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Abstract

The transverse coherence is of paramount importance for many applications of a free
electron laser (FEL). In this thesis, the first direct measurement of the transverse
coherence of a free electron laser at vacuum ultraviolet wavelengths is presented. The
diffraction pattern at a double slit was observed and the visibility of the interference
fringes was measured. The experimental near field diffraction pattern is compared
with simulations, taking into account the formation of the FEL radiation, the Fresnel
diffraction in the near field zone and effects of the experimental set-up. Diffraction
patterns have been recorded at various undulator lengths to measure the evolution
of the transverse coherence along the undulator. The highest coherence is achieved
at the end of the exponential growth regime, before the onset of saturation in the
FEL process.

Zusammenfassung

Die räumliche Kohärenz ist von großer Bedeutung für viele Anwendungen eines Freie-
Elektronen-Lasers (FELs). In dieser Doktorarbeit wird die erste direkte Messung der
räumlichen Kohärenz eines Freie-Elektronen-Lasers im Vakuum-Ultraviolett vorge-
stellt. Das Beugungsbild eines Doppelspaltes wurde aufgenommen und die Sichtbar-
keit der Interferenzstreifen wird bestimmt. Das Beugungsmuster wird mit Simulatio-
nen verglichen. Diese beinhaltet die die Erzeugung der FEL-Strahlung, die Fresnel-
Beugung im Nahfeld und Effekte des experimentellen Aufbaus. Beugungsmuster wur-
den mit verschiedenen Undulatorlängen aufgenommen. Auf diese Weise wird die Ent-
wicklung der räumlichen Kohärenz entlang des Undulators bestimmt. Dabei zeigt
sich, dass der höchste Kohärenzgrad am Ende des Bereiches exponentiellen Wachs-
tums herrscht, bevor Sättigungseffekte die Kohärenz reduzieren.
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Die ganze Welt ist voll von Sachen, und es ist wirklich nötig, dass jemand sie findet.

Astrid Lindgren (Pippi Langstrumpf)

Figure on the previous page: Coherence measurement using diffraction [TW57].
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1. Introduction

Free electron lasers (FELs) promise to deliver intense and coherent X-ray pulses,
applicable in various research areas. For one thing, X-ray FELs will exceed the
brilliance of the third-generation synchrotron radiation facilities by several orders
of magnitude and will additionally offer a larger transverse coherence and a shorter
time structure. On the other hand, free electron lasers will complement today’s lasers
because they can be tuned to shorter wavelengths, corresponding to higher photon
energies. The two following sections give a brief overview of the historic development
in the fields of X-ray sources and lasers.

A figure of merit for radiation sources is their coherence, because it is an important
feature for many applications. The coherence is a measure for the uniformity of an
electromagnetic wave. A plane wave is fully coherent and a completely random
radiation is said to be incoherent1. A high coherence of the radiation source is
a necessary prerequisite for interference techniques such as holography, but it also
allows a smaller focal size of the beam, which results in a better resolution in scanning
techniques.

In this thesis, the first direct measurement of the transverse coherence of a free
electron laser at vacuum ultraviolet2 (VUV) wavelengths is presented. The diffraction
pattern of the FEL radiation at a double slit is observed. From the visibility of the
interference fringes, one can deduce the transverse coherence of the radiation. The
experimental technique provides a reliable method for quantitative measurements.

1.1. From Röntgen’s discovery to the free electron
laser

Since their discovery by Wilhelm Konrad Röntgen in 1895 [Rön96], X-rays have been
used to reveal the hidden inner properties of objects. X-rays are photons, described
classically as electromagnetic radiation. Due to their high energy, corresponding to
a short wavelength, they can pass through many materials. Different attenuation
in varying materials allows to observe the internal structure of an object. Röntgen

1 formally, coherence is defined by the of the autocorrelation of the field amplitude, see chapter 3
2 by vacuum ultraviolet, one understands the part of the electromagnetic spectrum with wave-

lengths between 100 and 300 nm; this radiation is absorbed by all materials and can propagate
only in vacuum
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1. Introduction

already discovered the possibility to observe bones in the human body (figure 1.1a).
The X-ray technology evolved from the laboratory into widespread application in an
astonishingly short time. Weeks after Röntgen’s announcement of his discovery in the
end of 1895, newspapers around the world reported on the mysterious “new light”.
It was first used to see bones in the human body in February 1896 and only one
year after its discovery, the application of X-rays in medicine was a well established
practice (figure 1.1b).

a) b)

Figure 1.1.: a) One of the first radiographs, created by Röntgen himself. b) Mihran
Kassabian, working in his Röntgen Laboratory.

The high photon energy is not only useful to image the inside of matter; the short
wavelength allows, in principle, to achieve higher resolution in the images. Once tech-
nical difficulties in the construction of suitable optics had been overcome, microscopes
with a resolution unparalleled by microscopes for visible light were constructed. Us-
ing the interference of X-rays scattered at atomic nuclei within a molecule, it was
even possible to reveal the crystal structure.

In the beginning, X-rays were generated in low-pressure discharge tubes. These
were succeeded by cathode ray tubes, which are still in use today. Electrons are liber-
ated from the cathode and accelerated by a high voltage. When they impinge on the
anode, the deceleration of the charge leads to emission of a continuous spectrum of
radiation. Additionally, the electrons ionise the inner shell of the atoms in the anode;
the electromagnetic cascade yields high energy photons at specific wavelengths, de-
pending on the anode material. The brilliance3 of these characteristic lines is much
higher than in the continuous part of the spectrum. In the last 100 years, X-ray
tubes have undergone many improvements: the introduction of thermionic cathodes

3 The brilliance is defined as the number of photons per area, per solid angle and per wavelength
interval. When comparing photon sources, the brilliance is often used as a benchmark, since it is
important for experiments where an intense, monochromatic photon beam with low divergence
is needed.
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1.1. From Röntgen’s discovery to the free electron laser

by Lilienfeld in 1911 made it possible to extract more electrons from the metal. Ro-
tating anodes, designed in 1934 by Ungelenk, can sustain higher current on a smaller
spot.

However, the biggest step to increase the brilliance was achieved by using
electron synchrotrons for X-ray generation. Synchrotron radiation is emitted
when a relativistic electron beam passes through a bending magnet. In the
beginning, around 1960, the electron accelerators – built for the study of ele-
mentary particle physics – found additional use to generate synchrotron radia-
tion. These first-generation synchrotron facilities offered a beam brilliance around
1012photons/(s mm2 mrad2 0.1% bandwidth), four orders of magnitude more than the
brightest X-ray sources available previously. The synchrotron sources provide this
high brilliance in a continuous spectrum over a very broad wavelength range, as com-
pared to the characteristic lines of the X-ray tubes. Second-generation synchrotron
radiation facilities, accelerators built or updated specifically to generate synchrotron
radiation, use special magnet arrangements, undulators or wigglers. These boost the
brilliance by a factor equal to the number of magnets, typically a few 100. Current,
third-generation synchrotron facilities employ a magnet lattice that is optimised for a
small electron beam emittance, a low coupling between horizontal and vertical beta-
tron oscillations and insertion devices such as undulators to generate beam brilliances
above 1023photons/(s mm2 mrad2 0.1% bandwidth). Hard X-rays can be produced by
higher harmonics of the undulator radiation.

It is a widely accepted opinion that the fourth generation of synchrotron radi-
ation facilities will be free electron lasers that are based on the self-amplification
of the spontaneous emission, so-called SASE-FELs. Similarly to third-generation
synchrotron sources, a free electron laser uses the alternating magnetic fields of an
undulator to impose a sinusoidal motion on the electron bunch. At high beam current
densities, the electromagnetic field of the radiation leads to a longitudinal modulation
of the charge density. This modulation builds up along the undulator, and finally
the electron bunch is divided into microbunches. The particles in each microbunch
radiate coherently. FELs mark the transition from spontaneous to stimulated radia-
tion. The peak brilliance of an X-ray FEL is expected to be 1010 times higher than
the brightest sources currently in use.4

4 The brilliance of the proposed X-ray FELs rivals astronomical objects: one of the most prominent
objects in X-ray astronomy, the crab nebula, contains a neutron star that rotates 30 times per
second. It emits two radiation jets that have a total power of 5 · 1031 W. In an interval of
0.1% bandwidth at 20 keV, 2 · 1034 photons are emitted per second [Ama99]. If one assumes a
diameter of 30 km [FK02] and a solid angle of 0.1 sr [UB81], one can compute a brilliance of 1020

photons per (s mm2 mrad2 0.1% bandwidth), at the surface of the star, whereas the TESLA-FEL
is expected to reach 1034 photons per (s mm2 mrad2 0.1% bandwidth) in this wavelength range.
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1. Introduction

1.2. Lasers for short wavelengths

Conventional lasers are based on the stimulated emission of photons by electrons that
are bound in atoms or molecules, by a transition between two energy levels. To create
a population inversion, the atoms or molecules are pumped into the higher energy
level, for example by xenon discharge lamps or by another laser. The wavelength of
a laser is determined by the energy difference of the two atomic or molecular levels,
typically up to a few eV.

There are several possibilities to achieve higher photon energies. The so-called
table-top X-ray lasers extend the concept of visible lasers to the X-ray regime. The
lasing medium is a plasma, created by an intensive external laser pulse. It is then
heated by another, shorter pulse. Due to the optical field ionisation in the plasma,
a population inversion is created. To advance in smaller wavelength regimes, the
plasma is excited with extremely high flux densities [RST+94, NSK+97].

In the scheme of high harmonic generation a ultra short pulse laser is focused into
a noble gas [KSK92]. The odd harmonics 3ω, 5ω . . . of the exciting laser frequency
are produced due to an non-sinusoidal motion of the electrons in the high radiation
field. The photon energies can surpass 500 eV by exciting harmonics above the 300th

order.
A free electron laser can overcome the limitation to the fixed wavelength: The

photons are emitted by a high-energy electron beam that is guided by an alternating
magnetic field. Here, both energy pump and lasing medium are provided by a rel-
ativistic electron beam. In principle, any wavelength can be achieved. In addition,
very high intensities can be achieved.

1.3. Applications for X-ray lasers

Possible applications for intense and coherent X-rays have been proposed since the
middle of the last century, and in the last years, scientists have come up with a
vast number of experiments for the X-FEL. These range from atomic and molecular
physics over the study of solid state systems to the decipherment of large biomolecules
and cover many areas of scientific research. It would exceed the scope of this work
to name them all, let alone to explain the involved processes.

Therefore, the treatment will focus on techniques where the coherence of the beam
is of prime importance. The technical design report [MT01] provides a comprehensive
overview of the research proposed for the X-FEL. In addition to the applications that
have been presented so far, it can be expected that a completely new device like the
X-FEL will inspire scientists from all areas to present new applications.

The structure of a molecule can be studied by the diffraction of X-rays. A crystal
of the molecule is placed in an X-ray beam. A diffraction pattern forms due to
the regular arrangement of the molecules in the crystal. The diffraction pattern is

14



1.3. Applications for X-ray lasers

a)
b)

Figure 1.2.: a) Diffraction pattern and b) structure of DNA. This X-ray diffraction
pattern, recorded by Rosalind Franklin allowed James Watson and Francis Crick to
decipher the structure of the DNA [WC53].

recorded with a position-sensitive detector. It is the amplitude of a two-dimensional
projection of the inverse crystal lattice. Historically, this method gave the final hint
for the decipherment of the structure of the desoxyribo nucleitic acid (DNA, see
figure 1.2).

However, this method faces two difficulties: it is often demanding to obtain a
sufficient quantity and to crystallise the molecule in question. Furthermore, the
phase information of the diffraction pattern is lost in the detector. Various methods
have been conceived to overcome these difficulties. Crystals of large molecules can
be grown in space, to avoid disturbances due to gravity [DeL89]. The phase of
the diffracted wave can be obtained through the interference with the anomalous
diffraction of certain atoms in the molecule, a method known as multiple wavelength
anomalous diffraction (MAD). Another method of obtaining the phase is holography,
where the diffraction pattern is superimposed with the original wave. This requires
a good coherence of the X-ray source. Using the high coherence and the enormous
brilliance of the X-FEL, it is expected that the diffraction pattern of a nanoparticle,
containing only 104 . . . 105 molecules, can be recorded [Szö99]. Several images from
differently oriented molecules have to be recorded. Similarly, diffraction patterns
from surfaces can be studied.

A good coherence is also helpful to image small objects like the interior of cells.
Phase contrast microscopy is superior to conventional absorption contrast microscopy
for small objects. Additionally, diffraction tomography has been proposed to create
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1. Introduction

a) b) c)

Figure 1.3.: Interference pattern of a double pinhole, measured at different pinhole
separations [TW57]. A visibilty of a) V = 0.593, b) V = 0.361 and c) V = 0.146 is
determined.

a three-dimensional image of the specimen.
If a coherent beam reflects off a structured surface, a speckle pattern, the two-

dimensional Fourier transform of the sample, results. Using X-rays, one can employ
this technique to study the magnetic properties of a material, as the scattering de-
pends on the magnetic moment of the atoms. This way, the fluctuations of the
magnetic flux can be quantised.

When performing experiments that require a transverse coherence of the beam,
one has to take care that the phases of the wave front are not distorted, e.g. by re-
flections on crystals with lattice errors. For example, current techniques do not allow
to fabricate diamond monochromator crystals with sufficient perfection. Therefore,
despite of the lower damage threshold, silicon has to be used.

1.4. Measurement of coherence

The transverse coherence of a radiation source can be measured with Young’s double
slit experiment [You04]. In the far field, the visibility of the diffraction pattern of
a slit or pinhole pair is equal to the transverse coherence function between the two
slits or pinholes, respectively. The visibility is measured at various slit separations
(figure 1.3). This method has been used to measure the coherence function of visible
light [TW57] and of X-rays from a third-generation synchrotron source [PAM+01].
Using the van Cittert-Zernike theorem (see appendix C) [Zer38], the size of a distant
source can be inferred.

Recently, interference patterns have been recorded using X-ray lasers that use the
high-harmonic generation of photons of a femtosecond laser [BPG+02] and atomic
beams [BHE00]. In this thesis, the first application of a double slit experiment to
measure the transverse coherence of a free electron laser in the vacuum ultraviolet,
i.e. at a wavelength of 100 nm is described.
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Also zndet ein Ding dem andren Dinge das Licht an.

Lucretius (von der Natur der Dinge 1, 1094)

Figure on the previous page: The near field diffraction pattern of a double slit.
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2. Physical Processes in a Free
Electron Laser

The most brilliant X-ray sources are electron or positron accelerators, where the
bunches generate synchrotron radiation in undulator magnets. In these sources, the
radiation emitted by an electron is coherent, but there is no coherence between the
radiation fields generated by different electrons, hence the intensity scales linearly
with the number N of electrons per bunch. If different electrons radiate coherently,
the intensity is proportional to N2. This is what happens in a free electron laser
(FEL).

First, the emission of synchrotron radiation in a bending magnet is discussed. The
next section treats the spontaneous undulator radiation, then the amplification in
a low-gain free electron laser is detailed. High-gain FELs are the subject of the
following section. The discussion is based on the equations of motion of a charged
particle and its interaction with an electromagnetic wave, described by the Maxwell
equations. From this, the following important equations are derived, which may
serve for an analytic description and which are the underlying equations of FEL
simulations:

� The photon wavelength of spontaneous emission: Eq. (2.14)

� The motion of the particles within the bunch are governed by the so-called
pendulum equations (2.34)

� The wave equation (2.35) is simplified for the case of a one-dimensional wave,
i.e. a wave of infinite extent, to Eq. (2.47)

� This leads to an integro-differential equation for the development of the radia-
tion field amplitude: Eq. (2.78)

� In the case of a mono-energetic electron beam, this can be simplified to a third-
order differential equation (2.87)

� By further imposing a beam with negligible space charge on resonance, one
obtains an exponentially increasing amplitude: Eq. (2.88)

� The gain length of the FEL is given by Eq. (2.91)
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2. Physical Processes in a Free Electron Laser

Since the transverse extension of a FEL is not infinite, diffraction effects have to be
considered. This results in information about the coherence of the radiation and is
discussed in the following chapter, after the notion of coherence has been defined.

The discussion in this chapter is based on [SSY00b], which contains many details
on FELs, and on the lectures [Sch01b], [KH00] and [DR02]. Other good books about
FELs are [Bra90] and [CPR90]. A good overview is given in [Hün02]. For more
details, especially about FEL simulations, the reader is referred to [Rei99]. General
concepts of electromagnetic radiation are taken from [Jac98] and [Goo85].

2.1. Emission of radiation in magnetic fields

First, the radiation of a charged particle in a dipole magnet is discussed. The motion
of a particle on a curved trajectory in a magnetic field ~B is an accelerated motion;
as a result of the Maxwell equations, radiation is emitted, see for example Jackson,
chapter 9 [Jac98]. The radiation of a uniformly accelerated charge distribution whose
extension is much smaller than the wavelength, ∆x� λ, is coherent and the intensity
is proportional to the square of the total chargeQ2. If the distance between the charge
carriers is larger than λ, their radiation fields add incoherently and the intensity is
proportional to their number. This is usually the case in the bending magnets of
an accelerator. Particles with relativistic velocities (γ = (1 − v2/c2)−1/2 � 1) emit
radiation predominantly in the forward direction, inside a cone with opening 1/γ.

2.2. Undulator radiation

Wiggler and undulator magnets are devices that impose a periodic magnetic field on
the electron beam. These insertion devices have been specially designed to excite the
emission of electromagnetic radiation in particle accelerators.

For the following description, the z coordinate is along the principal direction
of motion of the electrons. The magnetic field on the axis of a planar wiggler or
undulator is assumed to point in y direction:

~B(0, 0, z) = ~uyB0 sin(kuz) (2.1)

where λu the period of the magnetic field, ku = 2π/λu, B0 is the maximum field
and ~uy is the unit vector in y direction. Due to the Maxwell equations, the curl and

divergence of the static magnetic field vanish in vacuum, ~∇× ~B = 0 and ~∇ · ~B = 0.
Thus, the field acquires a z component for y 6= 0:

Bx = 0 (2.2a)

By = B0 cosh(kuy) sin(kuz) (2.2b)

Bz = B0 sinh(kuy) cos(kuz) (2.2c)
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2.2. Undulator radiation

The difference to Eq. (2.1) is small for kuy � 1 and will be neglected in the following1.
A detailed discussion of the magnetic field, including an x dependency for the finite
extent of the pole shoes, can be found in [Rei99].

Helical undulators have a magnetic field on the axis

~B(z) = ~uxB0 cos(kuz)− ~uyB0 sin(kuz) (2.3)

A rigorous analytic discussion of helical undulators is somewhat easier since the
longitudinal component of the electron velocity vz = βzc is constant. A good dis-
cussion of helical and planar undulators that points out this difference can be found
in [SSY00b]. In the TESLA Test Facility (TTF), a planar undulator is installed,
therefore a magnetic field according to Eq. (2.1) is assumed in the following.

The magnetic field exerts a force on the electron

meγ
d~v

dt
= ~F = −e~v × ~B (2.4)

that results in a transverse oscillation of the particle:

meγ
dvx
dt

= evzBy = evzB0 sin(kuz) (2.5)

It is common practice in accelerator physics to replace the independent variable
time by the longitudinal position z (or by the arc length, in the case of circular
accelerators). Thus, equation (2.5) can be written as a derivative with respect to z,
using dz/dt = vz:

dvx
dz

=
e

meγ
B0 sin(kuz) (2.6)

The relativistic γ-factor of a particle is constant in a static magnetic field. Integration
of Eq. (2.6) leads to

vx(z) = −Kc
γ

cos(kuz) (2.7)

where a dimensionless undulator parameter has been introduced,

K =
eB0

mecku
(2.8)

The electron follows a sinusoidal trajectory

x(z) = − K

kuγβz
sin(kuz) (2.9)

1 in the undulator at the TESLA Test Facility (TTF), the correction factors were indeed quite
small: at a position 10µm off the axis, By changes by less than 10−5, while Bz reaches 0.2% of
the on-axis field.
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2. Physical Processes in a Free Electron Laser

B
1/γ

e–A B

Figure 2.1.: Emission of radiation in an undulator.

In the TTF undulator, the deviation from the straight orbit is only 10µm. Syn-
chrotron radiation is emitted by relativistic electrons in a cone with opening angle
1/γ. In an undulator, the the maximum angle of the particle velocity with respect to
the undulator axis α = arctan(vx/vz) is always smaller than the opening angle of the
radiation, therefore the radiation field may add coherently. In a wiggler, αmax > 1/γ,
and a broad radiation cone with lower intensity on the axis is emitted. The condition
for an undulator can be rewritten for vz ≈ c:

1

γ
> arctan

vxmax

vz
≈ vxmax

vz
≈ Kc

γc

=⇒ K < 1 (2.10)

Consider two photons emitted by a single electron at the points A and B, which
are one half undulator period apart (figure 2.1):

AB =
λu
2

(2.11)

If the phase of the radiation wave advances by π between A and B, the electromag-
netic field of the radiation adds coherently2. The light moves on a straight line AB
that is slightly shorter than the sinusoidal electron trajectory ÃB:

λ

2c
=
ÃB

v
− AB

c
(2.12)

2 Photons radiated by different electrons will however usually be incoherent.
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2.3. Low-gain free electron lasers

The electron travels on a sinusoidal arc of length ÃB that can be calculated (see for
example [Stö99]):

ÃB =

λu/2∫
0

√
1 +

(
dx

dz

)2

dz

≈
λu/2∫
0

(
1 +

1

2

(
dx

dz

)2
)

dz

=

λu/2∫
0

(
1 +

K2

2γ2
cos2(kuz)

)
dz

=
λu
2

(
1 +

K2

4γ2

)
(2.13)

Equation (2.12) becomes

λ

2c
=

λu
2βc

(
1 +

K2

4γ2

)
− λu

2c

with β =
√

1− γ−2 ≈ 1− 1
2
γ−2 for γ � 1

=⇒ λ =
λu
2γ2

(1 +K2/2) (2.14)

This equation gives the wavelength of spontaneous undulator radiation. The photon
energy is proportional to the square of the energy of the electrons. For electrons with
an energy of 243MeV, the spontaneous radiation in the undulator of the TESLA
Test Facility has a wavelength of 100 nm.

As the electron travels along the undulator, the total intensity of the radiation
grows proportionally to the distance travelled. The width of the radiation cone for the
fundamental wavelength decreases inversely proportional to the distance, therefore
the central intensity grows as the square of the undulator length. The radiation is
linearly polarised in x direction.

In addition to the fundamental wavelength λ, the undulator radiation contains also
its odd harmonics λ/3, λ/5 . . .. This can be shown by solving the equations of motion
precisely in two dimensions [Sch01b]. The intensity in the higher order modes is
several orders of magnitude lower.

2.3. Low-gain free electron lasers

In this section, it will be shown how an external wave with a given wavelength can
be amplified by the electron bunch inside the undulator. Although this amplification
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2. Physical Processes in a Free Electron Laser

is based on a different principle than the amplification in conventional lasers, Madey
named such a device a free electron laser (FEL) due to the analogy that can be drawn
to the stimulated emission [Mad70]. Several types of FELs have been built:

� FEL amplifiers increase the amplitude of an externally generated radiation
field.

� FEL oscillators comprise an external optical cavity that reflects the field back
into the area where it overlaps with the radiation. Typically, only the funda-
mental transverse radiation mode is amplified.

� Self-amplified spontaneous emission (SASE) FELs start from the spontaneous
radiation that is amplified in a single pass of the electron bunch through the
undulator. No optical cavity is needed, allowing for shorter wavelengths where
the reflectivity of available mirrors for normal incidence is poor.

In the discussion of the amplification of radiation in an FEL, it is appropriate to
treat the photons as a continuous electromagnetic field. The charges, however, will
be treated as particles to describe their motion inside the bunch more easily. Since
only the ratio of mass and charge of the particles appears in the equations, the results
are not changed if these two quantities are scaled by the same factor. Therefore, one
can combine many electrons into one macro-particle. This will save computing time
in the simulations. In the following analytic derivation however, single electrons with
mass me and charge (−e) are considered3.

2.3.1. Longitudinal velocity

From Eq. (2.7) the x component of the velocity of the electrons is vx = − cK
γ

cos(kuz).
The longitudinal velocity is calculated from

1− 1/γ2 = β2
x + β2

y + β2
z (2.15)

Keeping in mind that βy = 0 and solving Eq. (2.15) for βz:

βz =

√
1− 1

γ2
− K2

γ2
cos2(kuz)

≈ 1− 1

2

[
1

γ2
+
K2

γ2
cos2(kuz)

]
(2.16)

with cos2 α = 1
2

+ 1
2
cos 2α

βz = 1− 2 +K2

4γ2
− K2

4γ2
cos(2kuz) (2.17)

3 note that in some descriptions, e.g. [Rei99], a charge +e is used
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2.3. Low-gain free electron lasers

The cosine term averages to zero over the passage of an undulator period, and the
mean velocity in z direction is βzc with

βz = 1− 2 +K2

4γ2
(2.18)

This is lower than the total velocity βc, because of the longer trajectory. Although
the difference between the mean particle velocity to the velocity of light is only
small, it leads to a resonance condition for the interaction between the particles and
an electromagnetic field. This is derived in the next section.

2.3.2. Energy exchange with an external electromagnetic field

It is an interesting question whether a relativistic beam in an undulator can amplify
an external laser beam with a wavelength in the vicinity of the wavelength of the
spontaneous emission. Assume an electron bunch traversing the magnetic field of
a planar undulator as in Eq. (2.1) and a plane electromagnetic wave polarised in x
direction

~E = ~uxẼx cos(kz − ωt+ ψ0) (2.19)

where Ẽx is the amplitude, which is regarded constant for the moment.
Compared to the undulator field, the magnetic field of the radiation is negligible.

Hence, the trajectory of the electron bunch in the undulator is given by Eq. (2.9).
The interaction between the electrons and the radiation field leads to a transfer

of energy dW . This is proportional to the electric field component parallel to the
motion of the electrons:

dW

dt
= −e ~E · ~v

= eẼx cos(kz − ωt+ ψ0)
cK

γ
cos(kuz)

=
eẼxcK

2γ
[cos((k + ku)z − ωt+ ψ0) + cos((k − ku)z − ωt+ ψ0)] (2.20)

The argument
ψ ≡ (k + ku)z − ωt+ ψ0 (2.21)

of the first cosine function is called the ponderomotive phase. Note that ψ is periodic
in z with a period that is approximately equal to the wavelength λ of the radiation,
since ku � k = 2π/λ. The second cosine term in Eq. (2.20) oscillates quickly and
averages to zero [KH00]. Neglecting this term, one gets

=⇒ mec
2 dγ

dt
≡ dW

dt
=
eẼxcK

2γ
cosψ (2.22)
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2. Physical Processes in a Free Electron Laser

If dW/dt < 0, energy is transferred from the electrons to the radiation field, i.e. the
electromagnetic wave is amplified:

dW/dt < 0 ⇐⇒ cosψ < 0 ⇐= −π < ψ < 0 (2.23)

If the phase ψ is constant during the passage of the electrons through the undulator,
there is continuous energy transfer between the electrons and the electromagnetic
field.

ψ = const

⇐⇒ dψ

dt
= (k + ku)vz − kc = 0

inserting βz from Eq. (2.18)

dψ

dt
= (k + ku)

(
1− 2 +K2

4γ2

)
c− kc = 0 (2.24)

with ku � k

dψ

dt
≈ kc

(
ku
k
− 2 +K2

4γ2

)
= 0 (2.25)

⇐⇒ λ

λu
≡ ku

k
=

2 +K2

4γ2
r

(2.26)

This is the condition for resonant energy transfer. The relativistic factor at resonance
is denoted by γr. For a given electron energy, the resonant wavelength λr is the same
as the wavelength of spontaneous radiation (see Eq. (2.14)). We will see later that
this allows the amplification of the spontaneous undulator radiation in a SASE-FEL
and makes it possible to dispense with the external radiation source.

In most practical cases, the electron bunch is much longer than the wavelength of
the radiation. Since the phases of the particles are initially homogeneously distributed
(see figure 2.4a), half of the particles satisfy dW/dt < 0, resulting in an amplification
of the electromagnetic field. For the other half, one has dW/dt > 0, implying an
energy transfer from the electromagnetic field back to the electrons. Hence, the total
gain is zero for γ = γr. In the next section, it will be shown that a small deviation
from the resonance energy can lead to the net amplification of the electromagnetic
wave. This principle is employed in a low-gain FEL.

2.3.3. The FEL amplifier

The energy and phase of the electrons are changed by the interaction with the radi-
ation field. In the so-called low-gain FEL, the field amplitude Ẽx can be regarded as
constant along one passage of the undulator, but the energy of an electron and its
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2.3. Low-gain free electron lasers

ponderomotive phase may vary. A particle slightly above resonance is studied, with
a relative energy deviation from the resonance energy mec

2γr

0 < η =
γ − γr
γr

� 1 (2.27)

From equation (2.26),

γr =

√
k

ku

2 +K2

4
(2.28)

Inserting this in Eq. (2.27) leads to

(1 + η)2 =
γ2

γ2
r

=
ku
k

4γ2

2 +K2
(2.29)

The derivative of the ponderomotive phase with respect to time is not zero as in
Eq. (2.25), but

dψ

dt
= cku

(
1− k

ku
· 2 +K2

4γ2

)
= cku

(
1− 1

(1 + η)2

)
= cku

2η + η2

1 + 2η + η2

Since η � 1:

dψ

dt
≈ 2ckuη (2.30)

The time derivative of the energy deviation can be calculated from Eq. (2.27) and
Eq. (2.22), keeping in mind that dγr/dt = 0:

dη

dt
=

1

γr

dγ

dt

inserting Eq. (2.22)

dη

dt
=

eẼxK

2mecγ2
r

cosψ (2.31)

Equations (2.30) and (2.31) are called pendulum equations because of their resem-
blance to the differential equations for the angle and the angular momentum of a
mathematical pendulum [CPR90]. The ponderomotive phase and the energy devi-
ation of the electron evolves according to Eq. (2.30) and (2.31). These differential
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2. Physical Processes in a Free Electron Laser
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Figure 2.2.: Trajectories of selected particles in the longitudinal phase space (ψ, η),
calculated by numerically solving Eq. (2.30) and (2.31).

equations can be solved by elliptic functions. The trajectories of the particles in the
(ϕ, η) phase space, calculated by numerical evaluation, are shown in figure 2.2.

It is customary in accelerator physics to use the longitudinal coordinate as inde-
pendent variable. With

dz

dt
= βzc

the pendulum equations read

dψ

dz
=

2ku

βz
η (2.32a)

dη

dz
=

eẼxK

2mec2βzγ
2
r

cosψ (2.32b)

A complete treatment has to take into account the periodic variation of βz (see
Eq. (2.17)), instead of just using the average velocity β. The modification, however,
turns out to be simple, the undulator parameter K has to be replaced by [Rei99]

K̂ = K

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
(2.33)

For the TTF undulator, this means a reduction of the undulator parameter by 11%.
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Figure 2.3.: Development of the energy deviation η and phase ψ for different initial
energies. a) η = 0, b) η > 0. Initial values are marked by circles, values after the
passage of the undulator by asterisks.

The pendulum equations then become

dψ

dz
=

2ku

βz
η (2.34a)

dη

dz
=

eẼxK̂

2mec2βzγ
2
r

cosψ (2.34b)

As already mentioned, the initial distribution of the particles over the phase ψ is
uniform. As the particles travel along the undulator, ψ is modified. If the electrons
are injected at resonance energy, i.e. with η = 0, the phase space distribution will
remain point symmetric to the origin. This is shown in figure 2.3a. There is no
net energy transfer between the electron bunch and the light wave. In contrast to
that, an initially positive energy deviation will result in an asymmetric distribution,
leading to an average energy loss of the particles, as shown in figure 2.3b. This energy
is transferred to the electromagnetic wave4. The amplification can be understood as
stimulated emission of photons, since the transition probability is proportional to the
number of photons in the incoming electomagnetic wave.

