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Abstract
Kryder’s law predicts a doubling of the capacity of commodity hard drive devices
every 13 months. However, the capacity did not increase as expected in the past
three years. Perhaps today’s hard drive technology does reach its limits?

The present work shall support the development of future storage devices with
increased storage capacity. In order to do so the magnetization switching of fer-
romagnetic particles of only a few nanometer in size has been investigated in the
framework of Monte Carlo simulations. A focus of the present work lies on the
question if a narrow domain wall could be moved through a hard magnetic nanowire
by means of a spin-polarized tunneling current. By controlling the position of the
domain wall one can precisely control the magnetization of the particle. In the
simulations the current is induced into the nanowire by the magnetic tip of a scan-
ning tunneling microscope (STM). The tunneling electrons of the polarized current
exert a torque on the magnetization of the atoms underneath the tip, which can
lead to a displacement of the domain wall. Additional simulations focus on the su-
perparamagnetic properties of nanoparticles. The influence of the temperature on
the magnetization switching of particles with ever decreasing size is investigated.
In particular the impact of the shape of the islands on the magnetization switching
is addressed.

A classical Monte Carlo simulation is used, which is based on a single spin
update Metropolis algorithm. The studied nanoparticles are arranged in a mono-
layer with open boundary conditions and consist of 50-1600 atoms. The magnetic
moments, thus, the spins of the atoms are described by the Heisenberg model. The
atoms interact with each other via the exchange interaction up to third nearest
neighbors and exhibit a strong uni-axial magnetic anisotropy lying in-plane.

The simulations reveal that it possible to address and move a single domain
wall in a nanowire by means of a spin-polarized tunneling current. Furthermore,
it is shown, that magnetic defects present in the wire impede or even prevent a
propagation of the domain wall. The defects are described as atoms with altered
magnetic properties, which can lead to a pinning of the domain wall. Temperature
dependent simulations of the spin-spin correlation function of the atoms allowed
to study the particle’s superparamagnetic properties. From the analysis of the
correlation function the critical temperatures have been defined; hence, the tem-
peratures at which the particle changes it’s magnetic properties. A study of the
magnetization dynamics of Fe/W(110) nanoislands of different size and shape at
different temperatures in the superparamagnetic regime confirmed experimental
results, which found the magnetization dynamics to be strongly dependent on the
shape of the islands. This shape dependency is a result of an anisotropic exchange
interaction and the underlying switching mechanism.

The simulations presented permit a deeper insight into the switching process
of ferromagnetic nanoparticles. The results obtained are helpful for the develop-
ment of future magnetic storage devices and also for the development of tailored
nanostructures, which hinder or favor magnetization reversal.



ii

Zusammenfassung
Das "Kryder Gesetz" sagt eine Verdopplung der Speicherkapazität von konven-
tionellen Festplatten alle 13 Monate voraus. In den letzten drei Jahren hat die
Speicherkapazität jedoch nicht wie erwartet zugenommen. Vielleicht stößt die
gängige Festplattentechnik inzwischen an ihre Grenzen?

Die vorliegende Arbeit soll dazu beitragen, den Anstieg der Speicherkapa-
zität in Zukunft wieder zu erhöhen. Um das zu erreichen, werden mit Hilfe von
Monte Carlo Simulationen das Schaltverhalten von ferromagnetischen Teilchen
einer Größe von nur wenigen Nanometern untersucht. Insbesondere befasst sich
die Arbeit mit der Frage, ob sich eine schmale Domänenwand mit Hilfe eines
polarisierten Tunnelstroms durch einen hart-magnetischen Nanodraht bewegen
lässt. Der Tunnelstrom wird dabei durch die magnetische Spitze eines Raster-
tunnelmikroskops (RTM) in den Nanodraht induziert. Die Tunnel-Elektronen des
polarisierten Stromes üben ein Drehmoment auf die Magnetisierung der Atome di-
rekt unterhalb der RTM-Spitze aus und führen dadurch zu einer Verschiebung der
Domänenwand. Darüber hinaus werden die superparamagnetischen Eigenschaften,
also der Einfluss der Temperatur auf das Schalten von immer kleiner werdenden
hart-magnetischen Nanoteilchen ermittelt. Insbesondere wird untersucht, wie die
Geometrie der Teilchen das Schalten beeinflusst.

Es wird eine klassische Monte Carlo Simulation verwendet, die auf einem
Einzel-Spin-Update Metropolis Algorithmus basiert. Die untersuchten Nanoteilchen
sind in einer Monolage mit offenen Randbedingungen angeordnet und bestehen
aus 50-1600 Atomen. Die magnetischen Momente der Atome werden durch das
Heisenberg Modell beschrieben. Die Atome treten miteinander über einen ferro-
magnetischen Austausch bis zum drittnächsten Nachbarn in Wechselwirkung und
besitzen eine starke magnetische Anisotropie, die zu einer Magnetisierungsausrich-
tung entlang einer Achse in der Ebene führt.

Die Simulationen zeigen, dass es möglich ist, eine einzelne Domänenwand in
einem Nanodraht mit Hilfe eines lokal eingespeisten Stromes gezielt zu verschieben.
Es wird aber auch gezeigt, dass magnetische Defekte, beschrieben durch Gitter-
punkte mit veränderten magnetischen Eigenschaften, eine erfolgreiche Manipula-
tion der Domänenwand durch Pinning an den Defekten erschweren oder sogar ver-
hindern können. Temperaturabhängige Simulationen ergeben, dass man durch die
Auswertung der Korrelationen zwischen den magnetischen Momenten der Atome
die superparamagnetischen Eigenschaften der Teilchen genau definieren kann. Aus
den Simulationen lassen sich die kritischen Temperaturen bestimmen, bei denen
sich die magnetischen Eigenschaften des Teilchens verändern. Eine Untersuchung
der Magnetisierungsdynamik von Fe/W(110) Nanoinseln weist, wie bereits exper-
imentell vorhergesagt, eine deutliche Abhängigkeit von der Geometrie der Inseln
auf. Der Grund hierfür liegt in dem anisotropen Austausch sowie in dem Mecha-
nismus der Magnetisierungsumkehr.

Die vorgestellten Simulationen geben einen tieferen Einblick in die Schalt-
prozesse von ferromagnetischen Nanoteilchen. Die daraus gewonnenen Erkennt-
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nisse sind hilfreich für die Entwicklung von zukünftigen magnetischen Speicherme-
dien oder für die Entwicklung maßgeschneiderter Nanostrukturen, in denen eine
Magnetisierungsumkehr gezielt erschwert oder erleichtert werden soll.
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1 INTRODUCTION 1

1 Introduction

The present thesis investigates in the framework of a Monte Carlo sim-
ulation the theoretical proposal to manipulate an individual domain
wall in a hard-magnetic nanowire by means of a tunneling current. A
scanning tunneling microscope (STM) thereby serves as instrument to
induce a spin-polarized tunneling current. Beyond that, the superpara-
magnetic properties of a hard-magnetic nanoisland consisting of 50-400
atoms are investigated. This study of the size, shape, and temperature
dependent properties follows the road of minimizing the size of mag-
netic bits in future storage devices and to design new logic devices on
the nanoscale.

The so-called Kryder’s law [1] describes the increase of the areal storage den-
sity of a commodity hard drive device (HDD) and finds the annual increase of the
capacity lying at 40% in the last three decades. It predicts the maximum capacity
for a 3.5-inch hard drive reaching 12 TB by the year of 2014 [2]. There is not much
time left and still some way to go to reach that goal, as today’s commodity HDD
have a maximum capacity of 4 TB. In 2010 the authors of [2] reconsidered the
prediction given by the Kryder’s law on the basis of the 2009 and 2010 reported
areal density products and say that "a reasonable projection is maintaining a 20%

annual areal density increase". The goal of an annual density growth of 20% is
accomplished if a capacity of a 3.5-inch HDD of 6 TB is reached by the year of
2014, which seems to be a more realistic goal. Concern about the slowing down of
the annual capacity increase becomes also evident in an online article published in
September 2013 by Tom Coughlin [3], a storage analyst and consultant. He writes
that "It has been more than two years since there was an increase in the areal
density of HDDs.", but he foresees an increase of enterprise 3.5-inch HDDs up to
6-8 TB within the next year. Just like Coughlin and the authors of [2] expected,
in November 2013 the first 6 TB HDD has been released, when the hard drive
company HGST [4] presented its first "hermetically sealed, helium hard drive".
The hard drive named Ultrastar® He6 aims at operation for cloud and research
leaders including HP, Netflix and CERN. But what seems to make the technique
using liquid helium interesting is not the increased capacity, but rather the reduced
customer total cost-of-ownership, as the disk has a much smaller energy consump-
tion compared to commodity hard drives. Even though the Ultrastar® He6 is still
an enterprise product, it makes hope that also commodity HDDs will reach the
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6 TB in 2014. Today’s disks are made of a thin film of a magnetic alloy, which
is composed of a mosaic of tiny grains. An ensemble of such grains act as mag-
netic elements. A single bit typically consists of 50 to 100 of these grains. If a
single grain of a certain bit flips its magnetization spontaneously, the magnetic
information of the whole bit is still valid. If too many grains start to flip, the
corresponding bit of data is lost. As a consequence the magnetization will only be
stable if the number of grains is high enough. Thus, to shrink the size of a bit,
the size of the grains has to be shrunk as well. It seems that the state-of-the-art
HDD technology reach a critical bit density, where the grains become so small that
they approach the so-called superparamagnetic limit. A superparamagnetic grain
might flip its magnetization due to ambient heat [5–7].

The easiest way to further increase the capacity of a storage device which comes
to mind is to reduce the size of the bits. However, the superparamagnetic limit pre-
vents to shrink the bit size in any order. This superparamagnetic behavior is known
to increase with decreasing system size [8–10]. In the present thesis a new concept
is proposed which allows to define the critical temperatures, i.e., the temperatures
at which the system turns from one magnetic state (i.e., the ferro-, superpara-,
or paramagnetic state) into another. The accurate determination of the critical
temperatures allows to reduce the uncertainty limits and, hence, to decrease the
bit size. For the infinite system, a magnetic phase transition is characterized by a
divergence of the correlation length ξ, which characterizes the spatial decay of the
spin-spin correlation function. For a nanosized system, on the other hand, it is by
no means clear how the crossover at the Curie temperature manifests itself in the
correlation function. Therefore, the goal was to provide a systematic analysis of
the spin-spin correlation function for isotropic and anisotropic classical spin mod-
els in different dimensions with a finite and, in a thermodynamic meaning, small
number of microspins. It will be shown, that for a finite system one can define a
reduced Curie temperature TC(L) from the modified spin-spin correlation function.
As the main result, it is found that three different temperature scales, the block-
ing temperature Tb(L) and the reduced Curie temperature TC(L) of the finite spin
system as well as the Curie temperature of the infinite bulk TC(∞), can be read off
from a suitably defined spin correlation function, which is accessible to scattering
experiments. A simple three-parameter fit formula for the correlation function is
proposed, which turns out to be very effective in describing the numerical data for
the entire temperature range and may serve to give a definition for the reduced
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Curie temperature that is consistent with the usual estimates of TC(L) based on
the magnetic susceptibility or the specific heat. Finally, the blocking temperature,
relative to the observation time, can easily be accessed by interpreting the Monte
Carlo steps as time steps.

In order to develop new storage devices it is, besides the knowledge of the crit-
ical temperatures, important to understand the underlying physical processes that
favor or hinder the magnetization switching of nanomagnets. Depending on the
magnetic anisotropy, exchange parameter, size and shape, a monodomain particle
may reverse its magnetization via nucleation and propagation rather than by a co-
herent rotation as proposed by the Neél-Brown model [5, 6]. In the present thesis
an investigation of the size, the shape, and the temperature dependency of the su-
perparamagnetic switching of individual magnetic nanoislands is presented. Like
in the Neél-Brown model, an Arrhenius-like switching behavior is expected, with
an energy barrier represented by the energy needed for the combined nucleation
and domain wall formation. In particular it is studied how the energy barrier of
an Fe/W(110) nanoisland depends on the ratio between the lengths in [11̄0] and
[001] direction. The presented study provides insights into the microscopic pro-
cesses of magnetization reversal via domain wall nucleation and propagation. The
switching rates and also the Arrhenius pre-factor and energy barrier have been
found to be strongly dependent on the morphology of the simulated systems. The
studies help to systematically tailor future magnetic nano-objects that hinder or
favor magnetization reversal, which is important for the development of new types
of data storage media or magnetic sensors at the nanoscale.

In order to catch up and maintain the projections given by the authors of [2]
for HDD or other techniques like NAND Flash, storage manufacturers may have
to consider new physical approaches not only for the bit design, but also for the
reading and writing of magnetic information. Exciting developments towards new
storage and logic devices are based on the current- and field-driven motion of mag-
netic domain walls [11–13]. In order to read or write a bit of information, a domain
wall has to be moved towards the reading or writing devices. However, neither
external fields nor currents allow to address each domain wall individually. A spin-
polarized current moves neighboring domain walls in the same direction, while a
magnetic field moves them in opposite directions. Up to now, the manipulation
of an individual domain wall has been achieved by the stray field emanating from
a tip of a magnetic force microscope (MFM) [14, 15]. The best resolution of the
MFM experiments is of the order of 20 nm [15]. The goal of the presented investi-
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gation is the manipulation of a narrow domain wall of width < 2 nm in a nanowire
of monolayer thickness, which is about 1 order of magnitude smaller than that of
walls in soft magnetic materials [14, 15]. For that purpose it is proposed to address
a magnetic domain wall individually using the spin torque induced by a magnetic
tip of an STM. The spins of the tunneling electrons transfer an angular momentum
on the magnetic moments of the atoms underneath the tip. This phenomenon is
usually referred to as spin transfer torque effect [16, 17]. It is demonstrated in the
framework of a classical Monte Carlo simulation that the application of a polar-
ized tunneling current allows the controlled manipulation and subsequent imaging
of atomically sharp domain walls in nanoscale magnetic wires. The Monte Carlo
simulations have been compared with atomistic spin dynamic simulations and it is
shown that both theoretical approaches lead to the same results. Several different
tip magnetizations have been analyzed and the orientation of the tip magnetization
parallel to the domain wall magnetization has been revealed as the most promis-
ing geometry for future experimental applications. Furthermore, it is shown that
magnetic defects present in the wire impede or even prevent a propagation of the
domain wall. The defects are described as atoms with altered magnetic properties,
which lead to a pinning of the domain wall.

In the following a brief overview of the present thesis is given. Chapter 2
reviews important theoretical aspects used in this work and introduces the applied
classical Monte Carlo method.

In chapter 3 the manipulation of a narrow domain wall in a ferromagnetic
nanowire, utilizing the spin-current induced by the tip of an STM, is presented.
In contrast to experiments with a current applied parallel to the wire [11, 12], or
with an extended external magnetic field [12, 13], this technique allows to address
and control a single domain wall separately.

Chapter 4 is based on the simulations of chapter 3, but it additionally takes
defects situated at the rim of the nanowire into account. The defects are defined as
lattice sites with altered magnetic properties, which, for instance, could represent a
nanowire grown at the step edge of a substrate. This chapter studies the influence
of defects on the domain wall propagation and discusses the effect of domain wall
pinning at defects.

The samples investigated in chapter 3 and chapter 4 have been studied at a very
low temperature and the sample would reside in a thermally stable ferromagnetic
state, as long as no external forces are applied. To learn more about the influence
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of the temperature on the magnetization dynamics of the ferromagnetic system, a
study of the so-called critical temperatures is presented in chapter 5. These crit-
ical temperatures assign the boundaries of the superparamagnetic region, hence,
they define the temperatures at which the system turns from one magnetic state
(i.e., the ferro-, superpara-, or paramagnetic state) into another and are known
to depend crucially on the system size [8, 18]. The knowledge of the boundaries
of the superparamagnetic temperature region is fundamental for studying the su-
perparamagnetic magnetization dynamics of nanoislands presented in chapter 6.
Moreover, the superparamagnetic region has been determined not only from well
known methods, namely the specific heat C and the magnetic susceptibility χ [10],
but also a new method is introduced, employing the spin-spin correlation function.

In chapter 6 the superparamagnetic switching of Fe/W(110) nanoislands is
investigated. The domain wall nucleation and propagation process is studied in
some detail and a size, shape, and temperature dependent investigation of the
superparamagnetic switching presented.

Eventually chapter 7 summarizes and discusses the main results of the thesis
and gives an outlook for future simulations and experiments. Note, that a focused
discussion of results is given at the end of each chapter.
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2 Some theoretical background

Parts of this chapter have been published in my diploma thesis: Thim Stapelfeldt,
Superparamagnetic Switching of Two-dimensional Magnetic Islands Studied by
Monte Carlo Simulation, Universität Hamburg, 2008 [19].

The performed Monte Carlo simulations shall give insights into the dynamics
of an ensemble of interacting particles, i.e., exchange coupled magnetic spins. As
the Monte Carlo method is based on statistical processes, in the present chapter
important statistical and thermodynamical basics are briefly reviewed. It follows
an introduction to the phenomenon of phase transitions and finite size effects,
which becomes in particular important for the understanding of chapter 5. At
the end, an introduction to the theory of Monte Carlo simulations is given and
the single spin update Metropolis algorithm explained, which is the heart of the
simulation.

2.1 Basics of statistical mechanics and thermodynamics

2.1.1 Probability distributions, partition function, and canonical en-
semble

In a thermodynamic ensemble states are occupied with a certain probability pµ. To
describe such an ensemble statistically correct by means of a numerical simulation
an appropriate probability distribution has to be used. In statistical mechanics,
the Maxwell-Boltzmann statistics describes the statistical distribution of material
particles over various energy states Eµ in thermal equilibrium, when the tem-
perature is high enough and the density is low enough that quantum effects are
negligible. This probability distribution is known as the Boltzmann distribution
[20] and has been used for the simulations presented in this work:

pµ =
1

Z
e−Eµβ, (1)

where Z is the partition function and reads

Z =
∑
µ

e−Eµβ. (2)
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Here, the summation goes over all possible states µ of the system and thus depends
on the size L of the system and the degrees of freedom for each of the interacting
spins. It can be shown that pµ is the distribution which is most likely, if each
particle in the ensemble can exchange energy with a heat bath or alternatively
with a large number of similar particles. Equivalently, it is the distribution which
has maximum entropy for a given average energy 〈Eµ〉. Such an ensemble is usually
denoted as canonical ensemble.

2.1.2 Expectation values

The relation to the macroscopic properties of an ensemble is given by the expec-
tation value [20] of a certain quantity Q, which takes the value Qµ in state µ:

〈Q〉 =
∑
µ

Qµpµ. (3)

The expectation value contains important information about the value of Q that
one expects to measure in an experiment. Considering a canonical ensemble with
a Boltzmann probability pµ. From equations (1), (2) and (3) the expectation value
of a quantity Q for a system in equilibrium is

〈Q〉 =
∑
µ

Qµpµ =
1

Z

∑
µ

Qµe−βEµ =

∑
µQµe−βEµ∑
µ e−βEµ

. (4)

The expectation value then is the average of the quantity over all states µ, weighted
with its own Boltzmann probability. This is only applicable in very small systems.
In larger systems one averages over a subset of states {1, ..., n}, but introduces
some inaccuracy into the calculation. By increasing the number of states of the
subset, the simulated average Q̄ gets more accurate and most accurate for n→∞.
Monte Carlo techniques work by choosing a subset of states at random from some
probability distribution pµ which has to be specified. The best estimate of the
quantity Q will then be given by [21]

Q̄ =
1

n

n∑
i=1

Qi. (5)

To reduce the inaccuracy on the one hand and reduce the computational effort
on the other, an appropriate set of states is chosen by importance sampling (see
Section 2.3.4).
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2.1.3 Thermodynamic Potentials

As described in the previous section an expectation value of a certain quantity is
achieved by time averaged measurements. It is useful to calculate the standard
deviation of this quantity, because it gives the magnitude of the variation over
time, denoted as fluctuations. These fluctuations may indicate a change in the
specific properties of materials, see section 2.2.2. An important quantity is the
mean square deviation of the energy

〈
(E − 〈E〉)2

〉
=
〈
E2
〉
− 〈E〉2. (6)

〈E2〉 can be determined from the derivative of the partition function, similar to
the calculation of the expectation value of the energy 〈E〉:

〈
E2
〉

=
1

Z

∑
µ

E2
µe
−βEµ =

1

Z

∂2Z

∂β2
. (7)

This leads to

〈
E2
〉
− 〈E〉2 =

1

Z

∂2Z

∂β2
−
[

1

Z

∂Z

∂β

]2

=
∂2

∂β2
lnZ. (8)

The specific heat C is given by

C = (
〈
E2
〉
− 〈E〉2) · kBβ

2. (9)

The specific heat C is a quantity, that gives the magnitude of fluctuations in
energy. Similar to the specific heat C, the susceptibility χ = ∂〈M〉

∂H
|T describes the

fluctuations of the magnetization M :

χ = (
〈
M2
〉
− 〈M〉2) · β. (10)

The fluctuations scale with the number of particles L in the system like 1/
√
L,

in the three-dimensional case. With increasing L the fluctuations decrease until
the thermodynamic limit is reached. Such fluctuations might be too small to be
detectable in experiment, but in computer simulations they are observable and
have been used to determine specific heat C and susceptibility χ.
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2.2 Critical phenomena and phase transitions

2.2.1 Correlations

At the phase transition (see next section) the properties of a certain material
change abruptly when an intensive variable reaches a critical value. Consider a
ferromagnetic system consisting of localized spins. In the ferromagnetic phase the
majority of the spins are aligned in parallel, but by crossing a critical temperature
Tc, the system will transform into a paramagnet, where the spins of the system
are arbitrarily oriented.

