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Abstract

In semiconductor quantum dots electrons and holes are confined in all three spatial directions.
Their eigenstates can be tailored by the use of appropriate materials, the size and the shape of the
dot and also by applied electric and magnetic fields. When we dope the quantum dot with atoms
possessing a large magnetic moment, like manganese, they interact with the electrons or holes
via pd exchange interaction. In III-V semiconductors such asGaAs or InAs theMn atom is an
acceptor. So, holes will be the main charge carriers. The interaction of holes with the magnetic
manganese impurities is stronger than the interaction of electrons from the conduction band. We
calculate numerically the eigenstates of several holes in aquantum dot usingk · p theory, un-
der the influence of a magnetic field fully taking into accounttheir Coulomb interaction. The
direct interaction between several manganese atoms is veryshort ranged and, therefore, can be
neglected for sufficiently separated magnetic impurities.An interaction, however, is mediated
by the holes confined in the quantum dot. We examine the possibility to control the alignment of
several manganese atoms inGaAs andInAs quantum dots by changing the hole eigenstates via
a manipulation of the confining potentials and the magnetic field.

We show the high importance of the hole-band mixing to the Coulomb energy of up to three
holes. It also significantly influences the dispersion of thehole in the magnetic field and the
coupling between the spins of the hole and the manganese impurity. We show the influence of
the acceptor potential in dependence of the strength of the different dot-potential configurations.
In magnetic fields the properties of the hole- and manganese-spin compound coupled by thepd-
interaction are dominated inGaAs dots by the manganese spin whereas inInAs the spin of the
hole is dominant. Finally we demonstrate the control of the ferromagneticMn-Mn coupling by
the number of the confined holes.
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Inhaltsangabe

Quantenpunkte aus Halbleitern können Elektronen und Löcher in drei Dimensionen einschließen.
Die von den Teilchen ausgebildeten Quantenzustände könnendurch die Wahl der Halbleiter,
durch die Größe und die Form der Punkte sowie von äußeren elektromagnetischen Feldern bee-
influsst werden. In die Quantenpunkte eingebrachte Fremdatome wie Mangan beeinflussen die
gefangenen Elektronen und Löcher über diepd-Wechselwirkung. Mangan eingebracht in III-
V Halbleiter wieGaAs oder InAs wird zu einem Akzeptor und bringt deshalb hauptsäch-
lich Löcher in den Halbleiterkristall ein. Auch ist die Spin-Wechselwirkung der Löcher mit
dem Mangan stärker als die der Leitungsband-Elektronen. Wir berechnen numerisch die Eigen-
zustände einiger Löcher in einem Quantenpunkt mit Hilfe derk · p-Theorie. Dabei betrachten
wir den Einfluss des magnetischen Feldes sowie der Coulomb-Abstoßung zwischen den Löch-
ern. Die direkte Wechselwirkung zwischen mehreren Mangan-Atomen hat eine kurze Reich-
weite und kann deshalb für genügend von einander getrennte Atomen vernachlässigt werden.
Eine gegenseitige Beeinflussung kann dennoch mittels der imQuantenpunkt eingeschlossenen
Löcher induziert werden. Wir untersuchen die Möglichkeit diese wechselseitige Beeinflussung
durch Veränderung der Eigenzustände der Löcher zu kontrollieren. Dies wird wiederum durch
Variation der Quantenpunkt-Potentiale und des magnetischen Feldes erreicht.

Wir zeigen die besondere Bedeutung auf, die dem Mischen der Bloch-Bänder des Loches für
die Coulomb-Energie von bis zu drei Löchern zukommt. DiesesMischen beeinflusst sowohl die
Dispersion der Löcher im Magnetfeld als auch die Wechselwirkung mit den Spins der Mangan
Atome. Wir zeigen den Einfluss des Akzepttor-Potentials in Abhängigkeit von verschiedenen
Konfigurationen des Quantenpunktpotentials. Unter der Wirkung des Magnetfeldes wird der
Spin-Verbund des Lochs und des Mangan inGaAs-Quantenpunkten dominiert von der Zeeman-
Energie des Mangan. In Quantenpunkten ausInAs dominiert die Zeeman Energie des Lochs.
Schließlich zeigen wir die Kontrolle der ferromagnetischen Kopplung zwischen den Mangan-
Atomen durch die Anzahl der eingefangenen Löcher.
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Chapter 1

Introduction

Semiconductor quantum dots are regions in a semiconductor crystal, where charge carriers are
confined in all three spatial directions. Confined in a small volume the charge carriers show
quantum mechanical behavior. The development in the fabrication techniques of semiconductor
structures by “molecular beam epitaxy” (MBE) and “metal-organic chemical vapor deposition”
(MOCVD) allows a high degree of control over the confinement.This makes it possible to engi-
neer the form of the wave function of the confined carriers. This possibility has triggered a large
interest in the research field of quasi zero-dimensional semiconductor nanostructures. Manifold
experimental techniques were developed to map the electronic states in the quantum dots. In
“cyclotron resonance” (CR) experiments confined particlesare excited directly between the dot
states [1], [2]. Optically created electron-hole pairs (excitons) are attracted by the dot potentials
and recombine inside the dot enlightening its inner structure [3]. Also the charging [4] and elec-
tron transport through the dot [5], [6] reveals its characteristics.
Another fascinating development in the field of semiconductors was the occurrence of “diluted
magnetic semicuonductors” (DMS). After mastering the electrical properties of these materials
the question arose if such a high degree of control is also possible on their magnetic behavior. In
DMS magnetic impurities are coupled to a ferromagnetic regime by itinerant charge carriers of
the semiconductor crystal [7], [8]. Obviously, control on the magnetic impurities can be gained
by engineering the hole wave function in the quantum dot. This technique lets us influence the
magnetic properties as well as the quantum mechanical states of single spins [9].
Beside the scientific interest many applications are envisaged. Maybe the most exciting one is
“spintronic”, the aim to use the spin degree of freedom of thecharge carrier and the impurity in
computation and data storage. There are proposals for quantum-bit gates made from quantum
dots [10], [11]. They are promising systems for the realization of a solid state quantum computer
[12] because of the high degree of control on the spin states already possible in these systems
[13], [14], [15]. To realize such devices still more knowledge is necessary about the behavior of
the confined charge carriers and their interaction with impurities. Especially the characteristics
of charge carriers from the valence band of the used semiconductors is complicated and often
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Chapter 1. Introduction

broadly approximated. The aim of this work is to provide moreinsight into the eigenstates of
such confined holes in large quantum dots. Their mutual Coulomb interaction as well as the in-
teraction with magnetic impurities will be covered. We use numerical calculations to investigate
the influence of dot-potential symmetry and strength, band-coupling effects, acceptor-potential
position and spin interactions on the quantum mechanical eigenstates of the hole-impurity sys-
tem. The eigenstates of the holes are calculated by means of a4-bandk · p theory and the
envelope function approximation. Thepd exchange interaction of the hole spin with the spin of
the magnetic impurity is modeled by an effective HeisenbergHamiltonian.
The need for a good insight in the eigenstates of holes in quantum dots can be motivated in many
ways: Manganese has a large magnetic moment ofS = 5/2 and is commonly used in diluted
magnetic semiconductors. On the other handGaAs andInAs belong to the best understood and
technologically best controlled quantum dot materials. Now, manganese acts mostly as an accep-
tor in these III-V semiconductors and holes will be the main charge carriers. Secondly, the now
most widely used investigation method on quantum dots is thephotoluminescence spectroscopy
of excitons confined in the dots. To interpret the measured spectra a good knowledge of the hole
part of the total wave function is necessary. In the past the hole wave function was considered
only in a very simplified form. The effects of band coupling and dot anisotropy are commonly
neglected. Thirdly, the hole-spin degree of freedom is coupled to the orbital movement of the
holes. It then becomes possible to modify the hole-spin/manganese-spin interaction by chang-
ing the dot confinement and thus the orbital movement of the holes. Another characteristic of
confined holes is the possibility to access the effects of mutual many-particle interaction with
cyclotron resonance investigations. Due to the band coupling in the Kohn-Luttinger Hamiltonian
the theorem of Kohn [16] is validated. Thus, the center of mass movement does not decouple
from the relative movement of the holes. Only the former is affected by the long-wave electro-
magnetic field in this setup [17].
During the investigation for a suitable system to realize a quantum bit [18] the question on the
spin coherence time of particles confined in quantum dots arose. It turns out that the main
mechanism for the loss of the coherence is the interaction with the spin of the nuclei of the host
crystal[19], [20]. For holes this interaction is much smaller since the valence bands develop from
atomicp orbitals with vanishing density at the position of the lattice atoms [21]. Additionally a
large degree of control over the hole spin was shown [22].

Confinement of charge carriers can be achieved by different means. The now most widely
used quantum dot fabrication technique is the Stranski-Krastanow growth [23], [24]. The ob-
tained quantum dots have a rather strong confinement with dot-level separations from several
tens to hundreds ofmeV [3]. Here, the inner electronic structure of the dots is rather simple and
due to the strong confinement in the growth direction the band-coupling effects are small. We
will therefore concentrate on larger dots which can be fabricated with lithographic and etching
techniques [25]. Dots fabricated in this way are often etched from two dimensional electron-
or hole-gas samples. They also can be defined by top metal gates. We will concentrate on dots
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Figure 1.2: Schematic diagram of a etched
pillar ofGaAs/GaAlAs with a quantum dot
formed at the interface.

formed at a single hetero-interface by modulation doping. Figure 1.1 shows the band regime
in the vicinity of the interface. In this configuration due tothe triangular potential the overlap
of light- and heavy-hole wave functions inz direction is larger than in quantum well structures.
This enhances the band-coupling effects. The confinement inthe interaction plane occurs through
charges on the outside of an etched pillar. It is modeled by a effective harmonic potential. Figure
1.2 shows an schematic example.
Finally we will show how the interaction between two magnetic impurities in a quantum dot
arises due to the mediation of confined holes. We will stress the changes to this interaction due
to the change of the dot potentials and number of confined charge carriers(holes).
To our knowledge there have been no experiments on the hole levels in the quantum dots we want
to deal with until now (November 2009). The experiments investigating excitons are carried out
in self-assembled quantum dots and deal mostly only with theground state of the system. Due to
this lack of experimental data we will not give any spectra oflight absorption or photolumines-
cence which could be directly compared to the experiments. They can, nevertheless, be readily
calculated from the obtained eigenstates. We will concentrate on the description of the eigen-
states’ character and the transitions triggered by the change of our free parameters. We hope, this
will enable the reader to gain a better understanding in the processes going on in the system.
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Chapter 2

Theoretical Basis

2.1 k · p -theory

The effects caused by electrons in semiconductor crystals originate often only from several elec-
trons occupying the conduction band. Also the absence of several electrons forming holes in the
valence band can fully determinate the electrical behaviour of such crystals. In equilibrium the
electrons stay at the minimum of the conduction band and the holes at the maximum of the va-
lence band. The strength of most of the electric and magneticfields we apply to the specimen of
such crystals do not move the crystal momentumk of these particles far away from the extrema
of the bands. This gives us the possibility to approximate the dispersion relationE(k) of such
particles by expanding it around the extreme points. Thek · p -theory, I want to use to describe
the hole states inside a quantum dot, is such a approximativescheme. It treats the influence of
the crystal lattice on an electron or hole as a perturbation.In this description the influence of the
crystal potential is transferred to an effective mass of theparticle. This mass is different from
the vacuum mass. It can also become anisotropic due to an anisotropic crystal symmetry. I will
give only fundamental equations from which the Hamiltonianof my system follows. Derivation
of this theory can be found e.g. in [26], [27], [28].

2.1.1 Effective Mass

Let us assume that the extreme point of a band under consideration lies atk = 0, theΓ point of
the crystal. This is often the case as for the interesting crystals ofGaAs andInAs. For a perfect,
bulk crystal the Hamiltonian and its eigenstates will be

HΨkn = En(k)Ψkn (2.1)

H =
p2

2me
+ V (r) Ψkn(r) = eikrukn(r). (2.2)

10



2.1. k · p -theory

Here,me is the free electron mass,V (r) the potential of the lattice atoms andukn(r) is the Bloch
function for thenth band atk. In order to take advantage of the known symmetry of the crystal,
it is convenient to describe all the eigenstatesΨkn(r) in terms of a special set of functions

χkn = eikru0n(r) Ψkn(r) =
∑

n

∫

dkan(k)eikru0n(r). (2.3)

The functionsu0n(r) are the Bloch functions for bandn andk = 0. Taking alln bands into
account, we get a complete and orthogonal set of functions. Their advantage lies in their sym-
metry, which follows the symmetry of the crystal lattice. Thus their matrix elements with some
basic operators can be determined just by symmetry considerations. By inserting (2.3) in (2.1),
multiplying from left withexp(−ikr)u0n and integrating over the whole crystal we get

∑

n′

∫

dk′ 〈kn|H|k′n′〉 an′(k′) = En(k)an(k) (2.4)

where the matrix elements〈kn|H|k′n′〉 are

〈kn|H|k′n′〉 =
∫

dre−ikru∗0n

(

p2

2me
+ V (r)

)

eik′ru0n′

=
∫

drei(k′−k)ru∗0n

(

En(0) + k′·p
m

+ k′2

2me

)

u0n′

= δ(k − k′)
[(

En(0) + k2

2me

)

δnn′ + 1
me

∑

α kαP
α
nn′

]

(2.5)

The Bloch functionsu0n are eigenfunctions to the periodic crystal potentialV (r) and fulfil
(p2/2me + V (r))u0n = En(0)u0n.

P α
nn′ =

(2π)3

Vu.c.

∫

u.c.

dru∗0n(−i∂α)u0n′ (2.6)

is a momentum matrix element. The integration goes over one unit cell of the crystal. The term
k · p in (2.5) gives the name to this theory. The electrons in the valence band, which we are
interested in, experience a strong spin orbit coupling1. This is because the valence bands develop
from p like atomic orbitals with angular momentuml = 1. Conduction bands, however, are
formed froms like orbitals without orbital angular momentum. We can incorporate the effect of
spin-orbit coupling into our description without changingit much. We change the basis Bloch
functionsu0n to some linear combinations of them belonging to the same band ũ0n, which are
also eigenstates to the spin-orbit coupling operator [26]

(

p2

2me
+ V (r) +

~

4m2
ec

2
σ[∇V (r) × p]

)

ũ0n = Ẽn(0)ũ0n. (2.7)

1Note that the only kind ofspin-orbit coupling we are dealing with here, is the one caused by the strong Coulomb
potential of the lattice atoms. Spin-orbit coupling effects caused by additional potentials, e.g. dot or acceptor
potentials, are neglected. Their influence is very small [29].
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Chapter 2. Theoretical Basis

Notice, that in the last line of (2.5) the Bloch function enter only via the momentum matrix-
elementsP α

nn′. We just have to change this matrix elements to

P̃ α
nn′ =

(2π)3

Vu.c.

∫

u.c.

drũ∗0n(−i∂α +
~

4m2
ec

2
[σ ×∇V ]α)ũ0n′. (2.8)

In the following, I will drop the tilde sign but we have to remember, that we are now dealing with
the basis̃u0n.

Now, to proceed further, we have to make some approximations. Since, as described above,
the crystal momentak, we will usually encounter, are small, we can get rid of thek′ · p term in
(2.5) by treating it as a perturbation. In the valence band the threep states with orbital angular
momentuml = 1 are coupled to the two hole spin statess = 1/2. From the six resulting states
two blocks are created, one with total angular momentumJ = L + s of |J| = 3/2 and one of
|J| = 1/2. The four topmost valence bands inGaAs andInAs consist of the|J| = 3/2 sates
according to the four possiblez components of|J| = 3/2. In the bulk crystal atk = 0 the band
is fourfold degenerate. The split-off band with|J| = 1/2 lies about340 meV lower inGaAs
and380 meV in InAs [30]. The large energetic distance of this split-off band aswell as the
large distance to the conduction band makes it possible to treat the coupling to these bands via
thek′ · p term as a perturbation. The coupling between the topmost degenerate bands, however,
we have to treat explicitly. We can only expect, that the influence of bands separated by some
energy∆E from our degenerate set can be treated in a perturbative manor. The separation∆E
has to be much larger than a typical kinetic energy of an electronE(0) − E(k). We expand the
term ink. The terms of the perturbative expansion linear ink are very small [26] so we can drop
them. Then, up to second order ink the coefficients in the expansion 2.3 fulfil

(

En(0) +
k2

2me

+
kαkβ

m2
e

∑

n′ 6=n

P α
nn′P

β
n′n

En − En′

)

bn(k) = En(k)bn(k). (2.9)

The indexn counts the four top valence bands,j = 3/2, jz = ±3/2,±1/2. The indexn′ counts
all the remote bands, whose influence is taken into account only through the momentum matrix-
elementsP α

nn′. In the formula aboveα runs throughx, y, z and we use Einstein’s summation
convention. The coefficientsbn(k) represent our approximative solution to (2.1) with spin orbit
coupling. When we set the zero energy atEn(0) = 0, we can define

1

µαβ
n

=
1

me

δαβ +
2

m2
e

∑

n′ 6=n

P α
nn′P

β
n′n

En − En′

(2.10)

as the inverse effective mass tensor.
If we look at a single energetically isolated and isotropic (no dependence onα, β) band, e.g. the
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2.1. k · p -theory

conduction band of III-V semiconductors, the tensor becomes a scalarµαβ
n = m∗. The dispersion

relation for an electron in such a band then reads

Ec(k) =
~

2k2

2m∗
(2.11)

i.e. it is the one of a free particle with some effective massm∗.
For the topmost four valence bands the kinetic energy takes the form of a four by four matrix. It
is called the Kohn-Luttinger Hamiltonian [26],[31]

HKL =











P +Q S R 0

S† P −Q 0 R

R† 0 P −Q −S
0 R† −S† P +Q











(2.12)

with

P =
γ1

2me

(

k2
x + k2

y + k2
z

)

(2.13)

Q =
γ2

2me

(

k2
x + k2

y

)

− 2γ2

2me

k2
z (2.14)

R = −
√

3

2

(

γ2 + γ3

2me
(kx − iky)

2 − γ2 − γ3

2me
(kx + iky)

2

)

(2.15)

S = − γ3

2me

(

−2
√

3
)

(kx − iky) kz. (2.16)

The order of the basis functions isjz = (3/2, 1/2,−1/2,−3/2). Theγ’s are called the Kohn-
Luttinger parameters. They correspond to the summations in(2.10) but are usually determined
experimentally [32]. The experimental results correspond, of course, to the spin-orbit coupled
momentum matrix elements̃P α

nn′. The presence of the term(kx + iky)
2 in the operatorR of

(2.12) reduces the symmetry of the whole Kohn-Luttinger matrix from spherical to cubic. In
order to simplify the calculations and not have to choose a specific direction inside the crystal we
want to drop it. The pre-factor of this term has a value proportional toγ2 − γ3. ForGaAs these
parameters areγ2 = 2.1 andγ3 = 2.9. So their difference is small against e.g. their sum and
the other Luttinger parameter. In comparison to the other terms in (2.12) this term will be small.
Neglecting the cubic part of the Kohn-Luttinger matrix is called the spherical approximation.
With this assumption we do not take account of the band warping, i.e. the anisotropy of the holes
dispersion. This effect becomes significant only at higher values ofk where thek · p theory
becomes less reliable anyway. Calculations on the reliability of the spherical approximation can
be found e.g. in [33].
There is some ambiguity concerning the representation of this matrix. Luttinger uses the four
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Chapter 2. Theoretical Basis

dimensional representation of the angular momentum operator to set up this matrix. The ma-
trix here is the one following from the representation for the angular momentum operator from
[34],p.144. With this representation all the matrix elements become real valued. This is favourable
for numerical calculations. This representations differsslightly from the one used by [31].

2.2 Envelope Function Approximation

In the previous section we found a description for the dispersion relation of a hole in the valence
band of a bulk III-V semiconductor crystal. When additionalpotentials, i.e. electric and magnetic
fields, are present inside such a crystal the periodicity of the crystal is destroyed and we can no
longer use this description. However, we want to restrict the magnitude of such disturbances to
be small in comparison with potentials exerted by the atoms of the crystal on the electrons in the
bands. We can then expect that over some unit cells of the crystal such an additional potential will
not change significantly and the periodicity will by preserved at this length scale. The eigenstate
of an electron in such a crystal will therefore vary only overlong distances compared to e.g. the
lattice constant. One can expect that over long distances wecan find the electron more often
at positions with low potential and rarer where the potential is high. We assume that for the
partially conserved periodicity the eigenstate of the electron will resemble some combination of
Bloch states. Now due to the additional potentials the Blochstate will gain a slowly varying
space dependant modulation in amplitude [35]. This can be written as

ψ(r) =
∑

n

Fn(r)un0. (2.17)

The modulating functionFn(r) is called the envelope function. Since the Bloch functionsun0

at theΓ point are known, we just have to find the right envelope functions. The form ofFn will
depend on the symmetry of the additional potential.
The electron in the bulk crystal could be described by a free particle with some effective mass.
Now we have to solve a problem of a particle with an effective mass and subjected to an additional
potentialU(r). For a free particle the solutions to the Schrödinger equation are plane waves.
They are eigenfunctions to the translation operator. In a bulk crystal all the possible translations
yield all the possible eigenstates of the electron [36], [37].

eikrunk(r) (2.18)

where the values ofk are restricted by boundary conditions. Now, one can envision the plane
waves also as envelope functions for the case of translational symmetry, the symmetry of the
underlying crystal lattice. In this picture the crystal momentumk is just some quantum number
counting the eigenfunctions. For an additional potential the envelope function will in general not
be a plane wave. We expand it in some set of functionsF i

n, wheren counts the expansion in the
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Bloch states while the multi-indexi stands for the expansion of the envelope function. Eq. (2.3)
then becomes

Ψ(r) =
∑

n

∑

i

cinF
i
n(r)un0(r). (2.19)

The summation overi replaces the integration overk. In the calculation of the matrix elements
(2.5) all thek’s result from derivation of the envelope functionexp(−ikr). Since now we do
not know the explicit form of the envelope functionF i

n(r) we can not perform this operation
yet. We can pursue our investigation as in the bulk case. We have only to replace all thek’s by
the momentum operatorp which acts only on the envelope function. By choosing a complete
and orthogonal set of functions for theF i

n and calculating the matrix elements〈n′i′|O(p)|ni〉
we come to a representation forHKL and to a matrix equation for the coefficient vectorc =

(...cin...)
T . We assume, that the additional potentialU(r) varies so slowly that it can be taken

as constant over one unit cell. Then it will be diagonal in theband indexn: 〈n′i′|U(r)|ni〉 =

δn′nI(i
′i). We then have to solve

(HKL + 1U(r))ψ(r) = Eψ(r) (2.20)

where1 is the unit matrix.

2.2.1 Hole Density in the Quantum Dots

It is instructive to look at the probability density of the holes inside the dot. But it is necessary to
discuss the meaning of this term. The probability to find a hole at~r can be obtained by calculating
the expectation value of a delta function〈Ψ|δ(~r)|Ψ〉. Using 2.17 we obtain

〈δ(~r)〉 =
∑

nm

∑

ij

ci∗n c
j
m

∫

crystal

drF i∗
n u

∗
nδ(~r)F

j
mum. (2.21)

Now, in the envelope function approximation, we can not account for structures of the dimen-
sion of one lattice cell. Since we have assumed that the envelope function is almost constant on
the length scale of one lattice cell we can tread such a cell just as one point. We take the density
of the hole as constant in one cell. We can express this by changing theδ function in 2.21 in a
function δ̃(~r) which is constant and equal1 inside the cell under consideration and zero outside.
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We get

〈Ψ|δ(~r)|Ψ〉 =
∑

nm

∑

ij c
i∗
n c

j
m

∫

cr
drF i∗

n δ̃(~r)F
j
m

∫

UC
dru∗num

=
∑

n

∑

ij c
i∗
n c

j
n

∫

cr
drF i∗

n δ̃(~r)F
j
n

≈
∑

n

∑

ij c
i∗
n c

j
n

∫

cr
drF i∗

n δ(~r)F
j
n

=
∑

n

∑

ij c
i∗
n c

j
nF

i∗
n (~r)F j

n(~r).

(2.22)

In this picture the density of the hole is just the sum of the envelope function densities for each
of the four bands.

