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Vorsitzender des Prüfungsausschusses: Prof. Dr. Ludwig Mathey

Vorsitzender des Promotionsausschusses: Prof. Dr. Jan Louis

Dekan des Fachbereichs Physik: Prof. Dr. Heinrich Graener



Abstract
A future high energy lepton collider will demand high luminosities to achieve its

physics goals. For the electron-positron linear collider, the generation of the desired amount

of positrons is a non-trivial problem: the positron production target has to survive huge

amounts of energy deposited by the bombardment of intense beams of electrons or photons.

This causes a rapid increase of the temperature in the target within a very short time period.

The resulting deformation due to the induced pressure waves can substantially shorten the

operating life-span of the target material. In this work, we study linear effects of induced

stress in a solid target through pressure acoustic waves using continuum mechanics. We

derived analytical solutions for different cases and imposed different boundary conditions.

The application of the model to the SLC positron target gave us the results which are in

agreement with the existing literature. In a similar manner, we investigated the effect of

single and multiple photon bunches on the conversion target for ILC.
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Zusammenfassung
Künftige Hochenergie-Lepton-Collider benötigen sehr hohe Luminositäten, um die

physikalischen Zielstellungen zu erreichen. Die Erzeugung der erforderlichen Anzahl von

Positronen für lineare Elektron-Positron Collider ist allerdings schwierig: das Positron-

Produktionstarget muss erhebliche Belastungen aushalten, da beim Beschuss des Targets

mit Elektronen oder Photonen in sehr kurzer Zeit ein enormer Temperaturanstieg er-

folgt. Dies erzeugt Druckänderungen und Stresswellen, die die Lebensdauer des Target-

materials erheblich verkürzen können. In dieser Arbeit wird die Wirkung des Stresses in

Festkörpertargets mit Hilfe linearer akustischer Druckwellen aus der Kontinuumsmechanik

untersucht. Es werden analytische Lösungen für verschiedene Belastungsfälle bei unter-

schiedlichen Randbedingungen abgeleitet. Bei Anwendung des Modells auf das SLC Positro-

nentarget wurden die aus der Literatur bekannten Resultate reproduziert. In analoger Weise

wurden die Auswirkungen eines einzelnen Photon-Bunches sowie von mehreren Photon-

Bunchen auf das Konversionstarget für den ILC untersucht.
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Nomenclature

Symbol Units Description

z m Longitudinal Coordinate

r m Radial Coordinate

φ − Angular Coordinate

L m Length of the Cylindrical Rod

R m Radius of the Cylindrical Rod

P Pa Pressure

σ Pa Stress Tensor

T Pa Deviatoric Stress Tensor

ρ kg/m3 Mass Density

ρ0 kg/m3 Mass Density at Initial State

V m3 Volume

V0 m3 Volume at Initial State

u m Displacement

v m/s Velocity

F N Force

f N/m3 Force per unit Volume

p kgm/s Momentum

Q J Deposited Energy

Q0 J Deposited Energy at Initial State

q J/kg Deposited Energy per mass

σz m Standard Deviation of the Gaussian Energy Density Distribu-

tion in z-direction
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2 Acknowledgments

B m Mean of the Gaussian Energy Density Distribution in z-

direction

r0 m Spot size in r-direction

cs m/s Speed of sound

m kg Mass

t s Time

Tb s Bunch Spacing

Γ − Grüneisen Coefficient

e− − Electron

e+ − Positron

Z − Integers

I − Imaginary Number

Erf − Error function

Jn − Bessel function of order n

Hn − Struve function of order n

RHS − Right Hand Side

LHS − Left Hand Side



Chapter 1

Introduction

Hadron colliders (like the LHC) have served in many cases as energy frontier

machines. As we have learned from past experience, we know that building a new e− - e+

machine is necessary to complement the physics potential of pp colliders. The discovery of a

125 GeV Higgs boson at the LHC, generates more intriguing questions than it answers [6].

Since the LHC collides protons whose components are quarks and gluons, their collisions

produce strongly involved signatures with a large background noise. On the other hand,

an e+ − e− collider machine like the ILC, will collide electrons and positrons, that are

elementary particles with no internal substructure. Also, the ILC measurement will not

rely on theoretical assumptions since there is a well-defined initial state. Contrary to the

LHC, most events that will be analysed in the ILC detector do not require a trigger. Hence,

clean and fully reconstructable events are expected. Physics at the ILC will pave the way

to investigate the internal consistency of any new theory with precise measurement.

Although the advantages of building a new e− − e+ machine are well established,

there are still some hurdles to overcome. In building any high energy particle accelerator,

it is necessary to critically analyse the materials that will be in direct or indirect contact

with the particle beam. Most often, solid materials are used for this purpose. An important

example where a solid material will take direct hits from an energetic particle beam is the

process of creating the antiparticles1 in accelerator machines, which is the area of interest

of this thesis. Because of this direct interaction of solid material with energetic particles,

it is necessary to study whether the foreseen solid material is able to withstand the “work

1Gas and liquid targets are also used for the production of antiparticles in some accelerators [24, 31].
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4 Chapter 1: Introduction

load”. This is necessary to understand the long-term survival of the solid target material.

Our main quest in this thesis is to answer such questions and to find an analytical

approach to describe the reaction of the material thermoelastic behaviour. Before we embark

on our main quest, first let us review how the anti-particles (positrons in our case) are

produced in an accelerator followed by a brief summary of acoustic waves generation in

solids.

1.1 Background

1.1.1 Generating Positrons: Pair Production

In principle, positrons may be created via β-decay or pair production [13, 40].

The most common method employed in high energy accelerators to produce positrons is via

the pair-production method [13]. The pair-production is produced by a photon - nucleus

interaction in which an e−− e+ pair is created [38], and the photon must have high enough

energy to initiate this interaction. There are various techniques of creating the required

photons for the pair production. We will focus on two of these techniques:

1. Photon generation by bremsstrahlung: this is commonly initiated by impinging high

energy electrons onto high Z material. An electromagnetic cascade shower is triggered

and photons are generated via radiation by bremsstrahlung. Within the same high

Z material, the photons generated interact with the nucleus of the atoms toward the

rear side of the high Z material (see Figure 1.1).

To get at least one positron for one electron hitting the target, the e− beam is required

to have multi-GeV energy and the high Z material must be thick enough to accommo-

date the shower [13, 38]. This scheme for positron production is called “conventional

source”.

2. Photon generation by undulator: by passing high energy electrons through an undula-

tor (which is basically a strong magnetic field that is alternating along the travel path

of the electron), the electron undergoes oscillations and emits photons. These photons

are then impinged on a thin target (see Figure 1.2) to create the needed e−− e+ pairs

[13, 20, 38]. This technique is called the undulator based source.
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Figure 1.1: Conventional Positron Source, using a Thick Target. Incident electron

energies are typically multi-GeV. Ref.: [38]

Figure 1.2: Undulator Base Positron Source, using a Thin Target. Ref.: [38]
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Depending on the objectives, there are advantages of choosing one technique over

the other. Irrespective of which one of the techniques is chosen, one fact is common to both

schemes, namely that energy will be deposited on the target material by the incident beam.

This deposited energy causes the lattice of the material to oscillate and in turn

induces stress in the material. Therefore, there are criteria to be considered when choosing

the incident beam parameters and the design of the target material because there is a stress

limit that a material can withstand. The shape and the characteristic of the stress induced

are directly related to the deposited energy. So it is necessary to determine the profile of the

energy deposition. Typically the distribution of the energy deposition is computed by using

Monte-Carlo methods [22] and there are special codes (like FLUKA, EGS etc.) designed to

carry out this kind of computation.

1.1.2 Acoustic Generation by Particle Beams in Solid Target Material

It is a known fact that the thermoelastic mechanism is predominant in generating

acoustic waves in the case of either electron or photon beam traversing through a solid

target [22]. Much work has been done to describe the propagation of elastic waves in solids,

work that can be dated as far back as two centuries ago. Extensive studies have been carried

out in order to fully understand the behaviour of solid materials under such induced stress.

Stress is the internal force per unit area of the material of a body reacting against

an applied load [42]. Stress in a solid can be described using the Cauchy stress tensor; the

detailed explanations will be provided in Chapter 2.

The typical approach is well laid out in most continuum mechanics textbooks and

literature. To provide a brief background on this, we summarise the common approach

(by using the work done in Ref.: [7]). Linear elastic wave equation in solids is derived by

combining:

m linearised equation of motion,

m kinematic relations between strain and displacement, and finally

m Hooke’s law.

Bargmann in 1973 solved the 1-D case (thin rod to be specific) of the stress waves

equation by using the Laplace transform and the information from the incident particle beam
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is described by using temperature distribution [7]. Sievers in 1974 also solved the same 1-D

case of the stress waves equation for a thin rod by using Fourier-Bessel Series; again the

information from the incident beam is described by using temperature distribution [30].

He also went a step further by solving the systems of equation for a disc and a cylindrical

solid target. Since the stress state of the material must be described by a tensor, it is

very complicated to solve it directly in a system that involves more than one dimension

(1-D). The usually employed method was first to solve the equation for the displacement

and second to transfer the displacement into stress by using the kinematic relationship and

Hooke’s law [30].

Worth noting is the implication of using the temperature distribution. This adds

another level to the task at hand: transforming the deposited energy distribution into the

temperature distribution, which is however relatively trivial in most cases.

The general case of an ideal elastic wave equation is often very complex to solve,

and it might require that the equation is reduced by imposing some criteria or conditions

like symmetry conditions. We are going to take a slightly different approach. Granted,

this approach was initially thought to be hydrodynamical [31, 37] and it was applied to a

liquid target or a solid material target that behaves in a fluid-like manner under energetic

incident beam. Worth mentioning are some numerical simulations that were done by Ref.:

[24] using the equation derived from the approach with a commercial code called FlexPDE.

In reality, this methodology is more of a continuum mechanics approach. We are able

to apply this approach successfully to solid materials even when the material behaviour

under the influence of the incident beam can not yet be classified as fluid-like. Other major

contributions of this thesis can be seen below. Furthermore, details of the approach is

provided in Chapter 2.

1.2 Research Problem, Objective and Delimitation

1.2.1 Research Problem

As acknowledged earlier, much research work has been done in the field of stress

analysis due to a vast application in various fields. Analytical results that can be dated

to a century ago are just some of the evidence. With the invention of computers in the

last century, numerical analysis software like ANSYS, COMSOL, Elmer etc., have become
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a tool that is easy to use for computation and simulation, in order to solve the complex

problems in this field.

However a careful consideration is required when using such a tool in order to get

an accurate result, because all the numerical analysis solutions are just an approximation,

which are prone to many errors. Ref.: [17] lists some common source of errors (like: mesh,

mesh size, order, point constraint singularity, etc.) in the finite element analysis, and the

result in Ref.: [19] shows some of these shortcomings as well.

1.2.2 Research Objective

In order to be able to justify any computation done on any numerical analysis

software packages, we deemed it necessary to compare results obtained in an analytical

form (at a very rough estimate if necessary) to the complex numerical solution obtained

from the numerical analysis software. Therefore the objective of this study is to present an

analytical solution, that can be easily used to calculate the stress induced in solid target.