The correlation length ξ [22] is a measure of the spatial distance, within which
the spins are parallel. ξ is defined via the correlation function [23]:

〈SiSj〉 ∝ e−
|rj−ri|

ξ (11)

Si represents the orientation of a spin S at position ri. Close to the phase tran-
sition T → Tc the correlation length ξ reaches a magnitude in the range of the
system size and diverges at T → Tc for an infinite system. The correlation can be
approximated by:

ξ ∝
(

1− T

Tc

)−ν
. (12)

ν is a so-called critical exponent and is characteristic for the system’s degree of
freedom and dimension. An overview of critical exponents can be found in lit-
erature [24]. Due to the strong increase of ξ at T → Tc, the correlation length
dominates the behavior of specific heat C or susceptibility χ at a phase transition.

In order to determine the partition function correctly with a numerical simula-
tion, states at different time steps must be statistically independent. In terms of a
Monte Carlo simulation a time step is represented by a Monte Carlo step (MCS),
see section 2.3. To determine the correlation between different magnetic states,
one introduces the magnetizationMk at k-th MCS. The statistical intercorrelation
between states at k-th and k + j-th MCS is then given by the autocorrelation
function

A(j) = 〈MkMk+j〉 − 〈Mk〉 〈Mk+j〉 , (13)

where the average in equation (13) is over all system states k and k + j. In
thermal equilibrium the autocorrelation function is independent of k and in an
ideal case A(j > 0) = 0, if the system configurations are statistically independent.
Numerically correlations are usually not avoidable and to estimate the correlations
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one defines the autocorrelation time τeq by

A(j) ∝ e
− j
τeq . (14)

To receive reliable data from the Monte Carlo simulation at least k ≥ τeq MCSs
have to be performed, before starting the simulation. After τeq MCSs the system
states are statistically independent and the system is considered to be in thermal
equilibrium.

2.2.2 Phase transitions

In thermodynamics, a phase transition or phase change is the transformation of
a thermodynamic system from one phase to another. A remarkable characteristic
feature of a phase transition is an abrupt change in one or more physical pa-
rameters, in particular, the order parameters specific heat C and susceptibility χ.
Figure 1 shows characteristic properties of first- and second-order phase transitions
for an infinite system L→∞.

It shows schematically the behavior of the magnetizationM , specific heat C and
susceptibility χ. First order phase transitions are characterized by discontinuities
of the order parameter. For a magnetic material the magnetization is referred to as
an order parameter, because of the jump ∆M in the magnetization. This reflects
the fact that at the critical point Tc, two (or more) phases can coexist.

A phase transition might be of any order n and is defined at a point where
the n-th derivative of an order parameter is steady but the n-1st is not [20]. In
chapter 5 second-order phase transitions are considered, thus the first derivative of
the order parameter is steady. They are characterized by a divergent correlation
length ξ (see Section 2.2.1) at the transition temperature Tc for infinite systems.
The correlation length is a measure of the order in a system, it tells how microscopic
variables at different positions are correlated. A diverging correlation length leads
to a divergent peak in the specific heat C, with the internal energy as corresponding
order parameter, and susceptibility χ, with magnetization as corresponding order
parameter, see Figure 1.

In the case of the Heisenberg model the order parameter is continuous at Tc,
thus the magnetization is steady and the transition is second order for the Heisen-
berg model and is called a continuous phase transition [21]. In contrast to infinite
systems the peaks of the specific heat and the susceptibility are finite in finite
systems. From the theoretical point of view no phase transitions in a system with
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Figure 1: The left column shows the behavior of the magnetization M , specific heat
C, and susceptibility χ as a function of temperature for a first order phase transition at
the critical temperature Tc. The right column shows schematically a second order phase
transition at the critical temperature Tc.

finite number of degrees of freedom exist. But also for finite systems the specific
heat and susceptibility show pronounced peaks. With increasing system size the
fluctuations, reflected in the specific heat and susceptibility, decrease and the peaks
in C(T ) and χ(T ) get sharper. As long as a simulated system is large enough to
show a significant change of the order parameters and pronounced peaks in C(T )

and χ(T ) exist, it will be considered that a phase transition has taken place in
this work. Chapter 5 focuses on the determination of the critical temperatures of
finite systems.

2.2.3 Finite size effects

The expected thermodynamic behavior of finite systems of interacting particles
(spins in the present work) has been discussed by Fischer and Ferdinand [25, 26] in
terms of a scaling theory involving critical exponents of the corresponding infinite
system. They found the Curie temperature for a finite system shifted compared to
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the Curie temperature Tc(∞) of the infinite system. This shifted temperature is
called the reduced Curie temperature Tc(L), with L the number of particles (spins)
of the ensemble, and is usually defined by the maximum in the specific heat or
susceptibility. The Curie temperature shifts to slightly higher temperatures than
Tc(∞) for periodic boundary conditions. On the other hand, the data obtained
in [10, 27] showed pronounced size dependence for lattices with free edges. In the
case of open boundaries, the peaks in the specific heat are dramatically shifted to
lower temperatures. This explains the term reduced Curie temperature. The shift
is given by

δTc = [1± Tc(L)

Tc(∞)
] ≈ aL−

1
ν , L→∞. (15)

Landau [10, 27] found that the effect of finite size on the variation of the internal
energy is quite small for lattices with periodic boundary conditions except near to
Tc(∞).

Finite size effects are qualitatively similar for the spontaneous magnetization.
Only data obtained for open boundary conditions showed significant finite size
effects below Tc(∞). The peaks in the susceptibility, for open boundaries, are
shifted towards lower temperatures as well. Note, that all simulations presented in
this thesis have been performed for finite systems and open boundary conditions
have been used.

2.3 Theory to Monte Carlo simulations

2.3.1 Master equation

Consider a canonical ensemble representing some probability distribution pµ; then
wµ(t) represents the occupation probability that the system will be in state µ at
time t. The time dependent probabilities of a system to occupy each state is given
by the so-called master equation

dwµ
dt

=
∑
ν

[wν(t)R(ν → µ)− wµ(t)R(µ→ ν)]. (16)

The first term on the right-hand side of the equation represents the rate at which
the system is undergoing transitions into the state µ. The second term is the rate
at which it is undergoing transitions out of µ into other states ν, while any tran-
sitions from state µ into any state ν, and vice versa, are possible. The occupation
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probabilities must obey the following rules:

wµ(t) ≥ 0 and
∑
µ

wµ(t) = 1 (17)

for all times t. After a sufficiently large time (t → ∞), the ensemble will be in
thermal equilibrium and the transition rates will take constant values,

wµR(µ→ ν) = wνR(ν → µ), (18)

so that equation (16) yields dwν
dt
→ 0 for all µ [23]. The rate at which the system

makes transitions into and out of any state µ is equal. Equation (18) expresses the
condition of detailed balance, which each Monte Carlo simulation has to satisfy
for a correct simulation of equilibrium states. A probability to find a system in a
state µ at the equilibrium is called the equilibrium occupation probability:

pµ = lim
t→∞

wµ. (19)

In thermal equilibrium, the occupation probabilities are defined by the assumed
probability distribution pµ and the transition probabilities can be expressed as

R(µ→ ν)

R(ν → µ)
=
pν
pµ

(20)

in the limit of infinite times t→∞.
In a physical system at thermal equilibrium a state µ in phase space Ω is

occupied with a certain probability pµ. In the Monte Carlo simulation presented
in this work a new state ν is generated according to the previous state µ, hence,
according to the Markov process.

2.3.2 Markov Process

Let a system be in a state µ, then a Markov process [21] generates a new state
ν of that system. The generation is at random and does not necessarily generate
the same state ν each time it is in the initial state µ. The transition probability
R(µ→ ν) is the probability generating the state ν at given state µ. The transition
probabilities of a Markov process should satisfy two conditions:

1. they should not vary over time
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2. they should depend only on the properties of the current state µ and ν, and
not on any other state the system has passed through.

The transition probabilities R(µ→ ν) must also satisfy the constraint∑
ν

R(µ→ ν) = 1, (21)

because the Markov process must be able to generate any state ν out of the state
µ. As there may be a finite probability that the Markov process will stay in state
µ, the transition probability R(µ→ µ) needs not to be zero.

In a Monte Carlo simulation the Markov processes are used repeatedly to gen-
erate a Markov chain of states. Starting in a state µ the process generates a new
state ν. Feeding the process with the state ν it will generate the next state λ, and
so on. When the Markov process has run long enough, starting from any state
of the system, it will eventually produce a sequence of states that appear with
the probability distribution pµ satisfying the condition of detailed balance. The
system then is in thermal equilibrium.

2.3.3 Single spin update Metropolis algorithm

Let the probability of a system to be in state µ with energy Eµ in thermal equilib-
rium be described by the Boltzmann distribution, see equation (1). The Metropolis
algorithm [28] applied in the present work realizes a Markov chain by single spin
update dynamics (single flip algorithm). A single flip algorithm chooses a spin
of the system randomly and changes its spin orientation into some direction. Af-
ter each spin update, the energy of the new configuration is determined. If Eµ
and Eν denote the energy before and after the spin update, respectively, then the
acceptance probability A(µ→ ν) of the proposed spin update is given by

A(µ→ ν) = min

(
1,
p(ν)

p(µ)

)
, (22)

satisfying the criterion of detailed balance. If Eµ > Eν , the transition is always
accepted, hence, A(µ → ν) = 1. If Eµ < Eν , the transition is accepted according
to the Boltzmann probability and the equation (22) yields

A(µ→ ν) =
pν
pµ

=
e−Eνβ

e−Eµβ
= e−∆Eβ. (23)
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It means that in Metropolis single spin update, the spin update is always accepted
if the energy is lowered. However, even if the energy is increased, the update is
accepted with a certain probability exp(−∆Eβ). By that means the Metropolis
algorithm leads to a minimization of the free energy in thermal equilibrium.

2.3.4 Importance Sampling

The acceptance of a new generated state according to the Metropolis algorithm
explained in the previous section is denoted as importance sampling. It ensures
that the best estimate of the quantity Q (see equation (5)) reduces to a simple
arithmetic mean

Q̄ =
1

n

n∑
i=1

Qi. (24)

The equilibrium properties of a system can be obtained, when the measurements
are started after waiting a certain number of steps, which is at least as large as
the corresponding autocorrelation time τeq (see section 2.2.1).

With a proper selection of states in thermal equilibrium the estimator Q̄ is
calculated with reasonable accuracy and computer time.

2.3.5 Error Estimation

In an experiment one would like to get an impression what the statistical errors
of the measured quantities are. Suppose a quantity Q is distributed according
to some function with expectation value 〈Q〉. After n statistically independent
observations {Qi} of this quantity an unbiased estimator for the expectation value
〈Q〉 is given by the arithmetic mean of equation (24). The computed mean square
deviation δQ is

δQ =

√√√√ 1

n

n∑
i

(Qi − Q̄)2 =
〈
Q2
〉
− 〈Q〉2 . (25)

Qi is a value of a quantity in state i and Q̄ is the arithmetic mean of all states n.
The task is to find estimates for the unknown parameter {Qi} of the underlying
distribution and to control the errors. The following relation holds only for large
n. As shown in equation (5) an estimate is

〈Q〉 ≈ Q̄ (26)
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with a mean square error of 〈Q〉 of

δ〈Q〉 ≈
1

n− 1
δQ2 . (27)

To ensure one has received reliable expectation values 〈Q〉 in an experiment or
simulation, the mean square error has to be minimized. To determine the mean
square error δ〈Q〉, a measurement of the same quantity Q has to be repeated several
times. In a Monte Carlo simulation random number algorithms are used to create
new states. It is necessary, that the production of random numbers is fast and
efficient. Random numbers are produced with the help of an algorithm that is
per se deterministic and therefore predictable. These sequences are only pseudo-
random and do have limitations which are discussed in literature, e.g., in Numerical
Recipes [29]. It is known that poor quality random number algorithms can lead
to systematic errors in Monte Carlo simulations. To avoid such systematic errors,
a random number generator should behave similar to realizations of independent,
identically distributed random variables. The algorithms used in this thesis are
taken from [29] and are known to satisfy independency and identical distribution
of random numbers.

To simulate independent measurements, the starting condition of the applied
random number generator has to be changed, so that a different set of random
numbers is created. Independent simulations in this work means simulations with
different starting conditions defined by the so-called seed of the random number
generator.
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3 Manipulation of a domain wall in a ferromag-

netic nanowire utilizing an STM tip

In this chapter a study of the controlled manipulation of a single domain wall in a
ferromagnetic nanowire is presented. In the proposed procedure a spin-polarized
current is induced by a magnetic tip of an STM. The tip is placed above a mag-
netic nanowire and then moved along the wire’s long axis, with a current flowing
through the vacuum barrier. The angular momentum from the spin-polarized cur-
rent exerts a torque on the magnetic moments underneath the tip and leads to a
displacement of the domain wall. Particularly, the manipulation of a ferromagnetic
180° transverse domain wall has been studied by means of Monte Carlo simulations.

Parts of the material presented in this chapter has been originally published in
Physical Review Letters : "T. Stapelfeldt, R. Wieser, E. Y. Vedmedenko and R.
Wiesendanger, Domain Wall Manipulation with a Magnetic Tip, Phys. Rev. Lett.,
107, 2, 027203 (2011)" [30] Copyright (2011) by the American Physical Society.

The present chapter starts with an introduction to the properties of the nanopar-
ticle under investigation. It follows a theoretical description of the tunneling cur-
rent, which is defined by the Tersoff-Hamann model. Then the simulation scheme
of the Monte Carlo simulation is presented. Thereafter, a theoretical description
of the domain wall propagation through the Peierls potential of the discrete lattice
is given and first results of successful domain wall manipulation are presented.
It follows a discussion on how a very localized perturbation, such as a tunneling
current, can lead to the propagation of an extended domain wall. Then, addi-
tional simulations are presented for the domain wall manipulation with different
tip magnetizations and the results are compared with spin-dynamic simulations.
Eventually, the spin-polarized part of the current is analyzed, because it allows
to compare the theoretical results with future experiments, as the spin-polarized
part of the current is proportional to the dI/dU signal of an STM.

3.1 The system properties and the simulation scheme

3.1.1 The model and corresponding experimental systems

For a realistic simulation one needs system parameters, like the exchange and the
anisotropy constants, which define the magnetic properties of the system. The
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material parameters used in the simulations are typical for experimental investi-
gations on ultrathin films [31–42]. Note, that the range of material parameters
specify a class of hard magnetic materials like Fe/W(110), but do not represent
any concrete system. Hence, the results of this work can be adapted to all sys-
tems possessing similar properties. A welcoming effect for numerical simulations
is, that dipolar interactions are negligible in such systems due to the anisotropy
lying in-plane. As dipolar interactions are long ranged, neglecting them drastically
decreases the computational time of the simulation.

For Fe/W(110) it is known, that due to the diffusion energy, iron wires grow
smoothest along the [001] direction and least smooth along [110] [43]. Therefore,
the sample systems have been created in the xy-plane, which shall correspond
to the (110)-plane of tungsten. The x-direction in the simulation corresponds to
[001], and the y-direction to [110], see Figure 2. A maximal lateral dimension of
about Nx × Ny ≈ 80 × 30 atomic rows (AR) has been modeled, which matches
the dimensions of an Fe/W(110) nanostripe of about 15 nm × 7 nm. Nx and Ny

are the number of atomic rows in x- and y-direction. Each lattice site is occu-
pied by a classical Heisenberg moment Si = (Sx, Sy, Sz)i = (S[001], S[110], S[2,2,1])i

of unit length. The easy-axis of the monolayer Fe/W(110) lies along [110] [44]
and a hard-axis is assumed to lie out-of-plane [45]. Furthermore, for Fe/W(110),
density functional theory calculation [46] revealed a change of the exchange cou-
pling along different spatial directions, compared to bulk iron, which is due to
a lattice mismatch of about 10% [47]. A combined experimental and theoretical
study [48] of Fe/W(110) nanowires estimates the best overall accordance of a ratio
of the exchange constants between first, second, and third nearest neighbors of
J1 : J2 : J3 = J[001] : J[11̄1] : J[11̄0] = 1 : 2 : 4. As the implemented code allows
to calculate long range interactions, the mentioned anisotropic exchange has been
considered in the simulation. The magnetic properties of the sample system are
then described by the following Hamiltonian:

H = −J[001]

∑
〈ij〉

SiSj − J[11̄1]

∑
〈ij〉

SiSj − J[11̄0]

∑
〈ij〉

SiSj (28)

−Ky

∑
i

(Siy)
2 +Kz

∑
i

(Siz)
2,

where J[hkl] > 0 denotes the effective nearest neighbor exchange coupling constant
along different crystallographic directions defined by the miller indices h,k, and
l, see [49] for more details. Ky > 0 is an easy-axis anisotropy pointing along
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Figure 2: Sketch of a simulated nanowire. Two ferromagnetic domains (blue and red),
consisting of about 600 Heisenberg moments each, separated by a 180° transverse domain
wall. The moments in the domain are oriented along the easy-axis. The second x and y
axis show the length of the nanowire in atomic rows (AR).

y = [11̄0], and Kz > 0 an out-of-plane hard-axis anisotropy. The first three sums
run over all nearest neighbors along a certain crystallographic direction and the
last two sums run over all lattice sites i.

3.1.2 The different sets of energy constants used in the simulations

Four different sets of parameters have been used for the studies presented in this
thesis. The reason for using different parameters is on the one hand to optimize
the computational effort according to the problem under investigation, which cru-
cially depends on the complexity of the considered Hamiltonian, and on the other
hand, to be able to compare results for different ferromagnetic systems. Table 1
summarizes all different sets of energy constants used. Note, that SET1 and SET2
have been used in the present chapter. Apart from the different exchange and
anisotropy constants J and K, the underlying crystal lattice used for the param-
eter set is given, and a chapter which contains results of the given parameter set.

To ensure a reasonable simulation time, the parameters have been adjusted
to the problem under investigation, thus, according to the computational demand
and the available computer resources. For instance the simulation of a system with
exchange interactions up to third nearest neighbors, defined by SET1, is much more
time consuming than a simulation taking only first nearest neighbors into account,
e.g., defined by SET2. However, all sets represent the same class of physical
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SET1 SET2 SET3 SET4
Lattice BCC(110) SC SC BCC(110)
Chapter 3, 4 3 5 6
J1 1 1 1 -
J2 2 J1 - - 1
J3 4 J1 - - 2 J2

Ky 1 J1 0.125 J1 0.6J1 0.44 J2 /0.043
J2

Kz 1 J1 0.05J1 - -

Table 1: The table summarizes the different sets of material parameters used for the
simulations in this work. The exchange interaction constants for first, second, and third
nearest neighbors (J1,J2,J3), and anisotropy constants for the in-plane easy-axis Ky and
the out-of-plane hard-axis anisotropy Kz are given. SET4 shows two different constants
of the easy-axis anisotropy used: the first belongs to lattice sites situated at the rim of
the nanoisland and the second to lattice sites on the surface.

systems introduced in the previous section. All simulations have been performed
in the computing center PHYSnet-Rechenzentrum, which has experienced a vast
increase of the computational resources in the last years allowing to perform more
and more extensive calculations.

3.1.3 The system properties and the geometry of the ferromagnetic
nanowire

For the study of the controlled domain wall manipulation a 180° transverse domain
wall, with an orientation along the y-axis, has been placed in the middle of a
nanowire with fixed dimension, as illustrated by Figure 2 and 3. The chosen
exchange and anisotropy constants lead to a width δDW of the relaxed domain wall
in the range of a few atomic distances, which is typical for ferromagnetic materials
of such high anisotropy [35, 50]. The black dashed line in Figure 3 is a hyperbolic
tangent fit on the row-wise averaged magnetizationMy(x) = 1

Ny

∑Ny
1 my(x), which

is the averaged magnetization over all moments along the y-axis for each atomic
row along x. Hence, the black dashed line gives the averaged shape of the domain
wall, which corresponds to the spin-configuration displayed in Figure 2. The green
shaded area indicates the area S0 of the domain wall.

Simulations have been performed for two different parameter sets. SET1 has
been used to represent a monolayer of ferromagnetic material with an anisotropic
exchange, like iron on the tungsten (110) surface, and SET2 has been used for
simulating an isotropic ferromagnetic monolayer on a square lattice. The param-

http://www.physnet.uni-hamburg.de/physnet/
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Figure 3: Sketch of the nanowire including a 180° transverse domain wall with an orien-
tation along the y-axis. The black arrows indicate the orientation of the magnetization
in the domains and the domain wall. The green rectangle illustrates the area S0 of the
domain wall and the black dashed line is a hyperbolic tangent fit on the averaged domain
wall profile.

eter set SET2 has been used, in order to compare the results of the Monte Carlo
simulation with spin-dynamic simulations, which have been performed by Robert
Wieser for nanowires on a square lattice.
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Figure 4: Sketch of the exchange bonds considered in the simulations for Fe/W(110) in
(a) and for the two-dimensional square lattice in (b).

