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Abstract

The focus of this thesis is on the phenomenology of several non-minimal supersymmetric

models in the context of future linear colliders (LCs). Extensions of the minimal supersym-

metric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about

125 GeV in a more natural way than the MSSM, with a richer phenomenology. We con-

sider both F -term extensions of the MSSM, as for instance the non-minimal supersymmetric

Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge

extended supersymmetric models. The NMSSM offers a solution to the µ-problem with an

additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be

accurately studied at a LC and used to distinguish the model from the MSSM. We show that

exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino

and chargino sector and eventually distinguish the NMSSM even considering challenging sce-

narios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise

the tree-level Higgs mass with respect to the MSSM. This is done through additional con-

tributions to the Higgs quartic potential, effectively generated by an extended gauge group.

We study how this can happen and we show how these additional non-decoupling D-terms

affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the

deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and

at the International Linear Collider (ILC), showing how the ILC would be suitable for the

model identification. Since our results prove that a linear collider is a fundamental machine

for studying supersymmetry phenomenology at a high level of precision, we argue that also

a thorough comprehension of the physics at the interaction point (IP) of a LC is needed.

Therefore, we finally consider the possibility of observing intense electromagnetic field effects

and nonlinear quantum electrodynamics (QED) processes at the IP, due to the strong elec-

tromagnetic fields generated by electron and positron bunches. We estimate the strength of

the fields that would be generated at the planned LCs. We then argue that considering their

effects on all physical processes may have strong impact on the ambitious precision physics

program at the LC. We study how to test nonlinear QED colliding an intense laser on the

beams of a LC, in an effort to improve and extend the success of SLAC experiment 144.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Phänomenologie nicht-minimaler supersym-

metrischer Modelle im Kontext zukünftiger Linearbeschleuniger. Erweiterungen des mini-

malen supersymmetrischen Standardmodells (MSSM) können die beobachtete Higgs-Boson

Masse von ca. 125 GeV natürlicher beschreiben als das MSSM und haben eine reichere

Phänomenologie. Wir betrachten sowohl F -Term-Erweiterungen des MSSM, wie beispiel-

sweise das nichtminimale supersymmetrische Standardmodell (NMSSM), als auch D-Term-

Erweiterungen, welche aus der Niederenergiebeschreibung von supersymmetrischen Modellen

mit erweiterter Eichgruppe entstehen. Das NMSSM beinhaltet eine Lösung des µ-Problems

mit einem zusätzlichen Eichsinglett-Supermultiplet. Der erweiterte Neutralinosektor des

NMSSM kann an einem zukünftigen Linearbeschleuniger präzise studiert werden und dient

NMSSM und MSSM zu unterscheiden. Wir zeigen, dass die polarisierten Strahlen eines

Linearbeschleunigers wichtig werden können, um den Neutralino- und Charginosektor zu

rekonstruieren und dadurch zwischen NMSSM und MSSM zu unterscheiden, selbst in Fällen,

in denen die Teilchenspektra und eigenschaften in beiden Modelle sehr ähnlich sind. Nichten-

tkoppelnde D-Term-Erweiterungen des MSSM können die Higgs-Masse in niedrigster Ordnung

durch zusätzliche Beiträge zum quartischen Potential des Higgsfeldes im Vergleich zum MSSM

erhöhen. Diese Beiträge werden durch eine erweiterte Eichgruppe generiert. Wir beschreiben

diesen Effekt und zeigen, wie diese zusätzlichen nichtentkoppelnden D-Terme die standard-

modellartige Kopplung des Higgsbosons an die Fermionen und Eichbosonen verändert. Weit-

erhin beschreiben wir, wie diese Abweichungen von den Standardmodellkopplungen am Large

Hadron Collider (LHC) und dem International Linear Collider (ILC) gefunden werden können

und zeigen, dass der ILC essentiell für die Interpretation des Modells ist. Da unsere Ergeb-

nisse zeigen, dass hochpräzise Messungen an einem Linearbeschleuniger von fundamentaler

Bedeutung für die Phänomenologie supersymmetrischer Modelle ist, ist es ebenfalls wichtig,

das physikalische Umfeld am Wechselwirkungspunkt eines Linearbeschleunigers genau zu ver-

stehen. Daher beschreiben wir im letzten Teil der Arbeit nichtlineare Quantenelektrodynamik

(QED) in Gegenwart starker elektromagnetischer Felder, welche durch die Elektronen- und

Positronenbündel der Beschleunigerstrahlen erzeugt werden. Wir schätzen die Stärke dieser

Felder bei zukünftigen Linearbeschleunigern ab und zeigen, dass der Effekt der Felder gegebe-

nenfalls bei der Beschreibung aller physikalischer Prozesse berücksichtigt werden muss, um

das ambitionierte Physikprogramm der geplanten Linearbeschleuniger umzusetzen. Unter

Berücksichtigung dieser Effekte studieren wir mit Hilfe eines intensiven Laserstrahls –ähnlich

dem SLAC Experiment 144– nichtlineare QED experimentell am LC getestet wereden kann.
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Chapter 1

Introduction

Particle physics is at a turning point since July 2012, when the striking discovery of a 125.5

GeV particle at the Large Hadron Collider (LHC) was made [8,9]. The measurements from the

ATLAS and CMS detectors suggest this new particle to be the Higgs boson, the last missing

piece of the Standard Model of particle physics (SM) [10–12]. The measurements of the

spin and of the couplings of the new particle, at the current accuracy, confirm this hypothesis

[13–16]. The Higgs boson is the cornerstone of the SM formulation since it triggers spontaneous

electroweak symmetry breaking (EWSB) through the Higgs mechanism [17–20]. The SM, so

far, has described with impressively high accuracy almost all the strong and electroweak

processes observed at colliders. The SM, however, cannot be the ultimate theory of Nature.

First of all, it lacks a description of gravitational interactions. A second incompleteness comes

from the fact that the SM cannot explain the matter-antimatter asymmetry. Furthermore,

the SM does not provide any reliable dark matter (DM) candidate.

Another reason for exploring beyond the Standard Model (BSM) physics is to explain

the effects of the radiative corrections on the Higgs mass. Since the Higgs is a scalar, there

are no symmetries in the SM that could protect its mass from loop-diagrams contributions.

These corrections are quadratic in the UV-scale Λ cutting off the theory. One may assume

that the SM is valid up to the Planck scale ΛP ∼ 1019 GeV. In this case, a cancellation

with extremely high degree of fine tuning between the bare Higgs mass and its radiative

corrections is needed in order to recover the observed Higgs mass mh = 125.5 GeV. This

implication seems in contrast with the idea of naturalness of the theory. It is a puzzle, called

the Hierarchy Problem [21–23], which has lead to the formulation of many extensions of the

SM.

There are two main solutions for the Hierarchy Problem. First, the introduction in the

theory of a symmetry that could protect the Higgs mass. Second, the lowering of the cut-off

of the theory by introducing new physics at a scale Λ� ΛP . The first solution is adopted in

supersymmetric theories [24–29], in which a symmetry between bosons and fermions cancels

exactly the radiative corrections to the Higgs mass. In order to do this, supersymmetric

models assign to each SM particle a sparticle, i.e. a partner particle with opposite-statistics.

1



2 Chapter 1. Introduction

The second solution to the Hierarchy problem can be implemented by considering the Higgs as

a composite object, formed by novel strong interactions entering at a lower scale with respect

to ΛP [30,31]. The aforementioned BSM models are also interesting because they can explain

the origin of Higgs scalar potential, responsible for EWSB.

Despite these premises, so far no experimental evidence for physics Beyond the SM has

been detected. A first consequence on supersymmetry is that, if it is a symmetry of Nature,

it must be broken at low energies. According to supersymmetry, indeed, a SM particle and its

supersymmetric partner should have the same mass and charges. For this reason, a plethora

of models have been introduced to explain supersymmetry breaking.

At the LHC, direct searches for supersymmetric particles or exotica, as well as indirect

constraints from measurements of the Higgs coupling strengths have not yet given hints to-

wards BSM [32,33]. For supersymmetric models, LHC constraints are particularly strong for

coloured sparticles, with lower limits excluding the first two generations squarks and gluinos

below ∼ 1 TeV, depending on the model assumptions [34, 35]. The limits are more relaxed

for third generation squarks, and especially for sparticles of the electroweak sector, to which

the LHC is less sensitive. Phenomenological studies have heavily constrained composite Higgs

models too. For example, the lower bounds for some of the new particles’ masses have been

pushed up to several TeVs in partial compositeness models [36], while the scale of the new

symmetry breaking in Little Higgs models is constrained to be higher than ∼ 700 GeV [37–39].

Focussing on supersymmetry (SUSY), however, it is very important to note that the

most strict LHC limits are derived for simplified and/or highly constrained scenarios. The

constrained supersymmetric models have much smaller parameter space to be explored, since

they advocate a higher degree of symmetry between the parameters of the model. Therefore

light supersymmetry is still a viable candidate for BSM physics [40], and future experimental

results are awaited to give indications in this direction.

First, in 2015 the upgraded LHC will start running at a center-of-mass energy of 13 TeV,

allowing the production and the direct detection of sparticles with higher masses than before.

Second, in early 2016 Japan is expected to give its decision about hosting the International

Linear Collider (ILC) [41–45]. The ILC would collide electron and positron beams at a

center-of-mass energy up to 500 GeV, in a very clean environment. The ILC would be then

particularly suitable for precision measurements of electroweak physics, especially in the Higgs

sector, where a model independent measurement of Higgs coupling is possible, and top physics

too. The supersymmetric electroweak sector could be precisely assessed, complementary to

the LHC, despite the lower energies reached [7]. In fact, threshold scans allow to measure

the masses of the resonances. Furthermore, the ILC polarised beams have a key role, since

they enhance production cross sections, while lowering the background processes. Another

precision tool is the measurement of spin correlation between initial and final states.

Therefore, in case of the discovery of supersymmetry, a future linear collider would be

fundamental for revealing the structure and the determination of the underlying model, both

looking at phenomenology of the new particles and of the Higgs. This is of particular interest,
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since many supersymmetric extensions of the Standard Model have been proposed beyond the

minimal option. One reason for this is to more easily accommodate the observed Higgs mass

mh = 125.5 GeV with respect to the minimal supersymmetric extension of the SM, where the

tree-level Higgs mass below mZ = 91.2 GeV requires large radiative corrections.

This thesis deals with a series of non-minimal supersymmetric extensions of the SM and

it describes methods for distinguishing this models with respect to the SM or the MSSM, in

particular in the context of linear colliders. The structure of the thesis is organised as follows.

In Chapter 2 supersymmetry is introduced as an extension of the Standard Model. First,

the Standard Model is presented as the theory describing strong and electroweak interactions,

explaining the origin of masses through the electroweak symmetry breaking mechanism. Then,

the aforementioned shortcomings of the SM are pointed out, with a particular focus on the Hi-

erarchy Problem. To meet these inconsistencies, the theoretical background of supersymmetry

is then introduced. An explanation for the cancellation of quadratic divergent contributions

to the Higgs mass then is illustrated. More concretely, a general supersymmetric Lagrangian

is given, together with a general expression for the soft supersymmetry-breaking terms. The

minimal supersymmetric SM (MSSM) is then introduced, with particular attention to the

Higgs and EWSB, as well as the neutralino and chargino sectors. Since supersymmetry must

be softly broken in order to explain the non-observation of sparticles, several viable super-

symmetry breaking mechanisms are listed. Besides the achievements of the MSSM, a series

of shortcomings, like the µ-problem and the naturalness of the stop sector, suggest to look

beyond the MSSM. Therefore, an overview over possible extensions of the MSSM is offered.

A brief interlude on the experimental results and the perspectives concerning supersym-

metry searches is given in Chapter 3. The consequences on the MSSM of the observation

of the Higgs boson at LHC and of the direct SUSY searches are discussed, together with an

overview on the possibilities offered by the ILC. Finally, a series of indirect constraints from

dark matter and precision physics is mentioned.

Chapter 4 is dedicated to the research project on the model distinction between the next-

to-minimal SM (NMSSM) and MSSM at a linear collider. The NMSSM solves the µ-problem

by introducing an additional gauge singlet supermultiplet with respect to the MSSM. An ef-

fective µ-term, in fact, is generated at the SUSY breaking scale due to the vacuum expectation

value (vev) of the singlet. A description of the enlarged Higgs and neutralino sectors of the

NMSSM and a brief overview on the peculiarities of the NMSSM Higgs phenomenology are

provided. The developed method of model distinction between the NMSSM and MSSM at a

linear collider is illustrated. This method relies on the precise measurements of masses and

cross sections of the neutralinos and charginos at the future linear collider. The admixtures

of the lightest neutralino states allow for a definition of classes of NMSSM scenarios featuring

different phenomenologies. The elaborated distinction method is then applied to a series of

scenarios belonging to the previous classes that, at least at low region of the spectrum, behave

very closely to the MSSM. The potential as well as the limits of the method for the different
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classes are presented, together with possible integrations.

In Chapter 5 the attention is turned to another class of supersymmetric models, namely

the non-decoupling D-terms extensions of the MSSM. These models are introduced in order to

relax naturalness in the stop sector by raising the tree-level Higgs mass with additional quartic

couplings. First, it is shown how these MSSM extensions may arise as low energy effective

theories of quiver models, i.e. as models with an extended gauge symmetry. In particular

the focus is on models with two copies of SU(2) ⊗ U(1) which spontaneously break to the

electroweak gauge group SU(2)L ⊗ U(1)Y , generating additional non-decoupling D-terms in

the Higgs scalar potential. It is shown how these terms may raise the tree-level Higgs mass in

two classes of these models, with different distribution of charges of the Higgs doublets. Non-

decoupling D-terms also affect the couplings of the SM-like Higgs boson with SM fermions

and gauge bosons. An analysis on the potential of the LHC and of the ILC energy stages to

detect deviations from the SM couplings due to D-terms is performed for the two analysed

classes. The results highlight the eminence that ILC may have in the study of these models.

Having shown the key role of a future linear collider in precision physics, and in particular

in the study of supersymmetric models, it is of paramount importance to clearly understand

the physics at the interaction point (IP) of the LC lepton beams. Therefore, Chapter 6

concerns itself with the effects on the physics processes at the IP due to the very intense

electromagnetic fields associated to the lepton beams. In fact, the nominal luminosities of

the planned linear colliders, the ILC and the Compact Linear Collider (CLIC), require very

dense lepton bunches to collide. Therefore, the interacting particles see very intense external

fields in their rest frames. As a consequence, background processes like beamstrahlung are

generated. An overview of particle processes in very strong electromagnetic fields is given,

together with the concept of critical field strength, corresponding to the strength at which an

electron-positron pair is spontaneously created from the vacuum. The expected field strengths

at the IPs of the planned LCs are estimated. It is concluded that operating a LC at several

TeV, the effects of these fields on the processes that are of interest for the LC physics program

should be taken into account. In order to do so, it is proposed to apply a method that includes

the external fields into perturbation theory, called the Furry picture of quantum states. In this

context, it is also proposed to exploit the future linear collider for testing nonlinear quantum

electrodynamics (QED), i.e. QED processes with absorption of multiple photons from an

external field. This is possible by colliding the LC beams with an intense laser, improving

and extending the SLAC experiment 144 [46]. The potential of the proposed experiment is

estimated, and a description of the processes that can be studied is given.

The thesis is resumed and its conclusions are given in Chapter 7. Additional contents on

the topics discussed in Chapters 2, 4, 5, and 6 are provided in Appendices A, B, C, and D,

respectively. Finally, the acknowledgements may be found after the Bibliography.

Following the guidelines for dissertations, at the beginning of chapters 2, 3, 4, 5, and 6 the

contents of the chapter are outlined, pointing out the original contributions by the author in

the collaborative work, together with the main literature resources.



Chapter 2

Supersymmetry as completion of

the Standard Model

This chapter provides the basic introduction and motivation of supersymmetric models, that

constitute the theoretical background of chapters 3 and 4. It briefly introduces the Standard

Model and the Hierarchy problem in section 2.1, the supersymmetry basics in section 2.2, and

the minimal supersymmetric Standard Model (MSSM) in sec. 2.3. In section 2.4 we list some

extensions of the MSSM. The discussion will partially follow the description of known results

from the references [47–51].

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM) describes the physics of all the observed funda-

mental particles and their interactions excluding gravity. The common denominator for such

a model is the identification of a local gauge symmetry that could describe the interactions

between the observed particles. The current formulation of the SM is the result of decades-

long series of results starting from the formulation of a unified theory for electromagnetic

and weak interactions by Glashow [10]. The latter is the electroweak theory to which Wein-

berg [11] and Salam [12] embedded the Higgs mechanism of symmetry breaking elaborated

by Brout and Englert [17], Higgs [18, 19], and Guralnik, Hagen, and Kibble [20]. The elec-

troweak interactions are described by the gauge symmetry SU(2)L ⊗ U(1)Y . This symmetry

is spontaneously broken at the electroweak scale to U(1)em, the gauge symmetry describing

electromagnetic interactions. Responsible for the breaking is the Higgs mechanism, which

leaves the photons, i.e. the gauge bosons mediating electromagnetic interactions, massless.

The gauge bosons W, Z that mediate the weak interactions, instead, correspond to the broken

generators of the former gauge group and get masses. Furthermore, the description of the

physics of strong interactions has been added through the symmetry SU(3)c as formulated in

5



6 2.1. The Standard Model of Particle Physics

Quantum Chromodynamics (QCD) [52]. We can resume the SM gauge structure as

SU(3)C︸ ︷︷ ︸
strong

⊗ SU(2)L ⊗ U(1)Y︸ ︷︷ ︸
electroweak

EW breaking−−−−−−−−−→ SU(3)C ⊗ U(1)em︸ ︷︷ ︸
electromagnetic

. (2.1)

For a thorough review on the model, we refer to [47].

2.1.1 SM fields and Lagrangian

The SM predicted the existence of several particles that were actually observed in the years

following its formulation, with extremely high agreement to the experimental outcome. This

culminated with the Higgs discovery at the LHC in July 2012 [8, 9], the last missing piece

of such magnificent picture. The particle content of the SM before electroweak symmetry

Fields labels spin SU(3)C ⊗ SU(2)L ⊗U(1)Y

Gluons gi 1 (8,1, 0)

W bosons W a 1 (1,3, 0)

B boson B 1 (1,1, 0)

Qq = (uL, dL)q
1
2 (3,2, 1

6)

Quarks ūq = u†Rq
1
2 (3̄,1,−2

3)

d̄q = d†Rq
1
2 (3̄,1, 1

3)

Leptons `l = (ν , eL)l
1
2 (1,2,−1

2)

ēl = e†Rl
1
2 (1,1, 1)

Higgs φ =
(
H+ , H0

)
0 (1,2,−1

2)

Table 2.1: Standard Model particle content with the gauge transformation properties before elec-

troweak symmetry breaking; i = 1, . . . , 3, a = 1, 2, 3, q = 1, 2, 3, and l = e, µ, τ .

breaking (EWSB), cf. table 2.1, is given by:

• The gauge bosons of the theory, with spin 1: eight gluons ga, three W i bosons, and the

B boson respectively corresponding to SU(3)c, SU(2)L, and U(1)Y . In the Lagrangian

density the kinetic terms for the gauge bosons are given by

LV = −1

4
GiµνG

iµν − 1

4
WaµνW

aµν − 1

4
BµνB

µν . (2.2)

Above Giµν , W aµν , Bµν are respectively the gluon, the W and B bosons field strength

tensors, defined as

F iµν = ∂µA
i
ν − ∂νAiµ − gf ijkAjµAkν , (2.3)

for a generic gauge bosonAi, with g, f ijk the corresponding gauge coupling and structure

constants. We define the covariant derivative for the SM as

Dµ = ∂µ + ig3
λa

2
gaµ + ig2

σi

2
W i
µ + ig1

Y

2
Bµ , (2.4)
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where g1, g2, g3 respectively are the U(1)Y , SU(2)L, SU(3)C couplings; the Gell-Mann

matrices λa are the generators of SU(3)C , the Pauli matrices σi are the generators of

SU(2)L, and Y is the generator of U(1)Y . The generator I3 ≡ σ3

2 defines the weak

isospin of a field. A SU(2)L-triplet has components with I3 = 0, ±1; a SU(2)L-doublet

has I3 = ±1
2 , and a singlet has I3 = 0.

• The fermions of the SM, with spin 1
2 . They are quarks, that are charged under SU(3)c

and then said to have colour, and leptons, that are colourless. They can be left-handed

and charged under SU(2)L, or right-handed SU(2)L-singlets. There are three genera-

tions of fermions with the same quantum numbers. Each quark generation is made-up

by left-handed up- and down-type quarks forming an SU(2)L-doublet Qq = (uL, dL)q.

Furthermore, there is the right-handed up-type quark uq,R and the down-type quark

dq,R, that are SU(2)L-singlets. The three generations of leptons, instead, are formed

by a left-handed SU(2)L-doublet `l = (νL, eL)l and by a right-handed down-type lep-

ton el, R. The right-handed neutrinos, i.e. the right-handed up-type leptons, are not

embedded in the SM. The kinetic terms for SM fermions are given by

LF = iQ†q 6DQq + iūq 6D ū†q + id̄q 6D d̄†q + i`†l 6D `l + iēl 6D ē†l , (2.5)

where ūq ≡ u†Rq, d̄q ≡ d†Rq, ēl ≡ e†Rl, and 6D = γµDDµ denote the contraction of the

covariant derivative with the Dirac matrices γµD.

• The spin-0 Higgs field φ. It is a complex scalar SU(2)L-doublet φ =
(
H+ , H0

)
, whose

kinetic terms and scalar potential read

LH = (Dµφ)†(Dµφ)− V(φ) = (Dµφ)†(Dµφ)−m2(φ†φ)− λ(φ†φ)2 . (2.6)

V(φ) is a general scalar potential respecting gauge invariance and renormalisability. In

order to grant spontaneous symmetry breaking with a potential bounded from below,

λ is positive and m2 < 0. In order to generate fermion masses through the Higgs

mechanism, the Higgs interacts with the SM fermions through the Yukawa terms:

LY = −ēye(φ† `)− d̄yd(φ† Q)− ūyu(φ
†
Q) + h.c. , (2.7)

where φ = iσ2φ
∗. The Yukawa matrices ye, yu, yd are complex 3 × 3 matrices in the

lepton and quark generation spaces, and `, e, Q, u, d, are 3-vectors.

The SM Lagrangian density, or simply Lagrangian, can be resumed as

LSM = LV + LF + LH + LY . (2.8)

LSM is invariant under the SM gauge symmetry, under the special Poincaré group R(1,3), under

the special Lorentz group SO(1, 3), and also under the accidental global symmetries B
3 − `l,

corresponding to a simultaneous phase-multiplication on the quarks and on the l-generation

leptons.
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In order to quantise the SM, one should follow the Faddeev-Popov procedure [53]. Gauge

fixing terms shall be added to the Lagrangian density eq. (2.8), together with kinetic and

gauge interaction terms for the ghosts, that are non-physical auxiliary fields, vanishing on-

shell. In the physical quantities the dependence on the gauge fixing disappears, as well as

contributions from ghosts. For more details we refer to the standard textbook [54].

2.1.2 Electroweak symmetry breaking

The Higgs scalar potential V(φ) leads to the spontaneous symmetry-breaking SU(2)L ⊗
U(1)Y → U(1)em. This happens through the Higgs mechanism, that is required to ex-

plain the experimentally observed masses of the W, Z gauge bosons and of the fermions.

In fact, the SM Lagrangian density eq. (2.8) describes massless gauge bosons because their

masses are protected by gauge symmetry. The mass of a fermion ψ, instead, is prevented

by the chiral symmetry ψ → exp[iφ γ5]ψ. The scalar potential in eq. (2.6) is minimised

by 〈φ〉 =
(

0, v√
2

)
6= 0, where v =

√
−m2/λ is the Higgs vacuum expectation value (vev).

Exploiting electroweak gauge invariance we can parametrise φ as:

φ =
1√
2
ei
ξaσa

v

(
0

v +H

)
. (2.9)

The Higgs field φ has 4 real components: H and ξa (a = 1, 2, 3). The ξa components represent

the Goldstone mode of the SM symmetry breaking. We adopt the unitary gauge, with ξa = 0,

where the Goldstone modes are rotated away by a unitary transformation, such that they do

not appear explicitly anymore.

Finally, we expand LH +LY around the minimum, substituting eq. (2.9) in eqs. (2.6) and

(2.7), in order to derive the masses of all the SM particles. The scalar potential becomes:

V(H) = cost+ λv2H2 + λvH3 +
1

4
λH4 , (2.10)

so the Higgs H gets the mass m2
H = 2λv2.

At the minimum of the potential the gauge symmetry SU(2)L⊗U(1)Y is broken, and the

following linear combinations of W a
µ , Bµ are the mass eigenstates of the gauge boson sector:

W± =
1√
2

(
W 1 ∓ iW 2

)
, (2.11)

Z = cos θWW
3 − sin θWB , (2.12)

γ = sin θWW
3 + cos θWB . (2.13)

At the tree-level, the weak mixing (Weinberg) angle is defined by sin θW = g1√
g21+g22

and



2.1. The Standard Model of Particle Physics 9

Fields labels spin SU(3)C ⊗ U(1)EM

Gluons gi 1 (8, 0)

W bosons W± 1 (1,±1)

Photon, Z boson γ, Z 1 (1, 0)

Quarks uq
1
2 (3, 2

3)

dq
1
2 (3̄,−1

3)

Leptons νl
1
2 (1, 0)

el
1
2 (1,−1)

Higgs H 0 (1, 0)

Table 2.2: Standard Model particle content with the gauge transformation properties after elec-

troweak symmetry breaking; i = 1, . . . , 3, a = 1, 2, 3, q = 1, 2, 3, and l = e, µ, τ .

cos θW = g2√
g21+g22

.1 The masses of the gauge bosons are:

mW =
g2

2
v , mZ =

√
g2

1 + g2
2

2
v , mγ = 0 . (2.14)

Therefore we conclude that v =
(
GF
√

2
)− 1

2 ' 246.22 GeV, where GF is the Fermi constant.

To the massless photon γ corresponds the remaining unbroken electromagnetic gauge sym-

metry U(1)EM, with charge QEM = I3 + Y and coupling constant gem. The electromagnetic

charges in the SM after electroweak breaking are reported in table 2.2. The W± and Z bosons

mediate the weak interactions.

Expanding (2.7) around the vacuum, the fermions acquire masses. Excluding neutrinos,

after EWSB the left- and right- handed components of a fermion can be wrapped together

in a Dirac fermion. Lepton mass eigenstates are obtained diagonalising the Yukawa matrices,

while the quark mass eigenstates can be derived by using a unitary transformation

ψfL → V f
L ψ

f
L , ψfL → V f

R ψ
f
R , (2.15)

where V f
L , V

f
R are 3× 3 matrices in the generation space, with f labelling the type of quark:

up or down. We can then write the fermion mass matrices as

mu =
v√
2

(V u
L )†yuV

u
R , md =

v√
2

(V d
L )†ydV

d
R , me =

v√
2
ye , mν = 0 . (2.16)

We refer to the mixing matrix VCKM = (V u
L )†V d

L as the Cabibbo-Kobayashi-Maskawa matrix.

An analogue mixing matrix for leptons, the Pontecorvo-Maki-Nakagawa-Saki matrix UPMNS,

1Each of the new massive gauge bosons is said to have acquired mass because it has eaten a Goldstone

boson, that has become its longitudinal component.
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may also be considered, especially in the light of the observation of neutrino oscillations

implying neutrino masses [55]. However, in this thesis we will stick to the established version

of the SM, and we consider neutrinos as massless.

2.1.3 Motivations for a Physics Beyond the Standard Model

The SM has been widely tested at the LEP, the Tevatron, and the LHC showing no compelling

discrepancies with the experiment up to the scale of electroweak interactions Λew ∼ 102 GeV.

It is known, however, that the SM cannot be the ultimate theory for Particle Physics for a

series of reasons, among which are the following.

Gravity, the Planck scale and the Hierarchy Problem

h h

f

f̄

h h

h

h h

W, Z

Figure 2.1: Feynman diagrams of the quadratically divergent 1-loop corrections to the Higgs boson

mass in the SM.

The SM does not include any description of gravitational interactions. Therefore the SM

can be seen as an effective field theory of quantum interactions valid up to the scale at which

quantum gravitational effects are relevant for particle physics, i.e. the Planck scale ΛP ∼ 1019

GeV. If new physics enters at a scale Λ ≤ ΛP , like the scale of unification of gauge couplings

ΛGUT ∼ 1015 GeV, this new scale sets the validity bound of the SM.

The observed SM-Higgs mass can be written as,

m2
h = m2

h, 0 + δm2
h, loop , (2.17)

where m2
h, 0 is the bare squared mass, a free parameter, and δm2

h, loop represents the radiative

corrections. The Higgs mass in the SM is not “protected” by any symmetry that can prevent

large radiative corrections, contrarily to gauge bosons and fermions, whose masses are pro-

tected in the SM by gauge and chiral symmetries, respectively. In particular, the Higgs mass

squared receives quadratically divergent contributions from the graphs in fig. 2.1, the most

important of which is the one coming from the top loop. Taking into account the leading

terms, the radiative corrections to the Higgs mass squared, cut off at the highest scale of the

theory Λ, are [56]

δm2
h, loop =

3Λ2

8π2v2

[
−4m2

t +m2
h + 2m2

W +m2
Z

]
. (2.18)

If we take Λ = ΛP , then δm2
h, loop ∼ 1038 GeV2. Therefore in order to recover the observed

physical Higgs mass mh ' 125.5 GeV, an enormous cancellation between the bare mass m2
h, 0
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and δm2
h, loop is required. This results in a huge fine-tuning of 34 orders of magnitude to keep

the Higgs mass at the electroweak scale.

This issue contrasts with the idea of naturalness of the model describing physical interac-

tions, and it is dubbed as the Hierarchy Problem. The latter is not a real “problem” of the

theory, but rather an aesthetic question, and it is arguably seen as the main motivation for

introducing supersymmetry or composite-Higgs models. We will follow it as guiding principle

in the rest of this thesis.

Baryogenesis

The origin of matter-antimatter asymmetry is unknown and it is believed to be a consequence

of baryogenesis, the generation of an asymmetry between the number of baryons and an-

tibaryons in the Universe. Baryogenesis can happen if the three Sakharov conditions [57] are

fulfilled: (i) first that there must be a process that violates the baryon number B, (ii) second,

that C and CP symmetries should be violated, (iii) third, that there has been a moment of non

equilibrium in the universe. The SM satisfies these conditions in a quantitatively insufficient

way by the CKM-matrix [58] and cannot explain the matter-antimatter asymmetry that has

been observed experimentally.

Dark matter and Dark energy

From astrophysical and cosmological observations we know that the visible matter and light

account only for a small amount of the energy in the universe. About the 68% of it is made

up of the so called dark energy, and the 27% of dark matter (DM). DM is only weakly

interacting to ordinary matter and it motivated because it can offer a correct description of

galaxy-rotation, gravitational lensing etc. [59, 60]. The SM does not offer any reliable dark

matter candidate, which currently is considered most likely to be a weakly interacting massive

particle (WIMP) [61].

Neutrino masses

In the original formulation of the SM, neutrinos are considered to be massless. However, the

observation of neutrino oscillations between neutrino states [55] implies that neutrinos should

have masses. The nature of this masses, either Dirac-like or Majorana-like, is currently under

probe at the GERDA experiment studying double β-decay [62]. Light neutrinos alone can

only explain a small fraction of dark matter. Experimental limits from large-scale structure

formation, in fact, suggest that light neutrino dark matter would be too hot [61].

Other questions, like the origin of flavour hierarchy, usually advocate for an explanation

in a higher energy completion theory, as well.
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2.2 Supersymmetry

Supersymmetry is a space-time symmetry that connects commuting, bosonic fields with an-

ticommuting, fermionic fields. It has the very attracting property of protecting the scalar

masses from quadratic divergences.

Similarly to the SM, the formulation of the theory of supersymmetry is the result of a

series of independent studies that ultimately merged in a coherent picture. The idea of a

symmetry between bosonic and fermionic degrees of freedom first appeared in the context of

hadron physics by Miyazawa [24] and string theory by Ramond [25], Neveu and Schwarz [26],

and Gervais and Sakita [27]. In the meanwhile, the Poincaré algebra, embedding the concept

of spin, was extended to include four anticommuting spinor generators, i.e. the supercharges,

in a first 4d-supersymmetry theory of massive spinors and scalars [28]. Shortly afterwards,

nonlinear realisations of supersymmetry were proposed, giving birth to supergravity [63].

It has then been shown that supersymmetry generators have to mix with the transfor-

mations of the Poincaré group since supersymmetry is not an internal symmetry [29]. Su-

persymmetry, in fact, is the only possible additional symmetry of the S-matrix avoiding the

Coleman-Mandula no-go theorem in a 4d-quantum field theory [64]. This was shown by

the Haag- Lopuszański-Sohnius theorem [65], which extended the previous theorem to graded

algebras, a class that includes the Lie-superalgebra of supersymmetry.

Only in a later phase, with the development of the minimal supersymmetric Standard

Model (MSSM) [66], supersymmetry was considered as a concrete solution for the Hierarchy

problem, the latter becoming its first theoretical and phenomenological motivation.

2.2.1 Supersymmetry algebra

Supersymmetry extends the Poincaré group by adding N anticommuting spin-1
2 operators,

that can be written as Weyl spinors Qα, Q† α̇, where α, α̇ = 1, 2 are spinor indices. These

operators are fermionic, therefore a supersymmetry transformation acts sending a bosonic

state into a fermionic state and vice versa, according to the spin-statistics theorem [50]. The

Lie superalgebra for N = 1 supersymmetry reads:

{Qα, Q†α̇} = −2σµαα̇Pµ, (2.19)

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0, (2.20)

[Pµ, Qα] = [Pµ, Q†α̇] = 0, (2.21)

where Pµ is the four-momentum generator of space-time translations. A fermion and a boson

related by Q(†) are said to be superpartners and fall together in an irreducible representation

of the supersymmetry algebra, called supermultiplet.

Any combination of Q and Q† sends a state into another with the same momentum pµ, cf.

eq. (2.21), such that a subspace of states with equal momentum pµ is closed under the action

of supersymmetry generators. Therefore for every finite representation of the supersymmetry
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algebra one can define a trace over the states of the subspace [48],

∑

i

〈i|(−1)nF {Q,Q†}|i〉 ≡ Tr[(−1)nF {Q,Q†}] , (2.22)

where on the right side the action on |i〉 is omitted. The fermion number operator (−1)nF ,

where nF = 2 × spin, has eigenvalues +1 on bosonic states and −1 on fermionic states, and

anticommutes with supersymmetry generators. Therefore we have

Tr[(−1)nF {Q,Q†}] = 0 . (2.23)

Using eq. (2.19) in eq. (2.23) together with the fact that superpartners have the same

momentum eigenvalues, we obtain

Tr[(−1)nFPµ] = pµTr[(−1)nF ] = 0 , (2.24)

meaning that a supermultiplet contains the same number of fermionic and bosonic states, i.e.

degrees of freedom (dofs). From eq.(2.21) we also see that, taking a state |m〉 with mass m:

P 2Q|m〉 (2.21)
= QP 2|m〉 = m2Q|m〉 , (2.25)

meaning that superpartners have the same mass. Furthermore, since supersymmetric oper-

ators commute with all internal symmetries operators, like gauge generators, superpartners

have the same gauge numbers.

