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Abstract
Charmed-meson fragmentation functions with finite-
mass corrections and their application in various
processes

We have calculated the single-inclusive production cross section of massive quarks
in electron-positron-annihilation with next-to-leading order QCD corrections. With
these results we have extracted fragmentation functions for the fragmentation from
partons into D0, D+ and D∗ mesons, where we have used experimental data from
the B factories Belle and CLEO and from the ALEPH and OPAL experiments at
the LEP collider. In our analysis we have included the masses of c and b quarks and
of the D mesons and tested the evolution of fragmentation functions with a global
fit spanning the B factories’ center-of-mass energy of

√
s = 10.5GeV to LEP’s run

at the Z boson resonance at MZ .
We have applied this fragmentation functions in deep inelastic scattering for

comparisons with HERA data using parton cross sections from the literature avail-
able in program form. We have then modified this cross section to calculate predic-
tions for deep inelastic two-photon-scattering. By applying the Weizsäcker-Williams
spectrum on the real photon we have calculated predictions for LEP1, LEP2 and the
future ILC experiments. For ILC we have also included a beamstrahlung spectrum.
Finally we have calculated production cross sections for the planned eγ mode of the
ILC with the help of a Compton spectrum.



Zusammenfassung
Charm-Meson Fragmentierungsfunktionen mit end-
lichen Massenkorrekturen und ihre Anwendung in
verschiedenen Prozessen

Wir haben den einfach-inklusiven Produktionswirkungsquerschnitt von massiven
Quarks in Elektron-Positron-Annihilation mit QCD-Korrekturen der nächstführen-
den Ordnung berechnet. Mit diesen Ergebnissen haben wir die Fragmentierungs-
funktionen für die Fragmentierung von Partonen in D0, D+ und D∗ Mesonen ex-
trahiert, wobei wir experimentelle Daten von den B-Fabriken Belle und CLEO
und von den ALEPH- und OPAL-Experimenten am LEP-Beschleuniger benutzt
haben. In unserer Analyse haben wir die Massen der c- und b-Quarks und der
D-Mesonen berücksichtigt und die Evolution der Fragmentierungsfunktionen mit
einem globalen Fit getestet, welcher von der Schwerpunktsenergie der B-Fabriken
von

√
s = 10.5GeV bis zu dem LEP-Lauf auf der Z-Resonanz bei MZ reicht.

Wir haben diese Fragmentierungsfunktionen in tief-inelastischer Streuung für
Vergleiche zu HERA-Daten angewandt mittels Partonwirkungsquerschnitten aus
der Literatur, die in Programmform verf̈’ugbar sind. Wir haben diese Wirkungs-
querschnitte dann modifiziert, um Vorhersagen für tief-inelastische Zwei-Photon-
Streuung zu berechnen. Durch Anwendung des Weizsäcker-Williams-Spektrums
auf das reelle Photon haben wir Vorhersagen für LEP1, LEP2 und das zukünftige
ILC Experiment berechnet. Für ILC haben wir auch ein Beamstrahlungsspektrum
berücksichtigt. Zu guter Letzt haben wir mit Hilfe eines Compton-Spektrums Pro-
duktionsquerschnitte für den geplanten eγ-Modus des ILC berechnet.
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Chapter 1

Introduction

The production of heavy hadrons is a topic of high interest in particle physics of the
last few years. These production processes are characterized by the involvement of
quarks with masses m much larger than the QCD scale ΛQCD, so that the strong
coupling αs(m) is much smaller than one. This introduces a scale into the calcu-
lation which makes the production of the heavy quarks calculable in perturbative
quantum chromodynamics (QCD) and provides a cutoff for initial- and final-state
collinear singularities. The definition of heavy quarks includes the charm, bottom
and top quark (c, b, t), while the up, down and strange quarks (u, d, s) are regarded
as light quarks and being massless.

A lot of next-to-leading-order (NLO) QCD calculations including heavy quarks
are available in the literature (e.g. [1, 2, 3, 4, 5]). The results are reliable as long as
m is the only large scale in the process. However, when for example the center-of-
mass system (CMS) energy

√
S in electron-positron-annihilation or the transverse

momentum pT of the produced heavy particle in γγ collisions is much larger than m,
the process in question becomes a multi-scale process. This leads to logarithms of
the form ln(p2T /m

2) to all orders in the perturbation series, so that the convergence
of the series breaks down.

The usual way to restore the validity of the perturbation series is by using a
proper factorization scheme. In perturbative QCD the hadron production cross
section is factorized into two parts. The first part is the parton cross section con-
taining the short-range effects, which means a small coupling αS in QCD. Therefore
this part is calculable with pertubation theory. The second part of the factorization
are the parton distribution functions (PDF) for initial-state hadrons and fragmen-
tation functions (FF) for final-state hadrons. The PDF describes the likelihood to
find a parton with a given momentum fraction inside the incoming hadron, while
the FF is a measure for the probability, that an outgoing parton fragments into a
hadron with a certain fraction of the parton’s momentum. There is some ambiguity
which terms are factorized into which part, so that several different factorization
schemes exist. Their respective validity depends on the energy range of the process.
Singularities or problematic logarithms are absorbed into the PDFs and FFs and re-
summed with the help of evolution equations. The predictive power of perturbative
QCD comes from the fact, that the PDFs and FFs are process-independent. So they
can be extracted from experimental data of one experiment to make predictions for
other processes.

In the zero-mass variable-flavor-number scheme (ZM-VFNS) all quarks are treated
as massless. To accomodate for different energies the number of active flavors nf in
the parton model is a variable which depends on the factorization scale µf . In this
work the common approach is used to increase nf by one when the factorization
scale crosses a heavy-quark mass. This scheme works well for high energies where

5



6 CHAPTER 1. INTRODUCTION

the quark masses become negligible. A different approach is the fixed-flavor-number
scheme (FFNS), where m is kept as a large scale and nf is fixed. This leads to log-
arithms of the scales in the partonic cross sections. As mentioned, the result in this
scheme is not valid when the logarithms are large enough to spoil the convergence
of the perturbation series. But the scheme works fine when the involved additional
scales are comparable to the heavy quark masses, so that those logarithms are small.
Our approach is a combination of these schemes, the general-mass variable-flavor-
number scheme (GM-VFNS).

The GM-VFNS is a modification of the FFNS, based on the ACOT scheme [6, 7].
The masses of heavy quarks are kept in the parton cross section. To accomodate for
large logarithms certain terms are subtracted into the PDFs and FFs so that the
parton cross section approaches the ZM-VFNS result in the massless limit. This
is not the case when only the logarithms of the mass are subtracted. In the latter
case finite terms remain as a difference. Those terms are subtracted as well in the
GM-VFNS. The GM-VFNS parton cross section therefore leads to the ZM-VFNS
result for high energies but also contains finite mass terms, which improve the result
near the mass thresholds.

The GM-VFNS has been worked out for photoproduction [8, 9, 10] and hadropro-
duction [11, 12, 13, 14]. It has been shown in [15] for electron-positron-annihilation,
for other processes [16, 17, 8, 11] and on more general grounds in [18], that the sub-
traction terms can be generated by convoluting the partonic cross section with a
process-independent partonic fragmentation function, which describes the transi-
tion from massless to massive quarks. However, in this work we use the more direct
method to calculate the subtraction terms by subtracting the massless limit of the
partonic cross section of the massive theory from the ZM-VFNS result.

In this work fragmentation functions for the GM-VFNS are extracted as usual
from electron-positron-annihilation experiments. More specifically we perform a fit
to inclusive production cross sections dσ/dx for D0, D+ and D∗+ mesons measured
by the OPAL collaboration [19, 20]. For the D∗+ we combine the OPAL data with
data of the ALEPH experiment [21]. Both collaborations have collected their data
during the Z boson resonance run of the LEP collider, which means that the center-
of-mass (CMS) energy

√
s has been set equal to the mass of the Z boson MZ .

This data has been used before for the extraction of fragmentation functions in
[22, 23, 24], but in those works the masses of the heavy quarks have been neglected.

Furthermore we use data from the B factories KEK Asymmetric Eletronic-
Positron Collider for B Physics (KEKB) and from the Cornell Electron-Positron
Storage Ring (CESR). The measurement and the analysis of the data has been
performed by the Belle Collaboration [25] and by the CLEO Collaboration [26].
The CMS energy has been set to 10.5GeV, which is much closer to the production
threshold of D mesons and justifies special attention towards mass effects.

Our final set is a global fit to all the data cited above. This is a test of the
DGLAP evolution equations, which describes the change of the FFs when changing
the factorization scale, and also a test of the GM-VFNS, which is supposed to work
comparably well for small scales near the involved masses and for high scales, where
the quark and the hadron masses become negligible. Our fit results have also been
published in [27]. Studies incorporating data sets based at these scales based on
different approaches have also been done in Refs. [28, 29].

We then show applications for our FFs. First we use the ZM-VFNS differential
cross section for deep-inelastic scattering (DIS) from [30] together with our sets of
FFs and compare with data from the H1 experiment at the HERA collider [31].

Then we modify the calculation to get predictions for deep-inelastic two-photon-
scattering. This process occurs either during the run of an electron-positron-collider
like LEP, where one lepton radiates a real photon, while the other takes part in the
interaction via a virtual photon just like in DIS. Such processes are found as single-
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tagged events - the lepton radiating the virtual photon is detected - in the analysis
[32, 33]. The other possibility for this process is an eγ mode of an electron-positron-
collider, which is planned for the International Linear Collider (ILC) [34].

The necessary modifications look as follows: The proton is replaced by a photon,
which has to be done for two contributions. First there is the resolved part, where
the photon is treated like a hadron containing quarks and gluons. Here we replace
the proton PDFs by the photon PDFs [35] by Aurenche et.al. The second part is
the direct part, where we take out the PDFs altogether and use only the gluon.
By replacing couplings, color factors and switching off the non-Abelian parts of the
cross section, we can use that parton cross section to calculate the scattering of a
real photon with a lepton.

We also have to add a convolution of the cross section with the spectrum of
the photon. We explore two possibilities for the spectrum for the e−e+ mode: One
is the Weizsäcker-Williams-approximation [36], which describes the radiation of a
quasi-real photon by a lepton. The other spectrum is the effect of beamstrahlung
[37], which becomes important for next-generation linear colliders. Here the leptons
radiate off photons in the electromagnetic field of the opposing particle bunch.

For the eγ mode we require a Compton scattering spectrum. In that mode
high-energetic photons are produced by back-scattering a laser beam at one of the
lepton beams. The resulting energy spectrum and luminosity have been discussed
in [38] and references therein.

Results are then given for the following experiments: We give predictions for the
differential cross section for D∗ production in single-tagged events for LEP1, where
we use the kinematic range of the charm quark analysis [32]. Then we attempt to
verify the D∗ production cross sections measured at the LEP2 run [33]. Finally
we present a variety of differential cross sections for the ILC using all three photon
spectra and focussing on D∗ production, but also including D0 and D+ predictions
for comparison.

This work is organised as follows: In chapter 2 we give an introduction to the
theory of factorization in perturbative quantum chromo dynamics. We explain
how collinear radiation is handled and give an overview over several factorization
schemes, before we focus on the General Mass-Variable Flavor Number Scheme
(GM-VFNS) which we apply in the rest of this work. In chapter 3 we calculate the
semi-inclusive cross section for electron-positron-annihilation with quark masses.
Together with the literature result we then deduce the GM-VFNS subtration terms
for that process.

In chapter 4 we explain the fitting process including the ISR correction. We then
analyse the results of the fits and discuss them together with branching fractions
from our theory and from measured values from the literature. Chapter 5 is then
dedicated to the applications of these FF sets in different processes. We conclude
our work with a summary.
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Chapter 2

Theoretical background

2.1 Perturbative QCD

Quantum field theories are the basis of the standard model of elementary particle
physics, which is the most successful description of processes at subatomic length
scales down to ∼ 10−18 metres currently available. Most quantities are calculated
with the help of perturbation theory, where observables are expanded in a power
series of a coupling constant. As a result in electro-weak theory with the coupling
constant α ≈ 1/137 at low energies, the first orders are usually sufficient to reach
the precision of measured scattering cross sections.

The situation is more complex in quantum chromodynamics (QCD). The run-
ning coupling αs(µ) of QCD is getting smaller for higher energies. At low energies
we have αs > 1 for low energies, which is the cause for confinement, that means that
colored objects like quarks cannot be observed as free particles due to the strong
interaction getting larger with a higher distance. Only at scales µ much larger than
the QCD scale ΛQCD - meaning several hundred MeV - asymptotic freedom sets in:
The coupling αs becomes much smaller than 1 and perturbation theory becomes
feasible again. The simplest model satisfying this characteristics is the parton model
[39].

The parton model is based on the assumption that observable hadrons are com-
posed of point-like massless particles called partons. The typical time scale of the
interaction between the partons is much larger than the time scale of the scattering
of an external particle, say an electron in deep-inelastic scattering on the proton.
Therefore for the calculation of the hard scattering process of the electron with one
of the hadron’s partons, the other partons are regarded as spectator partons and
are ignored. The scattering is then calculated from the Feynman tree graphs as a
normal process between the external particle and the parton.

The parton model accounts for he inner structure of the hadron in the form
of parton distributions, which describe the probability for the external particle to
interact with a parton of given sort and a given fraction of the hadron’s momentum.
For final state hadrons, fragmentation functions describe the probability for each
final state parton to hadronise into a particle jet containing a hadron of given
sort with a given fraction of the parton’s momentum. In both cases the parton’s
momenta are assumed to be collinear to the respective hadron’s momentum.

The components of the parton model have to be combined in the form of a
convolution. For example with one parton distribution function (PDF) in the initial
state and one fragmentation function (FF) in the final state, a cross section is a
convolution of the parton cross section with those two non-perturbative functions

9
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N
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Figure 2.1: Sketch of typical factorization (here: deep inelastic scattering)

[39]:

dσ(x̃, x) =
∑
i,a

1∫
0

dξ

1∫
0

dz fi,N (ξ) dσ̂i,a (ỹ = ξx̃, y = x/z) DH
a (z), (2.1)

where fi,N (ξ) is the PDF which gives the probability density for finding a parton i in
the initial state hadronN with the fraction ξ of the hadron’s normalized momentum
fraction x̃ resulting in the normalized initial state parton momentum ỹ. Likewise
DH
a (z) is the FF with the probability density for the fragmentation of the final-state

parton a with momentum y into the hadron H with the fraction z of the parton’s
momentum resulting in the hadron momentum x. The normalized momenta run
from 0 to the maximum possible value 1, however the situation becomes more
complicated when including masses.

The structure is also shown graphically in Fig. 2.1. The PDFs and the FFs
are not calculable in perturbation theory and must be extracted from experimental
data. However the non-perturbative functions are universal. That means that since
the hadronisation process is not sensitive to the particular hard scattering process
in short range, the non-perturbative functions can be extracted from data from
one kind of scattering experiments and can be used to make predictions for other
scattering experiments.

We now take the step to perturbative QCD, which allows for higher orders of the
hard-scattering or partonic cross section. The higher orders introduce singularities
into the parton cross section. While the ultraviolet (UV) divergencies in the par-
tonic cross section are being taken care of by the usual renormalization procedure,
we can also encounter infrared (IR) singularities. Fortunately we can still factorize
cross sections into short- and long-range parts [40], which allows us to treat IR sin-
gularities and logarithms connected to IR singularities in the partonic cross section
in a proper way. In order to prove that factorization is indeed applicable, one has to
show that the partonic cross section can be factorized into an IR-safe cross section
and subprocesses containing the IR effects, so that they can be absorbed into PDFs
and FFs.

As a prize for the higher order corrections we have to introduce a renormalization
scale µ and a factorization scales µf , which marks the border between short range
and long range. In general even seperate factorization scales for initial- and final-
states are possible. In this work however we set µ = µf for convenience and thus



2.2. MASS SINGULARITIES 11

only use one extra scale.
The PDFs fi,N(ξ, µf ) and the FFs DH

a (z, µf ) now depend on the factorization
scale. This dependence is described by evolution equations, which allow the calcu-
lation of the PDFs and FFs, if they are known at an initial scale. Also the parton
model interpretation as probability densities is now only approximately true, since
the absorption of parts of the partonic cross section introduces ambiguities.

With the introduced scales the cross section in the nth order can be written as

dσ(n)(x̃, x, µ, µf ) =
∑
i,a

1∫
0

dξ

1∫
0

dz f
(n)
i,N (ξ) dσ̂

(n)
i,a (ỹ, y, µ, µf) D

H(n)
a (z). (2.2)

The number of PDFs per convolution term depends on the number of hadrons in
the initial state. Furthermore it depends on the scheme, which PDFs are included
in the summation over the parton species. For processes at lower energy scales, not
all known quark flavors are taken into account. In our work we use a scheme with
a variable flavor number, where the down, up and strange quarks are treated as
massless. Therefore we always have the gluon g, the d, u and s quarks plus their
respective anti-quarks d̄, ū and s̄ as partons and the number of active flavors is
nf = 3 for low scales.

We activate additional quark flavors when our scale crosses their masses, so
that we have nf = 4 for mc < µ < mb and nf = 5 for µ > mb. The choice of
the heavy quark masses as threshold energies leads to the most simple matching
conditions for the PDFs and FFs. Up to O (αs), the PDFs and FFs for the relevant
number of flavors nf are equal at µf = mc and µf = mb respectively [41]. We use
mc = 1.5GeV and mb = 5GeV in this work, while the top quark is too heavy to
be relevant.

The FFs occur for semi-inclusive processes, where we analyse data of the pro-
duction of certain hadrons sorts, in our case the charmed D0, D+ and the D∗+

mesons. FFs are not needed when analysing complete jets or total cross sections.
The exact seperation of parton cross section and non-perturbative functions

introduces an ambiguity, and so several different factorization schemes are possible
analogous to renormalization schemes. One common example is the MS-scheme,
where the poles and their associated constant terms are subtracted just like in the
MS renormalization scheme. But also more finite terms can be absorbed into the
non-perturbative functions in other factorization schemes.

As we will show further down, the absorbed IR singularities introduce a logarith-
mic scale dependence into the non-perturbative functions. These logarithms have
to be resummed to all orders, which is done via evolution equations. As mentioned
earlier, the evolution equations also allow us to calculate the PDFs and FFs at any
given scale once the non-perturbative functions are known at an initial scale. By
using the evolution equations in addition to the universality of the non-perturbative
functions, we have the required tool to use the non-perturbative functions for pre-
dictions in other processes at different scales.

2.2 Mass singularities

Let us take a closer look at the leading IR effects, which can occur in the hard-
scattering cross section in perturbative QCD. While the ultra-violet (UV) diver-
gencies are associated with infinite large loop momenta and are taken care of by
renormalization, the mass singularities are related to special constellations of finite
momenta. They occur in the calculation of the parton cross sections and have to
be taken care of by a suitable definition of the factorization scheme, which allows a
factorization of the partonic cross section into an IR-safe part and an IR-sensitive
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part, which is then absorbed into PDFs and FFs. We shall take a closer look at
mass singularities in this section.

There are two types of mass singularities. First there are infrared (IR) singular-
ities, which occur for vanishing masses and lead to logarithmic divergent integrals.
In dimensional regularization they manifest themselves in the form of 1/ε poles.
Typical graphs with IR singularities are virtual corrections, where external parti-
cles exchange a massless particle like a gluon or photon.

The source of these divergencies are degenerate final states. A detector can-
not distinguish between a certain particle in the final state and the same particle
together with a very soft massless particle. Therefore we have to take the latter
kind of processes into account. Typically soft particles are radiated off the external
particle in the initial or final state and are called real corrections. The infrared
singularities cancel when one sums the virtual corrections and the real corrections
with the additional particle’s phase space being integrated out.

The second type of singularities occur, when massless particles have collinear
momenta. Again a detector cannot distinguish between final states with one parti-
cle and a final state consisting of two particles. This time the final state is degenerate
when both particles fly in the same direction, so that the detector’s angular resolu-
tion is not sufficient to recognize them as two particles. When the collinear particles
have masses m > 0, we get logarithms of the mass instead of singularity. Here the
mass acts as a natural regulator. However for µ � m these logarithms can spoil the
convergence of the perturbation series, so for large scales these logarithms need to
be treated similar to the poles in the case of massless particles. The divergence in
the case of massless particles is a logarithmically divergent integral just like in the
case of IR singularities. However both types of singularities can overlap and lead
to more complicated divergencies.

If the radiated particle has a mass m, then this mass acts a regulator for the di-
vergency and the result will contain factors of lnm. However even with this natural
regularization, the perturbation theory can again be spoiled since the logarithms
occur in the form ln(m/E), where E is a typical energy in the process. With the pos-
sibility of multiple radiation, factors of the form (α ln(m/E))n occur to all orders,
with these factors being close to one or even higher. In this way the convergence
of the perturbation theory breaks down and in order to get meaningful results, we
have to resum the collinear singularity.

2.2.1 Splitting functions

We sketch the derivation of the general effect of collinearly radiated gluons from
quarks. This will lead to the splitting functions, which are widely used in this
topic. The process is looked at in the massless limit, leaving us with logarithms of
a regulator.

We assume we have a process with an incoming quark with momentum p with
known amplitude Aqi→f . Now we take a look of the matrix element, when the
incoming quark radiates a gluon with momentum k as depicted in Fig.2.2(a). We
are only interested in the collinear limit, which simplifies the calculation. The
matrix element of the full process is then

Mqi→gf
κλ (p, k, pj) = Āqi→f (p− k, pj)

i(/p− /k +m)

(p− k)2 −m2 + iε
[igs/ε

∗(k, λ)]u(p, κ). (2.3)

The pj are the remaining occuring momenta of external particles beside p, m is
the mass of the quark, gs is the strong coupling, ε(k, λ) is the polarization vector
of the emitted gluon with polarization λ and u(p, κ) is the spinor of the incoming
quark with spin κ. We omit the color factor in the expression above. The added
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p

k

p− k p p− k

k

(a) (b)

Figure 2.2: Graph for collinear emission: (a) real, (b) virtual

vertex contributes a color group generator generator T a, which has to be multiplied
with the color group factors in Aqi→f . The new factors in the matrix element are
the propagator of the quark after the emission of the gluon and the vertex factor
together with the polarization vector of the emitted gluon.

The four-momenta of the external quark p, of the emitted gluon k and of the
internal quark p′ can be parametrized as

pµ = (E, 0, 0, E), (2.4)

kµ =

(
(1− z)E +

k2
⊥

4(1− z)E
, 0, 0, (1− z)E − k2

⊥
4(1− z)E

)
+ kµ⊥,

p′µ =

(
xE − k2

⊥
4(1− z)E

, 0, 0, xE +
k2
⊥

4(1− z)E

)
− kµ⊥,

kµ⊥ = (0,k⊥) = (0, |k⊥| cosφ, |k⊥| sinφ, 0),

and obey

p2 = 0, k2 = 0, p′2 = − k2
⊥

1− z
. (2.5)

The variable z determines the fraction of the energy, that the quark retains after
the emission of the gluon. The soft-photon limit corresponds to z → 1. Collinear
gluons are emitted for |k⊥| � (1−z)E. Therefore |k⊥| - also known as acollinearity
- serves as the regulator for the collinear singularities. Using expansions in |k⊥| for
simplifications, the squared matrix element summed over all gluon polarization can
be written as

∑
λ=±

|Mqi→gf
κλ |2 = 2CF g2s

1− z

zk2
⊥

1 + z2

1− z
|Mqi→f

κ |2 +O (|k⊥|−1
)
. (2.6)

The color factor CF stems from the extension of the color group generators. Let
TrAF be the color factor of the cross section without gluon emission, where AF is
a product of SU(3) generators. Then the color factor with gluon emission is

∑
a

Tr(T aFAFT
a
F ) =

∑
a

Tr(AFT
a
FT

a
F ) = CFTr(AF ). (2.7)

For the cross section we have to integrate out the photon phase space. It can
be written as:

d3k

(2π)32Ek
=

dz dφdk2
⊥

4(2π)3(1 − z)
+O (|k⊥|2.

)
(2.8)
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After integrating over φ and k2
⊥ the leading logarithm term is

dσqi→gf
κ (p, pj) =

α

2π
ln

(
k2
⊥,max

k2
⊥,min

)
CF

∫ 1

0

dz
1 + z2

1− z
dσqi→f

κ (zp, pj) +O
(
|k⊥|1/2

)
.

(2.9)
The upper limit of |k⊥| is in the dimension of the process scale µ. The lower limit

is in the dimension of the regulator. When using the quark mass m as a regulator
instead of the acollinearity, the form of the leading logarithm term doesn’t change
[53]. Thus the leading logarithm can also be written as

dσqi→gf
LL,κ (p, pj) =

α

2π
ln

(
µ2

m2

)
CF

∫ 1

0

dz
1 + z2

1− z
dσqi→f

κ (zp, pj) +O
(
|k⊥|1/2

)
.

(2.10)
We find the IR singularity in the form of the 1− z in the denominator.

We have to include the possibility of virtual collinear gluons. In this case the
emitted gluon takes part in the process and acts as an additional incoming particle
(Fig.2.2(b)). The possibility of virtual collinear particles leads to the new matrix
element (in Feynman gauge):

Mgi→f
virt,κ(p, pj) =

∫
d4k

(2π)4
(2.11)

Āegi→f
µ (p− k, k, pj)

i(/p− /k +m)

(p− k)2 −m2 + iε
igsγνu(p, κ)

−igµν

k2 + iε
.

Here we introduce propagators for the now virtual quark and the gluon. The gluon’s
momentum acts as the loop momentum and is integrated out.

This leads, together with the quark-field renormalization and the use of a Ward
identity to replace the amplitude with extra gluon in the initial state by one without
that gluon, to the cross section

dσqi→f
virt,κ(p, pj) = − α

2π
ln

(
µ2

m2

)
CF

∫ 1

0

dz
1 + z2

1− z
dσqi→f

κ (p, pj) +O
(
|k⊥|1/2

)
.