For the simulations presented in this chapter a perfect crystal structure of the
nanowires has been assumed. However, in experiments imperfections of samples
occur and become evident as defects in the material’s crystal structure. In order to
study also the effect of magnetic defects on the domain wall propagation, chapter 4
presents additional simulations for a nanowire including defects. The next section
introduces the model used to account for the spin-polarized tunneling current of
an STM in the simulations.
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3.1.4 The spin-polarized tunneling current

In section 3.3, the influence of a spin-polarized current, induced by the tip of an
STM, on the domain wall position is presented (a detailed description of spin-
polarized scanning tunneling microscopy (SP-STM) can be found elsewhere [51]).
For that purpose one needs a model to describe the current induced by a magnetic
tip and a model, which describes the interaction between the spin-polarized current
and the magnetic moments of the sample. The tunneling current has been defined
by the extended version of the Tersoff and Hamann model, which includes the
spin-polarized contribution to the current [52, 53]:

T (rtip, θ) = T U(rtip) + T P(rtip, θ), (29)

where T U is the unpolarized part and T P the polarized part of the tunneling
current; rtip denotes the position of the tip and θ is the angle between the tip
magnetization mtip and the magnetization of the atoms in the sample Si. Tersoff
and Hamann modeled the tip apex atom as a spherically symmetric s wave, at
the point where it approaches nearest to the sample surface. Furthermore, they
assumed that the spin-up and spin-down s wave states can be characterized by
the same decay constant κ (κ = }−1

√
(2mφ)) and the work function φ of the

tip is equal to that of the surface. Then they obtained an exponential decay of
the tunneling current as a function of the distance [52]. As the non-polarized
contribution to the current density in the Tersoff-Hamann picture is a constant
factor, here, only the polarized current contribution is shown:

T i = −T0 · e−2κri · P ·mtip, (30)

with ri = |rtip − ri| the distance between the tip and the atom i of the sample,
P the polarization of the tip magnetization mtip (a unit vector in the direction of
the tip magnetization), and T0 the spin-polarized current averaged over the surface
unit cell. For simplicity, a fully polarized current has been assumed by setting P
equal to unity. From equation (30) it follows, that the current density decreases
exponentially with the distance between tip and sample. As a consequence, the
majority of electrons, tunneling through the vacuum barrier, interact with the
atoms directly underneath the tip only.

To understand the model, which describes the transfer of a spin-torque between
the tunneling s electrons and the localized moments of the sample, the authors of
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[54] write that

“[...] one has to recognize two types of electrons: spin-dependent transport is pro-
vided by electrons at or near the Fermi level and the magnetization dynamics can
involve electrons below the Fermi sea“.

As in real ferromagnets it is impossible to unambiguously separate electrons of
transport from electrons of magnetization, it has been conventionally modeled in
an s-d Hamiltonian. In this so called s-d model, the coupling between the spins
T i of the itinerant 4s conduction electrons and the spins Si of the 3d localized
electrons is given by the s-d exchange interaction −JsdT iSi [17] (illustrated in
Figure 5):

Hsd = −Jsd

∑
i

T iSi, (31)

where Jsd is the s-d exchange integral. Jsd has been set equal to one, so that all
information on the spin-polarized current is given by T i. The s electrons transform

Jsd Jsd

EF

Energy

Figure 5: Illustration of the coupling between the tunneling s electrons and the localized
d electrons, as described by the s-d model. Electrons from the Fermi sea are coupled by
the couplings constant Jsd with the moments of the crystal atoms.

a torque on the localized d electrons and align the magnetic moments of the atoms
into the direction of the tip magnetization.

The influence of the spin-torque on domain walls in nanowires has been investi-
gated intensively in the past [17, 55–57]. In the cited theoretical investigations, the
dynamics of a domain wall propagation has been modeled by spin-dynamic simu-
lations, employing the Landau-Lifshitz-Gilbert equation (LLG) [16, 17, 58, 59]. In
that model, the spin-torque is represented in the LLG equation by an additional
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precession term and an additional relaxation term (highlighted):

∂Si

∂t
= − γ

(1 + α2)
Si ×H i −

αγ

(1 + α2)
Si × (Si ×H i) (32)

+ CSi × T i︸ ︷︷ ︸
precession

+ DSi × (Si × T i)︸ ︷︷ ︸
relaxation

,

with the gyromagnetic ratio γ, the Gilbert damping α, the internal field H i =

−∂Hi/∂Si, the spin-current T i, and two constants D and C. The precession term
leads to a precession of the magnetic moments around the axis of the tip magne-
tization and the relaxation term leads to an alignment of the magnetic moments
along the direction of tip magnetization. In a spin-dynamic simulation, a system
will go to its energy minimum on a predefined path through the phase space, which
is defined by equation (32). On the contrary, in a Monte Carlo simulation, the
path to reach the minimum of the total energy is arbitrary. Nevertheless, with the
assumption made in section 2.3, the system will end up in a thermodynamically
stable configuration. In the Monte Carlo simulation the influence of the spin-torque
is reproduced by a ferromagnetic-like coupling between tip and sample, and is in-
corporated in the simulation by the additional Hamiltonian Hsd, see equation (31).
This s-d Hamiltonian is similar to a Hamiltonian of an external magnetic field, like
used in [60], but depends on the position of the tip. It represents a very localized
and non-homogeneous interaction like the spin-current induced by an STM tip.
Such a spin-current leads to a minimization of the total energy, if the magnetic
moments underneath the tip are aligned parallel to the tip magnetization. To
crosscheck the capability of the Monte Carlo simulation to reproduce the influence
of the spin-torque, the results of the Monte Carlo simulation have been compared
with spin-dynamic calculations in section 3.3, published in [30].

The next section gives an introduction into the used Monte Carlo simulation
scheme.

3.1.5 The simulation scheme of the Monte Carlo simulation

The simulations have been performed with a completely relaxed 180° transverse
domain wall at low temperature (T = 0.01 J/kB). Figure 6 illustrates the tip-
wire setup in the simulation. The tip has been initially placed far away from
the domain wall with a constant tip magnetization mtip and at a height h of
two lattice constants above the wire. Then, a constant spin-polarized current
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Figure 6: Scheme of a spin configuration of the sample. A domain wall elongated along
the y-axis separates two domains. The spins in the domains point along the easy-axis,
hence, along y. A tip with a magnetization mtip and height h above the sample moves
towards the domain wall along the indicated track into +x-direction (white horizontal
line) with a spin-current applied.

has been switched on. From equation (31) a maximal energy of about 100 meV
results, which is induced into the system. A current of such intensity does not
affect the domain wall position as long as the tip is far away. The tip starts to
move towards the domain wall with a constant tip velocity into the +x-direction.
After a tip displacement of ∆xtip = 0.1 lattice constants (a) the system has been
relaxed for 15 000 MCSs (each step calculated within the Metropolis algorithm),
which corresponds to a tip velocity of Vtip = 1.5 × 10−5 a per MCS. After the
relaxation at each tip-step, the net magnetization has been calculated. Initially
the magnetization is zero, as the domain wall is placed in the middle of the wire,
separating two equally sized domains with opposed magnetization. A change of
the domain wall position x0, due to a domain wall propagation, is visible as a
change in the magnetization. For all manipulation trials 200 tip-steps have been
performed and the domain wall position determined at each step. A manipulation
trial is defined as successful, if the domain wall is manipulated until the end of
the wire, hence, if the net magnetization of the wire switches from initially zero
to one. To assure reliable statistics of the simulation, each manipulation trial has
been repeated several times for different seeds of the random number generator.

The next section introduces the domain wall propagation in the Peierls poten-
tial of the discrete lattice using the example of a one-dimensional chain.
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3.2 Propagation of a domain wall on a discrete lattice: the

Peierls potential

If a domain wall propagates in a magnetic material it has to pass through different
spin configurations as it moves from one atomic row to another. From the litera-
ture [50, 61] it is known that if the domain wall width is close to the lattice spacing
one must take into account the effect of the discrete structure of the lattice on the
propagation of such a domain wall. Figures 7 (a) and (b) show two principal spin
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Figure 7: The Peierls potential as a function of the domain wall center position x0. The
black solid line shows the spatial dependence of the domain wall energy in respect to
the domain wall center position x0. The two spin configurations displayed correspond
to the domain wall center lying at an atomic row (a) and between two atomic rows (b).
These two configurations exhibit the maximum and minimum total energy of the system,
respectively.

configurations of a domain wall in a ferromagnetic chain — these configurations
exhibit the maximum and minimum total energy of the system and correspond
to the center of the wall (x0) lying at or between atomic rows, respectively. This
spatial variation of the domain wall energy due to the change of the spin configu-
ration (black solid line in Figure 7) is generally referred to as the Peierls potential
VP(x) or the Peierls energy EP(x), which is the activation energy for the domain
wall motion in an ideal crystal. The energy modulation is a result of the changing
alignment between neighboring spins during the domain wall propagation. The
authors of [50, 62] predicted a sinusoidal dependence on coordinate of the domain
wall energy in a cubic lattice and expressed the total wall energy as:

EP(x) = EPN sin2 (
πx

d
), (33)
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where d is the inter-atomic distance along the x axis and EPN the amplitude of
the wall energy. The black solid line in Figure 7 illustrates the dependency of the
Peierls energy on the coordinate x. EPN corresponds to the energy difference of
the two spin configurations depicted in Figure 7, with the maximum and minimum
energy, and is often referred to as Peierls-Nabarro barrier, EPN = Emax − Emin.
From numerical calculations the authors of [62] found that the amplitude of the
Peierls potential depends exponentially on the parameters of the domain wall:

EPN ∝
cJ[hkl]S

2

a2
exp(−πδDW

d
), (34)

where c = 1 for the simple cubic lattice, c = 2 for the bcc lattice and c = 4 for
the fcc lattice [63].

In 1940 the Peierls potential was introduced by Peierls for dislocations [64–66]
and about fifty years after that, it was discovered in the pinning of vortices in
superconducting materials [67]. Another two decades later the influence of the
Peierls potential on the propagation of a ferromagnetic domain wall was experi-
mentally observed for the first time by Novoselov et al. in 2003 [68], using the
state-of-the-art technique of ballistic Hall micromagnetometry.

In an ideal system without defects the intrinsic pinning is determined by the
Peierls-Nabarro barrier, which is also denoted as pinning barrier in the following.
This pinning barrier has to be overcome in order to successfully manipulate the
domain wall. That can be achieved by increasing the thermal energy of the sys-
tem or for instance by applying an external magnetic field or a polarized current.
In the case of a domain wall depinning by thermal excitations only, the domain
wall propagation takes place according to the random walk theory [69] (see also
section 6.3.1). However, when applying an external magnetic field the orientation
of the field defines the direction of the domain wall propagation. If applying a
spin-polarized current, it is the polarization of the current which defines the di-
rection of the domain wall propagation. The application of an external magnetic
field or a current results in a pressure f applied to the domain wall existing in the
system. If this external pressure f is sufficiently large, it leads to a propagation of
the domain wall. The external pressure causes a modulation of the internal field
and is, therefore, denoted as effective internal field in the following.

Figure 8 schematically illustrates the total energy of a defect free crystal with
a propagating domain wall for three different values of the external pressure f .
As external pressure an extended magnetic field pointing along the easy axis is
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Figure 8: Sketch of the spatial dependence of the total energy of a ferromagnetic chain
with a propagating domain wall. Without external pressure (a) and with an external
pressure smaller than the depinning field (b), and with an external pressure equal to the
depinning field (c). As external pressure an extended magnetic field pointing along the
easy axis is assumed.

assumed. At zero field (a) all energy minima are identical, which corresponds to
the center of the domain wall lying between atomic rows. Also all energy maxima
are identical, which corresponds to the wall center lying atop of an atomic row.
Hence, the energy curve has no inclination, there is no driving force acting on the
domain wall and the transition from one to another stable position between the
sites can be achieved only stochastically due to thermal fluctuations. If now an
external pressure exists, one of the two propagation directions becomes energet-
ically preferred. Hence, if the domain wall propagates towards the energetically
favorable direction, the total energy will decrease as shown by Figure 8 (b-c). For
a constant domain wall velocity VDW this decrease is linear. The authors of [70]
propose a spatial dependence of the perturbed wall energy Ef

P(x) in the form

Ef
P(x) = S0(EP(x)− f(x)), (35)

where S0 is the area of the wall. They divide the range of the external pressure
into two regions: f < f ∗ and f ≥ f ∗. For all f < f ∗ a pinning barrier EPN > 0

exists, while for all f ≥ f ∗ the pinning barriers disappear. These two situations
are depicted in Figure 8 (b) and (c). The authors of [70] call the regime of motion
shown in Figure 8 (a-b) the activated regime, as here thermal energy is needed
for a domain wall propagation. They call the situation illustrated in Figure 8 (c),
where the wall can move without thermal assistance, the non-activated regime.
They mathematically distinguish between these two regimes by comparison of the
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external pressure and the maximal steepness of the potential f ∗ = Max[dEP/dx]:
the activated regime corresponds to f < f ∗, the non-activated regime to f > f ∗.
The external pressure has to be larger than f ∗ in order to depin the domain wall
in the non-activated regime. In the following, f ∗ will be denoted as the depinning
field.

In the next section the tunneling current induced by the tip of an STM will
be introduced as a local perturbation of the Peierls potential and results of the
current induced domain wall manipulation are presented.

3.3 Manipulation of a domain wall by means of a localized

current

The energy landscape of a domain wall moving through a one-dimensional wire,
under the influence of an extended magnetic field or current, is shown in Figure 7.
If now a magnetic tip, with a polarized current flowing from tip to sample, is placed
in the vicinity of the domain wall, the energy landscape changes locally due to the
energy contribution of the s-d Hamiltonian (equation (31)). Figure 9 illustrates, at
two different tip positions x1 and x2, the energy landscape of the Peierls potential
modified by a polarized tunneling current, for a tip magnetization parallel (a)
and anti-parallel (b) to the domain wall orientation. For a parallel alignment the
illustration shows that the total energy can be minimized if the domain wall is
situated directly underneath the tip. If the pinning barrier of the domain wall is
sufficiently reduced by the induced current, the domain wall can propagate towards
the tip and thereby reduce the total energy of the system. On the contrary, for the
anti-parallel alignment, the increased potential barrier hinders the domain wall to
move towards the tip, hence, the domain wall in Figure 9 (b) will move away from
the tip in order to keep the total energy minimal.

This one-dimensional demonstration can also be used to explain the findings
of the simulations for the two-dimensional case. Figure 10 shows the manipula-
tion curves, i.e., the domain wall position x0 as a function of the time, for a tip
magnetization parallel (black) and anti-parallel (red) to the domain wall. The
simulations have been performed at T < 0.01 J/kB using SET1 of Table 1. As
long as the tip is far away from the domain wall the induced current does not
affect the domain wall position, thus, besides some thermal fluctuation the net
magnetization of the nanowire does not change. When the tip approaches the wall
the domain wall starts to propagate if a critical distance rc to the wall is reached.
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The s-d Hamiltonian then has changed the energy landscape so much that the
domain wall propagates towards the nearest minimum (which can lie either in +x-
or −x-direction, depending on the tip magnetization). In other words: The spin-
torque is transformed into kinetic energy leading to a domain wall propagation,
which decreases to zero when the minimum of the total energy is reached.

For the parallel alignment of tip and wall (mtip ↑↑SDW) the spin-torque is max-
imal when the tip is above the domains. Hence, the angle θ between the orientation
of the tip magnetization and the orientation of the magnetic moments underneath
the tip is π/2. The spin-torque is minimal if the tip is situated above the domain
wall (θ = 0). Also the s-d Hamiltonian reaches its minimum value if tip and wall
are aligned in parallel, as clear from Figure 9 (a). Consequently, the domain wall
propagates towards the tip in order to minimize the total energy. In the manipu-
lation curves shown in Figure 10 after approximately 2.4× 106 MCSs (xtip ≈ 15 a)
the magnetization decreases at the moment when the domain wall leaves its initial
position and propagates towards the tip. For the remaining manipulation trial the
domain wall stays in the energy minimum underneath the tip, hence, follows the
tip and is successfully manipulated until the end of the wire.

In the case of an anti-parallel alignment (mtip ↑↓SDW) the spin-torque again
is maximal when the tip is above the domains (θ = −π/2) and minimal above the
domain wall (θ = π). However, the energy contribution of the s-d Hamiltonian
leads to an increasing total energy when the tip approaches the domain wall,
leading to a maximal total energy above the domain wall center, as clear from
Figure 9 (b). As a result, the domain wall avoids the tip and stays always in front
of it. Again, the domain wall is successfully manipulated, as shown by the black
curve in Figure 10 (a). Hence, both types of the tip magnetization are capable to
manipulate the domain wall, but in essentially different ways: One by creating a
potential valley, which traps the domain wall and allows the domain wall being
pulled along with the tip, i.e., the parallel alignment mtip ↑↑SDW; and one by an
increased potential barrier underneath the tip, which pushes the domain wall out
of the wire, i.e., the anti-parallel alignment mtip ↑↓SDW.

On the timescale of the simulation one can say, that the simulation of the
manipulation of a domain wall has been performed in the non-activated regime.
The applied temperature is too small for the domain wall to overcome the pinning
barrier. Nevertheless, the temperature manifests itself in small fluctuations of the
simulated expectation values, see Figures 10 (b).

In the next section it is discussed in detail, how a localized perturbation, like
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a spin-polarized tunneling current, can lead to the propagation of an extended
domain wall, even though the local perturbation is about 50 times smaller than
the extension of the domain wall.

3.3.1 How does a localized current displace an extended 2D domain
wall?

If one considers a domain wall in a two-dimensional system with a localized current
applied, it is not clear how such a current can reduce the pinning barrier for the
whole extended domain wall. It will be shown, that the reduction of the pinning
barrier is a time-dependent process. In the two dimensional nanowire, the change
of the energy landscape underneath the tip spreads through the system via the
exchange interaction of neighboring moments. To start the discussion and before
presenting results of the simulation, a domain wall propagation is schematically
demonstrated in this section.

Figure 11 shows an illustration of the spin configurations of three atomic rows
of a two dimensional nanowire for three different time steps t1, t2, and t3. The black
solid lines display the energy landscapes of the domain wall propagation for each
atomic row considering the exchange interactions along y only and the tunneling
current. The change in energy due to the on-site anisotropy and the exchange
coupling along x, as shown in Figure 7, is ignored in this scheme because it is
identical for the three rows and constant over time. The applied current changes
the energy landscape in the ith row only and it reduces the potential energy about
two lattice constants in front of the domain wall center, visible as a pronounced
potential valley in −x-direction. The direction of the effective internal field created
by the current depends on the orientation of the domain wall and points, in the
case shown in Figure 11, into the −x-direction.

The exchange energy along the y-direction (EJ3) is minimal if the domain wall
centers of each row reside at the same x-position. In such a case all moments along
y are aligned in parallel, as shown in Figure 11 (a). (a) corresponds to the first
MCS t1 at which the current is switched on. Starting the simulation leads to a
relaxation of the domain wall center of the ith row into the minimum underneath
the tip at t2, as shown in Figure 11 (b). As a result the internal field acting on the
domain wall center of the ith row vanishes, but the displacement of the ith domain
wall center alters the exchange interaction between magnetic moments along the y-
direction and, as a consequence, creates an internal field in the i±1th rows pointing
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into the −x-direction. The energy landscapes of the neighboring rows (i ± 1th)
show, that the energy minimum is then shifted into the −x-direction. In order to
minimize the total energy and to reduce the effective internal field the neighboring
domain wall centers (i±1th) have to propagate towards that position, because the
energy minimum created by the current keeps the ith domain wall center trapped
underneath the tip. In this scheme the domain wall centers of the i ± 1th rows
propagated with a delay compared to the ith row.

Such a delayed propagation of different atomic rows described above can be
extracted from the simulations. Figure 12 shows the position of the domain wall
center xi0 for two different atomic rows, with i the number of the atomic row
along the y direction. For two neighboring rows, shown in Figure 12 (a), the rows
propagate almost simultaneously and both curves nearly coincide. This becomes
more clear when subtracting both curves from each other resulting in a mean
displacement 〈∆x∆i

0 〉 between both rows of 0.041± 0.035 a, shown by the insets in
Figure 12. Because of the short distance between the two rows (ry =

√
2 a) the

domain wall center positions of both rows are strongly correlated and the relaxation
of both rows takes place on the time scale of a single tip-step (15 000 MCSs).
Figure 12 (b) shows x0 for a row in the middle of the wire close to the path of the
tip (red) and a row close to the edge of the wire (black), ry = 5×

√
2 a. Obviously,

the domain wall center at the edge propagates with some delay compared to the
domain wall center that is closer to the tip, leading to a five times larger mean
displacement of 0.2±0.08 a than that of the two neighboring rows in (a). The larger
mean displacement indicates a smaller correlation of the domain wall position xi0
for rows that are far apart one from another than those close to each other.

To find out more about the correlation between the domain wall center position
of different atomic rows i, the correlation function for xi0 as a function of the
distance r = |rjy − riy| between two atomic rows along y has been calculated,
defined as follows:

Gx0(r) =
1

n(r)

∑
i<j

〈xi0xj0〉, (36)

with n(r) being the number of occurrence of the distance r, and i and j the index
of atomic rows. 〈···〉 denotes the time averaging during manipulation and corre-
sponds to a time interval of τ = 1.5× 106 MCSs. For more details on correlation
functions see also section 2.2.1. Figure 13 shows the correlation function Gx0(r)

as a function of the distance r in (a) and the correlation function for each row
with its closest neighboring rows in (b) (averaged over 1st, 2nd, and 3rd nearest
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neighboring rows). Figure 13 (a) points out that the correlation of the domain
wall position between two rows decreases with increasing distance between the
rows. As expected, the correlation is maximal for nearest neighboring rows and
decreases reaching a minimum at r = 12AR, which is close to half the width of
the nanowire.

The decreasing slope of Gx0(r) for large r indicates that the correlation between
atomic rows at the edges are larger than for atomic rows inside the wire, which
becomes more clear when looking at the correlation between neighboring atomic
rows as a function of the atomic row position i, shown in Figure 13 (b). This
representation clearly shows that the correlation between rows at the edges on
either side of the wire is higher than for rows inside the wire. The reason for the
correlated propagation of the domain wall centers at the edge is the more effective
exchange coupling between the rows due to a reduced coordination number of the
edge rows. Striking in Figure 13 (b) is a sudden increase at i = 13 AR, which is
due to the rows lying directly on or close to the tip’s path and is reflecting the
strong but localized influence of the induced current on the domain wall center in
the middle of the nanowire.