The study will therefore serve as a litmus test for the simulation software used in stress

analysis for conversion target in linear collider machines. We considered a simplified version

of the problem by studying cylindrical solid targets in an approximation, that is, disc and

thin rod.

1.2.3 Delimitation of Study

This work was done under the following assumptions:

1. The study was restricted to an undamped system.

2. Rotational and axial symmetry was imposed on the model because the geometry of

most solid targets in a linear collider is cylindrical.

3. Instantaneous energy deposition was assumed since the incident beam needs only a

very short time to traverse the material, time that is very small compared to mate-

rial response time. Obviously, the analytical result can not be used to describe the

behaviour of the material during the time when the incident beam traverses the solid

target.

4. The study is confined to the case where linear elastic property of the solid material is

valid.
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Other delimitation imposed will be stated where necessary.

1.3 Contribution of this Work

As stated earlier, the aim of this thesis is to provide an analytical solution: a

solution that can be referenced to when solving a complex problem involving linear acoustic

waves in solid targets due to incident particles (to be specific, electrons and photons). We

can summarise our contribution as follows:

• we derived an analytical solution for a single bunch including different energy deposi-

tion profiles.

• we formulated a general expression for the effect of multiple bunches of particle beams

hitting the target on the evolution of stress waves by considering two boundary con-

ditions, namely Neumann and Dirichlet boundary conditions.

• we applied the model to the target of the Stanford Linear Collider (SLC), to serve

as a test case for checking the model with an existing result. We further applied our

findings to the conversion target of the International Linear Collider (ILC).

1.4 Structure of the Thesis

This thesis consists of seven chapters and each chapter is introduced by a content

overview (in a written or pictorial form) of the chapter2. Below is the brief roadmap of the

thesis:

m Chapter 1 presents an introduction and mission statement of the thesis. It also contains

background materials, which briefly review previous related literature.

m Chapter 2 provides necessary background knowledge needed to develop the model. In the

end, this model (which is an equation to describe the propagation of linear acoustic

waves in perfectly elastic solids) was formulated as a consequence of the continuity

equation, the equation of motion and Mie-Grüneisen equation of state, by giving

special consideration to small perturbations near equilibrium.

2In this chapter, (that is, Chapter 1) and Chapter 7, no content overview is provided
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m In Chapter 3 and Chapter 4 analytical solutions for the linear acoustic waves equation

in solids are derived. We considered the thin rod and the disc approximation of the

solid target with two different boundary conditions and different profiles of deposited

energy density.

m Chapter 5 extends the analytical solution in Chapter 3 and 4 to include the effect of

multiple bunches.

m Chapter 6 focuses on the principal applications of the analytical solutions to the target

of the past linear collider (SLC) and the future generations of linear collider (ILC).

m Chapter 7 concludes the whole thesis with a brief summary of the results, their applica-

bility and suggestion for further studies.
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Figure 2.1: Schematic representation of content overview for this chapter.
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In this chapter, we look at formulating a mathematical model to describe the be-

haviour of solid material under external load (caused by been struck by relativistic particles)

within a linear regime. The linear regime “state” implies that any deformation produced by

the external loading does not exceed a certain limit. However, this deformation disappears

when the external load is removed and the solid material returns to its initial form. In the

case of conversion target in linear accelerator machines, this external load is the deposited

energy by the incident beam and our goal is to derive the linear acoustic wave equation

cause by this incident beam in a solid conversion target.

To put things in a clear perspective, we itemise the necessary assumptions under

which the model is valid [35, 42]:

1. the solid material under consideration is perfectly elastic, that is, it returns to its

original form after the removal of stress or pressure;

2. for simplicity we assume that, the solid material is isotropic, meaning, the material

properties are the same in all directions;

3. the material is homogeneous and continuously distributed over its volume so that the

smallest element cut from the body possesses the same physical properties;

4. a linear regime is investigated by considering small deformation or perturbation in

the system, so that any oscillation caused must be near equilibrium;

5. axial symmetry will be imposed since we are interested in a cylindrical solid target;

6. and lastly, no damping is considered.

In reality, no solid material completely satisfies the above assumptions [23, 35].

Experience has shown that microscopic structure of solid material like steel consist of crys-

tals of various kinds and orientation. Hence, at the microscopic level, the material is far

from being homogeneous [35]. Interestingly enough, experimental results reveal that, the

assumption of homogeneity and isotropy in steel is valid with great accuracy. As put in

Ref.: [35], the explanation for this “characteristic is that the crystals are very small; usually

there are millions of them in one cubic inch of steel. While the elastic properties of a single

crystal may be very different in different directions, the crystals are ordinarily distributed

at random and elastic properties of a large piece of metal represent averages of properties

of the crystals. As long as the geometrical dimensions defining the form of a body are very
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large in comparison with the dimension of a single crystal, the assumption of homogeneity

can be used with great accuracy, and if the crystals are orientated randomly the material

can be treated as isotropic”.

Since it is obvious that we are not going to consider the behaviour of the solid

material being struck by an energetic particle beam at the atomic scale, we will look at

the dynamic behaviour of solid material using continuum mechanics. The state of any

continuum can be described in terms of its velocity (v) and density (ρ) and stress (σ) 1

as a function of position (x) and time (t). The relationship between these variables can

be obtained from the conservation laws. Therefore, it is necessary to look into all the

components used in setting up the model:

m equation of conservation of mass (or continuity equation)

m equation of motion

m equation of state.

2.1 Equation of Conservation of Mass

The premise of a continuum concept is that density (ρ), displacement (u), velocity

(v) and other quantities are continuous differentiable functions in space (x) and time (t).

The total mass of a system is, however, an exception to this assumption.

Let us consider a solid material having a volume V. Let X be an interior point of

the body located in the small element of volume 4V whose mass is 4m as indicated in

Figure 2.2. We define the average density of this volume element by the ratio

ρave =
4m
4V

(2.1)

and the density ρ(X, t) at point X by the limit of this ratio as the volume shrinks,

ρ(X, t) = lim
4V→0

4m
4V

=
dm

dV
. (2.2)

Of course, the density is, in general, a scalar function of position and time (i.e. ρ(x, t)) and

thus may vary from point to point [23]. The unit 4V is allowed to decrease to a minimum

value. However, there is a limit to how small it becomes, because if it is too small, ρ would

1or pressure as the case maybe in some scenarios
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�

Figure 2.2: Continuum Volume with element 4V having mass 4m at point X [23]

depend on the atomic structure of the material and in that case continuum mechanics can

not be used for the description of the system.

The exception of mass compared to other quantities in a continuum material (as

stated in the beginning of this section) is basically due to the conservation law that mass

must obey. The mass of a given closed system (or subsystem as the case may be sometimes)

must remain constant, hence:

Dm

Dt
= 0 (2.3)

where
D

Dt
=

∂

∂t
+ v · ∇ (2.4)

is called the material derivative which describes the time rate of the change of a physical

quantity. Applying Eqn. 2.4 to Eqn. 2.3 and using the vector identity with the incom-

pressibility condition of the material property, that is (∇ · v = 0), we can re-write Eqn. 2.3

as:

∂

∂t
m+∇ · (mv) = 0. (2.5)
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From Eqn. 2.2, we can get the expression for the total mass (m) of the volume

(V ) to be:

m =

∫
V

ρ(x, t) dV (2.6)

by substituting Eqn. 2.6 into Eqn. 2.5, we arrive at:∫
V

{
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v)

}
dV = 0. (2.7)

Eqn 2.7 is valid for any arbitrary volume, therefore we have:

∂ρ

∂t
+∇ · (ρv) = 0. (2.8)

Eqn 2.8 is the differential form of the conservation of mass (also called continuity

equation) and it can be expressed in cylindrical coordinate as follow:

∂ρ

∂t
+ vr

∂ρ

∂r
+
vφ
r

∂ρ

∂φ
+ vz

∂ρ

∂z
= 0. (2.9)

Applying the axially symmetry condition to Eqn. 2.9, it is reduced to:

∂ρ

∂t
+ vr

∂ρ

∂r
+ vz

∂ρ

∂z
= 0. (2.10)

2.2 Equation of Motion (EOM): Cauchy’s First and Second

Law of Motion

To be able to derive the EOM and later simplify it, we need to first introduce stress.

By definition, “stress is the internal force per unit area of the material of a body reacting

against an applied load” [42]. In general (that is, without reference to any coordinate

system), the stress tensor is a second order tensor with 9 components (σij) that completely

describes the state of stress at a point inside a continuum medium (see Figure 2.3 and Eqn.

2.11). If we consider an elemental cube as shown in Figure 2.3, each face of the cube is

subjected to a stress that can be resolved into two components namely: normal and shear

components. The normal components of the stress are the ones acting perpendicularly to

the surface of the material (these are σij , when i = j). The shear components (which are

σij , when i 6= j) act parallel or along the surface [42].
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Figure 2.3: Stress components shown in their positive sense. Ref.: [23]

σ ≡ σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.11)

The principle of conservation of angular momentum at equilibrium (Cauchy’s sec-

ond law of motion) requires that the summation of moments with respect to an arbitrary

point is zero, which leads to the conclusion that the stress tensor is symmetrical, that

is, σij = σji. Thus it can be described with 6 independent stress components instead of

nine components. The Voigt notation is used to take the advantage of the stress tensor

symmetry:

σ = [σ1 σ2 σ3 σ4 σ5 σ6]T ≡ [σ11 σ22 σ33 σ23 σ31 σ12]T . (2.12)

The fact is that the stress tensor can also be expressed as sum of hydrostatic and deviatoric

stress tensors:

σ = −P I + T (2.13)

where I is the 3×3 identity matrix , T is the deviatoric stress tensor (which holds information
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about the shear stress) and P is the mean stress or simply pressure, which is basically:

P =
1

3
Trace(σ) =

1

3

3∑
k=1

σkk. (2.14)

The general equation of motion for any continuum medium, derived by Cauchy

(also called Cauchy’s first law of motion) is given by Ref. [2]:

ρ
Dv

Dt
= ∇ · σ + fb, (2.15)

where fb is the body force (per unit volume) acting on the system and σ is the stress tensor.

There are various ways of deriving Eqn. 2.15, one of the easiest way is by using Newton’s

second law of motion
Dp

Dt
= F (2.16)

where p = mv is the momentum and F is the total force acting on the system and we define

the total force per unit volume, f to be F
V .

This total force can be divided into two, namely: body force and surface force.

