
Gluino and Squark Pair Production

at

Future Linear Colliders

Dissertation

zur Erlangung des Doktorgrades

des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Stefan Berge

aus Leipzig

Hamburg

2003



Gutachter der Dissertation: Prof. Dr. B.A. Kniehl
Prof. Dr. P. Zerwas

Gutachter der Disputation: Prof. Dr. B.A. Kniehl
Prof. Dr. J. Louis

Datum der Disputation: 4. November 2003

Vorsitzender des
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Zusammenfassung

In der vorliegenden Arbeit werden die Squark- und Gluino-Paarproduktion an zukünft-
igen Linearbeschleunigern in Elektron-Positron Annihilation und Photon-Photon Kol-
lision untersucht. Die Gluino-Paarerzeugung wird für beide Streuarten analysiert.
Alle Feynman Diagramme in niedrigster Ordnung sind Einschleifendiagramme, in de-
nen Squarks und Quarks umlaufen. Aufgrund destruktiver Interferenz der einzelnen
Schleifenbeiträge ist eine Messung von Gluino-Paaren in Elektron-Positron Annihila-
tion für Gluinomassen größer als 200 GeV nur äußerst eingeschränkt zu erwarten. In
Photon-Photon Streuung hingegen ist mit einer Signalrate von bis zu 6000 Ereignissen
pro Jahr für leichte Squarks (350 GeV) und leichte Gluinos (300 GeV) bei einer Lumi-
nosität von 330 fb−1 zu rechnen. Falls die Squarkmassen 700 GeV nicht übersteigen,
treten Signalraten von 300 Ereignissen pro Jahr für Gluinomassen bis 1700 GeV
auf. Weiterhin werden die Beiträge durch aufgelöste Photonen untersucht. Diese
können nicht vernachlässigt werden, wenn die Schwerpunktsenergie viel größer als die
Produktionsschwelle der Teilchen ist oder falls die Gluinos leicht (200 GeV) und die
Squarks sehr schwer sind (1500 GeV).
Außerdem wird die Squark-Paarproduktion in Photon-Photon Streuung untersucht.
Da dieser Prozess bereits auf Born-Niveau stattfindet, ist der Wirkungsquerschnitt von
geeigneter Größe, um Präzisionsmessungen durchzuführen. Deshalb werden die kom-
pletten MSSM Einschleifen-Korrekturen berechnet, und deren Einfluss am Beispiel
der beiden Benchmark Punkte SPS1 und SPS5 aufgezeigt. Hierbei wurde ermit-
telt, dass sowohl QCD-Korrekturen als auch die elektroschwachen Korrekturen wichtig
sind. Darüberhinaus besitzen beide Korrekturen ein entgegengesetztes Vorzeichen,
wodurch sich für Energien, die etwas größer als die Produktionsschwelle der aus-
laufenden Teilchen sind, stabile Korrekturen von −5% für SPS1 und +10% für SPS5,
ergeben. Die Beiträge aufgelöster Photonen zur Squarkproduktion sind nur für leichte
Squarks um 200 GeV und hohe Schwerpunktsenergien von Bedeutung.

Abstract

In this thesis gluino and squark pair production processes at future linear colliders are
considered. The scattering processes relevant for the pair production are the electron-
positron annihilation and the photon-photon collisions. The gluino pair production
is analyzed for both cases. The Feynman diagrams are all one-loop with squarks
and quarks inside the loops. Unfortunately, the matrix elements in electron-positron
annihilation interfere destructively, and only very optimistic MSSM parameters lead
to 65 detectable gluino pairs per year. In photon-photon scattering, however, up to
6000 events per year are expected for light squarks (350 GeV) and light gluinos (300
GeV), and a photon-photon luminosity of 330 fb−1. If the squark masses increase up
to 700 GeV, around 300 events per year are expected almost independently from the
gluino mass. The resolved contributions were found to be important for center-of-
mass energies much higher than the pair production threshold or light gluino masses
(200 GeV) and heavy squarks masses (1500 GeV).
Furthermore, the squark pair production in photon-photon collisions is discussed. Since
the scattering process occurs at Born level, large cross sections arise that offer the



possibility of precision measurements. Moreover, the full MSSM next-to-leading order
corrections are calculated for the benchmark points SPS1 and SPS5. It has been shown
that the QCD as well as the electroweak corrections are important, summing to an
overall contribution of −5% for SPS1 and +10% for SPS5, for energies far above the
production threshold. The resolved contributions are only important for light squark
masses of 200 GeV and large center-of-mass ernergies.
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Chapter 1

Introduction

The intention of high energy physics is to understand and to describe the nature of
particles and their interactions using mathematical methods. Three of the four known
interactions and all experimentally detected particles have been embedded into the
Standard Model (SM) [1–5]. The SM describes the particle interactions within the
experimental errors. However, an important particle, predicted by the SM, has not
yet been observed. This particle, the Higgs boson [6–10], is needed to generate the
particle masses. Therefore, the main purpose of the present collider measurements
at the Tevatron and that of the next generation, the LHC, is to discover the Higgs
particle to complete the SM. The next step would be a precise measurement of the
Higgs mass and its properties. A linear electron-positron collider would enhance the
precision significantly.

The SM combines three known interactions. It can not describe gravity and does not
explain the origin of its parameters. Using Supersymmetry [11–13] the SM can be
embedded into unified theories that explain parts of the structure of the SM. The
unification of the coupling constants, the naturalness problem and non-baryonic dark
matter are examples of other problems that Supersymmetry could solve. The Mini-
mal Supersymmetric Standard Model (MSSM) is considered in this thesis. Within the
MSSM every SM particle is accompanied by a supersymmetric partner, whose spin
differs by 1/2. Furthermore, a second Higgs doublet and the corresponding supersym-
metric doublet have to be introduced.

The supersymmetric partners of the quarks and the gluon are the squarks and the
gluino, respectively. Both couple strongly and it is expected to be discovered at the
LHC, between 800 GeV and 2.5 TeV [14], depending on the scenario. The LHC has
the advantage of providing high center-of-mass energies and, due to the initial hadrons,
large cross sections for strongly interacting particles.

However, if the center-of-mass energy of a linear electron-positron collider is sufficient
to produce a given particle, much more precise measurements of the masses can be
performed. Additionally, the quantum numbers and couplings become accessible. The
much higher precision of linear colliders originates in the exactly known center-of-mass
energy and the clean scattering process.
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1 Introduction

In this thesis, the squark and gluino production at linear colliders is considered. The
possible production channels of gluinos are pair production, associated production of
squark, quark and gluino, and production channels with more than three particles in
the final state. Since it is assumed that gluinos are heavier than 200 GeV, cross sections
with more than three particles in the final state are likely to be suppressed. The NLO-
SQCD corrections to squark-quark-gluino production in electron-positron annihilation
were calculated in [15]. This process can be used to detect the gluino as well as to verify
the supersymmetric coupling relations. If squarks are heavier than gluinos, gluino pair
production [16–20] becomes accessible at smaller energies. Since the initial electrons of
a linear collider couple only electro-weakly and gluinos only strongly, the production
process starts at the one loop level. Due to squarks with large masses inside the loops,
the cross section might be suppressed. However, the precision of a linear collider could
compensate this disadvantage. Furthermore, measuring the angular distribution would
allow a determination of the spin and point out the Majorana nature of the gluino [16].
Since different results for this process exist in the literature, gluino pair production
will be recalculated and comparisons will be performed.

Besides electron-positron annihilation, a linear collider offers the possibility for other
types of scattering processes. These are the e−e− collision and the possibility of build-
ing a photon collider [21–27]. At a photon collider, laser light will be Compton-
scattered on high energy electrons, and the backscattered photons will hold up to
85% of the initial electron energy [28, 29]. If this is realized for both beams, photon-
photon scattering processes can be performed with high luminosity. Gluino pairs can
be produced in photon-photon collisions, starting at the one loop level. The loops
contain squarks and quarks, therefore the process depends on the gluino mass and the
squark sector of the MSSM. Gluino pair production in photon-photon collisions is also
calculated in this thesis.

Squark pair production in electron-positron annihilation has been studied intensively.
The NLO QCD corrections were calculated in [30, 31], and the supersymmetric con-
tributions were performed in [32, 33]. Susy-QCD corrections to squark decay and im-
plications to precision measurements have been worked out in [34]. The corresponding
process in photon-photon scattering occurs also at tree level, thus large cross sections
comparable to the electron-positron annihilation are produced. The NLO-SQCD cor-
rections to this process have been considered in [35]. A favorable property of squark
production in photon-photon collision is the dependence on the final squark mass, at
tree level. No other MSSM parameter enters the process. Then, e.g., it is possible to
extract the mixing angle for the third generation from the squark decay. However, loop
corrections will affect the squark pair production process. Since squarks also couple
strongly, QCD corrections may become large. Because of the large number of diagrams
the electroweak corrections might also become important. Therefore, the NLO-MSSM
corrections to squark pair production in photon-photon collision will be calculated to
study their influence on the cross section.

The outline of this thesis is as follows: in the next Chapter an introduction to the
MSSM is presented. There the particle content as well as the MSSM parameter are
discussed. Furthermore, in Section 2.5 renormalization of the squark sector is discussed,
which is needed to calculate the one-loop corrections for squark pair production. The
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Introduction

appropriate counter terms of this production process are given in Section 2.5.4.
In Chapter 3, the general configuration of a scattering process at a linear collider is
demonstrated. The laser-backscattering spectrum and luminosity of a photon collider
are discussed. The Chapter is completed with the kinematic formulae for general
hadronic process (Section 3.4) and a detailed overview of the developed computer cal-
culation tools (Section 3.5).
In Chapter 4, the gluino pair production process in electron-positron annihilation is
discussed. The Chapter is divided into Section 4.1, where the analytical results are
denoted, and Section 4.2, where the numerical results are presented.
Chapter 5, deals with the gluino pair production process in photon-photon scattering
where the high energy photons are produced by laser backscattering. While Section 5.1
discusses the direct scattering process, in Section 5.2 the resolved contribution of this
process is given.
In Chapter 6 the squark pair production process in photon-photon collisions is inves-
tigated. Here, the tree level behavior is shown in Section 6.1 while in the following
section the full next-to-leading order corrections are discussed. At the end of this
Chapter the contributions from resolved squark pair production are considered.
A short conclusion of the three scattering processes is drawn in Chapter 7. Finally,
one can find some used formulae and parameters in the appendix.
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Chapter 2

Supersymmetry

2.1 The Standard Model

To describe the particles and their interactions, the principles of relativistic quantum
field theory and symmetry relations based on symmetry groups are used. Besides
gravity all known particles and their interactions can be embedded into the gauge
group SU(3)C × SU(2)W × U(1)Y that consists of three unitary groups with three
different coupling constants: gs, g and g′. This is the underlying gauge group of the
Standard Model (SM). The SM consists of the electroweak interaction [1–3] described
by the product SU(2)W × U(1)Y , and the strong interaction [4, 5], described by
the group SU(3)C . Up to now the SM is consistent with all experiments [36] apart
from experimental evidence for mixing between the neutrinos [37–39], thus they are
not massless. Although the left-handed neutrino masses are very small they can be
generated by the seesaw machanism [40]. This can be embedded in a Grand Unified
SO(10) theory where the MSSM as an effective theory and right-handed neutrinos
with masses of 109 − 1015 GeV [41] remain. Throughout this thesis the neutrinos are
assumed to be massless, therefore also no right-handed sneutrinos occur.

The matter fields of the SM are the fermions with spin quantum number 1/2. They
are divided into leptons and quarks by the group SU(3)C where leptons are singlets
and quarks are triplets under a gauge transformation of this group. Six types of
leptons (e, µ, τ, ν{e,µ,τ}) and six flavors of quarks1 (u, c, t, d, s, b) are known from
experiments. They can be grouped into three generations of left-handed and right-
handed particles.

(

νeL

eL

)

,

(

νµL

µL

)

,

(

ντL

τL

)

, eR, µR, τR,

(

uL

dL

)

,

(

cL
sL

)

,

(

tL
bL

)

, uR, cR, tR, dR, sR, bR

The left-handed generations transform as doublets under a gauge transformation of
the SU(2)W whereas the right-handed particles transform as singlets.

1The Cabibbo-Kobayashi-Maskawa-matrix (CKM) [42, 43] is set to unity in this thesis.

7



2 Supersymmetry

The interaction of the matter particles is mediated by gauge fields with spin 1, for the
strong interaction the gluon fields and for the electroweak interaction the triplet fields
W 1,2,3

µ and the singlet field Bµ.

If the symmetry were unbroken, all particles would be massless. A possible solution is
the Higgs mechanism [6–10], where masses are generated in a gauge invariant way such
that the renormalizibility of the theory is maintained. This mechanism postulates a
spin 0 field with potential V (φ) = −µ2|φ|2+λ/4|φ|2. For a convenient choice of real and
positive parameters λ and µ2 the Higgs field self interaction leads to a finite vacuum
expectation value that breaks the SU(2)W × U(1)Y symmetry. All fields that couple
to the Higgs field will receive a mass. Unfortunately, the Higgs boson was not found
so far, only a lower mass bound of 114.4 GeV is known with 95% confidence level from
LEP experiments [44]. There is a small hint corresponding to a Higgs mass around
116 GeV.

The Standard Model can not explain all phenomena of particle interactions. This
becomes evident e.g. at higher energies around the Planck scale. At this point grav-
itation will play an important role and one may expect that the gauge interactions
unify with gravity to one general force. But the Standard Model does not include any
gravitational forces.
Additionally there are other problems, where the Standard Model fails.

2.2 The Minimal Supersymmetric Extension of the SM

A model that could solve some of the known problems is supersymmetry [13]. It
provides a symmetry between fermionic quantities and bosonic ones. Let the operator
Q to be an anti-commuting spinor, which generates the transformation between bosonic
and fermionic states

Q|Boson >= |Fermion >, Q|Fermion >= |Boson > .

In principle it is possible to introduce a system of N supersymmetries but for N > 1
no chiral interactions are allowed [45]. Therefore, this thesis restricts to the Minimal
Supersymmetric Standard Model (MSSM) that is a N = 1 [11, 12] supersymmetric
model with only soft breaking terms. For the MSSM each fermionic particle is ac-
companied by a bosonic particle and vice versa. Apart from the spin, the quantum
numbers of the bosonic and the corresponding fermionic particles are identical.

2.2.1 Motivation for Supersymmetry

Theoretically there are no constraints that supersymmetry has to be realized at the
electroweak scale rather than on higher scales. But its realization up to a few TeV has
nice advantages. Below some examples are given how supersymmetry can solve some
of the known problems of the SM.

• Coupling unification: If one believes in grad unification theories one would expect
that the three coupling constants would unify at a high scale O(1016)GeV to one
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2.2 The Minimal Supersymmetric Extension of the SM

general coupling. This can be tested by evaluating the three coupling constants
to higher energies using 2-loop renormalization group equation [46–48]. In the
SM the three couplings will not unify at high energies in one point. Whereas,
for the MSSM the running is affected by Susy-loop contributions [49–52]. This
leads to a unification at one point for MGUT ≈ 2 · 1016 GeV if the breaking scale
is around 1 TeV or one order of magnitude higher or lower [53, 54].

• A serious problem in Standard Model is the naturalness problem, see [45, 55–59].
As a result of the Higgs mechanism, a massive scalar Higgs boson occurs with
the mass proportional to the electroweak scale ΛW = O(100 GeV). Due to loops
of other particles, that couple directly or indirectly to the Higgs field, the Higgs
mass receives huge virtual corrections. These corrections are proportional to the
square of the ultraviolet momentum cutoff that is used to regularize the loop
integral. At this scale, usually the Planck scale or the unification scale of the
coupling constants, new physics should enter into the theory. The problem is that
the quantum corrections, different from fermions and gauge bosons, are around
30 orders of magnitude larger than the Higgs mass itself of m2

H = (100 GeV)2.
Thus the bare Higgs mass and the Higgs counter term are much larger than m2

H

and have to be fine-tuned at each order of perturbation theory to obtain a Higgs
mass at the electroweak scale. It seems unnatural that the mass of the Higgs
boson is so light and not of the order of the cutoff scale.
In supersymmetric theories the large contributions cancel with the corresponding
contributions of the superpartners if the masses of the supersymmetric particles
are not too high. Therefore, one believes that supersymmetry is realized at the
electroweak scale up to a few TeV.

• From measurements of the rotation of the galaxies one obtains that the uni-
verse matter consists mainly of ”dark matter” (around 90%). The dominant
non-baryonic part could possibly be explained by a stable supersymmetric parti-
cle [60]. A candidate for this lightest supersymmetric particle (LSP), that means
that it does not decay into Standard Model particles, could be the neutralino χ̃0.
A LSP is obtained in supersymmetry if one forbids baryon and lepton number
violating terms in the lagrangian by imposing R-parity conservation. R-parity is
an additional symmetry where the eigenvalues of the Standard Model particles
are equal to +1 and −1 for their supersymmetric partners. It is defined as

R = (−1)3(B−L)+2s ,

where B and L are baryon and lepton number and s is the spin of the particle.
As a consequence of R-parity conservation sparticles at collider experiments can
only be produced in pairs.

• Furthermore one can consider Supersymmetry as a local symmetry. It turns
out that the algebra of General Relativiy, the Lorentz-algebra, is part of such
a symmetry. One obtains a connection between internal gauge symmetries and
gravity, leading to the construction of Supergravity [61–63]. This would be the
first step of a unification of the strong and electroweak interaction with gravity
to one fundamental force.

9



2 Supersymmetry

Super- Boson- Fermion- (SU(3)C ,
field field field SU(2)W , U(1)Y ) Name

Matter fields

L̂ = {L̃, L}
(

ν̃L

ẽL

) (

νL

eL

)

(1, 2, -1) {sleptonen, leptonen}

Ê = {Ẽ, E} ẽ∗R eR (1, 1, 2)

Q̂ = {Q̃, Q}
(

ũL

d̃L

) (

uL

dL

)

(3, 2, 1
3 ) {squarks, quarks}

Û = {Ũ , U} ũ∗R uR (3∗, 1, −4
3)

D̂ = {D̃, D} d̃∗R dR (3∗, 1, 2
3)

Gauge fields

V ′ Bµ λ′ (1, 1, 0) {Bµ-boson, bino}
V a W a

µ λa (1, 3, 0) {W a
µ -bosonen, winos}

V a
s Ga

µ λa
s (8, 1, 0) {gluonen, gluinos}

Higgs fields

Ĥ1 = {H1, H̃1}
(

H1
1

H2
1

) (

H̃1
1

H̃2
1

)

(1, 2, −1)
{Higgs−

bosonen, higgsinos}

Ĥ2 = {H2, H̃2}
(

H1
2

H2
2

) (

H̃1
2

H̃2
2

)

(1, 2, 1)

Table 2.1: The field content and quantum numbers of the MSSM. For quarks, leptons
and their supersymmetric partners only the first generation is indicated.

2.2.2 Lagrangian of the MSSM

To construct the MSSM one extends the SM to a minimal number of particles [64–
66], necessary to obtain a supersymmetric theory. This particle content with quantum
numbers is given in Table 2.1.
Each fermion obtains a scalar partner combined in a chiral multiplet. Only the first
generation of fermions are shown in Table 2.1. The gauge bosons and the gluon are
accompanied by the spin-1/2 gauginos and gluinos. They compose a vector multiplet.
The Standard Model Higgs boson obtains a spin-1/2 partner, the higgsino. Contrary
to the SM, a second Higgs-doublet has been introduced, because Yukawa couplings are
forbidden that involve conjugated Higgs fields. A second reason is that the sum of all
hyper-charges has to vanish for anomaly-cancellation, which would not be fulfilled for
only one Higgs doublet. The fermions with isospin −1/2 receive their masses from the
doublet H1 and the fermions with isospin 1/2 from H2.

10



2.2 The Minimal Supersymmetric Extension of the SM

The supersymmetric part of the lagrangian of the MSSM is given as

LSusy = +

∫

d2θ

(

1

16g2
W aαW a

α +
1

16g′2
W ′αW ′

α +
1

16g2
s

W aα
s W a

sα + h.c.

)

+

∫

d2θd2θ̄
(

ˆ̄Qeg
′Y V ′+2gT aV a+2gsVsQ̂

+ ˆ̄U eg
′Y V ′+2gT aV a+2gsVsÛ + ˆ̄D eg

′Y V ′+2gT aV a+2gsVsD̂

+ ˆ̄Leg
′Y V ′+2gT aV a

L̂+ ˆ̄E eg
′Y V ′+2gT aV a

Ê

+ ˆ̄H1 e
g′Y V ′+2gT aV a

Ĥ1 + ˆ̄H2 e
g′Y V ′+2gT aV a

Ĥ2

)

+

∫

d2θ
(

εij

[

λdĤ
i
1Q̂

jD̂ − λuĤ
i
2Q̂

jÛ + λeĤ
i
1L̂

jÊ − µĤi
1Ĥ

j
2

]

+ h.c.
)

, (2.1)

where Vs = V a
s

λa

2 . The first line of equation (2.1) denotes the kinetic term of the vector
super-fields with field tensors

W a
sα = −1

4
D̄D̄

(

e2gsVsDαe
2gsVs

)

, W a
α = −1

4
D̄D̄

(

e2gVDαe
2gV
)

,

W ′
α = −1

4
D̄D̄

(

e2g′V ′

Dαe
2g′V ′

)

,

where the covariant derivatives are Dα = ∂α − iα(σµθ̄)∂
µ and D̄α̇ = ∂̄α̇ + i(θσµ)α̇∂

µ

with α, α̇ Weyl-spinor indices and σ the Pauli matrices. The second to the fifth line
in equation (2.1) show the kinetic and gauge interaction terms of the fermions and
their superpartners. The last line of equation (2.1) denotes the superpotential. It
contains the Yukawa couplings λu, λd and λe of the Higgs bosons to the matter fields,
which in case of three generations are arbitrary complex 3 × 3 matrices in generation
space. Baryon and lepton number violating terms are forbidden by imposing R-parity
conservation.

In the MSSM, supersymmetry is softly broken by explicit breaking terms. Soft breaking
means that only terms are introduced which do not lead to new quadratic divergences.
These terms were worked out by [67], and the soft breaking lagrangian reads

LSoft = +
1

2

(

M1λ
′λ′ +M2λ

aλa +M3λ
a
sλ

a
s + h.c.

)

−M2
q̃L
|q̃L|2 −M2

ũR
|ũR|2 −M2

d̃R
|d̃R|2 −M2

l̃L
|l̃L|2 −M2

ẽR
|ẽR|2

−m2
1|H1|2 −m2

2|H2|2 + (m2
3εijH

i
1H

j
2 + h.c.)

