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Abstract

In semiconductor quantum dots electrons and holes are eohiimall three spatial directions.
Their eigenstates can be tailored by the use of appropriaterrals, the size and the shape of the
dot and also by applied electric and magnetic fields. Whenope dhe quantum dot with atoms
possessing a large magnetic moment, like manganese, tleegdhwith the electrons or holes
via pd exchange interaction. In 111-V semiconductors sucli-asis or InAs the Mn atom is an
acceptor. So, holes will be the main charge carriers. Thegaotion of holes with the magnetic
manganese impurities is stronger than the interactionestrns from the conduction band. We
calculate numerically the eigenstates of several holesgnasmtum dot usind - p theory, un-
der the influence of a magnetic field fully taking into accotiwir Coulomb interaction. The
direct interaction between several manganese atoms isshery ranged and, therefore, can be
neglected for sufficiently separated magnetic impuriti&s. interaction, however, is mediated
by the holes confined in the quantum dot. We examine the pbigsib control the alignment of
several manganese atomsinAs andInAs quantum dots by changing the hole eigenstates via
a manipulation of the confining potentials and the magnegld fi

We show the high importance of the hole-band mixing to thel@uob energy of up to three
holes. It also significantly influences the dispersion of ltleée in the magnetic field and the
coupling between the spins of the hole and the manganeseitgnpiye show the influence of
the acceptor potential in dependence of the strength ofitfezeht dot-potential configurations.
In magnetic fields the properties of the hole- and mangaspsecompound coupled by the-
interaction are dominated (aAs dots by the manganese spin whereasrinl s the spin of the
hole is dominant. Finally we demonstrate the control of g#redmagnetic\/n-Mn coupling by
the number of the confined holes.



Inhaltsangabe

Quantenpunkte aus Halbleitern kénnen Elektronen und Lrdoltkeei Dimensionen einschliel3en.
Die von den Teilchen ausgebildeten Quantenzustédnde ke die Wahl der Halbleiter,
durch die Grol3e und die Form der Punkte sowie von aul3eretraiekgnetischen Feldern bee-
influsst werden. In die Quantenpunkte eingebrachte Freanmtatvie Mangan beeinflussen die
gefangenen Elektronen und Locher uber gieWechselwirkung. Mangan eingebracht in 11I-
V Halbleiter wie GaAs oder InAs wird zu einem Akzeptor und bringt deshalb hauptsach-
lich Locher in den Halbleiterkristall ein. Auch ist die Spiechselwirkung der Locher mit
dem Mangan starker als die der Leitungsband-Elektronenb&echnen numerisch die Eigen-
zustande einiger Locher in einem Quantenpunkt mit Hilfeldep-Theorie. Dabei betrachten
wir den Einfluss des magnetischen Feldes sowie der Coulob#teRung zwischen den Loch-
ern. Die direkte Wechselwirkung zwischen mehreren Man@maen hat eine kurze Reich-
weite und kann deshalb flr geniigend von einander getreniot@ek vernachlassigt werden.
Eine gegenseitige Beeinflussung kann dennoch mittels d€puamtenpunkt eingeschlossenen
Locher induziert werden. Wir untersuchen die Moglichkégisg wechselseitige Beeinflussung
durch Veranderung der Eigenzustéande der Locher zu koietr@tl. Dies wird wiederum durch
Variation der Quantenpunkt-Potentiale und des magnetrsElldes erreicht.

Wir zeigen die besondere Bedeutung auf, die dem MischenldenBander des Loches fur
die Coulomb-Energie von bis zu drei Lochern zukommt. Diddeshen beeinflusst sowohl die
Dispersion der Locher im Magnetfeld als auch die Wechsklwig mit den Spins der Mangan
Atome. Wir zeigen den Einfluss des Akzepttor-Potentials bih@ngigkeit von verschiedenen
Konfigurationen des Quantenpunktpotentials. Unter dekivig des Magnetfeldes wird der
Spin-Verbund des Lochs und des Mangatrind s-Quantenpunkten dominiert von der Zeeman-
Energie des Mangan. In Quantenpunkten Auds dominiert die Zeeman Energie des Lochs.
Schlie3lich zeigen wir die Kontrolle der ferromagnetistch&@pplung zwischen den Mangan-
Atomen durch die Anzahl der eingefangenen Locher.
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Chapter 1

Introduction

Semiconductor quantum dots are regions in a semiconductstat, where charge carriers are
confined in all three spatial directions. Confined in a smalume the charge carriers show
guantum mechanical behavior. The development in the fatiwic techniques of semiconductor
structures by “molecular beam epitaxy” (MBE) and “metadamic chemical vapor deposition”
(MOCVD) allows a high degree of control over the confinem@ihis makes it possible to engi-
neer the form of the wave function of the confined carriergs plossibility has triggered a large
interest in the research field of quasi zero-dimensional@amuctor nanostructures. Manifold
experimental techniques were developed to map the eléctsteites in the quantum dots. In
“cyclotron resonance” (CR) experiments confined partielesexcited directly between the dot
states ],EIZ]. Optically created electron-hole pairsc{ons) are attracted by the dot potentials
and recombine inside the dot enlightening its inner st ]. Also the chargingﬂ4] and elec-
tron transport through the dcﬂ [SD [6] reveals its charasties.
Another fascinating development in the field of semicondrgctvas the occurrence of “diluted
magnetic semicuonductors” (DMS). After mastering the teleal properties of these materials
the question arose if such a high degree of control is alssilpleson their magnetic behavior. In
DMS magnetic impurities are coupled to a ferromagneticrnegby itinerant charge carriers of
the semiconductor crystem [7ﬂ [8]. Obviously, control ¢trv@tmagnetic impurities can be gained
by engineering the hole wave function in the quantum dots Téchnique lets us influence the
magnetic properties as well as the quantum mechanicassiaggngle spins[[g].
Beside the scientific interest many applications are egeida Maybe the most exciting one is
“spintronic”, the aim to use the spin degree of freedom ofdih@ge carrier and the impurity in
computation and data storage. There are proposals for wuabit gates made from quantum
dots m)], Ell]. They are promising systems for the reaitrabdf a solid state quantum computer
] because of the high degree of control on the spin stdteady possible in these systems
1, [@], ﬂﬁ]. To realize such devices still more knowdeds necessary about the behavior of
the confined charge carriers and their interaction with inti@s. Especially the characteristics
of charge carriers from the valence band of the used semiboics is complicated and often
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Chapter 1. Introduction

broadly approximated. The aim of this work is to provide mim&ght into the eigenstates of
such confined holes in large quantum dots. Their mutual Golbilimteraction as well as the in-
teraction with magnetic impurities will be covered. We usenerical calculations to investigate
the influence of dot-potential symmetry and strength, bemapling effects, acceptor-potential
position and spin interactions on the quantum mechaniganstates of the hole-impurity sys-
tem. The eigenstates of the holes are calculated by means-taadk - p theory and the
envelope function approximation. Thée exchange interaction of the hole spin with the spin of
the magnetic impurity is modeled by an effective Heisenlb&agiltonian.

The need for a good insight in the eigenstates of holes intguadots can be motivated in many
ways: Manganese has a large magnetic momest ef 5/2 and is commonly used in diluted
magnetic semiconductors. On the other haladis and/n As belong to the best understood and
technologically best controlled quantum dot materialswNoanganese acts mostly as an accep-
tor in these 111-V semiconductors and holes will be the mdiarge carriers. Secondly, the now
most widely used investigation method on quantum dots iplietoluminescence spectroscopy
of excitons confined in the dots. To interpret the measuredtspa good knowledge of the hole
part of the total wave function is necessary. In the past te Wave function was considered
only in a very simplified form. The effects of band couplinglaiot anisotropy are commonly
neglected. Thirdly, the hole-spin degree of freedom is tadipo the orbital movement of the
holes. It then becomes possible to modify the hole-spinffaaase-spin interaction by chang-
ing the dot confinement and thus the orbital movement of theshoAnother characteristic of
confined holes is the possibility to access the effects oualunhany-particle interaction with
cyclotron resonance investigations. Due to the band cogji the Kohn-Luttinger Hamiltonian
the theorem of Kohrm6] is validated. Thus, the center ofsmasvement does not decouple
from the relative movement of the holes. Only the former fecéd by the long-wave electro-
magnetic field in this setuﬂll?].

During the investigation for a suitable system to realizaiarqum bit Eb] the question on the
spin coherence time of particles confined in quantum dotseardt turns out that the main
mechanism for the loss of the coherence is the interactitimtive spin of the nuclei of the host
crystalE‘b], Eb]. For holes this interaction is much sraalince the valence bands develop from
atomicp orbitals with vanishing density at the position of the tzﬂt'atoms@l]. Additionally a
large degree of control over the hole spin was sh [22].

Confinement of charge carriers can be achieved by differeans The now most widely
used quantum dot fabrication technique is the Stranskstdraow growth@3],|ﬂ4]. The ob-
tained quantum dots have a rather strong confinement witthedel separations from several
tens to hundreds ofiel [E]. Here, the inner electronic structure of the dots iseagimple and
due to the strong confinement in the growth direction the bBamgpling effects are small. We
will therefore concentrate on larger dots which can be Gbed with lithographic and etching
techniquesES]. Dots fabricated in this way are often edctiem two dimensional electron-
or hole-gas samples. They also can be defined by top metal. g will concentrate on dots
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Figure 1.1: Schematic band regime at the in-Figure 1.2: Schematic diagram of a etched
terface of GaAs/GaAlAs under the influ- pillar of GaAs/GaAlAs with a quantum dot
ence of negative dopants @Al As. formed at the interface.

formed at a single hetero-interface by modulation dopinggufe[I.)l shows the band regime
in the vicinity of the interface. In this configuration duettee triangular potential the overlap
of light- and heavy-hole wave functions indirection is larger than in quantum well structures.
This enhances the band-coupling effects. The confinemémimteraction plane occurs through
charges on the outside of an etched pillar. It is modeled Bfeatere harmonic potential. Figure
L2 shows an schematic example.

Finally we will show how the interaction between two magaethpurities in a quantum dot
arises due to the mediation of confined holes. We will stresshanges to this interaction due
to the change of the dot potentials and number of confinedyeraarriers(holes).

To our knowledge there have been no experiments on the hals i@ the quantum dots we want
to deal with until now (November 2009). The experiments gtigating excitons are carried out
in self-assembled quantum dots and deal mostly only witlytband state of the system. Due to
this lack of experimental data we will not give any spectréigtit absorption or photolumines-
cence which could be directly compared to the experimerttigy Tan, nevertheless, be readily
calculated from the obtained eigenstates. We will cone¢amton the description of the eigen-
states’ character and the transitions triggered by thegghahour free parameters. We hope, this
will enable the reader to gain a better understanding in tbegsses going on in the system.



Chapter 2

Theoretical Basis

2.1 k-p-theory

The effects caused by electrons in semiconductor cryst@mate often only from several elec-
trons occupying the conduction band. Also the absence efakslectrons forming holes in the
valence band can fully determinate the electrical behawbsuch crystals. In equilibrium the
electrons stay at the minimum of the conduction band and ¢heskat the maximum of the va-
lence band. The strength of most of the electric and magfelils we apply to the specimen of
such crystals do not move the crystal momentuof these particles far away from the extrema
of the bands. This gives us the possibility to approximagedispersion relatio (k) of such
particles by expanding it around the extreme points. Khe -theory, | want to use to describe
the hole states inside a quantum dot, is such a approximsthveme. It treats the influence of
the crystal lattice on an electron or hole as a perturbatiothis description the influence of the
crystal potential is transferred to an effective mass ofpgheicle. This mass is different from
the vacuum mass. It can also become anisotropic due to astrami crystal symmetry. | will
give only fundamental equations from which the Hamiltoradmy system follows. Derivation
of this theory can be found e.g. Bzaﬂzﬂzsy

2.1.1 Effective Mass

Let us assume that the extreme point of a band under consaielias atk = 0, thel" point of
the crystal. This is often the case as for the interestingtaly ofGa As andInAs. For a perfect,
bulk crystal the Hamiltonian and its eigenstates will be

HYy, = En<k)\pkn (21)

p2

H =
2me

+ V(r) Wien (1) = ™y (1), (2.2)
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2.1. k- p -theory

Here,m, is the free electron masg(r) the potential of the lattice atoms ang,(r) is the Bloch
function for thenth band ak. In order to take advantage of the known symmetry of the alyst
itis convenient to describe all the eigenstaigs (r) in terms of a special set of functions

Xkn = eikruo,l(r) Uy (r) = Z/dkan(k)eikru%(r). (2.3)

The functionsu,(r) are the Bloch functions for band andk = 0. Taking alln bands into
account, we get a complete and orthogonal set of functiohsir Bdvantage lies in their sym-
metry, which follows the symmetry of the crystal lattice.uBhtheir matrix elements with some
basic operators can be determined just by symmetry comsides. By insertingl(Z]13) if(2.1),
multiplying from left with exp(—ikr)u,, and integrating over the whole crystal we get

> / dk' (kn|H[K'n') ap(K) = E,(k)an(k) (2.4)
where the matrix element&n|H |k'n’) are

(kn|HK'n') = [ dre-%ruys, (p—2+V(r)) LT

2me

= [ dre®orys, (En(o) +EB %) Ugnr (2.5)
= 3k = K) | (Ba(0) + 55 ) b + 11 30 Ko

The Bloch functionsu, are eigenfunctions to the periodic crystal poteniigk) and fulfil
(p%/2m. + V(r))ug, = E,(0)ug,.
(2m)°

P = Vo / drug, (—i04 ) uon (2.6)

is a momentum matrix element. The integration goes over aiteell of the crystal. The term

k - p in (Z8) gives the name to this theory. The electrons in tHenee band, which we are
interested in, experience a strong spin orbit couElirT@is is because the valence bands develop
from p like atomic orbitals with angular momentum= 1. Conduction bands, however, are
formed froms like orbitals without orbital angular momentum. We can inpmrate the effect of
spin-orbit coupling into our description without changimhgnuch. We change the basis Bloch
functionsug, to some linear combinations of them belonging to the same bgn which are
also eigenstates to the spin-orbit coupling oper@r [26]

<21;’ne +V(r)+ 477:%620[VV(I') X p]) ton = E,(0)iion.- (2.7)

INote that the only kind a$pin-orbit coupling we are dealing with here, is the one edusy the strong Coulomb
potential of the lattice atoms. Spin-orbit coupling effecused by additional potentials, e.g. dot or acceptor
potentials, are neglected. Their influence is very small.[29
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Chapter 2. Theoretical Basis

Notice, that in the last line of{2.5) the Bloch function entaly via the momentum matrix-
elementsP? ,. We just have to change this matrix elements to

- 271)3
P, = ﬂ/ drug,, (—i0, + L[o— X VV]a)ton - (2.8)

Vie 4m2c?

In the following, | will drop the tilde sign but we have to rember, that we are now dealing with
the basigi,,.

Now, to proceed further, we have to make some approximati®mee, as described above,
the crystal momentk, we will usually encounter, are small, we can get rid of khep term in
&3) by treating it as a perturbation. In the valence baedlineep states with orbital angular
momentun = 1 are coupled to the two hole spin states: 1/2. From the six resulting states
two blocks are created, one with total angular momeniusm L + s of |J| = 3/2 and one of
|J| = 1/2. The four topmost valence bands@uAs and/nAs consist of thegJ| = 3/2 sates
according to the four possiblecomponents ofJ| = 3/2. In the bulk crystal ak = 0 the band
is fourfold degenerate. The split-off band with = 1/2 lies about340 meV lower inGaAs
and380 meV in InAs [@]. The large energetic distance of this split-off bandaedl as the
large distance to the conduction band makes it possibleeéd the coupling to these bands via
thek’ - p term as a perturbation. The coupling between the topmostiragte bands, however,
we have to treat explicitly. We can only expect, that the ifice of bands separated by some
energyA E from our degenerate set can be treated in a perturbativermahe separation\ £/
has to be much larger than a typical kinetic energy of anerdi (0) — F(k). We expand the
term ink. The terms of the perturbative expansion linedk ire very smalflﬁG] so we can drop
them. Then, up to second orderkrthe coefficients in the expansibnR.3 fulfil

k2 koks ~— P2, P°
E,(0 —m'Zw'n b (k) = E, (k)b (k). 2.9
< ()+2me+ = n,#En—Enf) (k) (k)b (k) (2.9)

The indexn counts the four top valence bangs= 3/2, j, = £3/2,+1/2. The indexn’ counts
all the remote bands, whose influence is taken into accouptimmugh the momentum matrix-
elementsP? ,. In the formula abover runs throughe, y, = and we use Einstein’s summation
convention. The coefficients, (k) represent our approximative solution fg{2.1) with spinitorb
coupling. When we set the zero energya{0) = 0, we can define

1 1 9 po,pf
— =, il Znn'" n'n 2.10
Mgﬁ Me s+ m? T%:n E, - E,, ( )

as the inverse effective mass tensor.
If we look at a single energetically isolated and isotropic ependence an, 5) band, e.g. the
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2.1. k- p -theory

conduction band of 111-V semiconductors, the tensor beangcalap®’® = m*. The dispersion
relation for an electron in such a band then reads

h2k?
B 2m*
i.e. itis the one of a free particle with some effective mass
For the topmost four valence bands the kinetic energy tdleeform of a four by four matrix. It
is called the Kohn-Luttinger Hamiltoniamzdﬂ?;l]

E(k)

(2.11)

P+Q S R 0
St P—Q 0 R
Hyp = 2.12
rr R 0 P-Q -8 (2.12)
0 Rt -St P+Q
with
71 2 2 2
P= B+ +k 2.13
2me, ( T + y + Z) ( )
V2 2 2 299 .4
= k2 + k%) — k 2.14
Q 2me ( x + y) 2me 4 ( )
V3 (s + s SN2 23 N2
= 2 ( 2, (ke = iky)” = 2, (ks + ik ) (2.19)
_ B[ o
S= 5 ( 2@) (ko — ik,) k.. (2.16)

The order of the basis functions js = (3/2,1/2,—1/2,—3/2). The~’s are called the Kohn-
Luttinger parameters. They correspond to the summatio@&Id) but are usually determined
experimentaIIyZ]. The experimental results corresparictourse, to the spin-orbit coupled
momentum matrix element8® ,. The presence of the ter(k, + ik,)? in the operatorR of
(Z1I32) reduces the symmetry of the whole Kohn-Luttingerrmmdtom spherical to cubic. In
order to simplify the calculations and not have to chooseegifip direction inside the crystal we
want to drop it. The pre-factor of this term has a value propoal to~y,; — 73. ForGaAs these
parameters are, = 2.1 and~; = 2.9. So their difference is small against e.g. their sum and
the other Luttinger parameter. In comparison to the othrengen [ZT2) this term will be small.
Neglecting the cubic part of the Kohn-Luttinger matrix idled the spherical approximation.
With this assumption we do not take account of the band wgrpie. the anisotropy of the holes
dispersion. This effect becomes significant only at higreues ofk where thek - p theory
becomes less reliable anyway. Calculations on the relibil the spherical approximation can
be found e.g. irlE?;].

There is some ambiguity concerning the representationisftiatrix. Luttinger uses the four
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Chapter 2. Theoretical Basis

dimensional representation of the angular momentum opetatset up this matrix. The ma-
trix here is the one following from the representation fag #tngular momentum operator from
[@],p.144. With this representation all the matrix eletsdrecome real valued. This is favourable
for numerical calculations. This representations diffdightly from the one used bﬂbl].

2.2 Envelope Function Approximation

In the previous section we found a description for the disip@rrelation of a hole in the valence
band of a bulk Il1I-V semiconductor crystal. When additiopatentials, i.e. electric and magnetic
fields, are present inside such a crystal the periodicithefcrystal is destroyed and we can no
longer use this description. However, we want to restrietrttagnitude of such disturbances to
be small in comparison with potentials exerted by the atoihtiseocrystal on the electrons in the
bands. We can then expect that over some unit cells of theatsrech an additional potential will
not change significantly and the periodicity will by presahat this length scale. The eigenstate
of an electron in such a crystal will therefore vary only olarg distances compared to e.g. the
lattice constant. One can expect that over long distancesawdind the electron more often
at positions with low potential and rarer where the potémsidnigh. We assume that for the
partially conserved periodicity the eigenstate of thetetecwill resemble some combination of
Bloch states. Now due to the additional potentials the Blstette will gain a slowly varying
space dependant modulation in amplith [35]. This can littenras

P(r) = Fu(r)un. (2.17)

The modulating functiorf, (r) is called the envelope function. Since the Bloch functions
at thel” point are known, we just have to find the right envelope furdi The form ofF;, will
depend on the symmetry of the additional potential.
The electron in the bulk crystal could be described by a ferigle with some effective mass.
Now we have to solve a problem of a particle with an effectiessrand subjected to an additional
potentialU(r). For a free particle the solutions to the Schrodinger equadire plane waves.
They are eigenfunctions to the translation operator. Inllad¢nystal all the possible translations
yield all the possible eigenstates of the electB [@].[37

e (1) (2.18)
where the values dt are restricted by boundary conditions. Now, one can envitie plane
waves also as envelope functions for the case of transitsymmetry, the symmetry of the
underlying crystal lattice. In this picture the crystal mamumk is just some quantum number
counting the eigenfunctions. For an additional potentialénvelope function will in general not
be a plane wave. We expand it in some set of functiBhsvheren counts the expansion in the

14



2.2. Envelope Function Approximation

Bloch states while the multi-indexstands for the expansion of the envelope function. Eql (2.3)
then becomes

ZZC F (1) o (r (2.19)

The summation overreplaces the integration ovkr In the calculation of the matrix elements
(Z3) all thek’s result from derivation of the envelope functiemp(—ikr). Since now we do
not know the explicit form of the envelope functidrj(r) we can not perform this operation
yet. We can pursue our investigation as in the bulk case. We dialy to replace all th&’s by
the momentum operatgr which acts only on the envelope function. By choosing a cetepl
and orthogonal set of functions for th& and calculating the matrix elements’s’|O(p)|ni)
we come to a representation féf,;, and to a matrix equation for the coefficient vector
(...ci...)T. We assume, that the additional potentidl) varies so slowly that it can be taken

as constant over one unit cell. Then it will be diagonal inlaad indexn: (n'i'|U(r)|ni) =
dnnI(i'7). We then have to solve

(Hyr +1U(x))e(r) = Ei(x) (2.20)

wherel is the unit matrix.

2.2.1 Hole Density in the Quantum Dots

It is instructive to look at the probability density of thelés inside the dot. But it is necessary to
discuss the meaning of this term. The probability to find @ladF can be obtained by calculating
the expectation value of a delta functioi|d ()| V). UsinglZ1Y we obtain

=3 drd, / dr 7wl 6 (7F) FY iy, (2.21)

nm ij crystal

Now, in the envelope function approximation, we can not aotor structures of the dimen-
sion of one lattice cell. Since we have assumed that the @pedlnction is almost constant on
the length scale of one lattice cell we can tread such a cslgsione point. We take the density
of the hole as constant in one cell. We can express this bygatguthed function inZ2Z1 in a
functiond(7) which is constant and equainside the cell under consideration and zero outside.

15



Chapter 2. Theoretical Basis

We get
(o)) = 3, X4 e, [, drFrS(F)E], [0 drugu,

(2.22)

In this picture the density of the hole is just the sum of theetope function densities for each
of the four bands.

