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Zusammenfassung

Das Konzept der Atome als Grundbausteine der Materie existiert schon seit über 3000
Jahren. Eine Revolution im Verständnis von Atomen und Molekülen ereignete sich im
letzten Jahrhundert mit der Geburt der Quantenmechanik. Nachdem die elektronische
Struktur verstanden war, stieg das Interesse die Dynamik von Elektronen, Atomen und
Molekülen zu studieren. Aus technischen Gründen war es bis vor Kurzem nur schwer
möglich, diese ultraschnellen Prozesse zeitaufgelöst zu untersuchen. Die typische Zeitskala
von atomaren und molekularen Prozessen liegt im Piko- bis Attosekundenbereich. Der
enorme technische Fortschritt in den letzten Jahren ermöglicht es heutzutage Lichtpulse
auf diesen Zeitskalen zu erzeugen. Mit diesen ultrakurzen Pulsen können atomare und
molekulare Dynamiken generiert, beobachtet und kontrolliert werden. Mit dem technischen
Fortschritt steigt auch der Bedarf an theoretischen Modellen, die die zugrunde liegenden
Mechanismen erklären.

Diese Doktorarbeit beschäftigt sich mit der Entwicklung von theoretischen Modellen,
mit denen das zeitliche Verhalten von Elektronen, Atomen und Molekülen in der Gegenwart
von kurzen Lichtpulsen studiert werden kann. Mehrere Beispiele, wie Lichtpulse gezielt
elektronische, atomare und molekulare Bewegungen auslösen und kontrollieren können,
werden diskutiert.

Im ersten Teil dieser Arbeit liegt der Fokus auf der Rotationsdynamik von asym-
metrischen Molekülen, welche im Bereich von hunderten von Femtosekunden bis hunderten
von Pikosekunden liegt. Dabei ist das Ziel alle drei Achsen des Moleküles so gut wie möglich
auszurichten. Um dies theoretisch zu studieren, entwickelte ich ein Programm, dass adi-
abatische und nicht-adiabatische Ausrichtungsdynamiken beschreiben kann. Anhand von
SO2 werden Strategien diskutiert, um eine optimale 3D-Ausrichtung in Abwesenheit eines
Feldes zu erreichen, sodass nachfolgende Experimente nicht von dem ausrichtenden Feld
gestört werden. Moleküle in der Gasphase mit einem hohen Grad an Ausrichtung sind ideal
für Streuexperimente. Das Streubild enthält Informationen über die molekulare Struktur,
die durch geeignete Verfahren aus dem Streubild extrahiert werden kann. Dies wird am
Beispiel von laser-ausgerichtetem Naphthalin-Molekülen (C10H8) demonstriert. Die Qual-
ität der Ausrichtung der Naphthalinmoleküle ist entscheidend für die Rekonstruktion der
molekularen Struktur.

Im zweiten Teil werden Ionisierungsdynamiken von Atomen untersucht. Die charak-
teristische Zeitskala liegt hier im Attosekunden- bis Femtosekundenbereich. Obwohl viele
Ionisierungsprozesse mit einem Ein-Teilchenbild beschrieben werden können, treten im-
mer wieder interessante Multielektrone�ekte auf. Basierend auf einem zeitabhängigen
con�guration-interaction singles (TDCIS) Ansatz studiere ich das zeitliche Verhalten solcher
Multielektrone�ekte. Bei der Photoionisierung von atomarem Xenon mit einem Attosekun-
denpuls treten unerwartete Korrelationen zwischen dem ionisierten Elektron und dem Ion
auf. Diese Elektron-Ion-Verschränkung schlägt sich in Form einer reduzierten Kohährenz
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in dem Ion nieder. Mittels Absorptionsspektroskopie kann die Population und die Ko-
härenz der ionischen Zustände mit einer Genauigkeit von wenigen Attosekunden ausgele-
sen werden. Sogar die Ionisierungsdynamik selbst kann beobachtet werden. Dabei treten
feldgetriebene Wechselwirkungen zwischen dem Elektron und dem Ion auf, die sich deut-
lich in der Linienstruktur des transmittierten Spektrums erkennen lassen. Auch bei der
Erzeugung von hohen Harmonischen (high-harmonic generation oder kurz HHG) kommt
es zu Wechselwirkungen, die den Zustand des Ions verändern können. Solche E�ekte
werden Interkanalkopplungen genannt und sind im HHG-Spektrum sichtbar, wie meine
Untersuchungen an Argon und Xenon zeigen.

All diese Beispiele demonstrieren auf der einen Seite, wie ultrakurze Pulse komplexe
elektronische, atomare, und molekulare Bewegungen initiieren können. Auf der anderen
Seite erlauben diese Pulse, die initiierten Bewgungen zu beobachten und zu kontrollieren.
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Abstract

The concept of atoms as the building blocks of matter has existed for over 3000 years. A
revolution in the understanding and the description of atoms and molecules has occurred
in the last century with the birth of quantum mechanics. After the electronic structure was
understood, interest in studying the dynamics of electrons, atoms, and molecules increased.
However, time-resolved investigations of these ultrafast processes were not possible until
recently. The typical time scale of atomic and molecular processes is in the picosecond
to attosecond realm. Tremendous technological progress in recent years makes it possible
to generate light pulses on these time scales. With such ultrashort pulses, atomic and
molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need
rises for theoretical models describing the underlying mechanisms.

This doctoral thesis focuses on the development of theoretical models which can be
used to study the dynamical behavior of electrons, atoms, and molecules in the presence
of ultrashort light pulses. Several examples are discussed illustrating how light pulses can
trigger and control electronic, atomic, and molecular motions.

In the �rst part of this work, I focus on the rotational motion of asymmetric molecules,
which happens on picosecond and femtosecond time scales. Here, the aim is to align
all three axes of the molecule as well as possible. To investigate theoretically alignment
dynamics, I developed a program that can describe alignment motion ranging from the
impulsive to the adiabatic regime. The asymmetric molecule SO2 is taken as an example to
discuss strategies of optimizing 3D alignment without the presence of an external �eld (i.e.,
�eld-free alignment). Field-free alignment is particularly advantageous because subsequent
experiments on the aligned molecule are not perturbed by the aligning light pulse. Well-
aligned molecules in the gas phase are suitable for di�raction experiments. From the
di�raction pattern, information about the molecular structure can be gained. This is
illustrated with the example of laser-aligned naphthalene molecules (C10H8). Furthermore,
I demonstrate that the quality of the molecular alignment is essential for the reconstruction
of the molecular structure.

In the second part of this work, the ionization dynamics of atoms is studied. The char-
acteristic time scale lies, here, in the attosecond and the few-femtosecond regime. Although
a one-particle picture has been successfully applied to many ionization processes, impor-
tant many-body e�ects do constantly occur. Based on a time-dependent con�guration-
interaction singles (TDCIS) approach, I study the temporal behavior of these many-body
e�ects. During the photoionization of atomic xenon, unexpected correlation e�ects be-
tween the ionized electron and the ion occur. This electron-ion entanglement results in
a reduced coherence within the ion. Populations and coherences of the ionic states are
probed with attosecond precision using transient absorption spectroscopy. Even the sub-
cycle ionization dynamics can be studied with this technique. Here, �eld-driven dressing
e�ects between the ion and the freed electron appear, which I investigate on atomic kryp-
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ton. Interactions between the ion and the electron, which modify the ionic states, occur
also in high-harmonic generation (HHG). They are visible in the HHG spectrum as my
studies of argon and xenon show.

All these examples demonstrate on the one side, ultrashort pulses can be used to initiate
complex electronic, atomic, and molecular motions. On the other side, it is also possible
to probe and to control these dynamical processes with ultrashort pulses.
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Chapter 1

Overview

Rapid technological progress in generating shorter and shorter pulses has driven the interest
in studying rotational, vibrational, and electronic excitations on their characteristic time
scales1. I will start by giving an overview of two areas in atomic, molecular, and optical
physics that have been the focus of my doctoral studies: (1) laser alignment of molecules
and (2) ultrafast ionization dynamics. Both areas have in common that the dynamics
of the system is induced by very short laser pulses. Due to the di�erent characteristic
time scales of rotational excitations (alignment) and electronic excitations (ionization),
the duration of these pulses ranges from hundreds of picosecond (1 ps= 10−12 s) down to
tens of attosecond (1 as= 10−18 s), respectively. Major parts of Part I of this dissertation
will appear in European Physical Journal Special Topics 221, 1 (2013).

In Chap. 2, I study the alignment dynamics of molecules. First, I give a review of what
have been done in aligning and orienting molecules with optical laser �elds. The underlying
principle of laser alignment and orientation is presented in Sec. 2.1.1. In Sec. 2.1.2, I
discuss the details of one-dimensional (1D) and three-dimensional (3D) alignment as well
as what alignment and orientation means and how it can be measured. The ratio between
the pulse duration and the rotational dynamics determines whether the alignment happens
adiabatically or non-adiabatically. I discuss these dynamical aspects in Sec. 2.1.3. Schemes
of achieving orientation rather than alignment are reviewed in Sec. 2.1.4.

In Sec. 2.2, I explain the program xalmo I have developed in order to calculate a wide
range of 3D alignment dynamics ranging from adiabatic to non-adiabatic alignment. Due
to the complexity of 3D alignment, I explain the symmetry considerations and speci�cs of
the numerical implementation in order to make the program most e�cient. In Sec 2.3, I
focus applications of laser alignment. I discuss my publications about x-ray scattering from
3D laser-aligned molecules and the usage of multiple pulse scheme to achieve �eld-free 3D
alignment. The publications resulting from these projects can be found in Chap. 4.

1 N. Bloembergen, Rev. Mod. Phys. 71, S283 (1999), A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000),
and F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

3

http://epjst.epj.org/
http://link.aps.org/doi/10.1103/RevModPhys.71.S283
http://pubs.acs.org/doi/abs/10.1021/jp001460h
http://link.aps.org/doi/10.1103/RevModPhys.81.163
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In Chap. 3, I look into ultrafast ionization dynamics of noble gas atoms on the sub-
femtosecond (1 fs= 10−15 s) time scale. Even though many processes and mechanisms
can be well understood by focusing on a single electron, multi-electron e�ects can become
important particularly for large atoms and molecules. The advantage of atomic systems
is their small size and their high degree of symmetry. For ultrafast light-induced pro-
cesses, this greatly helps to systematically study the importance of details in the electronic
structure originating from electron-electron correlations. Before discussing the work I have
done in this �eld, I start with a short review about the two most prominent mechanisms
in ultrafast science: one-photon photoionization (in Sec. 3.1.2) and tunnel ionization (in
Sec. 3.1.3). In Sec. 3.1.4, I discuss the high harmonic generation (HHG) process, which
converts near-infrared (NIR) light with wavelengths of ∼ 1 µm into UV and x-ray light
with wavelengths in the 1�100 nm regime. Because of the coherence properties of this
UV light, HHG is the most common method to generate pulses with durations in the
sub-femtosecond regime and photon energies up to the extreme-ultraviolet (XUV).

The combination of NIR and XUV pulses o�ers a wide range of new possibilities. In
the form of a pump-probe setup, where the pump pulse triggers the dynamics and the
probe pulse detects the changes in the system, either pulse could be used as pump or
probe. In Sec. 3.1.5, I discuss attosecond streaking experiments, where the XUV and the
NIR pulses are used as pump and probe pulses, respectively. For attosecond transient
absorption experiments discussed in Sec. 3.1.6 it is reversed and the NIR pulse is used as
a pump and the XUV pulse is used as a probe.

In Sec. 3.2, I discuss numerical propagation schemes. In Sec. 3.2.1, I focus on the
widely used single-active electron (SAE) model, where electron-electron correlations can-
not appear, since only one speci�c electron is allowed to move and all others are frozen.
The time-dependent con�guration-interaction singles (TDCIS) approach I have developed
generalizes the idea of the SAE model. Only one electron can be fully active in the TD-
CIS method as well. However, it can come from any occupied orbital. Furthermore, the
ionic state can be changed by interactions between the active electron and the remaining
electrons of the ion. The TDCIS approach is discussed in detail in Sec. 3.2.2.

I explain my contributions towards the TDCIS code I have developed with colleagues
in Sec. 3.3. Furthermore, I discuss the xcid package, which is an optimized and further
developed version of the initial TDCIS code. In Sec. 3.4, I present the projects I have
worked on using the xcid package. My projects range from many-body correlation e�ects in
attosecond photoionization (Sec. 3.4.1) to multi-orbital contributions in the HHG spectrum
of argon (Sec. 3.4.2) to attosecond transient absorption spectroscopy with overlapping
pump and probe pulses (Sec. 3.4.3). The publications resulting from these projects can be
found in Chap. 5.

Atomic units (~ = |e| = me = 1/(4πε0) = 1)2 are used throughout if not explicitly
mentioned otherwise.

2 see http://physics.nist.gov/cuu/Constants or Mohr et al., RMP 84, 1527 (2012)

http://physics.nist.gov/cuu/Constants
http://link.aps.org/doi/10.1103/RevModPhys.84.1527


Chapter 2

Laser-Induced Molecular Alignment:
About Picosecond and Femtosecond Dynamics

2.1 Introduction

2.1.1 Principles of Molecular Orientation and Alignment

A wide range of processes in nature depend on the relative orientation of the objects
involved. This is true in the macroscopic world (e.g., collisions of classical particles) and it
is also true in the microscopic world of atoms and molecules (e.g., chemical reactions [1]).
Therefore, the interest is high in controlling the directionality of single molecules [2]. A very
elegant way to control the molecular motion is by using electric �elds E [3�5] and magnetic
�eldsH [6�9]. In the following I focus on electric �elds, since they have become the common
technique to orient and align molecules [10]. The strengths of magnetic interactions are
generally three orders of magnitudes weaker than electronic interactions [11]. Magnetic
moments of molecules are normally around a Bohr magneton (1µB = 0.5 a.u.) and large
magnetic �elds of around 1 Tesla are needed to orient and to align molecules [6]. Static
magnetic �elds of this magnitude are quite di�cult to generate than corresponding electric
�elds.

The underlying mechanism for orienting and aligning molecules with electric �elds
can be well understood by looking at the Taylor expansion of the vibronic (electronic +
vibrational) energy levels Ei in terms of the applied electric �eld E(ω) [12]

Ei = E
(0)
i +

∑
n>0

E
(n)
i (ω), (2.1a)

E
(n)
i (ω) = − 1

n!
γ

(n)
i (ω) · En(ω), (2.1b)

where E(0)
i are the �eld-free energy levels and γ(n)

i (ω) are the n-th order dipole response

5
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functions depending on the laser frequency ω. The symbol · stands for the inner product
between the two tensors γ(n)

i (ω) and En(ω). In Cartesian coordinates, the inner product
of two tensors A and B of rank n reads A ·B =

∑
i1,··· ,in∈{X,Y,Z}Ai1,··· ,inBi1,··· ,in . Note that

the electric �eld E(ω) is a vector (i.e., tensor of rank 1).

The homogeneous character of the electric �eld over the size of a molecule allows one to
neglect contributions from quadrupole or even higher moments [13]. The �rst three dipole
response functions appearing in Eq. (2.1b) are well known under the name permanent dipole
moment µ := γ(1), dipole polarizability tensor α(ω) := γ(2)(ω), and hyperpolarizability
tensor β(ω) := γ(3)(ω). Note, the permanent dipole moment is not ω-dependent. The
�eld frequency ω is commonly much lower than any vibronic transition. Therefore, the
ω-dependence of the response functions can be dropped and the static limit (ω → 0) can
be used [14]. The Taylor expansions in Eq. (2.1a) is particularly powerful when relatively
weak electric �elds are applied such that the in�nite sum converges quickly for small n.

Rotational Potential

For common alignment scenarios, the �eld intensity is in the range 1012-1013 W/cm2 [10]
and lies in the perturbative regime such that it is su�cient to focus on the �rst three energy
corrections in the in�nite sum of Eq. (2.1a). The energy corrections E(n)

i of the vibronic
states can be viewed as a potential,

Ûi =
3∑

n=1

E
(n)
i (ω), (2.2)

for the remaining rotational degrees of freedom. The corrections E(n)
i depend on the

relative orientation of the molecule with respect to the polarization of the electric �eld,
since γ(n) are de�ned in the body-�xed molecular frame. The orientation of any molecule
can be characterized by the Euler angles ϕ, ϑ, and χ [15]. Therefore, all potentials Ûi can
be expressed in terms of the Euler angles. Geometrically, the Euler angles de�ne three
rotations, which transform the space-�xed laser frame de�ned by the axes X, Y , and Z
into the body-�xed molecular frame de�ned by the axes a, b, and c. Figure 2.1 illustrates
this 3D coordinate transformation. Commonly, the angle ϕ refers to the rotation around
the space-�xed Z axis, the angle χ refers to a rotation around the body-�xed c axis, and
ϑ de�nes the angle between the space-�xed Z and body-�xed c axes. In general, the angle
between a body-�xed axis g ∈ {a, b, c} and a space-�xed axis F ∈ {X, Y, Z} is labeled ϑFg.
In Sec. 2.3.2, these angles are used to analyze the 3D alignment of naphthalene molecules.

In Sec. 2.1.2, the explicit form of the angle-dependence of Ûi is discussed in detail for
di�erent types of molecules and laser �elds. If Ui is energetically larger than the kinetic
energy, the molecule becomes trapped in the potential and the orientation or alignment
of the molecule becomes well-de�ned in the space-�xed coordinate system. If an entire
ensemble of molecules is exposed to such an electric �eld, a collective (ensemble-averaged)



2.1. INTRODUCTION 7

Figure 2.1: An illustration of a coordinate transformation from the space-�xed frame
de�ned by the axes X, Y, Z into the body-�xed frame de�ned by the axes a, b, c. The
rotations de�ned by the Euler angles ϕ, ϑ, χ are explicitly shown. The illustration is taken
from Ref. [15]. Copyright c© 1988 John Wiley & Sons, Inc.

orientation or alignment is observed, which is not random anymore. This is desirable, since
the signal of a single molecule is generally too small to be statistically useful. A collective
orientation or alignment increases the signal strength by the number of molecules in the
ensemble, which can be easily of the order of 107 molecules [16].

Orientation and Alignment

Orientation and alignment refer both to the directionality of the molecule. However, there
is a subtle di�erence between orientation and alignment. For orientation in 3D, all three
Euler angles are uniquely de�ned. In the case of alignment, there exists a �head-tail� (C2)
symmetry around each symmetry axis�meaning an 180◦-rotation of any symmetry axis does
not matter. For perfect alignment, there exist 4 unique orientations that correspond to the
same alignment [17]. The degree of orientation is measured by the quantity cosϑ, where the
sign indicates whether the molecules is oriented along or opposite to the desired orientation
direction. The measure for alignment is cos2 ϑ, which is invariant under a 180◦-rotation
of the alignment axis (i.e., ϑ → 180◦ + ϑ). For a randomly oriented (aligned) ensemble
of molecules, the corresponding ensemble-averaged degree of orientation (alignment) is
〈cosϑ〉 = 0

(
〈cos2 ϑ〉 = 1

3

)
1.

The measure for 3D orientation and 3D alignment requires at least 3 angles, one for
each axis [18]. In the case of my studies on naphthalene (see Chap. 4.1/Ref. [19]), I used

1The angle ϑZc is identical to the Euler angle ϑ.
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the three measures cos2 ϑXa, cos2 ϑY b, and cos2 ϑZc to quantify 3D alignment. An average
of these three angles can be also taken as a measure such that the 3D orientation/alignment
is characterized by one quantity [20]. Orientation and alignment can be measured experi-
mentally via the angular distribution of ion fragments of the aligned molecule [10, 21]. The
ion fragments are produced by an intense second laser pulse, which forces the molecule to
Coulomb explode. Fig. 2.2 illustrates how the degree of alignment is experimentally mea-
sured via Coulomb explosion. Recently, it has been shown that HHG can also be used to
measure alignment dynamics [22].

Figure 2.2: Illustration of measuring experimentally 3D alignment and/or orientation via
the side view and end view detectors. The molecule shown is 3,5 di�uoroiodobenzene,
where the Iodine atom is depicted as red ball and the Fluorine atoms are depicted as green
balls. Note, the space-�xed frame is labeled x, y, z and the body-�xed molecular frame
is labeled X, Y, Z. The illustration is taken from Ref. [23]. Copyright c© 2007 American
Physical Society (APS).

The potential resulting from E
(2)
i leads to aligned molecules, since inverting the direction

of the electric �eld (E → −E) does not a�ect the potential due to the quadratic �eld
dependence [cf. Eq. (2.1b)]. The terms E(1)

i and E
(3)
i , which depend on odd powers of

E , change sign when the electric �eld is pointing in the opposite direction. Hence, the
potential resulting from E

(1)
i and E(3)

i leads to oriented molecules [24�27].
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Structural Deformations

In most experiments the goal of applying an external �eld is to in�uence and to control
only the rotational state while at the same time leaving the molecule in the vibronic ground
state [10]. Common way to achieve orientation and alignment is with vibronically non-
resonant optical �elds alone [28, 29] and in combination with static electric �elds [24, 27, 30].
However, alignment can be also achieved with resonant frequencies coupling two or several
vibronic states with each other [31�34]. It has been shown that less intense electric �elds
are needed when resonant frequencies are used [35].

Structural deformations may also occur when static �elds or non-resonant optical �elds
are used [36, 37]. Particularly for short laser pulses, where higher electric �eld strengths
are needed to achieve the same degree of alignment [14], structural deformations start to
appear [36, 38]. Nevertheless, the rigid-rotor approximation, where molecular deformations
are ignored, is the most common model used [4, 10, 20, 29, 39, 40]. This model has been
successful due to its great simplicity and explanatory power for many experimental results.
Some works have been done to extend the rigid-rotor model in order to include centrifugal
deformations in the rotational energies [41�44]. These deformations in�uence the rotational
dynamics of the molecules, which becomes particularly prominent for linear molecules [45].
A complete description of rotational and vibronic dynamics, which may be even coupled
to each other, is quite challenging.

In the following, the molecule is assumed to be in the vibronic ground state at all
times2. Hence, I drop the vibronic index i. All energy corrections E(n), from now on, refer
to the vibronic ground state of the molecule if not explicitly mentioned otherwise.

2.1.2 1D and 3D Alignment

Depending on the symmetry of the molecule and on the polarization of the electric �eld,
molecules can be either aligned around one axis (1D alignment) or around all three axes
(3D alignment) [10]. To understand under which conditions 1D or 3D alignment can be
achieved, it is useful to consider the symmetries of the terms entering in the alignment
potential.

For molecular alignment, only the term E(2) needs to be considered. Aligning molecules
has several practical advantages in comparison to orienting them. First, not all molecules
have permanent dipole moments (µ = 0 ⇒ E(1) = 0) and the third-order term E(3) has
to be exploited, which requires large electric �eld strengths. Since all molecules have a
non-zero polarizability [4], there always exists an aligning potential E(2). Second, quasi-
monochromatic optical pulses can only couple to even order response functions (i.e., γ(2n))

2 To be more precise, only the electronic state is considered to be in the quantum mechanical ground
state. The vibrational degrees of freedom are described classically and not quantum-mechanically�meaning
the nuclei are classical objects with �xed, well-de�ned distances between each other.
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and, therefore, generate aligning potentials.

The tensors E2n+1(t) vanish for optical monochromatic �elds, since the cycle-averaged
quantities of En(t) only survive for even n. Cycle-averaging of En(t) is justi�ed when the
�eld period is much smaller than the rotation dynamics of the molecule [38]. This is the
case for typical alignment pulses (e.g., wavelength of 800 nm) with cycle periods in the few
femtosecond regime. The typical time scale of rotational excitations is picoseconds (see
Sec. 2.1.3).

As already mentioned, the energy correction of the vibronic ground state is an e�ective
potential for the rotational degrees of freedom [cf. Eq. (2.2)]. The rotational Hamiltonian,
where an optical pulse couples only to the polarizability α, is given by [19, 39]

Ĥ(t) = A Ĵ2
a +B Ĵ2

b + C Ĵ2
c︸ ︷︷ ︸

Ĥrot

− 1

2

∑
LM

(−1)L+M α̂
[L]
M F

[L]
−M,avg(t)︸ ︷︷ ︸

−Û(t)

, (2.3)

where Ĥrot is the kinetic operator for molecular rotations, and Û(t) is the e�ective aligning
potential induced by the electric �eld, E(t). The rotational constants A,B,C of the molec-
ular axes a, b, and c diagonalize the moment of inertia tensor. The angular momentum
operators are given by Ĵg with g ∈ {a, b, c}. The potential Û(t) is expressed via spherical
tensor products [15], where F [L]

M (t) = [E(t)⊗ E(t)]
[L]
M,avg is the spherical tensor of rank 2

with angular momentum L. M is the angular momentum projection onto the space-�xed
Z axis. The subscript �avg� stands for the cycle-averaged quantity. Spherical tensors with
L = 1 do not appear for α and F (t), since both tensors are symmetric.

The electric �eld tensor F (t) is �well-de�ned� in the space-�xed laser frame whereas
the polarizability tensor α is �well-de�ned� in the molecular frame. Since the space-�xed Z
axis is the quantization axis in the tensor product of Eq. (2.3), it is necessary to transform
the known body-�xed spherical tensor components α[L]

K (with the quantization axis c) into
the space-�xed laser frame, which read [19, 39].

α
[L]
M (Ω) =

∑
K

D
∗[L]
M,K(Ω)α

[L]
K , (2.4)

where D∗[L]
M,K(Ω) are the Wigner-D matrices connecting both frames with each other [15].

The three Euler angles are combined into Ω = (ϕ, ϑ, χ). It is exactly through this coordi-
nate transformation that the alignment potential becomes angle-dependent Û(t)→ Û(Ω, t).

The quantum number K refers to the angular momentum projection onto the molecular
c axis. The polarizability tensor α in the Cartesian representation is diagonal in the molec-
ular frame with the values αa,a, αb,b, and αc,c. Note, the body-�xed frame that diagonalizes
α is generally not the same frame that diagonalizes the moment of inertia tensor [46]. For
small molecules (with a high symmetry), however, these two frames fall together. In the
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following, I do not distinguish between these two molecular frames and focus on the case
where they coincide.

Only terms in Eq (2.3) contribute to the aligning potential where both spherical tensor
components, i.e., α[L]

M and F
[L]
−M(t), are non-zero. For example, α[0]

0 is the only non-zero
component for a spherically symmetric molecule. Regardless of the complexity of F (t)
the resulting potential Û(t) has no angle dependence, since only the Wigner-D matrix
D
∗[0]
0,0 (Ω) = 1 contributes. This angle-independent potential results in a global energy shift

for all rotational states and, therefore, has no in�uence on the alignment process and can
be neglected [47].

1D Alignment

The simplest alignment scenario is the 1D alignment of a linear (A = B,C−1 = 0) or
symmetric-top (A = B 6= C) molecules with linearly polarized light. For linearly polarized
�elds, only the terms F [0]

0 (t) and F
[2]
0 (t) are non-zero. The polarizability tensor in the

Cartesian basis has the diagonal entries αaa = αbb 6= αcc and, therefore, only the terms
α

[0]
K=0 and α

[2]
K=0 are non-zero. By rotating from the molecular frame to the laser frame

the Wigner-D matrix D
∗[2]
0,0 (Ω) = 1

2
(3 cos2 ϑ − 1) enters. The resulting angle-dependent

potential reads [4]

U1D(ϑ, t) = −αcc − αaa
2

cos2 ϑ [E2(t)]avg. (2.5)

The cycle-average of a quasi-monochromatic pulse E(t) = E0(t) sin(ω t), where E0(t) de-
�nes the pulse envelope, leads to the e�ective intensity [E2(t)]avg = E2

0 (t)/2. For linear
molecules, αcc > αaa and the potential U1D(ϑ, t) has a minimum when the molecular c axis
is aligned with the space-�xed Z axis (cos2 ϑ = 1). Depending on whether the symmetric-
top molecule is prolate (αcc > αaa) or oblate (αcc < αaa), the molecular c axis is preferably
aligned along (cos2 ϑ = 1) or perpendicular (cos2 ϑ = 0) to the �eld polarization axis Z.

In 1D alignment, only one molecular axis is �xed in space. Rotations around the axes
c and Z are una�ected by U1D(ϑ, t), since no ϕ and χ dependencies exist in U1D(ϑ, t). As
a consequence, the molecular axes a and b are aligned within a plane but it is not possible
to hold either axis in a particular direction within this plane.

3D Alignment

3D alignment requires that all three molecular axes are �xed in space [20] (see Fig. 2.3).
The potential Û in Eq. (2.3) can only lead to 3D alignment, when Û depends on all three
Euler angels ϕ, ϑ, χ [40]. The ϑ dependence enters, since F [L] and α[L] have non-zero
components for L > 0, which in�uence the angular momentum J of the rotational states
(for more details see Sec. 2.1.3). The ϕ and χ dependencies enter only when F [2]

M=±2 6= 0
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Figure 2.3: Illustration of non-aligned
(A), 1D-aligned (B), and 3D-aligned (C)
3,4-dibromothiophene (black circles: sul-
fur, dark grey circles: bromine). For non-
aligned molecules, all orientations are
equally likely. 1D alignment is achieved
with a linearly polarized pulse, and 3D
alignment is accomplished with an ellip-
tically polarized pulse. The illustration is
taken from Ref. [48]. Copyright c© 2000
American Physical Society (APS).

and α[2]
K=±2 6= 0 are ful�lled, respectively. On the one side, α[2]

K=±2 6= 0 is only possible for
asymmetric-top molecules (A < B < C).

For symmetric-top and linear molecules, αaa = αcc and, therefore, α
[2]
K=±2 = 0. On the

other side, F [2]
M=±2 6= 0 can be only achieved when elliptically polarized pulses or multiple

pulses with di�erent polarization directions are used. A schematic sketch of 3D alignment
of two pulses with di�erent linear polarizations is shown in Fig. 2.4.

If one of the two requirements for generating a ϕ- and χ-dependent potential is not
ful�lled, only 1D alignment is possible. For instance, linearly polarized pulses (no ϕ-
dependence) align asymmetric-top molecules (χ-dependence) only around the most po-
larizable axis [29, 49, 50] as for linear molecules. Panel (B) in Fig. 2.3 demonstrates this
case. Elliptically polarized pulses (ϕ-dependence) used in combination with symmetric-top
molecules (no χ-dependence) align only the symmetry axis c. However, this symmetry axis
can be rotated in space, synchronized with the oscillating elliptically polarized �eld [45].

2.1.3 Alignment Dynamics

Dynamical states in quantum mechanics are coherent superpositions of eigenstates of the
system (i.e., Hamiltonian). I start my discussion on symmetric-top rotors (A = B). Many
e�ects can be understood in this case, while I also point out di�erences and similarities
to asymmetric-top rotors. The rotational kinetic operator of a symmetric-top rotor is
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Figure 2.4: A schematic illustration of 3D alignment of SO2 with two di�erent linearly
polarized pulses is shown. The �rst pulse aligns the randomly oriented molecules along the
most polarizable axis. The second pulse aligns the second most polarizable axis leading to
3D alignment. This �gure is taken from Ref. [51]. Copyright c© 2006 American Physical
Society (APS).

Ĥrot = A Ĵ2 + (C − A) Ĵ2
c . Its rotational eigenstates are given by [15]

〈Ω| JKM〉 =

√
2J + 1

8π2
D
∗[J ]
M,K(Ω), (2.6a)

Ĥrot |JKM〉 =
[
AJ(J + 1)− (C − A)K2

]
︸ ︷︷ ︸

EJ,K

|JKM〉 , (2.6b)

where D∗[J ]
M,K are the well-known Wigner-D matrices [15], and EJ,K are the rotational ener-

gies. K andM are again the angular momentum projections onto the body-�xed c axis and
the space-�xed Z axis, respectively. Since the rotation is de�ned in the molecular frame,
the rotational energies are degenerate with respect to M . In the case of linear molecules
(C−1 = 0), the rotation around the c axis is energetically not possible (K = 0) and the
rotational energies simplify to AJ(J + 1). For general asymmetric-top rotors, the kinetic
operator

Ĥrot =
A+B

2
Ĵ2 +

2C − A−B
2

Ĵ2
0 +

A−B
2

[
Ĵ2

+1 + Ĵ2
−1

]
, (2.7a)

Ĥrot |JτM〉 = EJ,τ |JτM〉 , (2.7b)

mixes di�erent K states such that K is no longer a good quantum number. The rota-
tional eigenstates |JτM〉 are superpositions of |JKM〉 [40]. It is not possible to give an
analytic expression for the rotational energies EJ,τ in contrast to the rotational energies of
symmetric-top rotors, EJ,K . The angular momentum operators are rewritten as spherical
tensor operators Ĵ0,±1 in the body-�xed frame.

Similar to the relation between x̂ and p̂x, where the localization of the wavefunction in
real space requires the wavefunction to be delocalized (coherent superposition) in momen-
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tum space, a localization of the rotational wavefunction at speci�c Euler angles requires
a coherent superposition of rotational states, |JKM〉. Coherent superpositions of di�er-
ent J,K, and M states are needed to localize the rotational wavefunction in ϑ, χ, and ϕ,
respectively. Rotational wavepackets of a symmetric-top rotor can be written as

|Ψ(t)〉 =
∑
J,K,M

cJ,K,M(t)e−i EJ,K t |JKM〉 . (2.8)

The time evolution of the rotational wavepacket is determined by the time-dependent
Schrödinger equation,

i
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (2.9)

where Ĥ(t) is de�ned in Eq. (2.3).

Alignment Revivals

The coe�cients cJ,K,M(t) do only change in time when an aligning potential is present. If
no external �eld is present, cJ,K,M(t) are time-independent constants. For linear molecules,
all rotational energies EJ,K=0 = AJ(J + 1) are multiples of A. Hence, the rotational
wavepacket shows a repeating pattern in time called revivals. The revival period is Trev =
π/A [52]. Often the rotational period is given by Trev = 1

2A
[53], where A is given in Hz

instead of energy units.

Additionally, there are features at Trev/2 (half revivals) as shown in Fig. 2.5. At Trev/2
neighboring rotational states swing out of phase leading to an antialignment of molecules.
Quarter revivals at Trev/4 do only occur for molecules with the appropriate spin statis-
tics [41, 54]. For example, 16O2 has two nuclear spins of I = 0. Due to the overall
symmetry of the molecular wavefunction (vibronic + rotational + nuclear spin), only ro-
tational states with an odd J are allowed and, therefore, quarter revivals can be seen [55].
In the molecule 79Br-81Br the two atoms are distinguishable and all rotational states have
the same spin weight [44]. Hence, no quarter revivals are visible.

The revival features do also exist for symmetric-top molecules. The additional degree of
freedom (K 6= 0 is possible) does not change the nature of these features. In asymmetric-
top molecules no true revival structure can be found, since the rotational energies are
non-commensurable [15]. However, revival-type behavior has been observed [53], which
lasts only for a �nite amount of time till the rotational states are totally dephased. The
most common revival-like behaviors are C- and J-type revivals, where J-type revivals have
a period of 1/(B + C) and occur for nearly symmetric-top molecules (B ≈ C) [53, 56].
Revivals of the type J are common in planar molecules and have a period 1/(4C), where
C is the rotational constant of the molecular c axis, which points perpendicular to the
molecular plane [57].
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Figure 2.5: The degree of alignment
〈cos2 θ〉 (t) is shown for the symmetric-
top molecule CF3Br. The di�erent regimes
of alignment dynamics are shown ranging
from purely impulsive alignment (a) via
mostly non-adiabatic (b) and quasi-adiabatic
alignment (c) to perfectly adiabatic align-
ment (d). The pulse duration changes from
50 fs (a) over 10 ps (b) and 95 ps (c) to 1 ns
(d). The revival period 1/(2A) of CF3Br
seen in (a) is close to 240 ps. This �gure
is taken from Ref. [14]. Copyright c© 2008
American Institute of Physics (AIP).

The repeating revival behavior of symmetric-top molecules allows one to generate the
alignment �rst and to use/probe the alignment at a later time [52, 58]. Revivals can be
also used to increase the degree of alignment step-by-step by using several pulses separated
by the revival period [45, 59]. Applying pulses at half or quarter revivals allows one to
control the subsequent revival structure [55].

Adiabatic and Non-Adiabatic Alignment

To be able to generate and to use these revivals, it is necessary that the laser pulse kicking
the molecule is short compared to Trev. This type of alignment scheme is known as impulsive
or non-adiabatic alignment [10, 60]. Since typical rotational periods are in the picosecond
to nanosecond regime, impulsively aligning pulses are typically in the femtosecond regime.
Pulses that are much longer than the rotational period lead to adiabatic alignment [35].

In the adiabatic regime, the alignment follows the envelope of the laser pulse and returns
after the pulse to its initial state. Impulsive alignment gives the molecules a kick such that
the molecular alignment dynamics persist after the pulse is over. Furthermore, impulsive
alignment has been a very attractive technique to achieve alignment, since the molecule can
be probed under �eld-free condition [49]. Figure 2.5 shows the di�erent response behaviors
of the symmetric-top molecule CF3Br, which ranges from impulsive alignment in panel (a)
to adiabatic alignment in panel (d).
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Besides the laser pulse, the degree of alignment also depends on the rotational tem-
perature of the molecules. As one may expect, with higher temperature the degree of
alignment goes down [14]. This is true in the impulsive as well as in the adiabatic case.
For both cases it is possible to derive an analytic expression for the maximum possible
degree of alignment depending on the pulse parameters and the rotational temperature
of the molecules [61]. The rotational temperature of the molecules also has an impact on
the characteristic rotational period, which becomes shorter for increasing temperatures.
Hence, higher temperatures lead to more adiabatic-like alignment behavior [14, 62].

Recently, quantum-state-selection techniques have been used to select only speci�c
rotational states out of the thermally populated sea of rotational states [26, 63] in order
to improve the alignment by minimizing the negative impact of temperature. An almost
perfect 1D alignment of 〈cos2 ϑ2D〉 = 0.97 was achieved with this scheme [26].

Very high degrees of alignment can be also reached with a combination of adiabatic
and impulsive alignment [64]. A very popular technique is to use a long pulse, which is
turned on adiabatically and turned o� abruptly such that the molecule can be probed �eld-
free [61, 65, 66]. Around the times of the turn-o�, a second short pulse is used to �kick� the
molecules into an even higher degree of alignment. This technique has become particularly
popular to align asymmetric-top molecules in 3D under �eld-free conditions [23].

Non-adiabatic �eld-free 3D alignment via multiple femtosecond pulses is also possi-
ble [39, 51]. However, with such a pulse con�guration it is much harder to achieve 3D
alignment than 1D alignment [67]. I discuss �eld-free 3D alignment in Sec. 2.3.1. If it
is not so important to get 3D alignment under �eld-free condition, adiabatic alignment
schemes with an elliptically polarized pulse are quite powerful [48].

2.1.4 Molecular Orientation

For molecular orientation, it is necessary that the energy corrections E(1)(ω) and E(3)(ω)
contribute to the potential Û(ω) [see Eq. (2.2)]. As discussed in Sec. 2.1.2, an optical
monochromatic pulse cannot induce an orienting potential (i.e., E(2n+1)(ω) = 0). The
reason is in the optical period, which is much shorter than the typical rotational time scale.
For static electric �elds Estatic, where the period goes to in�nity, this is not true anymore,
and the coupling to the permanent dipole moment µ leads to an orienting potential

U(ϑ, t) = Estatic µ cosϑ. (2.10)

Common static �eld strengths lie in the range of 102�105 V/cm (≈ 10−8�10−5 a.u.) [68, 69].
Such weak �elds only a�ect the rotational states when coupled to µ leading to the energy
correction E(1)(ω) [70]. Since optical laser pulses have been proven to be very successful
in aligning molecules, several groups have worked on orienting molecules by combining
static electric �elds with optical laser pulses [68, 71, 72]. A schematic illustration of this
technique is shown Fig. 2.6.
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Figure 2.6: A schematic illustration
of 1D orientation of a linear molecule
by means of a combination of a weak
static electric �eld and optical laser
pulses. The coupling of the dc �eld
to the permanent dipole moment of
the diatomic molecule orients the
molecule. Without any �eld the
molecules are randomly oriented (a).
Applying optical laser pulses aligns
the molecules (b). The combination
of static and optical �elds (c) can be
used to achieve high degrees of ori-
entation. This �gure is taken from
Ref. [73]. Copyright c© 2009 Nature
Publishing Group (NPG).

For non-polar molecules (µ = 0), multi-color pulses have to be used in order to orient
molecules [18, 74, 75]. In this case, the orientation is accomplished through the coupling
of the electric �eld to the hyperpolarizability tensor β (i.e., E(3) energy correction). Par-
ticularly for short pulses with high electric �eld strengths, it was shown that it is possible
to achieve orientation via the hyperpolarizability [25, 74, 76]. In recent experiments, it has
been seen that orientation substantially enhances when ionizing intensities are reached [77].
Similar to the case of alignment, earlier works have focused �rst on accomplishing �eld-free
1D orientation [71] and later 3D orientation [78].

The quality of orientation depends highly on the rotational temperature [76, 79, 80].
Many systematic studies have been performed to �nd the optimal setup for maximizing
the orientation in a given molecule [74, 80, 81]. Very high degrees of orientation can
be reached when quantum-state-selection techniques are combined with orienting static
�elds and impulsively aligning femtosecond pulses. This has been demonstrated with NO
molecules, where an observed degree of orientation of 〈cosϑ〉 = −0.74 has been seen [82].

Recently, progress has been made in using terahertz (THz) pulses to orient molecules.
The cycle periods is now in the picosecond regime and becomes comparable to the charac-
teristic rotational time scale [80, 83�86]. As a consequence, the requirement for averaging
the pulse over a period is not ful�lled anymore. The instantaneous electric �eld can, now,
successfully couple to the permanent dipole moment. In contrast to static �elds, the ori-
enting potential becomes time-dependent. Interesting new rotational motions may appear
by using THz pulses together with optical pulses, which lead to high degrees of orientation.
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2.2 My Developments

2.2.1 XALMO

In this section, I discuss in more detail the 3D alignment package xalmo (X-ray Scattering
of laser-aligned Molecules) I have developed. It is a generalization of earlier works [87],
which was limited to linear and symmetric-top rotors. Most physical ideas and concepts
implemented in the program are already presented in my publication [67] presented in
Sec. 4.1. The scope of xalmo ranges

• from linear molecules to asymmetric-top molecules,

• from linearly polarized pulses to elliptically polarized pulses,

• and from non-adiabatic alignment to adiabatic alignment.

For each possible alignment scenario, all available symmetries are exploited. The angular
momentum projection M is a conserved quantity for linearly polarized light but not for
elliptically polarized light. The quantum number K is a conserved quantity for linear
and symmetric-top molecules but not for asymmetric-top molecules. More details of the
symmetry considerations are discussed at the end of this section. The xalmo package
consists of three main program parts:

1. alignment propagation

2. temperature extrapolation

3. 3D x-ray scattering pattern.

In part (1) of xalmo, the time propagation of the rotational wavepacket is performed.
The program is able to simulate impulsive and adiabatic alignment dynamics as well
as everything in between. This wide dynamical range requires a numerical propagation
of Eq. (2.9). In this way the laser-matter interaction is treated non-perturbatively and
any kind of alignment pulse or pulse train can be simulated (as long as the criterion for
cycle-averaging holds). Besides the calculation of time-dependent alignment signals like
〈cos2 θFg〉 (t), alignment probability distributions can be calculated. In part (3) of xalmo,
these alignment probability distributions are used to calculate x-ray di�raction patterns for
a given x-ray pulse. The impact of non-perfect alignment on the x-ray di�raction pattern
is discussed in more detail in Sec. 2.3.2.

Part (2) of xalmo extrapolates the alignment dynamics to other (mostly lower) rota-
tional temperatures, T . This is possible, since the in�uence of T is partially factored out.
The initially thermally populated rotational states are incoherent with each other. Hence,
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each initial state can be separately propagated and the overall signal is built up at the
end. Adjusting the thermal weights of each initial state allows one to quickly assemble the
degree of alignment for any temperature provided all required contributions are already
calculated. This implemented strategy is particularly favorable for studying temperature
dependencies. Also the demand on later calculations at higher temperature is strongly
reduced, since calculations of parts of the needed initial states are already preformed.

E�ciency Considerations

Time Propagation In the following, I focus on some details of my implementation of
solving as e�ciently as possible the time-dependent Schrödinger equation [cf. Eq. (2.9)]
with the initial condition |Ψ(−∞)〉 = |JτM〉. For symmetric-top molecules, τ is sub-
stituted by K. By expressing the wavepacket in the basis of the rotational eigenstates,
it is easy to transform |Ψ(t)〉 into the interaction picture, where the alignment potential
reads ÛI(t) = e+iĤrottÛ(t)e−iĤrott. Propagating in the interaction picture has the advantage
that the time evolution is exact when the pulse is over. The kinetic operator Ĥrot can be
substituted by the rotational energies EJK for symmetric-top or EJτ for asymmetric-top
molecules, since the rotational wavepacket is expressed in the basis of the rotational eigen-
states [see Eqs. (2.6)�(2.7)]. In the following, I use EJτ to indicate the rotational energies
(for asymmetric-top and symmetric-top molecules). However, evaluating an exponential
function is numerically more expensive than preforming an addition or multiplication.

To improve the e�ciency I discretize the equation of motion in the interaction picture
and transform it back into the Schrödinger picture. This has the consequences that instead
of the terms e±iEJτ t only the term e−iEJτ dt appears in the equation of motion (for more
details see my publication in Chap. 4.1/Ref. [19]). The term e−iEJτ dt has the advantage
that it only depends on the time step dt and not on the overall time t. Therefore, it is
su�cient to evaluate this phase factor only once at the beginning of the calculation and
store it. At a later time, this phase factor needs to be only loaded instead of loading the
rotational energies and calculating the phase factors for the overall time t. Only when dt
changes the term e−iEJτ dt needs to be reevaluated. This implementation can speed up the
calculations by a factor 2 or more. Additionally, I implemented an adjustable time step
scheme, which is particularly advantageous when a substantial part of the propagation is
done under �eld-free conditions.

Symmetry Aspects Solving the time-dependent Schrödinger equation for 3D alignment
is much more demanding than for 1D alignment. The alignment potential Û1D(t) given by
Eq. (2.5) depends only on ϑ�more speci�cally only on D

[2]
00(ϕ, ϑ, χ). As a consequence,

the matrix elements 〈JKM | Û1D(t) |J ′K ′M ′〉 ∝ δK,K′δM,M ′ do not change K andM , which
are preserved during the entire propagation. Furthermore, the odd or even character of
the initial angular momentum J is preserved as well, since J can only change in steps of
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2. Note, for an orienting potential even and odd J can occur at the same time. The size
of the con�guration space needed to describe |Ψ(t)〉 for 1D alignment with the initial state
|JKM〉 is rather small with |(J + 2n)KM〉 , n ∈ Z. It scales like Jmax/2, where Jmax is the
maximum angular momentum needed.

For 3D alignment, the potential Û(t) has to change also theK andM states as discussed
in Sec. 2.1.2. The size of the required con�guration space is, therefore, proportional to
2J3

max. For common alignment scenarios, Jmax is around 50. Hence, the calculations are 104

times more expensive. The con�guration space can be reduced by a factor 4 by considering
that the Hamiltonian is invariant under the operationsM → −M and K → −K. By being
aware that K and M can only change by 2, another factor 4 can be saved. It is also true
for asymmetric-top molecules even though K is not a good quantum number. However,
the rotational eigenstates of an asymmetric-top molecule separate into two classes with
only even and only odd K numbers (for more details see Chap. 4.1/Ref. [19]). The xalmo
package is written in a way such that all available symmetries in the molecular frame (K
symmetry) and in the laser frame (M symmetry) are exploited independently.

Another time consuming factor is the calculation of the alignment probability distribu-
tion ρ(ϕ, ϑ, χ) needed for the x-ray scattering pattern. Here, a factor 16 can be gained by
exploiting 4 symmetries in the Euler angles, which correspond to C2 rotations around two
axes in the molecular frame and two axes in the laser frame.

2.2.2 The Measure
〈
cos4 ϑ

〉
An alignment is commonly measured in terms of directional cosines 〈cos2 ϑFg〉, where
F ∈ {X, Y, Z} refers to a space-�xed axis and g ∈ {a, b, c} refers to a molecular axis (see
Sec. 2.1.1). Higher order moments in cos2 ϑFg (cosϑFg) are needed to get more information
about the detailed alignment (orientation) distribution than just the statistical mean. The
uncertainty of an observable Ô is such a quantity that requires higher moments. It is de�nes
by (∆Ô)2 = 〈Ô2〉 − 〈Ô〉2. The uncertainty in the orientation is given by (∆ cosϑFg)

2 =
〈cos2 ϑFg〉 − 〈cosϑFg〉2. If orientation is not possible (i.e., 〈cosϑFg〉 = 0) the uncertainty
is directly given by 〈cos2 ϑFg〉, which is the observable of choice for alignment scenarios.
The alignment uncertainty is, therefore, given by (∆ cos2 ϑFg)

2 = 〈cos4 ϑFg〉 − 〈cos2 ϑFg〉2.
For studies comparing classical and quantum behaviors in the alignment dynamics, the
uncertainty ∆ cos2 ϑFg becomes a useful quantity to look at, since higher order moments
in the observable (like cos4 ϑFg) are generally more sensitive to quantum behavior than the
statistical mean (i.e., 〈cos2 ϑFg〉).

For structural reconstruction from x-ray scattering patterns from laser-aligned molecules
(see Sec. 2.3.2), it could become helpful to have more information about the alignment dis-
tribution than the mean value, 〈cos2 ϑFg〉. Methods like phase-retrieval algorithms [88�90]
are used to extract the molecular structure out of the di�raction pattern. Phase-retrieval
techniques commonly assume that the di�raction pattern is one perfectly coherent scatter-
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ing image. Imperfect alignment, however, leads to incoherent averaging. Not taking into
account these incoherent e�ects signi�cantly reduces the resolution of the reconstruction
(see Sec. 2.3.2). Methods including incoherent contributions in the reconstruction algo-
rithm have been demonstrated to be very successful in improving the resolution. These
schemes are known as partial coherence schemes [91]. Knowing more about the imper-
fect alignment (e.g., via ∆ cos2 ϑFg) can help in �nding good discretization schemes for an
incoherent averaging due to imperfect alignment.

To evaluate ∆ cos2 ϑFg, the matrix elements 〈JKM | cos4 ϑFg |J ′K ′M ′〉 expressed in the
basis of the rotational eigenstates |JKM〉 have to be derived. They can be easily calculated
once the operator cos4 ϑFg is formulated in terms of Wigner-D matrices. The directional
cosines cosϑFg = eLF ·eMg can be written in terms of the Cartesian basis vectors eLF and eMg
of the space-�xed (laser) and body-�xed (molecular) frame, respectively. cosϑFg are also
the matrix elements of the rotation matrix R(Ω), which connects the the two frames [15]
(see Fig. 2.1). Note that Ω = (ϕ, ϑ, χ) represents the full set of Euler angles. The Wigner-
D matrices D[1]

M,K := D
[1]
M,K(Ω) are also matrix elements of the rotation matrix R(Ω). This

is the case, when the spherical basis vectors eLM and eMK with K,M ∈ {0,±1} are used to
de�ne the space-�xed frame and the body-�xed frame, respectively. In the spherical basis,
the transformation between the body-�xed frame and the space-�xed frame is given by

eLM =
∑
K

D
[1]
M,K eMK . (2.11)

The orthogonality relation of (complex) spherical basis vectors reads,

e∗p · eq = (−1)p e−p · eq = δp,q, p, q ∈ {±1, 0}. (2.12)

After expressing the Cartesian vectors in the spherical basis,

eLX/Y =

√
±1

2

(
eL−1 ∓ eL1

)
, eLZ = eL0 , (2.13a)

eMa/b =

√
±1

2

(
eM−1 ∓ eM1

)
, eMc = eM0 , (2.13b)

the directional cosines can be expressed in terms of the Wigner-D matrices:

cos θZc = eLZ · eMc =
∑
K

D
[1]
0,K eMK · eM0 = D

[1]
0,0 , (2.14a)

cos θXc/Y c =

√
±1

2

(
D

[1]
−1,0 ∓D[1]

1,0

)
, (2.14b)

cos θZa/Zb = −
√
±1

2

(
D

[1]
0,1 ∓D[1]

0,−1

)
, (2.14c)

cos θXa/Y b =
1

2

[(
D

[1]
1,1 +D

[1]
−1,−1

)
∓
(
D

[1]
1,−1 +D

[1]
−1,1

) ]
, (2.14d)

cos θY a/Xb =
1

2i

[(
D

[1]
−1,1 −D[1]

1,−1

)
±
(
D

[1]
1,1 −D[1]

−1,−1

)]
. (2.14e)
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The matrices cos4 ϑFg can now be easily calculated by using the relation [15]

D
[J1]
M1,K1

D
[J2]
M2,K2

=
∑
J

〈J1M1; J2M2| JM〉 〈J1K1; J2K2| JM〉D[J ]
M,K . (2.15)

Finally, the matrix cos4 ϑFg can be expressed in terms of the Wigner-D matrices. Here,
�ve out of the nine combinations of cos4 ϑFg are stated:

cos4 θZc =
[
D

[1]
0,0

]4

=

[
1

3
D

[0]
0,0 +

2

3
D

[2]
0,0

]2

=
1

5
D

[0]
0,0 +

4

7
D

[2]
0,0 +

8

35
D

[4]
0,0, (2.16a)

cos4 θXc/Y c =
1

5
D

[0]
0,0 −

2

7
D

[2]
0,0 +

3

35
D

[4]
0,0 +

√
1

70
(D

[4]
4,0)s ±

√
6

49
(D

[2]
2,0)s ∓

√
2

245
(D

[4]
2,0)s,

(2.16b)

cos4 θXa/Y b =
1

16

[
16

5
D

[0]
0,0 +

16

7
D

[2]
0,0 ∓

8

7

√
6(D

[2]
2,0)ss +

24

7
(D

[2]
2,2)s (2.16c)

+
18

35
D

[4]
0,0 ∓

√
72

245
(D

[4]
2,0)ss +

4

7
(D

[4]
2,2)s

+

√
18

35
(D

[4]
4,0)ss ∓

√
4

7
(D

[4]
4,2)ss + (D

[4]
4,4)s

]
.

To keep the equations reasonably short, the symbols

(D
[L]
K,M)s =


D

[L]
K,M +D

[L]
−K,M +D

[L]
K,−M +D

[L]
−K,−M , K 6= 0 6= M

D
[L]
K,0 +D

[L]
−K,0 , K 6= 0 = M

D
[L]
0,M +D

[L]
0,−M ,M 6= 0 = K

(2.17)

and (D
[L]
K,M)ss = (D

[L]
K,M)s + (D

[L]
M,K)s have been introduced.

2.3 Applications

In this section, I discuss two applications of molecular alignment I have worked on. One
project discusses �eld-free 3D alignment with multiple pulses in Sec. 2.3.1. In Sec. 2.3.2, the
possibility to use 3D aligned molecules to obtain x-ray di�raction patterns is investigated.
These di�raction patterns are used to reconstruct the molecular structure. Both projects
have led to publications, which are presented in Sec. 4.

Besides my two projects, there are of course many other applications of aligned molecules;
also in combination with my second �eld of study: ionization dynamics. Tunnel ionization,
for instance, can depend on the alignment or even on the orientation of molecules [92, 93].
In heteronuclear molecules like OCS, the ionization potential is angle-dependent. By using



2.3. APPLICATIONS 23

circularly polarized light, it is possible to mark via the vector potential from which end of
the molecule the ionized electron originated from [92]. This experiment is an example that
shows how important it is to have a good control of the rotational degrees of freedom of
the molecule.

Molecular alignment can also in�uence the photoabsorption cross section of a molecule.
Particularly when the absorption is favored along one speci�c molecular axis, the cross
section depends on the angle between the favored molecular axis and the polarization
direction of the photon [47]. This has been experimentally demonstrated on CF3Br, where
the x-ray absorption cross section depends on the alignment of the C-Br molecular axis [16].

HHG is another mechanism where the alignment of molecules matters. The HHG
process can be separated into 3 main parts: (1) an electron gets tunnel-ionized by a strong
laser �eld, (2) the same �eld accelerates the electron �rst away and then back to the ion,
(3) the electron recombines with the ionic hole state and emits a highly energetic photon
(much higher than the photon energy of the driving laser pulse). In Chap. 3, the physics
behind HHG is discussed in more detail.

Figure 2.7: The HHG spectrum of CO2 is shown as a function of pump-probe delay (and
degree of alignment in panel a). The pump pulse aligns the molecule and the probe pulse
drives the HHG process. The degree of alignment as a function of the pump-probe delay
is shown in the background. Structural information about the molecular orbitals can be
gained from these modi�cations of the HHG spectrum. This �gure is taken from Ref. [94].
Copyright c© 2011 Nature Publishing Group (NPG).

When molecules are used for the HHG process, it has been observed that the emitted
HHG spectrum depends on the alignment of the molecule�speci�cally the alignment of the
highest occupied molecular orbitals (HOMOs) with respect to the returning electron [95].
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The angle dependence of the HHG spectrum is not just a scaling of the overall HHG
yield. Changing the alignment direction of the molecule leads also to modi�cation in the
substructures of the HHG spectrum [94, 96, 97].

In Fig. 2.7 the HHG spectrum of CO2 is shown as a function of alignment angle between
the molecular symmetry axis and the polarization direction of the linearly polarized strong
�eld pulse. It has been schown that structural informations about the HOMO orbitals can
be extracted from the HHG spectrum [94, 98].

2.3.1 Using Multiple Pulses to 3D-Align SO2 under Field-Free
Conditions

As discussed in Sec. 2.1.2, the energy spacings between the rotational eigenstates of an
asymmetric-top rotor are non-commensurable, and, therefore, no true revival pattern can
be observed in contrast to linear and symmetric-top molecules. However, for a short time
asymmetric-top molecules show revival features called A-, C-, and J-revivals [29].

In my publication [67] �Alignment of asymmetric-top molecules using multiple-pulse
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Figure 2.8: The alignment dynamics of all three molecular axes of SO2 are shown. The short
pulses (indicated by dashed lines) kick the molecules at the J revivals with linearly and
with elliptically polarized pulses, respectively. This �gure is taken from my publication [67].
Copyright c© 2010 American Physical Society (APS).
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trains� (see Sec. 4.2) I address the question whether or not it is possible to improve �eld-
free 3D alignment of asymmetric molecules with multi-pulse schemes similar to those used
for improving 1D alignment of linear molecules [45]. Field-free alignment can be only
achieved with short femtosecond pulses such that the alignment dynamics is non-adiabatic.
Speci�cally, I look at the asymmetric-top molecule SO2, which is close to a symmetric-top
molecule A ≈ B. First, I investigated to which extent pulses equally spaced by 1/(A+B)
(J revivals) improve the alignment.

In Fig. 2.8 the alignment dynamics of each molecular axis of SO2 is shown for linearly
and elliptically polarized pulses. As expected for linearly polarized pulses, only the most
polarizable c axis gets aligned. With elliptically polarized pulses also the second most
polarizable b axis can be aligned. However, the third molecular axis is counter-intuitively
not aligned. This lack of alignment is classically not possible, since the alignment of two
axes automatically aligns the third one as well. Here it is possible, since the degree of
alignment is rather weak and a connection to a classical picture cannot be made.
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Figure 2.9: The alignment dy-
namics of all three molecular axes
of SO2 are shown. The short
pulses kicking the molecules are
highlighted (red shaded region).
This �gure is taken from my pub-
lication [67]. Copyright c© 2010
American Physical Society (APS).

To improve on this technique, I proposed a new method of aligning asymmetric-top
molecules with elliptically polarized pulses, which arrive directly after each other as dis-
cussed in Ref. [99] for linear molecules with linearly polarized light. The results I have
obtained are shown in Fig. 2.9. The degree of alignment is signi�cantly enhanced for the
two most polarizable axes, whereas the least polarizable axis is almost not a�ected. Hence,
SO2 cannot be aligned in 3D with a sequence of short pulses.

Very recent studies on 3,5 di�uoroiodobenzene improved on my idea by using a com-
bination of linearly and elliptically polarized pulses. First results indicate it is possible to
improve on 3D alignment; particularly when the molecule is oblate3.

3private discussion at the GRC Multiphoton conference 2012
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2.3.2 X-ray Scattering from 3D-Aligned Naphthalene Molecules

An interesting application of aligned molecules is electron [100, 101] or x-ray [87] di�raction.
Particularly for single-molecule imaging [102, 103] it is favorable to know and to control
the orientation of the molecule such that an entire 3D di�raction pattern can be collected.
With the help of phase-retrieval algorithms it is possible to recover the phase information
of the di�raction pattern, which was lost during the measurement [88�90, 104]. New
approaches (namely multiwavelength anomalous di�raction) have also been developed to
determine the phase directly from the measurement [105].

A large number of molecules contributing to the scattering signal is advantageous, since
the scattering cross section is small�especially for large scattering angles [106]. When
molecules are periodically ordered as in a crystal, Bragg peaks [107] occur and their scat-
tering signal increases quadratically with the number of molecules. This quadratic increase
is very favorable and it is at the heart of x-ray crystallography [107]. Periodic ordering is
commonly exploited in order to determine the structure of macromolecules [107]. Unfor-
tunately, not all molecules (like membrane proteins) can be grown in a large crystal.

Recent advances have shown it is also possible to recover the molecular structure from
nanocrystals [108] (for a review see Ref. [109]). The high x-ray intensities are needed to
collect enough signal destroy the molecules during the x-ray pulse [102]. This obstacle of
molecular explosion can be overcome by making the x-ray pulse shorter than the time it
takes for the molecule to explode [102, 110, 111].

Another approach for collecting x-ray di�raction patterns uses gas phase molecules,
where up to 107 molecules can contribute to the scattering signal [16]. These molecules are
randomly positioned (not randomly aligned) in space and, therefore, the di�raction pattern
increases only linearly with the number of molecules. However, collecting signal over many
x-ray shots reduces the required intensity such that common 3rd generation synchrotron
sources like PETRA III at DESY4 or the Advanced Photon Source at Argonne National
Laboratory5 can be used.