The simulations show that the correlation between magnetic moments of atomic
rows in a distance r close to the exchange length lex (lex ≈ r) is very high, but
magnetic moments far away (lex > r) are less correlated. As a consequence the
propagation of the domain wall center is more delayed for rows which are farther
away from the tip. The described behavior makes clear that the current does
not reduce the pinning barrier for the whole domain wall, but rather causes the
displacement of a part of the domain wall directly underneath the tip. This dis-
placement then, due to the change of the exchange energy, leads to the subsequent
propagation of the atomic rows that are situated farther away. Hence, the change
of the exchange energy leads to an increasing effective internal field. In a similar
fashion, Novoselov et al. describe in [68] the propagation of a domain wall between
Peierls valleys:

"[...] where at first only a submicrometre segment of a domain wall (a jog) moves
to the next valley. Spreading the boundary of such a jog along the wall eventually
leads to the relocation of the whole domain wall".

The next section presents results of the domain wall manipulation for six dif-
ferent tip magnetizations. Moreover, it presents a comparison of results obtained
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from the Monte Carlo simulations with spin-dynamic simulations.

3.4 Manipulating with different tip magnetizations

This section summarizes the results of the domain wall manipulation with a mag-
netic tip obtained from Monte Carlo simulations and spin-dynamic simulations for
six different tip magnetizations. Besides the two tip-sample geometries discussed
in section 3.3 four additional setups have been simulated and spin-dynamic sim-
ulations have been performed by Robert Wieser in order to compare the results
of the two simulation methods. The chosen tip-sample geometries can be catego-
rized into three principal scenarios each defined by the axis along which the tip
magnetization is oriented:

I With a tip magnetization parallel (mtip ↑↑SDW) or anti-parallel (mtip ↑↓SDW)
to the domain wall magnetization SDW

II With a tip magnetization parallel (mtip ↑↑SD) or anti-parallel (mtip ↑↓SD) to
the domain magnetization SD

III With a tip magnetization out-of-plane (mtip�Sxy) or in-plane (mtip⊗Sxy),
which are perpendicular to SD as well as to SDW.

Figure 14 shows the domain wall position as a function of the time for all tip
magnetizations, derived from Monte Carlo simulations in the first column (MC)
and for spin-dynamic calculations in the second column (LLG). (I a) and (I b)
correspond to scenario I, with a tip magnetization parallel or anti-parallel to the
domain wall. The first scenario has been discussed in section 3.3, although differ-
ent lattices and system parameters have been used in the Monte Carlo simulations
presented in section 3.3 and, here, the results are essentially the same (for a sum-
mary of the used parameters see Table 1). From Figures 14 (I a) and (I b) one can
deduce that the two different simulation methods lead to the same results. Differ-
ences between the results originate, on the one hand, from thermal fluctuations in
the Monte Carlo simulations and, on the other hand, from different time scales of
the two simulation methods.

In the second scenario (II) the tip magnetization is collinear with the domain
magnetization SD. The spin-torque is minimal above the domains for both cases,
since the angle θ between the tip magnetization and the magnetic moments of
the atoms underneath the tip is π for mtip ↑↑SD or 0 for mtip ↑↓SD. In the case

http://www.nanoscience.de/nanojoom/index.php/en/the-group/people.html
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of the tip magnetization parallel to the initial domain magnetization the energy
contribution of the s-d Hamiltonian is maximal negative and, therefore, the total
energy minimal. When the tip approaches the domain wall the energy contribution
of the s-d Hamiltonian increases due to the non-collinearity of the magnetization in
the domain wall (π > θ > 0). To keep the energetically favorable situation (before
the tip-wall approach) the domain wall has to propagate into the +x-direction. In
other words, the spin-torque increases when the tip approaches the domain wall
and in order to reduce the torque the wall starts to propagate away from the tip.
As the domain wall stays in front of the tip, one can say that the domain wall has
been pushed by the tip, this manipulation mode is called the pushing mode. In the
case of the mtip ↑↓SD geometry the energy contribution of the s-d Hamiltonian is
maximal positive, thus, the total energy maximal. When the tip approaches the
domain wall the total energy decreases and reaches its minimum when the tip is
positioned above the second domain, hence, it has to cross the domain wall. To
achieve that situation the domain wall propagates into the −x-direction, thus, in
the direction opposite to the tip motion. Finally, the total energy of the system
has been minimized — the tip has crossed the domain wall and moves further into
the +x-direction leaving the domain wall behind.

In the last scenario (III) the tip magnetization points in- (mtip⊗Sxy) or out-
of-plane (mtip�Sxy) of the nanowire. The spin-torques acting on the magnetic
moments in the domains and the domain wall are equal. However, due to the weak
exchange coupling of the magnetic moments in the domain wall the spin-torque
aligns the moments parallel to the tip. The absolute minimum of the energy for
mtip⊗Sxy as well as for mtip�Sxy is reached when the domain wall is positioned
directly underneath the tip, which can only happen if the magnetic moments can
be aligned along the z-axis. Results shown in Figure 14 (III a) correspond to a
system with a weak hard-axis anisotropy along z, allowing the energy minimization
by rotating magnetic moments into- or out-of-plane. For this reason, in the Monte
Carlo simulations shown in Figure 14, the domain wall is attracted by the tip
and then remains underneath it until the end of a manipulation trial. Hence, the
domain wall is pulled by the tip in both cases, this manipulation mode is called
the pulling mode.

In the spin-dynamic procedure a tip with an out-of-plane magnetization pulls
the domain wall, while an in-plane magnetization pushes the domain wall ahead,
see Figure 14 (III b). The main role for the different behavior, compared to the
Monte Carlo simulation, plays the first term of equation (32) used in the spin-
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dynamic calculations. This term requires a clockwise rotation of the magnetiza-
tion with respect to the internal field H i. The spin-torque (the fourth term of
equation (32)) tries to align the magnetization of the sample along the hard-axis.
In order to avoid this energetically unfavorable situation the domain wall moves
along the x-axis. In the Monte Carlo simulation a system always goes towards the
minimum of the total energy. The way the system does it is arbitrary. It is differ-
ent for the spin-dynamics simulation, where the kinetic energy of the second term
of equation (32) leads to a motion of the wall away from the tip for mtip⊗Sxy,
while towards the tip for the mtip�Sxy geometry. Therefore, the domain wall im-
mediately finds the global minimum with zero torque for the mtip⊗Sxy geometry
and remains in a local minimum for the mtip�Sxy geometry (pushing mode).

The different modes obtained in the framework of the two simulation methods
for the mtip⊗Sxy geometry (pulling for Monte Carlo simulation and pushing for
spin-dynamics) appear for currents strong enough to align magnetic moments into
the hard-axis only. Additional Monte Carlo simulations for an enhanced hard-axis
anisotropy of 5 meV showed that for scenario III manipulation is not possible,
as the spin-torque is too weak to align the moments out of the plane. To gain a
better understanding of the described behavior and make a link to the experiments,
the experimentally accessible spin dependent tunneling conductivity σsp has been
analyzed and is presented in the next section.

3.5 Simulation of conductivity curves

The conductivity of a tunnel junction with two ferromagnetic electrodes (tip and
sample) is proportional to the scalar product σsp = mtip ·Si [16, 71]. It is maximal
for the parallel (θ = 0) and minimal for the anti-parallel (θ = π) magnetization
orientation of the two electrodes. In the spin-resolved spectroscopic mode of SP-
STM experiments [51] the dI/dU curves correspond to the position dependent
changes in the conductivity σsp(xtip). As all information on σsp(rtip) is incorporated
into the s-d Hamiltonian it is possible to calculate σsp(rtip) ∝ 〈JsdT iSi〉 and
predict σsp(xtip) ∼ I/U .

Conductivity curves for the scenario I are plotted in Figure 15 (a). For this
scenario two different manipulation modes have been identified. In the case of a
parallel alignment of tip and wall (mtip ↑↑SDW) the tip has been situated above
the center of the domain wall and it pulled the domain wall along to the end of
the wire. In the case of anti-parallel alignment of tip and wall (mtip ↑↓SDW) the



3 MANIPULATION OF A DOMAIN WALL IN A NANOWIRE 37

domain wall has been pushed a couple of lattice constants in front of the tip during
the whole manipulation trial until the wall reaches the end of the wire. When
using this knowledge for the interpretation of the calculated conductivity curves
it becomes clear that σsp increases while the tip crosses the wall for mtip ↑↑SDW

(black circles) and subsequently remains constant when pulling the domain wall.
For mtip ↑↓SDW the conductivity remains unchanged, because the domain wall is
pushed ahead in +x-direction.

In themtip ↑↑SD geometry (black circles) of scenario II, shown in Figure 15 (b),
σsp is maximal above the initial domain (θ = 0). When the tip reaches the domain
wall the conductivity does not change, because the domain wall is pushed ahead
in +x-direction keeping θ close to zero. For mtip ↑↓SD (red rectangles), σsp is
minimal above the initial domain (θ = π). Approaching the domain wall, σsp

increases due to a motion of the wall towards the tip and finally underneath the
tip. In order to retain this energetically favorable situation the tip loses contact.
It moves further across the domain magnetized parallel to the tip magnetization,
keeping σsp maximal (θ = 0).

In the last scenario III (mtip⊗Sxy and mtip�Sxy) the spin dependent conduc-
tivity shown in Figure 15 (c) increases when the tip crosses the domain wall and
then remains constant when pulling the domain wall, in both cases. The displace-
ment between the two curves is due to thermal fluctuations. The conductivity
increases after the tip-wall contact, because the spin-torque aligns the magnetic
moments of the domain wall parallel to the tip. For a large hard-axis anisotropy,
where the spins cannot be aligned out of the plane, the conductivity curve would
remain constant.

The characteristic shape of the σsp(rtip) as well as x0 dependencies permit to
make a clear conclusion about the dynamical regime of the domain manipulation,
hence, pushing or pulling mode.

3.6 Summary and Conclusion

The manipulation of a narrow domain wall in a ferromagnetic nanowire utilizing a
localized spin-current of an STM has been studied theoretically by means of Monte
Carlo simulations. It has been found that due to the discreteness of the lattice and
the fact that the width of the domain wall is on the scale of the lattice constant the
domain wall is intrinsically pinned by the Peierls potential. In order to manipulate
a domain wall the applied current has to depin the domain wall via reduction of
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the Peierls potential. The results of the simulation show that the current does not
reduce the pinning barrier of the entire domain wall, but causes the displacement
of a segment of the domain wall underneath the tip. This displacement then, due
to the change of the exchange energy, leads to a jogwise propagation of the rest of
the domain wall.

For six different tip magnetizations, it has been demonstrated that all tip-
sample geometries are suitable for domain wall manipulation, but an analysis of
costs and benefits reveals the geometry with a tip magnetization parallel to the
domain wall magnetization mtip ↑↑SDW as the optimal one. The mtip ↑↑SDW

alignment assures the maximal possible conductivity and, furthermore, allows to
manipulate the domain wall in both directions along the x-axis. This geometry
has been chosen in order to study the influence of magnetic defects on the domain
wall propagation, presented in the following chapter. Two different manipulation
modes have been identified, namely the pushing mode and the pulling mode.

The theoretical time and distance dependence of the spin dependent conductiv-
ity σsp shows characteristic features for each geometry studied and can be used in
future SP-STM experiments for identification of the corresponding manipulation
modes.

As mentioned by Novoselov [68, 72] thermal excitation and domain wall pinning
at defects make the detection of the Peierls potential very complicated in exper-
iments. Even for the presented simulation, which has been carried out for very
low temperatures and without defects, the Peierls potential could not be resolved.
The reason for that will be discussed in the following chapter.
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Figure 9: Schematic representation of the spin configuration of a domain wall in a fer-
romagnetic chain (colored arrows) and the Peierls potential perturbed by a local spin-
current (solid black line), for two different tip positions x1 and x2. The energy landscape
for a tip magnetization parallel to the domain wall magnetization is shown in (a), and
for an anti-parallel tip magnetization in (b). For the parallel alignment the spin-current
leads to a local decrease of the energy barrier and for the anti-parallel alignment to a
local increase of the energy barrier. The dotted arrow indicates the propagation direction
of the tip.
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Figure 10: Monte Carlo simulation of the manipulation curves for two successful domain
wall manipulations. The black curve corresponds to a tip magnetization oriented parallel
to the domain wall orientation (mtip ↑↑SDW), and the red curve to a tip magnetization
oriented anti-parallel to the domain wall orientation (mtip ↑↓SDW). A 180° transverse
domain wall has initially been placed at x0 = 20 a. (a) shows the complete manipulation
trials, and (b) a section of the manipulation curve in the region of the tip-wall approach.
In (b) the thermal fluctuations are slightly more distinct in comparison to (a). The tip
moves with constant velocity as marked by the dashed line.
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Figure 11: Schematic drawing of three successive time steps illustrating the domain wall
relaxation. The black solid lines represent the energy landscapes of the domain wall
propagation without the Peierls potential. A current which locally changes the potential
in the ith row at the first time step t1 leads to a relaxation of the domain wall center
of the ith row towards this minimum at t2. In order to minimize the total energy, the
domain wall centers of the neighboring rows (i± 1) relax to the same x position at t3.
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Figure 12: The position of the domain wall center xi0 during the manipulation for single
atomic rows i. (a) xi0 for two neighboring rows and in (b) for two rows far apart. A
180° transverse domain wall has initially been placed at x0 = 20 a and the dashed line
corresponds to the position of the tip. The inset on the right-hand bottom shows the
difference of the two curves. The simulations have been performed for a tip magnetization
parallel to the wall magnetization mtip ↑↑SDW using SET1 of Table 1.
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Figure 13: (a) shows the correlation function Gx0(r) as a function of the distance r and
(b) shows the correlation function for each row with its neighboring rows i averaged for
up to its third nearest neighboring rows. The tip is situated at the 13th atomic row.
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Figure 14: Domain wall position x0 as a function of the time. Results of Monte Carlo
simulations in the left column and of spin-dynamics in the right-hand column. The
tip moves with constant velocity marked by the dashed line. (I a) and (I b) for a tip
magnetization parallel and anti-parallel to the initial domain SD, (II a) and (II b) parallel
and anti-parallel to the domain wall orientation SDW, and (III a) and (III b) pointing
in- or out-of-plane. A 180° transverse domain wall has initially been placed at x0 = 20 a.
The spin-dynamic calculations have been performed by Robert Wieser.
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Figure 15: Spin dependent conductivity versus time for the different tip magnetizations
of the three scenarios I-III. The red and black curves correspond to different tip magne-
tizations, as denoted by the insets. This figure has been published in a similar fashion
in [30].
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4 Manipulation of a domain wall in a ferromag-

netic nanowire including magnetic defects

In the previous section a tunneling current has been utilized to manipulate a do-
main wall in a nanometer scale wire. A nanowire without edge or surface roughness,
defects, or constrictions has been assumed. However, in experiments imperfections
of samples become evident as defects in the material’s crystal structure [73–76]
and may impede the domain wall manipulation. In the cited publications different
types of defects are described, namely planar defects, line defects, point defects,
and atomic disorder. The current chapter presents a Monte Carlo study of the
influence of point defects on the domain wall propagation and manipulation. A
point defect is defined as the local change of the magnetic properties of the system.
Furthermore, the study aims at resolving the Peierls potential from a domain wall
manipulation.

The chapter starts with the definition of defects and the pinning of a domain
wall at such defects. It follows the introduction into the properties of the system,
the Monte Carlo simulation scheme and the definition of the defect distribution
in the nanowire. Then results of the domain wall manipulation are presented and
it will be shown, that the pressure created by the applied current oscillates as
a function of the tip position. After this, the Peierls potential is estimated and
the depinning fields for defects with different amplitudes of the defect anisotropy
presented. At the end a method is proposed how the results of the simulation
could be compared with future experiments.

4.1 Defects, pinning sites, and domain wall pinning

4.1.1 Definition of defects and pinning sites

A point defect changes locally the magnetic properties of the crystal, which leads
to a local change of the Peierls potential. If such a perturbation of the Peierls
potential leads to the pinning of a domain wall, it is referred to as pinning site. In
previous theoretical and experimental investigations, defects have been described
as changes of the anisotropy field [77–81], as changes of the exchange coupling [82],
or as a change of the local stray field [83]. In the present work, point defects are
defined as lattice sites with an altered magnitude of the easy-axis anisotropy.

In experiments on iron nanowires grown on a stepped tungsten substrate [35,
39], domain walls have been found to be strongly coupled to the step edges. As a
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consequence of the coupling to the step edges, one can assume the atoms situated
at the island’s rim to possess different magnetic properties compared to the atoms
at the surface or in the bulk. Furthermore, experiments of nanoislands on a flat
substrate showed that atoms at the rim of the nanoislands (e.g., Fe/W(110) [84]
or Co/Pt(111) [85]) exhibit a much larger anisotropy than atoms at the surface
or in the bulk. The present study takes these experiments as guide and focuses
on a defect scenario with defects situated at the rim of the nanowire. One could
argue that this defect distribution rather corresponds to line defects, because the
defects are lined up next to each other. However, since the obtained results are
valid also for single point defects the defects are denoted as point defects, in this
thesis. The discussion of defects and pinning sites in the following section is valid
in general, hence, the results obtained in this work are also helpful to get an idea of
the domain wall pinning at randomly distributed defects, kinks, or constrictions.

Depending on the purpose of the experimental investigation, pinning may be
desired or not. Anyhow, in order to design a reliable magnetic storage or logic
device exploiting domain walls, the effect of defects on the pinning of domain walls
must be understood microscopically. This task requires an understanding of the
energy landscape through which the domain wall moves, and has been described
in the present work by a local change of the Peierls potential. The results will be
presented in detail in section 4.2.2.

4.1.2 Definition of domain wall pinning at defects

In section 3.2 it has been shown, that a localized spin-current can reduce the
pinning barrier of the domain wall and allow for the domain wall to move from
one atomic row to the next. If structural defects are present in the crystal, they
may impede the domain wall propagation. The authors of [70] mention, that “one
says that the wall is pinned by defects when, under an external pressure, the
wall does not move because of its coupling with defects of the crystal”, and that
“the potential imposed by the defects onto the wall is called pinning potential ”.
They note, that one “introduces a notion of pinning pressure defined as external
pressure needed to cause depinning — the macroscopic motion of the wall through
the pinning potential”. To stick to the nomenclature introduced in the previous
chapter the pinning pressure will be denoted as depinning field f ∗ in the following.

Experiments revealed that defects cause areas with modified magnetic prop-
erties and can, for instance, be described by a change of the anisotropy constant
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[77, 86]. In the present work, defects are treated as changes of the magnitude
of the in-plane easy-axis anisotropy constant (K[11̄0]), which is similar to former
theoretical studies of systems with perpendicular anisotropy [79–81]. If the poten-
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Figure 16: (a) shows schematically the magnitude of the anisotropy for different lattice
sites. The anisotropy is constant for sites with a black arrow, and is varied during the
simulation for the lattice site with the two colored arrows, representing the anisotropy
of a defect (gray circle). The blue arrow indicates an increase of the anisotropy and the
small red arrow a decrease of the anisotropy. In (b) the change of the Peierls potential
due to the change of the anisotropy is illustrated, the red dashed curve for a decrease
and the blue dotted line for an increase of the anisotropy.

tial landscape changes due to a defect of the lattice, the pinning barrier at that
coordinate can either be increased or decreased. Figure 16 (a) schematically shows
the magnitude of the anisotropy for different lattice sites with a single defect at
x = 2 a and a domain wall at x = 3.5 a. The gray circle indicates the lattice site of
the defect with a modified anisotropy constant K (red and blue arrows), while the
anisotropy remains unchanged (K = K0) for all other lattice sites (black arrows).
For a defect with decreased anisotropy (red dashed curve), the total energy can
be minimized if the domain wall propagates towards the defect, as clear from Fig-
ure 16 (b). If the wall reaches that position, it gets pinned by the defect. On the
contrary, for an increased anisotropy (blue dotted curve), the total energy would
increase if the domain wall propagates towards the defect, hence, the domain wall
avoids that position. The domain wall is not pinned, but the defect hinders the
domain wall from propagating into the −x-direction.

If the domain wall is pinned, it can only get depinned when the pinning barrier
is essentially reduced by applying an external pressure or by thermal excitations.
However, an applied current sufficient to move a domain wall in a defect free wire,
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as discussed in sections 3, might not be sufficient to manipulate a domain wall in
a wire containing single or multiple defects. In order to check this statement, the
same current as used in the previous chapter has been used for the simulations
presented in the following.

4.2 The system properties and the simulation scheme

4.2.1 The system properties and the used Hamiltonian

The system properties and the simulation scheme is very similar to the study
presented in the previous chapter (see section 3.1.5), only the anisotropy constant
Ky has been changed at predefined lattice sites. The global anisotropy constantKy

is replaced by an anisotropy constant for each lattice site i, hence, the Hamiltonian
reads:

H = −J[001]

∑
〈ij〉

SiSj − J[11̄1]

∑
〈ij〉

SiSj − J[11̄0]

∑
〈ij〉

SiSj (37)

−
∑
i

Ki
y(S

i
y)

2 +Kz

∑
i

(Siz)
2,

where J[hkl] > 0 denotes the effective nearest neighbor exchange coupling constant
along different crystallographic directions. Ki

y > 0 is an easy-axis anisotropy at
site i pointing in-plane, and Kz > 0 an out-of-plane hard-axis anisotropy. The
first three sums run over all nearest neighbors along a certain crystallographic
direction and the last two sums run over all lattice sites i. The exact values of
each Ki

y are defined in the next section. As the study presented in the previous
chapter revealed the tip magnetization with an orientation parallel to the domain
wall orientation being the most promising for successful domain wall manipulation,
the defect study has been performed for that tip magnetization only.