2.3 Exact Diagonalisation

To find the eigenvalues and eigenstates of my system | usétkduw Diagonalisation calculation
scheme. All the equations we want to solve are too difficuttg@nalytically treated in this form.
When we represent our Hamiltonian in a complete set of odhabbasis functions, it becomes
a matrix of numbers. We can treat this matrix using a compliteve are interested in finding
the eigenvalues and eigenvectors of a system we have tordibg®the matrix representing our
Hamiltonian. Let this matrix b&1. Then an eigenvalue equation will be

Mv = \v (2.23)

with some eigenvaluga and corresponding eigenvector We can now transform this equation
to an other equation, which yields the same eigenvalues.d/d® dby using an unitary matri%
with SS* = 1. We get

SMS*Sv=ASv — Dv =\ (2.24)

D =SMS", v/ =Sv. (2.25)
We can findS such, thaD is diagonal and contains all possiblis. Thev’ are then Cartesian
vectors. It follows, that the rows of the transformation ma$™ contain the eigenvectoxs of
the original problem to the eigenvalue
S+ ; = S+SVZ' =V; = S+(1Z)T (226)

In this manner it is possible, to solve every problem exacklyerefore the name of this proce-
dure: Exact Diagonalisation. In practice the applicapiit this strategy is often limited. The
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sets of functions in which we expand the Hamiltonian are géaaf infinite dimension yield-
ing matrices of infinite size, which in the most cases can eatdived whether analytically nor
numerically. The approximation we have to apply to our daltons is to cap the size of the
basis. When we choose a set of basis functions for our exgpamgth a similar symmetry as
our problem, we can expect that already a small number ofldasctions will describe our
eigenstates very exactly. The missing of higher functidnsun complete set will not alter the
resulting eigenstate very much. Since we are mostly inietieén the eigenvalues and eigenstates
with the lowest energy, we just take those basis functiowsirrexpansion, which are expected to
give a good approximation to the energetically lowest eigetors. There is no rigorous method
to choose. One has to use some intuition and maybe vary the thase sure not to miss an
important basis function. Our strategy is to find a basisciviniesembles the symmetry of our
system as good as possible. Then we have to calculate thx megtresentation of the Hamil-
ton operator describing our problem and diagonalise thigixnasing numerical routines on a
computer.

2.4 Numerical Routines

Many different problems can be formulated in such a way,tthe@asolution involves the diagonal-
isation of a matrix. So there are already a lot of numericatines available, which perform this
aim. One has only to deliver to this procedure the correctimeescribing the problem. The
routines themselves are taken from numerical algebra pgaskike LAPACK and ARPACK.
These routines are proven for reliability and optimised étiveér the best performance. LA-
PACK, the Linear Algebra PACKage, offers routines to mafapai matrices and to calculate
normal and generalised eigenvalue problems. The perfarenafthe routine strongly declines,
when the matrices become larger. For problems containveyalkeelectrons or holes the matri-
ces can become so large, that an other routine has to be usddceéd describing many-body
problems are large but often only very sparse. In this casé®Rnoldi PACKage offers to us
very well performing routines.

2.5 Quantum Dot Model

The quantum dots in my calculations are represented by fyalgrwhich restrict the movement
of holes inside a semiconductor crystal. In my work | wantitowdate the behaviour of up to
three holes inside a quantum dot while regarding the mutaald&nb repulsion of the holes, the
influence of an acceptor potential of an impurity and a spin-steraction between the impurity
an the holes. The influence of the mutual hole Coulomb intienadn relation to their orbital

energies rises with the size of the dot. So we have to dealduith with a diameter of at least
several tens of nanometres. Such dots can be fabricatet\elighographic methods from two
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dimensional hole gas (2DHG) structures.

The kind of description | will use here is particularly udefior larger quantum dots. In small
guantum dots the confinement of charge carriers is so sttbbaga hole can be confined only in
one or two orbital states. Therefore effects regarding thé&al movement of the holes inside
the dot are blured due to a lack of different eigenstates ¢ihe ¢tan occupy. Such systems are
typically described by much simpler Hamiltonians contagnonly the spin degree of freedom
of the concerned particles.

| simulate a quantum dot formed at the interface of two sendaating materials with different
band gaps such a$l,Ga, ,As andGaAs. The band gap in pur€aAs is much smaller than
in AlGaAs. Holes at the top of the valence bandGfaAs cannot enter into thell,Ga,_,As
crystal due to this band offset. Between the valence bandseise two materials the offset
depends on the fraction of Al in the GaAs host crystal and can vary betwe#d) meV and
400 meV @]. Such 2D structures are typically fabricated by @solar beam epitaxy. In this
process the semiconductor crystal is grown layer by layetains. Let us call the direction of
the growth the: direction. Then the band offset constrains the motion ohitles to the7a As
part of the crystal. By a technique called modulation doping possible to introduce charged
impurities into theAl,Ga;_,As at a precisely chosen point in the vicinity of the interfade.
confine holes one has to choose an attractive, i.e. neg&odpmb potential. It then lowers
the energy of the holes near the interface and attracts tbesrds it. This potential and the
band offset form two potential barriers perpendicular te thdirection and thus confine the
holes to the interface. For calculational simplicity | asguthe band offset in my calculations
as infinite. This approximation is valid because we deal witlch smaller typical confinement
energies than the energetical band offset. In the quantathe@onfinement energy amounts to
several tens of meV. Also taking a finite size of the interfactential into account leads only to a
stronger mixing between the light and heavy hole bands. trspstem this mixing will be large
anyway. No additional features will occur or become bluledhe GaAs part of the crystal the
potential of this additional ions is approximated by a limgaising potential. This results in a
triangular shape for the confining potentialzimirection.

The assumption of infinite potential barriers at interfackdifferent semiconductors has a
larger impact in quantum well structures. This is because thes strong restriction is applied on
both sides of the quantum well. The energies and band mixisgich structures depends very
strongly on the penetration depth of the hole wave functbmthe barrier. This is especially true
for small dots. In this potential configurations good apjraations have to be found to obtain
the correct eigenenergies. Due to a change of the effectass rof the hole behind the barrier
in AlGaAs and the unknown composition of the crystal at the interféie task can become
difficult. For heterojunctions this problem is much lessrpiioent due to an infinite potential on
just one side of the structure. Also the assumption of a tipeesing potential on the other side
is only valid in the vicinity of the interface. States withghier energy and thus larger extend in
z direction will experience a much weaker potential. Bothragpnations will become worse
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when the total energy of the hole system approagheés- 400 meV. In dots considered here this
can happen especially for systems with more than three himleslculations on 2-dimensional
electron and hole systems one has typically to deal with nchayge carriers. They can screen
the potential imposed by the ions behind the barrier. Tloeeethe slope of the linear potential
in such systems has to be calculated self-consistently.ylsystem, | will deal only with up to
three holes. Their charge will not alter the dot potentials.

To get a0 dimensional structure we still have to restrict the movenoéhe holes in the plane
of the interface, the:y plane. This can be done by some electrodes on top of the cordvy
etching pillars out of the grown crystal perpendicular te ititerface. In both cases the holes are
confined in thery plane due to a potential of charge carriers surroundingdhéreed holes. The
additional charge is located inside the electrodes or auhface of the pillars in dependence on
the realisation of the quantum dots. In both casesithisotential can be approximated to a very
good degree by a 2-dimensional harmonic poternitial [39].

2.6 Basis Functions

To minimise the error by capping the size of our basis we havet basis functions, which
resemble the symmetry of the system under consideration@s & possible. Its symmetry is
mainly determined by the potentials forming the dot, a harimpotential in thery plane and a
triangular potential ire direction. We also want to apply a magnetic field along dttrection

of our system (Faraday configuration). Such a field is reptesby an additional vector poten-
tial. A good ansatz is the choice of eigenfunctions for the-band problem with the considered
potentials. In our case such a problem can be solved arallytidhe basis functions we have to
use are Airy functions for the direction and Fock-Darwin states for the motionm)]. Unlike
for electrons, this functions are not the eigenfunctionghefsystem. This is because we take
now into account the four different valence bands simubbase. The mixture of these bands
and thus the effective masses of the holes depend on theiemtam. For numerical calcula-
tions we have to choose a basis with a particular effectivesmaéhis basis functions can not be
eigenfunction to all states. To ease the implementatioh@htatrix in the program we choose
basis functions that will be eigenfunctions to some of therafors in the diagonal of the Hamil-
tonian matrix. This diagonal operators have a large weighhe eigenstates so we can expect
our truncated basis to give better results for the low-ensegtor of the spectrum.
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2.6.1 Motion in zy plane

Let us first start with the:y motion. Thezy part of the diagonal element for the = 3/2 band
of the Kohn-Luttinger Hamiltonian together with the poiahin =y plane reads
5. oMt

Ko
Hz = —eA)? + —(a? 2). 2.27
o= L p— AP + 52 + ) (2.27)

A = B/2(—y,z,0) is the vector potential in symmetric gaugey describes the strength of
the harmonic potentialy:,. is the mass of a free electron angd ~, are Luttinger parameters.
It turns out to be more convenient not to choose eigenfunstad the operator above as basis
functions but functions, where the effective mass of theigleris just+, /2m. In this basis, all
matrix elements concerning thg motion can be calculated analytically. It is also convetien
describe the harmonic and vector potential in terms of feagies. With our choice of the mass

we get
K B N\ 2
wo = 071 W, = 0 w = w2 + <W_> _ (2.28)
me me 2

Here, w, describes the strength of the confining potential. is the cyclotron frequency and
describes the confinement due to the magnetic fieldis the hybrid frequency, which finally
determines the energy and the spatial extent of the systgm{ZEZT) becomes

H= 27—71;(29?5 +p,) + %wi(x2 +9%) - %(xpy — Ypa). (2.29)

There are two convenient methods to find the eigenvaluesigedwectors to this Hamilto-
nian. One can straight solve the differential equation angfate the problem into an algebraic
one. The last method is most convenient, when we want to sieévproblem of just one hole in
a quantum dot. Now, the Coulomb repulsion between two halélsenacceptor potential of an
impurity can not be solved with this algebraic method. Wenthave to resort to numerical cal-
culations and are forced to know the spatial representafitime eigenvectors. In the following
| will therefore give a short insight into both ways to sollZe9).
The confining potential has rotational symmetry around:tais so the eigenfunctions &f
should also be eigenfunctions to theomponent of the angular momentum, — yp, = L.. It

is therefore convenient to describe the operator in cylincvordinates. Now{Z.27) becomes

H=-—

2 .
him [1 o 0 1 0 ] 1n o, 2+zhwc 9, (2.30)

ror o 2oz om0y
When we introduce the characteristic length of the sydtese can come to a differential oper-
ator for a dimensionless quantigy

2me

him
MeWh

[ =

(2.31)

~ =
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Then, [Z.3D) reads

hwp, |10 o2 1 0 o  thw. O
==t = = = — —. 2.32
> [esetae - om €]+ 50 (232
Eigenfunctions of this operator have the form
1

(rlnm) = 2 6m(@)pum(r/1) (2.33)
Snl9) = =€ punl€) = || e C L (), (2.3

V2 (n+[m])!) !

Here L are Laguerre polynomia@l](.r|nm> are the Fock-Darwin statea4m42]. Finally
the energy eigenvalues of such an operator with the eigenéuns above are

hw,

2
Since [Z3K) are not quite the eigenstates of our prob[EBH) % not quite the energy eigenvalue.
For the algebraic calculation of matrix elements it is instive, however, to take a closer look at
these functions.

Epm = hwp(2n + |m| + 1) + —m. (2.35)

2.6.2 Algebra for the Fock-Darwin States

Similar to the case of a 1-dimensional harmonic oscillatercan solve the problem of the two-
dimensional harmonic oscillator in a magnetic field usingyebraic method. Let us therefore
define the following 0perat0r@42ﬂ43]:

1 1 il 1 1 1l
it = = 7 — —p, iy = —= ( ~2+ =Dy 2.36
e \/§<lx hp) ! ﬂ(lx+ﬁp) (2:39)
1 /1 il 1 /1 il
it =— (-y— = iy = — | Sy + — 2.37
and . .
d+:i(d+—z’d+) a_:i(d +iay,). (2.39)

Because of the commutatpr;, p;] = ih one can show
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while all other commutators vanish. We can further defineoierators
Ny = aja4 n_=a'a._. (2.41)
They commute, so there is a set of states, which are eigeastaboth of them.
nylng,n_ >=nyjny,n_ > n_|lng,n_>=n_|ny,n_ > (2.42)

Similar to the rising and lowering operators for e.g. theualagmomentum@Z] one can show
the following relations:

alflng,n_ >=/ny +1ny +1,n_ > aylny,n_>=/nyjn, —1,n_> (2.43)

ating,n_>=+/ny +1|ng,n_+1> a_ny,n_>=/n_|ny,n_—1>. (2.44)
Then, an arbitrary state ., n_ > can be written as

(a1)" (a5)"-

n+! n,!

ngy,n_ >= 10,0 > . (2.45)

We can also describe the common space and momentum opendin®s of the new ones:

z h .

v=g(ay+al+a+a)  pe=oo(as —al+a —al) (2.46)
?
o hoo e sy
y:§<a+—a+—a7+a,> px:g(adr—i_aur_af_af) (247)
2’ +y" =P +n. + 0 +ara +atal) (2.48)
h2
Pitpy =g (I+ay +a —aca —ajal) (2.49)
TPy — YDz = h(ﬁJr - 'ﬁ'*) (250)

(g —A_). (2.51)
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The stategn,n_ >, which are eigenstates fo., n_, can differ from the Fock-Darwin states
we already found only by a phase factor. The old quantum nwsnben are related to the new
onesn_,n_ by

ny+n_—|ng—n_|

n=min(ny,n_) = 5 m=mny—n_. (2.52)

To calculate the phase factor we can determine the spatibbpility amplitude((r, ¢)|n n_).
The rising operators®, ™ can be described in terms of the position and momentum apsrat
X, p as

4 (r_, 0 1o e (r_,0 49
“T <l l@r r oo ==\ Z8T+r8g0 ' (2.53)

We get((r, ¢)|nn_) by applying [Z5B) to the ground state function

1 2 /(o2
((r,)]00) = me*T /@5, (2.54)
By comparison we obtain
1 . (—1)" 2n/! r Iml 2 2 7\ 2
— 1M _ r2/(21%) 1 |m/| —
(trplinen) = om0 2 (D) ertennp (1) ess)

The usefulness of the, , n_ basis is revealed, when we try to calculate the matrix elésnen
describing the motion of the hole in thg plane. The operators of the Kohn-Luttinger matrix
read in this basis

1 w
(Pry""vry)m =(1+ny+n)—
With the effective mass:* = m./~, the operator,, is diagonal. This is no longer true fa},,,
because of its different effective magg,, couples states with the same angular momentum of

the envelope function and different

1 1 V2 V2 We ?
oy T Vay)— = |1+ — =1 1 ~
(Q y_'_ y)hwh 9 < + " + (’}/1 ) (2wh) ( +n+ +n )

2—wch(mr —n_). (2.56)
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In the axial approximation the operatBrreads

2
R— = ¥° 1 2
heon > 2 | \2o | ) (a+)

+ ((22)2 - 1) ayat + ( 2“;’; - 1)2 (cﬁ)?] . (2.58)

Analogously theS operator is

1
g1 grlio K e —1) a++(wc +1) af} 9

1 \/572+731 [( We

hwh 71 lz 2wh Qwh az
2meel’ %
ll _ <h2(71—272)) N HH (259)
z 2meel’ 3
(52(71 +272)) L

Herel, is what we could call the characterising length of the systemdirection. By dividing

the operators by, we immediately can see the behaviour of the system withgisiagnetic
field. From [Z2ZB) followsv./2w;, — 1 as the magnetic field strength increases. Therefore,
all parts of the operators above with pre factors like/2w, — 1) become small. Then, all
basis states which appeared in the expansion of the eigesstidhe system due to the coupling
through the operators with these pre factors, will loosegivein the expansion of the eigenstates
for higher magnetic field. This is a manifestation of the syt breaking between the states
with the same absolute value but different sign of the tatgidar momentum by the magnetic
field.

Using [Z.38) and{Z.39) we can now easily calculate all ma&tiéments for the;y motion.

2.6.3 Elliptic Quantum Dots

Quantum dots fabricated by any process often do not posstasi®nal symmetry in they plane.
This can have significant influence on the eigenstates oéttlets. Elliptic quantum dots, i.e.
dots with an elliptic conture of constant potential in theplane, are an approximation to these
non-circular dots. For single-band quantum dot models) aase of electrons in the conduction
band, one can show that the elliptical potential lifts thgeteeracy of the excited states in the
Fock-Darwin spectruan]mlS 6]. In the case of holas lependence on the anisotropy
of the potential is more complicated. The elliptic potelhdiets on the orbital movement of the
holes, the Fock-Darwin states. We will see that hole eiggastconsist of different Fock-Darwin
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states and the spin is coupled to the orbital movement. Haumfluence of the elliptic potential
is different. The elliptic shape is created by changingith@otential in [Z2I7) to

K
Viy = 70(352 + y2) + KeyQ. (2.60)

The constanfs, describes the strength of the additional harmonic potentidhe basis for the
xy planey? can be described as follows in terms of the creation and datidm operators
y? = Playa- —arat —atfa- +afal +azal +a_af —1
(2.61)
—3 (@t +af*+a* +a*?)].
Since this additional operator breaks the circular symynetithe dot, the Hamiltonian of the
system no longer resolves into blocks belonging only to glsimalue of the: component of
the total angular momentum/ = myp + j.. So, we have to include all possible values of the
angular momentum in our calculations. Here and in all cages@vthe circular symmetry of the
problem is broken, to maintain a computable matrix | consaidy values ofM belonging to
the energetically lowest states. They go fréth= —7/2 to M = +7/2. This assures, that all
states with a strong coupling to the ground stdtés- +3/2 are considered.

2.6.4 Motion in z direction

For the triangular potential in direction one cannot calculate the required matrix element
analytically. This is due to the cumbersome functions ameddifferent masses for the light and
heavy holes. The used Airy-FunctiorE[M] are solutionseodifferential equation

(gt +eF2) 62 = BG(z) <z =0) =Gl =o0) =0 (2.62)

om*eF\ 3 E,
h? TR

F describes the strength of the linear potentiat idirection. E, is thepth eigenvalue of the
differential equation{Z.82)E, /e F" are the roots of the Airy function. For the Bloch bands with
Jj. = £3/2, we insert the effective mass* = m./(y1 — 272), wherem, is the mass of a free
electron. For the Bloch bands wih = +1/2, we use Airy functions with the effective mass
m* = me/(71 + 272). We expand the component of the eigenstate envelope-function not in
one but in two orthogonal sets of functions. They are notagtimal with respect to each other,
because of the different masses used to define them. Thisgueassures a good description
of the hole wave function with a minimal set of basis function

The mass in the direction for thej. = +3/2 bandsm; , = m./(11 — 272) is bigger then the

(2.63)
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one forj. = £1/2 bandsmj , = m/(7 + 272)H. Therefore, thg, = +3/2 bands are called
the Heavy-Hole bands whereas the= +1/2 ones are called Light-Hole bands. Notice (see Eg.
[212) that for thery direction the situation is reversed. The= +3/2 masssmgj’2 =me/(n+72)

is light and thej, = +1/2 maSSm”fj/2 = m./(7 — 72) IS heavy. The names originate from the
description o2 D hole systems, where the holes are only confined in tihieection. The energy
of the different states was then determined by, andmj , terms.

While expanding the: states in two non-orthogonal sets of functions, we have toutze
some matrix elements, which appear due to the non-orthdiggonén the R operator of the
Kohn-Luttinger Hamiltonian we have to calculate ¢//'|¢/" > and for theS operator<
¢Mp.|¢f" >. Here HH(LH) denotes the functions with heavy(light) mass:inlirection.
These calculations have to be performed numerically, wbahbe readily accomplished using
Mathematica. Then the results of the integration are savedfile and read out to set up the
matrix.

2.6.5 Basis States for One Hole

The wave function of a hole from the topmost valence band di€Gaside a quantum dot is
described by the sum over all four top valence bands, whersitimmands are products of Bloch
statesu;_(r) times some envelope functiofs,(r)

Uar(r) = ) iy Flig. (1w (x). (2.64)
Jz

Here M = m + j. is the sum of twa: components of different angular momenta of the hole.
The angular momentugwith z componeny ., appears due to the spin-orbit coupled movement
of an electron around the atoms constituting the crystéicéat In the Tight-Binding model
for the formation of bands in the crystal, they develop frorbitals of the atoms forming the
lattice. In this process the particles retain their angmlamentum. The topmost valence bands
in GaAs develop fromp orbitals. With spin-orbit coupling this gives a total angumomentum
of |j| = 3/2. The movement of the hole inside the circularly symmetriargum dot gives rise
to the conservation of a component of the angular momentuitih. Mir choice of the coordinate
axes it isL.. The Fock-Darwin states are eigenstates to this operatbrrais the conserved
quantum number. The suM = m + j, is a good quantum number, i.e. the matrix representing
the system becomes block-diagonal with respect/to There is no interaction between states
from different blocks and we can diagonalise each block @na.t Since theg, value changes
for every band, the envelope function for every band muse lzadifferentm.
As mentioned above, we expand the envelope functioms a complete and orthogonal set of

2 Without any confinement the masses are isotropic accorditlyet spherical approximation. The particular
form of the confining potentials defines the mass of the holesinfined states.

26



2.7. Energy dependence on the magnetic field

functions, namely the Fock-Darwin states. With our choarefabove we get

_ . 1
. (r) = Z Z Cff,\ijz\CfH(LH)(Z)<Z5|ijz\(90)7pn,|ijz\(T/l)- (2.65)
P n
We have to choose the heavy-hole masses (HH)jfor= +3/2 and light-hole masses (LH)
for j, = +£1/2. From the exact diagonalisation we get the eigenvaluesefyistem and the
expansion coefficienté?iflejz‘. They represent the eigenstates in the chosen singlelparti
basis.

2.7 Energy dependence on the magnetic field

The magnetic field appears in two points in the descriptioa leble confined in a quantum dot.
Following the theory of Luttinger [31] the interaction ofeth component of the total angular
momentumJ of the hole has the fornk’, = 2ugrj.B. up is the Bohr magneton;, the 2
component ofl and the Luttinger constantis a material dependant parameter. It describes the
effect of the remote bands on the alignmeny oin the magnetic field. This whole description
is valid in the basis of the four topmost valence bands With= 3/2. The influence on the
movement in the dot orbitals is described by changing the emom operatop, — p., — ¢A..

A is the vector potential angthe charge of the particle. In quantum dots the field is offgtiad
perpendicular to they plane, where the electrons are confined by a harmonic pateiinen
the influence of the field on the energy due to the orbital m@mrdescribed by the envelope
functions ismw./2B. Here,m is thez component of the orbital angular momentum andhe
cyclotron frequency. Quantum numbetisand;. with the same sign must both increase or lower
the energy in their respective terms. To describe the momeofeelectrons in the valence band
one can stay in the familiar picture and has to deal with negatectron masses. Alternatively
one can switch to the hole picture, where the holes retaiipy®masses. Luttinger worked in the
electron picture and choser for the charge of the moving particles. Then negajiviewer the
energy. In my calculation | use the hole picture i.e. | assyme+t-e. But | dropped accidentally
the also necessary transformation of the particle momgnta —p;,. The momentum of the
hole must have the opposite direction of the electron moumem the band. This inconsistency
can be levelled by assuming the magnetic field to point inthelirection. This is equivalent to
changing the charggeback to be—e. Due to this feature in my calculations Zeeman-like terms
with positive quantum numbers lower the energy of the state.

2.8 Many-Body Interaction

We want to treat a quantum dot with several holes and theinatuépulsion. Since we use the
full guantum mechanical description we have to set up a nienady basis for the system. Some
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texts on this topic can be found e.g. |E|[4m[49] a@ [50].

