
Measurement of the D± Meson
Cross Section in DIS with the H1

Detector at HERA

Dissertation

zur Erlangung des Doktorgrades

des Department Physik

der Universität Hamburg

vorgelegt von

PHILIPP PAHL

aus Berlin

Hamburg

2014



Gutachter der Dissertation Prof. Dr. Eckhard Elsen

PD Dr. Thomas Schörner-Sadenius

Gutachter der Disputation: Prof. Dr. Eckhard Elsen

Prof. Dr. Johannes Haller

Datum der Disputation: 7. April 2014

Vorsitzender des Prüfungsausschusses: Dr. Georg Steinbrück

Vorsitzende des Promotionsausschusses: Prof. Dr. Daniela Pfannkuche

Dekan der MIN Fakultät: Prof. Dr. Heinrich Graener

Leiter des Department Physik: Prof. Dr. Peter Hauschildt



Abstract

The inclusive production of D± mesons in deep inelastic scattering at
√

s = 318GeV at HERA is studied using data taken with the H1 detector during

the high energy measurement period in the years 2006 and 2007 corresponding

to an integrated luminosity of 202.6pb−1. The visible phase space is defined by

5 < Q2 < 100 GeV2, 0.05 < y < 0.6, 1.5 < pT (D±) and −1.5 < η(D±) < 1.5,

where Q2 is the photon virtuality, y is the inelasticity and pT (D±) and η(D±)

are the transverse momentum and rapidity of the D± meson. Charm production

events are identified by the reconstruction of the D±→ K∓π±π± decay channel.

The sample is enhanced by the application of a multi-variate analysis technique

using a multilayer perceptron. The input variables of the classifier are based on

the specific energy loss of the kaon decay particle candidate and the reconstructed

decay length of the D± meson. The single and double differential cross sections

are compared to leading and next-to-leading order QCD predictions.



Zusammenfassung

Die inklusive Produktion von D±-Mesonen in tiefunelastischer Streuung bei
√

s = 318GeV bei HERA wird untersucht. Es werden Daten verwendet, die

während der Messperioden mit hohen Schwerpunktenergien in den Jahren 2006

und 2007 mit dem H1-Detektor gemessen wurden. Die Datenmenge entspricht

einer integrierten Luminosität von 202,6pb−1. Der sichtbare kinematische Bere-

ich wird durch 5 < Q2 < 100 GeV2, 0,05 < y < 0,6, 1,5 < pT (D±) und

−1,5 < η(D±)< 1,5, definiert, wobei Q2 dem quadratischen Viererimpulsüber-

trag, y der Inelastizität und pT (D±) und η(D±) dem Transversalimpuls und der

Rapidität des D±-Mesons entsprechen. Ereignisse mit Charmbeitrag werden mit

Hilfe der Rekonstruktion des Zerfallskanals D± → K∓π±π± identifiziert. Die

Messdaten werden durch eine multivariate Analysemethode angereichert, die ein

mehrlagiges künstliches neuronales Netz als Klassifikator beinhaltet. Die Ein-

gangsgrößen des Klassifikators basieren auf dem teilchenabhängigen Energiever-

lust des als Kaon angenommenen Zerfallsteilchens und der Rekonstruktion der

Zerfallslänge des D±-Mesons. Die einfach- und doppeltdifferentiellen Wirkungs-

querschnitte werden mit QCD-Vorhersagen führender und nächstführender Ord-

nung verglichen.
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Chapter 1

Introduction

In elementary particle physics the interaction between the fundamental particles is

described within the framework of the Standard Model of Particle Physics (SM).

The SM consists of the three gauge theories which underly the strong, weak and

electromagnetic interaction. The fundamental particles consist of six leptons, six

quarks and their charge conjugates. The up, down and strange quark are the light

quark, whereas the heavy quarks charm, bottom and top have considerably higher

masses. The interactions are mediated by the exchange of gauge bosons: The W

and Z boson for the weak force, the γ for the electromagnetic interaction and the

gluons for the strong interaction.

Deep Inelastic Scattering (DIS) [29] provides a tool for the investigation of

the hadron structure and the underlying physics model of the strong force. In

DIS leptons such as electrons or positrons are brought into collision with hadrons.

HERA1 is a world-wide unique electron-proton collider and was in particular built

to test the proton structure. It allowed the access of much higher energy regimes

compared to fixed target experiments, corresponding to a photon virtuality Q2 of

up to≈ 30,000GeV2 and a spatial resolution of≈ 10−18 m, which corresponds to

1Hadron-Elektron-Ringanlage, English: Hadron-Electron Ring Accelerator

3



4 CHAPTER 1. INTRODUCTION

1/1000 of the proton size.

The calculation of QCD processes faces various peculiarities. The renormal-

ization introduces a scale dependence of the strong coupling constant αs. Also,

perturbative methods are only applicable at small values of αs. At small energies

the values become large and the next higher order might still be non-negligible.

Another scale dependence is introduced by the factorization of the short distance

perturbative effects and the long distance non-perturbative effects. The long dis-

tance effects are absorbed into the Parton Density Functions (PDF). PDFs can be

evolved to the scale in question by evolution equations once they are known at a

certain scale. The PDFs can only be determined experimentally and are derived by

fits of parametrized PDFs to globally available experimental data. The derivation

relies, amongst others, on the theoretical treatment of charm quark production

in DIS. Since the gluon distribution appears in the initial production process of

heavy quarks, the production provides a direct probe. A precise knowledge about

the PDFs is essential for the LHC2 where two protons are brought into collision.

For both the evolution of the coupling constant and the derivation of the PDFs

a heavy flavor mass scheme has to be chosen which is valid for a certain scale.

The D± production cross section data in the phase space region of this analysis

provides a scale which is in between the two different schemes where either the

charm quark is treated massless or massive.

This thesis provides the measurement of the charmed hadron, namely D± pro-

duction cross section which is compared to next-to-leading order QCD calculation

and discussed with respect to the aforementioned issues. The measurement can be

used for future extraction of the charm contribution to the structure functions and

derivation of the PDFs. Furthermore it is utilized to further understand regions of

the phase space where previous measurements have observed an excess compared

2Large Hadron Collider
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Figure 1.1: The published cross section as function of the rapidity η

to the predictions, e.g. for large rapidities. Figure 1.1 shows recently published

results of the H1 D∗ and ZEUS D± measurement.

Organization of this thesis In chapter 2 an overview over DIS and the basic the-

oretical concepts is given. In the successive chapter 3 the leading-order and next-

to-leading order event generators which are used in this analysis are discussed.

The experimental setup, the apparatus, the HERA collider, the H1 detector and its

relevant components for this analysis are presented in chapter 4. The on- and off-

line run and event selection this measurement is based on is discussed in chapter 5.

Chapter 6 presents the reconstruction chain of the D± mesons. The sample is en-

hanced by the application of a multilayer perceptron based classifier (section 6.5).

The input variables which enter the multivariate classifier are based on the spe-

cific energy loss of the kaon (section 6.2) and the D± decay length reconstruction

(section 6.3). In chapter 7 the cross section determination and especially the cor-

rection of the reconstruction inefficiency is discussed. A detailed discussion and

derivation of systematic uncertainties is presented in chapter 8. Special attention

is paid to systematic studies of the particle reconstruction (sec 8.1). Finally the

cross section results are discussed and compared to leading and next-to-leading
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order calculations (chapter 9)



Chapter 2

Deep Inelastic Electron Proton

Scattering and Charm Production

2.1 Deep Inelastic Scattering

Deep inelastic scattering (DIS) is the process by which the structure of hadrons

is studied. Hadrons like protons or neutrons are probed by electrons, muons or

neutrinos. The electroweak force is mediated by the exchange of the photon γ or

the Z0 boson for the neutral current or the W± boson for the charged current pro-

cess. Figure 2.1 shows the Feynman diagrams of the leading order processes. The

negative four-momentum transfer squared −q2 = Q2 is referred to as virtuality.

Due to the large masses of the W± and Z0 bosons, contributions from the weak

force are strongly suppressed and negligible for Q2� m2(W±,Z0).

QED Corrections in DIS The two higher order QED processes shown in figure

2.2 involve the real next-to-leading order corrections. QED correction at one loop

level are included in the running of the electromagnetic coupling αem. The running

of αem is discussed in section 2.6.

7
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Figure 2.1: The leading order Feynman diagrams for ep scattering. The force
is mediated by a photon γ or Z0 (neutral current, left) or a W± boson (charged
current, right).

Figure 2.2: Next-to-leading order QED processes. Left: Initial state radiation
(ISR). Right: Final state radiation (FSR).
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Figure 2.2 shows the initial state radiation (ISR) and the final state radiation

(FSR). ISR originates from the incoming electron and therefore lowers the energy

which is available for the scattering process. This effect has to be taken into

account for the determination of the cross section and is discussed in section 7.3.

FSR denotes the radiation off the outgoing electron. In that case the radiated

photon is often detected together with the electron in a merged state since the pho-

ton is almost collinear to the electron and cannot be distinguished experimentally

from non-radiative events.

2.2 Kinematics

The kinematic of the scattering process e+ p→ e(νe)+X is described by means

of Lorentz-invariant kinematic variables. The frequently used variables are the

negative four-momentum squared Q2, the Bjørken scaling variable x, the inelas-

ticity y and the center-of-mass energy
√

s. The four-momenta of the scattering

process are depicted in figure 2.1.

Q2 is defined by the difference of the incoming and outgoing four-momenta

of the electron:

Q2 :=−q2 =−(k−k′)2 (2.1)

The dimensionless scaling variable Bjørken x can be interpreted as the frac-

tional momentum of the proton carried by the struck quark:

x :=
Q2

2(P ·q)
, 0 < x < 1 (2.2)

For x→ 1 the process approaches elastic scattering. The inelasticity y de-

scribes the relative energy loss of the electron in the proton rest frame, i.e. the
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energy fraction carried by the photon:

y :=
P ·q
P ·k

, 0 < y < 1 (2.3)

Neglecting the rest masses the variables are related by

Q2 = sxy, (2.4)

where s is the squared center-of-mass energy:

s = (k+P)2. (2.5)

2.3 The Inclusive ep Cross Section

For Q2� m2
Z the scattering process is entirely dominated by the electromagnetic

force and can be described by Quantum Electro Dynamics (QED). A general

structure can be derived by exploiting Lorentz invariance and electromagnetic cur-

rent conservation [29]:

∂ 2

∂x∂Q2 σ
NC(x,Q2) =

2πα2
em

xQ4

(
F2(x,Q2)− y2

1+(1− y)2 FL(x,Q2)

)
(2.6)

The cross section is parametrized by the two proton structure functions F2(x,Q2)

and FL(x,Q2). The structure functions describe the inner structure of the proton.

They cannot be derived perturbatively and have to be determined experimentally.

The contribution of the longitudinal structure function FL is suppressed by a fac-

tor of y2

1+(1−y)2 and only contributes marginally in the phase space region of this

analysis. FL describes the contribution to the cross section which originates from

photons which are longitudinally polarized.
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2.4 The Quark Parton Model

Early deep inelastic scattering measurements were explained in the framework of

the naïve quark parton model (QPM). In the QPM the proton is viewed as being

composed of non interacting constituents called partons. Each parton carries a

fraction ξ < 1 of the longitudinal momentum of the proton, while its transverse

momentum is neglected. The cross section 2.6 consists of the incoherent sum of

the individual partons and their interactions:

∂ 2

∂x∂Q2 σ
NC(x,Q2) = ∑

i

ˆ 1

0
dξ fi(ξ ) ·

∂ 2

∂x∂Q2 σ
NC(

x
ξ
,Q2)

∣∣∣∣
eqi→eqi

(2.7)

In this expression fi(ξ ) describes the Parton Density Function (PDF) of the

ith parton. In the simplified QPM the proton consists of three non interacting

point-like fermions, the valence quarks, namely two up and one down quark.

Consequentially the cross section for each parton in leading order is calculated

by means of QED as:

∂ 2

∂x∂Q2 σ
NC(

x
ξ
,Q2)

∣∣∣∣
eqi→eqi

=
2πα2

em[1+(1− y)2]

Q4 · eiδ (
x
ξ
−1) , (2.8)

from this follows that the structure function F2 is

F2(x,Q2) = ∑
i

e2
i x fi(x) (2.9)

The independence of Q2 is known as scaling [17] and is related to the point-

like behavior of the constituent of the proton. The Callan-Gross relation manifests

itself in
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Figure 2.3: One of the first measurements of F2 from fixed target experiments [34]
at a fixed value of x = 0.25.

FL(x,Q2) = 0 (2.10)

and reflects the fermionic nature of the partons and the vanishing longitudinal

structure function. Both features were predicted and 1972 experimentally con-

firmed within the precision of the measurement. (cf. figure 2.3)

2.5 Quantum Chromo Dynamics

Non interacting partons inside the nucleon as postulated in the QPM can only be

an approximate description. Only shortly after the first measurements violations

of the scaling have been found [33]. The interactions between the constituent of

hadrons are described within the theory of Quantum Chromo Dynamics (QCD)

[35, 74, 41]. QCD was initially introduced to describe the asymmetric wave func-

tion of the ∆++ particle which required an additional degree of freedom. This ad-

ditional degree of freedom is called color, which is the charge of the strong force

which drives QCD. QCD is a Yang-Mills theory based on the SU(3) symmetry
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group. The generators of the SU(3) form an octet of color-anticolor states; these

mediators of the strong force are called gluons. The fact that both quarks and glu-

ons carry color charge results in emissions of gluons from quarks and from other

gluons, the splitting into quark-antiquark pairs and the gluon self-interaction. Be-

cause of the non zero probability that a quark emits a soft gluon the perfect scaling

behavior is broken as higher Q2 terms resolve more and more partons. Addition-

ally gluons can split into qq pairs enhancing the quark content at small x. The

scaling violations as measured at HERA are depicted in figure 2.4. The reduced

cross section for neutral current DIS ep scattering is shown which is proportional

to the neutral current cross section apart from a kinematic factor.

2.6 Renormalization and the Running of the Cou-

plings

Any physical field theory must be renormalizable in case of the appearance of

divergences. In quantum field theories (QFT) divergences occur if an integration

over all momenta in closed loops is performed. Renormalization can be seen as

the replacement of a bare charge and consequently the bare coupling by a physical

observable quantity.

The coupling in the lowest order is modified by higher order corrections of the

propagator. This correction results in a so-called UV-divergence. In QED closed

fermion loops emerge, whereas in QCD in addition to the fermion loops the gluon

loops contribute (cf. figure 2.5).

There are different possibilities to account for and remove divergences. The

different schemes are called renormalization schemes. The minimal subtraction

scheme (MS) [72] is the most commonly used renormalization scheme in DIS.

In the MS scheme dimensional regularization is utilized to factor out and absorb
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Figure 2.4: H1 and ZEUS combined structure function data from e+p neutral
current DIS scattering.

Figure 2.5: Loop contributions to the gluon propagator in QCD. Left: Fermion
loop. Right: Gluon loop.
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divergences in the definition of the coupling. Another scheme is the DIS scheme.

In the DIS scheme all gluon contributions are absorbed into the quark distribution,

whereas in the MS scheme only the collinear divergence is factored out. The

renormalization removes the divergence, though a scale at which the subtraction

is performed is introduced.

Nevertheless physical observables must not depend on the scale parameter.

This condition leads to the renormalization group equations (RGE). The RGE

contain the scale dependence of the running coupling αs:

µ
2
r ·

∂αs(µr)

∂ µ2
r

= β (αs(µr)) (2.11)

at which the strong coupling constant αs(µr) at an arbitrary scale µr is given

by

αs(µ
2
r ) =

1
β (αs) · ln(µ2

r /Λ2
QCD)

(2.12)

and β (αs) is given by

β (αs) =−αs

∞

∑
n=0

βn

(
αs

4π

)(n+1)
(2.13)

The coefficients βn currently have been calculated up to fourth order allowing

an iterative determination of αs [26]. ΛQCD refers to the asymptotic scale param-

eter which determines the behavior of αs. From µr → ∞ it follows αs(µr)→ 0.

This phenomenon is known as asymptotic freedom. At large energies, or corre-

spondingly at small distances the quarks and gluons can be seen as quasi free

particles. As µr approaches ΛQCD, αs becomes large. This behavior is known

as confinement and implies that free colored objects are not observable, since the

perturbative expansion breaks down in the small energy regime.
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2.7 Perturbative QCD

An observable R can be written in terms of a series expansion,

R =
∞

∑
n=0

cn(µr)αs(µr)
n,

where the coefficients cn(µr) can be calculated by the evaluation of Feynman

diagrams. Due to the small size of the strong coupling constant αs(µr) at large

scales, R can be approximated by the first n terms of the expression. This approach

is called perturbative QCD (pQCD) and is valid at µr � ΛQCD where terms of

order αs(µr)
n+1 can be neglected. From the derivative of the observable R by the

renormalization scale µr

d
d ln(µr)

N

∑
n=0

cn(µr)αs(µr)
n ∼ O(αs(µr)

N+1)

and αs(µr) < 1 for sufficiently large µr it follows that the observable R will

depend less on the choice of µr the more terms are included in the perturbation

series. [71]

2.8 Factorization Theorem and DGLAP Evolution

In the QPM the proton structure is absorbed in the PDF. It is shown that this

concept is also applicable in the framework of QCD in which quarks and gluons

are interacting with each other. The concept of the PDFs is based on the separation

of short distance perturbative effects and long distance non-perturbative effects. A

qualitative motivation for the validity as well as a proper mathematical elaboration

is provided in [28]:

“To be specific, consider inclusive electron-hadron scattering by virtual pho-
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ton exchange at high energy and momentum transfer. Consider how this scatter-

ing looks in the center-of-mass frame, where two important things happen to the

hadron. It is Lorentz contracted in the direction of the collision, and its internal

interactions are time dilated. So, as the center-of-mass energy increases the life-

time of any virtual partonic state is lengthened, while the time it takes the electron

to traverse the hadron is shortened. [...] When the latter is much shorter than

the former the hadron will be in a single virtual state characterized by a definite

number of partons during the entire time the electron takes to cross it.”

Although the rigorous proof of the factorization theorem exists only for a few

processes, it is assumed that factorization also holds for other processes. Again

the factorization has to be performed at a specific scale µ f , the factorization scale.

For practical reasons in most applications the factorization and renormalization

scale are set to the same values µ = µr = µ f .

DGLAP Evolution Equation Physical observables must not depend on the

choice of the factorization scale, which again leads to renormalization group equa-

tions, also known as evolution equations. Once a PDF is known at a given scale

the evolution equations provide a prescription to evolve parton densities to an ar-

bitrary scale. The evolution is described by coupled integro differential equations,

the so-called DGLAP equations [30, 40, 10]

∂qi(x,Q2)

∂ lnQ2 =
αs(Q2)

2π
·
ˆ 1

x

dξ

ξ

[
Pqq

(
x
ξ

)
qi(ξ ,Q2)+Pqg

(
x
ξ

)
g(ξ ,Q2)

]

∂qi(x,Q2)

∂ lnQ2 =
αs(Q2)

2π
·
ˆ 1

x

dξ

ξ

[
Pgq

(
x
ξ

)
qi(ξ ,Q2)+Pgg

(
x
ξ

)
g(ξ ,Q2)

]
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Figure 2.6: Splitting functions and the corresponding Feynman graphs.

Pab(x/ξ ) denote the splitting functions as depicted in figure 2.6. The splitting

functions give the probabilities for an incident parton b with momentum fraction

ξ to radiate a new parton a with momentum fraction x. The splitting functions are

calculated perturbatively.

2.9 Heavy Quark Production in DIS

Heavy quark production in DIS at HERA is dominated by the boson-gluon-fusion

(BGF) process. BGF describes the interaction between the virtual photon of the

electron and a gluon of the proton. The lowest order Feynman diagrams of the

BGF process γg→ cc are depicted in figure 2.7a)1

The upper left figure represents the direct BGF process, which corresponds

to a next-to-leading order process in inclusive DIS. The other diagrams of figure

2.7a) are the diagrams which take into account the so-called hadronic component

of the photon. The resolved contribution only emerges at small photon virtualities.

It is highly suppressed for the phase space region of this analysis and negligible

[9].

