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Abstract

In this thesis, precision measurements of inclusive jet, dijet and trijet cross sections
in neutral current (NC) deep-inelastic ep scattering at a centre-of-mass energy of√

s ' 319 GeV are presented. The analysis is based on data collected by the H1
detector during the Hera-2 running phase in the years 2003–07, corresponding to an
integrated luminosity of 351.6 pb−1. The kinematic phase space of the measurement
is defined by 150 < Q2 < 15000 GeV2 and 0.2 < y < 0.7, where Q2 and y are the
negative four-momentum transfer squared and the inelasticity respectively. Jets are
measured in the pseudorapidity range −1.0 < ηlab < 2.5 in the laboratory rest frame.
The jet transverse momentum in the Breit frame of reference is required to be
PT > 7 GeV for the inclusive jet measurement and PT > 5 GeV for the dijet and
trijet measurements. In the case of the dijet and trijet measurements, the invariant
mass of the two jets with the highest transverse momenta is required to be greater
than 16GeV.
A large part of this work is devoted to the improvement of the reconstruction of
the hadronic final state. This is achieved by a separation of showers originating
from electromagnetically and hadronically interacting particles in the liquid argon
calorimeter of the H1 detector on a statistical basis. A novel method to calibrate
the hadronic final state, which is reconstructed with an energy-flow-algorithm, is
developed. This calibration is based on the probability of a shower resulting from
an electromagnetically interacting particles and it is shown to improve the absolute
energy scale uncertainty at high jet transverse momenta to 1%. Improvements of the
resolution of the jet energy measurement with respect to the standard reconstruction
of about 10% are reported.
The new calibration in combination with improvements of the reconstruction algo-
rithms by the H1 collaboration leads to a precision measurement of inclusive jet,
dijet and trijet cross sections with average uncertainties of 4%, 5.2% and 7.2%, re-
spectively. Measurements of jet cross sections normalised to the inclusive NC cross
sections are then performed, which reduce the experimental uncertainties considera-
bly to 1.9%, 2.4% and 6.5%. The measured cross sections are found to be compatible
with previously published data, but have significantly reduced experimental uncer-
tainties. Predictions from perturbative QCD calculations in next-to-leading order
are compared to the data and are found to give a good description both in terms of
absolute size and shape of the measured cross sections.



Kurzfassung

In der vorliegenden Arbeit wird eine Präzissionsmessung der Wirkungsquerschnit-
te von inklusiver Jetproduktion, sowie von Dijet- und Trijetproduktion in tief-
unelastischer ep-Streuung bei neutralem Strom vorgestellt. Der dazu verwende-
te Datensatz hat eine integrierte Luminosität von 351,6 pb−1 und wurde bei ei-
ner Schwerpunktsenergie von

√
s ' 319 GeV mit dem H1 Detektor während der

Hera-2 Phase in den Jahren 2003–07 aufgezeichnet. Die Analyse wird in dem Be-
reich 150 < Q2 < 15000 GeV2 und 0,2 < y < 0,7 vorgenommen, wobei Q2 der ne-
gative quadrierte Viererimpulsübertrag ist und y die Inelastizität bezeichnet. Der
Phasenraum der Jetmessung entspricht dem Bereich −1,0 < ηlab < 2,5 in der Jet-
pseudorapidität im Laborsystem. Bei der Messung von inklusiven Jetwirkungsquer-
schnitten wird ein Transversalimpuls von PT > 7 GeV gefordert. Im Fall der Dijet-,
beziehungsweise der Trijetmessung, werden Jets mit PT > 5 GeV verlangt und die
invariante Masse der zwei Jets mit dem höchsten Transversalimpuls muss mindestens
16GeV betragen.
Ein großer Teil dieser Arbeit ist der Verbesserung der Rekonstruktion des hadroni-
schen Endzustands gewidmet. Dabei wurde eine Methode entwickelt, um elektroma-
gnetisch und hadronisch induzierte Schauer im flüssig-Argon Kalorimeter von H1
mit statistischen Methoden zu trennen. Der hadronische Endzustand wird durch
einen Algorithmus rekonstruiert, der sowohl Spuren als auch Kalorimeterdepositio-
nen berücksichtigt. Eine neue Kalibrationsmethode, die auf den Ergebnissen der
Schauerseparation beruht, wird in dieser Arbeit vorgestellt. Mit Hilfe dieser Ka-
libration wird eine Unsicherheit der Energiemessung von Jets von 1% bei hohem
transversalem Impuls erreicht. Es wird außerdem gezeigt, dass diese Kalibration die
Auflösung der Jetenergiemessung im Vergleich zu der Standardrekonstruktion um
näherungsweise 10% verbessert.
Die neue Kalibration in Kombination mit Verbesserungen der Rekonstruktionsalgo-
rithmen durch die H1 Kollaboration führt bei der durchgeführten Analyse zu einer
Präzissionsmessung von inklusiven Jetwirkungsquerschnitten mit durchschnittlichen
Unsicherheiten von 4%. Bei den Dijetwirkungsquerschnitten liegen diese bei 5,2%
und die Trijetwirkungsquerschnitte werden mit einer Präzission von 7,2% gemessen.
Als weiterführenden Schritt werden normierte Jetwirkungsquerschnitte gemessen,
wobei die Normierung zu inklusiven Wirkungsquerschnitten des neutralen Stroms
durchgeführt wird, was zu einer beträchtlichen Verringerung der experimentellen
Unsicherheit führt. Die normierten inklusiven Jetwirkungsquerschnitte haben eine
durchschnittliche Unsicherheit von 1,9%, für die normierten Dijet- und Trijetwir-
kungsquerschnitte werden Unsicherheiten von 2,4% und 6,5% erreicht. Die gemesse-
nen Wirkungsquerschnitte sind mit publizierten Wirkungsquerschnitten konsistent
bei bedeutend verringerter experimenteller Unsicherheit. Ein Vergleich der Daten
mit störungstheoretischen QCD Berechnungen in nächst-führender Ordnung zeigt
gute Übereinstimmung, sowohl in der absoluten Größe, als auch in der Form der
Wirkungsquerschnitte.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a theoretical framework which de-
scribes the electromagnetic, weak and strong interactions between all known funda-
mental particles. The SM has been very successful so far in describing all experi-
mentally measured processes very accurately. A large effort has been ongoing and
is currently culminating with the Large Hadron Collider (LHC) to reveal the Higgs
sector, which is the last crucial missing link in the verification of the SM. Differ-
ent extensions of the SM are theoretically possible. They have been developed to
either incorporate higher symmetries with the goal of the further unification of the
fundamental forces, or to explain phenomena like neutrino masses and dark matter.
Experimentally, numerous searches for physics beyond the SM have been performed
for a wide range of hard scattering processes at the highest available centre-of-mass
energies in e+e− collisions at the Large Electron Positron Collider (LEP) [LEP07],
in pp̄ collisions at the Tevatron [Dup09] and in ep collisions at the Hadron-Elektron-
Ring-Anlage (HERA) [H109b]. With the advent of the LHC, pp collisions with so
far unprecedented centre-of-mass energies became available, allowing for particles
with masses of up to several TeV to be produced, which is much higher than previ-
ously possible. In order to claim the discovery of new phenomena at the LHC, the
predictions of the SM have to be extrapolated to high energy scales, which makes
a precise understanding of the SM indispensable [Man08]. This includes a precise
knowledge in particular of the strong interaction, which is responsible for the largest
part of the pp cross section, and the internal structure of the colliding protons, which
is parametrised by Parton Distribution Functions (PDFs).
Within the SM the strong interaction is described by Quantum Chromodynam-
ics (QCD). QCD is a non-abelian quantum field theory describing the dynamics
of quarks and gluons. In the framework of QCD quarks and gluons carry colour
charge, which comes in three flavours. The relative strength of interactions between
coloured particles is governed by the strong coupling αs, which decreases with in-
creasing energy. This so called running of αs can be predicted within QCD, but
its value at some starting scale needs to be extracted from experimental data. The
smallness of αs at high energies (much larger than the mass of the proton)1 leads to
an asymptotically free theory, allowing for perturbative methods to be applicable.
At small energies the value of αs becomes large. In this energy regime QCD is be-
lieved to exhibit the property of confinement, such that coloured particles cannot be

1Throughout this work natural units are used, obtained by setting c = ~ = 1.
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observed as free states but are confined in colourless bound states, called hadrons.
In this case perturbative methods are not applicable and therefore the structure of
hadrons, most importantly the proton PDFs, need to be determined experimentally.
The uncertainties from the determination of the proton PDFs and αs translate into
uncertainties of SM predictions in important discovery channels for Higgs searches
and searches for new phenomena at the LHC [BD+10].

In this work a precision measurement of jet production in ep collisions at high photon
virtuality Q2 and high jet transverse momenta PT is presented. Jets are collimated
sprays of particles and can be defined for coloured quarks and gluons as well as for
colourless hadrons. The excellent correspondence between these definitions makes
jets important tools to study the dynamics of QCD. The restriction to high Q2

and high PT in this analysis ensures reliable predictions within the framework of
perturbative QCD (pQCD). The cross section for jet production is directly propor-
tional to the value of αs, making jet production an important mean for the precise
determination of αs [H110c]. Furthermore, jet production in ep collisions is sensi-
tive to the gluon content of the proton already in the leading order, in contrast to
inclusive deep-inelastic scattering (DIS). Jet cross section data can thus be used not
only as an independent test of proton PDFs, but also provide further input in the
determination of PDFs [ZEUS05b].

Jets consist of a number of different particles with varying energies. Some of these
particles interact hadronically with the detector material, some induce electromag-
netic cascades and some escape undetected. A precise measurement of jet production
therefore needs an excellent understanding of the detector and its response to various
particles over a wide range of energies. In this work a considerable effort is under-
taken to improve the reconstruction of the hadronic final state and consequently the
jet energy scale uncertainty, which is the dominant uncertainty in every jet mea-
surement. Sources of various other experimental uncertainties are also studied in
detail.

The analysis presented here is based on data collected by the H1 experiment during
the Hera-2 running phase in the years 2003–2007. Inclusive jet, dijet and trijet
cross sections are measured single and double-differentially. The obtained jet cross
sections have a considerably reduced uncertainty compared to previous jet mea-
surements performed by the H1 collaboration [H101a,H107]. It is the first double-
differential measurement of trijet cross sections in neutral current (NC) DIS at high
Q2 at H1, which has so far been only measured at small values of Q2 [H110b]. The
measurement of normalised jet cross sections results in a further reduction of the ex-
perimental uncertainties due to partial cancellations of measurement uncertainties.
An improved understanding of the hadronic final state has allowed the phase space
for jet production to be enlarged and the total experimental uncertainties reduced
with respect to a previous measurement of normalised jet cross sections [H110c].

This thesis is organised as follows: In chapters 2 and 3 an overview of the SM and
jet production in NC DIS is given. This is followed by a description of the HERA
facility and the H1 detector in chapter 4. In chapter 5 the interaction of highly
energetic particles with matter and the basic concepts of calorimetry are reviewed.
The chapter concludes with an overview of the Liquid Argon (LAr) calorimeter of
H1 and its performance as determined from test beams. In chapter 6 a new method
to separate electromagnetic from hadronic cascades in the LAr calorimeter on a sta-

2



tistical basis is developed. This is the foundation of an improved understanding of
the jet energy scale uncertainty. The reconstruction of the hadronic final state with
an energy-flow algorithm is described in chapter 7. A novel method to calibrate the
resulting hadronic final state is introduced in chapter 8, which treats energy deposits
with a high probability to originate from electromagnetic showers differently from
those originating from hadronic showers. It is shown how this improves the uncer-
tainty on the absolute jet energy scale, as well as the resolution of the measurement
of jets. The chapter concludes with a detailed study of the achieved resolutions for
the different regions in the H1 detector. In chapter 9 the data selection is described.
The selection of the NC DIS sample is first explained, which ensures high trigger
efficiencies together with effectively no background. This is followed by a description
of the inclusive jet, dijet and trijet selections together with a comparison of the data
to different Monte Carlo (MC) simulations. The concept of the jet cross section
measurement is discussed in chapter 10, together with a review of the experimental
uncertainties. In chapter 11 the measured jet cross sections are presented and com-
pared to theoretical predictions as well as to previous jet measurements. Chapter
12 gives a summary of the results.

3
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Chapter 2

Theoretical Framework

2.1 The Standard Model of Particle Physics

The fundamental building blocks of matter can be grouped into two categories:
fermions with half-integer spin and bosons with integer spin. The fermions are
found in two groups: strongly interacting fermions which are called quarks [GM64]
and those which do not exhibit the strong interaction are called leptons. They are
all spin-1

2
particles and have no internal structure within the limits of our resolution.

The Standard Model of particle physics describes the interaction of the quarks and
leptons through bosons, which are the force carriers of the fundamental interactions.
The photon is the force carrier of the electromagnetic interaction, the W± and Z0

mediate the weak interaction and eight gluons are the exchange particles of the
strong interaction.
Quarks and leptons come in six flavours and fall into left-handed isospin doublets
and right-handed isospin singlets. These come in three different families, also called
generations. Quarks and leptons of one generation carry the same quantum num-
bers as their partners of another generation, with the exception of different masses.
Nuclei, atoms and molecules are built up out of the particles of the first generation
only.
The quarks carry colour charge and the six different flavours are called up, down,
charm, strange, top and bottom. They are denoted by the first letter of their name
and the left-handed isospin doublets are(

u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

, (2.1)

where the quarks in the top row have electric charge q = 2
3
e, and the ones in the

bottom row have q = −1
3
e, where e is the charge of the electron. The leptons do

not carry colour charge and can also be arranged in left-handed doublets,(
νe

e

)
L

,

(
νµ

µ

)
L

,

(
ντ

τ

)
L

, (2.2)

where the electron (e), muon (µ) and tau (τ) have electric charge −e, while the
corresponding neutrinos have electric charge zero and interact only through the weak
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interaction. No right-handed neutrinos exist in the SM, reflecting the fact that left-
handed and right-handed leptons transform differently under weak interactions, a
phenomenon known as parity violation.
It was realised between the late 1960’s and early 1970’s that the electromagnetic,
weak and strong force can be described with non-abelian local gauge field theories1.
Glashow, Weinberg and Salam recognised that the electromagnetic and weak interac-
tions can be unified by joining a weak-isospin symmetry SU(2)L with a weak hyper-
charge U(1)Y symmetry [Gla61,Wei67,SW64]. The resulting theory is a non-abelian
gauge theory which unifies Quantum Electrodynamics (QED) with a quantum field
theory of the weak interaction. The Lagrangian of this electroweak theory is invari-
ant under symmetry transformations of the common electroweak SU(2)L ⊗ U(1)Y

symmetry group. The four resulting gauge fields, which compensate for the varia-
tions induced by gauge transformations, can be interpreted as the Goldstone bosons
of the theory. However, local gauge invariance requires these bosons to be mass-
less [GS+62], which is in contradiction with the experimental evidence for large
masses of the W+, W− and Z0 bosons. A solution to this problem is provided by
the Higgs mechanism [EB64,Hig64,GH+64], which introduces a spontaneous sym-
metry breaking of the SU(2)L⊗U(1)Y symmetry. This mechanism leaves the photon
massless, while the other three electroweak gauge bosons acquire mass. The result-
ing theory is invariant under local phase transformations, i.e. the U(1)em symmetry
of QED is recovered. The Higgs mechanism requires a scalar field which manifests
itself as the Higgs boson, the only Standard Model particle which has not yet been
discovered [CD10]. The Higgs field couples not only to the massive electroweak
bosons, but also to itself and to the leptons and quarks, thus giving them mass.
The Yukawa couplings of the Higgs boson to the quarks and leptons cannot be pre-
dicted by the Standard Model and enter as free parameters in the theory, like the
mass of the Higgs boson itself.
Three kinds of colour charges are carried by the quarks, with the corresponding
anti-colours carried by the anti-quarks. The colour charges are labelled red, green
and blue in analogy to everyday colour theory. Rotations in colour space form a
SU(3)C colour group [FGM+73], and all colourless SM particles are invariant under
these rotations. The bosons associated to the SU(3)C gauge transformations are
called gluons, which carry a colour and an anticolour, and are labelled Gµ

a , where
a = 1, . . . , 8. These eight gluons represent the eight generators of the group and form
a colour octet. All physical states are singlets with respect to SU(3)C, making colour
a non-observable internal degree of freedom. The theory describing the interaction
between quarks and gluons is called Quantum Chromodynamics (QCD).
The full Lagrangian of the Standard Model is obtained from the invariance under
symmetry transformations of the SU(3)C⊗SU(2)L⊗U(1)Y symmetry group together
with the gauge invariant terms and Yukawa interactions of the scalar Higgs field and
can be found in the literature (see for example [HM84,PDG10,Qui09]).

1Including the fourth fundamental interaction, gravity, as a quantum field theory in the Stan-
dard Model has turned out to be extremely difficult. No satisfactory and commonly accepted
theory has been established so far.
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2.2 Quantum Chromodynamics

Within the SM the strong force is fully accounted for by the SU(3)C invariant
Lagrangian of QCD, which is given by [YM54,FGM+73]

L =

nf∑
j

q̄j(iγ
µDµ −mq)q

j − 1

4
F µν

a F a
µν , (2.3)

with the covariant derivative

Dµ = ∂µ − igsTaG
a
µ , (2.4)

where the spinor indices have been suppressed2. The quark and anti-quark fields
with flavour j and mass mq are labelled qj and q̄j, respectively. The total number
of flavours is given by nf . The Dirac matrices are denoted by γµ and gs is the QCD
coupling. Ta are a set of linearly independent traceless 3 × 3 matrices, which obey
the commutation relation

[Ta, Tb] = ifabcTc , (2.5)

where fabc are the structure constants of the SU(3) algebra. Einstein convention
is used, which implies a summation over repeated indices. Gauge invariance of the
Lagrangian (2.3) is obtained by defining the gluon field strength tensor as

F a
µν = ∂µG

a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν . (2.6)

The Feynman rules of QCD can be obtained for example by varying the action
integral [ES+96]

S = i

∫
L d4x . (2.7)

For this purpose it is instructive to expand the Lagrangian density (2.3) using equa-
tions (2.4) and (2.6). The Lagrangian density can then be split into a free piece L0

and an interacting piece LI . The free Lagrangian density is given by

L0 =

nf∑
j

q̄j(iγ
µ∂µ −mq)q

j

− 1

4
(∂µGν

a − ∂νGµ
a)(∂µG

a
ν − ∂νG

a
µ) (2.8)

which contains the kinetic terms for the different fields. The free Lagrangian density
gives rise to the quark and gluon propagators. The graphical representations of the
Feynman rules for these are illustrated next to the corresponding terms. A solid line
represents a quark propagator and a curly line represents a gluon propagator.

2The gauge fixing and ghost terms in the Lagrangian are ignored for the sake of simplicity.
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The interaction piece LI contains the colour interactions,

LI = gsG
a
µ

nf∑
j

q̄jγ
µTaq

j

− gs

2
fabc(∂µGν

a − ∂νGµ
a)Gb

µG
c
ν

− g2
s

4
fabcfadeG

µ
b G

ν
cG

d
µG

e
ν (2.9)

with the corresponding Feynman diagrams being illustrated on the right. The first
line of equation (2.9) describes the interaction between quarks and gluons. The
second and third lines generate the triple and four gluon vertices. They are due
to the non-Abelian character of QCD and describe self-interactions between gluons,
which are a consequence of the fact that gluons themselves carry colour charge.
Whereas the quark-gluon and three gluon interactions are proportional to gs, the
four gluon vertex is proportional to g2

s . Contrary to the free propagators and the
quark-gluon interaction, the gluon self coupling diagrams have no QED analogues
and give rise to asymptotic freedom [GW73,Pol73] and confinement [Wil74].

2.2.1 Renormalisation

A crucial requirement for any field theory is renormalisability, which eventually al-
lows to make finite physical predictions. Renormalisation can be understood as the
replacement of the bare charge and consequently the bare coupling gs, which ap-
pears in the Lagrangian, by a physically observable quantity. This is motivated by
the fact that the coupling appearing in the lowest order Feynman graph is modified
by higher order corrections, see figure 2.1. It can be shown that the modification
of the coupling by the vertex correction exactly cancels the effect of self energies to
all orders, which is a basic property of gauge field theories known as Ward identi-
ties [War50]. Thus, the coupling is only modified by vacuum polarisation graphs.
However, contributions from these graphs involve ultraviolet (UV) divergences due
to infinite loop momenta. Different possibilities exist to remove these divergences,
called renormalisation schemes. The most commonly used renormalisation scheme
is the modified minimal subtraction, or MS, scheme [BB+78]. It uses dimensional

a) b) c) d) e) f)

Figure 2.1: Feynman graphs of the quark-gluon interaction (a) and its first order correc-
tions: vacuum polarisation (b), (c), vertex correction (d) and self energies (e), (f).
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regularisation [tHV72] to factor out the divergences from the loop contributions.
These are then absorbed in the definition of the strong coupling, which is defined
in analogy to the fine structure constant of QED to be αs = g2

s/4π. The renormali-
sation introduces a new mass scale µr in the theory. This scale defines the point at
which the subtractions which remove the UV divergences are performed. The theory
obtained is now free of divergent loop graphs with the trade-off of introducing the
scale µr.
However, even though µr is an arbitrary parameter, the theory remains predictive
as long as any physical quantity calculated does not depend on the particular choice
of µr. Consider a physical observable Γ(pi, αs) which is a function of all external
momenta pi and the renormalised strong coupling αs. For simplicity, assume that
Γ(pi, αs) is measured at high enough energy such that the quark masses can be
neglected. The requirement that Γ(pi, αs) is independent of µr leads to the Renor-
malisation Group Equation (RGE),(

µr
∂

∂µr

+ µr
∂αs

∂µr

∂

∂αs

+ γΓ(αs)

)
Γ(pi, αs) = 0 . (2.10)

The term γΓ(αs) is an anomalous dimension, which vanishes for dimensionless quan-
tities [Wei73]. With the definition of the β function,

β(αs) = µr
∂αs

∂µr

(2.11)

the RGE equation can be written as(
µr

∂

∂µr

+ β(αs)
∂

∂αs

+ γΓ(αs)

)
Γ(pi, αs) = 0 . (2.12)

For this equation to hold a change in the renormalisation scale µr has to be com-
pensated by a change of αs. This is expressed by the dependence of αs on the
renormalisation scale µr, such that the renormalised coupling becomes a running
coupling αs = αs(µr).

2.2.2 The Running Coupling

To compute the scale dependence of αs on µr, the β function (2.11) can be expanded
in powers of αs,

β(αs) = −αs

∞∑
n=0

βn

(αs

4π

)(n+1)

. (2.13)

The coefficients βn are known up to four loops:

β0 = 11− 2

3
nf (2.14)

β1 = 102− 38

3
nf (2.15)

β2 =
2857

2
− 5033

18
nf +

325

54
n2

f (2.16)

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2

f +
1093

729
n3

f , (2.17)
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where ζ3 is the third constant of the Riemann zeta-function, and nf is the number
of active light flavours. The coefficients β0 [GW73, Pol73] and β1 [Cas74] are in-
dependent of the renormalisation scheme, whereas β2 [TV+80] and β3 [RV+97] are
calculated in the MS scheme.
In order to obtain the running coupling at four loops, it is helpful to define the
dimensionless variable

L = ln

(
µ2

r

Λ2

)
(2.18)

with Λ denoting the asymptotic scale parameter. The running coupling is obtained
by integrating equation (2.13) and iteratively solving for αs, which yields [CK+97]

αs

4π
=

1

β0L
− b1 ln L

(β0L)2
+

1

(β0L)3

[
b2
1(ln

2 L− ln L− 1) + b2

]
+

1

(β0L)4

[
b3
1

(
− ln3 L +

5

2
ln2 L + 2 ln L− 1

2

)
− 3b1b2 ln L +

b3

2

]
,(2.19)

where terms of O(1/L5) have been neglected, and the notation bn = βn/β0 is used.
The evolution of the strong coupling αs(µr) is thus fully determined once the scale
Λ and the renormalisation scheme have been fixed. All βn are positive for nf < 6
and the leading order term β0 is positive for nf ≤ 16, which is far larger than the
nf = 6 in the Standard Model. Thus the strength of αs decreases when the scale at
which it is probed increases, αs(µr) → 0 for µr → ∞. This behaviour is known as
asymptotic freedom and implies that at high enough energies, or equivalently short
enough distances, quarks and gluons may be considered to be quasi-free. Asymptotic
freedom thus ensures convergence of perturbative calculations at high scales, where
the interactions between quarks and gluons can be treated as perturbations from
quasi-free propagation. As µr approaches Λ, αs becomes large and in the limit
µr → Λ, αs → ∞. This leads to a property of QCD which is called confinement,
which states that free coloured objects are not observable. A mathematical proof
of confinement is difficult, since the perturbative expansion breaks down in the
small energy regime and non-perturbative methods need to be applied. However,
lattice QCD suggests that the non-linearities of the SU(3)C gauge field are indeed
responsible for the confinement of quarks [Lüs03].
Consequently, Λ takes the meaning of a reference scale above which αs is small
enough that perturbation theory is applicable. The absolute value of Λ cannot be
predicted within the Standard Model and has to be determined from experiment.
However, in calculations above two loops Λ depends on the renormalisation scheme
used, since a constant of integration is absorbed in its definition (here: Λ = ΛMS).
Therefore αs is often expressed at a well known reference scale, which is typically
the mass of the Z0 boson αs(MZ). The corresponding value of Λ can be calculated
by iteratively solving equation (2.19). The value of the strong coupling can then be
obtained at any scale µr. For the one loop solution,

αs(µr) =
4π

β0 ln(µ2
r/Λ

2)
, (2.20)

the dependence on Λ can be expressed analytically. Calculating Λ from a previously
measured value of αs(µr = MZ), and inserting the result in equation (2.20), one
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Figure 2.2: a) Ratio of the running of the strong coupling in one loop (dashed), two loops
(dotted) and three loops (solid) to the four-loop solution (2.19). The values nf = 5 and
αs(MZ) = 0.118 are used in the calculation, which has been performed with the package
RunDec [CK+00]. b) Running of the strong coupling as measured by H1 [H110c],
compared to the two loop solution [H110b].

obtains

αs(µr) =
αs(MZ)

1 + β0

4π
αs(MZ) ln(µ2

r/M
2
Z)

. (2.21)

In figure 2.2a the running of the strong coupling in the n-loop approximation, with
n = 1, 2, 3, is compared to the exact four loop solution. The asymptotic scale
parameter Λ is determined from equation (2.19) including terms up to O(1/Ln),
with the condition αs(MZ) = 0.118. Hence, all curves cross exactly at µr = MZ .
αs is evolved using nf = 5 down to 5GeV, which is just above the threshold of the
b-quark. It can be seen that the one loop result is far off the exact solution, whereas
the two loop solution already provides a very useful approximation. The three loop
result differs from the four loop result by less than 0.2% over the full energy range
considered.
The running of the strong coupling is shown in figure 2.2b, where αs values extracted
from jet cross sections in deep-inelastic ep scattering at different values of µr and are
compared to the two loop solution. The uncertainty on the theoretical prediction
comes from missing higher orders in the next-to-leading order (NLO) calculation,
which introduce a much larger uncertainty than missing orders in the αs evolution.
Dijet production in DIS is a prominent tool to extract the strong coupling because
the cross sections are proportional to αs already in leading order (LO). Recent deter-
minations of the strong coupling using jets are compared to the world average from
Bethke [Bet09] in figure 2.3. The uncertainties of the extracted values of αs(MZ)
are divided into theoretical and experimental uncertainties. It can be observed that
the latest determinations of the strong coupling by the H1 collaboration are dom-
inated by theoretical uncertainties, which are mostly due to missing higher order
terms in the perturbative NLO calculations. It can also be seen that these missing
terms are more important at small scales (H1, low Q2) than at high scales (H1,
high Q2). The measurements by the Zeus collaboration [ZEUS07b, ZEUS10b] are
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Figure 2.3: Recent determinations of the strong coupling αs(MZ) from jet cross sections
compared to the world average [Kog10].

optimised for the smallest total uncertainty and are performed at a higher scale than
the H1 determination of αs(MZ), which results in a smaller theoretical, but larger
experimental uncertainties. The extraction of αs(MZ) from the 3-jet rate in e+e−

annihilation [DG+10b] is performed at next-to-next-to-leading order (NNLO), in-
cluding terms O(α4

s), which results in a considerable smaller theoretical uncertainty.

2.2.3 Perturbative QCD

The small size of the strong coupling αs(µr) at large values of the renormalisation
scale µr allows the calculation of an observable R to be expanded in terms of αs(µr).
R can then be written in terms of a perturbative series,

R =
∞∑

n=0

cn(µr) αs(µr)
n , (2.22)

where cn(µr) are coefficients that can be calculated by the evaluation of Feynman
diagrams. This approach is called perturbative QCD (pQCD) and is valid at µr � Λ,
where terms of order αs(µr)

n+1 are assumed to be less important than preceding
terms of order αs(µr)

n. Differentiating N terms of the perturbative series (2.22) by
µr, one obtains

d

d ln µ2
r

N∑
n=0

cn(µr) αs(µr)
n ∼ O

(
αs(µr)

N+1
)

, (2.23)

and as αs(µr) < 1 for sufficiently large µr, the observable R will depend less on the
choice of µr the more terms are included in the perturbative series [Sop97].
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Figure 2.4: Kinematics of ep → `X scattering. The four-momenta associated to the
particles are given in brackets. The exchanged boson may be a photon (γ) or Z0 in NC
or a W± in CC interactions.

2.3 Lepton-Proton Scattering

The scattering of either charged (e, µ) or neutral (νe, νµ) leptons from protons
has been indispensable in the development and subsequent testing of QCD and
the structure of the proton. A diagrammatic representation of the scattering of
electrons3 from protons, ep → `X, is shown in figure 2.4. The electron interacts with
the proton either via the exchange of a virtual photon or Z0, which is termed neutral
current (NC), or via the exchange of a W±, which is called charged current (CC)
interaction. The squared transferred momentum is given by the negative square
of the invariant mass of the exchanged virtual boson, Q2 = −q2. Deep-inelastic
scattering (DIS) is characterised by high momentum transfer, Q2 � m2

p, and large
inelasticity, MX � mp, where mp is the mass of the proton and MX is the invariant
mass of the hadronic final state X.

2.3.1 Kinematics of Deep-Inelastic Scattering

The centre-of-mass energy in ep scattering is given by the square root of the Man-
delstam variable

s = (k + P )2 (2.24)

where k and P are the four-vectors of the incoming electron and proton, respec-
tively. Assuming massless particles, the centre-of-mass energy at HERA can be well
approximated by

√
s ≈ 4E0

eE
0
p, where E0

e and E0
p are the energies of the incoming

electron and proton, respectively. The virtuality Q2 can be calculated from the
four-vectors of the incoming and outgoing leptons,

Q2 = −(k − k′)2 . (2.25)

In the limit Q2 → 0 the exchanged boson becomes on-mass shell and quasi-real
photons are scattered off the proton. This process is termed γ∗p scattering or pho-
toproduction. The invariant mass of the final hadronic system is denoted by W and
is given by

W 2 = (q + P )2 . (2.26)

3Unless otherwise stated, the term electron will be used generically for electron and positron
throughout this work.
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The Bjorken scaling variable x is given can be interpreted in LO as the fraction of
the momentum of the incoming proton taken by the struck quark and is given by

x =
Q2

2P · q
=

Q2

W 2 + Q2 −m2
p

(2.27)

and since Q2 ≥ 0 and W 2 cannot be smaller than m2
p, x ≤ 1. The lower limit on x

is obtained for small Q2 and large W 2, such that as s → ∞, x → 0. The Bjorken
scaling variable is thus restricted to values 0 ≤ x ≤ 1. The inelasticity y, which
provides a measure of the amount of energy lost by the lepton in the proton’s rest
frame, is defined as

y =
P · q
P · k

. (2.28)

The inelasticity is limited to values 0 ≤ y ≤ 1, which can be easily seen by its
definition in the laboratory rest frame,

y = 1− Ee

E0
e

sin2 θe

2
, (2.29)

where Ee and θe are the energy and the polar angle of the scattered electron, re-
spectively. At fixed centre-of-mass energy only two of the variables x, y and Q2 are
independent and ignoring masses, they are related through

Q2 = sxy . (2.30)

The virtuality Q2 takes a special role, since it can be associated with the resolving
power of the interaction. If the virtual boson is considered as a probe of the proton,
it has a spatial resolution, related to its wavelength, of

∆[fm] ≈ ~c

Q
≈ 0.2√

Q2[GeV2]
, (2.31)

which corresponds to a maximum resolution of ∆ = 10−18 m at the HERA centre-
of-mass energy of 319GeV.

2.3.2 The Neutral Current DIS Cross Section

The double-differential cross section for NC DIS scattering can be written as a
contraction of a leptonic tensor Lµν and a hadronic tensor Wµν . Whereas Lµν is
fully defined by the electron momenta, the definition of Wµν is more complicated
and involves a summation over all possible hadronic final states. Since Wµν cannot
be calculated, the NC DIS cross section is written in its most general form in terms
of the structure functions of the proton, F1, F2, xF3 and FL. For unpolarised ep
scattering it is given by [DCS04]

d2σNC

dxdQ2
=

2παem

xQ4

[
Y+F2(x, Q2)− y2FL(x, Q2)∓ Y−xF3(x, Q2)

]
, (2.32)

where the short-hand notation Y± = 1 ± (1 − y)2 has been used, and αem is the
electromagnetic coupling. The structure functions Fi have to be determined experi-
mentally. They are related via FL = F2−2xF1. F1 is proportional to the transversely
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Figure 2.5: Resolution of the photon probe as function of Q2, from [Pic95].

polarised component of the structure function. The contribution of the longitudinal
structure function FL can be neglected in a large part of the phase space, but be-
comes relevant at high y. F3 is the parity violating structure function which includes
effects from Z0 exchange and γ/Z0 interference and needs to be taken into account
only at high Q2 (Q2 & M2

Z). Therefore, the structure of the proton is over a large
part of the phase space driven by the structure function F2.

The Näıve Quark Parton Model

The Quark Parton Model (QPM) was developed by Feynman in attempt to explain
the scaling behaviour of F2 predicted by Bjorken [Bjo69]. Bjorken scaling antici-
pates F2 to be independent of Q2 and depend only on x at high enough Q2. First
DIS experiments at the Stanford Linear Accelerator Center (SLAC) confirmed this
behaviour at x ∼ 0.25 [BC+69,BF+69,FK72]. Feynman explained this behaviour by
the proton being made out of pointlike constituents which he called partons [Fey69].
The inelastic electron-proton cross section can then be approximated by an incoher-
ent sum of elastic lepton-parton scatters via the exchange of virtual vector bosons.
It turns out that the partons interacting directly with the lepton are spin-1

2
particles,

which could later be identified with the quarks. In the QPM the structure function
F2 can then be written as

F2(x, Q2) =
∑

i

e2
i x fi(x), (2.33)

where the function fi(x) is the Parton Distribution Function (PDF) of the proton.
The sum runs over all quarks and anti-quarks in the proton, which have electrical
charge ei. In the QPM, which corresponds to the Born level of DIS, xfi(x) gives
the probability to find a parton i carrying the momentum fraction x in the proton.
fi(x) is independent of αs and any scale and directly proportional to F2. The QPM
predicts FL(Q2, x) = 0, which is a consequence of the scattering from spin-1

2
partons

in the absence of QCD radiation. It follows that F2 = 2xF1, which is known as the
Callan-Gross relationship [CG69].

The QCD Improved Parton Model

Lowest order QCD corrections to the DIS process include gluon emission either from
the initial or final quark and gluon splittings into quark-antiquark pairs. Taking
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Figure 2.6: The LO DGLAP splitting functions P
(0)
ab (x

ξ ), which take the meaning of the
probability that an parton a with momentum fraction x emerges from an incident parton
b with momentum fraction ξ.

these corrections into account, the parton densities acquire a scale dependence.
This can be interpreted as an effect of the resolution power at which the proton
is probed (2.31). At very small values of momentum transfer, or correspondingly
large wavelength, the virtual photon cannot resolve the proton which behaves as a
single object. At intermediate scales, the virtual photon scatters off the constituent
quarks. By increasing the energy, the photon may resolve the scattered quark into
a quark and a gluon. The initial parton with momentum fraction ξ can thus be
resolved into two partons with smaller momentum fractions x < ξ and ξ − x. This
is illustrated in figure 2.5.
The Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) formalism [Dok77,
GL72,AP77] describes the evolution of the parton densities as the scale µf changes,
where µf is the factorisation scale. Formally, µf is introduced through the factori-
sation theorem, as described in section 3.1. The DGLAP equations are coupled
integro-differential equations which can be written in terms of splitting functions
Pij(

x
ξ
),

∂

∂ ln µ2
f

(
qi(x, µ2

f )

g(x, µ2
f )

)
=

αs(µr)

2π

∑
j

1∫
x

dξ

ξ

(
Pqiqj

(x
ξ
) Pqig(

x
ξ
)

Pgqj
(x

ξ
) Pgg(

x
ξ
)

)(
qj(ξ, µ

2
f )

g(ξ, µ2
f )

)
,

(2.34)
where the argument αs(µr) in the parton distributions and splitting functions has
been dropped. The functions qi(x, µ2

f ) and g(x, µ2
f ) label the quark and gluon parton

distributions, respectively. The splitting functions are expanded as power series in
αs(µr),

Pqiqj
= δijP

(0)
qq

(x

ξ

)
+

αs(µr)

2π
P (1)

qiqj

(x

ξ

)
+ . . . (2.35)

Pab = P
(0)
ab

(x

ξ

)
+

αs(µr)

2π
P

(1)
ab

(x

ξ

)
+ . . . , (2.36)

where the indices ab correspond to qig, gqi and gg. In LO the splitting functions can
be directly calculated from the QCD vertices and take the meaning of an emission
probability: P

(0)
ab (x

ξ
) is the probability that a parton a with momentum fraction x

emerges from an incident parton b with momentum fraction ξ, as shown in figure
2.6. The splitting functions are known up to NNLO, i.e. O(α2

s) [VM+04,MV+04].
The prescription that the momentum fraction of the incoming parton ξ is always
larger than that of the outgoing parton x, leads to a strong ordering in the virtualities
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ki,t of the radiated partons, µf � ki,t � ki−1,t � . . . � Q0, where Q0 is some cut-
off scale below which the soft non-perturbative contributions are absorbed in the
renormalised parton densities. These can be connected to the structure functions
Fi with appropriate renormalisation and factorisation scheme dependent coefficient
functions.
Although the DGLAP formalism gives a prescription of how the renormalised par-
ton densities evolve with µf , perturbative methods do not allow the calculation of
the parton densities at the starting scale Q0. This information is usually obtained
by parameterising the parton densities at the starting scale and fitting the free pa-
rameters to structure function data at some higher scale Q. An example of such
a fit at NLO to the combined H1 and ZEUS Hera-1 dataset [AA+10a] is shown
in figure 2.7. The data are very precise, with typical uncertainties around 1–2%.
Scaling violations are apparent in the data and well described by the DGLAP for-
malism over a large range in Q2 and x. Since the photon does not couple directly
to the gluon, the parameters of the gluon PDF can only be obtained through the
scaling violations. Furthermore, the shape of the gluon PDF is strongly correlated
with the value of αs(MZ), because in the expressions for the structure functions
the gluon PDF only appears convoluted with the strong coupling αs(µr). Thus,
an increase in αs(MZ) can be compensated by a more steeply rising gluon distri-
bution and vice versa. The value of the strong coupling is therefore usually kept
fixed for PDF extractions [CTEQ08,H109c]. Including jet data at high Q2 in the fit
can help to disentangle the strong coupling from the gluon PDF. In this way the
correlation between the gluon PDF and αs(MZ) can be taken into account, which
leads to a determination of the gluon PDF with a simultaneous measurement of
αs(MZ) [H101a,ZEUS05b,MS+09].
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Figure 2.7: H1 and ZEUS combined structure function data from e+p NC DIS scattering
as function of Q2 for different values of x. The blue bands correspond to NLO DGLAP
calculations using the HERAPDF1.0 [AA+10a]. Also shown are data from the fixed tar-
get experiments BCDMS [BCDMS89] and NMC [NMC97], which were not used for the
extraction of the HERAPDF1.0.
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Chapter 3

Jet Production in DIS

QCD is formulated as a theory of the interaction of quarks and gluons. These
partons carry colour charge and are confined and therefore not directly observable.
If two or more coloured partons with sufficient energy are separated, long distance
effects, for example as described by colour strings, cause the formation of colourless
hadrons. These can be observed and appear in detectors as collimated sprays of
particles, which are called jets.
Apart from having the advantage of being strongly correlated to the original parton,
jet definitions obeying certain rules make pQCD calculations possible in the first
place. In this chapter an overview of the production of jets in the context of pQCD
is given. Requirements on jet algorithms are reviewed and different jet definitions
are introduced. The models that describe the formation of hadron jets out of the
underlying quarks and gluons are described. An overview of the used fixed-order
pQCD calculations and MC event generators is given.

3.1 The Factorisation Theorem

The applicability of the perturbative series (2.22) is only ensured for processes where
no hadrons are present in the initial state, like in e+e−-annihilation. In DIS, the
presence of a bound state of coloured partons in the initial state inevitably leads
to non-perturbative long-range effects with characteristic scales µ < Λ. In hadron
induced processes the applicability of pQCD is ensured by the factorisation theo-
rem [LS78, EG+79], which states that a cross section σ(x, Q2) can be written as
convolution of the hard process, which is calculable in pQCD, with a soft part ac-
counting for the long-range effects. The factorisation theorem in DIS takes the
form [CS+88]

σ(x, Q2) =
∑

i=q,q̄,g

1∫
x

dξ

ξ
fi

(
ξ, µ2

f , αs(µr)
)

σ̂i

(
x

ξ
,
Q2

µ2
r

,
µ2

r

µ2
f

, αs(µr)

)
(3.1)

and is shown schematically in figure 3.1. The sum in equation (3.1) runs over all
partons in the proton, where the function fi(ξ, µ

2
f , αs) is the Parton Distribution

Function (PDF) for parton i of the proton. The partonic cross section, which de-
pends on the incoming parton and its momentum fraction, is denoted by σ̂i. In LO,
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Figure 3.1: Schematic representation of the factorisation theorem in DIS. The factorisa-
tion scale µf separates soft contributions, which are absorbed in the parton density function
fi, from hard contributions σ̂i, calculable in pQCD.

fi(ξ, µ
2
f , αs) dξ is independent of µf and αs and gives the probability to find a parton

i carrying the momentum fraction between ξ and ξ + dξ in the proton. In NLO
this intuitive picture is more intricate. The PDFs depend on the factorisation and
renormalisation scheme and the chosen scales and cannot be readily interpreted as
physical probability distributions anymore. The long-range behaviour of the strong
force is absorbed in the PDF, which leaves the partonic cross section σ̂i calculable in
pQCD. The factorisation theorem thus allows the expansion of σ̂i in a perturbative
series similar to (2.22), with the compromise of the introduction of a new arbitrary
scale µf . This factorisation scale regulates the classification of processes between
perturbative and non-perturbative QCD. Similar to the renormalisation scale µr,
the dependence on µf becomes weaker the more terms are included in the pertur-
bative expansion. In inclusive DIS the natural choice for the scale µf is Q, since
it is the only hard scale available. The factorisation property of the cross section
is a fundamental property of QCD and can be proven to all orders in perturbation
theory [CS+88].

3.2 The Jet Function

Although infrared sensitivity arising from the initial state has been factored into
the PDF and UV divergences are removed by renormalisation, the partonic cross
section σ̂i in equation (3.1) is not free from singularities for all observables. The
singularities arising can be grouped in two classes, infrared and collinear divergences.
Infrared divergences originate from massless partons, which are allowed to emit a
parton with zero momentum and still remain on-shell. Poles in the partonic cross
section at pµ = 0 then lead to infrared divergences. Collinear divergences arise when
a parton with momentum pµ emits a parton collinear to it, with momentum zpµ,
where 0 < z < 1. Integration over momenta leads to divergences close to zpµ [Ste78].
For inclusive observables, like the total ep → eX cross section these infrared and
collinear singularities from real emissions are cancelled by virtual corrections to all
orders in perturbation theory. In order for these cancellations to work for more
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Figure 3.2: a) Definition of the Breit frame. b) Born (O(α0
s)) and QCD Compton process

(O(αs)) (c) of deep-inelastic scattering in the Breit frame.

exclusive quantities like jet production, the defined cross section has to be infrared
and collinear safe [SS+95]. To meet these requirements the n-parton cross section
has to be convoluted with a jet function Jn(p1, . . . , pn), which has the momenta pi of
all final state partons as arguments. Infrared safety means that the observable must
not change if a final state consists of one or more partons with zero momentum or
if these partons are omitted entirely. In terms of the jet function, this requirement
can be expressed as

Jn+1(p
µ
1 , . . . , p

µ
n, p

µ
n+1 = 0) = Jn(pµ

1 , . . . , p
µ
n) . (3.2)

Collinear safety requires

Jn+1(p
µ
1 , . . . , zpµ

n, (1− z)pµ
n+1) = Jn(pµ

1 , . . . , p
µ
n) (3.3)

which means that the observable should not differ between a final state in which two
particles are collinear and the same final state where the two particles are replaced
by one.
Since infrared and collinear divergences originate from soft, non-perturbative dy-
namics, using a jet definition fulfilling equations (3.2) and (3.3) ensures that the
resulting jets are insensitive to the long-range behaviour of QCD and the n-jet cross
section becomes calculable in pQCD. These cross sections are defined for coloured
partons and need to be corrected for hadronisation effects before a comparison to
data can be made.

3.3 The Breit Frame

Besides being collinear and infrared safe, a jet algorithm also has to provide a
factorisable jet cross section. This means that the factorisation theorem (3.1) is
not violated by the jet definition, and initial state singularities are absorbed in
the definition of the PDF. There exists a class of reference frames which ensure
factorisation, one of them being the Breit frame [Web93]. The Breit frame is defined
through the relation [Fey72]

2 x ~p + ~q = 0 , (3.4)

where ~p and ~q are the momenta of the incoming proton and the exchanged virtual
boson, respectively. The positive z-direction is chosen to be the direction of the
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incoming proton. The x-z plane is given by the plane spanned by the momentum
vectors of the incoming and outgoing scattered electron, such that the azimuthal
angle of the scattered electron in the Breit frame φBreit

e = 0 (see figure 3.2a).

In the Breit frame the exchanged boson and the struck quark collide head-on. The
boson is purely space-like with q = (0, 0, 0,−Q). In the Born process of DIS the
incoming quark has momentum pz = Q/2 and is back-scattered with momentum
pz = −Q/2 (“brick-wall frame”). In processes involving the strong interaction
(O(αs)) final state partons acquire transverse momentum in the Breit frame, see
figures 3.2b and c. Hence, in the Breit frame the hardness of the QCD interaction is
reflected by the jet transverse momentum. Using the Breit frame as reference frame
for a jet analysis brings the additional experimental advantage that Born processes
can be distinguished from higher order QCD processes simply by the requirement
of significant transverse momentum.

3.4 Jet Algorithms

A set of rules which identify jets and merge the constituents to obtain the jet four-
vector is called a jet algorithm or jet finder. The exact implementation of an al-
gorithm incorporating the requirements described above is non-trivial, especially if
the jet algorithm should be infrared and collinear safe in all orders of perturbation
theory. For the following discussion, the word particle will be used to generically
refer to the input objects of a jet finder, and can mean partons, stable particles or
protojets from a previous combination step.

A class of jet finders which fulfils the requirements of infrared and collinear safety
in all orders is defined through the distance measures dij and di between the input
particles,

dij = min(k2p
Ti, k

2p
Tj)

∆2
ij

R2
, (3.5)

di = k2p
Ti (3.6)

with ∆2
ij = (φi − φj)

2 + (ηi − ηj)
2. The variables kTi, φi and ηi are the transverse

momentum, azimuthal angle and pseudorapidity1 of particle i, respectively. The
free parameter R is a distance measure comparable to the radius of cone algorithms.
The parameter p governs the importance of the geometrical distance with respect to
the ‘distance’ in transverse momenta of the particles. The longitudinally invariant
kT-algorithm [CD+93, ES93] is obtained by setting p = 1, the Cambridge/Aachen
algorithm [DL+97, Wob00] uses p = 0, and the choice p = −1 yields the anti-kT

algorithm [CS+08]. These jet algorithms are clustering algorithms which define jets
by successive recombination of the input particles. The iterative procedure which
results in a list of jets works as follows:

1. For all pairs of input particles calculate the distance dij and for each particle
calculate its distance to the beam di.

1The pseudorapidity is defined as η = − ln(tan θ/2), where θ is the polar angle of the particle.
For massless particles it is identical to the rapidity.
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2. Find the minimum dmin of all dij and di. If dmin is a dij then merge particles i
and j into a single particle. If dmin is a di, remove it from the list and add it
to the list of jets.

3. Repeat from step one until no particles are left.

In step two there is a certain degree of freedom on how to merge two particles into
one. In this work the PT-recombination scheme [HW+90] is employed. For mass-
less input particles, it defines the total transverse momentum as sum of transverse
momenta and the azimuthal angle and pseudorapidity as weighted sums,

kTij = kTi + kTj , (3.7)

φij = (φikTi + φjkTj)/kTij , (3.8)

ηij = (ηikTi + ηjkTj)/kTij , (3.9)

which results in massless jets. In the case of massive input particles, their energies
are scaled to be equal to the magnitude of their three-momenta [BC+03].
A different class of jet algorithms are cone algorithms, which define jets based on
momentum flow within a cone. Cone algorithms are mostly employed by hadron-
hadron collider experiments due to the predictable geometrical shape of the re-
sulting jets. Due to limited computing power often seeded cone algorithms were
used [CDF08,D008], which however turned out not to be infrared and collinear safe
to all orders in perturbation theory. With the new SISCone algorithm [SS07] a fast
implementation of a seedless cone algorithm became available which is infrared and
collinear safe to all orders.
In a recent publication the ZEUS collaboration compared the kT, anti-kT and SIS-
Cone algorithms for jet production in NC DIS [ZEUS10b]. The inclusive jet cross
sections obtained with the three algorithms are very similar, as shown in figure 3.3a
and b. They differ by less than 3.6% over most of the phase space, only at high PT

the differences between the kT algorithm and the other two become around 5%. The
observed ratios are very well described by calculations including O(α3

s) terms. In
figures 3.3c and d the hadronisation corrections (defined in section 10.6.2) together
with their uncertainties are shown for the three different jet finders. Jets defined
with the kT and anti-kT algorithms have the smallest hadronisation corrections,
meaning that they are relatively insensitive to the non-perturbative fragmentation
of quarks and gluons into hadrons. The hadronisation corrections obtained for the
kT algorithm show overall the smallest uncertainties.
Due to these considerations the kT algorithm with R = 1 is used in this work. Unless
otherwise stated, jets are found and clustered in the Breit frame.

3.5 Jet Cross Sections in Perturbative QCD

At high enough scales the small size of the strong coupling allows for the perturbative
expansion of jet observables in terms of αs. The leading order (LO) contributions
of these perturbative series can already explain specific jet topologies and give a
basic understanding of the jet observables. However, reliable predictions can only
be obtained by the inclusion of higher orders. In the following an overview of the
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a) b)

c) d)

Figure 3.3: Ratios of inclusive jet cross sections obtained with different jet algorithms
as function of the jet transverse momentum in the Breit frame (a) and Q2 (b). Also
shown are calculations for these ratios including O(α3

s) terms. Hadronisation corrections
for the different jet algorithms as function of P jet

T (c) and Q2 (d) are shown below,
from [ZEUS10b].

leading order contributions to dijet and trijet production is given. This is followed by
a summary of calculations used in this work which include higher order corrections.

3.5.1 Dijet and Trijet Production in Leading Order

The two leading order processes for dijet production in DIS are the QCD Compton
(QCDC) and Boson Gluon Fusion (BGF) processes. Both are 2 → 2 scatterings
of order O(αs), where QCDC is the γ∗q → gq process and BGF is the γ∗g → qq
process. The relevant Feynman diagrams are shown in figure 3.4. Besides the
kinematic variables Q2 and x, three more independent variables are needed to fully
characterise the kinematics of dijet production. Usually, these are chosen to be z,
xp and ϕ [PR80]. The angle ϕ is the relative azimuth between the electron and
parton scattering planes in the hadronic centre-of-mass frame or any frame related
to it with a longitudinal boost. The variables z and xp are given by

z =
pa · p1

q · pa

, xp =
Q2

2pa · q
, (3.10)

where pa is the momentum of the incoming parton, p1 and p2 are the momenta of
the outgoing partons, and q is the momentum of the virtual boson as shown in figure
3.4. The variable z is related to the scattering angle in the parton-parton centre-
of-mass frame and is in the range 0 ≤ z ≤ 1. The variable xp can be interpreted
as the momentum fraction of the proton taken by the parton interacting with the
virtual boson for which x ≤ xp ≤ 1 holds. In LO, the centre-of-mass energy squared
of the virtual boson and incoming parton, ŝ = (pa + q)2, coincides with the squared
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Figure 3.4: LO Feynman diagrams for 2-jet production in NC DIS. The QCDC (a), (b)
and BGF diagrams of order O(αs).

invariant mass of the outgoing partons, M2
12 = (p1 +p2)

2. Denoting by ξ the fraction
of the proton’s momentum carried by the initial state parton, pa can be written as
pa = ξP . This leads to

ξ = x

(
1 +

M2
12

Q2

)
. (3.11)

It follows from the definition of x (2.27) that ξ = x/xp. In LO, where the centre-
of-mass energy of the partonic final state coincides with the invariant mass of the
dijet system, the variable ξ coincides with the momentum fraction of the parton to
be used in the evaluation of the PDF of the proton, fi(x = ξ, µ2

f , αs). With the
inclusion of higher order corrections, the invariant mass of the dijet system becomes
smaller than the centre-of-mass energy of the partonic final state. As a consequence
ξ ≥ x, which can also be seen from its definition (3.11). The variable ξ then takes
the meaning of the lower bound for the integration over all momentum fractions
when convoluting the PDFs with the partonic matrix elements σ̂i.
Integrating over ϕ, the partonic cross section σ̂ for the QCDC and BGF processes
can be written as [PR80]

σ̂QCDC ∝
1 + x2

pz
2

(1− z)(1− xp)
, (3.12)

σ̂BGF ∝
(
z2 + (1− z)2

)(
x2

p + (1− xp)
2
)

z(1− z)
. (3.13)

These expressions are singular for xp → 1, z → 1 or z → 0, which are related
to either collinear parton configurations or one of the final partons being soft. A
detailed study shows that the singular regions in the jet phase space appear if the
jets have either vanishing transverse momentum or infinite pseudorapidities. The
requirement of non-zero transverse momentum of the outgoing partons avoids the
singular regions during the integration over xp and z.
In leading order, trijet production can be considered as the radiation of an extra
gluon from either the incoming or one of the outgoing partons in dijet production.
Thus, it includes O(α2

s) terms and is the lowest order of jet production in NC DIS
where the triple-gluon vertex directly contributes. Some of the diagrams contribut-
ing to γ∗q → qgg and γ∗g → qqg scattering are shown in figure 3.5. In these
processes, the centre-of-mass energy squared is equal to the invariant mass squared
of the three outgoing partons, M2

123 = (p1 + p2 + p3)
2. The fraction of the proton’s

momentum carried by the initial state parton is thus given by a similar expression
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Figure 3.5: Some of the LO Feynman diagrams contributing to trijet production in NC
DIS.

as equation (3.11), by replacing M12 by M123. Similar to the dijet case, infrared and
collinear singularities can be avoided by requiring non-vanishing transverse momenta
of all three outgoing partons.