The surface force per unit volume can be define as ∇ · σ. By using Eqn. 2.4 and imposing

mass conservation law in Eqn. 2.8 on Eqn. 2.16, we arrive at

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ∇ · σ + fb (2.17)

which is the same as Eqn. 2.15. In the absent of body force (fb), Eq. 2.17 becomes:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ∇ · σ. (2.18)

The geometry of the solid target that we are interested in is cylindrical, therefore we operate

in a cylindrical coordinate system. Hence Eqn. 2.18 can be express as follow:

r : ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uφ
r

∂ur
∂φ

+ uz
∂ur
∂z
−
u2
φ

r

)
=
∂σrr
∂r

+
1

r

∂σφr
∂φ

+
∂σzr
∂z

+
1

r
(σrr − σφφ)

φ : ρ

(
∂uφ
∂t

+ ur
∂uφ
∂r

+
uφ
r

∂uφ
∂φ

+ uz
∂uφ
∂z

+
uruφ
r

)
=

1

r

{
∂σφφ
∂φ

+
1

r

∂(r2σrφ)

∂r

}
+
∂σzφ
∂z

z : ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uφ
r

∂uz
∂φ

+ uz
∂uz
∂z

)
=
∂σzz
∂z

+
1

r

{
∂σφz
∂φ

+
∂(rσrz)

∂r

}
(2.19)

Eqn. 2.12 is obviously reflected in the equation of motion in cylindrical coordinates

expressed in Eqn. 2.19. Also worth noting at this point is the fact that we will only consider
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cases where shear stress does not appear in a solid cylindrical target 2 [35, 41], and we also

impose that σrr = σφφ, Eqn. 2.19 is now reduced to:

r : ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uφ
r

∂ur
∂φ

+ uz
∂ur
∂z
−
u2
φ

r

)
=
∂σrr
∂r

z : ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uφ
r

∂uz
∂φ

+ uz
∂uz
∂z

)
=
∂σzz
∂z

(2.20)

Using Eqn. 2.13, the divergence of the stress tensor can be expressed as follows:

∇ · σ = −∇P +∇ · T (2.21)

we can set the deviatoric stress tensor to zero (i.e., ∇ · T = 0). As stated earlier, when a

cylindrical rod is considered or a body is subjected to an isotropic compression (or expan-

sion) change, there is no shear stress. Finally (by factoring axial symmetry of the cylindrical

material), we can write equation of motion for a cylindrical solid target in cylindrical coor-

dinates as3

r : ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uφ
r

∂ur
∂φ

+ uz
∂ur
∂z
−
u2
φ

r

)
= −∂P

∂r

z : ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uφ
r

∂uz
∂φ

+ uz
∂uz
∂z

)
= −∂P

∂z
.

(2.22)

2.3 Mie-Grüneisen Equation of State (EOS)

Our main goal here is to derive the equation of state (EOS)4 for solid materials.

Considering this, we will focus on the case where the atoms undergo small vibrations about

their equilibrium positions. This vibration is caused mainly by energetic particle beam(s)

striking the solid material. In the early twentieth century, Grüneisen derived a “beautiful”

EOS by extending the solid EOS developed by Mie. He included lattice vibrations of solids

even at low temperatures [16]. This was achieved by using the Debye model of solids, which

is based on a continuous medium and an extension of the single frequency assumption in

2Since we investigated only 1-D cases.

3Henceforth, we are going to be using the word pressure and stress interchangeably.

4Most material covered here is based on Chapter 10 of Ref.: [16]
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Einstein’s model of solids with a spectrum of frequencies5. First, let us define what the

equation of state is, after that we will show how to derive the Mie-Grüneisen equation of

state.

For a given system at thermodynamic equilibrium, the equation of state describes

the fundamental relationship between thermodynamic variables [16]. The number and form

of such equations depend on the particular system being considered. In our case, a solid

material undergoes thermal excitation, and one can write the energy (Q) and pressure (P )

as superposition of contributing terms, in the following form:

Q = Qc +QTa +QTe

P = Pc + PTa + PTe
(2.23)

where Qc and Pc are the energy and pressure at zero temperature (T = 0 K) called cold

terms, QTa and PTa are the contributions of the atom vibrations (about their mean posi-

tion) while QTe and PTe are the electron thermal contributions. We will neglect the thermal

electron terms for the reasons stated in the introduction part of this chapter. The assump-

tion of homogeneity and isotropy is valid with great accuracy and we do not need to go

down to the microscopic level of the solid [35]. Hence we are left with the atom vibration

term, so Eqn. 2.23 becomes:

Q = Qc +QTa

P = Pc + PTa.
(2.24)

Using thermodynamic principles and choosing the suitable independent variable(s),

it is possible to derive the EOS of a system [11]. If we know the partition function of a

system, we can exhaust all that is thermodynamically relevant about that system. There-

fore, to derive a valid equation of state for any system, a good place to start is to find the

partition function of that system.

Let us assume a solid of N atoms to be described by a system of harmonic oscillators

with 3N independent modes of vibrations. The vibrations are quantised so that the energy

of the j mode of vibration is given by

Qj = (nj +
1

2
)hνj j = 1, 2, . . . , 3N (2.25)

5See page 157 of Ref. [16] for more details on the Debye model.
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where h is the Planck’s constant, nj is an integer (basically, number of phonons) and ν is

the frequency of the j mode. The total energy (Q) of the solid can be expressed as the

energy at the zero temperature (that is, the potential energy) Q0 with the sum of energies

in all modes of the vibration, so

Qi ≡ Qn1n2...n3N =
3N∑
j=1

(nj +
1

2
)hνj +Q0 (2.26)

which is the same as:

Qi =
3N∑
j=1

njhνj +Qc (2.27)

where

Qc =
1

2

3N∑
j=1

hνj +Q0. (2.28)

This is based on the assumption that Qc, Γj (for j = 1, . . . , 3N)6 and Qn1n2...n3N may be a

function of the volume V but not temperature T . The partition function Z of the oscillator

system with the energy expressed in Eqn. 2.28, is

Z =
∑
i

exp(−βQi) =
∞∑

n1=0

· · ·
∞∑

n3N=0

exp

− 3N∑
j=1

βnjhνj − βQc

 (2.29)

where β = 1
kT and k is the Boltzmann constant. The exponential sum in the above equation

can be re-expressed as a product of terms

Z = exp(−βQc)
3N∑
n1=0

exp(−βn1hν1)
3N∑
n2=0

exp(−βn2hν2) · · ·
3N∑

n3N=0

exp(−βn3Nhν3N ). (2.30)

Since each of the sum on the RHS of Eqn. 2.30 is a geometric series, we can write it as

3N∑
nj=0

exp(−βnjhνj) =
1

1− exp(−βhνj)
−

∞∑
nj=3N+1

exp(−βnjhνj). (2.31)

Taking note that the series will converge (since βhνj > 0 ∀j) and N is very large, which

implies that we can neglect the second term of Eqn. 2.31. Therefore, the partition function

Z of the oscillator system can now be written as:

6Γ is the Grüneisen coefficient and it will be defined in later part of this section
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Z = exp(−βQc)
3N∏
j=1

[1− exp(βhνj)]
−1. (2.32)

Now we know the partition function of solids. Using our knowledge of the partition

function, we determine the Helmholtz free energy7 F (in quasi-harmonic approximation) to

be

F = − 1

β
lnZ = Qc + β−1

3N∑
j=1

ln[1− exp(−βhνj)] (2.33)

The average energy Q of the solid and its pressure P are obtained using appropriate ther-

modynamics relations

Q = F − T
(
∂F

∂T

)
V

= Qc +

3N∑
j=1

hνj
exp(βhνj)− 1

(2.34)

and

P = −
(
∂F

∂V

)
T

= −∂Qc
∂V

+
1

V

3N∑
j=1

Γj
hνj

exp(βhνj)− 1
(2.35)

where Γj is defined by

Γj = −V
νj

(
∂νj
∂V

)
T

= −
(
∂ ln νj
∂ lnV

)
T

. (2.36)

Comparing Eqn. 2.24 with both Eqn. 2.34 and Eqn. 2.35, the first and second terms (in

both Eqn. 2.34 and Eqn. 2.35) describe the cold and thermal terms respectively. Based

on Eqn. 2.36, Γj can never vanish. This is a differentiating factor between thermal term

and the cold term in Eqn. 2.35. The given fact that Γj 6= 0, implies that the vibrational

frequency depends on volume. Dependence of vibrational frequency on volume can be

explained by the fact that when a solid material is compressed, it becomes harder, thus its

restoring force increases, leading to an increase in the vibrational frequencies with decreasing

volume. Hence, Γj will always be positive.

For an isotropic and homogenous system, Γj = Γ where j = 1, 2, . . . , 3N . Re-

expressing Eqn. 2.35:

P = Pc +
ΓQTa
V

(2.37)

7F is define as F = Q− TS: where T is the temperature and S is the final entropy
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To determine what Γ is, we use the thermodynamics identity:(
∂V

∂P

)
T

(
∂T

∂V

)
P

(
∂P

∂T

)
V

= −1 (2.38)

taking the derivative of Eqn. 2.37 with respect to T at constant V, gives:(
∂P

∂T

)
V

=
Γ

V
cV (2.39)

where cv is the specific heat capacity at constant volume. The linear expansion coefficient

α at constant pressure is

α =
1

3V

(
∂V

∂T

)
P

(2.40)

and the definition of the isothermal compressibility κ,

κ = − 1

V

(
∂V

∂P

)
T

(2.41)

inserting Eqn. 2.39 - 2.41 into Eqn. 2.38, one gets

Γ =
3αV

κcv
. (2.42)

The term Γ is called Grüneisen coefficient or constant which agrees very well with the

experimental results. In a nutshell, taking into account only the thermal excitation effect,

the EOS is

P =
Γ

V
Q. (2.43)

This can also be expressed in the form:

P = ρΓq (2.44)

where q(x, t) is the energy per unit mass.

2.4 (LAW) Linear Acoustic Waves: Small Amplitude Oscil-

lation

With all the aforementioned assumptions, we have all the necessary “ingredients”

we need to be able to formulate a mathematical description of a cylindrical solid material

undergoing small vibrations or oscillations due to thermal excitations. In summary, here

are the equations:
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1. Continuity Equation:
∂ρ

∂t
+∇ · (ρv) = 0, (2.45)

2. Equation of Motion:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇P, (2.46)

3. Equation of State:

P = ρΓq, (2.47)

4. lastly, the distribution of deposited energy density in space (x) and time (t):

q = q(x, t), (2.48)

where:

ρ = density,

Γ = Grüneisen coefficient,

v = velocity,

P = pressure,

q ≡ Q
m = energy (Q) per unit mass (m),

t = time,

x = spatial description in cylindrical coordinate, in this case (r, z).

We have four variables in the four equations above, hence we have a closed system. In

order to investigate linear mode behaviour (that is, linear acoustic waves) in our system, we

perturbed Eqns. 2.45 - 2.47 near equilibrium by linearisation. Perturbation near equilibrium

implies that we linearised Eqns. 2.45 - 2.47 by putting ρ = ρ0 + ε1ρ1, v = v0 + ε1v1,

q = q0 + ε1q1 and P = P0 + ε1P1, therefore we get

∂ρ0

∂t
+∇ · (ρ0v0) + ε1

∂ρ1

∂t
+ ε1∇ · (ρ0v1) + ε1∇ · (ρ1v0) + ε2∇ · (ρ1v1) = 0 (2.49)

ρ0
∂v0

∂t
+ ρ0v0 · ∇v0 + ε1ρ0

∂v1

∂t
+ε1ρ1

∂v0

∂t
+ ε1ρ0v0 · ∇v1 + ε1ρ0v1 · ∇v0+

+ε1ρ1v0 · ∇v0 + ε2ρ1
∂v1

∂t
+ ε2ρ0v1 · ∇v1 + ε2ρ1v0 · ∇v1 + ε2ρ1v1 · ∇v0+

+ε3ρ1v1 · ∇v1 = −∇P0 − ε1∇P1

(2.50)
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P + ε1P1 = Γρ0q0 + ε1Γρ0q1 + ε1Γρ1q0 + ε2Γρ1q1 (2.51)

This mean for physical variable or quantity X: X0 is the equilibrium value or quantity and

X1 is the perturbed value or quantity, where ε� 1: is a small real parameter.

