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Abstract

In this thesis, cross sections of inclusive and differential di- and trijet pro-
duction in deep inelastic electron-proton scattering at low Bjorken-x have
been determined and compared to perturbative QCD calculations at next-
to-leading order. The data were taken during the years 1998 − 2000 with
the ZEUS detector at the HERA collider and had an integrated luminos-
ity of 82 pb−1. The center-of-mass energy was

√
s = 318 GeV. The phase

space was defined by 10−4 < xBj < 10−2, 10 GeV2 < Q2 < 100 GeV2, and
0.1 < y < 0.6. The jets were identified in the hadronic center-of-mass frame
using the inclusive kT -clustering algorithm. The cross sections were measured
differentially in virtuality, Q2, inelasticity of the photon, y, Bjorken-x, xBj,
transverse energy of the jets in the hadronic center-of-mass frame, Ejet

T,HCM,

and the pseudorapidity of the jets in the laboratory frame, ηjet
LAB. Multi-

differential cross sections were measured as functions of xBj and correlations
of the jet momenta in the transverse plane.
The 6m Tagger, which was reinstalled in 2003, was calibrated using the mea-
surement of the photon energies by the Spectrometer. First measurements
of the acceptance of the luminosity photon detectors where carried out.
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Zusammenfassung

In dieser Arbeit wurden die Wirkungsquerschnitte der inklusiven Zwei- und
Dreijet-Produktion in Tief-Inelastischer-Streuung (DIS) bei kleinem Bjorken-x
gemessen und mit störungstheoretischen QCD-Rechnungen nächstführender
Ordnung (NLO pQCD) verglichen. Die verwendeten Daten stammen aus
den Jahren 1998 bis 2000 und wurden mit dem ZEUS Detektor am HERA
Speicherring genommen. Die integrierte Luminosität für diesen Zeitraum
war 82 pb−1. Die Schwerpunktsenergie betrug

√
s = 318 GeV. Der be-

trachtete Phasenraum war 10−4 < xBj < 10−2, 10 GeV2 < Q2 < 100 GeV2,
und 0.1 < y < 0.6. Die Jets wurden im hadronischen Schwerpunktssys-
tem (HCM) unter Verwendung des inklusiven kT -Clustering Algorithmus
rekonstruiert. Die Wirkungsquerschnitte wurden differentiell in Virtualität,
Q2, Inelastizität des Photons, y, Bjorken-x, xBj, Transversalenergie der Jets
im HCM-System, Ejet

T,HCM und der Pseudorapidität der Jets im Laborsystem,

ηjet
LAB, gemessen. Die zweifach differentiellen Wirkungsquerschnitte wurden

als Funktionen von xBj und Korrelationen der Jetimpulse in der Transver-
salebene gemessen.
Der 6m Tagger, der im Jahr 2003 erneut eingebaut wurde, wurde unter
der Verwendung der vom Spectrometer gemessen Photonenenergien kali-
briert und erste Messungen der Akzeptanz der Photondetektoren des Lumi-
nositätsmesssystems wurden durchgeführt.
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Chapter 1

Introduction and Physics
Motivation

In previous studies, multijet production in deep inelastic scattering (DIS)
at HERA [2, 3] has been used to test the predictions of perturbative QCD
(pQCD) over a large range of four-momentum transfer squared, Q2, and to
determine the strong coupling constant αs [4, 5, 6, 7, 8, 9, 10, 11, 12]. At
lowest-order QCD, O(αs), dijet production in neutral current DIS proceeds
via the boson-gluon-fusion (BGF, V ∗g → qq̄ with V = γ, Z0) and QCD-
Compton (QCDC, V ∗q → qg) processes. Events with three jets can be seen
as dijet processes with an additional gluon radiation or splitting of a gluon
into a quark-antiquark pair and are directly sensitive to O(α2

s) QCD effects.
The higher sensitivity to αs and the large number of degrees of freedom of
the trijet final state make further tests of the QCD predictions possible.

In this analysis, the multi-differential cross sections and angular jet correla-
tions for dijet and trijet production in the hadronic center-of-mass (HCM)
frame are measured with high statistical precision in the kinematic region
defined by 10 GeV2 < Q2 < 100 GeV2, 10−4 < xBj < 10−2 and 0.1 < y < 0.6.
The results are compared with perturbative QCD (pQCD) calculations at
next-to-leading order (NLO). Multijet production at low Bjorken-x, xBj [13],
is a particular interesting region to study parton dynamics.

In the usual QCD factorization approach, the cross sections are obtained as
the convolution of perturbative matrix elements and parton densities evolved
according to the DGLAP evolution equations [14, 15]. These equations resum
to all orders the terms proportional to αs log Q2 and the double logarithms
log Q2 log 1/x, where x is the fraction of the proton momentum carried by
a parton, which is equal to xBj in the quark-parton model. In the DGLAP
approach, the parton participating in the hard scattering is the result of a
partonic cascade ordered in transverse momentum, pT . The partonic cascade
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starts from a low-pT and high-x parton from the incoming proton and ends
up, after consecutive branching, in the high-pT and low-x parton entering
in the hard scattering. This approximation has been tested extensively at
HERA and was found to describe well the inclusive cross sections [10, 16]
and jet production [2, 17, 18, 7, 19, 3, 9]. At low xBj, where the phase space
for parton emissions increases, large terms proportional to αs log 1/x may
spoil the accuracy of the DGLAP approach. In this region the transverse
momenta and angular correlations between partons produced in the hard
scatter may be sensitive to effects beyond DGLAP dynamics. The informa-
tion about cross sections, transverse energy, ET , and angular correlations
between the two leading jets in multijet production therefore provides an
important testing ground for studying the parton dynamics in the region of
small xBj.
Recent studies [20] by the H1 collaboration compared multi-differential cross
sections with NLO QCD DGLAP-based predictions in the low-Q2 and low-xBj

region. Reasonable agreement between data and the theoretical calculations
was found, except for the azimuthal correlation between jets, where the NLO
QCD predictions failed to describe the data.
In this analysis, correlations for both azimuthal and polar angles, and corre-
lations in jet transverse energy and momenta for dijet and trijet production
in the hadronic (γ∗p) center-of-mass (HCM) frame are measured with high
statistical precision in the kinematic region of 10 GeV2 < Q2 < 100 GeV2

and restricted to 10−4 < xBj < 10−2. The results are compared with pQCD
calculations at NLO.

12



Chapter 2

Theory

2.1 Introduction

The experimental results of particle physics are described by a theory called
Standard Model (SM). In the SM matter is built of three families of elemen-
tary fermions. Each family consists of a charged and a neutral lepton and
two quarks with charges −1/3 and +2/3. These are electron (e−), electron
neutrino (νe), down-quark (d) and up-quark (u) for the first family. The
second family are muon (µ−), muon neutrino (νµ), strange-quark (s) and
charm-quark (c). Finally the third family consists of the tau lepton (τ−, also
tauon), tau-neutrino (ντ ), bottom-quark (b, often called beauty-quark) and
top-quark (t, sometimes called truth). From family to family the particles
get more massive. The fundamental forces are the electromagnetic, weak
and strong interactions, which are modeled by quantum field theories. QED
(quantum electrodynamics) and QCD (quantum chromodynamics) describe
the electromagnetic and strong interactions, respectively. The electroweak
model unifies the description of the weak interaction with QED. The forces
are mediated by bosons. The photon mediates the electromagnetic force, Z-
and W±-bosons the electroweak force and the 8 gluons the strong interac-
tion. The masses of the fundamental particles are generated by the so-called
Higgs-mechanism. The Higgs particle is the only particle of the SM that has
not been experimentally discovered yet. The only known force that is not
included in the Standard Model is gravity.

In this chapter the basics of QCD will be described. It is not the aim to lay
out the complete theory, but to present the main points in the calculation of
the cross sections that are compared to the experimental measurements that
were carried out for this thesis.

13
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Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton
and Boson Gluon Fusion processes in NC DIS.

2.2 Deep Inelastic Scattering

In deep inelastic scattering (DIS) a virtual boson probes the inside of the
proton. In case of neutral current (NC) DIS this boson is either a photon or
a Z. In charged current (CC) DIS a W±-boson is exchanged. In this analysis
only NC DIS was considered, and the analyzed low-Q2 range makes the Z-
contribution negligible1, so that only the case of the virtual photon exchange
is important here.
The NC DIS process in electron(positron)2-proton scattering can be ex-
pressed as:

e±(k) + P (p) → e±(k′) + X

Where p is the four-momentum of the incoming proton and k and k′ are the
four-momenta of the incoming and scattered electron, respectively. X is the
hadronic final state. The electron exchanges a photon of four-momentum
q = k′ − k with the proton.

2.2.1 Kinematic Variables

The kinematics of deep inelastic scattering can be described by three vari-
ables [13]:

Q2 = −q2 = −(k′ − k)2

xBj =
Q2

2p · q
110 GeV2 < Q2 < 100 GeV2 compared to m2

Z
= 8315 GeV2

2In the following, the term “electron” denotes both electron and positron.
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y =
p · q
p · k

Q2 is the virtuality of the photon, xBj is the momentum fraction of the parton
in the proton. y is the inelasticity. In the approximation of negligible proton
and electron masses, the relationship of these variables to the center of mass
energy of the colliding particles is:

s = (k + p)2 = 2EeEp =
Q2

xy

2.3 Quark Parton Model

The quark parton model (QPM) describes the hard scattering on hadrons
in terms of their parton distributions. When, for instance, a virtual photon
scatters on a proton, the probability that it hits a certain parton inside the
proton is given by the density of that parton in the proton as a function
of the kinematic variables. The parton distributions functions (PDFs) are
assumed to be universal for all processes. This model was very successful in
describing early deep inelastic scattering (DIS) experiments. The quantum
numbers and momenta of the partons add up to the quantum numbers of
the hadron. QCD is an extension to the simple QPM in that it subjects the
parton coming from the hadron to the strong interaction, thus causing gluon
radiation and splitting of gluons into quarks, before a parton interacts with
the probing particle.

2.4 QCD

Quantum chromodynamics (QCD) is the theory of the strong interaction.
The gauge symmetry group of QCD is the SU(3). Gluons mediate the force
between colored particles. Analogous to the electromagnetic charge, strongly
interacting particles carry “color”. The name color was chosen, because it
comes in three different varieties. Also, like the three basic colors red, green
and blue mix to white, an object that carries equal amounts of the three types
of color charge is neutral to the strong interaction. Thus baryons, e.g. the
proton, consisting of three quarks of different colors, are colorless. Mesons
consist of a quark and an anti-quark, which carry color and anti-color of the
same type, and are also colorless. The gluons come in eight different vari-
eties and carry color and anti-color, which do not cancel. So, unlike photons,
which are electrically neutral, gluons carry the charge of the force that they
mediate and can directly interact with each other via a three-gluon vertex.
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One success of QCD is that it explains the property of asymptotic freedom,
which is the vanishing of the coupling constant of the strong interaction at
very short distances. The coupling of the strong interaction increases at
higher distances. When two colored particles are separated, quark-antiquark
pairs are created from the energy of the field between them and eventually
quarks combine to form colorless baryons and mesons. This mechanism,
which makes it impossible to observe colored particles directly, is called con-
finement, which, however, has not been completely proven within the theory
yet. The theory of the strong interaction [21, 22, 23, 24] that was able to
describe asymptotic freedom was awarded with the Nobel Prize in 2004 [25].
The phenomena of confinement and asymptotic freedom are reflected in the
dependence of the coupling constant of the strong interaction, αs, on the
energy scale of the process. At higher energies, which relate to smaller dis-
tances, αs gets smaller. This is opposite to the behavior of the fine-structure
constant, α, in electromagnetic interactions. This can be explained by the
different properties of the mediating bosons. Photons are electrically neu-
tral and splits into virtual electron-positron pairs that partially screen the
electromagnetic field of a charged particle at larger distances. Gluons, on
the other hand, carry color and anti-color that do not cancel. The cloud of
virtual gluons between colored particles enhances the effective coupling at
larger distances, leading to an “antiscreening” effect.
In perturbative QCD (pQCD [26]) cross sections are calculated up to a certain
order of αs. For these calculations to be reliable, αs must be small enough
so that the omission of higher orders is not so significant. This is the case at
larger scales µ, where αs(µ) becomes smaller. The order of αs is related to
the number of vertices of the strong interaction in the considered Feynman
diagrams. For instance the QCD-Compton and BGF processes, Fig. 2.1, are
of first order in αs. The number of orders is often referred to as leading (LO)
or next-to-leading (NLO) order. This notation depends on the final state that
is considered. The aforementioned processes are LO for dijet production. The
NLO includes Feynman diagrams with an additional parton radiation or an
internal gluon line.
When integrating over the phase space, the momenta in the loops have to
be integrated to infinity. This would lead to diverging cross sections. These
are called ultraviolet (UV) divergencies. To remove these divergencies, the
integral is only calculated up to some scale, which is called renormalization
scale, µr. This scale is not a prediction of the theory, but has to be chosen.
When all orders of αs are taken into account, the resulting cross sections do
not depend on µr, while in practical calculations that sum up only a few
orders, the dependence on the choice of the renormalization scale introduces
an uncertainty.
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2.4.1 DIS Cross Section

The DIS cross section can be described by this formula:

dσ =
4α2

s

d3k′

2|~k′|
1

(q2 − M2
V )2

Lµν(k, q)Wµν(p, q)

Lµν and Wµν are the lepton and hadron tensors. The lepton tensor can be
calculated from quantum electrodynamics (QED) and describes the emission
of the virtual photon by the electron. The hadron tensor is defined as:

Wµν =
1

4π

∫

d4xeiqx
∑

X

〈0|Jµ(0)|A(p), X〉〈A(p), X|J†
ν(x)|0〉

In terms of the structure functions, the differential cross section for unpolar-
ized ep scattering d2σ/dxdQ2 can be written as:

d2σ

dxdQ2
=

4πα2

xQ4

[

y2xF1(x, Q2) + (1 − y)F2(x, Q2) ∓ y(1 − y

2
)xF3(x, Q2)

]

where the Fi are the structure functions. The structure functions can be
related to the parton distributions (PDFs). At zeroth order QCD the rela-
tionship is described by these simple formulas:

F1(x, Q2) =
1

2

∑

i

e2
i

[

qi(x, Q2) + qi(x, Q2)
]

F2(x, Q2) =
∑

i

e2
i

[

xqi(x, Q2) + xqi(x, Q2)
]

The structure function F3 is related to the parity violation and is only relevant
at scales where the weak interaction comes into play. For photon exchange
F3 is zero. The qi(x, Q2) are the parton distribution functions for parton i in
the proton.

2.4.2 Parton Distribution Functions (PDFs)

The PDFs cannot be calculated in perturbative QCD (pQCD) but have to
be determined from experiment. The PDFs are supposed to be universal for
all processes. The PDFs can be parametrized in different ways. This one is
used by the CTEQ project:

xf(x, Q0) = A0x
A1(1 − x)A2P (x)

P (x) = (1 + A3x
A4)
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Figure 2.2: Diagrams of the QCD splitting functions

The parameter A0 gives the normalization, while A1 and A2 mainly determine
the low- and high-x behavior. The function P (x) is purely phenomenological
and chosen to give the best description of the data. There is a set of param-
eters for every type of parton. With the evolution equations the PDFs can
be evolved to different values of Q2.

2.4.3 DGLAP

The DGLAP (named for Dokshitzer, Gribov, Lipatov, Alterelli, Parisi) equa-
tions [14, 15] are one way to evolve the parton distributions:

dqi(x, Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

[

qi(y, Q2)Pqq

(

x

y

)

+ g(y, Q2)Pqg

(

x

y

)]

The qi(x, Q2) are the distribution functions of the quark flavors i, g(x, Q2) is
the gluon distribution.

dg(x, Q2)

d log Q2
=

αs

2π

∫ 1

x

dy

y

[

∑

i

qi(y, Q2)Pgq

(

x

y

)

+ g(y, Q2)Pgg

(

x

y

)

]

The Pkl(z), Fig. 2.2, are the splitting functions for a parton l splitting into
a parton k with momentum fraction z. When the parton distributions are
evolved according to the DGLAP prescription, the terms with logarithms of
Q2 are kept.

2.4.4 BFKL

While the DGLAP evolution equation sums the terms containing log(Q2), it
neglects the terms with log(1/x). At medium to high Q2 this approach has
been quite successful. But at low x, log(1/x) terms could be important. An
alternative to the DGLAP evolution is the BFKL (Balitsky, Fadin, Kuraev,
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Lipatov) evolution [27], which sums the terms containing log(1/x):

df(x, k2
T )

d log(1/x)
=

3αs

π
k2

T

∫ ∞

0

dk′2
T

k′2
T

[

f(x, k′2
T ) − f(x, k2

T )

|k′2
T − k2

T |
+

f(x, k2
T )

√

4k′4
T + k4

T

]

The BFKL evolution needs the unintegrated gluon distribution f(x, k2
T ),

which is related to the gluon distribution g(x, Q2) by the following equa-
tion:

xg(x, Q2) =

∫ Q2

µ

dk2
T

k2
T

f(x, k2
T )

As the BFKL evolution keeps the terms in log(1/x) it is expected to work
better at low-x. Unfortunately there was no program available to calculate
cross sections of arbitrary multijet configurations in the BFKL formalism.

2.4.5 Next-to-Leading-Order Calculations

NLO calculations calculate cross sections with one order of αs more than is
required to get the desired final state. For instance, to produce two jets, you
need one order of αs to either radiate a gluon from the initial quark or to
split the initial gluon into two partons. The additional order of αs allows
for either another radiated gluon or a virtual loop. So a NLO-calculation of
dijet cross sections calculates terms up to the order of two in αs. For trijets
αs has to be taken into account up to the order of three.

The NLO calculations for comparison with the measurements of this analysis
were carried out with NLOjet [28]. It was shown [29, 30] to yield the same
results as DISENT [31] for dijets and can additionally calculate trijets at
NLO. NLOjet computes the dijet (trijet) cross sections to next-to-leading
order, i.e. including all terms up to O(α2

s) (O(α3
s)). In certain regions of

the phase space, where the two hardest jets are not balanced in transverse
momentum, NLOjet provides calculations for dijet production at O(α3

s).