4 similarly, if γ < γr, energy is removed from the photon beam
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Figure 2.4.: Distribution of the electrons and radiation field in a high-gain FEL. The
electric radiation induces a collective bunching of the particles [Rei99]. a) The initial
situation is uniform. b) and c) Along the undulator, micro-bunching appears, with
a period of 2π in the variable ψ.

2.4. High-Gain Free Electron Lasers

The particle bunches are generally much longer than the wavelength λ of the radia-
tion. This leads to an incoherence between the emission by different particles and to
a power proportional to the number N of particles per bunch. If it were possible to
generate bunches whose length is less than λ/2, all particles would radiate coherently,
resulting in an enormous increase in brilliance.

This is essentially the situation in a high-gain FEL. The interaction between the
electrons and the photon field results in a deceleration of the particles that lose en-
ergy to the field according to Eq. (2.23) while the electrons that gain energy through
the interaction are accelerated. In the undulator, the electrons with a higher energy
travel on a shorter trajectory, hence a modulation of the longitudinal electron density
occurs, with a period that is approximately the radiation wavelength (see figure 2.4b
and c). As a result, the electrons will eventually be concentrated within slices with a
distance of λ, the so-called micro-bunches. The emission of radiation is then coherent.
This strong radiation field enhances the micro-bunching of the particles further, re-
sulting in a collective instability and yielding an exponential growth of the radiation
power. Under fortunate circumstances, the power is proportional to the square of the
number of particles in a coherence volume P ∝ N2

c . With a typical value Nc ≈ 106,
the radiation power is increased one million times in comparison to the spontaneous
undulator radiation. If the gain length is much smaller than the undulator length,
the FEL saturates in a single pass of the particle bunch. As opposed to conventional
lasers, no mirrors are needed to confine the radiation field in the interaction region.

The mathematical description of the high-gain FEL process amounts to a self-
consistent solution of
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2.4. High-Gain Free Electron Lasers

� the coupled pendulum equations (2.34), describing the motion of the particles
in the bunch

� the inhomogeneous wave equation for the electric field, which accounts for the
diffraction of the electromagnetic wave and its interaction with the electrons.
The interaction includes the emission of radiation and the micro-bunching.

The following wave equation for the electric field ~E is:[
~∇2 − 1

c2
∂2

∂t2

]
~E = µ0

∂~

∂t
+

1

ε0

~∇ρ (2.35)

with the current density ~ and charge density ρ of the bunch. The charge and cur-
rent density are initially homogeneously distributed inside the bunch. Along the
passage of the undulator, the micro-bunching effect will impose a modulation. Inter-
nal Coulomb forces5 counteract this bunching.

In a linear accelerator, the Coulomb repulsion of the particles within a highly
relativistic bunch can be neglected due to the time dilatation. In an FEL, however,
this is not justified: although the longitudinal electric field is Lorentz contracted
with a factor 1/γ2, The characteristic length of the density modulation, given by the
radiation wavelength, varies also as 1/γ2 according to Eq. (2.26). Therefore, even for
γ � 1, the impact of the longitudinal Coulomb repulsion on the micro-bunching
process has to be taken into consideration even in the ultra-relativistic case.

In the transverse direction, the space charge forces scale also as 1/γ2, but here the
typical length scale is the transverse dimension of the bunch, which is given by the
emittance and scales only as 1/γ. The transverse electromagnetic field generated by
the space charge can thus be neglected when compared to the radiation field.

The electric field is now decomposed into a transverse part ~E⊥, describing the
radiation field and a longitudinal part ~E‖ due to Coulomb repulsion:

~E = ~E⊥ + ~E‖ = Ex~ux + Ez~uz (2.36)

These two parts are first considered separately in sections 2.4.1 and 2.4.2. The
connection between the transverse and longitudinal fields is made in section 2.4.3
using the respective components of the current densities.

2.4.1. Radiation field

To simplify the discussion, a transverse dependency of the charge density and the
electromagnetic fields is neglected in the following. This treatment is called the 1D

5 generally referred to as space charge effects

31



2. Physical Processes in a Free Electron Laser

FEL theory. In the wave equation, ~∇2 can therefore be replaced by ∂2/∂z2, so the
equation reads: [

∂2

∂z2
− 1

c2
∂2

∂t2

]
Ex = µ0

∂jx
∂t

+
1

ε0

∂ρ

∂x
(2.37)

Since the charge density is assumed to be independent of x, the last term is omitted.
This term can in fact be neglected in the 3D treatment of the FEL, since it can be
shown that 1

ε0

∂ρ
∂x
� µ0

∂jx
∂t

[KH00].
The wave equation (2.37) is further simplified by writing the electric field in the

slowly varying amplitude (SVA) approximation with a complex amplitude Ẽx:

Ex = Ẽxe
ik(z−ct) (2.38)

Of course, the electric field described by Eq. (2.19) is a complex quantity. It is un-
derstood that only its real part is the physical field. This complex notation simplifies
the calculation, since a phase offset can be included in an imaginary part of the
amplitude. Furthermore, the transformation rules for the exponential function are
easier than for the trigonometric functions.

As opposed to the low gain case in equation (2.19), the amplitude and phase are
now allowed to vary along z and t: Ẽ = Ẽ(z, t). It is however assumed6 that they
vary slowly, compared to eik(z−ct). Since eik(z−ct) is a solution of the homogeneous
wave equation [

∂2

∂z2
− 1

c2
∂2

∂t2

]
eik(z−ct) = 0 (2.39)

the inhomogeneous equation (2.37) can be simplified.
Introducing the differential operators:

D± =
1

c

∂

∂t
± ∂

∂z
(2.40)

it is easy to see that

−D+D− =
∂2

∂z2
− 1

c2
∂2

∂t2
(2.41)

and

D+eik(z−ct) = 0 (2.42a)

D−eik(z−ct) = −2ikeik(z−ct) (2.42b)

Using these relations, one gets

D+

(
Ẽxe

ik(z−ct)
)

= D+(Ẽx)e
ik(z−ct) (2.43)

6 this is a good approximation even for the TTF FEL, which generates extremely short pulses
of about 10−13 s. These are still much longer than the period of the electromagnetic wave of
10−16 s.
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and
D−

(
Ẽxe

ik(z−ct)
)

= D−(Ẽx)e
ik(z−ct) − Ẽx2ike

ik(z−ct) (2.44)

In the slowly varying amplitude approximation, |D−Ẽx| � |kẼx|

⇒ D−

(
Ẽxe

ik(z−ct)
)
≈ −Ẽx2ikeik(z−ct) (2.45)

Now the wave equation (2.37) is rewritten with the derivatives defined in Eq. (2.40)
and the ansatz (2.38) for the electric field. Inserting Eq. (2.41), (2.43) and (2.45)
yields

2ikD+

(
Ẽxe

ik(z−ct)
)

= 2ikD+(Ẽx)e
ik(z−ct) = µ0

∂jx
∂t

(2.46)

or, inserting D+, the equation for the slowly varying amplitude finally reads:

2ik

[
1

c

∂Ẽx
∂t

+
∂Ẽx
∂z

]
eik(z−ct) = µ0

∂jx
∂t

(2.47)

2.4.2. Space charge field

The longitudinal electric field describes the space charge effect. For a homogeneous
charge distribution, this internal field will be zero. If, however, the bunch should
develop a microstructure with the periodicity of the wavelength, a longitudinal field
arises showing the same period. In the following, a tiny periodic perturbation of
the charge distribution in the bunch is investigated. This will be amplified by the
interaction with the electromagnetic field describing the radiation. The following
ansatz is made for the charge density:

ρ = ρ0 + ρ̃1e
iψ (2.48)

From jz = vzρ, one obtains that the current has a similar distribution:

jz = j0 + ̃1e
iψ = j0 + ̃1e

i((k+ku)z−ωt) (2.49)

Since j0 is constant, the derivative of the current is

∂jz
∂t

= −iω̃1ei((k+ku)z−ωt) (2.50)

The space charge field is generated by the charge distribution (2.48), therefore it has
a similar periodic modulation:

Ez = Ẽze
i((k+ku)z−ωt) (2.51)
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To relate the electric field to the current density, consider the z component of the
Maxwell equation

1

µ0

~∇× ~B − ε0
∂ ~E

∂t
= ~ (2.52)

Inserting the current from Eq. 2.49 gives:

1

µ0

(
∂By

∂x
− ∂Bx

∂y

)
− ε0

∂Ez
∂t

= j0 + ̃1e
i((k+ku)z−ωt) (2.53)

The derivative of the electric field, expressed by Eq. (2.51), is:

∂Ez
∂t

=
∂Ẽz
∂t

ei((k+ku)z−ωt) − iωẼze
i((k+ku)z−ωt) (2.54)

In the slowly varying amplitude approximation, the first term is neglected.
The overall beam current j0 results in a magnetic field around the beam, while the

longitudinal space charge field is given by the current modulation ̃1e
i((k+ku)z−ωt):

iωẼze
i((k+ku)z−ωt) =

1

ε0

̃1e
i((k+ku)z−ωt) (2.55)

Therefore,

iωẼz =
1

ε0

̃1 (2.56)

2.4.3. Relation between radiation and space charge field

To relate the space charge field Ez to the radiation field Ex, a connection between
the longitudinal and transverse components of the current is made. This relation can
be derived from the motion of the particles in the undulator. From jx = ρvx and
jz = ρvz, it follows by division

jx
jz

=
vx
vz

(2.57)

For a planar undulator, the x component of the electron velocity is given by Eq. (2.7).

=⇒ jx = jz
vx
vz
≈ jz

vx
vz
≈ jz

vx
c

= −jz
K̂

γ
cos(kuz) (2.58)

This relates the currents in x and z direction. One calculates the derivative:

∂jx
∂t

= −∂jz
∂t

K̂

γ
cos(kuz) (2.59)

Inserting ∂jz/∂t from Eq. (2.50) results in the following expression for the time
derivative of the transverse current density:

∂jx
∂t

= −iωK̂
γ

̃1e
iψ cos(kuz) (2.60)
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2.4.4. Steady state approximation

To proceed with the solution of the equations of the high-gain FEL, the steady state
approximation is made: the electron and photon bunches are assumed to be suffi-
ciently long, ideally of infinite extent. Also, the initial density distribution is assumed
to be uniform over the bunch. This approximation implies that effects such as the
slippage between the envelope of the radiation bunch and the electron bunch are
neglected.

It should be noted that for the very short bunches in the TTF FEL, this slippage
reduces the overlap between the electron and the photon bunches near the end of
the undulator. Furthermore, the shot noise used to simulate the initial generation
of spontaneous undulator radiation is in contradiction to the steady state model.
These effects have to be treated numerically. Nevertheless, the analytic derivation
of equations that describe the FEL process are useful to understand the general
principles.

Of the four space-time dimensions, only z remains, thus the following treatment is
referred to as the one-dimensional FEL theory.

The wave equation for the x component of the electric field becomes:

∂Ẽx(z)

∂z
=

µ0

2ik

∂jx
∂t

e−ik(z−ct)

= −iωK̂µ0

2ikγ
̃1(z)e

iψ cos(kuz)e
−ik(z−ct)

= −µ0cK̂

2γ
̃1(z)e

ikuz cos(kuz)

= −µ0cK̂

2γ
̃1(z)

(
1

2
+

1

2
e2ikuz

)
Omitting the rapidly oscillating term, one gets

∂Ẽx(z)

∂z
≈ −µ0cK̂

4γ
̃1(z) (2.61)

2.4.5. Vlasov equation

The FEL equations can be written in terms of the independent variables7 (z, η, ψ),
where z is the longitudinal coordinate, η the relative deviation from the reference
energy and ψ the ponderomotive phase.

An important step is to describe the evolution of the particle density distribution
along the undulator, leading eventually to the micro-bunching. Under the assumption

7 in the Hamilton formalism, one can write this variable transformation as a canonical transfor-
mation from (z,E, t) to (z, η, ψ) [SSY00b].
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2. Physical Processes in a Free Electron Laser

that the interaction of an electron with its direct neighbours is much smaller than
the interaction with the collective field generated by all electrons, one can treat the
space charge field as an external field.

The ensemble of the particles is described by a continuous distribution f̃(z, η, ψ)
in the (z, η, ψ)-space. The number of particles in a phase space volume (dz dη dψ)
is

dNe = f̃(z, η, ψ)dz dη dψ (2.62)

To ease calculations, f̃ is written as a complex function. Only its real part has
physical significance.

According to Liouville’s theorem, the phase space density is conserved along the
trajectory of a particle. This leads to a generalised continuity equation which is
called the Vlasov Equation:

df̃

dz
=
∂f̃

∂z
+
∂f̃

∂ψ

dψ

dz
+
∂f̃

∂η

dη

dz
= 0 (2.63)

Similarly to the charge density (section 2.4.2), the distribution f will be periodically
modulated:

f̃(z, η, ψ) = f̃0(η)
(
1 + ε̃(z) · eiψ

)
(2.64)

The charge density is given by ρ = −e|f̃ |. Here, the assumption is made that
the particle density will develop a small sinusoidal variation with the period of the
ponderomotive phase along the undulator:

f̃1(z, η) = f̃0(η) · ε̃(z) (2.65)

One takes dη/dz from the pendulum equation (2.34b), writes the trigonometric
function in exponential notation and adds a term which accounts for the energy
change of an electron due to the space charge force:

dη

dz
=

eẼx(z)K̂

2mec2γ2
r

eiψ − eEz(z)

mec2γr
eiψ (2.66a)

From Eq. (2.34a):

dψ

dz
= 2kuη (2.66b)

Inserting Eq. (2.64) and (2.66) in Eq. (2.63) yields:

df̃

dz
= f̃0

∂ε̃

∂z
eiψ + if̃0ε̃e

iψ · 2kuη

+
df̃0

dη

[
1 + ε̃eiψ

]
·

[
eẼx(z)K̂

2mec2γ2
r

eiψ − eẼz(z)

mec2γr
eiψ

]
= 0 (2.67)
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The sinusoidal charge denstiy variation ε̃ is assumed to be small, it can hence be
neglected in the term [1 + ε̃eiψ]. Multiplying by e−iψ, inserting the Eq. (2.65) and
approximating γ ≈ γr results in the following equation for the space charge density:

=⇒ ∂f̃1

∂z
+ 2ikuηf̃1 +

[
ieK̂

2mec2γ2
Ẽx(z)−

e

mec2γ
Ẽz(z)

]
df̃0

dη
= 0 (2.68)

This is a differential equation of the type

dF (z)

dz
+ iαF (z)−G(z) = 0 (2.69)

with general solution

F (z) =

z∫
0

G(z′)e−iα(z−z′)dz′ (2.70)

If this formula is applied, it is possible to express f̃1 in terms of f̃0:

f̃1(z) = −
z∫

0

[
eK̂

2mec2γ2
Ẽx(z

′)− e

mec2γ
Ẽz(z

′)

]
df̃0

dη
e−2ikuη(z−z′)dz′ (2.71)

2.4.6. Current density

The longitudinal current density can be expressed in terms of the particle motion.
As long as the deviation of a single particle from the reference orbit is much smaller
than the transverse size of the electron beam, one may write:

jz(z, ψ) = vzρ ≈ c

∞∫
−∞

(−e)f̃(z, η, ψ)dη

= −ec

 ∞∫
−∞

f̃0(η)dη + eiψ
∞∫

−∞

f̃1(z, η)dη


= j0 + ̃1(z)e

iψ (2.72)

Comparing with Eq. (2.49), one finds:

j0 = −ec
∞∫

−∞

f̃0(η)dη and ̃1(z) = −ec
∞∫

−∞

f̃1(z, η)dη (2.73)
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2.4.7. Equation for the field amplitude

The equation for the transverse field amplitude is given by Eq. (2.61)

∂Ẽx(z)

∂z
= −µ0cK̂

4γ
̃1(z) (2.74)

using ̃1 from Eq. (2.73)

∂Ẽx(z)

∂z
=

µ0c
2K̂e

4γ

∞∫
−∞

f̃1dη (2.75)

and f̃1 from Eq. (2.71), the equation reads:

∂Ẽx(z)

∂z
= −µ0K̂e

2

4γme

∞∫
−∞

z∫
0

[
K̂

2γ2
Ẽx(z

′)− 1

γ
Ẽz(z

′)

]
df̃0

dη
e−2ikuη(z−z′)dz′dη (2.76)

This equation still contains both the transverse radiation field and the longitudinal
space charge field.

Combining equations (2.56) and (2.61),

4γ

µ0cK̂

∂Ẽx
∂z

= −iωε0Ẽz (2.77)

one finally obtains:

∂Ẽx(z)

∂z
= −µ0K̂e

2

4γme

∞∫
−∞

z∫
0

[
K̂

2γ2
Ẽx(z

′) +
2c

ωK̂

∂

∂z′
Ẽx(z

′)

]
df̃0

dη
e−2ikuη(z′−z)dz′dη (2.78)

This integro-differential equation describes the radiation field amplitude Ẽx produced
by an electron bunch with initial energy distribution f̃0(η).

2.4.8. Solution of the integro-differential equation

For a few distributions f̃0, Eq. (2.78) can be solved analytically using the Laplace
transform technique [SSY00b]. Here, we consider the case of a mono-energetic elec-
tron beam:

f̃0(η) = neδ(η − η0) (2.79)
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The sequence of the integration can be interchanged:

∂Ẽx(z)

∂z
= −µ0c

2K̂e

4γ

z∫
0

∞∫
−∞

[
eK̂

2mec2γ2
Ẽx(z

′) +
e

mec2
2c

ωK̂

∂

∂z′
Ẽx(z

′)

]

ne
dδ(η)

dη
e−2ikuη(z′−z)dηdz′ (2.80)

The derivative of the δ-function is removed by partial integration:

∞∫
−∞

F (η)
dδ(η − η0)

dη
dη = [F (η)δ(η − η0)]

∞
−∞︸ ︷︷ ︸

= 0

−
∞∫

−∞

dF (η)

dη
δ(η − η0)dη (2.81)

= − dF (η)

dη

∣∣∣∣
η = 0

(2.82)

Thus,

∂

∂z
Ẽx(z) = −µ0c

2K̂e

4γ

z∫
0

2ku(z
′ − z)e−2ikuη0(z′−z) (2.83)

[
eK̂

2mec2γ2
Ẽx(z

′) +
e

mec2
2c

ωK̂

∂

∂z′
Ẽx(z

′)

]
dz′

Introducing the gain parameter

Γ =
3

√
µ0K̂2e2kune

4γ3me

(2.84)

and a wave number8

kp =

√
Γ3

4γ2c

ωK̂2
(2.85)

equation (2.84) may be rewritten

∂

∂z
Ẽx(z) = −Γ3

z∫
0

i

[
Ẽx(z

′) +
k2
p

Γ3

∂

∂z′
Ẽx(z

′)

]
(z′ − z)dz′ (2.86)

This integro-differential equation can be transformed to a third-order differential
equation [DR02]:

d3Ẽx(z)

dz3
− 4ikuη0

d2Ẽx(z)

dz2
+
(
k2
p − 4k2

uη
2
0

) dẼx(z)

dz
− iΓ3Ẽx(z) = 0 (2.87)

8 which can be identified with the wave number of longitudinal plasma oscillations
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This differential equation can be solved analytically for η0 = 0 and small space charge
forces (nesmall ⇒ kp ≈ 0):

Ẽx(z) = A1 exp (−iΓz) + A2 exp

(
i+

√
3

2
Γz

)
+ A3 exp

(
i−

√
3

2
Γz

)
(2.88)

For z −→ ∞, the second term dominates. This indicates the onset of a collective
instability in the internal charge distribution in the bunch. The electric field grows
exponentially as exp(

√
3

2
Γz), the power as exp(

√
3Γz).

The gain parameter Γ is closely related to the three parameters that are in
widespread use, namely Pierce parameter ρPierce

ρPierce =
3

√
e2K̂2ne

32ε0γ3mec2k2
u

=
λuΓ

4π
(2.89)

the power growth rate

Λ =
√

3Γ =
√

3
3

√
µ0K̂2e2kune

4γ3me

(2.90)

and the power gain length

Lg =
1

Λ
=

1√
3

3

√
4γ3me

µ0K̂2e2kune
(2.91)

2.4.9. Summary

The derivation of the equations for the high-gain FEL is summarised in figure 2.5.
Starting with the undulator field, Maxwell’s equations, the equations of motion and
an assumption on the initial particle distribution, the following equations have been
derived:

� In the steady-state and one-dimensional approximation, the wave equation has
been simplified in the SVA approximation.

� The radiation field has been related to the space charge field by the ratio of
transverse and longitudinal current densities.

� The Vlasov equation has been used to describe the particle distribution.

� The current density in the wave equation was described by this particle distri-
bution.

Finally, an integro-differential equation for the radiation field was derived. This was
solved for the case of a mono-energetic electron beam on resonance.
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Figure 2.5.: Equations used to describe the high-gain FEL. Rectangles: equations,
Ellipses: simplifications.
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2.5. Three-dimensional FEL simulation codes

Up to this point, a transverse dependence of the electric fields was neglected. To
study 3-dimensional effects, such as for example the transverse coherence of the
radiation, a more complete model has to be used, taking into account the transverse
distribution of the electrons ans well as the diffraction of the radiation. This is
described in details in [SSY00b] and [Rei99], where two approaches to solve the
differential equations numerically are presented. The electron bunch is represented
by a number of macro-particles, combining the mass and the charge of many electrons.
The codes solve the Maxwell equations for the electromagnetic field, the equations of
motion of the electrons and their mutual interaction simultaneously. The simulations
are done in three spatial dimensions and include the time dependency. For this
purpose, the solution of the differential equations is done in small time steps and the
equations for the particle motion are interleaved with the equations for the radiated
electromagnetic fields.

Unlike simulations based on the steady-state approximation, where only a slice
within the bunch corresponding to one period of the ponderomotive phase ψ, i.e.
only one micro-bunch, is simulated, the codes compute the differential equations
for the complete bunch. This allows to treat SASE-FELs where the electron bunch
envelope slips significantly behind the radiation bunch.

The simulation predicts effects as the saturation of the FEL process. Additionally,
it makes predictions on the transverse variation of the radiation and thus on the
coherence of the FEL radiation. This will be discussed in section 3.3.

2.6. Requirements on the accelerator

The lasing medium in a free electron laser is a high-energy electron beam provided
by a particle accelerator. This has to satisfy a set of conditions. To operate a free
electron laser based on the self-amplification of spontaneous emission (i.e. a SASE
FEL) in the ultraviolet regime, the following approximate values have been proposed
[Åbe95]:

� A particle energy of about 250MeV: see equation (2.14)

� A peak current in the order of 1 kA

� A normalised emittance of 1π µm (section 4.1.2)

� An energy spread of less than 1�

Such an electron beam can be provided by the linear accelerator at the TESLA Test
Facility. It is described in chapter 4.
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3. Coherence and Interference

In this chapter, the formation of diffraction patterns of an electromagnetic wave
and their dependence on the transverse coherence of the wave are studied. First,
the coherence properties for an electromagnetic wave are defined in terms of the
cross-correlation of the field. The coherence properties of a free electron laser are
discussed.

It follows a discussion of the formation of diffraction patterns on a screen behind
an aperture. For a large distance to the screen, analytical formulae for the intensity
distribution can be derived for a number of different apertures. At closer distances,
this approximation cannot be made. This is the case for the present experimental set-
up. Nevertheless, it is possible to derive a formula for a double slit that is illuminated
by a plane wave.

More complex configurations can be handled with numerical methods. Two differ-
ent approaches are presented.

3.1. Definition of coherence properties

The electric field vector1 of an electromagnetic wave can be represented by its three
orthogonal components:

~E(x, y, z, t) = Ex(x, y, z, t)~ux + Ey(x, y, z, t)~uy + Ez(x, y, z, t)~uz (3.1)

where ~ux, ~uy, and ~uz are the unit vectors. If the divergence or convergence of the
wave is not too large, i.e. as long as the aperture of a focusing element is not more
than 2/3 of its focal length [App01a], an optical beam propagating in z direction can
be represented to good approximation by its transverse electric fields:

~E(x, y, z, t) = Ex(x, y, z, t)~ux + Ey(x, y, z, t)~uy (3.2)

Ex and Ey represent the two orthogonal states of polarisation. In the case of the
FEL, linearly polarised light is expected, therefore one can work with Ex only:

~E(x, y, z, t) = Ex(x, y, z, t)~ux (3.3)

1 in principle, also the magnetic field could be used. Since the fields are proportional to each other,
the result would be the same.
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The propagation of the electromagnetic wave that is described in the slowly varying
amplitude (SVA) approximation:

~E(~r, t) = Re
[
Ẽ exp

(
i(ωt− ~k · ~r)

)]
~ux (3.4)

where Ẽ is the complex amplitude of the electric field whose time variation is slow in
comparison with exp(iωt). Note that a partially coherent wave must necessarily have
a time-dependent amplitude, since a constant amplitude would imply full coherence.

Coherence can be defined in terms of the correlation functions of the electric wave
[Goo85]. The first-order correlation function between two points ~r and ~r′ is defined
as

Γ(~r, ~r′) =
〈
Ẽ(~r, t) · Ẽ∗(~r′, t)

〉
t

(3.5)

where Ẽ∗ is the complex conjugate of Ẽ and the time average of a function F (t) is
defined as

〈F (t)〉t =
1

∆t

∫
∆t

F (t)dt (3.6)

Here, the time interval ∆t is chosen to be much longer than the time scale of the
variation of Ẽ. The normalised correlation function is

γ̃(~r, ~r′) =

〈
Ẽ(~r, t) · Ẽ∗(~r′, t)

〉
t[〈

|Ẽ(~r, t)|2
〉
t

〈
|Ẽ(~r′, t)|2

〉
t

]1/2 (3.7)

By definition, the normalised correlation function is equal to 1 for ~r = ~r′. Usually, it
drops to zero for large separations; the wave is then said to be incoherent between ~r
and ~r′.

The coherence C is defined as the absolute value of the normalised correlation
function:

C(~r, ~r′, z) = |γ̃(~r, ~r′, z)| (3.8)

If the coherence between two points depends only on their distance |~r − ~r′|, the
coherence length can be defined as the distance where the coherence drops to a given
value. Since the electric field appears quadratically in the definition, the value 1/e2 is
chosen.

The degree of coherence of a wave packet can be defined as the normalised integral
over the coherence function, weighted by the intensity I = 〈ẼẼ∗〉t:

D =

∫
C(~r)I(~r)d3r∫
I(~r)d3r

(3.9)
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3.2. Generation of coherent light

Often, it is useful to study the longitudinal and transverse behaviour of a travelling
wave packet separately; one can define a normalised first-order transverse correlation
function

γ̃⊥(~r⊥, ~r′⊥, z) =

〈
Ẽ(~r⊥, z, t) · Ẽ∗(~r′⊥, z, t)

〉
t[〈

|Ẽ(~r⊥, z, t)|2
〉
t

〈
|Ẽ(~r′⊥, z, t)|2

〉
t

]1/2 (3.10)

Similarly, a longitudinal correlation function is defined. The absolute values of lon-
gitudinal and transverse correlation functions are the longitudinal and transverse
coherences, respectively. In many practical cases, the coherence length will be dif-
ferent in longitudinal and transverse direction. At the TTF FEL, the longitudinal
coherence length is in the order of micrometres, while the transverse coherence length
at the position of the double slit experiment is in the order of millimetres.

A transverse degree of coherence can be defined by integrating the coherence over
the transverse dimensions, similarly to Eq. (3.9):

D =

∫
C(x, y)I(x, y) dx dy∫

I(x, y) dx dy
(3.11)

If a beam propagates in free space, the transverse coherence length increases to-
gether with the beam width. Hence the position must be specified at which the
coherence length is determined. In the present experiment, this is the position of the
double slits, 11.84m downstream of the undulator exit. The longitudinal coherence
length will generally not be influenced by the propagation in vacuum.

3.2. Generation of coherent light

The light emitted by thermal sources has little longitudinal coherence: the emission
of photons by different atoms is uncorrelated, and their phases are random. The
transverse coherence of the light from an extended source is small for the same
reason. The same is true for conventional synchrotron sources, where free electrons
or positrons emit photons spontaneously.

To increase the transverse coherence, one may reduce the extension of the source.
Propagation in free space preserves the degree of coherence, resulting in a beam
with a high transverse coherence length. In a synchrotron radiation source, the
condition that the diameter of the electron beam is smaller than the diffraction
limit, σx ≤ λ/4π is fulfilled only for the longest wavelengths. Obviously, this becomes
increasingly difficult at higher photon energies. The only way to improve on the
transverse coherence is then the use of a spatial filter, i.e. a pinhole aperture, to
select only the central part of the beam. However, by this method the intensity is
typically reduced by several orders of magnitude.

In a conventional laser, the emission of photons is stimulated by the radiation
that is already present in the medium. The emission occurs in phase, resulting in a
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3. Coherence and Interference

radiation field with high longitudinal coherence. A good transverse coherence can be
achieved if the optical cavity selects only the fundamental transverse optical mode.

3.3. Coherence of a free electron laser

In a SASE FEL, there is no optical cavity, hence it is interesting to study its trans-
verse coherence. In a three-dimensional model, the radiation field in the FEL has a
dependence on the transverse coordinates. Similarly to Eq. (2.88), one can write:

Ẽ(r, ϑ, z) = A(r, ϑ, z) exp

(
Λ

2
z

)
(3.12)

The total energy of the beam must be finite, i.e. the following integral has to converge:∫
R2

A2(x, y)dxdy <∞ (3.13)

As a consequence, the development can be written with a discrete set of propagation
constants Λi, each corresponding to a fixed distribution A(x, y) [SSY00b]. This way,
the photon beam is represented as a superposition of various radiation modes. These
modes with transverse electric and magnetic field (TEM) are usually labelled by two
indices n and m:

Ẽ(r, ϑ, z) =
∑
n,m

Cnm(z)Ãnm(r, ϑ) (3.14)

where the complex coefficients Cnm are given by the respective growth rates

Cnm(z) = exp

(
Λnm

2
z

)
(3.15)

The transverse profiles of the first modes are shown in figure 3.1. As opposed to
the case of a waveguide, the modes in the FEL are not orthogonal [SSY00b]. The
growth rates Λnm are determined by the overlap with the electron beam. In the case
of the SASE FEL, we expect the series to converge quickly, because the beam is
concentrated in a small transverse area around the optical axis.

When decomposing the spontaneous undulator radiation, many transverse modes
will be present, with random magnitude and phase, as a result of the stochastic
nature of spontaneous emission. Hence, the radiation has poor transverse coherence.

3.3.1. Evolution of the transverse coherence

In the case of FEL amplification, the field amplitudes of the various modes grow
exponentially along the undulator. The fundamental mode TEM00 has the shortest
gain length, due to the best overlap with the electron beam (see figure 3.2). Therefore,
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Figure 3.1.: Decomposition in transverse modes: the transverse profile of the first
modes is shown [Rei99].
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Figure 3.2.: Growth rate of the different transverse modes for an electron beam on
resonance, simulated by Sven Reiche [Rei99].

this mode grows faster than the other modes. Due to the exponential increase, its
intensity surpasses the total intensity in all other modes. With one mode dominating,
the radiation has thus a high degree of transverse coherence.

When the fundamental mode saturates, the other modes are still growing. Since
their phase generally is different from the fundamental mode, the overall transverse
coherence is reduced. This decrease of transverse coherence has been predicted theo-
retically [SSY03]. It is shown in figure 3.3. Measurements are presented in chapter 8.
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Figure 3.3.: Development of the transverse coherence in the undulator, from simu-
lations with the code FAST3d [SSY03]. The undulator length is normalised to the
gain length, which is equal to 67 cm in the case of the TTF FEL. The development
was simulated up to 30 gain lengths, i.e. into deep saturation of the FEL process.

3.4. Analytic description of diffraction effects

In this section, the electric field behind an aperture A of arbitrary shape [Tre01]
is derived, as illustrated in figure 3.4. The distance to the plane of observation is
denoted by L.

