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Abstract

The realistic simulation of particle collisions is an indispensable
tool to interpret the data measured at high-energy colliders, for exam-
ple the now running Large Hadron Collider at CERN. These collisions
at these colliders are usually simulated in the form of exclusive events.

This thesis focuses on the perturbative QCD part involved in the
simulation of these events, particularly parton showers and the consis-
tent combination of parton showers and matrix elements. We present
an existing parton shower algorithm for emissions off final state par-
tons along with some major improvements. Moreover, we present a
new parton shower algorithm for emissions off incoming partons. The
aim of these particular algorithms, called analytic parton shower al-
gorithms, is to be able to calculate the probabilities for branchings
and for whole events after the event has been generated. This al-
lows a reweighting procedure to be applied after the events have been
simulated.

We show a detailed description of the algorithms, their implemen-
tation and the interfaces to the event generator WHIZARD. Moreover we
discuss the implementation of a MLM-type matching procedure and
an interface to the shower and hadronization routines from PYTHIA.
Finally, we compare several predictions by our implementation to ex-
perimental measurements at LEP, Tevatron and LHC, as well as to
predictions obtained using PYTHIA.






Zusammenfassung

Die realistische Simulation von Teilchenkollisionen ist ein unver-
zichtbares Werkzeug um die an Teilchenbeschleunigern, zum Beispiel
dem zur Zeit laufenden Large Hadron Collider (LHC), gemessenen
Daten zu verstehen. Die an diesen Teilchenbeschleunigern erzeugten
Kollisionen werden typischerweise in der Form von exklusiven Ereig-
nissen simuliert.

Diese Arbeit konzentriert sich auf den Anteil perturbativer QCD
an der Simulation dieser Ereignisse, im Besonderen Parton Showern
und die konsistente Kombination von Parton Showern und Matrixele-
menten. Wir stellen einen bereits bekannten Parton Shower Algorith-
mus fiir Abstrahlungen von Teilchen im Endzustand harter Wechsel-
wirkungen und unsere Verbesserungen an diesem Algorithmus vor. Des
Weiteren zeigen wir einen neuen Parton Shower Algorithmus fiir Ab-
strahlungen im Anfangszustand. Das Ziel dieser Algorithmen, genannt
analytische Parton Shower Algorithmen, ist, die Wahrscheinlichkeiten
fiir die einzelnen Abstrahlungen und somit fiir komplette Ereignisse
berechnen zu kénnen, auch nachdem das komplette Ereignis generiert
wurde. Dies erlaubt eine Neugewichtung der Ereignisse nachdem die
Ereignisse simuliert wurden.

Wir présentieren eine detaillierte Beschreibung der Algorithmen,
ihre Implementierung und die Schnittstellen zum Ereignisgenerator
WHIZARD. Auflerdem besprechen wir die Implementierung einer Pro-
zedur zur Kombination von Parton Showern und Matrixelementen,
genannt MLM-matching, und eine Schnittstelle zu den Shower- und
Hadronisierungs-Programmen aus PYTHIA. Zum Abschluss vergleichen
wir verschiedene Vorhersagen unserer Implementierungen mit experi-
mentellen Messungen von LEP, Tevatron und LHC, sowie mit Vorher-
sagen, die mit PYTHIA gemacht wurden.
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1 Introduction

1 Introduction

The current years are interesting times for particle physicists. The Large
Hadron Collider (LHC), running since 2008, might give new insights and
solve some problems of particle physics or even raise new open questions.
To understand the measurements made at the two main-purpose detectors
at the LHC, the ATLAS and the CMS detectors, predictive simulations of
hadronic collisions need to be available. This thesis gives a description of my
efforts to aid in the development of these simulations.

1.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) has been very successful for the
last decades as one of the cornerstones of physics. The model describes the
elementary particles and their strong and electro-weak interactions. The par-
ticle content of the Standard Model consists of the quarks and leptons, the
force-carrying gauge bosons and the Higgs boson, that via its non-vanishing
vacuum expectation value generates the masses of other elementary particles.
The quarks and the gluon, one of the force-carriers, are of particular interest
as these are the particles carrying a color charge. The associated interaction
shows two peculiar features: confinement and asymptotic freedom. Confine-
ment explains that quarks and gluons are only found in color-neutral bound
states, while asymptotic freedom means that quarks and gluons appear to be
free fields at higher energies. The tension between these two features is one
underlying motif of this thesis.

In the past, the Standard Model has been successfully validated many
times. Some of the most important experimental confirmations are the dis-
coveries of weak neutral currents [2], the charm quark [3, 4], the W- and
Z-Bosons [5, 6], the top quark [7, 8] and the 7 neutrino [9], as well as the
confirmation of the predictions for the anomalous magnetic dipole moment of
the muon, g—2, and the agreement between values for the weak mixing angle
Ay measured in a variety of ways, all verified by experiments with outstand-
ing precision [10]. However, the Standard Model awaits further confirmation
as the search for the Higgs boson has not been successful as so far. However,
recent data seem to suggest the existence of the Higgs boson. The search
for this key ingredient of the Standard Model was one of the main reasons
to build the LHC and it is very probable that either the discovery or the
exclusion of the Higgs boson will be announced within this year.

The Standard Model is formulated in the framework of relativistic quan-
tum field theory. Analytic calculations are only feasible for simple observ-
ables, and even then, a direct comparison of these observables to measure-
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ments is difficult. In general, more complicated methods have to be used.
Four paths of predicting observables in collider physics are widely pursued:

e Perturbative calculations.
e Analytical resummation methods.
e Lattice calculations.

e Phenomenological models for non-perturbative physics.

The perturbative ansatz is the ansatz that we will pursue in this thesis, how-
ever supplemented with models for non-perturbative physics where necessary.
The aim of resummation methods is to describe inclusive quantities by ana-
lytically resumming higher-order contributions. Resummation can be applied
to collider physics, see e.g. [11], but is limited to specific observables. The
ansatz of lattice calculations is to discretize space-time into a lattice and then
solve the problem numerically. Lattice calculations have been successfully
applied to stationary processes, like the calculation of hadron masses [12],
but are too computationally demanding to simulate scatterings at a collider.
Models for non-perturbative physics are used to describe hadron-hadron in-
teractions with low momentum transfer, like elastic scatterings, diffractive
scatterings or low pr non-diffractive events. These scatterings can be mod-
elled by the use of pomeron and reggeon exchange. See for example [13] for
a review of these soft interactions at the LHC.

In the perturbative ansatz, observables are given in a power expansion in
the strong coupling constant ag?,

0= 0, (1.1)
i=1

which in principle calls for the calculation of infinitely many contributions.
It is therefore preferable to choose observables that are only weakly affected
by higher-order contributions. If aig is small, a sufficient approximation can
be obtained by taking only a limited number of orders into account?,

O, =Y Oial. (1.2)
=1

Therefore, every perturbative calculation is inherently dependent on the max-
imal number of powers of ag taken into account. Thus, every perturbative

L Although we only use ag the same applies for electro-weak interactions and analo-
gously for combinations of both.
Zassuming an insignificant volatility of the coefficients O;
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calculation is afflicted with the error of omitting higher orders. Moreover,
as the complexity to calculate the coefficients O; grows rapidly with order
7, many observables have only been calculated up to the first non-vanishing
O;, hence being called leading order (LO) calculations. Due to theoretical
effort in the last years, more and more next-to-leading order (NLO) calcu-
lations and generators become available®, while calculations at next-to-next-
to-leading order (NNLO) are very scarce.

The most important observables are the cross sections for specific pro-
cesses, that can be directly related to the probability for each process. How-
ever, calculated naively, cross sections show divergences that can stem from
a variety of sources. For this thesis, soft and collinear divergences are of
particular interest. Soft divergences are caused by massless particles hav-
ing an energy close to zero, while collinear divergences are caused by two
particles moving in directions very close to each other. These divergences
do not reflect physical divergences, they only appear as a consequence of an
inappropriate definition of observables. For observables defined suitably in-
clusive it has been shown by Bloch and Nordsieck [17] and Kinoshita, Lee and
Nauenberg [18, 19] that these divergences cancel (for a more recent review
see [20]).

1.2 Experimental Procedure

In the early days of particle physics, the analysis of an experiment consisted
of screening cloud chamber or bubble chamber photographs and analyzing
the visible tracks. A track that could not be attributed to any known particle
could represent, the observation, in the true sense of the word, of an unknown
particle. One of the discoveries made this way is the discovery of the positron
in 1933 [21], where 15 out of 1300 photographs of a cloud chamber displayed
an unknown particle that we today know as the positron.

During the last decades, physicists have been gaining more and more
knowledge about the elementary particles and hence pushed the frontier of
ignorance further and further. The driving force was the development and
running of colliders with continuously increasing energies, accompanied by
detectors with ever increasing resolution. These high energy experiments
have led to many of the discoveries mentioned in the previous chapter and
made the term high energy physics a synonym for particle physics. The latest
collider in this line is the LHC with its two multi-purpose detectors ATLAS
and LHC.

3For a review of NLO calculations see [14], for a review of NLO generators see [15], or
the more general recent review [16].
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Figure 1.1: Pushing the frontier of ignorance during the last 80
years: (left) One of 1300 cloud chamber images from the exper-
iment that led to the discovery of the positron [21]. The track
shown could not be identified with any known particle, the most
likely explanation was that an until then unknown particle has
been observed. (right) A histogram for the distribution of the
mass of photon pairs, obtained from a simulated measurement at
the ATLAS detector [22]. The expected distribution assuming the
non-existence of the Higgs boson is shown as the dashed curve,
while the solid curve shows the expected distribution assuming
the existence of a Higgs boson with a mass my = 120 GeV. A
simulated measured distribution is shown as the crosses, this dis-
tribution obviously favors the existence of a Higgs boson over the
non-existence.
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As of 2011, the LHC collides protons at a center-of-mass energy of 7 TeV.
In the individual events, some of the protons’ constituents, quarks and gluons,
collide and produce a multitude of final states. Produced photons, electrons
and muons can be directly measured in the detector. On the contrary, quarks
and gluons cannot be measured directly. Due to color confinement they will
form hadrons that can be measured. These hadrons usually appear in the
form of bunches traveling in a similar direction. These bunches are called
jetst,

It is assumed that all particles measured in the detectors are known, while
any unknown particle will either decay before reaching the detector or escape
the detector without leaving any signal. Thus the only way to gain knowledge
is to analyze the measured particles and try to deduce information about the
intermediate states from them.

The modern way of analyzing the measurements is to simulate a large
number of events and compare histograms of observables, like e.g. miss-
ing transverse momentum, obtained from the simulated events and compare
them with the corresponding histograms obtained from real measurements.
If a satisfactory degree of consistency is present, the theory can be regarded
to describe the data in a correct way, while a significant deviation shows the
existence of physics unaccounted for, either a deficiency in the simulation or
possibly new physics.

1.3 Event Generators

With the need for simulated event samples, the demand for event generators
rose. Event generators are computer programs that transform theoretical
input into simulated events. These events can be either weighted or un-
weighted. Unweighted events each contribute with equal weight to any anal-
ysis, while the contribution of weighted events is given by their respective
weight. An event generator usually generates weighted events in the first
place, unweighted events are generated by rejecting weighted events accord-
ing to their weight. Only unweighted events can be directly compared to
measured data. However, measurable observables are calculated using these
events. These observables are mostly either cross sections for specific pro-
cesses. The simulation of events at a present-day collider is demanding for
a combination of various physical aspects. Modern event generators thus
divide the generation of an event in various steps, see the next section for a
more detailed discussion of these steps.

Nowadays, several multi-purpose event generators are publicly available.

4See section A.2 for one way of defining jets.
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Probably the event generator most used today is PYTHIA [23, 24], with ALP-
GEN [25], Herwig++ [26], MadGraph [27], Sherpa [28] and WHIZARD [29]
as widely used alternatives. Moreover, there exists a plethora of programs
that are tailored to one special purpose and are mostly designed to work as
extensions or plug-ins to the more common event generators. For example
LHAPDF [30] provides a standardized interface to parton distribution func-
tions and FeynRules [31] calculates the set of Feynman rules associated with
a given Lagrangian and allows these rules to be used in the event generator.

1.4 Typical Generation of an Event

In modern event generators, the generation of events is divided into several
distinct steps. For each step, the simulation is performed by a dedicated
component of the generator. A precise simulation of an event therefore de-
mands a coordinated interplay of these components. The needed steps are
the calculation of hard matrix elements, the description of the hadronic sub-
structure by parton distribution functions, the simulation of parton showers,
a matching procedure to combine matrix elements and parton shower, the
modeling of multiple interactions, the hadronization, the hadronic decays
and the simulation of the detector response.

The steps from a hard interaction to a fully simulated event at a hadron-
hadron collider are shown in the following. For an event at a lepton-lepton
collider, some steps can be omitted or simplified. The simulation can be
divided into four major steps: the hard interaction, the residual hadron-
hadron interaction, pile-up and the detector simulation.

1.4.1 The Hardest Interaction

The hardest or core interaction is the scattering with the highest energy scale
or momentum transfer. It is a scattering of two incoming particles or partons
into n outgoing partons. The calculation of processes with a high number
of outgoing partons n is limited by the rapid growth of complexity of the
corresponding matrix elements and the integration over the phase space. On
present-day computers n is bound to be only up to six to eight for leading-
order calculations. The hardest interaction usually incorporates the most
interesting physical process of the event. For example, at the LHC it might
be the production of a Higgs boson and its subsequent decay. The hardest
interaction is described by means of a perturbative series in the framework of
quantum field theory. Mostly, except for the omission of higher order terms
in the perturbative expansion, no approximations are made in the matrix
elements used to generate the hardest interaction.
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Figure 1.2: Generating an event: the hard interaction, for ex-
ample a 2 — 4 process with two incoming quarks, two outgoing
quarks, one outgoing gluon and one outgoing photon. The in-
ternal structure of the hard interaction is not shown, it is just
represented by the gray circle.

The component of an event generator that simulates the hardest interac-
tion is generally the most important component of the event generator.

1.4.2 The Residual Hadron-hadron Interaction

Here, we refer to everything else that occurs associated with the hard inter-
action as the residual hadron-hadron interaction.

Parton Distribution Functions When colliding hadrons, the fact that
hadrons are composite objects and that it is not the hadrons but their com-
ponents that actually collide has to be taken into account. The colliding
constituents of the hadrons have been named partons. From today’s point
of view, one knows that these partons can be quarks or gluons and due to
the factorization theorem, the probability density for a parton to be part in
a collision can be described by parton distribution functions (PDFs). The
hadron is thought to be in a superposition of all possible compositions of
partons. The PDF for a specific type with a given momentum fraction is
then proportional to the fraction of possible compositions that contain the
specified parton with the specified momentum fraction. The parton distri-
bution functions then give the probability density to find a parton of certain
type with momentum fraction z in a hadron at a scale Q% taking part in a
hard interaction. The cross section for the production of a state X is then
given by

Ox = Z/dxldx?fi (x17Q2) i ($27Q2) Oijox (p1,p2,Q2) (1.3)
.

7
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with the partonic cross section 0;;_.x and the PDFs f; and f;.

Figure 1.3: Generating an event: adding parton distribution func-
tions. The hadrons are shown as dark ellipses. In this case, an
antiproton is shown on the left, a proton is shown on the right.

As hadrons are nonperturbatively bound objects, PDFs cannot be cal-
culated in the framework of perturbative quantum field theories. The only
other way to determine PDFs from first principles is via the use of lattice
QCD calculations, but these have not yet proven successful. Therefore PDF's
can only be obtained by fitting experimental results and are thus always
tainted with experimental, statistical and fitting-induced uncertainties. Var-
ious collaborations obtain PDFs using different ways of fitting and including
different data sets. The most well-established PDF's are those published by
the CT10 [32], MSTW [33] and NNPDF [34] collaborations.

Parton Showers Parton showers describe additional emissions off the in-
coming and outgoing partons in an interaction. The parton shower consists
of the initial-state parton shower or initial-state radiation (ISR) describing
emissions off the incoming partons and the final-state parton shower or final-
state radiation (FSR) describing emissions off the outgoing partons.

The necessity for parton showers can be seen when comparing a process
with charged external particles to the same process with an additional parton
emitted, e.g. comparing e*e~ — ¢g to the same process with one additional
gluon, ee™ — ¢qg. For a small minimal gluon energy or a small minimal
emission angle between the gluon and one of quarks, the ratio of the cross sec-
tions o(ete™ — qqg)/o(eTe” — ¢q) will diverge to infinity. This breakdown
of perturbation theory is due to the incorrect assumption that the particles
in the final state are distinct particles. On closer examination every charged
particle is inevitably surrounded by a cloud of virtual gauge bosons. The
divergent contributions stem from processes where the additional parton is
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Figure 1.4: Generating an event: adding parton showers. The
incoming and outgoing quarks emit gluons. One of these gluons
splits further into two gluons. The gluon produced in the hard
interaction splits into a quark-antiquark pair.

part of another parton’s cloud, but is treated as an individual particle. How-
ever, extrapolating the divergent contributions away from the divergence,
observable effects can be obtained, manifesting themselves in the emission of
observable partons, which is then called the parton shower. These partons
might initiate additional jets or influence the substructure of the jet they are
produced in.

The framework of parton showers is a well defined approximation to the
full matrix element. The most divergent contributions take the form [ % and
hence correspond to logarithmic divergences. These contributions are thus
called leading logarithms (LL), while the inclusion of higher order logarithms
is possible. The implementation is in the form of a Markov chain of parton
branchings, where all branchings are treated independently.

Matching The matrix element describes processes with a given number of
external partons up to a given order in the coupling constant, giving a correct
description of hard emissions. On the other hand, parton showers describe
events with a variable number of additional particles by resumming lead-
ing logarithms, giving a correct description of soft-collinear emissions. Thus
these two approaches describe different kinds of emissions correctly and it is
therefore preferable to combine a description of emissions using matrix ele-
ments with a parton shower description where they are applicable. This leads
to matching procedures that aim to combine these approaches consistently.
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For this, it is necessary to avoid possible double-counting of contributions
and ensure a smooth transition between the two ways of description. Figure
1.5 gives a pictorial description of the combination of matrix elements and
parton showers.

n, =2 n, =3 n, =4
n =2 = =
ME PS PS
n =3 =
ME PS

TLME:4

nye > 9

Figure 1.5: Generating an event: matching. The interactions
described by matrix elements are shown as gray circles. For the
parton shower emissions, only one example emission is shown
here. The aim of matrix element/parton shower matching is to
combine the descriptions shown in each column. For example, an
event with four final partons, n, = 4, could stem from a 2 —
2 matrix element followed by two emissions during the parton
shower (first row), a 2 — 3 matrix element followed by one parton
shower branching (second row) or directly from a 2 — 4 matrix
element (third row).