We can list two types of supermultiplets in a renormalisable supersymmetric theory. Chiral

supermultiplets are made-up by a complex scalar φ and by a Weyl fermion ψ as, for example,

a quark. Vector supermultiplets are made-up by a (massless) Weyl fermion λa and by a

(massless) vector boson Aaµ, like gauge bosons are.2 In order to preserve an equal number of

bosonic and fermionic dofs also off-shell, an auxiliary non-dynamical scalar field F (Da) is

added to the chiral ( vector) supermultiplet. F and Da disappear on-shell, integrated out by

the equations of motion from the Lagrangian.

If a supersymmetric extension of the SM describes Nature, supersymmetry at some scale

should be broken. The superpartners, indeed, should have the same masses of the corre-

sponding SM particles. Not having observed yet superpartners, a mass difference with the

SM particles needs to be explained.

It is often useful to adopt the superspace formalism, according to which fermion and boson

superpartners are components of a superfield in the superspace. We denote with Φ̂ a chiral

superfield and with V̂ a vector superfield, see appendix A for more details.

2Other combinations of single-particle states could be lead back to combinations of chiral and gauge su-

permultiplets. Furthermore, including in a supersymmetric theory a description of gravity, one obtains a

supergravity theory that is non-renormalisable. Here, one should consider also the supergravity multiplet made

by a spin-2 graviton together with its spin- 3
2

partner gravitino, both carrying 2 helicity states when supersym-

metry is unbroken.
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2.2.2 Cancellation of quadratic divergences

h h

f

f̄

h h

f̃

gf gf gf̃

Figure 2.2: Quadratically divergent 1-loop diagrams of the Higgs propagator from a fermion f and

its superpartner f̃ .

Fermion and boson loops give quadratically divergent contributions to scalar propagators

with opposite sign. Since supersymmetry relates bosons and fermions with the same masses

and gauge numbers, the corresponding radiative corrections cancel exactly. This offers a

concrete solution to the Hierarchy problem within a supersymmetric extension of the SM. In

particular, the contribution to the Higgs mass by a fermion f and its scalar superpartner f̃ ,

cf. fig. 2.2, reads:

δm2
h = −

g2
f

8π
Λ2 +

gf̃
8π

Λ2 + logarithmic contributions . (2.26)

Ensuring that g2
f = gf̃ , as supersymmetry dictates, grants the exact cancellation of quadratic

divergences. The subleading logarithmic contributions cancel if supersymmetry is not broken,

as it happens, instead, when supersymmetry breaking masses are introduced such that mf 6=
mf̃ . Since SUSY must be broken in order to explain the non observation of superpartners,

this must be done softly, i.e. preserving the cancellation of quadratic divergences.

2.2.3 Supersymmetric lagrangian and soft SUSY-breaking terms

We give here the general supersymmetric Lagrangian for a supersymmetric theory of i chiral

superfields Φ̂i, with scalar and fermionic components φi and ψi, and of a vector superfield V̂ ,

with fermionic and bosonic components λa and Aaµ, where a is the gauge adjoint index. We

can write, following [48,49],3

Lgeneral SUSY =Lchiral + Lvector + Lchiral-vector interactions (2.27)

= Dµφ∗iDµφi + iψ†iσ̄µDµψi + F ∗ iFi +

(
−1

2
W ijψiψj +W iFi + c.c.

)
(2.28)

− 1

4
F aµνF

µνa + iλ†aσ̄µDµλ
a +

1

2
DaDa (2.29)

−
√

2g[(φ∗iT
aψi)λ

a + λ†a(ψ†iT
aφi)] + g(φ∗iT

aφi)D
a , (2.30)

3We define the covariant derivative for φi, ψi as Dµ = ∂µ + igAaµT
a, where T a is the generator of gauge

transformations. The covariant derivative for λa takes the form Dµλ
a = ∂µλ

a− gfabcAbµλc, where fabc are the

structure constants.
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where the i, j, k = 1, . . . , n indices label the chiral supermultiplets. W i, W ij are respectively

defined as:

W i =

(
∂W
∂Φ̂i

)

Φ̂i→φi
, W ij =

(
∂2W
∂Φ̂i∂Φ̂j

)

Φ̂i,j→φi,j
. (2.31)

W, called the superpotential, is an holomorphic function of the chiral superfields Φ̂i, which in

W i andW ij should be substituted by their scalar components φi. The most general expression

for W is given by

W = LiΦ̂i +
1

2
M ijΦ̂iΦ̂j +

1

6
yijkΦ̂iΦ̂jΦ̂k , (2.32)

where Li 6= 0 only if Φ̂i is a gauge singlet; M ij is a symmetric mass matrix; yijk is a Yukawa

coupling totally symmetric in i, j, k.

The auxiliary fields are integrated out through their equation of motions, that read

Fi = −W∗i , Da = −g(φ∗iT
aφi) . (2.33)

We can then write down the scalar potential as a sum of F - and D-terms:

V(φ, φ∗) = F ∗ iFi +
1

2
DaDa = W∗iW i

︸ ︷︷ ︸
F−terms

+
1

2
g2(φ∗iT

aφi)
2

︸ ︷︷ ︸
D−terms

, (2.34)

where we denote as F -terms the terms generated from the superpotential and D-terms the

ones originated by the gauge interactions of chiral scalars. In order to parametrise our ig-

norance about supersymmetry breaking, we need a general and explicit parametrisation of

soft supersymmetry breaking (SSB). The following terms should then be added to the La-

grangian [48,67]:

Lsoft =−
(

1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi +

1

2
Ma(λ

a)2 + c.c.

)
− (m2)ijφ

∗jφi (2.35)

− 1

2
cjki φ

∗iφjφk + c.c. . (2.36)

Ma and (m2)ij are, respectively, the gaugino and the scalar soft squared masses; aijk, bij , ti

are allowed by gauge invariance if the corresponding supersymmetric parameters yijk, M ij , Li

are allowed as well. The cjki -term can be written in the presence of gauge singlets.

2.3 The minimal supersymmetric Standard Model

The minimal supersymmetric extension of the SM (MSSM) associates a superpartner to each

SM particle: spin-0 squarks and sleptons respectively to quark and leptons, spin-1
2 gauginos

to gauge bosons, spin-1
2 higgsinos to Higgs doublets. The gauge group is the same, SU(3)C ⊗

SU(2)L ⊗ U(1)Y . A substantial difference with the SM is that there are two Higgs doublets

Hu and Hd instead of just one. The reason is to avoid an electroweak anomaly and therefore

to provide masses to up- and down-type fields, respectively. The particle content before

electroweak symmetry breaking is resumed in table 2.3.
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Quarks-squarks Spin 0 Spin 1/2 SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Q̂q Q̃ =
(
ũL , d̃L

)
(uL , dL) (3,2, 1

6)

ˆ̄uq ũ∗R u†R (3̄,1,−2
3)

ˆ̄dq d̃∗R d†R (3̄,1, 1
3)

Leptons-sleptons Spin 0 Spin 1/2 SU(3)C ⊗ SU(2)L ⊗ U(1)Y

ˆ̀
l

˜̀= (ν̃ , ẽL) (ν , eL) (1,2,−1
2)

ˆ̄el ẽ∗R e†R (1,1, 1)

Higgs-higgsinos Spin 0 Spin 1/2 SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Ĥu

(
H+
u , H

0
u

)
H̃u =

(
H̃+
u , H̃

0
u

)
(1,2,+1

2)

Ĥd

(
H0
d , H

−
d

)
H̃d =

(
H̃0
d , H̃

−
d

)
(1,2,−1

2)

Gauge supermultiplets Spin1
2 Spin 1 SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Gluinos-gluons g̃ g (8,1, 0)

Winos-Ws W̃±, W̃ 3 W±, W 3 (1,3, 0)

Bino-B B̃0 B0 (1,1, 0)

Table 2.3: MSSM superfield content with the gauge transformation properties before electroweak

symmetry breaking; i = 1, . . . , 3, a = 1, 2, 3, q = u, c, t, and l = e, µ, τ .

The superpotential describing the chiral superfield interactions is given by

WMSSM = ˆ̄uyuQ̂ · Ĥu − ˆ̄dydQ̂ · Ĥd − ˆ̄eye
ˆ̀· Ĥd + µĤu · Ĥd , (2.37)

where we denote with A · B = AαεαβB
β the contraction with the Levi-Civita tensor ε with

SU(2)L-indices α and β. Gauge invariance would in principle allow to add in WMSSM terms

with an odd number either of quark or leptonic superfields. These terms would lead to lepton

or baryon number violation, so far never observed, and in particular proton decay would be

possible, in contrast with data from Super-Kamiokande [68].

In order to avoid this inconvenience, it is requested to the MSSM Lagrangian to respect

R-parity, a discrete symmetry that does not permit these additional terms. According to

this symmetry, to each ordinary SM particle an R-charge equal to +1 is assigned while to

sparticles it is assigned -1. The R-charge of each term in the Lagrangian is defined as the

product of the R-charges of the interacting fields: R-parity is preserved if the total R is equal

to 1. Processes that lead to proton decay are not allowed by R-parity.

The introduction of R-parity symmetry has several phenomenologically interesting conse-

quences since, if conserved, any interaction vertex must have an even number of sparticles.

First, sparticles may only be produced in pairs. For the same reason, a sparticle must decay

into another sparticle, such that the decay chain must end in the lightest-sparticle (LSP) that

provides a valid dark matter candidate. The LSP experimentally results in missing energy, a
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characteristic signature of SUSY at colliders.

In the light of gauge invariance and R-parity, the most general MSSM soft Lagrangian is

LMSSM
soft = −1

2M1 B̃B̃ − 1
2M2 W̃W̃ − 1

2M3 g̃g̃ + c.c. gaugino mass terms

−˜̄uAuQ̃Hu + ˜̄dAdQ̃Hd + ˜̄eAeL̃Hd + c.c. A-terms

−M2
Q|Q̃2| −M2

u|˜̄u2| −M2
d| ˜̄d2

R| squark mass terms

−M2
` |˜̀2| −M2

e|˜̄e2| slepton mass terms

−m2
Hu
H∗uHu −m2

Hd
H∗dHd Higgs mass terms

−BµHuHd + c.c. b-terms

(2.38)

where Au, Ad, M2
Q, M2

u, M2
d are 3× 3 matrices in quark generation space and Ae, M2

` , M2
e

in the lepton generation space. In the general MSSM lagrangian, taking into account gener-

ation mixing and complex phases, there are 105 soft parameters to be added to the 19 SM

parameters, resulting in dimensionally huge parameter space that cannot be trivially studied.

It is then of common use to restrict phenomenological studies on particular low-dimensional

manifolds of the general MSSM parameter space, often advocating plausible symmetries and

simplifying assumptions. Example models are minimal supergravity (mSUGRA) [69] and the

constrained MSSM (CMSSM) [70]. Universal boundary conditions are assumed in these latter

models, that are parametrised only by:

m0, m1/2, A0, tanβ, sign(µ) , (2.39)

where m0, m1/2, A0 respectively are the universal scalar mass, gaugino mass, and trilinear

coupling at the GUT scale.

2.3.1 EWSB and the Higgs, chargino, and neutralino sectors

As previously explained, a minimal supersymmetric extension of the SM needs two Higgs

SU(2)L-doublets Hu, Hd to avoid gauge anomalies. The extended Higgs sector is described

by the scalar potential

VMSSM = + (|µ|2 +m2
Hu)|Hu|2 + (|µ|2 +m2

Hd
)|Hd|2 + [BµHuεHd + c.c.]

+
1

8
(g2

1 + g2
2)(|Hu|2 − |Hd|2)2 +

1

2
g2

2|H†uHd|2. (2.40)

The up- and down-Higgs doublets are written in terms of their electromagnetic components

Hu = (H+
u , H

0
u) , Hd = (H0

d , H
−
d ), such that HuεHd = H+

u H
−
d − H0

uH
0
d and H+

u/d = H−∗u/d.

The minimum of VMSSM triggers electroweak symmetry breaking SU(2)L ⊗ U(1)Y → U(1)em.

We define the neutral Higgs components, expanded around their vevs vu, vd as

H0
u =

vu√
2

+
1√
2

(
ReH0

u + iImH0
u

)
, H0

d =
vd√

2
+

1√
2

(
ReH0

d + iImH0
d

)
, (2.41)

such that we may write [71]

v2 ≡ v2
u + v2

d ' (246 GeV)2 , tanβ ≡ vu
vd
. (2.42)
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Bµ can be chosen to be real. The minimisation conditions (at tree level) can be written as

sin(2β) =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 , (2.43)

m2
Z =

|m2
Hd
−m2

Hu
|

√
1− sin2(2β)

−m2
Hu −m2

Hd
− 2|µ|2 . (2.44)

From eq. (2.44) we can see that m2
Hd
, m2

Hu
cannot be equal and in particular not both null,

meaning that soft SUSY is needed for explaining electroweak symmetry breaking in the MSSM.

This should be true at the weak scale: the difference between m2
Hd
, m2

Hu
can be also due only

to the running from a higher scale. In order to avoid large and unnatural cancellations, soft

parameters are expected to be at the weak scale, see eqs. (2.43) and (2.44).

In the SM one physical Higgs h remains after EWSB, and three Goldstone bosons G0 , G±

are eaten by W± , Z that get masses, cf. eq. (2.14). In the MSSM, instead, the eight Higgs

degrees of freedom mix to give five physical scalar states h ,H ,A0 , H± and three unphysical

Goldstone bosons G0 , G±, respectively eaten by Z and W±. The mass eigenstates are given

by the rotations

ReH0
u ,ReH0

d
α−−→ h ,H ImH0

u , ImH
0
d

β−−→ A0 , G H±u , H
±
d

β−−→ H± , G± . (2.45)

where the angle −π
2 < α < 0 is defined through tan 2α =

m2
A0+m2

Z

m2
A0−m2

Z
tan 2β. The mass eigen-

states h and H are CP-even neutral scalars, A0 is a CP-odd neutral scalar and H+, H− are

electrically charged. At the tree level the Higgs masses read

m2,MSSM
h,H =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
, (2.46)

m2,MSSM
A0 ≡ 2Bµ

sin 2β
= 2|µ|2 +m2

Hu +m2
Hd
, (2.47)

m2,MSSM
H± = m2

A0 +m2
W . (2.48)

The tree level Higgs mass is bounded by

m2
h, tree ≤ m2

Z cos2 2β , (2.49)

requiring large loop corrections to reproduce the measured SM-like Higgs mass at ∼ 125.5

GeV. The MSSM Higgs mass squared can be approximated, taking into account one-loop and

two-loop leading-log effects, by [51,72–76],

m2 MSSM
h ' m2

z cos2 2β

+
3

2π2v2

[
m4
t, r

(√
mtMt̃

)
ln
M2
t̃

m2
t

+m4
t, r(Mt̃)

X2
t

M2
t̃

(
1− X2

t

12M2
t̃

)]
, (2.50)

where mt, r(Λ) is the running top mass at the scale Λ and M2
t̃

= mt̃1
mt̃2

. Then, Xt =

At − µ∗ cotβ, with At the stop soft SUSY-breaking trilinear coupling, which quantifies stop
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mixing.4 The formula (2.50) assumes that the left and right soft parameters of the stops, i.e.

MQ3 and MU3 , are equal.

After EWSB, the electrically charged higgsinos H̃± mix with the gauginos W̃± into

charginos, labelled as χ̃±1,2. The neutral higgsinos H̃0
u , H̃

0
d mix with W̃ 3, B̃ into four neu-

tralinos, labelled as χ̃0
1,...,4, where W̃ 3, W̃±, H̃± are defined similarly to W 3, W±, H±. We

write here the mass matrices of MSSM electroweakinos, i.e. charginos and neutralinos, that

will be useful later in chapter 4.

The tree level chargino mass matrix in the (W̃±, H̃±) basis is given by

MC =

(
M2

√
2mZ cos θW cosβ

√
2mZ cos θW sinβ µ

)
, (2.51)

straightforward to diagonalise. For later convenience we define the mixing angles ΦL,R:

(
χ̃−1
χ̃−2

)

L,R

=

(
cos ΦL,R sin ΦL,R

− sin ΦL,R cos ΦL,R

)(
W̃−

H̃−

)

L,R

. (2.52)

The tree-level MSSM neutralino mass matrix in the basis (B̃, W̃ 0, H̃d, H̃u) is:

MMSSM
N =




M1 0 − cosβ sWmZ sinβ sWmZ

0 M2 cosβ cWmZ − sinβ cWmZ

− cosβ sWmZ cosβ cWmZ 0 −µ
sinβ sWmZ − sinβ cWmZ −µ 0



, (2.53)

where we denote sW = sin θW and cW = cos θW . MMSSM
N can be diagonalised by a unitary

matrix N ,

N∗MMSSM
N N † = diag{mχ̃0

1
, . . . ,mχ̃0

4
} , (2.54)

obtaining the neutralino eigenvectors and their masses

2.3.2 Supersymmetry breaking mechanisms

Planck-scale-mediated supersymmetry breaking

In Planck-scale-mediated supersymmetry breaking models, supersymmetry breaking (SSB) is

communicated from a hidden sector to the visible sector through interactions suppressed by the

Planck scale ΛP . This kind of mediation can be done by gravity as in local supersymmetry, i.e.

supergravity (SUGRA). In SUGRA the supergravity multiplet, made by the spin-2 graviton

and spin-3
2 gravitino, connects the observable particles to a hidden sector. In the hidden

sector, SSB takes place through the super Higgs mechanism [77]. SSB is then communicated

to the gravitino, which acquires mass m3/2 ∼ 〈F 〉/ΛP , where F is the SUSY-breaking vev

acquired by the fields in the hidden sector, while the graviton remains massless.

4In the following we assume µ to be real.
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Gauge-mediated supersymmetry breaking

In gauge mediated SUSY breaking (GMSB) models [78], SSB is communicated from a hidden

sector via messengers charged under the SM group. Via loop effects the messengers trigger

soft SSB in the visible sector. Here, sparticles get soft masses of order
g2SM
16π2

F
Mmess

, where

Mmess is the messenger mass. Since the gravitino gets mass m3/2 ∼ 〈F 〉/ΛP , it can be the

LSP if ΛP �Mmess.

Anomaly-mediated supersymmetry breaking

In anomaly-mediated supersymmetry breaking (AMSB) models, soft masses generated by

gravity- or gauge-mediation are suppressed, therefore the soft masses arising from the super-

conformal anomaly become important [79, 80]. That is the case when the hidden sector is

spacially separated by the visible sector due to extra dimensions. These models, however,

present a series of phenomenological problems as, for instance, the presence of tachyonic

sleptons.

2.3.3 Goals and problems of the MSSM

We have seen that the MSSM supersymmetrically extends the SM with a minimal particle

content. Some important successes of the MSSM are

• Radiative electroweak symmetry breaking. Several supersymmetric models with

SSB coming from a hidden sector, such as the CMSSM, expect a degenerate scalar spec-

trum at the scale of the mediators. The scalar spectrum becomes non-degenerate at

lower scales due to radiative corrections, i.e. through RGE running. These radiative

corrections can lead to negative mass squared of a scalar. Therefore they can naturally

induce spontaneous symmetry breaking in the visible sector at a scale close to the SSB’s

one. This mechanism is called radiative electroweak symmetry breaking (REWSB). Its

direction strictly depends on the couplings of the model, since contributions to scalar

masses from the superpotential terms and those from the gauge interactions have dif-

ferent sign. For a review, see [81].

• Gauge unification. The rich fauna of particles introduced by the MSSM substantially

modifies the RGE equations of the SM couplings. In particular, a unification of the

gauge couplings g1, g2, g3 may be achieved at high scale ΛGUT ∼ 1016 GeV, with a

small imperfection possibly due to threshold corrections for new particles around ΛGUT

[82–84].

• LSP and dark matter. In the MSSM with R-parity, all sparticle decay chains end into

the LSP, that is a stable particle. A neutralino LSP χ̃0
1 offers in many MSSM realisations

a valid weakly interacting massive particle (WIMP) candidate for Dark Matter [85,86].

However, the MSSM has some shortcomings too. We are interested in the following:
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• The µ-problem. To have EWSB, such that the neutral components of both Higgs

doublets get non zero vev, a negative soft SUSY-breaking b-term −BµH0
uH

0
d in the

Higgs scalar potential is needed. Being a dimensionful superpotential parameter, µ

could in principle be expected to be at a high scale, as ΛP or ΛGUT with no relation to

the aforementioned soft terms. However, rewriting the minimisation conditions (2.43)

and (2.44), one can see that µ should be within two orders of magnitude with the soft

supersymmetry breaking terms at MSUSY ∼ 102-103 GeV in order to have v ' 246 GeV

without large tuning. This issue results in a puzzle, called the µ-problem [87], about

why a supersymmetric parameter should approximately be within one or two orders of

the soft parameters.

Solutions to this problem introduce a mechanism that would relate SUSY breaking

to an effective µ-term, as for example in the NMSSM [88], or with Giudice-Masiero

mechanism [89].

• The Little Hierarchy Problem. The observed Higgs mass mh ' 125.5 GeV is within

the theoretical MSSM range ≤ 135 GeV. Nevertheless, the MSSM upper bound on the

tree-level Higgs mass, m2
h, tree ≤ m2

Z cos2 2β, suggests that such a Higgs mass in the

MSSM requires large radiative corrections with a considerable large amount of tuning.

These can be explained through heavy sparticle and/or large sparticle mixing, especially

in the stop sector, see eq. (2.50). This issue is known as the Little Hierarchy Problem.

To have a better understanding, we may define the fine tuning (FT) measure ∆FT , as

in [90], by

∆FT = |m2
h/(2δm

2
Hu)| , (2.55)

where δm2
Hu

are the loop corrections to m2
Hu

. We plot ∆FT in the (Xt,mQ3)-plane in

figure 2.3, where also the contour line for mh = 125.5 GeV is shown. We have only

considered the main contribution to δm2
Hu

, coming from the stop sector, taking

δm2
Hu = −3m2

t

4v2

(
m2
Q3

+m2
u3 +A2

t

)
ln

(
ΛSSBM

TeV

)
. (2.56)

The supersymmetry breaking mediation scale ΛSSBM is taken to be conservatively at

20 TeV, as in [91]. While a standard request for naturalness is that FT has to be better

than 10%, i.e. ∆FT > 0.1, we can see that this is more difficult to realise in the MSSM

scenario displayed.

2.4 Non-minimal supersymmetric Standard Models

Several extensions of the MSSM have been proposed, featuring richer phenomenologies, while

renouncing to a minimal particle content. We are especially interested in mechanisms that

raise the tree-level Higgs mass in order to more easily accommodate the observed Higgs mass,

relaxing naturalness in the stop sector. Here we give an incomplete list of examples.
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Figure 2.3: MSSM: contourlines of ∆FT in the (Xt,mQ3
)-plane, for mQ3

= mU3
, tanβ = 10 and

µ = 200 GeV. The blue dashed contour corresponds to the Higgs mass mh = 125.5 GeV.

F -term extensions of the MSSM

A positive F -term contribution to the Lagrangian enhances the tree-level squared mass of

the Higgs, which mixes with additional scalars with coupling λ. The typical contribution

is ∆m2
h ∝ λv2. Gauge symmetry constraints these additional scalars to be of the following

types:

• Gauge singlets coupling to HuHd, as in the next-to-minimal supersymmetric Standard

Model (NMSSM) [88], cf. chapter 4. In this model the µ-problem is also addressed.

• SU(2)-doublets coupling to HuHu or HdHd, possibly emerging as composite objects

from new strongly coupled dynamics [92,93].

• SU(2)-triplets coupling either to Hu or to Hd [94, 95].

D-term extensions of the MSSM

Extending the gauge symmetry under which the Higgs superfields are charged leads to addi-

tional quartic couplings from the new D-terms. Examples are

• Extensions of the MSSM with non-decoupling D-terms [96–98], cf. chapter 5. These

additional D-terms can arise in a series of different UV completion contexts.

Gauge extensions of the MSSM may introduce additional Higgs states, combining the effect

of F - and D-terms: in order to break the gauge group to the SM group, as in the Left-Right

models [99,100], or seeking GUT multiplet completion as in the E6-SSM [101].



Chapter 3

SUSY searches: lessons from the

LHC, prospects for the ILC

In this chapter we briefly resume results of experimental searches that test supersymmetry,

focusing in particular on the MSSM: Higgs discovery and searches for heavier Higgs resonances

in section 3.1, direct collider supersymmetry searches at the LHC and at the planned ILC in

section 3.2, and indirect searches and constraints from electroweak precision physics and dark

matter experiments in section 3.3. The main resources for this chapter are [7, 102, 103].

3.1 Observation of a 125.5 GeV Higgs boson and the MSSM

Supersymmetric extensions of the SM are under probe in the light of the current and incoming

experimental results from the LHC, and will carefully be studied by the linear collider program,

particularly sensitive to the electroweak sector. SUSY models have been primarily proposed

for solving the Hierarchy Problem and are therefore intimately related to Higgs physics.

With no sparticles observed so far, we start from the concrete discovery at the LHC of a

scalar particle with mass mh ' 125.5 GeV [8,9], that behaves extremely close to the SM-like

Higgs boson [13–16], while being consistent with several BSM models.

Interpreting the observed 125.5 GeV Higgs as the light CP-even Higgs h of the MSSM

implies that the heavy Higgs states H, A0, and H± are decoupled. With mA0 � mZ (& 200

GeV), indeed, h has couplings that are SM-like [104]. This is consistent with current results

within theory and experimental accuracies. In this regime the SM analyses can be applied

to the MSSM too. Therefore, a high degree of accuracy in detecting deviations from the

SM expectations for the Higgs production modes and decay channels is required. The main

differences from the SM are expected by the contribution of light sparticles in loop processes.

At the LHC, ATLAS and CMS measure σ(pp → h) · Br(h → i), i.e. the total Higgs

production cross section times the branching ratios. The cross sections σ(pp → h) and the

branching ratios Br(h→ i), instead, are not directly accessed. The LHC produces a SM Higgs

boson with mass mh ∼ 125.5 GeV mainly via gluon-fusion, then also via vector boson fusion,

23
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Higgsstrahlung, tt̄h production, cf. figures 3.1(a) and 3.1(b).
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Figure 3.1: Leading Higgs-production modes at the LHC. (a) The corresponding first-order Feynman

diagrams; (b) the production cross sections of a SM-Higgs at ∼ 125.5 GeV in function of the LHC-

beams
√
s, from [105].

The branching ratios for such a SM-Higgs are [106]:

Br(h→ γγ) ' 2.3× 10−3 , Br(h→ bb̄) ' 5.6× 10−1 , Br(h→ cc̄) ' 2.8× 10−2 ,

Br(h→ gg) ' 8.5× 10−2 , Br(h→ τ+τ−) ' 6.2× 10−2 , Br(h→WW ∗) ' 2.3× 10−1 ,

Br(h→ ZZ∗) ' 2.9× 10−2 , Br(h→ Zγ) ' 1.6× 10−3 , Br(h→ µ+µ−) ' 2.1× 10−4 .

Even though the h → bb̄ channel is dominant, it is affected by a large background from

hadronic processes. The most sensitive channel, instead, is h→ γγ, despite the small branch-

ing ratio, due to the very clear experimental signature of two high-energy photons. It was

with this channel, together with the ZZ∗ channel, that the Higgs excess was reported by AT-

LAS and CMS. Moreover, due to its loop structure, the di-photon channel is more sensitive

to the contribution of supersymmetric particles and, in fact, a slight excess with respect to

the SM is reported by ATLAS [107]. However, with the current experimental accuracy in

both experiments, the signal strengths, defined as µi = (σ · Br)/(σ · Br)SM, do not show very

significant deviations from 1, corresponding to the SM [108,109].

The determination of the Higgs couplings at the LHC is not model independent since the

cross sections and decays cannot be independently derived, therefore some model assumption

on the Higgs width is required at least. With the High Luminosity upgrade of the LHC

(HL-LHC), a precision level on the couplings of order ∼ O(5–10%) could be reached [106].

As we will discuss in subsection 5.3.2, model-independent Higgs coupling determinations can

be achieved at the ILC with (sub-)percent accuracy [110]. This is possible since from the

production process e+e− → Zh → l+l−h, dominant at the ILC for
√
s ∈ [200, 400] GeV,

the coupling hZZ can be disentangled via recoil mass measurement. Another important

SM-Higgs production mode in the range of energies
√
s = 250–500 GeV is W -boson fusion,

e+e− → νeν̄eh, see fig. 3.2. A clear study of the CP properties of h, necessary to establish
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Figure 3.2: Leading Higgs-production modes at the ILC. (a) The first-order Feynman diagrams

of the two leading channels; (b) the production cross sections in function of the ILC-beams
√
s for

(Pe− , Pe+) = (−0.8, 0.3), taken from [7].

the nature of the observed Higgs boson, is possible at the ILC exploiting the tt̄h associated

production, that has a threshold at
√
s = 500 GeV.

Furthermore, at the linear collider the production modes e+e− → A0H, H+H− may allow

the detection of H, A0 and H± of the MSSM with decoupling limit, since the corresponding

Higgs couplings are of the order of the gauge couplings. Searches for decoupled heavy Higgs

bosons at the LHC are more complicated. In figure 3.3 we display the ATLAS limit on tanβ

values in the MSSM Higgs bosons searches in the ττ final state for the mmax
h scenario [111],

which maximises mh keeping fixed mt, tanβ, and msoft. So far, the searches for additional

MSSM Higgs bosons have been so far unsuccessful. This is both true for the searches of

heavier Higgs resonances and for a light CP-even state if considering the observed Higgs as

the heavier CP-even state H. The latter interpretation is now under pressure [112,113].

3.2 Direct SUSY collider searches

A vast program of direct sparticle searches is being carried out at the LHC, with ATLAS and

CMS especially studying direct production modes and decay channels of sparticles resulting

in final states with jets, leptons, and large missing transverse energy (MET). The analyses

on the 7 and 8 TeV LHC data revealed no relevant excess over SM expectations [34,35]. The

typical expected signature is the presence of a large MET due to the LSP at the end of the

sparticle decay chain. LHC searches are particularly sensitive to coloured sparticles, allowing

to set limits that push gluinos and the first two generations squarks 1 TeV, however, the
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squark limits can be relaxed depending on the model assumptions, see for example [114,115].

The highest sensitivity to electroweak sparticles like neutralinos and charginos comes from

multi-lepton final states, that allow to distinguish the signal from the hadronic background,

and limits on the masses are set to be at several hundred GeV, depending on the analysis.1

Constrained SUSY models as the CMSSM and mSUGRA are highly under pressure, as

can be seen in the CMS limits in figure 3.4, and in the resume of ATLAS SUSY searches

in figure 3.5. In fact, the constraints on strong interacting particles in these scenarios have

effects also on the electroweak sector, pushing charginos, neutralinos, and sleptons at the TeV

range, and in general the observed Higgs mass is hardly accommodated. For this reason,

the attention has lately turned to less constrained models as the pMSSM [118] that, without

implicit correlations between sparticle masses, have limits on squarks and gluinos with minor

impact on electroweak interacting sparticles.

Limits from MET searches can be avoided, for example, in the case of compressed sparticle

spectra with low transverse energies [119], or in scenarios with long-lived charged NLSP

as in GMSB models [78], requiring more specific analyses. In the case of MSSM with R-

parity violation (RPV) [120], the LSP decays hadronically completely covered by the QCD

background.

Concluding, the LHC has mainly constrained gluinos and first two generations squarks,

while third generation squarks and not-coloured sparticles are mildly constrained.

1The limits from SUSY searches have been recasted and applied also to other models as the Little Higgs,

posing some severe constraints to the related additional states [38,39,116,117].
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Figure 3.4: CMS-exclusion limits at 95% CL in the (mg̃,mq̃1,2)-plane for the constrained model

cMSSM/mSUGRA, with tanβ = 30, A0 = −2 max(m0,m1/2), and µ > 0. Plot taken from [114].

Despite a lower energy reach with respect to the LHC, an e+e− linear collider can become

a SUSY discovery machine, in the light of the low QCD-background and the high sensitivity

to electroweak physics that may avoid the LHC searches. It has indeed been proven that many

MSSM scenarios escaping the LHC can be seen at the ILC [121]. Direct sparticle searches

would be particularly favoured by a machine that could precisely tune its center-of-mass

energy over a wide range. This would allow to operate at the threshold of several production

channels, that is particularly useful considering the rich supersymmetric spectrum that can be

spread over a wide mass spectrum [7]. A powerful improvement to precision physics analyses

is given by the possibility to polarise particle beams with different polarisation configuration.

Precise determination of sparticle masses would be possible through analyses in the con-

tinuum reconstructing end-points and through threshold scans.

3.3 Indirect searches and constraints

SUSY parameter space constraints from direct sparticles searches at colliders are comple-

mented by a series of indirect constraints that need to be taken into account. These come

from b-physics, from Dark Mark matter search experiments and cosmology, and from the

(g − 2)µ measurements. For a review see also [122].

b-physics Flavour physics, in particular b-physics, opens a window on the SUSY parameter

space, being sensitive to higher energy scales through loop effects or intermediate exchange of

heavy particles. Decays of b-hadrons receive important no-SM contributions from sparticles or

additional Higgs states that are not suppressed by loop factors as in B̄ → Xsγ, or by helicity
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 3-6 jets Yes 20.3 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) ATLAS-CONF-2013-0621.18 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB (ℓ̃ NLSP) 2 e, µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(G̃)>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃

±
1 )=2 m(χ̃

0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃

0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1

2 e, µ 0-2 jets Yes 20.3 m(χ̃
0
1) =m(t̃1)-m(W)-50 GeV, m(t̃1)<<m(χ̃

±
1 ) 1403.4853130-210 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1

2 e, µ 2 jets Yes 20.3 m(χ̃
0
1)=1 GeV 1403.4853215-530 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±
1 0 2 b Yes 20.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1

1 e, µ 1 b Yes 20 m(χ̃
0
1)=0 GeV 1407.0583210-640 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)=0 GeV 1406.1122260-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029700 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0 Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 , χ̃
0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1

1 e, µ 2 b Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)=160 MeV, τ(χ̃

±
1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 4.7 0.4<τ(χ̃
0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ
LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′

311
=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086750 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e, µ (SS) 2 b Yes 14.3 ATLAS-CONF-2013-051350-800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale
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Figure 3.5: Summary of exclusion limits of ATLAS SUSY searches, from [34].

factors as in Bs → µ+µ−, Bu → τντ . These kind of processes are particularly sensitive to

parameter regions with high tanβ and/or light stops, charginos, A or H±.