NLOjet implements the MS [32] scheme for five massless quark flavors. The
CTEQ6 [33] PDFs were used. The renormalization and factorization scales
were both chosen to be (Ē2

T + Q2)/4, where ĒT is the average transverse
energy of the two (three) highest ET jets of the given event for dijets (trijets).
This choice was the same as in [2]. The value chosen for the strong coupling
constant was αs(MZ) = 0.118, and evolved according to the two-loop solution
of the renormalization group equation.
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2.5 Jets in QCD

Because of the color confinement partons cannot be directly observed. After
being produced in the hard scattering the partons fragment into colorless
hadrons. The exact mechanism of hadronization can only be described phe-
nomenologically. The hadrons that emerge from this process can be detected.
To compare the measurement at detector level and predictions at hadron and
parton level, jets are reconstructed from the energy depositions in the detec-
tor and from the simulated particles. A jet combines a spray of collimated
particles into one object. That has to be done in a way that the resulting
observables are infrared and collinear safe.

• An observable is infrared safe, if it is insensitive to the additional emis-
sion of a low-energy particle. The value of the observable should not
change for the transition of a n−parton configuration to a (n+1)-parton
configuration with an additional parton of very low energy.

• An observable is collinear safe, if its value does not change when a
pair of collinear particles is replaced with a single particle carrying the
momentum sum.

The longitudinally-invariant kT -clustering algorithm [35, 36], was used in this
thesis to reconstruct the jets , see chapter 6.3.1.
NLO calculations depend on the cancellation of diagrams with positive and
negative weights. The phase space has to be chosen in a way that the dia-
grams of one class that are supposed to cancel the contribution from another
class of diagrams are not removed. The loop diagrams at NLO partially
cancel the LO diagrams. But the diagrams with additional QCD radiation
would be suppressed, if the selection favored a symmetry of the transverse
energy of the jets, leading to unphysical results of the calculation. In order
to avoid this problem, an asymmetric jet energy cut was applied in this anal-
ysis. Alternatively one could have chosen to apply a cut on the invariant
mass of the jet system. This problem does not appear with trijets, but for
better comparability the cuts on the first two jets were kept asymmetric for
the trijet sample.
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Chapter 3

Monte Carlo Models and Event
Simulation

3.1 Introduction

The Monte Carlo method is used to generate events at parton and hadron
level and to study the detector response. While perturbative QCD calcula-
tions, like in the program NLOjet, calculate cross sections only at the parton
level, Monte Carlo generators simulate events at the parton and hadron lev-
els. These hadrons are put through a simulation of the detector. The result
of this simulation can be directly compared to the events observed in the de-
tector. The availability of both the hadron level and the detector level of the
generated events allows for a correction of the data that was taken with the
actual detector. As the Monte Carlo technique is also used for simulating
the fragmentation of partons into hadrons (also called hadronization), the
comparison of hadron and parton level allows to extract correction factors
for the correction of the parton level cross sections from the perturbative
QCD calculation. Figure 3.1 illustrates the different levels at which events
are analyzed.

Two different Monte Carlo generators, ARIADNE and LEPTO, were used in
this analysis. Both use leading-order (LO) matrix elements (ME) for the hard
process. That means that, in addition to the quark parton model (QPM) pro-
cess, the QCD-Compton (QCD-C) and boson gluon fusion (BGF) processes
are included. These processes generate one or two hard partons in addition
to the proton remnant. To approximate higher orders, which lead to more
partons in the partonic final state, LEPTO generates parton showers while
ARIADNE employs the Color Dipole Model. With these models soft parton
radiations, which cannot be perturbatively calculated, are approximated.
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Figure 3.1: Illustration of the different levels at which the MC events are
analyzed.
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3.2 QED and DJANGO/HERACLES

The interaction between the electron and the parton via exchange of a virtual
boson is described by the electroweak theory. The program HERACLES [37]
calculates higher order corrections, which include initial and final state ra-
diation and virtual boson loops. For the event samples that were used here,
the higher order correction for the weak interaction was switched off. The
programs LEPTO and ARIADNE were interfaced with DJANGO [38] to
HERACLES. The QED corrections were switched on for the main samples
that were used for the detector acceptance corrections. Additional LEPTO
samples were generated to study the effect of the QED corrections, see chap-
ter 8.7.

3.3 LEPTO (Parton Showers)

LEPTO [39] uses the leading-log Q2 parton shower approach. Initial and final
state parton emissions, which take place before and after the hard interaction
with the boson, are simulated. The initial state parton shower is evolved
backward from the parton that interacts with boson in the hard process with
decreasing virtualities to the on-shell parton from the incoming proton. In
the final state parton shower more partons are produced until the virtualities
of the partons are below some cutoff of typically 1 GeV2.

3.4 ARIADNE (Color Dipole Model)

The ARIADNE program [40] implements the Color Dipole Model (CDM),
illustrated in Fig. 3.2. In the Color Dipole Model (CDM) the parton cascade
is simulated by the emission of gluons in the color dipole field between the
color charges of the partons, analogous to the emission of photons in electro-
magnetic dipole radiation. The cascade starts with the color dipole between
the struck parton and the proton remnant. Between the emitted and the
other partons additional dipoles are formed. The gluons can also split into
quark-antiquark pairs. Further emissions are generated until some cut-off
scale is reached.

3.5 Hadronization Model

Both Monte Carlo Programs use the Lund string model as implemented by
JETSET [41] to simulate the fragmentation of the partons into hadrons.
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Figure 3.2: Color Dipole Model

When two partons move apart, the energy in the color field between them
increases. If the energy gets high enough, the connecting ’string’ will break.
From the energy of the field quark-antiquark pairs are produced. Each of
these partons becomes the end of a smaller substring. Eventually the partons
combine and form colorless hadrons.

3.6 Detector Simulation

The output of the Monte Carlo programs is a list of stable particles. These
particles are the input for the detector simulation. The detector simulation
simulates the interaction of the particles with the detector. The ZEUS detec-
tor is simulated by the program MOZART, which is based on GEANT [42].
The trajectories of the particles are traced through the detector. The signals
of the detector components are simulated to give responses similar to the
ones of the actual detector. Based on the result of the detector simulation
the trigger is simulated by the program ZGANA.
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Chapter 4

Experiment

4.1 DESY

DESY [43] (Deutsches Elektronen Synchroton, German Electron Synchro-
ton) was founded in Hamburg, Germany, in 1959 as a high energy physics
laboratory.

4.2 HERA

The HERA (Hadron-Elektron Ring Anlage) collider at DESY is the first and
only lepton-hadron beam collider in the world. It has a circumference of
6.3 km and is located 10 m − 25 m underground. Protons with an energy of
920 GeV1 are collided with either positrons or electrons of 27.5 GeV. This
results in a center of mass energy of 318 GeV. Before HERA the proton
structure was tested in fixed target experiments. They had a much smaller
center of mass energy, because the center-of-mass system of the interacting
particles was strongly boosted into the direction of the accelerated particle.
Protons and electrons go through several preaccelator stages until they are
injected into HERA and accelerated to their final energies.

The maximum energy of the proton beam is limited by the bending power
of the magnetic field that keeps them on their orbit. For this purpose 422
superconducting dipole magnets with 5.1 T are used at HERA. The super-
conducting magnets have to be cooled down to 4.0 K. The maximum electron
energy is limited by the energy loss due to synchroton radiation. The elec-
trons are kept in their orbit with conventional magnets.

As mentioned before, HERA can collide protons with electrons or positrons.

1Until 1997 the proton energy was 820 GeV.
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For the acceleration these are in principle the same, only the polarity of the
electromagnetic fields has to be inverted and the orbits in the interaction
regions are slightly different, because the two colliding beams have to be
brought together and separated. At HERA the beams are each organized
into 220 bunches. Of these, up to 210 are filled with particles. The time
between the bunches is 96 ns, this corresponds to 28.8 m. The projected
luminosity for HERA I was 1.5 × 1031 cm−2s−1.
There are four interaction regions at HERA. At the ZEUS and H1 experi-
ments the beams are brought to collision while HERMES and HERA-B2 are
fixed target experiments and use only either the electron beam or the proton
beam, respectively.

4.3 ZEUS

ZEUS [44] is a general purpose detector, designed for the measurement of
particle collisions at HERA. It is located in the south hall of the HERA ring.
Its main components are the Uranium Calorimeter (CAL), which provides
an almost complete coverage of the solid angle, and the Central Tracking
Detector, CTD.

4.3.1 Central Tracking Detector (CTD)

The main tracking detector of ZEUS is the CTD [45]. The CTD is a 240 cm
long cylindrical drift chamber with an active length of 205 cm. It covers the
radius from 16.2 cm to 85 cm around the beam pipe. The CTD consists of
72 cylindrical sense wire layers, organized in 9 superlayers covering the polar-
angle region of 15◦ < θ < 164◦. The wires of the odd-numbered superlayers
are parallel to the beam axis. The even-numbered superlayers have small
stereo angles of ±5◦ with respect to the beam axis. The gas in the CTD is
a mixture of argon, carbon dioxide and ethane.
Charged particles that pass through the CTD ionize the gas. The electrons
drift to the sense wires where they are amplified and cause electric signals.
Tracks are reconstructed from these hits. A magnetic field of 1.43 T bends the
trajectories of the charged particles that pass through. The curvature of the
reconstructed tracks gives information about their charge and momentum.
The relative transverse-momentum resolution for tracks going through all
superlayers is σ(pT )/pT = 0.0058pT ⊕ 0.0065 ⊕ 0.0014/pT , with pT in GeV.
The forward (FTD) and rear (RTD) tracking detector extend the tracking
into the forward and rear regions. They have not been used in this analysis.

2The HERA-B experiment ended in 2003.
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4.3.2 Calorimeter (CAL)

The calorimeter of the ZEUS detector is a uranium-scintillator-sandwich-
calorimeter. It consists of three parts: the forward (FCAL), the barrel
(BCAL) and the rear (RCAL) calorimeters. Each part is subdivided trans-
versely into towers and longitudinally into one electromagnetic section (EMC)
and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections
(HAC). The smallest subdivision of the calorimeter is called a cell. The CAL
covers 99.7% of the solid angle around the interaction region. The uranium
serves as absorber. The active material is the plastic scintillator SCSN-38.
The advantage of using uranium is the equal response of the calorimeter
to electromagnetic and hadronic energy depositions. The CAL energy res-
olutions, as measured under test-beam conditions, are σ(E)/E = 0.18/

√
E

for electrons and σ(E)/E = 0.35/
√

E for hadrons, with E in GeV. The
scintillator light is read out with wavelength shifters and photomultipliers.
The ZEUS calorimeter is deeper in the forward (7.1 interaction lengths, λint)
than in the backward (4.0λint) direction to account for the difference of the
beam energies. For the initial calibration of the CAL, see [46].

4.3.3 Other Components

SRTD

The Small angle Rear Tracking Detector (SRTD [47]) consists of finely seg-
mented scintillator strips. Its purpose is to improve the resolution of the
measurement of the scattered electron at low angles around the beam pipe
in the rear direction.

HES

The Hadron Electron Separator was originally designed to be used for a
better distinction between hadrons and electrons in the calorimeter. Because
of an underestimation of the dead material between interaction point and
calorimeter it cannot serve this purpose as planned. But it is used to improve
the position reconstruction of the scattered electron.

Presampler

The Presampler [48] consists of scintillator tiles in front of the calorimeter
towers. According to the part of the calorimeter it is divided into Forward,
Rear (PRES) and Barrel (BPRES) Presampler. The Presampler is calibrated
in units of MIPS (minimum ionizing particles). Its measurement indicates
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Figure 4.1: Positions of the components of the luminosity measurement sys-
tem.

the multiplicity of particles. In this analysis the Presampler was only used
to correct the electron energy measurement.

4.3.4 Luminosity Measurement

The luminosity is measured with the luminosity monitor, LUMI, via the
bremsstrahlung process: ep → e′pγ The measurement of the luminosity is
necessary to determine cross sections from the data. The bremsstrahlung
process is well known and has a high cross section, so that it is well suited
for the luminosity measurement. The photons as well as the electrons that
come out of the bremsstrahlung process can be used to determine the rate.
The advantage of detecting the photons is that their trajectories are not bent.
After the interaction point (IP) a straight beam pipe branches off in the elec-
tron direction. This photon beam pipe leads to the photon detectors of the
luminosity monitor about 100 m from the IP. The luminosity measurement
system was upgraded for the HERA II running period. The multijet analysis
that is described in this work was performed with data from 1998 to 2000
from the end of the HERA I running period. Part of the luminosity monitor
upgrade were the Spectrometer and the 6m Tagger, which is described in
more detail in chapter 5. Figure 4.1 shows where the components of the new
luminosity measurement system are located.
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Photon Calorimeter

The Photon Calorimeter is a lead-scintillator calorimeter 107 m from the
interaction point. Located in front of it is a carbon filter. The carbon filter
absorbs the high flux of low-energetic synchroton radiation photons. During
the upgrade to HERA II the depth of the filter was increased to shield the
Photon Calorimeter from the more intense synchroton radiation.

Spectrometer

The Spectrometer is part of the luminosity monitor upgrade for HERA II.
About 10% of the photons that hit the exit window of the photon beam pipe
convert into positron/electron pairs. A magnetic dipole diverts these into
the lower and upper parts of the Spectrometer. The Spectrometer consists
of two finely segmented tungsten-scintillator calorimeters. The light signal
from the scintillating strips is read out with photomultipliers.

6m Tagger

The 6m Tagger is the electron detector of the upgraded luminosity monitor.
The 6m Tagger is a sampling calorimeter with tungsten as absorber and
scintillating fibers. It is located about 6 m from the interaction point in
electron direction. The magnetic field that keeps the electrons of nominal
energy in their orbit deflects electrons of a certain energy range into the
6m Tagger. A more detailed description of the 6m Tagger is in chapter 5.

4.3.5 Trigger and Data Acquisition

The bunch crossings take place with intervals of 96 ns. The event size is
about 500 kB. The Data Acquisition System (DAQ) is not capable of storing
the detector signals for every single bunch crossing and also the front-end
electronics cannot be read out that fast. During most bunch crossings nothing
of interest happens. The task of the trigger system is to select the interesting
events. The trigger [50] of the ZEUS detector has three levels. The First Level
Trigger (FLT) works synchronously to the rate of the collisions of about
10 MHz. The detector components send basic information to the Global
First Level Trigger (GFLT), which decides if the event should be discarded
or if the components should send further information to be processed by
the next trigger level. The rate of events is reduced so that the subsequent
triggers can work with a lower rate to analyze the events more completely.
The Second Level Trigger (SLT) reduces the rate to about 200 Hz. The Third
Level Trigger (TLT) uses a farm of computers to analyze the events that have
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passed through the previous trigger stages. At this level the information from
all the components is combined to reconstruct the events. The output rate of
the TLT is about 10 Hz. For each trigger level, several so-called trigger “slots”
are defined. An event has to fulfill the requirements of at least one trigger
slot to reach the next level. The Event Builder (EVB) collects the data from
all the components to write the data of the selected events to a mass storage
system. During the later analysis of the data, changing trigger configurations
have to be taken into account to correctly simulate the efficiency, as described
in chapter 7.1.
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Chapter 5

6m Tagger

5.1 Introduction

The 6m Tagger [51, 52, 53] is part of the luminosity upgrade. It detects
electrons from the Bethe-Heitler process used to measure the luminosity in
a certain energy range with an efficiency of nearly 100%. One task of the
6m Tagger is to cross-check the acceptance of the photon detectors. Be-
cause of its ability to detect the scattered electrons from ep events with very
low-Q2, it can be also used to identify photoproduction events. For the mea-
surement of the longitudinal structure function, FL, a period of low energy
running is planned. Events with high y play an important role for this mea-
surement. The expected background from photoproduction events will be
further investigated with the 6m Tagger.

5.2 Hardware and Data Acquisition

The 6m Tagger [51, 52, 53] is a sampling calorimeter, e.g. it consists of a
combination of a material that absorbs highly energetic particles and causes
them to shower and an active material that gives a measurable response
proportional to the absorbed energy. The absorbing material is a tungsten
alloy (DENSIMET). There are 85 tungsten plates of dimension 23 × 100 ×
1 mm3. The plates have 22 grooves on one side and 23 grooves one the other
with a radius of 0.28 mm to accommodate the fibers. The first and last plates
have grooves only on one side. An illustration of the geometry of the fibers
and the plates is shown in Fig. 5.1. The plates are stacked and held together
with thin stainless steel strips. The active component is comprised of 1890
scintillating fibers of the type SCSF-38M. They have a diameter of 0.5 mm
and are bundled in 70 channels of 27 fibers each. The front end of the fibers
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Figure 5.1: Geometry of the fibers and the tungsten plates in the 6m Tagger
as seen from the front. Shown is one corner of the 6m Tagger with 2 × 2
complete cells. Each cell has 27 scintillating fibers, which are located in the
grooves between the tungsten plates.

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

Figure 5.2: Layout and naming scheme of the 6m Tagger channels when
looking at the front face. The fibers are parallel to the beam pipe, which is
located to the left of the 6m Tagger.
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Figure 5.3: View of the 6m Tagger relative to the beam pipe from above.
The electrons/positrons that hit the 6m Tagger leave the beam pipe through
the exit window. The distance of the 6m Tagger to the beam line is 64.5 mm
for electrons and 68.8 mm for positrons.

is polished and painted with reflective paint in order to improve the light
yield. Inside the 6m Tagger the fibers are parallel to the beam pipe. The
remaining length of the about 1.5 m long fibers serves as light guides to the
photomultipliers. The 6m Tagger is located inside the HERA ring radius at
a distance of 64.5 mm for electron running and 68.8 mm for positron running.
This causes the difference in energy range of the 6m Tagger between electron
and positron running. The electrons/positrons that hit the 6m Tagger leave
the beam pipe through an exit window 5.37 m from the interaction point.
The front face of the 6m Tagger is 5.56 m from the interaction point. The
position of the 6m Tagger relative to the beam pipe is illustrated in Fig. 5.3.
The vertical position of the 6m Tagger is centered around the beam line, so
that it covers y from −12.5 mm to 12.5 mm.

The 70 channels are organized in 5 rows and 14 columns, the layout can
be seen in Fig. 5.2. FADCs convert the photomultiplier signals into 12-bit
numbers. The 14 channels of every row go to one memory board [54]. The
memory boards have separate buffers for locally stored events and events
that are sent to the Event Builder (EVB). The memory boards send a sum
information to the trigger board, which calculates trigger sums for the GFLT
and determines which local events are kept.