3.5.2 Jet Production Beyond Leading Order

Although perturbative calculations in LO can already explain specific event topolo-
gies and give an estimate for the magnitude of a cross section, reliable predictions
need at least the inclusion of terms proportional to the next higher order in the
strong coupling. Since dijet production is in LO proportional to O(αs), the NLO
contributions include terms of O(α2

s). The NLO contributions for trijet production
include terms of O(α3

s).
The contributions to the NLO calculations can be grouped in two classes: real and
virtual corrections. Real corrections include the emission of one additional gluon
with respect to the LO diagrams. For example, the LO diagrams for trijet produc-
tion, some of which are shown in figure 3.5, are the NLO real corrections for dijet pro-
duction. These contributions introduce divergences due to collinear and soft parton
configurations. Virtual corrections, on the other hand, do not change the number of
emitted partons. They include internal loops, which introduce infrared (IR) and UV
divergences due to vanishing and infinite loop momenta. The UV divergences are re-
moved by renormalising the fields, gauge parameters and masses in the Lagrangian,
similar to the renormalisation of the strong coupling. The renormalisation results
in counter terms, which render the physical Green’s function finite. These counter
terms exhibit an explicit logarithmic dependence on the renormalisation scale µr,
which cancels the first term of the expansion of the running coupling (2.19), thus
reducing the scale dependence of the NLO calculation. The IR divergences from the
virtual contributions cancel order-to-order in the perturbative expansion with the
divergences from the real contributions according to the Kinoshita-Lee-Nauenberg
theorem [Kin62,LN64]. The requirements for these cancellations to work are infrared
and collinear safety, which is ensured by the jet function. Additional divergences
arise from configurations where the parton from the proton, undergoing the hard
scattering, radiates a soft or collinear secondary parton which cannot be resolved.
Divergences of this sort are called initial state singularities and can be absorbed
in the definition of the proton PDFs. This introduces a scale dependence of the
coefficient functions on the factorisation scale µf , which partially cancels the scale
dependence of the PDF. Consequently, already the NLO corrections substantially
reduce the scale dependence of perturbative calculations and lead to reliable predic-
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tions.
In practice, the jet phase space is usually more restricted than only requiring non-
zero jet transverse momenta. For example, a restriction to a specific region of jet
pseudorapidity due to limited detector acceptances is unavoidable in experimental
analyses. This makes analytic calculations almost impossible. Numerical methods
allow the calculation of arbitrary infrared safe observables through MC integration.
These computer codes can be classified in two categories. Firstly, fixed-order pQCD
calculations which calculate cross sections on first principles. These programs require
only the proton PDF and physical parameters of the SM (i.e. couplings, masses,. . . )
as input parameters. The resulting cross sections are parton level cross sections,
which in general cannot be directly compared to measurements since the defined
observables may be sensitive to hadronisation processes. However, for jet observ-
ables it is possible to estimate the hadronisation corrections, making fixed-order
calculations a powerful tool to test the validity of pQCD and extract SM parame-
ters. The second class of available MC codes are full-scale event generators, which
include terms to all orders in αs through parton showers or subsequent gluon emis-
sion from colour dipoles. These approximations neglect virtual contributions such
that probabilities are added, instead of the summation of probability amplitudes.
In this framework it thus becomes possible to model long-range effects like hadro-
nisation with appropriate approximations. Often QED corrections are included in
MC event generators such that calculated observables can be directly compared to
data. An overview of the event generators used in this work is given in section 3.6.

3.5.3 Fixed Order Calculations

Calculations beyond the Born level quickly become very involved due to the large
number of contributing Feynman diagrams. In order to perform numerical inte-
grations the divergences have to be separated such that cancellations can either be
achieved analytically or through the construction of a non-trivial local counter-term.
The latter method is implemented in the program NLOJet++ [NT98,NT01] and is
outlined in the following.
In NC DIS jet production the n-jet cross section is of the order O(αn−1

s ). The NLO
corrections thus involve O(αn

s ) terms, which include n + 1 parton configurations,
which are the real emissions, and n-parton configurations with one internal loop,
which are the virtual corrections. In NLO the partonic n-jet cross section can be
written symbolically as

σ̂n =

∫
n

dσ̂B
n +

∫
n+1

dσ̂R
n+1 +

∫
n

dσ̂V
n , (3.14)

where the superscripts B, R and V respectively denote the Born, real and virtual
contributions, and the integrations are performed over all outgoing parton momenta.
The exclusive partonic cross sections dσ̂n are infrared and collinear safe because of
a convolution with the jet function Jn,

dσ̂n = dΦ(n)|Mn(p1, . . . , pn)|2Jn(p1, . . . , pn) , (3.15)

where dΦ(n) and Mn denote the phase space and matrix elements to produce the n-
parton final state. The last two integrals in equation (3.14) are separately divergent.
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The general method of removing the singularities is based on counter terms dσ̂A
n+1,

which can be constructed to have the same singular behaviour as dσ̂R
n+1 but with

opposite sign. The n-jet cross section then becomes

σ̂n =

∫
n

dσ̂B
n +

∫
n+1

[
dσ̂R

n+1 − dσ̂A
n+1

]
+

∫
n+1

dσ̂A
n+1 +

∫
n

dσ̂V
n , (3.16)

where the first two integrals are finite and numerically calculable. The last two
integrals have different phase space integrations, but by construction the counter-
term can be split into a one parton and an n-parton phase space. The contributions
to the one parton subspace are termed dipoles. These terms have the same singular
behaviour as the virtual contributions but with opposite sign, which renders the last
two integrals numerically integrable. The cancellations rely on infrared and collinear
safe observables which fulfil the requirements of the jet function as described in
section 3.2. This method is called dipole subtraction method and was developed by
Catani and Seymour [CS97]. The difficulty lies in the construction of the counter
terms, but once they have been constructed they are universal. The counter terms
have been calculated for 2- and 3-jet production in NC DIS at NLO. They are
implemented in the program NLOJet++. At present no NNLO calculations for jet
production in DIS are available.

3.5.4 Higher Order Corrections

Calculations beyond NLO become increasingly demanding due to the large number
of diagrams which need to be considered. Nevertheless, there are regions in phase
space where higher-order terms become non-negligible and cannot be ignored. In-
stead of including all terms of a fixed order in αs, it is possible to take enhanced terms
approximately into account to all orders. This leads to parton showers, which make
it possible to generate events at parton level down to an almost non-perturbative
scale Q0, which is typically taken to be of the order of 1GeV.
In DIS the quark struck by the virtual boson can emit additional partons before and
after the hard interaction. The emerging cascade of partons is termed initial or final
state parton shower, respectively. In a parton shower a propagating parton can split
into a pair of partons with momentum fractions z and (1−z). The probability of such
a splitting to happen can be expressed in terms of the Sudakov form factor [Sud56].
This form factor encodes the probability for a parton not to split between some
initial maximum virtuality and some minimal value of it. The Sudakov form factor
depends on the DGLAP splitting functions Pab(z) from section 2.3.2 and the PDFs.
A DIS event including initial and final state parton showers is depicted in figure 3.6.
Viewing the interaction in ‘chronological’ order, the initial state parton shower is
initiated by a parton close to mass-shell from the incoming proton. At each splitting
one parton becomes increasingly off-shell with space-like virtuality k2

i < 0 and the
other parton is on-shell or has a time-like virtuality m2 > 0. At each splitting
the parton with space-like virtuality continues towards the hard interaction, such
that either a gluon or quark with large space-like virtuality enters the hard matrix
element. The outgoing partons from the hard interaction are close to on mass-
shell or have time-like virtualities. This leaves all partons left in the event with
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Figure 3.6: Higher order corrections to jet production in NC DIS approximated by the
parton shower approach. The subdiagram where the virtual boson couples to the outgoing
quark is the matrix element (ME) of the hard interaction. It defines the separation between
the initial and final state parton shower, indicated as dashed line. A space-like initial state
parton i is described by its virtuality k2

i and its fractional momentum of the proton xi.

either time-like virtualities or being close to mass-shell. In the final state parton
shower all partons which are off mass-shell decrease their masses by branching into
daughter partons with decreasing off-shell masses and decreasing opening angles.
The branchings continue until all partons are essentially on mass-shell.

It can be shown that these initial and final state parton showers obey the solutions
of the DGLAP equations (2.34) [ES+96]. In the previous chapter the DGLAP equa-
tions described the evolution of the PDFs when probed at a given scale. In the parton
shower context, these evolution equations instead represent the momentum fraction
distribution of the produced partons. The space-like virtualities k2

i of the partons ap-
proaching the hard matrix element are strongly ordered, k2

0 � . . . � k2
n � Q2. This

is equivalent to a rearrangement of the perturbative expansion in terms of αm
s ln Q2.

Other logarithmic terms appearing in the expansion, like terms of the form αm
s ln 1

x
,

are neglected, such that the resummation only includes single logarithmic terms
(leading log approximation).

One of the shortcomings of the parton shower approach is the neglect of interference
effects between the initial state and final state parton emissions and that it is not
gauge invariant. While the parton shower is a good approximation for the emission
of soft partons or partons close to the direction of the emitting parton, the emission
of hard partons at large angles is not well accounted for [IE+97].

In principle it is possible to attach parton showers to any fixed-order calculation.
However, already beyond LO this task becomes very involved since care has to
be taken that configurations produced by the hard matrix element are not double
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counted. At present, only one MC event generator exists for lepton-proton scattering
which matches NLO matrix elements with parton showers [Tol10]. Unfortunately,
this MC@NLO program has been developed for heavy flavour photoproduction and
is thus not applicable in this analysis. The MC event generators used in this work
have LO matrix elements matched with parton showers.

3.6 Event Generators

MC event generators are computer programs which attempt to fully simulate high
energy collisions of particles. These programs comprise a collection of different QCD
motivated, phenomenological models used to simulate the different stages of particle
collisions. These programs start out from a given initial state and obtain events by
the random sampling of possible processes and final states. Through the summation
of many events in a certain region of phase space a prediction for the cross section
may be obtained. In this analysis the importance of MC event generators lies in
the possibility to combine them with detector simulations in order to investigate the
detector performance and obtain corrections for the recorded data.

A MC program starts out by calculating the hard interaction in pQCD from first
principles typically only in LO. In the next step the available phase space is filled
with additional parton radiation. This can either be modelled with DGLAP type
parton showers or through gluon radiation according to the colour dipole model.
The initial state parton branching and/or gluon emission is performed backwards in
time such that the hard interaction is not modified by the parton radiation [BS88].
The simulation of initial state radiation is terminated at a cut-off scale Q0, which is
close to Λ and regularises the parton splittings. At this point the parton propagator
is taken from the proton PDF. The final state parton shower is simulated until
another cut-off scale is reached. At this stage the parton virtualities are too small
for perturbative methods to be applicable any longer. Before all produced partons
enter the hadronisation stage corrections to the parton momenta are required, such
that energy and momentum conservation is ensured. This is an artefact from hav-
ing neglected interference terms between the initial and final state parton showers.
Different models exist which describe the formation of mesons and hadrons from
coloured partons, with the two most commonly used ones being the Lund string
model [AG+83] and the cluster fragmentation model [Web84]. The final result of
the simulation of a high energy particle collision is a list of stable hadrons together
with their four-vectors. This hadronic final state is subject to the detector simula-
tion to model the finite resolutions, efficiencies and acceptances of the experimental
apparatus.

The various approximations and models implemented in MC programs introduce a
number of free parameters which can be tuned to available data. Many parameters
are connected to the hadronisation stage, which is assumed to be universal and
independent of the specific model used to obtain the partonic final state. However,
some parameters are sensitive to the specific implementation of the parton shower
and hadronisation and thus need to be adjusted for every MC program individually.
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3.6.1 MC Programs Used

A number of MC programs is used in this analysis for the simulation of signal and
background events, the determination of detector efficiencies, detector corrections
and corrections for electroweak (EW) effects. In the following the utilised MC
programs are briefly described.

Rapgap

Rapgap [Jun95] uses LO matrix elements matched with DGLAP parton showers
(MEPS) for the simulation of DIS events. The hard matrix elements include BGF
and QCDC processes for γ∗ and Z0 exchange. In all these respects Rapgap is
similar to Lepto, which is described below. In Rapgap the hadronisation in is
modelled with the Lund string fragmentation as implemented in Pythia. QED
radiation from the lepton line, virtual corrections to the leptonic vertex and vacuum
polarisation are included through the Heracles program [KS+92]. In this work
Rapgap is used for the derivation of detector and radiative corrections, as well as
for the estimation of hadronisation corrections.

Lepto

The Lepto [IE+97] generator includes all electroweak processes in LO for lepton-
proton scattering. Lepto is a LO matrix elements and parton shower (MEPS)
program, which uses Heracles for the inclusion of O(αem) processes.
Since NLO calculations do not include Z0 exchange, Lepto is used to estimate its
effect on jet cross sections and derive EW correction factors for the NLO calculations.

Djangoh

In its original version the package Django [CS+94] has been developed as an in-
terface between Lepto and Heracles. In its present version Djangoh includes
an implementation of the Colour Dipole Model (CDM) [Gus86] by providing an
interface to Ariadne [Lön92].
The CDM can be seen as an alternative formulation of parton showers. Instead
of quark and gluon splittings, parton radiation is modelled through gluon emission
from colour dipoles. Since the first dipole in an event is spanned between the struck
quark and the proton remnant, only QCDC processes and higher order corrections
can be simulated by the CDM. A matching procedure has been implemented in
Ariadne which matches the BGF processes with the CDM [Lön95], which leads to
an improved description of trijet events.
Djangoh is used in the CDM mode as an alternative to the MEPS approach imple-
mented in Rapgap. Changes in the measured jet cross sections due to differences
in the derived corrections from Djangoh and Rapgap are assigned as model un-
certainty.

Pythia

γ∗p scattering with Q2 ≈ 0, which is also called photoproduction, is one of the
sources of background in this analysis. In order to estimate the amount of back-
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ground, the Pythia program [SM+06] is used for the simulation of light and heavy
quark production in direct and resolved photoproduction.

Compton

The quasi-real QED Compton (QEDC) process ep → eγX is simulated with higher
precision in the Compton generator [CC+91, CK92] than in Heracles. To get
a reliable estimate of the background from QEDC processes these events are re-
moved from Djangoh and Rapgap and are instead simulated with the Compton
program.

Grape

The background from lepton-pair production, ep → e `+`−X, is estimated with
the Grape program [Abe01], which includes electron, muon and tau production in
electron-proton scattering.
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Chapter 4

Experimental Setup

The HERA collider is the first and so far only high energy electron-proton collider in
the world. It is located at the research laboratory Deutsches Elektronen Synchrotron
(DESY) in Hamburg and was in operation from 1992 to 2007. During this period
the two multi-purpose detectors H1 and Zeus recorded roughly 500 pb−1 of data
each.
In this chapter a brief overview of the HERA ep collider is given, followed by a
review of the H1 detector. The focus of the detector description will be on the
detector components used in this analysis.

4.1 HERA

The electron-proton storage ring HERA [W+81] is situated in a tunnel between 10 to
20m below the surface with approximately 6.4 km circumference. It is composed of
four straight sections of 360m connected with arcs with a radius of 797m (figure 4.1).
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Figure 4.1: Overview of the HERA storage ring with the two collider experiments H1
and Zeus and the two fixed-target experiments Hermes and Hera-b (right). The
preaccelerator chain is enlarged and shown on the left.
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Hera-1 Hera-2

electrons protons electrons protons

beam energy E [GeV] 27.5 920 27.6 920

current I [mA] 45 100 58 140

particles per bunch N (× 1010) 3.5 7.3 4.0 10.3

number of beam bunches 189 180 189 180

beam sizes σx × σy [µm] 190 × 50 112 × 30

synchrotron radiation at IP [kW] 6.9 25

luminosity [cm−2s−1] 1.4 · 1031 7 · 1031

Table 4.1: Achieved parameters of the HERA storage ring, before and after the luminosity
upgrade. HERA I denotes the running period between 1998 and 2000, based on [Hol08,
Sch98].

The two interaction points in hall North and South were equipped by the two multi-
purpose detectors H1 and Zeus, respectively. Both experiments started data taking
in 1992 and were dismantled between 2007 and 2009. At the experimental halls East
and West the fixed-target experiments Hermes and Hera-b were installed. The
Hermes experiment used the polarised electron beam on a gas target and was in
operation from 1995 to 2007, Hera-b made use of the proton beam halo on a wire
target between 1998 and 2003.
Several stages of pre-acceleration were necessary before electrons and protons could
be injected into HERA. Different linear accelerators and synchrotrons as well as
the storage ring Positron-Elektron-Ring-Anlage (PETRA) were used to accelerate
electrons and protons to their injection energies of 14 and 40GeV. After injection the
beams were stored in separate bunches with a distance of 28.8m between successive
bunches. This resulted in a bunch crossing time of 96 ns or a collision rate of
10.4MHz. The final acceleration to the nominal electron and proton beam energies
of Ee = 27.6 and Ep = 920 GeV1 was performed in HERA, resulting in a center-of-
mass energy of

√
s ≈ 320 GeV. In order to keep the high momentum proton beam on

a circular orbit, high magnetic fields (B ≈ 4.5 T) were required. These were realised
with superconducting magnets operated at a temperature of 4.2K. Whereas the
maximal proton energy was limited by the attainable magnetic field, the limiting
factor for the electron beam energy were losses due to synchrotron radiation [Sch85].
An important characteristic of a particle collider is its luminosity, which is given for
a two ring collider by [PDG10, p. 277]

L =
NpNenbf0

4πσxσy

. (4.1)

in units of cm−2s−1. Here nb is the number of colliding bunches, Np and Ne denote

1Until 1998 the proton beam energy was 820 GeV.
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Figure 4.2: Integrated luminosity collected by the H1 experiment as a function of running
time for Hera-1 and Hera-2.

the single bunch intensities, and f0 is the revolution frequency. The transverse
dimensions of the beams are characterised by σx and σy. The integrated luminosity

L =

∫
L dt (4.2)

is directly proportional to the expected number of events N for a specific process

N = L σ, (4.3)

where σ is the interaction cross section. Hence, an increase of the luminosity means
an increase of the event yield for the particle physics experiments. In the years 2001
and 2002 an upgrade of HERA and the experiments was performed with the aim
of increasing the luminosity by a factor of 5. It was neither possible to significantly
increase the proton bunch population Np due to limitations in the pre-accelerator
chain, nor was it feasible to increase the electron current Ie = Ne nb f0 e due to the
limited power of the accelerator cavities [Sei99]. However, from equation 4.1 it can
be seen that a reduction of the beam spot sizes also leads to an increased luminosity.
This was achieved by strong super conducting focusing magnets which were installed
close to the interaction regions inside the experiments. Table 4.1 summarises the
main parameters of the HERA storage ring before and after the upgrade.
The luminosity upgrade caused some problems with beam-induced backgrounds
which made data taking only possible after two more years of machine studies and
improvements. Between the years 2004 and 2007 the H1 experiment collected data
corresponding to an integrated luminosity of roughly 400 pb−1 (figure 4.2). When
HERA was decommissioned in 2007 most machine parameters had reached their
design values [Hol08].

4.2 The H1 Detector

The H1 detector was a multi-purpose particle physics detector with an angular
coverage of most of the solid angle around the Interaction Point (IP). It was located
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in the experimental hall North and had roughly the dimensions 12m×10m×15m
(length×width×height) with a weight of approximately 2800 tons. Figure 4.3 shows
a schematic drawing of the detector.
The adopted reference frame is a right-handed coordinate system with the +z direc-
tion along the proton beam direction and the +x- direction pointing to the centre
of the HERA ring (cf. figure 4.3). The nominal IP is chosen as origin of the co-
ordinate system. The detector had a cylindrical symmetry around the beam pipe.
The natural spherical coordinate system with (r, θ, φ) is chosen such that the elec-
tron direction is at θ = π (the −z-direction). This is referred to as the backward
direction, whereas the proton direction (θ = 0) is called forward direction. Because
of the asymmetric beam energies the centre-of-mass is boosted along the forward
direction which is why the H1 detector was considerably more massive and highly
segmented there.
The H1 detector consisted of multiple subdetectors which were arranged around
the IP in several layers. The innermost part, the beampipe, was surrounded by the
central and forward track detectors, consisting of silicon track detectors, drift and
proportional chambers. In the central and forward region the tracking detectors were
surrounded by a cryostat vessel containing the LAr calorimeter. The backward re-
gion was equipped with the Backward Proportional Chamber (BPC) and Spaghetti
Calorimeter (SpaCal). The LAr calorimeter and SpaCal comprised of electromag-
netic and hadronic sections. A superconducting coil, providing an axial magnetic
field of 1.15T, surrounded the cryostat vessel. The iron return yoke of the magnet
was instrumented with streamer tube detectors and was used to measure muons
and small fractions of hadronic showers leaking out of the LAr calorimeter. Addi-
tional chambers inside and outside of the iron yoke were installed to improve muon
identification. For an independent measurement of highly energetic muons in the
forward direction the Forward Muon Detector (FMD) was installed. It comprised a
toroidal magnet with 1.6T, sandwiched between drift chambers. Between the FMD
and the cryostat vessel the PLUG scintillation detector enclosed the forward beam
pipe hole of the LAr calorimeter. Further along the proton direction systems to
tag intact scattered protons were installed. In the electron direction the Electron
Tagger (ET) was used to detect scattered electrons under very small angles. Also
in this direction the Photon Detector (PD) was installed to measure photons from
Bethe-Heitler processes to determine the luminosity.
In the following an overview of the main subdetectors used in this analysis is given.
A detailed description of the H1 detector and its subsystems can be found elsewhere
[H197a,H197b].

4.2.1 Track Detectors

In particle physics measured charged particle trajectories are called tracks. Although
there exists a vast variety of techniques how to measure such tracks, all track de-
tectors are based on the same physical principle. Charged particles traversing a
medium ionise its atoms and thus create free charges. Track detectors aim to am-
plify, collect and measure these free charges in order to reconstruct the trajectories
of particles. A well measured track provides multiple information about the parti-
cle’s nature: the spatial measurement shows the path the particle followed, through
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Figure 4.4: Cross-sectional view of the H1 tracking system.

the track’s curvature in a magnetic field the sign of the particle’s charge and the
particle’s momentum can be deducted, and through its specific energy loss in the
medium the particle may be identified.

Since every tracking detector has its strengths and weaknesses in large particle
physics experiments usually combinations of different techniques are used to acquire
the needed precision.

In H1 three different tracking detector technologies were used: drift chambers,
multi-wire proportional chambers and silicon strip detectors. Figure 4.4 provides
an overview of the configuration of the various track detectors.

The Central Track Detector

The two main components of the Central Track Detector (CTD) were two large
concentric drift chambers, the Central Jet Chambers (CJCs) 1 and 2. Two thin
proportional chambers, the Central Inner Proportional Chamber (CIP) and Central
Outer Proportional Chamber (COP) surrounded the CJC1 and were used mainly for
triggering purposes. An additional thin drift chamber, the Central Outer z-Chamber
(COZ) was used for a precise measurement of the z-coordinate and in close proximity
to the beam pipe three silicon detectors (forward, central and backward silicon
trackers, FST, CST and BST) provided an exact vertex determination. Figure 4.5
shows an rφ view of the CTD.

The Central Jet Chambers [H197b] covered an angular range of 15◦ < θ < 165◦

in the polar angle with full coverage in the azimuth. The CJC1 consisted of 30
drift cells with 24 sense (anode) wires each, while the CJC2 comprised 60 drift
cells with 32 sense wires each. The sense wires stretched parallel to the beam
pipe and magnetic field, whereas the drift cells were inclined by about 30◦ with
respect to the radial direction. This tilt was approximately equal to the Lorentz
angle and was introduced such that in the presence of the 1.15T magnetic field
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Figure 4.5: The central tracking system in the rφ plane.

the ionisation electrons from a stiff high momentum track drifted approximately
perpendicular to the radial direction. This tilt had the additional advantages of
resulting in an optimal track resolution and in resolving the usual left/right drift
chamber ambiguity. Besides, every stiff track crossed the sense wire plane at least
once in the CJC1 and CJC2. From the match at the crossing the passing time of a
particle could be deducted to a precision of 0.5 ns which allowed an easy separation
of tracks from different bunch crossings. From the drift time measured by the anode
wires a single hit resolution in the rφ plane of σrφ ∼ 170 µm was obtained. By
measuring the signal propagation time on both wire ends the z-coordinate could be
measured with accuracies of about 1% of the wire length, resulting in a resolution
σz ∼ 2.2 cm.

The Central Outer z-Chamber surrounded the CJC1 and had a polar angle
coverage of 25◦ < θ < 156◦. Its sense wires were strung perpendicular to the
beam axis resulting in a drift direction along z-direction. Thus it measured the
z-coordinates with a better accuracy than that obtained by charge division. The
track elements it delivered had a typical z-resolution of σz ∼ 300 µm. These could be
linked to the track segments obtained from the jet chambers to acquire an improved
accuracy of the track’s longitudinal momentum component.

The Central Inner Proportional Chamber was revised during the HERA up-
grade in the years 2000–2002. The new design (CIP2k) incorporated a five-layer
multiwire proportional chamber with cathode pad readout. The CIP was mounted
on the inside of the CJC1. The five concentric layers provided space points which
defined a track’s direction. Through backward extrapolation a determination of
the z-position of the event vertex could be made available after 2.3µs with a res-
olution of approximately 16 cm [Urb04]. This information was used for a z-vertex
trigger which rejected high multiplicity background events with an efficiency close
to 100% [BB+08].

The Central Outer Proportional Chamber was a two layer multiwire propor-
tional chamber which was located between the CJC1 and CJC2. It had a short
response time and could be used in combination with the CIP for a fast z-vertex de-
termination. After the HERA upgrade it was of less importance due to the improved
CIP performance.
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The Silicon Track Detectors [Lis05] consisted of three individual components.
The Central Silicon Tracker (CST) was the innermost tracking detector with a dis-
tance to the nominal IP of 5–10 cm. It was designed to provide a precise vertex
determination as well as allowing the identification of displaced secondary vertices
from heavy flavour particles with decay lengths of a few hundred micrometers. The
CTD consisted of two layers of silicon sensors which were arranged around the ellipti-
cal beam pipe such that particle trajectories originating at the IP were perpendicular
to the silicon ladders. The achieved point resolutions were 12µm in rφ and 22µm
in the z-direction, which translated to an impact parameter resolution of 37µm for
high momentum tracks with an angular coverage of 30◦ < θ < 150◦ [PB+00]. The
Backward Silicon Tracker (BST) and Forward Silicon Tracker (FST) [HL00,Nož03]
were installed to extend the angular coverage of the CST into the backward and for-
ward direction. The BST covered the polar angle between 165◦ and 176◦, whereas
the FST measured in the angular region of 7◦-19◦.

The Backward Proportional Chamber was situated in front of the SpaCal and
was used to improve the position measurement of particles going into the backward
direction as well as to discriminate between charged and neutral particles. It con-
sisted of six wire layers with three different orientations and measured the polar
angle with a precision of σθ = 0.5 mrad.

The Forward Track Detector

The Forward Track Detector (FTD) was situated in front of the CTD and extended
the tracking coverage in the polar angle to 5◦ < θ < 25◦. The FTD consisted of
three supermodules, each containing five drift chambers (four in the case of the most
forward supermodule) with different wire geometries. The planar drift chambers had
wires strung parallel and the radial ones had wires strung in the radial direction.
In both cases the wires were perpendicular to the beam pipe. The FTD achieved
single hit resolutions of typically 210µm in rφ with radial resolutions of approxi-
mately σr ∼ 3 cm. The momentum resolution was between σp/p

2 ∼ 0.1–0.02 GeV−1

depending on the track length and on the track’s polar angle. The track finding
efficiency was approximately 70% in each supermodule.

4.2.2 Calorimeters

In particle physics a calorimeter2 is a detector which measures the energy of incident
particles. The principle relies on absorbing the particle’s kinetic energy inside a given
detector volume and converting it into a measurable signal. In H1 four different
types of calorimeters were used. The Liquid Argon (LAr) calorimeter, the Spaghetti
Calorimeter (SpaCal), the PLUG and the Tail Catcher (TC).

The LAr Calorimeter

The LAr calorimeter had an angular coverage of 4◦ < θ < 154◦ in the polar angle
and full coverage in the azimuth. It was designed to provide a clear identification

2Derived from the Latin word calor, meaning heat.
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IP

Figure 4.6: Side view of the LAr calorimeter inside the cryostats, showing the different
calorimeter stacks. The electromagnetic and hadronic calorimeters are depicted in different
colours. IP denotes the nominal interaction point.

and measurement of electrons together with a good hadronic measurement. In or-
der to achieve this, the amount of dead material seen by particles originating at
the IP was kept as small as possible. The calorimeter was situated inside a single
cryostat and, to keep the amount of dead material as small as possible, the supercon-
ducting solenoid was surrounding the LAr vessel (cf. figure 4.3). The calorimeter
consisted of two parts: an electromagnetic calorimeter with lead absorber plates
and a hadronic calorimeter with stainless steel absorber plates. It was segmented
into eight calorimeter wheels: the Inner Forward (IF), Outer Forward (OF), Forward
Barrel (FB) 1 and 2, Central Barrel (CB) 1,2 and 3 and the Backward Barrel (BBE).
An E or H behind the name denoted the electromagnetic or hadronic calorimeter,
respectively (see figure 4.6). The LAr calorimeter is of crucial importance for this
analysis, since it is used to trigger events, identify and measure the scattered elec-
trons as well as a large fraction of the jet’s and the hadronic final state’s energy.
A large part of this work has been dedicated to improve the calorimetric measure-
ment by improving the separation between electromagnetic and hadronic showers
and developing a new calibration method based on this. In the next chapter an
introduction to calorimetry will be given followed by a detailed description of the
LAr calorimeter of H1.

The ”Spaghetti” Calorimeter

The so-called Spaghetti Calorimeter (SpaCal) was a lead/scintillating fibre calorime-
ter which was installed in the backward direction behind the CTD (cf. figure 4.4).
It covered the polar angular range of 153◦ < θ < 174◦ and was designed to precisely
measure electrons scattered into the backward region. This required a good elec-
tron/pion separation, an excellent electromagnetic energy and spatial resolution as
well as a fast response time [H197c].
The SpaCal was a sampling calorimeter consisting of an inner electromagnetic and
an outer hadronic section (see figure 4.7). Both sections had lead as absorber and
plastic scintillating fibres as active material. The name SpaCal derived from the long
and thin fibres (’spaghettis’) which were aligned parallel to the beam direction and
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Figure 4.7: Technical drawing of the backward part of the H1 detector. Shown is the
SpaCal with the BPC directly in front of the electromagnetic part. Surrounding the beam
pipe is the focusing magnet from the HERA upgrade.

Figure 4.8: Drawing of a module from the electromagnetic SpaCal. Each module con-
tained 2340 fibres.

embedded in a lead matrix, as shown in figure 4.8. Particles interacting with the lead
absorber produced particle showers which caused scintillations in the plastic fibres.
The scintillation light was conducted by the fibres and collected by photomultiplier
tubes (PMTs) which converted the light into electric signals and amplified them.
Since the SpaCal was situated in the strong magnetic field of the main solenoid with
1.15T, the PMTs’ gain was two orders of magnitude smaller than with no magnetic
field applied [JL+94]. Therefore, pulsed LEDs were used to monitor the stability of
the PMTs over time.
The electromagnetic section of the SpaCal consisted of fibres with a diameter of
0.5mm and had a lead/fibre ratio of 2.3:1. The active volume was 25 cm long,
corresponding to 28 radiation length. The small fibre diameter allowed for a high
sampling frequency and resulted in an excellent electromagnetic energy resolution
of

σem

E
≈ 7%√

E(GeV)
⊕ 1% ,

which was obtained from test beams at CERN and DESY [H196b]. The high gran-
ularity also ensured a position resolution of a few millimetres which corresponded
to the required angular resolution of 1–2mrad. The time resolution was found to be
better than 0.4 ns which made the SpaCal sufficiently fast for triggering purposes.
The hadronic section of the SpaCal contained fibres with a diameter of 1mm and
the lead/fibre ratio was 3.4:1. The SpaCal’s total active length was equal to two
interaction lengths. The hadronic energy response has been obtained with test
beams of pions with an energy of 1–7GeV. An energy resolution of σhad/E ∼ 38%
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Figure 4.9: Schematic arrangement of the Time-of-Flight detectors.

within a depth of one interaction length and σhad/E ∼ 29% for a total depth of two
interaction length has been found [H196a].

The PLUG Calorimeter

The PLUG calorimeter was situated inside the iron return yoke around the forward
part of the beam pipe. Between the IP and its position were 2-5 interaction length,
therefore the requirements on its energy resolution were only moderate. However,
it had to have a good time resolution of 1 ns to separate primary bunch crossings
from satellite background. This was realised by the use of copper absorber plates in
combination with sensitive layers of plastic scintillator tiles, which were coupled to
wavelength shifting fibres for the light collection. PMTs were used to amplify the
signals, and they were monitored analogous to the SpaCal PMTs.

The Tail Catcher

The iron return yoke of the main solenoid surrounded all major components of H1.
It was interleaved with slits which housed limited streamer tube detectors. They
served to detect hadronic activity leaking out of the LAr calorimeter as well as to
detect penetrating minimum ionising particles.

4.2.3 Time-of-Flight Counters

The Time-of-Flight (ToF) system was an assembly of plastic scintillation detectors
used for a fast identification of beam-induced background. The main sources of
such background events were interactions with residual gas molecules in the beam
pipe and stray protons interacting with the walls of the beam pipe (beam-gas and
beam-wall events). The ToF system consisted of several components which were
placed at various distances from the IP (cf. figure 4.9). In the forward direction at
z = 5 m the Plug detector was used (PToF). At 2.7m, 2.5m and 1.3m the FIT,
FTi2 and FTi1 (Forward Inner ToF) were installed to reject background at small
forward angles. The SpaCal ToF (SToF) was positioned at the inside of the SpaCal.
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Figure 4.10: Bremsstrahlung spectrum for low and high luminosities. At the nominal
Hera-2 luminosity the spectrum is distorted and shows a long tail towards large photon
energies coming from pile-up. This effect is corrected for in the luminosity determination
[AB+02].

In the backward direction, the backward ToF (BToF) at −4 m was followed by the
large and small veto walls (LVeto and SVeto) at −6.5 m and −8.1 m. The various
ToF components were calibrated such that particles originating from the nominal
IP lead to measured time differences close to zero. Larger time differences were due
to particles not coming from ep collisions and this information was used to reject
such events. The time resolution of the ToF system of 1 ns lead to a definition of
the primary vertex region in the z-direction of approximately ±30 cm around the
nominal IP.

4.2.4 Luminosity System

Since the luminosity is the constant of proportionality between the event rate and
the cross section for a given process (4.3), a precise knowledge of the luminosity is
of crucial importance for any cross section measurement. At H1 the luminosity is
determined from the rate of Bethe-Heitler events ep → epγ by the measurement
of the bremsstrahlung photons with the Photon Detector (PD). The detection of
scattered electrons at small angles with the Electron Tagger (ET) has been used for
the purpose of cross-checks and calibration. The total cross section of the Bethe-
Heitler process is known with high accuracy. The main background comes from
bremsstrahlung from the residual gas in the beam pipe, eA → eAγ, but can be sub-
tracted using electron pilot bunches. The resulting luminosity can then be calculated
via [H197a]

L =
Rtot − (Itot/I0)R0

σvis

. (4.4)

Here Rtot is the total rate of bremsstrahlung events, R0 is the rate in the electron
pilot bunches and Itot and I0 are the corresponding electron beam currents. σvis is
the visible part of the bremsstrahlung cross section, taking the detector acceptance
and trigger efficiency into account.
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The PD used at H1 was a Čherenkov sampling calorimeter with tungsten absorbers
and quartz fibres as active medium [AB+02]. In order to reduce the annual dose
of synchrotron radiation on the apparatus, two radiation length of beryllium were
placed in front of the detector. Due to the high luminosity after the HERA upgrade
pile-up of bremsstrahlung photons in one bunch crossing was unavoidable and dis-
torted the energy spectrum as shown in figure 4.10. In addition to measuring the
photon energy spectrum, the impact point position was measured for the determi-
nation of the detector acceptance as well as for an online monitoring of the HERA
electron beam tilt. The luminosity was measured online at 10 second intervals.
A precise determination of the luminosity is performed off-line by correcting for
the pile-up, the detector acceptance, the effect of the beryllium shielding and the
eA → eAγ bremsstrahlung background.

4.2.5 Trigger System

At HERA the time between two successive bunch crossings was 96 ns, which corre-
sponded to a frequency of 10.4MHz. However, not every collision lead to particles
detectable in the H1 detector. The usual rate of recordable events reached the order
of tens of kHz, which was still three orders of magnitude higher than the frequency
at which data could be written out. The overwhelming amount of these events were
background, which was mainly originating from electron- and proton-gas collisions,
cosmic and beam halo muons and synchrotron radiation. The requirements to the
trigger were to efficiently reject background events such that ep collisions could be
recorded with a frequency of ∼ 50 Hz, which was the limit of the output bandwidth.
To achieve this, H1 used a pipe lined four level trigger system. Each of these levels
(L1-L4) had a consecutively increasing precision at the cost of longer dead time,
where the first level was effectively dead-time free and the level four had a latency
of ∼100 ms.

The First Trigger Level (L1)

The first trigger level decision was based on the information from 256 trigger ele-
ments. These were passed from the various subdetectors into dead time free pipelines
to the central trigger logic, which combined them to 128 raw subtriggers. Many of
these were defined for the selection of specific physics processes. They were com-
plemented by some subtriggers defined as monitor triggers, which controlled the
performance of the various subdetectors and physics triggers. The central trigger
logic decided to keep an event (“L1keep”), if at least one subtrigger was set. Some
subtriggers had a prescale factor of n, which meant that only one out of n-times
the subtrigger was set, corresponding to an actual subtrigger. In the case of no set
subtrigger, the data in the pipelines were overwritten and no dead time was gen-
erated. If an event was kept, all pipelines were stopped and dead time started to
accumulate. The output rate of the first level trigger was about 1 kHz.

The Second Trigger Level (L2)

The second trigger level consisted of two independent trigger systems, the topological
trigger (L2TT) and the neural network trigger (L2NN). On this level the trigger
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information from the first level was validated or disproved within 20µs.
The L2TT trigger decision was based on topological event signatures derived from
subdetector signals. It generated up to 16 trigger elements, which helped to reduce
the L1 trigger rates with a good background reduction and large efficiencies.
The L2NN trigger was a set of 13 neural networks on parallel computers [KD+01].
After the luminosity upgrade the high rates from the two main neutral and charged
current subtriggers (S67 and S77) became critical, consuming too much bandwidth
and preventing other triggers from running efficiently. The L2NN trigger offered an
attractive solution and it was trained with samples from charged current, neutral
current, multi-lepton events and events with isolated electrons in the final state.
The working point was chosen at an efficiency of 99.89% with a 75% rejection of
background events [Pla06, p57].

The Third Trigger Level (L3)

At level three the Fast Track Trigger (FTT) was commissioned in 2005. This was a
trigger system which mainly used track based information to identify heavy quark
decays. The latency time of the L3 was about 100µs, which made it possible to
use time-optimised routines to reconstruct event properties and decay particle res-
onances from L2 FTT tracks [BSC+01,Sch06].

Level Four and Five Reprocessing

On the last trigger level (L45 for level four and five) a full event reconstruction and
classification was performed. The input rate was approximately 50Hz, and the full
reconstruction started as soon as the complete event information from all subdetec-
tors was available. At this stage the pipelines were started again, terminating the
detector dead time. The reconstruction was handled by a dedicated PC farm, allow-
ing an asynchronous processing which was necessary since complicated events (e.g.
high particle multiplicities) required more computing time. After the reconstruc-
tion the events were classified in different physics categories. Events belonging to
no category were rejected, except for a fraction of 1% which was kept for monitoring
purposes. Additionally, some physics categories like high rate soft scale processes
were downscaled, and only a fraction of these events was kept. Events that met
all requirements were written to disk at a rate of approximately 10Hz. The recon-
structed events were stored together with the complete raw detector information
as Production Output Tapes (POTs). A more compact format with reconstructed
quantities only, the Data Summary Tapes (DSTs), are the starting point for physics
analyses.

4.3 Detector Simulation

For the simulation of the H1 detector the program H1Sim was developed by the H1
collaboration. It is based on Geant3 [BB+87] for the implementation of the detector
geometry, interaction of particles in matter and the tracking and hit management.
The detector simulation has been verified with various test beam measurements
with prototype detectors. After the assembly of the full detector it was constantly
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monitored and refined with ep data. The simulation of electromagnetic and hadronic
showers is described in the next chapter. After the detector simulation MC events
are on the same basis as genuine ep data and are subject to the same reconstruction
program H1Rec.
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Chapter 5

Calorimetry

Particles and their properties can only be measured through their interaction with
matter. In a multi-purpose detector usually track detectors reside close to the in-
teraction point, measuring the momenta of charged particles through ionisation.
However, neutral particles cannot be measured in this way, and the precision of
the measurement of the track momentum is proportional to the track’s curvature,
σpT

/pT ∼ pT, degrading linearly with momentum. Additionally, the track finding
efficiency is never perfect and in dense environments with high particle multiplicities
it is not possible to assure a reconstruction of all particle trajectories.

In contrast to track detectors where the particles’ momenta are measured essen-
tially non-destructively, calorimeters completely absorb incident particles. Through
stopping processes they gradually lose energy which can then be converted into
measurable signals. Ideally these are proportional to the incident particle’s energy.
Taking into account stochastic fluctuations, charged and neutral particles can be
measured with a precision σE/E ∼ 1/

√
E, improving with the square root of the

incident energy. Hence calorimeters become important and more precise than track
detectors at high energies. They are of significant importance in dense environments
like jet production and crucial for a full event reconstruction.

There are numerous processes by which particles traversing dense matter lose energy
and eventually get absorbed. Most of them originate from the electromagnetic and
the strong force, weak interactions play only a minor role. After the first interaction
the produced secondary particles can interact with the material’s constituents again,
producing cascades of particles. These cascades are called showers and the different
developments of electromagnetic and hadronic showers lead to different calorimeter
responses.

5.1 Electromagnetic Showers

Electromagnetic showers are induced by electrons, positrons and photons in dense
materials with high atomic number. They are characterised by their compactness
and high energy density. High energetic electrons and positrons lose their energy
dominantly by ionisation and bremsstrahlung and may also excite the medium’s
atoms or molecules. Subordinate processes are the production of energetic knock-on
electrons (δ-rays), the emission of Čerenkov light and induced nuclear reactions. The
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Figure 5.1: Fractional energy loss per radiation length of electrons and positrons in
lead [PDG10].

energy loss of photons is dominated by the photoelectric effect, Rayleigh and Comp-
ton scattering and electron-positron pair production, depending on the photon’s
energy.

5.1.1 Interactions of Charged Particles

Charged particles traversing matter interact with the Coulomb field generated by the
atoms. In figure 5.1 the relative energy losses for electrons and positrons in lead for
different processes are shown. At low energies ionisation is the most prominent effect,
but also Møller and Bhabha scattering contribute. Positrons with small energies may
annihilate with the medium’s electrons resulting in relatively low energetic photons
with an isotropic spatial distribution.
In order to describe the dominant energy loss by ionisation and excitations the usual
Bethe-Bloch equation has to be modified for electrons and positrons. Screening ef-
fects and a different energy-transfer probability due to the equal mass of the incident
and the target particle have to be taken into account. Additionally, bremsstrahlung
processes give a significant contribution to the energy loss below the critical energy
Ec (defined below) and have to be considered. A precise treatment for the energy
loss of electrons due to ionisation and excitation gives [GS08]

−dE

dx

∣∣∣∣∣
ion

= 4πNAremec
2 · Z

A
· 1

β2

[
ln

γmeβ
√

γ − 1√
2I

+
1

2
(1− β2)

− 2γ − 1

2γ2
ln 2 +

1

16

(
γ − 1

γ

)2 ]
(5.1)

which is given in units of MeV g−1 cm2 with the constant of proportionality

4πNAremec
2 = 0.3071 MeV g−1 cm2 . (5.2)

NA is Avogadro’s number, Z and A are the atomic number and weight of the ab-
sorber, the velocity β = v/c, the Lorentz factor γ = (1 − β2)−1/2 and the electron
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Figure 5.2: Energy loss for electrons in lead as function of the electron energy. Shown
are the energy loss due to ionisation and excitations, eq. (5.1) (dashed) and the energy
loss due to bremsstrahlung, eq. (5.3) (dotted). The total energy loss is shown as solid
line.

mass and the classical eletron radius are given by me and re, respectively. The mean
excitation energy I can be approximated by I = 16 Z0.9 eV.
At energies above tens of MeV the energy loss of electrons and positrons is dominated
by bremsstrahlung. For this process the absolute energy loss per traversed length is
proportional to the particle’s energy and can be approximated by

− dE

dx

∣∣∣∣∣
brems

=
E

X0

. (5.3)

This equation is true at very high energies, where energy losses due to ionisation can
be neglected. It is only an approximation at the regime of energies below 100MeV.
Equation (5.3) defines the radiation length X0 which includes the material’s prop-
erties and gives a characteristic length of electromagnetic showers. One radiation
length is the distance after which a highly energetic particle lost 1 − 1/e of its
energy due the emission of bremsstrahlung photons. Taking the Coulomb field gen-
erated by the target’s electrons and screening effects into account, the Particle Data
Group [PDG10] gives the following approximation for the radiation length,

X0 =
716.4 · A[g/mol]

Z(Z + 1) ln(287/
√

Z)
g/cm2. (5.4)

The energy at which the energy losses due to ionisation and bremsstrahlung are
equal is called the critical energy Ec, which is defined through

− dE

dx
(Ec)

∣∣∣∣∣
ion

= −dE

dx
(Ec)

∣∣∣∣∣
brems

. (5.5)
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For solids and liquids the critical energy can be approximated by

Ec =
610 MeV

Z + 1.24
(5.6)

with Z being the atomic number. This approximation is shown to hold for all
chemical elements within ∼ 2.2% [PDG10].
The radiation length as well as the critical energy scale as the square of the mass
of the incident particle. Already for the next lightest particle, the muon (mµ =
106 MeV/c2), the critical energy is (mµ/me)

2 ≈ 4 · 104 times larger than for elec-
trons. Hence, bremsstrahlung plays only a minor role for the energy losses of heavy
particles. Since bremsstrahlung photons are the source of electromagnetic showers
only electrons and positrons give rise to them.
The energy loss of electrons in lead is shown in figure 5.2, where also the contribu-
tions from ionisation and excitations, equation (5.1), and the emission of bremsstrahlung
photons, equation (5.3), are shown. In the low energy domain (βγ . 2) the energy
loss decreases like 1/β2 and reaches a minimum around 1MeV (βγ ∼ 2). For high
energies the energy loss due to ionisation increases logarithmically (relativistic rise),
whereas the bremsstrahlung process shows a linear dependence on the electron en-
ergy and dominates the energy loss at energies above 100MeV (βγ & 200).

5.1.2 Interactions of Photons

Photons traversing a dense medium can interact either with the shell electrons of
the atoms or at higher energies with the Coulomb field of the nuclei. In figure 5.3
the total cross section of incident photons on lead as function of the photon energy
is shown.
At low energies the photoelectric effect (σp.e.) has the largest cross section. At
this process the photon is absorbed by an atom leaving it in an excited state. The
atom falls back to its ground state by the emission of Auger electrons or X-rays,

γ + atom → atom∗ → atom+ + e−. (5.7)

The photoelectric cross section falls of with E−3 and rapidly loses its importance as
the energy increases. The steps in σp.e. originate from photon energies just above the
binding energy of the shell electrons, in figure 5.3 the M, L and K edges are nicely
visible. In lead the photoelectric effect is dominating below energies of 600 keV,
whereas for iron inelastic scattering already starts to dominate above 100 keV.
Also at low energies Rayleigh scattering (σRayleigh) is of importance. This is a
coherent process where the photon scatters off the atomic electrons,

γ + e− → γ + e−. (5.8)

In this process the photon does not lose energy so Rayleigh scattering only influences
the spatial distribution of electromagnetic showers but does not contribute to the
signal generation in calorimeters.
The incoherent equivalent to Rayleigh scattering is Compton scattering (σCompton).
In this process an incident photon scatters off an electron and transfers part of its
energy to the electron. In electromagnetic showers typically about half the energy is
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Figure 5.3: Total cross section of photons in lead as a function of the photon energy
[PDG10]. The contributions from different processes are described in the text.

deposited by this process. Incident photons above 1 MeV undergo several Compton
scatterings before their energy is small enough to be absorbed by the photoelectric
effect. In the first scattering the struck electron has a significantly higher probability
of following the direction of the initial photon. After several scatterings this pref-
erence disappears and most of the photoelectrons produced by Compton scattering
are isotropically distributed.

At photon energies larger than twice the rest mass of an electron, Eγ > 2me, pair
production (κnuc and κe) quickly becomes the dominating process. A photon with
enough energy may create in the Coulomb field of a charged particle an electron-
positron pair,

γ + atom → e− + e+ + atom. (5.9)

Pair production in the field of the nucleus (κnuc) has typically a much higher cross
section than in the field of the atomic electrons (κe). The cross section for pair
production rises strongly for energies above 1MeV and reaches a plateau at energies
Eγ > 1 GeV. The asymptotic cross section for photon interactions is related to X0

via

σpair(E →∞) =
7

9

A

NAX0

(5.10)

with NA being Avogadro’s number and X0 in units of g cm−2. This implies that the
mean free path of very high-energy photons is 7

9
X0 [Tsa74].

At energies between 5-20MeV photonuclear interactions may occur, with a max-
imum of the cross section at the giant dipole resonance (σg.d.r.), where the photon
energy is about equal to the nucleon binding energy. These reactions include the va-
porisation of nucleons and photon induced nuclear fission. However, the total cross
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Figure 5.4: a) Simulated longitudinal shower profiles in PbWO4 as a function of material
thickness for incident electrons of energies 1GeV, 10GeV, 100GeV and 1 TeV [FG03]. b)
Simulation of a shower induced by 30 GeV incident on iron, from [PDG10]. The histogram
shows the fractional energy deposition per radiation length and the curve is the parameter-
isation from equation 5.11. The circles (squares) show the number of electrons (photons)
with energy greater than 1.5 MeV crossing planes at intervals of X0/2 (scale on the right).

section is small compared to pair production, never exceeding 0.7 b in lead [Kos02]
and amounting to less than 1% of the total cross section in the relevant energy
region.

5.1.3 Electromagnetic Shower Development

The interplay of the processes described above is the basis of the development of elec-
tromagnetic cascades. High energy electrons or positrons entering a dense medium
will radiate bremsstrahlung photons. The majority of these photons is very soft and
will be absorbed through Compton scattering and the photoelectric effect. Photons
with sufficient energy will create electron-positron pairs which again will radiate
bremsstrahlung photons. This multiplication of shower particles reaches its maxi-
mum once the average energy of the shower particles is comparable to the critical
energy Ec, i.e. the ionisation cross section is similar to the one for bremsstrahlung.
The longitudinal distribution of the energy deposition in electromagnetic cascades
can be parameterised by [LS75]

dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
, (5.11)

with the dimensionless variable
t =

x

X0

, (5.12)

which is the distance normalised to radiation length and a convenient measure for
longitudinal shower developments. In the above formula E0 is the incident energy
and a and b are parameters which can be obtained from measurements. For heavy
absorbers (from iron to lead) b ≈ 0.5 [GS08]. With this parameterisation, the
maximum of the shower development is reached at

tmax =
a− 1

b
= ln

(
E0

Ec

)
+ Cγe (5.13)
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where Cγe = 0.5 for photon induced showers and Cγe = −0.5 for showers caused
by electrons or positrons. Equation (5.13) can then be used to obtain the energy
dependent parameter a. The shower maximum has a logarithmic dependence on the
incident energy (compare figure 5.4a) and occurs at greater depth for photons.
Figure 5.4b shows the longitudinal development of an electromagnetic shower in
iron induced by 30GeV electrons. At small depth the shower is dominated by high
energy electrons losing their energy by radiating photons which can convert into e+e−

pairs (shower particle mulitiplication). Beyond the shower maximum the number of
electrons decreases quicker than the number of photons which still increases for about
two radiation length. The tail of the shower at large depth is dominated by photons.
The number of electrons in an electromagnetic shower is typically two orders of
magnitude larger than the number of positrons. However, positrons originate from
pair production and are usually more energetic than electrons, carrying about one
quarter of the shower energy [Wig00].
The lateral development of electromagnetic showers can be described in an approx-
imately material independent way with the Molière radius,

RM =
Es

Ec

X0 , (5.14)

where the scale energy Es is defined by mec
2
√

4π/α or 21.2MeV. On average 90%
of an electromagnetic shower are contained in a cylinder of radius RM around the
shower axis, almost independently of the incident energy. This defines the dimen-
sionless scale variable for the development of the radial shower

u =
r

RM

, (5.15)

where r denotes the radial distance to the shower axis. The lateral width of an
electromagnetic shower increases with increasing shower depth. The lateral shower
distriubution can approximately be described by [GR+90]

f(u, E, t) =
2uR(E, t)2

(u2 + R(E, t)2)2
, (5.16)

where the parameter R(E, t) describes the logarithmic behaviour of the lateral width
as function of energy as well as the increasing radial extention of the shower with in-
creasing shower depth. The mean value of the approximately log-normal distributed
parameter R(E, t) is given by

〈R(E, t)〉 = R1 + (R2 −R3 ln E) t. (5.17)

The parameters R1, R2 and R3 can be obtained from experimental data or by
comparison to detailed simulations of electromagentic cascades, see for example
[Rud92]. In figure 5.5 (left) the radial development of an electromagnetic shower
in lead is shown at various shower depths, following equation (5.16). The radial
shower profile shows a central core whose spread is dominated by multiple scattering
of relatively high energy shower particles. This central core disappears beyond the
shower maximum, where the radial width is dominated by isotropic processes such
as Compton scattering, the photoelectric effect and photons from e+e− annihilation
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Figure 5.5: Left: Radial distribution of the energy deposited by 1GeV electrons in lead
at various depths. Parameters of equation (5.17) were obtained from [Rud92]. Right:
Simulated radial shower profile as a function of the distance from the shower axis for
incident electrons with an energy of 1 GeV on PbWO4, from [FG03]. The line is a fit by
formula (5.18).

processes, called the shower halo. The parameterisation (5.16) agrees well with
experimental results, see for example the measuremens from Yuda [Yud69] and the
description of electromagnetic showers obtained by Peters [Pet92]. An extension of
the parameterisation (5.16) is used for the simulation of electromagnetic showers in
H1 [GP00].
The radial shower distribution integrated over the full shower length can be approx-
imated by two Gaussians [AI+77], one expressing the shower core and the second
one the halo,

dE

du
= A1e

−u/b1 + A2e
−u/b2 . (5.18)

An example for an integrated radial shower distribution obtained from a simulation
is shown in figure 5.5, together with a fit to equation 5.18. Equally good fits can be
achieved with experimental data, e.g. [AC+05a].

