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Abstract

Leptogenesis is an attractive mechanism that simultaneously explains the matter-
antimatter asymmetry of the universe as well as the small masses of the standard model
neutrinos. This is performed by naturally extending the standard model with the in-
sertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical
Boltzmann equations. However, these equations suffer from basic conceptual problems
and they lack to include many quantum phenomena, such as memory effects and co-
herence oscillations. In order to fully describe leptogenesis, a full quantum treatment is
required. In this work we show how to address leptogenesis systematically in a purely
quantum way. We start by studying scalar and fermionic excitations in a plasma by
solving the Kadanoff-Baym equations of motion for Green’s functions, with significant
emphasis on the initial and boundary conditions of the solutions. We compute ana-
lytically the asymmetry generated from the departure of equilibrium of a particle in
a thermal bath. The comparison with the semi-classical Boltzmann approach is also
analysed, leading to a qualitative difference between both methods. The non-locality
of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on
the generated asymmetry, effects that cannot be studied with the Boltzmann equations.
The insertion of standard model interactions like the decay widths for the particles of
the bath is also discussed. We explain how with a trivial insertion of these widths we
regain locality on the processes, i.e. we regain the Boltzmann equations.



Zusammenfassung

Leptogenese ist ein attraktiver Mechanismus zur gleichzeitigen Erklärung der
Materie-Antimaterie-Asymmetrie des Universums sowie der kleinen Massen der Stan-
dardmodellneutrinos. Er beruht auf der natürlichen Erweiterung des Standardmod-
ells um rechtshändige Neutrinos. Leptogenese wird üblicherweise mittels semiklassis-
cher Boltzmanngleichungen studiert, welche jedoch mit prinzipiellen Schwierigkeiten
einhergehen und bei der Beschreibung von Quantenphänomenen fehlschlagen. Solche
Effekte, wie etwa Gedächtniseffekte und kohärente Oszillationen, sind wesentlich für
die vollständige Beschreibung der Leptogenese. In dieser Arbeit zeigen wir wie sich
Leptogenese systematisch durch rein quantenmechanische Methoden untersuchen lässt.
Zunächst lösen wir dazu die Kadanoff-Baym-Bewegungsgleichungen für Greensfunktio-
nen skalarer und fermionischer Anregungen in einem Plasma, wobei wir besonders die
Bedeutung von Anfangs- und Randbedingungen für die Lösungen betonen. Wir berech-
nen die Asymmetrie, welche durch die Entfernung eines Teilchens aus dem Gleichgewicht
in einem thermischen Bad generiert wird, analytisch. Der Vergleich mit der semiklas-
sischen Boltzmannbeschreibung wird ebenfalls durchgeführt und zeigt die qualitativen
Unterschiede beider Methoden auf. Die Nichtlokalität der Kadanoff-Baym-Gleichungen
belegt den gros̈en Einflus̈ von Off-shell-Effekten auf die generierte Asymmetrie, Effekte,
welche nicht mittels Boltzmanngleichungen studiert werden können. Die Einführung von
Standardmodellwechselwirkungen, etwa von Zerfallsbreiten der Teilchen im Bad, wird
ebenfalls diskutiert. Eine triviale Berücksichtigung dieser Breiten ist gleichbedeutend
mit der Wiedergewinnung der Lokalität der Prozesse, führt also zurück zur Beschrei-
bung durch Boltzmanngleichungen.
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Introduction

One of the few parameters from the early universe that we can measure today with high
accuracy, is the Baryon Asymmetry of the Universe (BAU). The baryon asymmetry
density per photon density has been determined from Big-Bang-Nucleosynthesis (BBN)
to be [1]

ηBBN =
nB − nB̄

nγ
= (5.1 − 6.5)× 10−10 . (0.0.1)

The same parameter has also been measured with great accuracy by the Wilkinson
Microwave Anisotropy Probe (WMAP) with a very similar result [2]

ηWMAP = (6.19± 0.15)× 10−10 . (0.0.2)

In order to explain this asymmetry a variety of different methods have been devel-
oped, like GUT baryogenesis [3–10], electroweak baryogenesis [11–19], Affleck-Dine
baryogenesis [20–22], νMSMM mechanism [23] among others. The common aspect
from these models is, that they need to fulfill the Sakharov conditions [24].1 The
standard model (SM) can in principle satisfy this conditions and generate an asym-
metry. However, the asymmetry created by the SM is too small to explain the data.
It is necessary to extend the SM and allow for new possible sources to generate
sufficient asymmetry. One of the most simple and natural ways of extending it is
to embed an additional neutrino with right-hand chirality, giving rise to Thermal
Leptogenesis [25–28]. With the help of the see-saw mechanism [29,30], thermal leptoge-
nesis can in principle explain the BAU and also the smallness of the SM neutrino masses.

Thermal leptogenesis has been a very popular model to explain the BAU during
the past couple of decades. This model describes the BAU via a previous asymmetry
on the leptonic sector and then translated to a baryon-asymmetry via processes called
Sphalerons [31, 32]. The principal idea of leptogenesis is to create an asymmetry with
the decay of the heavy Majorana neutrinos that appear after the seesaw mechanism
is used. These CP-violating decays become important when the temperature is of the
order of the mass of the decaying particle (∼ 109 GeV), below this threshold they
are exponentially suppressed. Such high reheating temperatures can have important
cosmological consequences. In supersymmetric scenarios where the mass of the gravitino
lies below 10 TeV its late decay typically destroys the successful predictions of the

1see Sec. 1.2 for more details.
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Standard Big Bang Nucleosynthesis (BBN) scenario [33, 34]. However, if the gravitino
is itself the LSP and hence stable, the late decay of the NLSP again causes similar
problems [35–42]. Many ways of circumventing these problems have been proposed,
like the small violation of R-parity [43], the decay of the NLSP into hidden sector
particles [44, 45] or the production of entropy before BBN [46].

The dynamics of leptogenesis is commonly described with the Boltzmann equations.
These are first order differential equations that characterise the time evolution of
number particle densities or distribution functions. The Boltzmann equations are well
known to work for describing the creation of light elements such as H and He, and
for the decoupling of the cosmic microwave background (CMB) from the primordial
plasma [47, 48]. However, they are semi-classical equations and may fail to describe
strongly coupled systems or quantum phenomena such as coherent oscillations or
quantum interference. Since leptogenesis originates from quantum effects, a full
quantum treatment to leptogenesis is indispensable.

In order to obtain a better understanding of leptogenesis, many authors have
upgraded the Boltzmann equations to the so-called quantum Boltzmann [49–52] or the
full quantum Boltzmann equations [53–58] equations. In this scenario, many properties
have been studied, for example in [59–67] flavour effects are taken into account.
In [68–71] it was also demonstrated, that the CP-violating parameter is resonantly
enhanced if two of the heavy Majorana neutrinos have a difference in mass comparable
to their decay widths. The basic idea behind quantum- or full-quantum Boltzmann
equations is to promote the scattering matrix elements inside the collision term of
the Boltzmann equations to contain matrix elements calculated from quantum field
theory. This type of procedure is valid only when particles in the thermal bath can be
represented as quasi-particles with well defined thermal masses and widths. However,
when the temperature is increased, the quasi-particle or thermal Breit-Wigner repre-
sentation breaks down [72]. This happens when the imaginary part of the self-energy,
i.e. the decay width, becomes non-negligible with respect to the mass scale of the system.

The quantum Boltzmann equations represent a first order approximation to a full
quantum theory [73]. They are only valid when the width of the generated particle
in the plasma is small. However, taking the first order approximation is not well
justified. Because leptogenesis is a purely quantum phenomenon, quantum interference
is a crucial factor where off-shell effects can be important. When only the first order
approximation is taken into account, all off-shell effects in the quantum interference are
neglected, leading to an erroneous result.

The full treatment of non-equilibrium processes in quantum field theory is usually
based either on Kadanoff-Baym equations [74] and the Schwinger-Keldysh formal-
ism [75–80] or on stochastic Langevin equations [81–84]. The Kadanoff-Baym equations
are the thermal analogs to the Schwinger-Dyson equations [85], and its first order solu-
tion in an expansion around its center of mass coordinate after a Wigner transformation
gives back the normal Boltzmann equations. Again, making this approximation, i.e.
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neglecting higher order solutions in this derivative expansion, is only valid when the
non-equilibrium process is very close to equilibrium. However, leptogenesis is generated
from far from equilibrium process, and quantum effects that come from the interference
between the center of mass of the non-equilibrium field and the thermal bath are very
important.

In our work, we solve exactly the Kadanoff-Baym equations for the excitations in a
plasma. We concentrate our analysis on the evolution of correlation functions instead of
particle number densities or distribution functions, with special focus on the boundary
and initial conditions of the correlators. The understanding of the non-equilibrium
dynamics of this excitations is one of the most important aspect of our work in order to
be able to move towards a complete quantum theory of leptogenesis. In this scenario,
a non-equilibrium Majorana neutrino is created in thermal bath, and its quantum
interference with the plasma explains the expected asymmetry.

In order to be able to solve the Kadanoff-Baym equations some important simpli-
fications need to be made: a) the thermal bath is homogenous and isotropic, b) the
temperature of the bath varies much slower than the expansion of the universe, so the
bath remains in equilibrium, c) the thermal bath is strongly coupled and its many
degrees of freedom make back-reaction of the out-of-equilibrium particle negligible.
We will show how the time-translation invariance of the self-energy of the bath that
comes from these three conditions, allows us to solve analytically the Kadanoff-Baym
equations. However, for the case of leptogenesis, the self-energy is not time-translational
invariant due to the non-equilibrium decay of the Majorana neutrino within the bath.
Here an expansion around equilibrium can be performed by considering the asymmetry
to be generated close to equilibrium. This, however, does not contradict the fact that
the Majorana neutrino is produced far away from equilibrium.

In this work we are able to stretch the understanding of full quantum leptogenesis by
studying the dynamics of a weakly coupled Majorana neutrino to a thermal bath, which
explains the observed matter-antimatter asymmetry. The Kadanoff-Baym equations give
us all the information of the quantum dynamics of the asymmetry, where now all on-
shell and off-shell effects can be clearly studied. In order to understand the differences
between the semi-classical formalism and a full quantum one, there is no need to perform
a quantitative calculation, but a qualitative comparison is enough to see how important
off-shell effects are, and how quantum interference plays a crucial role.
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Outline

In Chapter 1, we briefly summarise the ingredients to successfully produce a baryon
asymmetry in the universe. We start in Sec. 1.1 by describing different models for
baryogenesis. Through Sec. 1.2 to 1.8, we explain different mechanisms commonly used
for an asymmetry generating model, such as the seesaw mechanism, sphaleron processes,
Boltzmann equations and the introduction of a CP violating parameter. In Sec. 1.9 and
1.10, we discuss the fundamentals of thermal leptogenesis and its limitations to be a
full quantum theory.

In Chapter 2, we describe the non-equilibrium dynamics of particles in a thermal
bath. We show a quantum description via the Kadanoff-Baym equations of the creation
and subsequent thermalization of a particle. In Sec. 2.1 we concentrate on scalar particles
in order to study the special characteristics of this quantum model for a simple system.
In Sec. 2.2 and 2.3, the same procedure is performed for fermionic particles, first for a
general massive fermion, and is afterwards extended to massless leptons and Majorana
fermions. We obtained an analytical solution with well defined boundary and initial con-
ditions for non-equilibrium propagators for a particle which is created in a thermal bath.

In Chapter 3, we apply the previously discussed non-equilibrium dynamics to
thermal leptogenesis. In Sec. 3.1 the Boltzmann procedure is used for coupled
differential equations describing the production of Majorana particle and the lepton
asymmetry. The solution is obtained for a system with neglected wash-out terms. The
full quantum procedure for leptogenesis is described in Sec. 3.2. We start by showing
the coupled Kadanoff-Baym equations, with one of them already solved in Chapter 2.
In Sec. 3.2.4, the generated asymmetry is defined for the full quantum treatment, and
the solution is compared to the Boltzmann solution given in Sec. 3.2.5, pointing out
the qualitative differences between both methods. In Sec. 3.3, we discuss the problem
of introducing standard model correction to the particles inside the thermal bath, and
in Sec. 3.4 we present the possibility of having a flavour structure in the Majorana sector.

In Chapter 4, we summarise the results and discuss the possibility of expanding
the work by including more realistic aspects of leptogenesis, such as flavour structure,
expansion of the universe and non-perturbative standard model corrections. The results
of this work have previously been published in [86] and [87].
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Chapter 1

Thermal leptogenesis

In this chapter we will describe the basic aspects of thermal leptogenesis. An overview
description about its fundamental principles is given. Ingredients such as the seesaw
mechanism, sphaleron processes and Boltzmann equations are described in order to
outline the actual context of the problem.

1.1 Baryon asymmetry in the universe (BAU)

Many different models have been developed to explain the BAU, Although none of
them have been experimentally confirmed, many suffer from theoretical cosmological
problems. As an example for baryogenesis models we can start by looking at the following

GUT baryogenesis [3–10]

GUT baryogenesis is a good start for understanding leptogenesis, since both
approaches are mathematically quite similar. In this scenario, baryogenesis could be
created from the non-equilibrium decay of heavy bosons in Grand Unified Theories.
B violation is also satisfied by the decay and CP violation comes from the complex
Yukawa couplings. This models are today almost ruled out because they requires higher
reheating temperature from inflation than is required. Unwanted relics as monopoles
and heavy gravitinos are generated. The GUT baryogenesis has also difficulties with
the non-observation of proton decay, which puts a lower bound on the mass of the
decaying boson, and therefore on the reheating temperature. Furthermore, in the
simplest GUTs, B + L is violated but B − L is not. Consequently, the B + L violating
SM sphalerons, which are in equilibrium at T ∼ 1012 GeV, would destroy this asymmetry.

Electroweak baryogenesis [11–19]

Elextroweak baryogenesis is the name for a class of models where the departure
from thermal equilibrium is provided by the electroweak phase transition. In principle,
the SM belongs to this class, but the phase transition is not strongly first order and
the CP violation is too small. Thus, viable models of electroweak baryogenesis need
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a modification of the scalar potential such that the nature of the electroweak phase
transition changes, and new sources of CP violation. One example insertion of two Higgs
doublet, where the Higgs potential has more parameters and, unlike the SM potential,
violates CP. Another interesting example is the MSSM (minimal supersymmetric
SM), where a light stop modifies the Higgs potential in the required way and where
there are new, flavour-diagonal, CP violating phases. Electroweak baryogenesis and, in
particular, MSSM baryogenesis, might soon be subject to experimental tests at the LHC.

The Affleck-Dine mechanism [20–22]

In the Affleck-Dine baryogenesis the asymmetry arises in a classical scalar field,
which later decays to particles. In a SUSY model, this field could be some combination
of squark, Higgs and slepton fields. The field starts with a large expectation value,
and rolls towards the origin in its scalar potential. At the initial large distances from
the origin, there can be contributions to the potential from baryon or lepton number
violating interactions (mediated, for instance, by heavy particles). These impart a net
asymmetry to the rolling field. This generic mechanism could produce an asymmetry
in any combination of B and L.

Thermal leptogenesis [25–27]

Thermal leptogenesis describes the baryon asymmetry via a previous asymmetry
generated in the leptonic sector. Which is later partially converted to a baryon
asymmetry via sphaleron processes. In order to obtain a lepton asymmetry, the SM
needs to be extended by introducing a right-handed neutrino. The use of the seesaw
mechanism will generate heavy Majorana neutrinos which will decay out-of-equilibrium
and violate CP in the process.

In this work we will focus on the mechanics on thermal leptogenesis by describing
the generation of an out-of equilibrium heavy Majorana neutrino. In what follows we
will describe the basics of thermal leptogenesis.

1.2 Sakharov’s conditions

To successfully produce a baryon asymmetry, Andrei Sakharov [24] summorised the three
conditions that must be satisfied:

1. Baryon number violation,

2. C-symmetry and CP-symmetry violation,

3. Out of equilibrium dynamics.

These three conditions can already be found to be satisfied in the SM, although the
generated baryon asymmetry turns out to be small. Each of the three conditions can be
fulfilled separately
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1. Baryon number is violated in the standard model via the triangle anomaly [31],
where a selection rule is obeyed, △B = △L = ±3. The amplitude of this
baryon number violating process is proportional, at zero temperature, to e−2π/α ∼
O(10−170). For large temperatures (T ∼ 103 GeV) this suppression disappears.

2. C-symmetry and CP-symmetry violation occur in the weak interactions of the
SM via the Kobayashi-Maskawa mechanism [88]. Because of the smallness of the
masses involved, the amount of asymmetry that arises with this CP violating
mechanism is not sufficient to explain the asymmetry of the universe.

3. Out of equilibrium dynamics in the SM are present, if the electro-weak phase
transition is of first order [11]. However, this phase transition is not as strong as
required by baryogenesis.

All of this indicates the standard model must be extended with a new source of CP
violating processes and a departure from equilibrium that gives us a successful model
for baryogenesis. The most simple scenario to extend the SM will give rise to thermal
leptogenesis, where the three Sakharov conditions are fulfilled:

1. Lepton number violation occurs due to the Majorana mass that arises from the
see-saw mechanism. Afterwards this lepton number asymmetry will translate to a
baryon asymmetry via sphaleron processes.

2. Flavour interactions of the massive Majorana neutrinos with the SM particles will
give us the right amount of C and CP asymmetry necessary (These interactions
come from the quantum interference between one-loop and tree level diagrams).

3. Expansion rate of the universe is much faster than the reaction rate which generates
the asymmetry, this will guarantee that the processes are out of equilibrium.

1.3 Type I seesaw mechanism

The seesaw mechanism [29, 30] is a renormalizable model that not only explains
the smallest of the neutrino masses but also provides us with all the ingredients for
explaining the baryon asymmetry in the universe.

The basic idea is to include three heavy right-handed neutrino singlets to the SM.
Because these new neutrinos are electro-weak singlets, we can introduce a Majorana
mass term in the Lagrangian without affecting chirality and gauge properties of the SM.
The new Lagrangian that includes the new mass and Yukawa term reads

−L = YνℓLφνR +
MR

2
(νR)cνR + h.c. , (1.3.1)

where MR is the mass for the RH neutrino. The coupling to the Dirac neutrinos (Yν)
will give rise to small Dirac masses. In order to see this, we first notice that the size of
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〈φ0〉〈φ0〉

νL νL

MR

νR νR

Figure 1.1: Diagram representing the type I seesaw realisation of the small Majorana
mass for the LH neutrino with mν ≃ 〈φ0〉2 YνM−1

R Y T
ν (up to a multiplicative constant).

MR is arbitrary and we can assume that it is very large. As a quick computation we can
integrate out the heavy RH field, obtaining the effective Lagrangian

Leff =
Y 2
ν

2MR

ℓLφφ
T ℓcL , (1.3.2)

In this way we can obtain an effective small mass for the Dirac neutrinos (for MR ≫ 〈φ0〉
see figure 1.1).

mν =
〈
φ0
〉2
YνM

−1
R Y T

ν . (1.3.3)

The effective mass of the neutrinos is inverse proportional to the mass of the right
handed neutrinos, hence the name see-saw. To be more precise, one can obtain the above
result by rearranging the mass terms of the Lagrangian (1.3.1) in a matrix form

−L =
1

2

n∑

i,j

[νiL(mD)ijνjR + (νjR)c(mD)jiν
c
iL + (νRi)c(MR)ijνjR] + h.c. , (1.3.4)

where mD = Yν 〈φ0〉 and we have used the fact that νLνR = (νR)c(νL)
c. Then the above

equation can be factorised as

L =
1

2
(νL, νcR)M

(
νcL
νR

)
+ h.c. , (1.3.5)

with

M =

(
ML mD

mD MR

)
. (1.3.6)

where νL = (ν1L, . . . , νnL)
T and νR = (ν1R, . . . , νnR)

T . Assuming that the eigenvalues
of mD are much less than those of MR, the neutrino mass matrix in (1.3.6) may be
diagonalized (to first order in M−1

R mT
D) by

VMV T ≈
(
mDM

−1
R mT

D 0
0 MR

)
, (1.3.7)

where

V =

(
I (M−1

R mT
D)

†

−M−1
R mT

D I

)(
iI 0
0 I

)
. (1.3.8)
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The second matrix in the definition of (1.3.8) is included to ensure all mass eigenvalues
are positive. If we let (ν ′, N ′)T = (νL, ν

c
R)

TV T and define a set of Majorana fields:

(
ν
N

)
≡
(

ν ′ + (ν ′)c

N ′ + (N ′)c

)
, (1.3.9)

then the mass terms of the Lagrangian become

−Lν =
1

2
(mDM

−1
R mT

D)νν +MRNN + h.c.,

= mννν +MRNN + h.c. . (1.3.10)

It is easy to see that this model gives rise to two sets of Majorana neutrinos: the light
ones (ν) with mass matrix mν ≈ mDM

−1
R mT

D = 〈φ0〉YνM−1
R Y T

ν , and the heavy ones (N)
with mass MN ≡ MR. A particularly attractive feature, is that the smallness of mν is a
direct consequence of the large mass scale of MR, which may have its origin from higher
unification theories.

1.4 Other seesaw models

Beside Type I seesaw, there exist other extensions to the SM which lead to effective
Majorana masses. These seesaw models provide alternative ways to understand the
smallness of neutrino masses, and hence are of great interest to model builders. We will
briefly review them here despite the fact that they play no direct role in our current
work.

Type II seesaw

Instead of extending the SM by adding heavy singlet fermions, one can make use of the
fact that ℓL ℓ

c
L is an SU(2)L triplet and introduce a heavy triplet scalar to the Higgs

sector [89–91], so that a gauge invariant and renormalisable ℓL ℓ
c
L-type mass term can

be formed. Specifically, suppose we have a heavy SU(2)L triplet scalar field ∆ with
hypercharge Y = −2 and a convenient 2× 2 matrix parametrization given by

∆ =

(
∆−/

√
2 ∆−−

∆0 −∆−/
√
2

)
, (1.4.1)

then the Lagrangian

−Ltype-II =
Y∆
2
ℓLiτ2 ∆ ℓcL + µ∆ φ

T∆φ+M2
∆ ∆†∆+ h.c. , (1.4.2)

will give rise to the process depicted in Fig. 1.2a. This then leads to an effective mass
term

mII
eff ≃ µ∆ Y∆

〈φ0〉2

M2
∆

,
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= λ∆ Y∆
〈φ0〉2

M∆

, after setting µ∆ ≡ λ∆M∆ . (1.4.3)

In this expression the coupling λ∆Y∆ plays the role of Y 2
ν in the Type I seesaw. So,

when M∆ ≫ 〈φ0〉, small neutrino masses can be induced. This mechanism is known as
type II seesaw

(a)

〈φ0〉〈φ0〉

νL νL

MΣ

Σ Σ

(b)

〈φ0〉〈φ0〉

νL νL

∆0

Figure 1.2: (a) The process induced by the type II seesaw Lagrangian that will give
rise to small neutrino Majorana masses. (b) The corresponding process in the type III
seesaw case with heavy triplet fermion Σ instead.

Type III seesaw

Another possibility is to replace the RH neutrinos with heavy triplet fermions and allow
them to interact with the ordinary lepton doublets via Yukawa couplings [92–94]. In
this scenario, the Higgs sector is unmodified, and a set of self-conjugate SU(2)L triplets
of exotic leptons with hypercharge Y = 0 are added:

Σ =

(
Σ− Σ0/

√
2

Σ0/
√
2 Σ+

)
. (1.4.4)

The corresponding Lagrangian for this model is given by

−Ltype-III = YΣ ℓL iτ2 Σφ+MΣ Tr
(
ΣcΣ

)
+ h.c. , (1.4.5)

This gives rise to the diagram shown in Fig. 1.2b, and after integrating out the heavy
Σ field, one obtains the desired form for the seesaw neutrino mass

mIII
eff ≃ YΣ

〈φ0〉2

MΣ
Y T
Σ . (1.4.6)

Hence by setting MΣ ≫ 〈φ0〉, one can explain the smallness of neutrino masses, and
as a result, this is often referred to as the type III seesaw mechanism.

1.5 Sphalerons

It is well known that the standard model posses a gauge symmetry group SU(3) ×
SU(2) × SU(1), and all of its observables are gauge independent. However, it has two
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other approximate global symmetries that come from the freedom of rotating the phase
of all lepton or quark fields. These symmetries U(1)L and U(1)B are associated to the
lepton and baryon conserved currents JBµ and JLµ . If we define the quark doublets and
singlets as

q =

(
u s t
d c b

)

L

, (1.5.1)

u =
(
u s t

)
R
, (1.5.2)

d =
(
d c b

)
R
, (1.5.3)

then the baryonic and leptonic currents are given by

JBµ =
1

3
(q̄iγµqi − ūiγµui − d̄iγµdi) , (1.5.4)

JLµ = l̄iγµli − r̄iγµri , (1.5.5)

with li a left chiral lepton doublet and ri a right chiral lepton singlet. These correspond to
the baryon and lepton number. In fact no laboratory experiment has recorded violation
of baryon or lepton number. It was realised later that through the Adler-Bell-Jackiw-
triangle-anomaly these symmetries are nevertheless broken, and as a result the baryonic
and leptonic currents are anomalous. Their derivatives are then given by

∂µJ
µ
B = ∂µJ

µ
L =

Ng

32π2
(g2TrWµνW̃

µν − g′2TrBµνB̃
µν) , (1.5.6)

where Ng is the number of fermion generations, Wµν and Bµν are the field tensors of the
SU(2) and U(1) fields respectively, g and g′ are their associated coupling constants and
trace is taken over the group index. We have also defined the dual of a field tensor by

W̃ µν =
1

2
ǫµναβWαβ . (1.5.7)

The traces of the field tensors on the RHS of the equation (1.5.6) can be written as a
derivative of two quantities,

Kµ = ǫµναβ
(
W a
ναA

a
β −

1

3
gǫabcA

a
νA

b
αA

c
β

)
, (1.5.8)

kµ = XναA
′
β . (1.5.9)

where the one-index tensors Aµ and A′
µ refer to the vector potentials of the SU(2) and

U(1) fields. Then we could define a new current which would have a vanishing derivative,

∂µ

(
JµL − Ngg

2

32π2
Kµ +

Ngg
′2

32π2
kµ
)

= 0 . (1.5.10)

It would be tempting to define this current as the new baryonic and leptonic number,
understanding the addition as baryon and lepton number carried by the gauge fields.
This is however not possible, since kµ and Kµ are not gauge invariant. As we are
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interested in the time-evolution of the baryon and lepton numbers, we consider their
evolution from an initial time t = 0 to some point of time by defining the change in the
baryon number

∆B(t) = Ng[NCS(t)−NCS(0)] , (1.5.11)

where we use the Chern-Simons numbers of the SU(2) gauge field

NCS =
g2

32π2

∫
d3xǫµνσ

(
W a
µνA

a
σ −

g

3
ǫabcA

a
µA

b
νA

c
σ

)
. (1.5.12)

Even though the definition of Kµ was not gauge invariant, the change of the divergence
of Kµ is gauge invariant. The different values of the Chern-Simons number correspond
to different vacuum configurations of the gauge field. The value of the Chern-Simons
number in pure gauge configurations, corresponding to vacuum, is an integer, and thus
the change in the baryon (and lepton) number corresponding to the change of the vacuum
of the gauge field is Ng integer: both the baryon and lepton numbers change in multiples
of three. This anomaly induces a 12-fermion operator of the form

3∏

i=1

(qiqiqili) , (1.5.13)

coupling to all left-handed fermions. Since the divergences of JBµ and JLµ are the same,
B − L is conserved. In 1976 ’t Hooft [32] estimated the rate of these baryon number
violating processes. He considered the instanton solution between two separate vacua
and calculated the action associated with the saddle-point configuration between them.
This field configuration is called the sphaleron, from the Greek word meaning ready to
fall, as the saddle-point configuration is inherently unstable. The probability of tunneling
between the different vacua is approximately

Γ ∼ e−Sinstanton = e−
4π
α = O(10−170) . (1.5.14)

This rate is so infintiely small that the sphaleron process is in no contradiction with the
practical observation of the lack of violation of B or L. In 1985 Kuzmin, Rubakov and
Shaposhnikov [20] pointed out that in thermal bath the transition can happen instead
of quantum mechanical tunneling by classical thermal fluctuations over the potential
barrier. If the temperature is above the saddle-point energy between the different vacua
then the exponential Boltzmann suppression disappears completely. The energy of the
saddle-point configuration can be estimated by the sphaleron configurations. Below the
electroweak phase transition temperature (T < TEW ) the transition rate per unit volume
was found to be

Γsph
V

∼ e−
MW
αT , (1.5.15)

which is still very much suppressed. In the symmetric phase T > TEW , however, the
transition rate is no longer suppressed, but rather [95–98]

Γsph
V

∼ α5 lnα−1T 4 . (1.5.16)
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Sphaleron processes can be in equilibrium when the sphaleron rate Γsph exceeds the
expansion rate of the universe H . Comparison of the estimate for Γsph to H in ra-
diation dominated universe gives as the temperature interval when sphalerons were in
equilibrium as

100GeV < T < 1013GeV . (1.5.17)

Following the terminology of literature, we call the entire B + L-violating process the
sphaleron process, even though the sphaleron specifically refers only to the unstable
saddle-point configuration.