The electrons that hit the front face of the 6m Tagger have an incident angle
of at least 3◦, so that they cannot just travel largely unabsorbed through one
single fiber.
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on top of 6m Tagger 1 2
Period Dose [Gy] Dose [Gy]

Dec 4. 2003 – Aug 1. 2004 18.4 4.6
Jan 8. – Feb 5. 2004 0.4 14.7
Feb 5. – Mar 3. 2004 5.2 5.3
Mar 3. – Apr 1. 2004 18.9 66.3
Apr 1. – May 6. 2004 1.0 2.3

between 6m Tagger and PMTs 6m Tagger Middle PMT
Period Dose [Gy] Dose [Gy] Dose [Gy]

Jan 7. – Apr 5. 2006 411.5 8.9 3.0
Apr 5. – May 3. 2006 53.3 2.0 1.5
May 3. – Sep 6. 2006 91.9 5.5 3.7
Sep 6. – Dec 5. 2006 92.6 7.5 2.3

Table 5.1: Doses at the 6m Tagger measured during certain periods. The
doses were measured with TLDs. From the end of 2003 to the middle of 2004
the dosimeters were placed on top of the 6m Tagger. In 2006 the dosimeters
were attached to the fibers that guide the light to the photomultipliers. The
label indicates the position close to the 6m Tagger, in the middle and at the
photomultipliers.

5.3 Evaluation of Radiation Damage

The 6m Tagger is located very close to the beam pipe and it can be hit by
scattered synchroton radiation (As it is located inside the radius of the stor-
age ring, it is not hit by direct synchroton radiation.). A 3.3 mm thick lead
plate was glued to the front of the 6m Tagger to shield the exposed ends of
the fibers against the high rate of low energetic photons. The electrons and
positrons of energies between 4 and 9 GeV that hit the 6m Tagger are not
stopped by this lead plate. The SCSF-38M fibers used for the 6m Tagger are
relatively radiation hard [55, 56, 57, 58], but the high intensity of radiation
is still expected to cause a degradation of the fibers. The main effect of radi-
ation damage to the scintillating fibers is the creation of absorption centers
that deteriorate the light transmission of the fibers.

Table 5.1 shows the radiation doses at the 6m Tagger measured with thermo-
luminescence dosimeters (TLDs). From the end of 2003 to the middle of 2004,
the dosimeters were placed on top of the 6m Tagger. These measurements
show a large variation, probably because the dosimeters were not placed at
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the exact same spot. For the middle of 2004 to the end of 2005, no reli-
able measurements of the doses exist. In 2006, the dosimeters were attached
at three different positions to the part of the fibers that runs between the
6m Tagger and the photomultipliers. This measurement shows that the ra-
diation is most intense close to the 6m Tagger, and thus close to the beam
pipe, but the fibers are also exposed to a considerable radiation over their
whole length. The TLDs that were used give a linear response for doses
up to 10 Gy, where the uncertainty is about 5%. For the higher doses the
uncertainty is about 20%.
To measure the radiation damage to the 6m Tagger, scans with a cobalt-60
source were carried out, which are presented in the next section.

5.3.1 Cobalt Scans

The system to perform the cobalt scans on the 6m Tagger was similar
to the one used on the forward and rear regions of the main calorime-
ter [59]. To check the response of the scintillating fibers of the 6m Tagger, a
cobalt-60 source was moved in guide tubes that were soldered to a frame that
is attached to the 6m Tagger. The ten guide tubes are parallel to the fibers.
The cobalt source is situated in the tip of a thin tube which is moved through
the guide tubes by a stepping motor. So the response of the fibers can be
recorded as a function of the longitudinal position of the cobalt source.

Figure 5.4: Decay of Cobalt-60

Eight of the guide tubes end at the front face of the 6m Tagger, four each
underneath and on top of the 6m Tagger. Two more guide tubes are on
the side of the 6m Tagger. They extend 14 cm beyond the front of the
6m Tagger and were used [57] for a measurement with the cobalt radiation
coming from the front. But after the installation of the lead plate in front of
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the 6m Tagger the signal from there was too small to be usable, instead only
the scan positions beginning at the front of the detector, analogous to the
other guide tubes, were used for these tubes. Table 5.2 shows the dates of

No. of Scan Date Time [d]
1 Dec 4. 2003 0
2 Feb 5. 2004 63
3 May 6. 2004 154
4 Jun 3. 2004 182
5 Aug 16. 2004 256
6 Jan 5. 2005 398
7 Apr 13. 2005 496
8 Dec 7. 2005 734
9 May 2. 2006 880
10 Sep 6. 2006 1007
11 Dec 12. 2006 1098

Table 5.2: Dates of the cobalt scans and elapsed time since the first mea-
surement in days.

the cobalt scans and the elapsed time since the first cobalt scan. The same
cobalt source was used for all the scans and its decay (half life 5.27 years,
decay products shown in Fig. 5.4) was taken into account before comparing
the scans from different dates. The activity of the cobalt source at the time
of the last cobalt scan in December 2006 was about 30 MBq. For the cobalt
scans the output of the photomultipliers was connected to the ADC cards of
a portable computer and the high voltage was set to the values of the first
cobalt scan. For every scan pedestal values without cobalt irradiation were
taken in order to be subtracted from the values measured during the scan.

5.3.2 Results

Results from the cobalt scans were also presented in [60]. Cobalt scans on
the 6m Tagger before 2003 were analyzed in [57]. To determine which guide
tube should be used for each channel of the 6m Tagger, the integrated signal
over the scan length was determined, Fig. 5.6. In the first cobalt scan, several
dead channels were found, Fig. 5.5, which were repaired afterwards. The first
cobalt scan was not used further on, instead the second scan was used as a
reference for the later scans. During the latest scan (December 2006), the
scan could not be carried out with all guide tubes. Channel 44 was broken
until scan 3 and the dark current of channel 5B was increasing with time,
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Figure 5.5: The integrated signal of the first cobalt scan with the second
guide tube on the top. The sizes of the boxes indicate the relative signal in
the channels of the 6m Tagger. Several dead channels can be seen that were
repaired afterwards.

which could not be compensated by the pedestal subtraction. Examples
of the cobalt scan signals as a function of the source position are shown in
Fig. 5.7. Typically the signal is rising steeply from 0 mm to 20 mm, then it
is increasing slightly until the slope starts to rise again after 80 mm. At the
beginning (position 0 mm), the 6m Tagger is only hit by the radiation from
the cobalt source with a quarter of the full solid angle, so it rises to a plateau
of about twice that value when it is hit by almost half of the radiation of the
cobalt source. Figure 5.8 illustrates this. The behavior at the the last 20 mm
is influenced by the irradiation of the part of the fibers that is coming out of
the 6m Tagger, where they are not shielded by the tungsten. This leads in
most cases to a steeper increase in signal.
In Fig. 5.9 the signal is normalized to the second scan. A stronger reduction
of the signal is observed for the channel closest to the beam. For the analysis
of the development of the radiation damage versus time, it was chosen to look
at the signals at 10 mm and 90 mm from the front. Under the assumption
that the primary yield is not affected, the reduction in signal between these
points can be attributed to the attenuation of the light due to absorption.
For the estimation of the radiation damage to the fibers inside the 6m Tagger,
the ratio of these two values is taken. For the damage to the outside part
of the fibers, the value from 90 mm is compared. The shown relative signals
are defined as

relative signalinside = (signal10mm/signal90mm)/(signal10mm,2.scan/signal90mm,2.scan)

relative signaloutside = signal90mm/signal90mm,2.scan.
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Figure 5.6: The integrated signal of the fourth cobalt scan. The sizes of
the boxes indicate the relative signal in the channels of the 6m Tagger. The
upper plot shows the signals from the second guide tube on the top of the
6m Tagger, the lower one the signals of the third tube on the bottom.
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Figure 5.7: 6m Tagger cobalt scan. The signal as a function of the scan
position is shown for the scans 2 to 10. The signal decreases from scan 2 to
scan 10. On the left is channel 30, on the right channel 3A. Both channels
are in the center row. Channel 30 is the channel closest to the beam.
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Figure 5.8: Side view of the 6m Tagger during the cobalt scan. This drawing
illustrates why the signal at source position 0 mm is about half compared to
the signal from the source in the center.
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Figure 5.9: 6m Tagger cobalt scan. The relative signal as a function of the
scan position is shown for the scans 2 to 10. The scans are normalized to
scan 2. The signal decreases from scan 2 to scan 10. On the left is channel
30, on the right channel 3A. Both channels are in the center row. Channel
30 is the channel closest to the beam. A stronger reduction of the signal
can be seen for the channel closest to the beam. The vertical lines indicate
the reference positions for the evaluation of the development of the signal vs.
time.

The relative damage is defined as

relative damageinside/outside = 1 − relative signalinside/outside.

The development of the damage outside the 6m Tagger, Figs. 5.11, 5.13
and 5.15, shows a very similar behavior for all the channels. Inside the
6m Tagger, Figs. 5.10, 5.12 and 5.14, the fibers of the channels that are closest
to the beam pipe show the largest damage. This is where more and higher
energy electrons hit the 6m Tagger. Figures 5.10 and 5.11 show a comparison
between two different channels and Figs. 5.12–5.15 give an overview of all the
channels in the 6m Tagger. The damage outside seems to come from scattered
synchroton radiation or other radiation background, while the fibers inside
are screened from background radiation by the tungsten. The damage profile
of the fibers that are most affected by the electrons is compatible with the
longitudinal shower profile of these electrons [60]. In April 2006, lead
shielding was installed between the beam pipe and the 6m Tagger to add
protection for the exposed fibers. This measure seems to have prevented
some damage to the outside fibers of the 6m Tagger in the last two (May
and September 2006) presented scans. Further cobalt scans are planned to
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Figure 5.10: Development of the relative signal inside the 6m Tagger vs.
time. On the left is channel 30, on the right channel 3A. Both channels
are in the center row. Channel 30 is the channel closest to the beam. An
exponential function is fitted to the points and shown as a line. The channel
closest to the beam shows a significantly stronger reduction in signal inside
the 6m Tagger.
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Figure 5.11: Development of the relative signal outside the 6m Tagger vs.
time. On the left is channel 30, on the right channel 3A. Both channels
are in the center row. Channel 30 is the channel closest to the beam. An
exponential function is fitted to the points and shown as a line. Compared
to the damage inside the 6m Tagger, Fig. 5.10, both channels show a much
more similar behavior.
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Figure 5.12: Relative damage to the fibers inside the 6m Tagger. The sizes
of the boxes indicate the damage (1-relative signal) to the fibers inside the
6m Tagger between the cobalt scans number 2 and 10. The damage is con-
centrated in the center row and to the side closest to the beam pipe. For a
more quantitative overview, see Fig. 5.14.

monitor the development of the radiation damage to the 6m Tagger until the
termination of the ZEUS experiment in July 2007.
Although the damage to the fibers of the 6m Tagger is severe, the results of
the calibration, as described in Section 5.5, show that the energy resolution
deteriorated only slightly.
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Figure 5.13: Relative damage to the fibers outside the 6m Tagger. The
sizes of the boxes indicate the damage (1-relative signal) to the fibers outside
the 6m Tagger between the cobalt scans number 2 and 10. The damage is
uniformly distributed over all the channels. Channels 44 and B5 could not
be reliably compared, which is explained in the text. For a more quantitative
overview, see Fig. 5.15.
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Figure 5.14: Relative damage to the fibers inside the 6m Tagger. Further
description can be found in Fig. 5.12.
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Figure 5.15: Relative damage to the fibers outside the 6m Tagger. Further
description can be found in Fig. 5.13.
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Figure 5.16: Typical 6m Tagger events. The upper picture shows an event
with 6.8 GeV. The lower picture shows an event with 8.1 GeV. The sizes of
the boxes indicate the relative energies in the individual cells. The boxes
with crosses indicate negative values, which means that the measured signals
in these cells were below the pedestals.

5.4 Event Reconstruction

When an electron hits the 6m Tagger, it produces an electromagnetic shower.
A fraction of the energy of the electron is absorbed in the scintillating fibers
and produces light that is converted by wavelength shifters and then guided
by the same fibers to the photomultipliers. In the photomultipliers the pho-
tons produce photoelectrons which are multiplied in a cascade. The pho-
toelectrons carry a charge that flows as a current to the ADCs. So the
calibration constants, which relate the ADC signals to the particle energies,
are affected by a convolution of these effects.

The 6m Tagger consists of 14 × 5 cells. Each cell has a calibration constant
to convert the ADC-signal to an energy in GeV. With the given calibration
constants, the energy and position of the impacting electron can be recon-
structed. Two typical events in the 6m Tagger are shown in Fig. 5.16. Sev-
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eral reconstruction methods were employed. The energy was reconstructed
by adding the contents of a certain number of cells. Either 5 × 5, 3 × 3 or
all 70 cells were added. The 5 × 5 and 3 × 3 regions were centered around
the cell with the highest energy. When the cell with the highest energy was
too close to the edges, the center was moved so that the reconstruction re-
gion was contained in the 6m Tagger. The 5 × 5 method was used as the
best compromise between leakage and noise. Leakage is due to energy depo-
sitions from the shower outside the reconstruction region. The calibration,
see next section, has been done for the 5 × 5 method and thus takes into
account the average leakage. The position was reconstructed by taking the
weighted average of 3× 3 cells around the highest-energy cell. The x- and y-
coordinates of the contributing cells were multiplied with their energies and
the sums were divided by the 3 × 3 energy sum. Because of the exponen-
tial transverse shower profile, this simple method reconstructed the position
too close to the center of the reconstruction region. Therefore this position
reconstruction was improved by correcting [51] the result with a polynomial
function.

5.5 Calibration of the 6m Tagger

Different energy reconstruction methods require different sets of calibration
constants, because the size of the reconstruction region determines the aver-
age leakage outside this region. It was decided to use the 5× 5-cells method.
The initial calibration of the 6m Tagger was determined in a testbeam [51].
As reference for calibrating the 6m Tagger in the ZEUS experiment the en-
ergy measurement of the Spectrometer was used. The energy of the positron,
Ee, measured by the 6m Tagger and the energy of the photon, Eγ , measured
by the Spectrometer add up to the energy of the positron beam, EeBeam:

Eγ + Ee = EeBeam.

The position and energy of the electrons that hit the 6m Tagger are corre-
lated because of the magnetic field. The higher energetic electrons hit the
6m Tagger closer to the beam pipe. The same is true, when a positron beam
is used. Because of a different orbit of the positron beam, the magnets in
front of the 6m Tagger create a slightly different field, which leads to a shift
of the energy window of the 6m Tagger to lower energies by about about
1 GeV for positrons compared to electrons. The data that are shown in this
section to demonstrate the calibration procedure are from a positron run
(run number 62003) from January of 2007.
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Figure 5.17: Photon energy measured in the Spectrometer vs. position of
positron in the 6m Tagger. For every column in the 6m Tagger a Gaussian
function was fitted to the distribution of energies in the Spectrometer. This
histogram shows the mean values and the associated errors of these fits. The
function Ephoton(x) = EeBeam − a2

a−bx
is fitted to the histogram and shown as

a line.
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The dependence of the energy on the position was determined by taking
the energy of the photon (electron-positron pair) from the Spectrometer and
the reconstructed electron position in the 6m Tagger. Here the position
reconstruction uses only the column with the highest energy. A function,
Ee(x) = a2

a−bx
, is fit to the data, where a is the energy and b is the slope at

position 0. For every column in the 6m Tagger one histogram was filled with
the energies in the Spectrometer. A Gaussian function was fitted to each of
these histograms. The mean values and errors of the mean values were taken
from these fits and can be seen in Figure 5.17. The selection criteria of the
events for the calibration were the following:

• Both local triggers, for 6m Tagger and Spectrometer: At least one has
to be fired for the event to be stored by the online software, the other
one is part of the coincidence condition.

• Event marked as good by Spectrometer reconstruction (symmetric co-
incidence): The Spectrometer has to detect both electron and positron
from the pair production.

• Energy in 6m Tagger between 3.0 GeV and 15.0 GeV: The lower cut
ensures sufficient energy to give a significant position reconstruction.
The higher cut removes off-momentum electrons and some pile-up.

• Event should have the cell with the highest energy in the column with
the highest energy.

• Highest-energy cell either in center row, or the row just above the center
row: The data showed that the overwhelming majority of events were
in these rows.

• Cell with the second highest energy in the same or a neighboring col-
umn: This removes pile-up events in which the 6m Tagger is hit at
different positions.

• Energy in column with the highest energy at least 60% of 5×5-cell en-
ergy: This requirement selects events which are centered in the column
in the highest-energy column.

With this event sample also the mean energies, Fig. 5.18, in the columns with
the highest energy, and the energy fractions, Fig. 5.19, in these columns of
the 5 × 5-cell energy were determined. After the dependence of the energy
on x had been determined, the calibration constants were adjusted to match
that behavior. Because of the small variation in the vertical position of
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Figure 5.18: Mean energies for the columns that had the highest energy in
the 6m Tagger. The event selection is described in the text.
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Figure 5.19: Mean energy fraction in the highest-energy column of the 5×5-
cell energy. The event selection is described in the text.
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the positrons hitting the 6m Tagger, it was not possible to determine the
calibration constants separately for each cell, but the calibration procedure
changed the calibration constants of all the cells in the same column by the
same factor.

One column contains 5 cells. So exactly 5 columns are used for the 5 × 5
energy reconstruction. The calibration constant of the center column was
corrected by the product of the mean energy fraction, f , in the center column
and the expected energy, as taken from the energy vs. position fit, divided
by the previously reconstructed energy, En:

cn+1 = f
Eexpected

En
cn,

where cn and cn+1 are the old and new calibration constants, respectively.
The calibration was iterated for a few times until the calibration constants
changed by less than a percent. The initial calibration was done cell-by-cell
with a test beam, as described in [51]. The mean energy fraction of the cen-
ter column was determined from the events reconstructed with the previous
calibration constants and was averaged over all possible center columns, thus
excluding the two leftmost and two rightmost columns. This averaging as-
sumes that the width of the shower is independent of the energy and angle of
the impacting particle, which is only a rough assumption. For the columns
on the edges (the first two and last two) this procedure does not work, be-
cause they are never the centers of the 5 × 5 reconstruction. Therefore their
mean contribution to the closest possible center column is used. The left-
most column was calibrated for the mean fraction of energy it should have as
being the first column to the left of the center column in events that center
in the second column.

