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Abstract

Double parton scattering in proton-proton collisions can give sizable contributions to
final states in parts of phase space. We investigate the correlations between the partons
participating in the two hard interactions of double parton scattering. With a detailed
calculation of the differential cross section for the double Drell-Yan process we demon-
strate how initial state correlations between the partons affect the rate and distribution
of final state particles. We present our results with focus on correlations between the
polarizations of the partons. In particular transversely polarized quarks lead to a de-
pendence of the cross section on angles between final state particles of the two hard
interactions, and thereby on the invariant mass of particle pairs. The size of the spin
correlations, and therewith the degree to which the final state particles are correlated,
depends on unknown double parton distributions. We derive positivity bounds on the
double parton distributions that follow from their interpretation as probability densities,
taking into account all possible spin correlations between two partons in an unpolarized
proton. We show that the bounds are stable under homogeneous leading-order DGLAP
evolution to higher scales. We make direct use of the positivity bounds in numerical
investigations on the double DGLAP evolution for two linearly polarized gluons and for
two transversely polarized quarks. We find that the linearly polarized gluons are likely
to be negligible at high scales but that transversely polarized quarks can still play a
significant role. We examine the dependence of the double parton distributions on the
transverse distance between the two partons, and therewith between the two hard inter-
actions. We further study the interplay between transverse and longitudinal variables of
the distributions, as well as the impact of the differences in integration limits between
the evolution equations for single and double parton distributions.
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Zusammenfassung

Der Mechanismus der Doppel-Parton Streuung in Proton-Proton Kollisionen kann zu
großen Beiträgen zu den Endzuständen in Teilen des Phasenraums führen. Wir un-
tersuchen die Korrelationen zwischen den an den harten Streuprozessen teilnehmenden
Partonen der Doppel-Partonen Streuung. Mit einer ausführlichen Berechnung des differ-
entiellen Wirkungsquerschnitts des Doppel-Drell-Yan-Prozess zeigen wir, wie die Korre-
lationen zwischen den Anfangszuständen der Partonen die Ereignistate und Verteilung
der Teilchen im Endzustand beeinflussen. Wir präsentieren unsere Ergebnisse mit Schw-
erpunkt auf Korrelationen zwischen den Polarisationen der Partonen. Insbesondere
Quarks mit transversaler Polarisation führen zu einer Abhängigkeit des Wirkungsquer-
schnitts von den Winkeln zwischen den Teilchen im Endzustand und damit von der
invarianten Masse der Teilchenpaare. Die Größe der Spinkorrelationen, und damit
das Ausmaß mit dem die Teilchen im Endzustand korreliert sind, ist abhängig von
den unbekannten Doppel-Partonverteilungsfunktionen. Wir leiten Positivitätsgrenzen
an die Doppel-Partonverteilungsfunktionen her aus deren Wahrscheinlichkeitsinterpre-
tation, wobei wir alle möglichen Spinkorrelationen zwischen zwei Partonen in einem
unpolariserten Proton berücksichtigen. Wir zeigen, dass die Grenzen stabil unter der
DGLAP Evolution führender Ordnung zu höheren Skalen sind. Wir benutzen die Posi-
tivitätsgrenzen daraufhin in der numerischen Untersuchung der Doppel-DGLAP Evolu-
tion für zwei linear polarisierte Gluonen und für zwei transversal polarisierte Quarks. Wir
finden, dass die linear polarisierten Gluonen vermutlich bei hohen Skalen vernachlässbar
sind, aber dass die transversal polarisierten Quarks noch eine signifikante Rolle spie-
len können. Wir untersuchen die Abhängigkeit der Doppel-Partonverteilungsfunktionen
vom transversalen Abstand zwischen den zwei Partonen, und damit von Abstand zwis-
chen den zwei harten Streuprozessen. Wir studieren das Zusammenspiel zwischen den
longitudinalen und transversalen Variablen in den Verteilungen und den Einfluss des Un-
terschieds der Integrationsgrenzen zwischen den Evolutionsgleichungen für Einzel- und
Doppel-Partonverteilungen.



vii

Acknowledgements

For the opportunity to work with him, for always taking the time to explain and point
me in the right direction, for teaching me the required patience and precision, I want
to thank my supervisor Markus Diehl. I further want to thank Joachim Bartels for his
guidance in the beginning of my time as a PhD. I am thankful to Torbjörn Sjöstrand for
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Chapter 1

Introduction

Matter, as we know it from everyday life, mainly consists of protons, neutrons and
electrons. Out of these, only the electrons are believed to be fundamental particles,
particles without substructure. Protons and neutrons have since the seventies been
known to consist of quarks, antiquarks and gluons - collectively dubbed partons. All of
the partons carry color, the quantum number of the strong interaction. The strong force
keeps the colored partons bound in color neutral hadrons - such as protons and neutrons.
The quantum dynamics of the colored particles are described by the theory of the strong
interaction, Quantum Chromodynamics (QCD).

What distinguishes the strong interaction from the other fundamental forces, is that
its strength increases with distance. Increasing the strength of an interaction is syn-
onymous to increasing its coupling, and at large distances the coupling of QCD grows.
The growth with distance provides a major challenge for theorists and experimentalists
alike, since the partons cannot be studied on their own but only in color neutral bound
states. The size of the coupling at large distances prevents us from using the powerful
method of perturbative QCD - which is based on an expansion in the small coupling
constant. In high energy collisions, theorists are saved by the reverse phenomena. At
small distances the coupling constant of QCD decreases. Since the length scale probed is
inversely proportional to the energy of the probe, small distances are equivalent to high
energies and we can treat the partons as approximately free particles.

This already suggests a way to treat high-energy proton-proton collisions. The high-
energy interaction between one parton in each proton is factorized from the low-energy
physics binding partons inside each proton. To formalize such a factorization has proven
to be one of the greatest challenges in theoretical particle physics, and for many pro-
cesses, calculations are based on the assumption that the factorization holds at least
approximately. The strategy is to construct experiments to measure the universal low-
energy description of protons, so called parton distribution functions, and combine them
with calculations of the hard interactions to predict the outcome of new experimental
studies. These can in turn be used to further improve the measurement of the parton
distributions and the loop is closed.

At hadron colliders the treatment of QCD affects everything. In attempts to find
new particles, even ones whose creation is described by the electroweak interaction,
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2 Introduction

the treatment of the proton in the initial state, the underlying event, final and initial
state interactions are all dominated by QCD. Therefore, in the era of the LHC, a thor-
ough understanding of the strong-interaction in proton-proton collisions is indispensable.
While the dynamics of the strong-interaction is moving towards the domain of precision
physics, there are still aspects that are under poor theoretical and experimental control.
One such aspect is multiparton interactions, processes where in a single proton-proton
collision more than one parton in each proton take part in a hard scattering. Multiparton
interactions can give significant contributions to both signal and background processes,
such as Higgs production [1], electroweak processes [2–10], multijet production [11–18]
and SUSY searches [19]. Resent studies have demonstrated an enhancement of double
parton scattering in proton-nucleus and nucleus-nucleus collisions [20, 21]. The concept
of multiparton interactions has close connections to Monte-Carlo generators and substan-
tial efforts has been made in modeling and implementing them [22–28]. A mini-review
on earlier developments is given in [25], and an overview of current developments is given
in the conference proceedings [29,30].

The concept of multiparton interactions is easy: when two protons collide, two show-
ers of partons pass by each other. If two of the partons in the showers can have a hard
interaction with one another, then why not two additional ones, or yet another two, or
more. And although the theory for describing such effects is well known (QCD), the
development of a systematic treatment within QCD is far from mature.

The simplest realization of multiparton interactions is double parton scattering, when
in a single proton-proton collision, two partons from each proton participate in separate
hard interactions. Double parton scattering holds the answer to fundamental questions
about the nature of the proton, in particular on correlations between its constituents.
Experimental evidence for double parton scattering was first found at the ISR [31],
followed by measurements at the SPS [32] and the Tevatron [33–37].

Due to the rapid increase of the partonic densities at small momentum fractions, one
expects double and multiparton interactions to become increasingly relevant with collider
energy, and thus be more prominent at the LHC than ever before. First results have
indeed been reported [38,39], with more studies expected in the future [40]. The expected
increase has inspired an upsurge in interest to understand the theoretical foundations of
multiple hard scatterings [41–51], and many issues still need to be clarified or worked
out.

The simplest possible approach to double parton scattering, is to assume that there
are no correlations between the two partons. This leads to easy and compact results,
but the validity of such an approach is certainly not to be taken for granted. The
range of validity as well as the limitations need to be investigated. In this spirit, several
recent studies on the correlations between the two hard interactions have been conducted
[17,27,52–57]. Alternatively, one can approach double parton scattering via a systematic
treatment in QCD. Significant progress towards a complete QCD description has recently
been made [44,50], with proper treatment of the different correlation effects.

The two approaches have different strengths and weaknesses. Therefore, they are
both important and can provide complementary information. Whilst the simple treat-
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ment allows for quick predictions that can be tested against experimental result, it suffers
from a lack of reliability and even the possibility of oversimplification - pointing experi-
mentalists in the wrong direction when searching for DPS signals. The second approach,
with a rigorous treatment of double parton scattering in QCD, instead suffers from the-
oretical difficulties making it hard to make quantitative predictions and thus lacking in
contact with the experimental reality.

The present thesis aims at taking the treatment of double parton scattering in per-
turbative QCD closer to being able to make experimental and testable predictions. We
focus on the correlations between the two partons and their observable consequences -
in particular due to their polarization.

The structure of the thesis is as follows. In chapter 2 we briefly remind the reader
of the essentials of QCD, particularly emphasizing aspects that will be of importance in
the following, and give references where those interested can find a detailed background
to the topic. Thereafter, the focus will be on the theoretical description of double
parton scattering. Starting from a tree level description, we introduce the concepts of
double parton distributions (DPDs) - describing the distribution of two partons inside
the proton. We derive an expression for the cross section in terms of partonic cross
sections, encoding the hard interaction between the colliding partons, and the double
parton distributions. We further summarize some important parts of the theory of
double parton scattering beyond the tree level treatment, and give account of some model
calculations of DPDs as well as the experimental status of double parton scattering.

In chapter 3, we investigate the double Drell-Yan process, where two electroweak
gauge bosons are produced in two independent quark-antiquark annihilation processes.
We calculate the cross section and present our results with particular attention to how
correlations between the initial state partons propagate into observable consequences at
the level of the double parton cross section.

The size of the correlation effects depends on unknown double parton distributions
which are the focus in chapter 4. We construct spin-density matrices for all combinations
of partons, revealing the entire helicity structure of two partons in an unpolarized proton
and put constraints on the polarized distributions from a probability interpretation. We
show that these bounds are stable under leading order double DGLAP evolution.

In chapter 5 we investigate the numerical impact of double DGLAP evolution on
double parton distributions. We examine how the evolution affects a Gaussian ansatz
for the transverse distance dependence of the DPDs and the rate at which evolution
leads to a convergence between the transverse dependencies of different parton spices.
We investigate the impact of evolution on the importance of linearly polarized gluons and
transversely polarized quarks, and study the impact of the integration limit differences
between the single and double parton evolution equations. In a simple model of the
proton we study the interplay between transverse position and longitudinal momentum
fractions of the two partons.

The results in chapter 3 have been published in [58] but we expand them here,
providing additional details and explanations. The bulk of chapter 4 was published
in [59] but further details have been added. Chapter 5 mainly contains new, previously
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unpublished results, with the exception of section 5.6 which was published in [58].
The figures in this thesis were produced with JaxoDraw [60] and Matplotlib [61],

parts of the calculations were done with FORM [62] and Mathematica [63].



Chapter 2

Theory of double parton scattering

2.1 QCD and single parton scattering

Before diving into the theory of double parton scattering, let us dwell for a moment on
some features of QCD and single parton scattering which will play important roles in the
rest of the thesis. For a more thorough introduction to the topic see for example [64],
and for a more in depth treatment see [65].

QCD describes the interactions of the colored particles, i.e. quarks, antiquarks and
gluons. It is a so called standard non-Abelian Yang-Mills theory with gauge group SU(3)
[65]. The quarks (antiquarks) transform under the fundamental (anti-fundamental) rep-
resentation while the gluons transform under the adjoint representation. The quark field
ψαjf carry three indices, a Dirac index α, a color index j which takes three values and a
flavor index f . The gluon field Aa

µ carries a Lorentz vector index µ and a color index a
which takes eight different values, for the eight generators of the gauge group.

As discussed already in the introduction, key features of the strong force are confine-
ment of colored particles inside hadrons and asymptotic freedom of the partons at high
energies. Both are related to the negative sign of the β-function in QCD

β(αs) = −11CA − 2nf

12π
α2

s + O(α3
s) , (2.1)

describing the evolution of the strong coupling αs with the energy scale µ

∂

∂ log µ2
αs = β(αs), (2.2)

and thus of the strength of QCD. CA = Nc = 3 where Nc is the number of colors of
QCD and nf is the number of active quark flavors. Note that this expression for the β
function loses its accuracy when the coupling gets large at long distances (low energies)
and is hence at most an indication of confinement.

The property of asymptotic freedom is essential for the connection between QCD and
the parton model - in which the partons are treated as free particles - and its success in
describing high energy collisions. In the parton model the collision between two protons

5
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Figure 2.1: Illustration of single parton scattering (a) and a diagrammatic representation
of the single parton cross section (b). The dotted vertical line denotes the final state cut.

is viewed as a passing of two bunches of free partons. Most of the partons in each bunch
pass by without noticing the presence of the other, but one parton from each bunch
collide. The cross section can then be calculated from the cross section of the partonic
interaction, times a probability of finding the interacting partons inside their parent
protons.

Let us now make the factorization of long and short distance scales in the calculation
of scattering cross sections quantitative. Consider the two proton scattering graph in
figure 2.1(a) where two partons with momentum fractions x1 and x̄1 interact in one hard
interaction. Completing this picture with the complex conjugated amplitude, figure
2.1(b) represents the cross section which can be expressed as

σ =
∑

ij

∫

dx1

∫

dx̄1fi(x1)fj(x̄1)σ̂ij. (2.3)

The short distance, high energy part of the interaction between the two partons i and j
is given by the partonic cross section σ̂ij. In the parton model, the functions fi describe
the probability of finding parton i with a fraction x1 of the longitudinal momentum
of the proton. In full QCD however, the probability interpretation is complicated by
renormalization. The factorization of hard and soft parts in (2.3) is a highly non-trivial
task in a complete treatment of QCD. It requires taking care of the exchange of additional
particles, in particular the exchange of collinear and soft gluons [65]. It has strictly only
been demonstrated for hard processes producing color neutral states, such as gauge
bosons (γ, Z, W±) and Higgs bosons. The factorization of hard and soft parts takes
place at a scale µ. The hard cross section as well as the parton distribution functions
thereby develop a dependence on the factorization scale:

fi(x) → fi(x; µ). (2.4)

A natural choice of the factorization scale in a cross section calculation is the scale of
the hard interaction Q. The change of fi with µ is described by the DGLAP evolution
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equations [66–69], which for the parton distribution of a single quark reads

∂

∂ log µ2
fq(x, µ) =

αs

2π

∫ 1

x

dξ

ξ

[

Pqq

(

x

ξ

)

fq(ξ, µ) + Pqg

(

x

ξ

)

fg(ξ, µ)

]

. (2.5)

Pqq and Pqg are the Altarelli-Parisi splitting kernels [66], given in appendix B, respectively
describing a quark radiating off a gluon and the transition of a gluon into a quark by
radiating an antiquark. The factorization formula (2.3) can be generalized to the case
when the transverse momentum of the hard interaction q1 is measured:

dσ

dx1dx̄1d2q1

=
∑

ij

∫

d2k1d
2k̄1δ

(2)(q1 − k1 − k̄1)fi(x1,k1)fj(x̄1, k̄1)σ̂ij. (2.6)

The parton distribution functions fi(x1) have been promoted to transverse momentum
distributions fi(x1,k1), where k1 (k̄1) is the transverse momentum of parton i (j). The
two functions require different regularization and subtractions of divergences and there-
fore depend in different ways on an renormalization scale and a rapidity parameter,
polluting a simple relationship between them. In addition, depending on the defini-
tion used for the transverse momentum dependent distributions, (2.6) might have to be
complemented by a soft factor [65]. It should also be mentioned that for transverse mo-
mentum dependent factorization in proton-proton collisions with jets in the final state,
issues has been identified [70].

2.2 Introduction to DPS

Analogously to the separation of the single parton cross section we want to decompose the
cross section of double parton scattering into different pieces describing the long and short
distance physics, as illustrated in figure 2.2(a). An intuitive generalization of (2.3) would
be a separation into two hard partonic cross sections and two functions describing the
distributions of two partons inside each proton depending on the longitudinal momentum
fractions of both partons, x1 and x2. However, the two colliding partons in each hard
interaction have to be at the same transverse position and a closer examination reveals
the additional dependence of the double parton distributions on the vector y between
the two hard collisions, as illustrated in figure 2.2(b). We can then write the double
parton cross section as

σDPS ∼
∑

ijkl

∫

dx1dx2

∫

dx̄1dx̄2

∫

d2yfij(x1, x2,y)fkl(x̄1, x̄2,y)σ̂ikσ̂jl. (2.7)

However, this formula needs to be modified due to correlations between the two partons
in the same hadron, leading to several features not present in single parton scattering. In
the next section we will derive a cross section formula at leading order for double parton
scattering taking these correlations into account. Here we will continue our less formal
but more intuitive discussion of double parton scattering and the different correlation
effects.
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p

p̄

x̄1x̄2

x1

x2

(a)

y

x2

x1 x̄1

x̄2

(b)

Figure 2.2: Illustration of double parton scattering (a) and geometrical interpretation of
y as the vector between the two interactions points (b).

In single parton scattering, the momentum and quantum numbers of an interacting
parton in the amplitude have to be equal to those of its partner in the conjugate am-
plitude. In double parton scattering the situation is different: Only the sum over the
two partons in the amplitude has to be equal to the sum in the conjugate amplitude.
This allows for a difference in momentum between a parton in the amplitude and its
partner in the conjugate amplitude. The imbalance in one of the hard interactions has
to be compensated by the partons in the other interaction. In transverse position, this
results in the dependence of the double parton distributions on the distance y between
the two hard interactions. Further, the color of the partons can either, as in single parton
scattering, be balanced inside each hard interaction, or as an interference effect between
them. In the same spirit, there can be interference in parton flavor (between for example
up- and down-type quarks), in fermion number (between quarks and antiquarks) and for
processes with color in the final state also in parton type (between quarks and gluons).
In addition, the two partons with the same parent proton can have correlated polariza-
tions. All these effects combine into a bewildering number of different double parton
distributions. Although as we will see, not all of them have to be taken into account at
all times.

In the remainder of this chapter we will review parts of the theory developed for
double parton scattering. We start with a tree level analysis in section 2.3, deriving the
double parton cross section in terms of double parton distributions. This will be done
taking proper care of the different correlation effects between the quantum numbers of
the partons - described by the correlation functions for two partons in a proton and
resulting in a multitude of different double parton distributions. Thereafter we discuss
some of the properties which go beyond the leading order analysis in section 2.4, such
as the evolution of the double parton distributions, Sudakov logarithms and the status
of factorization. Finally we summarize some recent studies modeling the double parton
distribution and review the experimental status of double parton scattering.
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2.3 Tree level analysis

We now derive a double parton scattering cross section formula in terms of hard partonic
cross sections and double parton distributions. The derivation closely follows [44] and we
try to keep the notation as similar as possible. We choose, however, to directly consider
quarks and antiquarks rather than scalar partons. In the process we will explicitly treat
the different types of correlations and interferences possible in double parton scattering.
The aim and final outcome of this derivation is (2.59).

Here as well as in remaining parts of the thesis we use light-cone coordinates, with
plus and minus components of a vector v equal to v± = (v0 ± v3)/

√
2 and bold font

indicating a transverse vector v = (v1, v2). We work in a reference frame where the
proton with momentum p (p̄) moves fast to the right (left), and the transverse momenta
of the protons are zero p = p̄ = 0. We consider the case where the scale of the two hard
interactions q2

i are large compared to their transverse momentum |qi|, and neglect the
mass of the proton. For simplicity, we do not assume any specific hierarchy between the
two scales, q2

1 ∼ q2
2 ∼ Q2. The center of mass energy of the proton collision is

s = (p + p̄)2 ≈ 2pp̄ = 2p+p̄−. (2.8)

We define the longitudinal momentum fractions xi = q+
i /p+ for the partons in the right

moving proton and x̄i = q−i /p̄−i for the partons in the left moving proton. These are
related to the square of the hard momenta and the rapidity as

q2
i ≈ 2q+

i q−i ≈ xix̄is , Yi = 1
2
log

q+
i

q−i
= 1

2
log

xip̄
−

x̄ip+
. (2.9)

Typical momentum fractions for processes at the 8 TeV LHC are, x1 = x̄1 ≈ 0.011 for
the production of a Z boson at Q = 91 GeV with zero rapidity. If the Z boson is instead
produced with Y = 2.0, the momentum fractions are x1 ≈ 0.084 and x̄1 ≈ 0.0015. For
the production of a Higgs boson with zero rapidity at Q = 125 GeV the longitudinal
momentum fractions are x1 = x̄1 ≈ 0.016.

2.3.1 Double parton cross section

We consider the double parton scattering in figure 2.3, where two quarks from the right
moving proton interact with two anti-quarks from the left moving proton in two separate
hard interactions. For the full double parton cross section, also the graphs where one or
both anti-quarks come from the right moving proton must be included.

The momentum variables are defined as in figure 2.3. Barred labels refer to quantities
associated with the left moving proton and primed labels to quantities in the conjugate
amplitude. In this section, we will keep the indices for the quantum numbers of the
quark and antiquark fields implicit and restore them in section 2.3.2. The double parton
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p

p̄

q2

q1
l̄1 l̄2

l1 l2 l′1l′2

l̄′2 l̄′1

Figure 2.3: A graph for the double parton scattering process, where two quarks in the
right-moving proton interact with two antiquarks in the left-moving proton. The figure
shows the assignment of four-momenta (p, p̄, qi, li. l̄i, l′i, l̄′i).

cross-section of figure 2.3 is

dσ =
1

C

1

4pp̄

[

2
∏

i=1

d4qi

(2π)4

][

2
∏

i=1

∫

d4li
(2π)4

d4l′i
(2π)4

d4l̄i
(2π)4

d4l̄′i
(2π)4

]

× (2π)4δ(4)(q1 − l1 − l̄1)(2π)4δ(4)(q1 − l′1 − l̄′1)

×
∑

X,X̄

[

m
∑

j=1

∫

d3pX,j

(2π)32p0
X,j

][

m̄
∑

j=1

∫

d3pX̄,j

(2π)32p0
X̄,j

]

× H1(q1, l1, l
′
1, l̄1, l̄

′
1)H2(q2, l2, l

′
2, l̄2, l̄

′
2)

× (2π)4δ(4)(p + p̄ −
m

∑

j=1

pX,j −
m̄

∑

j=1

pX̄,j − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ′id

4ξ̄id
4ξ̄′ie

i(ξili−ξ′il
′
i)+i(ξ̄i l̄i−ξ̄′i l̄

′
i)

]

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(ξ′2)
]

|X〉 〈X|T
[

ψ(ξ2)ψ(ξ1)
]

|p〉

× 〈p̄| T̄
[

ψ(ξ̄′1)ψ(ξ̄′2)
]

∣

∣X̄
〉 〈

X̄
∣

∣ T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉 . (2.10)

The combinatorial factor C equals 2 if the final states of the two hard interactions are
identical, and otherwise equals 1. The flux factor is 1/(4pp̄) and all internal momenta
are integrated over with δ-functions enforcing momentum conservation. pj,X (pj,X̄) is
the momenta of particle j in the proton remnants |X〉 (

∣

∣X̄
〉

) of the right (left) moving
proton. The sums runs over all possible remnants X and all particles j in X. H1 (H2)
represents the first (second) hard interaction. In case the hard interaction produces a
stable particle, then Hi includes the δ-function δ(q2

i − m2
i ) which combines with the
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integration over the momentum qi to give the correct final state phase-space
∫

d3qi

(2π)32q0
i

.