At equilibrium, the system must satisfy these following conditions:

1. the solid target is at rest or immobile, so:

v0 = 0 (2.52)

2. also, the solid target is uniform at equilibrium, meaning:

∇ρ0 = 0 (2.53)

although ρ0 6= 0;

3. all temporary derivatives of equilibrium quantities (or values) will be zero, since they

are constant, this implies that:

∂ρ0

∂t
=
∂P0

∂t
=
∂q0

∂t
=
∂v0

∂t
= 0. (2.54)

After linearisation of the equations, we can simplify further by applying the equi-

librium conditions (see Eqns. 2.52 - 2.54). To derive the linearised system, we isolate terms

with ε while terms containing higher orders of ε are neglected within the linear analysis.

Therefore, Eqns. 2.49 - 2.51 becomes:

∂ρ1

∂t
+∇ · (ρ0v1) = 0 (2.55)

ρ0
∂v1

∂t
= −∇P1 (2.56)
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P1 = Γρ0q1 + Γρ1q0. (2.57)

Taking temporal derivative of Eqn. 2.57 twice and applying equilibrium condition

(i.e Eqn. 2.52 - 2.54), we get:

∂2P

∂t2
= Γρ0

∂2q1

∂t2
+ Γq0

∂2ρ1

∂t2
. (2.58)

Taking a temporal derivative of Eqn. 2.55:

∂2ρ1

∂t2
+∇ ·

(
ρ0
∂v1

∂t

)
= 0. (2.59)

Taking a divergence of Eqn. 2.56:

∇ ·
(
ρ0
∂v1

∂t

)
= −∇2P (2.60)

since, ∇ · ∇P = ∇2P . Substitute Eqn. 2.59 into Eqn. 2.60, we have;

∂2ρ1

∂t2
= ∇2P. (2.61)

Eqn. 2.58 can also be express as

∂2ρ1

∂t2
=

1

q0Γ

[
∂2P1

∂t2
− ρ0Γ

∂2q1

∂t2

]
. (2.62)

Inserting Eqn. 2.61 into Eqn. 2.62, dropping all the subscript and re-arranging,

we obtain:

∂2P

∂t2
− c2

s∇2P = ρ0Γ
∂2q

∂t2
(2.63)

where cs ≡
√
q0Γ.

By substituting q = Q
m , Eqn. 2.63 can also be expressed as follows:

∂2P

∂t2
− c2

s∇2P =
Γ

V0

∂2Q

∂t2
(2.64)
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where cs ≡
√

Γ
mQ0 and V0 is the equilibrium volume.

Eqn. 2.63 (or Eqn. 2.64) is the linear acoustic waves equation in a cylindrical

solid target. In the next few chapters, we will attempt to solve this equation using different

boundary conditions and energy distributions.
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Figure 3.1: Schematic representation of content overview for this chapter.
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The overview of this chapter is well laid out in Figure 3.1. The linear second order

non-homogeneous partial differential equation (PDE) developed in the last chapter (see

Eqn. 2.64) will be solved analytically here for a thin rod. The thin rod implies: ∇2
rP ≈ 0

or ∇2
rP � ∇2

zP and reduces Eqn. 2.64 to

∂2P

∂t2
− c2

s

∂2P

∂z2
=

Γ

V0

∂2Q

∂t2
. (3.1)

To obtain an analytical solution to PDE in Eqn. 3.1, we must first specify some conditions

to complete the PDE problem setup. The required number of conditions is determined by

the highest order derivative in each independent variable. Since Eqn. 3.1 is a second-order

equation in t and z, hence it requires two conditions each in t and z. The two conditions in t

are called the initial conditions and the other two in z are termed the boundary conditions.

For our system, we will assume instantaneous energy deposition. The justification

of this assumption is based on the fact that the material will not respond at the relativistic

time scale of the particle beam, this is due to the inertia of the material. In other words,

the mass inertia of the solid material prevents it from an immediate response during the

absorption of the energetic particle beam within a short period of time (say, in range of

picoseconds to microseconds1). Therefore, we can define the energy deposition as follow

Q(x, t) = δ(t)Q(x), (3.2)

where Q(x) is the energy distribution2 in space x and δ(t) is the Dirac delta function which

represents the instantaneousness of the energy deposition in time domain t and it is defined

as

1Basically the traverse time depends on the bunch length of the beam.

2We will study different distributions in later part of this chapter
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δ(t) =


1 when t = 0

0 when t > 0

. (3.3)

Interestingly, by using Eqn. 3.2 and Eqn. 3.3 we can reduce the non-homogeneous

PDE in Eqn. 3.1 to homogeneous PDE:

∂2P

∂t2
− c2

s

∂2P

∂z2
= 0 for t > 0. (3.4)

Since our investigation is to look into the aftermath of the bombardment of the

rod by a relativistic particle beam, this leads to the following initial conditions, which are

expressed as follows:

P (x, t = 0) =
Γ

V0
Q(x) (3.5)

and the time derivative of P at t = 0 is

∂P

∂t

∣∣∣∣
t=0

= 0. (3.6)

To have a complete problem setup and to solve the PDE, boundary conditions

(BCs) have to be included. The commonly encountered BCs can be classified into three

namely: Dirichlet, Neumann and Robin BCs. With respect to our area of interest and

solving the PDE analytically, we explore two extreme cases in terms of the BCs that we

imposed on our system. These two extreme cases are the Dirichlet and Neumann BC: they

depict “the best” and “worst” case scenario respectively (see Section 3.1 and 3.2 for their

respective explanations).

Once the solution for the PDE in terms of P (z, t) is found, we can derive a solution

for the other parameters. For example, using the linearised equation of motion (see Eqn.
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2.56) in chapter 2, we can determine the displacement (u) to be

u(z, t) = − 1

ρ0

∫∫
t

∂

∂z
P (z, t) dt2. (3.7)

There will be two integral constants as result of the double integral and these can be worked

out by using the initial conditions

u(z, 0) = 0 =
∂u

∂t

∣∣∣∣
t=0

(3.8)

We will make reference to these two equations in all the different cases we are going to treat.

For each BC that we are going to look at, we will study different distributions

(namely: uniform, linear and Gaussian3) of deposited energy density in the target.

Table 3.1: Typical Case Analysis: Copper Target Material Parameters

Parameters Symbol Unit Value

Length L m 0.12

Standard deviation σz m 0.037

Mean B m 0.12

Speed of sound cs m/s 3570

3.1 Dirichlet Problem

Dirichlet boundary conditions specify the value of the function on the surface [39].

In our case, this function is the pressure, P (z, t). In this thesis, this is the so-called “best

case scenario” because by imposing P = 0 on both sides of the rod, the thin rod material

is allowed to move freely at both ends. This means that the displacement at both ends of

the thin rod is free. It also implies that the boundary energy flow is kept at zero.

3The σz and B in Table 3.1 represents the typical standard deviation and mean value (respectively) in a
Gaussian distribution.
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This problem setup can be summarised as follows:

Partial Differential Equation:

∂2P

∂t2
− c2

s

∂2P

∂z2
= 0

Initial condition:

P (z, 0) =
Γ

V0
Q(z) and

∂P

∂t

∣∣∣∣
t=0

= 0

(3.9)

Boundary condition:

P (0, t) = 0 = P (L, t)

A solution to the above problem setup is given as [26]:

P (z, t) =
2

L

∞∑
n=1

cos
(πn
L
cst
)

sin
(πn
L
z
) L∫

0

P (z, 0) sin
(πn
L
z
)
dz. (3.10)

Substituting the initial condition of Eqn. 3.9, leads to:

P (z, t) =
2Γ

LV0

∞∑
n=1

cos
(πn
L
cst
)

sin
(πn
L
z
) L∫

0

Q(z) sin
(πn
L
z
)
dz. (3.11)

The expression above, Eqn. 3.11 indicates that the dynamic behaviour strongly

depends on the distribution of energy deposited on the target material. So we are going

to consider various energy distributions to see how these distributions affect the dynamic

behaviour of the target materials.

3.1.1 Energy Density Profile: Rectangular (Uniform) Distribution

Solving the integral of the Eqn. 3.11 will give us a clear picture of the dynamic

behaviour of the acoustic wave in the material. Hence, it is convenient to start from a very
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Figure 3.2: Plot Depicting Uniform Distribution: Deposited Energy Density (normalised

by Q0

V0
[J/m3]) along z [m], the Thin Rod Length, L

easy case.

Let us assume that the energy density (Q0

V0
) deposited on a material by the particle

beam is uniformly distributed (see Figure 3.2). We can define the energy absorbed by the

target as

Q(z) = Q0 (3.12)

and insert Eqn. 3.12 into 3.11:

P (z, t) =
2ΓQ0

V0L

∞∑
n=1

cos
(πn
L
cst
)

sin
(πn
L
z
) L∫

0

sin
(πn
L
z
)
dz. (3.13)

Evaluating the integral part of Eqn. 3.13, the problem is simplified to

P (z, t) =
2ΓQ0

V0π

∞∑
n=1

1

n
(1− cos(nπ)) cos

(πn
L
cst
)

sin
(πn
L
z
)

(3.14)
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where4

1− cos(nπ) =


0 when n ∈ Z+

even

2 when n ∈ Z+
odd

. (3.15)

We retain only n ∈ Z+
odd by replacing n with 2n+ 1, this leads to:

P (z, t) =
4ΓQ0

V0π

∞∑
n=0

1

(2n+ 1)
cos

(
π(2n+ 1)

L
cst

)
sin

(
π(2n+ 1)

L
z

)
. (3.16)

Eqn. 3.16 is the complete solution of the PDE of linear pressure acoustic waves caused by

the deposition of uniformly distributed energy in a thin rod. Knowing the explicit expression

for P opens the door to determine the effect of the thermoelastic waves on the other target

material parameters of interest.

Thus, with the expression above (Eqn. 3.16), we can also determine the displace-

ment evolution by using Eqn. 3.7. First, we take the gradient of Eqn. 3.16, which is given

by

∇zP (z, t) =
4ΓQ0

V0Lπ

∞∑
n=0

cos

(
π(2n+ 1)

L
cst

)
cos

(
π(2n+ 1)

L
z

)
. (3.17)

Substituting Eqn. 3.17 into the Eqn. 3.7, we get

u(z, t) = − 4ΓQ0

ρ0V0Lπ

∞∑
n=0

cos

(
π(2n+ 1)

L
z

)∫∫
t

cos

(
π(2n+ 1)

L
cst

)
dt2. (3.18)

Solving the double integral and applying the initial conditions in Eqn. 3.8, we derived the

expression for the displacement:

u(z, t) =
4ΓQ0L

ρ0V0c2
sπ

2

∞∑
n=0

1

(2n+ 1)2

{
cos

(
π(2n+ 1)

L
cst

)
− 1

}
cos

(
π(2n+ 1)

L
z

)
(3.19)

Quantitative analysis of Eqn. 3.16 and 3.19 (for pressure and displacement respec-

tively) using parameters listed in Table 3.1, reveal some interesting results (see section A.1

in Appendix A for the plots):

4Z: Integers
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(a) Plots of (|Pmax|) Absolute Peak Pres-
sure Amplitude (normalised by ΓQ0

V0
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along z [m], the Thin Rod Length, L
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(b) Plots of (|Pmax|) Absolute Peak
Pressure Amplitude (normalised by
ΓQ0

V0
[Pa]) versus time, t [s]

Figure 3.3: Normalised Absolute Peak Pressure Amplitude induced in a Thin Rod (with

Dirichlet BCs at both ends of the rod) by Uniformly Deposited Energy

0 L

4

L

2

3 L

4

L

0.0

0.2

0.4

0.6

0.8

1.0

� [�]

�
�
��


(a) Plots of (|umax|) Absolute Peak
Displacement Amplitude (normalised by
0.12 ΓQ0

ρ0V0c2s
[m]) along z [m], the Thin Rod

Length L
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(b) Plots of (|umax|) Absolute Peak
Displacement Amplitude (normalised by
0.12 ΓQ0

ρ0V0c2s
[m]) versus time, t [s]

Figure 3.4: Normalised Absolute Peak Displacement Amplitude in a Thin Rod (with

Dirichlet BCs at both ends of the rod) caused by Uniformly Deposited Energy
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1. Due to the uniformity of the energy deposition in the thin rod target, the waves start

developing at both ends of the thin rod and move towards each other simultaneously.