Usually one sets up the many-body basis from products ofesiparticle states. To construct a
many-body basis in this way one can use the following sch&Weegpredetermine some arbitrary
order of the single-particle basis states. Then, we cotistnany-body states as products of
single-particle states. For a system withparticles, each product consists/@gfsingle-particle
basis states. When we choose to use in our single-partisie tastates, we get»”¥ product
states. Then we only take those, which follow in the prodoetdrder we have set up. Since we
have to treat the holes as fermions, we cannot allow two sipgtticle states in the product to
match in every quantum number. So, we have to throw away #tases from our set of product
states. This will give us an appropriate many-body basist@mnerical calculations.

The second-quantisation scheme is a compact and elegantondsscribe many-particle
physics. In this scheme the Hamiltonian of our system ctsefswo parts

H=H(Q1)+ H(2) (2.66)

H(1) =Y (i|Hgr +1V]j) afa;. (2.67)
ij
This is the single-patrticle part. It consists of the Kohrttlnger Hamiltonian and the potentials
forming the dot.

H(2 Z < ’Lj|Vc|k3l > af a aag (2.68)
zgkl
is the part, describing the interaction between two pasicln our case this interaction will be
the Coulomb repulsion between the holes. The matrix elesnégdgcribing this repulsion have
the following form Eb]

<ij\VC\kl> = <nz‘mz’Mz‘pmjijjpj\Vc\nkmkMkpkmszzpz>

1
- 5Mi—mi,Mk—mk5Mj—mj,Mz—ml(SMHMj,Mk-i-Mz Amee

min(u:rjzaz 7“5750,1) min(y’%az Vrlf’blaz)

E E MMM My TN MMy
XAniminjmj Ankmknlml KI//J, KV,LL

N:max(“:fnn 7Mmin) v=0

sz( )Cp;('z?)CPk(Zl)Cpl(ZQ)pNymaz
\/lrelgrel + 21— 12)

—vmitm; u(grel)ﬁuﬁ%az—u,mk,-i—ml—u(grel)

X / le dZQ dgrelgrel
(2.69)
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The first pair ofé’s represents the fact, that the Coulomb interaction doésifect the Bloch
functionw; . Therefore, these matrix elements have to be diagonal ibahd index which is
j. = M — m. The thirdd represents the conservation of the total angular momenguthi®
interaction. The total angular momentuntomponent of the initial state®/; + M, has to be
the same in the final statdg, + M,;. For the motion in the:y plane it is possible to change to
relative coordinates of the two interacting particles. TQuallomb interaction does not affect the
xy motion of their centre of mass. In this manor, we can saveritegration over the centre-of-
mass variable. The summation oyeandr represents this basis change. The constanis,
Lhmins [hmae @NAV,,4, are given in the appendix. The relative characteristictleisy,., = /2.
The lack of symmetry inr direction forbids this procedure for this part. Here, weénavcarry
out all the integrations. We have chosen to describe ffaat of the envelope function by two sets
of functions, one with heavy-hole mass and one with lighehoass. Therefore we now have
to calculate the matrix elements for all possible combaoretiof heavy- and light-hole functions.
Even when we use the symmetries of the integrak— z3, 20 «» z4 andz; < 2o, 23 < 24, We
end up with 76 possible combinations for only the first twodtions for each mass.

2.9 Manganese Impurity

The manganese atom has an atomic configuratiomgf3d°4s*>. When we introduce it into
a lll-V semiconductor likeGaAs or InAs it will most likely substitute theGa atoms in the
IatticeE_{]. TheMn atom can also substitute thés or take an interstitial position. These
situations, however, are less common than the substitofidine tri-valent atom. We will not
consider them here. At the place of e(@: in GaAs the two4s orbitals change tep?® orbitals to
participate in the diamond like bounds. Thén has only two electrons in thés orbital so one
electron is missing, since thés atom contributes five electrons to these bounds. The efectro
configuration of thelM/n atom then become3d® + hole @]. Electrons from neighbouring
bounds can fill this hole, which causes a detaching of the fiola the impurity. Then, the
missing of one positive charge in the Mn core results in a tagaharge in the vicinity of
the Mn atom relative to the background. The interaction poteidiveen the manganese and
the hole can be modeled in the envelope function approximais a Coulomb-like acceptor
potential. This potential of thé/n is, however, screened by other atoms in the lattice. To
describe this effect we have to modify the Coulomb potemtighe impurity by an additional
screening potential. This additional potential deviatasarkably from a constant only in the
vicinity of the manganese impurity. We split the screenipgrua constant part and a changing
part. This second part is different from zero only close ®rtanganese impurity. The form of
the screened Coulomb potential is thgh with an effective dielectric constant. Its value:js=
13.1 for GaAs [@]. To take the rapid change of the screening in the vigiaftthe manganese
into account we have to add another part to the screenedt@bteihis one is typically of
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Chapter 2. Theoretical Basis

such a short range, that it has only influence on the ground sfahe bound hole, where the
hole is typically closest to the manganese. The additiorhisf $econd potential is called the
Central Cell Correction. Experimentally, one can find that in GaAs is a moderately shallow
acceptor with a binding energy for the lowest levelld®.4 meV B] in the bulk crystal. This
potential significantly changes the shape of the quanturpatential and cannot be omitted, if a
guantitative description of the dot eigenstates is intdnéteour calculations we will nevertheless
omit this correction. In the quantum dot eigenstates the less concentrated around the
manganese than for pure acceptor states. So we can ex@thahnfluence of the correction
will be less prominent. The symmetry of the system is deteeahiby the dot potentials. So the
additional potential would have less influence on the chiarace. the spin, of the holes and
merely change the energy of the lowest states. In our modeitgm dot we assume also, that
we have control over the amount of charge carriers in the Wd.will treat cases, where the
number of Mn atoms and holes differ. In our basis we have to calculate theixrelements
describing the Coulomb/r operator numerically.

The reason for introducing &/ n atom into the quantum dot is its large magnetic moment of
5/2up. Itis formed by the five3d electrons. Th&d orbital is half filled, so according to Hund’s
rule all electrons align their spins parallel. Unlike theorbital, which becomes de localised and
forms a band in the crystal lattice, tHeslectrons stay in the orbital and remain localised at the
place of thelM/n. Nevertheless there is an interaction betweenitbebital and thes andp band

of the crystal. This interaction has its origins in a spipeledent Coulomb interaction between
the orbital and these banﬂ[54]. Notice that this effededsffrom the Coulomb force described
above stemming from the missing electron in the top shelhefrhanganese. The exact form
of the pd interaction can be found irElSl]E[bS]E[EG]. We can cast theole interaction in a
spin-like term. The matrix elements of the interaction &ent

TRE

(0 3Ry =18 - j10;) = [FROPE (S0 1S 312 1) (2.70)

U, 5.5, Y s jo @re some basis states with manganese and hole'spind ;. respectively and
the multi-indexn describes the orbital movemejjis the total (atomic scale) angular momentum
of the hole.S is the total spin of thé\/n impurity. The interaction between the hole spin and
manganesa8d spin depends on the alignment of the spin of the hole ratlzar itis total angular
momentuny. Now, within the basis states with| = 3/2 of the four topmost valence bands the
operator describing this interaction is diagonal. It isgmdional to the operatds - j/3. So the
total angular momentutnof the Bloch functiony;.(r) can also for this interaction be treated as a
pseudo spin with four alignments. The strength of the imt#wa is proportional to the probabil-
ity for the hole to be in the cell containing the manganesauiritya This probability is determined

by the envelope function and is represented hergf B ;)|> =< F}; . (r)F . (r) >, Thein-

tegration goes over the manganese unit &}l is the position of the\/»n atom andF;, ;. are the
envelope function basis states. Since the envelope fursctio not change very much over the
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2.10. Time Inversion Symmetry

cell volume, we can also take the value of the envelope fanstat the position of the impurity
and multiply it by the volume of the cell. We also assume, thatpresence of the manganese
atom can change the orbital movement of the hole i.e. cangehtdre envelope function. This
behaviour is modeled byalike function, which acts only on the envelope functions

n

< F:,jz (r)sz(r) > = Vu,c,/drF;jzé(RI — I')Fn/,jz = Vu.c.F*,jz(RI)Fn’,jz(RI)- (271)

WhereV, .. is the volume of the unit cell of the crystal. The details of thteraction on the
atomic scale are inaccessible to our model. We use a panatmeiount for the correct strength
of the interaction. This interaction constantjg;. It gives a value for the interaction energy
between a hole spin in theband and the electrons of thé/n. This value is hard to determine.
| used.J,; =~ 40 meV nm? [E]. Treating the total (atomic scale) angular momenturthefhole

j as a pseudo spin, the spin part of the basis for the hole antl/thes just the tensor product
1S.) @ |j.). The stategS.) are eigenstates &2, 5. and |j.) are eigenstates gf, ;.. In this
basis we can describe the spin operator part of the interat#irm as

. ‘ 1 ‘ ‘
S-j=5.0. + 5(S4j- +5-j4). (2.72)

S.,S_,j4,7_ arerising and lowering operators for some angular momelﬁﬂn

When we introduce severdlln impurities in our semiconductor, there is also an inteoacti
between thel orbitals of these impurities. The interaction aligns thegmetic moments anti
parallel to each other. However this interaction is veryrshemged. Its strength is proportional
to the overlap of thel orbitals of the participating/»n atoms. The energy splitting caused by
this interaction is aboui meV for atoms in a distance equal to the distance betweerrthe
and As-atoms in the IatticelE?]. The lattice constaniGia As, which should be larger than this
distance, isi(GaAs) = 5.65 - 107!, Therefore, we can assume, that this interaction can be
neglected, if we separate any twén atoms by somem.

2.10 Time Inversion Symmetry

Without an applied magnetic field our system will be invatiander the inversion of the time
degree of freedom. Performing this transformation on ostesy will change the sign on every
z component of a spin or angular momentum present in the systdra theorem of Kramer
] states, that a state with a non-integer total spin cdrbaanapped onto itself by the inver-
sion of time. Thus such states must be doubly degenerateeingyein a time invariant system.
This degeneration occurs in nearly all configurations aereid by Me in the present work. At
B = 0T all states will be degenerate with a state with exact theosip@ angular momentum.
So, without defining the angular momentum of the system, wienat see any magnetisation
of the manganese. They will be degenerate with their oppasignments. Actually the spin of
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optically created holes and electrons can be controllechbypblarisation of the light used for
their creation. We do not encounter any spontaneous brgaithis symmetry as discovered
in ferromagnetic materials. Ferromagnetism is the calleaffect of a large number of sym-
metrically arranged atoms. As quantum dots were often densd as artificial atoms, maybe a
investigation of quantum dot arrays could find a link. Suchraestigation, however, has to be
postponed to future work.
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Chapter 3

Quantum Dot With Holes

In this chapter | want to present the results of my work. | siilrt with quantum dots with only a
single hole. This shall help to understand basic mecham&nigliar to a quantum dot containing
holes. Then | will gradually introduce additional featuret® the calculations. First it will be
the Coulomb interaction with other holes inside the dot.o8ed will discuss the interaction of
a single hole with one and two manganese impurities alsdadddaside the dot. Finally I will
examine the interplay between the two kinds of interaction.

3.1 Single-Particle States

First I want to present my calculations for eigenstates agehenergies of a single hole confined
inside a quantum dot. Such calculations have been perfob@iede Eb], |[Eb], 1, |[—ﬁ|1],|[—ﬁ|2].
Apart from E_{] all other authors deal with holes confinedtidirection by a quantum well. In
my calculations the holes in growth direction are confined aeterojunction betweefia As
andGaAlAs. The two systems differ in the form of the confinement potdniti this direction.
This changes the spectrum of the dot slightly in comparisothé spectrum of a dot formed
in a quantum well. In a quantum well there is often a mirrompl@erpendicular to the growth
directionz. It lies in the middle between the potential walls. This syetimis represented by the
conserved parity quantum number. A heterojunction lacks susymmetry. Also in a quantum
well with high potential barriers modeling of the penetatof the hole wave function into the
potential wall is crucial. It has a strong influence on theingof the light and heavy hole states
and thus on the spin-character of the eigenstates. In aopatetion the holes are strongly con-
strict only in one direction of the axis. This results in rather large band mixing in comparison
to the quantum well. Despite this differences it is possibleompare my work with the earlier
results. The single-particle spectrum is the simplest rheglgem to explain all the influences
of different potentials on the energy of the hole. | presbetdalculations for several potential
configurations of7aAs dots as well as for a dot made bfAs. Thereby | will emphasise the
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Chapter 3. Quantum Dot With Holes

differences between the two systems.

3.1.1 GaAs Quantum Dots

The influence of the host material enters the model via thariger parameters. Fa@¥aAs they
are:y; = 6.85, 70 = 2.1, v3 = 2.9 andx = 1.2. The harmonic confining potential ity direc-
tion should represent a quantum dot with the size of several 6f nanometres. Such dots can
be formed by lithographic processes. For the electronsrieegg spectrum inside a harmonic
dot is equidistant. The strength of the confining potensigiven in terms of the energy spacing
between these equidistant states. A value for experimgméslised dots lies betweehand5
meV @], @]. For the starting point of my calculations lliteke a value off meV. In such
dots the strength of the interaction of the holes with thiedint potentials we are interested in is
of approximately similar magnitude: The dot potential, thagnetic field, the mutual Coulomb
repulsion between several holes and the acceptor potehaahanganese impurity. By varying
the dot-potential strength we can also change the impadteobther potentials. The fabrica-
tion of such dots appears possible, since they differ frots dith electrons by the exchange of
doping ions. The experimental study of the hole eigensiatsach dots is difficult. Neverthe-
less, there are investigations on the eigenstates of hokesno-dimensional quantum WGIHGS].
These lie in the same energetic regime.

In the description of electrons in quantum dots the influesfdbe dot potentials, the magnetic
field and the Coulomb interaction can be summarised in juetcmmstant]EO]. In this elegant
description, however, the electrons have to be confined ilager inz direction. Also the effec-
tive mass has to be constant. Both of these conditions areongplied for holes. Therefore, we
have to resort to the more cumbersome description usingie values of all the potentials.
The dot confinement energy bty = 4 meV is only valid for electrons in the conduction band of
GaAs with an effective mass df.067m.. The strength of they potential itself is characterised
by the “force constantK. We can calculate this value from the energy spacing of thetreins

K 4lmeV]\”
4[meV| = hwy = h W — Ky =0.067m, <$) . (3.1)

With K, we can then calculate the confinement energies in the sarﬁém‘dhe holes with their
particular effective masses:

4lmeV]\ > 1
EHH/LH = h\/0067me < [ h \/]) (’}/1 Zi: ”}/2>m— (32)

e

1Since the holes have the opposite charge than electronigthefshe charge carriers creating the dot potentials
has to change. Their number and position shall stay the same
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3.1. Single-Particle States

With “+"(“ —”) for the heavy(light) holes we get!’? = 3.097 meV(wi = 2.257 meV). These
values, however, are only valid for holes occupying only fthe= +3/2 respective only the
j. = £1/2 Bloch bands. In quantum dots, where the energies due to eomdint inz andxy
direction are of similar magnitude, the hole eigenstatesnaixtures of all four bands. These
mixtures change strongly depending on the total energyeotate. Thus the effective mass of
the particle changes and so the influence of the confininghpate The energy dependence of
the effective mass makes the spectrum of the dot not eqaindist

The strength of the linearly rising confinement potential direction we will denote by its slope.
| assume afield strength 6f = 7mV/nm. For the heavy holes this givesonfinement energiﬁs
in the lowest two states 3f9.84 meV and69.65 meV. For the light holes we hav&l.12 meV
and112.12 meV. Thisz potential is achievable for experimentally realisédAs — (AlGa)As
two-dimensional heterostructurQ[GB]. In the followingill refer to these values for they and
z potentials as the standard values. Variations of the congfipotentials will be given in relation
to these values.

hwy = 4 meV(for electron$ Fy =7mV/nm (3.3)

Notice that according to the Kohn-Luttinger Hamiltoni@nli@ the masses of the heavy holes
are larger inz direction than the ones of the light holes, resulting in almanergy spacing.
In contrast, the masses of the heavy holes imith@lane are smaller then the ones of the light
holes. So, the energy quantisation due to confinement irptaree is bigger than for the light
holes.

The quantum dots we treat here are quite large. The exacalspeiend of the hole wave func-
tion in an eigenstate has to be calculated numerically. Amm@apmation give the chosen basis
functions. With the standard potential values , Fy) the characteristic length in the, direc-
tion for a heavy hole i34 nm. The wave function has a slightly larger extendzIdirection the
hole wave function falls ta0% of its peak value arountD nm.

Figure [31] shows the energy spectrum of a hole confinedamttantum dot with confining
potentials described above. The spherical approximasioiseéd , i.ec, = 75 is set. Due to the
coupling in the Kohn-Luttinger matrix all states consistddferent mixtures of the four Bloch
bands. The double degeneracy for zero magnetic field arisesodime inversion invariance of
the Hamiltonian. In the two ground states the hole has thesnsity distribution and only the
expectation value of the spin and orbital angular momentiff@rsl in sign. This degeneracy is
lifted by the magnetic field.

A good quantum number in this systemli = myp + j.. It is the sum of thee component of
the band total angular momentyimand the orbital angular momentum of the envelope function
mpp. The spectrum exhibits large anticrossings between statethe samel/. This leads to

a flatter spectrum in comparison with the spectrum of elestro

°These are theD counterpart of the subband energies f@7asystem.
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Figure 3.1: One hole confined in a heterojunction quantum @ua-
picted are the three lowest eigenstates for each of theaotallar mo-
mentaM = —5/2,..,5/2.

The confinement i direction is much stronger than in theg plane for this configuration of
the confining potentials. Thus, the energy due to the conmérm > direction is much larger
than the energy due toy confinement. The basis states with the lowenergy compose the
ground state of the dot. The main component of the two grotetés\/ = +3/2 is the basis
state|00, j, = £3/2). Thej, = £3/2 bands have a lower confinement energy in comparison
with the j, = +1/2 bands due to their larger mass in this direction. The grotaie $s thus
mainly composed of heavy holes. Superimposed on #ergies the ordering is determined by
the smallerry confinement. The Fock-Darwin envelope wijth= 0, m = 0) is the lowest basis
state for thery potential. TheR andS operators from the Kohn-Luttinger matrix are responsible
for an admixture to the ground state of the= +1/2, j, = —1/2 bands with envelope®) + 1)

and |0 £ 2) respectively. The next higher states, with= +1/2 andM = +5/2, consist also
mainly of thej, = +3/2 bands with envelope functiorn81),|0 — 1). This resembles to some
extend the spectrum for electrons, where the Fock-Danaitestare eigenstates. There, the low-
est envelope i300) followed by |0 + 1). The reason for this similarity is the relatively large
confinement. Therefore, the = +1/2 Bloch band dominated states are energetically far away
(=~ 25 meV, outside figurE=311) and the admixture of light holes liatieely small. In conclusion
the effective mass of the hole is almost constant in the lbatases. The spectrum resembles
the one of a particle described by only one (spin degenebate) and with an effective heavy
hole mass. Actually, with this potential values we are ondtige of the similarity to electrons.
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3.1. Single-Particle States

It becomes more pronounced when the splitting to the ligi-bands becomes larger.

For higher magnetic fields we see that the slopes of the |ostatgs are nearly the same. They
approach asymptotically Landau IeveJE [67]. For very highgmetic fields thery potentials
forming the dot will play a minor role. The spectrum has tcerable that of a particle confined
in thezxy plane only by the magnetic field applied4dmirection. Then, the quantum dot states re-
semble more and more those of a two dimensional hole gas inregstnagnetic field. The small
spacings between different states approaching the sandaudevel scale with the strength of
the dotzy potential and vanish for a perfectly two dimensional system

3.1.2 Band Coupling Effects

The crossing between the lowest eigenstates with totallanguomentum: componentV/ =
+3/2 arises due to competition of different potentials. Thepotential, the influence of the
magnetic field on the orbital movement of the holes and thendeeenergy the holes experience
change the hole energy differently. It is instructive tog@kcloser look at this effect. We have
defined the Zeeman energy &y = —he/m.xkBj.. This term describes the influence of the
magnetic field on the Bloch-band part of the holes wave fonctiThe spin of the holg, in

an eigenstat@/ is not a good quantum number. Nevertheless, the expectalaa of the hole
spin atB = 0 T is close to3/2 and has the same sign a$. So the Zeeman energy rises
the M = —3/2 state energetically and lowers tiié¢ = +3/2 state. The influence of they
potential and the magnetic field on the orbital movement efftble is opposite to the Zeeman
term. The mechanism is the following: They both enhance thpling between the light and
heavy holes. The light holeg.(= +1/2), have a bigger mass in the direction than the heavy
holes (. = +£3/2). So their quantisation energy in the potential is smaller. The magnetic
field in z direction acts only on they motion of the holes. Again the eigenstates dominated by
the light holes rise slower with stronger magnetic fieldsittiee heavy-hole states. The slope of
an eigenstate in the magnetic field is dependent on the ie#eaoiss of the hole and thus on the
admixture of thej, = +1/2 light-hole states to this eigenstate. Now, the magnetid fieanges
the mixture of Bloch bands in the two lowest = +3/2 andM = —3/2 eigenstates differently.
This can be seen when we look at the Landau levels which thgitewond states approach in high
magnetic fields. In this regime the hole is confined in a twoetisional plane by some potential
in z direction. Using the envelope function approximation we dascribe an eigenstate of this
system by

g2 fum(2)Pn(y)
Cl/QfLH(Z)(I)N—l(y)
071/2fLH(Z)q>N—2(y)
073/2fHH(Z>(I)N73(y>

n m >0
n—m m<0

S
=~
I

, ¢ =0for N; <0, N:{ (3.4)
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The f(z) are the envelope functions indirection. In the Landau gaugd, = B(—y,0,0), we
get Hermite polynomials as envelope functiohg(y) in the y direction, and plane waves in
x direction ﬁ)]. The last part if.(3.4) shows us how the quantwmbers of a Landau level
are related to the ones of a Fock-Darwin state, which appesathis level asymptotically in
high magnetic fields. When the = +3/2 eigenstate approaches the Landau regime, then the
|n = 0,m = 0) Fock-Darwin envelope of thg = +3/2 Bloch band approaches tke; Landau
level envelope of the same Bloch band. We have tNea 0 according to the last part [1-3.4.
For theM = —3/2 dot eigenstate thg0) Fock-Darwin envelope of th¢. = —3/2 Bloch band
approaches thé,y_; Landau level envelope of the same Bloch band and the quantumbver
NisnowN_3, = 0= N —3. TheM = +3/2 dot eigenstate approaches a Landau level,
where, because of the conditidfy < 0 = ¢; = 0 in (34), theN = 0 Landau level consists
only of thej, = +3/2 Bloch band. The envelopes for all other Bloch bands are zeeotd
the ¢; coefficients. In high magnetic fields, thd = +3/2 dot state develops towards a state
consisting only of holes from thg = +3/2 Bloch band. The admixture of light holes vanishes.
The M = —3/2 dot eigenstate approaches a Landau level, where the hadeackass to all
four Bloch bands. It remains a mixture of all four Bloch banikis larger admixture increases
the effective mass in they plane and, therefore, lowers the energy of this state velgtto the

M = +3/2 state.

In the spectrum of Fid.(3 1) this effect compensates thenaeeenergy at arouni T where the
lowest states cross. By varying the confining potentials areenhance and lower the coupling
between the Bloch bands and can tune the position of thisioms Figureg 3.2(h) 0 3.2(d)
show the change of the lowest two states of the quantum dbtimgteasing confinement iry
direction.

