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Abstract

One of the fundamental problems in subatomic physics is the determination of properties of matter
at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-
ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics
at extreme conditions differs drastically from what is known from the conventional observations.
Also the theoretical methods developed mostly within the perturbative framework face various
conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we
study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as
general electromagnetic and topological properties of the QCD and QCD-like systems. We develop
and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice
QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models. The thesis
is mainly based on our papers [1–15], with corrections and additional comments.

Zusammenfassung

Eines der fundamentalen Probleme subatomarer Physik ist die Bestimmung der Eigenschaften von
Materie bei extremen Temperaturen, Dichten und elektromagnetischen Feldern. Moderne Exper-
imente mit ultrarelativistischen Schwerionen sind in der Lage Zustände, wie das Quark-Gluon
Plasma, unter diesen Verhältnissen zu untersuchen und zeigen, dass sich die Physik unter solch
extremen Bedingungen drastisch vom Verhalten unter gewöhnlichen Bedingungen unterscheidet.
Weiterhin sind theoretische Modelle, die auf Störungstheorie basieren, unter solchen Umständen
nicht anwendbar und müssen durch nichtperturbative Methoden ersetzt werden. In dieser Ar-
beit untersuchen wir daher die Physik des stark gekoppelten Quark-Gluon Plasmas in externen
magnetischen Feldern sowie elektromagnetische und topologische Eigenschaften von QCD und
QCD-ähnlichen Systemen. Hierzu entwickeln und verwenden wir verschiedene nichtperturbative
Methoden, die unter anderem auf der Gauge-Gravity-Korrespondenz, Gitter-QCD Simulationen,
relativistischer Hydrodynamik und Festkörper-inspirierten Modellen basieren. Diese Arbeit basiert
auf unseren Veröffentlichungen [1–15] und enthält Korrekturen sowie zusätzliche Kommentare.





Contents

1 Introduction and overview 7

2 Gauge-gravity duality 13

3 Non-equilibrium physics at a holographic chiral phase transition 18
3.1 Holographic Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Chiral symmetry transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 A boost-invariant expanding plasma . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Out of equilibrium description of the chiral phase transition . . . . . . . . . . . . . 25
3.2.1 D7 flavour brane action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Naive equilibrium based approximation . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Adiabatic dynamic D7 brane embeddings . . . . . . . . . . . . . . . . . . . 28
3.2.4 Full PDE solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Dependence of the condensate on B . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Holographic dual of a boost-invariant plasma with chemical potential 38
4.1 Late-time background in Eddington-Finkelstein coordinates . . . . . . . . . . . . . 39

4.1.1 Boosted black brane solution . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Zeroth-order solution and first-order correction . . . . . . . . . . . . . . . . 40
4.1.3 Transport coefficients from the background . . . . . . . . . . . . . . . . . . 42

4.2 Late-time solution in Fefferman-Graham coordinates . . . . . . . . . . . . . . . . . 44
4.2.1 General ansatz and near-boundary behaviour . . . . . . . . . . . . . . . . . 44
4.2.2 Late-time ansatz for the background . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Zeroth-order solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Fefferman-Graham vs. Eddington-Finkelstein coordinates . . . . . . . . . . 51

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Fluid-gravity model for the chiral magnetic effect 55
5.1 CME and CVE in hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Fluid-gravity model for the CME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Anisotropic hydrodynamics, holography and the chiral magnetic effect 64
6.1 Hydrodynamics of anisotropic fluids with triangle anomalies . . . . . . . . . . . . . 65

6.1.1 Thermodynamics of an anisotropic fluid with chemical potential (n = 1) . . 66
6.1.2 Vortical and magnetic coefficients (n = 1) . . . . . . . . . . . . . . . . . . . 67
6.1.3 Multiple charge case n arbitrary) . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.4 Chiral magnetic and vortical effect (n = 2) . . . . . . . . . . . . . . . . . . 69

6.2 Fluid-gravity model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 AdS black hole with multiple U(1) charges . . . . . . . . . . . . . . . . . . 71

5



CONTENTS

6.2.2 Anisotropic AdS geometry with multiple U(1) charges . . . . . . . . . . . . 72
6.3 Holographic vortical and magnetic conductivities . . . . . . . . . . . . . . . . . . . 75

6.3.1 First-order corrected background . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Holographic conductivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.3 Subtleties in holographic descriptions of the CME . . . . . . . . . . . . . . 78

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Quantum Chromodynamics on a Lattice 84
7.1 Improved action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2 Monte-Carlo algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Overlap fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 SU(3) quenched lattice gauge theory in magnetic fields 94
8.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Chiral condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Chiral magnetization and susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 Electric dipole moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.5 Some evidences of the chiral magnetic effect . . . . . . . . . . . . . . . . . . . . . . 98

9 Magnetic-Field-Induced insulator-conductor transition 100

10 Fractal dimension of the topological charge distribution 105
10.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.1.1 Ordinary IPR for zero modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.1.2 Chiral IPR for low-lying modes. First definition. . . . . . . . . . . . . . . . 107
10.1.3 Chiral IPR for zero modes. Second definition. . . . . . . . . . . . . . . . . . 108
10.1.4 Fractal dimension. Results and conclusions. . . . . . . . . . . . . . . . . . . 108

11 Chiral superfluidity of the quark-gluon plasma 111
11.1 Derivation of the effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.1.1 The functional integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.1.2 Vector currents conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.1.3 Anomaly for the axial current . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.1.4 Axionic Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.1.5 Interpretation of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.1.6 Fermionic spectrum and chirality . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Quark-gluon plasma as a two-component fluid . . . . . . . . . . . . . . . . . . . . . 120
11.2.1 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.2.2 Phenomenological output, possible tests of the model . . . . . . . . . . . . 123
11.2.3 Change in entropy and higher order gradient corrections . . . . . . . . . . . 123
11.2.4 Preliminary estimates for the CME . . . . . . . . . . . . . . . . . . . . . . . 125

11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12 On chromoelectric superconductivity of the Yang-Mills vacuum 128

13 Conclusions and Outlook 133

6



Chapter 1

Introduction and overview

The modern nuclear experiments at the Relativistic Heavy Ion Collider (RHIC, BNL) and the
Large Hadron Collider (LHC, CERN) provide us with the possibility to explore new high-energy
forms of matter, such as the so-called quark-gluon plasma (QGP), which can be produced in
ultrarelativistic heavy-ion collisions and consists of interacting quarks and gluons out of nucleons
and mesons [16–18]. Each of the collision events begins from an intense heating in the volume
occupied by the overlap of the nuclei, as a large fraction of their kinetic energy is converted into a
high-temperature system of quarks, antiquarks and gluons. The time between the first contact of
the nuclei and the formation of QGP is called τf , the formation time. The temperature of QGP is
estimated to be more extreme as any of the known examples in the present universe and exceeds
the critical temperature Tc ∼ 170 MeV of the deconfinement transition. In Ref. [19] assuming
the formation time τf = 0.2 fm/c the initial temperatures are estimated to be T0 ∼ 330 MeV for√
s = 200 GeV per nucleon pair central Au-Au collisions at RHIC T0 ∼ 610 MeV for

√
s = 2.76 TeV

central Pb-Pb collisions at LHC1. Suppression of Υ(1S) mesons in
√
s = 2.76 TeV Pb-Pb collisions

[21,22] according to the quarkonia thermometry [23] leads to the conclusion that the temperatures
T > 2Tc have been indeed reached at LHC.

At the next stage, the system, presumably a liquid of quarks and gluons, immediately expands
and cools down, passing through the critical temperature Tc at which QGP condenses into a gas of
hadrons. As expansion continues, the system reaches the “freeze-out” density, at which the hadrons
no longer interact with each other and stream into detectors. Typical time and temperature scales
for the RHIC and LHC collisions are shown in Table 1.0.1.

An important property extensively used in many of the phenomenological models of QGP
(including our ones) is that the matter content of QGP interacts collectively and forms hydrody-
namic flows. This idea goes back to the works of Landau [24] and Bjorken [25] and can be studied
experimentally by the analysis of the particle distribution in the transverse (to beam) plane,

E
dN

d3p
=

1

2π

d2N

pT dpT dy

(
1 + 2

∞∑

n=1

vn cos[n(ϕ− ΨRP)]

)
, (1.0.1)

where E is the energy of the particle with momentum ~p and transfer momentum pT , ϕ is the
azimuthal angle, y the rapidity and ΨRP the reaction plane angle. The coefficients vn are the
Fourier components of the distribution, characterizing the flows. In particular, v2 is the so-called
elliptic flow coefficient [26], which is caused by the difference between pressure gradients in the
initial state (see Fig. 1.3 for a schematic shape and density evolution).

1See also Ref. [19] for the time evolution of temperature and [20] for direct photon measurements by PHENIX
collaboration.
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CHAPTER 1. INTRODUCTION AND OVERVIEW

(a) (b)

Figure 1.1: (a) Geometry of the electromagnetic fields, plotted in Fig. 1.2, (b) Isosurfaces of
the topological charge density (chirality) q(x) = ±10−4 in QCD vacuum for a fixed time slice,
corresponding to the 164 lattice in Chapter 10. Colors represent positive (red) and negative (blue)
values, respectively. For the animation, see [27].

From a theoretical point of view, hydrodynamics corresponds to the long-wave approximation,
λH ≫ l, where λH is of the order of a wavelength of hydrodynamic excitations and l is a typical
distance between the microscopic constituents. Hydrodynamic equations reflect the symmetries of
the underlying field theory, since they are nothing but the conservation laws. In general, the fluid
fluctuations are damped down on distances of order l and do not propagate further, while the only
exceptional ones, which are supported by the conservation laws, will survive over a distance λH and
larger, and contribute to the hydrodynamics. The constitutive equations are usually represented in
form of a gradient expansion, i.e. in a number of derivatives of the velocity uµ and thermodynamic
quantities. In the case of approximately conserved quantities (e.g. in the case of dissipation or
anomalies) one can still capture the slow variations of the quantities in the gradient expansion and
use the hydrodynamic framework (see Chapter 5).

Another important issue is the presence of a strong magnetic field (e〈B‖〉 ≡ eB ∼ m2
π), gen-

erated by the nuclei themselves in a non-central collision [28, 29]. Such a strong field may change
the critical temperature of the chiral transition, several electromagnetic properties of QCD and
also give rise to new phenomenological effects potentially measurable experimentally. In order to
estimate the magnitude of the magnetic field, one should use the retarded Liénard-Wiechert po-
tentials, since we deal with the ultrarelativistic kinematics. This is done in the original paper [30]
and improved in [31–33]. A strong electric field Eind can be “induced” by a rapidly decreasing
magnetic field and calculated from the Faraday’s law [34]. The spatial directions of both fields
with respect to the fireball geometry are shown in Fig. 1.1(a). An estimate for the magnetic field
for the impact parameter b < 12 fm can be extracted from Ref. [35] based on the HIJING model
and is given by

eB = (0.3 MeV)

√
s b

R
, (1.0.2)

temperatures RHIC @ 200 GeV LHC @ 2.76 TeV

T > 2Tc – τf < τ < 1
Tc < T < 2Tc τf < τ < 3 1 < τ < 6

T = Tc 3 < τ < 5 6 < τ < 9

Table 1.0.1: Time evolution in units fm/c for the temperatures at RHIC and LHC [19].
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Figure 1.2: Electromagnetic fields in the fireball for RHIC (left) and LHC (right) energies and
40− 50% centrality. Black curves are based on the data from [35]. The moment τ = 0 corresponds
to the maximal overlap of the nuclei. m2

π ∼ 1014 Tesla. The QGP conductivity is not taken into
account.

where R = 1.2A1/3 fm is the radius of the nuclei. Other components of electromagnetic fields in
the transverse plane are estimated to be of equal magnitude on the event-by-event basis [35, 36],

〈|eB⊥|〉 ≈ 〈|eE‖|〉 ≈ 〈|eE⊥|〉 =
√
s (0.1 − 0.2)MeV . (1.0.3)

The time evolution of both magnetic and concentric electric fields for the case of large centrality
is shown in Fig. 1.2. Note, however, that the evolution of the magnetic field might be much slower
due to a finite conductivity of the QGP [28].

One of the most prominent effects induced by the magnetic field is the so-called chiral mag-
netic effect (CME), which has attracted much attention in light of experimentally observed charge
asymmetries in heavy-ion collisions, as seen by the STAR [37, 38], PHENIX [39] and ALICE [40]

collaborations. The CME states that, in the presence of a magnetic field ~B, an electric current
is generated along ~B in the background of topologically nontrivial gluon fields [30, 41–43]. Anal-
ogous effects were found earlier in neutrino [44–46], electroweak [47, 48] and condensed matter
physics [49, 50]. Lattice QCD results [5–7, 10, 51–54] suggest the existence of the effect, although
the magnitude of the CME-induced charge asymmetry may be too small to explain the observed
charge asymmetry [55].

The essential physical idea of the effect is the following. At the energy scales of the collisions,
the light u and d quarks can be treated as massless chiral fermions. The magnetic moment of
a chiral quark (antiquark) is always collinear to its momentum. A strong enough magnetic field
forces the magnetic moment to be parallel to the direction of the field, organizing the motion of
quarks along ~B. In the equilibrium the number of left- and right-handed quarks is the same [56],

so the electric currents associated with quarks compensate each other and the net current along ~B
is zero. However, a non-trivial gluonic background Ga

µν(x), such that

∫
d4x ǫµναβ Ga

µν(x)Ga
αβ(x) 6= 0 , (1.0.4)

may create an imbalance between the numbers of left- and right-handed quarks, characterized by
the chirality ρ5 = 〈q̄γ5q〉. A typical spatial distribution of such an imbalance is shown in Fig. 1.1(b),
where the colors denote some fixed positive (red) and negative (blue) values of the chirality. This

imbalance in the presence of the magnetic field creates the net current along ~B.
In this thesis we made an attempt to explain and predict some of the properties of the strongly-

coupled QGP. The text can be logically divided into three parts:
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CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.3: Time evolution of the fireball in a non-central collision in the transverse plane [26].
The contours denote the energy density levels.

Chapters 2 – 6 cover our studies related to the application of the gauge-gravity duality to
the physics of QGP-like systems, which due to the universality of the effects (e.g. the transport
properties) may take place in the real QGP. In Chapter 2 we introduce basics of the AdS/CFT-
correspondence, which will be used in the main text. In Chapter 3 we study the D3/D7-brane
model at finite temperature T describing a boost-invariant viscous expanding N=2 plasma. In
presence of a magnetic field B the chiral symmetry of the system is broken down and a finite chiral
condensate c(T,B) is formed. The value of the condensate can be read off from the profile of the
probe D7-brane embeddings. The results (apart from the description of the time dynamics) are
the following,

1) We observe the enhancement of the chiral symmetry breaking at T = 0, c(T,B) ∼ B3/2.

2) The chiral condensate grows linearly at high T , c(T,B) ∼ B.

3) The critical temperature grows with the strength of the magnetic field Tc ∼
√
B.

4) Viscosity changes the moment of time when the transition occurs, see the main text.

In Chapter 4 we construct a gravity dual of a boost-invariant N = 4 SU(N) super Yang-Mills
plasma with a chemical potential. The resulting background takes the form of a time-dependent
AdS Reissner-Nordström-type black hole. We further extend this model in Chapter 5 to the case of
two chemical potentials (ordinary µ and the chiral µ5) and obtain a fluid-gravity model for certain
CP-odd transport coefficients hypothetically present in the quark gluon plasma at strong magnetic
field Bµ and vorticity ωµ ≡ 1

2ε
µναβuν∂αuβ . The result is the expressions for the electric jµ and

axial jµ
5 currents in the plasma,

jµ = ρuµ + κωω
µ + κBB

µ , jµ
5 = ρ5u

µ + ξωω
µ + ξBB

µ , (1.0.5)

with coefficients

κω = 2Cµµ5

(
1 − µρ

ǫ+ P

)
- chiral vortical effect, κB = Cµ5

(
1 − µρ

ǫ+ P

)
- chiral magnetic effect,

ξω = Cµ2

(
1 − 2

µ5ρ5

ǫ+ P

)
- quark vortical effect, ξB = Cµ

(
1 − µ5ρ5

ǫ+ P

)
- chiral separation effect,

where uµ is the four-velocity of the fluid (e.g. strongly-coupled plasma), ρ and ρ5 are the densities
of the electric and axial charges, respectively. C = Nc

2π2 is the chiral anomaly, ǫ and P are the energy
density and pressure of the plasma. For numerical estimates and time evolution of the vorticity
read [57]. Finally, we study anisotropic hydrodynamics with multiple anomalous U(1) currents

10



(Chapter 6) and find corrections to the chiral magnetic effect due to the anisotropic expansion of
QGP. We obtained the result first within the hydrodynamics and then reproduced it using our
fluid-gravity model.

In Chapters 7 – 10 we measured electromagnetic and topological properties of the QCD
vacuum on the lattice. Chapter 7 covers the basics of Lattice QCD and briefly describes the
methods and algorithms we used in the simulations. In Chapter 8 we study some properties
of the non-Abelian vacuum induced by strong external magnetic fields, B & m2

π. We perform
calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Lüscher-Weisz
action and chirally invariant lattice Dirac operator. The following results are obtained:

1) The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate is
given by Σ(B) = Σ0 + const · Bν at T = 0, where Σ0 = [(228 ± 3)MeV]3 and the exponent
ν = (1.6 ± 0.2) ≈ 3/2.

2) There is a paramagnetic polarization of the vacuum with the corresponding magnetic sus-
ceptibility χ = −4.2 ± 0.2 GeV−2.

3) Magnetic field induces a local electric dipole moment of quarks di(x) = ψ̄(x)σ0iψ(x) along
the field, which is a spin analogue of CME.

4) There are non-zero local fluctuations of the chirality ρ5(x) and electric current Ji(x) =
ψ̄(x)γiψ(x), both of which grow with the magnetic field strength. These fluctuations are
present at all T and can be a manifestation of the chiral magnetic effect (CME).

For further lattice works we consider a similar setup but with two colors. In Chapter 9 we measure
the Euclidean time correlator of two vector quark currents,

Gij(τ) =

∫
d3~x〈Ji(~x, τ)Jj(~0, 0)〉 , (1.0.6)

and extract the corresponding spectral function. The latter provides us with the value of the
electric conductivity of the vacuum by means of the Kubo formula. In summary, we obtain

1) At T > Tc QCD vacuum is a conductor, σ = 15 ± 2 MeV slightly above Tc,

2) At T < Tc the vacuum is either an insulator (with B = 0) or an anisotropic conductor (at
strong B) with a finite conductivity along the magnetic field.

Both facts are in favor of CME, allowing us to interpret the fluctuations of current Ji as a macro-
scopic current. The primary consequence of the second fact is that one can expect an enhancement
of the dilepton and soft photon production rates in direction transverse to ~B. Finally, in Chap-
ter 10 we measure the Hausdorff dimension d of the chirality distribution ρ5(x) and conclude that
it depends on the resolution of a measurement. Lattice calculation without cooling (“high resolu-
tion”) gives us d = 2 ÷ 3, i.e. presumably the vortex/domain-wall nature of the localization. In
opposite, the cooling procedure (“resolution lowering”) increases the dimensionality towards d = 4,
i.e. restore the instanton picture of the QCD vacuum.

Chapters 11 and 12 introduce a new condensed-matter-inspired treatment of the QGP dy-
namics, based on a straightforward calculation from the QCD Lagrangian. In Chapter 11 we argue
that the sQGP can be considered as a chiral superfluid. The “normal” component of the fluid is the
thermalized matter in common sense, while the “superfluid” part consists of long wavelength (chi-
ral) fermionic states moving independently. We use several non-perturbative techniques to demon-
strate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2Tc)
using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the
spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical

11



CHAPTER 1. INTRODUCTION AND OVERVIEW

axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for
macroscopic description of the effective theory obtained after the bosonization. Finally, solving
the hydrodynamic equations in gradient expansion, we find that in presence of external electro-
magnetic fields the motion of the “superfluid” component gives rise to the chiral magnetic, chiral
electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which
provides us with crucial experimental tests of the model. In Chapter 12 we study the properties
of chromodynamic flux tubes populating the Yang-Mills vacuum and arrive to a conclusion that
the ground state of QCD is a chromoelectric superconductor.

12



Chapter 2

Gauge-gravity duality

The gauge-gravity duality [58–61] is a duality between a quantum field theory and a theory of
gravity (string theory) in a higher dimensional spacetime. There are many versions of the duality
formulated for various limits and spaces [62, 63], and for our applications we will concentrate on
the weak one, which relates classical dynamics of gravity in a (D+ 1)-dimensional manifold to the
quantum physics of a strongly-coupled conformal theory on the D-dimensional boundary of this
manifold. Let us begin with an intuitive argument, why this duality should take place and then
proceed with a formal definition and dictionary of the correspondence. Additional information can
be found in numerous reviews, read e.g. [62–66].

Intuitive arguments

Consider a field theory on a lattice with spacing a governed by a Hamiltonian,

H =
∑

x,i

Ji(x)Oi(x) , (2.0.1)

where {Oi(x)} are operators and {Ji(x)} are couplings or sources defined at site x. The same
theory on a coarse-grained lattice (with spacing 2a, 4a, ...) can be obtained by averaging the
multiple sites and tuning sources {Ji(x)} so as to preserve the ground state and the physics of
low-energy excitation. The latter can be done by means of the Kadanoff-Wilson Renormalization
Group (RG) equation,

u
∂

∂u
Ji(x, u) = βi(Jj(x, u), u) , (2.0.2)

where the couplings Ji(x, u) now depend on the scales u = a, 2a, ... and βi(J, u) are the beta-
functions. If we consider now a stack of coarse-grained lattices, ordered by the scale u, then one
can think of Ji(x, u) as of bulk fields on a one-higher-dimensional lattice, where the additional
coordinate corresponds to the RG flow direction (Fig. 2.1) and the boundary value (in the UV) is
defined by Ji(x, a) ≡ Ji(x). One can ask, what kind of higher-dimensional field theory this can
be. Any boundary QFT should include among its operators the stress-energy tensor Tµν , meaning
that the bulk QFT contains the spin-2 metric field gµν . Also the QFT’s at all the layers u′ > u are
defined from the one at a layer u via the RG evolution, meaning that the former (D + 1) system
has the same number of degrees of freedom as the D-dimensional QFT at the layer u. This fact,
very much in spirit of the holographic principle [67,68], suggests the theory of quantum gravity as
the bulk theory (see also additional arguments in [65]).

Restricting now to a D-dimensional conformal field theory (CFT) on the boundary and assum-
ing that it is described by a (D + 1) gravity bulk theory (a classical one in the long wavelength
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Figure 2.1: Illustration to the intuitive picture presented in the text, adapted from [65].

limit), we can deduce some of the properties of this (D+1) spacetime (Fig. 2.1). The most general
metric consistent with D-dimensional Poincare symmetry can be written as

ds2 = Ω2(z)(−dx2
0 + dx2

i + dz2), i = 1, D − 1 , (2.0.3)

where z is the extra (RG) spatial direction and Ω(z) is a function of z only, due to the translational
symmetries in xµ. A conformally invariant symmetry is invariant under the rescaling xµ → Λxµ.
The coordinate z should be transformed in the same way, since it describes a length scale in the
boundary theory. Therefore the warp factor should scale in that case as

Ω(z) → Λ−1Ω(z), z → Λz . (2.0.4)

This determines Ω, such that the metric becomes

ds2 =
R2

z2
(−dx2

0 + dx2
i + dz2), i = 1, D − 1 , (2.0.5)

where R is a constant. This metric is nothing but the (D+1)-dimensional anti-de Sitter spacetime,
AdSD+1 with curvature radius R (yet unfixed).

Formal definition of the AdS/CFT-correspondence

The gauge-gravity duality was initially formulated for the four-dimensional N = 4 super-Yang-
Mills (SYM) theory with SU(N) gauge group and gY M coupling. The theory contains a vector
field, four fermions and six real scalars (all fields in the adjoint representation of the gauge group).
The action of the theory can be written as

SN=4 = − 1

g2
Y M

∫
d4xTr

(
1

4
FµνFµν +

1

2
DµΦiDµΦi +

[
Φi,Φj

]2
)

+ fermions . (2.0.6)

The theory has a vanishing beta-function and is a CFT. In the limit of large number of colors, i.e.
N → ∞, the perturbative expansion is controlled by the ’t Hooft coupling λ = g2

Y MN , and the
Feynman graphs become organized by their topologies [69].

On the gravity side we have Type IIB superstring theory with string coupling gs on AdS5×S5,
with both AdS and 5-sphere having the same radius R and with an integer flux of the self-dual
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RR 4-form1 (Nflux =
∫

S5 F
+
5 ). The duality fixes the following relations between the string theory

and N = 4 SYM parameters,

g2
Y M = 4πgs, N = Nflux, g2

Y MN =
R4

l4s
, (2.0.7)

where ls is the string length (l2s ≡ α′). The weak form of the conjecture mentioned above corre-
sponds to the limit λ = gsN → ∞, N → ∞ and gs → 0. The gravity side in this case is reduced
to the Type IIB supergravity (SUGRA) on AdS5 ×S5, while the CFT is strongly-coupled and the
duality can be formulated at the level of partition functions for both theories,

〈
exp

{
−i
∑

i

∫
d4xJi(x)Oi(x)

}〉
= exp

{
−iSmin[AdS5 × S5]Ji(x, z)|

z=0
=Ji(x)

}
, (2.0.8)

where the average is taken at the CFT side and Ji(x, z) are, as before, classical solutions for the
SUGRA action Smin matched with couplings/sources Ji(x) on the boundary. This recalls the
intuitive arguments above: the bulk fields are the couplings promoted to dynamical fields on the

RG-extended spacetime.

The example above is one of the best established (but still unproved) dualities between a QFT
and a theory of gravity. In order to apply this duality to QCD (or to a QCD-like system) one should
consider a deformation of the quantum theory and hence a modification of the duality. There are
two ways to do this: so-called top-down models and bottom-up models. The former corresponds to
the models derived directly from the string theory constructions, while the latter refers to giving
a gravity dual by hand. In the following chapters we use both approaches. In the case of the
bottom-up models we usually do not know the microscopic content of the CFT, but require it to
have suitable properties relevant to the real QCD phenomena (e.g. a QFT with electric charges,
quantum anomalies, etc.). The main method we rely on in this case is the so-called holographic
renormalization [70,71], which links the boundary sources and expectation values of the boundary
operators with the near-boundary expansion of the bulk fields.

Holographic renormalization

Let us consider an asymptotic AdSD+1 bulk gravity solution of the Einstein equations with cos-

mological constant Λ = −D(D−1)
2 written in Fefferman-Graham coordinates2,

ds2 = gMN (x, z)dxMdxN =
gµν(x)dxµdxν + dz2

z2
, (2.0.9)

where gMN (x, z) has the following near-boundary expansion,

g(x, z) = g(0)(x) + g(2)(x) z2 + ...+ g(D)(x) z(D) + h(D)(x) z(D) log z2 + O(zD+1) . (2.0.10)

The log-term appears only in even dimensions [70,71], also only even powers of r appear up to the
order r⌊D−1⌋. It is a remarkable fact that the solution of the Einstein equations has an integration
constant g(D), which can be fixed using the CFT data on the boundary, i.e. from the VEV of the
energy-momentum tensor

〈Tµν〉 =
D

16πGN
g(D)

µν + ... , (2.0.11)

1The form comes from the D3-brane solution, from which the AdS5 × S5 originates, consult with e.g. [63].
2We use for simplicity the units, where R = 1.
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where ellipses denote a non-universal part depending on the spacetime dimension. In a relevant
for our studies case D = 4 one has [70, 71]

〈Tµν〉 =
1

4πGN

{
g(4)

µν − 1

8
g(0)

µν [(Tr g(2))2 − Tr g(2)2] − 1

2
(g(2)2)µν +

1

4
g(2)

µν Tr g(2)

}
, (2.0.12)

which in a case of CFT on the 4D Minkowski boundary simplifies drastically,

〈Tµν〉CFT =
1

4πGN
g(4)

µν , and so gµν(x, z) = ηµν + 4πGN 〈Tµν(x)〉 z4 + ... (2.0.13)

The same can be repeated for all other bulk fields, if present, giving similar expansions for scalar
and vector fields, i.e. involving both the boundary values of the fields and expectation values of
the corresponding operators 〈Oi〉.

Black holes

While the AdS space is a ground state for gravity, finite-temperature states correspond to an AdS
black hole solution. The Hawking temperature, associated with the black hole (or, more generally,
black brane), is identified with the temperature of the gauge theory. The simplest asymptotically-
AdS black hole is the Schwarzschild AdS black brane,

ds2 =
1

z2

(
−f(z) dt2 + d~x2 +

1

f(z)
dz2

)
(2.0.14)

with factor

f(z) = 1 −
(
z

zH

)D

. (2.0.15)

Near the asymptotic boundary z → 0, f → 1 and the metric is asymptotically AdSD+1. Coordinate
zH is the position of horizon, a zero of the function f(z). The Hawking temperature T , energy
density ǫ and entropy density s are given by [72, 73]

T ≡ −f
′(zH)

4π
=

D

4πzH
, ǫ =

D − 1

16πGNzD
H

, s =
1

4GNz
D−1
H

. (2.0.16)

Let us turn now to the charged (Reissner-Nordström) AdS black hole, which plays a significant
role in the AdS/CFT-applications and will be used by us in the next chapters. The Reissner-
Nordström AdS black hole is a solution of the Einstein-Maxwell equation, corresponding to the
action

SEM =
1

16πGN

∫
dD+1x

√−g
(
R− 2Λ − 1

4
FMNFMN

)
, (2.0.17)

where FMN is the field stress tensor for the vector field AM (z, t, ~x). The solution can written in
analogy with (2.0.14),

ds2 =
1

z2

(
−f(z) dt2 + d~x2 +

1

f(z)
dz2

)
, A = At(z) dt (2.0.18)

with factors

f(z) = 1 −
(

1 +
z2

Hµ
2

z2

)(
z

zH

)D

+

(
z2

Hµ
2

z2

)(
z

zH

)2(D−1)

, At(z) = µ

(
1 −

(
z

zH

)D−2
)
.

(2.0.19)
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In the last expression we defined z
2 = 2(D−1)

D−2 . The prefactor µ is the difference between the scalar
potential at the horizon and at the boundary and plays the role of the chemical potential. The
Hawking temperature is given now by [72]

T =
D

4πzH

(
1 − D−2

z2D
µ2z2

H

)
, (2.0.20)

and the energy, entropy, charge densities by

ǫ =
D − 1

16πGNzD
H

(
1 +

z2
Hµ

2

z2

)
, s =

1

4GN zD−1
H

, ρ =
D − 1

z28πGN

µ

zD
H

. (2.0.21)

One can easily check, that these variables satisfy the first law of thermodynamics, dǫ = T ds+µdρ .

Fluid-gravity duality

One of the particular cases of the duality is the case, when the boundary CFT obeys a set hy-
drodynamic equations and can be mapped to a black brane solution of the Einstein equations in
one higher dimension (see e.g. [74–77]). This situation is called “fluid-gravity correspondence” and
can be used for a phenomenological description of the strongly-coupled QGP, since the latter is a
nearly-perfect quantum liquid. As a simple example we can consider the AdS black hole solution
(2.0.14, 2.0.15) with D = 4 and change the variables,

z → z̃√
1 + z̃4/z̃4

H

, zH → z̃H/
√

2, (2.0.22)

such that the metric becomes

ds2 = − (1 − z̃4/z̃4
H)2

(1 + z̃4/z̃4
H)z̃2

dt2 + (1 + z̃4/z̃4
H)

d~x2

z̃2
+
dz̃2

z̃2
. (2.0.23)

This form is suitable for the holographic renormalization (2.0.13) and gives us

〈Tµν〉 =
1

4πGN
g(4)

µν =
1

16πGN
diag

(
3

z4
H

,
1

z4
H

,
1

z4
H

,
1

z4
H

)
= diag

(
ǫ,
ǫ

3
,
ǫ

3
,
ǫ

3

)
, (2.0.24)

where in the last step we used the expression (2.0.16) for the energy density. One can notice that
the obtained energy-momentum tensor is nothing but the one for a conformal ideal fluid at rest
(ǫ = 3P ). We can go further and boost the black hole solution (2.0.14) along uµ, which will result
in the covariant energy-momentum tensor of an ideal fluid,

T µν = (ǫ+ P )uµuν + Pgµν . (2.0.25)

In a relativistic setup, which we consider in the next chapters, one can then systematically correct
it by including higher-order gradient terms (corresponding to e.g. dissipative effects). One should
also mention, that such gradient series do not converge and is an example of asymptotic series [78].
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Chapter 3

Non-equilibrium physics at a
holographic chiral phase transition

Thermal phase transitions are a crucial aspect of the evolution of the Universe after the Big
Bang and also in the physics of heavy ion collisions. We have traditionally lacked tools to study
these transitions though in strongly coupled systems such as QCD. The AdS/CFT correspondence
[59–61], which gives a weakly coupled string/gravity description of a class of strongly coupled gauge
theories, offers the chance to study similar transitions in detail.

In this chapter we study a simple dual of a theory with gauge fields and quarks which has
(in the presence of a magnetic field) a first order chiral symmetry restoring phase transition as
it is heated. Previous analysis of this gauge theory (using probe branes in an AdS-Schwarzschild
black hole geometry) has explored the first order transition for equilibrium (time independent)
configurations. The heating or cooling of the system can be studied thanks to the boost-invariant
expanding or contracting plasma geometry of Janik and Peschanski [74]. That geometry, which
we will review below, has a moving black hole horizon describing the changing temperature in the
gauge theory. We will study probe branes in this geometry to learn more about the first order
phase transition out of equilibrium.

The particular duality we concentrate on is the simplest example of holography with funda-
mental quark fields [79–84]. We do not consider the specific degrees of freedom of the theory too
crucial - it is some strongly coupled gauge theory that displays a chiral phase transition. We hope,
in the spirit of AdS/QCD models [85, 86], that it reflects broad aspects of many strongly coupled
systems. The specific gauge theory is constructed from the D3/D7 system in type IIB string the-
ory which we will describe further below. The theory is the large Nc N = 4 U(Nc) gauge theory
with a small number of quark hypermultiplets. We will work in the quenched approximation [81]
(appropriate when Nf ≪ Nc) which on the gravity dual side corresponds to treating the D7 branes
as probes in the metric generated by the D3 branes. There is a U(1) chiral symmetry (a rem-
nant of the SU(4) R-symmetry of the N = 4 theory) which is broken when a quark condensate
forms [83, 87, 88]. Several mechanisms for triggering this condensation have been explored. The
cleanest is when a background magnetic field is introduced [89–97] so we will use that mechanism
here. The reader might want to loosely view the B field as simply the introduction of a confor-
mal symmetry and supersymmetry breaking parameter that triggers the strong dynamics to cause
the symmetry breaking. Physically, magnetic fields may be strong during structure formation in
the early universe, in particular during the epoch of the QCD primordial phase transition, and
in non-central high-energy heavy-ion collisions studied at RHIC. Running of the coupling in the
holographic dual also causes quark condensation as has been shown in back-reacted dilaton flow
geometries [83,98] and models with a phenomenologically imposed dilaton profile [99]. The quark
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condensate can be determined in these models and an effective IR quark mass is generated. The
theories display a massless pion-like Goldstone field and a massive sigma field (since we are at large
Nc it is stable) that is the effective Higgs particle.

The equilibrium finite temperature behaviour of the theory with a magnetic field has been
studied in [89–91, 96, 97]. Finite temperature can be included through the presence of an AdS
Schwarzschild black hole. At a critical temperature the D7 embedding flips from a chiral symmetry
breaking embedding away from the horizon to a symmetry preserving embedding that enters the
horizon. The transition is therefore also associated with meson melting [100–102] - for embeddings
away from the horizon there are regular linearized fluctuations describing the meson spectrum of
the theory. For the embedding that enters the horizon there are only in-falling quasi-normal modes
describing unstable plasma fluctuations. In terms of the quarks of the theory the high temperature
phase is analogous to the quark gluon plasma phase in QCD whilst the low energy phase is more
akin to the hadronic phase of QCD. It should be noted though that the gluonic degrees of freedom
deconfine at any finite temperature so the analogy is imperfect.

The crucial extra ingredient we shall add to this story in this chapter is provided by the boost-
invariant expanding or contracting plasma geometry of Janik and Peschanski [74]. This geometry
has a black hole whose horizon moves away from the boundary in time as the N = 4 plasma
it describes expands and cools. The time reversed solution at zero viscosity describes a heating
plasma and we will find it useful to discuss that scenario too below. The geometry is a late time
expansion (when the black hole is small) in powers of inverse time. However, by controlling the
strength of the magnetic field on the D7 probes, felt by the quarks, we can arrange to place the
chiral phase transition at any point in the evolution so the expansion is sufficient to fully study
the transition.

We will place a D7 brane1 into the expanding plasma geometry and determine the partial
differential equation (PDE) that describes the time dependence of its embedding. A good first
approximation to the transition behaviour is provided by the equilibrium results with the temper-
ature replaced by the temperature as a function of time from the moving background. In fact we
will see that that is an extremely good approximation when talking about the slow or adiabatic
heating or cooling of vacuum configurations at temperatures even close to the phase transition.
If the chiral symmetry breaking embedding is heated though, the local minima in the effective
potential associated with that embedding is eventually lost and the configuration becomes an out
of equilibrium configuration. The equilibrium results can not describe the subsequent evolution.
Similarly excited vacuum states must be studied through the full PDE system.

We first turn to an approximation to the PDE. The solution can be power expanded in inverse
powers of time. This reduces the PDE to a system of ordinary differential equations (ODEs) that
are much easier to solve. This analysis was first done in [105] where the time evolution of the
high temperature phase of the pure N = 2 theory was studied. Using this technique we solve
the ODE system and find the moving D7 solution. This method assumes that the initial vacuum
state is exactly a maximum or minimum of the zero temperature effective potential. Again the
heating is essentially adiabatic in nature. The expansion breaks down if the super-heated state
ceases to be an extrema of the effective potential. This method allows us to confirm the success of
the equilibrium derived results although in fact the expansion breaks down before the equilibrium
results deviate from the full PDE solutions.

The most interesting out of equilibrium questions lie beyond the adiabatic approximation
though. In a physical first order transition quantities such as the condensate do not jump but
the vacuum state instead performs a fast roll from one configuration to another. The timing of
that transition can and most likely will be spatially dependent i.e. bubbles of the true vacuum
will form and grow. We turn to solving the full PDEs to study these phenomena (with care this

1By placing a fundamental string, which corresponds to a heavy quark, into the expanding plasma geometry, the
diffusion constant [103] and drag force [104] was computed.
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TRANSITION

can be done using in built PDE solvers in for example Mathematica). For example we are able to
watch the super-heated chiral symmetry breaking phase roll to the symmetric phase. We can also
simulate initial conditions with some extra energy (which might for example come from thermal
fluctuations) and see such configurations transition away from the super-heated vacuum before the
meta-stable vacuum has disappeared in the effective potential. This allows us to confirm some
elements of the transition such as the length of time in which there is a mixed phase. We also are
effectively watching a very large bubble form.

Our main result then is to have developed numerical techniques that let us reproduce the phase
structure using the PDE solutions and to describe non-equilibrium physics that is necessarily
present in the first order transition.

In our final section we also analyze the ODE expansion approximation to the PDE solutions for
the D7 embedding to make clear the full dependence of the solutions on the magnetic field value.
In that case the dependence is available analytically. We also show the effects of the viscosity.
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3.1. HOLOGRAPHIC DESCRIPTIONS

3.1 Holographic Descriptions

In this section we review the N = 2 gauge theory with a magnetic field and its holographic de-
scription. We discuss the theory’s finite temperature chiral phase transition in an equilibrium
description. We then review how to study flavour physics in a nonequilibrium set-up using holog-
raphy.

3.1.1 Chiral symmetry transition

We will study the D3/D7 brane model at finite temperature and with a magnetic field [89–91,96,97].
The magnetic field, which causes chiral symmetry breaking, competes with the temperature that
prefers to restore chiral symmetry. Consequently there is a first order phase transition.

The N = 4 SU(N) gauge theory at finite temperature has a holographic description in terms
of an AdS5 black hole geometry which can be written as

ds2 =
w2

R2
(−gtdt

2 + gxd~x
2) +

R2

w2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2) , (3.1.1)

where φ is a U(1) angle and w =
√
ρ2 + L2, ρ = w sinφ, L = w cosφ and

gt =
(w4 − w4

H)2

2w4(w4 + w4
H)

, gx =
w4 + w4

H

2w4
. (3.1.2)

Note R4 = 4πgsNα
′2, and the temperature is given by wH = πR2T .

Quenched (Nf ≪ N) N=2 quark superfields can be included in the N = 4 SU(N) gauge
theory through probe D7 branes in the geometry [81]. The D7 probe can be described by its
Dirac-Born-Infeld (DBI) action

SDBI = −TD7

∫
d8ξ
√
−det(P [G]ab + 2πα′Fab) , (3.1.3)

where P [G]ab is the pullback of the metric and Fab is the gauge field living on the D7 world volume.
We will use Fab to introduce a constant magnetic field [89–91],

F12 = −F21 = B/(2πα′) . (3.1.4)

We embed the D7 brane assuming only ρ dependence: L(ρ) at constant φ. The full DBI action we
will consider is then

SDBI =

∫
dξ8L(ρ) =

(∫

S3

ǫ3

∫
dtd~x

)∫
dρ L(ρ) , (3.1.5)

where ǫ3 is a volume element on the 3-sphere and

−L ≡ Ω̃ ≡ NfTD7(R
√
B)4ρ̃3

(
1 − w̃4

H

w̃4

)√(
1 + L̃′2

)
√√√√
((

1 +
w̃4

H

w̃4

)2

+
1

w̃4

)
(3.1.6)

with the dimensionless variables defined as

(w̃, L̃, ρ̃) =

(
w

R
√

2B
,

L

R
√

2B
,

ρ

R
√

2B

)
. (3.1.7)

Note that we can use the magnetic field value as the intrinsic scale of conformal symmetry breaking
in the theory - that is we can rescale L and ρ by B. The Euclidean on-shell Lagrangian (−L) is

interpreted as the free energy density (Ω̃).
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Figure 3.1: The equilibrium description of the first order chiral phase transition in the N = 2
gauge theory with a magnetic field: (a) The D7 brane embedding profiles L̃(ρ̃) as a function of
temperature w̃H . The low temperature symmetry breaking embedding is shown on the left whilst
the symmetric flat embedding on the right is preferred at high temperature. (b) A plot of the
chiral condensate as a function of the temperature with the dotted line indicating the position of
the first order transition.