1.6 Boltzmann equations

The Boltzmann equations are classical equations that describe the evolutions of phase
space distribution functions of a given particle by solving the following equation [47,99]

L̂[fψ] = Ĉ[fψ] , (1.6.1)

where L̂ is the Liouville operator and Ĉ is the collision term. The Liouville operator
describes the evolution of the distribution function when there is no interactions, mean-
while the collision term describes the interaction in the system. The non-relativistic
form of the Liouville operator is

L̂NR =
∂

∂t
+
pi
m

· ∇i
x + Fi · ∇i

p , (1.6.2)

where p is the conjugate momentum of the coordinate x, ∇x = x̂1
∂
∂x1

+ x̂2
∂
∂x2

+ x̂3
∂
∂x3

+

· · ·+ x̂n ∂
∂xn

and ∇p = p̂1
∂
∂p1

+ p̂2
∂
∂P2

+ p̂3
∂
∂p3

+ · · ·+ p̂n ∂
∂pn

in n dimensions. The relativistic
version of this operator takes the form

L̂R = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
, (1.6.3)

here Γαβγ are the Christoffel symbols. In a free theory, solving the Boltzmann equations

is an easy task, but when interactions are taken into account the operator Ĉ must be
introduced. After defining number density as

nψ =
g

(2π)3

∫
fψ(p)d

3p , (1.6.4)

with g being the total number of internal degrees of freedom, we get that the Boltzmann
equation in a Robertson-Walker universe takes the form

ṅψ + 3Hnψ =

∫
dΠψĈ[fψ]

= −
∫
dΠψdΠidΠj · · · dΠadΠb · · ·
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×(2π4)δ4(pi + · · ·+ pj − pψ − pa − pb − · · · )|M|2 , (1.6.5)

where the subindices i, · · · , j take into account the initial states and a, · · · , b the final
states. The phase space integrals are

dΠ =
g

(2π)3
d3p

2E
, (1.6.6)

and the squared scattering amplitude |M|

|M|2 = |M|2i+···+j→ψ+a+···+bfi · · · fj(1± fψ)(1± fa) · · · (1± fb)

− |M|2ψ+a+···+b→i+···+jfψfa · · · fb(1± fi) · · · (1± fj) , (1.6.7)

which depends on the elements of the S-matrix. The bosonic enhancement or fermionic
suppression will give us the right sign for ±, positive for bosonic enhancement and
negative for fermionic suppression (Pauli blocking).

The Boltzmann equations suffer severe limitations when promoted to quantum
mechanics. For example, to use these equations one must introduce the S-matrix
elements by hand, elements which can be computed from quantum field theory. For
equilibrium dynamics, the Boltzmann equation are a good approximation, because all
the scattering elements can are computed from the vacuum, but for non-equilibrium
processes, these equations lack the properties that comes from the plasma, changes that
include non-Markovian effects which can lead to big discrepancies. Secondly, in order
to use the Boltzmann equations, a number density quantity must be defined, this is not
clear in non-equilibrium quantum mechanics, where quantities as number densities are
not observables that can be easily defined.

To promote the Boltzmann equations from a classical or semi-classical to a full
quantum treatment of the evolution of particle states, one needs to start from a pure
quantum formalism that can describe out-of-equilibrium dynamics. In order to do
so, the Keldysh formalism using the Kadanoff-Baym equations can be applied, the
self-energies of the particles involved will give us the S-matrix elements (via the optical
theorem).

1.7 CP asymmetry

The Standard Model contains only two ways to break CP symmetry. The first of these
is in the QCD Lagrangian, and has not been found experimentally; but one would
expect this to lead to either no CP violation or a CP violation that is many orders of
magnitude too large [100]. The second of these, involving the weak force, has been
experimentally verified, but can account for only a small portion of CP violation [101].
It is predicted to be sufficient for a net mass of normal matter equivalent to only a
single galaxy.
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The issue of CP-violating decays of a heavy Majorana neutrino at T = 0 was already
investigated in [102–105]. Here, the amount of CP violation is given from the interaction
between tree-level and one loop Feynman graphs. These interactions involve flavour
mixing between the heavy Majorana neutrinos via their Yukawa couplings, and is given
by

ǫ1 =
ΓNl − ΓNl̄
ΓNl + ΓNl̄

, (1.7.1)

where ΓNl =
∑

α,β Γ(N → lαHβ) and ΓNl̄ =
∑

α,β Γ(N → l̄αHβ) are the CP violating
processes, with a result given by (for hierarchy masses M1 ≪M2,M3)

ǫ1 ≈
3

16π

1

(λλ†)11
.
∑

i=2,3

Im
[(
λλ†
)2
i1

]M1

Mi
, (1.7.2)

with λ being the complex Yukawa coupling. As we will see, the effect of temperature
is crucial, giving a non-trivial T dependence of the CP violation. The effect of thermal
masses was taken into account in [106] using the one-loop finite temperature resumed
propagators. We will also see, that this CP-violation parameter will appear naturally
when a pure quantum treatment is used, where the CP-asymmetry will come from the
two-loop self-energy of the heavy Majorana neutrinos. One can verify via the optical
theorem, that interference effects used in [106] are included in the two-loop self energy.

1.8 Semi-classical leptogenesis

Leptogenesis is an elegant theory that involves every aspect explained above (for
complete review see [26, 27]). Normally leptogenesis is calculated using the classical
Boltzmann equations with quantum processes for the S-matrix elements, and the
asymmetry is obtained thanks to the inclusion of three heavy Majorana neutrinos. The
Sakharov conditions are well satisfied:

1) The lepton number is broken by the Majorana mass term and then is translated
into baryon number via sphalerons processes.

2) The right amount of CP violation is satisfied from the mixing of the Majorana
neutrinos in the Yukawa sector.

3) Out-of-equilibrium is obtained because the rate of decays is shorter than the
expansion of the universe.

With these three conditions satisfied, one can start by putting everything together.
The normal picture is to take a hierarchy in the heavy neutrino masses M1 ≪ M2,M3,
and temperatures in the beginning of order T > M1, in this regime the lightest of the
Majorana neutrinos is created in a thermal bath of leptons and Higgs, the Majorana
will reach an equilibrium within the bath at temperatures of T & M1. Because of the
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expansion of the Universe, the temperature will drop, and when T ∼ M1 the inverse
decay channel of the Majorana neutrino will be blocked, and the neutrinos will decay
out-of-equilibrium producing the asymmetry in the leptonic sector. This mechanism is
described via a set of two coupled Boltzmann equations, for the number density of the
Majorana neutrino, and for the asymmetry in B − L

dNN1

dz
= −(D + S)(NN1

−N eq
N1
) , (1.8.1)

dNB−L

dz
= −ǫ1D(NN1

−N eq
N1
)−WNB−L , (1.8.2)

where z = M1/T . These equations involve decays (D) and scattering (S) processes
calculated via Feynman graphs. The CP violating parameter ǫ1 corresponds to the
asymmetry produced by M1. In the above equation one can see that there is a race
between the decay of the heavy neutrino and the washout term W , that comes from the
expansion of the universe. The solution of the above equation considering only decays
and inverse decays is given by

NB−L(z) = N i
B−Le

−
∫ z

zi
dz′W (z′) − 3

4
ǫ1κ(z : m̃1,M1m̄

2
1) , (1.8.3)

with κ a efficiency factor that does not depend on the CP asymmetry. The masses
involved are the effective neutrino mass m̃1 and the sum of the light neutrino masses m̄

m̃1 =
(m†

DmD)11
M1

, (1.8.4)

m̄2 = m2
1 +m2

2 +m2
3 . (1.8.5)

The efficiency factor comes from the solution of the first of the Boltzmann equations

κ(z) =
4

3

∫ z

zi

dz′D(NN1
−N eq

N1
)e

−
∫ z

zi
dz′W (z′)

(1.8.6)

= −4

3

∫ z

zi

dz′
D

D + S

dNN1

dz′
e
−

∫ z

zi
dz′W (z′)

. (1.8.7)

Two regimes can be noticed, first the strong wash-out regime, where the solution will
not depend on the initial conditions (N i

B−L) that might be generated by the decay of
the two heavy Majorana neutrinos or another mechanism. And the weak wash-out
regime, where a great dependence on the initial condition exists.

Our goal is to find quantum version of these equations, a method that will give raise
to quantum corrections and to a better understanding of a theory of leptogenesis. The
approach will be also satisfied with a comparison between a new set of equations and
the Boltzmann equations, in order to really understand the regime of validity of taking
quantum effects into consideration.
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1.9 Effective model

The scenario which we will consider is referred to in the literature as vanilla leptogenesis,
where a hierarchy on the masses of the three Majorana neutrinos after the see-saw
mechanism exists (i.e. M1 ≪ M2,M3). The lepton asymmetry will be created by the
interaction of the lightest of the heavy neutrinos with the thermal bath. Because of the
hierarchy of the masses, we can integrate out M2 and M3 obtaining an effective model
for M1 with a Lagrangian given by (cf. [73])

L = l̄Liφ̃λ
∗
i1N +NTλi1ClLiφ−

1

2
MNTCN +

1

2
ηijl

T
LiφClLjφ+

1

2
η∗ij l̄Liφ̃Cl̄

T
Ljφ̃ .(1.9.1)

here C is the charge conjugation matrix, φ̃ = iσ2φ, and the coupling

ηij =
∑

k>1

λik
1

Mk
λTkj . (1.9.2)

The effective Lagrangian, which is valid for momenta up to p < M2,M3, has the
advantage that flavour structure is trivial and given by the effective coupling η. We
shall consider the case of small Yukawa couplings, λi1 ≪ 1, such that the decay width
of N is much smaller than its mass.

From this effective Lagrangian we can obtain the following Feynman rules1:

•Majorana

x2,β x1,α

N
: iGαβ(x1, x2)

•Lepton

l

x1,α,a,ix2,β,b,j
: iδijδabSαβ(x1, x2)

•Scalar

φ

x1,ax2,b
: iδab∆(x1, x2)

1The exact shape of the propagators will be given in Appendix D
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•Vertices

N
β

i, α, a l

b

φ

: iλ∗i1ǫab(PR)αβ

N
β

i, α, a l

b

φ

b: iλi1(CPL)βαǫab

ci, α, a

l

l

i, β, b

φ

φ

d

: iηij(ǫacǫbd+ǫadǫbc)(CPL)αβ

ci, α, a

l

l

j, β, b

φ

φ

d

: iη∗ij(ǫacǫbd+ǫadǫbc)(PRC)αβ

For the rest of this thesis we rename M1 →M for simplicity, unless otherwise stated.



Chapter 2

Non-equilibrium thermal field theory

A full quantum treatment for the dynamics for different types of particles is presented.
First we will consider a system composed only by scalar particles. This first discussion
will give us a qualitative idea of the important issues of the general problem of
thermalization of a weakly coupled particle in a thermal bath. These concepts will be
then applied to more complicated model composed by fermions.

By definition, the Green’s functions are the average of the time ordered product of
Heisenberg field operators over some state, i.e.,

G(t1, t2) = −i
〈
T (Â(t1)B̂(t2))

〉
. (2.0.1)

By going to the interaction picture, we can rewrite the above equation as

G(t1, t2) = −i
〈
S†T (Â(t1)B̂(t2)S)

〉
, (2.0.2)

where the S-matrix is defined by

S ≡ U(∞,−∞) = T exp

(
−i
∫ ∞

−∞

HI
int(t)dt

)
, (2.0.3)

with the interacting Hamiltonian in the interaction picture. If the renormalized ground
state is considered we regain the normal many-body theory at zero temperature. This
case change when the system is in thermo-equilibrium at different from zero temperature.
Here the quantum state is not pure and it is now described by the density matrix operator

ρ̂ = exp[β(F − Ĥ)] , (2.0.4)

where β is the inverse of the temperature and F is the free energy. The thermal average
will then be given by

〈O〉 = Tr(ρ̂O) . (2.0.5)

If we relate β with an imaginary time it, the density matrix will behave like an evolution
operator exp(−iĤt). This is the case for the Matsubara formalism [107]. However, the
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term S† is not easy to handle when a non-equilibrium state is considered. To solve this
problem, Schwinger proposed in [75] a time contour C that goes from −∞ to ∞ and
back (see figure 2.1). So that we can generalize the S-matrix as

SC = TC exp

(
−i
∫

C

HI
int(t)dt

)
, (2.0.6)

where TC is the time-ordering operator along the path C. In the positive path TC is
identical to the standard T operator, but in the negative branch represents an anti-time-
ordering operator. Also, times in the negative branch are always later as times in the
positive one. With this countour, a new set of propagators can be defined

GC(t1, t2) = −i
〈
TC(Â(t1)B̂(t2))

〉
. (2.0.7)

Notice that the physical observables will always lay on the positive branch of the contour,
but the intermediate steps can be taken to be anywhere. Up to this point the propagator
can be chosen to be bosonic or fermionic, we will se how it behaves for different type of
particles

2.1 Keldysh-Schwinger formalism for scalars

2.1.1 Kadanoff-Baym equations for scalars

Let us define the scalar propagator ∆C of a field Φ(x) in a x0-contour (figure 2.1) as

∆C(x1, x2) = θC(x
0
1, x

0
2)∆

>(x1, x2) + θC(x
0
2, x

0
1)∆

<(x1, x2) . (2.1.1)

The θ-functions enforce path ordering along the contour C, and ∆> and ∆< are the
correlation functions

∆>(x1, x2) = 〈Φ(x1)Φ(x2)〉 = Tr(ρ̂Φ(x1)Φ(x2)) , (2.1.2)

∆<(x1, x2) = 〈Φ(x2)Φ(x1)〉 = Tr(ρ̂Φ(x2)Φ(x1)) , (2.1.3)

where ρ̂ is the density matrix of the system at some initial time ti.

The field Φ is coupled to a thermal bath described by a self-energy Π. The Green’s
function ∆C then satisfies the Schwinger-Dyson equation 1

(�1 +m2)∆C(x1, x2) + i

∫

C

d4x′ΠC(x1, x
′)∆C(x

′, x2) = −iδC(x1 − x2) , (2.1.4)

where �1 = (∂2/∂x21). Like the Green’s function, also the self-energy can be decomposed
defined in the contour

ΠC(x1, x2) = θC(x
0
1, x

0
2)Π

>(x1, x2) + θC(x
0
2, x

0
1)Π

<(x1, x2) . (2.1.5)

1For a consistent definition of the propagators see appendix A.
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Φ−

Φ+

ti = 0
Ret

tf → ∞

Figure 2.1: Path in the complex time plane for nonequilibrium Green’s functions.

Notice that the self energy ΠC is the sum of all 1PI self energies. This type of definition
differs from those in [79], but agrees with [80]. However it will be very convenient for
the rest of the calculations.

In the Schwinger-Dyson equation the time coordinates of ∆C and ΠC can be on the
upper or lower branch of the contour C, which we denote by the subscripts ‘+’ and ‘−’,
respectively. Rewriting

∆−+(x1, x2) = ∆>(x1, x2) , ∆+−(x1, x2) = ∆<(x1, x2) , (2.1.6)

Π−+(x1, x2) = Π>(x1, x2) , Π+−(x1, x2) = Π<(x1, x2) , (2.1.7)

whereas ∆++, Π++ and ∆−−, Π−− are causal and anti-causal Green functions, respec-
tively. From the Schwinger-Dyson equation (2.1.4) one obtains for the correlation func-
tions ∆< and ∆>,

(�1 +m2)∆<(x1, x2) = i

∫
d4x′ (−Π++(x1, x

′)∆<(x′, x2) + Π<(x1, x
′)∆−−(x

′, x2)) ,

(2.1.8)

(�1 +m2)∆>(x1, x2) = i

∫
d4x′ (−Π>(x1, x

′)∆++(x
′, x2) + Π−−(x1, x

′)∆>(x′, x2)) ,

(2.1.9)

where the relative sign in the integrands is due to the anti-causal time ordering on the
lower branch of C.

It is convenient to also introduce retarded and advanced Green functions,

∆R(x1, x2) = θ(t1 − t2)(∆
>(x1, x2)−∆<(x1, x2)) (2.1.10)

= θ(t1 − t2)〈[φ(x1), φ(x2)]〉
= ∆++(x1, x2)−∆+−(x1, x2)

= ∆−+(x1, x2)−∆−−(x1, x2) ,

∆A(x1, x2) = −θ(t2 − t1)(∆
>(x1, x2)−∆<(x1, x2)) (2.1.11)

= −θ(t2 − t1)〈[φ(x1), φ(x2)]〉
= ∆++(x1, x2)−∆−+(x1, x2)

= ∆+−(x1, x2)−∆−−(x1, x2) ,

ΠR(x1, x2) = θ(t1 − t2)(Π
>(x1, x2)−Π<(x1, x2))

= Π++(x1, x2)−Π+−(x1, x2)



24 Non-equilibrium thermal field theory

= Π−+(x1, x2)−Π−−(x1, x2) , (2.1.12)

ΠA(x1, x2) = −θ(t2 − t1)(Π
>(x1, x2)− Π<(x1, x2))

= Π++(x1, x2)−Π−+(x1, x2)

= Π+−(x1, x2)−Π−−(x1, x2) . (2.1.13)

From Eqs. (2.1.8) and (2.1.9) one obtains the Kadanoff-Baym equations for the correla-
tion functions ∆> and ∆<,

(�1 +m2)∆>(x1, x2) = −i
∫
d4x′

(
Π>(x1, x

′)∆A(x′, x2) + ΠR(x1, x
′)∆>(x′, x2)

)
,

(2.1.14)

(�1 +m2)∆<(x1, x2) = −i
∫
d4x′

(
Π<(x1, x

′)∆A(x′, x2) + ΠR(x1, x
′)∆<(x′, x2)

)
.

(2.1.15)

We now define the real symmetric and antisymmetric correlation functions

∆+(x1, x2) =
1

2
〈{Φ(x1),Φ(x2)}〉 , (2.1.16)

∆−(x1, x2) = i〈[Φ(x1),Φ(x2)]〉 , (2.1.17)

and self-energies

Π+(x1, x2) =
1

2

(
Π>(x1, x2) + Π<(x1, x2)

)
, (2.1.18)

Π−(x1, x2) = i
(
Π>(x1, x2)− Π<(x1, x2)

)
, (2.1.19)

which also determine the retarded and advanced self-energies,

ΠR(x1, x2) = θ(t1 − t2)Π
−(x1, x2) , ΠA(x1, x2) = −θ(t2 − t1)Π

−(x1, x2) . (2.1.20)

Adding and subtracting the Kadanoff-Baym equations (2.1.14) and (2.1.15), one obtains
from Eqs. (2.1.10)-(2.1.13) and (2.1.16)-(2.1.19) an homogeneous equation for ∆− and
an inhomogeneous equation for ∆+,

(�1 +m2)∆−(x1, x2) = −
∫
d3x′

∫ t1

t2

dt′Π−(x1, x
′)∆−(x′, x2) , (2.1.21)

(�1 +m2)∆+(x1, x2) = −
∫
d3x′

∫ t1

ti

dt′Π−(x1, x
′)∆+(x′, x2)

+

∫
d3x′

∫ t2

ti

dt′Π+(x1, x
′)∆−(x′, x2) . (2.1.22)

We shall refer to these as equations as the first and second Kadanoff-Baym equation. ∆−

and ∆+ are known as spectral function and statistical propagator (cf. [80]). Together
they determine the path ordered Green’s function,

∆C(x1, x2) = ∆+(x1, x2)−
i

2
signC(x

0
1 − x02)∆

−(x1, x2) . (2.1.23)
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Φ−

Φ+ti → −∞

ti − iβ

Ret

tf → ∞

Figure 2.2: Path in the complex time plane for thermal Green’s functions.

∆− carries information about the spectrum of the system and ∆+ is related to occupation
numbers of different modes.

Using micro-causality and the canonical quantization condition for a real scalar field,

[Φ(x1),Φ(x2)]|t1=t2 = [Φ̇(x1), Φ̇(x2)]|t1=t2 = 0 , (2.1.24)

[Φ(x1), Φ̇(x2)]|t1=t2 = iδ(x1 − x2) , (2.1.25)

one obtains from the definitions (2.1.16) and (2.1.17)

∆−(x1, x2)|t1=t2 = 0 , (2.1.26)

∂t1∆
−(x1, x2)|t1=t2 = −∂t2∆−(x1, x2)|t1=t2 = δ(x1 − x2) , (2.1.27)

∂t1∂t2∆
−(x1, x2)|t1=t2 = 0 . (2.1.28)

In the following we shall restrict ourselves to systems with spatial translational in-
variance. In this case all two-point functions only depend on the difference of spatial
coordinates, x1 − x2, and it is convenient to perform a Fourier transformation. The
Green’s functions ∆±

q (t1, t2) satisfy the two Kadanoff-Baym equations

(∂2t1 + ω2
q)∆

−
q (t1, t2) +

∫ t1

t2

dt′Π−
q (t1, t

′)∆−
q (t

′, t2) = 0 , (2.1.29)

(∂2t1 + ω2
q)∆

+
q (t1, t2) +

∫ t1

ti

dt′Π−
q (t1, t

′)∆+
q (t

′, t2) =

∫ t2

ti

dt′Π+
q (t1, t

′)∆−
q (t

′, t2) ,

(2.1.30)

where ω2
q = q2 + m2. The initial conditions (2.1.26)-(2.1.28) for the spectral function

become

∆−
q (t1, t2)|t1=t2 = 0 , (2.1.31)

∂t1∆
−
q (t1, t2)|t1=t2 = −∂t2∆−

q (t1, t2)|t1=t2 = 1 , (2.1.32)

∂t1∂t2∆
−
q (t1, t2)|t1=t2 = 0 . (2.1.33)

For Green’s functions in thermal equilibrium the density matrix in Eqs. (2.1.2),
(2.1.3) is ρeq = exp (−βH), where H is the Hamiltonian of the system, and β = T−1 is
the inverse temperature. Time coordinates of Green functions now lie on the contour
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shown in Figure 2.2, and one has invariance under time translations so that two-point
functions only depend on the time difference t1− t2. After a Fourier transformation, one
obtains the KMS relations [79] for Green’s functions and self-energies,

∆+
q (ω) = − i

2
coth

(
βω

2

)
∆−

q (ω) , (2.1.34)

Π+
q (ω) = − i

2
coth

(
βω

2

)
Π−

q (ω) . (2.1.35)

The Kadanoff-Baym equations describe the dynamics of a arbitrary non-equilibrium
system. Depending on the self-energy and the initial conditions, the solutions will gen-
erally be complicated. An enormous simplification is achieved for a large medium such
that the back-reaction of the field Φ can be neglected. Furthermore, we assume that the
medium is in thermal equilibrium and, therefore, the self energy of Φ is time-translation
invariant,

Πq(t1, t2) = Πq(t1 − t2) . (2.1.36)

In this case also the spectral function is time-translation invariant, as shown in
Appendix B.3. With these simplifications, the Kadanoff-Baym equations become

(∂2t1 + ω2
q)∆

−
q (t1 − t2) = −

∫ t1

t2

dt′Π−
q (t1 − t′)∆−

q (t
′ − t2) , (2.1.37)

(∂2t1 + ω2
q)∆

+
q (t1, t2) =

∫ t2

ti

dt′Π+
q (t1 − t′)∆−

q (t
′ − t2)

−
∫ t1

ti

dt′Π−
q (t1 − t′)∆+

q (t
′, t2) . (2.1.38)

2.1.2 Solutions for the KB equations

Solution for the spectral function

As proven in Appendix B.3, the spectral function is time translation invariant, i.e., it
only depends on the time difference y = t1−t2. Hence, the first Kadanoff-Baym equation
(2.2.18) takes the form

(
∂2y + ω2

q

)
∆−

q (y) +

∫ y

0

dy′Π−
q (y − y′)∆−

q (y
′) = 0 . (2.1.39)

This equation can be solved by performing a Laplace transformation,

∆̃−
q (s) =

∫ ∞

0

dye−sy∆−
q (y) , (2.1.40)

for which one obtains after a straightforward calculation

∆̃−
q (s) =

∂y∆
−
q (0) + s∆−

q (0)

s2 + ω2
q + Π̃R

q (s)
, (2.1.41)
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with

Π̃R
q (s) =

∫ ∞

0

e−syΠR
q (y)dy =

∫ ∞

0

e−syΠ−
q (y)dy = Π̃−

q (s) . (2.1.42)

According to (2.1.41), the general solution of (2.1.39) depends on two parameters, the
values of ∆−

q and ∂y∆
−
q at y = 0. Using the inverse Laplace transform one finds

∆−
q (y) =

(
∂y∆

−
q (0) + ∆−

q (0)∂y
) ∫

CB

ds

2πi

esy

s2 + ω2
q + Π̃−

q (s)
. (2.1.43)

Here CB is the Bromwich contour (see Figure 3): The part parallel to the imaginary axis
is chosen such that all singularities of the integrand are to its left; the second part is
the semicircle at infinity which closes the contour at Re(s) < 0. Since the integrand of
(2.1.43) has singularities only on the imaginary axis, the second part can be deformed

to run parallel to the imaginary axis as well: CB →
∫ i∞+ǫ

−i∞+ǫ
+
∫ −i∞−ǫ

i∞−ǫ
.

The spectral function ∆−
q (y) satisfies the boundary conditions (2.1.31) and (2.1.32),

which implies

∆−
q (y) =

∫

CB

ds

2πi

esy

s2 + ω2
q + Π̃−

q (s)
. (2.1.44)

This result can be further simplified by making use of the analytic properties of the
self-energy Π̃−(s). On the real axis Π̃−(s) is real, while on the parts of the contour
which are parallel to the imaginary axis one has

Π̃−(iω ± ǫ) = ReΠR
q (ω)± iImΠR

q (ω) , (2.1.45)

with

ImΠR
q (ω) =

1

2i

(
ΠR

q (ω + iǫ)− ΠR
q (ω − iǫ)

)
. (2.1.46)

Hence, the expression (2.1.44) takes the form

∆−
q (y) = i

∫ ∞

−∞

dω

2π
e−iωyρq(ω) , (2.1.47)

where the spectral function ρq(ω) is given in terms of real and imaginary part of the
self-energy ΠR

q (ω),

ρq(ω) =
−2ImΠR

q (ω) + 2ωǫ

[ω2 − ω2
q − ReΠR

q (ω)]
2 + [ImΠR

q (ω) + ωǫ]2
= i∆̃−

q (iω) . (2.1.48)

Note that ImΠR
q (ω) and ReΠR

q (ω) are odd and even functions, respectively, which im-
plies that ∆q(y) is real. Further properties of this solution are discussed in Appendix A.
Let us recall that the expression (2.1.48) is obtained after neglecting the backreaction
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Ims Ims

ResRes

Figure 2.3: Bromwich contour

of the field Φ on the thermal bath. This is the reason why the self-energy and the
spectral function are time translation invariant.