The matrix element 〈X|T [ψ(ξ2)ψ(ξ1)] |p〉 represents the transition from the initial proton
state to the remnants by removing two quarks from the proton. T denotes time ordering
while T̄ denotes anti-time ordering. We only consider unpolarized protons and a sum
over the proton spin is implied.

Translation of the matrix element to ξ′2 = 0,

∫

d4ξ′1d
4ξ′2e

−iξ′
1
l′
1
−iξ′

2
l′
2 〈p| T̄

[

ψ̄(ξ′1)ψ̄(ξ′2)
]

|X〉

=

∫

d4ξ′1d
4ξ′2e

−iξ′
1
l′
1e−iξ′

2
(l′

1
+l′

2
+

Pm
j=1

pX,j−p) 〈p| T̄
[

ψ̄(ξ′1)ψ̄(0)
]

|X〉

=

∫

d4ξ′1e
−iξ′

1
l′
1(2π)4δ(4)(l′1 + l′2 +

m
∑

j=1

pX,j − p) 〈p| T̄
[

ψ̄(ξ′1)ψ̄(0)
]

|X〉 , (2.11)

allows us to extract a δ-function for momentum conservation in the proton. With the
equivalent operation for the left moving proton we can eliminate the X and X̄ dependence
in the δ-function for over-all momentum conservation,

∑

X,X̄

[

m
∑

j=1

∫

d3pX,j

(2π)32p0
X,j

][

m̄
∑

j=1

∫

d3pX̄,j

(2π)32p0
X̄,j

]

× (2π)4δ(4)(p + p̄ −
m

∑

j=1

pX,j −
m̄

∑

j=1

pX̄,j − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ′id

4ξ̄id
4ξ̄′ie

i(ξili−ξ′il
′
i)+i(ξ̄i l̄i−ξ̄′i l̄

′
i)

]

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(ξ′2)
]

|X〉 〈X|T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(ξ̄′2)
] ∣

∣X̄
〉 〈

X̄
∣

∣ T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉

=
∑

X,X̄

[

m
∑

j=1

∫

d3pX,j

(2π)32p0
X,j

][

m̄
∑

j=1

∫

d3pX̄,j

(2π)32p0
X̄,j

]

× (2π)4δ(4)(p + p̄ −
m

∑

j=1

pX,j −
m̄

∑

j=1

pX̄,j − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ̄ie

iξili+iξ̄i l̄i

]

∫

d4ξ′1d
4ξ̄′1e

−iξ′
1
l′
1
−iξ̄′

1
l̄′
1

× (2π)4δ(4)(l′1 + l′2 +
m

∑

j=1

pX,j − p)(2π)4δ(4)(l̄′1 + l̄′2 +
m̄

∑

j=1

pX̄,j − p̄)

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(0)
]

|X〉 〈X|T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(0)
] ∣

∣X̄
〉 〈

X̄
∣

∣ T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉
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=
∑

X,X̄

[

m
∑

j=1

∫

d3pX,j

(2π)32p0
X,j

][

m̄
∑

j=1

∫

d3pX̄,j

(2π)32p0
X̄,j

]

× (2π)4δ(4)(l′1 + l′2 + l̄′1 + l̄′2 − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ′id

4ξ̄id
4ξ̄′ie

i(ξili−ξ′il
′
i)+i(ξ̄i l̄i−ξ̄′i l̄

′
i)

]

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(ξ′2)
]

|X〉 〈X|T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(ξ̄′2)
] ∣

∣X̄
〉 〈

X̄
∣

∣ T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉
= (2π)4δ(4)(l′1 + l′2 + l̄′1 + l̄′2 − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ′id

4ξ̄id
4ξ̄′ie

i(ξili−ξ′il
′
i)+i(ξ̄i l̄i−ξ̄′i l̄

′
i)

]

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(ξ′2)
]

T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(ξ̄′2)
]

T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉 . (2.12)

Without the δ-function constraining pX,j (pX̄,j) we could in the final step eliminate the
complete sets of states (X and X̄)

∑

X

m
∏

j=1

∫

d3pX,j

(2π)32p0
X,j

|X〉 〈X| = 1. (2.13)

The cross section (2.10) therewith takes the form

dσ =
1

C

1

4pp̄

[

2
∏

i=1

d4qi

(2π)4

][

2
∏

i=1

∫

d4li
(2π)4

d4l′i
(2π)4

d4l̄i
(2π)4

d4l̄′i
(2π)4

]

× (2π)4δ(4)(q1 − l1 − l̄1)(2π)4δ(4)(q1 − l′1 − l̄′1)

× H1(q1, l1, l
′
1, l̄1, l̄

′
1)H2(q2, l2, l

′
2, l̄2, l̄

′
2)

× (2π)4δ(4)(l′1 + l′2 + l̄′1 + l̄′2 − q1 − q2)

×
[

2
∏

i=1

∫

d4ξid
4ξ′id

4ξ̄id
4ξ̄′ie

i(ξili−ξ′il
′
i)+i(ξ̄i l̄i−ξ̄′i l̄

′
i)

]

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(ξ′2)
]

T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(ξ̄′2)
]

T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉 . (2.14)

Translational invariance of the proton matrix elements and integration over ξ′2 and ξ̄′2
allows us to write the cross section in terms of correlation functions for two (anti)quarks
in the right(left)-moving proton, Φ (Φ̄):

dσ =
1

C

1

4pp̄

[

2
∏

i=1

d4qi

(2π)4

][

2
∏

i=1

∫

d4li
(2π)4

d4l′i
(2π)4

d4l̄i
(2π)4

d4l̄′i
(2π)4

]
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× (2π)4δ(4)(q1 − l1 − l̄1)(2π)4δ(4)(q1 − l′1 − l̄′1)

× H1(q1, l1, l
′
1, l̄1, l̄

′
1)H2(q2, l2, l

′
2, l̄2, l̄

′
2)

× (2π)4δ(4)(l′1 + l′2 + l̄′1 + l̄′2 − q1 − q2)

× (2π)4δ(4)(l1 + l2 − l′1 − l′2)(2π)4δ(4)(l̄1 + l̄2 − l̄′1 − l̄′2)

×
[

2
∏

i=1

∫

d4ξid
4ξ̄ie

iξili+iξ̄i l̄i

]

∫

d4ξ′1d
4ξ̄′1e

−iξ′
1
l′
1
−iξ̄′

1
l̄′
1

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(0)
]

T [ψ(ξ2)ψ(ξ1)] |p〉
× 〈p̄| T̄

[

ψ(ξ̄′1)ψ(0)
]

T
[

ψ̄(ξ̄2)ψ̄(ξ̄1)
]

|p̄〉

=
1

C

1

2pp̄

[

2
∏

i=1

d4qi

(2π)4

][

2
∏

i=1

∫

d4li
(2π)4

d4l′i
(2π)4

d4l̄i
(2π)4

d4l̄′i
(2π)4

]

× (2π)4δ(4)(q1 − l1 − l̄1)(2π)4δ(4)(q1 − l′1 − l̄′1)

× H1(q1, l1, l
′
1, l̄1, l̄

′
1)H2(q2, l2, l

′
2, l̄2, l̄

′
2)

× (2π)4δ(4)(l′1 + l′2 + l̄′1 + l̄′2 − q1 − q2)

× (2π)4δ(4)(l1 + l2 − l′1 − l′2)(2π)4δ(4)(l̄1 + l̄2 − l̄′1 − l̄′2)

× Φ(l1, l2, l
′
1, l

′
2)Φ̄(l̄1, l̄2, l̄

′
1, l̄

′
2). (2.15)

Two quark correlation function

The two quark correlation function is given by

Φ(l1, l2, l
′
1, l

′
2) =

∫

d4ξ1

(2π)4

d4ξ′1
(2π)4

d4ξ2

(2π)4
eiξ1l1+iξ2l2−iξ′

1
l′
1

× 〈p| T̄
[

ψ̄(ξ′1)ψ̄(0)
]

T [ψ(ξ2)ψ(ξ1)] |p〉
∣

∣

∣

l1+l2=l′
1
+l′

2

(2.16)

and analogously for two anti-quarks in the left-moving proton. With a change of mo-
mentum variables

l1 = k1 −
r1

2
, l′1 = k1 +

r1

2
,

l2 = k2 −
r2

2
, l′2 = k2 +

r2

2
(2.17)

together with a translation, the correlation function takes the form

Φ(k1, k2, r1, r2) =

∫

d4ξ1

(2π)4

d4ξ′1
(2π)4

d4ξ2

(2π)4
ei(ξ1−ξ′

1
)k1−(ξ1+ξ′

1
)r1/2+iξ2k2−iξ2r2/2′

× 〈p| T̄
[

ψ̄(ξ′1 − 1
2
ξ2)ψ̄(−1

2
ξ2)

]

T
[

ψ(1
2
ξ2)ψ(ξ1 − 1

2
ξ2)

]

|p〉
∣

∣

∣

r1+r2=0
.

(2.18)

We set r = r1 = −r2 and change integration variables according to

y + 1
2
z1 = ξ1 − 1

2
ξ2 , y − 1

2
z1 = ξ′1 − 1

2
ξ2 , z2 = ξ2 , (2.19)
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the two quark correlation function can be expressed as

Φ(k1, k2, r) =

∫

d4z1

(2π)4

d4z2

(2π)4

d4y

(2π)4
eiz1k1+iz2k2−iyr

× 〈p| T̄
[

ψ̄(y − 1
2
z1)ψ̄(−1

2
z2)

]

T
[

ψ(1
2
z2)ψ(y + 1

2
z1)

]

|p〉 . (2.20)

With the equivalent substitutions in the two antiquark correlation function for the left-
moving proton, we can write the cross section in terms of the correlation functions as

dσ =
1

C

1

4pp̄

[

2
∏

i=1

d4qi

(2π)4

][

2
∏

i=1

∫

d4kid
4k̄i(2π)4δ(4)(qi − ki − k̄i)

]

×
∫

d4rd4r̄(2π)4δ(4)(r + r̄)

× H1(q1, k1, k̄1, r, r̄)H2(q2, k2, k̄2,−r,−r̄)

× Φ(k1, k2, r)Φ̄(k̄1, k̄2, r̄). (2.21)

Hard scattering approximation

The parton level interactions (H1 and H2) involve the hard scales q2
1 ∼ Q2 and q2

2 ∼ Q2.
In figure 2.3 it is implicit that the parton lines originating in the protons have virtualities
much smaller than the hard scale. For the right and left moving protons respectively,
the momentum variables scale as

p+ ∼ k+
i ∼ q+

i ∼ Q , p̄− ∼ k̄−
i ∼ q−i ∼ Q ,

p− ∼ k−
i ∼ r− ∼ Λ2/Q , p̄+ ∼ k̄+

i ∼ r̄+ ∼ Λ2/Q. (2.22)

r+ and r̄− could by scaling arguments be of order Q, but momentum conservation forces
r + r̄ = 0 and thus

r+ ∼ r̄− ∼ Λ2/Q. (2.23)

All transverse momentum vectors are of the hadronic scale,

|ki| ∼ |k̄i| ∼ |r| ∼ |r̄| ∼ |qi| ∼ Λ. (2.24)

In the hard scattering we can neglect transverse momenta and quantities of order Λ2/Q.
This leads to the great simplification that the hard function Hi only depend on qi, which
due to invariance under a Lorentz boost along the ẑ-axis only occurs in the combination
2q+

i q−i ≈ q2
i , and

H(qi, ki, k̄i, ri) ≈ H(q2
i ). (2.25)

The simplification is a virtue of the momentum variables chosen, where there are no
kinematic constraints relating r and r̄ to the final state momenta q1 and q2. In the
correlation functions we neglect momenta of order Λ2/Q such that

k+
i = q+

i − k̄+
i ≈ q+

i , r+ = −r̄+ ≈ 0 ,

k̄−
i = q−i − k−

i ≈ q−i , r̄− = −r− ≈ 0 , (2.26)
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with the result that the longitudinal momenta of the partons in the amplitude and
conjugate amplitude have to be equal. Expressing the integrals over momenta in light-
cone coordinates, we get

[

2
∏

i=1

∫

dk+
i dk̄+

i δ(q+
i − k+

i − k̄+
i )

∫

dk−
i dk̄−

i δ(q−i − k−
i − k̄−

i )

]

×
∫

dr+dr̄+δ(r+ + r̄+)

∫

dr−dr̄−δ(r− + r̄−)

× H1(q1, k1, k̄1, r, r̄)H2(q2, k2, k̄2, r, r̄)

× Φ(k1, k2, r)Φ̄(k̄1, k̄2, r̄)

≈ H1(q
2
1)H2(q

2
2)

∫

dk−
1 dk−

2

∫

dr−Φ(k1, k2, r)

×
∫

dk̄+
1 dk̄+

2

∫

dr̄+Φ̄(k̄1, k̄2, r̄)

∣

∣

∣

∣

k+

i = q+

i , k̄−
i = q−i ,

r+= r̄−=0

. (2.27)

Rewriting d4qi = (p+p̄−)dxidx̄id
2qi, we can write the cross section (2.21) as

dσ =
1

C

[

2
∏

i=1

dxidx̄id
2qi

k+
i k̄−

i

2q2
i

Hi(q
2
i )

∫

d2kid
2k̄iδ

(2)(qi − ki − k̄i)

]

×
∫

d2rd2r̄

(2π)2
δ(2)(r + r̄)

×
∫

dk−
1 dk−

2 (2π)32p+

∫

dr−Φ(k1, k2, r)

×
∫

dk̄+
1 dk̄+

2 (2π)32p̄−
∫

dr̄+Φ(k̄1, k̄2, r̄)

∣

∣

∣

∣

k+

i = q+

i , k̄−
i = q−i ,

r+= r̄−= 0

. (2.28)

Let us now define double parton distributions in terms of the correlation function

F (x1, x2,k1,k2, r) =

∫

dk−
1 dk−

2 (2π)32p+

∫

dr−Φ(k1, k2, r)
∣

∣

∣

k+

i = xip
+,

r+=0

. (2.29)

Integrating the correlation function over minus momenta forces z+
i = 0 and y+ = 0.

The fields in the correlation function are thus evaluated at equal light-cone time, and
we can drop the (anti-)time ordering. The fields are spatially separated and therefore
anti-commute and we can, with an even number of commutations, reorder the fields as

F (x1, x2,k1,k2, r) =

[

2
∏

i=1

∫

dz−i d2zi

(2π)3
eixiz

−
i p+−iziki

]

2p+

∫

dy−d2yeiyr

× 〈p| ψ̄(−1
2
z2)ψ(1

2
z2)ψ̄(y − 1

2
z1)ψ(y + 1

2
z1) |p〉

∣

∣

∣

z+

i = y+= 0
. (2.30)
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Expressing the cross section in the double parton distributions

dσ =
1

C

[

2
∏

i=1

dxidx̄id
2qi

k+
i k̄−

i

2q2
i

Hi(q
2
i )

∫

d2kid
2k̄iδ

(2)(qi − ki − k̄i)

]

×
∫

d2r

(2π)2
F (x1, x2,k1,k2, r)F̄ (x̄1, x̄2, k̄1, k̄2,−r) (2.31)

completes the first part of our cross section derivation. The piece with the hard functions
in (2.31),

k+
i k̄−

i

2q2
i

Hi(q
2
i ) (2.32)

is related to the partonic cross-section (σ̂i) in a way which we will make precise after
discussing the spin structure. The cross section can then be written as

dσ
∏2

i=1 dxi dx̄i d2qi

=
1

C
σ̂1 σ̂2

∫

d2kid
2k̄1δ

(2)(q1 − k1 − k̄1)

×
∫

d2k2d
2k̄2δ

(2)(q2 − k2 − k̄2)

∫

d2r

(2π)2

× F (x1, x2,k1,k2, r)F̄ (x̄1, x̄2, k̄1, k̄2,−r). (2.33)

The vector ki (k̄i) is the average transverse momentum of the parton from the right
(left) moving proton participating in interaction i, while r is the difference in trans-
verse momentum between the parton in the amplitude and its partner in the conjugate
amplitude.

Transverse position

Fourier transforming the DPDs into transverse position space, gives

F (x1, x2,z1,z2,y) =

∫

d2r

(2π)2
e−iyr

∫

d2k1d
2k2e

iz1k1+iz2k2F (x1, x2,k1,k2, r) (2.34)

where zi (z̄i) is the conjugate variable of the average transverse momentum of parton i
ki (k̄i) and y of r. The cross section can be expressed as

dσ
∏2

i=1 dxi dx̄i d2qi

=
1

C
σ̂1 σ̂2

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

×
∫

d2y F (x1, x2,z1,z2,y) F̄ (x̄1, x̄2,z1,z2,y), (2.35)

with transverse position and longitudinal momentum fractions as in figure 2.4. The
arguments zi and y of the distributions determine where the hard-scattering processes
take place in transverse configuration space. As indicated in figure 2.4, y is the transverse
distance between the two scattering partons in a proton (and hence between the two
annihilation processes) if one takes the average position between the scattering amplitude
and its conjugate.
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p

p̄

y+ 1
2z1

q2

q1

y− 1
2
z1

1
2z2 −1

2z2

x̄1 x̄2

x1
x2

Figure 2.4: A graph for the double parton scattering process, where two quarks in the
right-moving proton interact with two antiquarks in the left-moving proton. The figure
shows the assignment of light-cone momentum fractions (xi, x̄i) and of transverse position
arguments as explained in the text.

Transverse momentum integrated cross section

Integrating (2.35) over the transverse boson momenta q1 and q2 sets zi = z̄i = 0 and
we obtain

dσ
∏2

i=1 dxi dx̄i

=
1

C
σ̂1σ̂2

∫

d2y F (x1, x2,y) F̄ (x̄1, x̄2,y) . (2.36)

Here F (x1, x2,y) and F̄ (x̄1, x̄2,y) are transverse-momentum integrated (also called col-
linear) DPDs, which were introduced long ago in [71, 72]. We recognize the vector y

and its geometrical interpretation from the DPS introduction and its illustration in fig-
ure 2.2(b), as the vector from the second to the first hard interaction. The collinear
double parton distributions are naively obtained by setting z1 = z2 = 0 in the distri-
butions of (2.35). However, just as for their single parton counterparts in section 2.1
the collinear and transverse-momentum dependent DPDs require different regularization
and subtractions of divergences. As a result the distributions depend in different ways
on an ultraviolet renormalization scale and (with the exception of specific distributions)
also on a rapidity parameter related to Sudakov logarithms.

The cross section formulas so far have been schematic in that they omit labels and
summations over the quantum numbers of the partons - to which we will now turn our
attention.

2.3.2 Double parton distributions

Let us take a closer look at the double parton distributions. In particular, we want to
study their spin, color and flavor structure. We therefore need to restore the labels on
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α1 α2 β1β2

j j ′k′k

Figure 2.5: A graph for the spin and color labels in the double parton distributions.
αi’s are the spin labels of the quarks in the amplitude and βi’s for their partners in the
conjugate amplitude.

the quark fields in the two quark correlation function (2.20)

ΦΣ1,Σ′
1
,Σ2,Σ′

2
,(k1, k2, r) =

∫

d4z1

(2π)4
eiz1k1

d4z2

(2π)4
eiz2k2

d4y

(2π)4
e−iyr

× 〈p| T̄
[

ψ̄Σ′
1
(y − 1

2
z1)ψ̄Σ′

2
(−1

2
z2)

]

T
[

ψΣ2
(1

2
z2)ψΣ1

(y + 1
2
z1)

]

|p〉 , (2.37)

where Σi collectively labels the flavor, color and spin of the quark participation in hard
interaction i. This dependence is transferred to the double parton distributions (2.30)
and after the Fourier transform in (2.34) yields

FΣ1,Σ′
1
,Σ2,Σ′

2
,(x1, x2,z1,z2,y) = 2p+

∫

dz−1
2π

dz−2
2π

dy− eix
1
z−
1

p++ix
2
z−
2

p+

× 〈p| ψ̄Σ′
2
(−1

2
z2)ψΣ2

(1
2
z2)ψ̄Σ′

1
(y − 1

2
z1)ψΣ1

(y + 1
2
z1) |p〉

∣

∣

∣

z+

i =y+=0
. (2.38)

Next, we treat the different quantum numbers one by one and see how they give rise to
a rich spectra of different double parton distributions.

Spin

Defining the spin labels of the partons as in figure 2.5 and restoring the spin labels on
the hard interactions, results in the contraction

Φα1β1,α2β2
Φ̄ᾱ1β̄1,ᾱ2β̄2

H1,β1α1,β̄1ᾱ1
H2,β2α2,β̄2ᾱ2

(2.39)

between the spin labels of hard functions and correlation functions. ᾱi and β̄i correspond
to partons in the left moving proton. For notational simplicity, we focus on one of the
index pairs and drop the subscripts on the spin labels. It is understood that the equivalent
transformations are made for all indices. With a Fierz transform, see for example [73],
on the spin labels the correlation function can be expressed as

Φαβ = tr(1
2
Φ)1

2
δαβ + tr(1

2
γ5Φ)1

2
(γ5)αβ + tr(1

2
γµΦ)1

2
(γµ)αβ

+ tr(1
2
γ5γµΦ)1

2
(γµγ5)βα + tr(1

2
iσνµγ5Φ)1

4
i(σµνγ5)αβ. (2.40)
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The dominant terms are those with the maximum number of plus-components in the
correlation functions, since they are proportional to the large momentum p+. To leading
power we thus get

ΦαβHi,βα = tr(1
2
γ+Φ)tr(1

2
γ−Hi) + tr(1

2
γ+γ5Φ)tr(1

2
γ5γ

−Hi)

+ tr(i1
2
σj+γ5Φ)tr(i1

2
σj−γ5Hi) (2.41)

for the contraction of the spin indices between the correlation function and hard inter-
action i.

We now define the collinear approximation kc of the parton momentum k, where
k+

c = k+, k−
c = 0 and kc = 0. Multiplying Hi with a factor k+

i , we get for the first (1
2
γ−)

term in (2.41)

k+
i tr

(

1
2
γ−Hi

)

= tr
(

1
2
/ki,cHi

)

= 1
2

∑

s

ūs(ki,c)Hius(ki,c), (2.42)

which is the spin averaged, squared amplitude for an on-shell quark. The terms in (2.41)
give partonic cross sections

σ̂i,aā =
1

2q2
i

[Pa(ki,c)]αβ

[

Pā(k̄i,c)
]

β̄ᾱ
Hi,βαᾱβ̄, (2.43)

with the projections

Pq(kc) = Pq̄(kc) = 1
2
/kc,

P∆q(kc) = −P∆q̄(kc) = 1
2
γ5/kc,

P j
δq(kc) = P j

δq̄(kc) = 1
2
γ5/kcγ

j. (2.44)

The spin vector of a quark can be parameterized as

sµ = λ

(

pµ

m
− mnµ

)

+ sµ
T , (2.45)

where m is the quark mass and λ (sT ) describes the degree of longitudinal (transverse)
polarization. The operator

1 + γ5/s

2
(2.46)

projects onto quarks or antiquarks of different polarizations. The combination with the
sum over spinors for quarks with different spin yields

(/k ± m)
1 + γ5/s

2
→m→0 /k

1 ∓ λγ5 + γ5/sT

2
. (2.47)

Comparing to the projection operators in (2.44) we see that the different projections give
the hard interactions of unpolarized, longitudinally polarized and transversely polarized
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quarks and antiquarks. The Fierz transform for both the quarks in the correlation func-
tion, gives rise to nine different combinations, corresponding to the different polarizations
of two quarks or antiquarks in an unpolarized proton.