Multiple Interactions As hadrons are compound objects, the possibility
that more than one pair of components of each hadron interact cannot be
neglected. In principle, due to the rise of PDFs at low momentum fraction
x, arbitrarily many parton-parton interactions could occur in each hadron-
hadron interaction. The number of interactions is limited due to the fact
that most of these interactions would be soft and thus the partons would
not be able to resolve the respective other hadron’s internal substructure.
With reasonable cuts the average amount of parton-parton interactions per

10
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proton-proton collision at the LHC is of the order of 10. All aspects already
mentioned apply to additional interactions as well: the interactions have to be
weighted by PDF's themselves, where the PDFs have to be adjusted for sub-
sequent interactions as the former interactions have altered the flavor, color
and momentum composition of the hadron or the hadron remnant. More-
over, all particles from the additional interactions can start parton showers
on their own. Matching can be applied as well, but is usually not necessary
as the additional interactions are rather soft and thus probably incapable to
produce additional hard emissions.

Figure 1.6: Generating an event: multiple interactions. In this
case two additional interactions are shown as gray circles, one
g9 — gg and one g — @g interactions.

This approach relies on the assumption that the interactions proceed
independent of each other. However, the interactions can be connected by
sharing external particles. These connected interactions can be divided into
two classes, joined interactions and rescattering.

In the first special case of joined interactions, a branching in the ISR of one
hadron produces two partons that interact with two partons from the other
hadron, thereby letting a 2 — n; and a 2 — ny effectively mimic a 3 — ni+no
interaction. In the case of rescattering, a parton from the final state of one
interaction scatters again against another parton from one of the hadrons in
a subsequent interaction, thus connecting the final state of one interaction
with the initial state of another interaction. Rescattering occurring in an
event with one 2 — n; interaction and one 2 — no interaction will mimic a
3 — n1 + ny — 1 interaction. Rescattering involving two 2 — 2 interactions
could therefore be visible in three-jet-rates. This has been studied [35] but
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Figure 1.7: Generating an event: multiple interactions with
joined interactions (top) and rescattering (bottom).

not found to be of significant importance.

Interleaved Evolution The simulation of multiple interactions, initial-
state radiation and PDFs has to be performed in a combined way. This is
necessitated by the need to distribute the hadron’s flavor content and mo-
mentum among the particles produced in the interactions and the initial-state
parton showers. To prohibit a violation of conservation of quantum numbers
and momentum, the algorithms simulating the parton shower and multiple
interactions must take the full set of resolved branchings and multiple inter-
actions into account. One approach for this is the interleaved evolution [36].
The basic idea is to combine the simulation of multiple interactions and
initial-state parton showers in one Markov chain, where at each step, either
an additional ISR branching or an additional multiple interaction is found.
During this Markov chain, parton distribution functions that have been ad-
justed for all interactions and all branchings in the initial-state radiation so
far have to be used. Developing an algorithm to calculate these adapted
PDFs is a non-trivial task [37].

A different approach to the steps denoted here as multiple interactions
and interleaved evolution is the use of multi-parton distribution functions.
Currently, only double-parton distribution functions are available [38]. Then
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equation (1.3) will be expanded to look like

m
oxy = Z /dl’l dxs dl’g dxy -Dz'j (xlux%,ug(wu?/)

20ers 7

Dy ($3,$4,M§(,M%) Oik—X (p1,p3,li§() Oji-y (p2,P4,/~L§f) (1.4)

with the symmetry factor m and the normalization o.¢;. The double-parton
distribution functions have to be obtained from data, which has been found to
be more difficult than for single-PDFs. Also all limitations from single-PDF's
apply for double-PDFs and multi-PDFs as well.

Simulation of the Beam Remnant After initial-state radiation and mul-
tiple interactions have been simulated, the hadron remnant will carry remain-
ing momentum and the remaining flavor and color quantum numbers. As the
remnant is most likely to move near the beam axis it will hardly be seen in
the detector. Nevertheless, conservation of global momenta and quantum
numbers has to be taken into account in order to provide a consistent state
as input to the hadronization. The beam remnant will be replaced by a com-
position of gluons, quarks, diquarks, mesons and baryons with the correct
color and flavor quantum numbers and the remaining momentum distributed
among them. The actual composition of the beam remnant has to be chosen
according to a specific model, as the corresponding physics is nonperturba-
tive, see for example [23, chapter 11] for the models implemented in PYTHIA.

Hadronization Due to confinement, colored particles combine to form
hadrons before reaching the detector. This hadronization is a nonpertur-
bative process and hence can only be described by empirical models and not
from first principles. Hadronization can be regarded to be the inverse of the
transition from hadrons to partons using PDFs. The mostly used implemen-
tation of a hadronization model is the implementation of the Lund string
model [39] in PYTHIA. Another popular hadronization model is the cluster
model [40] with its implementation in Herwig++-.

In the Lund string model it is assumed that the event is evaluated in
the limit where interference terms between different color configurations are
neglected, so that every particle is associated with one, or if the particle is
a gluon two color partners. From these mutually connected color partners
connected strings can be composed. These consist of a color charge, mostly
a quark, at the beginning, gluons along the string and an anticolor charge,
mostly an antiquark, at the end of the string. Now additional ¢g-pairs are
created, either by cutting a color string or replacing a gluon. This resembles
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Figure 1.8: Generating an event: adding beam remnants. The
antiproton’s beam remnant consist only of a quark, the proton’s
beam remnant consists of a meson (shown as a white oval) and
two more quarks.

the creation of additional quark-antiquark pairs from the color field when
quarks are pulled apart. This procedure is iterated until all strings are small
and accordingly low energetic enough. Each remaining string is then assumed
to correspond to a meson and is replaced by this meson. The production of
baryons can be implemented in this model by allowing diquark-pairs to be
created along the string, so that remaining strings will correspond to three
quark states.

Hadronization models typically employ a large number of model param-
eters. Dedicated studies are performed in order to determine optimal values
for these parameters as they cannot be inferred from theory alone. These
sets of optimal values are commonly referred to as hadronization tunes.

A different approach to hadronization is the use of fragmentation func-
tions. These functions describe the probability for a quark or gluon to con-
vert into a hadron of specific type [41, 10, chapter 17]. The fragmentation
functions can be thought of as being the inverse of the parton distribution
functions.

Hadronic Decays Some of the hadrons produced in the hadronization will
decay too rapidly to reach the detector. Moreover, several of these decays can
occur sequentially until all particles are stable enough to reach the detector.
These decays can be simulated by incorporating the decay tables from the
decay tables collected by the Particle Data Group (PDG) [10]. However,
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Figure 1.9: Generating an event: adding hadronization. The
hadrons are shown as white ovals.

many decays are not precisely measured, the implementation therefore has
to estimate the properties for these decays.

1.4.3 Pile-Up

Until now, only one interaction of one hadron from the first beam and one
hadron from the second beam has been considered. As in the experiment the
beams do not consist of single hadrons but of bunches of hadrons, about 10!
protons for the LHC, more than one hadron-hadron interaction per bunch-
crossing will be possible. As of the end of 2011, the ATLAS experiment
reported a mean number of interactions per crossing of 11.6°, expecting an
increase of this number for the near future. These multiple hadron-hadron
interactions are called pile-up. However, it has to be noted, that the bet-
ter part of these interactions is soft due to the relatively small cross section
for hard interactions. The majority of bunch crossings containing at least
one hard interaction will contain just one hard interaction. Thus, pile-up
can be simulated by overlaying a hard hadron-hadron interaction with sev-
eral soft hadron-hadron interactions as it is reasonable to assume that these
interactions happen independent of each other.

5See section D for the ATLAS results.
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Figure 1.10: Generating an event: adding hadronic decays. Two
of the hadrons decay, one into two hadrons, the other one into a
hadron and a photon.

1.4.4 Detector Simulation

Finally, for comparison of the generated event sample with a measured event
sample, a simulation of the detector itself is required. Detector deficiencies
like dead zones, limited resolution and non-maximal trigger efficiency have to
be taken into account. Moreover uncertainties can be introduced, for example
due to unknown detector parameters or non-perfect calibration. Big efforts
are made in order to perform reliable simulations of detectors, see e.g. for
ATLAS [42] and for CMS [43].

After the detector simulation, the events can be analyzed and compared
to the analyzed measured data. The detector simulation is beyond the scope
of this thesis and will not be considered in the following. However, the
detector simulation is the most time-consuming part of generating an event
sample. For a typical Standard Model event, the time needed to simulate
the ATLAS detector for one event is approximately 15 minutes [42, section
3.2].

1.4.5 Sequence of Steps

The procedure as given in sections 1.4.1 to 1.4.4 is not ordered correspond-
ing to causality, but in a sequence going from high-scale to low-scale physics.
This sequence is the sequence used during the generation of an event. An
ordering according to causality would be possible as well, placing the par-
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ton distribution functions and the initial-state radiation first, leading to the
hardest interaction and the additional multiple interactions, then followed by
final-state radiation, hadronization, decays and the detector simulation. This
procedure would have the drawback that the parton distribution functions
and the initial-state radiation would create a plethora of states unsuitable
for the hard interaction to be simulated, as for example the flavors of the
particle or the partonic center of mass energy would prohibit the hard in-
teraction investigated to be produced. Therefore, an algorithm producing
events in this way would be forced to reject a sizable part of the generated
events, wasting a large fraction of computing time.

1.5 The Benefits of Analytic Parton Showers

As outlined in the previous section, parton showers are an indispensable part
in the simulation of collisions in high energy physics.

Along with the implementation of multi-purpose event generators, many
implementations of parton showers were developed. The parton shower im-
plementations most commonly used are those in PYTHIA [23, 24], that are also
invoked by many other programs using the provided interfaces. Alternatively,
programs such as Herwig++ [26] and SHERPA [28] contain implementations
of their own parton shower algorithms as components for their event gen-
eration frameworks. Moreover programs that are dedicated exclusively to
parton showers which work as plug-ins to event generators are available, the
most prominent being Ariadne [44] and Vincia [45].

These implementations have one common drawback: for a generated
event it is not possible to calculate the probability for this event to be gen-
erated. This is due to the fact that the four-momentum conservation is
enforced in every parton splitting in the shower, while the parton shower
is implemented in a way that also generates splittings that do not conserve
momentum. These splittings are then either dismissed or manually altered.
But it is these splittings that modify the probability distributions in a practi-
cally incomprehensible way, making it impossible to calculate the branching
probabilities for a particular event. If the probabilities were calculable, the
effect of a change in the configuration of the parton shower could be included
by calculating the branching probabilities and apply a weight corresponding
to the probability before and after the change to each event. The only way
to obtain an event sample according to changed settings would be to regen-
erate the complete event sample. This is unfavorable as all steps from the
event generation, except for the generation of the hard interaction which is
insensitive to the parton shower, would have to be repeated, including the
most time-consuming part of simulating the detector response.
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Recently it was shown that the formulation of parton showers can be re-
produced by the soft-collinear effective field theory (SCET) [46]. This led
to the formulation of so-called analytic parton showers [47]. Particular in-
terest was placed on the the capability to calculate the probability for the
branchings analytically, hence calling these parton showers “analytic”. The
advantage of having an analytic parton shower is the calculability of the prob-
abilities, giving the potential to reweight events by the ratio of probabilities
when changing the parton shower.

When using an analytic parton shower, changing the configuration of
the parton shower program would only call for a resimulation of the parton
shower. This resimulation would give a new weight for each event, corre-
sponding to the ratio of the probabilities for generating the event using the
old and new settings respectively. By this, one avoids the need to repeat the
complete event simulation.

In this thesis, we intend to present an analytic parton shower for event
generation. We extend the analytic final-state parton shower presented by
Bauer et al. [47, 48] and develop a new analytic parton shower for initial-state
radiation [49]. The development of this analytic initial-state parton shower,
its implementation and its validation are the main topics of this thesis.

Different approaches to the same problem have been published in the
literature. Stephens and van Hameren [50] presented an approach using vari-
ational techniques. A different approach was presented by Giele, Kosower
and Skands [51] recently. They use an algorithm where trial emissions are
generated using an overestimate of the splitting probability, a fraction of the
trial splittings is then vetoed to regain the original splitting probabilities.
The vetoed branchings are stored nevertheless. The event’s weight under
a different scheme can then be calculated, not analytically, but in a proba-
bilistic way. It is given by the ratio of the joint probabilities to accept all
accepted branchings while vetoing all vetoed branchings.

1.6 Structure of this Thesis

Let us shortly summarize the structure of this thesis: Chapter 2 contains an
introduction to the theory of parton showers as well as an overview of the
main approaches to the problem of combining matrix elements and parton
showers, known as matching procedures. In section 3 we start by shortly
summarizing the existing approach for an analytic final-state parton shower.
In the main part of the section, we will then present our newly developed
extension for the analytic final-state parton shower and the newly developed
analytic initial-state parton shower. In section 4 we will describe technical
details about the implementation of the analytic parton shower algorithms
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within the event generator WHIZARD. Results obtained using this implementa-
tion are presented in section 5 along with comparisons of these results to data
measured at LEP, Tevatron and LHC as well as to results obtained using the
parton shower implemented in the event generator PYTHIA. Finally we will
present our conclusion and an outlook for future plans connected with the
analytic parton shower and its implementation.

The appendices contain supporting material for this work: In appendix A
we describe the observables and jet measures used in the description of events.
Appendix B contains three calculations that were too technical for the main
text. We present sample source code in appendix C: One main program
written in Fortran as a sample standalone program in section C.1 and four
sample input files for WHIZARD in section C.2. Finally, appendix D shows an
ATLAS measurement of the multiplicity of hadron-hadron interactions.
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2 Theory of Parton Showers and Matching

2 Theory of Parton Showers and Matching

Complete perturbative calculations in QCD can only be performed with a
limited and fixed number of internal and external particles. Moreover the
number of vertices and thus coupling constants is also limited, primarily due
to the roughly factorial growth of complexity with increasing order of the
coupling constants. Although this can be reduced to exponential growth by
means of recursive algorithms like ALPHA [54], 0°Mega [55] or Helac [56, 57],
this is still not feasible for interactions with more than about ten particles
in the final state, especially as the phase space integration becomes a ma-
jor bottleneck for these processes. However, in some regions of phase space,
contributions from higher orders and thus corresponding to a higher and pos-
sibly unlimited number of particles can be enhanced and can therefore not be
neglected. These higher order contributions are enhanced by logarithmically
divergent factors for each order of the coupling constant. For regions with
enhancement due to soft or collinear particles, the approximation technique
called parton shower has been developed.

An example of a phase space region where higher orders are enhanced is
the annihilation of an e*e™ pair, creating a quark-antiquark pair, followed
by the emission of nearly collinear gluons. The shape of these pencil-like
events can be described by an event-shape variable called thrust® T, where
T — 1 for a 2-jet event with highly collimated jets. The cross section in
these regions of phase space can still be expanded in orders of the coupling
constant ag, but every contribution of a¢ will be accompanied by a factor of
the form In*"(1 — 7). It is this additional factor that renders the fixed-order
calculations unreliable in the phase space region of highly collimated 2-jet
events, corresponding to 7" — 1.

Two main approaches exist on how to handle these regions of phase space:
the first ansatz is to use a resummation calculation[11]. In this ansatz it is
tried to resum the divergent contributions to gain a meaningful and conver-
gent result. However, the resummation ansatz has considerable drawbacks as
it can only be used to calculate inclusive observables and has to be adapted
for every new observable. Moreover, resummation does not give a full repre-
sentation of events which makes it impossible to incorporate detector effects
in a complete experimental analysis. A more general ansatz is the use of
a parton shower. Instead of aiming to calculate distributions analytically,
we will derive approximate probability distributions for additional emissions
of partons, and use them to formulate a Markov chain. The phase space
regions formally connected to logarithmic divergences will now be connected

bsee A.1 for an introduction to event shapes
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to regions with a potentially unlimited number of emissions. The limitations
of perturbative QCD lead to an infrared cut-off, thereby constraining the
number of possible emissions. The parton shower therefore generates events,
not analytical distributions. A distribution of any observable would have to
be obtained by histogramming the resulting events.

Most of this chapter is based on [52, chapter 2.8]. As a starting case, in
section 2.1 we introduce a QED (i.e. Abelian) example to demonstrate the
basic features of a parton shower. There we will show how an approximation
to the cross section after adding an additional photon emission to a process
can be related to the original cross section. The corresponding generaliza-
tions needed to obtain cross sections for processes with an arbitrary number
of additional photons are given in section 2.2. The modifications when de-
scribing a non-abelian theory, QCD, are given in section 2.3. Section 2.4
shows that for certain types of emissions, the formulation as a Markov chain
is inappropriate and describes the special treatment for this type of emis-
sions. The generalization to include emission in the initial state are given in
section 2.5. The connection of parton showers and the evolution of parton
distribution functions is briefly outlined in section 2.6. After that, we discuss
the implementation of parton showers as Markov chains in section 2.7. The
theory of matching matrix elements and parton showers is closely related
to the theory of parton showers and therefore also relevant for this work,
we introduce the basic concepts of matching in section 2.8. After that, we
describe the three most widely used matching schemes in section 2.9.

2.1 Comparing Matrix Elements

We assume that a matrix element for a process i — ef, where e is an electron
and 7 and f denote the particles in the initial state and the remaining particles
in the final state, respectively, can be written in the form

Mz‘—>ef — ﬁ(p, H)Ai_’ef(p,pj)

with @ as the spinor of the electron and A denoting the remainder of the
matrix element, being a function of the electron’s momentum p and the set
of other particles” momenta p;.

The matrix element for the process in which the aforementioned electron
in the final state emits an additional photon with momentum & is then given
by adding the intermediate electron propagator of momentum p’ = p + k,
the additional electron-photon vertex and the polarization vector for the
additional photon:

p+k+m

i—eyf — _ 5 /
M e

A7 (p+ k, pj).
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p

Figure 2.1: Photon emission off an electron in the final state.