The self-energy ΠR
q (ω), and consequently the spectral function ρq(ω), are divergent

and have to be renormalized. This can be done by the usual mass and wave function
renormalization at zero temperature. In (2.1.48) ω2

q is replaced by ω2
q(0) = m2

0 + q2,
where m0 is the bare mass of the field Φ. The difference between bare and renormalized
mass squared is determined by requiring that at zero temperature the spectral function
has a pole at ω2

q = m2 + q2,

ω2
q − ω2

q(0) − ReΠR
q (ωq)|T=0 = 0 . (2.1.49)

Expanding the self-energy around around ωq, a further divergence can be absorbed in a
wave function renormalization constant,

ReΠR
q (ω) = ReΠR

q (ωq)|T=0 +
(
1− Z−1

) (
ω2 − ω2

q

)
+ ReΠ̂R

q (ω) , (2.1.50)

where ReΠ̂R
q (ω) is the finite part and

Z−1 = 1− 1

2ωq

∂ReΠR
q (ω)

∂ω

∣∣∣
ω=ωq,T=0

. (2.1.51)

The spectral function (2.1.48) now takes the form

ρq(ω) = Z
−2ZImΠR

q (ω) + 2ωǫ
(
ω2 − ω2

q − ZReΠ̂R
q (ω)

)2
+
(
ZImΠR

q (ω) + ωǫ
)2 . (2.1.52)

Introducing the renormalized field operator Φr =
√
ZΦ, one obtains the renormalized

spectral function ρrq(ω) = Zρq(ω) in terms of the renormalized self-energy ΠR,r
q (ω) =

ZΠ̂R
q (ω),

ρrq(ω) =
−2ImΠR,r

q (ω) + 2ωǫ
(
ω2 − ω2

q − ReΠR,r
q (ω)

)2
+
(
ImΠR,r

q (ω) + ωǫ
)2 . (2.1.53)
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The divergencies of spectral function and statistical propagator can be removed in the
same way by mass and wave function renormalization at zero temperature. In the
following we shall drop the superscript ‘r’ to keep the notation simple.

The spectral function describes a quasi-particle resonance at finite temperature with
energy Ωq,

Ω2
q − ω2

q − ReΠR
q (Ωq) = 0,quadΩ2

q|T=0 = ω2
q , (2.1.54)

and decay width

Γq ≃ − 1

Ωq

ImΠR
q (Ωq) . (2.1.55)

For simplicity, we have neglected the effect of ImΠR
q on the quasi-particle energy.

In a free theory ImΠR
q (ω) = 0, and (2.1.53) is a representation of the δ-function. The

spectral function (2.1.47) then oscillates without damping, i.e., there are no dissipative
effects. Dissipation arises either from Φ decays and inverse decays or, similar to Landau
damping, from scattering processes with particles in the plasma. Which of these mech-
anisms dominates the dissipative effects and therefore the equilibration process depends
on the position of the quasi-particle pole relative to the masses of particles in the thermal
bath. A specific example will be discussed in Section 2.1.4. For small width the spectral
function is well approximated by the Breit-Wigner function. The relevant formulae are
collected in Appendix D.

Solution for the statistical propagator

We are now ready to solve the second Kadanoff-Baym equation (2.2.24) for the statistical
propagator, which for initial time ti = 0 is given by

(∂2t1 + ω2
q)∆

+
q (t1, t2) +

∫ t1

0

dt′Π−
q (t1 − t′)∆+

q (t
′, t2) = ζ(t1, t2) , (2.1.56)

with

ζ(t1, t2) =

∫ t2

0

dt′Π+
q (t1 − t′)∆−

q (t
′ − t2) . (2.1.57)

One easily verifies that the solution can be expressed as

∆+
q (t1, t2) = ∆̂+

q (t1, t2) +

∫ t1

0

dt′∆−
q (t1 − t′)ζ(t′, t2) , (2.1.58)

where ∆̂+
q (t1, t2) satisfies the homogeneous equation

(∂2t1 + ω2
q)∆̂

+
q (t1, t2) +

∫ t1

0

dt′Π−
q (t1 − t′)∆̂+

q (t
′, t2) = 0 . (2.1.59)
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The homogeneous equation is identical to (2.1.39), with t2 playing the role of a
parameter. We can therefore read off the general solution from (2.1.43),

∆̂+
q (t1, t2) = Aq(t2)∆̇

−
q (t1) +Bq(t2)∆

−
q (t1) . (2.1.60)

Using the symmetry ∆̂+
q (t1, t2) = ∆̂+

q (t2, t1), one obtains

Aq(t2)∆̇
−
q (t1) +Bq(t2)∆

−
q (t1) = Aq(t1)∆̇

−
q (t2) +Bq(t1)∆

−
q (t2) . (2.1.61)

Together with the boundary conditions (2.1.31)-(2.1.33), ∆−
q (0) = ∆̈−

q (0) = 0 and

∆̇−
q (0) = 1, this implies

Aq(t) = Aq(0)∆̇
−
q (t)+Bq(0)∆

−
q (t) , Bq(t) = Ȧq(0)∆̇

−
q (t)+Ḃq(0)∆

−
q (t) .(2.1.62)

Inserting Aq(t) and Bq(t) in (2.1.61) and using the symmetry of ∆̂+
q (t1, t2), one finds

Bq(0) = Ȧq(0). The initial state of the system is therefore characterized by three
constants, which can be chosen as

∆+
q,in = ∆+

q (t1, t2)|t1=t2=0 = Aq(0) , (2.1.63)

∆̇+
q,in = ∂t1∆

+
q (t1, t2)|t1=t2=0 = ∂t2∆

+
q (t1, t2)|t1=t2=0 = Bq(0) = Ȧq(0) , (2.1.64)

∆̈+
q,in = ∂t1∂t2∆

+
q (t1, t2)|t1=t2=0 = Ḃq(0) . (2.1.65)

From Eqs. (2.1.58), (2.1.60), (2.1.62) and the initial conditions (2.1.98)-(2.1.100) we
now obtain the full solution for the statistical propagator,

∆+
q (t1, t2) = ∆+

q,in∆̇
−
q (t1)∆̇

−
q (t2) + ∆̈+

q,in∆
−
q (t1)∆

−
q (t2)

+ ∆̇+
q;in

(
∆̇−

q (t1)∆
−
q (t2) + ∆−

q (t1)∆̇
−
q (t2)

)

+ ∆+
q,mem(t1, t2) , (2.1.66)

where

∆+
q,mem(t1, t2) =

∫ t1

0

dt′
∫ t2

0

dt′′∆−
q (t1 − t′)Π+

q (t
′ − t′′)∆−

q (t
′′ − t2) . (2.1.67)

This contribution to the statistical propagator, which is independent of the initial con-
ditions, is often referred to as memory integral. It can be expressed in the form

∆+
q,mem(t1, t2) = −

∫ ∞

−∞

dω

2π
e−iω(t1−t2)H∗

q(t1, ω)Hq(t2, ω)Π
+
q (ω) , (2.1.68)

where [84]

Hq(t, ω) =

∫ t

0

dτe−iωτ∆−
q (τ) . (2.1.69)

The expression (2.1.68) will be the basis of our numerical analysis in Section 2.1.4.
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2.1.3 Thermalization

Let us now verify that the solution (2.1.66) for the statistical propagator approaches
thermal equilibrium at late times. This means that the quantity

∆+
q (t, ω) =

∫ 2t

−2t

dyeiωy∆+
q

(
t+

y

2
, t− y

2

)
, (2.1.70)

which becomes a Fourier transform for t → ∞, satisfies the KMS condition asymptoti-
cally,

∆+
q (∞, ω) = − i

2
coth

(
βω

2

)
∆−

q (ω) . (2.1.71)

For late times only the memory integral is relevant, since ∆−
q (t) and ∆̇−

q (t) fall off
exponentially for t≫ 1/Γ. One then obtains

∆+
q (∞, ω) = ∆+

q,mem(∞, ω) = −|Hq(∞, ω)|2Π+
q (ω) . (2.1.72)

The quantity Hq(∞, ω) is the Laplace transform of the spectral function,

Hq(∞, ω) =

∫ ∞

0

dτe−i(ω−iǫ)τ∆−
q (τ)

= ∆̃−
q (iω + ǫ)

=
1

s2 + ω2
q + Π̃q(s)

∣∣∣
s=iω+ǫ

= − 1

ω2 − ω2
q − ReΠR

q (ω)− iImΠR
q (ω)

, (2.1.73)

which yields

|Hq(∞, ω)|2 = 1

(ω2 − ω2
q − ReΠR

q (ω))
2 + (ImΠR

q (ω))
2

= − ρq(ω)

2 ImΠR
q (ω)

. (2.1.74)

Inserting this expression into (2.1.72), using the KMS condition for the self-energy,

Π−
q (ω) = 2iImΠR

q (ω) , (2.1.75)

one obtains (cf. (2.1.47),(2.1.48)),

∆+
q (∞, ω) = − coth

(
βω

2

)
ImΠR

q (ω)

(ω2 − ω2
q − ReΠR

q (ω))
2 + (ImΠR

q (ω))
2

= − i

2
coth

(
βω

2

)
∆−

q (ω) . (2.1.76)
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Hence, our solution for the statistical propagator indeed fulfills the KMS condition
(2.1.34) in the limit t→ ∞, which proves that the system reaches thermal equilibrium.
For a specific example the approach to equilibrium will be studied numerically in
Section 2.1.4.

It is instructive to evaluate the statistical propagator in thermal equilibrium at equal
times, i.e., y = t1 − t2 = 0,

∆+
q

∣∣
y=0

=
1

2

∫ ∞

−∞

dω

2π
coth

(
βω

2

)
ρq(ω) . (2.1.77)

For a free field one has

ρq(ω) = 2πsign(ω)δ(ω2 − ω2
q) , (2.1.78)

which yields the well know result

∆+
q |y=0 =

1

ωq

(
1

2
+ nB(ωq)

)
, (2.1.79)

with the temperature dependent Bose-Einstein distribution function

nB(ωq) =
1

eβωq − 1
. (2.1.80)

Generically, the interaction with the thermal bath changes the energy ωq of a free

particle to a temperature dependent complex energy Ω̂q which appears as a pole of the
spectral function ρq(ω) and the integrand of (2.1.77). The spectral function then has

two poles in the upper plane, Ω̂q and −Ω̂∗
q, which are determined by the condition

Ω̂q −
(
ω2
q +ΠR

q

(
Ω̂q

))1/2
= 0 . (2.1.81)

Assuming that the integral can be closed in the upper half-plane, one obtains for the
statistical propagator in equilibrium,2

∆+
q |y=0 = Re

(
1

Ω̂q

(
1

2
+ nB(Ω̂q)

))
. (2.1.82)

Compared to (2.1.78), the Bose-Einstein distribution function has been replaced by the
complex distribution function nB(Ω̂q).

At high temperatures, where βωq ≪ 1, the Bose-Einstein distribution has a well-
known infrared divergence,

nB(ωq) ≃
1

βωq

≫ 1 . (2.1.83)

2Here we restrict ourselves to the case where there are no additional poles.
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For quasi-particles, where ωq is replaced by Ω̂q = Ωq + iΓq/2, this divergence is cut off
by the finite width,

|nB(Ω̂q)| ≃
1

|β(Ωq +
i
2
Γq)|

≤ 2

βΓq

, (2.1.84)

which remains finite even if the real part Ωq vanishes.

Comparison of equations (2.1.79) and (2.1.82) suggests that in thermal equilibrium
the Φ particles may form a gas of quasi-particles. This question can be clarified by
evaluating energy density and pressure of the Φ particles. Since the expectation value
of Φ vanishes, one obtains from the energy momentum tensor3

Tµν = ∂µΦ∂νΦ− ηµνL (2.1.85)

for the contribution of a mode with momentum q to energy density and pressure,

ǫq = 〈T00〉|q =
1

2
〈Φ̇2 + (~∇Φ)2 +m2Φ2〉|q , (2.1.86)

pq = 〈Tii〉|q = 〈1
3
(∇Φ)2 +

1

2
(Φ̇2 − (∇Φ)2 −m2Φ2)〉|q . (2.1.87)

This yields for the energy density

ǫq(∞) =
1

2

(
∂t1∂t2 + ω2

q

)
∆+

q (t1, t2)
∣∣
t1=t2=∞

=
1

2

(
Ω2

q + ω2
q

) 1

Ωq

(
1

2
+ nB(Ωq)

)
, (2.1.88)

and for the pressure

pq(∞) =

(
1

3
q2 +

1

2

(
∂t1∂t2 − ω2

q

))
∆+

q (t1, t2)
∣∣
t1=t2=∞

=

(
1

3
q2 +

1

2

(
Ω2

q − ω2
q

)) 1

Ωq

(
1

2
+ nB(Ωq)

)
, (2.1.89)

where, for simplicity, we have neglected the quasi-particle width.

In summary, the energy momentum tensor in thermal equilibrium can be expressed
as sum of a quasi-particle gas contribution and a temperature dependent ‘vacuum’ term,

〈Tµν〉|q = uµuν
(
ǫQP
q + pQP

q

)
− ηµνp

QP
q + ηµνκ

VAC
q . (2.1.90)

Here uµ = (1,~0) is the 4-velocity of the thermal bath, and

ǫQP
q = Ωq

(
1

2
+ nB(Ωq)

)
, (2.1.91)

3We use the convention diag (ηµν) = (1,−1,−1,−1).
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Figure 2.4: Spectral function ρq(ω) for q = 0; case (a) with masses m1 = m2 = 0.2m
and temperatures T1 = 0.1m, T2 = 0.2m, T3 = 0.5m.
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Figure 2.5: Spectral function ρq(ω) for q = 0; case (b) with masses m1 = m, m2 = 5m
and temperatures T1 = m, T2 = 2m, T3 = 5m.

pQP
q =

1

3

q2

Ωq

(
1

2
+ nB(Ωq)

)
, (2.1.92)

κVAC
q =

ω2
q − Ω2

q

2Ωq

(
1

2
+ nB(Ωq)

)
. (2.1.93)

Energy density and pressure of the quasi-particle gas agree with the corresponding ex-
pressions for a free gas, with the energy ωq of a free particle replaced by the quasi-particle
energy Ωq. The ‘vacuum contribution’ κVAC

q vanishes for Ωq = ωq. For large thermal
effects, i.e. Ωq ≫ ωq or Ωq ≪ ωq, the equation of state differs significantly from the one
of a free gas. Note that for Ω2

q < ω2
q, the pressure can even become negative!

2.1.4 Model example

So far we have performed a very general analysis, and the only approximation has
been to neglect the backreaction of the field Φ on the thermal bath. Furthermore, we
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Figure 2.6: Spectral function ∆−
q (y) for q = 0; case (b) with masses m1 = m, m2 = 5m

and T = 10m.

have restricted our discussion to the case that Φ is linearly coupled to the bath via
an interaction term gΦO(χ). In general, χ represents an arbitrary number of bosonic
or fermionic fields with arbitrary couplings including gauge interactions. In order to
illustrate the results of the previous sections, we now consider a toy model (cf. [84,108]),
where the quanta of two massive scalar fields represent the thermal bath. The full
Lagrangian is given by

L =
1

2
∂µΦ∂

µΦ− 1

2
m2Φ2 +

2∑

i=1

(
1

2
∂µχi∂

µχi −
1

2
m2
iχ

2
i

)
+ gΦχ1χ2 + Lχint .(2.1.94)

Note that the coupling g has the dimension of mass. In the following we shall neglect
self-interaction of the χ fields and use free thermal propagators for simplicity.

We consider two cases: (a) m ≫ m1, m2 and (b) m2 ≫ m,m1. In the first case,
dissipation is dominated by Φ decays and inverse decays, Φ ↔ χ1χ2, whereas in the
second one χ2 decays and inverse decays, χ2 ↔ Φχ1, are most important.

In both cases the imaginary part of the self-energy is known analytically [84], the
calculation can be seen in Appendix B.1. For m≫ m1, m2, the decay width of Φ at zero
temperature is given by

Γ =
1

16π

( g
m

)2
m . (2.1.95)

To illustrate thermal effects we shall use a rather large coupling which corresponds to
Γ/m = 0.1.
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Figure 2.7: Real part of the self-energy ΠR
q (ω) for q = 0; case (a) with masses m1 =

m2 = 0.2m and temperatures T1 = 0.5m (solid) and T2 = m (dashed).

The spectral function ρq(ω) (cf. (2.1.53)) is shown in Figures 2.4 and 2.5 for the two
mass patterns (a) and (b), respectively. In case (a), ΠR

q has an imaginary part at zero
temperature. The width is large, and already at small temperatures the quasi-particle
profile becomes broad. On the contrary, in case (b) the zero-temperature width is zero
and the finite-temperature width is small. Hence, the quasi-particle profile becomes
broad only at much larger temperatures. The spectral function ∆−

q (y) is the Fourier
transform of iρq(ω). As Fig. 2.6 illustrates, it approximately represents a damped
oscillation with frequency Ωq and damping rate Γq.

It is interesting that thermal corrections can increase or decrease the particle mass m.
Whether the quasi-particle peak moves to the right or to the left depends on the position
of the zero-temperature pole relative to the branch cuts, and it also depends on the
temperature. This can be seen by considering the real part of the self-energy, which is
displayed for two different temperatures in Fig. 2.7 for case (a). For the smaller tempera-
ture one has ReΠR

q=0(m) > 0, whereas ReΠR
q=0(m) < 0 holds for the larger temperature,

which corresponds to a shift of the particle mass to the right and to the left, respectively.

The statistical propagator ∆+
q (t1, t2) depends on the initial conditions. The most

general gaussian initial density matrix has five free parameters (cf. [80]). We consider
the simplest case of a free field density matrix and vanishing mean values Φ and Φ̇,
which implies for each momentum mode,

Φq,in = 0 , (2.1.96)

Φ̇q,in = 0 , (2.1.97)
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Figure 2.8: Statistical propagator ∆+
q (t1, t2) for q = 0; case (b) with masses m1 = m,

m2 = 5m and T = 10m.

∆+
q,in = ∆+

q (t1, t2)|t1=t2=0 =
1

ωq

(
1

2
+ nq

)
, (2.1.98)

∆̇+
q,in = ∂t1∆

+
q (t1, t2)|t1=t2=0 = ∂t2∆

+
q (t1, t2)|t1=t2=0 = 0 , (2.1.99)

∆̈+
q,in = ∂t1∂t2∆

+
q (t1, t2)|t1=t2=0 = ωq

(
1

2
+ nq

)
. (2.1.100)

The initial state of the system is now characterized by only one parameter nq which
corresponds to an initial number density for a free field.

The general solution (2.1.66) for the statistical propagator ∆+
q (t1, t2) is shown in

Figure 2.8. For fixed t = (t1 + t2)/2 one sees damped oscillations in y = t1 − t2. The
amplitude increases with increasing time t, as illustrated by Figure 2.9. For fixed
y = t1 − t2 one observes the approach to equilibrium with increasing t = (t1 + t2)/2.
For large times the departure from equilibrium is described by a first-order differential
equation, and it decreases exponentially. At small times the evolution is governed by a
second-order differential equation, which leads to the oscillations visible in Figure 2.10.
The independence of the equilibrium solution from the initial conditions is illustrated
by Figure 2.11. The memory of the initial conditions is lost at times t > 1/Γ.

Finally, it is important to recall that the equilibrium value of the energy differs from
the one obtained in the Boltzmann approximation. This is illustrated in Figure 2.12
where the different contributions to the energy are compared as functions of temper-
ature. For the chosen parameters the particle and quasi-particle energies are indistin-
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Figure 2.10: Statistical propagator ∆+
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q = 0; case (b) with masses m1 = m, m2 = 5m and T = 10m.



2.1 Keldysh-Schwinger formalism for scalars 39

10

10

20

200

30

30 40 50 60

∆+
q (t1, t2)

mt

Figure 2.11: Statistical propagator ∆+
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Figure 2.12: Energy density ǫ̂q = ǫq/ωq as function of temperature for q = 0; case (b)
with masses m1 = m, m2 = 5m: total energy density (solid), particle and quasi-particle
energy densities (dotted), and ’vacuum’ energy density (dashed).
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guishable. The ‘vacuum contribution’ is positive, which means that the total energy is
larger than the particle/quasi-particle one. The reason is that for the chosen parameters
thermal corrections decrease the particle mass. For other parameter choices the ‘vacuum
contribution’ can have opposite sign.
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2.2 Keldysh-Schwinger formalism for Fermions

Analogue to the treatment of bosons in the previous section, we can apply the non-
equilibrium formalism to interacting, weak coupled fermions, coupled to a thermal bath.
For example, in the case of leptogenesis, a Majorana neutrino is coupled weakly to a
bath of standard model particles of leptons and Higgs. Describing the non-equilibrium
dynamics of fermions is a more complicated task than for scalars due to the fact of its
Lorentz structure, which is reflected in a non-commutative algebra. In order to obtain
a general solution of the Kadanoff-Baym equations, we will need to know two aspects
of the bath. First, if the bath is strongly coupled, then back-reaction of the weakly
interactive particle can be neglected, which means that the self-energy is composed
only of equilibrium particles. This leads to a time translational invariant self-energy.
Second, in order to compute the inverse of the self-energy, we need to know the Lorentz
structure of the bath. If we assume that the temperature of our system is of the order
of the lightest of the heavy Majorana neutrinos, then the electroweak symmetry is
not broken, therefore the standard model particles in the bath are all massless. The
self-energy will then have a purely 4-vector Lorentz structure. This will allow us to
obtain a proper solution to the Kadanoff-Baym equations.

In the following we show how to describe the dynamics of a massive fermions. The
later application to massless leptons is straightforward by taking the limit M → 0.
For standard model leptons, the projector PL needs also to be taken into account.
For Majorana fermions, the definition of the Green’s functions has to be adjusted by
taking into account that a Majorana particle is its own anti-particle. This will affect
the symmetry properties. Qualitatively, the symmetry properties of non-equilibrium
Majorana neutrinos will be given by the charge operator C.

Another difference with the calculation of the non-equilibrium fermion propagators
G(t) is that at t = 0 we have G(t)|t=0 6= 0 but instead is equal to the free propagator at
t = 0

G(t)|t=0 = GFree(t)|t=0 . (2.2.1)

This comes from the fact that we analyse the time-evolution of propagators instead of
a ill-defined particle density quantity. We will see that introducing this propagator to
the calculation of leptogenesis will guarantee that all the distribution functions of the
particles involved are taken into account. Making the comparison with Boltzmann a
possible.

2.2.1 Kadanoff-Baym equations for fermions

Let start by defining thermal averages of fermionic fields (Ψ) on a contour C given in
Fig. 2.1

G>
αβ(x1, x2) ≡ 〈Ψα(x1)Ψ̄β(x2)〉 = Tr(ρΨα(x1)Ψ̄β(x2)) , (2.2.2)

G<
αβ(x1, x2) ≡ −〈Ψβ(x2)Ψ̄α(x1)〉 = −Tr(ρΨβ(x2)Ψ̄α(x1)) , (2.2.3)
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where α and β are spinor indices and the trace is taken in the thermal bath with a
density matrix ρ. The sign difference from the scalar case in the above definition comes
from the anti-commutation property of the fermions. The definition for the rest of the
Green’s functions in the contour is also straightforward (the spinor indices are omitted
till they became relevant for calculations),

G++(x1, x2) = Θ(t1 − t2)G
>(x1, x2) + Θ(t2 − t1)G

<(x1, x2) , (2.2.4)

G−−(x1, x2) = Θ(t1 − t2)G
<(x1, x2) + Θ(t2 − t1)G

>(x1, x2) , (2.2.5)

G+−(x1, x2) = G<(x1, x2) , (2.2.6)

G−+(x1, x2) = G>(x1, x2) . (2.2.7)

Let’s remember that the subindices ‘+’ and ‘−’ refers to times on the upper and lower
part of the contour respectively. Similar definitions will also be used for the self-energy
Σ++, Σ−−, Σ+− and Σ−+. The equation of motion for these propagators is given by the
Dyson-Schwinger equation on the Schwinger-Keldysh contour,

(i6∂1 −M)GC(x1, x2)− i

∫

C

d4x′ΣC(x1, x
′)GC(x

′, x2) = iδC(x1 − x2) , (2.2.8)

with 6∂1 referring to the partial derivative with respect to x1. Notice that this equation
is a first order differential equation (see Appendix A.3). In order to obtain a solution
for (2.2.8), we will only need one initial condition, as contrast to the scalar case where
we needed only two. In a straightforward manner, we can write the Dyson-Schwinger
equation on the contour (Figure 2.1) for the correlators G> and G<,

(i6∂1 −M)G<(x1, x2) =

− i

∫
d4x′

(
Σ++(x1, x

′)G<(x′, x2)− Σ<(x1, x
′)G−−(x

′, x2)
)
, (2.2.9)

(i6∂1 −M)G>(x1, x2) =

− i

∫
d4x′

(
Σ>(x1, x

′)G++(x
′, x2)− Σ−−(x1, x

′)G>(x′, x2)
)
. (2.2.10)

Defining retarded and advanced Green’s functions as usual,

GR(x1, x2) = Θ(t1 − t2)(G
>(x1, x2)−G<(x1, x2)) , (2.2.11)

GA(x1, x2) = −Θ(t2 − t1)(G
>(x1, x2)−G<(x1, x2)) , (2.2.12)

so we can use the following relations

G++(x1, x2) = G>(x1, x2) +GA(x1, x2) , (2.2.13)

G−−(x1, x2) = G<(x1, x2)−GA(x1, x2) , (2.2.14)

Σ++(x1, x2) = Σ<(x1, x2) + ΣR(x1, x2) , (2.2.15)

Σ−−(x1, x2) = Σ>(x1, x2)− ΣR(x1, x2) , (2.2.16)

to rewrite (2.2.9) and (2.2.10) in the form
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(i6∂1 −M)G<(x1, x2) =

− i

∫
d4x′

(
ΣR(x1, x

′)G<(x′, x2) + Σ<(x1, x
′)GA(x′, x2)

)
, (2.2.17)

(i6∂1 −M)G>(x1, x2) =

− i

∫
d4x′

(
Σ>(x1, x

′)GA(x′, x2) + ΣR(x1, x
′)G>(x′, x2)

)
. (2.2.18)

The theta functions inside the advanced and retarded propagators in equations (2.2.11)
and (2.2.12), respectively, will act as cut-off in the time coordinate, this will maintain
causality and ensure that we do not double count. As a consequence, the solution of
these equations will only depend on the initial conditions. Defining linear combinations
of G>(x1, x2) and G<(x1, x2)

G−(x1, x2) ≡ i〈{Ψ(x1), Ψ̄(x2)}〉 = i
(
G>(x1, x2)−G<(x1, x2)

)
, (2.2.19)

G+(x1, x2) ≡ 1

2
〈[Ψ(x1), Ψ̄(x2)]〉 =

1

2

(
G>(x1, x2) +G<(x1, x2)

)
, (2.2.20)

we obtain the spectral function G−(x1, x2) and statistical propagator G+(x1, x2) respec-
tively. For the self-energies we define similarly

Σ−(x1, x2) ≡ i
(
Σ>(x1, x2)− Σ<(x1, x2)

)
, (2.2.21)

Σ+(x1, x2) ≡ 1

2

(
Σ>(x1, x2) + Σ<(x1, x2)

)
. (2.2.22)

Again we notice that with the conventions adopted (see Appendix A.3), the self-energies
Σ± are defined in the same way as the correlators G±. After some straightforward
calculation we can obtain the following set of equations

(i6∂1 −M)G−(x1, x2) = −
∫ t2

t1

dt′
∫
d3x′Σ−(x1, x

′)G−(x′, x2) , (2.2.23)

(i6∂1 −M)G+(x1, x2) = −
∫ t2

ti

dt′
∫
d3x′Σ+(x1, x

′)G−(x′, x2)

+

∫ t1

ti

dt′
∫
d3x′Σ−(x1, x

′)G+(x′, x2) . (2.2.24)

Assuming spatial translation invariance, the above equations take the form after Fourier
transformation,

(iγ0
∂

∂t1
− kγ −M)G−

k (t1, t2) = −
∫ t2

t1

dt′Σ−
k (t1, t

′)G−
k (t

′, t2) , (2.2.25)

(iγ0
∂

∂t1
− kγ −M)G+

k (t1, t2) = −
∫ t2

ti

dt′Σ+
k (t1, t

′)G−
k (t

′, t2)

+

∫ t1

ti

dt′Σ−
k (t1, t

′)G+
k (t

′, t2) . (2.2.26)
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If the self-energy has no particle out-of-equilibrium, then its dependance will only be
on the difference of coordinates, i.e. Σ±eq

k (t1, t2) = Σ±
k (t1 − t2). We also notice that the

function G−
k is time translational invariant when the self-energy Σ−

k is time translation
invariant (the proof from the scalar case also holds for the fermion case, see Appendix
B.3). Therefore, the final form of the Kadanoff-Baym equations is

(iγ0
∂

∂t1
− kγ −M)G−

k (t1 − t2) = −
∫ t2

t1

dt′Σ−
k (t1 − t′)G−

k (t
′ − t2) , (2.2.27)

(iγ0
∂

∂t1
− kγ −M)G+

k (t1, t2) = −
∫ t2

ti

dt′Σ+
k (t1 − t′)G−

k (t
′ − t2)

+

∫ t1

ti

dt′Σ−
k (t1 − t′)G+

k (t
′, t2) . (2.2.28)

The Kadanoff-Baym equations for fermions resemble the ones for scalars. Equation
(2.2.27) is an homogeneous differential-integral equation, meanwhile equation (2.2.28)
has a source term. The big difference comes from the Lorentz and flavour structure.
Because the self-energies only depend on the difference of the arguments, we can solve
both of them exactly with the use of the Laplace transform. We will see that the
Lorentz and flavour structure of the self-energies is extremely important in order to
obtain a solution of these equations.