These two waves, moving towards each other at the same speed, superpose and cause

a total destructive interference at time t = mL
2cs

(m ∈ Z+
odd), irrespective of z. This

explains why at those times, P is zero (see Fig. 3.3b and Section A.1 in Appendix

A). In summary, information in Fig. 3.3b can be expressed as follow

|Pmax| =


0 when t = mL

2cs
and m ∈ Z+

odd

1 otherwise

.

2. The movement of the two waves moving towards each other also manifest in the dis-

tribution of the displacement of the thin rod. When the total destructive interference

occur (that is, at t = mL
2cs

where m ∈ Z+
odd), the magnitude of the peak displacement

at these times is always half of the highest absolute peak value of the displacement

achievable by the system, that is

|umax| =
1

2
when t =

mL

2cs

This is evident in Fig. 3.4b. This also makes the first and the other half part of the

thin rod to expand in opposite direction (see Sub-section A.1.4 in the Appendix A,

particularly the plot when t is L
2cs

) and the centre (L2 ) does not move.

3. Also due to the uniform energy distribution, the absolute peak value the negative

displacement is always equal to the absolute peak value the positive displacement at

all times (see Sub-section A.1.4 in the Appendix A).

4. At the middle of the thin rod (that is, L2 = 0.06 m), there is no displacement (u(L2 , t) =

0) leading to peak stress (P ) and strain (∂u∂z ) at all times with the exceptions at those

times specified in the item no. 1 above (see Figure 3.4a).
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5. As shown in Figures 3.3a and 3.3b, the absolute peak pressure amplitude, |Pmax| is

always ΓQ0

V0
(irrespective of time and space except at those times stated in the item

no. 1 above and at the boundaries (that is, at z = 0 and z = L)).

6. Also worth noting is the magnitude of the peak amplitude of the displacement |umax|,

which is maximal at z = 0 and z = L (see Figure 3.4a).

3.1.2 Energy Density Profile: Triangular (Linear) Distribution
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Figure 3.5: Plot Depicting Linear Distribution: Deposited Energy Density (normalised

by Q0

V0
[J/m3]) along z [m], the Thin Rod Length, L

Here we consider energy deposition in form of triangular distribution, that is, the

energy is linearly distributed in the thin rod (see Figure 3.5), which we define as follows:

Q = Q0z. (3.20)
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Inserting Eqn. 3.20 in Eqn. 3.11, we arrive at the solution for P :

P (z, t) =
2ΓQ0

π2V0

∞∑
n=1

1

n2
cos
(πn
L
cst
)

sin
(πn
L
z
)

(sin(πn)− πn cos(πn)). (3.21)

With

sin(πn) = 0 ∀n ∈ Z

one finally derives

P (z, t) = −2ΓQ0

πV0

∞∑
n=1

1

n
cos
(πn
L
cst
)

sin
(πn
L
z
)

cos(πn), (3.22)

which is the expression for linear acoustic waves in terms of pressure for a Dirichlet boundary

condition under the assumption of a linearly distributed energy deposition in a thin rod.

In order to determine the displacement u, we again take the gradient of P (in Eqn.

3.22)

∇zP (z, t) = −2ΓQ0

V0L

∞∑
n=1

cos
(nπ
L
cst
)

cos
(nπ
L
z
)

cos(nπ) (3.23)

and substitute it in Eqn. 3.7, which leads to:

u(z, t) =
2ΓQ0

ρ0V0L

∞∑
n=1

cos
(nπ
L
z
)

cos(nπ)

∫∫
t

cos
(nπ
L
cst
)
dt2. (3.24)

Finally, solving the double integral and applying the initial conditions in Eqn. 3.8, we

determine the expression for u to be

u(z, t) = − 2ΓQ0L

ρ0V0c2
sπ

2

∞∑
n=1

1

n2

{
cos
(nπ
L
cst
)
− 1
}

cos
(nπ
L
z
)

cos(nπ). (3.25)

Unlike the case of the uniform energy deposition, investigation of the evolution of

the waves (in both space and time, see Section A.2 in Appendix A) in the case of triangular

distribution of deposited energy in a thin rod shows that the waves start their movement

from the rear exit of the target and travel to the front of the target. This analysis is based

on Eqn. 3.22 and 3.25. We summarise the results as follows:
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Figure 3.6: Peak Pressure Analysis For Linear Distribution of Deposited Energy in
a Thin Rod with Dirichlet BCs: Plots of (|Pmax|) Absolute Peak Pressure Amplitude
(normalised by ΓQ0

V0
) along the Thin Rod Length, z (normalised by thin rod length, L).

The (Pmax)+ represents the Peak Amplitude of the Positive Pressure and the (Pmax)−

represents the Peak Amplitude of the Negative Pressure.
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Figure 3.7: Peak Pressure Analysis For Linear Distribution of Deposited Energy in
a Thin Rod with Dirichlet BCs: Plots of (|Pmax|) Absolute Peak Pressure Amplitude
(normalised by ΓQ0

V0
) versus time, t (normalised by L

cs
). The (Pmax)+ represents the Peak

Amplitude of the Positive Pressure and the (Pmax)− represents the Peak Amplitude of
the Negative Pressure.
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Figure 3.8: Peak Displacement Analysis For Linear Distribution of Deposited Energy in
a Thin Rod with Dirichlet BCs: Plots of (|umax|) Absolute Peak Displacement Amplitude
(normalised by 0.06 ΓQ0

ρ0V0c2s
) along the Thin Rod Length, z [m]. The (umax)+ represents

the Peak Amplitude of the Positive Displacement and the (umax)− represents the Peak
Amplitude of the Negative Displacement.
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Figure 3.9: Peak Displacement Analysis For Linear Distribution of Deposited Energy
in a Thin Rod with Dirichlet BCs: Plots of (|umax|) Absolute Peak Displacement Am-
plitude (normalised by 0.06 ΓQ0

ρ0V0c2s
) versus time, t [s]. The (umax)+ represents the Peak

Amplitude of the Positive Displacement and the (umax)− represents the Peak Amplitude
of the Negative Displacement.
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1. Figures 3.6 and 3.7 indicate that the sum of the absolute peak amplitude pressure at

any given time t and space z is equal to ΓQ0

V0
because

0 ≤
∞∑
n=1

1

n
cos
(πn
L
cst
)

sin
(πn
L
z
)

cos(πn) ≤ 1. (3.26)

2. Figure 3.6 shows that, at the middle of the target (L2 ), the absolute value of both the

positive and negative peak amplitude of the pressure is 1
2ΓQ0

V0
. (See also Section A.2

in Appendix A.)

3. Also in Figure 3.7, at times L
2cs
, 3L

2cs
, · · · , mL2cs

(where m ∈ Z+
odd), the absolute value of

both the positive and negative peak amplitude of the pressure is 1
2ΓQ0

V0
.

4. As shown in Figure 3.8, between z = 0 and L
2 , the positive peak amplitude of the

displacement is zero and the negative peak amplitude of the displacement is zero at

z = L.

5. The following is shown in Figure 3.9

(a) at time t = mL
2cs
∀ m ∈ Z+

odd, the absolute value of the positive peak amplitude of

the displacement (u+
max) is approximately three times the absolute value of the

negative peak amplitude of the displacement (u−max)

(b) at time t = mL
cs

for m ∈ Z+, the absolute value of the positive peak amplitude

of the displacement (u+
max) is always equal to the absolute value of the negative

peak amplitude of the displacement (u−max)

(c) at time t = mL
cs

for m ∈ Z+
odd, the absolute value of the peak amplitude of the

displacement |umax| is always equal to 1 for both (u−max) and (u+
max)

(d) at time t = mL
cs

for m ∈ Z+
even, the absolute value of the peak amplitude of the

displacement |umax| is always equal to 0 for both (u−max) and (u+
max)
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3.1.3 Energy Density Profile: Gaussian (Normal) Distribution

We now address a more complicated mathematical description of the energy depo-

sition. Let assume that the energy deposited in the thin rod is normally distributed, that

is, Gaussian distribution (see Figure 3.10), and is defined in such a way as

Q(z) = Q0 exp
(
−A2(z −B)2

)
(3.27)

where A = 1√
2σz

, σz is the standard deviation of the distribution and B is the mean.

0 L

4

L

2

3 L

4

L
0

1

z [m]

En
er
gy
De
ns
ity

Figure 3.10: Plot Depicting Normal Distribution: Deposited Energy Density (normalised

by Q0

V0
[J/m3]) along z [m], the Thin Rod Length, L

To arrive at the following expression, we substitute the energy distribution definition in

Eqn. 3.27 into Eqn. 3.11

P (z, t) =
2ΓQ0

V0L

∞∑
n=1

cos
(πn
L
cst
)

sin
(πn
L
z
) L∫

0

exp
(
−A2(z −B)2

)
sin
(πn
L
z
)
dz, (3.28)
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and solving the integral part of Eqn. 3.28 by using integration by parts method, we have

L∫
0

exp
(
−A2(z −B)2

)
sin
(πn
L
z
)
dz =

√
π

4A
I exp

[
− nπ

4A2L2
(4IA2BL+ nπ)

](
Erf

[
AB − Inπ

2AL

]
+

− Erf

[
A(B − L)− Inπ

2AL

]
− exp

(
2IB

nπ

L

)
×{

Erf

[
A(L−B)− Inπ

2AL

]
+ Erf

[
AB +

Inπ

2AL

]})
.

(3.29)

I2 = −1, where I is an imaginary number. Inserting the above solution for the integration

into Eqn. 3.28 gives

P (z, t) =
ΓQ0
√
π

2LV0A
I
∞∑
n=1

cos
(nπ
L
cst
)

sin
(nπ
L
z
)

exp
[
− nπ

4A2L2
(4IA2BL+ nπ)

]
×(

Erf

[
AB − Inπ

2AL

]
− Erf

[
A(B − L)− Inπ

2AL

]
− exp

(
2IB

nπ

L

)
×{

Erf

[
A(L−B)− Inπ

2AL

]
+ Erf

[
AB +

Inπ

2AL

]})
, (3.30)

which is a complete expression for the linear acoustic wave in a thin rod (with Dirich-

let boundary condition at both ends of the rod) caused by Gaussian distributed energy

deposition.