The label “for electrons” in the figure caption has the follogymeaning: When we confine
conduction band electrons with an effective mas$.067m. in a dot with thiszy potential,
they will show an equidistant level spacing with the giverrgy. In the case of conduction
band electrons this quantisation energy is experimengaitgssible while the constant describ-
ing the potential strength is not. Therefore, the notatiomvention developed, to describe the
dot potentials in terms of the level spacifg. When we describe valence band holes in a quan-
tum dot we lack such a prominent quantity. The advantageiafjus our case this somewhat
cumbersome notation is the possibility, to compare theditiee treated dots with the real elec-
tron dots mentioned at the begining of the section. Findl/force constank’y, determining
the strength of they potential is inaccessible to experiments. There is alsample way to
describe the strength of the potential by means of the nordesgant level spacing. Also the
frequencywp,sis = v/ Koy1/m. We used to determine the spatial extend of our basis staées is
arbitrary value since the mass of the holes changes andésmey~,. To represent the potential
strength we choose here a value which has in our opinion ths¢ ratevance. In the following
we will usewy for the standard potential values and give othgipotentials only in relation to
this potential.
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Figure 3.2: Energy (for electrons) due g confinement {_(&)iw, = 4 meV;[(®} 7wy = 5.5
meV;[(C) iwy = 7 meV; and[ (@Y, = 8.5 meV

With increasingry potential the crossing between the two lowest states app¢dower mag-
netic fields. For approximately, = 8 meV there is no crossing at all. To better compare the
different plots, in each of them the energy of the state8 at 0 T was subtracted. The energy
scale in each picture is the same. Note that with increasingonfinement the slopes of both
states are lowered, but the reaction of fife= —3/2 state on this change is much stronger. One
can even obtain a negative slope for this state (Fig._3.2(fh)s happens because the energy
lowering admixture ofj, = 1/2 holes rises faster with magnetic field than the increaseef th
confining energy due to the stronger field. For smgliconfinements such a negative slope of
the states arises due to the Zeeman term [Fig. B.2(a)).

As already mentioned, the magnetic field changes the midtithe Bloch bands and thus
changes the effective mass of the hole. It is, therefore,possible to find a new constant
effective mass for the hole and describe the system in aesivaghd picture for different values
of the magnetic field.

In general one can find several regimes. When the confinirengats inxy andz direction
are weak, the system is determined by the magnetic field arelgenstates resemble Landau
states for even weak fields. When theonfinement is the strongest, i.e. gives a much larger
energy separation than thg potential and the magnetic field, the hole behaves very mkeh |
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Chapter 3. Quantum Dot With Holes

an electron. It can be described as a particle with a consttettive mass and a two-level spin
of 3/2. Then its effective mass is close to the mass of a heavy hote: €onfinement potentials
much smaller than they potential thery potential determines the order of the states. The heavy
holes from thej, = +3/2 band have a lighty mass that rises their eigenstates up in energy and
the lowest states are mainly composed of the- +1/2 bands. When neither of the potentials
is dominant the holes states are mixtures of all four bands.

3.1.3 InAs Quantum Dots

We can describe afm As quantum dot in our model by merely changing the Luttingeapas-
ters. They are fofnAs: v, = 19.67, v = 8.37, 73 = 9.29 andx = 7.68 [32]. The difference
betweeny, and~s is again not very large so we are allowed to use the axial appedion. The
largest difference compared € As is the large value of. This parameter corresponds to the
Landé factor of atomic states. We thus expect that the depeedof the states on the Zeeman
energy will be much stronger, than in th As dot. This fact will become important when we
introduce a manganese impurity into the dot.

80 .
M=-5/2
M=-3/2

BF M=-1/2

E [meV]

0 2 4 6 8 10 12 14
B[T]

Figure 3.3:/nAs quantum dot with standard potential values.

Figure [3:B) shows the energy eigenstates of a single haém im As quantum dot with
standard values (Eq.—3.3) for the confining potentials. Tlgenml independent constanis,
and F' are the same. The mixture of Bloch bands constituting thesbwtates is comparable
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3.1. Single-Particle States

to the one in a5aAs quantum dot. The same ratio of the confining potentialérirs leads

to a very similar character of the eigenstates in fhels dot. The density of the hole has
the same oblate form. The ground state is néw= +3/2 throughout the whole range of the
magnetic field considered here because of the large negateraan energy. It seems impossible
to change the order betweén = +3/2 andM = —3/2 by varying the confinement potentials.
To enhance the band mixing and to lower the energy oflthe- —3/2 state, we have to choose
a strongzry confinement and comparatively wealconfinement. For a confiningy potential
nine times stronger than the standard value the lowestsstateparallel with each other until

a field strength ofB = 1 T but M = —3/2 never becomes the ground state. For even higher
values of the potential the splitting between the statesies stronger againl/ = +3/2 is

still the ground state but the mixture of bands in this statierd strongly from the standard
potential regime. When the energy due to theconfinement becomes even bigger than the
energy due ta confinement the main components of the ground state agaoniselight holes
from j, = +1/2 bands.

3.1.4 Elliptical Quantum Dots

The common situation when dealing with real quantum dotkbgithat the dots will not possess
cylindrical symmetry. This can be due to failures or inhér@mstrains of the growth and\or
lithographic processes. We want to simulate this lack afutar symmetry and the violation
of the conservation of angular momentum in the eigenstatés, therefore, also investigate
guantum dots with an elliptic potential in the plane. An additional harmonic potential in
direction creates this elliptic potential profile. In outadations we considered this anisotropy
potential to vary between one and two times the potentiahgth inz direction, i.e.w, = wy
andw, = 2wy. For electrons a small additional potential of the fofm {B.€an split then, +m)
Fock-Darwin states, which are degenerate at zero magneliic fEach such state is, however,
also degenerate in spin. For a particle with non-integer ke an electron or a hole it follows
from the theorem of KrameE[_b?] that an additional poterthat is invariant under time inversion
can not lift the degeneracy of the eigenstates due to timersion invariance. Electric fields
like the additional elliptic potential are invariant undée time inversion. The component
of the total angular momentum of the halé is a half-integer number. Consequently all hole
eigenstates are degeneratedfn/ at B = 0. They still remain degenerate in an elliptic quantum
dot. Different as for electrons the degeneracysat 0 T is not lifted by the elliptic potential.
Figure[33 shows the lowest states of a dot with standarchpatealues (black curves) and in
a dot with an additional harmonic potential ©f in y direction (red curves). All states remain
degenerate aB = 0 T. All are shifted up due to the stronger total confinemente d@hublets,
however, experience a different shift in energy due to ttéferent density distribution. Two
states|M) and |M’) can become coupled through the additional potential. Tbiglking is
especially prominent when! + 2 = +M’ is fulfilled and their main spin component stems
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Chapter 3. Quantum Dot With Holes

from the same Bloch band. This is fulfilled for the second dmnditpair with A/ = +1/2 and

M = +5/2 respectively. In comparison, the crossing of these statélsd circular potential
around0.6 T transforms to a strong anticrossing in the elliptic dot.eTeason is the mixing
of them = +1 Fock-Darwin orbitals, which partially constitute thesgemnstates. The ground
states\/ = +3/2 become coupled with th&/ = +7/2 states (not shown in Fig._3.4). These are
energetically far away from the two ground states so théwmémce on them is small.
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Figure 3.4: Six lowest hole sates in a dot with standard piateralues

(wo , Fp) (black) and in an elliptic dot with an additional potentiglin

y direction (red).

3.2 Many-Particle States

The eigenenergies of two holes in a quantum dot have beeunlatdd in Eb],l[zb]. With in-
creasing computational power it now becomes possible & tr®re than two holes by exact
diagonalisation. | will focus on the influence of the diffeteonfigurations of the confining po-
tentials on the eigenstates of several holes inside thetgpneahot.

For conduction-band electrons inside a quantum dot oneluam @] that Coulomb-interaction
energy is proportional toc /w, while the energy of the electrons due to confinement is pro-
portional tox wy. So the impact of the interaction energy on the whole systemnld increase

for larger dots with smallew,. Self-assembled quantum dots have usually a radius of some
nanometres. In this system the quantisation energy is vughydue to the strong localisation of
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3.2. Many-Particle States

the hole. Here the influence of the Coulomb interaction caméae neglected. For larger dots,
however, it can have a strong influence. In the case of holdsgenerate bands there is no such
simple relation between dot potential and Coulomb intévactThus it is important to investi-
gate the effects leading to the different behaviour of thal@uob interaction. Nevertheless, we
can expect that the influence of the Coulomb potential wsk iin larger dots, i.e. with weaker
confining potentials.

3.2.1 Two Holes
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Figure 3.5: Energy spectrum of two holes in a dot with stacigaten-
tial valuesw, and Fy,.

Figure[3b shows the eigenstates of two holesdfua s quantum dot with standard potential
values. Now, only the sum/ = M; + M, of the = components of the total angular momenta
of the single holes is a good quantum number. For every vdlud there are infinitely many
combinations of\/; and M,. We take for eacld/ only sums, which consist of the energetically
lowest single-hole states with; , € (—5/2,—-3/2,-1/2,1/2,3/2,5/2).

Thez component of the total angular momentum is an integer nunwgraccording to Kramers
theorem the states & = 0 T do not need to be degenerate due to time inversion invagiahc
the system. The symmetry operation of time inversion cesateapping between the eigenstates
of the system. States with an integer number for the total spn be mapped onto itself. Thus
there is no need for a different associate state at the saengyeT he lowest state with/ = 0 is
such a not degenerate eigenstate. It is invariant underitiveesion. The next higher states are
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Chapter 3. Quantum Dot With Holes

still twofold degenerate. This is because the time inversltanges the sign of angular momenta.
It mapsM = +1toM = —1, M = +2to M = —2 and vice versa.

In the ground state & = 0 T the envelope functions of the two holes both differ littlerh the
lowest Fock-Darwin basis state. This lowest eigenstatéieabighest hole density in the centre
of the dot and thus the biggest Coulomb energy. This imm@é#tat for our standard potential
values we are in a regime, where the dot potential dominatestbe Coulomb repulsion. Since
the dot potential is dominant, we can use the picture, wherdwo holes occupy different one-
hole orbitales. We approximate the two-hole eigenstate pgoduct of two single-hole states.
In the first excited states one hole occupies an excitedabnvhile the other hole stays in the
ground state. Therefore, the excited states in the prepentram resemble to some extend the
lowest four excited states from the single-particle speuot(fig. [31). This can be especially
seen in the development of the states in the magnetic fielchigber magnetic fields the ground
state develops very much like the sum of the two single-htd&es. The spins of the holes
in the ground state point opposite to each otheBat 0 T. The different admixture of light
holes in the two single-hole states constituting this estgie is again visible. While the spin of
one hole gains continuously a stronger= +3/2 part the other hole with initiaj, = —3/2
spin is coupled to the light hole bands by the magnetic fiede @scussion in S&c.3.1.1). Thus
the expectation value of the hole spin in the two-hole sthtages. Frond at B = 0 T it rises
continuously with the field. Without magnetic field the spafishe two holes exactly compensate
each other. Due to the different band mixture in the two gfglle states with magnetic field
this is no longer possible at larger fields. This resembles#haviour described in_[55]. The
states with\/ = 1 or M = —2 fall below theM = 0 eigenstate at a field above = 8 T. The
spin expectation value in these states stays nearly unedanghe magnetic field. Fav/ = —2
this spin of the holes points opposite to the alignment faedby the Zeeman term. What makes
it still energetic favourable is its envelope functions, the orbital movement of the hole inside
the dot. These envelope functions consist of basis stategpesitive magnetic quantum number
m, which lower the energy in the magnetic field.

In comparison to the single-particle spectrum the enerffgrénce between the lowest state and
the first excited state in the two-hole spectrum is smallexbly.5 meV. This energy difference
accords the difference in the Coulomb energy between thiéeeixand the ground state in the
present spectrum. It occurs, because the hole wave funistiomore spread out in the excited
state. The absolute amount of the Coulomb energy, e.g. igriend state, can be obtained
by comparing energy of the system with Coulomb interactmthe system with the Coulomb
interaction turned off. This latter energies are just theswof the single-particle energies from
figure[3.]. The additional energy due to the Coulomb intésaéh the ground state then results
to ~ 3 meV (see Fig[3.9(b)). This is the same magnitude as theatiitenergy of one hole
and twice the Coulomb energy of the first excited state. We vavestigated the interplay of
the mutual Coulomb repulsion and confining potentials belBigure[3.®6 illustrates the values
for the dot with two holes. The red dots show the addition&rgy of these two holes due to
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3.2. Many-Particle States

Coulomb interaction in thé/ = 0 ground state. The orange dots depict this Coulomb energy
in one of the next excited states witi = 1. Finally the blue dots show the additional energy
between the\/ = 0 and M = 1 states only due to the confinenﬁnClearly for theM =1
excited state the sum of the dot-(blue) and Coulomb-(orpagergy stays above the ground-
state Coulomb energy (red). Thié = 0 state remains the ground state. The reason for this is
the large Coulomb energy in both states. Its dominance aslyglgisible in figurd 3.b.
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Figure 3.6: Coulomb energy of the = 0 state (red), Coulomb energy
of the M = 1 state (orange) and energy splitting between these states
only due to confinement (blue) for two holes in differemptpotentials.

For stronger dot potentials the shape of the ground-stdéedemsity has a Gaussian shape.
For the weakest calculated values of thepotential this shape changes. Figlird 3.7 shows the
form of the ground-state wave function in the plane for the lowest four values af from
figure[3®. Thery plane is positioned at the maximum of the density idirection. The tip of
the density becomes gradually blunt with lower lateral gmrfient. Finally a dip forms in the
centre. With weaker lateral confinement the two-hole statero longer be described in terms
of one product state of single-particle states. The eigéestoecome a mixture of many such
product states.

To sum up we saw that for the standard potential valugs F;) the dot potentials dominate
over the Coulomb energy of the system. A description of the-le state in terms of one
single-particle product state is possible. The grounetssatot degenerate due to time inversion
invariance and is a singlet. Nevertheless, in stronger eiagheld the spin expectation value

3This is the excitation energy in the single-hole spectrum.
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Figure 3.7: Form of the ground state hole density for the Biviaur lat-
eral confinement§).05, 0.1, 0.32,0.5) from figure[3:6. The: potential
is Fy.

in the ground state rises from zero and points opposite tditeetion preferred by the Zeeman
term. With smaller lateral potentials the single-partigleduct states become less accurate. The
form of the density of the ground state changes gradually.

3.2.2 Three Holes

Figure[3.8 depicts the eigenstates of three holes for mylatdrdot. The good quantum number
is the sum of thee components of all three total angular momenta. Since:ztbemponent of
the total angular momentum of the system is again not anentegmber, all states have to be
twofold degenerate without magnetic field due to the timeigsion invariancelE8]m8]. The
states withM/ = +1/2 are the ground states closely followed by the = +5/2 states. In
all these eigenstates two of the holes stay approximatelyanowest Fock-Darwin stat@0).
Their spins point opposite to each other. The third hole ps=ua mixture of excited single-
particle states. The mutual Coulomb repulsion of the hdesonsiderable. The ground state
of the interacting holes lies abouit meV higher than it would without the mutual repulsion.
We can no longer use the picture of independent particlesithesl by a single-particle prod-
uct state. For the standard potential value the total deonsithe holes in the two lowest pairs
of eigenstates is approximately of Gaussian shape. Thetgémshe somewhat energetically
lifted third eigenstate pair witd/ = +3/2 shows a small dip in the centre of the dot. In these
both higher states only one hole stays in f® Fock-Darwin state. This change in the density
resembles the evolution shown in figlitel 3.7. The dip in therearises from the admixture of
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Figure 3.8: Energy spectrum of three holes in a dot wiilpotentialuv,
and az potential of Fy,.

higher Fock-Darwin basis sates to the eigenstate. Whilgurd[3.Y this happens due to the en-
hanced relative strength of the Coulomb energy, the chantieeil/ = +3/2 eigenstate for the
present three-hole spectrum arises due to excitation oholeeto higher single-particle states.
For the standard potential values the state with the higlesstity in the dot centre and smallest
extend in thery plane is the ground state. The next state with a considelabbr density in the
centre of the dot{/ = +3/2) is still ~ 1.4 meV above the ground state. So the system isin a
regime that is still determined by the confining dot potdatzand not by the Coulomb repulsion.
Nevertheless, this repulsion changes strongly the eigtssof the system. Many different basis
states constitute now the eigenstates of the dot. So alsolaspin component is dominant for
the particular holes. In the ground state still the spinsargllar momenta of two holes cancel.
The expectation value of the spin also changes spatialigierttie dot. This is due to the cou-
pling of the spin to the orbital movement and to the differgudtial extend of the basis functions.

To sum up the three hole dot with standard potential valuesillsdominated by the con-
finement potentials. Though the addition of the third holkehfer enhances the influence of the
Coulomb energy. This now considerably blurs the shellestme of the dot. The spin expectation
value in the ground state in not zero. The states are all galdgenerate a8 = 0 T.
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Chapter 3. Quantum Dot With Holes

3.2.3 \Variation of Confining Potentials

We investigated the dependence of the Coulomb interaatside the dot on the dot potentials.
We calculated the eigenstates and eigenenergies of seatsat’B = 0 T with different confin-
ing potentials for two and three holes. Figures 3]9(a) -cJ.Sfow the additional energy of the
ground state when the Coulomb interaction is turned on.

AE = E,(w Coulomb — E,(w/o CoulomB (3.5)

The three investigatedpotentials amount té¢, = 0.38 - Fy, F, = Fy, F. = 2 - Fy. Thex axis
shows the ratio between the actualpotential and the one of my standard dgt The red(green)
dots show the additional energy for two(three) holes. Falbmy potential the system follows
the square-root like dependence but for higher potentlabgone clearly sees a divergence from
this behaviour. We have fitted corresponding square-routtions to illustrate the effect, using
the first five points to fix the coefficients. Beyond the regirh¢he lateral confinement, where
the additional Coulomb energy shows the square-root betiguihis energy first rises slightly
above the square-root law. With stronger lateral potenitaialls then significantly below the
square-root curve. For strongemotentials the effect is weaker. This changeA#’ can be
connected with the band mixing due to the dot potentialrgierzy potentials in comparison
to a fixedz potential increase the mixing of bands. This changes tlee®fe mass of the holes.
The strength of the Coulomb interaction between the holpsm#s only on their charge and not
on their mass. The change in mass, however, strongly infagetie confinement due to the dot
potentials, which is the opposing force to the mutual Coddoepulsion. The extend of the wave
function determines the strength of the Coulomb energy. firseapproximation we can look
at the lowest Fock-Darwin basis state for the lateral coniigret to estimate the influence of the
changed mass. The spatial extent of this state is governdeblmharacteristic length Equation
8.8 shows the dependencelain the lateral confinement constdii and the effective mass

of the hole inside the crystal. The lendth is the characteristic length for a particle with mass
a - m in adot potentiab - K:

h h
VTR T Vanike (3.6)

When we increase the lateral potentig) — b - K, with b > 1 the extend of the function will
fall differently for the different masses

Al:l—lb:l<1—%) Ala:la—lab:la<1—%):%l(l—%) (3.7)

So, for a particle with a larger mass m, a > 1 the extend of the function will change less for
the same change ii,. So when the hole mass rises, the same increase in the aaafedlement
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3.3. Quantum Dot with One Mn Impurity

results in a smaller contraction of the wave function. Thiglee other hand results in a smaller
increase of the Coulomb energy. The same process also acwdiriaction. Here the decrease
of the relative strength of thepotential enlarges the extend of the wave function direction.
Therefore, the Coulomb energy can even fall with increaatstdl confinement as in figyre 3.9(a)
for w > 2 - wy. With higherz potentials (fig.3.9(h], 3.9(c)) this decrease of the Coll@mergy
shifts to higher values of lateral confinement The square root dependence of the Coulomb
energy on the confinemeatis known form quantum dots with electrons. They have a consta
effective mass and their extend in thalirection of the dot is mostly considered constant. We
observe such a behaviour also for holes for small,. In this potential configuration the band
coupling is small and does not change much wittso does the effective mass of the hole. Also
the extent of the wave function indirection is constant due to the relative largpgotential. The
hole behaves also very much like an electron. Notice that evéhis case a magnetic field still
leads to a strong change in the band coupling and thus in fibetigé mass.

The lowestry potential we investigated in this way wag * 0.05. The characteristic length
[ of the system become®.1 nm for this potential values. So this quantum dots are huge in
comparison to their usual sizes of some to some tensm. Even for this very low potential
the ground state of two holes was among all eigenstates thevitinthe highest hole density and
thus the biggest Coulomb energy.

As a conclusion we can draw that for strangonfinements in relation to the lateral potential
the holes behave very much as electrons with an effectivelewad spin of nearly3/2. For
comparablery andz potentials the band coupling changes the effective madsediales. With
the different masses the holes change their behaviourtingurising potentials. An increase of
one confining potential rises the quantisation energy bas it change the extend of the wave
function. Thus there is no simple coupling scheme betweer\blution of the Coulomb energy
and the dot potentials.

3.3 Quantum Dot with One Mn Impurity

There have been different approaches to treat a manganpasgtiyrinside a quantum dot. Gov-
orov @] assumed a hole bound to thén atom. The interaction between the hole and man-
ganese spins he described in terms ofiifienteraction and treated the dot potentials as a pertur-
bation to the impurity states. He then calculated the ermtstates and their selective excitation
by a laser pulse. Ir_[55] Climente et al. calculated the Zeeereergy of a\in atom inGaAs
under the influence of an effective magnetic field stemmiomfa hole confined in a disk-shaped
guantum dot. Temperature dependence as well as an addittosecond hole were considered.
Fernandez-Rossier [[70] calculated the spectrum of exxitoa 11-VI semiconductor dot with up

to threeMn atoms. He used a box potential with large single-particergnspacing. Only the
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Figure 3.9: Coulomb energy for two(red) and three(greetgdhdl he dots are calulated values.
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3.3. Quantum Dot with One Mn Impurity

lowest eigenstate was considered and the Coulomb intenab&tween electron and hole was
neglected. BhattacharjeEt?l] calculated the respongeahainganese spin in a quantum dot on
the creation of an exciton by a laser pulse. He used a mod#gasim[59]. Together with Chutia
[@] he calculated the dependence of the hole eigenstatdseorariation of the confining po-
tentials in a quantum dot with a central manganese impurhe effects of single electrons and
holes inC'dTe dots were investigated i@72]. Experimental investigasion excitonic spectra
in InAs can be found in[43].

Our investigations will differ from the aforementioned Wan that we will try to include all
significant interactions in our calculations. We will cdktie the common eigenstates of a hole
and a manganese atom inside a circular quantum dot. Sinceavgkealing with relatively large
guantum dots the orbital magnetism as well as the Coulongaotion between the holes will
have an impact on the states. We will also consider a quanairfodned at a heterojunction.
Here the triangular potential couples the light- and helaole bands stronger than a square well
potential. Finally we will show the changes in the eigeregatepending on the magnetic field,
on a variation of the confining potentials and a change in ts#tipn of theMn atom.

We represent the envelope part of ghiecoupling term[[Z70) in our basis of Fock-Darwin basis
functions and add it to the one particle matrix. We have todase the size of our basis to take
account for the spin state of the manganese. The matrix eksn@ the acceptor potential of
the manganese are first calculated numerically and stoteglHamiltonian matrix including all
interactions is then diagonalised to obtain the eigengdunel eigenvectors.

3.3.1 Strength of the Used Potentials

In the investigations on the influence of a manganese aaceyse the dot, different dot-
potential configurations will be used. The results can pliytbe explained by the dominance of
one or several of the used potentials over the remaining. dndkis section we will refine the
meaning of a “dominant” potential.