All molecules have to be oriented and/or aligned simultaneously to be able to record a
single-molecule scattering pattern. Here is where laser alignment comes into play. Previous
works have looked at x-ray scattering from 1D aligned symmetric molecules [87, 112]. In
my publication [19] �Computational studies of x-ray scattering from three-dimensionally-
aligned asymmetric-top molecules� (see Sec. 4.1) I present an extension of this scheme to
x-ray scattering from 3D aligned asymmetric-top molecules. As an example molecule I used
Naphthalene (see Fig. 2.10), which is a planar molecule with a head-tail symmetry such
that orientation and alignment become indistinguishable. This is convenient, since di�erent
orientations add up incoherently and make it harder to reconstruct the molecular structure
with phase-retrieval methods, which assume perfectly coherent di�raction patterns.

4 http://hasylab.desy.de/facilities/petra_iii/index_eng.html
5 http://www.aps.anl.gov

http://hasylab.desy.de/facilities/petra_iii/index_eng.html
http://www.aps.anl.gov


2.3. APPLICATIONS 27

Figure 2.10: The structure of naph-
thalene (C10H8). All atoms lie in the
ac molecular plane. The coordinate
system is shown in the lower left cor-
ner. The cones symbolize the reso-
lution limit of the carbon atoms due
to imperfect alignment. This �gure
is taken from my publication [19].
Copyright c© 2010 American Physi-
cal Society (APS).

The positions of the atoms in the laser frame are not well de�ned due to the imperfect
alignment of the molecules (illustrated by the cones in Fig. 2.10). This uncertainty results in
an incoherent average of di�erent scattering patterns, which blurs out the scattering pattern
for large scattering angles (i.e., large momentum transfer Q of the x-ray photon) as seen
Fig. 2.11a. This has a direct consequence on the e�ective resolution in the corresponding
reconstructions shown in Fig. 2.11b. The worse the alignment the smaller is the useful part
of the di�raction patterns which can be fed into the phase-retrieval algorithm. Hence, the
e�ective resolution decreases with less 3D-aligned molecules.
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Figure 2.11: X-ray di�raction patterns (a) and their the corresponding reconstructed struc-
ture (b) are shown for di�erent degrees of alignment: (i) perfect alignment, (ii) T = 10 mK
and a 1 ps x-ray pulse, (iii) T = 1 K and a 100 ps x-ray pulse, and (iv) T = 10 mK
and a 100 ps x-ray pulse. The aligning IR pulse is 100 ps long and aligns the molecule
adiabatically. The �gures are taken from my publication [19]. Copyright c© 2010 American
Physical Society (APS).
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The main contribution to the imperfect alignment is the rotational temperature T
[cf. panels (iii) and (iv) in Fig. 2.11]. The length of the x-ray pulse does not have a
large in�uence as long as it is shorter or comparable with the adiabatic alignment pulse
[cf. panels (ii) and (iv) in Fig. 2.11]. The e�ective resolution is only better than the typical
distance between the atoms (∼ 1.4 Å) when the rotational temperature is less than 10 mK.
Quantum state selection techniques [26] could be used to improve the alignment but they
result in less scattering signal.

Another approach to improve on the reconstruction uses partial-coherence schemes in
the phase-retrieval algorithm [91]. It has been shown for partially coherent x-ray pulses that
such schemes improve the quality of the reconstruction [113]. Partial-coherence schemes
make explicit use of the fact that the �nal scattering pattern is an incoherent sum of co-
herent di�raction patterns. For x-ray scattering from 3D-aligned molecules, the incoherent
sum enters due to the imperfect alignment. Similarly it is expected that partial-coherence
schemes can be used to build in the e�ect of imperfect alignment.
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Chapter 3

Ultrafast Ionization Dynamics in Noble

Gas Atoms:
About Femtosecond and Attosecond Dynamics

3.1 Introduction

3.1.1 Description of Light-Matter Interaction

Electron excitations and ionizations induced by ultrashort laser pulses are key mechanisms
in attosecond physics [1]. The energy di�erence between electronic states determines the
time scale of the corresponding electronic motion. Typical energy di�erences between
electronic states of molecules and atoms lie within 0.1 − 100 eV. The corresponding time
scales are 50 as to 50 fs. The rapid technological progress in building lasers with sub-
femtosecond pulses [2, 3] makes it possible to study fundamental mechanisms in chemical
and physical processes in a time-resolved fashion [4]. The attosecond physics community
is closely tied to the strong-�eld physics community since, in one way or another, intense
laser pulses are involved (at least in the generation of attosecond pulses). Due to the wide
interest in these �elds, several review articles have been written in strong-�eld physics [2, 5�
9] and attosecond physics [1, 10�13], which focus more on ionization processes and system
dynamics, respectively.

Pump-probe approaches are particularly advantageous for time-resolved studies [14].
Each pump-probe con�guration corresponds to a snapshot and a sequence of snapshots
corresponds to a movie. The time resolution is determined by the ability to accurately
control the pump-probe delay τ , which can be already measured to subattosecond (zep-
tosecond) precision [15]. Many attosecond pump-probe experiments use a femtosecond
near-infrared (NIR) pulse and an attosecond ultraviolet (UV) pulse [1]. Either pulse can
be used as a pump or as a probe pulse (see Sec. 3.1.5 and Sec. 3.1.6). On the one hand,
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NIR pulses are usually strong-�eld pulses, which lead to non-perturbative tunnel ionization.
UV pulses, on the other hand, generally lead to electronic excitation and to perturbative
multiphoton ionization.

Pump-probe experiments can also be done with two UV pulses [16]. It is, however,
experimentally challenging if both UV pulses have low intensity, since the �nal signal
strength would be quite weak. This is not the case for UV pulses generated by free-
electron lasers (FELs) such as FLASH [17]. Here, the number of photons per pulse is quite
high and UV-UV pump-probe experiments do not su�er from low statistics [16, 18]. All
these di�erent types of pump-probe schemes are complementary to each other and enable
us to investigate many di�erent aspects in the ultrafast world [1].

Keldysh Parameter

A common measure for characterizing the nature of �eld-induced ionization is the Keldysh
parameter γ, which is given by [19]

γ =

√
Ip

2Up
, (3.1)

where Ip is the ionization potential of the electronic state and Up = E2

4ω2 is the ponderomotive
potential, which is the average energy of a free electron oscillating in the electric �eld
with amplitude E and frequency ω. The Keldysh parameter distinguishes between two
ionization regimes: perturbative (γ � 1) and non-perturbative (γ � 1) multiphoton
ionization. Figure 3.1 illustrates the physical pictures behind these two regimes.

However, recent studies [20] have found that γ alone is not always a rigorous measure
to decide whether or not the ionization is perturbative or non-perturbative. Particularly
for γ < 1 and photon energies comparable or larger than the ionization potential (ω & Ip)
the ionization process becomes more and more perturbative (contrary to what the Keldysh
parameter would suggest).

In the case of γ � 1, the ionization lies in the perturbative multiphoton (or few-photon)
regime. The light-matter interaction can be seen as a correction to the �eld-free system.
The system gets ionized by absorbing a certain number of photons (see Fig. 3.1(a)). In other
words, the �nal state of the system is a result of a well-de�ned (and countable) number n
of light-matter interactions. These n light-matter interactions are exactly captured by the
nth-order perturbation correction. Therefore, this regime is the perturbative multiphoton
regime.

The ionization is considered to be in the non-perturbative multiphoton (or tunneling)
regime1 for γ � 1. Here, the Coulomb potential of the system rather than the �eld is

1γ � 1 is also commonly referred to as the quasistatic limit, since γ goes to zero for a given �eld
strength and ω → 0.
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Figure 3.1: The perturbative (a) and the non-perturbative (b) multiphoton regimes are
illustrated. This �gure is taken from http://www.desy.de. Copyright c© 2007 DESY.

considered to be the perturbation. Furthermore, the light-matter interaction is pictured
as a local potential that strongly distorts the Coulomb potential, and already after a few
Bohr radii the �eld-induced potential starts to dominate the motion of the electron (see
Fig. 3.1(b)). This distortion creates a potential barrier, which can be overcome by the
electron by tunneling through this barrier and, consequently, out of the system. Once the
electron is tunneled to the outer side of the barrier, the Coulomb potential becomes negli-
gible and the dynamics is govern by the �eld-induced potential. Note, not just quantized
photon picture has been dropped but also the number of photons an electron absorbs dur-
ing ionization becomes an ill-de�ned quantity due to the non-perturbative nature of tunnel
ionization.

To distinguish experimentally these two ionization regimes, it is quite convenient to
study the photoelectron spectrum, speci�cally the energy distribution [20]. In the tunneling
limit, no characteristic photoelectron energies are observed whereas in the perturbative
regime the photoelectron spectrum becomes discrete and the positions of the energy peaks
reveal directly the number of photons the electron has absorbed during ionization.

Minimal Coupling Hamiltonian

By solving the full time-dependent Schrödinger equation (TDSE),

i
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (3.2a)

both ionization limits as well as everything in between can be fully described. How-
ever, making approximation to the Hamiltonian often helps to understand/identify better

http://www.desy.de
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the dominant processes (e.g., see Sec. 3.1.3). Following the principle of minimal cou-
pling [21, 22], the interaction between light and matter is captured by replacing the
canonical momentum p̂ by the kinetic momentum v̂(t) := p̂ − α qeA(r, t) and adding
a scalar potential qe φ(r, t) to the Hamiltonian of �eld-free, non-interaction particles, i.e.,
Ĥ =

∑
n p̂

2
n/2. Here, qe is the charge of the electron and the speed of light in atomic units

is given by c = α−1 ≈ 1
137

, where α is the �ne-structure constant.

In the Coulomb gauge, ∇̂ ·A(r, t) = 0, the scalar potential φ(r) represents the instan-
taneous Coulomb potential generated by the charged particles, and the vector potential
A(r, t) represents the propagating light �eld. The minimal coupling Hamiltonian for the
electronic system reads

Ĥ(t) =
∑
n

[
p̂n − α qeA(r̂n, t)

]2
2

+
∑
n

Z qe
r̂n

+
∑
n6=m

q2
e

|r̂n − r̂m|
, (3.3)

where n runs over all electrons in the system, and Z is the nuclear charge. The Coulomb
interaction between the charged particles, which is due to the exchange of virtual photons,
is commonly not considered as a part of the light-matter interaction. Here, there term
light-matter interaction refers to the interaction with external light �elds�speci�cally the
electric �eld component. Consequently, the terms describing the light-matter interaction
are

Ĥint(t) = −α qe
∑
n

A(r̂n, t) · p̂n +
∑
n

α2 q2
e

2
A2(r̂n, t), (3.4)

where we have used the Coulomb gauge to rewrite the �rst term in Eq. (3.4). Often
the space dependence of the light pulse can be dropped. This is known as the dipole
approximation, i.e., A(r, t)→ A(t). This approximation is valid as long as the wavelength
is large compared to the system size. Typical wavelengths in strong-�eld and ultrashort
pulses lie within tens to thousands of nanometers (UV to IR light) which are large compared
to the size of atoms and molecules (sub-Ångström to a few nanometers).

The A2(t) term is a global energy shift and is normally dropped, since it has no a�ect
on the electronic dynamics (as long as the dipole approximation is valid). For scattering
experiments, where the wavelength is smaller than the object size, the dipole approximation
cannot be made. In fact, the non-dipole terms ofA2(r, t) are essential for describing (x-ray)
scattering [23]. Without them no scattering pattern would occur.

Equivalent Forms of the Light-Matter Interaction

By performing a unitary transformation of the the wavefunction, alternative forms of the
Hamiltonian can be obtained, which are all equivalent to each other [24]. The transformed
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wavefunction and the transformed Hamiltonian read

Ψ(r, t)→ e−iχ(r,p,t) Ψ(r, t), (3.5a)

Ĥ(t)→ eiχ(r,p,t)Ĥ(t)e−iχ(r,p,t) − ∂ χ(r,p, t)

∂t
, (3.5b)

where χ(r,p, t) can be any real function. Hence, there exist an in�nite number of possi-
bilities [24]. These transformations are often called gauge transformations as well [24, 25].
However, we will refer to these di�erent forms as frames so that we do not confuse them
with the gauge transformations (like the Coulomb gauge) that are based on fundamental
invariances of nature2.

Rather than just dropping the A2(t) in Eq. (3.4) it can be also transformed away with
χA(t) = α2 q2e

2

∫ t
−∞dt

′A2(t′). There are three popular choices for representing the light-
matter interaction. The light-matter interaction in the velocity frame with χV (r, t) =
0 [+χA(t)] is already shown in Eq. (3.4). The light-matter interaction in the length

frame [26] and the Kramers-Henneberger (or acceleration) frame [27, 28] is given by

Ĥint(t) = −qeE(t) ·
∑
n

r̂n with χL = −α qeA(t) ·
∑
n

r̂n + χA, (3.6a)

Ĥint(t) =
∑
n

Z qe
|r̂n − a(t)| −

Z qe
|r̂n|

with χKH = −α qe
∫ t

−∞
dt′A(t′) ·

∑
n

p̂n + χA. (3.6b)

The Kramers-Henneberger frame [see Eq. (3.6b)] corresponds to a coordinate transforma-
tion into the acceleration frame of the electron, where the electronic position is displaced by
a(t) = −α qe

∫ t
−∞dt

′A(t′). The subtraction of the �eld-free nuclear potential in Eq. (3.6b)
means the resulting overall Hamiltonian is identical to the �eld-free Hamiltonian just with
a time-dependent nuclear potential

∑
i

Z qe
|r̂i−a(t)| . The electron-electron interaction is not

a�ected by this transformation, since the relative distances between electrons is unchanged
by this transformation. In the Kramers-Henneberger frame, the coordinates are trans-
formed such that one would stay in the rest frame of the electron if it is freely moving in
the �eld (without any Coulomb potentials). As a result, the nuclei are moving and not the
electrons as in the other two frames. Therefore, the Kramers-Henneberger frame is also
known as the acceleration frame.

Equation (3.6a) is the most popular choice for the light-matter interaction, where
E(t) = −α∂tA(t) is the electric �eld. The intuitive picture that comes with treating
the light-matter interaction as a local potential, E(t) · r̂, is one reason for its popularity.

From now on, we explicitly set the electronic charge qe = −1.

2 Here χ is only a function of time and space and transforms also the vector potential A→ A+α−1∇χ
and the scalar potential φ→ φ− ∂tχ such that the minimal coupling Hamiltonian stays invariant [22].
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3.1.2 Photoionization

One of the best studied light-matter interaction processes is one-photon ionization or simply
photoionization [29, 30]. Photoionization is often discussed in terms of cross sections, which
are measures of how likely a photon interacts with the object. The photoionization cross
section of an N -electron system in the dipole approximation is given by [23, 31]

σ(ω) =
4π2 α

ω

∑
F

∣∣∣∣∣
N∑
n=1

〈ΨF | ε · p̂n |ΨI〉
∣∣∣∣∣
2

δ(EF − EI − ω), (3.7)

where ω is the photon energy, EI is the energy of the initial state ΨI , and EF is the
energy of the �nal state ΨF . The delta distribution enforces the condition EF − EI = ω,
which ensures energy conservation. The polarization direction of the absorbed photon is
given by ε. The continuum states ΨF are energy normalized, i.e., 〈ΨF |ΨG〉 = δ(EF −EG).
Equation (3.7) characterizes the absorption of one photon and can be derived from 1st-order
perturbation theory.

The photoionization cross section in Eq. (3.7) is given in terms of the momentum
operator, p̂n. Alternative and equally exact expressions for the electronic dipole transitions
can be found. In order to do so, the following commutator relations involving the exact
Hamiltonian are used:

p̂n = −i[r̂n, Ĥ], (3.8a)

[p̂n, Ĥ] = −i(∇̂nV̂ ) = −i Z r̂n
|r̂n|3

, (3.8b)

with V̂ = −∑n Z/|r̂n|+
∑

n6=m 1/|r̂n − r̂m| being the exact electronic potential consisting
of the nuclear-electron and electron-electron Coulomb interactions. If the initial and the
�nal states are energy eigenstates, the commutators in Eqs. (3.8) can be easily evaluated.
The relationship between the corresponding matrix elements are

(EF − EI) 〈ΨF |
∑
n

p̂n |ΨI〉 = i 〈ΨF |Z
∑
n

r̂n
|r̂n|3

|ΨI〉 , (3.9a)

〈ΨF |
∑
n

p̂n |ΨI〉 = i(EF − EI) 〈ΨF |
∑
n

r̂n |ΨI〉 . (3.9b)

The expressions involving the matrix elements of r̂n, p̂n, and Z r̂n/r
3
n are known as length,

velocity, and acceleration forms of the electric dipole matrix [30, 31]. The equality of the
di�erent expressions for the electronic dipole matrix has been �rst discussed by Chan-
drasekhar [32]. For approximations to the exact eigenstates of the system, these forms
start to di�er and tend to emphasize di�erent spatial parts of the wavefunction. The
length form stresses the large distances, the velocity form stresses the intermediate ones,
and the acceleration form stresses the short distances (for more details see Refs. [33, 34]).
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Independent Particle Picture

It is not possible to determine the exact states ΨI and ΨF for many-electron systems due to
the Coulomb interaction between the electrons [35]. Even the exact ground state of Helium,
a two-electron atom, has not yet been found [36]. My studies focus on noble gas atoms,
which have a closed-shell electronic structure. The big advantage of closed-shell atoms is
that their electronic ground state Ψ0 can be well approximated by the Hartree-Fock (HF)
ground state Φ0,

|Ψ0〉 ≈ |Φ0〉 =
N∏
n=1

ĉ†i |vacuum〉 , (3.10)

where the operator ĉ†i creates an electron in orbital ϕi and ĉi destroys it [37]. A very nice
side e�ect of HF, the (N − 1)-electron states, |Φi〉 = ĉi |Φ0〉, with a missing electron in
orbital ϕi correspond quite well to the eigenstates of the ionic system. Hence, the ionization
potential of an electron in orbital ϕi is given by −εi, where εi is the corresponding HF
orbital energy. This statement is known as Koopmans' theorem [35].

Assuming the absorbed photon a�ects only one electron (active electron) and all the
other electrons are spectators (passive electrons), the �nal N -body state can be simpli�ed
to |ΨF 〉 ≈ |Φa

i 〉 = ĉ†aĉi |Φ0〉, where the index i refers to occupied orbitals and a refers to
unoccupied orbitals in the HF ground state. This assumption holds when the relaxation
process of the remaining electrons is slow compared to the ionization dynamics. Hence,
the electronic transition elements in Eq. (3.7) reduce to one-body transition elements

N∑
n=1

〈ΨF | ε · p̂n |ΨI〉 = 〈ϕa| ε · p̂ |ϕi〉 〈Φi|Φi〉︸ ︷︷ ︸
=1

, (3.11)

where the initial state is the Hartree-Fock ground state Φ0. The photoionization cross
section simpli�es to [23]

σ(ω) =
4π2 α

ω

∑
a

|〈ϕa| ε · p̂ |ϕi〉|2 δ(εa − εi − ω). (3.12)

From σ(ω) the ionization rate Γ of an atom can be easily calculated by Γ = JEM σ(ω),
where JEM is the photon �ux of the ionizing pulse hitting the atom. Note that the cross
section itself is not �eld-dependent. The photoionization rate increases linearly with the
photon �ux (intensity) for a �xed photon energy. For tunnel ionization, the ionization rate
does not follow a power law and depends rather exponentially on the intensity (for details
see Sec. 3.1.3).

Structural Information in Photoionization Cross Sections

The cross section also contains a wide range of electronic structural information about the
system. A typical cross section behavior as a function of photon energy is shown in Fig. 3.2,
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Figure 3.2: The total cross sections σ(ω) for argon: hydrogenic approximation (dashed
line), one-electron model (solid line), experimental data (points). Insets show details of
σ(ω) around certain energy regions. This �gure is taken from Ref. [30]. Copyright c© 1968
American Physical Society (APS).

where experimental values (points) as well as theoretical predictions (lines) for argon are
shown. Very distinct jumps in σ(ω) occur when new ionization channels open, i.e., when
the photon energy is high enough to ionize electrons out of the next energetically deeper
lying subshell. In Fig. 3.2 the K (1s shell) and L (2s, 2p shells) edges are clearly visible at
3200 eV and 250 eV, respectively. The L edge consists actually of 3 edges corresponding to
the subshells 2p1/2, 2p3/2 and 2s. The energy di�erence between 2p1/2 (LII edge) and 2p3/2

(LIII edge) is ≈ 2 eV [38] and, therefore, not visible in Fig. 3.2. The 2s (LI) edge can be
singled out, since it is ≈ 25 eV [38] apart (see upper right inset in Fig. 3.2).

Another interesting feature appears shortly before the ionization edges and is called
XANES (x-ray absorption near edges structure) [39]. A typical XANES pro�le is shown
in the lower right inset in Fig. 3.2. The peak structure around the edge corresponds to
electron excitations; more speci�cally, excitations into the Rydberg states of the atom.
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With increasing energies the spacing becomes smaller between the Rydberg peaks, which
are broadened by the lifetime of the corresponding state. When the spacing is smaller than
their line widths, individual peaks are no longer visible and the cross section goes smoothly
over into a continuum structure [39].

Above the ionization threshold, the XANES features slowly transform into EXAFS
(extended x-ray absorption �ne structure) features [40]. EXAFS originates from the inter-
ference with the photoelectron that has been backscattered by neighboring atoms [39, 41].
Hence, EXAFS can be used as a probe to study the vicinity of speci�c atoms, which can
be chosen by tuning the photon energy close to an atom-speci�c absorption edge [23]. In
Fig. 3.3 the XANES and EXAFS regions are shown for the K-edge of iron.

Figure 3.3: The cross section around the K-edge of Fe is shown. The XANES and EXAFS
regions are highlighted. This �gure is taken from Ref. [42]. c© 2010 Matthew H. Carpenter.

Besides the characteristic absorption edges, the cross section contains more information
about the electronic structure, particularly about the continuum structure [31]. A famous
example is the Cooper minimum [43], which appears at 48 eV in argon [44] (see Fig. 3.2).
It is a consequence of a sign change in the transition elements 〈ϕ3p| r |εd〉 from negative
(ω < 48 eV) to positive (ω > 48 eV). The term ε is the energy of the ionized electron. This
sign change results in a vanishing contribution from the 3p→ εd ionization channel. The
total cross section is, however, not really zero, since the much weaker 3p→ εs and 3s→ εp
ionization channels have nonzero contributions [44]. Note that the channel nl→ ε(l+ 1) is
usually the dominant signal and much larger than nl→ ε(l−1) [30], where n is the principal
quantum number of the orbital. Cooper and Fano [30] have given a rule determining when
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a Cooper minimum can occur in the photoionization cross section of a subshell. The rule
excludes a Cooper minimum in the noodless subshells 1s, 2p, 3d, and 4f as well as in the
transitions nl→ ε(l − 1).

The occurrence of a Cooper minimum can be well-explained with a one-particle picture.
However, the details like the exact position and the form of the minimum does depend on
many-body physics [45]. For the Cooper minimum in Ar, doubly excited con�guration
corrections to the ground state, as included in the random phase approximation (RPA),
are needed to predict the correct position [45].

In Fig. 3.4, the total photoionization cross sections of Ar and Xe are shown for the
Hartree-Fock-Slater (HS) model [46, 47], an intrachannel CIS model, and an interchannel
CIS model (explained below). CIS stands for the con�guration-interaction singles method
described in Sec. 3.2.2. All CIS results presented in this section are calculated with the
xcid package I have developed (see Sec. 3.3). The basic di�erences between the models lie
in the approximations made to the Hamiltonian and to the wavefunction. In HS, a single
Slater determinant is used for the wavefunction as in HF whereas the CIS wavefunction
is a sum of Slater determinants containing the HF ground state and all singly-excited
(one-particle-one-hole) con�gurations Φa

i .

For HS, a spherical model potential is used, where the exchange potential between
electrons is approximated by a free electron gas model [47] and the long range 1/r potential
is enforced via the Latter-type correction [48]. The adjectives interchannel and intrachannel
in the CIS model refer to the allowed electron-electron interaction. Intrachannel coupling
considers only electron-electron interactions where the ionic state does not change. In this
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Figure 3.4: The absorption cross sections of Ar (a) and Xe (b) are shown for the Hartree-
Fock-Slater (blue), the interchannel CIS (red), and the intrachannel CIS (green) models.
Note that the interchannel CIS model also includes intrachannel interactions. The experi-
mental data (line and points) are taken from Ref. [44].
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case, the ionization channels are independent of each other. The intrachannel CIS model
includes only intrachannel interactions. Interchannel coupling refers to electron-electron
interactions where the excited/ionized electron changes the ionic state. The interchannel
CIS model includes both intrachannel and interchannel interactions.

In Fig. 3.4, the total cross sections of argon (a) and xenon (b) are shown for di�erent
theoretical models. The Cooper minimum in Ar and the giant dipole resonance in Xe
do exist in σ(ω) for all three models. It shows that the Cooper minimum as well as the
giant dipole resonance are not results of many-body e�ects. They can be solely explained
by one-particle physics. The position as well as the form of these features do, however,
strongly di�er between the di�erent models.

In the HS model, these features occur at too low photon energies and are too narrow
and too high in their shape. The potential resulting from intrachannel and interchannel
interactions, which are large and repulsive, corrects the HS model too much and shifts the
features to too high energies. Nevertheless, models including interchannel and intrachannel
interactions generally yield results that are closer to the experimental values. Particularly
in xenon, the shape and the position of the giant dipole resonance changes signi�cantly
when intrachannel and interchannel interactions are included (see Fig. 3.4b).

Interchannel coupling is particularly important for partial cross sections of deeper lying
subshells. In Fig. 3.5, the photoionization cross sections of the 3s and 5s subshells of
Ar and Xe, respectively, are shown. For argon, the Cooper minimum of the 3p → εd
ionization channel a�ects the 3s cross section. Without interchannel interactions the e�ect
is gone. Similarly for Xe, the giant dipole resonance in the 4d cross section at 100 eV
also a�ects the cross section of the 5s (shown) and 5p (not shown) subshells. Switching
o� interchannel interactions leads to a dramatic change in the 5s cross section shown in
Fig. 3.5b. Intrachannel interactions alone only slightly a�ect the cross sections.

Angular Distribution

The electronic structure features are also imprinted in the angular distribution of the
di�erential cross section, dσ

dΩ
[49, 50]. Studying the angular distribution of the photoionized

electron is known as angle-resolved photoemission spectroscopy (ARPES) [51]. Changes in
the angular distribution contain a wide range of information about the interaction between
the electron and the ion, and about the orbital structure from which the electron came [50,
52]. This is particularly interesting in molecules [53�55] and solids [56, 57]. In atomic
systems, the di�erential photoionization cross section averaged over all initial magnetic
quantum numbers mi reduces to [58]

dσi(ω)

dΩ
=
σi(ω)

4π
[1 + β(ω)P2(cosϑ)] , (3.13)

where P2(x) = 3
2
x2 − 1

2
is the 2nd-Legendre polynomial, and ϑ is the angle between the

photoelectron and the polarization direction of the light. The term σi(ω) is the partial



44 CHAPTER 3. ULTRAFAST IONIZATION DYNAMICS

 0

 0.5

 1

 1.5

 2

 2.5

 20  30  40  50  60  70  80

σ
(ω

) 
[M

b
]

photon energy  ω [eV]

interchannel CIS
intrachannel CIS

HS

(a) Argon

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 60  80  100  120  140

σ
(ω

) 
[M

b
]

photon energy  ω [eV]

interchannel CIS
intrachannel CIS

HS

(b) Xenon

Figure 3.5: The absorption cross sections of Ar (a) and Xe (b) of the subshells 3s and 5s,
respectively, are shown for the Hartree-Fock-Slater (blue), the interchannel CIS (red), and
the intrachannel CIS (green) models. Note that the interchannel CIS model also includes
intrachannel interactions.

photoionization cross section of the subshell nili, where ni is the principal quantum number
and li is the angular momentum quantum number.

The angular distribution of dσi
dΩ

is characterized by a single quantity: the β parame-
ter [58]. Since dσi

dΩ
must be positive, the range of β is restricted to −1 ≤ β ≤ 2. In Fig. 3.6,

the beta parameter is shown for the 5s (Fig. 3.6a) and the 5p (Fig. 3.6b) subshells of Xe
with and without various interchannel interactions to neighboring orbitals. In both cases,
the behavior of β is signi�cantly altered when interactions with other subshells are ignored.
Hence, β is an ideal quantity for studying these interchannel e�ects [59].

(a) Xenon 5s (b) Xenon 5p

Figure 3.6: The β(ω) parameter is shown for the 5s subshell (a) and the 5p subshell (b)
of Xe including various interactionss with other orbitals (see labels in the �gures). The
�gures are taken from Ref. [60]. Copyright c© 2001 American Physical Society (APS).
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Perturbative Few-Photon Ionization

The probability of absorbing a second or even a third photon increases with higher intensi-
ties. Recent experiments [61] at the LCLS in the x-ray regime have impressively shown that
up to eight photons can be easily absorbed by neon producing Ne+8. In the x-ray regime,
multiphoton ionization is dominated by sequential photoionization meaning one photon is
absorbed at a time (i.e., multiple one-photon ionizations). This can be well understood
by looking at the Keldysh parameter γ de�ned in Eq. (3.1). The high photon energy of
x-rays leads to very small ponderomotive potentials and, therefore, to very large γ values
indicating that x-ray ionization is far in the perturbative regime.

The ionization of an electron by simultaneously absorbing two photons is the simplest
�true� multiphoton step. The absorption of several photons at the same time is also called
non-sequential multiphoton ionization (see Fig. 3.1). It is particularly favored if the photon
energy is close to a resonance. Non-sequential two-photon absorption is characterized by
the two-photon ionization cross section σ(2)(ω), which reads in the length form in lowest-
order perturbation theory [62, 63],

σ(2)(ω) = π(4π αω)2
∑
F

∣∣∣∣∣∑
H 6=I

∑
n,n′

〈ΨF | ε · r̂n |ΨH〉 〈ΨH | ε · r̂n′ |ΨI〉
EH − EI − ω

∣∣∣∣∣
2

δ(EF − EI − 2ω),

(3.14)

where EH is the energy of the intermediate state ΨH .

In another experiment [64] also performed on Ne at the LCLS, it has been seen that it
was possible to produce Ne+9 even though it was energetically not possible to ionize Ne+8

further with a single photon. The ratio between the Ne+9 and Ne+8 productions showed
a quadratic behavior in intensity pointing towards a two-photon ionization. Theoretical
investigations showed that the production of Ne+9 is a combination of sequential and non-
sequential two-photon ionization. To fully explain the production of Ne+9, it is necessary
to include coherence properties of the x-ray pulse [63].

3.1.3 Tunnel Ionization

For very high �eld strengths, the perturbative approach for describing multiphoton ion-
ization breaks down. In the UV and x-ray regimes, it is quite di�cult to reach the non-
perturbative regime (γ � 1) with current light sources due to the high intensity needed.
Since the Keldysh parameter goes linearly with ω at a given intensity, it is much easier
to reach the non-perturbative regime with optical frequencies. In the non-perturbative
multiphoton regime or strong-�eld regime, it is more favorable to picture the light-matter
interaction in terms of a potential that distorts the electronic system (see Fig. 3.1). If
the deformation of the Coulomb potential is large enough, the electron can tunnel out of
the system into the continuum. This ionization process is, therefore, also known as tunnel

http://lcls.slac.stanford.edu
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ionization. In the following, two prominent strong-�eld theories, i.e., the ADK and the
SFA models, are discussed.

ADK Model

The pioneering work to describe tunnel ionization rates has been done by Landau and
Lifshitz for the ground state of atomic hydrogen exposed to a static electric �eld [65].
Perelomov, Popov, and Terent'ev [66] extended the theory to any Coulomb wavefunction
and to electromagnetic �elds of low frequency (quasistatic limit). A generalized version,
which can also describe many-electron atoms, is the popular Ammosov-Delone-Krainov
(ADK) theory [67]. Recently, the ADK theory has been extended to molecular systems,
where additionally the orientation of the molecule in�uences the ionization rates [68]. The
molecular ADK model has become a quite popular tool for understanding strong-�eld ion-
ization of molecules [69, 70]. The popularity is also supported by the fact that numerically
solving the TDSE (even within the single-active-electron approximation) for molecular
systems is very challenging.

The basic idea behind the ADK theory is that the solution of a pure Coulomb problem is
matched to a semiclassical solution, which describes the electron in the classically forbidden

Figure 3.7: The static �eld ionization rates obtained with the ADK model (dashed) and
numerically solving the Schrödinger equation (solid) are compared for H and He. The
vertical dotted lines indicate the barrier suppression �eld strength for H and He beyond
which ABI starts to arise. The �gure is taken from Ref. [71]. Copyright c© 1999 American
Physical Society (APS).
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region below the barrier and in the classically allowed region outside the barrier (for a review
see Ref. [72]). It is assumed that the bound electronic state (near the nucleus) behaves
under the barrier like a Coulomb wavefunction for large distances, which reads

ψc(r,Ω) = D rZ/κ−1 e−κ r Yl,m(Ω), (3.15)

where r is the radius, Ω = (θ, φ) are the spherical angles, Yl,m(Ω) are spherical harmon-
ics [73] with the angular momentum l and its projection m, and Z is the nuclear charge.
The ionization potential is given by Ip = κ2/2. In the classically forbidden region under
the barrier, the behavior of ψc has to be matched to a semiclassical. Ammosov, Delone,
and Krainov [67] derived an analytical expression to match the Coulomb wavefunction to
the semiclassical solution.

Note that the angular momentum l is not a conserved quantity anymore when an
electric �eld is applied and the wavefunction does not factorize with respect to the spher-
ical coordinates r,Ω as in the �eld-free case. The solution of the Hamiltonian including
the electric �eld (within the dipole approximation) factorizes for parabolic coordinates:
ζ = r + z, η = r− z and φ. Hence, the wavefunction reads ψ = f1(ζ) f2(η) eimφ/

√
2π [72].

For very strong �elds, the Coulomb barrier is suppressed below the �eld-free binding
energy. Consequently, the electron can be ionized directly over the barrier (above-barrier-
ionization or ABI) without the need for tunneling [74]. In Fig. 3.7 the ADK tunnel ion-
ization rates for H and He are compared to results obtained by numerically solving the
Schrödinger equation (see Sec. 3.2.1). Up to the �eld strength Ebs, the ADK rates are
identical to the numerical results. Above Ebs the ABI starts to kick in and the ADK model
overestimates the ionization rate.

SFA Model � Path-Integral Approach

Another approach to describe tunnel ionization is based on path-integral techniques [75, 76]
pioneered by Keldysh, Faisal, and Reiss [19, 77, 78] (also called the KFR theory). Since the
impact of the atomic potential is neglected and only the in�uence of the strong laser �eld
is considered, this approach is also referred to as the strong-�eld approximation (SFA) [6].
The formally exact solution of the TDSE [cf. Eq. (3.2a)] reads

|Ψ(t)〉 = T
[
exp

(
−i
∫ t

t′
dt′′ Ĥ(t′′)

)]
|Ψ(t′)〉 = Û(t, t′) |Ψ(t′)〉 , (3.16)

where Û(t, t′) is the exact time propagator, and T stands for the time ordering of the
operator. The probability of �nding an electron with velocity v at time t is given by
|av(t)|2 with

av(t) = −i
∫ t

t′
dt′′ 〈v(t)| Û(t, t′′) Ĥint(t

′′) Ûelec(t
′′, t′) |Ψ0〉 . (3.17)
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Ûelec(t
′′, t′) is the �eld-free propagator, and |v〉 describes the outgoing electron which turns

asymptotically into a plane wave [8]. Physically, Eq. (3.17) means the electron starts in
state Ψ0. At time t′′, the electron is promoted into a continuum state where it remains till
the time t is reached.

In the SFA, several approximations are made to Eq. (3.17): (1) the �nal state |v〉 is
approximated by plane waves or Volkov states [79]; (2) the exact propagator Û is ap-
proximated by ÛSFA, which is the time propagator of the simpli�ed SFA Hamiltonian
ĤSFA(t) = [p̂ + αA(t)]2/2, where all Coulomb interactions are neglected. The advantage
of using Volkov states instead of plane waves is that Volkov states are the eigenstates of
ĤSFA(t). Since ĤSFA(t) does not depend on the position q̂, the canonical momentum p is
a conserved quantity. For any time t′ the kinetic momentum (velocity) v(t′) = p + αA(t′)
is given by

v(t′) = v(t)− αA(t) + αA(t′). (3.18)

It is not surprising that the favorite form of the laser-matter interaction in the SFA theory
is the velocity form3.

Both propagators appearing in Eq. (3.17) can be analytically expressed and the resulting
phase factor S(t, t′) reads [8]

S(t, t′) =
1

2

∫ t

t′

[
vz(t)− αA(t) + αA(t′′)

]2
dt′′ − Ip t′ +

v2
⊥
2

(t− t′), (3.19)

where the vector potential is linearly polarized in the z direction. The terms vz and v⊥ are
the velocity components along and perpendicular to the vector potential. Note that the
initial ground state energy of Ψ0 is the negative ionization potential E0 = −Ip. It is used
to evaluate the propagator Ûelec(t

′′, t′) in Eq. (3.17).

The main contribution to av(t) comes from the time t′ = t0, where ∂t′ S(t, t′)
∣∣∣
t′=t0

= 0.

For other times t′, the phase of S(t, t′) oscillates too rapidly such that these times do not
contribute to the overall signal in �rst order [8]. This approach is known as the saddle
point method. The derivative condition leads to an equation for t0. It reads

sin2(ωL t0) + γ2 = 0, (3.20)

where γ is the Keldysh parameter, and the �nal time has been conveniently set to t = nπ
such that the vector potential vanishes. Any other �nal time is also possible, since the result
should not depend on the �nal time, which may be de�ned by the measuring process.

The electric �eld is taken as a plane wave with frequency ωL and amplitude E0. Fur-
thermore, setting v⊥ = vz = 0 means the initial velocity of the electron after tunneling is 0.
The time which solves Eq. (3.20) is pure imaginary t0 = iτ indicating a classically forbidden

3In the length form, a potential energy shift appears whose physical meaning is not clear [80, 81].
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region. For γ � 1, the relation γ = ωL τ emerges, which connects the Keldysh parameter
with the so called tunneling time τ [8]. For t0 = iτ , the phase is purely imaginary as well
and reads S = −i2/3 Ip τ . Hence, one �nds the ionization rate

Γ ∝
∣∣e−i S∣∣2 = e2 Im[S] = e−2/3

√
2Ip

3
/E0 (3.21)

decreases exponentially with a higher ionization potential and a weaker electric �eld. The
prefactor of the ionization rate can be approximated by analytical results for a Coulomb
barrier [65, 82].

In the perturbative multiphoton regime (γ � 1), Eq. (3.20) interestingly yields
τ ≈ ln(2γ)/ωL. Consequently, the ionization rate becomes proportional to the electric
�eld, i.e.,

Γ ∝ E2N
0 = IN with N = Ip/ωL (3.22)

and I = E2
0 the �eld intensity. The exponent N gives rise to a photon order and is a good

estimate how many photons are required to ionize the system.

Despite the success of the SFA, it is known that neglecting the long-range Coulomb po-
tential leads to disagreement with experimental [83, 84] and numerical [85, 86] results in the
total ionization rates and especially in the angular photoelectron distribution. Groups have
worked on including Coulomb corrections by eikonal-like approximations for the Coulomb-
Volkov continuum [87, 88] or by semiclassical perturbation theory [6]. The latter method is
commonly called Coulomb-corrected SFA (CCSFA) [6, 89]. In Fig. 3.8, the angular photo-
electron distributions are shown for the SFA (green line), the CCSFA (red line), the TDSE

Figure 3.8: The angular momentum distributions of the photoelectron are shown for Ne
(left) and Ar (right). The SFA model (green line), the CCSFA (red line), the TDSE
results with SAE approximation (black line), and the experimental data (black dots) are
compared. The �gures are taken from Ref. [6]. Copyright c© 2008 Taylor & Francis Group.
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results with the single-active-electron (SAE) approximation (black line), and the experi-
mental data (black dots). The SFA does not correctly describes the angular distribution.
The CCSFA signi�cantly improves the results towards the SAE and experimental results.

Other widely used techniques to determine the tunnel ionization rates are numerical
based Floquet theory [90], complex scaling [91, 92], and explicit time integration meth-
ods [93�95] discussed in Sec. 3.2.

3.1.4 High Harmonic Generation

One of the most fundamental processes in attosecond physics is high harmonic generation
(HHG) (for a review see Ref. [96]). HHG is used to generate sub-femtosecond pulses with
photon energies in the EUV range from NIR femtosecond pulses. HHG was �rst observed
in the late 1980s in rare gas atoms [97, 98]. Rapid developments have now made it possible
to generate isolated attosecond pulses shorter than 100 as [99, 100], and with photon
energies up to the x-ray regime [3]. These x-ray pulses can in principle be used to generate
subattosecond (zeptosecond) pulses [101, 102].

The mechanism behind HHG is well explained by a semiclassical model called the
three-step model [103, 104]. It factorizes the HHG mechanism into three separate steps.
An illustration of the three-step process is shown in Fig. 3.9a. In the �rst step the outer-
most electron gets tunnel-ionized by the NIR �eld. In step two, the electron moves in the
presence of the electric �eld and due to the short cycle period of the NIR pulse, the electric
�eld drives the electron back towards the ion. In the third step, the electron can recombine
with the ion via emitting a high energy photon. The photon energy is determined by the
ionization potential Ip plus the amount of energy that the electron gained in the NIR �eld.
The maximum emitted photon energy (commonly referred to as the cut-o� energy) is given
by [103]

Ecuto� = Ip + 3.17 Up, (3.23)

where Up = E2

4ω2 is the ponderomotive potential, i.e., the cycle-averaged quiver energy of
a free electron in an electric �eld with amplitude E and frequency ω. Characteristic for
HHG is the plateau region, where the harmonics extend up to the cut-o� energy without
decreasing in strength (see Fig. 3.9b).

A thorough theoretical discussion of HHG based on the SFA has been given in Ref. [106],
which relates the analytically derived dipole moment, 〈x〉 (t), to the HHG spectrum. Par-
ticularly the saddle-point approximations, which are made in the derivation, provide a
physical picture of the underlying process. Whereas in Sec. 3.1.3 the saddle-point approx-
imation has been made only with respect to the tunneling time τ [cf. Eq. (3.20)], the
saddle-point approximation of the classical action of 〈x〉 (t) is done in HHG with respect to
three variables: (1) canonical momentum p; (2) the tunneling time τ ; and (3) the return
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(a) Three-step model
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Figure 3.9: (a) Illustration of the semiclassical three-step model for HHG. The �gure is
taken from Ref. [105]. Copyright c© 2010 Nature Publishing Group (NPG). (b) A sketch
of a typical HHG spectrum showing the below-threshold harmonics (BTH), the plateau
region, and the cut-o� region.

time t. As a result, three saddle-point equations appear: [106]

∂pS(p, t, τ) = x(t)− x(τ) = 0, (3.24a)

∂τS(p, t, τ) =
[p + αA(t− τ)]2

2
+ Ip = 0, (3.24b)

∂tS(p, t, τ) =
[p + αA(t)]2

2
+

[p + αA(t− τ)]2

2
= 2N + 1, (3.24c)

where S is the classical action, and N is a positive integer number. Each of these equations
has a physical implication. Equation (3.24a) states that the returning electron recombines
exactly at the same position where the electron has been initially ionized. Equation (3.24b)
de�nes the tunnel time τ [cf. Eq. (3.20)]. Only imaginary τ can ful�ll Eq. (3.24b). Equa-
tion (3.24c) in combination with Equation (3.24b) relates the photon energy of the emitted
photon to the (2N + 1)-th harmonic of the driving frequency ω.

HHG has also become very popular for molecular systems (for reviews see Refs. [96,
107, 108]). For molecular HHG spectra, the non-spherical Coulomb potential can no longer
be ignored. It has been shown that SFA calculations miss several important features
in the HHG spectrum [109, 110]. The quantitative rescattering theory (QRT) [111] has
become a very prominent way to calculate HHG spectra for molecules. It relates the
recombination step to inverse photoionization. Hence, in QRT the recombination cross
section gets replaced with the well-studied photoionization cross section obtained from
high-level calculations or experiments (see Sec. 3.1.2).

For time-dependent propagation methods as presented in Sec. 3.2, the Larmor formula
has to be used to calculate HHG spectra. The Larmor formula connects the acceleration of a
charged particle, 〈âc〉 (t), to the emitted radiation, S(ω) [21]. Just as the photoionization
cross section can be described with a range of equivalent expressions [see discussion of
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Eq. (3.7)], so too are there several equivalent ways to express the HHG spectrum,

S(ω) ∝
∣∣∣∣∫ ∞
−∞
dt e−iωt 〈âc〉 (t)

∣∣∣∣2 =

∣∣∣∣∫ ∞
−∞
dt e−iωt

[
∂t 〈v̂〉 (t)

]∣∣∣∣2 =

∣∣∣∣∫ ∞
−∞
dt e−iωt

[
∂2
t 〈r̂〉 (t)

]∣∣∣∣2 .
(3.25)

The acceleration [〈âc〉 (t)], the velocity [〈v̂〉 (t)], and the length [〈r̂〉 (t)] forms are shown
in Eq. (3.25). As in the case of the photoionization cross section, all three expressions are
only equivalent when the exact wavefunction is known. For atomic hydrogen, the equalities
of the expressions in Eq. (3.25) have been con�rmed numerically [112]. For multi-electron
systems, approximations have to be made to the wavefunction and/or the Hamiltonian.
Hence, the equalities in Eq. (3.25) do not strictly hold anymore. Results based on the
TDCIS method (see Sec. 3.2.2) have shown that for larger atoms the discrepancy in the
HHG spectrum increases between the length and the acceleration forms. This indicates
that the approximations made in TDCIS (and even more for the SFA and SAE models)
become less valid for heavier atoms. For the two lightest noble gas atoms helium and neon,
both ways of calculating the HHG yield identical results.

Extending the Cut-O� Energy & Phase Matching

The attribute �high� in HHG is justi�ed, since the harmonic order n can easily be a triple-
digit number (n ≥ 100). In a very recent experiment, harmonic orders of n > 5000
have been achieved [3]. Interestingly, Eq. (3.23) states that higher cut-o� energies can
be achieved with lower driving frequencies (longer wavelengths). The maximum harmonic
order achievable goes with ω−3. Long driving wavelengths have been proven to be a suc-
cessful way to increase the cut-o� energy into the water window (≈ 300−−500 eV) [113]
and even up into hard x-ray regime above 1 keV [3]. Equation (3.23) shows that increasing
the wavelength is not the only way to increase the cut-o� energy. Higher electric �eld
strengths (or intensities) als move the cut-o� energy into the keV regime [114].

Both approaches for extending the cut-o� energy (using longer wavelengths or higher
intensities) have drawbacks. High intensities automatically lead to higher ionization prob-
abilities. Highly ionized media, however, are not wanted. They result in strong dispersion
e�ects. As a consequence, the HHG spectrum signi�cantly changes while traveling through
the medium. Dispersion e�ects need to be minimized to ensure the HHG light is always
in phase with the driving �eld such that the maximum gain in the HHG yield can be
achieved (see Fig. 3.10). If the HHG light is out of phase with the driving �eld, the HHG
light produced from di�erent atoms no longer adds up constructively [115, 116].

The ionization potential is another knob that can be turned (by targeting the appropri-
ate atom) to increase the cut-o� energy. Large ionization potentials are favorable not just
because of Eq. (3.23). They reduce the ionization probability and make it, therefore, easier
to ensure phase-matching. Hence, the most ideal atoms are noble gas atoms, particularly
He [117].
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Locking of the phase velocities of the HHG �eld to that of the driving �eld is known
as phase-matching (for a review see [118]). In Fig. 3.10(a) the idea of phase matching is
illustrated. Figure 3.10(b) shows the Guoy phase [119], which changes mostly around the
focus point of the laser �eld and arises due to geometrical reasons [120]. The correct Guoy
phase is important for the HHG spectrum. This has been shown for Xe [121] where the
overall HHG spectrum changes dramatically depending on the geometrical Guoy phase.
The Guoy phase is controlled by the position of the laser focus relative to the gas medium
(see Fig. 3.10).

Phase-matching is the main bottleneck for generating broad HHG spectra ranging into
the x-ray regime [96, 122], since it is di�cult to ensure phase matching over such a large
energy range. Long wavelengths avoid high ionization rates but su�er low conversion
e�ciencies, which scale microscopically with λ−6.5 [123�126].

Several novel ideas [127�133], which go beyond a single active electron [127] and a
single driving frequency [128�133], have been proposed to extend the HHG energy cut-o�.
Unfortunately, the conversion e�ciency is quite reduced compared to conventional HHG.
Instead of ionizing just one electron, an idea was put forward [127] to ionize two electrons
and let them recombine simultaneously. This leads to a second plateau region in the HHG
spectrum. The e�ciency is strongly reduced by up to 12 orders of magnitude. Multi-color
driving �elds [128] have been explored as well as combinations of an intense NIR pulse
with an assisting non-resonant [129�131] or resonant [132, 133] UV/x-ray pulse.

Isolated Attosecond Pulses

The discrete harmonic peaks in the HHG spectrum (as in Fig. 3.9) lead to attosecond
pulse trains rather than an isolated pulses. To generate isolated attosecond pulses [134], a
frequency �lter is used (often a thin metal foil) to �lter out a continuous energy window
of the HHG spectrum in the cut-o� region [135]. Phase stability over the entire spectrum

Figure 3.10: (a) The concept of phase matching and the coherent build up of the macro-
scopic HHG signal are illustrated. (b) The geometrical Guoy phase is shown. It changes
particularly around the focal point of the NIR driving �eld. The Guoy phase has to be con-
sidered to ensure phase matching. The �gure is taken from Ref. [105]. Copyright c© 2010
Nature Publishing Group (NPG).
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is important for generating pulses with a �nite duration. Having control over the phase
of each single frequency allows one to create pulses with arbitrary pulse shapes [136]. For
Fourier-limited pulses, the pulse duration is inversely proportional to the bandwidth of
the HHG spectrum, i.e., τ = 4 ln(2)/(dω), where τ and dω are the FWHM-duration and
FWHM-bandwidth, respectively, of the intensity pro�le. Hence, subfemtosecond pulses
require bandwidths of a few eV whereas subattosecond pulses require bandwidths reaching
into the keV regime [101].

Figure 3.11: Illustration of a RABITTmeasurement. The overlap of HHG and driving �elds
leads to two ambiguous ionization pathways (right �gure) The resulting interferences in the
electron energy as a function of the time delay (upper right �gure) contains information
about the relative phases between neighboring harmonics in the HHG spectrum. The �gure
is taken from Ref. [115]. Copyright c© 2005 American Physical Society (APS).

To experimentally prove that the generated HHG spectrum really leads to attosecond
pulses, it is necessary to measure phase and amplitude of the frequency components of the
HHG spectrum. There exist two main techniques to characterize attosecond pulses:

1. Reconstruction of attosecond beating by interference of two-photon transition
(RABITT) [115, 137, 138],

2. Frequency-resolved optical gating (FROG) [139�141].

The pulse durations obtained by both methods agree within 10% [142]. RABITT can
only be used to determine the pulse duration of attosecond pulses in pulse trains (not
isolated attosecond pulses). RABITT (see Fig. 3.11) is based on interferences of two-
photon-processes, which lead to photoelectron energies corresponding to even harmonics
of the driving frequency ω. This is done by overlapping the attosecond pulse train with the
driving NIR �eld. The interference appears due to two ionization pathways: (1) absorbing
an UV photon and an NIR photon [(2n− 1)ω + ω], and (2) absorbing an UV photon and
emission of an NIR photon [(2n + 1)ω − ω]. The relative phase between the harmonics
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2n ± 1 can be measured by changing the time delay between the attosecond pulse train
and the NIR driving �eld.

FROG is an auto-correlation technique. It is based on an iterative method to recon-
struct the amplitude and the phase of the electric �eld [139]. FROG has been widely used
for optical �elds. A modi�ed version of FROG called FROG-CRAB (Frequency-resolved
optical gating for complete reconstruction of attosecond bursts) [140, 143] can character-
ize isolated attosecond pulses, and it is nowadays widely used experimentally [144, 145].
FROG-CRAB measures the FROG trace between a low-frequency �eld and the isolated
attosecond pulse. To do so, the attosecond UV pulse ionizes the system with a one-photon
step and the low-frequency �eld dresses the ionized electron in the continuum (like attosec-
ond streaking discussed in Sec. 3.1.5). The FROG trace is, then, given by the spectrum of
the ionized electron |a(v, τ)|2, where a(v, τ) is the transition amplitude to a �nal contin-
uum state with velocity v [cf. Eq. (3.17)]. The term τ is the time delay between the two
pulses. The low-frequency, dressing �eld is used like a temporal phase gate eiφ(τ), where
φ(τ) is the accumulated phase of the ionized electron in the dressing �eld.

Probing Electronic Structure and Dynamics

Up to now, HHG has been discussed as a tool to generate attosecond UV/x-ray pulses used
for studying ultrafast processes. The popularity of HHG, however, does not stop here.
HHG has become more and more a scienti�c tool in itself to study electronic structure
and dynamics of atoms and molecules [108]. Particularly popular is tomographic imaging
of the outer-most molecular orbitals (HOMOs) [147]. The idea behind this tomographic
approach is that the HHG spectrum contains structural information of the orbitals. The
HHG spectrum depends on the recombination matrix elements 〈ϕi| r̂ |ϕe〉, where ϕi is the

Figure 3.12: HHG spectrum of SO2

is shown as function of pump-probe
delay. With the help of impulsive
alignment, HHG spectra from di�er-
ently aligned molecules can be ob-
tained. Particularly at pump-probe
delays where the alignment is non-
isotropic, new feature appear in the
HHG spectrum. The �gure is taken
from Ref. [146]. Copyright c© 2008
American Association for the Advance-
ment of Science (AAAS).
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hole wavefunction, ϕe is the wavefunction of the returning electron. Assuming that the
returning electron can be approximated as a plane wave (ϕe(r) ≈ eik·r) the HHG spectrum
contains spatial Fourier components of ϕi, which can be used to reconstruct the hole
orbital [147, 148].

It is even possible to apply this technique to HHG spectra with multiple orbital contri-
butions [146]. Here the ability to laser-align molecules (see Chap. 2) is crucial, since tunnel
ionization and recombination are highly angle-dependent processes. In Fig. 3.12, the HHG
spectrum for laser-aligned SO2 is shown. At pump-probe delays where the molecular
alignment is non-isotropic (alignment or anti-alignment), new features appear in the HHG
spectrum. Depending on whether molecules are aligned or anti-aligned, certain harmonics
are suppressed or enhanced, indicating multi-orbital contributions.

Normally it is assumed that the HHG electron only comes from the most weakly bound
(outer-most) orbital. This is not true anymore when the ionization potentials of neigh-
boring states are quite similar. Consequently, the hole wavefunction of the ion is not
stationary anymore, and can be written as a superposition of several ionic states. Correla-
tion e�ects within the ion can also lead to additional hole motions [149, 150]. In SO2 up to
3 orbitals (i.e., HOMO, HOMO-1, and HOMO-2) can contribute [151] to the HHG signal
depending on the alignment of the molecule with respect to the strong �eld polarization
direction. Ionizing along the molecular axis can lead to a coherent superposition of HOMO
and HOMO-2. It has been even demonstrated that it is possible to retrieve the relative
phase between the two orbitals at the time of tunnel ionization [151]. However, other
experimental [148] and theoretical [107] studies seem to suggest that there is no strong
HOMO-2 contribution in the HHG spectrum and that the HOMO orbital is su�cient to
explain the HHG spectrum.

(a) Experimental spectrum
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Figure 3.13: (a) The experimentally obtained HHG spectrum of Xe is shown for di�erent
driving pulses leading to di�erent energy cut-o�s. The �gure is taken from Ref. [152].
Copyright c© 2012 IOP Publishing. (b) The theoretical spectrum obtained with our TDCIS
approach is shown with (red line) and without (green line) interchannel coupling.
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Multi-orbital contributions can also play a role in atoms [153�155], but they are less
prominent due to higher symmetries and larger energy di�erences between the orbitals.
For larger atoms, multi-electron e�ects start to emerge. A very prominent example is the
giant dipole resonance in Xe as discussed in Sec. 3.1.2 in terms of the photoionization
cross section. The giant dipole resonance (originating from the 4d subshell) also a�ects the
photoionization cross sections of the 5s and 5p subshells due to interchannel coupling. As a
result, signatures of the giant dipole resonance appear in the recombination step (εl→ 5p)
and, therefore, also in the HHG spectrum, provided the cut-o� energy is large enough to
reveal this feature (Ecuto� > 100 eV). This has been con�rmed experimentally for the �rst
time in Ref. [154]. Figure 3.13a shows the experimental HHG spectrum for di�erent cut-o�
energies. The giant dipole resonance starts to appear with increasing Ecuto�. Results from
theoretical ab initio calculations based on TDCIS (see Sec. 3.2.2) are shown in Fig. 3.13b.
No giant dipole resonance can be seen in the HHG spectrum when interchannel interactions
are ignored.

Also the Cooper minimum in Argon, which has been discussed in Sec. 3.1.2 in terms
of the photoionization cross section, can be seen in the HHG spectrum [153, 156�158].
In Sec. 3.4.2 the in�uence of multiple orbitals on the location and shape of the Cooper
minimum is discussed. Analogous to atoms, the Cooper minimum does also exist in
molecules [159], and, therefore, also in the HHG spectrum of molecules. This has been
recently experimentally demonstrated on N2[160] and CS2 [161].

3.1.5 Attosecond Streaking

After the discussion of photoionization and tunnel ionization�the two most important pro-
cesses in attosecond physics�and how they are involved in generating attosecond pulses,
the focus now shifts to applications and prominent attosecond techniques involving both
types of ionization processes. Pump-probe experiments are an ideal tool to study fun-
damental physical mechanisms in a time-resolved fashion [1]. One popular pump-probe
experiment is streaking [162] and has been used for atomic [163], molecular [164], and solid
state [165] systems. As discussed in Sec. 3.1.3, the exact eigenstates of a free electron in
the presence of an electric �eld are the Volkov states [79]. The instantaneous velocity v(t)
at time t can be directly connected to the instantaneous velocity v(t′) at any other time
t′ [see Eq. (3.18)]. Due to the importance of Eq. (3.18) for streaking, it is stated again:
v(t) = v(t′) + αA(t′)− αA(t).

When the electron hits the detector and its energy gets measured, no electric �eld
is present such that A(t′) = 0. Additionally, when the initial velocity v(t) is known,
it is possible to extract uniquely the time t from Eq. (3.18) for an appropriate shape
of the streaking pulse. �Appropriate� means in this context that the vector potential
A(t) changes over the period of interest such that A(t) can be mapped one-to-one to the
time t. In Fig. 3.14, the principle idea of a streaking experiment is illustrated. Due to
the time-dependent vector potential, the temporal structure of the electron wavepacket
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Figure 3.14: Illustration of a streak-
ing measurement with a chirped elec-
tron wavepacket. Depending on the
vector potential, the �nal electron
momentum distribution is broadened
or narrowed. The �gure is taken
from Ref. [169]. Copyright c© 2011
Optical Society of America.

can be uniquely mapped onto the kinetic energy of the electron, which can be measured
quite precisely. This makes it possible to measure the chirp of an electronic wavepacket
as illustrated in Fig. 3.14. Depending on the energy resolution of the detector and the
gradient of the vector potential ∂tA(t), a time resolution on the attosecond scale can be
easily achieved [166�168] and even zeptosecond resolution is feasible [15].

Streaking can be also used to determine the shape of the streaking pulse itself [170]
or the shape of the photoionizing pulse [162, 169] (for a review see Ref. [171]). When
the streaking pulse is well-known, photoionization directly connects the substructure of
the electron momentum distribution to information about the chirp and pulse duration of
the ionizing pulse. The shift of the center of the electron momentum distribution (p0 in
Fig. 3.14) is a direct measure of the vector potential. The entire vector potential A(t) can
be measured by varying the pump-probe delay. The streaking pulse can vary from terahetz
(THz) [167] to IR frequencies [170]. It is important that the jitter (i.e, �uctuation in the
pump-probe delay) is small compared to the wavelength of the streaking �eld.

Studying Ultrafast Electron Motion

One of the �rst demonstrations of streaking has been done on atomic krypton [163]. After
photoionizing the inner-shell 3d electron, the 3d−1 krypton ion decays further to Kr2+
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via the prominent MNN-Auger decay [172, 173]. The time at which each single Auger
decay event happened was measured by streaking the Auger electron. From the resulting
statistics, which show an exponential decay behavior (∝ e−t/τh), the lifetime of the 3d hole
was found to be τh = 7.9± 1.0 fs. The corresponding linewidth of Γ = 84± 10 meV agrees
well with the 88 ± 4 meV energy-domain measurements [173]. The pump pulse, which
de�nes the reference t = 0, must be short in comparison to the Auger decay; hence, it
needs to be on the subfemtosecond scale.

Streaking measurements make it possible to study very fundamental questions about
the dynamics of electrons that could not have been addressed before. For instance, when
several subshells of an system (e.g., atom) can be directly ionized: Does the ionization
happen in all subshells at the same time? Streaking measurements on neon showed that
the 2p electron is ionized 21 as later than the more tightly bound 2s electron [168]. This
�nding sparked a wave of theoretical investigations [174�179] not just in neon but also in
other noble gas atoms [176]. Time delays between di�erent ionization channels have been
measured in other atoms as well [180, 181]. Most theoretical studies [174, 175, 177] predict
a time delay of no more than ≈ 10 as�half the experimental value. Some studies point
towards an additional measurement-induced time delay originating from the IR streaking
pulse [179]. For a review about attosecond delays in photoionization see Ref. [13].

With the high time resolution of streaking experiments it is possible to address whether
tunneling takes a �nite amount of time (i.e., tunneling time) or happens instantaneously [182,
183]. In the classically forbidden tunneling limit, the tunneling time is purely imaginary in-
dicating that tunneling is an instantaneous process in real time. A recent experiment [184]
on helium strengthens this statement by setting the upper limit for the tunneling time at
12 as due to experimental uncertainties. Experimentally it is quite di�cult to de�ne an
initial time just before the electron tunnels and a �nal time when the electron appears
outside the barrier.