Figure 5.20 shows the sum of the positron and photon energies measured by
the 6m Tagger and the Spectrometer after the 6m Tagger was calibrated.
Between run 50999 from July 2004 and run 62003 from January 2007 the
width of the sum distribution has increased, which indicates a degradation
of the resolution of the 6m Tagger and/or the Spectrometer. Figure 5.21
shows the difference between the energies of the 5×5 reconstruction and the
energy predicted from the position, which is only dependent in the 6m Tagger.
That indicates that the degradation of the Spectrometer resolution gives a
larger contribution to the increase of the width of the energy sum between
these two runs.

This calibration relies on the quality of the calibration of the Spectrometer
and the aforementioned assumptions. The described calibration procedure
corrects for changes of the energy response of entire columns of five cells. A
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Figure 5.20: Sum of the positron and photon energies measured by the
6m Tagger and the Spectrometer. The peak should be at the energy of
the positron beam. The widths show the combined resolutions of 6m Tagger
and Spectrometer. The tails to lower energies come partly from mismatched
6m Tagger-Spectrometer coincidences.
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Figure 5.21: Difference of the energies from the 5× 5 reconstruction and the
energy reconstructed from the position. The widths show the combined res-
olutions of these methods. The increase in width from July 2004 to January
2007 is much smaller than the one seen in 5.20.
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calibration procedure that corrects the calibration constants for each indi-
vidual cell could lead to a slightly better energy resolution.

The signal from the Photon Calorimeter could not be used for the calibration
of the 6m Tagger, because the energy resolution of that component was too
poor.

5.6 Photon Acceptance Measurements

One task of the 6m Tagger is the determination and cross check of the accep-
tances of the photon detectors after the luminosity upgrade. The knowledge
of the photon acceptance is essential for the determination of the Luminosity.
The acceptance of the photon detectors is affected by the aperture window.
On the trajectory of the photon from the interaction point to the exit window
are obstacles, such as parts of magnets, that shade some of the outer part of
the photon aperture window. The effect of the aperture window depends on
the position of the interaction point and the average angle of the photon.

The acceptance of the photon detectors is also affected by the photon conver-
sion probability in the exit window, which is about 10%. Only the electron-
positron pairs from the converted photon hit the Spectrometer. The geom-
etry of the electron-positron pairs that are detected by the Spectrometer
influences the detection efficiency of that component. Both the electron and
the positron have to be clearly detected in the upper and lower part of the
detector. So only about 20% of these events are counted by the Spectrom-
eter. This probability is dependent on the energy of the photon, while the
effects of the aperture window are largely independent of energy, but affect
both photon detectors in the same way.

By tagging Bremsstrahlung events with the 6m Tagger, the acceptance of
the photon detectors can be determined. The total number of tagged events
is counted. The fraction of events that are in coincidence with the respective
photon detector (PCAL or SPEC), is the acceptance. The 6m Tagger can
only tag events in a certain energy range, in which it has an acceptance of
almost 100%. There are some corrections that can be applied to the simple
calculation of the acceptance. There will be some background in the 6m Tag-
ger that does not come from Bremsstrahlung events. The contribution of
photoproduction is assumed to be negligible. There are also some events
with high energies in the 6m Tagger, close to the electron beam energy of
27.5 GeV, which might be due to off-momentum electrons. The observation
of these events with a compatible rate in electron only bunches supports this
assumption. These events can be cut out without much difficulty because of
their high energy outside the regular acceptance for electrons in the 6m Tag-
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ger. Other effects appear with higher luminosities and thus rates. In pile-up
signals several bremsstrahlung interactions contribute to the same event. At
high luminosity, about 1% of the events leave a signal in the 6m Tagger. So
also 1% of the detected events have a signal from 2 electrons. The relatively
small acceptance of the Spectrometer, which was intended, makes it less af-
fected by pile-up effects. Another issue is the detection of false coincidences.
At high rates the Photon Calorimeter detects a photon in almost every bunch
crossing. So, when an electron is tagged in the 6m Tagger, it can happen
that a photon detected in the same event by the Photon Calorimeter does
not come from the same Bremsstrahlung event.

5.6.1 Acceptance of the Photon Calorimeter

As a check of the predicted aperture window for the photons, an aperture
scan run with different beam tilts was conducted to measure the photon
acceptances and compare them to predictions. This was the ZEUS electron-
proton run 52980 in January 2005.
For the calculation of the acceptance, a clean sample of detected positrons in
the 6m Tagger was selected. For the selection of coincidences with the Photon
Calorimeter (PCAL), the requirement on the PCAL is just a threshold on
the sum of the ADC-signals from the two photomultipliers. The prediction
of the acceptance took into account the calibration, the aperture window,
and other minor effects. The measured acceptance values were determined
by dividing the number of coincidence events with the total number of clean
6m Tagger events. A correction for random coincidences was also applied,
whereby the average number of photon per bunch crossing was taken into
account. The measurement of the PCAL photon acceptance vs. time can
be seen in Fig. 5.23. During the run the beam tilt was changed, so different
time periods were associated with different beam tilts, as seen in Fig.5.22.
Figure 5.24 summarizes the tilt scan measurements. For 8 periods of stable
beam position the average photon beam positions and the acceptances are
shown. The coordinates of the photon beam are given in the plane that is
transverse to the line between the interaction point and the photon detectors
about 100 m away. In general, the photon acceptance is lower close to the
edges of the aperture window. The measured acceptances were slightly lower
in the upper region and slightly higher at the two lower points. That might
indicate a small vertical shift of the actual aperture window to the predicted
one.
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Figure 5.22: Photon beam position measured by the PCAL averaged over
intervals of about a minute. These values were used for the prediction of the
geometrical acceptance.
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Figure 5.23: Acceptance of the Photon Calorimeter. The dots are the mea-
surement with the 6m Tagger. The vertical bars show the statistical errors.
The lines are the predictions. The upper line assumes a smaller and the
lower line a larger beam spread. The variation of the data points comes not
only from statistical fluctuations but also from changes in the beam steering,
while the predictions are kept constant over certain periods with parameters
averaged over these periods. The positions of the beam during this run can
be found in Fig. 5.22.
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Figure 5.25: Photon energy measured in Spectrometer vs. position of elec-
tron in the 6m Tagger. This data is from the electron run 53394 from the
beginning of 2005. The different energy window can be seen as compared to
the positron run in Fig. 5.17

5.6.2 Acceptance of the Spectrometer

The photon acceptance of the Spectrometer is dependent on the photon en-
ergy because of the geometry of the electron-positron pair that has to be
detected by the Spectrometer. A measurement of the Spectrometer accep-
tance as a function of the photon energy can be seen in Fig. 5.26. The data
were taken during the ZEUS electron-proton run 53394 with nominal beam
tilt. The photon energy was determined from the fit of the photon energies
to the position of the electron in the 6m Tagger, see Fig. 5.25. The position
resolution was assumed to be better than half a cell width. Translated into
energies this means an energy resolution of about 0.2 GeV. The measurement
was statistically limited and compatible with the prediction.
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prediction. The vertical error bars show the statistical uncertainty.
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5.7 6m Tagger and Photoproduction

Photoproduction events at HERA are ep events with low Q2, Q2 < 1 GeV2.
The electron radiates a quasi-real photon that subsequently interacts with the
proton. The electron cannot be detected inside the ZEUS detector, because
it escapes through the beam pipe. But if it is in a certain energy range, it will
be diverted into the 6m Tagger, where it can be detected. The kinematic
quantities in photoproduction events have to be normally calculated from
the detected hadronic final state. The detection of the scattered electron
improves the knowledge of the kinematic quantities.
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Chapter 6

Event Reconstruction

This chapter describes how the variables that were used in this analysis were
calculated from the output of the detector components of ZEUS. The event
reconstruction is done in the same way for the data taken with the detector
and events simulated at the detector level of the Monte Carlo.

6.1 Detector Input for the Reconstruction

6.1.1 Calorimeter Cells

The most important component used in this analysis is the Uranium Calorime-
ter (CAL), described in chapter 4.3.2. To be used for the reconstruction of
the event, the energy of an electromagnetic calorimeter cell was required
to have an energy of more than 60 MeV. Cells of the hadronic part of the
calorimeter were required to have more than 110 MeV. Also noisy cells were
removed. A cell was considered noisy if

• the cell was in the list of noisy cells for that running period.

• the imbalance between the two photomultipliers of the cell was too
large while the total energy in the cell was below 1.0 GeV:

|EPMT,1 − EPMT,2| > (0.49(EPMT,1 + EPMT,2) + 0.03 GeV)

• the cell was isolated and had low energy: Ecell < 80 MeV for EMC cells
and Ecell < 110 MeV for HAC cells.

For the data, as opposed to the Monte Carlo, energy scale correction factors
were applied to the remaining cells. These factors were extracted by an
analysis [61] of pure single-jet events in DIS that used the energy balance
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between scattered electron and the jet to calibrate the energy scale of the
calorimeter.

6.1.2 Tracks

Tracks are reconstructed using the CTD, described in chapter 4.3.1. The
tracks constrain the reconstructed vertex of the interaction and contribute
to the energy flow objects, which are described in the next section.

6.1.3 Energy Flow Objects

To get the most precise information about the energy and direction of the
particles, the data from the calorimeter cells and the CTD tracks are com-
bined in energy flow objects (ZUFOs, ZEUS Unified Flow Objects). When
tracks and calorimeter cells can be matched, the energy measurement of the
component with the better resolution is used. Typically this is the CTD for
lower and the calorimeter for higher energies. This procedure is described in
more detail in [62]. In this analysis the ZUFOs are only used to reconstruct
the jets. Cells and tracks associated with the scattered electron are removed.

6.2 Electron Finding

The signature of a neutral current DIS event is a scattered electron. The
scattered electron is identified by an electromagnetic energy deposit in the
calorimeter. In this analysis, the program Sinistra [63, 64] was used to find
the electron. This program uses a neural network to determine the proba-
bility that an an energy cluster in the CAL originates from an electron. The
energy of the electron is calculated from the sum of energy depositions that
are associated with the cluster. The impact position of the electron in the
calorimeter is calculated from the energy weighted average of the calorime-
ter cell positions. The position is then corrected by using data from the
HES and the SRTD [65, 66]. Using the corrected position, the energy of
the electron is then corrected for dead material and non-uniformities in the
calorimeter response. The energy of electrons in the barrel and rear regions
of the calorimeter are also corrected with information from the Presampler.

6.3 Jet Finding

Jets were reconstructed in the hadronic center of mass (HCM) frame from
ZUFOs using the longitudinally-invariant kT -clustering algorithm [35, 36]. In

62



the HCM-frame the proton and photon collide with equal and opposite mo-
menta. The photon momentum was reconstructed from the four-momentum
difference between incoming and scattered electron. The transformation into
the HCM-frame was done in such way that the proton momentum points
into the positive z-direction. The kT -clustering algorithm clusters the energy
depositions according to their distance in the transverse energy plane. To
get the jet variables in the laboratory frame the jets were boosted back.

6.3.1 KT -Clustering Algorithm

The kT -clustering algorithm was chosen for theoretical reasons, described in
chapter 2.5. It takes as input a list of the particles’ four-momenta. The four-
momenta are combined in an iterative procedure until the four-momenta of
the jets remain. In this analysis the input particles and the jets were defined
to be massless. When particles were combined, the transverse energies were
added and the angles averaged weighted in transverse energy (Snowmass
scheme [67]), given by

Ejet
T =

∑

ET,i, φjet =

∑

ET,iφi
∑

ET,i

, ηjet =

∑

ET,iηi
∑

ET,i

.

The kT algorithm works in the following steps:

1. The distance between two particles i and j in transverse energy is
defined as

dij = min{ET,i, ET,j}2[(∆ηij)
2 + (∆φij)

2]

2. To every particle i also a transverse energy relative to the beam axis is
assigned:

di = E2
T,i · R2

0

R0 is a parameter that controls the radius of the reconstructed jets. It
is normally set to 1, as it was in this analysis.

3. The smallest distance dij or di is determined. If it is a distance dij

between two particles, the two particles i and j are combined in the
above mentioned scheme. If it is a di, the particle i is removed from
the input list and put into the list of possible jets. The procedure
is repeated until no particles can be combined anymore. All input
particles end up in jets, thus the name inclusive.
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6.3.2 Jet Energy Correction

The energies of the detector level jets are on average lower than the ones
reconstructed from the hadrons. This is mainly due to dead material in
the detector. To correct for that, the detector- and hadron level jets of
the Monte Carlo were compared. The events were selected as described in
chapter 7, but the requirement on the minimum jet-ET was lowered to 3 GeV.
The jets at detector- and hadron level were matched with a requirement of
∆R =

√

(∆ηij)2 + (∆φij)2 < 1. In 17 different ηjet
LAB-bins the transverse

energies of jets on the detector level were plotted against the hadron level
energies. This was done in the laboratory frame to avoid a bias from the
reconstruction of the boost into the HCM-frame. Quadratic functions were
fitted to these data and yielded correction factors that were applied to the
energies of the measured jets. Figures 6.1 and 6.2 illustrate the effect of the
jet energy correction. After the jet energy correction the jets were ordered
according to their transverse energy in the HCM-frame.

6.4 Reconstruction of Kinematic Quantities

To reconstruct Q2, xBj and y, the scattered electron is used, the index el
stands for the electron method:

Q2
el = 2EeE

′ (1 + cosθ)

yel = 1 − E ′

2Ee

(1 − cosθ)

xel =
Q2

el

s yel

Ee is the energy of the incoming electron. E ′ and θ are the energy and
angle with respect to the beam axis of the scattered electron. The direc-
tion of the scattered electron is computed from the position where it enters
the calorimeter, taking into account the reconstructed vertex. Because of
momentum and energy conservation, the exchanged photon can be recon-
structed from the difference between incoming and scattered electron. Initial
state (ISR) and final state radiation (FSR) cannot be taken into account
by this method, but they are corrected for statistically by the later applied
detector-to-hadron level correction.
For one of the cuts in this analysis, y was also reconstructed with the Jacquet-
Blondel method. Here only the hadronic energy distribution but not the
scattered electron is used:

yjb =
1

2Ee
(Eh − pz,h)
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Figure 6.1: Detector level vs. hadron level Ejet
T,LAB before jet energy correc-

tions were applied for 0.2 ≤ ηjet
LAB < 0.4: The thick line shows the quadratic

fit, the thin dashed line shows where the points would lie for perfectly match-
ing energies on both levels.
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Eh and pz,h are the total hadronic energy in the calorimeter and the z-
component of the total hadronic momentum, respectively.

66



Chapter 7

Event Selection

This chapter describes the detector level event selection for data and Monte
Carlo events. The event sample used in this analysis was taken in the years
from 1998 to 2000 and had an integrated luminosity of 82 pb−1.

7.1 Trigger Selection

7.1.1 Introduction

Events have to meet certain conditions on all the trigger stages to be finally
written to tape and be available for analysis, as described in chapter 4.3.5.
To consistently compare selected data and Monte Carlo events, both must go
through the same trigger chain. The trigger chain consists of requirements on
the FLT (first level trigger), SLT (second level trigger) and TLT (third level
trigger). For the data taking several so-called trigger slots were defined on
each trigger level. Each of these slots describes one condition that causes the
event to pass that trigger level. The TLT and SLT slots require certain slots
of the lower levels (SLT and FLT) to be fired. Depending on the particular
analysis a subset of these trigger slots is used. Additional, stricter cuts
were applied in this analysis to take changes in the trigger configuration into
account. The trigger requirements that were applied in this analysis are
described below.

7.1.2 FLT

The following first level trigger slots were used:

• FLT 40: electromagnetic energy in the calorimeter above 15 GeV

• FLT 41: total transverse energy in the calorimeter above 21 GeV
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• FLT 42: a good track and one of the following conditions:

– total energy in calorimeter greater than 15 GeV

– total electromagnetic energy in the calorimeter greater than 10 GeV

– total electromagnetic energy in the BCAL greater than 3.4 GeV

– total electromagnetic energy in the RCAL greater than 2.0 GeV

• FLT 43: total transverse energy in the calorimeter greater than 11.5 GeV

• FLT 44: (a track found and the electromagnetic energy in the BCAL
greater than 4.8 GeV) or (the electromagnetic energy in the RCAL
greater than 3.4 GeV)

• FLT 46: isolated electromagnetic energy deposit and one of the follow-
ing conditions:

– total electromagnetic energy in the RCAL greater than 2.0 GeV

– SRTD signal and a good track

– good track and total energy in calorimeter greater than 18 GeV

FLT 40,41,43,44 or 46 was required for the DIS trigger slots. FLT 40,41,42
or 43 was required for the TLT slot HPP14.

7.1.3 SLT

Two different second level trigger slots were used:

• DIS06 requires E − pz + 2 · Eγ > 29 GeV (Eγ is the energy measured
by the Photon Calorimeter, part of the luminosity detector, described
in chapter 4.3.4) and one of the following:

– electromagnetic energy in RCAL greater than 2.5 GeV

– electromagnetic energy in BCAL greater than 2.5 GeV

– electromagnetic energy in FCAL greater than 10 GeV

– hadronic energy in FCAL greater than 10 GeV

• HPP01 requires all of the following:

– if a vertex is reconstructed, then |zvertex| < 60 cm is required

– at least one vertex track

– transverse energy (excluding the innermost FCAL ring) greater
than 8 GeV.

– E − pz > 8 GeV or pz/E > 0.95
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7.1.4 TLT

One of the following TLT slots was required in event selection of this analysis:

• HPP14: A dijet photoproduction trigger. It requires two jets in the
laboratory frame with transverse energies of at least 4.5 GeV and pseu-
dorapidities of less than 2.5. At the beginning of the running period of
the analyzed data, this energy threshold was 4.0 GeV. For consistency,
two jets with a transverse energy of at least 5.0 GeV in the laboratory
frame were required in this analysis in combination with this trigger
slot. As this is a photoproduction trigger, no scattered electron is
required to be found. Also the energy depositions of the scattered elec-
tron are not excluded from the jet reconstruction and this trigger may
count them as a jet.