5.2 Hadronic Showers

Hadronic showers are considerably more complicated than electromagnetic ones, ow-
ing to the large number of possible processes involving the strong interaction. Unlike
in the electromagnetic case, ab-initio calculations are currently not possible, since
they would require many-body calculations in the context of QCD in a region where
the strong coupling is large and perturbative calculations break down. However,
models exist which can describe experimental data even in the soft regime, making
it possible to build Monte Carlo simulations starting with hadron-nucleon scatter-
ing and developing hadronic cascades based on theoretical considerations [BB+06].
Other models are driven as much as possible from experimental data using param-
eterisations to extrapolate over the full range of hadronic shower energies [AA+03].
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areas. In the region pbeam < 0.32 GeV/c no data on elastic π+p scattering are available
(data from [PDG10]).

Even though the particle multiplication in hadronic showers is conceptually simi-
lar to the electromagnetic case, there are fundamental differences, which have far-
reaching consequences for calorimetry. Firstly, hadronic showers develop on a dif-
ferent length scale than electromagnetic ones due to the differences between the
nuclear and electromagnetic cross sections. This makes hadronic showers longitudi-
nally and laterally less compact than their electromagnetic counterparts. Secondly,
while in electromagnetic showers the shower products are always electrons, positrons
and photons which can be converted into measureable signals, in hadronic showers
some fraction of the deposited energy is fundamentally non-detectable. This invisi-
ble energy is governed by large fluctuations with the implication of more stringent
limitations on the resolutions of hadronic calorimeters.
In the following a brief overview of the processes involved in the development of
hadronic showers is given, with an emphasis on the implications for calorimetry.

5.2.1 Hadron-Nucleon Scattering

For incident hadron energies above ∼10GeV the constituents of the target nucleus
can be considered to be quasi free. Therfore, the first step of particle production by
the interaction of an incident hadron with a nucleus can be understood by looking
at hadron-nucleon scattering. Figure 5.6 shows the total and elastic cross sections
of pion-proton scattering. Elastic scattering contributes predominantly at small
energies, where it is dominated by several direct resonances, the most prominent one
being the ∆(1232). At high energies inelastic reactions dominate the cross section
which is approximately energy-independent above 10GeV. The bulk of the hadrons
produced in these collisions are pions, where because of isospin conservation, the
average number of neutral pions is approximately

〈nπ0〉 =
〈nπ+〉+ 〈nπ−〉

2
. (5.19)
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These π0s decay electromagnetically, π0 → γγ with a branching ratio of 98.8% and
π0 → e+e−γ with a 1.2% probability. With lower multiplicities also kaons, etas,
protons, neutrons and other hadrons are produced in these high energy collissions.
The average charged particle multiplicity 〈nch〉 per interaction varies logarithmically
with energy [KM+89] and can be described by

〈nch〉 = a + b ln s + c(ln s)2, (5.20)

where
√

s is the available centre-of-mass energy, and values for a, b and c can be
found in the literature. The average transverse momentum of the secondary particles
is approximately energy-independent,

〈pT〉 ≈ 0.35 GeV/c. (5.21)

About half of the incident particle’s energy is transferred to the produced particles.
The remaining energy is carried away by a particle with the projectile’s baryon
number (leading particle effect). Hence, if the incident particle is a baryon, another
baryon will emerge from the nuclear interaction carrying a large fraction of the
energy. This suppresses the production of pions for baryon-nucleon scattering with
respect to meson-nucleon scattering.

5.2.2 Hadron-Nucleus Scattering

High energy hadron-nucleus scattering can be considered as a sequence of mulitple
hadron-nucleon scatterings. It can be described in two steps. In the first step the
incident hadron starts an intra-nuclear cascade by interacting with one of the quasi-
free nucleons. If the transferred energy is large enough, the struck and secondary
particles may interact with the remaining nucleons. The ones with sufficient energy
will escape from the nucleus, whereas others will distribute their energy among the
remaining nucleons. The next step is the de-excitation of the intermediate nucleus.
This will either happen through evaporation of nucleons until the excitation energy
is less than the binding energy and/or through the emission of γ-rays. Heavy nuclei
like Uranium may even fission.
In the intra-nuclear cascade the probability of producing a free proton is approxi-
mately equal to the ratio of Z/A of the target nucleus, thus releasing nearly as many
protons as neutrons. The average charged particle multiplicity exhibits a weak de-
pendence on the atomic number A. Also the rapidity distribution from the produced
secondaries is slightly different than in hadron-nucleon scattering, see for example
the review by Leroy and Rancoita [LR00].
In the evaporation stage more neutrons than protons are emitted on average from
heavy nuclei because of the larger Coulomb barrier (∼12MeV in lead compared
to ∼5MeV in iron) which prevents protons from being emitted from an excited
heavy nucleus. The produced evaporation protons and neutrons have rather small
kinetic energies of the order of a few MeV. The evaporation protons lose their energy
through spallation and ionisation of the medium. The evaporation neutrons undergo
reactions of the type (n, xn) until their energy is too low for these processes. In each
reaction the evaporation neutrons release some amount of binding energy of the
target nuclei. A few nanoseconds after the inital interaction the only free neutrons
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in the medium are evaporation neutrons. The multiplicities of these can be large,
with about 20 neutrons per GeV of incident energy in lead and up to 60 neutrons per
GeV in 238U [Wig00, p76]. The kinetic energy spectrum of the evaporation neutrons
can be described by a Boltzmann-Maxwell distribution,

dN

dE
∼
√

E e−E/T , (5.22)

where the energy E is given in MeV. A typical temperature of T ∼ 2 MeV yields an
average neutron energy of about 3MeV [Wig87].
The nucleons from evaporation are emitted approximately isotropically, while the
particles from the initial cascade have a dominating momentum component in the
direction of the incident hadron. This leaves the residual target nucleus with a net
recoil with a kinetic energy of the order of m/M , where m and M are the total mass
of the emitted nucleons and the residual nucleus, respectively.

5.2.3 Hadronic Shower Development

The characteristic length which governs the development of a hadronic shower is
the interaction length λ, which is defined as the mean distance after which a hadron
loses (1− 1/e) of its energy due to inelastic collisions. It is given by

λ =
A

NA ρ σinel

≈ 35 A1/3 g/cm2 (5.23)

with A and ρ being the atomic mass and density of the material, NA is Avogadro’s
number, and σinel denotes the inelastic cross section. Conventionally, the inelastic
proton cross section at high energy is taken. In this regime it is approximately
energy independent, similar to the inelastic pion cross section (cf. figure 5.6). In the
strict sense σinel depends on the energy and on the type of incident particle, where
both dependencies are usually neglected.
The interaction length λ can be interpreted as the mean free path of a high en-
ergy hadron incident on a block of matter. After travelling a distance λ it will on
average interact strongly with one of the nuclei of the medium. In the inelastic col-
lisions mostly pions are produced, and about one third of them are π0s. They decay
electromagnetically and thus introduce electromagnetic subshowers. The remaining
hadrons will continue to produce electromagnetic subshowers through inelastic col-
lisions until the average hadron energy is below the pion production threshold. If a
hadronic shower comprises n generations, the average energy fraction transferred to
electromagnetic subshowers fem follows a power law with n in the exponent. Assum-
ing that n increases with the energy of the incident hadron, fem will increase with
increasing energy as well. This dependence is non-trivial, since in every inelastic
collision the particle multiplicity of secondaries varies logarithmically with the en-
ergy of the incident particle (5.20). Gabriel et al. [GG+94] studied this dependence
and gave an empirical formula

fem(E) = 1−
(

E

E0

)(k−1)

, (5.24)
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Figure 5.7: Schematic view of the energy flow in a hadronic cascade (from [Gro07]). A
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where E is the energy of the incident hadron. Equation (5.24) is valid for energies
above approximately 5GeV and the free parameters E0 and k are connected to the
average π0 fraction and the average multiplicity. Approximate values are k ≈ 0.83,
and for incident pions E0 ≈ 1 GeV, whereas for protons E0 ≈ 2.6 GeV [Gro07].
A schematic view of the energy flow in a hadronic cascade is shown in figure 5.7. Let
E denote the energy of the incident hadron. After a cascade of nuclear interactions
the energy of the electromagnetic subshowers will be femE and the energy of the
hadronic sector (1 − fem)E1. The conversion efficiency of energy into a measure-
able signal is denoted by e for the electromagnetic sector and by h for the hadronic
sector. In contrast to the energy from the electromagnetic sector, which generates
almost completely a measureable signal, a substantial fraction of the energy from the
hadronic sector remains undetectable. This undetectable energy is termed invisible
energy and is related to energy dissipating into the recoil of the target nuclei and
nuclear binding energy, which is transformed to the kinetic energy of the evaporation
neutrons. The measureable signal from the hadronic sector originates mostly from
ionisation processes, where charged secondaries ionise the atoms of the medium. The
invisible energy fraction of a hadronic cascade amounts usually to about 25-45%,
where the absolute number and the sharing between the nuclear binding energy and
the kinetic energy of the evaporation neutrons depend on the absorber. The differ-
ence between the detection efficiencies, the ratio e/h, is the degree of compensation
of a calorimeter. Only if the energy of the evaporation neutrons can be recovered,
meaning that the invisible energy fraction is negligible to a good approximation,
the ratio e/h will be unity, which is termed compensation. From the sum of all
measureable signals Evis, a fraction is sampled resulting in a measureable energy
Esamp.
The average longitudinal development of many hadronic showers can be parame-
terised by two exponentials [BHK+81,GR+90],

dE

dx
= N

(
wta−1e−bt + (1− w)sc−1e−ds

)
(5.25)

with the dimensionless variables
s =

x

λ
(5.26)

1Some energy of the hadronic sector will contribute to the electromagnetic part of the shower
through γ-rays from nuclear decays, amounting to 5-10% of the total deposited energy, which is
neglected in this discussion.
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Figure 5.8: Left: Longitudinal development of a hadronic shower induced by pions mea-
sured in an iron-scintillator tile calorimeter. Shown is the fractional energy deposit per
interaction length as a function of the shower depth. Data points from Adragna et
al. [AA+10b], the lines are fits to equation (5.25). Right: Lateral hadronic shower de-
velopment of pions, measured with a lead/scintillating fiber calorimeter. Shown is the
deposited energy per unit area as function of the distance to the shower axis [AB+92].
The line is a fit to equation (5.29)

and t as defined in equation (5.12). In equation (5.25) the first exponential scales
with X0 and describes the electromagnetic sector, whereas the second exponential
scales with λ and describes the hadronic sector. N , w, a, b, c and d are free param-
eters which need to be adjusted to experimental data. Figure 5.8 shows the longi-
tudinal profile of hadronic showers measured by an iron-scintillator tile calorimeter
of the ATLAS type. The lines are fits to equation (5.25), which has been slightly
modified to account for the position of the shower start [AA+10b]. The shower
maximum occurs at depth smax, which is approximately given by

smax = 0.2 ln E + 0.7. (5.27)

A fraction of 95% of the energy of a hadronic shower is contained within a cylinder
of length

L95% ' smax + 2.5λE0.13, (5.28)

where in equations (5.27) and (5.28) smax and L95% are given in units of interaction
lengths and the energy E is given in GeV.
The radial extent of a hadronic shower is mainly due to the transverse momentum
of the secondary particles (5.21). Although the radial development does not scale
with λ, 95% of the shower energy is contained within a cylinder of radius λ around
the shower axis. Radial profiles of hadronic showers show a prominent core with
a surrounding halo which can be seen figure 5.8. The central core originates from
the electromagnetic component, whereas the halo with its much slower decreasing
intensity is caused by the hadronic component. Radial profiles can be sufficiently
described by a sum of a Gaussian with an exponential

dE

dr
= Ae−(r/a)2 + Be−(r/b), (5.29)
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representing the electromagnetic and hadronic shower contributions, respectively.
The parameters A, B, a and b need to be adjusted to experimental data, see for
example [AB+92,AC+08].

5.3 Sampling Calorimeters

A sampling calorimeter consists of layers of two different types. The passive layers
consist of a high Z material used for the absorption of showers. Sandwiched between
the passive layers are active layers for the signal generation and collection. The
characteristic parameters defining such a calorimeter are the thicknesses of the active
and passive layers da and dp and the sampling fraction,

fsamp =
Emip(active)

Emip(active) + Emip(passive)
. (5.30)

Here Emip(active) and Emip(passive) denote the energy deposited by an idealized
minimum-ionizing particle in the active and passive part of the calorimeter, respec-
tively.

5.3.1 Electromagnetic Sampling Calorimeters

The energy response of an electromagnetic calorimeter is based on the principle
that electromagnetic showers deposit their energy mainly through ionisation and
excitation processes (see section 5.1). These processes generate free electrons which
can be converted into a measureable signal, which is directly proportional to the
energy of the incident particle(s). In sampling calorimeters only a part of this signal
is measured, proportional to the total shower track length in the active layers. This
track length fluctuates from event to event due to the stochastic nature of the shower
development. These fluctuations are called sampling fluctuations and represent the
most important constraint on the energy resolution of electromagntetic sampling
calorimeters. The overall resolution can be parameterised by

σ(E)

E
=

asamp√
E
⊕ bnoise

E
⊕ c (5.31)

where⊕ indicates a quadratic sum. The first term is due to the sampling fluctuations
and can be approximated by [Wig00]

asamp = 2.7%
√

da/fsamp . (5.32)

Equation (5.32) indicates that the resolution can be improved either by reducing the
thickness of the active layers and thus sampling the shower more often with the same
amount of active material (fixed sampling fraction), or by increasing the sampling
fraction by increasing the amount of active material. In practice too small values of
da with fixed fsamp are rarely feasible and quite costly. The second approach means
that the effective Molière radius and radiation length become large, and showers
become less compact. In practice a compromise must be found. Typical values for
asamp lie between 5–20%. It should be noted that equation (5.32) is only valid for
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calorimeters with typical design values of da in the range between 0.1–1.0X0 and
sampling fractions of the order 1–10%.
The second term in equation (5.31), bnoise/E, comes from the electronic contribution
of the readout chain. It increases with decreasing energy of the incident particles
and may become dominant at energies below a few GeV. It can be decreased by
increasing the sampling fraction since the higher the signal from the active medium,
the higher the signal-to-noise ratio. A different way to decrease the electronic noise
contribution for ionisation type calorimeters is to reduce the detector capacitance
CD which is, however, experimentally challenging.
The last term in equation (5.31), c, is independent of the incident particle’s energy.
It is due to non-uniformities, the readout system, detector aging, radiation damage,
etc. It starts to dominate at very high energies, usually around 50GeV.

5.3.2 Hadronic Sampling Calorimeters

Hadronic showers consist of two parts with very different behaviour: an electromag-
netic and a hadronic part (section 5.2.3). The signal generation for the electromag-
netic shower component is identical to the one for purely electromagnetic showers,
and therefore the sampling fluctuations discussed in the previous section apply to
this component as well.
The energy of the hadronic shower component is carried by mesons, spallation pro-
tons, evaporation neutrons and recoil target nuclei. The calorimeter response to it,
denoted by h, is energy independent for sufficiently large energies. Because of the
invisible energy h is usually smaller than the electromagnetic response e,

e/h > 1 (5.33)

and calorimeters for which this relation holds are called non-compensating.
However, since the electromagnetic content of hadronic showers increases with en-
ergy, equation (5.24), the calorimeter response to incident hadrons is energy depen-
dent. This is expressed through the calorimeter’s response to pions, denoted by π,
which can be written as

π = fem · e + (1− fem) · h . (5.34)

This leads to a relationship between the e/h and e/π ratios,

e/π =
e/h

1− fem(1− e/h)
(5.35)

which shows that the signal non-linearity for hadrons is determined by the calorime-
ter’s e/h value. The e/π ratio for different values of e/h is shown in figure 5.9. As
expected, the non-linear response is worse for larger deviations from 1. In the limit
of high energies the e/π ratio approaches 1 because of the increasing electromagnetic
shower component.
In hadronic showers event-to-event fluctuations of the electromagnetic component
are large and show a non-Gaussian behaviour. Especially fluctuations in the first
inelastic interaction can lead to drastically different shower developments. Addi-
tionally, fluctuations in the invisible energy in the hadronic component result in
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Figure 5.9: Relationship between the measured e/π ratio and the intrinsic value e/h.

asymmetric tails in the calorimeter response to incident hadrons. As a consequence
the energy resolution does not scale with E−1/2 and the resolution is significantly
worse than for electromagnetic showers. Groom studied the resolution in detail and
gives the following expression [Gro07]

σ(E)

E
=

√
(π/e)

E
σsamp⊕

√
fem

E
σe⊕

√
(1− fem)(h/e)

E
σh⊕ (1− h/e)σem(E) . (5.36)

Here σsamp is the variance of the sampled signal and σe and σh are the variances
of fluctuations in the electromagnetic and the hadronic shower components, re-
spectively. The variable σem denotes the variance of the size of electromagnetic
component which exhibits a weak energy dependence.
The first term in equation (5.36) is the sampling contribution, which is multiplied
by the inverse of the e/π ratio to account for the fact that the contribution is
proportional to the sampled visible signal with mean (π/e)E and not to the incident
energy E. The second and third term originate from the intrinsic fluctuations of the
electromagnetic and hadronic components of the shower. The last term in equation
(5.36) is proportional to (1 − h/e) and has a weak energy dependence due to the
fluctuations in fem. Fits to presently available experimental data cannot resolve this
energy dependence since it only affects the resolution at very high energies (E >
400 GeV) and is thus compatible with a constant [Wig00]. Usually the resolution of
hadron calorimeters is approximated by the form

σ(E)

E
=

asamp√
E
⊕ c , (5.37)

where the first term summarises the first three terms of equation (5.36) by neglecting
the intrinsic energy dependence of fem and the constant term resembles the last term.
The noise contribution from equation (5.31) plays a minor role and is often left out,
since the resolution is dominated by the E−1/2 term. Typical values for asamp in LAr
calorimeters are of the order 50–80% with e/h in the range 1.4–1.8. Compensating
calorimeters (e/h = 1) like the ZEUS depleted uranium/scintillator calorimeter have
reported resolutions of 35%/

√
E [BB+93].
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5.4 The H1 Liquid Argon Calorimeter

The calorimeter of H1 was a longitudinally and laterally highly segmented lead/LAr
and stainless steel/LAr sampling calorimeter [H193a,H197a]. It had good hermicity
and homogeneity and was in stable operation for 15 years. It was non-compensating,
but its fine granularity allowed to achieve compensation with an offline weighting
method. In the following a description of the calorimeter and the weighting algo-
rithm will be given, followed by a review of its performance from test beam mea-
surements.

5.4.1 Calorimeter Layout

The H1 LAr calorimeter consisted of an electromagnetic and a hadronic section,
which were placed in a large single cryostat (see figure 4.6). One important require-
ment on the cryostat was to minimise the dead material in front of the calorimeter
while withstanding a pressure of 3 bar and supporting the calorimeter wheels. This
was achieved with a two-shell construction separated by vacuum and insulation.
The total amount of dead material from the tracker and cryostat in front of the
electromagnetic calorimeter amounted from only 0.5 X0 in the central region up to
about 2 X0 in the forward region (θ < 30◦) [H193a].
The calorimeter was organised in eight calorimeter wheels (section 4.2.2) which
were subdivided into eight octants. They were self-supporting in order to minimise
the amount of dead volumes (cracks) due the support structure. The wheels were
separated by a narrow gap of the order of 10mm with some additional space between
the FB1/FB2 and FB2/OF for cabling. Independent readout cells were placed in
these z-cracks to achieve a uniform sampling ratio in the crack region.
The calorimeter was not compensating. To overcome the resulting disadvantages
a software weighting technique for hadronic showers has been developed. For this
method to work the localisation of electromagnetic deposits in hadronic showers is
crucial. This means that a developing shower needs to be sampled at least three
to four times in the longitudinal direction, and the size of the readout cells is not
to exceed 2 RM. This has been achieved by a high segmentation of the H1 LAr
calorimeter, where the adopted segmentation in the longitudinal and radial direction
is shown in figure 5.10. Since at HERA the centre-of-mass system was boosted along
the proton direction, the calorimeter was significantly more segmented in the forward
direction. Overall the calorimeter consisted of 45000 readout cells with about 31000
in the electromagnetic and 14000 in the hadronic part.

Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter consisted of lead absorber plates with a thickness
of 2.4mm and liquid argon gaps of 2.35mm. The absorber plates together with
copper-cladded G102 served alternatingly as high voltage electrodes and read-out
boards. With exception of the IFE, the octants of the electromagnetic stacks were
separated by ϕ-cracks filled with LAr, 2mm steel plates or cabling. The effective size

2G10 is a material composed of glass woven fabric, impregnated with an epoxy resin binder. It
is widely used for insulating structural parts in electrical and mechanical engineering.
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Figure 5.11: Lines of constant interaction lengths λ in the LAr calorimeter for different
incident angles θ. The 1 λ line corresponds to 20 X0.

of these cracks corresponded to about 0.5 RM, and offline corrections were applied
on an event-to-event basis to correct for this dead material. The electromagnetic
stacks consisted of 3 (BBE, CBs, FB1), 4 (FB2) and 7 (IFE) longitudinal layers.
In the radial direction the cell size was of the dimension of 1 RM, with exception of
the backward wheels BBE, CB1 and CB2, where it was about 2.5 RM. The effective
length of the electromagnetic calorimeter was 20–30 X0, see figure 5.11.

Hadronic Calorimeter (HAC)

The hadronic stacks consisted of 16mm stainless steel absorber plates and 2.4mm
liquid argon gaps. The readout boards were separated from the absorber plates so
that variations in the thickness of the steel plates did not affect the size of the LAr
gaps. The ϕ-cracks of the hadronic section were not pointing to the interaction
point (see figure 5.10, bottom) with just minimal amount of dead material in them.
The cell size was roughly twice as large as for the electromagnetic stacks. At the
intersection between the electromagnetic and hadronic calorimeter no additional
support structures were needed such that no dead material had to be introduced.
The total effective length of the calorimeter (EMC and HAC) was 4.5–8 λ (figure
5.11) with a longitudinal separation of 7–10 layers. A summary of the characteristics
of the LAr calorimeter is given in table 5.1.

Section da (mm) dp (mm) X0 (cm) RM (cm) Ec (MeV) λ (cm) fsamp

EMC 2.35 2.4 1.6 3.6 9.5 30.5 0.14

HAC 2×2.4 16+3 2.5 2.6 21.4 21 0.04

Table 5.1: Characteristic values for the electromagnetic (EMC) and hadronic (HAC)
calorimeter. The variables da and dp denote the thicknesses of the active and passive
layers, respectively. The active and passive layers in the HAC have separate sections
because of the independet readout boards.
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5.4.2 Energy Measurement

Charge Collection and Electronic Chain

Free charges generated by particle showers in the liquid argon gaps were separated
and collected by an applied high voltage across the gaps. The nominal field strength
was 1 kV/mm which amounted to a total of approximately 2.3 kV. The gap width
of 2.35mm resulted in a drift time of 470 ns, which was the minimum integration
time to accumulate the deposited charge3. The signals were collected by individual
merging boards for each calorimeter module, where also a charge calibration from
pulse generators with a known amplitude could be applied. The signals were then
processed via a charge sensitive preamplifier and a shaping amplifier before they
were digitised with analog-to-digital converters (ADCs). A detailed description of
the electronic chain can be found in [H193a].

Noise Suppression

To estimate the contribution of electronic noise, the signal in each channel was
measured in random events. The obtained noise distributions for channel i had
mean energy Ei

n (on the em. scale, see below) and standard deviation σi
n. Typical

values for the electronic noise (pedestal) from a single channel were about 20MeV in
the EMC and 40MeV in the HAC. These pedestals were then subtracted from each
channel. Further noise suppression was obtained by applying cuts on the measured
energy of each channel. A signal in channel i was only kept if its measured energy
Ei

0 passed the conditions

|Ei
0| > 4σi

n (5.38)

or

|Ei
0| > 2σi

n and |Ej
0| > 4σj

n , (5.39)

where the cell of channel j is a neighbour of cell i. While σn is always positive, E0

can be negative and thus provides compensation of the positive noise contributions.

Clustering

For efficient analyses of calorimeter data, neighbourig cells with a measured signal
after the noise suppression were clustered together. The clustering was optimised to

� distinguish between signal and noise,

� minimise the number of clusters for single electromagnetic particles,

� separate signals from electromagnetic and hadronic subshowers originating
from incident hadrons,

� optimise the two particle separation.

3Only half the deposited charge was collected, since the slow ions did not contribute to the
signal.
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Figure 5.12: a) Reconstructed energies on the ideal electromagnetic scale for electron
beam energies of 10, 20, 30 and 50 GeV in the BBE. The lines are Gaussian fits with
mean values µ. b) Resolutions obtained from test beam measurements with electrons
in the FBE [H194b]. The line is a fit by equation (5.31) with values asamp = 11.2%,
bnoise = 0.151 GeV and c = 0.6%.

The efficiency to reconstruct electrons between 2–100 GeV in a single cluster was
between 95–98%. The mean cluster multiplicity for 100 GeV pions was found to
be 4–9, depending on the calorimeter wheel. The separation of photons and pions
generated with an angular distance of 5◦ was tested at various pion/photon energies.
The separation probability was found to be between 50–90% [GW91].

Electromagnetic Scale

To reconstruct energy from measured charges for every calorimeter wheel w, con-
stants of proportionality cw need to be determined. They are defined through

Eem = cw

channels∑
i

Qi , (5.40)

where Qi denotes the measured charge in channel i in pC, Eem is the reconstructed
energy in GeV and cw has units of GeV/pC. The charge-to-energy conversion fac-
tors cw are given for an ideal electromagnetic scale. This is defined such that all
deposited energy inside the active volume is recovered. It implies corrections for the
charge collection efficiency which depends on the applied HV, for the LAr purity,
for cross-talk between channels, for the dead material inside the calorimeter and
for detector imperfections. Thus, the ideal electromagnetic scale is not dependent
on the noise suppression, leakage and the details of the experimental setup. The
constants cw have been obtained at test beam measurements with electrons at the
CERN SPS [H194b]. Figure 5.12a shows results from these test beam measurements.
Shown are distributions of reconstructed energy on the ideal electromagnetic scale
for different test beam energies. The signals show Gaussian distributions which are
shifted towards lower energies with respect to the beam energies. The shift is an
effect of leakage and dead material in front of the calorimeter wheels. These losses
are corrected for on the analysis level with calibration constants determined from
ep data (section 8.1).
Using equations (5.30), (5.32) and da, dp of the EMC (table 5.1) one obtains an
expected resolution of asamp = 11%. Results from the test beam measurements are
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Figure 5.13: a) the e/π ratio of the H1 calorimeter in two different wheels as function of
the pion energy. The lines are fits to equation (5.35) as described in the text. b) Obtained
resolutions from test beam measurements with pions in the IF [H193b]. The line is a fit
to equation 5.37. The obtained values are asamp = 55% and c = 1.6%.

shown in figure 5.12b together with a fit by equation (5.31). The obtained value
asamp = 11.2% is in good agreement with this expectation, and the small noise and
constant terms of bnoise = 0.151 GeV and c = 0.6% show the excellent performance
of the electromagnetic LAr calorimeter.

Hadronic Scale

Figure 5.13a shows the e/π ratio measured in different modules of the H1 calorimeter
[H193b]. The lines are fits by equation (5.35). The solid lines have been obtained by
fitting the data points from the IF with the parameters k = 0.83 and E0 = 1 GeV
(see equation (5.24)). The obtained values of e/h ≈ 1.7 are similar for the IF and CB.
The fit lies below the data points at high energies, which suggests a slightly higher
value for k. Also the data points from the measurement in the CB exhibit a smaller
slope towards higher energies. In a detailed study of the average electromagnetic
fraction in hadronic showers, Gabriel et al. found a weak Z dependence of k and
E0. A simulation yielded values of E0 = 0.74 and k = 0.87 in lead [GG+94]. These
two parameters were used for the fits illustrated by the dashed lines. The resulting
e/h ratio is 1.6 for the IF and 1.64 for the CB. Taking the uncertainties on the
parameterisation of fem into account the e/h value for the H1 LAr calorimeter lies
in the range of 1.6–1.75 which compares well to obtained values of Fe/scintillator
and Pb/scintillator calorimeters [AA+02].

To overcome the disadvantages of e/h 6= 1, namely a non-Gaussian lineshape and sig-
nificant non-linearity (see section 5.3.2), the H1 collaboration developed a weighting
scheme to compensate for losses due to the invisible energy component in hadronic
showers [WK+94]. The applied software-weighting aims to find π0 subshowers on
the basis of their compactness and energy density. Hadronic showers are weighted
with an exponential function depending on the measured energy density of cell i,
given by ρ0

i = Eem,i/Vi with Vi denoting the cell’s volume. The reconstructed energy
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of a hadronic shower is obtained via

Ehad =
channels∑

i

Eem,i

[
C1 exp

(
−C2 ρ0

i

)
+ C3

]
(5.41)

where the constants Cj have been obtained by an iterative method for jets, de-
pending on their energy and polar angle. Below a jet energy of 7GeV the iterative
weighting function is replaced by an average e/π weighting factor, and in the re-
gion 7–10GeV an interpolation between the weighting function and the e/π factor
is used [H193b]. Figure 5.13b shows the obtained resolution from pion test beam
measurements. The data points have been fitted by equation (5.37) without adding
a noise term, since it has large ambiguities in a region dominated by the sampling
term. The fit gives the value asamp = 55% with a small constant term of c = 1.6%.

5.4.3 Simulation of Electromagnetic and Hadronic Showers

Simulated particles are tracked through the H1 detector using Geant3 [BB+87]
to simulate energy loss, multiple scatterings, inelastic interactions and so on. After
the first inelastic interaction in the calorimeter, electromagnetic showers and the
electromagnetic parts of hadronic showers are parameterised with Gflash [GR+90,
GP00]. For the hadronic part of the showers Geisha [Fes85] as implemented in
Geant3 is used.
Gflash generates particle shower shapes within a simplified geometry, where the
active and passive materials of the calorimeter modules have been replaced by ho-
mogenous averaged media. In the first step Gflash calculates the spatial distri-
bution of the deposited energy. Only if no border crossing between the defined
volumes occurs, is the shower parameterised. Otherwise the detailed shower simula-
tion from Geant is used. In the second step Gflash computes the visible energy
fraction in the active volume of the calorimeter. The calculation is based on the pa-
rameterisation (5.11) for the longitudinal shower development and an extension of
equation (5.16) for the lateral shower development, where fluctuations on the mean
and variances as well as their correlations are fully taken into account.
Geant and Geisha are used for tracking hadrons through the detector volume and
simulating their interactions. The Geisha program models hadronic interactions in
successive steps. First the primary interaction with a quasi-free nucleon is simulated,
followed by nuclear excitation, an intra-nuclear cascade and an evaporation step.
Fission, capture reactions and coherent elastic scattering are also modeled through
parameterised approaches.
The interface between the different simulation packages is handled by the program
H1Fast [Kuh92] which is part of the detector simulation H1Sim. H1Fast has been
extensively tested and it has been demonstrated many times that electromagnetic as
well as hadronic showers are well simulated with this approach [GR+90,Pet92,H193b,
H194a,GP00]. The description of electromagnetic showers has been further improved
by tuning the free parameters of the parameterisations with deep-inelastic scattering
data [EM+05a,EM+05b]. Recently H1 published a measurement of prompt photons
in photoproduction, which relies heavily on well simulated showers to distinguish
between photons, π0 and hadronic background [H110a].
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Chapter 6

Separation of Electromagnetic and
Hadronic Showers

In the previous chapter it was shown that the electromagnetic component of hadronic
showers exhibits an energy dependence. In non-compensating calorimeters with a
different response to electromagnetic and hadronic showers (e/h 6= 1) this results in
an energy dependence of the e/π ratio, which can lead to biases in hadron and
jet measurements. Also, the resolution of the energy measurement of hadronic
showers is worse than for electromagnetic ones. From equation (5.36) it can be
seen that sampling fluctuations contribute only partially to the resolution, which
is governed to a large extent by fluctuations in the electromagnetic and hadronic
shower components, σe and σh. At very high energies the non-compensating nature
e/h 6= 1 gives rise to an unwanted constant term in the resolution, proportional to
(1− h/e).

The H1 software weighting technique aims to equalise the calorimeter response to
electrons and hadrons by weighting hadronic showers depending on their energy
density. Thus the weighting algorithm aims to correct for fluctuations in the elec-
tromagnetic content of hadronic showers on an event-by-event basis. It was shown
that this leads to the expected energy resolution of ∼ 50%/

√
E with a relatively

small constant term of ∼ 2%. However, the uncertainty on the absolute energy
scale for jets using this weighting method is about 5%. Therefore a jet calibration
was developed which improved this uncertainty and corrected for the dead mate-
rial in front of the calorimeter and the effect of the noise suppression algorithms
applied [JZ+99]. The jet calibration works by weighting jets as a function of their
energy in order to remove the observed residual non-linearity. The achieved jet
energy measurement had an uncertainty of 2% [Sch02]. The development of an im-
proved energy-flow algorithm and slightly modified noise and background reduction
algorithms [PP+05] lead to a further improvement of the hadronic final state mea-
surement in the track-dominated central region, where an uncertainty of 1.5% could
be achieved at high transverse momenta [H110c]. In the forward region, where the
calorimetric measurement dominates, the uncertainty could not be improved by this
method.

The key to further improve the calorimeter performance is to estimate the elec-
tromagnetic content of jets on an event-by-event basis. Once this information is
available it can be used in the calibration such that electromagnetic and hadronic
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deposits can be corrected accordingly. The event-by-event determination of the
electromagnetic fraction fem was shown to improve the energy measurement by the
WA1 collaboration [AD+81,Wig02]. Recently the Dual-Readout Module (DREAM)
collaboration showed that it is possible to eliminate deviations from the E−1/2 scal-
ing behaviour of the hadronic resolution by determining fem, which was achieved by
probing the different components of the hadronic shower [AC+05b].

In this chapter a method to separate electromagnetic from hadronic showers us-
ing statistical methods is introduced. The results obtained are used to preselect
electromagnetic subshowers, which are in a first step excluded from the software
weighting. This improves the reconstruction of the absolute energy scale as well as
the resolution of the jet energy measurement. Further improvements are obtained
by taking this information into account in the calibration of the hadronic final state
measurement (chapter 8).

For the software weighting to work a fine longitudinal and lateral segmentation of
the calorimeter is essential. The large number of readout channels not only provides
information on the energy density of different parts of the shower, but also can be
used to calculate characteristic shower shapes. Since electromagnetic and hadronic
showers develop differently, these provide valuable information that can be used to
distinguish between them. In an earlier work, Höppner and Wegener studied the use
of neural networks for the energy reconstruction in the H1 calorimeter using shower
estimators as input quantities [HW97, Höp97]. They trained neural networks in
the FB region and tested the energy reconstruction with test beam data, simulated
events and isolated tracks from 1995 data. The obtained resolutions were similar to
those obtained with the standard H1 weighting method with improvements at low
energies. However, the suitability of this method for jet data was not shown and it
was not extended over the full calorimeter range. One major disadvantage of the
method was that the absolute energy scale could only be obtained from simulated
events, thus relying on the simulation of hadronic interactions. Deficiencies therein
could lead to inaccurately simulated visible energy which in turn biases the energy
reconstruction.

Instead of using neural networks to directly reconstruct the deposited energy, in
this work they are used to estimate only the electromagnetic content of showers.
Small deficiencies in the simulation of hadronic showers do not drastically change
the simulated longitudinal and lateral shower shapes, thus enabling robust solutions
which can be applied to data without biases. Subsequently this information can be
used to improve the calibration. Through the over-constrained kinematics of NC
events at HERA the hadronic final state can be calibrated for data and simulated
events separately, without relying on the simulation of the correct absolute energy
scale.

In figure 6.1 (left) the fractional energy deposited in the EMC is shown for simulated
electrons and charged pions. Electrons (as well as photons) deposit essentially all of
their energy in the EMC with only a negligible fraction in the HAC. In this energy
range showers initiated by hadrons result on average in 4–5 calorimeter clusters with
about 60% of the deposited energy contained in the EMC. In jets about one half of
the energy is carried by photons from π0 decays which are in close proximity to the
hadronic jet constituents. Hence in a jet event the clusters from electromagnetic and
hadronic showers will be close together and sometimes overlapping. Since the photon
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Figure 6.1: Left: Fractional energy deposited in the EMC by electrons and pions simulated
with energies between 0.2–10 GeV. In this energy range pions deposit about 60% of their
energy in the EMC. Right: PT and η distribution of pions inside jets, obtained from
simulated jets with P jet

T > 7 GeV.

clusters should not be subject to the software weighting, a reliable preselection of the
photon clusters will therefore improve the performance of the hadronic final state
measurement.
No attempt to separate electromagnetic from hadronic showers in the HAC is made.
Electromagnetically interacting particles deposit only an insignificant energy frac-
tion in the HAC. Electromagnetic subshowers caused by hadronic showers are usu-
ally merged with the deposits from the hadronic shower into a single calorimeter
cluster, due to the coarser granularity of the HAC compared to the EMC. There-
fore, all clusters with more than 5% of the cluster energy measured in the HAC are
subject to the software weighting, which takes the energy density of clusters and
thus the electromagnetic fraction fem into account.
The energy range for which the shower separation should be applicable can be
deduced from the spectra of jet constituents. These spectra have been studied for
various particles such as π±, π0, γ, e±, K0

L, p in jets with P jet
T > 7 GeV. Figure 6.1

(right) shows a parameterisation of the η, PT distribution of charged pions in jets.
Whereas the majority of pions have momenta smaller than 2GeV, the distribution
has a long tail towards high momenta. At large pseudorapidities, jet constituents
may carry momenta between 0.5–80GeV. Hence the shower separation needs to be
reliable over a large range in energy.

6.1 Shower Shape Estimators

Differences in the development of electromagnetic and hadronic showers can be used
to distinguish between them. In sections 5.1 and 5.2 parameterisations of the elec-
tromagnetic and hadronic shower developments have been introduced. In particular,
the radial and longitudinal shape of showers provide important information because
of the different length scales in the shower development. Other useful variables are
the compactness and energy density of a shower, as well as variables which take
correlations between the longitudinal and radial shape of a shower into account.
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Figure 6.2: Definition of the coordinates used to determine cluster and cell positions.
Cells with measurable signals are coloured and the four most energetic cells are depicted
in red.

All shower shape variables described in the following are calculated for calorimeter
clusters, i.e. they depend on the clustering algorithm described in reference [GW91].

Cluster coordinates

The shower axis a is determined by using the interaction vertex v and the cluster
barycenter b (see figure 6.2) via a = b − v. The barycenter is calculated as a
weighted sum over all cells in one cluster, b =

∑
i wipi. Here wi is the weight of cell

i and pi its position in the H1 coordinate system. The weights are chosen to be the
energy density on the ideal electromagnetic scale,

wi = ρi =
Eem,i

Vi

(6.1)

with Vi denoting the volume of cell i. The shower start s is defined to be the
intersection of the shower axis with the front face of the calorimeter. Then the
longitudinal distance of cell i from the shower start is given by

li = (pi − s) · a

|a|
, (6.2)

and its radial distance from the shower axis is

ri = |pi · n̂| (6.3)

with n̂ denoting the unit vector perpendicular to a.

Longitudinal and radial moments

The nth moment of a distribution f(x) is given by µn =
∫

xnf(x)dx. The longi-
tudinal and radial moments of the energy distributions of showers in a segmented
calorimeter can be approximated by

µn
L =

1

E

∞∫
0

dE

dl
ln dl ≈

∑
i wil

n
i∑

i wi

(6.4)
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Figure 6.3: First moment of the longitudinal (a) and radial (b) energy distribution of
calorimeter clusters in the EMC, originating from simulated charged and neutral pions
with energies between 5 and 20GeV incident on the CB3.

and

µn
R =

1

E

∞∫
0

dE

dr
rn dr ≈

∑
i wir

n
i∑

i wi

(6.5)

with dE
dl

and dE
dr

being the longitudinal and lateral deposited energy per unit length,
respectively. The first moments µ1

L and µ1
R are the expectation (mean) values 〈L〉 and

〈R〉. They are shown in figure 6.3 for simulated charged and neutral pions. Clusters
originating from π0s and thus purely electromagnetic showers are more compact in
the longitudinal and radial direction. The distributions are energy-dependent and
at decreasing energies they become increasingly harder to distinguish.

Longitudinal and radial width

The standard deviations σL and σR are the widths of the longitudinal and radial
distributions around their mean values,

σL =
√

µ2
L − (µ1

L)2 (6.6)

with a similar expression for σR. For particles with energies above 5GeV σL is very
similar for π0 and π±, while their radial width σR is very different, as indicated in
figure 6.4. Electromagnetic showers are well contained within 1 RM whereas hadronic
showers have a larger lateral extent.

Cluster width

The nth moment of the cluster’s z-position is given by

µn
z =

∑
i wiz

n
i∑

i wi

(6.7)

where z is measured in the H1 coordinate system and the standard deviation σz is
given by

σz =
√

µ2
z − (µ1

z)
2 . (6.8)
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Figure 6.4: Standard deviation around the mean value of the longitudinal (a) and lateral
(b) energy distribution of clusters in the EMC, originating from simulated charged and
neutral pions with energies between 5 and 20 GeV incident in the CB3.

A vanishing value of σz implies that a cluster consists only of cells from one vertical
layer. Such clusters are remnants from the clustering algorithm with usually very
small energy. This estimator can thus be used to exclude clusters with unphysical
shapes.

Covariance

The covariance between the longitudinal and radial energy distribution is defined as

cLR = cov(L, R) = 〈LR〉 − 〈L〉〈R〉. (6.9)

It is a measure of the simultaneous longitudinal and radial variation of the shower.
Positive values indicate that if the shower length is above the expectation value
the radial width will be larger than the average width. Hadronic showers have the
tendency to have larger tails in this distribution due to larger fluctuations in the
shower development.

Kurtosis

The kurtosis is a measure of the ”peakedness” of a distribution. For the longitudinal
energy distribution it is defined through

κL =
µ4

L

σ4
L

− 3 (6.10)

with an equivalent definition of the transversal kurtosis κR. A higher kurtosis means
that large values of the variance are a result from infrequent extreme deviations
opposed to a frequent small deviations.

Energy fraction in calorimeter layers

The fraction of the cluster’s energy in calorimeter layer k is given by fk = Ek/Ecls.
Ek is the energy in calorimeter layer k and Ecls is the total cluster energy, both
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the first calorimeter layer f0 for clusters in the EMC. Shown are simulated π0s and π±

with energies between 0.5 and 30GeV incident on the FB1. The red rectangles show the
parameterisations, large rectangles depict small energies, becoming smaller with increasing
energy.

taken on the ideal electromagnetic scale. fk is a good estimator especially for low
energetic clusters.

Energy fraction in hot core

The fraction of the cluster’s energy in the N most energetic, neighbouring cells is
called hN and given by hN = EhN/Ecls. EhN is determined by taking the cluster’s
most energetic cell as seed and summing up the energy of the N − 1 most energetic
neighbouring cells (see figure 6.2). Since electromagnetic deposits are more compact,
hN tends towards larger values for them. However, since the two photons from
π0 → γγ have some opening angle between them, hN is better for the discrimination
between hadrons and single photons than between hadrons and π0s.

Energy fraction outside a cylinder

The variable fRM
denotes the energy fraction outside a cylinder with radius RM.

The cylinder axis is taken to be the shower axis a, and the energy is measured on
the ideal electromagnetic scale. Since 95% of the energy of electromagnetic showers
is contained within a cylinder with radius RM, fRM

is small for electromagnetic
clusters. The radial extent of hadronic showers is approximately λ and thus fRM

tends towards larger values for them. For single particles fRM
is a useful estimator,

but it proved less viable in dense environments where showers from different particles
overlap.

6.2 Standard Reconstruction

Two different approaches exist in H1’s standard reconstruction to separate electro-
magnetic from hadronic showers. One approach is implemented in H1Rec. In this
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Figure 6.6: The two cuts used by Hadroo2 for the separation of electromagnetic and
hadronic showers. The fractional energy in the EMC (a) and the fractional energy in the
first two calorimeter layers (b).

approach clusters with more than 20% of their energy in the HAC are considered to
originate from hadronic showers (compare figure 6.1). For clusters with a significant
energy fraction in the EMC the energy dependence of the two estimators f0 and h4

is parameterised via

max(0.01, 0.05− 0.01 ln Eem) < f0 < max(0.10, 0.60− 0.12 ln Eem) (6.11)

min(0.60, 0.50 + 0.02 ln Eem) < h4 < max(0.75, 0.98− 0.05 ln Eem), (6.12)

where Eem is the cluster energy on the ideal electromagnetic scale [Loc92]. These
parameterisations are shown in figure 6.5 together with results from simulated pions
with energies between 0.5 and 30GeV. The preselected regions contain a large por-
tion of the π0 initiated showers, which however cannot be selected without selecting
a non-negligible fraction of hadronic showers. Wrongly preselected hadronic showers
lead to an undesired systematic undercalibration such that the cuts were tightened
by sacrificing some of the preselected electromagnetic energy [WK+94].
With the development of the energy-flow algorithm Hadroo2 the selection of electro-
magnetic deposits was reviewed [PP+05]. Two cuts have been introduced to decide
between the electromagnetic and hadronic energy scale for clusters: if a cluster has
more than 5% of its energy in the HAC, i.e.

fEMC < 0.95 , (6.13)

its energy is taken on the hadronic scale. All clusters in the EMC are separated
depending on their energy fraction in the first two calorimeter layers. If the cluster
has more than 50% of its energy in the first two calorimeter layers, i.e.

f01 > 0.5 , (6.14)

it is taken on the electromagnetic scale. This selection is shown in figure 6.6 for sim-
ulated charged and neutral pions. They were generated in an energy range between
0.5 and 35GeV and evenly distributed over the whole calorimeter using H1Fast.
The first requirement, fEMC < 0.95, results in a high efficiency for selecting clusters
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Figure 6.7: Reconstructed energies using the reconstruction algorithms Hadroo2 and
H1Rec for neutral (a) and charged (b) pions simulated with energies of 5 GeV.

originating from hadronic showers with only a very small fraction of wrongly classi-
fied clusters from electromagnetic showers. The EMC’s effective length of 20–30 X0

is enough to sufficiently contain even high energetic electromagnetic showers. The
peak from π0s at fEMC ≈ 0 results from photons which went into one of the φ-cracks
and is suppressed by two orders of magnitude compared to photons fully contained
in the EMC. The requirement f01 > 0.5 yields a good selection of electromagnetic
showers, but more than 1/3 of the hadronic deposits are wrongly classified to be
electromagnetic. The situation is worse for jets, where the jet energy is mainly com-
ing from a large number of low energy hadrons, which have a higher probability to
deposit their energy earlier in the calorimeter.
In both approaches selected electromagnetic clusters are excluded from the software
weighting and get the energy on the ideal electromagnetic scale Eem assigned. For
hadronic clusters the energy after the software weighting Ehad is used. Reconstructed
energies of simulated charged and neutral pions with energies of 5GeV are compared
for the two approaches in figure 6.7. For π0s Hadroo2 yields good results with a
Gaussian line shape and a mean reconstructed energy of 4.7GeV. Using the selection
of H1Rec, about one third of the electromagnetic clusters are misidentified. The
misidentified clusters are taken on the hadronic scale resulting in a significantly
too high energy, peaking at ∼6.5 GeV (figure 6.7a). For charged pions the opposite
picture emerges. Hadroo2 identifies about 60% of the clusters to be electromagnetic,
compared to 10% from H1Rec. This leads to smaller reconstructed energies in
Hadroo2 which consequently leads to larger residual calibration factors. The best
possible reconstructed energies from figure 6.7 are 〈Erec(Hadroo2)〉 ≈ 4.7 GeV and
〈Erec(H1Rec)〉 ≈ 3.7 GeV for π0s and π±, respectively. Despite H1Rec’s efficient
selection of hadronic clusters the mean reconstructed energy is too small indicating
that even after an efficient separation an additional calibration is necessary.
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6.3 Requirements on a New Algorithm

The application of several cuts on the shower estimators introduced in section 6.1 and
linear combinations of them have been studied. Only marginal improvements in the
reconstruction of the hadronic energy with respect to the standard reconstructions
could be achieved without spoiling the efficient selection of electromagnetic deposits
by Hadroo2. This has several reasons:

� Shower shape estimators are approximated as discrete sums over cells. Due to
the different geometries of the calorimeter wheels the estimators have different
shapes for calorimeter wheels with different cell sizes.

� The amount of dead material traversed by incident particles before entering
the calorimeter changes depending on the angle of incidence. This means that
in some calorimeter regions the probability of a shower starting in front of the
active volume is larger than in other regions. This alters the shower shapes
depending on their position.

� The strong magnetic field from the superconducting solenoid in which the
calorimeter was operated changes the shape of the estimators as well. The
magnetic field lines are parallel to the z-axis. Hence, all showers caused by
particles originating from the interaction point have a momentum component
perpendicular to the field lines. The Lorentz force acting on positively and
negatively charged particles, which are abundantly produced in any shower, is
then directed away from the shower axis in opposite directions. This leads to
a broadening of showers, resulting in smaller differences in the radial widths
between electromagnetic and hadronic showers. Again, this effect depends on
the shower position, since the momentum component perpendicular to z is
proportional to sin θ.

� Most shower estimators are energy dependent. This means that they have to
be studied additionally in different energy regions, if a reliable separation over
the full energy range is the aim.

The new separation algorithm should be applicable to the whole hadronic final
state. It should yield reliable results for isolated single particles as well as jets
where overlapping incident electromagnetic and hadronic particles can spoil results
obtained from single particle studies. Hence the new algorithm should be robust
and result in an estimate of the amount of electromagnetic energy of a shower.
A solution to this complicated multi-dimensional problem is provided by the appli-
cation of a neural network. Neural networks are designed to separate two classes of
events using information from many input variables. An advantage of a selection
based on a neural network over a cut-based selection lies in the networks’ capability
to extrapolate and to yield results in the case of missing input variables. Correla-
tions between input variables are learned and taken into account. A well-trained
neural network’s fault-tolerance against noisy input data will be of special impor-
tance when applying obtained results from single particles to jets. In the following
such a network will be outlined, followed by its application to the separation of
electromagnetic and hadronic showers.
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Figure 6.8: Architecture of a three layer neural network. Only the connections from node
j in the hidden layer to the input and output layers are shown.

6.4 The Neurobayes Neural Network Package

The Neurobayes package is a tool for statistical data analyses based on Bayes’ The-
orem. It consists of a neural network combined with a complex preprocessing of
the input variables. Bayesian regularisation techniques are used in the network
training which also includes pruning techniques to eliminate the risk of overtrain-
ing [Fei04,FK06].

The Neural Network

A neural network consists of nodes (neurons) arranged in different layers. The neural
network used in this work is a three layer feed forward back propagation neural
network. The three layers consist of an input layer, a hidden layer and an output
layer. The information flow in a feed forward neural network is strictly monotonic
from the input layer to the output layer. Each input variable corresponds to one
node in the input layer where an additional bias node with a constant value of 1 can
improve the network performance. In the hidden layer the number of nodes can be
chosen arbitrarily1. For binary classification problems the output layer consists of
one node only which provides a continuous network output in the interval [−1, 1].
The architecture of a three layer neural network is depicted in figure 6.8. Let i be
a node in the input layer and j a node in the hidden layer. The total number of
nodes in the input layer is N and the hidden layer consists of M nodes. The input
value of node i is denoted by xi and the output of node j is aj. The nodes of the
input and hidden layer are connected with weights wij, such that for each node j a
weighted linear combination of the inputs xi is calculated,

aj(x) =
N∑

i=1

wijxi + µ0j . (6.15)

1The choice is not completely free, since on one hand enough freedom to learn the problem
at hand needs to be allowed for, and on the other hand overlearning needs to be prevented. The
achieved performance of a fully trained neural network should however be independent of reasonable
variations of the number of nodes in the hidden layer.
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The sum runs over all nodes in the input layer and µ0j represents the threshold of
node j, provided by its connection with the bias node. The output of each node
in the hidden layer and the output node is computed via a non-linear activation
function chosen to be a sigmoid-function

sj = sigm(aj(x)) =
2

1 + e−aj(x)
− 1 (6.16)

which transforms the input interval [−∞,∞] to [−1, 1]. The sigmoid function be-
haves approximately linearly around zero and saturates for small and large values
of aj(x). The output o of this three layer feed forward neural network is given by

o = sigm

(
M∑

j=1

vj0 sigm

(
N∑

i=1

wijxi + µ0j

))
, (6.17)

where vj0 denotes the weight between node j in the hidden layer and the output
node o.