In all cases the embeddings become flat at large ρ taking the form

L̃(ρ̃) ∼ m̃+
c̃

ρ̃2
, m̃ =

2πα′mq

R
√

2B
, c̃ = 〈q̄q〉 (2πα′)3

(R
√

2B)3
, (3.1.8)

where m̃ and c̃ are identified with the quark mass and the quark condensate, respectively. Since
we are interested in spontaneous symmetry breaking we impose m̃ = 0 in the UV (ρ̃→ ∞). Then
the value of c̃ is determined by requiring regularity in the IR (ρ̃ ≪ 1). If there is more than one
solution then we choose the one giving the minimum free energy.

The results are displayed in Fig. 3.1. At low temperatures T ≪ B, the black hole is small and
the embeddings are repelled from the origin of the L̃− ρ̃ plane (Fig. 3.1 (left)). This behaviour is a
result of the inverse powers of w̃4, when w̃H ≪ 1, in the last term of the Lagrangian (3.1.6), which
causes the action to grow if the D7 approaches the origin. Consequently c̃ is non-zero and chiral
symmetry is broken. If the temperature is allowed to rise sufficiently then the black hole horizon
grows to mask the area of the plane in which the inverse w̃4 terms in the Lagrangian are large.
At a critical value of T (w̃H = 0.2516, Fig. 3.1 (middle)) the benefit to the m̃ = 0 embedding
of curving off the axis becomes disfavoured and it instead lies along the ρ̃ axis - chiral symmetry
breaking switches off. This transition is first order since the condensate vanishes discontinuously,
which corresponds to the embedding change from the blue to the red one. At higher temperatures
(Fig. 3.1 (right)), the embedding stays flat, c̃ = 0, as expected in the chirally symmetric phase.
The corresponding condensate vs. temperature (−c̃-w̃H) plot is shown in Fig. 3.1 (bottom).

22



3.1. HOLOGRAPHIC DESCRIPTIONS

3.1.2 A boost-invariant expanding plasma

The geometry (3.1.1) is dual to a system in thermodynamical equilibrium and therefore not suitable
for the description of the chiral phase transition in a rapidly expanding plasma, in which the
transition is basically a non-equilibrium process. Boost-invariant expanding N = 4 SU(N) plasmas
out of equilibrium can however be described by the time-dependent background found in [74]
(see [106] for a review). In the following we review the basic features of this background and
discuss the embedding of probe D7 branes dual to quenched flavours (“quarks”) in the plasma.

The boost-invariant geometry is a 5D spacetime with coordinates {τ, y, x⊥(= x1, x2), z}, which,
apart from the holographic direction z, parameterise the 4D spacetime on the boundary. The
longitudinal position plane is parameterised by the proper time τ and rapidity y (related to x0,3

as x0 = τ cosh y, x3 = τ sinh y), the transverse coordinates are collected in x⊥. We also add a
five-sphere to obtain a full type IIB supergravity background. The metric is then of the form

ds2

R2
=

1

z2

(
−ea(τ,z)dτ2 + eb(τ,z)τ2dy2 + ec(τ,z)dx2

⊥

)
+
dz2

z2
+ dΩ2

5 , (3.1.9)

where R is the radius of the AdS5 space. At late times, the coefficients can be expanded to first
order as [74, 107,108]

a(τ, z) = ln

(
(1 − v4/3)2

1 + v4/3

)
+ 2η0

(9 + v4)v4

9 − v8

[
1

(ε
3/8
0 τ)2/3

]
+ O

[
1

τ4/3

]
,

b(τ, z) = ln(1 + v4/3) +

(
−2η0

v4

3 + v4
+ 2η0 ln

3 − v4

3 + v4

)[
1

(ε
3/8
0 τ)2/3

]
+ O

[
1

τ4/3

]
, (3.1.10)

b(τ, z) = ln(1 + v4/3) +

(
−2η0

v4

3 + v4
− η0 ln

3 − v4

3 + v4

)[
1

(ε
3/8
0 τ)2/3

]
+ O

[
1

τ4/3

]
,

with

v ≡ z

τ1/3
ε
1/4
0 , η0 =

1

21/233/4
. (3.1.11)

ε0 is a free parameter of mass dimension 8/3 and is related to the energy density, while η0 is related
to the shear viscosity. v is a scaling parameter valid at large τ . Note that a(τ, z), b(τ, z) and c(τ, z)
are expanded around τ = ∞ in powers of 1/τ2/3 as [74, 107,108]

a(τ, z) =

∞∑

n=0

an(v)

(
1

ε
3/8
0 τ

) 2
3 n

, (3.1.12)

and similarly for b(τ, z) and c(τ, z). The coefficients are functions of a scaling parameter v only.
Due to this scaling behaviour the complicated PDE Einstein equations can be reduced to an ODE
system, which allows analytic solutions. At early time τ ≪ 1 there is no scaling behaviour and we
should solve the full PDEs.

To find which gauge theory state corresponds to this bulk metric according to the AdS/CFT
dictionary let us expand the metric around z = 0,

gττ ≡ −ea(τ,z) = −1 +
2π2

N2
c

z4

[
ε̄− 2η

τ

]
+ O(z6) ,

gyy ≡ τ2eb(τ,z) = τ2 +
2π2

N2
c

z4

[
τ2

(
ε̄

3
− 2η

τ

)]
+ O(z6) , (3.1.13)

g11(= g22) ≡ ec(τ,z) = 1 +
2π2

N2
c

z4
[ ε̄
3

]
+ O(z6) ,
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where 2

ε̄ ≡ N2
c

2π2

ε0
τ4/3

, η ≡ N2
c

2π2

η0ε
3/4
0

τ
. (3.1.15)

The leading terms (of order O(z0)) of the metric elements (3.1.13) is simply the Minkowski metric
in the τ − y coordinate system, and the subleading terms (of order O(z4)) correspond to the
expectation value of the energy-momentum tensor, i.e.

〈T00〉 = ε̄− 2η

τ
, 〈Tyy〉 = τ2

(
ε̄

3
− 2η

τ

)
, 〈T11〉 = 〈T22〉 =

ε̄

3
. (3.1.16)

This energy-momentum tensor is precisely that of a longitudinal viscous boost-invariant N = 4
SYM conformal plasma with finite η.

In gττ we recover a time-dependent emblackening factor, which describes a moving horizon.
The size of the horizon determines the time-dependence of the ‘temperature’ as [105,107]

T (τ) =

√
2

πR2
rH =

(
4ε0
3

)1/4
1

πτ1/3

(
1 − η0

2ε
1/4
0 τ2/3

)
. (3.1.17)

If we assume that the time-dependent entropy density s(τ) has the same form as in the static case,
s(τ) = (π2/2)N2

c T (τ)3, then the ratio η/s can be computed as [108]

η

s
=

1

4π
+ O(τ2/3) , (3.1.18)

which at large τ agrees with the known static bound. Note that the numerical value of η0 in
(3.1.11) is crucial to get 1/4π.

Finally we note the uniqueness of the gravity solution. There is a potential singularity at
v = 31/4 in (3.1.10). The curvature invariant, RµνρσR

µνρσ = R0(v)+R1(v)τ
−2/3+R2(v)τ

−3/4+· · ·
is only regular at each order if one makes the specific choices above. We must choose −1/3 for
the power of τ in (3.1.11) to make R0 regular [74]. We must also choose (3.1.10) with the specific
choice of the numerical value η0 as in (3.1.11) to make R2 regular [108]. (R1 is always regular and
does not give any constraint.)

Flavours in this background were first studied in [105]. Knowing the explicit background geom-
etry (3.1.9) we can study flavour physics using the D7 brane DBI action. The action schematically
reads

S ∼
∫
d8ξ
√
−det(P [G]ab) ∼

∫
dτdρ τρ3

A

√

1 + (∂ρL)2 − B
(∂τL)2

(ρ2 + L2)2
, (3.1.19)

where A and B are complicated but known functions of τ and ρ, see (3.2.5) and (3.2.6) in the next
section. L = L(τ, ρ) is the embedding profile of the D7 brane and is assumed to be a function of
τ and ρ.

The equation of motion coming from (3.1.19) is a non-linear PDE. However it can be semi-
analytically solved by the late-time expansion

L(τ, ρ) = m+

∞∑

i=1

fi(ρ)τ
− i

3 . (3.1.20)

2Here 2π2

N2
c

has been factored out to apply the AdS/CFT dictionary

〈Tµν 〉 =
N2

c

2π2
lim
z→0

1

z4
(gµν − ηµν) . (3.1.14)
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This expansion inherently assumes that the late time configuration is precisely the equilibrium
vacuum and when we heat it there is no excess energy. This leads to an adiabatic approximation.
The fraction 1/3 is chosen because all exponents of τ in A and B are integer multiples of 1/3 and
the constant m reflects the fact that the embeddings get flat at large τ . Here we only consider a
large bare quark mass (m ≫ 1) and Minkowski embeddings, i.e. D7 configurations which end well
above the black hole horizon.

This reduces the partial differential equation to an infinite set of ordinary differential equations
given by

ρ−3∂ρ

(
ρ3f ′

i(ρ)
)

=
8mε20

9(m2 + ρ2)5
Ii , (3.1.21)

I8 = 1 , I10 = −4η0ε
−1/4
0 , otherwise Ii≤13 = 0 , (3.1.22)

where we do not consider terms with i > 13 since they are beyond the validity regime of our
approximation of the boost-invariant metric. The asymptotic solution at large ρ is

fi ∼ mi +
ci
ρ2
. (3.1.23)

We set mi = 0 so the bare quark mass is zero and not time-dependent. We also impose the
condition f ′

i(0) = 0 for regularity. With these boundary conditions, we find fi = 0 except for f8,
f10. As a result, one gets

L(τ, ρ) = m+ c(τ)
ρ4 + 3ρ2m2 + 3m4

(m2 + ρ2)3
, (3.1.24)

where

c(τ) = − ǫ20
54m5

(
τ−8/3 − 4η0ǫ

−1/4
0 τ−10/3 + · · ·

)
. (3.1.25)

The condensate approaches zero as ∼ − τ−8/3 and the viscosity has a “dragging” effect ∼ + τ−10/3.
We close this section with some technical remarks on black hole embeddings. In the Fefferman-

Graham (FG) coordinate system (3.1.9) one cannot approach the horizon for fixed τ as in the
Schwarzschild black hole metric. There is also an extended background written in terms of
Eddington-Finkelstein (EF) coordinates, where the spacetime is well defined across the hori-
zon [109, 110] and black hole embeddings may be described more consistently there. However
we have found that the embedding configuration is not easy to handle in those coordinates. Below,
to enable us to study black hole embeddings, we use FG coordinates but with a cut-off slightly
above the horizon. Since the FG coordinate system is a good patch near the horizon at large τ , by
restricting ourselves to large τ , we may capture the essential physics of the embedding. This will
allow us to go beyond the results in [105].

3.2 Out of equilibrium description of the chiral phase tran-

sition

In the previous section we reviewed the holographic description of dynamical flavours in an ex-
panding plasma [105]. A boost-invariant background with embedded D7 branes is however not
sufficient to study the chiral transition. In that case the D7 embeddings are always flat in the
chiral limit (m→ 0) and the system is always in the chiral symmetric phase with vanishing quark
condensate. In order to describe the transition to the chiral broken phase, we need a repulsive effect
to compete against the attractive force of the black hole. As in the static case reviewed in section
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3.1.1, this can be achieved by turning on a magnetic field. In this section, we will therefore consider
D7 branes with a world-volume magnetic field in the dual geometry of an expanding plasma. In
this way we will find the holographic dual of a chiral transition and deduce the dynamic effective
potential for the time-dependent quark condensate.

3.2.1 D7 flavour brane action

The background metric for a boost-invariant expanding plasma can be written as

ds2 =
r2

R2
(−ea(τ,r)dτ2 + eb(τ,r)τ2dy2 + ec(τ,r)dx2

⊥) +
R2

r2
(dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2) (3.2.1)

where r2 ≡ ρ2 + L2. The S5 part is written as in (3.1.1) and the AdS5 part follows from (3.1.9)
with a change z → R2/r, i.e. a(τ, r) ≡ a(τ, z → R2/r) in (3.1.10) and similarly for b(τ, r) and
c(τ, r).

We are interested in time-dependent D7 brane embeddings of the type L = L(τ, ρ). The
corresponding DBI action is

SDBI = −TD7

∫
d8ξ
√
−det(P [G]ab + 2πα′Fab) , (3.2.2)

where we turn on a constant magnetic field [89–91],

F12 = −F21 = B/(2πα′) , (3.2.3)

in order to induce the chiral symmetry breaking.
More explicitly, the D7-brane action reads

S = N

∫
dτdρ τρ3

A

√√√√
(

1 + C
R4B2

(ρ2 + L2)2

)(
1 + L′2 − B

R4L̇2

(ρ2 + L2)2

)
(3.2.4)

A ≡
(

1 − v8

9

)
exp

[
4η0ε

−1/4
0

v8

9 − v8
τ−2/3

]
, (3.2.5)

B ≡ 1 + v4

3(
1 − v4

3

)2 exp

[
−2η0ε

−1/4
0 v4 9 + v4

9 − v8
τ−2/3

]
, (3.2.6)

C ≡ 9

(3 + v4)
2 exp

[
4η0ε

−1/4
0

(
v4

3 + v4
− Coth−1

(
3

v4

))
τ−2/3

]
, (3.2.7)

v ≡ ε
1/4
0 R2

τ1/3
√
ρ2 + L2

, N ≡ NfTD7

∫
ǫ3

∫
dyd2x⊥ , (3.2.8)

where A = ea/2+b/2+c, B = e−a, C = e−2c, η0 = 1/(21/233/4) as in (3.1.11), and ǫ3 is the volume
form of the three-sphere. For vanishing B, the action reduces to that in (3.1.19).

It turns out to be convenient to work with the rescaled variables

ρ ≡
√
BRρ̃ , L ≡

√
BRL̃ , τ ≡ R√

B
τ̃ , ε0 ≡ B4/3R−8/3ε̃0 . (3.2.9)

For R = 1 the action then reads

S = NB

∫
dτ̃dρ̃ τ̃ ρ̃3

A

√√√√√
(

1 + C
1

(ρ̃2 + L̃2)2

)
1 + L̃′2 − B

˙̃
L

2

(ρ̃2 + L̃2)2


 , (3.2.10)

with A,B,C as in (3.2.5)-(3.2.7) but now expressed in terms of τ̃ , ε̃0, ρ̃, and L̃.
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Figure 3.2: A summary of our main results showing the first order phase transition in our various
approaches. (a) The condensate c̃(τ̃ ) in the equilibrium (black), adiabatic (dashed) and non-
equilibrium (blue) approaches. In the equilibrium description, the different branches correspond
to the extrema of the potential V (c) (b). The complete potential is obtained by a U(1) rotation
around the vertical axis. The dashed red curve schematically shows the path of the adiabatic
heating evolution.

3.2.2 Naive equilibrium based approximation

An obvious first approximation to understanding the time dependent chiral phase transition in this
set up is to use the equilibrium results from section 2.1. There we described how the D7 embedding
behaved in the background of a fixed size black hole and determined the quark condensate as a
function of temperature. In the cooling plasma geometry of section 2.2 the black hole horizon
moves as a function of time τ̃ as

r̃H =
ε̃
1/4
0

31/4τ̃1/3

(
1 − η0

2ε̃
1/4
0 τ̃2/3

)
. (3.2.11)

If this heating were very slow (as it is at large τ̃ ) we would expect to be able to plot the quark
condensate against τ̃ by simply substituting for the temperature T in the equilibrium results. We
show that plot in Fig. 3.2a (black solid curve) which follows directly from the c-T plot in Fig. 3.1.

We can recast the c̃ vs. τ̃ plot schematically as a time dependent effective potential by fitting
it at each value of τ̃ to a potential of the form

V = m2c̃2 + λc̃4 + λ′c̃6 (3.2.12)

using the values of c̃ at the extrema to fix the parameters (the overall scale is not set but the figure
is intended to only be schematic). We plot this in Fig. 3.2b. This is the standard picture of a first
order transition.

It is important to interpret these plots correctly. Firstly note that there is a c̃ = 0 solution
for all τ̃ . If we begin at high temperature with the symmetric flat embedding and cool slowly or
adiabatically (i.e. move to large τ̃) then we can remain in that embedding for all τ̃ . Above the
time τ̃a = 20.6 two extra solutions for the condensate develop and these, as we will discuss, trigger
the first order transition. At large τ̃ the c̃ = 0 flat embedding becomes a local maximum of the
effective potential. To stay in the flat embedding for all τ̃ is the extreme limit of super-cooling the
high temperature phase into an unstable vacuum state.

The top trajectory in the c̃ vs. τ̃ plot is best thought about in the time reversed solution that
is heating up. At early times (large τ̃ in the plot) the solution is the T = 0 symmetry breaking
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D7 embedding vacuum. Now as we heat adiabatically the condensate tracks along the trajectory
to smaller τ̃ . The solution ceases to exist at τ̃a, where the cusp in the (black) curve is, indicating
that the minimum of the effective potential corresponding to this solution has ceased to exist at
τ̃a. At this point the brane will move quickly, as an out of equilibrium configuration, ending as the
flat embedding or oscillating about it. The real-time evolution of the configuration is represented
by the path of red dots in Fig. 2b. Starting from the global minimum with c 6= 0, the minimum is
lifted up and the configuration moves adiabatically. At τ̃a the minimum disappears and the system
roles down the potential to the true vacuum with c = 0. The equilibrium results can not tell us
about this motion.

Now we also see the role of the middle arc in the plot - these solutions are symmetry breaking
embeddings that end on the horizon and they are a local maximum of the potential lying between
the two minima (the embeddings of the top trajectory and the flat embedding).

In fact the first order transition point between the symmetry preserving and the symmetry
breaking embeddings can be computed from the free energy in the equilibrium computation. This
transition occurs at τ̃c = 27.5, where the local and the global minimum in the effective potential
interchange their roles, i.e. for τ̃c ≥ 27.5 the symmetry breaking vacuum (with c 6= 0) becomes the
global minimum. Another important time determined by the equilibrium computation is τ̃b = 34.9
where the mixed phase ends at large τ̃ .

Our first task in solving the PDEs for the D7 brane motion that result from (3.2.4) is to
demonstrate that this description is essentially correct - we will see that it is. We will try to find
confirmation of the times τ̃a−c of these events. The more interesting task is that we will be able to
follow the evolution of a particular initial condition through the phase transition. Of course in the
first order transition the brane configuration does not discontinuously leap between the symmetry
breaking embedding to the flat embedding but evolves continuously. We will provide solutions for
this evolution.

Another interesting phenomena associated with a first order transition is bubble formation.
In real systems thermal energy will lead to volumes of space which have more energy than an
equilibrium like state in a local minimum of the potential at any particular time. These volumes
may “climb” over the potential hill to the other local minimum during the mixed phase period
shown in Fig. 3.2. These bubbles then grow or contract triggering the phase transition around
τ̃c ending any super-heated or cooled phase. We will not look at (x3) spatial dependent brane
embeddings. However, we can inject kinetic energy in the holographic directions of our description
into the brane configuration before we heat or cool it to see the configurations moving more quickly
between the two local minima than the lowest energy configuration. This will allow us to test the
time period in which the mixed phase exists in the out of equilibrium problem.

3.2.3 Adiabatic dynamic D7 brane embeddings

Our first study of the PDEs describing the D7 embedding in the expanding plasma geometry will be
to study adiabatic expansion. The non-linear partial differential equations resulting from (3.2.10)
can again be transformed into a set of second-order ordinary differential equations as we reviewed
for the case with no symmetry breaking in section 2.2. For that, we use the late-time expansion

L̃(τ̃ , ρ̃) = f0(ρ̃) +

∞∑

i=1

fi(ρ̃)τ̃
− i

3 . (3.2.13)

Thus we will be following the evolution of the symmetry breaking embedding as τ decreases. There
is also the solution fi = 0 which corresponds to the symmetric embedding. Note that, contrary to
(3.1.20), a nontrivial asymptotic embedding f0(ρ̃) is assumed because of the repelling effect of the

magnetic field. The equations for every fi(ρ̃) can be obtained order by order in τ−
1
3 , which will be

solved recursively. Unlike (3.1.21) these equations are quite lengthy and will not be presented here.
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Figure 3.3: Solutions of the ODEs in the adiabatic approximation - f0,4,8,10(ρ̃) for ε̃0 = 1. (a) f0
(red) compared to the dashed curve which is the profile obtained in the static case at T = 0. (b)
f0 (red), f4 (orange), f8 (yellow), f10 (green).

They do not allow for an analytic solution such as (3.1.24) but can be numerically solved without
any difficulty. As in the static case [83], there are expected to be two types of brane solutions,
Minkowski and black hole embeddings, depending on whether the brane ends on or above the
horizon.

For Minkowski embeddings, the boundary conditions are

f ′
i(0) = 0 and fi(∞) = 0 , (3.2.14)

as before. With these boundary conditions, we find non-trivial profiles fi = fi(ρ̃) for i = 0, 4, 8, 10,
and fi = 0 otherwise. A general dynamical embedding function is therefore of the form

L̃(τ̃ , ρ̃) = f0(ρ̃) +
f4(ρ̃; ε̃0)

τ̃4/3
+
f8(ρ̃; ε̃0)

τ̃8/3
+
f10(ρ̃; ε̃0, η0)

τ̃10/3
, (3.2.15)

where we neglect terms with i > 11 since they are beyond the validity regime of our approximation
of the boost-invariant metric.3 The numerical plots of the non-trivial profiles fi (i = 0, 4, 8, 10) are
shown in Fig. 3.3.

These profiles have the following qualitative properties. As compared to the solution (3.1.24)
for B = 0, there are additional non-trivial profiles, f0 and f4. The profile f0 agrees with that in
the static case (τ̃ → ∞) [89–91] (dashed curve in Fig. 3.3a) We found that the equation for f0
is independent of ε̃0 and η0, which is natural since at τ̃ → ∞ the system achieves equilibrium
at low temperature and will not depend on the non-equilibrium dynamics (η0) or specific initial
conditions (ε̃0) anymore. The profiles f4 and f8 depend on ε̃0 and have a negative sign, which
reflects the attraction of the D7 brane to the black hole. f10 is the first profile which depends on η0.
In contrast to f4 and f8, f10 has a positive sign showing the dragging effect, as in the zero B case
around (3.1.25). The big amplitudes of f4, f8, and f10 will be suppressed at large τ̃ by negative
powers of τ̃ . For self-consistency we will only consider the τ̃ region where all the sub-leading terms
are well dominated by the leading terms, i.e. f0 ≫ f4τ̃

−3/4 ≫ · · · . Some of the final embedding
profiles L̃(τ̃ , ρ̃) are shown in Fig. 3.4, where the green lines are plotted by plugging the numerical
data of Fig. 3.3 into (3.2.15).

We would not expect this expansion approach to work beyond the point where the symmetry
breaking embedding ceases to be even a local minimum because higher order terms will grow. One
can nevertheless plot solutions using f0 − f10 that reach down all the way to the horizon. We will

3In principle there may be a finite f12, but we will ignore it since it is a higher order term.
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Figure 3.4: Embedding profiles L(τ̃ , ρ̃) obtained from the adiabatic ODE expansion method for
ε̃0 = 1, η0 = 0.3102 before (a), during (b,c) and after the phase transition (d): Minkowski embed-
ding (green), black hole embedding (red), flat embeddings (blue).

use the full PDE solutions in the next section to test the point where the expansion has broken
down.

In fact early in our studies we tried to use the expansion even for black hole embeddings. The
ODEs for the fi do not contain the horizon however. We attempted to put the horizon in by hand
by imposing boundary conditions relevant to a black hole. For each point in the L − ρ plane if
we assume a horizon is present we can deduce the value of τ from (3.2.11) - one can impose some
boundary condition such as orthogonality to the posited horizon and seek solutions for each fi.
This correctly gives one massless solution at each τ̃ and they look very similar to the equilibrium
black hole embeddings. In fact though on solving the full PDEs we realize that this is far beyond
the point where the expansion method has collapsed! We will include some of the resulting curves
below though as evidence of the break down of the ODE approximation.

Fig. 3.4 shows the embedding profiles at various stages of the evolution of the expanding plasma.
The black hole horizon (3.2.11) is indicated by a black quarter circle in the figure. Its size decreases
with time corresponding to a cooling and expanding plasma. Fig. 3.4 reflects the division of the
quark-gluon plasma into the three phases described above.

The quark condensate as a function of time can be read form the asymptotic form of the
solutions

L̃(τ̃ , ρ̃) ∼ c̃(τ̃ )

ρ̃2
. (3.2.16)

We plot these results in Fig. 3.2a (the dashed lines) for comparison to the equilibrium inspired
results. The main result here is that the late time behaviour is indeed just the equilibrium ex-
pectations. Where the curved line deviates from the equilibrium results is in fact a sign that
the expansion used in this section has broken down, the configuration is out of equilibrium and
adiabatic behaviour is no longer possible. Full solutions of the PDEs will show this in the next
section.

3.2.4 Full PDE solutions

In the previous section we interpreted our solution obtained from the ordinary differential system
as the evolution of extremum states in the potential. This evolution also reflects the real time
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dynamics of the plasma whenever there is a unique deep global minimum for the vacuum state,
because the embedding time dynamics is expected to be well localized around the minimum. This
is the case in the chiral symmetric phase at early times and in the broken phase at late times. In
the mixed phase at intermediate times there appears also a local minimum in addition to the global
minimum. The small potential barrier separating these minima is potentially easily overcome by a
fluctuation. The path of the local maximum seen in the adiabatic approach will not be realized as
a dynamical solution since it is unstable. Further below the critical time τ̃a where the symmetry
breaking minimum disappears a heating vacuum will be left in a very non-equilibrium state that
again can not be followed using the expansion technique of section 3.2.3.

To find the real time evolution of the chiral transition out of equilibrium, we need to solve the
PDE directly and compare the solution with our previous approximate solutions. In practice it
is more convenient to consider a heating process than a cooling one4 because we can use a well
defined starting configuration at large τ̃ as an initial condition of our partial differential equation,
i.e.

L̃(τ̃ → ∞, ρ̃) = f0 , ∂
eτ L̃(τ̃ → ∞, ρ̃) = 0 , (3.2.17)

with f0 as in (3.2.15). For simplicity, we impose only Neumann boundary conditions at ρ̃ = 0
associated to Minkowski embeddings and a zero bare quark mass condition at ρ̃→ ∞ to study the
spontaneous symmetry breaking,

∂
eρL̃(τ̃ , ρ̃ = 0) = 0 , L̃(τ̃ , ρ̃→ ∞) = 0 . (3.2.18)

The conditions (3.2.17) and (3.2.18) completely determine the dynamics with the partial differential
equation derived by varying the action (3.2.10). Again, the actual expression of the equation of
motion is lengthy and will not be shown here.

Numerically we solve the equation using Mathematica’s inbuilt PDE solvers. These are some-
what temperamental and one needs to spend considerable time adjusting precision tolerances in
order to find smooth solutions in sensible periods of computer time. When we have such solutions
we test their stability to changes in precision settings to ensure they are reliable.

With the boundary conditions above we can run our simulations until the embeddings touch
the black hole. Beyond that one needs dynamic boundary conditions along the black hole surface.
At least in the coordinates we use here this is a hard problem. We have found a simple trick that
seems to produce sensible black hole embeddings though. After the D7 has touched the horizon
at ρ̃ = 0 we artificially hold the embedding at the top of the horizon. The large ρ̃ evolution of the
D7 is local and relatively unaffected by this incorrect embedding at small ρ̃. Further, as has been
observed before, solutions shooting from the black hole horizon experience a numerical attraction
onto the unique regular black hole embedding ending at a given point on the horizon. The result
is that we get numerical solutions like those shown in Fig. 3.5 (e.g. the red, blue, or orange curve)
where the D7 follows the horizon before shooting out to large ρ̃. We believe that these represent
very good approximations to the large ρ̃ embeddings solutions. Since we extract the condensate c̃
at large ρ̃ we will live with the improper near horizon behaviour. It would of course be interesting
to try to improve on this with dynamic boundary conditions in the future.

As a first example of a solution we will study the super-heated symmetry breaking vacuum. At
large τ̃ we use the leading terms in the expansion from Section 3.2 to find the UV configuration -
one needs to use several terms in the expansion to find the embedding with no extra energy. We
then solve for the evolution to low τ̃ . In Fig. 3.5 we show plots of the embedding L̃(ρ̃) for different
τ̃ with the black hole’s position for each τ̃ also shown. We expect that the near horizon behaviour
is not correct but the far UV embedding should approximate the solution we seek well. In the 3d

4In principle, time reversed heating is justified only at zero viscosity since a finite viscosity results in decreasing
entropy. However, we keep a finite viscosity in our numerics since it has a negligible effect and the results are
relevant to the cooling case.
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Figure 3.5: The embedding profiles L̃(τ̃ , ρ̃) from the full PDE solution for a solution starting in
the low temperature symmetry breaking vacuum (κ = 1).

Figure 3.6: 3D plot of the embedding profile L̃(τ̃ , ρ̃).

plot of L̃(τ̃ , ρ̃) shown in Fig. 3.6 this corresponds to excising the interior of the region indicated by
the dashed blue line.

A smooth evolution is apparent. To compare this to our various approximations above we also
plot the condensate as a function of time in Fig. 3.2a (blue curve). Again the solution follows
the equilibrium estimate and the expansion solution at large τ̃ . In the period τ̃a−c it follows the
equilibrium result not the ODE expansion results showing that expansion had broken down before
the brane left the mixed phase. The success of the equilibrium approximation suggests we should
take its estimate of the transition points τ̃a (where the local symmetry breaking minimum vanishes)
and τ̃c (where the two minima of the mixed phase are degenerate in energy) as correct. The full
PDE solutions allow us to know in addition the behaviour of the condensate when we have heated
above the temperature where the super-heated phase has stopped having a local minima (beyond
τ̃a). This is the main result of our analysis here.

It would be nice to test the equilibrium configurations estimate for the length of time in which
the mixed phase exists (τ̃b − τ̃a which is about 10 units of τ̃ ). This we can do by looking at some

simple out of equilibrium configurations. For the plots so far shown we computed
˙̃
L(ρ̃) at some

large τ̃ from the f4 term in the expansion for L̃(ρ̃, τ̃). We can give the configuration more energy by

simply multiplying that
˙̃
L(ρ̃) by a numerical factor, κ 5. One might think of these initial states as

5In practice, we fix some eτmax and modify the initial conditions (3.2.17) as L(eτ → eτmax, eρ) = LODE(eτmax, eρ)
and L̇(eτ → eτmax, eρ) = κ ∗ L̇ODE(eτmax, eρ), where LODE is given by (3.2.15).
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Figure 3.7: Plots of the IR position of the D7 brane against time for a number of large time initial
conditions with different energy. Initial velocities: black (κ = 1), red (κ = 10), green (κ = 30),
blue (κ = 40), purple (κ = 50). The thick black line is the horizon.
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Figure 3.8: The IR speed of the D7 brane against time for the κ = 1 initial condition.

thermally excited versions of the asymptotic vacuum. In Fig. 3.7 we plot the evolution of L̃(ρ̃ = 0)
as a function of τ̃ for a number of such states. At large τ̃ when the theory is cold the unique
vacuum is the symmetry breaking one and with extra energy the configuration oscillates about
that minimum. The motion is simple harmonic as can be seen from the independence of the period
on the amplitude of the oscillations. As the solutions approach τ̃c the different solutions begin to
diverge. The solution with κ = 10 lies close to the equilibrium curve - the oscillations about the
minimum are small and the state stays super-heated. When κ = 30, 40 L̃(0) falls more quickly
suggesting that at least some of the brane’s length in ρ has escaped the local potential minimum.
The upwards wiggles suggest that some of the length is still repelled back into the well though.
Finally though by κ = 50 the brane has ridden over the potential barrier and escaped the local
minimum. The difference in arrival times at the horizon for these configurations (about 6 units of
τ̃ ) is a rough estimate of the period of the mixed phase. It seems to broadly match the equilibrium
inspired picture again.

In Fig. 3.8 we plot the motion of the IR ρ = 0 end point of the brane with time for a low
energy configuration (κ ≃ 1). The brane certainly seems localized in a minimum down to a time
of order τ̃ = 27 (compare to the equilibrium estimate that the mixed phase begins at τ̃b = 34.9
and becomes meta-stable at τ̃c = 27.5). Further the steepest period of acceleration is below τ̃ = 22
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(to be compared with the equilibrium estimate for when the metastable vacuum ceases to exist
τ̃a = 20.6). We conclude that this system is indeed a super-heated state that survives in the local
minimum until very close to the equilibrium estimate for τ̃a. Note the other obvious feature in the
plot is the deceleration just below τ̃ = 20. This corresponds to where in our simulation the D7
first impacts on the black hole - at smaller τ̃ we hold the D7 at the horizon as discussed above so
this behaviour is an artefact. A full solution would continue to accelerate along the horizon.

These configurations with excess L̇ are also very much linked to bubble formation. A bubble
forms in the mixed phase when a volume of space has excess energy due to a thermal fluctuation
and escapes the local minima early. Here by treating the whole space as one we are essentially
describing the formation of a large homogeneous bubble. It would be interesting in the future to
try to study x dependent initial conditions to understand how quickly or slowly bubbles grow.

3.3 Dependence of the condensate on B

In the previous section we focused on the chiral transition induced by a magnetic field, which
simply played the role of an intrinsic symmetry breaking scale. In this section we turn to the
physics depending on B more quantitatively.

To make analytic progress we will concentrate on the adiabatic (ODE) approach in which we
rescaled all variables by some power of B, see (3.2.9). In order to study the dependence of the
quark condensate on B, we use the original parameters, in terms of which the condensate can be
expanded as

c(τ, B) = B3/2

(
c0 +

1

B2/3

c4(B
−4/3ε0)

τ4/3
+

1

B4/3

c8(B
−4/3ε0)

τ8/3

+
1

B5/3

c10(B
−4/3ε0, η0)

τ10/3

)
. (3.3.1)

Note that c0 is independent of ε0, η0 and η0 enters only in c10. The B dependence of the leading
term agrees with that in the static (zero temperature) case [89–91], i.e. it scales as B3/2. The
first subleading term (∼ τ−4/3) may be compared to the finite temperature case [89–91, 96, 97].
In the adiabatic approximation, where T ∼ τ−1/3, this term scales approximately like T 4B−5/6.
However, due to the B dependence of c4, this scaling is not exact. In general, the effect of the
subleading terms is to lower the exponent in c(τ, B) ∼ Bν to a value ν < 3/2. The scaling of the
total condensate c(τ, B) with B will again be determined numerically.

Fig. 3.9a shows our results for the condensate for various values of the magnetic field. We have
only plotted the condensates associated with the Minkowski embeddings, which exist for some
time τ > τ∗(B). Here τ∗ is defined as the time, when the Minkowski solution meets the black
hole solution (This corresponds to the cusp in the dashed curve in Fig. 3.2a). We take τ∗ to mark
the time of the phase transition. As can be seen from Fig. 3.2a the early time behaviour is an
imperfect approximation to the full PDE solutions but the later time solutions are consistent with
the solutions. We find that for fixed τ , or equivalently for fixed temperature, the condensate grows
with increasing magnetic field. In the limit τ → ∞ (i.e. at zero temperature), we find the following
dependence on B:

lim
τ→∞

c(τ) = c0B
3/2 = 0.223B3/2, (3.3.2)

which is in agreement with the zero temperature result [89–91]. For earlier times, the dependence
on B is shown in Fig. 3.9b. We find numerically that c(τ, B) ∼ Bν where the power ν decreases
from 1.5 at large τ to approximately 1.0 at small τ . In other words, the dependence on B tends
to become linear at high temperatures. Our results hold for sufficiently strong magnetic fields. At
small B the system is in the symmetric phase (c = 0).
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Figure 3.9: The condensate c(τ, B) (ε0 = 1) from the ODE adiabatic approximation results. (a)
condensate c(τ) for various B. (b) showing c(B) ∝ Bν for τ = 7, 10, 20, 1000]

The tendency for the condensate to increase withB is in qualitative agreement with observations
in chiral perturbation theory [111, 112] (∝ B3/2 for strong fields, ∝ B for weak fields), in the
Nambu-Jona-Lasinio model [113] (∝ B2), in a confining deformation of the holographic Karch-Katz
model [114] (∝ B2), and in SU(2) [115] (∝ B) and SU(3) [6, 7] lattice calculations (∝ B1.6±0.2).
The dependence on B typically ranges from linear to quadratic behaviour, i.e. the powers of B are
in the range 1 ≤ ν ≤ 2.

We may also study the effect of B on the time of the chiral transition which is marked by τ∗.
From the D-brane picture we expect that τ∗ decreases with B. For large B, the repelling force
caused by the B-field is much stronger than the attractive force of the black hole. Even at early
times, Minkowski embeddings, associated to stable mesons, are therefore favoured over black hole
embeddings, which implies that the meson melting process sets in at some earlier time, i.e. at
higher temperatures.

Fig. 3.10 shows τ∗ as a function of B. We find that τ∗ indeed decreases with increasing B as
τ∗(B) ∼ B−1.55. The numerically found exponent −1.55 for the scaling of B is close to −1.5 for
the case of vanishing shear viscosity, which can be explained as follows. At τ̃ = τ̃∗ and η = 0, the
horizon is located at

r̃∗ =
ε̃
1/4
0

31/4τ̃
1/3
∗

=
ε
1/4
0

31/4
√
B
τ
−1/3
∗ =

1

31/4(12.45)1/3
, (3.3.3)

where the last equality is from the numerical value of r̃∗ at ε̃0 = 1. Thus

τ∗ = 12.45B−1.5 , (3.3.4)

where for the numerical analysis we chose ε0 = 1. The deviation from −1.5 is due to the effect of
the shear viscosity. We also numerically confirmed that the exponent is 1.5 without viscosity.

This scaling of τ∗ may be compared to results for the critical temperature Tc of the phase
transition in the static case. In the adiabatic approximation (when η0 = 0), T ∼ τ−1/3, which
implies T∗ ∼ B1/2. This square root behaviour is in agreement with the result for the critical
temperature Tc in the static approach [96, 97] and with [112] for strong magnetic fields. It is also
in qualitative agreement with studies in QCD [116,117].
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Figure 3.10: τ∗ as a function of B (ε0 = 1) from the ODE adiabatic approximation results.

Finally we consider the effect of changing the viscosity. The viscosity effect is very small, since
it is doubly suppressed by both large τ̃ and small η0. This can also be seen in Fig. 3.11, where the
condensate is plotted for four cases: the green is the leading term, the blue includes the subleading
term, the red includes up to the third term and the black is the full expression. The viscosity effect
is then the difference between the red and black curves. There is a small visible difference only at
small τ̃ .
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Figure 3.11: The condensate c̃(τ̃ ). The green curve is the leading term, the blue is up to subleading
term, the red is up to third term and the black is the whole expression.

3.4 Discussion

We have analyzed the first order chiral and meson melting phase transition in a warming or
cooling strongly coupled gauge theory with quarks using the AdS/CFT Correspondence. We have
developed numerical techniques to study the PDE that describes the motion of a D7 brane in a
time dependent geometry. In particular this allows us to explicitly find smooth solutions of the
non-equilibrium configurations that are necessarily part of the transition. These results confirm the
equilibrium analysis of the transition but also go beyond them. For example we have described the
formation of large homogeneous bubbles in the mixed phase of the transition. In the future it would
be interesting to study spatially inhomogeneous bubbles to understand their growth although this
would require the solution of a 2+1 dimensional PDE which is potentially more numerically tricky.

36



3.4. DISCUSSION

To keep our problem a simpler 1+1 dimensional PDE we also restricted motion of the D7 brane
to the holographic coordinates L and ρ. There could also of course be fluctuations in the holographic
angular direction φ which we have not described. Such configurations might be useful in the study,
for example, of disordered chiral condensates [118]. We may also consider the finite density case
by turning on the time component of the U(1) gauge field on the probe brane [96, 97, 119,120].

We hope that the system we have studied can shed some light on first order transitions in
a range of strongly coupled gauge theories including perhaps QCD. The N = 4 background,
however, does deconfine in the presence of an infinitesimal temperature, which is not expected in
simple QCD. We note though that there are several arguments in favour of a possible splitting of the
deconfinement and chiral transitions in QCD in the presence of a strong magnetic field [116]. While
the temperature of the chiral transition increases [116, 121], the temperature of the deconfining
transition either decreases with increasing magnetic field [122] or increases but much slower than
the chiral transition [116]. Both transitions become first-order transitions and a new phase with
broken chiral symmetry and deconfinement appears for sufficiently strong magnetic fields. So, it
is the region of the T -B phase diagram with strong magnetic fields and above the deconfinement
temperature in which our model might be qualitatively compared with QCD.
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Chapter 4

Holographic dual of a
boost-invariant plasma with
chemical potential

In the recent years, the application of the AdS/CFT correspondence [59–61] to the quark-gluon
plasma (QGP) has become a very active research area. One line of research within such holographic
studies was initiated by Janik and Peschanski [74] who established a time-dependent gravity dual
of the boost-invariant flow of an N = 4 plasma. This geometry has mainly been studied in the
regime of large proper time, when the system is near equilibrium and approaches the hydrodynamic
regime (see however [123,124]). In [75,107–110,125–127] higher-order corrections to this late-time
background were constructed and found to be equivalent to a gradient expansion of hydrodynamics,
see [106] for a review.

