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Abstract

We present a method for the numerical evaluation of loop integrals, based on the Feynman
Tree Theorem. This states that loop graphs can be expressed as a sum of tree graphs
with additional external on-shell particles. The original loop integral is replaced by a
phase space integration over the additional particles. In cross section calculations and for
event generation, this phase space can be sampled simultaneously with the phase space
of the original external particles. Since very sophisticated matrix element generators for
tree graph amplitudes exist and phase space integrations are generically well understood,
this method is suited for a future implementation in a fully automated Monte Carlo
event generator. A scheme for renormalization and regularization is presented. We show
the construction of subtraction graphs which cancel ultraviolet divergences and present
a method to cancel internal on-shell singularities. Real emission graphs can be naturally
included in the phase space integral of the additional on-shell particles to cancel infrared
divergences. As a proof of concept, we apply this method to NLO Bhabha scattering in
QED. Cross sections are calculated and are in agreement with results from conventional
methods. We also construct a Monte Carlo event generator and present results.

Zusammenfassung

Es wird eine Methode zur numerischen Auswertung von Schleifengraphen vorgestellt,
die auf dem Feynman Tree Theorem beruht. Dieses sagt aus, daß ein Schleifengraph
durch eine Summe von Baumgraphen mit zusätzlichen Teilchen auf der Massenschale aus-
gedrückt werden kann. Das ursprüngliche Schleifenintegral wird dabei durch ein Phasen-
raumintegral ersetzt. In Berechnungen von Wirkungsquerschnitten und bei der Erzeu-
gung von Ereignissen kann dieses Integral gleichzeitig mit der Phasenraumintegration der
ursprünglichen externen Teilchen ausgewertet werden. Da für die Erzeugung von Baum-
graphen weit entwickelte Matrixelementgeneratoren existieren und Phasenraumintegratio-
nen im Allgemeinen sehr gut verstanden sind, ist diese Methode für eine spätere Implemen-
tierung in einem Monte Carlo Ereignis Generator gut geeignet. Es wird ein Schema zur
Renormierung und Regularisierung vorgestellt. Es werden dabei Subtraktionsgraphen kon-
struiert, die die UV-Divergenzen aufheben. Weiterhin wird eine Methode zur Aufhebung
interner Singularitäten präsentiert. Infrarotdivergenzen werden durch die Hinzunahme
von reellen Abstrahlungen niederenergetischer masseloser Teilchen aufgehoben. Diese
können auf natürliche Weise unter das Phasenraumintegral über die zusätzlichen Teilchen
hinzugenommen werden. Um eine Bestätigung für die Anwendbarkeit dieser Methode zu
erlangen, wird die Berechnung von Wirkungsquerschnitten der Bhabha-Streuung in erster
Ordnung in QED gezeigt. Die Resultate werden mit denen konventioneller Methoden ver-
glichen. Ein Monte Carlo Ereignis Generator wird vorgestellt und Ergebnisse präsentiert.
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1. Introduction

The task of high energy physics is on the one hand to find models which, based on sym-
metry principles, predict the outcomes of any experiment by as few free input parameters
as possible and on the other hand to precisely measure observables and corresponding free
parameters to verify or falsify a theory and get hints of further underlying symmetries.
Deviations from predicted values of observables or the findings of new degrees of freedom
can then be used to construct models whose predictability spans a wider range of energy,
resulting in a refined and in a scientific sense simpler picture of our nature.

Up to an energy scale of roughly 100GeV the Standard Model of particle physics (SM)
has proven very successful1. It is a SU(3)c×SU(2)L×U(1)Y gauge theory incorporating
the fundamental strong, electromagnetic and weak interactions. The latter two are jointly
described by the SU(2)L × U(1)Y electroweak gauge group. However, the W - and Z-
bosons are massive and since gauge invariance forbids an explicit mass term for the gauge
bosons, this symmetry has to be broken. Furthermore, the scattering amplitude of lon-
gitudinal polarized massive vector bosons rises proportional to the center of mass energy
squared s. This would lead to a violation of unitarity at an energy of about 1.2 TeV if not
compensated by a new particle or the onset of a new strong interaction. Similar upper
bounds are also obtained for massive fermions. In the standard model, the electroweak
symmetry is broken by a SU(2) scalar Higgs doublet with a non-vanishing vacuum expec-
tation value. This gives masses to three of the four bosons of the SU(2)L × U(1)Y gauge
group and introduces a new physical particle, the Higgs boson. Apart from this scalar,
all particles predicted by the standard model have been found and experimental precision
data [5] agrees very well with the predictions of the standard model, which has about 20
free parameters.

In this form, the standard model can be valid up to the Planck scale, where gravitational
interactions become as strong as the other three fundamental forces. However, it is very
unnatural to have a light scalar in the presence of such a high scale. There is no mecha-
nism or symmetry to prevent the Higgs mass to be of the order of the Planck scale due
to radiative corrections. Thus, to get a Higgs scalar with mass at the electroweak scale,
counterterms have to be added in the renormalization procedure, which are of the order
of the Planck scale and cancel the quadratic divergence to obtain a squared mass of the
physical Higgs boson which lies about 30 orders of magnitude below that scale.

An elegant solution to this problem is the minimal supersymmetric extension of the stan-
dard model (MSSM) via the introduction of a symmetry relating bosons and fermions [6,7].
Here, the quadratic divergences in the corrections to the Higgs self energy are canceled by
additional loop terms containing the supersymmetric partners of the standard model par-
ticles. Furthermore, if supersymmetry (SUSY) is broken at the TeV-scale, the couplings
of the strong, electromagnetic and weak interactions come close to each other at a scale
of about 1016 GeV, indicating a possible unification of the couplings and an embedding of

1For a full review of the Standard Model, see the standard textbooks, e.g. [1–4], and references therein.
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1. Introduction

the gauge groups in a bigger group. A further, independent hint to a grand unification
(GUT) is the value of the Weinberg angle sin2 θW ' 0.231 which is predicted by such
theories to be 3

8 at the GUT scale, resulting in a value of 0.203 at the electroweak scale
through renormalization group running, very close to the measured value. A third virtue
of a TeV-scale SUSY is a lightest supersymmetric particle, which, if stable, would have
the right magnitude of relic density to step in as a candidate for cold dark matter.

In the next year, the Large Hadron Collider (LHC) will begin taking data. The Inter-
national Linear Collider (ILC) is scheduled for the year 2014. These two high energy
particle colliders are the first ones entering the TeV regime. Thus, as described above, it
is likely that physics responsible for the breaking of the electroweak symmetry is found
and pinned down to a certain mechanism by precision measurements in the next decades.
Furthermore, it would be natural to find physics beyond the standard model in this energy
regime, mitigating the huge discrepancy between the Planck and the electroweak scale.
In the discovery and the measurements of parameters of new physics these two colliders,
one being a proton/(anti)proton - the other an e+e−-collider, often play a complementary
role [8].

Extraction of parameters and comparison with theory is a highly non-trivial task. The
multiplicity of final states in a particle collision is immense, at the LHC several hundred
final state particles per event are expected. The detectors require accurate understanding
to know their influence on the extracted data. Perturbative calculations of strong inter-
actions involve partonic quarks and gluons, while the final states detected are hadrons.
This transition is understood only empirically. To help the reconstruction and studies of
multi particle events and to study detector requirements and the feasibility of analyses,
simulation programs are needed. These Monte Carlo event generators are set up in several
stages according to the energy scale of the sub-processes of a collision2. At the highest
scale lies the hard partonic sub-process, described by matrix elements up to some order
in perturbation theory. In events involving hadrons, parton distribution functions have
to be implemented. Parton shower algorithms have to be used to simulate the emission
of additional particles from the initial and final states of the hard scattering process and
their subsequent evolution down to lower scales. Produced quarks and gluons will eventu-
ally hadronize. These hadrons as well as heavy unstable particles might decay. Finally, a
simulation of the detector can also be applied to mimic collision processes in experiments
as good as possible.

For many processes under consideration at the upcoming colliders, the precision for the ex-
tracted parameters like masses and couplings may reach the percent to per mil regime [8].
To have a combined error of theory and experiment in the same region, the theoretical
predictions should match this precision. Therefore, it is necessary to implement the ma-
trix element, describing the hard subprocess in an event generation up to next to leading
order (NLO) in perturbation theory. There are further arguments for the inclusion of
NLO calculations, e.g. the rather strong dependence of the amplitudes on the renormal-

2see [9] and references therein
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ization scale in QCD, which should decrease when higher orders are taken into account.
However, loop calculations of processes with many final state particles are quite involved.
There exist Monte Carlos which have some processes implemented at next to leading or-
der [10–12], however it would be particularly favorable to have a fully automated matrix
element generation at NLO and corresponding event generation. There are several groups
heading for this goal. We will give an overview of these efforts and the technical tools
involved in chapter 2.

In this thesis we present a method to generate and calculate matrix elements at NLO,
which is very well suited for an implementation in an automated Monte Carlo event gen-
erator. The idea, reaching back to R. Feynman [13], is to consecutively cut each propagator
of a loop by replacing it with a delta function. This leads to a sum of tree graphs. The
cut propagator of each tree graph can be interpreted as one additional incoming and out-
going on-shell particle, which is integrated over. We regularize UV-divergent integrals by
subtraction terms which are fixed by the renormalization conditions. A striking feature of
the introduced method is the treatment of IR-divergences. Here the virtual and the real
corrections can be evaluated under the same integral. In addition to the usual infrared
and ultraviolet divergences further internal singularities appear when loop propagators get
singular. These peaks are taken care of by additional fix functions. Terms resulting from
multiple cuts of the loop can add further real and imaginary contributions to the results.
Since these include multiple delta functions, they lower the dimension of integration and
can easily be evaluated.

The proposed method allows for the calculation of loop diagrams from tree graphs. The
subtraction terms from the regularization procedure can easily be obtained from these
tree graphs. This facilitates a simple and fast creation of matrix elements by standard
automated generators. The original loop integral is replaced by a phase space integration
over the additional particle momentum. Except for the addition of the fix functions, no
further manipulations of the integrand have to be made. This allows for a simple imple-
mentation in a Monte Carlo framework for cross section integration and event generation.
The additional phase space integration can then be performed simultaneously with the in-
tegrations over the external momenta. When amplitudes with a higher number of legs are
considered, no further techniques than those already considered have to applied to prepare
the matrix elements for the numerical integration. Thus, the level of complexity of the
calculations only rises due the growing number of terms which have to be considered and
the growing dimension of integration. We therefore expect the method to be an efficient
tool for computations in collider physics.

This thesis is structured as follows. In the next chapter we will give a short introduc-
tion to field theory with main emphasis on the choice of gauges and the renormalization
scheme as well as the calculation of cross sections. Here, we will also discuss alternative
approaches to calculations of NLO processes. In chapter 3 we will present the Feynman
Tree Theorem (FTT) and give an improved version, suited for numerical evaluation. We
will discuss the singularity structure of the integrands, give a regularization and renor-
malization scheme and show the treatment of infrared divergences. We will also introduce

5



1. Introduction

fix functions rendering internal threshold singularities finite. A path to a generalization
of the tree theorem to multi loop graphs is shown in appendix D. In chapter 4 we will
discuss phase space integration and the multi channel approach used by VAMP[14]. We
will present a first application of the FTT to Bhabha scattering in QED in chapter 5. This
includes up to four-point functions, and the treatment of IR-,UV- and threshold singular-
ities can be seen simultaneously. Here, we will also present results obtained with different
methods of the integration algorithm as well as matrix element generation, namely by
FE Y NAR T S�FO R MCA L C [15,16] and O’ME G A [17]. In chapter 6, we will give an overview of
Monte Carlo event generation and present our implementation of the Feynman Tree Theo-
rem in a Monte Carlo event generator for NLO Bhabha scattering. Chapter 7 summarizes
and gives an outlook.
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2. Field Theory - Gauges, Renormalization
and Cross Sections

In this chapter we will give a short introduction to the path integral formalism of gauge
theories. We point out the derivation of Feynman rules and discuss several gauge choices.
We then give an overview of renormalization and introduce the BPHZ procedure which
we will use for regularization. Finally, we discuss different techniques for loop integral
calculations. Most of this chapter is gathered from standard field theory books and it is
not intended to give a broad overview, but to lead the reader to our choices of gauge and
renormalization scheme. Details can be found in [1–4,18,19].

2.1. de Witt - Faddeev - Popov Formalism

A convenient way to obtain Green functions and Feynman rules in a Lorentz and gauge
invariant way is to extract them from a generating functional in the path integral formal-
ism. For non-Abelian, as well as Abelian gauge theories, the vacuum-vacuum amplitude
in the presence of classical currents J coupled to the field content of the theory can be
represented as:

Z[J ] = 〈Ωout|Ωin〉 =
∫
DADΨDωDω∗ ei

∫
d4x

(
Leff + LJ

)
. (2.1)

Here, the integral measures run over all possible configurations of the corresponding fields:

DA =
∏
x,µ,a

dAa
µ(x), (2.2)

and similar for the other fields. The effective Lagrangian is composed of the terms

Leff = Lm + LA + Lfix + Lgh, (2.3)

which will be explained in the following. The first two terms are the common matter and
gauge field Lagrangians

Lm =
∑
f

Ψ̄f (iD/−mf ) Ψf (2.4)

LA = −1
4
F a,µνF a

µν . (2.5)

The sum in the matter Lagrangian runs over all fermion flavors. Here, we explicitly wrote
a mass term for fermions. We will not discuss the dynamical creation of masses due
to electroweak symmetry breaking in this thesis. The field strength and the covariant
derivative are given by

7



2. Field Theory - Gauges, Renormalization and Cross Sections

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2.6)

Dµ = ∂µ − ig taAa
µ, (2.7)

where fabc is the structure constant of the gauge group considered. In Abelian theories
this term vanishes.

The path integral over the gauge field runs over all its possible configurations. Those
differing only by a gauge transformation are also included and therefore the path integral
is infinite. The natural procedure to get meaningful results is to factor out the infinite part
and integrate only over distinct field configurations. This can be achieved by inserting a
delta function in the integrand which fixes the gauge. This delta function is accompanied
by a Jacobian determinant of the infinitesimal gauge transformation:

Z[J ] =
∫
DA DetF δ(fa(A)) . . . (2.8)

F =
δfa(A)

δεb

∣∣∣∣
ε=0

(2.9)

The delta function can be equivalently replaced by a Gaussian integral, leading to the
gauge fixing term in the Lagrangian:

Lfix = − 1
2ξ

fafa (2.10)

A common choice for the gauge fixing function is the so-called covariant or Lorenz gauge,

fa = ∂µAa
µ (2.11)

leading to the generalized ξ-gauge. We will discuss separate choices for the gauge below.
Note that in Abelian gauge theories the functional determinant F does not depend on the
gauge field Aa

µ, since the gauge transformation does not. Therefore, in Abelian theories
the determinant is a constant term which can be pulled out of the integral and just changes
its normalization.

If the determinant depends on the gauge field, as is usually the case in non-Abelian the-
ories, one can substitute it by an additional path integral, involving auxiliary Grassmann
valued fields, the Faddeev-Popov ghosts:

DetF =
∫
DωDω∗ e−i

∫
d4x d4y ω∗(x)F (x, y)ω(y) (2.12)

Thus, the ghosts only couple to the gauge fields and the structure of this coupling is
directed by the choice of the gauge fixing functional fa(A). The ghost term in the effective
Lagrangian can directly be read off:

8



2.2. Feynman Rules and Gauge Choices

Lgh = −
∫

d4y ω∗(x)F (x, y)ω(y). (2.13)

The last ingredient of the generating functional is the Lagrangian containing the source
terms:

LJ = Ja,µAa
µ + JΨΨ− Ψ̄JΨ̄ + Jωω − ω∗Jω∗ . (2.14)

2.2. Feynman Rules and Gauge Choices

From the generating functional (2.1) one can now easily derive Green functions, vacuum
expectation values of time ordered products of operators:

〈T Φ1(x1)Φ2(x2) · · · 〉 =
∂n

∂J1(x1)∂J2(x2) · · ·
W [J ]

∣∣∣∣
J=0

, (2.15)

where

W [J ] = −i log Z[J ]. (2.16)

Here, the Ji are the sources of the corresponding fields or operators. While Z[J ] is the
sum of all vacuum to vacuum amplitudes, W [J ] is the sum of all connected graphs. To ob-
tain S-matrix elements, one applies the LSZ reduction formula to the Fourier transformed
Green functions.

The generating functional of vertex functions is the Legendre transform of the functional
W [J ]:

Γ[A,Ψ, Ψ̄, ω, ω∗] = −
∫

d4xLJ + W [J ]. (2.17)

This can be interpreted as the sum of all connected one-particle-irreducible (1PI) graphs.
To obtain the vertex function of any combination of fields, one just takes the variational
derivative with respect to these fields and sets all fields to zero afterwards. For the two
point function of the vector boson A this would be:

ΓAAµν (x1, x2) =
δ2

δAµ(x1)δAν(x2)
Γ[A,Ψ, Ψ̄, ω, ω∗]

∣∣∣∣
A=Ψ=ω=ω∗=0

(2.18)

The full propagator can then be obtained by inverting ΓAAµν (x1, x2). The generating func-
tional for vertex functions can be expanded in a series of the Planck constant ~, which
effectively is an expansion in loops1. To lowest order, the tree-level vertex functional is
given by:

Γ0[A,Ψ, Ψ̄, ω, ω∗] =
∫

d4xLeff. (2.19)

1Each propagator is accompanied by a factor ~, each vertex by ~−1 and the number of loops is given by
L = I − V + 1, where I is the number of internal lines and V the number of vertices.
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2. Field Theory - Gauges, Renormalization and Cross Sections

In perturbation theory one uses Feynman rules to construct graphs representing the consid-
ered process. The vertices (propagators) are just the (inverse) tree level vertex functions,
Fourier transformed to momentum space and can therefore directly be read off the effec-
tive Lagrangian.

In covariant gauge (2.11), the propagator of a massless vector boson is given by:

i∆ab
F,µν =

−iδab

p2 + iε

(
gµν − (1− ξ)

pµpν
p2

)
(2.20)

Here, ab are possible group indices and ε is an infinitesimal positive parameter inserted
to preserve causality. It is obvious that for massless vector bosons as in U(1)QED and
SU(3)QCD, the additional gauge choice ξ = 1, the ’t Hooft-Feynman gauge, is convenient
for our calculations. Especially the structure of the denominator is simplest in this gauge
and will not lead to further singularities of the integrand, which will be discussed later.
There is one further gauge which should be mentioned at this place - the axial gauge,
defined by:

fa = n ·Aa, (2.21)

with a fixed four-vector n. In this gauge the Faddeev-Popov determinant (2.9) is inde-
pendent of the gauge field A and can therefore be pulled out of the path integral. Then,
like for Abelian theories there is no need for the introduction of ghost fields in this gauge.
The axial gauge has the further advantage of a physical propagator carrying only two
polarizations in the limit p2 → 0, e.g. cf. [20]:

i∆ab
F,µν =

−iδab

p2 + iε

(
gµν −

nµpν + pµnν
np

+
n2 + ξp2

(np)2
pµpν

)
. (2.22)

In its form given in [4] it vanishes if multiplied by pµ. Because of this, the virtual collinear
singularities which we will discuss in chapter 3, are suppressed considerably. However, due
to the structure of the denominator of the propagator in axial gauge, new singularities at
n · p = 0 appear.

In the case of electroweak symmetry breaking, a conventional choice for the gauge fixing
function is:

fa = ∂µAa
µ + ξevΦ, (2.23)

with e being the electric charge, v the vacuum expectation value of the scalar Higgs and
Φ the Goldstone boson. This choice avoids cross terms of the gauge and the Goldstone
boson fields. In this Rξ gauge, the propagators of the Goldstone bosons and the gauge
field read:

i∆Φ =
i

p2 − ξM2 + iε
(2.24)

i∆A =
−i

p2 −M2 + iε

(
gµν − (1− ξ)

pµpν
p2 − ξM2

)
(2.25)

10



2.3. Renormalization

With this gauge fixing functional, also the ghost fields acquire a mass of
√

ξM . Taking
ξ → ∞ leads to the so-called unitary gauge. Unphysical fields, the Goldstone bosons as
well as the Faddeev-Popov ghosts become infinitely massive and decouple off the dynamics.
However, this gauge is usually only used in Born level calculations, since the propagators
are proportional to pµpν

p2
for p → ∞ and can therefore lead to numerical instabilities in

loop calculations.

For the suggested method of loop integral evaluations, we will always use gauges with
the simplest structure in the denominator. Thus, in all cases discussed above, we will
set ξ = 1. This will simplify the analysis of the singularity structure of the integrands,
on the other hand Feynman graphs with unphysical particles like Faddeev-Popov ghosts
will have to be evaluated in addition. For the electroweak standard model, the number
of Feynman rules is rather high and we will not list them explicitly in this thesis. For t’
Hooft-Feynman gauge, they can be found in [21].

2.3. Renormalization

The Lagrangian of a gauge theory involves a certain number of free parameters like masses
and couplings. When processes are calculated at tree level the bare parameters of the
Lagrangian equal the physical quantities. However, when quantum corrections to these
processes resulting from loop diagrams are taken into account, this relation is destroyed.
The bare parameters cannot be interpreted as the physical ones. Furthermore, the shift
between bare and physical parameters becomes infinite. Therefore, a redefinition of the
parameters is necessary when computing higher order corrections. This is done by adding
or multiplying renormalization constants to the bare parameters and also the fields. These
constants also have to absorb the divergences occurring in loop calculations. A theory in
which these divergences can be absorbed by a finite number of renormalization constants
to all order in perturbation theory, and therefore can give meaningful predictions, is called
renormalizable. For spontaneously broken non-Abelian gauge theories this renormalizabil-
ity was shown in general Rξ gauges [22–26].

One commonly seen procedure is multiplicative renormalization. Here, a set of indepen-
dent parameters of the Lagrangian is chosen and each of this bare parameters as well as
each field is re-expressed by the renormalized parameter or field multiplied by a renormal-
ization constant Zn

i . This constant can be split up in Zi = 1 + δZi. As an example in
QED we have:

Aµ
0 =

√
ZAAµ (2.26)

Ψ0 =
√

ZΨΨ (2.27)
m0 = Zm m = m + δm (2.28)
e0 = Ze e = e + δe (2.29)
ξ0 = Zξξ (2.30)

11



2. Field Theory - Gauges, Renormalization and Cross Sections

The field renormalizations are not necessary to obtain finite S matrix elements. However,
they are needed to absorb the divergences in Green functions and vertex functions. Fur-
thermore, in the electroweak standard model mass matrices acquire non zero off-diagonal
entries due to radiative corrections. Here, renormalization constant matrices are required
to rotate the bare fields onto the mass eigenstates. The on-shell renormalization scheme,
introduced in the following, makes use of the masses of all physical particles, including
the quark mixing matrix, and the electric charge e. Using experimental values for these
parameters, all other parameters can be derived from those.

Renormalization Conditions

There is always a freedom of adding a finite part to the renormalization constants. There-
fore, these have to be fixed by imposing renormalization conditions. Throughout this
thesis we will use the widely used on-shell renormalization scheme [27], which is specified
by the following conditions on the n-point vertex functions:

Re iΓ(2)
αβ(−p, p)Φβ(p)

∣∣∣
p2=m2

= 0 (2.31)

Res
(
−Γ(2)(p)

)−1

p/=m,p2=m2
= 1 (2.32)

Γ(3)(pi, λ)
∣∣∣
p2i =m2

= λ3
0 (2.33)

Γ(4)(pi, λ)
∣∣∣
p2i =m2

= λ4
0, (2.34)

where Φ(p) is the corresponding wave function for the external particle, e.g. εν(p) or u(p),
and α, β possible Lorentz or Dirac indices. The λi are the tree level vertex functions, e.g.
λ3

0 = ieγµ in QED. The first two conditions require the real parts of propagators to become
singular at the physical mass, with residue unity to any order in perturbation theory. The
latter two will fix the couplings to physical parameters. This scheme has the advantage
that it directly relates the input parameters to experimentally measured values. However,
in the case of QCD, where experimental results are obtained from hadrons rather than
quarks and gluons, other schemes, like MS may be preferable.

In the case of the electroweak standard model a further condition can be imposed which
removes possible tadpoles in calculations, by keeping the Higgs vev equal to the physi-
cal value to any order in perturbation theory, v2 = 4µ2

λ . Here, the first renormalization
condition (2.31) also includes two point functions of different particles. The field renormal-
ization constants of the two neutral gauge bosons and the quark fields are matrix valued.
Condition (2.31) determines the off diagonal elements such that the two point functions
vanish if one of the external particles is on-shell. A more detailed description can for
example be found in [21].

Usually, the renormalization conditions (2.31-2.34) are used to relate and fix all of the
renormalization constants. By eliminating all redundancies from the renormalization con-
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2.4. BPHZ Prescription

ditions, one ends up with only a handful of constants with rather simple analytic expres-
sions. These are sufficient to renormalize any diagrams in perturbation theory. Technically,
one analytically evaluates primitively divergent vertex functions2 by introducing a UV-
regulator, rendering the loop integral finite. Examples for this additional parameter are a
UV cutoff Λ, a parameter ε, reducing the dimension of the loop integral from 4 to D = 4−ε
or the introduction of an additional vector boson propagator with a large mass ΛPV . The
analytic result of the loop integral then depends on this regulator, and becomes infinite in
the limit Λ → ∞ or ε → 0. The renormalization constants then will also depend on the
regulator, whereas the final results for S matrix elements will not - the original divergences
will be canceled by the counterterms containing the renormalization constants. However,
great care has to be taken when regulating loop integrals. The introduction of a regulator
might destroy some symmetries of the original Lagrangian, e.g. the violation of Lorentz
symmetry by a UV cutoff Λ. For non-Abelian gauge theories, the generating functional
of Green functions (2.1) obeys an extended gauge symmetry, the BRST symmetry. This
translates to equations of motion for the Green function, the so-called Slavnov-Taylor
identities, and in the case of vertex functions Lee identities. Dimensional regularization
fulfills these identities and preserves Poincaré symmetry as well as global internal sym-
metries, however cancellations of divergences will take place between different graphs of a
process.

