive charge. In certain cases,
the x–ray photon brings the core shell electron into the quasi-continuum orbitals instead
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of directly into the continuum. In this case, one needs a reasonable discretization of
quasi continuum states, which may imply tremendous computational effort. Exploring the
electronic structure theory involving deep core shell excitation and core hole creation could
be a promising direction for the following development in the near future.

With the reliable electronic structure in hand, one is able to construct physical ob-
servables, in order to simulate the recorded spectra or signals in the experiment, and to
interpret the underlying mechanism that the signals reveal.

Subject to the time–resolved x–ray spectroscopy, which is most closely related to the
focus of this thesis, and to the young and rapidly developing field of XFEL science, the
non–linear x-ray spectroscopy could be a promising candidate for the following work.

The non–linear x-ray spectroscopy can provide further possibilities to resolve the cou-
pled electronic nuclear dynamics in real time. A good example is the resonant inelastic
x-ray scattering (RIXS) technique. The RIXS process corresponds a photon-in photon-out
mechanism, thus would not be limited to the study of thin materials, which is a typical
drawback for photoelectron based technique due to the relatively short mean free path of
electrons in the material.

The high energy resolution down to meV provided by modern RIXS spectrometers
allows one to access not only the electronic dynamics on a delicate manner, for example the
electron spin flip, but also the nuclear dynamics, for example nuclear vibrations. Because
the x-ray free electron laser can enable the non–linear x–ray spectroscopy to be carried out
with femtosecond x–ray laser pulses, one can add the time dimension to the RIXS spectra,
which gives ideally a molecular movie.

Moreover, the multidimensional resonant spectroscopy for molecules, which was origi-
nally developed in the optical regime by S. Mukamel, has been recently brought into the
realm of x–ray (Ref: S. Mukamel et al. Annu. Rev. Phys. Chem. 64, 101 (2013)), since
this type of experiments are enabled by the pulses produced from new free–electron laser
facilities and high–harmonic generation X–ray light sources, which are short and intense
enough.

With the multidimensional resonant spectroscopy, one can trigger valence–electron mo-
tions impulsively by core excitations and monitor with high spatial and temporal resolution.
The inherent non–linearity of this technique renders it possible to probe quantum coher-
ence and correlations of valence electrons and electron holes, rather than the charge density
alone, which is analogous to the multidimensional spectroscopy in the visible regime which
resolves vibrational motions of molecules.

Thus I would envision plan to study the x–ray multidimensional resonant electronic
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spectroscopy.

On the methodological side, it should be a promising direction to develop of novel theo-
retical schemes to treat non–Born–Oppenheimer dynamics based on the exact factorization
representation introduced in chapter 2.

Electron dynamics in strongly correlated materials

The strongly correlated solids have intriguing electronic structure, in which the many–body
Coulomb correlation between electrons dominate the electronic interactions. Due to the
pronounced many–body effects in the strongly correlated solids, their electronic structure
cannot be correctly described by energy band theory based on independent particle picture.

The dynamical mean field theory is a state-of-the-art framework that is developed
solve the electronic structure of strongly correlated solids beyond the independent particle
picture of energy band theory.

In this thesis, we have introduced the MCTDH method to solve the DMFT impurity
problem that is mapped from a time–dependent model Hubbard Hamiltonian on the Bethe
lattice, which is the first and important step towards simulating the solid state pump–
probe experiments. We would further embed the ML-MCTDH scheme into the DMFT
framework, which should improve the efficiency on the basis of present DMFT–MCTDH
impurity solver.

It is a natural direction for following work to bring the MCTDH-DMFT scheme to
the ab initio simulation of real time dynamics of strongly correlated materials beyond the
independent particle picture provided by energy band theory.

Up to date, most efforts in the ab initio DMFT community have been devoted to solve
the static electronic structure for strongly correlated solids in equilibrium. Among various
techniques to treat electron correlations in solids, the self-consistent density functional
theory – dynamical mean field theory (SC–DFT–DMFT) is one of the state-of-the-art
methods (Ref: F. Lechermann et al., Phys. Rev. B, 74, 125120 (2006)). In SC–DFT–
DMFT, certain single–particle electronic orbitals near Fermi surface are projected into a
correlated subspace, in which the pronounced many–body correlation effects can be treated
in a non–perturbative manner using DMFT, the non–perturbative correction to the electron
density is then fed to the DFT. The electronic structure is determined when self–consistency
between DFT and DMFT is reached.

So far we are able to solve the nonequilibrium DMFT problem with time–dependent
electron hopping term tij(t) and on–site Coulomb interaction U(t), it would be an attractive
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plan to incorporate DFT component to the nonequilibrium DMFT scheme, such that one
is able to simulate experiment on specific materials with pronounced electron correlation,
for example perovskite, which is driven out of equilibrium and probed by the ultrashort
laser pulses.

It has been shown in previous experiments by M. Rini et al., that light can induce phase
transitions in strongly correlated solids, for example insulator to metal transition, by the
photon coupling to electronic and nuclear degrees of freedom (Ref: M. Rini et al., Nature,
449, 72 (2007)).

In a recent experiment by the group of Prof. Andrea Cavalleri (Ref: S. Kaiser et al.,
Phys. Rev. B, 89, 184516 (2014)), ultrashort terahertz pulses have been used to induce a
transient nonequilibrium phase in high-Tc superconductors via coherent control of lattice
phonon states that could very likely be superconducting over a fraction of the solid at
room temperature Tc ∼ 300 K with a lifetime of several picoseconds. With ab initio time–
dependent DFT–DMFT framework, which can be developed based on our nonequilibrium
DMFT–MCTDH program, one could expect to clarify the delicate photon–phonon–electron
interaction that induces the possible room temperature superconducting phase transition
phenomena, which remains up-to-date a hypothetical explanation to the highly coher-
ent transport phenomena observed from a photoinduced transient state of YBa2Cu3O6+δ

cuprates.

Overall perspective

From molecular to solid state scales, the novel ultrafast and ultrabright light sources,
such as x–ray free electron lasers, open the possibility to make movies in real time and
real space, in which nuclei and electrons are the actors in the microscopic world. With
the theoretical development in describing the real time nuclear and electronic dynamics,
and their interaction with light pulses that initiate and probe the dynamics, the joint
experimental and theoretical effort would make the dream for molecular movies soon come
true.
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