The Monte Carlo simulations have been repeated with the magnitude of the
defect anisotropy being varied systematically. In the following, the index y will
be omitted because only the easy-axis anisotropy (pointing along y ≡ [11̄0]]) has
been changed in the simulation. The magnitude of the anisotropy constant K has
been chosen in a range of {0.1, ..., 10} K0 in steps of 0.1 K0. K0 denotes the mag-
nitude of the anisotropy of all non-defects sites (see Table 1). Hence, two regions
can be identified, one with reduced anisotropy (K < K0) and one with enhanced
anisotropy (K > K0). Even though it is known that the anisotropy at the rim
of the island is higher than the anisotropy of the surface atoms [84, 85], simu-
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Figure 17: Illustration of the nanowire with an altered magnitude of the anisotropy
at two edges, which could represent a nanowire grown on a terrace between two step
edges. The large circles correspond to sites with a changed anisotropy K and the small
circles correspond to lattice sites with an unchanged anisotropy K0. The green rectangle
illustrates the position and elongation of the domain wall.

lations have also been performed for reduced edge anisotropies, to complete the
theoretical picture. In order to map the Peierls potential as precisely as possible,
all simulations have been repeated for about 50 different random seeds. Hence, a
manipulation trial has been repeated 50 times for each anisotropy value. In or-
der to reduce the simulation time smaller systems than presented in the previous
chapters have been simulated (Nx ×Ny ≈ 40× 30 AR), which can be considered
as a segment of the wire of chapter 3, depicted in Figure 17. The size of the circles
in Figure 17 illustrates the magnitude of the anisotropy for each lattice site: the
larger circles correspond to defects with a modified magnitude K, and the small
circles correspond to lattice sites with a regular anisotropy K0.

4.2.2 The Peierls potential of a lattice with magnetic defects

If the domain wall is pinned in the wire, the depinning field depends on both: on the
number of defects involved in the pinning and on the change of the anisotropy per
defect. The defect anisotropy defines the change of the local energy at site i with
respect to a lattice site without defect. In the simulations, the anisotropy constant
K of the defects has been increased systematically, which led to a perturbation
of the sinusoidal potential of the ideal lattice, as shown in Figure 16. Adding
a perturbation term Epert(x) = ∆KF (x) to equation (33) one derives (in one-
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dimension) the spatial dependence of the perturbed energy landscape EPP(x):

EPP(x) = EPN sin2(
2πx

d
) + ∆KF (x) = EP(x) + Epert(x). (38)

In two-dimensions the perturbed energy term Epert(x, y) at each lattice site has
been defined by a defect distribution function F (x, y), which represents the spatial
distribution of the defects. The following defect distribution function places the
defects at the edges of the wire:

FED(x, y) =

{
1, if y ∈ {1, Ny}
0, else

, (39)

where ED stands for Edge Defects. For each defect present in the system, the
pinning barrier decreases or increases corresponding to the anisotropy change
∆K = K − K0. Figure 17 illustrates the studied defect configuration. A do-
main wall propagating through the nanowire with defects experiences a different
potential landscape compared to the defect free wire. In two dimensions, the
spatial dependence of the domain wall energy is described according to equation
(35):

Ef
PP(x, y) = S0(EPP(x, y)− f(x, y)). (40)

A one-dimensional approximation of the spatial dependence of the domain wall
energy is given by summing up Ef

PP(x, y) for each atomic row along y (Ef
PPy(x) =∑i=Ny

i=1 Ef
PPi(x)) and is illustrated by Figure 18.
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Figure 18: Illustration of the Peierls potential for three different defect anisotropies. The
black dashed curve corresponds to the defect free wire, the red curve corresponds to the
energy for defects with an enhanced anisotropy (K > K0) and the blue curve corresponds
to the energy for defects with reduced anisotropy (K < K0).



4 MANIPULATION OF A DOMAIN WALL INCLUDING DEFECTS 50

Looking at the perturbed potential shown in Figure 18 an asymmetry of the
amplitude between odd and even atomic rows is striking, especially for the wire
including defects (red and blue curves). This asymmetry is a finite size effect and
is due to the BCC lattice structure of the wire. The rows with an odd number
along x hold one more lattice site and two defects, the even rows on the contrary
do not include any defects. The presence of defects increases this finite size effect,
but it is already visible for the defect free wire, as shown by the black dashed curve
in Figure 18.

How the perturbed potentials influence the domain wall propagation will be
presented in the following sections.

4.3 Domain wall manipulation

Figure 19 (a) shows manipulation curves for different anisotropy values. In the
case of a successful manipulation the curves run parallel to the purple dashed line,
which indicates the tip position. The manipulation curves end up at x0 = 41 AR,
which means the domain wall has been manipulated successfully until the end of
the nanowire. Looking at the manipulation curves for larger values of the defect
anisotropy (blue curve) a periodic, stepwise modulation of the curve is visible.
This stepwise propagation of the domain wall is a result of an oscillating external
pressure, which only appears for K > K0 and will be addressed in detail in the
next section. In the case of an unsuccessful manipulation the curves drop down
to an arbitrary value below x0 = 41 AR (green curves), meaning that the domain
wall has been manipulated partially, or, in the case of the green dashed curve
displayed, not at all.

Whether a domain wall has been manipulated successfully for a certain defect
anisotropy can easily be read from the final magnetization Mfin

y , shown in Fig-
ure 19 (b). It is equal to unity for successful manipulation and smaller for unsuc-
cessful manipulation. Mfin

y clearly shows that the domain wall can be manipulated
successfully for defect anisotropies up to K = 2.5 K0, hence, the probability of a
successful manipulation Pmanip is equal to one. Pmanip = 1 means that the external
pressure f has been larger or equal to the depinning field f ∗. Furthermore, Mfin

y

shows that a partial manipulation occurs for anisotropy values in the range of
2.5 K0 < K < 3.2 K0 (red shaded area) and that for K > 3.2 K0 no manipulation
is possible at all. Hence, the probability of a successful manipulation decreases for
K > 2.5 K0 and vanishes above K = 3.2 K0.
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Figure 19: (a) shows manipulation curves for different anisotropy values. The purple
dashed line in (a) gives the tip position over time and the vertical lines correspond to the
tip position in units of an atomic row. (b) shows the averaged final net magnetization
Mfin
y after a domain wall manipulation trial for different anisotropies. The red shaded

area indicates the activated regime.

From Figure 19 (b) one can identify the two regions mentioned in section 3.2:
the non-activated and the activated region. For anisotropies up to K = 2.5 K0 the
final magnetization is equal to one with a vanishing standard deviation indicating
that no thermal excitation is needed for the domain wall to overcome the pinning
barrier, hence, the manipulations have taken place in the non-activated regime.

The increase of the standard deviation above K = 2.5 K0 means that only
with the help of thermal energy the domain wall can be manipulated, thus, the
depinning field exceeds the external pressure. This narrow anisotropy region of
2.5 K0 < K < 3.2 K0 corresponds to the activated regime. In the activated
regime the so-called escape time τ the system needs to overcome the pinning
barrier follows the Boltzmann statistics:

τ = τ0 exp[
∆E

kBT
], (41)

where ∆E is the energy barrier to be overcome by the thermal energy and corre-
sponds to the Peierls-Nabarro barrier reduced by the external pressure, and τ0 is
a prefactor. Due to the periodicity of the defect distribution along the direction
of the domain wall propagation (x) the domain wall has to overcome the pinning
barrier repeatedly during a manipulation trial. Since the temperature, the num-
ber of atomic rows, and also the applied current has been held constant during
the simulations the probability of a successful domain wall manipulation in the
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activated regime decreases exponentially with increasing pinning barrier:

Pactive ∝ exp[−EPNNx

2kBT
]. (42)

Equation (42) is in agreement with the strong decrease of Mfin
y above K = 2.5 K0

in Figure 19 (b). From the findings presented one can conclude that for a defect
anisotropy larger than K = 2.5 K0 the depinning field f ∗ exceeds the external
pressure f ; i.e., f < f ∗ for K > 2.5 K0.

Before the pinning barrier and the depinning fields are determined as a function
of the defect anisotropy the following section will shed some light on the stepwise
behavior of the manipulation curve in Figure 19 (a) (blue curve).

4.4 Oscillation of the external pressure

In section 3.3.1 it has been discussed that the applied current does not directly
reduce the pinning barrier for the whole domain wall. It only causes a displace-
ment of the part of the domain wall directly underneath the tip. The displacement
of this first segment leads to an increase of the internal field, which in turn leads
to the subsequent propagation of the segments of the domain wall that are sit-
uated farther away. In the study presented in chapter 3 the external pressure
did successfully reduce the pinning field at all times (for each tip-step). As a re-
sult, the domain wall followed the tip at a constant distance leading to a smooth
manipulation curve (see black curve in Figure 10 (a) and Figure 19 (a)). How-
ever, the dynamics of the domain wall propagation becomes more complicated for
larger pinning barriers (see blue curve in Figure 19 (a)), as will be discussed in the
following.

Figure 20 (a) shows the mean tip-wall distance during manipulation as a func-
tion of the anisotropy value K. For anisotropy values K . K0 the domain wall
follows the tip at a distance of about 〈rtw〉 = 0.4 a, but the tip-wall distance in-
creases for K > K0 until the domain wall cannot be manipulated anymore above
K = 2.5 K0. An analysis of the time resolved domain wall dynamics revealed that
with increasing depinning field, on the one hand, the tip moves further in front of
the domain wall and, on the other hand, the bending of the domain wall increases.
Both these factors lead to an increase of the effective internal field, which can be
seen as an increase of the external pressure. Hence, the increasing tip-wall distance
reflects an increase of the external pressure f .
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When looking at the time resolved tip-wall distance one finds an oscillating
behavior for anisotropies larger than K = K0, shown in Figure 20 (b). Note, that
each data point of Figure 20 (a) corresponds to the time average of a curve in the
manipulation regime of Figure 20 (b). For anisotropies larger than K0 the external
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Figure 20: (a) shows the tip-wall distance 〈rtw〉 averaged over the whole manipulation
process after the tip-wall contact has been achieved. (b) gives the distance rtw between
tip and wall as a function of time for different anisotropy values. The data points in (b)
corresponds to an average of the curves in (a) for the interval between the tip positions
11 a and 18 a.

pressure at rtw ≈ 0.4 a is not sufficient any more to depin the domain wall. From
now on the domain wall dynamics drastically change. In order to overcome the
pinning field and to depin the domain wall the tip has to move further. Hence, the
external pressure at 〈rtw〉 = 0.4 a only leads to a partial propagation of the domain
wall segments close to the tip, while the segments at the edges are (temporarily)
pinned. Then the tip moves another tip-step and the segments close to the tip
path follow again, which increases the external pressure. As long as the coupling
between the tip and the domain wall is strong enough, the external pressure in-
creases further each tip-step, but does not necessarily depin the whole domain wall.
For each further tip-step, the bending of the domain wall increases until finally
the depinning field is reached and also the domain wall segments at the edges can
overcome the pinning barrier. After the successful depinning of the domain wall
the domain wall propagates towards the tip to the next pinning site. As a result
the external pressure decreases again. The described dynamics become evident in
the time dependence of the tip-wall distance in Figure 20 (b). The alternation
between stepwise increasing external pressure and the subsequent propagation of
the domain wall leads to the oscillatory development of the tip-wall distance rtw

and manifests itself in the step by step propagation of the domain wall. The tip-
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wall distance curves are smooth for K ≤ K0 (red and black curves) but show the
oscillatory behavior for K0 < K < 2.5 K0 (gray curves), which becomes more and
more pronounced for increasing K and gets maximal for K = 2.5 K0 (blue curve).

In fact, the oscillation of the tip-wall distance shown in Figure 20 (b) occurs
for any strength of the defect anisotropy but becomes pronounced only for larger
anisotropies. This statement has been confirmed by a Fourier analysis. The am-
plitude of the Fourier signal calculated on the basis of Figure 20 (b) shows two
peaks. The peak positions do not change for 0 < K < 2.5 K0 and lie at the wave
vector of about 0.1 1

∆xtip
. Hence, the Fourier analysis reveals a periodicity of about

one lattice constant, which means that during a manipulation trial the external
pressure reaches a maximum after every tip displacement of one lattice constant.
As long as the depinning field is smaller than the maximal external pressure the
domain wall follows the tip and is successfully manipulated.

As will be shown in the following section, it is the oscillation of the external
pressure which allows to estimate the energy landscape through which the domain
wall propagates. If a constant and homogenous external magnetic field would have
been applied, a sweep of the field would have been necessary in order to determine
the depinning field for different anisotropy values.

4.5 Determining the depinning field

4.5.1 Mapping the Peierls potential

The domain wall manipulation for anisotropies smaller than K = 2.5 K0 has taken
place in the non-activated regime. In this regime, the external pressure reduces the
pinning barrier and the domain wall propagates from one potential valley to the
next without thermal assistance needed. As discussed in the previous section, the
oscillation of the external pressure leads to a stepwise domain wall propagation.
This stepwise propagation allows to map the different energy states the domain
wall passes through. By plotting the total energy as a function of the domain
wall position x0, one obtains a one-dimensional estimate of the energy landscape
through which the domain wall propagates: i.e., the Peierls potential.

Figure 21 (a) shows the total energy as a function of the domain wall position
for a defect anisotropy of K = 2.5 K0. The energy obviously oscillates periodi-
cally during manipulation, as predicted by equation (38). The amplitude of the
energy oscillation corresponds to the Peierls-Nabarro barrier EPN of the perturbed
potential in equation (38) and is shown in Figure 21 (b) as a function of the de-
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Figure 21: (a) shows the total energy as a function of the time during a manipulation
trial for a defect anisotropy of K = 2.5 K0. During domain wall manipulation the
energy increases and decreases according to the position of the domain wall. The vertical
lines indicate the estimated positions of the atomic rows. (b) shows the estimates of
the pinning barrier EPN of the perturbed potential. EPN has been determined via the
maximum and minimum of the total energy during manipulation, hence, EPN = Emax−
Emin. The red shaded area indicates the activated regime.

fect anisotropy. EPN corresponds to the pinning barrier to be overcome by the
external pressure. For defect anisotropies up to K = K0 the energy curves found
are flat resulting in a constant EPN of about 11 meV. Hence, the external pressure
has reduced the pinning barrier at all times. Additional analysis of simulations
without current applied resulted in an EPN of 11 ± 0.4 meV. Hence, the minimal
determined Peierls-Nabarro barrier of 11 meV in Figure 21 (b) can be attributed
to thermal fluctuations.

Above K = K0 the Peierls-Nabarro barrier increases with increasing defect
anisotropy until it reaches a maximum in the activated regime. Without the
assistance of thermal energy but under the influence of an external pressure the
domain wall can overcome a maximal pinning barrier of EPN = 18± 1.5 meV at
K = 2.5 K0. Even if locally (underneath the tip) much more energy is pumped
into the system (about 100 meV as mentioned in section 3.1.5), it is only a maximal
energy of about 18 meV that is transferred into the kinetic energy of the domain
wall.

From Figure 21 (a) one would assume a Peierls potential of a simple sinusoidal
periodicity with a period of one lattice constant. But the periodicity of the finite
BCC lattice along [001] is rather described by a wave vector of 0.5 1

a
, as clear from

Figure 18. This discrepancy can be explained by the minimal energy pumped into
the system. In combination with the thermal energy the external pressure always
reduces the pinning barrier of the even rows, because they do not hold any defects.
Thus, the domain wall can only get pinned at the odd rows and only if the defects
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create a pinning barrier larger than 11 meV. As a result, the energy landscape
can only be resolved if EPN > 11 meV, because the domain wall needs to get
temporarily pinned in order to map the different energy states. That explains the
periodicity of one lattice constant, as the domain wall propagates directly after the
depinning to the next pinning site (the next odd row) jumping over the following
even row. The difficulty of measuring the Peierls potential, especially in a sample
with defects, has been mentioned by Novoselov in his Ph.D. thesis [72]. He writes
that the Peierls potential

“[...] has never been directly observed before for ferromagnetic domain walls. One
of the reasons is that the strength depends exponentially on the domain wall width,
and the Peierls potential quickly becomes buried under thermal fluctuations as the
thickness of the domain increases. Moreover, pinning on pinning centers is usually
much stronger than intrinsic pinning, which makes the detection of the latter even
harder”.

If the external pressure is always larger than the depinning field (K . K0), the
domain wall reaches a spin configuration with the minimal energy at each tip-step.
Hence, the total energy of the sample during manipulation stays constant and is
defined by the thermal energy. Only when the depinning field exceeds the minimal
external pressure (for larger defect anisotropies) the defect distribution can be
observed.

4.5.2 Estimating the external pressure

By differentiating the total energy (Figure 21 (a)) as a function of the domain wall
position one derives an estimate of the spatial dependence of the external pressure.
Figure 22 (a) shows the first derivative of the averaged energy landscape during
manipulation as a function of the domain wall position x0, which corresponds to
the effective internal field acting on the domain wall. For a successful domain wall
manipulation the maximal steepness of the potential, hence, the depinning field f ∗

has to be overcome. The maximum external pressure acting on the domain wall
during propagation corresponds to the depinning field for a certain K. Note, that
Figure 22 (a) shows the external pressure averaged over all random seeds, while
the depinning field f ∗ has been calculated from each single manipulation trial and
then averaged. Figure 22 (b) shows f ∗ as a function of the defect anisotropy K. In
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Figure 22: (a) shows the derivative of Figure 21 (a). The spatial dependence of the
derivative of the total energy corresponds to the spatial dependence of the external
pressure, hence, f = −∂H/∂x. The vertical lines indicate the estimated positions of the
atomic rows. (b) shows the averaged maximum external pressure f∗ as a function of the
defect anisotropy. The red shaded area indicates the activated regime.

the non-activated regime the maximum external pressure leading to a successful
manipulation is f ∗ = 66 ± 10 mT for a defect anisotropy of K = 2.5 K0. Hence,
the overall maximal external pressure which has been created by the applied spin
current is f ∗ = 66 mT. Again, the maximum of f ∗ lies in the activated regime,
which is due to the thermal assistance. Unfortunately, a functional dependence
cannot be determined from the numerical data.

The next section introduces an analysis which could allow the comparison be-
tween data from simulation and data from experiment.

4.6 Estimating the Peierls potential in experiment

In the previous section the Peierls potential and the depinning field has been
estimated by analyzing the total energy of the system, which is unfortunately not
directly accessible in experiments. The determination of the depinning field is for
instance possible in Hall micromagnetometry [87] experiments, but this technique
requires a sufficient stray field, which is not applicable for systems with small
stray fields like the nanowires with in-plane anisotropy presented in this work.
A different experimental technique, introduced by Nguyen et al. [88], allows to
determine the depinning field of ferromagnetic domain walls in nanowires with
in-plane magnetization by measuring the magnon contribution to the resistivity.
However, to determine the Peierls potential in experiment one has to get access to
the domain wall dynamics, hence, analyzing the domain wall position as a function
of time, which is not possible by the experimental methods mentioned. The domain
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wall position as a function of time can be determined, e.g., in magneto-optic Kerr
effect (MOKE) or anisotropic magnetoresistance (AMR) measurements, but is
usually used for much larger samples and may not be applicable for small domain
walls as studied in this thesis. In the following, an analysis of the simulated data
is presented, which might be applicable to experimental data.

4.6.1 Time resolved domain wall velocity

As the shape of the Peierls potential influences the domain wall propagation, the
velocity of the propagating domain wall VDW changes in dependence of the po-
tential through which the domain wall passes during manipulation. The domain
wall velocity can be extracted from the derivation VDW = dx0

dt
of the manipula-

tion curves (e.g., shown in Figure 19). Figure 23 shows the domain wall velocity
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Figure 23: Domain wall velocity VDW/Vtip as a function of time and the tip position xtip

for three different anisotropy values. The vertical lines correspond to tip positions in
distances of one atomic row. Note, that the error bars have been omitted in this plot for
clarity.

for a reduced (red) and enhanced (blue and black) anisotropies compared to the
anisotropy K0 of the defect free system. A domain wall, in contact with the tip,
can be manipulated only with the same velocity as the tip velocity Vtip, otherwise
the tip-wall contact collapses. This statement becomes clear when looking at the
time averaged mean domain wall velocity 〈VDW〉 shown in Figure 24 (a): it is close
to Vtip until the domain wall cannot successfully be manipulated anymore above
K = 2.5 K0.

The curve shown in Figure 24 (a) looks very similar to the final magnetization
plotted in Figure 19 (b) and does not give more information about the properties
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of the depinning field. Like in the analysis of the Peierls-Nabarro barrier, one
can conclude that above a magnitude of the defect anisotropy of K = 2.5 K0 the
pinning barrier cannot be overcome anymore, hence, the depinning field exceeds the
external pressure for K > K0. The mean domain wall velocity does not reflect any
change of the depinning field as a function of the defect anisotropy K. However, as
clear from Figure 23, the external pressure has a great impact on the fluctuation of
the domain wall velocity around its mean value during a manipulation trial. After
the tip-wall contact has been achieved (after about 20 atomic rows, green region
in Figure 23) the velocity ratio VDW/Vtip fluctuates around the tip velocity. The
domain wall gets bent and strained during the domain wall propagation due to
the interaction with defects. A large variation of the domain wall velocity occurs
in three cases: at the first tip-wall contact, when the tip-wall contact is lost, and
if defects impede the domain wall propagation.
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Figure 24: (a) shows the normalized averaged domain wall velocity 〈VDW〉/Vtip. The
velocity is normalized by the velocity of the tip Vtip. Each data point corresponds to
the average of the time resolved domain wall velocity during manipulation, as shown in
Figure 23. (b) gives the standard deviation of each time averaged value in (a). Hence,
these data correspond to the fluctuation of the domain wall velocity during manipulation.
The red shaded areas in (a) and (b) indicate the activated regime.