• DIS01: An inclusive DIS trigger. An electron with at least 4 GeV
outside a rectangle of 24 × 12 cm2 around the beam pipe is required.
This trigger was prescaled during the analyzed data taking period. The
effective luminosity for this trigger was 11.4 pb−1

• DIS03: An inclusive high-Q2 DIS trigger. An electron with at least
4 GeV outside a circle with a radius of 35 cm around the beam pipe is
required for this slot. In this analysis, the reconstructed electron was
required to be outside a radius of 36 cm.

Figure 7.1 illustrates the efficiency of the TLT slots with the requirements as
described above as a function of Q2 determined with the ARIADNE Monte
Carlo sample. The efficiency was calculated as the ratio of events that passed
the trigger conditions over the events that fulfilled that kinematic and jet
selection on hadron level.

7.2 Background Removal Cuts

To remove background and events that are likely to be badly reconstructed,
several cleaning cuts were applied.
To make sure the electron hit the calorimeter in a region where it could be
well constructed,

|xe| > 13 cm or |ye| > 7 cm

was required for the reconstructed position of the electron. The hadronic
energy in a cone around the scattered electron was required to be less than
10% of the reconstructed electron energy:

Ehad,cone/Ee < 0.1
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Figure 7.1: Trigger efficiencies as determined with the ARIADNE sample for
the TLT slots HPP14, DIS01 and DIS03 with their associated trigger chain
as described in the text. The solid line shows the combined trigger efficiency.

To avoid electrons with a too high reconstructed energy at low angles,

(Ee − pz,e) < 54 GeV

was required. The cut

40 GeV < E − pz < 60 GeV

removes beam gas events and events that suffer from cosmic background. The
E − pz in events from electron-proton collisions at HERA is 2Ee = 55 GeV.
The E − pz of the initial proton is zero, because it points into the positive
z-direction. If only the part of the proton remnant that goes straight down
the beam pipe remains undetected, the measured E − pz of the event is still
expected to be 55 GeV.
In the following cut pT is the absolute value of the vectorial sum of energy
depositions in the calorimeter perpendicular to the beam axis. A large value
of pT indicates that either highly energetic particles from the interaction left
the detector undetected or particles not coming from the interaction point
deposited energy in the calorimeter. ET is just the absolute sum of transverse
energies.

pT /
√

ET < 3
√

GeV

cuts out mainly cosmic background.
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The nominal position of the interaction lies at zvertex = 0 cm. So

−50 cm < zvertex < 50 cm

cuts out mainly interactions from the beam with residual gas.

7.3 Kinematic Selection

The kinematic quantities in this analysis were calculated from the energy
and angle of the scattered electron. The four-momentum of the exchanged
virtual photon was assumed to be the difference of the four-momenta of the
incoming electron and the scattered electron. The DIS regime is defined by
a virtuality of the photon, Q2, greater than 1 GeV2. The analyzed kinematic
phase space in this analysis is

10 GeV2 < Q2 < 100 GeV2

and
10−4 < xBj < 10−2.

The inelasticity of the photon was required to be

yel < 0.6 GeV

and
yjb > 0.1 GeV.

The indices el and jb indicate if the electron- or the Jacquet-Blondel-method
were used to reconstruct y. The upper cut also implies a minimum energy of
the electron of 11 GeV.

7.4 Jet Selection

The jets were reconstructed in the hadronic center of mass frame. To check jet
quantities in the laboratory frame, their four-vectors were boosted back. The
pseudorapidity of the jets was required to be −1 < ηjet

LAB < 2.5 so that they
are in the region of the best acceptance of the calorimeter. As described in the
previous chapter, the jet energy was corrected for dead material effects. All
jets were required to have Ejet,uncorr

T,HCM > 3 GeV and Ejet,uncorr
T,lab > 4 GeV before

the correction. The following cuts were applied on the corrected energies of
the jets:

Ejet1
T,HCM > 7 GeV
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Ejet2,3
T,HCM > 5 GeV

For the dijet sample at least two jets were required. The trijet sample was a
subsample of the dijet sample with the additional requirement on the third
jet. The reason for the asymmetric jet energy cut is given in chapter 2.5.
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Chapter 8

Cross Section Measurements

8.1 Cross Section Definition

The hadron-level cross section, σhadron, is defined as

σhadron = CcorrCQED

∑Nevents

i=1 wi

Lint
,

where Nevents is the number of events in the sample that passed the cuts.
The wi are the weights of the events, described in section 8.3. Lint is the
integrated luminosity of the analyzed data sample. Ccorr is the detector to
hadron level correction, also called acceptance correction. CQED corrects the
data to Born level QED.

Differential cross sections are functions of one or more variables. This de-
pendence is continuous, but for practical reasons they are measured in bins
of the variables. The bins are chosen in a way such that the migration be-
tween bins on hadron and detector level is not too large and that each bin
has enough events. The migration is mainly determined by the resolution of
the measured variable. The width of the bins should be at least twice the
resolution. The differential cross section in a bin i is then calculated as the
cross section of the events that fall into bin i, divided by the width of the
bin i:

∆σ

∆X
(Xi) =

σi

widthi

X is the variable in which the differential cross section is measured. Xi is a
value of X in bin i. For the plots it was chosen to use the center of the bin
for Xi.
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8.2 Hadron Level

Theoretical predictions and data were compared at the hadron level. The
acceptance correction converts this into a detector independent hadron level
cross section. The perturbative QCD calculation calculates parton level cross
sections. The hadronization process is non-perturbative, so the Monte Carlo
predictions are used to correct the parton level cross sections to hadron level.
The selection at hadron and parton level was the same as at detector level
without detector-specific cuts:

10 GeV2 < Q2 < 100 GeV2, 10−4 < xBj < 10−2, 0.1 < y < 0.6

The kinematics at the hadron and parton levels were calculated from the
momentum of the boson that was exchanged in the hard process. The jets
were reconstructed with the kT -algorithm in the HCM-frame from the final
hadrons or the partons after the parton cascade before the fragmentation for
the Monte Carlo events, from the resulting partons for the NLO calculation.
The jet requirements were also the same at all levels:

Ejet1
T,HCM > 7 GeV, Ejet2,3

T,HCM > 5 GeV

Like the detector level sample, the dijet sample is inclusive, e.g. with no
restrictions on any further jets, and the trijet sample is a subset of the dijet
sample with a third jet above 5 GeV in transverse energy.

8.3 Reweighting

The events in the cross section formula above were given weights:

Nweighted =
Nevents
∑

i=1

wi

For the data events these weights were in general 1. Only the events ex-
clusively triggered by TLT DIS01 were given a higher weight to account for
the prescaling, see chapter 7.1.4. The Monte Carlo events were reweighted
depending on Q2, as described in [29].

8.4 Comparison to Monte Carlo

The data were compared to the ARIADNE and LEPTO Monte Carlo models,
see chapter 3. The ARIADNE sample had a simulated integrated luminosity
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Figure 8.1: Events per luminosity in bins of xBj and Q2, data (dots) vs.
ARIADNE (lines) at detector level. The number of MC events has been
normalized to the number of data events. Further comparison plots can
found in Appendix A.

of 56 pb−1 and an observed Q2 greater than 2.0 GeV2. The observed Q2

is the Q2 calculated from the initial and final electrons. They could be
affected by initial or final state radiation, so that the observed Q2 does not
exactly equal the Q2 of the boson that is exchanged in the hard process. The
LEPTO sample consisted of 2 subsamples with the observed Q2 greater than
3.0 GeV2 of 23 pb−1 and greater than 10.0 GeV2 of 94 pb−1. The LEPTO
samples were combined and the events weighted according to the luminosity.
The Monte Carlo samples were put through the simulation of the ZEUS
detector. Monte Carlo and data were compared at the detector level. The
Monte Carlo distributions were normalized to match the number of events of
the data. In Figure 8.1 the xBj- and Q2-distributions of data and ARIADNE
are compared, more comparison plots can be found in Appendix A.

8.5 Resolutions

Variables determined by using detector quantities suffer from various detector-
dependent effects. For the Monte Carlo events, the original values at the
hadron level are available. The resolution of a measured variable can be de-
termined by looking at the difference of the value at the detector level and
at the hadron level. The average deviation and the resolution are calculated
from the mean and the width of the distribution of this difference. Depend-
ing on the variable, the absolute, xdetector − xtrue, or the relative difference,
(xdetector−xtrue)/xtrue, is more adequate to use. The resolution of the variable
Q2 is shown in Figure 8.2.
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Figure 8.2: Resolution of the variable Q2 calculated with the electron method.

8.6 Acceptance Correction

The measured cross sections were corrected for detector effects. Therefore
the same cuts were applied to the Monte Carlo at the detector level as to
the data. At the hadron level only the kinematic and jet requirements were
applied. The data were corrected in each bin with the ratio of the number
of hadron level events to the number of detector level events.

Ccorr =
Nweighted,hadron

Nweighted,detector

To check how well the detector quantities reproduce the hadron level, effi-
ciencies, E , and purities, P, can be calculated:

E =
Nweighted,detector∧hadron

Nweighted,hadron
,P =

Nweighted,detector∧hadron

Nweighted,detector

The efficiencies and purities are calculated in each bin. To fulfill (detector ∧ hadron)
an event has to pass the cuts at both the detector and hadron levels and the
values of the considered variable have to fall in into the same bin. The purity
measures the fraction of detected events that are in that same bin at hadron
level. The efficiency measures the fraction of hadron level events that are
detected in the same bin at detector level.
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8.7 QED Corrections

The NLO QCD calculation only contains QED at O(αem). Both Monte
Carlo samples were generated including higher order QED effects. Two large
additional LEPTO samples without detector simulation were created, one
with and one without higher order QED effects. The ratio of the hadron
level cross sections between these samples was used to correct the data.

CQED =
σnoQED

σQED

So both data and theoretical calculation were compared at Born level in
QED.

8.8 Statistical Error

The statistical errors originate from counting a limited number of events.
The number of events were assumed to be distributed according to Poisson
statistics. Thus the square root of the number of events was taken as the
error. More generally, when the events were given different weights, the error
was calculated from the square root of the sum of the squares of the weights:

Nweighted =

Nevents
∑

i

wi, δNweighted =

√

∑

i

w2
i

Statistical errors were calculated for data as well as Monte Carlo events.
When ratios of correlated event samples were calculated, e.g. the correction
factors, the correlation was taken into account. These errors were propagated
to the final cross sections as statistical errors. The statistical error of the
presented cross sections contains also the statistical errors of all corrections.

8.9 Systematic Uncertainties

To check the stability of the cross section measurement, cuts on detector level
were varied by their resolutions. With unlimited statistics and a perfect
detector simulation, the correction factors would compensate the varying
event counts. The following systematic variations were checked:

• Q2 was varied by its resolution.

• The cut on yel was varied.
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• The cut on yjb was varied.

• xBj was varied by its resolution.

• The upper and lower cuts on E − pz were varied separately.

• The cuts on the transverse energy of the jets was varied separately.

• The cut on Zvertex was tightened and loosened.

• LEPTO was used for the hadron to detector level correction instead of
ARIADNE.

For each of these variations the cross section was calculated. The detector
level requirements for the Monte Carlo were also changed in the same way
to get a set of correction factors for each variation. The differences to the
presented cross sections were added in quadrature, separately for positive
and negative differences.

δsyst± =

√

∑

i

(σsyst,i − σ)2, for σsyst,i
>
< σ

The systematic uncertainties, added in quadrature to the statistical errors,
are shown in the figures as the outer error bars:

δcombined± =
√

δ2
stat + δ2

syst±

Additionally the jet energies on detector level were varied by ±3%. This
systematic check was not added to the total systematics, but can be found
in the plots as the jet energy scale uncertainty.

8.10 Parton to Hadron Level Corrections of

NLO Calculations

The NLO calculation predicts cross sections on the parton level. Data and
NLO were compared at the hadron level. Therefore the NLO cross sections
were corrected to hadron level. The hadronization correction factor is the
ratio of the hadron level cross section to the parton level cross section of the
Monte Carlo.

Chad =
σhadron

σparton

For this correction the LEPTO Monte Carlo sample was used, because the
parton level of this Monte Carlo had a closer resemblance to the parton level
of NLOjet.
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T,HCM=20 GeVjet 2, E

jet 1, ET,HCM=25 GeV

jet 3, ET,HCM=13 GeV

∆φ

Figure 8.3: Example trijet configuration. This figure is shown in the trans-
verse momentum plane of the hadronic center of mass frame.

8.11 Definition of the Chosen Variables

The di- and trijet cross sections were measured and calculated single-differentially
as functions of Q2, xBj, E

jet1,2(,3)
T,HCM and η

jet1,2(,3)
LAB . These variables have been de-

scribed above. Also |∆ηjet1,2
HCM |, the absolute difference in pseudorapidity of

the two highest-ET jets in the HCM-frame, was measured.
Double-differential cross sections were measured as functions of xBj and vari-
ables depending on the configuration of the first two (i.e. highest-ET ) jets.
These were the following:

• |∆φjet1,2
HCM|: The absolute difference in azimuthal angle of the two highest-

ET jets in the HCM-frame.

• ∆Ejet1,2
T,HCM: The absolute difference in transverse energy of the two

highest-ET jets in the HCM-frame.

• |∆~pjet1,2
T,HCM|: The magnitude of the vectorial difference of the transverse

momenta of the two highest-ET jets in the HCM-frame.

• |∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM): The magnitude of the vectorial difference of the
transverse momenta of the two highest-ET jets in the HCM-frame di-
vided by two times the transverse energy of the highest-ET jet. This
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variable only depends on the geometrical configuration of the jets and
the ratio of their transverse energies:

|∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM) =

√

1 + r2 − 2rcos(∆φjet1,2
HCM), with r =

Ejet2
T,HCM

Ejet1
T,HCM

• |Σ~pjet1,2
T,HCM|:The magnitude of the vectorial sum of the transverse mo-

menta of the two highest-ET jets in the HCM-frame.

The variable xBj was chosen because the applicability of the DGLAP-evolution
is expected to depend on xBj, as described in chapter 2.
All the variables that were double-differentially measured are dependent on
the balance of the transverse momenta. Figure 8.3 shows an exemplary trijet
configuration. In the ideal picture, the momenta of the jets add up to zero. In
an exclusive two-jet event, the jets point into opposite directions (|∆φjet1,2

HCM| =
180◦ = π). With exactly three jets, the minimum angle between the two
highest-ET,HCM jets is |∆φjet1,2

HCM| = 120◦ = 2/3π. Smaller angles indicate four
or more jets. Some of these additional jets can remain unobserved outside
the measured pseudorapidity region. This makes the measurement sensitive
to highly energetic forward jets.
The variables ∆φjet1,2

HCM and ∆Ejet1,2
T,HCM are sensitive to higher order processes.

Because of momentum conservation pure dijets would be back-to-back with
equal ET

1. Further radiations will change the configuration of the first two
jets, so that they are no longer back-to-back.
∆~pjet1,2

T,HCM/(2Ejet1
T,HCM) has its maximum at unity, when the first two jets are

back-to-back with equal transverse energy. This variable gives a handle on
the geometrical configuration of the jets and thus gives information similar
to ∆φjet1,2

HCM, but taking into account the energy ratio of the jets.
Σ~pjet1,2

T,HCM is very similar to ∆Ejet1,2
T,HCM, because the first two jets are mostly

pointing into opposite directions in the transverse momentum plane. It adds
a dependence on the azimuthal correlation between the first two jets. Oth-
erwise it is very similar to ∆Ejet1,2

T,HCM.

1This neglects the transverse momentum of the initial parton with respect to the di-

rection of the proton momentum
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Chapter 9

Results

9.1 Single-differential cross sections dσ/dQ2,

dσ/dxBj and trijet to dijet cross section

ratios

The single-differential cross-sections dσ/dQ2 and dσ/dxBj for dijet and trijet
production are presented in Figs. 9.1(a) and (c), and Tables B.1 – B.13.
The ratio σtrijet/σdijet of the trijet cross section to the dijet cross section,
as a function of Q2 and of xBj are presented in Figs. 9.1(b) and 9.1(d),
respectively. The ratio σtrijet/σdijet is almost Q2 independent, as shown in
Fig. 9.1(b), but falls steeply with increasing xBj, as shown in Fig. 9.1(d). In
cross-section ratios, the experimental and theoretical uncertainties partially
cancel, providing a possibility to test the pQCD calculations more precisely
than can be done with the individual cross sections. Both the cross sections
and the cross-section ratios are well-described by the NLOjet calculations.

9.2 Transverse energy and pseudorapidity de-

pendencies of cross sections

The single-differential cross sections dσ/dEjet
T,HCM for two (three) jet events

are presented in Fig. 9.2. The measured cross sections are well-described by
the NLOjet calculations over the whole range in Ejet

T,HCM considered.

The single-differential cross sections dσ/dηjet
LAB for dijet and trijet production

are presented in Figs. 9.3(a) and 9.3(c). For this figure, the two (three) jets
with highest Ejet

T,HCM were ordered in ηjet
LAB. Also shown are the measurements

of the single-differential cross sections d2σ/d|∆ηjet1,2
HCM |, where |∆ηjet1,2

HCM | is the
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absolute difference in pseudorapidity of the two jets with highest Ejet
T,HCM

(see Figs. 9.3(b) and 9.3(d)). The NLOjet predictions describe the mea-
surements well.

9.3 Jet transverse energy and momentum cor-

relations

Correlations in transverse energy of the jets have been investigated by mea-
suring the double-differential cross-sections d2σ/dxBjd∆Ejet1,2

T,HCM, where ∆Ejet1,2
T,HCM

is the difference in transverse energy between the two jets with the highest
Ejet

T,HCM. The measurement was performed in xBj bins, which are defined
in Table B.2, for dijet and trijet production. Figures 9.4 and 9.5 show the
cross-sections d2σ/dxBjd∆Ejet1,2

T,HCM for all bins in xBj for the dijet and trijet
samples, respectively.

The NLOjet calculations at O(α2
s) do not describe the high-∆Ejet1,2

T,HCM tail of
the dijet sample at low xBj, where the calculations fall below the data. Since
these calculations give the lowest-order non-trivial contribution to the cross
section in the region ∆Ejet1,2

T,HCM > 0, they are affected by large uncertainties
from the higher-order terms in αs. A higher-order calculation for the dijet
sample is possible with NLOjet if the region ∆Ejet1,2

T,HCM near zero is avoided.
NLOjet calculations at O(α3

s) for the dijet sample have been obtained for
the region ∆Ejet1,2

T,HCM > 4 GeV and are compared to the data in Fig. 9.4.
With the inclusion of the next term in the perturbative series in αs, the
NLOjet calculations describe the data within the theoretical uncertainties.
The NLOjet calculations at O(α3

s) for trijet production are consistent with
the measurements.