− εij

(

λuAuH
i
2Q̃

jŨ + λdAdH
i
1Q̃

jD̃ + λeAeH
i
1L̃

jẼ + h.c.
)

,

where the sfermion breaking parameters M 2
q̃L
, M2

ũR
, M2

d̃R
, M2

l̃L
and M2

ẽR
are general

hermitian 3x3 matrices. The trilinear couplings Au, Ad, Ae are complex 3x3 matrices.
For the quantization of the lagrangian, see e.g. [68, 69], one also has to add the ghost
term and the gauge fixing term. A full on-shell lagrangian of the MSSM can be found
e.g. in [70].
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2 Supersymmetry

2.3 Particle mass spectrum of the MSSM

2.3.1 Higgs Sector

The Higgs superfields (Table 2.1) contain two Higgs doublets H1 and H2 with opposite
hypercharge Y1 = −1 and Y2 = 1, respectively. Both doublets have a non-vanishing
vacuum expectation value

H1vac =

(

v1
0

)

, H2vac =

(

0
v2

)

.

Their general structure is given as

H1 =

(

v1 + 1√
2
(φ0

1 − iχ0
1)

−φ−1

)

, H2 =

(

φ+
1

v2 + 1√
2
(φ0

2 + iχ0
2)

)

.

The ratio of the vacuum expectation values defines

tan β =
v2
v1

with 0 < β <
π

2
.

There are four non-diagonal mass matrices, one for the χ fields, one for the neutral φ
fields, and two for the charged φ fields. They can be diagonalized with appropriate
transformations

(

G0

A0

)

=

(

cos β sinβ
− sinβ cos β

)(

χ0
1

χ0
2

)

,

(

G±

H±

)

=

(

cos β sinβ
− sinβ cos β

)(

φ±1
φ±2

)

,

(

H0

h0

)

=

(

cosα sinα
− sinα cosα

)(

φ0
1

φ0
2

)

, (2.2)

where the mixing angle α ist defined by the relation

tan 2α = tan 2β
M2

A0 +M2
Z

M2
A0 −M2

Z

with − π

2
< α < 0.

The three fields G0 and G± in equation (2.2) are unphysical Goldstone bosons. Their
masses in the ’t Hooft-Feynman-gauge is mG0 = MZ and mG± = MW . The other 5
fields are physical Higgs bosons (A0,H±,H0, h0) with tree level masses

M2
A0 = m2

3 (tan β + cot β) ,

M2
H± = M2

A0 +M2
W ,

M2
H0,h0 =

1

2

(

M2
A0 +M2

Z ±
√

(M2
A0 +M2

Z)2 − 4M2
ZM

2
A0 cos2 2β

)

.
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2.3 Particle mass spectrum of the MSSM

2.3.2 Vector Bosons

The part of the lagrangian where the vector bosons receive their masses is

L = (DµH1)
†DµH1 + (DµH2)

†DµH2

with the covariant derivation:

Dµ = ∂µ + igT aW a
µ + ig′

Y

2
Bµ.

The weak isospin T a are the generators of the gauge group SU(2) with T a = σa/2 for
isospin dublets and T = 0 for isospin singlets.

The gauge fields W i
µ with i = 1, 2, 3 and Bµ transform into the physical fields as

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) ,

(

Zµ

Aµ

)

=

(

cW −sW

sW cW

)(

W 3
µ

Bµ

)

,

where cW = cos θW and sW = sin θW and θW is the weak mixing angle with θW = g′/g.
The electrical charge Q is related to the third component of the weak isospin and the
hypercharge by Q = T 3 + Y/2 and it is g = e/sW and g′ = e/cW . The masses of the
vector bosons (the charged W -bosons, the neutral Z-boson and the neutral photon γ)
are given as

MW =
g√
2

√

v2
1 + v2

2 , MZ =
g√
2 cW

√

v2
1 + v2

2 , Mγ = 0.

The weak mixing angle θW can be re-expressed in terms of the W - and Z-boson masses

cW =
g

√

g2 + g′2
=
MW

MZ
, sW =

g′
√

g2 + g′2
=

√

1 − M2
W

M2
Z

. (2.3)

2.3.3 Charginos

The superpartners of the W -bosons are the winos W̃± and the superpartners of the
Higgs boson the higgsinos. The fields of the winos and the charged higgsinos are defined
through

W̃+ =

(

−iλ+

iλ̄−

)

, W̃− =

(

−iλ−
iλ̄+

)

, H̃+
1 =

(

H̃1
2

¯̃H2
1

)

, H̃+
2 =

(

H̃2
1

¯̃H1
2

)

,

where λ± = 1√
2
(λ1 ∓ iλ2). The winos and higgsinos mix to four-component Dirac-

spinors, called charginos χ±
i (i = 1, 2). With the spinors ψT

L = (−iλ+, H̃1
2 )T and

ψT
R = (−iλ−, H̃2

1 )T the corresponding mass term in the lagrangian can be written as

Lmχ̃±
= − 1

2

(

ψT
L , ψ

T
R

)

(

0 XT

X 0

)(

ψL

ψR

)

+ h.c.
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2 Supersymmetry

with the mass matrix

X =

(

M2

√
2MW sinβ√

2MW cos β µ

)

. (2.4)

The matrix (2.4) is diagonalized and the fields are transformed by two unitary 2 × 2
matrices U, V as follows

U∗X V † =

(

mχ̃±

1

0

0 mχ̃±

2

)

, χ+
i = Vijψ

+
j , χ−

i = Uijψ
−
j .

Then, in the Dirac bases the charginos mass eigenstates are defined as

χ̃+
1 =

(

χ+
1

χ̄−
1

)

, and χ̃+
2 =

(

χ+
2

χ̄−
2

)

.

2.3.4 Neutralinos

The charged higgsinos and gauginos have mixed to the charginos. Also the neutral
higgsinos, the H̃0

1 , H̃
0
2 , and the neutral gauginos, the photino Ã and the zino Z̃, will

mix. If λA = cWλ′ + sWλ3 and λZ = −sWλ′ + cWλ3 are the two-component spinors
of the photino and zino, respectively, the fields become

H̃0
1 =

(

H̃1
1

¯̃H1
1

)

, H̃0
2 =

(

H̃2
2

¯̃H2
2

)

, Ã =

(

−iλA

iλ̄A

)

, Z̃ =

(

−iλZ

iλ̄Z

)

.

The neutralino mass term in the lagrangian is given by the contributions from gauge
interaction, the super potential and soft breaking terms. The relevant terms can be
written by use of the vector ψT

0 = (−iλA,−iλZ , H̃
1
1 , H̃

2
2 ) as

Lmχ̃0
= − 1

2
ψT

0 Y
′ψ0 + h.c.

and the symmetric mass matrix

Y ′ =









c2WM1 + s2WM2 −cW sW (M1 −M2) 0 0
−cW sW (M1 −M2) s2WM1 + c2WM2 MZ cosβ −MZ sinβ

0 MZ cosβ 0 µ
0 −MZ sinβ −µ 0









.

The neutralino mass matrix Y ′ can be diagonalized by one unitary 4 × 4 matrix N ′

N ′∗ Y ′N ′−1 = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
) .

The neutralinos are four-component Majorana spinors χ̃0
i with

χ̃0
i =

(

χ0
i

χ̄0
i

)

with χ0
i = Nij ψ0j, i, j = 1, 2, 3, 4.
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2.3 Particle mass spectrum of the MSSM

2.3.5 Gluinos

The gluino is the superpartner of the SM gluon. Therefore, eight gluinos exist cor-
responding to the eight linear independent SU(3)C generators. Gluinos are neutral
with spin 1/2 and therefore Majorana fermions. They do not mix with other particles
because they take part only at strong interactions. The mass term in the lagrangian is

Lsoft =
1

2
M3λ

a
sλ

a
s + h.c. ,

thus, the gluinos are mass eigenstates and directly related to the soft breaking param-
eter M3 (M3 ∈ R)

mg̃ = |M3|.

2.3.6 Sfermions

The mass term of the sfermion fields in the lagrangian reads

Lmf̃
= −

(

f̃∗L, f̃
∗
R

)

M2
f̃

(

f̃L

f̃R

)

,

with the sfermion fields f̃ and the anti-sfermion field f̃∗. The mass matrix is given as

M2
f̃

=

(

M2
f̃L

+M2
Z cos 2β (If

3 − efs
2
W ) +m2

f mf (A∗
f − µ{cot β, tan β})

mf (Af − µ∗{cot β, tan β}) M 2
f̃R

+M2
Z cos 2β efs

2
W +m2

f

)

. (2.5)

where cotβ holds for sneutrinos and up-type squarks and tanβ for the other sfermions.
Generally these matrices are non-diagonal. Each left- and right-handed superpart-
ners of a fermion field have the same SU(3)C quantum numbers and the same charge.
Because the SU(2)W ×U(1)Y symmetry is broken these field can mix into mass eigen-
states f̃1 and f̃2. The mass matrix (2.5) can be diagonalized with an unitary matrix
Uf̃

Df̃ = Uf̃ M
2
f̃
U †

f̃
=

(

m2
f̃1

0

0 m2
f̃2

)

, with Uf̃ =

(

Uf̃11
Uf̃12

Uf̃21
Uf̃22

)

. (2.6)

In case of real parameters Af and µ the mixing matrix can be expressed in terms of a
real mixing angle θf̃ as

Uf̃ =

(

cos θf̃ sin θf̃

− sin θf̃ cos θf̃

)

=

(

cθf̃
sθf̃

−sθf̃
cθf̃

)

. (2.7)

The left and right handed sfermion fields transform into the mass eigenstates by

(

f̃1

f̃2

)

= Uf̃

(

f̃L

f̃R

)

, and

(

f̃L

f̃R

)

= U †
f̃

(

f̃1

f̃2

)

.
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2 Supersymmetry

The squared masses of the sfermion mass eigenstates can be expressed as

m2
f̃1,2

=
1

2
(M2

f̃L
+M2

f̃R
) +

1

2
M2

Zc2β T
3
f +m2

f

± 1

2

√

(

M2
f̃L
−M2

f̃R
+M2

Zc2β (T 3
f − 2efs

2
W )
)2

+ 4m2
f

(

Af−µ∗{cotβ, tanβ}
)2

(2.8)

with the abbreviation c2β = cos2β. Here + holds for sfermions f̃1 and − for sfermions f̃2.
The squark mixing angle can be expressed as

tan 2θq̃ =
2mq

(

Af−µ∗{cotβ, tanβ}
)

M2
f̃L

−M2
f̃R

+M2
Z cos 2β (If

3 − 2efs
2
W )

. (2.9)

2.4 Parameters of the MSSM

If no unification theory is assumed, the MSSM contains of a large number of parame-
ters. They can be grouped into parameters of the Standard Model, parameters of the
Higgs sector and soft Susy breaking parameters.

The Standard Model parameters are the 12 fermion masses mf , 2 gauge boson masses
MW ,MZ and 3 coupling constants gs, g, g

′. The CKM matrix [42, 43] was set to unity.
The fermion masses are

mνe = 0 GeV, me = 0.51099907 MeV, mu = 53.8 MeV, md = 53.8 MeV,

mνµ = 0 GeV, mµ = 0.105658389 GeV, mc = 1.5 GeV, ms = 0.15 GeV,

mντ = 0 GeV, mτ = 1.777 GeV, mt = 174.3 GeV, mb = 4.5 GeV.

The light quark masses are effective parameters [71, 72]. The masses of the gauge
bosons are MW = 80.451 GeV and MZ = 91.1875 GeV. Instead of the gauge couplings
gs, g, g

′, the parameters αs, α and sin2 θW are used. If not indicated otherwise an
effective α(mZ) = 1/127.934 is used. The weak mixing angle is fixed by the tree level

relation s2W = 1 − M2
W

M2
Z

.

The strong coupling constant αs is evaluated at a typical scale of the considered process.
In case of the gluino pair production the gluino mass, and in case of squark pair
production the final squark mass is used. The strong coupling αs is calculated with
the αs-routine of the CERN PDFLIB version 8.04 [73] and an implemented routine
for the formulas of [74], where agreement among them was found. The following
parameters are used to determine αs

Λ
nf=5
LO = 83.76 MeV , TMAS = 174.3 GeV,

leading to an αs(mZ0) = 0.1172.

The free parameters of the Higgs sector are the Higgs boson mass MA, the ratio of the
vacuum expectation value tanβ = v1/v2 and the mixing parameter µ.

The Susy breaking parameters consist of the 3 parameters (M1,M2,M3) for the super-
symmetric partners of the bosons. Since mixing between the generations is neglected,
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2.5 Renormalization

there are 24 parameters for the sfermions. These are 15 left- and right-handed break-
ing parameters M 2

q̃L
, M2

ũR
, M2

d̃R
, M2

l̃L
, M2

ẽR
where q̃ denotes all flavors of squarks, ũ

the up-type and d̃ the down-type squarks, l̃ all leptons and ẽ = {ẽ, µ̃, τ̃}. The other 9
parameters are the trilinear couplings Au, Ad, Ae.

In general M1,M2,M3, µ,Au, Ad, Ae are complex, but for this thesis they are assumed
to be real. Therefore, CP invariance holds and the diagonalization matrices U f̃ of
equation (2.7) are real. Since mixing effects for the first two generations of sfermions
are always small, all mixing angles of these generations are fixed to 0.

Mass Constraints

The gluino pair production in electron-positron and photon-photon collisions depends
on the gluino mass and the squark masses and mixing angles. The following limits
have been used: as mass limit for the gluino mg̃ ≥ 200 GeV is used, taken from the
CDF [75] and D0 [76] searches in jets with missing energy channels, relevant for non-
mixing squark masses of mq̃ ≥ 325 GeV and tanβ = 3. A possible gluino with light
mass [77] is not considered. For the third generation squark the CERN LEP limits on
the light top and bottom squark masses, mt̃1

≥ 100 GeV and mb̃1
≥ 99 GeV [78] have

been taken. Furthermore, it was ensured that the Susy one-loop contributions [79–81]
to the ρ-parameter are ρSusy < 0.0035 [77]. The squark masses depend directly only
slightly on tan β. Therefore, a fixed value of tanβ = 10 has been used.

The NLO corrections to the squark pair production depend on too many parameters,
as all can be varied. Therefore, the corrections are demonstrated at the two parameter
points SPS1 and SPS5, Appendix B.

2.5 Renormalization

2.5.1 Regularization

Calculating higher order matrix elements, one encounters loop integrals, which con-
tain integrations over the loop momentum. Depending on the particles and number of
propagators inside the loop, these integrals diverge. To handle these divergences one
has to regularize them. A widely used method in non-supersymmetric gauge theories is
the dimensional regularization (DREG) [82–84]. In DREG, the space-time dimension
and the dimensionality of fields are extended from 4 to D = 4 − ε. All loop integrals
will converge for sufficiently small D and one can divide the integral into a part that
remains finite for ε→ 0 respectively D → 4, and one that diverges like (1/εn). To get
rid of the divergences one has to renormalize the theory.
In supersymmetry it is required that the number of degrees of freedom for fermions
and bosons are equal in each super-multiplet. Using DREG this equivalence will be
destroyed leading to a violation of supersymmetry and will spoil the Slavnov-Taylor
identities. However, one can use DREG and restore the Slavnov-Taylor identities
adding appropriate counterterms [85, 86].
A more comfortable calculation procedure is the method of dimensional reduction
(DRED)[87–89]. In DRED the dimension of space-time is continued to D = 4 − ε,
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whereas the fields remain unchanged. Thus the Dirac algebra is performed in four
dimensions while the loop integrals are performed in D dimensions. Then, countert-
erms are only necessary to cancel the UV divergences. The nice feature of DRED is
that it preserves gauge symmetry and supersymmetry. Unfortunately, there is also an
ambiguity in the treatment of the antisymmetric Levi-Civita tensor [90], that exactly
speaking D must be an integer with D ≤ 4 and there is no continuous transition to
D = 4. However, it was shown by [87, 88] that for simple cases DR preserves super-
symmetry.
At the tree level squark pair production in photon-photon collisions only gauge-boson-
sfermion-sfermion couplings occur. Therefore, using DREG no supersymmetry restor-
ing counterterms are necessary. In this thesis all calculations have been performed
using DREG and DRED.

2.5.2 Renormalization Procedure

Through the regularization procedure unphysical parameters have been introduced
that have to be removed by renormalization. Using multiplicative renormalization, in
the bare lagrangian the bare parameters (g0, ... ) and fields (Φ0, ...) are replaced by
renormalized ones (g,Φ, ...), e.g.:

g0 = Zg g = (1 + δZg)g = g + δg , Φ0 = Z
1

2

ΦΦ = (1 +
1

2
δZΦ)Φ,

where δg and δZΦ are the counter terms. With these replacements, the bare lagrangian
splits into a renormalized part and a counterterm part

L(g0,Φ0) = L(g,Φ) + L(g, δg,Φ, δZΦΦ).

Applying appropriate renormalization conditions, it fixes the counterterms and deter-
mines the physical meaning of the renormalized parameters.

Different renormalization schemes are available. A scheme used in QCD is the “Min-
imal Subtraction scheme” (MS) [91, 92]. After renormalization, the parameters will
depend on an arbitrary scale µ.

In electroweak theories the on-shell scheme [93] can be used. Here the Thomson scat-
tering sets a natural scale for e =

√
4πα, and for stable particles the masses are

well-defined and can be used as input parameters. For a review of the electroweak
Standard Model see [94] and for the renormalization of the MSSM [95]. In this thesis
the on-shell scheme is used.

2.5.3 Renormalization of the Squark Sector

The renormalization of the squark sector, that determines the squark mass counter
term and squark wave function Z-factor, is taken from [96, 97]. In this section “f”
always stands for “{u,d}” and “i” for “{1,2}”.
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The Lagrangian of the squark sector is given as

Lm =
(

f̃∗L, f̃
∗
R

)

k2

(

f̃L

f̃R

)

−
(

f̃∗L, f̃
∗
R

)

M2
f̃

(

f̃L

f̃R

)

,

where the mass matrix is defined in equation (2.5). To renormalize the squark sector
the parameters and fields have to be replaced by renormalized ones.

M2
f̃
→M2

f̃
+ δM2

f̃
and

(

f̃L

f̃R

)

→
(

�
+

1

2
δZf̃

)

(

f̃L

f̃R

)

,

where the field renormalization matrix is diagonal: δZf̃ = diag{ δZ f̃
L, δZ

f̃
R }.

To transform the squark states of the left-right basis to the basis of the mass eigenvalues
a mixing matrix Rf̃ is introduced

(

f̃1

f̃2

)

= Rf̃

(

f̃L

f̃R

)

, Rf̃ =
(

�
+

1

2
δZUf̃

)

Uf̃ . (2.10)

The unitary matrix Uf̃ diagonalizes the squark mass matrix as given in equation (2.6).
The Z-factor in equation (2.10) does not absorb divergences, it describes the deviation
of the matrix Rf̃ from Uf̃ .

The replacement of the squark fields can now be written as:
(

f̃L

f̃R

)

→
(

�
+

1

2
δZf̃

)

(

f̃L

f̃R

)

=
(

�
+

1

2
δZf̃

)

R−1

f̃

(

f̃1

f̃2

)

= U †
f̃

(

�
+

1

2
δZ̆f̃

)

(

f̃1

f̃2

)

(2.11)

where the non-diagonal matrix δZ̆f̃ is introduced as

δZ̆f̃ = Uf̃ δZf̃ U
†
f̃
− δZUf̃

, with δZ̆f̃ =

(

δZ̆f̃11
δZ̆f̃12

δZ̆f̃21
δZ̆f̃22

)

.

After replacing the parameters and fields, the lagrangian is divided into a renormalized
part and the counterpart:

L → L + δL,

L =
(

f̃∗1 , f̃
∗
2

)(

k2 −Df̃

)

(

f̃1

f̃2

)

, (2.12)

δL =
(

f̃∗1 , f̃
∗
2

)

(

k2

2

[

δZ̆†
f̃

+ δZ̆f̃

]

− 1

2

[

δZ̆†
f̃
Df̃ +Df̃δZ̆f̃

]

− Uf̃ δM
2
f̃
U †

f̃

)(

f̃1

f̃2

)

.

The Feynman rules for the counter squark propagators are defined by the last line in
equation (2.12). The matrix Df̃ = Uf̃ M

2
f̃
U †

f̃
is defined in equation (2.6). One can

now write down the renormalized squark self energy Σ̂f̃ (k2) as

Σ̂f̃ (k2) = Σf̃ (k2) +
k2

2

[

δZ̆+
f̃

+ δZ̆f̃

]

− 1

2

[

δZ̆+
f̃
Df̃ +Df̃δZ̆f̃

]

− Uf̃ δM
2
f̃
U †

f̃
,
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2 Supersymmetry

where Σf̃ (k2) is the unrenormalized squark self energy. Now one has to define the
renormalization conditions.

For one generation of squarks there are one mixing matrix (2.5) for up-type squarks
and one for down-type. They contain five parameters Mq̃L

, MũR
, Md̃R

, Au, Ad that
are not fixed by other sectors. The three mass parameters M can be fixed by three
on-shell conditions, choosing the isospin “+” system

Re Σ̂ũii(m
2
ũi

) = 0 , i = 1, 2 (2.13)

Re Σ̂d̃22
(m2

d̃2
) = 0 , (2.14)

where in equation (2.14) it is assumed that d̃2 6= ±d̃L. If d̃2 = ±d̃L then (2.14) contains
only the counterterm for M 2

f̃L
which however is already defined by equation (2.13).

Therefor one has to replace (2.14) by the condition Re Σ̂d̃11
(m2

d̃1

) = 0 to fix Md̃R
.

The counterterms δAf in the non-diagonal entries of the mass matrix can be fixed by
the condition

Re Σ̂f̃12
(m2

f̃1
) + Re Σ̂f̃12

(m2
f̃2

) = 0 .

The diagonal Z-factors can be fixed by imposing that the residues of the propagators
are equal to unity

Re
∂Σ̂f̃ii

(k2)

∂k2

∣

∣

∣

∣

∣

(k2=m2

f̃i
)

= 0 ,

and the non-diagonal Z-factors by the condition Re Σ̂f̃12
(m2

f̃2

) = 0. With the choice

δZ̃f̃12
= δZ̃f̃21

one obtains

δZ̃f̃ii
= − Re

∂Σ̂f̃ii
(k2)

∂k2

∣

∣

∣

∣

∣

(k2=m2

f̃i
)

and δZ̃f̃12
= −

Re Σf̃12
(m2

f̃1

) − ReΣf̃12
(m2

f̃2

)

m2
f̃1

−m2
f̃2

.