The validity of the Slowly Varying Amplitude approximation (3.4) is assumed,
with a beam travelling in z direction. The field amplitude in the observation plane,
denoted with index 1, is given by the propagation of the amplitudes in the aperture
plane (index 0), modulated with the respective phase factor. From each point in the
aperture plane inside the opening, a spherical wave emerges, according to Huygens’
principle. The field amplitude is multiplied with the inclination factor K(ϑ), the de-
pendence on the distance 1/`, an arbitrary constant Q and the phase factor exp(ik`):

Ẽ(x1, y1) =

∫
A

Q K(ϑ)
exp(ik`)

`
Ẽ(x0, y0) dx0 dy0 (3.16)
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Figure 3.4.: Diffraction at an aperture. An interference pattern forms on a screen at
distance L.

where

K(ϑ) =
1

2
(1 + cosϑ) with ϑ = arctan

√
(x1 − x0)2 + (y1 − y0)2

L
(3.17)

is the inclination factor and

` = `(x1 − x0, y1 − y0) =
√
L2 + (x1 − x0)2 + (y1 − y0)2 (3.18)

is the distance between the points (x0, y0, 0) and (x1, y1, L). For most practical cases,
ϑ � 1 and the inclination factor can be approximated by K ≈ 1. The constant Q
ascertains that an undisturbed wave is reconstructed by equation (3.16) if no aperture
is present, i.e. if the integral extends over the complete plane R2. It can be shown
that [Pér96]

Q =
1

iλ
(3.19)

The distance ` in the denominator can be approximated by L. However, the term
exp(ik`) oscillates rapidly as a function of position on the screen and gives rise to
the interference pattern. For this term, the following approximation will be used:

` = L

√
1 +

(
x1 − x0

L

)2

+

(
y1 − y0

L

)2

≈ L+
(x1 − x0)

2

2L
+

(y1 − y0)
2

2L
(3.20)
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assuming
(
x1−x0

L

)2 � 1 and
(
y1−y0
L

)2 � 1. Thus,

Ẽ(x1, y1) =

∫
A

1

iλL
exp

[
ik

(
L+

(x1 − x0)
2

2L
+

(y1 − y0)
2

2L

)]
Ẽ(x0, y0)dx0dy0

=
1

iλL
exp

[
ik

(
L+

x2
1 + y2

1

2L

)]
∫
A

exp

[
ik

(
−2x1x0 − 2y1y0 + x2

0 + y2
0

2L

)]
Ẽ(x0, y0) dx0 dy0 (3.21)

If one omits the constant phase factor and defines an aperture function A(x0, y0)
that is 1 inside the opening of the aperture A and 0 outside, equation (3.21) can be
rewritten

Ẽ(x1, y1) =
1

iλL

∫
exp

[
ik

(
−2x1x0 − 2y1y0 + x2

0 + y2
0

2L

)]
Ẽ(x0, y0)A(x0, y0) dx0 dy0

(3.22)
The integral (3.22) is called the Fresnel integral. It can generally not be solved
analytically without further simplifications.

3.5. Far field diffraction

In this section, two simplifying assumptions are made. The incident wave is assumed
to be a plane wave, that is Ẽ(x0, y0) = Ẽ0 = const, and the observation plane is at
a large distance. This will yield the formulae for far field, or Fraunhofer diffraction.
Note that this simplification cannot be applied to the present experimental set-up
at TTF. It is nevertheless instructive to derive analytic formulae for various types of
apertures.

Let Rmin be the radius of the smallest circle enclosing the aperture. If the so-called
far field condition

kR2
min

2L
� 1 (3.23)

is fulfilled, the quadratic terms in Eq. (3.22) can be neglected and the integral be-
comes

Ẽ(x1, y1) = Ẽ0

∫
exp

[
ik

(
−x1x0 − y1y0

L

)]
A(x0, y0)dx0dy0 (3.24)

This is the Fraunhofer integral, which is the two-dimensional Fourier transform of
the aperture.2

2 the conjugate variables are x0 and kx1/L.
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3.5. Far field diffraction

3.5.1. Analytic formulae for simple apertures

For a circular aperture of radius R, the diffraction pattern is described by the Bessel
function of the first kind J1, the intensity varies as

I(r) =

(
J1(2πRr/(λL))

2πRr/(λL)

)2

(3.25)

with the distance r from the centre of the pattern (see figure 3.11a and d).
A single slit of width w and infinite length forms an intensity pattern

I(x) =

(
sin(πwx/λL)

πwx/λL

)2

(3.26)

in a direction x perpendicular to the slits.
If the aperture has two slits, separated by a distance d, an additional modulation

occurs:

I(x) =

(
sin(πwx/(λL))

πwx/(λL)

)2 [
1 + cos

(
2πd

λL
x

)]
(3.27)

(see figure 3.12a and c). If one neglects the slit width,

I(x) = 1 + cos

(
2πd

λL
x

)
(3.28)

Maxima are located at

xmax =
nλL

d
, n ∈ N (3.29)

3.5.2. Measurement of coherence by interference experiments

So far, a plane wave in front of the aperture has been considered, with full transverse
and longitudinal coherence. If the incoming light has a only partial coherence, the
contrast of the interference pattern will be reduced: the brightest areas will have a
reduced intensity, the points where coherent light cancels completely will be brighter.
To describe this effect, it is customary to define the visibility of the fringes as the
modulation depth of the intensity:

V =
Imax − Imin

Imax + Imin

(3.30)

V is not an overall feature of the pattern, but can be computed for each fringe, i.e.
for each maximum of the intensity, with the adjacent minimum.

A plane wave is by definition fully coherent and generates the Fraunhofer diffrac-
tion pattern of a double slit according to Eq. (3.27). The visibility is V = 1 for all
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fringes, because the minimum intensity is Imin = 0. If the incoming wave is only par-
tially coherent, the visibility will be lower. In the following discussion, the direction
perpendicular to the slits is considered. Assuming that the slit width is small, the
incoming light within each slit may be approximated by a plane wave. The coherence
within each slit is C = 1, while between separate slits, a coherence C < 1 is assumed.
In one slit, the field amplitude is called Ẽ1, in the other, Ẽ2. Such a situation oc-
curs when the two slits are illuminated by two plane waves of equal magnitude but
time-varying relative phase:

Ẽ2 = Ẽ1e
iϕ(t) (3.31a)∣∣∣Ẽ2

∣∣∣ =
∣∣∣Ẽ1

∣∣∣ (3.31b)

Without loss of generality, it may be assumed that the phase fluctuates around zero:

〈ϕ〉t = 0 (3.32)

For a given time, the diffraction pattern obtains a time-dependent shift

∆x(t) =
λL

πd
ϕ(t) (3.33)

with respect to Eq. (3.28). This means that all fringes in the resulting interference
pattern will fluctuate by this value (figure 3.5). Integrated over a time ∆t longer than
the typical fluctuation periods of the phase offset, an averaged diffraction pattern
results. Because of Eq. (3.32), the positions of minima and maxima of the averaged
pattern will be the same as in the case of the plane wave. They are denoted by xmin

and xmax. The intensity in the position xmin is at a given time t

Imin = 1 + cos

(
−2πd∆x(t)

λL
+ π

)
= 1− cos 2ϕ(t) (3.34)

The intensity at xmax is:

Imax = 1 + cos 2ϕ(t) (3.35)

The visibility of the averaged pattern is Eq. (3.30):

V = 〈2 cosϕ〉t (3.36)

The transverse coherence, defined by the first-order correlation function, is:

C =

∣∣∣∣∣∣∣
〈
Ẽ1 · Ẽ2

〉
t[〈

|Ẽ1|2
〉
t

〈
|Ẽ2|2

〉
t

]1/2
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
Ẽ1 · Ẽ1e

iϕ
〉
t〈

|Ẽ1|2
〉
t

∣∣∣∣∣∣ (3.37)

52



3.5. Far field diffraction

xmax xmin 0
0

Eo

2Eo

I
min

(t)

I
max

(t)

original diffraction pattern

displaced diffraction pattern

Figure 3.5.: Shifted double slit interference pattern, as a result of a phase offset in
one slit.

This cannot be simplified further since the phase of Ẽ1 could change with time. If
perfect longitudinal coherence is assumed for one slit, i.e. constant phase for Ẽ1,〈

Ẽ2
1e
iϕ
〉
t

= Ẽ2
1

〈
eiϕ
〉
t

=⇒ C =

∣∣∣∣∣Ẽ2
1 〈eiϕ〉t
Ẽ2

1

∣∣∣∣∣ =
∣∣〈eiϕ〉

t

∣∣ = |〈cosϕ〉t + i 〈sinϕ〉t|

Assuming a symmetric distribution ϕ(t), it follows that 〈sinϕ〉t = 0 and

C = 〈cosϕ〉t = V (3.38)

The visibility is equal to the coherence between the two slits. Note that this visibility
is the same for all fringes, it is an overall property of the diffraction pattern. This is
not the case in the near field, as will be discussed in section 3.6.

Equation (3.38) has been derived for the special case of a double slit slit with
infinite length and negligible width and for an incident wave with perfect longitudinal
coherence in the far field diffraction regime. However, a similar relationship holds in
the practical case where these assumptions are only partially valid, as can be seen
from the numerical simulations in section 3.7.
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3. Coherence and Interference

3.6. Near field diffraction

3.6.1. Circular aperture

For a circular aperture, a qualitative description of the near-field diffraction can be
obtained by dividing the aperture into concentric rings, corresponding to path length
differences of half a wavelength between source and observer. These Fresnel zones,
illustrated in figure 3.6, contribute to the total field. The contributions of adjacent
zones cancel because of their opposite phase. The area of all Fresnel zones is the
same. Nonetheless, the cancellation is not complete, because the inclination factor
K(ϑ) = 1

2
(1+cosϑ) is smaller for the outer zones. As the observation point is moved

in transverse direction, the Fresnel zones shift across the aperture. Thus, relative
maxima and minima can be observed. The total number of extrema is equal to the
number of Fresnel zones, given by [Hec94]

NF =
r2

λ

(
1

D
+

1

L

)
(3.39)

where r is the radius of the aperture, λ the wavelength of the radiation, D the distance
between source and aperture and L the distance between aperture and screen. As the
problem has cylindrical symmetry, concentric fringes form on the observation plane.
The outermost fringe lies near the edge of the geometric shadow of the aperture.

3.6.2. Double slit

Assume two slits of infinite length and of width w, separated by a distance d. Coher-
ent light of wavelength λ passes the slits and forms a diffraction pattern on a screen
at a distance L.

Already in the far field (section 3.5), the simple formula (3.28) may be improved
by taking into account that each of the slits by itself forms a single slit diffraction
pattern. Since the width w of the slits is smaller than their separation d, this pattern
is broader than the double slit fringes, and the amplitude of the double slit diffraction
pattern is modulated by the sum of the two single slit patterns:

I(x) = S(x)

[
1 + V cos

(
2πd

λL
x

)]
(3.40)

where the amplitude is
S(x) = I1(x) + I2(x) (3.41)

In the far field, the two slits form identical diffraction patterns:

I1(x) = I2(x) =

(
sin(πwx/(λL))

πwx/(λL)

)2

(3.42)
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D

L

k

S

Figure 3.6.: Fresnel zones are useful to describe the diffraction on a circular aperture
[Hec94]. The distance between the source S and the aperture is denoted by D,
the distance from aperture to observation plane by L. The wave propagates in the
direction ~k.

In the case of a coherent incoming wave, the visibility is V = 1.
In the near field, one has to take into account that the single slit diffraction patterns

of the two slits are displaced by the slit separation. The two curves have minima at
different positions. At these minima, only one slit is visible, and the visibility of the
double slit diffraction pattern vanishes at these positions. Thus, also the visibility
of the double slit interference fringes is modulated across the diffraction pattern,
V = V(x).

The double slit diffraction pattern of a plane wave, i.e. a perfectly coherent wave
is now described in the near field, i.e. for L ≈ πd2/λ. It is assumed that the width of
the slits is much smaller than their separation, such that their single slit diffraction
patterns can be described by the far field approximation, L � πw2/λ. The electric
field amplitudes of the two slits are then given by

Ẽ1(x) =
sin
(
πw(x+d/2)

λL

)
πw(x+d/2)

λL

, Ẽ2(x) =
sin
(
πw(x−d/2)

λL

)
πw(x−d/2)

λL

(3.43)

It is important to note that Ẽ1(x) and Ẽ2(x) are real quantities, even when the
integration is done over a complex field amplitude. In other words, the respective
phase difference between the two waves is either zero or π. The field amplitudes
are positive in the respective centre, i.e. at a position −d/2 and d/2, respectively,
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3. Coherence and Interference

and oscillate between negative and positive values in the outer part of the diffraction
pattern, as can be seen in figure 3.7a.

The intensities I1(x) and I2(x) are the absolute square of the electric field ampli-
tudes:

I1(x) = |Ẽ1(x)|2, I2(x) = |Ẽ2(x)|2 (3.44)

The amplitude of the double slit diffraction pattern is modulated by their sum (shown
in figure 3.7b):

S(x) = I1(x) + I2(x) (3.45)

The visibility of the the double slit diffraction pattern is determined by the relative
intensities that are contributed by the two single slit diffraction patterns, it is a
function of the coordinate x. The total electric field at a point x is the sum of the
two contributions. The extrema of the intensity are

Iex1(x) = (Ẽ1(x) + Ẽ2(x))
2 and Iex2(x) = (Ẽ1(x)− Ẽ2(x))

2 (3.46)

In the middle of the double slit diffraction pattern, there is no phase difference
between the contributions from the two slits and Ẽ1(x) and Ẽ2(x) have the same
sign. The intensity Iex1(x) is a maximum and Iex2(x) is a minimum. In the outer
parts, there may be a relative phase difference, leading to a maximum in Iex2(x) and
to a minimum in Iex1(x).

This is the difference to the far field case, where the single slit diffraction patterns
from the two slits are taken to coincide and the electric fields from the two slits have
always the same sign. In the near field, the visibility of the double slit diffraction
fringes is

V(x) =
Iex1(x)− Iex2(x)

Iex1(x) + Iex2(x)
(3.47)

The visibility is shown in figure 3.7c. A negative visibility occurs when Ẽ1(x) and
Ẽ2(x) have opposite sign. In this case, maxima and minima are interchanged, which
is equivalent to a phase shift of π.

The double slit diffraction pattern is given by:

I(x) = S(x)

[
1 + V(x) cos

(
2πd

λL
x

)]
(3.48)

The visibility is plotted for a slit separation of d = 2 mm, a slit width of w = 100 µm
and a distance to the screen of L = 3.1 m in figure 3.7

3.6.3. Simulation by ray tracing

To obtain a quantitative description of an arbitrarily shaped aperture, the near field
diffraction pattern has to be computed numerically. This has been done by propa-
gation of the wave front of the electromagnetic field with the code GLAD [App01b],
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Figure 3.7.: Formation of a double slit diffraction pattern in the near field. a) electric
field amplitude of the left slit only (red) and the right slit only (blue), b) amplitude
modulation (red) and double slit diffraction pattern (blue) c) visibility of the double
slit interference fringes, as a function of x (red line) and at the position of the maxima
(blue circles).
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3. Coherence and Interference

described in section 3.6.4. To verify the results, the case of the circular aperture
was also simulated by ray tracing from the source to the observation plane. This is
described in this section.

The field amplitude at a given point on the detector plane can be calculated by
summing the amplitudes of all spherical waves originating at the points inside the
aperture; in other words, by tracing the rays from all points in the source to all points
in the destination. One evaluates Eq. (3.22) numerically by subdividing the aper-
ture into sufficiently fine segments, such that the path difference from neighbouring
segments to the detector is much smaller than the wavelength (see also figure 3.8):

∆g = s sinα =
sρ

L
� λ (3.49)

Choosing ∆g < λ/100 and a distance of 3.1m to the observation plane, the sampling
width has to be s < 0.3µm. An aperture of 3mm has to be sampled at 108 points.

Often, one can make use of the symmetry by combining all rays that travel the
same distance. For a point (x1, y1, L) on the observation plane, these lie on a circle
that is centered around the point (x1, y1, 0) on the aperture. One can decompose
the area in the aperture into thin circular rings of width s and radius ρ. If a ring
lies completely inside the aperture, it is straightforward to add the electric field with
the respective phase. Some of the circles intersect the rim of the aperture, these
contribute only partially to the total wave. The number of terms that have to be
added to obtain the total electric field is significantly reduced to about 104.

It has to be noted that this simplification cannot be applied when the intensity or
the phase are not constant across the aperture, i.e. when the incoming wave is not
plane. In the next section, a more efficient algorithm that propagates the complete
wave front is presented. The results for the plane wave at the circular aperture are
the same (see for example figure 3.11).

3.6.4. Simulation by wave front propagation

An algorithm, based on the propagation of wave fronts is implemented in the code
GLAD (General Laser Analysis and Design, [App01b]). The code solves Maxwell’s
equations numerically for a wave front that propagates in z direction, applying sim-
plifications that greatly speed up the calculations.

To derive the differential equations, one starts with Maxwell’s Equations:

~∇× ~E = −d ~B

dt
(3.50a)

~∇× ~H = ~+
d ~D

dt
(3.50b)

A non-conducting medium with linear magnetisation and current density is as-
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Figure 3.8.: Simulation by ray tracing. A plane wave enters a circular aperture from
the left. The screen is located a distance L to the right. To calculate the intensity
on the screen, at a distance x from the centre of the aperture, the contributions from
circles with radius ρ around this point are added.
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3. Coherence and Interference

sumed:

~B = µ0µr ~H (3.51a)

and a polarisation of the form

~D = ε0
~E + ~P = ε0

~E + ε0χ~E (3.51b)

Taking the time derivative of Eq. (3.50b) and substituting in the curl of Eq. (3.50a),
one obtains

~∇× ~∇× ~E = −µ0µrε0
∂2 ~E

∂t2
− µ0µr

∂2 ~P

∂t2
(3.52)

Which can be simplified under the assumption ~∇· ~D ≈ 0 and ~∇· ~P ≈ 0 and assuming
a non-conducting material (σ = 0) to

~∇2 ~E = µ0µrε0
∂2 ~E

∂t2
+ µ0µr

∂2 ~P

∂t2
(3.53)

Again, the slowly varying amplitude (SVA) approximation is used, this time with
a complex amplitude that may also depend on the transverse coordinates:

Ex(x, y, z, t) = Re
(
Ẽx(x, y, z, t)e

ik(z−ct)
)

(3.54)

Here, k is z component of the wave vector. The wave front of the beam at a given
position z and at time t is represented by a complex function Ẽx(x, y; z, t).

The following equation for a wave travelling in z direction can be deduced [App01a]:

∂ ~̃E

∂z
= −i 1

2k
∇2 ~̃E − i

~kχ

2n2
· ~̃E (3.55)

where χ is the linear electric susceptibility and n =
√

(1 + χ)µr the index of refrac-
tion in the medium.

In numerical calculations, only discrete points in space and time may be repre-
sented. We sample the field amplitude Ẽ on an M × N grid on the rectangle of
size X × Y , centered on the optical axis. The sampling points are separated by
∆x = X/M and ∆y = Y/N, respectively. In our case, a square region of (20.48 mm)2

is divided into 2048 · 2048 points. Note that the sampling of the field amplitude at
a given point (x, y) is not exactly the same as the averaged field amplitude over a
small rectangle ∆x × ∆y around this point, which for example is done by a CCD
detector. If however the sampling interval is much smaller than the distance where
Ẽ changes significantly, the distinction can be neglected.

To solve the differential equation (3.55), it is useful to perform the calculations
in the Fourier domain, taking advantage of the simpler representation of harmonic
waves. The two-dimensional Fourier transform of the field amplitude is denoted by
E(fx, fy), the spatial frequencies are fx and fy.
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3.6. Near field diffraction

To do numerical calculations in Fourier space, one needs a discrete frequency dis-
tribution. It is most efficient to use the Fast Fourier Transform (FFT) algorithm,
which requires that N and M are powers of two. The same number of sampling
points in the Fourier domain will be used, and the frequency range is:

1

2∆x
≤ fx ≤

1

2∆x

(
1− 2

M

)
;

1

2∆y
≤ fy ≤

1

2∆y

(
1− 2

N

)
(3.56)

The upper limit of the frequency range is called the Nyquist frequency.
To propagate the electric field amplitude along z according to Eq. (3.55), one

separates the two terms on the right hand side, advancing the first term with an
implicit finite difference approximation and the second one by means of the FFT
[HT73]. The two algorithms are iterated using small steps ∆z up to the observation
plane. This algorithm is implemented in the code GLAD [App01b].

The proper choice of sampling interval ∆x × ∆y and region [−X/2, X/2] ×
[−Y/2, Y/2] is essential to avoid numerical errors. If the separation of the sam-
pled points is too large, maxima of the amplitude falling in between the sampling
points are underestimated. Similarly, minima are overestimated.

The representation of the transverse field distribution by its Fourier transform
implies periodic boundary conditions, whereas the actual distribution is not periodic
and drops to zero for x or y −→ ±∞. As a result, any propagated beam which
leaves the simulated range is folded back and interferes then with the other rays
(figure 3.9). If the sampling region is too small (and the resolution is high enough),
the interference with the mirror source is visible (see for example figure 3.10e and
f). To avoid this effect, the matrix has to be large enough that the field remains
concentrated in the central part of the matrix.

The simulation has converged when the results do not change if the density of
sampling points is increased and the field size is enlarged simultaneously. This has
been verified for the present experimental set-up. The results are shown in figure 3.10.
In the present experiment, the simulation is most difficult for a double slit with large
separation, since here the diffraction fringes show the finest detail. Furthermore, the
total extension of the diffraction pattern is larger than for the other slit pairs. The
computer used for the simulations has a memory of 384MB. The largest array that
can be propagated has a dimension of 8192 ·8192 = 67108864 points. The simulation
using this array for a field of 4.096 ·4.096 mm2 with a pixel size of 5µm looks smooth,
i.e. the computed intensity does not vary significantly from one pixel to the next. It
has been used as a reference (blue curves in figure 3.10).

In a simulation with 512 · 512 = 262144 pixels with 20µm edge length (red crosses
in figure 3.10a, b), the grid is too coarse to sample the field in the minima correctly,
it is therefore not sufficient for the slit distance of 3mm. The situation is somewhat
more relaxed for 1mm slit separation. Decreasing the distance between the pixels and
increasing the simulated area simultaneously improves the simulation (figure 3.10c
and d): also the slits with 3mm separation are accurately modelled.
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Source

Mirror
source

Mirror
source

Interference

Simulated
Volume

Figure 3.9.: Periodic boundary conditions, as imposed by the numerical solution of
the wave equation in frequency space, imply the interference of radiation with mirror
sources.

One can see that misleading results are produced if the resolution is increased
without simultaneously enlarging the field size: in figure 3.10e and f, artefacts from
interfering mirror sources appear. To double the resolution in both directions, one
has to double also the field size, resulting in 16 times as many points to be computed.

3.6.5. Results

The computed diffraction pattern of a circular aperture is shown in figure 3.11. The
two different codes, based on ray tracing and on wave front propagation are in ex-
cellent agreement. For the selected wavelength of 100 nm, the aperture diameter of
3 mm and the distance to the observation plane L = 3.1 m, the far field condition
Eq. (3.23) is not fulfilled. As anticipated, the diffraction pattern calculated in the
Fraunhofer approximation is completely different, it contains only the central peak.

A double slit with 1mm separation yields the diffraction pattern shown in figure
3.12. The differences between the numerical simulation in the near field and the ana-
lytic far field approximation manifest themselves not only in the vertical coordinate,
also the horizontal dependency is different. In the far field case, the minima have
zero intensity, yielding a visibility V = 1 for all fringes. This is no longer the case in
the near field, here the cancellation of the electric field due to destructive interference
is not perfect. Only the minima near the centre have Imin ≈ 0 and V ≈ 1. For the
outer fringes, the visibility is reduced, as compared to the far field case. This is due
to an incomplete cancellation of the contributions from the two slits.
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3.6. Near field diffraction
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Figure 3.10.: Central fringes of double slit diffraction patterns, with various simu-
lation parameters, a), c) and e) for 1mm, b), d) and f) for 3mm slit separation.
The blue line represents the intensity on a grid with 8192 · 8192 = 67108864 pix-
els with 5µm edge length and is used as a reference. The simulations indicated by
red crosses use the following parameters: a) and b) 512 · 512 = 262144 pixels with
20µm edge length, c) and d) 2048 · 2048 = 4194304 pixels with 10µm edge length,
e) and f) 2048 · 2048 pixels with 5µm edge length.
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Figure 3.11.: Comparison of different computation methods for the diffraction pattern
of a circular aperture of 3mm diameter, illuminated by a plane wave with λ = 100 nm.
a) Far field approximation, b) propagation algorithm (GLAD), c) ray tracing, for a
distance of 3.1m. d. . . f) Central slices of the above distributions.

An interesting diffraction pattern is produced by crossed slits (figure 3.13). Again,
the far field approximation yields different results than the numeric calculation in
the near field, where the pattern is dominated by hyperbolic fringes.

3.7. Diffraction with partially coherent light

More realistic than a plane incoming wave is a Gaussian beam, whose intensity
depends on the transverse coordinates as exp(−x2/σ2

x − y2/σ2
y). A Gaussian of full

coherence is characterised by a time independent field amplitude for each point in
space, thus |γ̃(~r, ~r′)| = 1 for all ~r, ~r′. A partially coherent beam, on the other hand,
has distorted wave fronts, which can be simulated by multiplying Ẽ(x, y) with a phase
aberration exp(ih(x, y)). If this distortion varies with time, the coherence acquires
values C(~r, ~r′) < 1 for ~r 6= ~r′. To take into account this variation, a finite photon
bunch has to be simulated on a three-dimensional grid.
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Figure 3.12.: Double slit diffraction pattern: a) diffraction pattern in far field ap-
proximation and b) in near field simulation. c), d) Cross sections of the above
distributions. e) Cross section calculated using Eq. (3.48).

For the present simulation, 100 grid points in z direction are considered. A random
phase aberration h(x, y) with a Gaussian spatial frequency spectrum was calculated
with the code GLAD.

The propagation of such a beam through the double slits and the formation of the
near field diffraction pattern can be computed with the code GLAD. However, the
total number of grid points in GLAD is limited and a beam given on 100× 512× 512
points cannot be propagated. A reduction of the number of points in the transverse
plane would result in too coarse a grid to sample the diffraction fringes. Therefore,
each slice of the beam is propagated separately and the intensities of the resulting
diffraction patterns are added.

This is obviously a simplification to the general case, where the formation of diffrac-
tion patterns involves the interference of different wave fronts, which were initially
separated longitudinally. In the middle of the interference pattern, the path length
difference to the two slits is zero and the two field amplitudes are given by the wave
front in the same slice. For the outer fringes however, different wave fronts interfere,
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Figure 3.13.: Diffraction pattern of crossed slits, a) calculated in the far field approx-
imation and and b) in near field simulation. c and d) Cross sections of the above
distributions.

the ordinal number of the fringe is equal to the path length difference in units of
the wavelength. In the present case, a grid spacing of 1 µm = 10λ in z direction
has been used. Therefore, the amplitude of the tenth interference fringe would have
to be calculated from the intensities from two different slices of the FEL beam. In
using the same slice, a longitudinal variation of the phase or amplitude of the electric
field is neglected. In a quasi-monochromatic beam such as the FEL, the longitudi-
nal coherence length is much larger than ten wavelengths and the simplification is
justified.

The transverse correlation function of the wave packet is calculated with respect
to the centre of the beam, performing the time average in Eq. (3.7) over the 100
slices. The absolute value of γ̃(x, y) is shown in figure 3.14a. It is mapped to radial
coordinates (r, ϕ) and averaged over the angle ϕ. The resulting function is shown in
figure 3.14b.

Different coherence functions can be achieved by varying the magnitude of the
phase aberration function h(x, y). The result for four different magnitudes is shown in
figure 3.15. At a separation of 1mm, a coherence function of 1.00, 0.86, 0.55 and 0.05
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Figure 3.14.: Absolute value of the correlation function of the simulated wave packet,
calculated with respect to the centre of the beam. a) Plotted as a function of x and
y and b) as a function of r.

is computed from Eq. (3.8). In the last case, a very small phase aberration leads to a
practically coherent wave. There is a certain uncertainty of the coherence function,
due to the randomised phase aberration function. Different starting parameters for
the random number generator that is used for the phase aberration function lead to
coherence functions that differ by about 0.05. This can account for the fact that the
coherence function is not always monotonous, as for example in figure 3.15a.

From the diffraction patterns, the visibility V of the interference fringes, defined in
Eq. (3.30), can be calculated. The visibility of the central fringe is compared to the
absolute value of the correlation function C at a distance equal to the slit separation.
For the far field diffraction pattern of a plane wave, V = C, as given by Eq. (3.38).
For the four diffraction patterns shown in figure 3.15, values Vcentral = The present
simulation shows that this is also the case for the near field diffraction of a Gaussian
beam, as can be seen in figure 3.16.

The simulation can be improved by taking into account the formation of the FEL
radiation and the influence of the measurement devices on the recorded images. The
FEL radiation has been simulated by Saldin, Schneidmiller and Yurkov [Yur03] using
the code FAST. The measurement devices are discussed in chapter 6. This simulation
is described in section 7.2.
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Figure 3.15.: Simulated double slit diffraction patterns of a distorted Gaussian beam.
Left column: Absolute value of the correlation function as a function of distance.
The value for 1mm separation is marked by a red circle. Middle column: Diffraction
pattern of vertical double slits of 2mm length and 100µm width, separated by 1mm.
Right column: projection of the selected area of the diffraction pattern. The wave
front distortion results in a transverse coherence of See also figure 3.16b.
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Figure 3.16.: Simulation of the visibility of the central fringes as a function of the
coherence. The transverse correlation function was evaluated at a distance equal to
the slit separation of a) 0.5mm, b) 1mm, c) 2mm and d) 3mm. The circled points
in b represent the cases shown in figure 3.15.
The present simulation shows that the central visibility of the near field diffraction
pattern is in good agreement with the transverse coherence at the slit distance.
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Part III.

Experimental Set-up
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The Fly

Little Fly
Thy summer’s play,
My thoughtless hand
Has brush’d away.

Am not I
A fly like thee?
Or art not thou
A man like me?

For I dance
And drink & sing:
Till some blind hand
Shall brush my wing.

If thought is life
And strength & breath:
And the want
Of thought is death;

Then am I
A happy fly,
If I live,
Or if I die.

William Blake

Figure on the previous page: the double slits.
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4. The TTF Accelerator and
SASE-FEL

The measurements presented in this thesis have been performed at the linear accel-
erator (linac) of the TESLA Test Facility (TTF) at DESY. Before this accelerator is
described in detail, general concepts in electron acceleration are briefly reviewed.

4.1. General concepts in particle acceleration

4.1.1. Acceleration with radio-frequency cavities

Charged particles are accelerated by electric fields. Alternating fields can be stored in
resonant cavities, either made from a good conductor like copper or from a supercon-
ductor, for example niobium. For reasonable dimensions of the cavity, the frequency
of the field ranges from about 100MHz to 10GHz. This range is referred to as radio
frequency (RF). The energy gain of the particles is the product of their charge with
the path integral of the longitudinal electric component of the field. The accelerating
field of the resonator is defined as the energy gain per unit charge, divided by the
length of the structure.

A superconducting material has vanishing resistance for direct currents if it is
cooled below its critical temperature, which is a function of the applied magnetic
field. The critical temperature of elementary superconductors is typically a few
Kelvin, hence liquid helium is needed as a coolant. Although there is a resistance
RBCS for alternating currents, the losses are many orders of magnitude lower than for
normal-conducting materials. Resonant cavities manufactured from superconducting
material therefore allow the construction of energy efficient accelerators, even when
taking into account the energy needed for cryogenics. The ratio of frequency to
bandwidth of a resonator without external coupling is called unloaded quality factor
Q0. The losses are inversely proportional to the quality factor. Superconducting
cavities can reach a value of Q0 ≈ 1010, in normal-conducting resonators, Q0 is
typically a few times 104.