(2.12)
When we sum the leading logarithm terms of real and virtual collinear emission,

the soft singularity at z = 1 cancels. The sum is best written in the form of a
plus-distribution, which is defined by:

1∫
z

dy

[
g(y)

1− y

]
+

f(y) =

1∫
z

dy
(f(y)− f(1))g(y)

1− y
− f(1)

z∫
0

dy
g(y)

1− y
. (2.13)

It is IR-safe by construction.
The sum is

dσqi→gf
LL,κ (p, pj) =

α

2π
ln

(
µ2

m2

)
CF

∫ 1

0

dz

(
1 + z2

1− z

)
+

dσqi→f
κ (zp, pj). (2.14)

This motivates the definition of the quark-quark splitting function in lowest
order:

P (0)
qq (z) = CF

(
1 + z2

1− z

)
+

. (2.15)

It is related to the probability of finding a collinear quark with momentum
fraction z in the original quark. There are more splitting function in lowest order
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Figure 2.3: Cut ladder diagram which provides leading mass singularities

QCD, which describe probabilities of finding a gluon in a quark, a quark in a gluon
and a gluon in a gluon respectively [42]:

P (0)
qg (z) = TF (z

2 + (1 − z)2), (2.16)

P (0)
gq (z) = CF

1 + (1− z)2

z
,

P (0)
gg (z) = 2CA

(
z

(
1

1− z

)
+

+
1− z

z
+ z(1− z)

)

+

(
11

6
CA − 2

3
NfTF

)
δ(1 − z). (2.17)

The occuring color group factors are TF = 1/2 and CA = 3. In addition the
gluon-gluon splitting function contains the number of active flavors nf .

The splitting functions are closely related to the distribution functions, which
describe the probability of finding partons with certain momentum inside other
partons. This means that the latter parton has to emit a collinear parton of the
first sort. These functions are similar to the hadronic PDFs, but unlike them they
are calculable in perturbation theory. The relations are:

fq,q(z, µ
2) = fq̄,q̄(z, µ

2) = δ(1 − z) +
α

2π
ln

(
µ2

m2

)
P (0)
qq (z), (2.18)

fq,q̄(z, µ
2) = fq̄,q(z, µ

2) = 0,

fg,q(z, µ
2) = fg,q̄(z, µ

2) =
α

2π
ln

(
µ2

m2

)
P (0)
gq (z),

fg,g(z, µ
2) = δ(1− z) +

α

2π
ln

(
µ2

m2

)
P (0)
gg (z),

fq,g(z, µ
2) = fq̄,g(z, µ

2) =
α

2π
ln

(
µ2

m2

)
P (0)
qg (z).

Multiple splittings allow more complicated graphs, especially through the non-
Abelian property of gluons emitting more gluons. However it has been examined
in the literature [43], that the leading contribution comes from ladder graphs as
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depicted in Fig.2.3. Here we see a cut-diagram which represents MM∗. The
lines which are cut by a vertical line in the middle are on-shell, real particles. The
interesting graphs are the ones, where all propagators are emitted collinearly, where
the vertices and the propagators may be dressed.

We therefore take a look at graphs for illustration, where the incoming quark
emits two collinear gluons. The leading contribution comes from the case, where
the first emitted gluon has a small acollinerity. Then the quark is still close to its
mass-shell and the second emission can give a similarly enhanced contribution. The
integration over the kinematic region, which gives the leading contribution, leads
to a logarithm squared:

( α

2π

)2 ∫ µ2

m2

dk2
⊥,2

k2
⊥,2

∫ |k⊥,2|2

m2

dk2
⊥,1

k2
⊥,1

=
1

2

(
α

2π
ln

(
µ2

m2

))2

. (2.19)

In general, the leading logarithm contribution for the emission of n gluons is
proportional to

1

n!

(
αs
2π

ln

(
µ2

m2

))n
. (2.20)

2.3 Evolution equations

With the partonic distribution functions (2.18), we can derive the µ2-dependence
of the FFs and PDFs. If a distribution function f(x, µ2) is given for a scale µ,
then the function f(x, µ2 + dµ2) must take into account the possibility of an addi-
tional emission of a parton with transverse momentum µ2 < k2

⊥ < µ2 + dµ2. The
probability to split off a parton that carries away the part 1− x of the energy is

αs
2π

dk2
⊥

k2
⊥

P (x) (2.21)

and thus

f(x, µ2 + dµ2) = f(x, µ2) +

∫ 1

0

dy

∫ 1

0

dz δ(x − yz) (2.22)

×αs
2π

dµ2

µ2
P (y)f(z, µ2)

= f(x, µ2) +
dµ2

µ2

αs
2π

∫ 1

x

dz

z
P
(x
z

)
f(z, µ2).

This leads to an integro-differential equation

∂

∂(lnµ2)
f(x, µ2) =

αs
2π

∫ 1

x

dz

z
P
(x
z

)
f(z, µ2). (2.23)

This is an evolution equation, which describes the scale dependence of a distri-
bution function. The distribution function must be known at an initial scale µ0. For
QCD all partons must be considered. Through splitting of gluons off quarks and
the production of collinear quark-antiquark pairs from gluons, all sorts of partons
mix. The result is a system of coupled integro-differential equations, known as the
DGLAP equations [44, 42, 45]. For fragmentation functions they can be written as:

d

d lnµ2
f

Da(x, µf ) =
αs(µ)

2π

∑
b

1∫
x

dz

z
PTa→b(z, αs(µ))Db

(x
z
, µf

)
. (2.24)



2.4. FACTORIZATION SCHEMES 17

The T at the splitting function stands for time-like splitting functions in contrast
to the space-like splitting functions, that are used for the PDFs. We have only
presented the LO splitting functions in equations (2.15) and (2.16), where time-like
and space-like splitting functions are equal. For the evolution in NLO, we need the
NLO splitting functions, which are of O (α2

s

)
. They can be found in [46, 47].

We like to point out some properties of this set of coupled DGLAP equations.
The summation over the partons only includes the active flavors. Therefore in
the case of a scheme with a variable number of active flavors, the right side of
the equation gets new terms, when the factorization scale µf crosses the flavor
thresholds (mc and mb in this work).

In our scheme we assume that charmed mesons are only directly produced via
the hadronisation of c, c̄, b and b̄ quarks. Therefore the FFs of the light quarks d,
u and s, their respective anti-quarks and of the gluon are set to zero at the initial
scale. Only when the c quark and the b quark become active flavors, the former FFs
gain values through the coupled DGLAP equations. The light quarks can fragment
into heavy hadrons by splitting off a collinear heavy quark which then fragments
into the hadron of interest.

2.4 Factorization schemes

We now turn our attention to the various factorization schemes which have been
used in the literature. By explaining the advantages and disadvantages we moti-
vate our scheme. We use heavy quark production in deep-inelastic scattering as an
example, which is also used in more detail in [7]. The two most important contri-
butions are shown in Fig.2.4. Graph (a) shows quark-scattering, graph (b) depicts
gluon-fusion. Gluon-fusion is one order higher in power of αs, but quark-scattering
requires a heavy quark in the initial state, which is only present as sea-quark in
protons. Therefore we regard both processes as effectively being of the same order.

2.4.1 ZM-VFNS

The first scheme is the zero-mass variable-flavor-number scheme (ZM-VFNS). All
quarks are treated as massless particles. In order to account for the masses of the
heavy quarks, the number of active flavors varies with the the factorization scale.
Only for scales higher than the respective flavor thresholds, the quark is active as a
parton. For the transition scales, matching equation between the non-perturbative
functions and the couplings have to be used.

In the ZM-VFNS the collinear singularities are encountered in the form of sin-
gularities in the parton cross section, e.g. 1/ε poles in dimensional regularization.
These poles are absorbed into the PDFs and FFs. For the absorption a scheme
has to be chosen similar to renormalization. In the following we assume dimen-
sional regularization with the MS scheme, where only the pole and with the pole
associated constant terms are subtracted from the parton cross section.

Since no masses enter the cross section, no large logarithms ln(µ2/m2) can occur.
This scheme works best for high energy scales, where mQ = 0 is a good approxima-
tion. But naturally its accuracy suffers at lower scales just above the production
thresholds. Here the production cross section is typically overestimated due to the
heavy quark being in full effect without taking its threshold behaviour into account.

In Fig.2.4 the quark-scattering graph (a) is only present for µf > mQ. Below
that scale the leading order of the parton cross section consists only of the gluon-
fusion process (b).
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Figure 2.4: Dominant processes for heavy quark production (omitting antiquark-
production): (a) quark-scattering, (b) gluon-fusion

2.4.2 FFNS

In the fixed-flavor-number scheme (FFNS), the number of active partons in the
initial state is kept fixed. The heavy quark only occurs in final states, but its mass
is kept as a large scale in the partonic cross section. As a consequence logarithms
of the form ln(µ2/m2) occur in the parton cross section, which are not subtracted.
In our example only the gluon-fusion Fig.2.4(b) enters the parton cross section.

This logarithms only spoil the convergence of the perturbation series when they
become large. Therefore this scheme works well in the kinematic regime where the
logarithms are small, hence for µf ∼ mQ. Only for µf � m the convergence breaks
down and the scheme fails.

2.4.3 FONLL

In the fixed-order next-to-leading-logartihm approach, the ZM-VFNS and the FFNS
are superimposed with a one-parameter-function. Near the mass threshold the
FFNS dominates, while for high energies the results of the ZM-VFNS are obtained.

While this scheme has the desired property to match the best suited scheme
at their respectice scales, the parameter is not fixed by the theory and the mixing
happens arbitrary. While the FFNS works over a larger scale than the ZM-VFNS
and the FFNS alone, the results in the range where both contributions are sizable
cannot be expected to give accurate predictions.

2.5 The ACOT scheme

The ACOT scheme, named after Aivazis, Collins, Olness and Tung [7], combines
the ZM-VFNS and the FFNS on a more solid theoretical fundament. The scheme is
presented and its factorization proven for heavy quark production in deep-inelastic
scattering. We will go over the most important points from [7].

First the heavy masses are kept in the structure functions, so logarithms of the
multiple scales have to be expected. The basic assumption is, that the structure
functions can be factorized into IR-safe structure functions and partonic distribution
functions, which contain the logarithms coming from collinear singularities. The
factorization formula is applied to the structure function on the parton level, where
⊗ denotes a multiplicative convolution:

ω
λ(1)
Bg =

∑
a

fag ⊗ ω̂λBa. (2.25)
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Here the structure function ω
λ(1)
Bg in order O (α1

s

)
with helicity λ for the scat-

tering of a virtual boson B and a gluon g is factorized into a respective IR-safe
strucure function ω̂λBa and a partonic density function fag for the probability of
finding a collinear parton a in the gluon g. We remind the reader that the partonic
density functions (2.18) are calculable in perturbation theory unlike the hadronic
PDFs.

In order to examine the factors order by order, we write

fag = fa(0)g + fa(1)g , (2.26)

ω̂λBa = ω̂
λ(0)
Ba + ω̂

λ(1)
Ba ,

ωλBa = ω
λ(0)
Ba + ω

λ(1)
Ba ,

where the superscript denotes the order in αs.
This leads to

ω
λ(1)
Bg =

∑
a

(fa(0)g ⊗ ω̂
λ(1)
Ba + fa(1)g ⊗ ω̂

λ(0)
Ba ) (2.27)

= ω̂
λ(1)
Ba + fQ(1)

g ⊗ ω
λ(0)
BQ ,

using f
a(0)
b (ξ) = δab δ(1− ξ), ω̂

λ(0)
Ba = ω

λ(0)
Ba and ω

λ(0)
Bg = 0.

Inverting this result gives the IR-safe structure function in terms of the calcu-
lated structure function and a subtraction term:

ω̂
λ(1)
Bg = ω

λ(1)
Bg − fQ(1)

g ⊗ ω
λ(0)
BQ . (2.28)

For the physical structure function follows

Wλ
BN = fQN ⊗ ω

λ(0)
BQ −

∑
i

fgN ⊗ fQi(0)
g ⊗ ω

λ(0)
BQi

+ fgN ⊗ ω
λ(1)
Bg +O (α2

s

)
, (2.29)

where the term of O (α1
s

)
with the heavy quark-PDF is omitted, because it is

supressed in comparison to the other terms of the same order. It is shown in [7] by
explicit calculation that the resulting structure function is IR-safe and converges to
the ZM-VFNS result in the massless limit.

The physical interpretation of the subtraction term in the middle is, that it
corrects for double counting of the collinear singularity that occurs, when the in-
coming gluon is collinear to the inner quark. This case is already resummed in the
quark-scattering process, where the incoming quark can be split off from a gluon
in the evolution equations. With the masses in the structure functions, it occurs
again in the gluon-fusion graph as a potentially large logarithm.

The proof of the ACOT scheme is valid for any specific scheme that contains
the same leading infrared sensitive terms.

2.6 General mass-variable flavor number scheme

We use the general mass-variable flavor number scheme (GM-VFNS) in the follow-
ing chapters. The GM-VFNS is based on the proof of the ACOT scheme. However
the scheme is defined by construction of the subtraction terms. Just like in the
ACOT scheme the subtraction term will lead to a partonic cross section that is
IR-safe and converges to the ZM-VFNS result in the massless limit. The latter goal
is not achieved by a simple subtraction of the logarithm terms. The construction of
the GM-VFNS leads to a natural transition to the ZM-VFNS at high energies and
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contains finite mass terms in the cross section to give a good description near mass
thresholds.

To achieve this goal, the parton cross sections in the GM-VFNS are constructed
in the following way: We calculate the parton cross sections dσmQ similar to the
FFNS with the heavy quark’s mass as an extra scale. This leads to the dreaded
logarithms of the form ln(µ2/m2

Q). Furthermore the cross section differs by finite
terms from the ZM-VFNS version.

Now we take the massless limit of the FFNS cross section where possible. The
logarithms of the mass are kept, since they are singular in the limit. Terms propor-
tional to powers of the mass however disappear. Now we subtract the ZM-VFNS
cross section from our result. The result of this procedure are our subtraction terms.
They contain the logarithms and finite terms, which only occur in the FFNS cross
section. So our subtraction terms are defined through:

dσSub = lim
mQ→0

dσmQ − dσZM. (2.30)

We then calculate the difference between the cross section with masses and the
subtraction terms and receive the GM-VFNS cross section:

dσGM = dσmQ − dσSub. (2.31)

In this way the logarithms of the masses are absorbed into the non-perturbative
functions together with the finite terms, that don’t occur in the ZM-VFNS cross
section. However the GM-VFNS cross section still contains terms which depend on
the mass and disappear in the massless limit. These finite mass terms are supposed
to improve the description of cross sections at lower scales and intermediate scales.
The cross section contains the phase space with quark masses and therefore repro-
duces a correct threshold behavior, while the ZM-VFNS switches from a infinitely
massive charm quark to a massless charm quark at the threshold scale.

We want to note that the subtraction terms, constructed in this way, may agree
with subtraction terms calculated from similar approaches. In [12] it is shown, that
the definition in (2.30) and (2.31) is equivalent to the convolution of the massless
cross section with calculable partonic fragmentation functions, which describe the
transition from a massless quark to a massive one. However there is no universal
proof yet. The equivalency has been shown for some scattering processes.



Chapter 3

Heavy hadron production in
electron-positron
annihilation

The process of inclusive heavy hadron production in electron-positron annihilation
is well suited for the extraction of fragmentation functions from experimental data.
One reason is that e+e− processes have in general less contributions by background
processes compared to hadron collisions, the other reason is that we don’t have to
deal with the uncertainty introduced by parton density functions.

Therefore we study the process

e+ + e− → (γ, Z) → H +X, (3.1)

where X stands for the content of the jets that are produced together with the
hadron H , which is observed. All kinematic variables of X are integrated out.
Also the scattering angles of H are integrated out. We keep the scaling variable
x = 2(pH · q)/q2, where pH is the four-momentum of the hadron and q the four-
momentum of the intermediate gauge boson γ or Z. In the CMS, x = 2E/

√
s

measures the energy E of the hadron in units of the beam energy. The aim of the
calculation is the semi-inclusive cross section dσ/dx.

To complete our definitions, we call the four-momenta of the incoming electron
and positron l1 and l2 respectively and the four-momenta of the outgoing quark
and anti-quark p1 and p2. We refer to the angle of the outgoing hadron toward the
beam axis as θ and we use the Mandelstam-variables:

s = (l1 + l2)
2, t = (l1 − p1)

2, u = (l1 − p2)
2. (3.2)

3.1 Structure of the cross section

For unpolarized beams and fixed
√
s the differential cross section can only depend

on x and θ. A tensor analysis shows that, since the virtual boson has spin one, the
cross section can be seperated into three polarization terms [15, 5]:

d2σ

dxd cos θ
=

3

8
(1 + cos2 θ)

dσT

dx
+

3

4
sin2 θ

dσL

dx
+

3

4
cos θ

dσA

dx
. (3.3)

The three terms on the right-hand side stand for the transversal, the longitudinal
and the asymmetric contribution, where the first two are associated with the po-
larization states of the boson with respect to the direction of the hadron H . The

21
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asymmetric term stems from the parity-violating interference term, which contains
the vector coupling from the intermediate photon and Z boson times the axial
coupling from the Z boson. The normalization is chosen so that equation

dσ

dx
=

+1∫
−1

d cos θ
d2σ

dxd cos θ
=

dσT

dx
+

dσL

dx
(3.4)

is fulfilled. The asymmetric contribution disappears when integrating out cos θ, so
we only have to deal with dσT /dx and dσL/dx, which we will refer to as dσP /dx
with P = T, L.

In the parton model each component dσP /dx can be written up to power cor-
rections as a sum of convolutions of partonic cross sections dσPa (y, µ, µf )/dy with
fragmentation functions DH

a (z, µf), where the a stands for one of the partons
(g,u,ū, ..., b, b̄) and P for the transversal or longitudinal polarization. The renor-
malization and factorization scales are given by µ and µf respectively, however we
set µ = µf in this work. y is defined in analogy to x as 2(pa · q)/q2, where pa is the
four-momentum of parton a and z = x/y. In the CMS z is the fraction of the energy
passed on from parton a to the hadron H , it should be noted that in the massive
case z could be defined in different ways. With these variables the convolution can
be written as:

dσP

dx
(x, s) =

∑
a

ymax∫
ymin

dy

y

dσPa
dy

(y, µ, µf )Da

(
x

y
, µf

)
. (3.5)

For the massless case the integration limits are ymin = x and ymax = 1. Since we
include the charm quark mass mc = 1.5GeV, the bottom quark mass mb = 5.0GeV
and the hadron mass mH , these limits become more complicated due to kinematic
constraints. If we calculate the partonic subprocess for the production of a heavy
quark with mass ma and ρa = 4m2

a/s, the boundaries are ymin = max(x,
√
ρa)

and ymax = 1 and x must be in the range of
√
ρH ≤ x < 1. If we look at the

production of a gluon which is accompanied by a pair of a heavy quark and a heavy
anti-quark both with mass ma, then the limits are ymin = x and ymax = 1− ρa and√
ρH ≤ x < 1− ρa.
In order to apply the GM-VFNS we need the expressions for all partonic sub-

processes with the masses of heavy quarks as well as in the ZM-VFNS, where the
masses are neglected. On the following pages the semi-inclusive cross section for
the production of a heavy quark with the QCD corrections of O (αs) is calculated.
We compare the result and its massless limit with the formulas in refs.[15, 5]. The
remaining expressions for the production of a fragmenting gluon together with a
heavy quark-antiquark-pair and for all relevant ZM-VFNS subprocesses are also
taken from those references.

3.2 Cross section for heavy quark production

Our goal is to calculate the semi-inclusive cross section dσ/dy of the process

e−(l1) + e+(l2) → γ∗/Z∗(q) → q(p1) + q̄(p2). (3.6)

In NLO we have to calculate the virtual corrections to the LO process and - as the
real corrections - the LO cross section of the process

e−(l1) + e+(l2) → γ∗/Z∗(q) → q(p1) + q̄(p2) + g(p3), (3.7)
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e− q

q̄

leptonic part hadronic part

γ/Z

e+

Figure 3.1: Sketch of the factorization of the e+e− → qq̄ process into leptonic and
hadronic part in the form of a Feynman graph

where the variables in brackets indicate the names of the associated four-momenta
of the particles. We will integrate out the gluon’s four-momentum p3, after which we
can sum both contributions to cancel the divergencies associated with the radiation
of a soft gluon. We apply dimensional regularization with D = 4+ ε dimensions for
singularities and use on-shell-renormalization for the UV divergencies. The infra-
red divergencies and other terms will be subtracted according to the rules of the
GM-VFNS.

In general the differential cross section for the scattering of two antiparallel
particles with negligible mass is calculated from

dσ =
1

4
√
(l1l2)2

|M|2dP, (3.8)

where 1/(4
√
(l1l2)2) = 1/(2s) is the flux factor of the incoming leptons, M is the

matrix element of the scattering process and dP is the phase space of the outgoing
particles. In our case |M|2 contains single poles in ε. Therefore we have to take
terms up to O (ε) into account.

3.2.1 Factorization into lepton and hadron tensor

We factorize the cross section into a leptonic and a hadronic tensor. Due to the axial
part of the Z boson coupling, we have to factorize the vector-part, the axial-part
and the interference term seperately:

dσ

dy
= L̂V V µνĤ

µν
V V + 2L̂AV µνĤ

µν
AV + L̂AAµνĤ

µν
AA. (3.9)

The indices V and A stand for vector- and axial-coupling respectively. The interfer-
ence term in the middle on the right-hand-side leads leads to the asymmetric term
due to a single γ5 matrix and vanishes after the integration over cos θ. Therefore
we will ignore it from now on.

We will need the following effective charges for the vector- and the axial-part:

V 2
qi = e2qi + veeqivqiρ1(s) + (v2e + a2e)v

2
qiρ2(s), (3.10)

A2
qi = (v2e + a2e)a

2
qiρ2(s)

with the electro-weak couplings vqi = (T3qi − 2ef sin
2 θW )/(2 sin θW cos θW ) and

af = T3qi/(2 sin θW cos θW ) of the quark qi. The quark’s fractional electric charge
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is given by eqi , its third component of weak isospin to the Z boson by T3qi , and we
use the propagator functions

ρ1(s) =
s(s−m2

Z)

(s−m2
Z)

2 +m2
ZΓ

2
Z

, (3.11)

ρ2(s) =
s2

(s−m2
Z)

2 +m2
ZΓ

2
Z

.

θW is the weak mixing angle, mZ the mass and ΓZ the total decay width of the Z
boson.

With these charges we write

dσ

dy
= V 2

qiLµνH
µν
V V +A2

qiLµνH
µν
AA. (3.12)

The lepton tensor Lµν is relatively simple and does not contain strong corrections
in NLO. It is the same for vector-vector- and for axial-axial-case, because we can
swap a γ5-matrix twice in the Dirac trace of the axial case and use γ2

5 = 1. Our
lepton tensor includes the incoming leptons and the propagator of the intermediate
boson excluding the vertex connecting the boson to the quark pair. A calculation
of the squared matrix element yields:

MLM∗
L =

e2

4q4
Tr(γµl1γν l2) (3.13)

=
e2

s2

(
l1µl2ν + l2µl1ν − s

2
gµν

)
.

We include the flux factor 1/(2s) of the incoming particles in the leptonic tensor:

Lµν =
e2

2s3
(l1µl2ν + l2µl1ν − s

2
gµν). (3.14)

In reference [15] projectors PµνT and PµνL are given which can be used, when
contracted with he hadronic tensor, to calculate the transversal and the longitudinal
part of the cross section. In the following paragraphs we verify those projectors and
give an expression for the leptonic tensor as a linear combination of PµνT and PµνL .

We contract the lepton tensor with the general hadron tensor. The general
ansatz for a Lorentz-invariant hadronic tensor Hµν

G depending on two four-momenta
q and p1 is given by:

Hµν
G = C1

(
−gµν +

qµqν

s

)
+ C2

(
pµ1 − qµ

p1q

s

)(
pν1 − qν

p1q

s

)
(3.15)

+C3iε
µνρσqσp1ρ + C4

qµqν

s
+ C5(q

µpν1 + pµ1 q
ν)

with scalar functions C1 to C5.
Now we contract this tensor with the leptonic tensor:

LµνH
µν
G (3.16)

=
e2

2s2

(
D − 2

4
C1(1 + cos2 θ) +

(
D − 2

4
C1 +

1

8
sy2β2

yC2

)
(1 − cos2 θ)

)

with

βy =
√
1− ρa/y. (3.17)
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The projectors from [15] have the following form:

PLµν =

(
p1µ − qµ

p1q
s

) (
p1ν − qν

p1q
s

)
(s/4)y2β2

y

(3.18)

PTµν =
1

2

[
−gµν +

qµqν
s

−
(
p1µ − qµ

p1q
s

) (
p1ν − qν

p1q
s

)
(s/4)y2β2

y

]
.

The action of the projectors onto the general hadronic tensor is the following:

PLµνH
µν
G = C1 +

1

4
sy2β2

yC2, (3.19)

PTµνH
µν
G =

D − 2

2
C1.

The projectors don’t contain a dependence of cos θ. So in order to write the
lepton tensor in terms of the projectors we also integrate out cos θ in (3.16). This
is a trivial task in LO, but as we will see further down, the hadronic tensor is no
longer independent from θ when applying dimensional regularization. It contains
the factor (1− cos2 θ)ε/2, which contributes terms of O (ε). The equations∫

d cos θ(1 + cos2 θ)(1 − cos2 θ)ε/2 =
8

3
+

(
−26

9
+

8 ln 2

3

)
ε+O (ε2)

∫
d cos θ(1 − cos2 θ)1+ε/2 =

4

3
+

2

9
(−5 + 6 ln 2) ε +O (ε2) (3.20)

allow us to fix the coefficients C1 and C2 and we can write the operation of contract-
ing leptonic and hadronic tensor and integrating out cos θ in terms of the projectors:

1∫
−1

d cos θ Lµν =
e2

4s2

(
4

3

(
1 + ε

(
5

6
+ ln 2

))
PµνL +

8

3

(
1 + ε

(
−5

6
+ ln 2

))
PµνT

)
.