For two quarks in an unpolarized right-moving proton we then write

Fa1a2
(x1, x2,z1,z2,y) = 2p+

∫

dz−1
2π

dz−2
2π

dy− eix
1
z−
1

p++ix
2
z−
2

p+

× 〈p| Oa2
(0, z2)Oa1

(y, z1) |p〉 , (2.48)

where averaging over the proton polarizations is implied and where

Oai
(y, zi) = q̄i(y − 1

2
zi) Γai

qi(y + 1
2
zi)

∣

∣

∣

z+

i = y+= 0
(2.49)

is the operator for a quark. Notice that we have relabel here, and in the following, the
quark field ψ → q, where qi will be used to indicate the quark flavor. The position
arguments in (2.49) correspond to the assignments in figure 2.5. The Dirac matrices
select quarks of the different polarizations in proton

Γq = 1
2
γ+ , Γ∆q = 1

2
γ+γ5 , Γj

δq = 1
2
iσj+γ5 (j = 1, 2) , (2.50)

with the subscripts q for an unpolarized quark, ∆q for a quark with longitudinal polar-
ization and δq corresponding to a quark with polarization in the transverse direction j.
The labels ai in (2.48) specify both the flavor and the polarization of the quarks. In
full analogy one can define DPDs Fā1,ā2

for two antiquarks, as well as quark-antiquark
distributions Fā1,a2

and Fa1,ā2
. For distributions with one or two gluons a similar decom-

position can be made and we will return to this when dealing with gluon distributions
in chapter 4.

Color

We now turn to the color structure of the double parton distributions. With color labels
as in figure 2.5 we parameterize the DPDs in two terms. One term describing the case
when the quark in the amplitude forms a color singlet with its partner in the conjugate
amplitude, and one term describing the case when they couple to a color octet. We
decompose the DPDs as [44]

Fjj′,kk′ =
1

N2
c

(

1Fδjj′δkk′ +
Nc

√

N2
c − 1

8Ftajj′t
a
kk′

)

. (2.51)

The DPDs with the two color structures can be expressed as

cFa1a2
(x1, x2,z1,z2,y) = 2p+

∫

dz−1
2π

dz−2
2π

dy− eix
1
z−
1

p++ix
2
z−
2

p+

× 〈p| cOa2
(0, z2)

cOa1
(y, z1) |p〉 , (2.52)
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with c = {1, 8} labeling the color representations. The operators of the singlet and octet
distributions equals

1O(y, zi) = q̄j′(y − 1
2
zi) δjj′qj(y + 1

2
zi)

∣

∣

∣

z+

i =y+=0
(2.53)

8O(y, zi) = q̄j′(y − 1
2
zi) tajj′qj(y + 1

2
zi)

∣

∣

∣

z+

i =y+=0
. (2.54)

With the normalization factors in (2.51) the color singlet and octet distributions enter
the cross section with equal weight

1

N2
c

(

1F 1F̄ + 8F 8F̄
)

, (2.55)

in the production of color singlet states.
The distributions containing antiquarks are decomposed analogously. For distribu-

tions with one or two gluons a larger number of color combinations is possible, for the
two gluon DPDs see equation 2.121 in [44], and for mixed quark-gluon DPDs see [43].

Flavor and fermion-number

There is one more index on the fields which we have yet to deal with. This is the flavor
index, which gives rise to interference between quarks of different flavors.

The quark coupling to H1 does not necessarily have the same flavor in the scattering
amplitude and its complex conjugate, because a mismatch in flavor can be compensated
by the quark coupling to H2. For example, the quarks with transverse positions y + 1

2
z1

and −1
2
z2 in figure 2.4 can be u quarks if the quarks with transverse positions 1

2
z2 and

y − 1
2
z1 are d quarks, as in figure 2.6(a).

We label the flavor interference distributions as F I (with a capital I as superscript)
and they are given by [58]

F I
a1a2

(x1, x2,z1,z2,y) = 2p+

∫

dz−1
2π

dz−2
2π

dy− eix
1
z−
1

p++ix
2
z−
2

p+

×
〈

p| OI
a2

(0, z2)OI
a1

(y, z1) |p
〉

(2.56)

with the product of operators

OI
a2

(0, z2)OI
a1

(y, z1) = q̄1(−1
2
z2) Γa2

q2(
1
2
z2) q̄2(y − 1

2
z1) Γa1

q1(y + 1
2
z1)

∣

∣

∣z+

1
= z+

2
=0

y+= 0

. (2.57)

These distributions are complex valued and their imaginary part changes sign when
one interchanges the flavor (but not the spin) assignments and replaces zi → −zi, e.g.

F I
q1∆q2

(x1, x2,z1,z2,y) =
[

F I
q2∆q1

(x1, x2,−z1,−z2,y)
]∗

. (2.58)
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u d̄ūd

(a)

u d̄dū

(b)

u uūū

(c)

u dd̄ū

(d)

Figure 2.6: Example graphs for different interference double parton distributions. The
q,q̄ labels indicate whether a parton corresponds to a quark field or a conjugate quark
field in the relevant DPD. The graphs illustrate flavor interference in (a) and (b), fermion
number interference in (c) and combined flavor and fermion number interference in (d).

As we shall see in Chapter 3, this ensures that physical cross sections are real-valued.
For diagrams involving double parton distributions of one quark and one anti-quark

there can in addition be interference in fermion number, between quarks and anti-quarks.
Figure 2.6 shows a couple of different diagrams with flavor and fermion number interfer-
ences. It was argued in [44] that flavor number interference should be small at small xi

values.

2.3.3 DPS cross section with correlations

Taking all correlations into account, the double parton scattering cross section (2.35) in
figure 2.3 takes the form

dσ
∏2

i=1 dxi dx̄i d2qi

=
1

C

∑

a1a2a3a4

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
{

dσ̂a1ā3
dσ̂a2ā4

[

1Fa1a2

1F̄ā3ā4
+ c8

8Fa1a2

8F̄ā3ā4

]

+ dσ̂I
a1ā3

dσ̂I
a2ā4

[

1F I
a1a2

1F̄ I
ā3ā4

+ c8
8F I

a1a2

8F̄ I
ā3ā4

]

}

. (2.59)

The sum over ai runs over the three different polarizations qi, ∆qi and δqi as well as over
the different quark flavors qi. The difference in color factor between the singlet and octet
contributions are contained in c8. For production of color singlet states, such as a γ, Z,
W or Higgs bosons, c8 = 1 with the prefactor in the definition (2.51) of the color octet.

To get the full DPS cross section, this formula has to be completed with the terms
when the quarks and anti-quarks labels have been interchanged. For the cases involving
mixed quark-antiquark DPDs the fermion number interference gives additional contri-
butions, as discussed in the previous section. The mixed cases also give rise to other
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sdσ
∏2

i=1 dxi dx̄i d2qi

sdσ
∏2

i=1 dxi dx̄i

a

l

l̄
q1

q2

1

Λ2Q2
1

b

l2 l′1

l̄1 l̄2 l̄′1

l1

1

Λ2Q2

Λ2

Q2

Figure 2.7: Example graphs for the production of a gauge boson pair via single and
double parton scattering. Internal lines of the hard-scattering subgraphs are off shell by
order Q2 and partons emerging from the proton matrix elements are off shell by order
Λ2. Figure taken from [44].

types of flavor interferences, see figure 2.6(b). We will return to these flavor interference
terms and discuss them in more detail when calculating the cross section for the double
Drell-Yan process in chapter 3. For the full cross section the double parton scattering
result has to be combined with the production of the same final state in a single hard
interaction, as well as the interference between double and single parton scattering.

Power counting

For inclusive enough observables, such as the total cross section double parton scattering
is power suppressed compared to single parton scattering

σDPS

σSPS

∼ Λ2

Q2
. (2.60)

However, this is not the case for the cross section differential in the transverse momenta
of the two hard interactions and in the region of small transverse momenta double and
single parton scattering are of the same power. The power suppression arises when
integrating over the transverse momenta due to the larger phase-space for the single
parton scattering. In SPS q1 + q2 ∼ Λ but the difference can be of the order of the hard
scale q1 −q2 ∼ Q, while for DPS q1 ∼ q2 ∼ Λ. The power behavior of single and double
parton graphs describing the production of gauge bosons are shown in figure 2.7.
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2.3.4 Relation to single-parton distributions

The double parton distributions can be related to single-parton distributions. We will
now discuss how to obtain such a relation and what kind of approximations are necessary.
The decomposition of the DPDs in terms of single-parton distributions is only possible
for the color singlet distributions of unpolarized partons and for simplicity we do not
specify the flavor indices here.

We insert a complete set of hadronic states between the two quark operators in (2.48).
If one assumes that the proton state completely dominates this sum, the double parton
distributions can be expressed as a product of two single-parton distributions [44]

F (x1, x2,z1,z2,y) ≈
∫

d2b f
(

x1,z1; b + y − 1
2
x2z2

)

f
(

x2,z2; b + 1
2
x1z1

)

. (2.61)

The second argument of the single-parton distribution f is Fourier conjugate to the
transverse quark momentum and the third argument gives the transverse position of the
proton with respect to the quark, both averaged over the scattering amplitude and its
conjugate. The shift of this argument by 1

2
x1z1 or −1

2
x2z2 is a consequence of Lorentz

invariance as explained in [43]. b is the vector from the proton’s center of longitudinal
momentum to the second hard interaction.

For the collinear distributions the same approximations reduce to

F (x1, x2,y) ≈
∫

d2b f
(

x1; b + y
)

f
(

x2; b
)

, (2.62)

where f(x1; b) is a generalized parton distribution. In the momentum representation
(2.62) reads

F (x1, x2, r) = f(x1; r)f(x2; r) , (2.63)

which we will use later for our investigation of the evolution of the transverse dependence
of the double parton distributions in chapter 5.

2.4 Beyond tree level

2.4.1 Evolution of collinear double parton distributions

Deriving the evolution equations of the collinear DPDs in the transverse position (y de-
pendent) representation, leads to evolution equations involving two independent DGLAP
evolutions - one for each parton. The evolution equation for the DPD of two unpolarized
quarks reads [44]

∂fq1q2
(x1, x2, y; µ)

∂logµ2
=

αs

2π

[

Pq1q1
⊗1 fq1q2

+ Pq1g ⊗1 fgq2

+ Pq2q2
⊗2 fqq2

+ Pq2g ⊗2 fq1g

]

, (2.64)
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where
∑

q is a sum over the different quark flavors.

Pab( . ) ⊗1 fbc( . , x2, y; µ) =

∫ 1−x2

x1

du1

u1

Pab

(

x1

u1

)

fbc(u1, x2, y; µ) (2.65)

is a convolution in the first argument of the DPD, and analogously for ⊗2, with the
leading-order splitting function Pab known from the DGLAP evolution of single parton
distributions. The leading-order splitting functions are the same for quarks and anti-
quarks, i.e. one has Pqq = Pq̄q̄, Pqg = Pq̄g, Pgq = Pgq̄ and there is no transition between
quarks and antiquarks. We will discuss the evolution in more details in chapter 4.

If one derives the evolution equations in the r representation of the DPDs, some of
the evolution equations contain an additional term with a single parton density, dubbed
the single feed term. For example, the evolution of an unpolarized quark-antiquark
distribution includes [44]

αs

2π

1

x1 + x2

Pqg

(

x1

x1 + x2

)

fg(x1 + x2), (2.66)

describing the splitting of one gluon into the interacting quark-antiquark pair. The
difference of the evolution equations between the r and y dependent DPDs can be
understood as arising from an additional renormalization of Fqq̄(x1, x2,y) required at
y = 0. This additional term has been discussed in [74–78] and is closely related to the
separation between double and single parton scattering which will be discussed in the
next section.

In the following chapters we will only make use of the homogeneous (y representation)
evolution equation, for which we reserve the term double DGLAP evolution. We make
this choice, because it is clear that the two independent evolutions will remain a part of
the evolution of the DPDs, while at most parts of the single feed term should remain.

2.4.2 Double or single parton scattering?

Let us now touch upon a topic which has received much attention and invoked debate
in the DPS community the last few years. The double parton scattering we have been
dealing with so far, has been of the 2v2 type as in figure 2.4 - where both partons are
created non-perturbatively inside the proton. The two partons in the double scattering
can however originate from a perturbative splitting described by the single feed term
(2.66). This leads to 2v1 (1v2) type of diagrams with a perturbative splitting in one of
the protons and 1v1 type of diagrams through perturbative splittings in both protons
as shown in figure 2.8. The question arises if 1v1 should be included in double partons
scattering at all, or if it should be regarded as single parton scattering - leading to an
issue of separation between single and double scattering. An intuitive answer to this
question might be that it should be included as DPS only when the splitting occurs at
a low enough scale. Implementing such a separation however turns out to be far from
trivial.
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(a) (b)

Figure 2.8: Example diagram for 2v1 process (a) and the 1v1 process (b).

The problem can be understood in the y representation. The double parton distri-
butions for a quark and an antiquark behave as [44]

Fqq̄(x1, x2,y) ∼ 1

y2
(2.67)

for small y. In the cross section this gives an integral over y
∫

d2yFqq̄(x1, x2,y)F̄qq̄(x̄1, x̄2,y) ∼
∫

d2y
1

y4
(2.68)

which has a quadratic divergence in |y|. In the momentum representation the divergence
originates in integrating an log(r2/µ2) dependent term which diverges at large r.

The double parton scattering singularity has been extensively studied in [48], where
it was shown that there is no power suppressed piece in the 1v1 diagram which can be
naturally included in DPS. Such a piece is however present in the 2v1 diagrams [49].

Different solutions to the problem have been suggested in the literature. Invoking
a cutoff of min(q2

1, q
2
2) in the integral over r was advocated in [46]. [51] concluded that

the two parton distributions have to be renormalized together at the level of the cross
section to remove this ultraviolet divergency (since the two operators are evaluated at
the same position when y = 0). This leads to including the 2v2 and 2v1 diagrams as
double parton scattering, but taking this literally might, strictly speaking, imply that one
has to give up the concept of double parton distributions. Dropping the 1v1 diagrams
was also suggested by [42] with the statement that the 1v1 diagram does not contain
the low qi enhancement characteristic for DPS. There are however concerns with such
approaches, as discussed in [49] and alternative ways should still be investigated. These
issues will not be further explored in this thesis, and we refer to the above references for
more details on the topic.

2.4.3 Status of DPS factorization

The analysis of the tree level results above was concerned with the quark/antiquark
initiated hard processes. The result can, at the tree level, be generalized to include
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also processes which involves gluons in the initial state. As we now turn towards a
discussion of factorization and effects of the exchange of additional gluons, we restrict
our discussion to the case when the hard interactions produce color singlet states. For
factorization involving the production of jets in hadron collisions, serious problems have
been identified already in the case of a single hard scattering [70], and most likely these
should be resolved before moving on to the more complicated case of two hard scatterings.

Although there exists no complete factorization proof for double parton scattering,
important steps have been taken. For the production of color singlet states, [44] has
shown that many elements of the factorization for single parton scattering [65, 79–81]
can be applied also in the case of double parton scattering. In addition, some elements
of a next-to-leading order factorization of the double Drell-Yan process have been given
in [44]. For the transverse momentum integrated cross section, [50] showed that next-to-
leading order factorization can be obtained in Soft Collinear Effective Theory (SCET),
by means of the rapidity renormalization group introduced in [82, 83]. However, so far
there have been no studies demonstrating a cancellation of soft gluons dominated by
their transverse momenta, so called Glauber gluons, which was a substantial part of the
proof of factorization in single Drell-Yan [65].

2.4.4 Gauge links

The operators defining the double parton distributions in our tree level analysis above are
not gauge invariant. They need to be complemented by gauge links arising from collinear
gluons. Collinear gluons, with polarization in the plus direction, exchanged between the
right-moving proton and the hard interactions, are not power suppressed. Therefore
an infinite number of such gluons have to be taken into account. Their leading-power
contributions can be represented by gauge links (Wilson lines), which make the double
parton distributions gauge invariant. The quark and antiquark fields in the DPDs are
to be replaced by [43]

qj(z) → [W (z, v)]jk qk(z) ,

q̄j(z) → q̄k(z)
[

W †(z, v)
]

kj
(2.69)

where the Wilson lines are defined as

W (z, v) = P exp

[

ig

∫ ∞

0

dλvAa(z − λv)ta
]

. (2.70)

P stands for path ordering while j and k are color indices. In order to avoid rapidity
divergences in the parton distributions the direction v of the Wilson lines has to be tilted
away from the light-cone [79,81]. This gives rise to an additional parameter

ζ2 =
(2pv)2

|v2| (2.71)
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in the parton distributions. The choice of scale of this parameter is the hard scale Q.
Complementing the DPDs with the Wilson lines changes the operators for two quarks
in (2.48) into [44]

[q̄(−1
2
z2)W

†(−1
2
z2; v)]k′Γa2

[W (1
2
z2; v)q(1

2
z2)]k

× [q̄(y − 1
2
z1)W

†(y − 1
2
z1; v)]j′Γa1

[W (y + 1
2
z1; v)q(y + 1

2
z1)]j

∣

∣

∣

z+

i =y+=0
, (2.72)

for the color singlet DPDs. In addition to these Wilson lines from the collinear gluons,
there can be exchanges of soft gluons between left and right moving partons. These
give rise to a soft factor in the cross section, which is a vacuum expectation value of
Wilson lines. Also the parton distributions include soft gluon momenta and one have to
be careful no to double count the contributions [65,80,81].

2.4.5 Sudakov logarithms

Measured transverse momenta of the vector bosons qi much smaller than the hard scale
Q give rise to large Sudakov logarithms log |qi|/Q. In order to obtain perturbatively
stable results these logarithms have to be resummed to all order. In [44] the formalism
for single gauge boson production [84] has been extended to double Drell-Yan. The
dependence of the two quark distribution on the rapidity parameter ζ in (2.71) is given
by [43]

d

d log ζ

(

1Fqq
8Fqq

)

= [G(x1ζ, µ) + G(x2ζ, µ) + K(z1, µ) + K(z2, µ)]

(

1Fqq
8Fqq

)

+ M (z1,z2,y)

(

1Fqq
8Fqq

)

, (2.73)

where the functions G(xiζ, µ) and K(zi, µ) are known from the Collins-Soper equation
of single parton scattering [79]. The matrix M couples the color singlet and color octet
distributions and describes a dependence on ζ specific for double parton distributions.
The general solution to this equation is

(

1Fqq(x1, x2,z1,z2,y; ζ)
8Fqq(x1, x2,z1,z2,y; ζ)

)

= e−S(x1ζ,z1,z2)−S(x2ζ,z1,z2)

× e
log

√
x1x2ζ

µ0
M(z1,z2,y)

(

1F µ0

qq (x1, x2,z1,z2,y)
8F µ0

qq (x1, x2,z1,z2,y)

)

(2.74)

with

S(xζ,z1,z2) = −1
2
[K(z1, µ0) + K(z2, µ0)] log

xζ

µ0

+

∫ xζ

µ0

dµ

µ

[

γK(αs(µ)) log
xζ

µ
− G(µ, µ)

]

. (2.75)
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Figure 2.9: Sudakov suppression factor, with and without rapidity resummation, of the
color interference in double Drell-Yan, where CV − CR = Nc/2. Figure taken from [50].

γK is the anomalous dimension from the renormalization group equation for K and G,

γK(αs(µ)) =
dG(xζ, µ)

d log µ
= −dK(z, µ)

d log µ
. (2.76)

The double logs, which come from the integral in (2.75) are the same as the double logs in
single parton scattering. To double logarithmic accuracy, the Sudakov factors of double
gauge boson production are thus a product of those for the single parton scattering
production of a gauge boson.

For the DPDs including partons which do not couple to color singlets in each hard
collision there is another type of Sudakov factor [44,50,85]

Ũµ = exp

[

−αs

2π
(CV − CR) ln2(

Q2

Λ2
)

]

. (2.77)

For color singlet distributions the color factors CV = CR = CF and (2.77) reduces
to unity, but for distributions of other color configurations the different color factors
for the emission of virtual and real gluons give CV − CR ≥ 0. This leads to a Sudakov
suppression of double parton scattering with color and fermion number interference. The
suppression can be intuitively explained as arising due to a transportation of color over a
long distance inside the proton [50]. For the production of bosons with large virtualities
Q the color interference and fermion number interference can thus be neglected. The
numerical size of the suppression is demonstrated in figure 2.9.

2.5 Model estimations

The double parton distributions has been examined in the MIT bag model [86], where
sizable double parton correlations were found for spin, flavor and momentum fractions,
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Figure 2.10: Double parton distributions in the MIT bag model. Figure taken from [86].

but only a weak interplay with transverse momenta. The double parton distributions
obtained for different polarizations are shown in figure 2.10, demonstrating the large
correlation between the polarizations of the partons. The unpolarized double parton
distributions were also studied in two constituent quark models [57], one non-relativistic
SU(6) symmetric model and one with a slight breaking of this symmetry. This study was
not concerned with polarization effects, but for the unpolarized case strong correlations
between longitudinal momentum fractions were found in both models - violating a fac-
torization into one x1 and one x2 dependent function. Further, the correlation between
momentum fractions and transverse momentum was found to be small, but model de-
pendent. It was pointed out that the small correlation was a result of the dominance of
the S-wave, and that models with larger contributions from wave functions with larger
angular momentum would lead to stronger correlations.

2.6 Experimental status

Double parton scattering has a long experimental history. Experimental evidence for
double parton interactions was first seen at the ISR [31]. Since then it has been seen
at the SPS [32] and the Tevatron [33–37]. Due to the rapid increase of parton densities
at small momentum fractions, one expects multiparton interactions to be even more
prominent at the LHC, and first measurements have been made [38,39].
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Experiment σeff [mb] Process Collider
√

s [TeV]

ATLAS [38] 15 ± 3+5
−3 Wjj LHC 7

D0 [36] 16.4 ± 0.3 ± 2.3 γ + 3 × j Tevatron 1.96
CDF [35] 14.5 ± 1.7+1.7

−2.3 γ/π0 + 3 × j Tevatron 1.8
CDF [33] 12.1+10.7

−5.4 4 × j Tevatron 1.8

Table 2.1: Measured values of σeff at Tevatron and LHC.

Ignoring all spin, color, flavor and fermion number correlations effectively reduces
the transverse momentum integrated cross section to (2.36). If one further assumes that
the y dependence can be factorized from the xi and x̄i dependence and that it is the
same for all partons, then F (x1, x2,y)F̄ (x̄1, x̄2,y) = F (x1, x2)F̄ (x̄1, x̄2)F (y). Making
the additional assumptions that the longitudinal dependence on the two momentum
fractions separate and that they separate into two normal parton distributions, then
F (x1, x2) = f(x1)f(x2). The double parton cross section can then be written in terms
of single parton cross sections

dσDPS
∏2

i=1 dxidx̄i

=
1

C

dσ1dσ2

σeff

(2.78)

where

1

σeff

=

∫

d2yF (y). (2.79)

In past experiments, the focus has been on measuring σeff. Such measurement, al-
though suffering from the difficulty to separate single and double parton scattering, are
important. They can provide an estimate for the size of DPS cross sections and to some
extent test the factorized ansatz (2.78). For example, a process dependence of σeff would
indicate a breakdown of some of the approximations. A summary of the experimental
status on σeff can be found in table 2.1 and figure 2.11 which shows the dependence of
the measurements on the center of mass energy. The CDF measurement with γ/π0+
three jets in uses a non-standard definition of σeff excluding events with 3 or more hard
scatterings, as pointed out in [87]. Using instead an inclusive definition, [88] has obtained
a new value for sigma effective σeff = 12.0 ± 1.4+1.3

−1.5 from the same measurement.
There are interesting measurements reported recently by LHCb for double charm

production [39], which with a DPS interpretation, give a varying σeff depending on the
produced hadrons. As an example the D0D0 mode gives σeff = 42 ± 3 ± 4 mb while the
J/ΨD0 mode gives σeff = 14.9 ± 0.4 ± 1.1+2.3

−3.1 mb.
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Chapter 3

The double Drell-Yan process

3.1 Introduction

Armed with the framework presented in the previous chapter, we now turn towards a de-
tailed study of the correlations between the polarization of two partons in an unpolarized
proton. We investigate how the correlations affect the overall rate and the final-state
distributions in double hard scattering. We build on observations made in [44] and ex-
tend the results of [50]. The relevance of spin correlations in DPS was first pointed out
in [72,89] but not followed up until recently.