To reduce the effects of wake fields, superconducting accelerators use generally
cavities with a larger aperture than their normal-conducting counterparts. This re-
sults in a lower resonant frequency, typically around 1GHz. The frequency is chosen
to optimise production and operation costs: a higher frequency allows to reduce
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4. The TTF Accelerator and SASE-FEL

the production cost, as less material is required. However, electric losses scale with
RBCS ∝ ω2 [Sch03a], limiting the use of superconducting cavities to frequencies be-
low 3GHz. These losses are due to the oscillation of electrons that are not bound
in Cooper pairs. As the number of free electrons drops exponentially with the tem-
perature, the quality factor of the cavity resonator can be increased by cooling the
cavity far below the critical temperature.

The RF power is supplied by an external source, for example a klystron. The wave
is transmitted through a wave guide and coupled to the resonating cavity. In storage
rings as well as linear accelerators made from superconducting cavities, one creates
a standing wave in the resonators, while normal-conducting linear accelerators often
employ travelling wave structures.

4.1.2. Emittance

The transverse emittance is defined as the product of the rms bunch size with the
angular divergence. The emittance shrinks with increasing energy, because the longi-
tudinal momentum component is increased while the transverse component remains
the same. Hence it is convenient to define a normalised emittance by multiplication
with the relativistic γ factor. A small beam diameter can be achieved by focusing
the beam using quadrupole magnets of alternating polarity.

The normalised emittance is a constant of motion under linear beam optics. Space
charge forces increase the emittance in the first part of the accelerator. In the highly
relativistic regime, the repulsive Coulomb forces are effectively counteracted by at-
tractive magnetic forces.

4.1.3. Particle source

Free electrons can be produced by different methods. A conventional source, based
on a thermionic cathode provides too small bunch charges. A photo cathode driven
by an ultraviolet laser deliver higher charges. However, the emittance of the bunch
blows up due to internal Coulomb forces. To reduce this effect, three measures are
taken: the electrons are rapidly accelerated to relativistic energies, the bunches are
not excessively short (around 10 ps) and a longitudinal magnetic field imposes a
spiraling trajectory on the particles. Thus, it is possible to achieve a bunch charge of
several nanocoulombs with a normalised transverse emittance of a few micrometres.

4.1.4. Bunch compression

To increase the peak current to the value of several kA required for the SASE-FEL
process, the bunch is compressed at relativistic energies. To do this, one adjusts the
phase of the accelerating field such that the bunch passes the cavities when the electric
field is increasing. The particles in the tail of the bunch acquire a higher energy than
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Figure 4.1.: Schematic drawing of a bunch compressor. The off-crest acceleration
introduces a correlated energy spread. The phase space is sheared by the magnetic
chicane. Symbols: W : energy, z: longitudinal position, ρ: charge density, E: electric
field. a) The particle distribution as a function as a function of z and as a function
of W and z, before the acceleration, b) the particle distribution after off-crest accel-
eration, c) the particle distribution behind the magnetic chicane. The peak current
is increased. d) The electric field in the accelerating cavity.

the particles in the head, a so-called energy chirp is imposed on the bunch (figure 4.1).
In a magnetic chicane behind the accelerating section, the tailing particles follow a
shorter trajectory, allowing them to catch up with the leading particles. The rms
bunch length is shortened, the peak current increased. The principle is similar to the
optical pulse compression in lasers.

The accelerating field has a sinusoidal time dependency. Therefore, the chirp is
not linear. This translates to a distorted phase space distribution with a sharp front
peak followed by a long tail. Obviously, the non-linearities in the field become more
important for larger initial bunch lengths. Therefore, the effect can be reduced if the
bunch is pre-compressed at a lower energy. The emission of coherent synchrotron
radiation in the chicanes has to be considered.

4.2. The TESLA Test Facility

Planned originally as a test facility for the TESLA1 collider, the TESLA Test Facility
(TTF) linear accelerator has been equipped at a later stage with an undulator that
generates FEL radiation at 100 nm wavelength. The TTF has demonstrated

1Teraelectronvolt Energy Superconducting Linear Accelerator
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4. The TTF Accelerator and SASE-FEL

� the performance of superconducting cavities at high gradient,

� the pulsed operation of the cavities and the compensation of beam loading of
long pulse trains,

� the controlled beam transport with low emittance from the gun to the end of
the accelerator,

� the RF regulation concept to stabilise the field amplitude and phase,

� a proof-of-principle of a SASE FEL in the VUV, and finally

� first experiments using this radiation [Wab02].

As a test facility, the accelerator undergoes a constant modification and expansion.
The state referred to in this chapter is of 2001/2002, when the measurements were
done. This state is called TTF Phase I. It is schematically presented in figure 4.2.

The set-up of this accelerator is only briefly summarised here. For more details,
the reader is referred to the design report of the TTF [Edw95], the conceptual design
report for the Free Electron Laser [Åbe95] and the technical design report for TESLA
[RSTW01] a report on the performance [Cas02] and to the papers mentioned in each
section.

photo-
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beam

diagnostics

energy
measurement

superconducting
accelerating
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Figure 4.2.: Schematic view of the TTF Linac, in its state 2001/2002.

4.2.1. RF photo-injector

To achieve the high current together with the low transverse emittance and the
small energy spread required for SASE FEL operation, the injector of the TTF
linac consisted of a laser-driven RF photo-cathode gun [Sch00, SCG+02], shown in
figure 4.3.

A high-power Nd:YLF laser generated a pulsed infra-red beam. Two nonlinear
crystals reduced the wavelength to 262 nm, corresponding to a photon energy of
4.7 eV. The energy of each laser UV pulse was up to 50µJ. The longitudinal pulse
shape was approximately Gaussian, with a standard deviation of σ = (7±1) ps. This
has been determined with streak camera measurements (figure 4.4).
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Figure 4.3.: Radiofrequency (RF) gun of the TTF linac. The cathode replacement
system is used to exchange the photo cathode under ultra high vacuum. The beam
is emitted at the right side with an energy of 4.5MeV [Col97].

Figure 4.4.: A typical longitudinal pulse shape of the injection laser, measured with
a streak camera at 262 nm [SWS+00]. In this measurement, the Gaussian fit yields
a width of σ = 8.0 ps.
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Figure 4.5.: Cross section of a superconducting RF cavity installed in the TTF linac
[Aun00]. The power coupler is connected by a wave guide to the klystron. Higher-
order mode (HOM) couplers remove resonant fields of higher order, a pick-up antenna
is used to measure the field.

This laser pulse liberated electrons from a caesium telluride (Cs2Te) cathode by
photo-emission. The cathode resided on the axis of a normal-conducting 11/2-cell
radio-frequency (RF) cavity, operated at a frequency of 1.3GHz and with an accel-
erating field of up to 42MV/m. Two solenoidal coils surrounded the cavity to create
a longitudinal magnetic field of ≈ 0.1 T on the axis. A third coil behind the cav-
ity compensated this field to zero on the surface of the cathode. The presence of a
magnetic field in the cavity is one of the reasons why a normal-conducting cavity is
used.

The electrons left the gun with an energy of 4.5MeV. The injector of the TTF
achieved a peak current of 130A with a normalised transverse emittance of 3±0.2 µm
in the horizontal and 3.5±0.5 µm in the vertical plane. The energy spread of the core
of the bunch was 5 keV, measured behind the first superconducting cavity [HS03].

4.2.2. Superconducting cavities

While the gun had a normal-conducting RF cavity, further acceleration of the electron
bunch was achieved by superconducting cavities. These are operating also at 1.3GHz
and with an accelerating field of up to 22MV/m [Aun00]. One cavity is shown in
figure 4.5. The nine-cell cavities are operated in the π-mode, i.e. the phase of the
field advances by π in each cell. The cavities were made from ultra-pure niobium
that becomes superconductive at a temperature of 9.2K in the absence of a magnetic
field.

The TTF cavities achieved a quality factor Q0 ≈ 1010 for T = 2 K. This tem-
perature was maintained by cooling the cavities with superfluid helium. A module
contained cryostats and couplers for eight cavities. Two of these modules were in-
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stalled in the TTF linac in 2001/2002. The first cavity directly behind the gun, called
booster cavity, had its own cryostat.

The linac was operated in pulsed mode. The amplitude of the electromagnetic
field in the cavities had a flat top of up to 850 µs. During this time, a large num-
ber of electron bunches could be accelerated, with a repetition frequency of 1 or
2.25MHz. These bunch trains are called macropulses. The repetition frequency of
the macropulses is between 1 and 10Hz. The accelerating field was controlled by
adjusting the amplitude and phase of the incoming RF wave. A pick-up antenna in
each cavity was used to measure the field.

Amplitude and phase can be represented as a complex field vector. A digital
feedback system stabilised the vector sum of the field amplitude in all cavities in the
first module, taking into account the load of the beam. Details on the RF regulation
system can be found in [Lie98]. An interesting issue is the detuning of the cavities
due to Lorentz forces of the electromagnetic field.

4.2.3. Synchronisation and timing

Various timing signals were generated by a master oscillator with a frequency f =
9.027775 MHz. The RF field for the cavities and the injection laser were synchronised
within 1 ps (rms). Figure 4.6 shows an overview of the timing in the accelerator.

For the measurements presented in this thesis, a bunch repetition rate of 1MHz
was chosen. Up to 30 bunches per macropulse were used during the studies presented
here.

4.2.4. Bunch compression

A two-stage bunch compression was used at the TTF linac. The first chicane was
installed behind the booster cavity at an energy of 16MeV, the second behind the
first module at an energy of 120MeV.

Initially, only the second bunch compressor was in operation. The nonlinearity
of the sinusoidal electric field in the cavities resulted in a bunch with a very short
peak at the front and a relatively long tail. Only the short peak reaches the current
density required for FEL operation. From measurements of the photon pulse (see
section 4.5) and simulations of the FEL process, the length of this peak was derived
to be in the order of 100 fs [Sal03]. The fragmentation of the electron beam has also
been observed directly [HPS01]. The direct measurements done so far yield a peak
length of 600± 100 fs, which is in the order of the resolution of these devices. They
are summarised in figure 4.7.

The commissioning of the first bunch compressor allowed to reduce the nonlinearity
to some extent. Hence, it was possible to adjust the bunch shape, allowing to increase
the amount of the charge that contributes to the FEL process. This increased the
FEL pulse energy and effectively lengthened the pulse.
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Figure 4.6.: Timing in the TTF linac. a) The macropulses are separated by 1 s.
b) Detailed view of a macropulse: the envelope of the accelerating field has a flat top
of up to 800µs. The electron bunches are spaced by 1µs. c) The accelerating RF
field has a frequency of 1.3GHz, corresponding to a period of 769 ps. d) An electron
bunch with a length of 20 ps is shown. (Drawings are not to scale.)

80



4.2. The TESLA Test Facility

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time / ps

C
ur

re
nt

 / 
ar

b.
 u

ni
ts

a)

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time / ps

C
ur

re
nt

 / 
ar

b.
 u

ni
ts

b)

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time / ps

C
ur

re
nt

 / 
ar

b.
 u

ni
ts

c)

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time / ps

C
ur

re
nt

 / 
ar

b.
 u

ni
ts

d)

Figure 4.7.: Longitudinal electron bunch shape in the TTF linac, measured with
different methods. a) Reconstruction by tomographic methods from the energy dis-
tribution [Hün02], b) measured with the synchrotron radiation from a dipole with
a streak camera [GFH+03]. c) interferometric measurements of coherent transition
radiation (CTR) with Golay cells [Men03]. These three measurements were done at
maximum compression with the second bunch compressor, the first bunch compressor
was not used. d) Interferometric measurements of CTR, using pyroelectric detectors
[Men03]. For this measurement, both bunch compressors were activated.

4.2.5. Collimation

Collimators were installed in front of the undulator to protect the permanent magnets
from radiation damage [Sch01a]. A small aperture removed most of the beam halo
and dark current, which would otherwise be lost in the narrow beam tube of the
undulator. Additionally, an active protection system was installed.
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4. The TTF Accelerator and SASE-FEL

Table 4.1.: Parameters of the electron bunch at the undulator entrance [And00,
Sch03b, Yur03, Hün02].

Parameter Measured value
Beam energy adjustable: 180 . . . 300 MeV
rms energy spread (without compression) 0.3± 0.2 MeV
rms transverse beam size (without compression) 100± 30 µm
Normalised projected emittance (7± 2) µm
Total bunch charge adjustable: 1.5 . . . 3 nC
Bunch charge in the radiating part of the beam 1 nC

0.15± 0.05 nC∗

Peak current 600 A
1.3± 0.3 kA∗

∗ not a direct measurement, but inferred from the FEL radiation

4.3. Electron beam diagnostics

Various devices were installed in the TTF linac to investigate the beam properties.
Some measure integral properties of the electron bunch, e.g. the position or the total
charge, others allow to determine the distribution inside the electron bunch.

It is important to note that the requirements for the operation of the free electron
laser are more stringent than achievable with today’s beam diagnostics. Therefore,
the fine tuning of the accelerator was done using also the measurements from the
photon beam. The physics of electron and photon beam are much more interleaved
than in conventional synchrotron sources.

Measured properties of the electron bunches are summarised in table 4.1.

4.3.1. Measurements of integral properties

� The total charge of the electron bunch is measured with toroidal coils around
the beam [FJ96] or with Faraday cups.

� The transverse beam position is measured by beam position monitors (BPMs).
Various types are installed in the TTF accelerator:

– Button BPMS [Che95] and stripline BPMs [Lor97] measure the electric
field of the passing bunch on four electrodes in the beam tube.

– Wave guide BPMs extract part of the electromagnetic field into little wave
guides which are equipped with antennae [Kam00].

– The beam trajectory monitor [Ng96] was intended to measure the trajec-
tory of the bunch in the undulator by imaging its spontaneous undulator
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4.3. Electron beam diagnostics

radiation. However, this device did not work satisfactorily due to an oc-
clusion of the optical path by the beam tube mount and because of severe
electromagnetic pick-up noise in the preamplifiers.

– Cavity BPMs measure a transverse mode in a pillbox cavity that is excited
by an excentric beam [Lor97].

– Re-entrant cavity BPMs have the same operating principle, but a different
cavity layout [Mag98].

� The electron momentum is measured by a beam position monitor installed
behind a dipole magnet. For a single bunch measurement, the resolution is
∆p/p = 10−4 [Stu02].

� Beam loss monitors record electrons that are lost from the bunch, as well as
secondary particles [Sch02].

4.3.2. Measurements of the bunch structure

To gain a deeper insight into non-linear processes as the amplification in the FEL,
it is helpful to measure the distribution of the electrons in (phase) space. There
were various devices installed in the TTF accelerator. They measured the electron
density:

� As a function of x and y: the transverse distribution was measured by inserting
a a Kapton foil or silicon wafer that had been coated with a thin aluminium
layer. The electrons generated optical transition radiation (OTR), which was
imaged onto a CCD [Cas96].

� As a function of x, y, px and py: the distribution in the transverse phase space
is rotated by quadrupole magnets. By adjusting the strength of these magnets,
and by using tomographic reconstruction algorithms, the phase space distri-
bution could be reconstructed by the measured projections on the (x, y) plane
[Gei99].

Due to the analogue data transfer from the cameras, the orientation perpen-
dicular to the primary read-out direction of the CCD was affected by noise
and could not be used: the camera was rotated by 90◦ to measure vertical
beam profiles, such that the projection is done perpendicularly to the read-out.
Therefore, only a two-dimensional distribution, i.e. in the (x, px) or (y, py) phase
space could be measured up to now. An improved read-out of the cameras, as
well as advanced reconstruction algorithms, will be used in future experiments
[HBF+03].
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� As a function of t and E: similar tomographic methods can be applied to the
(t, E) phase space: the particle distribution was sheared by accelerating the
bunch off crest, the bunch was imaged behind a dipole magnet [Hün02].

� As a function of z: there are different methods to measure the longitudinal
charge distribution in the bunch (see also figure 4.7):

– The synchrotron radiation in a dipole magnet was measured with a streak
camera [HSGP03].

– The transition radiation from a thin aluminium layer extends to the far
infrared. For wavelengths longer than the bunch, the electrons emit this
radiation coherently. This coherent transition radiation (CTR) has a high
intensity as it scales with the square of the number of electrons. Using
an interferometer to measure the auto-correlation of this pulse, one can
reconstruct the bunch shape [LBS+99, Men03].

4.3.3. Indirect measurements

Several properties of the electron bunch have been derived from the radiation that
is produced in the undulator (see next section). These include the energy of the
electrons, inferred from the wavelength of the radiation. From simulations of the
FEL process, and by comparing to the measurements of the FEL intensity and its
fluctuation, it was also possible to infer the peak current and the length of this peak,
and from the gain length and the peak current, the emittance of the electron beam.

4.3.4. Planned measurements

� Electro-optic Sampling: The electromagnetic field of the bunch induces bire-
fringence in a zinc telluride crystal. This can be measured by the polarisation
change of a femtosecond laser. A proof-of-principle experiment of this electro-
optic effect has been done using the transition radiation from a thin metal layer
[Tür02, BGG+03], the construction of a set-up to measure the direct field of
the bunch is under way [Ste03].

� Transverse mode Cavity: The electron bunch can be deflected by a rapidly
varying transverse electric field. This can be done in an RF cavity which
is excited in a transverse mode. The bunch is sheared in the (x, t) plane, an
observation of the (x, y) plane with optical transition radiation gives the desired
longitudinal distribution [ABE02]. However, synchronisation of this cavity with
the accelerating structures is still an issue.
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Figure 4.8.: Side view of the three undulator modules.

� FIR Spectroscopy using Undulator radiation: There are ideas to measure the
longitudinal pulse shape with coherent synchrotron radiation from a far infra-
red undulator [GSSY03].

4.4. Free electron laser

4.4.1. Permanent magnet structure

The electron bunch passed the undulator (figure 4.8) at energies between 180 and
300 MeV. To enhance and shape the field, pole shoes had been attached to the per-
manent magnets (figure 4.9). Three undulator modules of 4.472m length each were
installed. On the axis, the field was to a good approximation sinusoidal, with a
period of 27.3mm and a peak induction of 0.46T; table 4.2 lists further parameters.

4.4.2. Steerers

For the amplification of the radiation, it is necessary to ensure good overlap between
the electron and the photon beam along the undulator. Small deviations lead to an
drastic decrease in the output power (figure 4.10). The position of the electron was
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Table 4.2.: Undulator parameters [And00, Faa03].

Parameter Design value
Number of modules 3
Gap 12mm
Module length 4.472m
Effective total length 13.5m
Period 27.3mm
Peak dipole field 0.46T
Undulator Parameter K 1.17

Corrected undulator parameter K̂ 1.04
Pierce Parameter ρPierce 2.5 · 10−3

Average horizontal betatron function 1.2m
Average vertical betatron function 1.1m
FEL gain 3 · 103

gain length 67 cm

y

x

z e

Permanent
Magnet

Pole

Gap

Figure 4.9.: Arrangement of the magnets in the undulator that creates a sinusoidal
field on the beam axis [FP99]. The drawing is not to scale. The quadrupole magnets
are not shown.
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Figure 4.10.: Degradation of the FEL output power as a function of the rms mis-
alignment of electron and photon beam [Rei99, Kam00].

Table 4.3.: Parameters of the FEL pulse [And00, RGK+03, Ayv02b].

Parameter Measured value
wavelength 87 . . . 109 nm
pulse length 0.4 . . . 1 ps∗

pulse energy 30 . . . 100 µJ
spectral width 1 nm (FWHM)
intensity in 2nd harmonic < 1% of fundamental
peak brilliance 4 · 1028photons/(s ·mm2mrad20.1%bandwidth)
angular divergence 260 µrad

∗ inferred from the number of longitudinal modes of the radiation

be measured with BPMs. To correct for misalignment, nine steerer magnets were
installed in each of the three undulator modules.

These steerers consisted of four coils with one winding each (figure 4.11). Depend-
ing on the interconnection of the coils, they could be used as horizontal, vertical or
combined-function steerer. The last steerer in each undulator module was connected
to two power supplies to act as a combined-function steerer. The permanent mag-
nets and their poles acted as a yoke that strengthened the field for the horizontal
and weakened the field for the vertical steerers.

The parameters of the FEL pulse are listed in table 4.3.
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Figure 4.11.: Prototype of the undulator vacuum chamber with a steerer. Each of
the four correction coils consists of only one winding [Hah00]. In the front, a BPM
is installed.

4.5. Photon beam diagnostics

In the FEL process, the radiation is amplified by five orders of magnitude, as com-
pared to the spontaneous emission. Many different detectors were installed to cover
this dynamic range (figure 4.12) [TLX+00, TLF98]. The intensity was monitored
over a wide range with a calibrated microchannel plate (MCP) [Faa01], detecting
the light which is scattered from a thin wire. A grating spectrometer [GFL+01],
equipped with a CCD camera with an image intensifier, was used to measure the
spectral distribution. A fluorescent crystal could be inserted to measure the spatial
distribution of the FEL light as well as interference patterns. The detectors had been
aligned with the help of a helium-neon (HeNe) laser that was collinear with the FEL
beam. Circular apertures of 0.5, 1, 3 and 5mm diameter could be inserted to reduce
the cross section of the beam. They were mounted on a water cooled frame that
could be moved to an arbitrary horizontal and vertical position (figure 4.12, Nb. 3).

The CCD cameras were protected against radiation damage by a 20 cm thick lead
shielding. This corresponds to 40 radiation lengths, which is sufficient to block the
radiation showers completely2.

2if the shielding has a thickness of only a few radiation lenghts, the number of particles is increased
by scattering processes, resulting in a higher damage
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Figure 4.12.: Experimental set-up for the SASE FEL photon diagnostics at the TTF
linac. 1: bending magnet to deflect the electron beam, 2: alignment laser port, 3: aper-
ture unit, 4: unit with the first MCP detector and the double slits, 5: deflecting mirror,
6: TSP and ion getter pumps, 7: grating monochromator, 8: monochromator cam-
era, 9: fluorescent crystal, 10: CCD camera, 11: laser ablation or cluster experiment,
respectively, 12: second MCP detector.

4.5.1. Intensity measurements

The intensity of the photon beam has been measured to demonstrate the successful
operation of the SASE-FEL and to compare with theoretical models for the formation
of FEL radiation. Furthermore, the measurement is important for the optimisation
of the accelerator.

The intensity varies by four orders of magnitude from spontaneous radiation to
the saturation of the FEL, where it reaches intensities close to the damage threshold
of many materials. For these two reasons, it is not a trivial task to measure the
intensity of the FEL radiation.

Photodiodes

Semiconductor detectors are commonly used to detect VUV radiation. However,
radiation damage had been observed in pn junction detectors consisting of silicon
or gallium arsenide phosphide (GaAsP) when exposed to radiation of a wavelength
λ < 150 nm already at an exposure level of a few mJ/cm2. This is due to the
formation of traps in the oxide layer on top of the semiconductor, resulting in a
degradation of the quantum efficiency [SMK+96].
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Front-illuminated PtSi–n–Si Schottky barrier photodiodes have been developed for the ultraviolet
and vacuum ultraviolet spectral range. Their spectral responsivity was determined in the 120–500
nm spectral range by use of a cryogenic electrical substitution radiometer operated with spectrally
dispersed synchrotron radiation. For wavelengths below 250 nm, the spectral responsivity is about
0.03 A/W, comparable to that of GaAsP Schottky photodiodes. Unlike the GaAsP diodes, the new
PtSi–n–Si diodes have a spatially uniform response which is virtually stable after prolonged
exposure to short wavelength radiation. Even after a radiant exposure of 150 mJ cm22 at
wavelength 120 nm, the relative reduction in spectral responsivity remains below 0.2%. Due to
these features, this type of photodiode is a promising candidate for use as secondary detector
standard in the ultraviolet and vacuum ultraviolet spectral ranges. ©1996 American Institute of
Physics.@S0003-6951~96!04250-7#

Among semiconductor photodetectors for the ultraviolet
~UV! and vacuum ultraviolet~VUV ! spectral ranges,
Schottky-barrier photodiodes are appreciated for their out-
standing stable performance even under heavy radiant
exposure.1 Therefore, in spite of the fact that siliconp-n
junction diodes with higher initial quantum efficiency for
UV radiation exist,1 Schottky detectors are considered opti-
mum in those applications, where stability under strong irra-
diation is a crucial requirement, such as for detector stan-
dards or satellite-borne UV astronomy. We report here on a
novel PtSi–n–Si Schottky photodiode with a spectral re-
sponsivity comparable to that of the best GaAsP Schottky
detectors but with much higher stability in the vacuum ultra-
violet spectral range.

For the development of an irradiation-resistant photode-
tector, the advantage of Schottky diodes lies in their struc-
ture. While in Sipn junction diodes, the prolonged exposure
to UV or VUV radiation invariably leads to traps in the oxide
layer on the photosensitive surface, causing a degradation of
the quantum efficiency, this oxide layer is absent in a
Schottky barrier diode. The PtSi–Si Schottky contact as
photodiode2 has electrical and chemical features particularly
favoring stable performance. It has the second highest barrier
on n-type Si ~up to 0.95 V!, a low resistivity of 35mV cm,
and very high chemical stability.3 The favorable features of
the PtSi–Si interface originate from the silicide formation
process. By depositing Pt onto a chemically clean Si surface
and subsequent annealing, the platinum diffuses into the up-
permost layers of the substrate, the surface contaminants be-
ing thereby diluted in the silicide film or accumulated on the
PtSi film surface. The resulting silicide/Si interface is formed
in some depth below the original Si surface and can be made
atomically clean and therefore metallurgically extremely
stable. These features, and the advantages provided by the

use of standard Si technology, have been previously ex-
ploited in the fabrication of infrared CCD imagers on the
basis of PtSi–p–Si photodiodes.4–6

The present diodes were fabricated on 25V cm n-type
Si~100! wafers by silicon planar technology. Then11 con-
tacts andp1 guard rings were made by ion implantation,
wet etching was employed to remove the protective oxide
from the contact areas. The Pt films were deposited by mag-
netron sputtering in an ordinary high vacuum system~base
vacuum of 1028 mbar! in Ar plasma, and the silicide was
formed by in situ after-deposition annealing at 500 °C. The
resulting less than 10-nm-thick films were partially epitaxied
to the ~100! silicon, forming an abrupt, contamination-free,
laterally uniform interface between PtSi film and the silicon
substrate,7 as seen in Fig. 1.

Considering the high quality of the interface, shown also
by the measuredI –V ideality factors being typically below

a!Guest from BESSY GmbH, Lentzeallee 100, 14195 Berlin, Germany.
b!Electronic mail: hans.rabus@ptb.de

FIG. 1. Micrograph of the transverse section of a 7.5-nm-thick PtSi film on
Si~001! ~Ref. 7!. The film is polycrystalline with isolated grains epitaxied to
the substrate, the interface between PtSi film and silicon substrate is abrupt,
contamination-free, and laterally uniform.
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Figure 4.13.: Platinum silicide detector. a) Micrograph of a PtSi film [SMK+96],
b) signal of the PtSi detector, as measured at the FEL [Ger03].

As opposed to pn junction diodes, where the incident photons create electron-hole
pairs in a depletion zone between a p and an n doped semiconductor, a Schottky-
barrier photodetector employs a junction between a metal and a doped semiconduc-
tor [RR96]. The difference in work functions between the two materials creates an
electrostatic barrier, which can be overcome by the energy from the absorption of
photons. At the TTF FEL, platinum silicide photodiodes (PtSi) have been used. By
depositing platinum on a silicon crystal and annealing, the platinum diffuses into the
silicon and the platinum silicide had been formed in-situ. As a result, the PtSi–Si
Schottky contact had been formed inside the bulk material, at some distance be-
low the original surface of the crystal (figure 4.13a). Therefore, it could be made
atomically clean, resulting in a spatially uniform response that is stable under VUV
exposure up to doses of 150mJ/cm2 [SMK+96].

The high sensitivity of this detector was suitable for low to intermediate power
densities of the FEL, from spontaneous emission up to two orders of magnitude
below saturation. Figure 4.13b shows a signal from this detector.

Thermopiles

A Thermopile detector is based on the Seebeck effect. The electrical potential in the
joints between two dissimilar conductors at the presence of a temperature difference
between the junctions is measured. Incident radiation establishes a temperature
gradient ~∇T perpendicular to the surface of the detector (figure 4.14a). The present
detector was composed of a YBa2Cu3O7−δ film and is operated at room temperature.
The crystallographic film c-axis was tilted to the film surface normal resulting in a
transverse voltage. This had been shown to be proportional to the power of the
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4.5. Photon beam diagnostics

a)

Fast thermoelectric response of normal state YBa 2Cu3O72d films
S. Zeuner,a) W. Prettl, and H. Lengfellner
Institut für Angewandte Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 19 September 1994; accepted for publication 16 January 1995!

Normal state YBa2Cu3O72d films, epitaxially grown ‘‘off-c axis’’ with tilt angles up to 20° are
shown to be fast thermoelectric detectors for radiation from UV to far infrared wavelengths. Upon
radiation heating of the tilted films a thermoelectric voltage arises due to the anisotropy of the
thermopower in YBa2Cu3O72d . The response time is limited by the decaying temperature gradient
and thus by heat diffusion. For thin films we have measured a response time from&1 ns in the UV
to;5 ns in the far infrared. Because of the wavelength dependent reflectivity, the responsivity of the
films varies between 0.5 V/MW and 20 V/MW. Thus, thin tilted YBa2Cu3O72d films can be used as
fast room temperature detectors over a wide spectral range. ©1995 American Institute of Physics.

Large amplitude voltaic response~;1 V! has been ob-
served in normal state YBa2Cu3O72d films ~YBCO! subject
to pulsed laser irradiation by several groups.1–6 Recently it
has been shown that these large signals arise due to a trans-
verse thermoelectric effect which becomes effective in epi-
taxial films where the YBCOc axis is inclined by an anglea
with respect to the macroscopic surface normal.7 Films
grown with a large tilt anglea;10°220° show open circuit
voltages up to 250 V for fluences slightly below the destruc-
tion limit. These films can be used as room temperature de-
tector elements of high dynamic range, since their output
voltage is proportional to the incident laser power over more
than 11 orders of magnitude.7 Up to now, investigations have
been focused on relatively thick films~d>100 nm! with re-
sponse timest*15 ns. In this letter we report on an investi-
gation of the response time and the responsivity of very thin
films ~d535 nm! over an extremely wide spectral range.
Pulsed lasers ranging in wavelength from the UV to the far
infrared ~FIR! have been used to irradiate the tilted films.

Heating the surface of a thin film by the absorption of
radiation establishes a temperature gradient“T perpendicu-
lar to the film surface. Due to the Seebeck effect a thermo-
electric field

E5S “T ~1!

is generated, where the Seebeck tensorS shows an offdiago-
nal element7

Sxz5DS sin a cosa ~2!

for our experimental configuration~see Fig. 1!. DS5Sab
2Sc;210 mV/K8 is the difference of the absolute ther-
mopowers in theab plane and along thec axis of YBCO.
Sxz gives rise to an electric field perpendicular to the tem-
perature gradient leading to a voltage7

U5DS•DT•
l

d
a, ~3!

whereDT is the temperature difference between film surface
and film bottom,l is the diameter of the illuminated spot,d
the film thickness, anda has been assumed to be&20° so
that the approximation sina cosa'a holds. In comparison

to a conventional thermocouple where a voltageU long

5DSDT is obtained, the voltage in this transverse configu-
ration is enhanced by a geometric factor (l /d) a, which is of
the order of 1042105 for thin films with large tilt angles. For
a 35 nm film witha520° and a laser spot with diameter
l55 mm Eq.~3! gives a sensitivity ofU/DT;500 mV/K.
Therefore, even a small temperature difference induced by
radiation heating leads to a substantial output voltage.

Epitaxial YBCO films with thicknesses between 35 and
500 nm were grown by standard laser ablation on SrTiO3

substrates cut with the surface at an angle ofa510° to the
~100! plane. X-ray analyses showed that the films grow with
the~100! planes parallel to the SrTiO3 ~100! planes, resulting
in coherently tilted films with thec axis inclined by 10° to
the surface normal. The films hadTc’s between 84 K and 91
K, indicating good film growth. Electrical contacts were
made from the films to 50V coaxial cables with silver
loaded conductive paint. Voltage signals were recorded with
a 500 MHz bandwidth oscilloscope.

