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Zusammenfassung

Die Modellierung von astrophysikalischen Atmospharen tetst der Theorie des
Strahlungstransports spielt eine zentrale Rolle bei derst&ednis und der Untersuchung
derselbigen. Die vorliegende Arbeit beschéftigt sich sgemit relativistischen Atmo-
spharen kompakter Objekte. Photonen innerhalb dieser ggh#iven erleiden eine gravi-
tative Verschiebung ihrer Wellenlange und bewegen sichgallfimmten Bahnen. Der
Strahlungstransport wird dadurch direkt beeinflusst unidedast in dieser Arbeit die
allgemein relativistische Theorie des Strahlungstrarispeerwendet worden. Die Glei-
chung des Strahlungstransports wurde dabei so formutiass die Losung mittels einer
»accelerated -iteration« moglich ist.

Die Berechnungen sind auf rAumlich eindimensionale Pmobleeschrankt, wodurch sich
die Anwendung auf spharisch symmetrische Metriken reduziBer gewahlte Ansatz
ist jedoch auch fur mehrdimensionale Anwendungen geeigveet in der Herleitung der
Strahlungstransportgleichung fur die Kerr-Metrik geteigrd. Des Weiteren wird ein
Ansatz formuliert, der es erlaubt den Strahlungstransipobewegten Medien vor dem
Hintergrund einer statischen gekrimmten Raumzeit zu betben.

In einer ersten Anwendung ist der StrahlungstransportifuGas bestehend aus Modell-
atomen mit zwei Niveaus berechnet worden. Die resultieeridnienspektren hangen
dabei sowohl stark von der zugrundeliegenden Atmosphtidgr, als auch im beson-
deren von der Streualbedo des Kontinuums ab.

AulRerdem ist Kontinuumsstrahlungstransport fur eine els @hgenommene kontinuier-
liche Opazitat berechnet worden. Die scheinbare Tempeasituon der Starke der Streu-
ung abhangig und kann deutlich heil3er erscheinen als dikte# Temperatur der Modell-
atmosphare nahelegt.

Fir die Erstellung realistischer Modelle ist die Integvatides Strahlungstransports in
ein Modellatmospharenprogramm notwendig. Daher ist digiemdein relativistische
Strahlungstransport in den Atmosphéren CBHIEENI X integriert worden. Um die ver-
gleichsweise hohe Rechenzeit des relativistischen Toatsspuszugleichen, ist die Imple-
mentation in Bezug auf Geschwindigkeit optimiert wordeniedist in erster Linie mit
der Einfuhrung einer sowohl schnellen, als auch robustemus& Seidel basierten itera-
tiven Losung gelungen. Die Ergebnisse fur speziell raktische NLTE Berechnungen
der etablierten Strahlungstransportlosung wurden mihdaen Losung erfolgreich repro-
duziert.

Die vorliegende Arbeit beschreibt allgemein relativistien Strahlungstransport in
geeigneter Form fir die Anwendung einer »accelerdtaetbration« als formale Lésung
und stellt eine Implementation innerhalb vVBRIOENI X bereit, die als Startpunkt fur die
Konstruktion realistischer Modelle von kompakten Objekdéent.
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Abstract

The modeling of the radiative transfer is important for tveistigation and the understand-
ing of astrophysical atmospheres. This work specializetheratmospheres of compact
objects. The photons within these atmospheres are subjecgtavitational shift of the
wavelength and propagate along curved orbits. Thesewvislatieffects influence directly
the radiative transfer. Hence, the theory of general resit radiative transfer has been
used in this work. The equation of radiation transport hantermulated in such a way,
that the transfer problem can be solved by an accelergdiéeration.

The calculations are restricted to one spatial dimensiahraquire effectively the space-
time to be spherically symmetric. In formal developmentthui the Kerr metric it has
been shown, that the chosen ansatz for describing the ikeedieansfer is also working in
multidimensional applications. Furthermore, a formwatof radiative transfer in flows
within static background spacetimes has been developed.

The radiative transfer for a two-level atom gas has beenlzbd as a first application. It
has been found that the emerging line profiles not only degenditively on the physical
structure, but also especially on the scattering albedbeotontinuum.

Furthermore, gray continuum transfer has been calculddegending on the magnitude
of the scattering, the apparent observed temperature npgaagignificantly higher than
the effective temperature of the model atmospheres.

In order to construct a working code base for the constroaifaealistic atmosphere mod-
els, the general relativistic radiative transfer has begiemented in the atmosphere mod-
eling codePHOENI X. Since the general relativistic radiative transfer is mooenputa-
tionally costly than the standard radiative transfer sayéhe implementation has been
optimized for speed. A robust and very fast solver for then@rsolution of the radiative
transfer has been implemented. It is a Gauss-Seidel typaivie solver that uses im-
proved initial guesses to minimizes the iterations neeéethlly, the new radiative trans-
fer framework has been tested in special relativistic NLaEglations and has identically
reproduced the results of the standard radiative transfer.

In conclusion, this work describes the general radiatigedfer equation in a form suit-
able for the use for an acceleratédteration and provides an implementation within the
framework ofPHOENI X, which does serve as a starting point for the constructiaeaif
istic models of relativistic atmospheres.
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Chapter 1

Introduction

Astronomy is mostly based on the observation of objects d@h@mena outside of the
atmosphere of the Earth. The observations are complembypteoth analytic and numer-
ical theoretical models. The physics and the physical patars used as an input for these
models allow the interpretation of the observations by matgthe observational data with
the theoretical predictions.

Most astrophysical objects are observed via the electrostagyadiation they emit. There-
fore, the theory of radiative transfer is a key element ferahderstanding of the radiation
and physical structure of these objects. In [Mihalas, DO3}@ summary of the progress
made within this field in the 20th century is given.

The classical equation of transfer first described by Sen{iSthuster, 1905] has been ex-
tensively used to describe the radiative transfer for pstysical atmospheres, mostly stars.
The theory needed for the description of radiation trartspanoving media was first given
by Thomas [Thomas, 1930], but was effectively introducetthéoscientific community in a
comoving formulation in [Mihalas, 1980]. An inherently @nant formulation for the de-
scription of general relativistic radiative transfer waarid by Lindquist [Lindquist, 1966]
with the aid of the Boltzmann equation.

Through the advent of modern computers the radiative teartsfs been calculated with
a level of physical realism unmatched before, including databases for opacities and
NLTE! treatment. One of the main obstacles in the radiative tesimabdeling has been
the inclusion of scattering into the calculations. An effidi solution has been found in
an operator splitting method called acceleratederation. This powerful tool has been
established as a de facto standard in the modeling of staticpecial relativistically ex-
panding atmospheres (see [Hubeny, 2003] for a review), asitnot been applied to the
general relativistic radiative transfer problem before.

Nonetheless the covariant formulation of Lindquist pr@dd base for numerous applica-
tions. However, the applications have been geared moredswadiation hydrodynamics
utilizing moment equations and the inclusion of fluid motidnderson and Spiegel, 1972,
Castor, 1972, Schmid-Burgk, 1978, Shapiro, 1996]. Withwek of [Schinder, 1988,
Schinder and Bludman, 1989] the ansatz of a tangent rayigolut the comoving frame

LAbbr.: non local thermodynamical equilibrium. See Secdh1



CHAPTER 1. INTRODUCTION

[Mihalaset al., 1975, Mihalas, 1978] has been adopted in general relatitiansfer from
special relativistic modeling. The use of a solution thdwes the transfer along character-
istics is well suited for curved spacetimes, because thdibgrof the photon paths and the
subsequent imaging within the spacetime can be fully adeolfior. The transfer has only
been formulated for static spacetimes at that point, butvtrd of [Zaneet al., 1996] has
generalized the ansatz further to include the treatmenrglafivistic flows in background
spacetimes. The radiative transfer in these developmes been geared towards the
sole use of continuous opacities. The present work incluagistive line transfer, which
requires a different ansatz in the formulation of the eaqumatif transfer.

Schinder and Bludman [Schinder and Bludman, 1989] reatizatthe presence of Killing
vectors in the spacetime can be exploited to express the @uwenps of the photon mo-
menta in terms of constants of motion. Therefore, the enefdlie photons and the di-
rection within the local comoving frames can be expressethbyadial coordinate alone
for spherical symmetric metrics. The reduction of the iretegent variables to only one
simplifies the problem enormously. As the energy of a photgpedds on the position
within the atmosphere, a comoving wavelength parameteizavill constantly change
along the characteristic. This is of little relevance agjlas no spectral lines are to be
resolved throughout the atmosphere. Otherwise a prolebjtlarge number of additional
wavelength points must be inserted into the wavelengthnpaterization. The treatment
of spectral lines in the radiative transfer calculationdasirable, however, and is included
in this work. Therefore, this work avoids the use of the cant of motion and instead
uses a comoving description of the photon momenta, whictbeahescribed with a fixed
comoving wavelength grid throughout the atmosphere. Thsa& requires an explicit
coupling of the wavelengths within the equation of transtdre coupling of wavelengths
is also present in special relativistic cases and is corlgawith the established accel-
eratedA-iteration methods and NLTE solving frameworks [Hausdhaldd Baron, 1999].
Therefore, these established methods are applicable ¢getteral relativistic problem. The
aim of this work is to solve the equation of general relatizisadiative transfer via a char-
acteristic method with the aid of an acceleratederation. This allows for the solution
of the radiative transfer problem throughout the atmosphed is not limited to the imag-
ing of classically calculated spectra in curved spacetirik vadiative transfer functions
[Cunningham, 1975]. For the first time the effect of geneedativity on the NLTE line
transfer itself can be investigated. The calculations is work are restricted to spherical
symmetric calculations, but due to the generality of theatt@ristic method the radiative
transfer can be generalized to multiple dimensions. Intaagian ansatz is developed to
describe the general radiative transfer in flows in statakeound spacetimes in order to
provide a broadly applicable solution for the general reistic transfer problem.

In order to be able to construct physical models, a sophigiitatmosphere modeling code
is required. The®PHCENI X package was chosen in this work and the implementation is
compatible with the use within its framework.

A possible application is the modeling of the atmosphereeatron stars. The state of the
art model atmospheres are already very sophisticatede gangnstance the treatment of
strong magnetic fields and relativistic imaging is includ8eée [Zavlin and Pavlov, 2002]



for a summary. However, none of these models utilizes géraadivistic radiative trans-
fer within the atmosphere. The magnitude of the generativeddc effects are a priori
unknown, it is thus desirable to use as sophisticated medgi®ssible to better determine
the properties of neutron stars in order to constrain thikzeshequation of state and the
interior structure of neutron stars [Yakovlewal., 2002].

[Broderick, 2006] also realized the importance of geneetdtivistic transfer in compact
objects and devised a new method of solving the radiativestes along photon orbits.
However, the solution is not capable of treating scattemvitat is a very important ingre-
dient for astrophysical modeling and especially in neustam atmospheres [Madej, 1974].
Another possible application is the neutrino transportteila core collapse and neu-
tron star formation calculations [Wilson, 1971, Bruenn83P It has been found that
the inclusion of general relativity is important in this ¢ext and the neutrino transport
should also be calculated within the framework of genenalirety accordingly. The re-
sults of fully general relativistic radiative hydrodynaral calculations [Baroet al., 1989,
Bruennet al., 2001] could be improved with the more sophisticated metsfablution for
the transfer.

Furthermore, the theory of relativistic radiative tramsfpplies to all scenarios where com-
pact objects are involved, such as black hole accretion, Ag8l§Jamma ray bursts. These
systems should be described in multiple dimensions usthgtian hydrodynamics. More
immediate one-dimensional applications based on this watkide the calculations of the
radiative transfer across shock fronts or spectra fromftinming regions that are restricted
to an one-dimensional description.

This work is organized as follows. Chapter 2 gives an overaeer the physical quantities
needed to describe the radiative transfer. These inclugleattiation field itself as well
as the coefficients describing the interactions of radmatiath matter. The equation of
radiative transfer is discussed in detail in Chapter 3. At fit is formulated for general
base coordinate systems and locally spherical polar coates in the description of the
photon momentum. The equation of transfer is then expligitlen for comoving spherical
symmetric metrics, reproducing the result of Lindquist, foumulated in terms of specific
intensities. Furthermore, the equation of transfer is kgex for the Kerr metric and an
ansatz for the inclusion of flows in the equation of radiathaasfer in static background
spacetimes is developed and explicitly calculated for &lyguadial flow in Chapter 3. In
Chapter 4 the description and calculation of the photori®rigeded for the solution of the
radiative transfer are discussed. Details on the formaitiswl of the radiative transfer and
the operator splitting technique used in this work are gingbhapter 5. The results of test
calculations of the new general relativistic transfer iesting environment are presented
in Chapter 6, while the integration into an existing atmasphmodeling code and large
scale tests are discussed in Chapter 7. Finally in Chaptee 8esults are summarized, put
into perspective and an outlook is given.
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Chapter 2

Radiation Fields

The aim of the theory of radiative transfer in the context str@ohysics is the under-
standing of the energy which is transported by radiatiomwviastrophysical objects. The
radiative energy emitted by these objects is of speciatestebecause it can be observed
directly.

Hence it is natural that the main quantity of radiation tEorsdescribes an energy. Itis the
energy that is emitted in the from of photons into a solid arajla given spatial point from
a surface element per second and per wavelength of the hdibis quantity is called the
specific intensity. If it is known at every point of an astrgpital object the energy which
an observérwill receive can be calculated in genéral

Therefore, the specific intensity is the quantity which ismpaited in the theory of radiative
transfer. It should be pointed out that the knowledge of gedic intensity is a sufficient
condition in order to describe the emitted energy. The $igdaotensity can be calculated
if the emitting and absorbing properties of the atmosphexé&maown. It is also commonly
said that these properties — or their ratio — are the questdf the theory of radiative
transfer which must be computed.

In order to be able to formulate a mathematical theory ofatal transport additional
quantities and their relations to physics must be known.hénfollowing sections these
relations will be briefly introduced.

In Section 2.1 a mathematical introduction to the specifiensity and its related quanti-
ties is given, as well as an overview of the treatment withim framework of an energy
momentum tensor. The implications of spherical topologfesical symmetry, and the
corresponding coordinate systems for the description efsthecific intensity are intro-
duced in Section 2.2. Section 2.3 gives an overview overrttegaction of radiation with

matter and the associated quantities. The rate equatioith wbscribe the state of the
matter are discussed in Section 2.4 and useful definitiangtbative transfer are made in
Section 2.5.

1The position relative to the source must be known, howevéierQt is assumed that the observer is at
infinity.

2In spherical symmetry less information is needed and therwhble energy is described by the Edding-
ton flux (see Section 2.2).
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2.1 The Mathematical Description of Radiation Fields

Radiation consists of photons and the radiation field candseribed as a gas of photons.
Such an ensemble of photons is physically described by atdigon function f (¢, %, p)
[Landau and Lifschitz, 1987]. Witl (¢, Z, p)d*p being the number of photons at the time
t, at the pointz, and with a momentum withi(y, p’'+ dp).

Since, except for their energy, the properties of the preotare not directly observ-
able, another way to describe the radiation field is frequamded. The specific inten-
sity I(t,Z, A\, 1) is the energy that is transported by radiation in the wagtlemterval
(A, A+ d)) across a surfacéS during a time intervadl¢ into a solid anglel(2 around the
directionri. The differential expression for the energy is [Mihalas/@P

dE = I(t, 7, \, 1) (45 - @) dQ dX dt (2.1)

Due to the macroscopic equivalence of the distribution fioncand the specific inten-
sity, there has to exist a relation between these quantitidse energy of photons is
determined by their momentum and thus the distribution ionccan be used to de-
scribe the transported energy. Since photons move withghedsof light — — it fol-
lows thatcdt photons cross a surface element in the tihearrying the energ;lg—c with

them andh being Planck’s constant. Using the relatidfy = —’;—idAdQ, it follows
[Ehlers, 1971, Mihalas and Weibel-Mihalas, 1984]

2h

dE = Tf(t,f,ﬁ)d?’ﬁ(dﬁ-ﬁ) dt (2.2)
c2ht =
AE = ——5f(t,7.\7) (5 7i) d2 dX dt (2.3)
A h?
- I)\(tafa _’) = EF (tafa)‘aﬁ) (24)

Due to the change of the differential the arguments of th&idigion function in (2.3)
formally changed. The minus signs originates from the faat the momentum decreases
for increasing wavelength.

The equivalent formulation of Equation (2.4) with frequgimtstead of wavelength reads

h*3

c2

f(t, % v, i) (2.5)
The distribution functionf (¢, Z, p) is a Lorentz invariant and can be generalized to a co-
variant formf (z*, p*) [van Kampen, 1969, Misnet al., 1973] with

h
ot = (T7 f) 7and pﬂ = X(luﬁ)

and in the following this new form will be uséd

3If interactions of the particles described with the disitibn function with the matter of the atmosphere
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The distribution function and the specific intensity regpety contain the complete in-
formation of the radiation field. As long as only the transparenergy is of interest,
the radiation can be considered a classical field and theytleddhe energy momentum
tensor is applicable [Landau and Lifschitz, 1997]. Theatidn energy momentum tensor
of the photon gas [Landau and Lifschitz, 1997, Mihalas antb@leMihalas, 1984] can be

defined as )
[e” m,p « -
Tﬁ=0/7p0 pp’d’p

Formulated in terms of the specific intensity it reads

1 A2
TP — = / d\ / dQIL(Z, 71, t) " p” (2.6)
c h
1 Ny Ny n,
1 2
—- = / dA / AQL(z,7,t) | e e Tl Nl 2.7)
C Ny NNy Ny NyN,
Ny NNy NNy nz
E F
= Foop (2.8)

The energy momentum tensor describes the density and theffturergy and momentum.
Hence its components play an important role in the theoryadfation transport. Their
fundamental definitions are:

E is the total radiation energy density. It can be expressechastegral over wavelength

E:/EAd)\

whereF), is the monochromatic radiation energy density.

1
Ey = —j{h(f,ﬁ,t)da

C
ch? dp
By = ¢ (=28 fam p)an

The quantityﬁ is the integrated radiation flux. It can be expressed as thgral
F= / FydA

with FA being the monochromatic radiation fluxlﬂ can be expressed in terms of the

are included, the strict Lorentz invariance breaks dowe. S&ction 3.1 and [Oxenius, 1986].
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distribution function and specific intensity

B = j’{ 1\(Z, 7, t)dQ
- h* dp

= — | = H P\
£ fAB ( dA) fla*, p")RdQ

Note that in the definition oﬁA a factor of% was omitted and instead has been included in
the definition of7*8. With this definitionF is a vector which integrated over an area gives
the energy flux through this given area ahdis strongly related to the energy received by
an observer.

P is the total radiation pressure tensor. Its integral dption reads

P = / PYdA

P} is called the monochromatic radiation pressure tensor.estidbes the number of
photons of the given wavelength which cross unit areas pelipelar to thejth coordinate
of theith momentum variable.

y 1
P —fIA(:E,ﬁ,t)ﬁQ@ﬁdQ

2.2 Radiation Fields in Spherical Topology

Many astrophysical object — such as stars for instance —dnapéerical shape. Therefore,
spherical polar coordinates are often the best suited owardsystem in radiative transfer.
In the theory of general relativity, coordinates must beripteted as coordinates on a
manifold. Additional mathematical structures, such aglamental forms, prohibit identi-
fications with coordinates known in Euclidean space. Howelie concept of symmetries
does carry over into coordinates of manifolds. Hence thm&bnotation that is used in the
following can be retained for descriptions of radiativensger in curved spacetimes.
Therefore, coordinate systems in flat and curved spacetiayeresemble each other. But
it should always be kept in mind that they can not be identdiedne coordinate system.

In spherical coordinates, a spatial point is described lBetlsoordinates
P = (xlu .1'2,373) = (T7 @7 (I)>

with r as the radius® as the polar angle, an®l as the azimuth. At the given poiiit a



2.2. RADIATION FIELDS IN SPHERICAL TOPOLOGY

11

local orthonormal coordinate system can be simply conttic

3]

€; =
8.’172‘

Instead of describing local vectors at the paihin these Cartesian coordinates, another
set of spherical polar coordinates is introduced

P/ = (?/171927?/3) = (T’,Q’gp)

An important vector in this coordinate system that is usati@radiative transfer theory is
the direction of propagation of the specific intensityOnly the direction is important so
the radial coordinate is dropped

= (0,¢)
From this it follows that the specific intensify(t, &, 77) in spherical topology is written as

I)\(t7 T? @7 ¢7 07 (p)

Often spherical symmetry is assumed and this results in pli$ied description of the
specific intensity. The physical conditions will only depleon the radial coordinate
and the dependence @®, ®) can be dropped. A change of the logalcomponent is
equivalent to a change of the local basis vec%*sanda% and thus a variation ap just
means a combination of vanishing variationso&nd® [Chandrasekhar, 1950].
Therefore, the radiation field becomes independent froifhe remaining local coordinate
0 is usually replaced by its cosine

= cosf (2.9)

When assuming spherical symmetry the integration oved soigle is possible for the
partial integration ovedyp. The remaining integrals of the specific intensities ayyelare
called the moments of the radiation field [Chandrasekh&01®ihalas, 1970].

OB = 5 [ B 210)
0 HOEO] = 5 [T ([ o) o @

The exponent of: in the integral determines the name of the moment. Accolgirgis
the zeroth moment of the radiation field. It is closely refai@the monochromatic energy
densityE),

C
Jy=—FE
A 471')\

4This coordinate system is called natural or induced basistagoncept is also applicable for coordinates
of manifolds.
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The first moment is also called Eddington flux and is relatetiéomonochromatic radia-
tion flux.

HA(T’) = ﬁFzA(T)

The moment of order two is also known as the K-integral. Thieesipally symmetric
radiation pressure tensor is related to the zeroth and denoment

M- Ky 0 0
Py == 0 L =Ky 0 (2.12)
0 0 K,

From Equation (2.12) it is obvious that the radiation fieldl e isotropic whenk, =
1/3.J, and K, can be interpreted as the radial radiation pressure.

In spherical symmetry the radiation energy momentum tewcsor then be expressed
through the various moments and reads in a Cartesian basgirtaie system

J 0 0 H
ir [ 0 LJ-K) 0 0
af _ 20 2
= c| O 0 WW-K) 0 (2.13)
H 0 0 K

For expression in spherical coordinates the tensor hastrahsformed with the metric of
spherical coordinates. The radiation energy momentunoterads then

J H 0 0
o 47 | H K 0 0
T8 — 0 0 %(J_QK) 0 (2.14)
) (J-K)
0 0 0 % r2sin? ©

2.3 Interaction of Radiation with Matter

If matter is present within a radiation field the radiatiorlwiteract with the matter. The
interaction of photons with atoms (or molecules) and etexdrare of quantum mechan-
ical nature and the theory of quantum mechanics must be wasddscribe the physics.
However, the macroscopic results of the interaction cdhb&tidescribed by the specific
intensity and macroscopic coefficients.

The processes between matter and radiation are manifoldaoube separated into two
basic cases. If we adopt the description by the specific sitiethe relevant quantity is the
energy in a given beam of radiation. An interaction can besifeed whether it removes
or adds energy to the beam. The interactions that removegyefrem the beam are called
extinction processes and the interactions which add enargyeferred to as emission
processes.

An extinction process can be distinguished further: Eithere is another photon present
after the interaction or the photon is destroyed.
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The processes which retain a photon are called scatterirggaering process is still an
extinction since the direction of propagation of the two foims may be different and hence
energy is removed from the beam.

Processes that destroy the photon are called absorptephibiton increases the internal
energy of the absorber. Since the atoms and electrons &sachamong themselves, the
energy is statistically distributed over all atoms and tetets via collisions. The energy of
the absorbed photon is said to be added to the thermal poot @fas.

All extinction processes at a given wavelength are desgrilyea macroscopic extinction
coefficienty, which is also called the opacity. The energy removed fromaarbef radia-
tion along the distancés reads

AE~ = (&, 7) [\(Z,7) (dS - 7@) dQ dX ds (2.15)
The opacity is further divided into a scattering paytand an absorption pat,.

XA(Z, 1) = ox(Z, 1) + k(T 1) (2.16)

The emission processes can also be divided into several fdrmal emission, scattering
emission and stimulated emission. Thermal emission isp@ddent of the radiation field
present. The gas of atoms has a thermal pool of kinetic erardyndividual atoms are in
excited states that may emit photons. This process is tieesawf the absorption described
above.

Photons of other beams can be scattered into a given beannaihetp scattering emission.
The radiation field can also perturb the exited states of atand cause the emission of
photons. In this case, the energy and direction of the plsaom correlated and the rate of
this stimulated emission is proportional to the radiatiefdfi Therefore, it can be described
as negative absorption and is typically included in theretion coefficient.