An important aspect of the plasma which has not yet received much attention in a time-
dependent gravity background is the effects of chemical potentials, even though an asymptotic
boost-invariant geometry (without corrections) dual to an N = 4 plasma with U(1) R-charge is
known for quite some time [128]. Also the transport coefficients of plasmas with U(1) currents have
already been holographically computed in [76,77,129–131] (up to second order). Such currents are
generated, for instance, shortly after the collision of two heavy ions, when the two sheets of color
glass condensates have passed through each other and longitudinal color electric and magnetic flux
tubes are produced between the sheets [132]. This gives rise to a large topological charge density
Fµν

a F̃ a
µν , which in turn leads to an imbalance of the number of quarks with left- and right-handed

chirality and chemical potentials µR and µL. In addition to the usual baryon chemical potential
µ = µR+µL

2 , one may therefore also consider a chiral chemical potential µ5 = µR−µL

2 which mimics
the effect of an imbalanced chirality.

In this chapter we will construct a modification of the Janik-Peschanski background, which will
additionally include a time-dependent U(1) gauge field. The bulk theory will be five-dimensional
Einstein-Maxwell gravity with a negative cosmological constant and a Chern-Simons term. As
in the case without chemical potential, it appears to be difficult to find an analytic solution for
all times and we will restrict to solving the equations of motion at late times. As a further
simplification, we seek for a solution in which only the time-component of the U(1) gauge field dual
to the chemical potential is non-vanishing (the spatial components are set to zero). Asymptotically,
at large proper time τ , we may expand the late-time geometry in powers of τ−2/3. Employing both
Eddington-Finkelstein and Fefferman-Graham coordinates we present the late-time solution up to
first order (in τ−2/3). The resulting background will essentially take the form of a time-dependent
AdS5 Reissner-Nordström solution whose inner and outer horizon move into the bulk of the AdS
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space. This background can be extended to a full type IIB supergravity solution (by taking the
product with an S5) and is dual to a strongly-coupled N = 4 SU(N) supersymmetric-Yang-Mills
plasma with a non-vanishing chemical potential.

4.1 Late-time background in Eddington-Finkelstein coordi-
nates

In this section we are interested in finding a late-time gravity dual of an expanding N = 4 viscous
plasma with non-vanishing chemical potential.

The relevant five-dimensional Einstein-Maxwell-Chern-Simons action is given by

S =
1

16πG5

∫
d5x

√−g5
(
R+ 12 − FαβF

αβ +
4κ

3
ǫσαβγδAσFαβFγδ

)
, (4.1.1)

where α, β, ... denote the 5D bulk coordinates. The cosmological constant is Λ = −6 and the
Chern-Simons parameter is fixed as κ = −1/(2

√
3). Also, 1/(16πG5) = N2

c /(8π
2) for an N = 4

plasma [76]. The corresponding equations of motion are given by the combined system of Einstein-
Maxwell equations,

Rαβ − 1

2
gαβR− 6gαβ + 2

(
Fα

γFγβ − 1

4
gαβF

2

)
= 0 , (4.1.2)

and covariant Maxwell equations (with Chern-Simons-term),

∇βF
βα + κǫαβγδσFβγFδσ = 0 . (4.1.3)

Fαβ is the field strength of the U(1) gauge field Aα we wish to introduce in the background.

4.1.1 Boosted black brane solution

Our starting point for the construction of a time-dependent solution is the static AdS5 Reissner-
Nordström (RN) black-hole solution [73]. Using ingoing Eddington-Finkelstein coordinates, we
may write the RN metric and gauge field as

ds2 = −r2(1 − m

r4
+
q2

r6
)dv2 + 2dvdr + r2d~x2 , (4.1.4)

A = −
√

3q

2r2
dτ̃ , (4.1.5)

with mass m and charge q. Here v is a time-like coordinate (not to be mixed up with the scaling
variable v introduced below), ~x are the spatial coordinates on the boundary, and r parameterizes
the holographic direction. The location of the outer horizon r+ = r+(m, q) is given by the largest
real positive root of V (r+) = r6+ −mr2+ + q2 = 0.

A charged black hole is dual to a fluid at finite temperature T and chemical potential µ. Both
the Hawking temperature and the chemical potential are given in terms of r+ by [73]

T = − 1

4π
g′vv(r+) , µ =

√
3q

2r2+
. (4.1.6)

These relations can be inverted to give m and q as functions of T and µ [76],

m = r4+
3γ − 1

γ + 1
, q =

2µ√
3
r2+ , (4.1.7)
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with

r+ =
πT

2
(γ + 1) , γ =

√
1 +

8µ2

3π2T 2
. (4.1.8)

Following [75, 109], we now consider the corresponding five-dimensional boosted charged black
brane solution given by

ds2 = −2uµdx
µdr − r2

(
1 − m

r4
+
q2

r6

)
uµuνdx

µdxν + r2Pµνdx
µdxν ,

A =

√
3q

2r2
uµdx

µ , Pµν = ηµν + uµuν , (4.1.9)

where uµ is the boost velocity along xµ (µ = 0, 1, 2, 3), and m = m(µ, T ) and q = q(µ, T ) as
given by (4.1.7). From this solution we may deduce a time-dependent solution by choosing the
frame uµ = (1, 0, 0, 0) and introducing an Eddington-Finkelstein proper time-like coordinate τ̃ and
rapidity-like coordinate y. We also substitute the asymptotic late-time behaviour of T [25] and µ,

T = Λτ̃−1/3 and µ = µ̃0τ̃
−1/3 , Λ, µ̃0 = const. , (4.1.10)

into the explicit expressions for m and q. Here we assumed µ ∝ T , as one would expect for a
perfect fluid, such that the quotient µ/T = µ̃0/Λ = const. is independent of time. This leads to
the following metric1

ds2 = −r2(1 − m(τ̃)

r4
+
q(τ̃ )2

r6
)dτ̃2 + 2dτ̃dr + (1 + rτ̃ )2dy2 + r2dx2

⊥ ,

A = −
√

3q

2r2
dτ̃ , (4.1.11)

with coefficients

m(τ̃) = b(τ̃ )−4 ≡ r+(τ̃ )4
3γ − 1

γ + 1
, q(τ̃ ) =

2µ̃0√
3τ̃1/3

r+(τ̃ )2 , (4.1.12)

r+(τ̃ ) =
πΛ

2τ̃1/3
(γ + 1) , γ =

√
1 +

8µ̃2
0

3π2Λ2
. (4.1.13)

For q = 0 (or µ̃0 = 0), this metric reduces to the uncharged (zeroth-order) late-time solution in
Eddington-Finkelstein coordinates found in [109, 110, 127] (m = b−4 = π4Λ4τ̃−4/3 there). Note
that the size of the outer (and inner) horizon r+ (r−) decreases with time.

4.1.2 Zeroth-order solution and first-order correction

The boosted metric (4.1.11) is not an exact solution of the Einstein-Maxwell equations. It is a
good approximation of the boost-invariant solution at large τ̃ though. At smaller τ̃ , it receives
subleading corrections corresponding to higher-order gradient corrections to the energy-momentum
tensor and U(1) current, which will be discussed in section 4.1.3. These corrections to the metric
(4.1.11) can be found by choosing the following metric ansatz for the time-dependent solution:2

ds2 = −r2ea(eτ,r)dτ̃2 + 2dτ̃dr + (1 + rτ̃ )2eb(eτ,r)dy2 + r2ec(eτ,r)dx2
⊥ ,

A = d(τ̃ , r)dτ̃ . (4.1.14)

1There is an additional 1 in the factor (1 + reτ)2 in front of dy2 which is not expected from the boosted solution
(4.1.11). This is to ensure an asymptotic AdS space in the limit Λ → 0, see [110] for details.

2For this particular ansatz, the Maxwell equation reduces to 1√−g
∂β(

√−gF βα) = 0. The Chern-Simons term is

absent, since only Freτ and F
eτr are non-vanishing.
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As in the case without chemical potential, we may introduce the scaling variable v = rτ̃1/3 and
expand the metric coefficients in powers of τ̃−2/3,

ea(eτ,r) = A(v) + a1(v)τ̃
−2/3 + . . . , (4.1.15)

eb(eτ,r) = B(v) exp(b1(v)τ̃
−2/3 + . . .) , (4.1.16)

ec(eτ,r) = C(v) exp(c1(v)τ̃
−2/3 + . . .) . (4.1.17)

Similarly, for the coefficient of the gauge field we choose

d(τ̃ , r) = D(v)τ̃−1/3 exp(d1(v)τ̃
−2/3 + . . .) . (4.1.18)

Note that the gauge field has an overall factor τ̃−1/3. The existence of a late-time scaling variable
v will be shown in section 4.2.2.

The system of Einstein-Maxwell equations (4.1.2) and Maxwell equations (4.1.3) can then be
solved order by order in τ̃−2/3. At zeroth-order in τ̃−2/3, we find the coefficients

A(v) = 1 − m0

v4
+
q̃20
v6
, B(v) = C(v) = 1 , D(v) = −

√
3q̃0

2v2
, (4.1.19)

where we defined the time-independent variables

m0 = b−4
0 ≡ τ̃4/3m(τ̃ ) , q̃0 = τ̃ q(τ̃ ) (4.1.20)

with m(τ̃ ) and q(τ̃ ) as in (4.1.12). In the same way, we also define the variable

ζ+ = r+(τ̃ )τ̃1/3 (4.1.21)

from the (outer) horizon r+ as given by (4.1.13). A(v), ..., D(v) are in agreement with the metric
(4.1.11) deduced from the boosted black brane.

At first order in τ̃−2/3, we find the coefficients

a1(v) = −4q20
3v7

+
2m0

3v5
+
C2

v4
,

b1(v) = −2c1(v) = − 4

3v
+ C3 +

1

6

6∑

i=1

3C1 log[v − ζi] − 4 log[v − ζi]ζ
3
i

3ζ4
i −m0

,

d1(v) = − 2

3v
+

1

2
v2C1 ,

(4.1.22)

where ζi are the solutions of

ζ6
i −m0ζ

2
i + q̃20 = 0 . (4.1.23)

The resulting expression for b1(v) is real, even though we need to consider all six roots of (4.1.23)
including the imaginary ones. Explicit expressions for these roots can be found in appendix 4.3.
Note that one of the six roots of this equation corresponds to the outer horizon ζ+. In Reissner-
Nordström solutions there is always an upper bound on the charge q̃0, at which the discriminant
of the equation (4.1.23) vanishes,

q̃0 ≤ q̃extr.
0 =

4

√
4

27
m3

0 . (4.1.24)
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For larger values of q̃0, there would be a naked singularity at the origin. Remarkably, this bound is
satisfied for any value of the quotient µ̃0/Λ and saturated in the limit µ̃0/Λ → ∞, as can be seen
by substituting (4.1.20) with (4.1.12) into the bound (4.1.24). In other words, there is no bound
on the chemical potential. Nevertheless, let us assume that µ̃0 ≪ Λ in order to avoid potential
stability problems [133], which arise when the black hole is close to extremality.

We still need to fix the integration constants C1,2,3. C1 can be found by requiring regularity of
the first-order solution (4.1.22) at the outer horizon, i.e. C1 should be a function of the positive
root ζ+. More precisely, by choosing

C1 =
4

3
ζ3
+ , (4.1.25)

we cancel the log[v − ζ+] terms in b1(v), which are singular at v = ζ+. The metric then still
contains singularities but they are hidden behind the outer horizon.

The constant C3 is fixed by the requirement that the metric reduces to a pure AdS space in
the limit Λ → 0. This simply sets C3 to zero,

C3 = 0 . (4.1.26)

There is one remaining integration constant C2 which can not be fixed at first order. Note that, in
general, at each order k there is one integration constant which can only be fixed by regularity at
order k+1 [109], C2 in our case. Nevertheless, we may guess the correct value for C2 by comparing
with the uncharged solution [109, 110, 127], in which C2 = 2

3ζ
3
H = 2

3π
3Λ3. As for C1, it seems

natural to replace the horizon ζH of the uncharged solution by the outer horizon ζ+ of the charged
solution such that

C2 =
2

3
ζ3
+ . (4.1.27)

Later in section 4.1.3 we will justify this value again. It will turn out to correctly reproduce the
expected transport coefficients.

We have checked that for q̃0 = 0 (or, equivalently, µ̃0 = 0) the metric reduces to the first-order
corrected uncharged solution found in [109, 110, 127]. Moreover, for the Kretschmann scalar we
find

R2
µνρσ =

4(127q̃40 − 90m0q̃
2
0v

2 + 18m2
0v

4 + 2q̃20v
6 + 10v12)

v12
(4.1.28)

+
8(254q̃40 − 150m0q̃

2
0v

2 + 24m2
0v

4 + 2q̃20v
6 − 45q̃20v

3C2 + 18m0v
5C2)

v13
τ̃−2/3 + ... ,

which is only singular at v = 0. In the limit q̃0 → 0, we have m0 → π4Λ4 and R2
µνρσ reduces to

the corresponding expression in the uncharged case, see [110].
We have thus constructed a natural extension of the first-order corrected boost-invariant plasma

geometry of [109,110,127] to the corresponding one with non-trivial U(1) gauge field.

4.1.3 Transport coefficients from the background

In the hydrodynamic approximation, the energy-momentum and U(1) current are given by

〈Tµν〉 =
ε

3
(4uµuν + ηµν) + Πµν , 〈Jµ〉 = ρuµ + Υµ , (4.1.29)

where the first terms on the right hand side correspond to a perfect fluid with chemical potential.
Since the velocity field uµ, energy density ε and charge density ρ vary slowly with the spacetime
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coordinates, the energy-momentum tensor and current receive higher-order gradient corrections
given by (up to first order)

Πµν = −ησµν , Υµ = −σPµ
α∂α

µ

T
+ ξǫµ

ρστuρ∂σuτ , (4.1.30)

where η, σ and ξ denote the viscosity, conductivity and vorticity coefficient, respectively. The
corrections satisfy uνΥν = 0 and uνΠµν = 0. The transport coefficients of the fluid entering these
corrections were holographically computed in [76, 77, 129] (up to second order) by slowly varying
uµ, q and m in the boosted solution (4.1.9) with the space-time coordinates xµ. In this way the
hydrodynamic equations are obtained from AdS/CFT without constructing an explicit solution.

In the following we will compute the first-order corrections directly from our time-dependent
solution using holographic renormalization techniques [70, 71]. Recently, a rigorous holographic
renormalization of the Einstein-Maxwell-Chern-Simons theory, including the full back-reaction of
the gauge field, has been performed in [134]. The energy-momentum tensor can be obtained from

〈Tµν〉 = lim
r→∞

[
N2

c

4π2
r2
(
Kµν −Kγµν − 3γµν +

1

2
Gµν

)]
, (4.1.31)

where γµν is the induce metric on a constant-r hypersurface, which regularizes the boundary. Kµν

is the extrinsic curvature of on this hypersurface, K the corresponding scalarK = Kµνγ
µν and Gµν

the boundary Einstein tensor with respect to the metric γµν . Substituting our explicit first-order
solution into (4.1.31), we find the time-dependent energy density3

ε(τ̃) =
ε0
τ̃4/3

− 2η0
τ̃2

, (4.1.32)

with

ε0 ≡ 3N2
c

8π2b40
, η0 ≡ 3N2

c

16π2
C2 =

N2
c

8π2
ζ3
+ , (4.1.33)

and b0 = bτ̃−1/3 as in (4.1.20), see appendix 4.3 for more details on the computation. The first
term in ε(τ̃ ) is the zeroth-order energy density and is in agreement with that in [76], see Eq. (20a)
therein. The second term is the first-order correction and formally agrees with that in the uncharged
case [109, 110, 127] but now with a more general shear viscosity η0 = η0(µ̃0,Λ).4 This correction
is also in exact agreement with the first-order gradient correction to the energy-momentum tensor
computed in [76]. There [76], the viscosity was found to be

η =
s

4π
=
N2

c

8π2
r3+ =

N2
c

8π2
ζ3
+τ̃

−1 , (4.1.34)

with r+ as in (4.1.8) (The N = 4 plasma saturates the KSS bound [135–138]). Here we have
already substituted the asymptotic behaviour T = Λτ̃−1/3 and r+ = ζ+τ̃

−1/3. Given that η0 is
defined as η0 = ητ̃ , we get the same η0 as in (4.1.33) and thus agreement with [76].

Similarly, the expectation value of the R-charge current can be computed from

〈Jµ〉 =
N2

c

4π2

(
ηµρA(2)

ρ − κ

2
ǫµνσρA(0)

ν F (0)
σρ

)
, (4.1.35)

3Asymptotically, eτ can be identified with the proper time τ , eτ ≈ τ , see section 4.2.4 below.
4In order to check η0 in the limit of vanishing chemical potential, we note that the viscosity is differently

normalised in [110]. Consider η0
ε0

= 1

3
ζ3
+b40 → 1

3πΛ
for eµ0 = 0. This is identical with ηKMNO

0 = 1

3w
found in [110]

since πΛ = w there.
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where A
(n)
ρ is the r−n coefficient of the large-r expansion of the gauge field Aρ. Since the spatial

components of the gauge field are zero, the second term proportional to κ is absent in our case.
Substituting the solution for the gauge field into (4.1.35), we read off the U(1) charge density

ρ(τ̃ ) =
N2

c

4π2

√
3q̃0
2

1

τ̃
(4.1.36)

with q̃0 = qτ̃ as in (4.1.20). Recalling
√

3q/2 = µr2+, we find agreement with the zeroth-order
charge density in [76], see Eq. (20b) therein. The asymptotic 1/τ̃ behaviour of the charge density
was also found in [128]. There are no first-order corrections to the charge density in our case.

More generally, for gauge fields with vanishing spatial components, there are no higher-order
gradient corrections. This follows directly from the relation uνΥν = 0. The corrections Υν are
orthogonal to uν and cannot come from the near boundary expansion of a gauge field proportional
to uν.

4.2 Late-time solution in Fefferman-Graham coordinates

In this section we seek for a time-dependent solution of the Einstein-Maxwell equations (4.1.2) and
(4.1.3) in Fefferman-Graham coordinates.

4.2.1 General ansatz and near-boundary behaviour

In Fefferman-Graham coordinates, we choose the same metric ansatz as in the uncharged case [74]
given by

ds2 =
1

z2

(
−ea(τ,z)dτ2 + eb(τ,z)τ2dy2 + ec(τ,z)dx2

⊥ + dz2
)
. (4.2.1)

Of course, the warp factors a(τ, z), b(τ, z) and c(τ, z) will be modified due to the effects from the
back-reaction of the gauge field. As before, we set the spatial components of the gauge field to
zero and assume a non-vanishing time-component,

A0 = −d(τ, z) , Ay = Az = Ax⊥
= 0 . (4.2.2)

Let us first study the general behaviour of the solution near the boundary at z = 0. Following
[123], we choose the small-z expansions

a(τ, z) = −ε(τ)z4 + a6(τ)z
6 + a8(τ)z

8 + ... ,

b(τ, z) = b4(τ)z
4 + b6(τ)z

6 + b8(τ)z
8 + ... ,

c(τ, z) = c4(τ)z
4 + c6(τ)z

6 + c8(τ)z
8 + ... (4.2.3)

and

d(τ, z) = ρ(τ)z2 + d4(τ)z
4 + d6(τ)z

6 + ... (4.2.4)

Here the lowest coefficients are determined by the energy and charge density, respectively. For
instance, solving the Einstein-Maxwell equations to lowest order in z, we obtain

b4(τ) = − (ε(τ) + τε′(τ)) , c4(τ) = ε(τ) + 1
2τε

′(τ) , (4.2.5)

as in [123]. There is no back-reaction of the gauge field on the geometry at this order (ρ(τ) does
neither appear in b4(τ) nor c4(τ)). Likewise, the metric does not enter the Maxwell equations
at this order. However, other than the energy density ε(τ), which can be freely chosen (at least

44



4.2. LATE-TIME SOLUTION IN FEFFERMAN-GRAHAM COORDINATES

at early times), the charge density ρ(τ) is uniquely fixed by the z-component of the Maxwell
equations,

−2ρ(τ)

τ
− 2ρ′(τ) = 0 , (4.2.6)

which is solved by

ρ(τ) =
q0
τ
, (4.2.7)

q0 = const. Any dependence on the warp factors has dropped out in the Maxwell equations such
that ρ(τ) is independent of ε(τ). The result (4.2.7) for the charge density holds for all times τ > 0.
Remarkably, the charge density diverges at τ = 0.5

Solving the system of equations (4.1.2) and (4.1.3) order by order, we find the solution up to
order z8,

a(τ, z) = −ε(τ)z4 +

(
−ε

′(τ)

4τ
− ε′′(τ)

12
+

10ρ(τ)2

9

)
z6

−
(

1

6
ε(τ)2 +

1

6
τε′(τ)ε(τ) +

1

16
τ2ε′(τ)2 − ε′(τ)

128τ3
+
ε′′(τ)

128τ2

+
ε(3)(τ)

64τ
+

1

384
ε(4)(τ) +

ρ(τ)2

36τ2

)
z8 + ... ,

d(τ, z) = ρ(τ)

(
z2 − ε(τ)

3
z6 +

(
2ρ(τ)2

9
− ε′(τ)

16τ
− ε′′(τ)

48

)
z8 + ...

)
(4.2.8)

and similar expressions for b(τ, z) and c(τ, z). These expressions for the warp factors generalise the
corresponding ones for q0 = 0 found in [123]. They describe the all-time near boundary behaviour
of the background as a function of the energy and charge density.

4.2.2 Late-time ansatz for the background

A full analytical all-time solution is difficult to find, even in the uncharged case (q0 = 0). It is
however possible to find a late-time solution. The general late-time behaviour of the energy and
charge densities can be found as follows (For the energy density the derivation is very similar to that
in [74,107]). In the local rest frame the energy-momentum tensor is diagonal with elements Tττ , Tyy

and Txx = Tx2x2 = Tx3x3 and the current has only a time-component Jτ while Jy = Jx2 = Jx3 = 0.
Moreover, we assume that these components depend only on τ .

Using proper time and rapidity coordinates in flat Minkowski spacetime, defined by x0 =
τ cosh y and x1 = τ sinh y,

ds2 = −dτ2 + τ2dy2 + dx2
⊥, (4.2.9)

the tracelessness condition T ν
ν = 0, energy-momentum conservation T µν

;ν = 0 and charge con-
servation Jν

;ν = 0 have the form

−Tττ +
1

τ2
Tyy + Txx = 0 , (4.2.10)

τ∂τTττ + Tττ +
1

τ2
Tyy = 0 , (4.2.11)

τ∂τJτ + Jτ = 0 . (4.2.12)

5Generic solutions of viscous fluid dynamics are not expected to be regular in the infinite past (see footnote 4
in [76] in this context): The volume element on the boundary at constant proper time scales linearly with τ .
Integrating the charge density (∝ 1/τ) over this volume element (∝ τ) yields a constant total charge. Thus, even
though the charge density is divergent, the total charge is regular, even at τ = 0, ensuring the validity of the
hydrodynamic approximation.
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Here we assumed that the anomaly in the U(1) current is absent, which is true for our simple
ansatz of the gauge field.

Comparing with the zeroth-order energy-momentum tensor and current given in (4.1.29), in
the frame uν = (1, 0, 0, 0) we obtain

ε(τ) =
ε0
τ4/3

, ρ(τ) =
q0
τ
. (4.2.13)

We observe that the asymptotic charge density (4.2.13) is in exact agreement with the expression
(4.2.7) for the charge density, which is valid for all times. In other words, the late time charge
density (4.2.13) does not receive any higher-order gradient corrections, in agreement with our
findings in the previous section.

Substituting the asymptotic behaviour (4.2.13) into the general solution (4.2.8) and expanding
the resulting expressions for large τ , we get (ε0 = 1)

a(τ, z) = − z4

τ4/3
+

2 + 30q0
2τ4/3

27τ10/3
z6 +

10 − 27q0
2τ4/3 − 54τ8/3

972τ16/3
z8 + · · · , (4.2.14)

b(τ, z) =
z4

3τ4/3
− 14 + 18τ4/3q20

81τ10/3
z6 +

−130 + 243τ4/3q20 − 162τ8/3

2916τ16/3
z8 + · · · , (4.2.15)

c(τ, z) =
z4

3τ4/3
+

(
4

81τ10/3
− 2q20

9τ2

)
z6 +

50 − 81τ4/3q20 − 162τ8/3

2916τ16/3
z8 + · · · , (4.2.16)

d(τ, z) =
q0
τ
z2 − q0

3τ7/3
z6 +

(
q0

54τ13/3
+

2q0
3

9τ3

)
z8 + · · · . (4.2.17)

We find that the dominant terms at large τ scale as

an(τ)zn ∼ zn

τn/3
, dn(τ)zn ∼ 1

τ1/3

zn

τn/3
, (4.2.18)

and similarly bn(τ)zn and cn(τ)zn. As in [74], it is therefore useful to introduce the scaling variable6

v =
z

τ1/3
. (4.2.19)

This suggests the following ansatz at late times,

a(τ, z) = a0(v) + a1(v)
1

τ2/3
+ ...

d(τ, z) = τ−1/3

(
d0(v) + d1(v)

1

τ2/3
+ ...

)
(4.2.20)

and similarly for b(τ, z) and c(τ, z). Inserting the ansatz (4.2.1) and (4.2.2) with (4.2.20) into
the combined system of Einstein-Maxwell and covariant Maxwell equations (4.1.2) and (4.1.3) will
turn the equation of motions into a system of nonlinear ordinary differential equations for the
coefficients ai, ..., di (i ≥ 0). In principle, this system can then be solved order by order in τ−2/3.

6With hindsight, this justifies the introduction of the scaling variable v = reτ1/3 in the previous section for the
late-time solution in Eddington-Finkelstein coordinates.
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4.2.3 Zeroth-order solution

In the following we restrict to give an exact solution for the zeroth-order coefficients a0(v), ..., d0(v).
The non-vanishing components of the Einstein-Maxwell equations are

(ττ) : 4e−a0(v)v3d0
′(v)2 = 6b0

′(v) − vb0
′(v)2 + 12c0

′(v)
− 2vb0

′(v)c0
′(v) − 3vc0

′(v)2 − 2vb0
′′(v) − 4vc0

′′(v) ,

(yy) : 4e−a0(v)v3d0
′(v)2 = −6a0

′(v) + va0
′(v)2 − 12c0

′(v)
+ 2va0

′(v)c0
′(v) + 3vc0

′(v)2 + 2va0
′′(v) + 4vc0

′′(v) ,

(⊥⊥) : 4e−a0(v)v3d0
′(v)2 = −6a0

′(v) + va0
′(v)2 − 6b0

′(v) + va0
′(v)b0

′(v) + vb0
′(v)2

− 6c0
′(v) + va0

′(v)c0
′(v) + vb0

′(v)c0
′(v) + vc0

′(v)2

+ 2va0
′′(v) + 2vb0

′′(v) + 2vc0
′′(v) ,

(zz) : 4e−a0(v)v3d0
′(v)2 = 6a′0(v) + 6b′0(v) − va′0(v)b

′
0(v)

+ 12c′0(v) − 2va′0(v)c
′
0(v) − 2vb′0(v)c

′
0(v) − vc′0(v)

2 ,

(zτ) : 6a′0(v) − 4b′0(v) − va′0(v)b
′
0(v) + vb′0(v)

2 + 4c′0(v)
− 2va′0(v)c

′
0(v) + 2vc′0(v)

2 + 2vb′′0(v) + 4vc′′0(v) = 0 .

(4.2.21)

At zeroth order, the z- and τ -components of the Maxwell equation both lead to the same equation,

(
2 + va0

′(v) − vb0
′(v) − 2vc0

′(v)
)
d0

′(v) = 2vd0
′′(v) . (4.2.22)

The other components are zero.

These equations can be simplified a lot. Note that only four out of the five plus one equations
are independent. We also find from a linear combination of the ττ - , zz- and zτ -components of
the Einstein-Maxwell equations that b0(v) = c0(v). Next, the Maxwell equation (4.2.22) can be
solved for d0(v),

d0(v) = S4

v∫

0

ṽe
1
2 (a0(ṽ)−b0(ṽ)−2c0(ṽ)) dṽ, (4.2.23)

where S4 is some integration constant which will be fixed below.

Substituting this back into the Einstein equations, the two remaining independent equations
are given by the ττ - and zz-components. The first one (ττ) is an equation for b0(v),

3vb′′0(v) + 3v(b′0(v))
2 − 9b′0(v) + 8q20v

5e−3b0(v) = 0 . (4.2.24)

while the second one (zz),

a′0(v) = −v (b′0(v))
2 + 2b′′0(v)

2 − vb′0(v)
, (4.2.25)

can be used to find a0(v) as soon as a solution for b0(v) is known. Our primary goal will be to
solve (4.2.24) for b0(v). a0(v) and d0(v) can then easily be obtained from (4.2.25) and (4.2.23).

Later, in order to fix some integration constants, we will need the asymptotic solution close to
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the boundary which can be expanded in powers of v as (here we present it up to O(v10))

a0(v) = −ε0v4 +
10q0

2

9
v6 − ε20

18
v8 − 2q0

2ε0
45

v10 + · · · ,

b0(v) = c0(v) =
ε0
3
v4 − 2q0

2

9
v6 − ε20

18
v8 +

14q0
2ε0

135
v10 + · · · ,

d0(v) = q0v
2 − q0ε0

3
v6 +

2q30
9
v8 +

q0ε
2
0

9
v10 + · · · .

(4.2.26)

It shows us that the solution exists and is uniquely fixed by parameters ε0 and q0. Comparing the
expression (4.2.23) with the boundary behaviour (4.2.26), we may immediately fix the integration
constant S4 as

S4 = 2q0 . (4.2.27)

We now solve (4.2.24) for b0(v). By setting

b0(v) = log(β(v)) , (4.2.28)

we simplify this equation to the form

vβ′′ − 3β′ +
8

3
q20v

5β−2 = 0 , (4.2.29)

which turns out to be the modified Emden-Fowler equation [139]. Its solution can be written in
the parametric form

β(v) = pS2
3 exp




S2

p∫

p+

(
p̃2

4
+ S1 +

q20
3

1

p̃

)−1/2

dp̃




 (4.2.30)

and

v = S3 exp




S2

2

p∫

p+

(
p̃2

4
+ S1 +

q20
3

1

p̃

)−1/2

dp̃



 . (4.2.31)

Here S1, S2, S3 and p+ are some integration constants. One can in principle absorb p+ in S3 but
we separate them for the moment. There are two useful expressions for β(v) and β′(v),

β(v) = pv2 (4.2.32)

and

dβ(v)

dv
=

2v

S2

√
p2

4
+ S1 +

q20
3

1

p
+ 2pv . (4.2.33)

From (4.2.26), we get the near-boundary conditions

β(v) = 1 +O(v4) , β′(v) =
4ε0
3
v3 +O(v5) , (4.2.34)

which will be used to fix the integration constants S1 and S2.
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Comparing (4.2.32) with (4.2.34), we find that near the boundary v should behave as

v ≈ 1√
p
, (4.2.35)

which is small if p is large. This should be compared with the general large-p behaviour

v = S3 exp




S2

2

p∫

p+

(
p̃

2
+ · · ·

)−1

dp̃



 ≈ const. pS2 . (4.2.36)

This fixes S2 as

S2 = −1

2
. (4.2.37)

Substituting (4.2.35) into (4.2.34), we extract the expected asymptotics for β′(v) as a function
of p,

β′(v) ≈ 4ε0
3

1

p3/2
. (4.2.38)

Generically, at large p, (4.2.33) is approximated by

β′(v) = −4v

√
S1 +

p2

4
+ · · · + 2pv ≈ − 4S1

p3/2
, (4.2.39)

which fixes S1 as

S1 = −ε0
3
. (4.2.40)

Remarkably both constants S1 and S2 do not depend on q0.
Let us now relate S3 and p+ by setting S3 = v+ with v+ ≡ v(p+). v+ will be fixed by the

requirement that the outer horizon of the geometry is located at v = v+. Formally, the horizon v+
is defined as the largest zero of the denominator on the right hand side of (4.2.25),

2 − v+
β′(v+)

β(v+)
= 0 . (4.2.41)

This can be rewritten in terms of p+. Using (4.2.33), (4.2.32) and the expressions for S1 and S2,
we get the condition

p3
+ − 4ε0

3
p+ +

4q20
3

= 0 , (4.2.42)

which can be solved by Cardano’s formula. The largest solution of this equation is7

p+ =

(
2

3

)1/3


(
−q20 +

√
q40 − 16

81
ε30

)1/3

+

(
−q20 −

√
q40 − 16

81
ε30

)1/3

 . (4.2.43)

The last step is to fix v+ in (4.2.31). This can be done by substituting the p+ solution (4.2.43)
(and all the constants S1,2,3) back into (4.2.31) and expand v(p) for large p. In this way we

7 In order to extract the roots correctly we use the following standard convention:

a+a− =
`

2
3

´4/3
ε0, where a± =

“
−q2

0 ±
q

q4
0 − 16

81
ε3
0

”1/3

.
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determine the constant on the right hand side of (4.2.36) as a function of v+. Since this constant
must be one, we get

v+(ε0, q0) = exp





1

2
lim

p→∞




p∫

p+

dp̃√
4U(p̃)

− log p







 , (4.2.44)

where U(p̃) is defined as

U(p̃) =
p̃2

4
− ε0

3
+
q20
3p̃
. (4.2.45)

For q0 = 0, the integral can be performed analytically and v+ reduces to the well-known result for
the horizon [74],

v+(ε0, q0)|q0→0
= 4

√
3

ε0
. (4.2.46)
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Figure 4.1: The outer horizon v+ = v+(ε0, q0).

For general q0, this integral can in principle be written as a lengthy expression of elliptic
integrals of the first and third kind, F (φ, k) and Π(n;φ|m), respectively, which we will not do here.
Instead, in Fig. 4.1 we show the dependence of v+ on the charge q0 for some particular choices of
ε0. We note that for each ε0 there is some maximal allowed value of the charge at which the black
hole becomes extremal. This value can be found from the condition that the discriminant ∆ of
(4.2.42) vanishes,

∆ =

(
−4

9
ε0

)3

+

(
−2

3
q20

)2

= 0 , (4.2.47)

which leads to the bound

q0 ≤ qextr.
0 =

2

3
ε
3/4
0 . (4.2.48)

In Fig. 4.2 we present some plots of the exact solution and compare them with the power
expansions (4.2.26). For the particular choice ε0 = 1 and q0 = 0.6 . qextr.

0 the difference between
both curves is clearly visible. The function a0(v) by definition has a singularity on the horizon, as
can be seen in Fig. 4.2(a). The other functions b0(v), c0(v) and d0(v) are regular on the horizon
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Figure 4.2: Exact solutions (red curves) and their near-boundary power expansions (blue curves) for
ε0 = 1 and q0 = 0.6 . qextr.

0 . The black dashed lines correspond to the horizon v+(ε0, q0) ≃ 1.685.

and their power expansions are valid up to v . 1. Note also that d0(v) grows quadratically near the
boundary, which reflects the Coulomb law in D = 5 dimensions. Near the horizon it approaches
some finite constant value µ0 related to the chemical potential as

µ = A0|boundary −A0|horizon =
d0(v+) − d0(0)

τ1/3
=

µ0

τ1/3
, (4.2.49)

which confirms the scaling behaviour (4.1.10).

In summary, the zeroth-order solution b0(v) is given by

eb0(v) = pv2
+ exp

(
− 1

2

∫ p

p+

U(p̃)−1/2dp̃
)
,

v = v+ exp
(
− 1

4

∫ p

p+

U(p̃)−1/2dp̃
)
, (4.2.50)

with v+ and U(p̃) given by (4.2.44) and (4.2.45), respectively. a0(v) and d0(v) are obtained by
substituting b0(v) in (4.2.25) and (4.2.23).

4.2.4 Fefferman-Graham vs. Eddington-Finkelstein coordinates

The zeroth-order solution in Fefferman-Graham (FG) coordinates can be related to that in Eddington-
Finkelstein (EF) coordinates by the coordinate transformation

τ̃ = τ , r =
1

z
eb(τ,z)/2 . (4.2.51)

Transforming the Eddington-Finkelstein metric (4.1.14)-(4.1.18) and comparing the result with the
power expansion (4.2.26), we find

q0 =

√
3

2
q̃0. (4.2.52)

Comparing also the bound (4.2.48) with that in Eddington-Finkelstein coordinates given by
(4.1.24), we find some relation between ε0 and m0 using (4.2.52):

ε0 =
3

4
m0 . (4.2.53)
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For q0 = 0 this relation can be easily checked by our solution with the general form of the metric
in [74, 107,127]. In this case, we find that our solution (4.2.50) reduces to

eb0(v) = 1 +
ε0
3
v4 , (4.2.54)

and similarly a0(v), such that

ds2
∣∣
q0=0

=
1

z2

[
dz2 − (1 − m0

4 v
4)2

1 + m0

4 v
4
dτ2 + τ2

(
1 +

m0

4
v4
)
dy2 +

(
1 +

m0

4
v4
)
dx2

⊥

]
. (4.2.55)

We also note that the transformation (4.2.51) relates the outer horizons, ζ+ in EF coordinates
and p+ in FG coordinates, as ζ+ =

√
p+. The chemical potential µ0 can therefore be written as a

function of ε0 and q0. Using (4.1.12) and (4.2.52), we find

µ0(ε0, q0) = µ̃0 =

√
3

2

q̃0
ζ2
+

=
q0

p+(ε0, q0)
. (4.2.56)

This dependence is shown in Fig. 4.3 for some particular values of ε0.
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Figure 4.3: The chemical potential µ0 = µ0(ε0, q0). The dotted line corresponds to the upper
bound for µ0.

Using this expression with the definition (4.2.42) for p+ and substituting there the maximal
value for q0 (4.2.48) we find the following bound for the chemical potential:

µ0(ε0, q0) ≤ µextr.
0 =

(
3

2
qextr.
0

)1/3

= ε
1/4
0 . (4.2.57)

This is not in contradiction with our earlier statement that the disappearance of the horzion does
not impose a bound on µ̃0/Λ. Note that if we identify ε0 with m0 as in (4.2.53), then ε0 explicitly
depends on µ̃0 = µ0 and therefore (4.2.57) is not a bound on µ̃0/Λ.

4.3 Conclusions

We constructed a natural extension of the late-time boost-invariant background found in [74] (and
[75,107–110,125–127]) to a background dual to an expanding N = 4 plasma with chemical potential.
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The solution we found depends on two parameters, the chemical potential µ̃0 and temperature scale
Λ, which are encoded in the mass parameter m0 and charge q̃0 of a time-dependent AdS Reissner-
Nordström-like solution. In Eddington-Finkelstein coordinates the first-order solution is given by
the expansion (4.1.14)–(4.1.18), with the zeroth-order and first-order coefficients given by (4.1.19)
and (4.1.22), respectively. We showed that the viscosity of the boundary theory computed from
the time-dependent solution is in agreement with that in [76]. We also constructed a zeroth-
order solution in Fefferman-Graham coordinates, which we presented in parametric form, see the
general ansatz (4.2.1) and (4.2.2) with (4.2.50). FG coordinates may be the preferred choice, when
strings [103] or branes [1, 105] are embedded into the geometry. Finally, we found the coordinate
transformation which maps the zeroth-order solution in FG coordinates to that in EF coordinates.

We argued in several ways that the charge density behaves like τ−1 at all times. Unlike the
energy density, it can not be chosen freely at early times. This is basically because the charge
density behaves like τ−1 at large τ , see e.g.̃(4.1.36) or (4.2.13), and higher-order corrections are
absent. It also follows directly from the equations of motion, see (4.2.7) which holds for all times.
Naive extrapolation to early times shows a singularity in the gauge field at τ = 0. However, this
does not signal a breakdown of the hydrodynamic approximation since the total charge is constant
at all times and therefore regular even at τ = 0 (see footnote 5 on p. 45).

A possible application of the background, when appropriately modified and extended, could be
the chiral magnetic effect (CME) [30, 41–43], see the Chapter 5.

Finally, it would be interesting to find a numerical solution of our background à la Chesler and
Yaffe [124] which would hold beyond the hydrodynamic regime.

Appendix A. Roots of (4.1.23)

For completeness, we present the six roots of (4.1.23) in this appendix. The equation (4.1.23) is
depressed bicubic in ζi and, therefore, can be solved by Cardano’s formula. It has six solutions,
which can be expressed as

ζi ∈
{
±
√
α+ + α−,±

√
−α+ + α−

2
− i

α+ − α−

2

√
3,±

√
−α+ + α−

2
+ i

α+ − α−

2

√
3

}
, (4.3.1)

where

α3
± = − q̃

2
0

2
±
√
q̃40
4

− m3
0

27
. (4.3.2)

Here we use the standard convention α+α− = m0/3. One can recognize the outer horizon ζ+ ≡
r+τ

1/3 in the first pair of solutions and the inner horizon ζ− ≡ r−τ
1/3 in the second one.

Appendix B. The energy-momentum tensor (4.1.31)

In this appendix we introduce the geometric quantities used for the computation of the energy-
momentum tensor (4.1.31). Here we consider an r = const. four-dimensional surface with induced
metric γµν on it:8

γµν = gµν − nµnν , (4.3.3)

where gµν is the 5-metric and nµ is the outward-pointing unit normal vector to the surface. For
our ansatz (4.1.14) it is given by

8Here and after all Greek letters denote a 5-index.
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nµ =

(
0, 0, 0, 0,

1√−gτ̃ τ̃

)
, (4.3.4)

where gτ̃ τ̃ = −r2ea(τ̃ ,r). The indices of the induced metric can be raised and lowered by means of
the 5-metric gµν ,

γµ
ν = γµαg

αν . (4.3.5)

The surface extrinsic curvature is given by

Kµν ≡ −1

2
((4)∇αnβ + (4)∇βnα) = −1

2
γ α

µ γ β
ν (∇αnβ + ∇βnα) , (4.3.6)

where we put (4) to covariant derivatives associated with the induced metric, while the derivatives
on the right-hand side are defined with respect to the 5-metric. We also define a scalar K =
Kµνg

µν = Kµνγ
µν , which is used in the Gibbons-Hawking-York part of (4.1.31).