The strength of a potential can be seen e.g. by considerm@rtlergy necessary to free the
confined particle. The constant potential in our invesiayet will be the acceptor potential of
the manganese. In butkaAs the manganese acceptor can confine a hbkemeV above the
valence band. In the negative-energy picture used hera¢b@ds to-112 meV. In our model,
however, we can never reach this energy. In the model for ¢hepdor states in the frame of
the envelope function approximatidﬂ74] the ground-seatergy results only td,.. = —26
meV E{]. The energy of the excited states is predicted irgoaity with the measurements. To
cure this inaccuracy a correction to the potential of theeptr atom has to be introduced. It is
called the Central Cell Correction. We omitted this coritt This may seem a prohibitively
rough approximation. Now, our investigation depends onréiaive strengths of the used po-
tential and not on their absolute value. So when the accgptential used in this calculations
is underestimated the values for its competitors, the dtntials, are also chosen smaller. The
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reported effects depend on the geometric form of the patisntionfining the holes. Since the
central cell correction changes the Coulomb potential efdbceptor in a radius e 0.3 nm
from the impurity, it will also have a strong influence on tlreogetric form of the confinement
potential in this radius. Hole states in dots have an extérad lzast ten times this value. The
dot potentials are positive repulsive potentials. Amoranththe confinement in growth direction
is the strongest. ld7aAs our standard potential strength irdirection, F;,, leads to a ground-
state confinement energy of a heavy hole (masg(y; — 2v2)) of 39.84 meV and for a light
hole (massn./(y1 + 272)) of 64.12 meV. In comparison to the energy &f.. = —26 meV this
potential is larger but we will not call it dominant. The stger > potential of4.3 - F; leads
to confinement energies ©05.12 meV and169.19 meV for heavy and light holes respectively.
This potential will clearly dominate the acceptor potelntighe form of the hole wave function
in z direction will rather resemble an Airy function, i.e. an@njunction to the triangular dat
potential, than a spherical symmetric function belongotipe acceptor potential. The lateral dot
potentials in thery plane are typically smaller than the acceptor potential.eHateral potential
of wy the ground-state energy of a heavy holg.i¥) meV and for a light hol€.26 meV. In com-
parison to this potential the acceptor potential is domindinis changes for the configuration
5 - wg. The heavy-hole ground-state energyl is49 meV and for a light hole 1.28 meV. So
the acceptor potential looses its dominance here. Notehkaground state of the system is a
potential dependent mixture of the light and heavy holes.

3.3.2 (GaAs Quantum Dots

When we include a manganese atom in the dot, we get an additlegree of freedom, which is
the manganese spin. It can take six possible directiors +5/2,+3/2,4+1/2,—1/2,-3/2,—5/2.
While the Coulomb potential of the manganese atom affee®thital movement of the holes
inside the dot, the Mn spin will couple to the spin of the holesthe pd interaction. We want
to treat the system fully quantum mechanical. So our neweétilbpace for the solutions of
the systems Schrodinger equation will be the tensor pro#iyct® Hs. of the old four di-
mensional space(;, spanned byJ = 3/2, j.) and the six dimensional spaéés. spanned by
IS =5/2,5,). Additional to the Hamiltonian describing the motion of thele in the dotH,,
(see Eq.Z20) we have to consider the terms describing thémeractions

z

7J . . ;!
H == Hh + ]ancc(r) + ‘f(RI)‘Q%d <SZ7.]Z|S .]|S 7.]z> . (38)

Herel is an identity matrix. The acceptor potentid).. acts only on the orbital part of the hole
wave function. The last term acts on the spins of the hole aambanese. The coupling strength
is determined by the density of the hole at the site of the itylif (R;)|2. The acceptor po-

tential changes strongly the potential landscape of the @bt dot potential is repulsive and

(approximately) infinitely high, i.e. it can confine infinigemany holes. Contrary the acceptor
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potential is attractive and can attract only one hole. Thencharges of acceptor and hole will
cancel out any influence on further holes. This picture isyéwer, strongly dependent on the
relative strength of dot and acceptor potentials. For ldaeotentials the acceptor will merely
disturb the dot eigenstates.

First we put the manganese atom in the centre of the dgtjglane. Inz direction we will
always choose the position where the lowebgsis function of a heavy hole has its maximum.
In most cases the confinement of the hole idirection is much stronger than the confinement
in the zy plane. It also exceeds the strength of the acceptor poteSathe> dependence of
the ground-state hole wave function will by very similar be towest: potential eigenfunction.
This is the heavy-hole basis function. Such a choice assures that the manganééealmost
in the maximum of the hole density indirection. For a quantum dot with standard potential
values the probability for a hole to be in the central unit,¢be one that contains the Mn atom,
is P22, = 0.00039 for the Fock-Darwin basis state0). This is the most centred basis state and
the main part of the ground state of the dot. The probabititylie hole to occupy the central cell
will rise strongly in the eigenstate of the system in comgaamito this basis sate due to the strong
acceptor potential of the manganese. Nevertheless, wexpactehat with this very small value
of P2, the interaction of the manganese with the hole spin will by veeak compared to the
other energy scales. Usifdg (2 70) we can calculate the gseliiting between different mutual
alignments of the hole spifp and the Mn spirt,. With this probability the splitting amounts to
~ 0.031 meV. The next higher hole state4s2.5 meV above and because its envelope function
mainly consists of thé&) + 1) Fock-Darwin state, the density of the hole in the centre efdbt
is almost zero. So we can expect that the manganese will otdyaict with the ground state of
the hole and, as the spin of the hole is concerned, it will bsekoj, = +3/2. To increase
this small interaction energy between the hole and the Mmaioe has to increase the hole
density in the dot by increasing the confining potentials. dAkeulated the eigenstates of a dot
with a Mn atom for standard potential values and also for awdtt a zy confinement - w,
and az potential of4.3 - Fj,. Sincew = \/Ky/m this translates i</ K, = 25, i.e. the lateral
confinement i25 times as large. Notice that due to the confinement dependesd of the hole
this does not translate mtimes larger energy spacing. The figures(B.10) &nd3.1dy she
energy eigenstates of these two different dots.

Let us first consider the dot with standard potential valleg.([3I0). The twelve lines
represent the twelve different possible alignments batvtiee two lowest hole states and the six
possible alignments of the manganese &ia 5/2, S, = +5/2, ..., —5/2. The state of the hole
is not an eigenstate gf but for the lowest two states of the hole one spin component, +3/2
or j, = —3/2 is dominant in one of the two states. The expectation valudehole spinj.)
is +1.42 respectively. As in the dot without the manganese, the cogjbletween different, is
an effect of the band coupling in the Kohn-Luttinger matfike expectation values of the man-
ganese spin are very close to the eigenvalues oftheperator. The coupling between different
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Figure 3.10: Energy spectrum of one hole with standard pialeand a
Mn atom in the centre.
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Figure 3.11: Energy spectrum of one hole and'a atom in the centre.
The dotry potential amounts td - wy andz potential toF' = 4.3 - Fy,.
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spin alignments of the manganese almost vanishes when fheitsnatom is in the centre of
the dot. AtB = 0 the states with similar mutual alignment of the hole and naaege spins are
energetically degenerate. The magnetic field splits thesessdue to different Zeeman energies.
M = S,+ M, = S. + j. + m is here a good quantum number. It is the sum of sfeom-
ponent of the manganese sgin the = component of the hole total angular momentgnand
the z component of the envelope function angular momentum wetgtrantum numbern. The
conserved quantum numbéf can take the valued/ € (0,+1,42,£3,+4). In the dot with
the weaker confining potential (Fig._3]110) the arrows shogvdpin alignments in the ground
state: Hole spin (red) and manganese spin (green). The/gtatel is the ground state for the
most part of the calculated range of the magnetic field. Thessp this state are aligned max-
imally antiparallel due to the anti-ferromagnegi¢ interaction. The dominant spin components
are|S,) = 5/2 and|j,) = —3/2. The statel/ = 4 has a stronger negative Zeeman energy and
crosses\/ = 1 atB = 1.7 T. The spin alignmentin/ = 4is|S.) = 5/2 and|j.) = +3/2. No-
tice that the magnetic field points in the: direction. Due to stronger confinement in the dot in
Fig. 311) the slopes af/ = 1 andM = 4 differ not much. The now bigger anti-ferromagnetic
pd interaction between the spins prevents the hole from algyfollowing the Zeeman energy
even in strong magnetic fields. When the quantum dot is détedhby a top metal gate we have
control over the lateral confinement. So, by changing théicement potential one can control
the alignment of the hole spin at some fixed magnetic field.

The Landé factor for the manganese spimis = 2 [E] and for the holey, = 2k = 2.4. With
the larger manganese spin the Zeeman energy of the mandsaihégger. In the following I will
show why it is impossible to control the alignment of the mamgse by changing the hole state
in the magnetic field: While the magnetic field becomes steotigepd interaction between hole
and manganese is almost consBaWhiIe the Zeeman energy of hole and manganese rises linear
with it. It can become considerably stronger thanghienteraction energy. Also the band cou-
pling effect which can change the spin of the hole becomesgér with magnetic field and can
even overwhelm the Zeeman energy of the hole. We can expEdbthstronger magnetic fields
the spin alignments of hole and manganese will be deternbgdtese effects. Only for weak
fields thepd interaction can play a significant role. Without magnetitdfibe two lowest states
|S.) = £5/2 |j.) = F3/2 are degenerate. These states have the largest negaiivieraction
energy. In a very weak magnetic field this degeneracy islliffdhepd energy stays the dominant
term and is almost the same in both states. The spins stanedl@ntiparallel.

In weak magnetic fields we can distinguish two regimes forhible state. As shown in section
B 1.2 the hole spin here depends on the strength ofghmotential. In weak potentials the hole
spin aligns according to the Zeeman term. According to figiarZ(d)-3.2(d) the band coupling
in strong dotzy potentials lowers the energy of thg) = —3/2 state, which then becomes
the lowest hole state. The manganese atom is influencedelsetsiepd interaction only by its

4For a hole in a quantum dot the magnetic field increases itsityen the centre slightly. When the manganese
impurity is put here, the interaction energy will rise alsdyoaccordingly to the increase of the hole density.
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Chapter 3. Quantum Dot With Holes

Zeeman energy. In a dot with strong confining potentials.(@i@l1) and in weak magnetic fields
the statdS,) = 5/2 |j,) = —3/2 will be at lower energy. The manganese spin in this state has
the minimal Zeeman energy and the hole is also in its preferstate due to the influence of
the band coupling. For stronger magnetic fieldspfienteraction looses influence but with the
strongxy potential the same spin alignment of the hole is prefered ground state stays the
same as for weak magnetic fields. In the second regime witivélagerry potential (Fig C3.110)
the hole spin will be determined by its Zeeman energy in medtstic magnetic field regim

In weak magnetic field the spins have to align antiparallak Zeeman energy of the manganese
atom is stronger than the Zeeman energy of the hole. Her¢testatdS.) = 5/2 |j,) = —3/2

will be the ground state. When the magnetic field grows steotige interaction energy again
loses influence and both spins align according to the Zeeeram #A flip of the hole spin occurs
in the ground state. It can be easily shown that no other smifiguration can have a lower
energy than the ones mentioned. So in all possible casesahganese spin points according to
the Zeeman term and does not change. The competition betiwedrole Zeeman energy and
the band coupling effect can only change the spin of the Heiece the Zeeman energy of the
hole is lower than the one of the manganese, this changeesl@®t enough energy, to alter the
manganese spin. So, to control the manganese spin we hawdattourselves tothds = 0 T
case.

The crossing of half of the states at one point in figutes{j3at@l [3.11) is caused by the de-
pendence between the energy of the statds at 0 T and their dispersion with magnetic field.
Both values depend on the relative alignment of the hole aanganese spin. This alignment
determines thed interaction energy and thus the energysat 0 T. It also sets the Zeeman en-
ergy. The straight slopes point out that this energy termidatas the magnetic field dispersion
of the states. In all the crossing states the spin alignmietiteohole isj, = 3/2 and only the
manganese spin state differs among them. Now, at the cgogsint the difference in thed in-
teraction energy between any two of the crossing statesadlgxcompensated by the difference
in the Zeeman energy between these states. In experimasit\seto the hole spin a prominent
difference for the two spin alignments can be expected atvtdlue of the magnetic field.

In the dot with the large confining potentials (Hg.—3.11) émergy difference between the low-
est two alignments of hole and manganese spin amourisl®d meV atB = 0 T. This is
6.2 times the value of the small-confinement dot. The densityhefhiole at the manganese
site in the strong confinement regime6s times as large as for the low confinement. The
increase of thepd interaction energy follows the increase of the hole denslty this spec-
trum the states follow the Zeeman term. In figure (B.11), h@realso a deviation from this
scheme can be observed/ = +1(2)) are the first excited states with total angular momentum
z componentM/ = +1. They arise from the third double &4#.85 meV and have a slope op-
posing their Zeeman energy. The spins in these statgdare 1(2)) = |S. = —1/2,j, = 3/2)

°For our standard configuration this ordering is present et T and9 T (see figur§ 3-2(h)).
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3.3. Quantum Dot with One Mn Impurity

and|M = —1(2)) = |S, =1/2,j, = —3/2). According to the Zeeman term, the slope of the
|M = —1(2)) state should be positive while the one of {fié : 1(2)) state should be negative.
The reason for the inversion of the slopes in the spectruimeisrnifluence of the band coupling
on the hole states. In this two states the Zeeman energiée didie and the manganese atom
nearly cancel out and the strong in-plane confinement of ¢fe pushes thgj.) = —3/2 state
below the|j.) = 3/2 state. This influence on the hole spin is present in all stateshe re-
maining states, however, the Zeeman energies of the holegpetially of the manganese are
stronger and determine the alignment of the spins. In the cBthe weak confinement the states
are not inverted. In figureZ31L0 beyor®i®l = 0.5 T these are théth and7th lowest state. So
here their ordering resembles their Zeeman energies. Alaalot without the manganese atom
for this zy potential|j.) = 3/2 should be lower in energy. However, these both states have a
very parallel dispersion in the magnetic field and the spiitbetween them is small. The reason
for this change is the acceptor potential of the manganese. dt changes significantly the dot
potentials and changes thus the band coupling.

The third potential configuration we calculated with a marege atom in the centre wasg -

5, F = 7 mV/nm (not shown). For this potential configuration the bandpling is strong and
the lowest hole states have already a large light-hole adneixi.e. of states with, = 1/2. This
changes considerably the hole spin expectation value hwhig.) = +1.21 in the lowest two
states. The hole density at the manganese sii&sof the value in the configuration in figure
B.13 with a4.3 times largerz potential. The lowering of the hole density in this configioa

is due to the larger spread of the lowest envelope functiondirection in the lower confining
potential. The splitting between two of the doublets amsua.11 meV. This is0.56 times
the value of the configuration with the strongonfinement. This splitting is a measure for the
strength of thevd interaction. Again it follows the change in the density daf tiole at the man-
ganese site. The change of the expectation value of the pwié ) due to the changed band
coupling has no influence on the interaction energy. We diesd values for comparison with
configurations discussed later in the text.

Here we have shown the dependence of the interaction betiwedmle and the manganese
on the dot potentials. The change in the hole density due taager confinement is the most
important factor for the strength of the interaction between the spins. This interaction is, how-
ever, much weaker than the dot and acceptor potentials. Baliowest hole state participates
in the common interacting hole and manganese state. Intbisd state the hole spin is an ef-
fective two-level system with expectation value closéto = +3/2. It is changed by different
admixtures of light holes due to changed dot potentials. &gmetic field the alignment of the
manganese spin is determined only by its Zeeman energy. ak fields the spin of the hole
aligns antiferromagnetically to the manganese spin dubded interaction. In stronger fields
the hole spin aligns ferromagnetically due to its risingiaa energy. The magnetic field where
the change between these two alignments occurs is for waakr&ing dependent on thel
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interaction. When the band mixing is large the spin of theh®hligned opposite to its Zeeman
term even without the interaction to the manganese. Hergriiend state may never change
from the weak field alignment. An investigation on the eféeat different potential aspect ratios
on the hole spin in diluted magnetic semiconductors can tedan Efli].

3.3.3 Influence of the Lateral Confinement

We have also varied the strength of the confining potentitden:y plane at zero magnetic field.
The range went from.1 - wy t0 6 - wy. Thez confinement was constant Bt= F|,. Figure[3. TP
shows the energy of the ground state. The energy dropsIglighh increasing potential until
3 - wp and then rises slowly. The lowering of the ground-stategynesith increasing potential is
in striking difference to the undoped dot, where the eneiggsrlinearly. This effect arises due
to the competition of the confining- and the acceptor-paénThe energy of the hole changes
differently in these two potentials with the distance frame tcentre of the dot. The stronger
localisation due to the larger dot potentials creates angegoproximity to the acceptor atom.
In the potential range used here this effect lowers the &rialgy. Also the effective mass of
the hole is changed with the dot potential. The light-holaraelter of the states increases with
strongerry potential. Nevertheless, the dominant hole-spin stayesgta= +3/2 even for6 - wy.
The change of the hole effective mass influences the impdbeafot potential on the movement
of the hole. It changes the ratio at which the hole wave faemcshrinks with increasing dot
potential. All these effects sum up to the shown behavioigure [3.IB) illustrates the absolute
value of the energy splitting between the two lowest dogbiletthe spectrum of a hole and a
manganese atori,;(w/wp). This value represents the strength of tlkinteraction between
the spins. The change of thd interaction energy can result form different sources. Tlostm
likely reason is the change of the hole density at the sitb@impurity. Another reason could
be a change in the spin expectation values of the hole anceahtinganese. To compare the
evolution of the density(w/wy) and pd splitting energyE,,(w/wy) we normalise both. We
divide the evolution of the density by the density valuesat, = 1 and the evolution of thed
splitting by the splitting atv /wy = 1:

Epa(w/wo) _ P(W/wo)' (3.9)
Epa(1) p(1)

These normalised diagrams match exactly in all calculatedt@. The diagrams of both evo-
lutions look exactly like the one depicted in figufe_(3.13)nefefore, the gain itE,; can be
attributed solely to the change of the hole density.

We notice a slower gain ifv,; with the confiningzy potential beyond/wy, = 2. Around this
point we also see a change in the behaviour of the ground-st&trgy gain with they potential
in figure (3I2). The growth of the hole density is the onlewaint factor in the change of the

splitting. The relevant effect on the hole density here nsilsir to the one described in section
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3.3. Quantum Dot with One Mn Impurity

B.Z23. The change in the effective masses lowers the caiotnaaf the hole wave function with
the increasing dot potentials. The change of the hole-sfpeaation value due to the changed
admixture of the light holes, in contrast, has no effect am ititeraction energy between the
spins of the hole and the manganese. This higher admixtukesrtae hole spin expectation
value deviate stronger froat3/2 which would be the value for pure heavy-hole bands. With
the changed spin for the holes also the expectation valleeohinganese spin deviates stronger
from the eigenvalues of.. This behaviour is what one can expect: Without a magnetid fie
the manganese spin has no preferable direction. It aligt@ding to the hole spin. When the
direction the hole spin changes the manganese spin is dlageordingly to it. For this reason,
only a change in the hole density at the manganese site hadlaenice on the energy splitting
due topd interaction.
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Figure 3.12: Ground state energy in a dotFigure 3.13: Splitting of lowest states due to
with one M n atom in the centre for different pd interaction in a dot with oné/n atom in
values of thery potential and & potential  the centreE,, for different values of thery

of F' = Fy. potential and & potential of " = Fy,.

The total spin in the present configuration is an integer rermBo, the eigenstates do not
have to be degenerate at vanishing magnetic field. Still amkrgcy occurs between the states
with =M. Without a magnetic field no net magnetisation of the dot ssfue.

In our calculations we have not taken into account the ckegtbcorrection. This correction
to the Kohn-Luttinger theory is necessary to reproduce tpementally measured value of the
ground-state energy of the hole [53]. The energies of eddtates of the hole are predicted
accurately by thé - p theory and the envelope function approximation even withiois cor-
rection. Its addition would lead to a stronger localisatdthe hole at the manganese position.
The influence of the acceptor potential would, thereforge relative to the dot potentials. If
the dot potentials are weak the acceptor potential donsrete the system resembles more a
single acceptor impurity in bulk'a As [é]. In the spherical symmetric potential of an acceptor
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different alignments of the hole spin are not degenerate. Hence the total angular momentum
F = Sy, + J;, (particularlyF?) is a good quantum number. The eigenstates of the system hole
+ manganese belong to the subspaces Witk 1,2, 3,4. The states witlF' = 1 are lowest

in energy. The ground state is then threefold degeneratéoametd by theF', F,) stateg1, 1),

|1,0) and|1, —1).

The ground state we found has a different spin alignmentuircalculations the hole takes pre-
dominantly only the twg, = 4+3/2 states, i.e. has only two alignments. The interaction of the
manganese impurity with a similar system was studieEh,[ ]. Here the interaction with
excitons in aC'dTe quantum dot was investigated. In this 1l-VI semiconduct@nganese is
isoelectric. So, it only introduces itfS| = 5/2 spin into the quantum dot. The exciton spin takes
only the valuest-1. In its spectrum the recombination energy splits in six gediey resemble
the six possible alignments of thé2 manganese spin to one spin state of the exciton, each with
a differentpd interaction energy. For the standard values of quantumatenpials chosen by us
we are far away from thi&, F.) regime. Especially the strong confinementidirection splits
the 5, states of the hole energetically and the total angular mtumel' ceases to be a good
guantum number. An addition of the central cell correctiauid at most change the values of
the dot potential, where a clear transition between the ggintes is visible. The addition of
the correction would not change our qualitative explamatidhe results of the variation of the
confining potentials in a quantum dot with a manganese irhpalso including a central cell
correction were published iEBG]. Their results agree itatalely with our calculations. The
guantum dots used in their investigations were much smaifidrtheir potential ir: direction

was a symmetric quantum well.

To sum up we have shown that within our model and dot potentaige the spin states
Jj. = +3/2andj, = £1/2 of the hole in a dot with manganese are not degenerate. Spdtens
does not resemble a bulk acceptor state. The density of teahthe position of the manganese
impurity is the only factor determining the strength of ghginteraction. During the variation
of the dot potentials we see the influence of the change inaledifective mass on the wave
function evolution, as in sectidn-3.2.3. Due to the acceptvential, the extend of the hole wave
function also strongly affects the energy of the groundestat

3.3.4 InAs Quantum Dots

Compared withGaAs, the response of the hole spin to the application of a magfietd in an
InAs quantum dot is different. Due to the strong Landé fagtdm As) = 2 - k with k = 7.68
for the hole, the Zeeman energy of the hole is bigger than tieeod the manganese atom. The
InAs effective masses of light- and heavy-holesidirection differ much more than iG'aAs.
While the heavy hole masses are comparable, the light hole mass is @2lytimes the mass
in the former material. This splits the heavy and light halblsands far apart. The lowest levels
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3.3. Quantum Dot with One Mn Impurity

in the quantum dot have, therefore, a strong heavy hole cteararhe/n As heavy hole mass
in zy direction is0.32 times the one iGaAs. The characteristic length for eigenstates of the
two-dimensional harmonic oscillator in the plane is

[ h h . Iy 1
l; = = and with =a- = == ) 3.10
m;wWo A /ml-\/m m @ ll \4/5 ( )

With the In As lateral massn;, 4, = 0.32- mgqas the characteristic length im As is 1.33 times
the value ofGa As in the samery potential. The hole density is more spread oufnind s within
the same potentials. We, therefore, have to use strongéneorent potentials to achieve a com-
parable hole density at the manganese site and thus a cdrtgomtaraction with the manganese
spin. To describe the Coulomb attraction between the masgaimpurity and the hole ifn As
we used for the dielectric constani{/nAs) = 15.15 [E]. Jpd, Which describes the strength
of the pd interaction between the hole aiddn spins, is not known fofnAs to our knowledge.
The value forGaAs is also not known exactly [71]. These two materials have #mescrystal
structure with a similar lattice constant. On the atomigtérscale thexd interaction depends
on the overlap of the hole valence bagndrbitales with the localised manganekerbitals. The

p orbitals originate from the arsenide atoms, while the maaga typically substitutes a gallium
atom in the lattice. So this overlap will certainly dependtioa lattice constant. It is reasonable
that the values should be of the same magnitude for both raksteYVe will take, therefore, the
same value foinAs as forGaAs: J,y(InAs) = J,q(GaAs) = 40 meV nn3. As in GaAs,

in InAs the energetic splitting between the hole ground statestenfirst excited ones is much
larger than the splitting due to the interaction. Even with &,,(/nAs) value twice as large the
influence of the excited states would be negligible. Apaifra larger splitting we would get
gualitatively the same spectrum. Note that in our calcotetiwe did not account for any strain
inside the dot. This approximation is justified, becausedibis we are investigating are larger
than self-assembled dots and the influence of strain for ots id smaller. Moreover strain in
self-assembled quantum dots typically further splits tages dominated by thg = +3/2 and

j. = £1/2 Bloch bands. The influence of the = +1/2 bands on the ground state is remark-
able in our calculation. We can vary their admixture by chagdhe aspect ratio of vertical and
lateral dot potentials. So a further splitting of the bandsild alter the ratio needed to achieve a
certain admixture.