The authors of Ref. [184] were able to do so by using elliptically polarized light. The
maximum of the electric �eld de�nes the initial time of tunneling. The angular kick the
electron experienced due to the elliptically polarized light determines the time the electron
appears in the continuum [185]. The di�erence between these two times yields the tunneling
time. In contrast to previous examples, the angular rather than the radial vector potential
component is exploited. Another modi�cation to common streaking experiments is that
only one pulse has been used, which operates as pump and as probe. A separate pump
pulse is not needed due to the highly non-linear tunnel ionization rate, which naturally
selects time �zero� to be the time when the electric �eld reaches its maximum.

3.1.6 Attosecond Transient Absorption Spectroscopy

In the previous section, the strong-�eld pulse has been used to probe the ionized electron.
In the following, another pump�probe setup is explored, where the longer pulse is used as
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pump and the shorter (UV attosecond) pulse is used as probe. The longer pulse could be
an NIR pulse, which tunnel-ionizes the system. The shorter UV attosecond pulse probes
the system via 1-photon absorption. However, instead of probing the outgoing electron,
as done in streaking, the attosecond pulse is used to probe the ionized system that is left
behind. The discrete electronic excitation structure of an ion makes it possible to use
resonances, which do not exist in a continuum-continuum transition. Resonant transitions
have the advantage of possessing a strongly enhanced transition probability and being
energetically localized. Both aspects make resonant transition features useful markers.

Since the electron is not probed, one does not look at electronic momentum distributions
but rather at the transmitted/absorbed probe signal. Therefore, this technique is called
(attosecond) transient absorption spectroscopy [186]. Transient absorption spectroscopy
was not invented by the attosecond community, it has been already used on the femtosecond
scale for probing chemical [187, 188] and solid state systems [189]. However, it has been
recently extended into the attosecond regime [136, 186, 190]. The time resolution arises
by systematically changing the pump-probe delay τ . The quality of the time resolution is
determined on the one hand by the duration of the probe pulse and on the other hand by
the jitter in the pump-probe delay.

The rapid progress in attosecond technology [1, 2], particularly, in controlling the phases
of single frequency components in ultrashort pulses [136] decreased the jitter uncertainty
to a few attoseconds. Beside the high attosecond resolution, there is a nice side e�ect
that comes along with attosecond pulses. Due to their short durations, they provide a
broad spectrum. With a broad spectrum, several ionic excitations can be accessed with
a single pulse. This has the advantages that phase relations between di�erent states can
be probed. At �rst glance, the high temporal and the high spectral resolutions seem to
contradict each other due to Heisenberg's uncertainty principle. This is, however, not the
case. The high temporal con�nement, due to the pulse duration, results in an excited
electronic state which is not well-de�ned in energy. This has, however, no consequences for
the high spectral resolution of the transmitted attosecond pulse at the detector. In a more
technical language, the high temporal and the high spectral resolutions are not conjugated
variables to each other and, therefore, can be independently measured from each other.

Studying Dynamical Processes in Ionic Systems

The �rst demonstration of attosecond transient absorption spectroscopy has been done with
atomic krypton [186]. The NIR pump pulse tunnel-ionizes the atom by creating a hole in the
4p−1 manifold. The attosecond pulse probes the ionic states by exciting the ion into states
with a hole in the 3d−1 manifold. In Fig. 3.15 a sketch the pump and probe steps (a) as
well as the theoretically predicted (b) and experimentally measured (c) transient absorption
spectrum are shown. Due to spin-orbit interaction, there are three transition lines instead
of just one visible between the 4p−1 and 3d−1 manifolds. The corresponding transitions
are [4pm3/2]−1 → [3dm5/2]−1,[4pm1/2]−1 → [3dm3/2]−1, and [4pm3/2]−1 → [3dm3/2]−1. The population
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Figure 3.15: (a) Illustration of the attosecond transient absorption experiment with atomic
krypton. The NIR pump pulse tunnel ionizes the atom and the EUV attosecond pulse
probes the ion by resonantly exciting the ion further. The transition lines of the transient
absorption spectrum contains population and coherence informations of ionic states. The
theoretically predicted (b) and the experimentally measured (c) spectra are shown. The
�gure is taken from Ref. [186]. Copyright c© 2010 Nature Publishing Group (NPG).

probabilities are directly proportional to the corresponding transition strengths [190]. Even
coherence properties can be extracted from the spectrum via the shape of the transition
lines. In Fig. 3.16(a), the in�uence of the line shape on the e�ective line strength is shown.
It reveals the hole dynamics due to the coherence superposition between the ionic states
[4p
±1/2
3/2 ]−1 and [4p

±1/2
1/2 ]−1. Consequently, the full state of the ionic system, which is given

by the ion density matrix (IDM), can be measured.

An analytic expression has been derived in Ref. [190] which treats the probe pulse in
1st-order perturbation theory. By �tting the analytic expression to the experimental data,
all entries of the IDM (within the 4p−1 manifold) can be extracted. After doing this for
many pump-probe delays τ , the entire hole dynamics of Kr+ is reconstructed. The relative
phase between the ionic states [4p

±1/2
3/2 ]−1 and [4p

±1/2
1/2 ]−1 and the resulting spatial motion

of the hole state are shown in Fig. 3.16(b). Furthermore, even traces of doubly ionized
krypton states have been seen. This makes it possible to directly test many-body physics
of multielectron ionization dynamics with transient absorption spectroscopy [191].
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Figure 3.16: (a) The beating of the [4pm3/2]−1 → [3dm3/2]−1 transition line is shown. This

beating gives a direct measure for the coherence between the [4p
±1/2
3/2 ]−1 and [4p

±1/2
1/2 ]−1

ionic states. (b) The reconstructed phase between the two ionic states is shown. After
having determined the populations and phase between ionic state, the full hole dynamics,
which is shown at the bottom, can be reconstructed. The �gure is taken from Ref. [186].
Copyright c© 2010 Nature Publishing Group (NPG).

An important assumption in the above discussion is that the ion is an isolated system
meaning the ionized electron is far away and cannot in�uence the ion anymore. When pump
and probe pulses do overlap, this assumption does not hold anymore. It is, therefore, not
clear to which extent the transient absorption signal can be still related to the instantaneous
IDM. However, it turns out that transient absorption spectroscopy can even o�er insight
into laser-induced electron-ion interactions. This becomes particularly important when
sub-cycle ionization dynamics are studied. This aspect is one of the projects I have worked
on and is discussed in more detail in Sec. 3.4.3.

Studying Excited Electronic States

Attosecond transient absorption spectroscopy refers only to how the system gets probed.
Therefore, there are many ways the system can be prepared (by the pump pulse). Instead
of ionizing krypton with an intense NIR pulse, another attosecond pulse can be used to
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initially ionize krypton [192]. Helium is another popular system that has been studied
by transient absorption spectroscopy [193�197]. The pump step here is an excitation to
Rydberg states rather than tunnel or photoionization. Many phenomena can be observed
with such pump schemes. If the excited state is a metastable state, the autoionization
dynamics can be studied [195, 198]. The Autler-Townes splitting of the excited states can
also be probed by applying an additional NIR pulse that induces a coupling to nearby
Rydberg states [193, 195�197]. A sub-cycle Stark-shift driven by an NIR pulse has also
been observed in an excited helium atom [194].

It is also possible to probe the recombination dynamics of HHG mechanism by transient
absorption [199]. Here, an attosecond pulse train rather than an isolated attosecond pulse
is used as probe. First, one attosecond pulse excites the electron into a Rydberg state. The
NIR pulse drives this electron away and back to the ion (as in HHG). When the electron
returns, the subsequent attosecond pulse excites another electron. This leads to inferences
in the HHG spectrum, which can be used to study the underlying electronic dynamics.

3.2 Numerical Methods In Strong-Field Physics

There exist two major theoretical approaches for describing the underlying ultrafast pro-
cesses. One approach is based more on analytical expressions (like the SFA). Many sim-
pli�cations have to be made in order to arrive at these analytical expressions, limiting
applicability. More general approaches are no longer analytically solvable and require com-
putational help. This means numerically solving the time-dependent Schrödinger equation
(TDSE) [cf. Eq. (3.2a)]. However, even the TDSE cannot be solved numerically for many-
electron systems without making some approximations [200].

For systems that are not highly correlated such as noble gas atoms, it is useful to
exploit an independent particle picture, where the N electrons only interact indirectly
with each other via a mean-�eld potential created commonly by all N electrons. The most
common mean-�eld theory is Hartree-Fock (HF) [35, 201], which approximates the full
N -electron wavefunction |Ψ〉 by a single Slater determinant |Φ0〉 as described in Sec. 3.1.2.
Most many-body theories [202] (e.g., con�guration-interaction or couple-cluster) use the
HF state as a reference state to build up a multi-con�guration wavefunction consisting of
several Slater determinants, which is able to capture correlation e�ects going beyond the
independent particle picture. However, these many-body theories have the disadvantage
that they quickly become numerically costly. Hence, they are mainly used for ground state
properties of molecular systems.

In strong-�eld calculations, it is necessary to describe a wide range of continuum states,
since an electron can be freed from the system and may even return to it at a later
time. The highly delocalized continuum states required in the calculations do not favor an
orbital description based on Gaussian-type functions as done in most quantum chemistry



64 CHAPTER 3. ULTRAFAST IONIZATION DYNAMICS

approaches [94]. The non-adiabatic character of the electronic motion makes it quite
challenging to exploit many-body theories including a high degree of correlations.

For multi-cycle pulses, it is advantageous to exploit the periodicity of the pulse by
using Floquet theory [90, 203]. The time-dependent Hamiltonian is transformed into a
time-independent, block-trigonal Hamiltonian, where the diagonal blocks correspond to
the number of photons that have been absorbed or emitted.

Many ultrafast processes in closed-shell systems are dominated by a single particle.
Adapting the theoretical approach by incorporating a single-active-electron (SAE) picture
is quite advantageous. A single-active electron (SAE) picture means only one electron
is involved in the process (active electron) whereas all other electrons are just spectators
(passive electrons) and are not a�ected by the dynamics of the active electron or the
external �eld. On the one side, it dramatically reduces the numerical challenges (see
Sec. 3.2.1). On the other side, it also favors a more intuitive physical picture.

However, many-body e�ects going beyond the SAE picture do exist and indeed become
even very important for larger atoms and molecular systems as discussed in Sec. 3.1.4. A
time-dependent con�guration-interaction singles (TDCIS) approach makes use of a single-
active electron picture. However, it does not restrict from which orbital the electron gets
ionized. It is also possible for the active electron to modify the ionic state after it has
been ionized (i.e., interchannel interactions). In Sec. 3.2.2, the basic aspects of TDCIS are
discussed. In Sec. 3.4, I discuss ultrafast phenomena that require many-body theories like
TDCIS and cannot be explained by a SAE picture. First, however, I discuss brie�y the
SAE approach with its advantages and disadvantages.

3.2.1 Single-Active-Electron Models

The most common numerical approach to tackle strong-�eld problems is solving the TDSE
[cf. Eq. (3.2a)] with the SAE approximation. The SAE reduces the Hamiltonian to a
one-particle Hamiltonian

Ĥ =
p̂2

2
+ V̂ , (3.26)

where V̂ is a one-particle potential resulting from the interaction with the remaining elec-
trons. In the SAE, V̂ is commonly described by a local model potential [157]. For atomic
systems, the model potential is also assumed to be spherically symmetric. In the limit of
very short and very large distances, the behavior of V̂ is known: limr→0 V (r) = −Z/r and
limr→∞ V (r) = −1/r. Very close to the atomic core, the electronic potential is dominated
by the nuclear potential (i.e., −Z/r). Far away from the atom, the nuclear potential is
screened by the remaining N − 1 electrons and the ionized electron feels an attractive po-
tential of a singly-charged point-particle (i.e., −1/r). Between these two limits, the model
potential is constructed such that the ionization potential and excitation energies are well
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reproduced [204]. A common example of a model potential looks like [157]

V (r) = −1 + Ae−Br + (Z − 1− A)e−Cr

r
, (3.27)

where A,B and C are the coe�cients adjusting the potential. Despite the simplicity of
such model potentials, they can explain and reproduce quite well experimental observations
like ATI and HHG spectra [204]. The success of SAE models con�rms that a wide range of
strong-�eld and attosecond processes are mainly one-electron processes. This is particularly
true for noble gas atoms, speci�cally the lighter ones. For heavier noble gas atoms [154] or
molecules [205] many-electron e�ects and the interaction of several orbitals start to emerge.
In this case, it is not possible to capture the dynamics with the SAE approximation, since
SAE assumes that all other electrons are frozen.

The SAE approximation does also imply that the remaining ion can only be in one
speci�c state, normally the ionic ground state. SAE is a single-channel theory, where the
term �channel� refers to the state of the N−1 electrons. It is necessary to use multi-channel
theories when studying ionic excitations and superpositions of several ionic states.

The spherically symmetric character of the ionic potential is strictly speaking not true,
since mostly the outer-most p0 orbital gets ionized by linearly polarized light. Hence, the
electron distribution in the ion is not spherical and, therefore, also the resulting potential
is not spherical. For atomic systems, that may not be so critical. For molecular systems,
however, the potential is obviously non-spherical and also electron-electron interactions
become more important.

One way to construct a molecular SAE potential is by following the spirit of density
functional theory (DFT) [94, 206]. Here, a one-particle potential is reconstructed from the
electron density of the neutral ground state calculated with standard quantum chemistry
codes (e.g., dalton [207]). The overall SAE potential can be written as [94]

V (r) = V x
ee(r) + Ven(r) + V d

ee(r) +Gc(r), (3.28)

where V d/x
ee (r) is the direct and exchange contribution of the electron electron interaction,

respectively, Ven(r) is the attractive electron-nuclei interaction, and Gc(r) is a long-range
correction in order to obtain the right −1/r long-range behavior. The exchange term V x

ee is
generally non-local. The local density approximation (LDA) [208] is, however, a common
way to make the potential local by expressing V x

ee in terms of the local electron density
ρ(r). Other DFT approximations have also been considered to improve the SAE potential
for molecules [209]. The quantity that determines the success of these potentials is the
angle-dependent ionization rate [94, 210] (see Fig. 3.8 and discussion in Sec. 3.1.3). The
correct angle dependence is particularly important for imaging molecular orbitals [210].
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3.2.2 Time-dependent Con�guration-Interaction Singles (TDCIS)

A common post-Hartree-Fock method is con�guration-interaction (CI), which adds sys-
tematically higher excitation classes to the wavefunction i.e.,

|Ψ〉 = α0 |Φ0〉+
N∑
n=1

∑
a1,...,an
i1,...in

αa1,...,ani1,...,in

n∏
h=1

ĉ†ah ĉih |Φ0〉︸ ︷︷ ︸
|Φa1,...,ani1,...,in

〉

(3.29)

= α0 |Φ0〉+
∑
a1,i1

αa1i1
∣∣Φa1

i1

〉
+

∑
a1,a2,i1,i2

αa1,a2i1,i2

∣∣Φa1,a2
i1,i2

〉
+ . . . ,

where Φ0 is the HF ground state and
∣∣Φa1,...,an

i1,...,in

〉
are n-particle-n-hole (np-nh) con�gura-

tions with ĉ†a, ĉi being creation and annihilation operators of the corresponding orbitals.
The HF ground state is used as reference state from which all np-nh con�gurations are
de�ned. The indicies a and i refer to unoccupied (virtual) and occupied orbitals in Φ0,
respectively. The indicies p, q, r, s are used to refer to all orbitals (occupied + unoccupied).
If n goes up to the total number of electrons, one speaks of full CI (FCI). Including only
singly excited con�gurations is called CI-Singles (CIS). Similarly, including only doubly
excited con�gurations is called CI-Doubles (CID), and including singly and doubly excited
con�gurations is called CI-Singles-Doubles (CISD).

The size of the np-nh-con�guration space is (NaNi)
n, where Na and Ni are the num-

bers of unoccupied and occupied orbitals, respectively. Since Na is quite large (in principle
in�nitely large) it is computationally not feasible to go to very high excitation classes.
To calculate exact ground state properties (e.g., response functions), it not necessary to
include states that are very delocalized and extend far from the atom/molecule. Hence,
Na is relatively small and higher np-nh-excitations classes and, therefore, higher-order
correlations can be included in the calculations. In strong-�eld physics, where it is impor-
tant to describe a wide range of the continuum states, Na can easily be a 5-digit number.
Including, therefore, doubly or triply excited con�gurations quickly becomes infeasible.

Time-dependent con�guration-interaction singles (TDCIS), with time-dependent coe�-
cients αai (t), seems to be an ideal extension to the SAE model for investigating strong-�eld
and attosecond phenomena. The TDCIS wavefunction reads

|Ψ(t)〉 = α0(t) |Φ0〉+
∑
a,i

αai (t) |Φa
i 〉 . (3.30)

This wavefunction ansatz still makes use of the fact that most strong-�eld processes in
atoms are one-electron processes but it also acknowledges that the active electron may not
just come from the least weakly bound (outer-most) occupied orbital. TDCIS also takes
into account that the active electron can in�uence the state of the parent ion.

The TDCIS method I discuss here was �rst presented by Rohringer et al. [211] for
atomic systems and has been later extended to include spin-orbit splitting for the occupied
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orbitals [212] and the inclusion of the exact residual Coulomb interaction Ĥ1 [213]. During
my studies, I have combined both extensions in order to study electron-ion correlation
e�ects on orbitals that are split due to spin-orbit interaction [214]. The Hamiltonian4

Ĥ(t) = Ĥ0 + Ĥ1 + E(t) ẑ (3.31)

is preferably partitioned into three parts:

• Ĥ0 is the Fock operator de�ning the HF ground state Φ0 and the one-particle orbitals
ϕp with their orbital energies εp (Ĥ0 |ϕp〉 = εp |ϕp〉).

• Ĥ1 is the residual electron-electron interaction that cannot be captured by the mean-
�eld potential that is included in Ĥ0.

• The light-matter interaction E(t) ẑ, expressed in the length form after the dipole
approximation is made (no space dependence of E).

The residual Coulomb interaction Ĥ1 is the only two-body operator in Eq. (3.31) and
captures all e�ects beyond an independent particle picture. The detailed expression reads
Ĥ1 = V̂c − V̂HF − EHF, where V̂c = 1

2

∑
i 6=j

1
|r̂i−r̂j | is the exact electron-electron interaction,

V̂HF is the HF mean-�eld potential, and EHF is the HF ground state energy. Subtracting
EHF is only been done out of convenience, shifting all energies such that the HF ground
state has zero energy. Inserting Eq. (3.30) in Eq. (3.2a), the equations of motion for the
CI-coe�cients emerge, which read

iα0(t) =E(t)
∑
a,i

〈Φ0| ẑ |Φa
i 〉αai (t), (3.32a)

iαai (t) = (εa − εi)αai (t) + E(t)

[
〈Φa

i | ẑ |Φ0〉 α0(t) +
∑
b,j

〈Φa
i | ẑ
∣∣Φb

j

〉
αbj(t)

]
(3.32b)

+
∑
b,j

〈Φa
i | Ĥ1

∣∣Φb
j

〉
αbj(t).

The terms 〈Φ0| ẑ |Φa
i 〉 and 〈Φa

i | ẑ |Φ0〉 describe the light-matter interaction that couples the
neutral ground state to the singly-excited states. Note that Ĥ1 does not lead to couplings
between the ground state and the singly-excited states. Hence, without any external �eld
the atom remains in the ground state.

By setting the matrix elements 〈Φa
i | Ĥ1

∣∣Φb
j

〉
with i 6= j to zero, the interchannel in-

teraction can be switched o� in the TDCIS model. When Ĥ1 is switched o� the in-
trachannel interactions are also ignored. This makes it possible to systematically study
dynamical e�ects that go beyond an independent particle picture. The transition matrix

4In Ref. [63, 158, 213�215] the charge of the electron is qe = 1 such that −E(t) rather than E(t) appears.
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elements 〈Φa
i | ẑ
∣∣Φb

j

〉
separate into two independent single-particle transitions [cf. Eq. (4)

in Chap. 5.5], one between occupied orbitals (ionic transition) and one between virtual
orbitals (electronic transition).

The calculated photoelectron wavepacket after ultrafast UV photoionization (10 as
pulse) is shown for the 5s and the 4d0 ionization channels in Fig. 3.17. The l = 1 and the
l = 3 characteristics of the electron wavepackets are clearly visible. As noted in Sec. 3.1.2
the photoelectron prefers to increase its angular momentum rather than to decrease it when
absorbing the photon. Therefore, the photoelectron of the 4d0 channel possesses mainly
l = 3 character.

Figure 3.17: Photoelectron wavepackets originating from the 4d0 and 5s orbitals are shown
for several time delays after the ionizing UV attosecond pulse has hit the atom. The mean
photon energy is 136 eV and the pulse duration is 10 as.

The residual Coulomb interaction within each channel (〈Φa
i | Ĥ1

∣∣Φb
i

〉
) is generally not

local and not spherically symmetric�approximations that are normally made in SAE mod-
els. Interchannel interactions (〈Φa

i | Ĥ1

∣∣Φb
j

〉
with i 6= j) do ful�ll this assumption even less.

Only asymptotically do they hold. In Sec. 3.4.2, the e�ect of these approximations are
discussed in terms of the HHG spectrum of argon.

Ion Density Matrix

TDCIS describes two subsystems, the active electron and the parent ion. In Chaps. 3.4.1
and 3.4.3, I discuss situations, where the interaction between these two subsystems leads
to measurable e�ects in the ionic state. To extract information about the ionic sub-
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system from the full N -body system, the trace of the full N -electron density matrix
ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| [216] over the other subsystems (i.e., the electron) has to be per-
formed [217, 218]. As a result, one obtains the reduced density matrix of the ionic subsys-
tem

ρ̂IDM(t) = Tra [ρ̂(t)] , (3.33a)

ρIDMi,j (t) =
∑
a

〈
Φa
i |Ψ(t)

〉 〈
Ψ(t)|Φa

j

〉
. (3.33b)

also called ion density matrix (IDM). This IDM uniquely characterizes the state of the
ion. Since more than one occupied orbital (channel) can be ionized, it is possible to create
a superposition of ionic eigenstates. Figure 3.16 shows the hole motion in singly-ionized
krypton. The IDM is also an ideal quantity to study coherences in the ionic subsystem.
After the atom has been ionized, the parent ion does not need to be in a coherent state as
the discussion of Sec. 3.4.1 shows.

Orbital Representation

For atomic systems, it is convenient to use spherical coordinates, where the �eld-free one-
particle orbitals can be factorized into a radial and an angular part, i.e.,

〈r|ϕp〉 = ϕp(r) =
unp,lp(r)

r
Ylp,mp(Ω), (3.34)

where np, lp and mp are the radial, the angular momentum, and the magnetic quantum
numbers of the orbital ϕp, respectively. Yl,m(Ω) are spherical harmonics [73], where Ω =
(ϑ, ϕ) stands for the two angular coordinates. The factorization between radial and angular
parts has several advantages. First, the 3D-integrals needed for evaluating the matrix
elements in Eq. (3.32b) factorize into three 1D-integrals, where the two angular integrals
can be solved analytically (in the form of Clebsch-Gordan coe�cients). Furthermore, the
magnetic quantum number of the full N -electron state, Ψ(t), is conserved (M = 0) for
linearly polarized light5 . For TDCIS, this has the consequence that the magnetic quantum
number of the active electron cannot be changed (ma = mi). This restriction in m is quite
advantageous for numerical purposes.

The underlying radial grid is chosen to be nonlinear such that more grid points are
closer to the origin (i.e., the atomic nucleus). In particular, the Möbius transformation
x 7−→ r(x) = rmaxζ/2 (1 + x)(1 − x + ζ)−1 is exploited [213, 219] with x ∈ [−1, 1]. The
nonlinearity of the mapping and the usage of pseudo-spectral techniques [219] signi�cantly
reduce the number of grid points needed to a few hundreds for system sizes of around
100 a0 (a0 = 5.29 · 10−11 m).

5 Circularly or elliptically polarized light breaks this symmetry.
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Complex Absorbing Potential

For ionization scenarios, it is common that the ionized electron separates from the ion
with great speed. Before the pulse is over, the electron may have traveled several hundreds
or thousands of a0. Such large grids are computationally not feasible. To avoid arti�cial
re�ections from the grid boundary, a complex absorbing potential (CAP) is introduced [91],
which absorbs the outgoing electron just before the grid ends. By putting the absorbing
potential at the end of the grid, the absorbed electron is far enough away such that it
does not in�uence the ion anymore. Hence, the absorbing potential does not in�uence the
physics near the atom/ion.

Unfortunately, introducing a CAP results in a non-hermitian Hamiltonian (Ĥ → Ĥ −
iηŴ ). Hence, the norm of the wavefunction is not conserved anymore. The speci�c
shape of the absorbing potential used in all examples presented in Sec. 3.4 is given by
W (r) = (r − rc)

2 Θ(r − rc) [213], where Θ(x) is the Heaviside function. Having a non-
hermitian Ĥ0 also means that the orbital energies εp become complex.

If the CAP is chosen correctly, the imaginary part of εp can be directly related to the
lifetime of the orbital [91]. This is particularly interesting for autoionizing states [220]. An
alternative method is exterior complex scaling (ECS), where the radius r is replaced by
a complex radius R(r) [91]. ECS is formally an exact method, which make an analytical
continuation of the Hamiltonian into the complex plane [91]. However, the scaled Hamil-
tonian can also be separated into an unscaled and a scaled part. The scaled part can then
be treated as a CAP, which is now non-local.

Absorbing the electron results in a reduced norm in the ionic subsystem. To restore
the norm, at least for the ionic subsystem, which should not be a�ected by the CAP, a
correction term for ρ̂IDM has been derived. An explicit derivation is given in Sec. II.D of
Ref. [213]/Chap. 5.1. The CAP correction can be also used to determine the ionization
rate or the ionization cross section [63], since each ionized electron has to hit the CAP
eventually. One has to be careful when the electron is only excited and still bound. In this
case the CAP correction cannot be used as a measure of ionization.

A more e�cient way to determine the photoionization cross section is by using the au-
tocorrelation function g(t1− t0) = 〈Ψ(t1)|Ψ(t0)〉 with the initial state |Ψ(t0)〉 = p̂ |Φ0〉 [30,
221]. Here, one assumes a delta-like kick at time t0 such that all frequency components are
equally included. Consequently, all energy eigenstates are involved in the system response.
The photoionization cross section in terms of the correlation function reads

σ(ω) =
2π α

ω

∫ ∞
−∞
dt g(t) eiω t =

4π α

ω
Re
[∫ ∞

0

dt g(t) eiω t
]
, (3.35)

where in the second relation the property g(t) = g∗(−t) has been used.
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Limitations

TDCIS is a multi-channel theory, where only one electron can be ionized. Hence, multiple
ionization processes cannot be described by TDCIS. Due to the residual Coulomb interac-
tion, this outgoing electron can alter the ionic state. The degree of freedom of the ionic
state is, however, quite limited. The only allowed ionic states are one-hole con�gurations
|Φi〉 = ĉi |Φ0〉, where an electron is removed from the HF ground state. In these con�gura-
tions, all other electrons are frozen. Hence, the only ionic motion allowed is the hopping of
the hole between occupied orbitals. More complicated dynamics require at least one more
electron to be non-frozen meaning 2p-2h con�gurations

∣∣Φa1,a2
i1,i2

〉
are needed.

The consequences of the CIS restriction for the ionic states have been discussed in my
most recent project (see Chap. 5.5/Ref. [214]) in terms of the polarizability of the ion.
The comparison with higher-order approaches like CASSCF6 has shown that polarizability
is underestimated by CIS. Particularly the rearrangement of the remaining electrons is
crucial to obtain a more accurate picture of the ionic subsystem.

3.3 My Developments

3.3.1 XCID

In this section, I discuss in more detail xcid, a con�guration-interaction dynamics package
I have developed. It is based on the TDCIS model described in Sec. 3.2.2 and in more detail
in Chap. 5.1/Ref. [213]. The �rst version was written by Loren Greenman with support
from Phay Ho and myself. The current program uses the main logic of the �rst version. It
is, however, a new program written in FORTRAN 95. It is written in a modular structure
such that extensions can be easily incorporated. The e�ciency has also been greatly
improved by disentangling computational tasks, making use of reoccurring objects, and
exploiting physical symmetries in the Hamiltonian. The current xcid package separates
into four main subprograms:

• Calculating the Hartree-Fock orbitals,

• Generating all matrix elements in the HF-orbital representation,

• Propagating the TDCIS wavefunction in time,

• Post-processing of the data produced during the propagation.

A wikipage provides users with information about the structure and the usage of xcid.
All parameters and how they can be speci�ed are explained.

6CASSCF - Complete Active Space Self-Consistent Field Theory



72 CHAPTER 3. ULTRAFAST IONIZATION DYNAMICS

E�ciency

An unwanted but unavoidable side e�ect of a more general (and complex) theoretical model
is the increase in computational demand. Therefore, it is important to exploit as many
symmetries as possible. Since there are no spin-dependent terms in the Hamiltonian, spin-
up and spin-down electrons behave exactly the same and the spin-singlet character (S = 0)
of the closed-shell HF ground state is preserved. Using only spin-singlet con�gurations
results in a reduction by a factor of 2 of the number of con�gurations needed. Another not
so general symmetry arises with the usage of linearly polarized light. The overall angular
momentum L of the ground state of a closed-shell system is L = 0 and, therefore also the
projection along the polarization direction, i.e., M = 0. For 1p-1h con�gurations, Φa

i , it
means the magnetic quantum numbers of the active electron and the hole orbital are the
same, i.e., ma = mi. Since the M = 0 character cannot be changed by linearly polarized
light, there exists a symmetry between the coe�cients αai (t) with ma = mi > 0 and
ma = mi < 0; to be more precise, they are the same. After transforming the con�gurations
into symmetry-adapted con�guration classes, one �nds that only even parity con�gurations
get populated, reducing the number of needed con�gurations by another factor of 2 (for
details see Eqs. (4)-(5) in Chap. 5.4/Ref. [158]).

When spin-orbit e�ects are included, the spin ŝ and the orbital angular momentum l̂ are
not decoupled. Now, the total angular momentum ĵ = l̂+ ŝ has to be considered. Similarly,
the spin and them symmetry, which have been discussed above, are not independent of each
other anymore. The symmetry that remains of spin-orbit interactions is a newm symmetry
but with respect to mj (the projection of the total angular momentum) rather than to ml

(the projection of the orbital angular momentum). Since the spin and ml symmetries are
tied together, only one factor of 2 is saved, making the con�guration space twice as large
as before. A detailed description of the new mj symmetry-adapted con�guration classes
and the resulting new matrix elements are given in Sec. II.B-II.C of Chap. 5.5/Ref. [214].

The terms vpqrs := 〈ϕp, ϕq| 1/r̂12 |ϕr, ϕs〉 need to be evaluated for speci�c orbital com-
binations in order to calculate the residual Coulomb interaction, Ĥ1. Making use of the
decomposition of angular and radial part of the orbitals ϕp, a multipole expansion of 1/r̂12

has to performed leading to an in�nite sum. The integrals over the angular degrees of
freedom can be performed analytically. The ordering of the 2 radial integrals a�ects the
e�ciency of the calculations. The radial integral with the smaller number of orbital com-
binations should always be preformed �rst. For instance, if the number of combinations
for ϕ∗p(x1)ϕr(x1) is smaller than for ϕ∗q(x2)ϕs(x2), the radial integral of the coordinate x1

should be performed �rst.

The entire radial grid, which extends to 100 a0 or more, is not needed to determine
the occupied orbitals during the HF routine. Especially, large radii can be ignored for
determining the occupied HF orbitals. In contrast, virtual states with large angular mo-
menta experience a large repulsive potential, l(l+1)/r2. Hence, these orbitals are basically
zero near the origin. I have found that ignoring small distances for high angular momenta
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increases the stability in the diagonalization of the Fock operator, Ĥ0. This eliminates the
highest energy eigenstates; however, they are ignored in the time propagation anyway.

New Features

I have also extended the xcid package and included new features. The spin-orbit splitting
in the occupied orbitals is fully implemented for the full TDCIS Hamiltonian including
the residual Coulomb interaction Ĥ1. Several propagation methods are available ranging
from the 2nd-order time-di�erencing method to the forward Euler method and the modi�ed
Euler method (or midpoint method), to the Runge-Kutta-4 method [222, 223]. xcid can
read the pulse shape from a �le. In this way, any kind of pulse shapes can be used (e.g.,
experimentally measured pulses). The interface which reads the system parameters has
been written in a user-friendly way. Parameters can be read in two ways: (1) a formatted
input �le using the FORTRAN-speci�c namelist feature or (2) via self-de�ned �ag options
ideal for command-line executions (e.g., shell scripts).

3.4 Applications

In this section, I discuss mainly three projects I have completed in the areas of strong-�eld
and attosecond physics. All of them have been performed with the xcid package, which
is based on the TDCIS approach described in Sec. 3.2.2 and Chap. 5.1/Ref. [213]. All
projects focus on many-body and correlation e�ects that go beyond an independent particle
picture. Already in a fundamental process like photoionization these e�ects are present.
In Sec. 3.4.1, I present my studies on attosecond photoionization. There, a surprising
phenomenon has been found in the parent ion resulting from interchannel coupling e�ects.
The single-active-electron model is tested in Sec. 3.4.2, where I investigate the in�uence
of multi-orbitals and multipole e�ects in terms of the HHG spectrum of argon. The state
of the multi-level ion is uniquely de�ned by the ion density matrix (IDM). The IDM is
experimentally accessible with transient absorption spectroscopy as discussed in Sec. 3.1.6.
Even �eld-induced dynamics on a sub-cycle time scale can be studied with overlapping
pump and probe pulses. In Sec. 3.4.3, I demonstrate this possibility on atomic krypton
exposed to an intense NIR pulse.

3.4.1 Decoherence in Attosecond Photoionization

Correlation e�ects can appear in the most fundamental processes like photoionization. In
my publication [215] �Decoherence in Attosecond Photoionization� (presented in Chap. 5.2)
I investigate to which degree a coherent hole wavepacket can be initiated in the ion and
how correlations between the photoelectron and the ion may a�ect the ionic state.
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Figure 3.18: The dynamical behavior of the degree of coherence gI,J(t) between the ionic
states I = 4d−1

0 and J = 5s−1 is shown for di�erent pulse durations. The mean photon en-
ergy is kept �xed at 136 eV. The �nal degree of coherence at 1 fs after the pulse is projected
onto a 2D graph shown on the right. The �gure is taken from Ref. [215]. Copyright c© 2011
American Physical Society (APS).

Ionization is not an instantaneous process and the photoelectron needs a �nite amount
of time to separate from the ion. During this �nite time window, the electron is still close to
the ion and via electron-electron interactions, the photoelectron can change the ionic state.
Such an interaction entangles the electronic wavefunction with the ionic wavefunction. This
ionization process can be also viewed in a system+bath picture, where the parent ion is
the system and the ionized electron is the bath [218]. Note that the bath is in this case
the smaller subsystem (contrary to common system-bath scenarios in chemistry where the
bath is the chemical environment). It is well-known from system-bath models that the
interaction between the two subsystems in�uences, or more precisely reduces, the coherent
properties within each subsystem. Exactly the same is true for photoionization.

From a theoretical point of view, two common approximations have to be abandoned
to be able to describe an entanglement between ion and photoelectron. First, the sudden
approximation cannot be made, which assumes that the ionized electron is instantaneously
removed from the ion and no interaction between the ionized electron and the ion is possible.
Second, the remaining N−1 electrons in the ion cannot be assumed to be spectators which
are frozen during the ionization process. The ion has to be described as a multi-level system
such that the state of the ion is able to change due to the residual Coulomb interaction
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with the photoelectron. The TDCIS approach is, here, ideal to describe these correlation
dynamics. In photoionization, this change in the ionic state is known as interchannel
coupling (see Sec. 3.1.2 for a detailed discussion). If the interaction with the photoelectron
does not change the ionic state, the entanglement between the electron and the ion is
strongly reduced and the coherence in the ionic subsystem is preserved.

Atomic xenon is chosen to demonstrate the importance of interchannel coupling ef-
fects in ultrafast photoionization. Here, the principal idea is to create a dynamical hole
wavepacket in singly ionized xenon. The energetically most favorable option (ignoring spin-
orbit splitting) for creating a coherent hole state via one-photon ionization with linearly
polarized light is through a superposition of the ionic states 4d−1

0 and 5s−1, where 4d0 and
5s refer to the occupied orbitals the ionized electron originates from. The �nale state of
the photoelectron must be the same to be able to create a coherent hole wavepacket in the
ion. This is necessary, since it must be impossible to tell from which orbital the electron
came. Since linearly polarized light is used, the angular momentum projections ml of both
occupied orbitals must be the same. The angular momentum l of both orbitals must be
the same or di�er by 2, since photoionization always changes l of the electron by 1.

The �nal energy of the photoelectron must also be indistinguishable for the two chan-
nels. This is only possible when the spectral bandwidth of the pulse is larger than the
energy di�erence between both ionic states. In xenon, the energy di�erence between the
ionic states 4d−1

0 and 5s−1 is ≈ 50 eV. For a Fourier-limited Gaussian pulse that means
a full-width-half-maximum (FWHM) duration of ≈ 36 as. To classify the entanglement
between the parent ion and the photoelectron, the lack of coherence (i.e., decoherence) in
the ionic subsystem is investigated. The degree of coherence gI,J(t) between the two ionic
states I and J is given by

gI,J(t) =

∣∣ρIDMI,J (t)
∣∣√

ρIDMI,I (t)ρIDMJ,J (t)
, (3.36)

where gI,J = 1 stands for perfect coherence and gI,J = 0 stands for a perfectly incoherent
system. In Fig. 3.18, the degree of coherence between the ionic states 4d−1

0 and 5s−1 is
shown as a function of time for di�erent pulse durations. The mean photon energy is kept
constant at 136 eV, well above the ionization potential of the 4d0 and 5s orbital (75 eV
and 25 eV, respectively).

There are several interesting aspects encoded in Fig. 3.18. First, the initial (t = 0) and
the �nal (t = 1 fs) degrees of coherence decrease for long pulse durations. This drop is
well understood and is directly related to how well the spectral bandwidth of the pulse
can cover the energy di�erence between 4d−1

0 and 5s−1. For longer pulses, the spectral
bandwidth decreases such that it becomes possible to determine energetically from which
orbital the photoelectron came.

Second, the initial degree of coherence at t = 0 increases monotonically with shorter
pulses. When the spectral bandwidth becomes larger than the energy di�erence between
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the ionic states, gI,J(0) approaches perfect coherence. Third, interchannel coupling destroys
this initial coherence by entangling the photoelectron with the ion. When interchannel
interactions are switched o�, the high initial degree of coherence is preserved for later
times (see Fig. 4 in Chap. 5.2/Ref. [215]). For very short pulses in particular, the ionization
dynamics of the electron becomes strongly entangled with the ion. Consequently, the ionic
coherence starts to drop directly after the pulse. The oscillations in gI,J(t) also indicate
that there exists a strong, dynamic interaction between the ion and the photoelectron.

The reason why interchannel coupling increases in importance for ultrashort pulses lies
in the nature of the broad spectrum. Even though the mean photon energy is su�ciently
large, there exist many energetically lower photons in the broad spectrum, which result
in a photoelectron with almost no kinetic energy. Thes low energy part of the photoelec-
tron does strongly interact with the parent ion and leads to an enhanced entanglement.
Our studies on the degree of coherence as a function of the mean photon energy with a
�xed spectral bandwidth (see Fig. 3 in Chap. 5.2/Ref. [215]) con�rm that the enhanced
entanglement is due to the low rather than the high energy part of the photoelectron.

The lesson learned from this study is that the required spectral bandwidth needed
to create a coherent superposition is not su�cient to ensure that the hole wavepacket
in the ion is coherent. Besides the interest in understanding fundamental processes, the
question whether or not it is possible to create a coherent hole wavepacket in an ion via
photoionization is of wider interest.

In molecular systems, where the valence-shells are highly delocalized, the hole dynamics
can be quite complex [224, 225]. Creating a coherent hole wavepacket is important for the
subsequent dynamics. Without coherences (between the exact ionic eigenstates) no hole
motion can exists. It has been shown that higher order correlation e�ects within the ion
can also be a driver of hole dynamics [226]. Transient absorption spectroscopy is an ideal
tool to study these hole motions. In combination with UV and even more so with x-ray
light, it is possible to probe local, site-speci�c consequences of the delocalized electronic
motion in molecules [227, 228].

3.4.2 Multiorbital and Multipole E�ects in the HHG Spectrum of
Argon

Multiorbital e�ects and particularly interchannel e�ects are well known in photoionization
(cf. Sec. 3.1.2). They lead to strong modi�cation in the partial cross sections of valence
and inner-shell orbitals. The coherent properties of the ion are also in�uenced by inter-
channel interactions as discussed in Sec. 3.4.1. In the tunnel ionization regime, it has been
shown that the electron can come from multiple orbitals [136, 186]. Tunnel ionization and
recombination are the �rst and the last step of HHG, respectively. Therefore, it is quite
natural to ask to which extent multiorbital e�ects have to be considered in HHG, where
they are normally neglected (cf. Sec. 3.1.4).
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Figure 3.19: (a) The HHG spectrum S(ω) and the ground state depopulation 1 − ρ0 of
Ar are shown for di�erent combinations of active occupied orbitals and approximations of
the residual Coulomb interaction. Di�erent sets of active occupied orbitals are compared
for the full and the symmetrized version of Ĥ1. (b) The ratio of the hole populations 3p−1

0

and 3p−1
−1 + 3p−1

1 is shown as a function of time. These �gures are taken from Ref. [158].
Copyright c© 2012 American Physical Society (APS).

In molecular systems, multi-orbital contributions to the HHG spectrum have been
observed as a function of alignment angle [146]. In atomic systems, multiorbital e�ects
are generally less important due to the higher orbital symmetries and the larger energy
splittings between them. However, this does not mean they are absolutely absent, and
the larger the atom the more prominent are multiorbital e�ects. For example, the HHG
spectrum of xenon can only be understood when interchannel interactions between the 4d
and 5p orbitals are taken into consideration (see Fig. 3.13).

In my publication [158] �Impact of Multichannel and Multipole E�ects on the Cooper
Minimum in the High-Order-Harmonic Spectrum of Argon� presented in Chap. 5.4, I in-
vestigate multiorbital as well as multipole e�ects in the HHG spectrum of argon. Argon
is an ideal atom, since, with 18 electrons, it is not one of the lightest noble gas atoms 7.
Additionally, in the photoionization cross section and also in the HHG spectrum of argon
there exists a special feature called the Cooper minimum, which can be used as a marker to
help quantify di�erences between models. Note that the existence of the Cooper minimum
is not a result of multiorbital e�ects but its position and shape are. Multipole e�ects are
normally ignored in atoms, where the e�ective potential of the active electron is modeled
as spherically symmetric [see Eq. (3.27)]. Since the electron gets mainly ionized out of the
m = 0 orbital, the remaining ion is predominantly in the Pm=0 state. Consequently, the
resulting Coulomb potential of the ion has, at short range, a quadrupolar rather than a

7 The calculations for heavier atoms, like krypton and xenon, are more costly, since for large HHG
cut-o� energies the 3d and 4d orbitals have to be considered, respectively.
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spherically symmetric character. To simulate a spherically symmetric potential, the resid-
ual Coulomb interaction H1 is averaged over all orbital magnetic quantum numbers (for
details see Chap. 5.4/Ref. [158]). The spherical averaging has the additional consequence
that interchannel interactions drop out of the spherically symmetrized Ĥ1. Hence, the
symmetrized Ĥ1 includes only intrachannel interactions.

Both multiorbital and multipole e�ects are investigated separately. First, multi-orbital
e�ects are studied by allowing ionization out of 3s and all 3p orbitals, out of all 3p only, or
out of 3p0 only. Second, multipole e�ects are studied by using interchannel and intrachan-
nel interactions, only intrachannel interactions, and the spherically symmetric intrachannel
version of Ĥ1. In Fig. 3.19a, the HHG spectrum and the ground state depopulation are
compared for a single-orbital (3p0) and a multiorbital (3s and all 3p) model of argon. When
the symmetrized residual Coulomb interaction is used, the di�erences in the HHG are very
small indicating that the 3p0 orbital is the dominant contributer to the HHG spectrum.
When interchannel interactions are included in the calculations, the HHG spectrum be-
comes sensitive to whether or not the orbitals 3p±1 are considered. The in�uence of 3s
is minimal and can be ignored. The direct contributions of 3p±1 are negligible but their
indirect in�uence on 3p0 is not. In the energy region of 30-50 eV, the HHG spectrum is
enhanced by interchannel interactions by up to one order of magnitude.

In Fig. 3.19b, the population ratio between the orbitals 3p±1 and 3p0 is shown as a
function of time during NIR driving �eld, which is centered around t = 0 and has a FWHM-
width of 10 fs. Interestingly, the ratio decreases monotonically (up to the oscillations
synchronized with the electric �eld). The low �nal ratio illustrates that mainly 3p0 gets
ionized. Small �nal hole populations in 3p±1, which are often used as an argument to
ignore these channels, are not as small during the pulse (relative to the 3p0 population) as
shown in Fig. 3.19b. Taking additionally interchannel coupling e�ects into account shows
that the population-based argumentation of excluding the np±1 orbitals is not universally
valid and has to be used with caution. Also in atomic xenon, it is due to the interchannel
e�ects that the 4d orbitals cannot be neglected even though they are deeply bound and
the direct contributions of 4d are negligible.

3.4.3 Attosecond Transient Absorption Spectroscopy for Overlap-
ping Pump and Probe Pulses

In Sec. 3.1.6, the basic ideas of attosecond transient absorption spectroscopy (ATAS) have
been discussed. ATAS is an ideal probe for studying the electronic dynamics in the par-
ent ion. The high time resolution accompanying ATAS makes it possible to study ultra-
fast electronic motion on a subfemtosecond time scale. Since an optical cycle of 800 nm
(NIR) is 2.6 fs long, subcycle ionization dynamics can be studied as demonstrated in
Chap. 5.3/Ref. [136] with atomic krypton. The �nal degree of coherence of g = 0.85±0.05
that has been experimentally achieved agrees with the TDCIS predictions of g = 0.82 after
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Figure 3.20: Attosecond transient absorption spectrum of krypton during tunnel ionization
is shown as a function of photon energy ω and pump-probe delay τ . The �gure is taken
from Ref. [214]. Copyright c© 2012 American Physical Society (APS).

taking into account propagation e�ects, which increase the degree of coherence measured
at the detector by up to 14% (g = 0.72 before propagation e�ects). To study theoreti-
cally the coherence between the ionic states [4p

±1/2
1/2 ]−1 and [4p

±1/2
3/2 ]−1, the xcid package

was extended to include spin-orbit e�ects in the occupied orbitals8. The residual Coulomb
interaction, Ĥ1, has also been included to account for coherence losses due to interchannel
e�ects.

For well separated and non-overlapping pump and probe pulses, the three transient
absorption lines in Kr+ corresponding to the transitions [4pm3/2]−1 → [3dm5/2]−1, [4pm1/2]−1 →
[3dm3/2]−1, and [4pm3/2]−1 → [3dm3/2]−1 (see Fig. 3.20) contain all information about the tunnel-
ionized Kr+ ion with a hole in the 4pj orbital manifold. As theoretically [190] and exper-
imentally [186] shown, this information can be used to reconstruct the full ion density
matrix (IDM). Establishing a direct mapping between the transient absorption spectrum
and the instantaneous IDM requires that the ionized electron does not in�uence the ion
during and after the probe step. This condition does not hold anymore when the pump
step (i.e., tunnel ionization) is probed, since the ionized electron as well as the pump �eld
itself in�uence the ion state. Therefore, it is not clear to which extent the instantaneous
IDM can be probed during the ionization process.

Additionally, strong modi�cation of the transient absorption spectrum has been ob-
served during tunnel ionization (see Fig. 3.20) indicating that the krypton ion cannot be

8 The notation of the ionic states is explained in Sec. 3.1.6.



80 CHAPTER 3. ULTRAFAST IONIZATION DYNAMICS

treated as isolated and �eld-free. Both aspects arising with probing the tunnel ionization
process are addressed in my manuscript [214] �Theory of Attosecond Transient Absorption
Spectroscopy of Krypton for Overlapping Pump and Probe Pulses� presented in Chap. 5.5.

The comparison between the hole populations obtained from a calculated transient
absorption spectrum and the corresponding instantaneous hole populations revealed that
the obtained hole populations match quite well with the instantaneous ones. A delay in
the extracted hole motion of up to 200 as was found (see Fig. 5 in Ref. [214]/Chap. 5.5).

Beside the question of population dynamics, a new phenomenon has been identi�ed
during the ionization process. The transition lines do not just rise in strength as the
hole populations do. They also show strong deformations in their shape as shown in
Fig. 3.20. Before trying to understand where these deformations come from it is important
to understand the basic mechanism behind the transient absorption spectrum.

The reduction in transmitted photons can also be described in a semi-classical picture,
where the electric �eld is not quantized and treated as a classical �eld. In classical electro-
dynamics, the Larmor formula describes the generation of radiation due to the acceleration
of charged particles [21]. Quantum mechanically, the electron motion is captured in the
dipole moment 〈ẑ〉 (t). The generated and the absorbed radiation of an ion is, therefore,
determined by the dynamics of the ionic dipole moment 〈ẑ〉ion (t). A �eld-independent pho-
toionization cross section σ(ω) (see Sec. 3.1.2) reads in terms of the ionic dipole moment

σ(ω) = 4π αω Im
[〈ẑ〉ion (ω)

E(ω)

]
, (3.37)

where ω is the photon energy and E(ω) is the spectrum of the incident electric �eld.

In the case of absorption, the ionic dipole, 〈ẑ〉ion (t) ∝ sin(ω0 t), oscillates 180◦ out
of phase with respect to E(t) such that the spectral strength E(ω0) gets reduced for
the speci�c oscillation frequency ω0. If the dipole oscillates in phase, the electric �eld
gets enhanced leading to an emitting behavior. The energetically lowest absorption line
[4pm3/2]−1 → [3dm5/2]−1 in Fig. 3.20 shows a purely absorbing (Lorentzian) behavior when
pump and probe pulses do not overlap9. The widths of the transition lines are determined
by the lifetime of the 3d−1 ionic states and the detector resolution.

When the phase shift φ in the oscillating ionic dipole [〈ẑ〉 (t) ∝ sin(ω0 t + φ)] is not
a multiple of π, the transition line shapes are not Lorentzian anymore (see Fig. 3.21a for
τ = 0). Figure 3.21a shows cuts of the transient absorption spectrum of Fig. 3.20 for
the pump-probe delays τ = 0, 2.4 fs. At τ = 0 fs, the NIR �eld peaks and all three
transition lines are strongly deformed. The ionic phase shifts φ(τ) are shown in Fig. 3.21b
for the energetically smallest and largest transition lines. They are obtained from the
TDCIS results by �tting Eq. (3.37) with 〈ẑ〉ion (t) = z0 sin(ω t + φ) for each pump-probe

9 The other two absorption lines do not show purely absorbing behavior due to coherences between the
ionic states [4p±1/2

1/2 ]−1 and [4p
±1/2
3/2 ]−1 (see Sec. 3.1.6).
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�gures are taken from Ref. [214]. Copyright c© 2012 American Physical Society (APS).

delay. The increasing phase shift in the 4p−1
3/2 → 3d−1

3/2 transition for large τ is due to the
coherent superposition of the ionic states 4p−1

3/2 and 4p−1
1/2 (see Sec. 3.1.6). There are three

mechanisms that could contribute to φ:

• the quadratic Stark shift of the ionic energy levels due to the high electric �eld
strength of the ionizing pulse,

• the residual Coulomb interaction between the ion and the electron,

• �eld-driven coupling between the freed electron and the parent ion via the neutral
ground state Φ0.

I found that the in�uence of the residual Coulomb interaction on φ is negligibly small.
The ionic Stark shift is quite large for each ionic state. However, what matters are the
di�erences in the energy shifts between the ionic states such that the transition energy gets
modi�ed. Even though the absolute energy shifts could be as large as 1 eV, the relative
energy di�erences do not change by more than 100 meV, which leads to a maximum phase
shift of ≈ π

10
. The phase shift shown in Fig. 3.21b is, however, much larger such that

the only possible mechanism is the �eld-driven dressing of the neutral ground state. The
large phase shifts disappear when the �eld-driven coupling to the neutral ground state is
immediately switched o� after the ion has been probed (see Fig. 9 in Chap. 5.5/Ref. [214]).
Interestingly, the electric �eld cannot directly couple the ion with the ionized electron.
Only via the neutral ground state (i.e., 〈Φ0| ẑ |Φa

i 〉) is it possible to create a �eld-driven
correlation interaction the ionic and electronic subsystems.
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This study has shown that attosecond transient absorption spectroscopy is a versatile
technique to investigate ultrafast electronic motion. It can be used to probe the electronic
state of the ionic subsystem, and at the same time it is sensitive to interactions of the ionic
subsystem with the environment.
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Computational studies of x-ray scattering from three-dimensionally-aligned
asymmetric-top molecules
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We theoretically and numerically analyze x-ray scattering from asymmetric-top molecules three-dimensionally
aligned using elliptically polarized laser light. A rigid-rotor model is assumed. The principal axes of the
polarizability tensor are assumed to coincide with the principal axes of the moment of inertia tensor. Several
symmetries in the Hamiltonian are identified and exploited to enhance the efficiency of solving the time-dependent
Schrödinger equation for each rotational state initially populated in a thermal ensemble. Using a phase-retrieval
algorithm, the feasibility of structure reconstruction from a quasiadiabatically aligned sample is illustrated for
the organic molecule naphthalene. The spatial resolution achievable strongly depends on the laser parameters,
the initial rotational temperature, and the x-ray pulse duration. We demonstrate that for a laser peak intensity of
5 TW/cm2, a laser pulse duration of 100 ps, a rotational temperature of 10 mK, and an x-ray pulse duration of
1 ps, the molecular structure may be probed at a resolution of 1 Å.

DOI: 10.1103/PhysRevA.81.043425 PACS number(s): 33.80.−b, 34.50.Rk, 61.05.cc, 42.30.Rx

I. INTRODUCTION

X-ray diffraction is a powerful method for investigating
structures of molecules. X-ray crystallography has become the
standard tool for identifying the structure of large molecules
and proteins [1–3]. Recent developments in x-ray sources
have opened new opportunities [4–13] for imaging membrane
proteins and other macromolecules that cannot be crystallized
[14]. One possibility is single-molecule imaging, where one
molecule at a time is probed by an intense x-ray pulse
[7–11], which subjects the molecule to severe damage [8,15].
A series of diffraction patterns has to be collected and
classified according to the molecular orientation to get full
structural information from randomly oriented molecules [9].
New iterative phase-retrieval algorithms for noncrystalline
specimens have been developed to invert the diffraction data
[9–12,16–18].

Alternative approaches with laser-aligned molecules have
been proposed, where an ensemble of molecules, rather than
a single molecule, is exposed to x-ray pulses [4,5]. In this
approach the radiation dose for each molecule is strongly
reduced and stays well below the critical value for damage
[4]. Three-dimensional information on the single-molecule
structure can be gained from a well-aligned ensemble by
capturing many two-dimensional diffraction patterns. The
ability to accumulate the signal over a large number of
x-ray pulses reduces the radiation dose further. Notice that
alignment, rather than orientation, of the molecules is expected
to be sufficient for the reconstruction of the molecular structure
[16,19]. Nevertheless, various methods have been proposed to
orient molecules [20,21] by the linear Stark effect [22], the AC
Stark effect [23], or two-color fields [24].

Much theoretical and experimental research has been
done on laser-induced alignment [25–71]. With nonresonant
laser frequencies, an induced dipole moment can be created

*Corresponding author.

that couples back to the laser electric field and forces
the molecule to be aligned. Earlier work has focused on
one-dimensional alignment of the most polarizable axis by
using linearly polarized light [25–56]. The demonstration
of three-dimensional alignment [57–63], which requires an
asymmetric-top molecule and an elliptically polarized pulse
(or two linearly polarized pulses) opens the door for probing
the three-dimensional structure. The Coulomb explosion tech-
nique has been exploited to detect three-dimensional alignment
[58,60], where rotational temperatures down to 1 K have been
accomplished [72].

Depending on the duration of the laser pulse, τL, relative
to the rotational period of the molecule, τrot, the alignment
dynamics can be classified into three distinct regimes. In
the limits of adiabatic (τL � τrot) and impulsive (τL � τrot)
alignment, the dynamics can be described analytically [32,33].
Impulsive alignment reveals the quantum mechanical nature of
this process by showing alignment revivals after the laser pulse
is over [34–41]. In the adiabatic limit, the alignment dynamics
follow the laser pulse shape [55]. No analytic solution exists in
the intermediate regime (τL ≈ τrot), and the time propagation
of the molecular ensemble in the presence of the laser pulse
has to be performed numerically [33,61]. Especially the quan-
tum mechanical description of three-dimensional alignment
[57,59,63] has proved to be numerically expensive [61].

A general theory of x-ray diffraction from laser-aligned
symmetric-top molecules was developed in Ref. [52]. Appli-
cations to adiabatically aligned molecules may be found in
Refs. [52,53]. Reference [40] describes calculations on x-ray
scattering from impulsively aligned molecules, exploiting the
alignment revivals for probing field-free molecular structure.
It has been shown that, for a symmetric-top molecule con-
taining a single heavy scatterer, a holographic algorithm can
successfully reconstruct the molecular structure from an x-ray
scattering pattern [53].

In this article, we discuss x-ray scattering from an en-
semble of rigid, asymmetric-top molecules aligned three-
dimensionally by elliptically polarized light at finite rotational

1050-2947/2010/81(4)/043425(16) 043425-1 ©2010 The American Physical Society
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temperature. We point out the symmetries in the quantum
mechanical theory of three-dimensionally aligned molecules
that can be used to significantly reduce the numerical time
propagation. We restrict our analysis to electronic and vibra-
tional ground-state configurations and neglect deformations.
Our approach allows us to investigate x-ray diffraction from
molecules in all three alignment regimes (adiabatic, impulsive,
and intermediate). In order to probe molecular structure
of gas-phase molecules by x-ray scattering, the degree of
alignment must be rather high for sufficient resolution. This
favors the adiabatic alignment approach [43] with low-
temperature molecules [25,55]. In Sec. II, we present the
theory and inherent symmetries of the Hamiltonian underlying
x-ray diffraction from laser-aligned molecules. Section III
focuses on the numerical implementation and computational
efficiency, and basic ideas are presented of the phase-
retrieval algorithm that is used for structure reconstruction.
In Sec. IV, the three-dimensional alignment dynamics and
their impact on the reconstruction are demonstrated using
the example of the organic molecule naphthalene. We con-
clude with a discussion of the feasibility and limitations
of x-ray diffraction from laser-aligned gas-phase molecules.
Atomic units [73] are employed throughout, unless otherwise
noted.

II. THEORY

The Hamiltonian for x-ray diffraction from laser-aligned
molecules is [52]

Ĥtot = Ĥrot + ĤXEM + ĤL(t) + ĤX, (1)

where Ĥrot describes the field-free rotational motion of a
molecule, ĤXEM is the Hamiltonian of the free quantized
x-ray fields, and ĤL(t) and ĤX describe the interactions of
a molecule with the laser and x-ray field, respectively. The
electronic and vibrational states of the molecule are omitted,
since we assume that the molecule remains in its electronic
and vibrational ground state throughout our discussion. The
x-ray field and its interaction with the molecule is described
in a quantized manner. The laser field is formulated as a
classical field. The eigenstates of the noninteracting system,
i.e., Ĥ0 = Ĥrot + ĤXEM, are

|JτM; {n}〉 = |JτM〉 ⊗ |{n}〉 , (2)

with

ĤXEM |{ni}〉 = EX
{ni } |{ni}〉 , (3a)

Ĥrot |JτM〉 = Erot
Jτ |JτM〉 , (3b)

where |JτM〉 are the rotational eigenstates of an asymmetric-
top molecule [57,74] and |{n}〉 are the x-ray Fock states [52].
The density matrix of the whole system is

ρ̂tot =
∑
JτM

∑
{n1},{n2}

ρX
{n1},{n2}wJτ |�JτM;{n1}(t)〉〈�JτM;{n2}(t)|,

(4)

where the gas-phase molecules [75,76] are described by a
canonical ensemble [77–79], wJτ is the statistical weight, and
ρX

{n1},{n2} denotes the initial distribution of all the occupied field
modes [80,81].

With including both interactions, ĤL(t) and ĤX, the states
of Eq. (2) are no longer eigenstates of the system. However,
each state |�J0τ0M0;{n0}(t)〉 can be written as∣∣�J0τ0M0;{n0}(t)

〉 =
∑

J1τ1M1,{n1}
[C(t)]J1τ1M1;{n1}

J0τ0M0;{n0} |J1τ1M1; {n1}〉 ,

(5)

where the expansion coefficients [C(t)]J1τ1M1;{n1}
J0τ0M0;{n0} statisfy the

initial condition

[C(−∞)]J1τ1M1;{n1}
J0τ0M0;{n0} = δJ0J1δτ0τ1δM0M1δ{n0},{n1}. (6)

The equation of motion for the expansion coefficients in the
interaction picture (subscript I) reads

i
d

dt
[CI (t)]J1τ1M1;{n1}

J0τ0M0;{n0}

=
∑

J2τ2M2,{n2}
〈J1τ1M1; {n1}| ĤL(t) + ĤX |J2τ2M2; {n2}〉

× e
i(Erot

J1τ1
−Erot

J2τ2
+EX

{n1}−EX
{n2})t [CI (t)]J2τ2M2;{n2}

J0τ0M0;{n0}. (7)

In the following, we assume we found [CL,I (t)]J1τ1M1
J0τ0M0

, the
solution for the laser-only problem, i.e., Ĥrot + ĤL(t). Note
that in the laser-only Hamiltonian no x-ray field is involved
and we will drop the x-ray field indices in its solution.