The macroscopic coefficient of the emissiom— is also called the emissivity. The energy
added to a beam is then given by

dEY =gy (Z,7) (A4S - 7) dQ dX ds (2.17)
The emissivity is further divided into a scattering pgftand a thermal pariy.
ﬁx(faﬁ) :ni<fa ﬁ)+n§<fv ﬁ) (218)

The coefficients in the relations (2.16) and (2.18) includetgbutions from transitions of

all bound and continuum states of the different atoms ane:cubés in the gas.

In order to calculate these wavelength dependent coefficahtransitions which encom-

pass the energy at the given wavelength have to be considéhedcross sections of the
transitions are either known from theory or from experinseitowever, the possibility for

a transitions to occur is only known when the occupation nensbf the various states of
the atoms are known.

In some cases the occupation numbers can be derived frastisedtmechanics (see Sec-
tion 2.3.1) but must in general be determined by solving #te equations for the given
species (see Section 2.4).
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2.3.1 Applicability of Statistical Mechanics

The Boltzmann distribution describes the probability ofsaom or molecule to be in a
certain statén) and can be used to describe the probability for the accomlbegpation
number with degenerate states taken into account [Landhuitsthitz, 1987]. The appli-
cation of Boltzmann statistics demands that the gas carebeett as an ideal gas and is in
thermal equilibrium. That means that there are no mutuaraations of the constituents
other than elastic collisions.

Since in astrophysical atmospheres besides the intenastib the radiation field inelastic
collisions occur frequently and the statistic is not apgdie in general. The radiation field
and the collisions cause different transitions within asnaor molecule and influences
the occupation numbers of the participating states. Sinedlifferent level populations
change the emissivity and opacity, the radiation field clanfgrough the interactions. The
coupling of radiation and matter is a nonlinear process. ddehe radiative transfer can
in generally only be solved if it is coupled to the rate equadi (see Section 2.4) which
explicitly describe the population and depopulation ofesan the atoms and molecules.

In some situations the Boltzmann statistic is still apdiea If the rates of the population
and depopulation are equal to their thermal equilibriunesathen also the population
numbers will have their thermal equilibrium values. In thai equilibrium every transition
is exactly canceled by its inverse process. This situadmown as detailed balance.
Due to the different mechanisms which cause transitioresydkes consist of two parts.
On the one hand there are collisional rates and on the otber Hre radiative rates. The
collisional rates occur at their equilibrium values as lagthe gas of the colliders is
described by a Maxwellian distribution. Since this is tydig true for astrophysical gases
considered here the collisional rates drive the level pagparh toward their equilibrium
values.

The radiative rates depend directly on the radiation field &l be different from their
equilibrium values as long as the radiation field is not Pkeart. If now the collisional rates
dominate the radiative rates the occupation numbers wik tiageir equilibrium values and
the Boltzmann formula can be used to determine the levellptpos.

If detailed balance holds for all transitions or the coflial rates dominate the situation is
calledlocal thermodynamic equilibrium (LTE) whereas the general case is termedas
local thermodynamic equilibrium (NLTE). Note that the rates are different from species to
species and the approximation of LTE may be valid for only sahthe species. There-
fore, there may be a mixed treatment of species in regarceaisk of LTE.

For LTE analytic relations between the emissivity and ofyacan be found. Since in
thermal equilibrium the Kirchoff-Planck relation is validthich states that the absorbed
energy equals the emitted energy, the thermal emissivitlytaa absorption are simply
related by

W5 (2. 7) = Ka(T, ) BA(Z) (2.19)

5This may also apply for species which do not have a large tptut depends strongly on the micro-
physical state. In these cases the treatment in LTE is jetifi reduce the computational time.
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In the following "starred" versions of occupation numbeseq for instance relation (2.34))
are calculated with the Boltzmann or Saha-Boltzmann foabut use actual (NLTE) num-
bers of electron density and occupation number of the coatn

2.3.2 The Redistribution Function

A similar relation to expression (2.19) for the thermal esivdy holds for the coefficients
of the scattering emissivity and opacity. However, in orteformulate the relation the
scattering process itself must be described in detail.

The scattering of a photon with the basic propertigs \') into a photon with(7i, \) is
described by a normalized redistribution function [Milgl&970]R(\', A, 7', 77) with the

basic property
d§Y d§2
%%// RN\ i, m)dNdA =1 (2.20)
Am 4T

The energy of a bound-bound transition is not sharp and teadsdescribed by profile
functions with finite width. In general, the profiles for esi@n and absorption may be
different. Theses profiles are contained witlinThe profile for absorptio® is obtained
by integration ofRR over the outgoing wavelengths and solid angle, whereasnh&ssn
profile ¥ is obtained by integration over incoming wavelengths ariid smgle.

0

B N) = 7{/ ROV, A, i *dAj— (2.21)
- / - = /dQ/

U(i,\) = RN\, 7', i)dA 1 (2.22)
T

If the scattering opacity (7', 7i') is known the scattering emissivity (Z, 77) is given by

dqy

N3 (Z,7)dAdQ) = dAdQ 7{ / N N ) RN\, 7 “)d)\’ (2.23)
In practice, the redistribution functioR()\', \) is frequently averaged over solid angle
since the main interest lies in the wavelength distributitime integration over solid angle
then only applies to the specific intensity

S (%, 7)dAQ = dAdQ / @) T (@ N)VRN, \)dN (2.24)

With the properties (2.21) and (2.22) the averaged retigion function can be written in
case of no correlation of the absorbed and emitted photons as

RN, \) = ®(N)T(N)

This case is called complete redistributio®if\) = ¥(\) holds. Itis, for instance, a good
assumption when the time of the interaction is long enougleddisions to occur, which
redistribute the excited electron to the degenerate stdssvathe upper level whereby any
correlation is removed.
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The opposite case of full correlation is called coherenttedag, it does not change the
energy of the photons. Then the redistribution functionveig as

RN, \) = ®(N)5(A—N)

whered (A — \') is Dirac’s delta-distribution.

In general, the redistribution function not only dependdtu transition but also on the
physical conditions and possible perturbers. So the besiqdl description ofR will
depend on the situation and will be a mix of the aforementiaeelistributions.

2.4 Rate Equations

The assumption of LTE is not valid if the influence of the raidia field is a too large
perturbation and the radiative transitions are not in tedabalance {, # B,). Then
the occupation numbers of the different states of the at@msflecules) must be deter-
mined through the solution of the rate equations. This isacnarily referred to as NLTE
calculations.

In order to describe the rate of a process, the cross sectidhd process must be known.
The cross sections are given by quantum mechanical catmgabr by experiment. In
general the cross section may depend on solid angle, butamerén the following we
assume isotropy.

Einstein introduced three coefficieds;, B;;, andB;; for transitions between two bound
states|i) and|i). The coefficients are simply related to the cross sectiortHergiven
transition and process.

A;; describes the spontaneous emission probabilitythe stimulated emission probabil-
ity, and B;; the absorption probability [Mihalas and Weibel-Mihala884]. Following de-
tailed balance arguments [Mihalas, 1970], the followingtiens between the coefficients
can be found

3
a2y (2.25)
ji 2 i
Bij _g;
Zi % s Bigi = Bag; (2.26)
Bi g J ji9j

whereh is Planck’s constant;v;; the energy difference between the staigsind|:), and

g the statistical weight of the given state.

The Einstein relation has been generalized by Milne [Misal®70] to transitions between
bound|:) and continuum statés). The velocity of the free electrons is chosen to describe
the continuous energies of the unbound states. The pralydbil a photoionization by a
photon with energy.v = % is calledp,.

Transitions between unbound states — for instance freetfamsitions — are possible but
do not effect the occupation numbers and the according aagerot included in the rate
equations.
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With a symbolical description of transition probabilitise rates of the different transitions
can be specified as following

R, = Aji+Bji/ </R(/\,X)d)\’) I,d\ (2.28)
Rm = 47T/p)\J)\d)\ (229)
2hc?
R, = 47 [ pa| Iy + E exp (—he/kTX)dA (2.30)
Whereas the collisional rates read
Cijts) = Me / Tij(e)f (V)vdv = negije) (1) (2.31)
vo
Tn; *
Cimyi = Neij(r) (1) (2.32)
N (k)

with o being the cross section arfdv) the velocity distribution of the colliders. From
Equation (2.31) it can be seen that the flux of the collidgia) determines the collisional
rate.

The rate equations can be derived as follows. For a givea aththe rates of transitions
that depopulate the state are subtracted from the raterHti@ns that populate the state.
The result is the change of the occupation number with tinhe. rate of actual transitions
is the product of the radiative of collisional rate with trezarding occupation number of
the initial state of the transition.

The rate equations read then

dni
i#£] 1#]

where the following definitions are used

’ﬁij = TLZ'RZ']' — TLJ‘R]-Z‘
¢ = nCi; —n;Cy
%ili = niRin - nliRliZ'

(8

ik nicm_nncm

The rate equations are balancing equations for the ocaupatimbers for the different
states of the ion. Typically the balance is assumed to biestat so thaf% =0.

The influence of the NLTE calculations on a given level in anmnais described by the
departure coefficiert;. Theb; is defined as the ratio of the actual occupation number and
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the starred occupation numBer
1

b = — (2.34)

*
n;

The index: refers to the level of the ion at hand. If thedeviate from one the approxima-
tion of LTE is not valid and the solution of the rate equatisainecessary to determine the
opacities correctly.

2.5 Optical Depth and Source Function

The use of purely spatial variables is not well suited for diescription of lengths in at-
mosphere. This is due to the fact that no information abaaitriteraction with the matter
is included in the description. Therefore, the concept aicapdepth is introduced in the
context of radiative transfer.

The optical depthr is defined as the path integral of the opacityalong some path
through the atmosphere.

™= / Xa(s)ds (2.35)

Since the opacity is wavelength dependent the optical dsptlavelength dependent as
well. As the inverse of the opacity can be interpreted as teamiree path of a photon
with the given wavelength the optical depth equals the nurobenean free paths along
the pathy.

For the construction of numerical atmosphere models ongseeeoordinate grid on which
the physical quantities are discretized. In spherical sgtmyronly a radial grid is needed.
This grid is most conveniently constructed with the use ef diptical depth as a radial
coordinate. In this case the paths just the depth in the atmosphere. It is customary to
define the start point of the path at the outermost point oathesphere. Since the spatial
radial coordinate increases outwards the definition fodafaptical depth grid reads

d = / xa(s)ds (2.36)
0

The equation of radiative transfer (see Chapter 3) is iniggparameterized with an affine
parameter that can be related to the optical depth.

A useful definition in the theory of radiative transfer is $wurce function. It is defined as
the ratio of emissivity and opacity at a given wavelength.

Sy = (2.37)
XA

Hence the source function describes whether energy is ddaedemoved from the radi-
ation field.

6See Section 2.3.1. Note that in the literature the starredmation numbers are sometimes also defined
as occupation numbers derived within a purely LTE framework
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For the case of coherent scattering the source function)qaiciély be written as

K\ O\
Sy = B, + J 2.38
A Ii)\—FU)\ A li)\—i-O')\ A ( )
S)\ = €B>\+(1 —E)J)\ (239)

The parameter is called the thermal coupling parameter and determinegdhementage of
photons which are not scattered but absorbed. In the casewbescattering is present —
e = 1 —the LTE approximation is sufficiently valid and it holds

S\ = By (2.40)

The form of Equation (2.39) is of special importance as irespnts a general form of
the source function. If an additional opacity in form of a rayherently scattering line is
introduced in the given wavelength range and it is assumedatifraction(1 — ¢”) of the
photons are scattered in the line then the source functioteavritten

Xa = KxF0x+ Xine®Pa (2.41)
m = kaBx+oxdy + € XiinePaBy + (1 — €") Dy / Xiline ¥ xJJndA

(2.42)
=5\ = E,B)\ + (1 — EI)J_)\ (2.43)

The form of Equation (2.39) is retained. However, the debniof the thermal coupling
parameter has gotten more complicated. In order to achiesecompactified form the
mean intensity had to be averaged over the absorption podtites line and the continuous
scattering. For the rest of this work and the further treatroéradiative transfer the source
function can always be assumed to be of the form (2.43).
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Chapter 3

Theory of Radiation Transport

The theory of radiative transfer for atmospheres in flat spane is customarily derived in a
heuristic manner using the definitions from Chapter 2. Trange of the energy of a beam
of radiation in an infinitesimal element of matter is balathbg the emissivity and opacity
within the element. The unbalanced rest of the energy ispreééed as the infinitesimal
change of the specific intensity along its infinitesimal gatiough the element.

The resulting differential equation is extended to all gdqioints and holds for a given
moment in time. This form of the equation of radiative tramsé thus not suited for use in
the framework of general relativity. The lack of a covarifomtnulation and the assumption
of an absolute time are contradicting the principles of gamrelativity.

A description of the transfer of radiation in general reléyi must use an ansatz which
includes more information about the physics at hand. Thedation of general relativistic
radiation transport was laid down by [Lindquist, 1966]. Hed kinetic theory to describe
the radiation field as a gas of photons and used the Boltzmamatien to describe the
dynamics of the system.

Classical radiative transfer is formulated in local coonedé systems in which spherical
polar coordinates are introduced to describe the locahtixti field. In order to follow this
route, Lindquist utilized the tetrad formalism which all®ane to pick an orthonormal co-
ordinate system at every point in the tangent space of theerbasifold. In this coordinate
system one can introduce the spherical polar coordinatesuas.

In this chapter the fundamental equations for the transgfardiation will be presented.
The equation of radiative transfer will be motivated as tloétBnann-equation with colli-
sions for the distribution function in Section 3.1.

After changing to the specific intensity picture the genfyah of the equation of radiative
transfer for a comoving wavelength description and exjjiconstructed local coordinates
is introduced in Section 3.2.

Section 3.3 gives an overview over the explicit equationsagliative transfer for flat,
Schwarzschild, and Kerr spacetimes.

The radiative transfer is extended to relativistic flows éct$n 3.4 and in Section 3.5 an
overview over the influence of the presence of a magnetic titetde radiative transfer is
given.
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Notation information In the following a semicolon;” will denote a covariant derivative,
Greek indices will run fron to 4 unless noted otherwise, and tetrad components indices
will be enclosed in parentheses.

3.1 The Boltzmann Equation as the Equation of Radiative
Transfer

The equation of radiative transfer must be written in a galngay so that it can be formu-
lated covariantly. The classic derivations of transferagguns for the specific intensity in
static or moving media as for instance in [Mihalas, 1978)Gitgndrasekhar, 1950] rely on
a heuristic derivation as just energy conservation is uselttive the equations. The time
dependence is added as in Newtonian physics and is not $oiteglativistic systems.
As demonstrated in Section 2.1, the picture of the specifensity is equivalent to the
description with a distribution function. The distributidunction can be generalized into
a covariant form. If at first the radiation field is assumed ¢msist of noninteracting
photons then the basic equation of kinetic theory — thesiohiless Boltzmann equation —
is applicable to the problem.
The Boltzmann equation is a consequence of Liouville’s tteo Since the phase space
volume and the number of particles are constant along thegu@ace trajectory, the num-
ber density in phase space or the distribution function rstant.
This situation generalizes into spacetime where at a giventen observer can also mea-
sure the phase space volume and the number of photons in hifrawe. This volume
is also constant along any given geodesic [Misstal., 1973] and hence the Boltzmann
equation also holds in spacetimes
df oy —

where¢ is an affine parameterSince the distribution function is a scalar there is no need
to apply a covariant derivative in Equation (3.1).
However the case of a collision free photon gas is of no istebecause we want to calcu-
late the variation of the distribution function through spame. In classic kinetic theory
interactions are summarized in a collision term that wipeled on the distribution function
itself. Since several points of the phase space may cotdrtbuthe collisions the term is
generally an integral. Therefore, the Boltzmann equatiecoines an integro-differential
equation. From considerations in Section 2.3 about theaaot®n of radiation with matter
the general from of the collisional term for the radiativansfer can be deduced. There
must be a term that is linear in the distribution function argtand-alone term.

of

5—5( ") H=g(f($“,p“))f($“,p“)H(f(x“,p“)) (3.2)

Lt is customary to use as an affine parameter, but to avoid confusion with waveleigs used here
instead.
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Correspondinglyy represents the opacity ahdhe emissivity in the photon distribution
function picture. They are related to the coefficients ingpecific intensity picture via
c? ht A

I = EFZ and  x» = —EQ

The inclusion of the collisional term is not fully correctrfthe general case. At a given
event the distribution function has to be the same for alkolEs and hence must be a
Lorentz invariant. This is not possible for absorption amgission processes since the
time intervals between interactions will generally differ the different observers and the
number of photons will differ as well. There cannot be an affiarameterization of the dis-
tribution function as long as the total number of photonsgles [Oxenius, 1986]. The aim
of radiative transfer is not to describe single photonslhatotal energy transported. Thus
one can introduce distribution functions that are averayed small portions of spacetime.
This evens out the fluctuations of the number of photons igibhen phase space element
for the different observers. The averaged distributiorcfiom is then Lorentz invariant
and the framework of the Boltzmann equation can still beiadpb the radiative transfer
problem [Ehlers, 1971].

4 O o )| = g(fa ) o)+ U ) (3.3)

xH pt
df( ' ) 5£ coll

For a given set of coordinate$ andp* the differential in Equation (3.3) can be explicitly
written as

d dz® 9 dp* 9
d—Jg = fga—x{l(fc“,p“ﬂ d% aJ;( “ ) (3.4)
~~ ~~
pe 7I‘aﬁwp5pw
%) %)
= ) - T ) 35)
= gf(a"p") +1 (3.6)

where the normal derivati\@g has been substituted via the geodesic equation (see Equa-

tion (4.1)).

With relation (2.4) it is straightforward to switch to theegjific intensity and the covariant
equation of radiative transfer becomes [Mihalas and Weilieklas, 1984]:

0 o1 hN h \ h h X\
« ﬁ -
p L‘)xa -7 apP 6p'y} 2R T gﬁm\ - XX)‘EEI)‘ (3.7)
0 5 0
" {axa o’ o ] NI = hA'y = oA (3.8)

This equation is not in the most general form since it has lassomed that the momentum
in the frame of the observer with the four velocityz”) isp = (u* - p*) = %.
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3.2 General Relativistic Radiation Transport

Equation (3.8) holds for an observer who uses the coordsyatiemse” andp*. Classical
radiative transfer uses local coordinate systems for theembum to describe the specific
intensities (see Section 2.2), however.

The Equation (3.8) holds for all coordinate systems. Butmradly the momentum and the
connection coefficients are formulated in the induced baktbe coordinates*. This

is due to the analytical connection between the metric aedctmnection coefficients.
Consequently, the momentum and the connection coefficneuss be projected into local
coordinate frames in order to achieve a description ana®tmclassical radiative transfer.

Since the momentum variables in (3.8) are formulated in &mgent space of the base
manifold that is covered by the coordinate systétma new orthonormal coordinate system
has to be introduced in the tangent space for a local de&gript the radiation field.

This is achieved by the use of the tetrad formalism. Thisna&pgke introduces locally
Lorentzian coordinate systems in the tangent spdeeery base vector of these coordinate
systems will depend on the event in spacetime at which itistracted. Therefore, four
covariant vector fields describe the construction of thallegstem. The set of four vectors
at a given event is referred to as a tetrad.

The tetrad at a given event can be written as a basis of fouras@miant vectors
e(a)a (3.9)
which are related to a set of covariant vectors via the magrisor of the base manifold
— p 3.10
€(a)a ga,@e(a) ( . )
An inverse tetrad vectarf®> can be defined via
a)a

_ @ a_ s(a)
ey =e of) = Ob)

Hence, the tetrad indices are transformed with the Minkowsitric ., and it further
holds

€a) €®a = Ta)e (3.11)
Nawe s = ewa (3.12)
ew'ey = 8 (3.13)

With these definitions every tensor field can be projectealtim tetrad and the physics is
described by the equations of the projected quantitiessdrsican be expressed by their

2|n variations of the formalism the local coordinate systelmsiot have to be orthonormal.
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corresponding tetrad components and tetrad vectors:

A(a)(b) = €(a)a€(b)ﬁz4ag (314)
Al _ €<a>ae<b>6 AP (3.15)
Ay = e(a)a e(b)ﬁ A @) (3.16)
AP = e(a)ae(b)ﬁA(“)(b) (3.17)

The equation of radiative transfer in the tetrad then reads

o op™ 0
XAy — BN, = p*— NIy + — —\°T
N XAA Ly P 5a At o€ op° A
(a) 8 8p(a) 6

N1y (3.18)

— for _)\5
C@P ot T e op@

As in Equation (3.8)\ is not an affine parameter, but the wavelength of the photaa me
sured in the frame of the local observer.

In order to calculateag—((” in the tetrad the following relation [Lindquist, 1966,
Mihalas and WeibeI-Mihaias, 1984] is used (see Appendix A)

op @ (@)
oc 1 @eP P

They(“)( 4« are called Ricci-rotation coefficients and they are defirzed

(a) _ (a) B «
T D) T € aba) o) 8 (3.19)

Hence the equation of transfer formulated in a tetrad reads

9 )
a (a) _~ 5 N (a) (d), (c) 5 B 4 B A
P 5w N D T P P —ap(aﬂ Iy = hA"ny — hxo A Iy (3.20)

One of the aspects of using the tetrad formalism is the giditntroduce curvilinear coor-
dinate systems in the tangent space at every point of thenbaisgold. Since it is custom-
ary in radiative transfer to describe the local radiatiofdfia spherical polar coordinates
the equation of radiative transfer (3.20) is still subjecatcoordinate transformation of the
momentum coordinates.

3Note that this given form of the Ricci-rotation coefficiedesviates in its definition from most standard
textbooks. The coefficients are normally defined with pulaher tetrad indices and the order of the indices
is different. Following for instance [Landau and Lifschi1®97] the definitions would be simply related

/ _ (d)
V@) ®)(e) = MDY (e)(a)

However, our form is more suited here as we have to sum oveupper tetrad index and the total sum is
more conveniently ordered in our form.
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It is noteworthy at this point that in the works of [SchindedaBludman, 1989,
Zaneet al., 1996] the explicit construction of the local frames is aeal. In the pres-
ence of Killing vector fields the spacetime exhibits symmestr The resulting constants
of motion can be used to express the photon momentum in depeaaf the coordinates
of spacetime. In spherical symmetry the parameterizatiohwith £ in Equation (3.3) is
reduced to‘jl—{ with r being the radial coordinate of the spacetime. This avoidstitur-
rence of the connection coefficients in relation (3.8) adtbgr, but prohibits the explicit
construction of the local frames and utilizes an unwantentdioate dependent parameter-
ization of the wavelength. Since a wavelength paramet@rizéhat is constant throughout
the atmosphere is used in this work, this ansatz is not usttharetrad fields are explicitly
constructed and local spherical polar coordinates are. used

However, before the new coordinates can be introduced sitdde noted that because
photons move with the speed of light the locus of possible ertmis a submanifold of
the tangent space with the constraint conditip, = 0. Hence only three components
of the momentum are independent and it must only be diffextsat in respect to three of
them. The choice of the component which is neglected israrlitIn the following only
the components@, ((a) = 1,2, 3) will be used. The quantities that are to be transformed
are the differential operators of the momentum coordingﬁgﬁ The% are covectors
and their transformation under a mapping f(z) between two manifolds is governed by
the Jacobian matri¥;; = % of the map [Frankel, 2004].

dy' =) Jj;da’ (3.21)
J

However, there is a complication because of the new coaieling, 0, ») that were intro-
duced in Section 2.2. Due to the spatially independent ckeniaation of the energy of
the photon with the wavelengthonly two spatial coordinates remain. There is no simple
way to explicitly give the mapping into these new coordisatut the inverse map can be
simply expressed as

h
p = X (1, cosf,sin cos ¢, sin 0 sin @) (3.22)
So the desired Jacobian matrix for the transformation ofitfierential operators is given
as the inverse of the Jacobian matrix of the mapping in Eqn&8.22) which is restricted

to the three spatial coordinates. For the matrix from Equa{s.21) it holds

TJfl — a(pl’ y P )

8()\, 0,0
—% sm@cosgp cosfcosp —sinfsinp
= —% sm Osinyp cosfsinp sinfcosp (3.23)
—3 cos 0 —sinf 0
0N 0,0)

—J =

d(pt, p?, p)
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A\ —Acosf —sind 0
= — | —Asinfcosp cosflcosp —3& (3.24)

cos ¢

—Asinfsing cosfsing 5

With Equation (3.21) we obtain the differential operators

0 A 0 . 0

o (—)\cosﬁa —sm(?@) (3.25)
0 A ) 0 0 sinp 0

g _ 2 < o _Suv 9 2
g ; ( )\smﬁcosgo&)\ —l—cos@coswa(9 g 8@) (3.26)
0 A ) .0 .0 cosp 0

- - Z|_ —_ — — 27
o h( )\51n951ng08>\+cosﬁsmg080+Sineaw) (3.27)

The general equation of radiative transfer in the tetrachédism with the customary defi-
nition of the photon momentum then reads

0 0
« (a) 5 . (a) (d),,(c) 5
@l N =T @oP P apm)AIA
0
o « (a) 5
= € (a)p axaA I)\

A 0 0
_2) 0 (d) (o) [ _ — _SnhH—=
. {7 @@l ( ACOSQ@)\ sm@ae)

0
+’y(2)(d)(c)p(d)p(0) (_)\ sin 6 cos gpa + cos 6 cos ¢

g_ sing 9
00  sinf Op

(3) @ [ N g O .0  cosp d .
+y @@P P ( )\smﬁs1ng06)\+cos€smgpae+Sin@@gp N1

= h>\47’/>\ — hX>\>\4I)\ (328)

3.3 Different Equations of Radiative Transfer

The Equation (3.28) is the general equation of radiativestier with the customary de-
scription of the local radiation field in spherical polar cdoates. The equation does not
require any special coordinates of the spacetime and ahgprwtmal frame of a local
observer can be used as a tetrad frame.