The Einstein tensor on the surface is defined as

Gµν = (4)Rµν − 1

2
γµν

(4)R , (4.3.7)

where the 4-tensors can be expressed through the 5-tensors (defined with respect to gµν) by the
Gauss equations:

(4)Rα
µβν = Rκ

λρσγ
α
κγµ

λγβ
ργν

σ +Kα
βKµν −KµβK

α
ν , (4.3.8)

(4)Rµν = (4)Rα
µβνγ

β
α = γκ

λγ ρ
µ γ

σ
ν Rκ

ρλσ +KKµν −KµαK
α
ν , (4.3.9)

(4)R = (4)Rµνγ
µν = R− nαnβ Rαβ +K2 −KαβK

αβ , (4.3.10)

where the raising/lowering rule is given by Kν
µ = Kναγ

αµ = γναK
αµ.
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Chapter 5

Fluid-gravity model for the chiral
magnetic effect

In the past few years, the chiral magnetic effect (CME) [30, 41–43] has received much attention
in lattice QCD [5, 10, 51–54], hydrodynamics [130, 140–143] and holographic models [93, 144–154].
The CME states that, in the presence of a magnetic field B, an electric current of the type

J = Cµ5B , C =
Nc

2π2
(5.0.1)

is generated in the background of topologically nontrivial gluon fields. This could possibly con-
tribute to the charge asymmetry observed in heavy-ion collisions at RHIC and LHC [37–40].

A hydrodynamic description of the CME has recently been found in [140,141], using techniques
developed in [130]. This model contains two U(1) currents, an axial and a vector one, which are
assumed to be conserved, at least in the absence of electric fields. This allows us to introduce
the corresponding chemical potentials µ and µ5, and the CME was shown to arise as a first-order
transport coefficient κB in the constitutive equation for the electromagnetic current ∆jµ = κBB

µ

with κB = Cµ5.
There have also been several proposals for a holographic description of the CME. In the early

works [144, 145], the axial anomaly was not realized in covariant form and the electromagnetic
current was not strictly conserved. Aiming at restoring the conservation of the electromagnetic
current, Ref. [148] introduced the Bardeen counterterm into the action. However, as shown in
[146,148] for some standard AdS/QCD models, this typically leads to a vanishing electromagnetic
current.

In [146, 147] the problem was traced back to the difficulty of introducing a chemical potential
conjugated to a nonconserved charge. Reference [146] therefore suggested a modification of the
action in which the axial charge is conserved. This charge is, however, only gauge invariant
when integrated over all space in homogeneous configurations [147], while the charge separation in
heavy-ion collisions is clearly inhomogeneous. In contrast, Ref. [147] introduced a chiral chemical
potential dual to a gauge invariant current, despite it being anomalous. This required a singular
bulk gauge field at the horizon, a phenomenon which seems to be generic in AdS black hole models
of the CME.

In this chapter, we propose a different approach which is based on the fluid-gravity correspon-
dence [75] rather than a static (AdS/QCD) model. The fluid-gravity duality is more flexible since
the hydrodynamic gradient expansion captures (small) deviations from equilibrium. This includes
the CME and the change of the chiral charge density due to the anomaly E ·B as first- and second-
order effects, respectively. This allows us to introduce chemical potentials even for anomalous
currents.
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Our main goal is to construct a holographic dual of the hydrodynamic two-charge model of
Ref. [140]. We will start from the three-charge STU model [155] which we take as a prototype of
an AdS black hole background with several U(1) charges. We consider it as a phenomenological

model of a strongly coupled plasma with multiple chemical potentials; i.e., we prescind from the
strict string theory interpretation of the three U(1)’s as R charges inside the SO(6)R R symmetry
of N = 4 super-Yang-Mills theory. This allows us to interpret one of them as an axial U(1) charge
and the other two as a single vector U(1) charge. These charges are dual to µ and µ5 required in
the hydrodynamic description [140].

We proceed as follows. First, we show that the two-charge model of [140] can be considered as a
special case of the hydrodynamic three-charge model of [130,131]. Next, we reproduce the relevant
magnetic conductivities in this three-charge model from the dual STU model (plus background
gauge fields), using fluid-gravity duality [75]. We then reduce the model to two charges and recover
the CME (i.e. κB of [140]) as well as other related effects. Finally, we present a time-dependent
version of the STU model dual to a boost-invariant expanding plasma.

5.1 CME and CVE in hydrodynamics

Hydrodynamics of a U(1)3 plasma. The hydrodynamic regime of relativistic quantum gauge the-
ories with triangle anomalies has been studied in [130, 131]. The anomaly coefficients are usually
given by a totally symmetric rank-3 tensor Cabc and the hydrodynamic equations are

∂µT
µν = F aνλja

λ , ∂µj
aµ = CabcEb ·Bc , (5.1.1)

where Eaµ = F aµνuν , Baµ = 1
2ǫ

µναβuνF
a
αβ (a = 1, 2, 3) are electric and magnetic fields, and

F a
µν = ∂µA

a
ν − ∂νA

a
µ denotes the gauge field strengths. The stress-energy tensor T µν and U(1)

currents jaµ are

T µν = (ǫ+ P )uµuν + Pgµν + τµν ,

jaµ = ρauµ + νaµ , (5.1.2)

where τµν and νaµ denote higher-gradient corrections. ρa, ǫ, and P denote the charge densities,
energy density and pressure, respectively.

In the presence of E and B fields the first-order correction of the U(1) currents is given by

νaµ = ξa
ωω

µ + ξab
B Bbµ + ... , (5.1.3)

where ωµ ≡ 1
2ǫ

µνλρuν∂λuρ is the vorticity. The ellipses indicate further terms involving electric
fields. The conductivities ξa

ω and ξab
B were first introduced in [76, 130] and are given by [131] (see

also [130,156])

ξa
ω = Cabcµbµc − 2

3
ρaCbcdµ

bµcµd

ǫ+ P
, (5.1.4)

ξab
B = Cabcµc − 1

2
ρaCbcd µ

cµd

ǫ+ P
, (5.1.5)

where µa are the three chemical potentials. These conductivities are specific for relativistic quan-
tum field theories with quantum anomalies and do not appear in nonrelativistic theories [130].

Magnetic and vortical Effects. For the hydrodynamical description of the chiral magnetic
effect, we only need an axial and a vector chemical potential, µ5 and µ. The three-charge model
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can be reduced to one with two charges by choosing the following identifications1,

AA
µ = A1

µ , AV
µ = A2

µ = A3
µ ,

µ5 = µ1 , µ = µ2 = µ3 ,

jµ
5 = j1µ , jµ = j2µ + j3µ , (5.1.6)

and C123 = C(123) = C
2 . In the absence of axial gauge fields AA

µ (which are not required), (5.1.1)
simplifies to2

∂µT
µν ≃ FV νλjλ , ∂µj

µ
5 = CEλBλ , ∂µj

µ ≃ 0 , (5.1.7)

where Eµ ≡ FV µνuν , Bµ ≡ 1
2ǫ

µναβuνF
V
αβ . The symbol “≃” indicates that the equation only holds

for AA
µ = 0.

Let us also define

ρ5 = ρ1 , ρ = ρ2 + ρ3 ,

κω = ξ2ω + ξ3ω , κB = ξ22B + ξ23B + ξ32B + ξ33B ,

ξω = ξ1ω , ξB = ξ12B + ξ13B . (5.1.8)

Then from (5.1.2)–(5.1.5) we get the constitutive equations

jµ = ρuµ + κωω
µ + κBB

µ ,

jµ
5 = ρ5u

µ + ξωω
µ + ξBB

µ , (5.1.9)

with coefficients

κω = 2Cµµ5

(
1 − µρ

ǫ+ P

)
, κB = Cµ5

(
1 − µρ

ǫ+ P

)
,

ξω = Cµ2

(
1 − 2

µ5ρ5

ǫ+ P

)
, ξB = Cµ

(
1 − µ5ρ5

ǫ+ P

)
, (5.1.10)

which to leading order are in agreement with [140].
The leading term in κB is nothing but the chiral magnetic effect (CME) [30,41–43], κB = Cµ5.

There is a second effect given by the term κω = 2Cµµ5 which has recently been termed chiral

vortical effect (CVE) [157]. The CVE states that, if the liquid rotates with some angular velocity
~ω, an electromagnetic current is induced along ~ω – there are analogous effects in the axial current
jµ
5 . The leading term in ξB, ξB = Cµ, generates an axial current parallel to the magnetic field,

while ξω = Cµ2 describes chirality separation through rotation. These two effects are usually
refered as the chiral separation effect (CSE) [130,158–160].

We may also shift all anomalies in (5.1.1) entirely into the current j1µ (= jµ
5 ) by adding Bardeen

currents,

j′µ ≡ jµ + jµ
B , j′µ5 ≡ jµ

5 + jµ
5,B ,

jµ
B = cBε

µνλρ(AV
ν F

A
λρ − 2AA

ν F
V
λρ) ,

jµ
5,B = cBε

µνλρAV
ν F

V
λρ , (5.1.11)

with cB = −C/2 such that (5.1.1) becomes (C′ = 3C)

∂µT
µν ≃ FV νλj′λ , ∂µj

′µ
5 = C′EλBλ , ∂µj

′µ = 0 .

This is formally identical to (5.1.7), leading again to (5.1.10).

1Two of three U(1) charges are chosen to be identical and corresponding to the electric charge.
2For the sake of simplicity, we consider only a part of the chiral anomaly corresponding to the triangle diagram

with two vector legs. This leads to the absence of the subleading µ2
5 and µ3

5 terms in (5.1.10). For a full treatment,
involving also the second diagram with three axial legs, see Chapter 6.
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5.2 Fluid-gravity model for the CME

Three-charge STU model with external fields. In the following we propose the three-charge STU
model [155] as a holographic dual gravity theory for the (chiral) magnetic and vortical effects in a
relativistic fluid. We begin by showing that the first-order transport coefficients (5.1.4) and (5.1.5)
of the U(1)3 theory can be reproduced from the STU model [155]. Subsequently, we will reduce it
to a two-charge model and recover the conductivities (5.1.10).

The Lagrangian of the STU-model is given by [155]

L = R − 1

2
GabF

a
MNF

bMN −Gab∂MXa∂MXb + 4
3∑

a=1

1

Xa

+
1

24

√−g5ǫMNPQRSabcF
a
MNF

b
PQA

c
R , (5.2.1)

where

Gab =
1

2
δabc(X

c)−2, X1X2X3 = 1 . (5.2.2)

gMN , Xa and Aa
M (M,N = 0, 1, ..., 4, a, b, c = 1, 2, 3) denote the metric, three scalars and U(1)

gauge fields, respectively.

The boosted black brane solution corresponding to the three-charge STU model is given by [155]

ds2 = −H− 2
3 (r)f(r)uµuνdx

µdxν − 2H− 1
6 (r)uµdx

µdr

+ r2H
1
3 (r) (ηµν + uµuν) dxµdxν ,

Aa =
(
Aa

0(r)uµ + Aa
µ

)
dxµ , Xa =

H
1
3 (r)

Ha(r)
, (5.2.3)

where (µ, ν = 0, 1, 2, 3)

f(r) = −m
r2

+ r2H(r) , H(r) =
3∏

a=1

Ha(r) ,

Ha(r) = 1 +
qa

r2
, Aa

0(r) =

√
mqa

r2 + qa
, (5.2.4)

and uµ is the four-velocity of the fluid with uµu
µ = −1. Following [130], we have formally

introduced constant background gauge fields Aa
µ, which are necessary for the computation of the

transport coefficients ξab
B .

We now use the standard procedure [75] to holographically compute the transport coefficients
ξa
ω and ξab

B . We closely follow [129] which has already determined ξa
ω from the STU-model (but not

ξab
B relevant for the CME). Working in the frame uµ = (−1, 0, 0, 0) (at xµ = 0), we slowly vary uµ

and Aa
µ up to first order as

uµ = (−1, xν∂νui), Aa
µ = (0, xν∂νAa

i ) . (5.2.5)

We may also vary m and q in this way, but it turns out that varying these parameters has no
influence on the transport coefficients ξa

ω and ξab
B .

As a consequence, the background (5.2.3) is no longer an exact solution of the equations of mo-
tion but receives higher-order corrections. The corrected metric and gauge fields can be rewritten
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in Fefferman-Graham coordinates and expanded near the boundary (at z = 0) as

ds2 =
1

z2

(
gµν(z, x) dxµdxν + dz2

)
,

gµν(z, x) = ηµν + g(2)
µν (x) z2 + g(4)

µν (x) z4 + ... ,

Aa
µ(z, x) = Aa(0)

µ (x) + Aa(2)
µ (x) z2 + ... . (5.2.6)

The first-order gradient corrections of the energy-momentum tensor and U(1) currents (5.1.2)
are then read off from [70,71, 134]

Tµν =
g
(4)
µν (x)

4πG5
+ c.t. , jµ

a =
ηµνA

(2)
aν (x)

8πG5
+ ĵµ

a , (5.2.7)

ĵµ
a = − Sabc

32πG5
ǫµνρσA

(0)
bν (x)∂ρA

(0)
cσ (x) , (5.2.8)

where c.t. denotes diagonal corrections to the energy-momentum tensor due to counterterms. The
term ĵµ

a will be discussed below around (5.2.13).
The computation of the corrected metric and gauge fields is very similar to that in [129]. At

zeroth order, we get the same expressions for the pressure P and charge densities ρa as in [129],
P ≡ m/16πG5 and ρa ≡ √

mqa/8πG5, which may be combined to give

√
mqa

2m
=

ρa

ǫ+ P
(ǫ = 3P ) . (5.2.9)

At first order, the transport coefficients ξa
ω and ξab

B are read off from the near boundary behavior
of Aa

µ via (5.2.7),

ξa
ω =

1

16πG5

(
Sabcµbµc −

√
mqa

3m
Sbcdµbµcµd

)
, (5.2.10)

ξab
B =

1

16πG5

(
Sabcµc −

√
mqa

4m
Sbcdµcµd

)
, (5.2.11)

with µa ≡ Aa
0(rH) − Aa

0(∞). Using a standard relation between the anomaly coefficients Cabc

and the Chern-Simons parameters Sabc, Cabc = Sabc/16πG5, as well as (5.2.9), we find that the
holographically computed transport coefficients (5.2.10) and (5.2.11) coincide exactly with those
found in hydrodynamics, (5.1.4) and (5.1.5).

Holographic magnetic and vortical effects. In order to obtain the holographic versions of the
magnetic and vortical effects (5.1.10), we reduce the STU model to a two-charge model using the
same identities as in hydrodynamics, (5.1.6) and (5.1.8). In particular, we define (vector and axial)
gauge fields AV

µ and AA
µ , chemical potentials µ and µ5, and currents jµ and jµ

5 as in (5.1.6) but
now with µa ≡ Aa

0(rH) −Aa
0(∞), and Aa and jµ

a as in (5.2.3) and (5.2.7), respectively. Moreover,
we set Sabc = S/2 with S = 16πG5C and keep Sabc general, as in [130].

Using also the identifications (5.1.8), but now for the holographically computed transport co-
efficients (5.2.10) and (5.2.11), we get

κω = 2Cµµ5

(
1 − µ

√
q

m

)
, κB = Cµ5

(
1 − µ

√
q

m

)
,

ξω = Cµ2

(
1 − µ5

√
q5
m

)
, ξB = Cµ

(
1 − µ5

2

√
q5
m

)
,
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in agreement with (5.1.10). This shows that the CME, CVE, etc. are realized in the STU-model,
when appropriately reduced to a two-charge model.

Comments. To get an anomaly free three-point function for jµ, we also need to add the
Bardeen currents (5.1.11). As in hydrodynamics, this does not change the structure of the transport
coefficients. Note however that, together with (5.2.8), the Bardeen term gives rise to additional
contributions of the type

∆jµ = ĵ2µ + ĵ3µ + jµ
B

⊃ εµνρσ(AA
ν (x)FV

ρσ(x) −AV
ν (x)FA

ρσ(x)) . (5.2.12)

If we choose AA
ν = αAuν (at x = 0) with some constant αA 6= 0, we get terms of the type AA

0 B
µ

which are forbidden by electromagnetic gauge invariance [146]. As in [146, 147], we are therefore
forced to switch off the axial background gauge field AA

µ completely3, αA = 0. This corresponds
to a nonvanishing gauge field at the horizon, as in [147]. There is also an additional term in jµ

5 ,

∆jµ
5 = ĵµ

5 + jµ
5,B ∝ ǫµνρσAV

ν (x)FV
ρσ(x) , (5.2.13)

which is of second order, as can be seen by substituting AV
ν (x) = (0, xν∂νAV

i ). For instance,
choosing AV

µ = (0,−x2B, 0,−tE), i.e. constant E and B fields along x3, the charge density ρ5 ≡
j05 changes linearly in time, ∆ρ5 ∼ Sǫ0321AV

3 ∂2AV
1 ∼ t CEB, as expected. Thus, holographic

renormalization perfectly takes into account changes of hydrodynamic currents due to the anomaly,
showing that fluid-gravity duality is consistent even for nonconserved currents. [The effects enter
via the Chern-Simons parameters Sabc ∝ Cabc in (5.2.8).]

Holographic time-dependent model for the CME. – It is well known that the hydrodynamic
gradient expansion of a fluid is also realized in the late-time evolution of a boost-invariant expanding
plasma à la [74]. Recently, a time-dependent Reissner-Nordström-type solution was found in [2]
which describes the late-time evolution of an expanding N = 4 super Yang-Mills plasma with a
single chemical potential. Similarly, we now construct a late-time solution from the boosted black
brane solution (5.2.3) (dual to three chemical potentials). Proceeding as in [2], we assume the late-
time behavior m = τ̃−4/3m0, q

a = τ̃−2/3qa
0 for the parameters m and qa and find the zeroth-order

solution (v = τ̃1/3r)

ds2 = −H− 2
3 (v)f(v)dτ̃2 + 2H− 1

6 (v)dτ̃dr

+H
1
3 (v)

(
(1 + rτ̃ )2dy2 + r2dx2

⊥

)
,

Aa = −Aa
0(v)dτ̃ + Aa

µdx
µ , Xa =

H
1
3 (v)

Ha(v)
,

f(v) = r2
(
−m0

v4
+H(v)

)
, H(v) =

3∏

a=1

Ha(v) ,

Ha(v) = 1 +
qa
0

v2
, Aa

0(v) =
1

τ̃1/3

√
m0qa

0

v2 + qa
0

. (5.2.14)

This background is a good approximation of the full time-dependent solution at large τ̃ (as we
have explicitly checked using computer algebra for A1

µ = 0, A2,3
µ = (0,−x2B, 0, 0)). At smaller τ̃ ,

it receives subleading corrections in τ̃−2/3 corresponding to higher-order gradient corrections. It
has been shown many times that first-order transport coefficients appear in the first correction in
τ̃−2/3. It therefore follows from the above discussion that the conductivities ξab

B , relevant for the
CME, appear in the first-order correction to the solution (5.2.14).

3Another reason is that αA 6= 0 introduces an additional source for the chirality, which we already mimic by µ5.
With αA ∝ µ5 this may lead to the cancellation of CME
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Appendix A. Details on the computation of ξaω and ξabB

The computation of the magnetic transport coefficients ξab
B is quite similar to the computation of

ξa
ω in [129]. We work in the static frame uµ = (−1, 0, 0, 0) and consider vanishing background fields
Aa

µ (at xµ = 0). We then slowly vary the velocity uµ and the background fields Aa
µ up to first

order as

uµ = (−1, xν∂νui) , Aa
µ = (0, xν∂νAa

i ) . (5.2.15)

As explained above, we do not consider variations of m and q.
We denote the first-order corrections to the fields by

g̃MN = g̃MN (r), Ãa
M = Ãa

M (r), X̃a = X̃a(r) (5.2.16)

and, as in [129], choose the gauge

g̃rr = 0, g̃rµ ∼ uµ, Ãa
r = 0,

3∑

i=1

g̃ii = 0 . (5.2.17)

The first-order corrected metric is then

ds2 =
(
−H− 2

3 f(r) + g̃tt

)
dt2 + 2

(
H− 1

6 + g̃tr

)
dtdr

+ r2H
1
3 (dxi)2 + g̃ijdx

idxj − 2H− 1
6xν∂νuidrdx

i

+ 2
((
H

2
3 f(r) − r2H

1
3

)
xν∂νui + g̃ti

)
dtdxi , (5.2.18)

the gauge fields become

Aa =

(
−

√
mqa

r2 + qa
+ Ãa

t

)
dt

+

( √
mqa

r2 + qa
xν∂νui + xν∂νAa

i + Ãa
i

)
dxi , (5.2.19)

and the scalars are

Xa =
H

1
3

Ha
+ X̃a . (5.2.20)

Let us denote the Nth component of the Maxwell equation (which can be obtained from (5.2.1))
by Ma

N and the components of the Einstein equation by ENP . Then, from grtMa
t + grrMa

r = 0
and grtEti + grrEri = 0 we find ∂iui = 0 and ∂tui = 0, respectively. In this case Ett is equivalent
to Ert and Eti is equivalent to Eri. Ett, Ert, Err, Ett, M

a
t , Ma

r and the scalar field equations are
trivially solved by

g̃tr = g̃tt = Ãa
t = X̃a = 0 . (5.2.21)

The remaining equations are Eij , Eti, M
a
i .

From Eij we get

−∂r

(
r3f(r)∂r

(
g̃ij

r2H
1
3

))
= ∂r

(
r3H

1
2

)
[∂iuj + ∂jui] . (5.2.22)
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From Eti we get

− f(r)

2r3H
∂r

(
r5H∂r

(
g̃ti

r2H
1
3

))
=

3∑

a=1

f(r)
√
mqa

r3H
∂rÃ

a
i . (5.2.23)

From Ma
i we get

1

r
∂r

(
rf(r) (Ha)

2

H
∂rÃ

a
i

)
+

2
√
mqa

r
∂r

(
g̃ti

r2H
1
3

)

=
1

r
∂r

(
1

2
Sabc

√
mqb

√
mqc

(r2 + qb)(r2 + qc)
ǫijk (∂juk) + Sabc

√
mqb

(r2 + qb)
ǫijk (∂jAc

k)

)
≡ 1

r
∂rQ

a
i (r) . (5.2.24)

Eq. (5.2.22) depends only on g̃ij and can easily be solved. Integration of (5.2.24) leads to

rf(r) (Ha)
2

H
∂rÃ

a
i + 2

√
mqa

(
g̃ti

r2H
1
3

)
= Qa

i (r) −Qa
i (rH) +

2
√
mqa

r2HH
1
3 (rH)

Ci , (5.2.25)

where Ci are some integration constants. Using this expression we replace ∂rÃ
a
i in (5.2.23) and

solve the resulting equation for g̃ti,

g̃ti(r) =
f(r)

H
2
3 (r)

∫ r

∞

dr′
H(r′)

r′ (f(r′))
2

(∫ r′

rH

dr′′ Ii(r
′′) − rHf

′(rH)

H
1
3 (rH)

Ci

)
, (5.2.26)

where

Ii(r
′′) =

3∑

a=1

−2
√
mqa

(r′′)3 (Ha(r′′))
2

(
Qa

i (r′′) −Qa
i (rH) +

2
√
mqa

r2HH
1
3 (rH)

Ci

)
. (5.2.27)

In the Landau frame we require uµT̃
µν = 0, which in particular implies the absence of correc-

tions to T ti. Following the renormalization procedure (5.2.7), we conclude that

lim
r→∞

r2 g̃ti(r) = 0 . (5.2.28)

Let us demonstrate how this constraint fixes the integration constant Ci. For r → ∞ one derives
the asymptotics

f(r) = r2 +O(1), H(r) = 1 +O(
1

r2
),

∫ r

rH

dr′ I(r′) = O(1)

and from (5.2.28) we obtain the following equation on Ci,

rHf
′(rH)

H
1
3 (rH)

Ci =

∫ ∞

rH

dr′
3∑

a=1

−2
√
mqa

(r′)3 (Ha(r′))2

(
Qa

i (r
′) −Qa

i (rH) +
2
√
mqa

r2HH
1
3 (rH)

Ci

)

= I1 + I2 · Ci ,

(5.2.29)

where we define the integrals

I1 ≡
∫ ∞

rH

dr′
3∑

a=1

−2
√
mqa

(r′)3 (Ha(r′))
2 (Qa

i (r′) −Qa
i (rH)) (5.2.30)

=
1

3
Sabc

√
mqa

√
mqb

√
mqc

(r2H + qa)(r2H + qb)(r2H + qc)
ǫijk (∂juk) +

1

2
Sabc

√
mqa

√
mqb

(r2H + qa)(r2H + qb)
ǫijk (∂jAc

k)
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and

I2 ≡
∫ ∞

rH

dr′
3∑

a=1

−2
√
mqa

(r′)3 (Ha(r′))
2

(
2
√
mqa

r2HH
1
3 (rH)

)
=

2m

r2HH
1
3 (rH)

(
−3 +

3∑

a=1

1

Ha(rH)

)
(5.2.31)

So, moving the terms proportional to Ci to the left part of (5.2.29) we come to the final answer:

Ci =
r2HH

1
3 (rH)

4m
(5.2.32)

×
(

1

3
Sabc

√
mqa

√
mqb

√
mqc

(r2H + qa)(r2H + qb)(r2H + qc)
ǫijk (∂juk) +

1

2
Sabc

√
mqa

√
mqb

(r2H + qa)(r2H + qb)
ǫijk (∂jAc

k)

)
,

where we used the identity m = r4HH(rH) to simplify it.
We now rewrite the obtained quantities in a covariant form out of the static frame. Then the

first order correction to the current will be

J̃aµ = lim
r→∞

r2

8πG5
ηµνÃa

ν(r) =
1

16πG5

(
Qa

µ(rH) − 2
√
mqa

r2HH
1
3 (rH)

Cµ

)
. (5.2.33)

Comparing this with the general expansion

J̃aµ = ξa ωµ + ξab
B Bbµ (5.2.34)

= ξa 1

2
ǫνρσµuν∂ρuσ + ξab

B ǫνρσµuν∂ρAb
σ ,

we finally obtain the coefficients (5.2.10) and (5.2.11).
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Chapter 6

Anisotropic hydrodynamics,
holography and the chiral
magnetic effect

In a recent experiment [161], the charge separation is measured as a function of the elliptic flow
coefficient v2. The data is taken from (rare) Au+Au collisions with 20 − 40% centrality but
different v2. In this way v2 is varied while at the same time the number of participating nucleons
(and therefore the magnetic field) is kept almost constant. The plots in [161] suggest that the
charge separation is proportional to v2. If this holds true, the charge separation will depend on
the event anisotropy.

In this chapter we address the question of whether and how the CME depends on the elliptic
flow v2, which is a crucial step before we can interpret the experimental data. We study this both
in hydrodynamics and in terms of a holographic gravity dual. The hydrodynamical approach to
the CME and CME-related phenomena was proposed in [3,130,131,140–143,156]. There, the CME

appears in form of a nonvanishing transport coefficient in the electric current, ~j = κB
~B, which

measures the response of the system to an external magnetic field [76,130]. In the previous chapter
the chiral magnetic conductivity in an isotropic fluid was determined as

κB = Cµ5

(
1 − µρ

ǫ+ P

)
. (6.0.1)

The first term is the standard term for the CME and depends only on the axial anomaly coefficient
C and the axial chemical potential µ5. The second term proportional to the factor ρ

ǫ+P depends
on the dynamics of the fluid and has a chance to depend on v2 in the anisotropic case.

In the first part of the chapter we study this in a hydrodynamic model for an anisotropic fluid
with multiple anomalous U(1) charges (This model extends those in [163–165]). We compute the
CME coefficient κB and express the result in terms of the momentum anisotropy εp [166] defined
as

εp =
〈PT − PL〉
〈PT + PL〉

, (6.0.2)

where PT and PL are the pressures in the plane transverse to the beam line (In our conventions
the indices L and T refer to the longitudinal and transverse direction with respect to an anisotropy
vector vµ normal to the reaction plane, see Fig. 6.1). A sketch of εp as a function of the proper
time τ is shown in Fig. 6.1. εp describes the build-up of the elliptic flow in off-central collisions.
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Figure 6.1: Sketch of the time evolution of the momentum anisotropy εp (based on [162]). The
small figure shows the orientation of PL and PT with respect to the reaction plane.

Our model describes a state after thermalization with unequal pressures PT 6= PL. At freeze-out
εp roughly equals v2, and we find that for small anisotropies the CME-coefficient κB increases
linearly with v2.

In the second part of the chapter we perform a holographic computation of κB in the dual gravity
model. In the anisotropic case, we first need to construct an appropriate gravity background. As
an ansatz, we choose a multiply charged AdS black hole solution with some additional functions wL

and wT inserted which will make the background anisotropic and εp-dependent. Since analytical
solutions for charged anisotropic backgrounds are notoriously difficult to find, we will use shooting
techniques to find a numerical solution. Other AdS backgrounds dual to anisotropic fluids are
constructed in [167–171].

As the AdS solution in [171], the background is static and does not describe the process of
isotropization. Even though such models have some limitations [171], they are nevertheless useful
for the computation of transport coefficients. We show this, following [3], by determining κB

from the first-order corrections to this background using the fluid-gravity duality [75]. For small
anisotropies, we find numerical agreement with the hydrodynamic result for κB. Other (dissipative)
transport coefficients in strongly-coupled anisotropic plasmas are discussed in [172–174].

The chapter is organized as follows. In Sec. 6.1 we review the hydrodynamics of an anisotropic
relativistic fluid with several U(1) charges and triangle anomalies. We then compute the vortical
and magnetic conductivities of such a fluid by extending the method of Son and Surowka [130] to
the anisotropic case. In Sec. 6.2 we construct the dual gravity background and present a numerical
solution for its gauge field and metric functions. In Sec. 6.3 we use this background to perform a
holographic computation of the vortical and magnetic conductivities.

6.1 Hydrodynamics of anisotropic fluids with triangle anoma-
lies

The hydrodynamic regime of isotropic relativistic fluids with triangle anomalies has been studied
in [130,131,140–142,156], and much can be taken over to the anisotropic case. Such fluids typically
contain n anomalous U(1) charges which commute with each other. The anomaly coefficients are
given by a totally symmetric rank-3 tensor Cabc. The hydrodynamic equations are

∂µT
µν = F aνλja

λ , ∂µj
aµ = CabcEb ·Bc , (6.1.1)
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where Eaµ = F aµνuν , Baµ = 1
2ǫ

µναβuνF
a
αβ (a = 1, ..., n) are electric and magnetic fields, and

F a
µν = ∂µA

a
ν − ∂νA

a
µ denotes the gauge field strengths. As in [130], we expand the constitutive

equations for T µν and jµ up to first order, taking Aa
µ ∼ O(p0) and F a

µν ∼ O(p). The gauge fields
Aa

µ are nondynamical.
In anisotropic relativistic fluids, the hydrodynamic equations are again given by (6.1.1) but the

stress-energy tensor T µν and U(1) currents jaµ now have the more general form1

T µν = (ǫ+ PT )uµuν + PT g
µν − ∆vµvν + τµν , (6.1.2)

jaµ = ρauµ + νaµ , (6.1.3)

where ǫ is the energy density, ρa are the U(1) charge densities, ∆ = PT −PL, and PT and PL denote
the transverse and longitudinal pressures, respectively [163–165]. gµν is the metric with signature
(−,+,+,+). τµν and νaµ denote higher-gradient corrections, for which we require uµτ

µν = 0 and
uµν

aµ = 0.
The four-vectors uµ and vµ describe the flow of the fluid and the direction of the longitudinal

axis, respectively. The vector vµ is spacelike and orthogonal to uµ,

uµu
µ = −1 , vµv

µ = 1 , uµv
µ = 0 . (6.1.4)

It is convenient to define the proper time τ by ∂ν ln τ ≡ vµ∂µv
ν [164]. In the rest frame of the

fluid, uµ = (1, 0, 0, 0) and vµ = (0, 0, 0, 1), the stress-energy tensor becomes diagonal,

T µν =




ǫ 0 0 0
0 PT 0 0
0 0 PT 0
0 0 0 PL


 . (6.1.5)

In conformal fluids, the stress-energy tensor is traceless, T µ
µ = 0, and ǫ = 2PT + PL. Clearly, the

isotropic case corresponds to equal pressures PT and PL, P = PT = PL.

For simplicity, we restrict to the case of a single charge in Secs. 6.1.1 and 6.1.2, n = 1. In
Secs. 6.1.3 and 6.1.4 we generalize our findings to arbitrary n and discuss the case n = 2, which is
relevant for the CME.

6.1.1 Thermodynamics of an anisotropic fluid with chemical potential
(n = 1)

Hydrodynamic models for an anisotropic fluid (without chemical potential) have been studied
in [163–165]. Following these works, we derive some thermodynamic identities, now for the case of
a fluid with a chemical potential µ.

These identities can be found by computing the quantity I0 = uν∂µT
µν + µ∂µj

µ at zeroth
order. Since the right-hand side of (6.1.1) can be dropped at order O(p0), we have I0 = 0. Using
∂µ(suµ) = 0, we get

uν∂µT
µν = −uµ∂µǫ− (ǫ+ PT )∂µu

µ − ∆uν∂
ν ln τ

= −uµ∂µǫ+
ǫ+ PT

s
uµ∂µs−

∆

τ
uµ∂µτ , (6.1.6)

µ∂µj
µ = µ(∂µρ)u

µ − µρ

s
uµ∂µs . (6.1.7)

1The symmetries allow in principle for more general currents jaµ = ρauµ + cavµ + νaµ with some coefficients
ca. Here we switch off all the ‘electric’ background currents, ca = 0. One can think about vµ as corresponding to a
neutral second component of the fluid.
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As in [164], we consider a generalized energy density ǫ = ǫ(s, ρ, τ), which depends not only on the
entropy density s and particle density ρ but also on the new variable τ . Its differential is

dǫ =

(
∂ǫ

∂s

)

ρ,τ

ds+

(
∂ǫ

∂ρ

)

s,τ

dρ+

(
∂ǫ

∂τ

)

s,ρ

dτ , (6.1.8)

with
(
∂ǫ

∂s

)

ρ,τ

= T ,

(
∂ǫ

∂ρ

)

s,τ

= µ ,

(
∂ǫ

∂τ

)

s,ρ

= −∆

τ
. (6.1.9)

The temperature and the chemical potential are defined in the usual way. If we also impose
(∂ǫ/∂τ)s,ρ = −∆/τ and substitute (6.1.8) into (6.1.6), then I0 = 0 implies the following thermo-
dynamical identities for an anisotropic fluid:

ǫ+ PT = Ts+ µρ , (6.1.10)

dPT =
∆

τ
dτ + sdT + ρdµ , (6.1.11)

dǫ = Tds+ µdρ− ∆

τ
dτ , (6.1.12)

in agreement with [164] for µ = 0.

6.1.2 Vortical and magnetic coefficients (n = 1)

We now discuss corrections to the U(1) current jµ ≡ j1µ (n = 1). In anisotropic fluids the transport
coefficients are usually promoted to tensors such that one should consider first-derivative corrections
of the type

νµ = (ξω)µ
νω

ν + (ξB)µ
νB

ν , (6.1.13)

where ωµ = 1
2ǫ

νρσµuν∂ρuσ is the vorticity, and Bµ is an external magnetic field. In Landau
frame uµν

µ = 0 and therefore uµ(ξω)µ
νω

ν = 0 (and similar for (ξB)µ
ν). This is satisfied e.g. for

(ξω)µ
ν = ξωδ

µ
ν , since uµω

µ = 0 (We do not consider other components of ξω here). We therefore
restrict to consider corrections of the type

νµ = ξωω
µ + ξBB

µ , (6.1.14)

as in the isotropic case [130]. Our goal is to compute the vortical and magnetic conductivities ξω
and ξB. These transport coefficients can be found by assuming the existence of an entropy current
sµ with a non-negative derivative, ∂µs

µ ≥ 0. The computation closely follows that of [130].
The hydrodynamic Eqs. (6.1.1) imply that the quantity

I1 = uν∂µT
µν + µ∂µj

µ + Eµνµ − µCEµBµ (6.1.15)

vanishes at first order, I1 = 0. Substituting the explicit expressions for the stress-energy tensor
and U(1) currents into I1 and using the thermodynamical identities (6.1.10) and (6.1.12), we find

∂µ

(
suµ − µ

T
νµ
)

= − 1

T
∂µuντ

µν − νµ

(
∂µ
µ

T
− Eµ

T

)

− C
µ

T
E · B , (6.1.16)

which is exactly the same equation for the entropy production as in the isotropic case [130].
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In the following, we will need the identities

∂µω
µ = − 2

ǫ+ PT
ωµ(∂µPT − ∆∂µ ln τ − ρEµ) , (6.1.17)

∂µB
µ = −2ωµEµ − Bµ

ǫ+ PT
(∂µPT − ∆∂µ ln τ − ρEµ) ,

which we derived from ideal hydrodynamics in Appendix 6.4. In deriving these identities we
assumed that the fluid satisfies

∂µv
µ = 0 , vµ∂µ∆ = 0 . (6.1.18)

The first equation is basically a “continuity equation” for the vector vµ. There are no sources for
the generation of anisotropy. The second equation imposes an orthogonality relation between the
gradient of the pressure difference ∆ = PT − PL and vµ.

As in [130], we assume a generalized entropy current of the form

sµ = suµ − µ

T
νµ +Dωµ +DBB

µ, (6.1.19)

where ξω, ξB , D, and DB are functions of T , µ and τ . We now compute ∂µs
µ, using (6.1.16) and

(6.1.17) and impose ∂µs
µ ≥ 0. Since the coefficients in front of ωµ, Bµ, ωµE

µ and EµB
µ inside

∂µs
µ can have either sign, we require them to vanish and obtain the following four differential

equations:

∂µD − 2D

ǫ+ PT
(∂µPT − ∆∂µ ln τ) − ξω∂µ

µ

T
= 0 , (6.1.20)

∂µDB − DB

ǫ+ PT
(∂µPT − ∆∂µ ln τ) − ξB∂µ

µ

T
= 0 , (6.1.21)

2ρD

ǫ+ PT
− 2DB +

ξω
T

= 0 , (6.1.22)

ρDB

ǫ+ PT
+
ξB
T

− C
µ

T
= 0 . (6.1.23)

For ∆ = 0, these equations reduce to those in the isotropic case [130].
In Appendix 6.4 we solve (6.1.20)–(6.1.23) for D, DB, ξω and ξB . As a result, we find the

vortical and magnetic conductivities

ξω = C

(
µ2 − 2

3

ρµ3

ǫ+ PT

)
+ O(T 2) ,

ξB = C

(
µ− 1

2

ρµ2

ǫ+ PT

)
+ O(T 2) , (6.1.24)

where O(T 2) denotes terms proportional to T 2, see (6.4.23) in Appendix 6.4. These terms are
related to gravitational triangle anomalies [131, 175] and may, in the anisotropic case, depend on
the proper time τ . In the absence of gravitational anomalies, which we do not discuss in this
chapter, the conductivities do not depend on τ . Apart from these changes in O(T 2), the relations
have the same form as in the isotropic case but with P replaced by the transverse pressure PT .

6.1.3 Multiple charge case n arbitrary)

The generalization of the previous computation to a fluid with multiple anomalous U(1) charges
is straightforward, and we only state the result here. The corrections νaµ of the currents jaµ in
(6.1.3) are

νaµ = ξa
ωω

µ + ξab
B Bbµ , (6.1.25)
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(AAA) (AVV)

Figure 6.2: Anomalous diagrams corresponding to C111(left) and to C122 = C221 = C212 (right).
Dashed (wavy) lines denote the axial (vector) currents/fields.

with [terms of order O(T 2) ignored]

ξa
ω = Cabcµbµc − 2

3
ρaCbcdµ

bµcµd

ǫ+ PT
, (6.1.26)

ξab
B = Cabcµc − 1

2
ρaCbcd µcµd

ǫ+ PT
. (6.1.27)

These are simple generalizations of the corresponding conductivities in the isotropic case [130,131].

6.1.4 Chiral magnetic and vortical effect (n = 2)

Physically, the most interesting case is that involving two charges (n = 2) [3, 140, 141]. The
chiral magnetic effect [30, 41–43] can be described by one axial and one vector U(1), denoted by
U(1)A × U(1)V . A convenient notation for the gauge fields and currents is (a, b, ... = 1, 2)

AA
µ = A1

µ , AV
µ = A2

µ ,

jµ
5 = j1µ , jµ = j2µ . (6.1.28)

Let us now derive the chiral magnetic and vortical effects from (6.1.26) and (6.1.27). C−parity
allows for two anomalous triangle diagrams, (AAA) and (AVV), shown in Fig. 6.2, while diagrams
of the type (VVV) and (VAA) vanish. Accordingly, the anomaly coefficients are

C121 = C211 = C112 = 0 , (V AA)

C222 = 0 , (V V V )

C111 6= 0 , (AAA)

C122 = C221 = C212 6= 0 . (AV V ) (6.1.29)

The hydrodynamic Eqs. (6.1.1) then imply nonconserved vector and axial currents

∂µj
µ = − 1

4 (C212FA
µν F̃

V µν + C221FV
µν F̃

Aµν) ,

∂µj
µ
5 = − 1

4 (C111FA
µν F̃

Aµν + C122FV
µν F̃

V µν) , (6.1.30)

where we rewrote Eb ·Bc = − 1
4F

b
µν F̃

c µν (with F̃ aµν = 1
2ε

µνρσF a
ρσ).