The interaction between the laser-aligned molecules and
the x-ray field is taken into account by first-order perturbation
theory. The solution of Eq. (7) becomes

[CI (t)]J1τ1M1;{n1}
J0τ0M0;{n0} = −i

∑
J2τ2M2 ,J3τ3M3

J4τ4M4

[CL,I (t)]J1τ1M1
J4τ4M4

∫ t

−∞
dt ′ ei(Erot

J3τ3
−Erot

J2τ2
+EX

{n1}−EX
{n0})t

′

× [
C−1

L,I (t ′)
]J4τ4M4

J3τ3M3
〈J3τ3M3; {n1}| ĤX |J2τ2M2; {n0}〉 [CL,I (t ′)]J2τ2M2

J0τ0M0
. (8)

The expectation values of interest can be calculated by

O(t) = Tr[Ôρ̂tot(t)]

=
∑

JτM,J1τ1M1 ,J ′τ ′M′
{n},{n1},{n′ },{n′′ }

wJ ′τ ′ ρX
{n′},{n′′} 〈JτM; {n}| Ô |J1τ1M1; {n1}〉 e

i(Erot
Jτ −Erot

J1τ1
+EX

{n}−EX
{n1})t [CI (t)]J1τ1M1;{n1}

J ′τ ′M ′;{n′} [C∗
I (t)]JτM;{n}

J ′τ ′M ′;{n′′}, (9)
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from which the alignment signals (cf. Sec. II D) and the
x-ray scattering probability (cf. Sec. II E) can be derived.
We followed here the strategy that is laid out in Ref. [52]
for x-ray diffraction from symmetric-top molecules and adapt
it to the asymmetric-top case. The structures of ĤXEM and ĤX

are the same for symmetric-top and asymmetric-top molecules.
The most dramatic changes for asymmetric-top molecules
happen in the laser-only system. Therefore, we focus for the
rest of our discussion just on the laser-only system.

In the following subsections the structure of the field-free
Hamiltonian Ĥrot and the laser–molecule interaction matrix
ĤL(t) will be investigated. For this purpose it is convenient
to stay in the Schrödinger picture. In Sec. II C we return to
the equation of motion of the laser-only system and point out
the symmetries of its solutions [CL,I (t)]J

′τ ′M ′
JτM . The measure

of three-dimensional alignment is described in Sec. II D. The
theory section closes with exploiting the symmetries in the
angular density distribution and the diffraction signal.

A. Free asymmetric-top rotor

Assuming that structural deformation of the molecule may
be neglected, we treat the molecules as rigid rotors. The
corresponding field-free Hamiltonian reads [74]

Ĥrot = AĴ 2
a + BĴ 2

b + CĴ 2
c

= A + B

2
Ĵ 2 + 2C − A − B

2
Ĵ 2

0 + A − B

2

[
Ĵ 2

+1 + Ĵ 2
−1

]
,

(10)

where A,B,C are the rotational constants associated with the
principal axes of inertia; Ĵa,Ĵb,Ĵc are the Cartesian compo-
nents of the angular-momentum operator in the molecular
frame; and Ĵ±1,Ĵ0 are the spherical basis components. For
symmetric-top (A = B 
= C) and asymmetric-top (A 
= B 
=
C,A 
= C) rotors, the angular momentum J and its projection
on the space-fixed z axis, M , are conserved. The angular-
momentum projection on the molecular c axis, K , is conserved
only for symmetric-top molecules. A new quantum number τ ,
replacing K , must be introduced for asymmetric-top rotors
diagonalizing the field-free Hamiltonian [cf. Eq. (3b)]. Note
the rotational energies Erot

Jτ are independent of the quantum
number M . Hence, each energy level Erot

Jτ is (2J + 1)-fold
degenerate. It is possible to express the asymmetric-top
eigenstates |JτM〉 as a superposition of the analytically known
symmetric-top eigenstates |JKM〉 [57],

|JτM〉 =
∑
K

a
[J ]
Kτ |JKM〉 , (11)

〈φ,θ,χ |JKM〉 =
√

2J + 1

8π2
D

∗[J ]
M,K (φ,θ,χ ), (12)

where the coefficients a
[J ]
Kτ are real and φ,θ,χ are the three

Euler angles connecting the space-fixed laser frame (L) with
the principal axes of inertia in the molecular reference frame
(M). D

∗[J ]
M,K (φ,θ,χ ) is the complex conjugate of the Wigner

D matrix with angular momentum J . Unfortunately, it is
not possible to find a general relation between the τ and K

classification [82].
There are two symmetries incorporated between the

symmetric-top (K) and asymmetric-top (τ ) classification. The

TABLE I. Rotational classes of asymmetric-top rotors.

E+ : |JτM〉 = ∑
K�0,Keven a

[J ]
Kτ [|JKM〉 + |J (−K)M〉]

E− : |JτM〉 = ∑
K�0,Keven a

[J ]
Kτ [|JKM〉 − |J (−K)M〉]

O+ : |JτM〉 = ∑
K�0,Kodd a

[J ]
Kτ [|JKM〉 + |J (−K)M〉]

O− : |JτM〉 = ∑
K�0,Kodd a

[J ]
Kτ [|JKM〉 − |J (−K)M〉]

first symmetry decouples states with even K from states with
odd K , since Ĥrot is a linear combination of Ĵ 2

±1 and Ĵ 2
0

[Eq. (10)]. The state class with even K is labeled E, the one
with odd K is labeled O. Asymmetric eigenstates inherit this
separation and are superpositions of just even or odd K states.
The invariance of Ĥrot under the substitutions M → −M and
K → −K leads to the second symmetry, the Wang symmetry
[74,77], where asymmetric-top eigenstates decompose in
symmetric and antisymmetric linear combinations,

|JτM〉 =
∑
K�0

a
[J ]
Kτ [|JKM〉 + (−1)τ |J (−K)M〉], (13)

where (−1)τ denotes the parity of τ ,

(−1)τ =
{+1, τ symmetric in K ,

−1, τ antisymmetric in K.
(14)

Thus, overall there are four separate state classes, which are
summarized in Table I.

With knowing the energy levels of Ĥrot, it is possible to
calculate the laser-only density matrix

ρ̂mol(t) =
∑
JτM

wJτ |�JτM (t)〉 〈�JτM (t)| , (15)

with the statistical weights,

wJτ = gJτ

e−Erot
Jτ /kT

Z(T )
, (16)

where Z(T ) is the partition function at temperature T and k is
the Boltzmann constant. Every state is additionally weighted
by the nuclear spin statistical weight gJτ , which represents the
number of allowed nuclear spin states for a given rotational
state and can be derived from symmetry arguments that have
to obey spin statistics [83]. The computation of gJτ for
asymmetric-top molecules and in particular for naphthalene
is discussed in Appendix A.

B. Laser-molecule interaction

Three-dimensional alignment may be achieved by using an
intense, nonresonant, elliptically polarized laser field,

E(t) =
√

8παI (t)[εx cos(ωt)ex + εz sin(ωt)ez], (17)

where I (t) is the intensity of the laser field, α is the fine
structure constant, ω is the laser frequency, and ez,ex are the
unit vectors of the major and minor polarization directions.
The parameters εx and εz satisfy ε2

x + ε2
z = 1 and 0 � εx < εz.
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The laser-molecule interaction reads [59]

ĤL(t) = −1

2

∑
i,j∈{x,y,z}

α
pol
ij Uij (t)

= −1

2

2∑
J=0

J∑
M=−J

(−1)J+M [αpol][J ]L
M U

[J ]L
−M (t), (18)

where αpol is the dipole-polarizability tensor and U (t) =
E(t) ⊗ E(t) is the electric-field tensor. On the right-hand side
of Eq. (18), the interaction is written first as a Cartesian tensor
product and then as a spherical tensor product. Only spherical
tensor components with J = 0,2 are nonzero and contribute
to the tensor product, since both tensors are symmetric. (All
components with J = 1 are zero for symmetric tensors.) The
J = 0 component shifts all rotational energy levels by a
state-independent amount and may therefore be dropped.

The laser period, 2π/ω, is typically several orders
of magnitude smaller than the rotational time scale,
τrot ≈ 1/(A + B). Cycle averaging leads to a diagonal Uij ,
and only three spherical components remain nonzero,

[U (t)][2]L
0 = 4πα√

6

(
2 − 3ε2

x

)
I (t), (19a)

[U (t)][2]L
±2 (t) = 2παε2

xI (t). (19b)

Hence, only the terms involving [αpol][2]L
0 and [αpol][2]L

±2
contribute to the laser-molecule interaction [Eq. (18)]. This
holds for any molecule. However, the polarizability αpol

is a molecular property and is therefore most conveniently
expressed in the molecular reference frame [αpol][J ]M

K . Wigner
D matrices provide the connection to the space-fixed
components [59],

[αpol][J ]L
M =

∑
K

D
∗[J ]
M,K (φ,θ,χ )[αpol][J ]M

K . (20)

When the principal axes of the polarizability tensor do
not coincide with the principal axes of the moment-of-inertia
tensor, the polarizability tensor is not diagonal in the molecular
reference frame (cf. Sec. II A) and all [αpol][J ]M

K for J = 0,2
may be nonzero. We will restrict our discussion to the case
where both frames coincide. The remaining tensor components
are [59]

[αpol][2]M
0 = 2α

pol
cc − α

pol
bb − α

pol
aa√

6
, (21a)

[αpol][2]M
±2 = α

pol
aa − α

pol
bb

2
. (21b)

Using Eqs. (19)–(21), the matrix elements of the laser-
molecule interaction operator with respect to the symmetric-
top eigenstates read

〈JKM|ĤL(t)|J ′K ′M ′〉 = −1

2

√
2J + 1

2J ′ + 1

(
[αpol][2]M

0 〈J,K; 2,0|J ′,K ′〉 + [αpol][2]M
2 [〈J,K; 2,2|J ′K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉])

× (
[U (t)][2]L

0 〈J,M; 2,0|J ′,M ′〉 + [U (t)][2]L
2 [〈J,M; 2, − 2|J ′,M ′〉 + 〈J,M; 2,2|J ′,M ′〉]), (22)

where the matrix elements of the Wigner D matrices have been
expressed in terms of Clebsch-Gordan coefficients [54,74].

Three-dimensional alignment of asymmetric-top molecules
conserves neither K nor M . The asymmetric-top rotor breaks
the χ symmetry (K conservation), and elliptically polarized
light breaks the φ symmetry (M conservation). However, there
are remaining symmetries in the laser interaction that can be
employed,

〈JKM|ĤL(t)|J ′K ′M ′〉
= 0, K ′ − K,M ′ − M /∈ {±2,0}, (23a)

= (−1)J−J ′ 〈JK(−M)| ĤL(t)|J ′K ′(−M ′)〉, (23b)

= (−1)J−J ′ 〈J (−K)M|ĤL(t)
∣∣J ′(−K ′)M ′〉 . (23c)

This follows from properties of the Clebsch-Gordan coef-
ficients [74]. As a result of Eq. (23a), states with even
K (M) remain separate from states with odd K (M). The
consequences of Eqs. (23b) and (23c) will be discussed in the
following sections.

C. Equation of motion

In the laser-only system, the equation of motion [Eq. (7)]
for the initially populated state |JKM〉 reduces to [59]

i
d

dt
[CL,I (t)]J

′τ ′M ′
JKM =

∑
J1τ1M1

e
i[Erot

J ′ ,τ ′−Erot
J1 ,τ1

]t

× 〈J ′τ ′M ′|ĤL(t)|J1τ1M1〉 [CL,I (t)]J1τ1M1
JKM , (24)

where the interaction matrix elements are expressed in the
symmetric-top basis and the symmetries from Eqs. (23) can
be used.

The symmetries of the rotational eigenstates |JτM〉 [cf.
Eq. (13) and Table I] in combination with the symmetries of
ĤL(t) [cf. Eqs. (23)] pass on to [CL,I (t)]J

′K ′M ′
JKM such that

[CL,I (t)]J
′K ′M ′

JKM = (−1)J−J ′
[CL,I (t)]J

′K ′(−M ′)
JK(−M) , (25a)

= (−1)J−J ′
[CL,I (t)]J

′(−K ′)M ′
J (−K)M . (25b)

The laser-molecule interaction preserves the separation of
even or odd K and M states [cf. Eq. (23a)] but breaks the Wang

043425-4

4.1. X-RAY SCATTERING FROM 3D-ALIGNED MOLECULES 97



COMPUTATIONAL STUDIES OF X-RAY SCATTERING . . . PHYSICAL REVIEW A 81, 043425 (2010)

symmetry [cf. Eq. (13)]. The indices from the asymmetric-top
basis transform to the symmetric-top basis according to

[CL,I (t)]J
′K ′M ′

JKM =
∑
τ,τ ′

a
[J ′]
τ ′K ′a

[J ]
τK [CL,I (t)]J

′τ ′M ′
JτM . (26)

The symmetric-top representation is especially favorable for
the laser-molecules interaction; the field-free propagation is
naturally expressed in the asymmetric-top basis.

D. Measure of alignment

The degree of three-dimensional alignment can be charac-
terized in terms of the quantities cos2 θlm, where θlm is the
angle between the space-fixed axis l and the body-fixed axis
m. The following relations hold among the cos2 θlm [63]:∑

l

cos2 θlm0 =
∑
m

cos2 θl0m = 1 ∀ m0,l0, (27)

where five of the six relations are independent. These relations
reduce the number of independent cos2 θlm to 4. The matrix
elements 〈JKM| cos2 θlm|J ′K ′M ′〉 of one set of independent
cos2 θlm (l ∈ {x,z},m ∈ {a,c}) are given in Appendix B. The
symmetries of cos2 θlm are the same as for ĤL(t),

〈JKM| cos2 θlm|J ′K ′M ′〉
= 0, K ′ − K,M ′ − M /∈ {±2,0}, (28a)

= (−1)J−J ′ 〈JK(−M)| cos2 θlm|J ′K ′(−M ′)〉, (28b)

= (−1)J−J ′ 〈J (−K)M| cos2 θlm|J ′(−K ′)M ′〉. (28c)

The restriction imposed on K ′ − K by Eq. (28a) makes it
attractive to store the matrix elements of cos2 θlm in the
symmetric-top basis; the same is true for ĤL(t).

The ensemble-averaged expectation values at time t are

〈cos2 θlm〉(t) =
∑
JτM

wJτ 〈cos2 θlm〉JτM (t), (29a)

〈cos2 θlm〉JτM (t) =
∑

J1K1M1

∑
J2K2M2

〈J1K1M1| cos2 θlm |J2K2M2〉

× [CL(t)]J2K2M2
JτM [C∗

L(t)]J1K1M1
JτM (29b)

with

[CL(t)]J
′K ′M ′

JτM =
∑
τ ′

a
[J ′]
τ ′K ′e

−iErot
J ′ ,τ ′ t [CL,I (t)]J

′τ ′M ′
JτM . (30)

Making use of the symmetries in Eqs. (25) and (28), each
〈cos2 θlm〉JKM (t) fulfills the relations

〈cos2 θlm〉JτM (t) = 〈cos2 θlm〉Jτ (−M)(t). (31)

E. Angular probability distribution

For the calculation of the x-ray scattering probability dP
d�

the solution for the full Hamiltonian [Eq. (1)] has to be known.
The laser-only problem is solved as described in Sec. II C. The
x-ray interaction is treated in first-order perturbation theory as
indicated in Eq. (8). Furthermore, the following assumptions
of the x-ray pulse are made: (1) The coherence time of the x-ray
pulse is significantly larger as the rotational time scale of the
molecules. (2) The bandwidth of the x-ray pulse is much larger
than any rotational transition energy. (3) The angular spread of

the x-ray pulse is considerably small. In Ref. [52], the detailed
derivation of dP

d�
is given with the final result

dP

d�
= dσth

d�
S( Q), (32)

where dσth/d� is the Thomson scattering cross section,

S( Q) =
∫ ∞

−∞
dt jX(t)

∫∫∫
dφ dθ dχ sin θ

× ρ(φ, θ, χ ; t) |Fmol( Q, φ, θ, χ )|2 (33)

is the diffraction signal, and jX(t) is the x-ray flux. The
molecular information in the diffraction signal is contained
in the molecular form factor,

Fmol( Q, φ, θ, χ ) =
∫

d3rM ρ(rM ) e−i Q[R(φ, θ, χ)rM ] (34)

which is a function of the molecular orientation, i.e., Euler
angles, and the momentum transfer Q given in the space-fixed
frame (L). The integration d3rM is done in the molecular
rest frame (M) with ρ(rM ) being the electron density of
the molecule. The rotation matrix R(φ,θ,χ ) transforms the
vector rM into the space-fixed frame. The angular probability
distribution,

ρ(φ, θ, χ ; t) =
∑
JτM

wJτ |〈φ, θ, χ |�JτM (t)〉|2, (35)

is linked to the Wigner D matrices D
[J ]
M,K (φ,θ,χ ) through

Eqs. (11) and (12).
From the fact that the molecules are aligned rather than

oriented, symmetries additional to the ones of D
[J ]
M,K (φ,θ,χ )

[84] enter into ρ(φ,θ,χ ; t). These additional symmetries
originate from Eqs. (25) and the separation of the rota-
tional classes E± and O± throughout the alignment process
(cf. Sec. II B). In terms of Euler angels, the symmetries of
ρ(φ,θ,χ ; t) are:

ρ(φ,θ,χ ; t)

= ρ(φ + π,θ,χ ; t) = ρ(−φ,π − θ,χ + π ; t), (36a)

= ρ(φ,θ,χ + π ; t) = ρ(φ + π,π − θ, − χ ; t). (36b)

The first two symmetries [Eq. (36a)] correspond to C2 rotations
about the space-fixed axes z and x, respectively. The last
two symmetries [Eq. (36b)] correspond to C2 rotations about
the body-fixed axes c and a, respectively. In Eq. (34), these
symmetries translate into a replacement of R(φ,θ,χ ) by
C2,x/z R(φ,θ,χ ) and R(φ,θ,χ )C2,a/c, respectively. By letting
the C2,x/z rotations act on Q rather than on rM , the S( Q)
symmetries are found,

S(Qx,Qy,Qz) = S(−Qx,Qy,Qz), (37a)

= S(Qx, − Qy,Qz), (37b)

= S(Qx,Qy, − Qz). (37c)

Additionally, the Friedel law [85], i.e., F ∗( Q) = F (− Q) ⇒
S( Q) = S(− Q), has been used. The symmetries of Eq. (36b)
can be used to reduce the integration range of the Euler angles
in Eq. (33) but only the symmetries of Eq. (36a) survive the
integration, which are expressed in Cartesian coordinates in
Eqs. (37). Regardless of their internal structure, Eqs. (37)
hold for all aligned molecules. Note that alignment does
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not distinguish between parallel and antiparallel orientations.
Thus, even for perfect alignment, i.e., φ = θ = χ = 0, four
distinct molecular orientations contribute incoherently to the
diffraction signal S( Q) [19].

III. NUMERICAL METHODS

Earlier work has addressed the problem of numerical
efficiency in the computational treatment of three-dimensional
alignment of asymmetric-top molecules [61]. In Sec. III A,
we describe numerical techniques and symmetry arguments
we have implemented to decrease the numerical effort. As
far as we are aware, these specific points have not been
discussed earlier in the literature. In Sec. III B, we explain the
phase-retrieval method we employ to reconstruct molecular
structures from x-ray scattering patterns.

A. Alignment dynamics

The density matrix of a canonical ensemble is a sum of
density matrices |JτM〉 wJτ 〈JτM| [cf. Eq. (15)]. Analo-
gously, all observables can be written as a sum of inde-
pendent contributions, which may be calculated separately.
This was shown for 〈cos2 θlm〉 [Eq. (29)] and ρ(φ,θ,χ ; t)
[Eq. (35)]. Each contribution has a well-defined behavior under
the substitution M → −M , which can be used to avoid the
calculation of |�JτM (t)〉 for M < 0. The same is true for the
quantum number K , but unfortunately K is not a good quantum
number for asymmetric-top molecules, and the wave function
|�JτM (t)〉 has to be known to calculate the expectation values.
However, |�JτM (t)〉 can be written as a superposition of
|�JKM (t)〉 [cf. Eq. (11)], and by using the same argument
as for M , only |�JKM (t)〉 for K � 0 are necessary to build all
|�JτM (t)〉 [cf. Eq. (13)]. This makes it attractive to propagate
|�JKM (t)〉 rather than |�JτM (t)〉. Taking both symmetries
together only the states |�JKM (t)〉 for 0 � K,M � J have to
be propagated to understand the full system response, which
can save up to a factor 4 in computational effort.

The decoupling between even and odd K/τ states and
M states also enhances efficiency and does not get destroyed
by the presence of the interaction ĤL(t). Therefore, many
[CL(t)]J

′τ ′M ′
JKM remain zero throughout the alignment process.

This holds for symmetric-top as good as for asymmetric-top
rotors, since each |JτM〉 can be classified into the class E±
or O± (cf. Sec. II A). The benefit is not just a speed-up by a
factor 4; also the memory requirement to store [CL(t)]J

′τ ′M ′
JKM ,

the matrix ĤL(t), and the matrices cos2 θlm is reduced by a
factor 4. Memory size can become an issue on PCs when high
J states are not negligible.

A significant time factor in the calculation, besides the time
propagation, is the computation of ρ(φ,θ,χ ; t). By employing
all symmetries described in Eq. (36), the range of Euler angles
with nonredundant information is reduced by a factor of 16
compared to the entire domain of Euler angles.

Besides the physical symmetries that can be retrieved from
the Hamiltonian, there are two numerical aspects that may
improve the propagation speed. First, the numerical time
propagation is commonly done by the fourth-order Runge-
Kutta method, where it is important that the change in the
wave function per propagation step is small and stays in
the convergent region [86]. Yet too small step sizes quickly
lead to numerical inefficiency. For our problem the change
in [CL(t)]J

′τ ′M ′
JKM is directly proportional to the product I (t)dt ,

where dt is the propagation time step. With decreasing I (t),
dt can be chosen larger without leaving the convergent region.
Variable step sizes are, therefore, important and improve the
propagation efficiency further. Numerical tests have shown
that the optimized program runs faster by a factor between 3
and 4, where we assumed a Gaussian laser pulse centered at t0
with a full width at half maximum of τL. Outside of the laser
pulse, i.e., t /∈ [t0 − 3τL,t0 + 3τL], the molecules are treated
as field-free, and the propagation is performed analytically.

The second improvement takes place at the equation of
motion [Eq. (24)]. To solve the equation numerically, it has to
be discretized in time. We chose the fourth-order Runge-Kutta
method as our discretization method. Only the contribution
of ĤL(t) is approximated when the discretization in time in
the equation of motion is made in the interaction picture.
The time propagation of Ĥrot is analytically exact such that
in the field-free case the numerically calculated solution
matches the analytical result. To improve the efficiency in
solving the equation of motion, we reduce the need for
repeated calculating of ei(Erot

j −Erot
i )t , which goes with N2 for

the propagation of all [CL,I (t)]J
′τ ′M ′

JKM , where N is the number
of rotational states involved in the propagation. The evaluation
of exponential functions does not occur when the equation of
motion is discretized in the Schrödinger picture [27,28,57].
As a consequence, the propagation of the field-free part is now
discretized, which has two major limitations: (1) the field-free
propagation is not exact even in the field-free case, where
the analytic solution is known, and (2) the propagation step
size depends, in addition to the laser-molecule interaction
strength, on the highest rotational energy Erot

Jτ . In order
to use the advantages of both pictures, we discretize the
equation of motion in the interaction picture and transform it
afterwards back into the Schrödinger picture by reformulating
the propagation in terms of [CL(t)]J

′τ ′M ′
JKM . The final discretized

equation of motion is:

[CL(t + dt)]ji = e−2iϕj [CL(t)]ji + dt
e−2iϕj [D(1)]ji + 2e−iϕj [D(2)]ji + 2e−iϕj [D(3)]ji + [D(4)]ji

6
, (38)

[D(a)]ji = −i
∑

k

[HL(t)]jk
[
C̃

(a)
L

]k

i
, a = 1,2,3,4, (39)

043425-6

4.1. X-RAY SCATTERING FROM 3D-ALIGNED MOLECULES 99



COMPUTATIONAL STUDIES OF X-RAY SCATTERING . . . PHYSICAL REVIEW A 81, 043425 (2010)

where the indices i,j,k are shortcuts for the sets of asymmetric-
top quantum numbers, [HL(t)]ji = 〈j |ĤL(t)|i〉, e−iErot

j dt/2 =
e−iϕj , and intermediate solutions are[

C̃
(1)
L

]j

i
= [CL(t)]ji , (40a)[

C̃
(2)
L

]j

i
= e−iϕj

[
C̃

(1)
L

]j

i
+ dt

2
e−iϕj [D(1)]ji , (40b)

[
C̃

(3)
L

]j

i
= e−iϕj

[
C̃

(1)
L

]j

i
+ dt

2
[D(2)]ji , (40c)

[
C̃

(4)
L

]j

i
= e−2iϕj

[
C̃

(1)
L

]j

i
+ dt

2
e−iϕj [D(3)]ji . (40d)

Since e−iϕj depends only on dt and not on the time t itself,
it needs to be evaluated only once at the beginning of the
propagation. During the time propagation, the evaluation
of the exponential function is not necessary as long as dt

does not change. In our simulations, we gained a factor
2 to 5 depending on the simulation parameters, when we
employed Eqs. (38)–(40). Note, in the field-free limit the time
propagation in Eq. (38) is analytically exact.

Overall, the use of the symmetries and numerical techniques
described allows us to simulate three-dimensional alignment of
asymmetric-top molecules from the impulsive to the adiabatic
regime up to two orders of magnitude faster. In the case
of quasiadiabatic alignment of naphthalene at 1 K, the total
computation time was 2457 h (41 days) with a PC (CPU:
3 GHz). The calculation of S( Q) took approximately 8% of the
total time (φ,θ,χ,t-grid points: 25 × 30 × 30 × 11). Without
exploiting the symmetries for the Euler angles, this calculation
would be almost 1.5 times longer than the time propagation
itself. A detailed list of the physical parameters used for the
computations is given in Sec. IV.

B. Phase-retrieval algorithm

For imperfectly aligned molecules, the diffraction pattern is
an incoherent average of single-molecule diffraction patterns
of different orientations. In the limit that a high degree of
molecular alignment is attained, the obtained pattern can
be approximated as a single-molecule coherent diffraction
pattern. (This is true for naphthalene, since orientation and
alignment are equivalent for this molecule.) One may thus
retrieve structural information from the single-molecule elec-
tron density map, which is the Fourier transform of the single-
molecule scattering form factor, F ( Q). Since the diffraction
pattern provides only |F ( Q)|, we need to obtain the associated
phase before we can recover the molecular structure. There
are iterative numerical algorithms that permit reconstructing
the phase directly from the intensity data [17,18,87–101].
These algorithms require intensity data sampled at twice the
Nyquist frequency. Successful structural reconstruction using
these algorithms has been demonstrated with experimental
data [7,12,102–110].

Here we use the hybrid-input-output (HIO) algorithm
[89–91], which involves iterative Fourier transformation back
and forth between the object and Fourier domains. A solution
is found when the known constraints are satisfied in both
domains. We begin by obtaining an initial estimate of the
object electronic density via an inverse Fourier transformation
of the form factor, F ( Q) = |F ( Q)|eiφQ , which is obtained

by assigning a random phase, φQ , to the measured modulus,
|F ( Q)|. The random phase φQ is chosen such that Friedel’s
law, F ∗( Q) = F (− Q), is satisfied. With this estimate, we
initiate an iterative four-step algorithm, in which the k-th
iteration is given as follows:

(i) Fourier transform of the object electron density, ρk(r),
to obtain Fk( Q).

(ii) A Fourier domain operation (FDO) is applied to Fk( Q)
to obtain F ′

k( Q) that satisfies the Fourier constraint. In our
FDO, the modulus of F ′

k( Q) is set to be the measured modulus,
|F ( Q)|, and the phase of F ′

k( Q) is the phase of Fk( Q).
(iii) Inverse Fourier transform of F ′

k( Q) to give ρ ′
k(r).

(iv) An object domain operation (ODO) is applied to ρ ′
k(r)

to get a new estimate of the object electron density, ρk+1(r),
that satisfies the object constraint. Our ODO is given as

ρk+1(r) =
{

ρ ′
k(r), for r ∈ S and ρ ′

k(r) � 0

ρk(r) − βρ ′
k(r), otherwise,

(41)

where β is chosen to be 0.9 [93,98,100] and S is a predefined
support of the object.

In order to obtain a correctly reconstructed object, a support
S of good quality is needed [91]. In our algorithm, the support
S is changed dynamically throughout the HIO algorithm via
the Shrink-wrap (SW) procedure [93]. The inverse Fourier
transform of the scattering intensity, |F ( Q)|2, equals the
autocorrelation function of ρ(r). Treating the autocorrelation
function as a distribution function, the initial S is chosen as
a region centered at the mean of the autocorrelation function
with a spatial extension of two standard deviations. This choice
of S is fixed during the first 2000 iterations before applying
the SW procedure periodically after every 200 iterations of the
HIO algorithm to obtain a new S. In the SW procedure, the
modulus of the object, |ρk(r)|, is convolved with a Gaussian
of width σ . The new S is then selected as the region for which
the value of the convolved function is above a threshold of
20% of its maximum [93]. The initial width of the Gaussian
is chosen to be 2.5 Å and is shrunk linearly to a minimum of
0.25 Å after 400 iterations of the SW procedure. Using the last
updated S, an additional 200 iterations of the HIO algorithm
are performed.

Figure 1 illustrates the application of the phase-retrieval
algorithm described to an x-ray scattering pattern calculated
for perfectly aligned naphthalene molecules with one set of
initial random phases. X-ray scattering patterns in this article
are based on the assumption that the molecular electron density
equals the sum over spherically averaged atomic electron
densities [85]. Only the carbon atoms are visible in the
reconstruction in Fig. 1(b), since x-ray scattering from carbon
is much stronger than x-ray scattering from hydrogen.

Note that the real-space pixel size in each dimension is given
by π/Qmax, where Qmax is the maximum momentum transfer
for which diffraction data are available. In the case of perfect
alignment, the real-space resolution, dres, attained from the
reconstruction is two times the real-space pixel size. (In Fig. 1,
dres = 0.25 Å.) However, in the case of imperfect molecular
alignment, dres depends on Qmax and Qcoh, where Qcoh is the
range of useful diffraction data for which the assumption of
coherent scattering holds and the effect of incoherent averaging
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FIG. 1. (Color online) (a) The diffraction signal S(Qy = 0) for
naphthalene perfectly aligned in the xz plane. The spatial resolution
is 0.25 Å. S(0) = 682 is the number of electrons squared. (b) The
reconstructed structure.

is small. In fact, we find that including diffraction data beyond
Qcoh can diminish the quality of the reconstructed object.

IV. RESULTS

In this section, we present numerical results based on the
theory and the numerical strategies summarized in Secs. II
and III. We demonstrate quasiadiabatic, three-dimensional
alignment of the organic molecule naphthalene (C10H8). The
experimental parameters that we are using are based on
previous work [56]. X-ray energies and fluxes that are used in
our discussion are accessible at the Advanced Photon Source
at Argonne National Laboratory.

After investigating the alignment dynamics, we focus on the
diffraction signal and structure reconstruction. The rotational
temperature and the x-ray pulse duration impact the effective
alignment and limit the structural information stored in the
x-ray scattering pattern. A phase-retrieval algorithm is used
to reconstruct the structure. In this context, the degree of
alignment and its impact on the spatial resolution are discussed.

A. Three-dimensional alignment

Naphthalene is a planar molecule. The molecular reference
frame is chosen such that all atoms lie in the ac plane and
the b axis is perpendicular to it. The choice of axes as well
as the structure of naphthalene are shown in Fig. 2. The
rotational constants of naphthalene are A = 0.041 cm−1, B =
0.029 cm−1, and C = 0.104 cm−1 [111].1 The polarizabil-

1In contrast to spectroscopic convention, the rotational constants
A, B and C are not ordered according to magnitude. We reorder the
rotational constants such that for perfect alignment the molecular
frame (a,b,c) coincides with the space-fixed frame (x,y,z).

FIG. 2. (Color online) The structure of naphthalene (C10H8). All
atoms lie in the ac plane of the body-fixed reference frame. The
coordinate system is shown in the lower left corner. The cones
symbolize the resolution limit of the carbon atoms due to imperfect
alignment.

ity constants are α
pol
aa = 121.4a3

0 , α
pol
bb = 63.2a3

0 , and α
pol
cc =

163.9a3
0 [112]. The nuclear spin statistical weights gJτ for

naphthalene are given in Table II. (We assume that the carbon
nuclei are 12C isotopes, and the hydrogen nuclei are protons.)
The derivation of gJτ is outlined in Appendix A.

Three-dimensional alignment of naphthalene is obtained by
employing elliptically polarized light. The z and x axes of the
space-fixed frame are defined by the major and minor axes,
respectively, of the ellipse that characterizes the elliptically
polarized light. Following Ref. [63], we choose the ratio
between the field components using

ε2
x

ε2
z

= α
pol
cc − α

pol
aa

α
pol
cc − α

pol
bb

= 0.422, (42)

which maximizes the three-dimensional alignment of naph-
thalene. Perfect three-dimensional alignment with respect
to the space-fixed frame is achieved when 〈cos2 θxa〉 =
〈cos2 θyb〉 = 〈cos2 θzc〉 = 1. Random orientation corresponds
to 〈cos2 θlm〉 = 1/3 for all angles.

The typical distance between two neighboring carbon atoms
in naphthalene is 1.4 Å. In order to resolve the atomic structure,
the resolution must be smaller than this value. Imperfect
alignment limits the resolution. To build a connection between
the resolution and the alignment in terms of 〈cos2 θlm〉, it is
helpful to view the angle θlm as an opening angle within which
the residual motion of the atoms takes place (cf. Fig. 2). Hence,
the length characterizing the smallest resolvable structure is

dcoh ≈ 2R
√

1 − 〈cos2 θlm〉, (43)

where R is the linear dimension of the molecule (measured
from the center of mass of the molecule). The degree of

TABLE II. The nuclear spin statistical weights gJτ of naphthalene
classified by the rotational symmetry classes.

Rotation class E+ E− O+ O−

gJτ (J even) 76 60 60 60
gJτ (J odd) 60 76 60 60
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alignment needed for a resolution of 1 Å for the outermost
carbon atom (R = 2.5 Å) is 〈cos2 θlm〉 = 0.96. For a given
resolution, smaller opening angles θlm are required when the
molecules become larger. In the adiabatic regime at sufficiently
low temperature the maximum alignment for a linear rotor
(A = B,C = 0) is given by 〈cos2 θzc〉 = 1 − √

4B/γ ,γ =√
96παI [αpol][2]

0 [32,33]. The polarizability [αpol][2]
0 is approx-

imately proportional to R3, and B scales approximately as R−5

[19,40]. The smallest resolvable dimension dcoh is thus propor-
tional to 1/R and might be expected to decrease with increas-
ing molecular size. Note, however, that the temperature re-
quired to suppress thermal effects (kT /B � 1) also decreases
as a function of the molecular size. Additionally, in order to
remain in the adiabatic regime, the laser pulse duration must
increase with increasing molecular size. In practice this means
the laser intensity will decrease. For large molecules it is more
realistic to consider the high temperature limit (kT /B � 1),
where the degree of alignment is a competitive interplay
between rotational temperature and coupling strength γ ; more
precisely, 〈cos2 θzc〉 = 1 − √

πkT/γ [25,33]. By using the
same scaling arguments, we find dcoh ∝ 4

√
kT R. The expected

resolution is now reversed and increases with molecular size
and rotational temperature. Consequently, larger molecules
can be resolved less precisely.

In Fig. 3, the alignment dynamics of naphthalene at 10 mK
and 1 K, respectively, are shown. We assumed a Gaussian laser
pulse with a peak intensity of I = 5 TW/cm2 and a pulse
duration of τL = 100 ps (FWHM). At a rotational temperature
of T = 10 mK, almost all naphthalene molecules are in the
rotational ground state. The rotational period of naphthalene at
such a low temperature, τrot ≈ 1/(A + B) ≈ 476 ps, is of the
order of τL = 100 ps, suggesting that the alignment dynamics
are quasiadiabatic [55]. This is consistent with the observation
that the overall alignment follows the laser pulse shape and,
in addition, clear nonadiabatic features (fast oscillations) are
visible. One can make use of the nonadiabatic behavior by
probing the molecules with an x-ray pulse of 1 ps duration,
which is fast enough to resolve the nonadiabatic oscillations.
For instance, at t = 20.75 ps the alignment is transiently
enhanced in all three dimensions (cf. Fig. 3). At T = 1 K, the
rotational period of naphthalene is small in comparison to τL,
so the alignment dynamics are adiabatic and fast oscillations
are significantly suppressed. As a consequence of the increased
thermal motion, the maximum degree of alignment at T =
1 K is clearly reduced.

The diffraction signal S( Q) [cf. Eq. (33)] collected over
the x-ray pulse duration reflects a pulse-averaged, effective
alignment

〈cos2 θlm〉eff =
∫

dt j̄X(t)〈cos2 θlm〉(t), (44)

where j̄X(t) is the normalized x-ray flux. We assume a
Gaussian temporal envelope for the x-ray pulse, with a full
width at half maximum of τX. In Fig. 4, 〈cos2 θlm〉eff is shown
as a function of τX. We may conclude from Fig. 4 that the
effective alignment of the body-fixed axes decreases rapidly
when the x-ray pulse duration is longer than the laser pulse
duration. An enhancement in the effective alignment is visible
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FIG. 3. (Color online) Alignment dynamics of three axes of
naphthalene at rotational temperatures T = 10 mK (solid) and T =
1 K (dotted). The pump laser shown in gray has a peak intensity
of I = 5 TW/cm2, a width of τL = 100 ps, and an ellipticity of
ε2
x/ε

2
z = 0.422. The upper panel pictures the alignment dynamics on

the time scale of the pulse duration. The lower panel is a close-up
view of the region highlighted in the upper graph. At t = 20.75 ps,
nonadiabatic oscillation enhances the alignment for all axes at T =
10 mK and is ideal for a 1-ps x-ray probe pulse.

for τX ≈ 1 ps at T = 10 mK, where nonadiabatic oscillations
are not suppressed and can be resolved by the x-ray pulse.

When τX <∼ τL, the influence of τX is rather weak and
the degree of alignment is mainly affected by the rotational
temperature, T . Figure 5 shows the effective alignment of the
molecular axes as a function of T for τX = 1 ps and τX =
100 ps. Below 0.25 K, the best aligned axis is the body-fixed
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FIG. 4. (Color online) The effective alignment of the body-fixed
axes is shown as a function of the x-ray pulse duration, τX , for T =
10 mK (solid) and T = 1 K (dotted). The pump laser has a peak
intensity of I = 5 TW/cm2, a width of τL = 100 ps, and an ellipticity
of ε2

x/ε
2
z = 0.422. The x-ray pulses are centered at t = 0 ps.
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FIG. 5. (Color online) The effective alignment of the body-fixed
axes is shown as a function of the rotational temperature for τX = 1 ps
(solid) and τX = 100 ps (dotted). The pump laser has a peak intensity
of I = 5 TW/cm2, a width of τL = 100 ps, and an ellipticity of
ε2
x/ε

2
z = 0.422. The x-ray pulses are centered at t = 0 ps.

b axis in the space-fixed y direction for τX � 100 ps, despite
the fact that no laser field is applied in this direction. The strong
alignment of the b axis translates to well-aligned naphthalene
molecules in the polarization plane of the laser (xz plane).
Within the plane, the body-fixed c axis is always more strongly
aligned in the z direction than the a axis is aligned in the
x direction. (Recall that α

pol
cc > α

pol
aa and εz > εx .) For higher

temperatures, the body-fixed c axis is the most strongly aligned
axis, since the alignment of the b axis is affected by the more
rapidly decreasing alignment of the a axis.

As may be seen in Fig. 4, the effective alignment 〈cos2 θ〉eff

of all molecular axes is at least 0.96 for 10 mK naphthalene
molecules probed by x-ray pulses shorter than ∼20 ps. Hence,
the smallest resolvable dimension limited by residual pendular
motion is dcoh = 1 Å. Only the rotational ground state is
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FIG. 6. (Color online) X-ray diffraction signal S(Qy = 0) of
naphthalene. (a) Perfect alignment. (b) T = 10 mK, τX = 1 ps, x-ray
pulse centered at t = 20.75 ps (cf. Fig. 3). (c) T = 1 K, τx = 100 ps,
x-ray pulse centered at t = 0 ps. (d) T = 10 mK, τX = 100 ps, x-ray
pulse centered at t = 0 ps. For the alignment pulses in (b), (c), and
(d), we assumed I = 5 TW/cm2 and τL = 100 ps.

initially occupied, and the minimum intensity required to
accomplish 1 Å resolution is I = 5 TW/cm2. Dissociation
and ionization play only a minor role at this intensity but
become important at higher intensities [113]. With an effective
alignment of 〈cos2 θxa〉eff = 0.88 at 1 K and τX = 100 ps, the
smallest resolvable dimension dcoh is 1.73 Å, which is larger
than the distance between neighboring carbon atoms.

B. X-ray diffraction patterns

In Fig. 6, diffraction patterns S( Q) of three-dimensionally
aligned naphthalene are shown for perfect alignment as well
as for imperfect alignment at different temperatures and
x-ray pulse widths. The laser parameters are the same as
for Fig. 3. The laser polarization plane is assumed to be the
xz plane so that the molecules are aligned as illustrated in
Fig. 2. The diffraction patterns in Fig. 6 are two-dimensional
planar slices through the three-dimensional Q space, taken
at Qy = 0. (Due to the curvature of the Ewald sphere [85],
experimental scattering patterns do not correspond to exactly
planar slices through Q space, but this is of no consequence
here.) The signal strength falls rapidly for high Q. There-
fore, to highlight the structure at high momentum transfers,
the scattering intensities are shown on a logarithmic scale.
The effective alignment in Fig. 6 decreases clockwise,
from 〈cos2 θxa〉eff = 1 for perfect alignment to 〈cos2 θxa〉eff =
0.88 for naphthalene molecules at 1 K probed by a
100-ps x-ray pulse. By increasing the x-ray pulse width
from 1 to 100 ps, the effective alignment at T = 10 mK de-
creases from 〈cos2 θxa〉eff = 0.967 to 〈cos2 θxa〉eff = 0.944 [cf.
Fig. 6(b) and 6(d)] and is significantly smaller than the impact
of temperature rise from 10 mK to 1 K [cf. Fig. 6(c) and 6(d)].

Although the basic features of the x-ray scattering pat-
tern for perfectly aligned naphthalene [Fig. 6(a)] are pre-
served in the scattering patterns for laser-aligned naphthalene
[Figs. 6(b), 6(c), and 6(d)], the contours are washed out and
the contrast between maxima and minima is less pronounced
with decreasing alignment. Incoherent averaging for laser-
aligned naphthalene renders the diffraction patterns more
cylindrically symmetric with respect to the y direction, which
limits the accessible structural information particularly at high
momentum transfer.

Side views of naphthalene in Q space are shown in Fig. 7,
where Fig. 7(a) depicts the long side (Qx = 0) and Fig. 7(b)
the short side (Qz = 0) of naphthalene. Both display strong
similarities to multislit diffraction patterns, consistent with
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FIG. 7. (Color online) (a) Diffraction signal of naphthalene for
Qx = 0. (b) Diffraction signal of naphthalene for Qz = 0. Other
parameters are the same as for Fig. 6(b).
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FIG. 8. (Color online) Same as for Fig. 6, except Qmax = 8π Å−1.
The momentum transfer Qcoh (see the text) is highlighted by a solid
green circle in (b)–(d).

the planar structure of naphthalene being well aligned in the
xz plane.

The achievable real-space resolution depends on two
aspects. On the one hand, the smallest resolvable dimension
dcoh is a function of the degree of alignment [Eq. (43)].
On the other hand, the pixel size of the real-space structure
reconstruction is determined by the maximum momentum
transfer Qmax in the diffraction signal S( Q). Here, Qmax =
2π Å−1, corresponding to a pixel size of
0.5 Å. The approximate range in momentum space within
which the assumption of coherent scattering holds may be
defined by Qcoh = 2π/dcoh. In Fig. 8, the diffraction signals of
Fig. 6 are shown up to Qmax = 8π Å−1. The respective ranges
defined by Qcoh are highlighted. It is not possible to increase
the resolution of the real-space structure reconstruction by
choosing Qmax much greater than Qcoh. In fact, numerical
tests have indicated that data beyond Qcoh can lead to poor
convergent structures.

For 12-keV x-ray photons, a real-space pixel size of
0.5 Å requires the detection of photons scattered up to 60◦ with
respect to the x-ray propagation axis. The azimuthally aver-
aged differential x-ray scattering cross section per naphthalene
molecule for Q = 2π Å−1 is dσ/d�avg = 0.6 barn. Since the
largest distance between carbon atoms in naphthalene is ∼5 Å,
the area of a pixel in momentum space must not exceed 4π2/

25 Å−2. At a scattering angle of 60◦, this corresponds to a solid
angle d� = 0.012. For a molecular beam width of 1 mm and
an x-ray focus area of 100 µm2, it has been demonstrated that
the number of molecules in the interaction volume can be as
large as 107 [56]. Hence, requiring a minimum of five scattered
photons per pixel [114], the estimated acquisition time for one
diffraction pattern is around 70 s with an x-ray fluence of
1013 photons/(pulse/mm2) and a repetition rate of 1 kHz.

C. Structure reconstruction

We applied the phase-retrieval algorithm described
in Sec. III B to the naphthalene diffraction signals shown
in Fig. 6. The maximum momentum transfer of 2π Å−1 in
Fig. 6 corresponds to a pixel size of 0.5 Å, which is of the
order of the structure we want to resolve in naphthalene.
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FIG. 9. (Color online) Structure of naphthalene, reconstructed
from the diffraction signals shown in Fig. 6. The pixel size is 0.5 Å.
(a) Perfect alignment. (b) T = 10 mK, τX = 1 ps, x-ray pulse centered
at t = 20.75 ps. (c) T = 1 K, τX = 100 ps, x-ray pulse centered
at t = 0 ps. (d) T = 10 mK, τX = 100 ps, x-ray pulse centered at
t = 0 ps.

As a consequence, each pixel encodes a lot of structure
information. Calculations have shown that the reconstruction
routine becomes sensitive to the set of initial random phases.
Therefore, we follow the spirit of Ref. [101] and average over
reconstructions obtained for 100 different sets of initial phases
to define a quality criterion, which we apply subsequently to
all 100 reconstructions to select the most meaningful results
and average over these selected reconstructions. Our quality
criterion is defined as follows: (i) All pixels of the unfiltered
averaged result that have at least 20% of the maximum electron
density are selected to build a density core region. (ii) The
quality criterion uses the density core region and selects only
the reconstructions that have at least 50% of their total electron
density within this density core region.

The filtered averages for the x-ray scattering patterns of
Fig. 6 are displayed in Fig. 9. In our calculations, we employed
a grid spacing in Q space of 0.16 Å−1, corresponding to a max-
imum object size 8 times larger than the size of naphthalene.

Figure 9 illustrates that with better effective alignment
in the diffraction pattern more structural information can be
reconstructed. In the perfect alignment case (cf. Fig. 9a), the
positions of the atoms can be resolved. A comparison with the
perfect alignment reconstruction in Fig. 1(b), where the pixel
size is 0.125 Å and no averaging over several initial random
phases was performed, illustrates that the reconstruction
of the carbon positions is more difficult when the pixel
size is comparable with the size of the atoms. Incoherent
averaging for imperfectly aligned molecules affects the
effective resolution further, since the assumption of coherent
scattering limits the usable diffraction signal to Q � Qcoh.
As a consequence, Qmax should be of the order of Qcoh and,
therefore, the pixel size in the reconstruction is limited by the
degree of effective alignment.

All results displayed in Fig. 9 recover the two-ring struc-
ture of naphthalene, indicating an effective resolution below
2 Å. Especially the two carbon atoms connecting both carbon
rings are distinctly visible. Figures 9(b) and 9(d) show the
reconstruction for naphthalene at 10 mK with τX = 1ps and
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τX = 100 ps, respectively. Both have a similar effective align-
ment and reconstruction. In both cases, the electron density
peaks on the two-ring structure indicate the positions of all
carbon atoms and are consistent with the theoretically expected
effective resolutions, which are below the typical distance
between neighboring carbon atoms (1.4 Å). The predicted
effective resolution at 1 K (dcoh = 1.73 Å) is sufficient to
resolve the overall structure of naphthalene, which can be seen
in Fig. 9(c). For the central region of naphthalene, the effective
resolution improves and makes it possible to identify the two
central carbon atoms at 1 K.

V. CONCLUSION

We have theoretically studied the theory of x-ray diffraction
from asymmetric-top molecules that are three-dimensionally
aligned by elliptically polarized light and have discussed a
phase-retrieval method in order to reconstruct molecular struc-
ture from the x-ray scattering pattern. The interaction of the gas
phase molecules with the laser and x-ray fields was studied in
the density matrix formalism. We have assumed rigid rotor
molecules. Symmetries in the time-dependent Hamiltonian
and in its solutions as well as in the angular density distribution
were exploited and used to improve numerical efficiency. In
combination with further computational aspects, a significant
enhancement in numerical efficiency has been achieved.

A feasibility study of x-ray diffraction from three-
dimensionally laser-aligned molecules has been performed
using the organic molecule naphthalene. We have linked
the degree of alignment to an effective resolution and have
studied the impact of x-ray pulse duration and temperature on
the diffraction patterns. A phase-retrieval reconstruction was
performed on diffraction patterns taken for different effective
alignments. The enhancement of incoherent averaging due
to imperfect alignment destroys structural information and
hinders the recovery of detailed atomic configurations within
the molecule. The reconstruction of naphthalene confirms our
discussion that the degree of alignment is a good indicator
for the achievable resolution in the reconstruction. To decode
structures on an atomic length scale, high degree of alignment
in all three molecular axes must be achieved. Molecules
have to be cooled down to a few Kelvin or even sub-Kelvin
temperatures so rotational motion is sufficiently reduced.
Experiments have shown that it is feasible to cool molecules to
1 K [72,115,117]. To accomplish rotational temperatures well
below 1 K is a great challenge and would open the opportunity
to image large gas-phase molecules at atomic resolution. The
problem of incoherent averaging over a finite range of different
orientations has to be further addressed, especially in the
case where molecular symmetries do not coincide with the
symmetries of the diffraction pattern imposed by alignment.

With the ability to detect molecular structure, x-ray scat-
tering from gas phase molecules can be used to study torsion
effects and laser-induced deformations that are expected to
occur during alignment in the presence of intense laser pulses
[116]. By systematically varying the delay time between
pump (laser) and probe (x-ray) pulse, it is possible to follow
molecular motion on an ultrafast time scale. Of particular
interest is the study of physical and chemical processes in the
presence of intense laser fields, which simultaneously provide

the required alignment for imaging of reactions with atomic
resolution in space and time.
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APPENDIX A: NUCLEAR SPIN STATISTICAL WEIGHTS

In the density matrix, statistical weights, wJτ =
gJτ

exp(−Erot
Jτ /kT )

Z(T ) , define the relative number of particles in an
ensemble that are in a given quantum mechanical state for
a well-defined temperature T . The nuclear spin statistical
weights gJτ are based on symmetry arguments and represent
the number of the allowed nuclear spin states for a given
rotational state |JτM〉.

The overall symmetry �tot of the total molecular wave
function is independent of rotational or nuclear spin states and
determined by the spin statistic theorem [82]. However, �tot is
also a direct product of symmetries of the different quantum
states [77],

�tot = �r ⊗ �ns, (A1)

where �r is the rotational state symmetry and �ns is the nuclear
spin state symmetry. Molecules are in their electronic and
vibrational ground states and their contributions can be omitted
in Eq. (A1).

The representation of symmetries depends on the symmetry
group of the molecule. The molecular symmetry group of
asymmetric-top molecules without an inversion center is
D2h or lower [118]. The rotational symmetry group of
an asymmetric-top rotor is always V (isomorphic to D2h)
[119,120]. If there is no common symmetry class between
�r and �ns, gJτ = 1. In other words, molecular symmetries
come only into play when molecular rotations are identical to
particle exchanges.

All symmetry representations are written as linear combina-
tions of irreducible representations (irrep) of V in Table III. In
addition, the character table for the nuclear spin and rotational

TABLE III. Character table and irreducible representations of
overall, rotational, and nuclear spin states for naphthalene. The
symmetry point group is V .

Operations P of V Irrep.

E Cc Cb Ca J even J odd

�tot 1 1 1 1 A

E+ 1 1 (−1)J (−1)J A Bc

E− 1 1 (−1)J+1 (−1)J+1 Bc A

O− 1 −1 (−1)J (−1)J+1 Bb Ba

O+ 1 −1 (−1)J+1 (−1)J Ba Bb

�ns 28 24 24 24 76 A+ 60(Ba + Bb + Bc)
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states are shown. The four molecular rotations and particle
exchanges defining V are E,Ca,Cb,Cc.

The characters of the overall wave function χtot can be
derived from the Pauli principle [83] and correspond to the
overall sign changes induced by the molecular rotations. First,
we assume all carbon atoms in naphthalene are 12C with
nuclear spin 0. By remembering only odd permutations of half-
integer particles (fermions) change the sign of the overall wave
function [77], we find all group operation leave the overall sign
for naphthalene unchanged, since all Hydrogen permutations
are even. Hence, χtot[P ] = 1, ∀P ∈ V and �tot = A.

The rotational symmetry classes, in which each rotational
state can be classified (cf. Sec. II A), coincide with the
irreps of V [74]. However, whether or not J is even or odd
defines which irrep corresponds to which symmetry class
(cf. Table III).

The sum of characters over all possible nuclear spin states
χns[P ] for each operation P can be derived by the formula
[83,119]

χns[P ] =
∏
GP

(2SGP
+ 1) sgn(PGP

)2SGP , (A2)

where the atom group GP is defined by the minimum number
of identical atoms in the molecule such that after the atom
permutation P each atom in GP is replaced by an atom of
GP . sgn(PGP

) is the sign of the permutation P within in the
atom group GP , which is +1 or −1 depending whether the
permutation is even or odd in GP . The smallest atom group
consist of one atom, which does not change position under the
operation P . SGP

is the nuclear spin of the atoms in GP .

Imposing Eq. (A1), nuclear spin and rotational symmetries
are linked together. (For naphthalene: �tot = �r ⊗ �ns = A).
The multiplication of symmetry representations is done by
multiplying their characters. The nuclear spin statistical
weights gJτ are the number of irreps in �ns such that the
product with a given rotational class is �tot. As an example:
When |JτM〉 ∈ O− and J is even, then �r ∈ Bb and only the
product Bb ⊗ Bb = A [119] fulfills Eq. (A1). Since there are
60 Bb irreps in �ns, the nuclear spin statistical weight is 60. For
all rotational states of naphthalene, the nuclear spin statistical
weights are

gJτ =
{

76, �r ∈ A

60, otherwise.
(A3)

APPENDIX B: MATRIX ELEMENTS OF cos2 θlm

The squares of the matrix elements of the rotation matrix
R(φ,θ,χ ), i.e., cos2 θlm, give a complete picture of the three-
dimensional alignment. Knowing four cos2 θlm is sufficient to
describe all, where at least two axes of each reference frame
have to be involved in the four cos2 θlm. Our choice is l ∈
{x,z},m ∈ {a,c}, since it is one of the least computationally
expensive choices. The cos2 θlm matrices are diagonal in M or
K when l = z or m = c, respectively. Only the matrix cos2 θxa

is nondiagonal in K and M . Each cos2 θlm can be written in
terms of D

[J ]
MK (φ,θ,χ ) [29], where the matrix elements of the

Wigner D functions are given in Refs. [49,54,74]. The matrix
elements of the four matrices that we have chosen are:

〈JKM| cos2 θzc|J ′K ′M ′〉 = 1

3
δJJ ′δKK ′δMM ′ + 2

3

√
2J + 1

2J ′ + 1
〈J,M; 2,0|J ′,M ′〉〈J,K; 2,0|J ′,K ′〉, (B1a)

〈JKM| cos2 θxc|J ′K ′M ′〉 = 1

3
δJJ ′δKK ′δMM ′ −

√
1

6

√
2J + 1

2J ′ + 1
〈J,K; 2,0|J ′,K ′〉

×
(√

2

3
〈J,M; 2,0|J ′,M ′〉 − [〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]

)
, (B1b)

〈JKM| cos2 θza|J ′K ′M ′〉 = 1

3
δJJ ′δKK ′δMM ′ −

√
1

6

√
2J + 1

2J ′ + 1
〈JM; 20|J ′M ′〉

×
(√

2

3
〈J,K; 2,0|J ′,K ′〉 − [〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]

)
, (B1c)

〈JKM| cos2 θxa|J ′K ′M ′〉 = 1

3
δJJ ′δKK ′δMM ′ + 1

4

√
2J + 1

2J ′ + 1

×
(√

2

3
〈J,M; 2,0|J ′,M ′〉 − [〈J,M; 2,2|J ′,M ′〉 + 〈J,M; 2, − 2|J ′,M ′〉]

)

×
(√

2

3
〈J,K; 2,0|J ′,K ′〉 − [〈J,K; 2,2|J ′,K ′〉 + 〈J,K; 2, − 2|J ′,K ′〉]

)
. (B1d)
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[63] A. Rouzée, S. Guérin, O. Faucher, and B. Lavorel, Phys. Rev.
A 77, 043412 (2008).

[64] W. Kim and P. M. Felker, J. Chem. Phys. 104, 1147
(1996).

[65] H. Sakai, C. P. Safvan, J. J. Larsen, K. M. Hilligsøe,
K. Hald, and H. Stapelfeldt, J. Chem. Phys. 110, 10235
(1998).

[66] R. M. Dickson, D. J. Norris, and W. E. Moerner, Phys. Rev.
Lett. 81, 5322 (1998).

[67] A. Rouzée, V. Renard, S. Guérin, O. Faucher, and B. Lavorel,
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Alignment of asymmetric-top molecules using multiple-pulse trains
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We theoretically analyze the effectiveness of multiple-pulse laser alignment methods for asymmetric-top
molecules. As an example, we choose SO2 and investigate the alignment dynamics induced by two different
sequences, each consisting of four identical laser pulses. Each sequence differs only in the time delay between
the pulses. Equally spaced pulses matching the alignment revival of the symmetrized SO2 rotor model are
exploited in the first sequence. The pulse separations in the second sequence are short compared to the rotation
dynamics of the molecule and monotonically increase the degree of alignment until the maximum alignment
is reached. We point out the significant differences between the alignment dynamics of SO2 treated as an
asymmetric-top and a symmetric-top rotor, respectively. We also explain why the fast sequence of laser pulses
creates considerably stronger one-dimensional molecular alignment for asymmetric-top molecules. In addition,
we show that multiple-pulse trains with elliptically polarized pulses do not enhance one-dimensional alignment
or create three-dimensional alignment.

DOI: 10.1103/PhysRevA.81.065401 PACS number(s): 37.10.Vz, 42.50.Hz, 42.50.Md, 33.20.Sn

Molecular alignment techniques have become important for
controlling processes like photoabsorption [1,2], multiphoton
ionization [3–5], high harmonic generation (HHG) [6,7], and
molecular imaging [8–10]. Alignment of molecules can be
achieved with intense laser fields making use of the quadratic
Stark effect [11]. In general it is true that more intense laser
fields create higher degrees of alignment. However, intense
laser fields trigger side effects, like multiphoton ionization
and molecular defragmentation, that irreversibly damage
molecules [12–14]. For alignment purposes, ionization is an
unwanted effect that multiple-pulse alignment techniques try
to prevent [15].

Laser alignment can be accomplished adiabatically or
impulsively [11]. In the former case, the laser pulse duration
is long compared to the rotational period of the molecule τrot;
in the latter case it is short compared to τrot. For a given
laser intensity, adiabatic alignment leads to a higher degree of
alignment than does impulsive alignment; however, enhancing
alignment through several consecutive, nonoverlapping laser
pulses is only possible in the impulsive regime. Theoretical
and experimental studies with up to three laser pulses, where
pulse separations, pulse intensities, and pulse shapes were
systematically varied, have been performed [16–18]. Recently,
field-free alignment of N2 was reported in an experiment
with eight identical, Fourier transform limited, consecutive
laser pulses [15]. All eight pulses were separated by the rota-
tional period τrot = 1/(2B) [15,19]. The degree of alignment
achieved in Ref. [15] with eight pulses is much greater than
the alignment induced by a single ionization-limited pulse.

Attempts to use a sequence of pulses to enhance alignment
have so far been focused on linear or symmetric-top molecules,
which possess well-defined alignment revivals separated by
τrot. The irregular or incommensurable spacings of the
rotational energy levels for asymmetric-top molecules prevent
full rephasing of the rotational wave packet [20] and, therefore,

*Corresponding author

the appearance of periodic alignment revivals. Experiments
involving asymmetric-top molecules with one-dimensional,
field-free alignment [20–24] and three-dimensional alignment
using two linearly polarized laser pulses [25,26] have been
reported.

Another source of rotational wave-packet dephasing is
centrifugal distortion, which becomes relevant when rotational
states with high angular momentum, needed to get high degrees
of alignment, are populated. This effect is not limited to
asymmetric-top molecules and affects linear and symmetric-
top molecules as well [27].

In this work, we extend the idea of multiple-pulse alignment
to rigid, asymmetric-top molecules, omitting the effect of
additional dephasing through centrifugal distortion. Specifi-
cally, we theoretically investigate the feasibility of enhancing
one-dimensional alignment. We consider two different pulse
trains, each consisting of four identical laser pulses. The pulses
are equally separated by the revival period in the first pulse
train. This strategy follows Ref. [15]. In the second train, pulses
are separated such that the molecule experiences an additional
kick when it reaches the maximum alignment induced by the
previous pulse, resulting in a monotonic increase in the degree
of alignment [28]. Furthermore, we point out the consequences
of approximating an asymmetric-top rotor as a symmetric-top
rotor. We then investigate four-pulse trains using elliptically
polarized laser pulses and ask the questions whether one-
dimensional alignment is enhanced in comparison to the use of
linearly polarized pulses and if it is possible to create field-free
three-dimensional alignment.