Dark Matter and Cosmology Formulating a supersymmetric scenario with χ̃0
1 as LSP,

one should compare the lightest neutralino relic abundance, ΩLSPh
2, with the measured dark

matter relic density measured at WMAP [59] and Planck [60], Ωh2. Here h is the Hubble

constant in units of 100 km/(s·Mpc). Large uncertainties are coming on the limits from

cosmology, therefore one needs to care only that the constraints are not violated too largely.

Further constraints are given by the upper bound for the WIMP-nucleon scattering cross

section, particularly sensitive to tanβ and mA, and studied at the LUX experiment [123].

Anomalous muon magnetic moment The value of the anomalous muon magnetic mo-

ment aµ =
(g−2)µ

2 observed at Brookhaven Experiment E821 [124] shows a 3σ deviation from

the SM estimate [125,126]. The supersymmetric contribution to aµ is proportional to

∼
m2
µ µMi tanβ

m2
sparticle

, (3.1)
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possibly coming from χ̃0
i -

˜̀ and χ̃±i -ν̃ loops [51]. Therefore, if the observed deviation from the

SM is assumed to stem from constrained supersymmetry as the CMSSM, it would imply a

relatively small SUSY scale msparticle, in apparent contrast with the indications from collider

experiments.





Chapter 4

NMSSM: singlinos at the linear

collider

This chapter is based on the publications [1,2], written in collaboration with Gudrid Moortgat-

Pick and Krzysztof Rolbiecki. In section 4.1 the relevant features of the NMSSM are intro-

duced. In section 4.2 the motivation and the strategy adopted in our work on the distinction

between two supersymmetric models, the MSSM and the NMSSM, are outlined. In section 4.3

the strategy is applied to the case of some ambiguous scenarios, and the results of analysis

are discussed. In section 4.4 I summarise and conclude. I have produced all the plots shown.

Tree-level calculations were done by me extending and updating a previous code from my col-

laborators. Part of the text is derived from what I have written in [2]. The main resources for

this chapter are refs. [51, 127–129].

4.1 The next-to-minimal supersymmetric Standard Model

4.1.1 Concept and motivation

The next-to-minimal supersymmetric SM (NMSSM) is the most simple extension of the

MSSM. It adds to the MSSM spectrum a gauge singlet chiral superfield Ŝ coupling with

the Higgs doublets Ĥu, Ĥd in the superpotential. The main motivation for such a model is

the elegant solution of the µ-problem, described in section 2.3.3. From the superpotential

trilinear term λŜĤuĤd, an effective µ-term µeffĤuĤd may be generated dynamically with the

acquisition of the vev 〈Ŝ〉 = s by Ŝ:

λŜĤuĤd

λ〈Ŝ〉 = µeff−−−−−−−−→ µeffĤuĤd . (4.1)

The vev s must be of the order of the SUSY breaking scale MSUSY to solve the µ-problem.

This can be done by introducing order O(M2
SUSY) negative soft mass squareds or soft trilinear

couplings, such that the only scale of the theory is the supersymmetry breaking scale.

Furthermore, within the NMSSM it is easier to accommodate a Higgs mass at 125.5 GeV

without large radiative corrections like in the MSSM. The additional singlet scalar S, indeed,

31
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mixes with the Higgs doublets Hu, Hd. This results in a NMSSM contribution to the tree

level mass of the lightest Higgs state. With such a positive contribution, smaller radiative

corrections from the stop sector are required, i.e. naturalness is relaxed.

4.1.2 The generalised NMSSM

The most general, R-parity- and CP-conserving version of the NMSSM, the generalised

NMSSM (GNMSSM), features the Higgs sector superpotential [127]:

WH, GNMSSM =
(
µ+ λ Ŝ

)
Ĥu · Ĥd + ξF Ŝ +

1

2
µ′ Ŝ2 +

κ

3
Ŝ3 (4.2)

+ yu Q̂ · Ĥu Û
c
R + ydĤd · Q̂ D̂c

R + yeĤd · ˆ̀ÊcR . (4.3)

Ŝ consists of a scalar Higgs singlet S and the singlino S̃. The GNMSSM soft Lagrangian may

be written as:

LGNMSSM =−m2
Hu |Hu|2 −m2

Hd
|Hd|2 −m2

S |S|2 (4.4)

−M2
Q|Q̃2| −M2

u|˜̄u2| −M2
d| ˜̄d2

R| −M2
` |˜̀2| −M2

e|˜̄e2| (4.5)

− ˜̄uAu Q̃ ·Hu + ˜̄dAd Q̃ ·Hd + ˜̄eAe
˜̀·Hd + h.c. (4.6)

− λAλHu ·HdS −
κ

3
AκS

3 −BµHu ·Hd −B′µ′S2 − ξSS + h.c. (4.7)

+
1

2
M1λ1λ1 +

1

2
M2λ

i
2λ

i
2 +

1

2
M3λ

a
3λ

a
3 . (4.8)

Finally, the gauge group is the same as in the MSSM and in the SM.

The signs of some Lagrangian parameters that have no physical meaning, due to the possibility

of field redefinition φ→ −φ. One finds [127] that keeping λ, vu, vd and the Yukawa couplings

positive, then κ, s and the dimensionful parameters may have both signs.

4.1.3 The Z3-NMSSM

In order to solve the µ-problem, an overall Z3-symmetry is most commonly imposed, corre-

sponding to the transformation:

Φ̂→ e2πi/3Φ̂ , V̂ → V̂ , (4.9)

that is a phase multiplication for all chiral superfields Φ̂, while the vector superfields V̂ are

unchanged.1 The Z3-symmetry requires

µ = µ′ = ξF = Bµ = B′µ′ = ξS = 0 . (4.10)

This results in the so called the Z3-invariant NMSSM, with the scale invariant superpotential:

WZ3-NMSSM ⊃ λ ŜĤu · Ĥd +
κ

3
Ŝ3 . (4.11)

1Nevertheless, in the GNMSSM the µ-term may be removed by the redefinition s→ s− µ/λ.
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As mentioned above, an effective µ-term in the scalar potential may dynamically be generated

by the vev of Ŝ, triggered by the means of supersymmetry breaking:

µeff = λ〈Ŝ〉 = λs . (4.12)

The dimensional parameters Aλ and Aκ appear in the Higgs sector soft terms:

Lsoft, Z3-NMSSM ⊃ −λAλHu ·HdS −
κ

3
AκS

3. (4.13)

From now on we will refer to the Z3-invariant NMSSM simply as the NMSSM. From equations

(4.11) and (4.13) we can write the Higgs scalar potential

VH, NMSSM =
∣∣λ(H+

u H
−
d −H0

uH
0
d) + κS

∣∣2

+ (m2
Hu + |µ+ λS|2)

(
|H0

u|2 + |H+
u |2
)

+ (m2
Hd

+ |µ+ λS|2)
(
|H0

d |2 + |H−d |2
)

+
g2

1 + g2
2

8

(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)

+
g2

2

2

∣∣H+
u H

0 ∗
d +H0

uH
−∗
d

∣∣2

+m2
S |S|2 +

(
λAλ(H+

u H
−
d −H0

uH
0
d)S +

k

3
AκS

3 + h.c.

)
. (4.14)

We define the scalar component of the singlet as

S = s+
1√
2

(ReS + iImS) . (4.15)

In the potential (4.14), the singlet S appears in bilinear terms together with the MSSM Higgs

doublets Hu, Hd and therefore mixes with them due to the electroweak symmetry breaking.

ReS mixes with ReH0
u and ReH0

d , resulting in the three CP-even neutral scalars h1, h2, and

h3, while ImS mixes with A0 = cosβ Im0
u + sinβ ImH0

d , resulting in the two CP-odd neutral

scalars a1, a2. For more details on the Higgs mass matrices see appendix B.

At the tree-level one obtains the upper bound for the lightest CP-even Higgs:

m2
Z cos2 2β +

λ2v2

2
sin2 2β . (4.16)

With respect to the MSSM upper bound on the tree level Higgs mass, eq. (2.49), the distinc-

tive NMSSM contribution, 1
2v

2λ2 sin2 2β, is relevant particularly for small tanβ values. Note

that to grant perturbativity up to the GUT scale one needs λ . 0.7-0.8 [130]. It is possible, in

the limit of a heavy singlet-like scalar, given by κs� |Aκ|, |Aλ|, to write an approximate ex-

pression for the SM-like Higgs mass that takes into account of the leading radiative corrections

from the top/stop sector [127],

m2,NMSSM
h ' m2

Z cos2 2β +
λ2v2

2
sin2 2β − λ2

2κ2
v2(λ− κ sin 2β)2

+
3m4

t

2π2v2

(
ln

(
M2
t̃

m2
t

)
+
A2
t

M2
t̃

(
1− A2

t

12M2
t̃

))
. (4.17)



34 4.1. The next-to-minimal supersymmetric Standard Model

Passing to the fermionic component of the singlet superfield, the singlino S̃, we see that

it mixes with the higgsinos H̃0
u, H̃

0
d and the gauginos λ1 = B̃, λi2 = W̃ i, resulting in five

neutralino mass eigenstates χ̃0
1, . . . , χ̃

0
5. The NMSSM neutralino mass matrix, MNMSSM, can

be written in the basis (B̃, W̃ 0, H̃d, H̃u, S̃):

MNMSSM =




MMSSM(µeff, tanβ,M1,M2)

0

0

− 1√
2
λv sinβ

− 1√
2
λv cosβ

0 0 − 1√
2
λv sinβ − 1√

2
λv cosβ −2κµeff/ λ




. (4.18)

The upper left block is equivalent to the MSSM neutralino mass matrix, equation (2.53),

with the µ dependence substituted by the dependence on the singlet vev s, through µeff. The

NMSSM neutralino sector depends on two additional singlet parameters with respect to the

MSSM: λ, κ. Clearly the two charginos do not mix with the neutral S̃.

The additional neutralino state offers a richer phenomenology, in particular for its dark

matter implications in case the LSP is singlino-like neutralino, i.e. χ̃0
S̃

. This would result in

particularly long lived NLSP (potentially also charged, as τ̃), with typical collider signatures

for sparticle decay chains and NLSP displaced vertices [127].

MSSM-limit

An MSSM-limit for the NMSSM is obtainable by setting null couplings of the singlet to the

Higgs doublets and the other MSSM fields, λ → 0, together with the conditions κ → 0 and

λ/κ = const. The other dimensionful parameters are kept fixed. The condition on κ is needed

to keep µeff & 100 GeV, as requested by the LEP limits on chargino mass mχ̃±1
> 94 GeV [103],

since2

s ∝ 1

κ
. (4.19)

As a result of this limit, a singlet-like CP-even Higgs, a singlet-like CP-odd Higgs, and a

singlino-like neutralino will be decoupled without necessarily being heavy.

Z3-symmetry and domain walls

Discrete symmetries, like the Z3-symmetry that has been introduced in the NMSSM La-

grangian, can trigger phenomenological problems [132]. Within the NMSSM, several regions

or bubbles with the same vacuum energy may form during the electroweak symmetry phase

transition in the early universe. These bubbles would have different ground states connected

by Z3-transformations and would be separated by domain walls. Such domain walls have

2This follows from the condition A2
κ & 9m2

S [131], that grants an absolute minimum at s '
1
4κ

(
−Aκ −

√
A2
κ − 8m2

S

)
.



4.1. The next-to-minimal supersymmetric Standard Model 35

never been observed, so we refer to this issue as the domain wall problem. Solutions to this

problem have been proposed for example by adding symmetries such as a continuous U(1)′

(in the USSM) [133]. Then, with a suitable set of charges, (suppressed) Z3-violating terms

in the superpotential, that would allow for energy difference between bubbles and consequent

collapse of the higher energetic ones, may be controlled.

4.1.4 NMSSM Higgs phenomenology and the MSSM

The enlarged NMSSM Higgs and neutralino sectors give the best signatures to distinguish the

model from the MSSM. In particular, in the light of the expected high accuracy in the Higgs

physics measurements both at the LHC and the ILC [106, 110], the Higgs sector is the first

place where to look in order to distinguish MSSM and NMSSM scenarios. The discovery of

a SM-like Higgs at 125.5 GeV poses a concrete test for both the MSSM and the NMSSM. A

series of scenarios and analyses have been then proposed in order to interpret signal strength

deviations from the SM. We give here an overview of typical NMSSM features that permit to

distinguish the model from the MSSM looking at the Higgs decays.

First of all, the additional CP-even and and CP-odd states in the extended Higgs sector of

the NMSSM make possible additional Higgs-to-Higgs decays of the type hi → a1a1, hi → h1h1

etc.. For example, in the MSSM the only possibility for a SM-like Higgs to decay to a1a1 if

it is identified with h2, due to particular mass relations between Higgs mass eigenstates. In

the NMSSM these relations are weakened and a SM-like h1 decaying to a1a1 is possible as

well [134].

A light CP-even and/or a light CP-odd scalars may have high singlet component. This

possibility potentially allows for new decay channels of the SM-like Higgs scalar, with impact

on its decay width and branching ratios, like the ones relative to h→ bb̄ and h→ τ+τ− [134].

This, in turn, translates to the need of careful recasting of the experimental constraints from

the Higgs sector for MSSM searches.

A possible γγ-channel enhancement with respect to the SM has attracted lots of attention

in the recent literature due to a would-be observed excess by ATLAS [107]. Within the

MSSM such an enhancement would be possible only through light τ̃ (and with a large amount

of tuning), while the NMSSM offers a series of distinctive additional mechanisms. First of

all, the mixing of the singlet with the Higgs doublets can result in a NMSSM suppression

of the bb̄-decay mode with a consequent enhancement of the γγ rate with respect to the

MSSM [135–137]. Also light charginos or light H± can significantly contribute to the partial

decay width related to the di-photon rate [138]. Furthermore, in the NMSSM a pseudoscalar

with a mass very close to the SM-like Higgs mass may result, in an “effectively” enhanced bb̄

and τ+τ− rates with respect to the SM, if the two particles are not distinguished [139].

As already mentioned, both within the MSSM and the NMSSM it is possible to interpret

the observed SM-like scalar as the heaviest CP-even Higgs. In this case, a rather unique

signature of the NMSSM is the decay into such a light scalar pair if h1 is lighter than 125.5
2

GeV. If this decay channel is open, the di-photon rate may also be suppressed as well as
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h → bb̄. This possibility is more difficult to explain in the MSSM [140, 141]. In [142, 143] it

has been studied how, within the NMSSM, a heavy SM-like Higgs could have the invisible

decay channel H → χ̃0
1χ̃

0
1, reducing the branching ratios of the other channels.

Furthermore, the singlet component in the SM-like Higgs can also enhance the signal rate

of pp→ h→ V V ∗, while this never happens with the MSSM [135].

It has also been shown that even if Higgs-to-Higgs decays are kinematically not allowed or

are suppressed, in some regions of the NMSSM parameter space the Higgs boson di-photon

decay mode could be observed at the LHC involving three different CP-even Higgs bosons

[144]. This is not a viable effect for the MSSM.

In general, while studying the NMSSM one has to reconsider the experimental results and

recast the constraints obtained for the MSSM. An example is given by scenarios with light

singlinos that translate in lower missing transverse energy (MET) from squarks and gluinos

with an increased Higgs pair production [145].

Having listed this series of possible NMSSM-like decay patterns for the Higgs bosons, we

conclude that for model distinction at the LHC it is well-motivated to look at the Higgs sector,

where the LHC is expected to give the most precise indications on the NMSSM [146]. Since

the ILC will be a Higgs-factory, the predicted accuracy will be even higher [110]. Even more,

at the linear collider we will be able to complement the information from the Higgs sector by

studying the extended neutralino sector of the NMSSM to look for deviations with respect to

the MSSM, as we shall see below.

4.2 Distinguishing the NMSSM neutralino-chargino sector at

the ILC

Looking at the extended NMSSM neutralino sector in order to distinguish the NMSSM phe-

nomenology from that of the MSSM is well motivated due to the additional neutralino state.

For example, the scenario of a higgsino-like χ̃0
2 decaying in a singlino-like χ̃0

1 leads to a rich

decay pattern [147]. This may happen with soft decay products escaping the LHC detection,

requiring a special treatment [148].

When a singlino-like neutralino is the LSP, the supersymmetric decay chains will behave

just as in the MSSM till the NLSP. The NLSP may be particularly long lived, if R-parity is

not violated, since the final decay width to the LSP plus SM particles is proportional to λ.

The NLSP can be a charged slepton, and in this case it decays into χ̃0
S with extra leptons in

the final state. The NMSSM with a singlino-like LSP is easily distinguishable from the MSSM

even in the MSSM limit, in which the singlino χ̃0
S does not mix with higgsinos and gauginos

and it is decoupled.

Some recent works, as [149], propose specific analysis of the neutralino sector at the LHC.

However, the high precision achievable in the electroweak physics at a linear collider allows for

an unprecedented focus lens on the neutralino sector. Charginos and neutralinos both in the

MSSM and in the NMSSM are directly produced in pairs at the LC, cf. figures 4.1 and 4.2:
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• e−e+ → χ̃0
i χ̃

0
j , occurring via s-channel with Z-exchange and t-/u-channel with ẽL and

ẽR exchanges.

• e−e+ → χ̃−i χ̃
+
j , occurring via s-channel with γ and Z exchanges and via the t-channel

with ν̃e exchange.

e+

γ
χ̃−
i

χ̃+
j

e−

e+

χ̃−
i

χ̃+
j

Z

e−
e−

e+ χ̃+
j

χ̃−
i

ν̃e

Figure 4.1: Chargino tree-level production channels at e+e− colliders.

e+

Z

χ̃0
i

χ̃0
j

e−
e−

e+ χ̃0
j

χ̃0
i

ẽ

e−e−

e+ χ̃0
j

χ̃0
i

ẽ

Figure 4.2: Neutralino tree-level production channels at e+e− colliders.

Once produced, χ̃0
i and χ̃±j can be rather easily detected through their decays into lighter

charginos and neutralinos, Higgses, gauge bosons, or into sfermion-fermion pairs [150].

Studying the higgsino/gaugino sector with high accuracy can be crucial for model distinc-

tion, for example in the case of relatively heavy scalar singlet states in comparison with the

SM-like Higgs. In such a case, the observed Higgs sector can be interpreted within both the

MSSM and the NMSSM, since the corresponding signatures at the LHC would indeed be very

similar in the two models [110].

It makes therefore sense to develop strategies for model distinction not or not only look-

ing at the Higgs sector, but rather also at the neutralino sector, and estimate how much

information can be obtained from this sector.

The MSSM chargino and neutralino sector is completely described at the tree level by

the parameters M1, M2, µ, tanβ, that are notably fundamental parameters without any

assumption on the SUSY breaking scheme. It has been shown that for the MSSM a full

reconstruction of the chargino and neutralino sectors is possible [128, 151, 152]. This can

be done provided that χ̃0
1, χ̃0

2 and χ̃±1 can be produced at the LC and their masses as well

as the polarized cross sections σ(e+e− → χ̃0
1χ̃

0
2), σ(e+e− → χ̃+

1 χ̃
−
1 ) are measurable. A χ2-

minimisation fit to the measured neutralino and chargino masses and production cross sections

selects in an accurate and rather model-independent way M1, M2, µ, tanβ [129, 153, 154].

Inferring the mass of the heavier neutralino states from combined analyses of LHC and LC

data can strengthen such analysis [129]. Given the experimental observation of χ̃0
1, χ̃0

2 and



38 4.2. Distinguishing the NMSSM neutralino-chargino sector at the ILC

χ̃±1 , a result of the χ2-fit that excludes the MSSM at 95% confidence level (C.L.) may suggest

to look at supersymmetric models that minimally modify the neutralino/chargino sector. The

first candidate is the NMSSM [1,2], as originally suggested in [155].

We adopt this idea and we estimate, with plausible assumptions, the potential of a LC

to distinguish the MSSM and the NMSSM. In particular, we focus on the trickier case of

NMSSM scenarios that may lead to chargino/neutralino masses and cross-sections similar to

the MSSM. It has indeed been shown that relatively different mixings in the light neutralino

and chargino states between MSSM and NMSSM scenarios can lead to very similar neutralino

and chargino mass spectra in both models [155]. This is even more valid in the case of an

MSSM and an NMSSM scenarios with similar soft parameters and with a decoupled singlet

superfield [1,2]. We do an extensive analysis covering several classes of NMSSM scenarios with

MSSM-like collider behaviour in the low spectrum, involving the following steps: we select

suitable NMSSM scenarios, that are checked with experimental constraints from colliders and

DM searches; we assume the expected experimental outcome with plausible uncertainties at

a linear collider at different values of
√
s and polarisations; we perform a fit based on these

results to the MSSM parameters and check the consistency; we integrate the analysis with

possible additional information coming from the Higgs sector.

NMSSM scenario selection.

The singlino, the higgsino, and the gaugino admixtures of lightest neutralino states allow

to identify several classes of NMSSM scenarios. In particular we look at classes defined by

the neutralino LSP that can be either singlino-, higgsino-, or gaugino-like, as described later

in section 4.3. We identify NMSSM scenarios belonging to these classes, selecting a set of

parameters suitable to get a mass spectrum for χ̃±1 , χ̃0
1, χ̃0

2 that can be attributed also to an

MSSM scenario. We take care that this is valid also for the low Higgs spectrum.

With a dedicated Fortran code we calculate, from the input parameters at the elec-

troweak scale tanβ, µeff, M1, M2, and the slepton masses, the corresponding NMSSM neu-

tralino and chargino tree-level masses and polarized cross-sections for the processes e+e− →
χ̃+

1 χ̃
−
1 and e+e− → χ̃0

1χ̃
0
2. The slepton masses are needed to calculate the t- and u-channel

contributions of neutralino pair production and the t-channel in the chargino pair production.

Experimental constraints from colliders and DM searches.

Each NMSSM scenario is defined in a SUSY Les Houches Accord (SLHA) file [156, 157] by

the input parameters tanβ, µeff , λ, κ, Aλ, Aκ, and the soft parameters present both in

the NMSSM and in the MSSM. The scenario has to fulfil a series of phenomenological and

experimental constraints implemented in:

• NMSSMTools-4.2.1, that includes NMHDECAY [158–160] and NMSDECAY [161, 162]. These

tools calculate the Higgs sector parameters, SUSY particle masses at the loop level and



4.2. Distinguishing the NMSSM neutralino-chargino sector at the ILC 39

their decays. These are confronted with limits from LEP, LHC and electroweak precision

constraints.

• An interface between NMSSMTools-4.2.1 to MicrOMEGAS [163], that provides Dark Mat-

ter constraints, including the LUX [123] and Planck [60] results. The LSP relic density

is required to be ΩLSPh
2 < 0.131, where h is the Hubble constant in units of 100

km/(s·Mpc).3

• A second interface to HiggsBounds-4.0.0 [164] and HiggsSignals-1.0.0 [165], that

further controls Higgs sector constraints, and checks a compatibility with current data

at the 95% (C.L.).4

Experimental assumption at a linear collider.

For each NMSSM scenario we assume to observe at least χ̃±1 , χ̃0
1 and χ̃0

2 at the ILC. We suppose

to operate at two of the possible early ILC energy stages:
√
s = 350 GeV, corresponding to

the tt̄-threshold, and
√
s = 500 GeV. Therefore, we do not consider the option of operating

at
√
s = 1 TeV. We assume to measure the masses, together with the total cross sections

σ(e+e− → χ̃+
1 χ̃
−
1 ), σ(e+e− → χ̃0

1χ̃
0
2). The electron-positron beam polarizations (Pe− ,Pe+) =

(±0.9,∓0.55) are considered. A precision of 0.5% on the masses and 1% on the cross sections

is a reasonable and relatively conservative assumption for the scenarios considered, and are

consistent with many detailed simulation studies [42, 150]. If kinematically accessible, also

mχ̃0
3
, and the processes e+e− → χ̃0

1χ̃
0
3, e+e− → χ̃0

2χ̃
0
3 are taken into account.

We make a comment about the choice of the relatively high polarisation configurations

(Pe− ,Pe+) = (±0.9,∓0.55), rather than using the more traditional (Pe− ,Pe+) = (±0.8,∓0.3).

The neutralino and chargino pair production processes at the LC are mainly connected to

vector-axial interactions [166]. Cross sections relative to processes of this type may be fac-

torised as

σPe− ,Pe+ = (1− Pe−Pe+)σ0 [1− PeffALR] . (4.20)

Defining σRL, LR as the cross sections for the polarisation configurations (Pe− ,Pe+) = (±1,∓1),

we have introduced in eq. (4.20) the unpolarised cross section

σ0 =
σLR + σRL

4
, (4.21)

the left-right asymmetry

ALR =
σLR − σRL

σLR + σRL
, (4.22)

3Requiring only for an upper limit implies that also other particles apart of the LSP can account for the

observed relic density, such as, for example, light right-handed sneutrinos.
4When selecting a suitable NMSSM scenario, also the corresponding mimicking MSSM scenario is checked

with HiggsBounds-4.0.0 to ensure a sensible comparison.
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and the effective polarisation

Peff =
Pe− − Pe+
1− Pe−Pe+

. (4.23)

We can see that the first factor in eq. (4.20) is enhanced by opposite-sign polarisations with

increasing magnitude. Therefore with our choice (Pe− ,Pe+) = (±0.9,∓0.55) we have a factor

1.21 times large than with (Pe− ,Pe+) = (±0.8,∓0.3). In the meanwhile, Peff is respectively

±0.97 and ±0.89 for the two pairs of configurations. Therefore we can conclude that in most

of the cases with our configurations the polarised cross sections are larger. Furthermore, the

effective luminosity

Leff =
1

2
(1− Pe−Pe+) L , (4.24)

is also increased, with consequent improvement of statistics, that allows us to consider our

assumption on the uncertainties safer. A more accurate analysis on the background would be

required but it is beyond the scopes of this thesis.

χ2-fit to the MSSM of the assumed measures.

The measured quantities and errors are used to perform a MSSM parameter determination

through the χ2-fit following the recipe in [129] and described in the following.

The chargino masses and mixing angles ΦL,R can be expressed in terms of M2, µ, tanβ

as, cf. eq. (2.52),

m2
χ̃±1,2

=
1

2
(M2

2 + µ2 + 2m2
W ∓∆χ̃) , (4.25)

cos 2ΦL,R = −(M2
2 − µ2 ∓ 2m2

W cos 2β)/∆χ̃ , (4.26)

where ∆χ̃ = [(M2
2 − µ2)2 + 4m4

W cos2 2β + 4m2
W (M2

2 + µ2) + 8m2
WM2µ sin 2β]1/2. These

equations are reversed and allow to fit the parameters in terms of masses and cross-sections.

This is possible since the chargino pair production cross sections depend only on the

chargino masses and mixing angles cos 2ΦL,R. The latter enter the vertices χ̃+χ̃−Z for the

s-channel and e±χ̃±ν̃e for the t-channel of chargino pair production. Therefore the chargino

(polarised) production cross-sections σ±{ij} = σ(e+e− → χ̃±i χ̃
∓
j ) are bilinear functions in

cos 2ΦL,R [167]:

σ±{ij} = c1 cos2 2ΦL+c2 cos 2ΦL+c3 cos2 2ΦR+c4 cos 2ΦL+c5 cos 2ΦL cos 2ΦR+c6 , (4.27)

where the coefficients c1, . . . , c6, defined in [129], depend on the chargino masses. The angles

cos 2ΦL,R can then be uniquely determined knowing σ±L {11} and σ±R{11}, for instance, at two

LC energies [128,168], that we take to be
√
s = 350 GeV and

√
s = 500 GeV.



4.2. Distinguishing the NMSSM neutralino-chargino sector at the ILC 41

Finally M2, µ, tanβ may be obtained, using the notation in [128], as:

M2 =
mW√

2
[(p+ q) sinβ − (p− q) cosβ] , (4.28)

µ =
mW√

2
[(p− q) sinβ − (p+ q) cosβ] , (4.29)

tanβ =

[
p2 − q2 ±

√
r2(p2 + q2 + 2− r2)

(
√

1 + p2 −
√

1 + q2)2 − 2r2

]η
, (4.30)

where

p = ±
∣∣∣∣
sin 2ΦL + sin 2ΦR

cos 2ΦL − cos 2ΦR

∣∣∣∣ , q =
1

p

cos 2ΦL + cos 2ΦR

cos 2ΦL − cos 2ΦR
, (4.31)

r2 = m2
χ̃±1
/m2

W and η = ±1 for cos 2ΦR ≷ cos 2ΦL. In the CP-conserving MSSM, M2, µ are

uniquely fixed if tanβ is chosen properly.

The last parameter missing is M1, that can be uniquely extracted from neutralino sector

as the solution of the characteristic equation of MNM†N [129]:

xiM
2
1 + yiM1 − zi = 0 for i = 1, 2, 3, 4 (4.32)

where xi, yi, zi depend on mχ̃0
i
, M2, µ and tanβ.

As previously mentioned, we assume the experimental outcome to be the tree-level masses

and cross sections that we have calculated for our NMSSM scenario, with the assigned errors.

Then, we apply the MSSM parameter reconstruction method described above to deduce

M1,M2, µ, tanβ, as if we were supposing to have actually observed the MSSM. To understand

whether we can distinguish our NMSSM scenario from the MSSM, we perform a χ2-fit using

Minuit [169]. This code minimizes the χ2 function defined as

χ2 =
∑

i

∣∣∣∣
Oi − Ōi
δOi

∣∣∣∣
2

. (4.33)

Oi are the input observables, δOi are the associated experimental uncertainties and Ōi are

the theoretical values of the observables calculated using the fitted MSSM parameters.

The unknowns of the fit are M1, M2, µ, tanβ and mν̃e .
5 Since the chargino masses and

mixing angles, cf. eqs. 4.25 and 4.26, depend only on cos 2β and sin 2β, they are weakly

dependent on tanβ if tanβ & 5. The extraction of tanβ will then be difficult, and sometimes

only a lower limit on it could be set. A fit that is not consistent with the MSSM at 95%

C.L. may suggest the NMSSM and allow a model distinction. In order to confirm this, one

should elaborate dedicated studies looking for heavier neutralino resonances and singlet Higgs

states. If the fit is instead consistent with the MSSM, more information is needed to establish a

determination of the NMSSM, especially from the Higgs sector. The limiting (95% C.L.) value

of χ2 varies for different scenarios under consideration depending on the number of observables

used in the fit. Further information for parameter reconstruction can be extracted from the

τ̃ sector, if kinematically reachable [170].

5For the fit, we shall assume that the mass mν̃e is related to the mẽL by applying the SU(2)L relation

m2
ν̃e = m2

ẽL
+ cos(2β) cos2 θWm

2
Z . In turn, we use the simplifying assumption mẽL = mẽR .
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Possible integration of additional information from the Higgs sector.

Detecting a singlet Higgs state automatically excludes the MSSM, however, in the scenarios

we study a direct detection is more difficult due the (high) mass of the singlet states and

the very low mixing with the Higgs doublets. We consider direct singlet detection just in the

scenario described in subsection 4.3.2.

Alternatively, one should consider that a relatively light singlet with substantial mixing

with the SM-like Higgs could bring to observable deviations from the SM couplings predictions,

that cannot be accommodated within the MSSM as well.

In the selected scenarios we expect small departure from the SM values, so we limit

ourselves to compare the NMSSM predictions to the SM model by doing a χ2-fit of the

reduced couplings of the SM-like Higgs to g, γ,W,Z, b, c, τ obtained with NMSSMTools. This

is useful for us, since an MSSM scenario in the decoupling limit (as the ones we look at) can

easily accommodate couplings that are close the SM expectations, while larger deviations are

more difficult to explain.

4.3 Classes of scenarios and model distinction

Since we assume to detect the lightest neutralino states χ̃0
1 and χ̃0

2, it is useful for the purposes

of our analysis to categorise different cases on the basis of the phenomenology of these states.

In particular, the singlino admixtures of χ̃0
1 and χ̃0

2 suggest the classification of NMSSM

scenarios with the following limiting cases:

1. Light singlino (LS) scenarios: high S̃ admixture in the lightest states χ̃0
1 or χ̃0

2.

2. Light higgsino (LH) scenarios: higgsino-like χ̃0
1, with µeff < M1,M2 and high S̃

admixture mainly in χ̃0
3, χ̃

0
4, χ̃

0
5.

3. Light gaugino (LG) scenarios: gaugino-like χ̃0
1, with µeff > M1,M2 and high S̃

admixture mainly in χ̃0
3, χ̃

0
4, χ̃

0
5.

Studying these limiting classes of scenarios is also useful to embed intermediate cases, in which

the lightest neutralinos nature is more mixed.

In LS scenarios, a high singlino admixture in χ̃0
1 and/or χ̃0

2 is easily determined and points

to supersymmetry beyond the MSSM. In fact, a fit that, reconstructing the higgsino and

gaugino components of neutralinos, hypothesizes the MSSM as underlying model, would give

in this case a very different result with respect to the original NMSSM scenario. Here, the

previously outlined strategy for model distinction seems promising, see [155] and section 4.3.1.

The reconstructed MSSM gaugino and neutralino admixtures, indeed, lead to sensibly different

cross sections, production channels, and decays.

In LH and LG scenarios, instead, the phenomenology of detected states χ̃0
1 and χ̃0

2 could

be interpreted as MSSM-like, being a fit more likely to be compatible with the MSSM, see

subsections 4.3.2 and 4.3.3. In LH and LG scenarios it may be needed then to elaborate a
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M1 [GeV] M2 [GeV] µ,µeff = λ · x [GeV] tanβ λ κ

MSSMLS 406 115.8 354 8 - -

LS 365 111 484 9.5 0.16 0.0585

Table 4.1: Neutralino and chargino parameters for the NMSSM scenario LS and for the corresponding

MSSM scenario MSSMLS, at the electroweak scale.

strategy integrating informations from the heavier neutralino states, and/or from the Higgs

sector.

For a fixed µeff = λs, in the NMSSM neutralino sector the key parameters are λ and κ,

since they regulate the singlino admixture in the mass eigenstates, cf. the NMSSM neutralino

mass matrix eq. (4.18).

In subsections 4.3.2 and 4.3.3 we consider two scenarios with heavy singlino, and we study

how the model discrimination method works at the ILC along the (λ, κ)-plane, where the

singlino admixtures vary. In order to do so, we scan a grid of ten thousand points in the (λ, κ)-

plane for values λ ∈ [0, 0.7] and κ ∈ [0, 0.7]. For each point passing our phenomenological

and experimental constraints, we perform the χ2-fit described above. We see how the singlino

“mass” vary along the (λ, κ)-plane, and determine the regions with different phenomenology:

areas corresponding to very heavy and decoupled singlino, areas in which the singlino is placed

among the lightest neutralino states, as well as regions with mixed behaviour.