To restore conservation of the vector current, we add the (topological) Bardeen term to the
boundary theory,

SB = cB

∫
d4x ǫµνλρAA

µA
V
ν F

V
λρ . (6.1.31)
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Combining the corresponding Bardeen currents

jµ
B = cBε

µνλρ(AV
ν F

A
λρ − 2AA

ν F
V
λρ) ,

jµ
5,B = cBε

µνλρAV
ν F

V
λρ , (6.1.32)

with the vector and axial currents,

j′µ ≡ jµ + jµ
B , j′µ5 ≡ jµ

5 + jµ
5,B , (6.1.33)

we obtain the anomaly equations

∂µj
′µ = −

(
C122

2
+ cB

)
FV

αβF̃
A αβ , (6.1.34)

∂µj
′µ
5 = −C

111

4
FA

αβ F̃
A αβ −

(
C122

4
− cB

)
FV

αβF̃
V αβ .

The electric current j′µ is conserved if cB = −C122/2. Setting C111 = C122 ≡ C/3, the hydrody-
namic Eqs. (6.1.1) become

∂µT
µν = FV νλj′λ + FAνλj′5λ ,

∂µj
′µ = 0 ,

∂µj
′µ
5 = CE · B + (C/3)E5 ·B5 . (6.1.35)

Using the derivative expansion

j′µ = ρuµ + κωω
µ + κBB

µ + κ5,BB
µ
5 , (6.1.36)

where κω ≡ ξ2ω, κB ≡ ξ22B and κ5,B ≡ ξ21B , we obtain from (6.1.26) and (6.1.27) the conductivities
(µ5 ≡ µ1, µ ≡ µ2)

κω = 2Cµ5

(
µ− ρ

ǫ+ PT

[
µ2 +

µ2
5

3

])
,

κB = Cµ5

(
1 − µρ

ǫ+ PT

)
,

κ5,B = Cµ

(
1 − 1

2

µρ

ǫ+ PT

[
1 +

µ2
5

3µ2

])
. (6.1.37)

There are analogous transport coefficients in the axial current jµ
5 [3]. The axial fields E5µ and

B5µ are not needed and can now be switched off. The first term in κB and κω, κB = Cµ5

and κω = 2Cµµ5, is the leading term in the chiral magnetic (CME) [30, 41–43] and chiral vortical

effect [157], respectively.2 They are in agreement with those found in the isotropic case [3,140,141].
The second term proportional to ρ/(ǫ + PT ) actually depends on the dynamics of the fluid3 and
therefore on εp.

The dependence of κB on εp can be made more visible by introducing an average pressure
P̄ = (2PT + PL)/3 such that ǫ = 3P̄ . Assuming εp to be small (see Fig. 6.1), we expand the
CME-coefficient κB to linear order in εp,

κB ≈ Cµ5

(
1 − µρ

ǫ+ P̄

[
1 − εp

6

])
. (6.1.38)

2κ5,B represents another effect, which we added for completeness, but it seems not to be realized in heavy-ion
collisions.

3In [142] this term was considered as a one-loop correction in an effective theory and (ǫ + P )/ρ was interpreted
as the corresponding infrared cutoff in the energy/momentum integration.
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Despite the crudeness of the model, one can assume that such an anisotropic fluid describes to
some extent the anisotropic quark-gluon plasma, with our εp imitating the real εp ≈ 2v2 for pions
[166]. Since the net chemical potential µ is quite small in current heavy-ion experiments [176], the
dependence on εp (and hence v2) in (6.1.38) appears to be very mild. Even though the anisotropy
dependence of κB is very weak, (6.1.38) tells us how the CME, if present in the experimental data,
can be separated from the v2-dependent background (for one of the attempts of such a separation
see [177]).

6.2 Fluid-gravity model

In this section we construct the gravity dual of a static anisotropic plasma with diagonal stress-
energy momentum Tµν = diag(ǫ, PT , PT , PL) and charge densities ρa.

We start from a five-dimensional U(1)n Einstein-Maxwell theory in an asymptotic AdS space.
The action is

S =
1

16πG5

∫
d5x

√−g
[
R− 2Λ − F a

MNF
aMN (6.2.1)

+
Sabc

6
√−g ε

PKLMNAa
PF

b
KLF

c
MN

]
,

where Λ = −6 is the cosmological constant. As usual, the U(1) field strengths are defined by

F a
MN = ∂MAa

N − ∂NA
a
M , (6.2.2)

whereM,N, ... = 0, ..., 4 and a = 1, ..., n. The Chern-Simons termA∧F∧F encodes the information
of the triangle anomalies in the field theory [130]. In fact, the Chern-Simons coefficients Sabc are
related to the anomaly coefficients Cabc by

Cabc = Sabc/(4πG5) . (6.2.3)

The corresponding equations of motion are given by the combined system of Einstein-Maxwell
and Maxwell equations,

GMN − 6gMN = TMN , (6.2.4)

∇MF aMP = − Sabc

8
√−g ε

PMNKLF b
MNF

c
KL , (6.2.5)

where the energy-momentum tensor TMN is

TMN = −2

(
F a

MRF
aR

N +
1

4
gMNF

a
SRF

aSR

)
. (6.2.6)

6.2.1 AdS black hole with multiple U(1) charges

A gravity dual to an isotropic fluid (ǫ = 3P ) with multiple chemical potentials µa (a = 1, ..., n)
at finite temperature T is given by an AdS black hole solution with mass m and multiple U(1)
charges qa. In Eddington-Finkelstein coordinates, the metric and U(1) gauge fields of this solution
are

ds2 = −f(r)dt2 + 2drdt+ r2d~x2 ,

Aa = −Aa
0(r)dt , (6.2.7)
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where

f(r) = r2 − m

r2
+
∑

a

(qa)2

r4
,

Aa
0(r) = µa

∞ +

√
3qa

2r2
. (6.2.8)

The constants µa
∞ can be fixed such that the gauge fields vanish at the horizon. In case of a single

charge (n = 1), the background reduces to an ordinary Reissner-Nordstrøm black hole solution in
AdS5 [73].

The temperature T and chemical potentials µa of the fluid are defined by

T =
κ

2π
=
f ′(r+)

4π
=

2r6+ −∑a(qa)2

2πr5+
, (6.2.9)

µa = Aa
0(r+) −Aa

0(r∞) , (6.2.10)

where r+ is the outer horizon defined by the maximal solution of f(r) = 0, and r∞ indicates the
location of the boundary. The temperature of the fluid is the Hawking temperature of the black
hole and is computed from the surface gravity κ =

√
∂M |χ|∂M |χ||r+ , where |χ| = (−χMχM )(1/2)

is the norm of the timelike Killing vector χM = δM
0 [here |χ| =

√
f(r)].

6.2.2 Anisotropic AdS geometry with multiple U(1) charges

We now construct a solution for an anisotropic fluid (ǫ = 2PT +PL). An ansatz for an anisotropic
AdS black hole solution is given by

ds2 = −f(r)dt2 + 2drdt

+ r2(wT (r)dx2 + wT (r)dy2 + wL(r)dz2) ,

Aa = −Aa
0(r)dt . (6.2.11)

The anisotropies are realized via wT (r) and wL(r), which are functions of the momentum anisotropy
εp as defined in (6.0.2),

εp =
〈PT − PL〉
〈PT + PL〉

. (6.2.12)

In the isotropic case (εp = 0), these functions are required to be one, wT (r) = wL(r) = 1, and the
background reduces to the AdS black hole geometry (6.2.7).

An analytical solution of the type (6.2.11) is difficult to find, and we resort to numerics in the
next subsection. For this, we need to know the solution close to the boundary. An asymptotic
solution (r → ∞) is given by the four functions

Aa
0(r) = µa

∞ +

√
3qa

2r2
+ O(r−8) ,

f(r)/r2 = 1 − m

r4
+
∑

a

(qa)2

r6
+ O(r−8) ,

wT (r) = 1 +
w

(4)
T

r4
+ O(r−8) ,

wL(r) = 1 +
w

(4)
L

r4
+ O(r−8) , (6.2.13)
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where w
(4)
L = −2w

(4)
T = −mζ/2, µa

∞ = const., and ζ is related to the momentum anisotropy εp by

ζ =
2εp

εp + 3
. (6.2.14)

The functions wT (r) and wL(r) have been introduced in view of the structure of the anisotropic

fluid stress-energy tensor. More precisely, in (6.2.13) we fixed the r−4 coefficients w
(4)
T and w

(4)
L

such that the fluid stress-energy tensor is of the diagonal form (6.1.5), T µν = diag(ǫ, PT , PT , PL)
with ǫ = 2PT + PL. Computing the stress-energy tensor in the standard way from the asymptotic
solution (6.2.13) via the extrinsic curvature, see e.g. [2], we find the transverse and longitudinal
pressures

PT =
m− 4w

(4)
T − 4w

(4)
L

16πG5
=
m(1 + ζ)

16πG5
, (6.2.15)

PL =
m− 8w

(4)
T

16πG5
=
m(1 − 2ζ)

16πG5
. (6.2.16)

Note that if (6.2.14) holds true, the pressures PT and PL satisfy (6.2.12). Likewise, the charge
densities are

ρa =

√
3qa

4πG5
. (6.2.17)

From these relations, we find the useful identity

ρa

ǫ+ PT
=

√
3qa

m(1 + 1
4ζ)

, (6.2.18)

which we will need later.

Numerical solution

We now use shooting techniques to solve the system of ordinary differential equations (ODE) which
follows from the equations of motion (6.2.4) and (6.2.5) upon substituting the ansatz (6.2.11). The
idea is to vary the metric and gauge fields at some minimal value r+ in the radial direction, integrate
outwards and find solutions with the correct asymptotic behavior (6.2.13). A similar method was
previously applied in [170].

We first need to study the asymptotic solution near r+ and near the boundary at r∞ ≫ r+ (we
choose r∞ = 50 in our numerics). We define r+ by the maximal solution of

f(r+) = 0 (6.2.19)

and use scale invariance to set r+ = 1. We then expand the functions in the metric and gauge fields
near r+ in powers of the parameter ε = r

r+
−1 ≪ 1 and substitute them into the equations of motion.

In this way, we find that the only independent variables are {f ′(r+), wT (r+), wL(r+), w′
L(r+)}

since the gauge field parameters Aa
0(r+) can be set to zero using gauge invariance, Aa

0(r+) = 0.
The other parameters at r+ can be expressed in terms of these four parameters, e.g. w′

T (r+) =
wT (r+)w′

L(r+)/wL(r+).

The near-boundary solution is given by (6.2.11) with (6.2.13) and is parameterized by the values
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Figure 6.3: Numerical plots of f(r), A0(r), wT (r) and wL(r) for ζ = 10 (r+ = 1). We get
wL(r+) = 12.42.

(ζ,m, qa, µa
∞). The final set of data is summarized in the following table:

r = r+ = 1 r = r∞ ≫ r+
Aa

0(r+) = 0 µa
∞

f(r+) = 0 f(r∞)
f ′(r+) = fixed Aa′

0 (r∞)
wL(r+) = var wL(r∞)
wT (r+) = var wT (r∞)
w′

L(r+) = var

Parameters not listed are related to those in the table by the equations of motion.
To integrate the equations we proceed as follows. We fix ζ and vary three parameters at r+,

namely wT (r+), wL(r+) and w′
L(r+), by choosing a grid with suitable number of sites (in our case

203 − 403). The value f ′(r+) can be thought of as the temperature of the system and will simply
be fixed to some value. It turns out that the form of the functions wL,T (r) does not depend on
this parameter. For each site in the grid we numerically solve the system of ODEs and determine
the pair (m, qa) from the known asymptotics of Aa′

0 (r = r∞) and f(r = r∞). This ensures that
the analytical and numerical values for these quantities coincide.

We then calculate the combined residual

res∞[wT (r+), wL(r+), w′
L(r+))]

= (w#
L (r∞) − w∗

L(r∞))2 + (w#
T (r∞) − w∗

T (r∞))2, (6.2.20)

where w#
L,T (r∞) are the numerical values, and w∗

L,T (r∞) are the analytical values given by (6.2.13).
We interpolate the residual by a piecewise linear function and find its global minimum by the
simulated annealing method [178,179]. The result of the minimization is shown in Fig. 6.3, which
depicts numerical plots of f(r), A0(r), wT (r) and wL(r) for n = 1.

We conclude this section with a comment on r+. In the isotropic case, r+ is simply the size
of the horizon of the AdS black hole geometry. For nonvanishing anisotropies and vanishing U(1)
charges, a naked singularity was found at r+ [171], implying that the static background does not
exist indefinitely. The singularity is mild in the sense that there is a notion of ingoing boundary
conditions and possible instabilities are absent at the linear level in the anisotropy parameter [171].
This behavior may persist even for nonvanishing U(1) charges, even though it was difficult to see
the singularity in our numerics, cf. Figure 6.4. Despite this subtlety, we show in the next section
that, at least for small anisotropies where the bulk geometry approximates a black hole solution,
the singular geometry may be used to compute some transport coefficients of the fluid.
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Figure 6.4: Numerical plots of (RMNPQ)2 for ζ = 10, q 6= 0 (red), ζ = 10, q = 0 (orange), and
ζ = 0, q = 0 (blue).

6.3 Holographic vortical and magnetic conductivities

We will now compute the chiral vortical and magnetic conductivities ξa
ω and ξab

B from first-order
corrections to the numerical AdS geometry (6.2.11) using the fluid-gravity correspondence [75].

6.3.1 First-order corrected background

In order to become a dual to a multiply charged fluid, the AdS geometry (6.2.11) must be boosted
along the four-velocity of the fluid uµ (µ = 0, ..., 3). The boosted version of (6.2.11) is

ds2 =
(
r2wT (r)Pµν − f(r)uµuν

)
dxµdxν − 2uµdx

µdr

− r2(wT (r) − wL(r))vµvνdx
µdxν ,

Aa = (Aa
0(r)uµ + Aa

µ)dxµ , (6.3.1)

where Pµν = gµν + uµuν , and f(r), Aa
0(r), wT (r) and wL(r) are numerically known functions. As

in hydrodynamics, the four-vector vµ determines the direction of the longitudinal axis, cf. Sec. 2.
Following [3, 130], we have formally introduced constant background gauge fields Aa

µ to model
external electromagnetic fields, such as the magnetic fields Baµ needed for the chiral magnetic
effect.

The transport coefficients ξa
ω and ξab

B can now be computed using standard fluid-gravity tech-
niques [75]. We closely follow [3, 129, 130], in which these transport coefficients were determined
for an isotropic fluid with one and three charges (n = 1, 3). We work in the static frame
uµ = (−1, 0, 0, 0), vµ = (0, 0, 0, 1), and consider vanishing background fields Aa

µ (at xµ = 0).

The transport coefficients ξa
ω and ξab

B measure the response of the system to rotation and the
perturbation by an external magnetic field. We therefore slowly vary the velocity uµ and the
background fields Aa

µ up to first order as

uµ = (−1, xν∂νui) , Aa
µ = (0, xν∂νAa

i ) . (6.3.2)

We may also vary m and q in this way, but it turns out that varying these parameters has no
influence on the transport coefficients ξa

ω and ξab
B .

Because of the dependence on xµ, the background (6.3.1) is no longer an exact solution of the
equations of motion. Instead with varying parameters the solution (6.3.1) receives higher-order
corrections, which are in this case of first order in the derivatives.
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An ansatz for the first-order corrected metric and gauge fields is given by

ds2 = (−f(r) + g̃tt) dt
2 + 2 (1 + g̃tr) dtdr + r2(wT (r)dx2 + wT (r)dy2 + wL(r)dz2)

+ g̃ijdx
idxj − 2xν∂νuidrdx

i + 2
((
f(r) − r2

)
xν∂νui + g̃ti

)
dtdxi ,

Aa =
(
−Aa

0(r) + Ãa
t

)
dt+

(
Aa

0(r)x
ν∂νui + xν∂νAa

i + Ãa
i

)
dxi , (6.3.3)

where the first-order corrections are denoted by

g̃MN = g̃MN (r) , Ãa
M = Ãa

M (r) . (6.3.4)

As in [129], we work in the gauge

g̃rr = 0 , g̃rµ ∼ uµ , Ãa
r = 0 ,

3∑

i=1

g̃ii = 0 . (6.3.5)

The first-order corrections can be obtained by substituting the ansatz (6.3.3) into the equations of
motion (6.2.4) and (6.2.5). The computation is straight-forward but lengthy and has been shifted
to Appendix 6.4 [we set µa

∞ = Aa
0(r∞) = 0 there, see Sec. 6.1.3 for a discussion]. As a result, we

find the following corrections:

g̃tr = g̃tt = Ãa
t = 0 , (6.3.6)

g̃ti(r) = f(r)

∫ r

∞

dr′
1

wL(r′)1/2r′ (f(r′))
2

(∫ r′

r+

dr′′ I(r′′) − wL(r+)1/2r+f
′(r+)Ci

)
,

Ãa
i (r) =

∫ r

∞

dr′
1

r′f(r′)wL(r′)1/2

[
Qa

i (r
′) −Qa

i (r+) − Cir+A
a
0
′(r+)wL(r+)1/2 + r′g̃ti(r

′)Aa
0
′(r′)

]
,

with

I(r) =

n∑

a=1

4Aa
0
′(r)
(
Qa

i (r) −Qa
i (r+) − Cir+wL(r+)1/2Aa

0
′(r+)

)
,

Qi
a ≡ 1

2
SabcA

b
0A

c
0ǫ

ijk (∂juk) + SabcA
b
0ǫ

ijk (∂jAc
k) ,

Ci =
4c(r+)

wL(r+)1/2

(
1

3
SabcA

a
0(r+)Ab

0(r+)Ac
0(r+)ǫijk (∂juk) +

1

2
SabcA

a
0(r+)Ab

0(r+)ǫijk (∂jAc
k)

)
,

c(r+) =
1

r+(f ′(r+) − 4
∑

aA
a
0(r+)Aa

0
′(r+))

,

and r+ as defined around (6.2.19) [g̃ij can be obtained by solving (5.2.22) in Appendix 6.4 but will
not be needed here].

6.3.2 Holographic conductivities

On the boundary of the asymptotic AdS space (6.3.3), the metric and gauge fields couple to the
fluid stress-energy tensor and U(1) currents, respectively. Holographic renormalization [70, 71]
provides relations between these currents and the near-boundary behavior of their dual bulk fields.
For the magnetic and vortical effects, we need the U(1) currents jaµ, which are related to the bulk
gauge fields Aaµ by4 [70, 71, 134]

jaµ = lim
r→∞

r2

2πG5
ηµνAa

ν(r) . (6.3.7)

4We notices a few typos in [4] fixed in this section and in [12]. The final result (6.3.12, 6.3.13) is correct and is
the same in all our papers.
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Figure 6.5: Values of wL(r+) as a function of the anisotropy ζ. The numerically determined values
for wL(r+) lie on the solid curve, which represents the function (1 + 1

4ζ)
2.

Expanding the solution in 1
r and substituting only the corrections Ãa

µ, we get the currents

j̃aµ = lim
r→∞

r2

2πG5
ηµνÃa

ν(r) =
1

4πG5
ηµν (Qa

ν(r+) + r+A
a
0
′(r+)Cν) . (6.3.8)

Note that, in the isotropic case (wL = 1, PT = PL = P ), the prefactor of the second term of
(6.3.8) is simply

r+A
a′
0 (r+)c(r+) =

√
3

4m
qa , (6.3.9)

as can be seen by substituting the Reissner-Nordstrøm solution (6.2.8) into the left-hand-side of
this equation. In the anisotropic case, we need to show that

r+A
a′
0 (r+)c(r+) · wL(r+)−1/2 =

√
3qa

4m
· 1

1 + 1
4ζ

, (6.3.10)

which, by (6.2.18), is equivalent to
ρa

4(ǫ+ PT )
. This equation holds in particular if the first and

second factors on both sides agree individually. The first factors correspond to (6.3.9), which is
expected to hold, at least approximately for small anisotropies ζ. The second factors are identical if
wL(r+, ζ) = (1 + 1

4ζ)
2. We find numerically (for n = 1) that wL(r+) indeed satisfies this equation,

see Fig. 6.5. Thus (6.3.10) holds numerically, at least in the limit of small ζ.
Comparing (6.3.8) with the general expansion

j̃aµ = ξa
ω ω

µ + ξab
B Bbµ

= ξa
ω

1
2ǫ

νρσµuν∂ρuσ + ξab
B ǫνρσµuν∂ρAb

σ , (6.3.11)

we finally obtain the coefficients

ξa
ω =

1

4πG5

(
Sabcµbµc − 2

3

ρa

ǫ+ PT
Sbcdµbµcµd

)
, (6.3.12)

ξab
B =

1

4πG5

(
Sabcµc − 1

2

ρa

ǫ+ PT
Sbcdµcµd

)
, (6.3.13)
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with µa ≡ Aa
0(r+) [since Aa

0(∞) = 0]. Using the relation (6.2.3), we find that the holographi-
cally computed transport coefficients (6.3.12) and (6.3.13) coincide exactly with those found in
hydrodynamics, (6.1.26) and (6.1.27).

6.3.3 Subtleties in holographic descriptions of the CME

The conservation of the electromagnetic current requires the introduction of the Bardeen counter-
term into the action. In AdS/QCD models of the CME, this typically leads to a vanishing result
for the electromagnetic current [146,148]. The problem is related to the difficulty of introducing a
chemical potential conjugated to a nonconserved chiral charge [146, 147]. It is possible to modify
the action to obtain a conserved chiral charge [146]. This charge is however only gauge-invariant
when integrated over all space in homogeneous configurations.

In AdS black hole models of the CME, one usually introduces a chiral chemical potential dual
to a gauge-invariant current, despite it being anomalous [3,147]. The prize to pay is the appearance
of a singular bulk gauge field at the horizon, a phenomenon which seems to be generic in AdS black
hole models of the CME.

Careful holographic renormalization shows that, in the presence of Chern-Simons terms, there
is an additional term on the right-hand side of (6.3.7) [134]. This term is of the form

ĵµ
a = − Sabc

8πG5
ǫµνρσA

(0)
bν (x)∂ρA

(0)
cσ (x) , (6.3.14)

where A
(0)
aµ (x) are the 0th-order coefficients in a 1

r expansion of the bulk gauge fields Aaµ(r, x). In

(6.3.2) we expanded the background gauge fields Aa
µ around zero and set A

a(0)
ν = µa

∞uν = 0. This
allowed us to ignore terms in (6.3.7) coming from (6.3.14) (at least to first order in the derivatives).

Problems arise if µa
∞ 6= 0. To see this, let us restrict again to two charges (n = 2) as in Sec. 6.1.3

and define axial and vector gauge fields by AA
µ = A1

µ and AV
µ = A2

µ. Then ĵµ = ĵµ
2 gives rise to

additional contributions of the type

ĵµ ⊃ εµνρσAA(0)
ν (x)FV (0)

ρσ (x) , (6.3.15)

which are forbidden by electromagnetic gauge invariance [146], unless A
A(0)
ν (x) = 0. However, in

general A
A(0)
ν (x) = µ∞

5 uν (at x = 0) with some constant µ∞
5 . We should thus set µ∞

5 = 0 [Note
that this does not imply µ5 = AA

0 (r∞) − AA
0 (r+) = 0]. This corresponds to a nonvanishing gauge

field at the horizon, as noticed also in [3, 147].

6.4 Conclusions

Our main result is (6.1.38), which gives the chiral magnetic conductivity κB for an anisotropic
plasma. It explicitly shows the dependence on the momentum anisotropy εp. We also computed
the CME coefficient in the holographic dual model and found numerical agreement with the hy-
drodynamic result for small anisotropies.

Appendix A. Computation of ∂µω
µ and ∂µB

µ

In the following we will use the identities

uµuλ∂µωλ = −1

2
∂µω

µ , (6.4.1)

uµuλ∂µBλ = ∂µB
µ + 2ωρEρ . (6.4.2)
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To find an explicit expression for ∂µω
µ, we compute the term ων∂µT

µν in two ways. First, using
the hydrodynamic equations, we get

ων∂µT
µν = ωνF

νµjµ = ρωνF
νµuµ = ρωνE

ν . (6.4.3)

Next, substituting the stress-energy tensor (6.1.2) in this expression, we find

ων∂µT
µν = (ǫ+ PT )uµων∂µu

ν + ωνg
µν∂µPT − ∆ωνv

µ∂µv
ν

− vνωνv
µ∂µ∆ − ∆vνων∂µv

µ

= −(ǫ+ PT )uµuν∂µων + ωµ∂µPT − ∆ων∂
ν ln τ

− vνωνv
µ∂µ∆ − ∆vνων∂µv

µ . (6.4.4)

Using the identity (6.4.1), we find

∂µω
µ = − 2

ǫ+ PT
ωµ(∂µPT − ∆∂µ ln τ − ρEµ − vµv

ν∂ν∆ − ∆vµ∂νv
ν) . (6.4.5)

Similar manipulations of the term Bν∂µT
µν lead to

Bν∂µT
µν = BνF

νµjµ = ρBµE
µ , (6.4.6)

Bν∂µT
µν = −(ǫ+ PT )uµuν∂µBν +Bµ∂µPT

− ∆Bνv
µ∂µv

ν −Bνv
νvµ∂µ∆ − ∆Bνv

ν∂µv
µ

= −(ǫ+ PT )(∂µB
µ − 2ωµEµ) − ∆Bµ∂

µ ln τ

−Bνv
νvµ∂µ∆ − ∆Bνv

ν∂µv
µ , (6.4.7)

where we used (6.4.2). From (6.4.6) and (6.4.7) we obtain the following expression:

∂µB
µ = −2ωµEµ − Bµ

ǫ+ PT
(∂µPT − ∆∂µ ln τ − ρEµ − vµv

ν∂ν∆ − ∆vµ∂νv
ν) . (6.4.8)

The last two terms in (6.4.5) and (6.4.8) vanish provided the fluid satisfies

∂µv
µ = 0 , vµ∂µ∆ = 0 . (6.4.9)

Then (6.4.5) and (6.4.8) become identical to the expressions in (6.1.17).

Appendix B. Computation of the transport coefficients ξω and

ξB

In this appendix we compute the conductivities ξω and ξB by solving the system of Eqs. (6.1.20)-
(6.1.23). Following [130], we change variables from ln τ , µ, T to ln τ , µ̄ = µ/T and PT . From
(6.1.10) and (6.1.11), we derive the thermodynamic expressions

(
∂µ̄

∂T

)

PT , ln τ

= − ǫ+ PT

ρT 2
, (6.4.10)

(
∂PT

∂T

)

µ̄, ln τ

=
ǫ+ PT

T
, (6.4.11)

(
∂ ln τ

∂T

)

µ̄, PT

= − 1

∆

ǫ+ PT

T
. (6.4.12)
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Using

∂µD =
∂D

∂PT
∂µPT +

∂D

∂µ̄
∂µµ̄+

∂D

∂ ln τ
∂µ ln τ , (6.4.13)

∂µDB =
∂DB

∂PT
∂µPT +

∂DB

∂µ̄
∂µµ̄+

∂DB

∂ ln τ
∂µ ln τ , (6.4.14)

the first two equations, (6.1.20) and(6.1.21), can be rewritten as

−ξω +
∂D

∂µ̄
= 0 , −ξB +

∂DB

∂µ̄
= 0 , (6.4.15)

∂D

∂PT
− 2D

ǫ+ PT
= 0 ,

∂DB

∂PT
− DB

ǫ+ PT
= 0 , (6.4.16)

∂D

∂ ln τ
+

2∆D

ǫ+ PT
= 0 ,

∂DB

∂ ln τ
+

∆DB

ǫ+ PT
= 0 . (6.4.17)

Note that (6.4.16) and (6.4.17) are related by the thermodynamic identities (6.4.11) and (6.4.12).
Using the ansatz

D = T 2d(µ̄, ln τ) , DB = TdB(µ̄, ln τ) , (6.4.18)

and (6.4.10), we obtain two differential equations from (6.1.22) and (6.1.23),

0 =
2ρD

ǫ+ PT
− 2DB +

ξω
T

= T (∂µ̄d(µ̄, ln τ) − 2dB(µ̄, ln τ))) , (6.4.19)

0 =
ρDB

ǫ+ PT
+
ξB
T

− Cµ̄

= ∂µ̄dB(µ̄, ln τ) − Cµ̄ . (6.4.20)

These equations can be integrated to give

dB(µ̄, ln τ) =
1

2
Cµ̄2 + β(ln τ) , (6.4.21)

d(µ̄, ln τ) =
1

3
Cµ̄3 + 2µ̄β(ln τ) + γ(ln τ) , (6.4.22)

where β(ln τ) and γ(ln τ) are arbitrary functions of ln τ . Substituting this back into (6.1.22),
(6.1.23), we get the conductivities

ξω = C

(
µ2 − 2

3

ρµ3

ǫ+ PT

)
+ 2T 2β(ln τ) − 2ρT 3

ǫ+ PT
(2µ̄β(ln τ) + γ(ln τ)) ,

ξB = C

(
µ− 1

2

ρµ2

ǫ+ PT

)
− T 2

ǫ+ PT
β(ln τ) . (6.4.23)

The function γ(ln τ) is forbidden by CPT invariance [152].

Appendix C. First-order corrected background geometry

In this appendix we compute the first-order corrections to the background (6.3.1) using the ansatz
(6.3.3). The computation follows that for the three-charge STU model [155] presented in [129]
and [3].
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We begin by substituting the ansatz (6.3.3) into the equations of motion (6.2.4) and (6.2.5).
We denote the resulting Maxwell equations, Eqs. (6.2.5) by Ma

N (a = 1, ..., n) and the components
of the Einstein equation, Eqn. (6.2.4) by EMN M,N = 0, ..., 4 [xM = (t, x1, x2, x3, r)]. Then, from
grtEti + grrEri = 0, we find ∂tui = 0, and Ett, Ert, Err, Ett, M

a
t , and Ma

r are solved by

∂iui = g̃tr = g̃tt = Ãa
t = 0 . (6.4.24)

The remaining equations are Eij , Eti, M
a
i . From Eij we get

−∂r

(
r3f(r)∂r

(
g̃ij(r)

r2

))
= 3r2(∂iuj + ∂jui) . (6.4.25)

From Eti we get
[
f ′(r)

f(r)

(
2

r
+
w′

T (r)

wT (r)

)
+

4

3f(r)

(
n∑

a=1

Aa
0
′(r)2 − 6

)]
g̃ti(r)

+

(
1

r
+

w′
L(r)

2wL(r)

)
g̃′ti(r) + g̃′′ti(r) = 4

n∑

a=1

Aa
0
′(r)Ãa

i
′(r) , (6.4.26)

where a prime denotes the partial derivative ∂r with respect to r. From Ma
i we get

∂r

[
wL(r)1/2r

(
f(r)Ãa

i
′ − g̃ti(r)A

a
0
′
)]

= ∂r

(
1

2
SabcA

b
0A

c
0ǫ

ijk (∂juk) + SabcA
b
0ǫ

ijk (∂jAc
k)

)

≡ ∂rQ
a
i (r) . (6.4.27)

Equation (6.4.25) depends only on g̃ij(r) and can easily be solved. The integration of (6.4.27) leads
to

wL(r)1/2
(
rf(r)Ãa

i
′(r) − rg̃ti(r)A

a
0
′(r)
)

= Qa
i (r) + Ca

i . (6.4.28)

Here Ca
i are some integration constants, which can be fixed as

Ca
i = −Qa

i (r+) − CiwL(r+)1/2r+A
a
0
′(r+) , (6.4.29)

with r+ as in (6.2.19) and Ci = g̃ti(r+). This can be solved for Ãa
i (r),

Ãa
i (r) =

∫ r

∞

dr′
1

r′f(r′)wL(r′)1/2

[
Qa

i (r
′) −Qa

i (r+) − Cir+A
a
0
′(r+)wL(r+)1/2 + r′g̃ti(r

′)Aa
0
′(r′)

]
.

(6.4.30)

We still need to determine the constants Ci. Using (6.4.28), we replace Ãa
i
′ in (6.4.26) and

obtain

[
f ′(r)

f(r)

(
2

r
+
w′

T (r)

wT (r)

)
− 8

3f(r)

(
n∑

a=1

Aa
0
′(r)2 + 3

)]
g̃ti(r)

+

(
1

r
+

w′
L(r)

2wL(r)

)
g̃′ti(r) + g̃′′ti(r) =

1

wL(r)1/2rf(r)
I(r) , (6.4.31)

where

I(r) =
n∑

a=1

4Aa
0
′(r)
(
Qa

i (r) −Qa
i (r+) − Cir+wL(r+)1/2Aa

0
′(r+)

)
. (6.4.32)
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A homogeneous solution of this equation g̃ti(r) = g
(0)
tt (r) = f(r) can be generated by the infinites-

imal coordinate transformation

dt→ dt− ǫ(dx+ dy + dz) , dz → dz + ǫ
dr

r2wL
,

dx→ dz + ǫ
dr

r2wT
, dy → dy + ǫ

dr

r2wT
. (6.4.33)

Then, using this homogeneous solution and Appendix 6.4 [P (r) = f(r) and E(r) = rwL(r)1/2

there], we bring (6.4.31) to the integrable form

∂r

(
wL(r)1/2rf2(r)∂r

(
g̃ti(r)

f(r)

))
= I(r) . (6.4.34)

Solving this equation for g̃ti(r) and fixing the integration constants at r+, we get

g̃ti(r) = f(r)

∫ r

∞

dr′
1

wL(r′)1/2r′ (f(r′))2

(∫ r′

r+

dr′′ I(r′′) − wL(r+)1/2r+f
′(r+)Ci

)
. (6.4.35)

In the Landau frame we require uµτ
µν = 0, which in particular implies the absence of corrections

to T ti. Holographic renormalization [70,71] translates this into a constraint for the r−2 coefficient
of g̃ti(r) which is proportional to the first correction of T ti,

lim
r→∞

r2 g̃ti(r) = 0 . (6.4.36)

In the limit r → ∞, we have the asymptotics

f(r) = O(r2) , wL(r) = O(1) ,

∫ r

r+

dr′ I(r′) = O(1) , (6.4.37)

and, from the vanishing of the r−2-coefficient of g̃ti(r), we obtain the following equation for Ci:

wL(r+)1/2r+f
′(r+)Ci =

∫ ∞

r+

dr′ I(r′) ≡ I1 + I2 · Ci , (6.4.38)

where we defined the integrals

I1 ≡ 4

∫ ∞

r+

dr′
n∑

a=1

Aa
0
′(r′) (Qa

i (r′) −Qa
i (r+))

=
4

3
SabcA

a
0(r+)Ab

0(r+)Ac
0(r+)ǫijk (∂juk) + 2SabcA

a
0(r+)Ab

0(r+)ǫijk (∂jAc
k) (6.4.39)

and

I2 ≡ 4

∫ ∞

r+

dr′
n∑

a=1

Aa
0
′(r′)

(
−wL(r+)1/2r+A

a
0
′(r+)

)

= 4wL(r+)1/2r+

n∑

a=1

Aa
0(r+)Aa

0
′(r+) . (6.4.40)

Solving this for Ci, we eventually get

Ci =
4

r+(f ′(r+) − 4
∑

aA
a
0(r+)Aa

0
′(r+))

· 1

wL(r+)1/2

×
(

1

3
SabcA

a
0(r+)Ab

0(r+)Ac
0(r+)ǫijk (∂juk) +

1

2
SabcA

a
0(r+)Ab

0(r+)ǫijk (∂jAc
k)

)
. (6.4.41)
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Appendix D. Integrable form of a linear ordinary differential
equation

In this appendix we present a method to bring an arbitrary linear ODE of second order to an
integrable form. Let us consider a general form of this equation

G(g′′, g′, g, r) ≡ g′′(r) + a(r)g′(r) + b(r)g(r) = c(r). (6.4.42)

If we know a homogeneous solution P (r) of this equation, i.e.

G(P ′′, P ′, P, r) = 0 , (6.4.43)

then we can make the substitution

g(r) → P (r)Q(r), Q′(r) → u(r) (6.4.44)

and lower the order of the differential operator (6.4.42)

G = P (r)

(
u′(r) +

[
a(r) + 2

P ′(r)

P (r)

]
u(r)

)

≡ P (r)(u′(r) + F (r)u(r)) . (6.4.45)

The term in the brackets can be represented as

u′(r) + F (r)u(r) =
1

A(r)
∂r (A(r)u(r)) , (6.4.46)

where

A(r) = exp

{∫
F (r)dr

}
= P (r)2 exp

{∫
a(r)dr

}
. (6.4.47)

Taking into account (6.4.44), we finally bring (6.4.42) to the following integrable form

1

P (r)E(r)
∂r

(
P (r)2E(r)∂r

(
g(r)

P (r)

))
= c(r) . (6.4.48)

where we defined

E(r) ≡ exp

{∫
a(r)dr

}
. (6.4.49)
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Chapter 7

Quantum Chromodynamics on a
Lattice

Lattice quantum chromodynamics is the main systematic nonperturbative framework of studying
low-energy strong interactions. At the moment lattice QCD is successfully applied to the hadron
spectroscopy, QCD phase diagram, hadron structure, flavor physics, etc. The basic idea of the
approach is to put all QCD fields on a 4D hypercubic grid (lattice) of finite volume (usually,
V = L3 × T , where L and T are the spatial box-length and Euclidean time extent, respectively)
with lattice spacing a, and (anti-)periodic boundary conditions1. This step should be done in a
clever way, such that the relevant symmetries (different for different problems) are preserved, which
makes the lattice theory significant in its own right. In order to avoid infinities QCD as a field
theory requires a regularization both in the ultraviolet (UV) and infrared (IR), which is naturally
implemented in lattice QCD: the UV cut-off is provided through the lattice spacing a, and the IR
cut-off through finite volume V that respects the gauge invariance of the QCD action. The path
integral is rendered finite and reduces to a multidimensional integral over the fields at all grid sites,

∫
DAµDψ ... e

−

∫
LE [Aµ, ψ, ...]d

4x
→
∫ ∏

xi ∈ grid

dAµ(xi) dψ(xi) ... e
−a4

∑
Li

(7.0.1)

The numerical integration is generally done by means of Monte Carlo methods. We are not aiming
to review all the methods of the theory, since they are very numerous and can be found in standard
texts (for a general review read e.g. [180] and Refs. therein), and will focus only on some specific
issues related to our simulations.

7.1 Improved action

In this section we describe a higher-accuracy lattice version of the Yang-Mills action, which we used
in our computations (for a review and efficiency estimates read [181]). The continuum Euclidean
Yang-Mills action is given by

S =

∫
d4x

1

2

∑

µ,ν

TrF 2
µν(x) , (7.1.1)

where Fµν is the field stress tensor,

Fµν ≡ ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (7.1.2)

1Due to the periodicity the Euclidean time extent plays a role of inverse temperature.
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7.1. IMPROVED ACTION

The main property of the theory (to be preserved after translating it to the lattice variables) is
the invariance with respect to the gauge transformations2,

Fµν → Ω(x)Fµν Ω(x)†, Ω(x) ∈ SU(3) . (7.1.3)

The naive version of the discretization with Aµ(x) defined at the sites violates the gauge invariance.
Instead, the theory is usually formulated in terms of link variables Uµ(x),

Uµ(x) ≡ P exp

(
−i
∫ x+aµ̂

x

gA · dy
)

(7.1.4)

defined at a link between the sites x and x+ aµ̂. The P-operator denotes the path-ordering. The
link variables transform under a gauge transformation in the way involving only its ends,

Uµ(x) → Ω(x)Uµ(x)Ω(x + aµ̂)† , (7.1.5)

which holds also for an arbitrary path-ordered product of Uµ’s. The conjugated variable U †
µ(x)

is simply the one with integration going from x + aµ̂ to x. The property (7.1.5) leads to the
gauge-invariance of the Wilson loop,

W (C) ≡ 1

3
TrPe−i

H

C
gA·dx =

1

3
TrP

∏

x∈C

Uµ,ν(x), (7.1.6)

where C is a closed path built of the lattice links. Using the Wilson loops one can introduce a
discrete version of the Yang-Mills action obeying the locality, gauge-invariance and the symmetry
with respect to the axis interchanges (left from the Lorentz invariance). The simplest one, the
“Wilson action”,

SW = β
∑

x, µ>ν

(1 − Pµν(x)) (7.1.7)

is defined via the sum over “plaquettes”, the smallest Wilson loops,

Pµν(x) ≡ 1

3
Re Tr

(
Uµ(x)Uν(x+ aµ̂)U †

µ(x+ aµ̂+ aν̂)U †
ν (x)

)
≡ 1

3
Re Tr 6

-
?

� -µ6
ν

(7.1.8)

and involves the lattice coupling β = 6/g2. Using the Tailor expansion,

Pµν =
1

3
Re TrPǫ−i

H

�
gA·dx

=
1

3
Re Tr

[
1 − i

∮

�

gA · dx− 1

2

(∮

�

gA · dx
)2

+ O(A3)

]
(7.1.9)

and the Stoke’s theorem,

∮

�

A · dx =

∫ a/2

−a/2

dxµdxν [∂µAν(x0 + x) − ∂νAµ(x0 + x)]

=

∫ a/2

−a/2

dxµdxν [Fµν(x0) + (xµDµ + xνDµ)Fµν(x0) + · · · ]

= a2 Fµν(x0) +
a4

24
(D2

µ + D2
ν)Fµν(x0) + O(a6, A2) (7.1.10)

2in this chapter we set the number of color to Nc = 3, which can be easily generalized to any number of colors.
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CHAPTER 7. QUANTUM CHROMODYNAMICS ON A LATTICE

one can show that the Wilson action (7.1.7) reproduces the Yang-Mills action (7.1.1) up to correc-
tions of order a2,

SW =

∫
d4x

∑

µ,ν

{
1

2
TrF 2

µν +
a2

24
TrFµν(D2

µ + D2
ν)Fµν + · · ·

}
. (7.1.11)

Here Dµ is the covariant derivative. One can cancel the a2-terms by adding extended Wilson loops
to the action. One of the choices can be the rectangular operator,

Rµν =
1

3
Re Tr 6

- -
?