(3.21)

3.3 Tree-level and virtual corrections

3.3.1 Matrix element

The leading order contribution to the matrix element of the hadron tensor is calcu-
lated from the tree-level graph in figure (3.2). For the next-to-leading order we have
to look at virtual and real corrections. The graphs containing a virtual gluon have
two strong vertices so that we get the αs-term by multiplying a virtual contribution
with the tree-level graph’s expression.

In this section we focus on the virtual corrections. The main technical prob-
lem in this case are Feynman diagrams with loops. In 1-loop-order the resulting
expressions are well-known as Passarino-Veltman functions [48]. Furthermore we
have to renormalize fields and couplings. On the other hand the phase space for two
outgoing particles is relatively simple and the kinematics only allow back-to-back
production of quark and anti-quark, so that the phase space integration results in a
simple delta-function and does not require any integrations over the matrix element.

First we need the tree-level graph’s contributions:

Mµ
T = e [ū(p1)γ

µ(cV,B + cA,Bγ5)v(p2)] δij (3.22)

Mν∗
T = e [v̄(p2)γ

ν(cV,B + cA,Bγ5)u(p1)] δij . (3.23)
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g

Figure 3.2: Contributing Feynman graphs for γ∗/Z∗ → qq̄: Born, Counterterm and
virtual corrections

We introduce the spinors ū(p1) and v(p2) of the outgoing quark and anti-quark
respectively and the constants cV,B and cA,Z for vector and axial coupling, which
are cV,Z = vf and cA,Z = af in the case of an incoming Z boson to the fermions
(B = Z). In case of a photon (B = γ) the constants are cV,γ = −Qf , which is the
electrical charge of the fermion in units of the elementary charge, and cA,γ = 0.
We take care of the color factor of QCD with the δij , which describes the color
conservation of the quark lines at the vertex.

We want to calculate (|MT |2)µν = Mµ
TMν∗

T including all color and polarization
states of outgoing particles. For the sum over all polarization states of the quarks
we apply the formula∑

Spins

[ū(a)Γ1u(b)][ū(b)Γ2u(a)] = Tr[Γ1(/pb +mb)Γ2(/pa +ma)], (3.24)

For anti-particles the prefix of the related mass on the right side of the equation
changes to a minus sign. Γ1 and Γ2 are products of Dirac matrices. With the
help of this formula the Dirac chains of the matrix element and of the conjugated
matrix element can be easily combined in the algebra software FORM [49]. FORM
then evaluates the trace in D dimensions except for the γ5-matrix, which is only
defined in 4 dimensions. We use the naive approach to calculate the γ5-terms in
4 dimensions, which is sufficient for the vector-vector- and for the axial-axial-part.
The contributing graphs to the virtual corrections are the graph with the virtual
gluon and the graph with the counterterm vertex in figure (3.2). In general graphs
with self-energy corrections to the quarks lines also contribute, but we renormalize
the UV divergencies in the on-shell scheme, in which corrections of the external legs
don’t contribute.

The matrix element for the virtual corrections with the loop momentum l is

Mµ
V = −ieg2s

∫
dDl

(2π)DµD−4

1

(l + p1)2 −m2
q

1

(l − p2)2 −m2
q

1

l2
(3.25)

×
[
ū(p1)γ

ρ(/p1 +
/l +m)γµ(cV,B + cA,Bγ5)(−/p2 +

/l +m)γρv(p2)
]

×CF δij ,

Mν∗
V = ieg2s

∫
dDl

(2π)DµD−4

1

(l + p1)2 −m2
q

1

(l − p2)2 −m2
q

1

l2

×
[
v̄(p2)γρ(−/p2 +

/l +m)(cV,B + cA,Bγ5)γ
µ(/p1 +

/l +m)γρu(p1)
]

×CF δij .

Here we introduce the strong coupling g2s = 4παs. The group theory factor CF =

4/3 stems from the color factor
∑

a,b[T
(F )
a T

(F )
b ]ijδab = CF δij . The 3 × 3 matrices
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T
(F )
c are the generators of the color group SU(3). The indices a, b describe the pos-

sible color charges of the gluon, the indices i and j the color charges of the outgoing
quarks as in LO. Combining matrix elements with the corresponding conjugated
matrices and summing over possible color states of the quarks lead to the color
factor CACF = 4.

We write the loop integral in terms of Passarino-Veltman integrals [48, 50]. The
following substitutions are made:∫

dDl

(2π)DµD−4

1

((l + p1)2 −m2)((l − p2)2 −m2)l2
→ iπ2

(2π)4
C0(p1,−p2, 0,m,m)

∫
dDl

(2π)DµD−4

lµ
((l + p1)2 −m2)((l − p2)2 −m2)l2

→ iπ2

(2π)4
Cµ(p1,−p2, 0,m,m).

(3.26)

The values of the loop integrals will be discussed below. Written in terms of
Passarino-Veltman functions eq.(3.25) reads:

Mµ
V =

eg2s
16π2

[T (F )
a T

(F )
b ]ijδab (3.27)

×
([

ū(p1)γ
ρ(/p1 +m)γµ(cV,B + cA,Bγ5)(−/p2 +m)γρv(p2)

]
C0(p1,−p2, 0,m,m)

+
[
ū(p1)γ

ργσγµ(cV,B + cA,Bγ5)(−/p2 +m)γρv(p2)

+ ū(p1)γ
ρ(/p1 +m)γµ(cV,B + cA,Bγ5)γ

σγρv(p2)
]
Cσ(p1,−p2, 0,m,m)

+
[
ū(p1)γ

ργσγµ(cV,B + cA,Bγ5)γ
τγρv(p2)

]
Cστ (p1,−p2, 0,m,m)

)
.

The contribution from the counterterm graph is

Mµ
C = −ie(δZe + δZψ) [ū(p1)γ

µ(cV,B + cA,Bγ5)v(p2)] δij (3.28)

Mν∗
C = ie(δZe + δZψ) [v̄(p2)γ

ν(cV,B + cA,Bγ5)u(p1)] δij .

We have to renormalize the occuring fields and vertices to fix the value of the
renormalization constants Ze = e(1 + δZe) and Zψ = 1 + δZψ. But first we deal
with the Passarino-Veltman integrals.

3.3.2 Loop integrals

We re-write the occuring tensor functions as linear combinations of basic tensors
with scalar functions as coefficients. In our calculation we need the following func-
tions:

Bµ(−p1, 0,m) = −p1µB1(−p1, 0,m) (3.29)

Cµ(p1,−p2, 0,m,m) = p1µC1(p1,−p2, 0,m,m)− p2µC2(p1,−p2, 0,m,m)

Cµν(p1,−p2, 0,m,m) = gµνC00(p1,−p2, 0,m,m) + p1µp1νC11(p1,−p2, 0,m,m)

+p2µp2νC22(p1,−p2, 0,m,m)

−(p1µp2ν + p2µp1ν)C12(p1,−p2, 0,m,m).
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The scalar functions are then decompositioned into more fundamental loop inte-
grals using FeynCalc [51]. To do this by hand one has to contract equations (3.29)
with the occuring momentum tensors and the metric tensor. We give the results
omitting terms of O (ε) and introduce the variable β =

√
1− ρ.

B1(p1, 0,m) =
1

2
− 1

2
B0(m, 0,m) (3.30)

C1(p1,−p2, 0,m,m) =
1

−sβ2
(B0(m, 0,m)−B0(

√
s,m,m))

C2(p1,−p2, 0,m,m) = C1(p1,−p2, 0,m,m)

C00(p1,−p2, 0,m,m) =
1

4
B0(

√
s,m,m) +

1

4

C11(p1,−p2, 0,m,m) = − 1

2s2β2
((2m2 − s)(B0(m, 0,m)−B0(

√
s,m,m))

+sβ2)

C22(p1,−p2, 0,m,m) = C11(p1,−p2, 0,m,m)

C12(p1,−p2, 0,m,m) =
1

s2β2
(m2B0(m, 0,m)−m2B0(

√
s,m,m) +

1

2
sβ2).

The results and the methods of calculation for A0, B0 and C0 can be found in
literature, for example ref.[50]. We cite the relevant results:

A0(m) = m2

(
∆− ln

(
m2

µ2

)
+ 1

)
+O (ε) (3.31)

B0(p, 0,m) = ∆− ln
m2

µ2
+ 2 +

m2 − p2

p2
ln

(
m2 − p2 − iε

m2

)
+O (ε)

B0(
√
s,m,m) = ∆− ln

m2

µ2
+ 2− β ln

(
−s(1 + β)

2m2
+ 1

)
+O (ε)

with the pole

∆ := −2

ε
− γE + ln(4π). (3.32)

The function C0(p1,−p2, 0,m,m) is taken from ref.[52]:

C0(p1,−p2, 0,m,m) =

(
s

4πµ2

)ε/2
1

sβ

1

Γ(1 + ε/2)

[(
2

ε
+ ln

(
m2

s

))
ln

(
1 + β

1− β

)

−2

(
Li2

(
1− β

1 + β

)
+ π2/3 + ln

(
2β

1 + β

)
ln

(
1− β

1 + β

)

−1/4 ln2
(
1− β

1 + β

))]
. (3.33)

For this expression we need Euler’s dilogarithm or Spence function Li2 (x) and
Euler’s Gamma function Γ(x). The dilogarithm is defined by

Li2(x) =

0∫
x

dt
ln(1− t)

t
. (3.34)
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q
p

g

Figure 3.3: Feynman graph for the NLO correction to the quark-propagator

The Gamma function is defined by

Γ(x) =

∞∫
0

tx−1e−tdt, (3.35)

and is a generalization of the factorial thanks to its property

n! = Γ(n+ 1). (3.36)

3.3.3 Renormalization

We have to renormalize the γqq̄-/Zqq̄-vertex for corrections in αs. Apart from being
necessary for physical meaningful results, this will also cancel the UV singularity
of the loop diagram. We will go shortly through the calculation of the required
renormalization constants in the on-shell scheme.

We start with the renormalization of the propagator for a heavy quark, which
will fix the constants for the renormalized quark mass δm and for the quark field
δZψ, which are the O (αs)-terms of the renormalized mass m = m0 + δm+O (α2

s

)
and of the wave function renormalization constant Zψ = 1 + δZψ +O (α2

s

)
.

The self-energy Σqq̄(p) of a heavy quark with momentum p follows from the
Feynman graph in figure (3.3):

Σqq̄ij (p
2) = /pΣ

qq̄
V,ij(p

2) +mΣqq̄S,ij(p
2) (3.37)

with the vector part Σqq̄V,ij(p
2) and the scalar part Σqq̄S,ij(p

2):

Σqq̄S,ij(p
2) =

αs
4π

CF (D − 2)

(
p2 +m2

p2
B0(−p, 0,m)− 1

2p2
A0(m)

)
δij

Σqq̄V,ij(p
2) = −αs

4π
CFDB0(−p, 0,m)δij . (3.38)

After the renormalization constants are introduced in the Lagrangian, the renor-
malized vertex function Γ̂qq̄ij (−p, p) has the following form:

Γ̂qq̄ij (−p, p) = i/p
(
δij +Σqq̄V,ij(p) + δijδZψ

)
+im

(
−δij +Σqq̄S,ij(p)− δZψδij − δm

m
δij

)
.

(3.39)
The on-shell-condition dictates that the pole of the propagator is at p2 = m2.

Use of this condition written as

Γ̂qq̄ij (−p, p)u(p) = 0 (3.40)
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and the Dirac equation (/p −m)u(p) = 0 allows us to calculate the first renormal-
ization constant:

δm

m
δij = Σqq̄V,ij(m

2) + Σqq̄S,ij(m
2) (3.41)

= −αs
4π

2CFB0(−p, 0,m)δij.

The second condition is that the residuum of the propagator is 1 at /p = m. This
can be written as (

lim
p2→m2

i

/p−m
Γ̂qq̄ij

)
u(p) = 1 (3.42)

and leads - again with the help of the Dirac equation - to the general formula for
the fermion field renormalization constant

δZψδij = −Σqq̄V,ij(m
2)− 2m2

(
Σqq̄′V,ij(m

2) + Σqq̄′S,ij(m
2)
)
. (3.43)

The on-shell condition for the coupling e is, that the NLO contribution becomes
0 in the limit of a soft incoming boson. That means that the renormalized vertex
Γ̂µ,ij(q, p1, p2)for q = 0 fulfills the condition

ū(p)Γ̂µ,ij(0,−p, p)u(p) = ū(p)γµδiju(p), (3.44)

where the right-side term is the LO contribution to the vertex. Subtracting the LO
contributions on both sides yields

ū(p) (Λµ,ij(p, p) + γµδij(δZe + δZψ))u(p) = 0. (3.45)

In the on-shell scheme and dimensional regularization we can use the Ward
identity to calculate the vertex correction:

Λµ,ij(p, p) =
∂

∂pµ
Σqq̄ij (p) (3.46)

= γµΣ
qq̄
V,ij(p

2) + 2pµ

(
/pΣ

qq̄′
V,ij(p

2) +mΣqq̄′S,ij(p
2)
)
.

We insert the latter equation into eq.(3.45), use the Dirac equation and the Gordon
identity and p2 = m2:

0 = ū(p)γµu(p)
[
Σqq̄V,ij(m

2) + 2m2
(
Σqq̄′V,ij(m

2) + Σqq̄′S,ij(m
2)
)
+ (δZe + δZψ)δij

]
.

(3.47)
A comparison with eq.(3.43) leads to

δZe = 0. (3.48)

As a consequence only Zψ contributes to the counterterm vertex. We put equa-
tion (3.38) into (3.43) and receive Zψ in terms of Passarino-Veltman-integrals:

δZψ =
αs
4π

CF

(
2−D

2m2
A0(m

2) + 4m2B′
0(m

2, 0,m)

)
. (3.49)

We use equation (2.5.114) from reference [53], where the IR divergence is con-
trolled with the help dimensional regularization:

B′
0(m

2, 0,m) =
1

2m2

(
∆+ ln

(
µ2

m2

)
+ 2

)
+O (ε) . (3.50)
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The result for the renormalization constant is

δZψ =
αs
4π

CF

(
−3∆+ 3 ln

(
m2

µ2

)
− 4

)
+O (ε) . (3.51)

We can put this result into eq. (3.28). It is interesting to note that a contribution of
−∆ will cancel with the pole of the loop diagram. The remaining −2∆ are related
to the IR divergency of the radiation of a soft gluon and will disappear when we
combine virtual and real corrections.

3.3.4 Phase space integrand

The general phase space factor for two massive particles - both with the mass m -
in the final state is:

d2D−2P2 =
dD−1�p1

(2π)D−1(2E1)

dD−1�p2
(2π)D−1(2E2)

(2π)DδD(q − p1 − p2), (3.52)

where the �pn are the momentum components of the four-vectors of the particles and
the En are the energies. D is assumed to be an integer number for the first steps,
before we reach a point where we can regard the result as an analytic continuation.
The relation between energy and momentum is

|�pn| = βnEn, (3.53)

where

βn :=

√
1− m2

E2
n

. (3.54)

β1 is identical to our formerly introduced variable βy, but the point here is to stress
the differentiation of the variables of the two particles.

We integrate over �p2 = −�p1 using D− 1 components of the delta function. Now
the remaining integrand d�p1 is written in polar coordinates:

dD−1�p1
(2E1)

=
1

2E1
|�p1|D−2d|�p1|

D−2∏
k=1

sinD−2−k θk dθk. (3.55)

For the integration the following formula is used:

π∫
0

sinn θ dθ =
√
π
Γ
(
n+1
2

)
Γ
(
n+2
2

) . (3.56)

The integration over all angles except for θ1, which is identical to our θ, leads
to

π∫
0

D−2∏
k=2

sinD−2−k θkdθk = π
D−3

2

D−2∏
k=2

Γ
(
D
2 − k

2 − 1
2

)
Γ
(
D
2 − k

2

) (3.57)

= π
D−2

2
1

Γ
(
D
2 − 1

) .
(3.58)

Now we put the parts together and convert with E1 = y
√
s/2 to our set of

variables. The result is

dP2 =
β1+ε
y yεsε/2

24+2επ1+ε/2

(1− cos2 θ)ε/2

Γ (1 + ε/2)
δ(1− y)dy d(cos θ). (3.59)
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3.3.5 Final steps and pole result

Now we can put together matrix element and phase space according to eq.(3.8). We
do this with the help of a FORM script in the following order:

• The starting point is the expression P
L/T
µν MµMν∗.

• The projectors are replaced by their expressions (3.18).

• We calculate the squared matrix element from equations (3.22), (3.27) and
(3.28). FORM multiplies the respective elements of the Dirac algebra to one
chain.

• The formulas for the Passarino-Veltman integrals from equations (3.30) and
(3.31) are put in.

• Now FORM evaluates the traces of the Dirac chains, which leads to a result
in terms of scalar products.

• The scalar products are expressed through our preferred variables, e.g. p1·p2 =
2− ρ.

• The result is multiplied with the phase space factor (3.59).

• All functions of ε are replaced by power expansions of ε up to O (ε) where
necessary.

• FORM automatically expands all expressions, so we can let it discard all terms
of O (ε) now.

• The remaining work is some tidying up, which means that higher powers of
factors in denominator and numerator are cancelled. Also we replace ρ by
ρ = [2− ρ] + ρ for an easier comparison with the literature result.

The intermediate result has no physical meaning, because the contribution from the
real corrections has to be added. However the result for the pole in ε is interesting,
because we expect to cancel with the pole from the real corrections. The pole in
the virtual corrections stems from loop integrals, while the pole of the real correc-
tions occurs in the phase space integration. Therefore this is a strong check of this
calculation, so we write down the O (ε−1

)
-terms of the intermediate result. We cal-

culate the contributions for the vector-vector-coupling and for axial-axial-coupling
seperately for clearer output:

PLµνMµ
V+CMν∗

V+CdP2|V V = CACF 16π
2ααs

1

ε
ρ

(
2β − (2− ρ) ln

(
1 + β

1− β

))
,

PTµνMµ
V+CMν∗

V+CdP2|V V = CACF 16π
2ααs

1

ε

(
2β − (2− ρ) ln

(
1 + β

1− β

))
,

PLµνMµ
V+CMν∗

V+CdP2|AA = 0, (3.60)

PTµνMµ
V+CMν∗

V+CdP2|AA = CACF 16π
2ααs

×1

ε

(
2β(1− ρ)− (ρ2 − 3ρ+ 2) ln

(
1 + β

1− β

))

with Mµ
V+C = Mµ

V +Mµ
C .
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γ∗/Z∗

q

q̄ q̄

q

γ∗/Z∗g g

Figure 3.4: Contributing Feynman graphs for γ∗/Z∗ → qq̄g

3.4 Real Corrections

For the real corrections, we examine the LO process e+e− → qq̄g. The treatment of
the matrix element becomes simpler, since we don’t have any diagrams with loops.
Instead the phase space integration becomes more complicated. Two of the three
final-state particles’ momenta are integrated out completely, which is not possible
without an integration over the matrix element. Furthermore the kinematics are
more complex and lead to a result, that we write in terms proportional to the plus-
distribution 1/(1− y)+ in addition to the terms proportional to the delta-function
δ(1− y).

3.4.1 Matrix element

The two Feynman graphs in fig.(3.4) contribute to the real corrections. The corre-
sponding terms for the matrix elements are:

Mµ
R1 = eg2s

1

(p1 + p3)2 −m2

[
v̄(p2)γω1(/p1 + /p3 +m)γµ(cV,B + cA,Bγ5)u(p1)

]
×(εω1)∗(p3)[Tc]ij (3.61)

Mµ
R2 = eg2s

1

(p2 + p3)2 −m2

[
v̄(p2)γ

µ(cV,B + cA,Bγ5)(−/p2 − /p3 +m)γω1u(p1)
]

×(εω1)∗(p3)[Tc]ij .

In addition to the polarization vector of the incoming boson - which is hidden in the
projectors - we also have to take the polarization vector (εω1)∗(p3) of the outgoing
gluon into account. In the squared matrix element we sum over all polarization
states of the outgoing gluon. In this case we can use the equation∑

Polar.

(εω1)∗(p3)(εω2)(p3) = −gω1ω2 . (3.62)

The color factor in the squared matrix element becomes∑
i,j

[Tc]ij [Tc]ji = Tr[TcTc] = CACF = 4. (3.63)

3.4.2 Phase space integrand for three final state particles

We have to extend the phase space factor (3.52) to include the radiated real gluon,
which is considered massless. We introduce a factor for the third particle and
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adapt the formula in the delta function, which accounts for energy and momentum
conservation. This time we use the delta function to integrate out �p3:∫

d3D−3P3 (3.64)

=

∫
dD−1�p1

(2π)D−1(2E1)

dD−1�p2
(2π)D−1(2E2)

dD−1�p3
(2π)D−1(2E3)

(2π)DδD(q − p1 − p2 − p3)

=

∫
dD−1�p1

(2π)D−1(2E1)

dD−1�p2
(2π)D−1(2E2)

(2π)δ(
√
s− E1 − E2 − E3)

2E3
.

The angular dependence of �p1 is treated in analogy to the two-particle-phase
space using equations (3.55) to (3.57). For �p2 we look at the angle between the
vectors �p1 and �p2 and introduce the variable ζ, which is defined to be the cosine
of the angle between �p1 and �p2. So if one thinks of �p1 defining the z-axis of a
coordinate system for �p2, then ζ is the cosine of the polar angle of �p2 in spherical
coordinates. Integrating out the azimuthal angle of �p2 gives:

∫
dD−1�p2

(2π)D−1(2E2)
=

1

2
ED−3

2 (β2E2)
D−3dE2

1∫
−1

dζ (1 − ζ2)
D−4

2
π

D−2
2

Γ
(
D−2
2

) .
(3.65)

Now we rewrite the delta function in (3.64) to integrate out ζ:

δ(
√
s− E1 − E2 − E3)

2E3
= δ([q − p1 − p2 − p3]

2) (3.66)

=
δ
(
ζ − 1

β1β2

(
1 + 2 1+ρ/2−y1−y2

y1y2

))
sy1y2β1β2

.

We replace the number of dimensions byD = 4+ε and the phase space integrand
becomes:

dP3 =
s

22+2ε(4π)3

( s

4π

)ε (1− cos2 θ)ε/2

Γ(1 + ε/2)

(
1− ζ2

)ε/2
(β1y1β2y2)

εdy1dy2d cos θ.

(3.67)

We will only be able to integrate over y2 after the multiplication with the squared
matrix element, since the latter is not independent of y2. Therefore we are going to
need the integration boundaries for the integration over y2. Since ζ is a cosine, it
can only run from −1 to 1. By setting ζ2 - as defined through eq.(3.66) - to 1, we
get a relation between y1 and y2 at the boundary. Rearranged for y2 the equation
is:

y2 =
ρ+ 2(1− y1)− y1ρ/2− y1(1 − y1)(1 ∓ β1)

ρ/2 + 2(1− y1)
. (3.68)

The minus sign in the last term gives the upper bound, while the plus sign is used
in the lower bound. Note that the bounds coincide for the case y1 =

√
ρ, which is

the lower bound of y1.

3.4.3 Integration of particle energy

Putting together all components for our cross section, we get the following formula:

PL/Tµν Mµ
RMν∗

R d2P3 =
s

22+2ε(4π)3

( s

4π

)ε 1

Γ(1 + ε/2)
(1− ζ2)ε/2(β1y1β2y2)

ε
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×dy1dy2P
L/T
µν (Mµ

R1 +Mµ
R2)(Mν∗

R1 +Mν∗
R2).

(3.69)

After factoring out all factors which are independent of y1 and y2, we have to solve
the following integral:

fL/T (ρ) =

∫
dy1

∫
dy2(β1y1β2y2)

ε(1 − ζ2)ε/2PL/Tµν Mµ
RMν∗

R . (3.70)

We substitute y2 by the new variable v which has the property that the limits
of the inner integral become 0 and 1. This eliminates the problem, that the width
of the integration interval becomes 0 for y1 → √

ρ, while the integrand becomes
infinite. We achieve this by replacing y2 by

y2(v) =
ρ+ 2(1− y1)− y1ρ/2− y1(1− y1)(1 − β1)− 2y1(1 − y1)β1v

ρ/2 + 2(1− y1)
,(3.71)

so that v is

v(y2) =
ρ/2 + 1− y1
y1(1 − y1)β1

− ρ

4(1− y1)β1
− 1− β1

2β1
− ρ/4 + 1− y1

y1(1 − y1)β1
y2. (3.72)

The differential is

dy2
dv

= −y1(1− y1)β1

ρ/4 + 1− y1
. (3.73)

With this definition the inner integral runs from 1 to 0. So the minus sign is
used to exchange the limits. Equation (3.70) then becomes

fL/T (ρ) =

1∫
√
ρ

dy1
(1 − y1)

1+ε

(ρ/4 + 1− y1)1+ε/2
(y21 − ρ)

1+ε
2

×
1∫

0

dv(4v(1− v))ε/2PL/Tµν Mµ
RMν∗

R . (3.74)

The squared matrix element, the calculation of its trace and the multiplication
with the phase space factor can be implemented straightforward in FORM. At
this point we examine the intermediate result, where the terms are sorted by their
dependence of y2(v). From the phase space part we have the factor

d2P3 ∼ v(4v(1− v))ε/2. (3.75)

In the matrix element we find terms proportional to y2(v), (1 − y2(v))
−1, (1 −

y2(v))
−2 and terms independent of y2(v). We calculate these integrals with the

help of Mathematica up to O (ε):

1∫
0

dv (4v(1− v))ε/2 = 1 + ε(ln 2− 1) +O (ε2) , (3.76)

1∫
0

dv v(4v(1 − v))ε/2 =
1

2
+

1

2
ε(ln 2− 1) +O (ε2) ,
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1∫
0

dv
(4v(1 − v))ε/2

1− y2(v)
=

ρ

8β(1− y1)

(
4 ln

(
1 + β

1− β

)
+ ε

(
4 ln 2 ln

(
1 + β

1− β

)

+Li2

(
− 4β

(1− β)2

)
− Li2

(
− 4β

(1 + β)2

)))
+O (ε2) ,

1∫
0

dv
(4v(1 − v))ε/2

(1− y2(v))2
=

1

(1 − y1)2

(
1 + ε

(
ln 2− 2− ρ

2β
ln

(
1 + β

1− β

)))
+O (ε2) .