2.3 Exact Diagonalisation

To find the eigenvalues and eigenstates of my system I used theExact Diagonalisation calculation
scheme. All the equations we want to solve are too difficult tobe analytically treated in this form.
When we represent our Hamiltonian in a complete set of orthogonal basis functions, it becomes
a matrix of numbers. We can treat this matrix using a computer. If we are interested in finding
the eigenvalues and eigenvectors of a system we have to diagonalise the matrix representing our
Hamiltonian. Let this matrix beM. Then an eigenvalue equation will be

Mv = λv (2.23)

with some eigenvalueλ and corresponding eigenvectorv. We can now transform this equation
to an other equation, which yields the same eigenvalues. We do so by using an unitary matrixS
with SS+ = 1. We get

SMS+Sv = λSv → Dv′ = λv′ (2.24)

D = SMS+, v′ = Sv. (2.25)

We can findS such, thatD is diagonal and contains all possibleλ’s. Thev′ are then Cartesian
vectors. It follows, that the rows of the transformation matrix S+ contain the eigenvectorsvi of
the original problem to the eigenvalueλi.

S+v′
i = S+Svi = vi = S+(. . . 1i . . . )

T . (2.26)

In this manner it is possible, to solve every problem exactly. Therefore the name of this proce-
dure: Exact Diagonalisation. In practice the applicability of this strategy is often limited. The
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sets of functions in which we expand the Hamiltonian are always of infinite dimension yield-
ing matrices of infinite size, which in the most cases can not be solved whether analytically nor
numerically. The approximation we have to apply to our calculations is to cap the size of the
basis. When we choose a set of basis functions for our expansion with a similar symmetry as
our problem, we can expect that already a small number of basis functions will describe our
eigenstates very exactly. The missing of higher functions of our complete set will not alter the
resulting eigenstate very much. Since we are mostly interested in the eigenvalues and eigenstates
with the lowest energy, we just take those basis functions inour expansion, which are expected to
give a good approximation to the energetically lowest eigenvectors. There is no rigorous method
to choose. One has to use some intuition and maybe vary the basis to be sure not to miss an
important basis function. Our strategy is to find a basis, which resembles the symmetry of our
system as good as possible. Then we have to calculate the matrix representation of the Hamil-
ton operator describing our problem and diagonalise this matrix using numerical routines on a
computer.

2.4 Numerical Routines

Many different problems can be formulated in such a way, thatthe solution involves the diagonal-
isation of a matrix. So there are already a lot of numerical routines available, which perform this
aim. One has only to deliver to this procedure the correct matrix describing the problem. The
routines themselves are taken from numerical algebra packages like LAPACK and ARPACK.
These routines are proven for reliability and optimised to deliver the best performance. LA-
PACK, the Linear Algebra PACKage, offers routines to manipulate matrices and to calculate
normal and generalised eigenvalue problems. The performance of the routine strongly declines,
when the matrices become larger. For problems containing several electrons or holes the matri-
ces can become so large, that an other routine has to be used. Matrices describing many-body
problems are large but often only very sparse. In this case the ARnoldi PACKage offers to us
very well performing routines.

2.5 Quantum Dot Model

The quantum dots in my calculations are represented by potentials, which restrict the movement
of holes inside a semiconductor crystal. In my work I want to simulate the behaviour of up to
three holes inside a quantum dot while regarding the mutual Coulomb repulsion of the holes, the
influence of an acceptor potential of an impurity and a spin-spin interaction between the impurity
an the holes. The influence of the mutual hole Coulomb interaction in relation to their orbital
energies rises with the size of the dot. So we have to deal withdots with a diameter of at least
several tens of nanometres. Such dots can be fabricated e.g.by lithographic methods from two
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dimensional hole gas (2DHG) structures.
The kind of description I will use here is particularly useful for larger quantum dots. In small
quantum dots the confinement of charge carriers is so strong,that a hole can be confined only in
one or two orbital states. Therefore effects regarding the orbital movement of the holes inside
the dot are blured due to a lack of different eigenstates the hole can occupy. Such systems are
typically described by much simpler Hamiltonians containing only the spin degree of freedom
of the concerned particles.
I simulate a quantum dot formed at the interface of two semiconducting materials with different
band gaps such asAlxGa1−xAs andGaAs. The band gap in pureGaAs is much smaller than
in AlGaAs. Holes at the top of the valence band inGaAs cannot enter into theAlxGa1−xAs

crystal due to this band offset. Between the valence bands inthese two materials the offset
depends on the fractionx of Al in theGaAs host crystal and can vary between100 meV and
400 meV [38]. Such 2D structures are typically fabricated by molecular beam epitaxy. In this
process the semiconductor crystal is grown layer by layer ofatoms. Let us call the direction of
the growth thez direction. Then the band offset constrains the motion of theholes to theGaAs
part of the crystal. By a technique called modulation dopingit is possible to introduce charged
impurities into theAlxGa1−xAs at a precisely chosen point in the vicinity of the interface.To
confine holes one has to choose an attractive, i.e. negative,Coulomb potential. It then lowers
the energy of the holes near the interface and attracts them towards it. This potential and the
band offset form two potential barriers perpendicular to the z direction and thus confine the
holes to the interface. For calculational simplicity I assume the band offset in my calculations
as infinite. This approximation is valid because we deal withmuch smaller typical confinement
energies than the energetical band offset. In the quantum dot the confinement energy amounts to
several tens of meV. Also taking a finite size of the interfacepotential into account leads only to a
stronger mixing between the light and heavy hole bands. In our system this mixing will be large
anyway. No additional features will occur or become blured.In theGaAs part of the crystal the
potential of this additional ions is approximated by a linearly rising potential. This results in a
triangular shape for the confining potential inz direction.

The assumption of infinite potential barriers at interfacesof different semiconductors has a
larger impact in quantum well structures. This is because here this strong restriction is applied on
both sides of the quantum well. The energies and band mixing in such structures depends very
strongly on the penetration depth of the hole wave function into the barrier. This is especially true
for small dots. In this potential configurations good approximations have to be found to obtain
the correct eigenenergies. Due to a change of the effective mass of the hole behind the barrier
in AlGaAs and the unknown composition of the crystal at the interface this task can become
difficult. For heterojunctions this problem is much less prominent due to an infinite potential on
just one side of the structure. Also the assumption of a linearly rising potential on the other side
is only valid in the vicinity of the interface. States with higher energy and thus larger extend in
z direction will experience a much weaker potential. Both approximations will become worse
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when the total energy of the hole system approaches300−400 meV. In dots considered here this
can happen especially for systems with more than three holes. In calculations on 2-dimensional
electron and hole systems one has typically to deal with manycharge carriers. They can screen
the potential imposed by the ions behind the barrier. Therefore, the slope of the linear potential
in such systems has to be calculated self-consistently. In my system, I will deal only with up to
three holes. Their charge will not alter the dot potentials.
To get a0 dimensional structure we still have to restrict the movement of the holes in the plane
of the interface, thexy plane. This can be done by some electrodes on top of the crystal or by
etching pillars out of the grown crystal perpendicular to the interface. In both cases the holes are
confined in thexy plane due to a potential of charge carriers surrounding the confined holes. The
additional charge is located inside the electrodes or at thesurface of the pillars in dependence on
the realisation of the quantum dots. In both cases thisxy potential can be approximated to a very
good degree by a 2-dimensional harmonic potential [39].

2.6 Basis Functions

To minimise the error by capping the size of our basis we have to find basis functions, which
resemble the symmetry of the system under consideration as good as possible. Its symmetry is
mainly determined by the potentials forming the dot, a harmonic potential in thexy plane and a
triangular potential inz direction. We also want to apply a magnetic field along thez direction
of our system (Faraday configuration). Such a field is represented by an additional vector poten-
tial. A good ansatz is the choice of eigenfunctions for the one-band problem with the considered
potentials. In our case such a problem can be solved analytically. The basis functions we have to
use are Airy functions for thez direction and Fock-Darwin states for thexy motion[40]. Unlike
for electrons, this functions are not the eigenfunctions ofthe system. This is because we take
now into account the four different valence bands simultaneously. The mixture of these bands
and thus the effective masses of the holes depend on their momentum. For numerical calcula-
tions we have to choose a basis with a particular effective mass. This basis functions can not be
eigenfunction to all states. To ease the implementation of the matrix in the program we choose
basis functions that will be eigenfunctions to some of the operators in the diagonal of the Hamil-
tonian matrix. This diagonal operators have a large weight on the eigenstates so we can expect
our truncated basis to give better results for the low-energy sector of the spectrum.
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2.6.1 Motion in xy plane

Let us first start with thexy motion. Thexy part of the diagonal element for thejz = 3/2 band
of the Kohn-Luttinger Hamiltonian together with the potential in xy plane reads

H
3

2
xy =

γ1 + γ2

2me
(p− eA)2 +

K0

2
(x2 + y2). (2.27)

A = B/2(−y, x, 0) is the vector potential in symmetric gauge,K0 describes the strength of
the harmonic potential,me is the mass of a free electron andγ1, γ2 are Luttinger parameters.
It turns out to be more convenient not to choose eigenfunctions of the operator above as basis
functions but functions, where the effective mass of the particle is justγ1/2m. In this basis, all
matrix elements concerning thexy motion can be calculated analytically. It is also convenient to
describe the harmonic and vector potential in terms of frequencies. With our choice of the mass
we get

ω0 =

√

K0γ1

me

ωc =
eBγ1

me

ωh =

√

ω2
0 +

(ωc

2

)2

. (2.28)

Here,ω0 describes the strength of the confining potential.ωc is the cyclotron frequency and
describes the confinement due to the magnetic field.ωh is the hybrid frequency, which finally
determines the energy and the spatial extent of the system. Eq. (2.27) becomes

H =
γ1

2me
(p2

x + p2
y) +

me

2γ1
ω2

h(x
2 + y2) − ωc

2
(xpy − ypx). (2.29)

There are two convenient methods to find the eigenvalues and eigenvectors to this Hamilto-
nian. One can straight solve the differential equation or translate the problem into an algebraic
one. The last method is most convenient, when we want to solvethe problem of just one hole in
a quantum dot. Now, the Coulomb repulsion between two holes or the acceptor potential of an
impurity can not be solved with this algebraic method. We then have to resort to numerical cal-
culations and are forced to know the spatial representationof the eigenvectors. In the following
I will therefore give a short insight into both ways to solve (2.29).
The confining potential has rotational symmetry around thez axis so the eigenfunctions ofH
should also be eigenfunctions to thez component of the angular momentumxpy − ypx = Lz. It
is therefore convenient to describe the operator in cylindric coordinates. Now (2.27) becomes

H = − ~γ1

2me

[

1

r

∂

∂r
+

∂2

∂r2
− 1

r2

∂

∂ϕ2

]

+
1

2

γ1

me

ω2
hr

2 +
i~ωc

2

∂

∂ϕ
. (2.30)

When we introduce the characteristic length of the systeml, we can come to a differential oper-
ator for a dimensionless quantityξ

l =

√

~γ1

meωh
ξ =

r

l
. (2.31)
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Then, (2.30) reads

H = −~ωh

2

[

1

ξ

∂

∂ξ2
+

∂2

∂ξ2
− 1

ξ2

∂2

∂ϕ2
− ξ2

]

+
i~ωc

2

∂

∂ϕ
. (2.32)

Eigenfunctions of this operator have the form

〈r|nm〉 =
1

l
φm(ϕ)ρnm(r/l) (2.33)

φm(ϕ) =
1√
2π
eimϕ ρnm(ξ) =

√

2n!

(n+ |m|)!)ξ
|m|e−ξ2/2L|m|

n (ξ2). (2.34)

HereLm
n are Laguerre polynomials[41].〈r|nm〉 are the Fock-Darwin states [40],[42]. Finally

the energy eigenvalues of such an operator with the eigenfunctions above are

Enm = ~ωh(2n+ |m| + 1) +
~ωc

2
m. (2.35)

Since (2.34) are not quite the eigenstates of our problem, (2.35) is not quite the energy eigenvalue.
For the algebraic calculation of matrix elements it is instructive, however, to take a closer look at
these functions.

2.6.2 Algebra for the Fock-Darwin States

Similar to the case of a 1-dimensional harmonic oscillator we can solve the problem of the two-
dimensional harmonic oscillator in a magnetic field using analgebraic method. Let us therefore
define the following operators [42], [43]:

â+
x =

1√
2

(

1

l
x− il

~
px

)

âx =
1√
2

(

1

l
x+

il

~
px

)

(2.36)

â+
y =

1√
2

(

1

l
y − il

~
py

)

ây =
1√
2

(

1

l
y +

il

~
py

)

(2.37)

and

â+
+ =

1√
2
(â+

x + iâ+
y ) â+ =

1√
2
(âx − iây) (2.38)

â+
− =

1√
2
(â+

x − iâ+
y ) â− =

1√
2
(âx + iây). (2.39)

Because of the commutator[xi, pi] = i~ one can show

[â+, â
+
+] = [â−, â

+
+] = 1 (2.40)
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while all other commutators vanish. We can further define theoperators

n̂+ = â+
+â+ n̂− = â+

−â−. (2.41)

They commute, so there is a set of states, which are eigenstates to both of them.

n̂+|n+, n− >= n+|n+, n− > n̂−|n+, n− >= n−|n+, n− > (2.42)

Similar to the rising and lowering operators for e.g. the angular momentum [42] one can show
the following relations:

â+
+|n+, n− >=

√

n+ + 1|n+ + 1, n− > â+|n+, n− >=
√
n+|n+ − 1, n− > (2.43)

â+
−|n+, n− >=

√

n+ + 1|n+, n− + 1 > â−|n+, n− >=
√
n−|n+, n− − 1 > . (2.44)

Then, an arbitrary state|n+, n− > can be written as

|n+, n− >=
(â+

+)n+

√

n+!

(â+
−)n−

√

n−!
|0, 0 > . (2.45)

We can also describe the common space and momentum operatorsin terms of the new ones:

x =
l

2
(â+ + â+

+ + â− + â+
−) px =

~

2il
(â+ − â+

+ + â− − â+
−) (2.46)

y =
il

2
(â+ − â+

+ − â− + â+
−) px =

~

2l
(â+ + â+

+ − â− − â+
−) (2.47)

x2 + y2 = l2(1 + n̂+ + n̂− + â+â− + â+
+â

+
−) (2.48)

p2
x + p2

y =
~

2

l2
(1 + n̂+ + n̂− − â+â− − â+

+â
+
−) (2.49)

xpy − ypx = ~(n̂+ − n̂−). (2.50)

Our Hamiltonian (2.29) can be written in terms of the new operators as

H = ~ωh(1 + n̂+ + n̂−) − ~ωc

2
(n̂+ − n̂−). (2.51)
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The states|n+, n− >, which are eigenstates tôn+, n̂−, can differ from the Fock-Darwin states
we already found only by a phase factor. The old quantum numbersn,m are related to the new
onesn+, n− by

n = min(n+, n−) =
n+ + n− − |n+ − n−|

2
m = n+ − n−. (2.52)

To calculate the phase factor we can determine the spatial probability amplitude〈(r, ϕ)|n+n−〉.
The rising operatorsa+

+, a
+
− can be described in terms of the position and momentum operators

x,p as

â+
+ =

eiϕ

2

(

r

l
− l

∂

∂r
− il

r

∂

∂ϕ

)

â+
− =

e−iϕ

2

(

r

l
− l

∂

∂r
+
il

r

∂

∂ϕ

)

. (2.53)

We get〈(r, ϕ)|n+n−〉 by applying (2.53) to the ground state function

〈(r, ϕ)|00〉 =
1

l
√
π
e−r2/(2l2). (2.54)

By comparison we obtain

〈(r, ϕ)|n+n−〉 =
1√
2π
eimϕ (−1)n

l

√

2n!

(n+ |m|)!
(r

l

)|m|

e−r2/(2l2)L|m|
n

(

(r

l

)2
)

. (2.55)

The usefulness of then+, n− basis is revealed, when we try to calculate the matrix elements
describing the motion of the hole in thexy plane. The operators of the Kohn-Luttinger matrix
read in this basis

(Pxy + Vxy)
1

~ωh
= (1 + n+ + n−) − ωc

2ωh
(n+ − n−). (2.56)

With the effective massm∗ = me/γ1 the operatorPxy is diagonal. This is no longer true forQxy

because of its different effective mass.Qxy couples states with the same angular momentum of
the envelope function and differentn.

(Qxy + Vxy)
1

~ωh
=

1

2

(

1 +
γ2

γ1
+

(

γ2

γ1
− 1

)(

ωc

2ωh

)2
)

(1 + n+ + n−)

+
γ2

γ1

ωc

2ωh
(n+ − n−)

+
1

2

(

1 − γ2

γ1
+

(

γ2

γ1
− 1

)(

ωc

2ωh

)2
)

(a+a− + a+
+a

+
−) (2.57)
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In the axial approximation the operatorR reads

R
1

~ωh
=

√
3

2

γ2 + γ3

2

1

γ1

[

(

ωc

2ωh
+ 1

)2

(a+)2

+

(

(

ωc

2ωh

)2

− 1

)

a+a
+
− +

(

ωc

2ωh
− 1

)2

(a+
−)2

]

. (2.58)

Analogously theS operator is

S
1

~ωh
=

√
3
γ3

γ1

lHO

lz

[(

ωc

2ωh
− 1

)

a+ +

(

ωc

2ωh
+ 1

)

a+
−

]

∂

∂z
.

1

lz
=











(

2meeF
~2(γ1−2γ2)

)
1

3

HH
(

2meeF
~2(γ1+2γ2)

)
1

3

LH
(2.59)

Herelz is what we could call the characterising length of the systemin z direction. By dividing

the operators byωh we immediately can see the behaviour of the system with rising magnetic
field. From (2.28) followsωc/2ωh → 1 as the magnetic field strength increases. Therefore,
all parts of the operators above with pre factors like(ωc/2ωh − 1) become small. Then, all
basis states which appeared in the expansion of the eigenstates of the system due to the coupling
through the operators with these pre factors, will loose weight in the expansion of the eigenstates
for higher magnetic field. This is a manifestation of the symmetry breaking between the states
with the same absolute value but different sign of the total angular momentum by the magnetic
field.
Using (2.38) and (2.39) we can now easily calculate all matrix elements for thexy motion.

2.6.3 Elliptic Quantum Dots

Quantum dots fabricated by any process often do not possess rotational symmetry in thexy plane.
This can have significant influence on the eigenstates of these dots. Elliptic quantum dots, i.e.
dots with an elliptic conture of constant potential in thexy plane, are an approximation to these
non-circular dots. For single-band quantum dot models, as in case of electrons in the conduction
band, one can show that the elliptical potential lifts the degeneracy of the excited states in the
Fock-Darwin spectrum [44], [45],[46]. In the case of holes the dependence on the anisotropy
of the potential is more complicated. The elliptic potential acts on the orbital movement of the
holes, the Fock-Darwin states. We will see that hole eigenstates consist of different Fock-Darwin
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states and the spin is coupled to the orbital movement. Thus the influence of the elliptic potential
is different. The elliptic shape is created by changing thexy potential in (2.27) to

Vxy =
K0

2
(x2 + y2) +Key

2. (2.60)

The constantKe describes the strength of the additional harmonic potential. In the basis for the
xy planey2 can be described as follows in terms of the creation and annihilation operators

y2 = l2
[

â+â− − â+â
+
− − â+

+â− + â+
+â

+
− + â+â

+
+ + â−â

+
− − 1

− 1
2

(

â2
+ + â+2

+ + â2
− + â+2

−

)]

.

(2.61)

Since this additional operator breaks the circular symmetry of the dot, the Hamiltonian of the
system no longer resolves into blocks belonging only to a single value of thez component of
the total angular momentumM = mFD + jz. So, we have to include all possible values of the
angular momentum in our calculations. Here and in all cases where the circular symmetry of the
problem is broken, to maintain a computable matrix I consider only values ofM belonging to
the energetically lowest states. They go fromM = −7/2 toM = +7/2. This assures, that all
states with a strong coupling to the ground statesM = ±3/2 are considered.

2.6.4 Motion in z direction

For the triangular potential inz direction one cannot calculate the required matrix elements
analytically. This is due to the cumbersome functions and the different masses for the light and
heavy holes. The used Airy-Functions [47] are solutions to the differential equation

(

1

2m∗
p2

z + eFz

)

ζ(z) = Eζ(z) ζ(z = 0) = ζ(z = ∞) = 0 (2.62)

ζp(z) = Ai

[

(

2m∗eF

~2

)
1

3
(

z − Ep

eF

)

]

. (2.63)

F describes the strength of the linear potential inz direction. Ep is thepth eigenvalue of the
differential equation (2.62).Ep/eF are the roots of the Airy function. For the Bloch bands with
jz = ±3/2, we insert the effective massm∗ = me/(γ1 − 2γ2), whereme is the mass of a free
electron. For the Bloch bands withjz = ±1/2, we use Airy functions with the effective mass
m∗ = me/(γ1 + 2γ2). We expand thez component of the eigenstate envelope-function not in
one but in two orthogonal sets of functions. They are not orthogonal with respect to each other,
because of the different masses used to define them. This procedure assures a good description
of the hole wave function with a minimal set of basis functions.
The mass in thez direction for thejz = ±3/2 bandsmz

3/2 = me/(γ1 − 2γ2) is bigger then the
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one forjz = ±1/2 bandsmz
1/2 = me/(γ1 + 2γ2)

2. Therefore, thejz = ±3/2 bands are called
the Heavy-Hole bands whereas thejz = ±1/2 ones are called Light-Hole bands. Notice (see Eq.
2.12) that for thexy direction the situation is reversed. Thejz = ±3/2 massmxy

3/2 = me/(γ1+γ2)

is light and thejz = ±1/2 massmxy
1/2 = me/(γ1 − γ2) is heavy. The names originate from the

description of2D hole systems, where the holes are only confined in thez direction. The energy
of the different states was then determined by themz

3/2 andmz
1/2 terms.

While expanding thez states in two non-orthogonal sets of functions, we have to calculate
some matrix elements, which appear due to the non-orthogonality. In the R operator of the
Kohn-Luttinger Hamiltonian we have to calculate< ζHH

i |ζLH
j > and for theS operator<

ζHH
i |pz|ζLH

j >. HereHH(LH) denotes the functions with heavy(light) mass inz direction.
These calculations have to be performed numerically, whichcan be readily accomplished using
Mathematica. Then the results of the integration are saved in a file and read out to set up the
matrix.

2.6.5 Basis States for One Hole

The wave function of a hole from the topmost valence band of GaAs inside a quantum dot is
described by the sum over all four top valence bands, where the summands are products of Bloch
statesujz

(r) times some envelope functionsFm(r)

ΨM(r) =
∑

jz

cjz

M−jz
F jz

M−jz
(r)ujz

(r). (2.64)

HereM = m + jz is the sum of twoz components of different angular momenta of the hole.
The angular momentumj, with z componentjz, appears due to the spin-orbit coupled movement
of an electron around the atoms constituting the crystal lattice. In the Tight-Binding model
for the formation of bands in the crystal, they develop from orbitals of the atoms forming the
lattice. In this process the particles retain their angularmomentum. The topmost valence bands
in GaAs develop fromp orbitals. With spin-orbit coupling this gives a total angular momentum
of |j| = 3/2. The movement of the hole inside the circularly symmetric quantum dot gives rise
to the conservation of a component of the angular momentum. With our choice of the coordinate
axes it isLz. The Fock-Darwin states are eigenstates to this operator and m is the conserved
quantum number. The sumM = m+ jz is a good quantum number, i.e. the matrix representing
the system becomes block-diagonal with respect toM . There is no interaction between states
from different blocks and we can diagonalise each block at a time. Since thejz value changes
for every band, the envelope function for every band must have a differentm.
As mentioned above, we expand the envelope functionsF in a complete and orthogonal set of

2 Without any confinement the masses are isotropic according to the spherical approximation. The particular
form of the confining potentials defines the mass of the holes in confined states.
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2.7. Energy dependence on the magnetic field

functions, namely the Fock-Darwin states. With our choice form above we get

F jz

M−jz
(r) =

∑

p

∑

n

Cjz

n,|M−jz|
ζHH(LH)
p (z)φ|M−jz|(ϕ)

1

l
ρn,|M−jz|(r/l). (2.65)

We have to choose the heavy-hole masses (HH) forjz = ±3/2 and light-hole masses (LH)
for jz = ±1/2. From the exact diagonalisation we get the eigenvalues of the system and the
expansion coefficientsCjz

n,|M−jz|
. They represent the eigenstates in the chosen single-particle

basis.