2.2.2 Solutions for the KB equations

The solution of the Kadanoff-Baym equations for fermions is in principle similar as
the case of scalar particles. The solution for G− will only depend on the difference of
coordinates but G+ will have a dependency on the centre of mass coordinate as well.
Both Green’s functions have Lorentz and in principle flavour structure too. However, for
our effective model, the flavour information is stored in the Yukawa effective coupling η.
This coupling acts as constant when the inverse of the self-energy is needed. For a one
hierarchal case, where two flavours needs to be taken into account in the self-energy one
needs a more general solution (see Appendix C.1)

Solution of the first KB equation for fermions

Choosing a convenient change of variables y = t1− t2 and y′ = t′− t2 we can rewrite the
first KB equation (2.2.27) as

(
iγ0

∂

∂y
− kγ −M

)
G−

k (y)−
∫ y

0

dy′Σ−
k (y − y′)G−

k (y
′) = 0 , (2.2.29)

and applying Laplace transformation one obtains
(
−iγ0

(
G−

k (0)− sG̃−
k (s)

)
− (kγ +M)G̃−

k (s)
)
− Σ̃−

k (s)G̃
−
k (s) = 0 , (2.2.30)

where the tilde notation was introduced for the Laplace transformed quantities, e.g.

G̃−
k (s) =

∫ ∞

0

dte−syG−
k (y) , (2.2.31)
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Again we emphasise that we are able to solve this equations via the Laplace transform,
only because the self-energy is time translational invariant. Otherwise this method is
not viable. The initial condition G−

k (0) is obtained by using equal time commutation
relation

G−
k (0) = iγ0 , (2.2.32)

then, one arrives at

(
−isγ0 + (kγ +M)

)
G̃−

k (s)− Σ̃−
k (s)G̃

−
k (s) = 1 , (2.2.33)

where 1 in the r.h.s. is a spinor four-by-four unit matrix. From the above equation we
can easily find that

G̃−
k (s) =

1

−isγ0 + (kγ +M)− Σ̃−
k (s)

. (2.2.34)

To obtain G−
k (y) we must perform the inverse Laplace transform by integrating over the

Bromwich contour Fig. 2.3

G−
k (y) =

1

2πi

(∫ i∞+ǫ

−i∞+ǫ

G̃−
k (s)e

sy +

∫ −i∞−ǫ

i∞−ǫ

G̃−
k (s)e

sy

)
ds . (2.2.35)

After introducing the integration variable s = iω+ ǫ and s = iω− ǫ to equation (2.2.35)
we obtain

G−
k (y) =

∫ ∞

−∞

dω

2π
e−iωy

(
1

6k −M − ΣR(ω)
− 1

6k −M − ΣA(ω)

)
, (2.2.36)

when using the identities

ΣR(ω) = Σ̃(−iω + ǫ) , (2.2.37)

ΣA(ω) = Σ̃(−iω − ǫ) . (2.2.38)

These identities comes from the fact that we can use spectral representation for the
self-energies

ΣR(ω) = i

∫ ∞

∞

dp0
2π

Σ−(p0)

ω − p0 + iǫ
, (2.2.39)

ΣA(ω) = i

∫ ∞

∞

dp0
2π

Σ−(p0)

ω − p0 − iǫ
, (2.2.40)

Σ̃−(s) = i

∫ ∞

∞

dp0
2π

Σ−(p0)

is− p0
. (2.2.41)

In the high temperature case the fields constituting the thermal bath are massless. The
self-energy Σ will be then a pure vector in Lorentz space, and is given by [109]

ΣRk (ω) = ak(ω) 6k + bk(ω) 6u , (2.2.42)



46 Non-equilibrium thermal field theory

where ak and bk are some functions whose symmetry properties with respect to ω are
determined by the bath (for a complete calculation and comparison to the literature see
Appendix C.2). The four-momentum 6k represents the momentum of external particle
while the four-vector 6u represent the four-velocity of the thermal bath. In most cases one
can perform all necessary computations in the bath reference frame where u = (1, 0, 0, 0).

If the fields of the thermal bath have a mass, then there will be a scalar contribution
to the self-energy. This scalar contribution C−1Σscalar can be incorporated into the mass
M of the fermion field and define

M =M + C−1Σscalar . (2.2.43)

For a high neutrino mass, the thermal contribution from the bath is small and can be
neglected M ≃ M . The solution for G− can be rewritten as

G−
k (y) =

∫ ∞

−∞

dω

2π
e−iωy

(
(1 + a) 6k + b6u+M

D
− (1 + a∗) 6k + b∗ 6u+M

D∗

)
, (2.2.44)

with

D = (1 + a)2k2 + b2 + 2(1 + a)b k · u−M2 ,

≃ (1 + 2a)k2 + 2bω −M2 , (2.2.45)

a = ak(ω) and b = bk(ω). For small a and b with respect to the mass of the fermion, the
denominator can be taken up to first order in those variables, then we can rewrite

G−
k (y) = i

∫ ∞

−∞

dω

2π
e−iωyρk(ω) . (2.2.46)

In the narrow width limit ρk(ω) is given by

ρk(ω) = 2sign(ω)( 6k +M)
ωkΓk

(k2 −M2)2 + (ωkΓk)2
, (2.2.47)

where k2 = ω2 − k2 and

Γk ≡ −2Im

(
a
M2

ω
+ b

)

ω=ωk

, (2.2.48)

The symmetry properties of a and b are described in the Appendix C.2. After performing
the back Fourier transformation using residue theorem in ω we get

G−
k (y) =

(
iγ0 cos(ωky) +

(
M − kγ

ωk

)
sin(ωky)

)
e−Γk|y|/2 , (2.2.49)

with y been a difference of two times. The solution of the first Kadanoff-Baym equation
has the shape of a fermionic Breit-Wigner, where the oscillatory behaviour is exponen-
tially suppressed by the width Γk. Because of the equilibrium nature of the self-energy,
the spectral function will also depend only on the difference of coordinates. One big
difference between the fermionic and the scalar spectral functions is the fact that while
the scalar spectral function has a definite symmetry in ω, the fermion spectral function
has a symmetry depending on the Lorentz direction. This is no surprise because the
fermion propagators must satisfy the properties in equation (A.3.14).
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Solution of the second KB equation for fermions

We shall now proceed to the solve the second Kadanoff-Baym equation (2.2.28), in which
without loss of generality we can take ti = 0

(iγ0
∂

∂t1
− kγ −M)G+

k (t1, t2)−
∫ t1

0

dt′Σ−
k (t1 − t′)G+

k (t
′, t2) = ζk(t1 − t2) , (2.2.50)

with the source term ζk(t1 − t2) given by

ζk(t1 − t2) = −
∫ t2

0

dt′Σ+
k (t1 − t′)G−

k (t
′ − t2) . (2.2.51)

The general solution of (2.2.50) can be written as

G+
k (t1, t2) = Ĝ+

k (t1, t2) +G+
k,mem(t1, t2) , (2.2.52)

where Ĝ+
k (t1, t2) is the solution of the homogeneous equation

(iγ0
∂

∂t1
− kγ −M)Ĝ+

k (t1, t2)−
∫ t1

0

dt′Σ−
k (t1 − t′)Ĝ+

k (t
′, t2) = 0 , (2.2.53)

and

G+
k,mem(t1, t2) = −

∫ t1

0

dt′G−
k (t1 − t′)ζk(t

′ − t2) , (2.2.54)

is the solution to the memory integral. Let first concentrate on equation (2.2.54), which
can be written after performing Fourier transformation on the variables y1 = t1 − t′ and
y2 = t2 − t′ as

G+
k,mem(t1, t2) =

∫
dω

2π
Hk(ω, t1)Σ

+
k (ω)Hk(ω, t2)e

−iωy , (2.2.55)

with y = t1 − t2, and

Hk(ω, t1) =

∫ t1

0

dy1G
−
k (y1)e

iωy1 , (2.2.56)

Hk(ω, t2) =

∫ t2

0

dy2G
−
k (−y2)e−iωy2 . (2.2.57)

The y1,2 integrations can be performed analytically

∫ t1

0

dy1G
−
k (y1)e

iωy1 ≈ 1

ω2
k − (ω − iΓk/2)2

(
iγ0
(
ωks1 + iωc1 − iω

)

+
M − kγ

ωk

(
iωs1 − ωkc1 + ωk

))
, (2.2.58)
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∫ t2

0

dy1G
−
k (−y2)e−iωy2 ≈ 1

ω2
k − (ω + iΓk/2)2

(
iγ0
(
ωks

∗
2 − iωc∗2 + iω

)

−M − kγ

ωk

(
− iωs∗2 − ωkc

∗
2 + ωk

))
, (2.2.59)

where terms of order Γk in the numerator were neglected, and

si = sin(ωkti)e
i(ω+iΓk/2)ti , (2.2.60)

ci = cos(ωkti)e
i(ω+iΓk/2)ti . (2.2.61)

Then

G+
k,mem(t1, t2) =

∫
dω

2π

−i/2 tanh(βω/2)

|ω2
k − (ω − iΓk/2)2|2

M

ωk

e−iω(t1−t2) (2.2.62)

×
(
γ0Σ−

k (ω)γ
0
(
ωks1 + iωc1 − iω

)(
− ωks

∗
2 + iωc∗2 − iω

)

+ γ0Σ−
k (ω)

M − kγ

ωk

(
iωks1 − ωc1 + ω

)(
iωs∗2 + ωkc

∗
2 − ωk

)

+
M − kγ

ωk

Σ−
k (ω)γ

0
(
iωs1 − ωkc1 + ωk

)(
iωks

∗
2 + ωc∗2 + iω

)

+
M − kγ

ωk

Σ−
k (ω)

M − kγ

ωk

(
iωs1 − ωkc1 + ωk

)(
iωs∗2 + ωkc

∗
2 − ωk

))
.

We can now proceed to simplify the above equation to be able to perform Cauchy’s
theorem on the ω integration with the poles ±ωk±iΓk/2. If we again neglect corrections
of order Γk in the numerator, we can then replace ω ↔ ωksign(ω) and ω2 ↔ ω2

k under
the integral. This, with sign(ω)2 = 1, allows to simplify the last expression to

G+
k,mem(t1, t2) =

∫
dω

2π

−i/2 tanh(βω/2)

|ω2
k − (ω − iΓk/2)2|2

( 6k +M) Σ−(ω) (6k +M)

×
(
− s1s

∗
2 − isign(ω)c1s

∗
2 + isign(ω)s1c

∗
2 − c1c

∗
2

−isign(ω)s1 + c1 + isign(ω)s∗2 + c∗2 − 1
)
e−iω(t1−t2) . (2.2.63)

Now, since Σ−
k (ω) = DiscΣRk (ω) and, in our case for vanishing lepton and Higgs mass

we have DiscΣRk (ω) = 2i(aI 6k + bI 6u), we can write

G+
k,mem(t1, t2) =

∫
dω

2π

tanh(βω/2)

|ω2
k − (ω − iΓk/2)2|2

e−iω(t1−t2)

×
(
2M(aIk

2 + bIω)− kγ
(
(aI(k

2 +M2) + 2bIω)
)

+γ0
(
ω
(
aI(k

2 +M2) + 2bIω
)
+ bI(k

2 −M2)
) )

×
(
− s1s

∗
2 − isign(ω)c1s

∗
2 + isign(ω)s1c

∗
2 − c1c

∗
2

−isign(ω)s1 + c1 + isign(ω)s∗2 + c∗2 − 1
)
, (2.2.64)

where aI = Im[a] and bI = Im[b]. Knowing that in fact the functions aI and bI are
analytic, we can now apply Cauchy’s theorem. The combination of exponentials coming



2.2 Keldysh-Schwinger formalism for Fermions 49

from the si and ci with the e−iω(t1−t2) determine for each term individually whether one
has to close the path in the upper or lower half of the imaginary plane. Due to the
minus sign that comes if we take the direction of the path in the lower half plane, the
denominator is always

1

|ω2
k − (ω − iΓk/2)2|2

→ −i
4ω2

kΓk

,

while in the numerator, due to the antisymmetry of tanh and aI and the symmetry of
bI , the scalar and kγ part are symmetric while the γ0 part is antisymmetric. Recalling
the definition of Γk in equation (2.2.48)

Γk = −2
aI(ωk)M

2 + bI(ωk)ωk

ωk

, (2.2.65)

and the KMS relation

Σ+
k (ω) = −i/2 tanh(βω/2)Σ−

k (ω) . (2.2.66)

one can further obtain by using the spectral function obtained in (2.2.49),

G+
k,mem(y, t) =− tanh

(
βωk

2

)

2

(
e−Γk|y|/2 − e−Γkt

)

×
(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)
. (2.2.67)

Note that when t1 = t2 = 0 this solution vanishes, which is absolutely trivial, because
there are no memory effects at t = 0.

The homogeneous solution can be solved analogue to the first KB equation (2.2.27),
the functional dependence on the first argument t1 of the solution to the Eq. (2.2.28)
can be easily obtained. Applying Laplace transform to (2.2.53) one finds

G̃+
k (s, t2) =

1

iγ0s− kγ −M + Σ̃−
k (s)

iγ0Ĝ
+
k (0, t2) . (2.2.68)

Integrating further over Bromwich contour one obtains

Ĝ+
k (t1, t2) = −G−

k (t1)iγ0Ĝ
+
k (0, t2) , (2.2.69)

where Ĝ+
k (0, t2) can be found using the symmetry given in (A.3.15). Then

Ĝ+
k (t1, t2) = G−

k (t1)γ0G
+
k (0, 0)γ0G

−
k (−t2) . (2.2.70)

We are interested in the case of zero initial abundance Majorana neutrinos, this corre-
sponds to a vacuum Green function by choosing 4

G+
k (0, 0) =

M − kγ

2ωk

. (2.2.71)

4We assume that the interaction is switched on when the system starts evolving in time to avoid
problems related to the fact that the vacuum of the interactive theory can not be expressed by Gaussian
initial conditions [111]
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The full solution now reads

G+
k (t, y) = −

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)

×
[
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eq(ωk)e

−Γkt

]
, (2.2.72)

where the equilibrium distribution function for fermions f eq(ωk) = 1/(eβωk−1) is explic-
itly shown. In order to verify that the solutions for G−

k (y) and G+
k (t, y) are correct, we

need to check three conditions that these equations must satisfy: symmetries described
in (A.3.14) and (A.3.15), initial conditions for t→ 0, and KMS condition for equilibrium
when t→ ∞.

2.2.3 Properties of the solutions

Symmetries

Let us apply the symmetries conditions described in Eqs. (A.3.14) and (A.3.15) for
our solution of the spectral function and the statistical propagator. Applying first the
Hermitian conjugate to the spectral function

[G−
k (y)]

† =

(
−iγ0 cos(ωky) +

(
M + kγ

ωk

)
sin(ωky)

)
e−Γk|y|/2 , (2.2.73)

where we have used the Hermitian property of γ0 and the anti-Hermitian of γi

(γ0)
† = γ0 , (γi)

† = −γi . (2.2.74)

Applying γ0 from the left and right

γ0[G
−
k (y)]

†γ0 =

(
−iγ0 cos(ωky) +

(
M − kγ

ωk

)
sin(ωky)

)
e−Γk|y|/2 . (2.2.75)

with {γ0, γi} = 0 and (γ0)
2 = 1. Finally

−γ0[G−
k (−y)]†γ0 =

(
iγ0 cos(ωky) +

(
M − kγ

ωk

)
sin(ωky)

)
e−Γk|y|/2 , (2.2.76)

= G−
k (y) . (2.2.77)

Now, for the case of the statistical propagator we can apply the same criteria. Because
the exponentials depend on t and |y|, the exchange t1 ↔ t2 will no have any effect, so
we can define

Ak(t, |y|) =
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eq(ωk)e

−Γkt . (2.2.78)

Then

[G+
k (t, y)]

† = −Ak(t, |y|)
(
−iγ0 sin(ωky)−

M + kγ

ωk

cos(ωky)

)
. (2.2.79)
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Finally

γ0[G
+
k (t,−y)]†γ0 = −Ak(t, |y|)

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)
, (2.2.80)

= G+
k (t, y) . (2.2.81)

We can conclude that our solution for the spectral function and the statistical propagator
satisfy the required symmetry properties.

Initial conditions

At t1 = t2 = 0 the two correlation functions must become the free ones evaluated at
t = 0, because at t1 = t2 = 0 the are no interactions. We can see that our solutions
satisfy that condition

G−
k (y)|y=0 = iγ0 , (2.2.82)

G+
k (y)|t=0,y=0 =

M − kγ

2ωk

, (2.2.83)

where in the last equation we used the property

tanh

(
βωk

2

)
= −2f eq(ωk) + 1 . (2.2.84)

The initial condition comes from the anti-commutation of the fermion field. Remember
that the correlation functions are calculated in the mixed representation.

Equilibration and KMS condition

To look at the equilibration of the spectral and statistical propagators, we must set
Γkt → ∞ but maintain the difference, i.e. Γk|y|. We can see that because G− does not
depend on the sum of the coordinates, it maintain its form for large t times. But for G+

we obtain

G+
k (t, y)|t→∞ = −

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)
tanh

(
βωk

2

)

2
e−Γk|y|/2 ,

(2.2.85)

To check that this equation satisfy the KMS condition, thus is in equilibrium, we must
perform a Fourier transformation from time-space to ω-space in order to satisfy

G+
k (ω) = − i

2
tanh

(
βω

2

)
G−

k (ω) . (2.2.86)

Let concentrate first on the scalar part of the above equation

G+
kscalar(y) =

M

2ωk

cos(ωky) tanh

(
βωk

2

)
e−Γk|y|/2 . (2.2.87)
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In ω-space we have

G+
kscalar(ω) =

M

ωk

tanh

(
βω

2

)
Γkωkω

|ω2
k − (ω − iΓk/2)2|

, (2.2.88)

which has to be compared with the scalar part of G−
k (y)

G−
kscalar(y) =

M

ωk

sin(ωky)e
−Γk|y| , (2.2.89)

and in ω-space

G−
kscalar(ω) ≈ i

M

ωk

Γk(ω
2
k + ω2)

|ω2
k − (ω − iΓk/2)2|

. (2.2.90)

The ≈ indicates that, again, we have neglected higher order of Γk in the numerator.
We can see that equation (2.2.86) is satisfied in the narrow width approximation. It
is straightforward to compare the vector parts of the statistical propagator with the
spectral function to satisfy the KMS relation.

2.3 Keldysh-Schwinger formalism for standard model

leptons

To get the non-equilibrium form for standar model leptons S±, we can do the same
procedure for the massive fermions and take the limit M → 0. the corresponding KB
equations read

(iγ0
∂

∂t1
− kγ)S−

k (t1 − t2) = −
∫ t2

t1

dt′Σ−
k (t1 − t′)S−

k (t
′ − t2) , (2.3.1)

(iγ0
∂

∂t1
− kγ)S+

k (t1, t2) = −
∫ t2

ti

dt′Σ+
k (t1 − t′)G−

k (t
′ − t2)

+

∫ t1

ti

dt′Σ−
k (t1 − t′)G+

k (t
′, t2) (2.3.2)

The solutions can be easily obtained with the following initial conditions

S−
k (0) = iPLγ0 , (2.3.3)

S+
k (0) = −PL

kγ

k
, (2.3.4)

in order to get

S−
k (y) = PL

(
iγ0 cos(ky)−

(
kγ

k

)
sin(ky)

)
e−Γk|y|/2 , (2.3.5)
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S+
k (t, y) = − PL

(
iγ0 sin(ky) +

kγ

k
cos(ky)

)

×
[
tanh

(
βk
2

)

2
e−Γk|y|/2 + f eq(k)e−Γkt

]
, (2.3.6)

where k = |k| is the energy of the massless lepton and the chirality is explicitly shown
with the projector PL.

2.4 Keldysh-Schwinger formalism for Majorana

fermions

The Keldysh-Schwinger formalism for Majorana fermions is straightforward from the
formalism for normal fermions. The differences comes naturally from the fact that a
Majorana fermion is it’s own anti-particle. This will give raise to different definitions,
but same procedures. Let start with the Schwinger-Dyson equation on the contour

C(i6∂1 −M)GC(x1, x2)− i

∫

C

d4zΣC(x1, z)GC(z, x2) = iδC(x1 − x2) . (2.4.1)

The spectral function and statistical propagators are defined right now as

G−
αβ(x1, x2) = i〈{Nα(x1), Nβ(x2)}〉 , (2.4.2)

G+
αβ(x1, x2) =

1

2
〈[Nα(x1), Nβ(x2)]〉 , (2.4.3)

which satisfies the following symmetries

G−(x1, x2) = γ0[G
−(x2, x1)]

†γ0 = G−(x2, x1)
T , (2.4.4)

G+(x1, x2) = −γ0[G+(x2, x1)]
†γ0 = −G+(x2, x1)

T . (2.4.5)

Defining also the self energies

Σ−(x1, x2) = i (Σ>(x1, x2)− Σ<(x1, x2)) , (2.4.6)

Σ+(x1, x2) =
1

2
(Σ>(x1, x2) + Σ<(x1, x2)) . (2.4.7)

This will give us the Kadanoff-Baym equations

C(iγ0∂t1 − pγ −M)G−
p (t1 − t2) =−

∫ t2

t1

dt′Σ−
p (t1 − t′)G−

p (t
′ − t2) , (2.4.8)

C(iγ0∂t1 − pγ −M)G+
p (t1, t2) =−

∫ t2

ti

dt′Σ+
p (t1 − t′)G−

p (t
′ − t2)

+

∫ t1

ti

dt′Σ−
p (t1 − t′)G+

p (t
′, t2) . (2.4.9)
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Without loss of generality in the following we will set ti = 0. The solution of these
equations can be found exactly as before with the following initial conditions

G−
p (0) = iγ0C

−1 , (2.4.10)

G+
p (0, 0) =

M − pγ

ωp

C−1 . (2.4.11)

With these we will get

G−
p (y) =

(
iγ0 cos(ωpy) +

(
M − pγ

ωp

)
sin(ωpy)

)
e−Γp|y|/2C−1 . (2.4.12)

and

G+
p (t, y) = −

(
iγ0 sin(ωpy)−

M − pγ

ωp

cos(ωy)

)

×



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt


C−1 , (2.4.13)

As before, the equation for G+
p (t, y) is the sum of the memory solution plus the homoge-

nous one. One difference between the above equations and the one for fermions, are
the symmetries that these Green’s functions need to satisfy. Let start with the spectral
function and see the symmetry described in Appendix A. First we have

[G−
p (y)]

T = (C−1)T
(
iγT0 cos(ωpy) +

(
M − pγT

ωp

)
sin(ωpy)

)
e−Γp|y|/2 . (2.4.14)

Using the fact that (C−1) = CT and CγµC
−1 = −γµ we get

[G−
p (y)]

T =

(
−iγ0 cos(ωpy) +

(
M + pγ

ωp

)
sin(ωpy)

)
e−Γp|y|/2C . (2.4.15)

Finally, using C−1 = −C we obtain

[G−
−p(−y)]T =

(
iγ0 cos(ωpy) +

(
M − pγ

ωp

)
sin(ωpy)

)
e−Γp|y|/2C−1 , (2.4.16)

= G−
p (y) . (2.4.17)

We can apply the same procedure for G+
p (t, y), as before we introduce

Bp(t, |y|) =




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt



 , (2.4.18)

to get

[G+
p (t, y)]

T = −(C−1)TBp(t, |y|)
(
iγT0 sin(ωpy)−

M − pγT

ωp

cos(ωy)

)
. (2.4.19)
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We continue with the algebra

[G+
p (t, y)]

T = −Bp(t, |y|)
(
−iγT0 sin(ωpy)−

M + pγT

ωp

cos(ωy)

)
C , (2.4.20)

−[G+
-p(t,−y)]T = −Bp(t, |y|)

(
iγT0 sin(ωpy)−

M − pγT

ωp

cos(ωy)

)
C−1 , (2.4.21)

= G+
p (t, y) . (2.4.22)

For completeness here is a list of the Majorana propagators which will be used in the
next chapter.

G−
p (y) =

(
iγ0 cos(ωpy) +

M − pγ

ωp

sin(ωpy)

)
e−Γp|y|/2C−1 , (2.4.23)

G+
p (y, t) = −

(
iγ0 sin(ωpy)−

M − pγ

ωp

cos(ωpy)

)

×




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt



C−1 , (2.4.24)

G11
p (y, t) = − γ0

2


2i sin(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− cos(ωpy)sign(y)e
−Γp|y|/2


C−1

+
M − pγ

2ωp


2 cos(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− i sin(ωp|y|)e−Γp|y|/2


C−1 , (2.4.25)

G22
p (y, t) = (G11

p (y, t))∗ ,

G>
p (y, t) = − γ0

2


2i sin(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− cos(ωpy)e
−Γp|y|/2


C−1

+
M − pγ

2ωp


2 cos(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− i sin(ωpy)e
−Γp|y|/2



C−1 , (2.4.26)
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G<
p (y, t) = − γ0

2



2i sin(ωpy)




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt





+ cos(ωpy)e
−Γp|y|/2


C−1

+
M − pγ

2ωp


2 cos(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




+ i sin(ωpy)e
−Γp|y|/2


C−1 . (2.4.27)

For a full list of propagators see appendix D.