Hence, the variance of the time resolved domain wall velocity δVDW
during

manipulation is directly connected with the strength of the depinning field. Fig-
ure 24 (b) shows δVDW

as a function of the defect anisotropy. Until K ≈ K0

the pinning barrier is reduced by the external pressure at all times, leading to a
constant variance in the range of the thermal fluctuations. Above K = K0 the
variance increases linearly until a defect anisotropy of K = 2.5 K0 is reached.
Above K = 2.5 K0 the increase slows down and reaches its maximum in the ac-
tivated regime, which is caused by the assistance of the thermal energy. With
further increasing depinning field the variance decreases again until it reaches its
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minimum above K = 3.2 K0. The overall minimal variance of about 0.3 Vtip is in
accordance with the variance determined for a simulation without current applied.
Hence, the offset before K = K0 and above K = 3.2 K0 is attributed to thermal
fluctuations.

Just as from the time resolved total energy shown in the previous section, one
can resolve an estimate of the defect distribution from the time resolved domain
wall velocity, as shown by Figure 23. Furthermore, the observed dependence of
the domain wall velocity variance on the defect anisotropy is in agreement, both,
with the dependence of the Peierls-Nabarro barrier (Figure 21 (b)) and the de-
pinning field (Figure 22 (b)) on the defect anisotropy. Hence, the analysis of the
domain wall velocity gives an easy way to determine the periodicity of the defect
distribution and the Peierls potential, and to estimate at which defect anisotropy
the depinning field cannot be overcome anymore. If one could measure the domain
wall position as a function of time in experiments, one could compare theory with
experiment.

4.7 Summary and Conclusion

The manipulation of a narrow domain wall in a ferromagnetic nanowire includ-
ing point defects by means of a localized spin-current has been studied theoret-
ically. The point defects have been described as sites with a deviating easy-axis
anisotropy. The Monte Carlo simulation showed that the defects affect the domain
wall propagation and that already a few defects can easily lead to the pinning of a
domain wall. Two defects situated at the edges of the wire, with a magnitude of the
easy-axis anisotropy 2.5 times larger compared to non-defect sites (K ≥ 2.5 K0),
made a successful domain wall manipulation impossible for the same current ap-
plied as in the study presented in the previous chapter. This result points out, why
it may be difficult to manipulate a domain wall in STM experiments. Because it is
known that for well studied systems, like monolayer Fe/W(110) nanoislands and
nanowires, the magnetic anisotropy of atoms situated at the rim is much larger
compared to the surface atoms [84] (K ≈ 10 K0). In experiments one can also
assume that the coupling of nanowires to step edges, or the occurrence of edge
roughness or constrictions due to the preparation process, will further increase
the depinning fields. These factors could make it a difficult task to realize the
controlled domain wall manipulation using the spin-current of an STM.

Surprisingly, the simulation showed that in an STM experiment a measurement
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at one single bias voltage would be sufficient to estimate the depinning fields for a
range of different defect anisotropies. The reason for this finding is the oscillation
of the external pressure, which is caused by a repeated pinning and depinning
of the domain wall on defects. This process is very similar to the single-atom
manipulation recently published in [89]. Hence, the external pressure induced by
the moving STM tip has not been constant during manipulation, it varied between
about 40 mT and 66 mT. Usually [90, 91] an external magnetic field or the spin-
current must be varied in order to determine the depinning field of a domain wall.

Moreover, it is the oscillating external pressure, which permits to estimate the
distribution of the defects in the nanowire. From the analysis of the time-resolved
total energy and also from the analysis of the domain wall velocity the periodicity
of the defect distribution has been revealed and agreed with the prepared defect
distribution. But, due to the too large applied current and the BCC lattice struc-
ture the exact shape of the Peierls potential could not be resolved. Because of
the BCC lattice structure and the presence of defects, the domain wall has been
pinned only every second atomic row. Therefore, the estimated Peierls potential
revealed a periodicity with a wave vector half of the wave vector expected for the
discrete lattice, which corresponded to the defect distribution.
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5 Superparamagnetic boundaries of ferromagnetic

nanoparticles

The recent advances in controlling and measuring magnetic properties of nanopar-
ticles [84] as well as applications for magnetic data storage technology [7] rely
on the fact that information, i.e., the magnetic state of a finite, small area rep-
resenting a single bit, is stable over a finite observation time. However, as real
magnetic samples have a finite size, and magnetic properties are measured during
a finite observation time, thermal excitations enhance the magnetization switch-
ing, and, therefore, decrease the lifetime of the ferromagnetic states. This so-called
superparamagnetic behavior increases with decreasing system size [8–10]. The sim-
ulations presented in the previous chapter have been performed at temperatures
far below the Curie temperature Tc of the system, thus, the magnetic sample has
been in a thermally stable ferromagnetic state and in order to switch the magne-
tization of the sample a spin current has been applied. In the present chapter a
study of the so-called critical temperatures of a finite system is presented, without
any external forces applied. These critical temperatures assign the boundaries of
the superparamagnetic region, hence, they define the temperatures at which the
system turns from one magnetic state (i.e., the ferro-, superpara-, or paramag-
netic state) into another. As the superparamagnetism becomes a limiting factor
for magnetic storage devices with ever decreasing bit sizes it is important to know
the exact superparamagnetic properties of potential materials of future storage
devices.

The material presented in this chapter has been originally published in European
Physical Journal B : E. Y. Vedmedenko, N. Mikuszeit, T. Stapelfeldt, R. Wieser,
M. Potthoff, A. I. Lichtenstein and R. Wiesendanger, Spin-spin correlations in
ferromagnetic nanosystems, Eur. Phys. J. B, 80, 331-336 (2011) [92]. With kind
permission of The European Physical Journal (EPJ). Note, that my contribution
to the simulated results are restricted to the Monte Carlo simulations.

In the following a study of the spin-spin correlation function for anisotropic
classical spin models in different dimensions with a finite and, in a thermodynamic
meaning, small number of microspins is presented. It starts with an introduction
of the simulated system and the applied Monte Carlo simulation scheme, followed
by the definition of the critical temperatures, which define the superparamagnetic
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region. As the magnetic order of ensembles of spins can be defined by a correlation
function, here, a new method of determination of the upper as well as the lower
limit of the superparamagnetic region is introduced. This new method is briefly
discussed in the context of well established theoretical methods, namely, exact-
diagonalization and static mean-field theory, before results of the Monte Carlo
simulations are presented.

5.1 The system properties and the simulation scheme

5.1.1 The system properties and its Hamiltonian

The Monte Carlo simulations have been performed for the Ising and the classi-
cal Heisenberg model with nearest neighbor exchange and an uni-axial magnetic
anisotropy K:

H = −J
∑
〈ij〉

SiSj −K
∑
i

(Sαi )2. (43)

For the Ising model the anisotropy part of this Hamiltonian vanishes, as the mag-
netic moments Si can align along the easy-axis (α = x, y, or z) only. The calcu-
lation of the Heisenberg system has been performed for an easy-axis anisotropy of
K = 0.6 J , as defined by the parameter set SET3 in Table 1. Figure 25 illustrates
the lattice used and the exchange bonds considered.
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Figure 25: Sketch of the exchange bonds considered in the simulations for the two-
dimensional square lattice.

5.1.2 The geometry of the nanoislands

Due to the long range character of the correlation function and the fact that the
simulation has been carried out for a range of 200 different temperatures and
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15 different system sizes, this study has been of great computational effort. To
reduce the calculation times, the Monte Carlo simulations have been performed
for a square lattice and for first nearest neighbors only. Figure 26 illustrates the
shape of the simulated nanoislands. The dimension N of the squared islands has
been varied from 5× 5 AR up to 20× 20 AR.
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Figure 26: Sketch of the squared nanoislands used for simulations. The system size is
increased successively, starting with a dimension of 5×5 AR up to a maximal island size
of 20× 20 AR.

5.1.3 The scheme of the Monte Carlo simulation

The system has been slowly annealed using the last spin-configuration of the pre-
vious temperature step as the initial spin-configuration for the next lower temper-
ature. By choosing the temperature steps sufficiently small, it has been assured
that the system is always in thermal equilibrium. For each temperature step and
each system size, up to 107 MCSs have been performed and the specific heat C,
the susceptibility χ, and the spin-spin correlation function G(r) determined.

For this simulation neither a predefined configuration has been used nor an
external pressure applied. To assure reliable statistics, the simulation of each
temperature step has been repeated five times for different seeds of the random
number generator.

The next section gives a general discussion of the critical temperatures in nano-
sized systems.

5.2 The reduced Curie temperature Tc(L)

The theory of collective magnetic order is usually concerned with infinite systems
[26, 93–95]. For the sake of comparison with experimental data the present cal-
culations are concentrated on magnetic islands of finite extensions. The Curie
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temperature of a ferromagnetic sample is a well established concept that must be
reconsidered for nanosized objects. From the experimental point of view, Tc is a
well-defined quantity, which can be measured, e.g., as a function of the size L of
the nanoparticle [8, 18]. The magnetic susceptibility and the specific heat stay
finite but show enhancements at T = Tc(L), which defines a Curie temperature
up to some residual arbitrariness. From the theoretical point of view, there is no
Curie temperature as there is no phase transition, and actually not even a concept
of a thermodynamic phase, in a system with a finite number of degrees of free-
dom. Nevertheless, one would like to define Tc(L) roughly to be the temperature
where the ferromagnetic alignment of the spins within the nanoparticle becomes
stable against thermal fluctuations. The temperature Tc(L) will be denoted as
the reduced Curie temperature in the following. In a simple mean-field picture,
one finds Tc(L) < Tc(∞) where Tc(∞) is the precisely defined Curie temperature
of the corresponding (infinite) bulk system. The transition, or smooth crossover,
from a paramagnetic to an ordered state in the nanosystem must be described
within models of interacting microscopic (atomic) spins [10, 96]. Below Tc(L)

the different microspins are tightly bound together and form a huge macrospin
[18, 96]. For a finite-size and spin-isotropic system, the direction of the macrospin
fluctuates strongly, i.e., the magnetic state of the system is not stable temporally.
Anisotropies give rise to superparamagnetic behavior for temperatures above the
so-called blocking temperature Tb(L), i.e., for Tb(L) < T < Tc(L). Both quantities
are size-dependent. It is rather the blocking temperature Tb(L) than Tc(L) that is
relevant for storage technology since it characterizes the crossover from the stable
ferromagnetic state at low temperature T to the superparamagnetic state where
the system switches between different energy minima determined by magnetic
anisotropies. But Tb(L) cannot be considered as a pure property of the system.
It must be seen as a relative value, which depends on the observation time t. For
t → ∞, there is no blocking of the magnetization as eventually the anisotropy
energy barrier is overcome by thermal fluctuations or even due to quantum tun-
neling, and hence Tb(L)→ 0. For t→ 0 (referring to, e.g., laser-probe methods),
Tb(L)→ Tc(L) while for intermediate t (like in SP-STM) 0 < Tb(L) < Tc(L).

For the infinite system, a magnetic phase transition is characterized by a di-
vergence of the correlation length ξ, which characterizes the spatial decay of the
spin-spin correlation function. For a nanosized system, on the other hand, it is
by no means clear how the crossover at the reduced Curie temperature Tc(L)

manifests itself in the correlation function.
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To close up on these questions, the next section examines the temperature
dependency of the correlation function of nanosized systems in more detail.

5.3 Critical temperatures from the spin-spin correlation func-

tion

The correlation function between two spins Si and Sj at positions ri and rj is
given by

G(r) = 〈SiSj〉 (44)

where 〈...〉 is the canonical thermal average at temperature T . For a translationally
invariant bulk system, the correlation function is homogeneous and depends on the
translation vector r = ri − rj only, while in case of a finite system it depends on
r and on the reference site in addition. For the following discussion an averaged
correlation function is defined, which is independent of the direction and depends
on the distance r = |rj − ri| only:

G(r) =
1

n(r)

∑
i<j,

|ri−rj |=r

〈SiSj〉 (45)

Here, the sum in the first term runs over all n(r) pairs separated by the distance
r. G(r) directly refers to X-ray or neutron-scattering experiments. Furthermore,
a connected correlation function is defined

G̃(r) = G(r)−M2, (46)

where M = |∑i Si|/L and L being the number of sites. Apart from a constant
factor, Si is the local magnetic moment at position ri, and thus M is the magne-
tization of the nanosystem. For temperatures above the blocking temperature, M
averages to zero. But even below Tb(L) the magnetization vanishes, M = 0, in an
exact calculation. The reason for the vanishing magnetization is the infinite time
averaging in exact calculations. If the average 〈...〉 is interpreted as a time average
and if the time constant defining the average (life-time of a state) is large as com-
pared to the observation time t, M is finite for temperatures below the blocking
temperature corresponding to t. Hence, the function G̃(r) will strongly differ from
G(r) or even vanish. All temperatures T at which G̃(r) vanishes (G̃(r)→ 0) then
lie at or below the blocking temperature Tb.
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The following section presents results of the connected correlation function
determined by means of exact-diagonalization in a simple Ising model.

5.3.1 Ising model

To start the discussion, a ferromagnetic (J > 0) Ising model is considered:

H = −J
∑
〈ij〉

SiyS
j
y, (47)

with Ising variables Siy on a one-dimensional chain of length L with open boundary
conditions. The sum runs over all pairs of nearest neighbor sites. Results for
L = 10 and different temperatures are displayed in Figure 27 (a). Note, that
there is a simple exponential decay of the correlations, G̃(r) ∝ exp(−r/ξ), on a
length scale ξ, which at low temperatures exceeds the system size. Although in the
low-temperature regime the microspins are perfectly aligned ferromagnetically and
although they become uncorrelated on length scales much smaller than the system
size in the high-temperature limit, there is no meaningful Curie point that could
be extracted from G̃(r). Qualitatively, not much happens as a function of T . The
absence of a Curie point, Tc(L) = 0, is of course not unexpected. It corresponds
to a featureless magnetic susceptibility χ(T ) and to the fact that Tc(∞) = 0 for
the infinite Ising chain. Only at T = 0, the system freezes in one of the two
ferromagnetic ground states, i.e., M = 1, and therefore, due to the definition
(46), the correlation function discontinuously jumps to G̃(r) = 0. This might be
expressed as a vanishing blocking temperature, Tb(L) = 0, reflecting the fact that
an exact calculation corresponds to an infinite observation time t.

For a finite two-dimensional Ising array with L = 5 × 5 sites, the situa-
tion changes completely. Calculations for L = 25 are easily done by numerical
exact-diagonalization. Results obtained for the connected correlation function
G̃(r) are shown in Figure 27 (b). The result is surprising: one finds two or, in-
cluding T = 0 (see below), three different crossover temperatures.

For high temperatures, the correlations decay exponentially, see T = 2.8 J ,
for example. Below a temperature T3, however, the trend can no longer be fitted
by an exponential of the form exp(−r/ξ). One finds T3 ≈ 2.2 J . This is close
to the bulk Curie temperature of the two-dimensional Ising model T3 ≈ Tc(∞) =

2/ ln(1 +
√

2)J ≈ 2.27 J . Upon lowering T one then finds another temperature
T2 ≈ 1.9 J which is characterized by a change of the curvature of G̃(r). Below
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Figure 27: The connected correlation function G̃(r) (see equation (46), symbols) calcu-
lated for an open Ising chain consisting of L = 10 sites (a) and for an open 5 × 5 Ising
square lattice (b). The data are fitted with equation (48). The temperatures T1 (a) and
T1, T2, T3 (b) are highlighted by thick red lines.

T2, the trend of G̃(r) is no longer convex but concave until r reaches the system
boundary. As the exact-diagonalization data correspond to an infinite observation
time, the third temperature scale T1 is trivially given by the vanishing blocking
temperature T1 = Tb(L) = 0.

To determine the different temperatures a fit function of the connected corre-
lation function is introduced in the following section.

5.3.2 Model correlation function

To extract the different temperature scales T1, T2, and T3, it is proposed to fit the
correlation function to the following expression with three temperature-dependent
parameters:

G̃(r) = G̃(r, T ) ≈ B(T )e−r/ε(T ) + y(T ) (48)

In this way T3 is defined by the temperature where y(T ) becomes non-zero, i.e.,
where a deviation from a purely exponential decay of G̃(r) is found. For the infinite
system, L → ∞, this happens right at T3 = Tc(∞) where a power-law decay is
expected [94, 97]. Thereby, the simple fit formula, equation (48), will provide a
rough estimate for Tc(∞) based on a single calculation of G̃(r) for a finite system.
Monte Carlo calculations show that this estimate reliably gives Tc(∞) within an
error of the order of 1%. For example, using the fit for Monte Carlo data obtained
for the 5 × 5 Ising array, one finds T3 = 2.20 ± 0.02 while for the 8 × 8 lattice
T3 = 2.26 ± 0.02. This represents a cheap but rough way to get Tc(∞) from
a slow annealing of a single finite system. For temperatures below the blocking
temperature, G̃(r) = 0 (G(r) = 1). Hence, T1 = Tb(L) is indicated by B(T ) = 0
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and y(T ) = 1 when fitting the data using equation (48). The main purpose of
equation (48), however, is to get an estimate for T2 where G̃(r) is a linear function
to a good approximation. A linear G̃(r) requires ε(T ) → ∞ for T → T2. To get
a finite slope, also B(T )→∞ for T → T2 is needed, and finally y(T )→∞ since
|G(r)| ≤ 1.

Equation (48) has been used to fit the unknowns ε(T ), B(T ), and y(T ) to
numerically exact data for one-, two-, and three-dimensional Ising systems of dif-
ferent size L as well as for finite isotropic and anisotropic Heisenberg systems. It
turns out that the quality of the fit is exceptionally good in the entire tempera-
ture range, see the lines in Figures 27 (a) and (b), for example. For temperatures
Tb(L) < T < T2 the concave trend has been found with negative values for B(T )

and ε(T ) while y(T ) > 0. For T2 < T < Tc(∞), both B(T ) and ε(T ) have been
positive while y(T ) < 0, and the trend of G(r) is convex. Finally, for T > T3 both
B(T ) and ε(T ) remain positive while y(T ) vanishes leaving an exponential decay
of G̃(r).

5.3.3 Curie temperature

T2 has been identified with the reduced Curie temperature of the system, T2 =

Tc(L). This provides a meaningful definition of Tc(L) for a finite system that is
based on the spin correlation function. It is motivated by the physical idea that
at Tc(L) the correlation length exceeds the system size but additionally takes into
account that the nanosystem is bounded by surfaces. For an infinite system the
spin correlation function is always convex, i.e., its slope is negative but increasing
as a function of increasing distance r. The unusual concave trend of the correla-
tion function at lower temperatures must therefore be a direct consequence of the
presence of surfaces. This is demonstrated with Figure 28 for a larger system con-
sisting of 20×20 Ising spins on a square array. Due to missing nearest neighbors at
the nanoparticle surface, fluctuations of the local spins are stronger and result in
a reduced average surface magnetization. This also implies a strongly decreasing
correlation function G(r) close to the surface and along any direction. For the
averaged correlation function G̃(r), this surface effect competes with the convex
bulk trend of G̃(r). The surface effect dominates for T > Tc(L) and drives the
nanosystem to a paramagnetic state while for T < Tc(L) the bulk of the nanosys-
tem causes an ordered superparamagnetic state, and the surface manifests itself
in stronger fluctuations of the spins and a concave trend of G̃(r) only. Note, that
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Figure 28: Spin correlation function G(r) (see equation 44, symbols) calculated for a
20× 20 Ising square lattice with open boundaries starting from an edge (left) and from
the central site (right) as obtained by Monte Carlo simulations at T = 0.5 J � Tc(∞).
The lines are guides to the eyes only.

the fit with the model correlation function, equation (48), allows to characterize
Tc(L) by a divergence of the parameter ε(T ), which therefore might be called a
virtual correlation length. On the other hand, the Curie temperature of the infi-
nite system Tc(∞) is given by a divergence of rv ≡ −ε(T ) ln[−y(T )/B(T )] since
y(T ) becomes finite at Tc(∞) in the fit. rv is the distance at which G̃(r) vanishes,
G̃(rv) = 0. The distance is virtual because it is always larger than the system size
(see Figure 29 (a)).

Figure 29: Model G̃(r) (see equation (48)) as obtained by fitting the parameters to results
of Monte Carlo simulations (106 sweeps per temperature) for an anisotropic Heisenberg
model (K = 0.6 J) on an 8 × 8 square lattice with open boundary conditions. (a)
Temperature dependence of the virtual distance rv (see text). (b) Virtual correlation
length ε(T ).

5.3.4 Blocking temperature

The question of a finite blocking temperature Tb can be addressed by Monte Carlo
simulations when interpreting MCSs as time steps [49]. A finite number of MCSs
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corresponds to an incomplete statistical average and thus to a finite observation
time t.

Calculations have been performed according to the classical Heisenberg model
introduced in section 5.1.1. An example for K = 0.6 J is given in Figure 30. The

Figure 30: Model G̃(r) (see equation (48)) as obtained by fitting the parameters to results
of Monte Carlo simulations (106 MCSs per temperature) for an anisotropic Heisenberg
model (K = 0.6 J) on an 8× 8 square lattice with open boundary conditions. G̃(r) as a
function of r and T . The temperatures∞ > Tc(∞) > Tc(L) > Tb(L) > 0 are highlighted.
In each of the four corresponding temperature ranges, the typical Monte Carlo time
dependence of M = M(t) ∝ 〈∑i S

y
i 〉 is shown in insets (see text for discussion).

fit of the Monte Carlo results by equation (48) is accurate for all temperatures and
all values of K such that the three different temperature scales, Tb(L), Tc(L), and
Tc(∞) can be extracted easily. The finite blocking temperature manifests itself in
the jump of G̃(r) as a function of T which is due to the jump of M at T ≈ 0.6 J .
The order of magnitude for Tb seems to be given by K. However, Tb(L) decreases
with increasing observation time t, i.e., with an increasing number of MCSs per
temperature. At fixed L, Tb(L)→ 0 has been found to be logarithmically if t→∞.