�� -µ6
ν

(7.1.12)

having the expansion

Rµν = 1 − 4

6
a4Tr (gFµν)2 − 4

72
a6Tr

(
gFµν(4 D2

µ + D2
ν)gFµν

)
− · · · . (7.1.13)

With the help of this operator one can improve the action up to O(a4) [182,183],

Srec. ≡ −β
∑

x,µ>ν

{
5Pµν

3
− Rµν +Rνµ

12

}
+ const (7.1.14)

=

∫
d4x

∑

µ,ν

1

2
TrF 2

µν + O(a4) , (7.1.15)

where we combined together two differently oriented rectangular loops, Rµν and Rνµ. The choice
of the rectangular operator is not unique. One can consider, for instance, a twisted rectangle

Tµν =
1

3
Re Tr

�6

-

- 6

�

C
CC
�
�� . (7.1.16)

to build an alternative a2-corrected action,

Stw.rec. ≡ −β
∑

x,µ>ν

{
Pµν +

Tµν + Tνµ

12

}
+ const (7.1.17)

=

∫
d4x

∑

µ,ν

1

2
TrF 2

µν + O(a4). (7.1.18)

The above performed procedure improves the classical action for the gauge fields (gluons).
However, the quantum effects is one more source of the error, which should be fixed. One example
of such corrections (and the most relevant one) is the tadpole contribution. If we introduce fermions
to the theory, then they will interact with gauge fields according to the term ψ̄Uµγµψ · a−1 in the
Lagrangian. This term contains the usual vertex ψ̄gA · γψ as well as ones with additional powers
of gAµ · a. These additional interactions are suppressed by powers of a in the classical theory, but
not at the quantum level, since the contracted pairs of Aµ generate UV-factors 1/a2. One way how
this contribution can be essentially cancelled out is to divide each link variable Uµ by the square
root of the mean plaquette

Uµ(x) → Uµ(x)

u0
, u0 = 〈0|Pµν |0〉1/4, (7.1.19)

since u0 consists of only tadpoles. The average value u0 is determined numerically in the following
way. We start from some approximate guessed value, substitute it to the action, perform the Monte-
Carlo simulation and find the mean plaquette from the ensemble of the generated configurations.
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Figure 7.1: Mean plaquette versus coupling constant β obtained by our algorithm. Blue crosses
correspond to the values from [184,185].

This value is then should be taken as a new u0, and the process is repeated until the input and
output values of u0 coincide. Result of our simulation with the action (7.1.23) above is shown in
the Fig. 7.1.

The next step of the improvement is to perform renormalization due to contributions from
momenta k>π/a. These renormalizations induce a2 αs(π/a) corrections,

δL = αs r1 a
2
∑

µ,ν

Tr(FµνD2
µFµν)

+ αs r2 a
2
∑

µ,ν

Tr(DµFνσDµFνσ)

+ αs r3 a
2
∑

µ,ν

Tr(DµFµσDνFνσ)

+ · · · , (7.1.20)

that must be removed. The prefactor of the last term can be set to zero by a change of field
variable (in the path integral) of the form

Aµ → Aµ + a2 αs f(αs)
∑

ν

DνFνµ. (7.1.21)

The other corrections are removed by renormalizing the coefficient of the rectangle operator Rµν

in the action, and by adding an additional operator. One choice for the extra operator is

Cµνσ ≡ 1

3
Re Tr 6

��*�� -
?

������
. (7.1.22)

Then the action, correct up to O(a2α2
s, a

4) (used for the lattice calculations in the next chapters),
is [186]

S = −β
∑

x,µ>ν

{
5

3

Pµν

u4
0

− rg
Rµν +Rνµ

12 u6
0

}
+ cg β

∑

x,µ>ν>σ

Cµνσ

u6
0

, (7.1.23)

where

rg = 1 + .48αs(π/a) (7.1.24)

cg = .055αs(π/a). (7.1.25)
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CHAPTER 7. QUANTUM CHROMODYNAMICS ON A LATTICE

The coefficients rg and cg are computed by “matching” physical quantities, like low-energy
scattering amplitudes, computed using perturbation theory in the lattice theory with the analogous
quantity in the continuum theory.

7.2 Monte-Carlo algorithms

The next step is to generate an uncorrelated ensemble of gauge configurations with a given partition
function

Z =

∫ ∏

µ

dUµ(x)e−S[U ] . (7.2.1)

The algorithm consists of a sequential updating for each link variable Uµ, such that the configura-
tion approaches equilibrium. For the Wilson action the distribution of link variables has a simple
form,

Peq(U) ∝ exp

{
β

Nc
Re TrU

6∑

i=1

Ri

}
, (7.2.2)

where Ri is the product of three link variables at the i-th out of 6 “staples” connected to the
considered link. For a general action built from Wilson loops URi is a product of all link variables
at i-th Wilson loop contributing to the action and containing U .

In short, we use the Cabibbo-Marinari algorithm [187] for SU(3) (based on the heat bath
algorithm [188] for SU(2)) with overrelaxation [189]. There is one step of overrelaxation for each
step of the heat bath algorithm. We describe the algorithms in the following sections.

Heat bath algorithm

At every step the algorithm replaces the current link variable by a random one, U ′, from the gauge
group with the probability given by the Boltzmann distribution

dP (U ′) ∝ e−S[U ′]dU ′ . (7.2.3)

The procedure is essentially equivalent to bringing the link in contact with a “heat bath” causing
the fluctuations on a group manifold. This procedure is repeated until all link variables are updated.
One can show [188] that many iterations of the updates move the configuration towards equilibrium.
Let us consider how the algorithm works for SU(2). A group element can be parameterized as

U(x) = a0(x)12×2 + i~σ~a(x) , (7.2.4)

where σi are the Pauli matrices. Elements of SU(2) have a determinant equal to identity, therefore
aµa

µ = 1, i.e. the group manifold is S3. In this parametrization the Haar measure is given by

dU =
1

2π2
δ(a2 − 1)d4a . (7.2.5)

Let us recall a useful property of SU(2): for any a, b ∈ SU(2) there exist k ∈ R and c ∈ SU(2)
such that a+ b = kc. This gives us

n∑

i=1

Ri = kŪ , k =

√√√√det

n∑

i=1

Ri (7.2.6)
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and hence the distribution

dP (U ′Ū−1) ∝ exp

{
β

2
Re TrU ′Ū−1

n∑

i=1

Ri

}
dU ′ = exp

{
β

2
kTrU ′

}
dU ′ . (7.2.7)

The latter with use of the invariant measure (7.2.5) and the group parametrization (7.2.4) can be
transformed to

P (U ′Ū−1) ∝ 1

2π2
δ(a2 − 1) exp {βka0}d4a ∼ 1

4π2

√
1 − a2

0 exp {βka0}da0dΩ , (7.2.8)

where dΩ is the differential solid angle for the vector ~a and at the last step we integrated over
the absolute value of ~a. For large to moderate β the distribution (7.2.8) is dominated by the
exponential factor. It is suitable to make a change of variables from a0 to

z = exp(βka0) , (7.2.9)

and rewrite the probability distribution for z as

dp(z) ∼ dz

√

1 −
(

log z

βk

)2

. (7.2.10)

The value of a trial z is generated by the pseudo-random generator within the allowed interval

e−2βk ≤ z ≤ e2βk , (7.2.11)

and this is rejected with probability given by (7.2.10). This is repeated until some value is accepted.
The last step of the algorithm is the choice of the orientation of ~a. In our case this is done by a
random choice of the spherical variables (polar and azimuthal angles).

Cabibbo-Marinari algorithm

In the previous section we used some specific properties of the SU(2) group, which do not hold, in
general, for SU(N) with N > 2. To generalize the heat bath algorithm on the SU(N) group we
follow the approach proposed by Cabibbo and Marinari [187]. The approach essentially consists of
selecting some SU(2) subgroups {SU [k](2) : k = 1, ..., m} of SU(N) and applying the heat bath
algorithm to each subgroup. Let us consider a simple choice of m = N − 1 subgroups of SU(N),

ak =




1
...

1
αk

1
...

1




∈ SU [k](2), k = 1, ...,m , (7.2.12)

where αk is an SU(2) matrix at the kth and (k + 1)th row. Then the link variable is replaced by

U ′
µ = amam−1 ... a1Uµ . (7.2.13)

We can introduce a definition Uk
µ ≡ akak−1 ... a1Uµ and denote by Ǔµ a link variable, which

is not the one we consider (Uµ). Then the action splits in two parts, S(U) ≡ S[Uµ, Ǔµ] and the
random ak is to be chosen according to the distribution

dP (ak) = d(k)ak e
−S[akU

k−1
µ , Ǔµ] Z−1

k [Uk−1
µ ] , (7.2.14)
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where d(k)ak is the Haar measure for SU [k](2) and the normalization Zk[Uk−1
µ ] is given by

Z−1
k [Uk−1

µ ] =

∫

SU [k](2)

da e−S[aUµ, Ǔµ] . (7.2.15)

Consequently generating the random a1 ... am we obtain the new link variable (7.2.13). Using the
left-product invariance of the Haar measure,

Zk[bU ] = Zk[U ], b ∈ SU [k](2) , (7.2.16)

one can demonstrate (by induction) that the algorithm leads to the thermalization. Let us assume
that Uk−1 are distributed by the Boltzmann law

dP (Uk−1
µ ) = Z−1 e−S[Uk−1

µ , Uµ] dUk−1
µ . (7.2.17)

By definition, Uk−1
µ = a−1

k Uk
µ , so the distributes takes the form

dP (Uk−1
µ ) = P (a−1

k Uk
µ) = Z−1 e−S[a−1

k Uk
µ , Uµ] dUk−1

µ . (7.2.18)

Taken that dP (Uk
µ) = dP (Uk−1

µ )dP (ak) for the measure, we get

dP (Uk
µ) =

∫

SU [k](2)

d(k)a
e−S[Uk

µ ,Uµ] · e−S[a−1Uk
µ ,Uµ]

Zk[a−1Uk
µ ]Z

d(a−1Uk
µ) . (7.2.19)

Taking into account the invariance (7.2.16), i.e.

d(a−1Uk) = dUk, d(k)a = d(k)a−1, (7.2.20)

we finally obtain the Boltzmann distribution

dP (Uk
µ) = Z−1 e−S[Uk

µ ,Uµ] d(Uk
µ) . (7.2.21)

The latter means that the thermalization of SU(2) subgroups leads to the thermalization of the full

SU(N).
At the next step we have to generate the random ak with the distribution defined by (7.2.14).

As before, we demonstrate it on a simple example with the Wilson action. The action can be
rewritten as

S[Uµ, Ǔµ] = − β

N

n∑

α=1

Re Tr (UµŨα) + Š[Ǔµ] =
β

N
Re Tr (UµRµ) + ... , (7.2.22)

where Rµ is a sum over all “staples” Ũα. One can note that

S[akUµ, Ǔµ] = − β

N
Re Tr (akU

k−1
µ Rµ) + ... (7.2.23)

= − β

N
Re Tr (αkρk) + terms independent of αk , (7.2.24)

where ρk is a k × (k + 1) submatrix of Uk−1
µ Rµ. Now one can repeat the procedure from the

previous section and generate the αk matrices with the distribution

dP (αk) = δ(α2 − 1) exp

{
β

N
ReTrαkρk

}
d4αk . (7.2.25)
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For that purpose we can decompose ρk and αk into

ρk = ρ01 + i~σ~ρ, αk = α01 + i~σ~α (7.2.26)

and rewrite

Re Tr (αkρk) = 2(α0Re ρ0 − ~αRe ~ρ) . (7.2.27)

As a final remark let us comment on the case of the SU(3) gauge group. According to (7.2.12)
we need only two SU(2) submatrices to apply the heat bath algorithm. Practically, it turns out
to be not enough, because of the presence of UV-noise at the generated configurations. To avoid
this problem we used three subgroups with the following structure

a1 =

(
α1

1

)
, a2 =

(
1

α2

)
, a3 =




α11

3 α12
3

1
α21

3 α22
3



 , (7.2.28)

where αi are the SU(2) matrices.

Overrelaxation

Now let us describe a complimentary method to the heat bath algorithm, the overrelaxation [189,
190]. The method is based on the “reflection” of a link variable with respect to the local minimum
of the action. This accelerates the decorrelation of the gauge configurations. Usually, the method
is alternated with the heat bath, which in case of the SU(2) group results in a faster thermalization
[191]. We apply the overrelaxation to the full SU(3), following [190].

If X̂ ∈ SU(N) is an element of the group minimizing the action, then the shift from U to
X̂ on the group manifold is represented by X̂U−1. The “reflection” with respect to X̂ will then
correspond to that action applied twice,

U ′ = (X̂U−1)2U = X̂U †X̂ . (7.2.29)

The trial element U ′ is then accepted with the probability from the Metropolis algorithm [192],

PA = min [1, exp (−S[U ′] + S[U ])] . (7.2.30)

This transformation is its own inverse and, hence, satisfies the detailed balance condition.
The algorithm is valid for any of the guessed X̂ . However its efficiently depends on a clever

choice of X̂. We use the one proposed in [193] based on the polar decomposition of the sum of
“staples” R:

1. Perform the Singular Value Decomposition (SVD) of R: R = WΣV †, where W and V are
unitary matrices, and Σ is the diagonal matrix of singular values

√
λi, where {λi} are the

eigenvalues of the non-negative Hermitian matrix R†R.

2. Find detR ≡ ζ exp(iϕ). Then find an approximate solution {θi} for the phases of the diagonal
matrix D = diag(exp iθ1, ..., exp iθN),

∑
N θi = 0 mod 2π to maximize

Re Tr exp(−i ϕ
N

)WDV †R.

We assume that all phases θi are small, and solve the linearized problem.

3. Accept the updated value U ′ = X̂U †X̂, where X̂ = exp(iϕ/N)WDV †, with the probability
(7.2.30).
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(a) (b)

Figure 7.2: (a) Thermalization for the cold (blue) and hot (magenta) initial configurations with
β = 6.8 and u0 = 0.46, see explanation in the text; (b) Autocorrelation for gauge configurations
with the same parameters.

As mentioned above, we used a combination of one overrelaxed update with a heat bath
(Cabibbo-Marinari) update. Fig. 7.2(a) presents typical runs of the algorithm with different initial
conditions. The “cold” run is characterized by an ordered start, when all link matrices are set to
the identity (i.e., if the initial temperature is zero). The “hot” run starts from a configuration with
link variables were generated randomly, uniformly in the Haar measure (i.e., if the initial temper-
ature is infinite). For both runs the thermalization occurs already after 20 iterations. Practically,
we waited 50 iterations before starting saving the configurations. We made dumps after every 10
iterations, making sure of statistical independence of the configurations (see Fig. 7.2(b))

7.3 Overlap fermions

In the previous sections we considered a lattice formulation of the pure gluodynamics. A logical step
towards the real QCD is to add fermions to the system. It turns out that the naive discretization
of the Dirac operator

D =
1

2
γµ{∇µ + ∇∗

µ} +m ≡ 1

2a
γµ
{
Uµ(x)ψ(x + aµ̂) − U †

µ(x− aµ̂)ψ(x − aµ̂)
}

+m (7.3.1)

leads to the problem of doubling: instead of one fermion on a lattice in 4D one obtains 24 = 16
copies [180]. One of the solutions of this problem proposed by Wilson [194] consists of adding an
irrelevant operator to the fermion action, which modifies the dispersion relation for fermions, such
that the doublers acquire a mass proportional to the inverse lattice spacing m ∼ 1/a and decouple
in the continuum limit. The Wilson-Dirac operator has the following form

DW (m) =
1

2

{
γµ(∇µ + ∇∗

µ) − a r∇2
}

+m, (7.3.2)

where ∇µ is the nearest-neighbor lattice derivative, r denotes the Wilson parameter, m is the
bare fermion mass. However, the Wilson-Dirac operator explicitly violates the chiral symmetry.
In general, no lattice fermion action can be undoubled, chiral (in the standard sense), and have
couplings that extend over a finite number of lattice spacings (this is a folkloric version of the
Nielsen-Ninomiya no-go theorem [195]). There is a way to avoid the Nielsen-Ninomiya theorem by
modifying the chiral rotation with a local Dirac operator [196]

ψ → eiθγ5(1−
aD
2 )ψ, ψ̄ → ψ̄eiθ(1−aD

2 )γ5 , (7.3.3)
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such that it coincides with the usual definition in the continuum limit a→ 0. It can be shown that
the chiral symmetry is preserved in an undoubled lattice theory, if the Dirac operator D obeys the
Ginsparg-Wilson relation [197],

γ5D +Dγ5 = aDγ5D . (7.3.4)

A solution of this equation found by Neuberger [198] and named as the massless “overlap” operator
(or Neuberger’s operator) has the following form

Dov(0) =
1

a

(
1 − A√

A†A

)
, (7.3.5)

where A is a function of the massless Wilson Dirac operator (7.3.2),

A(0) = 1 − aDW (0) . (7.3.6)

The overlap operator is in general local [199] and can be generalized for the case of massive fermions,

Dov(m) =
(
1 − am

2

)
Dov(0) +m, (7.3.7)

which we used in our simulations.
Though it has all suitable properties for the chiral symmetry studies, the overlap operator has

a high computational cost compared to other lattice Dirac operators. This makes it important
to develop effective methods for the practical realization of the overlap operator. The most ex-
pensive step is the computation of the square root of a sparse matrix in (7.3.5). There are many
approaches to do that, namely the polynomial approximations, Lanczos based methods and partial
fraction expansion [200,201]. In our code we used the Chebyshev approximation [202], based on a
construction of a polynomial Pn,ǫ(x) of degree n,

Pn,ǫ(x) =
n∑

k=0

ckTk(z), z =
2x− 1 − ǫ

1 − ǫ
, (7.3.8)

where Tk(z) are Chebyshev polynomials defined in the range z ∈ [−1, 1]. Sufficient maximal degree
of the polynomial n depends crucially on the parameter ǫ [201]. Usually, one computes the first
O(10) lowest-lying eigenvalues of A†A and their eigenfunctions, which are then projected out of
A†A. The value of ǫ is then set to the minimal among remaining eigenvalues. The deflation leads
to a substantial decrease of the order of the polynomial and the dimensionality of the Krylov
subspace. Degree n is chosen such that the relative error does not exceed a bound ξ,

max

∣∣∣∣
(A†A)−1/2 − Pn,ǫ(A

†A)

(A†A)−1/2

∣∣∣∣ < ξ, (7.3.9)

where ξ is a small number (in our code ξ ∼ 10−8). The lowest eigenvalues of the overlap operator
are treated exactly and were computed with ARPACK [203] iterative solver (see also [204,205] for
the details of the algorithm and possible generalizations on a non-Hermitian A).
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Chapter 8

SU(3) quenched lattice gauge
theory in magnetic fields

In this chapter we study the effect of a strong magnetic field on the properties of the QCD vacuum.
Due to the nonperturbative nature of the effects we perform the calculations in the lattice gauge
theory. We use the quenched approximation (i.e. without dynamical quarks) and show that for
our goals it provides rather reasonable values of the physical quantities. The list of considered
effects induced by the magnetic field is the following.

The strong magnetic field can enhance the chiral symmetry breaking. There are various models
(see Sec. 8.2) which predict the growing of the chiral condensate.

The second effect is the chiral magnetization of the QCD vacuum. This effect has a paramag-
netic nature. The vacuum magnetization is related to the nucleon magnetic moments [206] and
other nonperturbative effects of hadrons [207, 208]. We calculate the magnetic susceptibility and
other quantities in Sec. 8.3.

The quarks develop an electric dipole moment along the field due to the local fluctuations of
the topological charge [209]. We study this effect in Sec. 8.4.

Finally, the fluctuations of the topological charge can be a source of the asymmetry between
numbers of quarks with different chiralities created in heavy-ion collisions. The so called “event-
by-event P- and CP-violation” [30] can contribute to this asymmetry. Our aim is also to see some
evidences of this effect in SU(3) lattice simulations, although they might be similar to the SU(2)
lattice results [51].

The additional motivation for the study of the effects induced by a strong magnetic field could
also come from the physics of the early Universe, where the strong fields (B ∼ 1016T,

√
eB ∼ 1

GeV) might have been produced after the electroweak phase transition [210], and from the physics
of compact dense stars, such as magnetars (B ∼ 1010T,

√
eB ∼ 1 MeV) [211].

8.1 Technical details

We use the quenched SU(3) lattice gauge theory with tadpole-improved Lüscher-Weisz action [183].
To generate the statistically independent gauge field configurations we use the Cabibbo-Marinari
heat bath algorithm. The lattice size is 144, and lattice spacing a = 0.105fm. All observables we
discuss later have a similar structure: 〈Ψ̄OΨ〉 for VEV of a single quantity or 〈Ψ̄O1Ψ Ψ̄O2Ψ〉 for
dispersions or correlators. Here O, O1, O2 are some operators in spinor and color space. These
expectation values can be expressed through the sum over M low-lying1 but non-zero eigenvalues

1We believe that the IR quantities are insensitive to the UV cutoff realized by selecting some finite number of
the eigenmodes [212]
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8.2. CHIRAL CONDENSATE

iλk of the chirally invariant Dirac operator D (Neuberger’s overlap Dirac operator [198]):

〈Ψ̄OΨ〉 =
∑

|k|<M

ψ†
kOψk

iλk +m
(8.1.1)

and

〈Ψ̄O1Ψ Ψ̄O2Ψ〉 =
∑

k,p

〈k|O1|k〉〈p|O2|p〉 − 〈p|O1|k〉〈k|O2|p〉
(iλk +m)(iλp +m)

, (8.1.2)

where all spinor and color indices are contracted and we omit them for simplicity. The λk are
defined by the equation

Dψk = iλkψk, (8.1.3)

where ψk are the corresponding eigenfunctions. The uniform magnetic field F12 = B3 ≡ B is
introduced by adding diagonal components to the vector potential Aµ

i
j ,

Aµ
i
j → Aµ

i
j +

B

2
(x1δµ,2 − x2δµ,1) δ

i
j , (8.1.4)

and introducing an additional x-dependent twist for fermions [213] in order to combine (8.1.4) with
the periodic boundary conditions. The total magnetic flux is quantized, therefore the magnetic
field can take only discrete values,

qB =
2πk

L2
, k ∈ Z , (8.1.5)

where q =
∣∣− e

3

∣∣ is the d-quark charge, which we use in our simulations. To perform calculations in
the chiral limit one calculates the expression (8.1.1) or (8.1.2) for some non-zero m and averages it
over all configurations of the gauge fields. Then one repeats the procedure for other quark masses
m and extrapolates the VEV to m→ 0 limit.

8.2 Chiral condensate

In this section we present our results for the chiral condensate

Σ ≡ −〈0|Ψ̄Ψ|0〉, (8.2.1)

as a function of the magnetic field B. The general tendency for Σ to grow with B at T ≪ Tc

is usually referred to the magnetic catalysis of the chiral symmetry breaking [214, 215] and was
already obtained in various models2: in the chiral perturbation theory [111, 112] (Σ ∝ B for
weak fields, Σ ∝ B3/2 for strong fields); in the Nambu-Jona-Lasinio model [113] (Σ ∝ B2); in a
confining deformation of the holographic Karch-Katz model [114] (Σ ∝ B2); in D3/D7 holographic
system [1] (Σ ∝ B3/2 for low temperatures, Σ ∝ B for high temperatures); in SU(2) quenched
lattice calculations [115](Σ ∝ B); at larger than physical pion masses in Nf = 2 QCD [218,219] and
in the Nf = 4 SU(2) theory [220]; and at physical quark masses in full Nf = 2+ 1 QCD [216,217].
Here our aim is to see how the chiral condensate behaves in the SU(3) quenched gluodynamics.

We use the Banks-Casher formula [221], which relates the condensate (8.2.1) with the density
ρ(λ) of near-zero eigenvalues of the Dirac operator:

Σ = lim
λ→0

πρ(λ)

V
, (8.2.2)

95



CHAPTER 8. SU(3) QUENCHED LATTICE GAUGE THEORY IN MAGNETIC FIELDS

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Σ,
 G

eV
3

eB, GeV2

144, T < Tc, a = 0.105 fm
power-function fit

(a)

 210

 220

 230

 240

 250

 260

 270

 280

 290

 300

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Σ1/
3 , M

eV
 (

14
4 , T

 <
 T

c,
 a

 =
 0

.1
05

 fm
)

eB, GeV2

Banks-Casher, mq = 0
low-lying modes, mq = 0

(b)

Figure 8.1: Chiral condensate

where V is the four-volume of the Euclidean space-time. The result is shown in Fig. 8.1(a).
We perform the fit of the results by the following function:

Σfit(B) = Σ0

[
1 +

(
eB

Λ2
B

)ν]
, (8.2.3)

where Σ0 ≡ Σ(0). The obtained fitting parameters are

Σ0 = [(228 ± 3)MeV]
3
, ΛB = (1.31 ± 0.04) GeV, ν = 1.57 ± 0.23 . (8.2.4)

It is interesting to compare quantitatively the condensate obtained by the Banks-Casher formula
and the one calculated by the expression (8.1.1) with O = 1. The result is shown in Fig. 8.1(b).

The value of the condensate in absence of the magnetic field equals Σ(0) = [(230 ± 5) MeV]
3

which
is a reasonable value, compare with e.g. [222].

8.3 Chiral magnetization and susceptibility

In this section we calculate the quantity

〈Ψ̄σαβΨ〉 = χ(F )〈Ψ̄Ψ〉qFαβ , (8.3.1)

where σαβ ≡ 1

2i
[γα, γβ ] and χ(F ) is a coefficient of proportionality (susceptibility), which depends

on the field strength.
This quantity was introduced in [206] and can be used to estimate the spin polarization of

the quarks in external magnetic field. The magnetization can be described by the dimensionless
quantity µ = χ · qB, so that

〈Ψ̄σ12Ψ〉 = µ〈Ψ̄Ψ〉 . (8.3.2)

The expectation value (8.3.1) can be calculated on the lattice by (8.1.1) with O = σαβ . The
result is shown in Fig. 8.2(a) (here for comparison we also plot series for a finite quark mass). We
can see, that the 12-component grows linearly with the field, which agrees with [206]. This allows

2A non-monotonic behavior in the vicinity of Tc has been recently observed [216, 217] and named as inverse

magnetic catalysis.
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Figure 8.2: Expectation values of Ψ̄σαβΨ and their square

us to find the chiral susceptibility χ(0) ≡ χ0 from the slope of the curve. After making a linear
approximation 〈Ψ̄σ12Ψ〉 = ΩfiteB, where

Ωfit ≡ −1

3
χfit

0 Σ0 , (8.3.3)

we obtain Ωfit = (172.3 ± 0.5)MeV and

χfit
0 = −4.24± 0.18 GeV−2 , (8.3.4)

showing that the QCD vacuum has a diamagnetic nature. This value fits well into the range
of present theoretical estimations: the modern QCD sum rule calculations [223] (χth

0 = −3.15 ±
0.3 GeV−2) and [224] (−2.85± 0.5 GeV−2), the earlier ones [225] (−5.7 GeV−2) and [226] (−4.4±
0.4 GeV−2), in the instanton vacuum model [227–229] (−4.32 GeV−2), from the analysis of the
Dirac zero-mode in an instanton background [230] (−3.52 GeV−2), in dubbed quark-meson model
[231] (−4.3 GeV−2) and in the NJL model [231] (−5.25 GeV−2). The value of the magnetic suscep-
tibility can be measured in experiments on lepton pair photoproduction via the chiral-odd coupling
of a photon to quarks [207,208], and in radiative heavy meson decays [224].

Recently, the lattice calculations with full Nf = 2 + 1 QCD [232] provided the following values
for the magnetic susceptibility

χu = −(2.08 ± 0.08)GeV−2 , χd = −(2.02 ± 0.09)GeV−2 , χs = −(3.4 ± 1.4)GeV−2 . (8.3.5)

We also have to mention a well known analytic result obtained by the OPE combined with the
idea of pion dominance [233],

χOPE = − Nc

4π2F 2
π

≃ −9.77 GeV−2, (8.3.6)

supported by two holographic studies [234, 235], but giving a too high value comparing to our
result. This disagreement seems to be an important puzzle to solve, because it will lead to a better
understanding of the pion dominance assumption and the large Nc limit.

Another interesting phenomenological quantity is the product of the chiral susceptibility χ and
the condensate 〈Ψ̄Ψ〉 [207, 208]. In our calculations it is equal to

−χfit
0 〈Ψ̄Ψ〉 ≃ 52 MeV, (8.3.7)

while from the QCD sum rules one can estimate this quantity as approximately 50 MeV [223,225,
226], which is also close to our value.
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Figure 8.3: Fluctuations of the chirality and electromagnetic current/charge

8.4 Electric dipole moment

Another interesting effect due to the magnetic field is a quark local electric dipole moment along
the field [209]. This quantity corresponds to the i0-components of the (8.3.1):

di(x) ≡ Ψ̄(x)σi0Ψ(x), i = 1, 3 (8.4.1)

In the real CP-invariant vacuum the VEV of this quantity should be zero: 〈di(x)〉 = 0, that
we actually see in our results (Fig. 8.2(a)). At the same time the fluctuations of di(x) can be
sufficiently strong. We measure VEV’s (8.1.2) with O1 = O2 = σαβ . In the case of i0-components

it corresponds to dispersions of ~d. The result is shown in Fig. 8.2(b). We see that the longitudinal
fluctuations of the local dipole moment grow with the field strength, while transverse fluctuations
are absent. Taking into account that the average dipole moment is zero, we may guess, that the
QCD vacuum is divided into space-time domains, in which quarks have an anomalous electric
dipole moment along ~B.

Here and after we use the “IR” subscript to emphasize, that we subtract from the quantity its
value at B = 0, removing also the leading order UV-divergences,

〈Y 〉IR(B) =
1

V

∫

V

d4x〈Y (x)〉B − 1

V

∫

V

d4x〈Y (x)〉B=0 (8.4.2)

8.5 Some evidences of the chiral magnetic effect

One example of a new magnetic-field-induced effect mentioned in the Introduction is the chiral
magnetic effect (CME), which generates an electric current along the magnetic field in the presence
of a nontrivial gluonic background [30, 41–43]. This effect may naturally take place in heavy-ion
collisions and is at the moment under active experimental search [37–40] (see also a review [177] on
the interpretation of the experimental data). Lattice evidences of the effect can be found in [5–7,10,
51–54]. In [51] it has been found that the fluctuations of the electric current along the magnetic field
are strongly enhanced as compared to the fluctuations of current in the perpendicular directions.
This conclusion was also confirmed by an analytical calculation in the instanton gas model [236].
The result of [51] on the difference of longitudinal and transverse electric current susceptibilities
has been reproduced later by an analytical calculation [237]; the frequency dependence of the
conductivity has also been evaluated – for the weak coupling result, see [238]. Here we implement
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the procedure from [51] for the SU(3) case and study the local chirality

ρ5(x) = Ψ̄(x)γ5Ψ(x) ≡ ρL(x) − ρR(x) (8.5.1)

and the electromagnetic current

jµ(x) = Ψ̄(x)γµΨ(x). (8.5.2)

The expectation value of the first quantity can be computed by (8.1.1) with O = γ5 and with
O = γµ for the second quantity. Both VEV’s are zero, as expected from the Lorentz and parity
invariance, but the corresponding fluctuations obtained from (8.1.2) are finite and grow with the
field strength (see Fig. 8.3). One can interpret the enhancement of the current fluctuations either
as short-living quantum fluctuations or as a charge flow. We measured the conductivity of the
QCD vacuum in the next chapter and argue in support of the latter case.
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Chapter 9

Magnetic-Field-Induced
insulator-conductor transition

A natural question which one can ask concerning the results of the previous section is whether
the enhancement of current fluctuations corresponds to a real flow of charge, or is just caused by
short-lived quantum fluctuations. This question can be answered by studying the current-current
correlation functions. The currents which correspond to a real transport of charged particles should
have long-range correlations in time, while quantum fluctuations are typically characterized by a
finite correlation time [239]. Recalling Green-Kubo relations, one can see that this property is
intimately related to the electric conductivity - namely, the real transport of charged particles can
occur only in conducting media. In this chapter we study the tensor of electric conductivity of
the vacuum of quenched SU (2) lattice gauge theory in external magnetic field. We find that the
magnetic field induces nonzero electric conductivity along its direction, transforming the confining
vacuum from an insulator into an anisotropic conductor.

Electric conductivity can be extracted from the correlator of two vector currents ji (x) =
q̄ (x) γiq (x):

Gij (τ) =

∫
d3~x〈 ji(~0, 0)jj (~x, τ) 〉 (9.0.1)

Following [240], let us define the spectral function ρ (w) which corresponds to the correlator
(9.0.1)

Gij (τ) =

∫ +∞

0

dw

2π
K (w, τ) ρij (w) , (9.0.2)

K (w, τ) =
w

2T

cosh
(
w
(
τ − 1

2T

))

sinh
(

w
2T

) , (9.0.3)

where T is the temperature. The Kubo formula for the electric conductivity then reads [239,240]:

σij = lim
ω→0

ρij (ω)

4T
. (9.0.4)

In the limit of the weak time-independent electric field Ek, one has 〈 ji 〉 = σikEk. Thus electric
conductivity is related to the behavior of the spectral function at small frequencies. If there is a
gap in the spectrum so that ρij (w) = 0 for w < wc, electric conductivity is zero and Gij (τ) ∼
cosh

(
wc

(
τ − 1

2T

))
. On the other hand, if ρ (w) is not zero near w = 0, one can expect slow

nonexponential decay of Gij (τ).
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To measure the correlator (9.0.1), we perform lattice Monte-Carlo simulations of quenched
SU (2) lattice gauge theory. Since quark chirality is very important for magnetic effects in non-
Abelian gauge theories [30, 41–43], we use the overlap lattice Dirac operator D with exact chiral
symmetry [198] to measure the vector currents. We consider the two-current correlator in the
meson channel, which is represented in terms of Dirac propagators in fixed Abelian and non-
Abelian gauge fields and is then averaged over an equilibrium ensemble of non-Abelian gauge fields
Aµ:

〈 q̄ (x) γiq (x) q̄ (y) γjq (y) 〉 =

∫
DAµ e

−SY M [Aµ] Tr

(
1

D +m
γi

1

D +m
γj

)
, (9.0.5)

where SY M [Aµ] is the lattice action for gluons Aµ. A uniform magnetic field is added to the
Dirac operator by substituting su (2)-valued vector potential Aµ with u (2)-valued one Aµ ij →
Aµ ij + 1/2 Fµν xνδij . In order to account for periodic boundary conditions we introduce an
additional twist for fermions [51, 213]. The quark mass is fixed in lattice units at a small value
am = 0.01. Previous studies of mesonic correlation functions with an overlap Dirac operator
indicate that the vector current correlator depends very weakly on quark mass [212,241].

Strictly speaking, the correlator (9.0.5) corresponds to the correlator of charged currents, for
example ūγµd. The correlator of neutral currents jµ = d̄γµd, should also contain the disconnected
part. This part is quite intricate for an accurate numerical treatment. We have roughly estimated
its contribution by inverting the Dirac operator on a subspace spanned on some small number
M ∼ 30 of the lowest Dirac eigenmodes, as in [242]. It turned out that this part of the full
neutral current correlator behaves similarly to the connected one (9.0.5). We do not reproduce
these estimates here due to uncontrollable systematic errors [242].

We use the tadpole-improved Wilson-Symanzik action (see, e.g., Eq. (1) in [243]). For inversion,
we use a Gaussian source with radius r = 1.0 in lattice units in both spatial and time directions and
a point sink (that is, quark position is smeared over a Gaussian profile). We have found that such
smearing significantly improves the convergence of the maximal entropy method [240, 244, 245]
at small lattice sizes, while the value of the conductivity is practically unaffected. Our lattice
parameters are summarized in Table 9.0.1. A uniform magnetic field is introduced into the Dirac
operator as described in [51]. In order to obtain the Dirac propagator, we implement the shifted
unitary minimal residue method of Ref. [246, 247].

It is clear that since the magnetic field is parallel to the z axis, the principal axes of the tensor
σij (τ) will be the x, y and z axes and it is sufficient to consider only the diagonal components σii

(no summation over i=x, y, z).
We plot some correlators at different temperatures and magnetic fields on Fig. 9.1. The

data are for the 144 lattice with spacing a = 0.102 fm (left) and for the 163 × 6 lattice with
spacing a = 0.095 fm (right). For the latter lattice the temperature is T = 350 MeV = 1.12Tc

and the theory is in the deconfinement phase. In the quenched theory the critical temperature
of the deconfinement transition is not affected by the magnetic field. The temperature T = 1.12
corresponds to the chirally restored phase.

One can see that without the magnetic field the correlators decay quickly in the confinement

β a, fm N3
s ×Nt T/Tc #conf

3.2810 0.102 143 × 14 0.43 30
3.2810 0.102 163 × 16 0.38 30
3.3555 0.089 163 × 16 0.43 30
3.3250 0.095 163 × 6 1.12 30

Table 9.0.1: Lattice parameters used in our simulations. The critical temperature of the decon-
finement phase transition in quenched SU (2) gauge theory is Tc = 313.(3)MeV [248].

101



CHAPTER 9. MAGNETIC-FIELD-INDUCED INSULATOR-CONDUCTOR TRANSITION

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

G
ij(

τ)
, G

eV
3

τ, fm

Gxx, qB = 0
Gxx, qB = (0.63 GeV)2

Gzz, qB = (0.63 GeV)2

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

G
ij(

τ)
, G

eV
3

τ, fm

Gxx, qB = 0
Gxx, qB = (0.43 GeV)2

Gzz, qB = (0.43 GeV)2

Figure 9.1: The correlator (9.0.1) in the confinement (left) and in the deconfinement phases (right)
at T = 350 MeV.
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Figure 9.2: Spectral functions ρij (w) in the confinement and deconfinement phases.

phase. In the deconfinement phase the decay is significantly slower for all Gii (τ). When we

switch on a magnetic field with the strength qB = (0.63 GeV)
2
, in the confinement phase the

correlatorGzz (τ) decays much slower and is significantly larger than zero for all τ , much like in the
deconfinement phase. In contrast, the correlators for the perpendicular components of the current
Gxx (τ) and Gyy (τ) decay somewhat quicker than in the zero field case. In the deconfinement
phase all the correlators are practically unaffected by the magnetic field.

We now apply the Maximal Entropy Method [240, 244, 245] to extract the spectral functions
(9.0.2) from the correlators (9.0.1). Our analysis is similar to that of Refs. [240, 245]. We used
the model with the default guess m̄ (w) = m̄0 (b+ aw) [240]. Some spectral functions at different
temperatures and magnetic fields are plotted on Fig. 9.2.

In the confinement phase and in the absence of magnetic field, the spectral function has a
distinct peak near w ≈ 1 GeV, which corresponds to the mass of the ρ meson in quenched SU (2)
lattice gauge theory [242, 245]. The width of this peak in quenched approximation is a lattice
artifact [245], and should decrease for finer and larger lattices. The spectral function in the limit
of zero frequency, ρij (0), is equal to zero within error range. This indicates that in the absence
of an external magnetic field the vacuum of quenched QCD is an insulator, in agreement with the
results of [244,245]. When the external magnetic field is applied, the peak grows and the spectral
function becomes nonzero in the limit of zero frequency. For other components of ρij (w) nothing
changes qualitatively, but the peak which corresponds to the ρ-meson becomes somewhat smaller
and shifts slightly to larger w. The conductivity stays equal to zero within the error range. Thus
when the external magnetic field is applied to the quenched vacuum of the SU (2) lattice gauge
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Figure 9.3: (a) Electric conductivity of quenched QCD as a function of an external magnetic field
at different temperatures. The points for σzz and σxx at T>Tc coincide within the errors. (b)
Electric conductivity in the direction of external magnetic field σzz for different lattice parameters.

theory, the vacuum acquires nonzero conductivity, but only in the direction of the magnetic field.

In the deconfinement phase at zero magnetic field, the spectral function is nonzero at w = 0
and has a smooth peak near w ≈ 2 GeV. Thus quenched SU (2) lattice gauge theory is a conductor
above the deconfinement phase transition [240, 244]. Since the shape of the correlator Gij (τ) is
practically unaffected by the magnetic field, the spectral function ρij (w) and the conductivity σij

do not depend on the magnetic field.

The electric conductivity σij as a function of external magnetic field is plotted on Fig. 9.3(a)
for the confinement and deconfinement phases. In the deconfinement phase the temperature is
T = 350 MeV. The value of the conductivity was extracted from the value of the spectral function
at w = 0 using (9.0.4). In the confinement phase and at zero magnetic field the conductivity is zero
within the error range. As the magnetic field is turned on, the conductivity σzz in the direction
of the magnetic field grows, while all other components of σij remain equal to zero within error
range. In the deconfinement phase the conductivity is isotropic and is practically independent
of the magnetic field. One can not exclude, of course, that there is a weak anisotropy, which
cannot be seen at the small number of configurations that we have. It should be also noted that
in our simulations the value of conductivity σ = 15 ± 2 MeV at T = 350 MeV > Tc is still much
smaller than the results obtained in [240, 244] in quenched SU (3) lattice gauge theory with light
staggered fermions. This difference is likely to be an artifact of a quenched theory, since in this case
different probes of the confinement-deconfinement phase transition might give different transition
temperatures. In particular, while in quenched SU (2) lattice gauge theory the Polyakov loop goes
to zero at Tc = 313.(3)MeV [248], the chiral condensate is not zero above this temperature [249].
The situation might be similar for the insulator-conductor transition, which in the quenched case
might be replaced by a soft crossover with much smaller conductivity at T > Tc.