Note that in the following scenarios the value of tanβ is moderately large or large. This

is in contrast with the usually relatively small values, tanβ . 3–4, required to trigger a large

tree-level mass value for the SM-like Higgs in the NMSSM. This may be inconvenient for

naturalness but it is of interest for us, since we study challenging and limit NMSSM scenarios

that may mimic the MSSM.

4.3.1 Light singlino scenario

We analyse here an NMSSM scenario with wino-like χ̃0
1 and large singlino components in

χ̃0
2, χ̃

0
3. We refer to it as the light singlino scenario (LS), see table 4.1 for the values of

M1, M2, µ, tanβ at the electroweak scale. We have also selected an MSSM scenario (MSSMLS),

cf. table 4.1. MSSMLS that features sensibly different M1, M2, µ, tanβ but allows to repro-

duce the NMSSM lower neutralino/chargino spectrum, cf. tab. 4.2. Both for LS and MSSMLS

we have M1 > M2, which is a common feature in AMSB models.
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Masses, in [GeV] mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

mχ̃0
5

mχ̃±1
mχ̃±2

MSSMLS 104.8 350.4 360.1 426.7 - 105.1 375.0

LS 104.9 350.1 360.5 489.7 504.1 105.1 498.5

Table 4.2: Neutralino and chargino masses in the LS scenario and in the corresponding reference

MSSM scenario, in GeV.

Masses, in [GeV] mh1
mh2

mh3
ma1 ma2 mH±

LS 124.9 303.0 4467.3 324.0 4467.3 4468.1

Table 4.3: LS scenario: Higgs spectrum calculated at the 1-loop level with full 2-loops contributions

from bottom/top Yukawa couplings with NMSSMTools [158–160].

We set the other soft parameters of the NMSSM scenario to be

Aλ = 4200 GeV, Aκ = −200 GeV , (4.34)

M3 = 2000 GeV , (4.35)

MQ1,2 = Mu1,2 = Md1,2 = 2000 GeV , (4.36)

MQ3 = 1500 GeV, Mu3 = 1000 GeV, Md3 = 800 GeV , (4.37)

M` = Me = 300 GeV , (4.38)

Au3 = 2750 GeV, Ad3 = Ae3 = 2000 GeV . (4.39)

The Higgs spectrum is given in table 4.3, where we can see that a SM-like Higgs with

mh ' 125 GeV is reproduced.6 With a suitable choice of the stop soft parameters, the mass

mh1 can be easily obtained in the MSSMLS scenario as well. The states h2 and a1, being both

∼ 100% singlets, are not expected to be visible both at the LHC and ILC because they are

not directly coupling to other particles and are relatively heavy.

Table 4.2 shows that the light part of tree-level neutralino and chargino spectrum is nearly

indistinguishable between the two scenarios.7 However, while in both LS and MSSMLS the

lightest neutralino is a wino, χ̃0
1 ∼ W̃ , the other lighter states χ̃0

2, χ̃
0
3 have very different

admixtures in the two scenarios, see table 4.4. This leads to distinct production cross sec-

tions, due to the particular relative importance of the production channels, depending on the

admixtures. The production cross sections are listed in tables 4.5 and 4.6, calculated taking

mẽL = 303.5 GeV, mẽR = 303.0 GeV, mν̃e = 293.4 GeV . (4.40)

6The code NMSSMTools takes the above parameters as inputs at the 2 TeV scale.
7One should note that the mass difference m

χ̃±1
−mχ̃0

1
receives significant positive NLO corrections. For

such quasi-degenerate states the mass measurement usually has a larger uncertainty than the mass difference

itself. While in these analysis we only use tree-level masses, we should have in mind that in a more realistic

setting one should use the mass difference as an input rather than the actual masses, see e.g. ref. [171].
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MSSMLS LS

χ̃0
1 ∼ 93% W̃ ∼ 97% W̃

χ̃0
2 ∼ 26% B̃ + 69% H̃u, d ∼ 22% B̃ + 73% S̃

χ̃0
3 ∼ H̃u, d ∼ 72% B̃ + 25% S̃

Table 4.4: The dominant admixtures of the three lightest neutralinos in the LS scenario and in the

corresponding MSSM scenario.

For the fit to the MSSM we only include NMSSM cross sections larger than 1 fb. Since in the

NMSSM scenario χ̃0
3 is relatively light and can be produced with a sizeable cross section at

500 GeV, we also include in the fit the cross section σ(e+e− → χ̃0
1χ̃

0
3) for P = (−0.9, 0.55).

LS
√
s = 500 GeV σ(e+e− → χ̃0

1χ̃
0
2) [fb] σ(e+e− → χ̃0

1χ̃
0
3) [fb]

P = (−0.9, 0.55) 8.6 15.0

P = (0.9,−0.55) 0.1 0.2

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 2575.3 1213.0

P = (0.9,−0.55) 42.4 18.8

Table 4.5: LS scenario: production cross sections for σ(e+e− → χ̃0
1χ̃

0
2), σ(e+e− → χ̃0

1χ̃
0
3), and

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb].

The fitted MSSM parameters are

M1 = 430.0± 1.6 GeV, M2 = 111.8± 0.8 GeV,

µeff = 370.4± 0.7 GeV, mνe = 310.6± 2.8 GeV , (4.41)

and tanβ remains unconstrained (the fit gives indeed tanβ = 100 ± 98). Using these pa-

rameters we calculate the MSSM neutralino and chargino masses listed in table 4.7 (with

tanβ = 100, being the spectrum dependence on tanβ very mild for large tanβ). The given

uncertainties are based on our assumption of having fixed 1% uncertainties on the cross sec-

tions and 0.5% on the masses. Therefore, here and in the following cases, the uncertainties

on the fit do not depend explicitly on the luminosity, and we assume that for each observable

a suitable amount of statistics is collected, coherently with the assumed accuracy.

The χ2-fit has 10− 5 = 5 degrees of freedom (d.o.f.s) and gives a value χ2 = 62.6, clearly

stating that the hypothesized model, the MSSM, is not compatible with the experimental

data. In fact, the 95% confidence level (C.L.) is equal to 11.1, i.e. it should be χ2 < 11.1 to

be compatible.
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MSSMLS
√
s = 500 GeV σ(e+e− → χ̃0

1χ̃
0
2) [fb] σ(e+e− → χ̃0

1χ̃
0
3) [fb]

P = (−0.9, 0.55) 24.1 25.1

P = (0.9,−0.55) 0.4 5.7

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 2491.0 1165.4

P = (0.9,−0.55) 39.5 18.3

Table 4.6: MSSMLS scenario: production cross sections for σ(e+e− → χ̃0
1χ̃

0
2), σ(e+e− → χ̃0

1χ̃
0
3), and

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb].

MSSMfit

mχ̃0
1

[GeV] mχ̃0
2

[GeV] mχ̃0
3

[GeV] mχ̃0
4

[GeV] mχ̃±1
[GeV] mχ̃±2

[GeV]

106.0 368.0 378.0 445.9 106.1 389.1

Table 4.7: MSSM neutralino and chargino masses based on the resulting parameters from the fit, see

eq. (4.41).

The conclusion from this fit, i.e. that the LS scenario can be experimentally distinguished

from the MSSM, can be further corroborated by looking for heavier resonances. For example,

if the measurement of the mass of the heavy neutralino χ̃0
4 is possible at the higher center-of-

mass energy at ILC. Additionally, we note that the fitted mass of the heavy chargino, mχ̃±2
=

389.1 GeV, is relatively low and the production of the mixed chargino pair, χ̃±1 χ̃
∓
2 would be

possible. The expected cross section, ∼ 3 fb, could in principle allow for its measurement at√
s = 500 GeV. The non-observation would provide another hint on the non-minimal nature

of chargino/neutralino sector, whose first candidate is the NMSSM. We have then seen that

the outlined procedure for model distinction is effective effective in the case of high singlino

admixture in the lightest neutralino.

4.3.2 Light higgsino scenario, µeff < M1 < M2

We study here an NMSSM scenario with a light higgsino (LH), whose chargino/neutralino

parameters at the electroweak scale are:

M1 = 450 GeV, M2 = 1600 GeV, µeff = λ s = 120 GeV, tanβ = 27 . (4.42)



4.3. Classes of scenarios and model distinction 47

As mentioned before we scan over λ ∈ [0, 0.7] and κ ∈ [0, 0.7]; µeff is kept fixed by varying the

singlet vev s. We set the other soft parameters to be

Aλ = 3000 GeV, Aκ = −30 GeV , (4.43)

M3 = 2000 GeV , (4.44)

MQ1,2 = Mu1,2 = Md1,2 = 2000 GeV , (4.45)

MQ3 = Mu3 = Md3 = 1500 GeV , (4.46)

M` = Me = 300 GeV , (4.47)

Au3 = 3300 GeV, Ad3 = Ae3 = 2000 GeV . (4.48)

The slepton masses therefore read

mẽL = 303.5 GeV, mẽR = 303.1 GeV, mν̃e = 293.3 GeV . (4.49)

In figure 4.3 it is displayed the region scanned in the NMSSM (λ, κ)-plane, after the

phenomenological tests. Points in the light-blue-shaded area pass the DM constraints;8 the

purple-shaded boundary area corresponds to points that pass the Higgs sector constraints

from HiggsBounds and HiggsSignals. The solid red area is the region allowed by all the

constraints, phenomenological and experimental ones, that are implemented in the codes

NMSSMTools, HiggsBounds and HiggsSignals.

We select a reference MSSM scenario, MSSMLH , with M1, M2, µ = µeff , tanβ and the

slepton masses given in eqs. (4.42) and (4.49). MSSMLH has the light neutralino spectrum

and production cross sections reported in table 4.8. They are very close to the analogue

quantities in the NMSSM scenario LH in a vast part of the (λ, κ)-plane, cf. figure 4.4(a) for

mχ̃0
1

and figure 4.5(a) for the corresponding cross sections.

Regarding the Higgs sector, it is possible to get a MSSM counterpart with experimentally

the same SM-Higgs mass and a similar spectrum for the other Higgs states, with the exception

of the new singlet states, for each point in the (λ, κ)-plane of the LH scenario.

In figure 4.4, the NMSSM χ̃0
1 mass and its singlino component are shown. A negligible

singlino component corresponds to a region in which the NMSSM mχ̃0
1

is very close to the

MSSM value mχ̃0
1

= 114.8 GeV. Vice versa the NMSSM mass of the LSP mχ̃0
1

significantly

decreases with a higher singlino admixture.

Likewise, the polarised production cross sections σ(e+e− → χ̃0
1χ̃

0
2) decrease with respect

to predictions in the MSSM due to the larger singlino component in χ̃0
1, see figure 4.5(a). This

is expected since the singlino does not couple directly to the gauge fields. We have that the

tree-level NMSSM chargino masses and production cross-sections, σ(e+e− → χ̃+
1 χ̃
−
1 ), depend

only on M2, µeff , tanβ. For this reason, along all the (λ, κ)-plane the chargino production

cross sections are identical to the MSSM values, displayed in table 4.8.

8We recall that here and in the following, we allow DM density to be below the measured value by Planck [60].
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LH scenario: experimental and phenomenological constraints

Figure 4.3: Light higgsino scenario: regions in the (λ, κ)-plane allowed by experimental and phe-

nomenological constraints. The light-blue-shaded regions delimited by the light blue boundary pass

dark matter constraints. The coloured regions delimited by the purple boundary pass checks within

HiggsBounds and HiggsSignals. The red area is allowed by all the constraints.

For each point in the (λ, κ)-plane of the LH scenario, we assume the experimental mea-

surement of:

• mχ̃0
1
, mχ̃0

2
and mχ̃±1

with an uncertainty of 0.5%.

• σ(e+e− → χ̃0
1χ̃

0
2) for P = (∓0.9,±0.55) at

√
s = 350 and 500 GeV with 1% uncertainty.

• σ(e+e− → χ̃+
1 χ̃
−
1 ), for P = (∓0.9,±0.55) at

√
s = 350 and 500 GeV with 1% uncertainty.

χ̃0
3 is lighter in the areas of the (λ, κ)-plane in which its singlino component is higher, and

e+e− → χ̃0
2χ̃

0
3 may be kinematically accessible, cf. fig. 4.5(b). In these cases, we consider in

the fit also mχ̃0
3

and σ(e+e− → χ̃0
2χ̃

0
3), if the latter is larger than 1 fb. The production e+e− →

χ̃0
1χ̃

0
3 is negligible almost everywhere. With these assumptions, a χ2-fit to the MSSM gives the

result displayed in figure 4.6. The regions in the (λ, κ)-plane that are at 95% C.L. compatible

with the MSSM are coloured in yellow, while in the black area the MSSM is excluded. We find

that a significant region of the parameter space, passing the implemented phenomenological

and experimental constraints, is distinguishable from the MSSM using neutralino/chargino

collider observables only. This is explainable by the higher singlino component in χ̃0
3, and

partially in χ̃0
1 as well, cf. figure 4.4(b).

We reconstruct here the MSSM parameters M1, M2, µ, tanβ and mν̃e for two sample

points in the (λ, κ)-plane of the LH scenario. We choose them to be relatively close to the

boundary between the regions of compatibility and incompatibility with MSSM, cf. fig. 4.6.
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(a) (b)

Figure 4.4: LH scenario: (a) the mass mχ̃0
1
, in GeV; (b) the S̃ component of χ̃0

1, in %.

(a) (b)

Figure 4.5: Neutralino production cross sections in the LH scenario: (a) σ(e+e− → χ̃0
1χ̃

0
2) for

P = (−0.9, 0.55) at
√
s = 350 GeV, in fb; (b) σ(e+e− → χ̃0

2χ̃
0
3) for P = (−0.9,+0.55) at

√
s = 500 GeV,

in fb.
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MSSMLH

mχ̃0
1

[GeV] mχ̃0
2

[GeV] mχ̃0
3

[GeV] mχ̃0
4

[GeV] mχ̃±1
[GeV] mχ̃±2

[GeV]

114.8 123.3 454.4 1604.1 119.4 1604.1

σ(e+e− → χ̃0
1χ̃

0
2) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 791.7 391.4

P = (0.9,−0.55) 526.7 261.7

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 2348.8 1218.9

P = (0.9,−0.55) 445.1 246.2

Table 4.8: MSSMLH scenario: neutralino and chargino masses [GeV] and production cross sections

σ(e+e− → χ̃0
1χ̃

0
2), σ(e+e− → χ̃+

1 χ̃
−
1 ) [fb].

LH1

mχ̃0
1

[GeV] mχ̃0
2

[GeV] mχ̃0
3

[GeV] mχ̃0
4

[GeV] mχ̃0
5

[GeV] mχ̃±1
[GeV] mχ̃±2

[GeV]

111.6 125.2 389.0 454.4 1604 119.4 1604

σ(e+e− → χ̃0
1χ̃

0
2) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 781.5 385.8

P = (0.9,−0.55) 519.9 257.9

Table 4.9: Neutralino masses [GeV] and production cross sections [fb] in the light higgsino scenario,

reference point LH1 with (λ, κ) =(0.25, 0.4).

• The point LH1, in (λ, κ) = (0.25, 0.4), with the masses and cross sections given in

tables 4.9. The fit from LH1, with 6 d.o.f.s, turns out to be compatible with the MSSM,

since χ2 = 1.1, while the confidence level is equal to 12.6. The fit yields

M1 = 360± 40 GeV, M2 = 1300± 300 GeV,

µeff = 124± 2 GeV, tanβ ≤ 4,

mν̃e ≤ 470 GeV . (4.50)

• For our second example, the point LH2 in (λ, κ) = (0.36, 0.4) is taken and the cor-

responding masses and cross sections are given in tables 4.10. The point LH2 is not

compatible with the MSSM, since the fit, with 7 d.o.f.s and confidence level equal to
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Figure 4.6: LH scenario: fit to the MSSM. Yellow areas are compatible with the MSSM at 95% C.L.,

while black ones are excluded by the collider observables. The points LH1 (λ, κ) = (0.25, 0.4) and LH2

(λ, κ) = (0.36, 0.4) are also shown.

LH2

mχ̃0
1

[GeV] mχ̃0
2

[GeV] mχ̃0
3

[GeV] mχ̃0
4

[GeV] mχ̃0
5

[GeV] mχ̃±1
[GeV] mχ̃±2

[GeV]

104.2 128.4 282.4 454.4 1604 119.4 1604

σ(e+e− → χ̃0
1χ̃

0
2) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 739.0 363.3

P = (0.9,−0.55) 491.5 242.8

σ(e+e− → χ̃0
2χ̃

0
3) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) not accessible 15.4

P = (0.9,−0.55) not accessible 10.4

Table 4.10: Neutralino and chargino masses [GeV] and neutralino production cross sections [fb] in

the light higgsino scenario for the reference point LH2 with (λ, κ) =(0.36, 0.4).

14.1, gives χ2 = 1700. The fitted parameters are:

M1 unconstrained, M2 = 317.0± 0.5 GeV,

µeff = 129.3± 0.6 GeV, tanβ < 1.1,

mν̃e = 297± 15 GeV. (4.51)

The region compatible with the MSSM may be further reduced by using additional infor-

mation from the heavier neutralino states, such as χ̃0
3 (if not already used in the fit as for the
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point LH2) or χ̃0
4. For example, given a (λ, κ)-coordinate and the corresponding M1, M2, µ,

tanβ reconstructed from the fit, one can derive the masses of the heavier states. These can

then be searched at higher energy stages of the ILC or at the LHC, with the possibility of

either confirming the fit to the MSSM or pinpointing the NMSSM.

As suggested in section 4.2, our study may be extended by including information from the

Higgs sector. We do a näıve 7 d.o.f.s χ2-fit to the SM using the Higgs reduced couplings to

g, γ,W,Z, b, c, τ , and we plot it in figure 4.7(a).9 These are defined as the ratio ghSM−like
/ghSM

between the SM-like Higgs coupling in an NMSSM point to the corresponding SM Higgs

coupling, and are calculated through NMSSMTools. In large part of the (λ, κ)-plane, the SM-

like Higgs of the LH scenario is compatible with the SM (χ2 . 14), corresponding to the

MSSM-like area from the fit in figure 4.6. Those areas with a higher singlet component in the

SM-like Higgs correspond to a worse fit, cf. figure 4.7. Two regions are not compatible with

the SM and have a different behaviour with respect of MSSM-like areas. We can conclude

that the result of this fit on the Higgs reduced couplings is consistent with results of the fit

from the neutralino/chargino sector, cf. fig. 4.6, without clearly improving our analysis.

If the new Higgs-singlet states are directly visible, they may provide additional informa-

tion in favour of the NMSSM. This possibility opens up in a region with a higher singlino

component in χ̃0
3, where the decays χ̃0

3 → χ̃0
1,2a1 channels open. If the production cross sec-

tion for χ̃0
3 is non-negligible one could observe the pseudoscalar a1 via its decays a1 → bb̄. In

figure 4.8(a) we show an inclusive cross section for the production of a1. Both χ̃0
3-production

modes, e+e− → χ̃0
1χ̃

0
3 and e+e− → χ̃0

2χ̃
0
3, have been added up, summing over both polarisa-

tion configurations and considering the decays χ̃0
3 → χ̃0

1a1 and χ̃0
3 → χ̃0

2a1. The new singlet

state should be clearly visible in areas of parameter space with cross sections of order 8-10 fb

which, not surprisingly, are included in the area not compatible with the MSSM in fig 4.6. The

detection of this state could serve as confirmation of the NMSSM, while the MSSM would be

definitely excluded. As a reference, in figure 4.8(b) we also show the mass of the pseudoscalar

a1.

9In this fit we use, as uncertainty for each reduced coupling, the expected accuracies for the SM-like Higgs

boson branching ratios ∆Br/Br, from [42].



4.3. Classes of scenarios and model distinction 53

(a) (b)

Figure 4.7: LH scenario: (a) 7-d.o.f. χ2-fit to the SM of the reduced couplings to g, γ,W,Z, b, c, τ ;

(b) Singlet component in the SM-like Higgs, in %.

(a) (b)

Figure 4.8: LH scenario: (a) inclusive cross section e+e− → χ̃0
i χ̃

0
3 → χ̃0

i χ̃
0
ja1 [fb], with i, j = 1, 2;

(b) lightest CP-odd Higgs mass ma1 [GeV].
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4.3.3 Light gaugino scenario, µeff > M1 > M2

As last example, we study here an NMSSM scenario with light gauginos (LG), whose neu-

tralino/chargino parameters at the electroweak scale are:

M1 = 240 GeV, M2 = 105 GeV, µ = µeff = 505 GeV, tanβ = 9.2 , (4.52)

with λ ∈ [0, 0.7] and κ ∈ [0, 0.7]. The other soft parameters are set to

Aλ = 3700 GeV, Aκ = −40 GeV , (4.53)

M3 = 2000 GeV , (4.54)

MQ1,2 = Mu1,2 = Md1,2 = 2000 GeV , (4.55)

MQ3 = 1800 GeV, Mu3 = Md3 = 1500 GeV , (4.56)

M`1,2 = Me1,2 = 300 GeV, M`3 = Me3 = 500 GeV , (4.57)

Au3 = 3700 GeV, Ad3 = 2500 GeV, Ae3 = 1500 GeV . (4.58)

The first generation slepton masses then are

mẽL = 303.4 GeV, mẽR = 303 GeV, mν̃e = 293.5 GeV . (4.59)

The result of the scan in the NMSSM (λ, κ)-plane with respect to all tests implemented in

NMSSMTools, HiggsBounds and HiggsSignals is displayed in figure 4.9. The colour conven-

tions in figure 4.9 are the same as in fig. 4.3. For the LG scenario the regions allowed by the

Higgs sector constraints from HiggsBounds and HiggsSignals overlap entirely those passing

dark matter constraints.

We define the MSSM scenario MSSMLG to have M1, M2, µ, tanβ and the first generation

slepton masses as in eq. (4.52). Its lighter neutralino and chargino mass spectrum and pro-

duction cross sections are almost indistinguishable (at the tree-level) with the value for the

LG scenario along (λ, κ)-plane, see table 4.11.

In particular, in the LG scenario mχ̃0
1

is very close to the MSSMLG value of 99.5 GeV, cf.

figure 4.10. Its value varies very mildly in the (λ, κ)-plane since the singlino component in χ̃0
1

is approximately zero. The same pattern applies to the production cross section σ(e+e− →
χ̃0

1χ̃
0
2). Finally, the production cross sections for the process e+e− → χ̃+

1 χ̃
−
1 , are exactly

identical between the two scenarios at the tree-level, as explained in section 4.3.2.

For our χ2-fit to the MSSM we only use cross sections larger than 1 fb. Figure 4.11 shows

that this fit alone is not sufficient to distinguish between the two models in this case. In fact,

basically every point in the allowed region is compatible with the MSSM.

As operative example we select the point LG1 with (λ, κ) = (0.2, 0.35). The corresponding

masses and cross sections are listed in table 4.12. For P = (0.9,−0.55) the cross section

σ(e+e− → χ̃0
1χ̃

0
2) at

√
s = 350 GeV is below 1 fb and the process e+e− → χ̃0

1χ̃
0
3 is kinematically

not allowed for both at 350 and 500 GeV. The remaining observables lead to a 5 d.o.f.s fit



4.3. Classes of scenarios and model distinction 55

HB�HS

Dark Matter

Passing all tests

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λ

Κ

LG scenario: experimental and phenomenological constraints

Figure 4.9: The light gaugino scenario: regions in the (λ, κ)-plane allowed by experimental and

phenomenological constraints. The light-blue region passes the dark matter constraints. The purple-

coloured region passes checks from HiggsBounds and HiggsSignals. The areas allowed by all the

constraints are shown in red.

that is compatible with the MSSM, giving χ2=0.07. The fitted parameters are

M1 = 239.9± 0.9 GeV, M2 = 104.4± 0.8 GeV,

µeff = 504.7± 47.6 GeV, tanβ = 11.4± 2.8,

mν̃e = 292.8± 3.9 GeV . (4.60)

These values are remarkably close to the ‘true’ input parameters given by eqs. (4.52) and (4.59).

Fitting the SM-like Higgs reduced couplings reveals, as well, to be not effective for model dis-

tinction, see figure 4.12. Unlike in the LH scenario, all the allowed regions in the (λ, κ)-plane

are compatible with the SM.

These conclusions can be explained by analysing the mixing within the neutralino sector.

In the NMSSM, the singlino does not mix directly with gauginos but only indirectly via

higgsino states, see eq. (4.18). In the case µeff � M1,M2 as in the LG scenario, the mixing

remains small even for a relatively light singlino. Therefore the properties of the light chargino

and neutralino states, including masses and cross sections, remain very similar throughout the

(λ, κ)-plane and cannot be distinguished from the MSSM case. This is in contrast with the LS

scenario from section 4.3.1. There, M1 = 365 GeV and µeff = 484 GeV are of the similar size,

resulting then in a significant mixing: χ̃0
2 ' 22% B̃ + 73% S̃ and χ̃0

3 ' 72% B̃ + 25% S̃. Since

in the LS case the singlino component makes up a significant part of the light neutralinos, the

modification of the couplings allows there a clear discrimination from the MSSM.
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Figure 4.10: The LG scenario: the mass mχ̃0
1

[GeV].

Figure 4.11: LG scenario: fit to the MSSM. Yellow areas are compatible with the MSSM at 95% C.L.,

while black ones are excluded by the collider observables. The point LG1 (λ, κ) =(0.2, 0.35) is dis-

played.

Figure 4.12: LG scenario: χ2-fit to the SM of the reduced Higgs boson couplings to g, γ,W,Z, b, c, τ .
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MSSMLG

mχ̃0
1

[GeV] mχ̃0
2

[GeV] mχ̃0
3

[GeV] mχ̃0
4

[GeV] mχ̃±1
[GeV] mχ̃±2

[GeV]

99.5 237.0 510.1 518.7 99.6 518.7

σ(e+e− → χ̃0
1χ̃

0
2) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 7.3 113.4

P = (0.9,−0.55) 0.1 1.8

σ(e+e− → χ̃+
1 χ̃
−
1 ) [fb]

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 2692.1 1252.6

P = (0.9,−0.55) 44.5 19.4

Table 4.11: The reference light gaugino MSSM scenario: neutralino and chargino masses [GeV] and

production cross sections σ(e+e− → χ̃0
1χ̃

0
2), σ(e+e− → χ̃+

1 χ̃
−
1 ) [fb].

LG1

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

mχ̃0
5

mχ̃±1
mχ̃±2

99.4 GeV 237.0 GeV 510.4 GeV 518.3 GeV 1768.2 GeV 99.5 GeV 518.7 GeV

σ(e+e− → χ̃0
1χ̃

0
2)

√
s = 350 GeV

√
s = 500 GeV

P = (−0.9, 0.55) 7.3 fb 113.5 fb

P = (0.9,−0.55) 0.1 fb 1.8 fb

Table 4.12: Neutralino and chargino masses [GeV] and neutralino production cross sections [fb] in

the light gaugino scenario for the reference point LG1 with (λ, κ) =(0.2, 0.35).

4.4 Summary and conclusions

The next-to-minimal supersymmetric SM (NMSSM) minimally extends the MSSM by an ad-

ditional chiral superfield Ŝ which is a singlet of the gauge symmetry SU(3)C⊗SU(2)L⊗U(1)Y .

After electroweak symmetry breaking, this translates into an additional CP-even Higgs, an

additional CP-odd Higgs, as well as a fifth neutralino with respect to the MSSM. One of the

most appealing features of the NMSSM is the fact that it explains the µ-problem dynamically,

relating µ to the supersymmetry breaking scale MSUSY via the vev of the singlet, that has

been generated at MSUSY. Furthermore, the tree-level Higgs mass receives an additional pos-

itive term due to the mixing with the scalar singlet component. In particular, in the NMSSM

the SM-like Higgs mass needs smaller radiative corrections to reach the measured value of

∼ 125.5 GeV, with the direct consequence of a relaxation of naturalness in the stop sector.
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The phenomenology of the NMSSM may be distinguished at the LHC and at the ILC

looking at the extended Higgs and neutralino sectors. However, there are classes of NMSSM

scenarios that are more difficult to distinguish from the MSSM due to relatively heavy and/or

decoupled singlet states, that may not be precisely resolved at the LHC or kinematically

reached at the ILC.

In particular, we have studied how much information can be derived from the neu-

tralino and chargino sector at a linear collider for the model distinction. More specifically,

we have analysed a series of more intriguing NMSSM scenarios with heavy singlet Higgs.

Furthermore the lower Higgs spectrum (including the SM-like Higgs) and the lower neu-

tralino/chargino spectrum of these scenarios are very close in masses and production cross

section to some MSSM scenarios. Since we assume to observe the lightest neutralino states,

we have categorised these scenarios in several classes, depending on the admixtures of these

states, either with high singlino-, or higgsino-, or gaugino component. Given an NMSSM

scenario, we have assumed to operate a LC at
√
s = 350 and 500 GeV with polarisations

(Pe− ,Pe+) = (±0.9,∓0.55), and to have measured the masses and polarised production cross-

sections of χ̃±1 , χ̃0
1, χ̃0

2, and χ̃0
3, if viable. From the obtained masses and cross sections, and with

plausible experimental uncertainties, we have reconstructed through a χ2-fit the neutralino

sector parameters M1, M2, µ, tanβ, as well as mν̃e , assuming the MSSM as the underlying

model. A non-compatible fit with the MSSM may suggest the NMSSM as the right model.

This could be confirmed by looking for heavier neutralino and chargino resonances at the LC

and the LHC or by integrating the information from the Higgs sector, such as deviations in

the Higgs couplings or the production of singlet-like states.

We have first analysed a light singlino NMSSM scenario which, having χ̃0
2 a dominant

singlino component, could allow us to clearly exclude the MSSM, as expectable. We have

then studied in the (λ, κ)-plane an NMSSM scenarios with higgsinos as lightest neutralinos,

and we could define regions where model distinction was possible, in correspondence of an

increase of the singlino component in χ̃0
1. This results are also corroborated by the possibility

to observe the production of the CP-odd singlet a1 in some parameter regions. Finally, we

could observe how scenarios with light gauginos are very difficult to be distinguished from

the MSSM, because of a low mixing with the higgsinos, due to hierarchy between M1 and M2

with µeff .



Chapter 5

Non-decoupling D-terms and the

Higgs boson

This chapter is based on the publication [3], done in collaboration with Moritz McGarrie and

Gudrid Moortgat-Pick. It describes my research work on non-decoupling D-terms extensions

of the MSSM. The study has focussed on the naturalness implications of these models and

the experimental reach of the LHC and the ILC to detect correlated deviations in the Higgs

couplings. Section 5.1 introduces gauge extensions of the MSSM that at lower energies result in

non-decoupling D-terms extensions of the MSSM. In section 5.2 I derive the Higgs masses in

two models extending the MSSM with non-decoupling D-terms and discuss the size of the non-

decoupling D-terms in view of naturalness. Section 5.3 describes the results on the estimates

of the reach of colliders, of which I am the main author. In section 5.4 I summarise and

conclude. Part of the text is derived from what I wrote in [3]. The plots have been produced by

me, excluding figs. 5.6, 5.7, 5.12. The main resources of this chapter are refs. [91,96,97,172].

5.1 Introduction

5.1.1 Concept

We have seen that relatively heavy stop masses or a high stop mixing are needed in the MSSM

to reach the observed Higgs mass value of 125.5 GeV, through large radiative corrections.

The tree level Higgs mass, indeed, is bounded from above by mZ = 91.2 GeV. The related

naturalness may be relaxed by raising the tree level Higgs mass with additional contributions

to the tree-level Higgs quartic potential. This can be done through additional non-decoupling

D-terms, as it was originally proposed in [96,97] and in the unpublished talk [173]. The basic

concept is to have an extended gauge group that breaks to the MSSM gauge group above

the electroweak scale. This gives raise to additional D-terms for the scalars of the model

with respect to the MSSM. This additional D-terms would decouple in the supersymmetric

limit, giving a negligible contribution to the Higgs mass. Therefore, a supersymmetry-breaking

mass term for the field that causes the gauge-symmetry breaking is introduced at or above the

59



60 5.1. Introduction

gauge-symmetry breaking.1 There are several UV completions to models with non-decoupling

D-terms, especially quiver models [96,97], where here with quiver or moose we mean a gauge

factor copy. Other examples may be found in the context of extra dimensions [174]. The

low energy phenomenology of these models may be seen as that of the MSSM with some

deviations in the couplings, of the Higgs particularly.

We show in this section how non-decoupling D-terms may arise in the simplest case of a

two-site quiver model [3, 91, 96,97], i.e. in which the gauge group has two copies of the same

factor. This logic may be applied also to the case of three or more quiver factors. Other

descriptions of quiver models as UV completions of the MSSM may be found in [98,172,175–

183].

5.1.2 Basic example: SU(2)⊗ SU(2)

We consider a supersymmetric quiver model whose gauge group G is given by the product of

two copies of the SU(2) gauge group, GA = SU(2)A on site A and GB = SU(2)B on site B,

such that G = GA ⊗ GB. The two sites may be connected by one or more linking fields that,

acquiring vevs, are responsible for diagonal symmetry breaking G → SU(2)D.

GA GB

L̂

Âi B̂j

Figure 5.1: The quiver module of the toy model with G = SU(2)A ⊗ SU(2)B with L̂ connecting the

sites and the chiral superfields Âi, B̂j respectively on site A and B. The singlet superfield S is not

shown.

Two sites, one linking field As first example we consider the case, cf. fig. 5.1, in which a

chiral linking superfield L̂ connects sites A and B transforming as (2, 2̄) under G = GA⊗GB =

SU(2)A⊗SU(2)B, as in [172,177–179]. The bidoublet L̂ gets vev through the superpotential

WL = λ Ŝ

(
1

2
L̂ · L̂− w2

)
, (5.1)

where an auxiliary singlet chiral superfield Ŝ has been introduced. With “ · ” here we mean a

contraction with two εαβ tensors with SU(2)A and SU(2)B indices respectively, i.e. L̂ · L̂ =

L̂αα̇εαβεα̇β̇L̂
ββ̇. The gauge interactions for L̂ are described by the Kähler potential

KL = Tr [egaV̂aL̂ e−gbV̂b L̂†] , (5.2)

1The upper bound on the Higgs mass is perceivably increased if the additional gauge group is asymptotically

free [96].
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where ga, gb are the gauge couplings of GA, GB and V̂A, V̂B are the corresponding gauge vector

supermultiplets (the gauge generators are implicitly inserted in the notation). The rest of the

matter content of the model is given by the chiral superfields Âi on site A, gauged under GA,

and by the chiral superfields B̂j on site B, gauged under GB. Correspondingly, we have

KAi, Bj =
∑

i

Â†ie
gaV̂aÂi +

∑

j

B̂†je
gbV̂bB̂j . (5.3)

From the Kähler terms (5.2) and (5.3), we can derive the Lagrangian D-terms for the scalar

components of the chiral superfields:

LD-terms =
g2
a

2

(
Tr
[
L†T cL

]
+A†iT

cAi

)2
+
g2
b

2

(
Tr
[
LT cL†

]
+ B†jT

cBj

)2
, (5.4)

where we recall that to denote the scalars, we remove the hat “ˆ” from the symbol of the

corresponding chiral superfield; T c is the SU(2) generator in the fundamental representation.