In this thesis, we will not make use of the renormalization constants introduced in the
way above. Although they are a simple and efficient tool to analytically renormalize
and evaluate one loop graphs, they are of minor use in numerical applications. In the
following we will propose a scheme, where for each graph subtraction graphs fulfilling the
renormalization conditions can directly be found by a simple prescription.

2.4. BPHZ Prescription

Since we are aiming for a fully automated numerical evaluation of processes, we do not
want to introduce an unphysical regulator. Although in full processes the dependence of
the results on this regulator cancels in the associated limit, we still would have to assign
a finite value to it. An error estimate of the numerical results would become difficult
and cancellations between very large numbers would occur, which could lead to numerical
instabilities. Furthermore, we want to calculate infrared divergent real emission graphs
under the same integral, although they have a reduced number of loops. These argu-
ments eliminate dimensional regularization as a possible regularization scheme for loop
calculation with the Feynman Tree Theorem. We will therefore choose a BPHZ scheme of
regularization, which renders loop integrals finite before integration.

This alternative procedure to the renormalization of masses, couplings and fields was pre-
scribed by Bogoliubov and Parasiuk [28] and later Hepp and Zimmermann [29]. Consider
a graph Γ. Bogoliubov’s R operation is defined as

2By primitively divergent, it is referred to those vertex functions whose superficial degree of divergence
ω(Γ) (2.39) is not negative.
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2. Field Theory - Gauges, Renormalization and Cross Sections

R(Γ) = Γ +
∑

{γ1,...,γn}

Γγi→C(γi) (2.35)

Here, the γi indicate 1PI subgraphs of Γ and the sum runs over all possible ways of
surrounding the graph Γ and/or its 1PI subgraphs γi by nested but not overlapping boxes,
sometimes called forests. The prescription γi → C(γi) replaces the subgraph γi by its
counterterm C(γi):

C(γi) = −T ◦ R′(γi), (2.36)

where T is an operation which extracts the divergent part of its argument. R′ is again the
R operation (2.35), except the sum running now over all forests except the one which would
produce a counterterm for the whole 1PI subgraph, since its divergent part is extracted
by (2.36) and removed by (2.35):

R′(γi) = γi +
∑

{γ′1,...,γ′n}∩{γi}

γiγ′j→C(γ′j)
(2.37)

Thus, the R-operation is a recursive operation, starting at the 1-loop 1PI subgraphs and
then going to higher loops in all possible ways until finally the last divergence is absorbed
by the final R-operation on the whole graph Γ. It has been proven by Zimmermann
that this prescription eliminates all divergences of a Feynman integral to all orders in
perturbation theory.

T Operation

The T-operator in (2.36) may be any operation which extracts the divergent part of its
argument. It therefore determines the renormalization scheme. In dimensional regulariza-
tion it can be chosen to be, e.g. cf. [30]:

T ◦ γ = pole part in ε, (2.38)

defining the MS scheme. As mentioned above, we want to use the on-shell renormalization
scheme. A suitable definition for the T-operation is a Taylor expansion of Γ around some
fixed external momenta. We define the superficial degree of divergence of a one loop graph
ω(Γ) as:

ω(Γ) = 4− ES − EV −
3
2
EΨ − d(Γ), (2.39)

where EX is the number of external scalars (including ghosts), vector-bosons (in ’t Hooft-
Feynman gauge, ξ = 1) and fermions of Γ and d(Γ) the minimal number of external
momenta coming from derivative couplings. This formula results from power counting of
propagators and vertices with derivative couplings in loop integrations. The superficial
degree of divergence reflects the behavior of a loop integration in the limit of loop mo-
mentum q → ∞. If ω(Γ) ≥ 0, the integral diverges. When differentiating Γ with respect
to an external momentum, the superficial degree of divergence lowers by one. Therefore,
any loop integral can be made finite by a sufficient number of derivatives (ω(Γ) + 1) with
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2.4. BPHZ Prescription

respect to the external momenta and the divergent part is a polynomial in external mo-
menta of degree ω(Γ). One could ascribe this polynomial to a further vertex term in the
Lagrangian with corresponding derivative couplings. This is done in multiplicative renor-
malization. Note that renormalizability requires masses and couplings of positive mass
dimensions. This lead to (2.39) and from this one would deduce further renormalizable
(counter-) terms in the Lagrangian. Thus, in renormalizable theories only a few countert-
erms are necessary to absorb all divergences in perturbation theory and the inclusion of all
possible renormalizable terms allowed by symmetry in the Lagrangian might be necessary.

Consider a 1PI one loop graph Γn(p1, . . . , pn) with superficial degree of divergence ω(Γ).
We define the T operator as a Taylor expansion around on-shell momenta p̄i, with p̄2

i = m2
i :

T ◦ Γn(p1, . . . , pn) = Γn(p̄1, . . . , p̄n) +
n−1∑
i

(pi − p̄i)µ
∂Γn

∂pµi

∣∣∣∣
p1=p̄1,...,pn=p̄n

+

· · ·+ (2.40)

1
d!

n−1∑
i1,...,id

(pi1 − p̄i1)
µ1 . . . (pid − p̄id)

µd
∂dΓn

∂pµ1
i1

. . . ∂pµd
id

∣∣∣∣∣
p1=p̄1,...,pn=p̄n

,

up to d = ω(Γ). With this T operator, the renormalized 1PI n-point functions

Γ̂n(p1, . . . , pn) = Γn(p1, . . . , pn)− T ◦ Γn(p1, . . . , pn) (2.41)

fulfill the renormalization conditions (2.31-2.34). Note that we consider the external four-
vectors in Minkowski space and not Euclidean, which is commonly used in schemes derived
from the BPHZ prescription. In our formulation, the subtraction terms derived from (2.40)
can be complex valued. However, only the real part is needed for renormalization. For
two loop calculations, it therefore might be necessary to further restrict the subtraction
terms to be the real parts of the considered graphs.

Renormalization of One Loop Vertex Functions in QED

As an example we will discuss the three primitively divergent vertex functions of QED.
The electron two point function (up to one loop order) can be decomposed into Lorentz
covariants:

Γee(p) = i(p/−m) + iΣee(p) = i(p/−m) + ip/Σee
V (p2) + imΣee

S (p2). (2.42)

We choose an on-shell momentum p̄µ with spatial component equal to the original mo-
mentum ~p flowing through the vertex:

p̄ = (E~p, ~p), E~p =
√

~p2 + m2. (2.43)

T operation on the divergent one loop part of (2.42) yields:
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2. Field Theory - Gauges, Renormalization and Cross Sections

T ◦ Σee(p) = ip̄/Σee
V (m2) + imΣee

S (m2)
+i(p/− p̄/)Σee

V (m2) + 2i(p− p̄)µp̄µ
[
p̄/Σee

V
′(m2) + mΣee

S
′(m2)

]
. (2.44)

Thus, the renormalized electron self-energy reads:

iΣ̂ee(p) = ip/
(
Σee
V (p2)− Σee

V (m2)
)

+ im
(
Σee
S (p2)− Σee

S (m2)
)

−2i(pp̄−m2)
[
p̄/Σee

V
′(m2) + mΣee

S
′(m2)

]
. (2.45)

And the electron two point function is

Γ̂ee(p) = i(p/−m) + iΣ̂ee(p). (2.46)

The renormalization condition (2.31) imposed on (2.46) gives:

Re iΓ̂ee(p)u(p) != 0 → Re Σ̂ee(p)u(p) != 0, (2.47)

which is clearly fulfilled if p2 = m2, which also implies p→ p̄. The second renormalization
condition translates into

lim
p2→m2

i

p/−m
Re Σ̂ee(p)u(p) != 0 (2.48)

Using Dirac’s equation p/u(p) = mu(p) we have

lim
p2→m2

[
2m2

p2 −m2

(
Σee
V (p2)− Σee

V (m2) + Σee
S (p2)− Σee

S (m2)
)

− 4m2 pp̄−m2

p2 −m2

(
Σee
V
′(m2) + Σee

S
′(m2)

)]
u(p) != 0. (2.49)

Taking the limit p2 → m2 in the first line gives just the derivatives of the self energies.
The crucial factor in the second line is:

pp̄−m2

p2 −m2
=

(p̄ + ∆)p̄−m2

(p̄ + ∆)2 −m2
=

p̄∆
2p̄∆ + ∆2

, (2.50)

where we replaced pµ by (p̄ + ∆)µ, ∆µ = (δ, 0). Taking the limit δ → 0 yields a factor 1
2 .

Therefore the expression vanishes and the second renormalization condition is fulfilled.

The BPHZ procedure provides subtraction terms, which are easily interpreted as addi-
tional graphs. In the case of a photonic correction to an electron propagator, we just
subtract the same graph at a new momentum p̄ flowing through the propagator as well as
the same graph with an additional insertion of a Dirac valued factor (p/− p̄/) in the fermion
line of the loop, which is equivalent to the derivative of the electron self-energy. This is
depicted in figure 2.1. Note that the derivative term is infrared divergent. This divergence
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= − −

Figure 2.1: Renormalization of the 1-loop electron self-energy: From the unrenormalized
loop correction, we subtract the same graph at on-shell external momentum (dashed) as well
as the derivative with respect to the external momentum. This results in an insertion of a
Dirac gamma matrix, indicated by ×.

will be absorbed by the subtraction graphs of the two adjacent vertex corrections. We will
discuss the procedure in detail in section 3.3. For one loop calculations, we do not have
to worry about additional imaginary contributions from the subtraction graphs, since we
only evaluate the real part numerically. For higher loop calculations, we will only consider
the real part of the subtraction terms.

The renormalization of the photon self-energy ΣAA(p) is rather involved and does not lead
to simple subtraction graphs, since we have to take two derivatives. We give the calcula-
tion in appendix B in the language of scalar integrals, which we will briefly introduce in
the next section. It turns out that the final result is fairly simple, and factors out of the
Lorentz and Dirac structure of the graphs. It is also infrared finite and can therefore be
interpreted as a global correction factor to the tree level amplitude which can easily be
implemented in the numerical calculations.

The last primitively divergent vertex function of QED is the vertex correction ΓΨ̄AΨ
µ (p,−p′).

Since its superficial degree of divergence is ω(ΓΨ̄AΨ
µ ) = 0, we only have to subtract the

same graph at p2 = p′2 = m2, p = −p′ as in the definition of the electric charge in the
Thomson limit. The UV divergence is independent of the external momenta, so we can
freely choose the spatial parts. To cancel IR divergences we have to subtract the same
graph once at ΓΨ̄AΨ

µ (p,−p) and once at Γψ̄AΨ
µ (p′,−p′), with p2 = m2 and p′2 = m2, cor-

respondingly. This will also be discussed in section 3.3. In figure 2.2 we depicted the
mechanism of renormalization of this three point function.

QED Ward Identities

In QED, there is a one to one correspondence between the subtraction terms of our BPHZ
procedure and the counterterms obtained with multiplicative renormalization3. Here, the
Ward identities are fulfilled for renormalized quantities if dimensional regularization is
used, which preserves local gauge invariance. Since we do not introduce a further regula-
tor, but evaluate the expressions of the bare quantities and the corresponding counterterms
simultaneously, the Ward identities are automatically fulfilled. If the one to one corre-
spondence is also present in the case of non-Abelian theories, we also do not have to worry
about the constraints imposed by the Slavnov-Taylor identities. A rigorous proof is still

3For a thorough list of counterterms in terms of self energies, cf. [21]
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= +

= +

= − +

= − +

Figure 2.2: Renormalization of the QED vertex correction: The first line shows the un-
renormalized vertex correction up to one loop in perturbation theory. In the second line we
depicted the definition of the electric charge in the Thomson limit pγ → 0, indicated by the
straight fermion lines. Substituting the born vertex in line 1 by this definition yields line 3.
By taking the experimental value of the electric charge at each vertex, the inflicted error is
then of second order in perturbation theory.

missing and will not be the subject of this thesis. Nevertheless, in critical cases, one can
always switch back to renormalization and regularization schemes preserving the identi-
ties. As mentioned above, we already use this hybrid ansatz in the case of the infrared
finite corrections to the photon propagator, since here the use of an algebraic reduction
to scalar integrals is much more efficient.

Extension to Electroweak Standard Model

In the case of the electroweak standard model, two point functions with different external
particles can arise and the BPHZ prescription has to be extended for their incorporation.
In case of the ZA vertex, one can use the simple subtraction prescription:

Σ̂AZ
µν (p) = ΣAZ

µν (p)− p2

M2
Z

ΣAZ
µν (p̄Z) +

p2 −M2
Z

M2
Z

ΣAZ
µν (p̄0), (2.51)

where p̄i = aipi with a2
i = m2

i

p2i
. This is equivalent to results obtained with multiplicative
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renormalization, cf. [21]. Note that in the limit of MZ → 0 we obtain the result (B.10)
for the renormalized photon self-energy. Since no infrared divergences are encountered in
these two point functions, we could also use a representation in terms of scalar integrals
and follow the same line as in the appendix B for the renormalization of the two photon
vertex. This is also true for off-diagonal two point function involving quark fields.

2.5. Calculation of Cross Sections

In this section, we will introduce the ingredients of cross section calculations. We will
give a short overview of different methods of evaluating loop integrals and briefly dis-
cuss the approaches of different groups aiming at an automatized generation and eval-
uation of loop order processes. We will also introduce the helicity formalism used in
O’ME G A�WHIZARD[17, 31,32] for matrix element creation and event generation.

The cross section of a 2→ n scattering event is given by:

dσ = Φ dΠn(P ; q1, . . . , qn) |M(p1, p2 → q1, . . . , qn)|2 (2.52)

Φ =
1

2E12E2|va − vb|
(2.53)

dΠn(P ; q1, . . . , qn) =
∏
f

d3qf
(2π)32Ef

(2π)4δ(4)(P −
∑

qf ), (2.54)

with P = p1 + p2, the kinematic flux factor Φ and the n-particle phase space dΠn. The
Lorentz transformation property of the cross section is solely given by the flux factor.
Performing the integration over the phase space will lead to the total cross section. The
dynamics of the scattering event is incorporated in the matrix elementM. Up to one loop
order in perturbation theory we write for the matrix element with n final state particles:

Mn =MBorn
n +Mloop

n . (2.55)

The leading order total cross section is then given by:

σ(0) = Φ
∫

dΠn |MBorn
n |2. (2.56)

Some of the graphs contributing to the matrix elementMloop will be UV divergent. In the
following we will write the contributions of the subtraction diagrams explicitly as Mloop

CT .
The loop contribution to the cross section in first order of perturbation theory is then
given by the interference term of the one loop with the Born matrix elements:

σ(1)
v = Φ

∫
dΠn 2 Re(MBorn(Mloop

n +Mloop
n,CT)∗) (2.57)

The matrix elements Mloop
n and Mloop

n,CT can also be infrared divergent, which is the case
if massless gauge bosons like photons and gluons are exchanged between external on-shell
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particles. Physically, an initial or final state particle state cannot be distinguished from a
state with an additional number of soft photons. It was pointed out by Kinoshita [33], Lee
and Nauenberg [34] that the sum over all degenerate initial and final states is infrared safe
in each order of perturbation theory. In the case of QED corrections this means that if the
Born cross section of the real emission process σ(1)rewith n particles and an additional
photon in the final state is added to the virtual cross section σ

(1)
v the resulting total cross

section is finite [35]. Assuming that the detector cannot resolve photons of energy less
than ∆Es, one can split up the real emission cross section, which is of the same order in
perturbation theory than the virtual cross section, into a soft and a hard part,

σ(1)
re = σ

(1)
soft(∆Es) + σ

(1)
hard(∆Es) (2.58)

σ
(1)
soft(∆Es) = Φ

∫
dΠn

∆Es∫
d3k

(2π)32Ek
|MBorn

n+γ |2 (2.59)

σ
(1)
hard(∆Es) = Φ

∫
Ek≥∆Es

dΠn+γ |MBorn
n+γ |2 (2.60)

and add the soft part to σ
(1)
v . The usual procedure to cancel the divergent contributions

is to evaluate the soft real emission cross section analytically in the so called soft photon
approximation with a small photon mass λ. Here, the cross section can be written as
the Born cross section of the 2 → n process times a prefactor which can be integrated
analytically. In the added result the dependence on the photon mass λ then drops out.

In the next chapter we will introduce a method to evaluate loop diagrams which reduces
the loop integration to a phase space integration. The former loop graphs split into a
sum of tree graphs with an additional initial and final state particle over which the phase
space integration is performed. Thus, in first order of perturbation theory, the virtual
cross section, including the contribution of the soft real emission part, can be written as:

σ(1)
v (∆Es) = Φ

∫
dΠn

∫
d3k

(2π)32Ek
2Re(MBorn

n (MTree
n+1 +MTree

n+1,CT)∗) + |MBorn
n+γ,soft(∆Es)|2,

(2.61)
and MBorn

n+γ,soft(∆Es) is understood to be the real emission matrix element with an ad-
ditional theta function cutting out the soft part. Written in this way, the integrand is
ultraviolet and infrared finite before integration and in principle there is no need for any
regulator. One can also add the Born cross section to the integrand as a constant divided
by the integration volume. The full fixed order next to leading order (NLO) cross section
is then given by:

σNLO = σ(0) + σ(1)
v (∆Es) + σ

(1)
hard(∆Es). (2.62)

Here, the first two terms are 2 → n processes, while σ
(1)
hard(∆Es) is a 2 → n + 1 process.

Ideally, in the sum the total cross section does not depend on the cutoff ∆Es anymore.
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In practice, often an approximation is used to incorporate the soft real radiation in the
virtual part, which will be shown in chapter 3. In this thesis, we will mainly focus on
the 2 → n part, which in the form of equation (2.61) is very well suited for Monte Carlo
integration and event generation, cf. chapters 5 and 6.

Helicity Amplitudes

Besides the denominator resulting from propagators, a typical amplitude consists of several
fermion chains with Dirac and Lorentz indices. When multiplied with another amplitude
the sum over Dirac indices results in traces of chains of Dirac Gamma matrices. These
can simply be reduced and evaluated by algebraic programs. The final expressions then
consist of terms of scalar products of momenta of the amplitudes. This procedure can give
simple expressions, however, when considering scattering processes with many particles in
the final states, the number of terms rises drastically when each product of two amplitudes
is calculated separately. Often, it is therefore more efficient to calculate single amplitudes,
sum up the values for all different amplitudes and take the product afterwards. This can
be done in terms of helicity amplitudes, where each amplitude is just a unique complex
number in a basis given by helicity eigenstates of the spinor and bosonic wave functions.
The evaluation of single amplitudes has the further advantage that amplitudes for different
processes like for example the production of instable particles and their subsequent decay
factorize and can be calculated separately. The whole process is then the product of the
two amplitudes summed over the helicities of the intermediate particle. This takes also
interference effects into account contrary to the simple product of the cross sections for
particle production and the decay width. To calculate helicity amplitudes, we will use the
matrix element generator O’ME G A [17]. The conventions used for the helicity eigenstates
are listed in appendix A.2.

Reduction of Tensor Integrals

For one loop integrals there exists a systematic method to reduce tensor valued integrals
to scalar integrals, which can analytically be evaluated rather easily. This method was
introduced by Passarino and Veltman [36]. Since we will use it for the evaluation of the one
loop photon self-energy, we will briefly introduce it in the following. Any one loop graph
can be decomposed into a sum of tensor integrals TN

µν... multiplied with Lorentz valued
coefficients which are independent of the integration momentum. These tensor integrals
can be written in D dimensions as:

T (N)
µν...=

(2πµ)D

iπ2

∫
dDk

kµkν . . .[
k2 −m2

0 + iε
][

(k + p1)2 −m2
1 + iε

]
. . .
[
(k + pN−1)2 −m2

N−1 + iε
] .

(2.63)
Usually, T (N) is replaced by the N-th character of the alphabet. The tensor integrals are
Lorentz covariants and can therefore be decomposed into Lorentz tensors composed of the
external momenta pµ,i and the metric gµν times a scalar coefficient. For example, the
two-point tensor integral Bµν can be written as:
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Bµν(p, m0,m1) = gµνB00(p2,m0,m1) + pµpνB11(p2,m0,m1). (2.64)

This equation can be inverted to get equations for the scalar coefficients B00 and B11.
These can be obtained by multiplying (2.64) with the metric and external momenta,
substituting

kp =
1
2
[
(k + p)2 −m2

1

]
− 1

2
[
k2 −m2

0

]
− 1

2
(p2 −m2

0 + m2
1), (2.65)

and replacing the original integral by a sum of integrals with a lower rank and equal or
less propagators. Doing this iteratively, one ends up with a sum of scalar integrals, which
can be evaluated analytically.

The inversion of the linear equations for the decomposition into Lorentz covariants in-
volves a determinant of external momenta. This Gram determinant vanishes for linearly
dependent momenta. From five point functions on, this can happen within the phase space
and one therefore has to take great care in the reduction to scalar integrals. Except for
the two point functions of the photon self-energy, we will not make use of any reduction
scheme in this thesis and therefore do not encounter this determinant. For alternative
reduction schemes avoiding a small determinant, cf. [37] and references therein.

Feynman Parameterization

A commonly seen method of evaluation of the scalar integrals is the usage of Feynman
parameters. Here, the product of propagators is replaced by an integration of a simple
polynomial in the denominator over additional parameters:

1
A1 . . . An

= (n− 1)
∫ n∏

i

dxi
δ(1−

∑
xi)

(
∑

xiAi)
n . (2.66)

The integration over the loop momentum can then easily be performed after completing
the square and rotation to Euclidean coordinates. It remains to evaluate the integrals over
the Feynman parameters.

Different Approaches to Evaluation of Loop Integrals

The calculation of higher order cross sections is a highly active field of theoretical particle
physics. In this section we will give a brief overview of the main approaches and tools
used for the evaluation of loop integrals and the extraction of infrared singularities. For
recent more detailed overviews of different techniques and further references, cf. [38, 39].

Mellin-Barnes Integration

In the case of two- or higher loop corrections, the simple reduction method of Passarino
and Veltman cannot be applied anymore. By making use of the Poincaré invariance of
loop integrals one can find integration by parts identities as well as Lorentz invariance
identities to reduce the amount of integrals involved in a multi loop calculation to a small
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set of master integrals. There exist automated routines which implement an algorithm for
this reduction [40].

It then remains to evaluate the set of master integrals. In the past years, substantial
progress was made in analytical and numerical evaluations with Mellin-Barnes represen-
tations [41, 42]. Here the loop integrals in Feynman parameterization are represented as
complex contour integrals:

1
(A + B)ν

=
1

2πi

c+i∞∫
c−i∞

dωAωB−ν−ωΓ(−ω)Γ(ω + ν)
Γ(ν)

. (2.67)

Applying this representation iteratively on the integrands, one can then easily integrate
over the Feynman parameters and the loop integral is finally represented as a multi di-
mensional complex contour integral. Infrared singularities localize on simple poles in the
complex integration volume and can be extracted rather easily. After extraction of di-
vergent pieces one can perform a Taylor expansion in the dimension parameter ε and
numerically or analytically evaluate the coefficients of the series.

Clearly, it is favorable to have an analytic expression for the matrix element of a given
process. However, the evaluation of a lengthy analytic expression might still take some
time if harmonic functions and multiple polylogarithms are involved. A fully automated
implementation in form of a universal event generator requires further essential develop-
ments of today’s techniques. The amount of calculated master integrals is growing but still
limited. Going to higher orders or multi leg processes might require additional techniques
for the reduction to master integrals and their evaluation.

Sector Decomposition and Contour Deformation

One of the major problems which has to be overcome in loop calculations is the occurrence
of singularities, like virtual IR or collinear peaks. Especially in the case of overlapping
singularities, their extraction and the numerical evaluation of the integral is a non-trivial
task. A method called sector decomposition was proposed in [43]. Here, the integration
over Feynman parameter space is iteratively divided into sectors with a specific ordering of
the integration variables. The singularities at the endpoints of the integration parameters
factorize and can then be easily extracted.

Besides the infrared and collinear peaks, further threshold singularities can appear. One
method of a numerical evaluation in presence of such singularities was proposed in [44].
Here, the integration over the Feynman parameters is analytically continued to the com-
plex space and the contour deformed to avoid singular points. Combining sector decom-
position and contour deformation gives a powerful tool to evaluate complicated multi loop
diagrams, cf. [45]. However, the computational costs of the decomposition into sectors
and the subsequent numerical evaluation can be very high. Furthermore, the proposed
methods require strong algebraic manipulations of the expressions of the loop integrals,
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which makes a fully automated matrix element creation and evaluation tedious.

A method for full numerical evaluations in QCD, with similarities to the one presented in
chapter 3, was presented in [46–48]. To get numerical results for a loop integral, a sum over
cuts of this loop is considered. To avoid scattering singularities, which arise from on-shell
intermediate particles, a contour deformation is performed which analytically continous
the loop momentum to imaginary space. Contrary to the contour deformation used in this
method, we will show the construction of subtraction terms, which cancel internal on-shell
singularities. In the final sampling of the integrand, no special emphasis has to be placed
on these regions in phase space. Using real momenta, the method presented in this thesis
allows for an immediate application to cross section integration and event generation.

Subtraction Methods and Phase Space Slicing

The infrared divergent parts of loop integrals are compensated by the infrared diver-
gences of the corresponding real emission processes. However, in numerical calculations
the integrals have to be convergent separately, if the two contributions are evaluated at
two different stages. Primarily for QCD calculations, subtraction methods were devel-
oped [49–51], which add a term to the real emission process, rendering the phase space
integral finite. The analytic integral of the term is known and can be subtracted from the
divergent part of the loop calculation, such that this is also finite. Here, no approximation
is needed to cancel the infrared divergent parts of the loop integrals, however an analytic
expansion in the dimensional parameter still has to be performed.

To perform the phase space integration in real emission diagrams, often a method called
phase space slicing is used. Here, the phase space is cut in parts by the parameters ∆Es

and θc, to separate the soft from the hard and the collinear from the non-collinear regime.
The soft and collinear parts can then be evaluated analytically by appropriate approxi-
mations. In this way, one can also isolate the infrared divergent part and subtract it from
the loop calculation.