Our studying takes place at the stage set by the double Drell-Yan process, where each
of the two hard interactions produce an electroweak gauge bosons (γ∗, Z,W±) through
quark-antiquark annihilation, followed by their leptonic decay. The Drell-Yan process
has provided many insights in single parton scattering and the double Drell-Yan process
has long been recognized as a prototype for double parton interactions [72,90,91]. Recent
phenomenological studies have unfortunately shown that the rates expected for double
Drell-Yan production at the LHC is likely too small to allow for detailed experimental
analysis of the final-state distributions [9, 92]. However, we choose this process for our
investigation, since it from a theoretical point of view is among the simplest double
parton scattering processes but anyhow provides a wealth of nontrivial features. The
results we obtain for the double Drell-Yan process will have analogs in other processes
with higher rates. For example the production of a gauge boson associated with two jets
or production of four jet final states. Note that the graph for the tree-level production
of a gauge boson with subsequent decay only differs from the graph for qq → qq via an
s-channel gluon by an overall color factor.

This chapter is organized as follows. In the next section we set the stage for the
double Drell-Yan processes, decompose the double parton distributions involved and
define the reference frames used. In section 3.4 we give our results for the cross section
of the double Drell-Yan process. Section 3.5 summarizes our findings. In appendix A we
list the coupling factors entering the cross section formula in section 3.4.

33
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3.2 Setting the stage

Consider the production of two gauge bosons V1, V2 = γ∗, Z,W in a pp collision, fol-
lowed by the leptonic decays γ∗, Z → ℓ+ℓ− or W → ℓν. Four-momenta are assigned
as p(p) + p(p̄) → V1(q1) + V2(q2) + X. We are interested in the fully differential cross
section of the four-lepton final state and restrict ourselves to the kinematic region where
the transverse momenta q1 and q2 of the gauge bosons in the pp center-of-mass are
much smaller than their invariant masses, i.e. we assume q2

1, q
2
2 ≪ q2

1, q
2
2. As discussed

in the previous chapter, for such kinematics the double parton scattering is not power
suppressed compared to the production of the gauge boson pair by a single hard scat-
tering. In the calculation of the cross section, the invariant mass Qi = (q2

i )
1/2 will serve

as the hard scale necessary for the application of factorization. For simplicity we shall
not assume any particular hierarchy in size between q1 and q2 or between Q1 and Q2.

We assume that the double hard scattering cross section factorizes as in (2.59) into the
product of a double parton distribution in each proton and a parton-level cross section
for each of the two hard scatters. Schematically, the double Drell-Yan cross section then
reads

dσ
∏2

i=1 dxi dx̄i d2qi dΩi

∣

∣

∣

∣

DDY

=
1

C

dσ̂1

dΩ1

dσ̂2

dΩ2

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

×
∫

d2y F (x1, x2,z1,z2,y) F̄ (x̄1, x̄2,z1,z2,y) (3.1)

with the cross section dσ̂i/dΩi for quark-antiquark annihilation into a lepton pair via
the gauge boson Vi, taken differential w.r.t. the lepton angles in the appropriate boson
rest frame (see section 3.2.2). In the pp center-of-mass we define the z axis to point into
the direction of the proton momentum p. The factorization formula (3.1) generalizes the
expression for single Drell-Yan production in terms of transverse-momentum dependent
single parton densities [65,79].

Integrating (3.1) over the transverse boson momenta q1 and q2 one obtains

dσ
∏2

i=1 dxi dx̄i dΩi

∣

∣

∣

∣

DDY

=
1

C

dσ̂1

dΩ1

dσ̂2

dΩ2

∫

d2y F (x1, x2,y) F̄ (x̄1, x̄2,y) . (3.2)

Equations (3.1) and (3.2) are schematic in that they omit labels for and summation
over the quantum numbers of the partons (quarks vs. antiquarks, flavor, polarization
and color). This information will be restored in section 3.3. We emphasize that these
equations only give one contribution to the cross section for four-lepton production. Fur-
ther contributions need to be added from the familiar single hard-scattering mechanism
(where the four leptons are produced in a single parton-level process), the interference
between single and double hard scattering, as well as double hard-scattering graphs with
fermion number interference as discussed in section 2.3.2. The single hard-scattering con-
tribution is straightforward to compute (see e.g. [92]), whereas the different interference
contributions are not. The fermion number interference will be suppressed at larger Qi

by the Sudakov factor discussed in section 2.4.5, and as argued in [44] become relatively
unimportant at small momentum fractions xi, x̄i.
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Figure 3.1: A graph for the double Drell-Yan process, where two quarks in the right-
moving proton interact with two antiquarks in the left-moving proton. The figure shows
the assignment of four-momenta (p, p̄, q1, q2), of light-cone momentum fractions (xi, x̄i)
and of transverse position arguments as explained in the text. The dotted vertical line
denotes the final-state cut.

3.2.1 Decomposition of double parton distributions

Let us now classify the different double parton distributions for the combinations of quark
polarization of (2.48), taking into account the constraints of parity invariance [44]. For
unpolarized and longitudinally polarized quarks we have

Fqq = fqq(x1, x2,z1,z2,y) , F∆q∆q = f∆q∆q(x1, x2,z1,z2,y) ,

Fq∆q = gq∆q(x1, x2,z1,z2,y) , F∆qq = g∆qq(x1, x2,z1,z2,y) , (3.3)

where f denotes scalar and g pseudoscalar functions. f∆q∆q describes to which degree
the helicities of the two quarks are aligned rather than anti-aligned, while g∆qq describes
a correlation between the helicity of the quark and cross-products of the transverse
position vectors of the partons, z1 ,z2 and y. For transverse quark polarization the
parton distributions carry a transverse index and can be decomposed as

F i
∆qδq = M

(

yif∆qδq + ỹig∆qδq

)

, F i
δq∆q = M

(

yifδq∆q + ỹigδq∆q

)

,

F i
qδq = M

(

ỹifqδq + yigqδq

)

, F i
δqq = M

(

ỹifδqq + yigδqq

)

, (3.4)

where the scalar and pseudoscalar functions depend on the same variables as in (3.3).
Here ỹi = ǫijyj is a transverse vector orthogonal to yi, defined in terms of the two-
dimensional antisymmetric tensor ǫij (with ǫ12 = 1). Factors of the proton mass M have
been introduced in order to have the same mass dimension for all distributions f and g.
For two transversely polarized quarks we finally write

F ij
δqδq = δijfδqδq + M2

(

2yiyj − y2δij
)

f t
δqδq

+ M2
(

yiỹj + ỹiyj
)

gs
δqδq + M2

(

yiỹj − ỹiyj
)

ga
δqδq . (3.5)
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Decompositions analogous to (3.3) to (3.5) hold for antiquarks and for flavor interference
distributions.

Corresponding definitions apply for two partons in a left-moving proton, with + and −
components interchanged in (2.48) to (2.50). Note that the covariant expression of the
two-dimensional antisymmetric tensor in terms of the four-dimensional one is ǫij = ǫ+−ij

(with ǫ0123 = 1). In the analogs of (3.3) to (3.5) for left-moving partons one hence needs
to change the sign of ỹ and of the pseudoscalar functions g (which can be written as ǫij

contracted with a parity even tensor constructed from z1, z2 and y).
All distributions discussed so far allow for the two color structures of section 2.3.2,

one where the two fields in the operator Oai
are coupled to a color singlet and one where

they are coupled to a color octet. This requires a further index on all distributions, which
we will not display in the present chapter for brevity.

For the distributions integrated over transverse momenta, the number of different
distributions decrease:

Fqq(x1, x2,y) = fqq(x1, x2, y) ,

F∆q∆q(x1, x2,y) = f∆q∆q(x1, x2, y) ,

F j
∆qδq(x1, x2,y) = yjMf∆qδq(x1, x2, y) ,

F j
δq∆q(x1, x2,y) = yjMfδq∆q(x1, x2, y) ,

F j
qδq(x1, x2,y) = ỹjMfqδq(x1, x2, y) ,

F j
δqq(x1, x2,y) = ỹjMfδqq(x1, x2, y) ,

F jj′

δqδq(x1, x2,y) = δjj′fδqδq(x1, x2, y) + M2
(

2yiyj − y2δij
)

f t
δqδq(x1, x2, y) . (3.6)

Note that all pseudoscalar distributions g in (3.3) to (3.5) have vanished since one cannot
create a pseudoscalar with only one vector y, and in addition the color singlet distribution
with ∆qδq (δq∆q) vanish due to time reversal. The transverse polarizations describe an
interference between quarks of different helicities. As we shall see in chapter 4, f t

δqδq

describes the case when the helicity interference results in a helicity difference of two
units between the amplitude and the conjugate amplitude, while fδqδq describes the case
when the helicity interferences in the two interactions compensate one another.

3.2.2 Reference frames

Let us now introduce the reference frames and coordinate axes needed to describe the
angular dependence of the cross section. The angles describing the decay of the vector
bosons will be defined in restframes of the respective boson. However, as we will demon-
strate, the azimuthal angles can, to the accuracy of our calculation, be taken with respect
to the X-axis in the pp center of mass frame - leading to substantial simplifications.

In the pp center-of-mass we have the z axis as in chapter 2 pointing along the mo-
mentum p. The four-vector defining this axis is hence

Zµ = (p − p̄)µ/
√

2pp̄ , (3.7)
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Figure 3.2: Coordinate system in the rest frame of vector boson Vi. The z axis bisects
the angle between the spatial components of the momenta p and −p̄, and the x axis
corresponds to a fixed reference direction as explained in the text. (In general, the
proton momenta are therefore not in the x-z plane.) li and l̄i are the momenta of the
lepton and the antilepton from the boson decay, respectively. θi denotes the polar and
ϕi the azimuthal angle of the lepton. Note that ϕi is negative in this example.

where we neglect the proton mass here and in the following. We choose a fixed four-
vector Xµ orthogonal to p and p̄ to define the x axis. The precise choice does not matter
for our purpose, but one may for instance adopt the convention to have the x direction
point towards the center of the LHC ring. The y axis is then defined such that we obtain
a right-handed coordinate system; the corresponding four-vector can be written as

Y µ = ǫµ
νρσ Xν p̄ρpσ/(pp̄). (3.8)

In order to describe the kinematics of the gauge boson decays into leption pairs we
define the z axis in the rest frame of the boson Vi by the four-vector

Zµ
i =

1

2

√

Q2
i + q2

i

[

pµ

pqi

− p̄µ

p̄qi

]

, (3.9)

where qi is the transverse boson momentum in the pp center-of-mass as before. As
illustrated for one boson in figure 3.2, the z axis bisects the angle between the spatial
components of p and −p̄ in the boson rest frame. The x axis is specified in terms of the
pp center-of-mass axis Xµ by

Xµ
i =

1
√

1 + (Xqi)
2/Q2

i

[

Xµ − Xqi

Q2
i

qµ
i

]

(3.10)

and the y axis is again defined to obtain a right-handed coordinate system, i.e. by
Y µ

i = ǫµ
νρσ Zν

i Xρ
i qσ

i /Qi. With these reference axes we define the polar and azimuthal
angles θi and ϕi of the lepton (as opposed to the antilepton) in the decay of Vi, i.e. of ℓ−

in the decay of a γ∗, Z or W− and of νℓ in the decay of a W+.
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Noting that Xqi is the x component of qi in the pp center-of-mass, we see in (3.10) that
X1, X2 and X differ from each other by terms of order |qi|/Qi, which is a small parameter
in our calculation of the cross section. Likewise, one finds differences of order |qi|/Qi

between Y1, Y2 and Y . As we shall see shortly, this greatly simplifies the discussion of
azimuthal angles in our calculation.

The physical cross section must of course not depend on the arbitrary fixed direction
specified by Xµ. To understand how this happens, we anticipate that our results will
depend only on the difference of azimuthal angles whose definition depends on Xµ, such
as for instance ϕ1 −ϕ2. These angles are defined in different frames, but to the accuracy
of our calculation we can replace them with the azimuthal angles of the leptons in the
pp center-of-mass. This can be seen by writing trigonometric functions of ϕi in terms of
invariant products Xi li and Yi li, where li is the four-momentum of the lepton from the
decay of Vi. When calculating the cross section we neglect terms of order |qi|/Qi and
can hence approximate Xi li ≈ Xli and Yi li ≈ Y li, which gives azimuthal angles in the
pp center-of-mass as announced.

Readers familiar with the analysis of single Drell-Yan production will recognize that
our choice of z axes is the same as in the Collins-Soper frame [93]. Useful information
about this frame can e.g. be found in [94, 95]. By contrast, we define x axes (and thus
the azimuthal angles ϕi) starting from a fixed direction in space, whereas in the Collins-
Soper frame the x axis is defined such that the proton momenta lie in the x-z plane.
The latter choice becomes undefined when the transverse boson momentum in the pp
center-of-mass goes to zero. For unpolarized single Drell-Yan production this is not a
problem because in this limiting case all azimuthal dependence in the cross section must
vanish due to rotation invariance. However, in the double Drell-Yan process there can be
an azimuthal dependence even if q1 or q2 or both go to zero, as we shall see. Choosing
one of these vectors (or any linear combination of them) to define x axes would therefore
entail ill-defined azimuthal angles at some point in phase space where there can be a
nontrivial azimuthal dependence.

3.3 Hard-scattering cross sections

If we restore the labels for quarks and antiquarks, their flavor and their polarization, the
cross section formula (3.1) reads

dσ
∏2

i=1 dxi dx̄i d2qi dΩi

=
1

C

∑

a1a2a3a4

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
[

dσ̂a1ā3

dΩ1

dσ̂a2ā4

dΩ2

Fa1a2
F̄ā3ā4

+
dσ̂a1ā3

dΩ1

dσ̂ā2a4

dΩ2

Fa1ā2
F̄ā3a4

+
dσ̂ā1a3

dΩ1

dσ̂a2ā4

dΩ2

Fā1a2
F̄a3ā4

+
dσ̂ā1a3

dΩ1

dσ̂ā2a4

dΩ2

Fā1ā2
F̄a3a4

]

+ {flavor interference} , (3.11)
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where here and in the following we omit the label “DDY” for double Drell-Yan. In all
terms the DPDs have arguments as in (3.1), which will be omitted henceforth for brevity.
To distinguish the distributions for the left- and right-moving proton we use the notation
F and F̄ , as in chapter 2, and a corresponding notation for the scalar and pseudoscalar
functions f, f̄ and g, ḡ introduced in section 3.2.1. The first subscript in dσaiāj

and dσāiaj

denotes the right-moving parton and the second subscript the left-moving one. The sum
over a1 to a4 runs over all quark flavors and polarizations (q, ∆q, δq).

The flavor interference terms involve the interference DPDs in (2.56) and correspond-
ing interference terms for the hard scattering. These interference terms only appear if the
produced bosons are both neutral or both charged, otherwise the quark and antiquark
flavors in the annihilation processes do not match. We will return to this in the next
section.

Labels for the color structure of the DPDs are not displayed in (3.11). With the
conventions specified in 2.3.2, each factor F F̄ is to be replaced with the sum 1F 1F̄ +8F 8F̄
of color singlet and color octet distributions, without change in the hard-scattering cross
sections. This holds for the production of arbitrary color-neutral states in the hard-
scattering processes.

It is straightforward to compute the tree-level cross section for quark-antiquark anni-
hilation into a gauge boson followed by its leptonic decay. In accordance with the power
counting scheme underlying the cross section formula (3.11), the transverse boson mo-
menta qi are set to zero in this calculation since by assumption they are small compared
with the invariant mass Qi. This also simplifies the kinematics of the gauge boson decays
as we already noticed in section 3.2.2.

Consider first the case where both quark and antiquark are unpolarized or longitu-
dinally polarized. The angular dependence of the cross section is then of the form

dσ̂aiāj

dΩi

=
(

1 + cos2 θi

)

Kaiāj
(Qi) + 2 cos θi K

′
aiāj

(Qi) , (3.12)

with ai = qi, ∆qi and āj = q̄j, ∆q̄j. The integration element reads dΩi = dϕi dcos θi as
usual. The factors K and K ′ depend on coupling constants and on Qi via the gauge
boson propagators. One easily finds

K∆qi∆q̄j
= −Kqiq̄j

, Kqi∆q̄j
= −K∆qiq̄j

(3.13)

and analogous relations for K ′, so that

dσ̂qiq̄j

dΩi

= −dσ̂∆qi∆q̄j

dΩi

,
dσ̂qi∆q̄j

dΩi

= −dσ̂∆qiq̄j

dΩi

. (3.14)

Because of chirality conservation for massless quarks one has vanishing parton-level cross
sections for the annihilation of a transversely polarized parton with an unpolarized or
longitudinally polarized one, dσ̂δqiq̄j

= dσ̂δqi∆q̄j
= dσ̂qiδq̄j

= dσ̂∆qiδq̄j
= 0. If both quark
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and antiquark are transversely polarized, one finds

dσ̂kl
δqiδq̄j

dΩi

= sin2 θi

{

[

cos(2ϕi) Kδqiδq̄j
(Qi) − sin(2ϕi) K ′

δqiδq̄j
(Qi)

]

(

XkX l − Y kY l
)

+
[

sin(2ϕi) Kδqiδq̄j
(Qi) + cos(2ϕi) K ′

δqiδq̄j
(Qi)

]

(

XkY l+ Y kX l
)

}

(3.15)

with X and Y as defined in section 3.2.2. The transverse indices k, l in (3.15) refer to
the pp center-of-mass, where they are to be contracted with the corresponding indices of
the DPDs. We note that contraction of (3.15) with the transverse spin vectors sk, s̄l of
the quark and the antiquark gives the simple expression

dσ̂kl
δqiδq̄j

dΩi

sks̄l = sin2 θi

[

cos(ϕs + ϕs̄ − 2ϕi) Kδqiδq̄j
+ sin(ϕs + ϕs̄ − 2ϕi) K ′

δqiδq̄j

]

, (3.16)

where ϕs and ϕs̄ are the azimuthal angles of the spin vectors in the pp center-of-mass
and our normalization convention is s2 = s̄2 = 1.

The preceding expressions hold for both neutral and charged vector bosons, and the
coupling factors Kaiāj

and K ′
aiāj

appearing in (3.12) and (3.15) are given in appendix A.
For neutral boson production the annihilating quark and antiquark have the same flavor.
In this case we will use dσ̂qiq̄j

, dσ̂qi∆q̄j
, . . . with i 6= j to denote the interference terms for

flavor qi in the amplitude and flavor qj in the conjugate amplitude. The relations (3.12)
to (3.16) remain valid for these interference terms. As can be seen in appendix A, the
corresponding coupling factors are complex, and their imaginary parts change sign when
the flavor (but not the spin) labels are interchanged, e.g.

Kq1q̄2
= (Kq2q̄1

)∗ , K ′
q1∆q̄2

= (K ′
q2∆q̄1

)∗ . (3.17)

We note that for invariant masses Qi far below the Z mass, the neutral boson channel
is well approximated by γ∗ production alone. The only nonzero coupling factors in this
case are Kqiq̄j

= −K∆qi∆q̄j
= Kδqiδq̄j

.
For W boson production we use dσ̂qiq̄j

, dσ̂qi∆q̄j
etc. to denote cross sections with

different flavors qi, qj in the initial state. We do not need a separate notation for flavor
interference terms in this case, because the product dσ̂a1ā3

dσ̂a2ā4
of cross sections for

WW production is equal to the product of the corresponding interference terms, except
for CKM factors that can easily be identified. Using that W bosons only couple to
left-handed fermions, we find further simplifications for the coupling factors:

Kqiq̄j
= Kqi∆q̄j

, Kδqiδq̄j
= 0 , K ′

a1ā2
= Ka1ā2

, (3.18)

where the second relation reflects that the operator Oδq for transverse quark polarization
corresponds to the interference between left- and right-handed quarks. Together with
the relations (3.13) we are thus left with only one independent coupling factor for W−

and only one for W+ production.



3.4. The double Drell-Yan cross section 41

So far we have discussed cross sections and interference terms dσ̂aiāj
for the anni-

hilation of a right-moving quark with a left-moving antiquark. The cross sections and
interference terms dσ̂ājai

for right-moving antiquarks and left-moving quarks have the
same form as in (3.12) and (3.15). The associated coupling factors are given by

Kq̄jqi
=

(

Kqiq̄j

)∗
, K ′

q̄jqi
= −

(

K ′
qiq̄j

)∗
(3.19)

and analogous relations for the spin combinations ∆q∆q and δqδq, and by

Kq̄j∆qi
= −

(

Kqi∆q̄j

)∗
, K ′

q̄j∆qi
=

(

K ′
qi∆q̄j

)∗
(3.20)

and an analogous relation for the spin combination ∆qq.

3.3.1 Single polarized Drell-Yan

Before moving on to the cross section results for double Drell-Yan in unpolarized protons,
let us briefly discuss single Drell-Yan production with polarized protons. The formalism
for a single parton in a polarized proton resembles that of two partons in an unpolarized
proton. Just as the polarization of two partons can be correlated, the polarization of one
parton can be correlated with the polarization of the parent proton. As a double check of
our calculation, we computed the cross section for single Drell-Yan in a collision between
two unpolarized protons and between one unpolarized and one transversely polarized
proton. The results for the photon confirm those in [95]. We also compared our results
to the single Drell-Yan calculation in [96]. Agreement was found except for the sign of the
γ∗/Z interference, for which we could verify our result by comparing to the calculation
of the time reversed hard process in [64].

3.4 The double Drell-Yan cross section

Inserting the hard-scattering cross sections (3.12), (3.15) and the DPD decompositions
(3.3) to (3.5) into the factorization formula (3.11), we obtain our final results for the
double parton scattering contribution to four-lepton production.

For the production and decay of two W bosons, the result has a simple structure
thanks to the relations (3.18),

dσWW

∏2
i=1 dxi dx̄i d2qi dΩi

=
1

C

∑

q1q2q3q4

Kq1q̄3
(Q1) Kq2q̄4

(Q2)

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
[

(1 + cos θ1)
2 (1 + cos θ2)

2

× (fq1q2
+ f∆q1∆q2

− gq1∆q2
− g∆q1q2

)(f̄q̄3q̄4
+ f̄∆q̄3∆q̄4

− ḡq̄3∆q̄4
− ḡ∆q̄3q̄4

)

+ (1 + cos θ1)
2 (1 − cos θ2)

2

× (fq1q̄4
− f∆q1∆q̄4

+ gq1∆q̄4
− g∆q1q̄4

)(f̄q̄3q2
− f̄∆q̄3∆q2

+ ḡq̄3∆q2
− ḡ∆q̄3q2

)



42 The double Drell-Yan process

u

d̄

c̄

s

c ū
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Figure 3.3: Hard-scattering graphs for the production of W+W+ (a, b) or of W+W−

(c, d). The labels q and q̄ indicate whether a parton corresponds to a quark field or
a conjugate quark field in the relevant DPD. Graphs (b) and (d) are multiplied with
interference distributions for one of the protons, whereas graphs (a) and (c) go along
with interference distributions for both protons.