The proof of hard scattering factorization with the inclusion of heavy quark

masses is given in [27]. The factorization theorem has the following form:

1In the following only c-quarks are mentioned, although the theoretical concept is applicable
for b-quarks as well.
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Figure 2.7: The heavy quark boson-gluon fusion processes in leading order. a)
The upper left shows the direct process. Additionally the resolved processes are
shown. b) Detailed graph of the direct BGF.

dσ = ∑
i, j

f A
i (x1,µ f )⊗ f B

j (x2,µ f )⊗dσ̂i j→kX(µ f )⊗DH
k (z,µ f ) (2.14)

Figure 2.7b) shows the direct process of charm production and illustrates the

ingredients of the theoretical treatment and the factorization with its components:

• dσ̂(µ f ,αs(µr),
(

mc
pT

)
) element of the hard scattering process of the partons

i and j. dσ̂ can be perturbatively computed at the scale µ f . The mass is

treated in a certain mass scheme as discussed in the next paragraph

• f A
i (x1,µ f ) denotes the photon PDF, f B

j (x2,µ f ) the proton PDF, respectively.

The universal PDFs give the probability to find the corresponding partons i

and j. The photon PDF only occurs in the resolved case. Otherwise sim-

ply the photon exchange is involved. Figure 2.8 shows the proton PDFs

measured by H1 and ZEUS.
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Figure 2.8: The parton density functions [8].

• The fragmentation function DH
k

(
z,µ f

)
gives the probability to produce a

colorless hadron H from the produced quark k with a relative momentum z.

Heavy Flavor Mass Schemes In heavy flavor production processes several hard

scales (Q2, pT,mc) occur. Depending on the scale involved different schemes exist

for the calculation of the process. Within the different schemes the heavy flavor

masses are treated differently. The schemes are briefly summarized in the follow-

ing

FFNS In the fixed flavor number scheme (FFNS) only the light quarks u, d, s and

the gluons contribute to the dynamic structure of the proton. The massive

charm quark is produced perturbatively as indicated in figure 2.9a).

All calculations are performed in fixed order perturbation theory, which

leads to remaining large terms of the form logn(Q2/m2
c) at the order n of

the perturbation series. Therefore the FFNS is expected to describe data at

a scale in the vicinity of the charm mass.
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Figure 2.9: Left: Perturbative production graph of massive charm quarks. Right:
Production of massless charm quarks.

ZM-VFNS For µ→∞ the zero mass variable flavor number scheme is applicable

[24, 15]. In the ZM-VFNS light and heavy quarks are treated as massless

partons. This implies that the aforementioned large logarithms are absorbed

into charm parton distributions and fragmentation functions at a scale close

to mc, which can be re-summed to all orders by DGLAP evolution. This

case is depicted in figure 2.9b). The ZM-VFNS represents the common

method for conventional QCD parton model calculations. Flavors above

n f = 3 are added if Q2 exceeds the corresponding mass. The only hard

scale left is Q2, which leads to discontinuities at scales of the size of the

mass of the heavy quark.

GM-VFNS For completeness the general mass variable flavor number schemes

(GM-VFNS) are mentioned. In the mixed schemes both a massive treatment

at threshold and a massless treatment at high scales is done. Oversimplified

the idea is to sum over the massive FFNS-term and the massless ZM-VFNS-

term and to account for the overlap term in a correct way.
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2.10 Hadronization

States which are physically observable must be color neutral states due to the

phenomenon of confinement. Partons which originate from the hard interactions

undergo a cascade of soft interactions which is known as hadronization or frag-

mentation process and leads to the formation of detectable hadrons. Because

the hadronization occurs at a scale at which perturbation theory is not applica-

ble it must be described by phenomenological models. The hadronization of light

quarks is based on the Lund string model [11, 14]. In the Lund string model the

color field between a massless quark anti-quark pair is modeled by a massless and

relativistic string. The string has a tension, which gives a linear potential similar

to the QCD potential. When the quarks move apart, the string stretches and the

potential increases until the splits up into two color-singlets systems. If the in-

variant mass of the sub-systems is sufficiently high, further breaks can occur until

only on-mass-shell hadrons are left.

Phenomenological models for charm fragmentation are the Peterson, Kartvel-

ishvili and Bowler models [65, 51, 21] whose fragmentation functions are given

by:

Peterson: Dε
H(z) ∝

1
z · (1−1/z− ε

1−z)
2 ,

Kartvelishvili: Dα
H(z) ∝ zα · (1− z), (2.15)

Bowler : Dα
H(z) ∝

1

z1+β rQm2
Q
· (1− z)α · exp

(
βM2

T
z

)
.

The fragmentation functions are described by the momentum fraction z which

the produced hadron inherits from the initial partons. The Bowler parametrization

contains the two free parameter α and β and rQwhich is set to 1 by default. The

Kartvelishvili parametrization contains the free parameter α . mQ denotes the mass
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of the heavy quark, MT =
√

M2
H + p2

T denotes the transverse mass.

2.11 Properties of the Charmed Mesons

In this section the properties of the charmed mesons relevant for this analysis are

illustrated. Approximately 23% of the produced charm quarks fragment into D±

mesons. The decay mode under investigation (cf. chapter 6) is

D±
(9.13±0.19)%−→ K∓π

±
π
± (2.16)

The branching ratio of this channel amounts to (9.13± 0.19)%. Because of

the weak, flavor changing decay the D meson has a relatively long lifetime of

the order of several hundred micrometers, which allows for the charm tagging

technique to be applied.

The doubly Cabibbo-suppressed decay (cf. 6.6) has a branching ratio of (5.27±

0.23)×10−4

D±
(5.27±0.23)×10−4

−→ K±π
∓

π
± (2.17)

And hence is suppressed by a factor of ≈ 200.

Furthermore the D∗±meson and its decay in the golden decay channel is ana-

lyzed for systematic studies.

D∗±
(67.7±0.5)%−→ D0

π
±
slow

(3.87±0.05)%→ → K±π
∓

π
±
slow (2.18)

The relevant information is summarized in table 2.1.
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D± D∗(2010)± D0

Mass m [MeV] 1869.57±0.16 2010.22±0.14 1864.8±0.14
I(JParity) 1

2(0
−) 1

2(1
−) 1

2(0
−)

Mean lifetime τ (1040±7)×10−15s (410.1±1.5)×10−15s
cτ 311.8 µm 122.9 µm

f (c→ DX) (23±0.85)% (23.4±0.8)% (58.5±1.9)%
Quark content (cd)+ c.c. (cd)+ c.c. (cu)+ c.c.

Table 2.1: Properties of the D mesons relevant for this analysis. All but one
number taken from[61]. The relative fragmentation probability for D± is taken
from [59].
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Event Generators

Event generators simulate the physics processes which underly epscattering. Their

computation is based on random number generation and the sampling of possible

processes and final states. From the accumulated samples a prediction for the

resulting cross section is derived. Section 3.1 discusses leading-order (LO) gen-

erators which include parton hadronization and allow for simulation. The events

are subsequently passed to the detector simulation and yield fully reconstructed

events. These generators are so-called Monte Carlo (MC) event generators. In

this thesis leading-order MC events are used for detector efficiency correction and

as input data for the training of the neural network based event classifier (cf. 6.5).

Section 3.2 introduces next-to-leading-order (NLO) event generators which also

take into account corrections to the order α2
s BGF process and calculate cross

sections on parton level without parton showering.

3.1 Leading Order Event Generators

The RAPGAP package is used for the detector efficiency correction (cf. 7.1) and

provides the signal events for the training of the neural network (cf. 6.5) which

25
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is applied for particle candidate classification. The second generator package

is DJANGOH which provides the background particle candidates for the classifier

training set. Candidates of both generators are used to estimate the model de-

pendency (cf. 8.2) and their cross sections are compared to the measured cross

sections. (cf. chapter 9)

The process of the event generation begins with the electron-proton interac-

tion, i.e. the application of the factorization theorem as discussed in section 2.8.

First the hard subprocess is calculated at the given factorization scale by the exact

calculation of the matrix element in leading order perturbation theory. The matrix

element which belongs to the hard subprocess is convoluted with the proton PDF.

The PDF is evolved to the desired scale by application of the parton evolution. The

scale is given by the factorization scale usually defined by the hardest scale of the

process, e.g. the virtuality Q2. Next the initial and final state partons from the hard

interaction are subject to the parton showers which are performed with the help

of the DGLAP evolution. The parton evolution terminates when only partons on

the mass shell from the initial virtual partons are left. Afterwards the still colored

particles undergo the hadronization process. At the end of the generation process

all particles have a lifetime τ > 10−8 s. The four-vectors are then provided for the

detector simulation, which is described in section 4.8. In the following paragraphs

the MC generators used in this analysis are presented.

RAPGAP RAPGAP[50] generates ep events by evaluating the BGF process with

leading order matrix elements. The matrix elements are matched to LO parton

showers for which the DGLAP evolution is used. The factorization scale is chosen

to be µ2 = Q2 + p2
T +4m2

c . The heavy quarks are treated as massive with a charm

mass of mc = 1.5MeV. RAPGAP is interfaced to HERACLES [56]. HERACLES gen-

erates next-to-leading order QED corrections as explained in paragraph 2.1. The
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Lund fragmentation is utilized for the light quark flavors and the Bowler frag-

mentation function for heavy quark fragmentation. The fragmentation function is

parametrized after Bowler, derived from the ALEPH tune [53]. The proton PDF

used for the particle generation is CTEQ6L [68] and reweighted to H1PDF2009

[2, 32].

DJANGOH The DJANGOH [69] software package also generates events in deep

inelastic scattering including parton showers and hadronization. LEPTO[48] is

used for the hard scattering process and ARIADNE [12, 43] for parton shower-

ing, which is an implementation of the color dipole model for parton cascades.

For the fragmentation the JETSET[70] package is applied, which implements the

Lund string model. Also DJANGOH is interfaced to HERACLES in order to account

for radiative corrections.

3.2 Next-to-Leading Order Calculations

Next-to-leading order calculations are expected to provide more reliable results

as they account for the presence of hard parton emissions. In the DIS regime the

HVQDIS [44] program implements QCD predictions for heavy quark production.

The calculations include the α2
s corrections to the leading order αs BGF process

as depicted in figure 3.1.

Unfortunately a NLO hard subprocess can not be directly supplemented with

parton showers because of double counting problems. The treatment of the frag-

mentation process is discussed in the next paragraph. HVQDIS uses the FFNS

heavy flavor mass scheme (cf. 2.9). To cancel collinear and soft divergences the

modified subtraction renormalization scheme is used. More details on the calcu-

lation can be found in [45]. The configuration for the NLO calculation is taken

from the D± cross section measurement at ZEUS [57] and adapted to the phase
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Figure 3.1: A selection of the real corrections (a) and of the virtual corrections of
the order αs BGF process.

space of this analysis. This allows a comparison to the NLO calculation as well as

an indirect comparison to the ZEUS measurement. In the following the settings

are summarized:

• The charm mass is set to mc = 1.5GeV. For the estimation of the theory

uncertainty the value of mc was varied by 0.15 GeV up and down. Simulta-

neously with the charm quark mass in the matrix element, the value used in

the PDF fit was varied.

• Renormalization and factorization scale were set to µR = µF =
√

Q2 +4m2
c .

To estimate the theory uncertainty based on the scale definition, they were

varied independently by a factor of 2 up and down.

• The PDFs were extracted from the ZEUS-S NLO PDF fit [25] in the 3-

flavor FFNS with the charm masses mentioned above. Unfortunately for

the central value of the charm mass only fits with a different choice for the

scales exist (µR = µF = Q2). A check in [57] demonstrates that the effect is
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small and can be neglected.

• αs was calculated at NLO with 3 active flavors and ΛQCD = 363GeV

In order to derive the total theory uncertainty the single contributions are summed

in quadrature.

Fragmentation process

As mentioned earlier HVQDIS calculates events on parton level only. It uses the

Kartvelishvili [51] parametrization for the fragmentation function (cf. 2.10). In

[57] a detailed study of the charm fragmentation modeling was performed: The

approach was to fit the α parameter of the fragmentation function (eq. 2.15) as a

function of an energy scale to the HERA data. Figure 3.2 shows the fit result as

function of ŝ, the center of mass energy of the hard subprocess. While the frag-

mentation function is normalized to unity, the total probability for a certain meson

to be produced in a given fragmentation process is given by the fragmentation

fractions f (c→ D±) = 0.2297±0.0085 and f (c→ D∗) = 0.234±0.008 [59].
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Figure 3.2: A fit of the measured values of the Kartvelishvili parameter α as a
function of ŝ to ZEUS and H1 data. For details see [57]



Chapter 4

Experimental Setup

4.1 HERA

HERA1 was an electron proton collider at the research institute DESY2 located in

Hamburg, Germany. It was constructed and operated as a double ring collider for

the collision of protons and leptons. The lepton beam consisted of either electrons

or positrons3. HERA started operation in 1992. After a successful operation until

the year 2000 a major upgrade has been performed to increase the luminosity. This

running phase is termed HERA I, whereas HERA II refers to the second running

period during 2002-2007.

Figure 4.1 shows the HERA storage ring with its 6.3 km circumference and

its pre-accelerators. Before the injection into HERA the particles were acceler-

ated by different linear accelerators, synchrotrons and the storage ring PETRA.

The injection energies were 14 GeV for electrons and 40 GeV for protons. The

beams entered in separate bunches with a distance of 28.8 m between successive

bunches, corresponding to a bunch crossing time of 96 ns and a collision rate of

1Hadron-Elektron-Ringanlage, English: Hadron-Electron Ring Accelerator
2Deutsches Elektronen Synchrotron
3The term electrons will be used throughout the text representing both kinds of leptons

31
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Figure 4.1: The HERA storage ring with its pre-accelerator chain and the four
experiments H1, ZEUS, HERMES and HERA-B.

10.4 MHz. The particles were then further accelerated to their nominal beam en-

ergies of 27.6 GeV for electrons and 920 GeV for protons. At the four different

interaction points (IP) four experiments were located (figure 4.1). The two multi

purpose experiments H1 and ZEUS as well as the fixed target experiments HER-

MES and HERA-B. HERMES made use of the polarized electron beam, which

was brought into collision with a gas target to investigate the spin structure of the

proton. HERA-B made use of the proton beam halo on a wire target between 1998

and 2003 to study CP violation in decays of B mesons.

From the beam parameters the luminosity can be derived and is defined as

L =
NPNenb f0

4πσxσy
(4.1)

in units of cm−2 s−1. NP/e is the number of particles in each bunch, nb denotes

the number of colliding bunches and f0 the revolution frequency. σx/y denotes the

width of the interaction region as illustrated in figure 4.2: During the traversal of

the two bunches the distribution of the particles in the projection onto the trans-

verse plane follows a normal distribution with corresponding widths.

The integrated luminosity
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Figure 4.2: Proton and electron bunch penetrating each other. The particles are
normally distributed inside the bunches with widths σx/y in the transverse plane.

L =

ˆ
L dt (4.2)

is directly proportional to the expected number of events for a specific process

with interaction cross section σ

N = Lσ . (4.3)

At the end of HERA I the machine parameters reached their performance lim-

its. Given the luminosity formula, an upgrade to further improve the performance

required mainly a smaller size of the two beams at the interaction point. During

a shutdown period in the years 2000-2002 the interaction region was redesigned

and the focusing structure was revised in order to provide a stronger focusing and

a smaller β function at the interaction points. The upgrade project was based on

faster beam separation, i. e. the separation of the low energetic beam and guid-

ance into its own magnetic lattice before the focusing of the proton beam. The

focusing structure was based on a doublet focusing in the case of the protons and

a triplet for the electron beam. Table 4.1 summarizes the beam parameters for the

HERA I and HERA II period as well as for the different e+/e− running modes.

The decrease of the beam size is clearly visible. σx is determined experimentally

(cf. 6.3) whereas the ratio σx/σy = 4 has been derived from the focusing structure
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HERA I HERA II
e− p e− p e+ p

Beam energy E [GeV] 27.5 920 27.5 920 27.5 920
Current I [A] 45 100 58 140 58 140

Particles per bunch N [1010] 3.5 7.3 4.0 10.3 4.0 10.3
Number of beam bunches 189 180 189 180 189 180

Beam widths σx×σy [µm] 190 × 50 112 × 30 130 ×33
Synchrotron radiation at IP [kW] 6.9 25

Luminosity [cm−2s−1] 1.4 ·1031 7 ·1031

Table 4.1: The beam parameters of the HERA collider, before and after the lumi-
nosity upgrade and for the e−and e+mode.

geometry.

Figure 4.3 shows the accumulated luminosity vs. days of running for the two

run periods HERA I and HERA II. The upgrade resulted in a factor of 5 of increase

in luminosity. During their total time of operation both experiments H1 and ZEUS

collected data corresponding to an integrated luminosity of L≈ 500 pb−1.

4.2 H1 Detector

The H1 detector is a multi purpose high energy physics detector that was built to

observe particles and their properties which were produced during the ep collision

process. The detector with its dimensions of approximately 12m × 10m × 15m

and its weight of roughly 2800 tons almost covers the full solid angle. Figure 4.4

shows a schematic drawing of H1. The figure also illustrates the orientation of the

right-handed coordinate system that is commonly used at H1. The positive z-axis

coincides with the proton flight direction and is referred to as forward direction.

The x-axis points in the direction of the center of the HERA storage ring. Due

to the different beam energies the center of mass is boosted towards the forward

direction. The asymmetric design and geometry as well as a higher granularity in
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forward direction account for this.

The H1 detector consists of multiple sub-detectors which are arranged around

the interaction point in several layers. The beam pipe is surrounded by the central

and forward tracking detectors. The trackers are enclosed by the liquid argon

calorimeter (LAr) which consist of an electromagnetic and hadronic part. The

LAr is surrounded by a superconducting coil which provides the axial field of

1.15 T. The instrumented iron yoke also functions as muon detector and catches

hadronic showers that escape the LAr. The forward muon detector covers small

angles in the forward direction. Very forward and backward directions are covered

by the PLUG calorimeter and the backward calorimeters. A detailed description

of the H1 detector can be found in [6]. In the following sections the detector

components relevant for this analysis are discussed. Especially emphasized are

the Central Tracking Detector which is relevant for the reconstruction of the D

meson candidates and the backward calorimeter which plays a crucial role for the

reconstruction of the event kinematics.

4.3 Tracking Detector

The H1 Tracking detector consists of several sub-components. The central part

combined to the Central Tracking Detector (CTD) consists primarily of the two

concentric drift chambers CJC1 and CJC2 (Central Jet Chamber), which are de-

scribed in more detail in section 4.4. The main component of the CTD is supported

by several components for dedicated tasks. (cf. figures 4.5 and 4.6) The two thin

proportional chambers CIP and COP (Central Inner/Outer Proportional Chamber)

are mainly used for triggering purposes. The COZ (Central Outer z-Chamber) is

a thin drift chamber with sense wires perpendicular to the beam axis, that account

for a z resolution of σz ≈ 300 µm and the consequential improvement of the polar
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Figure 4.4: Schematic drawing of the H1 detector. The H1 coordinate system is
shown on the right. The protons are entering from the right, electrons from the
left.
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Figure 4.5: Schematic view of the H1 Central Tracking Detector (CTD).

angle measurement of the tracks. The θ coverage of the COZ is 25◦ < θ < 156◦.

The Forward Track Detector (FTD) extends the polar coverage of the track

reconstruction to 5◦ < θ < 25◦. It consists of three super-modules with several

drift chambers and different wire geometries. The single hit resolution is of the or-

der of σrφ ≈ 210 µm in rφ with a radial resolutions of σr ≈ 3cm. The momentum

resolution takes values of σp/p2≈ 0.1−0.02GeV−1 according to the track length

and its polar angle. The Backward Proportional Chamber is located in front of

the backward calorimeter and provides an improved position measurement of par-

ticles entering the calorimeter. The BPC consists of six wire layers, which have

three different azimuthal orientations. For charged particles the spatial resolution

in the rφ -plane is σrφ ≈ 1mm.