FORM identifies the dependence on y2(v) of each term and substitutes the relevant
factors by the respective integration result. After this integration we have a result
for dσ/dy1, but it needs further treatment for the pole at y1 = 1.

3.4.4 Pole subtraction

The real corrections contain singularities for y1 → 1. In order to handle this singu-
larities we write the differential cross section in terms of two distributions: The first
is the delta-distribution, the other one is the plus distribution, which we defined in
equation (2.13). Alternatively it can be defined by:

(
1

1− y

)
+

= lim
β→0

⎡
⎣θ(1 − y − β)

1

1− y
− δ(1 − y − β)

1−β∫
0

1

1− ŷ
dŷ

⎤
⎦ . (3.77)

The latter form shows the basic properties of a plus distribution. It behaves just
like a normal function for y < 1, however when integrating up to y = 1, where the
pole is, the integral yields zero due to the second term. So the plus distribution is
IR-safe by construction. We use it to split our result in a part for y < 1 written
in terms of the distribution and one for the pole at y = 1 proportional to δ(1− y),
which can be added to the virtual contributions. Since we know that the first part
is IR-safe it can be calculated in 4 dimensions. Only for y = 1 we need the result
in 4 + ε dimensions.

In detail the splitting looks as follows. The function, which we write under an
integral to deal with distributions, has the form

σ =

1∫
√
ρ

dy1
R(y1)

(1 − y1)1−ε
, (3.78)

where R(y1) is finite at y1 = 1. We bring the integral in the form of equation (2.13):

σ =

1∫
√
ρ

dy1
R(y1)−R(1)

(1− y1)1−ε
+

1∫
√
ρ

dy1
R(1)

(1− y1)1−ε
(3.79)

=

1∫
√
ρ

dy1
R(y1)

(1 − y1)+
+

1∫
0

dy1
R(1)

(1− y1)1−ε
+O (ε)

=

1∫
√
ρ

dy1
R(y1)

(1 − y1)+
+

1

ε
R(1) +O (ε)
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=

1∫
√
ρ

[
dy1

R(y1)

(1− y1)+
+

1

ε
R(1)δ(1− y1)

]
+O (ε) .

The result shows that we need R(y1 = 1) up to O (ε), since it is multiplied with
the pole. The more general function R(y1) can be integrated in 4 dimensions.

3.4.5 Implementation in FORM

We calculate the two contributions from equation (3.79) in two seperate FORM
scripts. The script for the plus-distribution part is in principle complete after the
integration of y2. We use FORM for some substitutions to simplify the result and
the comparison to the literature result.

The script for the soft-gluon part, for which we require R(1) in D dimensions,
works as follows: The matrix element is calculated and y2 integrated. For the
factors (y21 − ρ) and ρ/4 + 1 − y1 within R(y1) we can set y1 to 1. The occuring
functions β1(y1) are replaced by β. What remains of y1 are factors of (1 − y1)

ε−1.
We can drop terms without this factor, since they don’t contribute to the pole. In
the remaining terms we perform the integration over y1 by replacing (1−y1)

ε−1 with
1/ε. After that, the script performs some simplifications of the result. Analogue to
the pole result of the virtual corrections (3.60), we write down the O (ε−1

)
terms:

∫
PLµνMµ

RMν∗
R d2P3|V V = CACF 16π

2ααs
1

ε
ρ

(
−2β + (2 − ρ) ln

(
1 + β

1− β

))
,

∫
PTµνMµ

RMν∗
R d2P3|V V = CACF 16π

2ααs
1

ε

(
−2β + (2− ρ) ln

(
1 + β

1− β

))
,

∫
PLµνMµ

RMν∗
R d2P3|AA = 0, (3.80)

∫
PTµνMµ

RMν∗
R d2P3|AA = CACF 16π

2ααs

×1

ε

(
−2β(1− ρ) + (ρ2 − 3ρ+ 2) ln

(
1 + β

1− β

))
.

The integral sign refers to the integration over y2. We see that these poles cancel
with the poles from the virtual corrections in eq.(3.60) as they are supposed to.

3.5 Result

We can now insert the results from our FORM scripts into equation (3.12) and
compare the result with the one from [5]. It is identical and written in the following
decomposition:

dσPqi
dy

(y, ρ) = Ncσ0

[
V 2
qiF

(v)
P (y, ρ) +A2

qiF
(a)
P (y, ρ)

]
. (3.81)

Here we use the color factor Nc = 3 and the leading order total cross section without
mass effects

σ0 =
4πα2

3s
. (3.82)
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The coefficient functions are then divided into Born, virtual-soft and real con-
tributions:

F
(u)
P (y, ρ) = δ(1− y)B

(u)
P (ρ) +

αs(µ)

2π
CF

[
δ(1− y)S

(u)
P (ρ) +

(
1

1− y

)
+

R
(u)
P (y, ρ)

]
.

(3.83)
The LO terms are

B
(v)
T (ρ) = β, B

(v)
L (ρ) =

ρβ

2
, B

(a)
T (ρ) = β3, B

(a)
L (ρ) = 0. (3.84)

For the NLO coefficient functions we use the short-hand notation:

τy = 1− y, (3.85)

ξ(y, ρ) = ln

(
ρ− 2y − 2

√
y2 − ρ

ρ− 2y + 2
√
y2 − ρ

)
.

The virtual-soft coefficient functions are:

S
(v)
T (ρ) =

1

2

(
(2− ρ)

[
4 ln

4

ρ
ln

1 + β

1− β
− 4Li2

(
−1− β

2β

)
− 2 ln2

2β

1− β

+
4

3
π2 + ln2

1 + β

1− β
+ Li2

(
− 4β

(1− β)2

)
− Li2

(
4β

(1 + β)2

)]

+(10− 8ρ) ln
1 + β

1− β
− 4β − 8β ln

4

ρ

)
, (3.86)

S
(v)
L (ρ) =

ρ

2
S
(v)
T (ρ)− ρβ2

2
ln

1 + β

1− β
,

S
(a)
T (ρ) = β2S

(v)
T (ρ) + 2ρβ2 ln

1 + β

1− β
,

S
(a)
L (ρ) = 0,

SA(ρ) = βS
(v)
T (ρ) + ρβ ln

1 + β

1− β
.

The real corrections lead to the following terms:

R
(v)
T (y, ρ) =

2√
y2 − ρ

[
ρ(2− τ2y ) + 4

τ2y (1 + τy)
3

(4τy + ρ)2
+ τy(4 + τy)

(
1− 2τy(1 + τy)

4τy + ρ

)

−2
]
+

ρ2(2 − τ2y ) + ρ(2y3 − 7y2 − 1) + 2y2(1 + y2)

2(y2 − ρ)
ξ(y, ρ), (3.87)

R
(v)
L (y, ρ) =

2√
y2 − ρ

[
−ρ(1− ρ)− τy(τy − 2ρ) +

2τ2y (1 + τy)

4τy + ρ

]

+
ρ3 + ρ2(4τy − 3) + ρ(3y2 − 1)

2(y2 − ρ)
ξ(y, ρ),

R
(a)
T (y, ρ) =

4√
y2 − ρ

[
− ρ2 + 2ρy + τ3y +

3

2
τ2y + 2τy − 1
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+
2τ2y (1 + τy)

3

(4τy + ρ)2
− τ2y (1 + τy)(5τy + 4)

4τy + ρ

]

+
−2ρ3 + 8ρ2y + ρy2(2τy − 9)− ρ+ 2y2(1 + y2)

2(y2 − ρ)
ξ(y, ρ),

R
(a)
L (y, ρ) =

2τ2y√
y2 − ρ

[
ρ+ y2 − 5− 8τy(1 + τy)

3

(4τy + ρ)2
− 2(1 + τy)

4τy + ρ
(τ2y − 8τy − 2)

]

+
τ2y ρ(ρ+ τ2y − 2)

2(y2 − ρ)
ξ(y, ρ),

RA(y, ρ) = 4ρ− 4y + 8
τ2y (1 + τy)

2

(4τy + ρ)2
− 4

τ2y (3 + τy)

4τy + ρ

−−ρ2 + 3ρy − y(1 + y2)√
y2 − ρ

ξ(y, ρ).

As a bonus we have included the projector for the asymmetric contribution from
[15] in our FORM script:

PAµν = iεµνσρ
qρpσ1
syβy

. (3.88)

This projector succesfully reproduces the asymmetric coefficient functions SA(ρ)
and RA(y, ρ) from [5], despite FORM’s naive treatment of traces with γ5 in four
dimensions.

For the hadron production cross section we also need the gluon production cross
section. In this case we use the result from reference [5]. To verify the result one
could use our matrix elements, but would have to change the integration of the
phase space factor and keep the gluon’s energy. The problematic soft-gluon case
then occurs for y → 0, however it is kinematically forbidden for a soft gluon to
fragment into heavy hadrons.

The cross section reads

dσPg
dy

(y) = Ncσ0
αs
2π

CF

[
V 2
qiG

(v)
P (y, ρ) +A2

qiG
(a)
P (y)

]
(3.89)

with the coefficient functions

G
(v)
T (y, ρ) = 2

[
1 + (1− y)2

y
+ ρ

1− y

y
− ρ2

2y

](
ln

1 + βτ
1− βτ

− βτ

)
− 4

1− τ

τ
βτ − ρ2βτ

τ
,

G
(v)
L (τ, ρ) = −2ρ

τ
ln

1 + βτ
1− βτ

+ 4βτ
1− τ

τ
, (3.90)

G
(a)
T (y, ρ) = 2

[
1 + (1− y)2

y
− ρ

1− y

y
+

ρ2

2y

](
ln

1 + βτ
1− βτ

− βτ

)
− 4

1− y

y
βτ +

ρ2βτ
y

,

G
(a)
L (y, ρ) = ρ

ρ+ y2 + 2y − 4

y
ln

1 + βτ
1− βτ

+ 2βτ(2 + ρ)
1− y

y

and with βτ =
√
1− ρ/τ .

3.6 The massless limit

In order to apply the GM-VFN scheme we have to take the massless limit of the
result. In terms where the heavy quark mass acts as a regulator for collinear sin-
gularities - specifically where logarithms of the mass occur - we keep it. So the
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massless limit here is not a limit in the strict mathematical sense and we write lim
on both sides of the equation:

lim
ρ→0

S
(v)
T (ρ) = lim

ρ→0

(
ln2
(
4

ρ

)
+ ln

(
4

ρ

)
+ π2 − 2

)
, (3.91)

lim
ρ→0

S
(v)
L (ρ) = 0,

lim
ρ→0

S
(a)
T (ρ) = lim

ρ→0
S
(v)
T (ρ),

lim
ρ→0

S
(a)
L (ρ) = 0

(3.92)

which can be verified with the help of the equations

ln

(
1 + β

1− β

)
→ ln

(
4

ρ

)
, (3.93)

Li2

(
1− β

1 + β

)
→ 0,

Li2

(
4β

(1 + β)2

)
→ Li2 (1) =

π2

6
,

Li2

(
− 4β

(1− β)2

)
= Li2

(
1− (1 + β)2

(1− β)2

)

= −Li2

(
4β

(1 + β)2

)
− 1

2
ln2
(
(1 + β)2

(1− β)2

)

→ −Li2 (1)− 2 ln2
(
4

ρ

)

= −π2

6
− 2 ln2

(
4

ρ

)
.

For the latter we used the identity

Li2 (1− x) + Li2
(
1− x−1

)
= −1

2
ln2 x. (3.94)

For the real corrections the massless limit is more complicated. We have rewrit-
ten the result in terms of distributions to handle the poles at y = 1. The mass
ρ however has acted as a regulator for additional poles, which occur in the pure
massless calculation. So when we take the massless limit we have to watch out
for new poles in y = 1. But first we take ρ → 0 where this leaves the remaining
expression finite. This simplifies the expressions to:

lim
ρ→0

R
(v)
T (ρ) = lim

ρ→0

(
y

2
√
y2 − ρ

(
y2 − 6y − 2

)
+ (y2 + 1)ξ(y, ρ)

)
,

lim
ρ→0

R
(v)
L (ρ) = 1− y,

lim
ρ→0

R
(a)
T (ρ) = lim

ρ→0
R

(v)
T (ρ),

lim
ρ→0

R
(a)
L (ρ) = 1− y.
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The square root in the denominator requires special attention, since the inte-
grand diverges in y =

√
ρ for the terms not proportional to ρ. While the integral

is still finite, it leads to a false result if we take ρ to zero in that expression before
integrating if that changes the divergence behavior. So we do this only in safe cases
and then the result in the proper order is

lim
ρ→0

1∫
√
ρ

dy

(1− y)+

y

2
√
y2 − ρ

(
y2 − 6y − 2

)
=

1

2
ln

(
4

ρ

)
+

7

4
. (3.95)

On the other hand we want to write the result after ρ → 0. The integral then
results in

1∫
0

dy
y2 − 6y − 2

2(1− y)+
=

9

4
. (3.96)

As a consequence we can write

lim
ρ→0

1

(1− y)+

y

2
√
y2 − ρ

(
y2 − 6y − 2

)
=

y2 − 6y − 2

2(1− y)+
+ δ(1− y)

(
1

2
ln

(
4

ρ

)
− 1

2

)
.

(3.97)

For the remaining term we first simplify ξ(y, ρ) for small ρ:

ln

(
ρ− 2y − 2

√
y2 − ρ

ρ− 2y + 2
√
y2 − ρ

)
= ln

(
(ρ− 2y − 2

√
y2 − ρ)2

(ρ− 2y)2 − 4(y2 − ρ)

)
(3.98)

→ ln

(
16y2

ρ(ρ+ 4(1− y))

)
.

For the point y =
√
ρ this approximation gives ln(4), while the correct result is

0. We have to work under an integral to have properly defined distributions. Since
the difference is only finite and only occurs in one point, we can use the simpler
expression and break down the logarithm into several terms:

lim
ρ→0

1∫
√
ρ

dy
1 + y2

(1− y)+
ξ(y, ρ) (3.99)

= lim
ρ→0

1∫
√
ρ

dy

[
1 + y2

(1 − y)+
ln

(
4

ρ

)
+

1 + y2

(1− y)+
2 ln(y) +

1 + y2

(1− y)+
ln

(
4

ρ+ 4(1− y)

)]
.

The first term is final. The second term is 0 for y = 1, therefore we can simply
write 1/(1−y) instead of 1/(1−y)+. The third term is the most interesting. While
ρ > 0 it is infrared-safe, but in the massless limit we get a (ln(1−y)/(1−y))+-pole.
So we compare the following two integrals:

− lim
ρ→0

1∫
√
ρ

1 + y2

(1− y)+
ln(ρ/4 + 1− y) = − ln2

(
4

ρ

)
− 7

4
− π2

3
, (3.100)

−
1∫

0

dy(1 + y2)

(
ln(1− y)

1− y

)
= −7

4
.
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So we can write

− lim
ρ→0

1 + y2

(1− y)+
ln(ρ/4+1−y) = −(1+y2)

(
ln(1− y)

1− y

)
+δ(1−y)

(
− ln2

(
4

ρ

)
− π2

3

)
.

(3.101)
The result including the longitudinal part is:

lim
ρ→0

R
(u)
T (y, ρ) +R

(u)
L (y, ρ)

(1 − y)+
=

{
δ(1− y)

(
− ln2

4

ρ
+

1

2
ln

4

ρ
− 1

2
− π2

3

)

+

(
1

1− y

)
+

[
(1 + y2) ln

4

ρ
− 4y +

y2

2

]

− (1 + y2)

[
ln(1− y)

1− y

]
+

+ 2
1 + y2

1− y
ln y

}
.

(3.102)

The massless limit of the gluon coefficients (3.90) is simpler. We only need to
know that

ln

(
1 + βτ
1− βτ

)
= ln

(
(1 + βτ )

2

1− β2
τ

)
(3.103)

→ ln

(
4(1− y)

ρ

)
(3.104)

and thus

lim
ρ→0

[
G

(u)
T (y, ρ) +G

(u)
L (y, ρ)

]
= 2CF

1 + (1 − y)2

y

[
ln

4

ρ
+ ln(1− y)− 1

]
.

(3.105)

3.7 Subtraction terms for GM-VFNS

We now list the result for the the NLO calculation in the MS scheme cited from [54].
The result is required for the light quarks and for the calculation of the GM-VFNS
subtraction terms. The respective cross sections for quark and for gluon production
are given by

1

σtot

dσqi
dy

(y, µ, µf ) =
V 2
qi +A2

qi
nf∑
j=1

(
V 2
qj +A2

qj

)
{
δ(1 − y) +

αs(µ)

2π

[
P (0,T )
q→q (y) ln

s

µ2
f

+ Cq(y)

]}
,

1

σtot

dσg
dy

(y, µ, µf ) = 2
αs(µ)

2π

[
P (0,T )
q→g (y) ln

s

µ2
f

+ Cg(y)

]
. (3.106)

P
(0,T )
a→b are the LO timelike splitting functions

P (0,T )
q→q (y) = CF

[
3

2
δ(1 − y) +

1 + y2

(1− y)+

]
, (3.107)

P (0,T )
q→g (y) = CF

1 + (1− y)2

y
.
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The coefficient functions read

Cq(y) = CF

{(
−9

2
+

2

3
π2

)
δ(1− y)− 3

2

(
1

1− y

)
+

+ 2

[
ln(1 − y)

1− y

]
+

+
5

2
− 3

2
y

+ 4
ln y

1− y
− (1 + y)[2 ln y + ln(1− y)]

}
, (3.108)

Cg(y) = CF
1 + (1 − y)2

y
[2 ln y + ln(1− y)].

A comparison of this result with the massles limit (3.102) yields, that the latter
can be written as:

lim
ρ→0

{
δ(1 − y)CF

[
S
(u)
T (ρ) + S

(u)
L (ρ)

]
+

R
(u)
T (y, ρ) +R

(u)
L (y, ρ)

(1− y)+

}
(3.109)

= P (0,T )
q→q (y) ln

s

µ2
f

+ Cq(y) + d(1)q (y, µf ),

lim
ρ→0

CF

[
G

(u)
T (y, ρ) +G

(u)
L (y, ρ)

]

= 2

[
P (0,T )
q→g (y) ln

s

µ2
f

+ Cg(y)

]
+ d(1)g (y, µf ),

where the functions d
(1)
q (y, µf ) and d

(1)
g (y, µf ) are

d(1)q (y, µf ) = P (0,T )
q→q (y) ln

µ2
f

m2
(3.110)

+CF (1 + y2)

{
δ(1− y)−

(
1

1− y

)
+

− 2

[
ln(1− y)

1− y

]
+

}
,

d(1)g (y, µf ) = 2P (0,T )
q→g (y) ln

µ2
f

m2
− 2CF (2 ln y + 1).

We observe that the logarithms ln(s/µ2
f) and ln(µ2

f/m
2) combine in both expres-

sions to ln(s/m2), so that the subtraction terms do not depend on the factorization
scale µf . We write them down as CSub

q (y) and CSub
g (y):

CSub
q (y) = P (0,T )

q→q (y) ln
s

m2
(3.111)

+CF (1 + y2)

{
δ(1− y)−

(
1

1− y

)
+

− 2

[
ln(1− y)

1− y

]
+

}
,

CSub
g (y) = 2P (0,T )

q→g (y) ln
s

m2
− 2CF (2 ln y + 1).

With these results we have everything that we need for the parton cross section in
the convolution integral (3.5). Only the fragmentation functions remian unknown.
We are going to extract them from experimental data in the next chapter.
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Chapter 4

Extraction of Fragmentation
Functions

In this chapter we apply the theoretical result of chapter 3 to extract fragmentation
functions (FFs) from the heavy hadron production in electron-positron-annihilation.
In particular we use the cross section (3.81) with the coefficient functions (3.86)
and (3.87) and the subtraction terms (3.111) for the GM-VFNS and the cited cross
section (3.106) with the coefficients (3.109) for the ZM-VFNS for comparison. By
fitting a set of parameters, which describe the shape of the FFs, to experimental
data from the experiments Belle, CLEO, ALEPH and OPAL [25, 26, 21, 19, 20]
we find FFs for D0, D+ and D∗+ hadrons. The quality of the fits, measured with
the chi-squared-function, is a first check for the theory. This is especially true for
the global fit, where we use data sets at two different scales in one fit and therefore
test the DGLAP evolution equations. The universality of the FFs will be used in
chapter 5 to make predictions for other hadron production processes to.

4.1 Experimental data

Our first data sets are the results from the OPAL [19, 20] and the ALEPH [21]
experiments, which were collected during the run of the Large Electron-Positron
Collider (LEP1) at CERN. The data in question is from collisions at the Z-boson
resonance

√
s = mZ = 91.2GeV. We find the data in the form of 1/N(Z →

hadrons)× (dN(Hc)/dx), where N is the number of detected events. This accords
to the normalized production cross section 1/σtot(dσ/dx) for one of the hadrons
Hc = D0, D+, D∗+ times the branching fraction of the decay channel which was
used to identify the produced hadron. For the normalization we use

σtot = Ncσ0

nf∑
i=1

(V 2
qi +A2

qi)

[
1 +

αs(µ)

2π
CF

3

2

]
(4.1)

with σ0 from eq.(3.82). Here we use the massless cross section, since the charm and
bottom quark masses are negligible at the LEP1 scale.

For consistency, for each data set we adapt the values of the branching fractions
which were used in the according publication. For the OPAL data sets the values
are B(D0 → K−π+) = (3.84 ± 0.13)% and B(D+ → K−π+π+) = (9.1 ± 0.6)%
from [55] for data from [19], and B(D∗+ → D0π+) = (68.3 ± 1.4)% and B(D0 →
K−π+) = (3.83 ± 0.12)% from [56] for data from [20]. For ALEPH [21] we use
B(D∗+ → D0π+) = (68.3±1.4)% and B(D0 → K−π+) = (3.85±0.09)% from [57].

45
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Both OPAL and ALEPH provide extra data for b-tagged events, which we use to
enhance the differentiation between fragmentation functions of the b-quark and of
the c-quark, which dominate the D-hadron production. In the case of the ALEPH
data we have to multiply the b-tagged events with Rb = Γ(Z → bb̄)/Γ(Z → hadrons)
- the fraction of the b-tagged events in the full hadronic sample - and f(b → D∗+),
the probability of a b quark to hadronize into a D∗+ meson. We use the value
Rbf(b → D∗+) = (4.66± 0.51)%, which was determined in the ALEPH publication
[21] together with the hadron production data.

The second sort of data is from the B-factory experiments Belle [25] and CLEO
[26]. Both collaborations have collected electron-positron-annihilation events near
the Υ(5S) resonance at

√
s = 10.58GeV and present them in the form dσ/dxp,

where xp = |�p||�p|max. The highest possible momentum is related to the maximum

energy
√
s/4 by |�p|max =

√
s/4

√
1− ρH . While x runs from

√
ρH ≤ x ≤ 1, xp

takes values from 0 to 1. Near the production threshold xp is more appropiate for
meaningful plots. The conversion formulas between x and xp read

xp =
√
(x2 − ρH)/(1− ρH) (4.2)

x =
√
(1− ρH)x2

p + ρH

dσ

dxp
= (1− ρH)

xp
x

dσ

dx
(x).

The data from CLEO is analyzed for
√
s = 10.55GeV, where we use the data

in the range of 0.20 < xp < 0.95. In the case of Belle we find seperate data
for the continuum at

√
s = 10.52GeV and directly on the resonance at

√
s =

10.58GeV, which is used to seperate contributions from fragmenting charm- and
bottom-quarks. We only use the continuum data. Both Belle and CLEO provide
their data with the b-quark contribution being subtracted, so we won’t add them
in the theory either when fitting. However the b → Hc FF will still have a small
influence on the cross section through the evolution equations.

The used range of data is 0.08 < xp < 0.94. Since the data from the B-factories
is not normalized with the total cross section, it depends on the squared running
fine-structure constant α2. At

√
s = 10.52GeV we use the value 1/α = 132 [58].

4.2 Initial state radiation

The experimental data on inclusive single-hadron production in e+e− annihilation
naturally contains electroweak corrections, which are not subtracted in the analysis.
The largest correction stems from electromagnetic radiation coming from the incom-
ing electrons and positrons, the initial state radiation (ISR). The ISR is suppressed
by a factor of α, but enhanced by the logarithm ln(s/m2

e), where me = 511 keV is
the electron mass. At Belle and CLEO energies, the hadronic cross section decreases
with increasing invariant mass of the hadronic system. ISR reduces the invariant
mass, therefore the cross section is increased and the shape of the FFs is modified.
The effect of ISR has been examined in [28] and found to be non-negligible for the
analysis of Belle and CLEO data. In contrast the OPAL and ALEPH data has
been taken at the Z resonance, which means that a loss of energy of the incoming
leptons takes the invariant hadronic mass away from the resonance peak. Therefore
we have good reason to assume that the effect is suppressed for the data from the
LEP collider.

Unlike the procedure in [28], where the experimental data is modified in several
iterations, we apply the ISR effects on the theory output, which is then fitted to the
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experimental data. This is possible thanks to some approximations, which allow us
to include the ISR effects into each theory curve during the fitting process to Belle
and CLEO data without slowing the program down too much.