+ (1 − cos θ1)
2 (1 + cos θ2)

2

× (fq̄3q2
− f∆q̄3∆q2

− gq̄3∆q2
+ g∆q̄3q2

)(f̄q1q̄4
− f̄∆q1∆q̄4

− ḡq1∆q̄4
+ ḡ∆q1q̄4

)

+ (1 − cos θ1)
2 (1 − cos θ2)

2

× (fq̄3q̄4
+ f∆q̄3∆q̄4

+ gq̄3∆q̄4
+ g∆q̄3q̄4

)(f̄q1q2
+ f̄∆q1∆q2

+ ḡq1∆q2
+ ḡ∆q1q2

)

+ {flavor interference}
]

, (3.21)

where the sum over q1 to q4 runs over quark flavors. The flavor interference terms
are obtained by replacing the DPDs in one or in both protons with their interference
analogs and by appropriately changing the CKM factors in the product Kq1q̄3

Kq2q̄4
.

Different types of flavor interference terms are shown in figure 3.3. Taking into account
the minus sign in the definition of pseudoscalar distributions for left-moving partons, e.g.
in F̄qi∆q̄j

= −ḡqi∆q̄j
, we recognize that the DPD combinations in (3.21) correspond to

negative-helicity quarks and positive-helicity antiquarks, as required by the left-handed
nature of the charged weak current.
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We see that for W pair production the presence of longitudinal parton spin correla-
tions in the proton changes the overall rate of the cross section as well as the distribution
in the polar angles of the decay leptons.

For one or two neutral bosons (γ∗, Z) the structure of the cross section is more com-
plicated. We split the cross section (3.11) into three parts, σ(0) for the case without
transverse quark polarization and σ(1), σ(2) for the cases where one or two hard in-
teractions are initiated by transversely polarized quarks. The contribution with only
unpolarized and longitudinally polarized partons reads

dσ(0)

∏2
i=1 dxi dx̄i d2qi dΩi

=
1

C

∑

q1q2q3q4

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
{

[

(1 + cos2 θ1)Kq1q̄3
+ 2 cos θ1 K ′

q1q̄3

] [

(1 + cos2 θ2)Kq2q̄4
+ 2 cos θ2 K ′

q2q̄4

]

×
(

fq1q2
f̄q̄3q̄4

+ f∆q1∆q2
f̄∆q̄3∆q̄4

+ gq1∆q2
ḡq̄3∆q̄4

+ g∆q1q2
ḡ∆q̄3q̄4

)

+
[

(1 + cos2 θ1)Kq1∆q̄3
+ 2 cos θ1 K ′

q1∆q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4
+ 2 cos θ2 K ′

q2∆q̄4

]

×
(

fq1q2
f̄∆q̄3∆q̄4

+ f∆q1∆q2
f̄q̄3q̄4

+ gq1∆q2
ḡ∆q̄3q̄4

+ g∆q1q2
ḡq̄3∆q̄4

)

−
[

(1 + cos2 θ1)Kq1q̄3
+ 2 cos θ1 K ′

q1q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4
+ 2 cos θ2 K ′

q2∆q̄4

]

×
(

gq1∆q2
f̄q̄3q̄4

+ g∆q1q2
f̄∆q̄3∆q̄4

+ fq1q2
ḡq̄3∆q̄4

+ f∆q1∆q2
ḡ∆q̄3q̄4

)

−
[

(1 + cos2 θ1)Kq1∆q̄3
+ 2 cos θ1 K ′

q1∆q̄3

] [

(1 + cos2 θ2)Kq2q̄4
+ 2 cos θ2 K ′

q2q̄4

]

×
(

gq1∆q2
f̄∆q̄3∆q̄4

+ g∆q1q2
f̄q̄3q̄4

+ fq1q2
ḡ∆q̄3q̄4

+ f∆q1∆q2
ḡq̄3∆q̄4

)

}

+ {flavor interference} + {qq̄ permutations} . (3.22)

The qq̄ permutation terms are obtained by permutation of the quark-antiquark assign-
ments in the DPDs and in the coupling factors K, K ′ as specified in (3.11). For neutral
bosons the annihilating quark and antiquark have the same flavor, i.e. one has q1 = q3

(q2 = q4) if V1 (V2) is neutral. The flavor interference term for neutral boson pairs is
then obtained by replacing all distributions f , g, f̄ , ḡ with their interference analogs f I ,
gI , f̄ I , ḡI and by interchanging 1 ↔ 2 in the second subscript of the coupling factors,
e.g. Kq1q̄1

K ′
q2∆q̄2

→ Kq1q̄2
K ′

q2∆q̄1
. The relations (2.58), (3.17) and their analogs for other

polarizations ensure that the sum over all flavor assignments in (3.22) gives a real-valued
cross section. Example graphs for flavor interference are shown in figure 3.4.

We see in (3.22) that longitudinal parton spin correlations change the overall rate of
double parton scattering and the dependence on the polar angles of the leptons, due to
the differences between the coupling factors Kqiq̄j

, K ′
qiq̄j

and Kqi∆q̄j
, K ′

qi∆q̄j
. Only in the

neutral boson channel at Qi values small enough to neglect Z production does one have
a fixed angular dependence dσ(0)/d cos θi ∝ 1 + cos2 θi.

We now turn towards the part of the cross section where one of the two annihilation
processes involves transverse quark polarization (and thus produces a neutral gauge
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Figure 3.4: Hard-scattering graphs for the production of two neutral gauge bosons. The
labels q and q̄ have the same meaning as in figure 3.3.

boson). It reads

dσ(1)

∏2
i=1 dxi dx̄i d2qi dΩi

=
1

C
sin2 θ2

∑

q1q2q3

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y y2M2

×
(

[

(1 + cos2 θ1)Kq1q̄3
+ 2 cos θ1 K ′

q1q̄3

]

×
{

[

cos 2(ϕ2 − ϕy) Kδq2δq̄2
− sin 2(ϕ2 − ϕy) K ′

δq2δq̄2

]

× (fq1δq2
f̄q̄3δq̄2

− gq1δq2
ḡq̄3δq̄2

− f∆q1δq2
f̄∆q̄3δq̄2

+ g∆q1δq2
ḡ∆q̄3δq̄2

)

+
[

sin 2(ϕ2 − ϕy) Kδq2δq̄2
+ cos 2(ϕ2 − ϕy) K ′

δq2δq̄2

]

× (fq1δq2
ḡq̄3δq̄2

+ gq1δq2
f̄q̄3δq̄2

+ f∆q1δq2
ḡ∆q̄3δq̄2

+ g∆q1δq2
f̄∆q̄3δq̄2

)
}

−
[

(1 + cos2 θ1)Kq1∆q̄3
+ 2 cos θ1 K ′

q1∆q̄3

]

×
{

[

cos 2(ϕ2 − ϕy) Kδq2δq̄2
− sin 2(ϕ2 − ϕy) K ′

δq2δq̄2

]

× (fq1δq2
ḡ∆q̄3δq̄2

− gq1δq2
f̄∆q̄3δq̄2

− f∆q1δq2
ḡq̄3δq̄2

+ g∆q1δq2
f̄q̄3δq̄2

)

+
[

sin 2(ϕ2 − ϕy) Kδq2δq̄2
+ cos 2(ϕ2 − ϕy) K ′

δq2δq̄2

]

× (fq1δq2
f̄∆q̄3δq̄2

+ gq1δq2
ḡ∆q̄3δq̄2

+ f∆q1δq2
f̄q̄3δq̄2

+ g∆q1δq2
ḡq̄3δq̄2

)
})

+ {flavor interference} + {qq̄ permutations} + {transv. pol. in interaction 1} ,

(3.23)

where the flavor interference and qq̄ permutation terms are obtained in the same way
as in (3.22). The terms for transverse polarization in interaction 1 are obtained by
replacing labels as 1 → 2, 2 → 1, 3 → 4 in the coupling factors and by making the same
replacement in the DPD subscripts after interchanging their order, i.e. fa1δq2

→ fδq1a2
,

ḡā3δq̄2
→ ḡδq̄1ā4

etc.
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The azimuthal angle ϕ2 of the lepton produced in interaction 2 has already been
defined, and ϕy is the azimuthal angle of y in the pp center-of-mass. As anticipated in
section 3.2.2, the cross section depends only on the difference ϕ2 − ϕy of these angles,
in agreement with rotation invariance. The ϕy dependence in (3.23) arises from the
uncontracted vectors y and ỹ in the DPDs (3.4) for transversely polarized partons: it is
hence this polarization which enables a dependence of the cross section on the azimuthal
angle of the produced lepton.

The transverse distance y is integrated over in (3.23) and hence not measurable. The
y integration is nontrivial because the DPDs depend on the azimuthal angles between y

and z1 and z2, whose directions are in turn correlated with those of q1 and q2 through the
exponential e−iz1q1−iz2q2 . The integral over y, z1 and z2 in the cross section thus turns
the ϕy dependence into a dependence on the azimuthal angles of the transverse momenta
q1 and q2. All together we thus see that a correlation between y and the transverse
polarization of parton 2 in the DPDs leads to an azimuthal correlation between the lepton
from interaction 2 and both transverse vector boson momenta. This is similar (but not
identical) to single Drell-Yan production, where a correlation between the transverse
polarization of a parton and its transverse momentum induces an azimuthal correlation
between the momenta of the vector boson and its decay lepton [96].

We finally turn to the case where both vector bosons are produced from transversely
polarized quarks. The corresponding contribution to the cross section is

dσ(2)

∏2
i=1 dxi dx̄i d2qi dΩi

=
1

C
2 sin2 θ1 sin2 θ2

∑

q1q2

∫

d2z1

(2π)2

d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
{

[

cos 2(ϕ1 − ϕ2) (Kδq1δq̄1
Kδq2δq̄2

+ K ′
δq1δq̄1

K ′
δq2δq̄2

)

− sin 2(ϕ1 − ϕ2) (K ′
δq1δq̄1

Kδq2δq̄2
− Kδq1δq̄1

K ′
δq2δq̄2

)
]

× (fδq1δq2
f̄δq̄1δq̄2

− y4M4ga
δq1δq2

ḡa
δq̄1δq̄2

)

+
[

sin 2(ϕ1 − ϕ2) (Kδq1δq̄1
Kδq2δq̄2

+ K ′
δq1δq̄1

K ′
δq2δq̄2

)

+ cos 2(ϕ1 − ϕ2) (K ′
δq1δq̄1

Kδq2δq̄2
− Kδq1δq̄1

K ′
δq2δq̄2

)
]

× y2M2 (fδq1δq2
ḡa

δq̄1δq̄2
+ ga

δq1δq2
f̄δq̄1δq̄2

)

+
[

cos 2(ϕ1 + ϕ2 − 2ϕy) (Kδq1δq̄1
Kδq2δq̄2

− K ′
δq1δq̄1

K ′
δq2δq̄2

)

− sin 2(ϕ1 + ϕ2 − 2ϕy) (K ′
δq1δq̄1

Kδq2δq̄2
+ Kδq1δq̄1

K ′
δq2δq̄2

)
]

× y4M4 (f t
δq1δq2

f̄ t
δq̄1δq̄2

− gs
δq1δq2

ḡs
δq̄1δq̄2

)

−
[

sin 2(ϕ1 + ϕ2 − 2ϕy) (Kδq1δq̄1
Kδq2δq̄2

− K ′
δq1δq̄1

K ′
δq2δq̄2

)

+ cos 2(ϕ1 + ϕ2 − 2ϕy) (K ′
δq1δq̄1

Kδq2δq̄2
+ Kδq1δq̄1

K ′
δq2δq̄2

)
]

× y4M4 (f t
δq1δq2

ḡs
δq̄1δq̄2

+ gs
δq1δq2

f̄ t
δq̄1δq̄2

)
}

+ {flavor interference} + {qq̄ permutations} (3.24)
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and depends on the azimuthal angles ϕ1, ϕ2 and ϕy in addition to the polar angles θ1

and θ2. The flavor interference and qq̄ permutation terms are again obtained as in (3.22).
The terms depending on ϕ1−ϕ2 describe a transverse correlation between the leptonic

decay planes of the vector bosons. By contrast, the terms with ϕ1 +ϕ2−2ϕy describe an
azimuthal correlation between the lepton momenta and the direction between the hard
interactions, which after integration over y, z1 and z2 turns into an azimuthal correlation
between the lepton momenta and the momenta of the two bosons.

3.4.1 Cross section integrated over transverse boson momenta

Integration over the transverse momenta of the two vector bosons yields cross sections
expressed in terms of the collinear double parton distributions F (x1, x2,y), with spin
structure is as in (3.6).

Upon integration over q1 and q2, the cross section (3.21) for W pair production
becomes

dσWW

∏2
i=1 dxi dx̄i dΩi

=
1

C

∑

q1q2q3q4

Kq1q̄3
Kq2q̄4

×
{

(1 + cos θ1)
2 (1 + cos θ2)

2

∫

d2y (fq1q2
+ f∆q1∆q2

)(f̄q̄3q̄4
+ f̄∆q̄3∆q̄4

)

+ (1 + cos θ1)
2 (1 − cos θ2)

2

∫

d2y (fq1q̄4
− f∆q1∆q̄4

)(f̄q̄3q2
− f̄∆q̄3∆q2

)

+ (1 − cos θ1)
2 (1 + cos θ2)

2

∫

d2y (fq̄3q2
− f∆q̄3∆q2

)(f̄q1q̄4
− f̄∆q1∆q̄4

)

+ (1 − cos θ1)
2 (1 − cos θ2)

2

∫

d2y (fq̄3q̄4
+ f∆q̄3∆q̄4

)(f̄q1q2
+ f̄∆q1∆q2

)

}

+ {flavor interference} , (3.25)

where the arguments of the distributions are f(x1, x2,y) and f̄(x̄1, x̄2,y). In the general
case we have a contribution

dσ(0)

∏2
i=1 dxi dx̄i dΩi

=
1

C

∑

q1q2q3q4

×
{

[

(1 + cos2 θ1)Kq1q̄3
+ 2 cos θ1 K ′

q1q̄3

] [

(1 + cos2 θ2)Kq2q̄4
+ 2 cos θ2 K ′

q2q̄4

]

×
∫

d2y (fq1q2
f̄q̄3q̄4

+ f∆q1∆q2
f̄∆q̄3∆q̄4

)

+
[

(1 + cos2 θ1)Kq1∆q̄3
+ 2 cos θ1 K ′

q1∆q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4
+ 2 cos θ2 K ′

q2∆q̄4

]

×
∫

d2y (fq1q2
f̄∆q̄3∆q̄4

+ f∆q1∆q2
f̄q̄3q̄4

)

}

+ {flavor interference} + {qq̄ permutations} (3.26)
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from unpolarized and longitudinally polarized partons. The contribution with transverse
quark polarization in one of the two hard interactions now vanishes,

dσ(1)

∏2
i=1 dxi dx̄i dΩi

= 0 . (3.27)

This is because integration of (3.23) over q1 and q2 sets z1 = z2 = 0, after which the y

integral gives zero due to the azimuthal dependence on ϕy. By contrast, the contribution
with transverse quark polarization in both hard interactions remains nonzero,

dσ(2)

∏2
i=1 dxi dx̄i dΩi

=
1

C
2 sin2 θ1 sin2 θ2

∑

q1q2

×
{

[

cos 2(ϕ1 − ϕ2) (Kδq1δq̄1
Kδq2δq̄2

+ K ′
δq1δq̄1

K ′
δq2δq̄2

)

− sin 2(ϕ1 − ϕ2) (K ′
δq1δq̄1

Kδq2δq̄2
− Kδq1δq̄1

K ′
δq2δq̄2

)
]

∫

d2y fδq1δq2
f̄δq̄1δq̄2

}

+ {flavor interference} + {qq̄ permutations} . (3.28)

According to (3.6) the distribution fδq1δq2
describes the correlation between the directions

of the transverse polarizations of two quarks in the proton. This correlation and its
counterpart for antiquarks induce a correlation between the leptonic decay planes of
the vector bosons, even if their transverse momenta are integrated over. Only if one
integrates over the azimuthal angle of at least one of the leptons does the contribution
from transverse quark polarization completely disappear from the cross section.

The cross section of the double Drell-Yan process with two photons was calculated
in [50], integrated over the transverse boson momenta and over the angles of the decay
leptons. The expression in equation (9) of [50] agrees with our result (3.26) (up to the
combinatorial factor 1/C, which was omitted in [50]).

3.5 Summary

Our detailed investigation of the double Drell-Yan process has shown how spin correla-
tions between two partons in the proton affect the rate and the angular distribution of
the final state in the production of four leptons via two electroweak gauge bosons. We
considered both the case where the transverse momenta of the bosons are small (using
transverse-momentum dependent factorization) and the case where they are integrated
over (using collinear factorization).

We find that longitudinal spin correlations between the quarks or antiquarks in the
proton affect the rate of double parton scattering, and in the presence of axial-vector
currents also the polar distribution of the produced leptons. Correlations involving
transversely polarized quarks or antiquarks induce azimuthal correlations between the
final state leptons. A part of these correlations persists if the transverse momenta of
the gauge bosons are integrated over. Having two “independent” hard interactions in
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double parton scattering does hence not imply that the final states produced by the two
interactions are independent of each other.

Double Drell-Yan production involves a particularly simple hard-scattering subpro-
cess but nevertheless exhibits a rich pattern of angular effects induced by parton spin
correlations. It is natural to expect that other processes, in particular those involving
multijets, will share this feature. We note that the cross section dependence on angles
between the final-state particles implies a dependence on the invariant mass of particle
pairs, which is an important quantity in searches for new physics. An estimate of the
possible size of such effects would therefore be of great value.

How large correlations between the polarization of two partons inside a proton ac-
tually are remains an open question, to which we now turn our attention for closer
investigations in the next two chapters.



Chapter 4

Positivity bounds on double parton

distributions

4.1 Introduction

Spin correlations between the two partons are quantified by polarized double parton
distributions, which describe for instance the difference of the probability densities for
finding two quarks with equal or with opposite helicities. In the last chapter we saw an
example of how the polarized DPDs change the size and angular distribution of cross
sections. It was argued in [44] that such correlations need not be small, and we discussed
in chapter 2 that large spin correlations were found for the valence region in the MIT
bag model. However, our knowledge of polarized DPDs is still poor at best and any
information about them is valuable.

In this chapter, we derive model independent constraints on DPDs that follow from
their interpretation as probability densities for finding two partons in a specified polariza-
tion state. Similar positivity bounds have been derived for single-parton distributions in
the form of the Soffer bound [97] and of inequalities for transverse-momentum dependent
distributions [98] and generalized parton distributions [99].

The structure of this chapter is as follows: In the next section we set the stage by
introducing the DPDs for the different polarizations and parton species. In section 4.3
we derive the spin density matrices for two partons inside an unpolarized proton, and
in section 4.4 we use these matrices to derive bounds on polarized DPDs. In section 4.5
we show that the leading-order evolution to higher scales preserves these bounds. We
summarize in section 4.6 and some technical details are given in appendix B and C.

4.2 Polarized double parton distributions

Since we will need a probability interpretation, we restrict ourselves to distributions
that are integrated over the transverse parton momenta and that have a trivial color
structure. In the parlance of [44] these are collinear color-singlet distributions.

49



50 Positivity bounds on double parton distributions

They were defined for quarks and antiquarks in (2.48), but for our purposes here we
cast them in a format valid also when one or both partons are gluons. For two partons
a1 and a2 in an unpolarized right-moving proton we write

Fa1a2
(x1, x2,y) = 2p+(x1p+)−n1 (x2p+)−n2

∫

dz−1
2π

dz−2
2π

dy− ei(x
1
z−
1

+x
2
z−
2

)p+

× 〈p| Oa2
(0, z2)Oa1

(y, z1) |p〉 , (4.1)

where ni = 1 if parton number i is a gluon and ni = 0 otherwise. The operators, which
are collinear versions of the operators in (2.49), for quarks are

Oai
(y, zi) = q̄i

(

y − 1
2
zi

)

Γai
qi

(

y + 1
2
zi

)

∣

∣

∣

z+

i =y+=0, zi=0

(4.2)

with the projections of (2.50) onto unpolarized quarks (q), longitudinally polarized
quarks (∆q) and transversely polarized quarks (δq). The field with argument y + 1

2
zi

in (4.2) is associated with a quark in the amplitude of a double scattering process, and
the field with argument y − 1

2
zi is associated with a quark in the complex conjugate

amplitude, as in figure 2.4. The operators for gluons are

Oai
(y, zi) = Πjj′

ai
G+j′

(

y − 1
2
zi

)

G+j
(

y + 1
2
zi

)

∣

∣

∣

z+

i =y+=0, zi=0

(4.3)

with projections

Πjj′

g = δjj′ , Πjj′

∆g = iǫjj′ , [Πkk′

δg ]jj
′
= τ jj′,kk′

(4.4)

onto unpolarized gluons (g), longitudinally polarized gluons (∆g) and linearly polarized
gluons (δg). The tensor

τ jj′,kk′
= 1

2

(

δjkδj′k′
+ δjk′

δj′k − δjj′δkk′)

(4.5)

satisfies τ jj′,kk′
τ kk′, ll′ = τ jj′, ll′ and is symmetric and traceless in each of the index pairs

(jj′) and (kk′). Note that for gluons δg denotes linear polarization, i.e. the interference
between gluons whose helicities differ by two units in the scattering amplitude and its
conjugate, while for quarks δq symbolizes transverse polarization, where the interference
is between quarks with a helicity difference of one unit. Since we limit ourselves to
color-singlet distributions, a sum over the color indices of the quark fields in (4.2) and
the gluon fields in (4.3) is implied. We do not write out the Wilson lines that make the
operators gauge invariant, as discussed in section 2.4.4.

The different spin projections lead to a large number of DPDs. For collinear color-
singlet distributions, several polarization combinations are zero due to time reversal and
parity invariance. This concerns the DPDs with one longitudinally polarized and one
unpolarized parton, as well as those with one longitudinally polarized parton and one
transversely polarized (anti)quark or linearly polarized gluon. A decomposition of the
nonzero distributions for two quarks in terms of real-valued scalar functions was given
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in (3.6). Analogous decompositions hold for quark-antiquark distributions and for the
distributions of two antiquarks.

Since quarks and gluons mix under evolution, we also need to consider DPDs involving
gluons. We define

Fqg(x1, x2,y) = fqg(x1, x2, y) ,

F∆q∆g(x1, x2,y) = f∆q∆g(x1, x2, y) ,

F jj′

qδg(x1, x2,y) = τ jj′,yyM2fqδg(x1, x2, y) ,

F j
δqg(x1, x2,y) = ỹjMfδqg(x1, x2, y) ,

F j,kk′

δqδg (x1, x2,y) =− τ ỹj,kk′
Mfδqδg(x1, x2, y)

−
(

ỹjτ kk′,yy + yjτ kk′,yỹ
)

M3f t
δqδg(x1, x2, y) (4.6)

for quark-gluon distributions, with analogous expressions for gluon-quark distributions
and distributions where the quark is replaced by an antiquark. We use a shorthand
notation where vectors y or ỹ appearing as an index of τ denote contraction, i.e. τ jj′,yy =
τ jj′,kk′

ykyk′
etc. For two-gluon distributions we write

Fgg(x1, x2,y) = fgg(x1, x2, y) ,

F∆g∆g(x1, x2,y) = f∆g∆g(x1, x2, y) ,

F jj′

gδg(x1, x2,y) = τ jj′,yyM2fgδg(x1, x2, y) ,

F jj′

δgg(x1, x2,y) = τ jj′,yyM2fδgg(x1, x2, y) ,

F jj′,kk′

δgδg (x1, x2,y) = 1
2
τ jj′, kk′

fδgδg(x1, x2, y) ,

+
(

τ jj′,yỹτ kk′,yỹ − τ jj′,yyτ kk′,yy
)

M4f t
δgδg(x1, x2, y) . (4.7)

We remark that, although linear gluon polarization is described by a tensor with two
indices, the restriction that this tensor is symmetric and traceless gives rise to the same
number of distributions as for transverse quark polarization, which is described by a
vector. The prefactors in (4.6) and (4.7) have been chosen such that we will obtain a
simple correspondence between quark and gluon distributions in the spin density matrices
to be derived in the next section.