The equation can only be specialized if the metric of the dgog spacetime is speci-
fied. The metric not only determines the coordinates of tlaeasiime and the differential
operators but also determines the relation to the fourddiesds.

The tetrad fields describe the construction of the locallyebtzian frames and as the metric
coefficients vary along the geodesics the basis vectorsesetframes change constantly.
The description of the local momentum components is thezefomplicated along the
geodesic and is determined by the Ricci-rotation coefftsiein the natural basis of the
tangent space the connection coefficients exactly destlribeehange of the momentum
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coordinates. Thus the Ricci-rotation coefficients are ti@walent of the connection coef-

ficients in the tetrad frame. They do not depend on the teteddisfalone but also on the

metric of the spacetime.

Therefore, it is sufficient to provide the appropriate noefior the system at hand and apply
it to Equation (3.28) to find the equation of the given system.

In the following the equations of radiative transfer forfeient physical systems are intro-
duced.

3.3.1 Flat spacetime

Physically a flat spacetime for comoving observers meanséh&ection of general rela-
tivity and results in a Newtonigdrdescription of the physics.

It is customary to use spherical polar coordindtes, ©, ®) to describe the atmosphere.
The metric then reads

1 0 0 0
0 -1 0 0
0 0 0 —r?sin’O

With only two components of the metric tensor not being canistonly few connection
are non-zero:

1
1

The tetrad frame is chosen as the normalized natural basig itangent space. To satisfy
the relations (3.11) to (3.13) the tetrad basis (3.9) anditiz basis (3.10) are given as

o 0 10 1 0
« _ [0 0 10 o 3.31
“(a) 87’87"’7"8@’7"8111@8@) (3:31)
100 0
010 0
=100 o (3.32)
0 0 0 rsiln@
—1
@ :
ey = () (3.33)

4A special relativistic description of the physics wouldyapply if observers are introduced which are
moving within the spacetime.
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1 00 0
o (3.34)
0 0 0 rsin®
With relation (A.10) the non-vanishing Ricci-rotation ¢li@ents are then
7(1)@)(2) - _% 7(1)<3><3> = _% 7(2)@)(1) = %
a0 = ‘Coi@ ) = % e = @ (3.35)

Using the relations (3.22), (3.32), and (3.35), every gyt Equation (3.28) is known
and with the relation

o g g (o 010 1 9
(@ T =) TN\ 07 98 7 00 sin © 9
it follows for the equation of transfer in flat space after gostraight forward algebra

{g+ﬂg+sinﬁcos¢i sinfsingp 9
or or r 00 rsin® 0P
1—pu? 0 sinfsinpcos® 0 I
r @_ rsin © %} A
= m—xaa (3.36)

This equation is indeed identical to the equation heua#llicerived in [Mihalas, 1978].

3.3.2 Spherically Symmetric Spacetime

The equation of radiative transfer for spherically symimcespacetimes was first de-
scribed by Lindquist [Lindquist, 1966] and is a simple apation of the general Equa-
tion (3.28). The spherically symmetric spacetime is dégdriby the spherical polar coor-
dinates(r, r, ©, ®) and the comoving metric reads

exp (2¥) 0 0 0
0 —exp (2A 0 0
op = 0 %( ) R X (3.37)
0 0 0 —R?’sin?0©

with ¥, A, and R being functions depending only on the two coordinates:). The
connection coefficients of the metric (3.37) which do notisamre given in Appendix B.1.
The tetrad frame is again chosen as the normalized natw® inethe tangent space. The
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relations (3.11) to (3.13) demand that the tetrad basig @ the dual basis (3.10) is

given by
B g 19 1 38
R A= — = il
‘@ o (~P)50exp (ChF0 T oe: Rsm@aq>>
exp (—¥) 0 0 0
0 exp(—A) 0 0
- (3.38)
0 0 = 0
0 0 0 Rsin©
@ _ o\
@ = (e(a)>
exp (V) 0 0 0
0 exp(A) 0 0
- 0 Xpo( ) R 0 (3:39)
0 0 0 Rsin®

With the tetrads being completely specified the Ricci-rotatoefficients can be calcu-
lated. It must be noted that since in Equation (3.28) onlfedéntial operators of three
momentum components are used, the calculatiom(oé(g)(c) can be omitted. Further, the
Ricci-rotation coefficients are not symmetric in the lowadices. The only nonvanishing
coefficients are

¢! ov 1) 0
v )(0)(0) =exp (—¥)—— or '7( 1)) = &XP (_\I/)E
1) __exp(=A)IOR 1) __op(=A)IR
T e T R or Tee) T R or
) _exp (—W) 6_R ) _exp (—=A) G_R
T 0T T R or T o0 T TR or
) _ cot® 3) _exp(—V)OR
T e T TR T 0T T R ar
(3) _exp(—A)OR 3) _ cot®
Vew="F7 o e =g (3.40)

With the relations (3.22), (3.38), and (3.40), every qugnti Equation (3.28) is known.
After some straightforward algebra that mostly reordegsstimmands, simplifies, and uses

the relation ) 5 5
e(a)aaoz = 6(UL) = X (exp (_\P)Ev eXp (_A)av 0, 0)
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it follows for the equation of transfer in spherically synimespacetime

0 0

[eXp (=¥) 5+ pexp (—A) -

com (o (SRS - onni )

oV exp(—A)OR) 0
—exp(—A)EJriR 6r}8 }],\

ov 5 A 2, €XP (=W) IR\ [OA],
+{exp( ) 8r,u+u exp ( \11)87_+(1 ,u)iR 5, X + 41,
= m—xax (3.41)

Equation (3.41) is identical with the equation found by Lgadt. The only difference is
the use of the specific intensity in contrast to the distrdsutunction used by Lindquist.

3.3.3 The Schwarzschild Spacetime

The Schwarzschild solution is a special case of the genptargally symmetric met-
ric (3.37). As itis a vacuum solution of Einstein’s field etjoas it ignores the contribution
of the matter present to the metric of the system. Becausm#ss of the atmosphere is
negligible in comparison with the mass of the Schwarzscoldition this approximation
is justified.

The metric tensor for the coordinate systémr, ©, &) can be written as

1— 26M 0 0 0
0 ——L = 0 0
aB — 1= c2r 342
Jap 0 0 2 0 (3.42)
0 0 0 —r2sin’©

with G being the gravitational constantthe speed of light, and/ being the total mass of
the gravitational field generating object. With A, andR now only being functions of the
radial coordinate the equation of transfer (3.41) is greatly simplified.

;Q—F 1_2G'—Mg
/1 _ 26M OT MV cr Or

N 1 — p? - MG GM 0
r r —2GM cr 8u
1 GM (6)\5 )

_|_

] — 2GM 027"
C T

= m— xalx (3.43)
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If time independence of the intensity is assumed the timeakare can be dropped and the
equation can be written in a characteristic form:

oI ONI
6—; + axa—; +daxDy = m — xalx (3.44)
with

0 or o Ou d
= - - 4.7 4
0s  0sor " osop (3.45)
or 2GM
— = 1-— 3.46
0s 2r P ( )
ol 1 — p? GM 2GM
— = 1-— 1—— A7
0Os r ( c2r — QGM) c2r (347

]
1 _ 2GM c2r?
c2r

In Equation (3.44) the gravitational shift of wavelengtidescribed by the two terms that
contain the coefficient,. They originate from an expansion of the te@%‘nag%. The
expanded from is used, because it can be easily implemeuatedrically. The wavelength
derivative term is discretized and the other is treated agdalitional opacity. The sign
of the coefficienta, determines the direction of the wavelength derivative ainelctly
influences the numerical discretization. The details ofrttmmerical solution are given in
Chapter 5.

Equation (3.43) is of central importance to this work. Itsmanical solution is the starting
point for the testing of the general relativistic radiativensfer solver. The results of this
application are given in Chapter 6.

3.3.4 The Kerr Spacetime

The Kerr solution is an axis symmetric solution to Einsteiieéld equations. It has the line
element

2
sin2@ — 2 dr? — p2de? (3.49)

A
ds = p*=dr* — = [ d® — “———dr A

2 2G Mar
2 2 232

that is formulated in Boyer-Lindquist coordinatesr, ©, ®) and is expressed via the fol-
lowing definitions [Chandrasekhar, 1992]

0 2GMar
a=gva YT oy
2GM
p* =712+ a’cos’ O A=7r?+a*— 5 : (3.50)
c
by
¥ = (r* + a*)? — a*Asin’ © ©=—sin®
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The according metric tensors read

o — W 0 0 W w
0 20 0
O%w 0 0 —o?
@ 0 0 e
w 0 —% 0 0 350
o7 1o o0 % 0 (3.52)

As stated in [Landau and Lifschitz, 1997] any computatiotiwhis metric is quite tedious.
However, there is no conceptual difference in the ansatartodlate the equation of radia-
tive transfer. As the metric is given analytically, the aetframes can be determined from
it. It is obvious from the off diagonal elements in (3.51)tttiee tetrad vector fields will be
linear combinations of the natural basis vector figlds

The tetrad fields can nonetheless be determined by requivegelations (3.11) to (3.13)
to be fulfilled. Using the definitions (3.50) the tetrad fietden read

N 10 L@ o |Ad 19 10
e = — - T a0\ 2a T an’ < an
(a) adr  ad® \| p2or’ poe’ P
Lo 0
0 /2 0 0
_ \ 7 (3.53)
0 0 % 0
o o o0 1
(@) _ a)”
e T (%)
a 0 0 —ow
02
_ [0 yx 0 0 (3.54)
0 0 p O
0 0 0 @

In order to construct the Ricci-rotation coefficients (desrtdefinition (3.19)), the connec-
tion coefficients of the Kerr metric must be known. The nundferon-vanishing Christof-
fel symbols is larger than in the Schwarzschild solutiorcause all the coefficients in the
line element (3.49) depend not only on the radial coordibatealso on thé coordinate.
The complete list of the Christoffel symbols and the Riatation coefficients is given in
the Appendix B.2.

With the Ricci-rotation coefficients and the tetrad fieldown the equation of trans-

5The situation is similar to the construction of the comoviagrad fields in the flow in a spherically
symmetric spacetime (see Section 3.4).
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fer (3.28) can be calculated. Recalling the relation (3f@2p(@, the equation of transfer
is given as:

Ay — by A

_|h = 9  hyAcos§ 9  hsinfeosp 0
A Apdr A p  Or A P 00
N h ( 2aMGr N sinfsinpp) 0
A\ 2VApy Ysin©@ ) 0P
A h2 h2 h2
_ % { (ﬁ 7(1)( )\2 SIDQSIHQP 'y( ) )\2 sin HSIDQDCOSQD ’Y( )( 1D(2)
h2 h2 8 8
+)\2 sin? 0 cos? © 7( )( e + o sin? Qsin2g0 7(1)(3)(3)) X ( A\ cos 05 — sin 089)
h2 h2 h2
i (ﬁ 7(2)( 00 T 2F sin € sin 7( ) )\2 cos” 0 7 (1)(1)
h2 h2
)\2 cos 0 sin 0 cos o 4 )( »1) T 12 2 sin” f'sin” o 7 )( 3)(3 )) x

( Asin 0 cos cp(%\ + Cosecosgoaae SSIII;?%)

h? h?
+ (}\2 cos f sin sin fy( )( 31 T 2 sin? @ sin ¢ cos 7(3)(3)(2)) X

(—)\ sin 6 sin gp% + cos fsin gp% + (;?ESHD%) [N14] (3.55)

In Equation (3.55) the explicit multiplication of the terrhas been avoided, because the
resulting expressions for the momentum derivatives argtihgnand complicated without
offering new physical insight. This is a result of the degston of the photon momen-
tum in local tetrads, because these frames change conssonlg the null geodesic and
the corresponding basis vectors of the momentum are thuplmated functions of the
Boyer-Lindquist coordinates. In case of the Kerr metricd¢befficients of the momentum
derivatives are especially complicated, because therelysaxial symmetry. Due to the
very tedious and complex computation of the coefficients @dvisable to use a numerical
representation of the coefficients that does not rely onnlaé/écal computation. This has
not been done in this work as the actual implementation wasdd to one-dimensional
applications.
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3.4 Radiative Transfer in Relativistic Flows

The general relativistic radiative transfer describedeott®n 3.3 is restricted to a comov-
ing metric. In order to be able to describe the radiativesi@anfor all possible scenarios,
it is desirable to include velocity fields in the treatment.general relativity the descrip-
tion of flows of matter is included in the comoving metric ltsend the framework in
Section 3.3 suffices to describe the radiation transporvever, the determination of the
comoving metric in the non vacuum case is equivalent to theisa of the field equations
of general relativity. In order to avoid this arduous task @dvisable to use an approxima-
tion in the description of the radiative transfer. Therefahe analytic vacuum solutions
are retained as static background spacetimes and thevistiatilows must be incorporated
into the description of the transport.

The description of the radiative transfer in flows using momoving observers has a severe
disadvantage for the numerical solution used in this worke Tadiation field is beamed
towards the direction of the flow and this requires an in@aasthe angular resolution
for the numerical solution of the radiative transfer proble Furthermore, the Doppler
shift of spectral lines requires an increase of the reswiuith wavelength to resolve the
lines throughout the atmosphere. Consequently, a comai@sgription of the photon
momentum is desirable and the radiative transfer must berided by a comoving ob-
server. In static background spacetimes the flow or equitigléghe comoving observers
are described by four velocity vectors. These four velesiare defined in the frames of
observers that are stationary in the spacetime. If one @sosttionary tetrads as the
frames of the stationary observers, the relation to congptetrads of the comoving ob-
servers is governed by a Lorentz transformation, becaestettads are locally Lorentzian
frames. Therefore, the comoving tetrads can be specifiegrinst of the natural basis of
the background spacetime. The construction of the tetrédkfie then a combination of
a Lorentz transformation and the construction of the tefields for stationary observers,
that measure the spatial velocity of the flow in their respedetrad.

The four velocity of the flow must be known at every event incgtisme. It either
has to be calculated in relativistic hydrodynamical caltiohs which explicitly give the
four velocity of the flow for a complete set of stationary atvees or its value must be
somewhat arbitrarily prescribed in the constructed statip tetrads. For instance one can
think of a linear dependence on the radial coordinate asciissomarily assumed for su-
pernova atmospheres. This is justified as the use of an andédcription in this case only
attempts to give an estimate of the physical situation. Bshould be kept in mind, that
the static observer is free in his choice of coordinates ardray as the four velocity and
hence the coordinates are not given, these coordinatesekeown. Furthermore, the re-
lations between the different coordinate systems cannkhben and an analytic formula
for the Lorentz transformation to the comoving observencaibe given.

The purely analytic case is tractable as long the metricasses spherical symmetry. In
this case all static observers can agree on a method to ctieseoordinates as they just
use the local natural basis. The functional relation forltbeentz transformation is then
the same for every observer and the transformation itséléesof arbitrary rotations that
depend on the observer at hand. This ansatz also works fallyagymmetric spacetimes
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as long as the velocity field has no component parallel toxisea symmetry.

When these tetrad fields are known the derivation of the emuaf transfer can proceed
exactly as in the case of a comoving metric (see Section)3.3.2

For a spherical symmetric metric of the form (3.37) the gkfralds can be written as

ye ¥ Brye A ] Boy BV e
B St T CERE S SRt B
e = 5
@ Boye™  (y—1)ZReA 14 (y-1)F4 (7 l)ﬁéf%silne
Brve™  (v—1DEEeN (v -DERL 14+ (-1
(3.56)
-1
(@) _ [
o = ()
e’ —fBivyet —BavR —B37Rsin ©

_Bl’}/eqj 1+ (’}/ 1)626 (fy _ 1)5152R (’}/ )ﬁlﬁ:aRSin@

—Byve? (v — 1)6;§1€ 1+ (y— 1)623 (v — )6263135111@

—Bsye? (v — 1)62516 (v — )BEEQR 1+ (y— 1)ﬁ3Rs1n@
(3.57)

As the tetrad components which are constructed with thefattedields (3.56) and (3.57)
are linear combinations of all the natural basis vectoescticulation of the Ricci-rotation
coefficients becomes more complicated. This is mostly dubedact that the compo-
nents of the tetrad field are functions of the base coordsnatbus the derivatives in the
calculation of the Ricci-rotation coefficients include guat- and chain-rules.

For the case of a purely radial velocity fiekdr, r) the calculation is vastly simplified and
only this form will be explicitly given here. The tetrad fislfbr a radial velocity field read

Ca) = 76(“1’)8% + ﬁve(‘”%, ﬁve(““a% + 76(‘“%, %%, ﬁ%)
yexp (—=¥) fByexp(—-A) 0 0
_ BweX%(—‘I') veXpO(—A) i 8 (3.58)
0 0 0 s
e = (%)a)_l
vexp (V) —Byexp(A) 0 0
_ —ﬁvegp(‘lf) vexg(/\) ;)% 8 (3.59)

0 0 0 Rsin®

With the connection coefficients (B.2) to (B.17) of the mei{8.37) the Ricci-rotation
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coefficients (3.19) for the frames which are comoving with, ) read

m 308 3,08 oA ov
T o)) =7 o exp (—V) 4+ 55 exp (—A) + ’yﬁa exp (=) + 75 exp (—A)
1 3,00 ;08 OA oU
7 wo) T 55 exp (=V) + v oy P (—=A) + V57 OXP (V) + 755 exp (—A)
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7(1)(2)(2) - R {5 exp (_\I])E +exp (_A>E
(1) e
T 33 T T @@
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The resulting equation of transfer reads
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= Moo= Mal (3.61)

If the specific case of a spherical symmetric solution theaaehschild metric (3.42) the
equation simplifies further. This is due to the fact that tletrma only depends on the radial
coordinate. The equation of transfer for a purely radiabegy field in a Schwarzschild
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background metric then reads

1+ﬁ,u 0 1 2G M 0
a1 = 222 -
/1 2GM87‘ /\7 c3r (ﬁ+,u)a
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cr2, /1 — —Qgﬁ/[ L

= Mmoo (3.62)

The validity of this equation can be tested with the limit éovanishing velocity field or
for a flat spacetime metric. If the velocity field is omittee tstatic result from Lindquist
[Lindquist, 1966] is recovered.

This is not surprising since this result has been the stagoint for the construction of
the comoving observers in order to formulate the equatiamn.aFvanishing velocity field
the comoving observers coincide with the static ones antitbdéormulations in this limit

must be equivalent.

If the spacetime is assumed to be flat and of the form (3.29nfheence of the velocity

field remains and we recover the result of Mihalas [Mihal&8Q]. His work describes spe-
cial relativistic one-dimensional radiative transfer dnid is exactly what Equation (3.62)
should describe if the background spacetime is flat.

The recovery of Mihalas’ result is a successful test for thecept of describing the ra-
diative transfer in a tetrad frame of a comoving observerthsis the main idea of the
development of Equation (3.62) this suggests the validithe equation.

This work has been developed independently from the ansatkz
[Morita and Kaneko, 1986]. The works share the common ideaid® a comoving
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observer in the flow to describe the radiative transfer in ékgeound spacetime. Their
formulation centers around a fact from special relativityo sets of orthonormal bases
in the inertial and comoving frame follow a Lorentz transh@tion. In the context of
general relativity they refer to the stationary tetrad asittertial frame. Further they do
not give instructions to construct the tetrad fields explicirom the given metric, but
assume them to be given. Besides they assume that the Lar@nsformation between
the tetrads is always the same at all events in spacetimthdfomore, they circumvent the
need for a four velocity field describing the flow by presaripia fluid flow in terms of
the base coordinates of the metric. Somewhat arbitrardy e&ssume that these velocity
components of the flow have the same value in their so callediah frame. Finally
they do not construct the equation of transfer by projecthg connection coefficients
and momenta into the comoving tetrad but express the Ratation coefficients and the
spatial differential operator in their inertial frame.

However, the ansatz of the work presented here is more csaiqally, because the con-
nection with the four velocity of the flow is explicitly comstted. This has the additional
advantage that the comoving tetrad is explicitly consedah terms of the natural basis of
the manifold what may prove valuable if nonisotropic opgasitnust be taken into account.

3.5 Magneto Optical Radiative Transferin Curved Space-
time

The opacity and emissivity coefficients (see Section 2.8)maacroscopic quantities that
describe the interaction of the radiation with matter. Thalues depend on the quantum
mechanical description of the atoms (and molecules) pta@séne atmosphere.

In the presence of a magnetic field the Hamilton operatorgésand the degeneracy of the
according states is removed [Landau and Lifschitz, 197%diéd, 1962]. This splitting of
the energy levels allows for additional transitions witfietient energies. Hence the opacity
coefficients for a given wavelength or energy will be diffezdn addition the opacity will
depend on the polarization of the photons. Thus it is necg$sanclude information of
the state of polarization into the description of the radrafield.

Chandrasekhar introduced the concept of the Stokes pagesriato the context of as-
trophysics [Chandrasekhar, 1950]. The Stokes parameters aet of four quantities
I = (1,Q,U,V) that fully describe the properties of a polarized electrgnetic wave
[Jackson, 1975]. These parameters cannot be measuredifyi@aectromagnetic wave
and hence must be interpreted as average values over tinghatahs.

The Stokes parameters are often said to form a vector — thkesStector. This vector how-
ever has no dependencies on the coordinate system usedctibdespatial points. The
individual components are combinations of intensities iffecent polarizations. Hence
their description is independent from the coordinate sysieed and is not influenced by
the affine connection. In contrast to the wave vector of aqgathich is a null vector and
its polarization state is directly influenced by the affin@mection [Misnest al., 1973].
Thus one must not be confused from the fact that a gravitaltiield influences the po-
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larization of a single photon but does not change the Sto&esnpeters. The situation is
different if there is a source of photons that all are emitteti the same layer of polariza-
tion [Connorset al., 1980]. This may occur for instance for photons that aretsead off

a accretion disc and obtain the same direction of linearrjzalon. In this case the wave
vector of the photons must be parallel transported alongéoeesic in order to obtain the
correct emerging polarization. Therefore, in the follogvihis assumed that there is no
preferred direction of polarization.

In this context it should be noted that Stokes parametersefectromagnetic waves
in a consistent theory of general relativistic electrodyics can be formulated
[Anile and Breuer, 1974]. However, in this work the electagnetic wave formulation
of classic electrodynamics is used to describe the polaizaThis is justified as the in-
fluence of the gravitational field on the generation of radrais negligible.

The independence of the Stokes vector from the affine colmmestof importance for the
treatment of radiative transfer in curved spacetime. Bsedhis means that the magneto
optical radiative transfer equation has the same form 28)3However, the specific inten-
sity is replaced by the Stokes vector. Further the sourcetifumbecomes a vect® and
the absorption becomestax 4 matrix K describing the absorption as well as the change
of the Stokes parameter along the affine parameterization.

dI

E -K(I-15) (3.63)
The theory ofK was developed by [Landi Degl'lnnocenti, 1983]. The entoé¥X are
functions of the absorption coefficients and profile funasiof the different Zeeman com-
ponents as well as the geometry of the local magnetic fieldackl¢he two angles that
describe the relative position between the photon momeumtuwhthe magnetic field must
be known.
As the tetrad fields can be explicitly determined for a givenasphere, the local coordi-
nate system of the photon momentum is explicitly constdickéence the components of
the magnetic field can be evaluated in the local coordinageersyof the photon anH can
be calculated.
In an exact theory the magnetic field is given as componentiseoélectromagnetic field
strength tensor. The tensor must be calculated in a teteadrthst be used to construct the
momentum variables for the radiative transfer.
In a first application the field strength tensor will not bef einsistently calculated but
the magnetic field will be prescribed. Then the magnetic fezld be directly given in
the natural basis of the metric. Therefore, the magnetid ieh be related to the photon
momentum in the same way as for instance the affine conne@ionsequently, radiative
transfer with magnetic fields present in curved spacetimgmssible with the same nu-
merical methods as in classical magneto optical radiatarester. However, the numerical
methods to solve the radiative transfer itself must be agtbjst accommodate the coupling
of wavelengths due to the gravitational field.
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Chapter 4

Photon Paths in Curved Spacetime

It is a well known result that photon paths in a non flat spacetare curved. This directly
influences the radiative transfer as well as the generafiomages and spectra. Conse-
quently, this issue is of central importance when modelegggal relativistic atmospheres.
The solution of the radiative transfer problem used in thiskns a characteristic method
which solves the transfer along the physical paths of theqotso

Therefore, the photon orbits must be known in order to sdiedquation of radiative
transfer. In Section 4.1 the different possibilities of @dsing and calculating the photon
paths in curved spacetime are outlined. Furthermore, thdadeused in this work is
compared to the direct integration of the geodesic equainaithe results are presented.
The radiative transfer solution only covers the propagatibradiation within the atmo-
sphere and not the generation of the observed spectrum authed spacetime. Hence the
corrections to the spectrum due to the imaging must be appfter the radiative transfer
is done. These corrections are presented in Section 4.2.