We can derive the scalar potential for L from the eqs. (5.1) and (5.4):

VL(L, L†) = −λw
2

2
L · L+ h.c. +

λ2

4
|L · L|2 +D-terms . (5.5)

Taking λw2 > 0, VL has the D-flat minima (meaning that the D-terms in eq. (5.5) vanish),

〈L〉 = 0 , 〈L〉 =
w√
λ
12×2 = u12×2 . (5.6)

The second solution is responsible for the diagonal gauge symmetry breaking GA⊗GB → GD.2

After the diagonal symmetry breaking, the bidoublet L̂ splits into a complex SU(2)-singlet

scalar L̂S and a complex SU(2)-triplet scalar L̂T , since 2⊗ 2̄→ 1 + 3. It can be written as

L̂ =
(
u+ L̂S

)
12×2 + L̂cT σ

c , (5.7)

where σc (c = 1, 2, 3) denote the Pauli matrices.

After the diagonal breaking GA ⊗ GB → GD, the gauge vectors Va and Vb recombine into

a massless and a heavy vector bosons that can respectively be written as

VD =
gaVb + gbVa√

g2
a + g2

b

, VH =
−gaVa + gbVb√

g2
a + g2

b

, (5.8)

with the coupling constant gD for GD, defined as g−2
D = g−2

a + g−2
b . Eqs. (5.8) are equivalent

to

gaVA = gDVD − gD
ga
gb
VH , gbVb = gDVD + gD

gb
ga
VH . (5.9)

According to the Super Higgs mechanism [184], when a vev breaks a gauge symmetry (but

not necessarily supersymmetry), a massless vector supermultiplet eats a chiral supermultiplet

2One may also add in eq. 5.5 a soft term, +m2
L |L|2, giving then u =

√
λw2−m2

L
λ2 , provided that λw2 > m2

L.
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to get the additional degrees of freedom to form a massive vector supermultiplet. The latter

is made up of a real scalar field, a vector boson and a Dirac fermion, see [49, 185] for details.

In our case, correspondingly to the breaking GA ⊗ GB → GD, a massive vector superfield V̂H

has formed. It contains the real part of the scalar LT , the massive vector boson VH µ, and a

Dirac fermion given by the fermionic component of L̂T and by λH , the gaugino corresponding

to the broken generators of the gauge symmetry.

We want now to pass to the low energy phenomenology, at the electroweak scale, and

to do this we need to integrate out the heavy vector superfield V̂H . In its Kähler potential,

obtained by dropping the vev 〈L〉 in (5.2), it appears the mass term

KVH = m2
V V̂

2
H + . . . , (5.10)

with the mass m2
V = u2(g2

a + g2
b ). We can use equations (5.9) to rewrite the Kähler potential

for Âi, B̂j :

KAi, Bj =
∑

i

Â†ie
gaV̂aÂi +

∑

j

B̂†je
gbV̂bB̂j

=
∑

i

Â†ie
gDV̂D−gD ga

gb
V̂H Âi +

∑

j

B̂†je
gDV̂D+gD

gb
ga
V̂H B̂j

=
∑

i

(
Â†ie

gDV̂DÂi − gD
ga
gb
Â†i V̂HÂi + . . .

)

+
∑

j

(
B̂†je

gDV̂DB̂j + gD
gb
ga
B̂†j V̂HB̂j + . . .

)
. (5.11)

Finally, integrating out V̂H using the equations of motion, we get for the chiral superfields the

effective Kähler potential:3

Keff
Ai, Bj =

∑

i

Â†ie
gDV̂DÂi +

∑

j

B̂†je
gDV̂DB̂j

+
∑

c

g2
D

m2
V


ga
gb

∑

i

Â†iT
c
DÂi −

gb
ga

∑

j

B̂†jT
c
DB̂j




2

, (5.12)

having written T cD as generators of SU(2)D in the fundamental representation. The last term

in eq. (5.12) gives rise to D-terms of the form

LD-terms ⊃ −
∑

c

g2
D

2m2
V


ga
gb

∑

i

A†iT
c
DAi −

gb
ga

∑

j

B†jT
c
DBj




2

, (5.13)

which are decoupled, considering the suppression due to the V̂H -propagator 1/m2
V (with null

external momentum). Since we are looking for a mechanism that could enhance quartic scalar

3This is equivalent to integrate out the lowest component of V̂H [97], corresponding to the scalar field eaten

by V̂H with the Super Higgs mechanism, i.e. the previously mentioned real part of the scalar LT .
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couplings together with their masses, we need to avoid these D-terms to decouple. This can

be done with the introduction of the soft mass msoft for the linking field, at least at the scale

of the G gauge breaking. Therefore, starting again from the Kähler potential eq. (5.2), this

is modified to

KL,L̃ = (1 + θ4m2
soft)

(
Tr [egaV̂aL̂ e−gbV̂b L̂†] + Tr [egbV̂b ˆ̃Le−gaV̂a ˆ̃L†]

)
. (5.14)

This leads to the mass term for V̂H :

KVH = m2
V (1 + θ4m2

soft) V̂
2
H + . . . . (5.15)

We may now integrate out V̂H , taking into account the equations of motion and the vector

superfield propagator

∆VH (k, θ, θ̄) = − 1

k2 −m2
V

+
θ4m2

soft

k2 − (m2
V +m2

soft)
+ . . . , (5.16)

where k is the external momentum. We then get the effective Kähler potential,

Keff
Ai, Bj =

∑

i

Â†ie
gDV̂DÂi +

∑

j

B̂†je
gDV̂DB̂j

+
∑

c

g2
D

(
1

m2
V

− θ4m2
soft

m2
V +m2

soft

)
ga
gb

∑

i

Â†iT
c
DÂi −

gb
ga

∑

j

B̂†jT
c
DB̂j




2

. (5.17)

Therefore the D-terms read

LD-terms ⊃ −
∑

c

g2
D

2

m2
soft

m2
V +m2

soft


ga
gb

∑

i

A†iT
c
DAi −

gb
ga

∑

j

B†jT
c
DBj




2

, (5.18)

meaning that they are not decoupled, as desired.

We may now pass to a more concrete case involving two copies of SU(2) that break to the

electroweak SU(2)L, i.e. GA⊗GB⊗U(1)Y → SU(2)L⊗U(1)Y , that is the MSSM electroweak

group. We take the Higgs superfields to be Âi,= Ĥu, Ĥd, the only chiral superfields apart of

L̂. The vector bosons VD corresponds then to W and VH to a W ′ boson.

In this specific case, the effective Kähler potential for the Higgs bosons reads

Keff
Hi =

∑

i=u,d

Ĥ†i e
g2W Ĥi +

∑

c

g2
D

(
1

m2
V

− θ4m2
soft

m2
V +m2

soft

)
ga
gb

∑

i=u,d

Ĥ†i T
cĤi




2

+ . . . . (5.19)

where we set gD to be the SM coupling g2, and the ellipsis stands for the terms relative to

U(1)Y . From the first term in eq. (5.19) one derives the D-terms corresponding to the MSSM

gauge group, from the second term one derives the additional non-decoupling D-terms.

As mentioned above, in the absence of (soft) supersymmetry breaking, the additional

supersymmetric D-terms are suppresses via ∼ O(µ2/m2
V ) [91,97]. In fact, µ is usually required
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to be < 300 GeV while mV is constrained to be larger than 3 TeV from electroweak analysis

of gauge extended models [186]. On the other hand, the additional SUSY breaking D-terms

instead are not decoupled and can give an important contribution to Higgs quartics. Therefore

the D-terms for the Higgs doublets are

LD-terms =− g2
1

8

(
H†uHu −H†dHd

)2

−
∑

c

g2
2

2

(
1 +

g2
a

g2
b

m2
s

m2
V +m2

s

)(
H†uT

cHu +H†dT
cHd

)2
. (5.20)

Therefore, the tree-level Higgs mass looks like

m2
h,tree ≤

[
m2
Z + g2

2

g2
a

4g2
b

m2
s

m2
V +m2

s

v2

]
cos2 2β , (5.21)

where we set gD to be the SM coupling g2. The inequality is saturated in the decoupling limit

mA0 � mZ . From (5.21) it is clear that the MSSM tree-level upper bound on the Higgs mass

squared, m2
Z , may be surpassed with a suitable choice of parameters. The enhancement will

be discussed more accurately in the two cases analysed in section 5.2.

GA GB

L̂

ˆ̃L

Âi B̂j

Figure 5.2: The quiver module of the toy model with G = SU(2)⊗ SU(2) with L̂, ˆ̃L connecting the

sites and the chiral superfields Âi, B̂j respectively on site A and B.

Two sites, two linking fields Another possibility to obtain similar D-terms corrections

with a gauge group GA ⊗ GB, is to consider the case in which there are two chiral linking

superfields L̂, ˆ̃L transforming as (2, 2̄) and (2̄,2) under G = GA ⊗ GB = SU(2)A ⊗ SU(2)B

[91, 97,175,176,180–183]. The Kähler potential for L̂, ˆ̃L is

KL,L̃ = Tr [egaV̂aL̂ e−gbV̂b L̂†] + Tr [egbV̂b ˆ̃Le−gaV̂a ˆ̃L†] , (5.22)

where ga, gb are the gauge couplings of GA, GB and V̂A, V̂B are the gauge supermultiplets.

We take the rest of the matter content of the model to be coupled as in the previous

example, eq. (5.3). We may then write the D-terms:

LD-terms =
g2
a

2

(
Tr
[
L†T cL

]
+ Tr

[
L̃ T cL̃†

]
+A†iT

cAi

)2

+
g2
b

2

(
Tr
[
LT cL†

]
+ Tr

[
L̃†T cL̃

]
+B†jT

cBj

)2
. (5.23)
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The superpotential for the bidoublets L̂, ˆ̃L is given by

WL,L̃ = λ
(

detL̂+ det ˆ̃L
)

+ ρTrL̂ ˆ̃L . (5.24)

The two possible D-flat minima are:

〈L〉 = 〈L̃〉 = 0 , 〈L〉 = 〈L̃〉 = −ρ
λ
12×2 . (5.25)

The second solution is responsible for the diagonal gauge symmetry breaking GA⊗GB → GD.

We may then follow the same steps of the previous example. First, we introduce soft

masses for L̂ and ˆ̃L, then we integrate out V̂H , whose scalar component is a combination of

the corresponding scalar L, L̃. The additional non-decoupling D-terms then arise as before,

cf. eq. (5.18).

5.1.3 EW-scale effects

We resume here some of the most important effects at the electroweak scale of non-decoupling

D-terms.

• First, we have seen that the non-decoupling D-terms triggered by an extended gauge

group raise the tree-level Higgs mass. This allows, as we will see in sec. 5.2, to have

lighter stops and/or lower stop mixing to reach the 125.5 GeV observed Higgs mass [3].

This relaxes naturalness. In the more recent reference [187] it has been shown, with a

detailed analysis of the fine tuning in the model, that as as long as tanβ is not small

(. 4), the observed Higgs mass at ∼ 125.5 GeV can be accommodated without large

D-terms.

• We can see from eq. (5.17) that actually all the scalars that are charged under the

breaking gauge symmetries like, for instance, Higgs bosons, squarks, and sleptons, re-

ceive mass corrections from the additional D-terms. The modified masses for the non-

SM-like Higgs bosons, sleptons, and squarks give contributions ∆T to the T parameter.

They may compensate the negative contributions coming from a heavy SM-like Higgs

boson [179].

One should also notice that a vev vT of the triplet linking fields LT and L̃T can arise as a

deviation from the diagonal vevs in eqs. (5.6) and (5.25). This vev can also participate

to the electroweak symmetry breaking, even though it is constrained by electroweak

precision measurements to be vT < 3 GeV [103]. This triplet vev brings a small positive

∆T contribution too. The analysis of the ∆T contributions in these models has been

studied in detail in [179], in which a scenario with a light third slepton sector is presented

in order to fulfil the electroweak constraints.
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• After electroweak symmetry breaking, the gauge bosons in the example described above

with gauge group SU(2)A ⊗ SU(2)B ⊗ U(1)Y have masses [187]:

m2
W '

g2
Dv

2

4

(
1− g4

a

g4
b

v2

2u2
+ 8

v2
T

v2

)
(5.26)

m2
Z '

(
g2
D + g2

1

)
v2

4

(
1− g4

a

g4
b

v2

2u2

)
(5.27)

m2
W ′ '

(
g2
a + g2

b

)
u2

2

(
1 +

g4
a

g4
b

v2

2u2
+

(
g2
a − g2

b

)2
(
g2
a + g2

b

)2
v2
T

u2

)
(5.28)

m2
Z′ '

(
g2
a + g2

b

)
u2

2

(
1 +

g4
a

g4
b

v2

2u2
+
v2
T

u2

)
(5.29)

in the limit u� v � vT .

• Extended gauge symmetries lead also to an extended neutralino and chargino sector.

We define ψ±L and ψ0
T as respectively the charged and neutral fermionic components

of L̂T , and ψS as the fermionic component of L̂S . In the model with gauge group

G = SU(2)A⊗SU(2)B⊗U(1)Y and one linking field, there are four charginos. They are

mixing states of W̃±1 , W̃±1 , H̃±u/d, and of ψ±L , coming from the fermionic component of

L̂T . There are eight neutralinos, mixing states of B̃0, W̃ 0
1 , W̃ 0

2 , H̃0
u, H̃0

d , L̃0
T , then also

the decoupled L̃S , and the weakly coupled S̃. In some regions of the parameter space

with low values of tanβ and with relatively third-generations squarks, the modified

chargino sector is responsible to an increased h→ γγ decay branching ratio through the

chargino loop [172].

• Finally, the enhanced Higgs quartic couplings lead, at lower energies, to modified Higgs

couplings to fermions and W, Z [91, 146], that will be discussed in section 5.3.

5.2 Non-decoupling D-terms and the tree-level Higgs mass

In the rest of the chapter, we consider two classes of gauge extensions of the MSSM, both

with two quiver sites [3]. We adopt a bottom-up approach in that we focus in the low energy

effective field theory of these models, resulting in a deformation of the MSSM by a set of

non-decoupling D-terms. This effective theory has been obtained after integrating out the

heavy gauge bosons related to the symmetry breaking, as previously explained. Therefore

we do not take into account of the effects from RGE, as was done in the top-down approach

in [174].

The classes of two-sites supersymmetric models consider here, feature a gauge group G
that consists in SU(3)c and two copies of SU(2)⊗ U(1), located in sites A and B:4

G = SU(3)c ⊗ (SU(2)⊗ U(1))A ⊗ (SU(2)⊗ U(1))B . (5.30)

4One could introduce a quiver structure also for SU(3)c, cf. [97], however, we do not consider this possibility

since not directly related to the effects of non-decoupling D-terms on the Higgs mass.
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Superfields Spin 0 Spin 1
2 SU(3)c ⊗GA ⊗GB

Q̂i Q̃i Qi (3, 21/6, 10)
ˆ̄di d̃∗R i d∗R i (3, 11/3, 10)

ˆ̄ui ũ∗R i u∗R i (3, 1−2/3, 10)

ˆ̀
i

˜̀
i `i (1, 2−1/2, 10)

ˆ̄ei ẽ∗R i e∗R i (1, 11, 10)

Ĥd Hd H̃d (1, 2−1/2, 10)

Ĥu Hu H̃u (1, 21/2, 10)

L̂ L ψL (1, 2−1/2, 21/2, )
ˆ̃L L̃ ψL̃ (1, 21/2, 2−1/2)

K̂ K ψK (1, 10, 10)

Table 5.1: The matter content of the theory that may lead to a vector-Higgs non decoupled D-term

for both SU(2)L and U(1)Y , with the Higgs doublets on site A. i = 1, 2, 3 labels the generations. The

singlet K̂ couples to the linking fields in the superpotential and it is introduced to generate a suitable

scalar potential for the linking fields, see also [174]. This model is represented in figure 5.3.

The two sites are connected by two linking fields L̂ and ˆ̃L, charged under G as
(
1, 21/2, 21/2

)

and
(
1, 21/2, 2−1/2

)
, respectively. L̂ and ˆ̃L acquire vevs and are responsible for the gauge

symmetry breaking to the MSSM group SU(3)c ⊗ SU(2)L ⊗ U(1)Y . The breaking has the

diagonal pattern:

SU(2)A ⊗ SU(2)B → SU(2)L , U(1)A ⊗ U(1)B → U(1)Y . (5.31)

5.2.1 Vector Higgs quiver model

We present here the class of models in which both MSSM Higgs doublets are on the same

site [96, 97], such that they transform under G in a vector representation (Hu, Hd). We refer

to this class as the “Vector Higgs case”. The three quark and lepton generations may be

distributed on different sites, with effects that we will mention later. In the present analysis

we assume that all the matter, Higgs doublets included, are on site A, according to the charge

table 5.1 and the sketch in figure 5.3. This particular case has been implemented within the

program SARAH [188,189], where the scalar potentials has been calculated, in correspondence

of the gauge breaking G → GSM and the electroweak symmetry breaking.

The superpotential consists in

W =WMSSM +
YK
2
K̂
(
L̂ ˆ̃L− %2

)
, (5.32)

where the gauge singlet superfield K̂ has been introduced.
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GA GB

L̂

ˆ̃L
Ĥu Ĥd

SSMgenerations

Figure 5.3: The quiver diagram of the electroweak sector of the vector Higgs quiver model, cf. table

5.1. The supersymmetric standard model is on site A, the linking fields L̂ and ˆ̃L connect the two sites.

The singlet field K̂ is not shown. The resulting non-decoupling vector-Higgs D-terms are displayed in

(5.34).

Following the same logic of the case described in section 5.1, the linking fields get vevs

〈L〉 = 〈L̃〉 = vL12×2 , (5.33)

that diagonally break the gauge symmetry at a scale & 1 TeV. Similarly, the heavy gauge

superfield B̂H , Ŵ
i
H are integrated out. We then obtain an effective theory in which the

following relevant terms are added to the MSSM Higgs potential:

δL = −g
2
1∆1

8
(H†uHu −H†dHd)

2 − g2
2∆2

8

∑

a

(H†uσ
aHu +H†dσ

aHd)
2 + . . . . (5.34)

The ellipsis denotes D-terms involving the other scalars of the model that are charged under

the gauge symmetry, i.e. squarks and sleptons. The parameters ∆1 and ∆2 are defined as

∆1 =

(
g2
A1

g2
B1

)
m2
L

m2
v1 +m2

L

, ∆2 =

(
g2
A2

g2
B2

)
m2
L

m2
v2 +m2

L

, (5.35)

where gA1, gB1 are the U(1) couplings on site A and B, while gA2, gB2 are the SU(2) couplings;

mL is the soft mass, that we assume equal for both the linking fields L and L̃; mv1 , mv2 are

the masses of BH , W
i
H after the symmetry breaking to SU(2)L ⊗ U(1)Y .

The enhancement of the D-terms requires Ri = g2
A i/g

2
B i to be as large as possible. How-

ever, this condition may spoil gauge couplings perturbative unification depending on how the

matter is distributed between the sites. If most of the matter is charged under GA as in the

case considered, indeed, then a Landau pole may be reached below the GUT scale [3, 97]. In

the following we will not require gauge coupling unification, therefore ∆1 and ∆2 may arise

independently.

Adding the D-terms quartic terms in eq. (5.34) to the MSSM Higgs scalar potential in

eq. (2.40) leads to modified minimisation conditions and tree-level Higgs mass matrices, that

we report here. Setting for brevity:

g2
12 = g2

1(1 + ∆2
1) + g2

2(1 + ∆2
2) , ĝ2

12 = −g2
1(1 + ∆2

1) + g2
2(1 + ∆2

2) , (5.36)
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the tadpole equations read

∂V

∂H0
d

=
1

8

(
− 8vuRe[Bµ] + g2

12v
3
d + vd[8m

2
Hd

+ 8|µ|2 − g2
12v

2
u]
)
, (5.37)

∂V

∂H0
u

=
1

8

(
− 8vdRe[Bµ] + 8vu|µ|2 + vu[8m2

Hu − g2
12(−v2

u + v2
d)]
)
. (5.38)

We can derive the mass matrix for the CP-even Higgs bosons, which in the basis (ReH0
d , ReH0

u)

is given by

m2
h =

(
mh,11 −1

4g
2
12vdvu−Re[Bµ]

−1
4g

2
12vdvu− Re[Bµ] mh,22

)
, (5.39)

where

mh,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12

(
3v2
d − v2

u

))
, (5.40)

mh,22 =
1

8

(
8m2

Hu + 8|µ|2 − g2
12

(
− 3v2

u + v2
d

))
. (5.41)

The mass matrix for the pseudo-scalar Higgs bosons in the basis (ImH0
d , ImH0

u) reads

m2
A0 =

(
mA0,11 Re[Bµ]

Re[Bµ] mA0,22

)
, (5.42)

where

mA0,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12

(
− v2

u + v2
d

))
, (5.43)

mA0,22 =
1

8

(
8m2

Hu + 8|µ|2 − g2
12

(
− v2

u + v2
d

))
. (5.44)

Finally, the mass matrix for the charged Higgs bosons in the basis
(
H−d , H

+,∗
u

)
,
(
H−,∗d , H+

u

)

reads

m2
H− =


 mH−,11

1
4

(
4B∗µ +

(
g2

2 + g2
2∆2

2

)
vdvu

)

1
4

(
4Bµ +

(
g2

2 + g2
2∆2

2

)
vdvu

)
mH−,22


 , (5.45)

with

mH−,11 =
1

8

(
8m2

Hd
+ 8|µ|2 + g2

12v
2
d + ĝ2

12v
2
u

)
, (5.46)

mH−,22 =
1

8

(
8m2

Hu + 8|µ|2 + g2
12v

2
u + ĝ2

12v
2
d

)
. (5.47)

After diagonalising the Higgs mass matrices we get the tree-level Higgs masses

m2,V
h,H =

m2
A0 +m2

Z +m2
∆

2
∓

√
(m2

A0 −m2
Z −m2

∆)2

4
+
(
m2
Z +m2

∆

)
(m2

A0 sin2(2β) , (5.48)

m2,V
A0 ≡

2Bµ
sin 2β

= 2|µ|2 +m2
Hu +m2

Hd
, (5.49)

m2,V
H± = m2

A0 +m2
W (1 + ∆2) , (5.50)
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where we defined 4m2
∆ = (g2

1∆1 +g2
2∆2)v2, and “V” denote the vector Higgs case, and we took

Bµ to be real. Equations (5.48)–(5.50) can equivalently be obtained by the MSSM relations

(2.46)-(2.48) with the substitutions

m2
Z → m2

Z +m2
∆ , m2

W → m2
W (1 + ∆2) . (5.51)

The non-decoupling D-terms contribution causes a shift in the tree level Higgs mass squared

m2
h, tree which results in the upper bound

m2,V
h, tree ≤

[
m2
Z +

(
g2

1∆1 + g2
2∆2

4

)
v2

]
cos2 2β . (5.52)

that is saturated in the decoupling limit mA0 � mZ , that we will consider.

The tree-level shift in equation (5.52) can significantly reduce the fine-tuning in the top-

stop sector, cf. eq. (2.50). In fact, much smaller radiative corrections to the Higgs mass would

be needed to reach the observed 125.5 GeV, therefore allowing for lighter stops and smaller

stop mixing. In the following, we will consider the case of decoupling limit with moderately

large tanβ, such that we approximate the 1-loop Higgs mass considering the most relevant

two-loop corrections as

m2,V
h '

[
m2
Z +

(
g2

1∆1 + g2
2∆2

4

)
v2

]
cos2 2β

+
3

2π2v2

[
m4
t, r

(√
mtMt̃

)
ln
M2
t̃

m2
t

+m4
t, r(Mt̃)

X2
t

M2
t̃

(
1− X2

t

12M2
t̃

)]
. (5.53)

An accurate estimate of the SM-like Higgs mass for the SU(2)A ⊗ SU(2)B ⊗U(1)Y has more

recently been derived using the Coleman-Weinberg potential approach [187]. The loop con-

tributions to the physical Higgs mass due to the D-terms, cf. eq. (5.34), are subleading with

respect to the stop loops in eq. (5.53). However, the explicit breaking of supersymmetry in eq.

(5.34) introduces a new source of fine-tuning due to the quadratically divergent contribution

to the Higgs mass squared parameter [97]:

(
αg2

1∆1 + βg2
2∆2

4

)
m2
L

16π2
. (5.54)

The coefficients α, β are determined by the precise matter content that appears in the non-

decoupling D-term. The fine tuning may be näıvely defined by the ratio of m2
h over the term

in eq. (5.54). To control this fine tuning to be better than 10%, one may require mL < 10

TeV. If one requires ∆i & 0.5, the electroweak constraints then set mL > mV > 3 TeV [91].

Vector case non-decoupling D-terms and Higgs mass enhancement

We use equation (5.53) to give a qualitative understanding and a predictive guide for the size

of the D-terms required to allow for substantially lighter stops or stop mixings. We do not

implement here experimental or other phenomenological constraints.
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Figure 5.4: Contours of the Higgs mass mh = 125.5 GeV in the (MQ3 , Xt) plane [left panel] and in

the (mt̃1
, Xt) plane [right panel] for different values of ∆1 = ∆2. We set MQ3 = Mu3 , tanβ = 10.

We first show how the Higgs mass is raised by the D-terms in fig. 5.4. Here, for a

moderately large value tanβ = 10 and MQ3 = Mu3 , we plot the Higgs mass from eq. (5.53),

for different values of ∆ ≡ ∆1 = ∆2, in the (MQ3 , Xt)-plane (similarly to [91]) and in the

(mt̃1
, Xt)-plane.5 The MSSM limit, defined as ∆ = 0, is plotted in dashed line. In this limit,

considering null mixing Xt = 0 GeV, a lightest stop mass mt̃1
' 4 TeV is required to reproduce

the observed Higgs mass, mh = 125.5 GeV. Considering ∆ = 0.3, instead, for Xt = 0 GeV

a mass mt̃1
' 1 TeV is sufficient. We can draw similar conclusions for the maximal mixing

scenario, corresponding to the condition |At| '
√

6Mt̃ and visible in fig. 5.4 as the sharply

acute concave kink in the contours. For increasing ∆, a significantly smaller Xt is requested

with respect to the MSSM limit.

One should then discuss the expected order of the size of these D-terms and its meaning.

At the tree level, one can observe in figure 5.5 that in principle with ∆ of order ∼ O(1) the

tree-level Higgs mass would already be sufficiently large to account for the observed 125.5 GeV

Higgs mass. In [91], under the request of fine tuning no worse than 10%, it was found that one

would expect ∆ & 0.5, while keeping the stops light. However, as discussed in [3], one may

find that ∆ of order O(0.1–0.6) is more easily obtainable and preferable if to accommodate

gauge coupling unification, cf. discussion in section C. This depends also on how the matter,

i.e. quark and lepton supermultiplets, is distributed between sites A and B, since this affect

the running of the couplings from higher energies. Since ∆ of order O(0.1–0.6) still gives a

5Even though ∆1 and ∆2 may arise independently as we are not requiring coupling unification, for the sake

of simplicity we will consider in the following ∆1 equal to ∆2, and we will simply refer to them as ∆.
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Figure 5.6: Higgs mass mh with tree-level D-terms corrections vs tanβ. On the left panel, for

different values of ∆1 = ∆2 with Xt = 0 and with mt̃1
= 500 GeV. On the right panel, for different

values of mt̃1
with ∆1 = ∆2 = 0.2 and Xt = −500 GeV. For comparison, 125.5± 3 GeV grid lines are

plotted.

noticeable effect on the Higgs mass, we will study the degree to which these slighter deviations

from the MSSM can be determined at the LHC and ILC.

Enhancements due to the non-decoupling D-terms arise significantly for tanβ ∈ [1, 10]

and stabilise for tanβ & 10, cf. figs. 5.5 and 5.6. The same pattern could be observed also

with the RG-evolution approach in [174].

Also, in the left panel of fig. 5.7 we can see that with null mixing Xt = 0 GeV and

tanβ = 10, mt̃1
has to be in the 1-4 TeV range for ∆ ∈ [0.01, 0.3]. Finally, we see in the

right panel of fig. 5.7 that with the relatively low stop mass mt̃1
∼ 500 GeV, a |Xt| ∼ 1
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Figure 5.7: Higgs mass mh with tree-level D-terms corrections for different values of ∆1 = ∆2, with

tanβ = 10 and 125.5 ± 3 GeV grid lines plotted for comparison. On the left panel, mh vs mt̃1
with

Xt = 0 GeV; on the right panel, mh vs Xt with mt̃1
= 500 GeV.

TeV is required. Concluding, due to the D-term additional contributions to Higgs quartics

naturalness relaxes, as we have pointed out for the maximal mixing scenario and for the null

mixing scenario.

Sfermion masses

The masses of sfermions, charged under (SU(2)⊗ U(1))A⊗(SU(2)⊗ U(1))B, receive tree level

contributions from non-decoupling D-terms too. Referring to table 5.1, the mixing matrix

M2
f̃

of a generic charged sfermion f̃ is given by

M2
f̃

=




M2
Qf

+m2
f + M̂2

Z (I3
f −Qf s2

W ) mfX
∗
f

mfXf M2
uf

+m2
f + M̂2

Z Qf s
2
W


 , (5.55)

denoting sw = sin θW , and M̂2
Z ≡ (m2

Z +m2
∆) cos 2β. The off-diagonal element Xf is defined

in terms of the soft SUSY-breaking trilinear coupling Af via

Xf = Af − µ∗ × {cotβ, tanβ} , (5.56)

where cotβ applies for the up-type quarks, u, c, and t, while tanβ applies for the down-type

fermions, d, s, b, e, µ, and τ . Note that mf , Qf and I3
f are the mass, charge and isospin

projection of the fermion f , respectively. Once diagonalised, M2
f̃

leads to the sfermion masses

mf̃1
and mf̃2

, with mf̃1
≤ mf̃2

. In particular the stop masses are given by

m2
t̃1, 2

=m2
t +

1

2

[
M2
Q3

+M2
u3 +

1

2
M̂2
Z cos 2β

∓
√[

M2
Q3
−M2

u3 + M̂2
Z cos 2β

(
1

2
− 4

3
sin2 θW

)]2

+ 4m2
tX

2
t


 , (5.57)
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To obtain the MSSM mass expression one has just to set m∆ = 0. For a light stop sce-

nario, non-decoupling D-terms may have an appreciable effect. Similarly, they may give an

interesting contribution for scenarios with light τ̃1, which may be the NLSP as in GMSB

scenarios [48]. If gA > gB, eq. (5.55) applies to the third generation scalars on Site A even

for the case split sfermion generations in which the first two generations are on site B.

The sneutrinos mass matrix, instead, is given by

m2
ν̃ = M2

L +
1

2
(m2

Z +m2
∆) cos(2β). (5.58)

Changing the matter distribution between sites

Vector Higgs D-term extensions of the MSSM may have, as anticipated, generations of matter

located on sites A and B in various ways, for example with the first two sfermions generation

on site B. This possibility has been exploited to explain flavour hierarchies [98, 174]. Typ-

ically, the third generation is taken to be on the same site as Hu, in order the stop mixing

parameter Xt to trigger EWSB [177, 178]. Note also that having split generations helps to

have asymptotically free SU(2)A, which in turn translates in the possibility to increase at the

electroweak scale ∆ [177]. Also, if more matter is on site B than site A, this configuration

may more easily allow for easier gauge coupling unification [174].

Alternatively, both Higgs doublets can be are on site B. The corresponding D-terms are

now given by (5.34) with ∆1 and ∆2 respectively equal to

∆B
1 =

(
g2
B1

g2
A1

)
m2
L

m2
v1 +m2

L

, ∆B
2 =

(
g2
B2

g2
A2

)
m2
L

m2
v2 +m2

L

. (5.59)

Notice that the role of the gauge couplings, here g2
B1 > g2

A1, is reversed with respect to

the scenario discussed above.

5.2.2 Chiral Higgs quiver model

A two-sites quiver extension of the MSSM may have the two Higgs doublets distributed on two

different sites. This class of scenarios is called the “Chiral Higgs case” [190], since the Higgs

doublets cannot be grouped under the same representation of the gauge group G. Therefore

the Higgs doublets will transform, for example, like Hu ∼
(
1,21/2,10

)
and Hd ∼

(
1,10,21/2

)
.

A couple of linking fields L̂ and ˆ̃L charged under G as (1, 2−1/2, 21/2) and (1, 21/2, 2−1/2)

connects the two sites.

The fact that Hu and Hd are on different sites has the phenomenological consequence that

a µ-term like the one in the MSSM superpotential is forbidden by gauge invariance. However,

the µ-term can be recovered introducing, for example, a term in the superpotential in which

the Higgs doublets couple to the linking field L̂. Then, L̂ acquires a vev, and in analogy to

the NMSSM we have:

µLL̂ĤuĤd
µL〈L̂〉 = µ−−−−−−−−→ µĤuĤd . (5.60)
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GA GB

L̂

ˆ̃L

MSSM matter
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Figure 5.8: A possible 4 Higgs doublets UV completion of the chiral Higgs model. The quark and

lepton superfields can be distributed in multiple possibilities between sites A and B.

A possible UV completion that can led us to the superpotential term in eq. (5.60) is given

by the model sketched in fig. 5.8. In the example, an up- and a down-type Higgs doublets,

Âu and Âd, are charged under GA, while the up-type B̂u and the down-type B̂d are charged

under GB. The following terms can then be added to the superpotential [190]:

WUV ⊃ µAÂuÂd + µBB̂uB̂d + µL̃
ˆ̃LÂuB̂d + µLL̂ÂdB̂u . (5.61)

Taking µL〈L̂〉 � µL̃〈
ˆ̃L〉, we can integrate out Âd and B̂u (at the tree level), such that in a

lower energy spectrum we can identify Âu with Ĥu and B̂d with Ĥd. Then, at lower energies,

but still above the TeV scale, this provides the µ-term for the superpotential of our chiral

Higgs model:

µ ĤuĤd =

(
µL̃〈

ˆ̃L〉 − µAµB

µL〈L̂〉

)
ĤuĤd . (5.62)

We can then write the superpotential of the chiral Higgs model just as in eq. (5.32),

W =WMSSM +
YK
2
K̂
(
L̂ ˆ̃L− %2

)
. (5.63)

As usual, the squark and slepton generations may be distributed in several ways between

sites A and B. This distribution affects the anomaly cancellation considerations and gauge

couplings unification but it is not relevant (at least at leading order) for our observations

of tree-level mass enhancement and deviations in the SM-like Higgs couplings, cf. sec. 5.3.