In this thesis, we will make use of the above methods in the sense that we add the soft real
emission diagrams to the integrands of the loops to render them finite before integration.
We will discuss this in section 3.3.

Summary

In the preceding chapter we showed the embedding of gauge freedom in field theoretic
quantities and motivated our choice of gauge, namely the t’ Hooft-Feynman gauge, where
gauge field propagators get a simple structure in the denominators. We further introduced
the on-shell renormalization scheme and the BPHZ prescription to regularize UV divergent
Feynman graphs. Finally, we discussed several techniques to evaluate loop diagrams. In
the following chapters we will develop a method of loop integral evaluation, incorporating
the proposed renormalization and regularization scheme and making use of subtraction
terms to remove singular and divergent pieces of the integrand.
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In this chapter we will develop a method to evaluate loop integrals from tree graphs.
The starting point of this method is a theorem by Feynman [13, 52, 53]1. The idea is to
decompose loop propagators into advanced Green functions and a delta function. When
integrating over the zero component of the loop momentum, the delta functions will put
the internal momentum of the associated propagator on-shell. This has the effect of open-
ing or cutting the loop. The Feynman Tree Theorem states, that a loop integral can be
expressed as the sum of all possible cuts of its propagators. Terms with one cut propa-
gator can be interpreted as tree level processes with an additional incoming and outgoing
particle. The original integration over the loop momentum becomes a phase space integra-
tion for the additional particle. Operating on every loop diagram, a full one loop m→ n
matrix element can be rewritten as the coherent sum of all possible m → n + p + p̄ tree
level processes with an additional integration over the phase space of the particle p and
its corresponding antiparticle p̄. Since tree level amplitudes can be created by automatic
matrix element generators and phase space integrations are well under control for up to
2 → 6 processes [32], this method of evaluating loop integrals is ideally suited for imple-
mentation into a Monte Carlo event generation framework. A further advantage of the
proposed method is that real emission diagrams can be evaluated under the same integral
and infrared divergences can therefore be compensated before final integration. The same
is true for the subtraction terms which will be constructed from the on-shell BPHZ scheme
described in the previous chapter. Thus, all UV and IR divergences cancel before inte-
gration and the final results can be easily compared to experimental data. Furthermore,
no additional algebraic manipulations have to be applied to the integrands, which again
simplifies a future implementation in an event generator.

In the next section we will derive the method for one loop integrals. A path to a general-
ization to multi loop diagrams is shown in appendix D. The resulting integrand usually
has a rich structure of peaks hampering the numerical evaluation. In section 3.2, we will
discuss in detail the structure of possible peaks and show the construction of fix functions
to smooth the peaks. In section 3.3, we will examine the infrared divergences and show
their cancellation by addition of real emission graphs. The explicit construction of sub-
traction terms from the BPHZ prescription is shown. These have to cancel UV divergences
as well as IR divergences from some of the associated real emissions. A detailed study of
the collinear peaks is given at the end of this chapter.

1Here, the Tree Theorem was invented to invest the renormalizability of a quantum theory of gravita-
tion. In [54], preliminary work towards a numerical evaluation of loop integrals in scalar theories was
commenced.
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3.1. Derivation of the Feynman Tree Theorem

In this section, we will first derive the Feynman Tree Theorem closely following [52]2. We
will then derive a new version of the Tree Theorem, which is better suited for a numerical
integration. We will then discuss in detail the contributions and interrelations of the single
terms appearing in this improved version.

The integrand I(k) of a loop integral can be written as a product of Green functions GF

of the Klein-Gordon equation times a regular function N(k) in the numerator. The latter
may depend on the integration momentum k and have Lorentz and Dirac indices but is
not of interest in the following. Suppressing the possible indices, we have

I(k) = N(k)
∏
i

GF(k + pi,mi), (3.1)

where the subscript F indicates the use of the Feynman prescription. The pi are linear
combinations of external momenta, the mi the masses of the physical particle the propa-
gator corresponds to. We define

Fi ≡ GF(k + pi,mi)

=
i

(k + pi)2 −m2
i + iε

(3.2)

= i
1

k0 − (−p0
i +

√
(~k + ~pi)2 + m2

i − iε)

1

k0 − (−p0
i −

√
(~k + ~pi)2 + m2

i + iε)

Note that we only consider cases, where the k-dependence in the denominator of a propa-
gator is of the form (3.2). As stated in section 2.2, we use ’t Hooft-Feynman gauge, where
gauge boson propagators take on this simple structure in the denominator.

In the following, we want to replace the Feynman Green functions Fi by advanced Green
functions Ai, where both poles lie in the upper k0-half plane. We define

Ei =
√

(~k + ~pi)2 + m2
i . (3.3)

Performing a partial fraction decomposition in (3.2), and similar for Ai, we get

Fi =
i

2(Ei − iε)

(
1

k0 − (−p0
i + Ei) + iε

− 1
k0 − (−p0

i − Ei)− iε

)
, (3.4)

Ai =
i

2Ei

(
1

k0 − (−p0
i + Ei)− iε

− 1
k0 − (−p0

i − Ei)− iε

)
, (3.5)

∆l
i ≡ Fi −Ai =

i

2Ei

(
1

k0 − (−p0
i + Ei) + iε

− 1
k0 − (−p0

i + Ei)− iε

)
. (3.6)

2A similar derivation can also be found in [55], where the Feynman Tree Theorem was used in the context
of MHV amplitudes.
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Here, we ignored the imaginary part in the prefactor of the Feynman Green function Fi.
Being independent of k0 it is not relevant in the following. Using a representation of the
delta function

2πiδ(u) = lim
ε→0

(
1

u− iε
− 1

u + iε

)
, (3.7)

the difference of the Feynman and advanced Green function is:

∆l
i =

2π

2Ei
δ(k0 − (−p0

i + Ei)). (3.8)

The superscript l indicates that this delta function picks out the propagator pole with
a positive energy component of the momentum k + pi, which originally was situated in
the lower half plane. The k0 integration over a product of advanced Green functions Ai

vanishes, since for two or more Green functions the integrand falls of sufficiently fast for
large k0 and one can close the contour of integration in the lower half plane, where no
poles are situated:

0=
∫

N(k)
n∏
i

Ai. (3.9)

Replacing Ai with Fi −∆l
i, we get:

0 ==
∫

N(k)
[
F · · ·F −

∑
∆lF · · ·+

∑
∆l∆lF · · · − . . . + (−1)n

∑
∆l · · ·∆l

]
, (3.10)

where we skipped indices in the terms in the brackets.

Equation (3.10) is the Feynman Tree Theorem [13,52], stating that a loop integral can be
expressed as a sum of tree graphs. The first sum runs over all permutations where one
propagator is replaced by a delta function, the second sum runs over all terms including
two delta functions and so on. The first term on the right hand side, which contains only
Feynman Green functions is the integrand (3.1). In the following the terminus cutting
a propagator of a loop will refer to one of the terms in (3.10), where a propagator was
replaced by a delta function.

In the following, we will derive an equation which is better suited for a numerical evalua-
tion.

Improved Version of the Feynman Tree Theorem

The integrand we want to evaluate in a final phase space integration should not contain
any auxiliary parameter like the infinitesimal ε. We can re-express the Feynman Green
functions Fi by the use of the identity:

1
x− a± iε

= P 1
x− a

∓ iπδ(x− a), (3.11)
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where P is Cauchy’s Principal Value, which is obtained by evenly approaching the singular
point from both sides such that the diverging pieces cancel each other. Applying this
identity to the Feynman Green function (3.4) and again skipping the iε term in the factor
in front of the brackets we get:

Fi =
i

2Ei

(
P 1

k0 − (−p0
i + Ei)

− iπδ(k0 − (−p0
i + Ei))

−P 1
k0 − (−p0

i − Ei)
− iπδ(k0 − (−p0

i − Ei))
)

≡ Pi +
1
2
∆l
i +

1
2
∆u
i , (3.12)

where we defined ∆u as the delta function setting the zero component of the momentum
of the associated propagator negative:

∆u =
2π

2Ei
δ(k0 − (−p0

i − Ei)). (3.13)

P stands for the propagator with no iε-prescription in the numerator:

Pi = P i

(k + pi)2 −m2
i

. (3.14)

In numerical evaluations of tree amplitudes, propagators of this form, without iε-terms,
are used. Inserting (3.12) in (3.10), we therefore get after some combinatorics a version of
the tree theorem (3.10), which is better suited for numerical evaluations:

∫
I(k) =

∫
N(k)

[
∆l

1P2 · · ·Pn + P1∆l
2P3 · · ·Pn + . . . + P1 · · ·Pn−1∆l

n

]
+
∫

N(k)
∑

perm.
U + L ≥ 2

CLUP ∆lL∆uU
PP , (3.15)

CLUP =
1

2L+U

(
1− (−1)L

)
. (3.16)

Since the structure of (3.15) is still very similar to (3.10), we will from now on refer to (3.15)
as the Feynman Tree Theorem. The sum runs over all possible permutations, where the
functions (∆l,∆u,P ) appear (L,U ,P ) times, with the additional constraint L+U +P = n.
The coefficient CLUP stands in front of every term. Note that there are no terms with
an even number of ∆l functions. We explicitly wrote out the terms containing one ∆l

function in the first line. Here, in each term, one of the propagators of the original loop
is replaced by a delta function. After k0 integration, all of the terms of the first line in
(3.15) can be interpreted as tree graphs with one additional phase space integral∫

d3k

(2π)32Ei
. (3.17)
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Note however, that the momentum which is put on-shell is k + pi and the integration is
performed over k. One must not shift the integration momentum in a single term, since
the integrand consists of several terms which are coherently summed up. Some of these
terms may have peaks or may even be UV divergent and only in the sum singularities are
canceled.

The numerator of a propagator, which in the preceding derivation was included in the
function N(k), can be written as the product of two wave functions of the corresponding
particle summed over all physical and unphysical helicity states:

(k/ + p/i + m) =
∑
λ

uλ(k + pi)ūλ(k + pi); (3.18)

(k/ + p/i −m) =
∑
λ

vλ(k + pi)v̄λ(k + pi); (3.19)

−gµν =
∑
σ

ε∗µ(k + pi;σ)εν(k + pi;σ). (3.20)

When a propagator is replaced by ∆l
i, setting k + pi on the mass shell, the corresponding

numerator can be read as the product of one additional incoming and outgoing external
on-shell particle. For a cut fermion propagator, we will obtain the particle if the momen-
tum flow of the loop is in the same direction as the fermion number flow and antiparticles
otherwise. This interpretation will help us understand the cancellation of IR divergences
of loop diagrams by real emissions, cf. section 3.3. Furthermore, the creation of all relevant
Feynman graphs contributing to a process in a given order is reduced to the task of finding
all tree level graphs with the corresponding additional particles.

The first line of (3.15) can also be interpreted as the result of the k0 integration of the
original loop, when the contour is closed in the lower half plane and only single, simple
poles are picked up. Setting iε to zero afterwards leads to wrong results if poles fall to-
gether and form double or multiple poles.

In (3.15), there are additional contributions which are collected in the sum in the second
line. These terms give a non-vanishing contribution, if the momenta of the propagators
they were replaced with go on-shell simultaneously. Since after the k0 integration there are
still δ-functions left, these terms will get support for hypersurfaces, lines or points in the
three-dimensional phase space volume, dependent on the initial number of ∆i functions.
Since each ∆i effectively lowers the dimension of the integration by one, the contribution
of these terms can be calculated rather easily. Whether these terms give a finite contri-
bution, can already be inferred from the integrand of the terms in the first line of (3.15).
When replacing the original integral by a sum over tree graphs with one additional on-shell
particle, the remaining propagators can become singular, or in other words, internal lines
can get on-shell at certain values of ~k. This leads to a peak structure which is resembled
by the sub-leading terms in (3.15).

29



3. Feynman Tree Theorem

Replacing a propagator by a delta function reduces the number of factors i by one. Terms
in (3.15) with an even number of ∆i will therefore give an imaginary contribution to the
final result, terms with an odd number a real contribution. Note that terms with an even
number of ∆l vanish, the reason for that will be explained in the next section. Terms with
one ∆l and one ∆u are exactly those which are needed in the optical theorem to calculate
the imaginary part of a scattering amplitude [56].

The preceding results immediately generalize to multi loop diagrams. After cutting one
loop, the resulting graphs have one additional particle in the initial and final state and
one loop less. The remaining loops can further be cut until only tree graphs are left. A
more detailed description in the case of two loops is given in appendix D.

Since loop correction to processes include any intermediate state as long it is allowed by
the couplings, the above arguments can be reversed and summarized as:

• For any, say 2→ n process, all corrections can be found by coherently summing all
possible tree graphs of the process 2 + l→ n + l, with l additional on-shell particles
in the initial and final state. These particles are of any allowed physical kind, but for
each additional incoming particle, the corresponding outgoing particle is identical in
all intrinsic and kinematic states. For each additional particle a sum over helicity
states and an integral over phase space has to be performed. Additional contributions
come from terms which correspond to multiple cuts of the original loops. These can
directly be inferred from the singularity structure of the tree graphs.

Singularities of Feynman Diagrams

In the following sections, we will investigate the singularity structure of the tree graphs ob-
tained by the Tree Theorem. In general, the set of all possible non-ultraviolet singularities
of a one loop Feynman diagram is given by the following Landau equations [57]:

κi(q2
i −m2

i ) = 0, (3.21)∑
i

κiqi = 0, (3.22)

for at least one non-zero κi. Here, qi = k+pi is the momentum flowing through propagator
Pi, k is the integration momentum of the loop and pi is a linear combination of external
momenta. These equations are derived from the condition that the k0-integration contour
is trapped between poles of the integrand and can therefore not be avoided by a deforma-
tion of the integration path, see also [4]. Thus, either a propagator Pi goes on-shell or the
corresponding κi vanishes and the second equation is reduced by the term κiqi. In general
the set of solutions depend on the direction of external momenta. In the next section, we
will examine these internal or threshold singularities which do not give rise to divergences
but to branch points and can be fixed by suitable subtraction terms. Solutions, which are
independent of the direction of external momenta are called mass singularities. These fall
into two categories, the infrared and the collinear divergences, which will be discussed in
section 3.3.
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3.2. Internal Singularities

When the momentum integration is performed in the first line of (3.15), the integrand
might get peaks in parts of the phase space where momenta of remaining propagators
are on-shell. These regions are open or closed two-dimensional surfaces in the three-
dimensional integrand. Intersections of these surfaces will correspond to kinematic situ-
ations where two or more momenta of internal lines become on-shell at the same time.
The occurrence of such peaks, although analytically integrable, leads to problems in the
numerical evaluation of the integrand, cf. chapter 4. Subtraction terms with zero real
value but with the same peak structure will smooth the integrand and allow for a better
numerical evaluation. In this section we will give the conditions under which peaks of the
integrand arise and calculate the corresponding fix functions.

The cutting of propagator Pi in a loop leads to a delta function in (3.8), which effectively
sets the four-vector k+pi on its mass-shell at (k+pi)2 = m2

i with positive zero component:

δ

(
k0 − (−p0

i +
√

(~k + ~pi)2 + m2
i )
)

. (3.23)

There are two possible situations under which another propagator Pj can get singular
corresponding to its original k0-poles in the lower and upper half plane, which correspond
to the positive and negative zero components ±Ej . After the k0 integration the relevant
term of the integrand in (3.15) reads:

∆l
iPjR(k) =

1
2Ei

i

[(p0
j − p0

i ) + (Ei − Ej)][(p0
j − p0

i ) + (Ei + Ej)]
R(−p0

i + Ei,~k), (3.24)

where R(k) is the analytic remainder of the term, containing the numerator and denom-
inators of further propagators which are assumed to be non-singular in the integration
volume. If the first factor in the denominator vanishes for some ~k, both momenta of the
two propagators Pi and Pj get on-shell with a positive zero component. In other words, at
this constellation of the integration momentum ~k, the two poles in the lower k0 half plane
of the original loop momentum coincide. Therefore, we will also encounter this singularity
when propagator Pj is cut:

∆l
jPiR(k) =

1
2Ej

i

[(p0
i − p0

j ) + (Ej − Ei)][(p0
i − p0

j ) + (Ej + Ei)]
R(−p0

j + Ej ,~k). (3.25)

In the limit of the first factor becoming zero, the residue of the combined contribution
vanishes:

lim
(p0j−p0i )+(Ei−Ej)→0

(
(p0
j − p0

i ) + (Ei − Ej)
) (

∆l
iPjR(k) + ∆l

jPiR(k)
)

=
i

2Ei2Ej

(
R(−p0

i + Ei,~k)−R(−p0
i + Ei,~k)

)
= 0. (3.26)
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Thus, if the two terms are added, the peaks will compensate each other and the inte-
grand can safely be evaluated numerically in this case. Note that we also did not get a
term in (3.15) with only two ∆l. Therefore, just like there is no peak in the sum of the
tree level contribution there is also no imaginary contribution to the final result in this case.

In the case where the second factor in (3.24) becomes singular, we will get a peak and cor-
responding imaginary part. This happens, if one pole of the lower k0-half plane coincides
with a pole in the upper half plane. There is no term with a single ∆u in (3.15), which
would set the associated momentum on-shell with a negative zero component and could
lead to a cancellation of this peak.

3.2.1. Conditions for Internal Singularities

We now look for general conditions under which a loop propagator Pj becomes singular
if we cut a propagator Pi, and give equations for the corresponding surfaces. Cutting
propagator Pi, we have:

0 != (k + pj)2 −m2
j

∣∣
k0=−p0i +

q
(~k+~pi)2+m2

i

,

!= ((k + pi) + (pj − pi))2 −m2
j

∣∣
k0=−p0i +

q
(~k+~pi)2+m2

i

,

!= m2
i −m2

j + 2(k + pi)(pj − pi) + (pj − pi)2
∣∣
k0=−p0i +

q
(~k+~pi)2+m2

i

. (3.27)

The occurrence and the shape of the peaks depend on the value of p2
ji ≡ (pj−pi)2. We can

distinguish 4 kinematic regions, separated by p2
ji = 0 and the two nodes λ(p2

ji,m
2
i ,m

2
j ) = 0

of the kinetic function defined by

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (3.28)

The different regimes are depicted in figure 3.1.

We switch to Lorentz frames where the calculation of solutions to (3.27) is particularly
simple. We first discuss the case of negative p2

ji.

• I: p2
ji < 0

Here, we cannot find a rest frame of pj−pi, however, we can define a Lorentz transformation
projecting pj − pi on the z-axis:

Λµν(pj − pi)ν = (0, 0, 0, pzji), (3.29)

−pzji
2 = (pj − pi)2, (3.30)

k′µ ≡ Λµνkν . (3.31)

Using this transformation we get for (3.27):
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I

III

IV
II

λ(p2
ji, m2

i , m2
j )

p2
ji

Figure 3.1: Different regions for p2
ji, defined by the origin and the two zeros of the kinetic

function λ. The occurrence and the structure of singularities of the integrand depend on the
value of p2

ji.

0 != m2
i −m2

j + 2(k + pi)(pj − pi) + (pj − pi)2,

= m2
i −m2

j + 2k(pj − pj) + p2
j − p2

i ,

L.T.= m2
i −m2

j − 2k′zp
z
ji + p2

j − p2
i ,

=⇒ k′z =
(p2
j −m2

j )− (p2
i −m2

i )
2pzji

. (3.32)

There are no further conditions for this singularity to appear. Thus, we will always en-
counter it in the case of (pj − pi)2 < 0. However, if we cut propagator Pj , propagator
Pi will exactly have the same singularity with opposite sign. This can be seen from the
derivation of (3.32) by interchanging indices i and j, but applying the same Lorentz trans-
formation as before. As a result we have the situation described in the beginning of this
section and the two peaks will cancel each other in the sum of the tree graphs.

• p2
ji > 0, (II,III,IV)

Here, we apply a Lorentz transformation to get into the rest frame of pj − pi:

(pj − pi)µ → pµji = Λµν(pj − pi)ν = (p0
ji,~0), (3.33)

p0
ji

2 = (pj − pi)2. (3.34)

We indicate k′ as the Lorentz transformed on-shell momentum3:

kµ′ = (
√

k′2 + m2
i ,

~k′) = Λµν(k + pi)ν . (3.35)

3Bold letters indicate absolute values of spatial vectors
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With this parameterization of kµ′ the Lorentz transformation has to be of proper or-
thochronous type, which implies that p0

ji may be both positive or negative. We thus get
from (3.27):

m2
i −m2

j + 2p0
ji

√
k′2s + m2

i + p0
ji

2 = 0, (3.36)√
k′2s + m2

i =
m2
j −m2

i − p0
ji

2

2p0
ji

, (3.37)

=⇒ k′2s =
1

4p0
ji

2 (m4
i + m4

j + p0
ji

4 − 2m2
i p

0
ji

2 − 2m2
jp

0
ji

2 − 2m2
im

2
j ). (3.38)

Therefore, the integrand gets singular at

ks =
λ

1
2 (p0

ji
2
,m2

i ,m
2
j )

2|p0
ji|

, (3.39)

the surface of a sphere with radius ks. The kinetic function λ is defined in (3.28). To get
to equation (3.39), two conditions have to be met to satisfy equations (3.37) and (3.38):

m2
j −m2

i − p0
ji

2

2p0
ji

> 0, (3.40)

λ(p0
ji

2
,m2

i ,m
2
j ) > 0. (3.41)

The function λ(p0
ji

2
,m2

i ,m
2
j ) is positive for p0

ji
2

< (mi − mj)2 and p0
ji

2
> (mi + mj)2.

Condition (3.41) therefore defines the three kinematic ranges for p2
ji > 0, depicted in figure

3.1. If the kinetic function λ is positive we have to check if condition (3.40) is fulfilled.
We also check the similar condition of propagator Pi getting singular if propagator Pj is
cut. This condition reads

m2
i −m2

j − p0
ji

2

2p0
ji

< 0. (3.42)

• II: 0 < p2
ji < (mi −mj)2

Suppose mj < mi. Then condition (3.40) simplifies to p0
ji < 0. The numerator of

(3.42) is:

m2
i −m2

j − p0
ji

2
> m2

i −m2
j − (m2

i − 2mimj + m2
j ) = −2mj(mj −mi) > 0. (3.43)

Thus, condition (3.42) is now p0
ji < 0, the same as (3.40). Therefore, if these

conditions are fulfilled, we will get a singularity in both terms, when propagator Pi
is cut and propagator Pj gets singular and vice versa. Again, this is the situation
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3.2. Internal Singularities

described in the introduction to this section, when both zero components of the on-
shell momenta are positive. This can be seen in the following. If propagator Pi is
cut, the denominator of propagator Pj can be written as:(√

k2 + m2
i + p0

ji −
√

k2 + m2
j

)(√
k2 + m2

i + p0
ji +

√
k2 + m2

j

)
. (3.44)

The first factor is the one coming originally from the pole in the lower k0 half plane.
Its vanishing indicates the coincidence of the original poles of the two propagators.
We have

√
k2 + m2

i + p0
ji =

m2
j −m2

i + p0
ji

2

2p0
ji

>
m2
j − 2mimj + m2

j

2p0
ji

=
2mj(mj −mi)

2p0
ji

> 0.

(3.45)

Therefore, the second factor is strictly positive and the singularity can only arise
from the first factor. Thus, the two poles of the lower half plane fall together and
the corresponding peaks cancel each other as shown above. The analysis for mj > mi

is analogous and leads to the same result.

• III: (mi −mj)2 < p2
ji < (mi + mj)2

In this region condition 3.41 is not fulfilled. Therefore the integrand does not get a
singular contribution form propagator j.

• IV: (mi + mj)2 < p2
ji

In this case the numerator of condition (3.40) as well of condition (3.42) is strictly
negative. Thus, exactly one of the two condition is fulfilled. Note also that if
condition (3.40) is fulfilled, meaning p0

ji < 0, the second factor of (3.44) vanishes.
Thus, while one propagator gets on-shell with a positive zero component, the other
has a negative zero component. Here, the singularity is not compensated by another
term in the integrand, and we will add a fix function to cancel this singularity, as
will be shown in section 3.2.2. In this kinematic range, the final result also gets
a contribution from the double delta terms in equation (3.15). This adds to the
imaginary part of the integral. Here, we have exactly the situation of the optical
theorem, where to calculate the imaginary part of a forward scattering amplitude
two propagators are set on-shell at the same time.

• λ = 0

There are two more cases which we have not discussed yet: p2
ji = (mi − mj)2 and

p2
ji = (mi+mj)2. In case the two points fall together, we either have mi = 0 or mj = 0 or

both at the same time. These are so-called mass singularities, where the integrand is not
just singular but divergent. These divergences are compensated by the addition of real
emission graphs. We will discuss this in section 3.3.
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3. Feynman Tree Theorem

If the kinetic function λ gets zero at two different values of p2
ji, which happens if both

masses are non-zero, the argumentation of the case p2
ji < (mi −mj)2 does not change in

the limit p2
ji = (mi−mj)2 and we do not encounter any peaks in the integrand. However,

if p2
ji = (mi + mj)2, we are at the threshold where the two real particles with masses mi

and mj can be produced at the same time. These are so-called Coulomb singularities,
where higher order corrections in perturbation theory can become equally important. To
get meaningful results, resummation methods can be applied, e.g. cf. [58]. In general,
these peaks are pointlike and integrable, setting the origin of the integration variables to
this point and using spherical coordinates will smooth these peaks.

3.2.2. Fix Functions

We are now going to calculate the fix functions which will compensate the singularities
of the integrand without adding a real part to the result4. In chapter 4, we will give
an overview of several integration methods. It will then become clear, that although the
singularities are analytically integrable, numerical integration algorithms will in general
not be able to adapt to the singular peaks and give stable results.