Chapter 3

Thermal leptogenesis

In this chapter we present a realistic model for leptogenesis. We show first the semi-
classical approach for the asymmetry calculation via the Boltzmann equations. We
then apply the quantum formalism developed in the previous chapter for the creation
of Green’s functions for Majorana neutrinos, and finally use it to compute the time
evolution of dressed lepton Green’s functions. In terms of the lepton charge operator
computed from the dresses lepton statistical propagator we are able to study the pro-
duction of the desired lepton asymmetry. In order to compare both methods, we neglect
wash-out terms and concentrate only on the generation of the asymmetry.

3.1 Boltzmann formalism

Leptogenesis is normally studied in terms of coupled Boltzmann equations. Those
describe the evolution of the distribution function of the Majorana neutrino and the
generated asymmetry via the decay of the heavy Majorana neutrino. As shown in the
previous chapters, one of the most important parameter that comes into play is the
CP violating parameter ǫ (coming from flavour mixing in the Yukawa sector). In what
follows we will concentrate on the comparison between the Boltzmann equation and the
Kadanoff-Baym formalism. In order to do that, we can neglect the wash-out and focus
only on the generation of an asymmetry by studying the decay of the heavy Majorana
neutrino.

3.1.1 Boltzmann equation for the production of Majorana

fermions

Following the definition of the Boltzmann equation, we can write the evolution of the
Majorana distribution function fN (t, ω) in a thermal bath composed by leptons and
Higgs, with distribution functions fl(t, k) and fφ(t, q) respectively. If the bath is strongly
coupled and its temperature varies slowly in comparison to the expansion of the universe,
we can assume that the distribution function of particles in this bath are not time-
dependent and they will remain in equilibrium, i.e. fl(k) = (eβk + 1)−1 and fφ(q) =
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φ
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φ̄

l̄

qq

kk

(ω,p)(ω,p)
NN

a) b)

Figure 3.1: Processes involved in the matrix elements of the Boltzmann equation. a)
M(N → lφ) and b) M(N(p) → l̄(k)φ̄(q)). The inverse processes can be derived easily
from these two.

(eβk − 1)−1. Hence

∂

∂t
fN(t, ω) =− 1

2ω

∫

k,q

(2π)4δ4(k + q − p)

×
[
fN(t, ω)(1− fl(k))(1 + fφ(q))

(
|M(N → lφ)|2 + |M(N → l̄φ̄)|2

)

− fl(k)fφ(q)(1− fN (t, ω))
(
|M(lφ→ N)|2 + |M(l̄φ̄ → N)|2

)]
,

(3.1.1)

where M(N → lφ) and M(N → l̄φ̄) are the matrix elements of the decay of
the Majorana neutrino into a lepton-higgs and anti-lepton-anti-higgs respectively, and
M(lφ → N), M(l̄φ̄ → N) are matrix elements of the inverse processes. Using CPT
invariance we see that

|M(lφ→ N)|2 = |M(N → l̄φ̄)|2 , (3.1.2)

so the Boltzmann equation for the Majorana neutrinos can be rewritten as

∂

∂t
fN(t, ω) =− 1

2ω

∫

k,q

(2π)4δ4(k + q − p)

×
(
|M(N → lφ)|2 + |M(N → l̄φ̄)|2

)

× [fN(t, ω)(1− fl(k))(1 + fφ(q))− fl(k)fφ(q)(1− fN(t, ω))] ,
(3.1.3)

where we defined ω =
√
M2 + p2, k and q as the energies of N , l and φ with equilibrium

distribution functions fl and fφ
1, respectively; the averaged decay matrix element is

(cf. [73])

|M(N(p) → l(k)φ(q)|2 = 2
(
λ†λ
)
11
p · k . (3.1.4)

1In the absence of chemical potential the distribution functions for a certain particle is equal to the
one for its anti-particle.
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The sign in front on the distribution functions in the r.h.s. corresponds to a bosonic
enhancement (+) or Pauli blocking (−). The momentum integrations was conveniently
written with the notation

∫

p

. . . =

∫
d3p

(2π)32ω
. . . . (3.1.5)

The sum of decay and inverse decay widths, which determines the rate for the approach
to equilibrium, is given by

Γβ(ω) =
(
λ†λ
)
11

2

ω

∫

k,q

(2π)4δ4(k + q − p)p · k flφ(k, q) , (3.1.6)

where we have introduced the function

flφ(k, q) = fl(k)fφ(q) + (1− fl(k))(1 + fφ(q))

= 1− fl(k) + fφ(q) ,

=
fl(k)fφ(q)

f eqN (ω)
, (3.1.7)

and in the last line of (3.1.7) the 4-momentum conservation p = k + q has been used
and f eqN (ω) = 1/(eβω + 1). Using the optical theorem one can see that the decay width
obtained in (3.1.6) is exactly the same as the decay width that one obtains from the one
loop diagram [108]. The Boltzmann equation can be then written as

∂

∂t
fN(t, ω) = −(fN(t, ω)− f eqN (ω))Γβ(ω) (3.1.8)

For the solution of the Boltzmann equation (3.1.8) with vacuum initial condition,
fN(0, ω) = 0, one easily obtains (Γβ(ω) ≡ Γ)

fN(t, ω) = f eqN (ω)
(
1− e−Γt

)
, (3.1.9)

We can see that when t→ ∞ the distribution of the Majorana neutrinos approaches the
equilibrium one and all quantum corrections disappear. For t→ 0 there is no Majorana
particles.

3.1.2 Boltzmann equations for the production of a the lepton

asymmetry

The solution (3.1.9) needs to be introduced in the Boltzmann equation for the lepton
distribution function (see Figure 3.2), which reads

∂

∂t
fl(t, k) = − 1

2k

∫

q,p

(2π)4δ4(k + q − p)

×
[
fl(k)fφ(q)(1− fN (t, ω))|M(lφ→ N)|2

−fN (t, ω)(1− fl(k))(1 + fφ(q))|M(N → lφ)|2
]
, (3.1.10)
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l
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φ

φ

q
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Figure 3.2: Diagram contributing to the matrix elements of the Boltzmann equation for
leptons.

and for the anti-lepton

∂

∂t
fl̄(t, k) = − 1

2k

∫

q,p

(2π)4δ4(k + q − p)

×
[
fl̄(k)fφ̄(q)(1− fN(t, ω))|M(l̄φ̄ → N)|2

−fN (t, ω)(1− fl̄(k))(1 + fφ̄(q))|M(N → l̄φ̄)|2
]
, (3.1.11)

where now O(λ4) corrections to the matrix elements have to be kept. In order to
compare with the quantum formalism, we have dropped the wash-out terms. These will
not contribute to the production of lepton asymmetry, but they will be important if one
wants to obtain a quantitative result on the lepton asymmetry, which is not the goal of
this thesis. 2

If chemical potential can be neglected, one can see that the equilibrium distribution
functions of l and φ are the same as for their anti-particles (fl ≃ fl̄ and fφ ≃ fφ̄).
Defining the lepton asymmetry as the difference between the out-of-equilibrium lepton
distribution function and the one for its anti-particle, i.e. fLi(t, k) = fli(t, k) − fl̄i(t, k)
and using equation (3.1.2) we get

∂

∂t
fLi(t, k) =

1

2k

∫

q,p

(2π)4δ4(k + q − p)ǫii

(
|M(N → lφ)|2 + |M(N → l̄φ̄)|2

)

×
(
fN (t, ω)(1− fl(k))(1 + fφ(q)) + fl(k)fφ(q)(1− fN(t, ω))

)
. (3.1.12)

Considering the effects of scattering processes we get finally the Boltzmann equation for
the lepton asymmetry

∂

∂t
fLi(t, k) =

1

2k

∫

q,p

(2π)4δ4(k + q − p)ǫii

(
|M(N → lφ)|2 + |M(N → l̄φ̄)|2

)

×
(
fN (t, ω)(1− fl(k))(1 + fφ(q))− fl(k)fφ(q)(1− fN (t, ω))

)
. (3.1.13)

2See [27] and references therein for a detailed discussion of the wash-out processes.
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notice the minus sign difference between equations (3.1.12) and (3.1.13). In both equa-
tions we defined the CP violating parameter ǫ

ǫii

(
|M(N → lφ)|2 + |M(N → l̄φ̄)|2

)
= |M(N → lφ)|2 − |M(N → l̄φ̄)|2 . (3.1.14)

The CP-violating parameter comes from the difference from the off-diagonal terms of
the coupling. There is no asymmetry at initial times, hence we have the initial condition

fLi(0, k) = 0 . (3.1.15)

Since the Boltzmann equation is a first order differential equation, only one initial con-
dition is required. Using equation (3.1.9) and (3.1.15), one obtains for the lepton asym-
metry

fLi(t, k) = −ǫii
1

k

∫

q,p

(2π)4δ4(k + q − p) p · kflφ(k, q)f eqN (ω)
1

Γ

(
1− e−Γt

)
, (3.1.16)

where

ǫij =
3Im{λ∗i1(ηλ∗)j1}M

16π
. (3.1.17)

Summing over all flavours, the generated asymmetry is proportional to the familiar CP-
asymmetry: ǫ =

∑
i ǫii/

(
λ†λ
)
11

= 3Im(λ†ηλ)M/(16π
(
λ†λ
)
11

) [73]. For later comparison
with the solutions of the Kadanoff-Baym equations, it is convenient to rewrite (3.1.16)
in the form

fLi(t, k) = −ǫii
16π

k

∫

q,p,q′,k′

k · k′ × (2π)4δ4(k + q − p)(2π)4δ4(k′ + q′ − p)

× flφ(k, q)f
eq
N (ω)

1

Γ

(
1− e−Γt

)
. (3.1.18)

Note that the integrand is now proportional to the averaged matrix element |M(lφ →
l̄φ̄)|2 = 2k · k′(λ†λ)11/M2 (cf. [73]), which involves the product of the 4-vectors k and
k′. At low temperatures, T ≪ M , the integrand falls off like e−βω < e−βM , i.e., the
generated lepton asymmetry is strongly suppressed.
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3.2 Quantum formalism

A full quantum description of leptogenesis can be obtained from the Kadanoff-Baym
equations. Performing an analogous procedure as in the Boltzmann case, we need
to describe the production of Majorana particle, whose decay produces the lepton
asymmetry. In order to do that, we need to insert the solution of the non-equilibrium
Majorana neutrino already obtained in (2.4.23) to (2.4.27) in the Kadanoff-Baym
equations for leptons. This is analogous to the Boltzmann formalism, where we insert
the time-dependent distribution function of the Majorana to the differential equation
for the asymmetry. In the Kadanoff-Baym case, the out-of-equilibrium Majorana
propagators are inserted into the CP violating self-energy, and interference with the
bath will cause the generation of the asymmetry. The SM bath remains in equilibrium,
but the CP violating part of the lepton self-energy is not. In this case the methods
from the previous chapter cannot be applied directly. However, we are only interested
in the CP violating part ‘δS’ and we can solve the quantum equations to leading order
of δS. In order to obtain a solution to the equation, we need to explicitly calculate the
self-energy, concentrating on the out-of-equilibrium part described by the Majorana
propagator.

To compare our result with (3.1.18), we will not consider wash-out terms (scattering
processes) and concentrate purely on the generation of the asymmetry. In a quantum
approach, we will not have to subtract real intermediate states as it is commonly done
in a normal Boltzmann mechanism [110]. The optical theorem gives us the advantage
that we do not over-count processes. We will also see that if we consider naively only
the on-shell effects, the result will suffer from the same problems as the ones obtained
from Boltzmann equations.

3.2.1 Simple exemplary case

In order to know how to compare the classical Boltzmann approach and a quantum
one, we need to know the functions that describe the lepton asymmetry. Let start with
a simple exemplary model consisted of charged leptons with chemical potential. The
number density will be then given by

nL = nl − nl̄ =

∫
d3kfL(k) =

∫
d3k(fl(k)− fl̄(k)) , (3.2.1)

where nL is the asymmetry, nl and nl̄ are the number densities for the leptons and
anti-lepton respectively with fl and fl̄ their distribution functions. In equilibrium, with
chemical potential, the distribution functions are given by

fl(k) =
1

eβ(k−µ) + 1
, (3.2.2)

fl̄(k) =
1

eβ(k+µ) − 1
. (3.2.3)
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For large temperatures (βµ≪ 1) we can expand the last equations

fl(k) ≃
1

eβk + 1
+

1

(eβk + 1)2
βµ+ · · · , (3.2.4)

≃ f0 + f 2
0βµ+ · · · , (3.2.5)

fl̄(k) ≃
1

eβk + 1
− 1

(eβk + 1)2
βµ+ · · · , (3.2.6)

≃ f0 − f 2
0βµ+ · · · , (3.2.7)

where f0 is the equilibrium distribution function without chemical potential. The asym-
metry will be given by

f eqL = fl(k)− fl̄(k) ≃ 2f 2
0βµ , (3.2.8)

which will vanish in the absence of chemical potential. In order to compare this result
with the one obtained from thermal field theory, we need to consider the definition of the
propagators in a thermal bath [79]. Let start with the equilibrium thermal-propagator
in momentum space S>(k)

iS>(k) = 2π(1− fl(k))ǫ(k0) 6kPLδ(k2) , (3.2.9)

= 2π(θ(k0)(1− fl(k))− θ(−k0)(1− fl(−k))) 6kPLδ(k2) , (3.2.10)

where δ(k2) = 1
2k
(δ(k0 − k) + δ(k0 + k)). Equation (3.2.9) can be rewritten by using the

fact that 1− f(−k) ≡ f̄(k)

iS>(k) = 2π(θ(k0)− θ(k0)f(k)− θ(−k0)f̄(k)) 6kPLδ(k2) . (3.2.11)

The same can be applied to S<(k)

iS<(k) = 2π(θ(−k0)− θ(k0)f(k)− θ(−k0)f̄(k)) 6kPLδ(k2) . (3.2.12)

Lets calculate S+
k (t), by definition we have

S+(k) =
1

2
(S>(k) + S<(k)) , (3.2.13)

or in mix-representation

S+
k (t) =

1

2

∫
dk0e

−ik0t(S>(k) + S<(k)) , (3.2.14)

=

∫
dk0

(
1

2
(θ(k0) + θ(−k0))− θ(k0)f(k)− θ(−k0)f̄(k)

)
6kPLδ(k2) .

After some algebra we obtain
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S+
k (t) =

(
− i

2
γ0 sin(kt)− 1

2k
kγ cos(kt)

+
i

2
γ0 sin(kt)(f(k) + f̄(k))− 1

2
γ0 cos(kt)(f(k)− f̄(k))

+
1

2
kγ cos(kt)(f(k) + f̄(k))− i

2
kγ sin(kt)(f(k)− f̄(k))

)
PL . (3.2.15)

We can expand the above result for large temperatures in order to get

S+
k (t) ≈(− i

2
sin(kt)− 1

2k
kγ cos(kt))(1− 2f0(k))PL

− (γ0 cos(kt) +
i

k
kγ sin(kt))f 2

0βµPL +O
(
(βµ)2

)
, (3.2.16)

again f0(k) = (eβk + 1)−1. If we take a equilibrium bath, i.e. time independent, we can
set t→ 0. Multiplying by γ0 and taking the trace gives

tr(γ0S+
k (0)) = −2f 2

0βµ+O
(
(βµ)2

)
, (3.2.17)

which is the same result as the one in (3.2.8) only differing by a global minus sign. For
a time dependent bath, we get an asymmetry

Lk(t) = −tr(γ0S+
k (t)) , (3.2.18)

= i sin(kt)(1− f(k)− f̄(k))− cos(kt)(f(k)− f̄(k)) . (3.2.19)

In this simple model, for vanishing chemical potential the k = 0 mode also vanishes.

3.2.2 Kadanoff-Baym equations for leptons

After the identification of the proper quantity that describes the asymmetry in quantum
field theory, we are able now to proceed to a real leptogenesis model. In order to do
so, we need to write the Kadanoff-Baym equations for leptons with a CP violating
self-energy. The introduction of the non-equilibrium Majorana neutrino inside the two-
loop Feynman diagram leads to a non-equilibrium self-energy with no time-translational
invariance. In order to solve this equations, a decomposition of the equilibrium and non-
equilibrium parts of the self-energies and propagators is needed. As a difference with
respect to Chapter 2, where the kinetics of non-equilibrium particles were described
by the decay width, and no further knowledge of the self energy was needed (only its
Lorentz structure)3, the exact calculation of the self energy is required. The results will
be compare to the Boltzmann formalism.

Solution for the spectral function for leptons

In order to calculate the asymmetry generated in a quantum formalism, solving the first
equation is not necessary, but an analysis is made for completeness. Let us now start

3In this case the bath is always time-translational invariant.
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with the first Kadanoff-Baym equation for the a massless lepton

(iγ0∂1 − kγ)S−
k (t1, t2)PL +

∫ t1

t2

Π
−
k (t1, t

′)S−
k (t

′, t2)PL = 0 , (3.2.20)

here PL is the left handed chiral projector, which we can be drop for the rest of the
section. In the following we will also drop the index ‘k’ for convenience. Since Π is not
time translation invariant, S− is not either. However, one can decompose Π into a part
that comes from standard model interactions and a part from the interaction with the
heavy Majorana neutrinos.

Π
−(t1, t2) = Π

−
SM(t1 − t2) + Π

−
N(t1, t2) . (3.2.21)

The standard model part is in equilibrium, therefore it is time translation invariant and
obeys the KMS condition. We can define S−

eq as the solution to (3.2.20) for Π−
N(t1, t2) =

0. As proven in the scalar case, for a time translational self-energy also S− is time
translation invariant, therefore S−

eq(t1, t2) = S−
eq(t1 − t2). One can then define δS− by

S−(t1, t2) = S−
eq(t1 − t2) + δS−(t1, t2) . (3.2.22)

Inserting the decompositions for Π
− and S− into (3.2.20) and using the fact that S−

eq

fulfills (3.2.20) with Π
−
SM , one can write an equation for δS−:

(iγ0∂1 − kγ) δS−(t1, t2) = −
∫ t1

t2

dt′
(
Π

−
SM(t1 − t′)δS−(t′, t2) + Π

−
N(t1, t

′)S−
eq(t

′ − t2)

+Π
−
N(t1, t

′)δS−(t′, t2)
)
, (3.2.23)

S−
eq can be computed in the same way as G− in Sec. 2 and is given by

S−
eq(y) =

∫ ∞

−∞

dω

2π
e−iωy

( 1

6k − ΠR
SM(ω)

− 1

6k − ΠA
SM(ω)

)
, (3.2.24)

where the 4-momentum kµ = (ω,k). Due to the smallness of the neutrino Yukawa
coupling λ, one has

ΠSM ≫ ΠN . (3.2.25)

and consequently

Seq ≫ δS , (3.2.26)

which allows to drop the Π
−
N(t1, t

′)δS−(t′, t2) term. One can then rewrite (3.2.23) as

(iγ0∂1 − kγ) δS−(t1, t2) +

∫ t1

t2

dt′Π−
SM(t1 − t′)δS−(t′, t2) = ζ(t1, t2) . (3.2.27)

The source term ζ does not depend on δS− and is given by the known functions

ζ(t1, t2) = −
∫ t1

t2

ΠN(t1, t
′)S−

eq(t
′ − t2) . (3.2.28)
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The solution of this equation is given

δS− = δŜ− + δS−
mem , (3.2.29)

where δŜ− is the solution to the homogenous equation that can be obtained from (3.2.27)
by setting ζ = 0. δŜ− is time translation invariant because the self-energy is time
translation invariant (see scalar case). The equation to be solved is the same as for S−

eq

so we easily get δŜ− = S−
eq. Then the complete solution for S− is given by

S−(t1, t2) = cLS
−
eq(t1 − t2) + δS−

mem(t1, t2) , (3.2.30)

with

S−
mem(t1, t2) =

∫ t1

t2

dt′δS−
eq(t1 − t′)ζ(t′, t2) , (3.2.31)

as can be proven by insertion. Here cL is a coefficient that is fixed to cL = 1 by
the initial conditions which follow from the anti-commutation relations for fermions.
The standard model part to the lepton self-energy ΠSM , has to be computed at finite
temperature. Since the temperatures during leptogenesis are far above the electroweak
scale this computation cannot be done perturbatively due to the known breakdown of
perturbation theory at high temperatures. An estimate could be made by using a hard
thermal loop resummation or an exact result for given temperature could be found
using lattice gauge theory. For the moment we will keep it as a function that is in
principle known.

Solution for the statistical propagator for leptons

From Sec. 3.2.1 we know that the statistical propagator give us the desired asymmetry.
The Kadanoff-Baym equation for the statistical propagator is given by

(iγ0∂t1 − kγ)S+
kij(t1, t2) =−

∫ t2

0

dt′Π+
kij(t1, t

′)S−
kij(t

′, t2)

+

∫ t1

0

dt′Π−
kij(t1, t

′)S+
kij(t

′, t2) , (3.2.32)

Where again we can see that the self-energies are non time translational invariant. If
the initial correlations are non-Gaussian, an additional term O[Sin,Πin] should be added
to eq. (3.2.32) [111]. This term will vanish when we calculate the asymmetry of the
system, due to the fact that we assume no asymmetry as an initial condition, i.e. from the
deviation of the equilibrium propagator. This deviation is always Gaussian. Following
the procedure from the last section, we can decompose the self-energy and the propagator
in an equilibrium and non-equilibrium part

S±
kij(t1, t2) = S±,eq

kij (t1 − t2) + δS±
kij(t1, t2) , (3.2.33)
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Figure 3.3: Two-loop contributions to the lepton self-energies Π
±
k , which leads to a

non-zero lepton number asymmetry.

as well as the decomposition of the self-energy between the SM and the Majorana con-
tribution

Π
±
kij(t1, t2) = Π

±,SM
kij (t1 − t2) + δΠ±

kij(t1, t2) . (3.2.34)

In this way we get

(iγ0∂t1 − kγ) δS+
kij(t1, t2) −

∫ t1

0

dt′Π−,SM
kij (t1 − t′)δS+

kij(t
′, t2)

= ζ1kij(t1, t2) + ζ2kij(t1, t2) + ζ3kij(t1, t2) , (3.2.35)

where the term δS+δΠ− was dropped. This can be understand by assuming that the
leptons are close to equilibrium. This fact does not imply that the Majorana neutrinos



68 Thermal leptogenesis

are close to equilibrium too. The l.h.s. of equation (3.2.35) is the homogenous solution
for δS+

kij , and the sources are given by

ζ1kij(t1, t2) =

∫ t1

0

dt′δΠ−
kij(t1, t

′)S+,eq
kij (t′ − t2), (3.2.36)

ζ2kij(t1, t2) = −
∫ t2

0

dt′δΠ+
kij(t1, t

′)S−,eq
kij (t′ − t2), (3.2.37)

and

ζ3kij(t1, t2) = −
∫ t2

0

dt′Π+,SM
kij (t1 − t′)δS−

kij(t
′, t2) . (3.2.38)

Standard model corrections should not be neglected. However, the determination of
these corrections at high temperatures is a non-trivial task. At high T perturbation
theory breaks down and the quasi-particle spectrum cannot be determined. In order
to compare with the Boltzmann equation and the literature (where also SM correction
are neglected) we drop the terms ΠSM , this will make all the equilibrium propagators
besides the Majorana propagator in (3.2.35) and inside the self-energy Π to became the
free propagator (Seq → Ŝ, ∆eq → ∆F ). Therefore the source term ζ3 will drop out. The
solution to (3.2.35) is then

δS+
kij(t1, t2) = +

∫ t1

0

dt′
∫ t2

0

dt′′S−,F
kij (t1 − t′)δΠ+

kij(t
′, t′′)S−,F

kij (t
′′ − t2)

−
∫ t1

0

dt′
∫ t′

0

dt′′S−,F
kij (t1 − t′)δΠ−

kij(t
′, t′′)S+,F

kij (t
′′ − t2)

+Ck(t1t2) , (3.2.39)

where Ck(t1, t2) is a functions that only depends on t2 and vanishes when the differential
operator is applied4

(iγ0∂t1 − kγ)Ck(t1, t2) = 0 . (3.2.40)

One big difference with Chapter 2, is that we now have two source terms ζ1 and ζ2.
The source ζ2 can be treated in the same way as in Chapter 2, giving us the first line
of (3.2.39), meanwhile ζ1 needs to be treated differently. This difference comes from the
fact that the limits of integration of the source η1 goes from 0 to t1, which will give
us the second line in (3.2.39). In order to this solution to have the right symmetries
described in Appendix A.3, the function Ck(t1, t2) must be

Ck(t1, t2) = −
∫ t2

0

dt′′
∫ t′′

0

dt′S+,F
kij (t1 − t′′)δΠ−

kij(t
′′, t′)S−,F

kij (t
′ − t2) . (3.2.41)

4Remember that (iγ0∂t1 − kγ)S±,F

kij (t1 − t2) = 0.
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A final decomposition can be made, since the asymmetry is generated from the non-
equilibrium part of the Majorana propagator only. Therefore we can separate one more
time the self energy δΠ

δΠ−
kij(t

′′, t′) = δΠ−,eq
kij (t′′ − t′) + δΠ̃−

kij(t
′′, t′) , (3.2.42)

where δΠ−,eq
kij (t′′ − t′) comes from the equilibrium part of the Majorana propagator, and

δΠ̃−
kij(t

′′, t′) from the non-equilibrium part. This decomposition will allow us to define
the departure of equilibrium of δS+

δS̃+
kij(t1, t2) = δS+

kij(t1, t2)− δS+,eq
kij (t1 − t2) , (3.2.43)

which will finally give us the solution for the asymmetry to be

δS̃+
kij(t1, t2) = +

∫ t1

0

dt′
∫ t2

0

dt′′S−,F
kij (t1 − t′)δΠ̃+

kij(t
′, t′′)S−,F

kij (t
′′ − t2)

−
∫ t1

0

dt′
∫ t′

0

dt′′S−,F
kij (t1 − t′)δΠ̃−

kij(t
′, t′′)S+,F

kij (t
′′ − t2)

−
∫ t2

0

dt′′
∫ t′′

0

dt′S+,F
kij (t1 − t′′)δΠ̃−

kij(t
′′, t′)S−,F

kij (t
′ − t2) . (3.2.44)

The self-energy Π̃ will be only computed with the non-equilibrium part of the Majorana
propagator, i.e. the term which depends on the center of mass coordinate.