2.7 Energy dependence on the magnetic field

The magnetic field appears in two points in the description ofa hole confined in a quantum dot.
Following the theory of Luttinger [31] the interaction of the z component of the total angular
momentumJ of the hole has the formEz = 2µBκjzB. µB is the Bohr magneton,jz the z
component ofJ and the Luttinger constantκ is a material dependant parameter. It describes the
effect of the remote bands on the alignment ofjz in the magnetic field. This whole description
is valid in the basis of the four topmost valence bands with|J| = 3/2. The influence on the
movement in the dot orbitals is described by changing the momentum operator̃pα → pα − qAα.
A is the vector potential andq the charge of the particle. In quantum dots the field is often applied
perpendicular to thexy plane, where the electrons are confined by a harmonic potential. Then
the influence of the field on the energy due to the orbital movement described by the envelope
functions ismωc/2B. Here,m is thez component of the orbital angular momentum andωc the
cyclotron frequency. Quantum numbersm andjz with the same sign must both increase or lower
the energy in their respective terms. To describe the movement of electrons in the valence band
one can stay in the familiar picture and has to deal with negative electron masses. Alternatively
one can switch to the hole picture, where the holes retain positive masses. Luttinger worked in the
electron picture and chose−e for the charge of the moving particles. Then negativejz lower the
energy. In my calculation I use the hole picture i.e. I assumeq = +e. But I dropped accidentally
the also necessary transformation of the particle momentape = −ph. The momentum of the
hole must have the opposite direction of the electron momentum in the band. This inconsistency
can be levelled by assuming the magnetic field to point in the−z direction. This is equivalent to
changing the chargeq back to be−e. Due to this feature in my calculations Zeeman-like terms
with positive quantum numbers lower the energy of the state.

2.8 Many-Body Interaction

We want to treat a quantum dot with several holes and their mutual repulsion. Since we use the
full quantum mechanical description we have to set up a many-body basis for the system. Some
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texts on this topic can be found e.g. in [48], [49] and [50].
Usually one sets up the many-body basis from products of single-particle states. To construct a
many-body basis in this way one can use the following scheme.We predetermine some arbitrary
order of the single-particle basis states. Then, we construct many-body states as products of
single-particle states. For a system withN particles, each product consists ofN single-particle
basis states. When we choose to use in our single-particle basism states, we getmN product
states. Then we only take those, which follow in the product the order we have set up. Since we
have to treat the holes as fermions, we cannot allow two single-particle states in the product to
match in every quantum number. So, we have to throw away thesestates from our set of product
states. This will give us an appropriate many-body basis fornumerical calculations.

The second-quantisation scheme is a compact and elegant wayto describe many-particle
physics. In this scheme the Hamiltonian of our system consists of two parts

H = H(1) +H(2) (2.66)

H(1) =
∑

ij

〈i|HKL + 1V |j〉 a+
j ai. (2.67)

This is the single-particle part. It consists of the Kohn-Luttinger Hamiltonian and the potentials
forming the dot.

H(2) =
1

2

∑

ijkl

< ij|V̂C|kl > a+
i a

+
j alak (2.68)

is the part, describing the interaction between two particles. In our case this interaction will be
the Coulomb repulsion between the holes. The matrix elements describing this repulsion have
the following form [50]

〈

ij|V̂C |kl
〉

=
〈

nimiMipinjmjMjpj|V̂C |nkmkMkpknlmlMlpl

〉

= δMi−mi,Mk−mk
δMj−mj ,Ml−ml

δMi+Mj ,Mk+Ml

1

4πǫǫ0

×Animinjmj
Ankmknlml

min(µij
max,µkl

max)
∑

µ=max(µij
min ,µkl

min)

min(νij
maxνkl

max)
∑

ν=0

Kniminjmj
νµ Knkmknlml

νµ

×
∫

dz1dz2dξrelξrel

ζpi
(z1)ζpj

(z2)ζpk
(z1)ζpl

(z2)ρ̃νij
max−ν,mi+mj−µ(ξrel)ρ̃νkl

max−ν,mk+ml−µ(ξrel)
√

l2relξ
2
rel + (z1 − 12)2

.

(2.69)
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The first pair ofδ’s represents the fact, that the Coulomb interaction does not affect the Bloch
functionujz

. Therefore, these matrix elements have to be diagonal in theband index which is
jz = M − m. The thirdδ represents the conservation of the total angular momentum by this
interaction. The total angular momentumz component of the initial statesMi + Mj has to be
the same in the final statesMk + Ml. For the motion in thexy plane it is possible to change to
relative coordinates of the two interacting particles. TheCoulomb interaction does not affect the
xy motion of their centre of mass. In this manor, we can save the integration over the centre-of-
mass variable. The summation overµ andν represents this basis change. The constantsA, K,
µmin, µmax andνmax are given in the appendix. The relative characteristic length is lrel =

√
2l.

The lack of symmetry inz direction forbids this procedure for this part. Here, we have to carry
out all the integrations. We have chosen to describe thez part of the envelope function by two sets
of functions, one with heavy-hole mass and one with light-hole mass. Therefore we now have
to calculate the matrix elements for all possible combinations of heavy- and light-hole functions.
Even when we use the symmetries of the integral,z1 ↔ z3, z2 ↔ z4 andz1 ↔ z2, z3 ↔ z4, we
end up with 76 possible combinations for only the first two functions for each mass.

2.9 Manganese Impurity

The manganese atom has an atomic configuration of[Ar]3d54s2. When we introduce it into
a III-V semiconductor likeGaAs or InAs it will most likely substitute theGa atoms in the
lattice[51]. TheMn atom can also substitute theAs or take an interstitial position. These
situations, however, are less common than the substitutionof the tri-valent atom. We will not
consider them here. At the place of e.g.Ga inGaAs the two4s orbitals change tosp3 orbitals to
participate in the diamond like bounds. TheMn has only two electrons in the4s orbital so one
electron is missing, since theAs atom contributes five electrons to these bounds. The electronic
configuration of theMn atom then becomes3d5 + hole [52]. Electrons from neighbouring
bounds can fill this hole, which causes a detaching of the holefrom the impurity. Then, the
missing of one positive charge in the Mn core results in a negative charge in the vicinity of
theMn atom relative to the background. The interaction potentialbetween the manganese and
the hole can be modeled in the envelope function approximation as a Coulomb-like acceptor
potential. This potential of theMn is, however, screened by other atoms in the lattice. To
describe this effect we have to modify the Coulomb potentialof the impurity by an additional
screening potential. This additional potential deviates remarkably from a constant only in the
vicinity of the manganese impurity. We split the screening up in a constant part and a changing
part. This second part is different from zero only close to the manganese impurity. The form of
the screened Coulomb potential is then1/r with an effective dielectric constant. Its value isǫr =

13.1 for GaAs [32]. To take the rapid change of the screening in the vicinity of the manganese
into account we have to add another part to the screened potential. This one is typically of
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such a short range, that it has only influence on the ground state of the bound hole, where the
hole is typically closest to the manganese. The addition of this second potential is called the
Central Cell Correction. Experimentally, one can find thatMn in GaAs is a moderately shallow
acceptor with a binding energy for the lowest level of112.4 meV [53] in the bulk crystal. This
potential significantly changes the shape of the quantum dotpotential and cannot be omitted, if a
quantitative description of the dot eigenstates is intended. In our calculations we will nevertheless
omit this correction. In the quantum dot eigenstates the hole is less concentrated around the
manganese than for pure acceptor states. So we can expect, that the influence of the correction
will be less prominent. The symmetry of the system is determined by the dot potentials. So the
additional potential would have less influence on the character, i.e. the spin, of the holes and
merely change the energy of the lowest states. In our model quantum dot we assume also, that
we have control over the amount of charge carriers in the dot.We will treat cases, where the
number ofMn atoms and holes differ. In our basis we have to calculate the matrix elements
describing the Coulomb1/r operator numerically.
The reason for introducing aMn atom into the quantum dot is its large magnetic moment of
5/2µB. It is formed by the five3d electrons. The3d orbital is half filled, so according to Hund’s
rule all electrons align their spins parallel. Unlike the4s orbital, which becomes de localised and
forms a band in the crystal lattice, thed electrons stay in thed orbital and remain localised at the
place of theMn. Nevertheless there is an interaction between thed orbital and thes andp band
of the crystal. This interaction has its origins in a spin-dependent Coulomb interaction between
the orbital and these bands [54]. Notice that this effect differs from the Coulomb force described
above stemming from the missing electron in the top shell of the manganese. The exact form
of the pd interaction can be found in [51], [55], [56]. We can cast the whole interaction in a
spin-like term. The matrix elements of the interaction are then

〈

Ψjz
|J(RI − r)S · j|Ψj′z

〉

= |f(RI)|2
Jpd

3
〈Sz, jz|S · j|S ′

z, j
′
z〉 . (2.70)

Ψn,Sz,jz
, Ψn′,S′

z,j′z are some basis states with manganese and hole spinSz andjz respectively and
the multi-indexn describes the orbital movement.j is the total (atomic scale) angular momentum
of the hole.S is the total spin of theMn impurity. The interaction between the hole spin and
manganese3d spin depends on the alignment of the spin of the hole rather than its total angular
momentumj. Now, within the basis states with|j| = 3/2 of the four topmost valence bands the
operator describing this interaction is diagonal. It is proportional to the operatorS · j/3. So the
total angular momentumj of the Bloch functionujz(r) can also for this interaction be treated as a
pseudo spin with four alignments. The strength of the interaction is proportional to the probabil-
ity for the hole to be in the cell containing the manganese impurity. This probability is determined
by the envelope function and is represented here by|f(RI)|2 =< F ∗

n,jz
(r)Fn′,j′z(r) >u.c.. The in-

tegration goes over the manganese unit cell.RI is the position of theMn atom andFn,jz
are the

envelope function basis states. Since the envelope functions do not change very much over the
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cell volume, we can also take the value of the envelope functions at the position of the impurity
and multiply it by the volume of the cell. We also assume, thatthe presence of the manganese
atom can change the orbital movement of the hole i.e. can change the envelope function. This
behaviour is modeled by aδ like function, which acts only on the envelope functions

< F ∗
n,jz

(r)Fn,jz
(r) >u.c.= Vu.c.

∫

drF ∗
n,jzδ(RI − r)Fn′,jz = Vu.c.F

∗
n,jz(RI)Fn′,jz(RI). (2.71)

WhereVu.c. is the volume of the unit cell of the crystal. The details of the interaction on the
atomic scale are inaccessible to our model. We use a parameter to account for the correct strength
of the interaction. This interaction constant isJpd. It gives a value for the interaction energy
between a hole spin in thep band and thed electrons of theMn. This value is hard to determine.
I usedJpd ≈ 40 meV nm3 [53]. Treating the total (atomic scale) angular momentum ofthe hole
j as a pseudo spin, the spin part of the basis for the hole and theMn is just the tensor product
|Sz〉 ⊗ |jz〉. The states|Sz〉 are eigenstates of̂S2, Ŝz and |jz〉 are eigenstates of̂j2, ĵz. In this
basis we can describe the spin operator part of the interaction term as

S · j = Szjz +
1

2
(S+j− + S−j+). (2.72)

S+, S−, j+, j− are rising and lowering operators for some angular momentum[42].
When we introduce severalMn impurities in our semiconductor, there is also an interaction
between thed orbitals of these impurities. The interaction aligns the magnetic moments anti
parallel to each other. However this interaction is very short ranged. Its strength is proportional
to the overlap of thed orbitals of the participatingMn atoms. The energy splitting caused by
this interaction is about6 meV for atoms in a distance equal to the distance between theGa-
andAs-atoms in the lattice [57]. The lattice constant inGaAs, which should be larger than this
distance, isa(GaAs) = 5.65 · 10−10. Therefore, we can assume, that this interaction can be
neglected, if we separate any twoMn atoms by somenm.

2.10 Time Inversion Symmetry

Without an applied magnetic field our system will be invariant under the inversion of the time
degree of freedom. Performing this transformation on our system will change the sign on every
z component of a spin or angular momentum present in the system. The theorem of Kramer
[58] states, that a state with a non-integer total spin can not be mapped onto itself by the inver-
sion of time. Thus such states must be doubly degenerate in energy in a time invariant system.
This degeneration occurs in nearly all configurations considered by Me in the present work. At
B = 0 T all states will be degenerate with a state with exact the opposite angular momentum.
So, without defining the angular momentum of the system, we will not see any magnetisation
of the manganese. They will be degenerate with their opposite alignments. Actually the spin of
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optically created holes and electrons can be controlled by the polarisation of the light used for
their creation. We do not encounter any spontaneous breaking of this symmetry as discovered
in ferromagnetic materials. Ferromagnetism is the collective effect of a large number of sym-
metrically arranged atoms. As quantum dots were often considered as artificial atoms, maybe a
investigation of quantum dot arrays could find a link. Such aninvestigation, however, has to be
postponed to future work.
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Chapter 3

Quantum Dot With Holes

In this chapter I want to present the results of my work. I willstart with quantum dots with only a
single hole. This shall help to understand basic mechanismspeculiar to a quantum dot containing
holes. Then I will gradually introduce additional featuresinto the calculations. First it will be
the Coulomb interaction with other holes inside the dot. Second I will discuss the interaction of
a single hole with one and two manganese impurities also located inside the dot. Finally I will
examine the interplay between the two kinds of interaction.

3.1 Single-Particle States

First I want to present my calculations for eigenstates and eigenenergies of a single hole confined
inside a quantum dot. Such calculations have been performedbefore [59], [60], [38], [61], [62].
Apart from [61] all other authors deal with holes confined inz direction by a quantum well. In
my calculations the holes in growth direction are confined ata heterojunction betweenGaAs
andGaAlAs. The two systems differ in the form of the confinement potential in this direction.
This changes the spectrum of the dot slightly in comparison to the spectrum of a dot formed
in a quantum well. In a quantum well there is often a mirror plane perpendicular to the growth
directionz. It lies in the middle between the potential walls. This symmetry is represented by the
conserved parity quantum number. A heterojunction lacks such a symmetry. Also in a quantum
well with high potential barriers modeling of the penetration of the hole wave function into the
potential wall is crucial. It has a strong influence on the mixing of the light and heavy hole states
and thus on the spin-character of the eigenstates. In a heterojunction the holes are strongly con-
strict only in one direction of thez axis. This results in rather large band mixing in comparison
to the quantum well. Despite this differences it is possibleto compare my work with the earlier
results. The single-particle spectrum is the simplest model system to explain all the influences
of different potentials on the energy of the hole. I present the calculations for several potential
configurations ofGaAs dots as well as for a dot made ofInAs. Thereby I will emphasise the
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differences between the two systems.

3.1.1 GaAs Quantum Dots

The influence of the host material enters the model via the Luttinger parameters. ForGaAs they
are:γ1 = 6.85, γ2 = 2.1, γ3 = 2.9 andκ = 1.2. The harmonic confining potential inxy direc-
tion should represent a quantum dot with the size of several tens of nanometres. Such dots can
be formed by lithographic processes. For the electrons the energy spectrum inside a harmonic
dot is equidistant. The strength of the confining potential is given in terms of the energy spacing
between these equidistant states. A value for experimentally realised dots lies between3 and5

meV [63], [64]. For the starting point of my calculations I will take a value of4 meV. In such
dots the strength of the interaction of the holes with the different potentials we are interested in is
of approximately similar magnitude: The dot potential, themagnetic field, the mutual Coulomb
repulsion between several holes and the acceptor potentialof a manganese impurity. By varying
the dot-potential strength we can also change the impact of the other potentials. The fabrica-
tion of such dots appears possible, since they differ from dots with electrons by the exchange of
doping ions. The experimental study of the hole eigenstatesin such dots is difficult. Neverthe-
less, there are investigations on the eigenstates of holes in a two-dimensional quantum well [65].
These lie in the same energetic regime.
In the description of electrons in quantum dots the influenceof the dot potentials, the magnetic
field and the Coulomb interaction can be summarised in just one constant [50]. In this elegant
description, however, the electrons have to be confined in aδ layer inz direction. Also the effec-
tive mass has to be constant. Both of these conditions are notcomplied for holes. Therefore, we
have to resort to the more cumbersome description using the explicit values of all the potentials.
The dot confinement energy of~ω = 4 meV is only valid for electrons in the conduction band of
GaAs with an effective mass of0.067me. The strength of thexy potential itself is characterised
by the “force constant”K0. We can calculate this value from the energy spacing of the electrons

4[meV] = ~ω0 = ~

√

K0

0.067me
→ K0 = 0.067me

(

4[meV]

~

)2

. (3.1)

WithK0 we can then calculate the confinement energies in the same dot1 for the holes with their
particular effective masses:

EHH/LH = ~

√

0.067me

(

4[meV]
~

)2

(γ1 ± γ2)
1

me

(3.2)

1Since the holes have the opposite charge than electrons the sign of the charge carriers creating the dot potentials
has to change. Their number and position shall stay the same
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3.1. Single-Particle States

With “+”(“ −”) for the heavy(light) holes we getωHH
0 = 3.097 meV(ωLH

0 = 2.257 meV). These
values, however, are only valid for holes occupying only thejz = ±3/2 respective only the
jz = ±1/2 Bloch bands. In quantum dots, where the energies due to confinement inz andxy
direction are of similar magnitude, the hole eigenstates are mixtures of all four bands. These
mixtures change strongly depending on the total energy of the state. Thus the effective mass of
the particle changes and so the influence of the confining potential. The energy dependence of
the effective mass makes the spectrum of the dot not equidistant.
The strength of the linearly rising confinement potential inz direction we will denote by its slope.
I assume a field strength ofF = 7 mV/nm. For the heavy holes this givesz confinement energies2

in the lowest two states of39.84 meV and69.65 meV. For the light holes we have64.12 meV
and112.12 meV. Thisz potential is achievable for experimentally realisedGaAs − (AlGa)As

two-dimensional heterostructures [66]. In the following Iwill refer to these values for thexy and
z potentials as the standard values. Variations of the confining potentials will be given in relation
to these values.

~ω0 = 4 meV(for electrons) F0 = 7 mV/nm (3.3)

Notice that according to the Kohn-Luttinger Hamiltonian (2.12) the masses of the heavy holes
are larger inz direction than the ones of the light holes, resulting in a smaller energy spacing.
In contrast, the masses of the heavy holes in thexy plane are smaller then the ones of the light
holes. So, the energy quantisation due to confinement in thisplane is bigger than for the light
holes.
The quantum dots we treat here are quite large. The exact spatial extend of the hole wave func-
tion in an eigenstate has to be calculated numerically. An approximation give the chosen basis
functions. With the standard potential values(ω0 , F0) the characteristic length in thexy direc-
tion for a heavy hole is14nm. The wave function has a slightly larger extend. Inz direction the
hole wave function falls to10% of its peak value around10nm.

Figure [3.1] shows the energy spectrum of a hole confined in the quantum dot with confining
potentials described above. The spherical approximation is used , i.e.γ2 = γ3 is set. Due to the
coupling in the Kohn-Luttinger matrix all states consist ofdifferent mixtures of the four Bloch
bands. The double degeneracy for zero magnetic field arises due to time inversion invariance of
the Hamiltonian. In the two ground states the hole has the same density distribution and only the
expectation value of the spin and orbital angular momentum differs in sign. This degeneracy is
lifted by the magnetic field.
A good quantum number in this system isM = mFD + jz. It is the sum of thez component of
the band total angular momentumjz and the orbital angular momentum of the envelope function
mFD. The spectrum exhibits large anticrossings between stateswith the sameM . This leads to
a flatter spectrum in comparison with the spectrum of electrons.

2These are the0D counterpart of the subband energies for a2D system.
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Figure 3.1: One hole confined in a heterojunction quantum dot. De-
picted are the three lowest eigenstates for each of the totalangular mo-
mentaM = −5/2, .., 5/2.

The confinement inz direction is much stronger than in thexy plane for this configuration of
the confining potentials. Thus, the energy due to the confinement inz direction is much larger
than the energy due toxy confinement. The basis states with the lowerz energy compose the
ground state of the dot. The main component of the two ground statesM = ±3/2 is the basis
state|00, jz = ±3/2〉. Thejz = ±3/2 bands have a lowerz confinement energy in comparison
with the jz = ±1/2 bands due to their larger mass in this direction. The ground state is thus
mainly composed of heavy holes. Superimposed on thez energies the ordering is determined by
the smallerxy confinement. The Fock-Darwin envelope with|n = 0, m = 0〉 is the lowest basis
state for thexy potential. TheR andS operators from the Kohn-Luttinger matrix are responsible
for an admixture to the ground state of thejz = +1/2, jz = −1/2 bands with envelopes|0 ± 1〉
and |0 ± 2〉 respectively. The next higher states, withM = ±1/2 andM = ±5/2, consist also
mainly of thejz = ±3/2 bands with envelope functions|01〉,|0 − 1〉. This resembles to some
extend the spectrum for electrons, where the Fock-Darwin states are eigenstates. There, the low-
est envelope is|00〉 followed by |0 ± 1〉. The reason for this similarity is the relatively largez
confinement. Therefore, thejz = ±1/2 Bloch band dominated states are energetically far away
(≈ 25 meV, outside figure 3.1) and the admixture of light holes is relatively small. In conclusion
the effective mass of the hole is almost constant in the lowest states. The spectrum resembles
the one of a particle described by only one (spin degenerate)band and with an effective heavy
hole mass. Actually, with this potential values we are on theedge of the similarity to electrons.
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3.1. Single-Particle States

It becomes more pronounced when the splitting to the light-hole bands becomes larger.
For higher magnetic fields we see that the slopes of the loweststates are nearly the same. They
approach asymptotically Landau levels [67]. For very high magnetic fields thexy potentials
forming the dot will play a minor role. The spectrum has to resemble that of a particle confined
in thexy plane only by the magnetic field applied inz direction. Then, the quantum dot states re-
semble more and more those of a two dimensional hole gas in a strong magnetic field. The small
spacings between different states approaching the same Landau level scale with the strength of
the dotxy potential and vanish for a perfectly two dimensional system.

3.1.2 Band Coupling Effects

The crossing between the lowest eigenstates with total angular momentumz componentM =

±3/2 arises due to competition of different potentials. Thexy potential, the influence of the
magnetic field on the orbital movement of the holes and the Zeeman energy the holes experience
change the hole energy differently. It is instructive to take a closer look at this effect. We have
defined the Zeeman energy asEZ = −~e/meκBjz. This term describes the influence of the
magnetic field on the Bloch-band part of the holes wave function. The spin of the holejz in
an eigenstateM is not a good quantum number. Nevertheless, the expectationvalue of the hole
spin atB = 0 T is close to3/2 and has the same sign asM . So the Zeeman energy rises
theM = −3/2 state energetically and lowers theM = +3/2 state. The influence of thexy
potential and the magnetic field on the orbital movement of the hole is opposite to the Zeeman
term. The mechanism is the following: They both enhance the coupling between the light and
heavy holes. The light holes (jz = ±1/2), have a bigger mass in thexy direction than the heavy
holes (jz = ±3/2). So their quantisation energy in thexy potential is smaller. The magnetic
field in z direction acts only on thexy motion of the holes. Again the eigenstates dominated by
the light holes rise slower with stronger magnetic fields than the heavy-hole states. The slope of
an eigenstate in the magnetic field is dependent on the effective mass of the hole and thus on the
admixture of thejz = ±1/2 light-hole states to this eigenstate. Now, the magnetic field changes
the mixture of Bloch bands in the two lowestM = +3/2 andM = −3/2 eigenstates differently.
This can be seen when we look at the Landau levels which the twoground states approach in high
magnetic fields. In this regime the hole is confined in a two dimensional plane by some potential
in z direction. Using the envelope function approximation we can describe an eigenstate of this
system by

ΨL =











c3/2fHH(z)ΦN (y)

c1/2fLH(z)ΦN−1(y)

c−1/2fLH(z)ΦN−2(y)

c−3/2fHH(z)ΦN−3(y)











, ci = 0 for Ni < 0, N =

{

n m ≥ 0

n−m m < 0
(3.4)
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Chapter 3. Quantum Dot With Holes

Thef(z) are the envelope functions inz direction. In the Landau gauge,A = B(−y, 0, 0), we
get Hermite polynomials as envelope functionsΦN (y) in the y direction, and plane waves in
x direction [60]. The last part in (3.4) shows us how the quantum numbers of a Landau level
are related to the ones of a Fock-Darwin state, which approaches this level asymptotically in
high magnetic fields. When theM = +3/2 eigenstate approaches the Landau regime, then the
|n = 0, m = 0〉 Fock-Darwin envelope of thejz = +3/2 Bloch band approaches theΦN Landau
level envelope of the same Bloch band. We have thenN = 0 according to the last part in 3.4.
For theM = −3/2 dot eigenstate the|00〉 Fock-Darwin envelope of thejz = −3/2 Bloch band
approaches theΦN−3 Landau level envelope of the same Bloch band and the quantum number
N is nowN−3/2 = 0 = N − 3. TheM = +3/2 dot eigenstate approaches a Landau level,
where, because of the conditionNi < 0 ⇒ ci = 0 in (3.4), theN = 0 Landau level consists
only of thejz = +3/2 Bloch band. The envelopes for all other Bloch bands are zero due to
the ci coefficients. In high magnetic fields, theM = +3/2 dot state develops towards a state
consisting only of holes from thejz = +3/2 Bloch band. The admixture of light holes vanishes.
TheM = −3/2 dot eigenstate approaches a Landau level, where the holes has access to all
four Bloch bands. It remains a mixture of all four Bloch bands. This larger admixture increases
the effective mass in thexy plane and, therefore, lowers the energy of this state relatively to the
M = +3/2 state.
In the spectrum of Fig.(3.1) this effect compensates the Zeeman energy at around12 T where the
lowest states cross. By varying the confining potentials we can enhance and lower the coupling
between the Bloch bands and can tune the position of this crossing. Figures 3.2(a) to 3.2(d)
show the change of the lowest two states of the quantum dot with increasing confinement inxy
direction.