Therefore we stick, more concretely, to the case described in figure 5.9 and in table 5.2, in

which the up-type Higgs double Hu and the three generations of matter are on site A, while

the down-type Higgs double Hd is on site B.6

The superpotential eq. (5.63) and the Kähler potential for the Higgs superfields

KH = Ĥ†ue
gaVaĤu + Ĥ†de

gbVbĤd , (5.64)

6The model, in order to get anomaly cancellation, requires a UV completion with additional fields carrying

Higgs-like charges, such as in the model described above and sketched in figure 5.8, or alternatively lepton

supermultiplets moved on site B [190].
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GA GB

L̂

ˆ̃L
Ĥu Ĥd

SSMgenerations

Figure 5.9: The quiver module of the electroweak sector for the chiral Higgs case, as reported in

table 5.2. The corresponding non-decoupling D-terms are given in (5.65).

lead, after the gauge symmetry breaking G → GSM, and after integrating out the linking fields

at low energies, to the following non-decoupling D-terms:

δL = −g
2
1Ω1

8
(ξ1H

†
uHu +

1

ξ1
H†dHd)

2 − g2
2Ω2

8

∑

a

(ξ2H
†
uσ

aHu −
1

ξ2
H†dσ

aHd)
2 + . . . . (5.65)

The ellipsis denotes again D-terms involving sleptons and squarks that are charged under the

gauge symmetry, see section 5.1, while

ξi =
gAi
gBi

, Ωi =
m2
L

m2
vi +m2

L

(i = 1, 2) . (5.66)

Note that ∆i = ξ2
i ·Ωi, however, we separately defined ξi and Ωi for later convenience, for the

analysis of Higgs couplings. We find the tadpole equations from the Higgs scalar potential to

be given by

∂V

∂H0
d

= −vu Re [Bµ] + vd

(
m2
Hd

+ |µ|2
)

+ vd
m2
Z

2
cos(2β) +

vd
8

∑

i

g2
i Ωi

(
v2
d

ξ2
i

+ v2
u

)
, (5.67)

∂V

∂H0
u

= −vd Re [Bµ] + vu

(
m2
Hu + |µ|2

)
− vu

m2
Z

2
cos(2β) +

vu
8

∑

i

g2
i Ωi

(
v2
d + v2

uξ
2
i

)
. (5.68)

The mass matrix for the CP-even Higgs bosons, in the basis (ReH0
d , ReH0

u) is given by

m2
h =

(
mh,11

vdvu
4

∑
i g

2
i (Ωi − 1)− Re[Bµ]

vdvu
4

∑
i g

2
i (Ωi − 1)− Re[Bµ] mh,22

)
, (5.69)

with

mh,11 = Bµ tanβ +m2
Z cos2 β +

v2

4
cos2 β

∑

i

g2
i

Ωi

ξ2
i

(5.70)

mh,22 = Bµ cotβ +m2
Z sin2 β +

v2

4
sin2 β

∑

i

g2
i Ωiξ

2
i . (5.71)
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Superfields Spin 0 Spin 1
2 SU(3)c ⊗GA ⊗GB

Q̂i Q̃i Qi (3, 21/6, 10)
ˆ̄di d̃∗R i d∗R i (3, 11/3, 10)

ˆ̄ui ũ∗R i u∗R i (3, 1−2/3, 10)

ˆ̀
i

˜̀
i `i (1, 2−1/2, 10)

ˆ̄ei ẽ∗R i e∗R i (1, 11, 10)

Ĥu Hu H̃u (1, 21/2, 10)

Ĥd Hd H̃d (1, 10, 2−1/2)

L̂ L ψL (1, 2−1/2, 21/2, )
ˆ̃L L̃ ψL̃ (1, 21/2, 2−1/2)

K̂ K ψK (1, 10, 10)

Table 5.2: The matter content of a quiver model that may lead to the Chiral Higgs case and the

D-term enhancement of (5.65). This is pictured in figure 5.9. The model requires a UV completion

with additional fields carrying Higgs-like charges, such as in figure 5.8, or leptons multiplets on site B

instead of A, for anomaly cancellation.

The mass matrix for the pseudo-scalar Higgs bosons, in the basis (ImH0
d , ImH0

u), reads

m2
A0 =

(
mA0,11 Re [Bµ]

Re [Bµ] mA0,22

)
, (5.72)

with

mA0,11 = Bµ cotβ , (5.73)

mA0,22 = Bµ tanβ . (5.74)

The mass matrix for the charged Higgs bosons in the basis
(
H−d , H

+,∗
u

)
,
(
H−,∗d , H+

u

)
is

m2
H− =

(
mH−,11

1
4g

2
2(1− Ω2)vdvu +B∗µ

1
4g

2
2(1− Ω2)vdvu +Bµ mH−,22

)
, (5.75)

with

mH−,11 = Bµ tanβ +m2
W sin2 β(1− Ω2) , (5.76)

mH−,22 = Bµ cotβ +m2
W cos2 β(1− Ω2) . (5.77)
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We derive the corresponding tree-level Higgs masses to be (we consider Bµ real),

m2,C
h0,H0 =

1

2

(
m2
A +m2

Z

)
+ (C +D)

∓ 1

2

√(
m2
A−m2

Z +
2 (C−D)

cos(2β)

)2

c2(2β) +
(
m2
A +m2

Z − 2m2
Ω

)2
s2(2β) , (5.78)

m2,C
A ≡ 2Bµ

sin 2β
= m2

Hu +m2
Hd

+ 2|µ|2 + C +D +m2
Ω , (5.79)

m2,C
H± = m2

A +m2
W (1− Ω2) , (5.80)

where c2(2β) = cos2(2β), s2(2β) = sin2(2β). We defined

C =
v2

8

∑

i=1,2

g2
i Ωiξ

2
i sin2 β , D =

v2

8

∑

i=1,2

g2
i Ωi

cos2 β

ξ2
i

. (5.81)

In the leading order in the 1/ tanβ expansion we can then write the tree-level mass for the

lightest CP-even Higgs as

m,C
h,0 .

[
m2
Z +

(
g2

1ξ
2
1Ω1 + g2

2ξ
2
2Ω2

4

)
v2

]
+O(

1

tan2 β
, ξi) , (5.82)

saturated in the decoupling limit mA0 � mZ . In the following, we take for simplicity Ω ≡
Ω1 = Ω2 and ξ ≡ ξ1 = ξ2. We consider the decoupling limit, such that we approximate the

1-loop Higgs mass with the most relevant two-loop corrections as

m2,C
h '

[
m2
Z +

(
g2

1ξ
2
1Ω1 + g2

2ξ
2
2Ω2

4

)
v2

]

+
3

2π2v2

[
m4
t, r

(√
mtMt̃

)
ln
M2
t̃

m2
t

+m4
t, r(Mt̃)

X2
t

M2
t̃

(
1− X2

t

12M2
t̃

)]
. (5.83)

Chiral case D-terms and Higgs mass enhancement

In fig. 5.10 the Higgs mass from eq. (5.83) is plotted in the (mt̃1
, Xt) plane for different

values of ξ on the left panel and Ω, on the right panel. ξ corresponds to the ratio between the

gauge couplings of the two sites, while Ω parametrises the relative importance between the

linking fields vevs and soft masses. Similarly to the vector Higgs case, the 125.5 GeV contour

lines show that the D-terms contribution lowers the minimal stop masses required for a given

value of Xt. In fig. 5.11, we show the mh contour lines in the (ξ, Ω)-plane for mt̃1
= 500 GeV

and 1 TeV, similarly to [190] (note the different notation.).

In the chiral Higgs case too, the explicit supersymmetry breaking in the low energy effective

theory leads to a source of fine tuning that can be controlled if mL < 10 TeV.
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Figure 5.10: Contours of the Higgs mass mh = 125.5 GeV in the (mt̃1
, Xt) plane for different values

of ξ [left panel] and Ω [right panel], with MQ3
= Mu3

, tanβ = 10.
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Figure 5.11: The Higgs mass in the (ξ, Ω)-plane, for the chiral Higgs case, with mt̃1
= 500 GeV [left

panel] and mt̃1
=1 TeV [right panel], while tanβ = 10, At = −400 GeV.
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5.3 Higgs couplings and detection at the LHC and ILC

Non-decoupling D-terms induced by the quiver extensions of the MSSM affect also the Higgs

boson couplings to fermions and gauge bosons with respect to the SM and the MSSM [91,

190–192]. We are interested to estimate these deviations and to evaluate the potential of

current and future colliders to detect them, in the light of the precision programs on Higgs

boson couplings measurements. We follow, in fact, a bottom-up approach in order to infer

on parameters of the model, i.e. ∆, Ω or mH , establishing which parameter regions may be

explored.

5.3.1 Non-decoupling D-terms effects on the Higgs couplings

A measure of the deviation of the couplings of the Higgs lightest eigenstate h from the cou-

plings of the SM is defined by the ratio of the Higgs coupling over the Higgs coupling in the

SM:

κU = gU/g
SM
U , κD = gD/g

SM
D , κV = gV /g

SM
V , (5.84)

for any up-type fermion U = u, c, t, down-type fermion D = d, s, b, e, µ, τ , or gauge boson

V = W±, Z.

We are restricting to the previously discussed effective field theories of gauge extensions of

the MSSM, that give at low energies are given by the MSSM plus additional non-decoupling

D-terms. These EFTs can be seen then as two-Higgs-doublets models (2HDMs) of type-II,

like the MSSM. Let us consider the general 2HDM Higgs scalar potential

V2HDM =m2
1|Hu|2 +m2

2|Hd|2 +m2
12(HuHd +H†uH

†
d)

+
λ1

2
|Hd|4 +

λ2

2
|Hu|4 + λ3|Hu|2|Hd|2 + λ4|H†dHu|2 +

λ5

2
[(Hu ·Hd)

2 + c.c.]

+ λ6|Hd|2[(Hu ·Hd) + c.c.] + λ7|Hu|2[(Hu ·Hd) + c.c.] , (5.85)

with all parameters real and CP-conserving. For the MSSM we have, cf. eq. (2.40),

m2
1 = (|µ|2 +m2

Hu) , m2
2 = (|µ|2 +m2

Hd
) , m2

12 = Bµ ,

λ1 = λ2 =
g2

1 + g2
2

4
, −λ3 =

g2
1 + g2

2

4
, λ4 =

1

2
g2

2 , λ5 = λ6 = λ7 = 0 . (5.86)

For 2HDMs we can express exactly the ratios (5.84), also called scaling factors, in terms

of the angles β and α [193–196],

κD ≡ −
sinα

cosβ
, κU ≡

cosα

sinβ
, κV ≡ sin(β − α) , (5.87)

where α is defined as the mixing angle of the CP-even Higgs mass eigenstates,

(
h0

H0

)
=
√

2

(− sinα cosα

cosα sinα

)(
Re H0

d

Re H0
u

)
. (5.88)
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The SM limit is recovered for sinα = − cosβ, cosα = + sinβ. In the following, we neglect

“wrong couplings”, i.e. couplings between H0
u (H0

d) and down-type (up-type) quarks, that

could come from integrating out squarks, higgsinos and charginos at 1-loop, for which we refer

to [91]. Given this, we express as in [91] κt, κV in terms of tanβ and κb:

κt =

√
1− κ2

b − 1

tan2 β
, κV =

tanβ

1 + tan2 β

(
κb

tanβ
+
√

1 + tan2 β − κ2
b

)
. (5.89)

The Higgs particle that has been observed at the LHC seems SM-like, at least within the

experimental accuracy, as said in chapter 3. Since we study the possibility that this SM-like

Higgs is the lightest CP-even Higgs of a model like the MSSM, we concentrate here in the

case of 2HDMs for moderately large and large tanβ (tanβ & 4) and we assume to be in the

decoupling limit mA0 & 200 GeV. In this regime, the lightest Higgs decays predominantly to

bs, while the heavier CP-even Higgs is relatively heavy, and can be identified with Hd, see

also [197].

Relations (5.87) are exact, however, a more transparent general expression for the scaling

factors κi can be obtained looking at the specific model considered, i.e. writing κi in terms of

the coefficients in the potential V2HDM, eq. (5.85). We therefore follow the procedure below,

treated more in detail in appendix C, and similar to the ones in [91,190,192]

We start from the Higgs Lagrangian

L ⊃ −V2HDM −
(
ūyuQ ·Hu + d̄ydQ ·Hd + h.c.

)
, (5.90)

neglecting leptons and, we stress again, the wrong couplings. We identify the heavy Higgs

states with the Higgs doubletHd and we integrate them out, obtaining the effective Lagrangian

Leff ⊃− h2

2
D2h2 −m2

2

h2

2
− λ2

8
h4

2 +
1

2
Θh2

1

D2 + Π2
Θh2

− ytt t̄ h2 +
yd√

2

Θ

D2 + Π2
bb̄ h2 , (5.91)

where h2 = ReH0
u, Θ = m2

12 +
λ7h22

2 and Π2 = m2
1 +

(λ3+λ5)h22
2 .

The Higgs couplings can be derived from the effective Lagrangian eq. (5.91) after defining

the SM-like Higgs h as

h2 =

(
1− 1

2

(
∂〈Θh2/Π

2〉
∂v2

)2
)
h , (5.92)

by normalising it at the order (Θ/Π2)2 ∼ 1/ tan2 β. Defining then the ratio between the Higgs

couplings to the SM-Higgs couplings as

κb = κτ ≡
vghbb̄
mb

= v
(∂Vb∂h )|h=v

Vb|h=v
, (5.93)

we get, cf. appendix C,

κb '
(

1− m2
h

m2
H

)−1(
1− [λ3 + λ5] v2

m2
H −m2

h

)
+ . . . . (5.94)



82 5.3. Higgs couplings and detection at the LHC and ILC

The ellipsis corresponds to non holomorphic couplings that are not present in the models we

consider, and to terms proportional to λ7, equal to zero in these models [190]. Finding the

right κb expressions for our quiver models is then straightforward, substituting into (5.94) the

corresponding λ3, λ5. The latter, in the vector Higgs case, may be obtained from the MSSM

relations (5.86) plus the additional non-decoupling D-terms (5.34), getting

(λ3 + λ5)vector = −
[
g2

2(1 + ∆2) + g2
1(1 + ∆1)

]

4
, (5.95)

therefore we have

κvector
b '

(
1− m2

h

m2
H

)−1
(

1 +
[g2

2(1 + ∆2) + g2
1(1 + ∆1)]v2

4
(
m2
H −m2

h

)
)
. (5.96)

In the chiral Higgs case, from eqs. (5.86) and (5.65), we obtain

(λ3 + λ5)chiral = −
[
g2

2(1− Ω2) + g2
1(1− Ω1)

]

4
, (5.97)

so the scaling factor is

κchiral
b '

(
1− m2

h

m2
H

)−1
(

1 +
[g2

2(1− Ω2) + g2
1(1− Ω1)]v2

4
(
m2
H −m2

h

)
)
. (5.98)

It is important to note that in both the vector and chiral cases κb depends only on the D-term

parameter (either ∆i or Ωi) and on the mass of the heavy CP-even Higgs, mH . One should

note also that in the chiral case κb does not depend on ξ2
i ·Ω, as in the vector case. It depends

only on Ωi, i.e. it is independent from the ratio between the couplings in the two quiver

sites. In both models, the MSSM limit is obtained by setting the non-decoupling D-term

contributions to zero, respectively ∆i = 0 and Ωi = 0, while the SM limit is set for mH →∞.

5.3.2 Higgs couplings determination at the LHC and ILC

The precise measurement of the Higgs boson couplings is crucial for establishing Higgs prop-

erties and the underlying physical model. It is therefore the object of much effort by the

ATLAS and CMS collaborations and one of the main goals for the ILC project.

At the LHC, the absolute value of Higgs couplings cannot be directly determined, since

only ratios between different Higgs couplings can be derived from the measurements of σ ·Brs.

Coupling determination is therefore possible only in the framework of a specific model, under

certain, at least minimal, assumptions. For example, one can obtain the scaling factors κi

from a constrained 7-parameter fit with the assumptions of the absence of non-SM Higgs

production and decay modes, together with generation universality (κu ≡ κt = κc, κd ≡
κb = κs and κl ≡ κτ = κµ), see [106]. With these assumptions, we have listed in table 5.3

the coupling determination uncertainties at the LHC at 14 TeV, with integrated luminosity∫
L dt = 300 fb−1, and the High Luminosity LHC (HL-LHC), with integrated luminosity

equal to 3000 fb−1 [106]. They are compared with the expected coupling uncertainties at
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the ILC, under the same model assumptions. The ILC stage at 500 GeV has integrated

luminosity equal to 750 fb−1, summing also the luminosity collected at 250 GeV. Similarly,

the stage at 1000 GeV adds another 1000 fb−1, while for the ILC1000−LumUp it is assumed a

total
∫

L dt = 5250 fb−1.

LHC 14 HL-LHC ILC500 ILC1000 ILC1000−LumUp

κW 4 –6 % 2 –5 % 0.39 % 0.21 % 0.2 %

κZ 4 –6 % 2 –4 % 0.49 % 0.5 % 0.3 %

κl = κτ 6 –8 % 2 –5 % 1.9 % 1.3 % 0.72 %

κd = κb 10 –13 % 4 –7 % 0.93 % 0.51 % 0.4 %

κu = κt 14 –15 % 7 –10 % 2.5 % 1.3 % 0.9 %

Table 5.3: Expected precisions on κb at 1σ, in %, from a constrained 7-parameter fit assuming no

non-SM production and decay modes and assuming universality (κu ≡ κt = κc, κd ≡ κb = κs and

κl ≡ κτ = κµ), as reported in [106].

The coupling ratios κi have currently been determined at the LHC with an accuracy still

far from the expected values in table 5.3. For example, we display in figure 5.12 some results

on the coupling scale factors by ATLAS and CMS with the assumptions reported in the

caption. In figure 5.12 we can see that all the best fits in the couplings are still consistent

with the SM value 1, even with 1σ-error bars, apart of the ATLAS slight deviation in hγγ.

In contrast with the LHC, at the future e+e− linear colliders the Higgs total width and the

Higgs couplings can be determined in a model-independent way.7 This model independence is

possible by exploiting the recoil methods that allow for a decay independent determination of

the Higgsstrahlung process production e+e− → HZ, a quantity that enters many observables

and therefore allow to disentangle the coupling scale factors [110]. As it can be expected,

with respect to the estimates with minimal model assumption, there are slightly higher 1σ

uncertainties. This is reported in table 5.4, where the estimated ILC accuracies on the Higgs

couplings are shown, assuming the theoretical uncertainties to be equal to 0.5% for the ILC

stages at
√
s =250, 500, 1000 GeV and for the luminosity upgrade ILCLumUp at 250, 500,

1000 GeV, from [110]. It has been estimated that the accuracy may be further increased [199].

While the Higgs determinations in the High-Luminosity LHC are dominated by systematic

errors, at the ILC, by contrast, measurements are dominated by statistical errors and are

improved with increasing statistics.

5.3.3 Spotting non-decoupling D-terms at colliders

So far, deviations of κb, κt from the SM-value 1, due an MSSM extension with non-decoupling

D-terms, have only been compared with 2012 ATLAS global fits in the specific case of a gauge

7Up to some assumptions on detector effects.
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Figure 5.12: (a) Summary of the measurements of the coupling scale factors for a Higgs boson with

mass mh = 125.5 GeV by ATLAS taken from [198]. The solid vertical lines represent the best-fit

values, with the ±1σ and ±2σ uncertainties respectively given by the green and yellow band. There

is strong correlation between the measurements in the various benchmark models, introduced in [198],

that are separated by double horizontal lines. (b) Summary of the fits for deviations in the coupling

by the CMS collaboration for a generic five-parameter model, in which the loop-induced couplings are

assumed to follow the Standard Model structure as in [102], taken from the additional plots of [16].

The best fit values of the parameters are shown, with the corresponding 1σ and 2σ CL intervals.

ILC250 ILC500 ILC1000 ILCLumUp

κW 4.9 % 1.2 % 1.1 % 0.6 %

κZ 1.3 % 1.0 % 1.0 % 0.5 %

κτ 5.8 % 2.4 % 1.8 % 1.0 %

κb 5.3 % 1.7 % 1.3 % 0.8 %

κt – 14 % 3.2 % 2.0 %

Table 5.4: Expected accuracies on the coupling scaling factors κi at 1σ, in %, for a completely

model-independent fit assuming theory errors ∆Fi/Fi = 0.5%, from the ILC Higgs White Paper [110].

group with an additional U(1) factor [146]. Values of mH below 300 GeV could be excluded

in that model.

We compare here the deviations from the SM couplings in the vector and chiral Higgs

models, cf. eqs. (5.96) and (5.98), with the expected accuracies at the various stages of the

LHC and the ILC, cf. tables 5.3 and 5.4. The idea is to understand which regions in the

(∆, mH)- and (Ω, mH)-planes can be explored by these experiments in the vector and the
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Figure 5.13: Vector case: relative enhancements κb − 1 of the Higgs bottom couplings with respect

to the SM are displayed in solid lines, in [%] as function of ∆1 = ∆2, for different values of mH [GeV].

(a) In dashed lines, the contours of the expected accuracies on the scaling factors κb at at the LHC,

HL-LHC and ILC, from [106] and table 5.3, centred on the SM value κb−1 = 0. The accuracies assume

no non-SM production and decay modes and assumes universality (κu ≡ κt = κc, κd ≡ κb = κs and

κl ≡ κτ = κµ). (b) In dashed lines, the contours of the model-independent ILC sensitivities for each

run from [110], see table 5.4, centred on the SM value κb − 1 = 0.

chiral case, respectively. This is possible understanding for which values of (∆, mH) and

(Ω, mH) the corresponding κi are outside the range of the uncertainties centred in the SM

values κi = 1.

In figure 5.13 we plot the deviations from the SM-Higgs bottom coupling due to non-

decoupling D-terms in a vector Higgs quiver extension of the MSSM, in comparison with the

LHC and ILC sensitivities. The relative enhancement with respect to the SM-Higgs bottom

coupling, κb − 1, is plotted as a function of ∆ for different values of mH , cf. eq. (5.96).

The non-decoupling D-terms in the vector Higgs case enhance the deviation from the SM

with respect to the MSSM limit ∆ = 0. Larger values of mH , instead, clearly suppress these

effects. In fig. 5.13, the horizontal dashed contour lines correspond to the 1σ-confidence level

sensitivities for κb determination at the LHC and the ILC, centred in the SM value κb−1 = 0.

A value of κb − 1 that lies above one of these lines corresponds to a deviation from the SM

that could be detected at the corresponding run of the machine. In figure 5.13(a), we display

the LHC and ILC 1σ-confidence level sensitivities on κb from the minimal model assumptions

in table 5.3, while in fig. 5.13(b) we refer to the ILC model-independent κb determination, cf.

tab. 5.4. At the LHC at 14 TeV, deviations triggered by ∆ of order ∼ O(1-2) may be detected
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Figure 5.14: Vector-Higgs case: experimental sensitivity to coupling deviations from the Standard

Model, assuming no correlation between κi measures. (a) (κb, κτ ) for ∆=0 (SM-limit), 0.1, 0.2, 0.5,

at different values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental sensitivity, centred in

the SM value (κb, κτ )=1, is represented by 1σ-confidence ellipses: black dashed for LHC at 14 TeV

and 300 fb−1, black dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV and red

dotted for ILC at 1000 GeV. (b) χ2-test of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane at the different

experiments: areas on the left of the solid lines are not consistent with the SM at 3σ-confidence level.

for a mH . 600 GeV, while at the HL-LHC the sensitivity is shifted to even more decoupled

values, up to mH ≤ 1 TeV. Passing to ∆ of order ∼ O(0.1-0.6), more suitable if to consider

gauge coupling unification, cf. app. C, deviations from the SM are (just) discernible at the

HL-LHC for mH up to 800 GeV. At the ILC instead, we may explore ∆ of order ∼ O(0.1-0.5)

for very decoupled values of mH , up to 1 TeV at 500 GeV, while with the High-luminosity

configuration at 1000 GeV, up to mH ∼ 2 TeV.

A deviation from the SM of κb in figure 5.13 is not sufficient alone to claim to have

observed BSM physics, since it could be explained by statistical effects. In figure 5.14 we look

at the deviations due the non-decoupling D-terms in κb in combination to those in the other

scaling factors κi. In figure 5.14(a) we plot the 1σ-confidence ellipses for each experiment in

the (κb, κτ )-plane. We show deviations for several values of ∆ and mH : each the point lying

outside an ellipsis shows a perceivable deviation from the SM.8 To be more concrete, in figure

5.14(b) we perform a χ2-fit to the SM values of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane. The

1σ uncertainties are used as errors in the χ2 calculation. The areas in the (mH , ∆)-plane

8Similar kind of plots, applied to general 2HDM models, may be found in [200].
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Figure 5.15: Chiral-Higgs case: relative enhancements κb − 1 of the Higgs bottom couplings with

respect to the SM are displayed in solid lines, in [%] as a function of Ω1 = Ω2 for different values

of mH [GeV]. (a) In dashed lines, the contours of the expected accuracies on the scaling factors κb

at the LHC, HL-LHC and ILC, from [106] and table 5.3, centred on the SM value κb − 1 = 0. The

accuracies assume no non-SM production and decay modes and assumes universality (κu ≡ κt = κc,

κd ≡ κb = κs and κl ≡ κτ = κµ). Correlations are neglected. (b) In dashed lines, the contours of the

model-independent ILC sensitivities for each run from [110], see table 5.4, centred on the SM value

κb − 1 = 0.

that lye on the left of the solid lines are not consistent with the SM at 3σ-confidence level.

Deviations from the SM value 1 for κW , κZ , κt are relatively mild in the vector and chiral

Higgs models, see eq. (5.89). Therefore, taking into account the assumed accuracies on κi,

we can see that most of the contribution to the χ2 result comes from κb and κτ . Indeed, κb

and κτ present large deviations from 1 while their determination rely on a relatively good

resolution.

We can see that at the first run of the LHC, deviations from the Standard Model are

detectable only for a relatively light H, with mass up to mH ' 350-400 GeV. The LHC

luminosity upgrade is needed to explore the parameter space up to decoupling masses mH .

500 GeV for values of ∆ up to 1. The situation would be much improved at the ILC, where

deviations in the Higgs couplings could tested, possibly to exclude a decoupled H up to 700

(900) GeV at
√
s =500 (1000) GeV. In both plots in fig. 5.14 we do not take into account

any experimental correlations between the determinations of κi.

Passing to the chiral Higgs case, the D-terms trigger deviations of κi from 1 in opposite

way with respect to the vector case. Here, the D-term contributions are negative, see eq.
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Figure 5.16: Chiral-Higgs case: experimental sensitivity to coupling deviations from the Standard

Model, assuming no correlation between κi measures. (a) (κb, κτ ) for Ω=0 (SM-limit), 0.2, 0.5, 1 at

different values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental sensitivity, centred in the

SM value (κb, κτ )=1, is represented by 1σ-confidence ellipses: black dashed for LHC at 14 TeV and

300 fb−1, black dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV and red

dotted for ILC at 1000 GeV. (b) χ2-test of κW , κZ , κτ , κb, κt in the (mH , ∆)-plane at the different

experiments: areas on the left of the solid lines are not consistent with the SM at 3σ-confidence level.

(5.98), pushing the Higgs couplings closer to the SM value. Therefore for increasing Ω, the

deviations of the couplings from the SM are more difficult to be seen with respect to the

MSSM limit, i.e. for Ω = 0, see figures 5.15 and 5.16(a). In figure 5.16(b) we show the 3σ-χ2

fit on κW , κZ , κτ , κb, κt in the (mH , ∆)-plane. For values of Ω of order O(1), the sensitivity

to the deviation of couplings is reduced at the LHC by ∼ 50 GeV and by ∼ 100 GeV at the

ILC, with respect to the MSSM limit Ω = 0.

Once deviations in the Higgs couplings with respect to the SM are detected, additional

information is required to understand which is the (BSM) supersymmetric model that has

been observed. For the non-decoupling D-term extensions of the MSSM we have seen that,

in order to do this, the detection of H and the measurement of its mass mH are fundamental.

Only knowing mH , the ∆ or Ω measurement could be decoupled, see equation (5.96). It is

also interesting to stress that the non-observation of coupling deviations up to a certain size

allow also to exclude H up to a corresponding scale.
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5.4 Summary and conclusions

Supersymmetric models with an extended gauge symmetry with respect to the MSSM gauge

group offer an interesting alternative to enhance the tree-level Higgs mass through novel

contributions to the Higgs quartic terms in the scalar potential.

In this context, we have studied two quiver extensions of the MSSM, i.e. supersymmetric

models with one or more copies of the factors of the gauge group GMSSM = SU(3)c⊗SU(2)L⊗
U(1)Y . We concentrated in particular to models with two copies GA and GB of the electroweak

group SU(2)L ⊗ U(1)Y . Each standard MSSM chiral superfield may be on site A or site B,

i.e. being charged either under GA or GB. Linking chiral superfields L̂ and ˆ̃L are charged

under both GA and GB, connecting sites A and B. L̂ and ˆ̃L acquire vevs at a scale ΛG > 1

TeV, and are responsible for a diagonal gauge symmetry breaking of G = SU(3)c⊗GA⊗GB →
GMSSM. The heavy gauge supermultiplets corresponding to the broken generators of G may be

integrated out, leaving at lower energies an effective theory given by the MSSM plus additional

D-terms for the MSSM scalars. In particular, these D-terms are non-decoupled, provided that

a soft mass mL for the linking fields has been introduced at a scale higher than ΛG . Therefore

the Higgs mass receives sizeable contributions, allowing for a relaxation of naturalness.

We have studied the “vector Higgs” case, in which Hu and Hd are on the same site A, and

the “chiral Higgs” case, with Hu on site A and Hd on site B. We analysed how the size of

these additional D-terms affects the mass and the couplings of the light CP-even Higgs, that

we identify with the Higgs observed at the LHC. The LHC suggests, indeed, that the observed

Higgs boson is SM-like within the experimental accuracy, therefore we have focussed to the

decoupling limit mA0 � mZ with moderately large or large tanβ, which could reproduce a

similar coupling behaviour.

In both cases, the non-decoupling D-terms contributions to the tree-level Higgs mass are

proportional to ∆i = ξ2
i · Ωi. The parameter ξi = ga i/gb i is the ratio between the gauge

couplings in the two sites. Ωi = m2
L/(m

2
V +m2

L) parametrises, instead, the relative magnitude

of the soft masses of the linking fields and of the masses of the heavy vector bosons. The

latter are directly related to the vevs of the linking fields and the scale of gauge symmetry

breaking. We could find that a D-term size parameter ∆ of order ∼ O(1) allows to reach a

Higgs mass of 125.5 GeV already at the tree-level. A ∆ of order ∼ O(0.1–0.6), that may be

preferred if to achieve perturbative unification, may provide a suitable enhancement to the

Higgs mass as well.

Non-decoupling D-terms do affect also the SM-like Higgs couplings to fermions and gauge

bosons. The Higgs couplings to b and τ are especially sensitive to deviations from the SM

and the MSSM values due to D-terms effects, and can be studied at the LHC and ILC. These

deviations are however suppressed by mH . Therefore, for a more decoupled heavy Higgs H,

deviations from the SM couplings are smaller and more difficult to spot. In the context of

these models, then, the non-observation of these deviations up to a certain size may be used

to exclude H below a corresponding scale.
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In the vector Higgs case the deviations from the SM couplings increase for larger D-terms,

i.e. larger ∆. At the high luminosity stage of the LHC, these deviations may be detected for

any value of ∆ with mH up to ∼ 600 GeV. At the ILC with
√
s = 500 GeV the sensitivity to

deviations is much improved, and deviations from the SM for 0 ≤ ∆ ≤ 0.5 can be seen with

mH ≤ 800− 900 GeV. Further improvement is possible with the ILC 1-TeV upgrade.

In the chiral Higgs case, instead, contributions from the non-decoupling D-terms are neg-

ative. They reduce the deviations in the couplings from the SM values with respect to the

MSSM limit Ω = 0, and result in a more challenging experimental determination. For exam-

ple, in correspondence of a maximal D-term contribution to the Higgs mass, i.e. for Ω = 1,

the sensitivity is reduced and the deviations from the SM are detectable at the ILC with√
s = 500 TeV only for mH ≤ 650 GeV.

We may conclude that once deviations from SM couplings are established, in order to

distinguish the model from the MSSM, a precise measurement of mH is required to obtain

the D-terms parameters. We have shown that the precise and largely model-independent

measurements of the Higgs couplings at the linear collider are needed, in order to be sensitive

to a vast class of gauge extended supersymmetric models.



Chapter 6

Towards precision measurements in

an intense field environment

This chapter is based on publications [4–6], written in collaboration with Anthony Hartin and

Gudrid Moortgat-Pick. In section 6.1 the physics at the interaction point (IP) of a linear

collider is introduced. In section 6.2, quantum electrodynamics (QED) in intense electromag-

netic fields and the concept of critical field strength are presented. The magnitude of the fields

at the IP of future linear colliders is evaluated. It is argued that, at linear colliders operating

at several TeVs, the effect of these fields should be taken into account in all physics processes,

including supersymmetry processes. In section 6.3 the Furry picture formalism, that allows

to account for external fields exactly, is introduced. Finally, in section 6.4, it is studied the

possibility to collide an intense laser beam on the electron/positron beams of the future linear

collider, in order to test nonlinear QED, improving and extending the success of the SLAC-

E144 experiment. In section 6.5 I summarise and conclude. Part of the text is derived from

what I wrote in [4, 5]. All the figures have been made by me. Other external sources of this

chapter are refs. [46, 201–203].

6.1 The interaction point of a linear collider

In the previous chapters we have seen that e+e−-linear colliders may play a paramount rôle in

electroweak precision physics and Higgs phenomenology. In particular, linear colliders could

become fundamental for the search and study of physics beyond the SM. The key feature of

a linear collider (LC) is the clean environment available in the interaction point (IP) of its

lepton beams, in contrast with hadron colliders [41,204].

The LHC, in fact, having proven itself as an extraordinary discovery machine, suffers

nevertheless from a large background, mostly due to QCD processes. The LHC, indeed,

collides protons that are composite objects made up by partons, i.e. gluons and quarks.

Protons have an internal structure that is not known exactly but is empirically parametrised

by parton-distribution functions (PDFs).

91
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Despite the lower background rates, the high precision program of the future LC requires

nevertheless a detailed knowledge of all processes occurring at the IP and a consequent optimal

performance of the LC detectors. The backgrounds, indeed, limit the effective luminosity. The

BSM physics program is particularly sensitive to this.