4.3. TRACKING DETECTOR 39

Figure 4.6: Radial view of the Central Tracking Detector (CTD). The sense (an-
ode) wires of the CJC are stretched parallel to the beam pipe and depicted as
points. The area between two cathode planes is defined as cell. The cathode wires
are not displayed.
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Silicon Trackers The silicon trackers have been built to provide vertex informa-

tion from precision measurements of charged particle tracks close to the interac-

tion point. In order to reduce the lever arm of the track to the interaction point the

silicon trackers are placed as close as possible to the beam pipe and have a distance

to the IP of 5-10 cm. The central barrel part, the CST (Central Silicon Tracker)

consist of two layers of double-sided silicon strip detectors [58]. In the course

of the HERA upgrade the mechanical arrangement of the individual sensors was

changed to account for the new, elliptical BeAl beam pipe (cf. figures 4.6 and 4.7).

Each individual sensor has a size of 5.9×3.4 cm2. The p side has strips parallel

to the z axis with a readout (strip) pitch of 50 µm (25 µm). The n side measures

the z coordinate with a strip pitch of 88 µm, without any intermediate strips; a

second metal layer contains the readout lines. Six sensors are daisy-chained to

form a ladder, with a readout hybrid for 2 x 640 channels (p and n side) at either

end. Carbon fiber strips glued to both sides of the ladder provide the mechanical

support. The ladders are cylindrically arranged in two layers around the beam

pipe such that particle trajectories origination at the IP are perpendicular to the

silicon ladders (cf. figure 4.6). 32 ladders are used in total, 12 in the inner and

20 in the outer layer. The polar angle coverage is 30◦ < θ < 150◦. The ladders

are screwed to rigid carbon fiber end plates, forming a self-supporting structure

with minimal dead material: the total thickness of the CST in its central region is

0.40 g/cm2, corresponding to 1.4% X0. By the interpolation of the measured hits

the achieved intrinsic point resolutions are 12 µm in rφ and 22 µm in the z di-

rection. The lightweight design and the high intrinsic resolution yields an impact

parameter resolution of 20 µm⊕ 70 µm/p and provides the required precision for

the accurate vertex reconstruction.

In the forward and backward region the FST (Forward Silicon Tracker) and

the BST (Backward Silicon Tracker) are mounted to complement the CST and to
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Figure 4.7: Left: The central, barrel part of the H1 silicon tracker (CST). Right:
Detail drawing of the Forward Silicon Tracker (FST) showing the wedge-shaped
sensors partially inserted constituting the disk layout.

extend the θ coverage [63]. The FST covers the angular region of 6.7◦ < θ <

18.8◦ and the BST 163◦ < θ < 176◦. Both detectors are disk detectors made up

of wedge-shaped sensors (cf. figures 4.7 and 4.5) grouped in several wheels. The

BST reaches a transverse momentum resolution of σpT /p2
T ≈ 4%GeV−1 and a

single track impact parameter resolution of 130 µm.

4.4 Central Jet Chambers

The main component of the central tracking system is the CJC, consisting of the

chambers CJC1 and CJC2, as depicted in figure 4.6. Between the two chambers

the COZ is located. Die CJC covers a polar angle of 15◦ < θ < 165◦ and the

full azimuthal angle. It is filled with a gas mixture of ethane and argon. The

electric field which induces the electron drift is caused by potential differences

of gold wires spanning the drift chamber. The inner cylinder, the CJC1 consists

of 30 drift cells. The cells are delimited by the cathode wire planes. Each cell

contains one anode (sense) wire plane (cf. figure 4.6). All wires run parallel with
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Figure 4.8: CJC1 cell: The anode wires are represented by crosses and the poten-
tial and cathode wires by circles. For some inner, central and outer anodes the field
(drift) lines from the cathodes to the anodes are shown. The angles between drift
direction and the normal to anode plane αlor and the normal to the track direction
β are indicated.

respect to the beam axis. In CJC1 there are 30 drift cells each composed of 24

sense wires. CJC2 comprises 60 cells with 32 sense wires each. The drift cells

are inclined by about 30◦ with respect to the radial direction. Taking into account

the curvature of a track caused by the magnetic field, the tilt of the cells results in

trajectories approximately perpendicular to the electric flux lines for a wide range

of momenta. Hence the electron drift direction is roughly orthogonal to the trajec-

tory. Furthermore the curved tracks cross the cell boundaries at least once, which

ensures a measurement based on at least two cells. One cell of the CJC showing

the arrangement of all kinds of wires is depicted in figure 4.8. The planes of the

sense wires alternate with the cathode planes. Furthermore the field wires which

surround the sense wires are shown. The field wires are jointly responsible for

the parallel geometry of the field. Hardly visible in the figure is the staggering

of the signal wires with respect to the anode layer by 160 µm to resolve the drift

side ambiguity. From the time difference of the event t0 and the arrival of the

signal the drift duration is deduced. With the knowledge of the drift velocity and

the angle regarding the magnetic field αlor (Lorentz angle) the distance between
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CJC1 CJC2
Total length 2.5m
Active length 2.5m
Inner radius 203 mm 530 mm
Outer radius 451 mm 844 mm
Number of cells 30 60
Number of sense wires 720 1920
Sense wire distance 10.16 mm
Resolutions:
Spatial resolution in the rφ -plane σrφ 130 µm
Spatial resolution in the z direction σz 2−10cm

Table 4.2: Technical parameters of the central jet chambers CJC1 and CJC2.

hit and wire can be determined. Figure 4.9 shows the signal after digitization.

The amount of deposited charge on the wire is measured on both wire ends and

digitized with an 8bit Flash-ADC sampling at 104 MHz. From drift time mea-

surement a single hit resolution in the rφ -plane of σrφ = 130 µm is obtained. The

z coordinate is determined by means of charge division. A precision of 1% of the

wire length can be achieved: σz= 2.2 cm. Table 4.2 summarizes geometrical and

technical parameters of the drift chambers.

Measurement of the Particle Energy Loss in the CJC A particle which tra-

verses the CJC ionizes the gas and loses energy. This energy loss can be measured

and used for particle identification (cf. 6.2). For this purpose the total charge

which is collected on the considered wire is determined from the integral of the

charge distribution (cf. figure 4.9).

The energy loss is related to the density and the atomic charge of the chamber

gas. The chambers are filled with argon and ethane at a ratio of 50:50 at atmo-

spheric pressure. Argon has a atomic-number-to-weight ratio of Z
A = 0.450589

and a density of ρ = 1.782 · 10−3g/cm3. The corresponding characteristics of

ethane are Z
A = 0.59861 and ρ = 1.356 · 10−3g/cm3. The resulting mean value
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Figure 4.9: Signal after digitization by FADC. The linearized amplitude (in FADC
units) is shown as function of time (in 9.6 ns bins) for both wire ends (full, dashed
line). The integration interval is indicated.

for the mixture of the chamber gas amounts to 〈ρ Z
A〉 = 0.807 · 10−3g/cm−3. The

charge which is produced during the ionization process is proportional to the en-

ergy loss (dE/dx)BB of the particle

Qprim =Cρgas

(
dE(βγ)

dx

)
BB

∆x .

The constant C depends on the mixing ratio of the gas and ∆x corresponds to

the length of the traversed particle path.

4.5 Backward Calorimeter

The backward calorimeter covers the backward region (153◦ ≤ θ ≤ 174◦). It

consists of the electromagnetic and the hadronic part. The electromagnetic part

is built-up of single cells of dimension 4.05cm× 4.05cm× 25cm. Each sin-

gle cell consists of 2340 longitudinally aligned scintillating fibers embedded in
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Figure 4.10: Cell of the electromagnetic SpaCal (left). It consists of 2340 longi-
tudinally aligned scintillating fibers embedded in a lead matrix (right)

a lead matrix (cf. figure 4.10) which lead to the denotation “Spaghetti” calorime-

ter (SpaCal). 16 cells are compiled to form a 4×4 structure called super-module

(cf. 4.11). The SpaCal is a sampling calorimeter, which consists of active and ab-

sorption material in a sandwich structure (cf. figure 4.10) The scintillating fibers

(active material) are embedded in z direction in small notches in the absorption

material lead. The fiber diameter is 0.5 mm and the lead-to-fiber ratio is 2.3:1. At

the end of the cells photo-multiplier tubes are mounted to collect the light signal

from the showers. The electromagnetic SpaCal has an energy resolution of

δEelm

Eelm
' 7%√

Eelm/GeV
⊕1%

The spatial resolution was determined with test beams at CERN and DESY

[62, 13] and amounts to

δxy '
4mm√

Eelm/GeV
⊕1mm (4.4)

4.6 Luminosity Detector

At H1 the luminosity is determined by photons which are detected in the photon

detector (PD). In the Bethe-Heitler process ep→ epγ bremsstrahlung photons are

produced and emitted at very small angles. Because only the electrical form factor
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Figure 4.11: Outline of the electromagnetic backward calorimeter. The individual
cells are grouped into 4×4 super-modules.
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is involved in the calculation of the process the production rate is known to high

precision. The photon detector is a Cerenkov sampling calorimeter with tung-

sten absorbers and mounted at z =−102.9m [6]. Background events mainly arise

due to beam-gas interaction and pile-up of multiple interactions per bunch cross-

ing. The off-line reconstruction of the luminosity accounts for these background

sources as well as for the acceptance of the photon detector.

Furthermore a precision measurement of the QED Compton (QEDC) process

[4] is performed. QEDC events are characterized by two back-to-back deposits

regarding the azimuthal angle φ in the electromagnetic part of the SpaCal. The

QEDC measurement is exploited as independent measurement of the integrated

luminosity. The result yields a small positive correction in comparison to the

Bethe-Heitler measurement.

4.7 Trigger System

The bunch crossing rate amounts to 10.4 MHz. The H1 data acquisition is capable

to handle data at a rate of 50 Hz. Therefore the rate of data recording has to be

reduced by the H1 trigger by 6 orders of magnitude. The trigger is built in several

stages [6, 31]. During the HERA upgrade the Fast Track Trigger (FTT) was in-

stalled in order to cope with the increased luminosity. The FTT is integrated in the

first three of the four trigger levels and provides enhanced selectivity for events,

especially for photoproduction events in which no scattered electron can be recon-

structed. The FTT is able to compute invariant masses on-line. For more details

see appendix of [49]. Figure 4.12 gives a schematic overview of the trigger sys-

tem and its different trigger levels. The first three levels are synchronous with the

HERA clock which is in phase with the crossing particle bunches corresponding

to intervals of 96.5 ns.
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Figure 4.12: Schematic overview of the H1 trigger.

Trigger Layout The level one system is a dead time free trigger stage with a

pipeline of 2.3 µs depth. The L1 trigger is implemented as hardware system. The

trigger signals delivered by the sub-detectors are called trigger elements (TE). The

trigger elements are logically combined to sub-triggers “s1” to “s128” in order to

select physics channels of interest.

A signal from one of the subtriggers induces a positive level one trigger de-

cision (L1Keep). If the event is kept the front-end pipelines are stopped and the

dead time starts. The level one output rate is O(1kHz). The level one trigger

decision is refined by the second level of the trigger which arrives 23 µs after

the bunch crossing. In the second level the trigger elements of the sub-detectors

are combined by means of topological correlations (L2TT trigger [16]), by neural

networks (L2NN trigger [55]) or track based quantities. The track based quanti-

ties are evaluated by the software based FTT L2 system [75]. The L2 decision

(L2Keep) causes the readout of the front-end and takes about 1.4 to 2 ms from

which the level two rate of O(200Hz) follows. The level three decision happens

during the readout and is performed by the third level of the FTT (FTT L3). FTT

L3 additionally exploits information from the calorimeter and the muon system.

Within the time frame of 100 µs a level 3 reject decision (L3Reject) can be fanned
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out. A L3Reject aborts the readout and leads to a level 3 rate of O(50Hz). After

the level 3 phase the data is transferred to the event builder of the fourth trigger

level. The event builder rejects remaining background events from beam-gas or

beam-wall interactions and classifies all events according to physics finders. Ev-

ery event is sorted by the physics finder to different physics classes. This final

step takes about 500 ms and reduces the rate to 10 - 20 Hz.

4.8 Detector Simulation

The simulation of the H1 detector is based on the GEANT3 [23] software pack-

age. The four vectors of the particles which are generate by the MC generators

(cf. chapter 3) are made available to the simulation. The passage of the particles

and in flight decays are simulated. During the transition of the simulated detec-

tor material multiple scattering and nuclear interaction are taken into account. In

the process the cross sections which correspond to the material are used. The H1

detector simulation accounts for both the correct geometry of the detector compo-

nents and the correct material composition. The simulation has been verified with

various test beam measurements with prototype detectors and has been monitored

and improved to high accuracy. Especially the correct description of multiple

scattering is crucial for this analysis in order to retrieve reliable reconstruction ef-

ficiencies. After the simulation process the software simulation GEANT produces

the detector signals. The signals are in the same format as genuine events and are

passed on to the same reconstruction software H1REC.
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Chapter 5

Run and Event Selection

5.1 Run selection

This analysis is based on HERA II high energy data recorded in the years 2006

and 2007. Earlier HERA II data is omitted due to CST inefficiencies. This section

outlines the run selection criteria. H1 data taking took place in so-called lumi-

nosity runs lasting for approximately 8 hours. During this time the run conditions

might vary and the data taking was subdivided into several “recorded runs”. The

recorded runs last for about one hour to assure stable running conditions. The

runs are categorized as good, medium or bad, depending on the status of the de-

tector components and the beam quality. In case an essential sub-detector is not

fully functional, e.g. the drift chamber of the main calorimeter, the run is labeled

as “bad”. Bad runs are not taken into account in this analysis. Furthermore the

following detector components have to be operational and in the read-out: CJC1

and CJC2, the central silicon tracker, the backward calorimeter, the liquid argon

calorimeter, the time of flight and VETO system and the luminosity system. In

addition the following criteria have to be fulfilled

• The run exceeds an integrated luminosity of 0.1 nb−1
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Year Lepton type Luminosity L[pb−1]
2006 electron 55.1
2006 positron 88.4
2007 positron 47.5

Table 5.1: The luminosity for the run periods of the data of this analysis.

• The trigger system is in phase 2, i.e. in the luminosity run phase to ensure

stable running conditions.

• The sub-trigger s61 is switched on and in the read-out

• The z position of the vertex is located within 30 cm around the nominal

interaction point

The luminosity of the individual run periods is summarized in table 5.1.

5.2 On-line Event Selection

During the HERA operation the event selection was performed by several triggers

(cf. 4.7). The events of this analysis are selected by sub-trigger 61 (s61). A

typical DIS event which contains a charmed meson is illustrated in figure 5.1. The

event contains a high track multiplicity and a cluster in the backward calorimeter.

s61 was initially designed for the selection of D∗ events in DIS which have an

event topology with high track multiplicity and a distinct energy cluster from the

scattered electron. This event topology however holds for all charmed meson

decays.

The explicit trigger conditions are (SPLe_IET> 2 ||SPCLe_IET_Cen_e) which

corresponds to an isolated energy deposition in the backward calorimeter with an

energy above 9 GeV. Secondly a track condition is determined by the FTT. The

condition FTT_mul_Td > 0 corresponds to the occurrence of at least one track
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Figure 5.1: Event display of an event triggered by subtrigger 61. It shows the event
signature with a high track multiplicity and a cluster in the backward calorimeter.

with a pT threshold of 900MeV. In addition veto conditions are implemented on

trigger level one to avoid background events from non ep scattering. Subtrigger

61 does not use any conditions from level two or three since the trigger rate is

comparably low with stable trigger rates of approximately 12 Hz [42].

5.3 Event Kinematics Reconstruction

This section discusses the experimental reconstruction of the event kinematics.

Because of the determination of the scattered electron and the hadronic final state

(HFS) the measurement is over-constrained. It can be based on the exclusive

reconstruction of the electron final state (electron method), the HFS (Σ-method)

or on a method which exploits information of both measurements. The latter is

used in this analysis. It has been shown that the eΣ-method provides the best

resolutions, purities and efficiencies in the phase space region of this analysis
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[49].

eΣ-method In the eΣ-method the combined information for yeΣ of the electron

method at high yeΣ and information from the Σ-method at low yeΣ are used in

order to retrieve the most precise information over the whole kinematic range.

Q2
eΣ

equals Q2
e and solely uses information of the scattered electron, whereas xeΣ

exploits the measurement of the HFS. The kinematic variables derived by the eΣ-

method are defined as:

Q2
eΣ = Q2

e = 2EBeam
e Ee′ · (1+ cos(θe′)) (5.1)

yeΣ =
2EBeam

e Σ

(Σ+Ee′ · (1− cosθe′))2 (5.2)

xeΣ = xΣ =
E2

e′sin(θe)

s · yΣ(1− yΣ)
, (5.3)

where yΣ is given by

yΣ =
Σ

Σ+Ee′(1− cos(θe′)
(5.4)

withΣ = ∑
a
(E− pz,a) = ∑

a
Ea · (1− cosa) ,

where the summation is performed over all hadronic final state particles.

Backward Calorimeter Calibration and Double Angle Method Yet another

reconstruction method is the double angle method which was used for the cali-

bration of the backward calorimeter. The double angle method only relies on the

hadronic angle γh and the angle of the scattered electron and therefore is indepen-

dent of the electron energy. The hadronic angle γh is defined as
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tan
(

1
2

γh

)
:=

(E− pz)HFS
(pT)HFS

, (5.5)

γh can be interpreted as the polar angle of the scattered parton. y, Ee′ , and Q2

can then be determined with γh and the scattered electron angle:

y' yDA =
tan
(1

2γh
)

tan
(1

2γh
)
+ tan

(1
2θe
) (5.6)

Ee′ ' EDA := EBeam
e · 1− yDA

sin2
(

θe
2

) (5.7)

Q2 ' Q2
DA := 2EDAEBeam

e · (1− cosθe) . (5.8)

The calibration is done using the double angle method which compares the

reconstructed energy EDA with the raw cluster energy Eraw
e .

From the comparison a correction prescription is derived to correct the cluster

energy Eraw
e → Ee and subsequently to derive a correction factor for each cell.

Since a single cluster extends over several SpaCal cells the calibration procedure

has to take into account a prescription for the single cell correction as well as a

prescription for the cluster position and the energy distribution within a cluster

[1].

The double angle method relies on the precision of the measurement of the

angles θeand γh. For that reason a special data set is selected for the calibration

procedure. The electron energy is in the range of the kinematic peak 20 < Ee′ <

32GeV and the electron cluster radius Rcluster
e′ > 4cm. Furthermore the hadronic

angle is in a well resolved range of 15◦ < θHAD < 80◦. Figure 5.2 shows the

ratio of EDA and the electron energy Ee′ reconstructed in the SpaCal after the

calibration. The distribution is shown for data and simulated data. The left plot
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Figure 5.2: Electron energy ratio for events of the SpaCal calibration sample.

shows the result for a cell located in a well resolved area of the SpaCal. The entries

scatter around one and the data distribution is well reproduced by the simulation.

In order to retain as many events as possible it is desirable to reconstruct events

even for smallest scattering angles down to the inner edge of the SpaCal. In the

HERA I period a veto layer was mounted between the SpaCal and the beam pipe.

This veto layer enabled the rejection of events in which to much energy of a cluster

remained undetected due to leakage. The veto layer was removed for HERA II

operation in order to install the focusing magnet structure as close as possible

to the interaction point. The missing veto layer results in undetected energy if

a cluster position is located to close to the beam pipe and subsequently in an

incorrect determination of the calibration constants since all events which have a

center of gravity of the cluster in a specific cell are considered. On the other hand

these events have a different amount of leakage, depending on the cluster position.

Figure 5.2 (right) shows the energy ratio of a cell at the inner edge of the SpaCal.

In this cell the electron energy is systematically too high for data. This behavior

is not described by the simulation.

The energy ratio distributions are fit with a Gaussian distribution and the mean

values for data and simulated data are compared. Figure 5.3 (right) shows the

result of the double ratio of the mean values for data and simulated data. The
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Figure 5.3: Double ratio of the electron energy in the SpaCal for each cell.

outer cells show fluctuations due to low statistics at large radii.

For this analysis events are rejected for which the center of gravity of the

cluster of the scattered electron is located in one of the rejected cells which show

a bad description by the simulated data. Additionally a radius cut RSpaCal < 72cm

is performed. The excluded cells (blue) are shown in figure 5.3 (left).

5.4 Off-line Event Selection

The off-line event selection criteria for the deep inelastic events of this analysis

are summarize in table 5.2. The cut on the electron energy is motived by the

threshold of the trigger condition. The trigger efficiency drops for small Ee′ [20].