The label “for electrons” in the figure caption has the following meaning: When we confine
conduction band electrons with an effective mass of0.067me in a dot with thisxy potential,
they will show an equidistant level spacing with the given energy. In the case of conduction
band electrons this quantisation energy is experimentallyaccessible while the constant describ-
ing the potential strength is not. Therefore, the notation convention developed, to describe the
dot potentials in terms of the level spacing~ω. When we describe valence band holes in a quan-
tum dot we lack such a prominent quantity. The advantage of using in our case this somewhat
cumbersome notation is the possibility, to compare the sizeof the treated dots with the real elec-
tron dots mentioned at the begining of the section. Finally the force constantK0 determining
the strength of thexy potential is inaccessible to experiments. There is also no simple way to
describe the strength of the potential by means of the non-equidistant level spacing. Also the
frequencyωBasis =

√

K0γ1/me we used to determine the spatial extend of our basis states isan
arbitrary value since the mass of the holes changes and is neverme/γ1. To represent the potential
strength we choose here a value which has in our opinion the most relevance. In the following
we will useω0 for the standard potential values and give otherxy potentials only in relation to
this potential.
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Figure 3.2: Energy (for electrons) due toxy confinement : (a)~ω0 = 4 meV; (b) ~ω0 = 5.5

meV; (c)~ω0 = 7 meV; and, (d)~ω0 = 8.5 meV

With increasingxy potential the crossing between the two lowest states appears at lower mag-
netic fields. For approximatelyω0 = 8 meV there is no crossing at all. To better compare the
different plots, in each of them the energy of the states atB = 0 T was subtracted. The energy
scale in each picture is the same. Note that with increasingxy confinement the slopes of both
states are lowered, but the reaction of theM = −3/2 state on this change is much stronger. One
can even obtain a negative slope for this state (Fig. 3.2(d)). This happens because the energy
lowering admixture ofjz = 1/2 holes rises faster with magnetic field than the increase of the
confining energy due to the stronger field. For smallxy confinements such a negative slope of
the states arises due to the Zeeman term (Fig. 3.2(a)).
As already mentioned, the magnetic field changes the mixtureof the Bloch bands and thus
changes the effective mass of the hole. It is, therefore, notpossible to find a new constant
effective mass for the hole and describe the system in a single-band picture for different values
of the magnetic field.

In general one can find several regimes. When the confining potentials inxy andz direction
are weak, the system is determined by the magnetic field and its eigenstates resemble Landau
states for even weak fields. When thez confinement is the strongest, i.e. gives a much larger
energy separation than thexy potential and the magnetic field, the hole behaves very much like
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Chapter 3. Quantum Dot With Holes

an electron. It can be described as a particle with a constanteffective mass and a two-level spin
of 3/2. Then its effective mass is close to the mass of a heavy hole. For z confinement potentials
much smaller than thexy potential thexy potential determines the order of the states. The heavy
holes from thejz = ±3/2 band have a lightxy mass that rises their eigenstates up in energy and
the lowest states are mainly composed of thejz = ±1/2 bands. When neither of the potentials
is dominant the holes states are mixtures of all four bands.

3.1.3 InAs Quantum Dots

We can describe anInAs quantum dot in our model by merely changing the Luttinger parame-
ters. They are forInAs: γ1 = 19.67 , γ2 = 8.37 , γ3 = 9.29 andκ = 7.68 [32]. The difference
betweenγ2 andγ3 is again not very large so we are allowed to use the axial approximation. The
largest difference compared toGaAs is the large value ofκ. This parameter corresponds to the
Landé factor of atomic states. We thus expect that the dependence of the states on the Zeeman
energy will be much stronger, than in theGaAs dot. This fact will become important when we
introduce a manganese impurity into the dot.
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Figure 3.3:InAs quantum dot with standard potential values.

Figure (3.3) shows the energy eigenstates of a single hole inan InAs quantum dot with
standard values (Eq. 3.3) for the confining potentials. The material independent constantsK0

andF are the same. The mixture of Bloch bands constituting the lowest states is comparable
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3.1. Single-Particle States

to the one in aGaAs quantum dot. The same ratio of the confining potentials inInAs leads
to a very similar character of the eigenstates in theInAs dot. The density of the hole has
the same oblate form. The ground state is nowM = +3/2 throughout the whole range of the
magnetic field considered here because of the large negativeZeeman energy. It seems impossible
to change the order betweenM = +3/2 andM = −3/2 by varying the confinement potentials.
To enhance the band mixing and to lower the energy of theM = −3/2 state, we have to choose
a strongxy confinement and comparatively weakz confinement. For a confiningxy potential
nine times stronger than the standard value the lowest states run parallel with each other until
a field strength ofB = 1 T butM = −3/2 never becomes the ground state. For even higher
values of the potential the splitting between the states becomes stronger again.M = +3/2 is
still the ground state but the mixture of bands in this state differs strongly from the standard
potential regime. When the energy due to thexy confinement becomes even bigger than the
energy due toz confinement the main components of the ground state again become light holes
from jz = ±1/2 bands.

3.1.4 Elliptical Quantum Dots

The common situation when dealing with real quantum dots will be that the dots will not possess
cylindrical symmetry. This can be due to failures or inherent constrains of the growth and\or
lithographic processes. We want to simulate this lack of circular symmetry and the violation
of the conservation of angular momentum in the eigenstates.We, therefore, also investigate
quantum dots with an elliptic potential in thexy plane. An additional harmonic potential iny
direction creates this elliptic potential profile. In our calculations we considered this anisotropy
potential to vary between one and two times the potential strength inx direction, i.e.ωx = ω0

andωy = 2ω0. For electrons a small additional potential of the form (2.60) can split the|n,±m〉
Fock-Darwin states, which are degenerate at zero magnetic field. Each such state is, however,
also degenerate in spin. For a particle with non-integer spin like an electron or a hole it follows
from the theorem of Kramer [67] that an additional potentialthat is invariant under time inversion
can not lift the degeneracy of the eigenstates due to time inversion invariance. Electric fields
like the additional elliptic potential are invariant underthe time inversion. Thez component
of the total angular momentum of the holeM is a half-integer number. Consequently all hole
eigenstates are degenerate in±M atB = 0. They still remain degenerate in an elliptic quantum
dot. Different as for electrons the degeneracy atB = 0 T is not lifted by the elliptic potential.
Figure 3.4 shows the lowest states of a dot with standard potential values (black curves) and in
a dot with an additional harmonic potential ofω0 in y direction (red curves). All states remain
degenerate atB = 0 T. All are shifted up due to the stronger total confinement. The doublets,
however, experience a different shift in energy due to theirdifferent density distribution. Two
states|M〉 and |M ′〉 can become coupled through the additional potential. This coupling is
especially prominent whenM ± 2 = ±M ′ is fulfilled and their main spin component stems
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Chapter 3. Quantum Dot With Holes

from the same Bloch band. This is fulfilled for the second and third pair withM = ±1/2 and
M = ±5/2 respectively. In comparison, the crossing of these states in the circular potential
around0.6 T transforms to a strong anticrossing in the elliptic dot. The reason is the mixing
of them = ±1 Fock-Darwin orbitals, which partially constitute these eigenstates. The ground
statesM = ±3/2 become coupled with theM = ±7/2 states (not shown in Fig. 3.4). These are
energetically far away from the two ground states so their influence on them is small.
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Figure 3.4: Six lowest hole sates in a dot with standard potential values
(ω0 , F0) (black) and in an elliptic dot with an additional potentialω0 in
y direction (red).

3.2 Many-Particle States

The eigenenergies of two holes in a quantum dot have been calculated in [59],[62]. With in-
creasing computational power it now becomes possible to treat more than two holes by exact
diagonalisation. I will focus on the influence of the different configurations of the confining po-
tentials on the eigenstates of several holes inside the quantum dot.
For conduction-band electrons inside a quantum dot one can show [50] that Coulomb-interaction
energy is proportional to∝ √

ω0 while the energy of the electrons due to confinement is pro-
portional to∝ ω0. So the impact of the interaction energy on the whole system should increase
for larger dots with smallerω0. Self-assembled quantum dots have usually a radius of some
nanometres. In this system the quantisation energy is very high due to the strong localisation of

42



3.2. Many-Particle States

the hole. Here the influence of the Coulomb interaction can even be neglected. For larger dots,
however, it can have a strong influence. In the case of holes indegenerate bands there is no such
simple relation between dot potential and Coulomb interaction. Thus it is important to investi-
gate the effects leading to the different behaviour of the Coulomb interaction. Nevertheless, we
can expect that the influence of the Coulomb potential will rise in larger dots, i.e. with weaker
confining potentials.

3.2.1 Two Holes
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Figure 3.5: Energy spectrum of two holes in a dot with standard poten-
tial valuesω0 andF0.

Figure 3.5 shows the eigenstates of two holes in aGaAs quantum dot with standard potential
values. Now, only the sumM = M1 + M2 of thez components of the total angular momenta
of the single holes is a good quantum number. For every value of M there are infinitely many
combinations ofM1 andM2. We take for eachM only sums, which consist of the energetically
lowest single-hole states withM1,2 ∈ (−5/2,−3/2,−1/2, 1/2, 3/2, 5/2).
Thez component of the total angular momentum is an integer number. So, according to Kramers
theorem the states atB = 0 T do not need to be degenerate due to time inversion invariance of
the system. The symmetry operation of time inversion creates a mapping between the eigenstates
of the system. States with an integer number for the total spin can be mapped onto itself. Thus
there is no need for a different associate state at the same energy. The lowest state withM = 0 is
such a not degenerate eigenstate. It is invariant under timeinversion. The next higher states are
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still twofold degenerate. This is because the time inversion changes the sign of angular momenta.
It mapsM = +1 toM = −1,M = +2 toM = −2 and vice versa.
In the ground state atB = 0 T the envelope functions of the two holes both differ little from the
lowest Fock-Darwin basis state. This lowest eigenstate hasthe highest hole density in the centre
of the dot and thus the biggest Coulomb energy. This implicates that for our standard potential
values we are in a regime, where the dot potential dominates over the Coulomb repulsion. Since
the dot potential is dominant, we can use the picture, where the two holes occupy different one-
hole orbitales. We approximate the two-hole eigenstate by aproduct of two single-hole states.
In the first excited states one hole occupies an excited orbital while the other hole stays in the
ground state. Therefore, the excited states in the present spectrum resemble to some extend the
lowest four excited states from the single-particle spectrum (fig. 3.1). This can be especially
seen in the development of the states in the magnetic field. For higher magnetic fields the ground
state develops very much like the sum of the two single-hole states. The spins of the holes
in the ground state point opposite to each other atB = 0 T. The different admixture of light
holes in the two single-hole states constituting this eigenstate is again visible. While the spin of
one hole gains continuously a strongerjz = +3/2 part the other hole with initialjz = −3/2

spin is coupled to the light hole bands by the magnetic field (see discussion in Sec.3.1.1). Thus
the expectation value of the hole spin in the two-hole state changes. From0 atB = 0 T it rises
continuously with the field. Without magnetic field the spinsof the two holes exactly compensate
each other. Due to the different band mixture in the two single-hole states with magnetic field
this is no longer possible at larger fields. This resembles the behaviour described in [55]. The
states withM = 1 orM = −2 fall below theM = 0 eigenstate at a field aboveB = 8 T. The
spin expectation value in these states stays nearly unchanged in the magnetic field. ForM = −2

this spin of the holes points opposite to the alignment favoured by the Zeeman term. What makes
it still energetic favourable is its envelope functions, i.e. the orbital movement of the hole inside
the dot. These envelope functions consist of basis states with positive magnetic quantum number
m, which lower the energy in the magnetic field.
In comparison to the single-particle spectrum the energy difference between the lowest state and
the first excited state in the two-hole spectrum is smaller by≈ 1.5 meV. This energy difference
accords the difference in the Coulomb energy between the excited and the ground state in the
present spectrum. It occurs, because the hole wave functionis more spread out in the excited
state. The absolute amount of the Coulomb energy, e.g. in theground state, can be obtained
by comparing energy of the system with Coulomb interaction to the system with the Coulomb
interaction turned off. This latter energies are just the sums of the single-particle energies from
figure 3.1. The additional energy due to the Coulomb interaction in the ground state then results
to ≈ 3 meV (see Fig. 3.9(b)). This is the same magnitude as the excitation energy of one hole
and twice the Coulomb energy of the first excited state. We have investigated the interplay of
the mutual Coulomb repulsion and confining potentials below. Figure 3.6 illustrates the values
for the dot with two holes. The red dots show the additional energy of these two holes due to
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3.2. Many-Particle States

Coulomb interaction in theM = 0 ground state. The orange dots depict this Coulomb energy
in one of the next excited states withM = 1. Finally the blue dots show the additional energy
between theM = 0 andM = 1 states only due to the confinement3. Clearly for theM = 1

excited state the sum of the dot-(blue) and Coulomb-(orange) energy stays above the ground-
state Coulomb energy (red). TheM = 0 state remains the ground state. The reason for this is
the large Coulomb energy in both states. Its dominance is clearly visible in figure 3.6.
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Figure 3.6: Coulomb energy of theM = 0 state (red), Coulomb energy
of theM = 1 state (orange) and energy splitting between these states
only due to confinement (blue) for two holes in differentxy potentials.

For stronger dot potentials the shape of the ground-state hole density has a Gaussian shape.
For the weakest calculated values of thexy potential this shape changes. Figure 3.7 shows the
form of the ground-state wave function in thexy plane for the lowest four values ofω from
figure 3.6. Thexy plane is positioned at the maximum of the density inz direction. The tip of
the density becomes gradually blunt with lower lateral confinement. Finally a dip forms in the
centre. With weaker lateral confinement the two-hole state can no longer be described in terms
of one product state of single-particle states. The eigenstates become a mixture of many such
product states.

To sum up we saw that for the standard potential values(ω0 , F0) the dot potentials dominate
over the Coulomb energy of the system. A description of the two-hole state in terms of one
single-particle product state is possible. The ground state is not degenerate due to time inversion
invariance and is a singlet. Nevertheless, in stronger magnetic field the spin expectation value

3This is the excitation energy in the single-hole spectrum.
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Figure 3.7: Form of the ground state hole density for the lowest four lat-
eral confinements(0.05, 0.1, 0.32, 0.5) from figure 3.6. Thez potential
is F0.

in the ground state rises from zero and points opposite to thedirection preferred by the Zeeman
term. With smaller lateral potentials the single-particleproduct states become less accurate. The
form of the density of the ground state changes gradually.

3.2.2 Three Holes

Figure 3.8 depicts the eigenstates of three holes for my standard dot. The good quantum number
is the sum of thez components of all three total angular momenta. Since thez component of
the total angular momentum of the system is again not an integer number, all states have to be
twofold degenerate without magnetic field due to the time-inversion invariance [58], [68]. The
states withM = ±1/2 are the ground states closely followed by theM = ±5/2 states. In
all these eigenstates two of the holes stay approximately inthe lowest Fock-Darwin state|00〉.
Their spins point opposite to each other. The third hole occupies a mixture of excited single-
particle states. The mutual Coulomb repulsion of the holes is considerable. The ground state
of the interacting holes lies about11 meV higher than it would without the mutual repulsion.
We can no longer use the picture of independent particles described by a single-particle prod-
uct state. For the standard potential value the total density of the holes in the two lowest pairs
of eigenstates is approximately of Gaussian shape. The density in the somewhat energetically
lifted third eigenstate pair withM = ±3/2 shows a small dip in the centre of the dot. In these
both higher states only one hole stays in the|00〉 Fock-Darwin state. This change in the density
resembles the evolution shown in figure 3.7. The dip in the centre arises from the admixture of
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Figure 3.8: Energy spectrum of three holes in a dot withxy potentialω0

and az potential ofF0.

higher Fock-Darwin basis sates to the eigenstate. While in figure 3.7 this happens due to the en-
hanced relative strength of the Coulomb energy, the change in theM = ±3/2 eigenstate for the
present three-hole spectrum arises due to excitation of onehole to higher single-particle states.
For the standard potential values the state with the highestdensity in the dot centre and smallest
extend in thexy plane is the ground state. The next state with a considerablylower density in the
centre of the dot (M = ±3/2) is still ≈ 1.4 meV above the ground state. So the system is in a
regime that is still determined by the confining dot potentials and not by the Coulomb repulsion.
Nevertheless, this repulsion changes strongly the eigenstates of the system. Many different basis
states constitute now the eigenstates of the dot. So also no hole spin component is dominant for
the particular holes. In the ground state still the spins andangular momenta of two holes cancel.
The expectation value of the spin also changes spatially inside the dot. This is due to the cou-
pling of the spin to the orbital movement and to the differentspatial extend of the basis functions.

To sum up the three hole dot with standard potential values isstill dominated by the con-
finement potentials. Though the addition of the third hole further enhances the influence of the
Coulomb energy. This now considerably blurs the shell-structure of the dot. The spin expectation
value in the ground state in not zero. The states are all doubly degenerate atB = 0 T.
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3.2.3 Variation of Confining Potentials

We investigated the dependence of the Coulomb interaction inside the dot on the dot potentials.
We calculated the eigenstates and eigenenergies of severaldots atB = 0 T with different confin-
ing potentials for two and three holes. Figures 3.9(a) - 3.9(c) show the additional energy of the
ground state when the Coulomb interaction is turned on.

∆E = Eg(w Coulomb) − Eg(w/o Coulomb) (3.5)

The three investigatedz potentials amount toFa = 0.38 · F0, Fb = F0, Fc = 2 · F0. Thex axis
shows the ratio between the actualxy potential and the one of my standard dotω0. The red(green)
dots show the additional energy for two(three) holes. For small xy potential the system follows
the square-root like dependence but for higher potential values one clearly sees a divergence from
this behaviour. We have fitted corresponding square-root functions to illustrate the effect, using
the first five points to fix the coefficients. Beyond the regime of the lateral confinement, where
the additional Coulomb energy shows the square-root behaviour, this energy first rises slightly
above the square-root law. With stronger lateral potentials it falls then significantly below the
square-root curve. For strongerz potentials the effect is weaker. This change in∆E can be
connected with the band mixing due to the dot potentials. Strongerxy potentials in comparison
to a fixedz potential increase the mixing of bands. This changes the effective mass of the holes.
The strength of the Coulomb interaction between the holes depends only on their charge and not
on their mass. The change in mass, however, strongly influences the confinement due to the dot
potentials, which is the opposing force to the mutual Coulomb repulsion. The extend of the wave
function determines the strength of the Coulomb energy. In afirst approximation we can look
at the lowest Fock-Darwin basis state for the lateral confinement to estimate the influence of the
changed mass. The spatial extent of this state is governed bythe characteristic lengthl. Equation
3.6 shows the dependence ofl on the lateral confinement constantK0 and the effective massm
of the hole inside the crystal. The lengthlab is the characteristic length for a particle with mass
a ·m in a dot potentialb ·K0:

l =

√

~√
m
√
K0

lab =

√

~√
am

√
bK0

. (3.6)

When we increase the lateral potentialK0 → b · K0 with b > 1 the extend of the function will
fall differently for the different masses

∆l = l − lb = l

(

1 − 1
4
√
b

)

∆la = la − lab = la

(

1 − 1
4
√
b

)

=
1
4
√
a
l

(

1 − 1
4
√
b

)

(3.7)

So, for a particle with a larger massa ·m, a > 1 the extend of the function will change less for
the same change inK0. So when the hole mass rises, the same increase in the lateralconfinement
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3.3. Quantum Dot with One Mn Impurity

results in a smaller contraction of the wave function. This on the other hand results in a smaller
increase of the Coulomb energy. The same process also acts inz direction. Here the decrease
of the relative strength of thez potential enlarges the extend of the wave function inz direction.
Therefore, the Coulomb energy can even fall with increased lateral confinement as in figure 3.9(a)
for ω > 2 · ω0. With higherz potentials (fig.3.9(b), 3.9(c)) this decrease of the Coulomb energy
shifts to higher values of lateral confinementω. The square root dependence of the Coulomb
energy on the confinementω is known form quantum dots with electrons. They have a constant
effective mass and their extend in thez direction of the dot is mostly considered constant. We
observe such a behaviour also for holes for smallω/ω0. In this potential configuration the band
coupling is small and does not change much withω. So does the effective mass of the hole. Also
the extent of the wave function inz direction is constant due to the relative largez potential. The
hole behaves also very much like an electron. Notice that even in this case a magnetic field still
leads to a strong change in the band coupling and thus in the effective mass.

The lowestxy potential we investigated in this way wasω0 ∗ 0.05. The characteristic length
l of the system becomes62.1nm for this potential values. So this quantum dots are huge in
comparison to their usual sizes of somenm to some tensnm. Even for this very low potential
the ground state of two holes was among all eigenstates the one with the highest hole density and
thus the biggest Coulomb energy.

As a conclusion we can draw that for strongz confinements in relation to the lateral potential
the holes behave very much as electrons with an effective two-level spin of nearly3/2. For
comparablexy andz potentials the band coupling changes the effective mass of the holes. With
the different masses the holes change their behaviour in further rising potentials. An increase of
one confining potential rises the quantisation energy but does not change the extend of the wave
function. Thus there is no simple coupling scheme between the evolution of the Coulomb energy
and the dot potentials.

3.3 Quantum Dot with One Mn Impurity

There have been different approaches to treat a manganese impurity inside a quantum dot. Gov-
orov [69] assumed a hole bound to theMn atom. The interaction between the hole and man-
ganese spins he described in terms of thepd interaction and treated the dot potentials as a pertur-
bation to the impurity states. He then calculated the excitonic states and their selective excitation
by a laser pulse. In [55] Climente et al. calculated the Zeeman energy of aMn atom inGaAs
under the influence of an effective magnetic field stemming from a hole confined in a disk-shaped
quantum dot. Temperature dependence as well as an addition of a second hole were considered.
Fernández-Rossier [70] calculated the spectrum of excitons in a II-VI semiconductor dot with up
to threeMn atoms. He used a box potential with large single-particle energy spacing. Only the
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Figure 3.9: Coulomb energy for two(red) and three(green) holes. The dots are calulated values.
The curves are squareroot-like functions fitted to the first five values. Thez potentials are: (a)
F = 0.38 · F0; (b) F = F0; and, (c)F = 2 · F0;
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lowest eigenstate was considered and the Coulomb interaction between electron and hole was
neglected. Bhattacharjee [71] calculated the response of the manganese spin in a quantum dot on
the creation of an exciton by a laser pulse. He used a model similar to [59]. Together with Chutia
[56] he calculated the dependence of the hole eigenstates onthe variation of the confining po-
tentials in a quantum dot with a central manganese impurity.The effects of single electrons and
holes inCdTe dots were investigated in [72]. Experimental investigations on excitonic spectra
in InAs can be found in [73].
Our investigations will differ from the aforementioned work in that we will try to include all
significant interactions in our calculations. We will calculate the common eigenstates of a hole
and a manganese atom inside a circular quantum dot. Since we are dealing with relatively large
quantum dots the orbital magnetism as well as the Coulomb interaction between the holes will
have an impact on the states. We will also consider a quantum dot formed at a heterojunction.
Here the triangular potential couples the light- and heavy-hole bands stronger than a square well
potential. Finally we will show the changes in the eigenstates depending on the magnetic field,
on a variation of the confining potentials and a change in the position of theMn atom.
We represent the envelope part of thepd coupling term (2.70) in our basis of Fock-Darwin basis
functions and add it to the one particle matrix. We have to increase the size of our basis to take
account for the spin state of the manganese. The matrix elements for the acceptor potential of
the manganese are first calculated numerically and stored. The Hamiltonian matrix including all
interactions is then diagonalised to obtain the eigenvalues and eigenvectors.