In the parton shower framework the momenta of the final electron and
photon and of the intermediate electron propagator are parameterized as
shown below. This parameterization depends on two values, a value z that
describes the distribution of energy among the final particles and the trans-
verse momentum k; = (k' k% 0) of the final particles with respect to the
intermediate electron. k? measures the scale of the branching, a high k? rep-
resents a hard branching while a low k? represents a soft-collinear branching.
As we want to probe the collinear divergence, we will assume k? to be small.
Using this parameterization, the momenta are given by

k2
M=pt k= (E+-—"—-,0,0,F 2.1
pr=p'+ < Ty ) (2.1)
k2 k2 (1 —2x2)
b By L D St R ¥ 29
b <x +4x(1—x)E’0’O’x 433(1—33)E) WL (22)
k2 k2 (1 —2z)
F=((1=-2)E+ ———— l—a2)E+ +———~ (2.
k (( ) +4x(1—x)E’O’0’( x) +4x(1—x)E) + k7. (2.3)

With these definitions the intermediate electron is set off-shell
2

k
12 1 4
=———+0(k 2.4
while the final electron and photon remain massless’,

B=0+0(k), p=0+0(k}).

Up to terms of the order O (k?) the numerator of the propagator can be
replaced by the polarization sum of on-shell fermions with momentum p’ =
p+k,

p/ _ Zu(p/’ Iil)ﬂ(p/, fi,).

"For so far, all final particles are assumed to be massless.
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This results in

I—e — * — X 1 - 1—e
M a7 — —e Z U(I% K’)ﬁl (k7 )\)U(p/7 K,/)U(p,, K,)%A f(p7p])
+0 (k7). (2.5)
Using the explicit expressions for the circular polarization vectors
1 [k, |eTi o |ky| €T
Yh)y=—|7—=,1 -
(k) =5 <2(1 COE T T -0k

and the helicity Dirac spinors in the Weyl representation

k,|e™ g
u(p, =) = 0,0,‘ = ,\/sz) ,
', -) < oG

— |k |ei* T
u(p', +) = <\/293E,|7,0,O) ,
@' +) o

u(p,—) = (0, 0,0, \/ﬁ>T
u(p, +) = (x/ﬁ,o,o,o)T,

the summation over the photon polarizations yields

1+
3 mr = L T M Ol )

Writing this as a cross section and introducing the integral over the additional
one-particle phase space yields

: Bk 2(l—2)1 + 22
d i—eyf ) — 2 2/
o ) ) 2B, K 1-z

Eda"_’ef(p’,pj) + O(“&D] . (26)

The differential over the photon phase space can be written as

Ak dz d¢ dk?
= k).
(27)32E;,  4(27)3(1 — ) +0(ky)

The differential cross section is therefore

. dk? L+a®
40" (p, p;) = / - [ [ Ao (' py) + O([kL )| . (27)
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In this equation the soft and collinear logarithmic singularity can be seen
in the factor [ %: assuming a massless electron the lower limit in |k | would
be zero, so the integration over |k, | would be logarithmically divergent.
The integration over z is trivially limited by the constraint 0 < z < 1.
Moreover, the integration has to be constrained even further, as the limit
x — 0, 1 corresponds to soft singularities. Thus, every parton shower includes
a cut on the z-variable, so that emissions outside the allowed region are
classified as unresolvable. The actual cut is a choice that has to be made
when implementing the parton shower, different choices are possible.

The differential cross section can also be written in the form

2
1 max

i

k
i—e Q i—e
do ’Yf(p7p]) - % k2 /dl’ [Pe—m’y('r)da f(p/7p]) + O(‘kl‘)] )
1
k2

1 min

(2.8)
introducing the splitting function P,._..,(z) for the emission of a photon by
an electron:

e (0] k2 i—e
do' M (p,p;) = 5~ log ( LmaX) / Az Peey (2)do" ™ (', ;)

+ non-logarithmic terms.

The upper limit k| max is determined by phase space boundaries. For calcu-
lations regarding massless electrons the lower limit k i, is zero, reflecting
the collinear singularity. When taking the non-vanishing electron-mass into
account, this regularizes the singularity and the effective lower limit is of the
order of the electron mass. Then the differential cross section is of the form

. Q k2 e
0o py) = o () [t )

2m z

+ non-logarithmic terms.

The term log <kim¢2ax> is a remnant of the singularity and becomes impor-
tant for energies much higher than m,. The other singularity in this equation,
namely for + — 1in P,_.,(z) = % is a left-over of the soft photon sin-
gularity that is compensated for by virtual photon corrections [52, chapter
2.8.3.2] and usually cut by restraining the allowed z-interval.

In this derivation, we suppressed the dependence on the azimuthal angle
¢. Thus the emissions are distributed uniformly over the azimuthal angles,
which would correspond only to an additional factor of [ %. Including an-
gular correlations is one way of improving the parton shower, but is not yet

pursued in our approach.
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The parameterization in equations (2.1) - (2.3), using k as the scale of
the emissions, is not the only possible parameterization. Due to the form of

(2.7), variables that conserve the logarithmic dlfferentlal —== can be used as a

scale variable. Changing the variable used as scale will only lead to differences
in higher orders. One popular choice for the scale variable and the choice we
will use in our implementation is the virtuality ¢ of the intermediate parton.
Virtuality is defined as the squared four-momentum minus the particle’s rest
mass. It is thus a measure for the off-shellness and hence describes a particle’s
ability to undergo additional branchings. From (2.4) it follows that ¢t = p’

dk?
aIld @ — Ql .
t k9

2.2 Multiple Emissions

The results of the previous section can be generalized to the emission of
multiple photons as well, that is to the process do"~*"/ with an arbitrary
number n of photons. The emitted photons are assumed to be ordered in
transverse momentum, k3 . This is based on the assumption that hard emis-
sions happen on shorter timescales and thus cannot be influenced by the soft
emissions happening on longer timescales. The probability for the emission
of a photon with a given transverse momentum can be read from equation
(2.8), it is at leading order in |k |

a

—— [ dx [Py (2)da™ (), p))] - (2.9)
21k2 / [ y )]

The corresponding conditional probability P, (k%) needs to be normalized to
the cross section of the hard process, therefore it is

do.i—>e'yf(pl,pj) ‘kQ o
. L~ dzP,_,. , 2.1
doi=<(p, p;) 27Tk3_/ xr 2 () (2.10)

assuming that the differential cross section is continuous for small momenta
of the emitted photon, do™= (p/, p;) ~ do™=(p, p;).

But this conditional probability is not correct, as an emission at a greater
scale could have happened before and therefore the scales of the emissions
would not be ordered. The relevant probability is the probability for the
emission at k% being the hardest emission. Therefore the probability in
equation (2.10) has to be weighted with the probability A(k?,k2™) that
no emission at a scale greater than k% occurred. Obviously, the probability
satisfies the starting condition

Pv(ki) =

A(K3mer KMy = 1, (2.11)
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For a differential change in k2, the probability for an emission is given by
(2.10). The differential equation for A is then

d «
4 apez yzmany — O / dzP. oo (2). (2.12)
dk2 oI g

The solution to this differential equation is

k2 max

A k2mz’n k2mam dk2 d
( L B = exp JI e—>e~/ ) (213)

k2 min

and gives the probability for an electron not to emit a photon with a trans-
verse momentum between k2™ and k3™,

This no-emission probability is the central variable of a parton shower,
it is called the Sudakov form factor [58]. The complete probability for a
branching at hardness k% to be the hardest is therefore

«

Pr) = o | [asrao)] 0. e

This equation can then be used to iteratively calculate the respective next
hardest branching. Implementing (2.14) in a Markov chain Monte Carlo
simulation would be the simplest implementation of a QED parton shower.

2.3 Generalization to QCD

In section 2.1 we calculated the splitting function for the emission of a photon
from an electron

1+ 2?2
11—z

Pe—>e~/(x> - (215)

as a side-product. The splitting function for an emission off a quark is pro-
portional to P, (z) with an additional factor accounting for the fractional
electric charge,

21+$2

Bygy () = |Qy]

(2.16)
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A similar calculation using QCD can be performed and leads to the splitting
functions for QCD that read (see e.g. [53, chapter 5.1}):

1+
Pyge(z) = CF 1— 7 (2.17)
Prge() = Pyge(2), (2.18)
1—2z T
Py_gq(x) = Cx . + 11— +z(1—x)], (2.19)
Pyqq(x) =Tg [x +(1- x)z}
for every kinematically allowed quark flavor, (2.20)

with the SU(3)-factors Cy = No =3, Cr = N]%c_l = % and Tp = %

The Sudakov factor needs to be adjusted to the increased number of
possible branchings. The splitting functions for all possible branchings, e.g.
for a gluon these are the branchings into two gluons or all kinematically
allowed quark pairs, add up. Thus the splitting function for a gluon to

branch is given by the splitting function

Pgéanything( ) g—>gg + Z Pg—>qq (2'21)

gcallowed
flavors

and the corresponding Sudakov factor for a gluon reads

tmaz
min max _
A(t™" 1 = exp / dt / do 5. Py g P4z
g€allowed
tmzn ﬂ
avors

(2.22)
Two remarks concerning the Sudakov factors like the one given in (2.22)
are in order. So far, we only denoted the coupling constant by ag, omitting
any scale dependence. A straight-forward choice for the scale used in the
the calculation of g would be the evolution scale t of the parton shower.
A more sophisticated calculation [59] favors the usage of a running scale®
x(1 —x)t. This approach was found to give a better representation of higher
order contributions. Moreover, we did not specify borders for the integral
over x. For the definition we will use in our implementation the borders will
correspond to soft singularities, we will therefore have to choose a cut-off for
the integral (cf. section B.2.1).

8This running scale is equal to the squared transverse momentum of the branching’s
outgoing partons if x is interpreted as the ratio of the light-cone momentum p; = E +py
(with the z-axis along the direction of flight of the incoming parton).
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2.4 Color Coherence and Angular Ordering

So far, the parton shower was formulated as a Markov chain of independent
emissions and interference terms were disregarded. This has been expected
to be a good approximation because collinear emissions will mostly only be
collinear to only one external leg, thus all interference terms will be less di-
vergent and only contribute at next-to-leading orders. However, there is one
case, where interference terms become important. This is the case when the
parton shower generates an emission under a relatively large angle. Then the
argument, that all interference contributions are suppressed by their lower
collinearity no longer holds and the assumption that each particle radiates
independently can no longer be applied. For example, consider a photon
that splits into a quark-antiquark pair where one of the quarks subsequently
emits a gluon. If the gluon is emitted under a relatively large angle, it will not
be able to resolve the individual color charges of the quark pair, but see the
combined charge instead. The combination of the two quarks leads to a color
singlet, which means that emissions of this kind cannot occur. In this case,
the interference is destructive and as large as the individual contributions. A
more sophisticated calculation [60] shows that for a parton shower this color
coherence can be implemented by vetoing emissions with an opening angle
larger than the opening angle of the previous branching. Observables that
are particularly sensitive to angular ordering are the kinematical correlations
between jets in multi-jet events. For example, first evidence for color coher-
ence was found in the kinematical correlation between the second and third
hardest jet in pp-collisions [61].

A similar effect has been known for a long time in cosmic ray physics as
the decrease of ionization by narrow electron-positron pairs, named Chudakov

effect [62].

2.5 Initial-State Radiation and Backwards Evolution

Up to now, we treated all evolution to be forward in causality, which means
that for every parton the partons it emits are generated. Applied to a collision
at a hadron collider this would lead to an algorithm where the evolution starts
with two constituent partons from either hadron, simulate these partons’
shower and use two residual partons, one from each side, as input to the hard
scattering. This method has the drawback, that as no information about the
hard scattering is used, mostly the partons at the end of the shower will
be unsuitable for the hard scattering for example by either having to few
momentum or by having a wrong flavor. Therefore a lot of tries would
be needed to produce a fitting initial state, wasting enormous amounts of
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computing time.

The solution to this problem is the backwards evolution [63]. In contrast
to the forward evolution, here the parton that emitted the given parton is gen-
erated. The evolution starts with the partons in the initial state of the hard
scattering and evolves them back to the constituent partons in the hadron.
Partons in the initial state of the hard interaction are not chosen randomly,
but according to the parton distributions, and with the cross section:

Ix = Z/dxldx?fi (1, Q%) f; (w2, Q%) 6i—x (1,02, Q°) (2.23)
0,

where 0;;_, x is the partonic cross section. Note that this description does not
violate causality. The parton distribution functions f (z, Q?) encapsulate all
forward evolutions and the backwards evolution merely chooses one of these
evolutions.

Y

Figure 2.2: Emission in the initial state: For the parton b, its
mother parton a and the emitted parton ¢ are generated. The
gray circle A stands for the remaining event, possibly including
already found emissions in the initial state.

Consequently, during the simulation of the initial-state shower, the par-
ton distribution functions have to be taken into account when simulating
branchings in the backwards evolution. The probability for a branching is by
definition proportional to the parton density of the branching parton. Thus
every branching is weighted with the branching parton’s PDF. For normal-
ization, this is accompanied by a division by the parton distribution function
of the newly created parton. The Sudakov factor for a parton of type b takes
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the form
[t 1 q
ISR T Qg
Ab (taa tb) = €Xp [ - /dt, ?27.”5/
[tal 0
Jo (2,0)
P, b P, .. . 2.24
;( b (I) + b(x>> fb(xbu t/) ( )

with an analogous generalization to multiple branchings. This prescription
ensures that the probabilities to find a final mother parton will be distributed
according to the parton distribution function for a parton of the same type,
especially it is prohibited to find partons with a momentum fraction x > 1,
which could occur when using a naive Sudakov factor.

For the Sudakov factors for ISR, remarks similar to those for the FSR
Sudakov factor (2.22) are in order: For the argument of the running coupling,
the running scale (1 — z)t was found [60] to give the best representation
of higher-order contributions. For the borders of the integral over z the
situation is different to the one in FSR due to the inclusion of PDFs. The
limit # — 0, where the current parton would be created in a soft emission,
cannot be the source of a divergence, since the PDF f, (%,t’ ) will be zero
once ¢ > 1. The other limit, x — 1, which corresponds to the emission
of a soft particle, is regularized by a cut-off that has to be chosen manually,
usually it is demanded that the emitted parton has a certain minimum energy.

The generation of an additional branching according to (2.24) also in-
cludes the generation of the other particle produced in the branching, here
denoted as ¢. This parton is added to the final state and can initiate a
final-state parton shower on its own.

2.6 Comparison to DGLAP

The evolution of parton distribution functions ¢(x,t) with varying scale ¢ is
described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [64, 65, 66]. They can be written in the form

1

t%q(m,t) _ O‘;(:) / %P <§) g(E.1). (2.95)

T

The previous section has shown the close connection between an initial-state
parton shower at a hadron collider and the evolution of parton distribution
functions. The connection between parton showers and DGLAP evolution
can be stated as
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A parton shower is an exclusive solution of the DGLAP-evolution
equations starting with single partons.

So for example, the final-state radiation in an e*e™ — u interaction can be
seen as a DGLAP-evolution starting from a parton distribution functions

U(.T, thard) = ﬂ(ﬂf, thard) = 5(.T - 1)

for the two imaginary hadrons produced in the interaction, each consisting
only of the u or @ quark to the lower cut-off scale t.,;.

Nevertheless, there are some differences. While solutions to the DGLAP
equations are inclusive solutions, parton showers are constructed to give ex-
clusive solutions. Moreover the parton distribution functions are evolved in
the infinite momentum frame treating all particles collinear, while partons
acquire transverse momentum during the evolution in the parton shower.

2.7 Implementation in a Markov Chain Monte Carlo

The implementation of the parton shower in a Markov chain Monte Carlo is
as follows: For a given particle at a scale t,,,, the scale of its next branching
is found by solving the equation

R = A(t,tm), (2.26)

where R is a random number distributed uniformly in the interval [0 : 1] and
A is the Sudakov factor for either FSR or ISR. Solving this equation for ¢
gives the scale of the next branching. The corresponding energy ratio can be
found by solving the equation

z

Zy
r Qs no_ r s /
R/dz 27TP(Z)—/dz °S P(2) (2.27)

z_

for z. z_ and z, are the limits chosen for the z integral. In the case of multiple
possible types of branchings, one of these branchings is chosen according to a
weight given by either the respective splitting function for FSR or the product
of splitting function and the branching parton’s PDF, P, _,.(2) fs (%4, ta),
for ISR. The particles’ momenta can then be inferred from their respective
virtualities, the energy ratio z and the randomly chosen azimuthal angle ¢.

The evolution starts at a high scale and evolves down to a cut-off scale.
The cut-off scale has to be chosen as a border to the hadronization. It is
usually chosen to be of the order of about 1GeV? The starting scale is
given by the center-of-mass energy for the final-state radiation in s-channel
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processes. For other processes different choices can be made. Thus the
evolution for the FSR is from ts; = s down t0 tey ~ 1 GeV?. For the initial-
state radiation, the evolution is from a low negative virtuality ts..+ = —s up

to the negative of the cut-off scale t/2F = —¢,,,.

2.8 Combining Matrix Elements and Parton Showers

The description of multiple emissions via the matrix element and via the
parton shower are two complementary ways of describing the event.

Matrix elements contain the complete information up to a given order in
ag. Their disadvantage is the rapid growth of complexity with the order of ag
and the number of particles. The complexity of a parton shower on the other
hand grows only linearly with the number of particles but parton showers
are only correct in the soft/collinear limit. It is not feasible to describe
partonic events by using only matrix elements and inadequate to try to use
only the simplest matrix element with a subsequent parton shower. The
first approach will suffer from the rise of the needed computing time, so that
the computation of a reaction at any collider, where the number of partons
produced will typically be of the order O(100), is out of reach. The pure
parton shower description will suffer from the poor description of physics
away from the soft and collinear limit.

Thus, it is desirable to combine these two approaches, using parton show-
ers for jet substructure and matrix elements for hard, widely-separated jets®.
Combining these approaches is a non-trivial task. There is no immanent
distinction whether an additional emission belongs to the regime of hard,
widely separated jets or merely belongs to the jet-substructure regime.

The need to build a more sophisticated procedure to combine these two
approaches has led to the introduction of matching procedures'®. A matching
procedure intends to combine the description of up to a certain number of
multiple, widely separated jets by the matrix element and the description of
possible additional jets and the substructure of the jets by a parton shower.

9Strictly speaking, this leads to a slicing-based matching procedure. We restrain our-
selves to these approaches here. See e.g. [51] for on overview of different matching ap-
proaches, namely slicing-based, unitarity-based and subtraction-based.