As a refinement of the studies of the correlations between the transverse
energies of the jets, further correlations of the jet tranverse momenta have
been investigated. The correlations in jet transverse momenta were exam-
ined by measuring the two sets of double-differential cross sections, the first
of which is d2σ/dxBjd|Σ~p jet1,2

T,HCM|, where |Σ~p jet1,2
T,HCM| is the transverse compo-

nent of the vector sum of the jet momenta of the two jets with the highest
Ejet

T,HCM. For events with only two jets |Σ~p jet1,2
T,HCM| = 0, additional QCD ra-

diation increases this value. The second cross section used to study the
correlations in jet transverse momenta is d2σ/dxBjd(|∆~p jet1,2

T,HCM|/(2Ejet1
T,HCM)),

where |∆~p jet1,2
T,HCM|/(2Ejet1

T,HCM) is the magnitude of the vector difference of the

transverse momenta of the two jets with the highest Ejet
T,HCM scaled by twice

the transverse energy of the hardest jet. For events with only two jets
|∆~p jet1,2

T,HCM|/(2Ejet1
T,HCM) = 1. Additional QCD radiation decreases this value.
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Figures 9.6 – 9.9 show the cross-sections d2σ/dxBjd|Σ~p jet1,2
T,HCM| and the cross-

sections d2σ/dxBjd|∆~p jet1,2
T,HCM|/(2Ejet1

T,HCM) in bins of xBj for the dijet and trijet
samples.
At low xBj, the NLOjet calculations at O(α2

s) underestimate the dijet cross
sections at high values of |Σ~p jet1,2

T,HCM| and low values of |∆~p jet1,2
T,HCM|/(2Ejet1

T,HCM).
The description of the data by the NLOjet calculations at O(α2

s) improves
at higher values of xBj. A higher-order calculation with NLOjet at O(α3

s) for
the dijet sample has been obtained for the region |Σ~p jet1,2

T,HCM| > 4 GeV, which is

compared to the data in Fig. 9.6; and for the region |∆~p jet1,2
T,HCM|/(2Ejet1

T,HCM) <
0.85, which is compared to the data in Fig. 9.8. With the inclusion of the
next term in the perturbative series in αs, the NLOjet calculations describe
the data well. The NLOjet calculations at O(α3

s) for trijet production are
consistent with the measurements.

9.4 Azimuthal distributions of the jets

Measurements of the double-differential cross section d2σ/dxBjd|∆φjet1,2
HCM|, where

|∆φjet1,2
HCM| is the azimuthal separation of the two jets with the largest Ejet

T,HCM,
for dijet and trijet production are shown in Figs. 9.10 and 9.11 for all bins in
xBj. For dijet and trijet production the cross section falls with |∆φjet1,2

HCM|. The
NLOjet calculations at O(α2

S) for dijet production decrease more rapidly
with |∆φjet1,2

HCM| than the data and the calculations disagree with the data
at low |∆φjet1,2

HCM|. A higher-order NLOjet calculation at O(α3
S) for the di-

jet sample has been obtained for the region |∆φjet1,2
HCM| < 3π/4 and describes

the data well. The measurements for trijet production are reasonably well
described by the NLOjet calculations at O(α3

S).
A further investigation has been performed by measuring the cross-section
d2σ/dQ2dxBj for dijet (trijet) events with |∆φjet1,2

HCM| < 2π/3 as a function
of xBj. For the two-jet final states, the presence of two leading jets with
|∆φjet1,2

HCM| < 2π/3 is an indication of another high-ET jet outside the mea-
sured η range. These cross sections are presented in Fig. 9.12. The NLOjet

calculations at O(α2
S) for dijet production underestimate the data, the dif-

ference increasing towards low xBj. The NLOjet calculations at O(α3
S) are

up to one order of magnitude larger than the O(α2
S) calculations and are

consistent with the data, demonstrating the importance of the higher-order
terms in the description of the data especially at low xBj. The NLOjet cal-
culations at O(α3

S) describe the trijet data within the renormalisation scale
uncertainties.
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Figure 9.1: Inclusive dijet and trijet cross sections as functions of (a) Q2 and
(c) xBj . (b) and (d) show the ratios of the trijet and dijet cross sections.
The inner error bars represent the statistical uncertainties. The outer error
bars represent the quadratic sum of statistical and systematic uncertainties
not associated with the jet energy scale. The shaded band indicates the
jet energy scale uncertainty. The predictions of perturbative QCD at NLO,
corrected for hadronisation effects and using the CTEQ6 parameterisations
of the proton PDFs, are compared to data. The lower plots show the relative
difference between the data and the corresponding theoretical prediction.
The hatched band represents the renormalisation scale uncertainty of the
QCD calculation. 84
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Figure 9.3: (a) and (c) show the inclusive dijet and trijet cross sections as
functions of ηjet

LAB with the jets ordered in ηjet
LAB: ηjet1

LAB > ηjet2
LAB > ηjet3

LAB. The
cross sections of the second and third jet were scaled for readability. (b) and
(d) show the dijet and trijet cross sections as functions of |∆ηjet1,2

HCM |. Other
details as in the caption in Fig. 9.1.

86



ZEUS

1 2 3 4 10 20-1

0

1

2

d
x 

(p
b

/G
eV

)
T

,H
C

M

je
t1

,2
 E∆

/dσ
2

d

-110

1

10

210

310

410

510

610

710
 < 0.0003Bj0.00017 < x

th
eo

ry
d

at
a 

- 
th

eo
ry

1 2 3 4 10 20

 < 0.0005Bj0.0003  < x

 (GeV)T,HCM

jet1,2
 E∆

1 2 3 4 10 20 100

 < 0.001Bj0.0005  < x

1 2 3 4 10 20-1

0

1

2

d
x 

(p
b

/G
eV

)
T

,H
C

M

je
t1

,2
 E∆

/dσ
2

d

-110

1

10

210

310

410

510

610

710
 < 0.0025Bj0.001   < x

th
eo

ry
d

at
a 

- 
th

eo
ry

 (GeV)T,HCM

jet1,2
 E∆

1 2 3 4 10 20 100

 < 0.01Bj0.0025   < x

) < 1T

2
E+2/(Q

r
2µ1/16 < 

jet energy scale
uncertainty

-1ZEUS 82 pb
dijets

had C⊗) s
2αNLOjet: O(

had C⊗) s
3αNLOjet: O(

Figure 9.4: Dijet cross sections as functions of ∆Ejet1,2
T,HCM. For comparison

with the dijet measurements, NLOjet calculations at O(α2
s) (O(α3

s)) are
shown as dashed (solid) lines. The lower plots show the relative difference
between the data and the O(α3

s) predictions. The boundaries for the bins in
∆Ejet1,2

T,HCM are given in Table B.25. Other details as in the caption to Fig. 9.1.
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T,HCM. The measurements
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Fig. 9.1.
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Figure 9.6: Dijet cross sections as functions of |Σp jet1,2
T,HCM|. For comparison

with the dijet measurements, NLOjet calculations at O(α2
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s)) are
shown as dashed (solid) lines. The lower plots show the relative difference
between the data and the O(α3

s) predictions. The boundaries for the bins in
|Σp jet1,2

T,HCM| are given in Table B.25. Other details as in the caption to Fig. 9.1.
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Figure 9.12: The dijet and trijet cross sections for events with |∆φjet1,2
HCM| <

120◦ as functions of xBj in two different Q2-bins. For comparison with the
dijet measurements, NLOjet calculations at O(α2

s) (O(α3
s)) are shown as

dashed (solid) lines. The trijet measurements are compared to NLOjet

calculations at O(α3
s). The lower plots in (a) and (b) show the relative

difference between the data and the O(α3
s) predictions. Other details as in

the caption to Fig. 9.1.
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Chapter 10

Summary and Conclusions

Dijet and trijet production in deep inelastic ep scattering has been measured
in the phase space region 10 GeV2 < Q2 < 100 GeV2 and 10−4 < xBj < 10−2

using an integrated luminosity of 82 pb−1 collected by the ZEUS experiment.
The high statistics have made possible detailed studies of multijet production
at low xBj. The dependence of dijet and trijet production on the kinematic
variables Q2 and xBj and on the jet variables Ejet

T,HCM and ηjet
LAB is well de-

scribed by perturbative QCD calculations which include next-to-lowest-order
corrections. To investigate possible deviations with respect to the collinear
factorization approximation used in the standard pQCD approach, measure-
ments of the correlations between the two jets with highest Ejet

T,HCM have been
made. At low xBj, measurements of dijet production with low azimuthal sep-
aration are reproduced by the perturbative QCD calculations provided that
higher-order terms (O(α3

s)) are accounted for. Such terms increase the pre-
dictions by pQCD calculations by up to one order of magnitude when the
two jets with the highest Ejet1,2

T,HCM are not balanced in transverse momentum.
This demonstrates their importance in the low-xBj region.
Compared to the studies in [20], the phase space was the same, except for
the region below Q2 = 10 GeV2, but the agreement between data and the
theoretical calculations was found to be reasonable even for the azimuthal
correlations in dijet events, when the O(α3

s) terms were included.

The 6m Tagger was calibrated and measurements of the photon acceptance
of the Photon Calorimeter and the Spectrometer were performed. For the
future, a cell-by-cell calibration of the 6m Tagger would be desirable. The
acceptance measurement of the Photon Calorimeter showed the importance
of the knowledge of the beam spread. The combination of the data from sev-
eral runs could increase the statistical accuracy and could further constrain
the acceptances.
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Appendix A

Comparison of Data and Monte
Carlo at Detector Level
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Figure A.1: Comparison of data and ARIADNE at detector level for dijet
events. The data are the dots, the Monte Carlo is shown as histograms. The
Monte Carlo has been normalized to the data inside the cuts. The vertical
lines show the cuts on the variables. On the left side is linear scale, on the
right log scale.
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Figure A.2: Data vs. ARIADNE, dijet, continued
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Figure A.3: Data vs. ARIADNE, dijet, jet transverse energies
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Figure A.5: Data vs. ARIADNE, trijet
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Figure A.6: Data vs. ARIADNE, trijet, continued
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Figure A.7: Data vs. ARIADNE, trijet, jet transverse energies
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Figure A.8: Data vs. ARIADNE, trijet, jet pseudorapidities
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Figure A.9: Data vs. LEPTO, dijet

106



 (GeV)
z

E-p
40 45 50 55 60

ev
en

ts
/lu

m
i (

p
b

)

0
20
40
60
80

100
120
140
160
180

 (GeV)
z

E-p
40 45 50 55 60

ev
en

ts
/lu

m
i (

p
b

)

1

10

210

 (GeV)
electron

)
z

(E-p
20 30 40 50

ev
en

ts
/lu

m
i (

p
b

)

0

20

40

60

80

100

 (GeV)
electron

)
z

(E-p
20 30 40 50

ev
en

ts
/lu

m
i (

p
b

)

-210

-110

1

10

210

 (GeV)electronE
10 20 30 40

ev
en

ts
/lu

m
i (

p
b

)

0
20
40
60
80

100
120
140
160

 (GeV)electronE
10 20 30 40

ev
en

ts
/lu

m
i (

p
b

)

1

10

210

 (cm)vertexZ
-50 0 50

ev
en

ts
/lu

m
i (

p
b

)

0
20
40
60
80

100
120
140
160
180
200
220

 (cm)vertexZ
-50 0 50

ev
en

ts
/lu

m
i (

p
b

)

1

10

210

Figure A.10: Data vs. LEPTO, dijet, continued
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Figure A.11: Data vs. LEPTO, dijet, jet transverse energies
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Figure A.12: Data vs. LEPTO, dijet, jet pseudorapidities
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Figure A.13: Data vs. LEPTO, trijet
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Figure A.14: Data vs. LEPTO, trijet, continued
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Figure A.15: Data vs. LEPTO, trijet, jet transverse energies
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Figure A.16: Data vs. LEPTO, trijet, jet pseudorapidities
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Figure A.17: Comparison of data and ARIADNE, dijet events per integrated
luminosity in bins of |∆φjet1,2

HCM| and |∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM), respectively, in
different ranges of xBj. MC has been normalized to the data
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Figure A.18: Comparison of data and ARIADNE, dijet events per integrated
luminosity in bins of ∆Ejet1,2

T,HCM and |Σ~pjet1,2
T,HCM| , respectively, in different ranges

of xBj. MC has been normalized to the data
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Figure A.19: Comparison of data and ARIADNE, trijet events per integrated
luminosity in bins of |∆φjet1,2

HCM| and |∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM), respectively, in
different ranges of xBj. MC has been normalized to the data
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Figure A.20: Comparison of data and ARIADNE, trijet events per integrated
luminosity in bins of ∆Ejet1,2

T,HCM and |Σ~pjet1,2
T,HCM| , respectively, in different ranges

of xBj. MC has been normalized to the data
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Figure A.21: Comparison of data and LEPTO, dijet events per integrated
luminosity in bins of |∆φjet1,2

HCM| and |∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM), respectively, in
different ranges of xBj. MC has been normalized to the data
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Figure A.22: Comparison of data and LEPTO, dijet events per integrated
luminosity in bins of ∆Ejet1,2

T,HCM and |Σ~pjet1,2
T,HCM| , respectively, in different ranges

of xBj. MC has been normalized to the data
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Figure A.23: Comparison of data and LEPTO, trijet events per integrated
luminosity in bins of |∆φjet1,2

HCM| and |∆~pjet1,2
T,HCM|/(2Ejet1

T,HCM), respectively, in
different ranges of xBj. MC has been normalized to the data
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Figure A.24: Comparison of data and LEPTO, trijet events per integrated
luminosity in bins of ∆Ejet1,2

T,HCM and |Σ~pjet1,2
T,HCM| , respectively, in different ranges

of xBj. MC has been normalized to the data
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Appendix B

Cross-Section Tables

122



Q2 dσ
dQ2 δstat δsyst δES CQED Chad

( GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2)

10 - 15 66.0 0.8 +3.7
−4.4

+5.7
−5.9 0.984 0.866

15 - 20 41.4 0.6 +2.0
−2.4

+3.5
−3.6 0.968 0.870

20 - 30 26.2 0.3 +1.0
−0.8

+2.2
−2.0 0.965 0.876

30 - 50 14.0 0.1 +0.4
−0.3

+1.0
−1.1 0.955 0.884

50 - 100 5.82 0.06 +0.17
−0.16

+0.38
−0.38 0.952 0.887

Table B.1: The inclusive dijet cross sections as functions of Q2. Included
are the statistical, systematic, and jet energy scale uncertainties in columns
3, 4, and 5, respectively. Column 6 shows the correction factor from QED
radiative effects applied to the measured cross sections, and column 7 shows
the hadronization correction applied to the NLOjet calculations shown in
the figures.

xBj × 10−4 dσ
dxBj

δstat δsyst δES CQED Chad

(pb,×10−4) (pb,×10−4) (pb,×10−4) (pb,×10−4)

1.7 - 3.0 85.3 1.7 +5.6
−6.8

+7.0
−6.3 0.987 0.910

3.0 - 5.0 113.8 1.5 +5.9
−6.2

+8.8
−8.9 0.975 0.887

5.0 - 10.0 83.1 0.8 +3.3
−3.7

+6.9
−7.1 0.969 0.876

10.0 - 25.0 29.5 0.3 +0.8
−0.8

+2.2
−2.2 0.958 0.876

25.0 - 100.0 2.31 0.03 +0.08
−0.07

+0.17
−0.17 0.948 0.862

Table B.2: The inclusive dijet cross sections as functions of xBj. Other details
as in the caption to Table 1.
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Ejet,1
T,HCM

dσ

dEjet,1
T,HCM

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

5 - 8 109 2 +3
−109

+5
−6 0.965 0.814

8 - 12 184 1 +4
−3

+12
−13 0.965 0.884

12 - 16 57.4 0.7 +1.0
−4.2

+6.1
−5.8 0.963 0.924

16 - 20 18.3 0.3 +0.4
−0.8

+2.1
−1.8 0.956 0.936

20 - 25 6.27 0.16 +0.22
−0.86

+0.74
−0.75 0.965 0.939

25 - 30 1.72 0.08 +0.06
−0.07

+0.29
−0.25 0.96 0.930

30 - 40 0.415 0.026 +0.016
−0.035

+0.082
−0.057 0.96 0.93

40 - 60 0.043 0.006 +0.008
−0.011

+0.007
−0.010 1.01 0.93

Table B.3: The inclusive dijet cross sections as functions of Ejet,1
T,HCM . Other

details as in the caption to Table 1.

Ejet,2
T,HCM

dσ

dEjet,2
T,HCM

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

5 - 8 278 2 +6
−8

+19
−19 0.964 0.864

8 - 12 104.5 0.9 +0.8
−1.6

+8.6
−9.0 0.965 0.879

12 - 16 23.3 0.4 +0.4
−0.3

+2.6
−2.5 0.965 0.926

16 - 20 6.59 0.19 +0.71
−0.20

+0.83
−0.64 0.958 0.953

20 - 25 2.12 0.09 +0.21
−0.08

+0.30
−0.30 0.97 0.937

25 - 30 0.64 0.05 +0.12
−0.02

+0.13
−0.05 0.93 0.97

30 - 40 0.171 0.017 +0.014
−0.019

+0.020
−0.027 0.97 0.95

40 - 60 0.0110 0.0037 +0.0034
−0.0038

+0.0033
−0.0022 1.07 0.93

Table B.4: The inclusive dijet cross sections as functions of Ejet,2
T,HCM . Other

details as in the caption to Table 1.
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ηjet,1
LAB

dσ

dηjet,1
LAB

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

-1.0 - -0.5 6.0 0.9 +2.5
−1.1

+1.4
−1.0 0.94 0.424

-0.5 - 0.0 115 3 +7
−2

+17
−15 0.977 0.742

0.0 - 0.5 337 5 +9
−11

+31
−31 0.968 0.855

0.5 - 1.0 543 7 +22
−20

+45
−45 0.964 0.885

1.0 - 1.5 630 7 +28
−25

+43
−48 0.963 0.910

1.5 - 2.0 599 7 +21
−29

+40
−43 0.959 0.915

2.0 - 2.5 521 7 +33
−36

+38
−33 0.967 0.849

Table B.5: The inclusive dijet cross sections as functions of ηjet,1
LAB. Other

details as in the caption to Table 1.