Three of the four mass counter terms are fixed by the conditions (2.13) and (2.14) to

δm2
ũ1

= ReΣũ11
(m2

ũ1
) , δm2

ũ2
= ReΣũ22

(m2
ũ2

) , δm2
d̃1

= ReΣd̃11
(m2

d̃1
) .

The fourth mass counterterm can be expressed as

δm2
d̃1

= −
U2

d̃12

U2
d̃11

δm2
d̃2

+ 2
Ud̃12

Ud̃22

U2
d̃11

δYd̃12
+
U2

ũ11

U2
d̃11

δm2
ũ1

+
U2

ũ12

U2
d̃11

δm2
ũ2

− 2
Uũ12

Uũ22

U2
d̃11

δYũ12
+

1

U2
d̃11

(δCd̃11
− δCũ11

), (2.15)

where δYf̃12
and δCf̃11

are defined by

δYf̃12
=

1

2

(

Re Σf̃12
(m2

f̃1
) + ReΣf̃12

(m2
f̃2

)
)

,

δCf̃11
= 2mf δmf − efM

2
Z cos (2β) δs2W +

(

T 3
f − efs

2
W

)(

cos(2β)δM 2
Z +M2

Z δcos(2β)
)

.
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2.5 Renormalization

The counterterm δs2
W can be taken from the relation (2.3), then the dependence on δM 2

Z

in (2.15) drops out. The on-shell renormalization conditions for the fermion masses
are δmf = 1

2mf [Re ΣfL
(m2

f ) + Re ΣfR
(m2

f ) + 2Re ΣfS
(m2

f )] and the gauge-boson mass

δM2
W = ΣW (M2

W ) [98]. The counterterm of tanβ can be determined for vanishing
A0 − Z-mixing as δtan β = Im{ΣA0Z(M2

A)}/(2MZ cos2 β) [99, 100].

2.5.4 Counterterms of the Squark Vertices

Calculating loop corrections to the squark pair production, divergent loop integrals
occur. The divergences are canceled by the corresponding counterterms. For squark
pair production in photon-photon collision the counterterms to the γf̃ f̃ and γγf̃ f̃
vertices are necessary. The relevant lagrangian is

L = Lf̃ f̃γ + Lf̃ f̃Z + Lf̃ f̃γγ + Lf̃ f̃γZ (2.16)

with

Lf̃ f̃ γ = −ieefAµ
(

f̃∗L, f̃
∗
R

)↔
∂ µ

(

f̃L

f̃R

)

, Lf̃ f̃Z =
−i e
sW cW

Zµ
(

f̃∗L, f̃
∗
R

)↔
∂ µCf̃L/R

(

f̃L

f̃R

)

,

Lf̃ f̃ γγ = e2e2f A
µAµ

(

f̃∗L, f̃
∗
R

)

(

f̃L

f̃R

)

, Lf̃ f̃ γZ =
2e2ef
sW cW

AµZ
µ
(

f̃∗L, f̃
∗
R

)

Cf̃L/R

(

f̃L

f̃R

)

,

where
↔
∂ µ is defined in equation (A.6) and

Cf̃L/R
=

(

T 3
f − efs

2
W 0

0 −efs2W

)

. (2.17)

The bare parameters of the lagrangian (2.16) are replaced by the renormalized ones
e → e(1 + δZe) and sW → sW (1 + δZsw), and for the squark fields relation (2.11) is
used. The photon and Z-boson fields are replaced by

(

Z
A

)

→
(

1 + 1
2δZZZ

1
2δZZA

1
2δZAZ 1 + 1

2δZAA

)

(

Z
A

)

.

Introducing the renormalized fields and parameters into (2.16), the lagrangian splits
into a renormalized part and a counterpart. The counterterm lagrangian of the f̃ f̃γ
and f̃ f̃γγ couplings are

δLf̃ f̃γ = −ieefAµ
(

f̃∗1 , f̃
∗
2

)↔
∂ µ

(

δZe +
1

2
δZAA +

δZZAC̆f̃

2eqcW sW
+

1

2
δZ̆† +

1

2
δZ̆

)

(

f̃1

f̃2

)

,

δLf̃ f̃γγ = e2e2f A
µAµ

(

f̃∗L, f̃
∗
R

)

(

2δZe + δZAA +
δZZAC̆f̃

eqsW cW
+

1

2
δZ̆† +

1

2
δZ̆

)

(

f̃L

f̃R

)

.

(2.18)

where the matrix C̆f̃ is defined as C̆f̃ = Uf̃ Cf̃L/R
U †

f̃
and Uf̃ is given in (2.6) and Cf̃L/R

in (2.17). From equation (2.18) one can read off the Feynman rules for the counterterm
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2 Supersymmetry

vertices. For the automatic calculation, these expressions have to be implemented into
the MSSM model-file [101] of FeynArts [102, 103], and have been taken from [104].
The renormalization conditions for the renormalization constants δZe, δZAA and δZZA

can be found in [94, 98] and are always implemented in the MSSM model-file.
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Chapter 3

Particle Production at Future
Linear Colliders

In great agreement of the high energy particle physicists, the next type of collider after
the LHC will be a linear electron positron collider. Although the available center-of-
mass energy will be much lower than that of the LHC, the advantage of this type of
collider is the enormous precision with which particles can be detected. Currently, four
different projects have been developed: NLC [21], JLC [22], Clic [105], and at most
advanced level TESLA with a complete Technical Design Report [106].

3.1 Scattering Types at Linear Collider

The basic concept of the next linear collider is the scattering of high energy electrons
with positrons of opposite direction. In addition to this there are other running options
that could be realized in practice. One possibility which can be carried out easily is
e−e− scattering (see e.g. [106, 107] and references therein). Another option is to
construct a photon collider. Using Compton backscattered laser light off the high
energy electrons [28, 29, 108–110] one can built either an electron-photon or photon-
photon collider. Developments for these options are made for all four colliders NLC
[21], JLC [22–24], Clic [25], and TESLA [26, 27].

In real experiments one does not have pure e−e±, e−γ or γγ scattering. Several
reactions occur simultaneously because of background and beam-beam interactions
[111]. In e−e± collisions, photons arise from beamstrahlung and bremsstrahlung effects,
leading to e−γ and γγ background reactions. Whereas at a γγ-collider background
reactions appear from e−e−, e−γ collisions and at a e−γ collider from γγ and e−e−

scattering.

Beamstrahlung photons arises due to the high density of the electrons and positrons
in the bunches at the interaction point. At e+e− colliders the two bunches focus each
other, thus the particle trajectories are bent, resulting in a synchrotron radiation (re-
ferred to as beamstrahlung). This so-called pinch effect was analyzed in detail for a
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3 Particle Production at Future Linear Colliders

collider energy of 500 GeV in [111]. This effect leads to an increased e+e− luminosity
but also to an energy loss of the scattering particles. This energy spread is important
for all precision measurements at linear colliders. The largest spread will occur at the
current 3 TeV Clic design with a momentum spread of 31% [105].
In contrast to e+e− scattering, in e−e− the two beams will blow up each other at the
interaction point (Beam Repulsion). Therefore, the luminosity and the beamstrahlung
are much smaller than in e+e− scattering (To increase the luminosity in e−e− scatter-
ing, one can decrease the horizontal beam size.).

Bremsstrahlung processes are the second source of photons in e−e± scattering. Here,
two particle beams of opposite direction collide and one of them emits a photon. The
spectrum can be calculated as Compton scattering of an electron and a virtual photon
in the equivalent photon approximation (see e.g.[112]). It is reduced by the beam size
effect (see for example [113]) that roughly decreases the spectrum by a factor of two
[111]. The total number of photons in this case is much smaller than that of beam-
strahlung [111, 114, 115]. The photon density function for low x (ratio of photon energy
with respect to the electron beam energy E0) is much smaller than for beamstrahlung.
Only for large x the bremsstrahlung can be higher than beamstrahlung, even if in a
region where they are both very small.

At a e+e− collider the produced brems- and beamstrahlung photons lead to γγ back-
ground reactions, that produce the same final states as the e+e− collisions. Back-
grounds from eγ scattering can be reduced by the overall charge of the final state. To
include beamstrahlung effects in precise e+e− calculations one can use the program
Circe [116] for collider energies up to 1 TeV. It provides a simple and, in terms of com-
puting time, fast approximation for the beamstrahlung effect, based on simulations of
the program Guinea-Pig [115]. In this thesis, the calculation of the process e+e− → g̃g̃
(Chapter 4) is presented. Because of the large gluino masses, the small cross section
and the much larger uncertainty of the cross section due to the scale dependence of
the results (αs(µ)), brems- and beamstrahlung effects are neglected for this process.

At a photon collider one will have a mixture of e−e−, e−γ and γγ scattering processes.
Electron beams on both sides will be used, because of the overall charge it is easy to
distinguish between the different scattering types of collisions. Also the lower e−e−

luminosity reduces the background reactions due to beam repulsion. Another advan-
tage of using e−e− scattering is given by the higher polarization degree reachable for
electrons (80%) compared to positrons (60%). To realize a photon collider one uses
backscattered laser light discussed in the next section. The influence of brems- and
beamstrahlung at a γγ collider is discussed in Section 3.3.

3.2 Laserbackscattering

As mentioned before, using Compton backscattering of laser light of high energy elec-
trons, it is possible to build a photon collider for eγ and γγ collisions (for a review
of collider setup and physics potential see [26, 117] and references therein). A simple
scheme to realize a photon-photon collider is shown in Fig. 3.1. At the conversion point
(CP) the electron beam with energy E0 and polarization |λe| ≤ 1/2 collides at a small
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3.2 Laserbackscattering

e- (λ1) e- (λ2)

ω0, PC1 (Laser)

ω0, PC2 (Laser)

x1⋅ E0

x2⋅ E0α0

IP
CP

Figure 3.1: Scheme of photon colliders for γγ scattering.

angle α0 with the initial laser with energy ω0 and polarization |Pc| ≤ 1. The distance
b between the CP and the interaction point (IP) is around 1-5mm. By Compton scat-
tering a high energy photon beam will travel in the direction of the original electrons
with a small angular spread ∼ 1/γ, with γ = E0/mec

2. Using a laser of several Joule
almost all electrons will convert some of their energy into high energetic photons, lead-
ing to an energy distribution ω = ω(ϑ) of backscattered photons in dependence of their
emission angle ϑ [28, 29]

ω =
ωm

(1 + (ϑ/ϑ0)2)
, with ϑ0 =

mec
2

E0

√
1 +X,

where

X =
4E0ω0

m2
e

cos2
α0

2
' 15.3

[

E0

TeV

][

ω0

eV

]

= 19

[

E0

TeV

][

µm

λ

]

. (3.1)

Here ωm is the maximum backscattered photon energy (at ϑ = 0):

ωm =
X

1 +X
E0 . (3.2)

Thus, in principle the energy ω0 of the initial laser photons should be chosen as high as
possible. However, the backscattered photons will also scatter with the laser photons.
For to high energies ω0 this would lead to e+e− pair creation. For example, for the
current TESLA design a laser with ω0 = 1.17 eV (λ = 1.06µ) is planned. For E0 =
250 GeV this leads to X = 4.5 with ωm/E0 = 0.82 and for E0 = 400 GeV to X = 7.2
with ωm/E0 = 0.878. For X > 4.8 it was shown [28, 29, 109, 110] that the luminosity
will be reduced because of pair creations. But nonlinear effects in the conversion
region effectively increase the threshold for e+e− production, so that e+e− production
is reduced [26] and one can use a laser with λ = 1.06µ for all TESLA energies.

However, if one considers squark and gluino pair productions, one always has two heavy
particles in the final state. Because of the mass constraints given in Section 2.4, there
is not much room for measurements at a 2E0 = 500 GeV γγ collider. Thus, for this
thesis, center-of-mass energies up to 3 TeV like in the Clic project will be taken in
consideration. The Clic value X = 6.5, given by [25], with ωm/E0 = 0.867 is chosen
for all γγ energies.
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3 Particle Production at Future Linear Colliders

As a simple approach, the energy spectrum of the backscattered photons f laser
γ/e (x) is

defined by the Compton cross section. It depends on X and on the polarization of the
initial electron |λe| ≤ 1/2 and laser photon |Pc| ≤ 1 as follows [108]

f laser
γ/e (x) =

1

Nc + 2λePcN ′
c

[

1 − x+
1

1 − x
− 4x

X(1 − x)
+

4x2

X2(1 − x)2

− 2λePc
x(2 − x)[x(X + 2) −X]

X(1 − x)2

]

, (3.3)

where

Nc =

[

1 − 4

X
− 8

X2

]

ln(1 +X) +
1

2
+

8

X
− 1

2(1 +X)2
,

N ′
c =

(

1 +
2

X

)

ln(1 +X) − 5

2
+

1

1 +X
− 1

2(1 +X)2
.

Here x is the ratio of the backscattered photon energy ω to the energy E0 of the initial
electron. Equation (3.3) shows that the spectrum depends on the polarization of the
initial electron and photon only in the combination 2λePc.

The distribution of the photon spectrum for X = 6.5 with ωm = 0.867E0 is given in
Fig. 3.2. By choosing the right polarization of the electrons and photons, the spectrum
has a high energy peak. This means that the number of photons is double compared
to the unpolarized case. The distribution is most peaked if the initial electrons are
longitudinally polarized, the photons are circularly polarized and 2λePc = −1. Unfor-
tunately, in the experiments one will not reach a value of −1. The initial laser can be
assumed to be 100% polarized, but for electrons a conservative polarization degree of
80% is assumed, leading to 2λePc = −0.8. The corresponding energy spectrum is also
given in Fig. 3.2 (solid line) and is used for all calculations of polarized cross sections.

The polarization type of the backscattered photons can be controlled by the po-
larization of the initial laser photons. Choosing a circular/linear polarization the
backscattered photons are also circular/linear polarized. The polarization degree of
the backscattered photons can be expressed by the Stokes parameter ξ1, ξ2, ξ3. All
calculations of this thesis use circular polarized photon beams. In case of circular
polarization ξ1 = ξ3 = 0 and ξ2(x) is defined by

ξlaser2 (x) =
∆f laser

γ/e (x)

f laser
γ/e (x)

, with ∆fγ/e(x) = f+
γ/e(x) − f−γ/e(x), (3.4)

where f+
γ/e(x) (f−γ/e(x)) indicates the spectrum of the right (left) circularly polarized

photons. ∆f laser
γ/e (x) reads

∆f laser
γ/e (x) =

1

Nc + 2λePcN ′
c

{

2λe
x

1 − x

[

1 + (1 − x)

(

1 − 2x

(1 − x)X

)2
]

+ Pc

(

1 − 2x

(1 − x)X

)(

1 − x+
1

1 − x

)}

. (3.5)
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Polarized Laser Backscattering Spectra
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Figure 3.2: Laser backscattering spectra for different combinations of electron and
laser photon polarization 2λePc.

The polarization degree for X = 6.5 and different polarizations of the initial electrons
and laser photons is shown in Fig. 3.3. The distribution depends separately on the
electron and laser polarization. It is important to note that for the ”unpolarized”
spectrum (2λPc = 0) the photon distribution function fγ/e(x) in Fig. 3.2 has the same
shape if λ or Pc is zero, but the spectrum of the polarization degree of the backscattered
photons has a different behavior (Fig. 3.3). This would lead to different cross sections.
As it can be seen in Fig. 3.2, the monochromaticity of the backscattered photons in
the high energy peak (x = 0.69 − 0.867) can be improved considerably by choosing
2λePc = −1 or in realistic experiments 2λePc = −0.8. Thus, for all calculations
2λePc = −0.8 is chosen leading to a photon spectrum with a high energy peak that is
highly polarized.

Furthermore, it should be noted that by switching the signs of λe and Pc simultaneously,
one can switch the helicity ξ2 of the outgoing photons without changing the photon
spectrum or spoiling its monochromaticity.
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Polarization Degree of Backscattered Photons
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Figure 3.3: Degree of circular polarization for laser-backscattered photons. For the
dashed line the initial laser polarization is Pc = 0, for all other lines Pc = −1.

3.3 Real Photon Spectrum and Luminosity

The laser spectrum of Fig. 3.2 is a highly idealistic spectrum. There are some effects
that change the spectrum:

• Nonlinear Effect:
Because of the very strong electro-magnetic field in the laser wave at the con-
version point, the initial electron can interact simultaneously with several laser
photons (see [118] and references therein). This effect can be interpreted as an
effective increase of the electron mass m2

e → m2
e(1 + ξ2), where ξ2 describes the

nonlinear effect and is defined as1: ξ2 = nγ(4παe)/(m
2
eω0). Here nγ is the photon

density in the wave and ω0 the laser energy. ξ2 = 0 is the ideal case. When the
value of ξ2 is increased, the high energy peak is shifted to lower energies and the
sharp edge becomes ”smeared”. Therefore, ξ2 should not be much larger than
0.3.

• Angular correlations:[119]
The electron bunches collide at the conversion point with the initial laser photons

1This ξ should not be confused with the polarization degree of the last section.
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3.3 Real Photon Spectrum and Luminosity

at a distance of 1-5mm from the interaction point. The angular spread of the
backscattered photons is proportional to 1/γ, and the photons with lower energy
have a wider production angle. Therefore, with the growth of the distance b the
low energy photons are spread more and more. The result is a suppression of
interactions with low energy photons.

• Electron re-scattering:
The initial electrons convert a part of their energy in a high energetic photon.
However, due to the Compton spectrum, some of them still have sufficient energy
to interact with another initial laser photon (see [29, 119]). This leads to an
additional contribution to the photon spectrum, where this “second generation”
of photons have in principle lower energies, their polarization is practically zero,
and there is no definite relation between energy and production angle of the
backscattered photons.

All these three effects are included in the program CompaZ [120] and can be used to
simulate photon and luminosity spectra for a photon collider of 500 GeV at TESLA.

Fig. 3.4 shows a simulation of the normalized luminosity spectrum of the backscat-
tered photons, assuming that both initial electron beams have the same polarization
and 2λePc = −0.85. The distribution is plotted over z = Wγγ/2E0, where Wγγ is

Figure 3.4: The γγ luminosity spectra at TESLA for 2E0 = 800 and 200 GeV with
various cuts on longitudinal momentum. The solid line is for the total helicity of the
two photons 0 and the dotted line for total helicity 2. The initial electron polarization
is 85%. The plot was taken from [121].

the γγ-center-of-mass energy. The spectrum consists of two types of curves, one for
total γγ helicity equal to 0 (solid line) and one for L = 2 (dotted line). The spec-
trum of L = 0 has a high energy peak with a width at half maximum of about 15%
originated by the peak of the laser photon density function, Fig. 3.2. There is also
a large contribution to the spectrum at low energies. This is due to the collision of
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3 Particle Production at Future Linear Colliders

beamstrahlung and multiple Compton scattering photons of one bunch with laser pho-
tons which are backscattered from the opposite bunch. Therefore, they have large
longitudinal momenta. Contributions due to bremsstrahlung are negligible because
of the beam repulsion the e−e− luminosity is only 10−2 of the geometric luminosity.
For measurements one will always use the high energy peak with z > 0.8 zmax where
zmax = Wmax

γγ /2E0 and Wmax
γγ = 2ωm = X

1+X 2E0 (equation (3.2)) is the maximum
available γγ-center-of-mass energy. The distribution of this peak, that is well known,
is not affected by beamstrahlung and multiple Compton scattering and has a high
monochromaticy (Fig. 3.3). The luminosity of this peak is

Lγγ(z > 0.8zm) ≈ 0.1Lgeom . (3.6)

Events of the low energy part of the spectrum in Fig. 3.4 can be suppressed by imposing
cuts on the longitudinal momentum of the produced system. Normally, one restricts
the longitudinal momentum using the acollinearity angle between jets (e.g. H →
bb̄, τ τ̄ )[117]. For production processes of supersymmetric particles this will be more
complicated. Assuming R-parity conservation, the supersymmetric particles decay into
a lightest supersymmetric particle, usually the lightest neutralino, that is invisible.
Since in this case, supersymmetric particles can only be produced in pairs, the missing
energy originates from at least two invisible particles.
A possible solution to this problem could be to choose the center-of-mass energy of the
electron system in such a way that the production threshold of the scattering process
is 0.8 of the maximum energy of the photon-photon system Wmax

γγ :

∑

i

mi = 0.8Wmax
γγ , with Wmax

γγ = 2ωm ,

and the electron center-of-mass energy is

See = (2E0)
2 =

(

X + 1

X

∑

imi

0.8

)2

, (3.7)

where i runs over all particles of the final state and X is defined in equation (3.1). This
procedure suppresses the low energy part of the spectrum. For the plots in this thesis
equation (3.7) is used. If the electron center-of-mass energy is chosen independently
of the final masses, the photon energy is integrated from zmin = 0.8 zmax to zmax,
provided that the cuts introduced above are possible.

To calculate electron-electron cross sections one has to integrate over the photon struc-
ture function defined in equations (3.3) and (3.5). This density function is normalized
to 1 for 0 ≤ x ≤ 1. Whereas the γγ-luminosity is given only for the high energy peak
z ≥ 0.8 zmax (equation (3.6)). If one wants to calculate the number of events by simple
multiplication of the cross section with the luminosity defined as in (3.6), one has to
renormalize the density function to the high energy peak or, equivalently, divide the
cross section by Nf with

Nf =

∫ xmax

0
dx1

∫ xmax

0
dx2 f(x1)f(x2)Θ(x1x2 − z2

min) ,
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3.4 Hadronic Cross Sections

where xmax = ωm/E0, Θ is the step function and f is either the polarized or unpolarized
photon density function.

For an easy comparison, in this thesis the Compton spectrum defined in equation (3.3)
and (3.5) is always used. Furthermore, the following values are chosen

X = 6.5 , 2λePc = −0.8 ,

zmin = 0.8 zmax , λ{−,0,+}
e = {−0.4, 0, 0.4} ,

zmin = 0.693 , xmax = zmax = 0.867 ,

f±Norm = 0.291 , funpol
Norm = 0.184 .

The sign of the initial laser polarization with |Pc| = 1 depends on the electron po-
larization in order that 2λePc = −0.8 is fulfilled. Thus, the polarized cross section
labels “++, −−, +−, −+” refer to the sign of the initial electron polarization. For
unpolarized cross sections one has λe = 0 and Pc = 0 is used for both beams and the
unpolarized photon spectrum.