The dominant ISR corrections are incorporated with the help of the structure-
function approach, in which the photon emission is taken to be collinear to the
incoming leptons [59, 60]. With this assumption the ISR corrections can be treated
in analogy to the collinear parton model. We call the ISR-corrected differential
cross section dσISR(p+, p−), where the p± denote the four-momenta of the incom-
ing positron and electron respectively. The corrected cross section is obtained by
convoluting the uncorrected differential cross section dσ(p+, p−) with radiator func-
tions De±(x±, s), which measure the probability for the positron/electron to retain
the fraction x± of its energy after photon emission. This convolution reads

dσISR(p+, p−) =

1∫
0

dx+

1∫
0

dx−De+(x+, s)De−(x−, s)dσ(x+p+, x−p−). (4.3)

The radiator functions De±(x±, s) contain the leading logarithms, which have
been resummed using the method by Gribov and Lipatov [61]. The expression can
be found in [60]. It is

De±(x±, s) =
1

2
β̃(1 − x)β̃/2−1∆′ − 1

4
(1 + x)β̃ (4.4)

+
1

32
β̃2

(
(1 + x)[−4 ln(1− x) + 3 lnx]− 4

1− x
lnx− 5− x

)

with β̃ = (2α/π)(L − 1), L = ln(s/m2
e) and

∆′ = 1+
3

8
β̃ +O

(
β̃2
)
. (4.5)

The structure-function approach was mostly applied to total cross sections in
the literature. In this case, one integration can be carried out independently of the
considered process and leads to the luminosity function

H(τ, s) =

∫ 1

0

dx+

∫ 1

0

dx−δ(τ − x+x−)De(x+, s)De(x−, s). (4.6)

with τ = x+x−.
An expression for H(τ, s) can also be found in [60] in terms of the variable

χ = 1− τ . Since it will be sufficient as an approximation we cite it here:

H(χ, s) = ∆β̃χβ̃−1 − 1

2
β̃(2− χ) +

1

8
β̃2{(2− χ)[3 ln(1− χ)− 4 lnχ] (4.7)

−4[ln(1 − χ)/χ− 6 + χ}+O
(
β̃3
)
,

with

∆ = 1 +
α

π

(
3

2
L+

π2

3
− 2

)
(4.8)

+
(α
π

)2{[9
8
− 2ζ(2)

]
L2 +

[
−45

16
+

11

2
ζ(2) + 3ζ(3)

]
L− 6

5
[ζ(2)]2

−9

2
ζ(3)− 6ζ(2) ln 2 +

3

8
ζ(2) +

57

12

}
.
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Since we need the cross section differential in x, we have to perform a Lorentz
boost along the beam axis. We obtain from eq.(4.3) the formula

dσISR

dx
(x, s) =

∫
dx+ dx− dx′ d cos θ′ δ(x− x(x+, x−, x′, cos θ′))De(x+, s)De(x−, s)

× d2σ

dx′ d cos θ′
(x′, cos θ′, x+x−s), (4.9)

where the primed variables refer to the hadronic CMS. The result of chapter 3 is
valid for the hadronic reference frame, while in experiment only the e+e− CMS can
be observed. We reach the hadronic system through a Lorentz boost along the beam
axis. The four-momenta of the leptons - neglecting their masses in the kinematics
- after ISR are in the e+e− CMS

p+ =

⎛
⎜⎜⎝

x+El
0
0

x+El

⎞
⎟⎟⎠ , p− =

⎛
⎜⎜⎝

x−El
0
0

−x−El

⎞
⎟⎟⎠ , (4.10)

with the energy El of the lepton in the laboratory frame before radiating a photon.
We assume equal energies for both beams, otherwise we would have to perform
another boost from the laboratory frame to the leptonic CMS.

After a Lorentz boost with velocity βL and associated Lorentz factor γL =
1/
√
1− β2

L we have

p′+ = γLx+El

⎛
⎜⎜⎝

1− βL
0
0

1− βL

⎞
⎟⎟⎠ , p′− = γLx−El

⎛
⎜⎜⎝

1 + βL
0
0

−1− βL

⎞
⎟⎟⎠ . (4.11)

We want to boost into the hadronic CMS, where the sum of the three-vectors is
zero, so βL has to fulfill the condition

x+(1− βL) + x−(−1− βL) = 0, (4.12)

which leads to

βL =
x+ − x−
x+ + x−

. (4.13)

From this it follows that our observable x can be expressed in terms of the boost
variables by

x(x+, x−, x′, cos θ′) = γL

(√
τx′ + βL

√
τx′2 − ρH cos θ′

)
. (4.14)

We use the delta function to integrate out cos θ′. With the help of eq.(4.14) we
find that

δ(x− x(x′, x+, x−, cos θ′)) (4.15)

=
2

|x+ − x−|
√
x′2 − ρH/τ

δ

(
cos θ′ − 2x− (x+ + x−)x′

(x+ − x−)
√
x′2 − ρH/τ

)
.

We now need the integration boundaries for the other variables. From the con-
dition | cos θ′| ≤ 1 and eq.(4.15) we can derive a quadratic equation for x− at the
integration boundaries

(4x′2x2
+ − 4xx′x+ + ρH)x2

− +(−4xx′x2
+ +4x2x+ − 2ρHx+)x− + x2

+ρH = 0. (4.16)
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This equation is symmetric under exchange of x+ and x−. We will use this fact
below.

The solutions are with a± = (x ±
√
x2 − ρH)/2:

x− = −1

8

1

x+x′(x′x+ − x) + a+a−
(4.17)

×
(
4x+(x(x − x′x+)− 2a+a−)±

√
16x2

+(x − x+x′)2(x2 − ρH)

)

=
x+

2

1

x+x′(x− x+x′) + a+a−
(2a±(x− x+x

′)− 2a+a−)

= a±
(x− x+x

′)− a∓
x′(x− x+x′)− a+a−

x+

= a±
(x − x+x

′)− a∓

((x− x+x′)− a∓)
(
x′ − a∓

x+

)

=
a±

x′ − a∓
x+

.

In the massless limit the solutions become x/x′ and 0, therefore we can conclude
that the valid range for x− is

a−
x′ − a+

x+

≤ x− ≤ a+
x′ − a−

x+

. (4.18)

Now we make use of the fact that eq.(4.16) is symmetric under exchange of x−
and x+. If we integrate first over x− and then over x+, the lower integration bound-
ary for x+ become quite complicated due to the Lorentz transformation involved.
Since the problem is symmetric, the same happens with the x− boundaries when
the integration over x+ is the inner integral.

Therefore we split the integral into two parts for the cases x+ > x− and x+ < x−
and integrate over the smaller variable first. Then the lower integration boundary
for the respective outer integral is the situation where x+ = x−. In this case our
boost velocity βL is zero, and the only effect of ISR is the energy loss for the CM
energy, which reads x/x′ = √

x+x− = x±. One can check with the help of eq.(4.17)
that, if x± > x∓ and x± = x/x′, then the upper bound for the x∓ integral becomes
x/x′, which satisifies the condition x± ≥ x∓.

The upper boundaries for the outer integrals are the obvious limits x′ ≤ 1 and
x± ≤ 1. We just have to make sure that x′ ≥ x in all cases. Without a Lorentz
boost this is true, because then the relation is just x′ =

√
τx due to the definitions

x′ = 2E′/
√
τs and x = 2E/

√
s and E′ = E. However with a Lorentz boost,

whenever we boost against the flight direction of the hadron, we get E > E′.
So we check that x′ ≥ x is true in that cases as well, which means that the

energy loss due to the radiation of the photon always has a greater impact than
the raise in the hadron energy due to a Lorentz transformation. We have to show
E
√
τ ≤ E′. In the worst case the hadron’s momentum is parallel to the axis and

we boost in the opposite direction. In that case the Lorentz transformation for E′

- still under the assumption that x+ > x− - leads to:

E
√
τ ≤ γL(E + βL

√
E2 −m2) (4.19)

E
√
τ ≤ x+ + x−

2
√
τ

(
E +

x+ − x−
x+ + x−

√
E2 −m2

)
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1 ≤ x+ + x−
2τ

(
1 +

x+ − x−
x+ + x−

√
1− m2

E2

)

=
x+

2x+x−

(
1 +

√
1− m2

E2

)
+

x−
2x+x−

(
1−
√
1− m2

E2

)
.

The last expression is bigger than 1, because of

x+

2x+x−

(
1 +

√
1− m2

E2

)
+

x−
2x+x−

(
1−
√
1− m2

E2

)
(4.20)

≥ x−
2x+x−

(
1 +

√
1− m2

E2

)
+

x−
2x+x−

(
1−
√
1− m2

E2

)

=
1

x+

≥ 1.

The result is then

dσISR

dx
(x, s) (4.21)

=

1∫
x

dx′

⎛
⎜⎝

1∫
x/x′

dx+

a+/(x
′−a−/x+)∫

a−/(x′−a+/x+)

dx− +

1∫
x/x′

dx−

a+/(x
′−a−/x−)∫

a−/(x′−a+/x−)

dx+

⎞
⎟⎠

× De+(x+, s)De−(x−, s)
|x+ − x−|

√
x′2 − ρH/τ

d2σ

dx′ d cos θ′

(
x′,

2x− (x+ + x−)x′

(x+ − x−)
√
x′2 − ρH/τ

, τs

)
,

where the boundaries have also been checked during run-time by having the program
control that all integration variables are within their expected limits.

By numerical inspection in our specific application we find that we can safely
use the substitution

De+(x+, s)De−(x−, s) ≈ δ(1− x+)He+e−(τ, s). (4.22)

The reason of course is that there is a symmetry whether the electron or the positron
emitts a photon and if one substitutes the angle θ′ → π − θ′ at the same time.

We further simplify eq.(4.22) by using an approximation for the dependence on
the polar angle.

d2σ

dx′ d cos θ′
(x′, cos θ′, τs) ≈ 3

8
(1 + cos2 θ′)

dσ

dx′ (x
′, τs) (4.23)

≈ 3

8
(1 + cos2 θ′)

σ(τs)

σ(s)

dσ

dx′ (x
′, s).

We justify the first line by pointing to eq.(3.3). The longitudinal component dσL/dx
is zero in the ZM approach and suppressed for m2 � s. The asymmetric compo-
nent disappears when integrating over cos θ′. The second line describes the leading
power-like dependence on the CMS energy while neglecting the scaling violations
of the FFs, which are just logarithmic. For the factor σ(τs)/σ(s) we use the LO in
the GM approach, but we neglect the contribution from Z-boson exchange which
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is suppressed for
√
s � mZ :

σ(τs)

σ(s)
=

1

τ

1 + ρ/(2τ)

1 + ρ/2

√
1− ρ/τ

1− ρ
. (4.24)

With these simplifications we get the working formula

dσISR

dx
(x, s) ≈

1∫
x

dx′ dσ
dx′ (x

′, s) (4.25)

×
a+/(x

′−a−)∫
a−/(x′−a+)

dτ
2He+e−(τ, s)

(1− τ)
√

x′2 − ρH/τ

3

8
(1 + cos2 θ′)

σ(τs)

σ(s)
,

which we inserted in our fit program as a correction for the CLEO and for the Belle
data. When applying the ISR correction to the ZM approach, we set ρ = 0 in
Eq.(4.24) for consistency.

We show the effect of ISR corrections on the distribution of e+ + e− → D+ +X
in Fig.(4.1), where the solid line shows the distribution after applying the ISR
corrections on the slashed line. We observe that the initial state radiation shifts the
spectrum to smaller values of xp while increasing the maximum. This is expected
since ISR reduces the available hadronic energy, which softens the spectrum and
increases the cross section.
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Figure 4.1: xp distributions of D+ production at
√
s = 10.52GeV from the fit

to the Belle [25] and CLEO [26] data including ISR corrections (solid line) and
corresponding result with the latter subtracted (dashed line).
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4.3 Parametrization of fragmentation functions

We parametrize the c and b quark FFs as suggested by Bowler [62] at their respective
starting scales mc and mb. This parametrization contains three parameters - the
normalization N and a and γ in the form

DHc

Q (z, µ0) = Nz−(1+γ2)(1− z)ae−γ
2/z. (4.26)

This parametrization yielded the best fit to Belle data in an analysis using
the Monte Carlo event generator JETSET/PYTHIA [25], which contains several
fragmentation models. The main difference is that we evolve our parametrization
from the starting scale while it is common in experimental analyses to apply the
parametrization directly at the experimental scale. However the evolution of the
fragmentation function from µ0 = 5GeV to

√
s = 10.52GeV only has a mild in-

fluence on the form of the FFs function curve. We use a parameter γ instead of a
parameter b times the transversal mass m⊥ squared since the polar angle is already
integrated out in the partonic part of our convolution integral.

The Bowler parametrization is a refinement of the similar parametrization of the
Lund group [63]. Both parametrizations model fragmentation as an initial produced
pair of a quark and an antiquark. The two particles are connected by a string of
colour, which is cut by a pair of a light quark and antiquark from the vacuum. In the
end two jets are produced, each one containing one particle of the original heavy
pair. Bowler refines the method how the colour string is cut following a model
formulated by Artru and Mennessier [64] and succeeds to conform with Bjorken
[65], who predicted on general grounds that heavy hadrons retain a fraction of
1 − 1GeV/mQ of the original heavy quark’s momentum. This translates into the
FFs having their peak at that momentum fraction.

For comparison we tested the Lund parametrizations as well as the common
Peterson parametrization [66] and the power ansatz both used for older fits to the
LEP data [22]. Bowler proved far superior to the latter two parametrizations to fit to
the Belle and CLEO data, which is not surprising since it was formulated with heavy
quarks in mind, and is still a clear improvement over the Lund parametrization.
Modifying Bowler by adding another parameter in different ways hardly improved
the fit, which shows the accuracy of the modelling.

4.4 Implementation

The fit procedure has been implemented in the programming language FORTRAN.
The heart of the program is the chi-squared function:

χ2(Nc, ac, γc, Nb, ab, γb) =

k∑
i=1

(
(dσ/dx)exp,i − (dσ/dx)th,i(Nc, ac, γc, Nb, ab, γb)

∆(dσ/dx)exp,i

)2

.

(4.27)
Here we sum over the k bins of the experimental data (dσ/dx)exp,i, where

∆(dσ/dx)exp,i is the error of that value. We compare that number with our the-
oretical prediction for that bin (dσ/dx)th,i(Nc, ac, γc, Nb, ab, γb), which has to be
integrated over the x range of the bin and depends on the parameters of the FFs.
We find the set of parameters, where the function has its global minimum, with the
help of the MINUIT library [67].

Our program first loads an input file, which contains the names of the files with
the experimental data and the starting parameters for the FFs. After the data is
loaded, the parameters of MINUIT are set. This includes the starting parameters
for the FFs, which may be fixed depending on the current fit, and optionally limits
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for the parameters. Then the chi-squared function is given to MINUIT, which will
attempt to find the minimum in a limited number of calls of the chi-squared function
by variations of the parameters. Typically one has to restart the program with the
result of the last run several times, before the minimization processes converges.
Also we have to restart the fit with completely different parameters to check that
MINUIT has not converged in a local minimum. If the parameters wander off into
absurd regions (like negative normalization) one can set limits for the parameters,
however it is not advised to do so without need since MINUIT applies a mapping
on the parameter in question. This mapping can disturb the convergence of the
algorithm.

In the chi square function, the FFs are set according to the input parameters
provided by MINUIT and evolved numerically according to the DGLAP equations.
After that the program calculates the convolution integral (3.5). The parton cross
section (3.81) contains distributions, as we can see in eq.(3.83). For the actual
implementation we use the definition of the plus distribution (2.13):

dσ

dx
=

1∫
ymin

dy

y
f(y)D(x/y)

(
1

1− y

)
+

(4.28)

=

1∫
ymin

dy

f(y)
y D(x/y)− f(1)D(x)

1− y
− f(1)D(x)

ymin∫
0

dy

1− y

=

1∫
ymin

dy

f(y)
y D(x/y)− f(1)D(x)

1− y
+ f(1)D(x) ln(1 − ymin).

The terms proportional to (ln(1− x)/(1− x))+ (occuring in the subtraction terms)
are treated in an analogue way. The version for the delta distributions is trivial.
The remaining integrations are calculated numerically with a Gaussian integration
routine.

The prediction for the Belle and the CLEO data is then corrected for ISR.
For the multi-dimensional integration in the ISR integral (4.25) we use the Vegas
algorithm from the CUBA library [68].

4.5 Fit results

For each hadron species (D0, D+ and D∗+) we perform a combined fit to all avail-
able data sets (Belle, CLEO, ALEPH and OPAL), which we call the global fit.
Furthermore we run a seperate fit to the B-factory (Belle/CLEO) data sets and to
the OPAL data (ALEPH and OPAL combined for D∗+) respectively. All fits are
executed in the GM-VFNS with heavy quark and hadron masses and for comparison
a second time in the massless approach.

We summarize the values for fixed parameters in the following paragraph. We
start at the initial scale µf = mc = 1.5GeV, where the c-quark FF is set according
to the Bowler parametrization. The parameters of the parametrization are chosen
by the user in the first step and subsequently altered by the MINUIT routine for
each step to find the set of parameters which minimizes χ2, that is χ2 divided by
the number of data points. The remaining FFs start with zero. The FFs are then
evolved with nf = 4 active quark flavors. We switch to nf = 5 at the threshold value
µf = mb = 5.0GeV. The FFs are evolved according to DGLAP to the appropiate
scale µf =

√
s depending on the data set. For the global fit this procedure is

repeated for each scale where we have at least one set of data available.
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Table 4.1: Values of fit parameters for the D0 meson resulting from the Belle,
CLEO, OPAL, and global fits in the GM approach together with the values of χ2

achieved.

Belle+CLEO-GM OPAL-GM global-GM
Nc 1.51 · 107 4.42 · 104 8.80 · 106
ac 1.56 1.52 1.54
γc 3.64 2.83 3.58
Nb 13.5 13.5 78.5
ab 3.98 3.98 5.76
γb 0.921 0.921 1.14

χ2 3.15 0.794 4.03

Table 4.2: Values of fit parameters for the D+ meson resulting from the Belle,
CLEO, OPAL, and global fits in the GM approach together with the values of χ2

achieved.

Belle+CLEO-GM OPAL-GM global-GM
Nc 5.66 · 105 2.82 · 104 5.67 · 105
ac 1.15 1.49 1.16
γc 3.39 2.92 3.39
Nb 18.8 18.8 185
ab 4.71 4.71 7.08
γb 1.17 1.17 1.42

χ2 1.30 0.509 1.99

We find that the value Λ
(4)

MS
has only a small impact on the fit result and is

therefore, if used as an additional fit parameter, only weakly constrained. We

therefore adopt the value Λ
(5)

MS
= 221MeV from Ref.[70] and match Λ

(4)

MS
accordingly

to Λ
(4)

MS
= 321MeV with the help of [69]. The masses of the hadrons are mD0 =

1.86GeV, mD+ = 1.87GeV and mD∗+ = 2.01GeV [70].

We start with fits at one scale. In the Belle/CLEO data, all charmed hadrons
coming from B-meson decay are excluded. Therefore we don’t add the contribution
from b-quarks which fragment into D-mesons. But we still want the DHc

b fragmen-
tation function to take part in the DGLAP evolution, since it influences the form of
the remaining FFs. Therefore we start with the LEP data and use the result for the
b → Hc fragmentation as input for the Belle/CLEO fits. However the parameters
for the b-quark FFs get fixed for the B-factory data, since the influence through the
evolution is rather small and the parameters are barely constrained by the fit.

For LEP we have two sets of data per experiment and particle sort: In addition
to each sum over all partons we have a b-tagged data set, which contains only the
events stemming from a Z → bb̄ decay before fragmentation. The latter set is fitted
to the appropiate theory curve, in which only the b contribution is used.

For the global fit the parameters of the c and b fragmentation functions are free
fit parameters. Of course the result for the b → Hc fragmentation will be dominated
by the LEP data set, while the Belle data has the biggest influence on the other
FFs. We present the resulting parameters together with the value of χ2 achieved in
Tables 4.1 to 4.3.
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Table 4.3: Values of fit parameters for the D∗+ meson resulting from the
Belle+CLEO, ALEPH+OPAL, and global fits in the GM approach together with
the values of χ2 achieved.

Belle+CLEO-GM ALEPH+OPAL-GM global-GM
Nc 1.33 · 107 4.58 · 104 1.10 · 107
ac 0.992 1.38 1.07
γc 3.84 3.00 3.81
Nb 6.67 6.67 14.0
ab 3.28 3.28 3.85
γb 1.04 1.04 1.14

χ2 3.74 2.06 6.90

4.6 Discussion of results

Fig.4.2 shows the fits to LEP data graphically. We observe in Fig.4.2(c) that the
D∗+ data sets from ALEPH and OPAL are only moderately compatible. This
explains the larger value of χ2 compared to the values for D0 and D+. Apart from
this problem theory and experiment are compatible.

We present the fits to the data from the B factories in Fig.4.3. In all cases
the theory curve does not match the data distribution completely. The theory
prediction is too high for small xp values up to approximately xp < 0.35, before
being too low by up to one σ. The maximum of the theory curve is shifted slightly
to higher xp values. One could say that the fit is not able to produce a steep enough
curve to match the data perfectly. Still the fits are acceptable, especially the D+

fit achieves a good χ2 value.

And finally Figs.4.4 to 4.6 contain the global fits with two plots for each hadron,
one for Belle and CLEO data and one for OPAL and ALEPH data. Due to the
precision of the Belle data, it dominates the fit except for the b → Hc fragmentation.
We can see that for LEP data the charm contribution is too high, which is the main
reason for the higher χ2 value. It is possible that the data sets are not completely
compatible. In Ref.[28] the fragmentation functions were allowed to have different
normalizations thus correcting possible systematic differences in the experimental
results. However that method ruins the global fits as a check for the FF evolution.
Also in Ref.[28] it was speculated that non-perturbative power corrections are the
source of the problem.

We have repeated the fits in the ZM approach for comparison. We set mc =
mb = 0 except in the definition of the starting scale µ0. We still have mH �= 0, so
that the x distributions have finite lower endpoints. The results are presented in
Tables (4.4) to (4.6). The comparison of the fit results in the GM-VFNS and in the
ZM approach shows that the inclusion of finite quark masses reduces the χ2 values
of the global fits by 11 − 16%. The fit result for the Belle/CLEO fits is slightly
better with quark masses for the D0 and the D+ with a 3− 5% lower χ2, while it is
1−2% higher for the D∗+. The latter differences are small enough that conclusions
should be drawn with care. As expected the ALEPH/OPAL fits are practically
unaffected by the quark masses.

From the comparison of the fit parameters it is hard to judge how much the FFs
differ. In order to compare the GM and ZM approaches, we plot the fragmentation
functions of the c → D+ and the g → D+ fragmentation as functions of z in the
GM and in the ZM approach in Fig. 4.7. We find only a little difference between
the GM and ZM results. In order to see the impact of the differences of the FFs,
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Table 4.4: Values of fit parameters for the D0 meson resulting from the Belle,
OPAL, and global fits in the ZM approach together with the values of χ2 achieved.

Belle+CLEO-ZM OPAL-ZM global-ZM
Nc 1.03 · 107 3.43 · 104 1.04 · 107
ac 1.48 1.48 1.50
γc 3.60 2.80 3.60
Nb 13.4 13.4 80.8
ab 3.96 3.96 5.77
γb 0.923 0.923 1.15

χ2 3.25 0.789 4.66

Table 4.5: Values of fit parameters for the D+ meson resulting from the Belle,
OPAL, and global fits in the ZM approach together with the values of χ2 achieved.

Belle+CLEO-ZM OPAL-ZM global-ZM
Nc 7.30 · 105 2.62 · 104 7.31 · 105
ac 1.12 1.48 1.13
γc 3.43 2.91 3.43
Nb 19.0 19.0 163
ab 4.71 4.71 6.93
γb 1.17 1.17 1.40

χ2 1.37 0.507 2.21

Table 4.6: Values of fit parameters for the D∗+ meson resulting from the Belle,
ALEPH, OPAL, and global fits in the ZM approach together with the values of χ2

achieved.

Belle+CLEO-ZM ALEPH+OPAL-ZM global-ZM
Nc 1.05 · 107 2.80 · 104 1.14 · 107
ac 0.929 1.33 1.03
γc 3.82 2.93 3.82
Nb 6.52 6.52 14.9
ab 3.25 3.25 3.87
γb 1.04 1.04 1.16

χ2 3.69 2.04 7.64
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Figure 4.2: xp distributions of (a) D0, (b) D+, and (c) D∗+ mesons from OPAL
[19] and ALEPH [21] compared to the respective fits in the GM approach from
Tables 4.1–4.3. The dotted, dashed, and solid lines refer to the c-quark-initiated,
b-quark-initiated, and total contributions, respectively. In frame (c), the D∗+ data
from OPAL [20] are included for comparison.

we convolute the ZM parton sections with the GM FFs in Fig. 4.8 and plot the
result together with the proper GM-VFNS result. It turns out that the finite-
mc correction to the hard-scattering correction only amounts to a few percent. A
similar observation was made in [71] using perturbative FFs [5].

For further comparisons we study the impact of the finite-mH correction. We
repeat the Belle/CLEO-ZM fit for the D+ meson with mH = 0. This requires
some special measures. First of all mH = 0 implies x = xp. The fit works very
badly for low xp values, therefore we exclude the six data bins with xp < 0.2 to
get an acceptable fit to the more interesting part of the distribution. Furthermore
we introduce the condition τ > ρD+ in the ISR correction (4.25), in which ρD+

is put to 0 otherwise, to ensure that the hadronic energy after ISR is above the
production threshold. The resulting c → D+ and g → D+ FFs are also shown in
Figs. 4.7. We immediately see a clear difference. The peak of the c → D+ FF is
reduced significantly and shifted to a lower value of z. The g → D+ FF is only
moderately affected. As expected we find a reciprocal change in the line shape of
the xp distribution in Fig. 4.8, where the peak position and height are substantially
increased. The situation is similar for the D0 and D∗+ mesons.