4.1 Calculation of the Photon Paths

The solution of the radiative transfer proceeds along thysighl paths of the photons (see
Chapter 5). For this reason the paths of the photons mustderkn
Photon paths are the null geodesics of spacetime. This isseqaence of the wave vector
being a null vector [Misneet al., 1973]. The photon orbits are described with the geodesic
equation: , ,

d*ax” o dx”dx”

e +Fmd§ A =0 (4.2)
If the underlying spacetime has symmetries more elegans whgtescribing the orbits are
possible. In analogy to classical mechanics there are cagtsquantities. These quantities
are equivalent to constant canonical momenta and can beasadplify the equations of
motion for the system.
This ansatz can either be formulated within the frameworKitiing vectors or by the use
of the Lagrangian formalism. Here only the latter will bedfiy outlined.
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For a given metric the Lagrangian is given from the conditieh = ¢, dz* dz” and the
variational principle

5 / ds = 0 (4.2)

and can be written as

28 = g

B At . .
da* dx { +1 for particles with mass m (4.3)

de d¢ | 0 for massless particles

Since the radiative transfer in this work only deals with foims, £ = 0.

For the Schwarzschild metric (3.42) the Lagrangian has tyalicccoordinates and .
The resulting constants of motion can be identified as enErgpd angular momentur
[Chandrasekhar, 1992]. In addition, the canonical monmaniy will be constant in the
plane with® = 7. Due to the rotational symmetry of (3.42) the resulting desion with
CEE and% = 0 holds for all orbits.

After the substitutionr = % [Chandrasekhar, 1992] and a differentiation for
[Misneret al., 1973] the equation of motion reads simply
2

% = ;Rsuz —u (4.4)
with R, being the Schwarzschild radius.
With Equation (4.4) it is possible to calculate a photon oty given initial conditionsu
andj—g. This description does not need the parameterization védfare parameter.
However, the radiative transfer equation (3.28) is forrredan terms of the affine parame-
ter&. Hence the physical quantities of interest are the pathtteoi and the angle of the
direction of propagation seen by the local obseraad not the orbits per se.
In this work the ansatz of Mihalas [Mihalas, 1980] was useditain the path length and
the angles. The photon paths are independent of the enettg photon and tinfeand
hence only the purely spatial part of the differential opxa!r%% in equation (3.28) is of
interest. This is the full differential operator withouetderivative of the time coordinate
of the metric and the wavelength derivative

3 .
B ox' 0 o 0  Op 0
patial {Z € aa;i} Y ocon T ocas (4.5)

i=1

0

9¢

The coefﬁcientsg—‘ depend on the spacetime coordinates as well ag andp. For the
Schwarzschild metric the system (4.5) reads

0

0 _or 9 oud
23

=4 h 4.
spatial 85 or + 85 8,u ( 6)

10r by any other observer which can relate to the local observe
2This is true as long as the structure of the atmosphere daehange on a time scale that is comparable
with the time a photon needs to pass the atmosphere in frée. flig
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with:
o 1 2MG
o 2 P
T u? MG 2MG
o r Ar—2MG cr

The spatial operator can be seen as a system of coupled fiest ordinary differential
equations which can be solved numerically. The integratges the affine parameteriza-
tion ¢ by design. Hence all needed quantities are available &igeintegration.

The correctness of this ansatz can be verified by comparengetulting orbits with those
obtained when Equation (4.4) is solved. Several tangentachexistics were calculated
with both methods and the resulting orbits were comparedgédiat characteristics were
used as the boundary conditions can be easily matched faliffeeent integration vari-
ables. For a given radial coordinatalsou is known and the condition of tangency reads
eitherg—g =0ord =.

In Figure 4.1 the results of both methods are compared irr ptdés. The mass of the cen-
tral objectisM = M, and the radial coordinate of the innermost orbitis 4.5 - 10° cm.
The lower x-axis is given in cm whereas the upper is given inv&ezschild radii. The
same is valid for the left and right y-axis respectively.

The Schwarzschild radiuB, = /1 — % of the system is plotted as a dashed circle in
the plot. The paths are color coded and the propagation isvestto proceed from the
left to the right. The blue color indicates a blue shift wleereed means a redshift of the
photon.

The upper plot shows the results of the direct integratiathefspatial part of the differen-
tial operator (Mihalas ansatz) and the lower plot depictessiblution of Equation (4.4). It
is evident that the results from both methods give identesililts.

This can even be tested in the regime of unstable orbits. eTtsean unstable orbit at
r = 3R, which is a circular orbit. Orbits with a smaller radial coivate at their tangent
point are bound orbits. In Figure 4.2 such an orbit is comgbdoe both methods. The
annotation is the same as in Figure 4.1.

The two possible directions of propagation for the phot@nsdmown. The coloring is also
retained. However, this time the color is used to distiniguise two parts of the path as
the photon would be blueshifted along both parts. The otaitsat a radial coordinate of
(1 —1-10"*)2R, and each branch of the ray orbits three times around therceefere
crossingR,. From this figure it is also evident that both methods repcedihe same
results.

In the case of static atmospheres the affine parameternzedio be interpreted as the trav-
eled spatial distance. This is no longer the case for movinpspheres. Effects like
aberration and advection which result from the moving ahese increase the effective
path length of a photon in a comoving wavelength descriptibime path length must be
interpreted as the integral of the infinitesimal travelestatices measured in the instanta-
neous local frames.
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Figure 4.1: Two plots of tangent rays. The upper panel shows rays that wadculated by a
direct integration of the spatial part of the differentiglepator of the equation of

transfer.
In the lower panel rays are shown that were directly caledldom Equation

(4.4). Both calculations used the same setup of radii. Bypaoison it is evident
that both methods deliver the same results.
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Figure 4.2: Two plots of an unstable orbit around a compact object. Thetmf tangency
has a smaller radial coordinate than the unstable circulzit at » = %RS. As
in Figure 4.1 the upper plot shows the result by an integnapibthe differential
operator and the lower plot the result from the solution ofi&apn (4.4).

Both methods produce the same results.
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Since the spatial orbits do not change for a moving atmogphaeelation between the
spatial path length and the effective path length of a sefi@sstantaneous rest frames of
comoving observers has to be found. This is true for all nethblowever, the integration
in the case of Mihalas’ ansatz [Mihalas, 1980] already ubgesdffective path length by
design and there is no need to find other relations for theegg@odescription of the orbits.
This fact was the motivation for Mihalas to use this ansath@&description of flows in flat
spacetime.

Another advantage becomes obvious as soon as core integsests are concerned. Be-
cause the initial conditions at the starting point of a ray lsa chosen freely the method to
construct the rays can proceed in the exact same way as f@raal rays. This is not true
for the method that relies on the use of constants of motianhiaspecialized on tangent
rays. Hence this method has to be adapted for the use of dersenting rays that are
important to provide angular resolution in the solutionla# tadiative transfer problem. It
has to be noted that this is only a problem in the case of cuspadetime because in flat
spacetime the tangent rays can be constructed with any tppeameter. Therefore trun-
cated tangent rays can represent core intersecting ragisodid be kept in mind that this
common point of view cannot be used in curved spacetime atatigent orbits become
instable near the singularity (see Figure 4.2).

In principle the method of solution for the radiative tragrgbroblem used in this work can
deal with bound orbits However, there have to be unbound orbits in order to be able t
calculate the observable spectrum. Bound orbits only asz¢he angular resolution within
the atmosphere and otherwise only consume resources dbaraalculation. Therefore,
tangent rays are neglected for very compact atmosphere® welowest layer is within
the unstable circular orbit.

The main advantage of the use of the analytical descripticdhe photon orbits lies in
the minimal time that is needed to construct the orbits. Irugtidimensional problem, the
number of rays that have to be calculated may be enormousniéggation of a large num-
ber of differential equations takes a significant amouniroét Hence the analytic method
for determining the orbits may be the only feasible one intrduthensional calculations.
As long as the system at hand is one-dimensional the adwstd#ghe direct numerical
integration outweigh by far and thus this method is usediswlork.

It is useful to visualize the photon paths for a system widtsomable dimensions. A typical
neutron star might have a massiaf= 1.4M, and a maximal radial coordinateof= 10°
cm. In Figure 4.3 ten tangent and core intersecting rays lavers for this system. The
bending of photon paths is only significant near the objectfew Schwarzschild radii
away from the center the photon paths are straight. Nore=tbe¢his demonstrates that for
a compact atmosphere of the central object the relatiigatment of the paths cannot be
neglected.

The routine that calculates the photon orbits was alreastgdeto reproduce the same
results as the integration of the geodesic equations. Andést is the calculation of the
orbits in a flat spacetime. The result is known as the orbisjast straight lines. For
the test, the same setup as in Figure 4.3 has been chosehjstiine the code used a
vanishing mass. The result is shown in Figure 4.4,

3The circular orbit must be omitted however, because itcaptiepth is infinite.
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Figure 4.3: Tangent and core intersecting rays for a neutron star like@rment. The radial
coordinate i- = 10° cm whereas the mass of the objecfis= 1.4M,.
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Figure 4.4: The tangent and core intersecting rays for the same spatiahdions as in Figure
4.3 for are vanishing mass. As expected by theory the paghstiight lines.
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In the flat spacetime the path length in a static atmosphepes€spatial distance. Since
the length of the characteristics is known analytically hede cases this offers another
check of the algorithm. Indeed the path lengths were foungetadentical within error
margins of the order of0—2 cm.

From the calculations it became clear that a very high acgusaneeded to reproduce the
analytical result. A quality controlled ordinary diffettgad equation solver implementation
following Burlisch-Stoer [Presat al., 1992] failed to produce photon orbits which had a
constant impact parameter. This might not be an intringbl@m of the method but a lack
of exploration of the parameter space of the starting values

A simple Runge-Kutta implementation [Pregsl., 1992] was successful in reproducing
the photon orbits. But the step size had to be very small andehéhe calculation of
all orbits is computationally wise costly. Since the photobits have to be calculated
only once per radiative transfer calculation that time a@sgtot critical. Hence further
implementations and testing, as well as optimizations weteneeded or performed.

It should be noted, however, that the numerical scheme (a§)the peculiarity that the
integration boundary between two discrete points is noemin terms of the stepping
variable¢. Instead the boundary is given by the radial coordinatdfitSeherefore, the
standard implementations of the differential equatioives@ had to be changed accord-
ingly. The final value for the path length variable at the baany was determined by linear
interpolation.

4.2 Spectra from Compact Objects

The image generation from a compact object for a nearby vegés strongly influenced

by the curved spacetime it is embedded in [Viergutz, 1993he $ame is true for the
generation of spectra from compact objects. For the calonl@f spectra the observer
can be assumed to be at infinity just as for spectra in flat sipaee Therefore, all rays

received by the observer can be assumed to be parallel. foltbeing the atmosphere is
described by generalized spherical polar coordingtes ©, ®).

The observed spectrum is the emitted energy flux measureshiiceangle of the observer.
Hence the emitted energy fluk,,.«(\) and the spectrunf, are related by a factor of the

inverse distance squared.

fy = P @7

The emitted energy is the flux integral of the specific intgnisi direction of the observer
over the surface of the atmosphere.

B () = fg o I\(t, &, )i - dA (4.8)

- j’{ I\(t, Z, 1) cos (£(i1, dA)) R? sin (©)dd dO (4.9)
ov+

4Nearby in this context means not at infinity.
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= ]f I\(t, 7, 7)puR? sin (©)d® dO (4.10)
ov+

WheredV*+ means the surface of the atmosphere which faces the obsamét is the
radial coordinate of the outermost layer.

In Figure 4.5 the contribution of a few sample intensitieshe total emitted flux in di-
rection of the observer for an arbitrary slice of the atmesph- that means a fixed
coordinate — is shown. The vectdmwhich points in the direction of the observer must be
determined at all spatial points and the according intgmsitst be used for the integration.

"k
> |

f‘; »
To observe
4 > |

Figure 4.5: The observed spectrum is the sum of the specific intensiiebréction of the
observer from all surface elements of the atmosphere. Hdiessfor a fixed® of
the atmosphere is shown. The scalar product ahd dA determines the visible
area of the surface element. It coincides to beiheomponent of the photon
momentum at the given point.

In spherical symmetry the calculation is much simpler. Beeathe radiation field is lo-
cally the same for each point with identical radial coortisathe base coordinate system
(r,©, ) can be rotated freely. If the coordinate system is chosenwayathat the axis
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which © is measured to is aligned with the direction of the obserkierdoordinate®
andd coincide. Further there is no dependence of the specifiasitteon the® and ¢
coordinates due to the spherical symmetry and Equatio@)4dn be written as

1
Faux(A\) = 27 R? / L(t, ) pdp (4.11)
0

For no incident radiation the emitted energy is simply eab the Eddington flu¥,
Enux(N) = 47R*H, (4.12)

In curved spacetime the set of angles at the outermost léylee atmosphere is not suited
to calculate the energy flux. This is due to the fact that thetqatns which are emitted under
these angles deviate from straight paths and follow thegadtesics of the spacetime.
Hence we need to find a set of angles at a radial shell of spaeetihere the photons
do not deviate measurably from straight paths any more. fieains that the energy flux
integration must be postponed to a point along the null gaodehere the spacetime can
be approximated to be flat.

In Figure 4.6 the contribution of a few characteristics te #mitted energy are shown
schematically. Neither the photon paths nor the scale ofigiuee are physically correct,
but the principle concept of spectrum generation is de@icterectly.

From Figure 4.6 it is obvious that also the far side of the a&phe@re contributes to the
spectrum. In the case of nonspherical symmetric atmosglhigisemay prove to be impor-
tant. For instance if there is a hot spot of higher local terajpee its signature might show
up in the spectrum despite being on the far side of the atnewsplilthough the hot spot
would have a small effective area due to the almost tandeti@on momentum the in-
crease in the specific intensity due to the higher temperaay outweigh this. However,
effects like this can only be modeled in a multidimensiomakgation and are out of scope
for this work (see Section 6.6 for an estimate of the possilleence).

In order to determine if the spacetime at a given event is dlahethod to measure the
curvature of spacetime is needed. In the vacuum solutioBsstein’s field equations the
Ricci tensor vanishes by definitioR,,, = 0, and the most straight forward measure of cur-
vature the Ricci scalak = R¥, vanishes also. But as the Riemann curvature tensor does
not vanish, it is possible to construct a scalarRja= R***’R,,,,,. For the Schwarzschild
metric this can be explicitly given as

G*M?

Ry =485

(4.13)
Ry is called the Kretschmann invariant. It is a measure for theature at a given event
in spacetime. For the Schwarzschild solution it just depesrdthe radial coordinate and
shows that the origin is a real singularity.

For a given system we can estimate witl if the spacetime at the outermost part of the
atmosphere is already flat. The spacetime can be somewliaaaipassumed to be flat
if Ry is 10% times smaller than at the event horizon. This value is rehehe radial
coordinate of ten times the Schwarzschild radiys = 10R;.
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Figure 4.6: A few sample characteristics for the spectrum generaticuimed spacetime are
shown. At the boundary,( the spacetime is approximately flat and the spectrum
can be calculated in the same way as shown in Figure 4.5.

As long as the radial coordinate of the topmost layer of theoaphere is smaller thaiy,
the spectrum formation is influenced by the curved spacetimthis case the calculation
of the photon paths must be extended up to a radial coordafidie,. The discrete set of
angles obtained at this point is used to calculate the spactit should be noted that the
angle between the normal of the surface element and thetidimeaf the observer will be
relatively small. Area elements with smaller inclinatialtsnot contribute to the spectrum
as no photons in the direction of the observer transversa.the

The specific intensities are only known at the top of the aphese after the radiative
transfer problem has been solved. If vacuum is assumeddeutise atmosphere these
intensities can be used to calculate the energy fluk;gt But before the integration over
angle can take place the change of the other momentum comipointbe photon must be
taken into account. The energy of the photons changes al@igpaths. As there is no
radiative transfer to be solved anymore the concept of aaanhsomoving wavelength can
be abandoned.
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A photon receding from a gravitational source is redshiftadhe Schwarzschild case the
redshift does not depend on the taken path, but solely orhtnege of the radial coordinate.
In contrast to the spatial components of the momentum tsere boundary where further
tracking of the redshift becomes obsolete. The redshifivgat to account for as long as
the separation of the source and observer is kiown

The different wavelengths that a photon exhibits betweenrasial coordinates, andrg

in Schwarzschild geometry are related as follows

7ﬂ (4.14)

" E

=A

If the observer can be assumed to be at infinity the obsendsthife just depends on the
radial coordinate on top of the atmosphere.

Aoo = A

__— (4.15)
r 1 _ Rs

In order to accommodate for the redshift of the whole spetiust the wavelengths that
are assigned to the specific intensities must be shifteceagibes of the intensities do not
change in vacuum. Otherwise the calculation can proceéuirivig relation (4.10).

For a moving atmosphere the calculation of the spectrum isermomplicated. This is
true for curved as well as flat spacetimes. Since the radiatansfer problem is formu-
lated for a comoving wavelength coordinate, the calculateghsities, angles as well as
wavelengths at the top of the atmosphere only hold for thal lo@moving observer.

In order to resolve this complication the radiative trangfan be smoothly extended to
radial coordinates with a vanishing flow. As an alternathetransition to the frame of the
observer at infinity can be done via a Lorentz transformadiathe top of the atmosphere.
The wavelength and the angles are components of the moméatuinaector. Hence the
Lorentz transformation can directly be used to transfores¢hquantities. However, the
intensities are not defined as four vector quantities. Thezetheir relation (2.4) to the
Lorentz invariant distribution function must be used.

Since the Lorentz transformation depends on the angle eetwe velocity field and
the propagation vector the resulting wavelength scalediffexent for all characteristics.
Therefore, the transformed intensities must be interpdlah a common wavelength grid.
In practice it is not feasible to extend the radiative transind the Lorentz transformation
is used.

After the transformation the radiation field is given for tiog of the atmosphere as seen
as a local not comoving observer. The situation is now idahto the spectrum formation
in curved spacetime for static atmospheres and the calmulptoceeds in the exact same
way.

5This assumes that the total mass of the compact object walptbin the modeling process.
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Chapter 5

Solution of the Equation of Radiative
Transfer

The equation of radiative transfer (3.28) has been intredun Chapter 3. Analytical
solutions for physically relevant realistic systems arekmown.

However, a lot of work has been done to find approximate smistas for instance the
diffusion approximation for optically thick regions [Ratt, 2003, Mihalas, 1970].

In order to solve the equation without major simplificatitmesides the assumption of time
independence, a numerical approach is used in this work.

In the following the equation of transfer is discretized.isTimeans that all physical quan-
tities are only given at a discrete set of points and the tadidield will be determined for
a discrete set of angles and wavelengths.

In its general form (3.28) the equation of transfer is angraedifferential equation. The
method employed in this work solves this equation in two steéip the first part a method
Is needed to calculate the radiation field for a given sowroetfon. This part is called the
formal solution.

Furthermore a second method is needed to determine theedomation self-consistently.
As the source function depends on the mean intenkjtsee Equation (2.43)) it can be
calculated from the radiation field. Hence, with the use of arethod for the formal
solution, the source function can be determined iterativEhis iterative scheme is called
A-iteration, as the\-operator symbolically represents a formal solution anastaiction
of a new source function.

In practice the\-iteration is not usable, because its convergence rat@israll for sys-
tems in which scattering is important. Therefore, the ansaist be modified in order to
achieve acceptable convergence rates. The method of cimoibis work is an operator
splitting technique following [Cannon, 1973, Olseral., 1986].

All formal considerations are independent from the methidith® formal solution used to
represent thé-operator. Since this work considers the equation of radiitansfer (3.28)
in its most general time independent form, the formal soluthust be adapted to accom-
modate this and a generalized formal solution is neededhi®mtork.

In static and special relativistic atmosphere modeling [Bauschildt and Baron, 1999] for
a summary, the radiative transfer is solved either monauhtiz or in a recursive initial
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value scheme. This is possible as the coefficient which te=cthe coupling between the
wavelengths (see the coefficiant in Equation (3.44)) in such systems never changes its
sign and the direction of the wavelength derivative is alsvidye same.

In case of a general relativistic system this is no longerdage. This can be seen in
Equation (3.44) as it is the general form of the equation dfatave transfer with cou-
pling between wavelengths. The wavelength coupling caeffian this equation is,.
Its explicit form for the case of radiative transfer in a Senzschild spacetime is given
in Equation (3.48). The coefficiemnt, is directly proportional tq:. As the sign ofu is
different for in- and outgoing characteristics, the dir@ctof the wavelength derivative is
changing in general relativistic systems.

Physically this represents the fact that photons whichete$dn a gravitational field are
blueshifted and ascending photons are redshifted. In €igur a sketch of a spherically
symmetric scenario is shown.

Figure 5.1: Scheme which shows the shift of wavelength along a ray. Theishepresented
by arrows that are color coded. Blue means a blueshift andnesths a redshift
whereas the length of the arrow indicates the magnitudeeo$hiift

The formal solution used in this work is described in Sectoh It is a solution along
characteristics that is based on the method of Olson andd¢y@dson and Kunasz, 1987].
The concept of thé-iteration as well as the corresponding operator splittaapnique —
also called acceleratettiteration (ALI) [Cannon, 1973, Olsoe al., 1986] — in the light
of the used formal solution are discussed in more detail ati@25.2. The construction of
the approximate operator needed for an ALI step is discussBdction 5.3.

LIn spherical symmetric spacetimes this is equivalent tocaedese of the radial coordinate.



5.1. THE FORMAL SOLUTION

55

5.1 The Formal Solution

The formal solution used in this work solves the equatioradfative transfer along photon
paths. Since the photon paths are also referred to as chastics, the method is called a
characteristic method. The solutions on a set of differeatacteristics give a description
of the complete discretized radiation field.

The time independent equation of radiative transfer reads characteristic form

drl O(NI

d—s/\ + (6/\/\) +4daxIy = nn—xudy (5.1)
drl O(NI
d—; +an (a/\A) m — (xa + 4ay) In (5.2)

whereas the differentiag‘é and the coefficient, depend on the exact form of the coeffi-
cients of the general equation of transfer (3.28).

The following developments assume the general form (5.2) the equation of
transfer and are valid for alk,. The description follows closely the work of
[Baron and Hauschildt, 2004].

This work is limited to one-dimensional spatial calculasaand systems. Hence the dis-
cretization needed for the numerical treatment is simplifi#he atmosphere is divided
into a number of layers and all physical quantities are grted by their values in these
layers.

In the following all quantities have an implicit dependencethe spatial position and thus
on the layer. Angle dependent quantities — such as the speténsity — will also depend
on the given characteristic. The general dependence oneveyh will always be shown
in the equations and an ordered discrete wavelength gresisaed.

A crucial part of the formal solution is the wavelength dative in (5.2). Since we describe
the transfer on a discrete spatial and wavelength grid thelagth derivative has to be
discretized for the numerical solution. Further, the fars@ution must be defined as a
mathematical relation which can be solved by a numericalrtegie.