Eventually, it should be noted that at a γγ collider there are no limitations to the
geometric luminosity because of beamstrahlung or beam-instabilities. Therefore, one
can decrease the beam size to increase the luminosity of the backscattered photons.
For TESLA [26], it was shown that one could in principle decrease the horizontal beam
size from 500nm to 10nm. Also the vertical beam size could be decreased by a factor
two. Thus, in principle the γγ luminosity can be higher than the e+e− luminosity.

3.4 Hadronic Cross Sections

A general scattering process at a future linear electron collider is given by

e−(p1, λ1) + e±(p2, λ2) → . . . → X1(k1) +X2(k2) + . . . +Xn(kn) ,

where pi and λi are the momentum and polarization of the initial electrons and
positrons, and Xi stands for an arbitrary particle in the final state with momentum kj .
Polarization indices of the final state are suppressed. The intermediate dots indicate
the possibility that one or two of the initial electrons/positrons might be ”converted”
to a photon.

To calculate the cross section of the initial electron-electron/positron system one has
to integrate over a possible photon density function:

σλ1λ2

e−e±
(S) =

∫ 1

0
dx1dx2

∑

PiPj

fPi

i/e(x1, λ1)f
Pj

j/e(x2, λ2) σ̂ij(ŝ, Pi, Pj) , (3.8)

where S is the center-of-mass energy of the initial electron/positron system, ŝ = (x1p1+
x2p2)

2 the center-of-mass energy of the partonic subsystem and σ̂ij the partonic cross
section with initial particles i and j. The sum runs over all possible polarization states
Pi/j of the intermediate particles and, in case of photon-photon scattering (i = γ1, j =
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γ2), over the 4 polarization combination of γ1 and γ2. The momentum fraction of the
intermediate particles with respect to the initial electron/positron are denoted by x1

and x2. The parton density functions in the electron or positron for different scattering
processes can be described as follows:

Direct e−e± collision : fi/e(x) = δieδ(1 − x),

Direct photon : fP
γ/e(x, λ), [ photon energy spectrum, e.g. (3.3) ] ,

Resolved photon : fa/e(x) =

∫ 1

x

dy

y
fγ/e

(

x

y

)

fa/γ(y).

There is an additional integration for resolved processes. In these the photons emitted
by the initial electrons/positrons fluctuate into virtual quark-antiquark pairs. Thus,
the photon beams present a hadronic structure of quarks, antiquarks and also gluons
radiated by quarks and antiquarks. These particles can scatter with the opposite beam.
This is an effective description of a multi-particle final state process, where it is possible
to calculate e.g. qq̄ → g̃g̃ instead of γγ → qq̄g̃g̃. Thus, one has to integrate over all
possible momentum fraction y of the quarks/antiquarks inside the initial photon.

For the laser-backscattering, it is assumed that the initial electrons are longitudinal
polarized and the initial laser is circular polarized. The total electron cross section can
be written with the Stokes parameter ξ2(xi) as

σλ1λ2

e−e−
(S) =

∫ 1

0
dx1dx2 fi/e(x1, λ1)fj/e(x2, λ2) ×

{

+
1

4

(

1 + ξλ1

2

)(

1 + ξλ2

2

)

σ̂ij(ŝ,+,+) +
1

4

(

1 + ξλ1

2

)(

1 − ξλ2

2

)

σ̂ij(ŝ,+,−)

+
1

4

(

1 − ξλ1

2

)(

1 + ξλ2

2

)

σ̂ij(ŝ,−,+) +
1

4

(

1 − ξλ1

2

)(

1 − ξλ2

2

)

σ̂ij(ŝ,−,−)

}

,

where f(i,j)/e is the unpolarized laser spectrum of equation (3.3) and the dependence

of ξλi
2 on xi (equation (3.4)) has been omitted. The ”-” and ”+” refer to left and right

polarization of the backscattered photons, respectively.

The integral over the total cross section defined in equation (3.8) contains 2 numerical
integration over x1, x2. The numerical evaluation of the cross section, especially for
higher order corrections or multi-particle final states, requires a large amount of com-
puting time. To reduce this time one can rewrite equation (3.8) in a more convenient
way. In the following, as an example unpolarized initial states are assumed. The par-
tonic center-of-mass energy ŝ is given in terms of the electron center-of-mass energy
S = (p1 + p2)

2 as

ŝ = (x1p1 + x2p2)
2 = x1x2S + x1(x1 − x2)p

2
1 + x2(x2 − x1)p

2
2 ≈ x1x2S .

The last relation is always fulfilled in high energy electron-electron scattering processes
because x1,2 ≤ 1 and S � p2

1,2 = m2
e. If τ0 is the production threshold τ0 = ŝmin/S
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of the considered scattering process with k final particles and τ0 = (
∑

k mk)
2/S, the

total electron cross section (3.8) can be rewritten as follows

σe1e2
(S) =

∑

{i,j}

∫ 1

τ0

dx1

∫ 1

τ0
x1

dx2
1

1 + δij

(

fi/e1
(x1)fj/e2

(x2) + fj/e1
(x1)fi/e2

(x2)
)

σ̂ij(ŝ) ,

where the sum over the ordered pairs (i,j) was replaced by a sum of unordered pairs
{i,j}. The factor 1/(1 + δij) is introduced to avoid double counting. With the substi-
tution x1 = x and x1x2 = τ = ŝ/S, the total cross section is given by

σee(S) =
∑

{i,j}

∫ 1

τ0

dτ
dL ee

ij

dτ
σ̂ij(ŝ),

with dL ee
ij /dτ defined as

dL ee
ij

dτ
=

∫ 1

τ

dx

x

1

1 + δij

(

fi/e1
(x)fj/e2

(
τ

x
) + fj/e1

(x)fi/e2
(
τ

x
)
)

.

The integration of the last equation is usually much faster than the one with an addi-
tional integration over the partonic cross section.

3.4.1 Rapidity and Transversal Momentum distribution for 2 → 2

The hadronic cross section of a 2 → 2 scattering process is given in equation (3.8).
Suppressing again initial polarization indices and neglecting the initial particle masses,
the electron-electron cross section in terms of the squared matrix element reads

σe−e− =

∫

dx1dx2 f(x1)f(x2)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

(2π)4δ4(p1 +p2−k1−k2)
1

2ŝ
|M |2 ,

(3.9)
with ŝ = x1x2S and k1, k2 are the momenta of the final particles in the partonic center-
of-mass system, k0

1 , k
0
2 their energy and m1, m2 their masses. Equation (3.9) can be

expressed in terms of the transversal momentum kT and rapidity yi = 1
2 ln

k0
i +kz

i

k0
i −kz

i
. With

d3k = k0 kT dkT dφ dy equation (3.9) becomes [122]

σe−e− =

∫

dk2
T dy1dy2 x1f(x1) x2f(x2)

dσ̂2→2

dt
, (3.10)

where the differential partonic 2 → 2 cross section is

dσ̂2→2

dt
=

1

16πŝ2
|M |2 , (3.11)

and

x1 =
1√
S

(mT1
ey1 +mT2

ey2) , x2 =
1√
S

(

mT1
e−y1 +mT2

e−y2
)

.
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The “transverse mass” is defined as mT =
√

k2
T +m2. The integration boundaries of

equation (3.10) are

0 ≤ kT ≤ 1

2
√
S

√

(S −m2
1 −m2

2)
2 − 4m2

1m
2
2, |y1| ≤ arcosh

S +m2
1 −m2

2

2
√
SmT1

,

and

− ln

√
S −mT1

e−y1

kT
≤ |y2| ≤ ln

√
S −mT1

ey1

kT
.

3.4.2 Partonic 2 → 3 Cross Section

To calculate the real photon and gluon emission one has to compute the partonic cross
section for 2 → 3 scattering processes. The initial momenta are denoted as pi, the final
momenta as kj and the partonic center-of-mass energy is ŝ = (p1 + p2)

2. The total
cross section is defined as

σ̂2→3(ŝ) =

∫

d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

(2π)4δ4(p1+p2−k1−k2−k3)
1

2ŝ
|M |2.

(3.12)
Equation (3.12) can be rewritten [123] as a four dimensional integral in terms of the
final particle energies k0

1 and k0
3 and the angles θ and η.Neglecting the masses of the

initial particles the cross section becomes

σ̂2→3(ŝ) =

∫ (k0
3
)max

λ
dk0

3

∫ (k0
1
)max

(k0
1
)min

dk0
1

∫ 1

−1
d cos θ

∫ 2π

0
dη

1

8(2π)4
1

2ŝ
|M |2,

(3.13)
with λ = max{m3, Ecut}. The integration boundaries are

(k0
3)

max =
1

2
√
ŝ

(ŝ− (mk1
+mk2

)2 +m2
k3

),

(k0
1)

max
min

=
1

2τ

[

a(τ +m+m−) ± |~k3|
√

(τ −m2
+)(τ −m2

−)

]

,

τ = a2 − |~k3|2 , a =
√
ŝ− k0

3 , m± = mk1
±mk2

3.5 Calculation Methods

To calculate the cross sections of the considered scattering processes with perturbative
methods the following way is used:

• Draw all Feynman diagrams

• Write down the corresponding matrix elements

• Square and simplify the matrix elements
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• Integrate numerically over the phase space

Because of the large number of different diagrams in loop calculations, computer pro-
grams have to be used. Moreover, a very important reason for an automatized com-
putation is the prevention of calculation errors that frequently appear. Therefore, to
create the Feynman diagrams and the matrix elements, the Mathematica package Fey-
nArts [102, 103] version 3.2 combined with the MSSM model-file [101] was used.
In order to square matrix elements, a Mathematica package has been expressly devel-
oped. This uses at some points the algebraic program FORM [124]. It is written in a
generic way like FormCalc [123] and FeynCalc [125]. It calculate the square of one-loop
matrix elements and is described in detail in the next section.
For the integration over the phase space a generic Fortran program was developed,
which performs also integrations over the structure functions if required (Section 3.5.2).

3.5.1 Analytical Calculation of Matrix Elements

Fig. 3.5 shows a road-map for the analytic calculation of squared matrix elements using
Mathematica and FORM. The FeynArts generated matrix elements are given in Math-
ematica code. The amplitudes are simplified with different Mathematica functions
(introduce abbreviations, reduce tensor structures, contract Lorentz indices, calculate
traces, perform the helicity and color amplitude). Some of them use the computer pro-
gram FORM. Therefore, it has been necessary to write a Mathematica package called
“FormInt”, that transforms an arbitrary Mathematica expression into FORM code,
run FORM and transforms the result back into Mathematica code. The result is given
back to the called function. Thus, every Mathematica function is independent and the
intermediate result can be controlled in Mathematica by the user. This is different
from FormCalc [123] that calculates everything in FORM at once. The procedure used
here allows to control the calculation step by step and to insert or change Mathematica
functions at any stage of the calculation.
Furthermore, a Mathematica package, called MathTeX was developed in order to make
the intermediate and final results visible in a human readable way. The expressions
are transformed into LATEX code, that can be compiled to a postscript file. Here, a
non-trivial task was to include automatically LATEX-line-breaks in the expressions to
end up with A4-postscript file that can be printed. However, matrix elements can be-
come huge and for more than around 1000 A4-sheet MathTeX breaks down. Anyway,
one easily can check the calculation of the few possibly problematic diagrams.
The resulting amplitude can be transformed by two further functions into Fortran
code. In particular the Fortran functions are written in the convention of FormCalc.
In particular the main function “SquaredME(...)” and the parameter definition file
“model.h” are used. In this way, these results can be easily compared with those of
FormCalc, if the same Fortran program for the numerical integration is used.
The developed program calculates polarized matrix elements with polarized external
particles. The tensor integrals are decomposed using the Passarino-Veltman [126] (Ap-
pendix A.4) reduction and Dimensional Regularization [82–84] as well as Dimensional
Reduction [87–89]. Traces over Dirac chains are simplified by appropriate routines
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of FORM. The color-algebra is performed by a Mathematica function as described in
Appendix A.5.

3.5.2 Numerical Calculation of Cross Sections

Fig. 3.6 shows a schematic configuration to calculate numerically cross sections using
the program language Fortran. The program was written so that it can calculate
differential and total cross sections for arbitrary scattering processes, restricted up to
now to 2 → 2 and 2 → 3 reactions. The used formula were given in Section 3.4.

The program works as follow:
First of all, the parameters (scattering type, MSSM parameter etc.) are read from a
data file. Then, one has to calculate for the chosen varying parameters (Ecms, MS ,
... ) all masses and mixing angles of the SM and MSSM, coupling constants etc. To
compute the MSSM variables, the routines of the “mssm ini.F” file of FormCalc [123]
version 3.0 has been used. To calculate the strong coupling constant, the function of
the PDFLIB [73] was adopted. Moreover, for comparison, a routine of the fourth order
formula given in [74] was implemented.
Then, the cross section is calculated using different integration routines. For the con-
voluted cross section, the density functions of the PDFLIB [73] are linked and laser-
backscattering spectra are included. The squared matrix elements can be provided by
the program described in the last section, FormCalc or “hand” implemented. This has
been done for instance for the e+e− → g̃g̃ scattering process. The evaluation of tensor
integrals is done with the computer package LoopTools [123] based on FF [127, 128].
With the help of another function, it is possible to search for maximum values of the
cross section and finally the results are printed with all used parameters into data files.
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Figure 3.5: Schematic description of the analytic calculation of the FeynArts generated
matrix elements using Mathematica and FORM.
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Figure 3.6: Schematic description of the numeric calculation with Fortran.
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Chapter 4

Gluino Pair Production in e
+
e
−

Annihilation

The Gluino pair production process in electron-positron annihilation and the Z 0-boson
decay into gluino pairs have been considered by several groups [16–20]. Nevertheless,
these calculations differ by a relative sign between the contributions given by the
one-loop-vertex diagrams with two squarks and one quark and those given by the
one-loop-diagram with one squark and two quarks. To get rid of this discrepancy, the
complete process was recomputed in this thesis with three independent calculations and
an agreement among them was found. The analytical results are given in Section 4.1
while the numerical ones are discussed in Section 4.2. The complete results have been
published in [131].

4.1 Analytical Results

The symbolic gluino pair production process in electron positron annihilation is given
by

e−(p1, λ1) e
+(p2, λ2) → g̃(k1) g̃(k2) ,

where p1,2 are momenta, λ1,2 = ±1/2 helicities of the incoming electrons/positrons,
and k1,2 the outgoing gluino momenta. The outgoing gluino helicity and color states
are always summed up. Since the gluino as the superpartner of the gauge boson of the
strong interaction couples neither directly to leptons nor to electroweak gauge bosons,
the process occurs only at the one-loop level. The Feynman diagrams with s-channel
photon or Z0-boson exchange and triangular quark and squark loops are given in Fig.
4.1 . Higgs boson exchange is not considered due to the negligible small electron
Yukawa coupling, but it would be relevant at muon colliders. Using the Feynman rules
of [131], one can decompose the corresponding scattering amplitude into the lepton
current LV

µ , the propagator iDµν
V and the gluino current GV

ν

M =
∑

V =γ,Z0

LV
µ iD

µν
V (s)GV

ν , (4.1)
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e-(p1,λ1)

e+(p2,λ2)

g(k1)

g(k2)

γ,Z0

(A)

qi(q)

q

q

e-(p1,λ1)

e+(p2,λ2)

g(k1)

g(k2)

γ,Z0

(B)

q(q)

qj

qi

Figure 4.1: Feynman diagrams for gluino pair production in electron-positron annihi-
lation. The exchanged photons and Z0-bosons couple to the produced gluinos through
triangular qqq̃i (A) and q̃iq̃jq (B) loops with flavor flow in both directions.

where the connector V stands either for s-channel photon or Z 0-boson exchange. The
lepton current is given by

LV
µ = v̄(p2, λ2)

[

−ieγµ(vV
e − aV

e γ5)
]

u(p1, λ1),

where −ieγµ(vV
f − aV

f γ5) is the gauge-boson-fermion-fermion coupling and

vγ
f = ef , aγ

f = 0 ,

vZ
f = 1

2sW cW

(

T 3
f − 2ef s

2
W

)

, aZ
f = 1

2sW cW
T 3

f .
(4.2)

The photon and Z0-boson propagators iDµν
V are defined as

iDµν
V (s) =

−igµν

s−m2
V + iη

, with V = γ, Z0 ,

which depend on the squared center-of-mass energy s = (p1 + p2)
2 = (k1 + k2)

2 and
the gauge boson masses m{γ,Z0} = {0, mZ0}. The gluino current of both flavor flow
direction of the diagrams (A) and (B) can be written in a compact form

GV
ν = −e ūa(k2)

∑

q

[

2
∑

i=1

(

iΓa
i,1Â

i,V
ν iΓb

i,2 + iΓ′ a
i,2Ã

i,V
ν iΓ′ b

i,1

)

+

2
∑

i,j=1

(

iΓa
i,1Γ

ij,V B̂ij,V
ν iΓb

j,2 + iΓ′ a
i,2Γ

ji,V B̃ij,V
ν iΓ′b

j,1

)



 vb(k1) . (4.3)

Here {i, j} indicates the squark mass eigenstates, {a, b} are the color indices of the
SU(3) that have to be summed up (Section A.5), and Γ′ = CΓTC−1 (A.5), with
C charge conjugation matrix (A.4). The

∑

q runs over all flavors q={u, d, c, s, t, b},
whereby the dependence of Γ, Â, Ã, B̂, B̃ on q was suppressed for better readability.
Γij,V is determined by the gauge-boson-squark-squark coupling −ie(p−p′)νΓij,V where

Γij,γ = eqδij and Γij,Z0

=
1

sW cW

(

(T 3
q − eqs

2
W )Uj1U

∗
i1 − eqs

2
W Uj2U

∗
i2

)

. (4.4)

Squark mixing is always allowed and given by the mixing matrices Uij (2.6). The
quark-squark-gluino coupling in equation (4.3) is

iΓa
i,1 = −i

√
2gs T

a(Ui1 ωL − Ui2 ωR) and iΓa
i,2 = −i

√
2gs T

a(U∗
i1 ωR − U∗

i2 ωL) ,
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with ωL,R projectors (A.2), and T a SU(3) generators (Section A.5).

In equation (4.3) the tensors Â and Ã refer to the diagram (A) of Fig. 4.1. Â is given
by

Âi,V
ν =

∫

dDq

(2π)D
µ4−D (q/+ k/2 +mq) γν (vV

q − aV
q γ5) (q/ − k/1 +mq)

(q2 −m2
q̃i

+ iη)[(q − k1)2 −m2
q + iη][(q + k2)2 −m2

q + iη]
,

while one obtains Ã from the diagram with reversed flavor flow replacing vV
q with −vV

q ,

symbolically Ãi,V
ν = Âi,V

ν (vV
q → −vV

q ), vV
q , a

V
q being defined in equation (4.2).

The contribution from diagram (B) in Fig. 4.1 is

B̂ij,V
ν =

∫

dDq

(2π)D
µ4−D (q/−mq) (2q − k1 + k2)ν

(q2 −m2
q + iη)[(q − k1)2 −m2

q̃j
+ iη][(q + k2)2 −m2

q̃i
+ iη]

and B̃ij,V
ν is determined from the diagram with reversed flavor flow identifying B̃ij,V

ν =
−B̂ij,V

ν .

The matrix element (4.1) can be simplified using the Dirac equation (A.3), the anti-
commutation relations for Dirac matrices (A.1), and the tensor loop integrals of Sec-
tion A.4. Then, the gluino current (4.3) reduces to

GV
ν = ie

αs

2π

δab

2
ūa(k2) γνγ5 v

b(k1)
∑

q

(AV
q +BV

q ) . (4.5)

The sum of the contributions of the diagrams (A) and (B) with both flavor flows can
be expressed as follows

AV
q =

2
∑

i=1

[

Cqi
0 (m2

qa
−
qiV −m2

g̃a
+
qiV + 2mqmg̃âqiV ) + Cqi

1 4mg̃(mqâqiV −mg̃a
+
qiV )

+Cqi
00(2 −D) a+

qiV − Cqi
112m

2
g̃a

+
qiV + Cqi

12

(

s− 2m2
g̃

)

a+
qiV

]

,

BV
q =

2
∑

i,j=1

Cqij
00 2bqijV , (4.6)

where the indices i, j again specify the squark mass eigenstates and the arguments of
the infrared finite three-point tensor integrals are C qi

k(l) = Ck(l)(m
2
g̃, s,m

2
g̃,m

2
q̃i
,m2

q,m
2
q)

and Cqij
00 = C00(m

2
g̃, s,m

2
g̃,m

2
q,m

2
q̃j
,m2

q̃i
). Note that for diagram (A) holds the relations

Cqi
1 = Cqi

2 and Cqi
11 = Cqi

22 due to the two equal squark masses in the loop.
The coefficients a±, â, b in equation (4.6) depend on the squark mixing matrix U q

ij, v
V
q

and aV
q (4.2), and Γij,V (4.4) being defined as

a±qiV = vV
q

(

U q
i1U

q∗
i1 − U q

i2U
q∗
i2

)

± aV
q ,

âqiV = aV
q

(

U q
i1U

q∗
i2 + U q

i2U
q∗
i1

)

,

bqijV = U q
i1U

q∗
j1 Γij,V − U q∗

i2 U
q
j2 Γji,V . (4.7)
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By adding AV
q and BV

q in (4.5), the ultraviolet singularities contained in the C00-
functions cancel for each flavor separately in D = 4 − 2ε dimensions. This was checked
explicitly for arbitrary unitary complex mixing matrices U .

In order to determine which contributions are more relevant for the cross section,
Equation (4.7) can be rewritten using the properties of the 2 × 2 unitary matrix U
(2.6). It can additionally be rewritten for real mixing matrices (2.7). Eventually one
has

a±qiV = (−1)i vV
q

(

U q
12U

q∗
12 − U q

11U
q∗
11

)

± aV
q = (−1)i vV

q

(

s2θq̃
− c2θq̃

)

± aV
q ,

âqiV = (−1)i−1 aV
q 2Re

{

U q
11U

q∗
12

}

= (−1)i−1 aV
q 2sθq̃

cθq̃
,

bqiiV = (−1)i
(

U q
12U

q∗
12 − U q

11U
q∗
11

)

Γii,V = (−1)i
(

s2θq̃
− c2θq̃

)

Γii,V ,

bq12V = bq21V = U q
11U

q∗
21Γ12,V + U q∗

11U
q
21Γ

21,V = −2sθq̃
cθq̃

Γ12,V . (4.8)

In case of photon exchange, from equation (4.8) with the help of equation (4.4), one
can read of the following relations for squark mass eigenstates 1 and 2 :

a±q1γ = −a±q2γ , âqiγ = 0 , bq11γ = −bq22γ , bq12γ = bq21γ = 0 .