ηjet,2
LAB

dσ

dηjet,2
LAB

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

-1.0 - -0.5 455 7 +15
−26

+51
−47 0.968 0.767

-0.5 - 0.0 703 7 +26
−28

+61
−64 0.968 0.873

0.0 - 0.5 709 7 +31
−29

+53
−54 0.963 0.899

0.5 - 1.0 542 6 +20
−27

+33
−36 0.960 0.933

1.0 - 1.5 234 4 +14
−10

+13
−11 0.960 0.992

1.5 - 2.0 74.0 2.3 +5.3
−6.0

+3.8
−4.4 0.954 0.910

2.0 - 2.5 15.9 1.3 +1.4
−3.8

+0.9
−0.6 0.94 0.87

Table B.6: The inclusive dijet cross sections as functions of ηjet,2
LAB. Other

details as in the caption to Table 1.
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∆ηjet1,2
HCM

dσ

d∆ηjet1,2
HCM

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

0.0 - 0.7 744 6 +25
−25

+55
−57 0.964 0.890

0.7 - 1.4 617 6 +20
−21

+47
−47 0.962 0.905

1.4 - 2.1 390 5 +26
−20

+31
−31 0.966 0.878

2.1 - 2.8 169 3 +9
−13

+16
−16 0.966 0.793

2.8 - 3.5 37.5 1.8 +3.1
−5.3

+4.8
−4.6 0.977 0.623

Table B.7: The inclusive dijet cross sections as functions of ∆ηjet1,2
HCM . Other

details as in the caption to Table 1.
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xBj × 104 ∆Ejet1,2
T,HCM

d2σ

d(∆Ejet1,2
T,HCM)dxBj

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

1.7 - 3.0 0.0 - 4.0 1.75 × 105 4.3 × 103 +1.1×104

−1.2×104
+1.3×104

−1.1×104 0.984 0.908

4.0 - 10.0 2.76 × 104 1.2 × 103 +4.0×103

−8.7×103
+2.9×103

−2.8×103 1.00 0.920

10.0 - 18.0 1.51 × 103 2.1 × 102 +6.3×102

−3.2×102
+3.7×102

−1.7×102 1.04 0.89

3.0 - 5.0 0.0 - 4.0 2.37 × 105 3.9 × 103 +1.3×104

−7.1×103
+1.6×104

−1.7×104 0.975 0.883

4.0 - 10.0 3.4 × 104 1.0 × 103 +3.9×103

−1.0×104
+3.8×103

−3.4×103 0.976 0.918

10.0 - 18.0 1.55 × 103 1.5 × 102 +3.4×102

−5.6×102
+1.8×102

−2.1×102 0.97 0.88
18.0 - 100.0 17.9 5.3 +4.9

−5.6
+1.2
−2.4 1.1 0.81

5.0 - 10 0.0 - 4.0 1.73 × 105 2.1 × 103 +3.9×103

−4.8×103
+1.3×104

−1.4×104 0.970 0.872

4.0 - 10.0 2.46 × 104 5.8 × 102 +2.4×103

−7.1×103
+2.7×103

−2.6×103 0.964 0.905

10.0 - 18.0 1.20 × 103 8.2 × 101 +2.7×102

−2.8×102
+2.1×102

−1.3×102 0.99 0.86
18.0 - 100.0 10.6 3.4 +4.6

−3.6
+0.7
−1.1 0.96 0.80

10 - 25 0.0 - 4.0 6.24 × 104 6.8 × 102 +1.9×103

−1.7×103
+4.1×103

−4.3×103 0.959 0.874

4.0 - 10.0 7.7 × 103 1.7 × 102 +3.4×102

−1.9×103
+7.5×102

−7.2×102 0.959 0.896
10.0 - 18.0 428 27 +95

−152
+92
−44 0.94 0.82

18.0 - 100.0 3.9 0.9 +1.3
−0.6

+1.1
−0.9 1.00 0.78

25 - 100 0.0 - 4.0 5.08 × 103 9.1 × 101 +1.5×102

−1.4×102
+3.2×102

−3.2×102 0.949 0.860
4.0 - 10.0 457 18 +20

−96
+40
−46 0.941 0.885

10.0 - 18.0 34 4 +9
−15

+5
−7 1.05 0.78

18.0 - 100.0 0.24 0.09 +0.11
−0.11

+0.02
−0.02 0.7 1.0
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xBj × 104 |Σ~pjet1,2
T,HCM | d2σ

d(|Σ~pjet1,2
T,HCM

|)dxBj

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

1.7 - 3.0 0.0 - 4.0 1.145 × 105 3.7 × 103 +8.3×103

−8.1×103
+6.0×103

−5.6×103 0.978 0.934

4.0 - 10.0 5.47 × 104 1.8 × 103 +3.5×103

−6.0×103
+5.4×103

−4.8×103 0.995 0.878

10.0 - 16.0 1.10 × 104 7.5 × 102 +1.2×103

−2.1×103
+1.1×103

−1.2×103 1.02 0.88
16.0 - 100.0 164 25 +36

−19
+53
−23 1.02 0.85

3.0 - 5.0 0.0 - 4.0 1.597 × 105 3.4 × 103 +6.9×103

−4.9×103
+8.2×103

−7.9×103 0.973 0.898

4.0 - 10.0 7.02 × 104 1.6 × 103 +4.8×103

−4.1×103
+6.6×103

−6.5×103 0.977 0.873

10.0 - 16.0 1.20 × 104 5.9 × 102 +1.2×103

−3.3×103
+1.5×103

−1.8×103 0.98 0.86
16.0 - 100.0 162 16 +52

−31
+32
−27 1.03 0.85

5.0 - 10 0.0 - 4.0 1.194 × 105 1.9 × 103 +3.9×103

−3.5×103
+7.1×103

−8.1×103 0.973 0.885

4.0 - 10.0 4.88 × 104 8.4 × 102 +2.1×103

−3.9×103
+4.4×103

−4.7×103 0.967 0.859

10.0 - 16.0 7.5 × 103 3.0 × 102 +9.2×102

−1.3×103
+1.3×103

−9.1×102 0.94 0.865
16.0 - 100.0 130 10 +10

−41
+22
−23 0.94 0.84

10 - 25 0.0 - 4.0 4.44 × 104 6.0 × 102 +1.8×103

−1.7×103
+1.9×103

−2.4×103 0.959 0.883

4.0 - 10.0 1.54 × 104 2.5 × 102 +5.0×102

−5.1×102
+1.5×103

−1.4×103 0.960 0.864

10.0 - 16.0 2.52 × 103 9.7 × 101 +1.6×102

−4.9×102
+3.8×102

−2.7×102 0.939 0.855
16.0 - 100.0 37 3 +5

−12
+5
−6 0.94 0.83

25 - 100 0.0 - 4.0 3.73 × 103 8.2 × 101 +1.1×102

−1.3×102
+1.2×102

−1.6×102 0.949 0.870
4.0 - 10.0 921 26 +86

−39
+89
−84 0.947 0.847

10.0 - 16.0 153 11 +16
−27

+19
−20 0.95 0.81

16.0 - 100.0 2.68 0.35 +0.32
−0.71

+0.41
−0.61 0.93 0.82
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xBj × 104 |∆~pjet1,2
T,HCM |

2Ejet1
T,HCM

d2σ

d

 

|∆~p
jet1,2
T,HCM

|

2E
jet1
T,HCM

!

dxBj

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

1.7 - 3.0 0.0 - 0.5 2.20 × 104 4.4 × 103 +6.1×103

−3.3×103
+4.3×103

−1.9×103 0.86 0.95

0.5 - 0.7 1.95 × 105 2.1 × 104 +4.6×104

−2.3×104
+3.3×104

−1.4×104 0.98 0.89

0.7 - 0.9 2.14 × 106 1.0 × 105 +1.6×105

−4.6×105
+1.8×105

−1.9×105 1.00 0.82

0.9 - 1.0 3.28 × 106 9.0 × 104 +2.7×105

−1.8×105
+2.2×105

−2.0×105 0.987 0.912

3.0 - 5.0 0.0 - 0.5 3.5 × 104 5.0 × 103 +9.3×103

−1.4×104
+2.8×103

−8.5×103 1.01 0.88

0.5 - 0.7 2.77 × 105 2.1 × 104 +7.6×104

−7.7×104
+3.1×104

−3.3×104 1.12 0.79

0.7 - 0.9 2.62 × 106 8.2 × 104 +2.1×105

−4.6×105
+2.4×105

−2.3×105 0.96 0.86

0.9 - 1.0 4.54 × 106 8.4 × 104 +3.6×105

−1.2×105
+2.9×105

−2.8×105 0.975 0.889

5.0 - 10 0.0 - 0.5 2.18 × 104 2.3 × 103 +4.6×103

−6.3×103
+4.1×103

−4.4×103 0.95 0.85

0.5 - 0.7 1.61 × 105 9.2 × 103 +3.1×104

−2.5×104
+2.6×104

−1.5×104 0.97 0.83

0.7 - 0.9 1.87 × 106 4.4 × 104 +8.2×104

−2.8×105
+1.7×105

−1.9×105 0.95 0.831

0.9 - 1.0 3.37 × 106 4.7 × 104 +9.1×104

−6.2×104
+2.3×105

−2.3×105 0.970 0.877

10 - 25 0.0 - 0.5 5.5 × 103 5.3 × 102 +1.1×103

−1.4×103
+1.0×103

−6.4×102 0.98 0.78

0.5 - 0.7 4.43 × 104 2.4 × 103 +5.2×103

−3.8×103
+7.1×103

−5.5×103 0.89 0.87

0.7 - 0.9 6.05 × 105 1.3 × 104 +1.3×104

−5.3×104
+4.7×104

−4.8×104 0.96 0.825

0.9 - 1.0 1.272 × 106 1.6 × 104 +3.4×104

−2.9×104
+7.8×104

−8.4×104 0.959 0.878

25 - 100 0.0 - 0.5 341 55 +104
−83

+42
−50 0.91 0.71

0.5 - 0.7 3.34 × 103 3.2 × 102 +2.8×102

−3.5×102
+4.3×102

−4.6×102 0.99 0.77

0.7 - 0.9 3.94 × 104 1.4 × 103 +1.5×103

−2.2×103
+3.0×103

−3.2×103 0.97 0.82

0.9 - 1.0 1.065 × 105 2.2 × 103 +3.2×103

−3.1×103
+6.2×103

−6.5×103 0.948 0.864

Table B.10: The dijet double-differential cross sections as functions of
|∆~pjet1,2

T,HCM |/(2Ejet1
T,HCM). Other details as in the caption to Table 5.
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xBj × 104 ∆φjet1,2
HCM

d2σ

d(∆φjet1,2
HCM)dxBj

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

1.7 - 3.0 0.0 - π/4 6.6 × 103 1.8 × 103 +5.3×103

−3.3×103
+2.5×103

−1.0×103 0.78 1.1

π/4 - π/2 2.21 × 104 3.5 × 103 +5.0×103

−3.8×103
+6.9×102

−2.0×103 1.00 0.83

π/2 - 3π/4 1.02 × 105 7.2 × 103 +1.9×104

−4.2×103
+1.2×104

−8.7×103 0.98 0.85

3π/4 - π 9.46 × 105 2.0 × 104 +5.9×104

−7.9×104
+7.1×104

−6.7×104 0.988 0.916

3.0 - 5.0 0.0 - π/4 1.18 × 104 2.4 × 103 +2.3×103

−4.7×103
+1.3×103

−2.3×103 1.00 0.87

π/4 - π/2 2.9 × 104 3.4 × 103 +5.9×103

−1.1×104
+1.8×103

−6.7×103 1.10 0.80

π/2 - 3π/4 1.39 × 105 6.9 × 103 +1.4×104

−1.3×104
+1.5×104

−1.7×104 0.98 0.839

3π/4 - π 1.265 × 106 1.8 × 104 +5.7×104

−5.1×104
+9.4×104

−8.6×104 0.974 0.893

5.0 - 10 0.0 - π/4 6.9 × 103 1.0 × 103 +1.2×103

−2.9×103
+1.2×103

−1.7×103 0.91 0.81

π/4 - π/2 1.84 × 104 1.7 × 103 +2.1×103

−4.3×103
+3.0×103

−3.0×103 0.95 0.84

π/2 - 3π/4 9.0 × 104 3.6 × 103 +3.3×103

−5.9×103
+1.0×104

−8.6×103 0.961 0.828

3π/4 - π 9.35 × 105 1.0 × 104 +2.9×104

−3.0×104
+7.2×104

−7.6×104 0.970 0.881

10 - 25 0.0 - π/4 2.13 × 103 3.0 × 102 +3.8×102

−7.0×102
+4.1×102

−2.1×102 1.04 0.73

π/4 - π/2 4.42 × 103 3.6 × 102 +7.4×102

−6.2×102
+7.1×102

−5.8×102 0.89 0.86

π/2 - 3π/4 2.72 × 104 1.1 × 103 +1.7×103

−5.2×102
+3.1×103

−3.1×103 0.945 0.822

3π/4 - π 3.37 × 105 3.2 × 103 +7.0×103

−7.7×103
+2.3×104

−2.4×104 0.960 0.881

25 - 100 0.0 - π/4 98 22 +27
−34

+3
−13 0.85 0.70

π/4 - π/2 354 53 +55
−97

+39
−62 0.97 0.79

π/2 - 3π/4 1.74 × 103 1.2 × 102 +4.0×102

−1.9×102
+2.1×102

−2.0×102 0.94 0.808

3π/4 - π 2.63 × 104 4.1 × 102 +9.8×102

−5.9×102
+1.7×103

−1.8×103 0.949 0.867

Table B.11: The dijet double-differential cross sections as functions of
∆φjet1,2

HCM . Other details as in the caption to Table 5.
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Q2 dσ
dQ2 δstat δsyst δES CQED Chad

( GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2) (pb/ GeV2)

10 - 15 7.9 0.2 +1.1
−1.3

+1.0
−1.0 0.991 0.759

15 - 20 4.40 0.17 +0.46
−0.66

+0.45
−0.52 0.946 0.776

20 - 30 3.19 0.11 +0.27
−0.37

+0.38
−0.38 0.969 0.786

30 - 50 1.68 0.06 +0.13
−0.11

+0.20
−0.19 0.949 0.794

50 - 100 0.719 0.024 +0.044
−0.027

+0.077
−0.070 0.956 0.795

Table B.12: The inclusive trijet cross sections as functions of Q2. Other
details as in the caption to Table 1.

xBj × 10−4 dσ
dxBj

δstat δsyst δES CQED Chad

(pb,×10−4) (pb,×10−4) (pb,×10−4) (pb,×10−4)

1.7 - 3.0 14.7 0.7 +1.5
−3.3

+1.5
−1.9 1.00 0.811

3.0 - 5.0 15.9 0.5 +2.0
−2.3

+1.9
−1.8 0.968 0.796

5.0 - 10.0 9.6 0.3 +0.9
−0.9

+1.1
−1.1 0.961 0.780

10.0 - 25.0 3.35 0.10 +0.21
−0.19

+0.40
−0.37 0.954 0.785

25.0 - 100.0 0.192 0.013 +0.032
−0.020

+0.023
−0.022 0.95 0.739

Table B.13: The inclusive trijet cross sections as functions of xBj. Other
details as in the caption to Table 1.
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Ejet,1
T,HCM

dσ

dEjet,1
T,HCM

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

5 - 8 5.4 0.4 +0.6
−5.4

+0.6
−0.5 0.95 0.750

8 - 12 19.1 0.5 +1.5
−0.8

+1.7
−2.0 0.965 0.764

12 - 16 11.6 0.4 +0.1
−0.7

+1.5
−1.4 0.965 0.799

16 - 20 4.58 0.19 +0.25
−0.26

+0.68
−0.58 0.96 0.823

20 - 25 1.71 0.09 +0.07
−0.22

+0.24
−0.21 0.96 0.83

25 - 30 0.615 0.052 +0.019
−0.037

+0.091
−0.142 0.98 0.81

30 - 40 0.116 0.014 +0.035
−0.018

+0.025
−0.016 0.97 0.83

40 - 60 0.0119 0.0036 +0.0032
−0.0059

+0.0028
−0.0018 1.03 0.78

Table B.14: The inclusive trijet cross sections as functions of Ejet,1
T,HCM . Other

details as in the caption to Table 1.

Ejet,2
T,HCM

dσ

dEjet,2
T,HCM

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

5 - 8 23.9 0.7 +1.4
−0.9

+2.1
−2.4 0.951 0.774

8 - 12 17.2 0.4 +0.3
−0.6

+2.1
−2.1 0.975 0.773

12 - 16 4.85 0.19 +0.14
−0.27

+0.76
−0.60 0.96 0.816

16 - 20 1.31 0.09 +0.09
−0.10

+0.19
−0.16 0.96 0.84

20 - 25 0.470 0.045 +0.064
−0.042

+0.100
−0.100 0.98 0.82

25 - 30 0.115 0.020 +0.018
−0.011

+0.029
−0.014 0.90 0.84

30 - 40 0.029 0.007 +0.014
−0.010

+0.005
−0.004 1.06 0.77

40 - 60 0.0049 0.0033 +0.0012
−0.0052

+0.0000
−0.0016 1.3 0.78

Table B.15: The inclusive trijet cross sections as functions of Ejet,2
T,HCM . Other

details as in the caption to Table 1.
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Ejet,3
T,HCM

dσ

dEjet,3
T,HCM

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

5 - 8 46.3 0.8 +1.9
−2.0

+5.1
−5.2 0.964 0.777

8 - 12 6.15 0.21 +0.11
−0.22

+0.87
−0.76 0.956 0.801

12 - 16 0.77 0.06 +0.10
−0.03

+0.11
−0.11 0.95 0.82

16 - 20 0.121 0.022 +0.009
−0.036

+0.020
−0.014 1.00 0.88

20 - 25 0.026 0.009 +0.021
−0.012

+0.004
0.000 0.96 0.90

25 - 30 0.0018 0.0019 +0.0018
−0.0007

+0.0036
0.0000 0.8 1.1

Table B.16: The inclusive trijet cross sections as functions of Ejet,3
T,HCM . Other

details as in the caption to Table 1.
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ηjet,1
LAB

dσ

dηjet,1
LAB

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

-1.0 - -0.5 0.00 0.00 +0.00
−0.00

+0.00
0.00 0.00 0.00

-0.5 - 0.0 0.38 0.22 +0.27
−0.42

+0.14
−0.10 1.2 0.42

0.0 - 0.5 6.0 0.7 +0.8
−2.0

+1.3
−1.2 0.95 0.62

0.5 - 1.0 27.9 1.5 +0.4
−1.9

+3.6
−3.4 0.97 0.731

1.0 - 1.5 60.5 2.2 +5.5
−4.5

+7.5
−8.0 0.963 0.779

1.5 - 2.0 96 3 +11
−11

+11
−11 0.963 0.789

2.0 - 2.5 133 3 +15
−14

+14
−13 0.960 0.799

Table B.17: The inclusive trijet cross sections as functions of ηjet,1
LAB. Other

details as in the caption to Table 1.