10Tn the past it was not differentiated between the terms “matching” and “merging”.
Some authors [67] proposed to use “merging” for procedures where information from the
parton shower is incorporated in the matrix element or vice versa while using “matching”
for procedures that combine matrix elements and parton showers without changing them.
Recently it has come up to use “merging” for combining leading-order matrix elements and
parton showers while using “matching” for combining NLO matrix elements and parton
showers. In this thesis we will only use the term “matching”.
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The main approaches for matching to leading order calculations are the
CKKW [68, 69], CKKW-L [70] and MLM [71, 72] schemes, for a general
overview see [67, 73, 74]. For matching to NLO matrix elements, some
new approaches have recently been developed, the two most widely used are
MC@NLO [75] and POWHEG [76, 77]. As WHIZARD at the present stage only
uses leading-order matrix elements, we restrain ourselves to the leading-order
matching procedures.*!

2.9 Overview of Matching Procedures

In this section we will give an overview of the matching schemes introduced
in the previous section. The following steps are common to all leading-order
matching procedures. We take a process of the form

(initial state) — ( final state)

as our generic example.

1. A maximal number N of additional jets to be simulated by the matrix
element is chosen.

2. For every n with n =0,1,... N, the matrix elements for the processes
(equivalent initial state) — (final state) + n jets

are generated and the cross sections o, with respect to certain given
cuts are calculated. Equivalent initial states are initial states of pro-
cesses that can be obtained by adding up to n parton branchings to
the original process, e.g. by adding a ¢ — ¢q branching to the process
qq — ete the process qg — ete ¢ is generated, thus for n = 1 ¢g is
an equivalent initial state for the process q7 — ete™.

3. Events described solely by the matrix elements are generated. The
probability to generate an event with n additional jets is given by

P(n) = Z““O_m. (2.28)

4. These generated events can then be accepted/rejected /reweighted ac-
cording to the kinematical configuration of the event either with or
without a parton shower applied.

" The inclusion of NLO matrix elements is currently under development. First steps to
a dipole subtraction scheme along the lines of the Catani-Seymour subtraction scheme [78,
79] are implemented. Moreover an interface to the GoSam [80] package is in preparation.
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The matching schemes differ in the following ways

1. The cuts applied to the single exclusive matrix elements can be differ-
ent.

2. The procedure to accept/reject /reweight the events can be applied be-
fore or after the parton shower.

3. The procedure to accept/reject/reweight the events can be different.

4. The settings for the parton shower can be different. The parton shower
can be modified to veto specific types of branchings.

We will describe the three main schemes for leading-order matching in the
following. The differences between these approaches have been investigated
for W-production at the Tevatron and the LHC [73, 74]. Despite their algo-
rithmic differences, a general consistency with occasional discrepancies has
been found. However, it is not clear, if these results also apply to arbitrary
processes.

2.9.1 MLM

The MLM [71, 72] matching procedure is a phenomenological ansatz and the
simplest of the common matching procedures. Its main aim is to describe jets
according to the matrix element calculation while describing the substructure
of these jets using the parton shower. To achieve this, events containing sig-
nificant interplay between these domains are vetoed. A matching procedure
implementing the MLM matching will use matrix-element-level events and
perform an unmodified parton shower. After the parton shower it is checked
that the jet topology of the showered and unshowered event “match”; that
means that

e the number of jets after the shower is equal to the number of the hard
partons given by the matrix element. This means that neither a parton
splits into partons that were not hard enough to be recognized as a jet,
nor that one parton emitted a parton hard enough to be the seed for a
jet on its own. The events where such branchings occur would then be
intended to be described by the (n — 1)- or (n + 1)-jet matrix element,
thus these events are vetoed. There is one exception to this rule: for
the highest jet multiplicity, (n = V), additional jets are allowed to be
described by the parton shower, as the corresponding matrix elements
were not taken into account in the first place.
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e for all jets after the matrix element, a “matched” jet after the shower
is found. The definition when jets “match” is dependent on the im-
plementation, for example jets can be regarded as matched when their
angular separation is below some threshold. The implementation in
WHIZARD will use a definition on jet scales, to be explained later.

If this is the case, the event is accepted, otherwise it will be discarded and
the simulation will proceed with a new matrix element event.

The MLM matching scheme is the simplest way to implement a matching
procedure, as the three steps, matrix element, parton shower and matching,
are completely disjoint, therefore the matching requires no modification of
the matrix element calculation or the parton shower.

We implemented one version of the MLM matching procedure in WHIZARD.
This implementation will be described in greater detail in section 4.5.

2.9.2 CKKW

The CKKW approach was originally presented by Catani, Krauss, Kuhn and
Webber [68] for ete™-collisions and later extended to hadronic collisions by
Krauss [69]. The central idea of CKKW is to use the full matrix element
for all emissions above some jet scale v;,;'? and the parton shower for all
emissions below that scale. The steps are as follows:

1. Matrix-element events are generated according to the cross sections o,

using a fixed ag = oM.

2. Using the kg clustering algorithm a pseudo-parton shower history is
generated. This means that starting from the 2 — n process, iteratively
the two partons that are most likely to have been produced in a parton
shower branching are replaced by their supposed mother particle!?.
This procedure stops when a 2 — 2 process is reached or when no
parton shower branchings are possible anymore (e.g. a qg — ¢W —
3 jets event.). Thus the scales ¢; for each branching can be inferred
from the jet scales at which the branching occur.

3. A coupling constant weight of [T cs(y:)/ (adf E)n_2 is calculated, cor-

recting for the fixed coupling constant in the matrix element.

12G8ee section A.2 for an introduction to jet scales and the kr clustering algorithm.
13In addition, some implementations also allow quark-antiquark pairs to be replaced by
a Z or W boson.
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4. For every internal and external line, a weight given by a suitable com-
bination of Sudakov factors is calculated. The task of this weight is to
take the probability to produce a hard emission in the parton shower
into account.

5. The event is reweighted with the combined weight of the two previous
steps.

6. The parton shower is invoked. The starting scale of the shower is set
according to the jet scale of the branching in the pseudo-parton shower
history, where the particle was produced. Moreover, any branching
that would give an emission above y;,; is to be vetoed.

2.9.3 CKKW-L

The CKKW-L algorithm is a variant of the CKKW scheme that was proposed
by Lonnblad [70]. The differences compared to the CKKW approach are in
the generation of the pseudo-parton shower history and in the application of
Sudakov weights. While in the CKKW approach only the most likely history
is generated, in the CKKW-L all possible shower histories are generated,
out of which one history is selected randomly with probabilities proportional
to the product of branching probabilities. The Sudakov weights are not
calculated analytically, but by using trial emissions: for every intermediate
2 — n/,n’ < n process, a parton shower is invoked, the starting scale of the
shower is set to the scale of the intermediate process. If the first emission in
the shower leads to a 2 — n’ + 1 event with a jet scale larger than the jet
scale of the 2 — n’ + 1 process in the shower history, the event is discarded.

2.9.4 Comparison of Matching Schemes

From the point of view of a theoretical particle physicist, the CKKW (L)
approach should give a more reliable combination of matrix elements and
parton showers. For the CKKW approach, the original publication claims
that the dependence on the merging scale y.,; cancels at next-to-leading log-
arithmic (NLL) accuracy. This proof makes use of a formalism, whose NLL
accuracy was to be proven, but this proof was never published (cf. footnote
3 in [67]). Therefore it is doubtful if this approach can be considered to be
independent of the merging scale at NLL. For the CKKW-L approach, it
was proven that the dependence on y;,; cancels for suitably defined parton
showers. Moreover, the CKKW-L approach has the advantage that all cor-
rections in the parton shower are automatically included in the matching. In
contrast, the MLM approach is a purely phenomenological ansatz. Its main
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advantage is its simplicity. The price for this simplicity is the need to veto
events, making the generation of events less efficient.

However, comparison studies [67, 73, 74] have found good agreement be-
tween predictions based on CKKW, CKKW-L and MLM matching. It re-
mains in question if this agreement can be expected for any combination of
observable and processes.
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3 The Analytic Parton Shower

As shown in section 2 the parton shower is a well-defined approximation of
the full matrix element. Therefore, one important goal should be to be able
to reconstruct the matrix element from the parton shower. In common par-
ton shower algorithms, this ability is lost due to the formulation of the parton
shower as a Markov chain in such a way, that branchings that fail to respect
correct kinematics can be produced and are subsequently rejected or manu-
ally modified to respect momentum conservation. It is these branchings that
prevent the probability for a branching to be calculated after the branching
is generated. Therefore in developing an analytic parton shower, care was
taken to avoid branchings that need to be rejected or manually modified,
thereby preserving the ability to reconstruct the matrix element.

As already hinted at, the parton shower we are presenting here uses vir-
tuality as its ordering variable, hence we will replace the variable k2 used in
section 2 by the virtuality ¢. Moreover we will replace the value describing
the distribution of energy z by a variable called z that is defined as the ratio

between the energies of the first daughter and the mother parton, z = £&

Eq
From equations (2.1) and (2.2) it follows that z =z + O (EIZ%C>

Our work is based on an approach first presented in [47]. There, an
analytic final-state parton shower was introduced. This parton shower was
later used in the GenEvA framework [81, 48|. as a phase space generator. We
review the presented algorithm in section 3.1 and present our extension in
section 3.2. Section 3.3 describes an analytic parton shower for the initial
state that was developed during this thesis. Finally, we discuss the possibility
of a pr-ordered analytic parton shower in section 3.4.

3.1 General Concept

The analyticity of a parton shower algorithm can be achieved by changing
the way branchings are simulated, while maintaining the formulation of the
parton shower as a Markov chain. The two main changes to the simulation
are the simultaneous simulation of the branchings of sisters and replacing the
splitting variable z, that normally is the ratio of the first daughter’s energy
or light-cone momentum to the mothers’” energy or light-cone momentum, by
an invariantly defined angle cos#.

The first modification is to replace the simulation of individual branchings
by the simulation of so-called double branchings. A double branching consists
of the simultaneous branching (or no-branching) of the two daughter-partons
of one parton. So instead of taking one parton a and letting it branch into
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two partons, a — be, an existing branching a — bc is replaced by the double
branching a — bc — defg with the new partons d, e, f, g in case both partons
b and ¢ branch or the analogous branching combination for the cases where
one or both of the daughters do not branch. The advantage is that the energy
conservation'4

Vi >V +VE (3.1)

can be taken into account during the generation of the branchings, avoid-
ing the production of complicated interconnections between different single
branchings. The sequence of steps is then

e Pick a parton with unprocessed daughters b and c.

e Generate {ty, vy} and {t., v.} for branchings of both daughters indepen-
dently, with the probability given by the single branching probability.
Here, v; stands for the values needed to describe the branching of par-
ticle 4 apart from the virtuality ¢;, like the opening angle cos; (see
below), the azimuthal angle ¢; and the type of the daughter parton.

e Keep the branching of the daughter with the higher scale t,,,., =
max (tp,t.). Discard the branching of the other daughter.

e Determine new values for the other daughter with the maximum scale
set to t, = min [tmax, (\/ﬂ — \/tmar>2:|' This ensures that the con-

straint given in equation (3.1) is automatically fulfilled.

For the different cases, the double branch probabilities can be constructed
from the single branching probabilities P’ (¢;, v;) given by the generalization
of equation (2.14) and Sudakov factors A;(t,,t;) for a branching at the scale
t; and the remaining values v; and the probability P" for no branching
above the cut-off. The double branch probabilities for the case in which both
daughters branch is

Py vyt ve) = Oty — t)PY (t, v) Au(te, th) (3.2)
P (te, Vs ta = L)
+ Ot — ty) P (te, ve) Ap(ta, te)
Py (t, vp; ta = ),

The following equation can best be understood in the rest frame of the mother. Then
Vt, is the mother’s mass and energy and trivially the sum of the daughters’ masses
Vty + /t. has to be less.
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while in the case that only one daughter branches

PIIb(ty 1) = P (b, ) Auter t) Ault, fons). (3.3)
,Pnb’br (tca 'Uc) = Pfr (tc> Uc)Ab(tm tC)Ab(t*’ tcm)’

and in the case no parton branches
Pnb,nb = Ab(tm tcut)Ac(taa tcut)' (35)

Taking all different combinations into account, the full double branch prob-
ability can be composed in the following way

P(tb> Up, tca Uc) = Pbr,br (tba Vp, tc; Uc)

+ Pb’“’"b(tb,vb) d(te)
+ Pt ve) Oty
+ prbmb 5(ty)d(te), (3.6)

where 6(t;) stands for a parton that is on-shell, thus not branching any fur-
ther.

Figure 3.1: Schematic view of a double branching in FSR. Before
the double branching (left): A parton has branched at a scale
t, into two on-shell daughter partons. After the simulation of
the double branching the branching scales ty, t. for the daughter
partons are known. In case the daughters branch themselves the
values needed for their respective branchings are generated as
well. The case in which both daughters branch, t, > t.., te > tew,
is shown on the right. For the next step the double branchings
of the two daughter partons will be simulated, the branchings at

t, and t., respectively, replace the parton branching at ¢, on the
left.
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The second modification is replacing the kinematic ratio z: Using an
energy ratio is error-prone, potentially changing its value when applying
Lorentz boosts. Hence, we replace it by the angle cosé in the mother’s
rest frame between the momentum of the first daughter and the boost axis.
This leads to simple phase space limits

—1<cosf <1.
There is a direct correspondence between the cosf angle and the energy

splitting z [47] as a function of the masses of the daughters ¢, and ¢.:

1 ty t.
- {1 + t_b - + Ba co8 O\ (ta, ty, te) (3.7)

with the boost 3, and the phase space factor A:

ta 1
ﬁ 11— ﬁ and )\(ta, tb; tc) = t_\/(ta — tb _ tc)2 _ 4tbtc'

Schematically, this means that the integration over z is replaced by an inte-
gration over cosf as follows:

/dzP(z) = /dcosé’dijseP(z(cos 0)). (3.8)

The Sudakov factor given in (2.22) thus transforms to

tmax

A(E™™ 1707 = exp / dt/dcos HdcoseQmPg_,anythmg(z(cos 0))

gmin
(3.9)

The important distinction between common and analytic parton showers
is that in the analytic parton shower every branching is generated with a
calculable probability. Every source for vetoing branchings where the prob-
ability for the veto cannot be calculated has therefore been avoided.

The simulation of the branching generates a value of cosf under the
assumption that both daughters are massless t, = t. = 0. But a branching
by one or both of the daughter partons will set the parton off-shell, ¢, . > 0,
thus changing the value of cos 6 for the mother’s branching. As the cos 6 value
is considered to be the fundamental quantity, a procedure is implemented to
restore the original value. This procedure is called shuffling. It redistributes
the mothers’ energy among the daughters and their daughters such that the
original angles are restored. This can be achieved by redistributing the energy
according to equation (3.7) using the updated values for ¢, and ..
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3.2 Improved Analytic Final-State Parton Shower

The GenEvA framework [81, 48] is an event generation framework designed
to combine matrix elements and parton showers during event generation.
It uses its parton shower to distribute events over phase space, in order to
reweight them to a corrected distribution later. Therefore only a simplified
implementation of parton showers was included in the framework, as the
reweighting would later reintroduce the correct distributions. We, on the
other hand, will use the analytic parton shower to generate exclusive events
and cannot defer anything to a reweighting procedure, we are therefore forced
to implement the full theory of parton showers. The two main simplifications
made in the GenEvA framework are the omission of the running of the coupling
constant and the omittance of color coherence. Our extensions to the parton
shower are as follows.

The running of the coupling constant ag(Q?) was implemented, the in-
clusion is straight-forward. The coupling was chosen to be

ag = ag (2(1 — 2)Q%) = as(z(0), Q%) (3.10)

in agreement with most parton shower generators.

As color coherence is approximated by demanding that the angles of sub-
sequent emissions decrease — the effect known as angular ordering as intro-
duced in section 2.4 — the resulting phase space cuts have to be implemented
in the parton shower. The opening angle!® cos® is given by

t

=1—-— A1
cos v 21— ) B (3.11)

in the approximation for massless children. Using z(1 — z) < 1 this can be
used to give a cut on the scale of a next branching

1 — cos Vot

t< E? (3.12)

for the branching to have an opening angle less than cos.,;. An additional
cut on z (see section B.2.2 for a derivation) is necessary:

1 t 1+ cos Ve
z——‘<ﬂ\/1 o8 Vew (3.13)

2 =2\ B2FE21—costuy

With these phase space cuts angular ordering is enforced in the approxima-
tion of massless daughter partons. However the inclusion of this constraint

1ot to be confused with the angle cos used in the description of branchings
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Figure 3.2: Schematic view of a double branching in ISR: Before
the double branching (left): At the scale ¢, a parton b exists.
For this parton, the scale t, of the branching that produced this
parton, the corresponding energy ratio z, and the scale t. where
the emitted parton ¢ branches, and if necessary the remaining
quantities (v.) are simulated (on the right). The gray circle A
stands for the remaining event, possibly including already found
emissions in the initial state.

demands keeping track of the used energy E and the used angle cos 9., either
by explicitly storing their values for every branching or by using a distinct
rule to calculate them for every branching.

As a minor extension we allow for parton masses, although these are only
taken into account when distributing momenta, the splitting functions are
still taken for massless daughter partons.

3.3 Introducing the Analytic Initial-State Parton
Shower

For physics at the LHC, a parton shower has to be able to describe both,
initial- and final-state radiation. We therefore implement an initial-state
parton shower satisfying the requirement of analyticity analogously to the
parton shower for the final state. The algorithm for the analytic initial-state
parton shower, the technical details, its implementation and validation are
the main cornerstones of this thesis.

The changes applied to the final-state shower cannot be transferred to
the initial-state shower!'®. A different set of changes is needed to reformulate

6Due to the negative virtualities all momenta and energies would be imaginary in the
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3 The Analytic Parton Shower

the initial-state parton shower in order to fulfill the demand of analyticity.
The known Sudakov factor for initial-state radiation is, repeated here from
equation (2.24)

dz «ag
z 2mt!

[t 1
AP (ta ) = exp [— dt’
| 0

ta

Z(Paﬂbc(z) + chb(@) o) ] (3.14)

a,c

with the splitting function P, .;.(2) for a parton of type a branching into two
partons of type b and ¢ and the parton distribution functions f,(x,t). The
conservation of momentum can be enforced by explicitly vetoing momentum
conservation-violating branchings directly in the Sudakov factor. To do this,
the branching of the mother parton and the branching of the emitted parton
have to be simulated simultaneously, cf. figure 3.2.