3.2.3 Asymmetry from the quantum formalism

According to equation (3.2.18), the correlator S+ is proportional to the asymmetry. We
can define a ‘lepton number matrix’ from the statistical propagator of the lepton fields,

Lkij(t1, t2) = −tr[γ0S̃+
kij(t1, t2)] . (3.2.45)

For for free fields in equilibrium we have seen that this is proportional to Lkii|t1=t2 =
fli(k) − f̄li(k), which vanishes for zero chemical potential. To leading order in λ, a
flavour non-diagonal asymmetry is generated by the two-loop self-energies shown in Fig.
3.3 (cf. [73]). Using the solution of the Kadanoff-Baym equation for S̃+

k in (3.2.44) to
first order in the self-energy Π̃

±
k , one finds after some algebra

Lkij(t, t) = −i
∫ t

0

dt′
∫ t

0

dt′′ tr[SF,+k (t′′ − t′)δΠ̃−
kij(t

′, t′′)

−SF,−k (t′′ − t′)δΠ̃+
kij(t

′, t′′)] . (3.2.46)

Let start by looking at δΠ̃+
k , which is defined by

δΠ̃+
kij(t

′, t′′) =
1

2
[δΠ̃>

kij(t
′, t′′) + δΠ̃<

kij(t
′, t′′)] , (3.2.47)
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with

δΠ̃>
kij(t

′, t′′) = iλ̃ijΠ̃
>
k(1)(t

′, t′′) + iλ̃∗ijΠ̃
>
k(2)(t

′, t′′) , (3.2.48)

δΠ̃<
kij(t

′, t′′) = iλ̃ijΠ̃
<
k(1)(t

′, t′′) + iλ̃∗ijΠ̃
<
k(2)(t

′, t′′) . (3.2.49)

The subindices (1) and (2) represents each 2-loop diagram from Figure 3.3. Notice
that we extracted the coupling λ and the imaginary number from the self-energies (see
Appendix C.4). Expanding the self-energies showing explicitly the Lorentz structure
gives

Π̃
≷
k(1,2)(t

′, t′′) = Π̃
≷0
k(1,2)(t

′, t′′)γ0 + Π̃
≷j
k(1,2)(t

′, t′′)γj . (3.2.50)

We can use the following properties for the propagators

SF,11k (y) = (SF,22k (−y))∗ , (3.2.51)

SF,>k (y) = (SF,<,0k (−y))∗γ0 − (SF,<,ik (−y))∗γi , (3.2.52)

∆F,11
q (y) = (∆F,22

q (−y))∗ , (3.2.53)

∆F,>
q (y) = (∆F,<

q (y))∗ , (3.2.54)

and using also the following property for the scalar part of the Majorana propagator

GSp(y) = (GSp(−y))∗ , (3.2.55)

we get a relation between Π̃
>
k(1,2) with Π̃

<
k(1,2):

Π̃
<
k(1,2)(t

′, t′′) = [Π̃>0
k(1,2)(t

′, t′′)]∗γ0 − [Π̃>j
k(1,2)(t

′, t′′)]∗γj . (3.2.56)

Using the above properties we can also obtain a relation between the first diagram Π̃(1)

and the second one Π̃(2)

Π̃
>
k(2)(t

′, t′′) = −[Π̃>
k(1)(t

′′, t′)]∗ . (3.2.57)

Introducing Eqs. (3.2.56) and (3.2.57) in (3.2.47), we obtain an expression for δΠ̃+ that
only depends on the first diagram of figure 3.3.

δΠ̃+
kij(t

′, t′′) = − λ̃ij [ReΠ̃
>0
k(1)(t

′, t′′)γ0 + iImΠ̃
>j
k(1)(t

′, t′′)γj]

+ λ̃∗ij [ReΠ̃
>0
k(1)(t

′′, t′)γ0 − iImΠ̃
>j
k(1)(t

′′, t′)γj] . (3.2.58)

In the same way we obtain for δΠ̃−
kij(t

′, t′′) = i[δΠ̃>
kij(t

′, t′′)− δΠ̃<
kij(t

′, t′′)]

δΠ̃−
kij(t

′, t′′) = − 2λ̃ij[iImΠ̃
>0
k(1)(t

′, t′′)γ0 + ReΠ̃>j
k(1)(t

′, t′′)γj]

+ 2λ̃∗ij[iImΠ̃
>0
k(1)(t

′′, t′)γ0 − ReΠ̃>j
k(1)(t

′′, t′)γj]. (3.2.59)

Inserting δΠ̃± to (3.2.46), and remembering that

SF,−k (y) =

(
iγ0 cos(ky)−

(
kγ

k

)
sin(ky)

)
PL , (3.2.60)



3.2 Quantum formalism 71

SF,+k (y) = −tanh
(
βk
2

)

2

(
iγ0 sin(ky) +

(
kγ

k

)
cos(ky)

)
PL , (3.2.61)

we can rewrite the lepton number matrix at equal times

Lkij(t) = 2Im[λ̃ij ]tr

∫ t

0

dt′
∫ t

0

dt′′
{
cos(k(t′′ − t′))ReΠ̃>0

k(1)(t
′, t′′)

+ tanh

(
βk

2

)
sin(k(t′′ − t′))ImΠ̃

>0
k(1)(t

′, t′′)

− kγ

k
γj

(
sin(k(t′′ − t′))ImΠ̃

>j
k(1)(t

′, t′′)

+ tanh

(
βk

2

)
cos(k(t′′ − t′))ReΠ̃>j

k(1)(t
′, t′′)

)}
. (3.2.62)

Notice that the symmetric part of the self-energy which are multiplied by cosine survives
the integration, meanwhile the anti-symmetric part survives for those terms multiplied
by sine. Inserting the exact form of the self energies in the above equation

Lkij(t) =− Im[λ̃ij]

∫ t

0

dt′
∫ t

0

dt′′
∫ t′′

0

dtz

∫

q,q′

M

ω
f eqN (ω)e−

Γ

2
(t′+tz) cos[ω(tz − t′)]

×
{(

coth
(
βq
2

)

2

(
cos[(k + q)(t′′ − t′)] + cos[(k − q)(t′′ − t′)]

)

+
tanh

(
βk
2

)

2

(
cos[(k + q)(t′′ − t′)]− cos[(k − q)(t′′ − t′)]

))

×




coth

(
βq′

2

)

2

(
cos[(k′ + q′)(t′′ − tz)] + cos[(k′ − q′)(t′′ − tz)]

)

+
tanh

(
βk′

2

)

2

(
cos[(k′ + q′)(t′′ − tz)]− cos[(k′ − q′)(t′′ − tz)]

)



+
k · k′

kk′

(
coth

(
βq
2

)

2

(
sin[(k + q)(t′′ − t′)]− sin[(k − q)(t′′ − t′)]

)

+
tanh

(
βk
2

)

2

(
sin[(k + q)(t′′ + t′)] + sin[(k − q)(t′′ − t′)]

))

×



coth

(
βq′

2

)

2

(
sin[(k′ + q′)(t′′ − tz)]− sin[(k′ − q′)(t′′ − tz)]

)

+
tanh

(
βk′

2

)

2

(
sin[(k′ + q′)(t′′ + tz)] + sin[(k′ − q′)(t′′ − tz)]

)





 .

(3.2.63)
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The time integration can be performed, and after taking small Γ we obtain

Lkij(t, t) =− ǫij 8π

∫

q,q′

k · k′
kk′ω

flφ(k, q)flφ(k
′, q′)f eqN (ω)

×
1
2
Γ

((ω − k − q)2 + Γ2

4
)((ω − k′ − q′)2 + Γ2

4
)

×
(
cos[(k + q − k′ − q′)t] + e−Γt

− e−
Γt
2 (cos[(ω − k − q)t] + cos[(ω − k′ − q′)t])

)

+ combinations , (3.2.64)

where p = q + k = q′ + k′. The combinations mentioned in the above equation refer
to all the possible energy sign change, e.g. ω → −ω. However, we are only interested
in terms of order 1/Γ, which can only be obtained in the case when ω → k + q and
ω → k′ + q′, this will remove the last line of (3.2.64). This equation shows the total
asymmetry as a function of time and it is the most important result of this work.
Equation (3.2.64) shows the oscillatory behaviour of the off-shell contributions. For late
times, the exponential will suppress part of the integral, meanwhile the one without
suppression will oscillate to zero due to its fast oscillatory behaviour at late times. This
fact shows that there is no asymmetry created in equilibrium. This is well know to be
a problem that can appear in the naive Boltzmann approach, and needs to be cured by
the ‘real intermediate state subtraction’.

Performing the integral over the momenta is not an easy task, although for short
times some of the momenta can be performed analytically (by making a narrow width
approximation), there is still to perform a numerical analysis. For late times, the narrow
width approximation cannot be performed analytically due to fast oscillation. This
oscillatory behaviour is a key issue in the difference between our full quantum treatment
and the classical Boltzmann approach.

3.2.4 Comparison with Boltzmann

It is interesting to compare the diagonal elements of the lepton number matrix Lkij(t, t)
with the distribution functions fLi(t, k) given in (3.1.18).

As expected, the same CP asymmetries ǫii appear, whereas the dependence of
the integrands on time and temperature is different. The reason for the different
temperature dependence is the fact that the matrix elements in the Boltzmann
equations were calculated at zero temperature. Hence, the factor flφ(k

′, q′) is missing in
(3.1.18). Since Boltzmann equations are local in time whereas Kadanoff-Baym equations
contain ‘memory effects’, the different time dependence of the asymmetries is also
expected. One consequence is that ∂tfLi(t, k)|t=0 6= 0, whereas ∂tLkij(t, t)|t=0 = 0. Par-
ticularly important are off-shell effects in (3.2.64), which lead to terms oscillating in time.
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It is instructive to consider the approximations, even if they might not be justified,
which lead from (3.2.64) to the result of the Boltzmann equations. Neglecting off-shell
effects, i.e., imposing ω = k + q = k′ + q′, the cosines are replaced by one; performing
then the zero-width approximation Γ → 0, with Γt fixed, the integral (3.2.64) becomes

Loskij(t, t) = −ǫij
16π

k

∫

q,q′,p,k′

k · k′

× (2π)4δ4(k + q − p)(2π)4δ4(k′ + q′ − p)

× flφ(k, q)flφ(k
′, q′)f eqN (ω)

× 1

Γ

(
1− e−

Γt
2

)2
. (3.2.65)

Except for the factor flφ(k
′, q′), the only difference compared to the solution (3.1.18)

of the Boltzmann equations is the time dependence. It is obvious from Figure 2 and
equation (3.2.46) that in the quantum theory the generation of the lepton asymmetry
is nonlocal in time. This leads to the square of the exponential fall-off in (3.2.65). On
the contrary, in the Boltzmann equations the asymmetry is generated locally in time
yielding a simple exponential behaviour. The difference can be numerically important
at cosmologically relevant times tL ∼ 1/Γ.

3.3 Intoducing SM widths

The calculations leading to equation (3.2.64) also demonstrate that the result for the
lepton asymmetry will be significantly modified by the thermal damping rates for lep-
ton and Higgs fields in the plasma. These thermal widths (cf. [112]) are known to be
much larger than the decay width of the Majorana neutrino: Γl ∼ Γφ ∼ g4T ≫ λ2M
for M . T . For quantum interferences the thermal damping rates are qualitatively
more important than thermal masses which, for simplicity, we ignore in the following.
Including naively thermal widths for lepton and Higgs fields in the propagators 5

∆−
q (y) =

1

q
sin(qy)e−

Γφ|y|

2 ,

∆+
q (y) =

1

2q
coth

(
βq

2

)
cos(qy)e−

Γφ|y|

2 ,

S−
k (y) =

(
iγ0 cos(ky) +

M − kγ

k
sin(ωky)

)
e−

Γl|y|

2 ,

S+
k (y) = −tanh

(
βk
2

)

2

(
iγ0 sin(ky)−

M − kγ

k
cos(ky)

)
e−

Γl|y|

2 ,

and then insert them into the self-energy Π+
k , one obtains instead of (3.2.64) to leading

order in these widths (Γlφ = Γl + Γφ)

5For a full list see Appendix D.
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L̃kij(t, t) = −ǫij 16π
∫

q,q′

k · k′
kk′ω

×
1
4
ΓlφΓφ

((ω − k − q)2 + 1
4
Γ2
lφ)((ω − k′ − q′)2 + 1

4
Γ2
φ)

× flφ(k, q)flφ(k
′, q′)f eqN (ω)

× 1

Γ

(
1− e−Γt

)
. (3.3.1)

Note that the factors oscillating in time have disappeared. The thermal widths of lepton
and Higgs fields have led to a behaviour which is local in time. In the zero-width limit
one now obtains the result (3.1.18) of the Boltzmann equations except for the thermal
correction factor flφ(k

′, q′). The locality of the result is obtained as a consequence of the
the strong SM widths inserted in the internal lines of the self-energy (see Figure 3.4). The
contributions from the Higgs and lepton propagators that are not strongly suppressed,
comes when the times between these two propagators are close to each other. The only
contribution that is not suppressed comes from the Majorana propagator. Figure 3.4
shows diagrammatically how the two-loop process becomes local after the insertion of
SM widths, leading to a normal Boltzmann behaviour.

Γl

Γl

Γφ

Γφ

Γφ

Γφ

Γ

Γ

Γ

Figure 3.4: Regain of locality after the insertion of SM widths

We need to emphasize that (3.3.1) is speculative at present, and it remains to be
seen whether it follows from a solid calculation which includes gauge interactions at
high temperatures in a systematic way.



Chapter 4

Future work

4.1 Including expansion of the universe

The inclusion of an expanding universe must be performed in order to obtain a full theory
of leptogenesis. Solving the Kadanoff-Baym equations in this scenario is a complicated
task. For the production of a non-equilibrium particle there is no guarantee that the
self-energy will be time-translational invariant. Moreover, a Lorentz invariant integrand
will include expansion rate terms that will have severe consequences for the applicability
of a Laplace transform. For example a Lorentz invariant Kadanoff-Baym equation for
the spectral propagator of scalar particles in phase space can be written as [113]

�∆−(x1, x2)−
∫ √

−gd4zΠR(x1, z)∆
A(z, x2) = 0 , (4.1.1)

going to momentum space

(∂2t1+3H(t1)∂t1+
q2

a2(t1)
+M2)∆−

q (t1, t2) = −
∫ t1

t2

dtz
a3(tz)

a3(t1)
Π−

q (t1, tx)∆
−
q (tz, t2) ,(4.1.2)

where H(t) is the Hubble expansion rate and a(t) is the scale factor. A way to proceed
in order to obtain a solution of this equation is to introduce a conformal time adη = dt
and assume quasi-equilibrium for the particles in the thermal bath. If the scale factor
varies slowly in comparison to the rapid change of Π as well as ∆ in the integrand , then
one can assume a3(ηz) to behave as a constant within the integration. This will help us
to solve the Kadanoff-Baym equation for the spectral function. However, developing a
way to obtain the solution for the statistical propagator in such a manner can prove to
be difficult. Moreover, using then this new spectral and statistical propagators to obtain
a generated asymmetry will be even harder.

4.2 Wash-out terms

A second task is to include wash-out terms. This type of terms only break CP when
a chemical potential is included. They are responsible for the wash-out or dilution of
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the asymmetry in the thermal bath and they do not contribute to the generation of
the asymmetry. As seen in the introductory Section 1.8. Wash-out terms enter the
Boltzmann equations in the asymmetry differential equation

dNB−L

dt
= −ǫD(NN −N eq

N )−WNB−L , (4.2.1)

where now W must include inverse decays and scattering processes. The inclusion of the
wash-out terms must be performed in the Kadanoff-Baym formalism in order to have an
exact final asymmetry. A final quantitative calculation should be performed with the
inclusion of these terms.

4.3 Non-perturbative regime

As we saw in Section 3.3, standard model corrections to the particles that consti-
tuted the bath have a big impact on the generated asymmetry. Due to the large
coupling of the SM compared to λ, quantum interference vanishes and all off-shell ef-
fects are erased. Leading the result for the asymmetry to have a typical Boltzmann form.

However this type of thermal width inclusion is not fully justified, at high temper-
atures when the Imaginary part of the self energy is large enough compared to the
energy of the particle, perturbation theory is broken and particles will not behave as
quasi-particles. SM corrections will have then a huge impact on the equations when the
temperature is of the order of the Majorana mass (T ∼M). There is still no knowledge
about the impact of the high temperature regime for behaviour of the standard models
corrections. One approach that can be performed is a hard thermal loop resummation to
obtain an exact solution for the propagators. The use of Lattice techniques can also help
to understand the problem [114,115], although lattice models are still being developed to
simulate low temperatures observables, and the high temperature regime is still far away.

4.4 Resonant leptogenesis

Another important issue that we need to take into account is resonant leptogenesis. Here
two or more of the heavy Majorana neutrinos have a degeneracy or quasi-degeneracy on
the mass, for example we can consider the case where two masses are much lower than
the mass of the third neutrino (M1,M2 ≪ M3) and with a degeneracy |M1 −M2| . Γ.
We can integrate out the mass of the third massive neutrino and obtain a different
effective Lagrangian. One problem comes from the fact that now the self energy has
a matrix flavour 2×2 matrix structure (consequently the solution for the propagators
will have a matrix structure too), so its inverse generates a more complicated solution.
Although a general inverse can be found (see Appendix C.1) for the non-equilibrium
Majorana propagators, it is easier to see that when we include this propagators on the
leptonic Kadanoff-Baym equations, the asymmetry generated will only depend on the
mixture between the diagonal part of the non-equilibrium Majorana propagators. The
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Figure 4.1: Self-energy for the production of the lepton asymmetry.

shape of the diagonal propagators have the same form as those in (2.4.23) but with
different masses and decay widths. For example, the statistical propagator for both
diagonal terms will be

G+
11p(y, t) = −

(
iγ0 sin(ωpy)−

M1 − pγ

ωp

cos(ωpy)

)

×



tanh

(
βωp

2

)

2
e−Γ1|y|/2 + f eqN (ωp)e

−Γ1t


C−1 , (4.4.1)

G+
22q(y, t) = −

(
iγ0 sin(ωqy)−

M2 − qγ

ωq

cos(ωqy)

)

×




tanh

(
βωq

2

)

2
e−Γ2|y|/2 + f eqN (ωq)e

−Γ2t



C−1 , (4.4.2)

where ωp = (p2 + M2
1 )

1/2 and ωq = (q2 + M2
2 )

1/2 are the energies of the Majorana
neutrinos respectively. Here Γ1 and Γ2 are the corresponding widths. Although these
widths are in principle different, we can assume that in comparison to the masses of the
Majorana neutrinos, one can always assume Γ1 = Γ2.

The asymmetry will now be calculated with the insertion of these propagators to
the two-loop graphs in Fig. 4.1. This diagram has the peculiarity that it is the only
one that will be inverse proportional to the resonant parameter ∆M = |M1 −M2| that
enhances the asymmetry production. Other graphs will either not contribute to a CP
asymmetry or they are not proportional to 1/∆M .

Previously, resonant case has been treated at zero and finite temperature where a
big emphasis on the real intermediate state subtraction is performed. One advantage
from the quantum treatment, is that we do not over-count processes and no subtraction
is required. One can start by looking only at the Yukawa sector of the theory, and then
incorporate other interactions, in order to compare with [68–71].
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Chapter 5

Conclusions

In this work we presented a systematic approach towards a quantum theory of
leptogenesis, by solving the Kadanoff-Baym equations (KBEs) of motion for the
Green’s functions describing excitations in a plasma. The KBEs are the thermal
equivalent to the Schwinger-Dyson equations, i.e. they carry all the information
necessary to describe the thermal bath. The KBEs can only be solved analytically
under certain conditions: either when the thermal bath is time-translational invariant
or by taking a first order solution in terms of the self-energy. In the case of leptogenesis,
we showed how to obtain the solution of the proper KBEs by describing the genera-
tion of excitations in a plasma and its contribution to the creation of a lepton asymmetry.

The standard description of the dynamics of leptogenesis is performed via Boltzmann
equations. However, these equations suffer from the absence of quantum phenomena,
such as off-shell-, memory-effects and quantum coherence. Commonly in the literature
an expansion of the KBEs around equilibrium is performed in order to address this
issue and to include such quantum effects. The result is a set of Boltzmann equations
with improved S-matrix elements. Although it appears to be a plausible approach, a
first order expansion close to equilibrium of the KBEs has a fundamental problem; it
assumes a slow variation of the center of mass coordinate of the solution, and thus it
ignores important quantum interference effects that arise from the created particles.

In order to fully understand the mechanics of an out-of equilibrium system, we
started by studying the behaviour of a non-equilibrium toy-model composed only of
scalar fields. These fields interact weakly with a strongly coupled thermal bath. We
focused on the computation of the time-evolution of quantities such as the spectral and
statistical propagators instead of the evolution of an ill-defined ‘number density’. The
solution of the KBEs for the spectral and statistical Green’s functions could be found
analytically because the particles contributing to the self-energy of the bath are in
thermal equilibrium, i.e. the back-reaction of the generated particles can be neglected.
We found an important feature in this scenario: the spectral function depends only on
the relative difference of space-time coordinates, which is granted by the time-invariance
of the self-energy, and thus can be described with a normal Breit-Wigner spectral
representation. The statistical propagator depends on the difference of coordinates
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as well as on the center of mass. Therefore, it carries all the non-equilibrium information.

The fact that at t = 0 there are no out-of equilibrium particles, and that the value
of the statistical propagator is zero are purely coincidental. The initial condition for the
statistical propagator is that of a free field propagator, which will be zero in the case
of scalar fields. This fact becomes clear when non-equilibrium fermions are taken into
account. Another important aspect to mention is the thermalisation and quasi-particle
representation. A system that is out-of-equilibrium does not have a well defined particle
number density. We showed that even in equilibrium after thermalisation, a vacuum
energy contribution to the total energy of the system appears when a quasi-particle
picture is performed.

The study of non-equilibrium fermions was performed in a similar way as for
scalars. When the thermal bath is in equilibrium, i.e. time-translational invariant,
the spectral fermionic Green’s function has a standard Breit-Wigner representation,
and the statistical propagator shows all the non-equilibrium properties of the created
fermionic particle. In this case, the statistical propagator at t = 0 is equal to the free
propagator at t = 0, which is non-zero even in the absence of out-of-equilibrium particles.

In the semi-classical leptogenesis, the asymmetry is created via CP violating
processe that originates from the mixture between one-loop and tree level diagrams.
However, the Boltzmann equations fail to describe quantum interference and off-shell
effects between these two diagrams, since they rely on taking on-shell particles in the
external lines of the one-loop and tree level diagrams. In the KBEs the S-matrix
elements are all incorporated in the self-energy, where off-shell effects are also taken
into account. In this way we were able to formulate a systematic approach to the
quantum mechanics effects that are important for leptogenesis. For this, we introduced
a non-equilibrium Majorana neutrino into the self-energy of a thermal bath of SM
particles. The out-of-equilibrium dynamics are then described by the Majorana
propagator and its decay width Γ. It is important that even if asymmetry creation
is a processes close to equilibrium, the Majorana neutrino particle can be far out-of
equilibrium, making its non-local quantum interference very important. We were able
to obtain an analytical solution for the creation of an asymmetry shown in eq. (3.2.64),
where we defined a two-time flavour dependent matrix (lepton number matrix). A big
qualitative difference that comes from the off-shell effects is the oscillatory behaviour
which vanishes if one takes only on-shell contributions into account. This effect cannot
be described by semi-classical approaches. Another qualitative difference comes from
the behaviour of the asymmetry at t = 0. While the time derivative of the semi-classical
asymmetry at t = 0 is zero, the same derivative over the quantum asymmetry is non-zero.

A comparison with respect to the Boltzmann equations was also performed. We
neglect off-shell effects from the lepton number matrix in (3.2.64) in order to understand
the necessary steps to regain back the Boltzmann result. This leads to an asymmetry
that behaves (for small times) as t2 instead of being linear in t. The integrands can have
an order of magnitude difference. This shows us that even neglecting off-shell effects,
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non-locality in the quantum processes have a big consequence on the final asymmetry.

The SM effects on the thermal bath were introduced as a first approximation. Here
we consider the decay widths in the Breit-Wigner propagators as decay widths of the SM
particles in the plasma. The widths of the SM particles are much larger than the width
of the Majorana field, i.e. Γl,Γφ ≫ ΓN , thus suppressing the integral for large separation
of times exponentially. The propagators inside the loop will contribute only when the
time-separation between both vertices is small, ∆tvertices → 0 (see figure 3.4). The
locality is then regained and all quantum interferences are suppressed. However, this
type of insertion of the SM widths is not yet a systematic way to describe this problem.
At high temperatures and strong couplings, the Breit-Wigner representation breaks
down, and fields have no longer a quasi-particle representation. Therefore a proper
study of SM particles at high temperatures is required in order to have a complete theory.

A complete ‘quantum theory of leptogenesis’ is not yet obtained, as many factors
need to be taken into account, such as expansion of the universe and wash-out terms.
A numerical analysis of the final asymmetry needs also to be performed. This is work
in progress.

As a final remark, the understanding of the quantum mechanics behind leptogenesis,
can be used to expand the model to other cosmological problems. For example, applying
our result to a resonant case, where we have degeneracy or quasi-degeneracy in Majorana
masses, can in principle lower the scale where leptogenesis is efficient and in this way
relax the constraints for gravitino production.
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Appendix A

Notation and conventions

In this section we will describe the definitions used to describe full Green’s functions as
for the self-energy for scalar and fermion particles.

A.1 Conventions

Throughout this thesis we use natural units ~ = c = kB = 1. The metric is chosen in a
flat Minkowski space as

ηµν = diag(1,−1,−1,−1) . (A.1.1)

List of notation for the propagators

• ∆(x1, x2): scalar propagator

• S(x1, x2): massless lepton propagator

• G(x1, x2): massive fermionic propagator

List of self-energies

• Π(x1, x2): scalar

• Π(x1, x2): massless lepton

• Σ(x1, x2): massive fermion

List of used energies and momenta

• q = |q|: massless scalar

• ωq =
√

q2 +m2: massive scalar

• Ωq =
√
q2 +m(T )2: pseudo-scalar

• k = |k|: massless lepton

• ωk =
√
k2 +M2: massive fermion

• ωp =
√

p2 +M2: massive Majorana fermion
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△(x− x′) = ++ · · ·

1PI

Figure A.1: Diagrammatic view of the scalar full-propagator.

A.2 Scalars Green’s functions

Definitions

The free scalar Green’s function △F is defined in order that the equation of motion
applied to it is

(�x +m2
φ)△F (x− x′) = −iδ4(x− x′) , (A.2.1)

where we assume the same criteria as in [85]. This Green’s function can be written as

△F (x− x′) =

∫
d3q

(2π)32ωq

[
θ(t− t′)e−iq(x−x′) + θ(t′ − t)eiq(x−x′)

]
, (A.2.2)

=

∫
d4q

(2π)4
i

q2 −m2
φ + iǫ

, (A.2.3)

= θ(t− t′)〈0|φ(x)φ(x′)|0〉+ θ(t′ − t)〈0|φ(x′)φ(x)|0〉 . (A.2.4)

The free propagator in momentum space is then given by

△F (q) =
i

q2 −m2
φ

. (A.2.5)

After having a good definition of the free propagator we can define the full-propagator
△(x− x′), which diagrammatically can be seen in figure A.1, by solving

△(x, x′) = △F (x− x′) +

∫
d4y

∫
d4y′△F (x− y)Π(y, y′)△(y′, x′) , (A.2.6)

where Π is now defined as the sum of all one-particle-irreducible (1PI) diagrams. Ap-
plying the differential operator and using eq. (A.2.1) we obtain the Schwinger-Dyson
equation for scalars

(�x +m2)△(x, x′) = −iδ4(x− x′)− i

∫
d4y′Π(x, y′)△(y′, x′) . (A.2.7)

The biggest difference with the most common notation, is the fact that we define the self
energy as the sum of all IPI diagrams Π =

∑
iΠi(1PI) (the same notation is used in [80]),

meanwhile in the literature such as [85], the self energy is defined as Π = −i
∑

iΠi(1PI).
With this type of definition we can obtain that in the contour of Figure 2.1 we can now
define consistently

△−(x, x′) = i(△>(x, x′)−△<(x, x′)) , (A.2.8)
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△+(x, x′) =
1

2
(△>(x, x′) +△<(x, x′)) , (A.2.9)

and

Π−(x, x′) = i(Π>(x, x′)− Π<(x, x′)) , (A.2.10)

Π+(x, x′) =
1

2
(Π>(x, x′) + Π<(x, x′)) . (A.2.11)

Symmetries

With the definition of △− and △+ it is easy to check some symmetry properties of this
functions

△−(x, x′) = −△−(x′, x) , (A.2.12)

△+(x, x′) = △+(x′, x) . (A.2.13)

or in momentum space

△−
q (t, t

′) = −△−
−q(t

′, t) , (A.2.14)

△+
q (t, t

′) = △+
−q(t

′, t) . (A.2.15)

Here the symmetry properties are the same for space-phase as for momentum-space.
This can be think as something trivial, but we will see that symmetries properties for
fermions need to be taken carefully.