We evaluate the gradient of P (by using Eqn. 3.30) to be

∇zP (z, t) =
ΓQ0π

√
π

2AV0L
I
∞∑
n=1

cos
(nπ
L
cst
)

cos
(nπ
L
z
)

exp
[
− nπ

4A2L2
(4IA2BL+ nπ)

]
×(

Erf

[
AB − Inπ

2AL

]
− Erf

[
A(B − L)− Inπ

2AL

]
− exp

(
2IB

nπ

L

)
×{

Erf

[
A(L−B)− Inπ

2AL

]
+ Erf

[
AB +

Inπ

2AL

]})
, (3.31)

and inserting this expression above for the gradient of P (in Eqn. 3.31) into Eqn. 3.7, we
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obtain the expression for displacement in this case to be

u(z, t) = −ΓQ0π
√
π

2AV0L2
I

∞∑
n=1

n cos
(nπ
L
z
)

exp
[
− nπ

4A2L2
(4IA2BL+ nπ)

](
Erf

[
AB − Inπ

2AL

]
+

−Erf

[
A(B − L)− Inπ

2AL

]
− exp

(
2IB

nπ

L

)
×
{

Erf

[
A(L−B)− Inπ

2AL

]
+

+ Erf

[
AB +

Inπ

2AL

]})∫∫
t

cos
(nπ
L
cst
)
dt2. (3.32)

Clearly we need to solve for the double integral and applying the initial conditions in Eqn.

3.8 to get the complete expression for the displacement, which turns out to be

u(z, t) =
ΓQ0
√
π

2πρ0AV0L2c2
s

I

∞∑
n=1

1

n
cos
(nπ
L
z
){

cos
(nπ
L
cst
)
− 1
}
×

exp
[
− nπ

4A2L2
(4IA2BL+ nπ)

](
Erf

[
AB − Inπ

2AL

]
− Erf

[
A(B − L)− Inπ

2AL

]
+

− exp
(

2IB
nπ

L

){
Erf

[
A(L−B)− Inπ

2AL

]
+ Erf

[
AB +

Inπ

2AL

]})
. (3.33)

Results of the analysis of Eqn. 3.30 and 3.33 (for pressure and displacement re-

spectively) using parameters in Table 3.1 are in Section A.3 in the Appendix A. Comparing

the results with the linear case reveal remarkable resemblance, hence we can confirm that

the linear case is a suitable approximation to the Gaussian case. Thus the same physical

interpretation in linear case can be applied here too.

3.2 Neumann Problem

Neumann boundary conditions specify the normal derivative of the function on a

surface [39]. We exploit the worst case scenario by imposing ∇zP = 0 at both ends of the

rod. This implies that the system is insulated. This means also that the boundary is not

allowed to move.

This problem setup can be summarised as follows:
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Partial Differential Equation:

∂2P

∂t2
− c2

s

∂2P

∂z2
= 0.

Initial condition:

P (z, 0) =
Γ

V0
Q(z) and

∂P

∂t

∣∣∣∣
t=0

= 0.

(3.34)

Boundary conditions:

∂P

∂z

∣∣∣∣
z=0

= 0 =
∂P

∂z

∣∣∣∣
z=L

.

A solution to the above problem setup is given as [26]:

P (z, t) =
2

L

1

2

L∫
0

P (z, 0)dz +

∞∑
n=1

cos(λncst) cos(λnz)

L∫
0

P (z, 0) cos(λnz)dz

 , (3.35)

where λn = nπ
L . Substituting for the expression for P (z, 0) specified in Eqn. 3.34 into Eqn.

3.35, we have:

P (z, t) =
2Γ

LV0

1

2

L∫
0

Q(z)dz +

∞∑
n=1

cos(λncst) cos(λnz)

L∫
0

Q(z) cos(λnz)dz

 . (3.36)

As one might suspect, the complete solution depends on the spatial distribution of the

energy deposited on the target, just as in case of the Dirichlet boundary problem. Our task

now is to solve Eqn. 3.36 for different energy distributions analytically and numerically.

3.2.1 Energy Density Profile: Rectangular (Uniform) Distribution

The uniform energy deposition is defined as

Q(z) = Q0. (3.37)
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Substituting Eqn. 3.37 into Eqn 3.36, gives:

P (z, t) =
2ΓQ0

LV0

[
L

2
+
∞∑
n=1

1

λn
cos(λncst) cos(λnz) sin(λnL)

]
. (3.38)

Interestingly, the last term on the RHS of Eqn. 3.38 is zero, because sin(λnL) = sin(nπ) = 0

(since, λn = nπ
L ) ∀ n ∈ Z. Therefore, Eqn. 3.38 can be reduced to

P (z, t) =
ΓQ0

V0
. (3.39)

This result (in Eqn. 3.39) is rather remarkable but not unexpected. It implies that in an

insulated system or a system with immoveable boundaries, the pressure will remain constant

throughout the material at all times.

Obviously,

∇zP (z, t) = 0. (3.40)

Therefore, we expect

u(z, t) = 0, (3.41)

implying that no displacement occurred in the material.

3.2.2 Energy Density Profile: Triangular (Linear) Distribution

As we did in case of Dirichlet BC problem, we define the linear energy distribution

in a thin rod as follows:

Q(z) = Q0z. (3.42)

Substituting Eqn. 3.42 into Eqn. 3.36, gives

P (z, t) =
2ΓQ0

L2V0

1

2

L∫
0

zdz +

∞∑
n=1

cos(λncst) cos(λnz)

L∫
0

z cos(λnz)dz

 (3.43)
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solving the integrals, we have:

P (z, t) =
2ΓQ0

L2V0

[
L2

4
+

∞∑
n=1

1

λ2
n

{λnL sin(λnL) + cos(λnL)− 1} cos(λncst)

cos(λnz)

]
. (3.44)

Putting λn = nπ
L into the above equation and since, sin(nπ) = 0 ∀n ∈ Z, we can reduce

Eqn. 3.44 to:

P (z, t) =
2ΓQ0

V0

[
1

4
+

1

π2

∞∑
n=1

1

n2
cos(

nπ

L
ct) cos(

nπ

L
z){cos(nπ)− 1}

]
(3.45)

because

cos(nπ) =


1 when n ∈ Z+

even

−1 when n ∈ Z+
odd

. (3.46)

At every n ∈ Z+
even, the value of (cos(nπ)− 1) will be zero, hence we can eliminate that by

substituting n = 2n+ 1, which leads to

P (z, t) =
2ΓQ0

V0

[
1

4
+

1

π2

∞∑
n=0

1

[2n+ 1]2
cos

(
[2n+ 1]π

L
cst

)
cos

(
[2n+ 1]π

L
z

)
{cos([2n+ 1]π)− 1}

]
. (3.47)

Interestingly, cos([2n+ 1]π) = −1 ∀ n ∈ Z, therefore we can simply express the pressure as

P (z, t) =
4ΓQ0

V0

[
1

8
− 1

π2

∞∑
n=0

1

[2n+ 1]2
cos

(
[2n+ 1]π

L
cst

)
cos

(
[2n+ 1]π

L
z

)]
. (3.48)

To see how the displacement evolves in this case, we determine

∇zP (z, t) = − 2ΓQ0

V0L2π4

∞∑
n=1

n cos
(nπ
L
cst
)

sin
(nπ
L
z
)

[cos(nπ)− 1] (3.49)

and substitute the above equation into Eqn. 3.7, which gives

u(z, t) =
2ΓQ0π

ρ0V0L2π4

∞∑
n=1

sin
(nπ
L
z
)

cos(nπ)

∫∫
t

cos
(nπ
L
cst
)
dt2. (3.50)
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Solving the double integral and applying Eqn. 3.8 to determine the integration constants,

the displacement in a thin rod, in which the energy deposited is linearly distributed and

the boundaries are fixed (in terms of displacement), can be written as

u(z, t) = − 2ΓQ0L

ρ0V0c2
sπ

3

∞∑
n=1

1

n3

{
cos
(nπ
L
cst
)
− 1
}

sin
(nπ
L
z
)

[cos(nπ)− 1]. (3.51)

We analyse Eqn. 3.48 and 3.51 numerically by using the parameter in Table 3.1.

The result of the analysis is presented in the plots that can be found in Section A.4 of

the Appendix A. By observing those plots, it is evident that the movement of the waves

is similar to the case of uniform energy deposition with Dirichlet BC, in that the waves

develop at both ends of the target at the same time. Also, these waves start moving toward

each other from both ends. To have an in-depth understanding of this behaviour, we look

into the peak amplitude of both the pressure and the displacement (see Figures 3.11, 3.12,

3.13 and 3.14). We summarise as below:

1. The value of the pressure waves is always positive: compressive waves

2. At any given time and space, the sum of the maximum and minimum peak pressure

is always equal to ΓQ0

V0
.

3. Due to the superposition of the waves, at times L
2cs

, 3L
2cs

, 5L
2cs

, · · · , mL2cs
(where m ∈ Z+

odd),

there is a destructive interference occurring at those times. This is why

Pmax = Pmin =
1

2
Γ
Q0

V0
(3.52)

and normalised displacement,

|upeak| =
1

2

(see Figures 3.11 and 3.13).
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4. Also, Eqn. 3.52 holds at the middle of the target (that is, at z = L
2 ) and the dis-

placement is highest at this point because the boundary is not allowed to move (see

Figures 3.12 and 3.14).

5. Based on Figure 3.13 we further observed that at time t = mL
cs

the following occurs

|upeak| =


1 when m ∈ Z+

odd

0 when m ∈ Z+
even

.
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Figure 3.11: Peak Pressure Analysis For Linear Distribution of Deposited Energy in a
Thin Rod with Neumann BCs: Plots of (Ppeak) Peak Pressure Amplitude (normalised

by ΓQ0

V0
[Pa]) versus time t [s]. The red solid curve represents the crest of the pressure

wave and the blue dashed curve represents the trough of the pressure wave.
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Figure 3.12: Peak Pressure Analysis For Linear Distribution of Deposited Energy in a
Thin Rod with Neumann BCs: Plots of (Ppeak) Peak Pressure Amplitude (normalised

by ΓQ0

V0
[Pa]) along the Thin Rod Length, z [m]. The red dashed curve represents the

crest of the pressure wave and the blue solid curve represents the trough of the pressure
wave.
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Figure 3.13: Peak Displacement Analysis For Linear Distribution of Deposited Energy
in a Thin Rod with Neumann BCs: Plots of Absolute Peak Displacement Amplitude
|upeak| (normalised by 0.03 ΓQ0

ρ0V0c2s
[m]) versus time t [s].
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Figure 3.14: Peak Displacement Analysis For Linear Distribution of Deposited Energy
in a Thin Rod with Neumann BCs: Plots of both minimum and maximum Absolute
Peak Value of Displacement Amplitude |upeak| (normalised by 0.03 ΓQ0

ρ0V0c2s
[m]) along the

Thin Rod Length, z [m].