There are two ways to handle the discretization. If one dist#s before the definition of
the formal solution, one part of the derivative is regardedmadditional opacity, whereas
the other part is treated as an additional source term. Isgbend method the discretiza-
tion is delayed and is implicitly included in the definitiohtbe formal solution.
This second way to discretize the wavelength derivative seduin the following.
However, it is possible to mix both discretizations via a r@&dicholson scheme
to remove possible numerical instabilities of the wavetbndiscretization scheme
[Hauschildt and Baron, 2004].
The discretized equation (5.2) reads:

dr,

—2 =1, -8, -5, (5.3)
dr
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with
dr = —f,ds (5.4)
XA = X+ 4ay (5.5)
Sy = A Mg (5.6)
X X
~ (05 a()\])\)
Sy = — 5.7
A ) (5.7)

In order to ensure numerical stability the discretizatias ko be a local upwind scheme
whose wavelength direction depends on the sign of the caffic, at any given spatial
point. This leads to the definition

I(ALL)
O\

= pidin i+ pra i

. AL _ Al 1
0-I_, + 1 Al*>\l+1]l+1 fora)\<0

S + LT 0-1 fora 0
_ . T >
{ N -1 NNt I+1 A

)‘l +1

where the indeX is the index of the wavelengthin the ordered wavelength grid.

Now the transfer problem is solved along a characteristittha sum of all the solutions
of all the different characteristics build up the radiatfatd. The formal solution along a
ray is known when the specific intensity at a point on the attarastic can be expressed
through the specific intensities at previous points and eaiotmally written as

Tl’fi N i
= tep (-ar ) + [ S exp(r - ddr+

k k
li—1 li—1

Si(7)exp (T — Tll?i)dT
(5.8)

where the index: labels the characteristic and the indebabels the point on the given

ray. Tl’fi is the optical depth along the ray at the given point Ang’jifl is the optical depth

between the given and the previous point.

Since the source functions (5.6) and (5.7) are only knownhenradial grid, the in-

tegrands have to be interpolated. The integrals then beamaltic and can be ex-

pressed for parabolic interpolation between the spatiaitpa-1, i, and i+1 in the form
[Olson and Kunasz, 1987]

k

- i A
A[ﬁi = / Si(7) exp (T—Tfi)dT

k
lyi—1
= O‘ﬁisllfifl + ﬁlkzslkz + Vfisﬁiﬂ (5.9)
Xl Xl
= 5(;;1 (aﬁisllfi—l + 5;255@' + ’Yfz‘sl]fiﬂ) = Y—;AIZZ (5.10)
li li

k

- Tii .
A[ﬁi = / Si(7) exp (T—Tfi)dT

k
li—1
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= af,igl]fifl + 5lkzglkz + ’Yﬁz‘gﬁiﬂ (5.11)

k

ar.

_ k Li-1 [ k k koork k k

= {_Xk [pl—l,i—ljl—l,i—l +piadi + pl-{-l,i—lIl—f—l,z‘—l} }
Li—1

k
a; -
k Li [k 7k k Tk ko ork
+ 05— [pl—l,ill—l,i+pl,ill,i+pl+1,i]l+1,i}
X1
k

a; .
k 1i+1 k Ik; k Ik; k Ik; 512
+ {_—Ak [pl—l,i—i—l =141 T Plividiivr T Pigiis l+1,i+1] (5.12)
Lit1

The equation (5.8) can be written in matrix notation for aegicharacteristic
I=A -I+AI (5.13)

wherel is a vector of specific intensity with, x n, elements, witm, being the number

of wavelength points and, is the number of points along the given characteristi.

is a(ny x ng) x (ny, X ng) matrix and contains the information about the wavelength
derivative. Al is a vector withn, x n, elements and contains the contribution from the
source function.

The elements oA are the coefficients of the specific intensities in equattob) in com-

bination with the exponential factor from equation (5.8)tWihe following definitions

k
a; -
subk _ 41— k i1k
Al,i _Al,i = T 7 DPi-1i-1 (5.14)
li—1
k
Qa; :
sub,k - k ik
Bl,i _Bl,i = _Bl,i % Pl-1, (5.15)
1
k
oSk _ o= e Uitl g (5.16)
i — Y = TVaTEE Pi-1it .
Li+1
k
. ay .
diag,k _ A\ __ k k li—1
Al,z’ _Al,i = eXp(—ATl,iq)—al,iAk Pri—1 (5.17)
Li—1
k
. ay .
diag,k N k ik
B ®" =B, = =B Pl (5.18)
1
k
cdisgk _ Nk Aliv1 g (5.19)
i — Y = TVMaizr Priv .
Li+1
k
ay .
super,k A4+ k i1k
Al,z’ _Al,i = —0 = P11 (5.20)
li—1
k
a; .
super,k __ p+ kE Lk
By =B, = —Bri i Py (5.21)
1
k
a; .
super,k __ v+ k i+l k
Cl,z' _Cl,z' = TNMiar P+l (5.22)

Li+1
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Figure 5.2: The explicit matrix form of the formal solution for a charagdstic with length
k and! wavelength points. The horizontal lines mark block bords#rdifferent
wavelengths to clarify the structure.

The matrix has three tridiagonal bands. The one on the maigodal is called
diag(= \) and the lower and upper accordingiyp(= —) andsuper(= +). The
diagonals of these bands are calked, andC.

the formal solution for the specific intensitfj, can be written as

(1 . Bld’;ag,k) Ilkjl _ AIZ + Bsub k]—k L+ Bsuper kIZkH_l
Asubklkll 1+Ad1agk1k1I+Asuperklkll+1
su ia, super,k
¢ bk[+1l 1+Cd gk[+1l+0 P (5.23)

The formal solution along a given ray can be explicitly vaitin matrix form. For the first
wavelength point there are n® matrix elements and there are sitP®" elements at the
last wavelength point. Besides, there areshomatrix elements on the first point of a ray
and noC elements on the last point.

This can be seen in the general band structure of the matiohwvign shown in Figure 5.2
for a ray withk spatial points andwavelength points. The complete formal solution is the
weighted sum of the contributions of all characteristics.
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5.2 TheA- and the AcceleratedA-Iteration

The integro-differential equation of radiative transfande solved by an iterative scheme
calledA-iteration. The formal solution described in Section 5.4 ba used to construct the
A-operator needed for this method. For formal completerfesdasic concept of th&-
iteration and its enhancement for convergence improvesetite acceleratedl iteration

— are outlined in the following.

The formal solution is the calculation of the mean intenfitya given source functicn
This can be symbolically written as

J= M\ [S\] = J3° (5.24)

Here A is an operator and has the form of a matnxhich acts on the source function
vector to produce a mean intensity vector. The general fdrf), oeads

S)\: (1—€>J)\—|—€B)\ (525)

with e being the thermal coupling parameter aid being Planck’s function at the given
wavelength.
The combination of Equation (5.24) and (5.25) gives

=AM [SYY] and SV = (1—€) 3" +€B,) (5.26)
and as a simple iterative scheme fr
SYY = (1—€)A\ [SY4] + €B) (5.27)

Unfortunately, this method does not converge quickly emoalghough it is contracting
[Olsonet al., 1986] and cannot be used in situations in which scattesmgportant. The
method of operator splitting [Cannon, 1973] speeds up tineeargence rate dramatically,
however. This method involves an approximate operAtoand theA-operator is split in
the following way

Ay = A5 — (A3 — Ay (5.28)

This splitting does not change the formal step (5.24) yet.@this point an inaccuracy is
introduced. The argument of the fitst is replaced by the — at this point unknown — new
source function, and

T = Ay [SM] (5.29)
B = AL[SRY] = (AL = Ay [SRY] (5.30)

2In this context the main property of the formal solution ie ttonnection of the mean intensity and the
source function. The formal solution from (5.23) sufficignirovides the mean intensity for a given source
function as it gives the complete radiation field.

3For a discretization in wavelength and a radial grid.
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becomes
Sy = AS [SEV] — (Af — Ay) [SR] (5.31)

If the iteration has converged th&fj* = 5S¢4 holds and the inaccuracy is removed. The
improved convergence rate of the operator splitting methecbmes obvious when the
change of the mean intensity during one iteration step isidened. Using the linearity of
the operators and relation (5.25) it follows

Jnew — [1 _ 1 — E {J A* [JOld]} (532)
Jiew  — 1 —(1—eA {A@—ﬁd[yw-%mﬁxﬂﬁsw
- new JOld — [1 - 1 _ 6 { J;\)ld} (534)

The matrix[1 — (1 — e)A3]~" amplifies the convergence of the normiediteration step
JIS — Jd. The iteration (5.32) is called acceleratidteration (ALI).

5.3 The Construction of theA*-Operator

In the split of theA-operator (5.28) no constraints to the choice of Afeoperator were
specified. It was shown in the case of ALI [Olsetral., 1986] that an approximate opera-
tor constructed from original entries of theoperator results in superior convergence rates
and guarantees convergence for the adoption of just thewiggf the originalA-matrix.
The convergence rate is optimal Af = A is used. However, the construction of the
approximate operator and the inversion of the malttix (1 — ¢)A}] in the ALI (5.32)

are more costly in time the more elements of the origihadperator are used in*.
The optimal configuration is different for different probie and computer architectures
[Hauschildtet al., 1994].

The A-operator can be explicitly constructed with the help of arfal solution. Thejth
column of theA-operator equals the formal solution (5.24) for a test sedwaction that

is zero everywhere but for thigh entry. This entry equals one and is called a pulse. If the
full operator is not desired or needed, as in the case aftheperator, the formal solution
can be halted appropriately.

Ay 0
Agj .
Njj | =A-| 1|~ (5.35)
Ay 0

In the case of the formal solution from Section 5.1, the situais more complex. A
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pulse inserted at a point on a characteristic for a given ieageh will propagate to longer
and/or shorter wavelengths and in both directions alongdke This is due to the fact
that within the formal solution the specific intensity at &egi wavelength and point on
a ray is influenced by the intensities from previous and |lptents both spatially and in
wavelength.

Since it would require a computational wise costly formduson for every layer in the
atmosphere to construct the complete operator accordirglaton (5.35), it is desirable
to provide explicit formulae for the construction of the cgter. Then only the required
elements of the operator can be calculated.

Because the wavelength direction of the coupling can chémoge a spatial point to the
next, all wavelengths are coupled. In case of paraboliapotation of the wavelength
derivative (5.7) the specific intensify at a spatial point can not be determined indepen-
dently from the specific intensities at spatial points fartalong the ray. Since these inten-
sities are also dependent on the intensities at earlietg@n explicit formula for a specific
intensity is equivalent to the solution of the Equation &.2n order to keep the construc-
tion procedure tractable the explicit construction of tipemtor is simplified. Only the
two neighboring wavelengths are considered for a given lgagth and the dependence
on later spatial points is ignored.

This effectively limits the construction of th&*-operator to linear interpolation in the
wavelength derivative. The operator is only tridiagonalawvelength but still can have the
full bandwidth in the spatial part. If there is the need foraagbolically wavelength inter-
polatedA*-operator, it can be calculated with the help of the form&tson. It should be
noted that they, 5-interpolation coefficients for the linear interpolatiohtbe wavelength
derivative are different from those of the 3, v coefficients from the parabolic interpo-
lation of the source function. In case of linear interpaatof the source function the
interpolation coefficients coincide again.

The construction of the\*-operator proceeds similar to the construction descrilmed i
[Hauschildt and Baron, 1999] with the use of tangent and susgsecting characteristics.
In Figure 5.1 a tangent characteristic is shown as the upgewhereas two core intersect-
ing rays, which are distinguished between ingoing and aotgcharacteristics, are shown
as the lower rays.

A given tangential characteristichas2k + 1 intersection points with the layets . . £+ 1.
For every point on the ray there is a mirror poiit;,... = 2k+ 1 —1 for which the physical
conditions are identical. A given core characterigtibas as many intersection points as
there are layers.

As in Equation (5.35), a source function pulse is injected the formal solution. Due to

the interpolation of the source function (5.9), the prop@ageof the pulse starts one spatial
point "before" the actual pulse. In case of the topmost lélyere is no interpolation and

the propagation starts at the pulse.

If the pulse is at layel and wavelengtli then the element of th&-operator can be ex-
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pressed as

Am]7l = 5m { w; 7.]>\Zv_7l + wl,])\l,_],l}
{kektang} {kekcore}
{ii<k+1}
k i
+ 0y (@k+1)=itl E wf; (2k+1)—i+1 j>\ 2%+1)—i+1,5,l (5.36)

{kektang}
{ii>k+1}

wherew are angular quadrature weights,,, is the locus of the tangent, arg,,. of
the core mtersectlng rays. Th‘eﬁ] are auxiliary quantities which are calculated in the
following. We start at the first point of the propagation,; and define

Xf,l k YO _ -
ﬁll lflstart_]-/\]_]-
Xstart =

Xl i ep -
Xk et ’Yl Jistart if start —> 1
Listart

Xstart replaces the contribution of the thermal source functkfrﬁi in the explicit formal
solution (5.23). With the other intensities being zero atfirst point we have

)\k - Xstart . Xstart (5 37)
istart,J,l ak - diag,k :
1 + /8]9 Listart k? 1 - Listar
L istart )Adcl rart plﬂstart Yistart
slstar
super,k
k _ [—1,istart k
)\istartyjylfl - 1 _ Bdlag k )\istartyjyl (538)
[—1,istart
b,k
)\kﬁ _ Bls‘tl Istart )\kﬁ (5 39)
istal'tajJ - 1 _ Bdlag k istartajJ '
I+1,istart

Note that depending om, only A7 .., or A¥ ., can be different from zero but not
both. The nextXﬁ ;1 can be defined recursively. However, the auxiliary expoesai has
to be redefined at every point of the propagation.

, k
Xi,i ok if i =4
O ifi=j
ng’i ’
Xii k if i =4
Fal; ifi=45+1
l}él
Xl7. k . -
A_k“yl,z‘ if 1 = Umirror — 1

. X1,i .
X‘ — XF, Xl,' . . . . .
P wen g =G TG = o — 1
Xty ’k Xig
Xi,i ok i )
‘i 3k if © = i
%
Xfc’i l,l mirror
Xl’, k . . .
"klali if 1 = Umirror + 1
Xti
0 else

\
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Since the\!;, depend on\?;,_, or \? ., the correct coefficient has to be calculated before
the Aﬁjﬁl. The sign ofaﬁi decides whether the propagation of the wavelength infaomat
proceeds from red to blue or vice versa.

Instead of using the general form (5.12) of the wavelengfieddent pulse propagation, a
simplified version is used (see above).

For linear interpolation all terms with coefficients vanish and any dependence\gf;)ﬁf2

or A}, ., IS ignored.

This results in a simple construction for thg; ;. Just remove alC terms from Equa-
tion (5.23) and omit all coefficients which usel a 2 or [ — 2 subscript. Replace the
contributionA T}, with the X; factor. Finally, remove either afi"™® terms fora, < 0 or all
super tarms foray, > 0.

It follows for a, < 0 (from red to blue)

r 1-1
k o diag,k diag,k k
Ai,j,l—f—l - 1— BlJrl,z' {AlJrl,z‘fl)‘i—l,jJ—i—l (5-40)
r 1-1
k o diag,k diag,k \ k super,k \ k super,k \ k
)‘i,j,l - 1 - Bl,z‘ {Xi + Al,i Aifl,j,l + Al,i Aifl,j,lﬂ + Bl,i )‘i,j,lJrl}
(5.41)
r 1-1
k o diag,k super,k \ k diag,k \ k super,k \ k
)\7;7]-71_1 o 1 - Bl—Li {Al—l,i )\z‘—Lj,l + Al—l,i )\i—l,jJ—l + Bl—l,i )‘Lj,l (542)

and fora, > 0 (from blue to red)

- 11
)\k _ 1 Bdiag,k Adiag,k)\k (5 43)
t3,l=1 -1, 1—1,0 Ni—1,5,1—1 .
- 1-1
k o diag,k ) sub,k \ k diag,k \ k sub,k \ k
Niji = |1—= By, {Xz + AN e AN+ B Ai,j,l—l}
(5.44)
- 1-1
k o diag,k sub,k \ k diag,k \ k sub,k \ k
Nijirn = |1— Bt {AlJrl,z' Nie1g1 Tt Al+1,i Nic1ji41 T By Ai,j,l} (5.45)

In Figure 5.3 a scheme for the relations in (5.40) to (5.42) @™3) to (5.45) is shown for
an example. In the scheme thA€'*¢ terms are represented by green arrows, blue arrows
represent thels'»e" and B5*»°" terms, and the red arrows are th& and B*"> terms.

The point of the pulse is marked by a cross. Due to the intatjpol of the source function
this results in a contribution at the spatial point prior ke focation of the pulse. Since
the coupling termu,, is assumed to be negative in the example the same spatiagptire
shorter wavelength is also influenced. At the next spatigitploe sign ofu, is reversed and
now the contributions influence longer wavelengths. Siheegtis also an influence of later
spatial points of the same wavelength, the point of inserti&n already be influenced by
up to three other points both spatial and in wavelength. lk®ifdllowing points the pulse
propagates in exactly the same way and the approximatetopeea be constructed.

The scheme outlined is valid for a given ray at a given wawglen The construction
of the completeA*-operator is outlined in Figure 5.4 as a flowchart. The catsion

is repeated over all characteristics. Then for every wangtle a pulse is inserted once
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Figure 5.3: Scheme of the pulse propagation for the construction oAtheperator. The cross

marks the position of the pulse. The influence of the diffepaints on each other
is color coded. Red arrows indicate an influence on longertdunel on shorter
wavelengths. Green represents an influence without a clanvgavelength.
In this case the wavelength derivative direction changas froint to point. Hence
a point may influence the next spatial point at the same wagtien several ways.
Both directly without a change of wavelength and indiredlilye to the wavelength
shift.

per layer and propagated along the ray. During the prorxzu‘t]emne)\’C , coefficients are
computed, weighted, and summed up according to relati@6) at the end of theray. Itis
noteworthy that there are differences between the tangehtare intersecting rays. The
core intersecting rays pass all layers only once and thestdangys pass all layers above
the layer of tangency twice. Therefore, the pulse must oalynberted up to the layer of
tangency, because the deeper layers have no means to gtentdabhe given ray.

The form of equation 5.36 is not yet fully correct. It indieatthat it holds for a given
wavelength and hence tideoperatorA; would just haveS, as an argument. However, the
two neighboring wavelengths have also to be taken into atcddence the\-operator is
split into three parts

AP IS = Agpy [Sea] + Az [Si] + Mgy [S144] (5.46)

whereA},; ;.4 is just the weighted sum of thlé“j” 1141y The system (5.32) can be
solved by the same means as for a standard ALI step.
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~

[ characteristics )
A* construction
wavelength i

pulse W

updateA*

Rl

Figure 5.4: A flowchart of theA* construction. The arrows indicate a loop and the dots are the
continuation points after the loop has finished.
The construction proceeds through several loops. Theibatitms to theA*-
operator are calculated ray by ray for every wavelength.vanelayer passed by
the ray a pulse is inserted and propagated along the rergaimyn At the end of
the ray the contribution at the layer of the pulse for the giwavelength is added
to the operator.
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Chapter 6

A Testing Environment

A new implementation of a radiative transfer solver is té$test in a well controlled testing
environment. In order to do so the solution of the generaltingstic radiative transfer

problem has been tested in a very simple atmosphere modehwhas been derived from
the model employed in [Baron and Hauschildt, 2004].

The atmosphere consists of a gas of two-level atoms. Iniaddian over wavelength
constant background opacity and Planckian are assumedtdlibes setup there is only
one spectral line in an otherwise flat continuum. Hence tfleence of general relativity

on the radiative line transfer on one transition can be ingated without the superposition
of other effects.

It cannot be claimed that this atmosphere has any physgrafisance and it is not intended
to model a real physical system. However, the general vedtit effects on the radiative
transfer found in this environment will also apply in a moopBisticated physical model.
The unphysical oversimplifications in the following mustdeen in this light.

Section 6.1 gives a short overview of the implementationhef new radiation transport
solver and summarizes its initial tests. The details of thestruction of the model atmo-
sphere are given in Section 6.2. As a first application theggmelativistic transfer in a

compact atmosphere is introduced in Section 6.3 whered®8&c4 deals with the results
of more extended atmospheres and the addition of relatifistvs.

In Section 6.5 gray continuum transfer for compact atmosgshes described as a fur-
ther test of the numerical framework. The influence and theeeted effects of multi-

dimensional modeling in the context of imaging in curvedcgenes are discussed in
Section 6.6.

6.1 The Testing Code

The general form of the characteristic equation of radeatmansfer (5.2) requires the use
of the formal solution introduced in Chapter 5 in the solatod the radiative transfer.

The radiative transfer code is based on the code descrijBdian and Hauschildt, 2004].
It provides a framework for the formal solution and the aecaiedA-iteration.

In order to be usable for general relativistic radiativensfar several additions to the code
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have been made. At first, code has been added which calctit@gshoton orbits for a
given atmosphere structure and images the spectrum inaccgpacetime as described in
Chapter 4. It has been ensured that the added routines prihactorrect interface for the
radiative transfer solver.

Furthermore, code has been added which allows for the wiegr of the atmosphere
structure. The physical assumptions made in regard of tmesyghere are described in
Section 6.2. Besides, several improvements to the codelHasebeen made and addi-
tional options for the setup and an improved radial optiegitd grid generation have been
included.

Independent checks are crucial to the testing of the newemehtation. However, the
inclusion of general relativity means that new physics actided in the calculations. This
new physics cannot be described by other radiative tramsf@ementations available and
no fully independent check of the new implementation is jfmssThe perspective can be
reversed, however, and the general relativistic framewark be used as an independent
check for the standard radiative transfer solver.

For a system with a vanishing mass, the term as defined in Equation (3.48) for
the Schwarzschild spacetime vanishes. Thus the couplinpeotlifferent wavelengths
is removed. Then the radiative transfer can be calculatedetery single wave-
length independently. A solution to the uncoupled (or monaally coupled) radia-
tive transfer problem is well known with the ALl method as ciésed for instance in
[Hauschildt, 1992, Hauschildt and Baron, 1999]. The neweganrelativistic solver still
solves the matrix equation (5.13) in order to test the fraorkw

Since both methods are physically equivalent, they mustyme identical results. In Fig-
ure 6.1a the relative flux for a line calculated with both noelh for a vanishing mass is
plotted. The results have a relative error of abdut!. The main contribution to this error
comes from the differences in the path length. The old metlsas the analytical result
while the general solver integrates the numerical systeB) fér a vanishing mass/.
Although the path lengths were accurate to at léast cm, the differences were large
enough to produce the error. The different path lengthsféeetively equivalent to differ-
ent opacities. From the constancy of the relative erromthoalearned that the calculation
of the radiative transfer is otherwise perfectly identichhis can also be seen from addi-
tional data points which are marked by crosses in Figure @.hase mark the relative error
of the fluxes when the analytical result for the path lengtisesd in the general framework
instead of integrating the orbits. Only a few points are sihdvecause for most points the
match is perfect and the corresponding errors are zero.

From this test it can be learned that the new framework presitice same results as a
well tested and well trusted method if the same atmosphetictsire is used. Conversely,
this is a strong indication that the solution of the geneedativistic transfer is reliable.
The inaccuracy of the order @)~ due to the numerical calculation of the orbits must be
kept in mind and the need for improving the accuracy must eealeated for every model
atmosphere.

Another less rigorous test is the calculation of a spectmam fan atmosphere which has a
non vanishing mass but the line opacity is omitted. Sincegh®aining continuous opacity
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Figure 6.1: In Figure 6.1a the relative error of the fluxes calculatechwlie new and the old
radiative transfer solvers is shown. The crosses mark theamo data points if
both methods use identical path lengths.

In Figure 6.1b the flat continuum for a general relativisatcalation with an omit-
ted spectral line is shown.

is constant over wavelength the gravitationally induceift glannot produce deviations
from a flat continuum. This expected result is indeed found simown in Figure 6.1b.
Therefore, the implementation of the general relativistidiative transfer test solver and
seems to be working correctly. Thus the results of furthécutations with the general
relativistic code can be trusted as it passed the availabls.tHowever, one has to question
the results as long as alternative solutions become alail@bconfirmation.

6.2 The Physical Parameters of the Atmosphere

The structure of a model atmosphere is normally determirnad the solution of appro-
priate physical equations such as the hydrostatical emuati

Since for the construction of a testing environment the @ayselevance is not of primary
interest, the description of the model structure can be Iffiegh In order to keep the
treatment as simple as possible in the following an anatgtation for the density in terms
of the radial coordinate of the given background spacetg@ssumed.

As general relativity is only important in compact objeatsexponential density law with
an appropriate scale height is assumed

o(r) = oo exp (T Tlom) (6.1)
The parametergy, r..:, andrg.... Must be chosen in such a way that the calculation results
an atmosphere of the desired extent. For simplicity theeseaightr,..,. is chosen to be
constant throughout the atmosphere. It should be notethtEgjuation (6.1) the variable

is the radial spacetime coordinate as the relation whichogvated by Newtonian physics

is adopted for curved spacetime.

69



70

CHAPTER 6. ATESTING ENVIRONMENT

The radiation transport is solved along characteristidd wptical depths that cover the
atmosphere from optically thick regions to the outermogéta. In order to resolve the
physical radial structure given by (6.1) in terms of optidapth an expression is needed
which relates the opacity to the radial coordinate.