Suppose we have replaced propagator Pi with ∆l
i and propagator Pj gets singular at a

hypersurface in the integration volume, thus conditions (3.40) and (3.41) are fulfilled. The
integrand is then ∫

d3k

2
√

(~k + ~pi)2 + m2
i

R(k)
(k + pi + pj − pi)2 −m2

j

, (3.46)

where R(k) is the analytic rest of the integrand. We now change the integration momentum
to the momentum k′µ = Λµν(k + pi)ν in the rest frame of pj − pi and switch to spherical
coordinates with radial coordinate k′∫

k′2dk′dΩ

2
√

k′2 + m2
i

R(Λ−1k′ − pi)

m2
i −m2

j + 2p0
ji

√
k′2 + m2

i + p0
ji

2
. (3.47)

Here we used the Lorentz invariance of the integration measure d3k/2Ei. In this system
the peak lies on a surface of a sphere with radius ks given by (3.39). Expanding the
denominator around ks yields∫

k′2dk′dΩ

2
√

k′2 + m2
i

R(Λ−1k′ − pi)
2p0jiks√
k′2s+m2

i

(k′ − ks) +O ((k′ − ks)2)
. (3.48)

Taking the limit k′ → ks the residue of the integrand is

4The idea of adding a zero to the integrand which smooths the peaks is taken from [54]. In this section
we will give an elaborate construction of single fix functions and also derive fix functions in case of
overlapping peaks.
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Res(k′s) =
ks

4p0
ji

R(Λ−1k′s − pi). (3.49)

Here, k′s is a four-vector with the spatial part fixed onto the surface with radius ks:

k′s = (
√

k2
s + m2

i ,ks
~k′

|~k′|
). (3.50)

If we subtract

Res(k′s)
k′ − ks

(3.51)

from the integrand, this additional term does not add to the principal value of the integral
if it is integrated over a region with symmetrical borders around the singular point ks.
The peak of the original integrand vanishes.

Thus, we can define a fix function, which in the rest frame of pj − pi reads

Fix(k′, k′s) ≡
ksR(Λ−1k′s − pi)

4p0
ji

(
1

k′ − ks
− k′ − ks

c2

)
θ(k′−(ks−c))θ((ks+c)−k′), (3.52)

with θ(x) being the step function. Here, we also subtracted a term proportional to the
odd function (k′ − ks) to make the joined integrand continuous at the artificial borders
introduced by the theta functions. Since the integration over the radial coordinate k′ runs
from zero to infinity, the width c of this subtraction term can maximally be taken to be
the radius ks. In the numerical evaluation stable results were obtained, when we took the
width of the subtraction term equal to the infrared cutoff, c = ∆Es. We can also add a
term proportional to (k′− ks)3, to also make the derivative continuous at the borders. In
this case, the terms in the brackets in (3.52) are:(

1
k′ − ks

− 2
k′ − ks

c2
+

(k′ − ks)3

c4

)
. (3.53)

Transforming back to the original momentum of integration, we get

∫
dk′dΩFix(k′, k′s) =

∫
d3k′

k′2
Fix(k′, k′s) =

∫
‖Λ‖d3k
−−−−−→
Λ(k + p)

2 Fix(|
−−−−−→
Λ(k + p)|, k′s(

−−−−−→
Λ(k + p))),

(3.54)
where

−−−−−→
Λ(k + p) is the spatial part of the transformed four-vector and ‖Λ‖ the correspond-

ing Jacobian. Explicit formulae for these can be found in appendix A.3. In (3.54), we also
indicated the dependence of the fixed four-vector k′s on the spatial integration momentum
k′ in the second argument of the fix function.

When added to the integrand, the subtraction term (3.54) smooths the peak which arises
when a pole in the lower k0 half plane and a pole in the upper half plane fall together in
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3. Feynman Tree Theorem

the original loop integrand. Note that the double delta term in (3.15) including ∆l
i and

∆u
j is supported at k′ = ks and adds an imaginary part to the result.

Overlapping Peaks

If propagator Pi is cut, there might also exist a further propagator Pk fulfilling the con-
ditions (3.40) and (3.41) in addition to propagator Pj

5. If this is the case, another fix
function has to be added to the same integrand smoothing the second peak. In a general
inertial frame the peaks have the form of rotational ellipsoids. In principle, these two peaks
may overlap, leading to a line in the integration volume where both propagators Pj and
Pk can get singular at the same time. This is equivalent to a non-vanishing contribution of
a term with one ∆l

i, ∆u
j and ∆u

k in (3.15). In this case we have to add a further fix function.

The conditions for the occurrence of the two peaks, (3.40) and (3.41), as well as the
condition for an intersection of these peaks can be checked numerically. When cutting
propagator Pi in the rest frame of pj − pi, the radius of the sphere where propagator Pj
gets singular is given by (3.39). With this we can construct the on shell four-vector (3.50).
We now transform into the rest frame of pk − pi:

kµs
′ = Λµνksν , kµs = (

√
k2
s + m2

i ,ks
~k

|~k|
). (3.55)

Similar to (3.36), propagator Pk gets singular if

m2
i −m2

k + 2
√

p2
ki

p0
ki

|p0
ki|

√
k′2s + m2

i + p2
ki

!= 0, (3.56)

where k′s is the absolute value of the spatial part of the four-vector kµs
′ in (3.55) and p0

ki is
the non-transformed zero component of pki = pk − pi. Using equation (A.24) of appendix
A, we get

m2
i −m2

k + 2
√

p2
ki

p0
ki

|p0
ki|

γ(k0
s − ~β~ks) + p2

ki
!= 0. (3.57)

Using γ = |p0ki|√
p2ki

and equation (3.37) to replace k0
s we obtain:

~β~ks
!=

m2
i −m2

k + p2
ki

2p0
ki

+
m2
j −m2

i − p2
ji

2p0
ji

. (3.58)

This condition is fulfilled if the righthand side is between the bounds +|βks| and −|βks|.
If this is the case, we have to add a third fix function in the region where the two singu-
larities overlap. This will be shown in the following.

5The kinetic function λ(p2, m2
1, m

2
2) of two adjacent loop propagators can only be positive if p2 is off-shell

or the invariant mass of an unstable particle. It follows that the above possibility of two propagators
going on shell at the same time is given in 2→ n processes with n ≥ 4 or 2→ 2 processes with at least
two off-shell or instable external particles.
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3.2. Internal Singularities

For better readability, we are now changing to a more symbolic notation. Suppose the
integrand has the form:

f(r, θ, φ)
(r − a)(r′(r, θ, φ)− b)

, (3.59)

where r, θ, φ are spherical coordinates in the integration system and r′ a function of these
coordinates which is the radial coordinate in another coordinate frame. The function
f(r, θ, φ) represents the non-singular rest of the integrand. The two fix functions which
smooth the first and second peak separately are given by:

Fix1 =
f(a, θ, φ)

(r − a)(r′(a, θ, φ)− b)
, Fix2 =

f(r, θ, φ)
(r − a)

∣∣∣∣
r′=b

1
(r′(r, θ, φ)− b)

. (3.60)

Here, the first factor of the second fix function is fixed at r′ = b, which translates to a
relation of the coordinates r, θ, φ. The line over the factors in the denominator indicates
that the fix function is to be subtracted from the original integrand in a region symmetric
around the corresponding singularity. Since in the overlapping region, defined by the width
parameter c in the theta functions included in (3.60), two fix functions are subtracted from
the integrand, one could add another function which fixes the numerator to points on the
intersection line and projects each singular factor onto the singular surfaces of the other
factor:

Fix3 =
f(a, θ, φ)
(r − a)

∣∣∣∣∣
r′=b

1
(r′(a, θ, φ)− b)

. (3.61)

However, this third fix function does not cancel the remaining peaks but gives even rise
to new singularities. These occur at points where the opening angle of the two normals to
the singular surfaces is small. Here, the two factors in the denominator will become very
small if projected onto the surfaces. Being of second order in that small distances, this
peaks will not be canceled by the fix functions (3.60), where only one of the two factors
will be small at this point. Therefore, this naive approach cannot be used.

We therefore have to find an alternative way to fix the peaks. If only the second singularity
in (3.59) was present, the expression for the fixed integrand would read:

f(r, θ, φ)− f(r, θ, φ)|r′=b
(r′(r, θ, φ)− b)

. (3.62)

In the limit r′ → b, this is equivalent to the derivative of f with respect to r′ at r′ = b
and we can interpret (3.62) as a result of an operation on f similar to differentiation
without taking the limit r′ → b. If we assume f to be differentiable, no singularities are
introduced. Using the construction of the fix function introduced in the beginning of this
section, expression (3.62) is continuous and differentiable. We can therefore again operate
on (3.62) to get the difference equation with respect to r:
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3. Feynman Tree Theorem

f(r, θ, φ)
(r − a)(r′(r, θ, φ)− b)

−
f(r, θ, φ)|r′=b

(r − a)(r′(r, θ, φ)− b)

− f(a, θ, φ)
(r − a)(r′(a, θ, φ)− b)

+
f(a, θ, φ)|r′=b

(r − a)(r′(a, θ, φ)− b)
. (3.63)

This expression is again continuous and does not have any peaks. The last three terms
can therefore be interpreted as fix function to the original integrand. However, the second
and forth term are not zero anymore. The factor (r − a) is not fixed to a constant r′

and gives asymmetric contributions if the fix function is subtracted in a region symmetric
around r′ = b. To get proper results, the region where these fix functions are used should
therefore be small.

In appendix C, we present the calculation of a simple three point function which develops
overlapping peaks due to unphysical kinematic parameters. Here, we use (3.63) to con-
struct the fix functions. We examine the dependence of the results on the width of the fix
functions and the efficiency of the numerical integration. A satisfactory trade-off between
accuracy and efficiency can be found. Here, also terms in (3.15) with three ∆ contribute
to the final result. We also give their explicit calculation.

The above analysis extends to any number of propagators which get singular simulta-
neously. We can always start with a non-singular function f and apply the difference
equation (3.62), transform into another frame and again using (3.62) with respect to an-
other variable and so on. However, an accurate estimation of the inflicted error by adding
these fix function is still missing.

Higher Order Fix Functions

The subtraction terms (2.40) added by the renormalization scheme to cancel the UV
divergent terms sometimes contain squared propagators. Here, when one performs the k0

integration, one has to take the derivative of the analytic rest of the integrand with respect
to k0 before replacing it according to the delta function obtained from the cut propagator.
It can happen that another propagator gets singular and the resulting peak would be of
second order. In this case one can construct a further fix function. The relevant term of
the integrand in the rest frame, similar to (3.47), is

I2 =
k′2

2
√

k′2 + m2
i

R(Λ−1k′ − pi)(
m2
i −m2

j + 2p0
ji

√
k′2 + m2

i + p0
ji

2
)2 . (3.64)

Expanding numerator and denominator separately around k′ − ks we get

I2 =
(k2
s + m2

i )
3
2

8p0
ji

2(k′ − ks)2
ksR(ks) + (2R(ks) + ksR′(ks))(k′ − ks) +O((k′ − ks)2)

ks(ks + m2
i ) + (k2

s + 2m2
i )(k′ − ks) +O((k′ − ks)2)

, (3.65)
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3.3. Mass Singularities

where we wrote R(ks) for R(Λ−1k′s− pi). Multiplying by (k′−ks)2 we get the coefficients
of the poles in the Laurent series by taking the limit k′ → ks or taking the derivative with
respect to k′ and then taking the limit:

I2 =
r−2

(k′ − ks)2
+

r−1

(k′ − ks)
+ . . . , (3.66)

r−2 =

√
k2
s + m2

iR(ks)

8p0
ji

2 , (3.67)

r−1 =
ksR(ks) + (k2

s + m2
i )R

′(ks)

8p0
ji

2
√

k2
s + m2

i

. (3.68)

For the first order peak we can construct a fix function equivalent to (3.52) with the new
residue r−1. For the second order pole we define the fix function as:

Fix2(k′, k′s) ≡ r−2

(
1

(k′ − ks)2
+

2
c2
− 3(k′ − ks)2

c4

)
Θ(k′−(ks−c))Θ((ks+c)−k′). (3.69)

Here, the expression in the brackets results from taking the derivative of the correspond-
ing expression of an already fixed first order function with respect to k. Since we defined
the first order fix function in (3.53) such that after addition to the singular function the
resulting expression is differentiable, also the derivative does not develop a singularity.
Transforming the two fix functions back to the initial momentum frame and subtracting
them from the integrand removes the peaks. Note that applying the difference equation
(3.62) twice at the same point in the same coordinate frame would have lead to the same
result.

When all peaks discussed above are removed from the integrand with the help of the fix
functions introduced in the last section, there are still peaks left corresponding to virtual
infrared and collinear singularities. We will discuss these in the next section.

3.3. Mass Singularities

Up to now we examined singularities of Feynman diagrams which were dependent on di-
rections of external momenta and lead to the threshold singularities discussed above. A
further set of solutions to the Landau equations (3.21) and (3.22) are the so called mass
singularities which occur independently of the external momenta, cf. [33]. These can lead
to divergences of the diagrams.

As discussed in [4], for non-vanishing κi in (3.21) and (3.22) only up to two neighboring
propagators can go on-shell simultaneously, independent of directions of external momenta.
Starting with one non-zero κi, equation (3.22) implies qi = 0 and thus mi = 0. This
singularity can then be enhanced by singularities of other propagators Pj with κj = 0.

41



3. Feynman Tree Theorem

Not allowing for scalar products of different external momenta, this can only occur for the
two adjacent propagators Pi−1 and Pi+1 leading to the divergent infrared singularity:

mi = 0, p2
i+1 = m2

i+1, p2
i−1 = m2

i−1. (3.70)

Thus, we encounter an infrared divergence when a massless particle is exchanged between
two external on-shell particles. This singularity can be suppressed by a zero in the nu-
merator at the same point in the integration region, which is the case for the exchange of
massless fermions. We will investigate the IR divergences in the next subsection.

If we allow for two non-vanishing κi in the Landau equations, we have the conditions:

(q2
i −m2

i )
!= 0, (q2

i+1 −m2
i+1)

!= 0, (κiqi + κi+1qi+1)
!= 0. (3.71)

It follows that the two momenta qi and qi+1 are proportional to each other. This is a
collinear singularity and, after analytic evaluation of the integrals, leads to terms with a
logarithm of the masses mi or mi+1. If these masses are small compared to other kinematic
parameters of the process, these singularities are enhanced. The line attached to the vertex
between the two singular propagators has momentum squared:

(qi+1 − qi)2 = (mi+1 −mi)2. (3.72)

Thus, it can be an external on-shell particle with one of the two masses and the second
mass being zero, which for example is the case in QED when a photon line in a loop is
collinear to the momentum of the external particle it is attached to. Analytically, these
singular terms drop out when the real emission of collinear photons are added to the pro-
cess. In section 3.3.3, we will give a detailed study of the collinear peaks.

The particle connected to the two singular propagators can also be off-shell. In this case
the momentum (3.72) marks the onset of a branch cut from where on the two particles
described by the propagators Pi and Pi+1 could go on-shell. This leads to an imaginary
or absorptive part of the amplitude. As mentioned before in section 3.2.1, the onset point
of this cut is a Coulomb singularity, where higher order contributions should also be in-
cluded by resummation. The peaks arising from points somewhere on the branch cut can
be eliminated by the fix function introduced in the last section.

In the following we will examine the cancellation of infrared divergences between loop
and real emission diagrams and give a definite construction of the counterterms from the
BPHZ mechanism.

3.3.1. Infrared Divergences

The infrared divergent part of a loop arises from massless propagators connecting two
external on-shell particles, as was described above. As an example, consider the photon
exchange of two charged incoming fermions depicted in figure 3.2. Before cutting any
propagator the relevant part of the integrand reads:

42



3.3. Mass Singularities

p1

p2

p1

p2

p1

p2

p1

p2

k→0
←→

Figure 3.2: Infrared divergent contribution of a loop-born interference term: In the limit
|~k| → 0, the loop integral with the cut photon line diverges. This divergence is compensated
by the product of the two corresponding real emission diagrams.

d4k

(2π)4
. . . (k/ + p/1 + m1)γµuλ(p1)

k2 + 2kp1
· −igµν

k2
· . . . (−k/ + p/2 + m2)γνuκ(p2)

k2 − 2kp2
, (3.73)

where for better readability we shifted the integration momentum such that it is equivalent
to the momentum flowing through the photon line. Cutting this line, we get

d3k

(2π)32|~k|

∑
σ

. . . (k/ + p/1 + m1)γµuλ(p1)
2kp1

·εµ(k, σ)ε∗ν(k;σ)· . . . (−k/ + p/2 + m2)γνuκ(p2)
−2kp2

∣∣∣∣
k0=|~k|
(3.74)

which is logarithmically divergent in the limit |~k| → 0. This loop amplitude is multiplied
with a Born amplitude MBorn

†. Neglecting the term k/ in the numerator we can shift the
incoming photon line on the upper leg to the Born matrix element, whose relevant part is
just the Dirac wave function ūλ of this particle connected to a γ matrix:

. . . (p/1 + m1)γµuλ(p1)ūλ(p1)γρ . . .

2kp1
·εµ(k, σ)→ . . . uλ(p1)ūλ(p1)γµ(p/1 + m1)γρ . . .

2kp1
·εµ(k, σ).

(3.75)
Here, we used the contraction identity (p/ + m)γµu(p) = 2pµu(p). Taking the hermitian
conjugate of the right part and adding another k/ term in the numerator, we get

· · · ūλ(p1)γµ(p/1 + m1)γρ . . .

2kp1
· εµ(k, σ)→ . . . γρ(−k/ + p/1 + m1)γµuλ(p1)

2kp1
ε∗µ(k, σ). (3.76)

This corresponds to the Born diagram with an additional outgoing on-shell photon at-
tached to one external line times an overall factor −1. This comes from the propagator
after the emission of the photon. In the real emission graph, the denominator is given by

(k − p1)2 −m2 = −2kp1. (3.77)

After the above transformations, the original loop becomes also a born graph with photon
emitted from particle 2. Thus, in the limit |~k| → 0 the divergent piece of the one loop
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contribution is exactly canceled by the product of two real emission diagrams. A detailed
analysis of infrared phenomena can be found in [59].

If we obtain the two real emission diagrams from the loop diagram in the way shown
above, momentum conservation is violated in both graphs at some vertex. This happens,
because the initial delta function conserving the momenta of the external particles in the
initial loop diagram is still present in the real emission diagrams. The additional particle
violates momentum conservation. Although the integration measure is the same in both
cases, the true real emission diagrams are accompanied by a delta function δ(P−

∑
qf−qγ)

conserving overall momentum.

Momentum conservation at some vertices is also violated in the soft photon approxima-
tion, e.g. cf [21, 59]. Here, following the same reasoning as above, the contribution of
real emission diagrams in the soft limit is approximated by the born amplitude times a
prefactor. This factor can be evaluated analytically when regulated by a photon mass.
Adding this result to the analytic results of loop graphs, the divergent terms, logarithms
of the photon mass, cancel.

If we want to evaluate the soft real emission diagrams and the loop corrections under the
same integral, we need a method of implementing the projection of the, say 2 → n + γ
graphs onto the 2→ n graphs. Following the soft photon approximation, we could add the
product of two real emission diagrams with momentum violation at the first vertex after
the emission of the massless particle. However, adding the product of the two diagrams
will only cancel the infrared divergence in the product of the loop graph with the born
amplitude.

We intend to apply the Feynman Tree Theorem to single amplitudes and compute the
interference with the born terms after summation of all contributing amplitudes. Apply-
ing the Tree Theorem to products of loop and Born amplitudes would lead to a drastic
increase of the number of terms, if a process with several Born terms is considered.

We therefore would like to have a prescription of incorporating the effect of real emission
diagrams in single amplitudes. A rather drastic step would be to set the term with the
cut propagator associated with the massless particles to zero for |~k| < ∆Es. In a sense
this is close to what is done in the soft photon approximation, where only the singularity
in the denominator is contributing and all further dependences on the momentum of the
massless particle are neglected [21]. Setting the cut loop integral zero in the soft region
transfers this method of approximation also to this amplitude. A more elegant way would
be to change the numerator of the propagator adjacent to the incoming massless particle
to

p/ + k/ + m→ θ(|~k| −∆Es)(p/ + m) + k/, (3.78)

This mimics the addition of a real emission diagram with k dependence only in the sin-
gular propagator times a real emission diagram where the momentum k is kept through
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almost all lines of the diagram. Since in our calculations, cf. chapters 5 and 6, we used a
rather small value for the soft energy cutoff ∆Es of about 1% of the center of mass energy√

s, the error resulting from the proposed methods as well as the differences between their
contributions to the final result are negligible. In the results presented in chapter 5, we
set the term of cut photons to zero below ∆Es. A comparison with the FE Y NAR T S result
shows no deviation.

There is a one to one correspondence between the interference terms of Born amplitudes
with loop diagrams with a cut massless particle and the product of two diagrams with
real emission of this particle. This means that for any virtual infrared divergence in an
unrenormalized loop we have a product of two real emission diagrams with emission of
this particle from external legs. If these legs are not identical, the product of the two
real emission diagrams comes with a factor 2, which is the case for the interference term
of the loop corrections with the Born matrix elements as well. However, there are still
infrared divergent terms left. On the one hand those which correspond to the square of one
real emission diagram and therefore would correspond to the self-energy correction to an
external particle, which we set to zero in the on-shell renormalization scheme. On the other
hand, further infrared divergent contributions are coming from subtraction diagrams. In
the following section we will argue that by a certain choice of the subtraction diagrams all
infrared divergences cancel.

3.3.2. UV Subtraction Terms

In QED, there are three primitively ultraviolet divergent graphs Γ, cf. section 2.4. These
are the photon and electron self-energy and the vertex correction. The renormalized one
loop photon self-energy is given in appendix B. It is infrared finite. In the following we
will argue that the infrared divergent terms of the square of real emission diagrams and
of the electron self-energy will be compensated by the subtraction diagrams of the vertex
correction.

Consider an amplitude M0 with an incoming on-shell electron with momentum p and
mass m. It is attached to a vertex v. If we radiate off a photon from the electron line
and square the amplitude, the infrared divergent term can be obtained from soft photon
approximation and reads:

Ire = −e2|M0|2 ·
∆Es∫

d3k

(2π)32|~k|
m2

(pk)2
. (3.79)

The radiative correction to the vertex v is infrared divergent if the outgoing fermion line
is on-shell. As shown in section 3.3.1, this divergence is canceled by the product of two
real emission diagrams with the photon attached to the incoming and outgoing fermion
line, respectively. As argued in section 2.4, to relate experimental results with theoretical
calculations we subtract the vertex correction at the Thomson limit where the momentum
of the photon attached to the vertex v is zero and the fermion going through the vertex
is on-shell. If we split the subtraction term in two pieces, where in one term the on-shell
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fermion line through the vertex v is aligned with the incoming electron and in the second
term aligned with the outgoing fermion, the loop contribution of one of these terms is

1
2
(ie2)

∫
d4k

(2π)4
· · · γα(p/ + k/ + m)γµ(p/ + k/ + m)γα

k2(k2 + 2pk)2
· · · , (3.80)

where we explicitly pulled out the couplings −ie from the γα and the factors i,−i coming
from the propagators. As can be seen from (3.80), the ultraviolet contribution of the
subtraction terms are independent from the external momenta of the vertex correction.
Thus, the subtraction graph can be split in parts with different momentum assignments
without harming the cancellation of the UV divergence.

Cutting the photon line of the loop with momentum k and neglecting terms proportional
to k in the numerator we get:

e2

2

∫
d3k

(2π)32|~k|
· · · −4mpµ

(2pk)2
· · · . (3.81)

If we straighten the fermion line such that throughout the graph it has the on-shell mo-
mentum p, this fermion line can be written as a chain of products of Dirac wave functions
and γ-matrices:

. . . ū(p)γκu(p)ū(p)γλu(p)ū(p)pµu(p)ū(p) . . . (3.82)

where at the place of the former vertex correction only a factor proportional to pµ remains.
Making use of the Gordon identity

ū(p)pµu(p) = mū(p)γµu(p), (3.83)

the infrared divergent term can be factored out of the amplitude and is a Lorentz scalar:

−e2

2

∫
d3k

(2π)32|~k|
4m2

(2pk)2
· M′

0. (3.84)

Here, M′
0 is the matrix element M0 with all lines attached to the fermion line bearing

zero momentum. Since we factored out the infrared divergent part, we can divide by the
amplitude M′

0 and multiply by M0. In explicit calculations we therefore subtract the
amplitude with the vertex correction holding the fermion line straight and neglecting the
denominator of the rest of the amplitude which does not belong to the loop. We then
divide by the same amplitude without vertex correction and multiply by the basic ampli-
tude M0. Doing so, we apply the correct subtraction terms to the unrenormalized loop
graph in the sense that in the limit, where the momentum of the photon attached to v
vanishes, the one loop graph and the subtraction graphs cancel each other. This leaves the
born graph, which just contains the electric charge at the vertex, ieγµ, as required by the
renormalization conditions. Since the ultraviolet contributions of the subtraction graphs
are independent of the external momenta ab initio, this procedure does not invalidate the
UV cancellation.
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The resulting infrared divergent term of the interference with the amplitude M0, which
comes with a factor 2 in the final cross section, becomes:

Iv1 = −e2|M0|2 ·
∫

d3k

(2π)32|~k|
m2

(pk)2
, (3.85)

which exactly cancels the above infrared divergent term (3.79) of the soft real emission
when subtracted from the unrenormalized vertex correction. The second half of the sub-
traction term Iv2 is equivalent to Iv1 with p replaced by the on-shell momentum q̄ of the
outgoing fermion. If this is an external particle, the infrared divergence is canceled by
the corresponding real emission diagrams and we are finished. This case is summarized
in figure 3.3. On the left hand side we depicted the renormalized vertex correction. The
coefficients are given by ci = M0M

′−1
0 (pi). When the photon lines of the loops are cut,

the infrared divergences arising in the interference term are canceled by the real emission
diagrams shown on the right hand side.

If the outgoing fermion belongs to an internal line, we will show in the following that the
infrared divergent part is canceled by the subtraction terms to the self-energy correction
to this internal line.