A.3 Fermionic Green’s functions

Definitions

The same definition procedure as the last section can be performed for fermions, let start
by talking the equation of motion that the free fermion propagator SF satisfies (defined
in the same way as [85])

(i6∂x −mψ)SF (x− x′) = iδ4(x− x′) . (A.3.1)

The Green’s function has the form

SF (x− x′) =

∫
d3k

(2π)32ωk

[
θ(t− t′)( 6k +mψ)e

−ik(x−x′)

+ θ(t′ − t)( 6k −mψ)e
ik(x−x′)

]
, (A.3.2)

=

∫
d4k

(2π)4
i

6k −mψ + iǫ
, (A.3.3)

= θ(t− t′)〈0|ψ(x)ψ̄(x′)|0〉 − θ(t′ − t)〈0|ψ̄(x′)ψ(x)|0〉 , (A.3.4)
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S(x− x′) = ++ · · ·
1PI

Figure A.2: Diagrammatic view of the fermionic full-propagator.

and in momentum space given by

SF (k) =
i

6k −mψ
. (A.3.5)

The full propagator is given by (see Figure A.2)

S(x, x′) = SF (x− x′) +

∫
d4y

∫
d4y′SF (x− y)Σ(y, y′)S(y′, x′) , (A.3.6)

Applying the differential operator and using equation (A.3.1) we get the Schwinger-
Dyson equation for fermions

(i6∂x −mψ)S(x, x
′) = −iδ4(x− x′)− i

∫
d4y′Σ(x, y′)S(y′, x′) . (A.3.7)

As before, we define the self-energy as the sum of all 1PI diagrams, which will allow us
to define in the same way

S−(x, x′) = i(S>(x, x′)− S<(x, x′)) , (A.3.8)

S+(x, x′) =
1

2
(S>(x, x′) + S<(x, x′)) , (A.3.9)

and

Σ−(x, x′) = i(Σ>(x, x′)− Σ<(x, x′)) , (A.3.10)

Σ+(x, x′) =
1

2
(Σ>(x, x′) + Σ<(x, x′)) . (A.3.11)

Symmetries

Because of the Lorentz structure of fermions, symmetry properties will vary if one takes
into account the scalar part or the vector part of the propagators. Let see first the sym-
metries of the Dirac fermion propagator, which we will denote by S. These symmetries
are given by

γ0[S
−(x, x′)]†γ0 = −S−(x′, x) , (A.3.12)

γ0[S
+(x, x′)]†γ0 = S+(x′, x) . (A.3.13)

To go to momentum space, we must be careful, the Hermitian conjugate transforms
i → −i which will affect in the exponent of the Fourier transformation. Thats why
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taking the Hermitian conjugation will have the same repercussion as taking k → −k.
Now the symmetries in momentum space are

γ0[S
−(t, t′)k]

†γ0 = −S−
k (t

′, t) , (A.3.14)

γ0[S
+
k (t, t

′)]†γ0 = S+
k (t

′, t) . (A.3.15)

As explained above, there is no need to take k → −k.

If we now consider Majorana fermions (which we will denote as G), Eqs. (A.3.12) and
(A.3.13) are modified by the definition of the Green’s function, basically the difference
comes from the fact that the anti-particle of a Majorana particle is its own particle, this
will be translated in the following symmetry properties

G−(x, x′)T = G−(x′, x) , (A.3.16)

G+(x, x′)T = −G+(x′, x) , (A.3.17)

and for the ones in momentum space

G−
p (t, t

′)T = G−
−p(t

′, t) , (A.3.18)

G+
p (t, t

′)T = −G+
−p(t

′, t) . (A.3.19)

In the last equations, we can see that it is necessary the change p→ −p.
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Appendix B

Scalar theory

B.1 Self Energy

The interaction with the thermal bath changes the spectral function of a free scalar
particle,

ρq(ω) = 2πsign(ω)δ(ω2 − ω2
q) , (B.1.1)

to the expression (2.1.53) which depends on real and imaginary part of the self-energy,

ρq(ω) =
−2ImΠR

q (ω) + 2ωǫ

[ω2 − ω2
q − ReΠR

q (ω)]
2 + [ImΠR

q (ω) + ωǫ]2
. (B.1.2)

We have computed the imaginary part of the self-energy in the scalar field model
defined in Section 2.1.4, assuming free thermal propagators for the fields χ1 and χ2. The
result agrees with [84]. One obtains (q = (ωq,q)):

− ImΠR
q (ω) = σ0(q) + σ

(a)
β (q) + σ

(b)
β (q) . (B.1.3)

Here σ0 is the zero-temperature contribution due to the decay process Φ → χ1χ2,

σ0(q) =
g2

16πq2
sign(ω)Θ(q2 − (m1 +m2)

2)

×
(
(q2)2 − 2q2(m2

1 +m2
2) + (m2

1 −m2
2)

2
) 1

2 , (B.1.4)

σ
(a)
β is the finite-temperature contribution from this process,

σ
(a)
β (q) =

g2

16π|q|β sign(ω)Θ(q2 − (m1 +m2)
2)

×
(
ln

(
1− e−βω+

1− e−βω−

)
+ (m1 ↔ m2)

)
, (B.1.5)
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and σ
(b)
β (q) is the finite-temperature contribution from processes χi → χjφ,1

σ
(b)
β (q) =

g2

16π|q|β sign(ω)Θ((m1 −m2)
2 − q2)

×
(
ln

(
1− e−β|ω−|

1− e−β|ω+|

)
+ (m1 ↔ m2)

)
, (B.1.6)

where we have used the abbreviations

ω± =
|ω|
2q2

(q2 +m2
1 −m2

2)±
|q|
2|q2|

(
(q2 +m2

1 −m2
2)

2 − 4q2m2
1

) 1

2 . (B.1.7)

The real part of the self-energy can be computed using the dispersion relation relation,

ReΠR
q (ω) =

1

π
P
∫ ∞

−∞

dω′
ImΠR

q (ω
′)

ω′ − ω
. (B.1.8)

ωth1

(b)

(a)

ω

ω

m

Figure B.1: Poles and cuts of the spectral function ρ(ω) for q = 0 at T = 0: (a)
m > m1 +m2, and (b) m < m1 +m2.

Based on these expressions we can discuss the analytic structure of the spectral
function. For a free field ρq(ω) is given by (B.1.1) which has two poles at ω = ±ωq
in the complex ω-plane. The interaction of Φ with χ1 and χ2 does not modify these
poles for m < m1 + m2, where Φ is stable at zero temperature. In addition there
are branch cuts at the two-particle thresholds |ω| > ωth1 =

√
q2 + (m1 +m2)2 (see

Fig. B.1b). They correspond to virtual decays and inverse decays, Φ ↔ χχ. In the
case m > m1 +m2 these processes can happen on-shell since m > ωth1, and Φ becomes
unstable. Now the spectral function has four poles in the complex ω-plane, whose real
parts lie in the region of the branch cuts (see Fig. B.1a). The imaginary parts of the
poles correspond to the decay width of Φ.

The analytic structure of the spectral function at finite temperature is displayed
in Fig. B.2. The position of ωth1 is shifted due to thermal corrections from ReΠR

q .

1Note that we disagree with the discussion in [108] which implies the additional factor Θ(|m2
1−m2

2|−
q2).
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ωth1

(b)

(a)

ω

ω

ωth2

√
m2 + ReΠR

Figure B.2: Poles and cuts of the spectral function ρ(ω) for q = 0 at T 6= 0: (a)
m > m1 +m2, and (b) m < m1 +m2.

Furthermore, a new branch cut appears in the region where σb 6= 0, i.e. for |ω| <
ωth2 =

√
q2 + (m1 −m2)2. This is due to processes χ↔ φχ and corresponds to Landau

damping of quasi-particles in the plasma. If the real part of the poles falls into the
regions of one of the branch cuts, i.e. |ω| < ωth2 or |ω| > ωth1, they acquire an imaginary
part which corresponds to the quasi-particle decay width (see Fig. B.2).
Qualitatively, this analytic structure is typical for interacting quantum field theories

at finite temperature. In general, the spectral function can have additional singular
contributions for m < |ω| < ωth1 corresponding to bound states. At finite temperature
they are also dressed to quasi-particles.

B.2 Breit-Wigner

In the regime of couplings and temperatures where | ImΠR
q (Ωq)| ≪ Ω2

q, so that the
quasi-particle picture holds, one can approximate the spectral function ρq(ω) by a Breit-
Wigner function. From the expression (2.1.53) one easily obtains

ρq(ω) ≃
Zq

2Ωq

sign(ω)Γq

(|ω| − Ωq)
2 + 1

4
Γ2
q

, (B.2.1)

where Γq is the quasi-particle width

Γq = −Zq

ImΠR
q (Ωq)

Ωq

, (B.2.2)

with

Zq =

(
1− 1

2Ωq

∂ReΠR
q (ω)

∂ω

∣∣∣
ω=Ωq

)−1

. (B.2.3)

Contrary to the exact spectral function (2.1.53), the Breit-Wigner approximation
(B.2.1) has no branch cuts. The integrals over ω are dominated by the regions around the
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quasi-particle poles where the two functions are very similar. For the Fourier transform,
the spectral function in real time, one obtains

∆−
q (y) ≃ Zq

sin(Ωqy)

Ωq

e−Γqy/2 . (B.2.4)

B.3 Time translational invariance

In this section we shall prove that the most general solution of the first Kadanoff-
Baym equation is time-translation invariant. The starting point is Eq. (2.1.29) with the
boundary conditions (2.1.31) - (2.1.33). Performing the change of variables t1 = t+y/2,
t2 = t− y/2, Eq. (2.1.29) becomes

(
1

4
∂2t + ∂t∂y + ∂2y + ω2

q

)
∆−

q (t; y) +

∫ y

0

dy′Π−
q (y − y′)∆−

q (t
′; y′) = 0 , (B.3.1)

where t′ = t− (y − y′)/2 and ω2
q = q2 +m2. Note that ∆−

q and Π−
q only depend on |q|

because of rotational invariance. Both functions are antisymmetric in y. The boundary
conditions (2.1.31) - (2.1.33) read

∆−
q (t; 0) = 0 , (B.3.2)

∂t∆
−
q (t; 0) = 0 , (B.3.3)

∂y∆
−
q (t; y)|y=0 = 1 , (B.3.4)

(
1

4
∂2t − ∂2y

)
∆−

q (t; y)|y=0 = 0 . (B.3.5)

The condition (B.3.2) is automatically fulfilled because of the antisymmetry in y.

To prove that ∆− is time-translation invariant we now perform an expansion in
powers of Π−,

∆−
q =

∞∑

n=0

∆(n)
q , ∆(n)

q = O(Π(n)
q ) . (B.3.6)

For n = 0 one has

(
1

4
∂2t + ∂t∂y + ∂2y + ω2

q

)
∆(0)

q (t; y) = 0 . (B.3.7)

Using the antisymmetry of ∆−
q in y, one obtains

∂t∂y∆
(0)
q (t; y) = 0 , (B.3.8)

which has the general solution

∆(0)
q = a(0)q (t) + b(0)q (y) . (B.3.9)
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Every solution of Eqs. (B.3.7) and (B.3.8) satisfies the boundary condition (B.3.5). The
condition (B.3.3) implies

∂t∆
(0)
q (t; 0) = ∂ta

(0)
q (t) = 0 . (B.3.10)

Hence, a
(0)
q is constant and ∆

(0)
q only depends on y. Eq. (B.3.7) now becomes

(
∂2y + ω2

q

)
∆(0)

q (y) = 0 , (B.3.11)

which has the antisymmetric solution

∆(0)
q (y) = c(0)q sin(ωqy) . (B.3.12)

For n 6= 0 one can use the recurrence relation

(
1

4
∂2t + ∂t∂y + ∂2y + ω2

q

)
∆(n+1)

q (t; y) +

∫ y

0

dy′Π−
q (y − y′)∆(n)

q (y′) = 0 . (B.3.13)

Using the antisymmetry of Π−
q and ∆−

q in y, one again finds

∂t∂y∆
(n+1)
q (t; y) = 0 . (B.3.14)

Repeating the same steps as for ∆
(0)
q yields the result that also ∆

(n+1)
q is independent of

t.

We conclude that the spectral function is the antisymmetric solution of the equation

(
∂2y + ω2

q

)
∆−

q (y) +

∫ y

0

dy′Π−
q (y − y′)∆−

q (y
′) = 0 , (B.3.15)

with the boundary condition

∂y∆
−
q (y)|y=0 = 1 . (B.3.16)
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Appendix C

Fermion theory

C.1 2 flavour structure matrix Inverse

2x2 case suposse that we have a matrix of the form

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
1 0
0 1

)
. (C.1.1)

with Bij = 6kijLPL + 6kijRPR, where 6kijL = aijL 6k + bijL 6u for i 6= j and Bii = 6kii −Mii

with

M =

(
M1 0
0 M2

)
. (C.1.2)

with 6kii = (1 + aii) 6k+ bii 6u. Then, the components Aij are given by

A11 = (B11 −B12B
−1
22 B21)

−1 (C.1.3)

A12 = (B21 −B22B
−1
12 B11)

−1. (C.1.4)

Let start with A12. we neet to compute first

B−1
12 = ( 6k12LPL + 6k12RPR)

−1 (C.1.5)

which will give us

B−1
12 = PL

6k12L

q212L
+ PR

6k12R

q212R
. (C.1.6)

then

A12 =

(
6k21LPL + 6k21RPR − ( 6k22 −M2)

(
PL

6k12L

q212L
+ PR

6k12R

q212R

)
( 6k11 −M1)

)
(C.1.7)

with a little bit of algebra we get
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A12 = {[6k21L − ( 6k22 −M2)( 6k−1
12L 6k11 − 6k−1

12RM)]PL

+ [6k21R − ( 6k22 −M2)( 6k−1
12R 6k11 − 6k−1

12LM)]PR}−1 (C.1.8)

we finnally ofbtain

A12 = PLBL + PRBR, (C.1.9)

where BL and BR are solutions of the following equation

aBL + bBR = 1, (C.1.10)

cBL + dBR = 1. (C.1.11)

and

a = 6k−1
12L 6k11M2 + 6k12R 6k22M1, (C.1.12)

b = 6k21R − 6k22 6k−1
12R 6k11 −M1 6k−1

12LM2, (C.1.13)

c = 6k21L − 6k22 6k−1
12L 6k11 −M1 6k−1

12RM2, (C.1.14)

d = 6k−1
12R 6k11M2 + 6k12L 6k22M1 (C.1.15)

we get that

BR = (d− ca−1b)−1(1− ca−1), (C.1.16)

= (b− ac−1d)−1(1− ac−1), (C.1.17)

BL = (c− db−1a)−1(1− db−1), (C.1.18)

= (a− bd−1c)−1(1− bd−1). (C.1.19)

Le see now A11, for this case we need first

B−1
22 =

6k22 +M2

D2

, (C.1.20)

with D2 = q222 −M2
2 . With a little bit of algebra we get

A11 =

(
[6k11 −M1 −

6k12L 6k22 6k21L

D2

− 6k12RM2 6k21L

D2

]PL

[6k11 −M1 −
6k12R 6k22 6k21R

D2

− 6k12LM2 6k21R

D2

]PR

)−1

(C.1.21)

The result will be given by

A11 = PLCL + PRCR. (C.1.22)

where CL and CR are solutions of the following equation

a′CL + b′CR = 1, (C.1.23)
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c′CL + d′CR = 1. (C.1.24)

with

a′ = −M1 −
1

D2

6k12RM2 6k21L, (C.1.25)

b′ = 6k11 −
1

D2

6k12R 6k22 6k21R, (C.1.26)

c′ = 6k11 −
1

D2

6k12L 6k22 6k21L, (C.1.27)

d′ = −M1 −
1

D2
6k12LM2 6k21R. (C.1.28)

and

CR = (d′ − c′a′−1b′)−1(1− c′a′−1), (C.1.29)

= (b′ − a′c′−1d′)−1(1− a′c′−1), (C.1.30)

CL = (c′ − d′b′−1a′)−1(1− d′b′−1), (C.1.31)

= (a′ − b′d′−1c′)−1(1− b′d′−1). (C.1.32)

For A21 and A22, just take the soliutions for above and interchange the indices 1 → 2
and 2 → 1

C.2 Calculation of the 1-loop self-energy

a) First diagram

l

φ

N1N1

i, γ, a j, ǫ, b

c d

α β

Figure C.1: 1-loop graph a)

the Feynman rules will give us

Σa(q) =
1

2

∫
d4p

(2π)4
[iλ∗i1ǫac(PR)γα][iδijδabSǫγ(p)]

×[iλi1(CPL)βǫǫbd][iδdc∆(q − p)] . (C.2.1)
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The sum over the isospin index will give us a factor of 2. Now, using the fact that S is
massless, so PRS = SPL and STC = CS, we obtain

Σa(q) = C−1

∫
d4p

(2π)4
(λλ†)211S(q)∆(q − p)PL . (C.2.2)

b) Second diagram

l

φ

N1N1

i, γ, a j, ǫ, b

c d

α β

Figure C.2: 1-loop graph b)

the Feynman rules will give us

Σb(q) = −1

2

∫
d4p

(2π)4
[iλi1ǫac(CPL)αγ ][iδijδabSǫγ(p)]

×[iλ∗i1(PR)ǫβǫbd][iδdc∆(q − p)] . (C.2.3)

The isospin sum will give us a factor of 2. The negative sign comes from the momentum
inversion? Now, using C−1 = −C and the same procedure as above we obtain

Σb(q) = C−1

∫
d4p

(2π)4
(λλ†)211S(p)∆(q − p)PR . (C.2.4)

Note that Σa(q) + Σb(q) = Σ(q), which does not depend on a specific chirality. This is
not surprising because at 1-loop level, there is no CP violation.

The Lorentz structure of Σ> ∝
∫
S>∆> comes only from the thermal fermion prop-

agator S> which has a scalar piece Σ(S) proportional to the fermion mass mΨ and a
vector piece Σµ(V ) proportional to 6q. In a homogenous and isotropic bath the only two
vectors are the external momentum qµ and the four velocity of the bath uµ. This allows
to parametrize

Σ = a6q + b6u+ c1 . (C.2.5)

Obviously Σ̂(S) = c, Σ̂µ(V ) = aqµ + buµ. For computational simplicity it is useful to
introduce the quantities

A =

(
1

4
tr
(
6qΣ̂Rq (ω)

))
, (C.2.6)
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B =

(
1

4
tr
(
6uΣ̂Rq (ω)

))
, (C.2.7)

C =

(
1

4
tr
(
Σ̂Rq (ω)

))
, (C.2.8)

from which one can obtain a, b and c via

a =
Bq · u− Au2

(q · u)2 − q2u2
, (C.2.9)

b =
−Bq2 + Aq · u
(q · u)2 − q2u2

, (C.2.10)

c = C , (C.2.11)

where q · u = qµu
µ. The quantities defined above are generally complex scalars that can

be always decomposed as a = aR + iaI where aI is defined via the discontinuity.

aI =
1

2i
(a(ω + iǫ,q)− a(ω − iǫ,q)) . (C.2.12)

Going to the rest frame of the bath where u = (1, 0, 0, 0) we can introduce the free
propagator for the Higgs and lepton

S>(p) = (1− fF (p0))ρΨ(p) , (C.2.13)

∆>(p) = (1 + fB(p0))ρφ(p) , (C.2.14)

with

ρΨ(p) = 2πsign(p0)( 6p+mΨ)δ(p
2 −m2

Ψ) , (C.2.15)

ρφ(p) = 2πsign(p0)δ(p
2 −m2

φ) , (C.2.16)

and

fB(ω) =
1

eβω − 1
, (C.2.17)

fF (ω) =
1

eβω + 1
, (C.2.18)

into (??) and obtain

DiscΣRq (ω) = −iλ2
(
e−βω + 1

) ∫ d4p

(2π)4
S>(p)∆>(q − p) (C.2.19)

= −iλ2fF (ω)−1

∫
d4p

(2π)2
(1− fF (p0))(1 + fB(ω − p0))sign(p0)sign(ω − p0)

× ( 6p+mΨ)δ(p
2 −m2

Ψ)δ((q − p)2 −m2
φ) , (C.2.20)

= −iλ2fF (−ω)−1

∫
d4p

(2π)2
1

2ω12ω2
(1− fF (p0))(1 + fB(ω − p0))

× sign(p0)sign(ω − p0)( 6p+mΨ) (C.2.21)
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×
(
δ(p0 − ω1) + δ(p0 + ω1)

)(
δ(ω − p0 − ω2) + δ(ω − p0 + ω2)

)
,

with ω1 =
√

p2 +m2
φ and ω2 =

√
(q − p)2 +m2

Ψ. Performing the p0 integration leads

to

DiscΣRq (ω) =

− iλ2fF (−ω)−1

∫
d3p

(2π)2
1

2ω12ω2

(
(C.2.22)

(1− fF (ω1))(1 + fB(ω − ω1))sign(ω − ω1)(ω1γ
0 − pγpγpγ +mΨ)

×
(
δ(ω − ω1 − ω2) + δ(ω − ω1 + ω2)

)

− (1− fF (−ω1))(1 + fB(ω + ω1))sign(ω + ω1)(−ω1γ
0 − pγpγpγ +mΨ)

×
(
δ(ω + ω1 − ω2) + δ(ω + ω1 + ω2)

))
.

Each δ-function can only be nonzero for one sign of ω − ω1. Now we define

nB(ω) =
1

eβ|ω| − 1
, (C.2.23)

nF (ω) =
1

eβ|ω| + 1
. (C.2.24)

We notice that nB,F (w) = fB,F (w) for w > 0 and use

fB(−w) + fB(w) = −1 , (C.2.25)

fF (−w) + fF (w) = 1 , (C.2.26)

and relations as sign(ω − ω1)f(ω − ω1)δ(ω − ω1 − ω2) = f(ω2)δ(ω − ω1 − ω2) to rewrite

DiscΣRq (ω) = (C.2.27)

−iλ2
∫

d3p

(2π)2
1

2ω12ω2

(
(1− nF (ω1) + nB(ω2))

(
(ω1γ

0 − pγpγpγ +mΨ)δ(ω − ω1 − ω2)

+ (ω1γ
0 + pγpγpγ −mΨ)δ(ω + ω1 + ω2)

)

+ (nF (ω1) + nB(ω2))
(
(ω1γ

0 − pγpγpγ +mΨ)δ(ω − ω1 + ω2)

+ (ω1γ
0 + pγpγpγ −mΨ)δ(ω + ω1 − ω2)

))
.

Note that this expression agrees with (3.6) in [116] while it differs from (2.22) in
[108]. We are finally interested in leptogenesis which happens at temperatures above
the electroweak phase transition, so we can set all fermion masses except the Majorana
mass of the right handed neutrino to zero. This immediately means

cI = CI =
(
Σ̂(S)

)
I
= 0 . (C.2.28)

Now we introduce n1 = nF (ω1) and n2 = nB(ω2) to compute AI and BI .

AI = λ2
∫

d3p

(2π)3
2π

8ω1ω2

(
(1− n1 + n2)

(
(ωω1 − qp)δ(ω − ω1 − ω2)
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+ (ωω1 + qp)δ(ω + ω1 + ω2)
)

+(n1 + n2)
(
(ωω1 − qp)δ(ω − ω1 + ω2)

+ (ωω1 + qp)δ(ω + ω1 − ω2)
))

.

(C.2.29)

This expression is as a whole antisymmetric in ω which allows to rewrite

AI = λ2
∫

d3p

(2π)3
2π

8ω1ω2

(
ωω1

(
(1− n1 + n2)(δ1 + δ2) + (n1 + n2)(δ3 + δ4)

)

− sign(ω)qp
(
(1− n1 + n2)(δ1 − δ2) + (n1 + n2)(δ4 − δ3)

))
,

(C.2.30)

where

δ1 = δ(|ω| − ω1 − ω2) , (C.2.31)

δ2 = δ(|ω|+ ω1 + ω2) , (C.2.32)

δ3 = δ(|ω|+ ω1 − ω2) , (C.2.33)

δ4 = δ(|ω| − ω1 + ω2) . (C.2.34)

At this point it is already clear that δ2 does not contribute. Changing to spherical
coordinates ϕ, ϑ, |p|. The ϕ integration is trivial and due to mΨ = 0 one has |p| = ω1.
Introducing x = |p||q| cos(ϑ) = pq one then has

AI =

λ2

16π|q|

∫ ∞

0

dω1

∫ ω1|q|

−ω1|q|

dx
(
δ(x− x01)

(
ωω1(1− n1 + n2)− sign(ω)x(1− n1 + n2)

)

+ δ(x− x03)
(
ωω1(n1 + n2) + sign(ω)x(n1 + n2)

)

+ δ(x− x04)
(
ωω1(n1 + n2)− sign(ω)x(n1 + n2)

))
,

(C.2.35)

where we used δi = ω2δ(x− x0i). The x0i can easily be determined as

x01 =
1

2
(q2 − ω2 +m2

φ) + ω1|ω| , (C.2.36)

x03 =
1

2
(q2 − ω2 +m2

φ)− ω1|ω| , (C.2.37)

x04 = x01 . (C.2.38)

This allows to perform the x integration and to write

AI =
λ2

16π|q|
(∫

1

dω1 (ωf1 + g1) +

∫

3

dω1 (ωf3 − g3) +

∫

4

dω1 (ωf4 + g4)
)
,(C.2.39)

where the subscript in the integral
∫
i
indicates by which δi the integration limits for the

ω1 integration are determined. The fi and gi are given by

f1 = ω1

(
1− nF (ω1) + nB(|ω| − ω1)

)
, (C.2.40)
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f3 = ω1

(
nF (ω1) + nB(|ω|+ ω1)

)
, (C.2.41)

f4 = ω1

(
nF (ω1) + nB(ω1 − |ω|)

)
, (C.2.42)

g1 = sign(ω)
(1
2
(ω2 − q2 −m2

φ)− ω1|ω|
)(
1− nF (ω1) + nB(|ω| − ω1)

)
, (C.2.43)

g3 = sign(ω)
(1
2
(ω2 − q2 −m2

φ) + ω1|ω|
)(
nF (ω1) + nB(|ω|+ ω1)

)
, (C.2.44)

g4 = sign(ω)
(1
2
(ω2 − q2 −m2

φ)− ω1|ω|
)(
nF (ω1) + nB(ω1 − |ω|)

)
. (C.2.45)

(C.2.46)

It is easy to see from (C.2.6), (C.2.7) and (C.2.35) that

BI =
λ2

16π|q|
(∫

1

dω1f1 +

∫

3

dω1f3 +

∫

4

dω1f4

)
, (C.2.47)

f1 and g1 are contributinos from decay and inverse decay of the external fermion and
can lead to a zero temperature part if kinematically allowed while f3, f4, g3 and g4 come
from scatterings in the plasma (Landau damping). It is interesting to note that

f1 = f4 , (C.2.48)

g1 = g4 , (C.2.49)

despite the fact that they originate from different processes1. The fi are symmetric in
ω, the gi aantisymmetric. In the rest frame of the bath (C.2.9) can be written as

a =
Bω −A

q2
, (C.2.50)

b =
ω(A−Bω)

q2
+B , (C.2.51)

c = C , (C.2.52)

BI is obviously symmetric in ω while AI is antisymmetric. As a consequence, aI is
antisymmetric while bI is symmetric which seems consistent with [109] . The stem
functions of all fi, gi are known analytically, so the only remaining difficult task is the
determination of the proper integration limits.