For the testing atmosphere model it suffices to assume tbatphcity is linearly propor-
tional to the density.

x(r) = xo0(r) (6.2)

A prescribed optical depth grid with the desired resolutiam be related to the radial
structure. This is done via the relation of the differemstiaf the radial coordinate and of
the radial optical depth (see Equation (2.35))

dr 1

dr X0 63

wherex(r) is given by (6.2).

The sign of (6.3) is negative as the optical depth is meaduoedthe outside of the atmo-
sphere. It should be noted thafr) represents only the continuum extinction. Within the
spectral line of the two level atom the optical depth scalkle different.

To describe the single spectral line of the two-level-atem, define a wavelength;,,.

as the center of the line and construct the line profile withaaisgian profile centered on
this wavelength. The redistribution function (see Sec8dh?2) is assumed to be isotropic
and completely redistributed. The emission and absoriofiles are then equal and the
profile function for the transition can be written as

ine A - )\ ine 2
/R(/\,X)d)\’ = d(\) = Uf/% exp <— = ! ) (6.4)

with wy;,e being the width of the Gaussian. The opacity associatedtivetine yii,.(7, A)
is linearly related to the opacity of the continuum(7)

(M)

o\ (6:5)

Xline(Ta )‘) = XH(T)Rline

whereby the factoR);,. determines the strength of the line relative to the contimuu

Since the opacities of the continuum and the line generathgist of a true absorption and a
scattering part, the parametersande;,,. must be specified in order to define the scattering
albedo. The true absorption and scattering part for thermauntn is then described by

K(T) = €x(T) (6.6)
o(r) = (I —e)x(7) (6.7)

whereas for the line opacity we have

fihne(ﬂ )\) = elineXline<T7 )\) (6-8)
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Uline(Tu )\) = (1 - 6line)Xline<7—7 )\) (69)

Now the total opacity with contributions from both the contim and the line can be
written as

Xtotal (T, A) = K(T) +0o(7)
+Rline (T, A) + Oline(7, A) (6.10)

while the emissivity reads:

Neotal (T, A) = (5(7—) + Kiline(T, A)) B<T(T)>_
+o (1) J(T, A) + Oline(T, A) J(T)

with .J being the mean intensity averaged over the line profile.

With the source function prescribed at every point of thecsphere there is no need to
introduce further physical quantities on the radial optetgpth grid. In an application to a
physical system these physical quantities would have beeded to calculate the opacity
and emissivity which are already given here.

This is true for all quantities but the temperature, becatse needed to describe the
thermal non-scattering emission of the atmosphere. Rutligetemperature is needed to
provide boundary conditions for the radiation field at thédrm of the atmosphere. Hence
we need to provide a temperature structure in the radiatalglepth scale. We use the for-
malism of the Hopf functior(7) [Chandrasekhar, 1950] to describe the gray atmosphere.
Thus we can relate a temperature to an optical depth deppadian effective temperature
which describes the total energy output of the atmosphere.

3
TH(7) = (T (7 + (7)) (6.11)
The physical description of the testing environment is cletep but is still very flexible
due to the strong dependence on parameters, as the scdi, loeigr radius, scattering
albedos, effective temperature, or the opacity.

6.3 A Compact Atmosphere

The most compact object without an event horizon is a newdtan Its is large enough

that a general relativistic treatment is crucial. Therefa neutron star like environment
is a good starting point for the testing of the general reistic radiative transfer. The

atmospheres of these compact objects are also very compadtiaze a scale height of
only a few centimeters.

In order to simulate a neutron star like atmosphere withékgrig environment from Sec-
tion 6.2 the parameters outer radius, scale height, andethgitg at the outer radius must
be chosen appropriately.

A possible configuration is shown in Figure 6.2. The atmosphkevers optical depths in
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Figure 6.2: Radius is plotted over optical depth. The optical depth wadsutated from the
wavelength independent continuous opacity. The atmospkeabout 90 meters
thick, but the layers with an optical depth around one li¢ gentimeters below
the outermost layer.

the range fromr = 1078 up tor = 10%. The total extent of the atmosphere in this range is
circa 90 meters.

The atmosphere can be truncated at the maximal optical daptithe solution of
the radiative transfer in these deep layers is describechéydiffusion approximation
[Mihalas, 1970] and must not be solved for.

In situations with strong scattering albedos and Gaussmengrofiles, the maximal op-
tical depth must be chosen to be larger than the inverse afies&uction probability
[Avrett, 1965, Mihalas, 1978].

The radiative transfer is solved only over a small wavelemghge. Therefore, the Planck-
ilan can be assumed to be constant over wavelength. ThisiBasphe spatial boundary
conditions as well as the emissivity of the spectral line.

The resulting atmosphere model is not intended as a readisientific model and is not
suited to investigate the physics of a neutron star. Howeter effects of the general
relativistic theory on the radiative transfer in atmosjgisesf similar scale as well as their
extent are reproduced correctly. Hence conclusions drawn these calculations can be
directly applied to the expected observations of real abjec

Since the atmospheres are very compact and the range ofdibécaordinate covered in
the models is small, the intra atmospheric wavelength dhétto general relativity is small.
Hence the width of the Gaussian ling,. is taken as a small enough valug,, = 1072.

In such a line the extent of the relativistic effects on thdiative transfer is expected to be
clearly visible.

In practice this means that general relativistic transfeampact atmospheres will be most
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important for rapidly changing opacities. Such a situatiay also occur in a blend of sev-
eral spectral lines which results in spikes in the run of theaity [Hauschildet al., 1995].

In the following the spectra of compact atmospheres areepted for different combina-
tions of the scattering albedos. In order to allow for idgcations of general relativistic
effects the spectra for the massless cases were also tattuldnese non relativistic cases
have the same physical structure and use the same codeutatakhe radiative transfer.

If one compares relativistic and non relativistic spectoarf the same structure it becomes
apparent that the flux in the continuum is different. This nb&ysurprising at first as
the physical structure and the continuous opacity and thegddial optical depth grid
are the same. However, the coupling tetgacts like an additional "opacity source” in
the radiative transfer (see Equation 5.5). Although thiditemhal opacity has no physical
interpretation in terms of atomic transitions as it is justoasequence of the comoving
wavelength description, it still influences the radiatrasfer since the optical depth along
a given characteristic is different from the massless c@kere is no contradiction as the
radial optical depth grid is solely used to describe the sagpf the physical structure in
terms of optical depth and the radiative transfer uses its aptical depth scale for every
ray and wavelength.

From this it follows, that fits to observations obtained wilhssical radiation transport
codes would determine a wrong temperature in order to matfiux in the continuum.
Hence the structures derived from non general relativistitative transfer modeling of
compact atmospheres will contain a systematic temperatuoe

The main interest in the comparison of the classical andrgéredativistic line transfer lies
in the observable changes of the emerging line profile. Tleetsp for the massless and
the general relativistic case are thus best compared ifdhrmum is normalized. Hence
in the following the flux is given in normalized arbitrary tsi

In Figures 6.3 and 6.4 the results of a non-scattering athersp;,. = ¢, = 0, are shown.
The radial optical depth grid in these calculations coverarae fromr = 10~ up to

7 = 10* and the outer radial coordinate of the atmosphere-is10° cm.

The emerging line profiles are contained in one plot in orddxet easily compared. Due to
the gravitational redshift the center of the line is shiftedase of the imaged spectra and
two different wavelength scales are used to align the centreelengths. The wavelength
scale at the bottom corresponds to the massless case anggeeta thed = Mg,
case. Both scales cover the same absolute range in waveldrigs is noteworthy as the
wavelength bins are scaled up by the gravitational redshift

In Figure 6.3 the relativistic spectrum, shown in red, wasin@aged but was taken di-
rectly from the top of the atmosphere. Hence the two wavetescples are identical. The
emerging line profiles are very different, however.

The line profile in the massless case, shown in black, is symoregound the line center
as one would expect because the profile function of the tianss symmetric. Further the
line is saturated in the core.

The general relativistic line is also saturated but is asgtnicwith an extended red wing
and a slightly less extended blue wing than the classicaltres

As the atmosphere is completely non-scattering, this isse&chasult of the general rela-
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Figure 6.3: The spectra of a massless and a relativistic compact nolesongtatmosphere are
compared. The outer radius of the atmosphei®ism. The relativistic spectrum
is not imaged in curved spacetime but taken from the top oatimosphere.
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Figure 6.4: The spectra of a massless and a relativistic compact nolesongtatmosphere are
compared. The outer radius of the atmospher&fscm. The spectrum of the
relativistic atmosphere was imaged in curved spacetimdtarglexhibits a strong
redshift of wavelength.
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tivistic radiative transfer. Due to the coupling of the wigrgyths the influence of the line is
shifted to longer wavelengths. For the blue side of the Ime itesults in a reduced exten-
sion of the wing as the stronger intensities of the contingetshifted into the line profile.
In the red part of the line the lower intensities of the liné gi@fted outside the line profile
and cause the extended red wing.

In Figure 6.4 the same emerging line profile as in Figure 618y in red, is compared
to the classical result, shown in black. However, this titme $pectrum has been imaged
in curved spacetime. According to the procedure describ&ection 4.2, a proper set of
angles was used for the integration and the redshift of theel@agth was applied to the
intensities.

Now the wavelength scales are very different as one expemts the gravitational red-
shift. The principal shape of the line profile did not chanigmigicantly however. This can
be attributed to the fact that the change of angles is mosbitapt for those characteris-
tics which have a smajl at the outermost layer of the atmosphere. These chard®ris
contribute very little to the angular integration of the flamd have in relation to the core
intersecting rays lower values for the specific intensitidserefore, the imaging in curved
spacetime for compact atmospheres has no large effect ap#datrum. The situation is
different if multidimensional calculations with a varyistyucture are taken into account.
See Section 6.6 for an estimate of the possible effects.

Although the shape of the line profile is nearly unchangedeth& an obvious change
in the observed spectrum which must be attributed to the imgaigp curved spacetime.
The redshift causes the width of the line to become largeordang to relation (4.15).
Consequently, the observed line in numbers of absolute leagth is broader than the
unshifted line. This phenomenon is especially visible i liue wing of the line profile.
In Figure 6.3 the blue part of the line was less extended inpaoison to the classical case
and in Figure 6.4, the relativistically imaged spectrunextends even more into the blue
part of the spectrum.

Up to now scattering has been neglected. The inclusion dtiestgy is crucial to the mod-
eling of astrophysical atmospheres. The concept of an Ald weluded in the radiative
transfer solution in order to solve the scattering probl€&onsequently, in the following
the scattering albedos will no longer vanish, but insteadrésults of calculations with
different combinations of line and continuum scattering & presented. In Figures 6.5
and 6.6 spectra from atmospheres with= )M, are compared. Therefore, the lower and
upper wavelength scales are identical.

In Figure 6.5 a scattering line,,. = 1072, is compared to the non scattering case from
Figure 6.3. The scattering case is plotted in red whereasdhescattering is shown in
black. Both spectra are directly taken from the top of thecsjphere and use the same
atmosphere structure and mass as before.

With scattering present in the line, the photons can escape deeper layers. Hence the
saturation of the core of the line is removed. Otherwise gexiga are very similar. This
is due to the fact that in wavelength regions outside thelprtife physical situation is the
same. The continuum is not scattering and the radiativafieaproceeds the same way as
in the non scattering atmosphere.
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Figure 6.5: The spectra of two compact atmospheres are shown which wreitlyl taken at
the atmosphere. The black spectrum is from a completely natiesing atmo-
sphere whereas the red spectrum was taken from an atmospitieie scattering
line, ejipe = 1072,
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Figure 6.6: The spectra of two compact atmospheres are shown which wreitlyl taken at
the atmosphere. The black spectrum is from a completely natiesing atmo-
sphere whereas the red spectrum was taken from an atmospitteeecontinuous
scattering albedo af, = 1072.
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In Figure 6.6 a non scattering line with a coherent scafeciontinuum,e, = 1072, is
compared to the non scattering atmosphere. The scatteagsyis plotted in red.

The most notable difference is the emission feature on the &ide of the line. It can be
attributed to the Schuster mechanism [Mihalas, 1970, Gednodl Thomas, 1968].
Normally the Schuster mechanism is symmetric if symmetnie profiles are assumed.
However, the whole spectrum formation process in the giterosphere is subject to a
wavelength shift. As seen in Figure 6.3 this leads alreaddntasymmetric emergent line
profile. In this case the blue emission feature can be seeswa® af contributions from a
Schuster mechanisms that were merged through the shiftwadlaragth and cut off due to
the strong opacity of the line. There is no emission featuréhe red side of the line as it
got smeared out and suppressed by the lower intensitigsdloiit of the line profile.
Since due to the scattering the photons in the continuuninatig from deeper and hotter
layers, the atmosphere has a larger apparent continuunHluther the radiative transfer
is influenced by the change of the source function which eéxpldne changed depth of the
line.

The extended red wing in Figure 6.6 can also be attributetieéacontinuum scattering.
Since the photons are scattered they can cover greatenchstavithout getting absorbed.
Hence they are redshifted further and transport the infaomabout the line opacity to
longer wavelengths and thereby cause the extended red wing.

In Figures 6.7 and 6.8 the emerging spectra for a scatteoimgpact atmosphere are shown.
The scattering takes now place in the continuum as well dsdrite, e, = €, = 1072
The general relativistic cases are shown in red and comesfmthe upper wavelength
scale.

In Figure 6.7 the relativistic spectrum was taken from the dbthe atmosphere without
being imaged in curved spacetime.

The emerging line profile is a combination of the results fiéigures 6.5 and 6.6. The
saturation in the core is removed due to the scattering irirtiee Furthermore, the blue
emission feature and the extended red wing of the line dugetadntinuous scattering are
present.

For comparison, the same but imaged spectrum is shown imé=&8. The basic shape of
the line stays the same. But besides the shift of wavelehgthpparent broadening of the
profile is again clearly visible.

For cases with even stronger scattering in the continuuereffiects of the Schuster mech-
anism become more visible. In Figure 6.9 the imaged spectifuastrongly scattering,
aine = €. = 107%, compact atmosphere is shown in red. The massless casews sho
in black. The scattering is now so strong that even the naiivedtic atmosphere shows
emission in the wings of the line by the Schuster mechanism.

In order to avoid introducing errors in the boundary cormahs the radial optical depth grid
was extended te = 10° in these calculations.

The emerging line profile in the relativistic case resemithesprofile from Figure 6.8,
however, the blue wing emission feature is stronger andrledd deeper as in the weaker
scattering case. The stronger Schuster mechanism is & iseidt of the stronger contin-
uous scattering whereas the stronger line scattering sdlis@bsorption line to deepen.
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Figure 6.7: The spectra of a massless and a relativistic compact atramsgiie compared.
The scattering albedos atg,. = ¢, = 10~2. The outer radius of the atmosphere
is 105 cm. The relativistic spectrum is not imaged in curved spaebut taken
from the top of the atmosphere.
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Figure 6.8: The spectra of a massless and a relativistic compact atras@aie compared.
The scattering albedos atg,. = ¢, = 10~2. The outer radius of the atmosphere
is 10% cm.
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In Figure 6.10 the spectrum for a compact atmosphere wite poatteringe, = 0, in
the continuum and no line scattering is shown. Physicalfyrieans that the two kinds of
scattering are no longer coupled via the thermal pool bectesphotons in the continuum
are always scattered.

The pure scattering in this context is realized by a scateaibedo of, = 1072°. The
strong emission feature on the blue side of the line has blgisbunterpart on the red side.
In the over relativistic line profiles the red counterparswaver visible as it was smeared
out over wavelength. In this case the Schuster mechanistnoisgsenough so that the
emission peak is still visible over the continuum. Howetleg, peak is small in height and
very spread out. The large wavelength range is a result ofédhestrong scattering albedo
in the continuum. The photons travel very long distancebauit being destroyed and are
subject to the full wavelength shift along the characteridh the other cases the photons
lost the information about the wavelength shift in an absongprocess.
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Figure 6.9: The spectra of a massless and a relativistic compact atramsgiie compared.
The scattering albedos atg,. = ¢, = 10~*. The outer radius of the atmosphere
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Figure 6.10: The imaged emerging line profile for a very strong continuscettering albedo
e, = 10720 for a general relativistic compact atmosphere is shown.Speetral
line is not scattering.
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6.4 An Extended Atmosphere

The range of the radial coordinate covered in the calculatad the compact atmospheres
in Section 6.3 is only about 100 meter. Therefore, the intm@oapheric wavelength shift
was accordingly small. In order to increase the spatialrgttee description of the atmo-
sphere structure must be changed.

Instead of assuming an exponential run of the density asaiid®e6.2 the density can also
be described by a power law

o) = oo (22)" (6.12)

Otherwise the construction of the atmospheric structuvegeds exactly as in Section 6.3.
This setup allows for a gentler change of the opacity withréttgal coordinate.

At first an atmosphere of similar spatial dimensions like mpact atmosphere is calcu-
lated. Its radial structure for a linear run of the density- 1, is plotted over the radial
optical depth in Figure 6.11. The according emergent lidilerfor the scattering albedos
eéine = €, = 1072 is shown in Figure 6.12. The relativistic case is plotteded whereas
the classical spectrum is depicted in black. The upper weagth scale corresponds to the
imaged spectrum.
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Figure 6.11: The radial coordinate is plotted over optical depth. Thecstire is slightly more
extended than the one from Figure 6.2. However, the rel#@d?) instead of an
exponential ansatz was used in the construction of the gineos. This results
in a less steep gradient especially in the optical thickriaye

The relativistic line shape is vastly different comparedhe results of the exponential
atmospheres in Section 6.3. A second line profile is visibtectv is shifted to longer
wavelengths than the original line. This satellite line iegent in all angles which con-
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Figure 6.12: The spectra of a massless and a relativistic compact atramsgine compared.
The scattering albedos aeg,. = €. = 1072. The atmosphere is constructed
with relation (6.12) andh = 1. The according radial structure is shown in Fig-
ure 6.11.

tribute to the integrated spectrum. Hence an artifact frdailad integration can be ruled
out.

If one takes a closer look at the classical spectrum it besa@wlent that there are small
spectral features present in the line wings. These feattaesagain be attributed to the
Schuster mechanism. In the general relativistic case thas$er mechanism also applies.
This can be seen at the transition of the line into the blugiconm. The emission peak
Is subject to the wavelength shift and remains visible oslya perturbation in the line.
The Schuster feature in the red line wing is influenced by tagitational shift of wave-
length. Since it lies in the wing it is not swept into the camtim but remains visible. The
intensities from within the line profile get redshifted arrdguce the peak within the line.
Without the spectral feature of the Schuster mechanismsethmgensities would be shifted
into the continuum and would have produced similar line sldp those in Section 6.3.

In addition the gradieni{ is smaller for the extended atmosphere than for the exp@hent
atmosphere and hence the region of line formation has arlesigeal extent which trans-
lates into a larger wavelength shift. Thus the spectrum &bion is stronger influenced
by the internal wavelength shift. From this can be learned tine emerging line profiles
for physically different structures are very different. ride the general radiative transfer
seems to be suited to produce constraints for the atmospiwatel structure.

The structure in Figure 6.11 is more spatially extended thanstructure in Figure 6.2.
However, the range of the radial coordinate covered is @tily a few hundred meters.
Therefore, a more extended atmosphere is presented inlkbwifa.

Compact objects are often subject to accretion. The regudtimospheres include velocity
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fields. With the results of the equation of radiative transfehe presence of velocity fields
from Section 3.4 models for such atmospheres can be cadulat
Normally the description of accretion is a multidimensilopr@blem. But this work is re-
stricted to one-dimensional solutions of the radiativasfar and the main interest lies in
the effects of general relativity on the radiative transfea given system and not proper
modeling of realistic physics. Therefore, instead of uphgsical solutions as standard
disk [Shakura and Sunyaev, 1973, Novikov and Thorne, 197&}leection dominated ac-
cretion flows [Narayan and Yi, 1994], we assume a variatiothefdensity according to
Equation (6.12).
The velocity field is purely radial due to the restriction tweadimension and is described
by the following relation

V(1) = —Vmax (#) (6.13)
wherev,,,,x means the maximal velocity at the minimal radiyg, of the atmosphere. The
velocity is directed inward, hence the negative sign aneis at the outer radius,,., of
the atmosphere.
The velocity field causes a Doppler shift and thus adds todkplng of the wavelengths
(see Equation (3.62)) as the coupling tergreads

14+ Bu 0B / 2GM op
2 2
— S Nt 1— hdlad
= HrAT /1 _ 2GM or 7 cr (6 +1) or
GM 1 — p? 2GM
+ py(L+ Bp) +y—r By/1— (6.14)
22 /1 — 2GM R c2r

For time independent velocity fields the derivative overparotime can be dropped, but
relation (6.14) remains a function of the velocity figlg-).

Hence the velocity field directly contributes to the geneeal absorption along the charac-
teristics. If the derivative of the velocity over the radtalordinate is too steep the opacity
along a ray changes too quickly and numerical instabiliiesur. These instabilities can
be removed via an increase of the resolution of the optigaildgrid. But this strategy is
not favorable as it is too demanding in terms of computingueses.

In order to avoid the numerical instabilities altogethex &xtent of the atmosphere is in-
creased as this reduces the steepness of the derivative wElbcity. The larger radial
coordinates demand a higher central mass of the atmospiezayse otherwise the gen-
eral relativistic effects would be negligible.

One disadvantage of this more extended setup is the lackpddration of strong tidal
effects as those are expected to be largest near the ceratsal rilowever, the resulting
model still suffices in analyzing the basic properties ofegahrelativistic radiative transfer
in the presence of velocity fields.

In Figure 6.13, the resulting line profiles for a masslessoafrhere, in black, and for the
general relativistic case, in red, are plotted. The relgtitvcase has a central mass of
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Figure 6.13: Comparison of emerging line profiles of a massless amfia 15M ), shown in
red, atmosphere. The maximal velocity at the innermost laf/the atmosphere
is 104 km/s,

M = 15M,. Both models have an outer radiusrof= 10* cm and a density exponent of
n = 3 (See Equation (6.12)). The scattering parameters;are= ¢, = 1072.

For the massless atmosphere the line profile resembles @msenP-Cygni profile
[Mihalas, 1978]. This is an expected behavior as the vetde#d is pointing inwards
opposed to for instance stellar winds where P-Cygni profiéesbe observed.

Due to the relation (6.13) the velocity field vanishes at theeomost layer and no Lorentz
boost due to a velocity field is necessary. The general vedad line is however still
redshifted due to the gravitational field. The redshift i@er than in the previous Sections
because the radial coordinate of the top layer is much laingerbefore and dominates over
the Schwarzschild radius in the relation (4.15) that deiteesithe redshift.

The influence of general relativity reduces the extent oftilue emission feature and a
very spread out emission feature on the red side is visiblerder to emphasize the effect
of the radiation field on the emerging spectrum the line prsfibr three different velocities
are shown in Figure 6.14. The structure is the same as iné&gW3. The velocity field
influences the extent of the blue emission feature. A largkroity partly compensates the
redshifting effect of the gravitational field. This can atsoseen at the red emission feature
as it is confined to smaller wavelengths for larger velositie

The strong effect of general relativity is expected and wessrhain motivation for the
calculation of the line profiles in a spatially extended atpteere. Therefore, the general
relativistic treatment of relativistic flows may be very iorgant for the modeling in such
environments. However, this holds only under the premiaettie underlying structure in
a realistic model is not very different.
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Figure 6.14: The general relativistic line profiles for different maxirwalocities, 2 - 10* km/s,
5-10* km/s, and7 - 10* km/s, are shown.

6.5 Continuous Spectra from a Gray Atmosphere

In the preceding Sections 6.3 and 6.4 the radiative linesfesrhas been calculated. If
the spectral line is omitted the testing environment froroti®a 6.2 can also be used to
calculate purely continuum radiative transfer [Kra@l., 2007].

In order to do so one has to omit the opacity of line. Furtheemthe approximation of a
wavelength independent Planckian is no longer valid, beeaow the interest lies in the
radiative transfer in a broader wavelength region. Thisigrices directly the thermal part
of the source function and the spatial boundary conditiohgkvare implemented by the
wavelength dependent diffusion approximation [Mihal&a].

As there are still no physical data used in the constructfdhemodel the opacity is best
treated as gray.

In the following, the effective temperature of the atmospheas been arbitrarily chosen
asT,; = 10* K. The structure of the atmosphere has been constructed asbeesin
Sections 6.2 and 6.3. In the construction of the compact sppimere a mass dff = M,
and an outer radius af= 10° cm have been used.

In the following Figures 6.15a to 6.15e the gravitationalst@ft is assumed to be known
and is corrected for in the plot. Black body spectra are deégal. In order to match
the spectra the blackbody and the continuous spectra wemgafined on the maximum in
arbitrary units.