Otherwise, after the generation of the branching, the virtualities ¢, and
tp, and thus the absolute values of the momenta |p,| and |py| would be fixed,
while the virtuality ¢. and thus |p.| would be unknown. Therefore it cannot
be guaranteed that the subsequent simulation of the parton ¢ will not break
the momentum conservation in the branching a — be.

The simulated branching therefore effectively becomes a 1 — 2 (if the
emitted parton does not branch) or a 1 — 3 (if the emitted parton branches)
branching. The Sudakov factor that takes the emitted parton’s branching
into account can be written in the form

[to] 1

t/
dz ag
/ /
dt/ 2 2wt/z/dtc730(tc| )
| 0 ®e

AgSR(ta, ty) = exp [—

o

O (=t ty, te, 20, Ey) (Pa_ﬂ,c(z) + Pa_wb(z)) %] (3.15)

with the veto function

é(tmtbatw Za>Ea> = @(|pb| + |pC| - |pa‘> ’ @(|pa| - ||pb‘ - |ch> (316)

and the one-parton branching distribution function for the emitted parton ¢

Pc(tc‘ - t/,Z). (317)

mothers restframe.
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This function gives the probability distribution for the branching of the emit-
ted timelike parton as a function of the branching this parton was produced
in, described by —t’ and z. The veto function ensures that the three partons
a, b, c can be combined in a branching that conserves momentum by enforcing
the triangle inequality. By adding more terms in © it can also be used to im-
pose cuts for angular ordering or a minimum energy for the emitted timelike
parton. If the emitted parton branches, its final-state parton shower can now
be simulated further by the use of the known double branching probabilities
from the analytic final-state radiation.

However there is a slight difference in the interpretation of the known
one-branching Sudakov factor as used for example in PYTHIA (cf. equation
(3.14)) and the supplemented one in equation (3.15). In the former, the
probability for a branching is independent of the available allowed branchings
of the emitted parton, while in the latter the probability for a branching is
reduced when the emitted parton has a restricted phase space for branchings.
Therefore the supplemented Sudakov factor rather resembles a conditional
probability, hence the notation in (3.17).

Using these prescriptions, double branch probability distributions can
be formulated, analogously to the ones formulated for final-state radiation.
The probability for no earlier branching, which means that the parton is
directly emitted by the hadron and therefore assumed to be on-shell, ¢, —
m?, consists of the Sudakov factor AgSR(—tcut, tp) and a d-distribution forcing
the parton to be on-shell. It can thus be formulated in the form

P (ta; tos tewr) = AL (—tews, )0 (ta — m3) . (3.18)

In case an earlier branching is found, the common single branch probability
would be

&i fa (xaa ta)
27Tta Za a_)bC(Z(I) fb (,Ib, ta)
AP (Lo, 1) O (ty — 1) © (—ty — tewr) (3.19)

7Da—>bc(ta> Zas tb; tcut)

with the Sudakov factor AISE(t,,t), a relative weight given by the ratio

fa(zayta)
7 fo(xpota)
itself, ;‘r—faiPa_)bc(za) and two step functions that force the parton to be in

the correct range of virtuality.

For the transition to analytic showers, a dependence on the scale of the
branching of the emitted parton ¢. is introduced. Thus, two different cases
have to be considered. In the case of the emitted parton ¢ not branching
further, the corresponding probability distribution is supplemented by the

of parton distribution functions , the probability for the branching

45



3 The Analytic Parton Shower

no-branching-probability P for the emitted parton ¢ and the veto function
O. It can be written in the way

PbT b (t(u t67 Zas tbu tcut)

a—bc
ag = 1 fa (xaa ta)
tmt?tca a;Ea _Pa—>c a) pr 7 1\
27Tta ( ’ - ) Za ’ (Z )fb (.Tb,ta)

AP (L0, 1)0 (ta — ) © (—ta — tew) P (te; |tals tewr) - (3.20)

In the case in which the emitted parton undergoes another branching, the
distribution is supplemented by the single branch probability for the emitted
parton P’ .. and has the form

PUY  ie(tar tes Zay Vi ty, teut)

a—bc—bde
as = 1 fa (Tasta) \ 15R

= —O0 taat 7tcu aaEa _Pa—> c\<a —A taut
ot (o, b, te, 2 )za b(z>fb( k. (ta, th)

2O (ty — 1) O (—ta — tow) PP e (tes i [tal, teus) (3.21)

Using these expressions, the probability distribution for the scale t, can
therefore be written analogously to the case of final-state parton showers,
equation (3.6), in the form

7Db (ta; tb? cut ta; tb? tcut)

+ Z / dz, / dte Py e (tas tes Za; T, teur)
+ Z / dz, / dte Py oy (tas tes 2a T teur)
b Y [ [t [P bt it )

a,c,d,e

+ Z /dza/dt / Slbgqueb(taatc’Za’“c?t%tcut)' (3.22)

a,c,d,e

The probability distributions for the parton species and the energy fractions
z follow directly from this equation.

One aspect of initial-state parton showers that is a rather critical technical
point, is the assignment of momenta for the first branching in the initial
state. By the first branching we mean the branching closest to the hard
interaction. As the partons in the hard matrix element are on the mass shell
and often assumed to be massless, any branching would be kinematically
forbidden. Therefore the partons have to be set off-shell in order to allow
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3 The Analytic Parton Shower

for kinematically allowed branchings. This is done by simultaneously scaling
the partons’ momenta, until the invariant mass squared reaches the scale of
the first branching,

t:p2:E2_p2:tfirst<<O-

The distribution of ;5 is obtained by solving a Sudakov factor similar to
the one given in equation (3.15), but with the terms corresponding to the
emitted parton removed,

[ts] 1
dz «
ISR S
Ab (tfirstatb) = exp [—/dt, ?Qﬂ_tl
ltal O
fo (2.1
Py pe P, .. z . (3.23
S (Proate) 4 Pemale) ) ) | 329

Thus the initial-state parton shower is not started from the two partons in
the initial state of the matrix element, but from copies of them that have
their momenta assigned in the following way:

ty = tfiTStl to = tfz'rst2 (324)

o _
crh b Egzé—El (3.25)

45 2

Pl = [p2| =/ Ef -t P1 = —P2 (3.26)

By doing so, both partons are set off-shell so that branchings are kinemat-
ically allowed, while conserving the total energy and momentum. Another
possibility would be to enlarge the three-momenta so that the scales are equal
to the negative partonic center-of-mass energy, t — —52, and then start the
shower from there, but this starting configuration has the disadvantage that
the three-momenta of the initial partons tend to be very large, so that it
becomes very hard to find kinematically allowed branchings.

E1:

3.4 On the Choice of the Evolution Variable

There has been a trend towards transverse-momentum- or pr-ordered parton
showers during the last years, mainly driven by the easier implementation of
angular ordering in pr-ordered showers. Our algorithm for analytic parton
showers retains virtuality ¢ as ordering variable. This is because the formu-
lation of a pp-ordered analytic parton shower led to a cyclic dependence in
the variables as follows:
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3 The Analytic Parton Shower

The integrand in the Sudakov-factor depends on the two variables energy
ratio z and virtuality ¢ (and some more variables that are dropped for now),
we denote the integrand here by I, (¢, z). Replacing the energy ratio z by the
angle cosf (cf. equation (3.7)) leads to an integrand of the form Iy(t,0) =
I;.(t,2(0,t)). The relation between virtuality and transverse momentum was
given in (24), t = z(ﬁz). To replace the virtuality ¢ by the transverse
momentum pr, one would use the formula

N pl
b= 0= T 2000 —=0.0) (3:27)

thus introducing a circular dependence due to the replacement of the energy
ratio z by the angle #. Due to this problem, the ansatz of an analytic pp-
ordered parton shower was not pursued. It is unclear whether this problem
persists for any reformulation of the parton shower. The search for a pr-
ordered analytic parton shower is one possible future task.
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4 Implementation

In order to show the practical feasibility, we implemented the algorithms for
the analytic parton showers in the form of Fortran90/03 modules. The main
focus was to build an extension to the event generator WHIZARD. The imple-
mentation in the form of Fortran modules allowed to pursue the basic design
patterns from WHIZARD. Among these are a high level of modularization and
the use of object-oriented like features of the language in order to guarantee
a clear structure and good maintenance of the code. Despite the integration
in WHIZARD, the shower modules are self-contained and can be used from a
standalone program as well'”. We connected the event generator WHIZARD to
the parton shower modules by means of a well-separated interface. Moreover,
in order to generate more realistic events, we implemented a version of the
MLM matching scheme presented in section 2.9 together with an interface
between WHIZARD and the matching procedure. In addition, we attached the
Fortran77 version of PYTHIA to the main WHIZARD core by another interface
to use its hadronization routines. We then extended this interface to be also
able to use PYTHIA’s parton shower routines from within the structure of
WHIZARD, instead of the internal analytic parton shower.

This chapter is structured as follows: First we will give an overview of
the technical details of the implementation of the analytic parton shower in
section 4.1. The prerequisites for a standalone compilation of the analytic
parton shower modules are given in section 4.2. Then we discuss shortly the
event generator WHIZARD and its structure in section 4.3. Section 4.4 then
describes the interface implemented to use the parton shower from WHIZARD.
The implementation of our variant of the MLM matching scheme is subject of
section 4.5. The part in section 4.6 describes the interfaces between WHIZARD
and PYTHIA, namely one interface to substitute the analytic parton shower
with PYTHIA’s parton shower and one interface to use the hadronization rou-
tines from PYTHIA.

4.1 Implementation of the Analytic Parton Shower

In the current version of our code, three different parton shower algorithms
are implemented:

e a virtuality-ordered analytic parton shower for final-state radiation as
presented in section 3.2,

e a virtuality-ordered analytic parton shower for initial-state radiation as
presented in section 3.3,

Talong with the inclusion of some auxiliary modules from WHIZARD
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e a pr-ordered shower for initial-state radiation.

The pp-ordered parton shower is a simplified reproduction of the pr-ordered
initial-state parton shower in PYTHIA and was only implemented for compar-
ison during an early stage of the implementation. It will not be discussed
further in this chapter.

4.1.1 Structure of the Source Code

The source code is located in the directory src/shower in WHIZARD’s source
code repository. The directory consists of the following files:

e shower_basics_module contains the basic settings for the shower and
some basic routines, e.g. for the calculation of the running of the
coupling constant ag.

e shower_parton_module contains the description of the properties of
single partons. Most of the file’s content is used for book-keeping pur-
poses, e.g. assigning momenta to daughter particles once a branching
has been fully simulated.

e shower_module is the main module for the shower. The general data
types are implemented in this file, as are the most important procedures
for the algorithms.

e shower_topythia contains an interface to PYTHIA. It allows the content
of an event to be written into PYTHIA’s data structures, mimicking
an event showered by PYTHIA. The event can then be hadronized by
PYTHIA’s hadronization routines.

e shower_dummy contains dummy copies for all routines and variables
used by WHIZARD. This file is included to substitute for the real imple-
mentation in case WHIZARD is to be compiled without the shower. If any
of the procedures is called, e.g. by requesting showered events to be
generated but using a WHIZARD binary that has been compiled without
the shower, it terminates execution with an error message.

Moreover, some basic modules from WHIZARD are used in the source code and
can hence be considered as part of the implementation, see section 4.2 for a
list of these modules.
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4.1.2 Fundamental Data Structure

The three main data types used by the parton shower are parton_t for
single partons, shower_interaction_t for interactions generated by matrix
elements and shower_t as the general type. The two former types are accom-
panied by types encapsulating pointers to these types, parton_pointer_t
and shower_interaction_pointer_t!8.

The information for each parton is stored in a variable of type parton_t,
defined in shower_parton_module.f90.

type :: parton_t

integer :: nr=0

integer :: typ=0

type(vector4_t) :: momentum = vector4_null
real(default) :: t = 0._default
real(default) :: scale = 0._default
real(default) :: z = 0._default
real(default) :: costheta = 0._default
real(default) :: x=0._default

logical :: simulated=.false.

logical :: belongstoFSR=.true.

logical :: belongstointeraction=.false.

type(parton_t), pointer :: parent => null ()
type(parton_t), pointer :: childl => null ()
type(parton_t), pointer :: child2 => null ()
type(parton_t), pointer :: initial => null ()
integer :: c1 =0, c2 =0
integer :: interactionnr = 0O

end type parton_t

The information stored for each parton can be grouped as follows
e general properties:

— typ type of the particle, given as a PDG-Code [82], e.g. 1 for a
down quark, —1 for an antidown quark and 21 for a gluon,

e kinematical properties:

— momentum four-momentum of the parton,

— t the four-momentum squared,

18This is needed due to Fortran’s incapability to build arrays of pointers.
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— scale the scale of the particle, equal to the virtuality ¢ for partons
in a virtuality-ordered shower,

e book-keeping information:

— nr each particle is assigned a number that can serve as an identi-

fier,

— interactionnr gives the number of the interaction this parton is
connected to, as stored in the interactions array in shower_t
(see below),

— simulated whether this particle has already been simulated,

— belongstoFSR to distinguish between partons belonging to the
initial and final-state parton shower,

— belongstointeraction to distinguish partons belonging to an
interaction described by a matrix element,

— ¢1, ¢2 color and anticolor indices in the No — oo limit!?,
e information about this parton’s branchings:

— parent a pointer to the parton that emitted the current parton
(if any),

— childl, child2 pointers to the two partons this parton branches
into (if any),

z the energy ratio of the first daughter and the current parton,

costheta the generated cosf value for this parton’s branching,
e special information for partons in the initial-state parton shower:

— x this parton’s momentum fraction,

— initial is a pointer to the parton’s initial hadron.

A dedicated subroutine, shower_add_interaction2ton, is implemented
to add a hard 2 — n interaction. It takes an array of the partons involved
in the interaction as its argument. It is assumed that the first and second
particle in the list are the incoming particles, the remaining particles are
assumed to be the final particles. It is assumed that there are at least two

9Parton showers work in the large N¢ limit, where the number of different color charges
is taken to be infinite. In this approximation, a gluon can be treated to be a composition
of one color and one anticolor charge and interferences between different color structures
are disregarded.
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outgoing particles. Each variable of the shower_interaction_t type con-
sists of an array of the incoming and outgoing partons. The data type is
called shower_interaction_t to avoid confusion with the interaction_t
type built-in within WHIZARD.

type :: shower_interaction_t
type(parton_pointer_t), dimension(:), allocatable :: partons
end type shower_interaction_t

The main data type is the shower_t type. It is intended to represent one
event. The complete event information is stored in a variable of this type.

type :: shower_t
type(interaction_pointer_t), dimension(:),
allocatable :: interactions
type(parton_pointer_t), dimension(:),
allocatable :: partons
integer :: next_free_nr
integer :: next_color_nr
logical :: valid
end type shower_t

The interactions array holds pointers to the interactions described by ma-
trix elements. As currently only one interaction per event is generated by
WHIZARD, a single pointer would be sufficient. In preparation for the imple-
mentation of multiple interactions, we chose to use an array instead. The
partons array serves as a collection of all partons present in the event, re-
gardless of their state. Note that the array is not the only way to access
the partons, in addition all partons are part of trees using the parent and
child pointers in parton_t. Thus partons can be accessed by trees ei-
ther starting at one member of the partons array or at a parton that is
part of an interaction stored in the interactions array. The subroutine
shower_add_children is implemented to consistently add new partons to
the tree and the array, respecting all parent and child connections. The inte-
gers next_free_nr and next_color_nr are used to distribute the numbers
and color numbers to the partons. The boolean variable valid is used to
indicate that no error occurred in the processing of the event.

The variable is initialized by a call to shower_create and destroyed by
a call to shower_final. Procedures are provided that add interactions, per-
form the initial- and final-state parton showers and print the event to the
screen or an Les Houches event file (LHEF)[83].
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4.1.3 Implementation of the Analytic FSR

Some arrangements for the final-state parton shower are done while adding
the interaction to the shower record. Because of four-momentum conserva-
tion the parton shower cannot be started from single partons®*. Therefore
the outgoing partons are clustered until only a minimum number of partons
or pseudo-partons remains. A pseudo-parton is an imaginary parton that is
assigned a momentum as well as parent/child-connections to other partons
or pseudo-partons, but not assigned a well-defined type. The resulting tree
of partons and pseudo-partons is called the pseudo-parton shower history.
The clustering is done using the known kp-algorithm?'. This means that for
every combination of particles in the final state the value

. (1 —cosb;)) (4.1)

Yij
is calculated, then the pair of partons with the lowest value of y;; is replaced
by one pseudo-parton with combined momentum. By doing this, the inter-
mediate partons are automatically put off-shell, so that the branching can be
understood as having taken place at a scale corresponding to the off-shellness.
In the current status of the implementation, the clustering is done regardless
of whether the clustering is allowed. A procedure that is intended to check if
the clustering is allowed is present, but not completely implemented at the
moment. As an example, in a q¢ — v — ¢qg process, the gluon has to be
clustered with one of the quarks first to generate a parton shower history
v — qq — qqg, while the clustering of the two quarks first is forbidden as it
would give a parton shower history like v — gC' — qgg with C either being
a gluon, photon or a Z-Boson. On the other hand a process ¢ — g — ¢'7'g
would allow all possible clusterings.

During the simulation of the parton shower, the actual branchings are
generated by searching for the parton with the highest virtuality and yet
unsimulated daughters. For both daughters the scale of the next branching

20This can be seen from a ¢ — ¢g branching in the initial quark’s rest frame. The
four-momenta are given by

Pqi = Pqf + Dg

and therefore
2

mg = Pii = (Pas +p9)2 = mg + 2pgf - py-
As pqr - pg > 0 this equation can never be fulfilled. This is avoided by setting the initial
parton off-shell. If there is only one parton in the initial state, this obviously violates
momentum conservation. In the case of more partons in the initial state, the additional
momenta can be chosen to be balanced.

21See A.2 for an introduction to the kp-algorithm.
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is simulated. The actual simulation of the double branchings is done by the
subroutine shower_simulate_children_ana. This procedure is repeatedly
called until all particles are simulated. As it is assumed that there are no
interferences between the FSRs of different hard interactions, the FSRs for
each interaction are generated independently. For this purpose, the subrou-
tine shower_interaction_generate_fsr2ton is called for each interaction.