Determination of Weights

The determination of the network’s weights wij and vj0 is usually referred to as
network training. This is achieved by feeding samples of known data to the network
and minimising the deviation of the network output o from the desired result T . The
minimisation is achieved by defining a cost function, which in this work is chosen to
be an entropy

E =
∑

j

ln

(
1

2
(1 + Tj oj + ε)

)
, (6.18)

where the sum runs over all patterns j in the training sample. Tj is the true value of
pattern j and oj is the corresponding network output. In order to avoid numerical
problems for an untrained network a small regularisation constant ε is introduced
which is set to 0 after a few iterations. At the beginning of the training the network
weights are randomly distributed following a Gaussian distribution with mean 0
and width 1. The network weights are then adjusted iteratively by minimising the
entropy function E by a modified backpropagation algorithm in combination with
gradient descent, as described in [Fei04].
The training is performed in a quasi-online mode with weight adjustment every 300
events. For large samples with partly redundant information this ensures faster
convergence compared to weight updates after the full sample has been processed.
To remove biases from subsequent training patterns, if for example sorted input
is used, the events are read in random order. Additionally, the input sample is
separated randomly into training and test samples with a ratio of 1:1.

The Bayesian Approach

The Neurobayes neural network is trained with regularisation techniques based on
Bayes’ Theorem which provides a relation between a conditional probability and its
inverse,

P (H|D) =
P (D|H)P (H)

P (D)
. (6.19)
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Here H denotes a hypothesis and D are measured data. Then P (H|D) is the
conditional probability of having H, given D, also called the posteriori probability.
The inverse of it, P (D|H) is the probability of observing D, assuming H. The
probabilities P (H) and P (D) are the probabilities of having H and D without any
further assumptions which are called a priori probabilities.
This theorem can be applied to the network training, where a measurement of the
true quantity t yields the value x. Then the neural network can be used to estimate
the conditional probability P (t|x) for each event, where P (t|x) is the probability of
obtaining t if x has been measured. Hence the output of the neural network can be
interpreted as a conditional probability, if the a priori probabilities at the training
stage are realistic. In other words, the network output is the probability of finding
a signal event, if the network is trained with the same signal to background ratio as
found in the data.
Additionally, Bayesian statistics are used to determine the significance of the indi-
vidual weights during the network training. Insignificant connections and network
nodes are removed (pruning) to eliminate the risk of overtraining and ensure a
minimal network topology to correctly reproduce the characteristics of the data.

Preprocessing

Prior to the training a sophisticated preprocessing of the input variables is per-
formed. First a flattening of the input distribution is performed by a non-linear
monotonous variable transformation such that the transformed variable lies between
-1 and 1. This is advantageous since otherwise extreme outliers may saturate neu-
rons and dominate the network output. In the next step the input variables are
transformed into Gaussian distributions with mean 0 and width 1, such that they
follow the same distributions as the random weights at the beginning of the network
training. This provides an optimal initial condition for a fast convergence of the
training.
It proved to be advantageous for the network training to decorrelate the input vari-
ables. Taking the N − 1 input variables and the true value t (the training target),
the N ×N covariance matrix C is calculated via

Cij =
1

n

∑
events

(xi − 〈xi〉) · (xj − 〈xj〉) , (6.20)

where n is the total number of events and xi and xj denote the input variables. The
correlation ρij between the input variables xi and xj can be expressed as

ρij =
Cij√

V [xi]
√

V [xj]
(6.21)

with the variance of x denoted by V [x]. Neurobayes decorrelates all input variables
by Jacobian rotations of the correlation matrix. These rotations are simultaneously
applied to the correlation vector ρ = (ρi,1, . . . , ρN−1,1) of each variable’s correlation
to the target. The resulting vector ρ̃ is used to calculate the total correlation of all
variables to the target

ρ2
T =

N−1∑
i=1

ρ̃2
i . (6.22)
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Figure 6.9: a) Output of a trained neural network for signal and background samples.
Calorimeter clusters originating from charged pions are used for the signal sample and clus-
ters from electromagnetic showers are used as background. b) Purity versus the network
output which should lie on a straight line (equation (6.25)) for a well-trained network.

The loss of correlation when removing an input variable xi is its significance S(xi),

S(xi)
2 = n

(
ρ2

T (x1, . . . , xN−1)− ρ2
T (x1, . . . , xi−1, xi+1, . . . , xN−1)

)
. (6.23)

It serves as a measure of the additional information obtained by adding input vari-
able xi to the training. During the training process the significances of all variables
are monitored and variables with significances smaller than 3 σ are removed from
the input to improve the signal-to-noise ratio.
The vector ρ̃ contains the full linear correlation to the target, with all other cor-
relations being zero. Hence it is the optimal correlation that can be achieved with
a linear method. Improvements are possible by exploiting the non-linear nature of
the neural network with the preprocessed variables as input.

Training Results

The purity P is defined as fraction of signal events in a given sample, P = s/(s + b)
where s and b denote the number of signal and background events, respectively. The
function [Fei04]

χ2 = P (o− 1)2 + (1− P )(o + 1)2 (6.24)

is a measure of the achieved separation between signal and background, assuming
that the network output o corresponds to −1 for background and to +1 for signal
events. For a well trained network χ2 is minimal, dχ2/do = 0, which leads to

P =
o + 1

2
. (6.25)

Consequently the network output scaled to the interval [0, 1] corresponds to the
probability of observing a signal event. The signal and background contributions
to the network output of a well trained network are shown in figure 6.9a. Clusters
from simulated charged pions are used for the signal sample and clusters originating
from photons from π0 decays are used for the background sample. The quality of
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cut
rel. occurrence

decision
π± π0

f0 = 1 3% 2% EM

f1 = 1 2% 1% EM

f2 = 1 3.5% ¡0.1% HAD

FB1, σz < 0.1 cm 3.5% 2.5% EM

FB2, σz < 0.1 cm 7% 1% HAD

Table 6.1: Cuts 3 and 4 applied for the cluster preselection and the decision made for
clusters not considered in the separation by the neural network. The relative occurrence
denotes the fraction of clusters removed by the cuts for simulated single pions in an energy
range between 0.5 and 30GeV.

the network training can be assessed by calculating the purity for each output bin
which is shown in figure 6.9b. For a well trained network the points should lie on
the diagonal given by equation (6.25).

6.5 Cluster Selection

Prior to the network training clusters with no or very little information in the cluster
estimators are identified. They contribute only to additional noise in the shower
separation. In the following the selection of clusters for which the separation with
the neural network is defined is summarised.

1. fEMC > 0.95
2. Eem > 0.2 GeV
3. fk 6= 1 for k = 0, 1, 2
4. σz > 0.1 cm
5. CB1 and CB2: 〈R〉 < 7 cm for clusters with Eem > 3 GeV

The first cut is identical with the one used in Hadroo2, shown in figure 6.6a. It
is used to preselect clusters contained in the EMC. All deposits in the HAC are
assumed to originate from hadronic showers. Their electromagnetic content is taken
into account by the software weighting. The second cut removes clusters close to the
noise level of the calorimeter. Clusters with an energy smaller than 0.2GeV are taken
on the electromagnetic scale. Cuts number 3 and 4 are employed to discard clusters
consisting only of cells in a single horizontal or vertical calorimeter layer. These
clusters are usually remnants from the clustering and contain very little energy. The
decision made for these clusters are based on single particle MC simulations and are
summarised in table 6.1. In two cases the relative occurrence is larger for clusters
originating from hadrons and still the electromagnetic scale for them is used. This
choice is made to reduce non-gaussian tails for electromagnetic particles which can
not be corrected for afterwards. The slightly smaller resulting energy for hadronic
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clusters can be corrected for with the subsequent calibration. Cut number 5 is only
applied to clusters in the CB1 and CB2. Due to the coarser granularity in these
two calorimeter wheels deposits from many particles are merged to single clusters in
dense environments. These clusters have large transverse extensions which cannot
be reproduced by single particle simulations. Since the network cannot be trained
for them they are taken on the electromagnetic scale. This is a valid approximation
since in the CB region the track finding efficiency is high and most of the energy from
charged hadrons is accounted for by tracks. Most of the remaining energy originates
from photons with only a small fraction coming from neutral hadrons. Again, the
calibration can correct for the small remaining amount of invisible energy.

6.6 Neural Network Training

For the network training simulated single particles with the full detector simulation
and reconstruction are used. In order to take the effect of calorimeter noise into
account the events are overlaid with electronic noise recorded in periods without
beam. The simulated particles are generated uniform in θ and φ covering the full
calorimeter acceptance. A mixture of neutral pions and single photons is used for the
generation of electromagnetic showers and negatively and positively charged pions
are used for hadronic showers. The ratio of electromagnetic to hadronic showers is
1:1, approximately corresponding to their abundance in the data. For validating the
network training also electrons, neutral and charged kaons, neutrons, protons and
anti-protons are simulated.

6.6.1 Geometrical Division

Cluster shapes differ considerably among different calorimeter wheels. The reason
for this is a varying amount of dead material in front of them, their different ge-
ometries2, a varying angle of incidence and the strong magnetic field. Attempts to
train the neural network with the cluster position and angle of incidence as addi-
tional input variables were not successful, since the full correlation to the cluster
shapes could not be learned by the 3 layer neural network. Instead, the calorimeter
is organised in different regions corresponding to the different calorimeter wheels
and individual neural networks are trained for each wheel. After this division the
significance of the cluster position drops below the 3 σ limit. Furthermore, since the
particles’ angle of incidence varies only slightly going from the outer to the inner
edge of a single wheel it becomes insignificant as well. Only the cluster’s proximity
to a φ or z-crack is significant due to its effect on the cluster shape. This is taken into
account by introducing two boolean variables which are set to ‘true’ if the cluster
consists of cells adjacent to a crack.

2The absorber plates are oriented paralell or perpendicular to the beam axis, depending on the
calorimeter wheel. Different wheels also have different cell sizes.
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6.6.2 Choice of Input Variables

From the large number of possible input variables introduced in section 6.1 only some
can be used for the network training. The reason is twofold. Firstly, only variables
well described by the MC simulation should be used. The network training relies
on the detector simulation and shortcomings in the simulation can result in biases
when the results are applied to data. Secondly, the input variables should not differ
greatly between single particle and jet data. Since the trained networks will be used
in the reconstruction of the hadronic final state, they have to yield reliable results for
isolated particles as well as jet clusters. The possible input variables were carefully
studied for all calorimeter wheels and only the ones fulfilling these requirements are
used for the network training.

In order to allow the neural network to learn the correlation between the cluster’s
energy and the shower shapes, the energy is chosen as an input variable. Care has
to be taken, however, that the network does not base its decision on the energy,
but instead learns the correlation to the other input variables. This is achieved
by identical energy distributions for electromagnetic and hadronic clusters in the
training. To monitor the effect of the energy as network input, the purity as function
of efficiency calculated for the cluster energy only can be used. In all network
trainings this distribution is flat at a constant value of ∼ 50% showing that there
is no direct information in the cluster energy. The correlation to other variables is
usually higher than 30%.

6.6.3 Energy Dependence

The shapes of hadronic and electromagnetic showers have an intrinsic energy depen-
dence as shown in chapter 5. The clustering algorithm applied in H1 tends to split
hadronic clusters with higher energies into more clusters, which also influences the
shape of the resulting clusters. The measured energy spectrum of clusters in jets
is shown in figure 6.10a. It resembles the distribution of simulated jet particles (cf.
figure 6.1, right). To have the same apriori probabilities in the training sample as
in the data, the training samples are weighted to the physical energy spectra of jet
particles.

When training one network for the full energy range the result is statistically dom-
inated by clusters with energies smaller than 5GeV which make up more than 90%
of the sample (see figure 6.10a). The extrapolation of the network training to higher
energies becomes uncertain. Above 20GeV with effectively no clusters available for
the training, the purity drops rapidly. However, a wrong classification of high energy
clusters has a large effect on the hadronic final state measurement. To overcome
this and to ensure a good separation over the full energy range the training is split
up into low and high energies. The training for low energy clusters is performed
with clusters in the interval 0.5–5GeV whereas the high energy network is trained
with clusters between 4–30GeV. In order to have a smooth transition between the
output of the low and high energy networks oL and oH , the results are combined via
a transition function f(E),

o = f(E) oH + (1− f(E)) oL . (6.26)
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Figure 6.10: a) Measured energy distribution of clusters in jets, compared to Djangoh
and Rapgap after the full detector simulation. b) Multiplicative factors for the low and
high energy network outputs oL and oH as function of the cluster energy.

The function f(E) is a sigmoid function chosen to be a simple logistic function,

f(E) =
1

1 + exp(−(E − Etr)/σE)
(6.27)

with the parameters Etr = 4 GeV and σE = 0.2 GeV. The combination of the
network outputs is illustrated in figure 6.10b. Detailed tests for clusters with energies
in the transition region between 3–5GeV were performed to ensure stable results
over the full energy range. In the forward region the combination is extended since
the cluster energy distribution extends up to 100GeV there. Hence in the IF and
FB2 three networks are trained and their results combined via

o = f2(E) oH + f1(E)(1− f2(E)) oM + (1− f1(E)) oL (6.28)

with the above parameters for f1 and Etr = 30 GeV and σE = 1 GeV for f2. In
this case the medium energy network is trained in the range 5–30GeV and the high
energy network uses clusters in the range 30–100GeV for the training.

6.6.4 Training

Due to the above described separation into calorimeter wheels and energy ranges
a total of 16 neural networks is trained. For each of the 16 networks the input
variables are carefully chosen and the training results are verified by independent
samples.
Small deficits in the simulation of the details of the shower development are only
visible in the total number of cells in a cluster. In this distribution the data tend to
larger mean values than what is obtained from the simulation. However, in the cal-
culation of all used shower variables the cells are weighted with their energy density,
which results in an excellent description of mean values and their correlations over
the full energy range in the whole calorimeter as already shown by Grindhammer
and Peters [GP00].
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Figure 6.11: Variables used for the network training for energies smaller than 5 GeV in
the IF. Shown are measured distributions from a jet sample together with simulated jet
events from Djangoh and simulated electromagnetic and hadronic single particles.
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Figure 6.12: Variables used for the network training for energies between 4 and 30GeV
in the IF. Data and simulated clusters as in figure 6.11.
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Figure 6.13: Variables used for the network training for energies above 30GeV in the IF.
Data and simulation as in figure 6.11.
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As an example the input variables used for the three networks in the IF are shown
in figures 6.11–6.13. Information on the longitudinal shower development proves
an important input to the neural networks in all energy regimes. These can be
the fractional energy in the Nth calorimeter layer fN or the mean shower length
〈L〉. These distributions are fairly unaffected by going from single particles to dense
environments. The energy dependence of 〈L〉 can be seen when going from a mean
energy of ∼1.5 GeV (fig. 6.11) to an energy of ∼15 GeV (fig. 6.12) and to ∼60 GeV
(fig. 6.13). The mean value for electromagnetic showers shifts from 5 X0 at low
energies to 10 X0 at the highest energies, the tails towards higher values are mostly
due to hadronic showers. The distribution falls off rapidly when approaching 25 X0

which is the effective length of the EMC.

Lateral variables like the mean cluster radius 〈R〉 and the standard deviation σR are
only useful at low energies. At higher cluster energies overlapping incident particles
shift these distributions to larger values than what can be found in single particle
simulations. The energy fraction in the hottest N cells, hN can be quite different
for single photons and π0s. However, it is still a useful variable at low energies if
the network is trained with a mixture of single photons and π0s. At high energies
it suffers the same problem as lateral distributions. In this case the mean value is
shifted to lower values owing to the fact that more deposits at some distance from
the shower core are merged into a single cluster.

Higher moments of the energy distribution like the longitudinal and radial kurtoses
κL and κR are relatively robust against changes due to multiple incident particles.
They prove especially useful at high energies, where the number of input variables
is generally smaller.

Also the covariance between the longitudinal and lateral shower extent, cov(L, R), is
very well described over the full energy range. It becomes broader at higher energies
and is a good estimator in all regions. At large covariances, i.e. when the radial and
longitudinal dimensions of the shower are both large, the distribution is dominated
by hadronic deposits.

Clearly some of the input variables are correlated. The correlations can be com-
puted from equation (6.21) and are taken into account in the training. An example
of the full correlation matrix ρ is shown in figure 6.14. It is obtained from the net-
work training in the IF for the energy range 4–30GeV, corresponding to the input
variables shown in figure 6.12. Here zc denotes the boolean variable indicating if a
cluster is close to a z-crack3 or not. One of the requirements in the training is that
zc and the cluster energy E are not directly correlated to the target value, their
correlation to the target being 0. The energy fraction in the third layer f3 shows
the largest correlation to the target, followed by the mean length 〈L〉. However,
they are strongly correlated and contain mostly redundant information. By adding
variables related to the radial shower width like the covariance, here denoted by cLR,
and the radial kurtosis κR additional information is made available. The role of the
crack information can be seen on the variables f2 and f3. zc is correlated to f2 and
anti-correlated to f3. This can be understood by looking at the detector geometry
in figure 5.10. The z-crack between the IF and FB2 is located at the front face of
the IF. Hence, a larger energy fraction in deeper layers reduces the probability of

3There are no φ-cracks in the IF hence the corresponding φc did not enter the network training.
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Figure 6.14: Correlation Matrix ρ for the IF network in the energy range 4–30GeV.
Detailed explanation in the text.

the cluster being close to the crack region.
The results from the network training are summarised in figure 6.15. The significance
S calculated from equation (6.23) is shown in figure 6.15a. As expected from the
correlation matrix, f3 has the largest significance. The variable with the second
largest direct correlation ot the target, 〈L〉, has a comparable small significance
due to its large correlation to f3. The second most important input variable is cLR

followed by the crack-information zc and the longitudinal and transversal kurtoses.
Even though zc has no direct correlation to the target its significance is comparable
to the kurtoses because of its anti-correlation to f3. The cluster energy E as input
variable is rather insignificant in this case, with its significance of ∼4 σ being close
to the threshold.
In figure 6.15b the network output is shown for the training sample. Electromag-
netic showers can be found at −1 whereas hadronic showers peak at +1. In the
shown example the exact value of −1 is not reached because of a diagonalisation
procedure which forces the signal purity versus the network output to be distributed
along the diagonal after the preprocessing. The hadronic contribution on the left
side is expected since high energy hadronic showers are often clustered into several
calorimeter clusters. If one of these clusters fully consists of a prominent elec-
tromagnetic subshower it is identified to be electromagnetic. The contribution of
electromagnetic showers on the hadronic side is one order of magnitude smaller in
comparison to the right side. In figure 6.15c the purity as function of the network
output is shown. It lies reasonably well on the line defined by equation (6.25).

6.7 Results with the Shower Separation

After the successful training of all 16 neural networks their applicability on isolated
single particles as well as on jets has been studied carefully. The results are reviewed
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Figure 6.15: Significance S of the input variables for the IF network for energies between
4–30 GeV (a). Output of the trained network (b) and purity versus the network output
(c).

in this section.

The output of the neural network is used for the energy reconstruction. If a cluster
has a probability of more than 50% to be electromagnetic, i.e. o < 0 (see figure
6.15b,c) its energy is taken to be the ideal electromagnetic energy Eem (5.40). Else
the hadronic energy from the software weighting Ehad defined in equation (5.41) is
used.

It is important to note that the neural networks introduced here do not estimate
the intrinsic electromagnetic content of hadronic showers. They rather yield a prob-
ability of a cluster originating from an electromagnetic or hadronic particle. Fluc-
tuations in fem happen on much smaller scales than the length scales of calorimeter
clusters. Whereas calorimeter clusters can consist of tens of cells, electromagnetic
subshowers may be fully contained in a single cell. This means that the software
weighting, which takes into account the energy density of single cells, is still crucial
for the reconstruction of the hadronic energy.
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6.7.1 Single Particles

In addition to the training samples, additional single particle simulations of photons,
neutral and charged pions are used to validate the trained networks. In order to
verify their general validity also electrons, neutrons, neutral and charged kaons,
protons and anti-protons were simulated. The particles were generated over the full
calorimeter acceptance with uniform distributions in θ and φ in an energy region
between 0.5 to 35GeV. For the forward region, i.e. θ < 30◦ particles with energies
up to 100GeV were simulated.

With the cut on o < 0 the probability for clusters from single photons and neutral
pions to be recognised as electromagnetic is above 90%. This includes electrons and
positrons from photon conversions in the inactive detector material. For simulated
electrons the probability to recognise them to be electromagnetic drops to about 80%
which is not crucial since the contribution of electrons and positrons to the hadronic
final state is negligible. This is because the scattered electron and electrons from
charm and beauty decays are identified first with a dedicated finder which will be
described in section 7.2. The remaining electrons in the hadronic final state originate
from fragmentation processes in jets and are very rare. They contribute on average
less than 0.1% to the jet’s energy. With the same cut clusters from hadronic showers
are wrongly identified as electromagnetic only in 10–15% of all cases. This result
changes very little for different types of hadronic particles (mesons and baryons).
The transition regions at 4GeV and in the forward region also at 30GeV are carefully
studied. The results neither deteriorate nor are any discontinuities in the network
output visible.

The effect of cutting on the neural network output on the reconstructed energies
can be studied with the relative difference between the generated and reconstructed
energy,

∆E =
Egen − Erec

Egen

. (6.29)

This quantity is shown for various types of particles in figure 6.16. The results show
the success of the developed approach for the separation of electromagnetic and
hadronic showers. The two approaches so far available at H1 are efficient for select-
ing either clusters from electromagnetic showers or from hadronic showers, but they
do not succeed to separate them sufficiently. Whereas the selection implemented
in Hadroo2 is very efficient for the selection of electromagnetic showers, too many
clusters from hadronic showers are misidentified to be electromagnetic. The selec-
tion of H1Rec correctly identifies most of the clusters from hadronic showers, but
it fails to identify clusters from electromagnetic showers.

In the left column of figure 6.16 the distributions of ∆E are shown for electromagnetic
particles where a logarithmic scale is chosen to visualise the tails of the distributions.
The distributions obtained with Hadroo2 have small tails owing to the efficient
selection of electromagnetic clusters. The distributions of ∆E obtained with the
cuts of H1Rec exhibit large tails towards small values of ∆E. This is comparable
to what was shown in figure 6.7 and is a result of the weighting algorithm applied
to purely electromagnetic showers. The results using the neural network follow
closely the results obtained with Hadroo2, showing an equally high efficiency for the
selection of electromagnetic clusters. For electrons this efficiency is slightly smaller
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Figure 6.16: Difference between generated and reconstructed energies for single particles
in the energy range between 0.5 and 30 GeV in the FB1. Results with the algorithms
implemented in H1Rec and Hadroo2 are compared to results using the neural network.
In the left column results from particles producing electromagnetic showers are shown:
neutral pions (a), photons (c) and electrons (e). On the right results from hadronic
particles are are shown: charged pions (b), neutral kaons (d) and neutrons (f).
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Figure 6.17: Output of the neural network for identified electrons selected with two
different finders in the CB2 (a). Neural network output for clusters in jets in the IF (b)
and CB2 (c) after the full reconstruction. Also shown is the neural network output of jet
clusters in the CB2 without using track information (d).

than for single photons and π0s which is apparent in the slightly larger tail in figure
6.16e. However, this tail is nearly one order of magnitude smaller than in the H1Rec
case.

For hadrons (right column of figure 6.16) the selection of H1Rec results in larger
reconstructed energies compared to the selection of Hadroo2. This is due to too
many clusters taken on the electromagnetic scale in the Hadroo2 case. The neural
network’s efficiency of identifying clusters to orginate from hadronic showers is as
high as H1Rec’s, resulting in larger reconstructed energies compared to Hadroo2.
At the same time the widths of the distributions are not altered, showing also the
success of the software weighting.

The fact that the distributions of ∆E are not centred around 0, particularly for
hadrons, means that there is the need for an additional calibration. In the course of
this work a method to calibrate the hadronic final state has been developed, utilising
the information from the neural network. It will be introduced in section 8.2. Here
it should be remarked that the larger reconstructed energies with the new shower
separation reduce the magnitude of the calibration constants with respect to former
calibration methods.
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To test the neural network on single particles in data, it was applied to identified
electrons. The neural network output is shown in figure 6.17a for two electron
energies. Electrons with energies larger than 8GeV were found by the standard
electron finder [Bru98] as implemented in the H1 Object Oriented Analysis Software
(H1OO). Electrons with energies around 1.5GeV are obtained from J/Ψ → e+e−

decays. They are selected with the help of a neural network using tracking and
calorimeter information [Sau09]. In order to reduce background the invariant mass
of the e+e− pair was required to be 2.9 < Me+e− < 3.2 GeV. The neural network
behaves as expected on data, with the distributions peaking close to −1. The tails
towards positive values of o are due to background in the electron samples which can
never be fully excluded. An efficiency of about 80% for identifying electron showers
is obtained, which is in good agreement with the results from simulated electrons.

6.7.2 Jets

The jet sample used to verify the neural network output is identical to the calibration
sample introduced in section 8.2. Jets with a transverse momentum of 7GeV or
higher are selected within the acceptance of the calorimeter 7◦ < θjet < 155◦.
In figures 6.17b-d the neural network output is shown for clusters belonging to jets
in data and MC simulations. The data are very well described by the simulations,
demonstrating the applicability of the neural network for data. A well-modelled
sharing of the electromagnetic and hadronic energy in jets can also be observed.
The neural network output in the IF (figure 6.17b) shows an enhancement in the
region of o ≈ 0. This is due to jet clusters originating from more than one inci-
dent particle. Deposits from overlapping electromagnetic and hadronic showers are
clustered together and cannot be separated. In figure 6.17c the output for clusters
in the CB2 is shown. The suppressed peak on the hadronic side (+1) is due to
the energy flow algorithm used to reconstruct the hadronic final state. Calorimeter
deposits which can be assigned to tracks are removed from the hadronic final state.
These tracks originate from charged hadrons, resulting in a decrease of hadronic
clusters. In figure 6.17d the neural network output in the CB2 is shown with the
track finding switched off. The peak on the hadronic side is recovered, also showing
the good selection efficiency of the neural network.
For a simulated jet the generated electromagnetic fraction is given by

f gen
em,jet =

1

Egen
jet

( ∑
photons

Eγ +
∑

electrons

Ee

)
, (6.30)

where the sums run over photons, electrons and positrons contained in the jet. The
reconstructed electromagnetic fraction can be calculated from

f rec
em,jet =

1

Erec
jet

( ∑
clusters

P i
em Ei

cls +
∑
em

Ej
em

)
, (6.31)

where the first sum runs over all jet clusters and the second one runs over all particles
found by the electron finder. P i

em is the the probability obtained from the neural
network of cluster i to originate from an electromagnetically showering particle,

Pem =
1− o

2
. (6.32)

99



em,jetf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ar
b.

 u
ni

ts

0

0.05

0.1

0.15

0.2

0.25
reconstructed

generated

Hadroo2a)

em,jetf
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ar
b.

 u
ni

ts

0

0.05

0.1

0.15

0.2

0.25
reconstructed

generated

neural netb)

Figure 6.18: Generated and reconstructed electromagnetic fractions of jets simulated
inside the calorimeter acceptance. The standard reconstruction Hadroo2 (a) is compared
to results obtained with the neural networks (b).

The jet’s generated electromagnetic fraction f gen
em,jet (6.30) represents the jet’s frac-

tional energy carried by photons and electrons after fragmentation and hadroni-
sation processes. The fractional energy carried by electromagnetic particles after
the full shower development in the calorimeter is different and cannot be accessed.
No attempt to take the expected electromagnetic fraction of the hadronic shower
into account is made. Since in the calculation of the reconstructed electromagnetic
fraction f rec

em,jet (6.31) the electromagnetic fraction of hadronic clusters does not con-
tribute, the same simplification is made on generated and reconstructed level. This
means that on both levels the electromagnetic fraction will be underestimated by
approximately the same amount.
In figure 6.18 the generated and reconstructed electromagnetic fraction for jets
within 7◦ < θjet < 155◦ is shown for the standard reconstruction and using the
neural networks. To calculate f rec

em,jet for the standard reconstruction Pem is taken
to be 1 for electromagnetic clusters and 0 for hadronic ones. As can be observed,
Hadroo2 assigns too much energy on the electromagnetic scale, shifting the peak
of the f rec

em,jet distribution to ∼0.8 (figure 6.18a). With the neural network the cor-
respondence between the generated and reconstructed electromagnetic fraction is
much better with a slight tendency to overestimate the hadronic component (figure
6.18b).
The correlation between f rec

em,jet and f gen
em,jet is shown in figure 6.19 for different calorime-

ter regions with the standard reconstruction (left column) and the neural networks
(right column). For Hadroo2 the electromagnetic component is overestimated ev-
erywhere, whereas when utilising the neural networks the distributions are close to
the diagonal. A slight tendency towards a too large hadronic component can be
noted, which is more pronounced in the IF and FBs than in the CBs.
With the new algorithm a reliable estimate of the jet’s electromagnetic component
is possible, which is of major importance for the calibration described in section 8.2.
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Figure 6.19: Generated and reconstructed electromagnetic fractions of jets in different
calorimeter regions. Shown are results with the standard reconstruction Hadroo2 and the
reconstruction using the neural network for the IF (a and b), the FBs (c and d) and the
CBs (e and f).
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Chapter 7

Reconstruction

In this chapter an overview of the reconstruction algorithms used in H1 is given.
These include track and vertex finding algorithms, sub-detector alignment strate-
gies, the treatment of the scattered electron and the reconstruction of the hadronic
final state. In the last years an effort has been made by the H1 collaboration to
improve on all aspects of the reconstruction. Improvements in the track and vertex
finding and the alignment of the tracking detectors have been implemented in the
reconstruction software H1Rec, and the resulting output is known as DST7. In
the object-oriented analysis software H1OO the alignment of the LAr calorimeter
with respect to the CTD, the calibration of the electron and the reconstruction of
the hadronic final state have been improved. The hadronic final state measurement
gained in precision through the developments discussed in the previous chapter and
a newly developed calibration technique which will be introduced in the following.
The corresponding software version used in this work is 4.0.11.
The emphasis in this chapter will be on achieved precisions and improvements with
respect to reconstruction and software versions used in previous analyses.

7.1 Track and Vertex Finding

The idealised parameterisation of a charged particle’s trajectory in a homogenous
magnetic field with B = (0, 0, Bz) is a helix. The parameterisation has 5 free
parameters: the curvature κ which is the signed inverse radius; the distance dca, the
angle φ0 and the z-value z0 at the point of closest approach to the z-axis; the slope
tan λ = cot θ. The helix is a circle in the rφ-plane, which is given by

1

2
κ(x2

i + y2
i + d2

ca)− (1 + κdca)(xi sin φ0 − yi cos φ0) + dca = 0 , (7.1)

and a straight line in the sz-plane

zi = z0 + (tan λ)si (7.2)

where si is the circle’s arc-length at point (xi, yi). The track’s curvature is related
to the particle’s transverse momentum via

pT =
0.3 ·Bz

κ
[GeV/c] (7.3)
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Figure 7.1: Example of a broken-helix track used in the reconstruction version DST7.
Shown is the rφ view of the CTD. Hits in the CJC1 anc CJC2 are illustrated as red circles,
tracks obtained with the broken-helix fit are shown as solid blue lines. Whereas the high
momentum track 3 stays unchanged, the low momentum track “1+2” gets a significant
correction compared to the single helix fits 1 and 2, illustrated as dashed lines. [Pit09].

which is given in units of GeV/c if Bz is given in Tesla and κ in m−1. The recon-
struction versions used in previous related works [Nik07,Gou08,H110c] assumed a
single helix for each track. However, various effects can result in a deviation from
the ideal helix trajectory. The most prominent ones are multiple scattering, mag-
netic field inhomogenities and continuous energy loss along the particle’s trajectory.
These effects can be taken into account by a track-fit algorithm based on broken
lines [Blo06a]. In H1 a similar approach is used which approximates the particle’s
trajectory with two helixes and allows for a discontinuity at the connection point.

The track reconstruction in H1 starts with combining hits in the CJC to obtain
seeds for the track finding. Approximate track parameters are then fitted with the
helix parameterisation given in equations (7.1) and (7.2) by successively adding hits
which are consistent with the track assumption. After the track reconstruction with
the CJC additional information from the COZ, CIP and CST is added, and the track
fit is repeated. Finally, the track parameters obtained are used as starting values
in a broken-helix fit to acquire corrections to the track parameters due to multiple
scattering and other perturbations. In this fit a discontinuity of the scattering angle
and a track offset between the CJC1 and CJC2 is allowed due to the amount of dead
material between them1. An example of a broken helix fit is shown in figure 7.1.

A bias in the measurement of the polar angle θ of tracks in previous reconstruction

1The COP and COZ Rohacell structures with their Aluminum/Kapton coatings are treated as
thick scatters, also see figure 4.5

104



 (deg)θ
20 40 60 80 100 120 140 160

 ] 
−

3
 >

 [ 
10

λ
 ta

n 
∆

 <
 

−10

−8

−6

−4

−2

0

2

4

6

8

10

DST7
 uncertaintyθ1 mrad 

Figure 7.2: Comparison of the slope parameter tanλ measured with the CJC and CST
after the application of the z-correction to CJC hits. The effect of a systematic uncertainty
of 1 mrad on the track’s θ measurement is shown by the blue lines [Pit09].

versions could be traced back to a bias of the z measurement of CJC hits. The
reason for it were additional hits on the same wire from earlier bunch crossings
which were not taken into account in the pulse subtraction. A correction procedure
has been developed which takes previous and next pulses on the same wire into
account [Pit09]. With the correction applied, the track’s slope tan λ measured with
the CJC agrees within 0.1% with the measurement from the CST (see figure 7.2).
An uncertainty of 1mrad on the measurement of the track’s polar angle θ is assigned,
which covers the uncertainty coming from the measurement of tan λ in the central
region.

Before using the CJC tracks for the vertex determination, an algorithm to identify
nuclear interactions in the detector material and in-flight decays is employed. It
uses pairwise track intersects as seeds. Tracks identified to originate from a nuclear
interaction are excluded from the averaging procedure employed to determine the
position of the primary vertex. Since nuclear interactions can have large charged
particle multiplicities, they have been reported to spoil the vertex reconstruction in
rare cases [Nik07]. This effect is considerably reduced with the nuclear interaction
finder.

In principle it is possible to deduce the primary event vertex from the z0 parameters
of the reconstructed tracks. However, a more precise measurement can be obtained
by using the event timing t0 and information from the silicon track detectors CST,
BST and FST. The primary event vertex is first reconstructed in the rφ plane
where it can vary only within a few 100µm from the xy run vertex due to the small
radial beam dimensions. Then from all CJC and silicon tracks with acceptable dca

and comparable timing a weighted average is built to obtain the z-coordinate of the
primary vertex [Blo04].

Finally, all tracks originating from the the primary vertex are refitted using the
vertex position as a constraint. A similar procedure is employed for all tracks origi-
nating from secondary vertices from particle decays, photon conversions and nuclear
interactions. A similar strategy as for CJC tracks is used for FTD tracks. In the
region where the acceptance of the CJC and FTD overlaps a combined track fit to
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Figure 7.3: a) Momentum resolution of CJC tracks measured with cosmic muons with and
without using the CST. b) Momentum resolution of vertex fitted FTD tracks depending
on the polar angle, obtained from simulated data (both from [Pit09]).

hits from both detectors is tried. If the combined fit fails, standalone FTD tracks
are fitted to the primary vertex. In this case a matching procedure is employed to
avoid double-counting.

The track and vertex finding described above combines information from various
sub-detectors. Essential for a precise track reconstruction is an accurate knowledge
of their respective alignments. Alignment parameters for the CJC, silicon track
detectors and FTD are obtained by using cosmic and beam-halo muons and tracks
from ep interactions. Since not only the positions of the track detectors but also their
components like CJC cells, anode wires and silicon sensor pads can be misaligned,
a large number of shifts and rotations has to be determined. In order to achieve
this and take correlations among the parameters into account they are fitted in a
global procedure [Blo06b]. The alignment together with improvements of the electric
and magnetic field description results in an improvement of the track parameter
resolutions by an overall factor of two [Kle07].

The momentum resolution for CJC tracks can be measured with cosmic muons.
In figure 7.3a such a measurement is shown using CJC hits alone and including
hits from the CST. The constraints from CST hits have a similar impact on the
resolution of CJC tracks as the vertex constraint in ep data. The achieved resolution
is σ(pT)/pT = 1.5%⊕0.17%·pT/GeV, limited by multiple scattering at low momenta
and by small track curvatures at high momenta. Additionally, the resolution of the
angle φ0 at the interaction point σφ0 improves significantly by adding CST hits,
from 1mrad to 0.25mrad at high transverse momenta. The distance of closest
approach to the beam in rφ can be measured with an accuracy of σdca = 0.22 mm⊕
0.52 mm ·GeV/pT. The track finding efficiency for CJC tracks is 99% for muons and
about 94% for hadrons at high pT, which is limited by nuclear interactions. Below
transverse momenta of 0.5GeV the efficiency drops steeply for kaons and protons,
for pions it stays above 80% down to pT ∼ 0.1 GeV.

The momentum resolution for FTD tracks is shown in figure 7.3b. It depends
on the track length and consequently on the polar angle θ of the track. Below a
track momentum of 3GeV it is limited by multiple scattering. The best resolution
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Figure 7.4: a) Geometrical acceptance of the SpaCal and LAr calorimeter for the scattered
electron as a function of virtuality. The shaded region represents the excluded phase space
in this analysis, the inelasticity is required to be 0.2 < y < 0.7. b) Electron finding
efficiency as function of φ, folded into one octant. The shaded region corresponds to the
φ-cracks and is excluded.

is σ(pT)/pT = 9% ⊕ 6.5% · pT/GeV in a region between 15 and 20 degrees. Even
though the track finding efficiency is between 50–60% in single supermodules, tracks
included in the hadronic final state have to pass a number of quality requirements
which include a minimal track length and a minimal number of hits. After their
application the track finding efficiency is only about 10% such that FTD tracks do
not contribute largely to the hadronic final state.

7.2 Electron Identification

Depending on the polar angle θe of the scattered electron it impacts either at the
SpaCal or the LAr calorimeter. In figure 7.4a the acceptance of both calorimeters as
function of the virtuality Q2 is shown. The LAr calorimeter acceptance rises from
close to 0 at Q2 = 60 GeV2 to 1 at Q2 = 200 GeV2. The acceptance does not exhibit
a sharp rise but is smeared out because of the distribution of the vertex z-position.
The region excluded in this analysis is shown as a shaded area. In the considered
phase space with 0.2 < y < 0.7 and Q2 > 150 GeV2, the geometrical acceptance of
the LAr calorimeter is always greater than 0.8. Hence it is sufficient to use only the
LAr calorimeter for the reconstruction of the scattered electron.
For the electron identification the Qescat algorithm is used [Bru98]. It distinguishes
electrons from hadrons based on cluster estimators. The suppression of background
from photons (mainly from π0 decays) is achieved with the requirement of a track
pointing from the primary vertex to the cluster. In a first step all clusters in the
EMC with an energy above 2GeV and a transverse momentum larger than 1GeV
are used as seeds. The axis of a cone is defined through the primary vertex and the
cluster’s centre of gravity. All cells within an opening angle of 7.5◦, starting at a
distance one metre from the calorimeter surface, are merged to the original seeds
(see figure 7.5). Then requirements on the following estimators (cf. 6.1) are applied:

� The energy fraction in the EMC, fEMC, should be larger than 0.94+0.05 cos 2θe,
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Figure 7.5: Schematic view of the two cones used by the electron finder. All cells
within a cone with an opening angle of 7.5◦, starting at a distance of one meter from the
calorimeter surface, are merged to the original seed (solid lines). The cone used for the
isolation criterium is illustrated with dashed lines.

where θe denotes the polar angle of the electron candidate.

� The energy fraction in the hottest N cells hN , where N varies between 4
to 12 depending on the calorimeter wheel, should be larger than 0.5 to 0.8,
depending on θe.

� The lateral standard deviation σR has to be smaller than a limit which depends
strongly on the calorimeter wheel.

� The number of cells contributing to the cluster has to be greater than three.

� The electron candidate has to be isolated in order to suppress electrons orig-
inating from jet fragmentation processes. The energy fraction of the electron
candidate in a cone with radius 0.25 in (η, φ) has to be larger than 0.98 (0.95,
if 0.3GeV in the cone originate from the HAC).

All electron candidates fulfilling the above criteria are matched with tracks to distin-
guish between clusters originating from electrons or photons. The distance of closest
approach between a track and the cluster is calculated by extrapolating the track
with the helix parametrisation from equations (7.1) and (7.2) to the calorimeter sur-
face. The track with the smallest value of dca is stored. The selection of scattered
electron candidates with the help of associated tracks is discussed in section 9.4.
With the above requirements on electron clusters the rejection efficiency for hadrons
is above 99%. In the φ-crack regions and the z-crack between the CB2 and CB3
the electron finding efficiency is only about 40% (see figure 7.4b). These regions are
excluded from the measurement.
After the application of these cuts the electron finding efficiency is established with
an independent track-based electron finder and shown in figure 7.6 [Shu10]. It is
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Figure 7.6: Electron finding efficiency as function of the electron’s polar angle θe (a) and
its energy Ee (b). The uncertainty of 0.5% is illustrated by the dotted lines. In the region
zimp > 0, corresponding approximately to θe < 90◦, the assigned uncertainty is 2%.

found to be 99.5%, largely independent of the electron energy and polar angle. It is
well described by the simulation and no correction for it is applied. The uncertainty
on the electron finding efficiency is 0.5% in the central region (zimp < 0) and 2% in
the forward region (zimp > 0) [Nik07].

7.3 Calorimeter Alignment

At the HERA upgrade and during shutdown periods the CTD was removed from the
H1 detector for maintenance. Due to mechanical imprecisions at the re-insertion of
the CTD, the CTD may have been shifted with respect to its nominal position. The
global alignment of the track detectors (section 7.1) is used to determine the shift of
the CTD with respect to the origin of the H1 coordinate system. In order to correct
for a possible misalignment of the CTD with respect to the LAr calorimeter, the
relative position of the calorimeter is measured with tracks associated with scattered
electrons in a NC DIS sample. The tracks are extrapolated to the surface of the
calorimeter taking the magnetic field into account. The impact positions calculated
from these extrapolated tracks are then compared to the ones obtained from the
electron clusters. In this sample electron tracks are required to have COZ and CST
hits in order to yield a precise measurement of the z-coordinate in addition to a
superior resolution in φ with respect to clusters.
To correct for the misalignment of the calorimeter, its position is allowed to be
shifted along the x-, y- and z-directions with simultaneous rotations around these
axes. In the z-direction the calorimeter wheels BBE, CB1,2 and 3 and FBs are
allowed to shift relative to each other. Prior to the determination of the alignment
parameters a correction for the calorimeter shrinkage due to the cooling down to its
working temperature of 72K is applied. The resulting 10 parameters describing the
rotations and translations are obtained in a global minimisation procedure [Tra10].
The obtained parameters have been tested by applying the corrections to the cluster

109



 [cm]impactz
-200 -150 -100 -50 0 50 100 150

 >
 [

cm
]

 C
ls

 -
 z

 T
r

< 
z

-5

-4

-3

-2

-1

0

1

2

Data
Djangoh

 [cm]impactz
-200 -150 -100 -50 0 50 100 150

D
at

a 
- 

M
C

-0.5

0

0.5

a)

 [cm]impactz
-200 -150 -100 -50 0 50 100 150

 >
 [

cm
]

 C
ls

 -
 z

 T
r

< 
z

-5

-4

-3

-2

-1

0

1

2

Data
Djangoh

 [cm]impactz
-200 -150 -100 -50 0 50 100 150

D
at

a 
- 

M
C

-0.5

0

0.5

b)

Figure 7.7: Difference between the scattered electron’s z-position measured with the
track and cluster before (a) and after the calorimeter alignment (b). At the bottom
the difference between data and simulated events is shown. The dotted lines illustrate a
deviation of 0.1 cm between data and MC.

positions and re-measuring the calorimeter’s alignment. The resulting parameters
are compatible with no further shifts and rotations. Additionally, the procedure has
been tested on simulated data. In the detector simulation no shift of the calorime-
ter with respect to the CTD is applied. The measured alignment parameters are
compatible with zero. Also a simulated arbitrary shift of the calorimeter could be
reproduced by the alignment procedure [Tra10].
In figure 7.7 the difference between the impact z-position measured with electron
clusters and tracks is shown before (a) and after the calorimeter alignment (b).
Before the alignment the difference amounts up to 4.5 cm in the BBE. After the
alignment the cluster and track measurements agree within 0.6 cm. Small fluctua-
tions are well described by the simulation. The agreement between data and MC
improves considerably and is within 0.1 cm, which translates into a difference of less
than 1mrad for the θ measurement.

7.4 Hadronic Reconstruction

For the reconstruction of the hadronic final state an energy flow algorithm is em-
ployed [Pee03,PP+05]. The algorithm known as Hadroo2 (Hadronic Reconstruction
in H1OO 2) combines information from tracks with calorimetric energy deposits.
The momenta of charged particles traversing the track detectors can be either mea-
sured via their track’s curvature or through the energy deposited in the calorimeter.
Depending on the momentum of the incident particle the track or calorimetric mea-
surement has a better resolution. The estimated resolution is used to choose between
the track or the calorimetric measurement and the redundant measurement is re-
moved from the Hadronic Final State (HFS) to avoid double counting. A refined
treatment is necessary to prevent clusters originating from neutral particles being
associated to tracks in dense environments. The output of the algorithm are HFS
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objects which are subsequently calibrated (section 8.2) and used for the jet finding
and reconstruction of the kinematics. Before the algorithm itself is described, the
selection of tracks and clusters used as input is reviewed.

7.4.1 Tracks

Since four-vectors of particle momenta can be assigned only to vertex-fitted tracks,
solely they enter the hadronic final state. In the case of a track matching with the
primary and a secondary vertex, the primary vertex is prioritised. Three possible
types of tracks are available: CJC tracks (central tracks) which may be combined
with CST and COZ hits with a geometrical acceptance of 20◦ ≤ θ ≤ 160◦, tracks
from a combination of hits in the CJC and FTD (combined tracks) with an angular
coverage of 6◦ ≤ θ ≤ 40◦, standalone FTD tracks (forward tracks) in the range
6◦ ≤ θ ≤ 25◦. The selection criteria for them are based on studies by Lee West
[Wes00]. Central and combined tracks are required to have a minimum transverse
momentum of 0.12GeV with additional requirements on the track starting radius
and vertex-matching. Forward tracks have to have a momentum of at least 0.5GeV
with a minimum number of hits in subsequent radial and planar chambers. A
detailed list of all cuts applied is given elsewhere [PP+05]. For tracks in the overlap
region of the CJC and FTD, which fulfil more than one selection criterion, the order
of preference is central, combined and forward.

7.4.2 Clusters

Calorimeter clusters are treated in two steps before they are compared to selected
tracks. In the first step several noise suppression algorithms are applied to remove
electronic and background noise. In the second step the cluster four-vectors deter-
mining the kinematics are obtained.

Noise Suppression

First, all clusters consisting of only one cell and clusters with an energy of less
than 0.2GeV on the electromagnetic scale are removed. Then, four different noise
suppression algorithms are applied [PP+05]. The Fsclus and Newsup algorithms
remove isolated low-energetic clusters originating from electronic noise. They com-
pare energy deposits inside a sphere of radius 40 cm around low-energetic clusters
(20 cm in the IF) with a threshold energy. Clusters with no or only little energy in
their vicinity are flagged as noise and suppressed. The Haloid algorithm removes
energy deposits from halo muons overlaying ep events by selecting clusters in narrow
cylinders parallel to the z-axis. Clusters originating from cosmic muons and coher-
ent noise are suppressed by the Hnoise algorithm. It suppresses energy deposits
in the HAC with neither a signal in the EMC nor a track pointing into the cluster
direction.

The performance of the noise suppression algorithms has been thoroughly studied
[CZ99,Pee03,PP+05]. They significantly improve the calorimetric measurement with
very small inefficiencies of 0.2–1% in not recognising low energy signal clusters.
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Cluster Kinematics

The barycenter b of each cluster is calculated as sum over all contributing cells,
b =

∑
i wipi, where the weight wi of cell i is chosen to be

√
Eem,i. The position

pi of each cell is shifted with respect to its nominal value through the alignment
procedure described in section 7.3. For the reconstruction of the kinematics of the
incident particle a four-vector with energy E is assigned to the calorimetric deposit.
The energy is chosen to be either Eem (5.40) or Ehad (5.41), depending on the
cluster’s probability to originate from an electromagnetic particle, Pem (6.32). The
azimuthal and polar angle of the four-vector are calculated from the shower axis
a = b − v, where v denotes the position of the primary vertex (cf. figure 6.2). A
small correction to them is applied due to the beam tilt, which is an inclination of
the beams with respect to the H1 coordinate system. This tilt is determined in each
run and is smaller than 1mrad.
The use of the electromagnetic probability Pem from chapter 6 to choose between
Eem and Ehad leads to a considerable improvement of the absolute energy scale and
the resolution with respect to the standard cut of f01 > 0.5, which is shown in
section 8.2.

7.4.3 The Hadroo2 Energy Flow Algorithm

The selected tracks and noise-suppressed and corrected clusters are the input to the
energy flow algorithm. For a decision which measurement is preferred the error from
the track fit is compared to the expected resolution of the calorimetric measurement.
Each track is assumed to originate from a pion and its energy is set to

E2
track = P 2

track + m2
π = p2

T/ sin2 θ + m2
π . (7.4)

Neglecting correlations between pT and θ, the error on the track’s energy measure-
ment is

σ(E)track

Etrack

=
1

Etrack

√
p2

T

sin4 θ
cos2 θ σ2

θ +
σ2

pT

sin2 θ
, (7.5)

where σθ and σpT
are the errors obtained from the track fit. In figure 7.8a the errors

on the energy measurement from central tracks calculated with equation (7.5) are
compared to the hadronic resolution of the LAr calorimeter from section 5.4.2. The
errors on the tracks are well described by the simulation. The crossover point where
the calorimetric measurement is to be preferred is at ∼25GeV. Hence, the track is
used for the creation of the HFS object if(

σ(E)

E

)
track

<

(
σ(E)

E

)
LAr

. (7.6)

For the resolution of the LAr calorimeter an approximate expression is used(
σ(E)

E

)
LAr

=
σ(Etrack)LAr

Etrack

=
0.5√
Etrack

. (7.7)

The track’s energy is used for the evaluation of the expected calorimeter resolution
because the number of induced clusters by the incident particle is a priori not known.
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Figure 7.8: a) Measured and simulated track energy resolutions compared to the expected
resolution of the LAr calorimeter [PP+05]. b) Definition of the distance of closest approach
dca between clusters and tracks pointing to the calorimeter. The cylinder radius rcyl

together with the opening angle α0 of a cone define the volume (coloured area) within
which clusters are collected before their energy is compared to the track’s energy [Per06].

If the energy resolution from all clusters behind a track is compared with the track’s
energy resolution the result is biased towards the calorimetric measurement, since
clusters from proximate neutral particles contribute to the cluster energy. To remove
this bias the track energy is preferred to estimate the calorimetric resolution. Only
after this comparison the calorimeter clusters are collected as described below. To
optimise the performance of the algorithm, tracks are sorted according to their
transverse momenta. The algorithm then starts to match calorimeter clusters with
the well-measured low pT tracks first.

Cluster Collection

To estimate the deposited energy originating from a track it is extrapolated to the
calorimeter surface by a helix trajectory. Inside the calorimeter its trajectory is
continued with a straight line as illustrated in figure 7.8b. All clusters inside an
overlapping volume of a cone with opening angle α0 = 67.5◦ and two cylinders with
radii re

cyl and rh
cyl for the EMC and HAC are then collected.

95% of a hadronic shower’s energy are contained in a cylinder of radius λ (see section
5.2.3), which is approximately 30 cm for the EMC. However, naively choosing re

cyl =
λEMC results in too much cluster energy collected. This is because the algorithm
described here uses the barycenters of clusters as distance measure such that cells
further away than re

cyl can contribute to the energy as long as they belong to a
cluster with its barycenter inside the cylinder. Choosing not too large cylinder radii
is especially important for the EMC, since on average about half of a jet’s energy
is carried by photons from π0 decays, and their electromagnetic showers are fully
contained in the EMC.
Suitable cylinder radii can be estimated from simulated single particles, where the
calorimeter deposits behind a track can be unambiguously associated to the inci-
dent particle. In figure 7.9 the deposited energy as a function of the distance of
closest approach dca of the cluster’s barycenter from the extrapolated straight line is
shown for the different EMC wheels. Different charged hadrons behave very similar
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Figure 7.9: Deposited energy as function of the distance of closest approach between the
barycenters of EMC clusters and the extrapolated track of incident charged pions, kaons
and protons. The chosen cylinder radius re

cyl = 15 cm is shown as dashed lines. The
particles were simulated in an energy range between 0.5 and 30 GeV.
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owing to their similar shower development. The energy dependence is found to be
negligible. Choosing re

cyl to be 15 cm, between 97–99% of the shower energy are
contained inside the cylinder. Only in the FB2 the tail is slightly larger with about
94% shower containment in the cylinder. Figure 7.10 shows the same distributions
for the HAC. A cylinder radius rh

cyl of 30 cm leads to a 95% shower containment,
with the exception of the FB2 and IF, where it is again about 92%. The twice as
large cylinder radius can be attributed to the about twice as large cell sizes in the
HAC.

The total cluster energy inside the collection volume Eclus is taken on the final scale,
i.e. clusters with Pem > 0 are taken on the electromagnetic scale Eem (5.40) and for
all others the hadronic scale Ehad (5.41) is used.

Track Measurement Preferred

If equation (7.6) is fulfilled, the track is used to create an HFS object. The energy
deposited in the calorimeter due to the charged particle which generated the track
has to be set to zero to avoid double counting of the track energy. However, just
subtracting Etrack from Eclus would bias the measurement towards a too large total
energy because of upwards fluctuations from the calorimetric measurement. Instead,
the cluster energy Eclus is set to zero if

Eclus < Etrack

1 + 1.96

√(
σ(E)

E

)2

track

+

(
σ(E)

E

)2

LAr

 , (7.8)

which takes into account the fluctuations of both measurements within a 95% confi-
dence interval. If equation (7.8) is not fulfilled, the cluster’s excess energy is assumed
to originate from a neutral particle or another track, and the energy Etrack is sub-
tracted from Eclus. The remaining clusters are kept and used in the subsequent steps
of the algorithm.