We do not review our numerical propagation method, which
is described in Ref. [10]. In the following, we choose to subject
the molecule SO2 to an electric laser field,

�E(t) =
√

8π I (t)/c[εx �ex cos(ωt) + εz �ez sin(ωt)], (1)

where c is the speed of light, I (t) is the cycle-averaged
laser intensity, and εx and εz are the minor and major field
components with ε2

x � ε2
z and ε2

x + ε2
z = 1. We set εx = 0 to

describe linearly polarized light. The molecule SO2 has the

1050-2947/2010/81(6)/065401(4) 065401-1 ©2010 The American Physical Society
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FIG. 1. (Color online) Alignment dynamics of SO2

treated, respectively, as a symmetric-top rotor (dashed) and an
asymmetric-top rotor (solid), at rotational temperature T = 10 K.
From panels (a) to (d) the number of pulses successively increases
from one to four. The linearly polarized laser pulses, which
are indicated by vertical dashed lines, have a peak intensity of
20 TW/cm2 and a pulse duration of 50 fs.

rotational constants A = 0.3442 cm−1, B = 0.2935 cm−1, and
C = 2.028 cm−1 [29–31] and polarizabilities α

pol
aa = 20.80 Å3,

α
pol
bb = 18.66 Å3, and α

pol
cc = 31.32 Å3 [32]. The nuclear spin

statistical weights of SO2 are 1 if |JτM〉 ∈ A,Ba and 0 if
|JτM〉 ∈ Bc,Bb, where |JτM〉 denotes a rotational eigenstate
of an asymmetric-top rotor and Ba , Bb, Bc, and A are
irreducible representations of D2 (isomorphic to C2v) [33].

Figure 1 presents the alignment dynamics of SO2, treated
as a symmetric-top rotor and an asymmetric-top rotor, re-
spectively, for a sequence of up to four linearly polarized,
consecutive Gaussian-shaped laser pulses spaced equally by
τrot = 1/(A + B). The laser intensity is 20 TW/cm2 and
the pulse duration (FWHM) is 50 fs. The chosen rotational
temperature of 10 K is a realistic estimate that has been
experimentally achieved for SO2 [25]. The symmetric-top
rotor is approximated by symmetrization of the a and b axes,
that is, A,B → (A + B)/2 and α

pol
aa ,α

pol
bb → (αpol

aa + α
pol
bb )/2.

In the symmetric-top model, the molecules show the
expected revival dynamics in Fig. 1. By increasing the number
of laser pulses [Figs. 1(a)–1(d)], the maximum alignment
increases monotonically from 〈cos2 θzc〉 = 0.52 (one pulse) to
〈cos2 θzc〉 = 0.68 (four pulses). When SO2 is treated exactly
as an asymmetric-top rotor, no regularly repeating alignment
motion can be identified. The dephasing, due to the incommen-
surable spacing between the rotational energy levels, increases
with time and is the reason why the maximum alignment
achieved after the fourth laser pulse is weaker than the align-
ment created directly after the third laser pulse [cf. Fig. 1(d)].

Another question we want to address is whether multiple
elliptically polarized laser pulses can be used to create
three-dimensional alignment in the same manner as linearly
polarized laser pulses can be used to achieve one-dimensional
alignment. Figure 2 shows a direct comparison of the
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FIG. 2. (Color online) Alignment dynamics of SO2 for linearly
polarized (dashed) and elliptically polarized (solid) laser pulses with
ε2
z = 0.5462. The peak intensity associated with the z direction

(20 TW/cm2) is kept the same in both cases, as is the pulse duration
of 50 fs. SO2 is treated in both cases as an asymmetric-top rotor.

alignment of SO2 (treated as an asymmetric-top rotor) for
four linearly (εx = 0) and four elliptically polarized laser
pulses (ε2

z = 0.5462). The specific value of ε2
z for elliptically

polarized light is chosen such that optimal three-dimensional
alignment is obtained [34]. The laser intensity associated with
the z direction is the same for both types of polarized laser
pulses. The total intensity of the elliptically polarized laser
pulses is adjusted accordingly.

The additional electric field in the perpendicular x direction
decreases the 〈cos2 θzc〉 alignment [cf. Fig. 2(a)] and simulta-
neously increases the alignment of the body-fixed c axis in the
x direction (〈cos2 θxc〉). However, elliptically polarized laser
pulses improve the alignment of the molecules in the elliptical
polarization plane of the laser pulses (zx plane), which is
given by 〈cos2 θyb〉 [see Fig. 2(b)]. The alignment dynamics
of 〈cos2 θxa〉 are counterintuitive and show an antialignment
effect rather than an alignment effect [cf. Fig. 2(c)]. By
analyzing all 〈cos2 θlm〉, we find that each molecular axis is
aligned or antialigned simultaneously in the x and z directions.
From the relation

∑
m′ 〈cos2 θlm′ 〉 = ∑

l′ 〈cos2 θl′m〉 = 1 ∀ l, m,
it follows that the alignment in the y direction is reversed from
the alignment in the x and z directions. Since the molecular
alignments 〈cos2 θzc〉 and 〈cos2 θxc〉 are strongly pronounced,
the molecular a and b axes are antialigned in these two
space-fixed directions and, hence, aligned in the y direction
(〈cos2 θya〉 and 〈cos2 θyb〉). Only in the adiabatic limit would
we see strong alignment in 〈cos2 θxa〉,〈cos2 θyb〉, and 〈cos2 θzc〉.

Improving the degree of alignment of symmetric-top
molecules by applying consecutive laser pulses at maximum
alignment can be done either at the first alignment peak directly
after the previous pulse or at later times at alignment revivals.
In the case of asymmetric-top molecules, the accessibility of
revivals is limited to the very first revivals (cf. Fig. 1) and
the maximum achievable degree of alignment is reduced in
comparison to the linear and symmetric-top rotor models.
However, the dynamics immediately following the first laser
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FIG. 3. (Color online) Alignment dynamics of SO2 treated,
respectively, as a symmetric-top rotor (dashed) and an asymmetric-
top rotor (solid). The four laser pulses are linearly polarized with a
peak intensity of 20 TW/cm2. The shaded areas indicate the FWHM
width of 50-fs pulses centered around the vertical, dashed lines.

pulse are almost identical for both rotor models, since the
dephasing effects are still small. It is in this time frame that
the very first alignment peak occurs. Therefore, applying sub-
sequent laser pulses close to the very first laser pulse promises
better alignment. In that way the alignment is increasing
monotonically until it has reached its maximum degree of
alignment. In Fig. 3 such a pulse sequence is presented. The
alignment profiles for both rotor models are almost identical
with a maximum alignment comparable with the revival
kicking technique for symmetric-top rotors shown in Fig. 1(d).
The alignment response, which is the time after a pulse until
maximum alignment is reached, decreases with the number of
pulses—and so does the spacing between neighboring laser
pulses [28]. This limits the maximum number of laser pulses
that may be employed to accomplish field-free alignment.
However, the maximum degree of alignment for both rotor
models differs by less than 1% in Fig. 3.

By exploiting the same method for elliptically polarized
laser pulses, we find that the alignment dynamics for the
symmetric-top and asymmetric-top rotor models are identical
in terms of 〈cos2 θzc〉 [cf. Fig. 4(a)], as in the linearly polarized
case (cf. Fig. 3). The alignment of the asymmetric-top
rotor model in the polarization plane, which is characterized
by 〈cos2 θyb〉, is enhanced compared to the symmetric-top
rotor model [cf. Fig. 4(b)]. During all four laser pulses the
alignment 〈cos2 θxa〉 stays almost isotropic and increases only
slightly. However, 〈cos2 θxa〉 does not show any antialignment
within the first few picoseconds [see Fig. 4(c)] like Fig. 2(c)
shows for the revival-kicking pulse sequence. The lack of
〈cos2 θxa〉 alignment is not a problem of intensity; it is the
result of the rich rotational dynamics of the asymmetric-
top rotor SO2. Only in the limit of adiabatic alignment does
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FIG. 4. (Color online) Alignment dynamics of SO2 treated,
respectively, as a symmetric-top rotor (dashed) and an asymmetric-
top rotor (solid). The four laser pulses are elliptically polarized with
ε2
z = 0.5462, a peak intensity of 36.6 TW/cm2 (Iz = 20 TW/cm2),

and a pulse duration of 50 fs.

this motion cease and all three molecular axes become well
aligned.

In conclusion, we studied multiple-pulse alignment of
asymmetric-top molecules, using SO2 as an example. We
showed that approximating an asymmetric-top molecule as
a symmetric-top rotor has significant consequences for the
alignment dynamics; specifically, alignment revivals do not
occur for asymmetric-top molecules. The dephasing of the
rotational wave packet for asymmetric-top molecules limits
the effectiveness of aligning the molecules by multiple
pulses applied at alignment revivals. Enhanced alignment for
asymmetric-top molecules can be better accomplished by a
fast train of pulses. Here the time delays between consecutive
pulses are small compared to the rotational time scale such that
dephasing effects are minimized. Therefore, for this method
the maximum degree of alignment is not affected by the more
complex rotational dynamics of an asymmetric-top molecule.
However, when elliptically polarized pulses are used, none of
these approaches attains significant three-dimensional align-
ment or improves the one-dimensional alignment further. We
conclude that a train of elliptically polarized laser pulses is not
suitable for achieving field-free three-dimensional alignment.

We thank James P. Cryan, Christian Buth, and Ryan N.
Coffee for inspiring discussions and Cassandra Hunt for
comments on the manuscript. This work was supported by the
Office of Basic Energy Sciences, US Department of Energy
under Contract No. DE-AC02-06CH11357.
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[22] E. Péronne, M. D. Poulsen, H. Stapelfeldt, C. Z. Bisgaard,
E. Hamilton, and T. Seideman, Phys. Rev. A 70, 063410 (2004).
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We present an implementation of the time-dependent configuration-interaction singles (TDCIS) method for
treating atomic strong-field processes. In order to absorb the photoelectron wave packet when it reaches the end
of the spatial grid, we add to the exact nonrelativistic many-electron Hamiltonian a radial complex absorbing
potential (CAP). We determine the orbitals for the TDCIS calculation by diagonalizing the sum of the Fock
operator and the CAP using a flexible pseudospectral grid for the radial degree of freedom and spherical harmonics
for the angular degrees of freedom. The CAP is chosen such that the occupied orbitals in the Hartree-Fock ground
state remain unaffected. Within TDCIS, the many-electron wave packet is expanded in terms of the Hartree-Fock
ground state and its single excitations. The virtual orbitals satisfy nonstandard orthogonality relations, which must
be taken into consideration in the calculation of the dipole and Coulomb matrix elements required for the TDCIS
equations of motion. We employ a stable propagation scheme derived by second-order finite differencing of the
TDCIS equations of motion in the interaction picture and subsequent transformation to the Schrödinger picture.
Using the TDCIS wave packet, we calculate the expectation value of the dipole acceleration and the reduced
density matrix of the residual ion. The technique implemented will allow one to study electronic channel-coupling
effects in strong-field processes.

DOI: 10.1103/PhysRevA.82.023406 PACS number(s): 32.80.Rm, 31.15.A−, 02.70.−c

I. INTRODUCTION

With the invention of the technique of chirped pulse am-
plification (CPA), modern high-power laser systems can now
easily produce high repetition-rate femtosecond laser pulses,
leading to peak optical intensities greater than 1014 W/cm2 or
as high as 1020 W/cm2 in the focal region. The availability of
such intense radiation has opened up new and important venues
of research in atomic, molecular, and optical (AMO) physics.
High photon-flux radiation can drive atomic and molecular
systems into nonlinear regimes and initiate nonperturbative
single-atom and single-molecule intense-field phenomena,
including multiphoton ionization [1–17], above-threshold
ionization (ATI) [18–27], high-harmonic generation (HHG)
[28–42], and nonsequential multielectron ionization [43–52].

Understanding these field-induced phenomena has
tremendous technological implications. HHG, for example,
has been used as a convenient tool for the production
of coherent XUV and soft x-ray radiation [33–37] and
attosecond pulses [53,54]. These novel light sources have
enabled ultrafast molecular probing [55–72] and the study of
AMO physics in the attosecond regime [53,54,73–77]. As a
result, various theoretical methods have been developed to
investigate strong-field AMO physics. Among these methods,
solving the time-dependent Schrödinger equation provides

*Present address: Center for Free-Electron Laser Science, DESY
and University of Hamburg, Germany.
†damazz@uchicago.edu
‡Corresponding author: robin.santra@cfel.de; present address:

Center for Free-Electron Laser Science, DESY and University of
Hamburg, Germany.

the most accurate description. Unfortunately, this method is
practically unfeasible for many-electron atoms and molecules
beyond helium. Hence, many efforts have been devoted to
one-electron formulations of the strong-field problems.

These one-electron formulations are guided by the first
step in all the strong-field processes, in which an electron is
pulled away from the parent ion by the laser field. Treating
this electron as the only active electron has been shown
to be sufficient for accurate prediction of single-ionization
production [7,78–80], cutoff in the HHG spectrum [31,80], and
ATI photoelectron spectra [79] in different atoms. In spite of its
successes, this single-active-electron (SAE) approach has its
limitations. First, it cannot account for multielectron effects in
strong-field processes. For instance, Gordon et al. have shown
that the accurate inclusion of multielectron effects is necessary
to explain the scaling of the HHG radiation intensity with the
atomic number [39]. Second, the SAE theory lacks the dy-
namical description of the residual ion by focusing only on the
wave-packet dynamics of the excited electron. In particular,
the theory offers only a single-channel description, in which
the ion created is treated to be in a single ionic eigenstate.

Recent experimental efforts have now begun to require
an accurate strong-field description of the residual ion. It
was revealed from the ATI photo-electron spectrum that Xe+
ions in both the 5p−1

3/2 ground-state and the 5p−1
1/2 excited

manifolds were generated in an intense optical pulse [81,82].
Also, experiments at the Advanced Photon Source (APS)
using resonant x-ray absorption techniques have unveiled the
alignment dynamics of the residual Kr+ ions created in a
strong optical field [83,84]. Furthermore, complete quantum
ion state populations, which are the diagonal entries of the
ion density matrix in the ion eigenstates basis, were measured
experimentally and confirmed theoretically [85,86].

1050-2947/2010/82(2)/023406(12) 023406-1 ©2010 The American Physical Society
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An approximate one-electron approach that goes beyond
the SAE treatment is time-dependent configuration interaction
with single excitations (TDCIS). This is an ab initio electronic-
structure technique, where the time-dependent wave function
is restricted to spin-singlet conserving single-particle
excitations from the ground-state determinant. Rohringer and
coworkers have shown that TDCIS can be formulated as an
effective one-electron theory with coupled channels [87]. This
method includes the description of the electronic structure of
many-electron atoms and molecules through the Fock operator
and allows the determination of the ion density matrix, both
the diagonal and off-diagonal elements. Knowledge of the
off-diagonal matrix elements reveals the coherence properties
associated with the electronic wave-packet dynamics of the
residual ion [85,86,88,89]. Using a one-dimensional helium
model in a strong laser field, it was shown that TDCIS
is superior to the SAE approach [87]. There are other
rigorous effective one-electron approaches, including the
single-configuration and multi-configuration time-dependent
Hartree-Fock methods [78,90–92] and time-dependent
density-functional theory in the Kohn-Sham formulation
[93,94]. These methods have known limitations and
challenges [95–99]. Recently, Spanner and Patchkovskii used
a set of coupled time-dependent single-particle Schrödinger
equations derived from a multielectron wave-function ansatz
to examine multielectron effects in strong-field one-electron
ionization processes [100].

The purpose of this paper is to describe a full numerical
implementation of the three-dimensional TDCIS method with
an added radial complex absorbing potential (CAP). A set
of complex orbitals for the TDCIS calculation is determined
by diagonalizing the sum of the Fock operator and the CAP
using a flexible pseudospectral grid for the radial degree of
freedom and spherical harmonics for the angular degrees
of freedom. We found that this complex-orbital formulation
of TDCIS has computational advantages, because it allows
stable propagation of the TDCIS wave packet. Atomic units
are used throughout.

II. THEORETICAL BACKGROUND

In this section, we provide the theoretical background for
a complex-orbital formulation of TDCIS. We start in Sec. II A
with the general description of an atom in linearly polarized
laser fields within the configuration-interaction singles (CIS)
model. Then, an expression for calculating expectation values
and the derivation of the reduced ion density are presented in
Secs. II C and II D, respectively. In Sec. II E we discuss the
Hartree-Fock equations for closed-shell atoms in the presence
of a CAP.

A. TDCIS with a CAP

Within the CIS model, excitations beyond a particle-hole
(1p-1h) excitation |�a

i 〉 with respect to the ground state, which
is in our case the Hartree-Fock (HF) ground state |�0〉, are not
considered. Therefore, the wave packet is written in terms of
|�0〉 and |�a

i 〉,
|�(t)〉 = α0(t)|�0〉 +

∑
i,a

αa
i (t)

∣∣�a
i

〉
, (1)

|�a
i 〉 = 1√

2
{ĉ†a+ĉi+ + ĉ

†
a−ĉi−}|�0〉, (2)

where i,j,k,l symbolize occupied orbitals, a,b,c,d symbolize
virtual orbitals, and p,q,r,s stand for occupied or virtual
orbitals. The operators ĉ

†
pσ and ĉpσ create and annihilate

electrons, respectively, in the spin orbital |ϕpσ 〉, which is an
eigenstate of the modified Fock operator

F̂CAP|ϕpσ 〉 = εp|ϕpσ 〉, (3a)

F̂CAP = F̂ − iηŴ , (3b)

where F̂ is the Fock operator and −iηŴ is the CAP.
The full Hamiltonian of our system is

Ĥ (t) = F̂CAP + V̂C − V̂HF − EHF − E(t)ẑ, (4)

where V̂C is the electron-electron Coulomb interaction, V̂HF is
the Hartree-Fock mean-field potential, EHF is the Hartree-Fock
ground-state energy, ẑ is the dipole operator, and E(t) is the
electric field component of the strong-field laser pulse.

By projecting the time-dependent Schrödinger equation
onto the states |�0〉 and |�a

i 〉, the equations of motion of
the expansion coefficients α0(t) and αa

i (t) are obtained as

iα̇0(t) = −
√

2E(t)
∑
i,a

αa
i (t)z(i,a), (5a)

iα̇a
i (t) = (εa − εi)α

a
i (t) +

∑
i ′,a′

αa′
i ′ (t)(2v(a,i ′,i,a′) − v(a,i ′,a′,i))

− E(t)

{√
2α0(t)z(a,i) +

∑
a′

αa′
i (t)z(a,a′)

−
∑

i ′
αa

i ′ (t)z(i ′,i)

}
. (5b)

The projection is done with respect to the symmetric
inner product discussed in Sec. II C. The matrix elements in
Eqs. (5) are defined via this symmetric inner product [101]:

z(p,q) = (ϕp|ẑ|ϕq), (6a)

v(p,q,r,s) = (ϕpϕq |1/r̂12|ϕrϕs). (6b)

We include parentheses in the subscripts of these matrix
elements in order to differentiate them from

zp,q = 〈ϕp|ẑ|ϕq〉, (7a)

vp,q,r,s = 〈ϕpϕq |1/r̂12|ϕrϕs〉, (7b)

which are defined by the standard Hermitian inner product.
Explicit expressions for the matrix elements in Eqs. (5) may
be found in the Appendix.

B. Complex absorbing potential

When the wave packet reaches the end of the numerical grid,
artificial reflections arise. These lead to unphysical results, but
can be suppressed by applying a complex absorbing potential
(CAP) [102–107] near the end of the grid. As a result, the CAP
only affects virtual orbitals. Occupied orbitals are localized
near the origin and, therefore, are not influenced by the CAP.
Additionally, the CAP does not mix occupied with virtual
orbitals. The CAP strength η has to be chosen carefully to avoid
reflections either off the grid wall or off the CAP [105,107].
The explicit form of our CAP is

W (r) = h(r − rabs)(r − rabs)
2, (8)
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where h(x) is the Heaviside step function, and r is the distance
from the origin. This CAP is zero until a radius rabs, after which
it is a quadratically growing potential.

C. Expectation values

Since F̂CAP is not Hermitian, the orthogonality relations
for its eigenstates are not given in terms of the ordinary
Hermitian inner product. If |ϕp〉 ≡ |ϕp) is a right eigenvector
of F̂CAP, then 〈ϕp| is generally not a left eigenvector. There
is, nevertheless, a one-to-one mapping between right and left
eigenvectors. The left eigenvector corresponding to |ϕp〉 is
denoted (ϕp|. The corresponding orthogonality relations read

(ϕp|ϕq) = (ϕp|ϕq〉 = δp,q . (9)

From the orthogonality relations of the orbitals follow the
orthogonality relations of the 1p-1h excitations,(

�a
i

∣∣�b
j

) = (
�a

i

∣∣�b
j

〉 = δa,bδi,j . (10)

Since the |�a
i 〉 are not orthogonal with respect to the

Hermitian inner product, we define an overlap integral between
1p-1h excitations as〈

�a
i

∣∣�b
j

〉 = 〈
�a

i

∣∣�b
j

) = δi,j 〈ϕa|ϕb〉 = δi,j oa,b. (11)

Since the complex absorbing potential does not affect
the occupied orbitals ϕi , the orthogonality relation between
different ϕi survives in the Hermitian inner product in Eq. (11).

The expectation value of an operator Â is defined via the
Hermitian inner product. By expanding 〈�(t)|Â|�(t)〉 using
Eq. (1), we obtain

〈A〉 = |α0|22
∑

j

Aj,j +
∑
i,a

2
√

2Re
(
α∗

0α
a
i Ai,a

)
+

∑
i,a,a′

Re
(
αa

i
∗
αa′

i Aa,a′
) −

∑
i,i ′,a,a′

Re
(
αa

i
∗
αa′

i ′ Ai ′,ioa,a′
)

+
∑
i,a,a′

Re

(
αa

i
∗
αa′

i oa,a′2
∑

j

Aj,j

)
. (12)

In order to compute the dipole acceleration, which is required
for describing high-harmonic generation, it is possible to
calculate the expectation value of the dipole moment and then
calculate its second time derivative [96]. Alternatively, the
expectation value of the dipole acceleration can be calculated
directly. To this end, we employ the dipole acceleration
operator obtained using the exact atomic Hamiltonian
[39,108]. In the atomic case, assuming that the laser field is
linearly polarized along the z axis, this operator is given by

â = Z cos θ

r̂2
, (13)

where Z is the nuclear charge. Since atomic eigenstates are
parity eigenstates, it follows that ai,i = 0. This simplifies the
evaluation of Eq. (12) when Â = â.

D. Reduced ion density matrix

In order to construct the reduced ion density matrix
(IDM) from the state |�(t)〉, the trace over the unobserved

photoelectron of the total density matrix ˆ̃ρ(t) has to be
performed [109]:

ˆ̃ρ
IDM

(t) = Tra[ ˆ̃ρ(t)], (14a)
ˆ̃ρ = |�(t)〉〈�(t)|, (14b)

where Tra stands for the trace over all virtual orbitals
a [cf. Eq. (16a)] and ˆ̃ρ

IDM
(t) symbolizes the ion density

matrix. Since the virtual orbitals do not obey the Hermi-
tian orthogonality relations [see Eqs. (10) and (11)], we
have to be careful to define the trace in Eq. (14a). The
explicit form of the density matrix can be derived from the
norm ||�(t)||2,

〈�(t)|�(t)〉 =
∑

I

〈�(t)|�I )(�I |�(t)〉

=
∑

I

(�I |�(t)〉〈�(t)|�I ) = Tr[ ˆ̃ρ(t)], (15)

where Tr stands for the trace over the entire configuration
space I , i.e., all 1p-1h excitations �a

i and the HF ground state
�0. Based on this, natural definitions of the traces over only
occupied and only virtual orbitals in the 1p-1h-configuration
space, which are symbolized by Tri and Tra , respectively,
are

{Tra[ ˆ̃ρ(t)]}i,j =
∑

a

(
�a

i |�(t)〉〈�(t)|�a
j

)
, (16a)

{Tri[ ˆ̃ρ(t)]}a,b =
∑

i

(
�a

i |�(t)〉〈�(t)|�b
i

)
. (16b)

Hence, the matrix elements of ˆ̃ρ
IDM

(t) have the form

ρ̃IDM
i,j (t) =

∑
a

(
�a

i |�(t)〉〈�(t)|�a
j

) =
∑
a,b

αa
i (t)

[
αb

j (t)
]∗

ob,a,

(17)

where we have used the explicit form of the wave function [cf.
Eq. (1)]. To analyze the impact of the CAP on the dynamics
of ˆ̃ρ(t) and ˆ̃ρ

IDM
(t), it is convenient to go into the interaction

picture (labeled I )

|�I (t)〉 = eiF̂ t |�(t)〉, (18a)

ÂI = eiF̂ t Âe−iF̂ t , (18b)

where Â stands for any operator in the Schrödinger picture.
The time evolution of |�I (t)〉 is given by

i
∂

∂t
|�I (t)〉 = (V̂C,I − V̂HF,I − EHF − E(t)ẑI − iηŴI )|�I (t)〉.

(19)

Because of the CAP, the norm ||�I (t)||2 is not conserved. That
affects the time evolution of the trace of the IDM

∂

∂t
Tri

[
ˆ̃ρ

IDM
I (t)

] + ∂

∂t
|α0(t)|2 = ∂

∂t
〈�I (t)|�I (t)〉

= −2η Tr[ŴI
ˆ̃ρI (t)], (20)

where ˆ̃ρI (t) = |�I (t)〉〈�I (t)|. Since the probability that there
is no hole (|α0(t)|2) and the probability that there is a hole
(Tri[ ˆ̃ρ

IDM
I (t)]) should add up to one, we must correct ˆ̃ρ

IDM
I (t)

for the loss of norm.
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In order to understand how to construct a corrected IDM,
ρ̂IDM

I (t), that does not lose norm over time and describes the
full interaction dynamics of the electrons, we have to analyze
the equations of motion (von Neumann equations) of ˆ̃ρI (t) and
ˆ̃ρ

IDM
I (t)

∂

∂t
ˆ̃ρI (t) = −i[V̂C,I − V̂HF,I − E(t)ẑI , ˆ̃ρI (t)] − η{ ˆ̃ρI (t),ŴI },

(21a)
∂

∂t
ˆ̃ρ

IDM
I (t) = −iTra[[V̂C,I − V̂HF,I − E(t)ẑI , ˆ̃ρI (t)]]

− 2ηTra[ŴI
ˆ̃ρI (t)], (21b)

where {·,·} stands for the anticommutator. Equation (21a) can
be derived by taking the time derivative of Eq. (14b) and using
Eq. (19). In addition, we use the fact that

Tr[ŴI
ˆ̃ρI (t)] = Tr[ ˆ̃ρI (t)ŴI ], (22a)

Tr[ŴI ] = Tra[ŴI ]. (22b)

Remember that Ŵ acts only on virtual orbitals. The first terms
on the right-hand side of Eqs. (21) describe the dynamics of
the system (imaginary prefactor), and the second terms are
responsible for the norm decay of the density matrix (real
prefactor).

In the case of no residual Coulomb interaction (V̂C,I −
V̂HF,I = 0) and no electric field [E(t) = 0], the correct density
matrix has to be constant in time. The density matrix ˆ̃ρI (t)
does not fulfill this requirement due to the CAP. Hence, the
equation of motion in Eq. (21a) has to be corrected such that
no term violates the norm conservation. The corresponding
von Neumann equations of the corrected density matrix and
the corrected IDM are

∂

∂t
ρ̂I (t) = ∂

∂t
ˆ̃ρI (t) + η{ ˆ̃ρI (t),ŴI }

= −i[V̂C,I − V̂HF,I − E(t)ẑI , ˆ̃ρI (t)], (23a)
∂

∂t
ρ̂IDM

I (t) = ∂

∂t
ˆ̃ρ

IDM
I (t) + 2ηTra[ŴI

ˆ̃ρI (t)]

= −iTra[[V̂C,I − V̂HF,I − E(t)ẑI , ˆ̃ρI (t)]]. (23b)

The corrected density matrices, as defined in Eqs. (23),
experience no damping. The norm of ρ̂I (t) is conserved,
which can be seen by taking the trace of Eq. (23a). By
just taking the trace over all 1p-1h excitations, Eq. (23a)
reduces to

∂

∂t

(
Tri

[
ρ̂IDM

I (t)
]) = −iTriTra[[V̂C,I − V̂HF,I − E(t)ẑI , ˆ̃ρI (t)]],

= −i〈�0|[E(t)ẑI , ˆ̃ρ
I
(t)]|�0〉

= − ∂

∂t
|α0(t)|2. (24)

In the second step in Eq. (24), we used(
�a

i

∣∣V̂C,I − V̂HF,I

∣∣�0
) = (

�a
i

∣∣ẑI

∣∣�a
i

)
= (�0|ẑI |�0) = 0, ∀a,i. (25)

Hence, we can conclude that after the pulse E(t) = 0, where
∂
∂t

|α0(t)|2 = 0, the trace of ρ̂IDM
I (t) is constant in time. In

addition, ρ̂I (t) fulfills the requirement [see Eq. (24)] that the
probability of leaving the atom in its ground state (|α0(t)|2)

and the probability to create 1p-1h excitations (Tri[ρ̂IDM
I (t)])

add up to one at all times.
Since ˆ̃ρ

IDM
(t) can be calculated quite efficiently from the

solutions of Eqs. (5a) and (5b), it is sufficient to calculate the
correction matrix

δρ̂IDM
I (t) = ρ̂IDM

I (t) − ˆ̃ρ
IDM
I (t). (26)

The equation of motion of δρ̂IDM
I (t) can be derived from

Eqs. (23b) and (26),

∂

∂t
δρ̂IDM

I (t) = 2ηTra[ŴI
ˆ̃ρI (t)]

= −iTra[[−iηŴI ,δρ̂I (t)]] + 2ηTra[ŴI
ˆ̃ρI (t)],

(27)

where we used Eqs. (22) to insert a commutator that includes
the CAP. In the Schrödinger picture, Eq. (27) transforms into

∂

∂t
δρIDM

i,j (t) = i(εi − εj )δρIDM
i,j (t) + 2η

∑
a,b

wb,aα
a
i (t)

[
αb

j (t)
]∗

.

(28)

Here, it was exploited that
∑

c ob,cw(c,a) = 〈ϕb|Ŵ |ϕa〉 = wb,a .
The solution to Eq. (28) is

δρIDM
i,j (t) = 2η ei(εi−εj )t

∫ t

−∞
dt ′

∑
a,b

wb,a αa
i (t ′)

× [
αb

j (t ′)
]∗

e−i(εi−εj )t ′ , (29)

and hence, we have found an expression for the corrected IDM,

ρIDM
i,j (t) = ρ̃IDM

i,j (t) + 2η ei(εi−εj )t
∫ t

−∞
dt ′

×
∑
a,b

wb,a αa
i (t ′)

[
αb

j (t ′)
]∗

e−i(εi−εj )t ′ . (30)

Equation (30) is identical to the definition of the IDM in
Ref. [89], where the states |�a

i 〉 are eigenstates of F̂ rather than
F̂CAP and fulfill different orthogonality relations. Therefore,
it was not obvious that both sets of basis states lead to a
formally identical expression. In contrast to Ref. [89], the exact
Coulomb interaction is considered in the current treatment.
As a consequence of the Coulomb interaction between the
excited electron and the ion, the IDM in the interaction
picture is not necessarily constant after the laser pulse is over.
However, since within the one-hole configuration space, the
one-hole channel states are eigenstates of the exact, laser-free
Hamiltonian, the IDM in the interaction picture becomes
constant if the excited electron is unbound and drifts away
from the ion.

E. Atomic Hartree-Fock equations

The theory formulated in Secs. II A–II D holds for any elec-
tronic system where the Born-Oppenheimer approximation
can be made. In the following, we focus our discussion on
closed-shell atoms, where the total orbital and spin angular
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momenta of the ground state are 0. The Fock operator for a
closed-shell atom is given by [110]

F̂ = −1

2
∇2 − Z

r
+

∑
i

(2Ji − Ki), (31)

which consists of a kinetic part (−∇2/2), a Coulomb potential
due to the nucleus (−Z/r), and direct (2Ji) and exchange (Ki)
Coulomb interactions between the electrons. The CAP used in
this work (see Sec. II B) preserves the spherical symmetry
of the atomic-structure problem, so that the one-electron
eigenfunctions of F̂CAP = F̂ − iηŴ may be written as a
product of a (generally complex) radial function un,l and a
spherical harmonic Yl,m(θ,φ),

〈r,θ,φ|ϕp〉 = 〈r,θ,φ|ϕp) = ϕp(r,θ,φ) = un,l(r)

r
Yl,m(θ,φ).

(32)

The un,l satisfy the radial self-consistent-field equations,

−1

2

d2un,l(r)

dr2
+

{
l(l + 1)

2r2
− Z

r
− iηW (r)

}
un,l(r)

+
∑
no,lo

(4lo + 2)v(0)(no,lo; no,lo; r)un,l(r)

−
∑
no,lo

l+lo∑
L=|l−lo|

C(l,L,lo; 0,0,0)2v(L)(no,lo; n,l; r)uno,lo (r)

= εn,lun,l(r), (33)

where

v(L)(n,l; n′,l′; r1) =
∫ ∞

0
dr2

rL
<

rL+1
>

un,l(r2)un′,l′ (r2), (34)

r< = min{r1,r2}, r> = max{r1,r2}, (35)

and C(l1,l2,l3; m1,m2,m3) is a Clebsch-Gordan coefficient
[111]. The summation over no,lo in Eq. (33) extends over
all subshells occupied in the Hartree-Fock ground state. In our
calculations, the un,l(r) are subject to the boundary conditions
un,l(0) = 0 and un,l(rmax) = 0. Here, rmax stands for the end
point of the numerical grid employed (see Sec. III).

The Hartree-Fock mean-field potential,
∑

i(2Ji − Ki), de-
pends only on the occupied orbitals. However, all orbitals—
occupied and virtual—are influenced by the mean-field poten-
tial. On the other hand, since the CAP we have introduced in
Sec. II B starts far away from the origin such that occupied
orbitals are not affected, the Hartree-Fock mean field does not
depend on the CAP. Therefore, the occupied orbitals ϕi are
eigenstates of both F̂ and F̂CAP, and may be calculated by
solving the self-consistent-field problem, Eq. (33), assuming
η = 0. After determining the ϕi , and thus fixing the Hartree-
Fock mean field, a single diagonalization of F̂CAP for nonzero
η gives the virtual orbitals ϕa .

The dual wave function of |ϕp〉 is (ϕp| rather than 〈ϕp|, as
discussed in Sec. II C. The matrix representation of Eq. (33)
in a real basis gives rise to a complex symmetric eigenvalue
problem [106] (see Sec. III B). From this and from Eq. (32), it
follows that the spatial representation of (ϕp| is given by

(ϕp|r,θ,φ〉 = Y ∗
lp,mp

(θ,φ)
unp,lp (r)

r
. (36)

The corresponding orthogonality relations were given in
Sec. II C.

III. NUMERICAL IMPLEMENTATION

In this section, we present our numerical method to
implement the three-dimensional TDCIS. In Sec. III A, our
choice of the pseudospectral grid for the radial degree of
freedom is discussed. Then, the atomic Hartree-Fock equations
on the numerical grid are shown in Sec. III B. In Secs. III D and
III E we describe propagation schemes based on two different
ways of partitioning the Hamiltonian in Eq. (4).

A. Pseudospectral grid

Due to the nature of the strong-field problem, a grid is
required with sufficient density near the atomic nucleus to
describe the electronic structure of the atom, as well as far
from the nucleus to describe the wave packet of the ejected
electron. We have chosen a Gauss-Lobatto grid [112–115],
which uses as its grid points the roots of the first derivative
of the N th-order Legendre polynomial (P ′

N ) as well as the
selected end points of the grid (r = 0 and r = rmax). We map
these roots, which lie on the interval x ∈ [−1,1], onto the
radial space of the atom [113] using

r(x) = L
1 + x

1 − x + ζ
. (37)

L and ζ are parameters which control the extent of the
grid and the density of the mapped points near the origin,
respectively.

As described in Ref. [113], a wave function φ(x) may be ap-
proximated using a finite basis set of orthogonal polynomials.
Using Legendre polynomials Pl(x),

φ(x) ≈ φN (x) =
N∑

l=0

alPl(x), (38)

which may also be written in terms of cardinal functions
gk(x),

φN (x) =
N∑

k=0

gk(x)φN (xk). (39)

Analytical functions of the wave function φ(x) can now
be written in terms of analytical functions of the cardinal
functions. For the Gauss-Lobatto grid points, the second
derivative of gk(x), which is needed to calculate the radial
kinetic energy, is (for grid points not at the edge of the grid,
which we will not need)

g′′
k (xk′) = d

(2)
k,k′

PN (xk′)

PN (xk)
, (40)

where

d
(2)
k,k = −N (N + 1)

3(1 − x2
k )

,

(41)

d
(2)
k,k′ = − 2

(xk − xk′)2
.
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B. Atomic Hartree-Fock equations in the Gauss-Lobatto grid

After employing the mapping of Eq. (37), the Hartree-Fock
equations [Eq. (31)] read

−1

2

(
− r ′′(x)

r ′(x)3

d

dx
+ 1

r ′(x)2

d2

dx2

)
un,l(x)

+
{

l(l + 1)

2r(x)2
− Z

r(x)
− iηW (r(x))

}
un,l(x)

+
∑
no,lo

(4lo + 2)v(0)(no,lo; no,lo; r(x))un,l(x)

−
∑
no,lo

l+lo∑
L=|l−lo|

C(lLlo; 000)2v(L)(no,lo; n,l; r(x))uno,lo (x)

= εn,lun,l(x). (42)

In order to symmetrize the Laplacian, the function A(x) is
introduced such that

An,l(x) =
√

r ′(x)un,l(x). (43)

After expanding A(x) with Eq. (39), substituting the
relation gk(xk′) = δk,k′ and Ak

n,l = An,l(xk)/PN (xk) and using
Eqs. (40) and (41), we obtain

∑
k

{
−1

2

1

r ′(xk′)
d

(2)
k,k′

1

r ′(xk′)
Ak

n,l

}

+
{

l(l + 1)

2r(xk′)2
− Z

r(xk′)
− iηW (r(xk′))

}
Ak′

n,l

+
∑
no,lo

(4lo + 2)v(0)(no,lo; no,lo; r(xk′))Ak′
n,l

−
∑
no,lo

l+lo∑
L=|l−lo|

C(lLlo; 000)2v(L)(no,lo; n,l; r(xk′))Ak′
no,lo

= εn,lA
k′
n,l . (44)

The integrals of Eq. (34) can now be written using the
quadrature

v(L)(n,l; n′,l′; r(xk′)) =
∑

k

r(k,k′)L<
r(k,k′)L+1

>

Ak
n,lA

k
n′,l′

2

N (N + 1)
,

(45)

where

r(k,k′)< = min{r(xk),r(xk′)},
(46)

r(k,k′)> = max{r(xk),r(xk′)}.
Substituting this integral into Eq. (44), the atomic Hartree-

Fock equations can be written as

∑
k

{
−1

2

1

r ′(xk′)
d

(2)
k,k′

1

r ′(xk′)
Ak

n,l

}

+
{

l(l + 1)

2r(xk′)2
− Z

r(xk′)
− iηW (r(xk′))

}
Ak′

n,l

+
∑

k,no,lo

2

N (N + 1)
(4lo + 2)|Ak

no,lo
|2 1

r(k,k′)>
Ak′

n,l

−
∑

k,no,lo

l+lo∑
L=|l−lo|

2

N (N + 1)
C(lLlo; 000)2

× r(k,k′)L<
r(k,k′)L+1

>

Ak′
no,lo

Ak
no,lo

Ak
n,l = εn,lA

k′
n,l, (47)

which is a complex symmetric eigenvalue problem.

C. Approximation for large angular-momentum Coulomb
matrix elements

In the context of TDCIS, two types of Coulomb matrix
elements of the form v(a,i ′,i,a′) and v(a,i ′,a′,i) are of interest. In
the case that excited orbitals with large angular momenta are
important, a substantial number of Coulomb matrix elements
need to be computed. This computational task can be the bottle-
neck in solving the TDCIS equations.

To make this task manageable, we employ the approxima-
tions

v(a,i ′,i,a′) = 0,
(48)

v(a,i ′,a′,i) = δi,i ′

(
ϕa

∣∣∣∣1

r

∣∣∣∣ϕa′

)
,

if either la or la′ is larger than a threshold value Lcoul. These
approximations are valid for an excited electron that is far
away from the residual ion. We choose the value of Lcoul such
that numerical convergence is reached.

D. Numerical propagation scheme

In order to propagate the ground-state coefficient α0, we
directly apply the second-order finite-differencing scheme
[116] to Eq. (5a):

α0(t + dt) = α0(t − dt) + 2idt
√

2E(t)
∑

i

∑
a

αa
i (t)z(i,a).

(49)

To propagate the coefficients αa
i (t), we temporarily transform

to the interaction picture,

αa
i (t) = e−i(εa−εi )t α̃a

i (t). (50)

The propagation equation for α̃a
i becomes

˙̃αa

i (t) = −iei(εa−εi )t f a
i (t), (51)

where

f a
i (t) ≡

∑
i ′

∑
a′

αa′
i ′ (t)(2v(a,i ′,i,a′) − v(a,i ′,a′,i))

− E(t)

{√
2α0(t)z(a,i) +

∑
a′

αa′
i (t)z(a,a′)

−
∑

i ′
αa

i ′(t)z(i ′,i)

}
. (52)

Now we apply the second-order differencing scheme to
Eq. (51),

α̃a
i (t + dt) = α̃a

i (t − dt) − 2idtei(εa−εi )t f a
i (t), (53)
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and then convert back to the Schrödinger picture,

αa
i (t + dt) = e−i(εa−εi )(t + dt)α̃a

i (t + dt)

= e−i(εa−εi )(t+dt)α̃a
i (t − dt) − 2idte−i(εa−εi )dtf a

i (t)

= e−2i(εa−εi )dtαa
i (t − dt) − 2idte−i(εa−εi )dtf a

i (t).

(54)

Equations (49) and (54) are the equations used to propagate
the coefficients.

E. Complex-orbital versus real-orbital formulation of TDCIS

As shown in the previous section, the complex-orbital
formulation of TDCIS is rather compact, because the CAP
is chosen such that the occupied orbitals in the Hartree-Fock
ground state remain unaffected. However, this complex-orbital
formulation has the disadvantage that the usual physical
interpretation of the virtual orbitals is lost. It is therefore
natural to ask whether it is more advantageous to use a
real-orbital formulation of TDCIS. Real radial wave functions
un,l(r) are obtained by diagonalizing F̂ rather than F̂CAP.
The full Hamiltonian, Eq. (4), is left unmodified. Using the
real-orbital formulation, all integrals and orbital energies are
real. However, there is a CAP-dependent term in the equations
of motion for the wave-packet expansion coefficients [which
is absent in the complex-orbital formulation of Eq. (5)]. In
the following, we show that even though the real-orbital and
complex-orbital formulations are equivalent, the implementa-
tion of the complex-orbital formulation is numerically more
stable.

For simplicity, we performed the numerical comparison
using hydrogen exposed to a laser electric field with a peak
amplitude of 0.1 a.u. and an angular frequency of 0.057 a.u. In
this case, the

√
2 factors, the Coulomb matrix elements, and the

dipole matrix elements zi,i ′ in Eq. (5) disappear since there is
only one electron. In these tests, 800 radial grid points, rmax =
130 (Sec. II E), rabs = 90 (Sec. II B), ζ = 0.4 (Sec. III A), and
dt = 0.004 (Sec. III D) are employed. In order to accurately
reflect the strong-field physics, it is important to note that the
choice of CAP strength, which is characterized by η, is also
important apart from these parameters. With η = 10−3, our
calculation performed with the complex orbitals reproduces
the hydrogen result obtained by Gordon and Kärtner [117].
This is not the case if a smaller value of η is chosen. Figure 1
shows that the expectation value of the dipole acceleration
obtained with η = 10−5 is noisier than that for η = 10−3. This
is because the CAP with η less than 10−3 is too weak to
absorb completely the photoelectron wave packet reaching the
end of the spatial grid, leading to reflections from the grid
wall.

To compare the results obtained with the complex orbitals,
we repeated the calculations using the real orbitals. We found
that, depending on the value of η, the numerical propagation
using the real-orbital formulation may not be stable. Figure 2
shows that the expectation values of the dipole acceleration
obtained with the complex and real orbitals, respectively,
agree with each other when η = 10−5. In this case, the
two formulations are numerically equivalent. However, for
η = 10−3, which is required for an accurate description of the
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FIG. 1. (Color online) Effect of the CAP strength η on the
expectation value of the dipole acceleration calculated with the
complex-orbital formulation of TDCIS.

dipole acceleration, the numerical propagation of the wave
packet using the real orbitals diverges. The divergence persists
even after reducing dt by a factor of 10.
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FIG. 2. (Color online) The expectation value of the dipole
acceleration calculated with both the real-orbital (dashed line) and
complex-orbital (solid line) formulations of TDCIS using (a) η =
10−5 and (b) η = 10−3.
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IV. RESULTS AND DISCUSSION

To demonstrate applications of our implementation of
TDCIS, we performed calculations on argon. First, we carried
out a convergence study with the 3p0 orbital active and
all other orbitals frozen. The laser field chosen was E(t) =
E0 sin(ωt), with an E0 of 0.125 a.u. and an ω of 0.057 a.u.
Classically, an electron that can recollide with its parent ion
will travel ∼ E0/ω

2 = 38.5 a.u. before recollision. Therefore,
to fully eliminate any CAP-induced perturbation of recolliding
trajectories, we have put our absorbing potential at rabs =
90 a.u., and our grid wall at rmax = 120 a.u., with a ζ [Eq. (37)]
of 0.5. In general, the ζ parameter was chosen as 60/rmax.

The convergence of a number of different parameters is
illustrated in Fig. 3. Figures 3(a) and 3(b) show the conver-
gence with the CAP strength. Low η’s produced successively
greater oscillations due to reflections off the grid wall, while
the large η values did not have such obvious effects. However,
close examination of large η values such as the one shown
in Fig. 3(b) showed that reflections from the CAP did affect
the dipole acceleration by shifting the oscillations out toward
times around 113 a.u. An η of 5.0 × 10−3 produced the
least amount of reflections off of either the grid wall or
the absorbing potential. It should be noted that this η is in
the region where the real-orbital formulation is numerically
unstable. At a grid size of 500 grid points, the dependence of
the dipole acceleration on the maximum angular-momentum

value allowed for the dipole (Lmax) and Coulomb (Lcoul)
integrals was determined [Fig. 3(c)]. An Lmax of 60 was
determined to be necessary for convergence of the dipole
acceleration, while for the Coulomb integrals an Lcoul of 4
was sufficient. For the angular-momentum quantum numbers
between 5 and 60, the Coulomb interaction was approximated
as a 1

r
interaction (Sec. III C). Additionally, orbitals with

Hartree-Fock energies higher than 50 a.u. (real part of the
orbital energies) were determined to be unnecessary and
were not included in the propagation calculations. Finally,
the convergence of the size of the grid was found. Small
grids led to extra oscillations in the dipole acceleration, as
well as unphysical behaviors in the norms and density matrix
elements. The argon system converged at a grid size of 750 grid
points, although 1000 grid points were used for the following
calculations.

Figure 4 shows the difference in the calculated dipole accel-
eration for the single-channel TDCIS method and the single-
channel Hartree-Slater method [39], which approximates the
exchange correlation using a local function. The added effects
of using the exact nonlocal exchange potential can be seen in
the figure. At the peak of the dipole acceleration, the TDCIS
method peaks slightly sooner than the Hartree-Slater method.
The oscillation after the peak is shorter for the TDCIS method.
Finally, there are a greater number of smaller oscillations
after the trough of the TDCIS dipole acceleration than for
the Hartree-Slater method.
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FIG. 3. (Color online) The convergence of the dipole acceleration of argon with the 3p0 orbital active. (a), (b) Convergence with the
CAP strength. (c) Convergence with maximum angular momentum for the dipole (Lmax) and Coulomb (Lcoul) integrals. (d) Convergence with
the size of the pseudospectral grid. Convergence is reached at a CAP strength of 5 × 10−3, an Lmax of 60, an Lcoul of 4, and a grid size
of 750.
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FIG. 4. (Color online) A comparison of the dipole acceleration of
the single-channel TDCIS and Hartree-Slater methods. The nonlocal
exchange effects are evident.

The multichannel capacity of the TDCIS framework was
tested by performing calculations of the ion density matrix
elements for argon with only the 3p0 orbital active as well as
with all 3p orbitals active (see Fig. 5). For the case in which
only the 3p0 orbital is active, the population of the orbital
increases in two steps corresponding to the two half-cycles of
the driving potential. There are minor oscillations especially
in the second half-cycle. When all 3p orbitals are active,
the population of the 3p0 orbital follows a similar pattern
but is smaller than the single-channel case. The oscillations
of the 3p0 population are slightly smaller as well for the
three-channel case. Importantly, the combined populations
of the 3p1 and 3p−1 orbitals are more than 10% of the
3p0 population. This result conflicts with the models that
ignore channel coupling and assume that these populations
are sufficiently small.
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FIG. 5. (Color online) The ion density matrix elements are
compared for the single-channel case and the three-channel case.
The 3p1 element plus the 3p−1 element comprises more than 10% of
the 3p0 element in the three-channel case.

V. CONCLUSION

We have developed a time-dependent configuration-
interaction singles formalism with a complex absorbing po-
tential in order to describe strong-field atomic processes in the
nonperturbative regime. Previous theoretical approaches have
relied on a single active electron approach, while with TDCIS,
multichannel processes can be investigated. Two-electron
reduced density matrix (2-RDM) methods [118–122] may
provide a framework in the future for examining laser-field
interactions with the inclusion of explicit electron correlation
and additional multireference states. The flexible pseudospec-
tral grid allows us to calculate orbitals with sufficient density
in each region of the space in order to describe weakly
bound and ionized electrons as well as strongly bound atomic
electrons. We have also shown that applying the CAP in the
Hartree-Fock step is more numerically stable than applying
it in the propagation step. This leads to a non-Hermitian
modified Fock operator, as well as complex orbitals which
are orthogonal with respect to a symmetric inner product.
Using these complex orbitals, a reduced ion density matrix
was formulated in order to determine the populations and
coherences of the one-hole states. The dipole acceleration of
argon was calculated as well, which requires overlap integrals
between the complex orbitals.

The TDCIS dipole acceleration for argon with its 3p0

orbital active was converged on the pseudospectral grid and
then compared with the dipole acceleration calculated using
the Hartree-Slater method. Local potential approximations are
used in many theoretical treatments of strong-field processes.
We determined that using the nonlocal exchange of the TDCIS
method significantly affects the dipole acceleration. We then
used the ion density matrix to compare the populations of
the 3p orbitals of argon in single-channel and multichannel
calculations. In the single-channel calculations, only the
3p0 orbital was allowed to be active. When all 3p orbitals
were open for excitation, the population of the 3p0 orbital
decreased as expected, although the time evolution was
similar in shape. However, the combined 3p1 and 3p−1

populations were determined to be greater than 10% of
the 3p0 population. This is a significant occupation, and it
shows that methods which assume a single channel do not
take into account possibly important effects. The TDCIS
method provides a multichannel approach for nonperturbative
strong-field processes which can be used to study effects that
previous theoretical methods did not take into account.
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APPENDIX: CALCULATING INTEGRALS

Using the orbitals represented on a quadrature grid, we
compute one- and two-body matrix elements, which are
needed to solve the TDCIS equation of motion. For a general
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one-electron operator f̂ , its matrix element defined by the
symmetric inner product is given by

f(p,q) =
∫

drdθdφ sin θY ∗
lp,mp

(θ,φ)unp,lp (r)f (r,θ,φ)

×Ylq ,mq
(θ,φ)unq,lq (r). (A1)

We perform the quadrature, such that

f(p,q) = 2

N (N + 1)

∫
dθdφ sin θ

∑
k

Ak
np,lp

Y ∗
lp,mp

(θ,φ)

× f (rk,θ,φ)Ak
nq,lq

Ylq ,mq
(θ,φ). (A2)

To obtain fp,q , which is defined by the conjugated inner
product, we replace Ak

np,lp
in Eq. (A2) with its complex

conjugate.
Using Eq. (A2), all one-electron integrals can be con-

structed. For the overlap integrals, the angular part becomes a
δ function, and we are left with

op,q = δlp,lq δmp,mq

∑
k

2

N (N + 1)

(
Ak

np,lp

)∗
Ak

nq,lq
. (A3)

For the nonconjugated dipole integrals (ẑ = r cos θ ), we need
for the propagation, using the relation Y1,0 = 4

3π
cos θ and the

fact that the integral of three spherical harmonics can be written

using Clebsch-Gordan coefficients [111],

z(p,q) =
√

2lq + 1

2lp + 1
C(lq ,1,lp; 0,0,0)C(lq ,1,lp; mq,0,mp)

×
∑

k

2

N (N + 1)
Ak

np,lp
Ak

nq ,lq
r(xk). (A4)

We also need the conjugated dipole acceleration integrals (â =
Z cos θ/r2),

ap,q =
√

2lq + 1

2lp + 1
C(lq ,1,lp; 0,0,0)C(lq ,1,lp; mq,0,mp)

×
∑

k

2

N (N + 1)

(
Ak

np,lp

)∗
Ak

nq,lq

Z

r(xk)2
. (A5)

The nonconjugated two-electron Coulomb integrals are also
required for the propagation, and they are constructed using a
two-index quadrature. The expansion

1

r12
=

∞∑
L=0

4π

2L + 1

rL
<

rL+1
>

L∑
M=−L

Y ∗
L,M (θ1,φ1)YL,M (θ2,φ2)

(A6)

is used. Thus, the angular part of the Coulomb integrals reduce
to Clebsch-Gordan coefficients, and the radial part becomes

v(p,q,s,t) ⇒
∑
k,k′

Ak
np,lp

Ak′
nq ,lq

Ak
ns ,ls

Ak′
nt ,lt

r(k,k′)L<
r(k,k′)L+1

>

. (A7)
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R. Moshammer, J. Ullrich, T. Niederhausen, and U. Thumm,
Phys. Rev. Lett. 99, 153002 (2007).

[70] E. V. van der Zwan, C. C. Chirila, and M. Lein, Phys. Rev. A
78, 033410 (2008).

[71] Z. B. Walters, S. Tonzani, and C. H. Greene, J. Phys. Chem. A
112, 9439 (2008).

[72] W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H. C.
Kapteyn, and M. M. Murnane, Science 322, 1207 (2008).

[73] M. Drescher et al., Nature 419, 803 (2002).
[74] F. Lindner et al., Phys. Rev. Lett. 95, 040401 (2005).
[75] G. L. Yudin, A. D. Bandrauk, and P. B. Corkum, Phys. Rev.

Lett. 96, 063002 (2006).
[76] T. Pfeifer, M. J. Abel, P. M. Nagel, A. Jullien, Z.-H. Loh, M. J.

Bell, D. M. Neumark, and S. R. Leone, Chem. Phys. Lett. 463,
11 (2008).

[77] A. D. Bandrauk, S. Chelkowski, S. Kawai, and H. Lu, Phys.
Rev. Lett. 101, 153901 (2008).

[78] K. C. Kulander, Phys. Rev. A 36, 2726 (1987).
[79] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev.

Lett. 68, 3535 (1992).
[80] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander,

Phys. Rev. Lett. 70, 1599 (1993).
[81] H. Rottke, J. Ludwig, and W. Sandner, J. Phys. B 29, 1479

(1996).
[82] P. Kaminski, R. Wiehle, V. Renard, A. Kazmierczak,

B. Lavorel, O. Faucher, and B. Witzel, Phys. Rev. A 70, 053413
(2004).

[83] L. Young et al., Phys. Rev. Lett. 97, 083601 (2006).
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The creation of superpositions of hole states via single-photon ionization using attosecond extreme-

ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method.

Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that

interchannel coupling not only affects the hole populations, but it also enhances the entanglement between

the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence,

even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states

involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral

bandwidth, the coherence can only be increased by increasing the mean photon energy.

DOI: 10.1103/PhysRevLett.106.053003 PACS numbers: 32.80.Aa, 03.65.Yz, 42.65.Re

The typical time scale of electronic motion in atoms,
molecules, and condensed matter systems ranges from a
few attoseconds (1 as ¼ 10�18 s) to tens of femtoseconds
(1 fs ¼ 10�15 s) [1–3]. In the last decade the remarkable
progress in high harmonic generation [4–8] made it pos-
sible to generate attosecond pulses as short as 80 as [9].
Attosecond pulses have opened the door to real-time ob-
servations of the most fundamental processes on the atomic
scale [1,10]. For instance, the generation of attosecond
pulses was utilized to determine spatial structures of mo-
lecular orbitals [11]; an interferometric technique using
attosecond pulses was used to characterize attosecond
electron wave packets [12]; and attosecond pulse trains
[13] and isolated attosecond pulses [14], in combination
with an intense few-cycle infrared pulse, enabled the
control of electron localization in molecules. Attosecond
technology demonstrated the ability to follow, on a sub-
femtosecond time scale, processes such as photoionization
[15], Auger decay [16], and valence electron motion driven
by relativistic spin-orbit coupling [17]. Furthermore, the
availability of attosecond pulses fueled a broad interest in
exploring charge transfer dynamics following photoexci-
tation or photoionization [14].

In this Letter, we analyze the creation of hole states via
single-photon ionization using a single extreme-ultraviolet
attosecond pulse. We investigate the impact of the freed
photoelectron on the remaining ion and demonstrate that
the interaction between the photoelectron and the ion
cannot be neglected for currently available state-of-the-
art attosecond pulses. In particular, the interchannel
coupling of the initially coherently excited hole states
greatly enhances the entanglement between the photoelec-
tron and the ionic states. Interchannel coupling is mediated
by the photoelectron and mixes different ionization
channels, i.e., hole configurations, with each other.

Consequently, the degree of coherence among the ionic
states is strongly reduced, making it impossible to describe
the subsequent charge transfer in the ion with a pure
quantum mechanical state. Experiments on photosynthetic
systems [18–21] have revealed a correlation between
highly efficient energy transport and coherent dynamics
in molecules (nuclear and electronic dynamics in this
case). Similarly, high degrees of coherence in nonstation-
ary hole states may be necessary for efficient charge trans-
port within molecules.
In the last decade, much work has been done in the realm

of hole migration [22–24]. It was shown that electronic
motion can be triggered solely by electron correlation
[22]. Charge transfers mediated by electronic correlations
typically take place in a few femtoseconds and are thus
faster than electronic dynamics initiated by nuclear motion
[25,26]. Recent experiments [27,28] have demonstrated
that electronically excited ionic states can modify site-
selective reactivity within tens of femtoseconds, making
hole migration processes a promising tool to control chemi-
cal reactions. Up to now, theoretical calculations [22,24]
investigating hole migration phenomena have neglected the
interaction between the parent ion and the photoelectron
and assumed a perfectly coherent holewave packet. As long
as the photoelectron departs sufficiently rapidly from the
parent ion, this assumption is appropriate [29].However, for
attosecond pulses with large spectral bandwidths, the en-
hanced production of slow photoelectrons will affect
(mainly via interchannel coupling) both the final hole pop-
ulations and the coherence among these hole states.
Furthermore, recent results in high harmonic spectroscopy
suggest that interchannel coupling may be the missing link
to understanding hole dynamics occurring in high harmonic
generation processes before the ejected electron recom-
bines with the parent ion [30].
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We investigate the creation of hole states via attosecond
photoionization using the implementation of the time-
dependent configuration-interaction singles (TDCIS) ap-
proach described in Ref. [31] (see also [32,33]). TDCIS
allows us to study ionization dynamics beyond the single-
channel approximation and to understand systematically
the relevance of interchannel coupling in the hole creation
process. The TDCIS wave function for the entire system is

j�ðtÞi ¼ �0ðtÞj�0i þ
X
a;i

�a
i ðtÞj�a

i i; (1)

where j�0i is the Hartree-Fock ground state and j�a
i i ¼

ĉya ĉij�0i is a one-particle-one-hole excitation (ĉya and ĉi
are creation and annihilation operators for an electron in
orbitals a and i, respectively). The corresponding coeffi-
cients �0ðtÞ and �a

i ðtÞ, respectively, are functions of time
and describe the dynamics of the system. Throughout,
indices i, j, are used for occupied orbitals in j�0i; indices
a, b, stand for unoccupied orbitals. We focus our discus-
sion on the case where single-photon ionization is the
dominant effect and higher order processes can be ne-
glected. Our model system is atomic xenon. The corre-
sponding Hamiltonian (neglecting spin-orbit coupling) is

ĤðtÞ ¼ Ĥ0 þ Ĥ1 þ EðtÞẑ; (2a)

where EðtÞ is the electric field, ẑ the dipole operator, and

Ĥ0 is the mean-field Fock operator, which is diagonal with
respect to the basis used in Eq. (1). The residual Coulomb
interaction,

Ĥ 1 ¼ V̂c � V̂MF; (2b)

is defined such that Ĥ0 þ Ĥ1 gives the exact nonrelativistic
Hamiltonian for the electronic system in the absence of

external fields (V̂c is the electron-electron interaction). We

study the impact of different approximations for Ĥ1 on the
hole state as follows. The Coulomb-free model, the sim-
plest approximation, removes the residual Coulomb inter-

action (Ĥ1 ¼ 0) between the excited electron and the
parent ion. In this approximation, the excited electron al-

ways sees a neutral atom via the V̂MF potential [34]. A
more realistic approximation is the intrachannel model
including direct and exchange contributions of the
Coulomb interaction only within a given channel. In this
second model, the excited electron can only interact with
the occupied orbital from which it originates. Interactions
between different occupied orbitals are neglected, i.e., we

set h�a
i jĤ1j�b

j i ¼ 0 for i � j. The third and final model

describes the Coulomb interaction exactly within the
TDCIS framework. We refer to this as the full model.