The integrals over cos 6?2 in the Sudakov factors (see e.g. (3.9)) are evalu-
ated in the subroutine parton_simulate_stept. The domain of integration
is divided into bins of variable width. The bin width is chosen to be small
in regions with possible divergences. As the possible divergences are of type
~ 1%0 or ~ ﬁ, a function of the form x4+ %= + % is fitted to the values of
the integrand at the borders and in the middle of the bin. Integration over
the fitted function can be achieved analytically, yielding the integral for one

bin A A
1 l1—c—
Lypin, = ©1AC + x5 l0g Stetac) x3log et
1+¢ 1—c

with ¢ as the value of cosf at the left boundary of the bin and the bin width
Ac.

4.1.4 Implementation of the Analytic ISR

We chose the structure of the implementation to be easily extendable to
include interleaved evolution?®. Thus the task of simulating a branching
in the initial-state parton shower is divided into two procedures, one that
calculates the scale of the next branching and one that actually executes the
found branching. These two procedures are shower_generate_next_isr_
branching and shower_execute_next_isr_branching. The first function
returns a pointer to the next branching parton. This pointer is later used
by shower_execute_next_isr_branching to execute the branching. This
is repeated as long as shower_generate_next_isr_branching finds partons
that undergo a branching.

The simulation of the initial-state parton shower is done by a loop of the
form

do
pp=shower_generate_next_isr_branching(shower)

if (.not. associated(pp%p)) then
exit

22For brevity, we use the abbreviation ¢ = cos 6.
23See section 1.4.2 for a short introduction to interleaved evolution.
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end if

call shower_execute_next_isr_branching(shower, pp)
end do

The expansion to include interleaved evolution is straight-forward. In-
stead of only taking into account a possible next branching in the par-
ton shower via the subroutine shower_generate_next_isr_branching, the
scale of a possible next multiple interaction is evaluated as well. Then, de-
pending on which of these happen at a higher scale, either the additional
interaction or the additional branching is executed. If the procedures did
not find an additional interaction nor an additional branching, the loop is
ended. The expanded form of the loop would then look like?*

do
next_brancher=shower_generate_next_isr_branching(shower)
next_int_scale=get_next_mi_scale()

if (next_brancheryp==null .and. next_int_scale==0) then
exit
end if

if (next_brancherp%scale < next_int_scale) then
call execute_next_interaction()
else
call shower_execute_next_isr_branching(shower, pp)
end if
end do

After the loop has ended by finding no more branchings (and finding no
more multiple interactions in the interleaved case), the subroutine shower_
generate_fsr_for_partons_emitted_in_ISR is called. It simulates the
final-state parton showers originating from the partons emitted in the initial-
state radiation. Finally, calls to three subroutines needed for book-keeping
are made. Firstly, the call to shower_boost_to_labframe is necessary be-
cause the evolution of the initial-state parton shower is always performed
in the center-of-mass frame of the two most primal partons, thus lead-
ing to Lorentz boosts for every new branching. The final boost is then
needed to transform the event back to the lab frame. The two latter proce-
dures, shower_generate_primordial_kt and then finally shower_update_

24This has not yet been implemented. Therefore, the added procedure names do not
correspond to actual procedures.
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beamremnants, implement the treatment of beam remnants as presented in
the next section.

4.1.5 Beam Remnants

We implemented a very rudimentary treatment of beam remnants, with the
main purpose of being able to provide a color-neutral input to the hadroniza-
tion. In dependence of the emitted particle the beam remnant is assumed to
consist of one or two partons. The procedure for determining these partons’
flavors and momenta is given below.

The given procedure obviously only applies in the case of only one emit-
ted parton per proton, that is in the case of only one hard interaction. As
an implementation of an interleaved multiple interactions/initial-state radia-
tion evolution along the lines of the Interleaved Evolution approach [36] is in
preparation, this simple treatment of beam remnants will become inapplica-
ble. Thus a more sophisticated treatment, including a treatment of multiple
emitted partons, will be implemented in the future.

Primordial k7 In contrast to the formulation of PDFs and the DGLAP
equations in the infinite-momentum frame and thus omitting any transverse
momentum, experimental results can be better reproduced assuming a non-
vanishing transverse momentum of the initial partons. The beam remnant
will act as a recoiler for the initial partons. This transverse momentum is
commonly referred to as primordial kr. There is no theoretical description for
the distribution of the primordial k7. The distribution is usually modeled
using a Gaussian distribution with an additional constraint |kr| < k7max-
This k7 me. and the width of the Gaussian introduce two additional param-
eters that have to be fitted using experimental data. The extension to other
distributions is as well possible.

We implemented the Gaussian distribution. The implementation is avail-
able via the subroutine shower_apply_primordial_kt. This subroutine will
generate the primordial kp for both initial partons and apply them using a
random polar angle. It will also perform the Lorentz boost necessitated by
the change of the initial partons’ momenta.

Flavors The flavors of the beam remnant are chosen according to a simpli-
fied procedure from PYTHIA [23, section 11.1.1]. Depending on the flavor
of the emitted parton the flavors of the beam remnant are chosen (These
rules apply for protons as the initial hadrons, with obvious alterations for
antiprotons.):
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A valence quark of the hadron is assumed to leave behind a diquark
beam remnant. A ud-diquark is assumed to be a ud; in 25% and a ud,
in 75% of the cases, while a uu-diquark is always a uu;.

e A gluon is assumed to leave behind a color octet state, that is divided
into a color triplet quark and an anticolor triplet antiquark. The divi-
sion is 1/6 into u + udy, 1/2 into u + udy and 1/3 into d + wu;.

e A sea quark, such as an s, leaves behind an wuds state, that is subdi-
vided into a meson and a diquark. The relative probabilities are 1/6
into us + udy, 1/2 into us + udy and 1/3 into ds + wuy.

e An antiquark ¢ leaves behind a uudgq state, that is divided into a baryon
and a quark. Since mostly the g pair comes from an emission of a
gluon, the subdivision uud + ¢ is not allowed as it would correspond to
a color singlet gluon. The subdivision is therefore 2/3 into udq 4+ u and
1/3 into uuq + d. The three quark state uug or udq is then replaced
by the corresponding baryon of lowest spin.

This obviously only applies in the case of only one emitted parton, that is
the case of only one hard interaction. For the case of multiple interactions a
more sophisticated approach has to be found.

Momenta The total momentum of the beam remnant is given by the re-
maining momentum of the hadron after the emitted particle has been re-
moved. In case the beam remnant consists of only one parton, this parton is
assigned the complete momentum. Otherwise, if the beam remnant consists
of a diquark and a quark the momentum is distributed in equal parts to the
both constituents. If the beam remnant consists of two constituents with one
of them being a meson or baryon, the energy is distributed in equal parts
but the three-momentum is distributed so that the hadron is on-shell and the
quark is assigned the remaining momentum. This procedure generates on-
shell colorless particles and off-shell colored particles. The colored particles’
off-shellness is absorbed in the hadronization.

4.2 Standalone Compilation

When compiling the source code located in the src/shower directory in order
to generate a standalone program, two additional components are required.
First, the shower demands the inclusion of the LHAPDF [30] library. As
parton distribution functions are needed for initial-state radiation, a version
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compiled without the LHAPDF library would only be applicable to final-
state radiation. For now, we do not allow for compilation without LHAPDF,
but this could easily be allowed, e.g. for use at a lepton collider?. Second, for
simplicity, the parton shower code uses some basic components from WHIZARD,
e.g. the kinds module that defines the precision of floating point variables
or the lorentz module that defines four-vectors, Lorentz boosts and their
algebra. For the standalone compilation the needed modules have to be
provided.

If both these requirements are met, a command line invoking the compi-
lation could then look like

gfortran -1LHAPDF -L<...LHAPDF directory...>
constants.f90 iso_varying_string.f90 limits.f90
file_utils.f90 lorentz.f90 tao_random_numbers.f90
shower_basics_module.f90 shower_parton_module.f90
shower_module.f90 main.f90

with the main program in main.f90. This main program must provide the
matrix-element events, for example by simulating them or reading them from
an event file. A very simple example main program assuming a constant
matrix element is given in appendix C.1.

4.3 Structure of WHIZARD

WHIZARD is an event generator for a variety of applications at hadron, lepton
and photon colliders. To achieve this, it has been supplemented by several
subprograms. The name WHIZARD stands for the whole package as well as for
the core program without any subprograms. The matrix-element generator
0’Mega [55] and the integration library VAMP [84] are the two most important
subprograms in the WHIZARD package. Both, VAMP and 0’Mega, are self-
contained packages and can also be used without WHIZARD.
Technically, WHIZARD consists of five libraries:

e libaux
e libwhizard-core
e libvamp

e libmodels

250ne possible way to compile the shower without the need for the LHAPDF libraries
would be to use the LHAPDF dummy included in the WHIZARD package in the directory
src/lhapdf.
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e libomega

The 1libaux library contains basic auxiliary modules needed by more than
one other module, for example all WHIZARD modules needed for the standalone
parton shower program, except for the random number generator module in
tao_random_numbers.f90 that is provided by VAMP. The libraries 1ibvamp,
libomega and 1ibmodels are provided by the subprograms VAMP and 0’Mega,
respectively.

The library libwhizard-core contains all modules needed to read all
input into WHIZARD, steer 0’Mega and VAMP, manage the phase space integra-
tion, generate and analyze events and write out results. The source code for
this library resides in the file src/whizard-core/whizard.nw, a noweb file
that contains both, source code and documentation.

For a more elaborate description of WHIZARD and its structure, see the
recent WHIZARD publication [29].

4.4 The Interface between WHIZARD and the
Parton Shower

We implemented the parton shower interface as an additional module shower_
interface?® in the library libwhizard-core. The source code is located
in the file src/whizard-core/whizard.nw like most other modules from
that library. The module’s main procedure is apply_shower_particle_set.
A particle_set is a component of WHIZARD’s type for events, it basically
consists of a list of particles. During the event generation, the procedure
apply_shower_particle_set is called if necessary. Apart from the imple-
mentation of matching, see section 4.5, the main task of this procedure is to
call one of the procedures for showering, apply_PYTHIAshower_particle_
set and apply_WHIZARDshower_particle_set, depending on which parton
shower was chosen, and to call the procedure for hadronization using PYTHIA,
apply_PYTHIAhadronization. All these procedures are only called if acti-
vated in the WHIZARD input file.

Although they are two separate subroutines, the two procedures for show-
ering share most of the steps. First, the event information from the particle
set is transferred to the data structure of the respective parton shower. For
WHIZARD’s shower this is done by constructing an array holding all parti-
cles of the hard interaction and adding this to the shower data structure

26The name shower_interface is a misleading one. The module was originally intended
as an interface to the parton shower only. However, the module outgrew its original
purpose as the module now contains not only the interface to the shower but also to the
hadronization, matching, etc. as well.
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via calling shower_add_interaction2ton. To transfer the event to PYTHIA,
the event information is written to a Les Houches Event File [83]. The
file is not written to the hard disk drive, but only to a Fortran scratch
file. This ensures that the data is kept in the memory all the time, thus
minimizing the performance penalty induced due to the conversion of the
event file. Apart from the particle list and all values that can be inferred
from the list, the event file will only contain dummy information. How-
ever, the omitted information is irrelevant for the showering of the event.
PYTHIA is configured to read in the Les Houches Event File and only per-
form the parton shower?”. The simulation of the shower then reduces to a
call to PYTHIA’s function PYEVNT. For WHIZARD’s internal shower, the ac-
tual showering is implemented by calling the procedures shower_generate_
next_isr_branching, shower_execute_next_isr_branching and shower_
interaction_generate_fsr2ton and some auxiliary functions in a mean-
ingful combination. In a final step, the showered events are read back into
WHIZARD. For both parton shower implementations, the showered event is
written again to a Les Houches Event File, which is then added to WHIZARD’s
particle set via the procedure shower_add_lhef_to_particle_set. One ad-
ditional step in apply_WHIZARDshower_particle_set is that if hadroniza-
tion is switched on, the showered event is automatically written to PYTHIA’s
data structure via the use of the shower_topythia module. This is done
because the hadronization routine assumes that the event information is al-
ready present in the PYTHIA’s data structure. This assumption is included to
avoid redundant transfers of particle information to PYTHIA in case PYTHIA
is used for both, shower and hadronization. The hadronization procedure
apply_PYTHIAhadronization then basically consists of a call to the PYEXEC
routine from PYTHIA?®. Like after the showering, the resulting event is written
to a Les Houches Event File, that is then added to the original particle set.
See sections 4.6.1 and 4.6.2 for more elaborate discussions of the interface to
PYTHIA’s parton shower and hadronization routines.

The reason for dividing the simulation in different steps for the shower and
the hadronization is to be able to access the showered but not yet hadronized
event. This information is needed for the MLM matching algorithm, as shown
in the next section.

2"By default, PYTHIA also simulates multiple interactions when simulating the initial-
state parton shower. For a correct comparison between PYTHIA’s parton shower and the
built-in one, PYTHIA’s treatment of multiple interactions would have to be manually dis-
abled.

28Gimilar to the case for initial-state parton showers, the simulation of hadronization
via PYTHIA also includes the simulation of hadronic decays unless explicitly switched off.
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4.5 Implementation of MLM Matching

In the process of implementing the analytic parton shower, we also imple-
mented a matching procedure according to the principles of the MLM ap-
proach in WHIZARD with the use of a kp-clustering jet algorithm from the
KTCLUS clustering package [85] (cf. section A.2). As MLM matching is not
unambiguously defined in the literature, a freedom in the implementation re-
mains. This freedom consists of the choice of jet definitions and a procedure
to correlate jets described by the matrix elements with jets after the parton
shower. We chose an implementation that was inspired by the discussion of
the MLM matching in [74].

The steps in detail are:

1. The cross sections for the main process and processes with up to N
additional partons in the hard matrix element are calculated. The
phase space has to satisfy the additional cuts enforced by the matching
procedure

pr > PT min, |7]| < ‘nmam|7 AFijj > Rmm (42)

with the transverse momentum pr, the pseudo-rapidity n and the n—¢-
distance between two jets AR;;. The values prmin, Nmaez and Ry are
set in the WHIZARD input file.

2. According to the relative probability P(i) given by the relative size of

the corresponding cross sections,
O’.
P(i) = . (4.3)
Zj gj

a matrix-element event with ¢ additional partons is generated.

3. The kp-clustering jet algorithm is applied to the final colored partons
from the matrix element?.

4. These events are then showered. This is done with WHIZARD’s shower by
default. For the purpose of comparison, one can replace the analytic
shower by PYTHIA’s parton shower without changing the rest of the
calculation.

29Normally, the number of jets after the matrix element will be given by the number of
colored outgoing partons. Recent studies of compressed SUSY spectra, these are SUSY
spectra that contain nearly mass-degenerate particles, include very low energetic quarks
as final partons in SUSY decay chains. These quarks will mostly be unable to initiate a
jet and thus should not be included in the MLLM matching. A clustering algorithm applied
directly to the event as described by the matrix element will reject these low-energetic
quarks.
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5. After the shower evolution, the kp-clustering jet algorithm is applied
to the showered, but not yet hadronized event, taking only colored
partons with a pseudo-rapidity || < 7mazcus Nt account. Jets are
defined by a minimum jet-jet separation 1.,;>,

Nmaz clus = 77clusfactor * Nmaz (44)
Yeut = [mein + max (ETclusminE'>
2
ETclusfactor * mem) . (45)

The factors and hence the clustering variables can be varied as part of
the systematics assessment, the defaults for these factors are chosen to
be 1.

6. If the number of jets after the parton shower undershoots the number of
jets after the matrix element, the event is discarded. When the number
of jets after the parton shower overshoots the number of jets after the
matrix element, the event is rejected as well, unless the number of
matrix-element jets is equal to the maximum allowed number of matrix-
element jets. In that case the scale y.,; is adapted such that the number
of reconstructed jets is reduced to the number of matrix-element jets,
i.e. the jet resolution is lowered accordingly.

7. Then it is tested if the reconstructed jets match the matrix-element
partons. This is done in an iterative way: The clustering is reapplied
to a set consisting of the reconstructed jets and one of the matrix-
element jets. Using this set, the jets at the jet resolution scale .
are reconstructed. If the additional jet leads to an additional jet at
the scale 9., the matrix-element jet is assumed not to be matched to
any of the reconstructed jets after the parton shower and the event is
discarded. Otherwise the matched reconstructed jet is removed from
the set and this procedure is repeated for the next matrix-element jet.
If and only if all matrix-element partons can be matched in this way,
the event is accepted.

These steps are implemented in a Fortran module in the file src/shower/
mlm_matching_module.f90. The main procedure of this module is simply
called m1m_matching. Its input consists of a list of the particles’ momenta as
a described by the matrix element and a list of the momenta of the particles
after the shower. The procedure constructs the respective jets from these

30see section A.2 for a short introduction to jet clustering
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momenta and performs the steps 3,5,6 and 7 of the listing above. The first
two steps and the parton shower are called from within WHIZARD.

4.6 Additional Interfaces

The interface to PYTHIA’s parton shower was implemented during the de-
velopment of the analytic parton shower to have a means of comparison.
Nevertheless, it also provides users of WHIZARD with a way to generate show-
ered events without interfacing external programs. As long as the analytic
shower has not been validated using experimental data, it is recommended
to use the PYTHIA shower for production runs. Then, it was only a minor
task to also include an interface to PYTHIA’s hadronization routines.

4.6.1 Interface to PYTHIA’s Parton Shower

The subroutine incorporating the interface to PYTHIA’s parton shower, apply_
PYTHIAshower_particle_set, is called in the same way as the procedure for
the internal shower. The body of the procedure basically consists of five steps:

e The passed event information is written to a LHEF. As for the interface
to WHIZARD’s parton shower, the file is not written to the hard disk
drive, but only to a Fortran scratch file.

e PYTHIA is configured. This includes the setup for reading the event
file, the transfer of settings from WHIZARD and the transfer of special
settings for PYTHIA via PYTHIA’s PYGIVE command.

e The actual showering is performed via a call to the PYTHIA routine
PYEVNT.

e The showered event is retransferred to WHIZARD. This transfer is also
done using an LHEF stored in a scratch file.

e If matching is enabled, the momenta of the partons belonging to the
hard interaction are extracted from PYTHIA’s data structure and saved
for usage in the matching. The information has to be extracted from
PYTHIA’s data structure to respect Lorentz boosts made during the
evolution of initial-state radiation.