The electron cluster radius cut rejects hadronic background.
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Photon virtuality 5GeV2 < Q2 < 100GeV2

Inelasticity 0.05 < y < 0.6
Electron Energy Ee′ > 11GeV

∑Ei− pz;i > 35
Electron cluster radius Rcluster < 4cm

z vertex position −30cm < zvtx < 30cm

Table 5.2: Off-line event selection criteria.



Chapter 6

D Meson Reconstruction

This chapter covers the D± and D∗± meson reconstruction. Firstly the decay

channel D± → K∓π±π± for which the production cross sections are derived is

discussed. Secondly the reconstruction of decays of the so-called golden decay

channel D∗±→ K∓π±π
±
slow is described. The D∗ decays are used for systematic

studies because of the similar behavior and low combinatorial background. The

mesons under investigation decay inside the uninstrumented vacuum of the beam

pipe and are detected by means of their decay particles. The decay particle type is

not explicitly identified, nor can a common production vertex be determined with

certainty.

The reconstruction method can be summarized as follows: Three tracks with a

correct charge combination are selected and treated as decay particle candidates.

From these particles a D meson candidate is reconstructed by summing the four-

momenta of the decay particles. From the entirety of the reconstructed D meson

candidates the amount of signal events is statistically determined with the help of

the reconstructed mass spectrum. The masses of real D meson particles cluster

around their nominal value.

The sample is enhanced to improve the statistical uncertainty and extend the
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accessible phase space. The enhancement is achieved by the reconstruction of

several signal classifier and the training and evaluation of a neural network.

The chapter starts with the particle track reconstruction in section 6.1. Sec-

tion 6.2 treats the specific energy loss of particles which traverse the central jet

chamber. The specific energy loss is mass dependent and provides a probability

for a particle type at a given momentum. This probability is exploited for cor-

rections during the track reconstruction and as classifier for the enhancement of

the sample. In section 6.3 the fit of the decay particle tracks to a common vertex

is discussed. From the vertex fit the decay length, the uncertainty on the decay

length as well as the χ2 probability of the fit are derived and provided for the neu-

ral network. The application of the neural net is discussed in section 6.5. After

the reconstruction of the particle candidates the signal fraction is determined by a

fit to the reconstructed mass spectrum. This is discussed in section 6.6.

6.1 Track Reconstruction

In the following the track reconstruction at H1 is described. The parametrization

of trajectories traversing the detector is introduced as well as the hit pattern recog-

nition and the initial track finding. Based on these tracks various improvements

are implemented which in particular account for the correction of multiple scatter-

ing and energy loss and result in improved track parameters and track parameter

uncertainties.

Track parametrization The idealized track of an electrically charged particle

in a homogeneous magnetic field is described by a helical trajectory, which is

defined by 5 parameters (κ,φ0,θ ,dca,z). The projection of the helix onto the rφ -

plane defines a circle and is parametrized by
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Figure 6.1: Left: Track and its parameters in the rφ -plane. Right: Track in the
zs-plane.

1
2

κ(x2 + y2 +d2
ca)− (1+κdca)(xsinφ0− y cosφ0)+dca = 0.

The parametrization in the zs-plane is given by

z = z0 +(tanλ )s,

where s is the arc-length for a given value of a corresponding (x,y)-coordinate

of the track. The geometrical meaning is depicted in figure 6.1. The transverse

momentum can be derived from the curvature κ:

pT =
0.3 ·Bz

κ
[GeV/c] (6.1)

The absolute value of the curvature κ equals the inverse bending radius R, its

sign is chosen opposite to the electric charge of the particle. The point of closest

approach to the z-axis is defined as starting point of the trajectory (s = 0). The

absolute value of dca corresponds to the distance of closest approach. The sign of
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dca is chosen equal to the sign of κ if the circle contains the origin, otherwise the

sign is chosen opposite. The azimuthal angle φ0 is the angle between the tangent

to the trajectory and the x-axis at s = 0. z0 corresponds to the z coordinate at s = 0.

In the zs-plane the track forms a straight line with a z-axis intercept of z0 and a

slope cotθ .

Initial track finding The track reconstruction is based on the hit measurement

in the central jet chambers (cf. 4.4). At first short track elements (curvature negli-

gible) are searched independently in the CJC cells with 24 (CJC1) and 32 (CJC2)

wires. At this stage the track finding is based almost exclusively on drift time data

in the rφ -plane and includes removal of outliers. Within angular sectors the initial

track-element finding does not depend on parameters like the Lorentz angle or the

drift velocity. The first step involves the search for track elements defined by three

hits within angular cells found on three wires with a wire distance of two. The al-

gorithm starts combining all pairs of hits at wires n±2 (n = wire index). Possible

values of drift distances dn at the wire n are calculated by dn = |dn−2
i − dn+2

k |/2

(i,k =hit indices) and stored in a list if the potential direction of the pair does not

deviate too much from the radial direction. This list is then compared with the

measured values dn
j and for small differences |dn

j − dn| the indices of the hits at

the three wires are stored as possible track elements. If a specific wire is known

to be non-functioning the procedure accounts for that and allows to incorporate

the consecutive wire. From these hit triplets the curvature κ and the angle φ are

determined with sufficient accuracy assuming dca ≡ 0. At this stage the drift sign

ambiguity is not resolved. Triplets with a compatible, i. e. not too large value for

|κ| are kept and used as seeds for the further track reconstruction. Track segments

in the cells of each ring are matched separately. Triplets compatible with the fit

model are connected to track segments. Compatible hits are continuously added
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and the fit procedure is repeated. This procedure is repeated until no further hits

are found. After the successful reconstruction in the two CJC rings separately the

algorithm tries to combine the track segments. The last step of the rφ reconstruc-

tion adds remaining unlinked hits along the track. After the track reconstruction

with the CJC additional hits from the COZ, CIP and CST are added and the track

fit is repeated.

The fit of a single helix is an approximation for the ideal case in which the par-

ticle traverses the detector without disturbances in a perfect homogeneous mag-

netic field. Certainly this is not the case and causes an imperfect track parameter

determination. The track parameters obtained are used as starting values in a

broken-helix fit to acquire corrections due to multiple scattering, the inhomogene-

ity of the magnetic field and energy loss of the particle when it traverses the de-

tector material. Multiple scattering (MS) accounts for the biggest distortion. MS

gives a description of the elastic scattering of charged particles in the Coulomb

field of the nuclei of the penetrated material. If the material thickness increases

and the number of interactions is sufficiently high the angular distribution can be

considered as Gaussian with a mean deflection angle of zero and a variance V .

The mean scattering in a material with radiation length X0 is given by [61]

σθ =
13.6MeV

β · γ
·
√

Le f f

X0
· [1+0.038 · ln(

Le f f

X0
)],

where Le f f is the length of the path inside the material traversed by the parti-

cle. The radiation length is a property of the material. A list all material constitut-

ing the H1 detector can be found in [37].

Figure 6.2 depicts the “random walk” of a particle traversing the detector ma-

terial. For a given σθ the covariance matrix for the slope and the angle θ can be

determined. By means of the propagation of the uncertainty at the position ∆s it

is given by
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Figure 6.2: Multiple scattering in a material of thickness ∆s.

V (∆s) =

 1 ∆s
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+
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0 ∆s2
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2
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The broken-helix fit The broken-helix fit accounts for multiple scattering at the

passage of the material between the outer and inner drift chamber. The fit takes

into account two helices simultaneously which are being fit with corresponding

curvature and allows for multiple scattering in the COZ. The COZ material is

treated as an effective scatterer at the center of gravity scog of the material at radius

R = 49 cm. The derived standard deviation of the scattering angle is applied as

σθ/2 at scog±∆s/2. The uncertainty is propagated to the covariance matrix of

the track fit and induces the possibility of a scattering angle and a displacement

between the two helices at either side of the COZ.

After the broken helix fit also the multiple scattering which occurs during the

passage of other detector components is treated. The multiple scattering angle

variances for every detector volume are calculated and propagated to the covari-

ance matrix of the track parameters with regard to κ and φ [38].

Energy loss correction A particle loses energy when it traverses the detector

material which results in a decrease of the curvature. The energy loss and inho-
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mogeneities of the magnetic field are corrected simultaneously by the application

of segmented helices. The energy loss is parametrized by the Bethe-Bloch curve

[61]:

− dE
dx

= K · Z
A
· 1

β 2 ·
[

1
2
· ln
(

2 ·me ·β 2 · γ2 ·Tmax

I2

)
−β

2
]
, (6.2)

with K = 0.307MeV · cm2/mol. β is the velocity of the incident particle,

γ = (1−β 2)−1/2, Z and A are the atomic charge and atomic mass of the absorber,

me is the electron mass. I represents the mean excitation energy and Tmax is the

maximum energy transfer per single collision.

Tmax =
2 ·me ·β 2 · γ2

1+2 · γ ·me/m+(me/m)2 .

with m denoting the mass of the particle. The mean energy loss ∆E of the par-

ticle is then given by ∆E =−dE/dx ·ρ ·Le f f . The knowledge of the dependence

of the change of the curvature on the change of the energy ∆κ(∆E) allows for

the deduction of an additional contribution to σκ . The uncertainties are taken into

account for the individual helix segments.

Since the correction depends on the particle mass a particle identification has

to be carried out. The particle type hypothesis is determined by taking the mea-

surement of the specific energy loss in the CJC gas. The procedure is described in

more detail in section 6.2. If the probability does not exceed 1% for any consid-

ered hypotheses no particle identification takes place. Otherwise if the condition

for the weighed likelihood ratio is fulfilled:

w ·L (particle)
∑All hypotheses wi ·L (particlei)

> 0.9 ,

the corresponding mass is assumed. In case the criterion is not met for any

hypothesis the mass of a pion is assumed.
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Figure 6.3: H1 central tracker momentum resolution. From [67].

After all corrections have been applied a resolution of 1.5%⊕ 0.17% · pT for

central tracks is achieved. Figure 6.3 shows the resolution which is derived from

an analysis of cosmic particles.

Primary Vertex and Primary Vertex Fitted Tracks An event z-vertex based

on the information of the event timing T0 and the tracks from all silicon vertex

detectors is determined. Therefore in the first step a common vertex from all CJC

tracks in the rφ plane is fitted. If the χ2 probability is smaller than 10−4 the

track with the biggest χ2 is removed and the track fit is repeated. Afterwards

the z coordinate information of all CJC and silicon tracks with acceptable dca

and compatible timing are used to calculate a weighted average to obtain the z

coordinate of the primary vertex [19].
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Finally all tracks which originate from the primary vertex are refitted with

a vertex constraint. These tracks are referred to as primary vertex fitted tracks.

Primary vertex fitted tracks have an improved pT and θ resolution.

6.2 Specific Energy Loss

The measurement of the specific energy loss in the CJC can be exploited to iden-

tify the particle type of a traversing particle. In general charged particles lose

energy during material passage due to e. g. nuclear losses, radiative effects and

ionization. In case of the CJC and the interaction with the CJC gas ionization is the

dominant effect. The energy loss is described by the Bethe-Bloch curve and de-

pends on βγ = p
m , i. e. the ratio of momentum and mass. The Bethe-Bloch curve

is depicted in figure 6.4. It describes a µ+ which traverses copper. The curve has

a minimum at βγ ≈ 2.5, a steep rise towards smaller values and increases slowly

towards higher values.

If the momentum of a given particle is determined it is possible to compare

the specific energy loss for a specific mass hypothesis with the predicted one.

Subsequently a probability for the particle hypothesis can be derived. In order to

calculate a prediction the most probable value of dE/dx and its resolution for a

given p/m value must be known.

The original Bethe-Bloch curve needs corrections to describe the situation at

H1 correctly. In the following the determination of the value and the resolution

for a given p/m of the specific energy loss is described. This must be corrected

for data as well as for simulated data in order to derive the correct reconstruction

efficiencies for both cases and to avoid systematic uncertainties.

The specific energy loss is reconstructed from the deposited charge at the wire

ends. This amount of charge cannot be transformed into dE/dx directly since
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Figure 6.4: Stopping power for positive muons in copper. The βγ range of 0.1 -
300 is described by the Bethe-Bloch formula.
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various detector effects which influence the measurement have to be taken into

account. The specific energy loss is proportional to the charge per path length

Qprim/∆s, which is produced in the ionization process during the transition of the

chamber. A minimum ionizing particle produces about 100 free electrons in ap-

proximately 35 collisions traversing 1 cm of gas. The distribution of Qprim/∆x fol-

lows a Landau distribution with a long tail. The transformed value 1/
√

Qprim∆s

on the other hand is Gaussian distributed and therefore used for all applications.

In order to derive the primary charge Qprim from the measured deposited charge

several calibration steps are performed which result in the calibrated charge Qcal .

The calibrated charge is then corrected for several effects. Corrections are first

performed on hit level, with which subsequently a mean value is calculated which

represents the mean energy loss for the track. At the end, based on the calibrated

and on hit level corrected charge the specific energy loss is determined by

dE(βγ)

dx
=

(
1

Nhit
∑
Nhit

1√
Qcalchitctrack/∆s

)−2

(6.3)

where chit and ctrack are the correction factors. The track level correction

ctrack(p/m, θ) is only applied on analysis level since it depends on the particle

type and the polar angle of the track. For the calibration of the charge various

gains are taken into account. A global gas gain for each chamber and for mea-

sured data in addition gains accounting for the difference of each anode wire and

the difference of the two wire ends. This accounts for spatial variations, difference

in temperature, electric and magnetic fields, wire diameter and the electronics be-

tween the anodes.

Correction on hit level The measured charge depends on the angle γdEdx be-

tween the drift direction of the ionized electrons and the flight direction of the

traversing particle. The angle influences the time interval between the arrival



70 CHAPTER 6. D MESON RECONSTRUCTION

of the first and the last contributing electrons. The length of the time interval

consequently influences the width of the FADC signal and the amount of ADC

counts inside and outside of the integration interval. Furthermore the staggering

effect must be taken into account because the amount of deposited charge depends

on whether the drift electrons traversed the anode plane or not in order to reach

the sense wires. The correction factor chit(γdEdx) which corrects these effects is

parametrized by 5 parameters which are determined for data and MC separately.

Correction on track level The correction on track level can only be applied on

analysis level since it depends on the particle type hypothesis and the polar angle.

For data three contributions are taken into account, the threshold and saturation ef-

fect as well as the electronic gain. Some hits are not detected because the charges

do not reach the threshold of the charge integration code. This effect is called

threshold effect and turns out to be more significant at low values for the energy

loss. A correction is applied which is derived from a comparison of the mean and

the median values of the dE/dx for the different hits along a track. The correc-

tion parameters are determined separately for data and Monte Carlo. Furthermore

even after the correction a dependence on the polar angel θ is found for Monte

Carlo events. Also this dependence is corrected by the application of a charge

dependent parametrized correction curve. The saturation effect takes into account

that electrons which reach the wires first create secondary electrons which results

in a self screening effect. The effect and the electronic gain are corrected in data

exclusively.

Parametrization Even after all applied corrections the curve of the specific en-

ergy loss does not follow the initial Bethe-Bloch curve. An additional parameter

is introduced which accounts especially for the low momentum behavior:
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dE(p/m)

dx
= dE/dx|MIP ξ z2 1

β n [K + ln(β 2
γ

2)−β
2−δ ,

the 1
β n dependence is introduced instead of the 1

β 2 dependence. Afterwards

in total 5 parameters which define the Bethe-Bloch curve are determined for data

and Monte Carlo separately. An overall good agreement is found between data

and MC for the derived parameters. [46]

To exploit the specific energy loss as classifier the measured value is compared

to the prediction by calculating the χ2 and the corresponding χ2 probability PdEdx.

For this reason the resolution of the dE/dx is determined:

δ (dE/dx) =
(dE/dx)Measured− (dE/dx)Expected

(dE/dx)Expected
(6.4)

A reasonable agreement of the resolutions for data of 47%/
√

NHit and for MC

52.7%/
√

NHit is achieved [52, 46]. However, the expected scaling of the reso-

lution with 1/
√

NHit is not found for simulated events (cf. figure 6.5). This defi-

ciency is corrected by means of a correction factor cδ (dE/dx) which is parametrized

by two parameters. The χ2
dE/dx is then calculated as

χ
2
dE/dx =

[(dE/dx)Measured− (dE/dx)Expected]
2

δ (dE/dx)2 · c2
δ (dE/dx)

(6.5)

6.3 Secondary Vertex Fit

In a χ2 vertex fit procedure the significance of the decay length, the uncertainty on

the decay length and the χ2 probability are derived and later on used as classifiers

to enhance the sample. The classifier distributions and benefits of the application

are discussed in section 6.5. The following section describes the fitting require-

ments and technique.
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Figure 6.5: Specific energy loss resolution as function of
√

NHit for simulated
data. The curve indicates the parametrization used for the correction. From [46].

Figure 6.6: Specific energy loss for Monte Carlo Events and the reference curves
for electrons (yellow), protons (green), kaons (blue) and muons (pink). From [46].
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Parameters which enter the fit procedure are the parameters of the tracks of

the decay particles and their uncertainties as well as the interaction point with

its uncertainty. The position of the interaction point is derived from the beam

trajectory and the z-vertex position [64]. A simultaneous fit calculates the most

probable values for the primary vertex~rPV and the secondary vertex~rSV . The fit

is performed in the rφ plane only for which only the track parameters (dca,κ,φ)

are needed. (dca,κ,φ) define the track in the rφ plane and are significantly better

resolved than the z related components. The decay topology is depicted in fig-

ure 6.7. The decays take place in the uninstrumented vacuum of the beam pipe.

Therefore the trajectories must be extrapolated to the inner detector. The closest

detector component, the CST is 5−10 cm away from the interaction point.

Taking into account the resolutions of the track parameters and the beam spot

which were discussed in earlier chapters it has been shown that an unconstrained

fit to the decay vertex~rSV yield a mean resolution of σx ≈ 130 µm in horizontal

direction and σy ≈ 150 µm in vertical direction [37]. The different resolutions in

x and y result from the flat beam spot. An improvement in the resolution can be

achieved by constraining the direction of the vectored decay length~l =~rSV −~rPV

to the direction of the reconstructed momentum of the D meson. The direction

of the momentum is significantly better resolved. The resolutions are improved

by ≈ 10%. The horizontal component of the primary vertex resolution is even

improved by ≈ 30%.

The fit is performed by minimizing the corresponding χ2 function and the con-

straint is implemented by means of Lagrangian multipliers. A detailed description

of the vertex fit can be found in [37]. The fit result provides the best values for

the vertex positions and their uncertainties. The directional decay length is then

defined as



74 CHAPTER 6. D MESON RECONSTRUCTION

Figure 6.7: The topology of a D±→ K−π+π+decay.

l =


|~l| if ~p

~|p|
=

~l
|~l|

−|~l| if ~p
~|p|

=− ~l
|~l|

(6.6)

and can take negative values if the vectored decay length points opposite to the

momentum vector. The vertex fit further provides the corresponding uncertainty

on the decay length and the probability PVtx of the χ2 result. The significance Sl

of the decay length is defined as the ratio of the decay length and its uncertainty:

Sl =
l

σl
(6.7)
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6.4 Particle Candidate Selection

This section discusses the D meson candidate selection. The candidates are di-

rectly reconstructed from its presumed decay products. Three tracks are selected

from which the invariant mass of a potential mother particle is derived. The four

momenta of the individual decay particles are reconstructed, which are deduced

from the track parameters and the assigned mass hypothesis. The combined tracks

form a decay candidate. Afterwards the combinatorial background is subtracted.

Combinatorial background consists of tracks which have not been produced in

the analyzed decay channel, but originate from other production processes. The

fraction of combinatorial background is significant, especially at low transverse

momenta. The background subtraction is treated in section 6.6. In this section

the reconstruction of the D± meson decay is discussed, which is of primary inter-

est because it is the channel for which the production cross sections are derived.

Furthermore the D∗ decay into the golden channel is treated since it is used for

systematic studies.