In figure[3 1% we see the spectrum of &nds dot. To avoid only a small splitting of the eigen-
states atB = 0 T and fit the strength of thgd interaction better into the magnetic field range
being under investigation we increase the strength of tieedbconfinement. The confining po-
tential inzy direction accords to a potential 683 - w, in aGaAs dot. The potential ir direction

is F' = 4.3 Fy. The spectrum is dominated by the hole Zeeman energy whiith e states into
two bunches with dominant hole-spin compongnt +3/2 andj, = —3/2. The alignments of
the manganese spin relative to the hole spin splits bothHamio six states.
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As described in sectiof.{3.1.3) no inversion of the ordeahthe hole ground states is possible
for InAs quantum dots by variation of the dot potentials. This is intcast toGaAs quantum
dots. For these we have shown such a inversion in seCfiof. 3lt./nAs quantum dots the
ordering of the two lowest states is always determined by #eeman energy. The state with
the lower energy in magnetic field has a total hole angular evdaomM,, = +3/2. For a dot
with the manganese atom and in magnetic fields bél®af, the ground state of the system is
|M = —1(1)) = |S, = —=5/2) |M,, = 3/2). Different fromGaAs, the hole is aligned according
to its Zeeman term while the manganese points opposite Eoitstronger magnetic fields the
lowest state becomed/ = 4(1)) = |S. = 5/2) |M;,, = 3/2). Here, the Zeeman terms become
dominant and align the spins parallel. Opposite toGhels quantum dot now thenanganese
spin flips when we increase the magnetic field. The splittieigveen two doubletsd =0T

is a measure for the strength of the interaction betweendleedand the manganese. It amounts
to 0.092 meV here. This is slightly above the value from the As configuration (.084 meV)

in Fig. 311 where they potential wag).79 times as high. This depicts the lesser confinement
of the hole by the potentials ihnAs. Moreover, the state with parallel alignment of the spins
becomes the ground state at lower magnetic fields & ifis even in comparison to@aAs dot
with weaker confinement (see Fig._3.10). We see such a behaslthough theyd interaction

in the preseninAs dot is stronger than in that case. This happens because ecspith of the
manganese flips and not the spin of the hole. Adeteraction energy and the Zeeman energy
of the flipping particle compete. The flip occurs when the Zaemnergy overtakes thel in-
teraction. Since iizaAs the Zeeman energy of a hole is smaller than the Zeeman enttigy o
manganese and smaller than the Zeeman energy bi dr hole, the flip will occur inGaAs at

a stronger magnetic field than im As.

As in GaAs the crossing eigenstates contain all the same hole stai® stEte has the dom-
inantj, = 3/2 spin component. As mentioned in section 3.3.2 at the crggsiint the sum of
the Zeeman energy of the manganese atom apd itseraction energy with the hole is constant.
Now the crossing lies not in the centre of the spectrum anyem®his is again due to the hole
Zeeman energy being stronger than the manganese Zeemay.elmelependent of the align-
ment of the manganese spin all states with- 3/2 hole spin alignment have a negative slope in
the magnetic field. So, the crossing point has to be locatedyetically below the lowest state at
B = 0T.InGaAs the slope of a state was determined by the Zeeman energy wfahganese.
In this material, states with the same alignment of the hoile sould rise and fall depending on
the manganese spi). The crossing was located in the centre in the spectra.

3.3.5 Off-Axis Mn Atoms

Currently (2009) it is technologically not possible to gairecise control over the manganese
atom in a quantum dot. The position of the impurity is deteeudi randomly during the growth
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Figure 3.14: Energy spectrum of @anh As QD with one hole and &/n
in the centre. Acy potential 0f6.3 - wy and az potential of FF = Fj is
used.

process and it will be rare to find it in the centre of the dots |therefore, of major importance
to examine an off-axis manganese position. Neverthelessyilwnot choose it arbitrarily. The
strong spread of the hole wave function and thus a lower teimsiarge dots we are interested
in yields only a very weakd interaction between the hole and the: atom. We have to assure
that the probability to find the hole at tiién position remains relatively high. Figure 3115 shows
the chosen position. In the expansion of the lowest-statesl@pe functions, the Fock-Darwin
function |0,0) has a large weight. It has its maximum in the centre of the ddte second
biggest part is the basis state wjth+1). So, we choose the position of the off-axis impurity at
the maximum of th¢0, 1) basis function. At this point the value {#f, 0) equals that of0, 1).
This assures a large hole density at the manganese siteeldd ginoticeable interaction of the
manganese atom with the hole ground state. The maximum dfitHel) Fock-Darwin state
lies just at the distance of one characteristic leng@.31) from the centre of the dot. This
characteristic length changes with the dot potential. this arrangement, for different values
of the xy potential the distance of the manganese from the centreeodldh will also change.
Its position is adapted to the varying extend of the hole wianetion. Otherwise, when the
xy potential is increased, an off-axis manganese atom wiltally loose overlap with the hole
wave function. We are not interested in this effect but wamhparable set-ups for all potential
values. Thez position will remain at the maximum of the lowest heavy heleasis function.
This function deviates only slightly from the exact enveddpnction inz direction.
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Figure 3.15: Off-axis position of th&/n impurity (arrow) in relation to
the Fock-Darwin basis states.

An off-axis position of thel/n breaks the cylindrical symmetry of the system. The Hamilton
matrix no longer decomposes into blocks of total angular ermmz componeniV/ = S, +M,,.
We now have to include all possible values of the total angmlamentum of the hole and
the manganese spin in our calculations. To maintain corbpiiyawe will always include all
possible states of the manganese spirand only the energetically lowest states of the hole
My = j. + mwith M, € {—7/2..7/2}. This resulted in a basis size 6 states for each hole
spinj.. The precision of the calculations is treated in sedfioh 3.6

3.3.6 GaAs Dots, Mn Off-Axis

Fig.[316 shows a quantum dot with a manganese atom at ackstétvt nm from the centre of
the dot. The dot potentials are at standard values. Bechesentre of they confining potential
and the centre of the manganese acceptor potential aregatetbin the same point anymore,
the density of the hole at the manganese site is smaller. plitérg of the six doublets is
smaller than for the manganese in the centre. It amourit$26 meV between each doublet at
zero magnetic field. This i83% of the in-centre energy splitting. Without conserved aagul
momentum different mutual alignments of hole and mangaspse are possible within one
eigenstate. The degeneration at zero magnetic field can edardken. This is an effect of
the spin flipping termg., Sy, andj. Sy, in thej - S operator and of the broken circular
symmetry. A splitting atB = 0 T is, however, not prominent here. Only in thidn and6th state
the hole and manganese spin expectation values are loweinttize other states. This lowering
results from a coupling between these two states. When t@iog becomes stronger the states
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can even split. To explain the coupling mechanism and theialpgtuation in the states/6 let

us make the following considerations: When the interadbenveen the hole and the manganese
is turned off, the lowest eigenstates of the system can beriled by the tensor product of the
six possible alignments of the manganese spin with the lolwesempty-dot hole states. Let us
denote this hole states hyh,

‘SZ, :l:h1> ~ aFig/Q |Sz> ‘:l:3/2> —+ bFil/g |Sz> H:l/2> + CF¥1/2 |Sz> ‘?3/2) . (311)

Here F; is the appropriate envelope function for the Bloch bandrhe coefficients:, b, c are
weighting factors describing the admixture of the lightéhBloch bands withy, = £1/2. They
show the strength of the band mixing and their values ardyidatermined by the aspect ratio
of the confining potentials, i.e. the ratio of thepotential to thery potential. S, is the spin

of the manganese. For lens-shaped dots:tpetential is much stronger than thg potential
anda becomes much bigger thénandc. This is the case of moderate band coupling. With
increased band coupling the admixture of the light holeb gfiinj, = +1/2 to the ground state

is increased and the values of thé, c come closer together. The interaction that determines
the relative alignment of hole and manganese spins isdiaeraction. When we turn it on, the
undisturbed stateE{3]11) become coupled. This is, howewtpossible to the same extend for
each pair of states. The flipping terms S._ andj._S., change the spin of the manganese by
one. The only pairs with this difference ¥ are the fourth doubldtt1/2 + h;) and the third
doublet|+1/2 F hy). The application of the flip operator on one state from eachefwo pairs
gives e.g.

Jor S |41/2 —hy) = aF gp|—1/2 —1/2) +bF 1p|—1/2 +1/2)
EFy10|—1/2 +3/2) (3.12)
GerSe [H1/2 +hy) = bFy|=1/2 +3/2) 4 ¢F 1 |-1/2 +1/2)  (3.13)

+

The matrix element of thed operator (EqL210) between the states in these pairs ig fap@
constants) given by

(=1/2 + [ JR)S - j|+1/2 —h1) = ac <F+3/2‘ i(R) ‘F+1/2> + bb <F+1/2‘ i(R) ‘F—1/2>
+ ca{F 12| 6(R)|F_3/2) (3.14)
(=1/2 = ] joy See [41/2 + h) ~ cé (Fyap|6R)|Flap) (3.15)
where we have substituted the averaging over the impurityo@i by a delta function. Upon
diagonalisation of the system matrix the states coupleddoywanishing matrix elements repel

each other and their possible degeneracy is removed. Wieemtburity is placed in the cen-
tre of the dot the same matrix elements arise. In this casgever, the integration over the
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3.3. Quantum Dot with One Mn Impurity

envelope functiong’; vanishes and prevents a splitting. Since the angular mamentust be
conserved in this case, the envelope functions of a Blociithahave a defined angular mo-
mentumm = M, — S, — j.. Now, for an impurity in the centre of the dot the matrix elerne
(F|9(R) |Fj) can only differ from zero when both envelope functions haye= m, = 0. This
condition can never be fulfilled for two differerjt in this configuratiorﬁ. Therefore, all states
were degenerate & = 0 T for dots with manganese in the centre. This is no longerfouthe
present off-centre dot configurations.

For the potential values used here and the pair with pargtigls|+1/2 + h;) the coupling
@13) is very weak. So, no enhanced spin mixing is noti@abhe other strong influence on
the hole in the dot comes from the acceptor potential of th@xiE manganese atom. The peak
density of the hole appears &t.3 nm from the centre and the impurity is locatedldtum. The
acceptor can localise the hole wave function nearly at istjpm. This gives a clue about the
relative strength of the dot and the acceptor potentialomgarison of the present dot contain-
ing the off-centre manganese to a dot with the same dot pateatues and a central impurity
the density at the position of the impurity in the presentfigumation amounts t82% of the in-
centre value. This ratio also appears in the splitting betvtbe two lowest doublets in these two
configurations. It again shows that the splitting due togh@teraction is mainly determined by
the density of the hole at the manganese site. The slighgeharthe expectation values of the
hole and the manganese spin do not contribute to the chartbeaf interaction energy.

In the dot with the standard potentials and manganese inectird ground state changes at about
B = 1.8 T (see Fig[(3110). Below the crossing pojfit = 5/2) |j. = —3/2) is the ground state
and beyond itigS, = 5/2) |j. = +3/2). This crossing must occur for the off-centre configura-
tion at much higher magnetic fields. In figuie(3.16) the nmdd states are beyoritl = 0.4

T the lowest and third lowest one. Their slopes are almostlighin the calculated range of the
magnetic field. This is remarkable because the hole dertsityed/» off-axis site is lower than

in the dot with the central impurity. Thus the transitionloé ground state to the Zeeman-energy
dominated spin alignment should occur at lower magnetid.figh bot configurations the hole
spin expectation value in the lowest states is comparald@dathe same strength of band cou-
pling. The manganese spin is in both states and both configasan theS, = 5/2 state. So,
the Zeeman energies in the dot with the central and in the dthetine off-centre impurity are
not very different. What makes the difference between btites is the expectation value of
the hole orbital-movement angular-momentum quantum nuarbgin the two aforementioned
states. While for the in-centre cage) is small in both states and has the same sign as the hole
spin, in the off-centre casen) is two to three times larger and its sign in both consideratest
points opposite to the hole spin expectation value. Thisielr lowers the slopes of both these
states in the magnetic field for the off-axis configurationsHifts their crossing point towards

6 Note that the coupling between the particular spin statesialty depends on the form of the operator describ-
ing the exchange interaction. This form depends on mangifadike the crystal symmetry, on the number of bands
taken into account, approximations like the spherical appnation and the interacting partile[?Q].
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higher field values. This change of the orbital movement eftible depends crucially on the
strength of the acceptor potential. When the lateral damicdls are strong in comparison with
an off-axis acceptor potential, the wave function of theshaill be localised near the centre of
the dot. When the acceptor potential is much stronger, thewidl be localised in the vicinity
of the acceptor. In both cases the potential inithglane will have a symmetry close to circular
symmetry because the dominant potentials have it. Only ihemateral dot potential and the
off-axis acceptor potential are of comparable strengthhtiie will be localised between them.
Then the circular symmetry in the, plane will be strongly violated. The present configuration
can be classed as the regime with dominating acceptor pattand with a strong disturbance
of thedot lateral potentials. This disturbance is responsible ferdhange in the orbital move-
ment of the hole in the two aforementioned states. It chatiggs expectation valuémn). So
an off-axis impurity disturbs the circular symmetry in thet @nly if the dot potentials are of
comparable strength.

Figure[3.1¥ shows a dot with,, = 5 - wy, andF' = 4.3 - F,. The splitting at zero magnetic
field amounts tox 0.094 meV between the lowest doublets. Thistis4% of the manganese
in-centre configuration value. Again the densities of théelai the manganese site in these
both configuration have a very similar ratio. The value of fiede density at the position of
the impurity is in this case7% of the in-centre value. The maximum of the hole density lies
3.94 nm from the centre of the dot potential. The impurity is agaicali®d at the maximum of
the |01) Fock-Darwin basis function, which is &; = 6.2nm for this zy potential. So, for
this configuration the hole is localised stronger towar@saintre of the dot than in the case of
figure [3I6). In dots with weak confining potentials in comigan to the acceptor potential the
impurity can localise the hole in its vicinity. Thus the halensity and the strength of the
interaction depends little on the position of the mangaaése. This is no longer true when the
dot potentials become stronger. The position of the holeitiepeak in this potential configu-
ration is localised at approximately half the way betweenhadmtre and acceptor atom. From
this we can deduce that the dot potential strength is corbfeaveth the acceptor potential, but
not dominant. In a very strong dof potential the acceptor potential will play a minor role. In
such a strong potential, moving the manganese atom fromethteecof the dot will not change
the hole wave function much. It will merely result in a dese&f the hole localisation at the
manganese site and thus a lowering of the splitting betwsedaublets. The other features of
the spectrum should remain qualitatively the same. Thamgtlateral confinement regime is not
reached by far in the present potential configuration. Navsihectrum experiences significant
changes from the in-centre configuration with the same di@ials. One eye-catching feature
of the spectrum is the broken degeneracyat 0 T in the 3rd doublet. This was predicted by
Eq. (3I2). The hole and manganese spin expectation valeesarly zero in these states due
to the mixing between them introduced by theinteraction term[(Z.40). The spin expectation
values are also lowered in théh doublet as predicted by EQ_(315). In these states ntiisgli

is noticeable within the numerical precision of our caltiolas. Other features, not seen in dots
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with a manganese atom in the centre and in dots with an offfagihganese and weal poten-

tial, are the anticrossings between states which crossdpoimt in the former configurations. In
these states the dominant hole spin componentis 3/2. The anticrossings occur not between
particular states, but all states mutually repel each otkgain the spin-flip terms are responsible
for the mixing of different spin states. As shown befores thixing is strongly dependent on the
admixture of light holes with, = +1/2 to the eigenstates. In the present potential configuration
(5 - wo, 4.3 - Fy) this admixture is bigger than in the weak dot potential camfigion. Also the
localisation of the hole, in the middle between the dot @atrd the manganese atom, strongly
disturbs the circular symmetry in the, plane. This makes coupling between different orbital
hole states possible. The ground state consists mainledbth= 5/2) |j. = —3/2) state. This
configuration in very preferable for these potentials. Trge band mixing lowers the energy of
thej, = —3/2 hole state. Due to the strong dot potentials the hole deasitye manganese site

is high and thus thgd interaction is large.

We also calculated the spectrum of a dot with tlyeconfinement potential @f,,, = w, - 5 and a

z confinement off' = F,. The energy quantisation due to the confinementdirection is still
larger than for the confinement in thg plane. Nevertheless, this configuration comes closer to
a cylindric dot shape rather than the oblate form of the fordogs. Figure[(3.118) shows the cor-
responding spectrum. The kinks in the spectrum result freamall number of calculated points
(one eachi).2 T). The lines represent states with the same dominant basesasd, therefore, the
same dominant spin alignment. Anticrossings in this spet@ppear as a symmetric displace-
ment in energy of two states with their crossing in the midddgain the manganese atom is
located at.2nm from the centre of the dot. The density of the hole at the maesmsite i19.55

of the in-centre configuration value with the same dot padéstrength. The splitting between
the lowest two doublets & = 0 T has the same ratio for these two configurations. The peak
of the density is at.24 nm from the centre. In comparison with the configuration fronufigy
@ID), i.e. the one with manganese at the same positiorsaimexry potential, but stronger
potential ofF" = 4.3 F}, the hole is now localised closer to the acceptor atom. Tiedacement

is also the result of the competition between the dot paénénd the acceptor potential. With
the lowerz potential the wave function spreads further in this ditti The proximity of the
hole to the acceptor becomes smaller. Inithelane the wave function is shifted indirection
towards the acceptor atom. This results again in a strongeirity to the acceptor. In the
present case, however, there is no gain in hole density anémganese spin site. Due to the fur-
ther spread of the wave function irdirection, the hole density at the position of the manganese
is lowered more than the increase in density due to the sivifaitds the acceptor can make up
for. The ratio ofzy to = potentials yields a large admixture of thie= +1/2 Bloch bands to
the ground states of the hole. The large band mixing enhaheespin flip mixing mechanism
described in[[(314) an@(3115). We see the splitting of detskdtB = 0 T and anticrossings in
thej, = +3/2 states seen in the preceding configuration. The effectscavamore pronounced.
Even theith doublet shows a small splitting described by (B.15). Tthtes exhibit not only one
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anti crossing in the region where they come together. Duhie@gnticrossing the eigenstates are
mixtures of many different hole- and manganese-spin staites states with dominant hole spin
contributionj, = —3/2 do not cross. For the states not participating in the arg&ngys and
for the other states away from the anticrossing region tipeetation value of the hole spin is
constant around-1.15. This value is typical for the large band coupling regimateel here. The
expectation value of the manganese spin is close to thewityss ofS, for all states away from
the crossing region. In the ground state the manganesegizedlifollowing the Zeeman term.
As mentioned before the hole spin states are now stronglganiut the dominant component
is still 5, = —3/2. The only competitor for the lowest eigenstate is the oné Wit = +5/2
and dominany, = +3/2. It has a very similar slope in the magnetic field. A crossirnththe
ground state can occur only in magnetic fields far beyond aleutated range.

We can divide the spectrum of a dot with an off-axis mangameparity into several regimes.
The first one can be set when the dot potentials are much stréimgn the acceptor potential of
the manganese and the band coupling is small due to a réydtvge splitting of the light- and
heavy-hole bands. Here an off-centre position of the atoes ¢t change the spectrum of the
system very much. It is comparable with the on-centre spetexcept for a smaller splitting
between the six doublets due to the smaller hole densityeahtinganese site. A second regime
can be defined, where the band coupling is still small but thtepdtentials are considerably
weaker than the acceptor potential of the manganese atore.thiehole becomes localised al-
most completely at the site of the manganese impurity. Whexot potentials are very weak the
circular symmetry is not violated very much. Then the cenfreymmetry is the impurity site.
The spectrum does not change much from the on-centre casachna system the dependence
on the actual manganese position is very weak, since thgtacctom takes the hole with it.
To achieve a stronger change in the spectrum we require rgsbtrand coupling and a broken
circular symmetry. So we can set up a third regime where trepgrements are fulfilled. The
strong band mixing occurs when the dopotential is low in comparison with they potential
of the dot. To break the circular symmetry we must localigehble between the centre of the
dot and the acceptor atom. So, the potential must be of comparable strength as the acceptor
potential. This enables spin-flip processes. Then spiittirseveral doublets @& = 0 T occurs
as well as strong anti crossings.

In all regimes thend interaction strength is mainly determined by the densitthefhole at the
site of the manganese atom. A change in the band mixture didleestate has only a minor
direct influence on this value. Outside the crossing poihtisestates with strong spin-flip prob-
ability the alignment of the manganese spin is close to thersialues of5, and the alignment
of the hole spin is determined by the strength of the bandleuyip

In all the potential configurations considered here the gdatate was dominated by the heavy-
hole bands withj, = +3/2. By a change of the ratio of the confining potentials we cao als
enforce the light-hole bands with spjn = +1/2 to provide the main spin component in the
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3.3. Quantum Dot with One Mn Impurity

ground states of the dot. IﬂSO] such an transition is ingastd, however, in a very different
system. The spectra of the dots will, however, not deviagditgively from the heavy-hole ones.
With the actual form of thed interaction term the coupling betwegn= +1/2 hole states will
be stronger than for thg = +3/2 ones. In the highest and lowest of the six degenerate dsublet
the alignment of the manganese spins deviates maximaliy. 416 /2 and—5/2. The coupling
between the states and thus the splitting of these doubiktsevstill small even with dominating

J. = £1/2 bands.

In this work | consider only one off-axis manganese positidfe have found that for different
off-axis manganese positions the observed effects chamgeskghtly. An according investiga-
tion for valence band electrons (holes) in II-VI semicoridus can be found irEél]. In that work
the effects are more pronounced, since without an acceptenfpial the manganese disturbs less
the eigenstates of the dot.

3.3.7 InAs Dots, Mn Off-Axis
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Figure 3.19: Energy of one hole andn atom7.2nm from centre in an
InAs QD, zy potential 0f6.3 - wy andz potential ofFy.