3.3.1 Strength of the Used Potentials

In the investigations on the influence of a manganese acceptor inside the dot, different dot-
potential configurations will be used. The results can partially be explained by the dominance of
one or several of the used potentials over the remaining ones. In this section we will refine the
meaning of a “dominant” potential.
The strength of a potential can be seen e.g. by considering the energy necessary to free the
confined particle. The constant potential in our investigations will be the acceptor potential of
the manganese. In bulkGaAs the manganese acceptor can confine a hole112 meV above the
valence band. In the negative-energy picture used here thisaccords to−112 meV. In our model,
however, we can never reach this energy. In the model for the acceptor states in the frame of
the envelope function approximation [74] the ground-stateenergy results only toVacc = −26

meV [71]. The energy of the excited states is predicted in congruity with the measurements. To
cure this inaccuracy a correction to the potential of the acceptor atom has to be introduced. It is
called the Central Cell Correction. We omitted this correction. This may seem a prohibitively
rough approximation. Now, our investigation depends on therelative strengths of the used po-
tential and not on their absolute value. So when the acceptorpotential used in this calculations
is underestimated the values for its competitors, the dot potentials, are also chosen smaller. The
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reported effects depend on the geometric form of the potentials confining the holes. Since the
central cell correction changes the Coulomb potential of the acceptor in a radius of≈ 0.3nm

from the impurity, it will also have a strong influence on the geometric form of the confinement
potential in this radius. Hole states in dots have an extend of at least ten times this value. The
dot potentials are positive repulsive potentials. Among them the confinement in growth direction
is the strongest. InGaAs our standard potential strength inz direction,F0, leads to a ground-
state confinement energy of a heavy hole (massme/(γ1 − 2γ2)) of 39.84 meV and for a light
hole (massme/(γ1 + 2γ2)) of 64.12 meV. In comparison to the energy ofVacc = −26 meV this
potential is larger but we will not call it dominant. The strongerz potential of4.3 · F0 leads
to confinement energies of105.12 meV and169.19 meV for heavy and light holes respectively.
This potential will clearly dominate the acceptor potential. The form of the hole wave function
in z direction will rather resemble an Airy function, i.e. an eigenfunction to the triangular dotz
potential, than a spherical symmetric function belonging to the acceptor potential. The lateral dot
potentials in thexy plane are typically smaller than the acceptor potential. For a lateral potential
of ω0 the ground-state energy of a heavy hole is3.10 meV and for a light hole2.26 meV. In com-
parison to this potential the acceptor potential is dominant. This changes for the configuration
5 · ω0. The heavy-hole ground-state energy is15.49 meV and for a light hole11.28 meV. So
the acceptor potential looses its dominance here. Note thatthe ground state of the system is a
potential dependent mixture of the light and heavy holes.

3.3.2 GaAs Quantum Dots

When we include a manganese atom in the dot, we get an additional degree of freedom, which is
the manganese spin. It can take six possible directionsSz = +5/2,+3/2,+1/2,−1/2,−3/2,−5/2.
While the Coulomb potential of the manganese atom affects the orbital movement of the holes
inside the dot, the Mn spin will couple to the spin of the holesvia thepd interaction. We want
to treat the system fully quantum mechanical. So our new Hilbert space for the solutions of
the systems Schrödinger equation will be the tensor productHJz ⊗ HSz of the old four di-
mensional spaceHJz spanned by|J = 3/2, jz〉 and the six dimensional spaceHSz spanned by
|S = 5/2, Sz〉. Additional to the Hamiltonian describing the motion of thehole in the dotHh

(see Eq.2.20) we have to consider the terms describing the new interactions

H = Hh + 1Uacc(r) + |f(RI)|2
Jpd

3
〈Sz, jz|S · j|S ′

z, j
′
z〉 . (3.8)

Here1 is an identity matrix. The acceptor potentialUacc acts only on the orbital part of the hole
wave function. The last term acts on the spins of the hole and manganese. The coupling strength
is determined by the density of the hole at the site of the impurity |f(RI)|2. The acceptor po-
tential changes strongly the potential landscape of the dot. The dot potential is repulsive and
(approximately) infinitely high, i.e. it can confine infinitely many holes. Contrary the acceptor
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potential is attractive and can attract only one hole. Then the charges of acceptor and hole will
cancel out any influence on further holes. This picture is, however, strongly dependent on the
relative strength of dot and acceptor potentials. For largedot potentials the acceptor will merely
disturb the dot eigenstates.

First we put the manganese atom in the centre of the dot’sxy plane. Inz direction we will
always choose the position where the lowestz basis function of a heavy hole has its maximum.
In most cases the confinement of the hole inz direction is much stronger than the confinement
in thexy plane. It also exceeds the strength of the acceptor potential. So thez dependence of
the ground-state hole wave function will by very similar to the lowestz potential eigenfunction.
This is the heavy-holez basis function. Such a choice assures that the manganese will be almost
in the maximum of the hole density inz direction. For a quantum dot with standard potential
values the probability for a hole to be in the central unit cell, the one that contains the Mn atom,
is P 00

CC = 0.00039 for the Fock-Darwin basis state|00〉. This is the most centred basis state and
the main part of the ground state of the dot. The probability for the hole to occupy the central cell
will rise strongly in the eigenstate of the system in comparison to this basis sate due to the strong
acceptor potential of the manganese. Nevertheless, we can expect that with this very small value
of P 00

CC the interaction of the manganese with the hole spin will be very weak compared to the
other energy scales. Using (2.70) we can calculate the energy splitting between different mutual
alignments of the hole spinjz and the Mn spinSz. With this probability the splitting amounts to
≈ 0.031 meV. The next higher hole state is≈ 2.5 meV above and because its envelope function
mainly consists of the|0 ± 1〉 Fock-Darwin state, the density of the hole in the centre of the dot
is almost zero. So we can expect that the manganese will only interact with the ground state of
the hole and, as the spin of the hole is concerned, it will be close tojz = ±3/2. To increase
this small interaction energy between the hole and the Mn atom one has to increase the hole
density in the dot by increasing the confining potentials. Wecalculated the eigenstates of a dot
with a Mn atom for standard potential values and also for a dotwith a xy confinement5 · ω0

and az potential of4.3 · F0. Sinceω =
√

K0/m this translates inK/K0 = 25, i.e. the lateral
confinement is25 times as large. Notice that due to the confinement dependent mass of the hole
this does not translate in5 times larger energy spacing. The figures (3.10) and (3.11) show the
energy eigenstates of these two different dots.

Let us first consider the dot with standard potential values (Fig. 3.10). The twelve lines
represent the twelve different possible alignments between the two lowest hole states and the six
possible alignments of the manganese spinS = 5/2, Sz = +5/2, ...,−5/2. The state of the hole
is not an eigenstate ofjz but for the lowest two states of the hole one spin component,jz = +3/2

or jz = −3/2 is dominant in one of the two states. The expectation value ofthe hole spin〈jz〉
is ±1.42 respectively. As in the dot without the manganese, the coupling between differentjz is
an effect of the band coupling in the Kohn-Luttinger matrix.The expectation values of the man-
ganese spin are very close to the eigenvalues of theŜz operator. The coupling between different
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Figure 3.10: Energy spectrum of one hole with standard potential and a
Mn atom in the centre.
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Figure 3.11: Energy spectrum of one hole and aMn atom in the centre.
The dotxy potential amounts to5 · ω0 andz potential toF = 4.3 · F0.
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spin alignments of the manganese almost vanishes when the impurity atom is in the centre of
the dot. AtB = 0 the states with similar mutual alignment of the hole and manganese spins are
energetically degenerate. The magnetic field splits these states due to different Zeeman energies.
M = Sz + Mh = Sz + jz + m is here a good quantum number. It is the sum of thez com-
ponent of the manganese spinSz, thez component of the hole total angular momentumjz and
thez component of the envelope function angular momentum with the quantum numberm. The
conserved quantum numberM can take the valuesM ∈ (0,±1,±2,±3,±4). In the dot with
the weaker confining potential (Fig. 3.10) the arrows show the spin alignments in the ground
state: Hole spin (red) and manganese spin (green). The stateM = 1 is the ground state for the
most part of the calculated range of the magnetic field. The spins in this state are aligned max-
imally antiparallel due to the anti-ferromagneticpd interaction. The dominant spin components
are|Sz〉 = 5/2 and|jz〉 = −3/2. The stateM = 4 has a stronger negative Zeeman energy and
crossesM = 1 atB = 1.7 T. The spin alignment inM = 4 is |Sz〉 = 5/2 and|jz〉 = +3/2. No-
tice that the magnetic field points in the−z direction. Due to stronger confinement in the dot in
Fig. (3.11) the slopes ofM = 1 andM = 4 differ not much. The now bigger anti-ferromagnetic
pd interaction between the spins prevents the hole from aligning following the Zeeman energy
even in strong magnetic fields. When the quantum dot is determined by a top metal gate we have
control over the lateral confinement. So, by changing the confinement potential one can control
the alignment of the hole spin at some fixed magnetic field.
The Landé factor for the manganese spin isgMn = 2 [55] and for the holegh = 2 ·κ = 2.4. With
the larger manganese spin the Zeeman energy of the manganeseis bigger. In the following I will
show why it is impossible to control the alignment of the manganese by changing the hole state
in the magnetic field: While the magnetic field becomes stronger thepd interaction between hole
and manganese is almost constant4 while the Zeeman energy of hole and manganese rises linear
with it. It can become considerably stronger than thepd interaction energy. Also the band cou-
pling effect which can change the spin of the hole becomes stronger with magnetic field and can
even overwhelm the Zeeman energy of the hole. We can expect that for stronger magnetic fields
the spin alignments of hole and manganese will be determinedby these effects. Only for weak
fields thepd interaction can play a significant role. Without magnetic field the two lowest states
|Sz〉 = ±5/2 |jz〉 = ∓3/2 are degenerate. These states have the largest negativepd interaction
energy. In a very weak magnetic field this degeneracy is lifted. Thepd energy stays the dominant
term and is almost the same in both states. The spins stay aligned antiparallel.
In weak magnetic fields we can distinguish two regimes for thehole state. As shown in section
3.1.2 the hole spin here depends on the strength of thexy potential. In weak potentials the hole
spin aligns according to the Zeeman term. According to figures 3.2(a)-3.2(d) the band coupling
in strong dotxy potentials lowers the energy of the|jz〉 = −3/2 state, which then becomes
the lowest hole state. The manganese atom is influenced besides thepd interaction only by its

4For a hole in a quantum dot the magnetic field increases its density in the centre slightly. When the manganese
impurity is put here, the interaction energy will rise also only accordingly to the increase of the hole density.
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Zeeman energy. In a dot with strong confining potentials (Fig. 3.11) and in weak magnetic fields
the state|Sz〉 = 5/2 |jz〉 = −3/2 will be at lower energy. The manganese spin in this state has
the minimal Zeeman energy and the hole is also in its preferable state due to the influence of
the band coupling. For stronger magnetic fields thepd interaction looses influence but with the
strongxy potential the same spin alignment of the hole is prefered. The ground state stays the
same as for weak magnetic fields. In the second regime with theweakerxy potential (Fig. 3.10)
the hole spin will be determined by its Zeeman energy in most realistic magnetic field regimes5.
In weak magnetic field the spins have to align antiparallel. The Zeeman energy of the manganese
atom is stronger than the Zeeman energy of the hole. Here alsothe state|Sz〉 = 5/2 |jz〉 = −3/2

will be the ground state. When the magnetic field grows stronger the interaction energy again
loses influence and both spins align according to the Zeeman term. A flip of the hole spin occurs
in the ground state. It can be easily shown that no other spin configuration can have a lower
energy than the ones mentioned. So in all possible cases the manganese spin points according to
the Zeeman term and does not change. The competition betweenthe hole Zeeman energy and
the band coupling effect can only change the spin of the hole.Since the Zeeman energy of the
hole is lower than the one of the manganese, this change releases not enough energy, to alter the
manganese spin. So, to control the manganese spin we have to limit ourselves to theB = 0 T
case.
The crossing of half of the states at one point in figures (3.10) and (3.11) is caused by the de-
pendence between the energy of the states atB = 0 T and their dispersion with magnetic field.
Both values depend on the relative alignment of the hole and manganese spin. This alignment
determines thepd interaction energy and thus the energy atB = 0 T. It also sets the Zeeman en-
ergy. The straight slopes point out that this energy term dominates the magnetic field dispersion
of the states. In all the crossing states the spin alignment of the hole isjz = 3/2 and only the
manganese spin state differs among them. Now, at the crossing point the difference in thepd in-
teraction energy between any two of the crossing states is exactly compensated by the difference
in the Zeeman energy between these states. In experiments sensitive to the hole spin a prominent
difference for the two spin alignments can be expected at this value of the magnetic field.
In the dot with the large confining potentials (Fig. 3.11) theenergy difference between the low-
est two alignments of hole and manganese spin amounts to0.197 meV atB = 0 T. This is
6.2 times the value of the small-confinement dot. The density of the hole at the manganese
site in the strong confinement regime is6.3 times as large as for the low confinement. The
increase of thepd interaction energy follows the increase of the hole density. In this spec-
trum the states follow the Zeeman term. In figure (3.11), however, also a deviation from this
scheme can be observed.|M = ±1(2)〉 are the first excited states with total angular momentum
z componentM = ±1. They arise from the third double at84.85 meV and have a slope op-
posing their Zeeman energy. The spins in these states are|M = 1(2)〉 = |Sz = −1/2, jz = 3/2〉

5For our standard configuration this ordering is present between0 T and9 T (see figure 3.2(a)).

56



3.3. Quantum Dot with One Mn Impurity

and |M = −1(2)〉 = |Sz = 1/2, jz = −3/2〉. According to the Zeeman term, the slope of the
|M = −1(2)〉 state should be positive while the one of the|M : 1(2)〉 state should be negative.
The reason for the inversion of the slopes in the spectrum is the influence of the band coupling
on the hole states. In this two states the Zeeman energies of the hole and the manganese atom
nearly cancel out and the strong in-plane confinement of the hole pushes the|jz〉 = −3/2 state
below the|jz〉 = 3/2 state. This influence on the hole spin is present in all states. In the re-
maining states, however, the Zeeman energies of the hole andespecially of the manganese are
stronger and determine the alignment of the spins. In the case of the weak confinement the states
are not inverted. In figure 3.10 beyondB = 0.5 T these are the6th and7th lowest state. So
here their ordering resembles their Zeeman energies. Also in a dot without the manganese atom
for this xy potential|jz〉 = 3/2 should be lower in energy. However, these both states have a
very parallel dispersion in the magnetic field and the splitting between them is small. The reason
for this change is the acceptor potential of the manganese atom. It changes significantly the dot
potentials and changes thus the band coupling.
The third potential configuration we calculated with a manganese atom in the centre wasω0 ·
5, F = 7 mV/nm (not shown). For this potential configuration the bandcoupling is strong and
the lowest hole states have already a large light-hole admixture, i.e. of states withjz = 1/2. This
changes considerably the hole spin expectation value, which is 〈jz〉 = ±1.21 in the lowest two
states. The hole density at the manganese site is0.57 of the value in the configuration in figure
3.11 with a4.3 times largerz potential. The lowering of the hole density in this configuration
is due to the larger spread of the lowest envelope function inz direction in the lower confining
potential. The splitting between two of the doublets amounts to 0.11 meV. This is0.56 times
the value of the configuration with the strongz confinement. This splitting is a measure for the
strength of thepd interaction. Again it follows the change in the density of the hole at the man-
ganese site. The change of the expectation value of the hole spin 〈jz〉 due to the changed band
coupling has no influence on the interaction energy. We give these values for comparison with
configurations discussed later in the text.

Here we have shown the dependence of the interaction betweenthe hole and the manganese
on the dot potentials. The change in the hole density due to a stronger confinement is the most
important factor for the strength of thepd interaction between the spins. This interaction is, how-
ever, much weaker than the dot and acceptor potentials. Onlythe lowest hole state participates
in the common interacting hole and manganese state. In this ground state the hole spin is an ef-
fective two-level system with expectation value close to〈jz〉 = ±3/2. It is changed by different
admixtures of light holes due to changed dot potentials. In magnetic field the alignment of the
manganese spin is determined only by its Zeeman energy. In weak fields the spin of the hole
aligns antiferromagnetically to the manganese spin due to thepd interaction. In stronger fields
the hole spin aligns ferromagnetically due to its rising Zeeman energy. The magnetic field where
the change between these two alignments occurs is for weak band mixing dependent on thepd
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interaction. When the band mixing is large the spin of the hole is aligned opposite to its Zeeman
term even without the interaction to the manganese. Here theground state may never change
from the weak field alignment. An investigation on the effects of different potential aspect ratios
on the hole spin in diluted magnetic semiconductors can be found in [75].

3.3.3 Influence of the Lateral Confinement

We have also varied the strength of the confining potential inthexy plane at zero magnetic field.
The range went from0.1 · ω0 to 6 · ω0. Thez confinement was constant atF = F0. Figure 3.12
shows the energy of the ground state. The energy drops slightly with increasing potential until
3 · ω0 and then rises slowly. The lowering of the ground-state energy with increasing potential is
in striking difference to the undoped dot, where the energy rises linearly. This effect arises due
to the competition of the confining- and the acceptor-potential. The energy of the hole changes
differently in these two potentials with the distance from the centre of the dot. The stronger
localisation due to the larger dot potentials creates a stronger proximity to the acceptor atom.
In the potential range used here this effect lowers the totalenergy. Also the effective mass of
the hole is changed with the dot potential. The light-hole character of the states increases with
strongerxy potential. Nevertheless, the dominant hole-spin state staysjz = ±3/2 even for6 ·ω0.
The change of the hole effective mass influences the impact ofthe dot potential on the movement
of the hole. It changes the ratio at which the hole wave function shrinks with increasing dot
potential. All these effects sum up to the shown behaviour. Figure (3.13) illustrates the absolute
value of the energy splitting between the two lowest doublets in the spectrum of a hole and a
manganese atomEpd(ω/ω0). This value represents the strength of thepd interaction between
the spins. The change of thepd interaction energy can result form different sources. The most
likely reason is the change of the hole density at the site of the impurity. Another reason could
be a change in the spin expectation values of the hole and of the manganese. To compare the
evolution of the densityρ(ω/ω0) and pd splitting energyEpg(ω/ω0) we normalise both. We
divide the evolution of the density by the density value atω/ω0 = 1 and the evolution of thepd
splitting by the splitting atω/ω0 = 1:

Epd(ω/ω0)

Epd(1)
=
ρ(ω/ω0)

ρ(1)
. (3.9)

These normalised diagrams match exactly in all calculated points. The diagrams of both evo-
lutions look exactly like the one depicted in figure (3.13). Therefore, the gain inEpd can be
attributed solely to the change of the hole density.
We notice a slower gain inEpd with the confiningxy potential beyondω/ω0 = 2. Around this
point we also see a change in the behaviour of the ground-state energy gain with thexy potential
in figure (3.12). The growth of the hole density is the only relevant factor in the change of thepd
splitting. The relevant effect on the hole density here is similar to the one described in section
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3.2.3. The change in the effective masses lowers the contraction of the hole wave function with
the increasing dot potentials. The change of the hole-spin expectation value due to the changed
admixture of the light holes, in contrast, has no effect on the interaction energy between the
spins of the hole and the manganese. This higher admixture makes the hole spin expectation
value deviate stronger from±3/2 which would be the value for pure heavy-hole bands. With
the changed spin for the holes also the expectation value of the manganese spin deviates stronger
from the eigenvalues of̂Sz. This behaviour is what one can expect: Without a magnetic field
the manganese spin has no preferable direction. It aligns according to the hole spin. When the
direction the hole spin changes the manganese spin is aligned accordingly to it. For this reason,
only a change in the hole density at the manganese site has an influence on the energy splitting
due topd interaction.
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Figure 3.12: Ground state energy in a dot
with oneMn atom in the centre for different
values of thexy potential and az potential
of F = F0.
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Figure 3.13: Splitting of lowest states due to
pd interaction in a dot with oneMn atom in
the centreEpg for different values of thexy
potential and az potential ofF = F0.

The total spin in the present configuration is an integer number. So, the eigenstates do not
have to be degenerate at vanishing magnetic field. Still a degeneracy occurs between the states
with ±M . Without a magnetic field no net magnetisation of the dot is possible.

In our calculations we have not taken into account the central cell correction. This correction
to the Kohn-Luttinger theory is necessary to reproduce the experimentally measured value of the
ground-state energy of the hole [53]. The energies of excited states of the hole are predicted
accurately by thek · p theory and the envelope function approximation even without this cor-
rection. Its addition would lead to a stronger localisationof the hole at the manganese position.
The influence of the acceptor potential would, therefore, rise relative to the dot potentials. If
the dot potentials are weak the acceptor potential dominates and the system resembles more a
single acceptor impurity in bulkGaAs [69]. In the spherical symmetric potential of an acceptor
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different alignments of the hole spinjz are not degenerate. Hence the total angular momentum
F = SMn + Jh (particularlyF2) is a good quantum number. The eigenstates of the system hole
+ manganese belong to the subspaces withF = 1, 2, 3, 4. The states withF = 1 are lowest
in energy. The ground state is then threefold degenerate andformed by the|F, Fz〉 states|1, 1〉,
|1, 0〉 and|1,−1〉.
The ground state we found has a different spin alignment. In our calculations the hole takes pre-
dominantly only the twojz = ±3/2 states, i.e. has only two alignments. The interaction of the
manganese impurity with a similar system was studied in [76], [77]. Here the interaction with
excitons in aCdTe quantum dot was investigated. In this II-VI semiconductor manganese is
isoelectric. So, it only introduces its|S| = 5/2 spin into the quantum dot. The exciton spin takes
only the values±1. In its spectrum the recombination energy splits in six peaks. They resemble
the six possible alignments of the5/2 manganese spin to one spin state of the exciton, each with
a differentpd interaction energy. For the standard values of quantum dot potentials chosen by us
we are far away from the|F, Fz〉 regime. Especially the strong confinement inz direction splits
the jz states of the hole energetically and the total angular momentum F ceases to be a good
quantum number. An addition of the central cell correction would at most change the values of
the dot potential, where a clear transition between the two regimes is visible. The addition of
the correction would not change our qualitative explanation. The results of the variation of the
confining potentials in a quantum dot with a manganese impurity also including a central cell
correction were published in [56]. Their results agree qualitatively with our calculations. The
quantum dots used in their investigations were much smallerand their potential inz direction
was a symmetric quantum well.

To sum up we have shown that within our model and dot potentials range the spin states
jz = ±3/2 andjz = ±1/2 of the hole in a dot with manganese are not degenerate. So the system
does not resemble a bulk acceptor state. The density of the hole at the position of the manganese
impurity is the only factor determining the strength of thepd interaction. During the variation
of the dot potentials we see the influence of the change in the hole effective mass on the wave
function evolution, as in section 3.2.3. Due to the acceptorpotential, the extend of the hole wave
function also strongly affects the energy of the ground state.