Calorimetric Measurement Preferred

In the case of equation (7.6) being false the cluster energy is compared to the track
energy,

Eclus − 1.96σclus < Etrack < Eclus + 1.96σclus (7.9)

with σclus = 0.5/
√

Eclus. If this relation is true the measurements are considered to
be compatible and the track is removed. The clusters are then used for the creation
of an HFS object.

If the track’s energy is smaller than Eclus − 1.96σclus, it is assumed that Eclus origi-
nates from several particles, only one of which resulted in the track pointing to the
calorimetric deposit. The track is then used for the creation of an HFS object and
calorimetric energy is subtracted as above.

On the other hand, if Etrack > Eclus +1.96σclus the track measurement is usually not
reliable due to a high pT track. In this case the track is removed. Once all tracks
have been treated, the remaining clusters are used for the creation of HFS objects.
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Figure 7.11: Average fraction of the jet transverse momentum from clusters as function
of the jet’s polar angle.

Performance

After the application of the energy flow algorithm the hadronic final state is a
mixture of tracks and clusters. These HFS objects are used for the reconstruction
of the event kinematics and the jet finding. In figure 7.11 the average fractional
jet transverse momentum from clusters is shown for jet data in DIS and simulated
jet events. For θjet < 10◦ the fractional jet PT from clusters is larger than 90%
due to the low efficiency of the FTD. In the region of 10◦ < θjet < 25◦ combined
and central tracks start to contribute thus lowering the fraction of clusters. Inside
the full acceptance of the CJC the fractional PT from clusters is about 45–50%.
The data are well described by the simulation over the full angular coverage of the
detector. The calibration of the HFS in the context of the energy flow algorithm
Hadroo2 is described in section 8.2.

7.5 Definition of Kinematic Variables

In deep-inelastic scattering the event kinematics are constrained by only two of
the three variables x, y and Q2 at a fixed centre-of-mass energy

√
s. Because of

energy and momentum conservation any one of them can be measured either through
the scattered electron or the hadronic final state, if the electron and proton beam
energies E0

e and E0
p are known. This results in various possibilities of reconstructing

the event kinematics, each with its advantages and disadvantages depending on the
values of Q2 and y. The kinematic reconstruction methods and variables used in
this work are reviewed in the following.

Scattered Electron

The azimuthal angle of the scattered electron φe is obtained from the associated
track, if it is a vertex fitted track and thus benefits from the good rφ-resolution of
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the CJC. If a non-vertex fitted track is associated to the electron φe is obtained
from the cluster. The polar angle θe is always calculated from the cluster position,
since electron tracks without COZ or CST hits do not have a very precise tan λ
and consequently θ measurement. After the alignment procedure (section 7.3) the
agreement between measuring the angles φe and θe with tracks and the cluster
position is within 1mrad, and no additional systematic uncertainty is introduced.
For the energy of the scattered electron Ee the calorimetric energy measurement is
used, with a calibration uncertainty of 0.5% in most of the kinematic coverage (see
section 8.1). The excellent electromagnetic resolution of the LAr calorimeter yields
resolutions of 4–6% over the full energy range considered in this analysis [Nik07].
The fourvector of the scattered electron is given by

Ee

px,e

py,e

pz,e

 =


Ee

Ee sin θe cos φe

Ee sin θe sin φe

Ee cos θe

 . (7.10)

Electron-Sigma Method

The electron-Sigma (eΣ) method is a combination of two reconstruction methods
introduced to reduce the effects of QED radiation and losses, due to the limited
detector acceptance, on the kinematic reconstruction [BB95]. It is the most precise
reconstruction method in the kinematic range of this analysis [Gou08] and is used
to reconstruct the DIS kinematic variables x, y and Q2 throughout this work.
The reconstruction of Q2 is identical with the electron-method, using the energy of
the scattered electron and its polar angle,

Q2 ≡ Q2
e = 4 E0

e Ee cos2

(
θe

2

)
. (7.11)

The longitudinal momentum balance of the hadronic final state is defined as

Σ =
∑

h

Eh − pz,h , (7.12)

where the sum runs over all HFS objects2. Energy and momentum conservation
imply that

E − pz = Σ + Ee − pz,e = 2E0
e , (7.13)

which is only approximately fulfilled for an experimental apparatus with limited
resolution and acceptance. However, (E − pz)/2 can be used as an alternative
expression for the electron beam energy E0

e . Thus it is possible to correct for a
reduction of E0

e prior to the hard interaction due to initial state radiation escaping
through the beam pipe in the negative z-direction. Utilising this, the inelasticity y
and the virtuality Q2 can be written as

yΣ =
Σ

E − pz

, Q2
Σ =

E2
e sin2 θe

1− yΣ

. (7.14)

2In this analysis all particles except for the scattered electron are considered to contribute to
the HFS.
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Figure 7.12: Systematic biases and resolutions of the reconstruction of Q2 (a) and y (b)
with the eΣ-method obtained with the Djangoh MC. Shown are the mean values and
variances of fitted Gaussian distributions. Identical results are obtained with the Rapgap
MC.

The Bjorken scaling variable x is then obtained through the relation Q2 = xys,

x ≡ xΣ =
Q2

Σ

s yΣ

. (7.15)

Since the centre-of-mass energy
√

s is calculated using the nominal beam energies,
xΣ retains some sensitivity to initial state radiation. Finally, the inelasticity y is
calculated from a mixture of both reconstruction methods

y ≡ yeΣ =
Q2

e

s xΣ

(7.16)

and thus benefits from the excellent resolution of the electron method for the re-
construction of Q2 and the relatively low sensitivity to initial state radiation for
the reconstruction of x [BB99]. In figure 7.12 the achieved resolutions with this
reconstruction method are shown together with the introduced systematic biases.
The generated Q2 and y are defined by taking radiated photons in close proximity
to the scattered electron into account (see section 10.2). The mean differences be-
tween the reconstructed and generated values of Q2 and y are smaller than 1%. The
introduced biases from the eΣ-method are thus negligible. The obtained resolutions
are 4.5–2.5% for the reconstruction of Q2 and 8–4% for the reconstruction of y.

Double-Angle Method

The double-angle method uses the angles of the scattered electron θe and the in-
clusive hadronic angle γh for the reconstruction of kinematic variables. It is, in a
first approximation, insensitive to the absolute energy scales of the electron and
HFS measurements and is used for the determination of calibration constants and
the evaluation of energy scale uncertainties. Since angles can be measured very pre-
cisely, the double-angle method yields good resolutions. It is, however, very sensitive
to initial state QED radiation and losses due to the limited detector acceptance. To
obtain a sample without any systematic biases special selection criteria have to be
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applied. Hence, this method is not used for the reconstruction of x, y and Q2 for the
measurement of the jet cross sections, but only for the reconstruction of variables
relevant for the calibration.
The angle of the hadronic system is defined via

tan
γh

2
=

Σ

P h
T

, (7.17)

where the transverse momentum of the hadronic final state P h
T is given by

P h
T =

√√√√(∑
h

Px,h

)2

+

(∑
h

Py,h

)2

. (7.18)

The sums extend over all HFS objects. In equation (7.17) the nominator and de-
nominator are both calibrated with the same method such that calibration effects
mostly cancel. In the simple QPM the angle γh corresponds to the polar angle of
the struck quark. The transverse momentum of the hadronic final state can thus be
expressed in terms of the angles θe and γh

P da
T =

2E0
e

tan γh

2
+ tan θe

2

. (7.19)

Writing the electron energy in terms of γh and θe one obtains

Eda =
2E0

e sin γh

sin γh + sin θe − sin(γh + θe)
. (7.20)

The resolution of the double-angle measurement and biases due to unmeasured par-
ticles are covered in section 8.2.
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Chapter 8

Calibration

This chapter covers the calibration of the LAr calorimeter for the scattered elec-
tron and the hadronic final state. Whereas the energy of the scattered electron is
measured purely with the calorimeter, the hadronic final state is reconstructed with
the energy flow algorithm combining tracks with the measurement of calorimetric
energy deposits, as described in the previous chapter.

The calibration algorithms developed make use of the over-constrained kinematics
in NC DIS scattering to calculate the expected energy of the scattered electron
or the HFS. Calibration functions are derived for the data and the simulation by
comparing the expected with the measured energy. The calibrations obtained are
therefore independent of the simulation of the absolute energy scale. Prior to the
application of the calibrations presented here, the energy scale is known within 2–3%
for the electron energy and 4–5% for the HFS.

8.1 Electron Calibration

The electromagnetic energy scale of the LAr calorimeter has been obtained from
test beam data [H194b]. During H1’s operation the stability of the calorimeter over
time has been carefully monitored and charge calibrations of the read-out system
have been performed at least once per day. However, changes of the LAr purity, the
pedestal subtraction and the charge collection efficiency can lead to small deviations
from the electromagnetic scale over time. Furthermore, modifications to the inner
part of the detector introduced additional dead material that reduces the energy
of the scattered electron before it enters the active part of the calorimeter. Since
these partly time-dependent effects are only to a certain degree modelled in the
simulation, the deviations between data and MC simulations can be larger than 2%.
The electron calibration aims to correct for these effects and to obtain the absolute
energy scale in the data and simulation independently.

The procedure to obtain calibration constants for the electron energy has been devel-
oped elsewhere [Hei99,Nik07] and has been improved recently [Nik10]. In a special
sample, where the double-angle method yields unbiased reconstructed energies, the
energy of the scattered electron Ee is compared to the energy obtained with the
double-angle method Eda. Deviations of the ratio Ee/E

da from one are then used
to derive the calibration constants.
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Figure 8.1: a) The ratio of the generated energy of the scattered electron to the double-

angle energy Eda after the application of the electron calibration selection. The peak is
fitted by a Gaussian with mean µ and variance σ. b) Mean values of Ee/Eda as a function
of the polar angle of the scattered electron.

The trajectory of the scattered electron can be reconstructed very precisely using
the primary vertex, the electron’s track and impact positions on the calorimeter.
Because of the high statistics of the Hera-2 data set, the calibration factors can
be determined for a finely segmented grid in zimpact and φe. Here zimpact denotes
the z-coordinate of the electron’s impact position on the calorimeter and φe is the
azimuthal angle of the scattered electron. Local changes of the amount of material in
front of the calorimeter can thus be taken into account. The calibration is performed
in three steps. First, calibration factors are obtained for each octant of the BBE and
CBs. Because of decreasing statistics for smaller values of θe, only one calibration
factor is obtained for the FBs. In the next step 200 calibration factors depending
on zimpact are determined. In the backward region a segmentation of 1 cm is chosen,
becoming larger with increasing zimpact. In the last step 128 calibration factors
depending on φe are obtained for each of the BBE, CB1 and CB2 calorimeter wheels.
The calibration factors are determined for eight different Hera-2 run periods to
account for a possible time dependence of the calorimeter response.
To test the electron calibration the following selection criteria are applied addition-
ally to the DIS selection discussed in section 9.6:

� Ee > 14 GeV

� yΣ < 0.3 for zimpact ≤ 20 cm

� yΣ < 0.5 for 20 < zimpact ≤ 100 cm

� γh > 10◦

The first cut ensures well reconstructed electrons and a clean sample with negli-
bile contamination from non-ep background. The other three cuts ensure a good
measurement of the hadronic final state and consequently an unbiased double-angle
measurement. The effect of this selection on the measurement of Eda is shown in
figure 8.1a using MC simulation. Eda shows good correspondence with the generated
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Figure 8.2: Mean values of the ratio of the electron energy Ee to the energy obtained

with the double-angle method Eda as function of φe folded into one octant (a), (b) and
depending on zimpact (c), (d). Data from the full Hera-2 data set are compared to
simulated events with the ratio shown at the bottom, the dotted lines denote a 0.5%
difference. Before applying the calibration the reconstruction of Ee depends strongly on
zimpact and φe, the difference between data and simulation is 2–3% (a), (c). After the
calibration Ee agrees well with Eda, independent of the azimuthal angle or the impact
position, and the ratio is described by the simulation within 0.5% (b), (d).
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energy of the scattered electron, almost independent of the electron scattering an-
gle (figure 8.1b). The resolution of the double-angle measurement is 2–3%, slightly
varying with θe.

Comparisons of the electron energy measurement with Eda are shown in figure 8.2
for data and simulated events before and after the calibration. The uncalibrated
electron energy is too small and depends strongly on the impact position. Visible
structures in the Ee/E

da ratio are only approximately described by the simulation.
The largest deviations are observed in the z-crack regions and in the BBE (z <
−155 cm). Electron clusters within ±5 cm of the z-crack between the CB2 and
CB3 are excluded from this analysis, as well as clusters within ±2◦ of φ-cracks.
After the application of the calibration Ee agrees well with Eda independent of the
impact position. The difference between data and simulated events is within 0.5%
for zimpact < 100 cm which is assigned as systematic uncertainty on the measurement
of Ee. For the region zimpact > 100 cm an uncertainty of 1% is assigned [Mai07].

8.2 Calibration of the Hadronic Final State

The calibration of the HFS is more involved than the electron calibration. The
HFS is a composition of tracks and calorimeter clusters due to the application of
the energy flow algorithm Hadroo2 (section 7.4.3). Tracks entering the HFS are
well measured and do not have to be corrected. Calorimeter clusters on the other
hand can originate from hadronic or electromagnetic showers or mixtures of them
and their correction factors will be very different. Even after the application of
the software weighting an energy dependence is observed for low energy clusters
which has to be taken into account. However, the same principle as for the electron
calibration can be applied. Due to the over-constrained kinematics at HERA it
is possible to define a reference measurement independent of the hadronic energy
scale. The transverse momentum of the HFS is then compared to the reference
measurement and calibration functions are defined.

8.2.1 Calibration Sample

The double-angle method (see section 7.5) is to a good approximation independent
of the absolute energy scale. Hence it is possible to use P da

T as a reference, if biases
due to losses and photon radiation from the incoming and scattered electron due
to QED processes can be eliminated. In a first step a sample with a well measured
scattered electron in the LAr calorimeter and a jet that balances its transverse
momentum is defined via the following selection criteria:

� Q2 > 100 GeV2,

� P e
T > 10 GeV,

� background suppression and electron quality cuts,

� only one jet.
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The first three cuts ensure a well measured scattered electron and a background free
sample, where the third item stands for the same topological background finders
and requirements on the primary vertex and the scattered electron as used for the
selection of NC DIS events (sections 9.3 and 9.6).
The last cut in the list is used to select events with only one high-PT jet, which
balances the transverse momentum of the electron to a good approximation. For
this purpose the longitudinally invariant kT-algorithm with R0 = 1 and a minimum
jet PT of 2.5GeV is used. The small minimum transverse momentum used at the
jet finding stage ensures that in the selected events only a small fraction of the
transverse momentum of the HFS originates from objects outside the jet. This is
because if there is a second jet with PT > 2.5 GeV found in the event, the event is
rejected.
In the next step a selection is employed to remove biases of the P da

T measurement
originating from losses due to the limited detector acceptance. No cuts on variables
depending on the HFS measurement are applied in order not to bias the subsequent
calibration. The following cuts are used:

� no significant signal in the SpaCal,

P spacal
T /P da

T < 0.01 and ESpaCal/Eda < 0.01,

� no significant signal in the Tail Catcher,

PTC
T /P da

T < 0.01 and ETC/Eda < 0.01,

� P e
T/P da

T > 0.88,

� P e
T(cluster)/P e

T(track) < 1.25,

� |θjet − γh|/θjet < 1.5.

This list is in the following termed “calibration sample selection” or CSS. The first
cut ensures that no hadronic energy was lost in the backward direction because
of a punch-through in the SpaCal with its small effective length of two nuclear
interaction lengths. The second cut ensures that no energy escaped out of the LAr
calorimeter. The third and fourth cuts considerably reduce the effects of initial and
final state QED radiation on the double-angle measurement. The last cut ensures a
well contained hadronic final state when the jet is measured in the forward direction
at small θjet. The effect of these cuts on the measurement of P da

T is shown in figure
8.3. The generated PT, which is the PT of the generated HFS and consequently of the
generated scattered electron in simulated events, is compared to the measured P da

T .
This is done after the electron and one-jet selection and after additionally applying
the CSS cuts from above. Without the CSS cuts, the double-angle measurement is
biased towards too large transverse momenta with a strong PT dependence. After
the application of all cuts, P da

T agrees within 1% with the generated PT in simulated
events. A small remaining bias in the central region (80◦ < θjet < 135◦) is being
accounted for by a correction function. For this purpose a smooth parameterisation
depending on P da

T and θjet is constructed and fitted to the relative difference over
the full measurement range. The obtained correction function is displayed as black
line.
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Figure 8.3: Relative difference for simulated DIS events between the generated PT and

P da
T as function of P da

T in various regions of θjet for the calibration sample. Shown are
the P da

T measurement before (open circles) and after (filled circles) the application of
selection criteria which ensure a well-contained HFS (CSS). The correction applied to the
P da

T measurement is shown as black line.

After the application of this correction the double-angle measurement is tested for
the calibration sample. The agreement between the generated PT and P da

T is within
0.3% as shown in figure 8.4. Only in the direction of the BBE (135◦ < θjet <
155◦) a larger deviation than 0.3% is observed at small values of P da

T . However,
the statistical uncertainty in this region is large and a further study of this effect
is left for a dedicated analysis at low transverse momenta. The influence of the
calibration on the double-angle measurement is also shown in figure 8.4. After
the full calibration of the HFS P da

T still agrees with the generated PT within 0.3%
validating the assumption of P da

T being independent of the absolute energy scale.
In this calibration sample the resolution of the P da

T measurement is approximately
2% for θjet . 80◦ and 3–4% in the region of the CB1 and CB2, being by a factor of
three to four smaller than the expected resolution of the HFS measurement. In the
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Figure 8.4: Relative difference for simulated DIS events between the generated PT and

corrected P da
T as function of P da

T in various regions of θjet for the calibration sample. The
dashed lines illustrate a deviation of 0.3%. Shown is the P da

T measurement before (open
circles) and after (filled circles) the HFS has been calibrated.

following P da
T stands always for the double-angle measurement multiplied with the

derived correction function (figure 8.3).

In figure 8.5 control distributions of the calibration sample are shown for one period
of the Hera-2 data and simulated DIS events. In general, all relevant variables
are well described by the simulation. The distribution of P da

T (8.5a) peaks at ap-
proximately 14GeV which is due to the requirement of the scattered electron being
measured in the LAr calorimeter and the cuts on Q2 and P e

T. The distribution has
a significant tail towards large values of P da

T providing a reference for jets with large
PT. The distribution of the polar angle of jets θjet is shown in figure 8.5b. It peaks
at small values of θjet and is relatively flat in the central region. In the backward re-
gion (θjet > 135◦) a comparable small number of jets is observed, resulting in limited
statistics for the calibration of the BBE. Large statistics in the forward direction
allow for a finer binning in the IF and FB calorimeter wheels. Also shown is the elec-
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Figure 8.5: Distributions of P da
T (a) and θjet (b) for the calibration sample. The jets’

electromagnetic energy fraction fem,jet is shown for the forward (c) and central (d) region
of the detector. All distributions are normalised to their area.

tromagnetic fraction of jets fem,jet (6.31) for two different regions of θjet (figures 8.5c
and d). fem,jet is important for the subsequently developed calibration, which treats
electromagnetic showers differently from hadronic ones. In the forward direction
the electromagnetic fraction is calculated to a very large extent from calorimeter
clusters only, whereas in the central region tracks contribute to the calculation. In
both cases fem,jet is very well modelled by the simulation.

8.2.2 Starting Scale

The absolute scale of the energy measurement is given by the mean value of the
distribution of the PT–balance, defined as P h

T/P da
T , in the calibration sample. To

estimate the mean value and width of the PT–balance distribution it is fitted by a
Student’s t-distribution given by

f(t) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)

(
1 +

t2

ν

)−(ν+1)/2

(8.1)

with

t =
x− µ

σs

. (8.2)
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Figure 8.6: Fits of the parameterisation (8.1) to distributions of P h
T/P da

T in the forward
(a) and central (b) regions.

Γ stands for the Gamma-function, the parameter µ corresponds to the mean value
of the distribution, and ν is referred to as number of degrees of freedom. The distri-
bution resembles a Breit-Wigner distribution for small values of ν and approaches
a Gaussian distribution as ν becomes large. In this case the parameter σs resem-
bles the variance of the Gaussian distribution. The advantage of using equation
(8.1) for fits of the PT–balance distribution instead of a Gaussian lies in the vary-
ing shape of the PT–balance distribution depending on the jet’s polar angle. In
the forward region, where the energy measurement is dominated by the calorimet-
ric measurement, the PT–balance distribution is Gaussian shaped. In the central
region, where the contribution from tracks is large, a Breit-Wigner distribution de-
scribes the shape of the PT–balance better. The Student’s t-distribution allows a
smooth transition between these two cases without an a-priori assumption on the
shape of the PT–balance. It allows also a fit over the full range instead of restricting
the fit only to the peak region. Examples of fits to PT–balance distributions are
given in figure 8.6 for the forward (a) and central (b) regions. In the forward region
the value of ν is large with an approximately Gaussian distribution whereas in the
central region ν takes usually values around one. Since both, ν and σs, control the
width of the distribution the variance is defined via the full width at half maximum
(FWHM) as

σ =
FWHM

2
√

2 ln 2
(8.3)

which resembles the variance of a Gaussian in the limit of large ν. The error on
σ is determined by independently varying ν and σs until a change of χ2 by one is
obtained. The error on σ is consequently defined as the change of the FWHM by
this variation.
In figure 8.7 the mean values (a) and relative resolutions σ/µ (b) of the PT–balance
for the full Hera-2 dataset are shown as function of θjet. Results obtained with
the standard implementation of Hadroo2 are illustrated as open circles. In this
implementation a cut on the energy fraction in the first two calorimeter layers is
used to decide whether a cluster is taken on the electromagnetic or hadronic en-
ergy scale (section 6.2). Additionally it has larger cylinder radii re

cyl and rh
cyl for the
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Figure 8.7: Mean values (a) and relative resolutions (b) of PT-balance distributions in
bins of θjet, obtained with fits to equation (8.1). Shown are data from the full Hera-2
dataset. Results obtained with the standard hadronic reconstruction are compared to
results using neural networks for the choice of the electromagnetic or hadronic energy
scale and optimised values of the cylinder radii re

cyl and rh
cyl (see section 7.4.3).

collection of clusters behind tracks (see section 7.4.3). The utilisation of the electro-
magnetic probability Pem from equation (6.32) for the separation of electromagnetic
and hadronic showers (filled black circles) significantly improves the absolute en-
ergy scale by 8% in the forward region. Simultaneously the resolution improves by
10–15% in the IF (θjet < 15◦). In the region of the FB2 and OF, corresponding
to 15◦ < θjet < 30◦, the absolute energy scale improves by 10% with an unaltered
resolution. In the central region the visible improvement of the absolute energy scale
results from the combination of the shower separation and optimised cylinder radii.
In the region of the FB1 and CB3 (30◦ < θjet < 80◦) the improvement is larger
due to a higher granularity compared to the CB1 and CB2. In the FB1 and CB3
also the resolution improves. For θjet > 80◦, corresponding to the CB1 and CB2,
the absolute energy scale improves only slightly by about 2% with no change of the
relative resolution.
The mean values of the PT–balance distributions are the starting point for the
calibration. On average the deviation from the absolute energy scale is 10–15% in
the forward region and 5% in the central region. Prior to the calibration, besides
the dependence on the jet’s polar angle shown, also a dependence on the incident
jet energy and the jet’s electromagnetic fraction is observed. These dependencies
have to be taken into account to achieve a flat detector response in these variables.

8.2.3 Calibration Procedure

The four-vector of the hadronic final state h is given by

h =
∑
i∈jet

(αi ci
jet + tijet) +

∑
j∈out

(βj cj
out + tjout) , (8.4)

where c denotes a HFS object with its four-vector obtained from clusters and t an
object with a track four-vector. The sums run over all HFS objects in the event
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whereby a distinction between objects inside and outside jets is made, with cluster
calibration factors α and β. Tracks can be taken as well measured and no calibration
is applied to them. During the first calibration step the calibration factors α and β
are assumed to be equal

α = β = Pem ge(ηcls, Ecls;~ve) + (1− Pem) gh(ηcls, Ecls;~vh) . (8.5)

The calibration functions for electromagnetic and hadronic clusters ge and gh are
smooth parameterisations covering the full detector acceptance. They depend on
the cluster’s pseudorapidity ηcls and energy Ecls and are given by

g(ηcls, Ecls;~v)−1 = N(ηcls, v0–4) S(ηcls, Ecls, v5–10) . (8.6)

The functions g factorise into a normalisation part N and a shape S, where both are
chosen to be sigmoid functions (6.16) with polynomials in ηcls as arguments. These
functions are n times continuously differentiable and in contrast to plain polynomials
they do not diverge outside the fit range. Smoothness of the definitions (8.5) and
(8.6) ensures that no discontinuities are present, for example from the binning chosen
to obtain the free parameters.
The 22 free parameters ~ve and ~vh of the calibration functions ge and gh are obtained
in a global χ2 minimisation procedure with χ2 being defined as

χ2 =

Nbins∑
i=1

1

σ2
i

(〈
P h

T

P da
T

〉
i

− 1

)2

. (8.7)

It is a measure of the deviation of P h
T from P da

T where the former stands for the
calibrated transverse momentum of the HFS,

P h
T =

√
h2

x + h2
y . (8.8)

The sum in equation (8.7) extends over bins defined double-differentially in (ηjet, P
da
T )

and (ηjet, fem,jet). During the minimisation the mean value of the PT–balance is
obtained for each bin i through a summation over all events inside the bin, N i

ev, and
is given by 〈

P h
T

P da
T

〉
i

=
1

N i
ev

N i
ev∑

j=1

(
P h

T

P da
T

)
j

. (8.9)

The error σi is the standard deviation of the distribution of P h
T/P da

T in bin i. χ2 is
minimised with a least-squares technique using second order derivatives. The used
algorithm is similar to the Minuit algorithm [JR75], except that the calculation of
the first derivatives is performed analytically. The exact covariance matrix is also
calculated using the first derivatives, resulting in a more efficient algorithm than
the original one. This is necessary since the calculation of χ2 uses all events in the
calibration sample in each step of the minimisation.
In the second step of the calibration procedure a small correction factor is applied to
clusters in jets to remove a residual energy dependence on the jet’s incident energy,

α = β · fj(ηjet, P
jet
T , ~vj) (8.10)
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Figure 8.8: The calibration functions ge, gh and fj (from left to right) for data.

which depends on the jet’s pseudorapidity ηjet and transverse momentum P jet
T . In

this step of the calibration process the previously obtained values for ~ve and ~vh are
kept fixed and only the parameters ~vj are determined. The parameterisation of fj is
chosen to be a superposition of three sigmoidal functions to allow enough flexibility
to correct for differences between the different regions of the H1 detector. It was
found to be sufficient to use one sigmoidal function for the calibration of jets in the
central, track-dominated region, in the transition region between the CJC and FTD
in front of the calorimeter and in the forward (IF) region. A smooth interpolation
between them is employed such that no discontinuities are present. In the angular
regions where the fit is not constrained by data, i.e. ηjet < −1.5, ηjet > 3.0 the
function fj is constructed to smoothly approach unity. In the region of low jet
transverse momenta, P jet

T < 7 GeV a functional form motivated by the calibration
of jets at low P jet

T is used [OS09].

The obtained calibration functions are shown in figure 8.8 for data. The electro-
magnetic cluster function ge is flat with a value of one in the CBs. In regions with
more dead material in front of the calorimeter, i.e. the BBE and in the forward
direction, it takes values larger than one. The largest value of about 1.5 is observed
for low energy clusters in the very forward region, η ∼ 3, where particles traverse
a long stretch of the beam pipe and the support structure of the FTD (see figure
8.9). The hadronic function gh exhibits a fall-off from values of ∼ 1.3 at low energies
to 0.9 at high energies in the central region. This energy dependence is expected
since low energy hadronic clusters are so far only calibrated with an average e/π
ratio [WK+94]. In the forward region, η > 1, no energy dependence is observed with
values of gh between 1.1 and 1.2. gh exhibits a strong rise towards large energies and
small values of η and saturates at values of ∼ 1.3 in the BBE region. In this region of
pseudorapidity considerable amounts of energy are lost due to the missing hadronic
calorimeter in the backward direction. The correction function for jet clusters, fj,
takes values between 1.25 an 0.95. The largest PT-dependence is observed in the
backward region with η < 0 for jets with low transverse momenta. In the forward
region the PT-dependence is reduced with correction factors close to unity.

After each step of the minimisation procedure the results are verified using the
mean values of the PT–balance distributions obtained from fits to equation (8.1). In
figure 8.10 the obtained mean values of the PT–balance distributions (parameters µ
from the fits) are shown prior to the calibration, after the first step and after the
total calibration in (ηjet, P

da
T ) bins. The uncalibrated PT–balance shows a strong
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Figure 8.9: Pseudorapidity regions in the H1 detector.

dependence on ηjet and a weak dependence on P da
T which is more pronounced in

the forward region. At larger values of P da
T the uncalibrated PT–balance is closer to

unity owing to the on average larger electromagnetic content of high energy hadronic
showers. The first calibration step, i.e. the application of ge and gh, mostly removes
the dependence on ηjet, also achieving a flat PT–balance as function of fem,jet. After
this step the PT–balance is within 5% around unity with a residual dependence on
P da

T . Only in the very forward region 3.0 < ηjet < 2.7, corresponding to θjet of 5–7◦,
the PT–balance is about 8% low after the first step. After the application of the full
calibration, including fj, the PT–balance is flat in P da

T , ηjet and fem,jet.

8.2.4 Results

The free parameters of the calibration functions are obtained for four different run-
ning conditions of the Hera-2 phase. The time dependence is found to be small
but non-negligible if a precision of 1% should be achieved. Djangoh is used to
determine the calibration constants for the simulation.
Subsequently the results are verified for each of the Hera-2 run periods. The data
are compared to Djangoh simulations with a different set of PDFs and modified
hadronisation and parton shower settings and to simulated events from Rapgap.
Three different samples are used to test the calibrations. All periods show the same
quality of agreement and thus allow to summarise the results for the full Hera-2
dataset as shown in the following.
In figure 8.11 the mean PT–balance is shown as function of P da

T in bins of ηjet with the
selection criteria of section 8.2.1. The mean values are obtained with fits to Student’s
t-distributions (8.1). The PT–balance is sufficiently flat and close to unity. In the
central region at low values of P da

T deviations from unity of the order of 2% can be
observed. These result from migrations into the sample with respect to the sample
used for the determination of the calibration functions. Furthermore, during the
calibration procedure the arithmetic mean values of the PT–balance distributions
were required to be unity, whereas now the distributions are fitted with Student’s t-
distributions. The different method of obtaining the mean values can result in small
differences of the order of 1-2%. These effects are well modelled. The double-ratio,
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Figure 8.10: Mean values of the PT-balance distributions as function of P da
T in bins of

ηjet. Shown are results obtained prior to the calibration (open circles), with the cluster
calibration (open squares) and with the full calibration (filled circles). The mean values
were obtained with fits using the Student’s t-distribution (8.1).

defined as

dr =

〈
P h

T

P da
T

〉
Data

/〈
P h

T

P da
T

〉
MC

(8.11)

is shown in figure 8.12. Both models describe the data within 1% over the full
detector acceptance. In figure 8.13 the mean PT–balance is shown as function of
the electromagnetic energy fraction of jets fem,jet in bins of ηjet. The PT–balance
is flat around unity in the calorimeter dominated forward region with ηjet > 2
where a flat response in fem,jet corresponds to a correctly reconstructed jet energy
independent of the jet’s particle content. This shows the merit of the separation
of electromagnetic and hadronic showers (chapter 6) together with a calibration
that takes the probability of a calorimeter cluster to originate from electromagnetic
showers into account. In the full acceptance of the CJC the PT–balance is between
0.96 and 0.98 for small values of fem,jet. In this region a large hadronic energy fraction
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Figure 8.11: Mean values of the PT-balance distributions as function of P da
T in bins of

ηjet using the full Hera-2 dataset. Shown are data, Djangoh and Rapgap after the
full calibration with the cuts from section 8.2.1. The mean values are obtained from fits
to Student’s t-distributions (8.1).
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Figure 8.12: Double-ratio of the PT-balance as function of P da
T in ηjet bins corresponding

to figure 8.11. The dashed (dotted) line represents a 1% (2%) deviation.
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Figure 8.13: Mean values of the PT-balance distributions as function of fem,jet in bins
of ηjet for the full Hera-2 dataset. Other details are given in the caption of figure 8.11.
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Figure 8.14: Double-ratio of the PT-balance as function of fem,jet in ηjet bins correspond-
ing to figure 8.13. The dashed (dotted) line represents a 1% (2%) deviation.
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Figure 8.15: Pull distribution (8.12) obtained for mean values of PT-balance distributions

in bins of P da
T , fem,jet and ηjet. The assumption of εh = 1% was used.

is equivalent to a large track fraction and only a small contribution from hadronic
clusters to the jet’s reconstructed energy. This means that the energy flow algorithm
removed too many clusters from the list of HFS objects and only unphysical large
values of the calibration functions could bring the PT–balance to one in this region.
At large values of fem,jet the PT–balance approaches one. This behaviour is well
described by the simulation. In figure 8.14 the double-ratio is shown as function of
fem,jet in bins of ηjet. The data is well described by both models with deviations not
larger than 1%.
A way to quantify the differences between data and simulation uses the value χ, also
called pull, which is defined as

χ =
µData − µMC

εData ⊕ εMC ⊕ εh

. (8.12)

The values µData and µMC in equation (8.12) are the mean values obtained from fits to
the PT–balance distributions and εData and εMC are their respective errors. The value
εh is the uncertainty assigned to the HFS energy measurement. The distribution of
pulls is illustrated in figure 8.15 for all data points from figures 8.11 and 8.13 for
the assumption of εh = 1%. The distribution is centred around zero owing to the
good agreement between data and simulation. The width of the Gaussian fit is 0.55
suggesting that an error of 1% is already a conservative estimate. Setting the error
from the fits to the PT–balance distributions εData and εMC to zero, the width of the
pull distribution becomes 0.65, staying well below one.
The calibration is also tested on an independent DIS sample by requiring two jets
instead of only one together with the calibration sample selection (see section 8.2.1).
The cut on the distance between the jet’s polar angle and the hadronic angle is
released, which results in a sample with more hadronic activity outside the jets.
The transverse momenta of jets lie between 6 and 50GeV. The mean values of the
PT–balance together with the double-ratios as function of the hadronic angle γh are
shown in figure 8.16a. For γh < 120◦ the PT–balance is flat around unity, but when
the hadronic system is measured in the backward direction the PT–balance drops
to values of about 0.93. The reason for this are losses in the backward direction
due to the missing hadronic calorimeter behind the BBE. This behaviour is well
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Figure 8.16: Mean values of the PT-balance as function of γh (a) and P da
T (b) for a dijet

selection using the full Hera-2 dataset. Shown are data, Djangoh and Rapgap with
the respective double-ratios after the full calibration. The mean values are obtained from
fits to a Student’s t-distribution (8.1). The dashed lines in the ratio plot illustrate a 1%
deviation.
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Figure 8.17: Mean values of the PT-balance distributions as function of γh (a) and Ejet

(b) for a neutral current selection using the full Hera-2 dataset. Other details are given
in the caption of figure 8.16.
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simulated and the double-ratio is within 1% for both MC models. In figure 8.16b
the PT–balance is shown as function of P da

T . Values of P da
T smaller than 10GeV

correspond to large values of γh with mean values of the PT–balance around 0.9. For
P da

T ¿10GeV the PT–balance is flat around unity and described by the simulation
within 1%.
The calibration scheme developed is furthermore tested on an inclusive neutral cur-
rent sample with Q2 > 150 GeV2 (see section 9.6 for the selection) and one jet with
P jet

T > 6 GeV in the final state. No explicit cuts to suppress QED radiation or
losses are applied, which results in a very different distribution of the jets’ polar
angle compared to the calibration sample (also see figure 8.5). In the inclusive NC
sample less activity in the forward region and more jets in the central and backward
direction make it a good testing ground for the calibration in the central region of
the detector. The mean values of the PT–balance as function of γh are shown in
figure 8.17a together with the double-ratios. In this sample reduced values of the
PT–balance are already visible for γh ∼ 90◦. The distribution is well described by
both models within 1% uncertainty with very high statistics even in the backward
direction 140◦ < γh < 160◦. In figure 8.17b the PT–balance as function of the recon-
structed jet energy is shown. The shape of the PT–balance is the result from a bias
towards downwards fluctuations for small values of Ejet and upwards fluctuations
for large values of Ejet. Also biases in the double-angle measurement towards too
small values of P da

T (cf. figure 8.3) influence the shape of this distribution, being
responsible for values larger than one for jet energies around 20 to 40GeV. The
observed peak in this energy range is absent when the calibration sample selection
is applied, which removes the biases of the double-angle measurement towards too
small values. All observed features are well modelled and the data are described
within 1% over an energy range between 10 to 200GeV.

8.2.5 Resolutions

The resolution of the jet measurement can be obtained either directly from the
data with the help of a well defined reference measurement or indirectly from the
simulation.
The first method makes use of the double-angle measurement with the appropriate
cuts defined above (section 8.2.1). Only events with one reconstructed jet are con-
sidered such that the PT–balance can be measured as function of the polar angle
of the jet. The transverse momentum of the generated jet agrees within 5% with
the total generated transverse momentum and thus with P da

T in this sample. Con-
sequently the resolution of the jet transverse momentum measurement, σ(PT)/PT,
can be derived from measuring the width of the PT–balance distribution σ

(
P h

T/P da
T

)
,

which is shown in figure 8.18 as function of P da
T in different bins of ηjet for data and

simulation. The data are well described by the simulation over the full detector
acceptance and over the full range of transverse momenta. The data points are not
corrected for the resolution of the P da

T measurement, σ(P da
T ), which is three to four

times smaller than the resolution of the HFS measurement. Thus, the data points
are approximately equal to σ(PT)/PT. The resolution shows a tendency to improve
towards larger transverse momenta which is in good agreement with the expecta-
tions. The worst resolution of about 14% is observed for low transverse momenta in
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Figure 8.18: Variance of the PT-balance as function of P da
T in various ηjet bins. Shown

are results obtained with the full Hera-2 dataset for data and simulation.

the region 2 < ηjet < 1.5, which corresponds to the FB2/OF. Jets in this region of
pseudorapidity traverse a relatively large amount of dead material before entering
the active medium of the calorimeter. This leads to worse calorimetric resolutions,
especially at small energies, as well as worse resolutions for the separation of elec-
tromagnetic and hadronic showers. Also a low track-finding efficiency due to a small
overlap with the CJC (see figure 8.9) leads to worse resolutions for jets with low
transverse momenta in this angular region. Jets with high PT measured in the OF
have a resolution of 8%, which is comparable with the resolution achieved in the
IF (ηjet > 2). In the central region the resolutions are relatively flat as function
of the transverse momentum compared to the calorimetric expectation which is a
consequence of the used tracks and a high track finding efficiency.
To subtract the resolution of the P da

T measurement from the measured ratio P h
T/P da

T ,
the resolution of the double-angle measurement is obtained from the simulation. It
is 1.4–2% if the jet is measured in the forward region and between 3% and 4% if
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the double-angle measurement is subtracted assuming Gaussian error propagation. Shown
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for data and simulation.

the jet has a polar angle larger than 80◦. It is subtracted from the PT–balance
measurement assuming Gaussian error propagation,

σ(PT)/PT =

√[
σ
(
P h

T/P da
T

)]2 − [σ(P da
T /P gen

T

)]2
. (8.13)

Equation (8.13) is to a good approximation fulfilled, since P h
T/P da

T and P da
T /P gen

T are
very close to unity. The obtained resolutions are shown in figure 8.19 as function
of θjet where the standard reconstruction Hadroo2 [PP+05] is compared with the
reconstruction developed in the course of this work. For θjet < 55◦ improvements
between 10–15% are achieved for the data.
In the simulation the largest improvement is obtained for jets incident in the IF
with θjet < 15◦, in the OF region the improvement is of the order of 5%. In the
central region of the detector with 55◦ < θjet < 135◦ the resolution is dominated
by tracks and stays unchanged. The achieved resolutions are about 9% in the
IF and between 10 and 11% elsewhere. Additionally to an overall improved HFS
measurement the resolutions are better described by the simulation than with the
standard reconstruction. The resolution is described within the uncertainty over the
full detector acceptance.
The second method to derive the resolution of the jet measurement is an indirect
method. Since all quantities related to the HFS measurement like the absolute
value and width of the PT–balance are very well modelled the resolutions can be
obtained from the simulation. This brings the advantage of the exact knowledge of
the incident energy. Reconstructed jets are matched with jets on hadron level in
the η-φ plane, and only jets with a match are considered in this study. The relative
difference between the reconstructed and generated jet PT is given by

∆jet
PT

=
P jet

T,gen − P jet
T,rec

P jet
T,gen

(8.14)
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Figure 8.20: Mean values (a) and widths (b) of the resolution of the jet transverse

momentum ∆jet
PT

as function of the polar angle of the generated jet.

in analogy to the definition of ∆E (6.29). The mean values of ∆jet
PT

are shown in figure
8.20a. Overall good agreement between the reconstructed and generated transverse
momenta is observed. In the forward region with θjet < 55◦, the reconstructed PT

is on average 2–3% too large, whereas in the backward region it is about 1% too
small. These differences are not necessarily only due to the calibration. Particles
attributed to the jet on hadron level but not on reconstructed level or vice-versa may
have an effect on ∆jet

PT
. The observed shifts are small and are taken into account

when jets are corrected for detector effects. In figure 8.20b the resolution of the
jet transverse momentum measurement as defined in equation (8.3) is shown. The
resolution is about 9% in the IF and 11% in the region of the OF, which is in excellent
agreement with the results obtained for data (cf. figure 8.19). In the central region
of the detector the obtained resolutions from both MC models agree with the results
from the double-angle method within one absolute percent.
In order to obtain resolutions directly comparable to the calorimeter resolutions ac-
quired from test beam measurements, generated jets are selected in a small interval of
2% around a central energy Egen. In each of these energy intervals [0.98Egen, 1.02Egen]
the distribution of the reconstructed jet energy is then fitted to equation (8.1)
for all matching jets. An example of this is given in figure 8.21 for jets incident
on the CB3. From these fits the widths of the distributions are obtained from
the FWHM (8.3) and corrected for the effect of the smeared generated energy by
σ(E) = σ − 0.017 Egen. This correction is calculated from the width of a superposi-
tion of Gaussian distributions with shifted means of ±2%. The acquired resolutions
for the different calorimeter wheels are compared with the calorimeter resolution
from test beams with charged pions (see section 5.4.2) in figure 8.22.
In the region where tracks contribute largely to the HFS, 30◦ < θjet < 140◦, cor-
responding to the BBE, CBs and FB (cf. figure 7.11), the achieved resolution is
improved with respect to the calorimetric expectation. Jets in this angular interval
are measured with a precision of approximately 10% on average over the full energy
range. In the CB1 and CB2 the resolution improves from about 11% at ∼8 GeV to
about 8% at 11–13GeV and flattens out around 10% at the highest kinematically
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CB3. The generated energies are shown as dashed grey areas. Fits to equation (8.1) are
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possible energies. The best resolution of about 8% corresponds to an energy region
with high track finding efficiency, good tracking resolution and good calorimetric
resolution. At low energies the tracking provides a precise measurement, but the
calorimetric resolution is worse which reflects in a a slightly worse resolution for jets.
At the highest energies the resolution is dominated by the calorimetric measurement,
however, low energy hadrons which are abundantly produced even in high energy
jets are accounted for by tracks. At these energies the resolutions for jets become
comparable to the calorimetric resolution for charged pions over the full coverage of
the CJC. In the CB3 and FB the resolution is relatively flat at a value of 10% over
the full energy range. In the forward region, θjet < 30◦, corresponding to the OF and
IF, the contribution from tracks to the jet’s transverse momentum becomes small,
and the measurement can be considered as purely calorimetric. The obtained reso-
lutions are 72%/

√
E ⊕ 3.5% in the OF and 83%/

√
E in the IF, which is worse than

the resolution from test beam measurements and single hadrons (see below). This
can be explained by the large number of low energy hadrons in jets, which result in
an overall smaller electromagnetic fraction of showers compared to the one induced
by single high energy hadrons. Also fluctuations from the jet-defining algorithm can
contribute to larger resolutions for jets [Wig00, p254].

In the OF a constant term of ∼ 3.5% is observed, which can be attributed to the
amount of dead material in front of this calorimeter wheel. In the IF no constant
term is needed to describe the resolution, which shows that compensation is achieved
over the full energy range with the H1 software-weighting in combination with the
separation of electromagnetic and hadronic showers and the calibration method
developed.

It is interesting to compare for the IF jet energy resolutions to the resolutions ob-
tained from simulated neutral and charged single pions (see figure 8.23). Electromag-
netic showers are measured with a comparable resolution as obtained from electron
test beams, with a slightly larger noise term of ∼0.6 GeV. For charged pions, events
with more than 1% of the total measured energy in the tail catcher were discarded
to obtain a calorimetric measurement not biased by energy leakage. The resolution
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Figure 8.22: Resolutions for jets incident on different calorimeter wheels obtained with
the Djangoh MC. The dashed line represents the resolution determined from pion test
beams with asamp = 55% and c = 1.6% (see figure 5.13b). In the calorimeter regions
where tracks play a minor role a fit to equation (5.37) was performed, the obtained values
are shown in the corresponding figures.
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Figure 8.23: Resolutions for simulated neutral (a) and charged (b) single pions incident
on the IF. The dashed lines represent the resolutions determined from test beams with
asamp = 13.3%, bnoise = 0.2 GeV and c = 0 for electromagnetic showers [H194b] and
asamp = 55% and c = 1.6% for hadronic ones (see figure 5.13b) in the IF. In the case
of hadronic showers the obtained resolution for events with no signal in the tail catcher
(filled circles) and without any further selection (open circles) is shown. The results from
fits to equations (5.31) and (5.37) for electromagnetic and hadronic showers, respectively,
are given in the figures.

obtained for hadronic showers is 70%/
√

E which is slightly worse than the resolution
from test beams. However, no constant term is observed showing the applicability of
the developed calibration method to single particles. Releasing the condition on the
tail catcher and thus allowing shower leakage the resolution becomes worse (open
circles in figure 8.23b). The deterioration of the resolution due to leakage can be
approximated by (

σ(E)

E

)
f

=

(
σ(E)

E

)
f=0

(1 + 4f) , (8.15)

if a shower fraction f leaked out of the calorimeter [Mav04]. Using this equation and
the difference in resolutions with and without a measurable signal in the tail catcher,
the leakage is about 1% for 20GeV pions, 3% for 55GeV pions and 5% for 90GeV
pions. These values are in good agreement with the calculated average longitudinal
energy leakage for the ATLAS TileCal with a comparable effecitve length (7.9λ at
|η| = 0.35) [AA+10b]. Applying the condition on the tail catcher for the jet sample
the obtained resolutions do not change measureably.

147



148



Chapter 9

Data Selection

The measurement of jet cross sections in neutral current (NC) deep-inelastic scat-
tering (DIS) presented in this work is based on the full Hera-2 dataset. Selection
criteria are applied on the recorded dataset in order to reduce the sample, which
contains a significant amount of background from ep and non-ep interactions, to the
data sample used to extract the cross sections. The inclusive NC sample is defined
through the scattered electron, which is also used as the main requirement for the
trigger. The jet samples are subsamples of the NC sample and therefore benefit
from the high trigger efficiency and excellent signal-to-background ratio.
In the following the applied selection criteria for the inclusive NC sample and the jet
samples are discussed. Trigger efficiencies and the efficiency of the electron selection
through its associated track are determined. Cuts to reduce non-ep background
are applied, and the remaining background from ep scattering is estimated with
dedicated MC simulations. This is followed by the reconstruction of the boost to the
Breit frame and the jet selection. The chapter concludes with control distributions
comparing the data with simulated events for the various jet samples.

9.1 Run Selection and Luminosity Measurement

During the data taking events were recorded in time intervals called runs. A run is
defined as a period with nominally stable experimental conditions, with a maximum
duration of two hours. Based on criteria like the overall detector performance,
beam, background and readout conditions, a run is classified as “good”, “medium”
or “poor”. In this analysis a run has to be of good or medium quality with a minimal
integrated luminosity of 0.2 nb−1 in order to be selected. In addition, the following
subdetectors are required to be fully operational and included in the readout: the
LAr calorimeter and calorimeter trigger, the CJC1 and 2, the CIP, the ToF and
the luminosity system. The status information from the various subdetectors was
stored on the database every ten seconds during data taking. A full run is rejected,
if any of the mentioned subsystems was not operational for a large fraction of time
during this run. Single events are rejected, if any of the subdetectors was off when
it was recorded.
MC events are simulated for each run separately, taking the detector status into
account. The run selection used for the data is applied to simulated events, such
that the same experimental conditions are found in the simulation as in the data.
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Period Lepton Run Range fQEDC L in pb−1

03/04 e+ 357160 – 392213 1.005 52.3

05 e− 399629 – 436893 0.997 101.9

06 e− 444312 – 466997 1.015 57.7

06/07 e+ 468530 – 500611 1.045 139.7

Hera-2 357160 – 500611 1.020 351.6

Table 9.1: Selected run periods together with the total integrated luminosities. The
average luminosity correction factor from the QEDC analysis is denoted by fQEDC.

The total integrated luminosity is calculated by summing over the integrated lumi-
nosities of all selected runs. At the time of writing, the offline analysis of the data
from the luminosity system is not completed (cf. section 4.2.4). Taking into account
the uncertainty on the pile-up and background subtraction, the correction for the
beryllium shielding and the acceptance correction, the uncertainty of the luminosity
measurement from the luminosity system is 3–4.5%, depending on the run period. A
way to reduce the systematic uncertainty is to use the rate of QEDC events, where
the scattered electron and the radiated photon are both measured in the central
part of the H1 detector. This measurement is dominated by different sources of
systematic uncertainties than the measurement from the luminosity system. The
most prominent systematic uncertainties are the subtraction of background from
Deeply Virtual Compton Scattering (DVCS) processes, the vertex reconstruction
from CIP and SpaCal data only, and the reconstruction of the four-vector of the
radiated photon from the SpaCal cluster [SS09]. A systematic uncertainty of 2.5%
of the luminosity measurement is obtained by combining the two independent mea-
surements. A summary of the selected run ranges together with the corresponding
integrated luminosities and the applied average correction factors is given in table
9.1.
The standard model predicts a difference in the NC cross section for leptons with dif-
ferent helicity states. To measure this effect spin rotators were installed at Hera-2
to provide longitudinally polarised lepton beams. The measured polarisation asym-
metry increases with increasing Q2 and is negative in e−p and positive in e+p scat-
tering [Sou10]. The asymmetry arises from electroweak effects and is not included
in present NLO QCD calculations. However, a measurement of the polarisation of
the full Hera-2 dataset with the polarimeters TPOL and LPOL [LS02] yields an
average polarisation of −2.1 ± 3%, which is consistent with no polarisation. The
effect of the polarisation asymmetry can thus be neglected in this analysis.
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9.2 Trigger Efficiency

The trigger used in this analysis is the calorimeter subtrigger S67. In addition to
information from the LAr calorimeter, it uses information from the CIP and the
ToF for the rejection of background. It is a combination of three level one trigger
conditions,

S67 = tLAr ∧ tT0 ∧ tveto , (9.1)

where ∧ represents the logical conjunction. The calorimeter condition tLAr, the
timing requirement tT0 and the veto condition tveto are described in the following as
well as the determination of their efficiencies.

9.2.1 Calorimeter Trigger Element

The tLAr condition is fulfilled if a large amount of energy is deposited in the LAr
calorimeter. For this purpose the 45,000 calorimeter cells are grouped into 256 big
towers. The signals measured in each big tower are summed up and if the deposited
energy is above 4.8GeV in the BBE and CBs or above 6.2GeV to 25.6GeV in the
FBs and IF, the tLAr condition is fulfilled. The big towers can be triggered by
the scattered electron or the HFS. These conditions are independent and thus the
sample triggered by the electron can be used to monitor the HFS-triggered sample
and vice versa. Let neh be the number of events that were triggered by both, the
electron and HFS, ne the number of events triggered by the electron only and nh

the number of events triggered by the HFS only. Then the efficiency of the trigger
to be fired by the electron ε(e) is given by

ε(e) =
neh

nh + neh

(9.2)

with a similar expression for ε(h), which is the efficiency of the trigger to be fired by
the HFS. The total efficiency of the tLAr condition, ε(LAr), can then be written as

ε(LAr) = ε(e) + ε(h)− ε(e)ε(h) , (9.3)

where ε(e) and ε(h) denote the efficiency of the LAr calorimeter trigger to be fired
exclusively by the electron or HFS, respectively.
The total efficiency ε(LAr) is close to 100%. However, in some localised regions of the
calorimeter lower efficiencies can be observed. Typically, the reasons are switched
off calorimeter cells because of high noise levels or malfunctioning hardware. A
detailed investigation of the trigger efficiency as function of the impact position of
the electron on the calorimeter reveals regions with low trigger efficiencies. The
removal of these inefficient calorimeter regions constitutes the fiducial volume cut,
where regions in the φ- and z-coordinate of the electron impact position are excluded
from the analysis. This fiducial volume cut is time dependent and is determined for
each Hera-2 period separately [Hab09].
Figure 9.1a shows a summary of the LAr calorimeter trigger efficiency ε(LAr) for
the full Hera-2 dataset. The efficiency is shown as function of the energy of the
scattered electron Ee before and after the fiducial volume cut. Prior to the cut the
efficiency has a strong dependence on Ee, rising from 95% at Ee ≈ 11 GeV to 100%
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Figure 9.1: The efficiency of the calorimeter trigger element, ε(LAr) as function of
the energy (a) and polar angle (b) of the scattered electron. Shown are the measured
efficiencies for the full Hera-2 dataset before and after the fiducial volume cut is applied.
The dotted line illustrates an efficiency of 99.5%.

at Ee ≈ 45 GeV. The fiducial volume cut leads to a sufficiently flat efficiency above
Ee ≈ 13 GeV, with values larger than 99.5%. Only at energies between 11–13GeV
an energy dependence of the trigger efficiency is still observed. In this energy region
simulated events are weighted to correct for this effect. To avoid regions with trigger
efficiencies smaller than 99%, Ee is required to be larger than 11GeV.