Finally we investigated off-axis manganese atoms in quarttats made fromin As. Figure
B.19 shows the spectrum. We used the same potential valfes e Mn in-centre case of
InAs. The manganese atom is positioned in the same way as fardbe case, i.e. in the
maximum of the|01) basis state. With the effective masses/itds the absolute position is
R; = 7.18 nm from the centre of the dot and = 2.04 nm from the heterojunction plane. The
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peak density of the hole lies26 nm from the centre. The hole density at the manganese site
in the off-axis configuration i50% of the in-centre configuration value. This high ratio and the
localisation of the hole almost in the middle between theadwitre and the acceptor site show
that the two present potentials are of comparable stremgtthé /n As effective masses. The
circular symmetry is broken for the hole. Also the secondir@gment for strong spin-mixing is
present. The admixture of the light holes to the two-holeugtbstates results for thiet As dot

in a expectation value of the hole spin(gf) = 1.35. This value is comparable to the dot from
figure[31Y with comparable dot potential values. We alsatiseesplitting of the third doublet
at B = 0 T. At the crossing point of thg, = +3/2 states, a3 = 0.3 T, anticrossings occur.
These are, however, very small. The expectation value ofmi@neganese spin at the calculated
points, at0.2 T and0.4 T, is only slightly lowered in the crossing states in comgani with

the non-crossing, = —3/2 states. Thed interaction is so small that the Zeeman energy is
dominant already beyond = 0.3 T. Again the hole spin is constant in the magnetic field and at
the crossing point it is the manganese spin which changasgtsment.

3.3.8 Elliptic Dots with Mn

We calculated the eigenstates of elligtia As quantum dots with manganese impuritie®at 0

T. The elliptic potential was created by considering an taiail harmonic potential in the di-
rection. We varied the strength of the additional poterial@Z60) from0 to 1 - K, i.e. the
harmonic potential iy direction was at most twice as high as the one idirection. For the
strong potential configuratioh- w, the additional potential was increased appropriately &pke
the2 : 1 ration of they to thez harmonic dot potential.

In a dot with standard potential values and a manganese attim centre the hole density does
not change much upon application of the additional poténtibe circular symmetric acceptor
potential is strong in comparison with the elliptic dot pdtal and conserves the circular shape
of the hole density even at the maximal value of the elliptiteptial K. = K. Still we notice a
small lowering of the manganese spin expectation valueardh doublet. The violation of the
circular symmetry starts the spin-mixing mechanism asriteet in Eq. [3.IK). In the strong-
potential configurations - wy, and F' = 4.3 - F; the elliptic dot potential is comparable with the
acceptor potential. The hole density shows a slightly etlipontour. The density at the centre
of the dot drops t®7% of the circular value. The influence of the spin-mixing temisges with
the now stronger broken circular symmetry. The third doul®ws now a small splitting of
0.01 meV. The third configuratiof - wy, and F' = F;, with strong band coupling, shows again a
different behaviour. The density of the hole in the centsesitol 04% of the circular value. The
strong band coupling enhances the spin-mixing mechanisihas the third doublet is now split
by 0.03 meV.

In the configuration, where the additional potential is &apin y direction, and the man-
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ganese atom is located on theaxis, the additional potential has the smallest influencéhen
hole. Again we are interested in the change in the charattirechole eigenstates due to the
additional potential. At the same time we do not want the gesity at the manganese site
to be considerably lowered. For the standard values of thpatentials, the acceptor potential
dominates. The hole density and the spin alignments of halenr@anganese barely change. In
the strong dot potential configuration the now stronger tamithl potential squeezes the hole
density iny direction. This leads to an increase of the hole densityasite of the manganese
to 105%. The splitting between the lowest doublets follows this@ase. The expectation values
of both spins and the splitting of the third doublet changdg bttle. The third potential config-
uration, where the band coupling is strong, shows agairferdift behaviour. The density at the
manganese site rises 1603% of the circular value upon application of the maximal adutitil
potential. In contrast to all preceding cases, the spijttiatween the lowest two doublets does
not follow this change and drops slightly 8%. This is not true for the distance between the
two topmost doublets, where no change in the splitting ibl@sat all. In all cases the changes
due to the additional potential are small. The impact of thpte potential can be considered
strongest in the case of a central impurity, where the vimadf the circular symmetry can lift
the degeneracy of some of the doublets.

Nevertheless, we could proof our spin-mixing mechanismprgslicted in EqC3.14 spin-mixing
via thepd interaction is only possible in a broken circular symmetnythe orbital movement.

3.4 2Mn1Hole

In this chapter we will investigate the interaction of two mganese impurities and one hole
inside the quantum dot. The costly calculation of the magtements describing the acceptor
Coulomb potential of the manganese in our basis, suggestsimse the same positions of the
manganese impurities as in the former chapters. So in odigewations one of the atoms will
be located in the centre of the dot while the other will be i@ thaximum of thg0 + 1) basis
function. This is for the standard potentia) at 14nm from the centre and fo¥ - wy at 6.2nm.

In both cases this is far enough apart to neglect the anbrfeagnetic interaction between the
manganese spins. The antiferromagnétie-)Mn interaction acts on the length scale of the
crystal lattice constan|t__[_t32]. The potential valueditds were (6.3 - wo, F' = Fp). This yields
the position for the off-axis manganeserté8nm from the centre of the dot.

3.4.1 (GaAs Dots

We have seen that in the case of one manganese impurity atbonarhole in the quantum dot
the spin alignment of the manganese atom in magnetic fieldtershined only by its Zeeman
energy. The spin alignment of the hole, in turn, can be chédubyeall potentials: the magnetic
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field, the dot potentials and the alignment of the mangangse She Zeeman energy of the
hole competes with the anti ferromagnaetitinteraction. In case of one hole in a dot with two
manganese impurities we can surely expect that the holehawé even less influence on the
spins of the two manganese atoms. In contrast the influentte divo manganese atoms on the
hole spin stays large. We can only control on the manganese Isp means of the hole state at
B=0T.

Even for the strongest dot potentials and thus the largesityeof the hole at the position of
the manganese atoms the splitting in energy between theretiff alignments of the hole and
manganese spins never rises ab@emeV. This is at least an order of magnitude smaller than
the splitting between the ground state and the next exctedss So, the lowest states of this
system will consist of the two hole ground states and thetabes of the spin for each manganese
atom. Thisresultsirz - 6 - 6 = 72 states. Depending on the relative strength of the dot- and
the acceptor-potential the hole envelope function can lamgbd considerably by the acceptor
potentials. We will, therefore, use the same number of hdigal basis states in our calculation,
as in the preceding cases. Figules(3.4[T), (B.4.1)[andljZHow the spectrum of the 72 lowest
states of the system.

First we want to consider the dot with the strongest confipoigntial values$ - w, andF = Fj

(fig. B41). The two manganese atoms now compete in atitatitie hole and the density at
each manganese site drops in comparison to the precediegwéhk only one-manganese atom.
Nevertheless, with the strong dot potentials localisirg hible towards the centre, the peak of
the hole density lies d.96 nm from the centre of the dot between the two impurity atonte T
density at the site of the second atom, the one off-axis, asie)% of the density of the one

in the centre. The splitting between the highest and lowesbkkt atB = 0 T amounts to
0.93 meV. The lowering in thed interaction energy becomes clear, when we compare thig valu
to the sum of the splittings in the two preceding one-impucdses. It yieldd.455 meV. The
guantum numbers of the components of the two manganese spﬁﬁé), ands®?, and the one

of the hole spin: componenty, are not conserved. This is due to the broken circular synymetr
and the spin-mixing terms. The spin expectation values @fofficentre impurity<S§2)> and

the hole spin(j.) deviate stronger from the eigenvalues of the corresponojpggators. The
different spin states of the particles are coupled. Thisatfis smaller for the in-centre impurity
in this potential configuration. The reason for the différepin expectation values of the two
manganese atoms is the spatially dependent alignment diolleespin. To describe the spatial
change of the hole spin we defined in appendix A the poladsat{x). It is the expectation
value for the hole spin at positionnormalised by the total hole density at this point. At the sit
of the central impurity we have(0,0,1.9nm) = 1.496. At the site of the second impurity it
amounts tor(6.2nm, 0,1.9nm) = 1.400. Without an external magnetic field the hole spin is
the only influence on the spin of the manganese. The mangapasealign according to it, i.e.
antiparallel. The overall variation of the polarisatiortlie dot is rather small. Figuke-3120 shows
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the form ofr(x) in the plane containing both impurities with= 1.9 - 10~ nm for the strongest
dot potentialg5 - wy F' = Fy) at B = 0 T. A stronger deviation from the mean value of the hole
spin occurs only at the very edge of the hole density.
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Figure 3.20: Polarisation of the hole (blue curve) normalised to the
hole density. The red(green) line shows the position of treral(off-
axis) Mn atom. The orange curve shows the total hole density nor-
malised to its peak value.

The coupling of different spin states is most prominent wétates with the appropriate spin
alignments (see Eq._3]14) are close in energy, e.g. whendiosg. AtB = 0 T all states
are doubly degenerate. This is in contrast to the case wighoffraxis impurity. In that case,
for those potentials values one doublet splits. The spireetgion values of the hole and the
manganese in these states become nearly zero. This ddéi®again consistent with Kramers
theorem. The total spin of the particles is not an integerlmemanymore. So, without a magnetic
field each state must be at least doubly degenerate due tionréniversion invariance. Without
magnetic field the spins align according to flhkinteraction. The states with the largest negative
pd energy, Sly = 5/2> |S2z = 5/2> |jz = _3/2> and |Slz = _5/2> |S2z = _5/2> |jz = 3/2>
form a degenerate ground-state doublet. The ground stdite iwhole calculated range of the
magnetic field is the one with dominant spin stdtgs. = 5/2) [S2. = 5/2) |j. = —3/2). This
is due to the large negative Zeeman energy of the two mangapass in this state. Thed
interaction then aligns the hole antiparallel to them. Thly state with larger negative Zeeman
energy is the one starting at the top of the spectrum, whersgim of the hole is aligned parallel
to the manganese atoms. The slopes of both states in the ticegrid are parallel. The gainin
Zeeman energy of the hole is compensated in this dot potesiidiguration by the band cou-
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pling. Even for magnetic fields several times larger thaniten our calculation we can expect
that the ground state will not change. The next higher stitts only in the spin alignment of
the off-centre manganese atom. In the first excited statpsttb the|S2, = +3/2) statdl. Itis
energetically favourable to change this spin because dbther hole density at its site and thus
a lowerpd interaction energy in comparison with the centre atom. Hhitieigs between all the
doubly degenerate states/at= 0 T are not equidistant. This is due to differgmnt interaction
energies of the two manganese impurities. When the derfditedole is equal at both impurity
sites and the spin expectation values of both manganesas arensomparable, thel interaction

of the two atoms with the hole is the same. In this symmetrsedhe states @& = 0 T then
will group in eleven tuples according to the eleven possialees ofS,,; = S 4+ 5P with

S, € {—=5/2... +5/2}. This result was already found by Fernandez-Rossier In [n@ach such
tuple S;.; is then (roughly) constant. Due to the positioning of one gaenrese in the centre and
one far away on the axis in our investigations we never had such a symmetric. CHse hole
densities differ strongly and thus tip€ interaction. We can achieve equal densities of the hole
at the manganese sites when we align the impurity atoms at dcggtances from the centre op-
posite to each other. A general scheme for the ordering diffexent spin alignments @ = 0

T can be constructed as follows: For each of the six aligneeitthe spin of one impurity and a
particular spin of the hole, there are six equidistant sthedonging to the six alignments of the
spin of the second impurity. The splitting in this six-tuperoportional to thed energy of the
second atom. The energetic splitting between similar statéwvo different six-tuples, i.e. with
different alignment of the first impurity, is determined ed energy of the first impurity. If
no accidental degeneracy occurs we end up with at Bbdbubly degenerate states. In each
of the 36 doublets the spin alignments of all particles in one stajessopposite in sign to the
respective spins in the other state. In the present caselitteng between two alignments of the
off-centre impurity amounts t0.032 meV while the difference for the on-axis impurity amounts
to 0.155 meV. According to this values and following the mentionedesne we notice that in
the lowest four (doubly degenerate) states the spin of theifirpurity is maximal antiparallel
to the hole. The second impurity takes four different statesanwhile. In the fifth doublet the
central impurity flips once while the second is maximal aatgtlel to the hole and so on.

In figure [3.4.]l) we see the spectrum of a dot witlyapotential of5 - wy and az potential of
Fy. The splitting between the highest and lowest state dropsnmparison with the former case
to 0.543 meV. The hole density at the manganese sites differs nowthessin the preceding
configuration. The peak of the hole density i89 nm from the centre and the hole density at the
off-axis manganese site is ab@it% of the value of the central manganese. The lowering of the
z potential compared to the former potential configuratioangjes the position of the hole in the
xy plane. This is an effect of the competition between the ddttae acceptor potentials. By
lowering of the confinement ia direction, the hole density becomes more elongated in this d

"This means that the dominating spin basis state changesirigfenstate. The manganese spin is not a good
guantum number.
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rection. The spread of the hole in thg plane is then lowered. This changes the potential energy
of the hole in the strongy dot potential as well as in the both acceptor potentials. Gdlance
between all three of them changes and the density of the siglafted. This effect corresponds
to the one described for the one hole and one off-axis masgani¢h dot potential§5 - wg Fp).
Remarkable is the low total energy of the system. The eig&stie almost at the valence band
edge of bulkza As, which we took to be our zero energy point. This is in consisteto the other
configurations. The energy difference due to the differecbnfinements of a, = +3/2 hole

in the configuration(5 - wy, 4.3 - F) and the present on@é - wy, Fy) is aboutés meV. For even
stronger dotry potentials or manganese atoms placed closer together ¢éngyeof the system
will rise over the edge of the valence band. The ground stdedas the dominant spin states
1S =5/2 > |S® =5/2 > |j. = —3/2 >. With the strong band coupling the spin alignment
of the hole is determined by this effect. So even without titeraction with the manganese
spins the hole will be aligned opposite to the Zeeman terne Sttonger band coupling in this
potential configuration lowers the absolute hole spin etgiEn value and changes its spatial
distribution. It amounts td.483 at the central impurity site and333 for the off-axis impurity.
The manganese spins expectation values change accordivgije the central impurity does
not change much the off-axis value is lowered. The energnghalue to a flip of the central
impurity at B = 0 T amounts td.078 meV, for the off-axis impurity td).027 meV. For the off-
axis impurity the change in thel interaction energy due to the changed dot potentials does no
follow the change of the hole density at this impurity sitesasn in the previous configurations.
The ratio of the hole density at the site of the off-axis marege in the present configuration
to the(5 - wy, 4.3 - Fy) configuration amounts t©.900. The ratio in thepd interaction energies
amounts t@.855. The interaction energy drops stronger than the hole defidiepd interaction
energy of the central impurity follows the change in the ragasity. None of the spin compo-
nents of any particle is a good quantum number. The chandeimitinteraction energy of the
off-centre impurity with the change of the hole spin is onlgraall effect in this configuration.
To investigate further the mechanism, configurations assie@ where the change in the hole
spin is larger.

For the dot configuration witlyy, and Fy in figure [Z4.1) the splitting between the highest and
lowest states drops th13 meV. This is due to the low density of the hole at the mangasise.
The peak density of the hole is&abnm while the off-centre impurity is located &t nm for this
potential configuration. The density at the off-centre naamage amounts t)% of the in-centre
value. The spins expectation values of both manganese anldotk stay in most part of the
spectrum close to the eigenvalues of their correspondiegadprsS, andj., i.e. the coupling
of different spin states is low in comparison to the precgdianfigurations. Nevertheless, it is
higher in comparison to the dot with only one off-centre namgse. In such a dot the impurity
acceptor potential strongly attracts the hole towardsasstipn. The spherical symmetry around
the impurity is then destroyed only slightly by the relaljveveak dot potential. With two im-
purities the hole is localised in between the two spherioatmtials of the acceptor atoms. The
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circular symmetry is violated strongly. This again enhanitee coupling between the different
spin states. The ratio of the dot potentials, however, leatiso a strong band coupling. So the
second requirement for the strong coupling of the spins.faintil B = 0.8 T the lowest state

is the one with the dominant spin componeffts’ = 5/2 > |5¥ = 5/2 > |, = —3/2 >.
Here the anti-ferromagnetjal interaction between the hole- and manganese spins dominate
Already atB = 1 T the state with the biggest Zeeman energy becomes the gstatg] which

is the one with same manganese spins and with the hole|gpin+3/2). These two states
exhibit an anticrossing. Betwe@® T and1.0 T the expectation value of the hole sgin) in
each of these states drops to zero and rises again with tlesitgpign. The manganese spins do
not change in the meantime. Such anticrossings appearmat®yveral of the next higher states
at lower magnetic field values. Different from the former figaration this anticrossing does
not result from couplings between the states by;iti@perator. This can be seen because the
spin expectation values of the manganese are not lowereagdinis anticrossing. The origin
of the coupling is the violation of the circular symmetry Inetoff-axis acceptor potential. The
anticrossing in the lowest states can also only occur, lsecéar these dot potentials the hole
spin at higher magnetic fields is determined by the ZeemarggnEor higherry potentials the
crossing will shift to higher values of the magnetic field dimelly disappear.

In conclusion we see, without magnetic field the hole=imAs can align the spin states of
two manganese atoms (almost) parallel. Due to the timesieinvariance the states with op-
posite spins are energetically degenerated. In opticaraxents holes with a definite angular
momentum can be created inside a quantum dot by applyinglaitg polarised light. Recent
investigations show that the hole spin lifetim@$') in a quantum dot can reach even some tens
of s [8d]. Calculations suggest even lard@i*) can be reached for single holes with well sep-
arated subbandﬂ84]. Theoretical wdm [85] and experialenvestigations oi'dT’e quantum
dots show that exciton spin can align impurity spins ferrgneically within its Bohr radius
[@], @]. The exciton recombination time is of the ordethoindreds ops. Recently inC'dTe
dots manganese orientation time<06fto 100 nm were measurethS]. In this material also the
control of manganese spins in quantum dots was shm/n [89% thke longer lifetime of the hole
spin inside the7a As dot suggests that the manganese spins can be aligned pd&tal&isation
of manganese spins in a diluted magnetic semicondd¢iots quantum well has already been
shown [90].

The thermal stability of the ferromagnetic state dependtherenergetical separation between
the different spin eigenstates of the system. This, in tmugially depends on the density of the
hole at the sites of the impurities. Also the densities mestdual for both impurities to get the
largest minimal splitting between the states. So, the isaabn of the hole wave function inside
the dot also matters. To maximise the hole density at all maege impurity sites the impuri-
ties must be positioned symmetrically around the centrén@fdot. Yet, this distance must be
large enough for the short-ranged anti ferromagnetic nhutteraction of the manganese spins
to vanish. Also a strong band-coupling can couple diffesgnih states of the manganese and
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Figure 3.21: Energy of a hole and/®@n atoms in centre and4dnm
from centrery potential ofw, andz potential of F;.
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Figure 3.22: Energy of a hole and®n atoms in centre and.2nm
from centrery potential of5 - wy andz potential of /" = 30 mV/nm.
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Figure 3.23: Energy of one hole and\2n atoms in centre an6.2nm
from centrery potential of5 - wy, andz potential of ' = 7 mV/nm.
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thus hinder the ferromagnetic ordering.

3.4.2 InAsDots

Finally we calculated the spectrum of two manganese impsrith an/n As quantum dot. Again
the ordering of degenerate doubletdzat= 0 T depends on the ratio of the hole densities at the
sites of the two manganese atoms. As in the case of one maagameurity the spectrum again
divides into two fans at higher magnetic fields. In all staieéthe lower fan the alignment of
the hole spin is according to the Zeeman term, in the higheritde opposite to this term. This
shows the dominance of the hole spin in the magnetic field fots. There is only one de-
viation from this scheme. Both states forming the lowesthdetuat B = 0 T develop nearly
parallel in the magnetic field and their slopes are nearlyzbatal. In both of these states the
two manganese spins are aligned maximally antiparalldéleédble spin, i.e|j, = +3/2 > and
158 = F5/2 >, [S¥ = F5/2 >. The lower one has the hole spin aligned according to the
Zeeman term withj, = +3/2 >. The energy of the states is mainly determined by the Zeeman
terms. So, we can conclude from the horizontal dispersigdheétates that the Zeeman energy
of the two manganese is only slightly lower than the Zeemanggnof one hole infnAs. These
two states are the ground states until abBut 0.2 T. Then, betweerB = 0.2 T andB = 0.7

T, the ground state i, = +3/2 >, |S{") = —5/2 >, |S®) = 45/2 >. In this state the off
centre impurity flips at the cost of thel interaction energy with the hole. Again this energy is
lower for the off-centre impurity. Beyon8 = 0.7 T all three spins are aligned according to their
Zeeman terms. The double change in the ground state waseamirsany of theza As quantum
dots. The reason for it is the fact that the Zeeman energyeohtthe is larger then this energy
for one of the manganese atoms. This can be easily verified @ssimple model. We assume
the spins of the particles to be conserved and in the vicofithe eigenvalues of the respective
operators. We also assume that the energies of the statdstarmined only by thed interac-
tion and the Zeeman energy. The Zeeman energy of a hole valbpeximatelyt+3 /2 B while

the energy of the manganese will amounttd/2gu. 5 B. We then calculate the crossing points
of straight lines with slope determined by the Zeeman enefglge state and offset determined
by the spin dependenti interaction in the state. Then, one can easily show thaetivdl be
always a double change as long as the Zeeman energy of onéshatger than the maximal
Zeeman energy for one manganese. The overall splittiig-at0 T amounts t@.659 meV. This

is 70.9% of the value for th&7a As dot with the strongest confinement used there. In the present
InAs dot the confining potentials are even stronger. Tloenfinement is the same and the
confinement .6 times as strong. It is, however, not possible to easily ¢aleuhis value from
e.g. the change in effective length due to the different hadss and changed confining potential.

In InAs the interaction of the confined hole with the manganese imesiis less pronounced
compared tdzaAs. The lighterzy hole mass lowers the hole density at the impurity site sub-
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stantially and thus thgd interaction. On the other side the strong Luttinger paramemakes
the influence of the magnetic field dominant for the hole stafehe actual strength of thel
interaction depends, however, on the unknown value of ttegdntion constant,;(/nAs). In
InAs we have the possibility to control the alignment of at leagt inanganese atoms. Be-
tween( and0.2 T the presence of a single hole in the quantum dot invertsliperaent of the
two manganese spins. By changing the magnetic field we caipolate their spin alignment
further. The double change in the ground state allows to pudaie the off-axis spin even sep-
arately from the central one. This kind of control is not lengossible in a system with three
manganese atoms. Their joint Zeeman energies are largetite@eeman energy of the hole.
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Figure 3.24: Energy of a hole and2n atoms in centre and.18 nm
from centre,ry potential 0f6.3 - wy andz potential of /" = 30 mV/nm.

3.5 2 Holes with Manganese

In this section we want to report on the impact of a second indeguantum dot with manganese
impurities. In this configuration all considered interaos contribute to the eigenstates of the
dot: confining potentials, magnetic field, acceptor potstof the manganesgq/ interaction

of hole and manganese spins and finally the mutual repuldidheoholes. First we want to
consider the interaction of two holes with only one mangamepurity. We will present here in
detail the dependence of the eigenstates on the mangargterpand the confining potentials.
Finally we will look at a dot with two holes and two manganesgurities. We will use the
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three potential configurations known from the precedingiges and also the same manganese
positions. Recent theoretical work on the cyclotron resoaaf one and two conduction band
electrons in a quantum dot with a manganese impurity can doedfn @], @Z].