The transport coefficients typically have rather strong dependence on lattice parameters. To
ensure that the nonzero conductivity is not a finite-volume artifact, we have also performed the
simulations at different lattice volumes and lattice spacings (see Table 9.0.1). The values of con-
ductivity σzz for different lattice parameters are plotted on Fig. 9.3(b). One can see that as we go
to finer and larger lattices, the conductivity does not change within statistical errors.

Strictly speaking, the expressions (9.0.1) and (9.0.4) are only valid at finite temperature, while
we work with the 144 lattices which are symmetric in all space-time directions and hence correspond
to zero temperature in the standard lattice lore. However, one can still apply the expressions (9.0.1),
(9.0.4) with some small but finite temperature T = (Nta)

−1, since real lattices have finite extent
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Figure 9.4: The current-current correlators (9.0.1) calculated on 143 × 14 and 203 × 14 lattices at
magnetic field strength

√
qB = 0.45 GeV with equal values of the lattice spacings.

Nt in time direction. In this case one should make sure that the effects of the finite spatial volume
in the nonlocal observables such as the current-current correlator are insignificant. To this end, we
plot the correlators (9.0.1) calculated on the 143×14 and 203×14 lattices at magnetic field strength√
qB = 0.45 GeV in Fig. 9.4. The correlators calculated on different lattices indeed agree within

error bars for the currents both parallel and perpendicular to the magnetic field. Thus for the
correlators under consideration finite-volume effects seem to be negligible. Correspondingly, the
results presented here refer to the case of small but finite temperature (below the deconfinement
phase transition) rather than to exactly zero temperature.

We conclude that a strong magnetic field can induce nonzero electric conductivity of the vacuum
of quenched non-Abelian lattice gauge theory along the direction of the field, turning it into an
anisotropic conductor1. This effect may be called “electric rupture facilitated by magnetic field”;
it may originate from the interplay of gluon field topology and an increase in the quark zero mode
density due to the presence of magnetic field. It can be interesting to investigate whether there is
some critical value of the magnetic field at which the conductivity becomes nonzero. Transitions
of this type are known in condensed-matter physics [253]. In contrast, in the deconfinement phase
the vacuum is an isotropic conductor, and the value of the conductivity is practically independent
of the magnetic field. Thus, if a strong magnetic field generates an electric current via the chiral
magnetic effect in a CP-odd background, then the sufficiently strong field would guarantee that
the charge will propagate through the media due to finite electric conductivity in the both phases.

Finally, let us comment on possible experimental consequences of the phenomenon described
above. The expectation value 〈 jk (x) jl (y) 〉 is related to the polarization of soft photons and,
hence, to the angular distribution of soft photons and dilepton pairs emitted in the process of
collision [244, 254, 255]. According to the results presented above, the conductivity tensor can
be represented as σij ∝ BiBj . The dilepton emission rate in the dilepton center of mass frame
is [254,255],

R

V
∝
∫

d3p

E(p)

(
~B2 −

(
~B · ~n

)2
)

∝ sin2(θ), (9.0.6)

where ~n is the unit vector in the direction of the momentum of one of the leptons and θ is the angle
between ~n and the direction of the magnetic field. Therefore, there should be more dileptons in
the direction perpendicular to the magnetic field, which can be observed as an additional elliptic

flow for soft photons and leptons2.

1There are also models suggesting superconductivity of the QCD vacuum, if the magnetic field is above some
critical value [250–252]

2There is a typo regarding the excess of the dileptons in [5, 10] corrected in [11, 256]
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Chapter 10

Fractal dimension of the
topological charge distribution

Topological charge density is an important characteristic of the QCD vacuum, recently involved
in phenomenological studies of many new hypothetical effects [8, 41, 157, 158, 257, 258]. However,
the spatial structure of the topological density distribution seems to be not well defined since
the relevant properties of the underlying vacuum structure depend on the measuring procedure
[259–261]. The classical instanton approach [262] assumes that the nonperturbative physics is
governed by the scale of ΛQCD, which means that the dimensionful quantities like volumes occupied
by topological fermion modes should depend on ΛQCD but not on the lattice spacing. On the
contrary, the lattice measurements demonstrate that these volumes do depend on the spacing (i.e.
on the measurement resolution) and shrink to zero in the continuum limit [263–267].

It turns out that the continuum definition of the topological charge density

q(x) =
1

32π2
ǫµναβ Tr

(
Ga

µν G
a
αβ

)
(10.0.1)

cannot be directly applied to the lattice gauge theory, since the discretized version of (10.0.1) is
no longer a full derivative. There are two widely used methods to study the topology of gauge
fields on the lattice. First, one can apply a smearing procedure, which makes the gauge fields
smoother and thus closer to the classical fields. Second, one can rely on the lattice version of the
Atyah-Singer theorem and define the total topological charge of a gauge field configuration as the
number of zero modes of the overlap Dirac operator [198] on this configuration. The corresponding
local density of topological charge can be defined, for example, as follows [196,268,269]:

q(x) = −Tr
[
γ5

(
1 − a

2
D(x, x)

)]
, (10.0.2)

where D(x, x) is the zero-mass Neuberger operator and the trace is taken over spinor and color
indices. Another attractive property of this definition is that it allows us to measure a local

imbalance in the number of left- and right-handed quarks (chirality), which is important for lattice
studies of the local CP-violation in strong interactions [30, 41–43]. A typical result of the lattice
simulation for this quantity (without cooling) is shown in Fig. 1.1(b).

At the moment there are many investigations related to the spatial structure of the topological
charge distribution [266,267,270–279], which use both of the alternative definitions. The measure-
ments which rely on the cooling procedure mostly suggest an instanton-like picture of the QCD
vacuum [280], while the definition (10.0.2) typically shows that the topological charge is localized
at low-dimensional objects (defects) [266,267,273–279] and has a very-long-range structure of the
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β a [fm] L3
s × Lt V [fm4] # conf

3.200 0.117 123 × 12 3.93 50×13
3.295 0.100 143 × 14 3.90 50×13
3.332 0.094 153 × 15 3.89 50×13
3.365 0.088 163 × 16 3.88 50×13
3.425 0.078 183 × 18 3.87 50×13

Table 10.0.1: Lattice parameters used in the calculation: couplings β, lattice spacings a, lattice
sizes L3

s × Lt, physical volume V , and number of gauge field configurations.

distribution [274–279]. At the qualitative level it is known that both definitions yield the topo-
logical charge densities which are strongly correlated [270, 281, 282]. For an alternative filtering
method based on adjoint fermions see Ref. [283].

The aim of this chapter is to fill the existing gap in the literature and to demonstrate in what
way the cooling procedure affects the dimensionality of regions where the topological charge density
is localized. We use the definition (10.0.2) based on zero modes of overlap Dirac operator and show
that as the gauge field configurations are cooled the dimension of these regions gradually tends
to 4, which is the total space dimension. The procedure makes the effective resolution of the
measurement lower and thus provides a result close to the instanton picture. We verify our result
using several measures of the localization [263,265,284].

10.1 Technical details

We work in the quenched SU(2) lattice gauge theory with the tadpole-improved Wilson-Symanzik
action [243]. Lattices we used are listed in Table 10.0.1. We also implement the cooling procedure
described in Ref. [271] with coefficient c = 0.5 for the APE-smearing. For each lattice spacing we
consider thirteen different stages of the cooling procedure: 0, 1, 2, 5 - 12, 20 and 50 iterations of the
algorithm. For valence quarks we use the Neuberger’s overlap Dirac operator [198]. Its eigenvalues
and eigenfunctions are given by the following relation

Dψλ = λψλ . (10.1.1)

The quantities we measure in the present work are functions of two basic ingredients: the
“chiral condensate” computed on a mode with eigenvalue λ,

ρλ(x) = ψ∗α
λ (x) ψλα(x) (10.1.2)

and “chirality” computed on a mode with eigenvalue λ [in agreement with the definition (10.0.2)],

ρ5
λ(x) =

(
1 − λ

2

)
ψ∗α

λ (x)γ5
αβ ψ

β
λ(x) . (10.1.3)

Here we sum over spinor and (omitted) color indices. The total values of both chiral condensate
and chirality are given by an infinite sum over all eigenvalues. Lattice studies [212,285] suggest that
the long-distance properties of QCD can be treated with a finite cutoff of the fermionic spectrum.
We hereby restrict our consideration to the IR part of the Dirac spectrum consisting of zero modes
(λ = 0) and few low-lying modes (λ 6= 0).

Inverse participation ratio (IPR) for an arbitrary normalized distribution α(x) is usually defined
in the following way

IPR =

{
N
∑

x

α2(x)

∣∣∣∣∣
∑

x

α(x) = 1

}
, (10.1.4)
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whereN is the total number of lattice sites x. From this definition one can clearly see that IPR = N
if α(x) is localized on a single site and IPR = 1 if α(x) = const, i.e. the distribution is unlocalized.
In general IPR is equal to the inverse fraction of sites occupied by the support of α(x). Since this
fraction of sites can be thought of as a number of four-dimensional lattice hypercubes covering the
support, the Hausdorff dimension d of these regions can be extracted from the asymptotic behavior
of IPR at small lattice spacings a

IPR(a) =
c

ad
, (10.1.5)

where c is a constant. It is also useful to mention, that in physical units IPR−1 is equal to the
part of the total volume occupied by the distribution.

In the following sections we will modify the standard definition (10.1.4) to adapt it to our
particular cases (i.e. unnormalized or non-normalizable distributions, etc.). The final result will
show an equivalence of the chosen definitions.

10.1.1 Ordinary IPR for zero modes.

In this section we compute the inverse participation ratio for the fermionic zero modes according
to the one defined in Ref. [265]:

IPR0 = N




∑

x

(ρ0(x))
2

(
∑

x

ρ0(x)

)2




λ=0

, (10.1.6)

where the brackets [...]λ=0 denote an averaging over all zero modes and further averaging over all
gauge field configurations. Results are presented in Fig. 10.2.

The left-hand figure shows how the localization depends on the lattice spacing a - the finer the
lattice, the larger the IPR. This fits very well to the idea of vanishing total volume occupied by
fermionic zero modes in the continuum limit a → 0 (see Ref. [259, 260] for a review). Using the
fit (10.1.5) we recover the fractal (Hausdorff) dimension d of the volume. Results for the fits with
fixed numbers of cooling steps are presented in the Table 10.1.1. Here, to minimize errors, we also
prepared an alternative sample consisting only of those configurations which do not lose all the
fermion zero modes during the cooling. We picked then the values with better (and also sufficient)
statistical significance.

10.1.2 Chiral IPR for low-lying modes. First definition.

In this section we modify the IPR to measure localization properties of the topological charge

distribution. The average chirality

[
∑

x

ρ5
λ(x)

]

λ

is zero, therefore we have to use either the

absolute value |ρ5
λ(x)| or the square

[
ρ5

λ(x)
]2

. Here we stick to the definition from [284], which in
our terms has the following form

IPR5
0 = N




∑

x

(
ρ5
0(x)

)2

(
∑

x

ρ0(x)

)2




λ=0

. (10.1.7)
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Number of Fractal Standard
P-value

cooling steps dimension error

0 2.84 ± 0.44 15% 0.008
1 2.66 ± 0.66 25% 0.027
2 2.49 ± 0.46 18% 0.013
5 2.17 ± 0.49 23% 0.021
6 2.75 ± 0.66 24% 0.025
7 3.17 ± 0.51 16% 0.009
9 3.71 ± 0.34 9% 0.001
12 3.88 ± 0.23 6% 4 · 10−4

Table 10.1.1: Fractal dimension of the fermionic zero modes and, equivalently, of the topological
charge distribution.

Results are presented in Fig. 10.3. From the plots we conclude that the topological charge
distribution behaves similar to the zero modes, tending to occupy a vanishing volume in the
continuum limit. We can also compute the chiral IPR for small but nonzero eigenvalues (in our
case we pick first 7 eigenvalues, λ . 200 MeV),

IPR5
λ6=0 = N




∑

x

(
ρ5

λ(x)
)2

(
∑

x

ρλ(x)

)2




λ6=0

. (10.1.8)

Chiral IPR for these modes is small (Fig. 10.4) and thus the topological charge distribution at this
part of the spectrum is delocalized.

10.1.3 Chiral IPR for zero modes. Second definition.

Finally we consider a second definition of the chiral IPR according to [263]:

IPR5
0 = N




∑

x

∣∣ρ5
0(x)

∣∣2

(
∑

x

|ρ5
0(x)|

)2




λ=0

, (10.1.9)

where, as before, ρ5
0(x) denotes the chirality on a zero mode (10.0.2). Results are presented in

Fig. 10.5. As can be seen from Figs. 10.2, 10.3, and 10.5 the IPR for the zero modes and for the
topological charge density on these modes are the same up to negligible deviations. Results of the
fitting procedure coincide for these three cases and are shown in Table 10.1.1. The coincidence is
not accidental, because for the zero modes [D, γ5] = 0 and γ5|ψ0〉 = ±|ψ0〉. This means that on a
given mode ρ0(x) and ρ5

0(x) are equal to each other up to a sign.

10.1.4 Fractal dimension. Results and conclusions.

To conclude, we demonstrate that the topological charge is localized on low-dimensional fractal
structures, whose fractal (Hausdorff) dimension depends on the number of cooling steps. The
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Figure 10.1: (a) Fractal dimensions at various cooling stages. The solid line is shown to guide the
eye. (b) Mean action at various cooling stages.

obtained dimension is about d = 2 ÷ 3 for a few (n < 6) steps of the cooling, while it grows to
d = 4 with further iterations (see Fig. 10.1(a)). For a long cooling (n & 20) the result becomes
insignificant, because the procedure leads to a delocalization of the distributions as can be seen
in Figs. 10.2–10.5 (otherwise IPR remains consistent with a constant within error bars). We
suppose that it can be caused by the annihilation of the instanton/anti-instanton pairs. Indeed,
comparing the mean action evolution (Fig. 10.1(b)) with the one from e.g. Ref. [286] we see that
the annihilation phase in our case could start already from n ∼ 20. In Ref. [271], where the same
cooling algorithm is used, the annihilation takes place even at a smaller number of steps.

The main conclusions of the chapter are the following:

(1) Fermionic zero modes and chirality are localized on structures with fractal dimension d =
2 ÷ 3, which is an argument in favor of the vortex/domain-wall nature of the localization
[287–289].

(2) A long sequence of iterations of the cooling procedure provides a result close to the instanton
picture, i.e. destroys the low-dimensional structure of the QCD vacuum.

The low dimensional structure of the vacuum, if true beyond the probe quark limit, may lead
to a new phenomenology relevant for the heavy-ion experiments [8, 15, 143, 290]. One of the most
promising effects appearing due to the nontrivial topology of the QCD vacuum is the so-called
“chiral magnetic effect” (CME) [30, 41–43], which states the generation of an electric current in
parallel to an external magnetic field. Topological charge density in this case can be understood
as an imbalance in the number of left- and right-handed light quarks induced by a nontrivial
gluonic background. At the current level of analytic studies CME is considered as an effect on the
background of spatially homogeneous axial fields [30, 41–43], while the lattice simulations predict
an irregular structure of the would-be axial field (see Fig. 1.1(b)). This spatial inhomogeneity
can be treated within a chiral superfluid model [8], where the chirality is carried by an effective
axion-like field. Knowledge of the nature of the topological charge localization can help us to
translate lattice Euclidean properties of the chirality to the language of an effective Minkowski
field theory [291].

109



CHAPTER 10. FRACTAL DIMENSION OF THE TOPOLOGICAL CHARGE
DISTRIBUTION

 5

 10

 15

 20

 25

 30

 35

 0.075  0.08  0.085  0.09  0.095  0.1  0.105  0.11  0.115  0.12

or
di

na
ry

 IP
R

Lattice spacing (fm)

0 steps
2 steps
7 steps
9 steps

10 steps
20 steps
50 steps

 5

 10

 15

 20

 25

 30

 35

 40

 1  10

or
di

na
ry

 IP
R

Number of cooling steps

124

144

154

164

184

Figure 10.2: Ordinary IPR for zero modes (10.1.6).
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Figure 10.3: Chiral IPR for zero modes. First definition, Eq. (10.1.7).
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Figure 10.4: Chiral IPR for the lowest nonzero modes. First definition, Eq. (10.1.8).
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Figure 10.5: Chiral IPR for zero modes. Second definition, Eq. (10.1.9).
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Chapter 11

Chiral superfluidity of the
quark-gluon plasma

Chiral properties of the strongly coupled quark-gluon plasma (sQGP) have attracted much at-
tention in light of recent measurements performed within the heavy-ion programs at RHIC and
LHC. The analysis of charge-dependent azimuthal correlations by STAR [37, 38], PHENIX [39]
and ALICE [40] collaborations suggests a possible local P-violation in strong interactions, which
manifests itself as an asymmetry in the charged particle production with respect to the reaction
plane. One of the most popular theoretical approaches to study the observed phenomena is to
seek for new electric currents of a specified direction in the QGP phase (see e.g. [30, 41, 42, 157]).
Since the physics of sQGP is essentially nonperturbative, there is a lack of models based on the
first-principle calculations, i.e. starting from the QCD Lagrangian. In this chapter we establish
such a model for sQGP in the range of temperatures Tc < T . 2Tc, i.e. slightly above the decon-
finement transition. We choose the range mainly because of two reasons: first, it is estimated to
be typical for sQGP at RHIC [292]; and second, we can use hydrodynamic models to describe the
system [16,17, 293–297].

Lattice calculations [243, 249, 298] demonstrate that the Dirac spectrum for massless quarks
at these temperatures contains a peak near zero virtuality separated by a gap from the bulk of
the spectrum (Fig. 11.1(b) and Fig. 11.2). Therefore, it is natural to introduce a two-component
fluid model for the sQGP: one component, carrying chiral properties of the fluid, and the rest,
corresponding to the bulk of the spectrum. In our case it turns out that the fluid is described by a
system of equations similar to ones of a relativistic superfluid [299,300]. This fact, of course, does
not directly lead to the conventional superfluidity, since the “normal” and “superfluid” components
in our case carry different U(1) charges. We also do not assume any hidden symmetry spontaneously
broken in the system. Instead, we treat the term “superfluidity” in a phenomenological sense
traced back to the Landau’s formulation [301], i.e. a combination of two independent (curl-free
and “normal”) motions of the fluid separated by an energy gap.

Before proceeding with a formal derivation let us provide a few hints supporting the exis-
tence of the “superfluid” component. In Refs. [274–279] it has been discovered and confirmed
by [266, 267] that topological charge density forms long-range coherent global structures around
a locally one-dimensional network of strong fields (so-called “skeleton”). Though the simulations
were performed for low temperatures, the skeletons could very well survive slightly above the de-
confinement transition, since there is a corresponding long-range order of gluonic fields [302] in
the case of nonvanishing topological susceptibility. The extended character of the skeleton can be
interpreted as a long-distance propagation of (quasi-) particles, carrying finite chirality and thus
forming the chiral “superfluid” component.
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(a) (b) (c)

Figure 11.1: Fermionic spectrum of the chirally symmetric Dirac operator in a finite volume and
quenched limit for T < Tc (left), Tc < T . 2Tc (center) and T > 2Tc (right).

In addition, the lattice data [9, 266, 267, 273–279] suggest that the topological charge density
itself (for uncooled configurations) is localized on low-dimensional defects with fractal dimension
between 2 and 3, i.e. presumably on (percolating) central vortices (see also [263,265] for a similar
result based on the scalar density distribution and [303, 304] for a localization on vortex inter-
sections). One can demonstrate [265, 304–306] that removal of the central vortices eliminates all
zero and chiral near-zero modes from the fermionic spectrum. The converse statement is also true:
small eigenvalues can be generated at separate center vortex configurations [305]. It seems natural
to consider the vortices as spatially one-dimensional “guides” for light fermions. Since massless
fermions propagate in (1+1) dimensions with the same speed (speed of light), we can consider
their bilinear combinations as bosonic excitations, even without assuming their interaction with
each other. A similar effect of binding for light fermions along 1D defects, without making use of
the Goldstone theorem, was considered in [307,308] for non-Abelian fields and in [158,214,215] for
a strong external magnetic field.

It is also known that monopole trajectories and central vortices populating QCD vacuum and
leading to the confinement at low temperatures [309] become Euclidean-time oriented (static)
at high temperatures [310]. Static nature of the vortices makes it possible to continue them to
the Minkowski space-time by considering their intersections with planes of constant Euclidean
time. These intersections are in general percolating strings, which, according to the polymer
representation of the field theory [311–313], can be interpreted as a 3D scalar field with non-
vanishing vacuum expectation value. If this field is complex, then its phase can describe a new
Goldstone mode in the deconfinement forming the superfluid component of sQGP [291,314]. Taking
into account the vortex picture of the topological charge generation [315,316] it seems interesting
to apply the arguments of [291,314] to the chiral superfluidity (we do not implement it here).

Other arguments in favor of the superfluidity were presented in recent analysis in the framework
of stringy models [317–319], where a new formulation of the superfluidity with vanishing chemical
potential has been suggested.

In what follows we do not specify the way quarks are bound to each other and form a “super-
fluid” component, leaving the question open for the further studies (possible examples are given
above and in the main text). Regardless of the nature of the “superfluid” component, we obtain
the same universal phenomenological predictions, namely the chiral magnetic, chiral electric and
dipole wave effects.
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11.1. DERIVATION OF THE EFFECTIVE LAGRANGIAN

11.1 Derivation of the effective Lagrangian

It is known that many of the essential properties of the QCD vacuum (such as the value of the
chiral condensate, electric and magnetic characteristics, etc.) can be determined from the IR part
of the fermionic spectrum [6, 7, 51, 221, 266, 320, 321]. This makes it possible to introduce a finite
cut-off Λ for the fermionic spectrum, without affecting the values of the observables (indeed, our
phenomenological results do not depend on Λ, see Section 11.2.2). In this section we perform
the bosonization procedure with a finite cut-off [322] for the SU(Nc) × Uem(1) theory and derive
an effective Lagrangian. This procedure leads to appearance of a dynamical axion-like field θ(x),
which we identify with the propagating chirality (i.e. local difference between numbers of left- and
right-handed fermions) in the system.

11.1.1 The functional integral

The gauge fields of the theory are represented by

Aµ = A0
µT

0 + gGa
µT

a ≡ Aâ
µT

â, A5µ = A5
0
µT

0 , (11.1.1)

where
{
T a
∣∣∣ a = 1, (N2

c − 1)
}

are the SU(Nc) color matrices normalized by Tr(T aT b) = δab/2 and

T 0 = 1. Here A0
µ and A5

0
µ play a role of Abelian fields, while Ga

µ are gluonic fields. The axial-vector
field A5µ is an auxiliary external field and will be turned off at the end of the procedure. The
Euclidean functional integral for Dirac fermions (Nf = 1) in external vector Aµ(x) and axial-vector
A5µ(x) fields is given by

Z(A,A5) =

∫
Dψ̄Dψ exp

{
−
∫

V

d4x ψ̄( /D − im)ψ

}
= det( /D − im) , (11.1.2)

/D = −i(/∂ + /A+ γ5 /A5) .

The eigenvectors of /D are defined by1

/Dψn = λnψn . (11.1.3)

They form a complete orthonormal basis {ψn|n ∈ N} in the space of square-integrable spinors.
According to the general prescription [322–324], we expand ψ and ψ̄ into this basis and cut the
summation after first N basis vectors:2

ψ(x) →
N∑

n=1

anψn(x) , ψ̄(x) →
N∑

n=1

ψ†
n(x)bn . (11.1.4)

Then the functional integral (11.1.2) can be rewritten as

ZN =

∫ N∏

n=1

dbn dan exp



−

N∑

n,k=1

bn〈ψn| /D − im|ψk〉ak



 = det( /D − im)N , (11.1.5)

( /D − im)N ≡ 1 − PN + PN ( /D − im)PN , PN ≡
N∑

n=1

|ψn〉〈ψn| .

1The Dirac operator /D should be Hermitian, therefore formally the axial field has to be rotated A5 → iA5

from the beginning and then rotated back A5 → −iA5 in the final result. We stick to conventions of [322] and
choose Hermitian gamma-matrices γ† = γ and γ5 ≡ −γ0γ1γ2γ3, while in Fujikawa’s earlier works [323, 324] they
are anti-Hermitian.

2We do not consider zero-modes, otherwise the functional integral (11.1.2) will vanish in the chiral limit. We are
not interested in the global topological properties of the system.
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From the gauge invariance of ( /D− im)N it follows that the projector PN commutes with the Dirac
operator

[
/D, PN

]
= 0, which will be used in the further calculations.

For the regularization we need to introduce a mass parameter Λ, to be discussed below. It will
be defined via |λN | < Λ < |λN+2|. The projector PN can then be replaced by

PΛ ≡ θ

(
1 − /D

2

Λ2

)
=

+∞∫

−∞

dζ

2πi(ζ − iε)
exp

[
iζ(1 − /D

2
/Λ2)

]
, (11.1.6)

where θ(x) is the Heaviside step function. We also replace all the indices N by Λ.

11.1.2 Vector currents conservation

The functional integral (11.1.2) is invariant under the gauge transformation





Aµ → Aµ + ∂µα+ [Aµ, α] ,
A5µ → A5µ ,
ψ → (1 − α)ψ ,
ψ̄ → ψ̄(1 + α) ,

(11.1.7)

where α = αâT â. Therefore,

ZΛ(A) = ZΛ(A+ ∂α) ≃ ZΛ(A) +

∫
d4x

δZΛ(A)

δAâ
µ(x)

· ∂µα
â(x) . (11.1.8)

After integration by parts we get

∂µ
δZΛ(A)

δAâ
µ(x)

= 0, (11.1.9)

which means that the vector currents

jµ â
Λ (x) ≡ − 1

ZΛ

δZΛ(A)

δAâ
µ(x)

= iTr

(
γµT â〈x| PΛ

( /D − im)Λ
|x〉
)

(11.1.10)

are conserved. To derive the last expression one can use the equivalences exp Tr ln(·) = det(·) and

1

( /D − im)Λ
= 1 − PΛ +

PΛ

/D − im
(11.1.11)

as well as the general identity for projectors

PP ′P = P (P 2)′P = 2PP ′P = 0 , (11.1.12)

where the prime denotes a derivative of P with respect to an arbitrary parameter.

11.1.3 Anomaly for the axial current

Let us perform the chiral transformation of the functional integral





Aµ → Aµ ,

A5
0
µ → A5

0
µ + ∂µǫ ,

ψ → (1 + γ5ǫ)ψ ,
ψ̄ → ψ̄(1 + γ5ǫ) ,

(11.1.13)
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with ǫ = ǫ0T 0. Then in analogy with the previous section we get

ZΛ(A5) = ZΛ(A5 + ∂ǫ, ǫ) ≃ ZΛ(A5) +

∫
d4x

δZΛ(A5, ǫ)

δA5
0
µ(x)

· ∂µǫ(x) +

∫
d4x

δZΛ(A5, ǫ)

δǫ(x)
· ǫ(x) .

(11.1.14)

The second term here is due to a nontrivial transformation of the integration measure of the
functional integral, and was absent in the case of vector current. The projector PΛ and combined
operator /D − im also transform under the chiral rotations:

PΛ → (1 + γ5ǫ)PΛ(1 + γ5ǫ) , ( /D − im) → (1 + γ5ǫ)( /D − im)(1 + γ5ǫ) . (11.1.15)

δPΛ(x)

δǫ(x′)
= {γ5, PΛ(x)} δ(x− x′) ,

δ( /D − im)(x)

δǫ(x′)
= −2imγ5δ(x− x′) . (11.1.16)

If we introduce the axial current as

j5µ
Λ (x) ≡ − 1

ZΛ

δZΛ(A5)

δA5
0
µ(x)

, (11.1.17)

then from (11.1.14) it follows that

∂µj
5 µ
Λ = − 1

ZΛ

δZΛ(A5)

δǫ(x)
. (11.1.18)

The latter is equal to

− 1

ZΛ

δZΛ(A5)

δǫ(x)
= − Tr

[
1

( /D − im)Λ

(
−δPΛ

δǫ
+ 2

δPΛ

δǫ
( /D − im)PΛ + PΛ

δ( /D − im)

δǫ
PΛ

)]

=2imTr

(
γ5T 0〈x| PΛ

( /D − im)Λ
|x〉
)

+ 2 Tr(γ5〈x|PΛ|x〉) , (11.1.19)

where we used (11.1.11, 11.1.12, 11.1.15, 11.1.16) and the commutation properties of /D. By means
of (11.1.6), the second matrix element in this formula can be expressed as

Tr(γ5〈x|PΛ|x〉) = Tr



γ

5

∫
d4k

(2π)4

+∞∫

−∞

dζ

2πi(ζ − iε)
e−ikxeiζ(1− /D2/Λ2)eikx



 (11.1.20)

= Tr



γ

5

∫
d4k

(2π)4

+∞∫

−∞

dζ

2πi(ζ − iε)
exp

[
iζ

(
1 − k2

Λ2
− 2

Λ2
kµDµ(x) − /D

2

Λ2

)]
 (11.1.21)

= −
∫

d4k̃

(2π)4

+∞∫

−∞

ζ2dζ

4πi(ζ − iε)
eiζ(1−k̃2)Tr

[
γ5( /D

4
+ 4Λ2 (k̃µDµ)2 + Λ2 2i

ζ
/D

2
)

]

+O

(
1

Λ2

)
, (11.1.22)

where k̃ ≡ k/Λ. Using the algebra of the gamma-matrices, we write

/D
2

= −D2
V − 1

2
γ[µγν]Aµν +A5

2
µ − (∂µA5µ)γ5 − γ[µγν]

(
DV µA5ν −A5µDV ν

)
γ5 , (11.1.23)
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where DV ≡ −i(∂ +A), and finally obtain

∂µj
5µ
Λ = 2mρ5

Λ +
1

16π2
εµνλκTr

(
AµνAλκ +

1

3
A5µνA5λκ

)

+
1

4π2
Tr

(
∂µ∂

µ∂νA5ν +
2

3

{
{∂µA5

ν , A5ν} , A5µ

}
+

1

3

{
∂µA5µ, A5

νA5ν

}
+

2

3
A5

µ∂νA5νA5µ

)

+
Λ2

2π2
Tr
(
∂µA5µ

)
+O

(
1

Λ2

)
, (11.1.24)

where the chirality ρ5
Λ is defined by

ρ5
Λ ≡ iTr

(
γ5T 0〈x| PΛ

( /D − im)Λ
|x〉
)

(11.1.25)

and the field strengths are

Aµν = ∂µAν − ∂νAµ + [Aµ, Aν ] ,

A5µν = ∂µA5ν − ∂νA5µ + [Aµ, A5ν ] −
[
Aν , A5µ

]
= ∂µA5ν − ∂νA5µ.

The first line in (11.1.24) is the usual chiral anomaly with a mass-dependent term and the topolog-
ical term. The rest of (11.1.24) can be subtracted away by adding to the Lagrangian the following
gauge-invariant term:

∆L =
1

12π2
Tr

(
3Λ2 (A5µA5

µ) +
1

2
(∂µA5

µ)
2 −

(
A5µA5

µ
)2
)
. (11.1.26)

11.1.4 Axionic Lagrangian

The external axial-vector field A5µ should be now switched off, which is equivalent to considering

the pure gauge A5
0
µ = ∂µθ, since one can always generate a pseudoscalar field θ by the local chiral

rotation /A→ /A+ γ5/∂θ. In other words, the quadratic term in (11.1.26) is required by having the
chiral transformation consistent with the correct form of the chiral anomaly. In the chiral limit
m→ 0 the total effective Euclidean Lagrangian is given then by3

L(4)
E =∆L +

1

4
GaµνGa

µν +
1

4
FµνFµν − jâ µAâ

µ − j5µA5
0
µ

=∆L +
1

4
GaµνGa

µν +
1

4
FµνFµν − j0µA0

µ − gja µGa
µ − j5µ

Λ ∂µθ

∼ 1

4
GaµνGa

µν +
1

4
FµνFµν − j0µA0

µ − gja µGa
µ

+
Λ2Nc

4π2
∂µθ∂µθ +

g2

16π2
θGaµνG̃a

µν +
Nc

8π2
θFµν F̃µν

+
Nc

24π2
θ�2θ − Nc

12π2
(∂µθ∂µθ)

2 , (11.1.27)

where we used the anomaly expression (11.1.24) and integrated by parts. Kinetic terms for the
electromagnetic and gluonic fields could be introduced already in (11.1.2) and do not affect the
derivation. As we see, the kinetic term for θ even being absent in (11.1.2) is generated dynamically4,

3Currents jâµ can be sourced by fermions from the scales above Λ.
4The θ-field does not appear in the integration measure and hence should be treated as a classical low-energy

excitation. It is possible due to the fact that the loop corrections by θ-fields are finite in 4D and depend on the
powers of external momenta divided by Λ, i.e. such loop amplitudes are suppressed by powers of Λ.
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see also [325,326] for similar examples. Appearance of the quartic terms in (11.1.27) is due to the
fact that the bosonization procedure in 4D is not exact. One can in principle derive an infinite
number of higher-order terms suppressed by powers of Λ, but we drop them for simplicity. If we
drop quartic terms and replace conventions A0

µ → Aµ, j0µ → jµ, then the effective Lagrangian is
reduced to

L(2)
E =

1

4
GaµνGa

µν +
1

4
FµνFµν − jµAµ − gja µGa

µ

+
Λ2Nc

4π2
∂µθ∂µθ +

g2

16π2
θGaµνG̃a

µν +
Nc

8π2
θFµν F̃µν . (11.1.28)

This Lagrangian describes a generalization of the axion electrodynamics [327], where the new
terms are due to gluonic fields. It seems interesting that the axionic field θ(x, t) appears within
QCD coupled to QED, without any further assumptions as e.g. the Peccei-Quinn mechanism [328].
Similarly to the ‘true’ axion, θ(x, t) is a propagating dynamical field. However, the value of the

decay constant f =
2Λ

π

√
Nc turns out to be of order of scales appearing in QCD (see below),

while in cosmological scenarios this value is usually around 109 − 1012 GeV. The formal similarity
of (11.1.28) to the axion Lagrangian allows us to derive an explicit expression for the mass of
θ(x, t) [56, 329,330],

m2
θf

2 = χ(T ) , (11.1.29)

where χ = limV →∞
〈Q2〉

V is the topological susceptibility related to fluctuations of the topological
charge Q. Lattice simulations demonstrate that χ goes (almost) to zero at temperatures above the
deconfinement transition [243,298,331–333], this behaviour is also confirmed within the interacting
instanton liquid model [330]. Meson masses in the deconfinement interpolate between their values
at T . Tc and approximately twice the lowest quark Matsubara frequency (i.e. 2πT ) [334]. These
two facts allow us to consider the axion-like field θ(x, t) as a nearly-massless field, an essential
requirement for a superfluid mode.

Instead of considering θ as a real particle we rather tend to interpret it as a collective excitation
(quasi-particle) of the medium in the nonperturbative regime of QCD (e.g. combinations of chiral
quarks). As will be shown in next sections, the excitation carries chirality and can be considered
as a 4D generalization of the Chiral Magnetic Wave [158]. These excitations can also be exactly
massless (compare with phonons or sound waves) and, at the same time, not necessarily consisting
of massless quantum particles, appearing as Goldstone bosons of some broken (e.g. Peccei-Quinn-
like) symmetry5. A straightforward derivation of this collective solution made out of quarks and
gluons is not worked out at the moment. However, there are some evidences that it could exist, see
e.g. comments on binary bound states in sQGP [336,337], lattice results on a screened attractive
force in the color-singlet channel [338] and ideas mentioned already in the Introduction.

11.1.5 Interpretation of Λ

The scale Λ can be studied by considering Nf = Nc = 1 in the limit of a constant background
µ = const, µ5 = const and negligible anomaly (i.e. slow varying θ = iµ5tE). In this case, keeping
also the quartic terms in (11.1.27) for generality, we get

ρ5 = − lim
tE→0

δL(4)
E

δµ5
=

1

2

(
Λ

π

)2

µ5 +
1

3π2
µ3

5 . (11.1.30)

In other words, the value of Λ can be read off from the dependence of chirality ρ5 on the chiral
chemical potential µ5. We consider here three existing examples one can find in the literature.

5Even if we assume that U(1)A symmetry is broken spontaneously, as suggested in [335], then the bosonization
procedure does not describe η′, since it is a spin-0 particle, which can not carry chirality as θ does.
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(1) At high temperatures, neglecting effects of gluons and assuming equilibrium, one can define
the thermodynamic grand potential as [41]

Ω =
∑

s=±

∫
d3p

(2π)3

[
ωp,s + T

∑

±

log(1 + e−
ωp,s±µ

T )

]
, (11.1.31)

where ω2
p,s = (p+ sµ5)

2 +m2 and one also assumes an approximate conservation of the axial
charge. Differentiating the grand potential with respect to µ5 and taking the massless limit
one obtains [41]

ρ5 =
1

3

(
T 2 +

µ2

π2

)
µ5 +

1

3π2
µ3

5 . (11.1.32)

Comparing (11.1.32) with (11.1.30) we conclude

Λ = π

√
2

3

√
T 2 +

µ2

π2
(free quarks) . (11.1.33)

In [30,41] this scale is compared with the inverse radius of a typical sphaleron at given temper-
ature. Notice, that in the high temperature limit T ≫ µ and T ≫ µ5 we get simplifications
Λ ∝ T and ρ5 ∝ Λ2µ5 ∝ T 2µ5.

(2) In case of a strong external magnetic field (eB > µ2
5/2) one can construct the grand potential

for fermions on the lowest Landau level [41]

Ω =
eB

4π2

∞∫

−∞

d3p||

[
ωp + T

∑

±

log(1 + e−
ωp±µ

T )

]
, (11.1.34)

where ω2
p = (p|| + µ5)

2 + m2 and p|| denotes a component of momentum parallel to the

magnetic field. This gives us ρ5 =
eB

2π2
µ5 and hence

Λ = 2
√
eB (free quarks and strong B) . (11.1.35)

Upon the redefinition θ → π√
2NceB

θ the kinetic term for θ in the effective Lagrangian

(11.1.27) takes a canonical form
1

2
(∂µθ)

2, while the quartic terms are suppressed by factors

1/B and 1/B2, respectively. Therefore, the bosonization procedure becomes exact in the
limit B → ∞ as in [158].

(3) To include effects of gluons one needs to perform a lattice calculation with finite µ5, which has
been done in [53,54]. Slope of the curve ρ5 = ρ5(µ5) obtained in the paper6 is approximately
one (in lattice units), which being translated to physical units and compared with (11.1.30)
gives us

Λ ≃ 3 GeV (dynamical lattice fermions, Nf = 2, Nc = 3) . (11.1.36)

Appearance of this scale (much larger than ΛQCD) is not surprising, see e.g. [339, 340].

It is worth to mention that all three predictions even if being affected by either rough initial
assumptions or lattice artifacts, still provide a finite and reasonable value of Λ.

6There is no a priori introduced UV-cutoff in the paper since the inversion of the Dirac operator is done by
means of the BiCGstab solver
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Figure 11.2: Typical fermionic spectrum in the deconfined phase as seen by a SU(3) quenched
lattice simulation with tadpole-improved Lüscher-Weisz action and overlap fermions (β = 8.45,
a = 0.095 fm, V = 163 × 6, Nf = 1, Tc ∼ 260 MeV).

11.1.6 Fermionic spectrum and chirality

The Dirac spectrum for massless fermions is schematically shown in Fig. 11.1.7 Lattice studies can
be found in [243,249,265,284,298]. Below the critical temperature Tc the spectrum is a continuously
growing function in λ.

In contrast, at Tc < T . 2Tc the spectrum consists of three parts: exact zero modes (and
near-zero modes), followed by a gap for the low-lying modes and a continuous spectrum starting
from a finite λB . Presence of the near-zero peak can be interpreted as a manifestation of a (small)
remaining chiral condensate [249, 298], which is, however, not yet rigorously proven. Both the
chiral condensate and topological susceptibility χ(T ) are defined from the near-zero modes, since
the exact zero modes do not survive in the thermodynamic limit [320, 332, 333]. It is important,
that χ(T ) is small enough (to keep mθ small), but still not zero (otherwise θ itself does not exist).
This forces us to choose the window of temperatures Tc < T . 2Tc. At higher temperatures
T & 2Tc the peak disappears completely and all the correlations between quarks supposed to be
washed out by thermal effects. The gap width seems to be temperature dependent and grows with
the temperature [243]. The right bound λB is natural to identify with an effective quark mass,
since on the corresponding fermionic mode

λ2
BψB = /D

2
ψB = /p

2ψB = m2
effψB . (11.1.37)

A very strong external magnetic field can slightly shift the right bound of the spectrum to the left8

(see Fig. 11.2), but for magnetic field strengths occurring in heavy-ion collisions [30] the principal
shape of the spectrum remains the same.

7We show here only the non-negative part of the spectrum. In the chiral limit it is symmetric with respect to
the reflection λ → −λ.

8We are grateful to Victor Braguta for making this observation from our data
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Let us demonstrate that chirality is determined by the first part of the spectrum.

ρ5
Λ = iTr

(
γ5〈x| PΛ

( /D − im)Λ
|x〉
)

= i
∑

0<|λ|<Λ

ψλ
†γ5ψλ

λ− im

= i
∑

0<λ<Λ

ψλ
†γ5ψλ

λ− im
+ i

∑

0<λ<Λ

ψλ
†γ5γ5γ5ψλ

−λ− im
= −2m

∑

0<λ<Λ

ψλ
†γ5ψλ

λ2 +m2

= −
Λ∫

0

dλ ν(λ)
2m

λ2 +m2
ψλ

†γ5ψλ , (11.1.38)

where ν(λ) denotes the spectral density for an eigenvalue λ. Here, as before, we dropped the exact
zero-modes. Then, using the identity

lim
m→0

m

λ2 +m2
= πδ(λ) (11.1.39)

we find the following expression for the chirality

lim
m→0

ρ5
Λ = −2π

Λ∫

0

dλ ν(λ)δ(λ)ψλ
†γ5ψλ = −π lim

λ→0
ν(λ)ψλ

†γ5ψλ . (11.1.40)

From this expression we see that the chirality can be determined exclusively from the near-zero
fermionic modes. It is suggested and tested on a lattice [298] that this part of the spectrum is
originated from the zero modes of separate topological defects populating the vacuum, because
interactions between the original zero modes break their degeneracy. So the exclusion of the exact

zero modes from our analysis does not affect much the main results (for additional arguments see
also [51]).