Note that DPDs involving gluons are not only relevant in the context of evolution
but also enter directly in important double scattering processes such as the production
of jets. Their properties are hence of considerable practical interest.

In complete analogy to the case of collinear single-parton distributions, the DPDs
we have introduced can be interpreted as probability densities for finding two partons
inside an unpolarized proton, with a relative transverse distance y and with longitudinal
momentum fractions x1 and x2. This becomes for instance evident from their appearance
in the cross section formula for double parton scattering in chapter 2. It can also be seen
from a representation in terms of parton creation and annihilation operators or from a
representation in terms of the light-cone wave functions of the proton, which are straight-
forward extensions of the corresponding representations for single-parton distributions
(given for instance in sections 3.4 and 3.11 of [100]).
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As in the case of single parton densities, this interpretation does however not strictly
hold in QCD, because the distributions are defined with subtractions from the ultravi-
olet region of parton momenta. The subtraction terms can in principle invalidate the
positivity of the distributions. Nevertheless, it is useful to explore the consequences of
the probability interpretation as a guide for developing physically intuitive models of
the distributions. This holds in particular if one works in leading order of αs, where
the connection between parton distributions and physical cross sections (which must of
course be positive semi-definite) is most direct.

4.3 Two-parton spin density matrices

The polarization state of two partons in an unpolarized proton is described by a spin
density matrix that can be written in terms of the DPDs we introduced in the previous
section. We start by trading the projection operators (2.50) and (4.4) for operators that
project onto quarks or gluons of definite helicity. We can then easily write down the spin
density matrix for two partons in the helicity basis.

The projection operators Γλ′λ for quarks, where λ (λ′) refers to the quark helicity in
the amplitude (conjugate amplitude), are given by [101]

Γ++ =
γ+

4
(1 + γ5) =

Γq + Γ∆q

2
, Γ+− =

iσ+1

4
(1 − γ5) =

Γ1
δq + iΓ2

δq

2
,

Γ−− =
γ+

4
(1 − γ5) =

Γq − Γ∆q

2
, Γ−+ = −iσ+1

4
(1 + γ5) =

Γ1
δq − iΓ2

δq

2
. (4.8)

The projection operators Πjj′

λ′λ for gluons, where λ and j (λ′ and j′) refer to the amplitude
(conjugate amplitude), can be constructed from the polarization vectors

ǫ+ = − 1√
2

(

1, i
)

, ǫ− =
1√
2

(

1,−i
)

(4.9)

and read

Πjj′

++ =
(

ǫj
+

)∗
ǫj′

+ =
1

2

(

Πjj′

g + Πjj′

∆g

)

,

Πjj′

−− =
(

ǫj
−

)∗
ǫj′

− =
1

2

(

Πjj′

g − Πjj′

∆g

)

,

Πjj′

+− =
(

ǫj
−

)∗
ǫj′

+ = −
[

Π11
δg

]jj′ − i
[

Π12
δg

]jj′
,

Πjj′

−+ =
(

ǫj
+

)∗
ǫj′

− = −
[

Π11
δg

]jj′
+ i

[

Π12
δg

]jj′
. (4.10)

With the projection operators we can now relate the helicity distributions to the distribu-
tions for unpolarized partons, longitudinally polarized partons and transversely (linearly)
polarized quarks (gluons). Taking the example of two quarks with positive helicity in
the amplitude and negative helicity in the conjugate amplitude

Γ−+Γ−+ =
1

4

(

Γ1
δq1

− iΓ2
δq1

) (

Γ1
δq2

− iΓ2
δq2

)

, (4.11)
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gives in terms of the parton distributions

1

4

[

F 11
δq1δq2

− F 22
δq1δq2

− i
(

F 11
δq1δq2

+ F 11
δq1δq2

)]

. (4.12)

Taking the parameterization of the DPD for two transversely polarized quarks in (3.6)
results in

1

2
y2M2e2iϕyf t

δq1δq2
. (4.13)

We can now organize the distributions in matrices where the columns (rows) correspond
to helicity states ++,−+, +−,−− of the two partons in the amplitude (conjugate am-
plitude). The spin density matrix for two quarks reads

ρ =
1

4













fqq + f∆q∆q −ieiϕyyMfδqq −ieiϕyyMfqδq 2e2iϕyy2M2f t
δqδq

ie−iϕyyMfδqq fqq − f∆q∆q 2fδqδq −ieiϕyyMfqδq

ie−iϕyyMfqδq 2fδqδq fqq − f∆q∆q −ieiϕyyMfδqq

2e−2iϕyy2M2f t
δqδq ie−iϕyyMfqδq ie−iϕyyMfδqq fqq + f∆q∆q













, (4.14)

where the angle ϕy describes the orientation of the vector y = y (cos ϕy, sin ϕy) in the
transverse plane. With the caveat spelled out at the end of the previous section, the
diagonal matrix elements can be interpreted as the probability densities for finding two
partons in definite helicity states inside an unpolarized proton. Specifically, fqq + f∆q∆q

is the probability density for finding two quarks with positive helicities, which in an
unpolarized proton is equal to the probability density for finding two quarks with negative
helicities. The probability density for finding two quarks with opposite helicities is
fqq − f∆q∆q. The off-diagonal elements of ρ describe helicity interference, with f t

δqδq in
the right upper corner corresponding for instance to the case where both quarks have
negative helicity in the amplitude and positive helicity in the conjugate amplitude. This
leads to a helicity difference between the amplitude and its conjugate, which is balanced
by two units of orbital angular momentum indicated by an exponential e2iϕy and an
associated factor y2. By contrast, fδqδq describes the case when the helicity difference is
+1 for one quark and −1 for the other, so that the overall helicity is balanced.

Turning now to gluons, we have a spin density matrix

1

4













fqg + f∆q∆g −ieiϕyyMfδqg −e2iϕyy2M2fqδg −2ie3iϕyy3M3f t
δqδg

ie−iϕyyMfδqg fqg − f∆q∆g −2ieiϕyyMfδqδg −e2iϕyy2M2fqδg

−e−2iϕyy2M2fqδg 2ie−iϕyyMfδqδg fqg − f∆q∆g −ieiϕyyMfδqg

2ie−3iϕyy3M3f t
δqδg −e−2iϕyy2M2fqδg ie−iϕyyMfδqg fqg + f∆q∆g













(4.15)

for quark-gluon distributions and an analogous matrix for gluon-quark distributions. For
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two-gluon distributions we find

1

4













fgg + f∆g∆g −e2iϕyy2M2fδgg −e2iϕyy2M2fgδg −2e4iϕyy4M4f t
δgδg

−e−2iϕyy2M2fδgg fgg − f∆g∆g 2fδgδg −e2iϕyy2M2fgδg

−e−2iϕyy2M2fgδg 2fδgδg fgg − f∆g∆g −e2iϕyy2M2fδgg

−2e−4iϕyy4M4f t
δgδg −e−2iϕyy2M2fgδg −e−2iϕyy2M2fδgg fgg + f∆g∆g













.

(4.16)

The matrices for distributions where quarks are replaced by antiquarks are analogous
to (4.14) and (4.15). We see that the parameterization of DPDs in the previous section
gives simple expressions for the spin density matrices and similar structures for all types
of partons.

The difference in spin between quarks and gluons causes the different dependence on
the azimuthal angle ϕy in (4.14), (4.15) and (4.16). A mismatch of n units between the
sum of parton helicities in the amplitude and its conjugate goes along with an exponential
e±niϕy and an associated factor yn. The gluon matrix does not include any factors of i.
These originate from odd powers of ỹ present for the parity odd functions Fab involving
transversely polarized quarks for two quark distributions and for mixed quark gluon
distributions

4.4 Positivity bounds

We now show how the probability interpretation of DPDs constrains the size of the
polarized distributions. Since the probability density for finding two partons in a general
polarization state is positive semi-definite, we have

∑

λ′
1
λ′
2
λ
1
λ
2

v∗
λ′
1
λ′
2
ρ(λ′

1
λ′
2
)(λ

1
λ
2
) vλ

1
λ
2
≥ 0 (4.17)

with arbitrary complex coefficients vλ1λ2
normalized as

∑

λ1λ2
|vλ1λ2

|2 = 1. The helicity
matrices are therefore positive semi-definite. The same property has been derived for the
spin density matrices associated with transverse-momentum dependent distributions [98]
or generalized parton distributions [99].

To simplify the algebra, we first cast all helicity matrices into a common form that
is independent of the angle ϕy. This is achieved by unitary transformations, multiplying
by a matrix U from the right and by U † from the left. The transformation matrices for
the parton combinations in (4.14) to (4.16) are

Uqq = diag
(

−e2iϕy ,−ieiϕy ,−ieiϕy , 1
)

,

Uqg = diag
(

ie3iϕy ,−e2iϕy ,−ieiϕy , 1
)

,

Ugg = diag
(

e4iϕy ,−e2iϕy ,−e2iϕy , 1
)

. (4.18)
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After these transformations and their analog for gluon-quark distributions, the spin
density matrices can be written as

ρ =
1

4









fab + f∆a∆b hδab haδb −2ht
δaδb

hδab fab − f∆a∆b 2hδaδb haδb

haδb 2hδaδb fab − f∆a∆b hδab

−2ht
δaδb haδb hδab fab + f∆a∆b









(4.19)

with the following identification of distributions for different parton combinations:

fab = fqq , fqg , fgq , fgg ,

f∆a∆b = f∆q∆q , f∆q∆g , f∆g∆q , f∆g∆g ,

hδab = yMfδqq , yMfδqg , y2M2fδgq , y2M2fδgg ,

haδb = yMfqδq , y2M2fqδg , yMfgδq , y2M2fgδg ,

hδaδb = fδqδq , yMfδqδg , yMfδgδq , fδgδg ,

ht
δaδb = y2M2f t

δqδq , y3M3f t
δqδg , y3M3f t

δgδq , y4M4f t
δgδg . (4.20)

Analogous expressions hold if quarks are replaced by antiquarks. Positivity1 of the
diagonal elements of ρ yields the trivial bounds

fab ≥
∣

∣f∆a∆b

∣

∣ . (4.21)

The principal minors of the two-dimensional sub-spaces must be positive semi-definite
as well, which gives upper bounds on the distributions for one or two transversely or
linearly polarized partons:

fab + f∆a∆b ≥ 2
∣

∣ht
δaδb

∣

∣ ,

fab − f∆a∆b ≥ 2
∣

∣hδaδb

∣

∣ ,

f 2
ab ≥ (fab + f∆a∆b)(fab − f∆a∆b) ≥ h2

δab ,

f 2
ab ≥ (fab + f∆a∆b)(fab − f∆a∆b) ≥ h2

aδb . (4.22)

The principal minors of dimension three

(fab − f∆a∆b)(f
2
ab − f 2

∆a∆b − h2
δab − h2

aδb) − 4(fab + f∆a∆b)h
2
δaδb + 4hδabhaδbhδaδb ≥ 0 ,

(4.23)

(fab + f∆a∆b)(f
2
ab − f 2

∆a∆b − h2
δab − h2

aδb) − 4(fab − f∆a∆b)h
t2
δaδb − 4hδabhaδbh

t
δaδb ≥ 0 ,

(4.24)

as well as det(ρ)
[

f 2
ab − (hδab + haδb)

2 + 2fab(hδaδb − ht
δaδb) − (f∆a∆b − 2hδaδb)(f∆a∆b − 2ht

δaδb)
]

×
[

f 2
ab − (hδab − haδb)

2 − 2fab(hδaδb − ht
δaδb) − (f∆a∆b + 2hδaδb)(f∆a∆b + 2ht

δaδb)
]

≥ 0
(4.25)

1For ease of language we use “positivity” in the sense of “positive semi-definite” here and in the
following.
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provide further, rather cumbersome bounds. The strongest bounds can be obtained from
the positivity of the eigenvalues of ρ, which is a sufficient and necessary condition for
the positivity of ρ. Calculating the eigenvalues we obtain

fab + hδaδb − ht
δaδb ±

√

(hδab + haδb)2 + (f∆a∆b − hδaδb − ht
δaδb)

2 ≥ 0 ,

fab − hδaδb + ht
δaδb ±

√

(hδab − haδb)2 + (f∆a∆b + hδaδb + ht
δaδb)

2 ≥ 0 . (4.26)

These inequalities set upper limits on the size of spin correlations between two partons in
an unpolarized proton. They can be used either to construct double parton distributions
or to put limits on polarization effects in double hard scattering processes.

We note that positive semidefinite combinations of DPDs were discussed already in
the pioneering studies [72, 89]. Distributions that involve a helicity mismatch between
the amplitude and its conjugate (see section 4.3) were however not considered in that
work. The derivation in [72, 89] thus corresponds to our results (4.21) and (4.22) if all
distributions multiplied with a power of y in (4.20) are set to zero.

4.5 Stability under evolution

The ultraviolet subtractions mentioned at the end of section 4.2 induce a scale depen-
dence, which for collinear parton distributions is described by the DGLAP evolution
equations. While the subtractions themselves may invalidate positivity of the distribu-
tions and thus their density interpretation, the evolution equations can be interpreted in
a probabilistic manner provided that one takes the leading-order approximation of the
evolution kernels [102,103]. Specifically, one finds that if parton distributions are positive
semi-definite at a certain scale, this property is preserved by leading-order evolution to
higher scales. This also holds for the Soffer inequality, which expresses positivity in the
sector of transverse quark polarization [104,105]. For evolution at next-to-leading order
in αs the situation is less clear-cut and a discussion of positivity depends in particular
on the scheme in which the distributions are defined. We refer to [106] and [107,108] for
a discussion of the situation for longitudinal and transverse parton polarization, respec-
tively.

Returning to double parton distributions, we now show that the bounds derived in the
previous section are stable under leading-order evolution to higher scales. The strategy
for the derivation is as follows: we first introduce linear combinations of double parton
distributions whose positivity is necessary and sufficient for the positivity of the spin
density matrices and then show that these linear combinations remain positive semi-
definite under evolution. The positivity of the spin density matrices then guarantees the
stability of the positivity bounds.

4.5.1 Evolution of double parton distributions

To begin with, let us specify the evolution of collinear DPDs in the color-singlet sector.
We consider the homogeneous evolution equations in the transverse position represen-
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∂

∂τ1
+=

x2

x1

x2

x1

x2

x1

Figure 4.1: Illustration of the double parton evolution for one of the parton legs (4.27)

tation (2.64). For the reasons given in section 2.4.1, this equation does not include the
inhomogeneous term for the splitting of one parton into two that has been previously
discussed in the literature [74–78].

For our purpose, it is useful to take different renormalization scales µ1 and µ2 for the
two partons, corresponding to separate ultraviolet renormalization of the operators Oa1

and Oa2
in (4.1). The evolution equation , illustrated in figure 4.1, for the unpolarized

double quark distributions in the first scale then reads

∂fqq(x1, x2, y; µ1, µ2)

∂τ1

= Pqq ⊗1 fqq + Pqg ⊗1 fgq , (4.27)

where ⊗1 is a convolution in the first argument of the DPDs with the leading-order
splitting functions Pab, defined in (2.65). The kernels appearing in (4.27) for quark-
quark and gluon-quark transitions are [66]

Pqq(z) = CF

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

,

Pqg(z) =
z2 + (1 − z)2

2
. (4.28)

As in chapter 2, we note that the leading-order splitting functions are the same for quarks
and antiquarks, i.e. one has Pqq = Pq̄q̄, Pqg = Pq̄g, Pgq = Pgq̄ and analogous relations
for polarized partons. In appendix B we give the explicit evolution equations for all
polarized DPDs and list the associated splitting functions.

The evolution variable in (4.27) is taken as

τ1 =

∫ µ2
1 dµ2

µ2

αs(µ)

2π
, (4.29)

where the lower limit of integration is irrelevant in the derivative ∂f/∂τ1. The use of τ1

is just a matter of convenience as it removes the running coupling from the leading-order
splitting functions.

The analog of (4.27) for the scale associated with the second parton is

∂fqq(x1, x2, y; µ1, µ2)

∂τ2

= Pqq ⊗2 fqq + Pqg ⊗2 fqg . (4.30)
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The evolution equation for equal scales, i.e. for fqq(x1, x2, y; µ, µ), is obtained by adding
the right-hand sides of (4.27) and (4.30) which combine to reproduce (2.64). We will
show that positivity is preserved for separate evolution in µ1. The same then obviously
holds for evolution in µ2 and hence for the evolution in a single common scale µ1 = µ2.

4.5.2 Linear quark bounds

Before turning to the general case we warm up by demonstrating the stability of a
simpler bound for the two quark distributions. From the eigenvalues (4.26) we can build
the linear bound

fq1q2
≥ |fδq1δq2

− y2M2f t
δq1δq1

|, (4.31)

similar to the Soffer inequality. Defining two distributions

Q+ = fq1q2
+ (fδq1δq2

− y2M2f t
δq1δq1

) ,

Q+ = fq1q2
+ (fδq1δq2

− y2M2f t
δq1δq1

) (4.32)

the bound takes the form Q±
q1q2

≥ 0. With the evolution equations for unpolarized and
transversely polarized quarks in appendix B the evolution of these two linear combina-
tions is

∂

∂τ1

(

Q+

Q−

)

=

(

P+ P−

P− P+

)

⊗1

(

Q+

Q−

)

+

(

Pqg Pqg

Pqg Pqg

)

⊗1

(

fgq2

fgq2

)

, (4.33)

where the plus and minus kernels are defined as

P+ =
1

2CF

[

(1 + z)2

(1 − z)+

+ 3δ(1 − z)

]

P− =
CF

2
(1 − z). (4.34)

The key property is that P−
qq and Pqg are positive for all z values and that the only

negative part of P+
qq is the virtual (plus prescription) part. In the evolution the virtual

term is proportional to the function itself and does not change the sign of the function.
Since all other parts are positive, the positivity of the two distributions at the starting
scale (together with fgq2

≥ 0) guarantees the positivity at higher scales. A more detailed
discussion will be given in the next section, when we generalized this technique such that
it incorporates all of the positivity bounds.

4.5.3 Linear combinations of DPDs

A key ingredient in our argument is to form suitable linear combinations of double parton
distributions, which we now introduce. Positivity of the spin density matrix ρ means
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that v†ρ v ≥ 0 for any complex vector v, as we spelled out in (4.17). Parameterizing the
vector as

vT = (a1 + ib1, a2 + ib2, a3 + ib3, a4 + ib4) (4.35)

with real numbers ai, bi and performing the multiplication with the matrix in (4.19)
gives

Q+
ab = c1fab + c2haδb + c3f∆a∆b + c4hδab + c5hδaδb + c6ht

δaδb ≥ 0 , (4.36)

where Q+
ab = 4v†ρ v and the coefficients ci are given by

c1 = a2
1 + b2

1 + a2
2 + b2

2 + a2
3 + b2

3 + a2
4 + b2

4 , c2 = 2(a1a3 + b1b3 + a2a4 + b2b4) ,

c3 = a2
1 + b2

1 − a2
2 − b2

2 − a2
3 − b2

3 + a2
4 + b2

4 , c4 = 2(a1a2 + b1b2 + a3a4 + b3b4) ,

c5 = 4(a2a3 + b2b3) , c6 = −4(a1a4 + b1b4) . (4.37)

We will prove the stability of the positivity bounds by showing that for arbitrary values
of ai and bi the inequality (4.36) is stable under evolution to higher scales. It will
be convenient to consider further linear combinations of double parton distributions.
Changing signs of the parameters a1 → −a1, b1 → −b1, a3 → −a3, b3 → −b3 we get

Q−
ab = c1fab + c2haδb + c3f∆a∆b − c4hδab − c5hδaδb − c6ht

δaδb ≥ 0 . (4.38)

Adding (4.36) and (4.38) gives the simpler inequality

B+
ab = c1fab + c2haδb + c3f∆a∆b ≥ 0 , (4.39)

and interchanging indices (1 ↔ 2 and 3 ↔ 4) in the elements of v gives

B−
ab = c1fab + c2haδb − c3f∆a∆b ≥ 0 . (4.40)

If (4.36) holds at a given scale for arbitrary values of ai and bi, then (4.38) to (4.40) hold
at that scale as well.

We will see that the evolution equations in the scale µ1 can be formulated in terms
of Q+

ab, Q−
ab and B−

ab alone.2 This becomes plausible if we note that these three functions
are linear combinations of (c1fab + c2haδb), f∆a∆b and (c4hδab + c5hδaδb + c6ht

δaδb) and
that for evolution in µ1 only the polarization of the first parton is relevant but not the
polarization of the second parton. The linear combinations Q±

ab may be regarded as
generalizations of the distributions Q± = 1

2
(q + q̄)± δq introduced in [105], where it was

shown that the Soffer bound for the quark transversity distribution δq is stable under
leading-order evolution to higher scales.

2The combination B+

ab
= (Q+

ab
+ Q−

ab
)/2 is not independent and just used as an abbreviation.



60 Positivity bounds on double parton distributions

4.5.4 Evolution of the linear combinations

We now show that the distributions Q±
ab and B±

ab remain positive semi-definite under
leading-order evolution to higher scales. This implies the positivity of the spin density
matrices and thereby the validity of the bounds derived in section 4.4.

The evolution equations for the distributions Q±
ab are

∂

∂τ1

(

Q+
qb

Q−
qb

)

=

(

δP+
qq δP−

qq

δP−
qq δP+

qq

)

⊗1

(

Q+
qb

Q−
qb

)

+

(

P+
qg P−

qg

P+
qg P−

qg

)

⊗1

(

B+
gb

B−
gb

)

+

(

P−
qq P−

qq

P−
qq P−

qq

)

⊗1

(

B+
qb

B−
qb

)

(4.41)

if the first parton is a quarks and

∂

∂τ1

(

Q+
gb

Q−
gb

)

=

(

δP+
gg δP−

gg

δP−
gg δP+

gg

)

⊗1

(

Q+
gb

Q−
gb

)

+
∑

a=q,q̄

(

P+
ga P−

ga

P+
ga P−

ga

)

⊗1

(

B+
ab

B−
ab

)

+

(

P−
gg P−

gg

P−
gg P−

gg

)

⊗1

(

B+
gb

B−
gb

)

(4.42)

if the first parton is a gluon. The evolution equations for B±
ab read

∂

∂τ1

(

B+
qb

B−
qb

)

=

(

P+
qq P−

qq

P−
qq P+

qq

)

⊗1

(

B+
qb

B−
qb

)

+

(

P+
qg P−

qg

P−
qg P+

qg

)

⊗1

(

B+
gb

B−
gb

)

(4.43)

for a quark and

∂

∂τ1

(

B+
gb

B−
gb

)

=

(

P+
gg P−

gg

P−
gg P+

gg

)

⊗1

(

B+
gb

B−
gb

)

+
∑

a=q,q̄

(

P+
ga P−

ga

P−
ga P+

ga

)

⊗1

(

B+
ab

B−
ab

)

(4.44)

for a gluon. The evolution equations have the same form for antiquarks, i.e. (4.41) and
(4.43) remain valid if we replace q → q̄ everywhere (except in the label b for the second
parton, which always remains fixed when we consider evolution in µ1).