In Figure 6.15a the emerging spectrum for a vanishing soadgtalbedoe, is shown. The
according black body spectrum with tfig; of the model atmosphere is overplotted with
dashes in red. The spectra match very well and in case of acettering atmosphere the
temperature determination via a black body fit would havenlsecessful.
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The situation is however different if scattering is taketoiaccount. In Figure 6.15b the
spectrum for a modestly scattering, = 10~!, atmosphere is shown. The black body
spectrum for the effective temperatdig = 10* K of the atmosphere model is overplotted.
It is obvious that the black body does not fit the observatsit appears to be too cold.

In Figure 6.15c the same spectrum is shown with a black bodyTtite temperature of
the fit isT = 12400 K. Hence the apparent temperature of the continuous speasrum
significantly higher than the model temperature would haggssted.

For a stronger scattering albedo the effect is even morefisigmt. In Figures 6.15d
and 6.15e a strongly scattering,= 10~3, atmosphere is shown. The black body spectrum
has the temperaturE = 10* K in Figure 6.15d and the temperatife= 2.14/,-10* K

in the fit shown in Figure 6.15e. The apparent temperatureoi® than two times higher
than the effective temperature of the model structure. ilxdhse even the redshifted con-
tinuous spectrum peaks at shorter wavelengths than thie béatty spectrum of the model
temperature.

In order to check the validity of the calculations the theliraion depth for the different
scattering albedos is determined. The thermalizationhdeptis the optical depth where
Jy = B, [Mihalas, 1970].

For coherent scattering the thermalization depth is rélaiehe thermalization parameter
as follows

(6.15)

Since the emergent spectra are Planckignis the optical depth where the temperature of
the atmosphere equals the temperature of the blackbody fit.

The resulting optical depth,, is plotted over the scattering albedo in Figure 6.15f. The
results match the prediction from the theory sufficientlylwe

These results are valid for all temperature regimes. Framfdllows, that in order to
model the temperature structure of compact astrophydicedspheres, e.g. neutron stars,
itis necessary to fully include the effects of scatteringhiemodeling process as scattering
determines the fit. Besides the problem of scattering iy ritangled in the general rela-
tivistic radiative transfer theory. Thus for realistic tieun star models the radiative transfer
including the treatment of general relativity and scatigmust be self consistently solved.
Otherwise systematic errors would be introduced into theutations.
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Figure 6.15: In Figures 6.15a to 6.15e continuous spectra from compaay, atmospheres

with varying scattering albedos with overplotted black ypdits are shown. The
continuous spectra are imaged in curved spacetime but enectad for the grav-
itational redshift.

In Figure 6.15f the thermalization depth is plotted for was values for the co-
herent scattering albedo as small red crosses. The run tifehmalization depth
according to the theory is plotted as a solid black line. Talewations match

the theory reasonably well.
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6.6 The Influence of Imaging on Emerging Line Profiles

The influence of curved spacetime and the according tramsfiton for synthetic spectra
have been introduced in Chapter 4. In Section 6.3 it has beamrsthat the gravitational
redshift of the spectrum has a discernible effect on themadlimages spectral lines. But
the basic shape of the line seems to be uneffected by thenigragi

This result is reasonable because the characteristichareanost effected by the imaging
are the topmost tangent rays with small valuesifavhich do not contribute much to the
overall spectrum due to the small effective area of the atingrsurface element.

The situation would be different in multidimensional magellin such models varying
surface temperatures and for instance hot spots from amcféaws can be included. The
emission of such a hot spot can contribute to the spectrumiéitas on the back side of
the atmosphere due to the imaging in curved spacetime.

As noted before this work is limited to one-dimensional aldtions and thus consistent
multidimensional models are not possible. Hence the madahiapproximation that still
allows to estimate the extent of the effects on the spectrum.

In order to do so two calculations of different temperataescombined. Since the spec-
trum calculation cannot be performed internally the corngptadiation fields for two dif-
ferent temperatures are used.

A number of tangent rays in the calculation get replaced kyctbrresponding rays of a
model with a higher effective temperature. The new combiragtiation field does not
represent exactly a hot spot but a hot annulus on the far $ithe @tmosphere. However,
this still represents the effects of an inhomogeneous saitiemperature sufficiently well
and in the following the term hot spot refers to this annulus.

Two quantities in this combination affect the observablecsum directly. First there is
the number of angles of the radiation field that are exchangedktermines the surface
of the spot or annulus and therefore directly affects thetspen. Secondly there is the
effective temperature of the hotter model atmospheref.it3die total radiated flux of an
atmosphere is proportional to the temperature to the fquother and thus the spectrum
strongly depends on the combination of the effective teaipees.

In Figure 6.16a, two spectra of a compact atmosphere fromidbed.3 are compared. The
dashed red line represents the combination of the two teatyrermodels and the black
one is the normal spectrum for the cooler temperature. Thieecanodel atmosphere has
a temperature of .z = 10* K whereas the hotter atmosphere has a 50 times higher tem-
perature . = 5 x 10° K. The spectra were normed on the continuum of the unchanged
model to be easily compared.

The first 20 angles of the hot model were used in the calculaifahe combined spec-
trum. In terms of the direction cosinethese rays cover the range< ;< 10~%. This
rather small range is a result of the compactness of the aimeos as in the outer part
the radial coordinate is not changing much from layer tod@yel hence the outer tangent
characteristics are very similar.

The shape of the line is not strongly affected by the hot spairdy the depth relative to
the continuum is slightly increased and the main observdiffierence is caused by the
increased flux in the continuum. In a real application theugrilce of spectral lines formed
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in hot spots could be significantly larger. This is due to tlhegible dependence of the
profile function on the temperature and more importantlytduibe change of the chemical
composition. For instance transitions of highly ionizednas may only be present in the
hot spot and these signature wavelengths could be detectatble emerging spectrum.

In the model at hand the effect on the continuum was the damhiorze. The description
of the continuum is simplified, however, as a non varying icantm for the radiative line
transfer was assumed.

The gray atmosphere models from Section 6.5 treat the aamntinphysically more cor-
rect. Hence effects due to the imaging on the continuum aestigated best with these
models. Analogue hot spot calculations for the gray atmespmodels from Section 6.5
were performed. The result for Bg = 10* K atmosphere and a 20 angle annulus of
T.s = 1 x 10° K is shown in Figure 6.16b.

A second peak at shorter wavelengths is visible. Due to fifieréint effective temperatures
the maximal emission occurs at different wavelengths &spdy. As the short wave-
length slope of the blackbody like spectrum is very steepetiéssion of the hotter part
of the atmosphere takes place at wavelengths where the fhive @old model essentially
vanishes. Hence the signature of the hot spot is clearlipleisi

The signatures in the spectrum due to the modeling of hosspetprimarily a consequence
of multidimensional modeling. Therefore, the contribnBovould not be limited to the
outermost tangent rays that originate from the far side efatmosphere. In this general
case the effects can be expected to be much larger, becauserttribution to the flux
integral for, say, core characteristics would be signifilaarger.

Nevertheless, the result shows that imaging must be usedlidimensional calculations
and especially in configurations where the topology of tretesy relative to the observer
is known, e.g. an accretion funnel on the far side of the dbjec
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Figure 6.16: The effects of a hot spot on the emerging spectrum are shaw(a) lthe influ-
ence on a line profile is shown whereas in (b) the continuoestsp of a gray

atmosphere are compared.
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Chapter 7

Numerical Implementation

The calculations from Chapter 6 are based on a numericaeimgahtation of the technique
described in Chapter 5. This implementation is a test d¥ehe radiative transfer rou-
tines as there is no input of physical quantities as for mstaabundances and opacities of
species. Instead the atmosphere is crudely described by @ai@ameters.

A physical description of model atmospheres is used in stighted atmosphere codes.
In order to utilize the framework provided by such a code thmerical solution of the
radiative transfer must be inserted into the atmosphere.cod

The general stellar atmosphere code packdEENI X is used for the implementation in
this work. The existing framework ¢*HOENI X and its previously implemented radiative
transfer solution allow for convenient testing of the nevpiementation. In the following
thePHCENI X solution will be referred to as the default or old method déison while the
technique from Chapter 5 will be referred to as new or gerradihtive transfer solution.

The memory resources needed by the new radiative trandfesr soe discussed in Sec-
tion 7.1.

The inclusion of the general radiative transfer into thescpdckag®HOENI Xis described

in Section 7.2.

Section 7.3 describes the testing of the implementationdisalisses the results whereas
the numerical performance and possible improvements aceised in Section 7.4.

7.1 Memory Demands of the General Relativistic Radia-
tive Transfer

The formal solution and the ALI scheme which have been intced in Sections 5.1 and
5.2 have a numerical disadvantage. They are formulatedtimomatation with the number

of wavelength points being one of the factors which deteetie size of the matrix. Since
the different wavelengths used in the calculation of a ifspectrum is usually quite large
the matrices involved in the solution will be also large.

In order to perform a formal solution along a given ray, alltnxaelements as well as all

interpolation coefficients for all wavelengths and all sggtoints must be known. In the
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Figure 7.1: The used memory is plotted over number of layers of the momebsphere for
four different number of wavelength points.

work of [Baron and Hauschildt, 2004] this data was saved ek ftir every characteristic.
The memory demand is even increased as there is the apptexhyaperator structure
which is needed for the ALI step and must also be allocatethduhe radiative transfer.
This structure has a number®sf3 x ny x nf,, entries that hold an 8 byte long variable,
wheren, means the number of wavelength points angl, the number of radial layers in
the model atmosphere.

Test calculations have been performed with the serial @Brsf the test driver of the ra-
diative transfer which has also been used to calculate thatige transfer in Chapter 6 to
determine the memory demand. The values for the maximalako memory are not ex-
act, because not every memory allocation is tracked. Therdorcontributions however
are tracked and indicate the approximate consumed resource

In Figure 7.1 the maximal allocated memory during a ALI sephown for four different
sets of wavelength points: 985, 1968, 9841, and 19676 points

The allocated memory shows an approximate quadratic depeedn the number of lay-
ers. However, the calculations were performed only for allssefof differentn,y.,: 32,
64, 128, and 256.

For 19676 wavelength points the memory is capped at 53 GBeaasdaltulations failed
for these configurations as the available memory was exé@usihe calculations were
performed on a node of the HLRNvith 53 GB available memory. Hence the 53 GB in the
plots must be seen as a minimum of the real demand for thatlasitm.

In Figure 7.2 the variation of the allocated memory over thmber of wavelength points
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Figure 7.2: The used memory is plotted over number of wavelength poantdifferent num-
bers of layers of the model atmosphere.

is shown for four different numbers of layers — 32, 64, 128] a66. In addition to the
numbers of wavelength points used in Figure 7.1, 29519 al&BWavelength points
were used to create the data points.

The more layers are used in the model the stronger the atldecaémory depends on the
number of used wavelength points. For models with a largeryar of layers the available
memory is quickly exhausted.

The information from the Figures 7.1 and 7.2 can be combing&ma surface plot of the
maximal allocated memory which is shown in Figure 7.3. Th&imal available memory
of 53 GB is reached for several combinations of parameters.

At first glance these tests indicate that the new general noahenethod is not feasible
for use on the available hardware because of the high meneanadd. However, us-
ing domain decomposition in the parallelized version of toee the memory demand
per processor can be decreased. With a processor workiggoord few characteristics
in the formal solution, the storage requirements for theattaristics data is decreased
accordingly. In an optimal situation there is the same nunabgrocesses as there are
characteristics and every process just has to keep theataiad characteristic in memory.
Hence an increase in the number of processes will minimeen®&mory requirements for
every single process and the memory allocation is domirtayetie data structure for the
approximate\-operator alone.

For instance in the calculations shown in Figures 7.1 tohe3taximal allocated memory
for 64 layers and 9841 wavelength pointsd$.8 GB for a serial run. A parallelized ver-
sion of the code with 12 tasks used for similar parameterigygts and 10389 wavelength
points, only= 2.5 GB of memory per processor. As the size of the approxithaiperator
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Figure 7.3: Two-dimensional plot of the used memory over the number yérig and wave-
length points. The plot is capped at 53 GB since this was thémad available
memory. It is obvious that large a number of either layers avelength points
can exhaust the available memory very quickly.

depends linearly on the number of wavelength points detailedels with~ 10° different
wavelengths would need 25 GB of memory. Such calculations can already be performed
with state of the art shared memory supercomputers. Howiemarder to realize this, most

of the processors on a shared memory node must remain uruseztdase the effective
memory per processor while computing.

7.2 Implementation in PHOENI X

In the following the integration of the general radiativartsfer implementation into an
existing code package is outlined. The code package of e®itiePHOENI X code. Itis

a general stellar atmosphere code which is capable of teelaibn of atmospheres and
spectra for a wide range of objects.

All features ofPHOENI X as for instance multi level NLTE calculations and dynamia®p

ity sampling are not subject to charige general relativistic atmosphere modeling and are
not influenced by the method used to obtain the radiation.field

That means that in order to model general relativistic dbjadth PHOENI X only routines

for the calculation of an appropriate structure and the gersolution of the radiative
transfer must be added.

°The need to adopt the model description to the extreme enwients of compact objects not withstand-
ing.
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This work focused on the inclusion of the radiative transiiercause its implementation
is the same for all possible model structures — from neutt@nasmospheres to accretion
flows.

A generalPHOENI X radiative transfer iteration is schematically shown in lgfe part of
Figure 7.4 and can be summarized as follows. At first the giramf the atmosphere is
calculated. The details of the calculation are differemtdifferent model types, but have
in common that from the structure information — temperaflirnd occupation numbers
[n] — the opacities can be calculated. Then for every wavelepgthent in the model
the opacities, thé\*-operator and the radiative transfer are calculated in aeleagth
loop. Depending on the model type of the atmosphere thetnaglimansfer at a given
wavelength is either independent from other wavelengthdepends on the prior wave-
length point. This dependence is resolved by a recursiveingpgcheme in a sorted
wavelength grid. Hence the radiative transfer can be calledl wavelength by wave-
length. With the radiation field known the contribution toaaliative rate of a transition
for each wavelength can be calculated. The complete rateisum of all contributions
whose wavelength fall within the line profile of the transiti In order to solve the sta-
tistical equations the rates are stored in another appaieiroperatorR* can be used
[Hauschildt, 1993, Hauschildt and Baron, 1999] which is stacted from the diagonal
components of thd*-operator at the given wavelength.

After the wavelength loop the radiation field and the rateskaown, the rate equations are
solved, and the new occupation numblesisare calculated.

The current scheme must be modified, because the generaistiia radiative trans-
fer must be solved for all wavelengths simultaneously. Tép@\a@lent radiative transfer
scheme is shown on the right of Figure 7.4.

The main difference to the defallHOENI X scheme is that all opacities for all wavelengths
must be known before the solution of the radiation transpamtproceed. Hence instead of
solving the radiative transfer in the loop over waveleng# dpacities are saved for every
wavelength. Then the radiative transfer can be calculdtedthe wavelength loop.

After the radiative transfer calculation the radiationdiahd the\*-operators for all wave-
lengths are known. Therefore, the same framework used iddfailtPHOENI X scheme
can be used for the general radiative transfer solver. lardoddo so, a second wavelength
loop is required which calculates the rate operators in #mesway as before with the
radiation field being provided for each wavelength and dlsa@hich are purely related to
the radiative transfer were omitted. After the rates arepete the iteration step proceeds
exactly the same way as for the standard radiative transfer.

In order to make the computation of detailed atmosphere taddasible, thd®PHOENI X
code is parallelized in several ways [Hauschddal., 1997, Baron and Hauschildt, 1998,
Hauschildtet al., 2001]. Hence the implementation and the setup of the gereatamtive
transfer solver must also be parallelized accordingly.

Most of the parallelization present HHOENI X does not affect the radiative transfer. Only
the wavelength parallelization is of interest, becauseffeity data is exclusively known
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Figure 7.4: Flowcharts of the principle solution to the radiative tif@nsn PHOENI X. Rounded
boxes indicate that the contained quantities are calaukgtéhat step.
Left: The defaultPHOENI X scheme for a radiative transfer iteration is shown. All
wavelength dependent quantities are calculated in onelarayth loop.
Right: The general radiative transfer iteration is shown. Siheaadiative transfer
cannot be solved for a given wavelength alone, the schendse® wavelength
loops to calculate the same data as a defAd®ENI X iteration.
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on a wavelength cluster and must be broadcasted to all otheegses in order to perform a
radiative transfer step within the new general framewote Broadcast of the opacity data
takes place after the wavelength loop is completed. Thismibes the communication
overhead between the processes during the wavelength loop.

With all the data in place after the first wavelength loop,rgy®ocess can then perform a
general radiative transfer iteration. This iterationlits®also parallelized but is indepen-
dent from other parallelizations PHOENI X.

The calculation of the matrices for the formal solution isgtielized over wavelength
whereas the formal solution itself is parallelized over ¢haracteristics. The actual ALI
step however is performed on every process.

From this follows that in contrast to the defa®HOENI X framework there is no need
to send wavelength dependent quantities between the weaybklelusters, because every
process computes these itself.

7.3 Test of the Implementation

Itis essential to have areliable test for the results frorava code (see Section 6.1). In case
of the implementation of the general radiative transfdPHOENI X the well tested default
radiative transfer solver offers such a reliable test. @esithe solution of the radiative
transfer nothing has changed in the setupldOENI X and the results must be identical up
to the prescribed accuracy of the radiative transfer sslver

In order for the test results to be comparable the radiataester must be solvable by
either method. Hence the gravitational mass was set to nera anonotonic velocity field
was used.

In a monotonically expanding atmosphere the coupling texns always positive. The
intensities at a given wavelength only depend on the shar&elengths. This is shown
in Figure 7.5 in which the dependence of the specific intgratita point is indicated by
arrows.

This system can be solved recursively or with the use of thixnequation. However
all s*Pe*-terms of the matrix (see relations (5.20) to (5.22)) will dmnsequently zero.
Nonetheless the full method and framework of the generaitisol is used.

At first the two different implementations have been testedaial versions. This has al-
lowed for quick testing and debugging on a standard desldoppater. However, this has
limited the possible number of wavelength points, becalgertemory demand per CPU
for serial calculations is significantly higher (see Figdr8). Hence approximately 1000
wavelength points have been used in the calculations. Thaédl size of the numerical
system proved to be valuable in the debugging process, gieaetection of boundary ef-
fects was not suppressed by the sheer number of wavelenigiis pgdence inconsistencies
in the construction of the approximate operator, the sphtandary conditions and the
wavelength boundary conditions could be removed.

Further the states of allocated arrays and pointers weusiadj to allow for multiple suc-
cessive iterations without memory leaks.
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Figure 7.5: The influence of the different points on each other is colatecb— red arrows

indicate an influence on longer wavelengths while greenessts an influence
without a change of wavelength.

With the sign ofa), being always positive the wavelength derivative sense does
change from point to point and the radiative transfer carobeed recursively.
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An parallelized version has been first tested against thdtsesom the serial runs with
a small number of wavelength points. With the results beieggetly identical for all
versions the implementation has been tested in a moretreatiedel iteration.

PHCOENI X has been used in the supernova mode, with0* wavelength points and neu-
tral hydrogen treated in NLTE. In order to investigate thiéedences due to the different
radiative transfer solver the structure has been held anh§bm iteration to iteration. This
assured that any occurring differences were purely rekatéte radiative transfer.

A good indicator for the agreement of the results from botlhoes besides the radiation
field itself are the departure coefficiemts(see Section 2.4). Thie depend directly on
the radiative rates which directly depend on the radiatield fand are very sensitive to
variations of the mean intensity.

In the following?'Y means the departure coefficients resulting from the deRHTENI X
framework, and}" the departure coefficients for the new general framework.

The results for the converged departure coefficients ofrakliydrogen are shown in Fig-
ure 7.6. The upper panel shows the default values wheredewee shows the new co-
efficients. All calculated levels of the hydrogen atom arevam and there is no obvious
deviation visible.

However, the detailed values of the departure coefficiemtbdlf of the levels are different
in one or more layers of the atmosphere. These differeneebest visible in a relative
plot.

In Figure 7.7 the ratio% is plotted over the radial optical depth grid The y-

axis is scaled with the factdi0—> and hence larger amplitudes around zero mean larger
deviations. The points which belong to one level of hydrogenconnected by a line. The
jagged appearance of the line shows that in no consecutreeslan the atmosphere the
coefficients were different, although multiple deviatidosa single level also occurred.

The maximal deviation from zero is of the order if . For all practical purposes the
NLTE calculations driven by the two radiative transfer nzetttan be assumed to deliver
equal results.

It should be noted that the lack of deviation for most of thelgis not due to the exactness
of radiative rates calculated by the radiative transferidoa consequence of the five leading
digits of the departure coefficients saved. Hencé;are different internally, but only in a
few cases the differences add up to fall short of the desiedracy.

The other obvious test for the quality of the agreement ofdllétive transfer calculations
are the spectra themselves. In Figure 7.8 the comoving repetthe same supernova
models which were used in the departure coefficient compaase shown. The top panel
shows the spectrum from the old default radiative transfBgreas the lower panel shows
the result for the new general method.

From a check by eye the spectra seem perfectly identical.rdardo allow for a direct
comparison the spectra are shown in one plot in Figure 7.8.0ldhspectrum is plotted in
a thick black line and the new one is overplotted in red. Folearer comparison of the
spectral details the plot range was reduced to only 250 A.

The agreement appears to be flawless in a mere inspectiorebyregrder to quantify the
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Figure 7.6: The departure coefficients for the first 30 level of neutralrogen are shown for
two cases. The upper panel shows the results for the oldltefglementation in

PHOENI X, whereas the results for the new general method are showie iower
panel.
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Figure 7.7: The relative differences of the departure coefficientsvéerfrom calculations with
the old as well as the new general radiative transfer sotueiht first 30 levels of
neutral hydrogen are shown.

similarity the ratio
F)c\)ld _ F)I\lew
F)(\)ld

is plotted in Figure 7.10. The absolute value of the ratidasted, because a logarithmic
scaling is used as a large range of values is covered in the plo

Every point represents the ratio at the according wavelepgint. For most points the
match is indeed very good as the bulk of the ratios have vdltleeamrder ofl0—°.

Some data points even show smaller errors down to the ordérdf. However, there are
a couple of data points at around 950 A which show a differémtie spectra of up to a
few percent.

The according part of the spectrum of the spectra is showetaildn Figure 7.11. There
is no evidence that there is a problem regarding the radi&@nsfer.

(7.1)

In all preceding tests of the implementation the structu® lbeen held constant and just
the occupation numbers and the radiation field have beeatetkr Since the new radia-
tive transfer can be considered as consistent after thadats effect on the temperature
correction must be investigated.

Within the limits of the model assumptions made in regarchdtructure of the model
atmosphere, the physical accuracy of the calculated sneicepends on the consistency
between the radiation field and the given structure. Thisistency is checked via the
energy conservation in the comoving frame of the local aleseil his check is valid as long
as there is no time independence in the calculation allowedrid the model atmosphere
is assumed to be stationary.
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Figure 7.8: The upper panel shows the comoving spectrum of a defaulatraelicalculation
with PHOENI X. The comoving spectrum from the according calculation it
new general radiative transfer solver is shown in the lovegreh
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Figure 7.9: A 250 A broad section from Figure 7.8 is shown. The spectrafitoe two differ-
ent methods for the solution of the radiative transfer anéigdl over each over.
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plotted in order to use a logarithmic scale.
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Figure 7.11: A detailed part from both spectra in Figure 7.8 is shown inglog It covers the
wavelength range where the deviation of the two differeecsa is of the order
of a few percent (see Figure 7.10). The original spectrumdtqa as a thick
black line and the new one is overplotted in red.

The energy conservation is determined by the conditionttteabsorbed energy in a vol-
ume element balances the emitted energy. When energy tranvép material flows, for
instance by convection, is absent this energy balancelisdetermined by the radiation
field [Hauschildtet al., 2003]. In order to balance the energy conservation thd teca
perature of the gas is corrected. This change of the modedtate means that a new
radiation field must be calculated. This changes the enaalgnbe and a new temperature
structure can be calculated.

In the case of a sufficiently small temperature correctichemors the model atmosphere
can be regarded as physically consistent.

The accuracy of the radiation field itself is determined by pinescribed accuracy in the
ALI step (See Equation (7.2)). The accuracy of the convargas a quantity which is
averaged over all layers in the model. From this follows #itttough globally converged
the radiation field in some layers might not already be cayee@rup to the prescribed
accuracy. Hence it must be expected that the energy balatitese layers can be different
for two different solutions of the radiative transfer.

Indeed this is found in a comparison of two calculations — with the new the other
with the old method of solution — of the same atmosphere mobe¢ differences in the
radiation field added up in the flux integral over wavelengthis was especially true for
the deepest layers where the differences were as large asrahef a percent.