This even holds in the case of complex mixing matrices U . Summing over the squark
mass eigenstates 1 and 2 in equation (4.6), the gluino current given in equation (4.5)
will vanish for each flavor separately if the squark mass eigenstates 1 and 2 are de-
generated mq̃1

= mq̃2
. In many unification scenarios, this condition is nearly fulfilled

for the first and second generation of quarks. Thus, only the third generation gives
large contributions to the cross section. In addition, one can have large squark mixing
with mixing angle around 45◦. In this case as well, the factors a±qiV and bqiiV will

vanish because
(

s2θq̃
− c2θq̃

)

→ 0. Therefore, the contribution from photon exchange is
suppressed in most cases and will be significant only for moderate mixing angles and
for |M2

f̃L
−M2

f̃R
| � 0 (see equation (2.8)), that means |m2

f̃L
−m2

f̃R
| � 0.

For the Z0-boson exchange similar relations hold for real mixing matrices:

a±
q1Z0 = −a±

q2Z0 ± 2aZ0

q , âq1Z0 = −âq2Z0 ,

b{q11Z0, q22Z0} = {c2θq̃
, s2θq̃

} aZ0

q − eq
sW

cW
, bq12Z0 = bq21Z0 = −2sθq̃

cθq̃
aZ0

q ,

where this bracket notation relates c2θq̃
to bq11Z0 and s2θq̃

to bq22Z0 . If the squark

masses of a given flavor are degenerated only the terms proportional to aZ0

q and eq
contribute to the cross section. Furthermore, for up and down type quarks of the
same generation yields aZ0

u = −aZ0

d and for the charge eu = −2ed. Thus, the up and
down contributions of one generation add destructively and become very small if the
quark masses are equal: mu ≈ md. Since these conditions are fulfilled for the first
two generations of quarks, only the third generation with top and bottom quarks will
dominate the cross section in the scenario with M 2

f̃L
≈M2

f̃R
.
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4.1 Analytical Results

Squaring the matrix element (4.1) and integrating it over the phase space1, one obtains
the total cross section for electron-positron annihilation into gluino pairs, given by

σλ1λ2
(s) =

α2
eα

2
s(N

2
C − 1)β3s

24π

∑

V1,V2

[

QV1V2

λ1λ2

(s−m2
V1

)(s−m2
V2

)

∑

q

(AV1

q +BV1

q )(AV2

q +BV2

q )∗
]

,

(4.9)
where V1, V2 runs over the intermediate bosons γ and Z0, and the color factor is
NC = 3. From the expression of the lepton tensor LV1V2

µν = LV1
µ LV2

ν , one can derive the
factor

QV1V2

λ1λ2
= (vV1

e vV2

e + aV1

e aV 2
e )(1 − 4λ1λ2) − (vV1

e aV 2
e + vV2

e aV1

e )(2λ1 − 2λ2),

that contains the cross section dependence on the helicities of the initial electron
and positron. The total cross section (4.9) presents the expected factor β 3, β =
√

1 − 4m2
g̃/s being the gluino velocity for a P -wave production from two spin-1/2

fermions with an intermediate spin-1 boson [16].
The angular distribution in the center-of-mass system with scattering angle θ is given
by

dσλ1λ2

dΩ
(s) =

3

8π
(1 + cos2 θ)σλ1λ2

(s) .

It is important to note that the angular distribution is independent of the gluino mass
as in the case of massless fermions [16]. This is due to the Majorana nature of the
two final states that must be odd under exchange. Thus, if one is able to measure the
angular distribution, one can determine the spin and Majorana nature of the gluinos.

The above mentioned result was calculated analytically by hand and implemented
into the Fortran program described in Section 3.5.2. The obtained cross sections were
compared numerically with the results of the automatic calculation described in Section
3.5.1. In addition, a numerical comparison with the results of FormCalc [123] version
3.2 has be performed. The numerical results of the three different calculations agreed
up to 15 digits. The only possible error source could be the fact that in all calculations
the Feynman diagrams have been generated with the package FeynArts [103] version
3.2 with the MSSM model-file [101] and that the gluino Majorana nature has always
been treated as given in [132]. However, the consistency of the Feynman rules were
compared with [65] and the treatment of the Majorana nature studied carefully.

In literature one finds different results for the gluino pair production process. The
most detailed calculation is given in [17] for the case of real squark mixing matrices.
The unpolarized cross section is given through the averaged sum over all helicity com-
binations (λ1,2 = ±1/2) of the initial electron and positron as σ(s) = 1

4

∑

σλ1λ2
(s).

The result for diagram A agrees with Eq. (4.5) in [17], if one identifies

Cqi
0 = −F 00

qqi , Cqi
1 = +F 01

qqi ,

Cqi
00 = −Gqqi/2 , Cqi

11 = −F 02
qqi , Cqi

12 = −F 11
qqi

1Note that the scattering angle θ has to be integrated only from 0 to π
2

because of the identical
particles in the final state. Alternatively one can integrate as usual from 0 to π and multiply by 1/2.
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4 Gluino Pair Production in e+e− Annihilation

and reverses the sign of b̂q to account for the opposite conventions of the squark mixing
matrix

Uq̃ =

(

cos θq̃ − sin θq̃

sin θq̃ cos θq̃

)

.

If for the result of diagram B one identifies

Cqij
00 = −Gijq/2 ,

the µ dependence of the G integrals in Eq. (4.5) of [17] cancels for each flavor. However,
the result would disagree with Eq. (4.5) of [17] by a relative minus sign between diagram
A and B. If the sign of diagram B is as in [17], the ultraviolet singularities cancel only
after adding the contributions from the two weak isospin partners with opposite sign
of T 3

q .

The reason of this discrepancy seams to be the Feynman rules given in [17]. The
Z0-boson coupling to quarks differs by a relative minus sign to the Feynman rules of
this thesis and those of [65] in the limit of no squark mixing. On the other hand, the
Feynman rules agree for Z0-boson coupling to squarks. Thus, writing down the gluino
current in the notation of [17] but using the Feynman rules of this thesis, one obtains
the gluino current for diagram A given in equation (2.4) of [17] but with a relative
minus sign to equation (2.10) of [17], that represents diagram B.

Furthermore, the results of this thesis agree with [18], who found that the ultravio-
let singularities cancel separately for each weak isospin partner, so that there is no
anomaly. This had also been claimed previously by [19]. Eventually, the results of this
thesis disagree by a relative minus sign between diagram A and B with [20], who has
performed the calculation in the limit of vanishing gluino mass.

4.2 Numerical Results

The analytical results presented in the previous Section have been evaluated with the
Fortran programs described in Section 3.5.2. Numerical agreement with the computer
algebra program FormCalc [101] version 3.2 was found up to 15 digits. The calculations
were performed using the parameters in Section 2.4 and the effective electromagnetic
coupling α = 1/127.934.

The cross section of e+e− → g̃g̃ scattering process depends on the gluino mass, the
fermion masses and the sfermion sector (Section 2.3.6). As discussed in the previous
Section, to obtain a large cross section one needs a large splitting between the squark
mass eigenstates q̃1 and q̃2. Thus, in the following discussion two cases are considered:

1. An universal mass parameter MS = Mf̃L
= Md̃R

is used for all flavor f. A large
splitting of the mass eigenstates is reached only in the third generation by large
mixing angles of the top and bottom squarks.

2. One sets MS 6= Mf̃L
6= Md̃R

. In this case the mixing angle of the squark is of
minor importance.
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4.2 Numerical Results

In the first case the parameter MS and the mixing angle have been varied looking for
the largest value of the cross section. tanβ was set to 10 because the direct dependence
of the squark masses on tanβ is small.

A gluino mass limit of mg̃ ≥ 200 GeV and squark mass limit of MS & 325 GeV were
taken from CDF [75] and D0 [76]. As the loops in the Feynman diagrams contain
squarks and quarks, σ becomes larger for smaller squark masses. However, the top
squark mass has a lower limit (see Section 2.4). The value θ t̃ = 45.195◦ was chosen
leading to mt̃1

= 110.52 GeV and mt̃2
= 505.69 GeV. Fig. 4.2 shows the cross section
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~
g
~
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√s  [GeV]

σ 
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θt
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mg
~ = 200 GeV

mg
~ = 300 GeV

mg
~ = 400 GeV

Figure 4.2: Center-of-mass energy dependence of the polarized e+e− → g̃g̃ cross section
for various gluino masses and maximal top squark mixing (tan β = 10, θ b̃ = 0◦).

dependence on the center-of-mass energy for various gluino masses. The polarization of
the initial electron and positron is 80%(-) and 60%(+), respectively. The cross section
rises proportionally to β3 (equation (4.9)) for a P -wave production of the gluino pairs
and after reaching a maximum it drops off like 1/s because of the intermediate photon
and Z0-boson propagator. The local minima at 630 GeV of the solid line (mg̃ =
200 GeV) arises for loops including top squarks. Due to the large top squark mixing
angle, the t̃1-squark is very light and t̃2 relatively heavy. The cross section rises faster
for diagrams with two internal t̃1 than for diagrams with a t̃1-t̃2 pair and faster for
diagrams with two internal t̃2-squarks. For all three contributions exists a maxima
after that the cross section drops down. Because of the destructive interference of the
different Feynman diagrams the local minima arises. The maximum cross section that
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Figure 4.3: (tan β = 10); Left: Contribution of diagrams with virtual γ and Z 0-
boson exchange to the unpolarized e+e− → g̃g̃ cross section for non mixing squarks.
Right: (MS = 400 GeV) Large mixing effects of top and bottom quark loops to the
unpolarized cross section, σ ≈ σ(Z0−exchange). The central region with maximal
top/bottom squark mixing is excluded by the mass limits.

can be reached with the given mass bounds is around 0.065 fb for light gluino masses
of 200 GeV and a light top squark mass with large stop splitting. With a luminosity of
1000 fb−1 per year only 65 events are expected, which is quite small. For a gluino mass
of 300 GeV only 30 events of gluino pairs will be produced. The following discussion
for mg̃ = 300 GeV shows that the cross section become invisible for the most ranges of
MSSM parameter space (The case of mg̃ = 200 GeV is discussed in [131]). Therefore,
a measurement of gluino pairs seems impossible in electron positron annihilation.

The reason of the cross section smallness is principally the fact that the process takes
place only at one-loop level. However, the destructive interference of the different loop
contributions discussed in the last Section is important as well. The MS dependence
of the polarized cross section for for large top squark mixing is shown in the left panel
of Fig. 4.3. For MS = Mf̃L

= Mf̃R
the contribution from photon-exchange (dot-dashed

line) is strongly suppressed, since the loop contributions of squark 1 and squark 2 of
each flavor cancel each other. This suppression is of two orders of magnitude. The
same happens for the first two generations in case of Z 0-exchange (dashed line) because
mf̃L

≈ mf̃R
. Only in the top squark sector one has a larger difference between m t̃L

and mt̃R
, also in the case of no mixing, due to the large top quark mass (dotted line).
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Figure 4.4: (mg̃ = 300GeV, tanβ = 10, f stands for all quark flavor, u for all up
quarks, d for all down quarks); Left: Total e+e− → g̃g̃ cross section in dependence of a
universal MS = Mf̃L

= Mf̃R
for no mixing and maximal squark mixing. Right: Total

cross section for MS = Mf̃L
= Md̃R

6= MũR
. For the dotted curve only the top squark

parameter Mt̃R
is not equal MS . Apart from the dot-dashed line (only γ−exchange)

all Feynman diagrams (γZ0) contribute.

In supersymmetric theories many normal and anomalous thresholds can occur due to
the large number of particles (see e.g. [133] and reference therein). The dot-dashed
line (γ) and dashed line (Z − u, d) have a normal threshold around MS = 400 GeV.
This threshold arises for vertex diagrams with two internal squarks (Fig. 4.1) where
the squark masses of the five light flavors are about MS . The squark pairs can not be
produced on-shell for larger MS than 400 GeV leading to the strong decrease of the
cross section.

The destructive interference of the contributions from up and down quark of each
generation is displayed in the right panel of Fig. 4.3. Here, the cross section dependence
on the top and bottom squark mixing is shown. Choosing a stop mixing angle near 45
degree the stop mixing becomes large, leading to a light stop 1 of O(100GeV). The
bottom contribution (dashed line) is larger than the top contribution (dotted line) and
both of them vary strongly for large mixing angle. As a consequence of the destructive
interference, the sum of both contributions (solid line) rises if the top contribution
decreases and can be even higher than the bottom contribution due to large imaginary
parts in the matrix element. Although the distribution shown here is the complicated
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4 Gluino Pair Production in e+e− Annihilation

sum in equation (4.6) with the coefficients (4.7), the destructive interference in the
small mixing case is always obvious.
The cross section in Fig. 4.3 (right plot) rises steeply close to 45 degree. The reason is
the choice of MSSM parameters, for which only in this region large stop mass splitting
occur. This becomes evident in equation (2.9). If Mq̃L

= Mq̃R
large mass splitting can

be obtained only if the non-diagonal entries of the mixing matrix, (Aq−µ∗{cotβ, tanβ}),
become large (equation (2.8)). However, in that case the numerator of equation (2.9)
is large too, while the denominator is small. To fulfill equation (2.9) mixing angles
near 45 degrees are required.

Because of the squarks inside the loop diagrams, the cross section depends on the
squark masses and drops off for large squark masses as shown in the left plot of Fig. 4.4.
Varying MS from 325 GeV to 800 GeV the cross section for non mixing squarks (solid
line) decreases from 2 · 10−3fb to 3 · 10−4 fb. Again the normal threshold for loops
containing two squarks of the light flavors around MS = 400 GeV for

√
s = 800 GeV

is visible. For the dot-dashed line of maximal mixing the bottom squark mixing angle
was kept fixed to θb̃ = 0◦ and the top squarks mixing angle varied to search for large
cross section. As shown, σ depends strongly on the top squarks mixing for MS ≤ 800
GeV.
If θt̃ ≤ 45◦ the cross section can also be much smaller than in the non-mixing case,
as plotted in the right panel of Fig. 4.3. This means, that “large” cross sections as in
Fig. 4.2 and the number of 65 events per year are highly optimistic values, which can
be reached only in a very small parameter space. With high probability the gluino
pair production in e+e− scattering can not be observed for MS = Mf̃L

= Mf̃R
.

In case of MS 6= Mf̃L
6= Mf̃R

the contributions of squark mass eigenstate 1 and 2 do not
cancel each other to zero, even for γ-exchange. The cross section becomes considerably
larger for each flavor. The up and down quark contributions of each generation still
interfere destructively. This happens also for the γ-exchange because of the opposite
sign of the quark charges. Thus, in order to reach a large difference, one should vary
the mass parameter of only one flavor in each generation (MũL

6= MũR
) and keep the

other one fixed (Md̃L
= Md̃R

) or vice versa. Since the squared matrix elements are

proportional to e2q , the left and right mass parameters of the down type quarks are
kept fixed and those of the up type quarks are varied.
The resulting cross sections for non-mixing squarks are shown in the right plot of
Fig. 4.4. For the solid line the parameters MũR

, Mc̃R
, MũR

are varied simultaneously
while all other mass parameters M are equal to 400 GeV. As already discussed, the
cross section vanishes for all flavors if Mf̃L

= Mf̃R
= 400 GeV, and the cross section

rises for increasing differences |Mf̃L
−Mf̃R

| � 0. This is also visible forMS = 1000 GeV
(dashed line). Since for such large mass differences the top quark mass plays a minor
role, all three generation contribute equally. If only M t̃R

is varied (dotted line), the
cross section is much smaller for the same parameters. In conclusion, the photon
exchange and the γZ0 interference term contributes mainly to the cross section (dot-
dashed line) while the Z0-boson contribution remains small.
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Chapter 5

Gluino Pair Production in
Photon-Photon Collisions

In this chapter the gluino pair production process in photon-photon collisions is dis-
cussed. For the scattering process high energetic photons are produced by laser-
backscattering (Chapter 3). Since gluinos interact only strongly and photons only
electro-magnetically, the 2 → 2 scattering process starts at one loop level. The process
is described in the next section. Furthermore, gluino pairs can be produced at resolved
processes, which are an effective description for multi-particle final states, where only
the gluino pairs are visible in the detector. This scattering type is discussed in Sec-
tion 5.2, and the complete process has been published in [134].
The gluino pair production in photon-photon collision was considered in [135]. How-
ever, they neglected diagrams with two and three internal squarks. For very light
gluinos of mass mg̃ = 5...25 GeV, squarks of mass 50...150 GeV, the shapes and mag-
nitudes (in pb, not nb) of the threshold behavior in Fig. 2 of Ref. [135] can roughly
be reproduced. For a more detailed numerical comparison, more information on the
quark charges and coupling constants used there would be needed.

5.1 Direct Pair Production Process

The generic gluino pair production process in photon-photon scattering is given as

γ(p1, λ1) γ(p2, λ2) → g̃(k1) g̃(k2)

where p1,2 are momenta and λ1,2 = ±1 helicities1 of the incoming photons, and k1,2 the
outgoing gluino momenta. The outgoing gluino helicities and color states are always
summed up. As mentioned above, the process can not occur at tree level. The Feynman
diagrams at one-loop level are all of box-type and they are displayed in Fig. 5.1. The
loops contain quarks of all flavors and their corresponding supersymmetric partners,

1The polarization is chosen to be circular because large gluino masses are considered. In this case
one needs large center-of-mass energies of the backscattered photons.
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Figure 5.1: Feynman diagrams for gluino pair production in direct photon-photon
collisions. The solid lines indicate quarks and the dashed lines the corresponding
squarks 1 or 2. Inside the loops the flavor flows in both directions.

where the solid lines indicates the quarks and the dashed lines the squarks. The
fermionic flavor inside the loops can be clock- and anti-clockwise. Mixing between
the squark eigenstates q̃L and q̃R to the mass eigenstates q̃1 and q̃2 is always allowed.
Thus, to calculate the scattering matrix element one has to sum over the 6 flavors
q = {u, c, t, d, s, b}, the two squark mass eigenstates i = 1, 2 and the two flavor flow
directions:

Mγγ =
∑

q

2
∑

i=1

(Mt1 + Mu1 + Mt2 + Mu2 + Mx2 + Mt3 + Mu3)

+ (ω+ ↔ ω− , S
q̃
ij ↔ S q̃

ij

†
). (5.1)

Polarizations of the external particles were suppressed, and the indices 1-3 in Mt1,
Mt2, etc. refer to the number of internal squark lines. The analytical form of the
matrix elements can be generated with help of the computer package FeynArts [103],
version 3.2 and the MSSM model file [101]. A compact form of the seven generic matrix
elements is given in [134]. The second term in equation (5.1) denotes the corresponding
diagrams with opposite flavor flow. They are obtained by interchanging the projectors
ω+ ↔ ω− (A.2) and the mixing matrix entries U q̃

ij ↔ U q̃
ij

∗
(2.6).

The matrix elements (5.1) are simplified using the Dirac equation (A.3) and the anti-
commutation relations for Dirac matrices (A.1). Due to the three quarks inside the
loops, tensor integrals up toDµνρ (A.8) occur that have to be reduced to scalar integrals
as given in Section A.4. All the tensor integrals are free of ultraviolet divergences and,
since there are only massive particles inside the loops, they are also IR finite.

If one writes the matrix elements of Fig. 5.1 as given in [134] one has 7 different generic
matrix elements plus seven for the flavor reversed ones. Due to the maximal number of
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5.1 Direct Pair Production Process

3 internal quarks, these matrix elements contain long fermion chains and expressions
from the tensor reduction. Since no tree level diagram exists, to square the matrix
element one has to calculate 14 × 14 = 196 long and complicated terms. Therefore,
reasonable analytical calculations have to be performed by computer programs, and
the Mathematica program that was applied is discussed in Section 3.5.1.

The polarized differential cross section is obtained by squaring the matrix elements
and summing over color and spin of the final gluinos

dσλ1λ2
γγ

dt̂
=

1

16πŝ2

∑

|Mλ1λ2

γγ |2,

where ŝ = (p1 + p2)
2 and t̂ = (p1 − k1)

2 are the Mandelstam variables of the γγ
scattering process. It should be noted that the two final gluinos form a color singlet
state since the initial photons are color singlets. To calculate the total cross section
one has to integrate over the allowed region of t̂ and multiply by symmetry factor 1/2
since there are two identical particles in the final state.

As described in Chapter 3, high energetic photons arise by the backscattering of laser
light on high energy electrons. The energy spectrum of the backscattered photons can
only be described by a probability distribution. Thus, for comparison with experimen-
tal measurements one has to convolute the photon cross section with the photon density
function (Section 3.2) using the formula given in Section 3.4. This numerical evaluation
has been done with the help of the Fortran program described in Section 3.5.2.

For comparison, the photon matrix elements were calculated analytically with the
Mathematica package FormCalc [123], version 3.2, and the total partonic cross section
was evaluated numerically with an enclosed Fortran program. The numerical values
for the total partonic cross sections of the two calculations agree up to 14 digits.

Numerical Results

The photon-photon center-of-mass energy distribution of the unpolarized total par-
tonic cross section is plotted in the left diagram of Fig. 5.2. As input parameter for the
supersymmetric particles the SPS1 point given in Appendix B.1 of the 2001 Snowmass
workshop [136] has been used, except for the value of the gluino mass. The latter
was set to 350 GeV, well below the squark masses of ≈ 500 GeV, in order to clearly
distinguish between the contributions of loop diagrams with different number of inter-
nal squarks. The different threshold behavior of the diagrams with one, two or three
squarks is clearly demonstrated. Especially for the diagrams with two internal squarks
there are two maxima in correspondence to the production thresholds of the squarks 1
and 2 of the first 2 generations, which are above 1050 GeV and 1100 GeV, respectively.
The shapes are smeared out by the top quark contribution because of a lighter stop 1
squark. This threshold behavior is more distinctive if all squark mass parameter are
equal to MS = Mq̃L

= Mq̃R
as shown in [134].

At the gluino pair production threshold the diagrams with one internal squark are the
most important and become the dominant contribution for MS = Mq̃L

= Mq̃R
. The

diagrams with 3 internal squarks are suppressed due to the heavy squark masses.
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Figure 5.2: Unpolarized γγ cross section for SPS1. Left: Contributions of the various
Feynman diagrams shown in Fig. 5.1, with one, two or three internal squarks. Right:
Dependence of σγγ on the top and bottom squark mixing (leads to different squark
masses). The curves show the cross section of the bottom loop diagrams (dot dashed,
θb̃ varied), the top loop diagrams (dashed line, θt̃ varied) and the sum of all diagrams
(solid and dotted line; θt̃ varied, θb̃ = 0◦). The central region is excluded by the mass
bounds (Section 2.4)

But with contributions of 20% and more they are not negligible at intermediate
(ŝ ≈ 1500 GeV) or large (≈ 3000 GeV) center-of-mass energies.
It is important to notice that the photon-photon cross section in Fig. 5.2 (left) de-
creases much slower than in the e+e− annihilation, which typically decreases with
1/S. Therefore, large numbers of events can be expected far above the production
threshold.