The splitting functions appearing in the above equations are defined as

P±
ab =

1

2

(

Pab ± P∆a∆b

)

, δP±
ab =

1

2

(

P∆a∆b ± Pδaδb

)

(4.45)

for all parton indices a and b. We remark that the kernels P+
ab (P−

ab) correspond to the
case where the parton helicity is conserved (flipped). The only splitting functions that
receive contributions from virtual graphs and hence contain a plus-prescription or an
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explicit δ-function are

P+
qq =

CF

2

[

2(1 + z2)

(1 − z)+

+ 3δ(1 − z)

]

,

δP+
qq =

CF

2

[

(1 + z)2

(1 − z)+

+ 3δ(1 − z)

]

,

P+
gg = 2Nc

[

z

(1 − z)+

+
(1 − z)(1 + z)2

2z

]

+
β0

2
δ(1 − z) ,

δP+
gg = 2Nc

[

z

(1 − z)+

+ 1 − z

]

+
β0

2
δ(1 − z) (4.46)

with Nc = 3, CF = 4/3 and

β0 =
11

3
Nc −

2

3
nf , (4.47)

where nf is the number of active quark flavors. They are all positive for 0 < z < 1 but
have negative contributions at z = 1 that arise from the plus-prescription, whose form is
recalled in (C.3). In appendix C we show explicitly that the virtual contribution to the
evolution cannot change the sign of the distributions, which has previously been argued
to be the case based on the probabilistic interpretation of leading-order evolution and its
relation to the Boltzmann equation [102, 103, 105]. The reason for this property is that
the virtual contribution to the evolution of a function is proportional to the function
itself. We can then conclude that the diagonal terms in the evolution equations (4.41)
to (4.44) preserve positivity. The off-diagonal kernels

P−
qq = 0 , P−

gg = Nc (1 − z)3
/

z ,

δP−
qq = CF (1 − z)

/

2 , δP−
gg = 2Nc (1 − z) (4.48)

and

P+
qg = z2

/

2 , P+
gq = CF

/

z ,

P−
qg = (1 − z)2

/

2 , P−
gq = CF (1 − z)2

/

z . (4.49)

are all positive or zero for 0 < z < 1 and regular at z = 1. Therefore they only reinforce
positivity. In summary, if we have positive semi-definite initial conditions for all functions
Q±

ab and B±
ab at some scale, then evolution to higher scales preserves this property. Thus

the spin-density matrices stay positive semidefinite and the positivity bounds remain
stable under leading-order evolution. A more explicit derivation is given in appendix C.

4.6 Summary

We have derived spin density matrices for double parton distributions of quarks, anti-
quarks and gluons. These matrices reveal the full polarization structure of two partons
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in an unpolarized proton and show the correspondence between the different polarized
double parton distributions and parton helicities. The probabilistic interpretation of the
double parton distribution for an arbitrary polarization state of the two partons sets
upper limits on the size of the spin correlations. The positivity bounds can be useful
for modeling the otherwise poorly constrained double parton distributions. They can
further be used to derive upper limits on polarization effects in double hard scattering
processes, such as the ones found in chapter 3 for the double Drell-Yan process. We have
shown that the bounds are stable under leading order evolution to higher scales.

In the next chapter, we make use of these bounds in order to build starting dis-
tributions for numerical studies on the evolution of the linearly polarized gluons and
transversely polarized quarks.



Chapter 5

Modeling and evolution

5.1 Introduction

In this chapter we turn our attention towards the numerical effects of the double DGLAP
evolution. Due to the lack of information on the double parton distributions, our start-
ing conditions for the evolution builds on products of single-parton distributions - with
specific modifications to suit the investigation at hand. Since the evolution we consider
consists of individual evolution of the two partons, the effect will in general be to wash
out correlations between them. Our investigations aim at quantifying this statement in
a couple of selected situations.

To this end, we make use of a double parton evolution code written by J. Gaunt and J.
Stirling [77], modified for our purposes. After a discussion of the code, the modifications
made and the tests performed, we make use of the setup in three different numerical
studies. In section 5.3 we explore the evolution of a Gaussian ansatz for the transverse
dependence of the DPDs, inspired by data on generalized parton distributions [109–112].
Thereafter, in section 5.4 we study the distribution of two linearly polarized gluons and
investigate how evolution affects the relative importance of gluons with linear polarization
compared to unpolarized gluons. We contrast our findings with results on the evolution
of transversely polarized quarks. The evolution of transversely polarized quarks in single-
parton distributions has been studied in context of the Soffer bound in [113]. Finally, we
study the difference in integration limits between the evolution equations for single and
double parton distributions in section 5.5, with a focus on the extent to which evolution
propagates the effects of this difference down towards lower xi values.

After these numerical investigations we study, in section 5.6, the correlations be-
tween longitudinal momentum fractions and transverse structure of the double parton
distributions in a simple model of the proton and discuss their consequence for the
transverse-momentum spectrum of double Drell-Yan production. We end the chapter
with a summary of our findings.

63
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5.2 Evolution code

Originally the evolution code was constructed to solve the evolution equations of [74,75]
in order to produce a set of unpolarized double parton distributions [77, 114]. We have
modified the code such that the single feed term, discussed in section 2.4.1, has been
removed and such that it handles the evolution of polarized distributions.

The double DGLAP equations are solved directly in x-space, on a grid in x1, x2

and t = ln µ2. The xi grid points are evenly spaced in log xi

1−xi
, with an equal number of

points in both directions. The grids are bound from above by conservation of momentum
x1 + x2 ≤ 1 and from below by the choice of xmin = 10−6. The grid points are evenly
spaced in t, ranging from t0 to tmax for which we make different choices depending on
the investigation. The number of grid points chosen in each of the xi directions was for
our studies between 120 and 240, and 60 grid points in t.

For the solution of the evolution equations a double parton version of the single
parton “evolution basis” is used. The “evolution basis” for single-parton distributions is
defined by:

Σ =
∑

i

q+
i , Vi = q−i ,

T3 = u+ − d+ , T15 = u+ + d+ + s+ − 3c+ ,

T8 = u+ + d+ − 2s+ , T24 = u+ + d+ + s+ + c+ − 4b+ ,

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ , (5.1)

where q±i = qi ± q̄i. This basis makes the single parton evolution particularly simple,
since the only mixing is between the singlet (Σ) and the gluon, while the different vector
(V ) and tensor (T ) combinations evolve separately. For the up and down quarks, Vi

corresponds to the valence contributions uv and dv, while the sea contribution us (ds)
equals u−uv (d−dv). The evolution code makes use of the double evolution basis where
the basis (5.1) is made for both partons. As an example, the DPD of two valence up
quarks can be written in terms of up quark and anti-up quark distributions as

Fuvuv
= F(u−ū)(u−ū) = Fuu − Fuū − Fūu + Fūū. (5.2)

The evolution is performed step wise in t by a fourth-order Runge-Kutta method in a
variable flavor number scheme. The default settings have nf between 3 and 5 with quark
masses mc = 1.40 GeV and mb = 4.75 GeV and leading order running of the strong
coupling,

αs(t) =
αs(t

′)

1 + αs(t′)b(t − t′)
, b =

33 − 2nf

12π
(5.3)

with matching at the mass thresholds to ensure continuity. The accuracy of the program
was investigated in [77] with error estimations of less than 1% for xi ≤ 0.3 for an evolution
from Q = 1 GeV to Q = 100 GeV. The program was supplemented with an interpolation
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MSTW GJR BB

mc [GeV] 1.40 1.3 1.4
mb [GeV] 4.75 4.2 4.5

αs(Q = 1 GeV) 0.6818 0.4482 0.4810

Table 5.1: Strong coupling constant and quark masses in the evolution program for the
three different choices of leading order single-parton distributions.

routine, reading in values from the grid files as well as interpolating between the grid
points. For further details see [77].

The evolution code was modified as to remove the single feed terms from the evolution
equations, for reasons given in section 2.4.1. In addition, since the original code was
only concerned with unpolarized evolution, we implemented the leading-order polarized
splitting kernels, of appendix B, for the different polarizations of quarks, antiquarks and
gluons. In addition, we made some smaller changes to the distribution of grid points
stored in the output grid files and changed the interpolation routines such that they
could handle polarized distributions - in particular the presence of zero crossings and
negative distributions.

Due to the lack of knowledge even of unpolarized double parton distributions, our
investigations will start from a base of a product of two leading order single-parton
distributions. For most studies we use the leading order MSTW2008 distributions [115],
but we make use also of the leading order GJR distributions [116] and of the leading order
BB distributions [117], the latter describing polarized partons in a polarized proton. The
set of mass parameters and coupling constants was generically changed for the different
runs to match the values of the parton distributions used, as summarized in table 5.1.
The default settings for the code are those of the MSTW distributions.

5.2.1 Controls and checks

In order to control that our changes were implemented correctly and to get to know
the limitations of the code we performed extensive tests. This was done by evolving
products of single-parton distributions and comparing them to the product of the orig-
inal distributions at different scales. For example, starting from a product of MSTW
distributions at µ0 = 1 GeV, evolving the product to a larger scale µ1, we compared
the result to a product of MSTW distribution at the higher scale µ1. This can be done
since the solution to the evolution of the product of two single-parton distributions is
a product of the two distributions, up to effects due to the integration limits which we
discuss in section 5.5. When estimating the accuracy of the code we therefore exclude
the region where these effects are large. The unpolarized DPD evolution was checked
by comparing to a product of MSTW distributions, while the polarized evolution was
tested by comparing to a product of BB parton distributions for polarized single-parton
distributions. For comparison, the BB distributions were evolved with QCDNUM [118],
since the BB default uses a fixed flavor number scheme. In order to test the evolution for
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transversely polarized quarks and linearly polarized gluons we implemented the corre-
sponding splitting kernels into QCDNUM, and used this to evolve the BB distributions.

In general good agreement was reached in the comparison, except for extreme corners
of parameter space, such as large xi values, and in very extreme situations. The latter is
specifically referring to the evolution of the polarized BB gluon distribution at x ∼ 10−5

and Q ∼ 2 where a rapid decrease is followed by a rapid increase. The comparison of
the BB distributions, evolved with the double parton evolution, to the product of single-
parton distributions evolved with QCDNUM, seemed to give larger differences at first
sight. These were however limited to areas around zero crossings where small numerical
differences caused large relative errors. Even when these areas are excluded, the more
complicated structure of the polarized distributions lead to slightly larger errors than for
the unpolarized evolution with MSTW input.

Generically the evolution of quark and antiquark distributions have an accuracy at
the level of one percent for the unpolarized evolution, and in some cases decreasing
to a few percent for the polarized evolution of the BB distributions. For the gluonic
distributions, we find an accuracy of comparable size, i.e. of down to a few percent.

5.3 Transverse structure

We investigate the evolution of the transverse dependence of the unpolarized double
parton distributions. In our study, we will start from a product of MSTW distributions,
multiplied by a factor retaining the dependence of the DPDs on the transverse vector y,
including an interplay between longitudinal and transverse degrees of freedom. Insights
into the transverse structure of the proton can be obtained from generalized parton
distributions. As ansatz for the transverse dependence we take the transverse momentum
dependence suggested for generalized parton distributions [109]

exp{−r2(α′
fi

ln
1

xi

+ Bfi
)}. (5.4)

The parameters αfi
and Bfi

take the values

α′
qv

= 0.9 GeV−2 , Bqv
= 0.59 GeV−2 (5.5)

α′
qs

= α′
q̄ = 0.164 GeV−2 , Bqs

= Bq̄ = 2.4 GeV−2 (5.6)

α′
g = 0.164 GeV−2 , Bg = 1.2 GeV−2, (5.7)

at the starting scale of our evolution, µ =
√

2 GeV. The parameter α′
fi

of the term
containing the interplay between longitudinal and transverse variables (xi and r) is
the same for gluons and sea quarks/antiquarks but has a larger value for the valence
contribution. The parameter of the pure transverse piece is taken to have different values
for valence quarks, sea quarks and gluons. The values for gluons were chosen to agree with
the H1 data on J/ψ production [110], while the valence quark values were obtain by a fit
to data in [112]. In contrast to the analysis of generalized parton distributions in [109],
we have chosen different values for the sea quarks. These values have been chosen to
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(a) (b)

Figure 5.1: Dependence on the magnitude of the transverse vector y2 of the logarithm
of the double parton distribution for two unpolarized gluons (a), and the slope of the
curves (b). The longitudinal momentum fractions are fixed at x1 = x2 = 0.01.

agree with another H1 measurement, namely of deeply virtual Compton scattering [111].
The larger value of α′ for the valence quarks causes a stronger interplay between the
transverse and longitudinal variables. Inspired by (2.63), we used the ansatz (5.4) for
each parton in the double parton distribution. After a Fourier transform to configuration
space the ansatz for the dependence of the unpolarized DPDs on y equals

F (x1, x2,y) ∼ 1

4πhf1f2

exp{ −y2

4hf1f2

} , (5.8)

with

hf1f2
= α′

f1
log

1

x1

+ α′
f2

log
1

x2

+ Bf1
+ Bf2

. (5.9)

Note that the transverse dependence is no longer separable into contributions from each
of the partons.

Apart from causing an overall decrease, an increasing y has two qualitatively different
effects. Firstly, changing y causes a change of the relative importance of valence quarks,
sea quarks and gluons. The B terms favor larger width for the gluons, while the α′ terms
lead to a larger width for the valence quark in the small x region. Secondly, increasing
y increases the relative importance of regions of small xi values. In some respects, these
two effects are compensatory. For example, in the small xi region the first effect leads
to a relative increase of the valence quarks. On the other hand, the valence quarks are
generically more important at large xi values, and thus the second effect decreases the
relative importance of the valence quarks.

With starting point of the Gaussian ansatz (5.8) it is interesting to examine to what
extent the evolution preserves Gaussianity. To this end, figure 5.1 (a) shows how evo-
lution changes the natural logarithm of the double parton distribution for two gluons
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(a) (b)

Figure 5.2: Dependence on the magnitude of the transverse vector y2 of the logarithm
of the double parton distribution for two unpolarized anti-up quarks (a), and the slope
of the curves (b). The longitudinal momentum fractions are fixed at x1 = x2 = 0.01.

at x1 = x2 = 0.01. As the scale Q increases, the overall size of the gluonic distribution
increases, as does the relative portion of gluons at small y values. Figure 5.1 (b) shows
the slope of the curves in figure (a). Note that due to the negative sign of the slopes, a
decreasing slope lead to a steeper curve and thus a more narrow width. For the exact
Gaussian at the initial scale (Q =

√
2) we get a straight line, and thus a constant slope.

The slope decreases somewhat with evolution scale at small y values, while it at first
experiences an increase at large y values, but the average slope always remains rather
similar.

Turning towards the anti-quark distributions, the corresponding figures 5.2 for the
distribution of two anti-up quarks show a qualitative difference. The curves all approach
each other for large y values, which is due to the steady decrease of the slope with
evolution scale. The gluons, which dominate the evolution, push the slope down towards
larger negative values. The decrease of the slope is faster at low y. The gluons are more
concentrated at low y and hence have a larger impact on in this area, and in addition
the gluons themselves have a steeper slope at low y. For large Q the slope of the double
anti-up distribution changes by up to 30% in the probed y range and the distribution
of the anti-up quarks is hence steeper at small y values and with a longer tail than a
Gaussian fit would allow.

For the distribution with two up quarks in figure 5.3 the situation is similar to that
of the antiquarks, but the curves are less steep. Due to the mix of valence and sea quark
contributions, not even the initial distribution is an exact Gaussian. Note also that
the difference in slope between up quarks and their anti-partners remain approximately
constant. The decrease of the slope for the quark and antiquark distributions with Q lead
to a decrease in the relative width, the Gaussian falls off steeper - although the increase
in the peak value dominates extending the radius of partons inside the proton. Further
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(a) (b)

Figure 5.3: Dependence on the magnitude of the transverse vector y2 of the logarithm
of the double parton distribution for two unpolarized up quarks (a), and the slope of the
curves (b). The longitudinal momentum fractions are fixed at x1 = x2 = 0.01.

it can be said that the exponent for the gluons experiences a more rapid change at low
Q while those for quarks and antiquarks experience a change over a wider Q range.

5.4 Linearly polarized gluons

A question of particular interest for physics at the LHC is how quickly the linear gluon
polarization is washed out by evolution. We saw in Chapter 3 that the transversely
polarized quarks gave rise to azimuthal asymmetries between the two hard interactions
and similar structures are expected for linearly polarized gluons. These effects can at least
potentially produce azimuthal asymmetries between the directions of jets and hadrons,
which has been a hot topic at the LHC since the observation of the CMS ridge in proton-
proton collisions [119].

With this in mind, we investigate the evolution at relatively low Q, comparing lin-
early polarized to unpolarized gluons. The leading order splitting kernel (appendix B)
for unpolarized gluons has a 1/z dependence, leading to a very rapid increase of the
unpolarized gluon distributions at small x values. For the linearly polarized gluons the
kernel is instead proportional to z, leading to a slower evolution of the distribution at
small x values. Therefore a large suppression of the linear polarization compared to
the unpolarized is to be expected at small xi. In order to quantify this statements, we
again turn to an ansatz for the DPDs of unpolarized gluons in terms of two single-parton
distributions. To obtain an ansatz for the linearly polarized distribution we make use of
the positivity bounds (4.26) derived in the previous chapter. Saturating the bound we
choose the ansatz where the linearly polarized distribution is half of the unpolarized at
the starting scale, Q = 1 GeV.
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(a) (b)

Figure 5.4: Double parton distributions for two linearly polarized gluons (first row)
and their ratio to the unpolarized gluons (second row) - starting with a product of
single-parton distributions from (a) MSTW (b) GJR. At the initial scale the polarized
distribution is taken to be half of the unpolarized.

Starting from a product of the leading order MSTW distributions the effects of the
evolution for two linearly polarized gluons, as well as their ratio to the distribution of
two unpolarized gluons is shown in the left of figure 5.4. As evident from the ratio
plot, the density of linearly polarized gluons quickly becomes negligible compared to
the unpolarized density at small x values. Already at Q = 2 GeV the ratio is close to
zero. If we however, choose a different set of single-parton distributions, namely the GJR
distributions, as can be seen in the right hand figure of 5.4 the situation changes. In this
case, the linearly polarized gluons stay sizable down to significantly smaller xi. The GJR
distributions here were chosen because of their qualitatively different shape at the input
scale. While MSTW has a gluon distribution decreasing with 1/x in the range below
x = 0.1 the GJR distribution shows a steady increase with 1/x. Part, but not all, of this
difference can be traced back to the value of the strong coupling used for the two sets
of distributions, table 5.1. We note here that the δgδg distribution at the input scale is
much larger for the GJR input than for the MSTW input, due to the large size difference
of the single-parton distributions. A closer look at the single-parton distributions reveal
that these differences get smaller as Q increases, and are comparably small already at
Q = 4. When dividing by the unpolarized contribution in the two cases, we thereby
divide by approximately the same function and the linearly polarized gluons play a
larger role for the GJR case. Noting that the major effect of the suppression comes from
the evolution of the unpolarized distributions, one can estimate the effect of using other
single-parton distribution sets by comparing their relative increase with the increase of
GJR and MSTW. A comparison of different leading order sets of parton distributions
can for instance be found in [120]. Taking for example the CTEQ6l distribution [121],
which for intermediate x has a gluon distribution more similar to GJR than to MSTW,
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one should expect the linear gluons to be of similar importance as for GJR and thus
larger than for MSTW, with the ansatz for the polarized distribution used here.

(a) (b)

(c) (d)

Figure 5.5: Double linearly polarized gluons at different x1x2 values starting from a
product of MSTW distributions in (a) and (c) and starting from a product of GJR
distributions in (b) and (d).

Taking a closer look at the relative size of the linearly polarized distributions, we
plot the distributions for both cases, as well as the ratio to the unpolarized distributions
against log(x1/x2) at two fixed values of x1x2 = 0.01, 0.0001 in figure 5.5. log(x1/x2) is
related to the rapidity (2.9),

Y1 − Y2 = 1
2
log

q+
1

q−1
− 1

2
log

q+
2

q−2
= log

x1

x2

+ 1
2
log

q2
2

q2
1

(5.10)

such that it equals the rapidity difference between the two processes when their scales
are equal. Fixed x1x2 leads to symmetric distributions around zero and a ratio which is
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(a) (b)

Figure 5.6: Effects of the NLO correction included for the splitting kernels of linearly
polarized gluons, starting from MSTW (a) and starting from GJR (b).

independent of log x1/x2. In order to get a significant contribution in the MSTW case
we need to go to x values of around 0.1, but for the GJR the ratio to unpolarized gluons
remains around 10% at Q = 2 GeV and 5% at Q = 4 GeV.

At next-to-leading order, the splitting kernel for the linearly polarized gluons has a
qualitatively different behavior than at leading order. The NLO kernel contains a piece
behaving as 1/z for small z. In order to investigate the effect of this qualitatively different
term we included this part of the NLO splitting kernel in the evolution of the linearly
polarized gluons. The 1/z part of the NLO correction to the Pδgδg kernel in appendix B
is [113]

P nlo
δgδg(z) =

[

N2
c + (Nc − 2CF ) nf

] 1 − z3

6z
. (5.11)

The results for both MSTW and GJR can be found in figure 5.6. Notice that the ratio
in this case is taken with respect to the linearly polarized gluons without the NLO part
of the evolution kernel. Although there is a clear impact, especially for the MSTW
case around x1 = x2 = 10−3 it does not to any large extent change the overall picture.
The relatively large effect for the MSTW in this specific xi range is due to the small
distribution at these xi values where the migration of partons towards smaller xi leads
to a larger relative effect.

We now take the analogous initial conditions for quarks, i.e. with the distribution
of unpolarized quarks as a product of single parton distributions and with the distribu-
tion of transversely polarized quarks saturating the positivity bounds, i.e. fδqδq = 1

2
fqq.

Contrasting the evolution of the linearly polarized gluons with the evolution of trans-
versely polarized up-quarks in figure 5.7, we see that the transverse polarization stays
a significant contribution down to very small xi values. Furthermore, in this case the
MSTW starting point leads to a larger ratio at very small momentum fractions than
starting with the GJR distributions, but the differences between the two starting sets
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(a) (b)

Figure 5.7: Double transversely polarized up quarks at different x1x2 values starting
from a product of MSTW distributions in (a) and GJR distributions in (b).

are smaller than for the gluons. It would be interesting to extend the current analysis in
order to examine to how high Q values the transversely polarized quarks can still play a
significant role.

5.5 Integration limits

Perhaps the most immediate difference between single and double parton DGLAP evo-
lution is the difference in integration limits. While the single parton evolution integrates
the momentum fractions all the way up to 1, the integration of double parton evolution

∫ 1−x2

x1

du1

u1

, (5.12)

is by momentum conservation bound to 1−x2, for evolution of the parton with momen-
tum fraction x1. That the integration limit difference has an impact for very large xi

values is obvious, but through evolution the effect can propagate down towards smaller
xi. We investigate this effect by evolving a product of MSTW distributions, either with
the correct DPD evolution limits fDPI or extending the integration all the way up to
1, fSPI. We study the ratio of the distributions obtained in the two cases in order to
see how far down in xi values there are still differences. Figure 5.8 shows the minimal
x1 = x2 values for which the ratio between the two cases differs from unity by more than
10%, i.e. where

∣

∣

∣

∣

1 − fDPI

fSPI

∣

∣

∣

∣

≥ 10% , (5.13)

as a function of the evaluation scale. For quarks, such as the fuu distribution the dif-
ferences remain at large xi values. For gluons, which have a stronger evolution, the
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Figure 5.8: The minimum x1 for which the of the DPDs evolved with single parton
evolution limit to DPDs evolved with proper double parton integration limit differing
from 1 by more than 10%, as in (5.13).

difference propagates down in xi and already at moderately large Q we have 10% differ-
ences for momentum fractions below 0.1. The distribution with one up-quark and one
gluon is, as expected, half way between the uu and gg curves. It must be pointed out
that a 10% effect is not too large, but it shows that even in the case that one starts
with the DPD factorized into a product of single parton distributions at a low scale, the
factorization does not strictly hold at larger scales.