Figure 30 nicely demonstrates that an astonishingly complex behavior of the
spin correlation function is found for finite anisotropic nanosystems. The qualita-
tively different physics within the different temperature ranges, i.e., 0 < Tb(L) <

Tc(L) < Tc(∞) < ∞, also shows up in the qualitatively different behavior of the
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order parameter M as a function of (Monte Carlo) time during the simulation,
see insets in Figure 30: below Tb(L), on the scale set by the observation time,
the magnetization freezes in one of the values corresponding to the degenerate en-
ergy minima of the anisotropic model; for Tb(L) < T < Tc(L) the magnetization
switches between these values with a switching time which is much smaller than
the lifetime of a state; for Tc(L) < T < Tc(∞) the system still switches but the life-
times are comparable to the switching times; and finally above Tc(∞) correlations
decay exponentially and M = 0.

In the next section the size dependence of the three critical temperatures is
presented.

5.4 Size dependence of the critical temperatures

Note, that this physics is characteristic of a finite system: for constant t but
increasing system size L→∞ all three temperatures merge to the Curie temper-
ature of the infinite system Tc(∞). With increasing L, but fixed temperature, the
curvature of G̃(r) increases, i.e., it becomes less convex, changes from convex to
concave, or becomes more concave. This is due to the less and less important effect
of the nanoparticle’s surfaces. At the same time G̃(r) and its slope increases. This
implies that Tc(L) is an increasing function of the system size. The same holds
for the blocking temperature since with increasing L the energy of the anisotropy
barrier increases and higher temperature is needed to induce a thermal switching
of the magnetization.

The system-size dependence of the reduced Curie temperature, as obtained
from the fit of the correlation function, is displayed in Figure 31. Comparing
Tc(L) = T2 with the reduced Curie temperature defined by the maximum of the
magnetic susceptibility and by the maximum of the specific heat, one finds that the
asymptotic behavior is approached significantly faster when using the correlation-
function fit. The latter also provides a reliable estimate for the bulk Curie temper-
ature as it is also shown in Figure 31. In addition, Figure 32 shows the dependence
of the blocking temperature on the system size. For fixed system size and with
increasing Monte Carlo time, i.e., with increasing number of MCSs, the blocking
temperature decreases logarithmically (see data for L = 8× 8 in Figure 32).

The analysis showed that Tc(L) satisfies the finite-size scaling law (Tc(∞) −
Tc(L))/Tc(∞) =(L/L0)−1/Dλs [98, 99].

√
L0 corresponds to a microscopic length

scale, and its order of magnitude is one. The shift exponent λs is related to the
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Figure 31: The reduced Curie temperature, as obtained from the maximum of the specific
heat (open squares), from the maximum of the susceptibility (open circles), and from the
correlation-function fit (filled circles), as functions of the (inverse) linear system size and
the bulk Curie temperature (filled squares), as obtained from the fit of the correlation
function at the respective system size. Solid line: (Tc(∞) − Tc(L)/Tc(∞) = (L/L0)1/2

corresponding to the exponent ν = 1 and with L1/2
0 = 1.15. Calculations for the D = 2

anisotropic Heisenberg model with K = 0.6 J .

exponent of the correlation function via λs = 1/ν. In case of the anisotropic
Heisenberg model, the data for Tc(L) for system sizes up to L = 19 × 19 = 361

are consistent with ν = 1.0 (and L0 = 1.15). This is different from the classical
exponent (ν = 0.5) and agrees with the exponent for the D = 2 Ising model
(ν = 1). Note, that the results for the size dependence of the blocking temperature
are also consistent with the same scaling law that describes Tc(L), see Figure 32.
The exponent λs, however, is different and slightly larger than 1/ν for ν = 1.
Actually, it is by no means clear that the blocking temperature should satisfy a
scaling law since for the infinite system it has no meaning independent from the
Curie temperature. But an investigation of this point is beyond the scope of the
present study.

In the next section the results obtained from Monte Carlo simulations are
compared with results from mean-field theory.
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Figure 32: Blocking temperature, as obtained from the correlation-function fit, as a
function of the (inverse) linear system size for the D = 2 anisotropic Heisenberg model
with K = 0.6 J and using 106 MCSs. Lines connect the data points. For the L = 8× 8
system, the dependence of Tb on the Monte Carlo time is given by the red circles as
indicated.

5.5 Static mean-field theory

The characteristic trends of the spin-correlation function in the different temper-
ature regimes are strongly determined by the presence of surfaces, see Figure 28.
It is tempting to simply explain the concave trend of the correlation function at
temperatures below Tc(L) by the reduced coordination numbers at the nanoparti-
cle surfaces. This has been checked by E. Y. Vedmedenko and M. Potthoff [92] by
performing calculations using periodic boundary conditions. In fact, a convex cur-
vature of the correlation function is found in one and in two-dimensions and for all
temperatures in agreement with previous work [10]. Since the surface-to-volume
ratio is smaller in one- as compared to two-dimensions, the simple coordination-
number argument is also consistent with the absence of a Curie temperature in
one-dimension. The findings have been checked by performing corresponding cal-
culations for three-dimensional finite lattices: in fact, the low-temperature concave
trend has been found to be even more pronounced here.

Simple coordination-number arguments are included in the Landau theory of
magnetic systems bounded by surfaces [100–103] where the usual Landau free-
energy functional is considered but with an additional surface free-energy term.
The resulting Landau mean-field theory is essentially equivalent to static mean-
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field theory for a discrete spin model. For a finite system, this has been im-
plemented numerically by E.Y. Vedmedenko [92], and G̃(r) has been evaluated
for different one- and two-dimensional lattices studied here. As expected, static
mean-field theory gives a phase transition rather than a smooth crossover. The
mean-field Curie temperature TMF

c of the finite system very much depends on the
size and the geometry of the underlying lattice. If interpreted as Tc(L), the mean-
field Curie temperature TMF

c yields a strong overestimation. Here, however, the
question is whether besides TMF

c there is a crossover temperature at which the
spin-correlation function changes qualitatively from convex to concave.

The spin-spin correlation function can be obtained in two ways, either directly
by computation of the thermal average 〈SiSj〉 or as the response of the local
magnetic moment at site i to a local magnetic field at site j, i.e., ∂〈Si〉/∂Bj. In
principle, both ways are equivalent because of the fluctuation-dissipation theo-
rem 〈SiSj〉 − 〈Si〉〈Sj〉 = T∂〈Si〉/∂Bj. This is not respected by static mean-field
theory, which just neglects non-local correlations. Therefore, within the mean-
field theory the spin correlations can be addressed via the linear-response relation
G(r) = T∂〈Si〉/∂Bj only. For an infinite translationally invariant lattice, this
yields the Ornstein-Zernike form for the correlation function. Here, for finite sys-
tems, we determine 〈Si〉 numerically by solving the static mean-field equations
and compute the derivative with respect to Bj numerically. Looking at the re-
sulting averaged correlation function G̃(r), a convex trend has always been found,
for any system size and dimension. This shows that the results and the crossover
temperature Tc(L) cannot be captured by a mean-field or Landau approach and,
therefore, represent a correlation effect for which simple coordination-number ar-
guments must be taken with care.

5.6 Summary and Conclusion

As compared to infinite bulk systems, the theoretical description of collective mag-
netic order is more complex for nanosized materials. Due to the finite system size
there are no clear-cut regions in parameter space where ferromagnetic order is re-
alized. Furthermore, the magnetic state is not stable temporally and consequently
the order parameter, i.e., the magnetization of the nanoparticle, fluctuates with a
time constant that has to be compared with the (experimental) observation time.
These facts give rise to uncertainties in the definition of the Curie temperature
and imply the existence of a second temperature scale, the blocking temperature,
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which again cannot be defined precisely.
The studies presented, based on different analytical and numerical techniques,

have demonstrated, that a meaningful definition of the reduced Curie temperature
of a finite spin system can be given that relies on the analysis of a suitably de-
fined average spin correlation function, denoted as connected correlation function.
Upon lowering the temperature, the correlation function changes its curvature at
Tc(L). This definition is consistent with the common concepts and comes closest
to the expectation that the Curie point is the temperature at which the correlation
length exceeds the particle size. In particular, it accounts for the delicate interplay
between the (bulk) tendency to ordering and the (surface) tendency to enhance
fluctuations. It has been shown that the concept can be applied to different one-,
two-, and three-dimensional classical spin models and that Tc(L) can be extracted
with an accuracy that even allows to determine a shift exponent.

Further, it has been demonstrated that the blocking temperature scale is acces-
sible with a Monte Carlo approach by performing an incomplete statistical average.
A sharp jump is visible in the average spin-correlation function at Tb(L). However,
the blocking temperature is only defined with respect to an observation time (a
finite number of MCSs) and, therefore, represents a relative quantity.

Concluding, the combined application of exact-diagonalization, Monte Carlo,
and mean-field techniques has uncovered a strikingly complex behavior of the spin
correlations in nanoparticles with qualitatively different temperature scales. Since
simple coordination-number arguments are unable to give a quantitatively correct
picture of the physics, the temperature trends must be seen as effects of strong
spin correlations.
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6 Superparamagnetic magnetization switching of

elongated Fe/W(110) nanoislands

The previous section gave a detailed theoretical description of the collective mag-
netic order in systems of finite size. The critical temperatures, at which the nano-
sized systems turn from the paramagnetic state to the superparamagnetic state
and from the superparamagnetic state to the stable ferromagnetic state have been
defined. The present chapter focuses on the magnetization reversal of nanoislands
in the superparamagnetic temperature region. Motivated by the experimental
work of Stefan Krause et al. [9, 84] in the group of Professor Roland Wiesendan-
ger [104] the size, shape, and temperature dependencies of the superparamagnetic
magnetization switching of nanoislands consisting of 50 − 150 atoms have been
studied by means of Monte Carlo simulations. The presented study focuses on
elongated nanoislands like Fe/W(110), expanding one of the two crystalline lattice
directions of the nanoisland ([001] or [11̄0]) and keeping the other constant.

Parts of the material presented in this chapter has been originally published in
Physical Review Letters : "S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista,
M. Bode, E. Y. Vedmedenko and R. Wiesendanger, Magnetization Reversal of
Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor, Phys.
Rev. Lett., 103, 12, 127202 (2009)" [84] in a common publication of theory and
experiment, in which my contribution is restricted to the simulated results. Copy-
right (2009) by the American Physical Society.

The chapter starts with an introduction of the simulated system and the ap-
plied Monte Carlo simulation scheme. It follows a brief introduction to superpara-
magnetic switching and the experimental and theoretical method of observing a
switching event. Then a discussion of the nature of the domain wall nucleation
and propagation process in Fe/W(110) nanoislands is presented. After that, the
size and shape dependency of the energy barrier and the Arrhenius pre-factor is
presented giving insights which are, until now, not accessible by experiments. At
the end, the influence of a spin-current on the superparamagnetic magnetization
switching is briefly discussed.
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6.1 The system properties and the simulation scheme

6.1.1 The system properties and its Hamiltonian

In section 3.1 the anisotropic exchange interaction of the monolayer Fe/W(110)

has been introduced, defining the exchange energy constants up to third nearest
neighbors. Because the nearest neighboring exchange interactions are weaker than
the other contributions, it could be neglected and at the same time the general
properties of an Fe/W(110) nanoisland, such as the orientation of the domain walls,
preserved. As the following study of thermally induced magnetization switching of
nanoislands like Fe/W(110) has been extremely expensive in terms of the compu-
tational effort, the first nearest neighbor interaction and the hard-axis anisotropy
have been neglected in the simulations. Figure 33 shows a sketch of the used
Fe/W(110) exchange bonds, indicated by the thick black lines.
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Figure 33: Sketch of the Fe/W(110) exchange bonds. Only second nearest neighbor
(J2 = J[11̄1]) and third nearest neighbor (J3 = J[11̄0]) exchange interactions have been
taken into account for the simulation, indicated by the thick black lines. The neglected
first nearest neighbor exchange bonds (J1 = J[001]) are faintly shown (gray lines).

The magnetic properties of the system have been described by the following
Hamiltonian:

H = −J[11̄1]

∑
〈ij〉2

SiSj−J[11̄0]

∑
〈ij〉3

SiSj−Ksurf
[11̄0]

∑
i

(Si[11̄0])
2−Krim

[11̄0]

∑
i

(Si[11̄0])
2 (49)

where J[11̄1] is the ferromagnetic exchange coupling between the second nearest
neighbors and is set equal to one. J[11̄0] is the exchange coupling between the
third nearest neighbors and is twice as large as J[11̄1] [46–48]. As mentioned in
section 4.1.1 it is known from experiments that the atoms situated at the rim of
a monolayer nanoisland exhibit a much higher anisotropy than the surface atoms
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[84, 85]. Therefore, two easy-axis anisotropy constants have been used, which have
been determined by experimental investigations of Stefan Krause et al. [9, 84].
Both anisotropies are pointing in-plane along [11̄0]: Ksurf

[11̄0] = 0.043 J[11̄1] is the
anisotropy constant for the spins situated on the surface of the island and Krim

[11̄0] =

0.44 J[11̄1] the anisotropy constant of the spins situated at the rim of the island.
The first two sums run over the nth nearest neighbor pairs 〈ij〉n and the last two
sums run over all lattice sites i. An overview of the energy constants used is given
by SET4 of Table 1.

6.1.2 The geometries of the nanoislands

The simulations have been performed for a range of different elongations of a
nanoisland. The number of atomic rows along [001] or [11̄0] has been increased,
while the other side has been kept fixed, see Figure 34. The length of the fixed
side reached about 10 AR and the length of the elongated side has been varied
from about 10 AR up to 30 AR.
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Figure 34: Sketch of the elongated Fe/W(110) nanoislands. The system size is varied
by keeping either the number of atomic rows along [001] (a) or along [11̄0] (b) fixed and
then successively increasing the elongation along the other direction. The dashed lines
shall indicate the rim of islands with different sizes, while the solid lines correspond to
the rim of the largest island simulated.

6.1.3 The scheme of the Monte Carlo simulation

The samples have been slowly annealed for temperatures in the superparamagnetic
temperature region. For each temperature step and island size, the nanoisland has
been relaxed for t = 107 MCS and the magnetization determined. To assure
reliable statistics the simulation of each temperature step has been repeated ten
times with different seeds of the random number generator. The switching rates
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have then been calculated from the time evolution of the easy-axis magnetization
(see next section), which switches between two states back and forth and the results
averaged over the simulations with different seeds.

Note, that no predefined configuration has been used and in contrast to previ-
ous investigations [105–107] no external magnetic field has been applied. Hence,
the system was free to evolve statistically without any directional influence of an
external pressure. The next section introduces the time evolution of the magneti-
zation switching and how the switching rates have been determined.

6.2 Superparamagnetic magnetization switching

6.2.1 Arrhenius like switching

Néel and Brown developed a theoretical description of the magnetization switching
of a monodomain particle with uni-axial anisotropy, which switches its magneti-
zation due to ambient heat only [5, 6]. In this so called Néel-Brown law the mean
lifetime τ̄ between consecutive switching events of a particle as a function of the
temperature T is characterized by its activation energy EB and attempt frequency
ν0:

τ̄ = ν−1
0 exp(EBβ), (50)

with β = 1/kBT the inverse temperature. The activation energy will be denoted
as energy barrier in the following, as it corresponds to the energy to be overcome
in order to switch between the two degenerated states, spin-up and spin-down. In
the Néel-Brown law the magnetization reversal is assumed to take place via coher-
ent rotation of all magnetic moments inside the particle. The energy barrier EB is
then given by the total magnetic anisotropy energy of the particle and the attempt
frequency is commonly compared to the Larmor precession [6]. Analytical calcula-
tions and Monte Carlo simulations of ferromagnetic nanoparticles, by Nowak and
Hinzke [106], showed that in a system with strong easy-axis anisotropy the energy
barrier is proportional to the cross section of the system and is not proportional
to the total magnetic anisotropy energy of the particle. They showed, that the
magnetization reversal then takes place via domain wall nucleation and propa-
gation and not by coherent rotation. Later it has been confirmed by SP-STM
experiments that Fe/W(110) nanoislands switch their magnetization by domain
wall nucleation and propagation [9, 19, 108]. Like in the Néel-Brown model an
Arrhenius-like switching behavior is expected, with an energy barrier EB repre-
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senting the energy needed to successfully nucleate a domain wall.
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Figure 35: Time dependence of the normalized easy-axis magnetizationM[11̄0] of a nanois-
land consisting of about 100 atoms at T = 0.7 J/kB (blue) and T = 0.9 J/kB (red). Only
the easy-axis component of the magnetization is shown, as the other components are close
to zero.

For sufficiently large observation times t the magnetization of the Fe/W(110)

nanoisland switches between the two states, spin-up and spin-down. In an SP-
STM experiment, the magnetization switching is observed by changes in the dI

dU

signal, which is reflecting the respective orientation of the tip and the sample
magnetization [9]. In the simulations, the magnetization switching is observed by
calculating the easy-axis magnetization for each time step, as shown by Figure 35.
A detailed description how the switching events are defined and counted is given for
experiments in [108] and for the simulations in [19]. The data points in Figure 35
show the magnetization component of the island along its easy-axis as a function
of the time at two different temperatures inside the superparamagnetic regime:
blue for a lower temperature at T = 0.7 J/kB and red for a higher temperature
at T = 0.9 J/kB. It shows the magnetization switching between the two states,
with a clearly enhanced switching frequency for the higher temperature. When
observing the magnetization switching over a longer time period (t = 107 MCS
in this simulation) one can determine the mean lifetimes τ̄ , where τ̄ =

∑n
i τi
n

and
n is the number of switching events for the island at a given temperature. The
switching rates ν are then given by the inverse mean lifetime: ν = 1/τ̄ .

In the following section the nucleation and propagation process of a domain
wall in an Fe/W(110) nanoisland is discussed.

6.2.2 Nucleation and propagation of a domain wall in Fe/W(110) nanois-
lands

Before starting the discussion of the switching behavior of the investigated islands
the nucleation and propagation process is examined in some detail. Figure 36
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shows the fluctuation amplitude of the magnetization at each lattice site for two
islands of different elongation at the same temperature, denoted as fluctuation map
in the following. The fluctuations have been characterized using the root-mean-
square deviation of the magnetization. The color scale corresponds to minimal
fluctuation amplitude of the magnetization in blue and maximal fluctuation am-
plitude in red. One can clearly identify two regions with enhanced fluctuations
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Figure 36: Contour plots of the fluctuation amplitude of the easy-axis magnetization for
two islands of different elongation. The fluctuations have been determined for 107 MCS.
The color scale reaches from low fluctuations in blue to high fluctuations in red.

lying at the [001] ends of the islands (dark red areas at the left and right-hand
side of the two fluctuation maps). At these two ends the thermal assistance to nu-
cleate a domain wall is maximal and leads to an enhanced domain wall nucleation
probability. Furthermore, it shows the fluctuations at the [11̄0] ends (blue) being
smaller compared to the [001] ends. The reason for the stability of the system’s
[11̄0] ends is on the one hand the weak exchange coupling along [001], and on the
other hand, the larger anisotropy of the atoms situated at the rim of the islands.

If one defines a nucleation attempt as successful if the domain wall nucleation
leads to a magnetization reversal of the island, then the enhanced fluctuations
at the two [001] ends can be attributed to the unsuccessful nucleation attempts.
The fluctuations arising from successful switching events are not visible in the
fluctuations maps, because they are statistically uniformly distributed. Although
the orientation and the propagation direction of a domain wall is determined by
the Hamiltonian used and its energy constants, the exact location of nucleation
spots could not be predicted a priori. The knowledge of their position, however,
will play an important role in the later discussion, because the size and the location
of the nucleation spots define the number of domain wall nucleation attempts.

In the next section the temperature dependency of the switching rates for the
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different island elongations are shown.

6.2.3 The energy barrier

A logarithmic plot of the switching rates ν inside the superparamagnetic region for
varying island dimensions is shown in Figure 37. The switching rates are plotted as
a function of the inverse temperature β fitted by the Arrhenius function given by
equation 50 (solid lines). The color scale corresponds to the size of the islands, from
blue for small islands to red for large islands. The exact geometries of the islands
are given in the inset. Already the color scale gives a direct hint that not only the
system size defines the magnitude of the switching rates, otherwise the switching
rates of equally sized (equal color) islands should overlap in Figure 37. ν(β) is linear
in the superparamagnetic region reflecting an Arrhenius like switching behavior.
In order to successfully nucleate a domain wall, an energy proportional to the
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Figure 37: Logarithmic plot of the simulated switching rates ν as a function of the
inverse temperature β for different system sizes with the corresponding Arrhenius fits
(solid lines). From the Arrhenius fits one can directly determine the energy barrier EB

and the Arrhenius pre-factor ν0. EB is proportional to the slope of the fitted Arrhenius
function and ν0 is the interception with the ordinate. The inset displays the dimensions
of all simulated islands. The color scale corresponds to the islands’ size L = N[11̄0]×N[001]

and is blue for small islands and red for large islands.

domain wall area S0, and proportional to the square root of the exchange integral
and the easy-axis anisotropy is needed. This domain wall energy corresponds to
the energy barrier EB and is given by:

EB ∝ S0

√
2J[hkl]

a
K[11̄0], (51)
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with J[hkl] > 0 the effective nearest neighbor exchange coupling constant, K[11̄0]

the on-site easy-axis anisotropy and a the lattice constant. The energy barrier EB

is proportional to the area of the domain wall, which in turn is proportional to
the width of the island. As a domain wall in Fe/W(110) orients along the [11̄0]

direction, the energy barrier should increase linearly with increasing length of the
islands along [11̄0] and stay constant for an increasing elongation along [001]. The
energy barrier EB corresponds to the slope of the fitted Arrhenius function and is
shown in Figure 38. (a) shows the energy barrier as a function of the elongation
along [11̄0] and (b) the energy barriers for elongations along [001], both with a
linear fit to the data points.
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Figure 38: The energy barrier EB as a function of the island elongation N . (a) corre-
sponds to EB as a function of the elongation along [11̄0] and (b) to the elongation along
[001]. The color scale corresponds to the system sizes L = N[11̄0]×N[001] and varies from
small in blue to large in red. The gray dashed lines are linear fits to the data points.