In Fig. 4.9 we compare our new FF for the D+ meson to the FFs from [23] and
[24]. The fits from the two latter works are extracted from LEP data only. Therefore
it is not surprising that our new FF with the Bowler parametrization gives a better
description near the production threshold. The main difference between [23] and
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Figure 4.3: xp distributions of (a) D0, (b) D+, and (c) D∗+ mesons from Belle [25]
compared to the respective fits in the GM approach from Tables 4.1–4.3.

[24] is the choice of the flavor threshold. While in [24] nf is increased at the quark
masses like in this work, in [23] the flavor thresholds are 2mq. This explains the
difference between the dashed and the dotted line. The dotted line has barely been
influenced by the evolution equations, which is especially visible for the g → D+

FF.
Besides the c → Hc and b → Hc themselves, another object of interest are their

first two moments. The first moment corresponds to the branching fraction

BQ(µf ) =

1∫
max(

√
ρH ,zcut)

dz DQ(z, µf ), (4.29)

with the heavy quark Q = c, b. The second moment corresponds to the average
fraction of energy that the meson Hc receives from the quark:

〈z〉Q(µf ) = 1

BQ(µf )

1∫
max(

√
ρH ,zcut)

dzz DQ(z, µf). (4.30)

The value zcut = 0.1 excludes for ALEPH and OPAL data the problematic z range
where our formalism is not valid. At that range there is no experimental data either.
For BELLE and CLEO the lower integration limit is quite high with

√
ρH ≈ 0.4,

which we have to keep in mind. We have collected the values of BQ(µf ) and
〈z〉Q(µf ) for Q = c at µf = 10.52GeV and µf = mZ , and for Q = b at µf = 2mb

and µf = mZ in Tables 4.7 and 4.8. We give the values for all fits, which means for
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Figure 4.4: xp distributions of D0 mesons from (a) Belle [25], CLEO [26], and (b)
OPAL [19] compared to the global fit from Table 4.1. In frame (b), the dotted,
dashed, and solid lines refer to the c-quark-initiated, b-quark-initiated, and total
contributions, respectively.
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Figure 4.5: xp distributions of D+ mesons from (a) Belle [25], CLEO [26], and (b)
OPAL [19] compared to the global fit from Table 4.2. In frame (b), the dotted,
dashed, and solid lines refer to the c-quark-initiated, b-quark-initiated, and total
contributions, respectively.

the Belle/CELO-fits, for the ALEPH/OPAL-fits and for the global fits in the GM
and in the ZM approach respectively.

We observe from Table 4.7 that regardless of the approach the values of Bc(µf )
from ALEPH/OPAL fits are smaller than those from the Belle/CLEO fits. The
difference is less than 10% for the D0 and D∗+ mesons and approximately 20%
for the D+ meson. The corresponding results from the global fits lie between both
results, but more towards the Belle/CLEO data, which can be expected due to the
bigger and more precise data set. The GM and the ZM approach both yield similar
results. In the case of the Bb(µf ) the differences between the three fits and the two
approaches are minor. We remember that the b → Hc fragmentation function is
mostly evaluated from the LEP data and in the case of the BELLE/CLEO data
taken directly from the ALEPH/OPAL fit.

Also from Table 4.7 we find that it is fruitless to compare the branching frac-
tions from one fit at different scales. The evolution should have little effect on the
branching fractions, but due to the hadron mass we have introduced the lower inte-
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Figure 4.6: xp distributions of D∗+ mesons from (a) Belle [25], CLEO [26], (b)
ALEPH [21], and OPAL [20] compared to the global fit from Table 4.3. In frame (b),
the dotted, dashed, and solid lines refer to the c-quark-initiated, b-quark-initiated,
and total contributions, respectively.
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Figure 4.7: (a) c → D+ and (b) g → D+ FFs of the Belle/CLEO fits at
µf = 10.52GeV as functions of z in the GM approach (solid lines) and in the
ZM approaches with mH �= 0 (dashed lines) and mH = 0 (dotted lines).

gration limit. It seems that at
√
s ≈ 10GeV this limit cuts away important parts of

the fragmentation function, especially for b → Hc. As a result Bb(2mb) is typically
around four times smaller than Bb(mZ). The FF for c → Hc loses only ∼ 20%,
which can be explained by the fact that the c → Hc FFs have their peaks at higher
values as we will see in Table 4.8. We have to conclude that parts of the FF, which
are kinematically forbidden near the production threshold, contain important parts
for the evolution to higher scales. Or as a second possibility one might want to keep
in mind, that fit algorithms in multi-scale fits might use the part of the FF, which
doesn’t contribute at a low scale, to improve the fit at higher scales without physical
justification. The latter possibility is however limited by the parametrization of the
FFs, in our case Bowler.

Looking at Table 4.8, we see that the values of 〈z〉c(µf ) are shifted towards
smaller values through the DGLAP evolution in µf . The quark-mass effects turn
out to be insignificant here. The values of 〈z〉c(µf ) from the ALPEH/OPAL fits
fall below 5 − 9% below those from the Belle/CLEO fits. Again the values from
the global fits very close to the Belle/CLEO results, but slightly shifted towards
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Figure 4.8: xp distributions of e
+e− → D++X at

√
10.52GeV in the GM approach

(solid line) and in the ZM approaches with mH �= 0 (dashed lines) and mH = 0
(dotted lines), all valuated with the FFs from the Belle/CLEO-GM fit.

the ALEPH/OPAL results. This is also visible in the plots of the cross sections
(Figs.4.4 to 4.6). For 〈z〉c(µf ) the differences between the various fits are marginal.

We point out that the fragmentation functions and their moments, while useful
for a quick comparison with other FFs, are non-physical quantities which depend on
scale, scheme, order, parametrization and initial scale. Nevertheless a comparison
of our values of BQ(µf ) and 〈z〉Q(µf ) to the corresponding results from measured
x distributions might be interesting. We cite the results from the experimental
analysis in the Tables 4.9, 4.10 and 4.11. For a more direct comparison we also
list the values of BQ(µf ) and 〈z〉Q(µf ), that are calculated from our theoretical
predictions of the differential cross sections.

First we compare the branching fractions and the average energy from our frag-
mentation functions in Tables 4.7 and 4.8 with the ones from our actual cross
sections in Tables 4.9, 4.10 and 4.11. In LO the two quantities are directly pro-
portional, in our case the cross section is shifted due to NLO effects and the ISR
correction. We find that the branching fractions at the scale µf = mZ are higher
by approximately 3% when calculated from the cross sections. We expect the ISR
correction to lower these values, so the remaining NLO corrections must lead to
an increase. The final difference is rather small, which justifies the usual direct
comparison of values from the FFs to experimental values from measured cross
sections.

The average energy fraction passed is also higher when coming from the ob-
servable cross section. At the b-factory scale we observe a difference of 2%, which
seems acceptable. At the LEP scale the difference is higher at approximately 5%.
Therefore we can conclude that in our approach branching fractions and average
energy fractions passed to the hadron derived from the observable cross section are
overestimated by a few percents compared to their theoretical counterparts in the
fragmentation.
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Table 4.7: Values of c → Hc and b → Hc branching fractions at µf = 2mb,
10.52GeV and mZ .

FF set Hc Bc(10.52GeV) Bc(mZ) Bb(2mb) Bb(mZ)
Belle/CLEO-GM D0 0.525 0.611 0.146 0.492

D+ 0.232 0.269 0.0590 0.168
D∗+ 0.211 0.249 0.0696 0.206

ALEPH/OPAL-GM D0 0.493 0.591 0.146 0.491
D+ 0.185 0.220 0.0590 0.167
D∗+ 0.200 0.247 0.0695 0.206

global-GM D0 0.522 0.608 0.140 0.490
D+ 0.230 0.268 0.0512 0.157
D∗+ 0.206 0.245 0.0716 0.212

Belle/CLEO-ZM D0 0.534 0.622 0.146 0.490
D+ 0.235 0.273 0.0592 0.167
D∗+ 0.215 0.254 0.0695 0.205

ALEPH/OPAL-ZM D0 0.489 0.587 0.146 0.489
D+ 0.185 0.221 0.0591 0.166
D∗+ 0.201 0.248 0.0694 0.204

global-ZM D0 0.527 0.614 0.141 0.488
D+ 0.234 0.272 0.0517 0.157
D∗+ 0.209 0.248 0.0718 0.210

We now take a look at the available branching fractions from the experiments
in Table 4.9. We only have values for OPAL and ALEPH. For the latter the pub-
lication [21] contains branching fractions for the D0 and D+ despite the lack of x
distributions. Looking at the theoretical values from the global fit, we find that the
theory predictions are substantially higher in the range of 10− 20% and even over
25% for the only b → D value available. The overestimation of the c contribution
for high x values has already been seen in Figs. 4.4 to 4.6. However the high value
for b → D∗+ cannot be explained by the influence of Belle data. By looking at
Fig. 4.6 we observe that the b-tagged ALEPH data is incompatible to the b-tagged
OPAL data and much higher in the range 0.4 < x < 0.7. For last three bins it’s
almost a factor of 2. This can very well be the reason for the discrepancy between
the branching fraction from the fitted theory and from the experimental data.

Finally we take a look at the average energy passed from the c quark to the D
meson. In Table 4.10 we compare the values for Belle and CLEO and our theory
value. The theory values are lower by approximately 1%− 3%, which is outside the
rather small error margins of the experimental values.

The values for ALPEH, OPAL and the matching theory value from the global
fit are listed in Table 4.11. Here the theory values are too high by up to 5%
for the OPAL data. So the shift of the theory data during the evolution from√
s = 10.52GeV to

√
s = mZ is a too high, but to a rather small degree. The

discrepancy between theory and the ALEPH value is higher (almost 10%), but the
ALEPH and the OPAL values are already incompatible to each other. However
since our theory values are systematically too high for both sets, it would go too
far to conclude that our theor supports the OPAL analysis.
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Table 4.8: Values of average energy fractions for c → Hc and b → Hc transitions at
µf = 2mb, 10.52GeV and mZ .

FF set Hc 〈z〉c(10.52GeV) 〈z〉c(mZ) 〈z〉b(2mb) 〈z〉b(mZ)
Belle/CLEO-GM D0 0.623 0.479 0.470 0.273

D+ 0.629 0.484 0.470 0.293
D∗+ 0.659 0.503 0.508 0.305

ALEPH/OPAL-GM D0 0.591 0.450 0.470 0.273
D+ 0.596 0.455 0.470 0.293
D∗+ 0.614 0.462 0.508 0.305

global-GM D0 0.621 0.477 0.453 0.274
D+ 0.629 0.484 0.451 0.288
D∗+ 0.655 0.499 0.501 0.306

Belle/CLEO-ZM D0 0.624 0.480 0.471 0.274
D+ 0.632 0.486 0.470 0.293
D∗+ 0.661 0.504 0.509 0.306

ALEPH/OPAL-ZM D0 0.591 0.450 0.471 0.274
D+ 0.596 0.455 0.470 0.294
D∗+ 0.613 0.461 0.509 0.306

global-ZM D0 0.623 0.479 0.454 0.275
D+ 0.631 0.486 0.452 0.289
D∗+ 0.657 0.500 0.501 0.308

Table 4.9: Values of c → Hc and b → Hc branching fractions extracted by ALEPH
[21] and OPAL [19, 20] at

√
s = mZ from their measured cross section distributions

and from our theoretical distribution from the global fit.

Q → Hc ALEPH OPAL Theory
c → D0 0.559± 0.022 0.605± 0.040 0.628
c → D+ 0.238± 0.024 0.235± 0.032 0.276
c → D∗+ 0.233± 0.015 0.222± 0.020 0.252
b → D0 - - 0.515
b → D+ - - 0.164
b → D∗+ - 0.173± 0.020 0.221

Table 4.10: Values of average energy fractions for c → Hc transitions by Belle [25]
and CLEO [26] at

√
s = 10.52GeV and the matching value from our theoretical

cross section distribution from the global fit. The values for Belle and CLEO are
obtained by converting the corresponding average momentum fractions quoted in
Refs. [25, 26], respectively.

Hc Belle CLEO Theory
D0 0.640± 0.002 0.640± 0.005 0.632
D+ 0.647± 0.001 0.650± 0.007 0.640
D∗+ 0.682± 0.001 0.682± 0.006 0.666
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Table 4.11: Values of average energy fractions for c → Hc transitions by ALEPH
[21] and OPAL [19, 20] at

√
s = mZ from their measured cross section distributions

and the matching value from our theoretical cross section distribution from the
global fit.

Hc ALEPH OPAL Theory (mZ)
D0 - 0.487± 0.014 0.509
D+ - 0.483± 0.019 0.516
D∗+ 0.488± 0.008 0.515± 0.009 0.532
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Figure 4.9: (a) c → D+ and (b) g → D+ FFs of the global fit in the GM approach
at µf = 10.52GeV (solid lines) compared with their counterparts from Refs. [24]
(dashed lines) and [23] (dotted lines).



Chapter 5

Applications

5.1 Implementation of fragmentation functions

In this chapter we use the fragmentation functions from chapter 4 in different pro-
cesses, which requires a more general implementation for different programs. For
practical uses the evolution routine from the fit program is too slow. The main
problem is that in most processes the factorization scale is not fixed like in electron-
positron-annihilation. In deep-inelastic scattering (DIS) the typical process scale is
a combination of the squared momentum transfer between the lepon to the hadron
Q2 and the produced hadron’s squared transversal momentum p2T . Both variables
may be integrated over and thus we require the FFs for many different scales when
calculating a semi-inclusive cross section in DIS and other processes.

We provide the FFs DH
i (x, µf ) in the form of a Fortran routine which uses a

grid in x and µ2
f . This means that we have calculated the FFs for 29 values of Q2

between 2.25GeV2 < µ2
f < 106GeV2 times 132 values of x between 10−4 < x < 1.

These values are saved in a grid. The function reads the selected FFs grid from a file
and interpolates the return value from the grid entries with the help of a function
from the CERN library.

5.2 Deep-inelastic scattering

In this section we utilize the FFs in deep-inelastic scattering in comparison with
HERA data [31]. Since the GM-VFNS subtraction terms are not yet known for DIS,
we use the ZM-VFNS results by Daleo et.al. [30] for the partonic cross section, which
are available in the form of the Fortran program TIMBA. Here we use the affinity
of the GM-VFNS to the massless result. Only the finite mass terms are missing in
the partonic cross section, so the result shows the impact of the mass effects in the
FFs on the semi-inclusive hadron cross section.

Unfortunately during our work we have learned about problems with TIMBA,
which limit the range of applications. The first problem are errors in the terms
which contain the logarithms of Q2 [72]. At least some of these terms have the
wrong prefix. We can eliminate these terms by setting the scale to Q2, but as a
consequence we cannot vary the scale. Therefore we cannot calculate a meaningful
theoretical uncertainty.

The second problem occurs for large pT values, where the calculated cross sec-
tion is sometimes negative. This problem has also been observed in [73] for pion
production, where it has been narrowed down to the channels with either quark
or antiquark in the initial state and a fragmenting gluon in the final state. The
contribution from the gluon fragmentation into D mesons is small and the program

65
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has passed checks for other calculations like in [30]. We will therefore assume that
the error only becomes sizable in certain kinematic regions like the high pT region.

We will further use the partonic cross section to deduce the result for two-
photon-scattering in the next section. In order to do that we will have to modify
the program which contains the results by Daleo et.al. We therefore cite the most
important formulae from [30] here.

5.2.1 Kinematics

We consider the process

l(l) + P (P ) → l′(l′) +Hc(Ph) +X. (5.1)

On the parton level we have to consider the process:

l(l) + q/q̄/g(p) → l′(l′) + q/q̄(k1) + q̄/q(k2) + g(k3). (5.2)

We use the usual variables for deep inelastic scattering:

Q2 = −q2 = −(l′ − l)2, xB =
Q2

2P · q ,

ye =
P · q
P · l , SH = (P + l)2, S = (P + q)2. (5.3)

The variable q is the spacelike momentum transfer between the lepton and
hadron, while xB is the Bjorken scaling variable. SH is the CMS energy squared of
the hadron system. And ye measures the ratio of the energy transferred from the
leptonic system to the hadronic system available in the target rest frame. From the
latter follows, that 0 ≤ ye ≤ 1. It can also be written as

yel =
Q2

xBSH
, p · q =

Q2

2xB
, (5.4)

and thus
Q2 ≤ xBSH . (5.5)

The definition of the Mandelstam variables - at the hadron and the parton level
- is given by

s = (q + p)2, S = (q + P )2, (5.6)

t = −2q · k1, T = −2q · Ph,
u = −2p · k1, U = −2P · Ph.

We call the parton density functions fi(ξ), where ξ is the fraction of the proton
momentum carried by the parton i, and the fragmentation functions Dc/j(ζ), where
ζ is the fraction of the parton j carried by the final-state charmed hadron.

With these definitions the relation between hadronic and partonic Mandelstam
variables is

s = ξS −Q2(1− ξ), t =
T

ζ
, u =

ξ

ζ
U. (5.7)

The program by Daleo et.al. contains the analytic result for dσ/(dxBdQ
2dpTdη),

where pT is the transverse momentum and η the rapidity of the final-state hadron.
The result is given in the CMS of the virtual photon and the incoming proton.
Any of the differential variables can be integrated out in an arbitrary range using
a VEGAS algorithm. It is important to note that the underlying theory does not
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work for pT → 0 due to the missing masses, therefore we always have to use a lower
bound for pT in the magnitude pT ∼ mc.

Some kinematic limits are respected by TIMBA automatically. The upper limit
for the Q2-integration is lowered to Q2 = xBSH , if it is too high. With the energy√
S =

√
(P + q)2 in the photon-proton-CMS, TIMBA enforces the condition pT <√

S/2. The range of the rapidity is set to ensure |η| < − ln(
√
S−√S − 4p2T /(2pT )).

We make some changes to the program to adapt it to our calculation. The

routine for αs is replaced by our αs-routine from chapter 4, so we use Λ
(5)

MS
=

221MeV for µ > mb and the accordingly matched value Λ
(4)

MS
= 321MeV for scales

below that. We use the PDF set CTEQ 6.5 by the CTEQ collaboration [74], which
is implemented as a part of the LHAPDF library [75]. For the FFs we use our own
set, where we use the FFs from the global fits with and without mass effects. Also
we replace the built-in VEGAS integration routine, which did not work correctly
on some ocassions, with the one from the CUBA library [68].

The factorization integral in [30] is written in the form:

dσh

dxBdQ2dp2Tdη

=
∑
i,j,n

e−η
√
S

|pT |(Q2 + S)

e2η/(1+e2η)∫
eη |pT |/√S

dy

1− y

×
1−y/(1−y)e−2η∫

0

dz

1− z

[
fi(ξ)Dh/j(ζ)

dσ
(n)
ij

dxBdQ2dydz

]
, (5.8)

where y and z are auxiliary variables, which are defined in terms of the partonic
Mandelstam variables:

y = − u

Q2 + s
, (5.9)

z =
(Q2 + s)(s+ t+ u)

s(Q2 + s+ u)
.

They are used instead of ξ and ζ, which can be calculated with the equations

ξ =
Q2(1− y)(1 − z) + Sye−2η

(Q2 + S)(1− y)(1− z)
, ζ =

eη|pT |√
Sy

. (5.10)

The partonic cross sections are written in the form

dσ
(n)
ij

dxBdQ2dydz
=

α2

e2
1

ξx2
BS

2
H

(
YM (−gµν) + YL

4x2
B

Q2
PµP ν

)∑
n

H
(n)

µν (i, j), (5.11)

where the H
(n)

µν (i, j) are the parton-photon squared matrix elements for the i+γ →
j +X processes. YM and YL are the projectors for the metric and the longitudinal
part of the cross section respectively:

YM =
1 + (1− ye)

2

2y2e
, YL =

1+ 4(1− ye) + (1 − ye)
2

2y2e
. (5.12)
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5.2.2 Reference frames

A problem between theoretical and experimental results is the choice of reference
frames. Theorists work in the CMS of the virtual boson and of the proton, which
provides advantages due to the symmetry between the incoming particles after
factorizing the cross section into a hadron and a lepton tensor. However the data
are not collected in this reference frame. Experimentalists provide data in the
laboratory frame, where one axis is defined by the proton and the electron beam.

In order to apply the experimental cuts from the HERA analysis in the theory,
we have to use transformation formulas between the two systems. We take those
from [76]. With the help of the auxiliary variable

A =

√
Q2(SH − S −Q2)

SHS
mT exp(η) (5.13)

with the transversal mass mT =
√
p2T +m2

H we can calculate the laboratory frame
variables - denoted by the index L - by

pLT =
√
(pT )2 +A(A − 2pT cosφ), (5.14)

ηL = η + ln

(
(S +Q2)mT√

SHSmL
T

)
+

1

2
ln

Ee
Ep

,

cosφL =
pT cosφ−A

pT
.

One should note that we need the variable φ, which is the azimuthal angle of the
produced hadron. In the theorist’s reference frame the cross section is independent
of this angle, so we have to introduce an integration over φ in the calculation, where
φ is only used to reproduce the experimental cuts via the transformation formulae
(5.14).

5.2.3 Comparison to HERA data

We can now calculate theory predictions comparable to the HERA results from [31].
The data was taken in the years 1999 and 2000 colliding 27.5GeV positrons and
920GeV protons, which results in center-of-mass energy of

√
SH = 318GeV.

The differential cross section is given in terms of xB, Q2, pLT and ηL, where
the L denotes variables in the laboratory frame. The analysis is restricted to the
kinematic region 2 ≤ Q2 ≤ 100GeV2 and 0.05 ≤ y ≤ 0.7. We implement the
Q2-region in the theory simply by the choice of the integration interval, while the
limits on y are built into the program as cuts. However due to the relation between
xB , y and Q2 we can conclude using eq.(5.4) that xB will only have values within
the interval 2.8 · 10−5 ≤ xB ≤ 2 · 10−2.

A further constraint in [31] is |ηL| < 1.5, which is implemented as a cut. We
ignore the constraint on pLT , but we use the results from [31], where the cut pT >
2.0GeV was applied, and use that value as lower bound for our pT .

We calculate the cross sections with the global fit result with mass effects in the
FFs and with the pure ZM-VFNS theory respectively. We use the theory with the
scales µ1 = Q2 and µ2 = p2T +Q2, where µ1 is safe from the mentioned prefix errors
in lnQ2 terms. The experimental results from [31] are taken from Table 7 therein.
For comparison we compute values that are averaged over bins. We collect our
results in the Tables (5.1) to (5.3) and list the experimental results where available
for comparison. The results are also shown in Figs.(5.1) to (5.3).

We observe in Table (5.1), that the inclusion of mass effects in the FFs decreases
the differential cross sections by 2− 3%. The choice between the scales µ1 and µ2
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xB
Global-GM Global-ZM Global-GM Global-ZM

Experiment
µ1 µ1 µ2 µ2

[2.8 · 10−5, 0.0002]
10280 10503 10538 10826

7916± 407+606
−791

(2858) (2935) (3658) (3747)

]0.0002, 0.0005]
5285 5394 4961 5082

3340± 186+250
−316

(2233) (2287) (2245) (2298)

]0.0005, 0.0013]
1324 1359 1263 1297

974± 60+107
−104

(791.4) (809) (745.4) (762.0)

]0.0013, 0.0032]
237.0 241.8 234.6 239.5

205± 18+26
−43

(182.8) (187.2) (174.5) (178.4)

]0.0032, 0.02]
9.473 9.720 9.414 9.416

7.1± 1.1+0.5
−1.9

(8.415) (8.566) (8.116) (8.167)

Table 5.1: Values of D∗ production cross section dσ/dxB in nb for deep-inelastic
scattering averaged over bins in xB in comparison with HERA data [31]. Theory
values are with scales µ2

1 = Q2 and µ2
2 = p2T + Q2 respectively. The values in

brackets are the LO results.
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Figure 5.1: Production cross-section dσ/dxB in nb of D∗ mesons for deep-inelastic
scattering, distribution averaged over bins in xB in comparison with HERA data
[31].
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Q2 Global-GM Global-ZM Global-GM Global-ZM
Experiment

µ1 µ1 µ2 µ2

[2, 4.22]
0.857 0.876 0.856 0.878

0.54± 0.03+0.04
−0.05

(0.231) (0.237) (0.294) (0.301)

]4.22, 10]
0.278 0.285 0.261 0.267

0.181± 0.010+0.021
−0.019

(0.121) (0.124) (0.117) (0.120)

]10, 17.8]
0.0841 0.0860 0.0841 0.0859

0.069± 0.005+0.005
−0.008

(0.0503) (0.0516) (0.0482) (0.0494)

]17.8, 31.7]
0.0311 0.0317 0.0323 0.0329

0.031± 0.003+0.003
−0.004

(0.0224) (0.0229) (0.0221) (0.0225)

]31.7, 100]
0.00620 0.00630 0.00613 0.00632

0.0058± 0.0005+0.0010
−0.0009

(0.00539) (0.00549) (0.00521) (0.00530)

Table 5.2: Values of D∗ production cross section dσ/dQ2 in nb/GeV2 for deep-
inelastic scattering averaged over bins in Q2 in comparison with HERA data [31].
Theory values are with scales µ2

1 = Q2 and µ2
2 = p2T +Q2 respectively. The values

in brackets are the LO results.

pT Global-GM µ1 Global-ZM µ1 Global-GM µ2 Global-ZM µ2

[2, 2.5] 3.503(1.662) 3.556(1.697) 3.910(1.851) 4.006(1.893)
]2.5, 3.5] 1.808(0.804) 1.849(0.823) 1.815(0.855) 1.856(0.874)
]3.5, 5] 0.636(0.276) 0.652(0.283) 0.547(0.267) 0.561(0.274)

Table 5.3: Theory values of D∗ production cross section dσ/dpT in nb/GeV deep-
inelastic scattering averaged over bins in pT . The values are with scales µ2

1 = Q2

and µ2
2 = p2T +Q2 respectively. The values in brackets are the LO results.

leads to a difference of similar magnitude. Both differences are hardly noticable in
the graph, so we only plot the result of the GM-VFNS with µ1 in NLO and LO in
Fig.(5.1).