As was shown in section 2.4, in the case of an self-energy correction to an internal charged
fermion line, we need two subtraction terms to cancel the UV divergence. We subtract
the same graph at an on-shell momentum q̄ aligned to the original momentum q and the
derivative of the self-energy with respect to q at q̄. The relevant part of this diagram is
given by the electron self-energy

−e2 ·
∫

d4k

(2π)4
· · · γα(q/ + k/ + m)γα

k2((k + q)2 −m2)
· · · . (3.86)

Replacing q by q̄ does not even lead to an infrared singular term, since the singularity in
the denominator is canceled by the integration measure. Making use of the identity

∂

∂qµ
i

(k/ + q/−m)
=

i

(k/ + q/−m)
iγµ

i

(k/ + q/−m)
, (3.87)

the second subtraction term can simply be obtained by straightening the fermion line
through the self-energy part, insertion of a Dirac gamma matrix γµ in the fermion line
and multiplying by (q − q̄)µ:

−e2 ·
∫

d4k

(2π)4
· · · γα(q̄/ + k/ + m)(q/− q̄/)(q̄/ + k/ + m)γα

k2((k + q̄)2 −m2)2
· · · . (3.88)

Cutting the photon line and simplifying the numerator, the divergent part is

−ie2 ·
∫

d3k

(2π)32|~k|
qq̄ −m2

(q̄k)2
· · · (q̄/− 2m) · · · . (3.89)

We can again interpret the fermion line as a chain of Dirac wave functions. Thus, the
factor (q̄/− 2m) simplifies to (−m). With the use of the Gordon identity (3.83), the term
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Figure 3.3: UV-IR Subtraction Terms: The vertex correction is renormalized by the sub-
traction of two graphs with zero incoming photon momentum. When the photon propagator
of the loops is cut, the arising infrared divergences in the interference term are compensated
by the product of real emission diagrams depicted on the right hand side.

qq̄ −m2 = (q − q̄)µq̄µ can be seen as m timesM′
0, the amplitude with an insertion of iγµ

times (q − q̄)µ at the place of the original self-energy correction. Like in the case of the
vertex correction we then have a Lorentz scalar factored out of the amplitude M′

0 with
a straight fermion line. Dividing by this amplitude, multiplying the Born amplitude M0

and again with 2M0 to calculate the interference term contributing to the cross section,
the infrared divergent part of the subtraction terms to the electron self-energy is

IΣ = 2e2|M0|2 ·
∫

d3k

(2π)32|~k|
m2

(q̄k)2
. (3.90)

When subtracted from the unrenormalized self-energy correction, half of the infrared di-
vergent term cancels the contribution coming form the subtraction graph of the vertex
correction Iv2 , obtained from (3.85) by replacing p with q̄. Following the fermion line
further we again come to a vertex and its correction terms will cancel the second half of
the infrared divergent term of the subtraction graphs of electron self-energy. This goes on
until the last vertex, where the second infrared contribution of its subtraction graphs will
then be compensated by the squared amplitude of the real emission of a photon of the
external line following this vertex.

This completes our renormalization prescription, which trivially extends to processes with
multiple born graphs. We constructed subtraction graphs which cancel all possible ultra-
violet divergences and give further infrared divergent contributions such that in the sum
of all graphs contributing to a given process the infrared divergences cancel. Furthermore
the renormalized vertex functions obey the renormalization conditions (2.31-2.34) such
that the experimentally measured observables can directly be related to the theoretical
predictions without any further analytic correction.

We showed that in QED we have a complete prescription to incorporate the on-shell
renormalization scheme and cancel all infrared and ultraviolet divergences. Although
not rigorously proven, this method should also be applicable to the electroweak standard
model. Subtraction graphs to only ultraviolet divergent vertices can be found by the in-
troduced BPHZ mechanism. In case of a photonic correction, where infrared divergences
are expected, the proposed method of this section should also lead to finite results. Specif-
ically, we checked this for a eWν vertex, where the infrared divergence coming from the
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real emission of the charged external particles is canceled by the subtraction terms if the
momentum of the W-boson is aligned with the electron momentum: pW = MW

me
pe. Then

the mass factors out and is canceled by terms in the numerator coming from the WWA
coupling and we get a squared propagator leading to the same contribution as in the real
emission diagrams.

3.3.3. Collinear Peaks

Consider the part of a loop graph depicted in figure 3.4. In the following we will examine
the peak structure of the collinear peaks. We will see that both, terms with a cut fermion
and a cut photon in (3.15) can develop a collinear peak. In the sum, these cancel except
in parts of the phase space, where only one of the peaks is developed. We will also show
explicitly the occurrence of several of the singularities discussed in the previous sections.
The interesting part of the denominator reads:[

(k + pa)2 −m2
1

] [
(k + pb)2 −m2

2

] [
(k + pc)2

]
, (3.91)

where

pa − pc = ap1, (3.92)
pb − pc = −bp2, (3.93)

p2
1 = m2

1, (3.94)
p2
2 = m2

2, (3.95)

and (a, b) are +1 for incoming and −1 for outgoing particles, respectively. p1 and p2 are
external on-shell particles with p0

i > 0.

Threshold Singularity

We begin with the internal singularity which might occur when one of the fermion propa-
gators is cut and the second gets singular at a hypersurface in the integration volume. In
section 3.2.1, we stated the two conditions 3.40 and 3.41 which have to be fulfilled in this
case. For the invariant square of pji = pj − pi we get:

(pa − pb)2 = (ap1 + pc − pc + bp2)2, (3.96)
= m2

1 + m2
2 + 2abp1p2. (3.97)

The scalar product of two on-shell four-vectors is always equal or bigger than the product
of the two masses:

p1p2 ≥ m1m2. (3.98)

With this we get:

p2
ji = m2

1 + m2
2 + 2abp1p2

{
> (m1 + m2)2 for (ab) = (ii, oo)
< (m1 −m2)2 for (ab) = (io, oi)

(3.99)
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k + pc

k + pbk + pa

p1 p2

A B

C

Figure 3.4: Typical example for the occurrence of infrared, collinear and threshold singular-
ities. p1 and p2 may be incoming or outgoing on-shell particles.

The kinetic function λ is therefore strictly positive and in the case of one incoming and
one outgoing particle if there are singularities, they cancel each other as shown in section
3.2.1. This corresponds to the region II in figure 3.1. The result also extends to the case
p2
ji < 0 (I). For positive p2

ji, we can find a rest frame of pj − pi and replace p2
ji with p0

ji
2

in (3.99).

If both particles are incoming or outgoing the integral develops an imaginary part (IV).
Note that (pa − pb)0 is negative for two outgoing particles and condition (3.40) is fulfilled
and vice versa (pb − pa)0 is negative for two incoming particles. This means that the
singularity will show up when we cut the propagator with the loop momentum flowing in
the same direction as the four momentum of the adjacent external particle. In the upper
example of figure 3.4 this is propagator A for two incoming and propagator B for two
outgoing particles.

In the rest frame of the two momenta ~pa = ~pb, which is also the rest frame of the two
external particles, the peak is given by (3.39). For equal masses this simplifies to:

ks = p, (3.100)

where p is the absolute value of the three momentum of the external particles in this rest
frame.

In the following we will investigate in which regions the terms of the integrand become
large due to virtual collinear singularities.

Collinear Structure

Cutting the photon propagator, the denominator of propagator A reads:
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(k + pa)2 −m2
1 = (k + pc + pa − pc)2 −m2

1,

= 2ap1(k + pc), (3.101)

= 2a

[
p0
1

√
(~k + ~pc)2 − ~p1(~k + ~pc)

]
.

This becomes zero iff ~k = −~pc. Since it is the product of two on-shell four-vectors with
positive zero component it is always greater than zero except for the vanishing of one
of the four-vectors. In this limit we have the expected IR-divergence. Its occurrence is
independent of a and is equally valid for incoming and outgoing particles. Propagator
B has the same structure. It gets singular iff the momentum of the photon in the loop
vanishes: ~k = −~pc. Together with the phase space factor 1

2 |~k + ~pc|−1, which remains after
cutting the photon propagator we have a singularity proportional to |~k + ~pc|−3 yielding a
logarithmic divergence.

The peak structure in (3.101) is not symmetric around ~k = −~pc. It is the endpoint of a
collinear peak. If the momentum of the photon is in the direction of the external particle,
the relevant part of the integrand gets proportional to the squared mass of the fermion and
therefore very small for high energy reactions involving light fermions. We parameterize
the loop momentum by ~k + ~pc = xa~p1, getting:

AC
coll1 = 2a

[√
p2

1 + m2
1p1|x| − p2

1xa

]
, (3.102)

where AC
coll1

stands for the denominator of propagator A along the direction of ~p1 when
propagator C is cut. This is of O(m2

1) if ax > 0, when the momentum of the photon
propagator is pointing in the same direction as the momentum of the external particle. In
this case the part of the integrand which develops a peak is:

2
√

(~k + ~pc)2 AC
coll1 = ... = 2x2ap1 ·m2

1 +O(m4
1), for ax > 0. (3.103)

We can perform the same analysis on the photon propagator when propagator A is cut.

CA
coll1 = (k + pc + pa − pa)2,

= 2m2
1 − 2ap1(k + pa),

= ...

= 2m2
1 − 2a

√
p2

1 + m2
1

√
(x + 1)2p2

1 + m2
1 + p2

1(x + 1). (3.104)

This is of O(m2
1) if a(x+1) = |x+1|. In the regions where both conditions are fulfilled the

two singularities cancel. The singular part, when propagator A is cut, is given by (3.104)
and the phase space factor:
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2
√

(xa~p1 + a~p1)2 + m2
1 CA

coll1 = ... = −2x2ap1 ·m2
1 +O(m4

1), for a(x + 1) = |x + 1|.
(3.105)

The analytic rests of the integrands are multiplied by a delta function setting the momen-
tum of the cut propagator on-shell. The resulting integrands of the two cuts differ only
by terms of O(m2

1). Setting s = 2x2ap1 and writing r for the non-singular rest of one of
the integrand, we have:

r

sm2
1 +O(m4

1)
+

r(1 +O(m2
1))

−sm2
1 +O(m4

1)
=

r · O(m4
1)

−s2m4
1 +O(m6

1)
= O(m0

1). (3.106)

Thus, the former enhancement of the integrand due to the factor m−2 vanishes if the two
conditions are fulfilled. The region where only one condition is fulfilled is given by

−1 < x < 0. (3.107)

Therefore, the peak arises on the line ~k + ~pc = (0,−a~p1).

The form of propagator B along the collinear peak is also of interest. If the photon
propagator is cut this contribution is, in the limit of zero masses,

BC
coll1 = −2b (p1p2|ax| − ax~p1~p2) +O(m2

1,m
2
2). (3.108)

In the region where the integrand develops a peak, ax > 0, this becomes:

BC
coll1 = −2abx (p1p2 − ~p1~p2) +O(m2

1,m
2
2). (3.109)

If propagator A is cut, we have:

BA
coll1 = 2p2

1 (1 + x− a|1 + x|) + 2abx~p1~p2 + 2bp1p2(a− |1 + x|) +O(m2
1,m

2
2), (3.110)

which, in the region where a(x + 1) = |x + 1|, simplifies again to

BA
coll1 = −2abx (p1p2 − ~p1~p2) +O(m2

1,m
2
2). (3.111)

Note that this contribution is odd in x. This means, if a = 1 for an incoming particle,
x = 0 is in the allowed range and the peak changes sign at this point. Thus, we do not
have a divergent term as could be inferred from the x3 factor. In the case of the cut
photon line the collinear peak starts at x = 0 and goes either in the direction of ~p1 for an
incoming particle or −~p1 for an outgoing particle.

In the case of the second collinear peak along the direction of p2, the above analysis repeats
if we interchange x↔ y, 1↔ 2, pa ↔ pb, and a↔ −b. We summarized this in table 3.1.
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Singular Factor Photon Cut Fermion Cut Range of Peak

Peak 1 4abx3~p2
1m

2
1 (|~p1||~p2| − ~p1~p2) ax > 0 a(x + 1) = |x + 1| ~k + ~pc = (0,−a~p1)

Peak 2 4abx3~p2
2m

2
2 (|~p1||~p2| − ~p1~p2) by < 0 −b(y + 1) = |y + 1| ~k + ~pc = (0, b~p2)

Table 3.1: Contributions to the collinear peaks from the cuts of the photon line and the
fermion lines, respectively.

The point with x = 0 or y = 0, is critical for the numerical evaluation. In case of the
photon cut we obtain the infrared divergence discussed in section 3.3.1. This was canceled
by the addition of real emission diagrams. However, if we do so we might get a further
rapidly varying term from the fermion cuts in this region. In the above analysis this would
be the case for a = 1 and b = −1, whenever the loop momentum is in the same direction
as the external particle for a given propagator. Originally, the two enhanced contributions
coming from the photon cut and the fermion cut canceled each other for x, y < 0. Adding
the real emission graphs or cutting out the contributions from the photon cut at k < ∆Es

leaves the enhanced contribution from the fermion cut. Then, the peak changes sign at
x = 0 or y = 0, respectively. Sometimes, these peaks can be avoided by changing the sign
of the loop momentum. Then, at the infrared pole the collinear peak only stems from
the photon cut and subtraction methods for the IR divergence can be applied without
concern. But in many cases this problem is just shifted to another infrared pole of the
original loop.

If it is unavoidable that the collinear peak gets a contribution from the fermion cut at
the infrared pole, as discussed in section 3.3.1 we can again argue that the main contri-
bution in this region is given by the peak. Since this is an odd function in x or y this
main contribution vanishes if integrated over a small region k < ∆Es. Therefore, the
error would be small if we again cut this region out of the integrand. If the origin of
the three-dimensional integration momentum would coincide with the infrared point and
we aligned the z-axis with the collinear peak and evaluated the integrand in spherical
coordinates, the peak would be suppressed by the integration measure and the integrand
could be evaluated rather easily. In general, there are several collinear peaks and infrared
poles in the integrand. A method to evaluate such integrands which still makes use of
the cancellation of peaks by the integral measure is the multi channel approach. We will
discuss this in the next chapter.

In the case of two incoming or two outgoing particles, it often happens that ~p1 = −~p2, as is
the case for 2→ n scattering evaluated in the center of mass system. Here, the two peaks
coincide. Furthermore, a threshold singularity arises around the endpoint of the collinear
peak at x = −1 or y = −1 with radius given by (3.39) or by ks = p1 if the two masses
coincide. In this case we add a fix function to the integrand. However, at the infrared
point x = 0 this function does not smooth the peak structure, because here, the collinear
peak and the peak from the threshold singularity meet. Again we can cut the integrand
around this point.
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The endpoints x = −1 and y = −1 can be the starting points of further collinear peaks
if the corresponding propagators are again connected to another external on-shell particle
and a massless boson. From this, one can deduce the peak structure of a Feynman graph.
We will do this for several box and triangle graphs in QED, when we discuss Bhabha
scattering in chapter 5.

Summary

This concludes the body of this thesis. In the preceding chapter, we presented a method
to compute loop integrals from a sum of tree graphs. We gave the construction of sub-
traction terms from the BPHZ mechanism to cancel ultraviolet divergences and showed
the cancellation of infrared divergences when real emission graphs are added to the tree
graphs originating from cutting a photon propagator in the original loop diagram. We
studied the peak structure from threshold singularities and gave the construction of fix
functions to smooth these peaks.

The resulting integrand will in general still have a peak structure due to collinear singular-
ities. In the next section, we will review different integration algorithms, which can adapt
to these peaks and allow for an efficient numerical evaluation.

In chapters 5 and 6, we will, as a proof of principle, apply the presented method to cross
section integration and event generation for NLO Bhabha scattering. This will include
box graphs as the most complicated loop integrals. However, as can be seen from the
preceding chapter, this method is in general not restricted to any number of external legs.
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After creation of the matrix element in the form discussed in the previous chapter, the
integration over the loop momentum has to be performed. The aim is to find an algo-
rithm such that the integration of the loop momentum and of the phase space of the final
states can be performed in parallel. Thus, instead of the (3n− 4)-dimensional integral of
the squared Born level matrix element, we have a (3n− 1)-dimensional integration of the
interference term of the one loop correction with the Born amplitude. The final goal is to
implement the one loop corrections into a Monte Carlo event generator such that for a set
of possible final state momenta also a loop momentum is drawn and the matrix element
evaluated. This will be presented in chapter 6.

In the following, we will give a brief introduction to Monte Carlo integration techniques,
which is mainly based on [60,61]. We will also discuss the decomposition of an n-particle
phase space and its parameterization for an efficient integration. The integration over
the loop momentum of the matrix element obtained by the Feynman Tree Theorem is
essentially a phase space integration of one additional particle in the initial and final state.
Therefore, the methods presented in this chapter will also apply for the loop integration.

4.1. Monte Carlo Integration

We want to give an estimate of the d-dimensional integral:

I =
∫

duf(u), (4.1)

where u = (u1, . . . , ud). For simplicity we assume u to lie in the unit hypercube, which can
always be accomplished by a suitable mapping or rescaling of the integration variables:

u ∈ [0, 1]d. (4.2)

In usual high energy applications the integral (4.1) cannot be evaluated analytically. The
integrand f(u) often includes experimental cut functions and acceptances for the external
momenta and the phase space measure also gets a complex structure when going to higher
dimensions. In one dimension there exist many algorithms to numerically approximate I
with errors proportional to N−p, where N is the number of samples and p a low integer
dependent on the chosen algorithm. Applying these methods in every dimension to a
d-dimensional integral, the error then becomes proportional to N− p

d and the convergence
gets poor for higher d.

If we evaluate the integrand f(u) of (4.1) at N uniformly distributed random values of u,
we get the estimate:

〈f〉 =
1
N

N∑
n=1

f(un). (4.3)
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In the limit of N →∞ this converges to the value I. The variance of f(u) is given by:

σ2(f) =
∫

du (f(u)− I)2 . (4.4)

The variance of the Monte Carlo result can then be estimated by:

∫ ( N∏
n=1

dun

)(
1
N

N∑
n=1

f(un)− I

)2

=
σ2(f)

N
. (4.5)

Thus, the error of the Monte Carlo estimate is proportional to N− 1
2 and independent of

the dimension d. Therefore, from a certain amount of dimensions on, the Monte Carlo
method is preferable to most other algorithms. Since we do not know the underlying
distribution f(u), in practical applications the sample variance is used:

s2(f) =
1

N − 1
(
〈f2〉 − 〈f〉2

)
. (4.6)

The factor of (N − 1)−1 instead of N−1 corrects the bias coming from the fact that the
mean and the variance are estimated from the same sample. The estimate of the sample
variance is equal to the variance of the underlying distribution. In typical high energy
processes integrands vary over many order of magnitudes mainly due to singular and
collinear peaks. It becomes necessary to increase the performance of the algorithm by
reducing the variance. In the following, we will discuss two widely used techniques for this
reduction.

4.1.1. Stratified Sampling

The idea of stratified sampling is to split the integration volume into k sub-volumes and
perform a Monte Carlo integration in each sub-volume with Ni samples. The expectation
value for the integral I is just the sum of the expectation values of the integrand in the
sub-volumes times the size of the volume:

〈f〉 =
∑
i

Vi〈f〉i. (4.7)

However, the variance is now given by:

σ2 =
∑
i

V 2
i

σ2
i

Ni
, (4.8)

where σ2
i is the variance of the sampled sub-volume i. It then turns out that the total

variance is minimized if the number of samples Ni in sub-volume i is proportional to
σi. The number of sub-volumes rises exponentially with the number of dimensions. For
multi-dimensional integrals this method can therefore get inefficient in terms of computing
time.
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4.1. Monte Carlo Integration

4.1.2. Importance Sampling

Changing the integration measure du to a new one dG(u), with the corresponding Jacobian

g(u) =
ddG(u)

du1 . . . dun
, (4.9)

we get for the integral (4.1):

I =
∫

dG(u)
f(u)
g(u)

. (4.10)

If we use a positive definite function g(u) normalized to unity, it can be interpreted as a
probability density function. Instead of uniformly distributed random numbers ui, we can
then generate numbers according to the distribution g(u)du. This gives the probability
of generating a random number between u and u + du. Comparing with a uniformly
distributed density we have:

g(u)du = dx (4.11)

We therefore get x = G(u) and u(x) = G−1(x), where G(u) is the indefinite integral of
g(u). Thus, we need the inverse of the integral of g(u) to generate random numbers ac-
cording to the distribution g(u)du.

The expectation value then reads:

〈
f

g

〉
=

1
N

N∑
n=1

f(un)
g(un)

, (4.12)

and still converges to I in the limit N →∞. The sample variance now reads:

s2

(
f

g

)
=

1
N − 1

(〈
f2

g2

〉
−
〈

f

g

〉2
)

. (4.13)

Thus, the variance is reduced if g(u) is close to f(u). To find an adequate function g(u)
requires a detailed knowledge of the function f(u). Furthermore, the integral of g(u) is
needed for its normalization. The optimal function requires the knowledge of the integral
I:

g(u) =
|f(u)|∫
f(u)du

. (4.14)

Therefore, for an efficient Monte Carlo integration, a probability density g(u) is favorable
which is simple and close in shape to f(u) at the same time.
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4. Phase Space Integration

4.1.3. Adaptive Monte Carlo Algorithms - VE G A S

In case the peak structure of the integrand is not known very well, an adaptive algorithm
for integration can be used. Here, the density g(u) is fit iteratively to the integrand. In
one dimension this is done by using a step function with variable size of bins:

g(x) =
1
N

N∑
n=1

θ(xn − x)θ(x− xn−1)
xn − xn−1

. (4.15)

Decreasing the size of a bin therefore increases the magnitude of g(u) in this bin and in this
way the probability density can be adapted to approximate the optimal value (4.14). For
multi dimensional integrals this is implemented in the widely used VE G A Sroutine [62,63].
Here, for each dimension the probability density is separately adapted according to (4.15).
The overall probability function is then given by

g(u) = g1(u1) · · · gd(ud) (4.16)

and defines a hypercubic grid. This grid is adjusted in several iterative stages according to
the results in the different cells. The size of the bins is decreased where the integrand has
dominant contributions and vice versa. After the grid adaption, the integration with the
probability density given by the grid is performed with a larger number of samples. This
again can be done iteratively, however, often a further adaption of the grid does not lead to
a higher efficiency from a certain iteration on. This fact can be accounted for by a damp-
ing factor which avoids a high fluctuation of the state of the grid towards higher iterations.

The method described above resembles importance sampling. The integrand is evaluated
with emphasis on the dominant regions. The method of stratified sampling is also imple-
mented in VE G A S. Here, the grid is further divided into sub-cells such that finally in each
cell only two samples are taken. This leads to a more uniform distribution of the sample
points.

Due to the factorized ansatz (4.16), the VE G A S routine can only adapt to integrands,
where peaks lie along the axis of the hypercube. As an example, consider a uniform peak
along the bisector u2 = u1 in the u1 − u2 plane. Then all points along the u1- and the
u2-axis will lead to the same contribution and the grid can not be adapted to the peak.
In this simple example one can rotate the coordinate system such that the peak is aligned
with one axis u′1 of the new coordinates and orthogonal to another, u′2. Then the grid can
be adapted to the peak by decreasing the bin size accordingly on the axis u′2 orthogonal
to the peak. Thus, in applications where the peak structure of the integrand factorizes in
the sense that the integrand can be mapped onto a coordinate system such that the peaks
are located at distinct points or small regions of one of the coordinates the grid can be
adapted and the resulting integration is very efficient.

In usual high energy processes, typical integrands have a large number of peaks which do
not factorize anymore. In this case the simple factorization ansatz (4.16) of the VE G A S
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4.1. Monte Carlo Integration

routine does not lead to a sufficient adaption of the grid to the peak structure of the
integrand.

4.1.4. Multi Channel Algorithms

If the integrand does not allow for a simultaneous mapping of the peaks onto a coordinate
system where the peaks factorize and one adaptive grid can be used for efficient integra-
tion, one has to refer to a generalization of the adaptive Monte Carlo algorithm [14, 64].
These are known as Multi Channel algorithms. For each peak a coordinate transformation
is applied such that in this channel the considered peak can be adapted to.

We again start with a normalized probability density g(u) and rewrite integral (4.1) as:

I =
∫

f(u)
g(u)

g(u)du. (4.17)

Suppose we have m different transformations of the integration volume Φi(x) = u. We
can rewrite g(u) as a sum of probability densities gi,

g(u) =
m∑
i=1

αigi(Φ−1
i (u))

∣∣∣∣∂Φ−1
i (u)
∂u

∣∣∣∣ . (4.18)

Here, the gi(x) as well as the sum of the weights αi are again normalized to unity. Sub-
stituting (4.18) in (4.17), we get

I =
m∑
i=1

αi

∫
f(Φi(x))
g(Φi(x))

gi(x)dx, (4.19)

where g(Φi(x)) is then given by

g(Φi(x)) =
m∑
j=1

αjgj(Φ−1
j (Φi(x)))

∣∣∣∣∣∂Φ−1
j (Φi(x))
∂Φi(x)

∣∣∣∣∣ ,
=

∣∣∣∣∂Φi

∂x

∣∣∣∣−1
αigi(x) +

m∑
j 6=i

gj(πji(x))
∣∣∣∣∂πji(x))

∂x

∣∣∣∣
 , (4.20)

with the mappings πji(x) = Φ−1
j (Φi(x)) of the two transformations Φi(x) and Φj(x) from

channel j to channel i. The estimate of (4.19) is given by:〈
f

g

〉
=

1
N

m∑
k=1

Nk∑
i=1

f(xi)
g(xi)

, (4.21)

where the number of samples Nk in the channels are distributed according to the weights
αk. This estimate is independent of the weights αk and these can therefore be adapted to
reduce the overall error estimate. We therefore have to minimize the α-dependent part of
the variance:
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W =
m∑
i=1

αi

∫ (
f(Φi(x))
g(Φi(x))

)2

gi(x)dx. (4.22)

The set of αi which solve the resulting equations for the minimum of (4.22) can be ap-
proximated by an iterative adaption, cf. [14]:

αnewi =
αoldi W β

i∑
i

αoldi W β
i

. (4.23)

The fixed point of this prescription minimizes the overall variance with respect to the
weights αi. Here, Wi is given by:

Wi =
〈

f(Φi(x))
g(Φi(x))

〉
i

, (4.24)

where the subscript i on the angles indicates the distribution of the sample points accord-
ing to the probability density gi(x) of channel i. The parameter β is commonly chosen
to lie between 1

4 and 1
2 , cf. [14, 64]. The update of the weights (4.23) guarantees that

channels with a higher variance are emphasized during the sampling which results in a
faster convergence of the estimate (4.21).