D± candidate selection For the D± reconstruction all central tracks which have

a length above 10 cm and a transverse momentum above 0.3 GeV are taken into

account. From these tracks all triple with a net charge of ±1 are selected. The

track charge signature of the decay D+→ K−π+π+ is (−,+,+), whereas in case

of D− → K+π−π− it corresponds to (+,−,−). The identical particle selection

which would result from the exchange of the two likewise charged particles is not

taken into account. The kaon hypothesis is applied to the particle whose charge

only occurs once. The pion hypothesis is applied to the other tracks correspond-

ingly. Then the secondary vertex fit is carried out and provides improved pa-

rameters for pT and φ (cf. 6.3). Furthermore the polar angle is taken from the

corresponding primary vertex fitted track in case a successful primary vertex fit
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has been performed for the track in question (cf. 6.1). With the improved track

parameters the mass of the D meson candidate is derived from the four-vectors pi

of the decay particles:

pi =

 Ei

~pi

=



√
m2

i +~p2
i

pT ;i cosφi

pT ;i sinφi

pT ;i cotθi

 (6.8)

where mi is mass corresponding to each decay particle hypothesis. The four-

vector of the mother particle is the sum of the four-vectors pi:

p(D±) = ∑
Decay particles

pi

and the invariant mass is derived by m(D±) = p2(D±).

Besides the correct charge combination a so-called wrong charge decay is

reconstructed. The net charge of a triple is ±1 as well and the exactly same

combinatorics is regarded. However the first two particle hypothesis are inter-

changed. This would describe the non resonant doubly Cabibbo suppressed decay

D±→ K±π∓π± (cf. 2.11). The reconstructed mass spectrum consists mainly of

combinatorial background and is exploited to determine the background parame-

ter as described in section 6.6.

D∗ particle selection The D∗± mesons are reconstructed in the “golden decay

channel”: D∗±→ D0π
±
slow→ K∓π±π

±
slow. To resemble the D± selection as close

as possible the same quality criteria with respect to the track selection is performed

as for the D± candidates. Only the transverse momentum of the πslow is allowed to

be as low as 0.1 GeV. In order to reconstruct the full decay chain first the D0 decay

into kaon and pion: D0 → K∓π∓ is reconstructed by selecting two oppositely
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charged particles and applying the particle hypotheses. Thereafter the vertex fit is

performed and the improved track parameters are assigned, analogous to the D±

reconstruction. The invariant mass of the D0 is derived and the candidate is kept if

the mass difference of the reconstructed D0 mass and the nominal mass is less than

0.16GeV: |mD0 −m(Kπ)| < 0.16GeV. Subsequently the tracks are combined

with the third track of a potential πslow which carries the same charge as the other

pion. This combination is referred to as correct charge. The mass difference of the

reconstructed D∗ and D0, ∆m = m(D∗)−m(D0) is then calculated. The nominal

mass difference ∆m amounts to only 145.4MeV which is only slightly above the

pion mass of m(π) = 139.57 MeV. This results in a restricted phase space and

implies very low momenta of the πslow. The advantage of this method is the

low combinatorial background and the good resolution of the mass difference ∆m

compared to the individual masses of the D∗ and D0. The low background allows

the reconstruction of signals even if no enhancement to the sample is performed.

This allows the use of the D∗ sample for systematic studies.

Additionally also in the case of the D∗ a wrong charge sample is recon-

structed to help understand the combinatorial background. The wrong charge

decay is selected from the decay D∗±→ D0π
∓
slow→ K±π±π

∓
slow. This decay does

not show a resonance in the ∆m distribution.

6.5 Neural Network Candidate Classification

The particle candidates are classified with the help of a neural network (NN).

In general a neural network is a non-linear mathematical function, which maps

multiple input variables onto a real valued output variable. In high energy physics

a typical application is the mapping of the features of an event or particle candidate

onto a probability which indicates the probability to find a signal or background
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event. The NN is a supervised learning algorithm which uses simulated data to

train the model parameter and subsequently predict the outcome of unknown input

variables. This is used to enhance the data sample and to optimize the signal to

background ratio. The classical approach of the enhancement of the analyzed data

set is the application of straight line cuts. Straight line cuts reject an event in case a

parameter exceeds a certain threshold. The drawback of this procedure is the same

behavior over the whole phase space which is usually sub-optimal. Furthermore

the application of more than one straight line cut does not take into account the

correlation of the parameters.

The neural network is able to evaluate several input parameters simultane-

ously. The reconstructed information of a decay, e.g. the decay length and the

specific energy loss are exploited to achieve an optimal signal and background

separation. Based on several significant classifiers an estimate of the signal prob-

ability is calculated. In the calculation in particular the correlations of the clas-

sifiers are taken into account. A predefined behavior of the dedicated training

sample is adopted by supervised learning. Afterwards this “learned” behavior is

applied to new unknown cases. In the case of this analysis the desired behavior

is derived from simulated events for which it is known whether the event is a true

signal event or not. After the training the network predicts signal weights for data

events.

The neural network takes into account the different behavior in different areas

of the phase space. An intuitive motivation for the consideration of a phase space

dependent approach are the significance of the decay length and the specific en-

ergy loss of the kaon decay particle candidate. While the specific energy loss has

more prediction power at low transverse momenta the decay length significance

plays a more significant role at larger pT. The importance of different “selec-

tion strengths” in different phase space areas is especially important for small
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transverse momenta of the D± meson, for which the combinatorial background is

significant and critical.

In the course of this section the classifier which are used for the training and

evaluation of the network are discussed and motivated. The design of the neural

net which is used in this analysis is discussed as well as the training and the

evaluation.

The Classifier The classifier which enter the neural network separate signal and

background events on a statistical level. The classifier involvement improves the

signal but cannot differentiate signal and background on an explicit event level.

Also is it not possible to completely eliminate the background. Considering a

classifier distribution one would find a different shape for signal and background

events which results in a signal probability for an explicit value of the classifier.

Figure 6.8(a) shows the normalized distribution of the decay length significance

and illustrates this behavior: E.g. for Sl ≈ 5 the signal probability is much higher

compared to Sl ≈ 0. Nonetheless one has to keep in mind that the background

distribution in this illustration is strongly downscaled and there is still a good

chance to find a background event with Sl ≈ 5. The discriminating power of the

input variables further increases if they are evaluated simultaneously.

Figure 6.8 shows the distributions of the variables which have been derived

from the secondary vertex fit: l, σl and Sl . The background distribution contains

the events from the inclusive DJANGOH sample (cf. 3.1). It is apparent that the

decay length is well suited to enhance the charm sample. Charmed mesons decay

weakly and therefore have a longer lifetime. The decay length is the product

of lifetime and momentum. Especially at large transverse momenta the decay

length is significantly larger for signal events than for combinatorial background.

At the same time the uncertainty on the decay length σl is taken into account.
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σl is the propagated uncertainty from the uncertainties of the track parameters

and the uncertainty of the primary vertex. From figure 6.8(c) it can be seen that

σl is slightly smaller on average. The discriminating power on the other hand

is not as significant as the decay length. σl does not depend on the transverse

momentum, therefore the ratio of l and σl , i.e. the significance Sl is the most

significant classifier, especially at medium and high pT. The classifier provided

for the neural network are Sl and σl .

In addition the χ2 probabilities of the vertex fit PVtx and of the specific energy

loss of the kaon PdEdx (cf. equation 6.5) are used as classifiers for the neural

network. The distribution of PVtx (figure 6.9) illustrates the tendency to larger

probabilities for signal events. PVtx describes the probability to actually find the

vertex with the parameters derived from the fit. In this case it also means to

find the vertex at the given location with the given track parameters. Hence it

takes into account geometrical relations. E.g. the vertex location does not fit the

direction of the momentum PVtx would decrease. PVtx likewise with σl does not

strongly depend on the magnitude of the transverse momentum. The background

distribution for PVtx clearly peaks at very small values and decreases strongly

towards more likely values.

Finally the distribution of PdEdx is shown in figure 6.9(b). The difference of

the shapes for signal and background events is most pronounced for this classifier.

Additionally the signal events are relatively evenly distributed as expected. The

uniform distribution indicates a correct description of the resolution of the specific

energy loss in the simulation.

The Multi Layer Perceptron The neural network which is used is a multi layer

perceptron (MLP), which is a special kind of artificial neural networks (ANN).

ANN are mathematical models following the function of biological neural net-
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Figure 6.8: Normalized distributions of the significance of the decay length, the
decay length and the decay length error. Signal and background distributions are
shown for different ranges of the transverse momentum. The signal events origi-
nate from the RAPGAP Monte Carlo, the background candidates from the inclusive
DJANGOH sample.
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Figure 6.9: Normalized distributions of the dE/dx and vertex fit probabilities as
function of pT

works. They are based on the linking of neurons and in principal can have any

topology. Multi layer perceptrons on the other hand are composed of several lay-

ers of neurons of which only neurons of neighboring layers can communicate.

In general a MLP is a non-linear map FNN : X → Y , where an element of the

input data X is mapped onto the set Y of appropriate output. In case of event

classification in high energy physics the input usually consists of a set of dis-

criminating parameters which have been directly measured or reconstructed. The

output is a single real number equivalent to a signal probability. In figure 6.10

the design of a MLP is illustrated. It consists of the input layer, followed by k

hidden layers and finally the output node. The hidden layer then again can consist

of arbitrarily many nodes. The calculation of the output follows the feed forward

paradigm. The neurons of the leftmost layer are simply the values of the input

variables x0
1, ...,x

0
N . Thereafter the value of each node is calculated from the re-

sults of the neurons of the preceding layer. The jth neuron of layer l is calculated

as:



6.5. NEURAL NETWORK CANDIDATE CLASSIFICATION 83

xl
j = A(

Ml−1

∑
m=0

wl−1
m j · x

l−1
m ) = A(wl−1

0 j +
Ml−1

∑
m=1

wl−1
m j · x

l−1
m ), (6.9)

From this expression the output is derived recursively. The weights wl
m j are

the parameters of the network which defines its behavior. Every connection of

two nodes is characterized by its own weight. A(x) is the activation function

A(x) = 1
1+e−x . Its functional form is depicted in figure 6.11. The application of

A(x) “activates” a neuron smoothly. If the value which enters a node is small the

node is “deactivated” and “switched on” for larger values. Furthermore there are

the so-called bias nodes xl
0 which are set to 1. The corresponding weights wl

0 j

determine the “activation-level” of every single node.

Training of the MLP The behavior of the MLP is specified by the weights. The

weights are supposed to be determined such that the net describes the features of

a dedicated training sample. For the weight determination MLPs follow a super-

vised learning paradigm. Supervised learners are trained with a set of training

data of which the behavior is supposed to be adapted. The MLP is trained with

Monte Carlo data. In total 60.000 events are used, 30.000 D± decays used as

signal events and 30.000 events of non D± decay candidates, i.e. combinatorial

background. Whether or not a candidate of the training sample is an actual D±

decay is explicitly determined with the help of generator information. The signal

events are taken from the RAPGAP sample, whereas the background is taken from

the inclusive DJANGOH sample.

The properties of the N training events (x1, ...,xN) are propagated back to the

weights w by means of an error function E(x1, ...,xN ,w), which is supposed to be

minimized:

E(x1, ...,xN ,w) =
N

∑
a=1

1
2
(yNN,a(w)− ŷa)

2 (6.10)
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Figure 6.10: Graphical representation of a MLP. The calculation of the Out put-
node follows the rules of feed forward networks. Weights wl

i j are only shown as
examples. In principal every connecting line is correlated to a weight.
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Figure 6.11: Activation function A(x) = 1
1+e−x .

yNN,a(w) is the output of the neural network for the event a. ŷa corresponds to

the desired output. The desired output in case of this analysis is 0 for a background

event and 1 for a signal event. A fit of the weights is performed by starting from a

random set of weights w j. The weights are updated by moving into the direction

of steepest descent in the w space.

w( j+1) = w j−η∇wE

This method is denoted as bulk learning. An alternative method is the so-

called on-line learning, where the weights are updated at each event. The TMVA

framework [47], which is used in this analysis applies on-line learning.

Layout of the MLP The network used in this analysis consists of 7 input nodes,

one node for each of the classifiers Sl, σl, PVtx, PdEdx(Kaon). Additionally the

pT of the tracks are fed into the network to account for the dependency of the

classification on the transverse momentum. Furthermore the training events are

weighted with p2
T(D

±) to take into account the descending pT distribution and
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the low statistics at larger pT. The first hidden layer of the network consists of

15 nodes, the second layer of 7 nodes. Extensive studies have been performed to

find an optimal layout of the MLP. The layout is flexible enough to reach the best

possible performance, i.e. the highest classification power. At the same time it is

kept as small as possible in order not to run the risk to over-train the network and

to keep a smooth behavior.

In the low pT range the signal-to-noise ratio (SNR) is significantly worse be-

cause of the much higher combinatorial background. But even for low pT a SNR

which allows the fit to the mass distribution and a reliable signal extraction is re-

quired. The quadratic pT weight achieves the best result in the sense that enough

background events are rejected at low pT and at the same time the maximum

amount of signal events over the whole phase space is preserved. Without the ap-

plication of the event weight or an event weight with a smaller exponent the neural

net would mainly focus on the optimal behavior at low pT. The signal at larger

pT would as well strongly decrease. On the other hand a weight with an exponent

larger than two would result in a strong emphasis of the NN on events with large

pT and would not reduce enough background at low pT to allow a reliable signal

extraction.

Results of the Training Figure 6.12 shows the distribution of the MLP response

FNN(x0
1, ...,x

0
N) for signal and background events. The figure shows the training

sample and an independent test sample. The results cluster at small values near

0 for background events and near 1 for signal events, which corresponds to the

intended behavior. The comparison of the training data with the independent test

sample demonstrates the general applicability of the event classification and the

fact that the network is not over-trained. The term “over-training” indicates that

the weights which were found during the training phase specifically describe the
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features of the training sample, but are not generally applicable.

Figure 6.13 shows the receiver curve, the background rejection versus the sig-

nal efficiency. In this analysis a cut on FNN > 0.6 is applied, which corresponds

to a total background rejection of 0.86 and a signal efficiency of 0.9. But signal

and background events cannot be separated over the full phase space as the figure

suggests. Figure 6.13 refers to the momentum weighed events, for low transverse

momenta the signal efficiency is lower in comparison to the high pT region. See

figure 6.14 for the D± yield. Figure 6.15 shows the distribution of the significance

Sl and indicates the selection behavior of the neural network and the signal loss

in several pT ranges. Events with negative values for the significance are almost

completely rejected. Before the selection the significance distributions are simi-

larly shaped among the different pT ranges. The FNN selection tends to smaller Sl

for low pT events. It is owed to higher decay lengths at boosted high pT events

and therefore a higher classification power even at low values of Sl .

Figure 6.16 shows the signal to background ratio of events with a mass in a 3

sigma mass window: MD+ − 3σ < mD+ < mD+ + 3σ . In principle a higher sta-

tistical significance could be achieved if a stronger cut on FNN would be applied.

On the other hand as many signal events as possible have to be kept to avoid to

lose signal events in regions of very low efficiency (cf. figure 7.1). At very low

pT the reconstruction efficiency amounts to only 7% which results in very large

extrapolation factors and potentially large extrapolation uncertainties.

6.6 Signal Extraction

The previous sections describes the determination of D meson candidates which

still contain a large fraction of combinatorial background. This section describes

the extraction of the signal, i.e. the fraction of signal events from the entirety of
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candidates. The background events are subtracted on a statistical basis. In the

course of this analysis three different methods are applied. The D± mass distribu-

tion fit is used to extract the signal for D± mesons. The method is based on the

reconstructed mass spectrum of the D± sample. Signal events cluster around the

nominal mass of the D±. The distribution is then fit to a function which contains

a signal and background part. From the proportion of the contributions the signal

fraction is deduced.

The second method is applied to derive the D∗ signal. The method also makes

use of the reconstructed mass spectrum. In contrast to the D± method the recon-

structed mass of the D± is not used directly. The mass difference of the the D∗ and

the D0 candidate is evaluated. Again the mass difference clusters at the nominal

value. The distribution is then fit to a corresponding model of signal and back-

ground. This method is used for systematic studies. The third method is used to

generate control distributions of the D∗ sample. The method exploits the wrong

charge D∗ sample. To plot a control distribution the wrong charge distribution is

subtracted from the corresponding right charge distribution. This results in the

signal distribution of the control variable.

D± Mass Distribution Fit The D± signal is extracted by a fit procedure to the

reconstructed mass spectrum. The mass distribution is modeled by the sum of a

signal part and a background part. The signal is described by a Gaussian distribu-

tion G(m). The width of the Gaussian distribution corresponds to the detector res-

olution, which is determined from MC for each bin and subsequently fixed to the

corresponding value. It is of the order of 20 MeV. The background is represented

by orthogonal second order Chebyshev polynomials of the first kind C(m, ~pbg).

The slope and the curvature ~pbg are treated as free parameters. The mass distribu-

tion is then parametrized by l(m) = f ·G(m)+(1− f ) ·C(m| ~pbg), where f denotes
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Figure 6.17: Exemplary D±mass distribution and fit result with a pronounced
signal for the right charge ( left) and wrong charge sample (right).

the fraction of signal and background.

The RooFit [73] software package is used to perform an unbinned maxi-

mum likelihood fit. The unbinned likelihood fit maximizes the use of available

information to obtain the shape of a distribution and avoids a systematic bias

due to a certain binning. RooFit automatically normalizes the distributions in

the considered intervals. In the procedure simultaneously the background dis-

tribution lbg = C(m, ~pbg) is fit to the wrong charge background (cf. 6.4). Tak-

ing into account the wrong charge distribution in the fit procedure stabilizes the

fit result and reduces the statistical uncertainty. The fitter maximizes the com-

posite likelihood for all right and wrong charge particle candidates Nrc + Nwc

L =
Nrc

∏
i=1

l(mi| f , ~pbg) ·
Nwc

∏
i=1

lbg(m| ~pbg) with respect to the parameters f and ~pbg. After

the fit procedure the signal s is obtained as the signal fraction f multiplied by the

number of right charge candidates s = f ·Nrc.

D∗ Mass Distribution Fit Detailed information on the fit procedure and cor-

responding systematic studies can be found in [49, 20]. The key features are

summarized in the following paragraph. For the D∗ signal extraction not the re-
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Figure 6.18: ∆m distribution and fit result for signal events and the non resonant
wrong charge background. From [49]

constructed mass directly is considered, but the difference of the D∗mass and the

mass of the decay particle D0: ∆m = m(D∗)−m(D0). Here, too the ∆m distribu-

tion is fit by the sum of a signal and a background function. The signal is then

deduced from the ratio of the signal and background part.

For the background the Granet parametrization is applied [39]. The shape

of the signal is asymmetric. Therefore the asymmetric Crystal Ball parametriza-

tion [36] is applied. RooFit is used to perform an unbinned likelihood fit of the

parameters to the right charge and non resonant wrong charge ∆m distribution

simultaneously. The result of the fit is illustrated in figure 6.18.

D∗ Wrong Charge Subtraction Method The statistical subtraction method is

applied for the determination of control distributions. The method follows the idea

of subtracting a wrong charge background distribution from a signal distribution

such that the distribution of the D∗ meson signal candidates remains. A cut on

the mass difference ∆m of ±0.002 GeV is applied in order to reduce as much

background as possible. The procedure is illustrated for the energy of the scattered

electron in figure 6.19. For further details see [49]. The subtraction method is less

accurate than the fit method. On the other hand distributions of higher granularity
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Figure 6.19: Ee′ distribution of all D∗ candidates, the wrong charge background
events (left). After the subtraction (right) only signal events remain.

Transverse momentum of the initial tracks pT(Track)> 0.3GeV
Track length l(Track)> 10cm

Probability of the χ2of the vertex fit PVtx > 0.4%
Evaluation of the neural network FNN > 0.6

Table 6.1: Selection criteria for D± candidates.

can be extracted, which would otherwise not be possible due to too few signal

events per bin.

6.7 Summary of the Particle Selection Criteria

Table 6.1 summarizes the selection criteria of the D± candidates. The minimal

value on the transverse momentum of a single track is owed to the detector ac-

ceptance. Also tracks of length below 10 cm are rejected, because of large track

parameter uncertainties. The cut on the probability of the vertex fit is motivated

by the strong accumulation of background events at very small values. The peak

structure would result in a strong accentuation on the background events.
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Chapter 7

Cross Section Determination

To derive the production cross section from the number of reconstructed particles

several effects have to be taken into account. There are detector effects, such

as a limited geometrical acceptance, reconstruction deficiencies due to particle-

detector interactions or the trigger efficiency. The effects and their treatment are

discussed in the following sections. Furthermore the measurement is corrected for

NLO QED contributions to derive the Born cross section.