The enhancement of the cross section due to the inclusion of NLO effects is very
strong for small xB values. In the first bin the NLO result is almost a factor 4 higher
than the LO result. This drops quickly to a factor of 2 in the next bins and settles
down to ∼ 10% in the last bin. In comparison between theory and experiment the
NLO theory results are ∼ 30% too high. Only one bin is compatible within the
errors of the experimental measurement.

The results for the distribution in Q2 are listed in Table (5.2) and plotted in
Figure (5.2). We make very similar observations as in the case of xB distributions.
Only the comparison of theory and experiment is quite different: For the first bin
the theory is too high by approximatley 50%. This difference gets smaller for higher
values of Q2 and leads to a match in the second-to-last bin. In the last two bins
theory and experiment are compatible.

We have also calculated a distribution in pT without a possibility for direct
comparison with experimental data. The result can be found in Table 5.3 and
Figure 5.3. The influence of the mass effects is similar as in the other distributions.
However we observe a bigger influence of the choice of scale, possibly because pT is
not integrated out over its whole range. In the first bin the results with the scale
µ2
2 = p2T +Q2 are ∼ 10% bigger, while they are almost equal in the middle bin and
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Figure 5.2: Production cross-section dσ/dQ2 in nb/GeV2 of D∗ mesons for deep-
inelastic scattering, distribution averaged over bins in Q2 in comparison with HERA
data [31].
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Figure 5.3: Production cross-section dσ/dpT in nb/GeV of D∗ mesons for deep-
inelastic scattering, distribution averaged over bins in pT .
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∼ 15% smaller in the third bin.

5.3 Deep-inelastic two-photon-scattering

We consider the scattering process γ + γ∗ → Hc +X which is a subprocess of the
process e−+ e+ → e−+ e++Hc+X and occurs in two kinds of colliders. The first
type is an electron-positron-collider. The real photon can be radiated off a lepton
as a collinear quasi-real particle, where the energy spectrum of the real photons is
described by the Weizsäcker-Williams approximation [36]. For this kind of photon
radiation we follow the approach in [77]. In addition a future ILC is expected to have
a sizable contribution of photons due to beamstrahlung, which can be described by
an additional spectrum in good approximation.

In terms of the experiment we are looking for single-tagged events, that means
that one lepton - the one emitting the virtual photon - is detected in the final
state. In contrast events where both leptons emit real photons lead to no-tagged
events without detected leptons in the final state, since the leptons are only slightly
deflected when emitting real photons and therefore hit the detector’s blind cone
around the beam pipe.

The other kind of collider is the future eγ mode of the International Linear
Collider (ILC), where a beam of high-energetic photons is going to be produced
by back-scattering a laser beam in one of the collider’s lepton beams. Instead of
the Weizsäcker-Williams formula we have to take the Compton spectrum of the
back-scattered photons into account.

In order to compute results for these processes we use the result above for deep-
inelastic scattering and replace the proton by a photon. There are two kinds of
photon contribution, which have to be summed: In the case of the resolved photon
the photon is modeled as a particle containing partons just like a proton. While
the photon is an elementary particle in the standard model, it can fluctuate into
virtual quark-antiquark-pairs and hence into gluons. This contribution is calculated
simply by replacing the proton PDF by a photon PDF, which are available in the
literature.

In the second case we consider the direct contribution of a photon scattering with
the virtual photon coming from the particle beam’s electron. This process is related
to the deep-inelastic scattering of the proton via the gluon channel. We will only
consider the gluon channel contribution of the Daleo result and replace the gluon
in the initial state by the photon, which means that we have to adjust the coupling
factor and we have to discard the contributions coming from the non-Abelian part
of the gluon coupling.

5.3.1 Photon spectra

We have to add a convolution with a photon spectrum to the differential cross sec-
tion formula in the program TIMBA, whether we consider the Weizsäcker-Williams
formula or the beamstrahlung spectrum for the e+e− collider or the possible eγ
mode of the ILC with a Compton spectrum. In analogy to the DIS kinematics we
call the four-momentum of the lepton, which radiates the photon, P and assume
that it is the lepton flying in positive direction along the beam axis. The photon
then has the four-momentum Pγ = τP . We denote all variables in the intermediate
state with the initial-state photon with a γ. The hadronic variables in TIMBA have
to be replaced by the ones of the intermediate state. The variables affected by the
reduced photon energy are

SH → SHγ = τSH (5.15)
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xB → xγ = xB/τ,

while the remaining variables are deduced from SH , xB and unaffected variables
such as Q2. However the respective CM systems of the intermediate state and of the
overall hadronic state differ by a boost along the direction of the electron radiating
the real photon. The eγ∗-system is moving compared to the γγ∗-system in the
direction of the electron with a velocity (see (4.13)) of

βL =
1− τ

1 + τ
. (5.16)

This translates into a rapidity between the systems of

η∆ = −1

2
ln τ. (5.17)

Therefore we have the relation

ηγ = η + η∆ = η − 1

2
ln τ. (5.18)

The cross section is then

dσ

dxB
(xB , SH , η) =

1∫
xB

dτ

τ

dσγ
dxγ

(xγ , Sγ , ηγ)fγ/l(τ), (5.19)

where fγ/l(τ) is the photon spectrum.
For the photon distribution we consider the following three spectra. First we

apply the Weizsäcker-Williams (WW) approximation, which describes quasi-real
photons emitted by leptons:

fγ/l(τ) =
α

2π

1 + (1− τ)2

τ
ln

(
Q2
max

Q2
min

)
. (5.20)

Here we use the leading approximation and have neglected some terms, which only
give a small correction. The limits of Q2 are set to Q2

min = m2
ex

2
B/(1 − xB),

which comes from the kinematics, and Q2
max = 1GeV2. The variable τ runs in the

theoretic kinematical range [79]

pT · e−η√
SH − pT eη

< τ < 1. (5.21)

We can expect an additional source of quasi-real photons to become non-negligible
at the ILC: The leptons move within the electromagnetic field of the opposing par-
ticle bunch at the crossing point, which leads to the possibility of photon radiation.
This phenomenon is known as beamstrahlung. Since the ILC beam design is not
finalized yet, we settle for using the ready-to-use parameters from [80], which were
deduced for the comparable TESLA design, and take the photon spectrum from
equations (2.11) to (2.16) in [37].

In the third case we examine a plausible scenario for a eγ-mode at ILC proposed
in [38]. The energy of a photon back-scattered by the electron beam is

ω =
ωm

1 + (ϑ/ϑ0)2
, (5.22)

where ϑ is the photon scattering angle with respect of the initial direction of the
electron. The other variables are

ωm =
xT

xT + 1
E0, ϑ0 =

m

E0

√
xT + 1, (5.23)
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where ωm is the photon’s highest possible energy and E0 is the beam energy and
xT is a parameter calculated from the laser’s properties like the laser photon energy
ω0.

Plausible values to achieve high luminosity and energy with currently available
lasers are E0 = 250GeV, ω0 = 1.17 eV and xT = 4.8 leading to ωm/E0 = 0.83.

The energy spectrum of the back-scattered photons is [78]

1

σc

dσc
dyT

=
2σ0

xTσc

(
1− yT +

1

1− yT
− 4yT

xT (1 − yT )
+

4y2T
x2
T (1− yT )2

)
(5.24)

with the total cross section

σc =
2σ0

xT

[(
1− 4

xT
− 8

x2
T

)
ln(xT + 1) +

1

2
+

8

xT
− 1

2(xT + 1)2

]
(5.25)

and the constant σ0 = π(e2/me)
2. The spectrum is cut off at yT = ωm.

5.3.2 Resolved photon contribution

For the resolved contribution we apply the photon PDFs by Aurenche, Guillet and
Fontannaz [35]. The AGF-PDFs have been extracted from LEP data in a variable
flavor number scheme. Similar to the GM-VFNS, they keep mass terms of the
order m2

Q/Q
2 in the cross section and recover the ZM-VFNS in the massless limit.

In addition they have to model non-perturbative input for smaller ξ, where they
apply a vector dominance model. We refer to their publication [35] for more details.

The AGF PDFs are fitted with Λ
(4)

MS
= 300MeV, so there we have a slight

mismatch to out value of Λ
(4)

MS
= 321MeV.

5.3.3 Direct photon contribution

First we have to remove the PDFs from the calculation. This can be done analyti-
cally by setting

fg(ξ) = δ(1− ξ). (5.26)

The formula from Daleo for ξ is

ξ =
Q2(1 − y)(1− z) + Sye−2η

(Q2 + S)(1− y)(1− z)
. (5.27)

From this we get a delta function for z:

δ(1− ξ) =
(Q2 + S)ye−2η

S(1− y)
· δ
(
z − 1 +

ye−2η

1− y

)
. (5.28)

For elastic contributions - the Born part and the delta distribution terms -
the integration over z is already performed in TIMBA using a δ(z) function in
the coefficient functions. For the inelastic part divergencies are handled by a plus
distribution in z. Therefore it is advisable to use the new delta distribution to
perform the integration over y. The delta distribution is then:

δ(1− ξ) =
(Q2 + S)e−2η(1− z)

S(1− z + e−2η)2
· δ
(
y − 1− z

1− z + e−2η

)
. (5.29)

Furthermore we change the order of integrations. The integration over y becomes
the inner integral, so that we can apply the delta distribution. From eq.(5.8) we
read off the integration boundaries for the original integration order are

ymin = eη|pT |/
√
S, ymax = e2η/(1 + e2η), (5.30)

zmin = 0, zmax = 1− y/(1− y)e−2η.
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In a y − z-plane these integration boundaries give an area which is limited by
the straight lines given by ymin, zmin and the curve given by zmax(y). In order to
reverse the integration order we rewrite this curve as a function of y, which gives

ỹmax(z) =
1− z

1− z + e−2η
. (5.31)

The lower bounds stay the same. For the upper bound of z we require the
crossing point of the curve with the ymin-line, which we get by inserting ymin into
zmax:

z̃max =

√
S − 2pT cosh η√

S − eηpT
. (5.32)

In summary:

ỹmin = eη|pT |/
√
S, ỹmax =

1− z

1− z + e−2η
, (5.33)

z̃min = 0, z̃max =

√
S − 2pT cosh η√

S − eηpT
.

The PDFs of the quarks and antiquarks are set to zero, since we only need the
incoming gluon which we are going to convert into a photon.

5.3.4 Couplings and color factors

For the direct photon contribution we can discard the non-Abelian parts of the gluon
coupling by using the color factors. We examine the change of the coupling and
charge factors at diagrams representing the squared matrix element. In Fig.(5.4)
we show the cut diagrams of NLO scattering graphs with real gluon radiation. The
left graph has an incoming gluon in the initial state, which is replaced by a photon
in the right graph. The first change is trivial: One factor of the strong coupling
constant αs is replaced by the electro-weak α. Also we square the occuring electrical
charge fractions of the quarks, since they now couple twice to a photon instead of
once.

The case with the incoming gluon leads to the color factor:

1

8

∑
a,b

Tr
[
T (F )
a T (F )

a T
(F )
b T

(F )
b

]
=

1

8
C2
FTr(1 · 1) = 1

8
CAC

2
F = TFCF =

2

3
, (5.34)

with TF = 1/2 and the factor 1/8 coming from the averaging over the possible color
states of the incoming gluon.

If we replace the incoming gluon by a photon, this changes to:∑
a

Tr
[
T (F )
a T (F )

a

]
= CFTr(1) = CACF = 4. (5.35)

So we just have to multiply with a factor of 6 for this class of diagrams. The
same applies for the Born contributions, where the color factor in the gluon case is
TF = 1/2 and for the photon case CA = 3.

We take a look at the other types of cut diagrams concerning color factors
in Fig.(5.5), which have been calculated with the help of the program COLOR
[81]. The first graph is non-Abelian and has the color factor −1/12. The second
graph with initial-state gluon radiation has the factor TFCA = 3/2. The latter
two graphs - describing vertex corrections and interference terms between graphs
radiating a gluon from their gluon and their quark line respectively - provide the
factor T 2

FCA = 3/4.
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Figure 5.4: Cut diagrams for comparison of initial state gluon and initial state
photon

Figure 5.5: Cut diagrams for possible color factors in DIS, the first graph is non-
Abelian, the other three contain gluon self-couplings and are therefore Abelian.

The final result for DIS contains terms with the color factors TF in the Born
terms, and CATF and CFTF in the NLO terms. This makes it possible to distinguish
Abelian and non-Abelian terms. The terms proportional to CATF are dropped. The
remaining result for LO and NLO has to be multiplied with the already mentioned
factor of 6 to correct the color factors.

5.3.5 Theory predicitions for LEP1

We are now ready to run some calculations with exploratory character. The process
in question is e− + e+ → e− + e+ + 2(3) Jets. In [32] this process is examined for
the LEP1 run. While the reference does not examine heavy hadron production, we
take the kinematic ranges from the analysis to have a realistic prediction in regards
to possible experimental analysis and we focus on D∗ production.

For LEP1 we have
√
SH = MZ . According to [32] the reach of S is 3 <

√
S <

35GeV. We pick values of Q2 = 2.5, 10, 30GeV2, while we integrate out xB in the
range that follows from the kinematics. The rapidity is set to η = 0. The scale
is set to µ2 = Q2. We assume that the lepton flying in positive direction emits
the real photon and the other lepton emits the virtual photon. If an analysis of
single-tagged events does not differentiate which lepton radiated off the real photon
one has to double the results.

During the calculation we notice that the direct contribution takes longer to
calculate, despite the fact that it is integrated over one less variable. We suspect
that the delta functions (5.28) and (5.29) increase the contribution of divergent
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pT Direct Resolved Sum
[GeV] GM-FFs GM-FFs GM-FFs

1 722 205 927
2 124 19.1 143
3 26.7 2.83 29.5
4 7.18 0.588 7.77
5 2.06 0.149 2.21
6 0.567 0.0415 0.609
7 0.107 0.0119 0.119

Table 5.4: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for D∗

mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon
spectrum for LEP1, distribution in pT at Q2 = 2.5GeV2.

pT Direct Resolved Sum
[GeV] GM-FFs GM-FFs GM-FFs

1 45.0 12.5 57.5
2 11.6 2.21 13.8
3 3.42 0.454 3.87
4 1.13 0.113 1.24
5 0.409 0.0315 0.441
6 0.157 9.51 · 10−3 0.167
7 0.0619 3.15 · 10−3 0.0651
8 0.0241 9.51 · 10−4 0.0251
9 8.63 · 10−3 2.41 · 10−4 8.87 · 10−3

10 2.68 · 10−3 2.85 · 10−5 2.71 · 10−3

Table 5.5: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for D∗

mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon
spectrum for LEP1, distribution in pT at Q2 = 10GeV2.

parts of the integrand at the boundaries of the integration region. This would lead
to a worse convergence behaviour of the integration routine and thus explain the
longer calculation time.

We have collected the results in Tables (5.4) to (5.6) and plotted them in
Figs.(5.6) to (5.8). In all cases the direct contribution dominates the result. For low
values of pT it surpasses the resolved contribution by a factor of 3 to 5, for higher
values of pT the resolved contribution almost becomes negligible being a factor of
100 smaller. We have to point out that the results for the lowest values of pT are
probably unrealistic due to using massless parton cross sections.

With regards to the leading order formula for DIS (5.8) it is not surprising that
the differential cross section drops off with rising pT and rising Q2. However we
observe a huge drop of the cross section by a factor of 104 while raising pT by a
factor of 10. The dependence of the cross section of Q2 is weaker but still strong:
When raising Q2 by a factor of 12, the final value drops by a factor between 5 and
100.

5.3.6 Comparison to LEP2

For the LEP2 run there has been an analysis by the OPAL Collaboration of charm
quark production in deep-inelastic electron-photon-scattering in [33]. This has been
achieved by the analysis of D∗-production events and the extrapolation to charm
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Figure 5.6: Differential production cross section dσ/(dQ2dpTdη) for D∗ mesons
in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon spectrum
for LEP1, distribution in pT at Q2 = 2.5GeV2. Direct contribution (D) thin-dotted
line, resolved contribution (R) thick-dotted line and sum solid line.
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Figure 5.7: Differential production cross section dσ/(dQ2dpTdη) for D∗ mesons
in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon spectrum
for LEP1, distribution in pT at Q2 = 10GeV2. Direct contribution (D) thin-dotted
line, resolved contribution (R) thick-dotted line and sum solid line.
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pT Direct Resolved Sum
[GeV] GM-FFs GM-FFs GM-FFs

1 8.67 1.72 10.4
2 1.53 0.336 1.87
3 0.620 0.0955 0.716
4 0.254 0.0303 0.284
5 0.108 0.0104 0.118
6 0.0479 3.83 · 10−3 0.0517
7 0.0218 1.46 · 10−3 0.0233
8 0.0100 5.70 · 10−4 0.0106
9 4.54 · 10−3 2.21 · 10−4 4.76 · 10−3

10 2.02 · 10−3 8.31 · 10−5 2.10 · 10−3

Table 5.6: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for D∗

mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon
spectrum for LEP1, distribution in pT at Q2 = 30GeV2.
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Figure 5.8: Differential production cross section dσ/(dQ2dpTdη) for D∗ mesons
in deep-inelastic two-photon-scattering with Weizsäcker-Williams photon spectrum
for LEP1, distribution in pT at Q2 = 30GeV2. Direct contribution (D) thin-dotted
line, resolved contribution (R) thick-dotted line and sum solid line.
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production with the help of Monte Carlo simulations, so that some D∗ data is
available as an intermediate step.

Several data sets are included in the analysis with an weighted average energy
CMS energy of

√
SH = 196.6GeV. The kinematical ranges are 5 < Q2 < 100GeV2,

|ηL| < 1.5 with the two bins 0.0014 < xB < 0.1 and 0.1 < xB < 0.87. The
limit on pLT depends on the scattering angle θ of the electron which emitted the
virtual photon: It is pLT > 1GeV for 33 < θ < 55mrad and pLT > 3GeV for
60 < θ < 120mrad. We implement the limits of variables in the laboratory frame
as cuts using the transformation formulae (5.14) and the ones on xB and Q2 as the
integration range. The result has to be doubled since real photons radiated off by
leptons from both directions have been accepted in the OPAL analysis. In addition
we have to set a lower bound for pT .

For the conditions on pLT we need to know θ in the program to implement the
cuts. Fortunately we can calculate it together with the scattered electron’s energy
Ee from xB and Q2. In the laboratory frame we deduce from the definition

Q2 =
√
SHEe(1 − cos θ), (5.36)

xB =
Ee(1− cos θ)√

SH − Ee(1 + cos θ)
,

and this leads to

cos θ =
xBSH −Q2 − xBQ

2

xBSH −Q2 + xBQ2
. (5.37)

Work with the program shows that the several integrations and the cuts push
the numerical integration routine to its limits. The number of iterations for VEGAS
has to be increased significantly compared to the earlier LEP1 calculations to get a
result, which seems stable against small variations of the integration parameters.

The results are acceptable for the first bin of xB . The resolved contribution
is σR(0.0014 < xB < 0.1) = 0.97 pb. In [33] (Table 1 therein) the result calcu-
lated with the event generator HERWIG is σHR (0.0014 < xB < 0.1) = 0.43 pb.
The direct contribution is σD(0.0014 < xB < 0.1) = 0.46 pb, while the HERWIG
prediction is σHD (0.0014 < xB < 0.1) = 0.71 pb. Added together our prediction is
σ(0.0014 < xB < 0.1) = 1.43 pb and therefore about ∼ 30% higher than HERWIGs
σH(0.0014 < xB < 0.1) = 1.13 pb. The measured value from the data of the detec-
tor OPAL is σO(0.0014 < xB < 0.1) = 3.1 ± 1.0 ± 0.5 pb. Our results lies almost
within the error bars of the measurement. If we take into account the lower bound
for pT and the lack of precision for low pT values in our approach, this is a good
result.

For the second bin 0.1 < xB < 0.87 we fail to get a meaningful result. With
higher values of xB higher values of Q2 play a larger role and the difference between
pT and pLT grows. In this case the lower bound for pT required for the theory together
with the strict cuts on pLT from the experimental analysis reduce the calculation
result by several magnitudes.

5.3.7 Theory predictions for ILC

We now focus our attention on the planned International Linear Collider (ILC)[34].
We present predictions for the D∗ production in analogy to the LEP1 calculations
above. In addition we provide extra data for one value of Q2 including differential
production cross sections for D0 and D+ for comparison.

The planned CMS energy for the first phase of the ILC is
√
SH = 500GeV

with an integrated luminosity of L = 1000 fb−1. For kinematic limits we use the
equation Q2 = yelxBSH . We pick the values Q2 = 2.5, 10, 30GeV respectively and
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pT [GeV] Direct WW Resolved WW Direct Beam Resolved Beam Sum
2 98.5 79.5 257 201 637
6 7.02 2.42 16.3 4.74 30.4
10 1.62 0.357 2.82 0.476 5.28
14 0.574 0.0903 0.713 0.0800 1.45
18 0.253 0.0300 0.213 0.0175 0.514
22 0.126 0.0118 0.0702 4.49 · 10−3 0.212
26 0.0685 5.22 · 10−3 0.0244 1.30 · 10−3 0.0994
30 0.0393 2.45 · 10−3 8.45 · 10−3 3.42 · 10−4 0.0506

Table 5.7: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams and
beamstrahlung photon spectrum for ILC, distribution in pT at Q2 = 2.5GeV2.

set η = 0. The limits for yel depend on the detection range for the outgoing lepton
which emitted the virtual photon. We use 0.2 < yel < 0.9 as plausible limits, where
the upper limit is more interesting since it determines the lower limit of xB . The
limits for xB are therefore 1.11 · 10−5 < xB < 5 · 10−5, 4.44 · 10−5 < xB < 2 · 10−4

and 1.33 · 10−4 < xB < 6 · 10−4 for the three values of Q2 respectively. We assume
that the lepton flying in positive direction along the beam axis provides the real
photon, so the result has to be doubled if the sources of the real and virtual photon
are not discriminated.

In contrast to the LEP1 case we now have to add the beamstrahlung spectrum as
a source for quasi-real photons. As described in section 5.3.1, we use the parameters
from [80] with the equations (2.11) to (2.16) in [37].

We present the results for D∗ production distributed in pT in Tables 5.7 to 5.9
and in Figures 5.9 to 5.11. The contributions for Weizsäcker-Williams and beam-
strahlung spectra have been calculated seperately. For the WW case we naturally
find similarities to the LEP1 calculations. Typically the direct contribution domi-
nates. For values around pT ∼ 30GeV it is higher by a factor of ∼ 10. However for
Q2 = 10GeV and Q2 = 30GeV the value for pT = 2GeV the resolved contribution
is actually higher, but drops off quicker with rising pT .

When comparing the WW spectrum and the beamstrahlung spectrum contribu-
tions, we observe a stronger pT dependence of the beamstrahlung parts. For all val-
ues of Q2 the beamstrahlung contributions at pT = 2GeV are higher by a factor of
2 to 3, however for pT = 30GeV they are almost one magnitude smaller. The point
where both spectrum contributions are equal is in all cases around pT ∼ 15GeV.

The overall result depends strongly on pT . We raise pT by a factor of 15, as
a consequence the differential cross sections drop by a factor of up to 104. Going
from Q2 = 2.5GeV to Q2 = 30GeV reduces the result by a factor of ∼ 50.

Next we examine the process for eγ mode of the ILC.We do this by describing the
photon spectrum with the Compton spectrum (5.24). Variations of that spectrum
are possible depending on the polarization of the electron beam and of the laser
beam. Apart from the different photon spectrum the luminosity will drop off by a
factor of ∼ 5 or more, which should be kept in mind when comparing cross sections
of the e−e+ and of the eγ mode. This is discussed in more detail in [38].

We first present as above for the e−e+ mode distributions in pT for the three
values Q2 = 2.5GeV2, Q2 = 10GeV2 and Q2 = 30GeV2 with η = 0 and the
range 0.2 < yel < 0.9. The results can be found in the Tables 5.10 to 5.12 and the
accompanying Figures 5.12 to 5.14.

The first observation is that the pT dependence is milder. When increasing pT
by a factor of 15 the differential cross decreases by a factor of only ∼ 500 instead of
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Figure 5.9: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams (thick-
dotted) and beamstrahlung (thin-dotted) photon spectrum for ILC, distribution in
pT at Q2 = 2.5GeV2.

pT [GeV] Direct WW Resolved WW Direct Beam Resolved Beam Sum
2 4.26 8.21 10.7 19.4 42.6
6 0.684 0.320 1.57 0.599 3.17
10 0.175 0.0480 0.302 0.0612 0.586
14 0.0646 0.0124 0.0767 0.0105 0.165
18 0.0291 4.28 · 10−3 0.0237 2.27 · 10−3 0.0594
22 0.0147 1.65 · 10−3 7.94 · 10−3 5.77 · 10−4 0.0249
26 8.16 · 10−3 7.77 · 10−4 2.91 · 10−3 1.92 · 10−4 0.0121
30 4.69 · 10−3 3.67 · 10−4 1.09 · 10−3 4.89 · 10−5 6.20 · 10−3

Table 5.8: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams and
beamstrahlung photon spectrum for ILC, distribution in pT at Q2 = 10GeV2.
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Figure 5.10: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams (thick-
dotted) and beamstrahlung (thin-dotted) photon spectrum for ILC, distribution in
pT at Q2 = 10GeV2.

pT [GeV] Direct WW Resolved WW Direct Beam Resolved Beam Sum
2 0.149 1.10 0.283 2.31 3.84
6 0.103 0.0754 0.228 0.137 0.543
10 0.0317 0.0123 0.0520 0.0154 0.111
14 0.0125 3.27 · 10−3 0.0145 2.81 · 10−3 0.0331
18 5.80 · 10−3 1.21 · 10−3 4.70 · 10−3 7.40 · 10−4 0.0124
22 2.96 · 10−3 4.92 · 10−4 1.60 · 10−3 1.98 · 10−4 5.25 · 10−3

26 1.68 · 10−3 2.24 · 10−4 6.17 · 10−4 5.70 · 10−5 2.58 · 10−3

30 1.00 · 10−3 1.10 · 10−4 2.36 · 10−4 1.65 · 10−5 1.37 · 10−3

Table 5.9: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams and
beamstrahlung photon spectrum for ILC, distribution in pT at Q2 = 30GeV2.
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Figure 5.11: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Weizsäcker-Williams (thick-
dotted) and beamstrahlung (thin-dotted) photon spectrum for ILC, distribution in
pT at Q2 = 30GeV2.