If the channels are chosen such that each peak structure of the integrand factorizes in at
least one channel the resulting gain of the faster convergence of the integral estimate can
exceed the additional computation costs of the transformations Φi and the corresponding
Jacobians and mappings to other channels as well as the adaption of the weights αi.

The multi channel algorithms are only useful if the peak structure of the integrand is
roughly known. In the next section we will discuss the parameterization of the phase
space of the external particles in scattering processes, which is used to the define the
channels in the algorithm VAMP.

4.2. Phase Space Decomposition

For a 2→ n scattering process even the tree level matrix elements have a rich peak struc-
ture in specific regions of the phase space. This structure results mainly from propagators
of single Feynman amplitudes. If the phase space can be mapped such that the peaks of
an amplitude are correlated only to a single integration variable, the integration routines
described in the previous section are able to adapt to the peak structure of this amplitude.
Performing the phase space parameterization for each Feynman diagram of the given pro-
cess, one can use the multi channel approach to adapt to the peak structure of the whole
integrand by using in each channel a suitable coordinate parameterization for one Feyn-
man graph, therefore leading to an efficient integration or event generation [65, 66]. This
decomposition of the phase space and subsequent automatic multi channel integration is
widely used in general purpose event generators. In the following we will shortly review
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4.2. Phase Space Decomposition

the phase space decomposition and the construction of appropriate weights to distribute
the samples of the phase space close to the integrand.

n-Particle Phase Space

The n-particle phase space dΠ(P ; q1, . . . , qn) as given in (2.54) can be described as a
convolution of phase spaces with less particles in the final states:

dΠn(P ; q1, . . . , qn) =
m∏
i=1

dQ2
i dΠm(P ;Q1, . . . , Qm)×

dΠn1(Q1; r1
1, . . . , r

1
n1

) . . . dΠnm(Qm; rm1 , . . . , rmnm
), (4.25)

where we suppressed any factors of 2π. The initial four momenta qi are arbitrarily dis-
tributed among the subsets r1

i to rmi . Using this decomposition iteratively, we can build
the n-particle phase space of a given Feynman graph according to its vertex structure out
of separate two- or three-body phase spaces.

As an example consider the graph depicted in figure 4.1. Here, the four particle phase
space of the final state particles can be decomposed into:

dΠn(s; q1, . . . , q4) = dQ2
12dQ2

34dΠ2(s;Q12, Q34)dΠ2(Q12; q1, q2)dΠ2(Q34; q3, q4). (4.26)

The lower and upper limits on the invariant mass squared Q2
12 are given by (m1+m2)2 and

s−(m3+m4)2 and analogous for Q2
34. The two particle phase spaces can be parameterized

as

dΠ2(Q12; q1, q2) =
1

2Q2
12

λ
1
2 (Q2

12, q
2
1, q

2
2)d cos θ12dφ12. (4.27)

Here, λ is the kinetic function defined in (3.28) and cos θ12 and φ12 are the polar and
azimuthal angle in the rest frame of Q12, where θ12 is the angle between particle 1 and
the direction of the spatial part of Q12 before the boost into the rest frame. In case of a
t-channel propagator, one can use the Mandelstam variable t of the transferred momen-
tum instead of the polar angle θ, cf. [65] for details and corresponding limits. Another
possibility, which is used in WHIZARD, is to flip the t-channel graph into the corresponding
s-channel one, use the same parameterization as before and flip back again, cf. [32].

Construction of Probability Densities

The decomposition of the phase space (4.25) allows us to construct probability densities
which are close in shape to the peak structure of the integrand. Propagators of graphs
can show singular behavior in the invariant mass square or as a function of an angular
parameter.
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(34)

Figure 4.1: Simple graph of e+e− → e+e−γγ with two collinear peaks.

In the example of figure 4.1, we expect collinear peaks of the propagators (12) and (34).
These will lead to a peak in the limit cos θ12 → 1 and cos θ34 → 1, respectively. With
the help of the phase space decomposition (4.26) and the subsequent parameterization of
the two body decays (4.27) we can change the integration variable such that the collinear
peak structure is compensated by the Jacobian of this transformation. The peak is of the
form:

g(cos θ) =
1

(a− cos θ)
, (4.28)

with a ≥ 1. Following the prescription for importance sampling in section 4.1.2, we change
to a new variable of integration y by calculating the integral of g(cos θ):

y(cos θ) =

cos θ∫
−1

g d cos θ′ = log
a + 1

a− cos θ
. (4.29)

Dividing y(cos θ) by y(1), we get a new variable of integration with borders given by the
unit interval [0, 1]:

x(cos θ) =
log(a + 1)− log(a− cos θ)

log(a + 1)− log(a− 1)
. (4.30)

Thus, changing integration variables from cos θ to x, the Jacobian of this transformation
will cancel the collinear peak of the integrand. The variable cos θ will be replaced by the
inverse of (4.30):

cos θ(x) = a− (a + 1)
(

a− 1
a + 1

)x
. (4.31)

Starting with a uniform probability distribution of samples of x among the interval [0, 1],
we get a distribution of cos θ given by (4.31) which dominates in the region of the collinear

62



4.2. Phase Space Decomposition

peak of the integrand. We will make use of this mapping of integration variables in the
next chapter.

Any variable of integration of the phase space integral can be mapped to the unit interval
[0, 1]. The emerging Jacobian can be used to smooth peaks of the integrand in the way
shown above. This procedure is widely used in Monte Carlo integration routines or event
generators. Specific mappings and corresponding weights can for example be found in
[65–67]. For each Feynman graph of a process, a channel can be setup. This consists
of the transformations of the integration variables of the given graphs to the uniform
variables x and the corresponding Jacobians. A final integration of the whole process can
then be performed with multi channel algorithms as described in section 4.1.4.

Parameterization of Loop Momentum

The form of the integrands of loop graphs obtained by applying the Feynman Tree The-
orem suggests to decompose the phase space including the loop momentum equivalently
to the Born level diagrams. This, however, is complicated by the fact that we have a
third (in the case of a 2 → n process) incoming particle and an additional outgoing
particle with the same momentum. Therefore, the simple limits of the integration of in-
termediate transferred momenta, which are based on a fixed incoming total energy would
become unbounded due to the infinite range of the loop momentum. Furthermore, since
the momentum of the additional incoming and outgoing particle are identical the simple
decomposition into two body decay phase spaces does not work anymore since there still
remains a relation between two different parts of the diagram making it difficult to give a
clear definition of a polar and azimuthal angle.

Taking the example of figure 4.1 and interpreting it as one part of the vertex correction to
an s-channel e+e− → e+e− graph, we would have an additional delta function δ(q2 + q3)
relating the photon momenta. Taking, say q3, as incoming momenta, it becomes clear
that a parameterization, which takes the collinear or t-channel peak structure of propa-
gator (34) into account does not help to smooth the peak structure of propagator (12),
which is usually taken care of by the 2-particle phase space of the subsequent decay of (12).

Nevertheless, due to the delta function setting the momenta of the incoming and outgo-
ing particle equal, the phase space integration of the loop momentum decouples from the
phase space of the real external particles. In the previous chapter, we examined the peak
structure of the integrand in the integration volume of the loop momentum. In applica-
tions of the Tree Theorem we will use this analysis to construct appropriate channels for
the loop momentum. These will be merged with the phase space parameterization of the
underlying Born graph.

In the next chapter, we will apply the Feynman Tree Theorem to the one loop QED
corrections to Bhabha scattering. Here, we will also compare different approaches to an
efficient phase space integration of the loop momentum, which the knowledge of the peak
structure of the integrand makes possible.
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5. Bhabha Scattering

In this chapter we will as a first application evaluate the massive QED one loop cross
section of Bhabha scattering. This e+e− → e+e− scattering process is of great importance
in electron-positron colliders like the upcoming ILC for the precise measurement of the
luminosity at the interaction point. For small angles, this process is dominated by the
kinematic singularity of the photon exchanged in the t-channel. The differential cross
section in this limit is

dσ

dΩ
∝ θ−4, (5.1)

and therefore gives a high event rate and allows for a precise determination of the lu-
minosity. For the ILC, also large angle Bhabha scattering is of interest, since here the
acollinearity of the scattered particles can be used to study beam-beam interactions, which
result in a spread of the center of mass energy [68]. The experimental accuracy aimed for
the luminosity measurement is below 1h, cf. [69]. To match this experimental precision,
theoretical predictions of the Bhabha scattering cross section should have at least the same
accuracy. Therefore, higher order corrections have to be included in the calculations and
implemented in the Monte Carlo event generators. The QED O(α) corrections were cal-
culated long ago [70–72], followed by the one loop electroweak corrections [73]. At O(α2)
in QED, the virtual massive two loop corrections are still not known completely. To get
an overview of Bhabha scattering and the present status of NNLO calculations, cf. [74–76]
and references therein. A recent calculation of the photonic one loop corrections in terms
of master integrals can be found in [77].

The Bhabha scattering process is ideally suited to test the evaluation of loops by the
Feynman Tree Theorem. For the QED one loop corrections there are ten graphs, which
we can also evaluate by FE Y NAR T S to compare our results with an established technique.
We can check the cancellation of ultraviolet and infrared divergences by the subtraction
diagrams from the BPHZ mechanism and real emission diagrams. Threshold singularities
will be canceled by additional fix functions. The final integrands will still have a rich
structure due to collinear peaks. In the following, we will reduce this structure by suitably
folding the integrand and mapping of the integration measure. At the end of this chapter
we also show the application of a multi channel integration routine, for which the inte-
grands do not need to be manipulated in this way. We will calculate with a finite fermion
mass. The occurrence of different scales for the electron mass O(1 MeV) and the center
of mass energy O(100 GeV) will then pose a further challenge to the integration algorithm.

Since we do not take off-shell external particles into account and the one loop corrections
will at most include four-point functions, we do not face overlapping threshold peaks in
the integration volume, as argued in section 3.2.2. We demonstrate the construction of fix
functions in this case in appendix C.
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Figure 5.1: QED Born level graphs for Bhabha scattering.

5.1. Born Level

In QED, the Born process is given by the photon exchange in the s- and t-channel. The
two graphs are depicted in figure 5.1. We assign the momenta as

e−(p1) + e+(p2 − p1)→ e−(p3) + e+(p2 − p3), (5.2)

with

p1 =


1
2

√
s

0
0
p

 , p2 =


√

s
0
0
0

 , p3 =


1
2

√
s

p sin θ
0

p cos θ

 . (5.3)

The absolute momentum p and the scattering angle between the outgoing electron and
the incoming electron, can be expressed in terms of the Mandelstam variables:

p =
√

s

4
−m2

e, θ = arccos
s + 2t− 4m2

e

s− 4m2
e

. (5.4)

Thus, we get

p2
2 = s > 4m2

e, −(s− 4m2
e) < (p1 − p3)2 = t < 0, (5.5)

and further scalar products are:

p2
1 = p2

3 = m2
e, p2

2 = s, p1p2 = p2p3 =
s

2
, p1p3 = m2

e −
t

2
. (5.6)

The unpolarized tree level amplitude is:

MBorn = MBorn
s +MBorn

t (5.7)

= −e2

s
v̄(p2 − p1)γµu(p1)ū(p3)γµv(p2 − p3) (5.8)

−e2

t
ū(p3)γµu(p1)v̄(p2 − p1)γµv(p2 − p3). (5.9)
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After summing over final state spins and averaging over initial spins, the squared amplitude
reads

|MBorn|2 = 4e2

{
1
s2

[
(t− 2m2

e)
2 + st +

s2

2

]
+

1
t2

[
(s− 2m2

e)
2 + st +

t2

2

]
+

1
st

[
(s + t)2 − 4m2

e

]}
, (5.10)

where we kept the dependence on the electron mass me. In the case of two final particles,
the phase space integral (2.54) simplifies to:

dΠ2(P, p3, p2 − p3) =
∫

dΩ · p
16π2

√
s
. (5.11)

Together with the flux factor, this yields for the differential cross section for equal masses:

dσ(0)

dΩ
=
|MBorn|2

64π2s
=

α2

s

{
· · ·
}

, (5.12)

with the terms in the brackets taken from (5.10).

5.2. One Loop QED Corrections

To create a Fortran code providing the matrix elements of Bhabha scattering at O(α) in
QED, we used the procedure described below. The loop diagrams and the corresponding
subtraction and real emission graphs will be created. The loops will be opened according
to the Feynman Tree Theorem and the integrands further manipulated, such that even a
single channel adaptive algorithm can be used for an efficient integration.

We wrote a Mathematica program which automatically calculates the integrands of the
squared unpolarized QED one loop matrix elements in terms of scalar products. For each
loop diagram also the corresponding real emission diagrams are created and their prod-
uct calculated. This program makes use of the Mathematica- and FORM-based packages
FE Y NAR T S and FO R MCA L C [15, 16]. These allow for an automated creation of Feynman
diagrams and the reduction of tensor integrals in various models. We inserted an addi-
tional flag in FO R MCA L C. M and CA L CFE Y NAM P. F R Msuch that the call of CA L CFE Y NAM P

returns the amplitudes in terms of scalar products and the tensor reduction is not executed.

The resulting expressions for the loop diagrams are then further manipulated by a second
Mathematica program. Here, a suitable integration momentum is determined. The direc-
tion of the loop momentum is chosen such that, if possible, the collinear peaks arise only
from photon cuts and not fermion cuts. As discussed at the end of section 3.3.3, after
addition of the real emission graphs, this would lead to a residual peak structure around
the infrared singularity coming from the fermion cut. The center of the momentum of in-
tegration is chosen to be a point with high symmetry, which for example can be the point
of an infrared divergence or the center of a threshold singularity. This will be explained
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Figure 5.2: Vacuum Polarization Diagrams.

in more detail when the different loop contributions are discussed.

After assigning the integration momentum, the momentum distribution of the real emis-
sion graphs is accordingly matched and the subtraction graphs are created in the case
of vertex corrections. The loops are cut and, if needed, fix functions are calculated and
added to the resulting terms. Then, the integrand is folded such that collinear peaks and
infrared divergent points fall on top of each other. The resulting expressions are then
written out in Fortran code.

The above procedure is not fully automated yet. Simplifications of algebraic expressions
are desirable. We have not found a satisfactory method of simplification which on the one
hand acts on all the different expressions for the loop graphs and returns simple expressions
on the other hand. Furthermore, the folding of the integrand is highly dependent on
the peak structure and was mainly done by hand for the different loops. In light of an
automated creation and evaluation of NLO matrix elements, it will therefore be more
convenient to hand over the information about the peak structure of the integrands to
the integration algorithm and use a versatile multi channel adaptive routine to evaluate
the integrands instead of a manipulation of the code such that a single channel routine
can be used. In the end of this section, we present the evaluation of a box graph with an
unmodified peak structure by the integration routine VAMP. For this, we also present the
evaluation of a single polarized amplitude.

5.2.1. Photon Self-Energy

The two contributions from the vacuum polarization are shown in figure 5.2. In the
standard model, the loops may contain any electrically charged particle. The photon
self-energy therefore gets contributions from leptons, charged bosons and ghosts, and
hadrons. In the hadronic part strong interaction effects may play an important role,
which can be included in calculations via a dispersion integral over the hadrons-to-muons
production rate R, e.g. cf. [78]. Since we are only interested in the applicability of the
Feynman Tree Theorem to loop integral evaluations, we restrict ourselves to the pure
electron loop, although some QED evaluations include all nine fermion flavors summed
over in perturbation theory, see [77]. We state the final integrands we used in appendix
B. This also involves a constant part which is not integrated over. We included this part
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Figure 5.3: Vertex Corrections: Subtraction graphs have to be added to cancel the ultraviolet
divergence and retain the definition of the electric charge.

by dividing it by the integration volume and add it to the integrand. This integrand does
not have a particularly difficult peak structure. It is also infrared finite, so we did not
apply any further cuts or mappings to it except the fix function to smooth the peak in the
s-channel.

5.2.2. Vertex Corrections

The four vertex corrections are depicted in figure 5.3. The integrands each contain one
infrared point, where the momentum through the photon line vanishes. We chose this
point as the origin of a spherical coordinate system we integrate over. As discussed in
section 3.3.3, we expect collinear peaks starting at this point.

In the case of the t-channel vertex corrections, we have the possibility to chose the di-
rection of the loop momentum such that the collinear peaks arise from the photon cuts.
This is the case if in each fermionic propagator the loop momentum is opposite to the
direction of the momentum of the adjacent external particle, cf. table 3.1. Taking as an
example the corrections to the electron vertex, the collinear peaks are then situated on a
line from the origin to ~p1 and ~p3, respectively. In the limit t → 0 the two peaks merge.
To fold the integrand such that the collinear peaks fall on top of each other, we set the
kz-axis along the bisecting line of the two peaks such that the peaks are located in the
kx − kz plane. We then added the integrands I(kx, ky, kz) and I(−kx, ky, kz) and cut out
one half of the resulting expression by setting the integrand for kx < 0 to zero. A new
coordinate system was then obtained by rotating the kz-axis such that it is aligned with
the remaining collinear peak. In this way the original integrand was mapped such that
only one collinear peak remained. An adaptive integration method can therefore efficiently
give reliable results.

In the case of the s-channel corrections, the collinear peaks fall on top of each other,
since we calculate the matrix elements in the center of mass frame of the two incoming
and outgoing particles. The resulting peak starts at ~k = 0 and extends to ~k = ±~p1, or
~k = ±~p3 for the second correction, respectively. The sign depends on the direction of
the loop momentum. Since effectively only one peak is present, we do not have to apply
any mapping procedures to the integrand. We only take the kz-axis of the integration
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Figure 5.4: One loop vertex correction to s-channel. Lines are obtained from FE Y NAR T S.
Points are results from the Feynman Tree Theorem, numerically evaluated using VE G A S.

momentum along the collinear peak. However, a threshold singularity arises if one of the
two fermionic propagators is cut and we added a fix function to smooth this peak.

The integrands of the subtraction graphs were calculated by first neglecting all denomi-
nators of non-loop propagators and then aligning the momenta of the two fermion lines of
the vertices as was described in section 3.3.2. In case of the s-channel corrections this was
done by flipping the line of one incoming (outgoing) fermion to an outgoing (incoming)
antifermion. Explicitly, the relevant Dirac chain of the second s-channel vertex correction
in figure 5.3 reads:

ū(p3)γα(k/ + p/3 + m)γµ(k/ + p/3 − p/2 + m)γαv(p2 − p3). (5.13)

Aligning the fermion momenta means either replacing p2− p3 with −p3 or vice versa. We
then have the crossing symmetry relations:

ū(−p2 + p3)→ v̄(p2 − p3), or v(−p3)→ u(p3). (5.14)

Note that our Mathematica program using FE Y NAR T S and FO R MCA L C only returned
squared amplitudes. Thus, to calculate the subtraction graphs, we replaced the rele-
vant momenta in the whole expression of our vertex corrections. After that, we divided by
the corresponding product of Born amplitudes with the same replacements of momenta
and neglection of denominators of propagators and multiplied by the original Born ampli-
tude without replacements. As a verification of this approach, we calculated the s-channel
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Figure 5.5: Box Graphs and sketch of corresponding peak structure in the x − z plane.
Small (red) circles indicate infrared points. Lines collinear peaks. Big (blue) circles threshold
singularities. The dashed lines indicate the planes at which the integrands are mirrored such
that infrared singular points and collinear peaks fall on top of each other. The resulting
expressions can then be evaluated by a single channel adaptive integration routine.

vertex correction at a rather high precision of 500000 samples for each point. The results,
together with the Born cross section, is shown in figure 5.4. We used a center of mass
energy of

√
s = 500GeV and a soft energy cutoff ∆Es = 2.5 GeV and compared our results

with those obtained from FE Y NAR T S.

5.2.3. Box Graphs

The box graph contributions are depicted in figure 5.5. These are ultraviolet finite and
no subtraction graphs have to be added. Since there are two photon lines we have two
infrared peaks in the integration volume. These might fall on top of each other. According
to the analysis in section 3.3.3, we can also have up to four different collinear peaks. We
schematically sketched the peak structure of each of the box graphs in figure 5.5. Here, the
small circles indicate infrared singular points, which are the endpoints of collinear peaks
indicated by lines. Threshold singularities are pictured by big circles. Like in the case of
the vertex corrections, we fold the integrands according to the peak structure such that
infrared points and collinear peaks fall on top of each other and the final integrand consists
only of one peak each. The planes at which the integrands are mirrored are indicated as
dashed lines. After folding the integrands, the origin of the coordinate system of the
integration momentum is taken to be the remaining infrared point and the kz-axis is
aligned to the collinear peak. Fix functions are added if needed.

5.3. Integration Parameters and Results

Having prepared the integrand in the way described above, we can use an adaptive inte-
gration routine for its evaluation. For this, we used the single channel routine of the VAMP
package, which essentially is the VE G A Salgorithm. At the end of this chapter, we present
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the evaluation of a box graph using a multi channel approach, cf. section 4.1.4.

5.3.1. Coordinate System and additional Mappings

We use a coordinate system with the z-axis aligned with the remaining collinear peak,
as described above. The y-axis is not changed and the x-axis is orthogonal to the y-
and z-axis. Applying spherical coordinates, we map the radial coordinate r onto the unit
interval by

r = a

(
1

1− x1
− 1
)

, (5.15)

with a set to 1
2

√
s. Using x1 as new integration variable, this choice will map the region of

the threshold singularities into the center of the unit interval. This will enhance the grid
adaption, since the interesting region with the remaining peak structure is spread over a
significant part of the integration interval.

To further increase the efficiency of the grid adaption, we change the coordinate of the
polar angle according to the analysis in section 4.2. The almost singular part of the
collinear propagators encountered in the graphs for Bhabha scattering is:

Pcoll =

( √
s√

s− 4m2
e

− cos θInt

)−1

. (5.16)

Using equation (4.31), we change to the new coordinate x2 by replacing:

θInt = arccos

( √
s√

s− 4m2
e

−

(
1 +

√
s√

s− 4m2
e

)(√
s−

√
s− 4m2

e√
s +

√
s− 4m2

e

)x2
)

. (5.17)

The arising Jacobian determinant will then cancel the singular part (5.16) such that the
integrand is considerably smoothed even before the grid adaption.

Making a further replacement of the azimuthal coordinate

φ = 2πx3, (5.18)

we have a new set of integration variables in the unit hypercube

(x1, x2, x3) ∈ [0, 1]3. (5.19)

5.3.2. Input Parameters

We evaluated all of the following results at a center of mass energy of
√

s = 500 GeV.
This lies in the typical energy region of the ILC. Although results of Bhabha scattering
have to incorporate the Z-boson exchange and electroweak corrections to give accurate
predictions, we nevertheless use this process and the stated energy to test the applicabil-
ity of loop evaluations via the Feynman Tree Theorem to realistic scenarios with a large
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Figure 5.6: Differential cross section of O(α)-correction to s-channel Bhabha scattering.
Here, the cross section becomes negative for large back-scattering angles.

difference in scales of the fermion masses and the kinematic variables.

The infrared cutoff ∆Es is set around 1% of the center of mass energy as is the width
of the fix functions added to smooth threshold peaks. To take the contributions of the
real emission graphs into account, we set the integrand of the corresponding photon cut
to zero for soft photons with energy below ∆Es. As argued in section 3.3.3, we similarly
cut out contributions from fermion cuts in the cases where it was unavoidable that a peak
at the infrared singular point is developed.

5.3.3. Results

In the following we present results for the differential and total cross section of NLO
Bhabha scattering. The final integration was done with the single channel integration
routine of VAMP. Results were cross checked with FE Y NAR T S.

S-Channel Contribution

In figure 5.6, we separately plotted the differential cross section of the s-channel correc-
tions. Here, we used a rather small number of 10000 samples for each point. Even with
this small amount of samples, the differential cross section is close to the result obtained
by FE Y NAR T S. This and a rather small error estimate indicate that the initial integrand
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Figure 5.7: Complete O(α)-correction to QED Bhabha scattering.

is sufficiently smooth and the integration grid can quickly adapt to it.

We used a small value for the soft photon cutoff ∆Es = 2.5 GeV. This cutoff acts as a
regulator for the infrared divergence. Adding the hard real emission contributions at the
same order in perturbation theory, the full NLO result is not dependent on this cutoff [35].
However, the single 2 → 2 cross section depends on the cutoff which can lead to the
unphysical situation of a negative probability distribution. If experimental quantities are
sensitive to such low photon energies, one has to take further higher order contributions
into account [78].

All virtual O(α) Contributions to QED Bhabha Scattering

In figure 5.7, we plotted the full 1-loop QED contribution to Bhabha scattering. We again
used a very small number of 10000 samples to demonstrate the rather fast convergence
to the expected results. Almost throughout the whole region of the scattering angle θ,
the differential cross section is dominated by the t-channel exchange and corrections to
it. This time we used a soft energy cutoff of ∆Es = 5 GeV. Nevertheless, in the very
backwards region the cross section again drops below zero.

In figure 5.8, we plotted the ratio of the 1-loop corrections to the Born result, this time
using a rather high precision with 5 · 106 calls for each sampled point. The agreement
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Figure 5.8: Ratio of O(α)-correction to Born contribution.

between the two calculations is at the per mil level. Since these are deviations from
the O(α) corrections, this is a very satisfactory result. Since the treatment of infrared
divergences differs to that used in FE Y NAR T S, we do not expect the results to coincide
completely. Instead of using it for cross section integration, we are more interested in
applying this method to event generation, which requires a rather smooth integrand. The
previous results showed that the expectation value is approximated quite well after a few
calls, indicating a good adaption of the grid to the integrand.

Total Cross Section

To obtain results for total cross sections, we applied a further mapping of the scattering
angle to a new integration variable, by replacing:

θ = 2arcsin
1√

1−x4

sin2θl
2

+ x4

sin2θh
2

, (5.20)

where θl,h are the lower and upper cut on the scattering angle. For the numerical evalu-
ations we set those to 1 deg. Making this replacement, the resulting Jacobian cancels the
factors of t in the denominator and therefore smooths the peak considerably. The numer-
ical results are shown in figure 5.9 and again compared with results from FE Y NAR T S.
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Figure 5.9: Integrated Cross Section of O(α)-corrections to QED Bhabha Scattering.