3.5.1 2Holes, 1 Manganese

The ground state of a dot with two holes and without a mangaatsn is not degenerate and
has a total angular momentum &f = 0. The holes are in a singlet state with their the spins
glot = jﬁl) + jf) = ( and orbital angular momentacomponentsn!? pointing exactly opposite
to each other aB = 0 T. With the addition of the manganese atom the holes stayesitiglet

in any of our potential configurations. The hole singletesiateracts with the six manganese
states. So, the low part of the dot spectrum constitutexdaftates. These are separated by some
meV from the next higher ones. In these lowest states, duetogposite alignment of the hole
spins, the interaction of one hole with the manganese ataongpensated by the interaction
of the other hole. So, in all the three considered configomatiof the dot potentialgw,, Fp),

(5 - wo, Fp) and (5 - wy, 4.23 - Fy), the ground state @ = 0 T is sixfold degenerate. The total
pd interaction energy is zero. This changes little when we tbenmagnetic field on. Due to
the different band mixing in the two lowest one-hole statethe magnetic field the spins of the
two holes develop slightly different. The interactions loé ttwo holes with the manganese do
not compensate each other any longer for higher magnetitsfidihis effect, however, is only
small in the calculated range of the magnetic field. The dexgeed states are still split mainly
due to the different alignments of the manganese spin argldhe a different Zeeman energy.
The influence of the small hole-spin expectation value dudéancomplete compensation of
both spins in the magnetic field is negligible in comparisothe manganese Zeeman energy.
The state with manganese spin= 5/2 is the lowest one. As depicted in the two-hole spectrum
in figure[3D a different state becomes the ground state dr@anT. At this point two two-hole
states are close in energy. In both of them the tafahteraction of the two holes with the man-
ganese does not vanish. So each of the two-hole statesigfitsix states according to the six
possible alignments of the hole spin to the manganese spisudh high magnetic fields thel
interaction plays an inferior role. The cancellation of tldenteraction for two holes in &'dT’e
guantum dot was also found in reDSS]. Also the slow inceeabthepd interaction for the
ground state in the magnetic field was mentioned there.

We will not show the calculated spectra for lack of new inséireg features in the low magnetic
field regime. In high fields the states are determined by #e®man energy and the interac-
tion has no influence. Nevertheless, it is instructive t@takook at the energies of the ground
state of the system for different configurations. Tablé @ the energies of the lowest eigen-
state for a dot with two holes and one manganese atom in theedgow C) and on off-centre
on thex axis (row X). The columns belong to the three configuratidtte dot potentials used
before.

82



3.5. 2 Holes with Manganese

‘ (1)&)0, FQ ‘ (2)5'&)0, FO ‘ (3)5'&)0, 43F0
C ‘ 57.21 meV| 62.06 meV ‘ 189.00 meV

X | 64.24 meV| 77.76 meV 217.27 meV

Table 3.1: Ground state energies o= 0 T, three potential configurations, a manganese in the
centre (C) and off-centre (X).

By comparison of these values to the ones for a dot with onedradl one manganese we can see
the impact of the mutual repulsion between the holes. Withas mutual repulsion the energy
in the present configurations should be just twice the ore-tioe-manganese value as long the
orbital movement of the holes is considered (see figurd 3.1@)w, in the configuration with
the weakest dot potentials (colunih)) and the manganese in centre (row C) the energy of the
ground state is about) meV higher. This is the same order of magnitude as the tranga the
next excited many-particle state in the dot. The states toettte six degenerate ground states
lie about8.6 meV higher in energy. We clearly see that the mutual repalsannot be consid-
ered small in this potential configuration. With increastogifinement potential the influence of
the Coulomb energy falls. Nevertheless, for the configanaivith the strongest dot potentials
(column(3)) the additional Coulomb energy as well as the orbital ekoiteenergy amount both
almost to20 meV. So even in that case the repulsion is remarkable. We teatitess again that
we have not taken into account the central cell correctibmolld increase the localisation of
the hole in the vicinity of the manganese impurity and rise@oulomb repulsion further.

The cancellation of the hole-manganese interaction ochowgever, only in the ground state. In
the excited states thel interactions of the two holes do not compensate each otlyemane.
The states of the holes are also doubly degenerate. So ttiewspef these states is comparable
to the ground state of the one-hole configuration treateddogaling sections. Each of the higher
doubly degenerate two-hole states is split into six doubtyeherate states by the interaction with
the impurity. The total splittings of these states are smiHifley lie below0.1 meV in the first
configuration and below.7 meV in the third.

The energies of the ground states are lowered strongly irpadson to a dot without the man-
ganese impurity. In the standard potential configuratiotih the manganese in the centre the
relative change is the strongest. The energy is lowered bytad meV. This lowering is, how-
ever, reduced in comparison with the one-hole configuratiora dot with standard potentials
the total energy-reduction due to the acceptor potentialants to~ 20.2 meV. Without mutual
repulsion we would thus expect for two holes a reduction efdbuble value. The influence
of the acceptor atom is also seen in the particle number tilensif the holes (see Fig._3125).
In all the configurations with the manganese atom in the eewitthe dot the densities of the
lowest and the first excited states are all approximatelyai<Sian shape. In comparison to the
dots without the manganese the hole becomes now strongeemoated in the centre of the dot
around the acceptor impurity. None of the holes is, howéwerstate comparable to the acceptor
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state in bulk. While in bulk the extend of the hole wave fuoctis1 — 2 nm B], the extend of
the wave function of the two holes in the dot amounts to sévera The dot potentials repel the
holes from the very vicinity of the acceptor atom. A discassabout other possible localisations
of the two holes in a dot with acceptor is given further down.

For the dot potential values chosen by us the ground stat&® iconfigurations with the man-
ganese off-centre (row X) behave very much as in the one tase.cThe densities have all a
single peak between the dot centre and the acceptor atonfrigd@.26). The positions of the
peaks are slightly shifted towards the dot centre. This @athiibuted to the larger extend of
the two-hole wave function. On large distances inithelane from the dot centre the potential
of the dot becomes dominant. So, larger wave functions digeimced stronger by the lateral
dot potentials. For dots with an off-centre manganese tives s the two holes do no longer
compensate each other everbat= 0 T. This is a consequence of the broken circular symmetry
of the combined potentials confining the hole. The splitohthe states due to thel interaction
is, however, very small. For the configurati@i, 3) we found a splitting of merelg.0008 meV.
This value lies at the limit of our computational accuracygr the potential configurations with
weaker dot potentials this splitting was even smaller. Ahfer spliting of the ground states of
the dot can be achieved by applying an additional elliptieptal in thezy plane. We added to
the (X, 3) dot configuration a harmonic potential gndirection making the lateral dot potential
elliptic. The additional potential had the same strengtthascircular potentialk, = K, (see
Eq.[Z8D). In such a dot the splitting of the six lowest states to0.0058 meV. This is still very
little in comparison to the splitting for one hole.

1.x10J[m] 3><10;[m]

-1.x10° -5.x10° 5.x10° 1.x10° 2.x10°°

Figure 3.25: Densities of the two- Figure 3.26: Densities of the two-
hole ground state in the configurations hole ground state in the configurations
(C, 1)(black),(C, 2)(blue),(C, 3)(cyan). (X, 1)(black), (X, 2)(blue), (X, 3)(cyan).

We have seen that the two-hole groundstate in our potemiidigurations is a singlet and the
interaction with the manganese vanishes. Neverthelesgrdund state of the dot with a man-
ganese acceptor impurity and two holes is particularlyregtng. There are hints (see below)
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that the ground state can have also a very different charadte character of the spin alignment
of the holes can change significantly depending on the damaaf the participating potentials.
In all the potential configurations investigated by us theptdentials were dominant. The hole
was not localised in the very vicinity of the acceptor. Thus influence of the spherical accep-
tor potential on the band mixing was small. The splittinghad tight- and heavy-hole bands by
the strong dot confinement determined the character of the hole spin adectieé two-level
systemy, = £3/2. In the case of a manganese acceptor in ikl s the = spin components of
one hole bound to the acceptot®(configuration Eb]) are not separated. In this case the total
angular momentunk = J + S (not merely itsz components) of the hole and the manganese
is a good quantum number. The ground state of this complexeig't= 1 state Eh]. When
the acceptor is placed in a quantum dot and the dot potemtialsveak in comparison to the
acceptor potential they can merely perturb this configoratiThe lowest staté& = 1, F,) are
then split slightly. For oblate shaped dots tlie= 1, F, = 0) state is then shifted upwards and
the|F = 1, F, = £1) states are shifted down.

For two holes interacting with the manganese acceptor irdttealso the relation of the dot
and acceptor potentials to the strength of ghienteraction is crucial. For two conduction band
electrons in weak dot potentials and in the presence of a eti@gireld or a magnetic moment
the ground state can change from a singlet to a triplet @}aﬁ? @]. Then also for two
particles there will be a noticeable exchange interactiah the impurity spin. Such transitions
have also been postulated for quantum dots with hms [96]fofim a triplet, the holes have
to be in different orbital states. Using the magnetic fieledun weakest dot potentials (config-
uration (1)) such a transition occurs in our spectrum bey8rd Accounting for the magnetic
moment of the manganese the interaction has to be stronger than the dot confinement. We
can enforce such a transition in our calculations by ardfiigienhancing the realistic value of
the pd interaction constani,; ~ 40 meV nn¥ by a factor of20. As long as the ground state of
the system is concerned and no spontaneous, e.g. thermightiexs to higher states occur, our
system is certainly far away from the transition to a tripheall considered potential configura-
tions. To find the right potential regime a careful invediiggahas to be done. Thel interaction

is determined by the density of the hole, but to increase émsitly the confinement and so the
guantisation energy have to be raised. For weaker confinsnigs Coulomb energy can also
support a transition. Therfore, the two-hole configuratizaly show a different behavior in its
ground state than for one hole. The results on the ground statvo holes with the acceptor
impurity presented here can, however, be attributed to iaegvhere the ordering of states is
determined by the dot potentials.

There were experimentﬂ??,ﬂw] and theoretital [98Fstigations on the photoluminescence
of self assemblednAs quantum dots containing a single manganese impurity. Tiog¢oph
minescence of optically injected excitons was measureé.olitained spectra were interpreted
in terms of the recombination of a neutral excit§l. The model used to interpret the spectra
assumes in the dot without an exciton a hole bound to the nmasgampurity {1,). The exciton
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then interacts with this hole-acceptor complex. One holedalised strongly in the vicinity of
the acceptor. With its spin the hole forms the slightly sjilit= 1, F.,) states. So the influence of
the dot potentials on this hole is very weak. The spin of thetter hole is totally determined by
the dot potentials, i.e. its = £3/2 andj, = £1/2 spin states are strongly split due to the dot
confinement. This strong difference in the splitting of thféedent spin stateg. of the two holes
is unusual. The form of the confinement landscape has a venygsinfluence on the hole spin
in this situation.

In our calculations we have not seen a non-singlet grourtd.sfis is also in accordance
with other investigationﬁB]. The search for the configjoraof potentials yielding the unusual
two-hole state mentioned above has to postponed to future Wde have to investigate another
potential regime than the one under current treatment. Duleet computational costly calcu-
lation of the matrix elements describing the Coulomb rapul®f the holes and the acceptor
potential of the manganese it is not possible within our appn to easily change the potential
parameters. Thus we have to stick to our decision on the patetrengths made at the be-
ginning of our investigations. Of particular importancess the integration of the central cell
correction into our model.

3.5.2 2 Holes, 2 Manganese

We use in this section the familiar dot potential configunasi. We investigate then the inter-
action of the two impurities and the two-hole state. For a#lrained configurations the ground
state of the system is a singlet state. The interaction wighntanganese atoms vanishes. The
hole singlet-state is not degenerate so the ground statbs sf/stem consist of this single two-
hole state and th&6 possible alignments of the two manganese spins. All stagedegenerate
without magnetic field. In the magnetic field the degenertdees split up inl1 bunches ac-
cording to the possible values of the total manganese:spomponents,,, = st 4+ s As
described in sectidn 3.4, when théinteraction of the hole with the manganese is equal for both
atoms, the states become degenerate. Here the interacieroiat both manganese sites. As in
the case of one hole the potential of two acceptor atoms camphis lowers their influence on
the hole.

The presence of the second hole effectively destroys angrfergnetic alignment of the man-
ganese atoms in the dot. The very weak splitting due to theeasftre impurity, seen for one
manganese atom in theX, 3) potential configuration, is not visible any more. This is nhgi
due to the lower density of the hole at its site. So the hokest@llow a shell-structure (at least
for two-holes) as shown for eIectrmE[QdﬁllOO] with vdmigy pd interaction for filled shells.

At aboutB = 8 T the lowest two-hole state changes and a non-géinteraction occurs. It has,
however, no influence on the hole and manganese spin aligrforesuch large magnetic fields.

In [@] a system of several electrons and of two manganeparitres is investigated. There
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also the effects of RKKY interaction are included for singteny-particle states.

To sum up we have shown that for all investigated potentiafigarations with two holes
the ground state is a spin singlet. In this state the padiqul interactions of the two holes
cancel each other. The splitting in the ground state canrpeduen the confining potentials
have no circular symmetry. The energy difference betweersflited different alignments of
the manganese spin stays below05 meV. The vanishing of thed interaction for two holes
makes it possible to effectively control the magnetic praps of the quantum dot by the control
of the charge inside the dot. The density distribution and apgnment of the holes in a dot
with a manganese acceptor impurity is strongly dependernhemelative strengths of the dot
and acceptor potentials. Also the central cell correctiay mave a large influence.

3.6 Precision of the calculations

Due to the fact that most of the preceding results were obtimumerically we have to discuss
the precision obtained in these calculations. In the proedf exact diagonalisation used here
the approximation in the calculations occurs by the trunoaif the basis we use to represent the
Hamiltonian. Each term of the Hamiltonian has to be reprieskim all the basis states. For a dot
with only one hole most of the matrix elements describingitheonfinement can be calculated
analytically. Confinement i direction requires to include only a few basis states bex#us
is stronger in comparison to other potentials. The cormedjpy matrix elements were calcu-
lated numerically with high precision. Other terms like thatual repulsion of the holes and the
acceptor potential of the manganese atoms required vetly casnerical integrations. These
were the strongest constraints in the choice of basis siddhars the achievable accuracy. The
model used by us simplifies the actual physical system cereddly. Many important terms were
dropped. The central cell correction is known to change ipenenergy of the ground state of
a hole bound to a manganese acceptor by at [gasteV in GaAs. The strain in thegnAs can
shift the light-hole bands even mote [[2 02] . In thesstegns we cannot expect to get the
correct absolute values for the eigenenergies. Howevealwaeys strived to grasp all important
features of the investigated systems and let not an insiftidasis blur the effects. The drop
of the central cell correction was certainly the biggestiotd the precision of the calculations.
While it certainly does not change the quality (e.g. holensgdignment in the ground state) of
the results it will certainly shift the found regimes. Aldaiould have a strong impact in weak
dot potential regimes. We will in the following discuss theatjty of the calculations for the
different dot configurations.

For most configurations we were only interested in the eigeéasf the system with the smallest
energy. For a convenient choice of the basis states onetsxpeground state to be the one with
the best approximation to the real eigenstate of the phlysystéem. In general many operators
have off-diagonal elements in the various terms of the Hami&n. Then an addition of basis
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Chapter 3. Quantum Dot With Holes

states enhances the interaction of basis states and thusiozpof eigenstates. Their energy then
changes. They converge to a limit, which is their true eigengy. There is no simple criterion
how fast the convergence will be. However, we can expectttteathange in ground-state en-
ergy by addition of one basis state will be strictly monotatiy decreasing. The value of such a
change relative to the other important energies of the systn give us a clue on the accuracy
of our calculations. Another hint is the character of theeagjates. In general each eigenstate
will contain almost all basis states. When now in a calcdatigenstate, the probability of the
system to be in one of the high basis states near the basidfastinfinitesimally small, the
basis size is sufficient. An addition of more basis statektgin not change the character of the
eigenstate very much. Also the relative strength of the $eémthe Hamiltonian is important.
The basis states reflect the symmetry of the dot. With inangaot potentials strength in com-
parison to other terms, especially the acceptor poteiiese weak therms will become merely
a perturbation. We can thus expect that for strong dot palsrihe approximation to the actual
eigenstate will be better with the same number of basissstdtan for weak dot potentials. The
confinement inz direction is very strong in comparison to all other termsha Hamiltonian.
The system always stays mainly in the lowest basis state.aAgdhof the: basis size has little
influence on the eigenstates.

The eigenstates of a dot only with a single hole can be cakuliim our model to almost any
considerable precision. The spectrum in figuré 3.1 was kbl using20 basis states for the
xy motion (Fock-Darwin states) and two states for the each imaigs to describe themotion.

By lowering thexy basis size tol states in thery direction gives a chang@001 meV while
the absolute value of the eigenenergy in this statg 14 meV. In the calculations containing
the Coulomb repulsion and the acceptor potentials we ta¢ake the maximal possible number
of basis states. We prove the accuracy by reducing the bassand comparing the change to
the absolute value of the eigenenergy of the ground staggcdly the addition of a basis state
changes the calculated energy less, than the removing fia tate. So the presented energy
change can be considered as an upper bound to the changegy arele the basis changes
by one state. The standard potential values with the lowastahfinement should be most sus-
ceptive to the basis size. In the calculations of the two lsplectrum with standard potential
values the reduction of the one-partialg basis size by one state from their maximal number
results in a change of the ground-state energy.262 meV. The absolute eigenvalued8.951
meV. This is a change @f.3%. We can expect that our calculated value deviates not mare th
1% — 2% from the actual value. For configurations with stronger dugptials this deviation is
again even smaller. When considering the acceptor potéinéiarucial configuration is the one
with the off-axis manganese atom and standard dot potenfidle off-axis position contradicts
strongly the symmetry of the basis states. This makes itssacg to use more states to resolve
that symmetry. For this configuration the accuracy of oucwations is lower in comparison to
the preceding. A reduction of one state in thgbasis changes the eigenenergy of the lowest
state by abou®.0029%. We can, therefore, expect that our calculations will devia most by
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a few per cent from the actual value. With stronger dot paénthe influence of the acceptor
potential will fall and the basis states resemble more tleetegigenfunction. With the same
number of basis states the approximation should becomerbé&r the calculations including
two holes and one manganese we investigated the configu(&iol). Here we found a devi-
ation of0.67% in the ground-state energy with the reduction of one latemathole basis state.
This deviation is the largest among all calculated configoma. We can expect that with the
addition of one basis state the energy of the ground stalelifidr by several pro cent. We want
to stress that we could properly represent the controvengand state in the configuration with
standard dot potentials and one manganese in the cented, w&lthout the central cell correc-
tion.

All the reached computational precisions can be stronghaeoed by using more basis states.
The only restriction is the computational time needed touate the matrix elements that rep-
resenting the acceptor potential and the Coulomb intenacti
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Chapter 4

Conclusions and Outlook

In this work | have investigated the interaction of up to twanganese impurities with up to three
holes in different quantum dots. The changing dot potentald the magnetic field influenced
this interaction in many ways. The most widely investigatiggic is the influence of the hole
band mixing induced by varying ratios of the lateral potalrtt the potential in growth direction
of the dot. We found that in the case of a small mixing of fhe= +£3/2 and thej, = +1/2
Bloch bands, e.g. because of a large subband splitting,dleeldehaves very similar to a con-
duction band electron with an effective two-level spinjof= +3/2. This similarity appears
in the shell structure of the quantum dot, the Coulomb enerdiie dot and in the interaction
with a manganese impurity. When the band coupling incretieedot shell-structure becomes
blurred. The Coulomb energy stays almost constant witheaming confinement and several
mutual alignments of the hole and the manganese spin begiixto

The ground state of a manganese acceptor in a quantum dahelés crucially depends on the
ratio between the acceptor potential and the dot potentialee acceptor potential dominates,
the lowest state differs little from a bulk acceptor statecdntrast, in this work | concentrated on
the regime dominated by the dot potentials. Especially piitiag of the light- and heavy-hole
bands by a strong confinement in growth direction changeshheacter of the ground state. It
then consists of six doubly-degenerate states. The sglitetween the doublets is solely de-
termined by the density of the hole at the position of the irtpuElliptic lateral dot potentials
as well as an off-axis manganese position can break the demgmnbut only in some of the
doublets, only for dot and acceptor potentials of comparabiength and only for strong band
mixing. In GaAs dots in magnetic field the spin alignment of the manganesded/sddetermined
by its Zeeman energy. The hole has no influence on it. The Higlesafor weak fields antifer-
romagnetically with respect to the manganese spin. If itatem ferromagnetically for stronger
fields depends again on the band mixing./imAs on the other hand the hole determines the
alignment of the manganese spin. The manganese is theedlogpposite to its Zeeman term in
weak fields. | have shown the ferromagnetic coupling of twogasmese atoms by a single hole
and the determined the position of the two impurities, wimaximises this coupling for a given
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dot potential. With the addition of a second hole the couptian be turned off. In the dots, su-
perposition of quantum states can be created and destrgy®edns of confining potential and
magnetic field. This may be interesting for the realisatibguantum bits. In afnAs dot with
two manganese atoms their spins can be flipped independsrdlghange of the magnetic field.
This results suggest that once the technical difficultieEeming the controlled implementation
of impurities in nanostructures are solved, we obtain atachkit for the investigation of quan-
tum mechanical systems and for the design of material ptieger

The theoretical investigations in my work yielded a numienteresting results which still lack
an experimental validation. The main drawback is the lacgxpkrimental data to validate the re-
sults and give the present problem new impulses. Cyclo&rsarrance techniques on single dots
enlightening their inner structure are difficult. The intigation of the small, self-assembled
guantum dots via photoluminescence is now well establistmeblattains much interest. Con-
cerning the used model, now at the end of my work it appearseher, a draw-back that | have
neglected the central cell correction in my simulations.cdmtrast to older publications new
hints point out its importance to the interaction of the haohel the manganese.

As a continuation to this work it would be useful to implem#rg central cell correction. Also
a concentration on the characteristics of the self-asssargphlantum dots can put the work on
a broader experimental footing. In this field the presenntiua dot model will perform very
well. In my belief, it is capable to give a quantitative deston of the experiments. Staying in
the field of toy models, investigations on the realisatiogudintum bits are possible. The present
numerical routine is very appropriate to simulate influsnaigthe geometry of nanostructures on
guantum mechanical states like the spin of the confined hdléh the ever rising computational
power numerical simulations become more reliable and poten
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Chapter 5

Appendix

5.1 Polarisation

The eigenstates of holes in the quantum dot are not eigesgtathe hole spir.. The expecta-
tion value of the spin can vary spatially. We define the spimsdg operator by [49]

3/2

S.(x) = > suf (x)es(x). (5.1)

s=-3/2
The field operatorg} (x)v,(x) represent the particle-number densityof spin-s particles at
pointx. The total density at this point is then

3/2

Prot(X) = Z Ps- (5.2)

s=-3/2
We define the polarization by dividing{5.1) by the total dgns

1 3

m(x) = pt%(x) (203/2()() + %pl/g(x) - Qp,l/z(x) — §p3/2(x)) . (5.3)

For an eigenstate tg, e.g. the eigenstatg = 3/2, the quantity above gives what one would
expect: a constant value 8f2 over the whole dot.
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5.2. Coefficients for relative coordinates

5.2 Coefficients for relative coordinates

To calculate the matrix elements of the mutual Coulomb ®palof two holes we changed the
basis sates of the motion in the plane. We changed to the relative coordinates of the two
interacting particles to save one costly numerical intégma The transformation law is given in
(Z89). Here we will give the boundaries in the summation tedused coefficients. Their full
derivation can be found irEISO].

2 (’n@ + le) —m; — mj -+ \mz| + |m]\

g 5.4
:umm 2 ( )
[ e = 2 (ni + ;) + mi +m; + [mif + [m;] (5.5)
2
ij 1
Vinaw = 5 (2 (M + 1) & |mil + [y — |uf = mi +m; — pl] (5.6)
) -
e oty 21 | my| 2n; —m; + |myl
Ammlnzmg = (_1)(2 2Himzl) []:11: 2(2 itmal) ( 2 )‘ ( 2 |
(5.7)
and
i 2nq +m21+\m1\ ’ 2n2+m22+\m2\ 02n1—7n21+\M1\ 72n2—7ﬂ22+\m2\
K T Y LeN+tM M) $(2N—M+| M)
with

min(a,b)
cle= % <I;> (ais)\/a\/(b—kc—a)!(—l)s. (5.8)
s=maz(a—c,0)
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