Note that the exact nonrelativistic Hamiltonian Ĥ0 þ Ĥ1

is diagonal with respect to the ionic one-hole states j�ii ¼
ĉij�0i. In the full model, the photoelectron can couple the

hole states, as Ĥ1 in the particle-hole space is not diagonal

with respect to the hole index (i.e., h�a
i jĤ1j�b

j i generally
differs from zero). This type of photoelectron-mediated

interaction is called interchannel coupling [35]. As a con-
sequence, in the full model the hole index is not a good
quantum number, whereas in the Coulomb-free and intra-

channel models, excited eigenstates of Ĥ0 þ Ĥ1 are char-
acterized by a well-defined hole index. To describe the hole
states of the remaining ion, we employ the ion density
matrix [31]

�̂ IDM
i;j ðtÞ¼Tra½j�ðtÞih�ðtÞj�i;j¼

X
a

h�a
i j�ðtÞih�ðtÞj�a

j i;

(3)

where Tra stands for the trace over the photoelectron. The
properties of the ion density matrix can be measured using
attosecond transient absorption spectroscopy [17]. A de-
scription of the cationic eigenstates in terms of one-hole
configurations is a physically meaningful approximation
for noble-gas atoms such as xenon [36].
In Fig. 1 the hole populations �IDM

5s;5sðtÞ and �IDM
4d0;4d0

ðtÞ of
the xenon 5s and 4d0 orbitals, respectively, are shown for
all three interaction models (4d0 stands for the 4d orbital
with m ¼ 0). The ionizing, Gaussian-shaped attosecond
pulse is linearly polarized and has a peak field strength
of 25 GV=m, a pulse duration of � ¼ 20 as, and a (mean)
photon energy of !0 ¼ 136 eV. The hole dynamics of the
Coulomb-free and intrachannel models are alike. In both
cases, the populations are constant after the pulse, since the
hole index is a good quantum number within these models.
The extension to the exact Coulomb interaction changes
the situation. Interchannel coupling causes the hole pop-
ulations to remain nonstationary as long as the photoelec-
tron remains close to the ion. As the distance between
the photoelectron and the ion increases, the interchannel
coupling weakens and the populations �IDM

i;i ðtÞ become
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FIG. 1 (color online). The 4d0 [panel (a)] and 5s [panel (b)]
hole populations of xenon as a function of time are shown for
three different residual Coulomb interaction approximations:
(1) the full model (red solid line), (2) the intrachannel model
(green dotted line), and (3) the Coulomb-free model (blue dash-
dotted line). The attosecond pulse has a peak field strength of
25 GV=m, a pulse duration of 20 as, a (mean) photon energy of
136 eV, and is centered at t ¼ 0 as.
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stationary (see Fig. 1). We confine our discussion to the
first hundreds of attoseconds after the pulse, allowing us to
neglect decay processes, which start to take place after a
few femtoseconds.

As we will see in the following, interchannel coupling
not only affects the hole populations but also the coherence
between the created hole states. The degree of coherence
between j�ii and j�ji is given by

gi;jðtÞ ¼
j�IDM

i;j ðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�IDM
i;i ðtÞ�IDM

j;j ðtÞ
q : (4)

Totally incoherent statistical mixtures result in gi;jðtÞ ¼ 0.

The fact that the density matrix is positive semidefinite
implies the Cauchy-Schwarz relations j�IDM

i;j ðtÞj2 �
�IDM
i;i ðtÞ�IDM

j;j ðtÞ, which bound the maximum achievable

(perfect) coherence [gi;jðtÞ ¼ 1]. To investigate the effect

of interchannel coupling on the coherence between the
orbitals 4d0 and 5s in xenon, we restrict the definition of
the 4d0 hole population to the events where the photo-
electron has angular momentum l ¼ 1. The other possible
angular momentum for the 4d0 photoelectron, l ¼ 3, does
not contribute to the coherence, since the photoelectron
from 5s can only have l ¼ 1. For a similar reason, it is
impossible to create a coherent superposition of 5p and 5s
(or 4d) hole states via one-photon absorption in the electric
dipole approximation.

Figure 2 illustrates the time evolution of the coherence
between 4d0 and 5s in xenon for different pulse durations
and fixed photon energy (!0 ¼ 136 eV). Here, we use the
full interaction model. Directly after the ionizing pulse is
over, the initial degree of coherence (at t � 0 as) rises with
decreasing pulse duration, i.e., increasing spectral band-
width, and converges to a value close to unity. (The differ-
ence of the ionization potentials, "5s � "4d0 , is � 50 eV.)

At t � 0 as, the photoelectron is still in immediate contact
with the parent ion. Therefore, the coherence properties of
the system of interest—the parent ion—are affected by its
interaction with the bath represented by the photoelectron.
The system-bath interaction leads to a reduction in the
coherence of the system [37], which can be seen by the
rapid drops in all curves in Fig. 2 within tens of attoseconds
after the pulse. With time, as the photoelectron departs
from the ion, the Coulomb (‘‘system-bath’’) interaction
becomes less important and the coherence converges to a
stationary value. The maximum for this stationary value is
obtained with a 25 as pulse (g4d0;5s � 0:6). For pulses

shorter than 25 as, oscillations in g4d0;5s occur that persist

for hundreds of attoseconds, and the final degree of coher-
ence reached falls below 0.6. The spin-orbit dynamics
associated with the fine structure within the 4d shell is
slow in comparison to the time scale of the decoherence
between 4d0 and 5s, and is, therefore, not considered here.

We see in Fig. 3 that when holding the pulse duration
fixed (� ¼ 20 as), the degree of coherence rises with in-
creasing!0. The magnitude of the oscillations decreases as

the final coherence (at t � 1 fs) increases. This trend in-
dicates fewer system-bath interactions occur with higher
photoelectron energies, keeping the degree of coherence
among the hole states high.
In Fig. 4 we compare the impact of the different

Coulomb approximations on the final coherence. The drops
in coherence that occur for the full model for short pulses
[Fig. 4(a)] and low photon energies [Fig. 4(b)] cannot be
seen in the Coulomb-free and intrachannel models—which
both neglect interchannel coupling. Hence, the decay of
coherence is solely driven by the interchannel coupling due
to the slow photoelectron. As a comparison to the
Coulomb-free model shows, intrachannel coupling affects
the coherence in an insignificant way. In the limit of long
pulse durations (small spectral bandwidths), the coherence
vanishes for all models, since photoelectrons from the 4d0
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FIG. 2 (color online). The time evolution of the coherence
between the 4d0 and 5s hole states in xenon is shown for the
full Coulomb interaction model. The photon energy is 136 eV
and the pulse duration varies from 5–60 as.
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ergies. The pulse duration is in all cases 20 as.
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and 5s become energetically distinguishable and cannot
contribute to a coherent statistical mixture of hole states.
The slight drop in the coherence for the Coulomb-free and
intrachannel models with increasing !0 [Fig. 4(b)] is re-
lated to the reduced factorizability of the numerator of
Eq. (4). In contrast, the trend in the full model for increas-
ing !0 is dominated by the gain in coherence due to higher
photoelectron energy resulting in less system-bath
interaction.

In conclusion, we demonstrated that the coherence of the
ionic states produced via attosecond photoionization is not
solely determined by the bandwidth of the ionizing pulse,
but greatly depends on the kinetic energy of the photo-
electron, which can be controlled by the (mean) photon
energy. Interchannel coupling leads to an enhanced entan-
glement between the photoelectron and the parent ion
resulting in a reduced coherence in the ionic states. This
reduction can be mitigated with higher photon energies,
thereby sacrificing high photon cross sections and the
possibility of controlling independently the relative popu-
lations of the various hole states in the statistical mixture.

Our results have far-reaching consequences beyond the
atomic case. Molecules will be even more strongly affected
by interchannel coupling due to the reduced symmetry and
smaller energy splittings between the cation many-electron
eigenstates. Interchannel coupling is also likely to be sig-
nificant for innervalence hole configurations in molecules,
which show strong mixing to configurations outside the
TDCIS model space. The present study suggests that in-
terchannel coupling accompanying the hole creation pro-
cess will affect attosecond experiments investigating
charge transfer processes in photoionized systems. The
control of decoherence requires widely tunable attosecond
sources, thus offering a new opportunity for x-ray free-
electron lasers [38].
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Synthesized Light Transients
A. Wirth,1 M. Th. Hassan,1,2 I. Grguraš,1 J. Gagnon,1 A. Moulet,1 T. T. Luu,1

S. Pabst,3,4 R. Santra,3,4 Z. A. Alahmed,2 A. M. Azzeer,2 V. S. Yakovlev,1,5

V. Pervak,5 F. Krausz,1,5 E. Goulielmakis1*

Manipulation of electron dynamics calls for electromagnetic forces that can be confined to
and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide
these forces. We report on the generation of subcycle field transients spanning the infrared, visible,
and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and
their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within
a single wave crest and launched a valence-shell electron wavepacket with a well-defined
initial phase. Half-cycle field excitation and attosecond probing revealed fine details of
atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge
distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous
ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.

The generation and measurement (briefly,
synthesis) of electric field transients per-
mitted the characterization of electric cir-

cuits with sub-picosecond temporal resolution
(1) and constitutes a base technology for advanc-
ing high-speed electronics and electron-based

information technologies. Electronic processes
on the atomic scale typically evolve on a few-
femtosecond to sub-femtosecond time scale.
Time-domain access to these dynamics requires
the extension of electric field control to optical
frequencies.

As a first step to this end, measurement (2, 3)
and control (4–9) of the phase of field oscilla-
tions relative to their envelope [carrier-envelope
phase (CEP)] yielded reproducible few-cycle light
waveforms (10). Attosecond metrology (11) was
further advanced by the reproducible generation
and measurement of isolated attosecond pulses
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Fig. 1. Apparatus for infrared-visible-ultraviolet
field synthesis. (A) Schematic representation of a
prototypical three-channel light field synthesizer.
(B) Spectrum of the coherent radiation at the exit
of the hollow-core fiber (dashed line). Spectra ex-
iting the individual channels (not to scale) are
shown in red for ChNIR (700 to 1100 nm), yellow
for ChVIS (500 to 700 nm), and blue for ChVIS-UV
(350 to 500 nm). (C) Temporal intensity (solid
lines) and phase profiles (dashed curves) of the
respective pulses. The thin black lines depict the
intensity profiles of the corresponding bandwidth-
limited pulses, with durations of tCh(NIR) = 6.8 fs,
tCh(VIS) = 5 fs, and tCh(VIS-UV) = 4.5 fs. Insets show
photos of the respective beam profiles taken at the
exit of the apparatus.
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(12–14). Control (15) and real-time observation
(16–21) of electronic processes would greatly
benefit from sub-femtosecond sculpting and con-
finement of strong light fields. We are able to
demonstrate this capability along with some of
its consequences.

Tailoring light fields on the electronic time
scale requires the coherent superposition and ma-
nipulation of frequencies over more than an oc-
tave in the visible and flanking spectral ranges.
So far, this demand could only be met through
the technique of molecular modulation (22–27).
This approach recently allowed the subcycle
shaping of optical fields via the superposition
of quasi-monochromatic waves in the infrared-
visible range (28). Although these periodic
waveforms are highly relevant to advancing mod-
ern electronics, time-domain access to electronic
phenomena calls for the temporal confinement
of the sculpted waveform to a single cycle or
just a few oscillation cycles. We refer to such
super-octave optical waveforms as light transients.
Recent experiments have paved the way toward
the synthesis of light transients (29–33), but they
have not yet achieved the goal of subcycle field
shaping and measurement.

Here, we report on the shaping, confine-
ment, and attosecond sampling of the fields of
intense light transients within their carrier wave
cycle (~2.4 fs) over the frequency band of 0.3
to 0.9 PHz. A variety of on-demand waveforms
with controlled subcycle field evolution, yield-
ing sub-femtosecond rise times or subcycle con-
finement of instantaneous intensity, demonstrate
the power of PHz field synthesis. As an appli-
cation of enhanced atomic-scale electron con-

trol, we field-ionized atoms within a single wave
crest and triggered valence electron motion on
a sub-femtosecond scale. By providing a sub-
femtosecond optical field trigger and a robust
attosecond probe, subcycle light transients estab-
lish sub-femtosecond pump-probe spectroscopy.

1.5-octave optical field synthesizer. We
produced coherent supercontinua by propagat-
ing ~0.8 mJ, ~25-fs pulses carried at a wave-
length of l0 ~ 780 nm in a hollow-core fiber
filled with neon gas. Spectral broadening was
enhanced with respect to previous experiments
(34) by raising the gas pressure to ~3.5 bar,
resulting in a nearly uniform (to within 20 dB)
energy distribution over a bandwidth of >0.6
PHz (330 to 1100 nm) (Fig. 1B). Manipulation
of individual spectral components requires their
spatial separation and subsequent recombina-
tion. The conventional approach, based on prisms
and liquid crystal modulators (31), is hardly
scalable for super-octave–spanning operation;
therefore, we instead implemented chirped mul-
tilayer mirror technology, proposed in (34), which
offers scalability to several octaves in the visi-
ble and nearby spectral regions. Our prototyp-
ical three-channel device (Fig. 1A) subdivides
the aforementioned ~0.6-PHz spectral range
into three bands of nearly equal width—ChNIR,
700 to 1100 nm; ChVIS, 500 to 700 nm; and
ChVIS-UV, 350 to 500 nm—with the help of di-
chroic beamsplitters DBSVIS-NIR and DBSUV-VIS
(fig. S1). Dispersive chirped mirrors CMVIS/UV,
CMVIS, and CMNIR compensate for the chirp
carried by the pulse as well as that introduced
by the thin fused silica wedge pairs incor-
porated in each channel and the beamsplitters

near the edges of the spectral bands. As a re-
sult, the pulses in the individual channels are
compressed close to their bandwidth-limited
durations (Fig. 1C).

The chirp, the CEP, and the delay of the pulses
formed in ChNIR, ChVIS, and ChVIS-UV can be
precisely controlled by wedges and nanometer-
precision delay stages, respectively. The adjust-
ment of the beam size in each channel—via an
iris—allows control of the pulse’s energy [sup-
porting online material (SOM) text, section 1].
These control knobs offer both subcycle shaping
of the generated fields and compression close
to their bandwidth limit. Owing to the high ef-
ficiency of the chirped multilayer optics used
(fig. S2), the device transmits some ~83% of the
incident continuum beam (Fig. 1B, dotted line),
resulting in a pulse energy of ~0.3 mJ/pulse at the
exit of the apparatus (ChNIR~250mJ,ChVIS ~ 35mJ,
and ChVIS-UV ~ 15 mJ). The setup is assembled
on a monolithic aluminum base plate, with active
thermal and interferometric path-length stabiliza-
tion (fig. S3).

By analogy with femtosecond electro-optic
sampling of THz transients (1), we can use atto-
second streaking (12, 35) for sampling the
electric field of PHz transients. To this end, the
PHz transients exiting our three-channel synthe-
sizer were gently focused (to a peak intensity
of ~1014 W/cm2) into a neon gas jet, where they
generated broadband extreme ultraviolet (XUV)
radiation (14) emitted in a near-diffraction-limited
beam collinear with the driving radiation (SOM
text, section 2). Bandpass filtering (width of
~13 eV centered at ~85 eV) near the cut-off en-
ergy (~90 eV), implemented with multilayer

Fig. 2. Synthesis of petahertz light field transients.
(A to F) Attosecond streaking spectrograms com-
posed of photoelectron spectra normalized to their
integral (left) and the respective retrieved electric
fields (middle) and instantaneous intensity (right).
Relative intensities for the most intense field crests—
normalized to the maximum—are given in brackets.
From (A) to (C), the delay of ChVIS-UV is varied in
steps of 200 as (~p/4). Dashed black lines in (B) and
(C) show the field transients calculated from the
reference waveform of (A). (D) Relative delays and
CEPs of the individual channels are adjusted so as to
create twin transients with a field minimum in
between them. (E) ChNIR is delayed by 1.45 fs (~p),
resulting in a high-frequency leading transient
followed by a low-frequency tail. The dashed line
in (E) shows the field transients calculated from
the reference waveform of (D). Transients in (A)
to (C), (E), and (F) carry less than one cycle within
the FWHM of their temporal intensity profile. (F)
tFWHM ~ 2.1 fs, incorporating only ~0.88 field
cycles at the carrier wavelength of l0 ~ 710 nm.
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optics and thin metal foils, isolated a single at-
tosecond pulse (12, 14). Both pulses were then
focused into a second neon gas jet placed near
the entrance of a time-of-flight electron spec-
trometer (TOF) for measuring the XUV-induced,
laser-field–streaked photoelectron spectra ver-
sus delay (an attosecond streaking spectro-
gram) (35).

Attosecond streaking spectrograms of subcycle
waveforms synthesized from near-bandwidth–
limited fields exiting ChNIR, ChVIS, and ChVIS-UV
are shown in Fig. 2, left. The spectrograms are
composed of a series of laser-field–streaked
XUV photoelectron spectra recorded as a func-
tion of delay between the XUV pulse and the
subcycle field. A delay step of 0.2 fs was used,
which safely allows sampling up to the highest
frequency components (~0.9 PHz) in the wave-
form. Remarkably, each spectrogram reveals an
isolated <200-as XUV pulse. This is a direct con-
sequence of the substantial subcycle variation
of field amplitude (Fig. 2, right), which provides
an efficient temporal gate—via ionization con-
finement and/or energy filtering—for isolating
a single attosecond burst in the XUV radiation
emitted by the ionizing atoms. The feasibility
of generating a robust isolated attosecond probe
for a wide range of waveforms not only is re-
quired for the sampling of the transients but is
most important also for the interrogation of pro-
cesses triggered and/or controlled by the op-
tical field transients.

Any of the retrieved electric field wave-
forms (Fig. 2, middle) permits full character-

ization of the properties of the apparatus and
subsequently on-demand synthesis of pre-
scribed fields. To this end, we used the wave-
form in Fig. 2A as a reference and retrieved
the values of the control parameters of the sys-
tem such as the field amplitudes, phase delays,
and the CEPs of the three channels through
the numerical band-pass filtering of the mea-
sured output waveform within the spectral
ranges defined by ChNIR, ChVIS, and ChVIS-UV.
The field transients shown in Fig. 2, B and C,
were then synthesized by delaying ChVIS-UV
in steps of p/4 (~200 as) with respect to the
reference waveform. A more complex, nonsi-
nusoidal transient, which is generated by de-
laying ChNIR so that the fields from the three
channels cancel each other at the center of the
waveform, is shown in Fig. 2D. The transient
shown in Fig. 2E is generated via delay of
ChNIR by ~p with respect to the waveform
shown in Fig. 2D, resulting in a single intense
field crest pointing in the opposite direction to
the peak field in Fig. 2A. The full red and the
dashed black lines in Fig. 2, middle, depict, re-
spectively, waveforms measured or calculated
from the constituent ChNIR, ChVIS, and ChVIS-UV
fields retrieved from the reference waveform
(Fig. 2A), with control parameters changed by
known amounts with respect to those of the ref-
erence waveform. The agreement between pre-
diction and measurement demonstrates controlled
sub-femtosecond shaping, complete characteri-
zation, and reproducibility (synthesis) of peta-
hertz field transients.

The instantaneous intensity shown in Fig. 2,
right, reveals substantial variations of the strength
of consecutive wave crests upon these transfor-
mations. The reference waveform (Fig. 2A) ex-
hibits half cycles with relative intensities of (0.64,
1, 0.46) underpinning the subcycle character of
the transient. Delaying ChVIS-UV gradually trans-
forms the field into the highly asymmetric tran-
sient of Fig. 2C, with the temporal extension left
almost unchanged. This transient carries its most
intense field crest right at its leading edge, followed
by half cycles of decreasing intensity (1, 0.89,
0.57), resulting in a sub-femtosecond rise time of
its instantaneous intensity. On the other hand, a
transient with its two most intense field crests sep-
arated by ~4.5 fs and a half-cycle virtually an-
nihilated in between is revealed in Fig. 2D. The
transient with the largest degree of temporal en-
ergy confinement is shown in Fig. 2F, with field
crest intensities of (0.38, 1, 0.62) and with ~35%
of its energy carried in a single wave crest.

Field ionization and its real-time sampling.
We used transients with a central field crest ~1.7
times more intense than the adjacent half cy-
cles (Fig. 3B) to ionize Kr atoms enclosed in a
quasi-static gas cell (length l ≈ 0.74 mm) at a
density of ≈5.6 × 1018 cm−3. The gas cell was
positioned at the laser focus, replacing the neon
gas jet previously used for recording the streak-
ing spectrograms shown in Fig. 3A (the experi-
mental setup is shown in fig. S4). This procedure
reveals the absolute timing of any process ini-
tiated or affected by the field transients with at-
tosecond precision (SOM text, section 8).

Fig. 3. Ionization with a subcycle light field transient. (A) Streaking spectrogram
and (B) retrieved electric field of the transient used for field ionization of Kr
atoms. (C) Energy-level diagram and attosecond absorption spectrogram of Kr
ions. The plotted absorbance is defined as A(ℏw,t) = −ln[I(ℏw,t)/I0(ℏw)],
where I0(ℏw) is the spectral density recorded with attosecond pulses averaged
over delays between –20 and –5.7 fs (preceding the pump), and I(ℏw,t) is the
spectral density recorded at a pump-probe delay t. The delay is varied in steps
of 100 as in the range of (–3 fs, 3 fs) and 300 as in the ranges of (–6 fs, –3 fs)
and (3 fs, 6 fs). (D) Absorption spectra for different delays. The dots and error
bars represent the mean value and SE evaluated from 12 spectra recorded at
each delay step.
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We increased the intensity with an iris to
≈4.8 × 1014 W/cm2 and ionized ~16% of Kr
atoms in the gas cell. We then probed strong-
field ionization with a time-delayed attosecond
pulse by measuring transient absorption spectra
(19). Krypton ions created in their 4p−1j¼3=2 ground-
state manifold and in the 4p−1j¼1=2 excited-state
manifold, comprising four (mj=3/2 = –3/2, –1/2,
1/2, 3/2) and two (mj=1/2 = –1/2, 1/2) states,
respectively, are promoted to the 3d–1 core-
hole excited states by absorption of XUV photons
from the attosecond pulse (Fig. 3C, left) (36).
The resulting spectra transmitted through the gas
cell were recorded as a function of the delay be-
tween the attosecond probe (pulse duration of
~200 as, centered at ~85 eV) and the ionizing
field transient (pump), yielding the absorption
spectrogram shown in Fig. 3C, right. The rele-
vant transitions, 4p−13=2 → 3d−15=2, 4p

−1
1=2 → 3d−13=2,

and 4p−13=2 → 3d−13=2, are indicated with arrows
in the Fig. 3C level diagram. The absorption
lines recorded at the leading edge of the ioniz-
ing field transient (Fig. 3D, i and ii, for ex-
ample) have a characteristic profile revealing
negative absorbance at photon energies be-
low the resonances and positive absorbance
above them (37). These transient line shapes
gradually evolve to quasi-steady-state profiles
toward the trailing edge of the ionizing field
(Fig. 3D, iii).

State-selective sub-femtosecond tracing of
field ionization. In order to relate the attosecond
transient absorption spectra with ion population
dynamics, we have performed numerical simu-
lations by treating the generated Kr ions within
a simplified, three-level model using the density
matrix formalism (SOM text, section 3). The sim-
ulations reproduce well the experimental data
(fig. S5) and demonstrate—in agreement with
previous studies (38, 39)—that the distortions
of the transient absorption spectra are due to
the synthesized pump field acting on the XUV-
initiated, time-dependent ionic polarization re-
sponse. Moreover, our simulations (based on
an adiabatic tunnel-ionization calculation) suggest
that—under the conditions of our experiments—
the emerging absorption lines coincide with the
population dynamics of the relevant ionic states,
permitting retrieval of their transient evolution
from the peak absorbances with good (~10%)
accuracy (fig. S9). Figure 4A shows the sub-
femtosecond evolution of the effective transient
population in the ground state manifold 4p−1j¼3=2

(black dots), defined asreff3=2,3=2ðtÞ ¼ rðT1=2Þ3=2,3=2ðtÞ þ
arðT3=2Þ3=2,3=2ðtÞ, where a = 2/3 reflects the higher

transition cross-section for the (mj = T1/2) transi-
tionsbetween 4p−1j¼3=2 and3d

−1
5=2 states; the 4p

−1
j¼1=2

manifold population rðT1=2Þ1=2,1=2ðtÞ is represented by
black diamonds. These populations are retrieved

from the 4p−13=2 → 3d−15=2 and4p
−1
1=2 → 3d−13=2 ab-

sorbances versus pump-probe delay, respective-
ly. Because attosecond streaking is performed

in the same apparatus, this evolution can be di-
rectly timed and contrasted with the evolution
of the ionizing field [ jELðtÞj2, shown by the
dashed line].

The buildup of the retrieved ionic populations
exhibits steps that are in synchrony with the field
crests of the transient. This becomes even more
evident from the population rates obtained by
taking the time-derivative of the ionic popula-
tions in Fig. 4A. The ionization rate, which is
estimated as d

dt r
eff
3=2,3=2ðtÞ and shown in Fig. 4B

(dots and red line), exhibits three main features at
the crests of the ionizing field. The main ioniza-
tion burst is responsible for approximately 80%
of the ion population and has a full width at half
maximum (FWHM) of <0.7 fs, indicating a sub-

femtosecond confinement of field ionization. It is
this confinement to a single field crest that allows
quantitative evaluation of the time-dependent rate
of optical field ionization and state-selective pop-
ulation dynamics. For the populations depicted,
we evaluate a peak production rate for reff3=2,3=2ðtÞ
of Gpeak = (0.12 T 0.01) fs–1 and for rðT1=2Þ1=2,1=2ðtÞ of
Gpeak = (0.059 T 0.009) fs–1, which is in excellent
agreement with results obtained by numerically in-
tegrating the Schrödinger equation of a single-active
electron model in three dimensions (SOM text,
section 6), yielding Gpeakðreff3=2,3=2Þ ¼ 0:13 fs�1

and GpeakðrðT1=2Þ1=2,1=2Þ ¼ 0:059 fs�1, which also

well reproduces details of the temporal evolution

Fig. 4. Attosecond ionization and Stark effect dynamics in Kr+. (A) Population dynamics in the ground-

state 4p−1
j=3/2 manifold (dots), r

eff
3/2,3/2(t), and in the excited-state 4p

−1
j=1/2 manifold (diamonds), r

(T1/2)
1/2,1/2(t),

retrieved from the absorption spectrogram of Fig. 3C and contrasted with the instantaneous intensity
(dashed line) as well as with the prediction of numerical simulations convolved with the XUV probe pulse
duration (green and purple lines). (B) Ionization (population) rate dreff

3/2,3/2(t)/dt evaluated from the data
in (A) (dots and red line) in comparison with the theoretical prediction (green line). (C) Shift of the central
energy of the 4p−1

3/2 → 3d−1
5/2 transition evaluated by fitting a Lorentzian profile to the attosecond

transient absorption spectra shown in Fig. 3C. Red curves in (A) to (C) and magenta curve in (A) are guides
to the eye obtained by three adjacent point fast Fourier transform–smoothing.
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of the ionic populations (Fig. 4A, green and
purple lines, and B, green line).

Observation of the instantaneous optical
Stark shift. The shift DE of quantum energy lev-
els of atoms, molecules, or solids induced by an
optical field EL(t)—the ac Stark shift (40)—plays
a central role in fundamental dynamical pro-
cesses. So far, only cycle-averaged Stark effects
have been accessible to experiments (41). If the
laser frequency wL is much smaller than atomic
resonance frequencies, the Stark shift of a non-
degenerate atomic level is expected to instant-
ly follow variations of the laser field: DEðtÞ ¼
−1=2mE2

LðtÞ, where m = m(wL) is the atomic
polarizability (42). When an XUV pulse cre-
ates a coherent superposition of two states with
a difference in their respective polarizabilities
Dm(wL), the induced polarization oscillations
experience a phase shift, which is approximately
given by

DϕdipoleðtÞ ≈ −
Dm
2ℏ ∫

t

t0

E2
Lðt′Þdt′ ð1Þ

where t0 denotes the moment of arrival of the
attosecond XUV pulse (with tXUV ≪ 2p/wL).
The instantaneous Stark shift detunes the ener-
gy at which the atom most efficiently absorbs
photons from the XUVprobe pulse—in our case,
by the 3d→ 4p transition in Kr+ ions—and mod-

ulates the frequency of the respective coherent
dipole emission. Because the decay of the emis-
sion lasts several field cycles (t = t3d ~ 7.5 fs),
the Stark effect does not merely shift but also
reshapes the transient absorption lines shown
in Fig. 3D, i and ii. Thanks to the nearly instan-
taneous triggering of the polarization oscillations
and their subsequent rapid decay, signatures of
the instantaneous ac Stark shift come to light
in our transient absorption spectra (Fig. 4C),
which is in agreement with our simulations
(figs. S8 and S9).

Valence wavepacket with well-defined quan-
tum phase. Attosecond probing of few-cycle–
driven field ionization of Kr atoms has revealed
the emergence of a valence electron wavepacket
in the 4p subshell of the Kr+ ensemble—as a con-
sequence of liberation of electrons from the 4pj=3/2
as well as the 4pj=1/2 manifolds—separated in
energy by spin-orbit coupling in the Kr atoms
(19). By repeating this attosecond absorption
spectroscopic experiment with our subcycle tran-
sient shown in Fig. 3B, and supplementing it
with attosecond streaking, we can now launch
a valence wavepacket within a sub-femtosecond
interval and with sub-femtosecond absolute tim-
ing accuracy.

From the recorded absorption spectrogram
(Fig. 5A), we retrieve (SOM text, section 4) the
fractional populations of the six ionic states, in

the form of the diagonal matrix elementsr
ðmjÞ
j, j0¼j of

the reduced densitymatrix—rð3=2Þ3=2,3=2 þ rð−3=2Þ3=2,3=2 ¼
0:315 T 0:024, rð1=2Þ3=2,3=2 þ rð−1=2Þ3=2,3=2 = 0:400 T 0:024;

rð1=2Þ1=2,1=2 þ rð−1=2Þ1=2,1=2 ¼ 0:285 T 0:004—and a de-

gree of coherence of g = 0.85 T 0.06, which
exceeds that measured in the previous exper-
iment (19) by ~1.4 times and is unparalleled for
long-lived (>1 fs) coherences in the valence
shell. Our simulations [based on a state-of-the-art
three-dimensional time-dependent configuration-
interaction singles approach (43) that includes
correlation dynamics between the field-generated
hole and the photoelectron and has been ex-
tended to include spin-orbit interaction (44)] well
predict the measured coherence as well as frac-
tional populations in the4p−1j¼1=2 and4p

−1
j¼3=2 mani-

folds (SOM text, section 7).
The nearly perfect coherence is, once again,

a direct consequence of the sub-femtosecond
width of the ionization gate. This confinement,
along with sub-femtosecond absolute timing in-
formation from streaking, has far-reaching con-
sequences. The former allows launching of the
wavepacket with a well-defined initial phase,
whereas the latter permits reliable determina-
tion of this initial quantum phase. The retrieved
phase f(t) [equation 2 in (19)] of the quantum
superposition is shown in Fig. 5, B and C, along
with representative snapshots of the generated
ensemble-averaged hole density distributions,
as evaluated from our data in Fig. 5A. Linear
extrapolation of f(t) to “time zero,” the birth of
the hole at the peak of the ionizing field tran-
sient (Fig. 5B, blue line), yields f(t0) = (0.99 T
0.04)p, which is in very good agreement with
the prediction of our configuration-interaction–
based simulations: f(t0) = 1.06p. This initial
quantum phase implies an elongated initial hole-
density distribution aligned with the ionizing field
vector, which is commensurate with our intui-
tive expectation.

Outlook. Subcycle engineering of optical
field transients opens new prospects for steer-
ing the atomic-scale motion of electrons (15)
with the electric force of light and for driving
complex valence-shell dynamics in molecules
(45). As a simple manifestation of enhanced
control over valence shell dynamics, they al-
low sub-femtosecond temporal confinement of
ionization and precise associated triggering of
a wealth of subsequent electronic phenomena.
They also provide an isolated attosecond pho-
ton probe for interrogating the unfolding elec-
tronic and—in molecules—nuclear motions by
means of attosecond absorption and/or photo-
electron spectroscopy, as well as an isolated
electron probe for tracing these dynamics via
electron diffraction (46) or high-harmonic in-
terferometry (47). This constitutes a substantial
extension of the repertoire of attosecond sci-
ence, which was previously restricted to either
triggering or probing electronic processes within
a sub-femtosecond time window. The feasibility

Fig. 5. Initial quantum phase and density distribution of a valence electron wavepacket. (A) Attosecond
XUV transient absorption spectrogram of Kr atoms field-ionized by a subcycle field transient shown by
the blue line in (B). Linear extrapolation of the retrieved quantum phase f(t) [shown by the red line in
(B)] to time zero as determined through attosecond streaking, allows access to the initial quantum
phase f(t0) = (0.99 T 0.04)p of the valence electron wavepacket. (C) Ensemble-averaged initial hole
density distribution in the valence shell at the instant of ionization and its subsequent evolution, as
evaluated from (A).
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of sub-femtosecond pump-probe interrogation
of strong-field phenomena opens exciting re-
search prospects. Real-time insight into multiple
ionization in multi- to single-cycle laser fields,
or into strong-field–induced electron correlations
in atoms, molecules, or solids (48, 49), are but a
few examples.
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Observation of Correlated Particle-Hole
Pairs andStringOrder in Low-Dimensional
Mott Insulators
M. Endres,1* M. Cheneau,1 T. Fukuhara,1 C. Weitenberg,1 P. Schauß,1 C. Gross,1 L. Mazza,1

M. C. Bañuls,1 L. Pollet,2 I. Bloch,1,3 S. Kuhr1,4

Quantum phases of matter are characterized by the underlying correlations of the many-body
system. Although this is typically captured by a local order parameter, it has been shown that a
broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic
Mott insulators, the ground state properties are governed by quantum fluctuations in the form of
correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one
dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical
lattice, we directly detect these pairs with single-site and single-particle sensitivity and
observe string order in the one-dimensional case.

The realization of strongly correlated quan-
tum many-body systems using ultracold
atoms has enabled the direct observation

and control of fundamental quantum effects
(1–3). A prominent example is the transition
from a superfluid (SF) to a Mott insulator (MI),
occurring when interactions between bosonic
particles on a lattice dominate over their ki-
netic energy (4–8). At zero temperature and in
the limit where the ratio of kinetic energy over

interaction energy vanishes, particle fluctua-
tions are completely suppressed and the lattice
sites are occupied by an integer number of par-
ticles. However, at a finite tunnel coupling but
still in the Mott insulating regime, quantum fluc-
tuations create correlated particle-hole pairs
on top of this fixed-density background, which
can be understood as virtual excitations. These
particle-hole pairs fundamentally determine the
properties of the MI, such as its residual phase

coherence (9), and lie at the heart of superexchange-
mediated spin interactions that form the basis of
quantum magnetism in multicomponent quan-
tum gas mixtures (10–12).

In a one-dimensional system, the appearance
of correlated particle-hole pairs at the transition
point from a SF to aMI is intimately connected to
the emergence of a hidden string-order param-
eter OP (13, 14):

O2
P ¼ lim

l→∞
O2

PðlÞ ¼ lim
l→∞

〈 ∏
k ≤ j ≤ kþl

eiπδ%nj 〉 ð1Þ

Here, δ%nj ¼ %nj − n denotes the deviation in
occupation of the jth lattice site from the
average background density, and k is an arbi-
trary position along the chain. In the simplest
case of a MI with unity filling (n ¼ 1), relevant
to our experiments, each factor in the product of
operators in Eq. 1 yields −1 instead of +1 when a
single-particle fluctuation from the unit back-
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1. Optical properties of the light field synthesizer 

 

Fig. S1 
Simulated reflectivity of the dichroic beamsplitters (DBS). 
 
 

 

Fig. S2 
Simulated total transmission of the individual channels of the optical field synthesizer. 
Blue (orange) line includes the reflectivity of two DBSUV-VIS (DBSVIS-NIR) and six chirped 
mirrors (50) CMVIS/UV (CMVIS), whereas the red curve shows the calculated transmission 
based on six CMNIR. 
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Fig. S3 
Photograph of the field synthesizer in operation. Beams have been visualized by nitrogen 
vapor. 
 
 
Intensity control with adjustable apertures 
 
To control the relative intensities between pulses in different channels of the light field 
synthesizer, apertures with controllable diameters were installed into the beam path of 
each channel.  
 
Despite the fact that for the experiments presented in the main text this kind of control 
has not been utilized, we can conveniently tune the intensity in the focus of each channel 
by a factor of ~10. Due to this type of intensity control, spatial chirps may set in when 
pulses of various channels have slightly different beam diameter. However, these effects 
are not very critical for our experiments thanks to the extreme nonlinearity of the 
processes involved or studied.   
For example, XUV pulse generation (or high harmonic generation in general) is confined 
to within a tiny fraction of the focused synthesized transient where the intensity is the 
highest and where all fields of the channels necessarily overlap. Moreover, at the probing 
stage of the light field or in a strong field experiment as reported here, the XUV 
attosecond pulse is focused onto a spot size that is more than 3 times smaller than that of 
the synthesized field, guaranteeing that the probed system is exposed to a spatially 
uniform field formed along the propagation axis, thereby rendering the measurement 
insensitive to a spatial chirp introduced by the variable apertures.  
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2. Attosecond Streaking and Transient Absorption experimental setup 

 

 
Fig. S4  
Schematic diagram of the experimental setup for the characterization and application of 
synthesized light transients. 
  
 
Light transients, synthesized by the apparatus shown in Fig. S3, are focused into a 
quasistatic gas cell filled with Ne (target), to generate XUV radiation by means of high 
order harmonic generation. The emerging, highly collimated XUV pulses are transmitted 
through a disk-like Zirconium (Zr) foil (150 nm) which is mounted on a thin pellicle (15 
μm), while the residual visible pulses, which are also making their way through the Ne 
cell, are transmitted around the margins of the Zr disk to create an annular beam (see Fig. 
S4). A module comprised of a concave, multilayer coated inner mirror and an aluminum-
coated concave annular sector (outer mirror) (34), is used to focus XUV and light 
transients respectively into a second gas jet or quasi static cell for either streaking or 
transient absorption experiments.   
The inner mirror is mounted on a piezoelectric stage that allows the introduction of a 
delay between the light field transient and the XUV attosecond pulse along the 
propagation axis with nanometric precision. 
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A controllable iris is used to adjust the energy transported by the beam of the light 
transients from few microjoules (streaking) to several tens of microjoules (Transient 
absorption).   
 For streaking measurements a time of flight spectrometer is used to record electron 
spectra generated by photoionization of Ne atoms (35), while for transient absorption 
studies, spectra of the transmitted through the cell attosecond pulse are recorded by a 
high-resolution XUV spectrometer installed downstream the gas cell.  

 
 

3. Modeling the absorption of XUV pulses in Kr+ in the presence of a strong NIR-
field. 

 
Femtosecond transient absorption dynamics, probed by a weak probe pulse in the 
presence of a pump pulse which affects the polarization response of the absorbing 
medium, have been at the center of various studies (38,51).  
To explore these effects in the XUV, we model Kr+ ions as a simplified three-level 
system depicted in Fig. S5. The first two states, hereafter referred to as 1  and 2 , 
represent the ground 1

3/ 24 p−  and the excited 1
5/ 23d −

 states of the ion, respectively, i.e. the 
states associated with the 1 1

3/2 5/24 3p d− −→  transition. 
To introduce the polarizability of state 1  of the Kr+ ion, a third state 3  is included in 
the present considerations. The energy spacing between the states 1  and 3  is set to 
13.5 eV and the corresponding transition matrix element to 291.87 10μ −= ⋅ C·m. Both 
values are calculated via the COWAN atomic structure code (52) and they describe the 
coupling between the 1

3/24p−  and the 1
1/24s−  ( 64 4s p  electron configuration). The unperturbed 

transition energy 12ωh equals 79.95 eV, i.e. that of the 1 1
3/2 5/24 3p d− −→  absorption resonance. 

LE , XUVE , Lω and XUVω  denote the electric fields and the central frequencies of the light 
transient and that of the attosecond XUV pulse, respectively, whileτ  stands for their 
relative delay. The decay rate of state 2  is assumed to be -11/ 7.5 fsAΓ ≈ , which 
corresponds to an Auger decay time of the 3d hole of 7.5 fs (53). Strong-field ionization 
(SFI) in the Bloch model is introduced via an electric field dependent feeding rate ( )SFI tΓ  
of the ground state, which is indicated schematically in Fig. S5. The ionization rate has 
been calculated from a fit of static field extracted values (54). 
 
In all simulations, the field of the transient is the one evaluated by the streaking 
measurements (see Fig. 3B of the main publication) with the peak intensity adjusted to 
~ 144.8 10⋅ W/cm2. Similarly, the duration of the XUV pulse is set to 200 as and is 
spectrally centered at 80 eV.  
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Fig. S5 
Schematic diagram of the three-level system for modeling resonant XUV absorption of 
Kr+. 
 
Due to the presence of the additional state 3 , the ground state 1 is more susceptible to 
the light transient, which translates into a significant periodic variation of its energy (ac 
Stark effect), thereby rendering the probed transition frequency 12ω  time dependent: 

12 12 1( ) ( )t tω ω ω= −Δ , where 1( )tωΔ = ( ) ( )2 2
13 13, 134 ( )L L Ltω ω ω ω− + Ω + −  and   

13
13,

( )( ) L
L

E tt μ
Ω =

h
 denotes the instantaneous Rabi frequency between the states 1  and 

3 .  
To calculate the absorption cross-section ( , )σ ω τ  of the 1 2→  transition, we 
numerically integrate the von Neumann equation:   

0
Re

[ , ] [ . ( ), ] [ . ( ), ]IR XUV
SFI lax

d d di H E t E t i i
dt dt dt
ρ ρ ρρ μ ρ μ τ ρ= − − − + +h h h

 
with the unperturbed Hamiltonian 0H , the dipole operator μ  in the dipole approximation 
and the density matrix ρ : 

13 31 33 32 31

0 12 21 23 22 21

13 12 13 12 11

0 0 0 0
0 0 ; 0 0 ; .
0 0 0 0

H
ω μ ρ ρ ρ

ω μ μ ρ ρ ρ ρ
μ μ ρ ρ ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

h

 

The term 
SFI

d
dt
ρ phenomenologically describes the population rate of the ionic ground 

state 1  via strong-field ionization of the neutral atom. The decay rate AΓ  of the exited 
state as well as the spontaneous emission from level 3 —which is assumed to be 
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infinitely long compared to characteristic scales of this experiment—is considered in the 

term 
Relax

d
dt
ρ . 

The radiating dipole is obtained through the equation of motion of the matrix elements as: 
 
 ( )12 12 13 13( , ) ( ( )) 2 Re ( , ) ( , )d t Tr t t tτ μρ μ ρ τ μ ρ τ= = +  . 

 Hence, the absorption cross-section can be written as 
0

( , )( , ) Im
( )XUV

d
c E
ω ω τσ ω τ
ε ω

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

 
Results 1: Distortion of the resonant XUV absorption line 

 
Using our model, we explore the effects of spectral distortion of the 1 1

3/2 5/24 3p d− −→  
absorption resonance due to the pump-induced perturbations to the generated ions by our 
light field transients. 
 
Fig. S6 shows simulated transient dynamics encoded in the spectra corresponding to the 

1 1
3/2 5/24 3p d− −→  transition for delays chosen to match those as in Fig. 3Di)-iii) of the main 

text. 
The calculated absorption cross-sections are convolved with a Gaussian function (~300 
meV FWHM) to account for the finite spectrometer resolution. The good reproduction of 
essential features, i.e. the negative absorbance at lower energies as well as positive 
absorbance at higher energies with respect to the main resonance, and the dynamic 
evolution of the absorption line as a function of the delay, validate the approach of 
modeling krypton ions with a simplified three-level system and confirm that the Stark 
effect is the key phenomenon behind the observed time-dependent spectral features. 

 

Fig. S6 
Simulated absorbance spectra for the 1 1

3/2 5/24 3p d− −→  transition at three different delay 
instances, showing a good agreement with the corresponding experimental observation 
presented in Figs. 3D i)-iii). The finite spectrometer resolution is taken into account. 
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Fig. S7 
Simulated transient absorbance spectra for an electric field dependent ionization rate 

( )SFI tΓ  (A) and the underlying time dependent population of the ground state 1  (solid 
line) as well as the instantaneous intensity (dashed line) of the NIR laser pulse (B). 
 
The false-color plot of Fig. S7A shows the calculated absorbance as a function of the 
pump-probe delay, while panel B depicts how the NIR field populates state 1  as a 
function of the delay, including the instantaneous intensity of the light transient. 
 

In order to study how the lifetime of state 2  influences the distortion of the 
absorption in the presence of the NIR light field transient, the three-level system has been 
solved numerically for several lifetimes Aτ . Fig. S8 displays a series of absorbance 

spectrograms as a function of the pump-probe delay for a constant population 0
SFI

d
dt
ρ⎛ ⎞

=⎜ ⎟
⎝ ⎠

, 

where the lifetime Aτ  was varied from 0.1 fs (panel A) to 3dτ =7.5 fs (panel E), the latter 
being the theoretical Auger lifetime of the Kr+ 3d-1 states (panel E). 
For lifetimes significantly shorter than the half-period of the strong field, the emitting 
dipole undergoes (from (A) to (C)) a linear phase shift which is manifested by the 
characteristic modulation of its central energy at the double frequency of the pump field 
and corresponds to the (ac) Stark shift of state 1 . 
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Fig. S8 
The absorbance related to the 1 2→ transition of Kr+ ions computed as a function of 
the pump-probe delay for various settings of the lifetime Aτ  of the excited state, as 
indicated in the upper left corner of each panel (assuming a static population). Graph (E) 
displays the simulated result for a lifetime equal to the 3d-1 hole decay time of Kr+. 
 
For significantly longer lifetimes ((D) and (E)), the phase introduced to the emitting 
dipole encompasses the action of several field cycles and results in a line distortion rather 
than a pure shift of its central energy. Due to the steep leading edge of the XUV 
polarization—induced by our attosecond pulse—some signatures of the instantaneous 
Stark effect are expected to survive despite the effects introduced by the integration over 
the few fs long lifetime. This is demonstrated in Fig. S9, where the central energy of the 
resonance in the data shown in Fig. S8E has been evaluated by fitting a Lorentzian 
profile.  
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Fig. S9 
Energy shift of the transition energy 12ωh  of the simulated absorption spectrogram as 
displayed in Fig. S8E (solid line) being analyzed by evaluating the central displacement 
of a fitted Lorentzian lineshape as a function of the delayτ . The blue dashed line shows 
the instantaneous intensity of the pump field. 
 

Results 2: Strong-field ionization dynamics in the presence of pump polarization  
 
Next, within our model, we attempt to accurately retrieve the population dynamics of the 
generated ions from an absorption spectrogram sampled under the conditions of our 
experiments. 
Fig. S10 compares the ground state population of state 1 , 11( )tρ (red curve), with that 
obtained by analyzing the simulated absorption spectra using the procedure described in 
section S4 of the SOM, which tracks the peak of the absorption line. The blue and green 
curves represent the retrieved populations based on our simulations with a 50 as and a 
200 as XUV pulse, respectively. Note that the populations shown in Fig. S9 are based on 
an adiabatic tunnel-ionization model and therefore do not display the oscillatory behavior 
known from nonadiabatic calculations. The small “dip” in 11( )tρ  at t=0.8 fs is due to the 
coupling between states 1  and 3 . For the shorter XUV pulse (blue line), the ground-
state population, estimated by tracking the peak of the absorption line, is significantly 
closer to 11( )tρ . Since our experimental XUV probe pulse duration amounts to ~200 as, 
the present approach suggests that the technique of tracking the peak of the absorption 
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offers a possibility to recover the underlying population dynamics with an accuracy better 
than 10 %. 
 

 
Fig. S10 
Ground state population 11( )tρ  derived by our model (red) and populations reconstructed 
by tracking the peak of the absorption line fitted with a Lorenzian profile. Blue (green) 
curve displays the retrieved population dynamics for an XUV probe pulse duration of 50 
as (200 as). 
 

4. Reconstruction of electron motion and determination of fractional ionization 
 
Preparation of data prior to fitting  

 
The absorbance spectrogram shown in Fig. 5A (in the main publication) was 

obtained by averaging over 12 consecutive scans, all taken under the same experimental 
conditions. All XUV spectra of the combined spectrogram were normalized in the 
spectral range from 83.0 - 86.7 eV (i.e. the high energy side next to the Kr+ absorption 
lines) to reduce noise originating from flux variations of the XUV probe pulse. For 
calculating the absorbance ( , )A ω τ , the mean spectral density in the time interval prior to 
ionization (-20.25 to -6.25 fs) has been used as a reference spectrum. 
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Fitting procedure 
 

To reconstruct the Kr+ quantum state distribution, the coherence of the spin-orbit 
wavepacket motion as well as the quantum phase, a fit of the experimental data shown in 
Fig. 5A is performed using the model equation 

[ ]0 0( , ) ln exp ( , ) ( )A n L G Aω τ σ ω τ ω⎡ ⎤= − − ∗ +⎣ ⎦      (S1) 
applied to the spectrogram. Here, ( , )σ ω τ is an analytical description of the cross-section 
of the three absorption lines of Kr+ based on eq. (35) in (55) where the reported reduced 
transition matrix elements are employed. Furthermore, τ indicates the time of probing, 

18 -3
0 5.75 10 cmn = ⋅  the initial number density of neutral atoms, 0.74 mmL =  the length 

of the target cell and ( )G ω  an area-normalized Gaussian convolution function with Δ  
being the FWHM value characterizing the finite spectrometer resolution and 0A  a 
constant offset. The coherence term in ( , )σ ω τ  is described by 

( ) ( )(1/ 2) (1/ 2) (1/ 2)
3 / 2,1/ 2 3 / 2,1/ 2 3 / 2,1/ 2( ) exp ( ) exp SOi i E iρ τ ρ φ τ ρ τ δ= = Δ + , where SOEΔ is the spin-orbit 

wavepacket splitting and δ is a phase offset which depends on the choice of the time 
origin 0τ =  (atomic units 0 1ee m a= = = =h  are used throughout this section). We 
chose 0τ = such that it coincides with the maximum of the instantaneous intensity of the 
synthesized light field transient. Hence, for a sufficiently short pump pulse, the 
quantity δ equals the initial quantum phase. 
 
We fit the data set by employing the Levenberg-Marquardt optimization algorithm in the 
range 78.5 – 82 eV and for the delays 2.75 to 29.75 fs, avoiding the fit in the presence of 
the strong single-cycle initiation pulse since the model function (eq. (S1)) is not valid for 
describing XUV absorption under strong field influence. The fit parameters were the 
populations ( (1/ 2)

1/ 2,1/ 2ρ , (1/ 2)
3 / 2,3 / 2ρ , (3 / 2)

3 / 2,3 / 2ρ ), the terms describing the coherence 

( )(1/ 2)
3 / 2,1/ 2 , ,SOEρ δΔ , the three central energies of the XUV transitions (

5 / 2 3 / 23 4d pE E− , 

3 / 2 3 / 23 4d pE E− ,
3 / 2 1 / 23 4d pE E− ), as well as the spectrometer resolution Δ  and the constant 

offset 0A . 
The sum of populations permits evaluation of the fractional ionization. The populations 
provided in the main publication are scaled to 100% fractional ionization. 
 
Error analysis 
 

Error bars of the fit quantities, reported in the main document, represent the standard 
error of fit results obtained by applying the described fitting approach to six consecutive 
pairs of the 12 delay scans. Besides the standard error, we have also calculated the 
standard deviations of the distributions, which on average yield values ~1.9 times larger 
than the standard error. 
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5. Retrieval of population during strong-field perturbation 
 
Similar to the approach of fitting the absorption spectrogram after the NIR pump pulse, 
the formation of the population in the presence of the pump pulse has been addressed by 
fitting the transient absorption spectrogram using the model 

[ ] 0( , ) ln exp ( , ) ( ) ( )PA c G Aω τ ω τ ω τ⎡ ⎤= − − ∗ +⎣ ⎦ ,      

where ( )G ω and 0 ( )A τ are introduced above, and ( , )c ω τ  describes the absorption lines 
by three Lorentzian lineshape functions: 

( ) ( )
3

221

1( , ) ( )
2 ( ) 2

i
i

i

c nω τ τ
π ω ω τ=

Γ
∝

Γ− +
∑ . 

Here, the ( )in τ denote the effective population and ( )iω τ  represents the central 
frequency of the ith absorption line.  
 
For the experimental parameters, this approach has been proven to allow the retrieval of 
the population to within an accuracy of ~10 % (see section S3). 
 
The fit was carried out for the delay range of -20.25 to 29.75 fs and within the spectral 
window extending from 77.9 to 83 eV, where the results obtained in the range 2.75 to 
29.75 fs served to scale the effective populations according to the determined population 
by utilizing eq. (S1).  
 
All error bars in the main document depict standard errors (see section S3, Error 
analysis). 
 
 

6. Numerical 3D-TDSE propagation 
 

Theoretical modeling of strong-field ionization of the 4p sub-shell was done by 
numerically propagating the three-dimensional time-dependent Schrödinger equation 
(3D-TDSE) for a single active electron in the length gauge on a grid, using a standard 
technique (56). Assuming a spherically symmetric potential V(r), and the experimental 
laser field F(t) as shown in Fig. 3B polarized along the z-axis, the 3D-TDSE reads (in 
atomic units (a.u.): 0 1ee m a= = = =h ), 

( )1 ( , ) ( ) ( ) ( , ) ( , )
2

r t V r F t z r t i r t
t

ψ ψ ψ∂− Δ + + =
∂

r r r r       (S2) 

where Δ  is the Laplace operator, and ( , )r tψ r  is the electron’s wave function in 
coordinate space. Expanding the wave function in partial waves∗, 

1

0 1

( , )( , ) ( , ),
L

ml
l

l m

w r tr t Y
r

ψ θ ϕ
= =−

= ∑ ∑r         (S3) 

                                                 
∗ The azimuthal quantum number m assumes only three values since the initial state is an orbital of the 4p 
sub-shell and the laser field preserves m due to the dipole selection rules, as evidenced by eq. (S6) and (S7). 
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allows us to write eq. (S2) as a set of coupled 1D radial Schrödinger equations with 
respect to the reduced radial wave functions ( , )lw r t : 

2

2

1 ( ) ( , ) ( , ) ( , ) ( , ),
2

B r w r t A r t w r t i w r t
r t

⎛ ⎞∂ ∂
− + + =⎜ ⎟∂ ∂⎝ ⎠

r r r      (S4) 

1

2

( , )
( , )

( , ) ,

( , )L

w r t
w r t

w r t

w r t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

r

M
         (S5) 

, ' , ' 2

0 0( 1)( ) (2 1) ( ) ,
0 0 0 02l l l l

l l l ll lB r l V r
m mr

δ
⎛ ⎞⎛ ⎞⎛ ⎞+

= + +⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠
   (S6) 

, ' 1, '

' 0 ' 0
( , ) (2 1)(2 ' 1) ( ),

0 0 0 0l l l l

l l l l
A r t l l rF t

m m
δ ±

⎛ ⎞⎛ ⎞
= + + ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

   (S7) 

 
where the tabulated quantities in eq. (S6) and (S7) are Wigner-3j symbols—they arise 
naturally here by angularly integrating products of three spherical harmonics—and , 'l lδ  is 
the Kronecker symbol; ( )V r  is a pseudopotential that reproduces the ionization energy of 
neutral Kr. Time-propagation of eq. (S4) was achieved using the following symmetric 
splitting scheme: 

( , ) ( , ) ( , );w r t t U t t t w r tδ δ+ = +
r r        (S8) 

1 12

2

2

2

1( , ) 1 ( ) 1 ( , / 2)
2 2 2

11 ( , / 2) 1 ( ) .
2 2 2

t tU t t t i B r i A r t t
r

t ti A r t t i B r
r

δ δδ δ

δ δδ

− −⎡ ⎤⎛ ⎞∂ ⎡ ⎤+ = + − + + +⎢ ⎥⎜ ⎟ ⎢ ⎥∂ ⎣ ⎦⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂⎡ ⎤× − + − − +⎢ ⎥⎜ ⎟⎢ ⎥ ∂⎣ ⎦ ⎝ ⎠⎣ ⎦

   (S9) 

Numerical convergence is more difficult to achieve in the length gauge than in the 
velocity gauge due to (i) a larger number of partial waves components required to 
represent the wave function in the laser field and (ii) because the phases of the wave 
function’s components at large radial distances change rapidly, requiring a finer time step 
to accurately propagate these. Nevertheless, we achieved numerical convergence using an 
angular momentum grid up to L=100, and time and radial grid steps of 0.007 a.u. and 
0.03 a.u., respectively, with a radial grid extending to 1000 a.u.. We also included a radial 
absorbing potential starting at r=750 a.u. to delete any unphysical reflections from the 
wave functions at confines of the finite simulation box. 
The amount of ionization at some time t due to the strong infrared field can be defined as 
(57) 

2
( ) 1 ( ) ,n

n
P t tφ ψ= −∑         (S10) 

where the sum ranges over all bound states nφ  of the atom. However, calculations based 
on the atomic structure code (COWAN) (52) suggest that, excited neutrals would absorb 
XUV photons at approximately the same energy as Kr+ ions. To account for this fact, we 
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limit the range of the summation in eq. (S10) to a sufficient number of bound states to 
ensure numerical convergence. In this way, Kr atoms excited to their Rydberg electronic 
states are considered as ions. 

 
Now, since the numerical propagation of the 3D-TDSE was performed in the 

decoupled spin-orbit basis ( ) (1 ) :l s l s l sls m m ½ m m m m= = , while the measured 
absorption lines resolve populations in the coupled spin-orbit basis 

( ) (1 ) :ls JM ½ JM JM= = —J(J+1) being the eigenvalue of ( )22J L S= +
rr

—we 

evaluate P(t) as 
2

, , , 0

( ) 1 ( ) ( , ) ,
l s

l s nl l
n l m m

P t m m JM dr r w r tφ
∞

= − ∑ ∫
 

where l sm m JM  is a Clebsch-Gordan coefficient and ( )nl rφ  is the reduced radial wave 
function of a bound state with principal quantum number n and orbital quantum number l, 
obtained by solving the time-independent radial Schrödinger equation 

2

2 2

1 ( 1)( ) ( ) ( ) ( ).
2 2nl nl n nl

l lr V r r r
r r
φ φ ε φ∂ +⎛ ⎞− + + =⎜ ⎟∂ ⎝ ⎠  

 

7. TDCIS simulations and predictions for the valence electron dynamics of Kr+ 
 
We model the strong-field ionized ensemble of krypton ions by utilizing our 

pioneering 3D time-dependent configuration-interaction singles (TDCIS) approach (43), 
which systematically captures correlations in photoionization processes. 
Within the TDCIS approach, the Coulomb interaction between the NIR-generated hole 
state and the NIR-generated photoelectron is treated exactly. This interaction leads 
subsequently to correlation and to an entangled state between the parent ion and the 
photoelectron (58). 

 
In this work, we extended our TDCIS approach (43) to account for spin-orbit interaction 
and spin-orbit driven valence electron wavepacket motion (44). To be able to simulate the 
strong-field ionization processes, a large range of the continuum spectrum must be 
covered with the need to cover angular momentum states up to L=60. To account for the 
multi-electron dynamics that can originate from several orbitals, we consider 18 spin 
orbitals ranging from 3 23d  to 3 24 p . The total number of electronic configurations lies 
above 250 000, which is computationally a very challenging task.  
 
The results of our simulations for the condition of the experiment yield the populations: 

(3/ 2) ( 3/ 2)
3/ 2,3/ 2 3/ 2,3/ 2 0.06ρ ρ −+ = , (1/ 2) ( 1/ 2)

3/ 2,3/ 2 3/ 2,3/ 2 0.74ρ ρ −+ = ,  
(1/ 2) ( 1/ 2)
1/ 2,1/ 2 1/ 2,1/ 2 0.20ρ ρ −+ =  (scaled to 100% 

fractional ionization) and a degree of coherence of 0.72g = , which are in good 
agreement with the experimental observations. Propagation effects of the EUV pulse in 
the medium can lead to modifications in the observed spectrum resulting in an apparent 
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ion density matrix that differs from the actual ion density matrix. In particular, the off-
diagonal elements and, hence, the apparent hole coherence are affected by propagation 
effects. Based on previous theoretical work (54), we find that the apparent degree of 
coherence can be overestimated by up to 14 %. Applying this result to our theoretical 
prediction, we would expect an apparent degree of coherence of 0.82, which is in 
remarkable agreement with 0.85 0.06g = ±  retrieved from the experiment. The only open 
question that remains, is the discrepancy between the relative populations of the 

3 2jm = ±  and 1 2jm = ±  states in the 3 2j =  manifold. This might indicate the need to 
include correlation effects that cannot be described by the TDCIS approach. 
 
 
 

8. Delay correction between streaking and transient absorption spectrograms 
 

Strong-field ionization, as studied in our attosecond transient absorption experiments, 
requires field intensities on the order of 1014 W/cm2 and beyond. In contrast, streaking 
measurements of the light waveforms require intensities on the order of 1012 W/cm2. In 
our experiments, the intensity of the laser beam is varied by adjusting its size with an 
adjustable aperture placed before the focusing mirror. The >10-fold increase of the 
illuminated area of the mirror between a streaking and a transient absorption (TA) 
measurement can be responsible for spatiotemporal effects, particularly a delay between 
the weak (streaking) and the strong (TA) pulse, which must be corrected before 
comparing the streaking and transient absorption measurements with respect to one and 
the same delay axis.  

 
Fig. S11 
Variation of the focal point intensity in a cross-correlation measurement obtained under 
streaking (red dashed curve) and transient absorption (blue solid line) intensity settings. 
An evaluation of the delay yields (280 ± 50) as. 
 
This effect has been investigated by removing the metallic filter of the pellicle used in the 
experiments and recording the linear cross-correlation trace between the central part of 
the NIR beam, and the portion reflected off the outer mirror for two different radii of 
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illumination, corresponding to those of the streaking and TA measurements accordingly. 
Fig. S11 shows the variation of the intensity at the focal point of the beams imaged on a 
CCD camera (averaged over 5×5 pixels covering the central part of the beam) as a 
function of the delay between inner and outer mirror.  