The trigger efficiency as function of the polar angle of the scattered electron θe is
shown in figure 9.1b. After the fiducial volume cut it is above 99.5% over the full
calorimeter acceptance.

The efficiency of the LAr trigger element has also been investigated for each Hera-2
period separately. All periods show identical behaviour after the application of the
fiducial volume cut. The efficiencies agree with the observation for the combined
Hera-2 dataset, with efficiencies always above 99.5%. An uncertainty of 0.5% is
attributed to the efficiency of the tLAr trigger condition.

9.2.2 Timing Condition

The timing condition tT0 combines the event timing T0 from the LAr calorimeter
and the CIP. An event is accepted if either the CIP or the LAr calorimeter trigger
provide a T0 signal. The CIP also provides timing information from an earlier bunch
crossing which is used to reject events with a wrong calorimeter timing: if the T0

signal from the LAr calorimeter coincides with the T0 from the CIP from an earlier
bunch crossing, the event is rejected.

The efficiency of the timing condition ε(T0) can be monitored similarly to the ef-
ficiency of the calorimeter trigger element ε(LAr). The timing information from
the CIP is used to validate the timing information from the LAr calorimeter and
vice versa. The efficiency ε(T0) can then be calculated similarly to equation (9.3).
The efficiency ε(T0) is illustrated in figure 9.2 as function of the energy (a) and
polar angle (b) of the scattered electron for the NC DIS sample of the full Hera-2
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Figure 9.2: Efficiency of the event timing condition tT0 for the full Hera-2 dataset.
The efficiency is shown as function of the energy (a) and polar angle (b) of the scattered
electron. The dotted lines illustrate an efficiency of 99.5%.

dataset. It is always above 99.5%, already before the fiducial volume cut, which
improves it slightly. The individual Hera-2 periods show an identical behaviour,
with the efficiency ε(T0) always above 99.5%. No correction for the timing condition
is applied and an uncertainty of 0.5% is assigned to it.

9.2.3 Veto Condition

The veto condition tveto of the subtrigger S67 was used to reject background at the
triggering stage. It consists of information from three different subdetectors: the
ToF, the CIP and the TC. The ToF trigger bits were delivered from the various
plastic scintillation detectors described in section 4.2.3. The CIP provided a fast
estimate of the number of tracks in the central region of the detector which could
be used to reject background from beam-gas interactions. In 2006 an additional
condition was implemented to reject high background rates from beam halo muons
which caused the calorimeter trigger element tLAr to fire. It comprised of hits in
the backward TC in conjunction with no tracks measured by the CIP. The three
different veto conditions arising from the different subdetectors are monitored with
the monitor trigger S57, which has no veto condition, except for runs with run
numbers smaller than 382137. For these runs a special sample composed of QED
Compton events can be used to determine the veto efficiency ε(Veto) [Hab09]. The
efficiencies of the trigger condition tveto are summarised in table 9.2. They are applied
as weights on MC events to simulate the fraction of rejected ep events. The veto
efficiency for the e+p 03/04 period is consistent with the analysis of QED Compton
events.

In figure 9.3 the efficiency ε(Veto) is shown as function of the run number for the
full Hera-2 dataset. The efficiency is stable over time and no significant outliers
are observed. A systematic uncertainty of 1% is assigned to the determination of
ε(Veto).
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Efficiency [%]

Period ToF CIP Muon ε(Veto)

03/04 99.2 ± 0.2 99.6 ± 0.1 N/A 98.8 ± 0.2

05 99.6 ± 0.1 99.6 ± 0.1 N/A 99.2 ± 0.1

06 99.8 ± 0.1 99.5 ± 0.1 N/A 99.3 ± 0.1

06/07 99.9 ± 0.0 99.6 ± 0.1 100 ± 0.0 99.5 ± 0.1

Hera-2 99.7 99.6 100 99.3

Table 9.2: Summary of the veto efficiencies for the four Hera-2 periods. The statistical
uncertainties given for the four subperiods are negligible for the full Hera-2 dataset.
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Figure 9.3: Efficiency of the veto condition of the subtrigger S67 as function of the run
number. The mean values, which are applied as a correction to the MC simulation (cf.
table 9.2), are shown as solid lines for the four different Hera-2 periods separately. The
assigned uncertainties are illustrated as dashed areas.
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Figure 9.4: Efficiency of the subtrigger S67 as function of Q2 (a) and y (b) for the full
Hera-2 dataset. The MC prediction, after the correction for the veto efficiency has been
applied, is illustrated as solid line. The hatched area corresponds to the total systematic
uncertainty assigned to the efficiency of the S67.

9.2.4 Efficiency of the S67

Having determined the efficiencies of the three individual components tLAr, tT0 and
tveto of the subtrigger S67, the total efficiency of the trigger is given by

ε(S67) = ε(LAr) ε(T0) ε(Veto). (9.4)

This efficiency is shown as function of Q2 and y for the NC DIS sample of the full
Hera-2 dataset in figure 9.4. The solid line shows the MC prediction after the
correction for the veto efficiency has been applied. The hatched area corresponds
to the systematic uncertainties on ε(LAr), ε(T0) and ε(Veto) added in quadrature.
The trigger efficiency ε(S67) is flat at ∼ 99% over the full kinematic range of this
analysis, being well within the total systematic uncertainty of 1.2%.

9.3 Rejection of non-ep Background

After the veto requirements on the trigger, a small number of events originating
from beam-gas collisions, halo muons and cosmic muons is still present in the se-
lected sample. These events are identified with dedicated background finders [Vel02].
These finders are based on topological and timing criteria. The ones used in this
analysis are summarised in table 9.3. Events are only rejected if they are classified
as background by two finders at least, or if additionally to one of the finders longi-
tudinal or transverse momentum conservation is not fulfilled. The following criteria
are applied:

� Ibg0 and Ibg1 or two out of Ibg5, Ibg6 and Ibg7

� Ibg5 or Ibg6 together with P h
T/P e

T < 0.5

� Ibg7 and P h
T/P e

T < 0.1

155



Finder Name Background Description

Ibg0 HaLAr beam-halo µ Longitudinal energy deposit in the LAr
calorimeter

Ibg1 HaMuLAr beam-halo µ Longitudinal energy deposit in the LAr
calorimeter with energy deposit in the
backward TC

Ibg5 CosMuMu cosmic µ Two opposite matching muon tracks

Ibg6 CosMuLAr cosmic µ At least one muon with more than 90% of
its energy deposited in the LAr calorimeter

Ibg7 CosTaLAr cosmic µ Two opposite clusters in the TC with
matching deposits in the LAr calorimeter

Ibgam0 BeamGas beam-gas Ten or more non-vertex fitted tracks in the
backward region

Table 9.3: Non-ep background finders used in this analysis. The H1 internal numbers
and names are given in the columns one and two.

� Ibgam0 with E − pz > 57 GeV and Npart > 50

The first three criteria are efficient for the rejection of cosmic and halo muons [Nik07],
where the fraction of rejected events in the inclusive NC sample is 0.2%. The last
criterion is used to reject events from beam-gas collisions, which are characterised by
a large number of non-vertex fitted tracks together with a large particle multiplicity
and a longitudinal momentum imbalance. The cut was optimised in a previous
jet analysis on Hera-2 data to efficiently reject beam-gas events [Gou08]. In the
inclusive NC sample the fraction of rejected events by this cut is 0.4%. After the
application of all background cuts the inclusive NC sample is effectively free of
non-ep background.

9.4 Electron Track Requirement

After the identification of an electron candidate through cluster estimators (see
section 7.2), a track is associated with it. This track can either be a vertex-fitted
track, termed DTRA track, or a non-vertex fitted track which is referred to as DTNV
track. The requirement of a track pointing to the identified calorimeter cluster of
the scattered electron reduces the background from neutral particles misidentified as
the scattered electron, which is mainly due to photons from π0 decays. Additionally,
the track’s excellent resolution for the reconstruction of the azimuthal angle of the
scattered electron is of importance for the reconstruction of the boost to the Breit
frame.

Figure 9.5a shows the distance of closest approach between the cluster of the elec-
tron candidate and the associated DTRA track, dca(cluster, track). The distribution
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peaks around 1 cm, falls off steeply until it reaches values of ∼ 5 cm and exhibits a
long tail with a relatively gentle slope. The background sample consists of misiden-
tified scattered electrons from simulated low Q2 and photoproduction events and
is normalised to the predicted cross sections from the MC event generators. The
distribution of dca for wrongly identified scattered electrons does not peak at small
values of dca, but rises slowly and flattens out at dca ∼ 2 cm. Therefore, in the
peak region with dca < 5 cm, the data are predominantly genuine NC DIS data. For
increasing values of dca the signal-to-background ratio decreases.

In order to reduce the contamination from wrongly identified scattered electrons,
the dca between the DTRA track and the electron cluster is required to be smaller
than 8 cm, if the scattered electron is within the acceptance of the CJC (θe > 30◦).
If no DTRA but a DTNV track is found within 8 cm, the DTNV track is used for the
electron validation. In this case the DTNV track is used to determine the position of
the primary vertex. The requirement of dca < 8 cm reduces the amount of wrongly
identified scattered electrons from 1.2% to 0.3%.

In simulated NC DIS events the peak of the distribution of dca(cluster, track) lies
at smaller values of dca than in the data. The tail of the distribution has the same
slope, but lies below the data by a factor of 1.5. Therefore, the requirement for the
electron validation leads to different efficiencies in the data and simulation.

The efficiency of the electron validation is closely related to the efficiency of the
vertex finding, since vertex-fitted tracks are required to originate from the same
primary vertex. The efficiency of the requirement of having found a primary vertex
together with a track associated with an electron cluster is studied with a dedicated
NC sample. This sample is obtained with hard cuts on the longitudinal and trans-
verse momentum balance and the application of additional background finders. No
constraints on the vertex or on the electron track are made [Nik07, Tra10]. The
efficiency of the vertex-track-cluster link requirement, ε(vtc), is calculated as the
number of events with a primary vertex and a scattered electron found, divided by
the total number of events in this sample. In figure 9.5b the efficiency obtained
is shown as a function of the polar angle of the scattered electron. The average
efficiency is about 95% in the data. In simulated events the efficiency is between
0.5–2% higher, depending on θe. The ratio between data and MC is used to derive
a correction for ε(vtc), which is determined for the four different Hera-2 periods
separately.

The efficiency ε(vtc) is shown for the full Hera-2 dataset in figure 9.6, after the
application of the correction to the efficiency. The data are described within 1% by
the simulation, independent of the impact position of the scattered electron or the
polar angle of the hadronic final state. A systematic uncertainty of 1% due to the
vertex and electron-track requirement is assigned.

9.5 Interaction Vertex

A precise knowledge of the primary interaction vertex is important for the calculation
of the kinematic variables and the reconstruction of the particle four-vectors in an
event. Due to the small transverse size of the beams of σx × σy = 112 × 30 µm,
only small variations of the x- and y-coordinates of the primary vertex are possible
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Figure 9.5: a) Distance of closest approach between the cluster of the scattered electron
candidate and the associated vertex-fitted track. The requirement dca < 8 cm is illustrated
as dashed line. b) Efficiency of the requirement of a link between the primary vertex, the
electron track and the electron cluster as function of the polar angle of the scattered
electron for the e+p 06/07 period. The ratio of data to MC is used to derive a correction
for the simulation, shown as solid line.
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Figure 9.6: Efficiency of the requirement of a link between the primary vertex, the electron
track and the electron cluster after the application of the requirement dca < 8 cm. The
efficiency correction for ε(vtc) has been applied to the simulation. The efficiency is shown
as function of the z-coordinate of the impact position of the scattered electron (a) and
the angle of the hadronic final state (b) for the high Q2 NC DIS sample obtained from
the full Hera-2 dataset.
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Figure 9.7: Distribution of the measured z-position of the primary vertex. NC DIS data
from the full Hera-2 dataset are compared to simulated events prior (a) and after (b)
the z-vertex weights have been applied.

during one fill of HERA. The distribution of the z-coordinate of the primary vertex
has a larger width because of the larger longitudinal beam sizes (σp

z ≈ 13 cm and
σe

z ≈ 2 cm, for the proton and electron beam, respectively). The z-position of the
primary vertex is required to be within approximately three standard deviations
around the nominal interaction point,

− 35 cm < zvertex < 35 cm, (9.5)

to ensure events to be well contained in the detector acceptance. This requirement
on the vertex position is also imposed on the luminosity calculation.
Since for each fill the distributions of the x-, y- and z-positions of the primary
vertex are approximately Gaussian, the integrated distributions over a full dataset
are superpositions of a large number of Gaussian distributions. In order to simulate
this effect, the mean and standard deviation of the position of the primary vertex
are measured for each run. The simulated position of the primary vertex is then
distributed run-dependently according to the measured values.
The distribution of the z-position of the primary vertex is shown in figure 9.7a. A
small residual shift between the data and simulation can be observed. This shift is
corrected for by a weight applied to simulated events [Shu10]. The resulting distri-
bution of zvertex is shown in figure 9.7b. After the reweighting excellent agreement
between data and the simulated z-position of the primary vertex is obtained.
In this sample vertices from electron DTNV tracks are included (see section 9.4).
When the electron is validated by a DTNV track only, the HFS particles are likely
to have undergone one or more nuclear interactions in the beam pipe. The hadronic
vertex may then be displaced from the primary interaction vertex, and the electron
track cannot be fitted to the hadronic vertex. However, the electron DTNV track
points to the correct primary vertex, which is used for the reconstruction of kinematic
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Figure 9.8: The inelasticity y (a) and the longitudinal momentum balance E−pz (b) for
the e+p 06/07 period. The applied cuts are illustrated as dashed lines.

variables. Tracks originating from HFS particles have been fitted to the correct
secondary vertex and can be used without a correction. The application of a nuclear
interaction finder at the vertex fitting reduces the amount of events with a DTNV
vertex considerably with respect to a previous analysis [Gou08]. The fraction of
such events is only about 0.3% and is well modelled by the simulation.

9.6 Neutral Current Sample

The inclusive NC sample is defined by the kinematic phase space

150 < Q2 < 15000 GeV2, (9.6)

0.2 < y < 0.7 . (9.7)

The restriction to high photon virtualities Q2 results in a good geometrical accep-
tance of the LAr calorimeter for the detection of the scattered electron. The upper
cut on Q2 is not necessary from an experimental point of view, but improves the
convergence of pQCD NLO calculations. Also at very high Q2 the electroweak
corrections become sizeable with only a small gain in statistics. The cut on the
inelasticity y is illustrated in figure 9.8a. The lower cut restricts the polar angle of
the HFS towards the central region, which is important for the reconstruction of
the boost to the Breit frame, discussed in section 9.7. The distribution starts to fall
off steeper than kinematically imposed at y ∼ 0.65, which is due to the cut on the
electron energy, Ee > 11 GeV. The upper cut on y thus imposes a kinematical con-
straint on the energy of the scattered electron, which is experimentally favourable.
Also, the upper cut on y prevents the hadronic angle γh to become too large and
limits the size of corrections for higher order QED effects.
Additionally to the phase space requirement, a cut on the longitudinal momentum
balance is imposed. E−pz is required to be within ±10 GeV around its expectation
value,

45 < E − pz < 65 GeV. (9.8)
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Background Amount

QED Compton 1.0%

low Q2 DIS 0.1%

Photoproduction 0.1%

Lepton Pair Production <0.01%

CC DIS <0.01%

Total 1.2%

Table 9.4: Estimated ep background in
the inclusive NC sample, given as frac-
tion of the total number of events.

This cut rejects events with photons radiated collinear to the electron beam, es-
caping the detector. For a perfectly measured event it corresponds to a rejection
of radiative photons with energies above 5GeV. This cut was shown to improve
the boost to the Breit frame [Wob00]. Furthermore, photoproduction events with
a misidentified scattered electron, where the true scattered electron escapes unde-
tected in the backward direction, have small values of E− pz and are suppressed by
this requirement.

9.6.1 ep Background

After application of the requirements on the scattered electron, the inelasticity y
and E − pz, the background from wrongly identified scattered electrons is small.
The dominant source of background are elastic and inelastic QEDC events (“wide-
angle bremsstrahlung”), with the transverse momentum of the scattered electron
and the radiated photon being significantly larger than zero. Since processes of this
type are not included in pQCD NLO calculations, the MC simulation is used to
correct for them. QEDC processes are included in Djangoh and Rapgap, but an
improved simulation is available by the Compton generator. Hence, QEDC events
are removed from the signal MCs and the Compton generator is used instead.
Elastic QEDC events can be identified through the acoplanarity, which is defined
as [H104]

A = |π −∆φ| , (9.9)

where ∆φ denotes the difference in the azimuthal angle between the scattered elec-
tron and the radiated photon. In elastic QEDC events the scattered electron and
photon have a back-to-back topology with small acoplanarities [Kel04]. In figure 9.9
the cosine of the acoplanarity is shown for events with at least two particles found
by the electron finder. Both particles have to have an energy of at least 4GeV and
their energy sum has to be larger than 18GeV. The distribution peaks at cos(A) ∼ 1
for QEDC events and a cut on cos(A) < 0.95 reduces the contribution from QEDC
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Phase space 150 < Q2 < 15000 GeV2

0.2 < y < 0.7

Primary Vertex −35 < zvertex < 35 cm

Trigger subtrigger S67

Electron LAr electron with zimp > −190 cm

Ee > 11 GeV

reject z-crack at 15 < zimp < 25 cm

reject φ-cracks at 2◦ < φe(octant) < 43◦

fiducial volume cut

θe < 30◦ or dca(track, cluster) < 8 cm

Background rejection 45 < E − pz < 65 GeV

cosmic and beam halo muons, beam-gas (section 9.3)

elastic QED Compton cut (section 9.6.1)

Detector good and medium quality runs

subdetectors: LAr calorimeter, calorimeter trigger,
CJC1, CJC2, CIP, ToF, luminosity system

Table 9.5: Summary of all requirements which are applied to obtain the inclusive NC DIS
sample.

events by 50% in the NC sample. The remaining events are mostly inelastic QEDC
events which cannot be easily distinguished from NC DIS events.
The total amount of ep background is estimated from MC simulations. After all
applied cuts it amounts to 1.2% in the inclusive NC sample. A summary of the
different background contributions is given in table 9.4.

9.6.2 Summary of Requirements and Control Distributions

A summary of all requirements which are applied to obtain the inclusive NC sample
is given in table 9.5. In this list all cuts, except for the phase space definition, are
technical cuts and are corrected for to obtain the cross section measurements.
A quantity that can be used to monitor the stability of the detector performance
over time is the event yield Y , which is defined as the number of detected events
per amount of recorded luminosity. A constant event yield over time thus indicates
stable trigger, background and detector conditions as well as a reliable luminosity
measurement. The acceptance cut of the LAr calorimeter, zimp > −190 cm, can
bias the event yield due to different average vertex positions during run periods.
To remove this bias, the polar angle of the scattered electron θe is required to be
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smaller than 145◦ for the measurement of Y [Hab09].
The event yield of inclusive NC events per pb−1 for the four different Hera-2 run
periods is shown in figure 9.10 as function of the run number. The average event
yield 〈Y 〉 for each run period is illustrated as solid line, with an uncertainty of 2.5%
from the luminosity measurement. There is good agreement between the values of
〈Y 〉 measured for the four Hera-2 periods. For single runs no significant deviations
from 〈Y 〉 are observed. The size of the step in the event yield in the e+p 06/07 period
at run number ∼ 477000, which has been reported previously [Hab09], is reduced
due to the luminosity correction factors from the QEDC analysis. The pull variable
as defined in equation (8.12) can be used to test the consistency of the dataset with
the assumption of the uncertainty from the luminosity measurement. In the case of
the event yield, the pull variable χ is defined as

χ =
Y − 〈Y 〉
σY ⊕ εlumi

, (9.10)

where σY is the statistical uncertainty of the event yield Y and εlumi is the uncertainty
from the luminosity measurement, chosen to be 2.5%. The distribution of pull values
for the full Hera-2 dataset is fitted by a Gaussian and shown in figure 9.11. By
construction the distribution is centred around zero. No significant outliers are
observed and the variance σ is equal to one, expressing that the data are consistent
with an uncertainty εlumi of 2.5%.
In figures 9.12-9.13 control distributions of the inclusive NC sample are shown. The
background consists of MC simulations of the five different processes summarised in
table 9.4. It amounts to 1.2% of the total number of events and is added to the signal
MCs. Besides the efficiency corrections discussed above, weights are applied to the
signal MCs to improve the description of control distributions for the jet samples,
as described below in section 9.7.4. The ratio of data to simulation is shown at the
bottom of each plot. The level of agreement between data and both signal MCs is
excellent for the distributions of the kinematics and the scattered electron in the
inclusive NC sample (figure 9.12).
The distribution of the transverse momentum of the HFS is well described by both,
Rapgap and Djangoh. The models differ in the description of the longitudinal
momentum component of the HFS, ph

z . The peaks of the distributions from both
MCs are shifted to larger values than what is observed in the data. The distribution
of ph

z falls off more steeply in Rapgap than in Djangoh, such that at large values of
ph

z Rapgap is below and Djangoh above the data. This behaviour is also observed
in the distribution of the energy of the HFS Eh, such that the effect on Σ, which is the
longitudinal momentum balance of the HFS, Σ = Eh−ph

z , largely cancels. A residual
shift between the data and the MCs has already been reported previously [Gou08],
and is corrected for by weighting the distribution of Σ (all weights are applied on
the generated distributions, see section 9.7.4). After the weights have been applied,
Σ is very well described by both models, as shown in figure 9.13d. The transverse
momentum balance P h

T/P e
T is shown in figure 9.13c. Here the transverse momentum

of the HFS is balanced by the transverse momentum of the electron, which is less
susceptible to losses and effects from QED radiation than P da

T . The distribution of
P h

T/P e
T is well centred around one and well described by the MC models. Djangoh

shows a larger tail at large values of P h
T/P e

T than the data, while Rapgap describes
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Figure 9.10: Event yield of inclusive NC events for the four Hera-2 periods. The average
event yield 〈Y 〉 is shown as solid line together with a band illustrating the 2.5% uncertainty
from the luminosity measurement.
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Figure 9.12: Distribution of the virtuality Q2 (a) and Bjorken x (b) for the inclusive NC
sample for the full Hera-2 dataset. Below the distributions of the energy (c) and polar
angle (d) of the scattered electron are shown. The signal MCs were weighted to improve
the description of jet data. The background contribution is added to the signal MCs.
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Figure 9.13: Distribution of the transverse (a) and longitudinal (b) momentum compo-
nent of the HFS for the inclusive NC sample for the full Hera-2 dataset. The distributions
of the transverse (c) and longitudinal (d) momentum balance are shown below. The signal
MCs were weighted to improve the description of jet data. The background contribution
is added to the signal MCs.
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the data well over the full range of the distribution. The larger tail in Djangoh is
due to the on average larger energy of the HFS, which leads to a worse resolution
in the measurement of Eh and consequently to a broader distribution of P h

T/P e
T.

Overall, both models describe distributions of observables related to the HFS well.

9.7 Jet Selection

The inclusive NC sample is used as the basis of the jet measurement. This has the
advantage of an essentially background-free sample with high trigger efficiencies.
Furthermore, since the jet sample is a subsample of the inclusive NC sample, it
can be used to normalise jet observables, which improves the experimental and
theoretical precision. Jets are found and clustered in the Breit frame of reference,
where the scattered electron is of importance for the reconstruction of the Lorentz
transformation to this frame.

9.7.1 Reconstruction of the Boost to the Breit Frame

The transformation to the Breit frame, as defined in equation (3.4), can be recon-
structed with the knowledge of the kinematic variables y and Q2, as well as the
direction of the exchanged virtual boson. QED effects can influence the reconstruc-
tion of the Lorentz transformation, if a radiated photon escaped detection through
the beam pipe. It was shown in an earlier analysis [Wob00] that the reconstruction
of the boost vector with the eΣ-method is less effected by QED radiation than with
the electron method. The cut on E− pz helps to further improve the reconstruction
of the boost vector. The energy and polar angle of the scattered electron can be
expressed through the kinematic variables Q2 and y, which are reconstructed using
the eΣ-method,

Eboost
e =

Q2

4E0
e

+ E0
e (1− y) , (9.11)

θboost
e = arccos

(
1− a

1 + a

)
with a =

(
2E0

e

Q

)2

(1− y) , (9.12)

and the azimuthal angle of the scattered electron in the laboratory frame φe, is taken
from the electron track. The value of φe is used to rotate the Breit frame such that
the x-axis is parallel to px of the scattered electron in the Breit frame, such that
φBreit

e = 0. The boost vector

b = 2xP + q (9.13)

is reconstructed through the four-vector of the exchanged virtual photon, q = pe−pe′ ,
where P , pe and pe′ are the four-vectors of the beam proton, the beam electron and
the scattered electron, respectively.
The velocity of the Breit frame with respect to the laboratory rest frame is given
by β = pb/Eb, where pb and Eb are the momentum and energy of the boost vector.
The value of β approaches one if y becomes large. In this case the Lorentz factor
γ = 1√

1−β
becomes large, which is experimentally unfavourable, since the detector

in the Breit frame becomes distorted. To avoid this region, it is possible to impose
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Figure 9.14: a) Allowed kinematic region in the γh–y plane. The cuts on Q2 and y and
the kinematic limit x = 1 are shown as solid lines. b) Distribution of the hadronic angle
γh for the Hera-2 dataset.
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Figure 9.15: Distribution of the reconstructed velocity β of the Breit frame. Systematic
bias and resolution of the reconstruction of β of the Breit frame as function of Q2, obtained
from the Djangoh MC.

a cut on γh [ZEUS10b]. However, the restriction of this analysis to the inelasticity
0.2 < y < 0.7 imposes a constraint on the boost vector, which can also be seen from
the kinematically allowed region of the hadronic angle, as shown in figure 9.14a.
Small values of γh are thus kinematically forbidden without a cut on the HFS.
The distribution of γh in the inclusive NC sample is shown in figure 9.14b. No
events with γh < 10◦ are observed, with the distribution only gently rising between
10◦ < γh < 50◦.

The distribution of the reconstructed values of β is shown in figure 9.15a. It peaks at
values of 0.4 and falls off steeply towards smaller values. The slope of the distribution
towards larger values of β is less steep owing to the less rapidly falling distribution
of γh towards small values. The agreement between data and simulation for the
reconstruction of the Lorentz transformation to the Breit frame is excellent. In figure
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Figure 9.16: a) Maximum value of η in the laboratory rest frame of HFS objects in
inclusive jets. b) Average energy between two concentric cones with radii α and α + ∆α
around the electron. Energy measured from tracks is shown with filled circles and solid
lines, energy from clusters is shown with open circles and dashed lines. The two cuts
applied on the HFS are illustrated with dashed lines in a) and b).

9.15b the resolution of the reconstructed β is shown as function of Q2. No systematic
shift in the reconstructed values of β is observed. The precision of the reconstruction
of β is relatively flat over the full range in Q2 with achieved resolutions of σ ≈ 2%.
In the highest Q2 bin the resolution is even better due a better reconstruction of Q2

and y.

9.7.2 Hadronic Final State

All HFS objects are defined and calibrated in the laboratory rest frame, as described
in chapters 7 and 8. They are then boosted to the Breit frame of reference, where
they are the input to the jet finding algorithm.

When deposits in the LAr calorimeter are merged into clusters, neighbouring cells
with a measured signal are combined. For this purpose cells adjacent to the beam
hole in the forward direction are considered as neighbours. When cells of two op-
posite sides of the beam hole are merged into one cluster, clusters with unphysi-
cally large values of the pseudorapidity η can result. In figure 9.16a the pseudo-
rapidity in the laboratory rest frame of HFS objects belonging to inclusive jets is
shown. Only the pseudorapidity of the HFS object with the largest value of η, com-
pared to all other jet constituents, enters the distribution. The structure between
1.5 < ηmax < 2.2 corresponds to the region between the FB2 and the IF and is
due to the detector geometry. The peak at large values of ηmax is due to clusters
stretching over opposite sides of the beam hole. To avoid these clusters, only HFS
objects with η < 3.2 are accepted and boosted to the Breit frame (also see figure
8.9).

When the scattered electron traverses the detector material it loses energy due to the
radiation of bremsstrahlung photons. The cross section of radiating a photon with
energy Eγ is proportional to 1/Eγ, resulting in a small but non-vanishing probability
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for the radiation of photons with energies above hundreds of MeV. These high energy
photons may in turn undergo pair production resulting in an e+e− pair, travelling
collinear with the original scattered electron. The energy of the bremsstrahlung
photons and the electron-positron pairs is merged to the electron cluster, if they
deposit their energy within a cone of radius 7.5◦ in the calorimeter (section 7.2).
However, the tracks from the e+e− pairs may still appear in the list of HFS objects.
In 3% of the inclusive NC events more than one track is found in proximity to the
scattered electron, in the simulation this is the case for 2.2% of the events. In figure
9.16b the average energy flow from tracks and clusters around the electron is shown
for these events. The tracks originate from pair-conversions, and their energy is
accounted for by the energy measurement of the electron cluster. To avoid double
counting, tracks are removed from the HFS, if they are within a distance of 0.2 in
η, φ to the scattered electron.

9.7.3 Jet Definition

Jets are found in the Breit frame with the inclusive, longitudinally invariant kT-
algorithm, as implemented in the FastJet package [CS06]. The distance parameter
R is set to one and the PT-recombination scheme is used to obtain the jet four-
vectors (see section 3.4). Unless otherwise indicated, all variables related to jets are
measured in the Breit frame of reference, for example PT ≡ PT,Breit, η ≡ ηBreit.

In order to ensure jets to be well within the acceptance of the LAr calorimeter, the
jet four-vector is boosted from the Breit frame back to the laboratory rest frame,
where the pseudo-rapidity of each jet is required to be

2.5 < ηlab < −1.0 . (9.14)

This cut is part of the phase space definition and is applied to each jet of the
inclusive, dijet and trijet samples. The effect of this cut is illustrated in figure 9.17a.

Two technical cuts, which are not part of the phase space definition, are applied
on reconstructed level to ensure well measured jets. The MC simulations are used
to correct for the effects of these cuts at the cross section measurement. All jets
consisting of only one HFS object are removed from the sample. These jets consist
of the radiated QED photon and are usually in close proximity to the scattered
electron. After the removal of these jets from the sample, the number of jets close
to the scattered electron is negligible, see figure 9.17b.

For all reconstructed jets a minimal transverse momentum in the laboratory rest
frame is required,

PT,lab > 2.5 GeV. (9.15)

The purpose of this cut is to remove very soft jets which cannot be measured accu-
rately. This cut is illustrated in figure 9.18 for the full Hera-2 sample, split into
two Q2 ranges. The cut removes more events at high Q2, where the jet transverse
momenta in the Breit and laboratory frame can be very different.
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The signal MCs were weighted to improve the description of jet data.
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Figure 9.18: Distribution of the transverse momentum in the laboratory rest frame of
inclusive jets for low (a) and high (b) virtualities Q2. The applied cut is illustrated with a
dashed line. The signal MCs were weighted to improve the description of jet data.

9.7.4 MC Weighting

Simulated events from MC event generators, which are subject to the detector sim-
ulation and reconstruction, are used to correct for detector effects for the extraction
of jet cross sections. They are also used to estimate the size of the systematic errors
due to measurement uncertainties. In order to have a reliable estimate of migrations
between the measurement bins as well as migrations in and out of the samples used
for the extraction of the cross sections, it is necessary that the simulation describes
the data well.

The detector response and reconstruction efficiencies have been carefully studied,
such that remaining discrepancies between the data and MC models are attributed

171



0 1 2 3 4 5 6

3
 1

0
×

E
ve

nt
s 

−210

−110

1

10

210

310
Hera−2
Djangoh

Rapgap

Bkgd

Jet Multiplicity
0 1 2 3 4 5 6

R
at

io

0.5

1

1.5

Data/Djangoh Data/Rapgap

a)

0 1 2 3 4 5 6

3
 1

0
×

E
ve

nt
s 

−210

−110

1

10

210

310

Jet Multiplicity
0 1 2 3 4 5 6

R
at

io

0.5

1

1.5

b)

Figure 9.19: Jet multiplicity of jets with PT > 5 GeV, before (a) and after (b) the
weighting is applied to the Djangoh and Rapgap MCs.

to deficiencies in the simulation of the underlying physics, such as missing higher or-
ders in the perturbative series. In order to improve the agreement between data and
reconstructed observables, weights are applied to adjust the generated distributions.
All weights are obtained from the ratio of data to the reconstructed MC distribu-
tions. They are then applied on generated level, such that they are independent of
the detector simulation.
In general, observables in the NC sample are well described by the MC simulations.
Only the distribution of the longitudinal momentum balance of the hadronic final
state, Σ = Eh − ph

z , is shifted between the data and the MCs. This is however an
important quantity which enters in the calculation of x (7.15) and consequently the
boost to the Breit frame. To improve the description of Σ, Σgen is weighted with a
linear polynomial of the form w = a + b · Σgen [Gou08], where a and b are adjusted
for Rapgap and Djangoh separately. The resulting distributions of Σ and x have
been shown for the NC sample in figures 9.12 and 9.13. Control distributions of the
jet samples are shown below.
An observable of great importance in this analysis is the jet multiplicity. Only if
it is well described by the MC simulation, will the contribution from one, two and
more jet events to the inclusive jet sample be comparable in data and simulations.
This is not only important for the description of jet observables, but also for kine-
matic observables like the inelasticity, which tends towards larger values for multijet
events. Additionally, the description of the absolute normalisation of the jet samples
is improved once the jet multiplicity is well described. Since higher orders in the per-
turbative series are only approximately included in the MCs through parton showers
in the leading logarithmic or the colour dipole approximation, the distribution of the
jet multiplicity is not expected to be well described for high jet multiplicities. A set
of weights is derived, where each is a function of log(Q2), for the different numbers
of observed jets. The effect of the weighting of the jet multiplicity is shown in figure
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Figure 9.20: Ratio of the transverse momentum distribution for data to Djangoh, used
to obtain the weight functions, which are shown as solid lines. They are two-dimensional
functions of Q2 and PT. For their illustration they are evaluated at the mean value of Q2

in each bin.

9.19. The unweighted jet multiplicity is described within 10% for up to two jets by
both MCs. At larger jet multiplicities the difference between data and the simula-
tion becomes larger. Rapgap describes the data slightly better, it undershoots the
data by about 30% and 50% for three and four jet events, respectively. After the
application of the MC weighting, the jet multiplicity is very well described by both
MC simulations.

Another shortcoming of the used MC event generators is their inability to reproduce
the PT spectrum of jets at large PT. Also at large rapidities, where higher orders
become more important, they underestimate the number of jets. Since migrations in
both variables, PT and η, are of importance in this analysis, the generated spectra
of PT and η are weighted. For this purpose, the pseudorapidity of the most forward
jet (the jet with the largest value of η) in events with at least two jets is chosen.
For the purpose of the weighting procedure a larger region in PT and ηlab than the
analysis phase space is used, such that the description of migrations into the sample
is improved as well. The larger phase space in PT and ηlab results in an increase of
the fraction of dijet events with respect to one-jet events in the inclusive jet sample.
The forward jet is used for the weighting because of its good correspondence between
reconstructed and generated level.

The weighting is performed in two steps. In the first step, the pseudorapidity dis-
tributions of the forward jet in different Q2 regions are used to determine a weight
function in ηfwd and log(Q2). In the next step, the PT spectra of the forward jet
are used to obtain a weight function in PT and log(Q2). The weight functions are
polynomials of second order such that they have no discontinuities because of the
binning chosen for their determination. As an example, the obtained function used
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Figure 9.21: Transverse momentum of inclusive jets before (a) and after (b) the weighting
is applied to the Djangoh and Rapgap MCs.

for the weighting in PT for the Djangoh MC is illustrated in figure 9.20 for differ-
ent regions in Q2. The function is well behaved over the full PT and Q2 range and
does not oscillate outside the fit range. The obtained function for the Rapgap MC
shows a similar behaviour with a comparable absolute magnitude. In the PT and η
range of this analysis the applied weights take values between 0.7 and 1.3.
The transverse momentum spectrum of inclusive jets before and after the weighting
is shown in figure 9.21. The unweighted simulated spectra are too soft, Rapgap
and Djangoh undershoot the data by about 20% and 50% at large PT, respectively.
After the weights are applied, the data are described within 10% over most of the PT

range. Deviations larger than 10% can only be seen for Rapgap at PT > 40 GeV,
where Rapgap lies about 20% above the data.

9.8 Inclusive Jet Sample

In the inclusive jet sample each jet contributes to the measurement. This is different
from the other measurements presented in this thesis, where each event of the re-
spective sample contributes once per observable. For example, an event containing
three jets within the defined phase space will be counted three times for the deter-
mination of the inclusive jet cross section. Additionally to the requirement on the
pseudo-rapidity (9.14), each jet is required to have

7 < PT < 50 GeV . (9.16)

The PT spectrum of all jets in the Hera-2 dataset is shown in figure 9.22a, where the
above cut is indicated by dashed lines. The MC PT spectrum has been weighted, as
described in the previous section, to improve the description of the data. Excellent
agreement is observed over the full accessible range, with deviation between data
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Figure 9.22: Distribution of the transverse momentum in the Breit frame of inclusive
jets for the full Hera-2 dataset, shown for two different Q2 ranges. The applied cuts are
illustrated by dashed lines.

and the simulation never larger than 15%. The inclusive jet sample consists of
133 621 jets in 90 328 events. 39% of the jets are found in events with only one jet,
49% originate from events with two jets and 12% are found in events with three and
more jets. Because of the weighting of the jet multiplicities, these fractions are well
described by both MC models, differing by 1% at most.

The event yield Y , similarly defined as for NC events, is shown in figure 9.23 for
events with at least one jet with PT > 7 GeV. It is flat for the full Hera-2 dataset.
The mean values determined for the four different run periods agree with each other
within the uncertainty from the luminosity measurement. The assumption of the
2.5% uncertainty due to the luminosity measurement is tested similar to the NC
sample, with the pull variable defined in equation (9.10). The distribution of pulls is
fitted by a Gaussian and shown in figure 9.24. No statistically significant outliers are
observed. The variance of the Gaussian σ is one to a good approximation, showing
the consistency of the data with an uncertainty from the luminosity measurement
of 2.5%. An individual test for each of the four different run periods leads to the
same conclusion.

The total background from ep scattering processes in the inclusive jet sample is
estimated to be 1.1%, which is slightly less than what is found in the inclusive NC
sample. The main source of background are inelastic QEDC processes, where the
jet balances the radiated photon, amounting to 0.6% of the events in the inclusive
jet sample. Other sources of background are low Q2 and photoproduction events,
originating from a wrongly identified electron, amounting to 0.3% and 0.2% of the
events in the inclusive jet sample, respectively. The background contribution from
CC and lepton-pair production is negligible.
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Figure 9.23: Event yield Y of events with at least one jet with PT > 7 GeV for the
four Hera-2 periods. The average yield 〈Y 〉 is shown as solid line together with a 2.5%
uncertainty from the luminosity measurement.
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A different source of background, which is however included in the signal MCs,
originates from QPM processes. If in a QPM process a radiated photon is present,
the jet originating from the scattered quark may acquire significant PT in the Breit
frame. This happens when the photon escapes detection through the beam pipe
which leads to a deterioration of the boost vector. These types of processes are
studied with the Rapgap MC, selecting only QPM-type events. The estimated
fraction of jets from QPM-type events is 5% of the total number of jets in the
inclusive jet sample. The distribution of the azimuthal angle φ of the jet in the
Breit frame is shown in figure 9.25 for one- and dijet events. Jets originating from
QPM processes contribute only to one-jet events, with the jet being back-to-back
with the scattered electron. In dijet events the contribution is negligible, indicating
that QPM processes with a photon radiated at large angles, and thus balancing the
jet in transverse momentum, are largely suppressed due to the small cross section.
The azimuthal distribution of jets in one-jet events is well described by Djangoh,
but Rapgap differs by about 15% from the data at large values of φ. Hence,
it is refrained from cutting on φ to reject QPM-type events. Further studies of
the topology of these types of events did not reveal an observable which can be
used to safely reject them. However, QPM-type events are only part of the jet
sample in MC simulations including higher order QED effects. The cross sections
are corrected for higher order QED effects by utilising MC simulations without QED
radiation. No jets from QPM processes are observed to migrate into the inclusive
jet sample in these simulations. The measured cross sections are thus corrected for
the contamination from QPM events.

Distributions of the kinematics of inclusive jet events are shown in figure 9.26. Both
MC simulations describe the data well over the full range of the observables. Given
the phase space restrictions on Q2 and y, the Bjorken scaling variable x lies within
a range of approximately 2 · 10−3 < x < 0.3, with a pronounced maximum at 0.01.
The peak of the distribution of E − pz lies at 54.9GeV in the data, which is close
to the expectation value of 2E0

e = 55.2 GeV. It is well described by Rapgap, in
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Figure 9.26: Distribution of the virtuality Q2 (a), Bjorken x (b), the inelasticity y (c)
and the longitudinal momentum balance E − pz (d) for the inclusive jet sample for the
full Hera-2 dataset. The background contribution is added to the signal MCs.
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Figure 9.27: Distributions of jet observables for the inclusive jet sample for the full
Hera-2 dataset. The transverse momentum PT (a) and pseudorapidity η (b) are measured
in the Breit frame and the jet energy Elab (c) and pseudorapidity ηlab (d) are measured
in the laboratory rest frame. The background contribution is added to the signal MCs.
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Figure 9.28: Distribution of the invariant mass of the two leading jets in the dijet sample,
shown on a logarithmic (a) and linear (b) scale. The applied cut is illustrated by a dashed
line.

Djangoh the peak is shifted by 0.2GeV towards larger values. This difference is
taken into account by the systematic uncertainty due to the model dependence and
the electron and HFS measurements.

Figure 9.27 shows distributions of jet observables of the inclusive jet sample for
the full Hera-2 dataset. The data are described within 10% by the simulations in
most regions, with the largest deviations never exceeding 20%. The PT spectrum
is a steeply falling distribution with an exponential behaviour. It is well described
by e−λPT , with λ ≈ 0.12. The distribution of the jet pseudorapidity in the Breit
frame changes its shape with varying Q2. At low values of Q2 jets are approximately
restricted to the target region (η > 0), whereas for large values of Q2 the distributions
shifts towards the current region (η < 0), which is an indication of multiple QCD
radiation due to an increased phase space. The energy of jets measured in the
laboratory rest frame extends over a large range, from 3GeV up to 300GeV, with
an average value of 20GeV. The pseudorapidity distribution in the laboratory frame
shows a maximum at ηlab ∼ 0.5 and falls off steeply towards smaller values. Towards
large values of ηlab the slope of the distribution is less steep, with a change in the
slope around ηlab ∼ 1.8. This change is mainly due to multi-jet events, where more
jets are observed at large values of ηlab.

9.9 Dijet Sample

The dijet sample consists of events with at least two jets, where the transverse
momentum of every jet is required to be

5 < PT < 50 GeV . (9.17)
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Additionally, the invariant mass of the two leading jets1 is required to be

M12 > 16 GeV , (9.18)

which ensures convergence of fixed-order pQCD calculations. The distribution of
M12 is shown in figure 9.28 together with the imposed cut. The logarithmic scale
(a) shows the good agreement between data and the simulations up to large values
of M12. The linear scale reveals that the distribution of M12 tends towards smaller
values in Rapgap than in Djangoh. Djangoh describes the data well, whereas
Rapgap lies above the data for small values of M12. The resulting differences in the
migrations are taken into account by the model uncertainty. The requirement on
M12 causes PT of the leading jet to be greater than 7GeV in 95% of all dijet events,
which makes the dijet sample almost a subsample of the inclusive jet sample. In the
Hera-2 dataset a total of 52 028 dijet events is found.
The estimated background from ep processes is less than 0.4% and is not shown
in the control distributions. The background originates from wrongly identified
scattered electrons, with 0.2% originating from each, photoproduction and low Q2

DIS processes. The contamination from QEDC processes and QPM-type events is
negligible. The variable ξ, which is in LO dijet production the proton’s momentum
fraction carried by the emerging parton, can be written as

ξ = x

(
1 +

M2
12

Q2

)
= x +

M2
12

ys
. (9.19)

Using the hadron method [JB79] for the reconstruction of y leads to a partial cancel-
lation of mismeasurements in M12 due to the jet energy scale uncertainty [Wob00].
In figure 9.29 distributions of the kinematics of dijet events are shown. Overall good
agreement between the data and both simulations is observed. The distributions of
Q2 and ξ are well described by both models over the full accessible range. The mean
value of ξ is about 0.03, with a covered range in the parton momentum fraction of
8 ·10−3 < ξ < 0.3. It is interesting to note that the inelasticity y is on average larger
than in the inclusive jet sample. It is well described by both models, where at low
values of y the data lie between Rapgap and Djangoh. Only at large values of y
deviations larger than 5% are observed, with both MC simulations being below the
data by about 10–15%. The same shift of the mean value of E − pz in Djangoh
with respect to the data as in the inclusive jet sample is observed.
In figure 9.30 the distributions of the transverse momenta in the Breit frame PT,1

and PT,2, and pseudorapidities in the laboratory frame, ηlab,1 and ηlab,2, of the two
leading jets are shown. The mean value of PT,1 is around 12GeV, being 4GeV
larger than the mean value of PT,2. The distribution of PT,1 falls off steeply towards
smaller values, which is a consequence of the requirement M12 > 16 GeV. The
PT spectra of both jets are well described by the simulations. At large values of
PT,2 discrepancies of about 50% between Djangoh and Rapgap can be observed,
with the data lying between the two MCs. The distributions of ηlab,1 and ηlab,2 are
reasonably well described, with typical deviations between the data and simulations
of the order of 15%. In Djangoh the distribution of ηlab,2 is shifted with respect to
the data towards smaller values of ηlab,2.

1A leading jet is defined as the jet with the highest transverse momentum in the event.
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Figure 9.29: Distribution of the virtuality Q2 (a), ξ (b), the inelasticity y (c) and the
longitudinal momentum balance E − pz (d) for the dijet jet sample for the full Hera-2
dataset. Not shown is the contribution from background, which is less than 0.4%.
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Figure 9.30: Distribution of the transverse momentum in the Breit frame of the leading
(a) and subleading (b) jet. Also shown are the pseudorapidity distributions of the two jets
in the laboratory frame, (c) and (d).
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Figure 9.31: Mean transverse momentum in the Breit frame of the two leading jets,
defined as 〈PT〉 = 1

2(PT,1 + PT,2), shown for different Q2 ranges.
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In figure 9.31 the mean transverse momentum of the two jets, defined as

〈PT〉 =
1

2
(PT,1 + PT,2) (9.20)

is shown for different ranges of Q2. The data are well described by the simulations
over the full kinematically allowed range of this analysis.

9.10 Trijet Sample

If an event contains at least three jets, with the same requirements on PT and M12 as
in the dijet sample, it is part of the trijet sample. The requirement on M12 is neither
necessary from the experimental nor from the theoretical point of view. However, it
ensures that the trijet sample is a subset of the dijet sample, which is advantageous if
these two samples are used in a common fit [H110c]. The requirement M12 > 16 GeV
removes 11% of the trijet events. In 97% of all trijet events the leading jet has a
transverse momentum greater than 7GeV, also making the trijet sample almost a
subsample of the inclusive jet sample. In the Hera-2 dataset a total of 10 351 trijet
events is found. The total amount of background from ep processes is 0.4%, shared
to equal amounts between photoproduction and low Q2 DIS processes, similar to
the dijet sample. The contribution from QEDC scattering to the background is
negligible in the trijet sample. No jets originating from QPM-type processes are
found in the sample.
In LO three jet production the proton’s momentum fraction carried by the emerging
parton can be calculated similarly to ξ (9.19), by replacing M12 by the invariant
mass of the three leading jets, M123. In the trijet sample ξ is reconstructed using
the relation

ξ = x +
M2

123

ys
, (9.21)

where y is reconstructed using the hadron method, similar to the dijet sample. Dis-
tributions of kinematic variables of the trijet sample are shown in figure 9.32. Both
MC simulations describe the data very well. The mean value of ξ is with 0.06 larger
than in the dijet sample, the covered parton momentum fraction is approximately
0.01 < ξ < 0.5. The inelasticity is shifted to larger values with respect to the
inclusive jet and dijet sample, peaking at y ∼ 0.35. The shift in the longitudinal
momentum balance between Djangoh and the data is smaller than in the other
samples.
Distributions of jet observables are shown in figure 9.33, for the three leading jets
in the trijet sample. The mean value of PT shifts from approximately 15GeV for
the leading jet to 6GeV for the third jet. Simultaneously, the distribution of the
pseudorapidity in the laboratory frame is shifted towards larger values, going from
the leading to the third jet. Therefore, the extended ηlab range of this analysis with
respect to a previous jet measurement from H1 [H110c], leads to a large improvement
of statistics in the trijet sample, with about 40% more observed trijet events. The
distributions of the transverse momenta of all individual jets are well described by
both MC simulations. In ηlab the models show larger differences. The distribution
of ηlab,2 in Djangoh is shifted towards smaller values compared to Rapgap and
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Figure 9.32: Distribution of the virtuality Q2 (a), ξ (b), the inelasticity y (c) and the
longitudinal momentum balance E − pz (d) for the trijet jet sample for the full Hera-2
dataset. The background contribution is approximately 0.4% and not shown.
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Figure 9.33: Distributions of the transverse momentum in the Breit frame and the pseu-
dorapidity in the laboratory frame for the three leading jets in the trijet sample. The
background contribution is approximately 0.4% and not shown.
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Figure 9.34: Distributions of the mean transverse momentum in the Breit frame (a)
and the invariant mass (b) of the three leading jets for trijet events. The background
contribution of 0.4% is not shown.

the data. At large values of the pseudorapidity of the third jet, ηlab,3, Djangoh lies
above Rapgap, with the data lying between the predictions. These differences are
taken into account by the systematic uncertainty due to the model dependence of
the detector correction.
The mean transverse momentum in trijet events is defined as

〈PT〉 =
1

3
(PT,1 + PT,2 + PT,3) . (9.22)

The distribution of 〈PT〉 is shown together with that of the invariant mass of the
three leading jets, M123, in figure 9.34. 〈PT〉 reaches values of 5.5 < 〈PT〉 < 40 GeV,
with a mean value of approximately 10GeV. The invariant mass of the three jets
peaks at 35GeV and is always larger than 20GeV. Both distributions are well de-
scribed by the MC simulations.

9.11 Summary

The definitions of the phase space for the NC DIS, inclusive jet, dijet and trijet
measurements are summarised in table 9.6. The larger phase space in ηlab compared
to a previous jet measurement of H1 [H110c], leads to larger statistics. Whereas in
the inclusive jet sample the number of observed jets is comparable with the one from
the previous analysis, in the dijet and trijet samples more events are observed, even
though a smaller dataset is used. In the dijet sample the gain in statistics is 10%.
Statistically significant is the increase of the number of trijet events with about 40%
more events than in the previous multijet analysis.
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Sample Phase space Events

NC DIS
150 < Q2 < 15000 GeV2

337 048 events
0.2 < y < 0.7

Global jet selection

inclusive kT-jets, R0 = 1

PT-recombination scheme

2.5 < ηlab < −1.0

Inclusive jets 7 < PT < 50 GeV
133 621 jets

(in 90 328 events)

Dijets 5 < PT < 50 GeV, M12 > 16 GeV 52 028 events

Trijets 5 < PT < 50 GeV, M12 > 16 GeV 10 351 events

Table 9.6: Phase space definition and statistics for NC DIS and jet samples.
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Chapter 10

Measurement of Jet Cross Sections

The different data samples, obtained with the selection described in the previous
chapter, are used to measure jet cross sections in bins of Q2, PT and ξ. In this
chapter the chosen bin boundaries are introduced, and the migrations between bins
are studied. In order to obtain cross sections independent from the experimental
setup, the data are corrected for detector and QED radiation effects. The sources
of systematic uncertainties and how they are estimated are given. This is followed
by a summary of the statistical and systematic uncertainties for the different jet
cross section measurements. The chapter concludes with a description of the cor-
rections applied to the NLO calculations and the estimation of their uncertainties.
These corrections are needed to account for effects not included in these calculations,
namely Z0 exchange and hadronisation effects.

10.1 Observables and Bin Definitions

The inclusive jet, dijet and trijet cross sections are denoted by σjet, σ2-jet and σ3-jet,
respectively. They are measured single and double differentially in Q2, PT,obs and
ξ, where PT,obs denotes PT for inclusive jets and 〈PT〉 for di- and trijets. The
binning in Q2, PT,obs and ξ is chosen to be identical with previous jet measurements
from H1 [H107,H110c] in order to obtain directly comparable cross sections, where
applicable. In the case of PT,obs and ξ, the bin widths are approximately 4σ, where
σ is the resolution of the measurement in a given observable. Four bins in PT,obs and
ξ are defined for every Q2 bin. In the case of the trijet measurement the last bin
in 〈PT〉 is not used, because of the smallness of the cross section, which results in
too little statistics in this bin. In the case of Q2, the bin widths are larger than 4σ
to obtain high enough statistics in every range of Q2. A summary of the bin labels
and boundaries is given in table 10.1.
The normalised jet cross sections are defined as the ratio of the differential inclusive
jet, dijet and trijet cross sections to the differential inclusive NC DIS cross section
in a given Q2 bin. Single differential normalised inclusive jet cross sections are given
by

σjet

σNC

(Q2
i ) =

σjet(Q
2
i )

σNC(Q2
i )

, (10.1)

where σjet(Q
2
i ) and σNC(Q2

i ) denote the integrated inclusive jet and integrated in-
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Bin label Q2 range (in GeV2)

1 150 ≤ Q2 < 200

2 200 ≤ Q2 < 270

3 270 ≤ Q2 < 400

4 400 ≤ Q2 < 700

5 700 ≤ Q2 < 5000

6 5000 ≤ Q2 < 15000

Bin label PT or 〈PT〉 range (in GeV)

α 7 ≤ PT < 11

β 11 ≤ PT < 18

γ 18 ≤ PT < 30

δ 30 ≤ PT < 50

Bin label Dijet ξ range

a 0.006 ≤ ξ < 0.020

b 0.020 ≤ ξ < 0.040

c 0.040 ≤ ξ < 0.080

d 0.080 ≤ ξ < 0.316

Bin label Trijet ξ range

A 0.01 ≤ ξ < 0.04

B 0.04 ≤ ξ < 0.08

C 0.08 ≤ ξ < 0.50

Table 10.1: Bin labels and boundaries for bins in Q2 (top left), PT,obs (top right), ξ for
the dijet (bottom left) and ξ for the trijet (bottom right) measurements.

clusive NC cross sections in a given Q2 bin i, respectively. The normalised dijet
and trijet cross sections are defined analogously. In the case of a double differential
measurement, the normalised inclusive jet cross section in Q2 bin i and PT bin j is
defined as

σjet

σNC

(Q2
i , PT,j) =

σjet(Q
2
i , PT,j)

σNC(Q2
i )

, (10.2)

with the variable σjet(Q
2
i , PT,j) denoting the integrated inclusive jet cross section

in the given Q2, PT bin. Similar definitions are used for other observables and for
the normalised dijet and trijet cross sections. The normalised inclusive jet cross
sections can be considered as the average jet multiplicity in a given Q2 region. The
normalised dijet and trijet cross sections can be viewed as the average dijet and
trijet event rates.