The total visible D± meson production cross section is defined as:

σ
vis
tot (ep→ eD±X) =

N(D±)
L ·B(D±→ K∓π±π±) · ε ·Adet · (1+δrad)

, (7.1)

where N(D±) is the number of reconstructed D mesons in the visible range

(cf. chapter 6), L is the luminosity (cf. 5.1), B(D±→ K∓π±π±) is the branching

ratio [61], ε corresponds to the total reconstruction efficiency, including detector

efficiency εrec and trigger efficiency ε trig (cf. 7.1), Adet is the detector acceptance

(cf. 7.1) and (1+ δrad) is the correction for radiative effects as explained in sec-

tion 7.3. The above mentioned formula for the cross section defines the total cross

97
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section in the visible range. In addition single and double differential cross sec-

tions are derived as functions of the particle properties pT(D±) and η(D±) as well

as the kinematic variables Q2 and y.

7.1 Correction of Detector Effects

The measurement suffers from limited detector acceptance, reconstruction defi-

ciencies and resolution effects. Migrations caused by resolution effects result in

the reconstruction of events in neighboring bins. For the cross section determina-

tion these effects have to be corrected. Mathematically this behavior is described

by the detector “response matrix” R:

yi = ∑
j

Ri jx j

where yi denotes the reconstructed result in bin i and x j the true result in bin

j. The true results can be deduced from the measured ones by the application of

unfolding. In case of the full matrix unfolding first the matrix R is determined

from simulated data and inverted afterwards. However the problem is ill posed:

A whole class of possible solutions for the matrix inversion exists which would

result in different results of the true distribution. In order to derive a meaningful

inverse matrix the statistically relevant part has to be determined. For this several

regularization methods exist [18, 32]. This analysis applies a simplified method

for the determination of the true result, the so called bin-by-bin method. In the

bin-by-bin method the matrix R is replaced by an “effective” correction factor abbb

for each bin. The correction factor for bin i is connected to the matrix by:

abbb
i =

Nrec
i

Ngen
i

+
Nsmear

i (in)−Nsmear
i (out)

Ngen
i

,
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where the contributions of the off-diagonal matrix elements, i.e. ∑ j| j 6=i Ri jx j

are compiled in Nsmear
i . Nsmear

i (in) denotes the number of events which have

migrated into bin i, corresponding to positive values of Ri j|i 6= j. In contrast to

Nsmear
i (out), which denotes the number of events which migrate from bin i into

other bins and correspond to negative values of Ri j|i 6= j. The measured value yi is

then given by:

yi = abbb
i xi

The bin-by-bin method requires a significant part of the result originating from

the same bin in which it has been reconstructed. In this analysis the migration

effects are small because of relatively wide bins, which need to be chosen wide

enough to derive a signal from the fit to the mass distribution. Figures 7.3 and 7.4

depict purity and stability of the reconstructed mesons. Purity and stability are

characteristics of the migration and discussed in the next paragraphs. The high

purities indicate low migrations. The result which is extracted by the bin-by-bin

method is the same as the one derived from a full matrix unfolding. On the other

hand the propagation of the uncertainties is not fully correct. For this analysis the

effect is small and neglected. The migrations are discussed quantitatively in the

next paragraphs.

Detector Acceptance and Reconstruction Efficiency In this paragraph the two

components of the corrections factor abbb
i are discussed. abbb

i can be seen as the

product of the detector acceptance Adet and the efficiency ε . The quantities and the

corresponding ranges which define the detector acceptance and hence the visible

range are summarized in table 7.1.

The angular constraints of the central tracks and the scattered electron are in-

troduced due to geometrical limitations. The limit on the transverse momentum



100 CHAPTER 7. CROSS SECTION DETERMINATION

pT (track) 0.3 GeV
θ(track) 20◦ < θ < 160◦

Energy of the scattered electron Ee′ > 11GeV
Polar angle of the scattered electron 153◦ < θe′ < 177◦

Table 7.1: Detector acceptance cuts.

is required for a reliable track reconstruction. Furthermore a reliable energy mea-

surement in the SpaCal requires a sufficiently high energy of the scattered elec-

tron. The acceptance describes the fraction of particle candidates in the visible

range:

Adet
i =

Ngen
i &&Nacc

i

Ngen
i

(7.2)

Ngen
i &&Nacc

i is the number of particles which are generated in bin i and fulfill

the acceptance criteria on generator level in bin i.

The efficiency refers to the particles in the visible range and is defined by:

εi =
Nrec

i
Ngen

i &&Nacc
i

, (7.3)

where Nrec
i is the number of reconstructed particles. On reconstruction level

the acceptance cuts have been performed on the reconstructed quantities. Nrec
i

contains both the particles which have been generated in bin i and the ones which

migrated into it. Migration effects are discussed in the next paragraph.

The single differential result for acceptance and efficiency is shown in figure

7.1, whereas figure 7.2 shows the double differential results. Most notably is the

drop of both efficiency and acceptance for low transverse momenta.

Migration Effects The migration effects are quantified by purity and stability.

The purity is the fraction of particles which have been reconstructed and generated

in the same bin i and the number of particles which have been reconstructed in bin
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i. The purity is a measure for migration of events into the bin, since the purity gets

low the more events from neighboring bins impurify the number of reconstructed

events.

p =
Ngen

i &&Nrec
i

Nrec
i

(7.4)

The stability describes the fraction of the number of particles which have been

generated and reconstructed in a certain bin and the number of particles which

have been generated in the corresponding bin and are in the visible range. The

stability is a measure for the emigration from a certain generator level bin.

s =
Ngen

i &&Nrec
i

Ngen
i &&Nacc

i
(7.5)

Figures 7.3 and 7.4 show the purity and stability single and double differen-

tially. The purities are close to one, whereas the stabilities are small due to the

reconstruction inefficiencies, i.e. many events which are generate are not recon-

structed at all. The comparison between the efficiencies and stabilities show that

the migration effects are small.

7.2 Trigger Efficiency

Besides the reconstruction efficiency the trigger efficiency contributes to the to-

tal reconstruction efficiency ε = εrec · ε trig. The trigger efficiency is determined

from data. The D± events selected by the subtrigger used for this analysis (s61,

cf. 5.2) are logically combined (logic AND link) with an independent reference

subtrigger.

ε
trig =

Ns61(D±)&&Nre f (D±)
Nre f (D±)

(7.6)
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Figure 7.5: Single differential subtrigger 61 efficiency.

The independent reference triggers s0, s3 and s9 are solely based on calorime-

ter information and therefore independent of the track based subtrigger s61.

The D± selection requires a particle candidate which fulfills the quality cri-

teria as defined in 6.7. The trigger efficiencies are shown in figures 7.5 and 7.6.

They are derived from the full data sample and show values of the order of 98 to

99%. Only the lowest pT range shows efficiencies as low as 97%. For the cross

section measurement they are applied as bin wise corrections to the data. For more

information on the reference triggers and trigger studies see [49, 60].
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Figure 7.6: Double differential subtrigger 61 efficiency.

7.3 NLO QED Contributions

In order to convert the measured D± cross section to the Born level, i.e. the one

photon exchange cross section (cf. 2.1) a correction factor is applied. The NLO

contribution corrections are mainly a question of initial state radiation from the

lepton. The virtual NLO QED corrections are included in the running of the elec-

tromagnetic coupling constant. The final state radiation almost always is merged

with the electron cluster and subsequently taken into account by the energy mea-

surement of the SpaCal. The correlation between the measured cross section and

the Born level cross section is expressed by means of the fractional difference

δrad:

σBorn+NLO = (1+δrad) ·σBorn (7.7)

To determine the correction factor the cross sections σBorn and σBorn+NLO are

derived from radiative and non radiative MC simulations. The radiative MC sam-

ple is interfaces with HERACLES as described in section 3.1. From the two samples

the cross sections σrad = σBorn+NLO and σnon−rad = σBorn in the visible range
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Figure 7.7: Single differential NLO QED contributions as function of the mea-
sured variables.

are derived. The correction factor applied for the cross section determination then

reads: (1+δrad)
−1 = σnon−rad/σrad . The results are displayed in figures 7.7 and

7.8.
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Chapter 8

Systematic Uncertainties

In this chapter the systematic uncertainties of the cross section measurement are

discussed. The different components of the cross section (cf. 7.1) contain different

sources of systematic uncertainties. In the first part of this chapter the uncertainty

of the particle reconstruction efficiency εrec is discussed. εrec itself is a compos-

ite quantity. It depends on the behavior of the neural network particle selection

which in turn depends on the input classifier. The strategy of the derivation of

the uncertainty of the reconstruction efficiency is to derive the uncertainties of the

classifier and subsequently convolute them through the neural network. Further-

more an uncertainty of the used model of the simulated data is derived to take into

account an uncertainty of the detector acceptance (8.2). In section 8.3 studies on

the reconstruction of the event kinematics regarding the uncertainty of the energy

scale of the SpaCal and the angle of the scattered electron are performed. In the

last section of this chapter other contributions to the uncertainty, i.e. the trigger,

luminosity measurement, branching ratio, the mass distribution fit and radiative

corrections are discussed. The different contributions to the systematic uncer-

tainties amount of up to 3% with the exception of the uncertainty of the particle

reconstruction efficiency influenced by the decay length error. In this case the ef-
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ficiency uncertainty goes up to 9%. In the course of this chapter it is shown that

the different contributions to the total uncertainty are not correlated and can be

summed up in quadrature.

8.1 Particle Reconstruction

Particles which undergo the full reconstruction chain as discussed in chapter 6

only have a certain probability of passing all reconstruction steps and selection

criteria and being counted in the final mass distribution. Therefore the recon-

struction efficiency εrec was introduced and corrects for this effect to obtain the

cross section. The differential reconstruction efficiencies are shown in section 7.1.

They are below 50% throughout the whole phase space and reach their maximum

at high transverse momenta. Typical values are of the order of 20−30%.

The correction factor is derived from simulated data, therefore the systematic

uncertainty on the reconstruction efficiency δ (εrec), i.e. the uncertainty on the

number of reconstructed particles for simulated data arises solely from the im-

perfection of the detector simulation. δ (εrec) is the biggest contribution to the

systematic uncertainty and reaches ≈ 9% for low pT. Its determination is diffi-

cult because it itself consists of several contributions, which are not necessarily

independent. The reconstruction deficiencies originate mainly from the misclas-

sification of the signal candidates. There is a small contribution from the track

reconstruction deficiency, which is neglected in the analysis.

The reconstruction procedure runs through various steps from the very basic

detector signals to the reconstructed tracks and finally to the reconstruction of the

composite particle candidates with its neural network response. The network re-

sponse in turn depends on the correct reconstruction of its input parameters and

these in turn depend on the correct reconstruction of the underlying tracks. Ergo,
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the most fundamental source of the reconstruction efficiency uncertainty is on the

detector hit level, e.g. uncertainties on the hit efficiency of the tracking detector.

Another source of uncertainties is the imperfect description of the material distri-

bution and composition of the detector in the simulation. Material distribution and

composition influence multiple scattering (cf. 6.1) and nuclear interactions. Nu-

clear interactions may result in secondary interactions and the break up of particle

trajectories, which in turn can end up in different track reconstruction efficiencies.

Differences in the behavior of multiple scattering result in different resolutions

of the track parameter and influence the track reconstruction efficiency. Differ-

ences in the track reconstruction efficiencies may lead to a different number of

reconstructed particles. The analysis of the quality of the track reconstruction

(cf. 8.1.1) demonstrates the very precise description of the track reconstruction

efficiency and the track properties in general. The track reconstruction efficiency

is not considered as source of uncertainty. Differences in the track properties

and resolutions may lead to different neural network responses an subsequently

to a different number of reconstructed particles. Figures 8.2 and 8.3 show the

track properties of kaons and pions from the reconstruction of D∗ decays. The D∗

sample is used because of its lower statistical background. The track parameters

are described by the simulated data within the statistical uncertainty, which in turn

does not allow a direct deduction of the uncertainty on the track parameters. There

would not be a prescription of how to exactly convolute the uncertainties on track

parameters to the uncertainties on the classifier anyways. In the remainder of this

section an uncertainty on εrec is derived from the convolution of the uncertainties

of the classifier through the neural network. In principle the difference of the full

distributions of the classifier would have to be considered and convoluted, which

is not determinable because of insufficient statistics. The first moment, i.e. the

mean value, which is the best approximation to the distribution are studied and
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compared for data and simulated data. The difference of these values is taken as

approximation to the uncertainty of the classifier. Furthermore the uncertainties

of the classifiers are derived globally and not in dependence of the measured vari-

ables, e.g. pT, which is an additional approximation. Afterwards the uncertainties

are propagated through the neural network. This procedure is described in more

detail in section 8.1.4. The procedure also describes why it is possible to sepa-

rately derive δi(ε
rec) for each classifier and retrieve the total uncertainty by adding

them up in quadrature. Since Sl and σl are naturally correlated the decay length

l is considered for the derivation of the uncertainty instead of Sl . Also PVtx and

PdEdx are substituted by their corresponding χ2 values which have a one-to-one

correspondence. This is done because the probability distributions are flat and

inappropriate to derive an uncertainty from the difference between the data and

simulated data distributions. This means in the course of the derivation of the un-

certainty on the reconstruction efficiency the efficiency is treated as a function of

the substituted neural network classifier: l, σl, χ2
Vtx, χ2

dEdx.

8.1.1 Track Reconstruction Quality

For pions and kaons the track reconstruction efficiency for the pT range of this

analysis is described within the limit of the statistical uncertainty. This has been

studied in [22]. Figure 8.1 shows the reconstruction efficiency for pions based

on an analysis of D0
S decays. The track reconstruction efficiency as source of a

systematic uncertainty is neglected.

Figures 8.2 and 8.3 show the distributions of the track properties for D∗-tagged

pions and kaons for data and simulated data. The distributions were reconstructed

by means of the D∗ wrong charge subtraction method as explained in section 6.6.

The data distribution of the number of hits in the CJC is narrower in the peak

region of around 50 hits. Also the peak position is shifted towards higher values,
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Figure 8.1: a) Pion track reconstruction efficiency as function of transverse mo-
mentum for data and MC. b) Ratio of the efficiencies. From [22]

i.e. tracks in data produce more hits in the central jet chamber. The difference

in the number of hits can be explained by a narrower pulse height spectrum of

the simulated data [66]. More important for the vertex resolution is the CST hit

efficiency. The CST hit distributions is well described, still the number of CST

hits of the kaons is slightly higher for data compared to the simulated data. The

third figure shows the track length of the particles. As expected from the bias in

the number of CJC hits the data tracks are slightly longer. The number of hits and

the track length influences the pattern recognition, the track fit and subsequently

the track parameters and its resolutions. Especially the uncertainty on the track

parameter resolutions convolute to the calculated decay length error. The overall

description of the simulated data is good, especially the d′ca is well described,

which plays a crucial role for the vertex fit and the decay length resolution. For κ

the data distribution is steeper than the MC distribution. The φ distributions are

compatible within the limits of the statistical accuracy.
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Figure 8.2: Number of track detector hits and track length of D∗-tagged kaon and
pion tracks.
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8.1.2 Classifier Correlations

In the course of this section the correlations of the classifiers are studied and it is

shown that it is a valid approximation to treat the classifier as independent vari-

ables which allows the quadratic summation of the different contributions to the

total uncertainty. As previously mentioned the classifier of the neural network

Sl, σl, PVtx, PdEdx are replaced for the derivation of the uncertainties. The more

suitable classifier l, σl, χ2
Vtx, χ2

dEdx which have a one-to-one relation to the origi-

nal classifiers are used to avoid the apparent correlation of Sl and σl and the flat

distributions of PVtx and PdEdx. It is assumed that parameters derived from the ver-

tex fit and the χ2
dEdx probability of the specific energy loss are not correlated. In

order to demonstrate the correlation properties of the vertex fit related properties

first the mutually combined variables are plotted against each other. Figure 8.4

shows the distributions of reconstructed D± signal events from the simulated data

sample and their corresponding correlation coefficients. The vertex fit likelihood

PVtx does not show a correlation to neither one of the other variables. The decay

length and the decay length uncertainty show a small positive correlation which

corresponds to a correlation factor of ρ(l,σl) = 0.25. Correlations significantly

smaller than 0.5 are treated as non-correlated.

The vertex fit related variables are not strongly correlated. On the other hand

systematic uncertainties can arise from imperfect simulation and description of

the hit efficiency, intrinsic detector resolution or the material distribution. These

effects can induce correlated shifts of l, σl, and PVtx. In order to study the behavior

of the vertex fit variables under the change of the track parameters, κ and d′ca have

been shifted for each track preceding the full reconstruction chain. Figures 8.5 and

8.6 show the distributions of the differences of the vertex fit variables for shifts of

∆dca = 2 µm and ∆κ = 0.0002m−1.

The values for ∆dca and ∆κ are derived from the uncertainties on theses val-
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Figure 8.5: Correlations of the vertex fit quantities after the variation of the track
parameter dca.
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Figure 8.6: Correlations of the vertex fit quantities after the variation of the track
parameter κ.
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ues derived from the D∗-tagged events (cf. 8.3). The strongest correlation are

seen in the decay length and the decay length error after the shift of dca. They

are anti-correlated with a correlation factor of ρ(∆l,∆σl) = −0.58. Nonetheless

are these variables treated as non-correlated variables in the course of the deriva-

tion of the uncertainty of the reconstruction efficiency because of the insignificant

change in σl of O(10nm), which is three orders of magnitude smaller than the

applied uncertainty on σl (cf. table 8.1). In other words the uncertainty on dca is

not considered as source of the uncertainty on the decay length error. The other

variables do not show a correlation with the exception of a small anti-correlation

for ∆l and ∆χ2 in case of the κ shift. As ρ(∆l,∆χ2) =−0.29 is still significantly

lower than 0.5 it is not considered as correlated. Without showing the correspond-

ing distribution for the shifted track parameter φ it is worth mentioning that the

vertex fit variables show a random behavior under the variation of φ not leading

to a correlation.

8.1.3 Classifier Uncertainties

This chapter consists of two parts, in the first part a study on the decay length res-

olution is discussed, whereas in the second part the uncertainties of the classifiers

are derived. All results in this section are derived from D∗ decays. Unfortunately

it is not possible to use D± decays for systematic studies directly due to the sta-

tistical background and the resulting large statistical uncertainties. The D∗ results

are used as approximation to the classifier uncertainties afterwards.

Decay length resolution This paragraph discusses a study on the decay length

resolution. A good description of the decay length resolution is crucial because

of the two overlapping effects of multiple scattering and the track bending. Both

effects depend on the transverse momentum and influence the way the vertex is
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determined counteracting. At low pT multiple scattering is the dominant effect,

on the other hand the track is strongly curved which improves the vertex fit. At

high pT it is the other way around. The decay length resolution is especially sen-

sitive to multiple scattering and therefore a crucial test of the material distribution

in the detector simulation. Different resolutions for data and MC would lead to

systematic biases due to binning effects or geometrical cut-off effects. The decay

length resolution has been derived for data and simulated data by the following

prescription:

Generally the decay length distribution consists of the convolution of the ex-

ponential lifetime distribution, the momentum distribution and the resolution. The

model taking into account the convolution of the three contributions was elabo-

rated in [64]. The free parameters of the model are the mean lifetime and the

detector resolution. The pT distribution is divided into three ranges, which are

chosen such, that every range contains approximately the same number of events.

Since the pT bins are relatively narrow the weighted mean of pT is used instead

of the full distribution. The mean lifetime is also fixed and set to the value of the

world average. Then the only free parameter of the model is the detector resolu-

tion. A fit of the model parameter to the data leads to the resolution.

The D0 decay length distribution is reconstructed from D∗ decays as described

in section 6.4. Figure 8.7 shows the decay length distribution and the correspond-

ing detector resolutions for different pT for data and simulated data.

The decay length is well resolved with a mean resolution of about 180 µm in

comparison to typical decay lengths of 370 µm. The resolution is well described

by the simulation within the statistical accuracy for the whole pT range. In the

lowest pT range the data resolution of 172 µm is slightly better than the MC res-

olution of σl(MC) = 201 µm. For the other pT ranges the MC gives an excellent

description. Figure 8.8 shows the resolution of the decay length as function of
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Figure 8.7: D0 decay length distribution for data and RAPGAP for low, medium
and high pT. The dots and the dashed line of the histogram indicate the number
of reconstructed D0 for data and Monte Carlo. The solid and the dashed lines of
the curves illustrate the lifetime distribution model with the fitted resolution.