The delay between the two traces is evaluated by a linear fit of the spectral phases of 
both signals and amounts to (280 ± 50) as.  This apparent delay, which is taken into 
account for the synchronous display of fields, can be attributed to simple geometrical 
effects introduced by spherical aberrations. The geometrical delay, evaluated at the focal 
plane, in the time of arrival between two pulses traveling along off-axis rays at a distance 
r  from the mirror axis and on-axis pulses, for a spherical mirror of radius R  (59), is 
given by 

43( )
4

R rT r
c R
⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

.  

For a pulse reflected by an annular portion of a spherical mirror situated between radii 
1r and 2r , the introduced delay (assuming a constant spatial intensity distribution) can be 

expressed as: 
2

12

1 2

1

42

0
2

0

3
4

r

rr
r r

r

R r r dr d
c R

T
r dr d

π

π

θ

θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

Δ =
∫ ∫

∫ ∫
 

( )
( )

2

1

6 6
2 1

4 2 2
2 1

1 1 .
4

r
r

r rRT
c R r r

−
⇒ Δ =

−
 

For a mirror with 250 mmR = , an inner mirror radius 1 1.5 mmr ≈  and a streaking (TA) 
beam radius of 2 2.5 mmr ≈ ( 2 8.1 mmr ≈ ), the latter expression yields an effective delay 
between the streaking and transient absorption spectrograms of 240 as, which is in 
excellent agreement with the delay evaluated from the data shown in Fig. S11.  
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Impact of multichannel and multipole effects on the Cooper minimum in the high-order-harmonic
spectrum of argon
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We investigate the relevance of multiple-orbital and multipole effects during high-harmonic generation (HHG).
The time-dependent configuration interaction singles (TDCIS) approach is used to study the impact of the detailed
description of the residual electron-ion interaction on the HHG spectrum. We find that the shape and position of the
Cooper minimum in the HHG spectrum of argon changes significantly whether or not interchannel interactions
are taken into account. The HHG yield can be underestimated by up to 2 orders of magnitude in the energy
region of 30–50 eV. We show that the argument of low ionization probability is not sufficient to justify ignoring
multiple-orbital contributions. Additionally, we find the HHG yield is sensitive to the nonspherical multipole
character of the electron-ion interaction.

DOI: 10.1103/PhysRevA.85.023411 PACS number(s): 32.80.Rm, 42.65.Re, 31.15.A−

I. INTRODUCTION

High-harmonic generation (HHG) is the key physical
process underlying the generation of single attosecond pulses
[1–3] and attosecond pulse trains [4–6], which are at the
heart of attosecond science [7,8]. In recent years, the rapid
progress in HHG has led to applications ranging from atomic
systems [9–11] over molecular systems [12,13] to solid-state
systems [14]. HHG has opened a new door to probe structural
information [12,15] as well as electronic and nuclear dynamics
[16–19] on fundamental time scales.

The mechanism behind HHG is well captured in the
three-step model [20], where in the first step the electron is
tunnel-ionized by a strong-field laser pulse, in the second step
the electron is accelerated in the oscillating laser field, and
finally in the last step the electron recollides with the parent
ion and converts its excess energy into radiation energy in
the extreme ultraviolet range [21,22]. The maximum photon
energy is given by the cutoff law, 1.32Ip + 3.17Up, where
Ip is the ionization potential of the system and Up is the
ponderomotive potential created by the intense laser field [20].
As a result, the heavier noble-gas atoms have lower cutoff
energies than the lighter ones, whereas the HHG yield does
increase with the atomic number [23,24]. Previous works have
shown that the recombination step can be directly related to
photoionization [25,26], enabling the retrieval of the electronic
structure of the system [12,25,27,28]. A strong focus has been,
in particular, on molecular systems [29–32].

The two most common theoretical approaches for describ-
ing HHG are the semiclassical strong-field approximation
(SFA) [20], which has been extended to include Coulomb-
interaction corrections [25,33–35], and the single-active-
electron (SAE) approximation [36–39], where the electron-ion
interaction for many-electron systems is described by a model

*Present address: Department of Chemistry, Berkeley Center for
Quantum Information and Computation, University of California,
Berkeley, CA 94720, USA.
†robin.santra@cfel.de

potential [37]. The SAE approach is computationally more
demanding than the SFA approach, and, therefore, has been
limited to atoms and systems like H+

2 . In the literature
[25], the SAE approximation has often been referred to as
solving the time-dependent Schrödinger equation (TDSE). The
SAE approach has some limitations. For example, it ignores
contributions from multiple orbitals. Intensive studies have
been performed to understand the impact of multiple-orbital
contributions in molecular systems, which are essential to
understand the HHG spectrum and subsequently to extract
electronic-structure information [40,41]. Recently, it has been
shown that even in atomic systems it is crucial to consider
multiple-orbital effects [42].

In this paper, we investigate the importance of multiple-
orbital (multichannel) contributions and multipole effects in
the residual electron-ion interaction on the Cooper minimum in
the HHG spectrum of argon [37,43,44]. Both aspects are com-
monly ignored in SFA and SAE calculations. Multichannel
interactions [45] go beyond the independent-particle picture
and cannot be captured in the language of SFA and SAE,
whereas multipole effects could, in principle, arise even in a
single-channel model such as SAE. However, in atomic SAE
calculations, it is common to model the electron-ion interaction
by a spherically symmetric potential [37]. The interaction of
the liberated electron with the hole state (channel), from which
it originates, is called intrachannel interaction and leads for
large electron-ion distances to the 1/r behavior of the Coulomb
potential. If the liberated electron is influenced by other orbitals
the interaction is called interchannel coupling [45]. The
importance of interchannel coupling for HHG has been shown
for xenon, where a clear signature of the giant dipole resonance
of the 4d subshell [45] known from photoionization studies has
been directly observed in the HHG spectrum of xenon [42].
The theoretical model we are utilizing to capture these aspects
is based on a time-dependent configuration-interaction singles
(TDCIS) approach [46,47]. We have demonstrated in previous
works that this TDCIS approach is ideal to study systematically
multichannel effects in situations involving ionization [48,49].

The paper is organized as follows. In Sec. II, we give
an overview of our theoretical method, which we use to
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systematically study the influence of various approximations
of the residual electron-ion interaction on the HHG spectrum.
In Sec. III, we explain the system parameters used in our
calculations. The results are discussed in detail in Sec. IV.
Atomic units [50] are employed throughout, unless otherwise
noted.

II. THEORETICAL METHODS

The time-dependent Schrödinger equation of an N-electron
system exposed to a linearly polarized external electric field is
given by

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (1a)

Ĥ (t) = Ĥ0 + Ĥ1 − E(t)ẑ, (1b)

where |�(t)〉 is the full N-electron wave function and Ĥ (t)
is the exact N-body Hamiltonian, which can be partitioned
into three main parts: (1) Ĥ0 = F̂ − iηŴ is the sum of the
time-independent Fock operator F̂ and a complex absorb-
ing potential (CAP), where 〈x| Ŵ ∣∣x′〉 = [r − rCAP]2 �(r −
rCAP) δ(x − x′) and �(r) is the Heaviside step function; (2)
the electron-electron interactions that cannot be described
by the mean-field potential in Ĥ0 are captured by Ĥ1 (=
V̂C − V̂HF − EHF; for a detailed description of these quantities,
see Ref. [47]); (3) the term E(t) ẑ is the laser-matter interaction
in the electric dipole approximation. The CAP serves a purely
numerical purpose. It prevents artificial reflections of the
ionized photoelectron from the radial grid boundary and is
located far away from the atom. This is controlled by the
parameter rCAP.

Solving numerically the full N-electron system is currently
out of reach without making any approximations to the
Hamiltonian or the wave function. In strong-field processes
such as HHG, Eq. (1a) is commonly reduced to an effective
one-electron system, where only one electron of the outermost
valence shell is allowed to respond to the electric field and all
other electrons are frozen or completely neglected. Here, we
take an alternative way, by describing the full N-electron wave
function and making no approximations to the Hamiltonian.
Specifically, we use the configuration-interaction language,
where we assume the field-free ground state is well captured
by the Hartree-Fock ground state |�0〉. We consider only singly
excited 1-particle-1-hole configurations (1p1h configurations)∣∣�a

i

〉
. The corresponding TDCIS N-electron wave function

reads

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
, (2a)

∣∣�a
i

〉 = 1√
2

(ĉ†a,↑ĉi,↑ + ĉ
†
a,↓ĉi,↓)|�0〉, (2b)

where i,j , and a,b refer to occupied orbitals and unoccupied
(virtual) orbitals, respectively, in the Hartree-Fock ground state
|�0〉. The operators ĉ

†
a,σ and ĉa,σ create and annihilate, respec-

tively, an electron in the orbital a with spin σ . By restricting our
wave function to 1p1h configurations, the interaction captured

by Ĥ1 is the residual electron-ion interaction. The equations
of motion for the expansion coefficients α0(t) and αa

i (t) read

iα̇0(t) = −E(t)
∑
i,a

(
�0|ẑ|�a

i

)
αa

i (t), (3a)

iα̇a
i (t) = (εa − εi)α

a
i (t) +

∑
b,j

(
�a

i |Ĥ1|�b
j

)
αb

j (t) (3b)

−E(t)

((
�a

i |ẑ|�0
)
α0(t) +

∑
b,j

(
�a

i |ẑ|�b
j

)
αb

j (t)

)
,

where εp are the orbital energies of the orbitals |ϕp〉, which
are eigenstates of the time-independent Fock operator (i.e.,
Ĥ0|ϕp〉 = εp|ϕp〉). The expression (| stands for a dual vector
with respect to the symmetric inner product [i.e., (ϕp|ϕq) =
δp,q], which differs from the Hermitian inner product. A
detailed description of our implementation of the TDCIS
method can be found in Ref. [47].

The exact treatment of the residual electron-ion interaction
is numerically very demanding. In order to be able to treat
the full electron-ion interaction, we are exploiting as much
symmetry as possible. We have already used one symmetry
with Eq. (2b) [i.e., the total spin of the system (S = 0) is
conserved]. The second symmetry we are exploiting arises
from the restriction to linearly polarized pulses and benefits us
in two ways. Firstly, the orbital-angular-momentum projection
ma of the excited electron and the orbital-angular-momentum
projection mi of the hole state must be the same for each
|�a

i 〉. Secondly, the coefficients αa
i (t) are the same whether an

electron with orbital-angular-momentum projection m or −m

is excited. As a result, only the gerade parity configurations
|�a

i 〉g need to be considered because ungerade parity config-
urations |�a

i 〉u will not be populated due this symmetry. The
gerade and ungerade parity configurations are defined as

∣∣�a
i

〉
g/u

:= 1√
2

(∣∣�+a
+i

〉 ± ∣∣�−a
−i

〉)
, (4)

where the orbital indices ±a and ±i stand for triplets of
quantum numbers (n,l, ± m) with n being the radial quantum
number, l being the orbital angular momentum, and ±m being
the orbital-angular-momentum projection. The configuration
|�a

i 〉 with mi = ma = 0 is a special case and has gerade parity.
Since, as already mentioned, for linearly polarized light |�a

i 〉u
will not be populated and only |�a

i 〉g needs to be considered,
we drop the index g such that |�a

i 〉 refers to gerade parity
configurations from now on. The matrix elements for the
gerade parity configurations as they appear in Eq. (3) are given
by

(
�a

i |ẑ|�b
j

) = z(+a,+b)δi,j − z(+j,+i)δa,b, (5a)

(
�0|ẑ|�a

i

) = z(+i,+a)

⎧⎪⎨
⎪⎩

√
2, ma = mi = 0

2, ma = mi �= 0

0, ma �= mi,

(5b)
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(
�a

i |Ĥ1|�b
j

)
= (4v(+a,+j ;+i,+b) − v(+a,+j ;+b,+i) − v(+a,−j ;−b;+i))

×

⎧⎪⎨
⎪⎩

1, mi �= 0 �= mj,

1
2 , mi = 0 = mj,√

2
−1

, otherwise,

(5c)

where we made use of the symmetries z(+a,+i) =
z(−a,−i),v+a,+j ;+b,+i = v−a,−j ;−b,−i and v+a,+j ;+i,+b =
v−a,−j ;−i,−b = v+a,−j ;+i,−b. In the last equation the relations
ma = mi and mb = mj are used, which holds only in the
case of linearly polarized light. The round parentheses in the
indices of the matrix elements indicate the symmetric inner
product mentioned above [47].

In the following, we study in detail three scenarios for
Ĥ1: (1) no approximation is made and the residual Coulomb
interaction is treated exactly within the CIS configuration
space, (2) only intrachannel interactions [(�a

i |Ĥ1|�b
j ) = 0 if

i �= j ] are considered, (3) a symmetrized version of the intra-
channel interaction is used such that the angular momentum
of the excited electron cannot be changed, thus simulating a
spherically symmetric ion potential. When only intrachannel
interactions are allowed, different orbitals will behave almost
independently. Only via the ground-state depopulation can
they indirectly influence each other. The symmetrization in
model (3) is done by averaging over all hole states within
each (n,l) subshell such that the excited electron sees only a
spherically symmetric ion. The symmetrized matrix elements
read

v
symm
(a,i;b,i) := 1

2li + 1

∑
mi

v(a,i;b,i), (6a)

v
symm
(a,i;i,b) := 1

2li + 1

∑
mi

v(a,i;i,b), (6b)

where in Eq. (6b) we additionally set ma = mi = mb before we
perform the sum. This step can be justified, since we are using
linearly polarized light and our model can only have 1-particle-
1-hole configurations with ma = mi . In both cases, one finds
that the symmetrized matrix elements are proportional to δla,lb

and δma,mb
.

The HHG spectrum, which is calculated via the expectation
value of the electric dipole moment 〈z〉 (t), reads [51,52]

S(ω) = 1

20

1

3πc3

∣∣∣∣
∫ ∞

−∞
dt

[
d2

dt2
〈z〉(t)

]
e−iωt

∣∣∣∣
2

. (7)

Next to the HHG spectrum, we will focus our discussion
also on the hole populations ρi(t) generated during the HHG
process. These populations are calculated with the help of the
ion density matrix, which is described in detail in Ref. [47].
The ground-state population is given by ρ0(t) = |α0(t)|2.
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FIG. 1. (Color online) The HHG spectra (a) and the depopulations
of the ground state (b) of argon are compared for the intrachannel
approximation (red solid line) and for the symmetrized intrachannel
approximation (green dashed line). In both cases only 3p0 (single-
channel) is active. The intensity profile of the pulse is shown
in (b). The pulse parameters are as follows: Emax = 0.085, ω =
0.057 (≈800 nm), and τ = 413 (≈10 fs).

III. NUMERICAL DISCUSSION

All presented results were calculated with the XCID pack-
age,1 which makes explicit use of the symmetries discussed in
Sec. II. All argon calculations presented in Sec. IV were done
for a laser pulse with a peak field strength of Emax = 0.085,
a carrier frequency ω = 0.057 (≈800 nm), and a full width at
half maximum (FWHM) pulse duration of τ = 413 (≈10 fs).
The classical turning radius of the electron for such a pulse
is rHHG = Emax/ω

2 ≈ 26. As described in Ref. [47], we use a
nonuniform grid with the mapping function,

r(x) = rmax
ζ

2

1 + x

1 − x + ζ
, x ∈ [−1,1]. (8)

1S. Pabst, L. Greenman, and R. Santra, XCID program package for
multichannel ionization dynamics, DESY, Hamburg, Germany, 2011,
Rev. 481, with contributions from P. J. Ho.

023411-3

5.4. MULTICHANNEL AND MULTIPOLE EFFECTS IN THE HHG SPECTRUM 167



PABST, GREENMAN, MAZZIOTTI, AND SANTRA PHYSICAL REVIEW A 85, 023411 (2012)

All calculations were done with a radial grid radius rmax = 120,
480 radial grid points, and mapping parameter ζ = 1.0. The
CAP starts at a radius rCAP = 100 and has a strength η = 0.01.
The maximum angular momentum employed was lmax = 80.
Furthermore, we find that for excited electrons with an orbital
angular momentum l > 6 the multipole terms with Lc > 0
are negligibly small and the dominant Ĥ1 contribution comes
from the monopole term. It is, therefore, a good approximation
to consider only the monopole term of Ĥ1 when any orbital
angular momentum of the involved orbitals is larger than 6
[for details see Ref. [47]].

IV. RESULTS

We begin our discussion with the single-channel model by
allowing only the 3p0 orbital to be active. In Fig. 1, we compare
the HHG spectra and the depopulations of the ground state
of argon for a spherically symmetric electron-ion interaction
(labeled symmetric) with the exact electron-ion interaction
(labeled intrachannel). Note, interchannel contributions do not
exist in a single-channel model. The spherically symmetric
Ĥ1 has no tensorial multipole moments besides a monopole
term, since the angular momentum of the electron cannot
be changed. In the intrachannel and interchannel models all
multipole contributions are included in Ĥ1. The depopulations
[shown in Fig. 1(b)] show only small deviations during and
after the pulse. The final depopulation probabilities are almost
identical. Similarly, the HHG spectra [see Fig. 1(a)] show
only small differences in the energy region of 30–50 eV,

where also the photoionization cross sections (not shown)
differ by up to 30% from each other. The Cooper minimum
in the HHG spectra can be reproduced and lies between
40 and 50 eV. The low curvature of the shape of the
Cooper minimum prevents a more precise localization of the
minimum.

Due to the costly treatment of the residual electron-ion
interaction it is common to reduce an HHG calculation to a
one-electron calculation, where the electron moves in a local,
spherically symmetric model potential, which describes the
correct behavior for short and long distances of the electron-ion
interaction and reproduces the ionization potential. This is the
SAE approach, which is in spirit very close to our single-
channel model with a spherically symmetric Ĥ1 (green dashed
line in Fig. 1). However, there exists one major difference
to typical SAE calculations. In the SAE approach one only
describes one electron, which can move freely everywhere
on the pseudopotential surface, and does not fulfill the Pauli
principle, meaning there is no mechanism in this approach that
can prevent the electron to move into orbitals that are already
occupied by the N − 1 frozen electrons. Enforcing the Pauli
principle is critical for the one-electron reduced density matrix
to be N-representable, that is, to represent a realistic N-electron
system [53,54]. In our theory, we describe always the entire N -
electron wave function and due to the anticommutator relation
of the creation and annihilation operators in Eq. (2b) the Pauli
principle is ensured at all times. Recent works for molecular
systems have pointed out the importance of the Pauli principle
particularly for tomographic purposes [55,56].
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FIG. 2. (Color online) The HHG spectra (a) and (c) and the depopulations of the ground state (b) and (d) of argon are shown for 3s and
all 3p orbitals active. In (a) and (b) the interchannel and in (c) and (d) the intrachannel approximation is compared with the symmetrized
intrachannel approximation. The pulse parameters are the same as in Fig. 1.
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FIG. 3. (Color online) The HHG spectra [(a) and (c)] and the depopulations of the ground state [(b) and (d)] of argon are shown. The
single-channel (only 3p0 active) calculation is compared with the multichannel calculation (3s and all 3p active). No approximation [(a) and
(b)] and the symmetrized intrachannel approximation [(c) and (d)] are made to the electron-ion interaction. The pulse parameters are the same
as in Fig. 1.

Now we consider the impact of the approximation of the
residual electron-ion interaction in the multichannel scenario,
where we allow also 3p±1 electrons and the 3s electrons to
get ionized. All differences seen in Figs. 2, 3, and 4 originate
solely from physics within the 3p manifold. The impact of
the 3s orbital is rather small on the HHG spectra as well as
on the depopulation of the ground state. That is not a surprise
due to the high 3s ionization potential, which is around 18 eV
higher than the ionization potential of the 3p orbitals. The hole
population of 3s (not shown) is over 100 times smaller than
the hole populations in the 3p shell.

In Fig. 2 the HHG spectra and depopulations are shown
for different approximations of Ĥ1. The simplification to
a spherically symmetric potential [see Figs. 2(a) and 2(b)]
underestimates the HHG spectrum by up to two orders of
magnitude in the energy region of 30–50 eV. In addition, the
shape of the Cooper minimum has now drastically changed.
The position of the Cooper minimum is much more clearly
defined in the interchannel case and lies slightly above 50 eV as
found in recent experiments [37,43,44]. For the symmetrized
intrachannel approximation, the Cooper minimum lies be-
tween 40 and 50 eV, similar to the single-channel results. The
depopulation dynamics is not affected by the approximation of
the electron-ion interaction. In Figs. 2(c) and 2(d) the results
of the intrachannel calculation are compared with the results
obtained from the symmetrized intrachannel approximation.
The relative differences between these two models never

exceed a factor larger than 2 and are confined to the energy
region of 30–50 eV. The origin of these differences is the
lack of multipole effects in the symmetrized intrachannel
model. In comparison to the interchannel results, the multipole
effects are much smaller than the interchannel effects seen in
Fig. 2(a).

The photon energy range of 30–50 eV corresponds to
a recollision electron energy range of 15–35 eV and a de
Broglie wavelength of 2–3 Å. It seems that electrons with
these wavelengths are most sensitive to the exact residual
ion-electron interaction and, therefore, simplifications of the
interaction become most evident in the corresponding photon
energy regime. In the same energy region the photoionization
cross section is most sensitive to the approximation made to
the electron-ion interaction [45]. Our calculations (not shown)
confirm that the differences in the cross sections between the
intrachannel and symmetrized intrachannel model are quite
small, whereas the differences to the interchannel model are
up to one order of magnitude larger (and can reach values up to
20 Mb). The fact that the photoionization cross sections and the
HHG spectra behave similarly (for different approximations
to the electron-ion interaction) supports the picture that HHG
has a close connection to photoionization. In the limit that
the electron de Broglie wavelength is much longer or shorter
than the characteristic length scale of the residual electron-ion
interaction, the results do not depend on the detailed structure
of electron-ion interaction. This may explain why the HHG
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FIG. 4. (Color online) The ratio of the hole populations ρ3p1 +
ρ3p−1 and ρ3p0 is shown for different approximations to the electron-
ion interaction. The pulse parameters are the same as in Fig. 1.

spectrum does not alter significantly for photon energies
smaller than 20 eV and photon energies close to the cutoff
region.

We have seen that approximations to the electron-ion in-
teraction can cause differences in the HHG yield, particularly,
when multiple orbitals are considered. Not all electron-ion
approximations make the HHG spectrum sensitive to whether
a single orbital or multiple orbitals are active. In Fig. 3
we compare the HHG spectrum and the depopulation of
the ground state for a single-channel (only 3p0 active) and
for a multichannel (all 3p and 3s are active) calculations.
Figures 3(a) and 3(b) are calculated with the exact Ĥ1 term
including interchannel and multipole effects in the residual
electron-ion interaction. The HHG signal strength for the
single-channel calculation is strongly reduced in the spectral
range of 30–50 eV, whereas the signal is slightly enhanced
in the cutoff region. When the symmetrized intrachannel
approximation is made [see Figs. 3(c) and 3(d)], the HHG
spectra are almost identical whether single-channel or mul-
tichannel calculations are performed. This stands in contrast
to the interchannel results, where the interchannel coupling
causes strong differences in the HHG yield. The depopulation
is overestimated by ≈25% regardless of the approximation
made to the electron-ion interaction.

We have seen the strong differences in the HHG spectra and
in the depopulations depending on whether only 3p0 or all 3p

electrons are active (the contributions from 3s are negligible
small). Does that also mean the ionization probabilities of
3p±1 are comparable with 3p0? The ratio (ρ3p1 + ρ3p−1 )/ρ3p0

is shown in Fig. 4 for the different models. Note that for linearly
polarized light ρ3p+1 = ρ3p−1 . Before the pulse, all ratios are
close to 0.8 and drop to ≈0.1 after the pulse. Both intrachannel
models lead even to the same final ratio. The small ratios after
the pulse show that, at least ultimately, mainly the 3p0 orbital
gets ionized, which is at the heart of the SAE approximation.
The oscillations in the ratios during the pulse are in phase
with the oscillations in the electric field. They are a direct
consequence of the projection of the wave function onto the
field-free states in the presence of the laser field. In contrast to

the HHG spectra (see Fig. 2), the effects of the intrachannel
or symmetric approximation on the population dynamics are
quite small.

V. CONCLUSION

We have described the HHG process with a many-body
approach, namely TDCIS, where we describe the entire N-
electron wave function. This allows us to fulfill the Pauli prin-
ciple at all times. Our results show that multichannel effects in
the residual electron-ion interaction, which is a combination of
the bare nuclear potential and the electron-electron interaction
for many-electron systems, have a significant influence on the
HHG spectrum. They cannot generally be neglected for atoms
and specifically not for molecules as recent experiments have
shown [40,41]. We have demonstrated that orbitals, despite
their relatively low ionization probability by the end of the
pulse, can lead to surprisingly large modifications of up to
2 orders of magnitude in the HHG spectrum (especially in
the energy region of 30–50 eV). While we confirm that after
the end of the pulse, the populations of the 3p±1 orbitals
are relatively small, their contributions during the pulse are
not small and have indirectly through interchannel coupling a
significant impact on the HHG yield.

We saw that neglecting interchannel interactions leads to
large changes in the HHG yield. Multipole effects influence
the spectra but not as dramatically as interchannel effects
do. All deviations in the HHG yield are in the 30–50 eV
energy region, which corresponds to a de Broglie wavelength
of the recolliding electron between 2–3 Å. This coincides
with the characteristic length scale on which the electron-ion
interaction goes over into a pure long-range 1/r potential. In
contrast to the large disagreement in the HHG spectra between
the single-channel and multichannel calculations including
interchannel interactions we found that by using the symmetric
interaction the HHG spectra look quite the same whether
or not a single or multiple channels participate in the HHG
process. This comparison directly shows that the population
of an orbital does not map directly to its importance in the
HHG mechanism.

All these observations demonstrate that many-body effects
enter in the HHG spectrum and need to be understood in order
to successfully use them for tomographic imaging [12]. The
time-dependent configuration-interaction approach provides
a clear pathway how these and higher-order effects can be
taken into account. Recent works [57] have suggested that
multielectron excitations are not a dominant factor. All essen-
tial multielectron effects can be captured by single-electron
excitations including interchannel interactions. This makes
the TDCIS approach perfectly suited for studying many-body
effects in HHG.
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Theory of attosecond transient-absorption spectroscopy of krypton for overlapping pump
and probe pulses

Stefan Pabst,1,2 Arina Sytcheva,1 Antoine Moulet,3 Adrian Wirth,3 Eleftherios Goulielmakis,3 and Robin Santra1,2

1Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
2Department of Physics,University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
(Received 19 September 2012; published 17 December 2012)

We present a fully ab initio calculations for attosecond transient absorption spectroscopy of atomic krypton
with overlapping pump and probe pulses. Within the time-dependent configuration interaction singles (TDCIS)
approach, we describe the pump step (strong-field ionization using a near-infrared pulse) as well as the probe
step (resonant electron excitation using an extreme-ultraviolet pulse) from first principles. We extend our TDCIS
model and account for the spin-orbit splitting of the occupied orbitals. We discuss the spectral features seen in a
recent attosecond transient absorption experiment [A. Wirth et al., Science 334, 195 (2011)]. Our results support
the concept that the transient absorption signal can be directly related to the instantaneous hole population even
during the ionizing pump pulse. Furthermore, we find strong deformations in the absorption lines when the
overlap of pump and probe pulses is maximum. These deformations can be described by relative phase shifts
in the oscillating ionic dipole. We discuss possible mechanisms contributing to these phase shifts. Our finding
suggests that the nonperturbative laser dressing of the entire N -electron wave function is the main contributor.

DOI: 10.1103/PhysRevA.86.063411 PACS number(s): 32.80.Rm, 42.65.Re, 31.15.A−

I. INTRODUCTION

The interaction of matter with light is a key process
in physical systems on any length scale. The fundamentals
of matter-light interaction can be best studied in atomic
systems due to their relative simplicity. The absorption of
light promotes electrons into excited states. If enough energy
is absorbed by the system, one or more electrons can leave the
atom (i.e., ionization takes place) [1–3]. The most common
types of ionization are single-photon and few-photon ion-
izations [4–6], above-threshold ionization [7–11], and tunnel
ionization [12–17].

Recently, high-order-harmonic generation (HHG) has be-
come a major tool in attosecond physics, allowing one to
generate ultrashort light pulses with broad spectral bandwidths
[18,19]. From the ability to generate attosecond pulses [20],
an entire new research area has emerged [21] focusing on
electronic dynamics [22–28] and molecular motion [29–32] on
their fundamental time scale. A particularly interesting aspect
is the electron motion and the corresponding hole-creation
dynamics during the ionization process [33–35]. The high
pulse intensities used in these experiments distort significantly
the potential of the electrons such that it is possible for the
electron to tunnel through or even travel over the barrier out
of the system (i.e., tunnel-ionization or barrier-suppression
regime, respectively).

A well-known model to describe tunnel ionization in atomic
systems is the Ammosov, Delone, and Krainov (ADK) model
[36,37]. It applies to intense low-frequency fields, where a
quasistatic approximation can be made, meaning electrons
follow adiabatically the external field. In these kinds of
fields, tunneling rates and final ion populations can be well
reproduced by the ADK model [38]. Short, few-cycle pulses
give access to instantaneous rather than cycle-averaged quan-
tities and reveal the nonadiabatic behavior of the electronic
motion. In this case, an explicit time-dependent treatment of
the ionization process is advantageous. In combination with

a multichannel theory, the dynamics in the relative phases
between generated ionic states can be captured; something
that cannot be done by the ADK model. In the past, the state
of the ion (after ionization) has not been of high interest, since
it was not experimentally accessible.

Such a technique does now exist: attosecond transient
absorption spectroscopy [39–42]. Transient absorption spec-
troscopy has been used for years to study chemical reactions on
the femtosecond time scale [43]. However, just recently this
technique has been extended to the attosecond regime [39],
where it is possible to probe the diagonal and off-diagonal
elements of the ion density matrix (IDM) of the generated
ion. From the off-diagonal IDM elements, the relative phase
and the degree of coherence between the ionic states can
be extracted, which are highly sensitive to the multichannel
interactions occurring during the ionization process [44].
Attosecond transient absorption spectroscopy has also been
used to study the dynamics of autoionizing states [45–48]
and to study the motion of an electron wave packet during
ionization [49].

The rapid technical advances in synthesizing light pulses
made it possible to generate subcycle near-infrared (NIR)
pulses lasting no longer than a few femtoseconds and to
reduce the jitter (time-delay fluctuation) between the NIR
pump pulse and the extreme ultraviolet (XUV) probe pulse to
tens of attoseconds [35]. This time delay stability allows one
to reliably probe the NIR-driven tunnel ionization dynamics
within an optical cycle (approx. 2 fs) as a function of the pump-
probe delay. For nonoverlapping pump and probe pulses,
transient absorption spectroscopy can be used to determine
the instantaneous IDM at the time of the probe pulse [40].

The aim of this study is to investigate the ion population
dynamics in krypton within the pump pulse. We show that
the instantaneous ionic-state population can be well captured
by the transient absorption spectrum even for overlapping
pump and probe pulses. Furthermore, we observe strong
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modifications of the absorption lines in the transient absorption
spectroscopy when pump and probe pulses have the maximum
overlap.

We show that these deformations can be understood by
relative phase shifts in the ionic dipole. We identify that
the highly nonperturbative dressing of the N -electron states
(particularly with the neutral ground state) is responsible for
the phase shift. Also the dressing of the ionic [(N − 1)-
electron] states, which leads to energy shifts in the ionic
states, contributes to the phase shift. The latter, however, is
much weaker than the first dressing mechanism. Note that
these two dressing mechanisms are quite different in nature.
The first mechanism dresses N -electron states and the second
mechanism dresses (N − 1)-electron states.

To capture these dressing mechanisms during ionization,
a description of the entire N -electron system is required. We
describe the dynamics of the full N -body wave function with
a time-dependent configuration interaction singles (TDCIS)
approach [50]. The description of the pump and the probe
steps of Refs. [35,39] requires at least two active electrons,
since the pump pulse ionizes an outer-valence electron and the
probe pulse resonantly excites an inner-shell electron into the
generated hole. Therefore, it is crucial to use a multichannel
model, which goes beyond the single-active-electron (SAE)
approximation, to describe the pump-probe process.

The paper is structured as follows: In Sec. II, we give
an overview of our TDCIS method and describe the theory
of attosecond transient absorption for overlapping pump and
probe pulses. The results are discussed in detail in Sec. III.
In Sec. IV we draw our conclusions. Atomic units [51] are
employed throughout unless otherwise noted.

II. THEORETICAL METHODS

A. Equations of motion

The time-dependent Schrödinger equation of an N -electron
system exposed to linearly polarized electric fields is given by

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (1a)

Ĥ (t) = Ĥ0 + Ĥ1 − E(t)ẑ, (1b)

where |�(t)〉 is the full N -electron wave function and
Ĥ (t) is the exact N -body Hamiltonian, which can be
partitioned into three main parts: (1) Ĥ0 = F̂ − iηŴ

is the sum of the time-independent Fock operator F̂

and a complex absorbing potential (CAP), which reads
W (r) = [r − rCAP]2�(r − rCAP), where r is the radius, and
�(r) is the Heaviside step function; (2) the electron-electron
interactions that cannot be captured by the mean-field
potential in Ĥ0 are captured by Ĥ1 (=V̂C − V̂HF − EHF; for a
detailed description of these quantities see Refs. [50,52]); and
(3) the term E(t)ẑ is the laser-matter interaction in the electric
dipole approximation using the length form. The CAP within
Ĥ0 prevents artificial reflections of the ionized photoelectron
from the radial grid boundary and is located far from the atom
such that all processes close to the atom are unaffected by the
CAP. This is controlled by the parameter rCAP.

By allowing only one electron to get excited or ionized
out of the ground-state configuration, we strongly reduce the

complexity of solving Eq. (1a). A suitable way to achieve
this goal is by exploiting the configuration interaction (CI)
language and describing the N -body wave function in terms
of the Hartree-Fock ground state |�0〉 and singly excited
configurations |�a

i 〉. This approximation is known as CI
singles (CIS). The corresponding TDCIS N -electron wave
function reads

|�(t)〉 = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉
, (2a)

∣∣�a
i

〉 = ĉ†aĉi |�0〉, (2b)

where i,j and a,b refer to occupied orbitals and unoccupied
(virtual) orbitals, respectively, in the Hartree-Fock ground
state |�0〉. Indices p,q are used when no distinction is made
between occupied and virtual orbitals. The operators ĉ

†
p and

ĉp create and annihilate, respectively, an electron in the
spin orbital |ϕp〉. The equations of motion (EOMs) for the
expansion coefficients α0(t) and αa

i (t) read

iα̇0(t) = −E(t)
∑
i,a

(
�0|ẑ|�a

i

)
αa

i (t), (3a)

iα̇a
i (t) = (εa − εi)α

a
i (t) +

∑
b,j

(
�a

i |Ĥ1|�b
j

)
αb

j (t)

− E(t)

⎛
⎝(

�a
i |ẑ|�0

)
α0(t) +

∑
b,j

(
�a

i |ẑ|�b
j

)
αb

j (t)

⎞
⎠ ,

(3b)

where εp are the orbital energies of the orbitals |ϕp〉,
which are eigenstates of the modified, time-independent Fock
operator (i.e., Ĥ0|ϕp〉 = εp|ϕp〉). The operator Ĥ1 is the
residual electron-electron interaction, which goes beyond the
mean-field potential. The parentheses |·) and (·| stand for
the vector and dual vector with respect to the symmetric
inner product required because of the non-Hermiticity of Ĥ0.
The dipole interaction between singly excited configurations
reduces to transitions between states of the excited electron
and transitions between ionic states:(

�a
i |ẑ|�b

j

) = (ϕa|ẑ|ϕb)δi,j − (ϕj |ẑ|ϕi)δa,b. (4)

A detailed description of our implementation of the TDCIS
method can be found in Refs. [50,53].

From the full N -body wave function one can construct the
ion density matrix (IDM) ρ̂IDM(t) by tracing over the excited
electron. The matrix elements are given by

ρIDM
i,j (t) =

∑
a,b

(
αa

i (t)
[
αb

j (t)
]∗

ob,a + 2η ei(εi−εj )t

×
∫ t

−∞
dt ′wb,a αa

i (t ′)
[
αb

j (t ′)
]∗

e−i(εi−εj )t ′
)

, (5)

where wb,a are the matrix elements of the CAP in the virtual
orbital basis, and ob,a are the overlap matrix elements between
virtual orbitals. The second term in Eq. (5) corrects the loss
of norm in the IDM due to the absorption of the excited
electron by the CAP. The CAP is placed far away from the
atom such that an electron so far out does not affect the ion,
specifically the ionic states. Therefore, the absorption of an
electron by the CAP results only in an artificial loss of norm
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that is compensated by the second term in Eq. (5). To keep the
notation compact, we use the notation ρIDM

i (t) := ρIDM
i,i (t) for

ionic state populations.

B. Spin-orbit splitting

In order to include the effect of spin-orbit splitting in
the occupied orbitals, we follow the logic of Ref. [54],
where we account for spin-orbit splitting with degenerate-state
perturbation theory within the (n,l) orbital manifold. The
occupied orbital i is, then, characterized by the quantum
numbers ni,li ,ji,m

J
i , where ni is the principal quantum

number, li is the orbital angular momentum, ji is the total
angular momentum, and mJ

i is the projection of the total
angular momentum onto the polarization direction of the
external laser field. The occupied spin orbitals read

|ϕi〉 =

⎛
⎜⎝ C

ji,m
J
i

li ,m
J
i − 1

2 ;si ,
1
2

∣∣ni,li ,m
J
i − 1

2

〉
C

ji,m
J
i

li ,m
J
i + 1

2 ;si ,− 1
2

∣∣ni,li ,m
J
i + 1

2

〉
⎞
⎟⎠, (6)

where the Clebsch-Gordan coefficient is given by C
l3,m3
l1,m1;l2,m2

=
〈l1,m1; l2,m2|l3,m3〉, si = 1

2 is the spin of the electron, and
|n,l,m〉 are the one-particle orbitals obtained from a non-
relativistic Hartree-Fock calculation. The orbital energies εi

are taken from experimental ionization potentials. For the
virtual orbitals, we can neglect spin-orbital splitting and use the
quantum numbers na,la,σa,m

L
a to classify the orbitals, where

σa is the spin component in the laser polarization direction and
mL

a is the projection of the orbital angular momentum onto the

laser polarization direction. The virtual orbitals read

|ϕa〉 = ∣∣na,la,m
L
a

〉( δσa,
1
2

δσa,− 1
2

)
. (7)

The use of linearly polarized light leads to the condition
mJ

i = mL
a + σa for each singly excited configuration |�a

i 〉,
which is conserved by Ĥ (t). After the introduction of spin-
orbit splitting for the occupied orbitals, we cannot make use
of the σ and mL symmetries independently to reduce the
number of singly excited configurations, |�a

i 〉, as done in
Ref. [53]. However, not all symmetries are lost and we find
that Eq. (3b) is (up to a global phase) invariant under the parity
transformation (mJ

i ,mL
a ,σa) → (−mJ

i , − mL
a , − σa). The new

parity-adapted, singly excited configurations |�a
i 〉π read∣∣�a

i

〉
π

= 1√
2

[∣∣�a
i

〉
+ + (−1)li+si−ji+π

∣∣�a
i

〉
−
]
, (8)

where the configurations |�a
i 〉± stand for singly excited

configurations with mJ
i ≷ 0, respectively. States with π = 0

are gerade parity state and π = 1 states are ungerade parity
state. All ungerade configurations |�a

i 〉π=1 will never get
populated and we can exclude them from our further inves-
tigations. Note that the factor (−1)li+si−ji comes from the
symmetry C

l3,m3
l1,m1;l2,m2

= (−1)l1+l2−l3C
l3,−m3
l1,−m1;l2,−m2

.

C. Matrix elements

The matrix elements, which are needed for Eqs. (3), must
be evaluated in the parity-adapted |�a

i 〉π configuration basis.
The dipole matrix elements with respect to the symmetric inner
product read

π1

(
�a

i |ẑ|�b
j

)
π2

=
(

δi,j δσa,σb
z
mL

a

(A,B) − δa,bδmJ
i ,mJ

j

∑
σ

z
mJ

i −σ

(J,I ) C
ji,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j −σ ;sj ,σ

)
δπ1,π2 , (9a)

(
�0|ẑ|�a

i

)
π

=
√

2 δπ,0δmJ
i ,mL

a +σa
z
mL

a

(A,I )C
ji,m

J
i

li ,m
J
i −σa ;si ,σa

, (9b)

where we used the notation i = (I,ji,m
J
i ) with I = (ni,li) and a = (A,mL

a ,σa) with A = (na,la). The dipole matrix elements in
the original, non-parity-adapted basis are given by zm

(P,Q) := (np,lp,m|ẑ|np,lq,m). The matrix elements of Ĥ1 read

π1

(
�a

i |Ĥ1|�b
j

)
π2

= 2δπ1,0δπ2,0C
ji,m

J
i

li ,m
J
i −σa ;si ,σa

C
jj ,m

J
j

lj ,m
J
j −σb ;sj ,σb

v
M1
(AJIB) − δπ1,π2δσa,σb

∑
σ

C
ji ,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j −σ ;sj ,σ

v
Mσ

1
(AJBI )

− (−1)π1δπ1,π2δσa,−σb

∑
σ

C
ji ,m

J
i

li ,m
J
i −σ ;si ,σ

C
jj ,m

J
j

lj ,m
J
j +σ ;sj ,−σ

v
Mσ

2
(AJBI ), (10)

where M1 = (mL
a ,mL

b ,mL
a ,mL

b ), Mσ
1 = (mL

a ,mL
j − σ,mL

b ,

mJ
i − σ ), and Mσ

2 = (mL
a , − mL

j − σ, − mL
b ,mJ

i − σ ). The
Coulomb matrix elements in the non-parity-adapted basis read
vM

(PQRS) := (np, lp,mp; nq, lq,mq |r̂−1
12 |nr, lr , mr ; ns, ls, ms)

with M = (mp,mq,mr,ms).

D. Transient absorption for overlapping pulses

The transient absorption signal is a direct measure of the
cross section of the system. In Ref. [40] the transient absorption

signal was derived for the case of nonoverlapping pump
and probe pulses. The probe pulse was treated in first-order
perturbation theory such that it was possible to give an analytic
expression for the transient absorption signal as a function
of the instantaneous IDM ρ̂IDM(t). The pump pulse, usually
a strong-field NIR pulse, which ionizes the atom by tunnel
ionization, was treated nonperturbatively.

For overlapping pump and probe pulses, the influence of
the probe pulse does not decouple from the impact of the
pump pulse. Therefore, it is not clear to which extent ρ̂IDM(t)
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can be extracted from the transition absorption spectrum
like for nonoverlapping pulses. In order to fully capture
the overall effect of pump and probe pulses, both pulses
are treated nonperturbatively, meaning the TDCIS equations
of motion [see Eq. (3)] are solved for an electric field
E(t) = Epump(t) + Eprobe(t). Note that the probe step could
also be treated perturbatively by introducing a two-time
IDM, which depends on two different time arguments. In
our nonperturbative approach only the one-time IDM ρ̂IDM(t)
needs to be constructed for each pump-probe configuration.
From ρ̂IDM(t) the ionic dipole moment,

〈z〉ion(t) = Tr[ẑρ̂IDM(t)] (11)

and the atomic cross section

σa(ω) = 4π
ω

c
Im

[ 〈z〉ion(ω)

Eprobe(ω)

]
(12)

can be calculated. By performing the trace over ρ̂IDM(t) and
not over the full N -body density matrix ρ̂(t), we consider only
dipole transitions between ionic states. Transitions between
virtual orbitals can be neglected, since the XUV probe pulse
interacts only weakly with the excited electron. Transitions
between occupied and virtual orbitals describe stimulated
emission and photoionization processes. Both mechanism do
not lead to sharp features in σa(ω) around the bound-bound
transition energies. Therefore, we ignore these contributions,
which lead to background signals we are not interested in.

The detector, where the transient absorption spectrum is
measured, does not record the atomic response but rather a
damped spectrum of the form

|Eprobe(L,ω)|2 = |Eprobe(0,ω)|2 e−LnATσa (ω), (13)

where Eprobe(0,ω) is the incoming probe electric field, L is the
length of the medium, Eprobe(L,ω) is the probe electric field at
the end of the medium, and nAT is the atomic number density.
In Eq. (13) Beer’s law is used, which assumes a homogeneous
medium and that the ratio 〈z〉ion(ω)/Eprobe(ω) is independent
of Eprobe(ω) := Eprobe(0,ω). In Sec. III B the validity of Beer’s
law is discussed.

Due to the finite energy resolution of the detector, the
transient absorption signal in Eq. (13) has to be convolved
with a Gaussian mask function, where the full width at half
maximum (FWHM) width is given by the energy resolution of
the detector. The cross section σm(ω) measured at the detector
can be related to the atomic cross section and is given by

σm(ω) = − 1

nATL
ln(e−nATLσa (ω) ∗ GδE(ω)), (14)

where GδE(ω) is the area-normalized Gaussian with the
FWHM width of δE, and the symbol ∗ stands for the
frequency convolution. The dependence on the pump-probe
configuration, specifically the pump-probe delay τ , enters
parametrically in Eqs. (11)–(14) such that the atomic and
the measured cross sections read σa(ω; τ ) and σm(ω; τ ),
respectively.

E. Oscillating dipole model

In the following, we develop a general expression for the
transient absorption spectrum, which is based on a simple

model. Later in Sec. III we use this generalized expression
to discuss the features of the transient absorption spectrum
for overlapping pulses obtained from our TDCIS calculations
described in Sec. II A-II C.

First, we reduce the description of the ion to a two-level
system. The ground state |g〉 can only be accessed by the
pump pulse via tunnel ionization and the excited state |e〉 can
only be accessed by the probe pulse via resonant excitation
out of |g〉. The probe pulse, which may be approximated by
a delta pulse [i.e., Eprobe(t ; τ ) = E0δ(t − τ )], creates a coher-
ent superposition |�(t > τ )〉 = a0|g〉 + a1e

−i(ω0−i�/2)(t−τ )|e〉,
where ω0 is the positive energy difference between the two
states, 1/� is the lifetime of the excited state, and a1 =
−iE0a0〈e|z|g〉 results from the excitation by the probe pulse.
This superposition leads to an oscillating dipole

〈z〉ion(t > τ ) = 〈�(t)|z|�(t)〉
= −2E0|〈e|z|g〉|2|a0|2 sin[ω0(t − τ )]e− �

2 (t−τ ).

(15)

Inserting Eq. (15) into Eq. (12) and using Eprobe(ω; τ ) =
E0e

−iωτ , the final expression for the cross section reads

σ (ω; τ ) = 4πω

c
z0

�/2

(ω − ω0)2 + �2

4

, (16)

where z0 = |a0|2|〈e|z|g〉|2 determines the transition strength.
We see that for a simple two-level system the cross section is
purely Lorentzian and directly proportional to the ground-state
population |a0|2 at the time of the probe step.

Adiabatic energy shifts in the ionic states during the intense
NIR pulse result in a phase shift in the oscillating ionic dipole
[i.e., 〈z〉ion ∝ sin[ω0(t − τ ) + φ(τ )]]. Here, we assume the
ionic state and the dipole oscillation live for a long time after
the NIR pulse is over such that the entire dipole dynamics can
be approximated by a phase-shifted oscillation. The phase shift
φ(τ ) has a dramatic influence on the shape of the transition
line, which reads

σ (ω; τ ) = 4πω

c
z0

�
2 cos[φ(τ )] + (ω − ω0) sin[φ(τ )]

(ω − ω0)2 + �2

4

. (17)

Note that the phase shift φ(τ ) affects only the shape of the
transition but not the strength z0.

In Fig. 1 σ (ω; τ ) is shown for specific values of φ. The
transition line is purely Lorentzian for φ = 0. In the case
φ = π/2, the cross section shows a dispersive behavior and has
equally negative and positive regions that lie symmetrically
around the field-free transition energy ω0(0). For all other
phases, the cross section is a sum of these two scenarios and
becomes asymmetric around ω0. A phase shift by π changes
the sign of the cross section. For −π/2 � φ � π/2, the system
shows an absorbing behavior whereas for π/2 � φ � 3/2π

the system is rather emitting. A similar scenario has been
discussed in atomic helium, where neutral excited states are
dressed by an IR pulse leading to emitting and absorbing
patterns depending on the pump-probe delay [55].

Similarly to the dressing of the ionic states, the influence
of the excited electron on the ion via the residual Coulomb
interaction and via the pump field can lead to additional phase
shifts in the oscillating dipole (see Sec. II F). Furthermore,
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FIG. 1. (Color online) Cross section σ (ω) of Eq. (17) for several
values of φ(τ ). The transition energy is ω0 = 3 a.u., � = 3.2 ×
10−3 a.u., and the transition strength is given by z0 = 0.01.

corrections to the transition strength z0 can occur, which
may cause z0 to be no longer directly proportional to the
instantaneous hole population. In order to capture these effects,
we parametrize not only the phase φ(τ ) but also the transition
strengths z0 → z0(τ ). Our generalized version of Eq. (17) for
a multilevel ion reads

σdipole(ω; τ )

= 4πω

c

∑
T

zT (τ )
�T

2 cos[φT (τ )] + (ω − ωT ) sin[φT (τ )]

(ω − ωT )2 + �2
T

4

,

(18)

where we sum over all possible ionic transitions T . Note that
Eq. (18) is designed to capture the influence of all these effects
that go beyond our simple two-level model [see Eq. (16)].
However, Eq. (18) cannot explain why these changes occur
and where they come from.

F. Mechanisms leading to phase shift

As discussed in Sec. II E, the dressing of the ion can induce
a phase shift in the ionic dipole. In the following, we discuss
in the language of TDCIS how the dressing by the field and
the coupling of the excited electron to the ionic subsystem can
influence the phases φT (τ ) of Eq. (18). First, we analyze the
scenario where the time evolutions of the excited electron (a
index) and the ionic states (i index) are decoupled. This is the
case when the terms (�a

i |Ĥ1|�b
j ) and (�a

i |ẑ|�0) are switched
off in Eq. (3b). The resulting EOM can be written as

iα̇a
i (t) =

∑
b

H elec
(a,b)(t)α

b
i (t) +

∑
j

H ion
(i,j )(t)α

a
j (t), (19)

where H elec
(a,b)(t) := εbδa,b + E(t)(ϕa|ẑ|ϕb) affects only the ex-

cited electron, and H ion
(i,j )(t) := −εj δi,j − E(t)(ϕj |ẑ|ϕi) affects

only the ionic states. Ĥ elec and Ĥ ion can be viewed as Hamil-
tonians of the two subsystems. Note that the Hamiltonians of
both subsystems commute; that is, [Ĥ elec(t),Ĥ ion(t)] = 0. To
confirm that Eq. (19) leads to decoupled EOMs for the excited
electron and the ion, we make the product ansatz αa

i (t) =

χa(t)κi(t), where the EOMs of the separated electronic and
ionic wave functions are given by

iχ̇a(t) =
∑

b

H elec
(a,b)(t)χb(t), (20a)

iκ̇i(t) =
∑

j

H ion
(i,j )(t)κj (t). (20b)

We find that the product ansatz with the decoupled EOMs
of Eqs. (20) solves Eq. (19). This shows that Eq. (19) is the
overall EOM of the full N -electron system, which consists of
two totally separated subsystems. Note that the term (�a

i |ẑ|�b
j )

[cf. Eq. (4)] does affect the excited electron and the ion but
it does not lead to interactions between the two. Enforcing a
normalized electron wave function, we find from Eq. (20b)
that the IDM is given by

ρIDM
i,j (t) = κ∗

j (t)κi(t) = eiωT (t−τ )ρIDM
i,j (τ )eiφion

T (t,τ ), (21)

where T = i → j denotes the ionic transition. If E(t) =
0 for all times t , we find φion

T (t,τ ) = 0 for all t and τ .
Hence, the additional phase φion

T (t,τ ) enters only due to the
term −E(t)(ϕj |ẑ|ϕi) in Ĥ ion. This is exactly the field-driven
dressing of the ionic system. After the pulse is over [E(t) = 0],
the phase φion

T (t,τ ) becomes independent of t and depends only
on the probe time τ [i.e., φion

T (t,τ ) → φion
T (τ )]. In Sec. III D1,

we show how the field-driven dressing of the ionic system
can be analytically analyzed with the help of the polarizability
of the ion. It is interesting to note that the influence of the
electric field on the excited electron [i.e., E(t)(ϕa|ẑ|ϕb)] does
not influence the IDM and subsequently the ionic dipole
oscillation.

Additional phase shifts similar to φion
T (τ ) can also occur

due to the coupling between the ion and the excited elec-
tron. There exist two kinds of mechanism that can couple
these two subsystems: (1) the residual Coulomb interaction
[the (�a

i |Ĥ1|�b
j ) in Eq. (3b) are the corresponding matrix

elements], and (2) the field-driven mixing of the excited
N -electron states with the neutral ground state [the (�a

i |ẑ|�0)
in Eq. (3b) are the corresponding matrix elements]. Both
terms were ignored in Eq. (19), which led to two decoupled
subsystems. To distinguish the phase shifts induced by the two
different mechanisms, we introduce φresidual

T (τ ) and φ
ground
T (τ ).

The phase shift due to the residual Coulomb interaction is
denoted by φresidual

T (τ ), and φ
ground
T (τ ) denotes the phase shift

due to the field-driven mixing to the neutral ground state.
Adding up all three phase shifts we find that the total phase

shift for the transition T is given by

φT (τ ) = φion
T (τ ) + φresidual

T (τ ) + φ
ground
T (τ ). (22)

In Sec. III D we discuss which of the three phase shifts gives
the dominant contribution.

III. RESULTS

A. System, pulse, and numerical parameters

All presented results were calculated with the XCID package
[56]. All calculations were performed with 600 radial grid
points, a maximum radius rmax = 150, and a nonlinear grid
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FIG. 2. (Color online) NIR pump (solid red line) and XUV probe
pulses (green dashed line) used for transient absorption spectroscopy
are shown separately. The peaks of both pulses are centered at t = 0.

mapping parameter ζ = 1.0. The CAP starts at a radius
rCAP = 130 and has a strength η = 0.003. The maximum
angular momentum employed was lmax = 30. Furthermore,
if the orbital angular momentum of any one-particle orbital
|ϕp〉 appearing in the matrix elements of Ĥ1 exceeded 4, then
only the monopole term of Ĥ1 was considered. With these
parameters, our results are converged. A detailed explanation
about the parameters of the grid, of the CAP, and of the residual
Coulomb interaction can be found in Ref. [50].

The NIR pulse profile measured in Ref. [35] is used as
the pump pulse in all the following results and is shown in
Fig. 2. The pump pulse is approximately 2 fs long with one
main peak and two side peaks. The maximum electric field
strength of the pump pulse is ≈0.08 a.u. (corresponding to an
instantaneous intensity of 4.8 × 1014 W/cm2). For the probe
pulse (also shown in Fig. 2) a Gaussian pulse profile is used
with a central frequency of 3 a.u. (≈81 eV), a FWHM width
of the intensity profile of 10 a.u.(≈240 as), a carrier envelope
phase of zero, and a maximum field strength of 10−2 a.u.
(≈3.4 TW/cm2).

As in Refs. [35,39], we choose atomic krypton as our system
of interest. The spin-orbit coupling within the occupied orbitals
is accounted for in first-order perturbation theory, as described
in Sec. II B. The energies of the singly ionized ionic states
[NLM

J ]−1 with respect to the Hartree-Fock ground-state energy
are given by the negative orbital energies (i.e., Koopmans’
theorem). Here, N is the principal quantum number, L is the
orbital angular momentum, J is the total angular momentum,
and M is the projection of J . Since we are using linearly
polarized light, the values for M and −M states are always
the same. Therefore, we refer always to a sum of both |M|
contributions (i.e., [NLM

J ]−1 = [NL+M
J ]−1 + [NL−M

J ]−1).
The orbital energies of the 4p orbitals are replaced by

experimental values taken from Ref. [57] in order to match
the experimental ionization potentials. The orbital energies of
the 4p shell are given by ε4p1/2 = −0.5389 (= − 14.67eV) and
ε4p3/2 = −0.5148 (= − 14.00eV). The orbital energies of the
3d shell are taken from Ref. [58]. In addition, we account for
the finite lifetime of all 3d−1 configurations of 7.5 fs (� =
88 meV) [39]. Hence, the 3d orbital energies become complex

and read ε3d3/2 = −3.5 − i�/2 (= − 95.24 − i0.044 eV) and
ε3d5/2 = −3.4525 − i�/2 (= − 93.95 − i0.044 eV).

B. Transient absorption spectrum

In a recent experiment [35] attosecond transient absorption
spectroscopy has been used to investigate the hole production
dynamics in atomic krypton during a subcycle NIR pump
pulse. The theory described in Ref. [40] was used to analyze
the transient absorption spectrum and to connect the spectrum
to the instantaneous IDM ρIDM

i,j (t). Propagation effects and the
finite energy resolution of the detector were accounted for as
described in Eq. (14). The macroscopic propagation is captured
by Beer’s law. Previous studies [40] have shown that Beer’s law
is valid for the pump-probe scenario investigated here. Similar
conclusions have been found in Ref. [41] when the probe
pulse is much shorter than the pump pulse (as in our case).
For probe pulses longer than the pump pulse, the macroscopic
propagation can quite strongly deviate from Beer’s law.

The theory developed in Ref. [40] is, strictly speaking,
only valid when pump and probe pulses do not overlap and
the tunnel-ionized electron is far from the parent ion. In
this case, the ionic subsystem [i.e., ρ̂IDM(t)] reduces to a
simple multilevel system without any kinds of interactions
with the environment and between levels. Hence, the entire
dynamics of the ion is analytically known and reads ρIDM

i,j (t) =
ρIDM

i,j (t0)ei(εi−εj )(t−t0). For overlapping pulses, the dynamics of
ρ̂IDM(t) becomes more complex. Therefore, it is not clear to
which extent the transient absorption spectrum for a given
pump-probe delay can be related to ρIDM

i,j (t) when pump and
probe pulses do overlap.

In Fig. 3 the calculated transient absorption spectrum
σm(ω; τ ) is shown as a function of photon energy ω and
pump-probe delay τ . The three main transition lines [i.e.,
4p−1

3/2 → 3d−1
5/2 (79.95 eV), 4p−1

1/2 → 3d−1
3/2 (80.57 eV), and

4p−1
3/2 → 3d−1

3/2 (81.24 eV)] are clearly visible. To shorten the
notation we refer to these three transition lines as T1,T2, and
T3, respectively.

The cross section shown in Fig. 3 is in agreement with ex-
perimental observations [35]. The transition strengths increase
mainly around τ ≈ 0, when the krypton atom is being probed
within the main peak of the pump pulse. It is also during
this main peak of the pump pulse where the atom gets mainly
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FIG. 3. (Color online) Attosecond XUV transient absorption
spectrum σm(ω; τ ) [see Eq. (14)] of krypton as a function of energy
ω and pump-probe delay τ .
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FIG. 4. (Color online) Transient absorption spectra for the pump-
probe delay τ = 0 and τ = 70 (≈1.7 fs) are shown in panels (a) and
(b), respectively. The atomic cross section σa (solid red line), the
measured cross section σm (green dashed line), and σdipole (blue dotted
line) are shown for each τ .

ionized. Simultaneously during the hole creation, the transition
lines in the transient absorption spectrum change dramatically
their shapes, resulting in negative cross sections for energies
just below the field-free transition energies. Negative cross
sections can be only seen here for the T1 transition, because a
detector resolution of ≈300 meV let these features disappear
for the transitions T2 and T3 (cf. Fig. 4).

Similar to τ ≈ 0, line deformations and negative cross
sections do also occur at ω ≈ 80 eV for τ ≈ ±1 fs, where
the probe pulse coincide with the side peaks of the pump pulse
(cf. Fig. 2). The side peaks of the pump pulse are strong enough
to lead to tunnel ionization as well (cf. Fig. 5). In particular, the
ionization and the deformation caused by the first side peak of
the pump pulse (τ ≈ −1 fs) can be nicely seen in Fig. 3 for
the transition line T1. As will become clear in the discussion in

0

 0.05

 0.1

 0.15

-2 -1 0 1 2

po
pu

la
tio

n

pump-probe delay τ [fs]

0

 0.05

 0.1

 0.15

-2 -1 0 1 2

po
pu

la
tio

n

pump-probe delay τ [fs]

experiment

ρeff
IDM(τ)

ρfit
eff(τ)

ρeff
dipole(τ)

FIG. 5. (Color online) Instantaneous hole population ρIDM
eff (τ )

(solid red line) together with reconstructed populations ρ
dipole
eff (τ ) (blue

dotted line) and ρfit
eff (green dashed line). The experimental population

(grey dashed line) is taken from Ref. [35]. The reconstructed and
experimental populations are scaled such that all have the same value
at t = 2.4 fs. The NIR pulse intensity is highlighted (gray area) in the
background.

Sec. III D, the mechanism behind the deformations in all three
cases (τ ≈ 0, ± 1 fs) is the same.

For τ > 2 fs, the dynamics of the hole populations is barely
affected by the pump pulse and behaves as if they were field-
free. At these time delays, the intensity of the pump pulse is
also strongly reduced (by more than a factor 10) compared to
the peak intensity at τ = 0, thus supporting the observation
of field-free behavior for larger pump-probe delays. Field-free
behavior means, for the main transition line T1, that it becomes
stationary and does not change anymore in shape and strength.
The other two transition lines show interference effects from
the coherent superposition of 4p−1

3/2 and 4p−1
1/2 [39,40].

Large negative time delays (τ < −2 fs) are not of interest
and, therefore, they are not shown in Fig. 3 for two reasons:
First, the ionic cross section [see Eqs. (12) and (14)] is zero for
large negative time delays because only neutral krypton atoms
exist prior to the NIR pulse. Second, no electronic dynamics
can be probed before the NIR pulse, since the neutral krypton
atoms are in the electronic ground state.