The temperature correction procedure produced a sligiftreint temperature structure.
This results in a change of the occupation numbers and thatgpBurther the departure
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coefficients start to be different, because they are vergitemto changes in the tempera-
ture.

After convergence according to the energy conservatiomth models the structures are
different. However, the structures did not diverge and dwmesjzally still similar. This can
also be seen in the spectra as they are still very alike.

Both model atmospheres are consistent within the accurbtlyeor according radiative
transfer solution. None of the radiative transfer solvessiges the prescribed accuracy for
the radiation field in all layers. Hence there is no way to fdfe results from one method
over those from the other. As both methods produce physisattilar consistent atmo-
spheres there is no obvious reason for tightening the acgeteecks in order to improve
the energy balance. The increase in the computational€ast justified by the small im-
provement of the physics. This is especially true for theegairadiative transfer method
because its computational cost is already very high.

7.4 Numerical Performance

The time needed for a general radiative transfer iteratioectly depends on the time
needed for a formal solution.

This dependence is crucial for the overall numerical pentoice, because the formal so-
lution is used very often during an iteration. In numbersfiirenal solution gets called
Nray X NaL1 imes, withn,,, being the number of characteristics angl; the number of
ALl steps.

The formal solution is of the form

r = A-x+0b
1-A)x =10
Mz = b

The explicit form is given in Figure 5.2.

In [Baron and Hauschildt, 2004] several different solveasenbeen tested. The overall
best solver has been the SuperLU package [Denetratl, 1999]. It has also offered very
good performance in the testing of the implementatioRHOENI X. However, the large

size of the numerical system to be solved is well suited femaiive solvers. Hence the
feasibility of iterative methods for the formal solutiondiaeen investigated.

At first a Jacobi type solver [Golub and Van Loan, 1989, Zurhaiid Falk, 1986] has

been implemented. The right hand side of the linear systesnblean used as starting
values and the system was iterated to a relative accuratfy ¢f. The method works rea-

sonably well as it reproduces the results of SuperLU. Thiopaance has been very bad,
however. In case of the longest tangent characteristicsgher would use up to 1000
iterative steps.

In order to speed up the convergence rate a Ng type accelerifdg, 1974] has been

implemented. In principle it saves the result from previeus this case three — iterations
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and extrapolates the expected result. The acceleratiosweagssful as the solver indeed
needed approximately half as much iterations.

It should be noted that the starting point of the Ng accdlematan affect the overall per-
formance. In some cases a start of the Ng method before that2@tion could in fact
slow down the whole iteration process.

The performance of the Jacobi type solver nonetheless cadlichatch the performance of
the SuperLU package as it has been up to ten times slowereHemather iterative solver
— a Gauss-Seidel type solver [Golub and Van Loan, 1989, Zhkarid Falk, 1986] — has
been implemented. The Gauss-Seidel method not only Kehatupdates the variables
locally, but uses these new calculated values in the cdiouolaf the following entries of
the solution. This potentially speeds up the convergentieeo$olution.

In the case of the formal solution this is indeed the case. Gaess-Seidel method is
very quickly reaching convergence in a few steps. Dependimg¢he size of the matrix
usually two up to 15 iterations suffice for convergence. Tdsulting computational times
are comparable to those of the SuperLU package. Further e no evidence found that
the size of the matrix system would pose a problem to the ndetheolution.

However, the numerical performance should still be impdowéen possible. An iterative
solution converges faster the better the initial guess efviliriables is. This fact leaves
room for improvement. The formal solution is performed betw two ALI steps in order
to update the source function for the following ALI step. Tétgy the matrix itself remains
unchanged and only the right hand side — essentially thesdunction — was changed by
the last ALI step.

In the first implementation the solver would use this rightdhaide as a starting condition,
because of the lack of a more sophisticated guess. For tweessige formal solutions
however there is such a guess, since the last solution o#thation field along the char-
acteristic can be used. This starting condition is muclebstiited than the right hand side
especially if the source function did not change signifigaimtthe last ALI step.

In order to use the last result as a starting condition it roestaved on the process which
worked on it. The memory demand is minimized as the distidioudf the formal solutions
to different process is a round robin scheme. Hence evepepsxan determine in advance
which characteristics it will work on and allocate the apprate arrays.

The impact on the total allocated memory will be minimizednbugh processes are used
since then only one solution must be saved additionally imorg.

The improvement of the initial guess indeed reduces the toma Gauss-Seidel step by
a factor of five. The final performance of the different sodvéar a test model witlt4
layers ands432 wavelength points is compared in Figure 7.12. The logaiithime in
seconds is plotted over the number of formal solutions peréal. The results for the
standard SuperLU package and for the two iterative solvedacobi and Gauss-Seidel
type with the improved initial guesses are shown. The timnnelfe first formal solution is
significantly higher than the following for all solvers. Bhis due to the construction of the
A*-operator which is recognized by the timing procedure agtegbahe formal solution.
The Jacobi solver profits from the improved starting condsi however its performance
is too bad in order to be a viable replacement for the Superatkage. The contrary is
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Figure 7.12: The time needed for a formal solution is plotted over the neiaf formal solu-
tions performed between ALI steps.

true for the improved Gauss-Seidel method. SuperLU is dolly @ outperform this solver
in the first solution where its performance suffers from theefined starting conditions.
From the second iteration on the Gauss-Seidel method is thréour times faster than
SuperLU.

Further there are is no evidence that the Gauss-Seidel theiligperform worse for larger
systems. A test model withd layers and19276 wavelength points was calculated with
the refined Gauss-Seidel method. The timing result is coeaptr the Gauss-Seidel and
SuperLU results from the smaller test case in Figure 7.13 Aibt starts at the second
formal solution in order to clarify the results by reducihg fplot range.

The average time for a formal solution in the large test case b — 6. By tripling the
number of wavelength points the computing time was just temiand the Gauss-Seidel
method still performs faster than SuperLU in the smallerdase.

From this follows that the implemented Gauss-Seidel mettad replace the SuperLU
package. Not only the issue of the large systems is resdbdly addition this method is
faster, appears to be very robust, and uses less memory.

The previous part of this Section dealt with the speedup efctidculation of the formal
solution. This has been motivated by the fact that the forsodltion is the most often
invoked numerical operation during an ALl step as it is usagg x nar; times. In order
to save computational time also the number of calls can beceztl Since the number of
rays is a fixed number only the number of ALI steps can be ratluce

According to [Auer, L., 1987] a combination of an ALI with a Nagceleration is well
suited to reduce the number of iteration steps.

An iteration is treated as converged if the changes of thenntgansities are below the
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Figure 7.13: The time needed for a formal solution is plotted over the neindd formal so-
lutions between ALI steps. The first formal solution was ¢editfor a cleaner
comparison of the times

desired accuracy. In case BHOENI X these changes are defined as the ratio

Ji+1 _ JZ
— (922 A 7.2
A <¢KH+A> (72)

The upper indexindicates the according iteration whereas the brackeisatelan average
of the ratio over all layers in the atmosphere. The quantityhich is tested versus the
prescribed accuracy is the maximum of all the

The convergence ratesfor a radiative iteration with and without Ng accelerationthe
ALI step are shown in Figure 7.14. The results for Ng accéderaterations are shown
for two different starting points, after the 10th and aftez 20th iteration. Indeed the Ng
accelerated iterations outperform the normal ALI. The Ngpéeration which started at the
tenth ALI step needs three iterations less than the unaateteALI. The Ng accelerated
iteration that started at the 20th ALI step outperforms ttieoNg iteration by one further
iteration.

It must be noted that the Ng acceleration fails to acceldtsdteration if it is already
started at the fourth iteration. In this case the numberavations has been equal to the
unaccelerated case. It appears that the data in the firstiaies is not suited to be extrap-
olated by the Ng method. A further delay of the starting poirthe acceleration resulted
in no further speed up. It is expected that the optimal stgnpioint of the Ng acceleration
depends on the given problem.

Although the efforts made to improve the performance of teeegal radiative transfer
were successful the new solution is no alternative to theudeiethod used iIRHOENI X.
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Figure 7.14: The ratio from Equation (7.2) is plotted over the number efdtions for Ng
accelerated and normal ALl iterations.

The ratio of the computational time costs of both methodgesaslightly with the size

of the numerical system, but as a rule of thumb the generahadatkes about 15 times
longer. In the case of a NLTE calculation it even takes ab@utirBes longer due to the
need of the second wavelength loop.

But only the new general solution is capable of describibgarily in wavelength coupled

radiative transfer problems. Its use is not limited to thkison of general relativistic

radiative transfer, but also applies to arbitrary radidbery fields. Due to the generality
of the method and the formulation developed in Section 3glatso possible to solve the
radiative transfer in arbitrary velocity fields in a curveachground spacetime within the
PHOENI X framework.
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Chapter 8

Conclusion and Outlook

The equation of radiative transfer has been formulated iap@r 3 in terms of the spe-
cific intensity. Although this description is physically@galent to the commonly used
description via the distribution function, it offers a newsatz. The equation of transfer
then assumes its characteristic form which is commonly usegecial relativistic calcu-
lations of radiative transfer. This form is suited for the s the powerful ALI formalism
which is a state of the art method of solution for classicdiatve transfer.

The main difference of the developed ansatz to the esta&dlishblutions of general rela-
tivistic radiative transfer is the wavelength parametran. In general radiative transfer
the wavelength is customarily parameterized along thegadblesic with the help of con-
stants of motions. This causes the discrete wavelengthoitite radiative transfer to be
dependent on the spatial position along the characteristic

The ansatz developed in this work keeps the wavelength geedl fior all spatial points
of the atmosphere. This requires that the changes of the mtomecoordinates along
the characteristics in the equation of transfer are tracBette the parameterization of the
specific intensity also does not change, the gravitatidméilaf wavelength is described by
a wavelength derivative. The properties of the derivatireecantained within the coupling
parameter,, which in general changes its sign along the null geodesitiseofinderlying
spacetime. This requires a general solution of the radidtansfer problem such as the
formal solution described in Section 5.1.

The resulting description of the radiative transfer is mooenplex and harder to solve
but is indispensable for the calculation of radiative linensfer. Because of the fixed
wavelength grid, any spectral line can be resolved by theesanhof sampling wavelength
points throughout the atmosphere. In the case of a varyingheragth grid, the number
of wavelength points needed to achieve the same resoluttaidwe much larger and
prohibitively large for detailed spectra.

This argument also holds for relativistic flows in flat as wal curved spacetimes where
the wavelengths are coupled due to the Doppler effect by ifferehtially moving flow.
The ansatz for radiative transfer within flows in curved samees has been developed
in Section 3.4. It applies the same explicit tracking to thementum variables as in the
static case and is therefore suited to describe radiatnettansfer in flows in a curved
background spacetime.
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The ansatz of this work is general enough so that it can alsgppked to the Kerr met-
ric. In the absence of a flow, the equation of radiative tranif given in Section 3.3.4.
Although the inclusion of a flow in the radiative transfer iretKerr metric can proceed
in the way described in Section 3.4, the corresponding tation is an arduous task. The
coefficients of the differential operator for the momentuaniables in the case of static
radiative transfer in the Kerr metric (see Equation (3.5%¢) already very complex as can
be seen from the according Ricci-rotation coefficients ipé&pdix B.2. In the case of an
additional velocity field, this ansatz results in an unwlglcbmplicated description. This
is due to the fact that the coefficients must describe thartgrand twisting of the base
vectors for the photon momentum which are complicated fanstof the base coordinates
of the metric.

In order to resolve this problem, another ansatz is betigzduln case of isotropic emis-
sivities and opacities, the ansatz described in [Gliah, 2006] can be used. Here, the
explicit knowledge of the photon momentum in terms of thealdzase coordinate sys-
tem is not necessary in order to describe the radiative feandn addition, the local
observer frames can be assumed to be constructed in such #&atagll the compo-
nents of the photon momentum but the wavelength are consims strategy follows
[Schinder and Bludman, 1989], but explicitly avoids the gmaeterization of the wave-
length in terms of the coordinates of the metric.

The distance traveled by the photons in the local instaotaneest frames can be related to
an affine parameterization of the null geodesic. Since thailzdion of the null geodesic
can be solved independently from the radiative transferetfective path length along the
characteristic can be calculated without explicitly ingg the system (4.5). The inte-
gration of the comoving solid angle can be performed in tleetial frame if the comoving
solid angle is related to the inertial solid angle.

This ansatz is also the better choice if the radiative temisf extended to multiple di-
mensions as described in [Hauschildt and Baron, 2006]. Tierxplicit solution of an
ordinary differential equation for each of the numerousrabgeristics is superfluous and
the rays are described analytically. In the extension ofgieeral relativistic radiative
transfer to multiple dimension, this new ansatz should bpleyed. The formal solution
can remain unaltered and must only be adopted to the mukiaional description.

The theoretical framework for general relativistic rathattransfer is complemented by
a numerical implementation for the one-dimensional Schedrild case. The test calcu-
lations have been presented in Chapter 6. The radiativefarahas been calculated in
a testing environment with a two-level atom spectral linéhwi a flat continuum. The
conditions for compact and extended atmospheres as wedlasvistic flows have been
simulated for a number of different combinations of scattgalbedos. It has been found,
that the emerging line profiles depend strongly on the siraatf the atmosphere. Further-
more, continuous scattering has been found to be importarnthé detailed shape of the
emerging line profiles. The detailed line formation of a NLirte in the context of general
radiative transfer has not been described in the literdtefere.

In addition to the calculations in static atmospheres, #ukative transfer has been calcu-
lated for an accretion like flow in a Schwarzschild spacetiféth the direction of the
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velocity field pointing inwards, the classical result shamseversed P-Cygni profile with
an extended emission feature towards shorter wavelenigtkise general relativistic case,
the extent of the blue emission feature to shorter waveltenigtreduced, whereas the red
emission feature is extended. Since the blueshifting effethe velocity field is partially
compensated by the gravitational redshift in the line foigrprocess, the influence on the
line profiles from accretion flows is especially pronounced.

Another application of the test environment has been theitation of radiative continuum
transfer in gray atmospheres. It has been found that fordke of scattering atmospheres
the effective temperatures derived from blackbody fits teeobed spectra are too high.
Consequently, sophisticated modeling of neutron starg malside the treatment of scat-
tering in the context of general relativity.

After testing the radiative transfer code in a controllegimmment, it has been imple-
mented into the atmosphere modeling code packRafENI X. The general radiative trans-
fer has been implemented in a serial as well as a parallehzesibn and utilizes the already
implemented NLTE framework.

Because the new radiative solver is far more costly comjoumally, the formal solution
and the ALI have been optimized. An iterative Gauss-Seidgthod with storage of prior
results as starting conditions offers excellent perforoean the formal solution. Further
the ALI has been optimized with a Ng acceleration which reeslibnly in a slight reduction
of ALI steps. With all optimizations in place, the generatliegive transfer solver still
needs about 20 times longer for a NLTE calculation than thHaultePHOENI X transfer.
This must not be attributed to a poor implementation, buus @ the different method of
solution.

There is still room for improvement of the code. This inclsitlee addition of the parabolic
interpolation of the wavelength derivative. The accordaogfficients have been intro-
duced in Chapter 5. However, the explicit construction ef Ah-operator uses a linearly
interpolated wavelength derivative. Since thieoperator is ideally constructed with exact
elements the formal solution also uses linear interpataticghe wavelength derivative. In
order to use a parabolic interpolated formal solution, threstruction ofA* must be per-
formed with the help of a formal solution for every layer iretmodel atmosphere. This
strategy will only be effective if the convergence rate @& &Ll is dramatically improved.

A bottleneck for the numerical performance is the solutibtine ALI itself. The numerical
system is suited for the same Gauss-Seidel iteration wipnored initial conditions which
has been introduced for the formal solution. A substanpakslup of the ALI step would
greatly improve the overall performance of the generalexolv

In terms of performance the new general radiative transibfes is not a viable option
to replace the old transfer for simple models. It offers timégque possibility to solve
the radiative transfer in systems for which it could not blvest before. These include
arbitrary velocity fields in flat or curved spacetimes. In tawire, one is in the position
to construct new models within the framework RHIOENI X. A possible application are
model atmospheres of neutron stars. In order to constratthosphere structure of these
compact objects the general relativistic hydrostatic &qoa — the Tolman-Oppenheimer-
Volkoff equations — must be integrated. In a further stepiticiision of magneto-optical
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transfer should be added to increase the realism of the mbdetuse strong magnetic
fields are associated with neutron stars.

Another option is the construction of models which descaberetion to neutron stars as
well as black holes. In this context a formulation of the aige transfer in the Kerr metric
may be appropriate. Physically realistic models will neech@tidimensional descrip-
tion. Therefore, the migration of the general radiativesfar solver to a multidimensional
framework would be a prerequisite.

The general relativistic solver can also be applied to gdmefativistic neutrino transport
in core collapse calculations. Due to its generality it ckso de applied to non general
relativistic atmospheres. Possible applications encesipach diverse atmospheres like
pulsating giant stars or shocked radiative flows.
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Appendix A

The Ricci-Rotation-Coefficients

The change of the momentum vector of a photon along a null @@ods subject to a

covariant derivative. To calculate the derivat¥&” in tetrad components one starts off
the geodesic equation (4.1) and uses the properties ofttiae feelds

Oz OxP Ox7
op® . 0xP0x7
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From this follows:
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and hence follows for the derivative with) e * 2" = 2%2°
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This motivates the definition of the Ricci-Rotation coeffitls

@ _ (@ . 8. «a

T @ =€ aba o s (A.10)
and hence "

op' (a) .

e = 7 e PP (A.11)

It is noteworthy that the definition employed here diffeienfr most text books. However,
there is just a formal difference as the order of the indisekfferent and there is one upper
tetrad index instead of none.



119

Appendix B

Connection Coefficients

B.1 Spherically Symmetric Metric

The connection coefficients are given from the componentghef metric tensors

[Frankel, 2004]
e _ 1 «o 6905 6907 6957
Foy = 27 (&W * o Ox° 81

The connection coefficients for the spherically symmetratnmu (3.37) are then given by
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%, = exp (_2W)RE (B.4)
%, = exp (—ZW)R?)—]E sin? © (B.5)
ov
F010 = Fom = or (B.6)
ov
oo = exp (2(A — ‘I’))E (B.7)
OA
Fln = or (B.8)
OR
I, = —exp (_2A)RE (B.9)
I, = —exp (—2A)R88—Jf sin? © (B.10)
OA
Mo =Tl = - (B.11)

[?,, = —sin © cos © (B.12)
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P2, or, - %g_f (B.13)
reo_re %g_f (B.14)
Pgso = 11303 = %g—f (B.15)
M, -1, = %g_f (B.16)
I, =I%,=cot® (B.17)
The Ricci-rotation coefficients are repeated here for cetepless
7(1)(0)(0) — exp (_\I,)(Z_\?Ij (B.18)
7(1)(1)(0) — exp (_\I,)g_/: (B.19)
Dy =~ ](%—A) %_f (B.20)
7(1)<3)(3> i ](%_A) 83_]7? (B-21)
7(2)@)(0) - expg\m g_f (B.22)
1Py = 22 ](%—M 38_1;7 (B.23)
7D = _00;@ (B.24)
7(3)@)(0) = E;II) g_f (B.29)
@y = 22 ](%—M 38_1; (B.26)
1D = 00;9 (B.27)

The Ricci-rotation coefficients for the tetrads comovinghvwa purely radial flow are re-
produced for completeness

9B ap OA v

1 _ 3P . 3,9P . oA _ ov B

T oo =V g, xP (=0) + 7S5 exp (—A) + 7S5 exp (=) + 75— exp (—A)
(B.28)

9B ap OA oW
(1) _ A3 3

1) = 7057 oD (= 0) + 775 exp (—A) + 5~ exp (—0) + 78— exp (—A)

(B.29)

OR

7y OR
7(1)(2)(2) - R {ﬁ exp (—\I’)E + exp (_A)E} (B.30)
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(1) N ¢))
T e =T @

¥ OR OR
7(2)(2)(0) ) {exp (_\II)E + fexp (—A)E}

¥ OR OR
gy = e (COF +op (NG
cot ©

(B.31)

(B.32)
(B.33)

(B.34)

(B.35)
(B.36)
(B.37)
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B.2 Kerr Metric

In the following the units of mass are redefined — such that ¢ = 1 holds — to reduce
the complexity of the following relations.

Using Boyer-Lindquist coordinatgs, r, ©, ®) the non vanishing connection coefficients

are
AM (p* — 2r?)
My, =— g (B.38)
aAM (p* — 2r?)sin® ©
[y =Tl = ( 5 ) (B.39)
M—-r r
', = + = (B.40)
11 A pg
a® cos O sin ©
Ty =T = _—pQ (B.41)
A
Iy, = —p—; (B.42)
Asin? ©
M, =— S;I; (r(a2 +73)(r* + a* cos 20)
—a?sin® O(r(Mr — a*)a* cos® O(r — M))) (B.43)
a’Mr sin 20
I, = T (B.44)
Mr(a® + r?) sin 20
2 e, - Mrie *pg” ) sin (B.45)
2 .
o _ a“cosOsinO
2, = —Ag (B.46)
r
T2y =T%, = - (B.47)
a® cos © sin ©
2, = 2 (B.48)
IMr(a® + r2)2 + Apt
I, = — r(a +Z )"+ Ap sin © cos © (B.49)
p
M(p* —2r%)
F3 — F3 — _CL (BSO)
01 10 Ap4
2aMr cot ©
[Py = TP = ——F—— (B.51)

ot
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o _ 10 __
F13_F31_

0O _ 10 __
F23_F32_

1
=T%, = SAp (874 (r — 2M) + 4a®r*(2r — 3M) + a'(3r + M) (B.52)
+a*r(a® +2r* — M) cos 20 + a*(r — M) cos 40) (B.53)
2Mr sin 20
I, =T3%, = cot© + % (B.54)
M(r? + a®)(p* — 2r?)
Mo 1o (B.55)
01 10 Ap
aM sin? ©(a* — 3a%r2 — 61" + a*(a® — r2) cos 20) (B.56)
2Ap*
a®Mr sin 20
o, 1o, - S (B.57)
2a3Mr co?l Osin® O (B.58)
p

During the simplification of the results quite excessiveaqing of the terms is needed
sometimes. The occurences of multiples of thargument are a result from the compact-
ification of trigonometric expressions.

Using the defintion (3.19) and the tetrad fields for the Kertrin€3.53) and (3.53) the
resulting nonvanishing Ricci-Rotation-coefficients read

M
1) - _ X
7 oo VAP (a* 4 2rt + a2r(2M 4+ 3r) 4 a2A cos 20)
(a® + a®(4M = 3r)r® — 2r% + a*(a* 4 2a*r® + 1r*(r — 4M) cos 20)) (B.59)
(1) aM sin ©

6_ 42 2.4 6
T 30 T 8757 (3(a —a'r® —8a"r* — 8r°)
+4a°(a* — a®r® — 4r*) cos 20 + a*(a® — r*) cos40)  (B.60)
1 _ 0
T o T 7 e (B.61)
2 .
(1) _ a“cos©sin©
oo T T (B.62)
Q) B VAr
Tee T T8 (B.63)
1) B r3(a® + r?) + a’*r(a® + r?) cos 20 + a*r(a®> — Mr) cos* © B.64
Toee) T PEINR (B.64)
7(2)(())(0) = T3 2 Mr(a’+)sin20 (B.65)
p3 (a* 4 2r* 4+ a?r(2M + 3r) + a?A cos 20)
2) . avAsin © 2)
7@ T a2 + 12 7 (0)(0) (B.66)
2) _ A2
T o T 7 e (B.67)
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2 .
2) ~ a*cosOsind

Too T T (B.68)
(2) . \/K'r’

Tem T T (B.69)
)  @Mr(a®+71)? + Ap*)cot ©

T e T T PO (B.70)

4 2,.2 4 2(,.2 2

3) _ . a* —3a’r® — 6r* + a*(a® — r°) cos 20

Y o) — alM sin © 2p322 (B?l)
®3) _ (3)

T oo T 77 o (B.72)
(3) . 4a3/AMr cos © sin®> © (B.73)

1O T i (at 20+ a?r(2M + 31) + a2A cos 20) -
®3) _ (3)

T o T 77 @0 (B.74)
3) _ VA y

T e 4p3 (a* + 2r* + a?r(2M + 3r) + a?A cos 20)

(a4M + 3a*r — 4a®Mr? + 8a%r® + &°
+4a’r(a® + 2r* + M) cos 20 — a*(M —r) cos40)  (B.75)
3) cot ©  a?Mr(a® + r?)sin 20
= +
T e 2 pry2

(B.76)

It should be kept in mind that the nomenclature of the coeifits is different from most
standard textbooks. The definition used here is the same(Aslid).
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