3.2.3 Energy Density Profile: Gaussian (Normal) Distribution

We use the same energy distribution definition in Eqn. 3.27, which is

Q(z) = Q0 exp(−A2(z −B)2), (3.53)

where all the terms in Eqn. 3.53 still maintain their previous meaning here too. We start

by substituting Eqn. 3.53 into the general solution (expressed in Eqn. 3.36), hence we can

write P as

P (z, t) =
2ΓQ0

LV0

1

2

L∫
0

exp(−A2(z −B)2)dz +

∞∑
n=1

cos(λncst) cos(λnz)×

×
L∫

0

exp(−A2(z −B)2) cos(λnz)dz

 . (3.54)
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By solving those integrals in Eqn. 3.54, we can write the pressure acoustic waves in a thin

rod with Neumann boundary conditions imposed on both ends of the target as

P (z, t) =
ΓQ0
√
π

2LV0A

[
Erf(AB)− Erf(A[B − L]) +

∞∑
n=1

exp

[
−λn

4

(
4IB +

λn
A2

)]
×

× cos(λncst) cos(λnz)

(
Erf

[
AB − Iλn

2A

]
− Erf

[
A(B − L)− Iλn

2A

]
+

+ exp(2IBλn)

{
Erf

[
A(L−B)− Iλn

2A

]
+ Erf

[
AB +

Iλn
2A

]})]
. (3.55)

In this case, we are left with determining the displacement u(z, t), which we did

(as usual) by first evaluating gradient of P

∇zP (z, t) = −ΓQ0π
√
π

2AV0L2

∞∑
n=1

n cos
(nπ
L
cst
)

sin
(nπ
L
z
)

exp

[
−λn

4

(
4IB +

λn
A2

)]
×

×
(

Erf

[
AB − Iλn

2A

]
− Erf

[
A(B − L)− Iλn

2A

]
+ exp(2IBλn)×

×
{

Erf

[
A(L−B)− Iλn

2A

]
+ Erf

[
AB +

Iλn
2A

]})
(3.56)

and then, we insert Eqn. 3.56 into Eqn. 3.7 to get

u(z, t) =
ΓQ0π

√
π

2ρ0AV0L2

∞∑
n=1

n sin
(nπ
L
z
)

exp

[
−λn

4

(
4IB +

λn
A2

)](
exp(2IBλn)×

×
{

Erf

[
A(L−B)− Iλn

2A

]
+ Erf

[
AB +

Iλn
2A

]}
− Erf

[
A(B − L)− Iλn

2A

]
+

+ Erf

[
AB − Iλn

2A

])∫∫
t

cos
(nπ
L
cst
)
dt2. (3.57)

We re-express the above (Eqn. 3.57) by solving for the double integrals and applying Eqn.

3.8, and thereby arrive at

u(z, t) = − ΓQ0
√
π

2πρ0AV0c2
s

∞∑
n=1

1

n
sin
(nπ
L
z
){

cos
(nπ
L
cst
)
− 1
}

exp

[
−λn

4

(
4IB +

λn
A2

)]
×

×
(

exp(2IBλn)

{
Erf

[
A(L−B)− Iλn

2A

]
+ Erf

[
AB +

Iλn
2A

]}
+

−Erf

[
A(B − L)− Iλn

2A

]
+ Erf

[
AB − Iλn

2A

])
. (3.58)
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Interestingly, the behaviour here is quite similar to that of linear case, as matter of

fact, is it an approximation of the linear case. By analysing Eqn. 3.55 and 3.58 (for pressure

and displacement respectively) and using the parameters in Table 3.1, the results in Section

A.5 of Appendix A were obtained. To grasp the full meaning of these results, we examine

the dynamic behaviour in term of the peak amplitude, and the results are presented in

Figures 3.15, 3.16, 3.17 and 3.18. We summarise as follows:

1. The value of the pressure waves is always positive: compressive waves.

2. Due to the superposition of the waves, at times L
2cs

, 3L
2cs

, 5L
2cs

, · · · , mL2cs
(where m ∈ Z+

odd),

there is a destructive interference occurring at those times. This is why there is no

displacement at those times and

Pmax = Pmin =
1

2
Γ
Q0

V0
(3.59)

and normalised displacement,

|upeak| =
1

2

(see Figures 3.15 and 3.17).

3. Eqn. 3.59 also holds at the middle of the target (that is, at z = L
2 ) and the displace-

ment is highest at this point because the boundary is not allowed to move (see Figures

3.16 and 3.18).

4. Based on Figure 3.17 we further observed that at time t = mL
cs

the following occurs

|upeak| =


1 when m ∈ Z+

odd

0 when m ∈ Z+
even

.
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Figure 3.15: Peak Pressure Analysis For Normal Distribution of Deposited Energy in a
Thin Rod with Neumann BCs: Plots of (Ppeak) Peak Pressure Amplitude (normalised

by ΓQ0

V0
[Pa]) versus time t [s].
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Figure 3.16: Peak Pressure Analysis For Normal Distribution of Deposited Energy in a
Thin Rod with Neumann BCs: Plots of (Ppeak) Peak Pressure Amplitude (normalised

by ΓQ0

V0
[Pa]) along the Thin Rod Length, z [m].
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Figure 3.17: Peak Displacement Analysis For Normal Distribution of Deposited Energy
in a Thin Rod with Neumann BCs: Plots of |upeak| Absolute value of Peak Displacement

Amplitude (normalised by 0.037 ΓQ0

ρ0V0c2s
[m]) versus time t [s].
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Figure 3.18: Peak Displacement Analysis For Normal Distribution of Deposited Energy
in a Thin Rod with Neumann BCs: Plots of |upeak| Absolute value of Peak Displacement

Amplitude (normalised by 0.037 ΓQ0

ρ0V0c2s
[m]) along the Thin Rod Length, z [m].
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In this chapter, we investigate linear acoustic waves using a disc approximation of

the cylindrical solid target. This is a very good approximation in the case of a cylindrical

target with a very tiny thickness (or when we assume that: ∂2P
∂z2
≈ 0 || ∂2P

∂z2
� ∇2

rP ). We

treat the energy deposition to be instantaneous as we did in Chapter 3. Thus, Eqn. 2.56 in

Chapter 2 can be reduced to

∂2P

∂t2
− c2

s

(
∂2P

∂r2
+

1

r

∂P

∂r

)
= 0, t > 0. (4.1)

Solving Eqn. 4.1 requires initial conditions (ICs) and boundary conditions (BCs). In our

case, we will study the Dirichlet and Neumann boundary condition.

In each case, we will consider two different radial energy density distributions,

namely: rectangular distribution (also called uniform distribution) and triangular distribu-

tion. When P is known, we can easily evaluate for the displacement (u) using

u(r, t) = − 1

ρ0

∫∫
t

∂

∂r
P (r, t) dt2 (4.2)

with the initial conditions

u(r, 0) = 0 =
∂u

∂t

∣∣∣∣
t=0

(4.3)

to determine the values of the two integration constants that will appear as result of the

double integral. For all cases that will be consider, we gave a quantitative analysis using

the parameters in Table 4.1.

Table 4.1: Typical Case Analysis: Copper Target Material Parameters

Parameters Symbol Unit Value

Radius R m 0.004

Spot size r0 m 0.001

Speed of sound cs m/s 3570
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4.1 Dirichlet Problem

Dirichlet boundary conditions specify the value of the function (in our case, this

function is pressure, P at the circumference of the disc) on the surface [39]. This is our

so-called “best case scenario”, in that at the boundary, energy is kept at zero degrees.

The problem setup can be summarised as follow:

Partial Differential Equation:

∂2P

∂t2
− c2

s

(
∂2P

∂r2
+

1

r

∂P

∂r

)
= 0.

Initial condition (IC):

P (r, 0) =
Γ

V0
Q(r) and

∂P

∂t

∣∣∣∣
t=0

= 0.

(4.4)

Boundary condition (BC):

P (R, t) = 0.

The solution to the PDE above with the prescribed BC and IC can be presented

in this form[26]:

P (r, t) =
∂

∂t

∫ R

0
P (ξ, 0)G(r, ξ, t)dξ (4.5)

where Green’s function G(r, ξ, t) is defined by the equation

G(r, ξ, t) =
2ξ

cR

∞∑
n=1

1

λnJ2
1 (λn)

J0

(
λn

r

R

)
J0

(
λn

ξ

R

)
sin

(
λn
cst

R

)
. (4.6)

The λn in Eqn. 4.6 are positive zeros of the Bessel function, J0(λ) = 0. We can re-express

Eqn.4.5 as

P (r, t) =

∫ R

0
P (ξ, 0)

∂

∂t
G(r, ξ, t)dξ. (4.7)
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The time derivative of Green’s function G(r, ξ, t) (Eqn. 4.6) gives

∂

∂t
G(r, ξ, t) =

2ξ

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
J0

(
λn

ξ

R

)
cos

(
λn
cst

R

)
. (4.8)

Thus, inserting Eqn. 4.8 and Eqn. 4.4 into Eqn. 4.7, the (pressure) equation for linear

acoustic waves in a disc with Dirichlet BC is given as

P (r, t) =
2Γ

V0R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ. (4.9)

Although Eqn. 4.9 is the solution for the pressure acoustic waves in a disc with

Dirichlet BC, we can only have a complete description of the acoustic waves by defining

how the deposited energy (by the particle beam) is distributed in the material. In the next

two sub-sections, we looked at two different energy deposition distributions.

4.1.1 Energy Density Profile: Rectangular (Uniform) Distribution

0 r0 R
0

Q0

V0

�

�
��
��
�
�
��
��
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Figure 4.2: Depiction of Uniform Distribution of Deposited Energy Density in a Disc
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Let us consider a case in which the deposited energy is constant within a localised

region of the disc. For the sake of simplicity, we assume that this region is at the centre of

the disc (see Figure 4.2). Hence, we can easily define the energy distribution as follows:

Q(r) =


Q0 when 0 < r ≤ r0

0 when r > r0

. (4.10)

Using the definition for the energy distribution in Eqn. 4.10, we can write Eqn. 4.9 as

P (r, t) =
2Γ

V0R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)(∫ r0

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ+

+

∫ R

r0

ξQ(ξ)J0

(
λn

ξ

R

)
dξ

)
. (4.11)

Obviously, the second term on the RHS of the Eqn. 4.11 is zero (see Figure 4.2). Therefore,

we can reduce Eqn. 4.11 to

P (r, t) =
2ΓQ0

V0R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ r0

0
ξJ0

(
λn

ξ

R

)
dξ. (4.12)

And finally, by solving the integral in Eqn. 4.12, the solution to the pressure acoustic waves

with Dirichlet BC and uniform energy deposition within a localised region can be expressed

as

P (r, t) =
2ΓQ0r0

V0R

∞∑
n=1

1

λnJ2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
J1

(
λn
r0

R

)
. (4.13)

By determining

∇rP (r, t) = −2ΓQ0r0

V0R2

∞∑
n=1

1

J2
1 (λn)

J1

(
λn

r

R

)
cos

(
λn
cst

R

)
J1

(
λn
r0

R

)
, (4.14)

we evaluate the expression for displacement by using Eqns. 4.2 and 4.3 to be

u(r, t) = −2ΓQ0r0

V0ρ0c2
s

∞∑
n=1

1

λ2
nJ

2
1 (λn)

J1

(
λn

r

R

)
J1

(
λn
r0

R

){
cos

(
λn
ct

R

)
− 1

}
. (4.15)

Using parameters in Table 4.1, plots based on numerical analysis of Eqn. 4.13 and

4.15 are presented in section B.1 of Appendix B. Worth noting is the behaviour of the waves
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at the centre of the disc. At r = 0, there is no displacement, which we can easily verify by

using Eqn. 4.15. Interestingly, the pressure acoustic waves behaviour (in Eqn. 4.13) for a

uniform energy distribution (see the pictorial depiction of the distribution in Figure 4.2) at

a localised region of the disc is not as trivial as one might expect. The plot of P at r = 0

over time, is presented in Figure 4.3.
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Figure 4.3: Plot of Pressure P (normalised by ΓQ0

V0
[Pa] ) versus time (t [s]): The evo-

lution of induced pressure acoustic waves (by a uniform distribution of energy density)

at the centre of a disc with Dirichlet BC

Noticeable in Figure 4.3 are spikes which appear at very specific times. Analysis

reveals that these spikes occur at these following times:

1

4

R

cs
,

7

4

R

cs
,

9

4

R

cs
,

15

4

R

cs
,

17

4

R

cs
, · · · .