The right plot of Fig. 5.2 shows the contributions of different quark flavors and the
influence of the top squark mixing for a center-of-mass energy ŝ = 1400 GeV. Gluino
and squark mass parameters Mq̃L

, Mq̃R
are taken from SPS1, Appendix B.1, but the

top and bottom squark mixing angle is varied between 0 and 90 degrees. Equation
(2.8) for the squark mass eigenstates 1 and 2 leads to different top and bottom squark
masses when the mixing angle is varied.
Due to the presence of the two initial photons the squared matrix element is propor-
tional to the fourth power of the quark charges. Thus, the down-quark contribution
is suppressed by a factor of 16 relatively to the up-quark ones. The cross section of
the diagrams with bottom quarks inside the loops (dot-dashed line) is σb ≈ 0.0120 fb
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5.1 Direct Pair Production Process

for θb̃ = 0◦ that is equal to the down and strange quark contribution. The top quark
contribution (dashed line) for θt̃ = 0◦ is σt = 0.183 fb and is equal to the up and charm
quark contribution, a factor of 15.25 bigger than the down quark one.
Furthermore, the contributions of all quark flavor add constructively since the number
of couplings in the loops are even. Thus, the cross section is determined by the sum of
u, c, t quark loops and is affected only by the top squark mixing. For SPS1 scenario
this leads to a variation in σ̂ of ±25% (solid line). The dotted line shows the total
cross section for Mt̃L

= Mt̃R
. In this case, only for mixing angles close to 45 degrees,

one has large top squark mixing and therefore small stop 1 masses, as described in the
last chapter.
For light gluinos of 200 GeV and for equal left and right handed squark mass param-
eters (Mq̃L

= Mq̃R
= 500 GeV), it is possible to increment the cross section up to a

factor of 10 with respect to the non-mixing case (see Fig. 5.3). This happens because
the top squark 1 becomes light, near to the lower mass bound of 100 GeV.
In the right plot of Fig. 5.2, the singularity in the top quark contribution and therefore
in the total cross section at θt̃ = 30.16◦ arises because for the top squark-quark-gluino
vertex the relation mt̃2

+ mt = mg̃ (420.89 GeV + 174.3 GeV = 595.19 GeV ) is ful-
filled. That means that the mass of the gluino would be equal to its decay products
(discussed in equation (6.2) and text).

As mentioned above the photon cross section has to be convoluted with the photon
density functions to obtain a measurable quantity (Section 3). This cross section is
plotted in Fig. 5.3 as a function of the gluino mass. The initial electron polarisation is
chosen to be 80% such that the number of initial γγ states with L = 0 is increased. The
other setup values concerning the photon spectra are given in Section 3.2. The inclusive
e−e− center-of-mass energy is varied with the gluino mass as

√
S = 2mg̃/0.8/0.867,

that means the production threshold of the gluino pairs is 0.8 of the maximum available
γγ center-of-mass energy (

√

ŝmax
γγ = 0.867

√
S). Therefore, the unknown low energy

photon spectrum is truncated in a natural way. The laser photon spectrum is normal-
ized to the high energy peak (Section 3.2), thus the numbers of events per year can
be obtained by multiplying the cross section with the luminosity of the high energy
photon peak:

#
events

year
= σ · Lγγ(z > 0.8zmax) = σ · 0.1Lgeom

e−e−
≈ σ · 1

3
Le+e−

Fig. 5.3 shows cross sections for different values of MS = Mq̃L
= Mq̃R

. Thick lines
denote non-mixing squarks. The thin lines show the maximum possible cross section
reached by varying the top squark mixing angle θt̃. This variation leads to different
values for the top squark masses. As one expects, the cross section is larger for small
squark masses and reaches a maximum value of around 17 fb for light gluino masses of
300 GeV which means around 6000 events/year for a luminosity of Le+e− = 1000 fb−1.
Increasing the gluino mass up to 1700 GeV the cross section decreases very slowly.
A cross section of σ = 1 fb (330 events/a) is obtained for small gluino masses and
MS ≈ 600 GeV; and for heavy gluinos with masses of 1700 GeV squark masses up
to MS ≈ 800 GeV are required. For larger MS ≈ 1500 GeV the cross section drops
down to 0.1 fb. Contrary to e+e− annihilation, the gluino pair production process in
photon-photon scattering is visible in a large range of MSSM parameter space.
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5 Gluino Pair Production in Photon-Photon Collisions
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Figure 5.3: Center-of-mass distribution for polarized e−e− cross section as a function of
the gluino mass and various MS with MS = Mq̃L

= Mq̃R
. The electron energy depends

on the gluino mass and is chosen in such a way that only the high energy peak of the
photon spectrum contributes to the cross section:

√
S = 2mg̃/0.8/0.867. Thick lines

denote the non-mixing case, while thin lines the maximal top squark mixing. The
photon spectrum is normalized to the high energy peak (see Section 3.3 and text).

The polarization of the initial electrons is important for the size of the cross section.
At the gluino production threshold, the cross section rises as a S-wave if L = 0 for
polarization ++ = −− and is much steeper then L = 2 for polarization −+ = +−.
Far above the production threshold the −+ = +− can produce reasonable cross
section [134]. Choosing the energy as in Fig. 5.3 the ++ polarization increases the
cross section considerably as shown in Table 5.1.

The transverse momentum and the rapidity distributions determine the direction of the
final gluinos inside the detector. Fig. 5.4 indicates the corresponding plots for SPS1.
Again, the partonic cross section was convoluted over the photon structure function
for different polarization degrees. The photon density functions are appropriately
normalized for the polarized and unpolarized case (Section 3.2). The center-of-
mass energy of the initial electrons is

√
S = 2mg̃/0.8/0.867 = 1716.91 GeV. The

diagrams show that the gluinos have large transverse momenta and are localized around
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5.2 Resolved Contribution

e−e−

Polarization SPS1 SPS5

+ + 80% 3.0196 2.2864

unpolarized 1.8397 1.4136

− + 80% 0.9663 0.7564

Table 5.1: Influence of the polarization degree of the initial electrons on the cross
section σe−e− [fb]. The energy is

√
S = 2mg̃/0.8/0.867 and σ++ = σ−−, σ+− = σ−+.

y1 = 0. Choosing the ++ polarization with a polarization degree of 80% for the initial
electrons, the maximum of transverse momentum is considerably shifted to the value of

kmax
T =

√
S

2

√

1 − 4mg̃

S . Due to the larger total cross section the transverse momentum
and rapidity distribution also become larger for the ++ polarization.
A further uncertainty is induced by the dependence on the scale of the strong coupling
constant. Because of two vertices in the Feynman diagrams (Fig. 5.1) that couple
strongly, the cross section is proportional to α2

s(µ). The scale µ of the process was
fixed to be equal to the mass of the gluino. A variation of the scale µ from 1

4mg̃ to
4mg̃ results in a cross section uncertainty of about +40% to −20%.

5.2 Resolved Contribution

In high energy photon scattering processes the photons can undergo a transition into
virtual hadronic states of quarks and gluons. The quarks and gluons carry parts of
photon momentum leading to a complicated density distribution. If the photon beams
of both sides are “resolved” in the sense discussed above, gluino pairs can be produced
via tree level Feynman diagrams.
Fig. 5.5 shows the Feynman diagrams of the double resolved gluino pair production
process with an initial quark-antiquark pair. The s-channel diagram only depends
on the gluino mass while the t- and u-channel diagrams depend additionally on the
squark masses and, in principle, on the mixing angles. Because of its heavy mass
there is almost no top quark inside the photon, and for the same reason the bottom
distribution is strongly suppressed with respect to the light flavors. As the mixing of
the squarks of the first two generations can be neglected, the cross section becomes
independent of mixing effects.

For the numerical calculation the parton density functions of the quarks and the gluon
inside the photon are taken from a leading-order, five-flavor fit to the photon structure
function [137] that is implemented in the PDFLIB 8.0 [73]. Since there is no polarized
density function available, the discussion here is restricted to the unpolarized case.
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Figure 5.5: Resolved Feynman diagrams with initial quark-antiquark pair.

The spin- and color-averaged squared matrix element for one flavor is [138]

|Mqq̄|
2

= 8π2α2
s

(N2
C − 1)

NC

(

2
2m2

g̃ s̆+ (t̆−m2
g̃)

2 + (ŭ−m2
g̃)

2

s̆2
+ 2

m2
g̃s̆+ (t̆−m2

g̃)
2

s̆(t̆−m2
q̃)

+ 2
m2

g̃s̆+ (ŭ−m2
g̃)

2

s̆(ŭ−m2
q̃)

+
(t̆−m2

g̃)
2

(t̆−m2
q̃)

2
+

(ŭ−m2
g̃)

2

(ŭ−m2
q̃)

2

)

+ 8π2α2
s

(N2
C − 1)

N3
C

(

2
m2

g̃s̆

(t̆−m2
q̃)(ŭ−m2

q̃)
−

(t̆−m2
g̃)

2

(t̆−m2
q̃)

2
−

(ŭ−m2
g̃)

2

(ŭ−m2
q̃)

2

)

, (5.2)

where NC = 3 denotes the number of colors and s̆, ŭ, t̆, are the Mandelstam variables
of the 2 → 2 scattering process.

There are also double resolved processes possible with two gluons in the initial state.
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5.2 Resolved Contribution

The Feynman diagrams are at tree level and shown in Fig. 5.6. The process at lowest
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Figure 5.6: Resolved Feynman diagrams with two initial gluons.

order depends only on the gluino mass. The corresponding spin- and color-averaged
squared matrix element is [138]

|Mgg|
2

=
32π2α2

sN
2
C

(N2
C − 1)

(

1

(t̆−m2
g̃)(ŭ−m2

g̃)
− 1

s̆2

)

×
(

(t̆−m2
g̃)

2 + (ŭ−m2
g̃)

2 + 4m2
g̃ s̆−

4m4
g̃s̆

2

(t̆−m2
g̃)(ŭ−m2

g̃)

)

.

The third class would be the single resolved process with one initial photon and one
initial gluon. The process starts at one loop level with squarks and quarks inside the
loops. The contributions were calculated but are to small to appear in the figures given
below.

Numerical Results

The resolved photon-photon cross section σγγ is calculated by summing over the contri-
butions of the five light quark flavors and the gluon and integrating over the appropriate
density function fi/γ(x,M2) of the quark (i = u, d, c, s, b) and gluon (i = g) as denoted
in Section 3.4. The structure functions depend on a factorization scale M which is
identified with the gluino mass. The variation of this scale by a factor of four leads
to a variation for the double-resolved photon cross section of ±35%. The masses of
the five initial quark and antiquark flavors are neglected because the collinear limit at
high center-of-mass energies is considered.

In Fig. 5.7 the dependence of the unpolarized photon-photon cross sections on the γγ
center-of-mass energy is plotted. The gluino mass is mq̃ = 200 GeV and the squark
mass parameter MS = Mq̃L

= Mq̃R
in the left panel is MS = 325 GeV and in the right

panel MS = 1500 GeV.
Both resolved contributions, the qq annihilation and the gg fusion, are in principle
large because of the large number of color states of the final gluinos. Thus, the gluon
contribution becomes huge at large center-of-mass energies, because gluino pairs can
be produced at small x, where the gluon density function is very large. The cross
section of the resolved diagrams with initial quark-antiquark (dotted line) is larger for
MS = 1500 GeV than for 325 GeV. The reason is a destructive interference between
the s-channel diagram of Fig. 5.5 and the t-, u-channel diagrams, see equation (5.2).
While the s-channel depends only on the gluino mass, the t- and u-channels decrease
for larger squark masses and therefore the cross section rises.
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Figure 5.7: Dependence of the unpolarized photon-photon cross section on the center-
of-mass energy ŝ for light gluino mass of 200 GeV and light squark masses 325 GeV (left
panel) and heavy squark masses 1500 GeV (right panel). The resolved contributions
are convoluted with the parton densities inside the photon.

The gluon density function of the photon is small for large gluon momentum frac-
tion x but increases steeply at small x. Therefore, in Fig. 5.7 one can see the gluon
contribution (dot-dashed line) is negligible near the gluino pair production threshold√
ŝ = 400 GeV, but will be important and much larger than the qq̄ resolved cross

section for large center-of-mass energies, i.e.
√
ŝ = 3000 GeV.

With respect to the direct one-loop pair production the complete resolved cross sec-
tion is negligible for small squark masses MS = 325 GeV near the gluino production
threshold, Fig. 5.7 (left panel). Whereas, for large squark masses MS = 1500 GeV the
resolved contribution is three orders of magnitude larger than the direct contribution
Fig. 5.7 (right panel). This only holds for very small gluino masses like m q̃ = 200 GeV.
For larger gluino masses the resolved cross section decreases rapidly to a minimum at
mq̃ ≈ mg̃ and becomes almost constant (Fig. 5.8).

Fig. 5.8 shows the dependence of the total unpolarized electron-electron cross section
on the gluino mass. As in Fig. 5.3 the electron center-of-mass energy is varied simul-
taneously with the gluino mass. Note that Fig. 5.3 shows polarized cross sections, the
unpolarized ones would be roughly two times smaller. Moreover, the y-scales of the
two figures are different.
Choosing the electron center-of-mass energy in this way, only the high energy peak
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Figure 5.8: Dependence of the unpolarized e−e− cross section [fb] on the gluino mass,
with non-mixing squarks and MS = Mq̃L

= Mq̃R
. The electron energy depends on

the gluino mass and is chosen so that only the high energy peak of the photon spec-
trum contributes to the cross section:

√
S = 2mg̃/0.8/0.867. The photon spectrum is

normalized to the high energy peak (see Section 3.3 and text).

of the laser photon spectrum Fig. 3.2 contributes and the γγ center-of-mass energy is
maximally 20% higher than the pair production threshold. Thus, the resolved contri-
bution is suppressed for large ranges of the gluino mass due to the quark and gluon
density function. Only for a small gluino mass, up to 400 GeV, and large squark
masses, MS = 1500 GeV, the resolved cross section is 0.03 − 0.15 fb, thus comparable
or larger than the direct photon cross section.
The same suppression of the resolved contribution can be reached far above the pair
production threshold. Imposing a minimal total energy for the final gluino pair to be
larger than 0.8 · 0.867 ·

√
See, resolved contributions are negligible as well.

59



5 Gluino Pair Production in Photon-Photon Collisions

     e−e− (unpolarized) → e− e− g
~
 g
~

10
-3

10
-2

10
-1

200 400 600 800 1000 1200
                                              mg

~ [GeV]

σ 
[f

b]

800 3000√s  [GeV]

all flavors
u
u:  s-channel
u:  t-channel

Figure 5.9: Contributions of the s- and t,u-channel
Feynman diagrams of Fig. 5.5 to the resolved qq
cross section.

Fig. 5.9 shows the contributions of
the different Feynman diagrams
for the resolved qq → g̃g̃ pro-
duction. The solid line represents
the cross section of the uu → g̃g̃
production channel. Since the s-
channel (dashed line) and the t-
channel (dot-dashed line, t stands
for both: t- and u-channel) in-
terfere destructive, the total cross
section is smaller. S-channel dia-
grams typicaly decreases with 1/ŝ
for increasing center-of-mass ener-
gies ŝ, whereas the t-channel dia-
grams decreases much slower. A
similar behavior can be seen in
Fig. 5.9. Therefore the curves in-
tersect each other leading to a lo-
cal minimum of the total cross
section.
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Chapter 6

Squark Pair Production in
Photon-Photon Collisions

In this chapter, the squark pair production process in photon-photon collisions is
discussed. The high energy incoming photons are generated by laser-backscattering
(Chapter 3). The Feynman diagrams for the γγ scattering process are three tree level
diagrams, thus large cross sections are expected.
The lowest order behavior for polarized laser-backscattered photons is analyzed in the
next section. The one loop corrections (Section 6.2) are of two types: the ones medi-
ated by massless bosons (photon and gluon, Section 6.2.1), and the remaining MSSM
ones (Section 6.2.2). The resulting total corrections for SPS1 and SPS5 are displayed
in Section 6.2.3.
Furthermore, the production of squark pairs in resolved processes for the case of un-
polarized laser-photons is discussed in Section 6.3. The squark pair production at tree
level in direct scattering and the resolved process have been published in [139].

Squark pair production in γγ-collisions at tree level has been considered previously
either with bremsstrahlung photons [140, 141] or with unpolarized backscattered laser
photons in [35, 142]. The pair production process in collisions of polarized backscat-
tered laser photons was calculated at leading order in [143, 144]. The QCD and
supersymmetric QCD one-loop corrections to squark pair production were calculated
in [35] but no agreement to those calculation could be found.

6.1 Tree level cross section

The generic squark pair production process in photon-photon scattering is given as

γ(p1, λ1) γ(p2, λ2) → q̃i(k1) q̃
∗
i (k2)

where p1,2 are momenta and λ1,2 = ±1 are the polarization of the incoming photons,
and k1,2 are the momenta of the outgoing squark q̃i and anti-squark q̃∗i . The initial
photon polarization is again restricted to be circular. The outgoing squark color states
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Figure 6.1: Leading order Feynman diagrams for direct squark production in photon-
photon collisions.

are always summed up. The index i denotes the squark mass eigenstates 1 or 2.
Throughout this chapter an electromagnetic fine structure constant with α = 1/137.036
is used. Contrary to e+e− annihilation, at tree level no mixed final states q̃1q̃

∗
2 or q̃∗1 q̃2

are allowed. The Feynman diagrams are the three graphs displayed in Fig. 6.1. Using
the Feynman rules of [101] the polarized matrix element for one flavor q and one squark
mass eigenstate i with i = {1, 2} is

|Mλ1λ2

γγ |2 =
64π2 α2

e e
4
q Nc

(t̂−m2
q̃i

)2(û−m2
q̃i

)2
(6.1)

×
(

ŝm4
q̃i

+ (1 − δλ1λ2
)
[

(t̂−m2
q̃i

)2(û−m2
q̃i

)2 − 2m2
q̃i
ŝ (t̂−m2

q̃i
)(û−m2

q̃i
)
]

)

,

where NC = 3 denotes the number of colors and ŝ, û, t̂, are the Mandelstam variables
of the γγ → q̃iq̃

∗
i scattering process. The differential cross section is defined through

equation (3.11) and the total cross section is obtained by integrating over t̂. The
matrix element of slepton pair production is obtained from equation (6.1) by replacing
Nc → 1 and inserting the appropriate charges and masses.

In Fig. 6.2 the unpolarized cross section of the scattering process γγ → q̃iq̃
∗
i compared

to e+e− → q̃iq̃
∗
i is plotted as a function of the center-of-mass energy. In the left panel,

σ is displayed for final up-type squarks and in the right panel for final down-type
squarks with masses mq̃ = 200 GeV. The γγ matrix element given in equation (6.1)
depends only on the fourth power of the squark charges and masses. Therefore, the
cross sections (solid line) of final up-type squarks are four times larger than those of
down-type squarks. Also the cross sections of left and right squark eigenstates are equal
and would be equal for the mixed eigenstates q1 and q2 too, if their masses were be
degenerated. Thus, the γγ cross section at tree level is for fixed masses independent
of the squark mixing angle. This fact is important for the top- and bottom-squark
production.
On the other hand, the e+e− cross section1 depends additionally on the weak isospin
and in particular on the squark mixing angle through the Z-boson exchange. Because of
the different coupling of the Z-boson to left and right squark states, the cross sections,
Fig. 6.2, for left- and right-handed final squarks are not equal anymore. The cross
section could vary between the two curves for θq̃ 6= 0 (keeping the squark masses
fixed). The different distance between the q̃Lq̃

∗
L and q̃Rq̃

∗
R cross sections for up- (left

panel) and down-type (right panel) squark is due to the value of the weak isospins
(I3

u,d = ±1/2).

1Unpolarized and polarized tree level cross sections of the e+e− → q̃q̃∗ scattering process can be
found in [145].
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6.1 Tree level cross section
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Figure 6.2: Unpolarized cross section of γγ → q̃iq̃
∗
i (solid line) compared with e+e− →

q̃iq̃
∗
i (dashed and dotted line) as a function of

√
ŝ. Left: For final up-type squarks

(eu = 2/3). Right: For final up-type squarks (ed = −1/3).

Moreover, the threshold behavior for γγ and e+e− is different. The e+e− cross section

rises like β3 where β =
√

1 − 4m2
q̃/s, as a P-wave due to the spin-1 intermediate boson.

However, the γγ cross section rises like β as an S-wave because of the L = 0 initial
photon-photon states. This is shown in Fig. 6.2 and Fig. 6.3.

In Fig. 6.3 (left panel) one can see the analogous distributions for top squark pair
production for parameters of SPS5, Appendix B.2, namely m t̃1

= 201 GeV, mt̃2
=

658 GeV and θt̃ = 146◦. Because of the stop mixing angle, σe+e− is much smaller than
σγγ . However, through Z-boson exchange in electron-positron annihilation, mixed
squark pairs t̃1t̃2 could also be produced, allowing for a measurement of the t̃2 mass if
the t̃2t̃

∗
2 pair creation is kinematically forbidden.

The right plot of Fig. 6.3 displays the γγ cross section for various initial photon po-
larizations as a function of the center-of-mass energy. The L = 0 (L = |λ1 − λ2|)
initial state rises like β much steeper than the L = 2 initial state, but after reaching
a maximum it drops down rapidly. The L = 2 initial γγ state decreases much slower.
Therefore, measurements at the production threshold prefers the L = 0 state, while
far above the threshold the L = 2 initial γγ state becomes more advantageous.

To calculate a measurable quantity one has to integrate the photon-photon cross section
over the photon density function. The result of this integration is given in Fig. 6.4 for
the high energy peak of the photon spectrum (Fig. 3.2). The plot shows polarized cross
sections as a function of the up-squark mass for θũ = 0, i.e. ũ1 = ũL and ũ2 = ũR.
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Figure 6.3: (Parameters of SPS5) Left: Unpolarized t̃it̃
∗
i cross section in γγ and e+e−

scattering as a function of
√
ŝ. Right: Influence of the initial γγ-polarization on the

cross section (L = |λ1 − λ2|).