3.3.4 InAs Quantum Dots

Compared withGaAs, the response of the hole spin to the application of a magnetic field in an
InAs quantum dot is different. Due to the strong Landé factorg(InAs) = 2 · κ with κ = 7.68

for the hole, the Zeeman energy of the hole is bigger than the one of the manganese atom. The
InAs effective masses of light- and heavy-holes inz direction differ much more than inGaAs.
While the heavy holez masses are comparable, the light hole mass is only0.25 times the mass
in the former material. This splits the heavy and light hole subbands far apart. The lowest levels
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in the quantum dot have, therefore, a strong heavy hole character. TheInAs heavy hole mass
in xy direction is0.32 times the one inGaAs. The characteristic length for eigenstates of the
two-dimensional harmonic oscillator in thexy plane is

li =

√

~

miω0

=

√

~
√
mi

√
K0

and with m1 = a ·m2 ⇒ l2
l1

=
1
4
√
a
. (3.10)

With theInAs lateral massmInAs = 0.32 ·mGaAs the characteristic length inInAs is 1.33 times
the value ofGaAs in the samexy potential. The hole density is more spread out inInAs within
the same potentials. We, therefore, have to use stronger confinement potentials to achieve a com-
parable hole density at the manganese site and thus a comparable interaction with the manganese
spin. To describe the Coulomb attraction between the manganese impurity and the hole inInAs
we used for the dielectric constantǫr(InAs) = 15.15 [78]. Jpd, which describes the strength
of thepd interaction between the hole andMn spins, is not known forInAs to our knowledge.
The value forGaAs is also not known exactly [71]. These two materials have the same crystal
structure with a similar lattice constant. On the atomic length scale thepd interaction depends
on the overlap of the hole valence bandp orbitales with the localised manganesed orbitals. The
p orbitals originate from the arsenide atoms, while the manganese typically substitutes a gallium
atom in the lattice. So this overlap will certainly depend onthe lattice constant. It is reasonable
that the values should be of the same magnitude for both materials. We will take, therefore, the
same value forInAs as forGaAs: Jpd(InAs) = Jpd(GaAs) = 40 meV nm−3. As inGaAs,
in InAs the energetic splitting between the hole ground states and the first excited ones is much
larger than the splitting due to thepd interaction. Even with aJpd(InAs) value twice as large the
influence of the excited states would be negligible. Apart from a larger splitting we would get
qualitatively the same spectrum. Note that in our calculations we did not account for any strain
inside the dot. This approximation is justified, because thedots we are investigating are larger
than self-assembled dots and the influence of strain for our dots is smaller. Moreover strain in
self-assembled quantum dots typically further splits the states dominated by thejz = ±3/2 and
jz = ±1/2 Bloch bands. The influence of thejz = ±1/2 bands on the ground state is remark-
able in our calculation. We can vary their admixture by changing the aspect ratio of vertical and
lateral dot potentials. So a further splitting of the bands would alter the ratio needed to achieve a
certain admixture.
In figure 3.14 we see the spectrum of anInAs dot. To avoid only a small splitting of the eigen-
states atB = 0 T and fit the strength of thepd interaction better into the magnetic field range
being under investigation we increase the strength of the lateral confinement. The confining po-
tential inxy direction accords to a potential of6.3 ·ω0 in aGaAs dot. The potential inz direction
isF = 4.3·F0. The spectrum is dominated by the hole Zeeman energy which splits the states into
two bunches with dominant hole-spin componentjz = +3/2 andjz = −3/2. The alignments of
the manganese spin relative to the hole spin splits both bunches in six states.
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As described in section (3.1.3) no inversion of the orderingof the hole ground states is possible
for InAs quantum dots by variation of the dot potentials. This is in contrast toGaAs quantum
dots. For these we have shown such a inversion in section 3.1.2. In InAs quantum dots the
ordering of the two lowest states is always determined by their Zeeman energy. The state with
the lower energy in magnetic field has a total hole angular momentumMh = +3/2. For a dot
with the manganese atom and in magnetic fields below0.8 T, the ground state of the system is
|M = −1(1)〉 = |Sz = −5/2〉 |Mh = 3/2〉. Different fromGaAs, the hole is aligned according
to its Zeeman term while the manganese points opposite to it.For stronger magnetic fields the
lowest state becomes|M = 4(1)〉 = |Sz = 5/2〉 |Mh = 3/2〉. Here, the Zeeman terms become
dominant and align the spins parallel. Opposite to theGaAs quantum dot now themanganese
spin flips when we increase the magnetic field. The splitting between two doublets atB = 0 T
is a measure for the strength of the interaction between the hole and the manganese. It amounts
to 0.092 meV here. This is slightly above the value from theGaAs configuration (0.084 meV)
in Fig. 3.11 where thexy potential was0.79 times as high. This depicts the lesser confinement
of the hole by the potentials inInAs. Moreover, the state with parallel alignment of the spins
becomes the ground state at lower magnetic fields as inGaAs even in comparison to aGaAs dot
with weaker confinement (see Fig. 3.10). We see such a behaviour although thepd interaction
in the presentInAs dot is stronger than in that case. This happens because now the spin of the
manganese flips and not the spin of the hole. Thepd interaction energy and the Zeeman energy
of the flipping particle compete. The flip occurs when the Zeeman energy overtakes thepd in-
teraction. Since inGaAs the Zeeman energy of a hole is smaller than the Zeeman energy of the
manganese and smaller than the Zeeman energy of anInAs hole, the flip will occur inGaAs at
a stronger magnetic field than inInAs.

As inGaAs the crossing eigenstates contain all the same hole state. This state has the dom-
inantjz = 3/2 spin component. As mentioned in section 3.3.2 at the crossing point the sum of
the Zeeman energy of the manganese atom and itspd interaction energy with the hole is constant.
Now the crossing lies not in the centre of the spectrum any more. This is again due to the hole
Zeeman energy being stronger than the manganese Zeeman energy. Independent of the align-
ment of the manganese spin all states withjz = 3/2 hole spin alignment have a negative slope in
the magnetic field. So, the crossing point has to be located energetically below the lowest state at
B = 0 T. InGaAs the slope of a state was determined by the Zeeman energy of themanganese.
In this material, states with the same alignment of the hole spin could rise and fall depending on
the manganese spinSz. The crossing was located in the centre in the spectra.

3.3.5 Off-Axis Mn Atoms

Currently (2009) it is technologically not possible to gainprecise control over the manganese
atom in a quantum dot. The position of the impurity is determined randomly during the growth
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Figure 3.14: Energy spectrum of anInAs QD with one hole and aMn

in the centre. Axy potential of6.3 · ω0 and az potential ofF = F0 is
used.

process and it will be rare to find it in the centre of the dot. Itis, therefore, of major importance
to examine an off-axis manganese position. Nevertheless, we will not choose it arbitrarily. The
strong spread of the hole wave function and thus a lower density in large dots we are interested
in yields only a very weakpd interaction between the hole and theMn atom. We have to assure
that the probability to find the hole at theMn position remains relatively high. Figure 3.15 shows
the chosen position. In the expansion of the lowest-states envelope functions, the Fock-Darwin
function |0, 0〉 has a large weight. It has its maximum in the centre of the dot.The second
biggest part is the basis state with|0,±1〉. So, we choose the position of the off-axis impurity at
the maximum of the|0,±1〉 basis function. At this point the value of|0, 0〉 equals that of|0,±1〉.
This assures a large hole density at the manganese site and yields a noticeable interaction of the
manganese atom with the hole ground state. The maximum of the|0,±1〉 Fock-Darwin state
lies just at the distance of one characteristic lengthl (2.31) from the centre of the dot. This
characteristic length changes with the dot potential. So, in this arrangement, for different values
of thexy potential the distance of the manganese from the centre of the dot will also change.
Its position is adapted to the varying extend of the hole wavefunction. Otherwise, when the
xy potential is increased, an off-axis manganese atom will typically loose overlap with the hole
wave function. We are not interested in this effect but want comparable set-ups for all potential
values. Thez position will remain at the maximum of the lowest heavy holez basis function.
This function deviates only slightly from the exact envelope function inz direction.
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Figure 3.15: Off-axis position of theMn impurity (arrow) in relation to
the Fock-Darwin basis states.

An off-axis position of theMn breaks the cylindrical symmetry of the system. The Hamilton
matrix no longer decomposes into blocks of total angular momentumz componentM = Sz+Mh.
We now have to include all possible values of the total angular momentum of the hole and
the manganese spin in our calculations. To maintain computability we will always include all
possible states of the manganese spinSz and only the energetically lowest states of the hole
Mh = jz + m with Mh ∈ {−7/2..7/2}. This resulted in a basis size of60 states for each hole
spinjz. The precision of the calculations is treated in section 3.6.

3.3.6 GaAs Dots, Mn Off-Axis

Fig. 3.16 shows a quantum dot with a manganese atom at a distance of14nm from the centre of
the dot. The dot potentials are at standard values. Because the centre of thexy confining potential
and the centre of the manganese acceptor potential are not located in the same point anymore,
the density of the hole at the manganese site is smaller. The splitting of the six doublets is
smaller than for the manganese in the centre. It amounts to0.026 meV between each doublet at
zero magnetic field. This is83% of the in-centre energy splitting. Without conserved angular
momentum different mutual alignments of hole and manganesespin are possible within one
eigenstate. The degeneration at zero magnetic field can now be broken. This is an effect of
the spin flipping termsjz+SMn− andjz−SMn+ in the j · S operator and of the broken circular
symmetry. A splitting atB = 0 T is, however, not prominent here. Only in the5th and6th state
the hole and manganese spin expectation values are lower than in the other states. This lowering
results from a coupling between these two states. When the coupling becomes stronger the states
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Figure 3.16: Energy of one hole and aMn atom14nm from dot center,
xy potential ofω0 andz potential ofF = 7 /textnormalmV/nm.
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can even split. To explain the coupling mechanism and the special situation in the states5/6 let
us make the following considerations: When the interactionbetween the hole and the manganese
is turned off, the lowest eigenstates of the system can be described by the tensor product of the
six possible alignments of the manganese spin with the lowest two empty-dot hole states. Let us
denote this hole states by±h1

|Sz, ±h1〉 ≈ aF±3/2 |Sz〉 |±3/2〉 + b F±1/2 |Sz〉 |±1/2〉 + c F∓1/2 |Sz〉 |∓3/2〉 . (3.11)

HereFj is the appropriate envelope function for the Bloch bandj. The coefficientsa, b, c are
weighting factors describing the admixture of the light hole Bloch bands withjz = ±1/2. They
show the strength of the band mixing and their values are finally determined by the aspect ratio
of the confining potentials, i.e. the ratio of thez potential to thexy potential. Sz is the spin
of the manganese. For lens-shaped dots thez potential is much stronger than thexy potential
anda becomes much bigger thenb andc. This is the case of moderate band coupling. With
increased band coupling the admixture of the light holes with spinjz = ±1/2 to the ground state
is increased and the values of thea, b, c come closer together. The interaction that determines
the relative alignment of hole and manganese spins is thepd interaction. When we turn it on, the
undisturbed states (3.11) become coupled. This is, however, not possible to the same extend for
each pair of states. The flipping termsjz+Sz− andjz−Sz+ change the spin of the manganese by
one. The only pairs with this difference inSz are the fourth doublet|±1/2 ± h1〉 and the third
doublet|±1/2 ∓ h1〉. The application of the flip operator on one state from each ofthe two pairs
gives e.g.

jz+Sz− |+1/2 − h1〉 = ã F−3/2 |−1/2 − 1/2〉 + b̃ F−1/2 |−1/2 + 1/2〉
+ c̃ F+1/2 |−1/2 + 3/2〉 (3.12)

jz+Sz− |+1/2 + h1〉 = b̂ F+1/2 |−1/2 + 3/2〉 + ĉ F−1/2 |−1/2 + 1/2〉 (3.13)

The matrix element of thepd operator (Eq. 2.70) between the states in these pairs is (apart from
constants) given by

〈−1/2 + h1| J(RI)S · j |+1/2 − h1〉 ≈ ac̃
〈

F+3/2

∣

∣ δ(R)
∣

∣F+1/2

〉

+ bb̃
〈

F+1/2

∣

∣ δ(R)
∣

∣F−1/2

〉

+ cã
〈

F−1/2

∣

∣ δ(R)
∣

∣F−3/2

〉

(3.14)

〈−1/2 − h1| jz+Sz− |+1/2 + h1〉 ≈ cĉ
〈

F+1/2

∣

∣ δ(R)
∣

∣F−1/2

〉

, (3.15)

where we have substituted the averaging over the impurity unit-cell by a delta function. Upon
diagonalisation of the system matrix the states coupled by non-vanishing matrix elements repel
each other and their possible degeneracy is removed. When the impurity is placed in the cen-
tre of the dot the same matrix elements arise. In this case, however, the integration over the
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envelope functionsFj vanishes and prevents a splitting. Since the angular momentum must be
conserved in this case, the envelope functions of a Bloch-band jz have a defined angular mo-
mentumm = Mtot − Sz − jz. Now, for an impurity in the centre of the dot the matrix element
〈Fj| δ(R) |Fj′〉 can only differ from zero when both envelope functions havem1 = m2 = 0. This
condition can never be fulfilled for two differentjz in this configuration6. Therefore, all states
were degenerate atB = 0 T for dots with manganese in the centre. This is no longer truefor the
present off-centre dot configurations.
For the potential values used here and the pair with parallelspins |±1/2 ± h1〉 the coupling
(3.15) is very weak. So, no enhanced spin mixing is noticeable. The other strong influence on
the hole in the dot comes from the acceptor potential of the off-axis manganese atom. The peak
density of the hole appears at12.3nm from the centre and the impurity is located at14nm. The
acceptor can localise the hole wave function nearly at its position. This gives a clue about the
relative strength of the dot and the acceptor potential. In comparison of the present dot contain-
ing the off-centre manganese to a dot with the same dot potential values and a central impurity
the density at the position of the impurity in the present configuration amounts to82% of the in-
centre value. This ratio also appears in the splitting between the two lowest doublets in these two
configurations. It again shows that the splitting due to thepd interaction is mainly determined by
the density of the hole at the manganese site. The slight change in the expectation values of the
hole and the manganese spin do not contribute to the change ofthepd interaction energy.
In the dot with the standard potentials and manganese in centre the ground state changes at about
B = 1.8 T (see Fig. 3.10). Below the crossing point|Sz = 5/2〉 |jz = −3/2〉 is the ground state
and beyond it is|Sz = 5/2〉 |jz = +3/2〉. This crossing must occur for the off-centre configura-
tion at much higher magnetic fields. In figure (3.16) the mentioned states are beyondB = 0.4

T the lowest and third lowest one. Their slopes are almost parallel in the calculated range of the
magnetic field. This is remarkable because the hole density at theMn off-axis site is lower than
in the dot with the central impurity. Thus the transition of the ground state to the Zeeman-energy
dominated spin alignment should occur at lower magnetic field. In bot configurations the hole
spin expectation value in the lowest states is comparable due to the same strength of band cou-
pling. The manganese spin is in both states and both configurations in theSz = 5/2 state. So,
the Zeeman energies in the dot with the central and in the one with the off-centre impurity are
not very different. What makes the difference between both states is the expectation value of
the hole orbital-movement angular-momentum quantum number 〈m〉 in the two aforementioned
states. While for the in-centre case〈m〉 is small in both states and has the same sign as the hole
spin, in the off-centre case〈m〉 is two to three times larger and its sign in both considered states
points opposite to the hole spin expectation value. This behaviour lowers the slopes of both these
states in the magnetic field for the off-axis configuration. It shifts their crossing point towards

6 Note that the coupling between the particular spin states crucially depends on the form of the operator describ-
ing the exchange interaction. This form depends on many factors like the crystal symmetry, on the number of bands
taken into account, approximations like the spherical approximation and the interacting particles [79].
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higher field values. This change of the orbital movement of the hole depends crucially on the
strength of the acceptor potential. When the lateral dot potentials are strong in comparison with
an off-axis acceptor potential, the wave function of the hole will be localised near the centre of
the dot. When the acceptor potential is much stronger, the hole will be localised in the vicinity
of the acceptor. In both cases the potential in thexy plane will have a symmetry close to circular
symmetry because the dominant potentials have it. Only whenthe lateral dot potential and the
off-axis acceptor potential are of comparable strength thehole will be localised between them.
Then the circular symmetry in thexy plane will be strongly violated. The present configuration
can be classed as the regime with dominating acceptor potential and with a strong disturbance
of thedot lateral potentials. This disturbance is responsible for the change in the orbital move-
ment of the hole in the two aforementioned states. It changestheir expectation value〈m〉. So
an off-axis impurity disturbs the circular symmetry in the dot only if the dot potentials are of
comparable strength.
Figure 3.17 shows a dot withωxy = 5 · ω0 andF = 4.3 · F0. The splitting at zero magnetic
field amounts to≈ 0.094 meV between the lowest doublets. This is46.4% of the manganese
in-centre configuration value. Again the densities of the hole at the manganese site in these
both configuration have a very similar ratio. The value of thehole density at the position of
the impurity is in this case47% of the in-centre value. The maximum of the hole density lies
3.94nm from the centre of the dot potential. The impurity is again located at the maximum of
the |01〉 Fock-Darwin basis function, which is atRI = 6.2nm for this xy potential. So, for
this configuration the hole is localised stronger towards the centre of the dot than in the case of
figure (3.16). In dots with weak confining potentials in comparison to the acceptor potential the
impurity can localise the hole in its vicinity. Thus the holedensity and the strength of thepd
interaction depends little on the position of the manganeseatom. This is no longer true when the
dot potentials become stronger. The position of the hole density peak in this potential configu-
ration is localised at approximately half the way between dot centre and acceptor atom. From
this we can deduce that the dot potential strength is comparable with the acceptor potential, but
not dominant. In a very strong dotxy potential the acceptor potential will play a minor role. In
such a strong potential, moving the manganese atom from the centre of the dot will not change
the hole wave function much. It will merely result in a decrease of the hole localisation at the
manganese site and thus a lowering of the splitting between the doublets. The other features of
the spectrum should remain qualitatively the same. This strong lateral confinement regime is not
reached by far in the present potential configuration. Now the spectrum experiences significant
changes from the in-centre configuration with the same dot potentials. One eye-catching feature
of the spectrum is the broken degeneracy atB = 0 T in the3rd doublet. This was predicted by
Eq. (3.14). The hole and manganese spin expectation values are nearly zero in these states due
to the mixing between them introduced by thepd interaction term (2.70). The spin expectation
values are also lowered in the4th doublet as predicted by Eq. (3.15). In these states no splitting
is noticeable within the numerical precision of our calculations. Other features, not seen in dots
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with a manganese atom in the centre and in dots with an off-axis manganese and weakxy poten-
tial, are the anticrossings between states which cross in one point in the former configurations. In
these states the dominant hole spin component isjz = 3/2. The anticrossings occur not between
particular states, but all states mutually repel each other. Again the spin-flip terms are responsible
for the mixing of different spin states. As shown before, this mixing is strongly dependent on the
admixture of light holes withjz = ±1/2 to the eigenstates. In the present potential configuration
(5 · ω0, 4.3 · F0) this admixture is bigger than in the weak dot potential configuration. Also the
localisation of the hole, in the middle between the dot centre and the manganese atom, strongly
disturbs the circular symmetry in thexy plane. This makes coupling between different orbital
hole states possible. The ground state consists mainly of the |Sz = 5/2〉 |jz = −3/2〉 state. This
configuration in very preferable for these potentials. The large band mixing lowers the energy of
thejz = −3/2 hole state. Due to the strong dot potentials the hole densityat the manganese site
is high and thus thepd interaction is large.
We also calculated the spectrum of a dot with thexy confinement potential ofωxy = ω0 · 5 and a
z confinement ofF = F0. The energy quantisation due to the confinement inz direction is still
larger than for the confinement in thexy plane. Nevertheless, this configuration comes closer to
a cylindric dot shape rather than the oblate form of the former dots. Figure (3.18) shows the cor-
responding spectrum. The kinks in the spectrum result from asmall number of calculated points
(one each0.2 T). The lines represent states with the same dominant basis state and, therefore, the
same dominant spin alignment. Anticrossings in this spectrum appear as a symmetric displace-
ment in energy of two states with their crossing in the middle. Again the manganese atom is
located at6.2nm from the centre of the dot. The density of the hole at the manganese site is0.55

of the in-centre configuration value with the same dot potential strength. The splitting between
the lowest two doublets atB = 0 T has the same ratio for these two configurations. The peak
of the density is at4.24nm from the centre. In comparison with the configuration from figure
(3.17), i.e. the one with manganese at the same position, thesamexy potential, but strongerz
potential ofF = 4.3·F0, the hole is now localised closer to the acceptor atom. This displacement
is also the result of the competition between the dot potentials and the acceptor potential. With
the lowerz potential the wave function spreads further in this direction. The proximity of the
hole to the acceptor becomes smaller. In thexy plane the wave function is shifted inx direction
towards the acceptor atom. This results again in a stronger proximity to the acceptor. In the
present case, however, there is no gain in hole density at themanganese spin site. Due to the fur-
ther spread of the wave function inz direction, the hole density at the position of the manganese
is lowered more than the increase in density due to the shift towards the acceptor can make up
for. The ratio ofxy to z potentials yields a large admixture of thejz = ±1/2 Bloch bands to
the ground states of the hole. The large band mixing enhancesthe spin flip mixing mechanism
described in (3.14) and (3.15). We see the splitting of doublets atB = 0 T and anticrossings in
thejz = +3/2 states seen in the preceding configuration. The effects are now more pronounced.
Even the4th doublet shows a small splitting described by (3.15). The states exhibit not only one
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anti crossing in the region where they come together. Duringthe anticrossing the eigenstates are
mixtures of many different hole- and manganese-spin states. The states with dominant hole spin
contributionjz = −3/2 do not cross. For the states not participating in the anticrossings and
for the other states away from the anticrossing region the expectation value of the hole spin is
constant around±1.15. This value is typical for the large band coupling regime treated here. The
expectation value of the manganese spin is close to the eigenvalues ofŜz for all states away from
the crossing region. In the ground state the manganese is aligned following the Zeeman term.
As mentioned before the hole spin states are now strongly mixed, but the dominant component
is still jz = −3/2. The only competitor for the lowest eigenstate is the one with Sz = +5/2

and dominantjz = +3/2. It has a very similar slope in the magnetic field. A crossing with the
ground state can occur only in magnetic fields far beyond the calculated range.

We can divide the spectrum of a dot with an off-axis manganeseimpurity into several regimes.
The first one can be set when the dot potentials are much stronger than the acceptor potential of
the manganese and the band coupling is small due to a relatively large splitting of the light- and
heavy-hole bands. Here an off-centre position of the atom does not change the spectrum of the
system very much. It is comparable with the on-centre spectrum except for a smaller splitting
between the six doublets due to the smaller hole density at the manganese site. A second regime
can be defined, where the band coupling is still small but the dot potentials are considerably
weaker than the acceptor potential of the manganese atom. Here the hole becomes localised al-
most completely at the site of the manganese impurity. When the dot potentials are very weak the
circular symmetry is not violated very much. Then the centreof symmetry is the impurity site.
The spectrum does not change much from the on-centre case. Insuch a system the dependence
on the actual manganese position is very weak, since the acceptor atom takes the hole with it.
To achieve a stronger change in the spectrum we require a strong band coupling and a broken
circular symmetry. So we can set up a third regime where theserequirements are fulfilled. The
strong band mixing occurs when the dotz potential is low in comparison with thexy potential
of the dot. To break the circular symmetry we must localise the hole between the centre of the
dot and the acceptor atom. So, thexy potential must be of comparable strength as the acceptor
potential. This enables spin-flip processes. Then splitting of several doublets atB = 0 T occurs
as well as strong anti crossings.
In all regimes thepd interaction strength is mainly determined by the density ofthe hole at the
site of the manganese atom. A change in the band mixture of thehole state has only a minor
direct influence on this value. Outside the crossing points of the states with strong spin-flip prob-
ability the alignment of the manganese spin is close to the eigenvalues of̂Sz and the alignment
of the hole spin is determined by the strength of the band coupling.
In all the potential configurations considered here the ground state was dominated by the heavy-
hole bands withjz = ±3/2. By a change of the ratio of the confining potentials we can also
enforce the light-hole bands with spinjz = ±1/2 to provide the main spin component in the
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ground states of the dot. In [80] such an transition is investigated, however, in a very different
system. The spectra of the dots will, however, not deviate qualitatively from the heavy-hole ones.
With the actual form of thepd interaction term the coupling betweenjz = ±1/2 hole states will
be stronger than for thejz = ±3/2 ones. In the highest and lowest of the six degenerate doublets
the alignment of the manganese spins deviates maximally. Itis +5/2 and−5/2. The coupling
between the states and thus the splitting of these doublets will be still small even with dominating
jz = ±1/2 bands.
In this work I consider only one off-axis manganese position. We have found that for different
off-axis manganese positions the observed effects change only slightly. An according investiga-
tion for valence band electrons (holes) in II-VI semiconductors can be found in [81]. In that work
the effects are more pronounced, since without an acceptor potential the manganese disturbs less
the eigenstates of the dot.

3.3.7 InAs Dots, Mn Off-Axis
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Figure 3.19: Energy of one hole andMn atom7.2nm from centre in an
InAs QD, xy potential of6.3 · ω0 andz potential ofF0.