In Fig. 4 the transient absorption spectra σa(ω; τ ), σm(ω; τ ),
and σdipole(ω; τ ) are shown for τ = 0 and τ = 70(≈1.7 fs). The
transition lines in σm(ω; τ ) are broadened with respect to the
atomic cross section σa(ω; τ ) due to the propagation effect and
the finite detector resolution (≈300 meV), which is wider than
the natural transition widths (�i = 88 meV). The cross section
σdipole(ω; τ ) is obtained by fitting Eq. (18) to σa(ω; τ ) obtained
from the TDCIS calculations. The energies ωTi

and the natural
widths �Ti

of all transition lines Ti are kept fixed (see Sec. III A)
and only the magnitudes zTi

(τ ) and the phases φTi
(τ ) are fit

to σa(ω; τ ). The features of σa(ω; τ ) are well captured by
σdipole(ω; τ ) for all τ . At τ = 70, the two strongest transition
lines are Lorentzian shaped as expected for nonoverlapping
pump and probe pulses. The second (T2) and especially the
third (T3) transition lines do not have a Lorentzian shape due
to the coherent superposition of 4p−1

3/2 and 4p−1
1/2.

The success of σdipole(ω; τ ) in capturing all features of
σa(ω; τ ) shows that the influence of all terms in Eq. (3), which
go beyond a simple two-level model (see Sec. II F), can be
understood by phase shifts φTi

(τ ) and changes in the oscillating
dipole strengths zTi

(τ ).
However, the oscillating dipole model cannot explain what

is the physical origin of φTi
(τ ) or whether or not zTi

(τ ) can
be related to ρIDM(τ ). The answers to these questions are
discussed in the following.

C. Population dynamics

First, we turn our focus to the population dynamics of
the ionic states. In particular, we investigate the hole-creation
dynamics in the 4p3/2 orbitals during the pump pulse. In order
to do so, we need to focus only on the main transition T1. For
nonoverlapping pulses, the transition strength is proportional
to the instantaneous population

ρIDM
eff (τ ) := ρIDM

4p
1/2
3/2

(τ ) + 2
3ρIDM

4p
3/2
3/2

(τ ),

where ρIDM
i (τ ) are the hole populations of the ionic states

i = [4p
1/2
3/2]−1 and i = [4p

3/2
3/2]−1 (for details on the notation

see Sec. III A), respectively. In Fig. 5, we compare ρIDM
eff (τ )

(solid red line) with the transition strength ρ
dipole
eff := zT1 (τ )
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(blue dotted line), with the reconstructed population ρfit
eff (green

dashed line) obtained by applying the same fitting procedure
as in Ref. [35] to σm(ω; τ ), and with the experimental data of
Ref. [35].

In all three theoretical curves, oscillatory behavior can be
seen during buildup of the hole populations. The features of
ρIDM

eff (τ ) are well captured by ρ
dipole
eff (τ ) and by ρfit

eff(τ ). It shows
that ρIDM

eff (τ ) can be quite well reconstructed from the transient
absorption spectrum even though pump and probe pulses do
strongly overlap. Note, however, that at the major peak (τ ≈ 0)
a delay of about ≈200 as occurs in ρfit

eff(τ ). The deviations from
ρIDM

eff (τ ) are a measure of the influence of the excited electron
on the ionic states, since the adiabatic dressing of the ionic
states does not affect the transition strength. As described in
Sec. II E, if the evolution of the excited electron decouples
directly after the probe step from the evolution of the ion,
ρ

dipole
eff (τ ) coincides with ρIDM

eff (τ ).
In the experiment, this oscillatory behavior was not seen and

the transition strengths increased monotonically with τ . The
reason for this discrepancy might lie in the strong restriction
of the CIS space for the ionic degree of freedom. Within the
CIS space generated from the neutral ground state of the atom,
the ion is described exclusively by one-hole configurations.

D. Line deformations and phase shifts

As we have seen in Sec. III B the oscillating dipole model
is able to describe all features of the transient absorption
spectra by only adjusting the strengths zT (τ ) and the phases
φT (τ ) of the three transitions. The strengths zT (τ ) are in close
connection to the instantaneous populations of the ionic states
even for overlapping pulses [cf. Sec. III C]. The correct values
of φT (τ ) are important to capture the shapes of the transition
lines, which can change significantly during the pump pulse
[cf. Fig. 4].

In Fig. 6, φT1 (τ ) and φT3 (τ ) are shown. The phase φT (τ )
is chosen such that the strengths zT are always positive. The
region τ < −1.5 fs is not shown, since the strengths of the
transitions are of the same order as the numerical background
noise, which leads to large uncertainties in φT . The last peak
of the pump field at τ = 1 fs has only a small effect on φT
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FIG. 6. (Color online) Phase shift φT1 (τ ) of strongest transition
line and phase shift φT3 (τ ) of weakest transition line.

whereas the first peak at τ = −1 fs has a strong influence on
the phases. This is an interesting observation, since both peaks
have the same intensity.

As mentioned earlier, the coherent superposition of the
ionic states 4p−1

1/2 and 4p−1
3/2 results in a phase shift (ε4p3/2 −

ε4p1/2 )τ , which is particularly dominant in transition T3 [40]
and has been observed in previous experiments [39]. This
coherence-induced phase shift is also visible in φT3 (τ ) for τ >

1 fs (see Fig. 6). The slope of φT3 (τ ) is approx. 0.023 a.u., which
is in good agreement with ε4p3/2 − ε4p1/2 = 0.024. The main
transition line T1 is not affected by this coherent superposition
and, therefore, goes over into a Lorentzian shape (i.e., φT1 = 0)
for large τ (cf. Fig. 6).

We have seen in Fig. 6 that the phase shift φT can
be quite large. However, what has not been answered yet
is the origin of φT . As discussed in Sec. II F, there are
three main contributions to φT (τ ) [cf. Eq. (22)]: (1) φion

T (τ )
induced by the NIR-driven dressing of the ionic system
[the (ϕj |ẑ|ϕi) are the corresponding matrix elements]; (2)
φresidual

T (τ ) induced by the residual Coulomb interaction; and
(3) φ

ground
T (τ ) induced by the NIR-driven mixing of the excited

N -electron system with the neutral ground state [the (�a
i |ẑ|�0)

are the corresponding matrix elements]. Particularly, in order
to account for φresidual

T (τ ) and φ
ground
T (τ ), it is important to

have a multielectron picture which can describe the degrees of
freedom of the ionized electron and of the ion.

The strong line deformations, if only the positive part of the
cross section is considered, appear as if the transition energies
have moved. This energy shift we call apparent energy shift. In
Fig. 7, we make a direct comparison between calculated (red
and green lines) and experimentally obtained (blue dashed
line) [35] energy shifts of the strongest transition line, T1.
In the calculations yielding the red line (with crosses), no
approximation is made in the TDCIS calculations. For the
green line (with asterisks), all couplings to the 4s orbital are
turned off. The procedure used to extract the apparent energy
shift is described in Ref. [35].
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FIG. 7. (Color online) Apparent energy shifts of strongest transi-
tion line T1 for calculated cross sections with (red line with crosses)
and without (green line with asterisks) the 4s orbital active, and for
the experimentally obtained cross sections (blue dotted line). The
experimental values are taken from Ref. [35].
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The magnitude of the apparent energy shifts are correctly
reproduced by the calculations. Ignoring the 4s orbitals makes
no significant difference. Particularly in the theoretical results,
the second pump peak is clearly visible. For τ > 1.4 fs, the
energy shifts go as expected to zero, indicating that influence
of the pulse decreases and the krypton ion can be treated as
a field-free ion. Negative pump-probe delays are not shown
because the transition strengths are too weak to obtain reliable
results.

In the following, we discuss each mechanism which can
lead to the strong line deformations seen in Fig. 3. We discuss
each mechanism in terms of φT (τ ), since the oscillating dipole
model showed that these deformations can be fully understood
by a phase shift.

1. Field dressing of ionic system and polarizability of Kr+

In the presence of a strong external field, the energies
of the ionic state become modified [i.e., εi → εi(E)]. If the
photon energy is much smaller than the ionization potential,
the influence of the field on the ionic state can be described
adiabatically. This is the case for Kr+, where the ionization
potential is 24 eV [59] and the photon energy of the pump
pulse is 1.4 eV and, therefore, far off-resonance with any
ionic transition. Hence, the energy corrections �εi(E) =
εi(E) − εi(0) of the dressed ionic states i are well captured
by the quadratic Stark effect

�εi[Epump(t)] = α(i)

2
E2

pump(t), (23)

where α(i) is the polarizability of the ionic state i, and the
pump electric field is linearly polarized. Note that the energy
of the ionic state i is −εi . After the pulse is over, �εi(0) = 0
and the ion is back in its field-free state with the ionic energies
εi(0). If an oscillating dipole (coherent superposition of two
states i and j ) is present while the energy of the ionic states get
shifted, the dipole oscillates after the pulse with the field-free
transition energy ωi→j (0) = εi(0) − εj (0) but phase shifted
by [35]

φion
i→j (t) =

∫ ∞

t

dt ′�ωi→j [Epump(t ′)], (24a)

�ωi→j (E) = �εi(E) − �εj (E) = α(i) − α(j )

2
E2, (24b)

where �ωi→j [Epump(t)] is the instantaneous shift in the
transition energy between the states i and j . The phase
shift φion

i→j (t) is exactly the ionic phase shift φion
T (τ ) with

T = i → j , which originates from the field-dressing of the
ionic system.

In order to estimate φion
T (t) we use the quantum chemistry

code DALTON [60] to calculate exact polarizabilities of the ionic
states. Furthermore, we can clarify to which extent our TDCIS
calculation can correctly describe the polarizability of the ion
and subsequently φion

i→j (t). The polarizabilities were calculated
with a complete active space self-consistent field (CASSCF)
wave function and with a CIS wave function. Here, CIS means
that Kr+ is described in the space of one-hole configurations,
which is consistent without TDCIS configuration space. In
CASSCF calculations, spatial deformations of the ionic states
are included that would require CISD and higher-order config-

TABLE I. Static dipole polarizabilities αx,x = αy,y and αz,z of
several states of Kr+ are shown. Polarizabilities obtained by the
CIS and CASSCF methods are compared. The CIS and CASSCF
calculations are done with DALTON. All values are given in atomic
units and with a precision up to the second digit.

CIS CASSCF

αx,x αz,z αx,x αz,z

[4p
3/2
3/2]−1 1.57 0.01 10.62 10.77

[4p
1/2
3/2]−1 0.53 2.09 10.72 10.57

[4p
1/2
1/2]−1 1.05 1.05 10.67 10.67

[3d
5/2
5/2 ]−1 −0.01 0.00 9.57 9.71

[3d
3/2
5/2 ]−1 0.00 0.00 9.63 9.60

[3d
1/2
5/2 ]−1 0.00 −0.01 9.65 9.54

[3d
3/2
3/2 ]−1 0.00 0.00 9.58 9.68

[3d
1/2
3/2 ]−1 0.00 −0.01 9.65 9.55

uration excitations with respect to the ground configuration of
the neutral atom. These deformations are not included in CIS.

In Table I, we summarize the results of the static dipole
polarizabilities for several states of Kr+ with holes in the
4p or the 3d orbital manifolds. For more details about
the polarizability calculations see Appendix. The CASSCF
calculations are in good agreement (±2% accuracy) with the
static polarizabilities in Ref. [61]. Polarizabilities obtained
with the CASSCF method are in very good agreement (<2%)
with experimental results [62,63] for neutral krypton atoms.
For ionic krypton the correlation effects are reduced in
comparison to neutral krypton, thus making the CASSCF
calculations even more accurate. Hence, we may assume that
the CASSCF results for Kr+ are practically exact.

The polarizabilities obtained with CASSCF have values
around 10.7 for 4p−1

j ionic states and values around 9.6 for

3d−1
j ionic states. In both cases, the anisotropy (αz,z − αx,x)

is small. This stands in contrast to the CIS results, where
a high anisotropy in the polarizabilities of 4p−1 is found.
Furthermore, the polarizabilities of the ionic states 3d−1 are
basically zero with the CIS basis set. The only contribution
to α(3d−1) comes from the weak coupling between the 3d

and 4p orbitals. Within CIS, the polarizabilities for 4p−1 are
determined by the coupling to the 4s−1 state. Ionic states with
two or more holes in the initially occupied orbitals do not exist
in CIS and, therefore, cannot contribute to the polarizabilities.
This restriction in the CIS space limits the ability of the ionic
states to respond to the external field and leads to much smaller
polarizabilities (as seen in Table I).

The quantity that determines φion
T (t) is the difference in

the polarizabilities, not the polarizabilities themselves [see
Eq. (24)]. We are only interested in the αzz component, since
we use light linearly polarized along the z axis. For the
strongest transition line 4p−1

3/2 → 3d−1
5/2, we need to look at

the differences α([4pm
3/2]−1) − α([3dm

5/2]−1) for the ionic states
with m = 1/2 and m = 3/2.

In Table II theses differences are shown. The strong m

dependence of the CIS results is due to the high anisotropy of
the polarizabilities. The accurate CASSCF results show almost
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TABLE II. Differences between static dipole polarizabilities αz,z

of states involved in the main transition line 4p−1
3/2 → 3d−1

5/2. The
values are given in atomic units.

α([4pm
3/2]−1) − α([3dm

5/2]−1) CIS CASSCF

m = 1
2 2.10 1.03

m = 3
2 0.01 1.17

no dependence on m. Since the [4p
m=3/2
3/2 ]−1 population is, in

our calculation, much smaller than the [4p
1/2
3/2]−1 population,

we focus only on the m = 1
2 results. Contrary to the results

of the polarizabilities, where the CIS approach underestimates
the values, the difference α([4p

1/2
3/2]−1) − α([3d

1/2
5/2 ]−1) is over-

estimated by CIS. The maximum energy shifts in the transition
for the given pump parameters [cf. Fig. 2] are 183 meV
(CIS) and 102 meV (CASSCF), respectively. Assuming the
maximum energy shifts persist over 2 fs, the resulting phase
shifts are 0.56 rad (CIS) and 0.31 rad (CASSCF), respectively.
This approximation can be nicely verified by a three-level
Bloch model describing only the (N − 1)-electron ionic states
3d−1,4s−1, and 4p−1.

The phase shift φion
T1

is, however, much smaller than φT1

[see Fig. 8]. Hence, φion
T1

(t) cannot be the main contribution to
φT1 (t). Furthermore, when the coupling to the 4s−1 ionic state
is switched off and α(i) ≈ 0 within TDCIS, the phase shift
φT1 (t) is almost unchanged. Note that in this case, the ionic
states cannot be dressed and φion

T1
= 0.

2. Residual Coulomb interaction

Here, we discuss the influence of the residual Coulomb
interaction—specifically φresidual

T (τ ). First, we simplify the
krypton atom to a two-level system with the states [4p

1/2
3/2]−1

and [3d
1/2
5/2 ]−1 such that no dressing of the ionic states can
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Bloch model describing three ionic states (see text for details). Here,
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through the coupling to 4s−1.
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and on the other side (green dashed line) with a simplified two-level
TDCIS model without residual Coulomb interaction (Ĥ1 = 0).

occur (φion
T = 0). The total phase shift reads now φT (τ ) =

φresidual
T (τ ) + φ

ground
T (τ ). Second, we also ignore Ĥ1 such that

the ionized electron can have no influence on the remaining ion
via Ĥ1—this means we set φresidual

T = 0. In Fig. 9, we compare
φT1 (τ ) obtained from the full TDCIS model including Ĥ1 and
all ionic states of Kr+ (solid red line) and that obtained from the
simplified two-channel TDCIS model (green dashed line) just
described. Whether or not Ĥ1 is included makes no significant
difference in the behavior of φT1 (τ ). Hence, residual Coulomb
interaction between the ionized electron and the ion has almost
no effect [i.e., φresidual

T (τ ) ≈ 0].

3. Field-induced mixing with the neutral ground state

The discussions in Secs. III D1 and III D2 have shown
that φion

T � φT and φresidual
T � φT . Hence, we must conclude

that the main reason for the phase shift comes from the
field-driven mixing with neutral ground state [i.e., φT (τ ) ≈
φ

ground
T (τ ); cf. Eq. (22)]. Remember that the mixing to the

ground state is captured by the terms (�0|ẑ|�a
i ), (�a

i |ẑ|�0)
[cf. Eq. (3)]. These terms are also responsible for describing
tunnel ionization. To verify that the field-induced mixing of the
excited N -electron states �a

i with �0 is indeed the main reason
for the observed phase shift, we perform calculations where we
once switch off the field-driven mixing to �0 after the probe
step and once where we leave it on. The probe pulse is here
delta like [i.e., Eprobe(t) ∝ δ(t − τ )]. We again reduce krypton
to a two-level atom (excluding the 4s orbital) as described in
Sec. III D2. In this two-level system φion

T (τ ) = φresidual
T (τ ) = 0

such that the only phase shift that can occur is φ
ground
T (τ ).

In Fig. 10, the phase φT (τ ) is shown with and without the
mixing to the neutral ground state. If we set (�0|ẑ|�a

i ) = 0
(i.e., φ

ground
T = 0) after the probe step, the phase shift totally

disappears for all pump-probe delays. When including the
ground-state mixing, we obtain again the usual behavior of
φT (τ ). Hence, we conclude that the main source of φT (τ ),
which deforms the transition lines in the transient absorption
spectrum (cf. Fig. 3), is the field-induced dressing of the entire
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1/2
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cases, no dressing of the ionic states can occur (see text for details).

N -electron system—particularly the mixing with the neutral
ground state.

IV. CONCLUSION

We have described our theoretical model, namely a
time-dependent configuration-interaction singles (TDCIS) ap-
proach, which has been implemented in the software package
XCID. We extended our method and included spin-orbit
splitting for the occupied orbitals. This extension leads to new
symmetry classes and, therefore, new matrix elements. With
the help of this multielectron approach, we are able to study
attosecond transient absorption experiments for overlapping
pump and probe pulses from first principles. The pump pulse
as well as the probe pulse are treated nonperturbatively.

Transient absorption spectroscopy with overlapping pulses
makes it possible to study the tunnel ionization dynamics
with subcycle resolution. We find that the hole populations
extracted from the transient absorption spectrum are in
close connection to the instantaneous hole populations even
though this relationship is, strictly speaking, only true for
nonoverlapping pump and probe pulses.

The strong deformations in the transient absorption lines,
which appear during the ionization process, can be fully
understood by phase shifts in the induced ionic dipole
oscillations. We find that the phase shift due to the dressing of
the ion by the pump pulse is not sufficient to account for the
observed line deformations. We also excluded the residual
Coulomb interaction between the ionized electron and the
remaining ion as a possible source.

The main contribution to the phase shift comes from
field-induced mixing of the excited N -electron states with
the neutral ground state, which is highly nonperturbative.
This dressing mechanism creates a coupling between the
ionized electron and the ion, which makes the ionic subsystem
dependent on the state of the ionized electron and vice versa.
This dressing mechanism is quite peculiar, since the ionized

electron was believed to be a spectator, since the probe pulse
does only affect the ionic states.

The nonperturbative mixing to the neutral ground state
affects also the phase relations between ionic states. These
phase relations are particularly important for the hole dynamics
in an atom or molecule [64]. By varying the pump-probe delay,
the phases between ionic states can be influenced, and transient
absorption spectroscopy provides a way to “read out” these
phases.
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APPENDIX: DIPOLE POLARIZABILITY

The dipole polarizability of a system that is in state S can
be obtained within perturbation theory and reads [65]

αm,n(S) = 2
∑

I

〈S|xm|I 〉〈I |xn|S〉
EI − ES

, (A1)

where ES and EI are the energies of the states S and I ,
respectively, and

∑
I stands for the sum over all intermediate

states. If S is an eigenstate with magnetic quantum number
MJ , the polarizability entries αx,x(S) and αy,y(S) are equal
[αx,x(S) = αy,y(S)] [66]. The formulas for αx,x(S) and αz,z(S)
read [66]

αx,x(S) = AJ

[
J (J − 1) + M2

J

] + BJ

[
J (J + 1) − M2

J

]
+ CJ

[
(J + 1)(J + 2) + M2

J

]
, (A2a)

αz,z(S) = 2AJ

[
J 2 − M2

J

]+ 2BJ M2
J + 2CJ

[
(J + 1)2 −M2

J

]
,

(A2b)

where the constants AJ ,BJ ,and CJ stand for specific sums
over intermediate states I with JI = JS − 1, JI = JS,, and
JI = JS + 1, respectively.

For singly ionized atomic krypton, we are interested in
the polarizabilities for ionic states with a hole in the 4p

or the 3d orbital manifolds. Using DALTON, we calculated
polarizabilities that do not include spin-orbit coupling. In order
to obtain polarizabilities for the spin-orbit-coupled ionic states
[4p

mj

j ]−1 and [3d
mj

j ]−1 we perform first-order perturbation
theory for degenerate states. The diagonal polarizability entries
of the spin-orbit-coupled ionic states [NL

MJ

J ]−1 expressed
with the polarizabilities of the nonrelativistic states [NLML

]−1

TABLE III. Static dipole polarizabilities αx,x and αz,z are shown
for two Kr+ states. All other polarizabilities can be deduced from
these values. Polarizabilities obtained by the CIS and CASSCF
methods are compared. All values are given in atomic units with
a precision up to the second digit.

CIS CASSCF

αx,x αz,z αx,x αz,z

[4p0]−1 0.01 3.13 10.77 10.46

[3d0]−1 0.00 0.00 9.66 9.52
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read

αn,n

([
NL

MJ

J

]−1)=
∑
σ,ML

[
C

J,MJ

L,ML;1/2,σ

]2
αn,n([NLML

]−1). (A3)

With the help of Eqs. (A2) and (A3) only two polarizability
entries αn,n(S),n ∈ {x,y,z} from states with the same N

and L quantum numbers are needed and all other diagonal

polarizability entries of any state S ′ can be obtained as
long as S ′ has the same N and L quantum numbers. In
Table III the calculated polarizabilities are shown that are
used to obtain all polarizabilities in Table I. For the CASSCF
and CIS calculations we obtained converged results with
the augmented correlation-consistent quintuple-zeta basis set
including polarization functions (aug-cc-pV5Z) [67].
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F. Lépine, G. Sansone, M. Nisoli et al., Phys. Rev. A 84, 043426
(2011).

[12] V. P. Krainov, W. Xiong, and S. L. Chin, Laser Phys. 2, 467
(1992).
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[64] S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, J. Chem.

Phys. 130, 154305 (2009).
[65] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43,

202001 (2010).
[66] B. Bederson and E. J. Robinson, Beam Measurements of Atomic

Polarizabilities (John Wiley & Sons, Inc., Hoboken, NJ, USA,
2007), pp. 1–27.

[67] A. K. Wilson, D. E. Woon, K. A. Peterson, and J. Thom
H. Dunning, J. Chem. Phys. 110, 7667 (1999).

063411-13

186 CHAPTER 5. ULTRAFAST IONIZATION DYNAMICS



5.6. ENHANCED NONLINEAR RESPONSE IN INTENSE ULTRAFAST X-RAYS 187

5.6 Enhanced Nonlinear Response of Ne8+ to Intense

Ultrafast X-rays

Arina Sytcheva, Stefan Pabst, Sang-Kil Son, and Robin Santra

Published in Phys. Rev. A 85, 023414 (2012)

Original publication: http://link.aps.org/doi/10.1103/PhysRevA.85.023414
Free preprint version: http://arxiv.org/abs/1202.6277

Statement of Contributions

Arina Sytcheva, Robin Santra and I developed the concept of using our TDCIS program
to calculate resonant two-photon cross sections of Ne+8. Arina Sytcheva and I extented
the program accordingly.

http://link.aps.org/doi/10.1103/PhysRevA.85.023414
http://link.aps.org/doi/10.1103/PhysRevA.85.023414
http://arxiv.org/abs/1202.6277


PHYSICAL REVIEW A 85, 023414 (2012)

Enhanced nonlinear response of Ne8+ to intense ultrafast x rays
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We investigate the possible reasons for the discrepancy between the theoretical two-photon ionization cross
section, ∼10−56 cm4 s, of Ne8+ obtained within the perturbative nonrelativistic framework for monochromatic
light [S. Novikov and A. Hopersky, J. Phys. B 34, 4857 (2001)] and the experimental value, 7 × 10−54 cm4 s,
reported in [G. Doumy et al., Phys. Rev. Lett. 106, 083002 (2011)] at a photon energy of 1110 eV. To this end,
we consider Ne8+ exposed to deterministic and chaotic ensembles of intense x-ray pulses. The time-dependent
configuration interaction singles (TDCIS) method is used to quantitatively describe nonlinear ionization of Ne8+

induced by coherent intense ultrashort x-ray laser pulses. The impact of the bandwidth of a chaotic ensemble
of x-ray pulses on the effective two-photon ionization cross section is studied within the lowest nonvanishing
order of perturbation theory. We find that, at a bandwidth of 11 eV, the effective two-photon ionization cross
section of Ne8+ at a photon energy of 1110 eV amounts to 5 × 10−57 and 1.6 × 10−55 cm4 s for a deterministic
ensemble and a chaotic ensemble, respectively. We show that the enhancement obtained for a chaotic ensemble of
pulses originates from the presence of the one-photon 1s2-1s4p resonance located at 1127 eV. Using the TDCIS
approach, we also show that, for currently available radiation intensities, two-photon ionization of a 1s electron
in neutral neon remains less probable than one-photon ionization of a valence electron.

DOI: 10.1103/PhysRevA.85.023414 PACS number(s): 32.80.Rm, 42.50.Ar, 31.15.−p, 02.70.−c

I. INTRODUCTION

Modern highly intense x-ray free-electron lasers (XFELs),
such as the Linac Coherent Light Source (LCLS) at SLAC
National Accelerator Laboratory, Stanford, USA [1], and the
SPring-8 Ångström Compact Free-Electron Laser (SACLA),
Harima, Japan [2], deliver both soft and hard x-ray radiation.
FLASH at DESY, Hamburg, Germany [3], operates in the
VUV and soft x-ray regimes, and the European XFEL [4],
which is under construction, is planned to deliver photon
energies up to 12 keV. These facilities offer possibilities to
explore inner-shell electron dynamics and nonlinear response
of atoms and molecules to intense x-ray radiation (see, for
example, Refs. [5–10]).

The present theoretical work is triggered by a recent exper-
iment on nonlinear ionization of neon atoms performed at the
LCLS [6]. The experiment utilized the capability of the LCLS
to produce unprecedentedly intense x-ray beams, with up to
∼1012 x-ray photons in a ∼100 fs pulse with a peak intensity of
∼1017 W/cm2. Within a single pulse the initially neutral target
absorbed multiple photons yielding a variety of ion species
in different electronic configurations. At a photon energy of
1110 eV, which is below the K-shell threshold of Ne8+, Doumy
et al. [6] observed production of hydrogenlike neon, Ne9+. The
Ne9+/Ne8+ ratio was observed to depend quadratically on the
peak intensity, which is consistent with nonlinear two-photon
ionization of Ne8+. Nevertheless, the two-photon ionization
cross section, deduced from this experimental observation with
the help of a rate-equation model, is 7 × 10−54 cm4 s, which is
two orders of magnitude higher than the value obtained within
perturbation theory [11,12].

*arina.sytcheva@cfel.de
†robin.santra@cfel.de

In the present paper, we focus on the following points:
(i) the discrepancy between the observed [6] and theoretically
predicted [11] two-photon ionization cross-section values of
Ne8+ and (ii) the possibility of two-photon ionization of a 1s

electron in neutral neon below the K-shell threshold of neon.
To describe the nonlinear interaction of Ne8+ and neutral

neon with an intense coherent ultrashort x-ray pulse, we
adopt the time-dependent configuration interaction singles
(TDCIS) method—a nonperturbative ab initio multichannel
approach [13–16]. TDCIS allows for pulses of arbitrary shape
and peak intensity, and provides an intuitive picture of the
electron dynamics induced by a light pulse of finite duration.
Correlation effects between the ejected photoelectron and the
remaining ion are included via exact treatment of the Coulomb
interaction [15]. Going beyond the standard single-active
electron approximation [13,17], the TDCIS model accounts
for the coupling between different excitation (ionization)
channels.

In our study, we employ the TDCIS method implemented
in the XCID code [18]. To eliminate spurious reflections, which
appear when the electronic wave packet reaches the boundary
of the numerical grid, we apply absorbing boundaries through
the inclusion of a complex absorbing potential (CAP) [19,20].
Implemented within the framework of TDCIS, the CAP
provides a measure for the ionization probability for the
outgoing electron. The ionization probability, given by the
diagonal components of the reduced ion density matrix (IDM),
is used in this work for calculating the generalized two-photon
ionization cross section.

For nonlinear light-matter interaction the spectral and
temporal shape of the pulse is a crucial factor [21,22]. The
rate of simultaneous absorption of two photons depends on
the statistics of the exciting field [23–25]. Present XFELs
have a coherence time that is much shorter than the pulse
duration and can be considered as chaotic [26,27]. For a
chaotic ensemble of pulses [25] with a finite bandwidth and

023414-11050-2947/2012/85(2)/023414(6) ©2012 American Physical Society
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a short coherence time [28], within the lowest nonvanishing
order of perturbation theory (LOPT), the effective two-photon
ionization cross section can be written as a convolution
of the monochromatic two-photon cross section and the
spectral distribution function. We investigate the effect of
finite coherence time on the two-photon ionization cross
section by using a Gaussian spectral distribution function.
The monochromatic two-photon ionization cross section we
calculate within the Hartree-Fock-Slater (HFS) model [29],
implemented within the XATOM code [30,31]. The results to be
presented here indicate that the treatment of XFEL radiation
as a chaotic finite-bandwidth ensemble of pulses, rather than
a deterministic ensemble of pulses, is likely to be capable of
explaining the enhanced two-photon ionization cross section
reported in Ref. [6].

The paper is organized as follows: we outline the theoretical
approaches in Sec. II, present details on the numerical
implementation and the obtained results in Sec. III, and draw
conclusions in Sec. IV. Atomic units are used throughout,
unless otherwise noted.

II. THEORY

A. Two-photon ionization cross section for
a coherent finite pulse

A detailed description of our implementation of the TDCIS
method can be found in Ref. [14]. Briefly, we construct the
electronic wave packet in an atom as a linear combination of
the Hartree-Fock ground state |�0〉 and one-particle–one-hole
(1p-1h) excitations |�a

i 〉,

|�,t〉 = α0(t)|�0〉 +
∑

i

∑
a

αa
i (t)

∣∣�a
i

〉
, (1)

where

∣∣�a
i

〉 = 1√
2
{ĉ†a↑ĉi↑ + ĉ

†
a↓ĉi↓}|�0〉. (2)

Here, i,j, . . . label orbitals occupied in |�0〉, whereas unoccu-
pied (virtual) orbitals are marked by a,b, . . . . The operators
ĉ
†
pσ and ĉpσ create and annihilate, respectively, electrons in a

spin orbital of the modified Fock operator F̂CAP = F̂ − iηŴ ,
which consists of the Fock operator F̂ and the CAP in the form
−iηŴ . The spin states are designated with σ . In the electric
dipole approximation, the nonrelativistic Hamiltonian of the
atom interacting with the x-ray field is given by

Ĥ = F̂CAP + V̂C − V̂HF − EHF − E(t)ẑ, (3)

where V̂C stands for the electron-electron Coulomb interaction,
V̂HF and EHF are the Hartree-Fock mean-field potential and
ground-state energy, respectively, ẑ is the dipole operator, and
E(t) is the electric field of the intense ultrashort laser pulse,
which is assumed to be linearly polarized along the z axis.
By substituting the wave function given by Eq. (1) into the
time-dependent Schrödinger equation, one gets a set of cou-
pled ordinary differential equations for the coefficients α0(t)
and αa

i (t).
Using the state |�,t〉, we construct the reduced density

matrix of the residual ion produced in the photoionization

process,

ρ̂(t) = Tra[|�,t〉〈�,t |], (4)

ρij (t) =
∑
a,b

αa
i (t)

[
αb

j (t)
]∗

oab, (5)

where oab stands for the overlap between eigenfunctions of
F̂CAP. The CAP is only active at large distances from the
atom, and hence, affects only virtual orbitals. Application of
the CAP is equivalent to attenuation of the wave packet when
it reaches the boundary of the numerical grid [32]. Because
of the CAP, the norm of the wave packet from Eq. (1) as
well as the norm of the reduced ion density matrix (4), are
not conserved and decrease as ionization proceeds. In order
to compensate for this loss of norm in the IDM, one has to
introduce a correction [14,33]:

δρij (t) = 2ηei(εi−εj )t
∫ t

−∞
dt ′

∑
a,b

wbaα
a
i (t ′)

[
αb

j (t ′)
]∗

× e−i(εi−εj )t ′ , (6)

with εi being the orbital energies and wba the matrix elements
of the CAP operator Ŵ . In the limit t → ∞, i.e., after
the ionizing pulse is over, a diagonal component of the
corrected IDM, ρi + δρi(≡ρii + δρii), can be thought of as
the excitation probability from an occupied orbital i. Under the
conditions considered here, the uncorrected ρi vanishes for a
sufficiently long time after the pulse is over, indicating that the
photoelectron is completely absorbed by the CAP. Conversely,
the IDM correction δρi approaches a constant value at t → ∞
and can be interpreted as the ionization probability of an
electron from orbital i.

The ionization probability per unit time due to direct
absorption of N photons (in s−1) is given by σ (N)JN , where
J is the photon flux in the number of photons cm−2s−1. This
allows for a definition of an effective two-photon ionization
cross section for a coherent pulse centered at a mean photon
energy ωin with a bandwidth of �ωp,

σ
(2)
coh(ωin,�ωp) =

lim
t→∞ δρi(t)∫ ∞
−∞ dt J (t)2

. (7)

The quantities ωin and �ωp enter the right-hand side of Eq. (7)
implicitly through the IDM correction δρi , obtained using the
Hamiltonian from Eq. (3), and the flux J (t). The definition of
Eq. (7) is valid provided the ground state is not depleted, i.e.,
in the perturbative limit.

B. Two-photon ionization cross section for chaotic fields

When defining the cross section in Eq. (7) we assume that
the x-ray pulse is well defined (deterministic). In general, the
radiation produced by an XFEL operating in the self-amplified
spontaneous emission (SASE) regime is chaotic with respect
to fluctuations in the electric field. The simplest way to
account for the XFEL chaoticity is to recall that the N -photon
ionization rate, within the LOPT, is proportional to N !JN ,
which amounts to effective doubling (2!) of the cross-section
value for two-photon ionization [21]. This factor of 2 cannot
explain the discrepancy found in Ref. [6]. The most rigorous
and accurate way to simulate the experimental situation would
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be by introducing an appropriate stochastic model [34,35] for
the radiation and solving the TDCIS equations many times
using an ensemble of realistic pulses. Afterward one would
have to average the results over all members of the ensemble.
However, this approach is computationally very costly.

Here, we follow the result of Mollow [25] who showed
that within the second-order perturbation theory for a field
consisting of finite chaotic pulses, the transition rate due to
two-photon absorption during the pulse can be expressed in
terms of the spectral first-order field correlation function. In
the case of a finite-bandwidth field and near an intermediate
resonance of the target atom the two-photon ionization cross
section for an incoherent pulse can be cast in the form

σ
(2)
incoh(ωin,�ωp) = 2

∫ ∞

−∞
dω σ

(2)
LOPT(ω)F (ω,ωin,�ωp), (8)

where F (ω,ωin,�ωp) is the normalized spectral distribution
function and σ

(2)
LOPT is the result of the LOPT for monochro-

matic radiation [11,12,36]:

σ
(2)
LOPT(ω) = π (4παω)2

∑
f

δ(ωf − ωg − 2ω)

×
∣∣∣∣∣
∑

l

〈f |z|l〉〈l|z|g〉
ωg + ω − ωl + i
l/2

∣∣∣∣∣
2

, (9)

with α being the fine-structure constant. In Eq. (9), |f 〉,
|l〉, and |g〉 stand for final, intermediate, and ground states,
respectively. 
l accounts for the natural linewidth of the
intermediate states |l〉; ωg and ωl denote energies of the ground
and intermediate states, respectively. Note that the factor of 2 in
Eq. (8) accounts for the enhancement of two-photon absorption
from a single-mode chaotic field [21].

The spectral distribution of a single XFEL pulse is very
spiky and random [22,37]. Averaged over many shots the
spectral distribution can be taken as a normalized Gaussian
[38,39],

F (ω,ωin,�ωp) = 2
√

ln 2√
π�ωp

exp

[
−4 ln 2

(
ω − ωin

�ωp

)2]
.

(10)

The result given by Eq. (8) can be understood as a nonlinear
atomic response to a spectral range of uncorrelated modes.
Here, the atomic response to the individual frequencies is
summed incoherently. In contrast, Eq. (7) represents nonlinear
atomic response to a coherent pulse. In the next section,
we apply Eqs. (7) and (8) to calculate effective two-photon
ionization cross sections of Ne8+ in the photon-energy range
below its K edge.

III. RESULTS AND DISCUSSION

We start our numerical study with the nonlinear atomic
response of Ne8+ to a deterministic coherent pulse using
TDCIS implemented in the XCID code [18]. We obtain
converged results by using a nonuniform radial grid extending
from r = 0 to r = 80 a.u. with 1000 grid points and a
pseudospectral-grid parameter ζ = 0.461 [14]. Under these
conditions, there is an almost uniform orbital energy spacing
of about 0.3 a.u. across a wide energy range (up to 150 a.u.) for
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FIG. 1. (Color online) Intensity dependence of the ionization
probability of Ne8+, given by the diagonal IDM correction δρ1s ,
at photon energies of 1225 eV (above the single-photon ionization
threshold) and 1110 eV (below the single-photon ionization thresh-
old). A deterministic pulse of 6-eV bandwidth (FWHM) is used.

the final states of the outgoing electron. The CAP starts at r =
50 a.u. We use a CAP strength η = 0.002 a.u., which makes the
energy levels broad enough to describe the quasicontinuum.
In this range of η, we satisfy the stationarity condition with
respect to η: ∂[limt→∞ δρ1s(t)]/∂η = 0, where ρ1s denotes
the diagonal component of the IDM corresponding to the 1s

orbital. The positions of 1s2-1s np resonances are obtained
with an accuracy of 0.03 a.u. and the one-photon ionization
potential of Ne8+ equals 43.9 a.u. (1194.1 eV). For the
comparison, the experimental value of the ionization potential
of Ne8+ is 1195 eV [40]. We account for angular momenta
of the outgoing electron up to lmax = 2. The laser pulse is
given by E(t) = E0 exp{−2 ln 2(t/τp)2} cos(ωint), where τp is
the FWHM duration of the pulse intensity1 and E0 is the peak
electric field.

In Fig. 1, we show how the 1s ionization probability
depends on intensity at two different photon energies used
in the experiment [6], below (1110 eV) and above (1225 eV)
the one-photon ionization threshold. For the calculation we
use a coherent pulse with a FWHM bandwidth of 6 eV. We can
see that in double logarithmic scale the slope of the curve
corresponding to 1110 eV is 2, while that for 1225 eV, the slope
below saturation, is 1. This reflects the fact that at 1225 eV, 1s

ionization is a one-photon process, whereas at 1110 eV, it is a
two-photon process. Above ∼3 × 1018 W/cm2, depletion of
the ground state becomes substantial.

Doumy et al. [6] measured the mean photon energy with
an uncertainty of several tenths of an electron volt and the
pulse spectral width was 10 ± 1 eV. 2 In Fig. 2, we show the
two-photon ionization cross section, calculated using Eq. (7)
for several pulse durations corresponding to the FWHM
bandwidths of 20, 15, 11, 8, and 6 eV. The peak electric

1The pulse duration given in femtoseconds is inversely related to
the bandwidth of the pulse given in eV as �ωp = 1.8/τp.

2G. Doumy (private communication).
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FIG. 2. (Color online) Effective two-photon ionization cross
section for Ne8+. The TDCIS results are given by Eq. (7) for several
different pulse bandwidths (FWHM). The LOPT result is obtained
using Eq. (9). The point at 1110 eV corresponds to the experimental
value of 7 × 10−54 cm4 s reported in Ref. [6].

field E0 = 0.03 a.u. was used. Also shown is the cross section
σ

(2)
LOPT(ω) given by Eq. (9). For the latter, we use the HFS

model [29], implemented within the XATOM code [30,31]. The
HFS model positions the intermediate resonances at lower
energies than those obtained in TDCIS, therefore we shifted
the curve σ

(2)
LOPT(ω) such that the 1s2-1s4p resonance is at

the right position of 1127.1 eV. Doumy et al. [6] noticed that
in a similar perturbative calculation [11] the authors did not
account for the 1s2-1s4p resonance. We have included this
resonance in both TDCIS and LOPT calculations. However, as
we see from Fig. 2, neither the inclusion of this resonance nor
the finite bandwidth of the radiation pulse taken into account
in TDCIS can explain the discrepancy of several orders of
magnitude between the theoretical and experimental values.

Now, we use Eq. (8) to convolve the monochromatic
two-photon ionization cross section obtained with Eq. (9),
with the spectral distribution function given by Eq. (10),
and show the results in Fig. 3(a). One can see that within
the bandwidth, off from the resonances, the cross section
is substantially enhanced, because the main contribution to
the convolution in Eq. (8) comes from the resonance peaks.
Indeed, for a bandwidth of 11 eV the cross section at 1110 eV
is 1.6 × 10−55 cm4 s, thus is enhanced by at least one and
one-half orders of magnitude with respect to the perturbative
result (4 × 10−57 cm4 s). In Fig. 3(b), we show the relation
between the pulse bandwidth �ωp and mean photon energy
ωin, which is needed for the calculated two-photon ionization
cross section to reach the experimentally found value of
7×10−54 cm4 s. For a bandwidth of 17 eV, the calculated cross
section increases up to this value at the photon energy of
1110 eV used in the experiment. Thus, our findings suggest that
the main reasons for the enhanced two-photon ionization cross
section of Ne8+ at 1110 eV originate from the proximity of
the 1s2-1s4p resonance, the chaoticity of the LCLS radiation,
and the finite bandwidth of its pulses.

In connection with the study of two-photon ionization
of core electrons, it is worth mentioning another recent
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FIG. 3. (Color online) (a) Two-photon ionization cross section
for Ne8+, given by Eq. (8). The perturbative result σ

(2)
LOPT of Eq. (9)

(dotted line) is taken as a reference signal for averaging over different
bandwidths (FWHM) of the pulses. The point at 1110 eV corresponds
to the experimental value of 7 × 10−54 cm4 s reported in Ref. [6].
(b) Relation between the bandwidth �ωp and the mean photon energy
ωin for which the two-photon ionization cross section σ

(2)
incoh is fixed

at 7 × 10−54 cm4 s.

experiment of Young et al. [5], where direct multiphoton
ionization of neon was completely shadowed by a sequence
of one-photon ionization events. One of the measurements
has been done at the photon energy of 800 eV, just below
the K edge, 870 eV, of neutral neon. In this case, one x-ray
photon carries enough energy to ionize valence electrons,
and therefore the valence-shell electrons are stripped in a
sequence of one-photon absorption processes. Creation of a
1s-shell vacancy is possible only through the absorption of
two photons. No evidence for this process was detected.
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FIG. 4. (Color online) Intensity dependence of the ionization
probability of neutral neon, given by the IDM corrections δρ1s for
1s electrons and δρ2s + ∑

m δρ2pm
for valence electrons, at a photon

energy of 800 eV (below the one-photon ionization threshold for the
K shell, but above the one-photon ionization threshold for the valence
shells). A deterministic pulse of 6-eV bandwidth (FWHM) is used.
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Using the TDCIS model, we study the possibility of creating
a core hole in Ne via simultaneous absorption of two 800-eV
photons. The converged result is obtained by using a maximum
radius of 90 a.u. with 1000 grid points and ζ = 0.461. A CAP
of strength η = 0.002 starts at 60 a.u. Accounting for angular
momenta of the ionized electron up to lmax = 3 is sufficient. In
Fig. 4, we show the ionization probabilities of valence and core
electrons for neutral neon as a function of peak intensity. One
can see that at the intensity of 3 × 1017 W/cm2 the probability
of ejecting a 1s electron is more than 102 times smaller
than that of ejection of a valence electron. With increasing
intensity, the relative probability of 1s ionization with respect
to valence ionization grows. Nevertheless, this calculation
shows that direct two-photon processes with ejection of an
inner-shell electron never dominate the one-photon ionization
of valence electrons, even for a pulse as short as τp = 300
as (corresponding to a bandwidth of 6 eV). We confirm the
observation of Young et al. [5] that multiphoton processes
involving inner-shell electrons are overshadowed by valence
ionization as long as the valence electrons are not stripped
away.

IV. CONCLUSION

In conclusion, we investigated the two-photon ionization
cross section of Ne8+ in the vicinity of the 1s2-1s4p resonance.
We presented a strategy for calculating the two-photon ioniza-
tion cross section within the TDCIS framework. However,
the TDCIS model, which allows for a perfectly coherent
radiation pulse, does not explain the enhanced two-photon
ionization cross section, obtained by Doumy et al. [6] at
1110 eV, in spite of the inclusion of the 1s2-1s4p resonance
which was missing in Ref. [11]. The inclusion of the 1s2-1s4p

resonance within the LOPT approach for monochromatic light
does not explain the experimental result either. Chaoticity

and short coherence time of the XFEL radiation, taken into
account through the spectral distribution function in the cross-
section expression obtained within LOPT, partially explain
the observed enhancement. For the bandwidth of 10 ±1 eV,
estimated in the experiment, we obtained an increase of
the effective two-photon cross section by a factor of 40
with respect to the perturbative result for monochromatic
radiation. To explain the experimentally observed value of
7 × 10−54 cm4 s within this framework one would need a
broader spectral bandwidth (∼17 eV) or a mean photon energy
tuned closer to the 1s2-1s4p resonance. It is also worth
noting that some indirect pathways that avoid production and
two-photon ionization of ground-state Ne8+ have not been
included in the rate-equation model used in Ref. [6]. This
might have caused the experimental σ (2) to be overestimated.
Nevertheless, we believe the 1s2-1s4p resonance is the key
to explain the enhanced two-photon ionization cross section
of Ne8+ at 1110 eV, but its influence depends strongly on the
XFEL spectral density and uncertainties in its mean photon
energy.

From the study of neutral neon performed within the TDCIS
framework, we also infer that, when available, valence electron
stripping due to one-photon ionization dominates over two-
photon ionization of inner-shell electrons even at intensities
far beyond current experimental possibilities.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

Ultrafast sciences are young and rapidly developing. The characteristic time scales of
electronic and nuclear dynamics range from picoseconds (10−12 s) to attoseconds (10−18 s).
No mechanical and electronic devices operate on such time scales. Therefore, the only way
to investigate this nanoworld is by literately shining light on it. Within the last decade
tremendous technological progress has been made in generating short and shorter pulses,
and at the same time possessing better control of their shape and timing with respect
to other pulses. These are essential prerequisites for watching and controlling ultrafast
motions of atoms and molecules. Along with the reduction in the pulse duration comes
a steady increase in the photon energy of these pulses. This wide tunability makes it
possible to study a vast range of motions spanning from molecular rotations and vibrations
to electronic dynamics of outer-valence, inner-shell, or even core electrons.

On the theoretical side, much progress has also been made in tackling the challenges
that emerge in the ultrafast world. Many dynamics triggered by light pulses lead to complex
motions requiring a large con�guration space in order to fully capture the motion. Laser
alignment of molecules or the high-harmonic generation (HHG) process are two examples
where high rotational states with angular momenta J > 50 are needed to accurately
describe the underlying dynamics. The large variety of pulse durations, intensities, and
photon energies make it di�cult to develop a theoretical model that can cope with all the
possible kinds of dynamics that can be triggered by such a large range of pulse parameters.
Particularly challenging are laser-matter interactions that cannot be treated perturbatively,
such as strong-�eld ionization or non-adiabatic alignment of molecules in three dimensions.
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In this thesis, two prominent classes of ultrafast dynamics have been discussed:

• laser-alignment dynamics of molecules,

• ultrafast ionization dynamics of noble gas atoms,

where the characteristic time scale of molecular rotations is in the picosecond range, and
ionization dynamics happens on the scale of attoseconds to a few femtoseconds. For both
areas of ultrafast dynamics, I have developed programs that solve the time-dependent
Schrödinger equation for any type of pulse shape. Solving numerically the time-dependent
Schrödinger equation is computationally demanding but, therefore, also more general. Ex-
ploiting the underlying symmetries has proven to be essential in making these calculations
more feasible and pushing them even further. Often speed-ups of a factor 2 or more can
be easily achieved.

Laser Alignment of Molecules

The rotational motion of molecules is triggered by non-resonant laser pulses. The induced
dipole moment in the molecule interacts with the electric �eld of the pulse and creates
an angle-dependent potential, which forces the molecules to be aligned in the polarization
direction(s) of the pulse. Using pulses that are short or long with respect to the rotational
dynamics allows the generation of complex rotational motions. Combinations of several
short pulses, long and short pulses, or static and optical �elds are also exploited. This is
often done to maximize the degree of alignment without ionizing the molecule. Multi-pulse
methods have been predominantly used to study impulsive alignment dynamics of linear
or symmetric-top molecules due to their unique alignment dynamics. Impulsive alignment
o�ers the possibility to study these aligned molecules under �eld-free conditions. This is
particularly interesting for strong-�eld or attosecond experiments on molecular systems
where the alignment is needed but the subsequent processes should not be disturbed by
the presence of an aligning laser pulse.

In the case of asymmetric-top molecules, my �ndings suggest that standard multi-
pulse schemes, which are used to align symmetric-top molecules in 1D, cannot be easily
applied to 3D alignment. Just replacing elliptically polarized pulses with linearly polar-
ized pulses is not enough to impulsively align asymmetric-top molecules in 3D. Particu-
larly, the rotational revival feature of linear and symmetric-top molecules does not exist
in asymmetric-top molecules. Even though asymmetric-top molecules can show some kind
of revival behavior, the dephasing between rotational states is too rapid to be recoverable
by a subsequent pulse. The only promising multi-pulse approach that can overcome the
rapid dephasing is a fast sequence of pulses very closely spaced to each other. The number
of pulses is unfortunately limited because the spacing between them has to decrease with
every pulse since the rotational dynamics becomes faster and faster. My studies on SO2

have shown that the alignment of the most and the second most polarizable axes increases
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with the number of pulses. The degree of alignment of the third axis is, however, almost
unchanged from its initial isotropic value.

Aligning molecules is not done out of self-interest. Aligning molecules is essential for
many experiments. Hence, the understanding of alignment motion is crucial to �nd new
ways of improving the alignment even further. All kinds of laser-matter interactions are
highly dependent on the relative alignment/orientation of the molecule. This can be seen
in the alignment dependence of the HHG spectrum, and also in x-ray di�raction studies of
laser-aligned molecules. My investigations of x-ray di�raction from laser-aligned naphtha-
lene molecules have shown that the degree of 3D alignment is essential for getting useful,
high-Q di�raction information needed to reconstruct the molecular structure with atomic
resolution. For naphthalene, degrees of alignment of 〈cos2 θ〉 > 0.9 are needed to resolve
atomic positions. This can only be achieved with adiabatic alignment at the moment,
since impulsive alignment schemes for asymmetric molecules do not reach this high degree
of alignment.

Finite rotational temperatures of the gas phase molecules are the main cause of a re-
duced alignment quality. Temperatures below 1 K are required to achieve the necessary
alignment, since the maximum intensity of the adiabatic alignment pulse cannot be arbi-
trarily high. If the pulse intensity exceeds the tunnel ionization threshold, naphthalene
molecules start to get ionized. As long as the x-ray pulse duration is comparable or shorter
than the alignment dynamics, the e�ective resolution in the reconstruction is not a�ected
by the �nite pulse duration. My studies have shown that at rotational temperatures of
1 K it is possible to image molecular structure with a resolution such that the two-ring
structure of naphthalene is visible. At temperatures of T = 10 mK, the position of the
individual carbon atoms starts to emerge.

Ultrafast Ionization Processes in Noble Gas Atoms

When the pulse intensity reaches values of 1013 − −1014 W/cm2, the electric �eld is so
strong that an electron can be ripped out from an atom. This ionized electron can strongly
interact with the ion and changes its state as long as it is in the vicinity of the ion. Studying
these types of e�ects requires a multichannel theory such as time-dependent con�guration-
interaction singles (TDCIS). TDCIS combines the one-electron nature of many strong-�eld
processes with electronic structure theory, where correlation e�ects between electrons are
included that go beyond the independent particle model.

HHG is a very prominent mechanism connecting strong-�eld physics with attosecond
physics. Nowadays, HHG is not just used as a tool to produce UV attosecond pulses; the
HHG spectrum itself has moved into the scienti�c focus. It can provide information about
the electronic structure and electronic motion. To successfully investigate the electronic
structure, it is essential that correlation e�ects are included in the theoretical analyses.
Our �ndings on the HHG spectrum of argon demonstrate that multi-orbital and multipole
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e�ects have to be included in the theory. Not doing so can lead to HHG yields that are
up to one order of magnitude o�. The HHG cut-o� region seems to be quite robust to
these e�ects but at lower energies the changes can be signi�cant. In argon, the benchmark
was the position and the shape around the characteristic Cooper minimum. Similar to the
giant dipole resonance in xenon, the existence of the Cooper minimum is not a multielectron
e�ect. But its strength, shape, position, and indirect side e�ects in neighboring subshells
depend strongly on multielectron and correlation e�ects.

Ultrafast correlation dynamics have been investigated in my studies of decoherences
in attosecond photoionziation. The photoelectron (particularly the slower ones) interacts
with the parent ion during its detachment�a process neglected in the sudden approxi-
mation. The energy gained by the photoelectron due to absorption of a photon can be
redistributed between the electron and the ion via the residual Coulomb interaction. Such
an energy exchange (known as interchannel e�ects) leads subsequently to an entanglement
between the photoelectron and the ion. If at some later stage only the ionic subsystem is
probed (e.g., with transient absorption spectroscopy), one �nds that the ionic state is not
in a pure state�meaning it cannot be described by a coherent ionic wavefunction and is
only fully characterized by a density matrix description. The entanglement between the
photoelectron and the ion naturally results in a reduction in the coherences of the subsys-
tems. Particularly slow photoelectrons do strongly interact with the ion. Ultrashort pulses
with broad spectral bandwidths create both slow and fast photoelectrons. The increase
in slow photoelectrons with broader spectral bandwidths reduces the decoherence in the
ionic subsystem despite the fact that the broad spectrum is favorable for the creation of a
coherent hole wavepacket in the ion. If no interchannel e�ects occur during ionization, the
electron-ion entanglement is strongly reduced and the ultrashort pulse triggers an almost
perfectly coherent hole motion.

The possible degree of coherence that can be generated via photoionization is highly
interesting. Photoionization is the �rst step in launching a hole wavepacket. In molecular
systems, the hole dynamics can be quite complex and are not restricted to the atomic site
where it was initiated. After some time, the ionic hole may have traveled to a di�erent
atomic site in the molecule where it can in�uence site-speci�c chemical reactions; a situation
which has already been observed in recent experiments.

The preparatory ionization process as well as the subsequent hole motion in the ion can
be investigated by transient absorption spectroscopy. Not only can the ionic population
be studied time-dependently, but also the phase relations between ionic states can be
measured. My studies on atomic krypton have shown that access to the relative phase
makes it possible to directly probe �eld-driven interactions. During the tunnel ionization
of krypton, the �eld-driven interaction between the ion and the freed electron via the
neutral ground state results in strong deformations in the shapes of the absorption lines in
the transient absorption spectrum.
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Transient absorption spectroscopy, together with complementary techniques such as
streaking, opens the door to the ultrafast world of both partners�the photoelectron and the
ion�and the interaction between them. Combined with the control of molecular alignment,
not just atomic but also molecular dynamics can be studied.

6.2 Outlook

Ultrafast Ionization Processes in Noble Gas Atoms

The rapid progress in the last years of strong-�eld and attosecond physics can be expected
to continue in the next years to come. The steady push towards shorter pulses and higher
photon energies from the HHG side as well as from big facilities, namely the development
of free-electron lasers (FELs) in the UV (e.g., FLASH) and in the x-ray regime (e.g., LCLS,
SACLA, and the European XFEL), pave the way for a wide range of coherent pump-probe
experiments on femtosecond and attosecond time scales.

Transient absorption spectroscopy with femtosecond x-ray pulses would allow the prob-
ing of delocalized valence hole dynamics in molecules at speci�c atom sites by tuning the
x-ray energy near element-speci�c absorption edges. Also nuclear motion and its interplay
with electronic excitations, leading to non-Born-Oppenheimer dynamics, can be studied
on a few femtosecond time scale. On a picosecond time scale, structural deformations have
already been measured in metal-ligand complexes. Here, additional dynamics in the spin
degrees of freedom occur that are less common in closed-shell systems.

The theoretical, or more precisely the numerical, demand in solving a molecular system
is much more challenging than for an atomic closed-shell system. The great advantage
that comes with a spherically symmetric object is then lost and the angular part of the
wavefunction no longer factorizes from the radial part. For elliptically polarized pulses,
this radial-angular factorization is lost as well, regardless of the system symmetry. El-
liptically or circularly polarized light introduces new dynamics in the angular projection
M . Particularly for magnetic (open-shell) systems, circularly polarized light is ideal for
studying magnetic and spin dynamics. Therefore, the extension of the xcid package to
circularly and elliptically polarized pulses opens the possibility of studying new classes of
motion that are not possible in the current version of the program.

Molecular systems, however, o�er a much richer electronic motion, potentially cou-
pled to vibrational or rotational degrees of freedom. The single-active electron picture,
which works quite well for closed-shell atoms, becomes less and less appropriate for larger
molecular systems. A theoretical description of a dynamical process with several active
electrons (e.g., TDCISD) is on the other hand very challenging. Therefore, most stud-
ies that included rigorously multi-electron dynamics focus on the smallest two-electron
system�helium.

http://hasylab.desy.de/facilities/flash/
http://lcls.slac.stanford.edu
http://xfel.riken.jp
http://www.xfel.eu
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In strong-�eld processes, it is necessary on the one side to describe delocalized contin-
uum states. On the other side, it is not always necessary to include high order correlations,
as done in higher order con�guration-interaction (CI) approaches. The idea of reducing
the correlation dynamics but leaving the degrees of freedom for the spatial and momentum
dynamics untouched can be realized in a multi-con�guration time-dependent Hartree-Fock
(MCTDHF) ansatz. In MCTDHF, con�guration coe�cients as well as one-particle orbitals
are time-dependent. The advantage of time-dependent orbitals is that the con�guration
space is dynamically optimized, which keeps the number of needed con�gurations small.
Within this smaller dynamical con�guration space, a full CI (FCI) is performed.

Instead of performing a FCI within this dynamics subspace, which might be quite
challenging for ultrafast scenarios, it seems more attractive to do a lower order CI like CIS.
This idea of merging the MCTDHF logic with a TDCIS ansatz seems to be more promising
and especially a much more feasible approach for extending the current xcid package. In
addition to the common set of equations of motion for the con�guration coe�cients, a
new set of equations emerges for the time-dependent orbitals. With such an approach, the
remaining electrons in an ion are now allowed to adjust to the removal of the N th electron
without the need to introduce higher-order correlation classes. Already the polarizability
studies of Kr+ have shown that the spatial adjustments of the orbitals rather than higher
correlation e�ects are crucial for obtaining more reliable results.

Laser Alignment of Molecules

For strong-�eld and attosecond experiments with molecular systems, the alignment or even
the orientation of the molecule becomes an important aspect. Unfortunately, despite the
fact that the polarizability increases with system size, larger molecules become more and
more di�cult to align. The growing negative in�uence of the �nite rotational temperature
outpaces the positive e�ect of the polarizability. Larger molecular are also less sti� than
smaller ones. This means that larger molecules more easily get deformed by an external
�eld making the rigid-rotor approximation questionable.

Furthermore, the polarizability tensor is generally not diagonal in the principal axes of
inertia. Only for small molecules with high internal symmetries (e.g., SO2 or naphthalene)
are the polarizability tensor and the moment of inertia tensor diagonal in the same body-
�xed frame. The larger the molecules, the less likely it is that these two sets of reference
frames coincide. This creates two kinds of challenges for larger molecules. First, the align-
ment dynamics becomes more challenging, since the molecule rotates around the moment
of inertia axes but the aligning �eld forces the molecule to align to the polarizability axes.
Therefore, it is not clear to which extent current techniques are still suitable for large
molecules. Second, the computational challenge grows as well. The increased complexity
in the alignment dynamics gets re�ected onto the more complex dynamics of the angular
momentum projection K, which no longer changes in steps of 2 but rather of 1, doubling
the number of accessible rotational states.
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Another interesting extension for the xalmo package is the possibility to treat longer
wavelengths, where the alignment motion cannot be averaged over a cycle period of the
aligning laser pulse. Such pulses can orient polar molecules. From the numerical point of
view, this leads to another loss of symmetry in the angular projection M , which would
not change in steps of 2 anymore. Together with the loss in symmetry of the K quantum
number for large molecules, the numerical demand is signi�cantly increased in comparison
to the alignment studies presented in this thesis. Despite the challenges, this extension
would o�er new opportunities to discover novel alignment dynamics schemes that boost
the e�ciency of aligning and/or orienting molecules.

Overall Perspective

From rotational motion of molecules down to single electronic excitations, a wide range
of nanoscale dynamics can nowadays be probed and controlled by ultrafast pulses, and
the possibilities continue to expand to even more complicated systems. With the advent
of FELs, intense femtosecond UV and x-ray (short wavelength) pulses became available.
Pump-probe experiments in the UV and x-ray regimes can target atom-speci�c electronic
dynamics. Particularly for molecules, this raises the tantalizing prospect of controlling
chemical reactions by triggering the break-up and formation of bonds. Optical and NIR
(long wavelength) pulses, on the other hand, provide unmatched spatial and temporal co-
herence properties. Due to the high degree of coherence, electron motion on an attosecond
scale can be revealed with techniques like attosecond streaking. Optical pulses can also be
used to probe structural information via high harmonic generation. With more moderate
intensities, optical pulses control the rotational dynamics of molecules. By continuing the
rapid progress experimentally and theoretically, the dream of making a molecular movie
and watching electrons and atoms move might become a reality sooner than we think.
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