At a LC one of the main background processes is beamstrahlung. It consists in the

radiation of an electron or positron in the electromagnetic field of the oncoming particle

bunch. The high energy photons generated by beamstrahlung may interact with the external

electromagnetic field too. In this way, they generate coherent electron-positron pairs, in a

second background process called coherent pair production. As we said, these background

processes are due to interactions between a particle and a macroscopic external field. In

addition to them, also incoherent pairs are present, produced by particle-particle interaction

processes. These are the Breit-Wheeler process γ + γ → e+ + e−, the Bethe-Heitler process

γ+e± → e±+e++e−, the Landau-Lifshitz process e+e→ e+e+e++e−, and bremsstrahlung

e+e→ e+e+γ. Important sources of background are given by synchrotron radiation, muons,

and neutrons.

The designs for planned ILC are set to reach energies up to
√
s = 1-1.5 TeV for the its

highest energy stages [41], at CLIC up to
√
s = 3 TeV are planned to be reached [204]. In

order to perform the high precision physics program planned for future linear colliders, also

a very high luminosity is needed. The reachable instantaneous luminosity is expected to be

very high, in the range of 10−34-10−35 cm−2s−1, comparable to the LHC.

To achieve this luminosity, extremely squeezed e+ and e− bunches are required. The

densities of electrons and positrons in the colliding bunches are directly related to the nominal

luminosity L for a head-on collision of two bunches. Assuming the bunches to be Gaussian,

this relation is given by [205],

L = frNbHD
Ne+Ne−

4π σx σy
, (6.1)

where Ne− , Ne+ are the number of electrons and positrons per bunch, respectively. The bunch

propagates along the z direction and has transversal dimensions σx, σy. Finally, fr is the

bunch collision rate, Nb is number of bunches in each beam train, and HD is an enhancement

factor which depends on the disruption of the bunches. With disruption we mean the bending

of the trajectories of the particles, that is due to the electromagnetic field associated to the

oncoming beam, pinching the crossing bunches.

A typical bunch at future linear colliders will have order ∼ O(1010) electrons or positrons

per bunch and σx, σy ∼ 1-1000 nm. See table 6.1 for a comparison of ILC and CLIC param-

eters with LEP II and SLC. At a future LC, a bunch of electrons or positrons can be seen as

a (relativistic) electromagnetic current that generates a collective electromagnetic field.

Each colliding particle at the IP, i.e. the beam electrons and positrons, will correspond-

ingly see a potentially intense external electromagnetic field Aµ, given by the superposition

of the collective fields originating from the two beams. In particular, being boosted, each

colliding particle will mainly see the field originated by the oncoming bunch. This field can
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Machine LEP II SLC ILC-500GeV ILC-1TeV CLIC-500GeV CLIC-3TeV

E [GeV] 94.5 46.6 250 500 250 1500

N (1010) 334 4 2 2 0.68 0.37

σx [µm] 190 2.1 0.474 0.429 0.202 0.045

σy [nm] 3000 900 5.9 2 2.3 1

σz [mm] 20 1.1 0.3 0.15 0.072 0.044

Table 6.1: Lepton colliders parameters. N is the number of leptons per bunch, σx, σy are the

transversal dimensions of the bunches, σz is its longitudinal dimension. E is the energy of the particles

in the bunches. The parameters for ILC-1TeV are taken from a 2011 dataset [206].

be well approximated by a constant field. In fact, the radiation coherence length is usually

much shorter than the bunch length [205, 207]. The radiation coherence length is defined as

the length that the charge travels in order a photon to be emitted within an angle 1/γ. Given

that the colliding particle is ultrarelativistic (p0 � me), the oncoming external field would

also appear as crossed, i.e. with the electric and magnetic components that are mutually

orthogonal (E⊥B) and equal in magnitude (|E| = |B|) [208], cf. figure 6.1.

e+
e− bunch

~B−

~E−

Figure 6.1: Sketch of the electromagnetic current associated to electron beam at the IP of a LC, as

seen by a colliding positron.

A constant crossed field (CCF) with momentum kµ is defined by having a trivial spatial

dependence on xµ,

Aµ(x) = aµ k · x , (6.2)

and by the conditions

F =
1

4
FµνF

µν = B2 −E2 = 0 , G =
1

4
FµνF̃

µν = −E ·B = 0 . (6.3)

Fµν the field strength tensor and F̃µν = 1
2ε
µνρσFρσ. A CCF can be seen as the limit of infinite

period of a plane wave field with momentum k.

Approximating Aµ as an external field means that it is not affected by the charges of

the single colliding particle. In fact, the intense field Aµ, due to its high photon density and

corresponding wave function overlap, can be treated as a classical field, rather than a field
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composed by independently interacting photons. This is also the case for macroscopic fields

and coherent electromagnetic radiation.

At the IP of future LCs, the external field Aµ interacts with the oncoming particles and

transfers momentum to them, in a quantity depending on its strength. Because of this,

processes otherwise kinematically not allowed in absence of an external electromagnetic field

can happen, for example beamstrahlung e± → e± + γ and coherent pair production γ →
e+ + e−. For the same reason, the rate of all the processes allowed in absence of the external

field may be modified due to contributions from the external field. This involves the processes

that are the object of LC physics program, for example Higgs or BSM particle production.

It is clear then that a comprehension of electromagnetic processes in an intense electro-

magnetic external field is required, as well as an estimate of the external electromagnetic field

that may occur at the planned linear colliders.

6.2 Horror vacui : Physics in intense fields

Since the early hours of quantum electrodynamics (QED), the processes in external electro-

magnetic fields have drawn the attention of physicists. Klein, in 1929, pointed out [209] the

paradox that a relativistic electron can transmit via quantum tunnelling through an arbitrary

high potential barrier. Shortly afterwards, in 1931, Sauter [210] showed that the transmission

coefficient depends exponentially on the intensity of the electric field in the barrier, and that

the paradox takes place only in electric fields exceeding the critical value for the field strength

Fcr =
m2
ec

3

~|e| = 1.32 · 1018 V/m = 4.41 · 109 T . (6.4)

Heisenberg and Euler in 1935 then studied the effective action of a free electromagnetic

field [211], finding that at Fcr electron-positron pairs are spontaneously created. Eventu-

ally Schwinger in 1951 [212] found that the base of the Klein paradox is intimately related to

the structure of the vacuum in the presence of an external electromagnetic field, as we explain

here.

In QED, in the absence of external fields the vacuum, i.e. the state of lowest energy, is

empty of real particles but populated by virtual electron positron pairs consisting in vacuum

fluctuations. These virtual pairs can be seen as electric dipoles oriented in a random way.

However, once an external electric field is switched on ( ~E 6= 0), the virtual dipoles align along

the direction of ~E, cf. fig. 6.2. The realignment of dipoles affects the vacuum polarisation,

which becomes anisotropic.

In this regard, the Sauter-Schwinger critical field strength Fcr plays a crucial role. It

corresponds to the magnitude of the field required by an electron to get an energy mec
2

over a Compton wavelength λ̄C = ~
mec

, which is the length scale of quantum fluctuations in

QED. This means that with an external field ~E with field strength Fcr, the virtual electron

and positron of a pair are accelerated apart and spontaneously separate, being promoted
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e−

e+

λC

(a)

~E 6= 0

e−

e+

λC

(b)

Figure 6.2: (a) Vacuum state in absence of external electric field ~E = 0. (b) Vacuum state for ~E 6= 0.

to real particles through the so called Schwinger effect. Therefore the vacuum state full of

virtual particles only becomes unstable and transforms into a more stable polarised vacuum

by producing real particles [213], in a phase transition. The spontaneous production of real

pairs in a constant electric field with strength E has the probability [212]:

We+e− =
αemE

2

π2

∞∑

n=1

n−2 exp

[
−π nFcr

E

]
, (6.5)

with n the number of pairs and αem = g2
em/(4π~c) the fine structure constant.1

It is important to note that the critical field strength Fcr defined in eq. (6.4) is relative

to the spontaneous electron-positron pair production. In general, in order to have a charged

particle-antiparticle pair creation from the vacuum, a corresponding critical field strength

Fcr, particle is required. This critical field strength is defined by substituting the mass of

the considered particle mparticle in place of me in eq. (6.4). This means that already for

muons spontaneous pair production requires an extremely high field strength Fcr, µ± ∼ 4 ×
104 Fcr. Extended reviews about QED in intense fields and unstable vacuum may be found

in [201–203,213,214].

Very intense fields, sometimes with strength close to or stronger than Fcr, may be reached:

• Close to superheavy nuclei, with high atomic number Za & 137, since | ~E| ≈ Za|e|
λ̄2C

=

Za αemFcr on the surface of a nucleus [202]. Za & 137 can be reached during the collision

1Note that pair creation is a purely electric quantum effect. In a magnetic field with strength equal to Fcr,

Landau levels of electrons are separated by an energy gap equal to mec
2.
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of two heavy ions A and B, such that Za(A) + Zat(B) > 1/αem. This is possible at

RHIC or during LHC Pb-Pb collisions, see [215].

• On the surface of pulsars, where a magnetic field of order O(108) T can be reached. In

a special class of these objects, the magnetars, extreme conditions bring the magnetic

field well above Fcr, at the order O(1011) T. For a review on the processes happening in

these contexts, see [214].

• In intense lasers, even though the intensity of the critical field, of order 1029 W/cm2,

is believed to be hardly accessible. The reason is that QED cascades generated by

one charge may consume the energy of the field. So far, optical lasers could reach

I = 2 × 1022 W/cm2, i.e. E ∼ 10−4Fcr, with the HERCULES laser [216]. However,

planned ultra-intense, petawatt lasers as HiPER [217], ELI [218], are expected to reach

intensities between 1024-1026 W/cm2. Another kind of lasers, the X-ray free electron

lasers (XFELs), produce strong electromagnetic fields through coherent light sources in

the X-ray range. With a lower power but higher focus, the planned European XFEL

in DESY is expected to feature very high peak intensities, possibly reaching a field of

the order of 1019 V/cm2 [219]. Values of field amplitude close to Fcr are reachable in

the rest frame of a boosted ultrarelativistic particle colliding with the laser (E∗ ∼ Fcr).

This principle was followed by the E-144 experiment at SLAC [46], which operated 46.6

GeV electrons, shot through an intense laser, reaching E∗ ∼ 0.3Fcr, see section 6.4.

• At a future linear collider. The field strength generated by an oncoming bunch, indeed,

approaches Fcr in the rest frame of the colliding ultrarelativistic lepton, due to the large

Lorentz factor γL [5, 6]. See subsection 6.2.1.

Relevant quantities for the description of the physics in an external field with momentum

k and pulse ω are the gauge and Lorentz invariants:

η =
e
√

(Aµ)2

m
=
eE

mω
, Υ =

e

m3

√
(Fµνpµ)2 = η

p · k
m2

, (6.6)

where m, e, p denote the mass, the charge, and the momentum of the probe particle, i.e.

electron, positron or photon.2 The parameter η can be interpreted as the work done by the

external field on the propagating particle over a Compton length λ̄C , in units of the energy

~ω of the quanta, i.e. the photons, of the external field [201,203]. If η � 1, the probe particle

is expected to absorb a low number of photons, if any at all, from the external field. If η & 1

instead, processes with multiple absorption of photons from the external field are favoured,

featuring a nonlinear dependence on the external field strength. In this context we speak

about nonlinear QED. The quantity η is called the classical nonlinearity parameter, since it

does not depend on the quantum constant ~. In processes occurring in a intense laser beam,

2In QED processes, when the initial particle is a photon, the mass and charge of the electron are used in

the definitions (6.6), see below.
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η is the control parameter, and it indicates the intensity of the field for a fixed laser frequency

ω. To get a high η for a fixed value of the field intensity one should reduce the frequency ω,

such that in the limit of a constant field η →∞.

The Υ parameter represents, in units of mc2, the work performed by the field over a Comp-

ton length in the rest system of the propagating particle. Υ is called the quantum nonlinearity

parameter and parametrises the magnitude of the quantum nonlinear effects on a probe par-

ticle. These are, for example, the photon recoil on an electron or the electron-positron pair

production happening in the collisions of a photon with a laser. When considering ultrarela-

tivistic massive particles, Υ describes the intensity of the external field in the particle frame

in units of the Sauter-Schwinger critical field:

Υ =
γLE

Ecr
=
γLB

Bcr
, (6.7)

where E, B are the electric and magnetic components in the laboratory frame. In particular,

in the case of highly energetic initial particles, as for linear colliders, the boosted particles

may see a field strength close to the critical regime, i.e. Υ ∼ O(1), even if the field in the

laboratory frame is much less intense. When considering a colliding photon, Υ describes the

intensity of the external field in the rest frame of a pair generated from this initial photon.

In general, the probabilities W of processes in an external field depend on η, Υ and a set

of other gauge and Lorentz invariants fi, built out of the field strength tensor Fµν and the

momenta of the probing particles. In the case of processes with a single initial particle in a

constant or slowly varying field, the probabilities depend on η, Υ and also on F and |G| (G
being a pseudoscalar) [201]. The parameters F and |G| describe the external field structure:

they are respectively the relative magnitude and orientation between E and B, cf. eqs. (6.3).

If η � 1, it is common to consider a field as being constant during the process, and the

dependence of the probabilities on η can be dropped [201]. When considering an ultrarela-

tivistic particle (p0 � me) in a relatively weak constant field, one has |F|, |G| � min(1,Υ2).

The probability of the processes in this regime can then be approximated as the corresponding

one in a constant crossed field,

W (Υ,F , |G|) 'W (Υ, 0, 0) +O(F , |G|) , (6.8)

depending effectively only on the intensity of the external field. This is valid for the processes

at the linear collider IP, as well. This confirms that a crossed field is a good approximation

for the field seen by the colliding particles at the IP of LCs, since for a constant crossed fields

F = G = 0, cf. eqs. (6.3).

6.2.1 Intense fields at the interaction point of a linear collider

We have seen that Υ is the paramount parameter for the processes in the external field

at the IP of a linear collider. While for Υ � 1 we have the classical regime, for Υ � 1

beamstrahlung photons carry away a consistent fraction of the energy from the radiating
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particle. For 0.1 . Υ . 100 we have a transition regime [205]. It is therefore important now

to estimate the value of Υ at linear colliders.

Machine LEP II SLC ILC-500GeV ILC-1TeV CLIC-500GeV CLIC-3TeV

Υaverage 0.00015 0.001 0.06 0.27 0.21 4.9

Υmax 0.00034 0.0019 0.15 0.66 0.48 11.4

Table 6.2: Average and peak values of the Υ parameter of the particle at LEP II, SLC, ILC, and

CLIC, with reference to the parameter sets in table 6.1.

Machine ILC-1TeVCAIN CLIC-3TeVCAIN

Υ CAIN average 0.27 3.34

Table 6.3: Average values of the Υ parameter of the particle at ILC-1TeV, and CLIC-3TeV, evaluated

after simulations with CAIN [220], with reference to the parameter sets in table 6.1.

Υ varies during the collision of bunches since the latter are distorted by the pinch and

the disruption effects. The average and the peak values for Υ in a Gaussian bunch can be

empirically approximated by [207,221]:

Υaverage ≈
5

6

Nr2
eγL

αemσz(σx + σy)
, Υmax ≈

2Nr2
eγL

αemσz(σx + 1.85σy)
, (6.9)

where N is the number of leptons of the oncoming bunch, αem the fine structure constant, re

the Compton radius, σx, σy are the transversal dimensions of the bunches, σz the longitudinal

dimension. In table 6.2, we report the values of Υaverage and Υmax for LEP II, SLC ILC-1

TeV, and CLIC-3 TeV, calculated using eq. (6.9) and the parameter sets in table 6.1 [5, 6].

The estimates for Υaverage were reported also in the more recent reference [222], where for

ILC-1 TeV the values N = 1.74×1010, σx = 335 nm, σz = 0.3 mm are used, from [41], getting

Υaverage = 0.20. We refer here to an older dataset for ILC-1 TeV since utilised as input of a

simulation we have done with the IP beam-beam simulation program CAIN [220]. The results

for Υaverage in table 6.2 are consistent with the estimates from this simulation for ILC-1 TeV

and slightly less with the ones for CLIC-3 TeV, cf. table 6.3. These estimates were obtained

after simulations of bunch crossings. The value of Υ obtained in correspondence of each of

the O(106) beamstrahlung-photon emission have been averaged over the bunch crossing. For

these simulations we used the same parameter sets in table 6.3 as input.

The expected bunch electromagnetic fields in the rest frame of the colliding particle at the

IP of the ILC and CLIC-500 GeV are of order O(0.1) · Fcr. Only at CLIC-3 TeV the field is

expected to surpass the critical value. In both cases field strengths of 3-4 orders of magnitude

higher than at SLC, cf. eq. (6.7), and 4-5 orders of magnitude higher that at LEP II.

The number of beamstrahlung photons nγ, bs and the number of coherent pairs ncp, is
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approximated by (see [222] and references therein),

nγ, bs =
5

2

αem

γL r2
e

σz Υ√
1 + Υ2/3

, ncp =
4
√

3

25π

(
αemσz
λ̄C γL

Υ

)2

Ξ(Υ) , (6.10)

where Ξ(Υ) can be approximated for Υ� 1 as Ξ(Υ) = 0.5 exp[−16/(3Υ)], and for Υ� 1 as

Ξ(Υ) = 2.6Υ−2/3 ln[Υ].

We can understand from equation (6.10) one of the reasons to have extremely short bunches

at the CLIC, with σz much lower then at SLC and LEP II. It is the need to minimise beam-

strahlung and coherent pair production, compensating the very high Υ. For a detailed analysis

on the backgrounds from strong field beam-beam processes CLIC, where also a non-negligible

rate of the trident processes e→ e+ e+ + e− is expected, see [222].

We may conclude that, if to work with a machine with Υ ∼ O(1) and higher such as

CLIC-3 TeV, we should take into account the effects of the intense fields at the IP not only to

evaluate the backgrounds. Fields with field strength Fcr in rest frame of a colliding particle

necessarily affect its momentum and consequently, the rate of the process. In this case, we

need to take entirely into account the impact the external fields on the actual physics processes

in electroweak and BSM physics, particularly sensitive to these effects. Therefore we argue

that strong field effects on ordinary processes at colliders operating in the multi-TeV regime,

like CLIC, should be considered as well in event simulator programs, such as WHIZARD [223].

For example, in figure 6.3 we show the Feynman diagrams for Higgsstrahlung and for chargino

pair production. The effect of the IP external fields is felt by the initial electron and positron,

depicted with double lines. The effect on the other (charged) particles of the process should

instead be considered negligible due to their mass and lower velocity, even though the process

could be fast and entirely occurring within the bunch. In the following section we introduce

a method that accounts for the external fields exactly on the propagation of particles.

e−

e+

Z

Z

h

(a) Higgsstrahlung.

e−

e+

Z

χ̃−
1

χ̃+
1

(b) Z-mediated chargino pair production.

Figure 6.3: Feynman diagram of (a) the Higgsstrahlung process and of (b) Z-mediated s-channel of

chargino pair production at a LC, taking into account the intense external fields seen by the colliding

electron and positron at the IP. For the electron and the positron double lines are used, to denote the

interaction with the intense external field.
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6.3 The Furry Picture

We argued that at future linear colliders, in particular at the high energy stages of CLIC,

one should take into account exactly the effect of an external field on the colliding particles.

This is requested also in laser physics when η & 1, a condition fulfilled by the described

constant crossed fields too. The Furry picture (FP) of quantum states [224], accounts for

the external field exactly with a non perturbative approach, by using the Volkov solutions

of the equations of motion in an external field [225]. These solutions are used as the basis

for the perturbative expansions of the S-matrix, in order to calculate the probabilities of the

physical processes according to the Feynman-Schwinger-Tomonaga theory [208]. The Furry

approach can be applied to the classes of external fields whose vacuum is stable under pair

production [213]. These are, for example, the (purely) magnetic fields and the plane wave

fields, like the constant crossed field we are interested in.3 In the following, we briefly review

the FP method, see also [226].

In the standard Interaction (or Dirac) picture of quantum states, the state vectors and

the observables share the time dependence. The corresponding Hamiltonian is given by

H = H0 +Hint . (6.11)

H0 is the time-independent unperturbed Hamiltonian, that describes the time evolution of ob-

servables. Hint is the interaction Hamiltonian, regulating the time dependence of the states.

In QED, Hint contains the gauge interactions terms between fermions and photons, corre-

sponding to the Lagrangian term −e ψ̄γµAµψ. The eigenstates of H0 are assumed to be the

free states of the particle in the vacuum, in absence of external fields.

The FP Hamiltonian takes into account an external field and is given by

H = H0 +Hext +Hint = HB +Hint , (6.12)

where Hext represents the interaction of the fermions with the external classical field. In the

FP the basis of the state vectors is made by the bound states of the fermions in the external

field, eigenstates of HB. These bound eigenstates are related to the free particle states of the

Interaction picture by a canonical transformation [224]. The FP states obey to commutation

relations that in the limit of null external field reduce to the usual Dirac picture commutation

relations. The QED Lagrangian for the FP can be written as:4

L = ψ̄(i6∂ − e 6Aext −m)ψ − 1

4
FµνFµν − eψ̄ 6Aψ , (6.13)

where Aµext is the classical external field and Fµν the electromagnetic field strength tensor.

The interaction term of ψ with Aµext is explicitly separated by the ψ gauge interaction term.

3The class of fields whose vacuum is unstable under pair production (as the purely electric field), needs a

generalisation of the FP, see [213].
4We denote here with a slash the vectors contracted with the Dirac matrix γµD, for ex. γµDAµ = 6A.
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Since Aµext is a classical external background field, there is no kinetic term 1
4F

µν
extFext µν as for

any dynamical field.

From the Lagrangian (6.13) we can write the modified Dirac equation for a fermion ψ in

an external field Aµext:

(i6∂ − e 6Aext −m)ψ = 0 . (6.14)

The solution of this equation for an electromagnetic plane wave Aµ(k · x) has been found by

Volkov in the 1930s [225]:

ΨV
p (k · x) =

1√
(2π)32εp

Ep(k · x) u(p) , (6.15)

with

Ep(k · x) ≡
(

1− e6Aext 6k
2(k · p)

)
exp

[
−ip · x− i

∫ (k·x)

0

[
e(Aext(φ) · p)

(k · p) − e2Aext(φ)2

2(k · p)

]
dφ

]
, (6.16)

where k is the momentum of the external field, p and εp the canonical momentum and energy

of the fermion; u(p) is the usual Dirac spinor solution. Solution (6.15) entirely accounts for

the effects of the external electromagnetic field on the fermion. The ΨV solutions constitute

an orthogonal and complete system [227], see also [228].

Analogously to spin-1
2 fermionic solutions ΨV , one can write FP solutions of equations of

motion for charged scalars and charged vector bosons in an external field, see [229]. These

solutions are to be used in perturbation theory to write new Feynman rules, listed in appendix

D, and draw Feynman diagrams describing electromagnetic and weak processes in an external

field.

Using these new Furry-Feynman rules, one can write down every Feynman amplitude that

is needed, at each order in perturbation expansion. Typically, doing these probability calcula-

tions within the FP, one has to handle integrals over Airy or Bessel functions coming from the

Ep factors. These integrals can be simplified using properties of the integral-representation

of the special functions, even though they reveal to be involved already at the first order,

depending on the structure of Aµext.

One of the first processes calculated in this frame was pair production by a photon γ →
e+e− in an external field by Reiss [230]. The method was further developed by Nikishov, Ritus,

and others, who studied pair production and its crossed process, i.e. Compton scattering in

an intense field e− → e− + γ, as well as other processes [231–235]. Several external field

configurations were considered, as a circularly or linearly polarised plane wave or a constant

crossed field.

These studies revealed to have a fruitful application to laser physics, see [203, 236]. For

example, interesting developments took place in the context of processes in pulsed laser fields,

see the thesis [237] and references therein, or at the E144 experiment [238], see section 6.4.

In laser physics there is a natural interpretation of the FP fermion line considering a bare

fermion “dressed” by an arbitrary number of photons emitted or absorbed from the laser, cf.

fig. 6.4 and appendix D.
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= + + + . . .

Figure 6.4: Interpretation of the electron propagator derived from the Volkov solution.

Regarding the LC background processes, the FP results obtained by Nikishov and Ritus

for Compton scattering and photon annihilation into a pair, can respectively be applied to

beamstrahlung and coherent pair production. These processes can be seen as FP processes

at the first-order in perturbation theory, see fig. 6.5, and are related by crossing symmetry.

Their probabilities can equivalently be calculated by the means of the optical theorem by

e−

γ

e−

(a) Beamstrahlung.

γ

e+

e−

(b) Coherent pair production.

Figure 6.5: Beamstrahlung and coherent pair production as first-order FP processes.

using the Furry-Feynman fermion propagator in the 1-loop electron mass operator or in the

photon polarisation operator, respectively, see fig. 6.6. This latter technique has been applied

in a series of electroweak processes in [214].

∫ k

qp
=

2

2 Im
p p

dk dq

Figure 6.6: Relation between nonlinear Compton scattering probability and the electron mass oper-

ator in an intense field, through the optical theorem.

These FP results for beamstrahlung and coherent pair production coincide also with

those obtained with the Băıer-Katkov quasi-classical operator method (QOM) [239–241], even
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though this latter method adopts a kinematical approximation. The QOM has been exten-

sively implemented in beam-beam simulation programs and used to evaluate beamstrahlung

and coherent pair production at LEP and SLC.

In recent times, efforts have been made to take into account the effect of the fields of

both colliding bunches on the propagating particle at the IP of a LC. In order to do this, a

Volkov solution for a fermion propagating in two collinear constant crossed fields has been

proposed [242].

6.4 Testing nonlinear QED at the LC: a proposal

A linear collider offers another opportunity to test strong field QED, in addition to the beam-

beam processes at the IP. In particular, vacuum instability and nonlinear effects in QED

processes, i.e. coming from the absorption of n photons from the external field, can be

studied by colliding high energy electron and/or photon beams with an intense laser [238].

This idea was implemented by the previously mentioned SLAC experiment E144 in Stanford

[46, 243]. This experiment tested nonlinear QED by impinging a Terawatt laser on the 46.6

GeV electrons of the SLAC Final Focus Test Beam. Processes with multiple laser photon

absorption were observed. Nonlinear Compton scattering (NLCS) e− + nω → e− + γ [244],

and multi-photon Breit-Wheeler pair production (BWPP) γ+nω → e+e− [245],5 depicted in

figure 6.7, were measured to be in agreement with the theoretical predictions [231,233,234].

e−

γ

e−
nω

(a) Nonlinear Compton scattering.

nωγ

e−

e+

(b) Breit-Wheeler pair production.

Figure 6.7: Nonlinear processes studied at SLAC-E144.

The key parameters to study nonlinearity effects in electron-laser, photon-laser collisions

and vacuum polarisation are just the above defined η and Υ, cf. eq. (6.6). These parameters,

referring to an experimental set-up similar to SLAC-E144, can be written in natural units

c = ~ = 1 as [46,243],

η = e
Erms

ωme
, Υe =

E∗rms

Ecr
, Υγ =

2εγ
me

Erms

Ecr
. (6.17)

5With ω we denote here the laser photons, with frequency ω.
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Υe, Υγ are respectively the Υ parameters for an electron and for a photon impinging on a

laser, Erms is the root-mean-square of the electric field of the laser, ω is its frequency, E∗rms

is the root-mean-square of the electric field in the electron rest frame and εγ is the energy of

the incident photon.

As we shall see, η is the control parameter for the absorption of photons from the incident

particle. The intensity of the laser is related to Erms by

Erms =

√
377[Ω] I[W/cm2] , (6.18)

therefore η can be regulated by varying the intensity I of the laser through [238]:

η2 = 3.7 · 10−19 I λ2 . (6.19)

I is written in W/cm2 and λ, the wavelength of the laser, in µm. The intensity in turn can

be expressed in terms of the energy of the laser beam U , the laser focus area A and the pulse

length τ :

I =
U

Aτ
. (6.20)

On the basis of the success of the SLAC-E144 experiment, we propose to pursue at the

future linear collider an extension of this experiment [4]. This can be done by creating in

the extraction line of the LC an interaction point between an intense laser and the particle

beam. With η, Υ parameters exceeding those at SLAC-E144 by up to one order of magnitude

it would be possible to carefully explore nonlinear processes. The reason for this relies on the

fact that we could exploit the higher energy of the electron and positron beams at the future

linear collider as well as more intense, commercially available, lasers.

E144 green (measured) E144 IR (measured) ILC (E144 las.) ILC (PL9000)

λ (nm) 527 1053 1053 1064

Elaser (J) 0.016 - 0.5 0.016 - 0.8 0.8 3

Focus 30 µm2 60 µm2 60 µm2 40 µm2

pulse (ps) 1.5 - 2.5 1.5 - 2.5 1.5 0.5

Ipeak (W/cm2) ≈ 5 · 1017 ≈ 5 · 1017 ∼ 9 · 1017 ∼ 1.5 · 1019

Ee− (GeV) 46.6 46.6 125 - 500 125 - 500

η 0.32 0.40 ∼ 0.6 ∼ 2.5

Υe 0.27 0.17 ∼ 0.7 - 2.7 ∼ 2.7 - 10.9

Υγ 0.16 0.08 ∼ 0.4 - 2.3 ∼ 0.6 - 6.0

Table 6.4: Parameter set and peak measured nonlinearity parameters at SLAC-E144 in comparison

with proposed tests and estimated peak values at the ILC, keeping the same angle α = 17◦. For Υγ

we consider the absorption of one laser photon.

In table 6.4 we compare the values of the key parameters measured at SLAC-E144 with

estimates for the ILC we obtained using relations (6.17)-(6.20). At the ILC we expect the field
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strength to exceed Fcr in the rest frame of the scattering electron, using an IR laser similar

to that used at SLAC-E144. Furthermore, as above mentioned, the strong field physics that

can be studied at this experiment can be further extended using a more intense currently

available laser (for example we use the specifications in [246]). A more modern laser optics for

chirped pulse amplification (CPA) and focussing are nowadays also available. We can see then

180◦ − αp(E)

p′(E ′)

n k(ω)

θ

k′(ω′)

Figure 6.8: Nonlinear Compton scattering dynamics: the momenta (energies) are respectively de-

noted as p(E) for the beam electron, k(ω) for the n laser photons, p′(E ′) for the scattered electron, and

k′(ω′) for the scattered photon.

that in principle an η parameter of one order of magnitude larger than at SLAC-E144 may be

achieved. This affects the rates of the Compton scattering and Breit-Wheeler pair production.

With reference to the dynamics in fig. 6.8, the differential rate per unit volume and time

for Compton scattering of an unpolarised beam electron of energy E by n circularly polarized

laser photons is given, using the notation in [46], by:6

dNn(ω′)
dω′

=
π e4 ρeρω
m2
e E2 ω

[
− 4

η2
J2
n(z) +

(
2 +

u2

1 + u

)
[J2
n−1(z) + J2

n+1(z)− 2J2
n(z)]

]
. (6.21)

Jn(z) are first-type Bessel functions, ρe and ρω are the number density of beam electrons and

of laser photons respectively. Then, we define

u =
(k · k′)
(k · p′) '

ω′

E ′ , z =
2η

u1

√
u(un − u)

1 + η2
, (6.22)

and

un = nu1 , u1 =
2(k · p)

m2
e(1 + η2)

' 2ω E(1 + β cosα)

m2
e(1 + η2)

. (6.23)

We can see then that higher η values would allow us to explore higher harmonics in the num-

ber n of absorbed laser-photons during NLCS. Their relative importance in the rate, indeed,

increase with increasing η. In fig. 6.9(a) we show a typical spectrum of Nonlinear Comp-

ton scattering rate that could be observed at the ILC, as a function of the scattered photon

6As in [46], we take the number of interactions in a volume dV , time interval dt and energy bin dω to be

N = dNn
dω
· dV · cdt · dω 1

~c .
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energy. Electrons scattered with n > 1 can be distinguished from the standard Compton

scattering by looking to the new kinematic edges in correspondence of increasing n. In fig.

6.9(b) we may see how the relative importance of harmonics varies with increasing η. At

SLAC-E144 it has been shown the occurrence of nonlinear Compton scattering, with an ac-

ceptable fit with the numerical simulations for up to n = 3 absorbed laser photons [46, 247].

The main background process for nonlinear Compton scattering is multiple Compton scat-

tering, e− + nω → e− + mω prime which, having an energetically distinct spectrum could be

clearly distinguished.
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Figure 6.9: Nonlinear Compton scattering rate for one incident electron on a circularly polarised

laser, in units of πr0m
3
e times GeV−2. The energy of the beam electron is E = 250 GeV, we take

ρω = η2ωme

r0
as photon density of the laser with λ = 1064 nm. (a) With η = 0.6, the contributions

from the harmonics n = 1, . . . , 4 and the total sum of the first five are displayed; (b) The sum of the

first five harmonics for different values of η.

In fig. 6.9(b) one can also note the energy shift in the Compton edge, that is due to the

presence in u1, cf. equation (6.23), of

m2
e = m2

e

√
1 + η2 , (6.24)

instead of m2
e. This fact depends on the oscillations of the colliding electron with the frequency

of laser. Since the amplitude of the oscillation is always smaller than the wavelength of the

external wave [238], the oscillatory motion cannot be resolved by the light scattered by the

quivering electron. Therefore, the electron quiver motion appears as an angular and intensity

dependent “quasi-momentum” q, with a corresponding shift in its mass [248,249],

qµ = pµ +
η2m2

e

2k · pkµ , q2 = m2
e . (6.25)

Therefore the electron recoils during scattering for larger η, then the minimum energy of the

scattered electron is higher and the kinematic edge accordingly shifts: the maximal energy for
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the Compton photon is smaller, as observed in figure 6.9(b). The mass-shift of electrons in

SLAC-E144 laser could not be experimentally resolved. Nevertheless, positive hints towards

mass shift were given by an experiment at Rochester. This experiment involved the ionization

of Neon gas under the impact of an ultra intense laser [250]. It is believed that nowadays

current technology may detect this effect [251].

180◦ − α′

p+

n k(ω)

p−

k′(ω′)

Figure 6.10: Breit-Wheeler pair production dynamics: the momenta (energies) are respectively

denoted as k′(ω′) for the high energy photon, k(ω) for the n laser photons, p±(E±) for the

positron/electron of the pair.

For multi-photon Breit-Wheeler pair production (BWPP), the other key parameter is Υγ ,

cf. eq. (6.17), corresponding to the ratio of the field strength in the rest frame of the pair over

Fcr. The higher is the energy of the electron beams, the higher the energy of the scattered

photons and the value of Υγ can be, enhancing BWPP. Referring to the dynamics in fig.