Limits for δ1 = δ(|ω| − ω1 − ω2)

In order for x01 to actually really be a zero point, the condition

|ω| − ω1 > 0 , (C.2.53)

has to be fullfilled. In any case,

ω1 > mΨ = 0 . (C.2.54)

1Note that despite (C.2.48,C.2.49) the Landau damping terms f4, g4 never lead to a contribution to
Σ at zero temperature while the decay and inverse decay parts f1 and g1 can contribute as expected.
The reason lies in the different integration limits, see (C.2.53) and (C.2.62)
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In order for the x-integral to be nonzero it requires

|x01| < ω1|q| . (C.2.55)

The solutions to |x01| = ω1|q| are

ω± =
1

2

q2 −m2
φ

q2
(|ω| ± |q|) , (C.2.56)

with q2 = ω2 − q2. One has three different regimes:

a) For 0 < |ω| < |q| and ω1 > 0 only ω+ is a solution, and it puts a lower bound on
ω1 in order for the inequality (C.2.55) to be fulfilled, leading to ω1 > ω+. On the other
hand one has the condition (C.2.53), and since for |ω| < |q| always ω+ > |ω|, there is
no contribution to the integral from this region.

b) For |q| < |ω| <
√

q2 +m2
φ one has ω± < 0 and non of them makes (C.2.60) an

equality.

c) For |ω| >
√

q2 +m2
φ both ω± are always smaller than |ω| and (C.2.60) leads to

ω− < |ω| < ω+. Therefore

∫

1

dω1 = θ(q2 −m2
φ)

∫ ω+

ω−

dω1 (C.2.57)

Limits for δ3 = δ(|ω|+ ω1 − ω2)

Here one has the three conditions

|ω|+ ω1 > 0 , (C.2.58)

ω1 > mΨ = 0 , (C.2.59)

|x03| < ω1|q| . (C.2.60)

This time (C.2.60) has made an equality for ω1 = −ω±. Again the same regimes have
to be distinguished.

a) For |ω| < |q| only −ω− makes (C.2.60) an equality while −ω+ is negative and
not a solution. −ω− is positive as required by (C.2.59) and forms a lower bound.

b) For |q| < |ω| <
√

q2 +m2
φ both −ω± are positive and solutions, due to its first

order pole at |ω| = |q| the solution −ω+ is now the larger one and in fact forms an
upper limit, leading to −ω− < ω1 < −ω+.
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c) For |ω| >
√

q2 +m2
φ both −ω± are negative and not equality solutinos of (C.2.60),

there is no contribution to the integral from here.
Therefore

∫

3

dω1 = θ(−q2)
∫ ∞

−ω−

dω1 + θ(q2)θ(m2
φ − q2)

∫ −ω+

−ω−

. (C.2.61)

Limits for δ4 = δ(|ω| − ω1 + ω2)

The situation here is exactly the same as for δ1, in particular x04 = x01, except that the
condition |ω| − ω1 > 0 has to be replaced by

|ω| − ω1 < 0 , (C.2.62)

making ω1 > |ω|. Again for |ω| < |q| only ω+ fulfills (C.2.55), imposing a lower bound

on ω1 and for |ω| >
√

q2 +m2
φ both ω± are solutinos with ω+ being the upper and ω−

being the lower bound here while for 0 < q2 < m2
φ none of ω± is a valid solution. But

this time the condition (C.2.62) selects out the region q2 < 0 and one has

∫

4

dω1 = θ(−q2)
∫ ∞

ω+

dω1 . (C.2.63)

Altogether this leads to

AI =
λ2

16π|q|
(
θ(q2 −m2

φ)
[
ωF1 +G1

]ω+

ω−

+θ(−q2)
[
ωF3 −G3

]∞
−ω−

+ θ(q2)θ(m2
φ − q2)

[
ωF3 −G3

]−ω+

−ω−

+θ(−q2)
[
ωF4 +G4

]∞
ω+

)
, (C.2.64)

and

BI =
λ2

16π|q|
(
θ(q2 −m2

φ)
[
F1

]ω+

ω−

+θ(−q2)
[
F3

]∞
−ω−

+ θ(q2)θ(m2
φ − q2)

[
F3

]−ω+

−ω−

+θ(−q2)
[
F4

]∞
ω+

)
, (C.2.65)

with

F1 =
ω1

β

(
ln
(
eβω1 + 1

)
− ln

(
1− eβ(ω1−|ω|)

))

+
1

β2

(
Li2
(
− eβω1

)
− Li2

(
eβ(ω1−|ω|)

))
, (C.2.66)

F3 =
ω1

β

(
ln
(
1− eβ(ω1+|ω|)

)
− ln

(
eβω1 + 1

))
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+
1

β2

(
Li2
(
eβ(ω1+|ω|)

)
− Li2

(
− eβω1

))
, (C.2.67)

F4 = F1 , (C.2.68)

and

G1 = sign(ω)
m2
φ − q2

2β

(
− ln

(
1 + eβω1

)
+ ln

(
eβω1 − eβ|ω|

))

+
ωω1

β

(
ln
(
1− eβ(ω1−|ω|)

)
− ln

(
1 + eβω1

))

+
ω

β2

(
Li2
(
eβ(ω1−|ω|)

)
− Li2

(
− eβω1

))
, (C.2.69)

G3 = sign(ω)
m2
φ − q2

2β

(
ln
(
1 + eβω1

)
− ln

(
eβ(ω1+|ω|) − 1

))

+
ωω1

β

(
ln
(
1− eβ(ω1+|ω|)

)
− ln

(
1 + eβω1

))

+
ω

β2

(
Li2
(
eβ(ω1+|ω|)

)
− Li2

(
− eβω1

))
, (C.2.70)

G4 = G1 . (C.2.71)

The Fi as displayed here are not real in all areas of the parameter space due to the choice
of different branches of the (di)logarithms, but the additional terms always cancel since
the choice of branch is always the same at both integration limits in (C.2.64,C.2.65).

Checks and Comparison to the Literature

In order to compare with the literature we now introduce the quantities

Σ(±) =
1

2
Tr
(
ΣRΛ±γ0

)
= a(ω ± |q|) + b , (C.2.72)

with projectors

Λ± = (1± γ0
q

|q|γγγ) . (C.2.73)

The figures C.3 and C.4 show |ImΣ(+)| for finite and zero spacial momentum q and
the same parameters as in figure 5 in [116]. The argeement is very good up to an overall
minus sign that is hidden by plotting the absolute value. The imaginary part is in
general to be understood in the discontinuity sense,

ImΣ(+) =
1

2i

(
Σ(+)(ω + iǫ)− Σ(+)(ω − iǫ)

)
, (C.2.74)

meaning that the γµ matrices are treated as ’real’ symbols and factors i that appear
in their elements in any representation remain untouched. For Σ(+) this does not
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make a difference since the trace has been taken, but for Σ̂ this has to be kept in
mind. From the analytic expression for ImΣ(+)| one can obtain ReΣ(+)| via the spectral
representation.

ReΣ(+) for zero momentum is shown in figure C.5 and, up to the overall minus sign
mentioned already, agrees perfectly with figure 4 in [116].

To perform a final consistency check, we compare our analytic formulae (C.2.64) and
(C.2.65) to numerical solutinos of (C.2.35) and its analogon for BI . They agree very
well as shown in figure C.6 and C.7.
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Figure C.3: |ImΣ(+)| as a function of ω for |q| = 0.4mφ and T = 1.5mφ with λ = 1 for
convenience
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Figure C.4: |ImΣ(+)| as a function of ω for |q| = 0 and T = 1.5mφ with λ = 1 for
convenience
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Figure C.5: ReΣ(+) as a function of ω for |q| = 0 and T = 1.5mφ with λ = 1 for
convenience
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Figure C.6: comparison of the analytic formula (C.2.64) for AI to the numerical solution
as a function of ω for |q| = 0.4mφ and T = 1.5mφ with λ = 1 for convenience
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Figure C.7: comparison of the analytic formula (C.2.65) for BI to the numerical solution
as a function of ω for |q| = 0.4mφ and T = 1.5mφ with λ = 1 for convenience
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C.3 Computation of Γ

In the case of a Majorana neutrino in a Higgs lepton bath there appear additinal factors
C, PL and PR due to the Majorana nature of the particle and the coupling. This,
however, does not change the analytic form of the self energy so that the pole structure
of the spectral function is not influenced.

ρN =
6q(1 + a+) + 6ub+ +M

D+
− 6q(1 + a−) + 6ub− +M

D−
, (C.3.1)

with

D± = q2(1 + a±)
2 + qu2b±(1 + a±) + b2± −M2 , (C.3.2)

a± = aR ± aI and b± = bR ± bI . The D± here have been written in the denominator
because they commute with the numerator in the flavourless case. Furthermore the
scalar particle in the thermal bath has a complex structure, but since the backreaction
is small one can neglect the chemical potential induced by the CP violation in the
heavy neutrino coupling. Then the Higgs can be treated like two real scalars. Finally,
the coupling in this case is so tiny that the spectral function is effectively a δ function
at ±ωq with some finite Γ. A Lorentz decomposition of (C.3.1) gives the following
coefficients

1

D+D−

((D− −D+)γ
0 ((D−(1 + a+)−D+(1 + a−))ω − (D−b+ −D+b−))

− γiqi (D−(1 + a+)−D+(1 + a−)))M(D− −D+) . (C.3.3)

Expanding the above of (C.3.1) to first order in a and b

1

D+D−
(γ0(−2i)

(
aIω(q

2 +M2) + bI(ω
2 + ω2

q)
)

+γpγpγp2i
(
2bIω + aI(q

2 +M2)
)
+M(−4i)(aIq

2 + bIω)) , (C.3.4)

In order to obtain the pole structure we also expand D± in a and b. This leads to

D± = ω2 − ω2
q + 2

(
ωbR + aR(ω

2 − q2)± i
(
bIω + aI(ω

2 − q2)
))

,

= ω2 − ω2
q + 2

(
b±ω + a±(ω

2 − q2)
)
. (C.3.5)

The spectral propagator G− will be compute after performing a fourier transform in ω on
(C.3.1). In principle the ω dependence of a and b is very complicated, but the extreme
smallness of coupling gives ρN an almost δ function like shape with extremely narrow
peaks near ω = ±ωq. Since the integral is strongly dominated by the region around
those peaks one can replace a(ω) and b(ω) by a(±ωq) and b(±ωq), making D± second
order polynomials. Now the integral can easily be evaluated using Cauchy’s theorem.
The solutions for D+ = 0 are

ω = ±
√
ω2

q − 2
(
±ωqb+(±ωq) + (ω2

q − q2)a+(±ωq)
)
. (C.3.6)
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We can neglect the real parts of a and b since they are small compared to ωq, use the
symmetry properties aI(−ω) = −aI(ω) and bI(−ω) = bI(ω) and expand te square root
to find the poles

ω01 = ωq − i

(
bI + aI

M2

ωq

)
, (C.3.7)

ω02 = −ωq + i

(
bI + aI

M2

ωq

)
= −ω01 . (C.3.8)

In the same way we obtain from D−:

ω03 = ωq + i

(
bI + aI

M2

ωq

)
= ω∗

01 , (C.3.9)

ω04 = −ωq − i

(
bI + aI

M2

ωq

)
= −ω∗

01 . (C.3.10)

with aI = aI(ωq) and bI = bI(ωq). Two of these poles are in the upper and two are in
the lower halt plane.

The time-dependent spectral function will then be given by the inverse Fourier trans-
formation

G−
q (y) =

∫
dω

2π
e−iωyρN (ω,q) , (C.3.11)

When performing Cauchy integration, the convergence of the function is given by the
imaginary part of the pole. Choosing the right countour one is lead to define the decay
width

Γq = −2

(
bI + aI

M2

ωq

)

ω=ωq

(C.3.12)

Γq can, for given masses, be plotted as a function of q.
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Figure C.8: The decay rate Γq=0 normalized to Γ0 =
K11M1

8π
as a function of q.

C.4 Calculation of the 2-loop self-energy

a) First diagram
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Figure C.9: 2-loop graph a)

Using Feynman rules we obtain

Πab
ij (x, y) = −1

2

∫
d4z[iλ∗i1ǫaf (PR)αθ][iGηθ(z, x)][iλ

∗
l1ǫeh(PR)δη][iδklδdeSγδ(y, z)]

×[iηkj(ǫdcǫbg + ǫdgǫbc)(CPL)γβ][i∆(y, z)δch][i∆(y, x)δgf ] .
(C.4.1)
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Rearrenging

Πab
ij (x, y) = − i

2

∫
d4zǫagǫdc(ǫdcǫbg + ǫdgǫbc)λ

∗
i1λ

∗
k1ηkj (C.4.2)

×(PR)αθGηθ(z, x)(PR)δηSγδ(y, z)(CPL)γβ∆(y, z)∆(y, x) .

Going to matrix for we get

Πab
ij (x, y) = − i

2

∫
d4zǫagǫdc(ǫdcǫbg + ǫdgǫbc)λ

∗
i1λ

∗
k1ηkj (C.4.3)

×PRGT (z, x)P T
RS

T (y, z)CPL∆(y, z)∆(y, x) . (C.4.4)

Using GT (z, x) = −G(x, z), introducing ηkj , renaming indices and suming over them we
have

Πab
ij (x, y) = − i

2

∑

k,p,c,d,e

∫
d4zǫacǫed(ǫedǫbc + ǫecǫbd)

1

Mp

λ∗i1λ
∗
k1λkpλpj (C.4.5)

×PRG(x, z)P T
RS

T (y, z)CPL∆(y, z)∆(y, x) . (C.4.6)

Note that the propagator of the lepton field depends on PL, and enters in ST (y, z)CPL →
ST (y, z)P T

LCPL, this will not have any consequence when we use that P T
L C = CPL. Now,

using some properties of ǫ

ǫijǫmn = δimδjn − δinδjm , (C.4.7)

ǫacǫbc = δac , (C.4.8)

ǫacǫedǫecǫbd = δab . (C.4.9)

These will lead us to

Πab
ij (x, y) = −3i

2

∑

k,p

∫
d4z

1

Mp
λ∗i1λ

∗
k1λkpλpj

×PRG(x, z)P T
RS

T (y, z)CPL∆(y, z)∆(y, x)δab . (C.4.10)

In order to continue, we use the fact that P T
LC = CPL, P

T
RC = CPR and because the

lepton is massles (ml = 0), so that STC = −CS, we have

Πab
ij (x, y) = −3i

2

∑

k,p

∫
d4z

1

Mp
λ∗i1λ

∗
k1λkpλpj

×PRG(x, z)CPRS(y, z)PL∆(y, z)∆(y, x)δab . (C.4.11)

In a general form, we can express the propagator of the Majorana neutrino as

G(x, z) =

(
Tµνσ

µν + VµΓ
µ + Tµνσ

µν +M

D

)
C−1 , (C.4.12)

where C∗ = −C, D is a scalar denominator, Vµ a vector part and M the mass of the
Majorana neutrino. We can see that there is no tensor part, so after some algebra we
are left only with the scalar part of the propagator

PR

(
VµΓ

µ +M

D

)
C−1CPR = −M

D
PR , (C.4.13)
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= −GS(x, z)PR , (C.4.14)

where GS(x, s) =M/D is the scalar part of the Majorana propagator. We finally obtain

Πab
ij (x, y) = −3i

2

∑

k,p

∫
d4z

1

Mp
λ∗i1λ

∗
k1λkpλpj

×GSS(x, z)S(y, z)PL∆(y, z)∆(y, x)δab . (C.4.15)

Writing λabij = −3
2

∑
k,p

1
Mp
λ∗i1λ

∗
k1λkpλpjδab, and dZ = dtzd

3z we have after performing

momentum Fourier transforms

Πab
ij (x, y) =iλ

ab
ij

∫
dtzd

3z
d3q

(2π)3
e−iq(y−x) d

3q′

(2π)3
e−iq

′(y−z) d
3k′

(2π)3
e−ik

′(y−z) d
3p

(2π)3
e−ip(x−z)

×GSp(tx, tz)CSk′(ty − tz)PL∆q′(ty − tz)∆q(ty − tx) . (C.4.16)

We can arrange some exponentials to have
∫
d3ze(ip+iq

′+ik′)z = (2π)3δ(q′ + k′ + p) . (C.4.17)

So now for the self energy can be written as

Πab
ij (x, y) =iλ

ab
ij

∫
dtz

d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
ei(p−q)(y−x)

×GSp(tx, tz)CS−(p+q′)(ty − tz)PL∆q′(ty − tz)∆q(ty − tx) . (C.4.18)

Introducing the external momentum k = p − q, we can make a Fourier transformation

Πab
kij(tx, ty) =− i

∫
d3(y − x)eik(y−x)Πab

ij (x, y) ,

=iλabij

∫
dtz

d3q

(2π)3
d3q′

(2π)3
d3p

(2π)3
d3(z − x)ei(p−q+k)(y−x)

×GSp(tx, tz)CS−(p+q′)(ty − tz)PL∆q′(ty − tz)∆q(ty − tx) . (C.4.19)

the integration over d3(y−x) will give us a delta function (2π)3δ(K−k+ q), so we are
left with

−iΠab
kij(tx, ty) = iλabij

∫
dtz

d3q′

(2π)3
d3p

(2π)3
(C.4.20)

×GSp(tx, tz)CS−(p+q′)(ty − tz)PL∆q′(ty − tz)∆p−k(ty − tx) .

Going now to the countour we have

Πab>
Kij(tx, ty) = iλabij

∫
dtz

d3k1

(2π)3
d3k

(2π)3
(C.4.21)

×[G>
Sk(tx, tz)CS

11
−(k+k1)(ty − tz)PL∆

11
k1
(ty − tz)∆

<
k−K(ty − tx)

−G22
Sk(tx, tz)CS

<
−(k+k1)

(ty − tz)PL∆
<
k1
(ty − tz)∆

<
k−K(ty − tx)] .

Πab<
Kij(tx, ty) = iλabij

∫
dtz

d3k1

(2π)3
d3k

(2π)3
(C.4.22)

×[G11
Sk(tx, tz)CS

>
−(k+k1)

(ty − tz)PL∆
>
k1
(ty − tz)∆

>
k−K(ty − tx)

−G<
Sk(tx, tz)CS

22
−(k+k1)

(ty − tz)PL∆
22
k1
(ty − tz)∆

>
k−K(ty − tx)] .
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b) Second diagram
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Figure C.10: 2-loop graph b)

Πab
ij = −1

2

∫
d4z[iη∗il(ǫaf ǫec + ǫacǫef )(PRC)αδ][iδlkδedSγδ(z, x)][iλk1ǫdh(CPL)θγ]

×[iGηθ(y, z)][iλj1ǫbg(CPL)θγ ][i∆(y, x)δgf ][i∆(z, x)δch] ; . (C.4.23)

Which will give

Πab
ij = −3i

2

∑

k,p

∫
d4z

1

Mp
λ∗ipλ

∗
plλl1λj1S(z, x)GS(z, y)CPL∆(z, x)∆(y, x)δab .

(C.4.24)

All Green’s functions so far are taken on the Keldysh contour. The
∫
d4z has to

be read as
∫
C
dtz
∫ −∞

−∞
dz3. In order to practically perform the integration one has to

break the Keldysh contour into a forward and backward piece. Then propagators and
slef energies turn into matrices Sij, Σij etc. The indices indicate the part of the contour
that the first and second time argument on the function lies on.

Πab>
kij (tx, ty) = i (λabij )

∗

∫
dtz

d3q′

(2π)3
d3p

(2π)3
(C.4.25)

× [S22
−(p+q′)(tz − tx)G

>
Sk(tz, tx)CPL∆

22
q′ (tz − tx)∆

<
p−k(ty − tx)

− S<−(p+q′)(tz − tx)G
11
Sp(tz, ty)CPL∆

<
q′(tz − tx)∆

<
p−k(ty − tx)] ,

Πab<
kij (tx, ty) = i (λabij )

∗

∫
dtz

d3q′

(2π)3
d3p

(2π)3
(C.4.26)

× [S>−(p+q′)(tz − tx)G
22
Sp(tz, ty)CPL∆

>
q′(tz − tx)∆

>
p−k(ty − tx)

− S11
−(p+q′)(tz − tx)G

<
Sp(tz, tx)CPL∆

11
q′ (tz − tx)∆

>
p−k(ty − tx)] .
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Appendix D

List of propagators

Free propagators

• Scalar

∆F,−
q (y) =

1

ωq

sin(ωqy) ,

∆F,+
q (y) =

1

2ωq

coth

(
βωq

2

)
cos(ωqy) ,

∆F,11
q (y) =

1

2ωq

(
coth

(
βωq

2

)
cos(ωqy)− i sin(ωq|y|)

)
,

∆F,22
q (y) = (∆F,11

q (y))∗ ,

∆F,>
q (y) =

1

2ωq

(
coth

(
βωq

2

)
cos(ωqy)− i sin(ωqy)

)
,

∆F,<
q (y) = (∆F,>

q (y))∗ .

• Fermion

SF,−k (y) = iγ0 cos(ωky) +
M − kγ

ωk

sin(ωky) ,

SF,+k (y) = −tanh
(
βωk

2

)

2

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)
, (D.0.1)

SF,11k (y) =
γ0
2

(
cos(ωky)sign(y)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky)− i sin(ωk|y|)

)
,

SF,22k (y) = (SF,11k (−y))∗ ,

SF,>k (y) =
γ0
2

(
cos(ωky)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky)− i sin(ωky)

)
,
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SF,<k (y) =
γ0
2

(
− cos(ωky)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky) + i sin(ωky)

)
.

For massless SM leptons, then the mass should be set to zero M → 0, the energy
ωk → k and a left-handed projector should be multiplied ton the r.h.s of each
equation

• Majorana

GF,−
p (y) =

(
iγ0 cos(ωpy) +

M − pγ

ωp

sin(ωpy)
)
C−1 ,

GF,+
p (y) = −

tanh
(
βωp

2

)

2

(
iγ0 sin(ωpy)−

M − pγ

ωp

cos(ωpy)

)
C−1 ,

GF,11
p (y) =

[
γ0
2

(
cos(ωpy)sign(y)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy)− i sin(ωp|y|)

)]
C−1 ,

GF,22
p (y) = (GF,11

p (−y))∗ ,

GF,>
p (y) =

[
γ0
2

(
cos(ωpy)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy)− i sin(ωpy)

)]
C−1 ,

GF,<
p (y) =

[
γ0
2

(
− cos(ωpy)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy) + i sin(ωpy)

)]
C−1 .

Equilibrium propagators

• scalar

∆eq,−
q (y) =

1

ωq

sin(ωqy)e
−

Γq|y|

2 ,

∆eq,+
q (y) =

1

2ωq

coth

(
βωq

2

)
cos(ωqy)e

−
Γq|y|

2 ,

∆eq,11
q (y) =

1

2ωq

(
coth

(
βωq

2

)
cos(ωqy)− i sin(ωq|y|)

)
e−

Γq|y|

2 ,

∆eq,22
q (y) = (∆eq,11

q (y))∗ ,

∆eq,>
q (y) =

1

2ωq

(
coth

(
βωq

2

)
cos(ωqy)− i sin(ωqy)

)
e−

Γq|y|

2 ,

∆eq,<
q (y) = (∆eq,>

q (y))∗ .
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• Fermion

Seq,−k (y) =
(
iγ0 cos(ωky) +

M − kγ

ωk

sin(ωky)
)
e−

Γk|y|

2 ,

Seq,+k (y) = −tanh
(
βωk

2

)

2

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)
e−

Γk|y|

2 ,

Seq,11k (y) =

[
γ0
2

(
cos(ωky)sign(y)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky)− i sin(ωk|y|)

)]
e−

Γk|y|

2 ,

Seq,22k (y) = (Seq,11k (−y))∗ ,

Seq,>k (y) =

[
γ0
2

(
cos(ωky)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky)− i sin(ωky)

)]
e−

Γk|y|

2 ,

Seq,<k (y) =

[
γ0
2

(
− cos(ωky)− i tanh

(
βωk

2

)
sin(ωky)

)

+
M − kγ

2ωk

(
tanh

(
βωk

2

)
cos(ωky) + i sin(ωky)

)]
e−

Γk|y|

2 .

• Majorana

Geq,−
p (y) =

(
iγ0 cos(ωpy) +

M − pγ

ωp

sin(ωpy)
)
e−

Γp|y|

2 C−1 ,

Geq,+
p (y) = −

tanh
(
βωp

2

)

2

(
iγ0 sin(ωpy)−

M − pγ

ωp

cos(ωpy)

)
e−

Γp|y|

2 C−1 ,

Geq,11
p (y) =

[
γ0
2

(
cos(ωpy)sign(y)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy)− i sin(ωp|y|)

)]
e−

Γp|y|

2 C−1 ,

Geq,22
p (y) = (Geq,11

p (−y))∗ ,

Geq,>
p (y) =

[
γ0
2

(
cos(ωpy)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy)− i sin(ωpy)

)]
e−

Γp|y|

2 C−1 ,

Geq,<
p (y) =

[
γ0
2

(
− cos(ωpy)− i tanh

(
βωp

2

)
sin(ωpy)

)

+
M − pγ

2ωp

(
tanh

(
βωp

2

)
cos(ωpy) + i sin(ωpy)

)]
e−

Γp|y|

2 C−1 .
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Non-equilibrium

• Fermion

S−
k (y) =

(
iγ0 cos(ωky) +

M − kγ

ωk

sin(ωky)

)
e−Γk|y|/2 ,

S+
k (y, t) = −

(
iγ0 sin(ωky)−

M − kγ

ωk

cos(ωky)

)

×
(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)
,

S11
k (y, t) = − γ0

2

(
2i sin(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

− cos(ωky)sign(y)e
−Γk|y|/2

)

+
M − kγ

2ωk

(
2 cos(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

− i sin(ωk|y|)e−Γk|y|/2

)
,

S22
k (y, t) = (S11

k (y, t))∗ ,

S>k (y, t) = − γ0
2

(
2i sin(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

− cos(ωky)e
−Γk|y|/2

)

+
M − kγ

2ωk

(
2 cos(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

− i sin(ωky)e
−Γk|y|/2

)
,

S<k (y, t) = − γ0
2

(
2i sin(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

+ cos(ωky)e
−Γk|y|/2

)

+
M − kγ

2ωk

(
2 cos(ωky)

(
tanh

(
βωk

2

)

2
e−Γk|y|/2 + f eql (ωk)e

−Γkt

)

+ i sin(ωky)e
−Γk|y|/2

)
.
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G−
p (y) =

(
iγ0 cos(ωpy) +

M − pγ

ωp

sin(ωpy)

)
e−Γp|y|/2C−1 ,

G+
p (y, t) = −

(
iγ0 sin(ωpy)−

M − pγ

ωp

cos(ωpy)

)

×



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt


C−1 ,

G11
p (y, t) = − γ0

2


2i sin(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− cos(ωpy)sign(y)e
−Γp|y|/2



C−1

+
M − pγ

2ωp



2 cos(ωpy)




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt





− i sin(ωp|y|)e−Γp|y|/2


C−1 ,

G22
p (y, t) = (G11

p (y, t))∗ ,

G>
p (y, t) = − γ0

2


2i sin(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




− cos(ωpy)e
−Γp|y|/2



C−1

+
M − pγ

2ωp



2 cos(ωpy)




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt





− i sin(ωpy)e
−Γp|y|/2


C−1 ,



120 List of propagators

G<
p (y, t) = − γ0

2


2i sin(ωpy)



tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt




+ cos(ωpy)e
−Γp|y|/2



C−1

+
M − pγ

2ωp



2 cos(ωpy)




tanh

(
βωp

2

)

2
e−Γp|y|/2 + f eqN (ωp)e

−Γpt





+ i sin(ωpy)e
−Γp|y|/2


C−1 .
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