The varied squark mass mũ stays either for mũL
or mũR

. The solid line represents
the integrated photon-photon cross section, where the photon density function was
normalized as explained in Section 3.3. For comparison, the corresponding e+e− cross
sections (dashed and dotted line) are plotted. The energy for both scatterings is varied
with the squark mass as

√
See = 2mg̃/0.8/0.867.

The expected cross section is of O(500fb) for small squark masses mũ = 100 GeV, and
drops down to O(1)fb for large squark masses mũ = 1700 GeV. The γγ cross section
is always larger than that of e+e−, but one has to note that the luminosity of the
e+e− process might be 3 times higher than the γγ luminosity. The γγ cross section,
however, is given only for one final state of ũLũ

∗
L and ũRũ

∗
R.

Fig. 6.5 shows the momentum and the rapidity distributions for the convoluted γγ cross
section, for a realistic electron polarization and for SPS1. The electron center-of-mass
energy is chosen to be

√
S = 2mt̃1

/0.8/0.867 = 580 GeV, thus the production threshold
corresponds to the high energy peak of the photon density function and the curves are
normalized to this peak. Cross sections are shown for different initial electron polariza-
tion with 2λePc = 0.8. The squarks have large transverse momenta and are localized
around y1 = 0. Choosing the ++ polarization for the initial electrons, the maximum
of transverse momentum is considerably shifted to its maximum kinematically allowed
value. Due to the larger total cross section the transverse momentum and rapidity
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Figure 6.4: Polarized cross sections as a function of the up-squark mass for e−e− →
γγ → q̃q̃∗ and e+e− → q̃q̃∗ scattering. The energy for all curves is

√
See =

2mg̃/0.8/0.867. σγγ is normalized as discussed in Section 3.3. The polarization (+−
or −+) of the e+e− scattering process is chosen to obtain the largest possible cross
section.

distribution also become larger for the ++ polarization.
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6.2 Full MSSM One-Loop Corrections

In this section, the next-to leading order corrections of the squark pair production are
discussed. Quarks couple strongly and electroweakly. The corrections due to the strong
interaction are larger than the electroweak ones. However, because of the large number
of electroweak diagrams, these can not be neglected for precision measurements.

The O(αs) corrections consist of diagrams with gluon exchange, gluino exchange and
that with squark exchange. The latter are not pure strong corrections since the 4
squarks couplings also contain an electroweak part. For this discussion, the corrections
are divided into two parts:

• In Section 6.2.1, the one-loop corrections due to the gluon and photon exchange
are considered. They are infrared (IR) and ultraviolet (UV) divergent. The
diagrams contain only an additional gluon or photon and are, apart from the
final squark mass, independent of any MSSM parameter and mixing angles.

• In Section 6.2.2 the remaining one-loop corrections are considered. They are
subdivided into the gluino, the squark and the electroweak contributions. The
electroweak corrections can not be distinguished in SM- and MSSM-like because
many mixed graphs appear. They also depend on many MSSM parameters. In
particular the gluino correction depends on the gluino mass and the final squark
mixing angle, while the squark correction depends on the MSSM parameters of
the squark sector.

The Feynman diagrams and matrix elements have been generated with the Mathemat-
ica package FeynArts [103] version 3.2 and the MSSM model file [101]. The FeynArts
package is extensively proven to generate the full set of Feynman diagrams at each
order. For practical calculations one uses the Feynman gauge, ξ = 1, to reduce the
size of mathematical expressions. To verify the calculation, different programs and
methods have been used.

To calculate the squared matrix elements, the Mathematica program displayed in
Section 3.5.1 was used. The corrections were calculated additionally with the pack-
age FormCalc [123] and the results were numerically compared. The divergent inte-
grals were regularized using DRED and DREG and an agreement among them was
found. Additionally the FormCalc [123] method of constrained differential renormal-
ization (CDR) [146] was applied. Differential renormalization(CD) [147] is a renor-
malization method using coordinate space leading to finite Green functions without
intermediate regularization or explicit counterterms, whereas the result contains arbi-
trary dimensionful constants (like renormalization scales). Then, these constants have
to be arranged that the renormalized Green functions fulfill the Ward identities. In
CDR, introduced in [148] at the one loop level, a minimal set of consistent formal
manipulations is used that automatically the renormalized Green functions preserves
the Ward identities. It has been shown in [123] that at one-loop level the method of
CDR is equivalent to DR. Also this method leads to the same results.
Since only gauge-boson-squark-squark couplings occur at tree level, no Supersymmetry
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6 Squark Pair Production in Photon-Photon Collisions

restoring counterterms were necessary.
Because of divergent tensor integrals that appear in the matrix elements one has to
renormalize the theory. For this thesis the On-shell scheme for the squark sector has
been used (Section 2.5.3).

The differential and total cross sections were numerically calculated using the fortran
program of Section 3.5.2. The results are compared as far as possible with the numerical
calculation of FormCalc [123] (in FormCalc no convolution of parton density functions
is possible).

Unfortunately, it is not possible to vary all MSSM parameters because of their large
number. Therefore, the one-loop corrections are demonstrated for the pair production
of top-squarks 1 for the parameter points SPS1 and SPS5, Appendix B. The stop mass
of SPS1 is mt̃1

= 375.9 GeV and for SPS5 mt̃1
= 201.4 GeV.

Furthermore, all figures of this section show unpolarized cross sections.

6.2.1 Photon and Gluon Corrections

There are 25 one-loop Feynman diagrams for virtual gluon and 25 for photon exchange.
Fig.6.6 shows typical diagrams of the gluon virtual corrections. The virtual photon
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Figure 6.6: Typical Feynman diagrams for virtual gluon corrections.

Feynman diagrams are obtained by replacing the final gluons with photons. As already
mentioned, besides the coupling constants they depend only on the final squark mass.
The matrix elements are UV and IR divergent. By adding the corresponding on-shell
counterterms (Section 2.5.4), the UV-divergences cancel. This has been checked ana-
lytically. Virtual IR-divergences arise for vanishing photon or gluon momenta. Since
the particle masses are zero the corresponding propagator of the loop integral diverges.
These divergences have to cancel against the divergences that appear because of real
photon or gluon emission [149]. The IR-divergences of the real emission process arise
because in case of small external gluon or photon momenta, the radiation process can
not be distinguished experimentally from the one with no radiation.
Infinitesimal masses mg and mγ are assigned to the gluon and to the photon to reg-
ularize these IR-divergences.In case of QCD, gauge invariance is not spoiled by this
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6.2 Full MSSM One-Loop Corrections

procedure because the non-abelian nature of QCD does not emerge at NLO. The in-
troduction of the infinitesimal masses leads to a logarithmic dependence on mg and
mγ , respectively, that must cancel when all NLO contributions are added together.

The real corrections consist of 12 Feynman diagrams for each gluon and photon
bremsstrahlung. Fig. 6.7 shows typical diagrams for the gluon radiation. The photon

γ

γ

t̃1

t̃1

g

t̃1

γ

γ

t̃1

t̃1

g
t̃1

γ

γ

t̃1

t̃1

g

t̃1

t̃1

γ

γ

t̃1

t̃1

g

t̃1

t̃1

Figure 6.7: Typical Feynman diagrams for real gluon corrections.

radiation Feynman diagrams are obtained by replacing the final gluons with photons.
It is convenient to introduce an unphysical cut-off energy Ecut to separate their phase
spaces into two regions, a soft region with mg,γ ≤ k0 ≤ Ecut and a hard region with
Ecut ≤ k0 ≤ Emax. k0 is the energy of the gluon or photon and Emax the maximal
allowed energy defined by kinematics. This has the advantage, that the hard process
is free of IR-divergences and can be calculated with the formula equation (3.13). Fur-
thermore, the soft part can be computed in the eikonal approximation leading to a
multiplicative factor to the tree level cross section.
Summing up the virtual, soft and hard contributions the cross section must be inde-
pendent of the small mass parameter mg,γ and of the cut-off energy.

As mentioned above the soft contribution can be written as

dσsoft = dσBornδsoft(λ,Ecut) ,

where λ = mg for gluon bremsstrahlung and λ = mγ for photon bremsstrahlung. The
soft photon factor is given as [150]

δγ
soft(λ,Ecut) = − 4παe

(2π)3

n
∑

i,j=1

±QiQj

2

∫

|k|≤Ecut

d3k

k0

pipj

(pik)(pjk)

where the sum runs over all n external particles with momentum p and particle charge
Q, and k is the momentum of the soft photon. The “+” sign refers to the case that
both charges of particles i and j flow into the diagram. If both charges flow out, one
has the “-” sign.

The soft gluon factor for the two external squark pair production is

δg
soft(λ,Ecut) = − 4παs

(2π)3

∑

i,j

±CF

2

∫

|k|≤Ecut

d3k

k0

pipj

(pik)(pjk)

where the sum runs over the two final squarks, CF = (N2 − 1)/(2N) = 4/3 and one
has the ”+” for i = j and ”-” otherwise. The integral Iij =

∫

|k|≤Ecut
... has been
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calculated in [151] and is given as [150]

Iij =
4π α pipj

(αpi)2 − p2
j

{

1

2
log

(αpi)
2

p2
j

log
4E2

cut

λ2

+

[

1

4
log2 u0 − |u|

u0 + |u| + Li2

(

1 − u0 + |u|
v

)

+ Li2

(

1 − u0 − |u|
v

)]u=αpi

u=pj

}

,

with v and α definded like

v =
(α pi)

2 − p2
j

2(α pi0 − pj0)
and α2p2

i − 2α pipj + p2
j = 0 ,

α pi0 − pj0

pj0
> 0 .

To evaluate the soft factors in Fortran, a slightly modified routine was taken from
FormCalc3.2 [123].

Fig. 6.8 shows the cancellation of the λ and Ecut dependence considering as an example
the gluon correction to the γγ → t̃1 t̃

∗
1 scattering process. As parameters the SPS1 point
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Figure 6.8: Dependence of the γγ cross section as a function of λ2 (left panel) and as a
function of Ecut (right panel). The SPS1 parameters are used and

√
sγγ = 1000 GeV.

and a center-of-mass energy of
√
sγγ = 1000 GeV has been chosen. The left plot shows

the cross section as a function of λ2 for a fixed Ecut while the right panel shows σγγ
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as a function of the cut-off energy for a fixed λ = 10−6 GeV. The left plot of Fig. 6.8
shows that the sum of the virtual gluon corrections and the soft gluon factor (solid
line) is almost stable and therefore independent of λ for a large range. The right plot
shows the sum of the soft gluon factor and the hard gluon contribution (solid line)
that is stable up to Ecut = 1 GeV. For larger Ecut the soft photon approximation does
not hold and a deviation is expected. For the further calculation λ = 10−6 GeV and
Ecut = 0.01 GeV have been used.

The dependence of the photon and gluon one-loop correction is considered in Fig. 6.9
as a function of the γγ center-of-mass energy and the parameter points SPS1 and
SPS5. The left panel shows the relative correction ∆σ = (σ̂ − σ̂0)/σ̂0 of the one-
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Figure 6.9: Dependence of the photon and gluon one-loop correction as a function of
the γγ center-of-mass energy and the parameter points SPS1 and SPS5. Left: Relative
correction ∆σ = (σ̂ − σ̂0)/σ̂0 in %. Right: Gluon correction in fb as a function of the
center-of-mass energy.

loop (σ̂) and the tree level cross section (σ̂0) in %. As expected, the gluon radiative
correction is much larger than the photon one. Except for a small region near the pair
production threshold the photon correction is always below 1%. Whereas, the gluon
corrections are always larger than 5% and reach 16.5% for large center-of-mass energies
(
√
ŝ = 3 TeV) for the SPS1 point and 28.5% for the SPS5 point. At the squark pair

production threshold the gluon and photon corrections grow up strongly, because of
long-distance photon and gluon exchange between slowly moving final squarks. These
Coulomb-singularities emerge in box diagrams with three internal squarks and one
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photon/gluon. They are proportional to παs/β with β =
√

1 − 4m2
t̃

and diverge at

the production threshold since the perturbation expansion breaks down. However,
because of the proportionality of the phase space to β the total cross section becomes
finite at the threshold leading to a constant value [152]. This behavior would change
if one would took into account the finite width of the squarks, but this is not included
in this discussion.

For comparison with [35], in the right plot of Fig. 6.9 one can see again the NLO gluon
correction and the leading order cross section for SPS1 and SPS5 as a function of the
center-of-mass energy. The curve that is given for SPS5 with m t̃1

= 201.4 GeV would
not change much for mt̃1

= 200 GeV, as used in Fig.2(a) of [35]. However, the shape is
quite different because negative gluon corrections also occur in their figure. Moreover,
their tree level cross section is much larger and can not be reproduced here. On the
other hand, a very good agreement with the tree level cross sections of [143, 144] was
found. One can conclude, no comparison with [35] can be performed.

6.2.2 One-Loop Corrections without Gluon and Photon

The one-loop Feynman diagrams without gluons and photons are box, vertex and self
energy types. Fig. 6.10 shows some diagrams as examples for the full set of about
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ũs

i

γ

γ

t̃1

t̃1

b̃s

b̃s W

γ

γ

t̃1

t̃1

b̃s

b̃s

b̃s

H

γ

γ

t̃1

t̃1

H
Hb̃s

b̃s

γ

γ

t̃1

t̃1

ẽs
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Figure 6.10: Typical Feynman diagrams for virtual gluon corrections.

400 classes of diagrams. A class means that e.g. ũi in the first diagram of Fig. 6.10 is
an abbreviation for all three up-type squarks and the squark mass eigenstates 1 and
2, together 6 Feynman diagrams (see FeynArts manual [102, 103]). Furthermore one
has to calculate approximately 60 self-energy diagrams for the counterterms. Since
all particles masses inside the loops are non-zero all loop integrals are IR-finite. To
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obtain UV-finite matrix elements the counterterm diagrams have to be added with the
renormalization factors defined in Section 2.5.4.
All Feynman diagrams and matrix elements have been generated with FeynArts and
calculated with the programs described in Section 3.5.1 and Section 3.5.2. Further, the
matrix elements were numerically compared with FormCalc and an agreement between
9 and 14 digits, depending on the type of diagram (box, self-energy, vertex), was found.
Moreover, it was checked analytically and numerically that the UV-divergences cancel
with the corresponding divergences of the counter-terms. This has been done separately
for the box-, vertex- and self-energy diagrams.

In Fig. 6.11 the one-loop corrections are divided into the contributions with gluinos
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Figure 6.11: Dependence of the one-loop corrections due to diagrams with squark,
gluino and weak interaction as a function of

√
ŝ. Left panel for parameter point SPS1,

right panel for SPS5.

inside the loops, with only squarks and the weak corrections. There are only eight
diagrams containing internal gluinos and only 18 containing squarks. Due to their
proportionality to αs, these corrections may become large. The figure shows the relative
correction ∆σ = (σ̂−σ̂0)/σ̂0 for parameters of SPS1 (left panel) and SPS5 (right panel)
as a function of the center-of-mass energy. The corrections due to gluino-loops are
negative and reaches −5% for large

√
ŝ = 3 TeV. The corrections due to squark loops

are of the same order, namely between −4 and +1%. The remaining weak corrections
become quite large, up to −20% for a large center-of-mass energy of

√
ŝ = 3 TeV, and

in the case of SPS5 up to 10% near the threshold. This shows clearly that they can
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not be neglected.
In Fig. 6.11 singularities and resonances occur. The singularities of the squark loop
contribution (dashed line) arises from the first diagram of Fig. 6.12 if the center-of-
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Figure 6.12: Normal threshold singularity Feynman graphs.

mass energy is equal the sum of the internal squark mass pair. In the left plot of
Fig. 6.11 the singularity for q̃i = t̃2 with mt̃2

= 585 GeV is indicated. The singularities
for the down type squarks are shown as example in Fig. 6.12. They appear at 2 times
mb̃1

= 486 GeV, md̃2,s̃2
= 520 GeV, mb̃2

= 530 GeV,md̃1,s̃1
= 543 GeV. The dotted line
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Figure 6.13: Normal threshold singularity of the first diagram in Fig. 6.12.

in the left plot of Fig. 6.11 shows also a threshold singularity at 2·m t̃2
= 1179 GeV. This

threshold occurs due to the second Feynman diagram in Fig. 6.12 with two internal
top squark 2 and a scalar Higgs boson, if the center-of-mass energy passes the t̃2t̃2
production threshold. The threshold at

√
s = 803 GeV (solid line) arises due to the

third and fourth diagram in Fig. 6.12 where
√
s becomes 2 ·mH± .

74



6.2 Full MSSM One-Loop Corrections

The resonance shown in the right plot of
Fig. 6.11 for SPS5 at 695 GeV arises due to the
intermediate higgs bosons H0 exchange in the
s-channel diagram. The higgs bosons are pro-
duced on-shell leading to the shown divergence.

γ
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In Fig. 6.14 the center-of-mass energy was chosen at the point where the Born cross
section is maximal. In the case of SPS1 this leads to

√
ŝ = 850 GeV and for SPS5 to√

ŝ = 450 GeV. The figure shows ∆σ in percent as a function of the gluino mass (left
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Figure 6.14: (SPS1:
√
s = 450 GeV, SPS5:

√
s = 850 GeV) Left: Dependence of the

relative correction ∆σ as a function on the gluino mass. The dotted and dot-dashed
lines show the contribution of the two box-diagrams, the other lines those from all 8
gluino diagrams. Right: The dashed and dot-dashed lines show the corrections of the
squark-loop diagrams as a function of the squark mass parameter MS . The solid and
dotted lines represent the corrections of the weak-loop diagrams as a function of µ and
M2 with µ = M2.

figure) and as a function of either MS or µ = M2 (right panel). The solid line and the
thick dot-dashed line of the left plot show the gluino correction for SPS1 respectively
SPS5, where all gluino diagrams are taken into account. The singularity occur if the
mass relations

m3 = m1 +m2 (6.2)

for the diagrams like
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6 Squark Pair Production in Photon-Photon Collisions

γ

γ

m3

t̃1

t̃1
m1

m2 γ

γ

m3

t̃1

t

m1

t

m2

is fulfilled. The left diagram occurs due to the vertex counterterms. If the relation (6.2)
holds the final on-shell particle, the stop squark 1, have the same mass as the sum of its
decay particles. Experimentally one could not distinguish between the final squark and
the decay products that would travel the same direction. For a consistent treatment
one had to include the finite width of the final particles to handle the divergency.
Furthermore, it should be noted that the one-loop correction might contain large errors
if the particle mass spectrum nearly fulfills equation (6.2). The study of this effect
should be an interesting future program.
For gluino masses of the remaining parameter space the corrections have a size of up
to −3% and vanish for large gluino masses (mg̃ = 5000 GeV).

The dashed (SPS5) and dott-dashed (SPS1) lines in the right panel of Fig. 6.14 show
the relative corrections as a function of the squark mass parameter MS with MS =
Mq̃L

= Mq̃R
. Only the top-squark 1 mass was kept fixed. If MS ≈ 300 GeV is small,

the corrections vary between -4% and 0%, they become stable at around -2.5% for
large MS = 1000 GeV due to the squark loops with a light top squark 1.
The figure also shows the dependence of the relative correction as a function of µ = M2

and it was set M1 = 5
3

s2
W

c2W
M2. Larger values of µ and M2 lead to larger chargino and

neutralino masses, and the variation of µ also leads to different mixing angles of the
squarks. The corrections vary between −2% and 8% for SPS5, and between −12% and
2% for SPS1.
Furthermore, similar divergences as for the gluino corrections arises if mχ̃0

i
+mt = mt̃1

.
That means, the corresponding loops contain the top quark and a neutralino. A
singularity occur if the mass of the neutralino is mχ̃0

i
= 201.67 GeV. In the right plot

of Fig. 6.14 is indicated which neutralino mass is equal to that value.

6.2.3 Total One-Loop Corrections

The sum of all corrections for the two parameter points are plotted in Fig. 6.15. The
figure shows again the relative correction as a function of the photon center-of-mass
energy. Closed to the threshold the corrections are dominated by the gluon exchange.
The corrections for parameter point SPS5 are always larger than +5%. For

√
ŝ ≥

1200 GeV they are stable at +10% because the gluon and weak corrections increase
with opposite sign for increasing center-of-mass energies. The corrections for SPS1 are
positive close to the production threshold and around −5% for larger

√
ŝ.
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Figure 6.15: Full MSSM one-loop corrections as a function of the center-of-mass energy.
The plot shows the relative correction ∆σ = (σ̂ − σ̂0)/σ̂0 for SPS1(dashed line) and
SPS5(solid line).
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6 Squark Pair Production in Photon-Photon Collisions

6.3 Resolved Contributions

Resolved processes contribute to the squark pair production in a similar manner like
that discussed in Section 5.2 for gluino pair production. In case of squark pair produc-
tion, both single resolved and double resolved diagrams occur already at tree level.

Fig. 6.16 shows the Feynman diagrams of the single resolved production channel. The

γ

g

q

q

γ

g q

q γ

g

q

q

Figure 6.16: Leading order Feynman diagrams for single-resolved squark production in
photon-photon collisions. Initial state quarks contribute only at next-to-leading order.

final squarks are either q̃1q̃
∗
1 or q̃2q̃

∗
2 states, no mixed states q̃1q̃

∗
2 are allowed. Apart

from coupling constants the process depends at lowest order only on the final squark
mass. The spin- and color-averaged squared matrix element is

|M|2(γg→q̃iq̃∗i ) = 8π2e2q αeαs
1

Nc

(t̆−m2
q̃i

)2(ŭ−m2
q̃i

)2 − 2m2
q̃i

(t̆−m2
q̃i

)(ŭ−m2
q̃i

)s̆+m4
q̃i
s̆2

(t̆−m2
q̃i

)2(ŭ−m2
q̃i

)2
,

where i ={1,2}, NC = 3 denotes the number of colors and s̆, ŭ, t̆, are the Mandelstam
variables of the 2 → 2 scattering process.