Figure 2 shows the response of a series of YBCO films
with a510° to laser pulses from a XeCl excimer laser
@l5308 nm,tp'30 ns~full width half-maximum!#. The 35
nm thick film almost reproduces the temporal structure of the
laser pulse. The thicker films show an increasing response
time, up to;100 ns for the 400 nm film. Also shown in Fig.
2 with broken lines is the response of the films as calculated

a!Electronic mail: stefan@qi.ucsb.edu

FIG. 1. Schematic cross section of a YBa2Cu3O72d film, with the c axis
tilted by an anglea with respect to the macroscopic surface normal n. The
laser induced temperature gradient leads to a thermoelectric fieldE which
has a component in the plane of the film.

1833Appl. Phys. Lett. 66 (14), 3 April 1995 0003-6951/95/66(14)/1833/3/$6.00 © 1995 American Institute of Physics
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Figure 4.14.: Thermopile detector. a) Schematic cross section of a YBa2Cu3O7−δ
film [ZPL95]. b) Signals from the detector[Ger03].

radiation over more than 11 orders of magnitude [LZPR94]. The signal has a fast
rise time of 1 ns. Signals obtainet at the TTF FEL are shown in figure 4.14b.

Microchannel plate detector

Two microchannel plate (MCP) detectors [Faa01] were installed (figure 4.15), one in
front of the other detectors , one at the very end of the set-up. They were not inserted
directly into the beam, but measured the FEL radiation scattered to the side on a
thin wire. A variation of the amplifying voltage allows to adapt the measuring range
by several orders of magnitude and to cover the full range from spontaneous emission
to the saturation of the FEL. These detectors had been cross-calibrated with other
detectors. The energy growth in the radiation pulse as it passes the undulator is
shown in figure 4.16.

Gas monitor detector

The gas monitor detector (GMD) [RGK+03] measures the atomic photo-ionisation
of a noble gas at a particle density of about 1017 m−3, corresponding to a pressure of
10−3 Pa. It was separated from the accelerator vacuum of 10−7 Pa by a differential
pumping stage. About 106 to 109 electrons and ions are created from each FEL
pulse. They are separated by a homogeneous electric field (figure 4.17). Positive and
negative charge carriers were collected in Faraday cups. The ions passed through
an acceleration section, which allows to determine their charge through their time of
flight (q ∝ t−1/2). It has been verified that no second-order effects lead to a double
ionisation of the xenon atoms.

Due to the low particle density and the absence of an input window, the detector
was almost transparent, even for VUV radiation. However, one has to keep in mind
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4. The TTF Accelerator and SASE-FEL

a)

wire

b)

micro-channel platePtSi photodiodes

Figure 4.15.: Microchannel plate detector. a) wire that can be inserted into the
beam and reflects a part of it into the actual detector. b) microchannel plate and
two photo-diodes.

Figure 4.16.: Average energy in the FEL pulse as a function of the active undulator
length [Ayv02b]. In this plot, the length comprises the space between the undulator
modules. From this, one can infer a gain length of 67 cm. Circles: experimental
results. Solid curve: numerical simulations with the code FAST [SSY99].
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4.5. Photon beam diagnostics

Acceleration section

Figure 4.17.: Schematic diagram of the gas monitor detector
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Figure 4.18.: Signals from the microchannel plate (top) and the gas monitor detector
(bottom).

that diffraction occurs at the aperture of the differential pumping stage. The detector
medium is not affected by radiation damage, even at a radiation level of 1020 W/m2.
It had been calibrated to a primary standard in the Radiometry Laboratory of the
Physikalisch-Technische Bundesanstalt (PTB). Signals from the MCP detector and
the gas monitor are shown in figure 4.18.
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4. The TTF Accelerator and SASE-FEL

4.5.2. Measurements of the spectrum

The spectral distribution of the radiation pulse could be measured with a spectrom-
eter [GFL+01]. It consisted of a normal incidence grating with 1m focal length; the
diffraction pattern which was produced on a fluorescent screen was imaged with tan-
dem optics providing a very large aperture. This set-up collects 5.3% of isotropically
emitted light from the screen. The image intensifier was coupled to a CCD, which is
digitised directly in the device. It was controlled and read out by a fibre optical link
from the control room. A wavelength resolution of 0.2 nm has been measured with
this spectrometer, while the covered wavelength range is 7 nm [GFL+01]. Single-shot
spectra could be recorded using the short exposure times of the image intensifier
(figure 4.19).
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Figure 4.19.: Measured spectra of FEL pulses. Individual electron bunches produce
different spectral distributions. An averaged spectrum is also shown.
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5. Experimental Set-up for the
Coherence Measurements at the
TTF FEL

The transverse coherence of the TTF Free Electron Laser has been measured with
double slit experiments, installed in the ultra high vacuum of the accelerator. The
diffraction pattern was observed on a fluorescent crystal. This chapter contains a
technical overview of the set-up, describing the slits, the fluorescent crystal and the
CCD camera. The devices were installed in the photon diagnostics area, shown in
figure 4.12: the circular apertures and slits in positions 3 and 4, the fluorescent crystal
in position 9 and the CCD camera in position 10.

Due to the high absorption of 100 nm radiation by almost any material, it is not
possible to extract the radiation from the accelerator beam tube through an optical
window. Therefore, the entire set-up was incorporated into the accelerator vacuum
system. As a consequence, the slit arrangement and the distance between slits and
screen could not be varied during the measurements described in this thesis. To fulfil
the far field condition (3.23) for an aperture with 3mm diameter, the distance to the
screen would have to be much larger than 70m, which is not feasible in the present
set-up. Therefore, near field (Fresnel) diffraction patterns were recorded.

5.1. Apertures and slits

Different apertures have been moved into the beam at a distance 11.84m behind the
undulator exit and 3.1m in front of the fluorescent crystal. Double slits with different
separations were cut into the same metal foil, shown in figure 5.1. The arrangement
could be moved horizontally and vertically with respect to the beam axis by stepper
motors. For the measurement of the double slit diffraction patterns, the desired slit
pair was selected by centring it with respect to the FEL beam and by introducing
a circular aperture 0.23m in front of the slits that let only the central part of the
beam pass. Slit pairs of 0.5, 1, 2 or 3mm horizontal separation, 1, 2 or 3mm vertical
separation or crossed slits could be selected.

The slits were 2mm long. The slit pairs with 0.5, 1 and 2mm had a width of
100µm, the width of the pairs with 3, 3.5 and 4mm was 200µm. At 3.1m distance,
the diffraction pattern of a single slit with 200µm width is only a few millimetres
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5. Experimental Set-up for the Coherence Measurements at the TTF FEL

wide. Two such slits separated by 3mm produce two separated single slit diffraction
patterns and no double slit interference is visible. However, two of the slits belonging
to the 1 and 2mm pairs, which have a width of 100µm have a separation of 3mm. The
overlap was small but sufficient, and measurements have been recorded successfully.

The slits were manufactured from 50µm thick stainless steel foil by laser cutting
[Mey00]. The crossed slits can be seen in figure 5.2. The precision of the edges is
2.5µm rms. The foil is completely opaque at a wavelength of 100 nm.

a) b)

Figure 5.1.: a) The double slits cut into stainless steel foil in a support frame and
b) the complete unit.

5.2. Fluorescent crystal

Cerium doped yttrium aluminium garnet (Ce:YAG, Y3Al5O12 : Ce) is a fast scintil-
lator, its decay time constant is 80 ns. It is mechanically robust and suitable for
ultra high vacuum applications. Due to its good radiation hardness and high quan-
tum efficiency, it is widely used in the diagnostics of electron and photon beams
[MRY+00]. A Ce:YAG crystal with a thickness of 2mm was used for observation of
the interference patterns.

In addition, a lead tungstenate (PbWO4) crystal was installed. This material has
a lower sensitivity but features a linear response towards higher radiation intensities.
Due to the low light yield, it could not be used for measurements of double slit
diffraction patterns. Table 5.1 summarises the properties of the two scintillators.
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5.2. Fluorescent crystal

a) b)

2 mm
100 µm

Figure 5.2.: Microscopic view of the crossed slits. The slits are 2mm long and 100 µm
wide. The right image shows a detail.

Table 5.1.: Properties of CeYAG and PbWO4 [Tec02, CL99, Det00, Sug01]

CeYAG PbWO4

chemical formula Y3Al5O12 : Ce PbWO4

refractive index 1.8 2.16
density 4.6 g/cm3 8.29 g/cm3

wavelength of max. emission 550 nm 520 nm
decay constant 80 ns 2 . . . 3 ns

The two crystals were mounted on an actuator to be inserted into the photon beam
line (Figure 5.3, located at position 9 in Figure 4.12). The Ce:YAG crystal had some
scratches (Figure 5.4) that degraded the quality of the image. The area selected for
the analysis of the horizontal slit diffraction patterns was fortunately not affected
(see section 6.1.1).

At the present intensities of approximately 1012 W/m2, the Ce:YAG crystal shows
saturation effects, which have been measured and were included in the analysis of
the recorded images. The procedure is described in section 6.1.2.

Figure 5.5 shows the absorption spectrum of Ce:YAG. The FEL photons with a
quantum energy of 12.4 eV and the 4.7 eV photons used for determining the crystal
resolution (Chapter 6.1.3) are absorbed in the surface layer of the crystal and excite
fluorescence. The emission spectrum is also shown in figure 5.5.

The resolution of the fluorescence image is limited by diffuse light scattering in the
crystal. Furthermore, electron-hole pairs can travel in the crystal before recombina-
tion. In the section 6.1.3, a measurement of the scattering is described.
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5. Experimental Set-up for the Coherence Measurements at the TTF FEL

a) b)

Figure 5.3.: The frame that holds the PBWO4 crystal (bottom) and the Ce:YAG
crystal (second from bottom), a) seen from the beam side and b) from the back side.

5.3. Camera

5.3.1. Optics

Since an MCP detector (position 12 in figure 4.12) was situated immediately down-
stream of the fluorescent crystal, the CCD camera for the observation of the diffrac-
tion patterns had to be mounted at an angle of approximately 35◦ with respect to
the normal of the crystal. The depth of field of a conventional camera lens would
have been insufficient to produce a sharp image of the entire crystal. For this reason,
the Nikon shift/tilt lens Nikkor 85mm f/2.8 D was used. Using such a tilted lens, the
image is focused over the complete plane when the three planes through the object,
the lens and the detector intersect in one line1. The lens could be tilted by 8.3◦,
which was not completely sufficient given the present distances and angles: using
the equations derived in appendix B, a tilt angle of 16.2◦ would have been ideal.
Nevertheless, the focusing was much improved, compared to the case of a rectilinear
set-up. Detailed measurements on the optical system are presented in section 6.2.2.

The mechanical set-up permitted a distance of approximately 150mm between the
crystal and the front of the lens body. The distance g between the object and the

1This criterion is derived in appendix B.
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5.3. Camera

a) b)

Figure 5.4.: Images of the Ce:YAG crystal, taken with the CCD camera that was
used to record the diffraction patterns. Two M3 screws and washers hold the crystal
in its frame. a) The crystal during installation. The set-up is illuminated by diffuse
light; in the middle of the crystal, some scratches are made visible by a red alignment
laser. b) The crystal is illuminated by the FEL. The shape of the beam tube in front
of the crystal is visible; at the edge, diffraction effects can be seen. Fluorescence light
that is internally reflected leaves the crystal at the edges.

actual lens is 205mm. This is less than the smallest foreseen focal distance of the
lens, therefore an intermediate ring was mounted between lens and camera body.
The image distance measured between the centre of the lens and the CCD sensor is
145mm.

5.3.2. CCD sensor

The image is recorded with a CCD (charge coupled device) camera. A SONY CCD
chip is installed in the SensiCam FastShutter, a camera manufactured by PCO Com-
puter Optics [PCO02]. The CCD has 1280 × 1024 pixels with a size of (6.7 µm)2

each. The camera features a full frame read-out where all pixels are exposed simul-
taneously, the interline transfer technique to achieve short exposure times and digital
data acquisition to ensure reliable operation. The quantum efficiency of the chip is
shown in figure 5.6.

the full-frame CCD exposes all pixels synchronously, while in CCIR cameras with
interlaced read-out, the odd and even lines of the array are exposed and read out
with a time difference of 20ms and in the case of very short light pulses only half of
the picture elements contain image data.

For the CCD chip, the interline transfer technique is employed to achieve expo-
sure times below one microsecond: each active pixel is connected to an additional
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Figure 5.5.: a) Absorption spectrum of Ce:YAG, for the 2.38 eV Ce3+ emission (dots)
and for the direct 4.13 eV YAG emission (solid line) [KLLZ00].
b) Emission spectrum of Ce:YAG, when excited by 7 eV photons (dots) and excited
by 5.2 eV photons (solid line) [KLLZ00].
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Figure 5.6.: Quantum efficiency of the CCD sensor [PCO02].
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a)

covered pixels
light-sensitive pixels

read-out 
row

charge
transfer

to pre-
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b)

Figure 5.7.: An interline transfer charge coupled device. This technique is used to
allow short exposure times without a mechanical shutter. a) Schematic drawing of
the interline transfer read-out, b) microscopic view of the microlenses on an interline
transfer CCD chip [N.02].

shift register cell, which is protected against direct light exposure (figure 5.7a). The
charges from the exposed pixels can be transferred to these repositories within less
than 0.1 µs; they can then be read out. The shift registers are located on the surface
of the CCD and reduce the sensitive area of the chip. To maintain a good quantum
efficiency, the lens-on-chip technique is used: a layer of microlenses just above the
detector elements focus the light to the active pixels (figure 5.7b).

A Peltier thermoelectric element cools the CCD down to −12 ◦C, which reduces the
noise in the detector to make use of the full range of the 12 bit ADC. The quantum
efficiency is around 40% for the light emitted by the fluorescent crystal (Figure 5.6).

The CCD signal is digitised in the camera itself. In comparison with conventional
CCIR video technology, where an analogue signal is transmitted to a frame grabber
outside of the accelerator area, the digital readout reduces crosstalk to a minimum
and assures that the read-out cycle of the ADC is synchronised to the pixel clock of
the CCD. The camera was controlled and read out through a fibre optical link, a very
reliable communication in areas of high electromagnetic noise such as the accelerator.
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6. Detailed Investigation of the
Experimental Set-up

In this chapter, the components of the experimental set-up are described in more
detail and their effects on the measurements are discussed. There are two main
factors that limit the resolution of the measured diffraction patterns: the fluorescent
crystal and the optical system of the camera. Measurements to determine their point
spread function have been done.

There are methods to reconstruct images that have been acquired with a limited
resolution. The Lucy-Richardson algorithm is described and tested on images ac-
quired in a laboratory set-up. The careful use of this procedure allows to improve
the images.

6.1. Fluorescent crystal

6.1.1. Uniformity

As visible in figure 5.3, there were some scratches on the fluorescent crystal. A
projection of a central area of this image on the y axis (the same area that will be
used in the analysis of the horizontal double slit diffraction patterns in chapter 7)
is shown in figure 6.1. A Gaussian has been fitted to the centre of the intensity
distribution. The deviation from this Gaussian is in the order of 2.5% rms.

6.1.2. Saturation effects

The Ce:YAG crystals go into saturation at high intensities [MRY+00, LBYW98].
The light output of the Ce:YAG crystal is then a non-linear function of the incident
photon pulse energy. In the present experiment, an energy deposition of 10µJ is
expected within 100 fs on an area of approximately 10mm2.

The saturation curve has been measured by comparing the intensity of the fluo-
rescence light to the signal of the microchannel plate detector as a reference. The
set-up is depicted in figure 6.2. A wire was inserted into the FEL beam in front of
the fluorescent crystal to reflect part of the beam into the MCP detector.

Three measurement series were recorded at different operating voltages of the
MCP detector. The intensity of the FEL has been calculated according to a previous

102



6.1. Fluorescent crystal

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

 2.5 % rms

y position / mm

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

measured profile
Gauss fit: σ = 3.46mm

Figure 6.1.: Projection of the central area of the crystal that has been used for
the measurements of the transverse coherence. The illumination is not completely
uniform, but is apparent that no major scratches lie in the selected area.

Imaging with tilted lens

Ce:YAG
crystal

FEL

Wire

MCP detector

cooled CCD

Figure 6.2.: Set-up to measure the saturation of the Ce:YAG crystal. The yield of
fluorescence light is compared to the signal of a microchannel plate detector.
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6. Detailed Investigation of the Experimental Set-up

calibration [Faa01]. The gain of the MCP detector varies exponentially with the
voltage across the micro-channels, it doubles every 50V.

The light output of the crystal, as measured with the CCD camera, is shown in
figure 6.3 as a function of the FEL pulse energy. Fluctuations of the FEL beam
positions affect the coverage of the wire and therefore influence the amount of light
that is reflected onto the microchannel plate. Its measurement depends therefore
not only on the intensity of the FEL, but also on the direction of the beam. This
can be measured with the fluorescent crystal and a correction can be applied. The
wire creates a diffraction pattern on the crystal. For the present comparison of the
signal from the MCP detector with the intensity on the fluorescent crystal, a region
in the centre of the image was chosen to record fluctuations of the beam position in
a similar manner with both detectors.

The fluorescent light yield of the crystal can be approximated by a function of the
type

If = A
(
1− e−Ii/I0

)
(6.1)

where Ii is the incoming intensity, If the intensity of the fluorescence light and the
parameters A and I0 can be determined by a fit.

Equation (6.1) has been fitted to the three data sets from the different operating
voltages fo the MCP detector, as shown in figure 6.3. At intensities relevant for the
present set-up, the three data sets are in good agreement. The inverse of the fit
function to all data has been used to correct the images.

If If > A, equation (6.1) cannot be inverted, and already for If ≈ A, the inversion
results in very large values for Ii. This problem occurred a few times, because of
X-rays hitting directly a single pixel of the CCD. These values have been eliminated
and replaced by the value of an adjoining pixel.

6.1.3. Scattering effects

An ultraviolet photon entering in the Ce:YAG crystal can be absorbed by the Cerium
ions, or, if it has sufficient energy, directly excite electronic transitions. Both pro-
cesses result in the generation of electron-hole pairs. Their recombination yields
visible photons. However, this does not happen immediately, the electrons and holes
can travel a distance of a few micrometres in the crystal.

Photons created by fluorescence are emitted uniformly in all directions. Only
a small fraction enters the camera directly, many are scattered inside the crystal.
Those that are emitted with a large angle to the direction of the incident beam are
internally reflected and leave the crystal at the edges. This can be seen for example
in the images acquired with the FEL in figure 5.4.

As a consequence, the fluorescence photons may be emitted from a different loca-
tion than the original conversion point, which leads to a degradation of the resolution.
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Figure 6.3.: Light yield of the Ce:YAG crystal as a function of the FEL pulse energy.
The measured fluorescence light output is plotted as a function of the FEL pulse
energy, which has been measured with a multichannel plate detector. Three data
sets at different operating voltages of the MCP detector show good agreement. The
lines are fits of the form a(1− e−bx) to the three data sets.

In addition, a uniform background of scattered photons is expected. The effects de-
pend to a large extent on the impurities in the crystal.

The broadening of the image details was measured by imaging the fluorescent light
of a point-like UV source. A slit of 10µm width was placed 1mm in front of the crys-
tal. It was illuminated by the photoinjector laser of the TTF linac (figure 6.4). The
wavelength is 262 nm, corresponding to a photon energy of 4.73 eV. These photons
are absorbed by the cerium ions; the direct YAG emission is not excited. The image
was recorded with a microscope, a Leica MZ 7.5 with an objective lens 0.32× and
a zoom set to 5×, equipped with a CCD with 4.65µm pixel size. The resolution of
this device in the object plane has been determined to 5µm by measuring its point
spread function.

The broadening effect of the scattering is shown in figure 6.5. The profile of the slit
is compared to the profile of the fluorescence light, which shows a slight asymmetry
due to inhomogeneities of the crystal surface. A Gaussian fit is a good approximation
of this profile. Its standard deviation is 22.5µm, the full width at half maximum
(FWHM) is 53.0µm. Subtracting the contribution of the width of the slit and the
resolution of the microscope, the FWHM for the scattered light is 52 µm.
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Figure 6.4.: Set-up to measure the broadening of the image due to the scatter of
fluorescence photons in the Ce:YAG crystal.
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Figure 6.5.: Profile of the fluorescent light behind a slit. The actual slit profile is
broadened by the scatter in the crystal. A Gaussian curve has been fitted to the
data.
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6.2. Camera

The imaging process in a camera involves usually a re-scaling with a certain magni-
fication factor, but also distortions and blur are introduced. While distortion effects
are small in the present set-up, the blur has to be considered in detail, as it reduces
the visibility of the double slit diffraction patterns, apparently lowering the coherence
of the FEL.

6.2.1. Calibration

The magnification of the camera was calibrated in the FEL by moving a small aper-
ture directly in front of the crystal by a given distance and observing the movement
of the spot of the FEL radiation on the crystal. The CCD had square pixels with
a size of (6.7 µm)2. The projection of this size onto the object plane yields a hori-
zontal size of 13.1µm. Due to the inclined plane of the object with respect to the
optical axis of the camera, the vertical projected pixel size is different; it has been
determined to be 9.1µm.

6.2.2. Optical system

The resolution of an imaging lens system is limited by the diffraction at the aper-
ture (which is increasing with small apertures) and by various lens errors (generally
increasing with large apertures).

The resolution of an optical system can be expressed by its modulation transfer
function (MTF), defined as the ratio between measured contrast in the image and
actual contrast in the object as a function of the spatial frequency. In frequency
space, the measured image is the product of the MTF with the scaled image. To
measure the MTF, it is convenient to use test patterns that are segmented in areas
with one pure spatial frequency, i.e. with a sine-like variation of the transmission,
illuminated by diffuse light. Generally, the MTF gets smaller with higher spatial
frequencies, because the smaller details are smeared out by the imaging process.
The modulation transfer function is closely related to the contrast transfer function
(CTF) [Nil01], which is determined by measuring the contrast of a square wave (bar)
object as a function of spatial frequency.

The resolution of an optical system can also be characterized by the point spread
function (PSF), defined as the distribution in the image plane produced by a point-
like light source in the object plane. The variables u, v will be used in the object plane
and x, y in the image plane a magnification factor of 1 will be assumed. Because the
photons of incoherent light are emitted independently, the image Φ that an extended
object creates with a given optical system is the convolution of the ideal image Ψ
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with the point spread function P of the imaging system:

Φ(x, y) =

∫ ∞

−∞

∫ ∞

−∞
P (x− u, y − v) ·Ψ(u, v)du dv (6.2)

or, using discrete distributions with indices m,n in the object plane and i, k in the
image plane:

Φi,k =
∑
m,n

Pi−m,k−n ·Ψm,n (6.3)

The image of a point-like object δ(x) · δ(y) will simply be P (x, y), hence the name
point spread function. For a perfect lens with finite aperture, the PSF is a Bessel
function:

P (r) =

(
J1

(
2πR
λb
r
)

2πR
λb
r

)2

(6.4)

where r =
√
u2 + v2, R is the radius of the aperture, λ the wavelength of the light

and b the distance between lens and image. In the present case, 2R = 85 mm/2.8
and the factor 2πR

λb
= 1.2 · 106 m−1. The FWHM of the central peak of the Bessel

function is 2.7µm in the image plane, much smaller than the pixel size of the CCD.1

Generally, lens errors dominate and P is much broader.
In frequency space, a convolution is just a multiplication; the point-like source

corresponds to the unit function, its multiplication with the Fourier transform of the
Point Spread Function describes the effect of the lens; thus, the Modulation Transfer
Function is just the Fourier transform of the Point Spread Function.

It should be noted that this discussion of imaging system takes for granted that the
light that comes from the object is incoherent. Coherence would introduce additional
diffraction effects at all apertures in the lens. Indeed, fluorescent light is incoherent,
as well as the light produced by an tungsten halogen lamp for the measurement of
MTF and PSF. Therefore the image produced by different parts of the object can be
treated independently. The total image is the sum of the intensities.

Measurement of the modulation transfer function

The modulation transfer function of the Nikkor 85mm f/2.8 D shift/tilt lens was
directly measured with a test slide [Lam83], using the same distances between lens
and object and the same aperture as in the accelerator. The tilt of the lens was set to
8.3◦. The slide was illuminated from the back with incoherent, diffuse light created
on a screen with a gooseneck lamp. The image was exposed for 1ms, the longest
exposure time possible. Figure 6.6 shows the recorded image.

1If one reduced the aperture of the lens to f/22, the FWHM of the PSF would be 21µm, which is
well above the pixel size.
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6.2. Camera

A background (“black”) image was subtracted. To analyse the image, rectangles
within the different zones of the slide were selected and a sine curve was fitted to their
projections. The amplitude of these fits, divided by the reference amplitude given
by the manufacturer of the slide, is the modulation transfer function of the given
spatial frequency. As expected, the MTF decreases with increasing spatial frequency
(figure 6.8).

Following the definition of ISO 12233 of limiting resolution as the “value where
the imaged response equals 5% of the reference response or the value of the Nyquist
limit, whichever is lower” [McD99], the following statements can be made:

� In horizontal direction, the modulation transfer function of the lens reaches a
value of 0.05 for a spatial frequency of 17 mm−1 (figure 6.8a), corresponding to
a limiting resolution of one line pair per 58µm.

� In vertical direction, the Nyquist limit of the CCD detector is reached, with a
projected pixel size of 9µm. The limiting resolution is thus one line pair per
18µm.

Measurement of the point spread function

The PSF was directly measured by imaging a pinhole of 1µm diameter, illuminated
with incoherent light. Again, the tilt of the lens was set to 8.3◦ and the distances
and aperture were the same as in the accelerator set-up. The size of this pinhole is
much smaller than the diffraction limit of the lens, it can be regarded as a point-
like source. Ten images were added to reduce noise, and a background image was
subtracted. Due to the tilt of the lens, the PSF is not axisymmetric (figure 6.7). The
FWHM of its x-projection is 5.6 pixels = 37 µm in the image plane and 51µm in the
object plane (measured along the direction of the tilted object). In y direction, the
FWHM is 2.2 pixels = 15 µm in the image plane and 29 µm in the object plane.

The absolute value of the Fourier transforms of the projections are shown in fig-
ure 6.8. They correspond to the direct measurement of the MTF with the test slide.

6.2.3. Deconvolution of the optical resolution

The knowledge of the lens errors that limit the resolution in an imaging system can
be used to reverse the detrimental effects to some extent. Recall that the measured
image Φ can be described by a convolution of the ideal image Ψ with the point spread
function P (see Eq. (6.3)). Due to the convolution, Φ is a much smoother function
than Ψ. In the Fourier space, the high spatial frequencies will be generally reduced.

The system of equations (6.3) can in principle be solved for Ψ if the point spread
function P is accurately known; in Fourier space, a convolution is simply a multi-
plication, so the solution can be found by division. However, the measured image is
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Figure 6.6.: a) Test slide with sinusoidal density modulation. 1) and 4) different
levels of grey, 2) sinusoidal density modulation with a period of 3.9 to 50 µm, 3) with
a period of 62.5 to 500µm. The slide has been imaged with the Nikkor 85mm f/2.8 D
shift/tilt lens at the same distance and with the same tilt as in the set-up for the
TTF linac. b) projection of the sine pattern 3, c) projection of the sine pattern 2. In
reality, the amplitude of the oscillation is constant, in the image, it decreases with
higher spatial frequency.
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Figure 6.7.: a) Measured Point Spread Function of the Nikkor 85mm f/2.8 D shift/tilt
lens. Only the central part of the image is shown. The lens was tilted around a
vertical axis, in clockwise direction seen from the top; the PSF shows a long tail to
the left of the image. b) and c) Projections along the x and y direction.
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Figure 6.8.: Fourier transform of the projections of the PSF in figure 6.7, a) in x
direction, b) in y direction. The modulation transfer function, measured with the
sinusoidal density pattern (see also figure 6.6) is shown for comparison. This curve
has been measured in two parts, from 2 to 16 and from 20 to 40mm−1, respectively.
This accounts for the discontinuity between 16 and 20mm−1.

always affected by noise:

Φi,k =
∑
m,n

Pi−m,k−n ·Ψm,n + Ni,k (6.5)

where N is a random noise matrix. Such noise could be read-out noise of the CCD,
or even photon statistics for low intensities. This varies typically from pixel to pixel,
two adjacent pixels are not correlated.2 The Fourier spectrum of this noise is evenly
distributed over the complete spectrum. If one now neglects the noise and solves
Eq. 6.5 with N = 0, the high-frequency part of this noise will be amplified; fur-
thermore, this will inevitably lead to negative values for Ψ. (For an example, see
figure 6.10.)

It could now appear suitable to smooth the function Φ prior to solving Eq. (6.3)
by lowering the high-frequency Fourier components. However, keeping in mind that
this smoothing can be regarded in object space again as a convolution with some
appropriate function, it becomes obvious that nothing is gained, the original difficulty
simply reappears.

2This is not true if the image is acquired with an analogue camera. In this case, electromag-
netic disturbances in the analogue signal transmission lead to a correlated noise for horizontally
adjacent pixels.
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6.2. Camera

More appropriate are methods based on the maximum likelihood principle, impos-
ing additional constraints on the smoothness and non-negativity of the reconstructed
distribution. Originally developed in the 1970’s by Lucy [Luc74] and Richardson
[Ric72], this method (and the numerically accelerated version [BA97]) are widely
used to correct for lens errors.

The Lucy-Richardson algorithm is derived in the following. For the sake of clarity,
the treatment is restricted to a one-dimensional distribution and a magnification
factor of 1.

The point spread function is the probability P (x|ξ)dx that a photon originating in
ξ is detected at the point x:

Φ(x) =

∫
Ψ(ξ)P (x|ξ)dξ (6.6)

This is the same as equation (6.3), written in the language of probability theory: If
Eq. (6.6) is applied for a large number of photons, Eq. (6.3) results. Introducing the
inverse probability Q(ξ|x) that the real value is in the interval [ξ, ξ + dξ], when the
measured value has been in the interval [x, x + dx]; from the normalisation of the
probability P (x|ξ), it follows that

Ψ(ξ) =

∫
Φ(x)Q(ξ|x)dx (6.7)

Unfortunately, one cannot simply solve this equation for Φ(x) becauseQ(ξ|x) depends
on Ψ(ξ). This can be calculated from Bayes’ theorem on conditional probabilities

Q(ξ|x) =
Ψ(ξ)P (x|ξ)∫
Ψ(ξ)P (x|ξ)dξ

(6.8)

The equations (6.7) and (6.8) suggest the following method of iteration:

1. Use the measured distribution Φ as a first guess Ψ(0)

2. With the known point spread function P (x|ξ), take Eq. (6.8) to calculate a first
estimate Q(1)(ξ|x):

Q(1)(ξ|x) =
Ψ(0)(ξ)P (x|ξ)∫
Ψ(0)(ξ)P (x|ξ)dξ

(6.9)

3. Insert this estimate for Q(ξ|x) in Eq. 6.7 to calculate an improved estimation
of Ψ:

Ψ(1)(ξ) =

∫
Φ(x)Q(1)(ξ|x)dx (6.10)

4. The iteration continues by calculating Q(2) using Ψ(1) and Ψ(2) using Q(2). The
procedure is repeated as long as necessary.
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This procedure is called the Lucy-Richardson algorithm.
It has been shown that this method conserves the total intensity, avoids negative

solutions, converges to a distribution and the likelihood that Ψ(n) is imaged with
Eq. (6.6) as Φ increases with each iteration [Luc74]. However, this likelihood does
not reach its absolute maximum. Instead, the smoothness of the reconstructed image
is better than of the one that maximizes the likelihood. This is seen as an advantage
since very high spatial frequency contributions to the measured distribution can be
generally attributed to noise.