Finally we investigated off-axis manganese atoms in quantum dots made fromInAs. Figure
3.19 shows the spectrum. We used the same potential values asfor theMn in-centre case of
InAs. The manganese atom is positioned in the same way as for theGaAs case, i.e. in the
maximum of the|01〉 basis state. With the effective masses inInAs the absolute position is
RI = 7.18nm from the centre of the dot andzI = 2.04nm from the heterojunction plane. The
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peak density of the hole lies3.26nm from the centre. The hole density at the manganese site
in the off-axis configuration is50% of the in-centre configuration value. This high ratio and the
localisation of the hole almost in the middle between the dotcentre and the acceptor site show
that the two present potentials are of comparable strength for theInAs effective masses. The
circular symmetry is broken for the hole. Also the second requirement for strong spin-mixing is
present. The admixture of the light holes to the two-hole ground-states results for theInAs dot
in a expectation value of the hole spin of〈jz〉 = 1.35. This value is comparable to the dot from
figure 3.17 with comparable dot potential values. We also seethe splitting of the third doublet
atB = 0 T. At the crossing point of thejz = +3/2 states, atB = 0.3 T, anticrossings occur.
These are, however, very small. The expectation value of themanganese spin at the calculated
points, at0.2 T and0.4 T, is only slightly lowered in the crossing states in comparison with
the non-crossingjz = −3/2 states. Thepd interaction is so small that the Zeeman energy is
dominant already beyondB = 0.3 T. Again the hole spin is constant in the magnetic field and at
the crossing point it is the manganese spin which changes itsalignment.

3.3.8 Elliptic Dots with Mn

We calculated the eigenstates of ellipticGaAs quantum dots with manganese impurities atB = 0

T. The elliptic potential was created by considering an additional harmonic potential in they di-
rection. We varied the strength of the additional potentialKe (2.60) from0 to 1 · K0, i.e. the
harmonic potential iny direction was at most twice as high as the one inx direction. For the
strong potential configuration5 · ω0 the additional potential was increased appropriately to keep
the2 : 1 ration of they to thex harmonic dot potential.
In a dot with standard potential values and a manganese atom in the centre the hole density does
not change much upon application of the additional potential. The circular symmetric acceptor
potential is strong in comparison with the elliptic dot potential and conserves the circular shape
of the hole density even at the maximal value of the elliptic potentialKe = K0. Still we notice a
small lowering of the manganese spin expectation value in the3rd doublet. The violation of the
circular symmetry starts the spin-mixing mechanism as described in Eq. (3.14). In the strong-
potential configuration5 · ω0 andF = 4.3 · F0 the elliptic dot potential is comparable with the
acceptor potential. The hole density shows a slightly elliptic contour. The density at the centre
of the dot drops to97% of the circular value. The influence of the spin-mixing termsrises with
the now stronger broken circular symmetry. The third doublet shows now a small splitting of
0.01 meV. The third configuration5 · ω0 andF = F0, with strong band coupling, shows again a
different behaviour. The density of the hole in the centre rises to104% of the circular value. The
strong band coupling enhances the spin-mixing mechanism, so that the third doublet is now split
by 0.03 meV.

In the configuration, where the additional potential is applied in y direction, and the man-
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ganese atom is located on thex axis, the additional potential has the smallest influence onthe
hole. Again we are interested in the change in the character of the hole eigenstates due to the
additional potential. At the same time we do not want the holedensity at the manganese site
to be considerably lowered. For the standard values of the dot potentials, the acceptor potential
dominates. The hole density and the spin alignments of hole and manganese barely change. In
the strong dot potential configuration the now stronger additional potential squeezes the hole
density iny direction. This leads to an increase of the hole density at the site of the manganese
to 105%. The splitting between the lowest doublets follows this increase. The expectation values
of both spins and the splitting of the third doublet changes only little. The third potential config-
uration, where the band coupling is strong, shows again a different behaviour. The density at the
manganese site rises to103% of the circular value upon application of the maximal additional
potential. In contrast to all preceding cases, the splitting between the lowest two doublets does
not follow this change and drops slightly to97%. This is not true for the distance between the
two topmost doublets, where no change in the splitting is visible at all. In all cases the changes
due to the additional potential are small. The impact of the elliptic potential can be considered
strongest in the case of a central impurity, where the violation of the circular symmetry can lift
the degeneracy of some of the doublets.
Nevertheless, we could proof our spin-mixing mechanism. Aspredicted in Eq. 3.14 spin-mixing
via thepd interaction is only possible in a broken circular symmetry for the orbital movement.

3.4 2 Mn 1 Hole

In this chapter we will investigate the interaction of two manganese impurities and one hole
inside the quantum dot. The costly calculation of the matrixelements describing the acceptor
Coulomb potential of the manganese in our basis, suggests tochoose the same positions of the
manganese impurities as in the former chapters. So in our configurations one of the atoms will
be located in the centre of the dot while the other will be in the maximum of the|0 ± 1〉 basis
function. This is for the standard potentialω0 at 14nm from the centre and for5 · ω0 at 6.2nm.
In both cases this is far enough apart to neglect the anti ferromagnetic interaction between the
manganese spins. The antiferromagneticMn-Mn interaction acts on the length scale of the
crystal lattice constant [82]. The potential values inInAs were(6.3 · ω0, F = F0). This yields
the position for the off-axis manganese to7.18nm from the centre of the dot.

3.4.1 GaAs Dots

We have seen that in the case of one manganese impurity atom and one hole in the quantum dot
the spin alignment of the manganese atom in magnetic field is determined only by its Zeeman
energy. The spin alignment of the hole, in turn, can be changed by all potentials: the magnetic
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field, the dot potentials and the alignment of the manganese spin. The Zeeman energy of the
hole competes with the anti ferromagneticpd interaction. In case of one hole in a dot with two
manganese impurities we can surely expect that the hole willhave even less influence on the
spins of the two manganese atoms. In contrast the influence ofthe two manganese atoms on the
hole spin stays large. We can only control on the manganese spins by means of the hole state at
B = 0 T.
Even for the strongest dot potentials and thus the largest density of the hole at the position of
the manganese atoms the splitting in energy between the different alignments of the hole and
manganese spins never rises above0.2 meV. This is at least an order of magnitude smaller than
the splitting between the ground state and the next excited states. So, the lowest states of this
system will consist of the two hole ground states and the six states of the spin for each manganese
atom. This results in2 · 6 · 6 = 72 states. Depending on the relative strength of the dot- and
the acceptor-potential the hole envelope function can be changed considerably by the acceptor
potentials. We will, therefore, use the same number of hole orbital basis states in our calculation,
as in the preceding cases. Figures (3.4.1), (3.4.1) and (3.4.1) show the spectrum of the 72 lowest
states of the system.
First we want to consider the dot with the strongest confiningpotential values5 · ω0 andF = F0

(fig. 3.4.1). The two manganese atoms now compete in attracting the hole and the density at
each manganese site drops in comparison to the preceding cases with only one-manganese atom.
Nevertheless, with the strong dot potentials localising the hole towards the centre, the peak of
the hole density lies at0.96 nm from the centre of the dot between the two impurity atoms. The
density at the site of the second atom, the one off-axis, is about 20% of the density of the one
in the centre. The splitting between the highest and lowest doublet atB = 0 T amounts to
0.93 meV. The lowering in thepd interaction energy becomes clear, when we compare this value
to the sum of the splittings in the two preceding one-impurity cases. It yields1.455 meV. The
quantum numbers of thez components of the two manganese spins,S

(1)
z andS(2)

z , and the one
of the hole spinz componentjz are not conserved. This is due to the broken circular symmetry

and the spin-mixing terms. The spin expectation values of the off-centre impurity
〈

S
(2)
z

〉

and

the hole spin〈jz〉 deviate stronger from the eigenvalues of the correspondingoperators. The
different spin states of the particles are coupled. This effect is smaller for the in-centre impurity
in this potential configuration. The reason for the different spin expectation values of the two
manganese atoms is the spatially dependent alignment of thehole spin. To describe the spatial
change of the hole spin we defined in appendix A the polarisation π(x). It is the expectation
value for the hole spin at positionx normalised by the total hole density at this point. At the site
of the central impurity we haveπ(0, 0, 1.9nm) = 1.496. At the site of the second impurity it
amounts toπ(6.2nm, 0, 1.9nm) = 1.400. Without an external magnetic field the hole spin is
the only influence on the spin of the manganese. The manganesespins align according to it, i.e.
antiparallel. The overall variation of the polarisation inthe dot is rather small. Figure 3.20 shows
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the form ofπ(x) in the plane containing both impurities withz = 1.9 · 10−9 nm for the strongest
dot potentials(5 · ω0 F = F0) atB = 0 T. A stronger deviation from the mean value of the hole
spin occurs only at the very edge of the hole density.
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Figure 3.20: Polarisationπ of the hole (blue curve) normalised to the
hole density. The red(green) line shows the position of the central(off-
axis)Mn atom. The orange curve shows the total hole density nor-
malised to its peak value.

The coupling of different spin states is most prominent whenstates with the appropriate spin
alignments (see Eq. 3.14) are close in energy, e.g. when theycross. AtB = 0 T all states
are doubly degenerate. This is in contrast to the case with one off-axis impurity. In that case,
for those potentials values one doublet splits. The spin expectation values of the hole and the
manganese in these states become nearly zero. This difference is again consistent with Kramers
theorem. The total spin of the particles is not an integer number anymore. So, without a magnetic
field each state must be at least doubly degenerate due to the time-inversion invariance. Without
magnetic field the spins align according to thepd interaction. The states with the largest negative
pd energy,|S1Z = 5/2〉 |S2z = 5/2〉 |jz = −3/2〉 and |S1z = −5/2〉 |S2z = −5/2〉 |jz = 3/2〉
form a degenerate ground-state doublet. The ground state inthe whole calculated range of the
magnetic field is the one with dominant spin states|S1z = 5/2〉 |S2z = 5/2〉 |jz = −3/2〉. This
is due to the large negative Zeeman energy of the two manganese spins in this state. Thepd
interaction then aligns the hole antiparallel to them. The only state with larger negative Zeeman
energy is the one starting at the top of the spectrum, where the spin of the hole is aligned parallel
to the manganese atoms. The slopes of both states in the magnetic field are parallel. The gain in
Zeeman energy of the hole is compensated in this dot potential configuration by the band cou-
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pling. Even for magnetic fields several times larger than the1 T in our calculation we can expect
that the ground state will not change. The next higher statesdiffer only in the spin alignment of
the off-centre manganese atom. In the first excited state it flips to the|S2z = ±3/2〉 state7. It is
energetically favourable to change this spin because of thelower hole density at its site and thus
a lowerpd interaction energy in comparison with the centre atom. The splittings between all the
doubly degenerate states atB = 0 T are not equidistant. This is due to differentpd interaction
energies of the two manganese impurities. When the density of the hole is equal at both impurity
sites and the spin expectation values of both manganese atoms are comparable, thepd interaction
of the two atoms with the hole is the same. In this symmetric case the states atB = 0 T then
will group in eleven tuples according to the eleven possiblevalues ofStot = S

(1)
z + S

(2)
z with

Sz ∈ {−5/2... + 5/2}. This result was already found by Fernandez-Rossier in [70]. In each such
tupleStot is then (roughly) constant. Due to the positioning of one manganese in the centre and
one far away on thex axis in our investigations we never had such a symmetric case. The hole
densities differ strongly and thus thepd interaction. We can achieve equal densities of the hole
at the manganese sites when we align the impurity atoms at equal distances from the centre op-
posite to each other. A general scheme for the ordering of thedifferent spin alignments atB = 0

T can be constructed as follows: For each of the six alignments of the spin of one impurity and a
particular spin of the hole, there are six equidistant states belonging to the six alignments of the
spin of the second impurity. The splitting in this six-tupleis proportional to thepd energy of the
second atom. The energetic splitting between similar states in two different six-tuples, i.e. with
different alignment of the first impurity, is determined by thepd energy of the first impurity. If
no accidental degeneracy occurs we end up with at most36 doubly degenerate states. In each
of the36 doublets the spin alignments of all particles in one state isjust opposite in sign to the
respective spins in the other state. In the present case the splitting between two alignments of the
off-centre impurity amounts to0.032 meV while the difference for the on-axis impurity amounts
to 0.155 meV. According to this values and following the mentioned scheme we notice that in
the lowest four (doubly degenerate) states the spin of the first impurity is maximal antiparallel
to the hole. The second impurity takes four different statesmeanwhile. In the fifth doublet the
central impurity flips once while the second is maximal antiparallel to the hole and so on.
In figure (3.4.1) we see the spectrum of a dot with axy potential of5 · ω0 and az potential of
F0. The splitting between the highest and lowest state drops incomparison with the former case
to 0.543 meV. The hole density at the manganese sites differs now lessthan in the preceding
configuration. The peak of the hole density is1.59 nm from the centre and the hole density at the
off-axis manganese site is about35% of the value of the central manganese. The lowering of the
z potential compared to the former potential configuration changes the position of the hole in the
xy plane. This is an effect of the competition between the dot and the acceptor potentials. By
lowering of the confinement inz direction, the hole density becomes more elongated in this di-

7This means that the dominating spin basis state changes in this eigenstate. The manganese spin is not a good
quantum number.
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rection. The spread of the hole in thexy plane is then lowered. This changes the potential energy
of the hole in the strongxy dot potential as well as in the both acceptor potentials. Thebalance
between all three of them changes and the density of the hole is shifted. This effect corresponds
to the one described for the one hole and one off-axis manganese with dot potentials(5 · ω0 F0).
Remarkable is the low total energy of the system. The eigenstates lie almost at the valence band
edge of bulkGaAs, which we took to be our zero energy point. This is in consistence to the other
configurations. The energy difference due to the differentz confinements of ajz = ±3/2 hole
in the configuration(5 · ω0, 4.3 · F0) and the present one(5 · ω0, F0) is about65 meV. For even
stronger dotxy potentials or manganese atoms placed closer together the energy of the system
will rise over the edge of the valence band. The ground state again has the dominant spin states
|S(1)

z = 5/2 > |S(2)
z = 5/2 > |jz = −3/2 >. With the strong band coupling the spin alignment

of the hole is determined by this effect. So even without the interaction with the manganese
spins the hole will be aligned opposite to the Zeeman term. The stronger band coupling in this
potential configuration lowers the absolute hole spin expectation value and changes its spatial
distribution. It amounts to1.483 at the central impurity site and1.333 for the off-axis impurity.
The manganese spins expectation values change accordingly. While the central impurity does
not change much the off-axis value is lowered. The energy change due to a flip of the central
impurity atB = 0 T amounts to0.078 meV, for the off-axis impurity to0.027 meV. For the off-
axis impurity the change in thepd interaction energy due to the changed dot potentials does not
follow the change of the hole density at this impurity site asseen in the previous configurations.
The ratio of the hole density at the site of the off-axis manganese in the present configuration
to the(5 · ω0, 4.3 · F0) configuration amounts to0.900. The ratio in thepd interaction energies
amounts to0.855. The interaction energy drops stronger than the hole density. Thepd interaction
energy of the central impurity follows the change in the holedensity. None of the spin compo-
nents of any particle is a good quantum number. The change in thepd interaction energy of the
off-centre impurity with the change of the hole spin is only asmall effect in this configuration.
To investigate further the mechanism, configurations are needed where the change in the hole
spin is larger.
For the dot configuration withω0 andF0 in figure (3.4.1) the splitting between the highest and
lowest states drops to0.13 meV. This is due to the low density of the hole at the manganesesites.
The peak density of the hole is at4.5nm while the off-centre impurity is located at14nm for this
potential configuration. The density at the off-centre manganese amounts to40% of the in-centre
value. The spins expectation values of both manganese and the hole stay in most part of the
spectrum close to the eigenvalues of their corresponding operatorsŜz and ĵz, i.e. the coupling
of different spin states is low in comparison to the preceding configurations. Nevertheless, it is
higher in comparison to the dot with only one off-centre manganese. In such a dot the impurity
acceptor potential strongly attracts the hole towards its position. The spherical symmetry around
the impurity is then destroyed only slightly by the relatively weak dot potential. With two im-
purities the hole is localised in between the two spherical potentials of the acceptor atoms. The

77



Chapter 3. Quantum Dot With Holes

circular symmetry is violated strongly. This again enhances the coupling between the different
spin states. The ratio of the dot potentials, however, leadsnot to a strong band coupling. So the
second requirement for the strong coupling of the spins fails. UntilB = 0.8 T the lowest state
is the one with the dominant spin components|S(1)

z = 5/2 > |S(2)
z = 5/2 > |jz = −3/2 >.

Here the anti-ferromagneticpd interaction between the hole- and manganese spins dominates.
Already atB = 1 T the state with the biggest Zeeman energy becomes the groundstate, which
is the one with same manganese spins and with the hole spin|jz = +3/2〉. These two states
exhibit an anticrossing. Between0.8 T and1.0 T the expectation value of the hole spin〈jz〉 in
each of these states drops to zero and rises again with the opposite sign. The manganese spins do
not change in the meantime. Such anticrossings appear also in several of the next higher states
at lower magnetic field values. Different from the former configuration this anticrossing does
not result from couplings between the states by thepd operator. This can be seen because the
spin expectation values of the manganese are not lowered during this anticrossing. The origin
of the coupling is the violation of the circular symmetry by the off-axis acceptor potential. The
anticrossing in the lowest states can also only occur, because for these dot potentials the hole
spin at higher magnetic fields is determined by the Zeeman energy. For higherxy potentials the
crossing will shift to higher values of the magnetic field andfinally disappear.

In conclusion we see, without magnetic field the hole inGaAs can align the spin states of
two manganese atoms (almost) parallel. Due to the time inversion invariance the states with op-
posite spins are energetically degenerated. In optical experiments holes with a definite angular
momentum can be created inside a quantum dot by applying circularly polarised light. Recent
investigations show that the hole spin lifetimes(T h

1 ) in a quantum dot can reach even some tens
of µs [83]. Calculations suggest even larger(T h

1 ) can be reached for single holes with well sep-
arated subbands [84]. Theoretical work [85] and experimental investigations onCdTe quantum
dots show that exciton spin can align impurity spins ferromagnetically within its Bohr radius
[86], [87]. The exciton recombination time is of the order ofhundreds ofps. Recently inCdTe
dots manganese orientation times of20 to 100nm were measured [88]. In this material also the
control of manganese spins in quantum dots was shown [89]. Also the longer lifetime of the hole
spin inside theGaAs dot suggests that the manganese spins can be aligned parallel. Polarisation
of manganese spins in a diluted magnetic semiconductorGaAs quantum well has already been
shown [90].
The thermal stability of the ferromagnetic state depends onthe energetical separation between
the different spin eigenstates of the system. This, in turn,crucially depends on the density of the
hole at the sites of the impurities. Also the densities must be equal for both impurities to get the
largest minimal splitting between the states. So, the localisation of the hole wave function inside
the dot also matters. To maximise the hole density at all manganese impurity sites the impuri-
ties must be positioned symmetrically around the centre of the dot. Yet, this distance must be
large enough for the short-ranged anti ferromagnetic mutual interaction of the manganese spins
to vanish. Also a strong band-coupling can couple differentspin states of the manganese and
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Figure 3.21: Energy of a hole and 2Mn atoms in centre and14nm

from centre,xy potential ofω0 andz potential ofF0.
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Figure 3.22: Energy of a hole and 2Mn atoms in centre and6.2nm
from centre,xy potential of5 · ω0 andz potential ofF = 30 mV/nm.
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Figure 3.23: Energy of one hole and 2Mn atoms in centre and6.2nm
from centre,xy potential of5 · ω0 andz potential ofF = 7 mV/nm.
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thus hinder the ferromagnetic ordering.

3.4.2 InAs Dots

Finally we calculated the spectrum of two manganese impurities in anInAs quantum dot. Again
the ordering of degenerate doublets atB = 0 T depends on the ratio of the hole densities at the
sites of the two manganese atoms. As in the case of one manganese impurity the spectrum again
divides into two fans at higher magnetic fields. In all statesof the lower fan the alignment of
the hole spin is according to the Zeeman term, in the higher one it is opposite to this term. This
shows the dominance of the hole spin in the magnetic field forInAs. There is only one de-
viation from this scheme. Both states forming the lowest doublet atB = 0 T develop nearly
parallel in the magnetic field and their slopes are nearly horizontal. In both of these states the
two manganese spins are aligned maximally antiparallel to the hole spin, i.e.|jz = ±3/2 > and
|S(1)

z = ∓5/2 >, |S(2)
z = ∓5/2 >. The lower one has the hole spin aligned according to the

Zeeman term with|jz = +3/2 >. The energy of the states is mainly determined by the Zeeman
terms. So, we can conclude from the horizontal dispersion ofthe states that the Zeeman energy
of the two manganese is only slightly lower than the Zeeman energy of one hole inInAs. These
two states are the ground states until aboutB = 0.2 T. Then, betweenB = 0.2 T andB = 0.7

T, the ground state is|jz = +3/2 >, |S(1)
z = −5/2 >, |S(2)

z = +5/2 >. In this state the off
centre impurity flips at the cost of thepd interaction energy with the hole. Again this energy is
lower for the off-centre impurity. BeyondB = 0.7 T all three spins are aligned according to their
Zeeman terms. The double change in the ground state was not seen in any of theGaAs quantum
dots. The reason for it is the fact that the Zeeman energy of the hole is larger then this energy
for one of the manganese atoms. This can be easily verified using a simple model. We assume
the spins of the particles to be conserved and in the vicinityof the eigenvalues of the respective
operators. We also assume that the energies of the states aredetermined only by thepd interac-
tion and the Zeeman energy. The Zeeman energy of a hole will beapproximately±3/2κB while
the energy of the manganese will amount to±5/2gµBB. We then calculate the crossing points
of straight lines with slope determined by the Zeeman energyof the state and offset determined
by the spin dependentpd interaction in the state. Then, one can easily show that there will be
always a double change as long as the Zeeman energy of one holeis larger than the maximal
Zeeman energy for one manganese. The overall splitting atB = 0 T amounts to0.659 meV. This
is 70.9% of the value for theGaAs dot with the strongest confinement used there. In the present
InAs dot the confining potentials are even stronger. Thez confinement is the same and thexy
confinement1.6 times as strong. It is, however, not possible to easily calculate this value from
e.g. the change in effective length due to the different holemass and changed confining potential.

In InAs the interaction of the confined hole with the manganese impurities is less pronounced
compared toGaAs. The lighterxy hole mass lowers the hole density at the impurity site sub-
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stantially and thus thepd interaction. On the other side the strong Luttinger parameterκ makes
the influence of the magnetic field dominant for the hole states. The actual strength of thepd
interaction depends, however, on the unknown value of the interaction constantJpd(InAs). In
InAs we have the possibility to control the alignment of at least two manganese atoms. Be-
tween0 and0.2 T the presence of a single hole in the quantum dot inverts the alignment of the
two manganese spins. By changing the magnetic field we can manipulate their spin alignment
further. The double change in the ground state allows to manipulate the off-axis spin even sep-
arately from the central one. This kind of control is not longer possible in a system with three
manganese atoms. Their joint Zeeman energies are larger than the Zeeman energy of the hole.
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Figure 3.24: Energy of a hole and 2Mn atoms in centre and7.18 nm
from centre,xy potential of6.3 · ω0 andz potential ofF = 30 mV/nm.

3.5 2 Holes with Manganese

In this section we want to report on the impact of a second holein a quantum dot with manganese
impurities. In this configuration all considered interactions contribute to the eigenstates of the
dot: confining potentials, magnetic field, acceptor potentials of the manganese,pd interaction
of hole and manganese spins and finally the mutual repulsion of the holes. First we want to
consider the interaction of two holes with only one manganese impurity. We will present here in
detail the dependence of the eigenstates on the manganese position and the confining potentials.
Finally we will look at a dot with two holes and two manganese impurities. We will use the
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three potential configurations known from the preceding sections and also the same manganese
positions. Recent theoretical work on the cyclotron resonance of one and two conduction band
electrons in a quantum dot with a manganese impurity can be found in [91], [92].