In Fig. 6.17 are shown the Feynman diagrams contributing at O(α2
s) when photons

resolve into their hadronic content. As mentioned before, due to the heavy top mass,
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Figure 6.17: Leading order Feynman diagrams for double-resolved squark production
in photon-photon collisions.

there is almost no top quark inside the photon, and for the same reason the bottom
distribution is strongly suppressed with respect to the light flavors. Since mixing of
the squarks of the first two generations can be neglected the process at tree level is
independent of mixing effects. The diagram with gluino exchange is mostly important
for production of up-type squarks because the density function of up-quarks in the
photon is significantly larger than that for the other flavors. Furthermore, mixed final
states q̃Lq̃

∗
R appear because of this diagram.
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6.3 Resolved Contributions

The spin- and color-averaged matrix elements squared for the process qq̄ → q̃iq̃
∗
j is for

one flavor

|M|2(qq̄→q̃iq̃∗j ) = 32π2α2
sCF

δij
NC

[

(t̆−m2
q̃i

)(ŭ−m2
q̃i

) −m2
q̃i
s̆

s̆2
−

(t̆−m2
q̃i

)(ŭ−m2
q̃i

) −m2
q̃i
s̆

NC s̆(t−m2
g̃)

]

+ 16π2α2
sCF

1

NC

[

(t̆−m2
q̃i

)(ŭ−m2
q̃i

) − (m2
q̃i
−m2

g̃)s̆

(t−m2
g̃)

2

]

,

where CF = (N2
c − 1)/(2Nc). The squared matrix element for the gluon fusion is

|M|2(gg→q̃iq̃∗i ) =
8π2α2

s

CF

[

1 − 2
(t̆−m2

q̃i
)(ŭ−m2

q̃i
)

s̆2
− 1

N2
c

]

×
[

1 − 2
s̆m2

q̃i

(t̆−m2
q̃i

)(ŭ−m2
q̃i

)

(

1 −
s̆m2

q̃i

(t̆−m2
q̃i

)(ŭ−m2
q̃i

)

)]

.

Again, the quarks and gluon density functions [137] which are implemented in the
PDFLIB 8.0 [73] were used for the numerical calculation. Fig. 6.18 shows the unpolar-
ized γγ → ũLũ

∗
L cross section as a function of the center-of-mass energy for a squark

mass of 200 GeV (left panel) and a heavier squark mass of 500 GeV (right panel). Thus,
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Figure 6.18: Unpolarized γγ cross section as a function of the photon center-of-mass
energy for up-type squark masses of 200 GeV (left panel) and 500 GeV (right panel).
The solid line shows the sum of the direct contribution and all resolved ones.
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6 Squark Pair Production in Photon-Photon Collisions

the σ was convoluted with quark and gluon densities inside the photon. Because of the
shape of this density functions, the cross section at the production threshold is small
and can be neglected. The resolved contribution becomes important and can be larger
than the direct γγ production channel for small squark masses lower than 200 GeV and
high energies above 2 TeV. As one would expect, the dominant resolved contribution
is always the single resolved production process. The double resolved qq̄ production
(dot-dashed line) also contains the diagram with gluino exchange and therefore de-
pends on the gluino mass. However, this diagrams contributes only significant for ũũ∗

production (see Fig. 6.17), because the dominant resolved qq contributions originates
always from initial uu scattering due to the largest parton distribution function. The
qq-cross section for other final flavor is therefore smaller roughly by a factor of 2. It
is also for the ũũ∗ production smaller by a factor of 2 if the gluino mass increases to
about 500 GeV.
For larger squark masses (500 GeV) the resolved contributions are strongly suppressed
and only reach a few percent, this is also true for larger center-of-mass energies. Fur-
thermore, the gluon fusion channel is negligible in all cases.
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Figure 6.19: Total unpolarized electron-electron cross section as a function of the
electron center-of-mass energy for pair production of left handed up-type squarks.
The minimum required energy of the final state is

√
s

min
γγ = 0.8 · 0.867 ·

√
Se−e− . The

gluon fusion contribution is tiny. The curves are normalized to the high energy photon
peak.

The total energy of the final squarks is mostly smaller for resolved processes than for
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6.3 Resolved Contributions

the direct process. This is caused by the density functions of the quarks and gluon that
become large only for small y = Eq,g/Eγ . They have to be added together with the low
energy part of the photon density function for the direct channel, which is badly known.
Thus, a cut on the total final energy is assumed, and this will suppress the resolved pair
production cross section further as shown in Fig. 6.19. The total unpolarized electron-
electron cross section is shown as a function of the electron center-of-mass energy and
squark masses of 200 GeV. The minimum required energy of the final state is chosen
to be 0.8 of the maximum available γγ energy:

√
s

min
γγ = 0.8 · 0.867 ·

√
Se−e− . Then

the resolved contributions are negligible even in the case of center-of-mass energies far
above the pair production threshold.
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Chapter 7

Conclusion

In this thesis the gluino pair production in electron-positron annihilation and in photon-
photon scattering were considered. Furthermore, the full MSSM-NLO corrections to
squark pair production in photon-photon collisions were calculated. For this purpose
a computer program, based on Mathematica and Form, was developed to perform the
analytical calculations in an automatic way. For the numerical calculation a corre-
sponding Fortran program has been written. Additionally, all results were compared
with existing computer tools [123].

The gluino pair production in electron-positron annihilation, described in Chapter 4,
occurs only at the one loop level. The contributions to the cross section of up- and
down-quarks of each generation interfere destructively due to the opposite isospin and
charge. Unfortunately, the contributions of the squark mass eigenstates 1 and 2 of
each flavor also interfere destructively. Therefore, pair production become invisible for
future linear colliders [21, 22, 105, 106] in nearly the whole parameter space. Only for
gluino masses of 200 GeV and large top splitting with a light top squark 1 of around
100 GeV would one obtain a couple of events (up to 65/year). Therefore, a detection
seams improbable.

The gluino pair production in photon-photon scattering, described in Chapter 5, also
starts at the one loop level. The diagrams interfere constructively because of even
numbers of couplings inside the loops. Assuming a photon-photon collider luminosity of
330 fb−1, cross sections give up to 6000 events/year for light gluino masses of 300 GeV
and small squark masses of 350 GeV. For larger squark masses up to 600 GeV still
330 events/year are expected. A similar number of 330 events per year is obtained
if the gluino mass is increased to 1700 GeV and the squark masses up to 800 GeV.
Therefore, if the necessary center-of-mass energy is available, gluino pair production in
photon-photon collisions is visible in a large range of parameters space. Furthermore,
at a photon collider it might be possible to increase the luminosity leading to a larger
number of events.
In addition to the direct scattering channel, resolved gluino pair production processes
were considered. These processes become important for light gluino masses around
200 GeV. If the masses of the squarks are around 350 GeV, the resolved cross section
becomes of the same order as the direct channel for energies far above the production
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7 Conclusion

threshold (1 TeV). If the squarks are heavy (1500 GeV), the cross section is up to 3
orders of magnitude larger than the direct process.

The squark pair production process in photon-photon collisions was discussed in Chap-
ter 6. This scattering type already occurs at tree level, therefore large cross sections
are obtained, comparable with those in electron-positron annihilation.
The MSSM one-loop corrections to this process were calculated and their influence
on two benchmark points SPS1 and SPS5 was studied. The gluon corrections are
dominant close to the production threshold due to the Coulomb singularity. Above
the production threshold they are always larger than +5% and increase for higher
center-of-mass energies, i.e. for 3 TeV, to +16% for SPS1 and to +28% for SPS5.
The corrections from photon exchange are small. The contributions due to gluino and
squark exchange are of a few percent and mostly smaller than the remaining elec-
troweak corrections. The weak corrections near the production threshold contribute
between ±10%. Increasing the center-of-mass energy to 3 TeV they become more than
−20% for the two parameter points. The gluon and weak loop contributions cancel
each other to a flat correction (for SPS1 −5%, for SPS5 +10%) for a large energy range.
Therefore, for precise measurements all one-loop diagrams have to be considered.
Furthermore, the resolved contributions to the squark pair production were calculated.
They are only important for small squark masses of 200 GeV and center-of-mass en-
ergies far above the production threshold.

Outlook: The results of the gluino and squark pair production in photon-photon scat-
tering can be used for further detailed studies. Using appropriate decay modes one
can determine with which precision squarks and gluinos can be measured at a photon
collider.
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Appendix A

Conventions

Throughout this thesis natural units } = c = 1 are used. Also the Einstein sum
convention is applied, that means, it is summed over indices appearing twice. Greece
indices run from 0 to 3, latin letters a,b,c,d,e are used for color algebra and run from
1 to (N2 − 1), whereas i,j,... run from 1 to 3.

A.1 Minkowski Space

A four-vector in space and time is defined by its contravariant components

xµ = (t, ~x) = (x0, x1, x2, x3) with µ = 0, 1, 2, 3.

The Minkowski space has the metric gµν = diag(1,−1,−1,−1) with gµν = gµν and
gµν g

νρ = δρ
µ. The scalar product is defined as

p x = pµxµ = gµνp
µxν = p0x0 − ~p~x , pµ = i ∂µ = i

∂

∂xµ
=

(

i
∂

∂t
,
1

i
~∇
)

xµ is called the covariant four-vector. Transformations of arbitrary four-vectors and
tensors are done with the metric tensor by

T µν = gµρgνσTρσ and T µ
ν = gνρT

ρµ

A.2 Dirac Algebra

The γ-matrices fullfil the Clifford-Algebra

{γµ, γν} = 2gµν (A.1)

that is in Minkowski space (γ0)2 =
�

and (γi)2 = − �
. The contraction of a four-vector

with a γ-matrix has the conventional abbreviation γµp
µ = p/ and the relations p/p/ = p2

and p/k/ = 2(pk) − k/p/ holds. Furthermore the matrix γ5 is defined by

{γµ, γ5} = 0 , γ5 = γ5 = iγ0γ1γ2γ3 , (γ5)
2 =

�
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A Conventions

In the Dirac-representation the γ-matrices are given as

γ0 =

(

1 0
0 −1

)

γ =

(

0 σ

−σ 0

)

, γ5 =

(

0 1
1 0

)

,

where σ denotes the Pauli-matrices. With γ5 one can defines the projectors

ωL = ω− = (1 − γ5)/2 and ωR = ω+ = (1 + γ5)/2 (A.2)

that extract the left- and right-handed part of a spinor.
If uλ(p) and vλ(p) are spinors for fermion and antifermion with spin λ and momentum
p, the Dirac equation reads:

(p/−m)uλ(p) = 0, (p/+m)vλ(p) = 0 (A.3)

To calculate polarized cross sections with fermions in the initial state the relation [123]

{uλ(p)uλ(p), vλ(p)vλ(p)} =

{

1
2(

� ± λγ5)p/ for massless fermions
1
2(

�
+ λγ5s/)(p/ ±m) for massive fermions

is needed. The plus sign refers to the uu and the minus sign to vv. λ = ±1 is the
helicity and s is the unit vector in the direction of the spin axis in the particle rest
frame, boosted into the CMS. s fulfills the condition sṗ = 0 and s2 = −1. The
unpolarized formula is received by setting λ = 0 and multiply by 2.

The charge-conjugation matrix C fulfills

C† = C−1 , CT = −C , (A.4)

that leads to (no summation over i) [132]

Γ′ = C ΓT
i C

−1 = ηiΓi , with ηi =

{

1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν
(A.5)

While calculating Feynman diagrams traces of γ-matrices occur. To calculate them
the following relations have been used:

Tr [
�
] = 4 , T r [γµγνγργσ] = 4(gµνgρσ + gµσgνρ − gµρgνσ) ,

T r [γµγν ] = 4gµν , T r [γ5γµγνγργσ] = −4 i εµνρσ ,

T r [γµ1 . . . γµ2n+1 ] = 0 , T r [γ5γµ1 . . . γµi ; i < 4] = 0 ,

where εµνρσ is the total antisymmetric Levi-Civita-Tensor defined by

εµνρσ = −εµνρσ =







+1 if {µ, ν, ρ, σ} is an even permutation of {1, 2, 3, 4}
−1 if {µ, ν, ρ, σ} is an odd permutation of {1, 2, 3, 4}

0 otherwise

Another used operator is

f
↔
∂ µ g = f ∂µg − ∂µf · g (A.6)
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A.3 Dirac Matrices in D Dimensions

A.3 Dirac Matrices in D Dimensions

To regularize the divergent tensor integrals the dimension of space-time is continued
to D = 4 − ε. Then the Dirac-matrices has to be evaluated in D dimensions. The
γ-matrices fulfills

{γµ, γν} = 2gµν

The following relations hold:

gµνg
µν = δµ

µ = D ,

γργ
ρ =

1

2
gµρ{γµ, γρ} = D ,

γργ
µγρ = (2 −D) γµ .

γργµγνγ
ρ = 4gµν − (4 −D)γµγν ,

γργµγνγσγ
ρ = −2γσγνγµ + (4 −D)γµγνγσ ,

γργµγνγσγκγ
ρ = 2(γκγµγνγσ + γσγνγµγκ) − (4 −D)γµγνγσγκ .

Higher contractions γργ
µγν . . . γρ can be derived by these relations.

A.4 One Loop Tensor Integrals

For the calculation of the tensor integrals the convention of [150] is used. Fig. A.1
shows the momentum and mass definitions for an arbitrary one-loop integral. Note
that all external momenta are incoming.

q m1

q + k 1
q + k

2

q + kN-2q + k
N-1

m 2
m

3

mN-1m
N

p1

p2

pN-1

pN

Figure A.1: Convention for the N-point tensor integrals.
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The integrals belonging to this graph are given by:

TN
{µ1 ...µi}(k1 . . . kN−1;m1 . . . mN ) =

∫ +∞

−∞
dDq

(2πµ)4−D

iπ2

{qµ1
. . . qµi}

[q2 −m2
1][(q + k1)2 −m2

2] . . . [(q + kN−1)2 −m2
N ]

The external momenta are related to the internal one by the relations:

p1 = k1, p2 = k2 − k1, . . . , pN = kN − kN−1

k1 = p1, k2 = p1 + p2, . . . , kN =

N
∑

i=1

pi. (A.7)

The Tensor integrals can be decomposed:

Bµ = k1µB1 , Bµν = k1µk1νB11 + gµνB00 ,

Cµ =

2
∑

i=1

kiµCi , Cµνρ =

2
∑

i=1

(gµνkiρ + gνρkiµ + gµρkiν)C00i

Cµν =

2
∑

i,j=1

kiµkjνCij + gµνC00 , +

2
∑

i,j,l=1

kiµkjνklρCijl ,

Dµ =

3
∑

i=1

kiµDi , Dµν =

3
∑

i,j=1

kiµkjνDij + gµνD00 ,

Dµνρ =
3
∑

i,j,l=1

kiµkjνklρDijl +
3
∑

i=1

(gµνkiρ + gνρkiµ + gµρkiν)D00i ,

Dµνρσ =
3
∑

i,j,l,n=1

kiµkjνklρknσDijln +
3
∑

i,j=1

(gµνkiρkjσ+gνρkiµkjσ+gµρkiνkjσ+gµσkiνkjρ

+ gνσkiµkjρ + gρσkiµkjν)D00ij + (gµνgρσ + gµρgνσ + gµσgνρ)D0000 .
(A.8)

Some of the received integrals are UV and IR Divergent. That means ... In the MS
scheme one defines the UV Divergence ∆

∆ =
2

ε
− γE + log (4π)

with the Euler-Mascheroni constant γE = 0, 5772157 . . . . By use of ∆ one can di-
vide the tensor integrals into a part containing the divergence and a finite part. The
divergent parts up to 4 point integrals are

A∆(m1) = m2
1 ∆ B∆

11 =
1

3
∆

B∆
0 = ∆ C∆

00 =
1

4
∆

B∆
1 = −1

2
∆ C∆

001 = C∆
002 = − 1

12
∆

B∆
00(k

2
1 ,m1,m2) =

1

12
(3m2

1 + 3m2
2 − k2

1)∆ D∆
0000 =

1

24
∆
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A.5 SU(N)

All other integrals up to order N = 4 are finite.

A.5 SU(N)

The group SU(N) is built by the algebra

[T a, T b] = ifabcT c ,

with the hermitian, traceless generators T a(a = 1, 2, . . . , N 2 − 1) and the structure
constant fabc. After normalization: Tr(T a T b) = 1/2δab, the structure constant fulfill
the relation:

ifabc = 2Tr ( [T a, T b]T c ). (A.9)

A large set of relations to calculate SU(N) factors can be found in [153].
The SU(N) algebra is needed to calculate the color factors appearing in scattering pro-
cesses with colored particles. In case of a large number of Feynman diagrams one will
also have a large set of different color factors. It is useful to automatize and integrate
the calculation into a computer program. Normally one tries to collect the generators
T a to products of traces and solve this by certain relations. The disadvantage of this
map is the large number of relations that would appear especially for dabc and fabc

(dabc is defined by dabc = 2Tr({T a, T b}T c). On the other side one could incorporate
the numeric Gell-Mann matrices and values of the dabc and fabc. But this would limit
one to the case of SU(3).
Another road-map for SU(N) that is used and implemented in a computer program
reads as follow (assuming a given factor with the elements f abc, δab, δij , T

a
ij and traces

of T aT b... ):

• Use the relation (A.9) means f abc = −2iTr (T aT bT c ) + 2iTr (T bT aT c ) to elim-
inate all structure constants

• Write all traces Tr (T aT b...T c ) in component form:
∑N

i,j,k,...,l T
a
ijT

b
jk....T

c
li

• Absorb all δab and use relation
∑(N2−1)

a T a
ijT

a
kl = 1

2 (δilδjk − 1
N δijδkl)

• At least calculate the only remaining δ’s by use of
∑N

j δijδjk = δik and
∑N

i δii =
N

These are the only needed relations. To optimize them and safe computer calculation
time one should also include the relations: f aab = 0, (fabc)2 = N(N2 − 1), fabcf ebc =
Nδae, ifabcT c

ij = [T a, T b]ij , T
a
ii = 0, T a

ijT
a
jk = (N2 − 1)/(2N)δik and δaa = N2 − 1. To

absorb δ-functions as far as possible is obvious.
The remaining result will only depend on N.

If one calculates colored scattering processes in the MSSM automatically with software
like Mathematica one has to be careful with selecting the color factors. In SM QCD
for one single amplitude one could easily search for all color elements, kill doubles and
write them in front of the amplitude. In MSSM this is not possible because sums with
different color terms in one single coupling can occur e.g. in the 4-squark coupling.
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Appendix B

SPS Parameters

This appendix shows the MSSM input parameters for the SPS1 and SPS5 point of
the Snowmass workshop [136] taken from [154]. The masses and mixing angles were
calculated using the model-file of FormCalc [123] version 3.0. The neutralino and
chargino mixing matrices are not denoted.

B.1 SPS 1

The MSSM input parameter of SPS 1 are:

MẽL,µ̃L
= 196.64 GeV, MẽR,µ̃R

= 136.23 GeV,

Mτ̃L
= 195.75 GeV, Mτ̃R

= 133.55 GeV, Aτ = −254.20 GeV,

MũL,d̃L,c̃L,s̃L
= 539.86 GeV, MũR,c̃R

= 521.66 GeV,

Md̃R s̃R
= 519.53 GeV,

Mt̃L,b̃L
= 495.91 GeV, Mt̃R

= 424.83 GeV, At = −510.01 GeV,

Mb̃R
= 516.86 GeV, Ab = −772.66 GeV,

µ = 352.39 GeV, MA0 = 393.63 GeV, tanβ = 10 GeV,

mg̃ = 595.19 GeV, M1 = 99.13 GeV, M2 = 192.74 GeV.

The following masses and mixing angles arises:
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B SPS Parameters

Fermions:

mẽ1
= 202.32 GeV, mẽ2

= 142.72 GeV,

mµ̃1
= 202.32 GeV, mµ̃2

= 142.72 GeV,

mτ̃1 = 132.97 GeV, mτ̃2 = 206.29 GeV, θτ̃ = 163.663◦ ,

mũ1
= 537.20 GeV, mũ2

= 520.50 GeV,

mc̃1 = 537.20 GeV, mc̃2 = 520.50 GeV,

mt̃1
= 375.90 GeV, mt̃2

= 584.63 GeV, θt̃ = 144.275◦ ,

md̃1
= 543.07 GeV, md̃2

= 520.11 GeV,

ms̃1
= 543.07 GeV, ms̃2

= 520.11 GeV,

mb̃1
= 486.23 GeV, mb̃2

= 529.88 GeV, θb̃ = 122.783◦ .

Higgs masses:

mh0 = 111.62 GeV, mH0 = 394.14 GeV,

mA0 = 393.63 GeV, mH± = 401.76 GeV,

Neutralinos:

mχ̃0
1

= 377.87 GeV, mχ̃0
2

= 358.80 GeV,

mχ̃0
3

= 176.62 GeV, mχ̃0
4

= 96.18 GeV,

Charginos:

mχ̃+

1

= 378.51 GeV, mχ̃+

2

= 176.06 GeV,

B.2 SPS 5

The MSSM parameter of SPS 5 are:

MẽL,µ̃L
= 252.24 GeV, MẽR,µ̃R

= 186.76 GeV,

Mτ̃L
= 250.13 GeV, Mτ̃R

= 180.89 GeV, Aτ = −1179.34 GeV,

MũL,d̃L,c̃L,s̃L
= 643.88 GeV, MũR,c̃R

= 625.44 GeV,

Md̃R s̃R
= 622.91 GeV,

Mt̃L,b̃L
= 535.16 GeV, Mt̃R

= 360.54 GeV, At = −905.63 GeV,

Mb̃R
= 620.50 GeV, Ab = −1671.36 GeV,

µ = 639.80 GeV, MA0 = 693.86 GeV, tanβ = 5 GeV,

mg̃ = 710.31 GeV, M1 = 121.39 GeV, M2 = 234.56 GeV.

The following masses and mixing angles arises:
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B.2 SPS 5

Fermions:

mẽ1
= 256.43 GeV, mẽ2

= 191.27 GeV,

mµ̃1
= 256.43 GeV, mµ̃2

= 191.27 GeV,

mτ̃1 = 180.41 GeV, mτ̃2 = 258.04 GeV, θτ̃ = 166.398◦ ,

mũ1
= 641.78 GeV, mũ2

= 624.53 GeV,

mc̃1 = 641.78 GeV, mc̃2 = 624.53 GeV,

mt̃1
= 201.42 GeV, mt̃2

= 657.83 GeV, θt̃ = 146.628◦ ,

md̃1
= 646.41 GeV, md̃2

= 623.37 GeV,

ms̃1
= 646.41 GeV, ms̃2

= 623.37 GeV,

mb̃1
= 533.39 GeV, mb̃2

= 625.13 GeV, θb̃ = 102.757◦ .

Higgs masses:

mh0 = 114.46 GeV, mH0 = 694.95 GeV,

mA0 = 693.86 GeV, mH± = 698.51 GeV,

Neutralinos:

mχ̃0
1

= 652.97 GeV, mχ̃0
2

= 642.83 GeV,

mχ̃0
3

= 226.22 GeV, mχ̃0
4

= 119.59 GeV,

Charginos:

mχ̃+

1

= 652.83 GeV, mχ̃+

2

= 226.07 GeV,
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