The Lucy-Richardson deconvolution algorithm can be accelerated by evaluating
the change each pixel is subject to due to the iteration instruction. The change
from the two last iterations is evaluated to predict the direction of the following
step; one achieves thus a faster convergence of the reconstructed image [BA97]. An
implementation of the accelerated Lucy-Richardson algorithm can be found in the
MATLAB Image Processing Toolbox3 [Mat01a].

The point spread function may depend on the position in the image. Lens errors,
for example, are more important in the outer part of the observed field, thus the width
of the PSF increases as one moves the aperture away from the centre or out of the
focal plane. However, a deconvolution with a spatially varying point spread function
is numerically elaborate since it cannot be done in Fourier space [BRHM96]. Here,
the narrow PSF of the centred, focused aperture has been used in the data analysis in
order to avoid that an image is reconstructed with a higher contrast than is present
in the real diffraction pattern.

6.2.4. Test of the Lucy-Richardson algorithm

The Lucy-Richardson algorithm has been applied to measurements with a simulated
defocusing of the image [Ric72, Mat01a], but it seemed useful to demonstrate its
effectiveness on images that have been acquired with a real lens, producing actual
lens errors. Thus, an experiment was set up with the same lens and CCD that were
installed in the FEL (figure 6.9), using the same aperture, distances and angles. An
image of a fly’s wing, showing structures on a sufficiently small scale, was taken with
the Nikkor 85mm f/2.8 D shift/tilt lens.4 The point spread function of this lens, with
the given distances, has been described in section 6.2.2.

To demonstrate that the direct inversion of the convolution (6.5) is not applicable
in practice, this is demonstrated with the image. Figure 6.10 shows the result. The
noise of the image is amplified to a point where it appears as a checkerboard pattern,
spurious details are reconstructed.

Therefore, the image has been deconvoluted using the Lucy-Richardson algorithm.
The result is shown in figure 6.11. The visual improvement of the image quality

3the function name is deconvlucy
4The fly was found dead on the windowsill in the office. No animal was harmed in the preparation

of this PhD thesis.
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6.2. Camera

Figure 6.9.: Experimental set-up to demonstrate the Lucy-Richardson algorithm.
The test object is on the left, illuminated by a gooseneck lamp. At the top of the
photo, the camera with the Nikkor lens is shown, at the bottom, the microscope that
is used to take a reference image.
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Figure 6.10.: Deconvolution of the resolution of the imaging system by inversion of the
convolution equation 6.3. a) Complete image, b) detail. Compare with figure 6.11.
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Figure 6.11.: Image of a fly’s wing, processed with the Lucy-Richardson algorithm.
a) Raw image, acquired with the Nikkor 85mm f/2.8 D shift/tilt lens, b) magni-
fied detail, c) image processed with 10 iterations of the accelerated LR-algorithm,
d) magnified detail, e) point spread function used for the deconvolution and f) refer-
ence image, acquired with the Leica microscope.
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Figure 6.12.: Image of the resolution test pattern, processed with the Lucy-
Richardson algorithm. a) Raw image, acquired with the Nikkor 85mm f/2.8 D
shift/tilt lens, b) projection of the right column of sine patterns, c) image processed
with 10 iterations of the accelerated LR-algorithm and d) projection.

is obvious. A comparison with an image taken with a high-resolution microscope
(figure 6.11f) shows that the reconstructed details are actually present in the object.

A more quantitative analysis is possible with the resolution test pattern that has
been used for the measurement of the modulation transfer function in section 6.2.2.
The raw and the processed images are shown in figure 6.12. From the measured
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Figure 6.13.: Modulation transfer function after application of the Lucy-Richardson
algorithm. Compare to figure 6.8.

modulation depth, one obtains the modulation transfer function of the total imaging
system, including the reconstruction. This is shown in figure 6.13. The value of the
MTF surpasses one in the frequency range of 4 to 12 mm−1. This means that details
with a size of few hundred micrometres are exaggerated by this process.

This may be due to an overestimated point spread function: for the imaging of the
pinhole, the focusing was not trivial since the shape of the image changed with the
focus. Indeed, the ideal focus distance for the horizontal and vertical direction were
not the same, but displaced by a few hundred micrometres. A compromise between
the two had to be made. Focusing on the slide with the sinusoidal density modulation
was more straightforward, since the optimum focus distance could be seen easily: the
focus was adjusted until more and more of the fields were visible. Thus, the vertical
modulationtransfer function was optimised. Another reason for an overestimation of
the contrast might be the binning of the point spread function by the CCD chip.
The pixel size is not much smaller than the width of the PSF in vertical direction.

6.2.5. CCD detector

In this section, the influences of the CCD detector on the measurements are discussed.
The linearity of the CCD is better than 0.1% [PCO02], due to the purely digital read-
out. As opposed to images acquired with an analogue data transfer, a common offset
of all pixels in a row, due to charge induced in the signal cables, was not observed.
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Figure 6.14.: Dark level of the CCD, a) directly after installation and b) after four
months of operation. A region of 100 · 100 pixels, located in the upper left corner
of the images of the diffraction patterns, is shown. The vertical lines are due to
radiation damage in the read-out pixel row. Fifty measurements have been averaged.

The radiation damage to the CCD chip can be quantised by measuring the pixel
noise, i.e. the dark charge accumulated without irradiation. During four months
of operation, the dark charge increased by 1.3 LSB of the ADC, corresponding to
approximately 30 electron-hole pairs, during the four months of operation.

In addition to the overall noise, an increase in the dark charge is also observed on
individual pixels and on complete columns. Three of these are shown in figure 6.14.
It is conjectured that the read-out is done in vertical direction and that transfer
pixels have degraded due to the radiation.

The pixel noise, a common measure for the radiation damage to semiconductor
detectors, has not changed significantly during four months of operation. Its distri-
bution is roughly Gaussian (figure 6.15). It can be concluded that the radiation has
not degraded the overall detector performance. The effect of single noisy detector
and transfer pixels can be

The noise originates for one part in thermically generated electron-hole pairs within
the pixels of the CCD, for the other part in the transfer and ADC. The CCD noise
decreases exponentially with the temperature of the chip. Therefore, it was cooled
by double-stage Peltier thermoelectric cooling element to −12◦C. The signal-to-noise
ratio (SNR) could be improved, at the expense of resolution, by adding the charge
from several pixels: while the signal increases linearly with the number of pixels, the
pixel noise increases only as the square root of the number. If the charge is added
directly in the CCD chip before passing it to the ADC this is called hardware binning.
This is advantageous compared to software binning where the pixels are combined
after digitisation, because the noise of the ADC affects the signal only once. The
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Figure 6.15.: Histograms of the dark level, a) directly after installation and b) after
four months of operation. A Gaussian has been fitted to the data. The mean dark
current has increased only slightly, its standard deviation is not changed significantly.

PCO SensiCam supports hardware binning of up to 8 pixels in horizontal and 32
pixels in vertical direction.

This dark level was subtracted from the measured images. This corrects for indi-
vidual offsets of the pixels, but introduces an additional noise. The background has
been averaged over 50 measurements, yielding a relative noise increase in the image
of 0.26 LSB. If a single image had been used as a background, the noise increase
would be 1.82 LSB.

For the measurements of the diffraction patterns of horizontal slits, vertical res-
olution is more important than horizontal. Therefore, the horizontal binning has
been set to 4, while the vertical binning was disabled. For the vertical slits, the
interchanged binning was used.

To increase the signal-to-noise ratio (SNR) in the images, the measurements of a
few hundred FEL pulses have been added for each configuration.
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Results
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We must all hang together, or assuredly we shall all hang separately.

Benjamin Franklin

Figure on the previous page: double slit diffraction pattern of the TTF FEL.
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7. Measurements of the Transverse
Coherence

The double slit diffraction patterns recorded at the TESLA Test Facility FEL allow a
straightforward determination of the transverse coherence, as discussed in chapter 3.
Diffraction patterns from different slit separations show the dependency of the trans-
verse coherence on the distance. Two methods are used to determine the transverse
coherence from the measurement data: for one thing, the visibility of the central
fringe is used as a measure of the coherence at the slit separation. Furthermore,
the intensity distribution of a double slit diffraction pattern is computed in Fresnel
theory and compared to the data. The results of these two methods are verified on
diffraction patterns that have been simulated with numerical methods.

Measurements have been performed under different accelerator conditions, i.e. with
different properties of the electron bunch. First, a measurement at 100 nm FEL
wavelength with a slit separation of 1mm is presented and its analysis is described
in detail.

7.1. Measurements of the FEL in saturation

Measurements of double slit diffraction patterns were performed on February 22, 2002
(figure 7.1). The TTF FEL was running reliably with a bunch charge of 1.95 nC.
Before the actual coherence measurements were started, the performance of the FEL
was optimised by adjusting the electron trajectory in the undulator and the respective
phases of the beam and the RF systems.

As a result of these optimisations, the FEL process was saturated, i.e. maximum
output power was reached. This was confirmed by observing the bunch-to-bunch
fluctuations of the FEL pulse energy. Saturation leads to a smaller variance in
the otherwise purely stochastic FEL process. The wavelength of the radiation was
measured to be 100 nm. The middle of the two slits was aligned with respect to the
centre of the beam.

The images have been recorded by the computer that is connected to the camera.
They were saved on a network drive and synchronised with auxiliary data from the
accelerator, which were recorded by a distributed data acquisition system. The data
acquisition system is detailed in appendix D.

Image series with 0.5, 1, 2 and 3mm slit separation were recorded. The averages of
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Figure 7.1.: Measured diffraction patterns for 1mm slit separation: a) a typical
image, b) the brightest image in a series of 100 measurements, c) the average of 100
measurements, and d) the average, with dark current subtracted.
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Figure 7.2.: Measured horizontal double slit diffraction patterns at 100 nm FEL
wavelength. a) 0.5mm, b) 1mm, c) 2mm and d) 3mm slit separation.
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7. Measurements of the Transverse Coherence

100 images are shown in figure 7.2. The horizontal double slit diffraction fringes are
clearly visible, their distance is inversely proportional to the separation of the slits.
An intensity variation is also visible along the direction of the slits, i.e. the horizontal
axis. Two absolute maxima near the end of the slit and two smaller relative maxima
in the middle are visible. This pattern is due to the finite slit length.

Due to the short distance between the slits and the observation plane, the Fresnel
diffraction theory has to be applied. The effects of near field diffraction manifest
themselves especially in the diffraction pattern with 3mm slit separation (figure 7.2
d): the single slit diffraction patterns of the two slits overlap barely and the intensity
in the middle of the image is much lower than at y = ±1.5 mm. Furthermore, the
visibility varies across the diffraction pattern. It is highest in the middle and decreases
outwards. This effect is best visible in the patterns of 2 and 3mm slit separation
(figure 7.2c and d).

7.2. Simulations

The formation of the FEL radiation in the undulator, the diffraction at the double
slits and the propagation to the fluorescent crystal, the conversion of VUV photons
to visible light and the imaging of the latter onto the CCD have been simulated.
The resulting images are subjected to the same analysis routines as the measured
data. The amplitude and phase of the computed electromagnetic field are precisely
known. Thus, the theoretical value for the coherence function can be compared with
the coherence that is determined from the images with the two analysis routines.
That way, it is possible to gain information on the accuracy of the analysis.

7.2.1. FEL

The wave front of the 100 nm FEL beam at the exit of the undulator was computed
by Saldin, Schneidmiller and Yurkov with the code FAST3d (see section 2.5). The
beam is represented in the SVA approximation by a complex field amplitude.

The FEL bunch is separated longitudinally in 118 slices with a thickness of 1µm
(measured in the laboratory system). In each of these slices, the electric field am-
plitude is calculated on a square grid of 201 × 201 points. The code FAST models
the SASE process as closely as possible. In particular, the stochastic nature of the
spontaneous undulator radiation, which initiates the SASE process, is incorporated.
This leads to distorted wave fronts at the exit of the undulator.

The coherence of the FEL beam may be varied by adjusting the distortion of the
wave fronts. This may seem unnecessary, as FAST3d takes effects that influence the
coherence into account, such as the formation from spontaneous undulator radiation
and the divergence of the beam. However, the present analysis will show that the
current version of FAST3d overestimates the coherence of the TTF FEL. This may
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7.2. Simulations

be an indication that too optimistic assumptions have been made on the electron
beam properties: it was presumed to be round and having a Gaussian distribution.
In reality, the transverse phase space distribution of the beam is distorted by the
longitudinal compression. This disagreement between the simulation and the mea-
surements is currently being investigated, and a new version of FAST3d results in a
lower transverse coherence of the radiation [Yur03]. However, it is not yet published,
hence a different approach is followed in this thesis.

The complex field amplitude in front of the slits is multiplied with a space-
dependent phase aberration. This decreases the transverse coherence function. The
method is the same that has been applied to the Gaussian beam in section 3.7. The
phase aberration is randomised for each slice of the FEL bunch and the intensities of
the diffraction patterns are added. Hereby, the visibility of the interference fringes is
lowered.

The reduction of the coherence of the FEL beam improves the agreement between
the measured and the computed diffraction patterns. The magnitude of the aberra-
tion is adjusted to optimise this agreement.

7.2.2. Diffraction

The propagation of the wave fronts from the exit of the undulator through the double
slit to the observation plane is computed with the code GLAD (section 3.6.4). To
take into account the expansion of the beam, a larger grid of 512×512 points is used.
As in section 3.7, the slices are propagated individually, and the resulting intensities
at the observation plane are added.

The distortion of the wave fronts computed by FAST results in distorted diffraction
patterns for each slice. In the overall pattern, the visibility is lowered, as compared
to the coherent case (see section 3.7).

7.2.3. Effects of the experimental set-up

For a comparison of simulated and measured diffraction patterns, the effects of the
experimental set-up on the diffraction patterns (see chapter 6) are taken into account.
This is shown in figure 7.3.

� The image is convoluted with the scattering function of the crystal. A two-
dimensional Gaussian distribution with a standard deviation σ = 22.5 µm is
used, as it has been determined in section 6.1.3.

� The nonlinear response function of the Ce:YAG crystal is taken into account by
applying a function (6.1) with parameters as determined by comparison with
a calibrated reference detector in section 6.1.2.
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x / mm

y 
/ m

m

a)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

−4 −2 0 2 4
0

1

2

3

4

5

6

y / mm
In

te
ns

ity
 / 

ar
b.

 u
ni

ts

b)

−4 −2 0 2 4
0

1

2

3

4

5

6

y / mm

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

c)

−4 −2 0 2 4
0

1

2

3

4

5

6

y / mm

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

d)

−4 −2 0 2 4
0

1

2

3

4

5

6

y / mm

In
te

ns
ity

 / 
ar

b.
 u

ni
ts

e)

−4 −2 0 2 4
0

1

2

3

4

5

6

y / mm
In

te
ns

ity
 / 

ar
b.

 u
ni

ts

f)

Figure 7.3.: a) Simulated diffraction pattern for 1mm slit separation, b) intensity
distribution along the white line in a. c) Convolution with the scattering function of
the fluorescent crystal. d) Application of the non-linear response curve of the Ce:YAG
crystal. e) Convolution with the point spread function of the lens. f) Addition of
Gaussian pixel noise in the CCD chip.

� The imaging process of the fluorescent light is simulated by convoluting the
pattern with the point spread function of the optical system. The asymmetric
PSF of the tilted Nikkor lens is used as determined in section 6.2.2.

� Noise is added to the image, using the Gaussian distribution of section 6.2.5,
to obtain the same signal-to-noise ratio as for the experimental data.

The resulting images should be equivalent to the measured images and are subjected
to the same analysis procedure. The images are shown in figure 7.4.
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Figure 7.4.: Simulation of the diffraction pattern, including the effects of the exper-
imental set-up, a) 0.5mm, b) 1mm, c) 2mm, and d) 3mm slit separation.
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7. Measurements of the Transverse Coherence

7.3. Image processing

The analysis of the double slit diffraction patterns is illustrated for 1mm slit sepa-
ration. The same procedure is applied to the measured patterns (shown in the left
column of figures 7.5, 7.7, 7.9, 7.10 and 7.11) and the simulated patterns (shown in
the right column).

7.3.1. Averaging

To improve the signal-to-noise ratio of the images, in the order of 100 measurements
made under identical conditions are averaged. One calculates thus the intensity-
weighted average of the coherence.

It has to be ensured that the position of the diffraction pattern does not jitter
from measurement to measurement, as this would reduce the visibility. The position
and intensity of the diffraction pattern is shown in figure 7.6. The intensity-weighted
rms variation of the fringe position is 3.4µm, while the next fringes are located at a
distance of 290µm.

For a slit separation of 0.5, 1 and 2mm, 100 images were averaged. In the case of
3 mm slit separation, 404 images were averaged to account for the low intensity in
the middle of the diffraction pattern.

It is also possible to process the images of a single FEL bunch. This is however
more difficult, as the signal-to-noise ratio is not as good. The two analysis methods
described in sections 7.4.1 and 7.4.2 are first applied to the average image. The
positions of the diffraction fringes determined this way are used as start values for
the analysis of single bunch images.

7.3.2. Correction for effects of the experimental set-up

The interference pattern of the FEL is broadened by light scattering in the fluorescent
crystal and by the limited resolution of the lens system. The non-linear response
function of the crystal decreases the contrast further. Therefore, the images are
corrected for these effects, as discussed in chapter 6.

For the simulated images, these corrections should in principle remove the smearing
which was applied in section 7.2.3. However, due to the noise that has been added
to the images, it is not possible to reverse the convolution with the optical resolution
of the fluorescent crystal and the camera.

The Lucy-Richardson algorithm, described in section 6.2.3, has been used to de-
convolute the images, using the measured point spread function (section 18). This
maximum-likelihood algorithm reconstructs an image that has a high probability of
resulting in the measured image when convoluted with the given point spread func-
tion. The reconstruction does however not result in an image that is exactly identical
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Figure 7.5.: Image Processing of the measured (left) and simulated (right) double
slit diffraction patterns for 1mm slit separation. a) Average of 100 measurements,
background subtracted, as in figure 7.1d. b) Simulated image, including the effects
of the experimental set-up. c) and d) These images has been deconvoluted with the
Lucy-Richardson algorithm, using the measured point spread function (figure 6.7).
e) and f) Correction for the nonlinear response of the fluorescent crystal. The selected
area for further processing is shown by a white rectangle.
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Figure 7.6.: Vertical position and intensity of the central fringe of the 100 double
slit diffraction patterns, recorded under identical conditions. The FEL intensity
fluctuates due to the stochastic nature of the SASE process. The fluctuations of the
position are 3.4µm rms.

to the original image. Correspondingly, the coherence function that can be deter-
mined from the reconstructed images is not exactly equal to the coherence that could
be seen in the original images. The present simulation shows thus the validity of the
analysis routines.

The response function of the Ce:YAG crystal was corrected with the inversion of
Eq. (6.1). This improves the overall contrast of the image, since the brighter parts
of the image are enhanced with respect to the background.

7.3.3. Projection of the diffraction patterns

A region in the images is selected for further processing. Careful inspection of the
observed diffraction pattern shows that the sharpness of the focusing varies a little
bit from left to right; it is conjectured that this is due to the insufficient tilt of the
lens (see section 5.3.1). The focusing appears slightly better in the left part of the
diffraction pattern (see figure 7.2). The uniformity of the fluorescent crystal in this
area is good (see figure 6.1).

The leftmost quarter of the diffraction pattern (see figure 7.5e and f) was projected
onto a vertical axis. The two-dimensional interference pattern is represented by a
curve with approximately 800 points. The intensity variation can be seen nicely in
this projection, the bright interference fringes appear as maxima of the curve.
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7.4. Analysis

7.4. Analysis

The measured and simulated intensity distributions are analysed with two different
methods:

� Method 1: the visibility of the interference fringes is determined from the max-
ima and minima of the smoothed intensity distribution. The central visibility
of the diffraction pattern is equal to the transverse coherence of the beam (see
section 3.7).

� Method 2: a function parametrising for the near field double slit interference
(see section 3.6.2) is fitted to the intensity distribution. One of the fit param-
eters is the transverse coherence of the incoming beam.

The MATLAB code of the analysis routines is given in appendix F.

7.4.1. Analysis method 1: visibility of the central fringe

This method is illustrated in figure 7.7.

Smoothing of the curve

The image recorded by the CCD chip is affected by read-out noise. Taking the pixels
with the highest and lowest contents as maxima and minima respectively overesti-
mates the modulation, as the maxima and minima of the diffraction pattern extend
over several pixels: the highest pixel within a maximum overestimates the peak, the
lowest pixel within a minimum underestimates the latter. It is therefore necessary
to reduce the noise by smoothing the curve before the extrema are determined.

A common method is to apply a median filter, i.e. to average each value with its
neighbours to flatten the curve. However, this unavoidably decreases the modulation
between minima and maxima and lowers the visibility of the diffraction fringes below
its true value. The aim is to reduce the noise but to maintain the modulation depth.

It is helpful to look at the problem in the Fourier space. The noise in the images
originates from photon statistics and the read-out electronics, there is no correlation
between a pixel and its neighbours1. The noise can hence be considered as white
noise which is characterised by a flat Fourier spectrum. The double slit diffraction
pattern, on the other hand, occupies only a limited region in the frequency domain,
with a strong peak at the spatial frequency corresponding to the fringe separation
and smaller peaks at its harmonics. These are located in the low-frequency part of
the spectrum (figure 7.8).

1 Note that this is not true for images acquired with an analogue video camera, where electromag-
netic pick-up on the data transfer line leads to different noise distributions in the horizontal and
vertical plane
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Figure 7.7.: Analysis method 1 of the measured and simulated double slit diffrac-
tion patterns, continued from figure 7.5. Left: measurements, right: simulations.
a) and b) horizontal projection of the selected area, c) and d) smoothed with a But-
terworth filter, e) and f) visibility of the diffraction pattern, at the position of the
maxima of the smoothed curve.
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Figure 7.8.: Transmission Spectrum of a fifth order Butterworth filter with a cut-off
frequency of 17% of the Nyquist frequency (indicated by the dotted line). The square
of the transmission is shown, since the filter is applied twice. The Fourier transform
of the expected picture and the measured noise are also shown.

One can therefore suppress the high frequency part by applying digital filtering.
Filters can be characterised by their frequency response. A high transmission below
a given cut-off frequency ωc and a low transmission for higher frequencies is achieved
with a low-pass Butterworth filter. Its squared frequency response is given by

|H(ω)|2 =
1

1 + (ω/ωc)2N
(7.1)

where N ∈ N is called the order of the filter. Here, a fifth order Butterworth filter
was chosen.

A digital filter with the desired transmission function can be constructed by eval-
uating the roots of the transfer function in the complex plane and using a bilinear
transformation of the frequency axis to the unit circle. Details of this procedure can
be found in [OS92]. The algorithm results in two filter vectors, a and b, that are
inserted in the following difference equation. Call x(m) the measured curve before
filtering and y(m) the filtered curve. Its mth element is:

y(m) = b1x(m) + z1(m− 1) (7.2)

with

z1(m) = b2x(m) + z2(m− 1)− a2y(m)

zj(m) = bj+1x(m) + zj+1(m− 1)− aj+1y(m)

for j = 1 . . . N − 1 and

zN(m) = bN+1x(m)− aN+1y(m)

135



7. Measurements of the Transverse Coherence

As one can see in equation (7.2), the filter acts only to the left side, i.e. an element
y(m) depends on x(m), x(m−1) etc. The resulting directional bias can be avoided by
applying the filter twice, coming once from the left and once from the right side. This
double application of the filter twice leads to a squared transmission function. The
algorithm of the Butterworth filter is implemented in the MATLAB Signal Processing
Toolbox2 [Mat01c].

The cut-off frequency was chosen to accommodate the given diffraction pattern.
For 1 mm slit separation, 17% of the Nyquist frequency was chosen. As can be seen in
figure 7.8, this filter has a transmission of more than 0.96 for the expected diffraction
pattern but suppresses the frequencies above the cut-off frequency strongly.

The filtered projections are shown in figure 7.7 c) and d). The pixel noise is
significantly reduced, while the intensity modulation is not affected.

Finding maxima and minima

The maxima and minima are determined from the smoothed diffraction curve. In
the central part of the curve, this is easily done by comparing each point with its
neighbours. In the outer range, where the modulation of the curve is lower, this
method may be affected by the remaining noise in the data.

To make sure that the real extrema of the diffraction curve are found, one may
make use of the fact that they are to a good approximation equidistant. The position
of a maximum or minimum that has been determined this way is compared with the
position that is expected from the extrapolation of the inner extrema. If the deviation
is higher that a quarter of the fringe separation, the value of the smoothed curve at
the expected position is used. This method has proven successful even for images
with low intensity, for example those that were obtained at a reduced undulator
length (see chapter 8).

For each maximum, the arithmetic mean of the two adjacent minima is formed
and the visibility

V =
Imax − Imin

Imax + Imin

(7.3)

is calculated. As Fresnel diffraction theory has to be applied, the visibility is different
for each interference fringe (see section 3.6).

It has been shown in simulations that the central visibility is a good measure for the
coherence at the given slit separation (see section 3.7, figure 3.16). In the near field,
the visibility of the central fringe is higher than the visibilities of the neighbouring
fringes. As the FEL beam is not always perfectly centered with respect to the double
slits, the maximum value of the visibility is usually not achieved exactly in the middle.

Therefore, the maximum of visibility of all fringes in the central area of the diffrac-
tion pattern is taken as a measure for the central visibility.

2 the MATLAB function names are butter and filtfilt
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Results

The resulting visibilities are shown in figure 7.9. In the present measurement series,
the central visibility of the averaged pattern reaches 0.82 for a slit separation of
0.5mm.

The central visibility for a slit separation of 1mm is 0.65, for 2mm slit separation,
the value is 0.24. The diffraction pattern of the slits with 3mm separation has a very
low intensity in the centre. Nevertheless, the analysis routine is successful, as it can
be seen in figure 7.9g. The central visibility is 0.23.

7.4.2. Analysis method 2: fit to the intensity distribution

The theoretical intensity distribution of a double slit in the near field, derived in
section 3.6, can be fitted to the projected diffraction patterns, varying the coherence
of the incoming wave. This method is illustrated in figure 7.10.

Fitted function

The intensity distribution of a double slit diffraction pattern in the near field is given
by Eq. (3.48). For the present fit, some differences to the ideal case discussed in
section 3.6 are allowed:

� A coherence C < 1 reduces the modulation globally, the visibility V(x) is the
product of the coherence C with the position-dependent modulation of the near
field diffraction pattern:

V(x) = C · Iex1(x)− Iex2(x)

Iex1(x) + Iex2(x)
(7.4)

� To take into account a misalignment between the FEL beam and the centre of
the double slits, the fit allows for unequal magnitudes E1 and E2 of the electric
field amplitude at the two slits. This reduces the visibility further [Hec94]:

V(x) =
2E1E2

E2
1 + E2

2

· C · Iex1(x)− Iex2(x)

Iex1(x) + Iex2(x)
(7.5)

� The curvature of the wave front of the diverging beam in front of the slits
displaces the two single slit diffraction patterns with respect to Eq. (3.43). If

the angle between the wave vector ~k and the normal of the aperture plane is
called ϑ and the distance between the aperture and the observation plane is L,
the displacement of the single slit diffraction pattern is equal to ϑL. Different
angles ϑ1 and ϑ2 are assumed for the two slits. A typical value for the angle is
10−4.
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Figure 7.9.: Results of the first analysis method: the visibilities of the diffraction pat-
terns at various slit separations. Left column: measurements, right column: simula-
tions. a) and b) slit separation d = 0.5 mm, c) and d) d = 1 mm, e) and f) d = 2 mm
and g) and h) d = 3 mm.
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Figure 7.10.: Analysis method 2 of the measured and simulated double slit diffrac-
tion patterns, continued from figure 7.5. Left: measurements, right: simulations.
a) and b) horizontal projection of the selected area, c) and d) fitted curve.

� The centre of the pattern may be shifted by a distance µ with respect to the
origin. The electric field amplitudes of the two single slit contributions are thus
given by

Ẽ1(x) = E1
sin(α1)

α1

where α1 =
πw(x+ d/2 + ϑL− µ)

λL
(7.6)

Ẽ2(x) = E2
sin(α2)

α2

where α2 =
πw(x− d/2− ϑL− µ)

λL
(7.7)

From the absolute square of the electric field amplitudes, the intensities I1, I2
and Iex1, Iex2 can be computed as in Eq. (3.44) and (3.46), respectively. The
double slit diffraction pattern is

I(x) = S(x)

[
1 + V(x) cos

(
2πd

λL
(x− µ)

)]
(7.8)
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7. Measurements of the Transverse Coherence

where the overall amplitude S(x) is computed as in Eq. (3.45) and V(x) is given
by Eq. (7.5).

� Finally, the wavelength λ of the radiation is used as a fit parameter. It influ-
ences the overall scaling of the diffraction pattern and accounts also for small
uncertainties in the measured distances in the set-up.

Seven parameters are fitted: the transverse coherence C, the wavelength λ of the
radiation, the electric field amplitude at both slits as

√
E1E2 and E1/E2, the angles ϑ1

and ϑ2 of the wave fronts to the aperture plane and the displacement µ of the diffrac-
tion pattern. To allow the fit routine to select reasonable step sizes and convergence
criteria, the parameters are normalised.

Fit algorithm

The algorithm used to fit the expected function to the data is based on the reflective
Newton method on trust-regions [CL94, CL96]. It is implemented in the MATLAB
Optimization Toolbox3 [Mat01b].

The least-squares fitting of a function f(x; p1, . . . pN) of the variable x with a set
of parameters p ≡ p1, . . . pN to a data set g(x) consists in minimising the square of
the difference of the function with the data:

min
p1,...pN

h(p1, . . . pN) where h(p) =

∫
[f(x;p)− g(x)]2 dx (7.9)

or, in the typical case of a function measured at discrete points xi:

h(p) =
∑
i

[f(xi;p)− g(xi)]
2 (7.10)

It is often useful to constrain the parameters in intervals [pi,min, pi,max]. For example,
in the present case, the coherence has to be between 0 and 1, and the centre of the
diffraction pattern may not be displaced by more than a few millimetres.

Finding the minimum in a multi-dimensional parameter space is a non-trivial task,
and no method can guarantee that the global minimum of h(p) is found, except in the
simplest cases. The minimisation starts with a set of initial parameters p0, obtained
by guessing the best values.

In the reflective Newton method, the function h(p) is first approximated by a
simpler function q(p) around p0, for example by taking the first-order and second-
order terms of the Taylor expansion of h(p) around p0.

Next, one calculates the minimum of q(p) in a trust-region, i.e. a neighbourhood
N around p0. The position of this minimum is denoted pm. The original function
h(p) is now evaluated at pm. If h(pm) < h(p0), the iteration step is successful and

3 MATLAB function name lsqnonlin
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7.5. Discussion of measurement uncertainties

pm is the new starting point. Otherwise, one decreases the size of the trust region
and repeats the iteration with p0.

To minimise the quadratic function q(pm), one has to factorise the matrix H of
second derivatives. A lot of computing time is spent for this step, especially if the
number N of parameters is large. The algorithm can be accelerated by constraining
the problem to a two-dimensional subspace (i, j). In this case, the factorisation
of the sub-matrix [HiiHji;HijHjj] and thus the minimisation of q(p) is trivial. This
minimisation has to be repeated for all possible subspaces (i, j) with i, j ∈ {1, . . . N},
i 6= j.

For the present case of seven optimisation parameters,the trust-region reflective
Newton algorithm is superior to the commonly used simplex search method4, espe-
cially since the fitted parameters can be constrained in reasonable intervals.

Results

The resulting intensity fits for the four slit separations are shown in figure 7.11.
A coherence C = 0.84 was determined for the diffraction pattern of the slits sep-

arated by 0.5mm. The fitted curve agrees well with the measurements, as can be
seen in figure 7.11. For 1, 2 and 3mm slit separation, the values are C = 0.68,
C = 0.25 and C = 0.21 respectively. The agreement with the first analysis routine is
remarkable.