ηjet,2
LAB

dσ

dηjet,2
LAB

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

-1.0 - -0.5 0.9 0.5 +3.2
−1.0

+0.3
−0.2 0.99 0.33

-0.5 - 0.0 18.1 1.4 +2.2
−2.1

+3.1
−3.3 0.97 0.606

0.0 - 0.5 61.7 2.3 +2.8
−3.8

+8.1
−7.9 0.963 0.746

0.5 - 1.0 95 3 +12
−9

+12
−11 0.970 0.799

1.0 - 1.5 84.1 2.4 +6.1
−8.5

+9.1
−9.5 0.963 0.826

1.5 - 2.0 48.9 1.8 +5.6
−4.5

+4.6
−4.5 0.943 0.835

2.0 - 2.5 15.0 1.3 +1.0
−3.2

+1.0
−1.1 0.96 0.86

Table B.18: The inclusive trijet cross sections as functions of ηjet,2
LAB. Other

details as in the caption to Table 1.
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ηjet,3
LAB

dσ

dηjet,3
LAB

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

-1.0 - -0.5 53.6 2.3 +4.3
−6.3

+8.4
−7.9 0.960 0.681

-0.5 - 0.0 96 3 +7
−10

+12
−11 0.972 0.785

0.0 - 0.5 90 2 +10
−9

+10
−10 0.960 0.823

0.5 - 1.0 58.0 2.0 +3.7
−5.5

+5.7
−5.8 0.956 0.828

1.0 - 1.5 23.0 1.3 +1.3
−2.1

+2.1
−2.0 0.96 0.86

1.5 - 2.0 4.12 0.53 +0.48
−0.74

+0.32
−0.20 0.94 0.87

2.0 - 2.5 0.31 0.17 +0.11
−0.22

+0.00
0.00 1.1 0.8

Table B.19: The inclusive trijet cross sections as functions of ηjet,3
LAB. Other

details as in the caption to Table 1.

∆ηjet1,2
HCM

dσ

d∆ηjet1,2
HCM

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

0.0 - 0.7 88.5 2.1 +5.6
−9.0

+9.3
−9.6 0.963 0.784

0.7 - 1.4 75.6 2.1 +3.6
−8.4

+8.6
−9.4 0.956 0.800

1.4 - 2.1 44.9 1.7 +6.2
−4.3

+5.9
−5.2 0.962 0.784

2.1 - 2.8 19.3 1.2 +3.4
−2.1

+2.7
−2.2 0.98 0.756

2.8 - 3.5 3.1 0.5 +1.2
−0.7

+0.7
−0.2 0.95 0.66

Table B.20: The inclusive trijet cross sections as functions of ∆ηjet1,2
HCM . Other

details as in the caption to Table 1.
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xBj × 104 ∆Ejet1,2
T,HCM

d2σ

d(∆Ejet1,2
T,HCM)dxBj

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

1.7 - 3.0 0.0 - 4.0 2.40 × 104 1.5 × 103 +2.5×103

−6.1×103
+2.5×103

−3.2×103 0.99 0.801

4.0 - 10.0 8.1 × 103 6.8 × 102 +4.2×102

−1.6×103
+7.5×102

−9.3×102 1.02 0.83
10.0 - 18.0 638 123 +782

−191
+91
−130 1.04 0.87

3.0 - 5.0 0.0 - 4.0 2.67 × 104 1.2 × 103 +3.6×103

−2.9×103
+2.9×103

−2.7×103 0.97 0.788

4.0 - 10.0 8.1 × 103 4.9 × 102 +1.4×103

−1.8×103
+1.2×103

−1.1×103 0.96 0.82
10.0 - 18.0 599 96 +118

−160
+100
−64 1.08 0.77

5.0 - 10 0.0 - 4.0 1.67 × 104 6.3 × 102 +1.1×103

−1.4×103
+1.9×103

−1.8×103 0.966 0.766

4.0 - 10.0 4.69 × 103 2.5 × 102 +5.7×102

−4.1×102
+5.9×102

−6.0×102 0.95 0.815
10.0 - 18.0 321 43 +85

−87
+47
−56 0.97 0.85

10 - 25 0.0 - 4.0 5.65 × 103 2.2 × 102 +4.8×102

−2.3×102
+6.3×102

−6.2×102 0.952 0.775

4.0 - 10.0 1.73 × 103 9.6 × 101 +3.7×101

−1.5×102
+2.2×102

−1.9×102 0.96 0.813
10.0 - 18.0 123 17 +18

−49
+19
−15 0.97 0.77

25 - 100 0.0 - 4.0 344 29 +51
−33

+38
−35 0.95 0.731

4.0 - 10.0 81 10 +17
−10

+11
−10 0.95 0.76
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xBj × 104 |Σ~pjet1,2
T,HCM | d2σ

d(|Σ~pjet1,2
T,HCM

|)dxBj

δstat δsyst δES CQED Chad

( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)

1.7 - 3.0 0.0 - 4.0 6.7 × 103 8.2 × 102 +1.3×103

−2.3×103
+6.3×102

−8.2×102 0.98 0.85

4.0 - 10.0 1.43 × 104 9.6 × 102 +1.9×103

−3.3×103
+1.4×103

−1.7×103 1.00 0.798

10.0 - 16.0 5.3 × 103 4.9 × 102 +3.6×102

−1.4×103
+4.8×102

−7.0×102 1.04 0.85
16.0 - 100.0 89 17 +7

−23
+16
−17 1.01 0.79

3.0 - 5.0 0.0 - 4.0 6.8 × 103 6.2 × 102 +1.4×103

−9.3×102
+9.8×102

−6.3×102 0.96 0.86

4.0 - 10.0 1.55 × 104 7.4 × 102 +2.9×103

−2.7×103
+1.4×103

−1.6×103 0.97 0.778

10.0 - 16.0 5.7 × 103 4.1 × 102 +4.3×102

−1.9×103
+9.5×102

−7.2×102 0.98 0.83
16.0 - 100.0 74 10 +18

−37
+13
−13 0.93 0.81

5.0 - 10 0.0 - 4.0 4.17 × 103 3.1 × 102 +4.9×102

−4.4×102
+6.3×102

−4.9×102 0.96 0.84

4.0 - 10.0 9.7 × 103 4.0 × 102 +1.7×103

−9.0×102
+9.5×102

−1.1×103 0.966 0.761

10.0 - 16.0 3.04 × 103 2.0 × 102 +1.9×102

−5.6×102
+4.6×102

−3.3×102 0.93 0.83
16.0 - 100.0 54 6 +3

−23
+6
−9 0.92 0.82

10 - 25 0.0 - 4.0 1.46 × 103 1.2 × 102 +1.6×102

−2.2×102
+2.3×102

−1.7×102 0.97 0.81

4.0 - 10.0 3.61 × 103 1.5 × 102 +1.8×102

−1.7×102
+3.5×102

−3.5×102 0.955 0.772
10.0 - 16.0 945 66 +51

−159
+126
−105 0.93 0.84

16.0 - 100.0 15.0 1.8 +2.1
−3.6

+2.3
−3.3 0.94 0.77

25 - 100 0.0 - 4.0 123 21 +17
−66

+10
−13 0.93 0.74

4.0 - 10.0 188 17 +44
−17

+23
−19 0.96 0.734

10.0 - 16.0 48 7 +11
−16

+5
−5 0.93 0.77

16.0 - 100.0 0.43 0.15 +0.11
−0.21

+0.10
−0.09 0.90 0.76
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xBj × 104 |∆~pjet1,2
T,HCM |

2Ejet1
T,HCM

d2σ

d

 

|∆~p
jet1,2
T,HCM

|

2E
jet1
T,HCM

!

dxBj

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

1.7 - 3.0 0.5 - 0.7 6.5 × 104 1.2 × 104 +2.7×103

−2.4×104
+4.4×103

−1.0×104 1.0 0.70

0.7 - 0.9 4.5 × 105 3.8 × 104 +1.3×105

−1.1×105
+4.3×104

−4.6×104 0.99 0.81

0.9 - 1.0 4.1 × 105 3.1 × 104 +2.7×104

−1.2×105
+4.9×104

−6.3×104 1.00 0.812

3.0 - 5.0 0.0 - 0.5 8.5 × 103 2.0 × 103 +4.2×103

−5.7×103
+2.8×103

−6.2×102 1.0 0.81

0.5 - 0.7 7.8 × 104 1.0 × 104 +1.4×104

−5.1×104
+1.1×104

−9.4×103 1.04 0.76

0.7 - 0.9 5.31 × 105 3.3 × 104 +5.9×104

−9.0×104
+6.2×104

−6.4×104 0.98 0.85

0.9 - 1.0 4.10 × 105 2.2 × 104 +8.0×104

−4.8×104
+4.5×104

−4.1×104 0.967 0.794

5.0 - 10 0.0 - 0.5 4.7 × 103 9.1 × 102 +1.2×103

−2.8×103
+5.9×102

−5.9×102 0.9 0.96

0.5 - 0.7 5.2 × 104 5.9 × 103 +3.2×103

−1.5×104
+7.5×103

−4.3×103 1.05 0.70

0.7 - 0.9 3.02 × 105 1.6 × 104 +4.9×104

−2.7×104
+3.7×104

−3.7×104 0.95 0.80

0.9 - 1.0 2.57 × 105 1.2 × 104 +1.9×104

−2.2×104
+2.8×104

−3.0×104 0.961 0.780

10 - 25 0.0 - 0.5 1.18 × 103 2.4 × 102 +3.3×102

−3.2×102
+2.2×102

−2.1×102 1.0 0.78

0.5 - 0.7 1.08 × 104 1.3 × 103 +1.5×103

−3.5×103
+1.4×103

−1.3×103 0.84 0.85

0.7 - 0.9 1.15 × 105 6.1 × 103 +4.9×103

−9.9×103
+1.2×104

−1.3×104 0.97 0.81

0.9 - 1.0 9.3 × 104 4.4 × 103 +7.9×103

−4.8×103
+1.2×104

−9.8×103 0.955 0.783

25 - 100 0.5 - 0.7 640 158 +264
−260

+68
−75 1.0 0.71

0.7 - 0.9 6.4 × 103 7.1 × 102 +1.7×103

−6.5×102
+7.9×102

−6.9×102 0.94 0.76

0.9 - 1.0 5.7 × 103 6.4 × 102 +7.3×102

−1.3×103
+6.5×102

−6.7×102 0.95 0.739

Table B.23: The trijet double-differential cross sections as functions of
|∆~pjet1,2

T,HCM |/(2Ejet1
T,HCM). Other details as in the caption to Table 5.
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xBj × 104 ∆φjet1,2
HCM

d2σ

d(∆φjet1,2
HCM)dxBj

δstat δsyst δES CQED Chad

(pb) (pb) (pb) (pb)

1.7 - 3.0 0.0 - π/2 4.9 × 103 1.0 × 103 +6.5×102

−3.5×103
+4.2×102

−6.4×102 0.92 0.75

π/2 - 3π/4 3.76 × 104 4.0 × 103 +9.7×103

−8.6×103
+3.4×103

−4.6×103 0.97 0.82

3π/4 - π 1.37 × 105 7.2 × 103 +1.5×104

−3.3×104
+1.5×104

−1.8×104 1.01 0.811

3.0 - 5.0 0.0 - π/2 5.9 × 103 8.6 × 102 +1.5×103

−3.9×103
+1.3×103

−7.1×102 1.04 0.77

π/2 - 3π/4 4.76 × 104 3.7 × 103 +5.1×103

−5.2×103
+5.7×103

−4.2×103 0.97 0.79

3π/4 - π 1.42 × 105 5.5 × 103 +2.1×104

−2.2×104
+1.7×104

−1.7×104 0.966 0.798

5.0 - 10 0.0 - π/2 3.5 × 103 4.4 × 102 +5.2×102

−1.4×103
+4.8×102

−2.8×102 0.95 0.79

π/2 - 3π/4 3.08 × 104 2.0 × 103 +1.4×103

−5.3×103
+3.7×103

−3.1×103 0.95 0.780

3π/4 - π 8.5 × 104 2.9 × 103 +1.4×104

−6.9×103
+9.9×103

−1.1×104 0.964 0.780

10 - 25 0.0 - π/2 772 103 +138
−65

+131
−110 0.87 0.82

π/2 - 3π/4 8.6 × 103 6.0 × 102 +1.0×103

−4.3×102
+8.7×102

−9.4×102 0.94 0.778

3π/4 - π 3.25 × 104 1.1 × 103 +1.3×103

−2.5×103
+3.9×103

−3.6×103 0.960 0.786

25 - 100 0.0 - π/2 41 11 +7
−9

+5
−6 0.99 0.73

π/2 - 3π/4 548 81 +221
−78

+65
−60 0.95 0.73

3π/4 - π 1.83 × 103 1.5 × 102 +2.8×102

−2.0×102
+2.2×102

−2.0×102 0.95 0.740

Table B.24: The trijet double-differential cross sections as functions of
∆φjet1,2

HCM . Other details as in the caption to Table 5.
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Variable Bin Boundaries

∆Ejet1,2
T,HCM 1 0 − 4 GeV

2 4 − 10 GeV
3 10 − 18 GeV
4 18 − 100 GeV

|Σ~p jet1,2
T,HCM| 1 0 − 4 GeV

2 4 − 10 GeV
3 10 − 16 GeV
4 16 − 100 GeV

|∆~p jet1,2
T,HCM|/2Ejet1

T,HCM 1 0 − 0.5
2 0.5 − 0.7
3 0.7 − 0.85
4 0.85 − 1

|∆φjet1,2
HCM| 1 0 − π/4

2 π/4 − π/2
3 π/2 − 3π/4
4 3π/4 − π

Table B.25: The bin edges used for the measurements of the jet correlations
presented. For the trijet sample, the first two bins in |∆φjet1,2

HCM| are combined.

140



Bibliography

[1] ZEUS Coll., S. Chekanov et al., Preprint DESY-07-062, DESY, 2007.
Accepted by Nucl. Phys. B.

[2] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C 44, 183 (2005).

[3] H1 Coll., C. Adloff et al., Phys. Lett. B 515, 17 (2001).

[4] H1 Coll., C. Adloff et al., Eur. Phys. J. C 6, 575 (1999).

[5] ZEUS Coll., M. Derrick et al., Phys. Lett. B 363, 201 (1995).

[6] ZEUS Coll., J. Breitweg et al., Phys. Lett. B 507, 70 (2001).

[7] ZEUS Coll., S. Chekanov et al., Phys. Lett. B 547, 164 (2002).

[8] ZEUS Coll., S. Chekanov et al., Phys. Lett. B 558, 41 (2003).

[9] H1 Coll., C. Adloff et al., Eur. Phys. J. C 19, 289 (2001).

[10] H1 Coll., C. Adloff et al., Eur. Phys. J. C 21, 33 (2001).

[11] ZEUS Coll., S. Chekanov et al., Nucl. Phys. B 700, 3 (2004).

[12] ZEUS Coll., S. Chekanov et al., Phys. Lett. B 560, 7 (2003).

[13] J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

[14] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

[15] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977);
L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975);
Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[16] ZEUS Coll., S. Chekanov et al., Phys. Rev. D 67, 012007 (2003).

[17] H1 Coll., Adloff, C. et al., Phys. Lett. B515, 17 (2001).

141



[18] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C 23, 13 (2002).

[19] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C 21, 443 (2001);
H1 Coll., S. Aid et al., Nucl. Phys. B 470, 3 (1996).

[20] H1 Coll., A. Aktas et al., Eur. Phys. J. C 33, 477 (2004).

[21] Gross, D. J. and Wilczek, Frank, Phys. Rev. Lett. 30, 1343 (1973).

[22] Politzer, H. David, Phys. Rev. Lett. 30, 1346 (1973).

[23] Gross, D. J. and Wilczek, Frank, Phys. Rev. D8, 3633 (1973).

[24] Politzer, H. David, Phys. Rept. 14, 129 (1974).

[25] Nobel Prize in Physics 2004, available on
http://nobelprize.org/nobel_prizes/physics/laureates/2004/.

[26] CTEQ Coll., G. Sterman et al., Rev. Mod. Phys. 67, 157 (1995).

[27] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP
45, 199 (1977);
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[28] Z. Nagy and Z. Trócsányi, Phys. Rev. Lett. 87, 082001 (2001).

[29] N. Krumnack, Three Jet Events in Deep Inelastic Scattering. Ph.D.
Thesis, University of Hamburg, Report DESY-THESIS-2004-011, 2004.

[30] L. Li, Three Jet Production in Neutral Current Deep Inelastic Scattering

with ZEUSat HERA. Ph.D. Thesis, University of Wisconsin – Madison,
2005.

[31] S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997). Erratum
in Nucl. Phys B 510, 503 (1997).

[32] W.A. Bardeen et al., Phys. Rev. D 18, 3998 (1978).

[33] J. Pumplin et al., JHEP 07, 012 (2002).

[34] R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B178, 421 (1981).

[35] S.Catani et al., Nucl. Phys. B 406, 187 (1993).

[36] S.D. Ellis and D.E. Soper, Phys. Rev. D 48, 3160 (1993).

142



[37] A. Kwiatkowski, H. Spiesberger and H.-J. Möhring, Comp. Phys.
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