3.5.1 2 Holes, 1 Manganese

The ground state of a dot with two holes and without a manganese atom is not degenerate and
has a total angular momentum ofM = 0. The holes are in a singlet state with their the spins
jtot
z = j

(1)
z + j

(2)
z = 0 and orbital angular momentaz componentsm1,2 pointing exactly opposite

to each other atB = 0 T. With the addition of the manganese atom the holes stay in the singlet
in any of our potential configurations. The hole singlet state interacts with the six manganese
states. So, the low part of the dot spectrum constitutes of six states. These are separated by some
meV from the next higher ones. In these lowest states, due to the opposite alignment of the hole
spins, the interaction of one hole with the manganese atom iscompensated by the interaction
of the other hole. So, in all the three considered configurations of the dot potentials,(ω0, F0),
(5 · ω0, F0) and(5 · ω0, 4.23 · F0), the ground state atB = 0 T is sixfold degenerate. The total
pd interaction energy is zero. This changes little when we turnthe magnetic field on. Due to
the different band mixing in the two lowest one-hole states in the magnetic field the spins of the
two holes develop slightly different. The interactions of the two holes with the manganese do
not compensate each other any longer for higher magnetic fields. This effect, however, is only
small in the calculated range of the magnetic field. The degenerated states are still split mainly
due to the different alignments of the manganese spin and thus due a different Zeeman energy.
The influence of the small hole-spin expectation value due tothe incomplete compensation of
both spins in the magnetic field is negligible in comparison to the manganese Zeeman energy.
The state with manganese spinSz = 5/2 is the lowest one. As depicted in the two-hole spectrum
in figure 3.5 a different state becomes the ground state around 8.5 T. At this point two two-hole
states are close in energy. In both of them the totalpd interaction of the two holes with the man-
ganese does not vanish. So each of the two-hole states splitsinto six states according to the six
possible alignments of the hole spin to the manganese spin. At such high magnetic fields thepd
interaction plays an inferior role. The cancellation of thepd interaction for two holes in aCdTe
quantum dot was also found in ref. [55]. Also the slow increase of thepd interaction for the
ground state in the magnetic field was mentioned there.
We will not show the calculated spectra for lack of new interesting features in the low magnetic
field regime. In high fields the states are determined by theirZeeman energy and thepd interac-
tion has no influence. Nevertheless, it is instructive to take a look at the energies of the ground
state of the system for different configurations. Table 5.2 shows the energies of the lowest eigen-
state for a dot with two holes and one manganese atom in the centre (row C) and on off-centre
on thex axis (row X). The columns belong to the three configurations of the dot potentials used
before.
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3.5. 2 Holes with Manganese

(1) ω0 , F0 (2) 5 · ω0 , F0 (3) 5 · ω0 , 4.3 · F0

C 57.21 meV 62.06 meV 189.00 meV
X 64.24 meV 77.76 meV 217.27 meV

Table 3.1: Ground state energies forB = 0 T, three potential configurations, a manganese in the
centre (C) and off-centre (X).

By comparison of these values to the ones for a dot with one hole and one manganese we can see
the impact of the mutual repulsion between the holes. Without this mutual repulsion the energy
in the present configurations should be just twice the one-hole one-manganese value as long the
orbital movement of the holes is considered (see figure 3.10). Now, in the configuration with
the weakest dot potentials (column(1)) and the manganese in centre (row C) the energy of the
ground state is about10 meV higher. This is the same order of magnitude as the transition to the
next excited many-particle state in the dot. The states nextto the six degenerate ground states
lie about8.6 meV higher in energy. We clearly see that the mutual repulsion cannot be consid-
ered small in this potential configuration. With increasingconfinement potential the influence of
the Coulomb energy falls. Nevertheless, for the configuration with the strongest dot potentials
(column(3)) the additional Coulomb energy as well as the orbital excitation energy amount both
almost to20 meV. So even in that case the repulsion is remarkable. We wantto stress again that
we have not taken into account the central cell correction. It would increase the localisation of
the hole in the vicinity of the manganese impurity and rise the Coulomb repulsion further.
The cancellation of the hole-manganese interaction occurs, however, only in the ground state. In
the excited states thepd interactions of the two holes do not compensate each other any more.
The states of the holes are also doubly degenerate. So the spectrum of these states is comparable
to the ground state of the one-hole configuration treated in preceding sections. Each of the higher
doubly degenerate two-hole states is split into six doubly degenerate states by the interaction with
the impurity. The total splittings of these states are small. They lie below0.1 meV in the first
configuration and below0.7 meV in the third.
The energies of the ground states are lowered strongly in comparison to a dot without the man-
ganese impurity. In the standard potential configuration with the manganese in the centre the
relative change is the strongest. The energy is lowered by about34 meV. This lowering is, how-
ever, reduced in comparison with the one-hole configuration. In a dot with standard potentials
the total energy-reduction due to the acceptor potential amounts to≈ 20.2 meV. Without mutual
repulsion we would thus expect for two holes a reduction of the double value. The influence
of the acceptor atom is also seen in the particle number densities of the holes (see Fig. 3.25).
In all the configurations with the manganese atom in the centre of the dot the densities of the
lowest and the first excited states are all approximately of Gaussian shape. In comparison to the
dots without the manganese the hole becomes now stronger concentrated in the centre of the dot
around the acceptor impurity. None of the holes is, however,in a state comparable to the acceptor
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Chapter 3. Quantum Dot With Holes

state in bulk. While in bulk the extend of the hole wave function is1 − 2 nm [71], the extend of
the wave function of the two holes in the dot amounts to several nm. The dot potentials repel the
holes from the very vicinity of the acceptor atom. A discussion about other possible localisations
of the two holes in a dot with acceptor is given further down.
For the dot potential values chosen by us the ground states inthe configurations with the man-
ganese off-centre (row X) behave very much as in the one hole case. The densities have all a
single peak between the dot centre and the acceptor atom (seeFig. 3.26). The positions of the
peaks are slightly shifted towards the dot centre. This can be attributed to the larger extend of
the two-hole wave function. On large distances in thexy plane from the dot centre the potential
of the dot becomes dominant. So, larger wave functions are influenced stronger by the lateral
dot potentials. For dots with an off-centre manganese the spins of the two holes do no longer
compensate each other even atB = 0 T. This is a consequence of the broken circular symmetry
of the combined potentials confining the hole. The splittingof the states due to thepd interaction
is, however, very small. For the configuration(X, 3) we found a splitting of merely0.0008 meV.
This value lies at the limit of our computational accuracy. For the potential configurations with
weaker dot potentials this splitting was even smaller. A further spliting of the ground states of
the dot can be achieved by applying an additional elliptic potential in thexy plane. We added to
the(X, 3) dot configuration a harmonic potential iny direction making the lateral dot potential
elliptic. The additional potential had the same strength asthe circular potentialKe = K0 (see
Eq. 2.60). In such a dot the splitting of the six lowest statesrises to0.0058 meV. This is still very
little in comparison to the splitting for one hole.
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Figure 3.25: Densities of the two-
hole ground state in the configurations
(C, 1)(black),(C, 2)(blue),(C, 3)(cyan).
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Figure 3.26: Densities of the two-
hole ground state in the configurations
(X, 1)(black),(X, 2)(blue),(X, 3)(cyan).

We have seen that the two-hole groundstate in our potential configurations is a singlet and the
interaction with the manganese vanishes. Nevertheless, the ground state of the dot with a man-
ganese acceptor impurity and two holes is particularly interesting. There are hints (see below)
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3.5. 2 Holes with Manganese

that the ground state can have also a very different character. The character of the spin alignment
of the holes can change significantly depending on the dominance of the participating potentials.
In all the potential configurations investigated by us the dot potentials were dominant. The hole
was not localised in the very vicinity of the acceptor. Thus the influence of the spherical accep-
tor potential on the band mixing was small. The splitting of the light- and heavy-hole bands by
the strong dotz confinement determined the character of the hole spin as an effective two-level
systemjz = ±3/2. In the case of a manganese acceptor in bulkGaAs thez spin components of
one hole bound to the acceptor (A0 configuration [69]) are not separated. In this case the total
angular momentumF = J + S (not merely itsz components) of the hole and the manganese
is a good quantum number. The ground state of this complex is theF = 1 state [53]. When
the acceptor is placed in a quantum dot and the dot potentialsare weak in comparison to the
acceptor potential they can merely perturb this configuration. The lowest states|F = 1, Fz〉 are
then split slightly. For oblate shaped dots the|F = 1, Fz = 0〉 state is then shifted upwards and
the|F = 1, Fz = ±1〉 states are shifted down.
For two holes interacting with the manganese acceptor in thedot also the relation of the dot
and acceptor potentials to the strength of thepd interaction is crucial. For two conduction band
electrons in weak dot potentials and in the presence of a magnetic field or a magnetic moment
the ground state can change from a singlet to a triplet state [93], [94], [95]. Then also for two
particles there will be a noticeable exchange interaction with the impurity spin. Such transitions
have also been postulated for quantum dots with holes [96]. To form a triplet, the holes have
to be in different orbital states. Using the magnetic field inour weakest dot potentials (config-
uration(1)) such a transition occurs in our spectrum beyond8 T. Accounting for the magnetic
moment of the manganese thepd interaction has to be stronger than the dot confinement. We
can enforce such a transition in our calculations by artificially enhancing the realistic value of
thepd interaction constantJpd ≈ 40 meV nm3 by a factor of20. As long as the ground state of
the system is concerned and no spontaneous, e.g. thermal, excitations to higher states occur, our
system is certainly far away from the transition to a tripletin all considered potential configura-
tions. To find the right potential regime a careful investigation has to be done. Thepd interaction
is determined by the density of the hole, but to increase the density the confinement and so the
quantisation energy have to be raised. For weaker confinements the Coulomb energy can also
support a transition. Therfore, the two-hole configurationmay show a different behavior in its
ground state than for one hole. The results on the ground state of two holes with the acceptor
impurity presented here can, however, be attributed to a regime, where the ordering of states is
determined by the dot potentials.
There were experimental [73], [97] and theoretical [98] investigations on the photoluminescence
of self assembledInAs quantum dots containing a single manganese impurity. The photolu-
minescence of optically injected excitons was measured. The obtained spectra were interpreted
in terms of the recombination of a neutral excitonX0. The model used to interpret the spectra
assumes in the dot without an exciton a hole bound to the manganese impurity (A0). The exciton
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Chapter 3. Quantum Dot With Holes

then interacts with this hole-acceptor complex. One hole islocalised strongly in the vicinity of
the acceptor. With its spin the hole forms the slightly split|F = 1, Fz〉 states. So the influence of
the dot potentials on this hole is very weak. The spin of the exciton hole is totally determined by
the dot potentials, i.e. itsjz = ±3/2 andjz = ±1/2 spin states are strongly split due to the dotz

confinement. This strong difference in the splitting of the different spin statesjz of the two holes
is unusual. The form of the confinement landscape has a very strong influence on the hole spin
in this situation.

In our calculations we have not seen a non-singlet ground state. This is also in accordance
with other investigations [56]. The search for the configuration of potentials yielding the unusual
two-hole state mentioned above has to postponed to future work. We have to investigate another
potential regime than the one under current treatment. Due to the computational costly calcu-
lation of the matrix elements describing the Coulomb repulsion of the holes and the acceptor
potential of the manganese it is not possible within our approach to easily change the potential
parameters. Thus we have to stick to our decision on the potential strengths made at the be-
ginning of our investigations. Of particular importance seems the integration of the central cell
correction into our model.

3.5.2 2 Holes, 2 Manganese

We use in this section the familiar dot potential configurations. We investigate then the inter-
action of the two impurities and the two-hole state. For all examined configurations the ground
state of the system is a singlet state. The interaction with the manganese atoms vanishes. The
hole singlet-state is not degenerate so the ground states ofthe system consist of this single two-
hole state and the36 possible alignments of the two manganese spins. All states are degenerate
without magnetic field. In the magnetic field the degenerate states split up in11 bunches ac-
cording to the possible values of the total manganese spinz componentStot = S

(1)
z + S

(2)
z . As

described in section 3.4, when thepd interaction of the hole with the manganese is equal for both
atoms, the states become degenerate. Here the interaction is zero at both manganese sites. As in
the case of one hole the potential of two acceptor atoms compete. This lowers their influence on
the hole.
The presence of the second hole effectively destroys any ferromagnetic alignment of the man-
ganese atoms in the dot. The very weak splitting due to the off-centre impurity, seen for one
manganese atom in the(X, 3) potential configuration, is not visible any more. This is mainly
due to the lower density of the hole at its site. So the hole states follow a shell-structure (at least
for two-holes) as shown for electrons [99], [100] with vanishing pd interaction for filled shells.
At aboutB = 8 T the lowest two-hole state changes and a non-zeropd interaction occurs. It has,
however, no influence on the hole and manganese spin alignment for such large magnetic fields.
In [101] a system of several electrons and of two manganese impurities is investigated. There

86



3.6. Precision of the calculations

also the effects of RKKY interaction are included for singlet many-particle states.

To sum up we have shown that for all investigated potential configurations with two holes
the ground state is a spin singlet. In this state the particular pd interactions of the two holes
cancel each other. The splitting in the ground state can occur, when the confining potentials
have no circular symmetry. The energy difference between the splited different alignments of
the manganese spin stays below0.005 meV. The vanishing of thepd interaction for two holes
makes it possible to effectively control the magnetic properties of the quantum dot by the control
of the charge inside the dot. The density distribution and spin alignment of the holes in a dot
with a manganese acceptor impurity is strongly dependent onthe relative strengths of the dot
and acceptor potentials. Also the central cell correction may have a large influence.

3.6 Precision of the calculations

Due to the fact that most of the preceding results were obtained numerically we have to discuss
the precision obtained in these calculations. In the procedure of exact diagonalisation used here
the approximation in the calculations occurs by the truncation of the basis we use to represent the
Hamiltonian. Each term of the Hamiltonian has to be represented in all the basis states. For a dot
with only one hole most of the matrix elements describing thexy confinement can be calculated
analytically. Confinement inz direction requires to include only a few basis states because it
is stronger in comparison to other potentials. The corresponding matrix elements were calcu-
lated numerically with high precision. Other terms like themutual repulsion of the holes and the
acceptor potential of the manganese atoms required very costly numerical integrations. These
were the strongest constraints in the choice of basis size and thus the achievable accuracy. The
model used by us simplifies the actual physical system considerably. Many important terms were
dropped. The central cell correction is known to change the eigenenergy of the ground state of
a hole bound to a manganese acceptor by at least50 meV inGaAs. The strain in theInAs can
shift the light-hole bands even more [27], [102] . In these systems we cannot expect to get the
correct absolute values for the eigenenergies. However, wealways strived to grasp all important
features of the investigated systems and let not an insufficient basis blur the effects. The drop
of the central cell correction was certainly the biggest cutinto the precision of the calculations.
While it certainly does not change the quality (e.g. hole spin alignment in the ground state) of
the results it will certainly shift the found regimes. Also it would have a strong impact in weak
dot potential regimes. We will in the following discuss the quality of the calculations for the
different dot configurations.
For most configurations we were only interested in the eigenstate of the system with the smallest
energy. For a convenient choice of the basis states one expects the ground state to be the one with
the best approximation to the real eigenstate of the physical system. In general many operators
have off-diagonal elements in the various terms of the Hamiltonian. Then an addition of basis
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states enhances the interaction of basis states and thus repulsion of eigenstates. Their energy then
changes. They converge to a limit, which is their true eigenenergy. There is no simple criterion
how fast the convergence will be. However, we can expect thatthe change in ground-state en-
ergy by addition of one basis state will be strictly monotonically decreasing. The value of such a
change relative to the other important energies of the system can give us a clue on the accuracy
of our calculations. Another hint is the character of the eigenstates. In general each eigenstate
will contain almost all basis states. When now in a calculated eigenstate, the probability of the
system to be in one of the high basis states near the basis cut off is infinitesimally small, the
basis size is sufficient. An addition of more basis states will then not change the character of the
eigenstate very much. Also the relative strength of the terms in the Hamiltonian is important.
The basis states reflect the symmetry of the dot. With increasing dot potentials strength in com-
parison to other terms, especially the acceptor potential,these weak therms will become merely
a perturbation. We can thus expect that for strong dot potentials the approximation to the actual
eigenstate will be better with the same number of basis states, than for weak dot potentials. The
confinement inz direction is very strong in comparison to all other terms in the Hamiltonian.
The system always stays mainly in the lowest basis state. A change of thez basis size has little
influence on the eigenstates.
The eigenstates of a dot only with a single hole can be calculated in our model to almost any
considerable precision. The spectrum in figure 3.1 was calculated using20 basis states for the
xy motion (Fock-Darwin states) and two states for the each holemass to describe thez motion.
By lowering thexy basis size to4 states in thexy direction gives a change0.001 meV while
the absolute value of the eigenenergy in this state is43.614 meV. In the calculations containing
the Coulomb repulsion and the acceptor potentials we tried to take the maximal possible number
of basis states. We prove the accuracy by reducing the basis sizes and comparing the change to
the absolute value of the eigenenergy of the ground state. Typically the addition of a basis state
changes the calculated energy less, than the removing of a basis state. So the presented energy
change can be considered as an upper bound to the change in energy while the basis changes
by one state. The standard potential values with the lowest dot confinement should be most sus-
ceptive to the basis size. In the calculations of the two holespectrum with standard potential
values the reduction of the one-particlexy basis size by one state from their maximal number
results in a change of the ground-state energy of0.262 meV. The absolute eigenvalue is89.951

meV. This is a change of0.3%. We can expect that our calculated value deviates not more than
1% − 2% from the actual value. For configurations with stronger dot potentials this deviation is
again even smaller. When considering the acceptor potential the crucial configuration is the one
with the off-axis manganese atom and standard dot potentials. The off-axis position contradicts
strongly the symmetry of the basis states. This makes it necessary to use more states to resolve
that symmetry. For this configuration the accuracy of our calculations is lower in comparison to
the preceding. A reduction of one state in thexy basis changes the eigenenergy of the lowest
state by about0.0029%. We can, therefore, expect that our calculations will deviate at most by
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a few per cent from the actual value. With stronger dot potentials the influence of the acceptor
potential will fall and the basis states resemble more the exact eigenfunction. With the same
number of basis states the approximation should become better. For the calculations including
two holes and one manganese we investigated the configuration (X, 1). Here we found a devi-
ation of0.67% in the ground-state energy with the reduction of one lateralone-hole basis state.
This deviation is the largest among all calculated configurations. We can expect that with the
addition of one basis state the energy of the ground state will differ by several pro cent. We want
to stress that we could properly represent the controversial ground state in the configuration with
standard dot potentials and one manganese in the centre, albeit without the central cell correc-
tion.
All the reached computational precisions can be strongly enhanced by using more basis states.
The only restriction is the computational time needed to calculate the matrix elements that rep-
resenting the acceptor potential and the Coulomb interaction.
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Chapter 4

Conclusions and Outlook

In this work I have investigated the interaction of up to two manganese impurities with up to three
holes in different quantum dots. The changing dot potentials and the magnetic field influenced
this interaction in many ways. The most widely investigatedtopic is the influence of the hole
band mixing induced by varying ratios of the lateral potential to the potential in growth direction
of the dot. We found that in the case of a small mixing of thejz = ±3/2 and thejz = ±1/2

Bloch bands, e.g. because of a large subband splitting, the hole behaves very similar to a con-
duction band electron with an effective two-level spin ofjz = ±3/2. This similarity appears
in the shell structure of the quantum dot, the Coulomb energyin the dot and in the interaction
with a manganese impurity. When the band coupling increasesthe dot shell-structure becomes
blurred. The Coulomb energy stays almost constant with increasing confinement and several
mutual alignments of the hole and the manganese spin begin tomix.
The ground state of a manganese acceptor in a quantum dot withholes crucially depends on the
ratio between the acceptor potential and the dot potentials. If the acceptor potential dominates,
the lowest state differs little from a bulk acceptor state. In contrast, in this work I concentrated on
the regime dominated by the dot potentials. Especially the splitting of the light- and heavy-hole
bands by a strong confinement in growth direction changes thecharacter of the ground state. It
then consists of six doubly-degenerate states. The splitting between the doublets is solely de-
termined by the density of the hole at the position of the impurity. Elliptic lateral dot potentials
as well as an off-axis manganese position can break the degeneracy but only in some of the
doublets, only for dot and acceptor potentials of comparable strength and only for strong band
mixing. InGaAs dots in magnetic field the spin alignment of the manganese is solely determined
by its Zeeman energy. The hole has no influence on it. The hole aligns for weak fields antifer-
romagnetically with respect to the manganese spin. If it canalign ferromagnetically for stronger
fields depends again on the band mixing. InInAs on the other hand the hole determines the
alignment of the manganese spin. The manganese is then aligned opposite to its Zeeman term in
weak fields. I have shown the ferromagnetic coupling of two manganese atoms by a single hole
and the determined the position of the two impurities, whichmaximises this coupling for a given
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dot potential. With the addition of a second hole the coupling can be turned off. In the dots, su-
perposition of quantum states can be created and destroyed by means of confining potential and
magnetic field. This may be interesting for the realisation of quantum bits. In anInAs dot with
two manganese atoms their spins can be flipped independentlyby a change of the magnetic field.
This results suggest that once the technical difficulties concerning the controlled implementation
of impurities in nanostructures are solved, we obtain a richtool kit for the investigation of quan-
tum mechanical systems and for the design of material properties.
The theoretical investigations in my work yielded a number of interesting results which still lack
an experimental validation. The main drawback is the lack ofexperimental data to validate the re-
sults and give the present problem new impulses. Cyclotron resonance techniques on single dots
enlightening their inner structure are difficult. The investigation of the small, self-assembled
quantum dots via photoluminescence is now well establishedand attains much interest. Con-
cerning the used model, now at the end of my work it appears, however, a draw-back that I have
neglected the central cell correction in my simulations. Incontrast to older publications new
hints point out its importance to the interaction of the holeand the manganese.
As a continuation to this work it would be useful to implementthe central cell correction. Also
a concentration on the characteristics of the self-assembled quantum dots can put the work on
a broader experimental footing. In this field the present quantum dot model will perform very
well. In my belief, it is capable to give a quantitative description of the experiments. Staying in
the field of toy models, investigations on the realisation ofquantum bits are possible. The present
numerical routine is very appropriate to simulate influences of the geometry of nanostructures on
quantum mechanical states like the spin of the confined holes. With the ever rising computational
power numerical simulations become more reliable and potent.
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Chapter 5

Appendix

5.1 Polarisation

The eigenstates of holes in the quantum dot are not eigenstates to the hole spinjz. The expecta-
tion value of the spin can vary spatially. We define the spin density operator by [49]

Sz(x) =

3/2
∑

s=−3/2

sψ+
s (x)ψs(x). (5.1)

The field operatorsψ+
s (x)ψs(x) represent the particle-number densityρs of spin-s particles at

pointx. The total density at this point is then

ρtot(x) =

3/2
∑

s=−3/2

ρs. (5.2)

We define the polarization by dividing (5.1) by the total density

π(x) =
1

ρtot(x)

(

3

2
ρ3/2(x) +

1

2
ρ1/2(x) − 1

2
ρ−1/2(x) − 3

2
ρ−3/2(x)

)

. (5.3)

For an eigenstate tôjz, e.g. the eigenstatejz = 3/2, the quantity above gives what one would
expect: a constant value of3/2 over the whole dot.
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5.2. Coefficients for relative coordinates

5.2 Coefficients for relative coordinates

To calculate the matrix elements of the mutual Coulomb repulsion of two holes we changed the
basis sates of the motion in thexy plane. We changed to the relative coordinates of the two
interacting particles to save one costly numerical integration. The transformation law is given in
(2.69). Here we will give the boundaries in the summation andthe used coefficients. Their full
derivation can be found in [50].

µij
min = −2 (ni + nj) −mi −mj + |mi| + |mj |

2
(5.4)

µij
max =

2 (ni + nj) +mi +mj + |mi| + |mj |
2

(5.5)

νij
max =

1

2
[2 (ni + nj) + |mi| + |mj | − |µ| − |mi +mj − µ|] (5.6)

An1m1n2m2
:= (−1)(2n2+|m2|)

[

2
∏

i=1

2(2ni+|mi|)

(

2ni +mi + |mi|
2

)

!

(

2ni −mi + |mi|
2

)

!

]− 1

2

(5.7)
and

Kn1m1n2m2

NM := C
2n1+m1+|m1|

2
,
2n2+m2+|m2|

2
1

2
(2N+M+|M |)

C
2n1−m1+|m1|

2
,
2n2−m2+|m2|

2
1

2
(2N−M+|M |)

with

Cbc
a :=

min(a,b)
∑

s=max(a−c,0)

(

b

s

)(

c

a− s

)√
a!
√

(b+ c− a)! (−1)s . (5.8)
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