Alternative Evaluations

To go a step further towards an automated generation of matrix elements and subsequent
numerical evaluation, we tested the applicability of the multi channel integration routine
VAMPto our method of loop evaluation. We examined the contribution of the first box
depicted in figure 5.5 to the s-channel photon exchange. In a first approach, we used the
code produced by the Mathematica programs without applying any mappings, such that
the two collinear peaks remain in the integrand. We used two channels with a spherical
coordinate system, with the z-axis aligned to one of the peaks, respectively. The result is
shown in the upper plot of figure 5.10.

In a second approach, we used the matrix element generator O’ME G A, to produce the box
graph as a helicity amplitude. For this, we created the four associated tree graphs which
would be obtained by opening the loop of the box at each of its propagators:

e−(p1)e+(p2 − p1)→ e−(p3)e+(p2 − p3)e+(k′1,2)e
−(−k′1,2), (5.21)

e−(p1)e+(p2 − p1)→ e−(p3)e+(p2 − p3)γ(k′3,4)γ(−k′3,4). (5.22)

Here, we assigned the momenta ki such that they correspond to the momentum of the
associated loop propagator. We again used the same two channels as in the first application
of the multi channel routine. By using this approach, the one loop and Born amplitudes
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Figure 5.10: Box graph evaluated with the multi channel routine VAMP. Upper Plot: Result
from Mathematica for unpolarized contribution. Lower plot: Polarized box graph created
with O’ME G A.
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5.3. Integration Parameters and Results

are evaluated separately and the product is taken afterwards. In particular, this means we
can compute single polarized amplitudes, which in the case of processes with several Born
amplitudes increases the efficiency compared to the evaluation of products of amplitudes
because of the smaller number of terms. In the lower plot of figure 5.10, we showed the
box contribution to the e−Le+

R → e−Le+
R scattering amplitude. The results are in agreement

with the FE Y NAR T S predictions.
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6. Monte Carlo Event Generation

Monte Carlo event generators serve as an interface between theory and experiment. They
combine theoretical knowledge of different fields of particle physics to simulate events in
high energy collision processes as close to nature as possible. These simulations are needed
to understand the complicated multi particle structure of scattering events, to efficiently
design detector components and to compare experimental data with predictions from the-
ory. The center of such generators is the hard partonic sub-process. It is described by a
matrix element accounting for all quantum field theoretical effects. Integration techniques
similar to those introduced in chapter 4 are used to generate events, samples of partonic
final states with the same probability as expected from real collision events. The initial
states of an event can also be convoluted with structure functions describing initial state
radiation and parton distribution functions. All initial and final state partons can be
evolved to lower energies by parton shower algorithms. Finally, phenomenological models
of hadronization of the partons can be applied as well as subsequent decays of short lived
hadrons. Ideally, a general purpose Monte Carlo event generator package should contain
all these different building blocks to simulate full events of a collision process. An intro-
duction to the different methods used in the simulations and an overview of some packages
implementing these techniques can be found in [79].

To get a higher predictivity of the simulated events, it is mandatory to go from the tree
level matrix elements to one loop. There exist packages which implement some processes
at next to leading order precision, however, a fully automatized general purpose Monte
Carlo at NLO has not been developed yet. In this chapter we will give a brief overview of
the techniques of event generation and discuss problems to be expected when using matrix
elements at NLO. We will finally present event samples for pure QED Bhabha scattering
generated with the code introduced in chapter 5 based on the Feynman Tree Theorem.

6.1. Cross Section Integration and Event Generation

In the previous chapter we used the Monte Carlo integration technique to calculate differ-
ential and total cross sections. This was done by sampling the phase space with a uniform
distribution or a distribution of the integration variables close to the peak structure of the
integrands. In the following we define the weight wi of a uniformly sampled point in phase
space xi as the value of the integrand containing the original function and all Jacobians
from transformations as well as grid adaptations. Thus, adding up these weights wi of each
sampled point and dividing by the number of calls the expectation value of the integral is
obtained:

〈I〉 =
1
N

∑
i

wi. (6.1)

One sampled point of the phase space is called an event. The event weights obtained in the
above procedure can be used to fill histograms. In the limit of a large number of events,
the resulting histograms converge to the physical distribution of the considered process.
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6.2. Event Generation at NLO

However, a single event has no physical meaning, since it originates from a uniform dis-
tribution of sampled phase space points.

The main virtue of Monte Carlos in particle physics is the simulation of collision processes.
Here, contrary to the method described above, events are generated with a distribution
predicted by theory. All of the events will have the same uniform weight, however the
frequency is given by the probability of the events to occur. Thus, a set of events generated
by a Monte Carlo reflects the set of real events to be expected in the collision process under
consideration.

6.1.1. Unweighted Event Generation

The procedure of generating events according to a physical distribution is called unweight-
ing of events. The mainly used technique is the acceptance-rejection method. Starting
again from a uniform distributed sampling of phase space, each event’s weight is divided
by the maximal weight wmax. This ratio is compared with a uniformly chosen random
number r ∈ [0, 1] and the event is accepted if

r ≤ wi
wmax

. (6.2)

Otherwise, the event is rejected and a new phase space sample is chosen. The accepted
events are then distributed according to the probability given by the matrix element and
have a uniform weight. For this procedure the maximal weight of the integrand has to
be known. For simple processes this can be inferred from the kinematics. However, for
more complicated functions and adaptive integration algorithms a scan over the parameter
space is the usual way to approximate the maximal weight.

For tree level matrix elements this procedure is automatized in several Monte Carlo event
generators [31, 80–82]. First, the matrix element of the hard partonic sub-process is cre-
ated. Here, the incoming particles can be dressed with initial state radiation and parton
distribution functions in the case of interacting quarks or gluons. Then an integration over
the whole parameter space is performed to obtain the total cross section. In WHIZARDthis
is done by the multi channel routine VAMPdescribed in chapter 4. In several iterations the
grid is adapted to the integrand and a set of integrations with a higher number of calls
returns the desired cross section. Here, it is trivial to keep the highest weight encountered
in the sampling procedure. Using this approximated maximal weight and the total cross
section one can generate unweighted events with a physical distribution and quantity ac-
cording to a given luminosity. These events can then be further processed with parton
shower and hadronization algorithms to mimic a full event in a collision.

6.2. Event Generation at NLO

Several problems arise when extending calculations from tree to loop level. Obvious prob-
lems are the drastic increasing number of Feynman diagrams contributing to a given
process, which even worsens in the case of hadron collisions, where a given set of final
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states can be the outcome of several different partonic initial states. A gain in accuracy
is therefore related to an increase in computer time, which in some cases tips the scales
towards the simpler tree level calculations. Furthermore, the peak structure of the inte-
grands gets more complicated and methods for efficient numerical evaluation have to be
developed, like those shown in chapter 4.

More subtle problems of NLO calculations are emerging negative weights and the tech-
nically difficult matching of the fixed order matrix element calculations with resummed
expressions taking enhanced higher order contributions into account.

6.2.1. Negative Weights

We have seen in chapter 5 that the differential cross section of the 2→ 2 NLO contribution
can become negative in certain regions of the phase space. This is an artefact of the fixed
order method. The full O(α)-result involves the 2→ 2 virtual correction, the real emission
of a soft photon and a hard photon1:

σtot = σBorn + σvirt.(∆Es) + σsoft(∆Es) + σhard(∆Es). (6.3)

The energy cut ∆Es serves as a regulator of the infrared divergences appearing separately
in the 2→ 2 and 2→ 3 part. It is reasonable to assume for the ILC a detector sensitivity
of ∆Es ≈ 10−4 . . . 10−3√s, furthermore our approximation of the soft photon part violates
momentum conservation and therefore neglects terms of O(|~k|) in the photon momentum
and a small value of ∆Es is preferable. Using ∆Es as a regulator the 2→ 2 and 2→ 3 parts
are enhanced by a factor proportional to log ∆Es√

s
, which eventually can lead to negative

differential cross sections. Generating events with a negative weight in these regions of
phase space is not physical in the sense that nature produces events only with a positive
probability. Here, a negative event weight has the same physical meaning as a negative
differential cross section - none.

Matching

A possibility to lift the cross section again above zero, is to combine the 2→ 2 calculation
with parton showers or initial state radiation [10, 83–85]. Here the logarithmically en-
hanced parts of a collision process, the soft and collinear real and virtual radiation, can be
approximated to all orders in perturbation theory and summed up in a structure function
convoluted with the matrix element. Since real and virtual contributions are taken into
account this is an infrared safe procedure. Including these functions in the simulation one
has to subtract from the structure functions the parts which are already included in the
explicit matrix element calculations of the hard partonic sub-process. Matching these two
parts as well as the 2 → 3 real emission part such that no contribution is counted twice

1Here, the hard photon cross section can further be divided in a collinear and a non-collinear part by a
cutting parameter θc. The collinear part can then be approximated by an analytic structure function
convoluted with the Born matrix element. Since we did not make this distinction in the virtual part
and left the evaluation to the numerical integration algorithm, we also do not introduce a cut on the
angle in real emissions.
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anywhere in phase space is a highly non trivial task and a very active field of research. We
will not dwell any deeper on this issue in this thesis, since we are mainly interested in the
applicability of our method of calculating loop diagrams for event generation. Neverthe-
less, in [83,86] a resummation method was introduced for chargino production at the ILC
within the event generator WHIZARDand an adaption of this method should be feasible
at a later stage of our work.

6.3. Event Generation for Bhabha Scattering

Using the integrand obtained from the Feynman Tree Theorem, we will generate un-
weighted events on the level of the hard partonic sub-process, without further dressing
of the initial and final state particles with parton shower algorithms.We will sample the
phase space of the external particles at the same time as the phase space of the additional
incoming and outgoing particles from the cutting procedure. Thus, we will set the loop
momentum integration and the phase space integration of the external particles on equal
footing without any preference for one of the two integrations. This differs from many
other applications of event generation at NLO, where for a given set of external momenta
the matrix element is fully evaluated which usually involves the numerical integration over
several parameters in different terms of the integrand or the evaluation of polylogarithms.
Even in the case of an analytic result of the loop corrections this can be a time consuming
procedure, especially in the case of multi leg amplitudes.

Negative Weights - II

When generating events by sampling the full phase space, we will very likely encounter
negative weights. These arise from regions of the phase space where the integrand is
negative. Even for a well adapted grid and a resulting smooth integrand this might not
always be avoidable. However, these negative weights differ form those mentioned above
in the sense that for a sufficiently large sample the amount of events with a negative
weight will be outnumbered by positive events with a similar configuration of the external
momenta. This holds true except for the regions mentioned above where the differential
cross section becomes negative by itself. We will therefore keep all generated events
and assign a uniform weight to them which is either positive or negative. In resulting
histograms we will subtract the number of negative events from the positive events in
each bin.

Error Expectation

The momentum of the additional incoming and outgoing particle is a purely inclusive
parameter. Thus, when a set of generated events is used to fill a histogram, each bin
contains events with a non trivial distribution of the inner momentum. Although it does
not increase the statistical error, taking the additional phase space of the loop momentum
into the sampling procedure lowers the efficiency of event generation. This can be seen in
the simplified model of figure 6.1. Suppose we want to generate unweighted events and
fill two bins with the relative weight distribution of 2 : 3, indicated in the first picture.
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Figure 6.1: Simplified polynomial model to describe the origin of the statistical error
when sampling over an inclusive parameter (second and third picture) and negative weights
(red/dark gray) is included.

If we sample a point in the right bin, the corresponding event is always taken, since this
bin contains the highest weight and therefore p2 = 1. A candidate event in the first bin is
accepted with probability p1 = 2

3 . The overall efficiency is 1
2p1 + 1

2p2 = 5
6 . Sampling n0

times, the expectation value and variance are given by

〈ni〉 = n0pi, vi = n0pi(1− pi), (6.4)

being a polynomial distribution. In the second picture we sketched the situation of event
generation with a non-constant integrand over an inclusive parameter with absent negative
weights. The relative weight distribution of the two bins is still 2 : 3. The probability of
accepting an event in the first bin adds up to p1 = 3

20 , in the second p2 = 9
40 . The overall

efficiency is therefore 3
8 , being lower than in the first case. The expectation values as

well as the corresponding variances are still given by equation (6.4), which is a statistical
property of the polynomial distribution. Thus, sampling over an additional inclusive
parameter only lowers the efficiency of event generation, not the statistical error. The
continuous case can be seen as limiting case of the polynomial distribution. Note also,
that in the case of a large number of samplings n0 and a typical number of bins, pi is low
enough to approximate the error estimation by the upper bound

√
〈ni〉.

The inclusion of negative weights does not necessarily lower the efficiency of event gen-
eration. However the error estimate rises. We accept an event with a negative weight,
if its absolute value divided by the absolute maximal weight is higher than a randomly
chosen number between zero and one. In the third picture of figure 6.1 we depicted neg-
ative weights as red (dark grey) columns. Here, we chose the distribution such that the
efficiency of event generation is the same as in the second case. The probability of finding
a positive/negative event in bin i is given by: p+

1 = 18
160 , p−1 = 6

160 , p+
2 = 27

160 , p−2 = 9
160 .

The expectation value of the number of events in each bin and the corresponding variance
are still given by equation 6.4, however the notion of pi differs:

〈ni〉 = n0(p+
i − p−i ), vi = n0(p+

i + p−i )(1− (p+
i + p−i )). (6.5)

Thus, in the given example we have to sample with twice n0 to obtain the same number of
events in each bin, which results in a variance twice as large as in the second case. Table
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n0 bin 1 bin 2

I 12000 4000± 52 6000± 55

II 26667 4000± 58 6000± 68

III 53334 4000± 82 6000± 96

Table 6.1: Number of required samples to generate 10000 events and corresponding expec-
tation values and errors for each of the situations depicted in figure 6.1. The inclusion of
negative weights raises the amount of samples needed and increases the error.

6.1 summarizes by giving the number n0 of needed samples to generate 10000 events and
also stating expectation value and error of events in each bin.

6.3.1. Implementation

For the generation of unweighted events we used as integrand the code described in section
5.2. This was mainly created in a Mathematica environment and written out to FOR-
TRAN. Since this code was created such that just one grid is needed to adapt to the
peak structure of the integrand, we used a single channel adaptive routine. We made use
of procedures for grid creation and adaption, event generation and filling of histograms
already present in our version of VAMP. We extended these routines to the inclusion and
bookkeeping of possible negative events. We accept an event wi, if

r ≤ |wi|
w±

max
, (6.6)

with random number r ∈ [0, 1] and w±
max = max(|wmax|, |wmin|) being the maximal weight

of the absolute value of the integrand encountered in the grid adaption and integration
steps. If an event is accepted, it gets an additional flag +1 or −1, indicating whether its
weight was positive or negative. Histograms are then filled according to the sign of the
events.

Unweighted event generating was done by the following steps:

• Setting up a grid and allow for adaption in several iterations.

• Use grid to estimate total cross section with a high number of samples. Keep highest
and lowest, possibly negative weight.

• Use grid to generate events with the acceptance/rejection method described above.
Keep sign of weight.

For Bhabha scattering at NLO, we used the generated events to create histograms showing
number of events as a function of the polar angle between the initial and final electron.
We also generated events distributed according to the Born cross section. We used the
total cross sections to compute the amount of generated events for a given luminosity.
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6.3.2. Results

External Parameters

Although for a practical use of event generation for Bhabha scattering in terms of a precise
measurement of luminosity, it is mandatory to include the full electroweak corrections and
higher order real and virtual corrections as well as a resummation of enhanced higher order
contributions, we nevertheless use the created code to simulate events with parameter
settings taken for typical processes at the upcoming ILC [69,87].

S-Channel Distribution

To demonstrate the handling of negative events, we generated events for electron-positron
annihilation and the corresponding photonic corrections. We used a small infrared cutoff
∆Es = 2.5 GeV, which is 0.5% of the center of mass energy

√
s = 500 GeV. Here, the

differential cross section is negative in parts of the phase space. Results for Born and
NLO event generation are shown in figure 6.2. The total Born and NLO cross sections are
obtained from Monte Carlo integration of the grids set up for event generation:

σtotBorn = 0.34744(29)pb; σtot
NLO = 0.03434(91)pb. (6.7)

Using only the Born level result, we generated 100000 unweighted events which corresponds
to an integrated luminosity of about L = 290fb−1. Since the Born result is strictly positive,
we did not encounter any negative weights. Here, the efficiency of event acception is:

effBorn =
nevts.

ncalls
= 66%, (6.8)

where we adapted the grid in 6 iterations using 1000 samples each, discarded the integral
and performed an integration with a total number of 15000 samples in three iterations.
Since we used only few samples to set up the grid and extract the total cross section, it is
quite natural that higher weights than the original maximal weight are encountered while
sampling for event generation. Nevertheless, in this simple one dimensional integration,
these weights are very close to the maximum and do not alter the overall result.

Comparing the NLO with the Born cross section, we want to generate 9887 unweighted
events. If we allow for events with a negative weight, it follows that we have to generate
events until the difference of positive and negative events equals 9887. Since in this case
the integrand is rather equally distributed among positive and negative values, we had to
generate a total amount of about 150000 events (78770 positive and 68883 negative). The
effectivity for generating all events is

effp+n
NLO = 1.8%, (6.9)

however, the efficiency of generating events which finally show up in the histogram after
the negative events are subtracted from the positive ones in each bin, namely 11655 events,
is at the per mil level: effhist

NLO = 0.14%. Clearly, this is a rather extreme case where the
differential cross section is small and even negative in some regions of the phase space.
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Figure 6.2: Generated events for s-channel Bhabha scattering. Born (red/dashed) and NLO
(blue/dotted) results are shown with corresponding statistical error. Results are compared
with the expectation from FE Y NAR T S (black/solid) calculation.

Therefore, it is natural that the integrand is spread among positive and negative values
which hampers an efficient event generation. Here, a further manipulation of the integrand
like mapping the negative onto the positive parts might be necessary in some cases. We
added the Born cross section to the one loop corrections spread over the whole integration
volume. Concentrating only on parts of the phase space where the integrand is negative
can also help to increase the efficiency of event generation. However, both methods require
a more detailed knowledge of the integrand.

Event Generation in Forward Region

A more physical application is event generation in the forward region. At the ILC, the
luminosity will be measured via Bhabha scattering in this region. The values for the cov-
ered regions of the LumiCal differ for the detector concepts and beam crossing angle at
the interaction point. Here, we take rmin = 26mrad and rmax = 154mrad, cf. [87]. Again,
we will use

√
s = 500 GeV. The infrared cutoff is set to ∆Es = 5 GeV. This time, we use

the full O(α) result.

The integrated cross sections are:
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Figure 6.3: Generated events for Bhabha scattering in the forward region. Born (red/dashed)
and NLO (blue/dotted) results are shown with corresponding statistical error. Results are
compared with the expectation from FE Y NAR T S (black/solid) calculation.

σtot
Born = 5981.3(3.3)pb; σtot

NLO = 2812(24)pb. (6.10)

To take the steep fall of the cross section over the polar angle into account, we generate
50000 events for the Born distribution, leading to 23507 events for the NLO result. For
the Born result, the efficiency of sampling events was

effBorn = 65%, (6.11)

similar to the pure s-channel result. Again, the integrand of the NLO result gets negative
for some regions of the phase space. To sample 23507 events filling the histogram of figure
6.3, we needed 84859 events, 54183 positive and 30676 negative. The resulting efficiency
for accepting events was

effp+n
NLO = 3.0%, (6.12)

counting only events in the histogram of figure 6.3, the efficiency drops down to 0.8%.
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6.3. Event Generation for Bhabha Scattering

Summary of the Results

As was anticipated in the simple example above, the extension of the phase space sam-
pling to the inclusive momentum of the additional incoming and outgoing particle of the
cutting procedure of the Feynman Tree Theorem lead to a decrease of the efficiency of
event generation. While the efficiency of event generation decreases, the speed of sam-
pling the phase space increases considerably. For each sampled point the integrand of the
cross section, consisting of rather simple rational functions is evaluated only once. This
does not include integrations over internal parameters or the evaluation of complicated
functions like multiple polylogarithms or harmonic sums. We expect this gain in speed
to outweigh the decrease in efficient event generation for multi leg amplitudes, when the
analytic expressions, if any are available at all, get too large and involve expressions like
those mentioned before.

A further decrease in the efficiency was encountered by the generation of negative events.
Since in any final analysis, these events have to be subtracted from those with positive
uniform weight, the effective number of events is lower than the number of all generated
events. In general, further manipulation of the integrands allowing for a better grid adap-
tion and less number of negative events are a possibility to optimize unweighted event
generation with the suggested method.
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7. Summary and Outlook

The upcoming experiments at the LHC and the ILC require precise theoretical predictions
for the analysis of the final states in collision processes. Therefore, calculations of matrix
elements with many legs and beyond leading order in perturbation theory are needed.
Because of the increasing number of terms, the complicated expressions for loop integrals,
and the occurrence of divergences, the level of complexity of these computations rises
with the number of external legs and the number of loops. Even for four particles in
the final state only few processes are completely evaluated at NLO. The computation of
higher order scattering amplitudes and the development of automated tools for cross sec-
tion integrations and event generation is a pressing task of theoretical high energy physics.

We developed a method for the numerical evaluation of loop integrals from tree graphs,
which is well suited for automatization. As a key ingredient, we derived an improved
version of the Feynman Tree Theorem, which states that one-loop diagrams can be ex-
pressed as a sum of tree graphs with additional on-shell particles. The tree graphs result
from all possible replacements of a propagator by a delta function (cuts) of the loop. The
original four dimensional loop integration is replaced by a phase space integration over
the additional on-shell particle momenta. In the improved version of the Tree Theorem,
no iε terms are present, which allows for a direct numerical integration. In cross section
calculations or event generation, this integration can be performed simultaneously with
the phase space integrations of the external particles. For multi-leg amplitudes this is
an advantage over methods where complicated expressions for the loop integrals have to
be completely evaluated for each point in the phase space of the external particles. Fur-
thermore, there exist automated matrix element generators for tree level graphs, which
considerably simplifies an implementation of the proposed method in a Monte Carlo event
generator.

A similar method, which also allows for a full numerical evaluation, was presented in
[46–48]. Contrary to that, we exclusively work in real momentum space and apply our
method to massive graphs. Furthermore, no contour deformation is needed to avoid on-
shell singularities.

These singularities can arise in parts of the phase space, after propagators of a loop are
cut. We gave a detailed analysis of the peak structure of the tree graphs and showed a
correlation between the peaks and the terms resulting from multiple cuts of the loop. We
showed the construction of fix functions, acting as subtraction terms to cancel the on-shell
singularities such that the integrand can be efficiently evaluated by Monte Carlo integra-
tion routines. In the case of overlapping peaks in the integration region, an approximative
subtraction method was presented. We demonstrated the explicit construction of the fix
functions as well as the calculation of terms with multiple delta functions in a diagram
with a complicated peak structure. The numerical evaluation agreed with results from
LO O PTO O L S.
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The infrared divergent structure of the cut loops was examined. We showed a direct re-
lation of tree graphs with an additional massless on-shell particle and the associated soft
real emission graph. Adding both graphs under the phase space integral, the infrared
divergences cancel. We presented a modified BPHZ regularization procedure and showed
the explicit construction of subtraction terms, such that ultraviolet divergences and re-
maining infrared divergences are canceled and the renormalization conditions are fulfilled.

As a proof of principle, we applied the presented method to Bhabha scattering in QED. We
wrote a Mathematica program which creates loop graphs and the associated real emission
graphs and calculates the interference with the Born terms. The loops are cut and fix
functions constructed. To achieve an efficient numerical evaluation with a single channel
routine, we applied further mappings of the integrand and the integration variables. Using
the same process, we also presented results of a simplified event generator. We simulated
events for Bhabha scattering at energies typical for the ILC. In both cases, the cross
section integration and the event generation, the results are in agreement with those
obtained from FE Y NAR T S, which proves the applicability of this method to computations
in collider physics.

In the case of a four-point function, we also demonstrated the applicability of the Tree
Theorem to loop evaluations by creating tree level amplitudes with the matrix element
generator O’ME G A and performing a multi channel integration with VAMP. Here, we used
the information about the collinear peak structure of the tree graphs to set up proper
channels for the integration routine.

Except for the subtraction graphs from the BPHZ procedure and the fix functions added
to smooth internal peaks, no further additions or manipulations to the tree graphs have to
be applied to prepare the integrands for the numerical evaluation. This does not change
when scattering amplitudes with a higher number of external legs are considered. Thus,
the level of complexity solely rises due to the increasing number of tree graphs, contrary
to methods where algebraic reduction techniques or analytic evaluations have to become
more and more sophisticated. We therefore expect this method to be an efficient tool for
computing multi-leg processes.

Outlook

In this thesis, we gave a proof of concept for the evaluation of loop integrals from tree
graphs. In the case of QED, we established a consistent procedure to cancel ultraviolet and
infrared divergences such that the renormalization conditions are fulfilled simultaneously.
For an extension to the electroweak standard model, an algorithm that automatically
guarantees that the Slavnov-Taylor identities are fulfilled is still missing. An inclusion
of propagators with a finite width should be possible within the presented framework.
For the treatment of collinear divergences coming from two massless particles, we have to
consider further subtraction terms or regularization procedures.

The simplicity of the proposed method calls for an implementation in a Monte Carlo
event generator. We already showed the possibility of evaluation of a loop graph by tree
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7. Summary and Outlook

amplitudes created with O’ME G A. However, the matching of the momenta of the different
tree graphs, the addition of a fix function and the creation of channels for the integration
routine were carried out manually. The full implementation in the O’ME G A-WHIZARD
framework will be the main focus of future work.
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A. Conventions

A.1. Constants, Metric and Dirac Matrices

Throughout this thesis we use

~ = c = 1. (A.1)

We use as metric tensor:

gµν = gµν = diag(1,−1,−1,−1). (A.2)

We take the Weyl basis for the Dirac Matrices:

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (A.3)

where σµ = (1, ~σ) and σ̄µ = (1,−~σ) and σi are the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.4)

such that the Dirac algebra is fulfilled:

{γµ, γν} = 2gµν · 1, {γµ, γ5} = 0. (A.5)

Physical Input Parameters

In the numerical evaluations of this thesis, values for physical constants and masses are
taken from [5].