6.10, the BWPP differential rate per unit volume and time for an unpolarised photon beam

colliding with a circularly polarized laser can be written as [46],

dNnp(E±)

dE±
=

2π e4 ρωρω′

ωω′ 2

[
2

η2
J2
np(ζ) + (2w − 1)[J2

np−1(ζ) + J2
np+1(ζ)− 2J2

np(ζ)]

]
, (6.26)

for the absorption of np laser photons. We have

w =
(k · k′)2

4(k · p−)(k · p+)
' ω′ 2

4E±(ω′ − E±)
, ζ =

2η2

Υγ

√
w(wnp − w)(1 + η2) , (6.27)

and

wnp = npw1 , w1 =
(k · k′)

2m2(1 + η2)
. (6.28)

In fig. 6.11 we display the BWPP rate of an unpolarised high energy photon impinging

a circularly-polarised, as a function of the energy of the positron of the pair. The laser

wavelength is λ = 1064-nm laser and η = 0.6. We take the energy of the incident photon to

be Eω′ = 190.6 GeV. This energy is equivalent to the maximal energy for a incident photon

that has been produced from n = 1 Compton scattering of an 250-GeV electron. The maximal

energy occurs when the photon is collinear with the electron (θ = 0). In figure 6.11 we also

show the contributions of the first four harmonics in the number of laser photons absorbed
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Figure 6.11: Breit-Wheeler pair production rate for an incident unpolarised photon with energy

Eω′ = 190.6 GeV on a circularly polarised laser, in units of 2πr0m
3
e times GeV−2. The energy of the

beam electron is E = 250 GeV, we take ρω = η2ωme

r0
as photon density of the laser with λ = 1064 nm

with η = 0.6, the contributions from the harmonics np = 2, . . . , 5 and their total sum are displayed.

by the incident photon. These harmonics corresponds to np = 2, . . . , 5, in fact, due to energy

conservation, the minimal number of photons absorbed to trigger the process is given by:

np, 0 =
2m2(1 + η2)

ωω′(1 + β cosα)
. (6.29)

If one considers also incident photons produced from n > 1 Compton scattering, which are

more energetic is higher, therefore np, 0 may lower considering their contribution too.

From observed spectra and yields of the scattered positrons observed at SLAC-E144,

it has been unambiguously shown that BWPP occurred, implying that at least four laser

photons contributed to the production of e+e−-pairs [46,252]. There, a series of backgrounds

were considered, in particular the trident process e− + nω → e− + e+e−, which proved to

be responsible for < 1% of detected positrons. Furthermore, positron backgrounds from

bremsstrahlung and Bethe-Heitler pair production were taken into account.

6.4.1 Possibility at the future LC

At the future linear collider we could in principle reproduce set-ups for the study of nonlinear

Compton scattering and for Breit-Wheeler pair production that are very similar to the ones

utilised at SLAC-E144.

The set-up for studying nonlinear Compton scattering at SLAC-E144 is depicted in fig.

6.12. The 46.6 GeV e− Final Test beam was collided with an incident laser beam at an angle

α = 17◦. The laser was operated at different frequencies (λgreen=527 nm, λIR=1053 nm)

and energies (between 10 and 800 mJ). The laser polarisation at the interaction point IP1
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ECAL

Laser

IP146.6 GeV e− scattered γ

scattered e−

magnet

46.6 GeV e−

CC

Figure 6.12: Nonlinear Compton scattering set-up at SLAC-E144, repeatable at the ILC.

was also changed, either being circular or linear. The high energy Compton photons were

back scattered along the direction of the incoming beam. They were detected by a C̆erenkov

counter (CC), after the residual 46.6 GeV beam electrons were steered by a magnet into a

dump. An electron calorimeter (ECAL) detected the scattered Compton electrons.

A second set-up, see fig. 6.13, was necessary to study Breit-Wheeler pair production. A

ECAL

Laser

46.6 GeV e− scattered γ

scattered e−

magnet

46.6 GeV e−

PCAL
scattered e+

IP1

CC pair spectrometer

Figure 6.13: Breit-Wheeler pair production set-up at SLAC-E144, repeatable at the ILC.

dump magnet steered the residual 46.6 GeV electrons away from the beam line, while the

scattered electrons and positrons were sent respectively to an electron (ECAL) and a positron

(PCAL) calorimeter. The scattered photons were detected by a C̆erenkov counter (CC) or by

a pair spectrometer after being converted into electron-positron pairs.

More concretely, we should consider whether there is the technical possibility to locate the

experiments we propose at a future LC. Several options can be considered for their realisation

considering the design of the ILC [44,45], for example:

• One possibility is to locate the experiment in the polarimetry chicane of the extraction

line, either making use of the polarimeter laser or a dedicated high intensity laser.

• Another option is to use a high intensity laser in an upstream location, for example in

the storage rings, and running it parasitically to the ILC operation.

• Finally, in case there would not be the possibility to perform the experiments at the

same time as the main LC program, it would still be viable to work on the LC test-beam,

as it was done at SLAC-E144.
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We have argued that operating this type of experiment in the extraction line of the future

linear collider is particularly appealing, because it is possible to explore higher harmonics

of nonlinearity and in more critical conditions. We also find very interesting the possibility

to perform such an experiment on the positron beam. The availability of positron bunches

such the ones at the ILC would allow, to our knowledge, the first experiment of this type

performed on positrons. This would result in a substantial improvement and innovation after

the successful results of SLAC-E144. In fact, observing nonlinear effects in processes with a

positron in the initial state would be an important test of theoretical predictions in intense

fields and nonlinear QED.

It comes by itself that a future specific experimental proposal will have to fully consider

the physics of the backgrounds and undergo careful technical feasibility analysis. A series

of simulations will be required for example to estimate electromagnetic cascades [253] or

radiation interactions, see for example [254]. Recent theory developments have been made on

the background processes considered at SLAC-E144, like multiple Compton scattering [255],

and the trident process [256–258]. We believe that their effect could be lowered thanks to

higher statistics, due to potentially longer running times.

6.5 Summary and conclusions

The wide physics program of the future linear collider requires very high accuracy in the

measurements, especially for electroweak precision tests, Higgs physics and BSM studies. In

order to do so, a very high luminosity is to be pursued via very dense electron and positron

bunches colliding at the interaction point (IP). Correspondingly, intense external electromag-

netic fields generated by the bunches may approach, in the rest frame of colliding particles,

the Sauter-Schwinger critical field strength Fcr = 1.32 · 1018 V/m. Fcr corresponds to the

field strength at which real electron-positron pairs are spontaneously created in the vacuum,

which becomes unstable. We have evaluated the external fields seen by the colliding parti-

cles at the IP of several linear collider configurations. These fields, which can be described

by constant crossed fields, at the ILC stage with
√
s = 1 TeV could reach an average field

strength of order O(0.1) · Fcr, which means respectively 2 and 3 orders of magnitude higher

than at SLC and LEP II. These fields are even more intense at CLIC-3 TeV, where they could

surpass Fcr. Field strengths close to Fcr are not only responsible for triggering or enhancing

the most important background processes, i.e. beamstrahlung, coherent pair production, and

incoherent pair processes. They are expected, indeed, to affect all the physics processes that

are of interest for the LC physics program. For this reason, at a machine operating at sev-

eral TeVs, like CLIC-3 TeV, it is required to fully consider these effects. This can be done

by the Furry picture of quantum states, which accounts for the external fields exactly. The

Furry picture, indeed, applies to perturbation theory the Volkov solution of the equation of

motion describing a charged particle in an external field. This approach is also being tested
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in various contexts like laser physics. At the SLAC experiment 144, for example, a 46.6-GeV

electron beam was impinged on an intense laser. Nonlinear processes, i.e. occurring through

the absorption of laser photons, were studied. We have studied how to repeat and extend

this latter experiment at the future linear collider, exploiting the higher energy electron and

positron beams, together with the improved available laser systems and techniques. These

could allow to reach more extreme conditions, with values of the parameters regulating these

effects that are 1 order of magnitude higher than at SLAC-E144. It would be possible then to

study nonlinear effects in nonlinear Compton scattering and Breit-Wheeler pair production,

in correspondence of higher harmonics of laser photon absorption. A particularly appealing

feature is the possibility to perform such tests for the first time also on positrons, which would

be a very important test for the validity of the theory.





Chapter 7

Conclusions

In this thesis two classes of non-minimal supersymmetric models have been discussed in the

context of their phenomenology at linear colliders, as well as the processes in the strong

electromagnetic fields that occur in these machines. In the following, the conclusions of these

topics are given separately, before a common summary closes this study.

NMSSM

The first type of non-minimal supersymmetric model that has been discussed in this thesis

is the NMSSM, which features an additional gauge singlet supermultiplet with respect to

the MSSM. This leads the NMSSM to have in supplement a CP-even Higgs state, a CP-odd

Higgs state, and a neutralino. The motivations for this model are its elegant solution to the

µ-problem, as well as the additional contribution to the tree-level Higgs mass, that is due to

the mixing of Higgs doublets with the singlet state.

We have seen that several classes of NMSSM scenarios, despite the additional Higgs and

neutralino states, may feature a low energy spectrum and phenomenology that are remarkably

similar to MSSM scenarios. For example, an NMSSM scenario could be experimentally almost

indistinguishable from an MSSM in case it has, apart from a SM-like Higgs, a CP-even and a

CP-odd Higgs that are mostly singlets, difficult to be clearly seen at the LHC and kinematically

not accessible at the ILC. The low energy neutralino sectors of the two scenarios, as well, may

present very close masses and production cross sections in such cases.

Therefore it is of primary importance to develop methods to distinguish between the two

models in a general. In this thesis we have outlined a model distinction strategy that exploits

the mass and polarised cross section measurements of neutralinos and charginos lightest states

at a linear collider. We have seen that, from these measurements, a reconstruction of the

neutralino and chargino sector parameters M1, M2, µ, and tanβ, assuming the MSSM as

underlying model, is possible applying a χ2-fit as criterion. In case such a fit clearly excludes

the MSSM hypothesis this would be a strong indication towards an extended model, with the

NMSSM as foremost candidate. The confirmation of this latter hypothesis can be given going

for higher energies and looking for heavier neutralino resonances and integrating the analysis

113
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with further information from the Higgs sector, looking for singlet states. In our analysis,

we have applied the described distinction method to a series of NMSSM scenarios with low

energy neutralino and chargino spectra particularly similar to MSSM scenarios, respectively.

We have grouped the phenomenological possibilities in different classes of scenarios, selected

by the admixtures of the lightest neutralino states.

Our results show that an NMSSM scenario with a high singlino admixture in the lightest

neutralino states, here in particular in χ̃0
2, can quite straightforwardly be distinguished from

the MSSM. Observing χ̃0
3 may confirm the NMSSM. We have also studied a scenario with

light higgsinos along the (λ, κ)-plane, being λ and κ the key parameters regulating the singlino

admixtures in neutralinos. We could see that a large part of the (λ, κ)-plane features an almost

decoupled singlino state and the NMSSM is indistinguishable from the MSSM. However, this

changes already in those areas, where the singlino component in χ̃0
1 achieves already a few

percent, quickly excluding the MSSM. This has also been confirmed by the possibility of

detecting the additional singlet-like pseudoscalar Higgs a1 and measuring precisely the SM-

like Higgs couplings. Eventually we have observed that, in general, in NMSSM scenarios with

light gaugino states our distinction method is less effective and additional information from

the Higgs sector is also needed.

Finally, our studies have shown that the neutralino and chargino sector can provide the

crucial information for the model distinction between the MSSM and the NMSSM, that could

be complementary added to the standard analyses of the Higgs sector.

Non decoupling D-terms

The second class of non-minimal supersymmetric models that have been discussed is given

by extensions of the MSSM with additional non-decoupling D-terms. These extensions may

appear, at the TeV scale, as the effective field theories of supersymmetric models with an

enlarged gauge group with respect to SU(3)c⊗SU(2)L⊗U(1)Y in the MSSM. The extended

gauge group breaks, due the vevs of some chiral superfields, to that of the MSSM. These chiral

superfields, with soft masses above the scale of gauge symmetry breaking, may be integrated

out, leaving the additional non-decoupling D-terms in the Higgs scalar potential.

These terms enhance the tree-level Higgs mass with respect to the MSSM. This is a very

interesting feature, since in the MSSM the Higgs mass requires large radiative corrections to

accommodate the observed value at 125.5 GeV. These corrections are mainly provided by stop

loops and, in order to be large, they require heavy stops or large stop mixing, introducing a

certain amount of tuning. Therefore, the enhanced tree-level Higgs mass in non-decoupling

D-term extensions of the MSSM relaxes the naturalness in the stop sector, giving the main

motivation for these models.

We have focussed on models whose gauge group has two copies of the factor SU(2)⊗U(1),

that diagonally break to the electroweak group SU(2)L⊗U(1)Y . In particular, two examples

have been discussed: the “vector Higgs” case, with both Higgs doublets charged under the

same copy of SU(2) ⊗ U(1), and the “chiral Higgs” case, with the Higgs doublets charged
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under different copies.

Operatively, the decoupling limit mA0 � mZ with moderately large tanβ has been con-

sidered, so that we could identify the light CP-even Higgs with SM-like Higgs observed at

the LHC. We could see how in both the vector and the chiral Higgs cases the Higgs mass is

raised for increasing values of the D-term parameter ∆ = ξ2 · Ω. The parameter ξ = ga/gb

is the ratio of the gauge couplings couplings in the two SU(2)⊗ U(1) copies. The parameter

Ω = m2
L/(m

2
V + m2

L), instead, parametrises the relative value of the soft scale of the fields

breaking the gauge group (mL) with respect to the symmetry breaking scale (∝ mV ). For

values of ∆ = ξ2 · Ω in [0.2, 1], the MSSM Higgs mass is raised by several tens of GeV.

Given this, it is important to understand how these supersymmetric models can be dis-

tinguished from the SM and the MSSM. The SM-like Higgs couplings to fermions and gauge

bosons have, like in the MSSM, an additional contribution with respect to the SM that is

suppressed by the mass of the heavy CP-even Higgs, mH .

With respect to the MSSM, this contribution is enhanced in the vector case by a term

proportional to ∆. We could estimate that, at the high-luminosity LHC, the deviations from

the SM could be established even for ∆ ∈ [0, 0.1], with sensitivity to mH up to ∼ 600 GeV. At

the ILC operating at 500 GeV the sensitivity is much improved with sensitivity to mH up to

∼ 800− 900 GeV, while high-luminosity stages of the ILC may explore the TeV range. In the

context of this the vector Higgs model, a non observation of deviations allows to exclude mH

up to the scale of sensitivity. In the chiral case, instead, the sensitivity is reduced by a term

proportional to Ω, such that deviations from the SM are detectable at the ILC operating at

500 GeV with mH only up to 650 GeV for Ω ∼ 1.

In order to distinguish the model, and largely model-independent measurements of the

Higgs couplings at a linear collider are required. Given the deviations of the Higgs coupling

from the SM, a precise measurement of mH , possibly exploiting both the ILC and the LHC,

becomes fundamental to determine the underlying model in the context of non-decoupling

D-terms extensions of the MSSM.

Processes in intense electromagnetic fields

It has been shown that the rôle of a linear collider –due to the possibility of using several energy

stages and polarisation configurations, multiplying the number of the available observables– is

crucial for studying the precise phenomenology of supersymmetric models. The Higgs sector,

as well, can be very precisely studied thanks to a model-independent determination of the

Higgs couplings.

In order to fulfil the high precision requirements, also the exact knowledge of the conditions

under which the particles interact during beam-beam collisions should be taken into account.

At the IP of a linear collider, an ultrarelativistic incident lepton sees in its rest frame an

intense electromagnetic fields generated by the oncoming dense bunches. We have estimated

that at the ILC at 1 TeV, these fields could be 2 and 3 orders more intense than at SLC and at

LEP II. At the CLIC at 3 TeV, these fields could be even one order more intense, potentially
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surpassing Sauter-Schwinger critical field strength Fcr = 1.32 · 1018 V/m, corresponding to

a regime in which electron-positron pairs are spontaneously created in the vacuum, that is

unstable.

Therefore, especially if to operate a linear collider like the CLIC at 3 TeV, the effects of

these intense external fields at the IP should be included in theoretical calculations. Using

the Furry picture of quantum states allows to account for the external fields effects exactly.

Finally, we have studied how to test the theory of processes in external fields and the

related nonlinearity effects, via colliding an intense laser beam on the ILC beams. The high

energetic beams of the ILC, indeed, offer an optimal opportunity to extend and improve the

SLAC experiment 144 to more extreme conditions, increasing the nonlinearity of the generated

processes. Last but not least, performing this kind of experiment on the positron beams would

offer an unprecedented test for the theory.

Summary and outlook

In this thesis, supersymmetric models extending the MSSM in rather minimal ways have been

discussed. It has been shown that they quite naturally solve the main MSSM shortcomings,

such as the µ-problem and the naturalness of the stop sector in relation to the Higgs mass. Our

results have proven that a linear collider will be an effective tool for the study of these models

both looking at the supersymmetric and at the Higgs boson sectors. Precise understanding of

the physics processes during beam-beam interaction is required to match the high precision

requirements. We conclude that a linear collider like the planned ILC would be a unique

machine for revealing the structure and the determination of the underlying model, and that

its approval would represent an important leap for particle physics.



Appendix A

Superspace notation

Supersymmetry transformations extend the space-time transformations and mix with the

Poincaré group. Therefore it is comfortable and elegant to adopt a notation according to which

the supermultiplets are single objects, called superfields, that transform in the superspace.

Superspace is a manifold whose coordinates are given by the usual space-time coordinates xµ,

that are bosonic, and by the fermionic coordinates θα and θ
†
α̇, that are complex anticommuting

two-component spinors with indices α, α̇ = 1, 2. We briefly introduce here the superspace

notation, referring to the standard books [50,51] for more details.

A Chiral superfield Φ̂ corresponds to a chiral supermultiplet. Φ̂ and its conjugate Φ̂∗ are

defined by the conditions

D†α̇Φ̂ = 0 , DαΦ̂∗ = 0, (A.1)

where D†α̇ = − ∂
∂θ†α̇

+ i(θσµ)α̇∂µ and Dα = ∂
∂θ†α
− i(θσµ)α∂µ are chiral covariant derivatives,

anticommuting with the supersymmetry generators Qα and Q†α̇.

The superfields Φ̂ and Φ̂∗ can then be expanded, in terms of their bosonic and fermionic

components φ(x), ψ(x) and F (and conjugates) as [48],

Φ̂ =φ(x) + iθ†σµθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂µφ(x) +

√
2θψ(x) (A.2)

− i√
2
θθθ†σµ∂µψ(x) + θθF (x) , (A.3)

and

Φ̂∗ =φ∗(x)− iθ†σµθ∂µφ∗(x) +
1

4
θθθ†θ†∂µ∂µφ∗(x) +

√
2θ†ψ†(x) (A.4)

− i√
2
θ†θ†θσµ∂µψ†(x) + θ†θ†F ∗(x) . (A.5)

A vector superfield V̂ , instead, has to fulfil the condition

V̂ = V̂ † . (A.6)

In the Wess-Zumino gauge, V̂ can be written in terms of its components Aµ, λ, D as

V̂ = θ†σµθAµ + θ†θ†θλ+ θθθ†λ† + θθθ†θ†D . (A.7)

117



118 Chapter A. Superspace notation

Products of superfields are superfields. The components of a superfield that are proportional

to θθ and to θθθ†θ†, are called the F - and the D-components, respectively. The superspace

notation allows, then, for a more compact way of writing a supersymmetric Lagrangian density.

Let us consider a renormalisable supersymmetric model with i chiral superfields Φ̂i and the

vector superfield V̂ associated to the gauge group G. The corresponding Lagrangian can be

written as

Lgeneral SUSY =
1

16g2k
Tr
[
WαWα +W α̇W

α̇
]
F

+ [K]D +
[
W(Φ̂i) + h.c.

]
F
. (A.8)

In the first term of equation (A.8), g and k = C2(G) are the gauge coupling and the quadratic

Casimir of the gauge group G. Furthermore, Wα and W α̇ are supersymmetric generalisations

of the gauge field strength tensors:

Wα =
1

4
D†D†

(
e−gV̂Dαe+gV̂

)
, W α̇ =

1

4
DD

(
e+gV̂Dα̇e−gV̂

)
, (A.9)

where we denote DD = DβDβ and D†D† = D†βD†β. The indices α, β are raised (lowered) by

the epsilon matrix εαβ (εαβ).

The second term of equation (A.8) is equivalent to the D-component of the so called Kähler

potential K, defined by:

K = Φ̂†i
(
egV̂
)
ij

Φ̂j , (A.10)

which describes the gauge interactions of the chiral superfields. Finally, the last term of

equation (A.8) is the F -component of the superpotential:

W(Φ̂i) = LiΦ̂i +
1

2
M ijΦ̂iΦ̂j +

1

6
yijkΦ̂iΦ̂jΦ̂k . (A.11)



Appendix B

NMSSM: Higgs sector and

conventions

B.1 Z3-NMSSM Higgs sector

The Z3-invariant NMSSM superpotential is given by the sum of the terms involving the gauge

singlet superfield Ŝ = (S, S̃),

WS = λŜĤu · Ĥd +
κ

3
Ŝ3 , (B.1)

and of the Yukawa terms

WYukawa = ˆ̄uyuQ̂ · Ĥu − ˆ̄dydQ̂ · Ĥd − ˆ̄eye
ˆ̀· Ĥd . (B.2)

The Higgs soft SUSY breaking lagrangian reads:

−Lsoft ⊃AuQ ·Hu ū−AdQ · d̄−Ae ` ·Hd ē (B.3)

+ λAλHu ·HdS +
κ

3
AκS

3 + h.c. (B.4)

From equations (B.1) and (B.4) one obtains the Higgs scalar potential [127],

VH, NMSSM =
∣∣λ(H+

u H
−
d −H0

uH
0
d) + κS

∣∣2

+ (m2
Hu + |µ+ λS|2)

(
|H0

u|2 + |H+
u |2
)

+ (m2
Hd

+ |µ+ λS|2)
(
|H0

d |2 + |H−d |2
)

+
g2

1 + g2
2

8

(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)

+
g2

2

2

∣∣H+
u H

0 ∗
d +H0

uH
−∗
d

∣∣2

+m2
S |S|2 +

(
λAλ(H+

u H
−
d −H0

uH
0
d)S +

k

3
AκS

3 + h.c.

)
. (B.5)

Conventionally, taking v2 = v2
u + v2

d = 246 GeV2 we write

H0
u =

vu√
2

+
1√
2

(
ReH0

u + iImH0
u

)
, H0

d =
vd√

2
+

1√
2

(
ReH0

d + iImH0
d

)
, (B.6)

and

S = s+
1√
2

(ReS + iImS) . (B.7)
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We define µeff = λ s. The CP-even Higgs mass matrix M2
h is symmetric with respect to the

diagonal, and in the basis (ReH0
u, ReH0

d , ReS) its entries are given by [127],

M2
h, 11 =

g2
1 + g2

2

4
v2
d + µeff

Aλ + κs

cotβ
, (B.8)

M2
h, 12 =

(
λ2 − g2

1 + g2
2

4

)
vuvd − µeff(Aλ + κs), (B.9)

M2
h, 13 =

λ√
2

(2µeffvd − (Aλ + 2κs)vu), (B.10)

M2
h, 22 =

g2
1 + g2

2

4
v2
u + µeff(Aλ + κs)/ tanβ, (B.11)

M2
h, 23 =

λ√
2

(2µeffvu − (Aλ + 2κs)vd), (B.12)

M2
h, 33 = λAλ

vuvd
2s

+ κs . (B.13)

The CP-odd Higgs mass matrix M2
a, is diagonally symmetric as well, and in the basis

(A0, ImS) reads

M2
a =


 2µeff (Aλ + κs)/ sin 2β λ√

2
(Aλ − 2κs)v

λ(Aλ + 4κs)vuvd2s − 3κAκs


 , (B.14)

defining A0 = cosβ ImH0
u + sinβ ImH0

d .

Finally, the NMSSM charged Higgs states H± have the mass:

m2
H± =

2µeff(Aλ + κs)

sin 2β
+
v2

2

(
g2

2

2
− λ2

)
. (B.15)

B.2 Standard Model constants

In the analysis in chapter 4 we use the following definitions:

mt = 173.07 GeV, (B.16)

mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, (B.17)

mW = 80.385 GeV, ΓW = 2.085 GeV, (B.18)

sin2 θW = 1−m2
W /m

2
Z , αem = 1/127.92, (B.19)

αs(mZ) = 0.1184 . (B.20)



Appendix C

Non-decoupling D-terms

C.1 Perturbative unification and the size of the D-terms

If gauge coupling unification is of interest in the formulation of non-decoupling D-terms ex-

tensions of the MSSM, then it may be used as a guide to constrain the size of D-terms [3].1
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Figure C.1: Perturbative unification of the GA ⊗ SU(3)c and GB sites separately, at scales ∼ 108.2

and ∼ 1010 GeV respectively, allowing for the maximal value of the ratios R1 = 0.6, R2 = 0.86.

tanβ = 10.

In the vector Higgs case, for example, one would require that the ratio of gauge couplings,

Ri = g2
Ai/g

2
Bi, to be as large as possible in order to maximise the effect of the D-terms, cf.

1In this appendix, we take g1 to be SU(5)-GUT normalised. Therefore we switch notation, substituting

g1 →
√

5/3g1, such that we have m2
Z = 1

4
( 3
5
g21 + g22)(v2u + v2d).
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eq. (5.35). However, one should remember the fact that having large gauge couplings at

the electroweak scale, may affect perturbativity of the gauge couplings at higher energies.

Even though in the examples we considered in chapter 5 there are not full GUT multiplets

of matter, we can nevertheless explore the possibility of unification in these models. The

presence of additional matter, indeed, changes the gauge couplings β-functions, and may

cause the theory to unify at a scale that is much lower than 1015 GeV [97]. This also depends

on how the matter is distributed between the gauge sites. For concreteness we refer to the

model defined in table 5.1. The beta functions at one loop are then given by

βgu =
d

dt
gu =

bu
16π2

g3
u with bu = (2,

39

5
,−5,

6

5
,−3) . (C.1)

Defining αi = g2
i /(4π~c), the parameter space is restricted by the perturbativity requirement

αi(ΛGUT ) < 1. Furthermore we assume SU(3)c ⊗ SU(2)A ⊗ U(1)A to separately unify on

site A and SU(2)B ⊗ U(1)B on site B. This translates in the following gauge unification

conditions:

αg1A(ΛGUT A) = αg2A(ΛGUT A) = αg3(ΛGUT A) , (C.2)

αg1B (ΛGUT B) = αg2B (ΛGUT B) . (C.3)

We plot in figure C.1 the RGE evolution of couplings, for the largest values of Ri allowing for

perturbative unification, taking tanβ = 10. We find at the electroweak scale R1 ∼ 0.6 and

R2 ∼ 0.86. Unification on site A occurs at the scale ΛGUT A ∼ 108.2 GeV, and on site B at

ΛGUT B ∼ 1010 GeV. Since we have that

∆ =

(
g2
A

g2
B

)
m2
L

m2
v +m2

L

≤ R , (C.4)

we can conclude that maximal values the D-term parameters are ∆Max
1 = 0.6 and ∆Max

2 =

0.86, respectively.

C.2 Derivation of κb

In chapter 5, we are considering the decoupling regime mA0 � mZ with moderately or large

tanβ, and we may identify Hd with the heavy Higgs states. It is useful then to derive here κb

following the guidelines sketched in [192]. We start from the Higgs Lagrangian from equation

(5.90),

L ⊃ −V2HDM −
(
ūyuQ ·Hu + d̄ydQ ·Hd + h.c.

)
, (C.5)

where leptons and the wrong couplings have been neglected. Defining h2 = ReH0
u, we may

write the effective Lagrangian from equation (5.91),

Leff ⊃− h2

2
D2h2 +

1

2
Θh2

1

D2 + Π2
Θh2

−m2
2

h2

2
− λ2

8
h4

2 (C.6)

− yttt̄h2 +
yd√

2

Θ

D2 + Π2
bb̄h2 ,
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where Θ = m2
12 +

λ7h22
2 and Π2 = m2

1 +
(λ3+λ5)h22

2 . As pointed out in [192], by a comparison

with the basis used in the standard reference [196], we have Θ/Π2 ∼ 1/ tanβ.

Looking at the first line in equation (C.6), we canonically normalise the SM-like Higgs h

through the relation

h2 =

(
1− 1

2

(
∂〈Θh2/Π

2〉
∂v2

)2
)
h =

(
1− f ′2

2

)
h . (C.7)

where we have done an expansion at the order O(Θ2/Π4). We define the scale factor or ratio

between the Higgs bottom couplings to the SM case as

κb =
vghbb̄
mb

= v
(∂Vb∂h )|h=v

Vb|h=v
, (C.8)

where Vb is derived by the last term in equation (C.6), considering the Higgs bottom coupling,

Vb =
Yb√

2

1

�+ Π2
Θh2 . (C.9)

The D’Alambertian operator � acting on the field h gives �→ −m2
h. Therefore the numerator

in equation (C.8) becomes

∂Vb
∂h

=
Yb√

2

(
Θ′(1− f ′2

2 )h+ Θ∂h2
∂h

) (
Π2 −m2

h

)
−Θ(1− f ′2

2 )hΠ2 ′

(
Π2 −m2

h

)2 , (C.10)

where

Θ′ ≡ ∂Θ

∂h
= λ7

(
1− f ′2

2

)2

h , (C.11)

Π2 ′ ≡ ∂
(
Π2 −m2

h

)

∂h2
= λ35

(
1− f ′2

2

)2

h . (C.12)

When � acts on the vacuum v, instead, we have � → 0. Therefore for the denominator of

equation (C.8) we have:

Vb|h=v =
Yb√

2

Θ(1− f ′2

2 )h

Π2
|h=v , (C.13)

Substituting in (C.8):

κb = v ·

(
Θ′(1− f ′2

2 )h+ Θ∂h2
∂h

) (
Π2 −m2

h

)
−Θ(1− f ′2

2 )hΠ2 ′

(
Π2 −m2

h

)2 · Π2

Θ(1− f ′2

2 )h
|h=v (C.14)

=

(
1− m2

h

Π2

)−1

· (Θ′h+ Θ)
(
Π2 −m2

h

)
−ΘhΠ2 ′

(
Π2 −m2

h

) · v
Θh
|h=v (C.15)

=
1(

1− m2
h

Π2

) ·
[

1 +
λ7h

2
2

(
Π2 −m2

h

)
−Θλ35h

2
2(

Π2 −m2
h

) · v
Θh
|h=v

]
. (C.16)
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Finally we obtain,

κb =
1

1− m2
h

Π2

[
1 +

(λ7v
2
2)

Θ
− λ35v

2
2

(Π2 −m2
h)

+O(Π−4)

]
. (C.17)

In the case considered in chapter 5, the MSSM with additional non-decoupling D-terms,

we have λ7 = 0. Moreover, Π can be substituted by mH , in an approximation at order

(Θ/Π2)2 ∼ 1/ tan2 β that is valid for low Θ (i.e. Bµ in the MSSM and its D-terms extensions)

[192]. We therefore write for general non-decoupling D-terms extensions of the MSSM as,

κb '
(

1− m2
h

m2
H

)−1(
1− [λ3 + λ5] v2

m2
H −m2

h

)
+ . . . . (C.18)



Appendix D

The QED Furry-Feynman rules

We write the QED Lagrangian for the Furry Picture (FP) as,

L = ψ̄(i6∂ − e 6Aext −m)ψ − 1

4
FF − eψ̄ 6Aψ , (D.1)

where the external field Aµext is treated classicaly and has no dynamical terms. One can derive

then the modified Dirac equation for a fermion ψ in an external field Aµext:

(i6∂ − e 6Aext −m)ψ = 0 . (D.2)

The corresponding Volkov solution for an external plane wave is given by [225]:

ΨV
p (k · x) =

1√
(2π)32εp

Ep(k · x) u(p) , (D.3)

with

Ep(k · x) ≡
(

1− e6Aext 6k
2(k · p)

)
exp

[
−ip · x− i

∫ (k·x)

0

[
e(Aext(φ) · p)

(k · p) − e2Aext(φ)2

2(k · p)

]
dφ

]
, (D.4)

where k is the momentum of the external field, p and εp the canonical momentum and energy

of the fermion; u(p) is the usual Dirac spinor solution.

We list here the QED Furry-Feynman rules, that can straightforwardly be derived from solu-

tion (D.3), see also [213,229].

• The fermion two-point function in the coordinate space is given by, see Fig. D.1(a):

G(x, x′) =
1

(2π)4

∫ +∞

−∞
d4p Ep(k · x)

6p+m

p2 −m2
Ep(k · x′)eip·(x

′−x), (D.5)

where the usual fermion propagator is sandwiched between Ep and Ep = E†pγ0
D factors

coming from the Volkov solutions. Noteworthy, there is a non trivial dependence on the

coordinates x, x′ within which the fermion propagates, instead of their difference x′− x
as in the usual QED Green functions [208].
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x x′

(a)

pf

pi

kf

(b)

Figure D.1: (a) The FP fermion propagator, where the double line represents the Volkov solution.

(b) The FP vertex of QED.

• The QED vertex in fig. D.1(b) is given by:

− ie γµe = −ie (2π)4
+∞∑

r=−∞
Epf (r)γµDEpi(r) δ4(pf + kf − pi − r k) . (D.6)

Each term of the sum is given by the usual Dirac matrix γµD, sandwiched between the

factors Ep, Ep. Each term is also multiplied by a δ-function representing the momentum

conservation law in the argument, which contains the term −rk, i.e. the momentum

exchanged with the external field.

For the relevant case of a constant crossed field the sum in the vertex becomes an

integral:

− ie γµe = −ie (2π)4

∫ +∞

−∞
dr Epf (r)γµDEpi(r) δ4(pf + kf − pi − r k) . (D.7)

• Having grouped the Ep, Ep factors in the Feynman rules for the QED vertex, cf. eqs.

(D.6) and (D.7), when writing an amplitude one should use for the initial and final

fermions just the usual Dirac spinors up, ūp, vp, v̄p.

• Finally, the photon propagator at tree level is unchanged, as the photon is not charged

and it does not interact directly at first order to the external field.

With the Furry-Feynman rules, one has all the tools needed to build every Feynman dia-

gram for processes in an external field, at each order in perturbation expansion. One has then

to substitute in Ep, Ep a suitable form of the external field Aµext, depending on the physical

case considered.

The sum in equation (D.6) leads to a näıve interpretation for the Feynman diagram in the

FP, when an amplitude expression is written down [259]. For beamstrahlung, for example,

the diagram in left side of figure D.2 can be seen as sum over all the Feynman graphs each

one due to the emission or absorption of r photons from the external field. Within the Furry
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pi
pf

kf

=
+∞∑

r=−∞

r k

pi
pf

kf

Figure D.2: Näıve interpretation of FP beamstrahlung diagram.

picture the external field is treated classicaly, without considering its quanta. It’s interesting

to note that these quanta “appear” through the expression of the Furry-Feynman rule for the

QED vertex.
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