To fit the diffraction pattern of individual FEL bunches, the parameters determined
from the averaged patterns are used as starting parameters for the fit. The fit is
constrained to narrow intervals around these starting values. Only the transverse
coherence is allowed to vary between zero and one. The fit then has a good chance
to converge, even in the case of a low signal-to-noise ratio.

7.5. Discussion of measurement uncertainties

Systematic uncertainties of the presented analysis procedures are due to the formation
of the near field diffraction pattern, the scattering in the fluorescent crystal, the
limited resolution of the optical system and to noise in the CCD image. These can
be quantified with the simulations, which include these effects.

Here, the amplitude and the phase of the electric field at the position of the double
slit are known and it is thus possible to determine the transverse correlation func-
tion between the two slits by the definition in Eq. (3.8). Its absolute value can be
compared to the results of the two analysis procedures. The values for the four slit
separations are shown in figure 7.12.

The deviation of the analysis results from the theoretical coherence function is
about 0.03 at 0.5mm slit separation. At 1mm slit separation however, the deviations

4 MATLAB function name fminsearch
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Figure 7.11.: Fit to the intensity at various slit separations. Left column: mea-
surements, right column: simulations. a) and b) slit separation d = 0.5 mm,
c) and d) d = 1 mm, e) and f) d = 2 mm and g) and h) d = 3 mm.
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Figure 7.12.: Simulation results for the four slit separations. The value of the theo-
retical coherence function at a distance equal to the slit separation is shown with an
asterisk. The blue circles show the result of the first analysis method, the visibility
of the central fringe of the averaged image. The red squares show the result of the
second analysis method, the coherence of the fitted intensity distribution. For the
clarity, the points have been slightly displaced horizontally in the plot.

between the theoretical coherence function and the result of the analysis are only
0.0005 for the first and 0.0001 for the second analysis method. These small deviations
cannot be reasonably taken as the systematic uncertainty. Therefore, a value of 0.03,
as found for 0.5mm slit separation, is used. At 2 and 3mm slit separations, the
deviations are 0.08 and 0.10, respectively. The systematic uncertainties are shown in
the outer error bars in figure 7.13.

The statistical errors of the measurements are determined by analysing the single-
bunch images in each measurement series. The processing of these images is anal-
ogous to the averaged images. In the first analysis method, the positions of the
maxima and minima are taken from the analysis of the averaged image. At these
positions, the smoothed curve from the single images is evaluated. In the second
analysis method, the fit parameters of the averaged projection are used as start val-
ues for the fit of the single bunch images. The parameters are constrained to a narrow
interval around these values. This results in a reliable convergence of the fit even
when the noise level is high.

The uncertainty of the mean value is given by σ/
√
N , where σ is the standard

deviation of the single measurements and N is the number of measurements.
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7. Measurements of the Transverse Coherence

7.6. Summary

The transverse coherence of the TTF FEL has been measured with Young’s double
slit experiment. Two methods have been used to analyse the diffraction patterns,
determining the central visibility of the projected pattern and fitting the near field
diffraction function to the measurements. The analysis is summarised in table 7.1.

The results of the two methods are in good agreement. A simulation of the exper-
imental set-up shows that the central visibility and the fitted coherence are in good
agreement with the transverse coherence function of the electromagnetic wave. The
results are shown in figure 7.13. The shaded band indicates the confidence interval
of the measurements. As expected, the transverse coherence decreases as a function
of the distance.

The profile of the beam intensity has been measured at the position of the fluo-
rescent crystal. The central part, which can be seen on the crystal, is approximately
Gaussian with σ = 3.5 mm. This corresponds to an rms beam width of σ = 2.7 mm
at the position of the double slits. This intensity profile is used to calculate the
degree of coherence of the FEL, which is defined as the intensity-weighted average
of the coherence function, Eq. (3.11). It is assumed that the coherence function has

Table 7.1.: Analysis procedures for the double slit diffraction patterns.

Simulated Image
simulate FEL beam [Yur03]
propagate to double slit
impose additional wave front error
simulate diffraction

Measured Image convolute with crystal resolution
measure 100 images apply saturation curve
average convolute with camera PSF
subtract background add noise

↘ ↙
Image processing
Lucy-Richardson deconvolution
correct for crystal saturation
select region of interest
project region

↙ ↘
First analysis method Second analysis method
smooth the projection select starting parameters
find maxima and minima fit near field diffraction pattern
determine visibility
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Figure 7.13.: Central visibility and fitted coherence as a function of slit separation.
The blue symbols show the result of the first analysis method, the visibility of the
central fringe of the averaged image. The red symbols show the result of the sec-
ond analysis method, the coherence of the fitted intensity distribution. The error
bars show ±σ statistical fluctuations of analysis of the single bunch images and the
systematic uncertainty. The shaded area gives the confidence interval of the mea-
surements.

circular symmetry, i.e. that it depends only on the distance from the centre. In the
present experiment series, measurements have been made for slit separations of 0.5,
1, 2 and 3mm. For a distance of 0, the coherence is equal to 1 by definition. The
coherence function is linearly interpolated between these values. No measurements
at larger distances are available, therefore the degree of coherence within a circle of
3 mm radius is calculated:

D3mm =

3mm∫
0

C(r)I(r)2πr dr

3mm∫
0

I(r)2πr dr

= 0.64± 0.06 (7.11)

An aperture at the position of the double slits improves the degree of coherence
by selecting only the central part of the beam, which has a higher coherence. If one
chooses an aperture radius of 2mm, i.e. one selects the cone of the radiation within
an opening angle of ±170 µrad, the degree of coherence is improved to

D2mm = 0.70± 0.06 (7.12)
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7. Measurements of the Transverse Coherence

A reduction of the aperture size increases the degree of coherence further, for example
for a radius of 0.5mm, more than 90% coherence can be achieved.
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8. Evolution of coherence along the
undulator

The transverse coherence varies with the evolution of the FEL pulse along the undu-
lator. As described in section 3.3, the coherence is expected to increase continuously
in the regime of exponential growth, because the amplification in an FEL favours the
central mode TEM00, due to its best overlap with the electron beam. The situation is
changed in the last part of the undulator, as the amplification process for the central
mode begins to saturate. Other radiation modes, uncorrelated to the central mode,
gain importance and a decreasing transverse coherence is expected.

8.1. Measurements

To study the evolution of the transverse coherence in the undulator, double slit
diffraction patterns have been recorded at effective undulator lengths between 9.37
and 13.5m. Using the analysis routines described in chapter 7, the transvere coher-
ence of the radiation can be determined.

In the TTF FEL, it is not possible to extract the radiation from a given point
in the undulator. The effective length of the undulator is varied as follows. The
generation of FEL radiation depends critically on the overlap of electron and photon
beam (see figure 4.10): an offset of a few hundred micrometres is sufficient to inhibit
the FEL amplification. Although the photon beam follows the electron beam to a
certain extent due to the beam guiding effect [SSY00b], a deviation of 1mm results
in a separation of the two beams.

By operating one of the horizontal steering magnets (section 4.4.2) at maxi-
mum strength, the electron beam is kicked away from the ideal trajectory. Behind
the selected steerer, the bunch follows a betatron trajectory, due to the focusing
quadrupoles (see figure 8.1). The overlap of the electron and photon beams is then
too small to contribute to the FEL process. Only spontaneous undulator radiation
is emitted, whose intensity is several orders of magnitude lower.

Using this intentional orbit perturbation, measurements of double slit diffraction
patterns could be performed at effective undulator lengths of 9.37, 10.32, 11.28, 12.23,
13.19, and 13.5m. Thereby, the exponential gain regime of the FEL and the onset
of saturation could be studied.

For each effective undulator length, horizontal double slits with separations of
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undulator
 = 10µm
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activated
steerer
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electron trajectoryelectron trajectory

photon
trajectory

quadrupoles

Figure 8.1.: Principle of the adjustment of the effective undulator length. The elec-
tron beam is kicked away from the photon beam by a steerer magnet. The sinusoidal
undulator motion is also shown. Schematic view, drawing not to scale.

0.5, 1 and 2mm have been inserted into the FEL beam. The slit pair with 3mm
separation was omitted, because the intensity in the middle of the diffraction pattern
is too low. For each configuration, 50 images were acquired. Below an undulator
length of 9m, the diffraction patterns have too little intensity to be recordable with
the present set-up.

8.2. Analysis

The images of the double slit diffraction patterns have been corrected for the effects
of the experimental set-up: the resolution, affected by the scattering in the crystal
and the imaging by the camera lens has been improved with the Lucy-Richardson de-
convolution and the non-linear response of the fluorescent crystal has been corrected.
The processed images are shown in figures 8.2 and 8.3.

These measured diffraction patterns have been analysed with the two methods
that have been described in chapter 7. Minima and maxima of a smoothed projection
allow to determine the visibility of the interference fringes, and a near field diffraction
curve has been fitted to the measurement data. The projection of the selected area
is shwon in figures 8.4 and 8.5, the resulting fringe visibilities are shown in figures 8.6
and 8.7. The fits to the intensity distributions are shown in figures 8.8 and 8.9.
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Figure 8.2.: Measured diffraction patterns of double slits with 0.5, 1 and 2mm slit
separation at an effective undulator length between 9.37 and 11.28m. The recorded
images have been corrected for the effects of the experimental set-up. The images
have been scaled to the same intensity. The white box indicates the area that has
been selected for further processing.
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Figure 8.3.: Measured diffraction patterns of double slits with 0.5, 1 and 2mm slit
separation at an undulator length between 12.23 and 13.50m.
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Figure 8.4.: Projection of the selected area in the measured double slit diffraction
pattern, shown with a grey line. This has been smoothed with a Butterworth filter,
the smoothed projection is shown in black. Measurements with slit separations of
0.5, 1 and 2mm at an effective undulator length between 9.37 and 11.28m are shown.
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Figure 8.5.: Projection of the selected area in the measured double slit diffraction
pattern at an effective undulator length between 12.23 and 13.50m.
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Figure 8.6.: Results of the first analysis method: from the maxima and minima of the
measured diffraction patterns, the visibility of each fringe has been determined. The
visibilities are shown for slit separations of 0.5, 1 and 2mm, the effective undulator
length has been varied between 9.37 and 11.28m.
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Figure 8.7.: Results of the first analysis method: visibility of the measured diffraction
fringes at an undulator length between 12.23 and 13.50m.
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Figure 8.8.: Second analysis method: the intensity distribution in the near field has
been fitted to the projection of the measured diffraction patterns. The projected
diffraction pattern is shown in grey, the fit is shown in red. Measurements for slit
separations of 0.5, 1 and 2mm are shown at effective undulator lengths between 9.37
and 11.28m.
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Figure 8.9.: Second analysis method: the intensity distribution in the near field has
been fitted to the projection of the measured diffraction patterns Measurements for
slit separations of 0.5, 1 and 2mm are shown at effective undulator lengths between
12.23 and 13.50m.
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Figure 8.10.: Signal-to-noise ratio of the measurements as a function of undulator
length. The SNR of the average of 50 images and the average SNR of the 50 single
images are shown.

The dependency of the analysis results on the signal-to noise ratio of the measure-
ments is of special interest, because the intensity of the images varies significantly
for undulator lengths between 9.4 and 13.5m. The signal-to-noise ratio of a point in
the projection is defined as

SNR =
1

R
√
N

N∑
k=1

Ik (8.1)

where N is the number of pixels that are added when the diffraction pattern is
projected, Ik the intensity in a pixel, R the average pixel noise, determined in an
area of the image beside the diffraction pattern. The SNR in the brightest diffraction
fringe is plotted in figure 8.10 as a function of the undulator length.

At an undulator length of 9.37m, the diffraction pattern is indiscernable in the
individual images and only barely visible in the averaged image (figure 8.2a. . . c).
Nevertheless, the projection of the selected area and the subsequent smoothing reveals
the modulation. The fit converges if reasonable starting parameters are selected and
the parameters are constrained in small intervals around these values. Only the
transverse coherence is left free to vary between 0 and 1.
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8. Evolution of coherence along the undulator

To understand how the varying intensity in the images influences the result of
the analysis routines, simulations have been performed, using a signal-to-noise ratio
between 8 and 100. All images were analysed as described in section 7.4. The
resulting central visibilities and the fitted coherence are shown in figure 8.11. For
an increasing signal-to-noise ratio, the results converge to the coherence function at
the slit separation, determined by Eq. (3.8). For a signal-to-noise ratio above 20, a
good agreement with the theoretical coherence is observed, within the uncertainties
determined in section 7.5. However, for a SNR below 20, larger deviations occur.
For the slit separations of 0.5 and 1mm, both analysis methods underestimate the
actual coherence at a low SNR.

At 2mm slit separation, the first analysis method yields a central visibility that
is higher than the actual coherence function. Since the distance between the inter-
ference fringes is about 15 pixels, only a few pixels contribute to one fringe, and the
detrimental effect of the noise is stronger than for the smaller slit separations. Fur-
thermore, a higher cut-off frequency has chosen for the Butterworth filter, since the
diffraction patterns contains components with higher spatial frequency. This enlarges
the influence of the noise further. It appears that noise clusters with a typical size of
7 pixels can be mis-interpreted as interference fringes. The highest of these clusters
determines the maximum of the visibility and hence the analysis result. Indeed, as
can be seen in figure 8.6f, the visibility at the position of the maxima does not follow
the typical curve predicted by Eq. (3.47) and shown in figure 3.7c, but appear to
be more randomly distributed. The second analysis method, the fit to the intensity,
results in an underestimated value for the coherence.

Besides the described deviations at the low intensities, the values for the transverse
coherence obtained by the two analysis methods are in good agreement. The central
visibility and the fitted coherence are shown as a function of undulator length in
figure 8.12. The variations of the single-bunch measurements have been used to
determine the statistical uncertainties.

It appears that the centre of the FEL beam moves downwards with increasing
undulator length. The photon beam in the FEL follows the electron beam to a
certain extent, therefore this could have been corrected individually with the vertical
steerers. However, it was decided to keep the standard settings in order to obtain a
better consistency between the measurements. The fitted function accounts for the
asymmetry of the slit illumination by assuming different field amplitudes and wave
front curvatures at the positions of the two slits, and the visibility has been corrected
according to Eq. (7.5).
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Figure 8.11.: Numerically computed diffraction patterns allow to estimate the sys-
tematic uncertainties of the analysis as a function of the signal-to-noise ratio. The
slit separations are a) 0.5, b) 1 and c) 2mm, respectively. The result of the first
analysis method, the visibility of the central diffraction fringe is shown with circles,
the result of the second analysis mehtod, the fitted coherence is shown with asterisks.
The theoretical coherence function for all simulations at the respective slit separation
is indicated by the line.
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fitted coherence in red. The error bars show statistical fluctuations and systematic
uncertainties, as shown in the legend.
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Figure 8.13.: a) The degree of transverse coherence as a function of the undulator
length. The values of the transverse coherence up to a separation of 2mm have been
taken into account. b) From the total intensity of the diffraction patterns, it can
be seen that the measurements extends over an interval that covers the end of the
exponential gain regime of the FEL (from 9 to 11m) to the beginning of saturation
(above 11m).

8.3. Results

The degree of transverse coherence is the intensity-weighted average of the coherence
function on the observation plane. The measurements described in this chapter have
been done up to a slit separation of 2mm. Figure 8.13 shows the degree of coherence
within a circle of 2mm radius.

The transverse coherence of the FEL increases in the regime of exponential gain,
between virtual undulator lengths between 9 and 11m. It reaches a value of 0.91±0.08
at 11.28m. The growth rate of the FEL intensity decreases behind 11m: the plot
on a logarithmic axis (figure 8.13b) has a smaller slope above 11m. This indicates
the onset of the saturation in the FEL process. It is expected that the transverse
coherence starts to decrease in saturation, because the fundamental transverse radi-
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8. Evolution of coherence along the undulator

ation mode cannot grow further (see section 3.3.1). This can be in fact observed in
figure 8.13a. For experiments that require a high transverse coherence of the FEL,
it is thus mandatory to operate the FEL such that the fundamental mode does not
saturate.
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Speed: But tell me true, will’t be a match?
Launce: Ask my dog: if he say ay, it will! if he say no,
it will; if he shake his tail and say nothing, it will.
Speed: The conclusion is then that it will.

William Shakespeare, The Two Gentlemen of Verona, Act II, scene V

Figure on the previous page: Measured intensity (red) and coherence (blue) of the
TTF FEL, as a function of the undulator length. See figure 8.13.
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9. Conclusion and Outlook

9.1. Coherence measurement at the TTF FEL

The coherence of the free electron laser at the TESLA Test Facility has been measured
with Young’s double slit experiment. The double slits and a fluorescent crystal were
installed in the ultra high vacuum of the accelerator. The diffraction pattern on the
crystal was observed by a gated CCD camera. Measurements on single FEL pulses
were possible. Diffraction patterns were recorded with different slip separations. The
acquired images were corrected for detrimental effects of the fluorescent crystal and
the camera.

Two methods were used to extract the transverse coherence of the FEL beam
from the near field diffraction patterns: the central visibility of the pattern was
determined, and a function for the near field diffraction was fitted to the measured
intensity distribution. The results are in good agreement. The degree of coherence
within a circle of 3mm radius is D3mm = 0.64± 0.06 for a saturated FEL.

A comparison to simulations has been made. These simulations include the for-
mation of the photon bunch in the FEL [Yur02], a variable transverse coherence, the
near field diffraction, the non-linearity of the fluorescent crystal at the high inten-
sities, the scatter in the crystal, the imaging of the tilted lens and the noise in the
CCD. The resulting images show good agreement with the measurements.

The development of the coherence along the undulator was observed, using steering
magnets to adjust the effective undulator length to values between 9.4 and 13.5m.
The highest coherence is achieved at a length of 11m, where the FEL process is still
in its exponential gain regime and before the saturation of the central radiation mode
sets in. Here, a degree of coherence within a circle of 2mm radius D2mm = 0.91±0.08
has been measured.

9.2. Comparison with other measurements

The FEL radiation can be decomposed in its longitudinal and transverse modes,
as described in section 3.3. As the electric field amplitude in different modes is
uncorrelated, a high number of modes lowers the coherence of the beam. The number
of longitudinal modes depends on the bunch length, which can be varied with the first
bunch compressor (see section 4.2.4). While this influences many other parameters
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9. Conclusion and Outlook

of the electron beam, it has been shown that in the saturation regime of the FEL
electron bunch parameters have only a weak influence on the FEL radiation.

In an FEL, the different radiation modes have a different wavelength, due to the
origin in the spontaneous radiation. Therefore, they can be separated by the spec-
trometer. Single-shot spectra can be recorded with an intensified CCD camera. The
modes can be seen in these spectra (see for example figure 4.19). Furthermore, the
average number of modes can be inferred from the statistical variation of the intensity
from pulse to pulse. The results have been compared with FEL simulations [Ayv02a]
and confirm the high degree of coherence.

Another method to estimate the transverse coherence is to measure the distribu-
tion of the intensity in the far field of the FEL. This is determined by the angular
distribution of the photons at the undulator exit. If one assumes that the beam
is diffraction limited, this is equal to the Fourier transform of the transverse pulse
shape [SSY00a]. This can be decomposed in its transverse modes, which gives the
degree of coherence.

9.3. Coherence measurement at higher photon
energies

Accelerators to generate FEL radiation at shorter wavelengths are currently in the
design and commissioning phase. At DESY, the TTF linear accelerator is being
extended to drive a free electron laser for wavelengths down to 6 nm [TES02]. In a
first stage, the FEL will produce radiation with a wavelength of 30 nm. It will serve
as a user facility for various experiments. Since a name for this project has not yet
been found, it will be referred to as VUV-FEL in this chapter. The layout of the
experimental hall is shown in figure 9.1.

Furthermore, an X-ray FEL for wavelengths down to 0.01 nm has been proposed.
The transverse coherence of these FELs can be measured by recording the diffrac-

tion pattern of a slit or pinhole pair. The experience from the present set-up shows
that the fluorescent crystal and the camera optics degrade the image quality. A much
thinner crystal could show improved spatial resolution due to the smaller length the
fluorescent light travels through the crystal. Maybe it is even possible to cover the
back side of the crystal with an anti-reflex coating for the wavelength of the flu-
orescent light. The camera can be replaced by microscope optics, achieving much
higher resolution. Commercial microscope optics with 30 cm free distance between
the front lens and the crystal have been shown to achieve a resolution of σ = 5 µm
(see section 6.1.3). It has to be noted that this set-up has a much smaller aperture,
thus the light yield is inferior to a standard photographic lens.

While the image degradation can be taken into account in the analysis, it would
be advantageous to avoid the effects that influence the image quality altogether.
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Figure 9.1.: The last part of the accelerator and the experimental hall for the future
VUV-FEL at DESY.

This could be achieved by placing a position-sensitive X-ray detector directly into
the accelerator vacuum. Back-illuminated CCD sensors show high sensitivity to soft
X-rays. Their spatial resolution is given by the pixel size, which is typically 20 µm
[Pri02]. The sensitivity would be several orders of magnitude higher than with the
fluorescent crystal. However, there is the risk of radiation damage; semiconductors
are typically limited to exposure of a few hundred Gray. The detector could also
be destroyed immediately by the ablation of its surface if the momentaneous power
density is too high.

Figure 9.1 shows possible positions for double slits and observation planes in the
future VUV-FEL. A double slit could be inserted at 250 or 255m on the scale shown in
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Figure 9.2.: Simulated diffraction pattern that could be observed at the VUV-FEL
at DESY. The slit separation has been taken to be 1mm, the slits are 2mm long
and 100µm wide. The separation between the double slit and the observation plane
is 30 m. a) For a wavelength of 30 nm, b) for a wavelength of 6 nm.

figure 9.1. A smaller distance to the undulator exit seems favourable. This is located
at the position 234m on this scale. In the following, the position at 250m will be
used. The diffraction pattern could be observed at the position 280m. Such a large
separation between the double slit and the observation plane is a great advantage
compared to the set-up which is described in this thesis, as the fringe separation is
increased and the resolution of the fluorescent crystal and the camera have a smaller
influence on the observed image quality.

The angular divergence of the VUV-FEL is expected to range from 24 to 170µrad
FWHM, depending on the operation mode [TES02]. Thus, beam diameters between
0.4 and 2.7mm FWHM will occur at a position of the double slits. With slit separa-
tions between 0.1 and 5mm, the whole range of the FEL radiation can be covered.
For a wavelength of 30 nm, the far field condition is only fulfilled for the smallest
slit separations, so the calculation of the diffraction pattern will generally have to be
done using Fresnel theory. A slit separation of 1mm results in a fringe separation of
0.9mm, which is easy to resolve with standard optics. A diffraction pattern that has
been predicted by GLAD is shown in figure 9.2.
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Figure on the previous page: diffraction at a circular aperture.
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A. Mathematical Symbols

Table A.1.: Mathematical Symbols (continued in table A.2).

Symbol Definition
A aperture
α angle between the z axis and the electron velocity
~B magnetic flux density
β normalised velocity
c speed of light
C coherence
γ relativistic factor
γr relativistic factor on resonance
γ̃ correlation function
Γ FEL gain parameter
D degree of coherence
e elementary charge
e Euler’s number
~E electric field

Ẽ slowly varying complex amplitude of the electric field
f particle distribution function in phase space
η relative deviation from resonance energy
I intensity
~ current density
J Bessel function
~k wave number vector
ku 2π divided by the undulator period
K undulator parameter

K̂ corrected undulator parameter
` distance between a point on the aperture and a point on the obser-

vation plane
L distance between aperture and observation plane
Lg power gain length of the FEL
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A. Mathematical Symbols

Table A.2.: Mathematical Symbols (continued).

Symbol Definition
λ wavelength
λu undulator period
Λ power growth rate of the FEL
me (invariant) electron mass
N number of particles
P point spread function
Φ measured image
~r space coordinate vector
ρ charge density

ρPierce Pierce parameter
σ standard deviation
t time
ψ ponderomotive phase
Ψ real image (as opposed to the measured image)
~u unit vector
v particle velocity
V fringe visibility
W energy
ω angular frequency

x, y, z space coordinates
A mean value of A
A∗ complex conjugate of A
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B. Imaging with a Tilted Lens

A flat object that is tilted with respect to the optical axis of a camera can be imaged
correctly by tilting the lens, too. Optimum focus over the complete image plane is
achieved if the planes through object, lens and image intersect in exactly one line.
This criterion is derived in this chapter from two rules of geometric optics, namely
the thin lens equation (B.1) and the rule that a ray that goes through the centre of
the lens proceeds unaltered.

First, a lens without imaging errors whose thickness is negligible will be considered.
In this case, the following equation holds:

1/f = 1/g + 1/b (B.1)

where f is the focal length of the lens, g the distance from the lens to the object and
b the distance from the lens to the image.

To ease the derivation, it may be assumed without loss of generality that the lens
plane is perpendicular to the optical axis. The three-dimensional poblem can be
restricted to the plane containing the optical axis where the inclination of the object
is highest (figure B.1). The optical axis is taken as x axis, a point in this plane is
labelled (x0, y0).

Assuming an object on the line that intersects the optical axis in the point (−g, 0),
and with an angle γ to this axis (corresponding to a slope g′ = tan γ), any point on
this line can be represented as

(−g + a, ag′) (B.2)

The image of this point (xb, yb) lies on the line that goes through the centre of the
lens,

xb · ag′ − yb · (−g + a) = 0 (B.3)

its distance to the lens can be derived from Eq. (B.1)

1

f
=

1

g − a
+

1

xb
(B.4)

The solution of equations (B.3) and (B.4) is:

xb =
(a− g)f

a− g + f
(B.5)

yb =
ag′f

a− g + f
(B.6)
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Figure B.1.: Imaging of a tilted object at a distance g that has an angle γ to the
optical axis results in an image at a distance b at an angle β.

Varying a leads to the image of an extended object. It intersects the optical axis at
the point (b, 0) where

b =
g · f
g − f

(B.7)

Since

b′ :=
yb

xb − b
= g′

f − g

f
(B.8)

is independent of a, the image is indeed a straight line. Furthermore, the intersection
of the image with the y axis is in the point (0, g g’), the same point where the straight
line through the object intersects the y axis.
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C. The van Cittert-Zernike theorem

Seen from a large distance, the radiation from a spatially incoherent source acquires
a certain degree of transverse coherence [Zer38], see also [Fra66]. The coherence
depends on the intensity distribution in the source and has for example been used to
measure the apparent size of a star.

Consider a radiation source located at a distance L in z direction from the obser-
vation plane, as shown in figure C.1. The source is supposed to be pseudo-thermic,
consisting for example of a large number N of atoms that emit independently. For
simplicity, only the polarisation in ~ux direction is considered. The transverse coher-
ence between points P1 and P2 in the observation plane will be derived. Without loss
of generality, one may choose the origin such that P2 = (0, 0, L).

An atom k, at a position (x0, y0, 0) emits an electromagnetic wave:

~E(t) = Ẽk(t)e
iωt~ux (C.1)

At the point T1 in the observation plane, the electromagnetic field is

Ẽk1(t) = Ẽk(t− `1/c)
eiω(t−`1/c)

`1
(C.2)

Similarly for T2:

Ẽk2(t) = Ẽk(t− `2/c)
eiω(t−`2/c)

`2
(C.3)

The contributions from all atoms in the source are added:

Ẽ1(t) =
N∑
k=1

Ẽk1(t) =
N∑
k=1

Ẽk(t− `1/c)
eiω(t−`1/c)

`1
(C.4)

The coherence function between T1 and T2 at the observation plane is:

Γ12 =
〈
Ẽ1(t)Ẽ

∗
2(t)
〉
t
=

〈
N∑
k=1

Ẽk1(t) ·
N∑
k=1

Ẽ∗
k2(t)

〉
t

(C.5)
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Figure C.1.: Illustration of the van Cittert-Zernike theorem.

Because 〈Ẽk1(t)Ẽ∗
m2(t)〉 = 0 for k 6= m the product of the two sums may be simplified:

Γ12 =

〈
N∑
k=1

[
Ẽk1(t)Ẽ

∗
k2(t)

]〉
t

(C.6)

=

〈
N∑
k=1

[
Ẽk(t− `1/c)Ẽ

∗
k(t− `2/c)

]〉
t

eiω(`2−`1)/c

`1`2
(C.7)

=
N∑
k=1

〈
Ẽk(t)Ẽ

∗
k(t− (`2 − `1)/c))

〉
t

eiω(`2−`1)/c

`1`2
(C.8)

If the source is sufficiently monochromatic, i.e. if its longitudinal coherence length
exceeds the path length difference `2− `1, the retardation (`2− `1)/c in the first term
may be neglected and

Γ12 =
N∑
k=1

〈
Ẽk(t)Ẽ

∗
k(t)
〉
t

eiω(`2−`1)/c

`1`2
(C.9)

The quantity 〈Ẽk(t)Ẽ∗
k(t)〉t is proportional to the intensity J of the radiation that is

emitted by the atom k. Due to the large number of atoms in the source, the sum
over the atoms may be replaced by an integral over the source:

Γ12 =

∫ ∫
J(x, y)

eiω(`2−`1)/c

`1`2
dx dy (C.10)
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The denominator can be simplified with `1 ≈ L and `2 ≈ L. In the exponential
function, `1 and `2 can be expanded similarly to Eq. (3.20):

`1 ≈ L+
(x1 − x0)

2 + (y1 − y0)
2

2L
(C.11)

and

`2 ≈ L+
x2

0 + y2
0

2L
(C.12)

Thus,

`2 − `1 = −x
2
1 + y2

1

2L
+
x0x1 + y0y1

L
(C.13)

Using this approximation, the integral (C.10) simplifies to

Γ12 =

∫ ∫
J(x, y)

L2
exp

[
i
ω

c

(
−x

2
1 + y2

1

2L
+
x0x1 + y0y1

L

)]
dx dy (C.14)

Apart from the normalisation, this is just the Fresnel integral, Eq. (3.22), where
the aperture function is substituted for the intensity of the source. Thus, the trans-
verse coherence of a pseudo-thermic monochromatic source is equal to the normalised
diffraction pattern that is formed by a coherent source with an aperture that has the
same shape as the source. This relation is the van Cittert-Zernike theorem.
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D. Data Acquisition

When carrying out experiments on such a large and complex device as a particle
accelerator, the need arises to correlate data specific to the experiment itself (i.e.
here, the camera images) with measurements from devices designed and operated
by other groups. Often, the relevant parameters for the specific experiment become
only clear in the analysis process, months after the experiment. It is thus helpful to
store data from all available beam diagnostics systems in a central database. This
data acquisition (DAQ) system complements the measurements and notes of the
operators, stored in the logbook. Such a DAQ system has been implemented for the
TTF accelerator. It has operated reliably for more than a year, writing more than
2 TB of compressed data to file. The server programmes are documented in [Lac02].
Various experiments have used these files to cross-check with their measurements.
Furthermore, long-term studies, e.g. on the effectiveness of the collimation system
and the radiation damage of the undulator, have been carried out.

This chapter describes the existing controls (section D.1.1), how the DAQ was fitted
into this system (section D.2.3) and the technical implementation (section D.3).

D.1. Overview of the control system

D.1.1. DOOCS

The TTF accelerator, i.e. the superconducting cavities, the magnets and the beam
diagnostics are controlled by a distributed system, the Distributed Object-Oriented
Control System (DOOCS). This consists of programmes that are running on a dis-
tributed computer system:

� The front end computers, mostly VME crates, are the interface to the hardware.
Analogue-to-digital converters (ADCs) sample external analogue signals. The
standard ADCs at TTF have a sampling rate of 1MHz. They reside directly in
the VME crate. Approximately 400 channels were installed in the phase 1 of
the TTF linac. Most diagnostics devices can be easily connected to this ADC.
Other devices control the RF regulation or the magnet power supplies.
All devices can be accessed through their respective device servers. This in-
cludes reading values as well as setting the output parameters of the hardware.
Different servers exist for the various devices, but the interface to the clients is
always the same.
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� The clients can access these servers with a network call. They then receive
an answer. There is a number of different clients at TTF: a graphical user
interface, the DOOCS Data Display (ddd) is used by the operators to run the
accelerator; many diagnostics are written in MATLAB, and there are also some
C++ programmes to perform complex tasks.