The shape dependency of the energy barrier found for increasing elongations
along [11̄0], shown in Figure 38 (a), is in agreement with the expectations men-
tioned above: with increasing number of atomic rows along [11̄0] the energy barrier
for a domain wall nucleation increases, because the length of the domain wall is
proportional to N[11̄0]. Since the energy barrier depends strongly on the islands’
dimension along [11̄0], one can deduce, that the domain wall that moves through
the islands during the switching process is oriented along the [11̄0] direction and,
therefore, propagates along the [001] direction. These results are in agreement
with the experimental [9] findings and have also been confirmed by analyzing the
spin configuration in the simulation for various switching events.

Unexpectedly, one finds the energy barrier increase for increasing elongation
along [001], as shown by Figure 38 (b). Obviously the increase of the energy
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barriers is much smaller compared to the islands with increasing elongation along
[11̄0] (factor of ten). However, since the length of the domain wall is kept constant
in this case, one would expect the energy barrier to be constant as well. The
energy barrier increasing with N[001] can be explained by a significant correlation
between the magnetic moments of the island. The enhanced thermal fluctuations
at the [001] ends lead to an enhanced fluctuation inside the wire, as indicated by
the fluctuation maps in Figure 36, which consequently leads to a reduction of the
domain wall energy. Figure 36 shows that this effect is larger for shorter islands
compared to the longer islands. With increasing elongations of the islands along
[001] the correlations between the [001] ends and the center of the wire decrease,
which results in the increase of the energy barrier. For sufficiently large elongations
the [001] ends of the island and it’s center become uncorrelated and the energy
barrier should become constant.

6.2.4 The Arrhenius pre-factor

Looking at the pre-factor of the Arrhenius function in equation (50) one finds it
strongly depending on the system’s geometry, shown by Figure 39. The pre-factor
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Figure 39: The Arrhenius pre-factor ν0 as a function of the elongation of the islands: In
(a) shown for the islands elongated along [11̄0] and in (b) for the islands elongated along
[001]. The color scale corresponds to the system sizes L = N[11̄0]×N[001] and varies from
small in blue to large in red. The gray dashed lines are linear fits to the data points.

can be interpreted as the number of attempts to switch the magnetization and
is, therefore, often referred to as attempt frequency in literature. The geometry
dependency of the pre-factor arises due to the anisotropic orientation of the do-
main walls in Fe/W(110) nanoislands. ν0 must be crucially depending on N[11̄0], as
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with increasing N[11̄0] the number of nucleation sites and, therefore, the number of
nucleation attempts increases. This assumption is confirmed by the simulated at-
tempt frequency ν0, shown in Figure 39 (a): ν0 increases with increasing elongation
along [11̄0].

For the islands elongated along [001] the attempt frequency slightly decreases
with increasing N[001], shown in Figure 39 (b). In this case, the number of nu-
cleation sites is constant for all elongations along [001], hence, one would rather
expect a constant pre-factor. Again, this finding is due to the correlations of the
magnetic moments inside the wire with the moments at the [001] ends. Because
the energy barrier increases for increasing N[001], the total number of switching
attempts must decrease. Note, that the influence of the elongation along [001] on
the attempt frequency is rather small in comparison to the elongation along [11̄0],
as clear from Figure 39.

The next section gives additional insights into the temperature and size depen-
dency of the switching rates.

6.3 Additional analysis of the superparamagnetic switching

6.3.1 Switching rates at a constant temperature

To get additional insights into the superparamagnetic switching behavior of the
simulated islands, Figure 40 shows a logarithmic plot of the switching rates as a
function of the number of atomic rows along [11̄0] and [001] at a constant tem-
perature in the superparamagnetic temperature regime. This plot corresponds to
a vertical cut at β = 1.6 kB/J of Figure 37. The plot shows the switching rates
ν decreasing for increasing N[11̄0] as well as for increasing N[001]. The switching
rates are naturally directly correlated with the energy barrier of the magnetization
reversal, hence, the switching rates in the superparamagnetic temperature regime
decrease with increasing energy barrier. For an increasing elongation along [001]

(the direction of the domain wall propagation) an additional decrease of the switch-
ing rates can be expected, which is due to the stochastic nature of the domain wall
propagation in a system without external pressure. A decrease of the switching
rates for increasing elongation along [001] can be described by the random walk
theory, as presented in [9, 84]. If one considers a domain wall propagating through
the nanoisland as a quasiparticle, moving forward and backward is energetically
degenerate, as no external pressure exists. Following the random walk theory for
a particle moving along a line with absorbing ends [69], the mean distance covered
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Figure 40: Logarithmic plot of the switching rates at a constant inverse temperature of
β = 1.6 kB/J , as a function of the elongation of the islands. The color scale corresponds
to the system sizes L = N[11̄0]×N[001] and varies from small in blue to large in red. The
gray dashed lines are linear fits to the data points.

after n steps scales with
√
n. Thus, the probability of a domain wall successfully

propagating from one end of the island to the other decreases with increasingN[001],
as depicted in Figure 41. With increasing elongation of the islands the probabil-

Figure 41: Sketch of the propagation of a domain wall in elongated nanoislands.

ity that the domain wall returns to its nucleation site and annihilates there, with
no net magnetization reversal, increases. This behavior additionally reduces the
switching rates ν when increasing N[001] and keeping N[11̄0] constant. Hence, for
larger elongations, above which the energy barrier stays constant, the switching
rates will still decrease with increasing elongation along [001].

6.3.2 Defining a characteristic switching rate and temperature?

When looking at the logarithmic switching rates as a function of the inverse tem-
perature extrapolated up to β → 0, a crossing point at β ≈ 0.6 kB/J (vertical solid
gray line) is striking, see Figure 42. At that temperature all islands of different
size and shape switch their magnetization at a constant rate of about 0.02 1/MCS
(lifetime τ ≈ 50 MCS, horizontal solid gray line). Note, that for elongated is-
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Figure 42: Logarithmic plot of the switching frequencies ν as a function of the inverse
temperature β for different system sizes. The color scale corresponds to the island’s size
L = N[11̄0] ×N[001] and is blue for small islands and red for large islands.

lands along [001] with a constant N[11̄0] this crossing point cannot be observed
that clearly, as here all the Arrhenius fits for the different island elongations have
a similar slope and the fits run very close to each other and in parallel.

From the simulations of islands with different energy barriers, the crossing
point can be determined. Simulations of various systems revealed such a crossing
point, namely: simulations for an isotropic square lattice with Ising spins, for an
isotropic Heisenberg system with sc or bcc lattice, and the simulation of anisotropic
as well as isotropic Heisenberg moments with different easy-axis anisotropies. For
each of the different systems, the crossing point lies at a different temperature,
which seems to be characteristic for the system properties. At this temperature,
which will be denoted as characteristic temperature T c in the following, islands
of different sizes and shape (but with the same magnetic properties) switch at a
constant frequency, which will be denoted as the characteristic frequency νc in the
following. Note, that the characteristic temperature must be seen as a parameter
which is a consequence of the physical properties of the system in the analyzed
temperature region. It does not give any insights or properties of the system at
the characteristic temperature, which becomes clear when looking at the inverse
Curie temperature of the infinite system which lies below T c (vertical dashed gray
line).

It might be possible to classify a system of certain magnetic properties by the
characteristic temperature and frequency. The simulations show that the char-
acteristic parameters depend on the energy constants and the lattice used. Fur-
thermore, one can expect the dimensionality and the geometries to determine the



6 SUPERPARAMAGNETIC MAGNETIZATION SWITCHING 89

characteristic parameters. In addition, the temperature region used for the anal-
ysis of the magnetization switching might influence the parameters, especially if
the switching mechanism changes, for instance, from domain wall nucleation and
propagation to multi-droplet nucleation [107, 109, 110]. An extensive study would
be necessary to categorize the systems. However, such a study would not nec-
essarily reveal additional benefits over existing classifications like the finite size
scaling theory [94, 111]. As such a study is behind the scope of this work, only
the discovery of such characteristics shall be noted here.

The following section presents a simulation of the influence of a spin-polarized
current, induced by an STM tip, on the superparamagnetic switching of ferromag-
netic nanoislands consisting of about 100 atoms.

6.3.3 Current-induced magnetization switching

In section 3 the influence of a spin-current on the magnetization switching in
a nanowire has been investigated theoretically. Since in that study the applied
current has been too small to directly switch the magnetization of the magnetic
bit, a domain wall has been utilized in order to switch the magnetization of the
bit. However, when decreasing the system size until the nanoislands start switching
superparamagnetically (like in the present chapter) such an island can be switched
directly by an SP-STM tip, as shown experimentally by Stefan Krause et al. [112].
Depending on the polarization of the SP-STM tip and the applied current, a
nanoisland has been forced to switch its magnetization. The transferred torque
of a spin-current discussed in section 3.1.4 on a superparamagnetically switching
island leads to a favored magnetization direction, hence, to a higher population of
one of the two states, spin-up or spin-down.

Figure 43 shows Monte Carlo simulations of the magnetization switching in-
side the superparamagnetic temperature regime with a spin-current applied. The
asymmetry in the population probability is in very good agreement with experi-
ment [112]. In experiment as well as in the simulation, the SP-STM tip has been
placed in the center of one nanoisland measuring the magnetization switching with
different applied currents. The polarization of the spin-current obviously leads to
a higher population of the spin-up state. Applying this method to a thermally
stable magnetic bit, it allows to control the orientation of that magnetic bit.
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Figure 43: Monte Carlo simulation of the probability to find the nanoisland in a state with
a certain easy-axis magnetization M[11̄0] for three different spin-currents applied. The x
axis shows the normalized easy-axis magnetization. The peaks for negative magnetization
correspond to the spin-down states and the peaks for positive values to the spin-up states.

6.4 Summary and Conclusion

The presented study on the thermally induced magnetization reversal of atomic-
scale monolayer iron nanoislands provided insights into the microscopic processes of
magnetization reversal via domain wall nucleation and propagation. The switching
rates and also the Arrhenius pre-factor and energy barrier have been found to be
strongly dependent on the morphology of the simulated systems. The studies
help to systematically tailor future magnetic nano-objects that hinder or favor
magnetization reversal, which is important for the development of new types of
data storage media or magnetic sensors at the nanoscale.

It has been suggested, that from the simulation of the superparamagnetic
switching behavior a temperature can be defined, which is characteristic for the
magnetic properties of the island inside the analyzed temperature region. In order
to prove this finding experimentally, one needs to create nanoislands with exact
geometries, which is a very time-consuming task. A promising method to create
such precisely defined samples is single-atom manipulation [113–115].

Eventually, the influence of a spin-polarized tunneling current (induced by an
SP-STM tip) on the superparamagnetic switching of the nanoislands has been pre-
sented. The application of such a spin-current allows to control the magnetization
of a single nanoisland.
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7 Conclusions and Perspectives

The present thesis investigates by means of classical Monte Carlo simulations the
magnetic properties of monolayer ferromagnetic nanoparticles. The properties of
the systems studied are comparable to Fe/W(110) and could be employed in future
storage or logic devices.

The manipulation of a narrow domain wall in a ferromagnetic nanowire utiliz-
ing a localized spin-current of an STM has been studied theoretically. The results
suggest that it is possible to manipulate a single domain wall in a hard mag-
netic nanowire, like Fe/W(110), using an SP-STM. The total magnetization of a
nanowire has been exactly controlled in the simulation by the manipulation of a
single domain wall. Such a nanowire could be used to build a logic device, whose
operation depends on the exact position of the domain wall. The simulations re-
veal that a tip with a magnetization parallel to the domain wall magnetization is
best to control a domain wall, because such a tip-wall alignment allows to move
the domain wall in both directions along the wire.

Additional simulations including magnetic defects showed that defects can lead
to the pinning of the domain wall and, thereby, prevent a successful domain wall
manipulation. The domain wall pinning at such defects could be the reason why
an experimental realization of the controlled domain wall manipulation by means
of an SP-STM tip has not been possible so far. Surprisingly, the simulations
including defects allowed to resolve the Peierls potential, which was not possible
for the defect free wire. The reason why it has been possible to map the Peierls
potential in the simulation was the repeated pinning and depinning of the domain
wall at the defects, which led to an oscillation of the external pressure. Hence, it
has been found that the external pressure induced by the moving SP-STM tip is
not constant during manipulation, it varied between 40 mT and 66 mT and allowed
to map several energy states of the domain wall during a single manipulation trial.
In order to build and optimize the cost-of-ownership of a real storage application
based upon the controlled manipulation of a single domain wall a lot of factors
have to be weighted up. Therefore, a theoretical investigation would be helpful
which studies the interplay between the depinning field, the applied current or
field, and the temperature in a realistic setup. These three parameters could be
systematically varied in a simulation, hopefully revealing an applicable set of these
parameters.

Before the superparamagnetic switching of ferromagnetic nanoislands could
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be investigated, first the critical temperatures of the superparamagnetic regime
had been defined. It was demonstrated that a meaningful definition of the Curie
temperature of a finite spin system can be given that relies on the analysis of a
suitably defined average spin correlation function, denoted as connected correlation
function. It has been shown that the concept can be applied to different one-
, two-, and three-dimensional classical spin models and that the reduced Curie
temperature Tc(L) can be extracted with an accuracy that even allows to determine
a shift exponent. Further, it has been demonstrated that the blocking temperature
scale is accessible with a Monte Carlo approach by performing an incomplete
statistical average. A sharp jump is visible in the average spin-correlation function
at Tb(L). However, the blocking temperature is only defined with respect to an
observation time (a finite number of MCSs) and therefore represents only a relative
quantity.

After the critical temperatures have been defined the magnetization dynam-
ics of such nanoislands have been studied in the superparamagnetic temperature
regime for different temperatures and for varying sizes and shapes. The stability
against thermal excitations for Fe/W(110) nanoislands has been found to depend
not only on the size of the island but also on its shape. The reason for that is the
switching mechanism involved: domain wall nucleation and propagation. The ther-
mal stability depends on the energy needed for a successful domain wall nucleation
and this nucleation energy in turn depends on the shape of the island, which is due
to the anisotropic domain wall orientation in monolayer Fe/W(110) nanoislands.
The studies help to systematically tailor future magnetic nano-objects that hinder
or favor magnetization reversal, which is useful for the development of new types
of data storage media or magnetic sensors at the nanoscale. The direct control of
the magnetization of hard-magnetic nanoislands has been realized experimentally
[112, 115] and could be used to replace the layer of granulated material of com-
modity HDDs with pre-patterned magnetic islands, which then could be addressed
by a locally induced spin-current.

Finally, it is worth to mention - as shown in this thesis - that a Monte Carlo
simulation is a powerful tool to investigate not only the magnetization dynamics
of single domain nanoislands but also to get insights into the dynamics of domain
wall propagation, which is usually studied by means of spin-dynamic simulations.
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Symbols
A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | V | W | X | Y

A

〈ij〉n all nth nearest neighbor pairs 22, 53

〈...〉 canonical average or time average 73

α the Gilbert damping 28

a the lattice constant 29

AMR anisotropic magnetoresistance 64

AR atomic rows 21

A the autocorrelation function 11

B

B a temperature dependent fit parameter; a local magnetic field 76, 84

BCC the body center cubic crystal lattice 23

β inverse temperature 1/kBT 7–10, 17

C

C a constant 28

C the specific heat 9

D

D a constant 28

∆ absolute difference of two values of the quantity Q: ∆Q = |Qµ −Qν | 17

δDW the domain wall width 24

δVDW
mean square deviation, hence, the variance of the domain wall velocity 66

dI/dU dI/dU signal of an STM 20

d the inter-atomic distance along x 31

E

EP(x) the Peierls energy 31

ε a temperature dependent fit parameter 76



106

EB the energy barrier 89

EfP the Peierls energy perturbed by an external pressure 33

EJ3 the exchange energy of third nearest neighbors 37

Eµ energy of state µ 7

Emax the maximum energy of a domain wall spin configuration 31

Emin the minimum energy of a domain wall spin configuration 31

Epert the energy perturbation of the Peierls energy 54

EPN the amplitude of the Peierls energy or the Peierls-Nabarro barrier 31

EPP the Peierls energy including defects 54

EfPP the Peierls energy including defects perturbed by an external pressure 55

F

f the external pressure also denoted as the effective internal field 32

φ the work function 26

Fe/W(110) iron on the (110) plane of a tungsten substrate 21

FED a defect function placing defects at the edges of the system 54

f∗ the depinning field 33

F the defect distribution function 54

G

G the spin-spin correlation function 73

γ the gyromagnetic ratio 28

G̃ the connected spin-spin correlation function 74

Gx0 the correlation function of the domain wall center position of different atomic rows
40

H

HDD hard drive device 1

H the internal field, H i = −∂Hi/∂Si 28

h the height of the STM tip above the sample 29

H a Hamiltonian and Hi corresponds to the energy contribution of site i 22

Hsd the s-d Hamiltonian 27
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J

J an exchange constant 22

J[001] exchange constant along [001] 93

J[11̄0] exchange constant along [11̄0] 88

J[11̄1] exchange constant along [11̄1] 88

Jn exchange constant of the nth nearest neighbors 22, 53

Jsd the coupling constant between itinerant s electrons and localized d electrons 27

K

Ky the easy-axis anisotropy along y 22

K anisotropy constant of the defects 22

κ the decay constant 26

kB the Boltzmann constant 28

K0 the easy-axis anisotropy of non-defect sites 52

Krim
[11̄0]

the easy-axis anisotropy of rim atoms of Fe/W(110) 88

Ksurf
[11̄0]

the easy-axis anisotropy of surface atoms of Fe/W(110) 88

Kz the hard-axis anisotropy along z 22, 53

L

LLG Landau-Lifshitz-Gilbert equation 27

L number of particles of the system 8

λ just another state 16

L0 a microscopic length scale of the order of one 81

lex the exchange length 41

λs the shift exponent λs = 1/ν 81

M

MCS a Monte Carlo step 11

MFM magnetic force microscope 4

MOKE magneto-optic Kerr effect 64

M the magnetization of the ensemble M =
∑L

i

√
mi
x +mi

y +mi
z 10
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mtip the magnetization of the tip 26

m magnetization of the moment at a site i 24

mtip ↑↓SD magnetization of the tip anti-parallel to the initial domain 42

mtip ↑↓SDW magnetization of the tip anti-parallel to the domain wall 36

Mfin
y the net easy-axis magnetization after a manipulation trial (final magnetization) 57

mtip⊗Sxy magnetization of the tip pointing into-plane 42

mtip�Sxy magnetization of the tip pointing out-of-plane 42

mtip ↑↑SD magnetization of the tip parallel to the initial domain 42

mtip ↑↑SDW magnetization of the tip parallel to the domain wall 35

µ a state of the system or a magnetic moment 8

My the easy-axis magnetization 24

N

N dimension along a directions in space: Nx, Ny, Nz 21

O

Ω the phase space 15

P

P the polarization of a current 26

Pactive probability of a successful domain wall manipulation in the activated regime 58

π ratio of a circle’s circumference to its diameter, it is approximately 3.14159 35

pµ Boltzmann distribution 7, 8, 14–17

Q

Q̄ arithmetic mean of a quantity Q 9

Q an arbitrary quantity Q 8

Qµ the value of the quantity Q of an ensemble in state µ 8

R

ri position vector of lattice site i 10

RTM Rastertunnelmikroskop iii

R transition rate 14
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rc the critical distance between tip and domain wall at which the current induced by the
STM tip causes a domain wall propagation 35

rtip position vector of the tip 25

rtw the distance between the tip and the domain wall position 58, 59

rv the virtual distance at which G̃ vanishes 78

ry distance between two atomic rows along y 40

S

S0 area of the domain wall 24

SP-STM spin-polarized scanning tunneling microscopy 25

STM scanning tunneling microscope 1, 20

S spin vector S = (Sx, Sy, Sz) 10

σsp conductivity of the tunnel junction 45

Si
[11̄0]

[11̄0] magnetization component of spin i 88

SC the simple cubic crystal lattice 23

SD magnetization vector of a domain 42

SDW magnetization vector of the domain wall 42

T

δTc shift of the Curie temperature of a finite system 14

τeq autocorrelation time of a Monte Carlo simulation 11

θ angle between two vectors 26

T the tunneling current 25

T the temperature 10

t the observation time 73

T0 the spin-polarized current averaged over the surface unit cell 26

T1 T1 = Tb 76

T2 T2 = Tc(L) 76

T3 T3 = Tc(∞) 76

τ the escape time 57

τ0 a pre-factor 57
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τ̄ the mean lifetime 89

Tb the blocking temperature 73

Tc the Curie temperature 10, 69

T c a characteristic temperature 99

TMF
c the mean-field Curie temperature 83

V

ν a certain state of the system; a critical exponent; the switching rate 10

VP(x) the Peierls potential 31

Vtip velocity of the tip (Vtip = 1.5× 10−5) 29

ν0 the Arrhenius pre-factor 89

νc a characteristic frequency 99

VDW the domain wall velocity 33, 65

W

wµ occupation probability of state µ 14

X

χ the magnetic susceptibility 10

x0 the domain wall position 29

ξ the correlation length 10

∆xtip a tip-step, hence, the displacement of the tip into x direction 29

xtip x component of the tip position 35

Y

y a temperature dependent fit parameter 76
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