∼ 104. As a consequence the cross sections start lower for small pT than the ones
from the e−e+ mode but are higher for larger values of pT . We also see that we
are in a kinematic area where the resolved contribution is higher at pT = 2GeV.
However at pT = 30GeV it merely contributes ∼ 10%. The Q2 dependence is
similar to the e−e+ mode.

We pick the case with Q2 = 10GeV2 for further comparisons. In Table 5.13 we
have listed the sum from Table 5.11 together with the leading order result and a NLO
calculation where we have used the FFs without mass effects. We have already seen
for DIS predictions that the NLO contribution can be several times higher than the
Born result. This is also true here, where the NLO result is approximately 10 times
higher than the Born result. The cause of this is probably the inelastic contribution
which has its leading order at the overall NLO.

The mass effects in the FFs have a small impact. When calculating with our
FF set without mass effects we get a result that is ∼ 2 − 3% higher, which is the
expected effect after our earlier comparisons of the FFs.

Finally we have repeated the calculations for all three spectra withQ2 = 10GeV2

with the FFs for the D+ and for the D0 meson respectively. The results for the D0

meson can be found in Table 5.14 and Figure 5.15, the numbers for the D+ meson
are listed in Table 5.15 and plotted in Figure 5.16.

Using the WW and beamstrahlung spectra the D0 production cross section is
roughly twice as large as the one for D∗ production. This can be attributed to the
branching fraction of c → D0 and is expected. We find an interesting behaviour for
the Compton spectrum: Here we see the factor 2 for the small pT values, but for
larger pT the two cross sections approach each other until the D0 cross section is
only ∼ 10% higher for pT = 30GeV. It seems that in the latter case the different
forms of the FFs play a larger role.
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pT [GeV] Direct WW Resolved WW Sum
2 117 134 251
6 18.8 9.36 28.2
10 6.76 2.14 8.90
14 3.27 0.731 4.00
18 1.85 0.304 2.15
22 1.14 0.142 1.28
26 0.746 0.0717 0.818
30 0.504 0.0380 0.542

Table 5.10: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 2.5GeV2.
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Figure 5.12: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 2.5GeV2. Direct contribution as
thick-dotted line, resolved contribution as thin-dotted line and sum as solid line.
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pT [GeV] Direct WW Resolved WW Sum
2 7.40 20.6 28.0
6 1.95 1.41 3.36
10 0.763 0.313 1.08
14 0.383 0.107 0.490
18 0.218 0.0451 0.263
22 0.135 0.0217 0.157
26 0.0891 0.0113 0.100
30 0.0604 6.33 · 10−3 0.0667

Table 5.11: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 10GeV2.
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Figure 5.13: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 10GeV2. Direct contribution as
thick-dotted line, resolved contribution as thin-dotted line and sum as solid line.
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pT [GeV] Direct WW Resolved WW Sum
2 0.493 4.16 4.65
6 0.318 0.352 0.670
10 0.143 0.0819 0.225
14 0.0753 0.0284 0.104
18 0.0442 0.0123 0.0565
22 0.0278 6.10 · 10−3 0.0339
26 0.0183 3.21 · 10−3 0.0215
30 0.0126 1.86 · 10−3 0.0145

Table 5.12: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 30GeV2.
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Figure 5.14: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 30GeV2. Direct contribution as
thick-dotted line, resolved contribution as thin-dotted line and sum as solid line.
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pT [GeV] NLO with mass LO with mass NLO with m = 0
2 28.0 7.62 28.5
6 3.36 0.518 3.43
10 1.08 0.131 1.10
14 0.490 0.0523 0.499
18 0.263 0.0265 0.269
22 0.157 0.0155 0.160
26 0.100 0.0102 0.103
30 0.0667 0.00731 0.0684

Table 5.13: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D∗ mesons in deep-inelastic two-photon-scattering with Compton photon spectrum
for eγ mode of ILC, distribution in pT at Q2 = 10GeV2. Comparison of NLO with
GM-VFNS FFs, LO with GM-VFNS and NLO with ZM-VFNS.

pT [GeV] WW Beam Sum Compton
2 30.4 73.3 104 56.3
6 2.29 4.85 7.14 5.18
10 0.503 0.774 1.28 1.47
14 0.173 0.185 0.358 0.622
18 0.0739 0.0536 0.128 0.318
22 0.0362 0.0174 0.0536 0.183
26 0.0194 0.00609 0.0255 0.114
30 0.0109 0.00204 0.0129 0.0740

Table 5.14: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3 forD0

mesons in deep-inelastic two-photon-scattering with WW, beamstrahlung, the sum
of the two latter and Compton photon spectrum for eγ mode of ILC, distribution
in pT at Q2 = 10GeV2.

The production cross sections for the D+ mesons are ∼ 5 − 10% larger than
the ones for the D∗ meson, where the larger difference is found for small pT values.
This is true for all three spectra, so we don’t find a shift in the ratio when using
the Compton spectrum.

5.4 Applications in the literature

In the literature, our FFs have been applied for different processes. We briefly
present the results for further discussion.

5.4.1 Hadroproduction of charmed hadrons

In [82] Kniehl, Kramer, Schienbein and Spiesberger have calculated the production
cross sections for D0, D+ and D∗ mesons in hadroproduction in the GM-VFNS,
using the global fit FF set from this work. However parts of the partonic cross
section are calculated with m = 0. The result is compared with experimental data
from the CDF collaboration [83]. The CDF collaboration has measured events at
the Tevatron collider, where pp̄-scattering was measured at

√
s = 1.96TeV within

the kinematical region |η| < 1.
The theory prediction is calculated with the CTEQ6.5 proton PDFs [74]. In the

work [82] variations of the PDFs are tested for different models of the intrinsic charm
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Figure 5.15: Differential production cross section dσ/(dQ2dpTdη) in fbGeV−3

for D0 mesons in deep-inelastic two-photon-scattering with WW spectrum (thick-
dotted), beamstrahlung spectrum (thin-dotted), the sum of the two latter (bold)
and Compton photon spectrum (solid) for ILC, distribution in pT at Q2 = 10GeV2.

pT [GeV] WW Beam Sum Compton
2 14.0 33.5 47.5 31.3
6 1.08 2.27 3.35 3.70
10 0.237 0.370 0.607 1.18
14 0.0815 0.0894 0.171 0.531
18 0.0351 0.0263 0.0614 0.286
22 0.0173 0.00846 0.0258 0.170
26 0.00930 0.00304 0.0123 0.108
30 0.00523 0.00105 0.00628 0.0711

Table 5.15: Differential production cross section dσ/(dQ2dpT dη) in fbGeV−3 for
D+ mesons in deep-inelastic two-photon-scattering with WW, beamstrahlung, the
sum of the two latter and Compton photon spectrum for eγ mode of ILC, distribu-
tion in pT at Q2 = 10GeV2.
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Figure 5.16: Differential production cross section dσ/(dQ2dpTdη) for D+ mesons
in deep-inelastic two-photon-scattering with WW spectrum (thick-dotted), beam-
strahlung spectrum (thin-dotted), the sum of the two latter (bold) and Compton
photon spectrum (solid) for ILC, distribution in pT at Q2 = 10GeV2.

content of the proton. We focus on the main predictions with fc(ξ, µf = mc) = 0
in Figs.(5.17) and (5.18). The theory uncertainty is evaluated by variation of the
scales, which are µR = ξRmT and µf = µ′

f = ξFmT . The main values are ξR = 1
and ξF = 1, which are variied between 1/2 < ξR, ξF < 2.

The data points lie within the theory band, which is a progress over the older
analysis [13] by the same authors, where the main difference is due to the new FFs
based on BELLE and CLEO data. In the older publication the majority of the
data points lies over the error bands of the theory, which is especially true for the
D+-production. These improvements allow the authors to examine the influence of
different models of the charm content of the proton in [82].

The study of hadroproduction also includes predictions for proton-proton-collisions
the RHIC collider, which operates at a CMS energy of

√
s = 200GeV. Unfortu-

nately the only available analysis for the production of charmed hadrons covers only
the range pT < 2.5GeV, which is problematic for the theory. A direct compari-
son of theory and experiment is therefore not yet possible. We show the figures
from [82] for

√
s = 200GeV in Fig.(5.19) and for the high-energy mode of RHIC at√

s = 500GeV in Fig.(5.20). In Fig.(5.20(b)) several variations of the calculation
are plotted normalized to the default prediction. In the variations different models
for the intrinsic charm content of the proton were used which were taken from [84].

5.4.2 D∗-meson production in ep scattering at low virtuality

Kramer and Spiesberger have calculated the D∗-meson production in ep scattering
at low Q2 [85] in comparison with HERA data from [86]. The authors have used
the GM-VFNS and applied the Belle/CLEO FF set from this work to describe the
fragmentation part of the cross section. Using the Belle/CLEO set leads in their
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Figure 5.17: pT distributions dσ/dpT of p + p → Hc + X with (a) Hc = D0,
(b) Hc = D+, and (c) Hc = D∗+ for

√
s = 1.96 TeV evaluated at NLO in the

GM-VFNS in comparison with experimental data from CDF [83]. The solid line
represents the theory prediction for µF , µR = 1, while the dashed lines give the
maximum deviations through variation of the scales.
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Figure 5.18: Same as in Figs. 5.17(a)–(c), but normalized to the default predictions.

case to a 25− 30% higher photoproduction cross section compared to the global fit
set.

The low Q2 leads to the following treatment of the virtual photon: It enters the
calculation as a real photon, where the spectrum is given by the Weizsäcker-Williams
approximation. The range of Q2 is given by the cuts applied in the HERA analysis,
which are Q2

min = 0.05GeV2 and Q2
max = 0.7GeV2. This spectrum is convoluted

with the cross section for photoproduction γ + P → D∗ +X .

Furthermore the result is the sum of direct and resolved contributions. As above,
for the resolved contribution the photon is treated like a hadron in the sense, that
it contains partons. In the case of [85] the photon PDF set GRV92 [87] is used. For
the proton the CTEQ6.6M set is used [88].

The renormalization and factorization scales are µR = ξRmT and µF = µ′
F =

ξFmT with the transversal mass mT =
√
m2 + p2T . The main values are ξR =

ξF = 1, which are varied between 1/2 < ξR, ξF < 2 with the added condition
1/2 < ξR/ξF < 2 to estimate the scale dependence of the theory prediction.

The exact values of the experimental analysis are a proton energy of Ep =
920GeV and an electron energy of Ee = 27.5GeV. The inelasticity varies in the
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Figure 5.19: Same as in Fig. 5.17, but for pp collisions with
√
s = 200 GeV.

range 0.02 < ye < 0.85. The range of the transversal momentum is 1.5GeV < pLT <
9GeV, and the rapidity is limited to |ηL| < 1.5.

Theory and experimental data are compatible within the errors. The largest
deviations can be found in the lower bins, where also the scale dependence is bigger
except for the distribution in ηL. This deviations stem from terms with massless
charm quarks in the proton PDF. We observe in the pT distribution that the theory
and the experiment agree for larger values of pT .
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Figure 5.20: Ssame as in Figs. 5.19(a), but for
√
s = 500 GeV. In (b) variations of

the cross section with different intrinsic charm content of the protons are plotted
normalized to (a). The variations are intrinsic charm parametrizations from [84]
with the parameter n = 1 (solid line), n = 2 (dashed line), n = 3 (densely dotted
line), n = 4 (dot-dashed line), n = 5 (scarcely dotted line) and n = 6 (dotted line).
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Figure 5.21: Differential cross sections for D∗-meson production in low-Q2 ep scat-
tering, compared with experimental results from the ZEUS collaboration [86]. The
default choice for the scale parameters is ξR = ξF = 1 (full lines) and error bands are
obtained by varying ξR and ξF . The kinematic range is given by 0.05 < Q2 < 0.7
GeV2, 0.02 < y < 0.85, 1.5 < pT < 9.0 GeV and |η| < 1.5.



Chapter 6

Summary

We have given an introduction to perturbative QCD, where we have focussed on
the problem of infrared singularities. The structure of cross sections with collinear
singularities motivates the definition of splitting functions and leads to the DGLAP
evolution equations for distribution functions. Then we have given an overview over
several factorization schemes. As all schemes in perturbative QCD they share the
concept of factorization of the QCD cross section in a partonic cross section and
non-perturbative PDFs and FFs. We have then focused on the GM-VFNS, which
we use in our work to analyse the production of heavy hadrons. The scheme’s
defining properties are the use of a scale dependent number of active quark flavors
and the construction of the subtraction terms. These terms lead to a transition to
the well-known ZM-VFNS for larger scales when the massless limit becomes valid,
but leave finite mass terms in the partonic cross sections for accurate results when
the scale is near the heavy quark masses. In our work the masses also serve as
transition points for the number of active flavors.

We have presented the calculation of the electron-positron-annihilation semi-
inclusive cross section, which is the scattering process best suited for the extraction
of fragmentation functions. The cross section was calculated including the NLO
QCD corrections and the masses of heavy quarks. With our independent calculation
we have verified the literature result [5] and demonstrated a complete analytical
calculation of a parton cross section.

The starting point of the calculation are the contributing Feynman graphs. We
have shown how the cross section can be written as a product of a lepton tensor and a
hadron tensor. The lepton tensor has been written in terms of projectors. After that
we have focussed on the hadron tensor, which contains all strong corrections and the
phase space of the outgoing particles. The NLO corrections consist of virtual and
real corrections, which are only combined after the integration over their respective
phase spaces. Throughout the calculation we have used dimensional regularization
to handle singularities.

Since the number of contributing Feynman graphs is small, we have calculated
the respective matrix element contributions from the Feynman rules by hand. For
the virtual corrections, a renormalization and thus the calculation of a counterterm
is necessary. The evaluation of the squared matrix element has been done with
the help of FORM, which has multiplied the matrix element contributions and
calculated the traces of the fermions’ Dirac chains. This has been combined with
the phase space factors, that we have calculated for two and for three outgoing
particles respectively including quark masses. For the integration of the phase
space we have applied pole subtraction to handle the seperation of the result in
delta and plus distribution parts in the case of the real corrections. The calculated
cross section is given in the equations (3.81) to (3.87).
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We have then calculated the massless limit of the result, which requires special
care to reproduce the distributions correctly. Together with the ZM-VFNS result
from the literature, this has lead to the GM-VFNS subtraction terms for electron-
positron-annihilation (3.111).

This result has been used for the extraction of the fragmentation functions from
data of D0, D+ and D∗ heavy meson production. The data in question is the
result of the analysis from the Belle [25], CLEO [26], OPAL [19, 20] and ALEPH
[21] collaborations, where the ALEPH data is available only for D∗ production.
Both Belle and CLEO have analysed data from B factories at a CMS energy of√
s = 10.5GeV, where we have to take initial state radiation into account. The

ISR reduces the CMS energy of the process through radiation of photons from the
initial electron or positron and as a consequence enhances the cross section. We
have derived an expression to include this effect in our theory prediction. Thanks
to some reasonable approximations it is efficient enough to be included in the fit
routine without slowing it down too much.

We have extracted FF sets for all three particles with and without masses. The
selected ansatz for the FFs is the Bowler parametrisation, which has for now proven
to be the most accurate parametrization close to the threshold. In each case we
have performed a fit of the FFs to the combined Belle/CLEO data, one to the data
of the LEP experiments ALEPH and OPAL (at

√
s = MZ) and one global fit using

all those data sets and therefore testing the evolution of the FFs. All fits have
worked satisfactory with some room for improvement.

The global fits lead to χ2 values - χ2 divided by the degrees of freedom - between
2 and 6.9, where the worse fits can partially be explained by incompatible data sets.
Regarding that even the data at one scale is not completely compatible, the fit result
including evolution is satisfactory. In comparison the fit result in the ZM-VFNS is
slightly worse with χ2 values which are approximately 10% higher, which indicates
that the treatment of quark masses is sensible. The main problem of the global
fits is visible at the LEP scale: The contribution of hadrons produced from charm
quarks, which is determined mainly by Belle data, is too high to describe the LEP
data. This can either be a problem of the theory or incompatibility of the data sets
from different experiments.

The fits to the Belle/CLEO data reaches a χ2 value of 1.3 for D+ and 3.2 and
3.7 for D0 and D∗ respectively. It is interesting to see that the quality of the fits
without masses are almost equal. So the changes in the cross section due to heavy
quark masses can be compensated by a shift in the parameters of the FFs. We have
to refer to the global fits to show that the inclusion of the masses leads to a more
succesful description.

At the LEP scale we have not expected a difference between the GM-VFNS and
the ZM-VFNS, because of the masses being negligible at the higher scale, and as
expected have only found minor differences. The fits for D0 and D+ to OPAL data
reach average χ2 values of 0.8 and 0.5 respectively. The fit quality for the D∗ data
is worse with χ2 = 2.1, but here we have combined ALEPH and OPAL data sets,
which aren’t completely compatible.

We have further studied the impact of masses on the results for D+ production.
The result is that the influence of the charm quark masses is only small, e.g. a few
percent on the cross section. Instead the big effect is the hadron mass mH . The
height of the peak of the c → D+ FF with hadron masses is raised by ∼ 20%, both
with quark masses and without quark masses in the parton cross section.

Finally we have calculated the branching fractions and the average energy frac-
tion passed from parton to hadron for each FF at different scales. Here we find
that the differences are very small when comparing GM-VFNS and ZM-VFNS.
The comparison of differents fit sets is more conclusive: The branching fractions
are up to 20% higher for the pure Belle/CLEO fits compared to the corresponding
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ALEPH/OPAL fits, which we have already observed in the high charm contribution
at the MZ scale in the global fit. Also the average energy fractions are ∼ 5− 10%
higher in the case of the Belle/CLEO fits. Not surprisingly the branching fractions
and average momenta calculated from the theory are substantially higher compared
to experimental values from ALEPH and OPAL, while the theory values and avail-
able Belle and CLEO energy fraction values are only slightly incompatible.

The most important results of the FF extractions are:

• In contrast to older FF extractions of our group, which relied solely on LEP
data, we have used the Bowler parametrization. In comparison to the Peterson
and the power ansatz which worked well at the LEP scales, the Bowler form
has proven far superior for the B factory data near the mass thresholds and
has led unlike the other two parametrizations to acceptable fits. The only
other parametrization which leads to similar - but still higher - χ2 values is
the Lund parametrization, which is similar to Bowler.

• The inclusion of masses leads to improvements of the global fit. We have
found that the influence of the hadron mass in the kinematics is the main
factor, while the influence of the heavy quark’s masses only amounts to a few
percent.

• The global fit and the branching fractions indicate, that either the normaliza-
tion of Belle/CLEO and ALEPH/OPAL experiments are not compatible or
that evolution does not work perfectly. The charm quark contribution, mostly
fixed by the Belle data, is too high in the cross sections for the LEP data.

In conclusion we strongly encourage the use of the Bowler parametrization for future
works. With our new FFs theory predictions with sizable contributions from scales
µ ≈ mQ should have higher accuracies. More tests of the FFs are desirable to
determine whether the problem in the global fit arises from the experimental data
or from the evolution of the FFs.

Finally we have applied the new fragmentation functions to deep-inelastic pro-
cesses using the result and program by Daleo et.al [30], where we have modified the
program where necessary. The Daleo result is calculated in the ZM-VFNS, so the
mass terms in the parton cross sections are missing. However, since the GM-VFNS
has a smooth transition into the ZM-VFNS in the massless limit, this should suffice
for first applications until GM-VFNS cross sections are calculated.

The first application was the usual electron-proton-scattering, where we have
compared theory predictions to data from the HERA experiment [31]. We have
calculated differential cross section distributions in xB and in Q2. For low values
of xB, starting with 2.8 · 10−5, the theory prediction is too high by ∼ 30%. The
discrepancy gets smaller for higher values of xB , where we have found a bin with
compatible theoretical and experimental results around xB = 0.002. The picture is
similar for the distribution in Q2, where we started at Q2 = 2GeV2 and found a
theory prediction which is 50% too high. For the last two bins with Q2 > 17.6GeV2

theory and experiment are compatible. The lower bins are already at the border of
the kinematic region where the theory is applicable. Q2 = 2GeV2 might be better
considered in the photoproduction mode, while pT < 2GeV is perhaps a too small
cut on pT when using ZM-VFNS parton cross sections.

This discrepancy overshadows the differences between different theory approaches.
We have applied the global fit FFs from the GM-VFNS and from the ZM-VFNS.
The predictions with the GM-VFNS FFs are 2 − 3% lower than the one with the
ZM-VFNS FFs, which is consistent with the branching fractions. Unfortunately in
this case the difference is of the same magnitude as the difference due to a different
choise of scales.
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We have then made a number of further changes to the program in order to calcu-
late predictions for deep-inelastic two-photon-scattering. First we have introduced
an additional convolution with a photon spectrum. For the resolved contribution
we have simply replaced the proton PDFs with photon PDFs. For the direct con-
tribution we have taken the incoming gluon and replaced it with a photon, which
is possible by adjusting the coupling factors and taking out the non-Abelian parts.

With the modified program we have calculated the differential cross section
dσ/(dQ2dpT dη) for LEP1 data in the Tables 5.4 to 5.6. The highest value for the
cross section is 927 fbGeV−3 for η = 0, pT = 1GeV andQ2 = 2.5GeV2 ,which seems
rather low compared to the integrated luminosity of the LEP1 run at ∼ 170 pb−1

[89].
For LEP2 we have calculated a theory result for comaprison with the experimen-

tal result from [33]. For the bin in the range 0.0014 < xB < 0.1 we have calculated
a cross section of 1.43 pb, which is a bit too low compared to the measured value of
3.1± 1.0± 0.5GeV.

For the ILC we have calculated differential D∗ production cross sections in the
Tables 5.7 to 5.9 for the e−e+ mode with the Weizsäcker-Williams photon spectrum
and with a beamstrahlung spectrum. Beamstrahlung dominates for low values of pT
up to∼ 15GeV before the contribution fromWW photons becomes more important.

We have repeated the calculations with a Compton spectrum for thr eγ mode
and have listed the results in the Tables 5.10 to 5.12. In the eγ mode we find lower
cross sections for small pT , but it does not fall off as quickly when going to higher
values of pT . Overall we have to expect less events in the eγ due to smaller cross
sections and reduced luminosity. The eγ mode might still be interesting for this
kind of processes thanks to less background and less strict tagging conditions.

Further calculations for comparison show that NLO calculations - the leading
order for inelastic contributions - are mandatory for the process, since the NLO parts
are several times higher than the Born part. Using the FFs from our ZM-VFNS fit
in contrast to our GM-VFNS FFs only leads to a difference of 2− 3%.

We have also run calculations for the D0 and D+ mesons in Tables 5.14 and
5.15. Mostly the difference to the D∗ cross section can be attributed to the differ-
ent branching fractions regardless of the differences in the curves of the FFs. An
exception is the D0 result when using a Compton spectrum: Here the cross section
starts out as expected approximately two times higher than the D∗ one for low pT
values, but is only ∼ 10% higher for larger pT values.

Finally we have shown with kind permission results from first works in the
literature which make use of our new FFs. Reference [82] contains calculations
for the hadroproduction of charmed hadrons in comparison with data from the
Tevatron collider. And in reference [85] Kramer and Spiesberger have used them
for deep-inelastic scattering at low virtuality in comparison with HERA data.

To summarize we have given first predictions for single-tagged D∗ meson pro-
duction at LEP1 and LEP2. For the former there is currently no analysis of the
events in question, but we have used kinematic ranges from a similar analysis to
have a comparable prediction. For LEP2 our calculation is almost compatible with
the experimental result despite the unrealistic cross section for low pT .

We have also given D meson production predictions for the e−e+ and the eγ
mode of the planned ILC. These numbers show the large contribution by beam-
strahlung photons compared to WW photons especially in the low pT region, which
one can also see by comparing the respective spectrum functions. In the eγ mode
it can be said that the overall cross sections for our process are smaller than in the
e−e+ mode, so our process is not especially suited for that mode.

The ILC predictions are of course rather rough. The exact parameters of this
collider and its detectors are not yet decided. The beamstrahlung spectrum strongly
depends on the beam geometry, which is a compromise out of maximising luminosity
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and avoiding effects like beamstrahlung. The Compton spectrum depends on the
achieved polarisations of the lepton and the laser beam. Further effects depend on
the implementation of the laser near the beam interaction point.

On the theory side the calculation can also be refined in several ways. Firstly
we have used a ZM-VFNS cross section and therefore have not included finite mass
terms, which would affect the low pT region with the cross sections the most. Sec-
ondly we have occasionally encountered numerical problems which could be ap-
proached in several ways: Having an analytical formula which still allows the im-
plementation of cuts, finding a better suited integration algorithm or using optimi-
sations for the kinematic region used in the analysis. And of course an estimation
of the theoretical uncertainty is desirable, for which one has to be able to vary the
scale without errors.

Still our results give an overview over the expected magnitude of heavy hadron
production in deep-inelastic two-photon-scattering. Refinements can be made when
more concrete ILC paramaters become available. Until then we have already seen
the use of our new fragmentation functions in hadroproduction at Tevatron, so the
application for hadroproduction at the Large Hadron Collider is likely. We hope
our fragmentation functions help science in the analysis and precise prediction of
heavy hadron production.
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