8.1. PARTICLE RECONSTRUCTION 123

) (GeV)
0

(D
T

p

2 4 6 8

 (
c

m
)

l
σ

0

0.01

0.02

HERA II
Rapgap31

Mean, HERA II
Mean, Rapgap31
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the transverse momentum. There is no pT dependence on the discrepancy. The

difference of the mean values amounts to 8 µm. It is of the same order as the

uncertainty of the decay length and calculated decay length uncertainty, which is

derived in the course of this section.

Determination of the uncertainty on the classifiers In this paragraph the dis-

tributions of the substituted classifiers are shown. As discussed earlier the uncer-

tainties on the classifiers are derived by means of the difference of the mean values

of the distributions derived from D∗ decays for data and simulated data. The dis-

tributions as shown in figures 8.9 are derived by means of the wrong charge sub-

traction method (cf. 6.6). All classifier are described well within their statistical

precision. As summarized in table 8.1 even the mean values of the distributions

of the decay length and decay length uncertainty are described within their sta-

tistical accuracy. Table 8.1 outlines the results, the differences of the means and
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Figure 8.9: Distributions of decay length l, decay length uncertainty σl,χ
2 of the

vertex fit and the specific energy loss of D∗-tagged D0 event for data and RAPGAP.

the applied shifts for the derivation of the reconstruction efficiency uncertainty.

The shifts correspond to the differences of the mean values except for the decay

length l. In that case the difference of the means is smaller than the statistical

precision and an average of the difference and the statistical uncertainty is chosen

to be applied as shift.

8.1.4 Neural Network Error Propagation

After the derivation of the uncertainty on the classifier the uncertainties are con-

voluted through the neural network. From the convolution the relative uncertainty

on the reconstruction efficiency is derived and applied to the final result. The ef-
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Classifier Mean value
for HERA II

Mean value
for Rapgap31

Difference of
mean values

Applied
shifts

Decay
Length l

370±7 µm 372±2 µm 1.8±3.6 µm 3 µm

Decay
Length Error

644±20 µm 655±4 µm 11±10 µm 11 µm

χ2
Vertex f it 0.48±0.02 0.5±0.004 0.026±0.01 0.026

χ2
dE/dx 0.57±0.01 0.55±0.003 0.024±0.007 0.024

Table 8.1: Mean values of neural network classifier reconstructed from tagged D0

decays.

ficiency is a function of the number of reconstructed particles N, which in turn

depends on the distributions of the associated classifier of the candidates. In the

following only one component of the input vector ~x, namely x of the neural net-

work is considered. This can be done without loss of generalization, since the

classifier are treated as uncorrelated variables.

N is expressed as:

N = ∑
P

F̃(x),

where P are the candidates of the bin and F̃(x) is a step function related to

FNN in the following way:

F̃(x) =

 1 if FNN(x)> c

0 otherwise
.

In the approximative case of a large number of particles N can be rewritten by

means of a particle density p(x). The integrability of F̃ follows from the smooth-
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ness of F :

N ≈
ˆ

B
dx p(x) F̃(x) .

Let p̃(x) = p(x) F̃(x). According to the error propagation δN is then defined

as

δN =

ˆ
p̃(x+∆x)dx−

ˆ
p̃(x)dx,

which is a valid approximation in case of a linear dependence of p̃ on x. For

small variations p̃(x) depends linearly on x since p(x) is smooth and can be treated

as constant in comparison to FNN . The step function F̃NN is linear if the same holds

for FNN . The linearity of FNN is demonstrated in the next paragraph for the scale

of the applied shifts. Again, in principle ∆x depends on x, but for the derivation of

the systematics uncertainty the best approximation of the distribution, i.e. the first

moment which corresponds to the mean value is used. The total uncertainty δN/N

is then defined as the squared sum of the single contributions of each classifier and

corresponds to the total uncertainty of the reconstruction efficiency δε/ε .

Linearity of the neural network on the scale of the variations The require-

ment for the convolution of the uncertainties of the classifiers through the neural

network is the linearity of FNN . By definition FNN is smooth and differentiable.

Therefore the linear approximation is valid up to a certain scale. In the following

it is shown that this assumption still holds on the scale of the applied variations.

Therefore the differential quotient as a function of the classifiers is studied. The

full phase space of l, σl ,χ2
Fit , χ2

dEdx and the transverse momenta of the decay par-

ticles is discretized in 15 grid points in each dimension. The ranges and point

differences ∆x for the calculation of the differential quotients are derived from the

extraction of the uncertainties of the classifier and shown in table 8.2.
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Classifier Range ∆x
Decay Length l [0−1.5]cm 3 µm

Decay Length Error [10−8−2]cm 11 µm
χ2

Vertex f it [0−1.5] 0.026
χ2

dE/dx [0−2] 0.024

Table 8.2: Ranges for the classifier used for the calculation of the differential
quotients.

With D(x,∆x) = (FNN(x+∆x)−FNN(x))/∆x being the differential quotient,

δ (dFNN/dx) serves as a figure of merit for the linearity of the neural network. It

is defined as

δ (dFNN/dx) =
D(x,∆x)−D(x,∆x/10)

D(x,∆x)
.

δ (dFNN/dx) compares the differential quotient at a certain phase space point

to the differential quotient at the same point with a point difference of 1/10 com-

pared to the other one. The differential quotient with the smaller point difference

can be viewed as the nominal value. The relative differences are shown in fig-

ures 8.10. The distributions are relatively narrow apart from the distribution of the

specific energy loss of the kaon χ2
dEdx. They are distributed around 0 with mean

value shifts below 1%. The neural network is considered linear on the scale of the

applied variations for the derivation of the systematic uncertainties. The wideness

of the χ2
dEdx distribution is not critical because the contribution to the uncertainty

of the reconstruction efficiency is negligible. It is derived in the following section

(cf. figure 8.14).

8.1.5 Particle Reconstruction Efficiency Uncertainty

In this section the results for the relative reconstruction efficiency uncertainty are

presented. They are displayed in figures 8.11 - 8.14. The most significant contri-
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bution arises from the decay length error uncertainty. The shift in the decay length

uncertainty results in migrations which are most significant for small transverse

momenta. The resulting uncertainty for low pT goes up to 9% and vanishes for

pT > 4GeV. The distributions for the other variables are relatively flat. The small

Q2 region also has a slightly larger uncertainty because of the Q2 and pT correla-

tion. The dependency on the uncertainty of the decay length is biggest for small

transverse momenta. On the other hand the overall influence is small and only

amounts to uncertainties up to 1%. As expected also in case of the double dif-

ferential distribution the uncertainties for low pT are biggest, but extend over the

range of the rapidity. Figures 11.2 and 11.1 show the double differential results.

The uncertainties due to the χ2 of the vertex fit and the specific energy loss are

small and negligible.

8.2 Model Uncertainty

As discussed in section 7.1 the measurement suffers from a limited detector ac-

ceptance. The limited detector acceptance as source a systematic uncertainty is

two-fold. Imperfection of the detector simulation may lead to a systematic uncer-

tainty. An incorrect description of the acceptance can also arise in case the MC

does not describe the data perfectly. The influence of the first source, i.e. the

influence of detector simulation with respect to the acceptance is neglected. The

dependency on the generator model is derived by the comparison of the detec-

tor acceptance derived from the two Monte Carlo samples used in this analysis,

namely RAPGAP and DJANGOH (cf. 3.1).

Figures 8.15 show the results of the relative difference of the acceptance:

∆A =
Adet
DJANGOH−Adet

RAPGAP

Adet
RAPGAP



130 CHAPTER 8. SYSTEMATIC UNCERTAINTIES

) (GeV)
+

(D
T

Transverse Momentum  p

5 10 15

∈/
∈

δ
R

e
la

ti
v
e
 U

n
c
e
rt

a
in

ty
 

­0.02

­0.01

0

0.01

0.02

mµl = + 3 ∆

mµl = ­ 3 ∆

ηRapidity 

­1 0 1

∈/
∈

δ
R

e
la

ti
v
e
 U

n
c
e
rt

a
in

ty
 

­0.02

­0.01

0

0.01

0.02

mµl = + 3 ∆

mµl = ­ 3 ∆

 (GeV)e
2Q

20 40 60 80 100

∈/
∈

δ
R

e
la

ti
v
e
 U

n
c
e
rt

a
in

ty
 

­0.02

­0.01

0

0.01

0.02

mµl = + 3 ∆

mµl = ­ 3 ∆

ΣeY

0.2 0.4 0.6

∈/
∈

δ
R

e
la

ti
v
e
 U

n
c
e
rt

a
in

ty
 

­0.02

­0.01

0

0.01

0.02

mµl = + 3 ∆

mµl = ­ 3 ∆

Figure 8.11: Relative uncertainty of the reconstruction efficiency due to the decay
length uncertainty.
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Figure 8.12: Relative uncertainty of the reconstruction efficiency due to the decay
length error uncertainty.
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Figure 8.13: Relative uncertainty of the reconstruction efficiency due to the χ2
Vtx

uncertainty.
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Figure 8.14: Relative uncertainty of the reconstruction efficiency due to the χ2
dEdx

uncertainty.
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Figure 8.15: Model uncertainty derived from the detector acceptance of the two
different models RAPGAP and DJANGOH.

The derived relative uncertainty is symmetrically applied upwards and down-

wards to the measured result. The overall uncertainty is small and flat with the

exception of the high pT(D±) region for which the uncertainty reaches values of

the order of 1.8%.

8.3 Event Reconstruction Uncertainty

In this section the uncertainty on the reconstruction of the event kinematics is dis-

cussed. This analysis makes use of the eΣ-method which minimizes uncertainties

on the event reconstruction [49]. Uncertainties arising from the electromagnetic
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scale of the backward calorimeter and the angle of the scattered electron are dis-

cussed. Although the hadronic part of the calorimeter is also used for the deriva-

tion of the event kinematics, the hadronic energy scale is not considered as source

of uncertainty. It only has a small contribution, especially since the calibration has

been significantly improved [54]. The uncertainty of the electromagnetic scale and

the electron angle are used to estimate the influence on the measurement of the D±

meson production. The systematic uncertainty of the electromagnetic energy cali-

bration has been measured to be 1%. The angular precision of the SpaCal is about

1 mrad. Scale variations are applied to the simulated data. The relative uncertainty

u is calculated from the difference of the nominal cross section compared to the

cross section values after a scale variation:

u =
σ(variation)−σ(nominal)

σ(nominal)

The derived uncertainties are displayed in figures 8.16 and 8.17. The result-

ing uncertainties are reasonably small and flat. Only for large rapidities under the

influence of the electromagnetic scale variation the uncertainty reaches its max-

imum value of 2%. The results are applied to the result of the measured cross

sections. The numbers for the double differential uncertainties can be found in the

tables of section 11.3.

8.4 Other Contributions to the Uncertainty

Branching ratio uncertainty The systematic error on the branching ratio of the

D± decaying into K∓π±π± amounts to 2.08% [61].

Luminosity measurement uncertainty As discussed in section 4.6 the mea-

surement of the integrated luminosity is improved by the measurement of QED
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Figure 8.16: Event reconstruction uncertainty due to the scale uncertainty of the
electromagnet part of the SpaCal.
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Figure 8.17: Event reconstruction uncertainty due to the uncertainty of the angle
of the scattered electron.



138 CHAPTER 8. SYSTEMATIC UNCERTAINTIES

Compton events. The measurement is limited by systematic uncertainties of the

SpaCal energy scale and resolution, non-elastic QEDC background and theory

uncertainties from missing higher orders. [4]. The total systematic uncertainty

amounts to 2.3%.

Trigger efficiency uncertainty The estimation of the uncertainty of the two

trigger conditions (cf. 4.7) is 1% per condition. Thus a systematic uncertainty of

1.4% covers the trigger uncertainty of s61 and is applied to the measurement. The

trigger efficiency uncertainty is taken from [49].

Radiative correction uncertainty The measured cross section is corrected for

NLO QED contributions. As explained in 7.3 the correction factors are derived by

the comparison of radiative to non-radiative simulated data in which the HERACLES

package is used. The corrections are of the order of 3.0%. A more detailed study

and comparison to different programs like HECTOR has not been performed, since

the contribution to the total uncertainty is small. A more detailed study has been

done in [3] and concludes an uncertainty of 2.0%, which has been adopted for this

analysis.

Beauty contributions The measured D± cross section includes decays from B

hadrons to D mesons. The contribution is expected to be small for this analysis

and phase space. More extensive studies have been performed in [3, 57]. An

uncertainty of 2.0% is assigned.

Mass distribution fit Since the non-Gaussian shapes of the signal distribution

are covered in the detector efficiency and the widths of the signal part of the mass

distribution are derived from simulated data a systematic uncertainty would only

arise from imperfect description by the Monte Carlo. Detailed studies have been
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performed in [64]. It has especially been shown that the number of signal events

is not sensitive to small changes of the width. An uncertainty of 3.0% on the fit to

the mass distribution is assigned.
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Chapter 9

Cross Section Results

In this chapter the results of the production cross section of D± mesons are pre-

sented. The cross section is derived from the D± → K∓π±π± decay channel.

The data was accumulated during the HERA II high energy data acquisition pe-

riod in the years 2006 and 2007 and corresponds to an integrated luminosity of

L = 202.6 pb−1. The run and event selection is described in section 5.1 and sum-

marized in table 5.2. The particle candidate selection is described in chapter 6

and is summarized in table 6.1. Owed to the limited detector acceptance the cross

section is derived in a visible range. The definition of the visible cross section

is given in equation 7.1 and the kinematic range is summarized in table 9.1. The

number of D mesons is derived by a fit to the reconstructed mass spectrum (cf.

6.6). The signal shape is considered Gaussian, whereas the background is de-

scribed by second order Chebyshev polynomials. The mass spectrum and the fit

Virtuality 5GeV2 < Q2 < 100GeV2

Inelasticity 0.05 < y < 0.6
Transverse momentum pT(D±)> 1.5GeV

Rapidity |η(D±)|< 1.5

Table 9.1: Definition of the kinematic range of the visible cross section.

141
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Figure 9.1: The mass distribution of the full data set of all selected candidates in
the visible range. The signal is obtained by a fit of the sum of a Gaussian signal
and second order Chebyshev polynomial background function to the data.

result of the particles corresponding to the total cross section is depicted in figure

9.1.

9.1 Total Visible Cross Section

The results of the total cross section measurement in the visible range is:

σ
tot
vis (ep→ eD±X) = 4.82±0.15(stat.)±0.28(syst.)nb (9.1)

The statistical uncertainty amounts to 3.1% which is about half the systematic

uncertainty of 5.8%. The main contributions to the systematic uncertainty orig-

inate from the reconstruction efficiency, the branching ratio and the luminosity

measurement. Table 9.2 summarizes the results of the total cross sections for each

run period in the years 2006 and 2007 and the different lepton modes. The results

for the single periods are compatible with the total cross section for HERA II.

Considering the statistical uncertainties of the single results, the weighted average

corresponds to σ̃ tot
vis = 4.83±0.15nb and is therefore in agreement with the afore-
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Year Lepton type Cross section σ tot
vis (ep→ eD±X) [nb]

2006 electron 4.80±0.30(stat.)±0.28(syst.)
2006 positron 4.93±0.21(stat.)±0.29(syst.)
2007 positron 4.65±0.30(stat.)±0.27(syst.)

Table 9.2: Total D± production cross sections for the different run periods.

mentioned total production cross section. The total cross section prediction of the

simulated data sample of the RAPGAP generator (cf. 3.1) is σ tot
vis (RAPGAP)= 4.90 nb

which describes the measurement well within the uncertainties. The second model

prediction by DJANGOH tends to be too low with a total production cross section

σ tot
vis (DJANGOH) = 4.21nb.

9.2 Single Differential Cross Sections

Single differential cross sections are measured as function of the kinematic vari-

ables Q2 and y and as function of the D± meson properties pT and rapidity η .

Figures 9.2 - 9.5 show the results of the measurement and the comparison to the

results of the leading order MC generators RAPGAP and DJANGOH. The inner error

bars represent the statistical uncertainty. The outer error bars indicate the total un-

certainties, including the systematic errors. For the exact numbers see the tables

in section 11.3. The statistical uncertainties are in the range of 6−13%, whereas

typical values of the systematic uncertainties are of the order of 6− 10%. The

largest contribution to the systematic uncertainty arises from the uncertainty of

the decay length error and subsequently on the transverse momentum.

Underneath the cross section results the ratio R is shown. For a measured

variable Y it is defined as:
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R =

1
σ

calc,Y
tot,vis
· dσ calc

dY

1
σ

data,Y
tot,vis
· dσdata

dY

. (9.2)

The ratio facilitates the comparison of the shapes of the normalized generated

distributions to the measurement. Systematic errors which are only relevant to the

normalization are excluded in this visualization.
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Figure 9.2: Differential cross section as function of Q2 in the visible range (cf.
table 9.1). The measurements are given as black circles. The inner error bar
corresponds to the statistical uncertainty of the measurement. The outer error
bars correspond to the total uncertainty, including the systematic uncertainty. The
measurement is compared to the prediction of the Leading order MC generators
RAPGAP and DJANGOH.
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Figure 9.3: Differential cross section as function of inelasticity y in the visible
range (cf. table 9.1). The measurements are given as black circles. The inner error
bar corresponds to the statistical uncertainty of the measurement. The outer error
bars correspond to the total uncertainty, including the systematic uncertainty. The
measurement is compared to the prediction of the Leading order MC generators
RAPGAP and DJANGOH.
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Figure 9.4: Differential cross section as function of pT(D±) in the visible range
(cf. table 9.1). The measurements are given as black circles. The inner error
bar corresponds to the statistical uncertainty of the measurement. The outer error
bars correspond to the total uncertainty, including the systematic uncertainty. The
measurement is compared to the prediction of the Leading order MC generators
RAPGAP and DJANGOH.
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Figure 9.5: Differential cross section as function of rapidity η(D±) in the visible
range (cf. table 9.1). The measurements are given as black circles. The inner error
bar corresponds to the statistical uncertainty of the measurement. The outer error
bars correspond to the total uncertainty, including the systematic uncertainty. The
measurement is compared to the prediction of the Leading order MC generators
RAPGAP and DJANGOH.

In the following the results of the single differential cross section measure-

ments are discussed in more detail. Figure 9.2 depicts the differential cross section

as function of Q2. RAPGAP gives an excellent description of the Q2 distribution,

whereas DJANGOH describes the data reasonably well, but mostly undershoots the

data. The total cross section for DJANGOH is 13% below the data, which becomes

apparent when looking at the differential cross section, whereas the shape of the
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Variable Cross section σ tot
vis (ep→ eD±X) [nb]

Q2 4.83±0.15(stat.)
y 4.84±0.15(stat.)

pT(D±) 4.61±0.22(stat.)
η(D±) 4.96±0.16(stat.)

Table 9.3: Total D± production cross sections derived from the integral over the
single differential cross section distributions as function of Q2, y, pT and η(D±).
Only the statistical uncertainties are shown.

distribution is well described as seen in the normalized ratio.

The RAPGAP description of the cross section as function of the inelasticity

y (cf. figure 9.3) is worse compared to the Q2 distribution but still within the

uncertainties of the measurement. Only in the last y bin the models undershoot

the data. Nevertheless it is not obvious whether this is a feature of the model or a

statistical fluctuation of the data. The shape of the DJANGOH sample on the other

hand shows a slight tendency to fall towards higher values of y.

The overall description of the cross section in dependence of the transverse

momentum of the D± meson pT(D±) by the leading order MC samples is good

within the uncertainties as seen in figure 9.4. The two different models show

similar behavior as function of pT. In the last two bins the model shows a too soft

D±-spectrum and undershoots the data.