4.6.2 Hadronization Interface

The hadronization routine closely resembles the routine for the interface to
PYTHIA’s parton shower. The main difference is that the call to PYEVNT is
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replaced by a call to PYTHIA’s hadronization routine PYEXEC. A detailed
description of the usage of the interface will be given in the WHIZARD manual
once the analytic parton shower is released as an official part of the WHIZARD
package.
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5 Validation and Results

We compared the predictions for the process e e~ — hadrons at LEP with
center-of-mass energies of /s = 91 GeV and /s = 133 GeV and for Z pro-
duction, pp/pp — Z + X, at the Tevatron and the LHC at energies of
Vs = 1.96 TeV and /s = 7TeV, respectively. All event sets were gen-
erated using WHIZARD, which means the hard interaction was simulated by
WHIZARD/0’Mega, the parton shower was either simulated using PYTHIA’s
virtuality-ordered shower or WHIZARD’s own analytic shower, denoted in the
plots by either PYTHIA PS or WHIZARD PS. For WHIZARD’s parton shower we
used a first-order running ag in the MS-scheme, given by

2\ 4m
os (@) = (11 — 2ny) log (Q%/A%)’ (5:1)

taking ny and A as constants, neglecting the influence of flavor thresholds for
the moment. For PYTHIA’s parton shower we used the same A and n; values
for a first-oder running aig, but with threshold effects enabled. If not stated
otherwise, the values for A were chosen to be A = 0.19 GeV for WHIZARD’s
parton shower and A = 0.29 GeV for PYTHIA’s parton shower. The A value
for WHIZARD was chosen by hand to improve agreement with PYTHIA’s distri-
butions. The hadronization, if activated, was simulated using PYTHIA with
the hadronization tune from an analysis by the DELPHI collaboration [86,
table 10, Dec. 93]. This tune was of course made using PYTHIA’s parton
shower, but will be used in here together with WHIZARD’s parton shower as
well. As the hadronization tune depends on the parton shower, using a tuning
obtained with a different parton shower can lead to unsubstantial deviations
in the results. As there is no tuning with WHIZARD’s parton shower available,
we cannot give an estimate for the deviations. The possible tuning of our
shower is beyond the scope of this thesis, presenting merely the algorithm,
and will be left for future work. Given the fact that no tuning has been done,
the shower already describes data in a QCD environment reasonably well.
The definitions of all observables are given in section A.1 in the appendix.

5.1 Final-State Radiation at Parton Level

Figures 5.1 to 5.4 show a comparison of distributions of event shapes at
parton level for the process ete™ — wuu at a center-of-mass energy of /s =
133 GeV. For both parton shower programs the events were showered with
a cut-off virtuality t.,, = 1 GeV?, hadronization was disabled. The plots for
thrust, thrust major and thrust minor show that WHIZARD’s parton shower
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Figure 5.1: Plots for thrust 7" and thrust major 7,450 (Without
hadronization). The dashed/green/bright line is WHIZARD, the
dotted/blue/dark line is PYTHIA.
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Figure 5.2: Plots for thrust minor 7}, and Oblateness O (with-
out hadronization). The dashed/green/bright line is WHIZARD, the
dotted/blue/dark line is PYTHIA.
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Figure 5.3: Plots for jet broadenings By, and B, (without

hadronization). The dashed/green/bright line is WHIZARD, the
dotted/blue/dark line is PYTHIA.
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generates more spherical events compared to PYTHIA's parton shower. None-
theless, they show a satisfactory agreement as WHIZARD’s parton shower was
not tuned at all for these plots. However, it is unclear if the discrepancies can
be tuned away. Moreover, as distributions at parton level are not observable
in an experiment, it is doubtful if they even need to be.

5.2 Final-State Radiation at Hadron Level
5.2.1 Event Shapes

For hadronized events, we can compare the generated distributions with ex-
perimental data. We compared the distributions for several event shapes
with data from the DELPHI collaboration [87]. The measurement was per-
formed using ete™ collisions at center-of-mass energies of /s = 130 GeV and
136 GeV. The simulated hard interaction was chosen to be ete™ — uu at a
center-of-mass energy of /s = 133 GeV.

The resulting distributions for both parton shower algorithms are shown
in figures 5.5 to 5.8 for the event shapes already shown in the previous section
and in figure 5.9 for the energy-energy correlation (EEC).

Both parton showers show good agreement, especially if one takes into ac-
count that the events showered with WHIZARD’s parton shower where hadron-
ized with the PYTHIA hadronization tuned to data using events showered with
PYTHIA. As for the unhadronized samples, events showered with WHIZARD
tend to populate the regions corresponding to more spherical configurations
compared to events generated using the PYTHIA shower. The plot for thrust
major T,,; shows a slight undershooting of the WHIZARD curve with respect
to the data in the two bins from 0.04 to 0.08. However, both distributions are
mostly consistent with the data. The plot for the energy-energy correlation
shows an overshoot in the cosy — +1 bins and, accordingly, an overshoot
in all other bins. As these bins correspond to soft emissions in events with
back-to-back jets, it is likely to be an artifact of the hadronization.

5.2.2 Jet Rates

A comparison of the Monte Carlo results for the process ete™ — ¢q at
/s = 91 GeV with measurements from the JADE and OPAL collaborations
given in [89] is shown in figures 5.10 and 5.11. Shown are differential jet
rates as a function of the resolution parameter in the kp-clustering algorithm
Yiir1, Where the event turns from being a ¢ + 1-jet event into a i-jet event.
The definition of the clustering variable is given in equation (A.6) in the
appendix. The comparison is equivalent to the one in [90, 91], where a
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Figure 5.5: Plots for thrust 7" and thrust major T}, (With
hadronization, data from [87]). The dashed/green/bright line is
WHIZARD, the dotted/blue/dark line is PYTHIA.
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WHIZARD, the dotted/blue/dark line is PYTHIA.

74



5 Validation and Results

100 . . .
DELPHI data +——+—
WHIZARD PS ----------
10 e S PYTHIA PS ---eereene N
e fE s S
Q ,,_;%
= ! e
= 0.1 |4
= |
= j
= 0.01 |-
|
0.001 -
|
0.0001 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Bsum
100 .
DELPHI data +——+—
WHIZARD PS ----------
% PYTHIA PS -----ooeeee-
10 b
=
e
Q
=
= 1
<
<
=
0.1
0.01 \
0 0.05 0.1 0.15 0.2 0.25

Baigs
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tuning of some parton shower and hadronization parameters was performed.
The only tuning applied to the parton shower in the comparison was a by-
hand adjustment of ag, setting A to a value of 0.15GeV. In general, the
plots confirm the tendency of WHIZARD’s parton shower to generate more
spherical events compared to PYTHIA as the bins with higher values of y;;.1
are populated more. Note that small values of y;;11 correspond to small
invariant masses and that these regions are described by the hadronization
model and not the parton shower. So the differences in the left parts of the
plots can stem from two sources. They might be caused by normalization
effects due to over-estimation in the right parts. Any remaining difference
would show that the hadronization tune obtained with PYTHIA is not suitable
to describe these regions when used with WHIZARD’s shower.

5.3 Initial-State Radiation

A plot for the transverse momentum of a Z-Boson produced in pp-collisions
at /s = 1.96 TeV is given in figure 5.12. The simulation with PYTHIA was
done using Rick Field’s CDF Tune D6 with CTEQ6L1 parton distribution
functions. The simulation using WHIZARD’s parton shower was done using the
same PDFs, multiple interactions were disregarded in both simulations. The
data obtained from WHIZARD’s initial-state parton shower shows two distinct
features: first of all, the curve in the low-pr region shows a slight deviation
with respect to the corresponding PYTHIA curve. However, as we will see
later, this is still in agreement with data. Second of all, it shows the known
phase space cut at pr < myz [92]. For comparison, the plot is supplemented
by a pr-histogram for the unshowered process uu — Z¢g. PYTHIA’s description
uses the power-shower and matching and closely resembles the result for the
partonic process.

Our approach to solve the shortcomings of WHIZARD’s parton shower was
not to include the power shower ansatz, but instead accept this as a deficiency
of the parton shower and delegate the task of describing the high-py region
to a matching algorithm.

5.4 Matched Final-State Radiation

Plots for results obtained with the MLM matching for the final-state parton
shower are shown in figures 5.13 and 5.14 for events showered with WHIZARD’s
parton shower and figures 5.15 and 5.16 for PYTHIA. The process under con-
sideration is ete™ — wi at a center of mass energy of 91 GeV, hadronization
was switched off. The process was simulated in five different ways, first with-
out any matching at all and then with a variable number of additional jets
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Figure 5.12: Transverse momentum of a Z-Boson in various
schemes. The normalization for events from WHIZARD’S matrix
element was chosen manually to fit PYTHIA’s PS result in the
range 10 GeV < pr < 20 GeV.
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from zero to three, where each additional jet could be a gluon or a w,d,s
or ¢ quark. For the unmatched case and for each jet multiplicity an event
set consisting of 150000 events was simulated. The plots show normalized
distributions for event shapes obtained from these samples.

The plots show some common features. The line for the (moot) case of
no additional jets closely resembles the line for the unmatched event sample,
except in the region of low thrust (right part of the upper image in figures
5.13 and 5.14). The missing events are events where the parton shower splits
a hard jet into two separated jets, so that the matching procedure cannot
cluster any of the two jets to the original parton and therefore rejects the
event.

The lines for one, two and three additional jets lie on top of each other
so that it can be concluded that for these observables, the inclusion of one
additional jet is sufficient. The deviations between the unmatched and the
matched event samples exhibit different behavior: for PYTHIA the number
of spherical events is larger for the matched sample, stemming from the
better description of large angle emissions. For WHIZARD the deviations are
opposite, the number of more pencil-like events are enhanced, while especially
the number of events with medium values of 1 — 7" and 7},,; is decreased.
This can be regarded as correcting the tendency to favor more spherical
events mentioned in section 5.2. The differences between the distributions for
matched and unmatched event samples have to be taken into account when
tuning the combination of shower and matching to data. Therefore this can
be seen as an example for an observable which is sensitive to regions enriched
by hard jet emission, and not so much dominated by universal logarithmic
terms. For such an observable, a tuning obtained without matching cannot
be reliably used to generate matched samples.

We also did a comparison to data corresponding to the comparison for the
unmatched showers in figure 5.5. We used the curve for the et e~ — 5jets
as the sample for the matched shower. The plot is shown in figure 5.17. The
curve for thrust 7' is slightly altered, most prominent differences to figure
5.5 is a less pronounced peak with both showers and an increase for the
PYTHIA curve for values 1 —7" > 0.1. The curves for Thrust major 7},,; show
similar behavior to the unmatched curves. Both reproduce the data, except
for WHIZARD’s parton shower’s tendency to more spherical configurations and
the small number of events in the lower 7,,,,-bins. Both these deficiencies
have already been visible in the unmatched event samples.
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Figure 5.13: Plots for thrust 7" and thrust major 7T}, 0 (WHIZARD
ME + WHIZARD PS with matching).
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Figure 5.18: Z-Boson transverse momentum, simulated with
WHIZARD ME and PS without and with matching.
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Figure 5.19: Z-Boson transverse momentum, simulated with
WHIZARD ME and PYTHIA PS without and with matching for one
and two additional jets.
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Figure 5.20: The “NoMatching” curve and the “Matching

(1jet)” (cf. figure 5.19) curve for three different values of pr s
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5.5 Matched Initial-State Radiation

To test the matching procedure for the initial state we simulated the process
qq — Z and the additional corrections j j — Z j (j) for one (two) additional
jets, 7 = w,4,d,d, s, d,c, ¢ qg. The resulting distributions for the Z boson
transverse momentum are given in figure 5.18 for WHIZARD’s parton shower
and figure 5.19 for PYTHIA’s parton shower. For comparison the measured
distribution from DO [93] was included. Note that all simulated distributions
were obtained with disabled primordial k7.

As expected, the results for PYTHIA do not depend much on the appli-
cation of matching as its power shower approach already generates a pp-
distribution close to the correct distribution [92]3!. The plot for WHIZARD
shows the expected addition of high-pr events, the concavity is weakend.
Adding a second jet described by the matrix element does change the distri-
bution only marginally for both showers.

Figure 5.20 shows the dependence of the pr-spectrum on the MLM match-
ing parameter pr,,i,. The distribution should be independent of pr ., how-
ever a small difference is visible in the range 10 GeV < pr < 80 GeV. The
high-pp-tail remains stable when changing p7,.in, the shape at the peak does
not change as well. The differences are within the expected dependence on
the matching parameters.

As a further test, we compared the Z-Boson pr at the LHC. We used
the recently published measurement by CMS [94]. Except for the change
from proton-antiproton beams to proton-proton beams and the increased
center of mass energy /s = 7 TeV, all other settings were the same as for the
Tevatron simulation. This holds particularly for the chosen PYTHIA tune, that
was obtained from measurements at Tevatron and usage at the LHC cannot
be regarded as trustworthy. Nevertheless, the data can be reproduced very
well, except for an overshoot in the lowest bins. As for WHIZARD there are no
available tunes yet, so the dependency on a particular tune is not an issue.
Note that the simulation was done with primordial k7 disabled, so that the
lowest bins are expected to be overpopulated. Apart from this difference, the
simulation using WHIZARD’s hard interaction, parton shower and matching
procedure reproduces the data as good as the simulation performed using
WHIZARD’s hard interaction and matching, but PYTHIA’s parton shower.

5.6 One Reweighting Example

As a first step towards reweighting events showered with an analytic shower,
we implemented a reweighting procedure assuming two different constant

31PYTHIA’s own matching was disabled during this simulation.
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Figure 5.21: Z-Boson transverse momentum, simulated with
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values for ag, 0.2 and 0.3. For these values, event samples for the processes
ete” — ¢q with subsequent showers and a center-of-mass energy of /s =
91 GeV were generated, the resulting distributions are shown in figure 5.22.
Then the events obtained using ag = 0.3 were reweighted to the respective
event weights obtained using the setting ag = 0.2. The distribution of the
reweighted events along with the actual ag = 0.2 distribution are shown in
figure 5.23. The reweighted distribution resembles the original one very well,
apart from a slight overshot in the highest bin and an underestimation in the
central region. As the plot shows a normalized distribution, these two effects
are probably connected. We did not investigate wether these discrepancies
stem from statistical fluctuations or from systematic errors.
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Figure 5.22: Thrust distribution, simulated using constant values
of ag = 0.2 (red boxes) and ag = 0.3 (green curve).
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Figure 5.23: Thrust distribution, the data simulated using a ag =
0.3 was reweighted to ag = 0.2 (green curve), the distribution
corresponding to ag = 0.2 (red boxes) remained unchanged.
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6 Conclusions and Outlook

The recent decades have seen continuous experimental progress in the field
of elementary particle physics. This progress has accompanied the progress
in the theoretical description, that, among others, led to today’s event gen-
erators. These event generators are highly-integrated software packages that
include various subprograms. Each subprogram implements a particular as-
pect of the physics under consideration. Combining these different aspects
and therefore also combining different programs is a task necessary for the
understanding of today’s event generators, which is in turn necessary for the
understanding of today’s experiments in elementary particle physics.

In this thesis, we presented an algorithm for an analytic parton shower
for both initial- and final-state radiation. While a simplified version for final-
state radiation has been known for quite some time, a complete treatment
of final-state radiation and an extension to the initial state had not been
available up to now.

Analytic parton showers are especially interesting for conceptual devel-
opment in a theoretical description of QCD in a hadron collider environ-
ment (but also processes with hadronic final states at lepton colliders), as
they allow to determine the corresponding shower weights from the complete
shower histories. The knowledge of complete shower histories and weights
enables one to e.g. change the hard scattering matrix element or the PDFs
and reweight the showered events to the new hard scattering process. Fur-
thermore, analytic parton showers might offer the possibility to determine
systematic uncertainties from a parton shower approximation in a reliable
and theoretically well-defined way. Also, it might be achievable — using an-
alytic parton showers — to systematically construct higher-order corrections
to the parton shower approximation.

One technical point that was found to be of particular importance for a
successful algorithm for an analytic initial-state parton shower is the scale
choice, specifically the starting condition of the backward shower evolution,
together with the prescriptions for energy and momentum projections in the
splittings. For the final-state shower, we also improved on the original algo-
rithm, where e.g. running couplings constants within the shower evolution
had not been taken into account.

For the description of complete kinematical distributions at hadron col-
liders, including the high-energy tails, we refrained from the power-shower
concept, where also hard and/or non-collinear jets are being produced by
means of the shower. Instead we use an MLM-type matching of the analytic
parton shower with matrix elements containing one or more additional hard
jets explicitly.
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In this thesis, we presented our implementation of the analytic parton
shower algorithm and our implementation of the MLM matching scheme
and their integration into the event generator WHIZARD. Additionally we de-
scribed the various interfaces needed to integrate PYTHIA’s parton shower
and hadronization routines. Thus all ingredients needed to simulate realistic
events are available from within the framework of the WHIZARD generator.
This setup also allows for a direct comparison of the PYTHIA and our own
parton shower using the same hard matrix elements. During the implemen-
tation, we performed much technical work that entered into the development
of the core WHIZARD program and cannot be mentioned here.

Together with the development of the algorithm, we made a thorough
comparison with the results obtained using PYTHIA’s parton shower and also
an extended comparison of our parton shower algorithm with jet and event
shape data from the LEP experiments, from the Tevatron Run II measure-
ments as well as first results from the 2010/11 LHC run. Without performing
an overly sophisticated tuning of the shower, we reproduced the gross fea-
tures of a big number of jet and event shape variables at lepton and hadron
colliders and found in all cases good agreement.

This thesis is intended to serve as a proof of concept that an analytic
parton shower for the initial state is viable to describe QCD in a realistic col-
lider environment. Future lines of developments will contain a more extensive
tuning and validation of the shower as well as the matching and merging pre-
scription. We will also be investigating a possible exchange of the evolution
variable for the transverse momentum, pr, which would guarantee angular
ordering and color coherence right from the beginning and might simplify or
even improve on the parton shower description given in our algorithm. A
development of an interleaved multiple interaction algorithm connected with
a properly color-connected analytic initial-state parton shower together with
its implementation is in preparation and will be part of a future publication.
Moreover an implementation of a CKKW-type matching, giving the oppor-
tunity to choose between two implemented matching schemes, is planned for
the near future.