10.2 The Detector, Hadron and Parton Level

The Detector Level

Recorded events from ep collisions were measured with an imperfect detector with
finite acceptance and intrinsic resolution. In order to estimate the effect of these
imperfections, simulated events from MC event generators are passed through the
detector simulation H1Sim. After this they are passed through the same recon-
struction algorithms as the recorded data. At this stage, simulated events are said
to be on detector level and are directly comparable to the reconstructed data (see
also section 4.3).
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The Hadron Level

Cross sections corrected for detector effects are termed hadron level cross sections.
They are comparable to calculations including all known effects occuring in high
energy collisions. In MC event generators hadron level cross sections are obtained
by defining observables for the hadronic final state, i.e. after the hadronisation stage.
Since many particles produced in high energy collisions are unstable and will decay
soon after their production, the hadronic final state is chosen to be the list of all
stable hadrons. Here stable refers to particles with an average decay length much
larger than the dimensions of the beam pipe, which means that the lifetime τ is
required to be larger than 3 · 10−10 s. This definition renders all particles stable
which have the chance to be detected within the active detector volume.
Usually one is not interested in the well known effects from QED radiation, which are
generally not included in pQCD calculations. Hence, the hadron level cross sections
are corrected for higher order QED effects as well. In order to obtain corrections
leading from the detector level to a level corrected for QED radiation, a two-step
procedure is used. The total experimental correction cexp is defined as

cexp = cdet · cqed , (10.3)

where cdet is the correction for detector effects, and cqed corrects the hadron level for
effects from QED radiation. The separation into contributions from detector and
higher order QED effects leaves some ambiguity in the definition of the intermediate,
radiative hadron level. In events with a radiative photon the event kinematics are
not uniquely defined. If the photon has a small angle with respect to the scattered
electron, it will not be resolved at the detector level. On the contrary, in simulated
events on hadron level the scattered electron and the radiated photon can be distin-
guished. In this case the corrections cdet and cqed will be artificially large. However,
these effects cancel in the definition of cexp, which remains correct. In order to ob-
tain meaningful definitions already for the intermediate corrections cdet and cqed, the
radiative hadron level is defined in the following way:

� In an event with a radiated photon, the four-vector of the generated scattered
electron pe is combined with the four-vector of the radiated photon pγ, if the
opening angle between them is smaller than αeγ. In this case the radiated
photon is removed from the hadronic final state.

� All remaining photons are sufficiently isolated from the scattered electron and
are treated as part of the hadronic final state.

The exact value of the resolution angle αeγ is not crucial, however a value close to
the resolution power of the LAr calorimeter for the electron-photon system should
be used. Studies showed that the choice αeγ = 5◦ is reasonable for all scattering
angles.

The Parton Level

Fixed-order pQCD calculations do not include long-range hadronisation effects. In-
stead, the obtained jet cross sections, after applying the same jet finder as for the
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Figure 10.1: Schematic showing the possible migrations between reconstructed and gen-
erated level. Solid squares illustrate bins inside the phase space of the measurement,
dashed squares illustrate regions outside the phase space.

data, are defined for the partonic final state and are said to be parton level jet cross
sections. In order to compare these calculations to measured cross sections, they
have to be corrected for the long-range hadronisation effects. To compute the size
of these hadronisation corrections MC event generators are used, which is explained
in section 10.6.2.

10.3 Acceptance, Purity and Stability

To study detector effects and the impact of migrations between individual bins on
the measurement, observables on detector level (reconstructed MC events) and the
intermediate radiative hadron level (generated MC events) are considered. For each
measurement bin i, let Ngen and Nrec be the number of generated and reconstructed
events, respectively. Then the following quantities may be defined:

� Nstay is the number of events generated and reconstructed in bin i.

� Nout is the number of events generated in bin i, but reconstructed in another
bin inside the phase space of the measurement.

� Nin is the number of events reconstructed in bin i, but generated in another
bin inside the phase space of the measurement.

� Nlost is the number of events generated in bin i, but reconstructed outside the
phase space of the measurement.

� Ngain is the number of events reconstructed in bin i, but generated outside the
phase space of the measurement.
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These quantities are illustrated in figure 10.1. The quantities Nstay, Nout and Nin

are related to migrations between the defined bins, whereas Ngain and Nlost describe
migrations in and out of the phase space defined by the bin grid. These occur
mainly because of the finite resolutions in the reconstruction of PT, η, ξ and M12.
The quantities defined above are related to Ngen and Nrec via

Ngen = Nstay + Nout + Nlost , (10.4)

Nrec = Nstay + Nin + Ngain . (10.5)

To quantify the relationship between reconstructed and generated variables as well
as effects from smearing due to detector effects, the acceptance, purity and stability
are studied.

Acceptance

The acceptance A is defined as

A =
Nrec

Ngen

(10.6)

and quantifies the number of events reconstructed in a bin with respect to the true
number of events generated in this bin. It thus accounts for all reconstruction effects
and detector inefficiencies.

Purity

The purity P is defined as

P =
Nstay

Nrec

(10.7)

and is the fraction of events generated and reconstructed in the same bin with respect
to the total number of events reconstructed in this bin.

Stability

The stability S is defined as

S =
Nstay

Ngen −Nlost

(10.8)

and describes the fraction of events generated and reconstructed in the same bin
with respect to the number of events generated in this bin, which stay within the
phase space of the measurement. The events migrating out of the visible phase space
are ignored since they are already taken into account by the acceptance.

The values of the acceptance, stability and purity for each bin used in this measure-
ment are required to be larger than 40% in order to ensure that migrations are well
understood. In the bulk of the phase space of the measurement A, P and S are
above 50%. Only for some of the lowest PT,obs bins, the purity lies between 40–50%.
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Figure 10.2: Acceptance, purity and stability for inclusive jets (top), dijets (middle) and
trijets (bottom) for the Q2, PT,obs binning. The statistical errors are smaller than the
histogram markers. The horizontal line represents the limit of 40%.
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Q2, PT Binning

The values of A, P and S for the Q2, PT,obs binning are shown in figure 10.2 for the
inclusive jet, dijet and trijet measurements.
In the inclusive jet sample the acceptance is between 60–90% in the first four Q2

bins, where it rises as function of PT. In the Q2 bins 5 and 6 the acceptance shows
the opposite behaviour but stays above 50% over the full range in PT. This is due
to the separation between detector and radiative correction factors. The radiative
correction factors for inclusive jets show a more significant Q2 dependence than for
the dijet and trijet measurements. In the Q2 bins 5 and 6 the radiative correction
factors exhibit a slope in the opposite direction with respect to the acceptance. The
total correction factors cexp are relatively flat in PT in all Q2 bins, as shown below.
The stability is relatively flat as function of PT and lies between 70–80% in all Q2

bins. The purity rises slowly as function of PT. It takes values between 50–60% in
all bins, except for bin 6α, where it is 43%. The reason for the purity to be smaller
than the stability is the steeply falling PT distribution. Only if the binning can be
chosen such that the measured distribution is flat, will the purity and stability be
approximately equal. Since the PT distribution falls too steeply to achieve a flat
measurement a compromise is made. On one hand the binning is chosen such that
the bin widths are not smaller than 4σ for the migrations to be well controlled. On
the other hand the bin widths are chosen to be not too large, such that the shape
of the underlying distribution can still be measured.
In the dijet sample the acceptance and the stability lie between 60–80%. The purity
is larger than in the inclusive jet sample and takes values of 55–70%. In the smallest
〈PT〉 bins the purity takes the lowest values of ∼55%, which is a consequence of the
M12 cut. Since small values of M12 correspond to small 〈PT〉, the purity decreases
due to events with small M12 smearing into the sample. An additional bin in the
range 5 < 〈PT〉 < 7 GeV has been studied, but was discarded due to too small values
of the stability and purity.
In the trijet sample the values of the acceptance and stability are mostly between
70–80%, with the smallest values being 60% and the largest ones 90%. The purity
shows the same behaviour as for the dijet sample, but is lower by about 10% due
to the requirement of a third jet which has on average a relatively small PT. This
introduces migrations into the sample, which are larger than in the dijet case, where
on average only one jet with low PT is observed. In bin 6a, which is the bin with
the highest values of Q2 and the smallest values of 〈PT〉, the purity is smaller than
40%. This bin is removed from the measurement.

Q2, ξ Binning

The values of A, P and S for the binning in Q2 and ξ are shown in figure 10.3 for
the dijet and trijet measurements. They show a similar behaviour to the binning
in Q2 and 〈PT〉. For the trijet measurement the purity is about 10% lower than for
the dijet measurement. In bin 5a (5A), which is the lowest ξ bin in Q2 bin 5, the
purity is below 40% in the dijet (trijet) measurement. The reason is a small total
cross section in this bin with respect to the next bin in ξ. This leads to significant
migrations from bin 5b (5B) into bin 5a (5A). The bins 5a and 5A are discarded
from both measurements.
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Figure 10.3: Acceptance, purity and stability for dijets (top) and trijets (bottom) for
the Q2, ξ binning. The statistical errors are smaller than the histogram markers. The
horizontal line represents the limit of 40%.
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In a previous measurement values of the purity between 70–80% were reported for
the binning in 〈PT〉 in the case of the dijet measurement [Gou08]. For the trijet
measurement, values of P ∼ 90% were observed for the binning in Q2. These high
values of P are due to a different definition of P , which does not take migrations from
outside of the defined phase space into account, Pm = Nstay/(Nstay+Nin). Especially
in the trijet measurement migrations from outside the defined phase space are the
limiting factor for the purity. Using the definition of Pm for the purity, similar values
as in the previous multi-jet measurement are observed.

10.4 Corrections to Data

In general, the cross section in a given bin is related to the number of corrected
events in this bin for an integrated luminosity L via

σ =
N

L
. (10.9)

Using a procedure where migrations and detector effects are corrected for bin-by-
bin, the measured cross section in a given bin i is related to the number of observed
events in this bin, N i

data, through

σi =
N i

data −N i
bkgd

L · Ai
ci
qed . (10.10)

Here N i
bkgd, Ai and ci

qed are the number of events from ep background processes as
estimated by MC simulations, the acceptance and the correction for QED effects in
bin i, respectively. Equation (10.10) can be written as

σi = σi
meas ci

det ci
qed , (10.11)

with the definition of the background-subtracted cross section measured on detector
level, σi

meas = (N i
data −N i

bkgd)/L, and the detector correction ci
det = 1/Ai.

10.4.1 Detector Correction

In this work a bin-by-bin correction is employed, which relies on a good simulation
of migrations between bins as well as an adequate knowledge of migrations in and
out of the samples used for the cross section measurements. The first requirement is
connected to a good simulation of experimental effects and resolutions. These have
been studied in great detail as shown in chapters 6–8. Additionally, the underlying
cross sections have to be well modelled which is achieved by a reweighting of the
MC cross sections. To achieve a good description of migrations into the samples, the
data have to be well described by the simulations outside the defined phase space.
This has been checked by relaxing the respective cuts, which has been partly shown
in chapter 9.
Overall, the data are very well described by the MC simulations. In regions where
the data are only reasonably well described, usually the Rapgap and Djangoh
simulations differ by a larger amount than their deviations from the data. These
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differences may lead to different acceptance corrections, which are taken into account
by using the arithmetic mean

cdet =
1

2

(
cR
det + cD

det

)
, (10.12)

where cR
det and cD

det stand for the detector corrections obtained with Rapgap and
Djangoh, respectively. The uncertainty of this procedure is estimated by the model
dependence, which also takes the radiative correction into account and is described
in more detail in section 10.5.

10.4.2 Radiative Correction

QED corrections can influence the measured jet cross sections through four mecha-
nisms:

1. Real photon radiation will result in a shift of the kinematic variables, which
leads to an additional smearing in the defined bins in Q2.

2. The emission of real photons may lead to an error in the reconstruction of
the boost vector. A badly reconstructed boost to the Breit frame can lead to
an additional transverse component with respect to the photon-proton axis,
which may be misinterpreted as an underlying QCD process.

3. Photons emitted under large angles with significant transverse momenta will
not be identified during the reconstruction and will be reconstructed as jets,
which enhances the measured jet cross sections.

4. Electroweak virtual corrections for γ and Z0 exchange lead to a renormalisation
of αem, which becomes a function of Q2, αem = αem(Q2). This changes the
cross section as function of Q2, with αem being about 2.3% larger in the highest
Q2 bin than in the lowest Q2 bin of this analysis.

It was already shown in a previous analysis [Wob00] that the eΣ-reconstruction
method removes systematic biases in the reconstruction of the boost vector due to
photons emitted collinear to the incoming electron. This is also verified by checking
the transverse momentum components of the hadronic final state in the Breit frame.
This shows that QED effects are well modelled in Heracles, which is interfaced
to Rapgap and Djangoh. Heracles includes single photon emission from the
incoming and scattered electron for γ and Z0 exchange and the full electroweak vir-
tual corrections to one loop accuracy, i.e. vertex correction, self energy and vacuum
polarisation graphs, as shown in figure 10.4.
The effects of QED radiation to the jet cross sections are corrected for by comparing
cross sections on hadron level including QED radiation, σrad, with cross sections on
hadron level without QED radiation σnorad. Consequently, the jet cross sections are
corrected for QED effects resulting from diagrams (a)–(c) in figure 10.4 and corre-
spondingly to numbers 1–3 in the above list. The running of the electromagnetic
coupling is not corrected for. It is taken into account when calculating σnorad. There-
fore, the corresponding diagrams (d)–(f) in figure 10.4, which lead to the running of
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Figure 10.4: Diagrams of QED corrections to the process e±p → e±X, included in
Heracles: real emission of photons (a, b), vertex correction (c), vaccum polarisation
(d) and self energy (e, f) diagrams.

αem and the renormalised electron mass, are taken into account when the final cross
sections are given.

For every bin i, the radiative correction ci
qed is given by

ci
qed =

σi
norad

σi
rad

, (10.13)

where σi
norad and σi

norad are estimated using Rapgap and Djangoh.

The radiative correction factors are shown together with the detector and total
correction factors for the dijet measurement as function of Q2 and 〈PT〉 in figure
10.5. At low Q2 and low 〈PT〉 the radiative corrections are small, becoming larger
towards larger Q2 and 〈PT〉. The detector correction factors are relatively flat around
1.5, leading to total experimental correction factors between 1.2 and 1.4.

10.4.3 Total Experimental Correction

The NC DIS sample is the basis for the jet selection, hence it is instructive to study
its acceptance correction before looking at the jet samples. The requirements on the
scattered electron, like the fiducial volume cut, rejection of φ and z-cracks and the
requirement Ee > 11 GeV reduce the geometrical acceptance of the LAr calorime-
ter to about 0.7. Additional requirements for the background-rejection reduce the
acceptance to approximately 0.6. None of these requirements exhibit a Q2 depen-
dence, which is why the acceptance is relatively flat over the full range in Q2, except
for the highest Q2 bin with a higher acceptance of 0.75. These corrections are well
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Figure 10.5: Correction factors for the dijet measurement as function of Q2 (a) and 〈PT〉
(b). The detector (radiative) correction cdet (cqed) is illustrated with a dashed (dotted)
line, the total experimental correction cexp = cdet · cqed is illustrated with a solid line. The
statistical errors introduced by limited MC statistics are smaller than 0.3% and not shown
here.

controlled, with most of them being geometrical corrections for the scattered elec-
tron only. The efficiencies of the remaining cuts have been studied in detail and are
well understood, see chapter 9 and references therein. As a consequence of the flat
acceptance, the experimental correction factors for the NC DIS are flat and take
values around 1.5 (1.3 in the highest Q2 bin).
In figure 10.6 the experimental correction factors for the inclusive jet, dijet and trijet
measurements for the Q2, PT,obs binning are shown. In general, the acceptance rises
with increasing PT,obs (also see figure 10.2). At low values of PT,obs it is close to the
acceptance of the NC DIS sample, whereas at large values of PT,obs it can take values
of 0.8–0.9. Therefore the experimental correction factors for the jet measurement
gets closer to unity for large PT,obs. For the inclusive jet sample the values of cexp

are closer to unity than for the dijet and trijet samples due to the requirement of
a larger jet transverse momentum and no cut on M12. In most of the bins the
experimental correction factors take values between 1.0 and 1.5 for all jet samples.
Only in the highest Q2 bin for large PT,obs, the experimental correction factors can
become smaller than unity due to radiative correction factors with values between
0.6 and 0.8.
In figure 10.6 the experimental correction factors for the dijet and trijet measure-
ments for the Q2, ξ binning are shown. The values of cexp become closer to one for
increasing values of ξ. This is due to large jet transverse momenta at high values
of ξ, which leads to improved values of the acceptance compared to small values of
ξ. Also, at small values of ξ the requirement on M12 leads to smaller values of the
acceptance and therefore larger values of cexp.

10.5 Experimental Uncertainties

Uncertainties in the performance of the detector, the normalisation of the back-
ground contribution and differences in the MC models used to obtain the experimen-
tal correction factors lead to systematic uncertainties on the cross section measure-

202



ex
p

E
xp

er
im

en
ta

l C
or

re
ct

io
n 

c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10

 bin 12Q

10

 bin 22Q

10

 bin 32Q

10

 bin 42Q

10

 bin 52Q

 [GeV]T,obsP
10

 bin 62Q

Inclusive Jet

Dijet

Trijet

Figure 10.6: Experimental correction factors for the inclusive jet, dijet and trijet mea-
surements as function of Q2 and PT,obs. The statistical errors on the correction factors,
introduced by limited MC statistics, are smaller than the histogram markers.

ex
p

E
xp

er
im

en
ta

l C
or

re
ct

io
n 

c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−210 −110

 bin 12Q

−210 −110

 bin 22Q

−210 −110

 bin 32Q

−210 −110

 bin 42Q

−210 −110

 bin 52Q

ξ
−210 −110

 bin 62Q

Dijet
Trijet

Figure 10.7: Experimental correction factors for the dijet and trijet measurements as
function of Q2 and ξ. The statistical errors on the correction factors, introduced by
limited MC statistics, are smaller than the histogram markers.

203



ment. The uncertainties can have different sizes, depending on the observable and
the region of phase space. A detailed examination of various sources of uncertainties
has been performed and a summary is presented here. All systematic uncertainties
are found to be symmetric to a good approximation and are assumed to be so in the
following. The total experimental uncertainty is obtained by adding the individual
systematic uncertainties with the statistical uncertainty in quadrature. The exact
values of the statistical and systematic uncertainties from the various sources are
given in the tables of the results in appendix A.

10.5.1 Statistical Uncertainty

Statistical uncertainties arise from a limited number of events used for the determi-
nation of a quantity. In general, not only the data but also the MC samples used
for the determination of the detector and radiative correction have limited statis-
tics. In practice, the statistical uncertainties from simulated events can be neglected
if a large number of simulated events is used compared to the events in data. In
this analysis the MC samples have approximately 25 times the luminosities of the
Hera-2 dataset, resulting in a statistical uncertainty about five times smaller than
in the data, which thus can be neglected safely.
However, migrations between bins can lead to an increase of the statistical uncer-
tainty. This effect is taken into account when calculating the values of the accep-
tance, which enters the experimental correction factors cexp. The migrations enter in
the form of the uncorrelated variables Nstay, Nout, Nlost, Nin and Ngain, as defined in
section 10.3. Expressing the acceptance A in terms of these uncorrelated variables,
one obtains

A =
Nrec

Ngen

=
Nstay + Nin + Ngain

Nstay + Nout + Nlost

. (10.14)

The uncertainty on A is obtained via

σ2
A =

(
∂A

∂Nstay

σstay

)2

+

(
∂A

∂Nin

σin

)2

+

(
∂A

∂Ngain

σgain

)2

+ . . . (10.15)

and propagated to the statistical uncertainty ∆stat using

∆stat =
√

σ2
A + σ2

data . (10.16)

The statistical uncertainty on the measured number of events is obtained by assum-
ing Possoinian statistics, σdata =

√
Ndata.

For the case of a measurement of normalised jet cross sections a similar procedure
is used, with the normalised acceptance Anorm taking the more complicated form

Anorm =
N jet

rec

/
NNC

rec

N jet
gen

/
NNC

gen

. (10.17)

This expression can be expanded in terms of uncorrelated variables similarly to
equation (10.14). The error on Anorm is calculated similar to equation (10.15), with
the assumption that the NC DIS and jet samples are statistically independent.
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10.5.2 Normalisation Uncertainties

Normalisation uncertainties are independent of the measured observables. These
uncertainties cancel for normalised cross section measurements.

Uncertainty on the Luminosity Determination

The run selection and corresponding integrated luminosity of the data set used is de-
scribed in section 9.1. The uncertainty assigned due to the luminosity measurement
is 2.5%.

Trigger Efficiency

The trigger efficiency is a combination of the efficiency of the LAr trigger element,
the veto condition and the event timing requirement as described in section 9.2. The
combined uncertainty is 1.2%.

Primary Vertex and Electron Track Finding Efficiency

The vertex finding efficiency together with the efficiency of the requirement of a
track pointing to the electron cluster in the LAr calorimeter is studied in section
9.4. The efficiency is 95% with an uncertainty of 1%.

10.5.3 Model Dependence and Background Subtraction

The use of the bin-by-bin correction method and the statistical background subtrac-
tion introduce an uncertainty which depends on the measured observable. Whereas
the background subtraction introduces only a small uncertainty due to the small
amount of ep background, the model uncertainty is one of the dominant sources of
uncertainties of this measurement. For normalised jet cross sections partial cancel-
lations reduce the model dependence for some observables.

Model Dependence

The experimental correction factors cexp are obtained as the arithmetic mean val-
ues of the correction factors cR

exp and cD
exp, which are obtained from Rapgap and

Djangoh, respectively. The values of cR
exp and cD

exp can differ if the underlying
distributions are different. Especially at the boundaries of the defined phase space
these differences can become significant due to migrations in and out of the jet phase
space. The uncertainty assigned due to the experimental correction is chosen to be
the difference between the mean value cexp and the single model estimates which
can also be written as

∆model =
1

2

(
cR
exp − cD

exp

)
. (10.18)

Using this definition, in some measurement bins the model uncertainty may become
very small due to artificial cancellations, like a crossing of the underlying distribu-
tions. In order to eliminate unphysically small values of ∆model, a single exponential
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smoothing algorithm is applied [Bro63]. Let xi denote the model dependence in bin
i and si is a smoothed value of it. Then the values si are calculated as

si = αxi + (1− α)si−1 . (10.19)

The starting value s0 is taken to be the total model uncertainty for a given ob-
servable, averaged over all bins. The parameter α is the smoothing factor with
0 < α < 1. Large values of α give larger weight to individual changes in the series
of xi, whereas in the limiting case of α = 1 the smoothed series is just the input
series. Small values of α have a large smoothing effect and result in a relatively flat
model uncertainty. The value chosen for α is 0.5 with the additional constraint that
the smoothed model uncertainty is not allowed to become smaller than 85% of its
original value. This procedure leaves the model uncertainty, averaged over all bins,
unchanged within 0.5% for all observables.
The effect of the smoothing algorithm is shown in figure 10.8 for the inclusive jet mea-
surement. The dashed lines correspond to the original model uncertainty, obtained
with equation (10.18). The green area is the result of the exponential smoothing and
corresponds to the assigned model uncertainty. Before the smoothing, the model
uncertainty is unphysically small in the second PT bin. The smoothing cures these
fluctuation by preserving the overall structures of the model uncertainty. Similar
results are obtained for the other observables.

Background Subtraction

The ep background is estimated with dedicated MC simulations, as described in
section 9.6.1. The relative background is estimated to be 1.2%, 1.1%, 0.4% and
0.4% in the NC DIS, inclusive jet, dijet and trijet samples, respectively. Only a
small fraction of the background is due to photoproduction, which has the largest
normalisation uncertainty. Therefore, a conservative estimate for the uncertainty
due to the background subtraction is obtained by varying the total background
contribution by ±30%. The resulting overall uncertainty is 0.4% for the NC DIS,
0.3% for the inclusive jet and 0.1% for the dijet and trijet measurements.

10.5.4 Measurement Uncertainties

Uncertainties due to the reconstruction of electron and hadronic final state variables
are estimated by varying the corresponding reconstructed quantities in simulated
events. The effect of this variation on the measured cross section is assigned as
experimental uncertainty. In figure 10.9 the ratios σjet/σ

(+δ)
jet and σjet/σ

(−δ)
jet are shown

for the inclusive jet measurement as function of Q2 and PT. The up and down
variations of the corresponding reconstructed quantity are denoted by +δ and −δ.
It can be observed that the effect of the variations on the cross section is to a good
approximation symmetric. The dominant systematic uncertainty comes from the
hadronic energy scale.

Electron Energy

The electron energy is measured with a precision of 0.5% in the central region of
the detector (zimpact ≤ 100 cm) and 1% in the forward region (zimpact > 100 cm), as
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shown in section 8.1. This results in an uncertainty of approximately 0.3% for jet
cross sections and 0.5% for normalised jet cross sections. This increase of the latter
is due to an opposite effect that the variation of Ee has on the NC DIS cross section
compared to the jet cross sections.

Electron Polar Angle

The polar angle of the scattered electron is measured with the LAr calorimeter,
which has been aligned with the CTD to a precision of 1mrad as described in
chapter 7. The variation of θe by ±1 mrad leads to an uncertainty of 0.2–0.3%.

Electon Identification

The uncertainty on the electron finding efficiency is 0.5% for zimpact ≤ 0 and 2% for
zimpact > 0 (see section 7.2). This leads to an uncertainty which is Q2 dependent,
as shown in figure 10.9c. Since the uncertainty is relatively flat as function of PT

(figure 10.9g), it largely cancels for normalised jet cross sections.

Hadronic Energy Scale

The hadronic energy scale uncertainty is one of the dominating uncertainties in
every jet measurement. A large part of this work has been dedicated to study the
detector response to jets and to improve the uncertainty on the energy measurement
of the hadronic final state. The separation of electromagnetic showers in the LAr
calorimeter based on statistical methods, and the subsequent reconstruction and
calibration of the hadronic final state are described in chapters 6 through 8. One
of the major achievements of this work is the reduction of the uncertainty on the
hadronic energy scale to 1%.
The effect of this uncertainty on the measured jet cross sections is studied by varying
the energy of all calibrated HFS objects by ±1%. The shifted objects are then
boosted to the Breit frame where the jet finding is performed. No distinction between
tracks and calorimeter clusters is made for the variations, since the employed energy
flow algorithm results in combined objects. The uncertainty of 1% thus applies to
the fullly reconstructed and calibrated hadronic final state and takes the matching
of energy from tracks and clusters into account.
The effect of the hadronic energy scale uncertainty on the inclusive jet measurement
is shown in figures 10.9d and 10.9h as function of Q2 and PT. The uncertainty
caused on the cross section is flat in Q2 at values of approximately 2%. As function
of PT, the uncertainty increases with increasing PT, taking values of about 2% in
the lowest PT bin and 4% in the highest one.

10.5.5 Summary of Uncertainties

A summary of the contributions from the individual sources of uncertainty is given
in table 10.2. The normalisation uncertainty ∆norm is a combination of the uncer-
tainties due to the luminosity measurement and the trigger and vertex-track-link
efficiencies, added in quadrature. ∆model and ∆bkgd denote the uncertainties due
to the model dependence and background subtraction. The uncertainty due to the
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Measurement ∆norm ∆model ∆bkgd ∆elec ∆HFS ∆sys ∆stat ∆tot

σNC 2.9% 1.9% 0.4% 0.7% 0.6% 3.7% 0.2% 3.7%

σjet 2.9% 1.3% 0.3% 0.7% 2.2% 4.0% 0.3% 4.0%

σjet/σNC - 0.4% 0.2% 0.6% 1.4% 1.6% 0.9% 1.9%

σ2-jet 2.9% 3.7% 0.1% 0.7% 2.0% 5.2% 0.5% 5.2%

σ2-jet/σNC - 1.6% 0.1% 0.2% 1.2% 2.0% 1.3% 2.4%

σ3-jet 2.9% 5.6% 0.1% 0.8% 3.0% 7.1% 1.0% 7.2%

σ3-jet/σNC - 5.5% 0.1% 0.3% 2.2% 6.1% 2.1% 6.5%

Table 10.2: Summary of the experimental uncertainties for the NC DIS and jet cross
section measurements. A detailed explanation is given in the text.

electron measurement, ∆elec, combines the uncertainties due to the electron energy
and polar angle measurements with the uncertainty of the electron finding efficiency.
∆HFS is the uncertainty due to the hadronic energy scale. ∆sys denotes the total
systematic uncertainty, with the individual sources added in quadrature. The total
uncertainty ∆tot is obtained by adding the systematic uncertainty with the statistical
uncertainty ∆stat in quadrature.

For the NC DIS measurement σNC the normalisation and model uncertainties give
the major contributions to the experimental uncertainty of 3.7%.

The uncertainty of the inclusive jet measurement σjet is dominated by the normalisa-
tion and the hadronic energy scale uncertainties. The model uncertainty is smaller
than in the NC DIS case. The normalised inclusive jet measurement σjet/σNC is
independent of the overall normalisation. In addition it benefits from cancellations
which reduce the model and hadronic energy scale uncertainties. This reduces the
uncertainty from 4.0% for the σjet measurement to 1.9% for the σjet/σNC measure-
ment.

In the case of the dijet measurement σ2-jet, the normalisation, model and hadronic
energy scale uncertainties are of comparable size and lead to a total uncertainty
is 5.2%. Again, the normalised measurement σ2-jet/σNC benefits from cancellations
resulting in an overall uncertainty of 2.4% only.

The normalised and non-normalised trijet measurements are dominated by the
model uncertainty, which becomes nearly twice as large as the hadronic energy scale
uncertainty. Both MC event generators used to obtain the experimental correction
factors do not include the LO diagrams for trijet production, which results in a poor
description of the trijet data sample. The MC weighting described in section 9.7.4
improves the description of the trijet data significantly. This reduces the model de-
pendence already by a factor of two and results in an uncertainty of 5.5%. A further
reduction of the model dependence for the trijet measurement proved difficult.

For the normalised measurements the statistical uncertainty becomes more impor-
tant than for the corresponding cross section measurements. This is mostly due
to the more complicated form of the acceptance in the case of normalised jet cross
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Figure 10.10: EW correction factors for the inclusive jet cross section as function of Q2

(a) and PT in the highest Q2 bin (b). The values of cEW are shown for e+p and e−p
scattering as well as for a luminosity weighted mixture, according to the Hera-2 dataset.

sections. The uncertainty on the acceptance is related to the uncertainty due to
migrations between bins and is propagated to the statistical uncertainty, as shown
in section 10.5.1.

10.6 Corrections to NLO Calculations

The NLOJet++ program, employed in this work for the calculation of jet cross sections
in NLO in αs, does not include effects from Z0 exchange. Also, the jet cross sections
calculated with NLOJet++ are defined on the parton level. In order to compare the
measured cross sections with the predictions, the NLO calculations are corrected for
the effects of Z0 exchange and hadronisation.

10.6.1 Electroweak Correction

In the fixed-order pQCD calculation for multi-jet production employed in this work
Z0 exchange and γ/Z0 interference effects are not included. These effects are negli-
gible as long as Q2 � M2

Z , but in the two highest Q2 bins these effects cannot be
neglected anymore. Therefore a correction, cEW, to simulate electroweak effects, is
applied to the NLO calculations. The correction cEW is obtained with the Lepto
MC event generator and is defined by cEW = σγZ/σγ [H107]. Here σγZ denotes a
cross section obtained with all EW effects included and σγ is the same cross sec-
tion calculated with pure γ exchange only. Since the cross section for Z0 exchange
depends on the charge of the incoming lepton, cEW is different for e+p and e−p
scattering.

The correction cEW is shown in figure 10.10 for e+p and e−p scattering and for a
mixture weighted according to the Hera-2 luminosities. Whereas the EW correc-
tions are sizeable in Q2 bins 5 and 6 for e+p and e−p scattering, the corrections
for the Hera-2 average are only 2% and 12% in bins 5 and 6, respectively. In
the highest Q2 bin cEW depends on the jet transverse momentum for e+p and e−p
scattering, because the phase space in Q2 depends slightly on PT (figure 10.10b).
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For the Hera-2 mixture this dependence largely cancels and cEW is flat within 1%.
The EW corrections for dijet and trijet measurements show a similar behaviour as
for the inclusive jet case and are not shown here.

10.6.2 Hadronisation Correction

At present NLO predictions for jet cross sections do not include non-perturbative
contributions to account for the fragmentation of partons into stable hadrons. Be-
fore measured cross sections on hadron level can be compared to NLO predictions
on parton level, the size of these hadronisation effects has to be estimated. One pos-
sibility is to use phenomenological fragmentation models like the Lund string model
as implemented in Jetset and used in Rapgap and Djangoh. The hadronisation
correction chad can then be estimated by comparing cross sections on hadron level
σhad with parton level cross sections σpart,

chad =
σhad

σpart

. (10.20)

The correction chad is applied as multiplicative factor to NLO cross sections. The
values of chad are determined as the average of values obtained from Rapgap and
Djangoh.
The hadronisation corrections for the inclusive, dijet and trijet measurements are
shown in figure 10.11. The values of chad are observed to be smaller than unity over
the whole phase space considered. This is generally expected, since hadronisation
effects alter the final state used for the jet finding and cause particles to migrate out
of the phase space defined for a given jet. This leads to smaller transverse momenta
for hadron jets than for parton jets and consequently chad < 1. The values of chad

are very similar for the inclusive jet and dijet measurements, where they differ from
unity only by 4% on average. In the lowest PT,obs bin the hadronisation correction is
largest with values between 0.92–0.94. For the trijet measurement the hadronisation
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corrections are larger than for the inclusive and dijet case, with average values of
chad of approximately 0.83.
The uncertainty on chad is estimated by taking the difference between the correction
factors obtained using Djangoh and Rapgap. This is a conservative estimate
compared to some previous jet cross section measurements [H107,H110b,ZEUS10a],
which is motivated by a comparison to hadronisation corrections obtained with
an analytic approach [DM+08,H110c] and a variation of model parameters in MC
event generators which influence the hadronisation [WW99]. These studies showed
differences in the obtained hadronisation corrections of a few percent, which is still
smaller than the uncertainties of NLO calculations due to missing higher orders, but
show our present inability to model non-perturbative effects very accurately.
For the inclusive jet and dijet measurements the uncertainty on chad lies typically
between 1 and 1.5%. For trijet observables chad is on average 0.83 with uncertainties
between 2–3%.
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Chapter 11

Results

In this chapter the measured cross sections for inclusive and multi-jet production
in NC DIS at high Q2 are presented and compared to NLO calculations. The
NC DIS phase space is defined through the virtuality of the exchanged boson,
150 < Q2 < 15000 GeV2 and the inelasticity 0.2 < y < 0.7. The measured cross
sections are based on the full Hera-2 data set with an integrated luminosity of
351.6 pb−1. The data are corrected for detector effects and QED corrections at the
leptonic vertex. The cross sections are corrected to the hadron level and not to
the parton level, meaning that they are not corrected for non-perturbative hadro-
nisation effects. No corrections for the running of the electromagnetic coupling or
effects from Z0 exchange are applied to the data. For the illustration of single and
double differential jet cross sections, the corrected cross sections are divided by the
respective bin width, which is not done for normalised cross sections. The statistical
uncertainty of the measurement is always illustrated by the inner error bars, while
the outer error bars represent the quadratic sum of the statistical and the system-
atic uncertainties. The numerical values of the cross sections and normalised cross
sections presented in this chapter can be found in appendix A.

11.1 The Neutral Current Cross Section

Since the jet samples are based on the NC DIS sample, the extraction of the inclusive
NC cross section provides an important consistency check of the analysis. The
inclusive NC cross sections σNC for the unpolarised neutral current reactions e±p →
e±X are shown in figure 11.1 as function of Q2. The cross sections are measured
in the inelasticity range 0.2 < y < 0.7. They are obtained from the full e−p and
e+p Hera-2 datasets with integrated luminosities of 159.6 pb−1 and 192.0 pb−1,
respectively. The measurements are compared to NLO calculations using Qcdnum
[Bot11] with the CTEQ6.6 PDF [CTEQ08] and αs(MZ) = 0.118. The factorisation
and renormalisation scales are chosen to be µf = µr = Q. No corrections are
applied to the predictions from Qcdnum, since EW effects from Z0 exchange are
included, and because the inclusive NC cross section is insensitive to hadronisation
corrections. The NC cross sections show the expected 1/Q4 behaviour (2.32) and are
well described by the theoretical predictions. A charge dependent asymmetry due to
effects from Z0 exchange can be observed in the highest Q2 bin, where the e−p NC
cross section is larger than the e+p NC cross section. At low values of Q2 the NLO

215



3

 ]
-2

 [p
b 

G
eV

2
/d

Q
N

C
σd

-310

-210

-110

1

10

3

 ]
-2

 [p
b 

G
eV

2
/d

Q
N

C
σd

-310

-210

-110

1

10
NC e-p

Data

Shush.

CTEQ6.6

]2 [GeV2Q

310 410

R
at

io

0.95
1

1.05

]2 [GeV2Q

310 410

R
at

io

0.95
1

1.05
3

 ]
-2

 [p
b 

G
eV

2
/d

Q
N

C
σd

-310

-210

-110

1

10

3

 ]
-2

 [p
b 

G
eV

2
/d

Q
N

C
σd

-310

-210

-110

1

10
NC e+p

Data

Shush.

CTEQ6.6

]2 [GeV2Q

310 410

R
at

io

0.95
1

1.05

]2 [GeV2Q

310 410

R
at

io

0.95
1

1.05

Figure 11.1: The inclusive NC e−p → e−X (left) and e+p → e+X (right) cross sections
in the inelasticity range 0.2 < y < 0.7. The data are compared to NLO calculations
from Qcdnum using the CTEQ6.6 PDF and αs = 0.118. Also shown are cross sections
obtained by an independent analysis on Hera-2 data [H109a], where the phase space and
binning have been adjusted to this analysis [Shu10], illustrated by open circles and shifted
to the right for better visibility. The uncertainty due to the luminosity measurement of
2.5%, which is common to both analyses, is not included in the experimental uncertainties.
The ratio of data with respect to the NLO calculation is shown at the bottom.

calculation predicts approximately 4–5% larger cross sections than are measured. A
different choice of PDF, as for example the use of the NNPDF set [BD+10], leads
to an improved description of the data.

Also shown in figure 11.1 are inclusive NC cross sections obtained from an indepen-
dent analysis of the Hera-2 data [H109a], which has been adjusted to the phase
space and binning used in this work [Shu10]. Good agreement between the two mea-
surements is observed, with the central values agreeing within 1.5% in most bins.
Only in two Q2 bins larger deviations are observed, with values of about 2–2.5%
in Q2 bins 4 and 5, respectively. These deviations are well within the systematic
uncertainties of the two measurements. Excluding the statistical uncertainty and
the uncertainty due to the luminosity measurement, the inclusive NC cross sections
obtained in this work have an uncertainty of 3.1% in these bins. This is larger than
the uncertainty of the independent, inclusive NC analysis, which is 2.5%. These
differences can be attributed to the different goals of these analyses. The selec-
tion criteria in this work are optimised for a precise jet measurement. In terms of
the scattered electron these selection criteria ensure an accurate reconstruction of
the boost to the Breit frame. The inclusive NC analysis aims for a precise mea-
surement of the inclusive NC cross sections, without additional requirements. The
selection criteria employed in this work render the acceptance for the NC measure-
ment smaller compared to the acceptance of the NC analysis. This results in larger
experimental correction factors with larger uncertainties, which is reflected in an
uncertainty due to the model dependence of nearly 2%. Furthermore, the different
selection criteria make the NC cross section measurement more susceptible to ex-
perimental uncertainties. For example, the cut on E − pz results in an uncertainty
of 0.6% due the hadronic energy scale uncertainty. In the case of the NC analysis
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a much weaker requirement is imposed on E − pz, which renders the cross section
nearly independent of the hadronic energy scale in the phase space considered.

11.2 Jet Cross Sections

One of the central physics results of this analysis are the measurements of the
inclusive jet, dijet and trijet cross sections in NC DIS. The DIS phase space is given
by

150 < Q2 < 15000 GeV2, 0.2 < y < 0.7. (11.1)

Jets are defined in the Breit frame of reference with the longitudinally invariant kT

algorithm. The phase space for the inclusive jet measurement is

− 1.0 < ηlab < 2.5, 7 < PT < 50 GeV . (11.2)

The dijet and trijet cross sections are defined through

− 1.0 < ηlab < 2.5, 5 < PT < 50 GeV, M12 > 16 GeV (11.3)

as discussed in chapter 9. The jet cross section measurement is based on the full
Hera-2 data set recorded by the H1 collaboration in the years 2003–2007. The
total integrated luminosity of the data used is 351.6 pb−1.
The jet cross sections are compared to pQCD calculations performed in NLO in the
strong coupling. The calculations are carried out in the MS renormalisation and
factorisation schemes as implemented in the NLOJet++ program. In these calcula-
tions massless quarks are assumed and the number of active flavours is set to five.
CTEQ6.6 is chosen as the parametrisation of the proton PDF. The value of the
strong coupling at the mass of the Z0 boson MZ , is taken to be αs(MZ) = 0.118,
which is in accordance with the value of αs used for the determination of the PDF.
The strong coupling is evolved as function of the renormalisation scale in the two-
loop approximation. The factorisation scale µf is chosen to be Q, and the renor-

malisation scale µr is taken to be
√

(Q2 + P 2
T,obs)/2. The variable PT,obs denotes the

transverse momentum PT of the jet in case of inclusive jet cross sections and the av-
erage transverse momentum 〈PT〉 of the two (three) leading jets in the dijet (trijet)
case. This choice of the renormalisation scale is motivated by the presence of the two
hard scales Q and PT,obs in jet production in DIS. The theoretical predictions are
corrected for non-perturbative hadronisation effects, as described in section 10.6.2.
Corrections due to Z0 exchange are taken into account by the EW correction, which
differs from unity only in the two highest Q2 bins (section 10.6.1).
The uncertainty of the NLO predictions due to missing higher orders is conven-
tially estimated by varying the chosen renormalisation and factorisation scales in
the range between 0.5 and 2. The uncertainty due to a scale variation f is then the
change of the cross section with respect to the nominal scale, σNLO(fµ)/σNLO(µ),
where f is either 0.5 or 2. In regions where the cross section is not a monotonical
function of µr, the theoretical uncertainty is estimated by taking the maximum and
minimum values that the cross section takes in the interval [0.5µr, 2µr] in order not
to underestimate the scale dependence. The uncertainties obtained by a variation
of the renormalisation scale are generally by a factor of two to three larger than the
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uncertainties from variations of the factorisation scale. The total theoretical uncer-
tainties are calculated by adding in quadrature the uncertainties estimating missing
higher orders in the perturbative series and the uncertainties of the hadronisation
corrections.

The single differential inclusive jet, dijet and trijet cross sections as function of Q2

and PT,obs are presented in figure 11.2. The cross sections are steeply falling as
function of Q2 and PT,obs. They are well described by the NLO calculations over
more than four orders of magnitude. The uncertainties of the inclusive and dijet
measurements are typically of 4% and 5%, respectively. These are in most bins by a
factor of two smaller than the uncertainties of the theoretical predictions, which are
dominated by the uncertainties due to missing higher orders. The measured trijet
cross sections have uncertainties of 6% to 7% at low Q2 and low 〈PT〉, which are also
about a factor of two smaller than the theoretical uncertainties. At high Q2 and
high 〈PT〉 the experimental uncertainties increase because of a larger model depen-
dence and the increasing uncertainty due to the hadronic energy scale, whereas the
theoretical uncertainties decrease. In these regions the theoretical and experimental
uncertainties of the trijet cross sections become comparable.

The double differential inclusive jet cross sections d2σjet/dQ2dPT are shown in fig-
ure 11.3 together with the NLO predictions. The data are well described by the
calculations over the full phase space of the measurement. Only in two bins, 4δ
and 5δ (the nomenclature can be found in table 10.1), are the data below the un-
certainty band of the NLO predictions. In both cases the deviation from the NLO
prediction is less than two standard deviations of the experimental and theoreti-
cal uncertainties. The uncertainty of the measurement is dominated either by the
normalisation uncertainty or the uncertainty due to the hadronic energy scale, de-
pending on the region in phase space. Except for the bin 6δ, where the statistical
uncertainty dominates, the experimental uncertainty is always smaller than the the-
oretical uncertainty. In regions with PT < 30 GeV the experimental uncertainty is
by a factor of two smaller than the NLO uncertainty. Only in regions of high jet
transverse momenta, PT > 30 GeV, the uncertainties become comparable.

The double differential dijet cross sections measured as function of Q2 and 〈PT〉
are presented in figure 11.4. The cross section falls steeply as function of 〈PT〉,
with a smaller slope for high Q2 values. The experimental precision is around
5% at low 〈PT〉 and increases to about 12% at the highest values of 〈PT〉. The
uncertainties due to the model dependence, the hadronic energy measurement and
the luminosity normalisation contribute in roughly equal parts to the experimental
precision. Only at the highest values of 〈PT〉 and Q2 are statistical uncertainties
between 7–14% dominating the experimental uncertainty. The double differential
dijet cross sections as function of Q2 and ξ are presented in figure 11.5. Kinematic
constraints due to the required jet transverse momenta, as well as the demand of a
minimal invariant mass M12 of the two jets leads to a reduction of the cross section
at small values of ξ. At large values of ξ the decreasing quark and gluon densities
lead to a decrease of the cross section. The cross section has a maximum at small
values of ξ at low Q2, which shifts to higher values as Q2 increases with a fixed range
in inelasticity. The uncertainties on the theoretical predictions are approximately
10% at low Q2 and become smaller with increasing Q2, where they are about 6–7%.
Similar to the inclusive jet measurement, the theoretical uncertainties are larger than
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Figure 11.2: Single differential inclusive, dijet and trijet cross sections (from top to
bottom) as function of Q2 and PT,obs. The NLO calculations are shown together with
their uncertainties as blue bands. The predictions are corrected for hadronisation and EW
effects. Further details on the theoretical predictions are given in the text. The ratio of
data with respect to the theoretical prediction is shown at the lower part of each plot.
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Figure 11.3: Double differential inclusive jet cross sections as function of Q2 and PT.
The NLO calculations are shown together with their uncertainties as blue bands. The
predictions are corrected for hadronisation and EW effects. Further details on the theo-
retical predictions are given in the text. The ratio of data with respect to the theoretical
prediction is shown at the lower part of each plot.
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Figure 11.4: Double differential dijet cross sections as function of Q2 and 〈PT〉. The NLO
calculations are shown together with their uncertainties as blue bands. The predictions are
corrected for hadronisation and EW effects. Further details on the theoretical predictions
are given in the text. The ratio of data with respect to the theoretical prediction is shown
at the lower part of each plot.
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Figure 11.5: Double differential dijet cross sections as function of Q2 and ξ. The NLO
calculations are shown together with their uncertainties as blue bands. The predictions are
corrected for hadronisation and EW effects. Further details on the theoretical predictions
are given in the text. The ratio of data with respect to the theoretical prediction is shown
at the lower part of each plot.
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Figure 11.6: Double differential trijet cross sections as function of Q2 and 〈PT〉. The NLO
calculations are shown together with their uncertainties as blue bands. The predictions are
corrected for hadronisation and EW effects. Further details on the theoretical predictions
are given in the text. The ratio of data with respect to the theoretical prediction is shown
at the lower part of each plot.
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Figure 11.7: Double differential trijet cross sections as function of Q2 and ξ. The NLO
calculations are shown together with their uncertainties as blue bands. The predictions are
corrected for hadronisation and EW effects. Further details on the theoretical predictions
are given in the text. The ratio of data with respect to the theoretical prediction is shown
at the lower part of each plot.
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the experimental ones over most of the phase space. The data are well described by
the NLO calculations over more than five orders of magnitude, with deviations no
larger than 2σ. However, the central value of the NLO calculation is systematically
higher than the data. Especially at small values of 〈PT〉 and ξ the NLO calculation
shows the tendency to lie above the data, which indicates a preference for a smaller
value of αs. Tests showed that NLO calculations using a value of αs(MZ) = 0.116
provide an improved description of the data.

The trijet cross sections are already at the Born level proportional to O(α2
s) and the

NLO calculations include terms of O(α3
s). This means that already at LO the triple

gluon vertex contributes to the cross section and the four gluon vertex is included in
NLO calculations. The trijet cross sections thus provide an important test of pQCD
and the running of the strong coupling. The double differential trijet cross sections
measured as function of Q2 and 〈PT〉 and Q2 and ξ are presented in figures 11.6
and 11.7. They show a similar behaviour as the dijet cross sections, but are about
five times smaller. The cross section as function of ξ is shifted towards larger values
of ξ, due to the higher invariant mass of the trijet system compared to that of the
dijet system. The experimental uncertainties are to a large part dominated by the
model dependence. They are about 7% at small values of 〈PT〉 and ξ and between
10–15% at large values of these variables. The uncertainties on the theoretical
predictions are between 10–15%, with smaller uncertainties at high Q2 and 〈PT〉
and larger uncertainties at small Q2 and 〈PT〉. The data are well described by the
NLO calculations over the full phase space of the measurement.

11.3 Normalised Jet Cross Sections

The measurement of normalised jet cross sections reduces the experimental uncer-
tainties for some observables nearly by a factor of 2. This is achieved by a measure-
ment of the ratio of jet events to the number of NC DIS events on detector level.
This ratio is then corrected for experimental and QED effects. The determination
of the experimental correction factors for this ratio leads to a cancellation of the
overall normalisation uncertainty. Additionally, the ratio benefits from partial can-
cellations of the model dependence and the uncertainty due to the hadronic energy
scale, which are two of the dominating uncertainties of the jet measurements.

The NLO calculations for the normalised jet cross sections are performed with the
NLOJet++ program with the settings as described in the previous section. The
inclusive NC cross sections are calculated with the Qcdnum program in NLO, i.e.
including terms O(αs). The same PDF, CTEQ6.6, and the same value of αs(MZ) =
0.118 are used for the calculation of the inclusive NC cross sections as for the jet cross
sections. For the calculation of inclusive NC cross sections the renormalisation and
factorisation scales µr and µf are chosen to be Q. The uncertainties due to missing
higher orders are much smaller in the case of inclusive NC cross sections than for
jet cross sections and can be neglected. The NLO calculations of the normalised jet
cross sections are corrected for hadronisation effects similar to the jet cross sections.
Therefore, the uncertainties of the NLO predictions for jet production, added in
quadrature with the uncertainties of the hadronisation corrections, are taken as
the uncertainties of the normalised jet cross sections. The dependence of the EW
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Figure 11.8: Normalised single differential inclusive jet, dijet and trijet cross sections
as function of Q2. The NLO calculations are shown together with their uncertainties as
blue bands. The predictions are corrected for hadronisation effects. Further details on
the theoretical predictions are given in the text. The ratio of data with respect to the
theoretical prediction is shown at the lower part of each plot.

corrections on PT and ξ is found to be smaller than 1% for the mixture of e−p and
e+p scattering data of the full Hera-2 sample (see section 10.6.1). Hence, the EW
corrections cancel in the ratio and no corrections need to be applied to the NLO
calculations.

The normalised, single differential inclusive jet, dijet and trijet cross sections as
function of Q2 are shown in figure 11.8. The cross sections increase with increasing
Q2 as the available phase space for jet production opens. The rate of dijet produc-
tion is about a factor two smaller than the average jet multiplicity in NC events
σjet/σNC, in agreement with the intuitive expectation. The rate of trijet production
is about a factor of five smaller than the rate for dijet production. The data are
well described by the NLO calculations. The total experimental uncertainties are
approximately 2%, 2.5% and 5% for normalised inclusive jet, dijet and trijet cross
sections, respectively. These are about a one third of the theoretical uncertainties.
Only in the highest Q2 region do the statistical uncertainties become important,
which leads to experimental uncertainties about twice as large as in regions with
smaller values of Q2.
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Figure 11.9: Normalised double differential inclusive jet cross sections as function of Q2

and PT. The NLO calculations are shown together with their uncertainties as blue bands.
The predictions are corrected for hadronisation effects. Further details on the theoretical
predictions are given in the text. The ratio of data with respect to the theoretical prediction
is shown at the lower part of each plot.
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Figure 11.10: Normalised double differential dijet cross sections as function of Q2 and
〈PT〉. The NLO calculations are shown together with their uncertainties as blue bands.
The predictions are corrected for hadronisation effects. Further details on the theoretical
predictions are given in the text. The ratio of data with respect to the theoretical prediction
is shown at the lower part of each plot.
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Figure 11.11: Normalised double differential dijet cross sections as function of Q2 and
ξ. The NLO calculations are shown together with their uncertainties as blue bands.
The predictions are corrected for hadronisation effects. Further details on the theoretical
predictions are given in the text. The ratio of data with respect to the theoretical prediction
is shown at the lower part of each plot.
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Figure 11.12: Normalised double differential trijet cross sections as function of Q2 and
〈PT〉. The NLO calculations are shown together with their uncertainties as blue bands.
The predictions are corrected for hadronisation effects. Further details on the theoretical
predictions are given in the text. The ratio of data with respect to the theoretical prediction
is shown at the lower part of each plot.
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Figure 11.13: Normalised double differential trijet cross sections as function of Q2 and
ξ. The NLO calculations are shown together with their uncertainties as blue bands.
The predictions are corrected for hadronisation effects. Further details on the theoretical
predictions are given in the text. The ratio of data with respect to the theoretical prediction
is shown at the lower part of each plot.
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In figures 11.9, 11.10 and 11.11 the normalised double differential inclusive jet and
dijet cross sections as function of PT and ξ are presented for different regions of
Q2. The cross sections are well described by the NLO calculations over the full
phase space. The largest deviations between the data and the NLO calculations are
found in the bins 4δ and 5δ, where the data lie below the theoretical predictions by
about 2.5σ (1.5σ) in the case of the normalised inclusive jet (dijet) cross sections.
Preliminary tests for the determination of αs(MZ) utilising the normalised inclusive
jet and dijet data showed a preference for smaller values of αs(MZ) than the value of
0.118. A value of αs(MZ) = 0.116 leads to an improved description of the normalised
inclusive jet and dijet cross sections in bins 4δ and 5δ, as well as at low values of
〈PT〉 in the case of the normalised dijet cross sections.