Table 9.3 summarizes the total cross sections obtained by integrating over the

differential cross sections. The integral over the pT distribution tends to be low,

compared to the total cross section result. The result is 4% lower than the total

visual cross section, although the number of particles in the single differential

measurement is determined to be identical to the number of reconstructed particles

in the measurement of the total visible cross section. A more detailed investigation

shows that the data point of the first bin, which corresponds to a pT-range of 1.5

to 2.08 GeV tends to be too low and the data point in the fourth bin (pT: 3.28 to



9.3. DOUBLE DIFFERENTIAL CROSS SECTIONS 149

4.0 GeV) tends to be too high. Because of the increasing reconstruction efficiency

(cf. figure 7.1) and hence the decreasing correction factor towards higher values

of pT the statistical down-fluctuation for low pT therefore has an increased impact

on the total cross section. The purities are of the order of 90% and therefore a

faulty description of the migrations by the Monte Carlo is unlikely. Hence, the

discrepancy between the integrated total cross section to the measured total cross

section originates from statistical fluctuations.

The model description of the rapidity η(D±) tends to be above the data for

small η and below the data for larger values of η , where DJANGOH tends to de-

scribe the negative rapidity region and RAPGAP favors the larger rapidity regions.

Also in case of the rapidity the integrated cross section does not correspond to

the total visual cross section, but is approximately 3% higher. This is caused by

the falling detector acceptance towards higher rapidities. Especially in the highest

rapidity bin of 1.0 - 1.5 the Monte Carlo result is below the corresponding data

point and therefore disproportionately taken into account for the correction.

9.3 Double Differential Cross Sections

Besides the single differential cross section measurements visible cross sections

for D± production are also measured double differentially, once as function of the

neutral current kinematic variables and once as function of the D± properties.

Figure 9.6 shows the double differential cross section in dependence of the

inelasticity y for five ranges in Q2. Numerical values are given in table 11.6.

The uncertainties are dominated by the statistical uncertainties, which are of the

order of 7 - 21%, whereas the systematic uncertainties account for approximately

6%. The data are compared to predictions from the leading-order MC generators.

Overall a good description is observed within the experimental uncertainties both



150 CHAPTER 9. CROSS SECTION RESULTS

for the shape and the normalization of the distributions.

Double differential visible cross sections for D± production as function of the

rapidity η(D±) for four ranges in pT are displayed in figure 9.7. The statistical

uncertainty is the dominant contribution to the total uncertainty. The values range

from 7 - 17% and two points having higher statistical uncertainties of about 30%,

however the systematic uncertainties account for 5 - 9%.

As already seen in the single differential measurement as function of η(D±)

the MC predictions undershoot the data for large values of η . This is observed

for all pT ranges. The second data point of the lowest pT bin corresponding to

an η range of -0.75 to 0.0 and a pT range of 1.5 to 2.5 GeV is considered to be a

statistical down-fluctuation of the data. This data point shows a reasonable mass

fit as seen in figure 11.11.
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Figure 9.6: The double differential cross section as function of inelasticity y and
photon virtuality Q2 in the visible range (cf. table 9.1). The measurements are
given as black circles. The inner error bar corresponds to the statistical uncertainty
of the measurement. The outer error bars correspond to the total uncertainty,
including the systematic uncertainty. The measurement is compared to the leading
order MC RAPGAP and DJANGOH.
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Figure 9.7: The double differential cross section as function of the rapidity η and
transverse momentum pT of the D± meson in the visible range. Numerical values
are given in table 9.1. The measurements are given as black circles. The inner
error bar corresponds to the statistical uncertainty of the measurement. The outer
error bars correspond to the total uncertainty, including the systematic uncertainty.
The measurement is compared to the leading order MC RAPGAP and DJANGOH.

9.4 Comparison to NLO QCD Calculations

In this section the measured cross sections are compared to the NLO QCD predic-

tions calculated by HVQDIS. It is expected that the NLO calculation gives a better

description of the measurement because it accounts for the emission of hard par-

tons in the matrix element.

The total visible cross section of the HVQDIS calculation amounts to 3.61+0.60
−0.88 nb,
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Parameter Variation Cross section Relative Change
σ tot

vis (ep→ eD±X) [nb] [%]

mc
−0.15GeV 3.28 -10.1
+0.15GeV 3.94 8.4

µr
×0.5 4.14 12.8
×2.0 3.23 -11.8

µ f
×0.5 3.04 -18.8
×2.0 3.96 8.8

Table 9.4: Total D± production cross sections for the HVQDIS NLO QCD predic-
tion after variation of the central values of the charm mass, renormalization scale
and factorization scale.

which is 25% below the measurement. The uncertainty is calculated from a

squared sum of the single theory uncertainties. As described in section 3.2 the

charm mass mc, the renormalization scale µr and the factorization scale µ f are

varied in order to estimate this uncertainty of the model prediction. Table 9.4

denotes the results of the total visible cross section after the variation of the pa-

rameters and the relative change in comparison to the nominal value. The relative

changes are of the order of 10%. The largest upscale by 12.8% is caused by

the reduction of the renormalization scale µr. The largest downscale of -18.8% is

caused by the reduction of the factorization scale µ f . The theoretical uncertainties

from the variation of the renormalization and the factorization scale are expected

to be reduced significantly as soon as NNLO calculations become available.

Since the total visible cross sections are underestimated by the NLO calcula-

tion mainly the shapes of the differential distributions are discussed in the follow-

ing. Figures 9.8-9.9 show the single differential cross section as function of the

NC DIS kinematic variables Q2 and y. The measurements of the D± meson prop-

erties pT(D±) and η are compared to NLO predictions in figure 9.10 and 9.11,

respectively. The prediction of the differential cross section as function of the

virtuality Q2 describes the data within the uncertainty of the measurement. The
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Figure 9.8: Single differential cross section as function of Q2 in the visible range
(cf. table 9.1). The measurements are given as black circles. The measurement is
compared to the next-to-leading order calculations of HVQDIS.



9.4. COMPARISON TO NLO QCD CALCULATIONS 155

X
)/

d
y

 (
n

b
)

+
 e

D
→

(e
p

 
σ

d

0

10

20

30

HERA II

HVQDIS

 x 0.5
r

µ

 x 2.0
f

µ

 = 1.35 GeVcm

 x 2.0
r

µ

 x 0.5
f

µ

 = 1.65 GeVcm

 < 100
2

5 < Q

0.05 < y < 0.6

)| < 1.5
+

(Dη|

) > 1.5
+

(D
T

p

 in DIS
+

D

y

0.2 0.4 0.6

N
o

rm
a
li
z
e
d

R

0.6

0.8

1

1.2

1.4

Figure 9.9: Single differential cross section as function of inelasticity y in the
visible range (cf. table 9.1). The measurements are given as black circles. The
measurement is compared to the next-to-leading order calculations of HVQDIS.
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Figure 9.10: Single differential cross section as function of pT(D±) in the visible
range (cf. table 9.1). The measurements are given as black circles. The measure-
ment is compared to the next-to-leading order calculations of HVQDIS.
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Figure 9.11: Single differential cross section as function of rapidity η in the vis-
ible range (cf. table 9.1). The measurements are given as black circles. The
measurement is compared to the next-to-leading order calculations of HVQDIS.
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distribution falls towards higher values of Q2 more steeply than the data. Even for

the predictions with varied model parameter the data is well described, except for

the last Q2 bin above 35GeV2. In this range the predictions for decreased µr, in-

creased µ f and reduced charm mass show a worse description of the data, whereas

for an increased µr and increased charm mass the predictions are improved. For a

decreased factorization scale µ f the prediction shows an excellent description of

the measurement.

The prediction for the cross section measurement as function of y shows a very

good description, except for the last bin, which corresponds to a y range of 0.5 to

0.6. The NLO calculation drops for large values of y and is significantly lower

in the data for high y. For the y distribution the changes after the variation of the

model parameters are less significant compared to one observed for the Q2 distri-

bution. The distribution of the NLO calculation with a reduced renormalization

scale gives the best description of the data.

The NLO prediction describes the cross section as function of the transverse

momentum pT(D±) within the uncertainty of the measurement. In the pT range

of 4.75 to 6 GeV the prediction overshoots the data. The calculation with an

increased factorization scale gives the best approximation of the measurement.

The prediction of the differential cross section as function of the rapidity

η(D±) overshoots the measurement in the backward region and falls off towards

higher values of η too steeply. In the forward region it then undershoots the data.

The NLO calculation with the reduced value of the renormalization scale gives a

better description of the data and describes the measurement within its uncertainty.

Figure 9.12 displays the double differential cross section as function of Q2

and y compared to NLO calculations. Taking into account the too low value of

the total visible cross section the distributions are overall well described within

the experimental and theoretical uncertainties. The description of the shape by
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the NLO QCD prediction is better compared to the prediction from the MC event

generators. The agreement of the NLO calculations to data is even improved for

a smaller value of the renormalization scale, which corresponds to a larger value

of the strong coupling constant αs. The NLO calculations with a smaller value of

µr also give better descriptions for the y and pT distributions.
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Figure 9.12: The double differential cross section as function of inelasticity y
and photon virtuality Q2 in the visible range (cf. table 9.1). The measurements
are given as black circles. The measurement is compared to the next-to-leading
order calculations of HVQDIS. The error band corresponds to the total uncertainty
derived from the single contributions as described in section 3.2.
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9.5 Comparison to Other Measurements

Comparison to the H1 D∗ measurement. The results are compared to the D∗

production cross section as measured by H1 [3]. The comparison is valid because

the fragmentation fractions for D± and D∗ as discussed in section 3.2 differ by

only 2%. A direct comparison of the differential cross section is not possible due

to different phase space regions of the measurements. The measurement of the

double differential cross section as function of Q2 and y allows the summation

of the results of corresponding bins in order to obtain a total cross section with a

phase space similar to the phase space of this analysis. The most similar phase

space for which the total cross section can be calculated corresponds to 5 < Q2 <

100 GeV2 and 0.05 < y < 0.7. The pT and η(D±) ranges are equal to the ranges

of this analysis. The contribution to the total cross section due to the difference

in the visible phase space at high y is considered small. The result of the total D∗

production cross section in this phase space region is 4.65± 0.22 nb. This result

is compatible with the total cross section from this analysis.

Furthermore the measured differential cross section as function of the rapidity

η also shows an excess in the forward direction and is displayed in figure 9.13.

Comparison to the ZEUS measurements The ZEUS experiment has measured

the D± and D∗± production cross section. In the first part of this section the re-

sult of the D± measurement from the ZEUS dissertation [57] is discussed. It has

shown a precise description of the production cross section by the HVQDIS NLO

QCD calculations. The visible kinematic range corresponds to 0.02 < y < 0.7,

5 < Q2 < 1000GeV2, 1.5 < pT(D±) < 15GeV and |η(D±)| < 1.6. This allows

an indirect comparison between the measurement and the results of this analysis.

Unfortunately a direct comparison is not possible due to the differences in the

phase spaces. The total cross section is derived by the same method as explained
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Figure 9.13: The D∗ production cross section as function of the rapidity η mea-
sured by H1.

in the preceding paragraph in case of the H1 D∗ measurement. It is derived by

the summation over an appropriate subset of bins of the double differential cross

section in order to retrieve a total cross section in a visible phase space, which is

similar to the phase space of this analysis. Since in the case of the ZEUS mea-

surement the phase space starts at inelasticities y of 0.02 the phase space which

approximates the phase space best corresponds to 0.02 < y < 0.7. The Q2, pT

and η(D±) ranges correspond to this analysis. The result of the total cross sec-

tion with this definition of the visible phase space is 4.36 ± 0.2 nb. In order to

estimate the contribution to the cross section in the y-range of [0.02− 0.05] the

fractional contribution is retrieved from the aforementioned H1 D∗ measurement,

which provides the necessary subdivided bins of y. The contribution of the cross

section restricted to a y range of [0.02− 0.05] to the total visible cross sections

amounts to 13%. The difference due to y values above 0.6 are considered small.

Considering the contribution for low y, the result of the ZEUS D± measurement
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Figure 9.14: The published cross sections as function of the rapidity η measured
by ZEUS.

with a phase space similar to the phase space of this measurement amounts to

3.79nb. This result is in agreement with the HVQDIS prediction, which amounts

to 3.61nb. On the other hand the results published by the ZEUS collaboration

are higher. The total D± production cross section is 4.88± 0.19nb [7] and the

D∗ production cross section amounts to 5.05± 0.112 nb [5]. Both results have

been been obtained for the previously used y range of 0.05 < y < 0.7. The two

published ZEUS results are compatible with each other and the H1 measurements.

This suggests that the result derived in [57] tends to be too low.

Figure 9.14 depicts the differential D± cross section as function of the rapidity

η(D±) as published in [7]. Also in this case the model prediction overshoots

the data for small values of η(D±) and underestimates the measurement towards

higher values.
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Chapter 10

Conclusions

The visible inclusive production cross section of D± mesons in NC DIS ep scat-

tering at HERA has been studied. The measurement is based on data taken with

the H1 detector during the high energy data taking period at center of mass en-

ergy of
√

s = 318GeV in the years 2006 and 2007, which corresponds to an in-

tegrated luminosity of 202.6 pb−1. The visible phase space of the neutral current

process is defined by 5 < Q2 < 100 GeV2, 0.05 < y < 0.6, 1.5 < pT (D±) and

−1.5 < η(D±) < 1.5. Charm production events are identified by the reconstruc-

tion of the D±→ K∓π±π± decay channel. The sample is enhanced by the appli-

cation of a multi-variate analysis technique using a multilayer perceptron based

classifier. The input variables of the classifier are based on the specific energy

loss of the kaon and the reconstructed decay length of the D± meson. A detailed

investigation of systematic uncertainties has been done. Especially a convolution

of the uncertainties of the input variables of the multilayer perceptron has been

performed. The resulting uncertainties on the reconstruction efficiency are rela-

tively small in most regimes of the phase space. The largest contribution to the

systematic uncertainty arises from the uncertainty of the decay length error for

small transverse momenta of the D± meson.
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The total D± production cross section in the visible range is measured to be

σ
tot
vis (ep→ eD±X) = 4.82±0.15(stat.)±0.28(syst.)nb.

The comparison of the LO MC predictions by RAPGAP and DJANGOH show a

good description of the data. DJANGOH slightly undershoots the total visible cross

section by 13%. The total visible cross section is in good agreement with the

published measurements of the D± and D∗ cross sections by ZEUS and the D∗

measurement by H1.

The single differential cross sections are well described by the LO MC gen-

erators for the kinematic variables Q2 and y and as function of the transverse

momentum of the D± meson. The description of the distribution of the rapidity

η(D±) shows a discrepancy to the measurement, which has also been observed

by the H1 D∗ and ZEUS D± measurement.

The results are also compared to NLO QCD predictions calculated by HVQDIS,

using the Kartvelishvili fragmentation function. The calculation is sensitive to the

treatment of the heavy quark mass in the PDF and in the matrix element. It is

found that the NLO prediction for the total visible cross section is 25% below

the measurement. Nevertheless, the shapes of the single differential distributions

are compared to the data and the shapes are in good agreement for Q2, y, and

pT. The description of the rapidity distribution is improved in comparison to the

predictions from LO MC generators. The NLO calculations are performed with

different values for the charm mass, factorization scale and renormalization scale

and compared to the nominal values and the measurement. The result with a

smaller value of the factorization scale improves the description of the rapidity

distribution.

Compared to the previous H1 measurement of the D± production cross sec-

tion, which took place during the HERA I period, the available luminosity is in-
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creased by a factor of four. The phase space has been extended towards smaller

transverse momenta of the D± meson from 2.5 to 1.5 GeV. The number of re-

constructed D± mesons has been increased from about 350 to 14.000 particles.

The statistical and systematic uncertainties are reduced by two third. For the first

time at H1 the D± cross sections have been measured double differentially. Al-

though not the full HERA II data was available because of technical problems of

the vertex detector during the data acquisition in 2005 the analysis achieves a high

precision due to the improved analysis technique.



168 CHAPTER 10. CONCLUSIONS



Chapter 11

Appendix

11.1 Double Differential Efficiency Systematics

The figures shown in this section contain the double differential efficiency sys-

tematics as function of the kinematic variables Q2 and y and as function of the D±

meson properties pT(D±) and η(D±) (8.1). The title of the figures indicates the

variable which has been shifted in order to calculate the systematic uncertainty.
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Figure 11.1: Double differential reconstruction efficiency uncertainty for Q2 and
y.
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Figure 11.2: Double differential reconstruction efficiency uncertainty for pT and
rapidity.
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11.2 Mass Distributions

In this section the mass distribution which have been used for the derivation of

the cross sections are shown. The distributions for the right charged candidates

are located on the left, the distributions for the wrong charge candidates are on

the right. The solid lines indicate the result of the fit of the model parameter to

the distribution. The fit result is used to derive the number of D± mesons (section

6.6).
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Figure 11.3: D± Mass Distributions in bins of the transverse momentum in the
range 1.5GeV < pT(D±)< 4.0GeV.
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Figure 11.4: D± Mass Distributions in bins of the transverse momentum in the
range 4.0GeV < pT(D±)< 14.0GeV.
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Figure 11.5: D± Mass Distributions in bins of the rapidity in the range −1.5 <
η(D±)(D±)< 0.5.



176 CHAPTER 11. APPENDIX

) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

5000

10000

 
HERA II

 < 1.00η0.50 < 

 225±) = 3129 
+

N(D

 

)(wrong charge) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

5000

10000

  

) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

2000

4000

6000

8000

 
HERA II

 < 1.50η1.00 < 

 229±) = 1629 
+

N(D

 

)(wrong charge) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

2000

4000

6000

  

Figure 11.6: D± Mass Distributions in bins of the rapidity in the range 0.5 <
η(D±)(D±)< 1.5.
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Figure 11.7: D± Mass Distributions in bins of Q2 in the range 5GeV2 < Q2 <
35GeV2.
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Figure 11.8: D± Mass Distributions in bins of Q2 in the range 35GeV2 < Q2 <
100GeV2.
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Figure 11.9: D±Mass Distributions in bins of the inelasticity y in the range 0.05<
y < 0.4.
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Figure 11.10: D± Mass Distributions in bins of the inelasticity y in the range
0.4 < y < 0.6.
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Figure 11.11: D± Mass Distributions in bins of the rapidity in the range −1.5 <
η(D±)< 1.5 for transverse momenta 1.5GeV < pT(D±)< 2.5GeV.
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Figure 11.12: D± Mass Distributions in bins of the rapidity in the range −1.5 <
η(D±)< 1.5 for transverse momenta 2.5GeV < pT(D±)< 3.5GeV.
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Figure 11.13: D± Mass Distributions in bins of the rapidity in the range −1.5 <
η(D±)< 1.5 for transverse momenta 3.5GeV < pT(D±)< 5.5GeV.
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Figure 11.14: D± Mass Distributions in bins of the rapidity in the range −1.5 <
η(D±)< 1.5 for transverse momenta 5.5GeV < pT(D±)< 14GeV.
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Figure 11.15: D± Mass Distributions in bins of the inelasticity y in the range
0.05 < y < 0.6 and 5GeV2 < Q2 < 9GeV2.



186 CHAPTER 11. APPENDIX

) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

3000

 
HERA II

 < 0.16
Σe

0.05 < Y

 < 9.00e

2
5.00 < Q

 101±) = 1103 
+

N(D

 

)(wrong charge) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

  

) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

3000

 
HERA II

 < 0.32
Σe

0.16 < Y

 < 9.00e

2
5.00 < Q

 116±) = 1098 
+

N(D

 

)(wrong charge) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

3000

  

) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

3000

4000

 
HERA II

 < 0.60
Σe

0.32 < Y

 < 9.00e

2
5.00 < Q

 135±) = 1043 
+

N(D

 

)(wrong charge) (GeV)
+

m(D

1.7 1.8 1.9 2

E
v
e
n
ts

 /
 (

 0
.0

2
 )

0

1000

2000

3000

  

Figure 11.16: D± Mass Distributions in bins of the inelasticity y in the range
0.05 < y < 0.6 and 9GeV2 < Q2 < 14GeV2.
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Figure 11.17: D± Mass Distributions in bins of the inelasticity y in the range
0.05 < y < 0.6 and 14GeV2 < Q2 < 23GeV2.
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Figure 11.18: D± Mass Distributions in bins of the inelasticity y in the range
0.05 < y < 0.6 and 23GeV2 < Q2 < 45GeV2.
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Figure 11.19: D± Mass Distributions in bins of the inelasticity y in the range
0.05 < y < 0.6 and 45GeV2 < Q2 < 100GeV2.
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11.3 Cross Section Tables
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