The implementations of the analytic parton shower and the MLM match-
ing will become publicly available with the upcoming release 2.1 of WHIZARD,
scheduled to be published in June 2012.
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A.1 Event Shape Variables

This section contains descriptions of the event shapes used inside this thesis.
All event shapes shown are only applicable for lepton colliders, generaliza-
tions to hadronic collisions are also available, for example beam-thrust [95],
but not used within this thesis.

A.1.1 Thrust-like Variables

In the following, summations are always over all final state partons. The
maximizations are always over all vectors n with length 1.

e Thrust 7T

T = maxM (A1)
n >, pil
Thrust lies in the range [0.5 : 1], where 7" = 1 corresponds to a pencil-
like event topology and 7' = 0.5 corresponds to a perfectly spherical
event topology. The axis ny that maximizes (A.1) is the axis of most
activity.

e Thrust major 7,,,;:

Tmaj = max 722 ‘pz ‘ Il‘

, A2
ami0 Y, b (52

where ny is the vector that maximizes the term for the thrust 7. The
definition of thrust major is equivalent to the definition of thrust, only
the allowed region for the test-vector n is constrained to lie in a plane
perpendicular to the thrust axis. Therefore thrust major is smaller
than thrust. Thrust major therefore measures the pencil-likeness and
sphericality in the plane perpendicular to ny. Like thrust, thrust major
is confined to the range [0 : 1], due to the constraint that thrust major
has to be smaller than thrust, the range is reduced further. Thrust
major lies in the range [0 : 2/7*2.

e Thrust minor T},y:

ZZ |pl| n.nT:n.nTma]’ :O

32See section B.1
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where nr and nr, . are the vectors that maximize the terms for the
thrust 7" and the Thrust major 7)., respectively. Thrust minor is a
measure for the activity along the axis perpendicular to the axes of
most activity, ny and ng,,,.. Its range is confined to [0 : T4;).

e Oblateness O:
O = Tmaj - Tmzn (A4)

Oblateness is a measure for flatness. An event that has most of its
activity in a plane will have the axes ny and nr, . inside this plane,
not leaving much activity perpendicular to this plane. Therefore T,,;,
will be small and the oblateness will be close to the thrust major. On
the other hand, for an event that is rotationally symmetric around
its axis of highest activity, T},,,; and T},;, will be of comparable size,
leading to an oblateness near zero. These are the two extreme cases for
oblateness, its range is [0 : Tyq4).

e Hemisphere broadenings B:

Z ‘pz X NThrust
B:t — :tpi'nThrust>0

23 |pil
Byae = max(By, B_) By, = min(By, B_)
Byym = By + B_ Byiss = |B+ — B_|

The hemisphere broadenings measure the split-up of the activity inside
the two hemispheres, given by the plane perpendicular to the thrust
axis. The hemispheres are defined using the thrust axis, because not
much activity is along this plane. For example an event with a pencil-
like configuration in one hemisphere, but a more evenly distributed
configuration in the other one, will give a rather high value for B,
due to the hemisphere with the more evenly distribution, a low value for
Biin due to the pencil-like configuration in the other hemisphere and
a high value for By ¢ due to the difference between the hemispheres.

The following table gives the aforementioned variables for some main
event topologies:

type of event T The Toin O Bz Bmin  Bsum  Baifr
pencil-like (2-jet) 1 0 0 0 0 0 0 0
symmetric 3-jet  2/3 1/V/3 0 1/V/3 V3/6 0 V3/6 /3/6
spherical /2 1/2  1/2 0 /8 w/8 m/4 0

98



A Observables

For a nice introduction to thrust-like variables see [96], for more informa-
tion about hemisphere broadenings, see [97]. The event shape variables are
also abundantly used in the analyses presented by the DELPHI collabora-
tion [86, 87] used for comparison in section 5.

A.1.2 Energy-energy Correlation
The definition for the EEC [98] is given by

1 1 EE,
EEC(cosy) = IN A cosx Z Z(l _5ij)E—2]

events 1i,j vis

x © (Acosy — |cosx — cos xijl), (A.5)

where cos y and A cos x are the lower edge and width of a bin, respectively,
and © is the step function. The energy-energy correlation describes the
distribution of angles cos x;; scaled by their energies.

A.2 Jet Algorithms

Jet algorithms are tools to organize the plethora of particles produced in a
collision. This is done by grouping “similar” particles into one pseudo-particle
called jet. The criteria can be the closeness in the geometry of the detector,
leading to cone-jet algorithms, where all particles within a cone of “radius” R
are assumed to be one jet. The measure R is given by R = /(An)2 + (A¢)2
with the pseudo-rapidity 1 and the azimuthal angle ¢. For a further dis-
cussion of the problems arising from this approach see e.g. SISCone [99].
A different approach is to sequentially combine two particles into a new
pseudo-particle. The two particles are chosen by selecting the pair of par-
tons for which a distance-measure y;; is the smallest. A common choice for
this distance-measure is

in (E;, B;)°
Yij = 2% (1 — COS 97,]) (AG)

or, because s is a constant, the division by s can be omitted, resulting in the
dimensionful version

Yij = 2min (Eu Ej)2 (1 — COS (92]) (A7)
for ete -collisions and

Yij = (ARij)zminOﬁ_i?pij)’
Yi = Piz‘

FaE
O oo
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for hadronic collisions, yielding also the possibility to cluster partons to the
beam-axis. These prescriptions for the distance-measures compose the so-
called kp-algorithm. The algorithm can be varied by replacing the 2 in the
exponent in equation (A.6). Other values that have been studied are 0 and
—2, changing to 0 leads to the Cambridge-Aachen algorithm [100, 101], while
changing to —2 produces the anti-kp-algorithm [102]. The anti-kr-algorithm
is the most used version at the ATLAS and CMS experiments.

B Useful Formula

B.1 Maximal Value for 7,

The maximal value for Thrust major is obtained for a perfectly planar dis-
tribution. Let this distribution be

p(6) = o= (cos,5n,0) (B.1)

with ¢ € [0 : 27). Then ny and ng, , will lie in the z-y-plane, let them be

=(1,0,0) and ng,,, = (0,1,0).
Ty =  max 2P - (B.2)
S I

. JiTdelp(¢) - n)

_ B.3

n,nn-lnTzo 027r d¢ ‘p(gﬁ)‘ ( )

B f”dgb | sin )| (B.4)
d¢ o

_ 2 / 4o sino e

= Z~0,63 (B.6)

™

Thus for an evenly distributed planar distribution the values for thrust
and thrust major are

2
T =Tgj = . (B.7)
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B.2 Bounds on z
B.2.1 Minimum Transverse momentum

Let |poa|“ be the magnitude of the daughters’ three-momenta in the rest
frame of the mother and # be the angle between the direction of the mother’s
momentum in the lab-frame and the first daughter’s momentum in the rest-
frame of the mother, just like in the formulation of the analytic FSR. Then,
the transverse momentum with respect to the mother’s flight direction is
given by

pr = |pom|v1 — cos? 0, (B.8)

which can be transformed, assuming massless daughters and using equations
(6), (7) and (10) from [47],
(B.9)
to o 1\?
=4/-——=|z—-= B.1
\/4 7 (Z 2) (10

to ¢ 1\?
pr=—— = (z——) (B.11)

(B.12)

B.2.2 Color coherence

The opening angle cos? between the two (massless) partons produced in a
branching of a parton at virtuality ¢ is given by

1
cost) = ———— (p3 +p3 +2E,FEy — ). B.13
2‘P1||p1‘ ( 1 2 1402 ) ( )

Using p? = p2 =0, £y, = 2E,E, = (1 — 2)E and |p;| = E;, this gives

t
V=1-—F— B.14
cos 22(1 — z)E? ( )
t
—1- (B.15)
TEEE N
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Now the constraint on the opening angle leads to

COS Uy < cos?)

t
oS Vor < 1 —
T FEH NN
t 1 12+1
_Z__ —
2E21 — cos Vo — 2 4
1 1 ¢ 1
z—=| < - —
21 T4 2E?21 — cosUuy

: 1 _ 1 | 14cosVcut .
Using T oos9o = 3 [71_005 g+ 1] leads to

_12§1_ t 1—|—cosz90ut+1
2 4  4E?% |1 — cos oy
2—12§1 Lo t]_t 1+ costew
2 4 JiR: 4FE21 — cos Veys
1> 3 t 1+ cosVuy
io o <5 -
2 4  4E?%1 — cos oy
2_12§6_2 . t 1+ cosVeu
2 4 G2E21 — cos Ve

Taking the square root of both sides gives equation (3.13):

1 I} t 14 costey
z— = < =/1— .
2 2 G2E? 1 — cos ¥y

This cut was first introduced in equation (26) in [47].

C Sample Source Code

C.1 Sample Standalone Main Program

—~

B.16)

—~

B.17)

(B.18)

(B.19)

(B.20)
(B.21)
(B.22)

(B.23)

(B.24)

The following program simulates the parton shower for one event for the
process eTe” — dd at a center-of-mass energy of v/§ = 91 GeV. For simplicity
the unshowered quarks are assumed to travel along the z-axis. The generated

event is printed to the screen.
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program main

use shower_module
use kinds, only: double

implicit none

type(shower_t) :: shower
type(parton_t), pointer :: prtl, prt2, prt3, prté
type (parton_pointer_t), dimension(:),

allocatable :: particles
real (kind=double) :: shat = 91.0%x2

call shower_create(shower)

! allocate 4 partons: 2 incoming, 2 outgoing
allocate(prtl)
allocate(prt2)
allocate(prt3)
allocate(prt4)

| assign e+ e- => d dbar

prti/nr=shower_get_next_free_nr(shower)

prtijtyp=11

call parton_set_momentum(prtl, 0.5_doublexsqrt(shat),
0._double, 0._double, 0.5_doublex*sqrt(shat))

prt2)nr=shower_get_next_free_nr(shower)

prt2/typ=-11

call parton_set_momentum(prt2, 0.5_doublex*sqrt(shat),
0._double, 0._double,-0.5_doublexsqrt(shat))

prt3jnr=shower_get_next_free_nr(shower)

prt3%typ=1

call parton_set_momentum(prt3, 0.5_doublex*sqrt(shat),
0._double, 0._double, 0.5_doublexsqrt(shat))

prt4jnr=shower_get_next_free_nr(shower)

prtéltyp=-1

call parton_set_momentum(prt4, 0.5_doublex*sqrt(shat),
0._double, 0._double,-0.5_double*sqrt(shat))

! assign color connection

prt3jcl=shower_get_next_color_nr (shower)

prt4j,c2=prt3jcl
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! add this new "interaction" to the shower
allocate(particles(1:4))

particles(1)%p=>prtil

particles(2)%p=>prt2

particles(3)%p=>prt3

particles(4)%p=>prté

call shower_add_interaction2ton(shower, particles)

I perform the fsr and print the event

call shower_interaction_generate_fsr2ton(shower,
showeryinteractions(1)%i)

call shower_print (shower)

I clean up

call shower_final (shower)
deallocate(particles)
deallocate(prtl)
deallocate(prt2)
deallocate(prt3)
deallocate(prt4)

end program main

C.2 Sample SINDARIN Files

SINDARIN is the scripting language designed for WHIZARD’s input files. For
more information about SINDARIN, see the WHIZARD manual or the recent pub-
lication about WHIZARD [29]. The following SINDARIN examples can also be
found among the examples provided in trunk/share/examples in WHIZARD’s
source code repository.

C.2.1 Final-State Radiation

The following example simulates the process eTe™ — uu at a center-of-mass
energy of /s = 91 GeV. Both, FSR and ISR, are enabled, although there is
no initial-state radiation to be simulated. The cross section for the process is
calculated. Then, 100,000 events are simulated and written to a Les Houches
Event file.

model = SM
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process eeuu = el, E1 => u, U

compile

sqrts = 91 GeV
beams = el, El

?ps_fsr_active=true
?ps_isr_active=true
7hadronization_active
?ps_use_PYTHIA_shower

true
false

ps_max_n_flavors = 5
ps_mass_cutoff =1
ps_fsr_lambda = 0.29

?mlm_matching = false

integrate(eeuu) { iterations = 2:2000 }
n_events = 100000

?rebuild_events=true

$sample = "EENoMatchingW"

sample_format = lhef

simulate (eeuu)

show(results)

C.2.2 Final-State Radiation with Matching

This example is similar to the previous one. The process ete™ — wuu is
supplemented with the two additional higher contributions, e e~ — uuj and
ete” — wugjj, where j is any of the u,d, s, c-(anti-)quarks or a gluon. This
is the configuration for the MLM matching with two additional jets. Thus
the additional cuts on the matrix elements are necessary.

model = SM
ms = 0
mc = 0
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alias j = u:d:s:c:U:D:S:C:g

process eeuu = el, E1 => u, U
process eeuuj = el, E1 => u, U, j
process eeuujj = el, E1 =>u, U, j, j

compile
sqrts = 91 GeV
beams = el, El

?ps_fsr_active=true
?ps_isr_active=true
7hadronization_active = true
?ps_use_PYTHIA_shower

false

ps_max_n_flavors = b
ps_mass_cutoff =1

ps_fsr_lambda = 0.29
?mlm_matching = true
mlm_ptmin = 10 GeV
mlm_nmaxMEjets = 4
mlm_Rmin = 1

mlm_Emin = 10 GeV

cuts = all E > mlm_Emin [j]
and all Dist > mlm_Rmin [j, jJ]

integrate(eeuu, eeuuj, eeuujj) { iterations = 2:2000 }
n_events = 100000

?rebuild_events=true

$sample = "EEMatching4W"

sample_format = lhef

simulate(eeuu, eeuuj, eeuujj)

show(results)
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C.2.3 Initial-State Radiation

The following SINDARIN file simulates Drell-Yan production at the Tevatron,
pp — Z + X, via the process q¢ — e¢te”. The LHAPDF library is used for
the parton distribution functions, the cuts are used to constrain the matrix
element to a region around the Z-pole. The pp-distribution of the Z, or
the ete™-pair, respectively, in the 50,000 simulated events is recorded in a
histogram.

model = SM
alias quark = u:d:s:c
alias antiq = U:D:S:C

process qqee = quark:antiq, quark:antiq => el, El

ms = 0
mc = 0

compile

sqrts 1960 GeV
beams = p, pbar => lhapdf

$title = "Pt of Z"

$x_label = "Pt / GeV"

$y_label = "N"

histogram Pt_distribution (0, 250, 1)

ps_isr_primordial_kt_width = 0
ps_isr_tscalefactor = 1

?ps_fsr_active=true
?ps_isr_active=true
7hadronization_active = true
?ps_use_PYTHIA_shower = false
ps_max_n_flavors = 5
ps_mass_cutoff = 0.5

I'l Rick Field’s CDF Tune D6 using CTEQ6L1
$ps_PYTHIA_PYGIVE = "MSTP(5)=108"

?mlm_matching = false
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cuts = all M > 80 GeV [combine[el,E1]]
and all M < 100 GeV [combinel[el,E1]]

integrate(qqee) { iterations = 2:20000 }
n_events = 50000

?rebuild_events=true
$sample = "DrellYanNoMatchingW"
sample_format = lhef

analysis = record Pt_distribution (eval Pt [combine[el,E1]])
simulate(qqee)

show(results)

C.2.4 [Initial-State Radiation with Matching

This is the version of the previous SINDARIN file with MLM matching. The
O-jet process qqg — e"e” is supplemented by the gluon emission process
qq — eTe” g and the two processes evolving from the equivalent initial states,
qg — ete"qand gg — eTe q.

model = SM

alias quark = u:d:s:c

alias antiq = U:D:S:C

process qqee = quark:antiq, quark:antiq => el, El
process qqeeg = quark:antiq, quark:antiq => el, El, g
process qgeeq = quark:antiq, g => el, El, quark:antiq
process gqeeq = g, quark:antiq => el, El, quark:antiq

ms =0

mc =0

compile

sqrts = 1960 GeV

beams = p, pbar => lhapdf

$title = "Pt of Z"
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$x_label = "Pt / GeV"
$y_label = "N"
histogram Pt_distribution (0, 250, 1)

ps_isr_primordial_kt_width = 0O
ps_isr_tscalefactor = 1

?ps_fsr_active=true
?ps_isr_active=true
7hadronization_active
?ps_use_PYTHIA_shower
ps_max_n_flavors = 5
ps_mass_cutoff = 0.5

true
false

'l MSTP(5)=108 : Rick Field’s CDF Tune D6 using CTEQ6L1

'l MSTP(81)=0 : no multiple interactions

'l MSTJ(41)=1 : only QCD branchings

'l MSTJ(21)=0 : no decays

'l MSTP(68)=0 : turn off PYTHIA’s matching

$ps_PYTHIA_PYGIVE = "MSTP(5)=108;MSTP(81)=0;MSTJ(41)=1;
MSTJ(21)=0;MSTP(68)=0"

?mlm_matching = true
mlm_ptmin = 5 GeV
mlm_etamax = 2.5
mlm_Rmin = 1
mlm_nmaxMEjets = 1

cuts = all M > 80 GeV [combine[el,E1]]
and all M < 100 GeV [combinelel,E1]]

and all Pt > mlm_ptmin [g:quark:antiq]
and all abs(Eta) < mlm_etamax [g:quark:antiq]

integrate(qqee, qqeeg, qgeeq, gqeeq) { iterations = 2:20000 }
n_events = 50000
?rebuild_events=true

$sample = "DrellYanMatchingW"
sample_format = lhef
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D ATLAS Pile-up Measurements

analysis = record Pt_distribution (eval Pt [combine[el,E1]])

simulate(qqee, qqeeg, qgeeq, ggeeq)

show(results)

D ATLAS Pile-up Measurements

The figures D.1 and D.2 show the measurements of pile-up events performed
at the ATLAS detector. The images were taken from
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults.
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Figure D.1: Average number of proton-proton interactions per
bunch crossing as measured in the ATLAS detector.
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D ATLAS Pile-up Measurements

10" ATLAS Online 2011, \'s=7 TeV I Ldt=5.2 fb ™

10° — B*=1.0m,<u>=116
— B*=15m,<p>= 6.3
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Figure D.2: Distribution of the number of pile-up events as mea-
sured in the ATLAS detector. The blue and red curves correspond
to data taken before and after a technical stop in September.
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