In figures 11.12 and 11.13 the normalised double differential trijet cross sections as
function of PT,obs and ξ are presented for different regions of Q2. The normalised
trijet measurement mostly benefits from partial cancellations in the model depen-
dence, which reduces the total experimental uncertainty to 5–6% in most bins, which
can be compared to theoretical uncertainties between 10% and 15%.

11.4 Comparison to Other Measurements

The inclusive jet cross sections in NC DIS at high Q2 have been measured previ-
ously by the H1 [H107] and Zeus [ZEUS07a] collaborations. These measurements
are based on Hera-1 data with integrated luminosities of 65.4 pb−1 and 82 pb−1,
respectively. The Zeus measurement is restricted to a different phase space with a
requirement on the cosine of the hadronic angle, | cos γh| < 0.65, which makes a di-
rect comparison difficult. The H1 measurement on the contrary is performed in the
same phase space as this analysis, and the cross sections can be directly compared.
The comparison of the double differential inclusive jet cross sections measured as
function of PT in different Q2 bins is shown in figure 11.14. The new measurement
is compatible with the previous H1 data, with the largest deviations observed being
less than 2σ in bins 3δ and 4δ. The reduction of the experimental uncertainty by
a factor of about two with respect to the Hera-1 measurement is mainly achieved
because of the decreased uncertainty due to the hadronic energy measurement. This
reduction, from 2% as estimated for the Hera-1 analysis, to 1% as achieved in this
work, leads to a reduction of the uncertainty on jet the cross section by about 30%.
At high values of Q2 and PT the reduced statistical uncertainty and an improved
model dependence helped to improve the experimental uncertainty further. The
measurement of the inclusive jet cross sections in NC DIS presented here is the
most precise measurement up to now.

In two analyses of Hera-1 data the H1 [H101a] and Zeus [ZEUS07a] collabora-
tions measured the dijet cross sections in NC DIS at high Q2 single and double
differentially. The published cross sections have uncertainties between 10% to 15%,
which are twice as large as the uncertainties obtained in this work. In a more recent
analysis by the Zeus collaboration of the combined Hera-1+2 data set, the dijet
cross sections are measured with improved experimental precision [ZEUS10a]. In
the Zeus analysis the inelasticity is required to be within 0.2 < y < 0.6, and the jet
phase space is defined through a higher jet transverse momentum of PT > 8 GeV and
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Figure 11.14: Double differential inclusive jet cross sections as function of Q2 and PT

compared to NLO calculations and to data from a previous H1 measurement using Hera-1
data [H107]. The Hera-1 measurement, exploiting e+p scattering data only, is corrected
for EW effects in order to be directly comparable to the mixture of e−p and e+p scattering
data from the Hera-2 data set. The open circles are shifted to the right for better visibility.
The ratio of data with respect to the theoretical prediction is shown at the lower part of
each plot.
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a higher invariant mass of the two leading jets, M12 > 20 GeV, than in this analysis.
Even though the phase space of the Zeus analysis is quite similar compared to the
one used in this work, a direct comparison of the measured cross sections would
still need an extrapolation. The experimental uncertainties of the Zeus measure-
ment are comparable to the experimental uncertainties of the dijet cross sections
presented in this work. A relatively small adjustment of the phase space by the
H1 and Zeus analyses would allow for a first combination of jet data between two
experiments. This could help to improve the experimental precision further, as
prominently demonstrated by the combined measurement of inclusive NC and CC
cross sections in DIS [AA+10a].

The trijet cross sections in NC DIS at high Q2 have been measured by the H1 [H101b]
and Zeus [ZEUS05a,ZEUS08] collaborations single differentially. In these analyses
2–3 data points at high Q2 have been measured with uncertainties of 15–20%. The
single differential trijet cross sections presented in this work have uncertainties of
about half this size. In a recent dissertation by Jörg Behr [Beh10], the trijet cross sec-
tions at high Q2 are measured single and double differentially, exploiting Hera-1+2
data recorded with the Zeus detector. The phase space of the Zeus analysis is
different, most noticeably a higher jet transverse momentum of PT > 8 GeV and a
higher invariant mass of the two hardest jets of M12 > 20 GeV are required. The
more restrictive phase space results in smaller trijet cross sections compared to the
ones measured in this work. The experimental uncertainties are comparable between
the two analyses, which makes the trijet measurement another possible candidate
for a combination between H1 and Zeus results.

Analyses of normalised inclusive jet cross sections in NC DIS at high Q2 have been
performed by the H1 collaboration on Hera-1 data [H107] and on a combined
Hera-1+2 data set [H110c]. In the latter analysis also normalised dijet and trijet
cross sections are measured, but the range of pseudorapidity of jets in the labo-
ratory rest frame is more restricted than in this work, with −0.8 < ηlab < 2.0.
The data from the Hera-1 analysis can be directly compared to the normalised
inclusive jet cross sections presented here. For a comparison with the normalised
jet cross sections from the Hera-1+2 analysis, the measurement is repeated with
the more restrictive jet pseudorapidity range. The normalised inclusive jet cross
sections as measured in this work, as well as the normalised inclusive jet, dijet and
trijet cross sections, obtained with the more restrictive jet pseudorapidity range, are
compared to data from the Hera-1 and Hera-1+2 analyses in figure 11.15. The
measurements are compatible. A large reduction of the experimental uncertainties is
observed when comparing to the Hera-1 analysis. A detailed comparison with the
Hera-1+2 analysis reveals a reduction of the experimental uncertainties of about
15% on average. It can be observed that the normalised dijet cross sections are
not as well described by the NLO calculations as in the published analysis [H110c],
where they are compared to NLO calculations using the CTEQ6.5 PDF set and
αs(MZ) = 0.1168. The NLO calculations presented here use the PDF set CTEQ6.6
and αs(MZ) = 0.118. This choice of PDF and αs(MZ) results in larger normalised
jet cross sections at NLO.

In the previous H1 analysis of Hera-1+2 data the normalised inclusive and dijet
cross sections are also measured double differentially as function of PT,obs and ξ
in different regions of Q2. A comparison between these and the normalised jet
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Figure 11.15: Normalised inclusive jet (top), dijet (bottom left) and trijet (bottom right)
cross sections compared to data from previous H1 measurements [H107,H110c]. For the
comparison with the Hera-1+2 data the range of pseudorapidity of jets in the laboratory
rest frame is restricted to 2.0 < ηlab < −0.8. The open circles are shifted to the right for
better visibility. The ratio of data with respect to the theoretical prediction is shown at
the lower part of each plot.

cross sections obtained in this work with the requirement −0.8 < ηlab < 2.0, shows
differences of less than one standard deviation in all measurement bins. An example
of this comparison is shown in figure 11.16 for normalised dijet cross sections as
function of 〈PT〉 and Q2. It can be observed that the data are compatible, but are
not as well described by the NLO calculations due to the different choice of PDF
and αs(MZ), as described above. This demonstrates the sensitivity of the data to
the choice of the proton PDFs and the value of αs(MZ).

11.5 Summary

In this chapter the central physics results of this work have been presented. These
consist of a high precision measurement of inclusive jet, dijet and trijet cross sections
in NC DIS at high Q2. The presented measurements span over more than six
orders of magnitude between the inclusive jet cross sections at low Q2 and low
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Figure 11.16: Normalised double differential dijet cross sections compared to data from a
previous H1 measurement [H110c] and to NLO calculations. The range of pseudorapidity
of jets in the laboratory rest frame is restricted to −0.8 < ηlab < 2.0. The open circles are
shifted to the right for better visibility. The ratio of data with respect to the theoretical
prediction is shown at the lower part of each plot.
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PT and the trijet cross sections at high Q2 and high 〈PT〉. The data are well
described by NLO calculations within the uncertainties over the full phase space
considered, demonstrating the validity of pQCD for multijet production in NC DIS
at high Q2. Furthermore it has been shown in this chapter how the measurement
of normalised jet cross sections improves the experimental precision further due to
partial cancellations of the experimental uncertainties.
The jet cross sections presented in this work are sensitive to the strong coupling
at LO and can be used to determine the value of αs at a given scale with high
precision. Additionally, the jet cross sections provide an independent test of the
proton PDFs. At low values of Q2 jet production in NC DIS is dominated by gluon
induced processes, whereas at high values of Q2 quark induced processes dominate
the cross section. Jet data thus allows to disentangle the value of the gluon PDF
from the chosen value of αs(MZ). The dijet and trijet cross sections measured as
function of ξ, which is in leading order the proton momentum fraction carried by
the struck parton, shows the sensitivity of the data to medium to large values of
ξ. Since in this region of ξ the gluon PDF is not strongly constrained by inclusive
scattering data, jet data can provide an important constraint on the gluon at this
range of ξ. This will make the presented jet cross sections valuable input for the
extraction of proton PDFs with a simultaneous determination of αs(MZ).
The experimental uncertainties of the (normalised) jet cross sections are usually
smaller by a factor of (three) two than the theoretical uncertainties. Since the
theoretical uncertainties are dominated by missing terms of higher orders, NNLO
calculations are necessary in order to make full use of the data. Recently, the
antenna subtraction method [GG+05] was extended to include one hadron in the
initial state [DG+10a]. This work allows the construction of a parton level event
generator program for the calculation of jet production in DIS at NNLO.
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Chapter 12

Conclusion

Jet production in neutral current deep-inelastic scattering provides an important
test of the validity of pQCD and offers the possibility of an independent test of
proton PDFs, which are extracted using predominantly inclusive e±p scattering
data. Conversely, jet data can be used to determine the value of the strong coupling
at a given scale, and it can provide valueable constraints for the determination of
the proton PDFs. In order for jet data to make an appreciable contribution in these
respects, high precision jet measurements are indespensible.

In this work a considerable effort was undertaken to improve the jet energy scale
uncertainty, which is the dominating uncertainty for every jet measurement. As
a first step, hadronic and electromagnetic showers measured with the highly seg-
mented LAr calorimeter have been separated on a statistical basis by employing a
feed-forward backpropagation neural network. It has been shown that the thereby
obtained probability of a shower to be induced by purely electromagnetically in-
teracting particles improves the performance of the energy flow algorithm, which
is used for the reconstruction of the hadronic final state. Based on these results a
new method to calibrate jets has been developed. This calibration, which has been
shown to yield a jet energy scale uncertainty of 1% over a wide range of energies and
the full geometrical acceptance of the LAr calorimeter, has been tested by several
independent analyses and has recently become the standard used by H1.

The data set used for the measurement of jet cross sections comprises the complete
H1 Hera-2 data set, corresponding to a total integrated luminosity of 351.6 pb−1.
This improves the statistical uncertainty of the measurement considerably with re-
spect to previous jet cross section measurements based on Hera-1 data. Besides
the reconstruction of the hadronic final state, other possible sources of systematic
uncertainties have been studied in detail. Efforts by the H1 collaboration to im-
prove the track reconstruction, calibration of the energy of the scattered electron
and an independent determination of the luminosity with QED Compton events
have improved the uncertainties due to the scattered electron reconstruction and
the luminosity measurement. The uncertainty due to the model dependence of the
employed acceptance correction is reduced by reweighting the MC simulations. Af-
ter the application of dedicated non-ep and ep background finders the uncertainty
due to subtraction of background became negligible.

The presented measurements of inclusive jet, dijet and trijet cross sections profited
significantly from these developments. Jet cross sections have been measured in the
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kinematic range 150 < Q2 < 15000 GeV2 and 0.2 < y < 0.7. The inclusive jet, dijet
and trijet cross sections have been measured with an average precision of 4%, 5.2%
and 7.2%, respectively. The calibration of the hadronic final state up to large values
of pseudorapidity made the extension of the phase space to values of ηlab up to 2.5
possible, without a deterioration of the jet energy scale uncertainty. This resulted
in an increase in statistics in the trijet sample, making the first double-differential
measurement of trijet production at high Q2 at H1 possible. The measurement of
jet cross sections normalised to the inclusive NC cross sections provided a possibility
to further reduce the experimental uncertainties due to partial cancellations of sys-
tematic effects. The obtained normalised inclusive jet, dijet and trijet cross sections
have average uncertainties of 1.9%, 2.4% and 6.5%, respectively. The measured jet
cross sections are found to be consistent with previous measurements by the H1
collaboration. The measurement of jet production presented in this thesis results in
the most precise jet cross sections in neutral current DIS at high Q2 from HERA to
date.
Calculations in NLO in the strong coupling using the CTEQ6.6 parameterisations
of the proton PDFs and αs(MZ) = 0.118 have been compared to the data. Good
overall agreement with the data is found for all jet observables. The theoretical
uncertainties, being mostly due to missing higher orders in the perturbative expan-
sion, are found to be two to three times larger than the experimental uncertainties
on average. A systematic difference between the NLO calculations and the data is
seen for the dijet cross sections at small values of 〈PT〉, where the NLO predictions
are about 10% too high. This suggests a preference for a smaller value of αs(MZ)
than the used value of 0.118 or a less steep gluon PDF.
The normalised and non-normalised inclusive jet, dijet and trijet cross sections offer
the possibility for a precise determination of αs(MZ). They will also provide value-
able input for the determination of proton PDFs, where they can help to constrain
the gluon at medium to large values of x. However, in order to fully profit from the
precision of the measured jet cross sections NNLO calculations are required, which
are expected to become available in the near future.
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Appendix A

Tables of the Results

In this chapter tables with numerical values of the jet cross sections and their un-
certainties are given. The phase space of the measurement is summarised in table
9.6 and in section 11.2. The bin labels and boundaries are given in table A.1.
In the following, the normalisation uncertainty denotes the uncertainties due to the
luminosity measurement, the trigger efficiency and the vertex-track link efficiency
added in quadrature. The electron uncertainty combines the uncertainties due to
the measurement of the energy of the scattered electron, the electron polar angle
and the electron identification efficiency.

Bin label Q2 range (in GeV2)

1 150 ≤ Q2 < 200

2 200 ≤ Q2 < 270

3 270 ≤ Q2 < 400

4 400 ≤ Q2 < 700

5 700 ≤ Q2 < 5000

6 5000 ≤ Q2 < 15000

Bin label PT or 〈PT〉 range (in GeV)

α 7 ≤ PT < 11

β 11 ≤ PT < 18

γ 18 ≤ PT < 30

δ 30 ≤ PT < 50

Bin label Dijet ξ range

a 0.006 ≤ ξ < 0.02

b 0.020 ≤ ξ < 0.04

c 0.040 ≤ ξ < 0.08

d 0.080 ≤ ξ < 0.316

Bin label Trijet ξ range

A 0.01 ≤ ξ < 0.04

B 0.04 ≤ ξ < 0.08

C 0.08 ≤ ξ < 0.50

Table A.1: Bin labels and boundaries for bins in Q2 (top left), PT,obs (top right), ξ for
the dijet (bottom left) and ξ for the trijet (bottom right) measurements.
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Inclusive jet cross section in bins of Q2

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1 1.10 102 0.6 4.0 2.9 0.4 1.3 2.2 0.8 0.95 1.5

2 9.14 101 0.7 4.1 2.9 0.4 1.3 2.3 0.7 0.95 1.4

3 9.12 101 0.7 4.0 2.9 0.4 1.3 2.2 0.6 0.95 1.4

4 8.42 101 0.7 4.0 2.9 0.3 1.3 2.1 0.6 0.95 1.3

5 8.58 101 0.7 4.1 2.9 0.1 1.4 2.0 1.3 0.95 1.0

6 5.19 100 2.4 5.3 2.9 0.0 2.6 1.7 2.1 0.95 0.7

Inclusive jet cross section in bins of PT

α 2.73 102 0.4 3.8 2.9 0.3 1.4 1.8 0.8 0.93 1.4

β 1.46 102 0.5 4.0 2.9 0.3 0.8 2.4 0.8 0.97 1.1

γ 4.28 101 0.9 4.9 2.9 0.1 1.8 3.3 0.8 0.97 0.9

δ 6.11 100 2.3 6.2 2.9 0.2 2.4 4.2 1.0 0.97 0.7

Table A.2: Single differential inclusive jet cross sections measured as function of Q2

(top) and PT (bottom). The bin labels of column 1 are defined in table A.1. The statistical
and total uncertainties on the cross section are given in columns 3 and 4. The uncertainties
due to the normalisation, the background subtraction, the model dependence, the hadronic
energy scale and the electron measurement are given in columns 5–9. In column 10 and 11
the hadronisation correction factors applied to the NLO calculations and their uncertainties
are shown.
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Inclusive jet cross section in bins of Q2 and PT

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1α 7.08 101 0.8 3.9 2.9 0.4 1.2 1.8 0.8 0.94 1.8

1β 3.15 101 1.1 5.4 2.9 0.3 3.4 2.6 0.7 0.97 1.0

1γ 7.48 100 2.2 6.7 2.9 0.2 4.4 3.4 0.5 0.97 1.2

1δ 9.02 10−1 6.5 9.2 2.9 0.1 3.6 4.5 0.6 0.96 1.1

2α 5.70 101 0.9 3.9 2.9 0.4 1.3 1.9 0.7 0.94 1.8

2β 2.70 101 1.2 4.6 2.9 0.3 1.9 2.6 0.7 0.97 0.9

2γ 6.58 100 2.3 6.9 2.9 0.1 4.5 3.6 0.6 0.97 1.1

2δ 8.47 10−1 6.3 8.9 2.9 0.0 4.0 3.8 0.8 0.96 1.1

3α 5.36 101 0.9 3.9 2.9 0.4 1.4 1.8 0.7 0.93 1.7

3β 2.86 101 1.1 4.2 2.9 0.4 1.1 2.5 0.7 0.97 0.7

3γ 7.87 100 2.2 6.4 2.9 0.2 3.8 3.6 0.5 0.97 0.9

3δ 1.00 100 5.9 8.4 2.9 0.0 2.8 4.4 0.7 0.97 0.8

4α 4.74 101 1.0 3.9 2.9 0.3 1.6 1.7 0.6 0.93 1.7

4β 2.73 101 1.2 4.0 2.9 0.4 0.6 2.2 0.5 0.97 0.6

4γ 8.46 100 2.0 5.8 2.9 0.1 2.8 3.4 0.6 0.97 0.8

4δ 1.04 100 6.0 9.2 2.9 0.4 3.9 5.0 0.6 0.97 0.8

5α 4.21 101 1.0 4.1 2.9 0.1 1.8 1.6 1.3 0.92 1.2

5β 2.94 101 1.2 4.0 2.9 0.2 0.6 2.0 1.3 0.97 0.6

5γ 1.17 101 1.7 4.9 2.9 0.1 1.7 2.8 1.3 0.97 0.6

5δ 2.13 100 3.8 7.9 2.9 0.2 4.4 4.1 1.5 0.97 0.6

6α 2.19 100 3.7 8.1 2.9 0.0 6.2 1.1 2.1 0.92 1.0

6β 1.61 100 4.2 6.1 2.9 0.0 1.8 1.8 2.1 0.96 0.9

6γ 9.88 10−1 6.3 7.9 2.9 0.0 2.2 2.2 2.1 0.99 0.7

6δ 3.45 10−1 8.2 10.5 2.9 0.0 4.7 3.0 2.1 0.98 0.5

Table A.3: Double differential inclusive jet cross sections measured as function of Q2

and PT. The bin labels of column 1 are defined in table A.1. Other details are given in
the caption of table A.2.
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Dijet cross section in bins of Q2

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1 4.74 101 1.0 5.3 2.9 0.1 3.7 2.1 0.7 0.94 1.1

2 3.90 101 1.0 5.2 2.9 0.1 3.6 2.1 0.6 0.94 1.0

3 3.91 101 1.0 5.3 2.9 0.1 3.7 2.0 0.6 0.94 1.0

4 3.64 101 1.1 5.3 2.9 0.1 3.8 1.9 0.6 0.94 1.0

5 3.77 101 1.1 5.3 2.9 0.0 3.7 1.7 1.3 0.94 0.7

6 2.44 100 4.0 7.8 2.9 0.0 5.4 1.6 2.1 0.94 1.6

Dijet cross section in bins of 〈PT〉

α 9.19 101 0.7 4.3 2.9 0.1 2.6 1.6 0.7 0.93 1.0

β 6.27 101 0.8 4.6 2.9 0.1 2.5 2.3 0.7 0.97 0.8

γ 1.91 101 1.4 5.4 2.9 0.1 2.8 3.2 0.8 0.97 0.7

δ 2.73 100 3.7 7.0 2.9 0.1 2.7 4.2 1.0 0.97 0.5

Dijet cross section in bins of ξ

a 5.12 101 0.9 5.5 2.9 0.2 3.8 2.4 0.6 0.94 1.3

b 7.83 101 0.7 5.1 2.9 0.1 3.6 1.8 0.6 0.94 1.1

c 4.93 101 0.9 5.2 2.9 0.1 3.7 1.8 0.7 0.94 0.9

d 2.14 101 1.4 5.6 2.9 0.0 3.8 2.2 1.2 0.94 0.6

Table A.4: Single differential dijet cross sections measured as function of Q2 (top),
〈PT〉 (middle) and ξ (bottom). The bin labels of column 1 are defined in table A.1. Other
details are given in the caption of table A.2.
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Dijet cross section in bins of Q2 and 〈PT〉

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1α 2.35 101 1.4 4.6 2.9 0.1 2.7 1.7 0.7 0.94 1.1

1β 1.40 101 1.7 5.4 2.9 0.1 3.4 2.4 0.6 0.97 0.9

1γ 3.23 100 3.5 6.9 2.9 0.1 3.9 3.4 0.5 0.97 1.0

1δ 3.99 10−1 10.2 12.1 2.9 0.0 3.7 4.5 0.7 0.97 1.1

2α 1.85 101 1.5 4.6 2.9 0.1 2.6 1.7 0.7 0.94 1.0

2β 1.19 101 1.8 5.1 2.9 0.1 2.9 2.4 0.6 0.98 0.7

2γ 2.99 100 3.5 7.0 2.9 0.0 4.0 3.4 0.6 0.97 1.3

2δ 3.62 10−1 10.1 12.1 2.9 0.0 4.1 4.4 0.8 0.96 1.0

3α 1.79 101 1.5 4.7 2.9 0.1 2.9 1.6 0.6 0.93 1.6

3β 1.23 101 1.8 5.0 2.9 0.2 2.6 2.3 0.6 0.98 0.5

3γ 3.50 100 3.3 6.6 2.9 0.1 3.5 3.4 0.6 0.97 0.9

3δ 4.32 10−1 9.5 11.3 2.9 0.0 2.8 4.5 0.7 0.97 1.0

4α 1.61 101 1.7 4.7 2.9 0.1 2.9 1.4 0.6 0.92 1.7

4β 1.15 101 1.9 4.9 2.9 0.1 2.6 2.3 0.5 0.97 0.5

4γ 3.80 100 3.3 6.4 2.9 0.1 3.2 3.2 0.6 0.98 0.7

4δ 4.64 10−1 9.4 11.3 2.9 0.1 2.3 4.8 0.7 0.97 0.8

5α 1.52 101 1.7 4.3 2.9 0.0 2.1 1.1 1.3 0.92 1.2

5β 1.22 101 1.8 4.9 2.9 0.0 2.6 1.9 1.3 0.96 0.7

5γ 5.16 100 2.7 5.9 2.9 0.1 2.9 2.9 1.4 0.98 0.6

5δ 9.85 10−1 6.4 8.8 2.9 0.1 3.3 3.9 1.5 0.97 0.7

6α 8.37 10−1 6.9 9.0 2.9 0.0 4.3 0.8 2.2 0.91 0.9

6β 7.50 10−1 6.6 8.1 2.9 0.0 2.6 1.6 2.2 0.95 1.1

6γ 4.98 10−1 9.5 10.6 2.9 0.0 1.8 2.3 2.2 0.97 0.7

6δ 1.48 10−1 14.0 14.9 2.9 0.0 2.1 2.7 2.1 0.98 0.8

Table A.5: Double differential dijet cross sections measured as function of Q2 and 〈PT〉.
The bin labels of column 1 are defined in table A.1. Other details are given in the caption
of table A.2.
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Dijet cross section in bins of Q2 and ξ

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1a 2.08 101 1.5 5.4 2.9 0.2 3.6 2.4 0.5 0.94 1.7

1b 1.81 101 1.5 5.6 2.9 0.1 4.0 1.7 0.9 0.94 1.2

1c 6.73 100 2.5 6.1 2.9 0.1 4.2 2.0 0.9 0.94 0.9

1d 1.62 100 5.0 7.6 2.9 0.0 3.9 2.7 0.8 0.93 1.5

2a 1.42 101 1.8 5.3 2.9 0.2 3.3 2.3 0.6 0.94 1.5

2b 1.67 101 1.5 5.2 2.9 0.1 3.6 1.8 0.7 0.94 1.1

2c 6.38 100 2.4 6.2 2.9 0.1 4.4 2.1 0.7 0.95 0.7

2d 1.54 100 4.8 7.1 2.9 0.0 3.2 2.8 0.8 0.94 1.3

3a 1.08 101 2.1 6.0 2.9 0.2 4.0 2.5 0.6 0.93 1.4

3b 1.79 101 1.5 5.0 2.9 0.1 3.3 1.8 0.6 0.94 1.0

3c 8.20 100 2.1 5.6 2.9 0.1 3.7 2.0 0.6 0.94 0.6

3d 2.02 100 4.3 6.7 2.9 0.0 3.3 2.6 0.6 0.95 1.3

4a 4.99 100 3.2 6.9 2.9 0.3 4.7 2.6 0.5 0.92 1.4

4b 1.71 101 1.6 5.3 2.9 0.1 3.7 1.8 0.7 0.93 1.2

4c 1.13 101 1.9 5.1 2.9 0.1 3.3 1.7 0.6 0.94 0.6

4d 2.65 100 3.8 6.2 2.9 0.1 2.6 2.7 0.6 0.96 1.1

5b 8.49 100 2.3 5.6 2.9 0.1 3.5 1.8 1.1 0.93 0.9

5c 1.67 101 1.6 5.1 2.9 0.0 3.3 1.6 1.2 0.94 0.5

5d 1.17 101 1.9 5.5 2.9 0.1 3.5 1.9 1.5 0.94 0.9

6d 1.97 100 4.2 8.2 2.9 0.0 5.9 1.6 2.1 0.94 1.6

Table A.6: Double differential dijet cross sections measured as function of Q2 and ξ.
The bin labels of column 1 are defined in table A.1. Other details are given in the caption
of table A.2.
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Trijet cross section in bins of Q2

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1 8.67 100 2.2 6.6 2.9 0.1 4.5 3.1 0.6 0.82 2.4

2 6.89 100 2.4 6.3 2.9 0.1 3.7 3.2 0.7 0.80 2.4

3 7.46 100 2.3 6.4 2.9 0.2 4.1 3.2 0.6 0.81 2.5

4 7.23 100 2.4 7.8 2.9 0.1 6.0 3.0 0.7 0.81 2.5

5 7.19 100 2.3 11.1 2.9 0.1 9.9 2.8 1.4 0.80 2.7

6 4.13 10−1 7.5 19.9 2.9 0.0 17.9 2.3 2.2 0.80 2.9

Trijet cross section in bins of 〈PT〉

α 1.96 101 1.5 6.9 2.9 0.1 5.5 2.6 0.7 0.79 2.5

β 1.29 101 1.7 8.0 2.9 0.1 6.4 3.4 0.8 0.85 2.6

γ 2.73 100 3.6 12.0 2.9 0.1 10.0 4.6 1.0 0.87 2.8

Trijet cross section in bins of ξ

A 1.11 101 2.0 7.2 2.9 0.2 5.1 3.5 0.7 0.81 2.4

B 1.64 101 1.6 7.0 2.9 0.1 5.5 2.8 0.7 0.81 2.5

C 1.00 101 1.9 10.3 2.9 0.1 9.1 3.1 1.0 0.81 2.5

Table A.7: Single differential trijet cross sections measured as function of Q2 (top),
〈PT〉 (middle) and ξ (bottom). The bin labels of column 1 are defined in table A.1. Other
details are given in the caption of table A.2.
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Trijet cross section in bins of Q2 and 〈PT〉

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1α 4.94 100 3.0 6.2 2.9 0.1 3.6 2.7 0.6 0.81 2.4

1β 2.75 100 3.9 8.9 2.9 0.1 6.6 3.4 0.6 0.85 2.2

1γ 4.30 10−1 9.5 15.8 2.9 0.1 11.4 4.4 0.7 0.87 2.5

2α 3.86 100 3.3 6.1 2.9 0.1 2.9 2.9 0.7 0.79 2.1

2β 2.11 100 4.2 7.9 2.9 0.1 4.8 3.6 0.6 0.85 2.5

2γ 4.08 10−1 9.3 13.8 2.9 0.0 8.3 4.8 1.4 0.88 2.5

3α 3.85 100 3.3 6.5 2.9 0.2 3.9 2.6 0.6 0.80 2.4

3β 2.54 100 3.9 7.6 2.9 0.2 4.7 3.5 0.5 0.85 2.5

3γ 5.36 10−1 8.3 12.0 2.9 0.0 6.1 5.4 0.6 0.87 2.7

4α 3.51 100 3.5 7.2 2.9 0.1 5.0 2.4 0.7 0.78 2.2

4β 2.66 100 3.9 9.7 2.9 0.2 7.6 3.5 0.6 0.86 2.5

4γ 6.12 10−1 8.0 11.9 2.9 0.1 6.5 5.0 0.8 0.86 2.8

5α 3.28 100 3.6 10.6 2.9 0.0 9.1 2.3 1.3 0.78 2.4

5β 2.78 100 3.6 12.1 2.9 0.0 10.7 3.0 1.5 0.84 2.7

5γ 7.25 10−1 6.9 17.0 2.9 0.4 14.6 4.3 1.5 0.86 2.6

6β 1.55 10−1 12.1 18.8 2.9 0.1 13.7 2.2 2.3 0.83 2.7

6γ 8.16 10−2 15.7 26.4 2.9 0.0 20.6 3.4 2.3 0.86 3.2

Table A.8: Double differential trijet cross sections measured as function of Q2 and 〈PT〉.
The bin labels of column 1 are defined in table A.1. Other details are given in the caption
of table A.2.
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Trijet cross section in bins of Q2 and ξ

Bin Cross Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label section unc. unc. unc. unc. unc. unc. unc. corr. unc.

[pb] (%) (%) (%) (%) (%) (%) (%) (%)

1A 3.77 100 3.5 7.0 2.9 0.2 4.0 3.4 0.7 0.82 2.2

1B 3.57 100 3.4 7.5 2.9 0.0 5.3 2.6 0.6 0.81 2.4

1C 1.32 100 5.5 11.0 2.9 0.2 8.4 3.2 0.6 0.81 2.4

2A 2.77 100 3.9 6.9 2.9 0.1 3.4 3.4 0.7 0.80 2.3

2B 2.97 100 3.6 6.9 2.9 0.1 4.0 3.0 0.7 0.81 2.4

2C 1.14 100 5.6 10.3 2.9 0.1 7.3 3.5 0.7 0.81 2.4

3A 2.39 100 4.3 7.5 2.9 0.3 3.9 3.5 0.7 0.80 2.1

3B 3.54 100 3.3 7.2 2.9 0.1 4.8 2.9 0.6 0.81 2.5

3C 1.49 100 4.9 8.8 2.9 0.1 5.8 3.3 0.6 0.81 2.7

4A 1.66 100 5.4 10.0 2.9 0.3 7.1 3.5 0.7 0.80 2.3

4B 3.60 100 3.4 7.8 2.9 0.1 5.8 2.7 0.7 0.81 2.4

4C 1.91 100 4.5 10.4 2.9 0.1 8.2 3.2 0.7 0.82 2.6

5B 2.79 100 3.9 11.1 2.9 0.0 9.6 2.7 1.2 0.80 2.4

5C 3.85 100 3.1 12.6 2.9 0.1 11.4 2.8 1.5 0.81 2.8

6C 4.02 10−1 7.7 20.0 2.9 0.0 18.0 2.4 2.1 0.80 3.1

Table A.9: Double differential trijet cross sections measured as function of Q2 and ξ.
The bin labels of column 1 are defined in table A.1. Other details are given in the caption
of table A.2.
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Normalised inclusive jet cross section in bins of Q2

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1 2.64 10−1 0.7 1.9 - 0.4 0.2 1.7 0.5 0.95 1.5

2 2.96 10−1 0.8 1.9 - 0.4 0.2 1.6 0.5 0.95 1.4

3 3.42 10−1 0.8 1.8 - 0.4 0.2 1.5 0.4 0.95 1.4

4 3.93 10−1 0.9 1.8 - 0.3 0.4 1.5 0.4 0.95 1.3

5 4.86 10−1 0.8 1.8 - 0.1 0.4 1.4 0.5 0.95 1.0

6 6.02 10−1 3.2 3.6 - 0.0 0.8 1.1 0.9 0.95 0.7

Normalised dijet cross section in bins of Q2

1 1.13 10−1 1.0 2.5 - 0.1 1.6 1.5 0.4 0.94 1.1

2 1.26 10−1 1.1 2.3 - 0.1 1.4 1.4 0.3 0.94 1.0

3 1.46 10−1 1.1 2.3 - 0.1 1.4 1.4 0.2 0.94 1.0

4 1.70 10−1 1.2 2.1 - 0.1 1.3 1.3 0.1 0.94 1.0

5 2.14 10−1 1.2 2.0 - 0.0 1.1 1.1 0.1 0.94 0.7

6 2.83 10−1 4.5 5.3 - 0.0 2.6 1.0 0.4 0.94 1.6

Normalised trijet cross section in bins of Q2

1 2.07 10−2 2.2 5.0 - 0.1 3.7 2.5 0.3 0.82 2.4

2 2.23 10−2 2.4 4.2 - 0.1 2.3 2.6 0.1 0.80 2.4

3 2.79 10−2 2.3 4.0 - 0.2 2.1 2.5 0.2 0.81 2.5

4 3.37 10−2 2.5 4.4 - 0.1 2.8 2.3 0.2 0.81 2.5

5 4.07 10−2 2.4 6.5 - 0.1 5.6 2.2 0.3 0.80 2.7

6 4.76 10−2 7.8 15.3 - 0.0 13.0 1.7 0.3 0.80 2.9

Table A.10: Normalised single differential inclusive jet (top), dijet (middle) and trijet
(bottom) cross sections measured as function of Q2. The bin labels of column 1 are
defined in table A.1. Other details are given in the caption of table A.2.
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Normalised inclusive jet cross section in bins of Q2 and PT

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1α 1.69 10−1 0.8 1.8 - 0.4 0.7 1.3 0.6 0.94 1.8

1β 7.52 10−2 1.2 3.1 - 0.3 2.0 2.1 0.5 0.97 1.0

1γ 1.79 10−2 2.4 4.3 - 0.2 2.2 2.9 0.2 0.97 1.2

1δ 2.15 10−3 6.8 8.2 - 0.1 2.5 3.9 0.4 0.96 1.1

2α 1.85 10−1 0.9 1.7 - 0.4 0.4 1.2 0.5 0.94 1.8

2β 8.76 10−2 1.2 2.7 - 0.3 1.4 2.0 0.5 0.97 0.9

2γ 2.13 10−2 2.4 4.4 - 0.1 2.2 2.9 0.3 0.97 1.1

2δ 2.75 10−3 6.6 7.7 - 0.0 2.3 3.2 0.4 0.96 1.1

3α 2.01 10−1 0.9 1.6 - 0.4 0.3 1.1 0.5 0.93 1.7

3β 1.07 10−1 1.2 2.5 - 0.4 1.2 1.8 0.5 0.97 0.7

3γ 2.95 10−2 2.2 4.1 - 0.2 1.7 3.0 0.4 0.97 0.9

3δ 3.76 10−3 6.2 7.3 - 0.0 1.2 3.7 0.3 0.97 0.8

4α 2.21 10−1 1.0 1.6 - 0.3 0.3 1.1 0.4 0.93 1.7

4β 1.27 10−1 1.3 2.4 - 0.4 1.3 1.5 0.4 0.97 0.6

4γ 3.95 10−2 2.1 3.6 - 0.1 0.9 2.8 0.4 0.97 0.8

4δ 4.86 10−3 6.2 7.7 - 0.4 1.6 4.3 0.3 0.97 0.8

5α 2.39 10−1 1.0 1.6 - 0.1 0.2 1.0 0.6 0.92 1.2

5β 1.67 10−1 1.2 2.3 - 0.2 1.1 1.4 0.6 0.97 0.6

5γ 6.64 10−2 1.7 3.0 - 0.1 0.9 2.2 0.4 0.97 0.6

5δ 1.20 10−2 3.9 5.6 - 0.2 1.9 3.5 0.5 0.97 0.6

6α 2.54 10−1 4.0 5.4 - 0.0 3.6 0.5 0.8 0.92 1.0

6β 1.86 10−1 4.4 4.7 - 0.0 0.7 1.2 1.0 0.96 0.9

6γ 1.15 10−1 6.4 7.4 - 0.0 3.0 1.6 1.0 0.99 0.7

6δ 4.00 10−2 8.3 9.7 - 0.0 4.3 2.4 0.7 0.98 0.5

Table A.11: Normalised double differential inclusive jet cross sections measured as
function of Q2 and PT. The bin labels of column 1 are defined in table A.1. Other details
are given in the caption of table A.2.
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Normalised dijet cross section in bins of Q2 and 〈PT〉

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1α 5.61 10−2 1.4 2.0 - 0.1 0.8 1.2 0.4 0.94 1.1

1β 3.33 10−2 1.8 2.8 - 0.1 1.1 1.8 0.4 0.97 0.9

1γ 7.72 10−3 3.6 4.9 - 0.1 1.8 2.8 0.2 0.97 1.0

1δ 9.53 10−4 10.6 11.5 - 0.0 1.9 3.9 0.5 0.97 1.1

2α 6.01 10−2 1.5 2.0 - 0.1 0.7 1.1 0.3 0.94 1.0

2β 3.86 10−2 1.8 2.7 - 0.1 0.8 1.7 0.3 0.98 0.7

2γ 9.68 10−3 3.6 4.9 - 0.0 1.8 2.8 0.3 0.97 1.3

2δ 1.17 10−3 10.6 11.4 - 0.0 2.0 3.7 0.5 0.96 1.0

3α 6.70 10−2 1.5 2.0 - 0.1 0.8 1.0 0.2 0.93 1.6

3β 4.61 10−2 1.8 2.6 - 0.2 0.6 1.7 0.3 0.98 0.5

3γ 1.31 10−2 3.4 4.6 - 0.1 1.4 2.8 0.3 0.97 0.9

3δ 1.62 10−3 9.8 10.6 - 0.0 1.0 3.9 0.5 0.97 1.0

4α 7.50 10−2 1.7 2.0 - 0.1 0.6 0.8 0.1 0.92 1.7

4β 5.38 10−2 1.9 2.5 - 0.1 0.5 1.6 0.2 0.97 0.5

4γ 1.77 10−2 3.3 4.3 - 0.1 1.0 2.5 0.2 0.98 0.7

4δ 2.17 10−3 9.7 10.5 - 0.1 0.6 4.2 0.3 0.97 0.8

5α 8.63 10−2 1.8 2.0 - 0.0 0.7 0.5 0.1 0.92 1.2

5β 6.93 10−2 1.9 2.3 - 0.0 0.4 1.3 0.2 0.96 0.7

5γ 2.93 10−2 2.8 3.7 - 0.1 0.7 2.3 0.3 0.98 0.6

5δ 5.58 10−3 6.4 7.3 - 0.1 1.1 3.3 0.6 0.97 0.7

6α 9.71 10−2 7.1 7.3 - 0.0 1.5 0.6 0.6 0.91 0.9

6β 8.69 10−2 6.7 6.9 - 0.0 0.4 1.1 1.1 0.95 1.1

6γ 5.78 10−2 9.6 10.0 - 0.0 1.8 1.8 0.4 0.97 0.7

6δ 1.72 10−2 14.2 14.4 - 0.0 0.9 2.1 0.6 0.98 0.8

Table A.12: Normalised double differential dijet cross sections measured as function of
Q2 and 〈PT〉. The bin labels of column 1 are defined in table A.1. Other details are given
in the caption of table A.2.

252



Normalised dijet cross section in bins of Q2 and ξ

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1a 4.96 10−2 1.5 2.8 - 0.2 1.5 1.8 0.1 0.94 1.7

1b 4.32 10−2 1.6 2.6 - 0.1 1.5 1.2 0.7 0.94 1.2

1c 1.61 10−2 2.6 3.6 - 0.1 2.0 1.4 0.7 0.94 0.9

1d 3.88 10−3 5.2 5.9 - 0.0 1.8 2.1 0.7 0.93 1.5

2a 4.60 10−2 1.8 2.7 - 0.2 1.2 1.7 0.1 0.94 1.5

2b 5.41 10−2 1.6 2.3 - 0.1 1.3 1.2 0.2 0.94 1.1

2c 2.07 10−2 2.5 3.6 - 0.1 2.0 1.4 0.5 0.95 0.7

2d 5.01 10−3 5.0 5.6 - 0.0 1.2 2.1 0.7 0.94 1.3

3a 4.03 10−2 2.1 3.2 - 0.2 1.6 1.8 0.2 0.93 1.4

3b 6.72 10−2 1.5 2.2 - 0.1 1.1 1.1 0.1 0.94 1.0

3c 3.07 10−2 2.2 3.0 - 0.1 1.5 1.3 0.4 0.94 0.6

3d 7.58 10−3 4.4 5.0 - 0.0 1.2 2.0 0.5 0.95 1.3

4a 2.33 10−2 3.2 4.1 - 0.3 1.7 1.9 0.3 0.92 1.4

4b 7.99 10−2 1.6 2.3 - 0.1 1.1 1.1 0.1 0.93 1.2

4c 5.29 10−2 1.9 2.4 - 0.1 1.0 1.0 0.2 0.94 0.6

4d 1.23 10−2 3.9 4.5 - 0.1 0.6 2.0 0.2 0.96 1.1

5b 4.81 10−2 2.3 2.8 - 0.1 0.9 1.2 0.1 0.93 0.9

5c 9.49 10−2 1.6 2.1 - 0.0 0.9 1.0 0.1 0.94 0.5

5d 6.63 10−2 1.9 2.6 - 0.1 1.2 1.3 0.4 0.94 0.9

6d 2.28 10−1 4.4 5.5 - 0.0 3.0 1.1 0.6 0.94 1.6

Table A.13: Normalised double differential dijet cross sections measured as function of
Q2 and ξ. The bin labels of column 1 are defined in table A.1. Other details are given in
the caption of table A.2.
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Normalised trijet cross section in bins of Q2 and 〈PT〉

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1α 1.18 10−2 3.1 4.6 - 0.1 2.6 2.2 0.3 0.81 2.4

1β 6.57 10−3 4.0 6.0 - 0.1 3.4 2.9 0.3 0.85 2.2

1γ 1.03 10−3 10.1 13.1 - 0.1 7.4 3.9 0.5 0.87 2.5

2α 1.25 10−2 3.4 4.3 - 0.1 1.5 2.2 0.2 0.79 2.1

2β 6.85 10−3 4.3 5.7 - 0.1 2.2 3.0 0.2 0.85 2.5

2γ 1.32 10−3 9.9 11.9 - 0.0 5.1 4.1 1.1 0.88 2.5

3α 1.44 10−2 3.4 4.3 - 0.2 1.7 2.0 0.2 0.80 2.4

3β 9.53 10−3 4.0 5.4 - 0.2 2.1 2.8 0.3 0.85 2.5

3γ 2.01 10−3 8.8 10.6 - 0.0 3.4 4.8 0.4 0.87 2.7

4α 1.64 10−2 3.6 4.5 - 0.1 2.1 1.7 0.2 0.78 2.2

4β 1.24 10−2 4.0 6.3 - 0.2 3.9 2.9 0.2 0.86 2.5

4γ 2.85 10−3 8.4 10.1 - 0.1 3.4 4.3 0.6 0.86 2.8

5α 1.86 10−2 3.7 6.4 - 0.0 4.9 1.7 0.2 0.78 2.4

5β 1.57 10−2 3.7 7.6 - 0.0 6.1 2.4 0.4 0.84 2.7

5γ 4.10 10−3 7.1 12.0 - 0.4 8.9 3.7 0.5 0.86 2.6

6β 1.79 10−2 12.5 16.0 - 0.1 9.8 1.6 0.6 0.83 2.7

6γ 9.39 10−3 16.5 22.7 - 0.0 15.3 2.9 0.8 0.86 3.2

Table A.14: Normalised double differential trijet cross sections measured as function of
Q2 and 〈PT〉. The bin labels of column 1 are defined in table A.1. Other details are given
in the caption of table A.2.
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Normalised trijet cross section in bins of Q2 and ξ

Bin Norm. Stat. Total Norm. Bkgd. Model. HFS. Elec. Had. Had.
label cross unc. unc. unc. unc. unc. unc. unc. corr. unc.

section (%) (%) (%) (%) (%) (%) (%) (%)

1A 9.01 10−3 3.6 5.7 - 0.2 3.3 2.9 0.4 0.82 2.2

1B 8.53 10−3 3.6 4.8 - 0.0 2.4 2.1 0.3 0.81 2.4

1C 3.14 10−3 5.8 7.9 - 0.2 4.6 2.7 0.2 0.81 2.4

2A 8.97 10−3 4.0 5.3 - 0.1 2.0 2.8 0.2 0.80 2.3

2B 9.64 10−3 3.7 4.7 - 0.1 1.6 2.3 0.2 0.81 2.4

2C 3.69 10−3 5.8 7.6 - 0.1 4.0 2.8 0.3 0.81 2.4

3A 8.95 10−3 4.4 5.6 - 0.3 1.8 2.9 0.3 0.80 2.1

3B 1.33 10−2 3.4 4.7 - 0.1 2.3 2.2 0.2 0.81 2.5

3C 5.60 10−3 5.2 6.5 - 0.1 2.9 2.7 0.5 0.81 2.7

4A 7.74 10−3 5.4 7.0 - 0.3 3.3 2.9 0.3 0.80 2.3

4B 1.68 10−2 3.5 4.9 - 0.1 2.7 2.0 0.2 0.81 2.4

4C 8.89 10−3 4.7 6.9 - 0.1 4.4 2.6 0.2 0.82 2.6

5B 1.58 10−2 3.9 6.9 - 0.0 5.3 2.1 0.2 0.80 2.4

5C 2.18 10−2 3.2 7.7 - 0.1 6.7 2.2 0.4 0.81 2.8

6C 4.64 10−2 8.0 15.4 - 0.0 13.1 1.8 0.4 0.80 3.1

Table A.15: Normalised double differential trijet cross sections measured as function of
Q2 and ξ. The bin labels of column 1 are defined in table A.1. Other details are given in
the caption of table A.2.
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Appendix B

List of Used Acronyms

BBE Backward Barrel, Electromagnetic (calorimeter wheel)
BCDMS Bologna-Cern-Dubna-Munich-Saclay
BGF Boson Gluon Fusion
BPC Backward Proportional Chamber
BST Backward Silicon Tracker
CC charged current
CDM Colour Dipole Model
CB Central Barrel (calorimter wheel)
CIP Central Inner Proportional Chamber
CJC Central Jet Chamber
COP Central Outer Proportional Chamber
COZ Central Outer z-Chamber
CST Central Silicon Tracker
CTD Central Track Detector
DESY Deutsches Elektronen Synchrotron
DIS deep-inelastic scattering
DGLAP Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
DREAM Dual-Readout Module
DST Data Summary Tape
DVCS Deeply Virtual Compton Scattering
EW electroweak
EMC Electromagnetic Calorimeter
ET Electron Tagger
FB Forward Barrel (calorimeter wheel)
FMD Forward Muon Detector
FST Forward Silicon Tracker
FTD Forward Track Detector
FTT Fast Track Trigger
H1OO H1 Object Oriented Analysis Software
HAC Hadronic Calorimeter
HAT H1 Event Tag
HERA Hadron-Elektron-Ring-Anlage
HFS Hadronic Final State
IF Inner Forward (calorimeter wheel)
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IP Interaction Point
IR infrared
LAr Liquid Argon
LEP Large Electron Positron Collider
LHC Large Hadron Collider
LO leading order
MC Monte Carlo (event generator)
MEPS matrix elements and parton shower
NC neutral current
NMC New Muon Collaboration
NNLO next-to-next-to-leading order
NLO next-to-leading order
OF Outer Forward (calorimeter wheel)
PETRA Positron-Elektron-Ring-Anlage
PD Photon Detector
PDF Parton Distribution Function
POT Production Output Tape
pQCD perturbative QCD
QCD Quantum Chromodynamics
QCDC QCD Compton
QED Quantum Electrodynamics
QEDC QED Compton
QPM Quark Parton Model
RGE Renormalisation Group Equation
SLAC Stanford Linear Accelerator Center
SM Standard Model
SpaCal Spaghetti Calorimeter
TC Tail Catcher
ToF Time-of-Flight
UV ultraviolet
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at HERA, Dissertation, Univ. Zürich, DESY-THESIS-2004/044, 2004.

[Vel02] C. Velkeen, H1NonepBgFinder – Rejection of cosmic muon and
beam-halo events in the H1OO framework, H1-IN-603 (2002).

[VM+04] A. Vogt, S. Moch et al., The three-loop splitting functions in QCD:
the singlet case, Nucl. Phys. B 691, 129–181 (2004).

[W+81] B. H. Wiik et al., HERA, A Proposal for a Large Electron Proton
Colliding Beam Facility at DESY, DESY-HERA 81/10 (1981).

[War50] J. Ward, An identity in quantum electrodynamics, Phys. Rev. 78,
182–182 (1950).

[Web84] B. Webber, A QCD model for jet fragmentation including soft gluon
interference, Nucl. Phys. B 238, 492–528 (1984).

[Web93] B. Webber, Factorization and jet clustering algorithms for
deep-inelastic scattering, J. Phys. G: Nucl. Part. Phys. 19,
1567–1575 (1993).

[Wei67] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264–1266
(1967).

[Wei73] S. Weinberg, New Approach to the Renormalization Group, Phys.
Rev. D 8, 3497–3509 (1973).

[Wes00] L. West, How to use the Heavy Flavour Working Group Track, Muon
and Electron Selection Code, H1 Software Manual (available at
https://www-h1.desy.de/icas/imanuals/h1phan/

track manual30106.ps) (2000).

[Wig87] R. Wigmans, On the energy resolution of uranium and other hadron
calorimeters, Nucl. Instr. and Meth. A 259, 389–429 (1987).

272

https://www-h1.desy.de/icas/imanuals/h1phan/track_manual30106.ps
https://www-h1.desy.de/icas/imanuals/h1phan/track_manual30106.ps


[Wig00] R. Wigmans, Calorimetry: energy measurement in particle physics,
Oxford University Press, 2000.

[Wig02] R. Wigmans, Sampling calorimetry, Nucl. Instr. and Meth. A 494,
277–287 (2002).

[Wil74] K. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445–2459
(1974).

[WK+94] H. Wellisch, J. Kubenka et al., Hadronic Calibration of the H1 LAr
Calorimeter using Software Weighting Techniques, H1-IN-346,
MPI-PhE/94-03 (1994).

[Wob00] M. Wobisch, Measurement and QCD Analysis of Jet Cross Sections
in Deep-Inelastic Positron-Proton Collisions at

√
s = 300 GeV,

Dissertation, RWTH Aachen, DESY-THESIS-2000-049, 2000.

[WW99] M. Wobisch and T. Wengler, Hadronization Corrections to Jet Cross
Sections in Deep-Inelastic Scattering, Proceedings of the HERA
Monte Carlo Workshop, eds. G. Grindhammer, G. Ingelman, H. Jung,
T. Doyle, DESY-PROC-02-1999 , 270–280 (1999).

[YM54] C. Yang and R. Mills, Conservation of isotopic spin and isotopic
gauge invariance, Phys. Rev. 96, 191–195 (1954).

[Yud69] T. Yuda, Electron-induced cascade showers in inhomogeneous media,
Nucl. Instr. and Meth. 73, 301–312 (1969).

[ZEUS05a] S. Chekanov, M. Derrick et al. (ZEUS), Multijet production in
neutral current deep inelastic scattering at HERA and determination
of αs, Eur. Phys. J. C 44, 183–193 (2005).

[ZEUS05b] S. Chekanov, M. Derrick et al. (ZEUS), An NLO QCD analysis of
inclusive cross-section and jet-production data from the ZEUS
experiment, Eur. Phys. J. C 42, 1–16 (2005).

[ZEUS07a] S. Chekanov, M. Derrick et al. (ZEUS), Inclusive-jet and dijet cross
sections in deep inelastic scattering at HERA, Nucl. Phys. B 765,
1–30 (2007).

[ZEUS07b] S. Chekanov, M. Derrick et al. (ZEUS), Jet-radius dependence of
inclusive-jet cross sections in deep inelastic scattering at HERA,
Phys. Lett. B 649, 12–24 (2007).

[ZEUS08] S. Chekanov, M. Derrick et al. (ZEUS), Angular correlations in
three-jet events in ep collisions at HERA, arXiv:hep-ex/0808.3783
(2008).

[ZEUS10a] H. Abramowicz, I. Abt et al. (ZEUS), Inclusive dijet cross sections in
neutral current deep inelastic scattering at HERA,
arXiv:hep-ex/1010.6167, to be published in Eur. Phys. J C,
DESY-10-170 (2010).

273



[ZEUS10b] H. Abramowicz, I. Abt et al. (ZEUS), Inclusive-jet cross sections in
NC DIS at HERA and a comparison of the kT , anti-kT and SISCone
jet algorithms, Phys. Lett. B 691, 127–137 (2010).

274



Acknowledgements / Danksagung
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