11.2 Quark-gluon plasma as a two-component fluid

We now consider Minkowski version of the effective Lagrangian (11.1.28) for the quark-gluon plasma
with one quark flavor9,

L(2) = − 1

4
GaµνGa

µν − 1

4
FµνFµν − jµAµ − gja µGa

µ

− f2

2
∂µθ∂µθ +

Cg

4
θGaµνG̃a

µν +
Cγ

4
θFµν F̃µν , (11.2.1)

where, again, the decay constant is defined by f =
2Λ

π

√
Nc and the anomaly coefficients are given

by Cγ =
Nc

2π2
and Cg =

g2

4π2
.

Varying the Lagrangian (11.2.1) with respect to θ and vector fields Aµ and Ga
µ, we obtain the

following equations of motion:

∂µ∂µθ = − Cγ

4f2
Fµν F̃µν − Cg

4f2
GµνaG̃a

µν , (11.2.2)

∂µF
µν = −jν + Cγ(∂κθ)F̃

κν , (11.2.3)

∂µG
µνa + gfabcGb

µG
µνc = −gjνa + Cg(∂κθ)G̃

κνa , (11.2.4)

9The metric we use has the signature (− + ++)
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where fabc are the structure constants of SU(N). Bianchi identities are given by

∂µF̃
µν = 0 , (11.2.5)

∂µG̃
µνa + gfabcGb

µG̃
µνc = 0 . (11.2.6)

Interestingly, θ(~x, t) obeys a wave equation which is sourced by the U(1)A chiral anomaly. This
makes it a four-dimensional generalization of the so-called “Chiral Magnetic Wave” which has been
recently proposed in [158].

11.2.1 Hydrodynamic equations

The hydrodynamic equations may now be derived from the effective Lagrangian (11.2.1) and the
corresponding equations of motion (11.2.2)–(11.2.6). Taking the divergence of (11.2.3) and using
the Bianchi identity (11.2.5), we obtain the conservation law for the electromagnetic current,
∂νj

ν = 0, provided that the topology of the θ-field is non-singular with10

[∂µ, ∂ν ]θ = 0 . (11.2.7)

Varying L(2) with respect to the axial-vector −∂µθ, we obtain the axial current

jµ
5 = f2∂µθ . (11.2.8)

This current satisfies the anomaly equation

∂µj
µ
5 = −Cγ

4
Fµν F̃µν − Cg

4
GµνaG̃a

µν , (11.2.9)

as can be seen by substituting the equations of motion (11.2.2) into the divergence of (11.2.8).
Notice that U(1)A is still broken in the deconfinement [332,333].

The total energy-momentum tensor is a sum of both electromagnetic Θµν
γ and gluonic ones

Θµν
g and the stress-energy tensor of the fluid T µν . The energy-momentum tensors of the free

electromagnetic and gluonic fields are given by

Θµν
γ = FµλF ν

λ − 1

4
gµνFαβF

αβ , (11.2.10)

Θµν
g = GµλaGν

λ
a − 1

4
gµνGαβ

aGαβa . (11.2.11)

Their divergencies can be found by means of the equations of motion (11.2.3, 11.2.4),

∂µΘµν
γ = −F νλjλ − CγF

νλF̃λκ∂
κθ , (11.2.12)

∂µΘµν
g = −gGνλaja

λ − CgG
νλaG̃λκ

a∂κθ . (11.2.13)

Substituting this into the conservation law of the total energy-momentum,

∂µ(T µν + Θµν
γ + Θµν

g ) = 0 , (11.2.14)

we get (see also [343])

∂µT
µν = F νλjλ + gGνλaja

λ + CγF
νλF̃λκ∂

κθ + CgG
νλaG̃a

λκ∂
κθ . (11.2.15)

10delta-function on the r.h.s. of (11.2.7) would generate an axionic string [341]. For relevant phenomenological
consequences see [160, 342].
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The first two terms on the right hand side are the standard terms for a work done by external
fields. The last two terms is a work done by a Witten-like current [344]. Finally, keeping that
ρ5 ≡ j05 = f2∂0θ, we obtain an expression for the axial chemical potential,

µ5 =
δL(2)

δρ5
= −∂0θ . (11.2.16)

When boosted this turns into the Josephson-type equation µ5 = −uµ∂µθ, where uµ will be chosen
later as the velocity of the “normal” component, normalized by the condition uµu

µ = −1. We also
should assume, that ∂tθ is slow varying in time, i.e. ∂µθ ∼ O(p0), so the changes in chiral (axial)
charge are small at the scale of QGP lifetime [142,345], otherwise the chiral chemical potential is
not well-defined. Hydrodynamic and constitutive equations are then of order O(p2) and O(p1),
respectively.

In summary, the system of hydrodynamic equations is given now by

∂µT
µν = F νλ(jλ + Cγ F̃λκ∂

κθ) +Gνλa(gja
λ + CgG̃λκ

a∂κθ) , (11.2.17)

∂µj
µ
5 = −Cγ

4
Fµν F̃µν − Cg

4
Gµν aG̃a

µν , (11.2.18)

∂µj
µ = ∂µj

µa = 0 , (11.2.19)

uµ∂µθ + µ5 = 0 , (11.2.20)

where the last one is the Josephson-type equation. Corresponding constitutive relations in gradient
expansion, satisfying (11.2.2) and (11.2.17-11.2.18), can be represented by

T µν = (ǫ+ P )uµuν + Pgµν + f2∂µθ∂νθ + τµν , (11.2.21)

jµ = ρuµ + νµ , (11.2.22)

jµa = ρauµ + νµa , (11.2.23)

jµ
5 = f2∂µθ + νµ

5 , (11.2.24)

where ǫ, P , ρ, ρa are the energy density, pressure, electric charge density and color charge density,
respectively. Terms τµν , νµ, νµa and νµ

5 denote higher-order gradient corrections and obey the
Landau conditions

uµτ
µν = 0 , uµν

µ = 0 , uµν
µa = 0 , uµν

µ
5 = 0 . (11.2.25)

The stress-energy tensor T µν consists of two parts, an ordinary fluid component and a pseudoscalar
“superfluid” component. This modifies the Gibbs relation

dP = sdT + ρdµ− f2d

[
1

2
∂µθ ∂µθ

]
, (11.2.26)

where s is the entropy density. Being additionally supported by the results of the Section 11.1.6,
we can describe the fluid content as a mixture of two components, originated from different parts
of the fermionic spectrum,

(1) Zero and near-zero fermionic modes, which are involved into a potential (curl-free) motion
of the chirality described by j5µ = f2 ∂µθ = ρ5uSµ, where uSµ ≡ µ5 ∂µθ is the “superfluid”
velocity.

(2) The rest forming an “axially-neutral” component described by an electric jµ = ρuµ and color
ja
µ = ρauµ currents and separated from the curl-free component by a finite gap.

There are numerous studies (e.g. [30, 132, 346]) suggesting generation of a finite chirality in the
processes of heavy-ion collisions, so we can assume 〈ρ5〉 = f2〈µ5〉 6= 0 within an event. Such kind
of initial conditions is not captured by lattice simulations (〈ρ5〉 = 0 after averaging over gauge
configurations [6, 7, 51]), unless the finite 〈µ5〉 is introduced ad hoc [53, 54].
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11.2.2 Phenomenological output, possible tests of the model

Electric and magnetic fields in the fluid rest frame are defined as

Eµ = Fµνuν, Bµ = F̃µνuν ≡ 1

2
ǫµναβuνFαβ . (11.2.27)

One can also rewrite these definitions in the following way

Fµν = ǫµναβu
αBβ + uµEν − uνEµ, (11.2.28)

F̃µν = ǫµναβu
αEβ + uµBν − uνBµ , (11.2.29)

which we will use later.
The second term in first brackets (11.2.17) or equivalently the second term on r.h.s. of (11.2.3)

has an interesting phenomenological interpretation as an additional electric current, induced by
θ-field, i.e. associated with the “superfluid” component. This current is conserved due to the
Bianchi identity and vanishes in absence of either external electromagnetic fields or θ. Let us split
this term in three pieces using (11.2.29):

jS
λ ≡ Cγ F̃λκ∂

κθ = Cγ∂
κθ
(
uκBλ + ǫκλαβu

αEβ − uλBκ

)
(11.2.30)

= −Cγµ5Bλ + Cγǫλακβu
α∂κθEβ − Cγuλ(∂θ ·B) .

The first term in the sum is nothing but the Chiral Magnetic Effect (CME) [41], i.e. generation of
the electric current along the magnetic field. The second term is analogous to the Chiral Electric
Effect (CEE) [258], i.e. generation of the electric current perpendicular to applied electric field
and to both (normal and superfluid) four-velocities. The third term is a dynamical realization
of the domain wall polarization [42, 43] or simply the fact that the “would-be” axions acquire an
electric dipole moment in a magnetic field [327]. Keeping in mind a wave-like profile of the θ-field
we could call this effect the “Chiral Dipole Wave” (CDW). First term contains µ5 which is in our
case derived within QCD in contrary to other CME models. Last two terms are specific for the
two-component fluid model and can be considered as a possible experimental test of the model. A
concrete quantitative prediction and comparison to the experimental data are beyond of the scope
of this chapter and will be presented in a future publication. Some preliminary experimental ideas
are presented in Section 11.2.4.

The same analysis can be applied to the color current

jS a
λ ≡ Cg

g
G̃λκ

a∂κθ , (11.2.31)

which is the second term on the r.h.s. of (11.2.4). The corresponding effects can be called “Color
CME”, “Color CEE” and “Color CDW”, respectively. We are not focusing on these effects, since
the color currents cannot be observed directly. It is also important to mention that both currents
(11.2.30, 11.2.31) do not depend on the UV cutoff Λ introduced in the preceding sections.

11.2.3 Change in entropy and higher order gradient corrections

In previous sections we kept higher-order corrections τµν , νµ, νµa, νµ
5 undetermined. These correc-

tions incorporate possible dissipative effects (in presence of e.g. viscosity or electrical resistivity)
and can be found from the constraint ∂µs

µ ≥ 0 on the entropy current sµ [130]. A priori it is not
obvious whether they can interfere with the result (11.2.30) or not. Indeed, within the ordinary
hydrodynamics the chiral magnetic effect can be found as a part of the νµ term [3, 4, 140]. In this
section we show that there are no higher order corrections to the electric current jµ arising in our
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CHAPTER 11. CHIRAL SUPERFLUIDITY OF THE QUARK-GLUON PLASMA

case and affecting the phenomenological results of Section 11.2.2. Following [140], we transform
the quantity

I ≡ uν∂µT
µν + µ∂µj

µ + µ5∂µj
µ
5 (11.2.32)

using hydrodynamic and constitutive equations and equate both resulting expressions.

Constitutive equations

Using the second law of thermodynamics ǫ+ P = Ts+ µρ and (11.2.21)-(11.2.24), we can rewrite
this quantity as

I = uν∂µ ((Ts+ µρ)uµ)uν + uν (Ts+ µρ)uµ∂µu
ν + uν∂µPg

µν

+ uνf
2∂νθ ∂µ∂

µθ + uνf
2∂µθ ∂ν∂

µθ + uν∂µτ
µν

+ µ∂µ (ρuµ + νµ) + µ5f
2∂µ∂

µθ + µ5∂µν
µ
5 . (11.2.33)

Using the normalization condition uµuµ = −1, the Josephson equation uµ∂µθ + µ5 = 0 and the
following identities

∂µu
µ = inv = ∂0u

0 = 0, (11.2.34)

uνu
µ∂µu

ν =
1

2
(uνu

µ∂µu
ν + uνuµ∂µuν) = uµ∂µ(uνuν) ≡ 0, (11.2.35)

∂µ(ρuµ) = uµ∂µρ+ ρ∂µu
µ = uµ∂µρ = inv = u0∂0ρ = 0 (11.2.36)

we can simplify the expression for I to

I = − T∂µ (uµs) − uµ
{
s∂µT + ρ∂µµ− f2∂νθ ∂µ∂

νθ − ∂µP
}

+ uν∂µτ
µν

+ µ∂µν
µ + µ5∂µν

µ
5 + 2Cγµ5E

λBλ − Cg

2
µ5G

µνaG̃a
µν . (11.2.37)

The sum in the curly brackets is identically zero due to the thermodynamic relation (11.2.26). Also
uν∂µτ

µν = −τµν∂µuν because of the Landau frame condition (11.2.25). This leads to the further
simplification,

I = −T
(
∂µ (suµ) − µ

T
∂µν

µ − µ5

T
∂µν

µ
5

)
− τµν∂µuν + 2Cµ5E

λBλ − Cg

2
µ5G

µνaG̃a
µν . (11.2.38)

Hydrodynamic equations

Let us rewrite I again using the hydrodynamic equations (11.2.17-11.2.18). Then

I =F νλuνρ uλ + uνF
νλνλ + gGνλauνρ

a uλ + guνG
νλaνa

λ

+ CγuνF
νλF̃λκ∂

κθ + CguνG
νλaG̃a

λκ∂
κθ

+ Cγµ5E
λBλ − Cg

4
µ5G

µνaG̃a
µν

= − Eλν
λ + 2Cγµ5E

λBλ − Cg

2
µ5G

µνaG̃a
µν , (11.2.39)

where we used the Josephson equation, the definitions of the electric and magnetic fields (11.2.27)
and the corresponding inversed relations (11.2.29).
Combining this result with (11.2.38) we obtain

−T
(
∂µ (suµ) − µ

T
∂µν

µ − µ5

T
∂µν

µ
5

)
= τµν∂µuν − Eλν

λ . (11.2.40)
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Then dividing by −T and adding −νµ∂µ
µ

T
− νµ

5 ∂µ
µ5

T
to the both sides we can rewrite the result

as

∂µ

(
suµ − µ

T
νµ − µ5

T
νµ
5

)
= − 1

T
(∂µuν)τµν − νµ

(
∂µ
µ

T
− 1

T
Eµ

)
− νµ

5 ∂µ
µ5

T
. (11.2.41)

Comparing this result with one of Son and Surowka [130], we see that the term proportional
to Cγ is absent. This fact tells us that the divergence (11.2.41) is well defined, i.e. the entropy
production is always nonnegative, and in contrary to [130] we do not need to add any additional
terms to the entropy current. Therefore, there are no leading-order corrections to jS

λ coming from
the dissipative term νµ. So, all three anomalous effects are present already at the level of the
hydrodynamic equations (11.2.17).

The expression for the entropy current remains unchanged also because the “superfluid” com-
ponent itself has zero entropy. Indeed, considering (11.2.41) in absence of dissipative corrections
we obtain

∂µ(suµ) = 0, (11.2.42)

i.e. only the “normal” component contributes to the entropy current, which is a common property
of a real superfluid. This fact would well agree with the long-range coherence of the chirality
distribution [266,267,274–279,347,348], but should be studied more carefully, since the microscopic
nature of θ is not known precisely.

11.2.4 Preliminary estimates for the CME

It was proposed [349] to use charge-dependent correlations γα,β = 〈cos(φα + φβ)〉 for the mea-
surements of the local P-violation in heavy-ion collisions (see Ref. [177] for a review). Here φα,β

with α, β = ± are the azimuthal angles of the particles with respect to the reaction plane. The
average is taken over all pairs within an event and then over the whole event ensemble. With use
of reaction plane independent correlators δα,β = 〈cos(φα − φβ)〉 and trigonometric identities one
can split the initial correlation function into the “in-plane” 〈cos(φα) cos(φβ)〉 and “out-of plane”
〈sin(φα) sin(φβ)〉 components. The latter can be summarized in the following

STAR data [37, 38, 350] for
√
s = 200 GeV Au-Au collisions,

〈sin(φα) sin(φβ)〉same ≃ 0, (11.2.43)

〈cos(φα) cos(φβ)〉same < 0, (11.2.44)

〈sin(φα) sin(φβ)〉opp. ≃ 〈cos(φα) cos(φβ)〉opp. > 0. (11.2.45)

These relations can be interpreted as a mostly in-plane back-to-back emission of same-charged
particles, while opposite-charge particles move together without a preferred direction. Equality in
(11.2.45) can be qualitatively understood within the cluster model [34].

ALICE data [40] for
√
s = 2.76 TeV Pb-Pb collisions,

〈sin(φα) sin(φβ)〉same & 〈cos(φα) cos(φβ)〉same > 0, (11.2.46)

〈sin(φα) sin(φβ)〉opp. ≃ 〈cos(φα) cos(φβ)〉opp. > 0, (11.2.47)

differ from the RHIC data, in particular by nonvanishing out-of plane same-charge correlations.
One should also be aware of significant non-flow contributions to δα,β in the ALICE data [40]. In
both cases all nonzero correlators are growing in absolute value with centrality.

The data seems to be in contradiction with the predictions of CME. In fact, before drawing
conclusions, one should take into account all possible contributions to the correlators, including
ones coming from the parity-even effects, e.g. hydrodynamic flows. Let us assume, that in order
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Figure 11.3: Absolute value of the charge separation (11.2.50). See explanation in the text.

to separate the elliptic flow contributions we can introduce the following decomposition, in spirit
of [177],

γα,β ∼ v2 Fα,β −Hout
α,β +H in

α,β, (11.2.48)

δα,β ∼ Fα,β +Hout
α,β +H in

α,β, (11.2.49)

where F ’s denote the flow-induced correlators (by e.g. the transverse momentum conservation,
local charge conservation, etc.), and H ’s correspond to the flow-independent correlations in- and
out-of-plane (induced by e.g. CME, CEE, dipole assymetry from fluctuations, etc.). Then, by

considering an additional value rα,β ≡ γα,β(v2→0)
γα,β

we can resolve (11.2.48,11.2.49) with respect

to the shape-independent correlations. The criteria of completeness would be the symmetry of
Fsame, Hsame and Fopp., Hopp. with respect to zero, as a function of centrality.

As we concluded in Chapter 6, the CME contributes only to the v2-independent part of the
correlators, i.e. to H ’s, and, more precise, to Hout

α,β , since the magnetic field points in the direction

out-of-plane. If there were no other P-odd effects, then the H in part would hold zero. However,
lattice computations demonstrate the presence of temperature fluctuations of the chirality even
for a vanishing magnetic field, which would result in an isotropic parity-violating effect. These
fluctuations can be translated to the total charge asymmetry by means of a static fireball model [51],

H++ +H−− − 2H+− ∼ 4πτ2ρ2R2

3N2
q

(
〈j2‖〉 + 2〈j2⊥〉

)
, (11.2.50)

where Hα,β is the shape-independent part of γα,β, τ is the emission time, ρ ∼ ~c

1 GeV
is a charac-

teristic correlation length between particles, R ∼ 5fm is the radius of the fireball [351], Nq is the
number of particles of the same charge produced in one event (we took the data on the multiplicities
from [352,353]), and j⊥, j‖ are currents induced according to the geometry in Fig. 1.1(a). Results
for the absolute value of (11.2.50) are shown in Fig. 11.3. Taken that 〈j2µ〉 for different components
are of the same order at B = 0 [51] we get red and blue points in Fig. 11.3 for the current/charge
fluctuations taken from [51, 354]. These results are comparable by one-two orders of magnitude
with the experimental values [37, 38], which is remarkable, taken that the lattice data [51] is for
the quenched SU(2) theory, and we did not subtract the flow contributions from the STAR data.
The pattern of growth with the centrality is repeated even without magnetic fields, but because of
multiplicity, which itself depends on the centrality.

We can use (11.2.50) to estimate the magnitude of CME alone. For RHIC the τ ∼ 0.1fm/c is
the lifetime of the electromagnetic fields (see Fig. 1.2), which makes the assumption of the static
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fireball reasonable [25]. From (11.2.24) we get µ5(x) = f−2ρ5(x) with f ∼ 1 GeV and hence

〈µ2
5〉 = f−4〈ρ2

5〉 ∼
4N2

f

f4
· 〈∆Q

2
5〉

R6
, (11.2.51)

where the most optimistic estimate for the topological charge generated in a RHIC collision is√
〈∆Q2

5〉 ∼ 40 [346], Nf = 2 is the number of light flavors, R = 1.2A1/3 fm is the radius of the
nucleus. Using the estimate (11.2.51) we see that the root mean square of µ5 is only of order of
few MeVs. Taking the highest values of the magnetic field and µ5 = 10 MeV, we can find the
upper bound on the CME which is CME < 10−9. Taking into account the response of QGP to
the e.-m. fields and assuming the magnetic field to be approximately stationary during the QGP
lifetime [28, 35], we would get a value, which is two orders of magnitude larger, i.e. CME < 10−7,
see Fig. 11.3. The magnitude is too low to explain the charge asymmetry, while the temperature
fluctuations fit better to the data.

11.3 Conclusion

In this chapter we provided a novel treatment of the sQGP dynamics for the temperatures typical
for recent and ongoing heavy-ion experiments. The main feature of our studies is a combination
of nonperturbative methods applied to a general form of the theory, namely, the QCD coupled
to QED. Our conclusion is that there can exist a light (nearly massless) axion-like component of
the quark-gluon plasma for the given range of temperatures. This component accommodates all
the chiral and anomalous properties of the plasma and is responsible for a plenty of hypothetical
effects leading to the local P- and CP-violation in the strong interaction. The rest of the matter
content of QGP obeys the hydrodynamic equations of a nearly ideal fluid. Both of the components
together form some kind of a superfluid, which we call the “chiral superfluid”. This term should
be understood in a relative sense as a two-component fluid with independent curl-free and normal
motions. The separation between two motions is provided by a gap in the Dirac spectrum observed
in lattice QCD simulations with massless quarks. It is worth to mention, that in our case we do
not obtain the light “superfluid” component as a Goldstone field of a broken continuous symmetry.
Instead, it appears as a consequence of a nontrivial underlying vacuum structure. At the same
time, even not being a conventional superfluid, our system reproduces some usual properties, such
as a (pseudo-)scalar nature of the “condensate”, zero entropy of the “condensate”, Josephson-type
relation, etc. Taking into account only regular configurations of the “condensate” we reserve the
vortex-like solutions for the further studies.

An important issue not covered in this Chapter is the probe limit (quenching) for the lattice
fermions. It is not clear yet, whether the long-range structures survive in the full QCD or they
are destroyed by dynamical fermions. As a crucial test of our model we propose some phenomeno-
logical effects (Section 11.2.2), which can be proven experimentally, i.e. a response of QGP to the
presence of strong electromagnetic fields. A concrete description of the experimental consequences
is currently in progress.
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Chapter 12

On chromoelectric
superconductivity of the
Yang-Mills vacuum

The nonperturbative structure of the ground state of QCD vacuum is one of the most interesting
unsolved problems in quantum field theory. At zero temperature the ground state exhibits a mass
gap, breaks chiral symmetry and supports confinement of color sources, quarks and gluons. The
confining properties of the QCD ground state were intensively studied last decades resulting in a
number of phenomenological approaches to this problem.

One of the popular approaches is the “spaghetti vacuum” picture (the Copenhagen vacuum):
the QCD vacuum is considered to be populated by evolving vortex tubes which carry a chromo-
magnetic flux [355–359]. An isolated color charge – for example, a quark – scatters off the vortices
and develops an infinitely large free energy. As a result, the quarks may appear in the vacuum
only in a form of colourless (hadronic) states bounded by a chromoelectric string [356].

The standard mechanism of formation of the chromomagnetic vortices is as follows. The pertur-
bative vacuum of QCD – which is paramagnetic due to the asymptotic freedom – has an unstable
mode towards formation of a chromomagnetic field [360]. However, in the background of a homo-
geneous chromomagnetic field the gluon part of the vacuum energy develops an imaginary part
to large chromomagnetic moment of the gluon [355]. This implies that the homogeneous chromo-
magnetic field is also unstable towards squeezing of the chromomagnetic field into separate parallel
flux tubes (vortices) [358], similarly to the Abrikosov vortex lattice in a mixed state of an ordi-
nary type-II superconductor in an external magnetic field [361]. Finally, due to global rotational
and Lorentz invariance of the QCD vacuum, the chromomagnetic field has locally a domain-like
structure [357]: the field has different orientation in different domains. Due to the fact that the
vortices follow the orientation of the chromomagnetic field, the vortex lines form an intertwining
entangled structure, hence the name “spaghetti”.

Thus, the Copenhagen confining mechanism has a tight relation to ideas from ordinary super-
conductivity such as condensation and flux tube (vortex) formation. However, in addition to the
mentioned features there exists another, primary phenomenon which is associated with ordinary
superconductivity which is the superconductivity itself (i.e., the perfect conductivity of an electric
current). In this chapter we would like to show that the Copenhagen vacuum is not just “analo-
gous” to an ordinary superconductivity: in this picture the Copenhagen vacuum is a chromoelectric
superconductor from the point of view of the transport properties.

Why the Copenhagen vacuum should be a chromoelectric superconductor? A simple answer is
because in this picture the chromomagnetic tubes are formed due to the gluon condensate while
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the gluons are carrying a color charge. The condensation of the color charges should lead, naively,
to the (chromo)superconducting phenomenon. However, our considerations may contain a caveat:
in the ordinary superconductivity the Cooper-pair condensate has a macroscopic order over large
distances and this property is the core reason why the electric current may be transported by the
uniform condensate without dissipation. On the contrary, the QCD vacuum in the Copenhagen
picture has a domain-like structure with each domain possessing its own orientation (both in color
and coordinate spaces) of the gluon condensate so that the long-range order is absent. Nevertheless,
we argue below that this property is not an obstacle due to the long-range order which is maintained
along the chromomagnetic vortices. We arrive to the picture that in the spaghetti vacuum the
chromoelectric current should be able to stream without dissipation along the chromomagnetic
tubes. Basically, the chromomagnetic tubes work like specific, hollow wires which are able to carry
the chromoelectric current without resistance.

As one of the possible consequences of the color superconductivity one can expect probe quarks
to propagate along the flux tubes over arbitrary distances, so that the tubes can be considered
as “fermionic guides” [143, 307, 308, 342]. From the phenomenological perspective the long-range
propagation of quarks may lead to the phenomenon of chiral superfluidity of the quark-gluon
plasma [8].

The Yang-Mills Lagrangian is

L = −1

4
F a

µνF
aµν , (12.0.1)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + gǫabcAbµAc

ν is the strength tensor of the SU(2) gluon field Aa
µ.

For simplicity, we consider the SU(2) gauge field instead of more phenomenologically relevant
SU(3) fields since the latter solutions may be obtained – following the general construction of
Ambjorn–Olesen [358] – by an imbedding the SU(2) solutions into the SU(3) color group.

The corresponding equations of motion are as follows

∂µF a
µν + gǫabcAbµF c

µν = 0 . (12.0.2)

Following Ambjorn and Olesen [358] we consider the state of the Yang-Mills theory in a uniform
chromomagnetic field directed along the third spatial axis. In the color space the chromomagnetic
field is assumed to be directed in the third axis as well:

F a,ext
µν ∼ δa,3 (δµ1δν2 − δµ2δν1) . (12.0.3)

In order to obtain such a configuration, one can add a homogeneous Abelian magnetic flux in third
direction in color space [358]:

A3
1 = −x2

B

2
, A3

2 = x1
B

2
. (12.0.4)

For definiteness we take B > 0.
The ground state solution to the equations of motion (12.0.2) has certain remarkable properties.

The solution is a function of the transverse – with respect to the spatial direction of the external
chromomagnetic field (12.0.3) – coordinates x⊥ = (x1, x2) and it is independent on the longitudinal
coordinates x‖ = (x0, x3).

The longitudinal components of the vector fields are vanishing in the ground state, Aa
0 = Aa

3 = 0,
so that the equations of motion (12.0.2) involve only the transversal components Aa

i with i = 1, 2.
The latter can conveniently be rewritten in the complex notations by introducing the following
combinations for all vector fields Oi with i = 1, 2: O = O1+iO2 and Ō = O1−iO2. These relations
imply Ō = O∗ for all real vector fields Oi. Defining the complex coordinate z = x1 + ix2 and
complex derivative ∂ = ∂1 + i∂2, we find the non-canonical relations ∂̄z = ∂z̄ = 2 and ∂z = ∂̄z̄ = 0.
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CHAPTER 12. ON CHROMOELECTRIC SUPERCONDUCTIVITY OF THE YANG-MILLS
VACUUM

The off-diagonal gluonic fields A1,2
µ can be combined into two complex-valued fields:

A±
µ =

1√
2

(
A1

µ ∓ iA2
µ

)
, (12.0.5)

These combinations are not independent, A±
µ ≡ (A∓

µ )†, so that below we will work with the A−
µ

field only.
The ground state can be described by two complex functions A = A(x⊥) and A3 = A3(x⊥)

with

A ≡ A− = A−
1 + iA−

2 , (12.0.6)

A3 = A3
1 + iA3

2 , (12.0.7)

and their complex conjugates. The combinations (12.0.6) and (12.0.7) correspond to, respectively,
the offdiagonal and diagonal components of the Aa

i fields. The color direction is defined by the
background chromomagnetic field. The alternative (barred) combination of the off-diagonal A
fields is zero in the ground state, Ā− = A−

1 − iA−
2 = 0. Notice that A+ ≡ (Ā−)∗ = 0 and

Ā+ = (A−)∗.
The constraints (12.0.3) for a = 1, 2 can now be rewritten as a single complex equation:

∂̄A = −gB
2
z̄ A , (12.0.8)

which is well known from the work of Abrikosov [361] to possess finite-energy solutions with a
lattice symmetry.

The solution for this equation minimizing the remaining terms contributing to the energy
integrated over the transversal plane

E⊥ =

∫
1

2

(
F 3

12

)2
=

∫
1

2

(
B − g

2
|A|2

)2

, (12.0.9)

was constructed in terms of θ-functions. In the background of the strong chromomagnetic field
the vacuum structure resembles the Abrikosov lattice in the mixed phase of the type-II super-
conductors [361]. In analogy with the lattice of the Abrikosov vortices in a superconductor, the
chromomagnetic field in Yang–Mills theory organizes itself in similar periodic structures [358].

The ground state solution by Ambjorn and Olesen is given [up to a gauge factor due to a
different parametrization of magnetic field (12.0.4)] by the following formula [358]:

A(x1, x2) = φ0 e
igBx2

x1+ix2
2 θ3

(
(x1 + ix2)ν

LB
, e

2iπ
3

)
, (12.0.10)

ν =
4
√

3√
2
, LB =

√
2π

gB
, (12.0.11)

where θ3 is the third Jacobi theta function and the overall factor φ0 ≈ 2.9
√
B/g is determined by

minimization of the energy functional (12.0.9).
The global energy minimum is reached for the equilateral triangular lattice (which is also called

the hexagonal lattice) solutions of Eq. (12.0.8). Another local minimum is found for a square lattice.
The geometrical pattern of the lattice structure in the Yang–Mills theory is determined by the

Abrikosov ratio,

βA =

(∫
dx2

⊥|A|4
)
/

(∫
dx2

⊥|A|2
)2

, (12.0.12)
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(a) (b)

Figure 12.1: (a) The amplitude of the gluon field (12.0.10) is shown by a density plot superimposed
on the three dimensional plot of its absolute value. A few cells of the hexagonal periodic lattice are
shown in the transverse (x1, x2) plane. All dimensional units are shown in terms of the only massive
scale

√
gB. (b) The chromoelectric superconductivity coefficient in the London equation (12.0.16)

in the transverse (x1, x2) plane.

which can be expressed in terms of generalized θ-functions [358]. The global minimum of the
energy functional (12.0.9) is

E⊥,min =
B2

2

(
1 − 1

βA

)
, (12.0.13)

where for the hexagonal structure the Abrikosov ratio is βA ≈ 1.16 similarly to an ordinary type-II
superconductor [362].

It is worth noting that even in models where the forth-order interaction terms are more com-
plicated and, as a consequence, another definition of βA is needed, one still finds that the global
energy minimum still corresponds to the hexagonal lattice pattern [250–252,362–364].

The gluon field (12.0.10) is shown in Fig. 12.1(a). The chromomagnetic vortices are arranged
in the hexagonal structure. In the center of each vortex the gluon field (12.0.6) is vanishing
and the phase of this field winds by the angle 2π, similarly to the usual Abrikosov vortex. The
geometrical vortex pattern Fig. 12.1(a) is identical to the Abrikosov vortex lattice in an ordinary
type-II superconductor.

Does the ground state (12.0.10) correspond to a chromoelectric superconductor? A simplest
way to check an existence of the superconductivity is to calculate a relevant transport property:
the superconducting nature of the ground state should reveal itself as an ω = 0 (zero-frequency)
δ-function peak in the real part of the complex (chromo)conductivity, σ(ω) = σ1(ω) + iσ2(ω).
Alternatively, one can impose a weak external (chromo)electric field and then check that the ground
state supports the London relation for the (chromo)electric currents. These two approaches are
identical.

The London equations were used to argue in favor of existence of a magnetic-fields-induced
electromagnetic superconductivity in QCD [250–252] and in electroweak model [363]. The former
effect is mediated by the ρ–meson condensation while the latter one is caused by the condensation
of the W mesons [365–367].

Following these approaches we impose a weak (test) chromoelectric field,

E3 ≡ E3
3 = F 3

30 , |E3| ≪ B , (12.0.14)
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oriented along the background chromomagnetic field (12.0.3) both in the color and coordinate
spaces in order to check possible validity of the London transport equation.

In order to define the relevant chromoelectric current we notice that the chromomagnetic
field (12.0.3) plays a role of an object which identifies the Abelian U(1) direction in the non-
Abelian SU(2) group. The chromoelectric current associated with this U(1) gauge subgroup is
defined as follows1:

Jν ≡ J3
ν = ∂µ(∂µA

3
ν − ∂νA

3
µ) . (12.0.15)

We utilize the equations of motion (12.0.2) in the background of the strong chromomag-
netic (12.0.4) and weak chromoelectric (12.0.14) fields and we find the following analogue of the
London equation:

∂[0J3] = −g2|A|2E3 , (12.0.16)

Equation (12.0.16) implies, that the chromoelectric current propagates ballistically (i.e., without
dissipation) along the chromomagnetic flux tubes. In the transverse directions the chromoelectric
superconductivity is absent, ∂[0Ji] ≡ 0 with i = 1, 2.

The superconductivity coefficient of the London equation (12.0.16) is shown in Fig. 12.1(b). In
the center of each flux tube the superconductivity is absent and the chromoelectric current may
stream only at the regions in between the touching tubes. Therefore the chromomagnetic flux tube
may be associated with a hollow (chromo)conducting “wire”.

So far in our considerations we have followed the considerations of Refs. [358] where the regular
solution was obtained in a homogeneous chromomagnetic background. In the real vacuum the
flux tubes form an entangled spaghetti structure [357], so that the vacuum between two separated
spatial points is, in general, disordered by the flux tubes. However, as we move along the tubes
themselves they are supposed to keep their field structure in the transverse spatial directions [357].
In lattice gauge theory the thick chromomagnetic flux tubes can be associated with the so-called
center vortices [368,369], which were indeed shown to exhibit the long-range correlations along the
worldsheets of their flux tubes [370].

Interestingly, the chromoelectric currents (12.0.16) are induced by the chromoelectric field Ea
i

provided it is parallel to the chromomagnetic field Ba
i both in color and coordinate spaces. Thus,

the electric currents in the flux tubes are induced if the scalar product ( ~Ea · ~Ba) of these fields
is nonzero. Notice, however, that this scalar product is proportional to the topological charge
density [371],

q(x) =
1

16π2
Tr [Fµν F̃

µν ], F̃µν =
1

2
εµναβFαβ . (12.0.17)

Thus, the topological charge density should induce the chromoelectric currents in the chromo-
magnetic flux tubes. We find it fascinating that the described mechanism links chromoelectric
superconductivity with the topology in QCD.

According to the standard Copenhagen picture the chromomagnetic tubes form an entangled
“spaghetti” structure in the real vacuum. In this chapter we have shown that this spaghetti is
(chromo)superconducting.

1Notice that the chromoelectric current (12.0.15) is different from the full SU(2) currents DµF a
µν ≡ 0 since the

Abelian and non-Abelian strengths are different: ∂µA3
ν − ∂νA3

µ 6= F 3
µν .
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Conclusions and Outlook

We developed several systematic approaches to study nonperturbative effects related to the chiral
and electromagnetic properties of the quark-gluon plasma: the holographic framework based on the
fluid-gravity duality; the quenched lattice simulation for two and three colors, and a two-component
liquid model derived from the QCD Lagrangian. In addition, we also make certain predictions
never mentioned before in the literature1, which can be tested experimentally. Among them are
the following: electric conductivity of the QGP induced by the magnetic field and modifying the
elliptic flow for photons; magnitude of the chiral magnetic effect, its independence on the elliptic
flow in QGP; charge separation in QGP induced by an electric field; color superconductivity of the
QCD vacuum state, which may lead to the chiral superfluidity.

To conclude this thesis, we provide a list of open questions, which can be considered as a
possible extension of our studies:

1) In holographic models of Chapter 5 we saw an equivalence between effects induced by a
magnetic field (e.g. CME) and through the rotation of medium (e.g. CVE). This is not a
coincidence, since the angular momentum ~ω is in many respects similar to the magnetic field
~B: rotating charged fluid produces a magnetic field, which is a well-known phenomenon in
magnetohydrodynamics; rotating along a loop particle with mass m and charge e acquires
the Aharonov-Bohm phase shift equal to the phase shift due to the Sagnac effect [372] along

the same loop, if ~B = 2m
e ~ω; the same relation holds for a magnetic field generated by a

rotating superconductor [373] and known to be present for any substance as well (Barnett
effect [374]). It seems interesting to follow this equivalence from the holographic point of
view. A strong magnetic field in QCD effectively reduces the dimensionality of problem to
2D, since the quarks tend to occupy the lowest Landau level and cannot move in directions
transverse to the magnetic field. From the side of the bulk geometry this corresponds to
the dimensional reduction of the black hole geometry to a BTZ-black hole background [375].
This leads to a natural question, whether the background of a uniformly rotating liquid
(presumably, AdS-Kerr-Newmann BH) reduces to a low-dimensional black hole in limit of
large angular momenta.

2) In light of various superfluid and superconducting properties of the QCD vacuum [8,15,250–
252], Chapters 11-12, it is natural to investigate the spatial distribution of the CME-current

in the transverse to ~B plane. Does the current density form any kind of honeycomb pattern?
This question can be, perhaps, answered by applying the IPR methods from the Chapter 10.

3) The results of Chapter 3 and Section 8.2 on the chiral symmetry breaking rely on the fact
that the quenched approximation is valid and reproduces the phenomenon of magnetic catal-

1Except our own articles.
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ysis [214]. There are, however, recent unquenched lattice data [216,217], demonstrating the
inverse effect (chiral symmetry restoration by the magnetic field) in the vicinity of the conven-
tional chiral transition. This leads to a conclusion that the back-reaction of the sea quarks on
the gauge-field configuration can compete with the dynamical generation of the quark mass.
Holographically, this means, that the backreaction of D7-branes is no longer negligible and
one should choose a more suitable (unquenched) background. The mechanism can be also
studied numerically, by analyzing the value of Polyakov loop in magnetic fields [376].

4) In Chapter 11 we suggested the gauge field defects as an important ingredient of the quark-
gluon plasma. There is, unfortunately, a lack of analytic solutions of the Yang-Mills equations,
which we could use in our studies. In Chapter 12 we used the “spaghetti” picture, which
was originally established in a 1-loop approximation, and, generally speaking, is not proven
beyond 1-loop. This makes it important to search for possible low-dimensional objects in
Yang-Mills theories, as well as in holography [377]. Exact solutions can also shed light on
the problem of confinement [309,311] and the entropy in QCD [378].

5) In the same chapter we presented a spectrum of the overlap operator. It is not clear, whether
the spectrum has the same form for the intermediate temperatures in the case of full QCD,
and whether the remnant zero-modes survive in this case. For the phenomenological applica-
tions one should also study the Dirac spectrum in the presence of non-zero average chirality,
which mimics initial conditions in the heavy-ion collisions. One can, perhaps, do that by
selecting gauge-field configurations with a fixed topological charge.

6) Is there a consistent way to define the topological susceptibility in a finite volume? The
same question can be posed, if we are dealing with vacuum condensates as well as with
thermodynamic phenomena, e.g. superfluidity, in the case of real and hence finite systems.

7) Is the chiral magnetic effect saturated at some critical magnetic field? Such a conclusion can
follow from Section 11.1.5, if considering large B limit,

jCME = Cµ5B ∝ ρ5B

f2
= const. (13.0.1)

Here we used the approximation f ∝ Λ ∝
√
eB when B is much larger than all other scales

under consideration.

8) Do we reproduce the the Chern-Simons diffusion rate [379] within the chiral superfluid model?
One can use the axion Lagrangian (11.1.27) with higher-order terms and calculate the rate
perturbatively in the limit B ≫ T 2, which can be considered as an additional test of the
model.

9) Do the lattice data coincide with the holographic results in the large Nc limit? Is SU(3) close
to SU(∞)? One can answer these questions by changing our codes for three colors. The
Cabibbo-Marinari heat-bath algorithm allows for such a modification, so one should only
determine the couplings [380] and choose appropriate sizes of the lattices. There are already
hints that the SU(3) gauge theory is very similar to SU(∞) [381,382].

For a list of general open questions related to our studies we refer the reader to an excellent
review [65]. We hope that the ideas contained in this thesis will stimulate further advances in the
intriguing and relatively modern subject of the quark-gluon plasma physics.
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