� Gateways to other systems allow the clients to uniformly access also hardware
that is not connected to a DOOCS server.

D.1.2. Object orientation

DOOCS is an object oriented system, i.e. data and the functions that can be applied
on it are encapsulated in objects. Object-oriented programming (OOP) has the
following advantages as compared to procedural programming:

� encapsulation of the data with the functions to access them: this allows to
change the internal representation of the data in the servers without the need
to redesign the clients that use this data. In addition, this imposes a certain
discipline on the programmers.

� Objects can inherit properties of their so-called ancestors. One can thus include
the code that applies to many different object types (in our case the network
communication ability) in a common prototype and then add specific functions
to the device server.

� polymorphism

Many people see OOP as the only possibility to create large applications that are
developed and maintained by many people.

D.1.3. ROOT

ROOT [BR97] is an object-oriented framework for C++ programmes that has been
written to effectively handle large amounts of data. The source code is freely avail-
able. Pre-compiled versions for a variety of platforms, including Solaris, Linux and
Windows, are available. The package was initiated by René Brun and Fons Rademak-
ers; Masuata Guoto has contributed a C++ interpreter, allowing to run programmes
in an interactive session.

ROOT includes a database that allows to store objects to a file, independent of
the operating system and of the processor architecture. To do so, the objects are
streamlined and serialised, resulting in a data stream that can be compressed and
sent to the file. Using the same mechanism, objects can also easily be sent over a
network. In fact, sending the objects to a special ROOT daemon is more efficient
than writing the file through the Network File System (NFS). ROOT takes complete
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D. Data Acquisition

control over the data flow, optimising it for best performance. The database structure
is optimised to provide a fast sequential access to the data.

Additionally, ROOT provides analysis routines for various mathematical tools.
Data can be represented in diagrams for screen or printer rendering through plot
objects. Owing to its origin in high-energy physics, ROOT has many functions to
histogram and fit data. Other areas, as for example image processing, are less well
developed.

D.2. A data acquisition for the TTF

D.2.1. Requirements

The requirements for the DAQ system have been formulated in 1999/2000:

� scalability

� extensible

� based on an available system, no home-made database system

� take the data from the DOOCS servers

� encapsulated

� by preference: use the same format as TESLA experiment

D.2.2. Choice of a database

The features of ROOT make it the natural choice for the data acquisition at the
TTF accelerator. Its performance for sequential access beats commercial systems by
a factor of two, and its freely available source code makes it easy to distribute in the
collaboration.

D.2.3. Gateway to the existing control system

The data acquisition system gets all values from the DOOCS servers. These convert
the data to physically meaningful units, e.g. the signal height of the beam position
monitors to the position in millimetres. ADCs have typically up to 16 bits. A
conversion to 32-bit floating point variables, as used by DOOCS, results in an increase
in data rate. It would be more efficient to transfer the raw data to the DAQ system.
On the other hand, one avoids errors by doing the conversion in exactly one place.
Furthermore, one takes advantage of the standardised access to all devices in the
accelerator.
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The system was implemented and commissioned in a period where the accelerator
was running. The reliability of the existing control system had thus the foremost
priority.

D.3. Implementation

This section gives a brief overview of the data structures and programmes that con-
stitute the data acquisition system. The implementation is described in detail in
[Lac02]. An overview of the system is given in figure D.1.

D.3.1. Data structure

The data is collected in objects that are stored in the ROOT framework. Therefore,
these objects, of class TTFFloatData, are descendants of TObject, a class defined in
ROOT. They are arranged in a hierarchical structure, called a tree.

The objects have two variables, the time stamp and a data array, receiving for
example the values read from the ADC. All channels are stored in the same type of
object. The time stamp consists of the time in seconds since the 1970-01-01 00:00
world time and the buffer number of the ADC. The latter is synchronised by a timing
signal in the control system. It ranges from 0 to 31 and is incremented with each
macro-pulse, i.e. once a second in the present set-up. The data part contains an
array of floating-point values. A different number of values is used, depending on the
device that is connected to the channel. For example, magnet currents have only one
value (the actual current is measured once a second), the amplitude of the RF field
is measured 512 times within each macro-pulse, and so on.

D.3.2. ROOT object generators

The ROOT Object Generators [Lac02] are programmes that request the values from
the ADC servers, put them into an object derived from TNamed and save them into
the file. The process, called adcg runs on various computers in the middle layer
(see also figure D.1). It connects to the DOOCS device servers through an object
TTFDOOCS.

The protocol that is used by the clients to request data from a DOOCS server
is based on the remote procedure call (RPC) method. A special function call in the
client code opens a network connection to the server, sends the request and then waits
for the server to reply (synchronous mode). (In a multi-tasking operating system,
another process may run during the time where the client waits.) The RPC calls a
special function in the server. This does everything necessary to answer the request
(e.g. read the values from the ADC, convert them to meaningful units, form averages)
and sends the data back to the client.
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Figure D.1.: A simplified overview of the data acquisition system. The data, repre-
sented by arrows, flows from the bottom to the top. Computers are symbolized by
boxes, processes by clouds. To simplify the picture, only three front end computers
and daq processors are pictured; network components as equipment name servers,
routers and switches are not shown.
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Figure D.2.: Amount of data collected by the TTF DAQ in the years 2001 and 2002.

Remote procedure calls provide a robust way to access data across a network.
There are several implementations on the market; TTF uses the Open Network
Computing (ONC) RPC, introduced by Sun Microsystems. ONC RPC is also used
by Linux.

D.3.3. Network transfer

However, opening a network connection for each object that is to be transferred
can be a time-consuming task. Therefore, the access to the ROOT database is
implemented with the ROOT daemon, a server based on the Apache webserver. The
protocol is well-suited to transfer large amounts of data efficiently. The daemon has
been running on the TTF DAQ server for 20 months. It has received more than 2
Terabytes of data without the need to restart it. Figure D.2 shows the amount of
data collected each month.

D.3.4. Tape storage

The data are transferred to an automated tape storage machine. For this, the Open
Storage Manager (OSM) [Fuh99] is used. The transfer from disk to tape is done once
a day, in the early morning hours where the network load is lowest. (As DESY uses a
fully switched network, this data transfer does not affect the communication within
the accelerator hall.)
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D.4. Synchronisation with camera image acquisition

The pictures were acquired and stored independently of the rest of the DAQ system:
the camera is connected to a PC running Windows; it is read out by software supplied
by the camera manufacturer. This sends the images as 16-bit TIFF1 files via the
Network File System (NFS) to the server ttfsvr3. Due to the large amount of data,
the image acquisition is only activated for dedicated experiments, running typically
for a few 100 seconds, while the rest of the data acquisition, as described above, is
running continuously. The images are numbered within one experiment, the date
and time of the PC is recorded in the lower part of the image itself. The camera
is triggered by the central TTF timing system, which starts also the read-out cycle
of the ADCs. The correlation is preserved if both systems run without losing a
macropulse.

Synchronisation between the two systems is lost if one of them has to skip a
macropulse. This happens from time to time when the network load is high. All
network operations are based on asynchronous calls: each process replies to a request
as soon as the operating system allocates time for it. The same is true for the network
file servers; on some occasions, the recording of data takes then more than one second.
The image of the next macropulse can then not be recorded, the programme waits
first for the save operation to finish. It is skipped tacitly. A solution is to record
the images first to the core memory and to write them to disk at the end of the
experiment. The drawback is that the number of images is limited by the amount
of memory in the camera server; by recording only the interesting part of the image
and by binning several pixels into one, the number of images is increased. The ring
buffer of the ADCs allows the DAQ servers to recover from a short congestion in the
network. However, sometimes they have to omit macropulses; this is then noted in
the files.

To correlate data from the electron beam or the data acquired by the microchannel
plate detector, it is necessary to synchronise the two data streams. This was done by
making sure that both systems run with the same speed and by synchronizing the
start of the measurement.

The internal clock of the PC was adjusted to the central DESY time server by
means of the Network Time Protocol (NTP). However, an ambiguity of one sec-
ond remains. Therefore, the synchronisation of the experiment start was done by
switching the injection laser of the accelerator on and off. This is visible in the TTF
DAQ system (e.g. the current monitors or the micro channel plate show zero sig-
nal); also the image remains completely black. The same procedure was repeated at
the end of the experiment, to make sure that the data streams have retained their
synchronisation.

The measurement of the FEL brightness by the MCP detector and the CCD camera

1Tagged Image File Format, an image file format published by Aldus Corporation in 1986
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Figure D.3.: Brightness of the FEL pulse, recorded with the camera (top) and the
micro channel plate (bottom). The measurements agree, for example the three times
where the accelerator failed to deliver a pulse are acquired with the same time stamp.
This shows that the synchronisation between the two data acquisition systems has
been successful. The correlation plot of these data is shown in Figure 6.3.

shows that this method was successful (Figure D.3); however, it would be desirable
to automatize the procedure by integrating the image acquisition completely in the
control and data acquisition system of the accelerator.

D.5. Data acquisition of camera images

The control and read-out of the CCD camera is done by the programme camware
(written by the camera manufacturer PCO) running on a PC under Microsoft Win-
dows. The images are first stored in memory before they are transferred to the file
server. Depending on the binning and the region selected for read-out, a few hun-
dred images can be stored. To correlate the images with the TTF DAQ system, a
client based on the network time protocol has been installed on the PC. Camware
stores the time by inserting it in human-readable format in the lower right corner of
the image itself. Unfortunately, there is no way to read out the TTF ADC buffer
number from the Windows PC, which would allow an unambiguous identification of
the macropulse.

Thus, the correlation was done by switching the complete linac off and on several
times, searching for this pattern in the data acquired by the two systems.
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Already the circular apertures, installed in the FEL beam line at position 3 in fig-
ure 4.12 to reduce the intensity, create a diffraction pattern on the fluorescent crystal.

E.1. Measurements

Circular apertures of 0.5, 1, 3 and 5mm diameter have been inserted in position 3
in figure 4.12 into the FEL beam, the distance to the detection plane is 3.3m. An
averaged dark image has been subtracted. For each aperture, 79 measurements with
3 bunches have been added to obtain good photon statistics. The resulting diffraction
patterns are shown in figure E.1. A wavelength of 99 nm has been measured with the
spectrometer. Some imperfections in the fluorescent crystal are visible. The aperture
with 5mm diameter could not be centered completely.

E.2. Analysis

The far field criterion (3.23) is fulfilled for apertures below 0.6mm. Thus, Fraunhofer
diffraction theory (section 3.5) can be applied only for the smallest aperture. The
pattern for a 0.5mm aperture is well described by the Bessel function (3.25), as can
be seen in figure E.2. For the larger aperture, the far field criterion is not fulfilled,
the calculated curve underestimates the width of the central peak and the height of
the side maxima.

The apertures with 3 and 5mm diameter, on the other hand, create a near field
diffraction pattern with several rings that can be described by the Fresnel zones in
the aperture (section 3.6). The number of zones calculated from Eq. (3.39) agrees
well with the number of extrema in the diffraction pattern (table E.1). The detailed
shape of the pattern can be reproduced by numeric simulations. A Gaussian beam
with full transverse coherence at the exit of the undulator has been assumed and the
wave fronts have been propagated through the aperture to the crystal with the code
GLAD. The agreement of the central slices of the simulations with the measurements
is shown in figure E.3.
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Figure E.2.: Cross section of the diffraction patterns of circular apertures with
a) 0.5mm and b) 1mm diameter. The measured values are shown in blue, the
intensity calculated by Fraunhofer diffraction (Eq. (3.25)) is shown in red.
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Figure E.3.: Comparison of measured with simulated diffraction patterns of circular
apertures with a) 1mm, b) 3mm and c) 5mm diameter. The measurement is shown
in a blue line, the simulation in cyan.

Table E.1.: Number of Fresnel zones, calculated from Eq. (3.39) and measured with
the FEL. For the calculations, a source position 1m in front of the exit of the undu-
lator has been assumed.

Aperture NF calculated NF measured

0.5mm 0.24 —
1mm 0.97 —
3mm 8.7 9
5mm 24.3 23
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F. Analysis Routines for the Double
Slit Diffraction Patterns

This appendix lists the procedures that were used to analyse the double slit diffraction
patterns in chapter 7. The procedures that generate the plots are not included in
this appendix.

F.1. Image procesing

% A = processimage(A)
% does the following operations on the image:
% - de-convolute using the Lucy-Richardson algorithm
% - apply non-linearity corrections for the intensity
% - project region of interest
% to operate correctly, please subtract a background image first!

function A = processimage(A)

addpath /home/rasmus/Analyse/Coherence/Calibration

B = A.Image / A.nb_bunches;

% load point spread function for deconvolution
PSF = loadpsf(A.binningx,A.binningy);
% deconvolute
C = deconvlucy(B, PSF, 10);

% crop date and time
D = C(1:end-9,:);

% correct for saturation
spotsizeforcalibration = 0.2; % in cm^2
E = - log(1 - D/88.7545) / 0.14685 / spotsizeforcalibration * 100;
indi = find(imag(E)~=0); % find imaginary numbers
E(indi) = E(indi+1);

A.CorrectedImage = E;
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% axes
A.xax = pixel_to_x([1:size(A.CorrectedImage,2)],A.binningx);
A.yax = pixel_to_y([1:size(A.CorrectedImage,1)],A.binningy);

% do projections
A.v = sum(A.CorrectedImage(A.yminpix:A.ymaxpix,A.xminpix:A.xmaxpix), ...

A.isHori+1);

if A.isHori
A.vax = A.yax(A.yminpix:A.ymaxpix);

else
A.v = A.v’;
A.vax = A.xax(A.xminpix:A.xmaxpix);

end

% calculate intensity
A.MaxIntensityRaw = max(mean(A.Image ...

(A.yminpix:A.ymaxpix,A.xminpix:A.xmaxpix),A.isHori+1))*1.3;
A.MaxIntensity = max(mean(A.CorrectedImage ...

(A.yminpix:A.ymaxpix,A.xminpix:A.xmaxpix),A.isHori+1))*1.3;
A.TotalIntensity = sum(sum(A.Image(1:end-10,:)));

if A.isHori
Signal = A.MaxIntensityRaw * sqrt(A.xmaxpix-A.xminpix+1);
% select an area outside of the diffraction pattern:
NoiseArea = A.Image(1:end-10,end-10:end);
Noise = std(NoiseArea(:));

else
Signal = A.MaxIntensityRaw * sqrt(A.ymaxpix-A.yminpix+1);
NoiseArea = A.Image(1:10,40:end);
Noise = std(NoiseArea(:));

end

A.SNR = Signal / Noise;

F.2. Analysis method 1: central visibility

% analysis_vis.m
% does the analysis 1: smooth the curve, find maxima and minima and
% calculate visibility.

function A = analyisis_vis(A);
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% Smooth curve with a butterworth filter.
% This filter cuts away the components with high spatial frequency.
% It has two parameters:
% * the order determines how strong the components are suppressed.
% * the cutoff frequency is given as a ratio to the frequency
% corresponding to one wavelength over the complete curve.
% This parameter is more critical.

butterorder = 5;

% the optimum value for the cutoff frequency depends on the slit
% separation ...
switch A.slitsep

case 0.5e-3, butterfreq = 0.1;
case 1e-3, butterfreq = 0.17;
case 2e-3, butterfreq = 0.2;
case 3e-3, butterfreq = 0.2;

end

% ... and on the binning:
if A.isHori

binning = A.binningy;
else

binning = A.binningx;
end
butterfreq = butterfreq * binning;

[butterb,buttera] = butter(butterorder,butterfreq);
A.vsmooth = filtfilt(butterb,buttera,A.v);

if ~isfield(A,’iMax’) | isempty(A.iMax)
% used for the averaged images:
% find the maxima
if A.isHori

binning = A.binningy;
else

binning = A.binningx;
end
[Max, A.iMax, Min, A.iMin] = find_maxima(A.vsmooth, A.slitsep, ...

binning, A.isHori);
% always start and end with a minimum
if A.iMin(1) > A.iMax(1)

Min = [A.vsmooth(1) Min];
A.iMin = [1 A.iMin];
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end
if A.iMin(end) < A.iMax(end)

Min = [Min A.vsmooth(end)];
A.iMin = [A.iMin length(A.vsmooth)];

end
else

% used for the single images
isp(’analysis_vis.m: using pre-computed maxima and minima positions’)
Max = A.vsmooth(A.iMax);
Min = A.vsmooth(A.iMin);

end

MeanMin = mean([Min(2:end); Min(1:end-1)]);

A.Vis = abs((Max-MeanMin) ./ (Max+MeanMin));
A.xax_Vis = A.vax(A.iMax);

indi_central_part = find(A.xax_Vis>-1.5 & A.xax_Vis<1.5);
sortedVis = sort(A.Vis(indi_central_part));
maxi1 = sortedVis(end);
maxi2 = sortedVis(end-1);
if maxi1 <= maxi2*1.1

A.centralVis = maxi1;
else

A.centralVis = maxi2;
end

F.2.1. Finding maxima and minima

function [Max, Maxpos, Min, Minpos] = ...
find_maxima(vf, slitsep, binning, isHori)

% finds the maxima and minima of the diffraction patterns

if isHori
switch slitsep

case 0.5e-3, expected_distance = 64/binning;
case 1e-3, expected_distance = 32/binning;
case 2e-3, expected_distance = 15/binning;
case 3e-3, expected_distance = 10/binning;

otherwise
error(’Error: unknown slit separation (in find_maxima.m)’)

end
else

switch slitsep
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case 0.5e-3, expected_distance = 45/binning;
case 1e-3, expected_distance = 22/binning;
case 2e-3, expected_distance = 11/binning;
case 3e-3, expected_distance = 7/binning;

otherwise
error(’Error: unknown slit separation (in find_maxima.m)’)

end
end

% start in the middle
k = round(length(vf)/2);

% look to the right until maximum found
while vf(k+1)>vf(k), k=k+1; end
% now look to the left until maximum found
while vf(k-1)>vf(k), k=k-1; end
% now maximum is at k:
Max = vf(k);
Maxpos = k;
Middle = k;

Min = [];
Minpos = [];

end_reached = 0;
beginning_reached = 0;
Count = 0; % number of maxima to each side
while ~(end_reached & beginning_reached)

% Look to the right
if ~end_reached

% find minimum
% expected position
k = round(Middle + (Count+1/2)*expected_distance);
istart = k;
if k>=length(vf), k=length(vf)-1; end
while vf(k+1)<vf(k)

k=k+1;
if k>=length(vf)-1, end_reached = 1; break, end

end
while vf(k-1)<vf(k)

k=k-1;
end
% is the deviation from the expected distance too large?
% then use the expected distance!
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if abs(k-istart) > expected_distance / 4, k = istart; end
% are we inside the range?
if k<=length(vf), Min = [Min, vf(k)];

else Min = [Min, vf(end)]; end
Minpos = [Minpos, k];

% find maximum
k = round(Middle + (Count+1)*expected_distance);
istart = k;
if k>=length(vf), k=length(vf)-1; end
while vf(k+1)>vf(k)

k=k+1;
if k>=length(vf)-1, end_reached = 1; break, end

end
while vf(k-1)>vf(k)

k=k-1;
end
% is the deviation from the expected distance too large?
% then use the expected distance!
if abs(k-istart) > expected_distance / 4, k = istart; end
% are we inside the range?
if k<=length(vf), Max = [Max, vf(k)];

else Max = [Max, vf(end)]; end
Maxpos = [Maxpos, k];

end

% Look to the left
if ~beginning_reached

% find minimum
k = round(Middle - (Count+1/2)*expected_distance);
istart = k;
if k<=1, k=2; end
while vf(k-1)<vf(k)

k=k-1;
if k<=2, beginning_reached = 1; break, end

end
while vf(k+1)<vf(k)

k=k+1;
end
if abs(k-istart) > expected_distance / 4, k = istart; end
if k>=1, Min = [vf(k), Min]; else Min = [vf(1), Min]; end
Minpos = [k, Minpos];

% find maximum
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k = round(Middle - (Count+1)*expected_distance);
istart = k;
if k<=1, k=2; end
while vf(k-1)>vf(k)

k=k-1;
if k<=2, beginning_reached = 1; break, end

end
while vf(k+1)>vf(k)

k=k+1;
end
if abs(k-istart) > expected_distance / 4, k = istart; end
if k>=1, Max = [vf(k), Max]; else Max = [vf(1), Max]; end
Maxpos = [k, Maxpos];

end

Count = Count + 1;
expected_distance = mean(diff(Maxpos));

end

% Drop maxima and minima outside range

Max = Max(2:end-1);
Maxpos = Maxpos(2:end-1);

while Minpos(end) > length(vf)
Min = Min(1:end-1); Minpos = Minpos(1:end-1);
Max = Max(1:end-1); Maxpos = Maxpos(1:end-1);

end

while Minpos(1) < 1
Min = Min(2:end); Minpos = Minpos(2:end);
Max = Max(2:end); Maxpos = Maxpos(2:end);

end

F.3. Analysis method 2: fit to the intensity

% analysis_fit.m
% --------------
% does the analysis 2: fit a curve to the intensity
% para(1) = C; transverse coherence
% para(2) = lambda*1e7; wavelength
% para(3) = mu*1e4; middle of the pattern
% para(4) = wcurL*1e5; wavefront curvature at the left slit
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% para(5) = wcurR*1e5; wavefront curvature at the right slit
% para(6) = Etotal*1e-1; electric field amplitude
% para(7) = Eratio; ratio of the field amplitudes between the
% two slits

function A = analysis_fit(A)

% choose reasonable starting parameters for the fit
if isempty(A.fit_start_para)

C = 0.5;
lambda = 100e-9;
mu = 0;
wcurL = 0;
wcurR = 0;
Etotal = 10;
Eratio = 1;

para(1) = C;
para(2) = lambda*1e7;
para(3) = mu*1e4;
para(4) = wcurL*1e5;
para(5) = wcurR*1e5;
para(6) = Etotal*1e-1;
para(7) = Eratio;

else
para = A.fit_start_para;

end

if isempty(A.fit_bounds)
lowerbounds = [0 0.80 -10 -10 -10 0.1 0.90];
upperbounds = [1 1.10 10 20 20 10 1.10];

else
lowerbounds = A.fit_bounds(1,:);
upperbounds = A.fit_bounds(2,:);

end

myopt = optimset(’LargeScale’,’on’);

% do the fit
[para,resnorm,residual,exitflag,output] = ...

lsqnonlin(@intenserrvec5, para, lowerbounds, upperbounds, myopt, ...
[A.vax; A.v’], A.slitsep);

C = para(1); % coherence
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F.3. Analysis method 2: fit to the intensity

d = A.slitsep; % slit separation
w = 1e-4; % slit width
L = 3.1; % distance slits - screen
lambda = para(2)*1e-7; % wavelength
mu = para(3)*1e-4; % displacement
wcurL = para(4)*1e-5; % left wave front curvature
wcurR = para(5)*1e-5; % right wave front curvature
Etotal = para(6)*1e1; % left E-field
Eratio = para(7); % right E-field

disp([’Coherence C = ’,num2str(C),’, slit separation d = ’, ...
num2str(d*1e3),’mm, slit width w = ’,num2str(w*1e6),’mum,’, ...
’distance to screen L = ’,num2str(L),’m, ’])

disp([’wavelength lambda = ’,num2str(lambda*1e9),’nm, ’, ...
’middle = ’,num2str(mu*1e3),’mm, wavefront curvature wcurL = ’, ...
num2str(wcurL)])

disp([’wavefront curvature wcurR = ’,num2str(wcurR), ...
’, average E-field = ’,num2str(Etotal), ...

’ E-field ratio = ’,num2str(Eratio)])

if size(A.v,1)<size(A.v,2), A.v = A.v’; end

A.fit_error = sum(intenserrvec4(para, [A.vax; A.v’], A.slitsep).^2);
disp([’fit error = ’,num2str(A.fit_error)])

A.fit_para = para;

% prepare plots
x = A.vax;

% single slit diffraction patterns
argL = pi*w*(x+d/2+wcurL*L-mu)/(lambda*L);
argL(argL==0) = eps;
argR = pi*w*(x-d/2-wcurR*L-mu)/(lambda*L);
argR(argR==0) = eps;

E1 = sin(argL)./argL * Etotal * Eratio;
E2 = sin(argR)./argR * Etotal / Eratio;

% intensities
I1 = E1.^2;
I2 = E2.^2;
S = I1 + I2;
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F. Analysis Routines for the Double Slit Diffraction Patterns

% intensities in the maxima and minima
Iex1 = (E1+E2).^2;
Iex2 = (E1-E2).^2;

% visibility
V = (Iex1-Iex2)./(Iex1+Iex2);
% correction when the fields at the slits are not equal
Vcor = 2/(Eratio^2 + 1/Eratio^2);

% total double slit diffraction pattern
Icalc = S .* (1 + C * V * Vcor .* cos(2*pi*d/(lambda*L) * (x-mu)));

A.xax_vfit = x;
A.vfit = Icalc;

% the most important parameter of the fit, the transverse coherence:
A.fitC = A.fit_para(1);

F.3.1. fitted function

function errvec = intenserrvec5(para, data, slitsep);
% calculates the deviation from the expected pattern

C = para(1); % coherence
d = slitsep; % slit separation
w = 1e-4; % slit width
L = 3.1; % distance slits - screen
lambda = para(2)*1e-7; % wavelength
mu = para(3)*1e-4; % displacement
wcurL = para(4)*1e-5; % wave front curvature
wcurR = para(5)*1e-5; % wave front curvature
Etotal = para(6)*1e1; % left E-field
Eratio = para(7); % right E-field

x = data(1,:);
Iref = data(2,:);

% single slit diffraction patterns
argL = pi*w*(x+d/2+wcurL*L-mu)/(lambda*L);
argL(argL==0) = eps;
argR = pi*w*(x-d/2-wcurR*L-mu)/(lambda*L);
argR(argR==0) = eps;

E1 = sin(argL)./argL * Etotal * Eratio;
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F.3. Analysis method 2: fit to the intensity

E2 = sin(argR)./argR * Etotal / Eratio;

% intensities
I1 = E1.^2;
I2 = E2.^2;
S = I1 + I2;

% intensities in the maxima and minima
Iex1 = (E1+E2).^2;
Iex2 = (E1-E2).^2;

% visibility
V = (Iex1-Iex2)./(Iex1+Iex2);
% correction when the fields at the slits are not equal
Vcor = 2/(Eratio^2 + 1/Eratio^2);

% total double slit diffraction pattern
Icalc = S .* (1 + C * V * Vcor .* cos(2*pi*d/(lambda*L) * (x-mu)));

% deviation from expected pattern
errvec = Icalc-Iref;
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[Sch03a] Peter Schmüser. Superconductivity in high energy particle accelerators. Techni-
cal report, Institut für Experimentalphysik, Universität Hamburg, 2003.

[Sch03b] Siegfried Schreiber. Private communication, 2003.

[SMK+96] K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter,
and G. Ulm. PtSi-n-Si Schottky-barrier photodetectors with stable spectra re-
sponsitivity in the 120–250 nm spectral range. Appl. Phys. Lett., 69:3662–3664,
1996.

[SSY99] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. FAST: a three-dimensional
time-dependent FEL simulation code. Nuclear Instruments and Methods in
Physics Research A, 429:233, 1999.

[SSY00a] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. Diffraction effects in the
self-amplified spontaneous emission FEL. Optics Communications, 186:185–209,
2000.

[SSY00b] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. The Physics of Free Electron
Lasers. Springer, 2000.

[SSY03] E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov. Coherence properties of the
radiation from SASE FEL. Nuclear Instruments and Methods in Physics Research
A, 507:106–109, July 2003. http://dx.doi.org/10.1016/S0168-9002(03)
00848-9.

[Ste03] Bernd Steffen. Private communication, 2003.

206

http://dx.doi.org/10.1016/S0168-9002(03)00848-9
http://dx.doi.org/10.1016/S0168-9002(03)00848-9


Bibliography
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Thank you also to all the TTF team, those who contributed to the enormous suc-
cess of our FEL, working in many different areas of the project, especially Winni Deck-
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210



Hiermit versichere ich, diese Arbeit selbständig ausgeführt und nur die angegebenen
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Study of Physics

1993-1999 RWTH Aachen
Study of Physics

Community Service

1992–1993 Biological Station “Rieselfelder Münster”

School

1983–1989 Pascalgymnasium Münster
1989–1990 Highland High School, Albuquerque, New Mexico
1990–1992 Pascalgymnasium Münster

Bilingual German / French Abitur
Cumulative grade: very good (1.2)

Languages

German Native Language
French Fluent
English Fluent
Italian Basic knowledge

212


	Introduction
	Introduction
	From Röntgen's discovery to the free electron laser
	Lasers for short wavelengths
	Applications for X-ray lasers
	Measurement of coherence


	Theory
	Physical Processes in a Free Electron Laser
	Emission of radiation in magnetic fields
	Undulator radiation
	Low-gain free electron lasers
	Longitudinal velocity
	Energy exchange with an external electromagnetic field
	The FEL amplifier

	High-Gain Free Electron Lasers
	Radiation field
	Space charge field
	Relation between radiation and space charge field
	Steady state approximation
	Vlasov equation
	Current density
	Equation for the field amplitude
	Solution of the integro-differential equation
	Summary

	Three-dimensional FEL simulation codes
	Requirements on the accelerator

	Coherence and Interference
	Definition of coherence properties
	Generation of coherent light
	Coherence of a free electron laser
	Evolution of the transverse coherence

	Analytic description of diffraction effects
	Far field diffraction
	Analytic formulae for simple apertures
	Measurement of coherence by interference experiments

	Near field diffraction
	Circular aperture
	Double slit
	Simulation by ray tracing
	Simulation by wave front propagation
	Results

	Diffraction with partially coherent light


	Experimental Set-up
	The TTF Accelerator and SASE-FEL
	General concepts in particle acceleration
	Acceleration with radio-frequency cavities
	Emittance
	Particle source
	Bunch compression

	The TESLA Test Facility
	RF photo-injector
	Superconducting cavities
	Synchronisation and timing
	Bunch compression
	Collimation

	Electron beam diagnostics
	Measurements of integral properties
	Measurements of the bunch structure
	Indirect measurements
	Planned measurements

	Free electron laser
	Permanent magnet structure
	Steerers

	Photon beam diagnostics
	Intensity measurements
	Measurements of the spectrum


	Experimental Set-up for the Coherence Measurements at the TTF FEL
	Apertures and slits
	Fluorescent crystal
	Camera
	Optics
	CCD sensor


	Detailed Investigation of the Experimental Set-up
	Fluorescent crystal
	Uniformity
	Saturation effects
	Scattering effects

	Camera
	Calibration
	Optical system
	Deconvolution of the optical resolution
	Test of the Lucy-Richardson algorithm
	CCD detector



	Results
	Measurements of the Transverse Coherence
	Measurements of the FEL in saturation
	Simulations
	FEL
	Diffraction
	Effects of the experimental set-up

	Image processing
	Averaging
	Correction for effects of the experimental set-up
	Projection of the diffraction patterns

	Analysis
	Analysis method 1: visibility of the central fringe
	Analysis method 2: fit to the intensity distribution

	Discussion of measurement uncertainties
	Summary

	Evolution of coherence along the undulator
	Measurements
	Analysis
	Results


	Conclusion
	Conclusion and Outlook
	Coherence measurement at the TTF FEL
	Comparison with other measurements
	Coherence measurement at higher photon energies


	Appendices
	Mathematical Symbols
	Imaging with a Tilted Lens
	The van Cittert-Zernike theorem
	Data Acquisition
	Overview of the control system
	DOOCS
	Object orientation
	ROOT

	A data acquisition for the TTF
	Requirements
	Choice of a database
	Gateway to the existing control system

	Implementation
	Data structure
	ROOT object generators
	Network transfer
	Tape storage

	Synchronisation with camera image acquisition
	Data acquisition of camera images

	Circular Apertures
	Measurements
	Analysis

	Analysis Routines for the Double Slit Diffraction Patterns
	Image procesing
	Analysis method 1: central visibility
	Finding maxima and minima

	Analysis method 2: fit to the intensity
	fitted function