A.2. Helicity Eigenstates

In the following we will list our conventions helicity eigenstates of the Dirac and bosonic
wave functions. These are based on [88] and are also used in the matrix element generator
O’ME G A [17].

We define the two-component spinors χλ(p) as helicity eigenstates:

~σ~p

|~p|
χ

λ
(p) = λχ

λ
(p), (A.6)

with λ = ±1. Explicitly, we use:

χ+(p) =
1√

2|~p| (|~p|+ pz)

(
|~p|+ pz
px + ipy

)
, (A.7)

χ−(p) =
1√

2|~p| (|~p|+ pz)

(
−px + ipy
|~p|+ pz

)
, (A.8)
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except in the case |~p|+ pz = 0, where we use

χ+(p) =
(

0
1

)
, (A.9)

χ−(p) =
(
−1
0

)
. (A.10)

Using these spinors we can compose the upper and lower component of the Dirac four-
spinors u and v:

ω±u(p, λ) = u±(p, λ) ω±v(p, λ) = v±(p, λ), (A.11)

with ω± = 1
2 (1± γ5) being the projector on the chiral states (L,R)=̂(−,+). Taking

u±(p, λ) = ±v±(p, λ) = ρ±λ(p)χ
λ
(p), (A.12)

ρ±λ(p) =
√

p0 ± |~p|, (A.13)

the resulting spinor wave functions fulfill the Dirac equation and are helicity eigenstates
at the same time.

In the case of a bosonic wave function εµ(p, m, λ), we use for general directions of the
momentum ~p:

εµ(p, m,+) =
1√

2(p2
x + p2

y)


0

pxpz

|~p| − ipy
pypz

|~p| + ipx

−p2x+p2y
|~p|

 , εµ(p, m,−) = εµ∗(p, m,+). (A.14)

In the case of a massive boson there exists a third physical helicity state:

εµ(p, m, 0) =
p0

m|~p|


|~p|2
p0
px
py
pz

 . (A.15)

For particles moving along the positive z-axis, we use:

εµ(p, m,+) =
1√
2


0
1
i
0

 εµ(p, m,−) =
1√
2


0
1
−i
0

 , (A.16)

and change sign of the x-component of εµ± if the particle is moving in the negative z-
direction. For massive particles at rest we define the helicity relative to the positive
z-axis. Thus, in addition to the vectors of equation (A.16) we have
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A.3. Lorentz Transformation

εµ(p, m, 0)|~p=0 =


0
0
0
1

 . (A.17)

These polarization vectors are orthogonal to each other and the four-vector p:

εµ(p, m, λ) · ε∗µ(p, m, λ′) = −δλλ′ , εµ(p, m, λ) · pµ = 0. (A.18)

A.3. Lorentz Transformation

We use the following parameterization for a Lorentz boost into the rest frame of a four-
vector. Define the three-velocity and the Lorentz-factor γ of a four-vector pµ = (p0, ~p)
with positive invariant mass p2 as:

~β =
~p

p0
, γ =

|p0|√
p2

, (A.19)

the corresponding Lorentz boost into the rest frame can be written in matrix form as:

Λµν(β) =


γ −γβ1 −γβ2 −γβ3

−γβ1 1 + (γ−1)β2
1

β2
(γ−1)β1β2

β2
(γ−1)β1β3

β2

−γβ2
(γ−1)β1β2

β2 1 + (γ−1)β2
2

β2
(γ−1)β2β3

β2

−γβ3
(γ−1)β1β3

β2
(γ−1)β2β3

β2 1 + (γ−1)β2
3

β2

 . (A.20)

This transforms the four-vector pµ into its rest frame:

Λµν(~β(p))pν =
(

p0

|p0|
√

p2, 0, 0, 0
)

. (A.21)

Often, the spatial part of a Lorentz transformed on-shell vector kµ = (k0,~k), with k2 = m2,
is needed:

−−−→
Λ(β)k =

(
γ − 1
β2

~β~k − γk0

)
· ~β + ~k. (A.22)

From this, one can deduce the Jacobian∣∣∣∣d3k′

d3k

∣∣∣∣ = γ

(
1−

~β~k

k0

)
. (A.23)

Also of interest is the square of (A.22):

−−−→
Λ(β)k

2
= γ2

(
k0 − ~β~k

)2
−m2. (A.24)
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B. Renormalization of the Photon
Self-Energy

In D dimensions, the photon self-energy, sometimes called vacuum polarization, is given
by:

−iΣµν = −e2µ4−D
∫

dDk

(2π)D
Tr{γµ(k/ + m)γν(k/ + p/ + m)}

(k2 −m2)((k + p)2 −m2)
. (B.1)

After evaluating the trace and subsequent tensor reduction we obtain an expression in
terms of scalar integrals:

−iΣµν = −i
α

2π

[
gµν

(
4B00(p2,m, m)− 2A0(m) + p2B0(p2,m, m)

)
+4pµpν

(
B11(p2,m, m) + B1(p2,m, m)

)]
. (B.2)

This can further be reduced to

−iΣµν =
(

gµν −
pµpν
p2

)
ΣAA
T (p2), (B.3)

where

ΣAA
T (p2) = −i

α

3π

[
(p2 + 2m2)B0(p2,m, m)− 2m2B0(0,m, m)− p2

3

]
. (B.4)

The longitudinal part vanishes as expected. We expand in a Taylor series around p̄ = εp
and take the limit ε→ 0 afterwards, such that p̄2 → 0 and(

gµν −
p̄µp̄ν
p̄2

)
=
(

gµν −
pµpν
p2

)
. (B.5)

Taking the first derivative, we get:

pρ
∂

∂pρ

(
gµν −

pµpν
p2

)
ΣAA
T (p2)

∣∣∣∣
p=p̄

= pρ
(
−gµρp̄ν − gρν p̄µ +

2p̄µp̄ν p̄ρ
p̄2

)
1
p̄2

ΣAA
T (p̄2)

+pρ
(

gµν −
p̄µp̄ν
p̄2

)
2p̄ρΣAA

T
′
(p̄2). (B.6)

The limit

lim
p̄2→0

1
p̄2

ΣAA
T (p̄2) = −i

α

3π

[
B0(0,m, m) + 2m2B′

0(0,m, m)− 1
3

]
(B.7)

is well defined and the first derivative vanishes for ε→ 0. The second derivative is

pσpρ

2
∂2

∂pρ∂pσ

(
gµν −

pµpν
p2

)
ΣAA
T (p2)

∣∣∣∣
p=p̄

= · · · =
(

gµν −
pµpν
p2

)
p2ΣAA

T
′
(p̄2). (B.8)
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Thus, the renormalized photon self-energy is:

−iΣ̂µν =
(

gµν −
pµpν
p2

)[
ΣAA
T (p2)− ΣAA

T (0)− p2ΣAA
T

′
(0)
]
,

≡
(
p2 gµν − pµpν

)
iΣ̂AA

T , (B.9)

Σ̂AA
T (p2) = − 1

p2

α

3π

[
(p2 + 2m2)

(
B0(p2,m, m)−B0(0,m, m)

)
− 2m2p2B′

0(0,m,m)
]
.

(B.10)

Multiplying the two adjacent propagators to the left and to the right of the transverse
Lorentz structure, the self-energy part acts as projector onto the transverse propagator:

i∆ρµ(−iΣ̂µν)i∆νσ =
i

p2 + iε

(
−gρσ +

pρpσ

p2

)
Σ̂(p2). (B.11)

This coincides with textbook results, e.g. cf. [4]. Thus, the one loop correction to photon
propagators can be evaluated by adding the tree level amplitude times the correction factor
Σ̂AA
T (p2):

M(1) = . . . + Σ̂AA
T (p2)M(0) + . . . . (B.12)

The replacement of the Lorentz structure of the propagator is not necessary, since the
photon propagator is connected to a Dirac field bilinear. Due to current conservation,
only the part proportional to gµν contributes.

The renormalized photon self-energy B.10 is not only ultraviolet finite, but also infrared
safe. We can choose to evaluate it analytically or by using the tree theorem.

Analytically, we get [4]:

B′
0(0,m, m) =

1
6m2

, (B.13)

B0(p2,m, m)−B0(0,m, m) = −m2

p2

(
1
r
− r

)
log r, (B.14)

r =
−p2 + 2m2 − iε±

√
(p2 − 2m2 + iε)2 − 4m4

2m2
. (B.15)

Since the difference of the two scalar B0 integrals is UV finite, we can re-express it in the
form of one loop integral without the need of a regulator:

B0(p2,m, m)−B0(0,m, m) = − 1
iπ2

∫
d4k

(p2 + 2kp)
(k2 −m2)2((k + p)2 −m2)

. (B.16)

We evaluate this integral in three different regions of the squared momentum p2.
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Figure B.1: Integrand of (B.16) after k0-integration for p2 > 0. The arising singularity is
smoothed by addition of a fix function.

• 0 < p2 < 4m2

Here, the kinetic function λ (3.28) is always negative and we therefore do not en-
counter any singularities (cf. section 3.2). Since the vacuum polarization is only de-
pendent on the momentum squared, we use the parameterization pµ = (

√
p2, 0, 0, 0).

After k0-integration the two terms of the integrand read:

I1 =
1

π
√

p2
√

r2 + m2(2
√

r2 + m2 −
√

p2)
, (B.17)

I2 = − (
√

r2 + m2 +
√

p2)2 + (r2 + m2)

2π
√

p2(r2 + m2)3/2(2
√

r2 + m2 +
√

p2)
. (B.18)

Here, we switched to spherical coordinates. Since the singularity of the first factor
in the denominator of (B.16) is of second order, we had to take the derivative with
respect to k0 before picking up the pole to obtain I2 . Adding the two terms yields

I =
p2

2π(r2 + m2)3/2(4(r2 + m2)− p2)
, (B.19)

which can easily be integrated numerically.

• p2 < 0

In this region we cannot find a rest frame with ~p = 0. Using pµ = (0, 0, 0,
√
−p2),

we get the following two terms after the k0-integration.

I1 =
1

π(p2 − 2
√
−p2r cos θ)

√
r2 + m2 − p2 + 2

√
−p2r cos θ

, (B.20)

I2 = − 2(r2 + m2) + p2 − 2
√
−p2r cos θ

2π(r2 + m2)3/2(p2 − 2
√
−p2r cos θ)

. (B.21)
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Figure B.2: Scalar 2pt integrals (B.16) from LO O PTO O L Sand numerical evaluation.

Note that both terms become singular at a surface in the integration region. The
two singularities cancel in the sum of both terms. One can therefore numerically
integrate the sum of both terms. However, we can also use (B.19) in this region of
p2 since we do not encounter any singularities when we analytically continue from
one regime to the other.

• 4m2 < p2

In this region (B.17) becomes singular on a spherical surface in the integration region.
This peak indicates the existence of an imaginary part of the photon self-energy.
The momentum through the two point function is high enough to produce two real
fermions. This can also be seen from the analytical result (B.14), when r becomes
negative. To get an integrand which can safely be evaluated numerically, we calculate
the fix function with the procedure presented in section 3.2.2. Since we are already
in the rest frame of p, we do not have to impose a Lorentz transformation. However,
because of the second order pole the calculation of the residue involves again one
derivative with respect to k0. To illustrate the effect of the fix functions, we plotted
the original integrand and the fixed integrand in figure B.1. Here, we used p2 = 9m2

with m being the mass of the electron such that the integrand gets singular at
r =
√

5m.

The result after integration of (B.16) is shown in figure B.2 for the interesting range
around p2 = 0 and p2 = 4m2. On top of the same graph we also depicted the analytic
result obtained by using LO O PTO O L S. The results coincide within the errors of the nu-
merical calculation (≈ .1%).

In chapter 5, we evaluated the contribution of the photon self-energy correction to Bhabha
scattering. The constant term arising from (B.13) was incorporated by adding

M(1) = · · ·+ α

3π

1
3V
M(0) + . . . (B.22)

to the integrand, where V is the volume of the integration region.

97



C. Sample Calculation of a Function with
Overlapping Peaks

To demonstrate the occurrence of peaks when propagators of loops are cut and the con-
struction of fix functions to smooth these peaks, we will evaluate the scalar three-point
function depicted in figure C.1. We will also calculate the contributions of the sub-leading
terms of equation (3.15), which give rise to an imaginary part and a further real part. The
integral we are going to calculate is

C0 =
1

iπ2

∫
d4k

1
k2 −m2

1
(k − p1)2 −m2

1
(k − p2)2 −m2

, (C.1)

where we set the masses of all internal lines to m. In the final numerical calculations we
will set this mass equal to 1. For the external momenta, will use the following settings:

p1 =


3m
0
0
0

 , p2 =


3m
0
0
m

 . (C.2)

The three-point function (C.1) has a rather simple analytic solution. Using LO O PTO O L S,
the library included in the FO R MCA L C package, we get the answer for m = 1:

C0 = 0.274156− i 0.503924. (C.3)

Opening the Loop and Construction of Fix Functions

We begin by cutting the second propagator in (C.1). From equation (3.8) we get the
corresponding delta function

∆l
1 = − 2πi

2Ei
δ(k0 − (−3m +

√
r2 + m2)), (C.4)

where we switched to spherical coordinates for the loop momentum. The additional fac-
tor i stems from the numerator of the propagators, which we set to 1 instead of i as
in the analysis leading to (3.8). Since the square of the difference of the momenta of
propagators 2 and 3, p2

32 = (p2 − p1)2 = −m2 is negative, we expect a peak in the inte-
gration region where the third propagator gets singular. This is the case for cos θ = 0.
The left plot of figure C.2 shows the integrand in the x − z plane. As argued in section
3.2, we get another peak at the same position when the third propagator is cut. The two
singularities cancel each other in the sum, which can be seen in the right plot of figure C.2.

When the first propagator is cut, the resulting integrand reads:

C ′
0,1 = − 2

π

∫
r2drdΩ

2
√

r2 + m2

1
9m2 − 6m

√
r2 + m2

1
8m2 − 6m

√
r2 + m2 + 2mr cos θ

. (C.5)
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Figure C.1: Scalar 3pt-function at unphysical kinematic momenta pi.

The prime at C ′
0 indicates the contribution to the integral C0 if one propagator is cut.

Here, the second and third propagator get singular on surfaces in the integration region,
given by the following equations:

I : r0 =
√

5
2

m, (C.6)

II :
x2

0

m2
+

y2
0

m2
+

8(z0 − m
2 )2

9m2
= 1. (C.7)

These two surfaces, a sphere and a rotational ellipsoid overlap. In the upper plot of figure
C.3, we showed the integrand (C.5) in the x− z plane.

Since we are already in the rest frame of the difference of the two momenta flowing through
propagators 1 and 2, the fix function for the peak arising from the singularity of the second
propagator is easily found:

Fix1 = − 2
π

∫
drdΩ

√
5

12m2(2r −
√

5m)(1−
√

5 cos θ)

(
1− (2r −

√
5m)2

4c2

)2

θ(r, r0, c).

(C.8)
Here, θ(r, r0, c) stands for the product of the two step functions:

θ(r, r0, c) = θ (r − (r0 − c)) θ ((r0 + c)− r) . (C.9)

Subtracting this function from the original integrand (C.5), the peak coming from the
singularity of the second propagator vanishes as can be seen in the second plot of figure
C.3. Constructing the fix function for the second peak in the same manner will lead to a
singular structure in the overlapping region which cannot be fully compensated as argued
in section 3.2.2. We will therefore proceed along the line proposed in that section.

We fix the second peak by Lorentz transforming into the rest frame of p31 = −p2+p1, where
the rotational ellipsoid becomes a sphere with radius r′0 given by equation (3.39). Here,
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C. Sample Calculation of a Function with Overlapping Peaks
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Figure C.2: Occurrence of a peak at z = 0 in the case p2
ij < 0 (left plot). The same peak

with opposite sign arises when the respective second propagator is cut. The two peaks cancel
in the sum as is shown in the right plot.

we calculate the fix function as usual, with the exception of not taking the limit r′ → r′0
in the second propagator. Transforming back, we obtain a fix function which smooths
the second peak. However, this fix function adds a non-zero value to the integrand which
vanishes only in the limit of the width c going to zero. Explicitly, this fix function reads

Fix2 =
2
π

∫
drdΩ

2r2(3
√

r2 + m2 − r cos θ)√
r2 + m2(2

√
r2 + m2 − 3m)r′2(r′ − 4m)

(
1− (r′ − 4m)2

16c2

)2

θ(r′, r′0, c),

(C.10)
where r′ is given by:

r′ =
√

2m2 + 19r2 − 12r
√

r2 + m2 cos θ + r2 cos 2θ. (C.11)

The third fix function is obtained by taking the residue of the second fix function (C.10)
at r = r0 and again multiplying with (3.53) and the corresponding theta functions:

Fix3 =− 2
π

∫
drdΩ

√
5(
√

5 cos θ − 9)
6m(
√

5m− 2r)r′r
2(r′r − 4m)

(
1− (r′r − 4m)2

16c2

)2
(

1− (2r −
√

5m)2

4c2

)2

·θ(r′r, r′r0, c)θ(r, r0, c). (C.12)

Here, r′r is the radial coordinate in the rest frame of the third propagator at a fixed value
of the radial coordinate of the integration system:

r′r =
m

2

√
5 cos 2θ − 36

√
5 cos θ + 103. (C.13)

Subtracting the first two fix functions from (C.5) and adding the third we get a smooth
integrand as depicted in the last plot of figure C.3.
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Figure C.3: Upper plot: When the first propagator of (C.1) is cut the two remaining
propagators can become singular. The corresponding peaks overlap. Middle plot: A fix
function is added to remove the first peak. Lower plot: Integrand after addition of three fix
functions. All singular peaks vanish. For better illustration, we plotted the integrands without
the integration measure r2 sin θ.

101



C. Sample Calculation of a Function with Overlapping Peaks
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Figure C.4: Numerical evaluation of the three-point function C ′
0 for different values of the

width c used by the fix functions. Towards a smaller width the true value of the integral is
approximated, however, the numerical error increases due to the growing peak structure.

Integration

The fixed integrand has a rather smooth structure and therefore an adaptive integration
method can give reliable results. However, the fix functions we used add a finite value to
the integrand and only in the limit c→ 0 where effectively no fix function is added at all
the true value of the integrand is reached. The smaller the width c, the more enhanced
the peak structure gets, which hardens the adaption of the integration grid. Therefore
more sample points are needed to obtain the same error estimation.

We integrated the fixed integrand, setting m = 1 and using the spherical coordinates
introduced above. We used a simple mapping onto the unit interval x ∈ [0, 1) for the
radial coordinate

r =
1

1− x
− 1, (C.14)

which sets the interesting region of about r = 1 in the center of the integration region of
the new variable x. In figure C.4 we showed the numerical results dependent on the width
c. For each integration we used the same amount of sampling points, 107, to show the
increase of the error estimate of the numerical evaluation. In the evaluations of Feynman
graphs for Bhabha scattering, cf. chapter 5, we set the width c equal to the infrared
cutoff at about 1% of the center of mass energy. For the present analysis, the values in
the percent region of the radii of the singularities also seem to give a reasonable trade-off
between accuracy and efficiency of the numerical evaluation. The result at c = .005 is:

C ′
0 = −1.366(12). (C.15)

We will calculate the contributions of the sub-leading terms in the following.
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Terms with Multiple Delta Functions

The occurrence of peaks in terms of the expansion (3.15) in the Feynman Tree Theorem
indicates a non-zero contribution of terms with more delta functions. Whenever one prop-
agator is cut and another gets singular in the integration region, also this propagator can
be replaced by a delta function and the product of both delta function does not vanish at
the singularity. Therefore, each of the peaks in (C.5) implies a possible imaginary part,
coming from terms with one ∆l and one ∆u in (3.15), and the overlap indicates a further
real part coming from a term with one ∆l and two ∆u. Since each delta function decreases
the dimension of the final numerical integration by one, the evaluation usually gets simpler
for terms with more delta functions.

Replacing the first propagator in (C.1) by ∆l and the second by ∆u, we get:

C ′′
0,1 =

1
2

1
iπ2

(−2πi)2
∫

d4k

2
√

k2 + m2

δ(k0 −
√

k2 + m2)δ
(

k0 − (−p0
1 −

√
(~k − ~p1)2 + m2)

)
2
√

(~k − ~p1)2 + m2(p2
2 − 2kp2)

.

(C.16)
Here, we also included the factor 1

2 coming from the coefficient CLUP of equation (3.15).
Performing the k0-integration, switching to spherical coordinates and again performing
the subsequent radial and azimuthal integration, we end up at:

C ′′
0,1 = i

π

6m2

1∫
−1

dx

x− 1√
5

, (C.17)

where we substituted the polar coordinate by x = cos θ. This integral has again a singu-
larity as expected from the fact that the two peaks in (C.5) overlapped. Again, we are
only interested in the real part of the integration. The integral can easily be evaluated
using Cauchy’s principal value prescription. This yields with m = 1:

C ′′
0,1 = −i 0.503924. (C.18)

Replacing the first and the third propagator by a delta function leads again to a one dimen-
sional integral after performing the same steps as before. However, the explicit expression
is rather complex and not very illuminating, so we do not list it here. The integrand again
shows the expected singular behavior, however, this time the principal value vanishes.

For the contribution of the term where the first propagator is replaced by ∆l and the other
two by ∆u, no numerical integration has to be performed at all. After integration over
the delta functions and the trivial azimuthal integration the final result is:

C ′′′
0 =

π2

6m2
. (C.19)
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C. Sample Calculation of a Function with Overlapping Peaks

Final Result

Collecting all results of the above analysis, we get for the scalar three-point function:

C0 = 0.279(12)− i 0.503924. (C.20)

Within the error this coincides with the LO O PTO O L S result (C.3). The contribution of
the three delta term (C.19) is rather high and leads to a final result which is about one
order of magnitude smaller than the numerical result of the leading terms (C.15). Thus,
the relative error of the combined result increases considerably. To get a smaller relative
error more sampling points have to be used in the numerical integration. Nevertheless, we
showed that even in the case of overlapping peaks we can get a numerical result for loop
integrals and there are no further theoretical limitations of an application of this method
to multileg amplitudes.

104



D. Extension to Two Loops

In the case of connected multiple loops one might think to end up at different sets of tree
graphs after cutting, depending on the order of the k0

i -integration. As an example take
the two loop graph depicted in figure D.1. In a first loop momentum assignment, the
propagators labeled 1, 2, 3 might form the first loop while 3, 4, 5 the second. Then, there
is one common propagator 3. Naively, if cutting the left loop first one would expect to
obtain the tree graphs with cut propagators (1, 3) and (2, 3) twice while (3, 4) and (3,
5) appeared only once. In total one would get 10 tree graphs. One could also assign the
momenta such that the outer propagators 1, 2, 4, 5 form a loop and the second loop is
one of the inner loops. Starting with the outer loop one would get 12 tree graphs. In the
following we will show that each combination of cutting the two loops appears only once,
independent of the order of the integration.

The propagators of any two loop diagram can fall into three categories. The ones, which
carry momentum of the first loop F (1), the ones which belong to both loops, F (2), and
finally those which carry only the momentum of the second loop, F (3). Neglecting contri-
bution from the numerator, the total two loop graph is then given by:

G2 = Fn1 ? Fn2 ? Fn3 , (D.1)

where for better readability we wrote

Fni =
ni∏
k=1

F
(i)
k . (D.2)

Using the same abbreviation for advanced Green functions we write:

Fni = (Fni −Ani) + Ani . (D.3)

The first two terms can further be rewritten with the help of equation (3.10), where on
the left hand side we have the product over the advanced Green functions, which is not
zero in this case:

I(i) = Fni −Ani , (D.4)

=
∑

∆lF (i) · · · −
∑

∆l∆lF (i) · · ·+ . . .− (−1)n
∑

∆l · · ·∆l,

=
∑

perm.
Ui + Li + Pi = ni

CLUP ∆lLi ∆uUi PPi . (D.5)

In going from the second line to the third we made the same substitution as before to
get to equation (3.15). Here, we did not explicitly wrote out the terms with only one ∆l

function, but included these also in the sum. The coefficient CLUP is given as before, (3.16).

We therefore get for the two loop graph:
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D. Extension to Two Loops

1
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5

Figure D.1: Generic two loop graph.

G2 = In1 ? In2 ? In3 + An1 ? In2 ? In3 + In1 ? An2 ? In3 + In1 ? In2 ? An3

+An1 ? An2 ? In3 + An1 ? In2 ? An3 + In1 ? An2 ? An3 + An1 ? An2 ? An3 .

The terms in the second line vanish when integrating over the respective loop momentum.
The term An1 ? In2 ?An3 vanishes after a transformation of the loop momentum such that
the momentum flowing through the set of propagators previously belonging to both loops
is now one of the new loop momenta.

Reversing (D.4), we get

G2 = Fn1 ? In2 ? In3 + In1 ? Fn2 ? In3 + In1 ? In2 ? Fn3 − 2In1 ? In2 ? In3 . (D.6)

Using (3.12) we can substitute for Fni :

Fni =
ni∏
k=1

(
P

(i)
k +

1
2
∆l
k +

1
2
∆u
k

)
=
∑
perm.

1
2Li+Ui

∆lLi ∆uUi PPi . (D.7)

The coefficient CLUP in (D.5) vanishes for even Li. Thus, we only get a result different
from zero in (D.6), if at least in two of the slots an odd number of delta functions ∆l is
present. Since the two coefficients in (D.5) and (D.7) are rather similar we can easily find
the final result:

G2 =
∑
perm.

CG2 ∆lL1∆uU1
PP1 ? ∆lL2∆uU2

PP2 ? ∆lL3∆uU3
PP3 , (D.8)

CG2 =
4

2L+U


+1 for two Li odd, one Li even
−1 for all Li odd
0 otherwise

(D.9)

As expected, the leading terms are those where two cuts open both loops and result in a
tree graph. These are given for two Li = 1, the third being zero and also U = 0. Each
term appears only once, CG2 = 1. The final result D.8 looks rather simple. However, the
peak structure of the resulting integrands might still be quite complicated. In this thesis
we will not investigate multi loop graphs further and leave them to future work.
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