5.6 Three-quark model

So far in this chapter our investigations have dealt with the collinear double parton
distributions. We now turn towards the transverse momentum dependent DPDs, where
unpolarized partons can have correlations affecting the dependence of DPDs on the trans-
verse variables y, z1 and z2, the interplay between these variables and the longitudinal
momentum fractions. There are indeed reasons to expect such correlations, see e.g. [27]
and section 2.6 of [44], but not much is currently known about them.

In the present section we take a brief look at this issue by using a simple model in
which the proton is described by a three-quark wave function. This is clearly too simple
to describe the physics of small momentum fractions most relevant at the LHC, although
it may actually be used for modeling quark DPDs at momentum fractions in the valence
region. We proceed with this model in the spirit of an exploratory study.
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Our model ansatz for the three-quark light-cone wave function of the proton is

Ψ(xi, bi − b) = Φ(xi) exp

[

− 1

4a2

3
∑

i=1

xi(bi − b)2

]

, (5.14)

where a is parameter of dimension length, b = x1b1 + x2b2 + x3b3 is the transverse po-
sition of the proton, and x1 + x2 + x3 = 1. The corresponding wave function depending
on transverse momenta is a Gaussian with exponent −a2

∑

i k
2
i /xi, which was long ago

proposed in [122] and is often used for the phenomenology of valence dominated quan-
tities, see e.g. [123]. The relation between the light-cone wave functions in transverse
momentum and transverse position representation can be found in [100]. We do not
specify the longitudinal part Φ(xi) of the wave function nor its spin-flavor dependence
here, since the focus of our study is on the transverse variables.

From the light-cone wave function (5.14) one can compute the contribution of the
three-quark Fock state to the DPD of two quarks in the proton, in full analogy to
the well-known case of single parton distributions (discussed e.g. in [100]). Up to a
factor depending only on the longitudinal momentum fractions xi, the double parton
distribution is given by

F (xi,zi,y) ∝ exp

[

− 1

8a2

{

x1(1 − x1)z
2
1 − 2x1x2z1z2 + x2(1 − x2)z

2
2 +

4x1x2

x1 + x2

y2

}]

×
∫

d2b exp

[

− 1

2a2

x1 + x2

1 − x1 − x2

(

b +
x1

x1 + x2

y
)2

]

, (5.15)

where b is the transverse position of the proton, averaged over the scattering amplitude
and its conjugate as specified in [44]. The second line in (5.15) just gives an xi dependent
factor after integration over b.

5.6.1 Cross section effects

Inserting (5.15) into the cross section formula (2.33) for the double Drell-Yan process
and performing the integrals over all transverse positions, one obtains a cross section for
double hard scattering that depends on the transverse boson momenta as

exp

{

−a2
[

q2
1 C11(xi, x̄i) + 2q1q2 C12(xi, x̄i) + q2

2 C22(xi, x̄i)
]

}

(5.16)

with dimensionless functions Cij of the momentum fractions x1, x2 and x̄1, x̄2, which
are somewhat lengthy and will not be given here. The expression in square brackets is
positive definite, so that the transverse momentum dependence has a Gaussian falloff at
large transverse momenta. The coefficient C12 describing the correlation between q1 and
q2 is positive as well, so that one finds a preference for the two vector bosons to have
opposite transverse momenta. We see that even with the simple wave function ansatz
(5.14) the dependence of the cross section on the transverse momenta of the gauge bosons
is not independent of their longitudinal momenta.
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Taking the ansatz in (2.61) with the DPD expressed as a convolution of two single
parton distributions and evaluating the single parton distributions for the light-cone wave
function (5.14) one obtains

F (xi,zi,y) ∝
∫

d2b exp

[

− 1

8a2

x2

1 − x2

{

(1 − x2)
2z2

2 + (2b + x1z1)
2
}

]

× exp

[

− 1

8a2

x1

1 − x1

{

(1 − x1)
2z2

1 + (2b + 2y − x2z2)
2
}

]

∝ exp

[
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x1(1 − x1)z
2
1 + x2(1 − x2)z

2
2

+
x1x2

x1(1 − x2) + (1 − x1)x2

(

2y − x1z1 − x2z2

)2
}]

(5.17)

for the transverse dependence of the double parton distribution. This is visibly different
from the result (5.15) of the direct calculation. Although the ansatz (2.61) involves the
convolution of two single parton distributions, thus suggesting that the two partons are
distributed independently, it induces correlations between transverse and longitudinal
variables in F (xi,zi,y).

Inserting the form (5.17) into the cross section formula one obtains again a Gaussian
behavior as in (5.16), but with different coefficients Cij. In particular, the sign of C12

is then equal to the sign of (x1 − x̄1)(x2 − x̄2), so that depending on the longitudinal
momentum fractions the transverse boson momenta tend to be in the same hemisphere
or in opposite ones. This difference in qualitative behavior shows that the ansatz (2.61)
must be used with great care when one is interested in correlation effects.

Setting z1 = z2 = 0 in (5.15) and (5.17) gives collinear DPDs with a Gaussian
dependence on y. The Gaussian width depends on x1 and x2 and differs in the two
cases,

F (xi,y)
∣

∣

∣

(5.15)
∝ exp

[

− 1

2a2

x1x2

x1 + x2

y2

]

,

F (xi,y)
∣

∣

∣

(5.17)
∝ exp

[

− 1

2a2

x1x2

x1 + x2 − 2x1x2

y2

]

. (5.18)

We see that, within our model, the ansatz (2.61) does not reproduce the interplay between
y and the momentum fractions. It does, however, provide a valid approximation unless
x1 and x2 are both rather large.

5.7 Summary

With a Gaussian ansatz for the transverse distance dependence of the input double parton
distributions, including an interplay with the longitudinal momentum fractions, we find
that evolution induces a departure from the Gaussian shape. The most sizable deviations
are for the distributions of sea quarks/antiquarks but the effect is visible also for gluons.
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The difference between the Gaussian dependence of the different distributions decreases
with evolution, but sizable differences remain even at high scales. The slow convergence
indicates a violation of universality of the transverse dependence of the double parton
distributions, often used in phenomenological studies.

Our study of the linearly polarized gluons shows that they are heavily suppressed in
processes at large or medium Q, but that they can still be significant at low scales. Their
relative size in our investigation depends strongly on the set of input single parton distri-
butions. With a MSTW input the large coupling and small size of the gluon distribution
at the starting scale leads to a quick suppression at all but the largest x values, while a
GJR input gives a significantly larger density of linearly polarized gluons. We find that
the ratios between distributions of transversely polarized quarks/antiquarks and their
unpolarized counterparts only slowly decrease with evolution scale. These distributions
can have a significant size compared to their unpolarized counterparts up to high scales,
and it would be interesting to extend this study with evolution up to larger Q values.

We demonstrate that the difference in integration limits between the single and double
parton evolution equations has an impact on the evolved distributions. The impact
propagates down to lower xi values when increasing the evolution scale, in particular
for double parton distributions involving gluons. Although the effects are rather small,
they demonstrate that even starting from factorized ansatz, as a product of single parton
distribution, evolution will strictly speaking break the factorization at larger scales.

In addition to the numerical results we find correlations between the transverse dis-
tribution and longitudinal momentum fractions of the partons in a simple model with a
three-quark wave function. Within this model we also find that the often used ansatz
to represent double parton distributions as convolutions of single parton distributions is
inadequate to describe details of the kinematic dependence in double parton scattering.
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Chapter 6

Conclusions and outlook

Double parton scattering in high energy proton-proton collisions can give sizable con-
tributions to the production of high multiplicity final states in parts of phase space. A
systematic treatment of double parton scattering within perturbative QCD is under de-
velopment, but many aspects are still missing. The complications arising when treating
two separate hard interactions lead to a substantial gap between theory and experiment.
The present thesis aims at filling parts of this gap and bring the theory closer to definite
experimental predictions.

The double Drell-Yan process is one of the simplest double parton scattering pro-
cesses. We have calculated the leading-order cross section in the case where the transverse
momenta of the bosons are small (using transverse-momentum dependent factorization)
and the case where these momenta are integrated over (using collinear factorization).
Our calculation can serve as a prototype for the calculation of more complicated cross
sections. The result demonstrates the impact of the correlations between the polariza-
tions of quarks and antiquarks inside an unpolarized proton on the rate and distribution
of the produced leptons. In the cross section differential in transverse boson momenta,
transversely polarized quarks lead to azimuthal asymmetries in the decay products. Part
of the asymmetries remain when the cross section is integrated over the transverse bo-
son momenta. Having two separate hard interactions in double parton scattering does
therefore not imply that the final state particles produced in the two interactions are
independent of each other.

Given that the correlations occur between the directions of decay products in the
two hard interactions of the Double Drell-Yan process, one would expect similar features
in other processes with larger cross sections, such as double dijet production and the
production of two jets in association with a vector boson. The dependence of the cross
section on the angles between produced particles implies a dependence on their invariant
mass, which is an important variable in searches for new physics. Estimations of the
size of these effects would therefore be of importance. The size of the spin correlations,
and thereby the degree to which the decay products are correlated, depends on unknown
double parton distributions.

In order to obtain some information on the possible size of the polarization effects,
we derived positivity bounds on the double parton distributions following from their

79
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probability interpretation. In order to acquire the bounds, we constructed spin density
matrices, revealing the full polarization structure of two partons in an unpolarized proton.
We showed that the positivity bounds are stable under leading order double DGLAP
evolution. The bounds constrain the size of the double parton distributions of polarized
partons and therefore the size of spin induced correlations between the hard interactions
in double parton scattering. They can further be used to aid in the construction of
double parton distributions.

We made direct use of the positivity bounds in a numerical study on the evolution
of the double parton distribution for two linearly polarized gluons inside an unpolar-
ized proton. With an ansatz building on single parton distributions which saturates
the positivity bounds, we showed that the double DGLAP evolution rapidly suppresses
the linearly polarized gluons, such that they are negligible in processes at medium and
large scales. At low scales, the relative importance of the linear polarization depends
strongly on the ansatz for the double parton distribution of unpolarized gluons. The
lack of knowledge of even the single-parton distributions for gluons at low scales pre-
vents us from drawing reliable conclusions. The ratio of the distribution for transversely
polarized quarks to the unpolarized counterpart is much less affected by evolution. The
transversely polarized quarks can thus stay significant up to larger scales, but a dedicated
study would be necessary to determine up to what scale they can have an impact.

The leading topic through most of this thesis has been correlations between the
polarization of two partons in an unpolarized proton. We did however also investigate
other types of correlations. Our Drell-Yan cross section calculation included color and
flavor interference. The color interference is suppressed at high scales by a Sudakov
factor, and is therefore likely to be small in the production of Z and W bosons. Flavor
interference can in principle be sizable, affecting the magnitude of the double Drell-
Yan cross section but does not lead to the changes in distributions induced by the
correlations between polarizations. In a simple model of the proton with a three-quark
wave function we found correlations between longitudinal momentum fractions and the
transverse distribution. Within this model, the approximation of the double parton
distributions as a convolution of single-parton distributions was inadequate to describe
the details of the kinematic dependence of the double Drell-Yan process.

Using a Gaussian ansatz for the transverse distance dependence of the double parton
distributions, we showed that the homogeneous double DGLAP evolution cause devia-
tions from the Gaussian shape. In particular the sea-quarks/antiquarks at larger scales
showed a steeper central slope and a longer tail than a Gaussian fit would allow. The
convergence with evolution of the transverse dependence for the different parton species
was found to be slow, and sizable differences remained at large scales. This indicates
a breakdown of the assumption of a universal y dependence necessary for splitting the
double parton cross section into single parton cross sections, frequently used in phe-
nomenological studies. We demonstrated that even when starting from double parton
distributions as a product of single parton distributions at a low scale, homogeneous
evolution leads to a slight breaking of the factorization at larger scales.

Several of these studies indicate that the approximations necessary for a simple de-
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scription of double parton scattering in terms of cross sections for single parton scattering
and σeff does not hold true. Even so, this simple description still provides the most prac-
tical connection between theory and experiment.

There are many interesting open questions in double parton scattering. We have
addressed some of these in the thesis, and identified places where further studies would
be useful. Other open questions we briefly mentioned in the overview of double parton
scattering, whilst still others we did not touch upon. It would be interesting to further
develop the study of the linearly polarized gluons at low Q and investigate if they can
lead to features similar to the CMS ridge. The numerical study of the double DGLAP
evolution should and will be further pursued, by studying distributions with other po-
larization types and extending the investigation of transversely polarized quarks up to
higher scales. The interesting issues of factorization in double parton scattering and the
separation from single parton scattering need to be further investigated. In addition, fur-
ther studies of models for the double parton distributions would be of interest, as would
further investigations of double and multiparton scattering in Monte Carlo generators.
Making closer connections between the Monte-Carlo generators and the theory of mul-
tiparton scattering could both help in modeling multiparton interactions and provide a
method by with which the theoretical description could be brought closer to experimental
results.

The content of this thesis takes steps within the systematic QCD treatment of double
parton scattering towards making experimental predictions, but there remains more to
be done. There are still important steps to take, issues to resolve and measurements
to make in order to bridge the gap and create a close connection between theory and
experiment.
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Appendix A

Coupling factors

In this appendix we list the coupling factors K and K ′ appearing in the double Drell-Yan
cross section. Further relations between these factors are given in section 3.3.

A.1 Charged vector bosons

For W+ production one has

Kqiq̄j
=

α2

4Nc

|Vqiqj
|2

(2 sin θw)4

Q2
i

(Q2
i − m2

W )2 + m2
W Γ2

W

, (eqi
− eqj

= 1) , (A.1)

and for W− production

Kqiq̄j
=

α2

4Nc

|Vqjqi
|2

(2 sin θw)4

Q2
i

(Q2
i − m2

W )2 + m2
W Γ2

W

, (eqi
− eqj

= −1) . (A.2)

Here Nc = 3 is the number of colors, Vqiqj
a CKM matrix element, θw the weak mixing

angle, α the electromagnetic fine structure constant, and eqi
the charge of quark qi in

units of the positron charge.

A.2 Neutral vector bosons

For a lepton pair ℓ+ℓ− produced via a γ∗, Z or their interference, one has coupling factors

Kqiq̄j
=

α2

4Nc

{

eqi
eqj

Q2
i

− A(Qi) gV
ℓ (eqi

gV
qj

+ eqj
gV

qi
) − iB(Qi) gV

ℓ (eqi
gV

qj
− eqj

gV
qi
)

+ C(Qi)
[

(gV
ℓ )2 + (gA

ℓ )2
]

(gV
qi
gV

qj
+ gA

qj
gA

qi
)

}

,

K ′
qiq̄j

=
α2

4Nc

{

−A(Qi) gA
ℓ (eqi

gA
qj

+ eqj
gA

qi
) − iB(Qi) gA

ℓ (eqi
gA

qj
− eqj

gA
qi
)
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+ C(Qi) 2gV
ℓ gA

ℓ (gV
qi
gA

qj
+ gV

qj
gA

qi
)

}

,

Kqi∆q̄j
=

α2

4Nc

{

−A(Qi) gV
ℓ (eqi

gA
qj

+ eqj
gA

qi
) − iB(Qi) gV

ℓ (eqi
gA

qj
− eqj

gA
qi
)

+ C(Qi)
[

(gV
ℓ )2 + (gA

ℓ )2
]

(gV
qi
gA
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gA
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)

}

,
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=
α2

4Nc

{

−A(Qi) gA
ℓ (eqi

gV
qj
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qi
)

+ C(Qi) 2gV
ℓ gA

ℓ (gV
qi
gV

qj
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qj
gA
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)

}

(A.3)

and

Kδqiδq̄j
=

α2

4Nc

{

eqi
eqj

Q2
i

− A(Qi) gV
ℓ (eqi
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qj

+ eqj
gV
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,
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δqiδq̄j
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4Nc

{

−B(Qi) gV
ℓ (eqi
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− gV
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)

}

. (A.4)

Here we have used the conventional vector and axial fermion couplings to the Z boson,

gV
f = I3

f − 2ef sin2 θw , gA
f = I3

f , (A.5)

where I3
f is the third component of the weak isospin of the left handed fermion f and ef

its charge in units of positron charge. Since we do not consider Z decays to neutrinos, ℓ
is always a negatively charged lepton. We have furthermore used the abbreviations

A(Qi) =
1

sin2 2θw

Q2
i − m2

Z

(Q2
i − m2

Z)2 + m2
ZΓ2

Z

, B(Qi) =
1

sin2 2θw

mZΓZ

(Q2
i − m2

Z)2 + m2
ZΓ2

Z

,

C(Qi) =
1

sin4 2θw

Q2
i

(Q2
i − m2

Z)2 + m2
ZΓ2

Z

. (A.6)

For the usual hard-scattering cross sections one has equal flavors qi = qj in the above
coupling factors and finds that their imaginary parts are zero. This is not the case for
the coupling factors describing flavor interference, where qi 6= qj.



Appendix B

Evolution equations and splitting

functions

For completeness we give here the leading-order evolution equations for the first parton
in the double parton distributions. When the first parton is a quark, we have

∂fqb

∂τ1

= Pqq ⊗1 fqb + Pqg ⊗1 fgb ,

∂fqδb

∂τ1

= Pqq ⊗1 fqδb + Pqg ⊗1 fgδb ,

∂f∆q∆b

∂τ1

= P∆q∆q ⊗1 f∆q∆b + P∆q∆g ⊗1 f∆g∆b ,

∂fδqb

∂τ1

= Pδqδq ⊗1 fδqb ,
∂fδqδb

∂τ1

= Pδqδq ⊗1 fδqδb ,
∂f t

δqδb

∂τ1

= Pδqδq ⊗1 f t
δqδb (B.1)

for b = q, q̄, g. The arguments of the distributions are as in (4.27) and (2.65). Analogous
equations hold if the first parton is an antiquark. For gluons we have

∂fgb

∂τ1

= Pgg ⊗1 fgb +
∑

a=q,q̄

Pga ⊗1 fab ,

∂fgδb

∂τ1

= Pgg ⊗1 fgδb +
∑

a=q,q̄

Pga ⊗1 faδb ,

∂f∆g∆b

∂τ1

= P∆g∆g ⊗1 f∆g∆b +
∑

a=q,q̄

P∆g∆a ⊗1 f∆a∆b ,

∂fδgb

∂τ1

= Pδgδg ⊗1 fδgb ,
∂fδgδb

∂τ1

= Pδgδg ⊗1 fδgδb ,
∂f t

δgδb

∂τ1

= Pδgδg ⊗1 f t
δgδb . (B.2)

The leading-order splitting functions have been derived in [66,124]. They are given by

Pqq(z) = CF

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

,
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P∆q∆q(z) = Pqq(z) ,

Pδqδq(z) = Pqq(z) − CF (1 − z) (B.3)

for quark-quark transitions and by

Pgg(z) = 2Nc

[

z

(1 − z)+

+
(1 − z)(1 + z2)

z

]

+
β0

2
δ(1 − z) ,

P∆g∆g(z) = Pgg(z) − 2Nc
(1 − z)3

z
,

Pδgδg(z) = Pgg(z) − 2Nc
(1 − z)(1 + z2)

z
(B.4)

for gluons. The splitting functions that mix quarks and gluons read

Pqg =
z2 + (1 − z)2

2
, Pgq = CF

1 + (1 − z)2

z
,

P∆q∆g =
z2 − (1 − z)2

2
, P∆g∆q = CF

1 − (1 − z)2

z
. (B.5)

As already mentioned below (2.65), the splitting functions are identical for quarks and
antiquarks, i.e. (B.3) and (B.5) remain valid if we replace q → q̄. At leading order in αs

there are no direct transitions between quarks and antiquarks.



Appendix C

Elements of a stability proof

In this appendix we show in more detail that the evolution equations in section 4.5.4
preserve positivity, taking particular care of the negative terms in the splitting functions
that arise from virtual graphs and are implicit in the plus-prescription. We first consider
the evolution of a single distribution and then extend the argument to the full coupled
system of evolution equations.

We examine a function evolving as

∂

∂τ
f(x, τ) =

∫ v

x

du

u
P

(x

u

)

f(u, τ) (C.1)

with 0 < x < v ≤ 1 and separate the splitting function as

P (z) =
Ps(z)

(1 − z)+

+ Pr(z) + Pδ δ(1 − z) , (C.2)

where Ps(z) and Pr(z) are positive semi-definite for 0 < z < 1 and regular at z = 1. The
constant Pδ may be positive, negative or zero. The plus-prescription is defined as usual
by

[s(z)]+ = s(z) − δ(1 − z)

∫ 1

0

dz′ s(z′) , (C.3)

where it is understood that the non-integrable singularity in the last term cancels when
(C.3) is integrated over with a smooth test function. The plus-prescription part of the
convolution in (C.1) can be written as

∫ v

x

du

u

Ps(x/u)

(1 − x/u)+

f(u, τ)

=

∫ v

x+ǫ

du
Ps(x/u)

u − x
f(u, τ) +

∫ x−ǫ

0

du
Ps(1)

u − x
f(x, τ) + O(ǫ) , (C.4)
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where for the error estimate we have assumed that f(u, τ) is differentiable at u = x.
Defining

gǫ(x, τ ; f) =

∫ v

x+ǫ

du

[

Ps(x/u)

u − x
+

Pr(x/u)

u

]

f(u, τ) ,

hǫ(x) = − Pδ + Ps(1)

∫ x−ǫ

0

du

x − u
(C.5)

we can approximate the evolution of f by

∂

∂τ
f(x, τ) = gǫ(x, τ ; f) − hǫ(x) f(x, τ) (C.6)

with an error that becomes arbitrarily small for ǫ → 0. In a more formal proof, one
would replace f with fǫ in (C.6) and show that lim

ǫ→0
fǫ is a solution of (C.1) . We now

rewrite (C.6) as

∂

∂τ

[

eτhǫ(x)f(x, τ)
]

= eτhǫ(x) gǫ(x, τ ; f) . (C.7)

Since gǫ is the convolution of f(x, τ) with a positive semi-definite integral kernel, the
r.h.s. of this equation is positive semi-definite as long as f(x, τ) is. With initial conditions
f(x, τ0) ≥ 0 for all x at a starting scale τ0, the function eτhǫ(x)f(x, τ) can therefore not
decrease as τ increases, so that f(x, τ) stays positive semi-definite for all τ > τ0. We
note that the sign of hǫ(x) and thus of the constant Pδ is irrelevant for this argument.

We now consider the coupled system of evolution equations given by (4.41) to (4.44).
Using a vector notation f i(x, τ) for the 8nf +4 functions Q+

ab, Q
−
ab, B

+
ab, B

−
ab with a = q, q̄, g

(and b fixed), we can cast their evolution into the form

∂

∂τ
f i(x, τ) = gi

ǫ(x, τ ; f i) − hi
ǫ(x) f i(x, τ) +

∑

i6=j

∫ v

x

du

u
P ij

(x

u

)

f j(u, τ) (C.8)

with i = 1, . . . , 8nf + 4. Here gi
ǫ and hi

ǫ are defined as in (C.5) with regular and positive
semi-definite functions P i

s(z) and P i
r(z). The mixing kernels P ij(z) in (C.8) are regular

and positive semi-definite as well. Rewriting the evolution as

∂

∂τ

[

eτhǫ(x)f i(x, τ)
]

= eτhǫ(x)

[

gi
ǫ(x, τ ; f i) +

∑

i6=j

∫ v

x

du

u
P ij

(x

u

)

f j(u, τ)

]

(C.9)

we see that if one has initial conditions f j(x, τ0) ≥ 0 for all j then all functions f j(x, τ)
remain positive semi-definite for τ > τ0.
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