These are the times when the wave passes through r0. The value of these spikes keep
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increasing as one increases the value of n in the computation of Eqn. 4.13, and admittedly

some increase faster than others. Basically, this implies that the solution is unstable at

those times and this can be attributed to the step-like function used in describing the

energy distribution.

4.1.2 Energy Density Profile: Triangular (Linear) Distribution

In this sub-section, we considered the energy distribution within a localised region

of the disc is distributed in a linear manner as shown in Figure 4.4 and defined in Eqn. 4.16.
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Figure 4.4: Depiction of Triangular Distribution of Deposited Energy Density in a Disc

Q(r) =


Q0

(
1− r

r0

)
: 0 < r ≤ r0

0 : r > r0

. (4.16)
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In order to investigate the effect of linearly deposited energy, we insert Eqn. 4.16 into

Eqn. 4.9

P (r, t) =
2Γ

V0R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)(∫ r0

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ+

+

∫ R

r0

ξQ(ξ)J0

(
λn

ξ

R

)
dξ

)
. (4.17)

Noticeably, the second term of the RHS of Eqn. 4.17 is zero, so we re-write it as

P (r, t) =
2ΓQ0

V0R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ r0

0
ξ

(
1− ξ

r0

)
J0

(
λn

ξ

R

)
dξ. (4.18)

By solving the integral part of Eqn. 4.18, the complete solution is formed, which is given

by:

P (r, t) =
πΓQ0

V0

∞∑
n=1

1

λnJ2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)[
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)]
, (4.19)

where Hn(z) denote the Struve function of order n.

We evaluate

∇rP (r, t) =
πΓQ0

RV0

∞∑
n=1

1

λnJ2
1 (λn)

J1

(
λn

r

R

)
cos

(
λn
cst

R

)[
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)]
, (4.20)

by using Eqn. 4.20, inserting it into Eqn. 4.2 and using Eqn. 4.3 to determine the necessary

integration constants, the expression for linear acoustic waves in terms of displacement,

which was derived to be

u(r, t) = −πΓQ0R

ρ0c2
sV0

∞∑
n=1

1

λnJ2
1 (λn)

J1

(
λn

r

R

) [
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)]{
cos

(
λn
cst

R

)
− 1

}
. (4.21)
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Figure 4.5: Plot of Pressure P (normalised by ΓQ0

V0
[Pa] )versus time (t [s]): The

evolution of induced pressure acoustic waves (by a linear distribution of energy density)

at the centre of a disc with Dirichlet BC

The pressure acoustic waves are well behaved in the case of linear distribution.

Details of numerical analysis results of Eqn. 4.19 and 4.21 are represented in section B.2 of

Appendix B. As we did in the case of the uniform distribution, we will focus our attention

on what happens at the centre of the disc. Figure 4.5 shows the time evolution of pressure

waves at r = 0. Unlike the uniform distribution case, results here converge. The maximum

peak value (which is Pmax = ΓQ0

V0
), indicated with the red “ball” in the Figure 4.5, always

appears when

t = 4m
R

cs
, m ∈ Z+. (4.22)

We can see why the maximum peak appears when it does, by analysing Eqn. 4.17
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at r = 0. To do this analytically, we take the series expansion of λn to be

λn ≈ π
(
n− 1

4

)
(4.23)

with approximation of λn, we can expressed the cosine in Eqn. 4.17 as

cos
(
λn
cs
R
t
)
≈ cos

(
π

(
n− 1

4

)
cs
R
t

)
. (4.24)

Substituting Eqn.4.22 into Eqn. 4.24

cos

(
4mπ

(
n− 1

4

))
=


1 : m ∈ Z+

even & ∀n ∈ Z

−1 : m ∈ Z+
odd & ∀n ∈ Z

. (4.25)

Therefore, when cos
(
λn

cs
R t
)
≈ −1, a negative maximum peak pressure will appear, while

positive maximum peak pressure will appear when the value of the cosine is unity.

4.2 Neumann Problem

Neumann boundary conditions specify the normal derivative of the function on

a surface [39]. In this thesis, this is the so-called “worst case scenario”. When ∂P
∂r = 0

at the boundary, it can be easily be understood that at the circumference of the disc, no

displacement is allowed. It can also imply that the system is insulated.

The problem setup can be summarised as follows:

Partial Differential Equation:

∂2P

∂t2
− c2

s

(
∂2P

∂r2
+

1

r

∂P

∂r

)
= 0.

Initial condition:

P (r, 0) =
Γ

V0
Q(r) and

∂P

∂t

∣∣∣∣
t=0

= 0.

(4.26)
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Boundary condition:

∂P

∂r

∣∣∣∣
r=R

= 0.

The solution to the PDE above with the prescribed BC and IC can be presented

in this form[26]:

P (r, t) =
∂

∂t

∫ R

0
P (ξ, 0)G(r, ξ, t)dξ (4.27)

where Green’s function G(r, ξ, t) is defined by the formula

G(r, ξ, t) =
2tξ

R2
+

2ξ

cR

∞∑
n=1

1

λnJ2
0 (λn)

J0

(
λn

r

R

)
J0

(
λn

ξ

R

)
sin

(
λn
cst

R

)
. (4.28)

The λn in Eqn. 4.28 are positive zeros of Bessel function, J1(λ) = 0. Substituting Eqn. 4.28

into 4.27

P (r, t) =
∂

∂t

∫ R

0
P (ξ, 0)

2tξ

R2
dξ +

∂

∂t

∫ R

0
P (ξ, 0)

2ξ

cR

∞∑
n=1

1

λnJ2
0 (λn)

J0

(
λn

r

R

)
×

× J0

(
λn

ξ

R

)
sin

(
λn
cst

R

)
dξ

=
2Γ

V0R2

[∫ R

0
ξQ(ξ) dξ +

∞∑
n=1

1

J2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
×

×
∫ R

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ

]
. (4.29)

4.2.1 Energy Density Profile: Rectangular (Uniform) Distribution

As we did in the Dirichlet problem, the uniform energy is described as

Q(r) =


Q0 when 0 < r ≤ r0

0 when r > r0

. (4.30)
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Thus, we can separate the integrals in Eqn. 4.29 into two, like this

P (r, t) =
2Γ

V0R2

[(∫ r0

0
Q(ξ)ξ dξ +

∫ R

r0

Q(ξ)ξ dξ

)
+

∞∑
n=1

1

J2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
×

×
(∫ r0

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ +

∫ R

r0

ξQ(ξ)J0

(
λn

ξ

R

)
dξ

)]
. (4.31)

Inserting the definition of the distribution (Eqn. 4.30) into Eqn. 4.31 and knowing that the

integration of any function with a product of the energy distribution from r0 to R is zero,

we obtain

P (r, t) =
2ΓQ0

V0R2

[∫ r0

0
ξdξ +

∞∑
n=1

1

J2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
×

×
∫ r0

0
ξJ0

(
λn

ξ

R

)
dξ

]
. (4.32)

Solving the integrals leads to

P (r, t) =
2ΓQ0r0

V0R2

[
r0

2
+R

∞∑
n=1

1

λnJ2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
J1

(
λn
r0

R

)]
, (4.33)

which is the expression for pressure acoustic waves in a disc with Neumann BC and a

uniform energy distribution as define in Eqn. 4.30.

Taking it a step further, we evaluate

∂P

∂r
= −2ΓQ0r0

V0R2

∞∑
n=1

1

J2
0 (λn)

J1

(
λn

r

R

)
cos

(
λn
cst

R

)
J1

(
λn
r0

R

)
(4.34)

and using Eqn. 4.2 with Eqn. 4.3, we derive the expression for displacement to be

u(r, t) = −2ΓQ0r0

ρ0V0c2
s

∞∑
n=1

1

λ2
nJ

2
0 (λn)

J1

(
λn

r

R

){
cos

(
λn
cst

R

)
− 1

}
J1

(
λn
r0

R

)
. (4.35)

With the parameters in Table 4.1, plots based on numerical analysis of Eqn. 4.33

and 4.35 are presented in section B.3 of Appendix B. Of interest is the behaviour at the

centre of the disc. Figure 4.6 shows the dynamic evolution of the pressure acoustic wave

induced by the localised uniformly deposited energy at the centre of the disc. We observed

and obtained the same result in Ref. [30].
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Another remarkable observation is the similarity between Figure 4.6 and Figure

4.3 (which is for the Dirichlet BC). This similarity extends to when the spikes appear. Also

the solutions for both cases appear to be unstable and this instability can be attributed to

the description of the energy deposition. The similarity ends when the boundary condition

is in play. Since a Neumann BC will cause a free end reflection, the sign of the spikes is

reversed when compared to the Dirichlet BC.
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Figure 4.6: Plot of Pressure P (normalised by ΓQ0

V0
[Pa]) versus time (t [s]): The evo-

lution of induced pressure acoustic waves (by a uniform distribution of energy density)

at the centre of a disc with Neumann BC
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4.2.2 Energy Density Profile: Triangular (Linear) Distribution

We use the same definition used in Eqn. 4.16, which is

Q(r) =


Q0

(
1− r

r0

)
when 0 < r ≤ r0

0 when r > r0

. (4.36)

From Eqn. 4.29, we can separate the integral into two parts. Inserting the definition

of the distribution (Eqn. 4.36) into Eqn. 4.29 we get

P (r, t) =
2Γ

V0R2

[(∫ r0

0
Q(ξ)ξdξ +

∫ R

r0

Q(ξ)ξdξ

)
+

∞∑
n=1

1

J2
0 (λn)

J0

(
λn

r

R

)
×

× cos

(
λn
cst

R

)(∫ r0

0
ξQ(ξ)J0

(
λn

ξ

R

)
dξ +

∫ R

r0

ξQ(ξ)J0

(
λn

ξ

R

)
dξ

)]
=

2ΓQ0

V0R2

[∫ r0

0
ξ

(
1− r

σr

)
dξ +

∞∑
n=1

1

J2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
×

×
∫ r0

0
ξ

(
1− r

σr

)
J0

(
λn

ξ

R

)
dξ

]
. (4.37)

By solving the integrals, we determine the solution to be

P (r, t) =
2ΓQ0

V0R2

[
r2

0

6
+
πR2

2

∞∑
n=1

1

λ2
nJ

2
0 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

){
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)}]
. (4.38)

To figure out the expression for the displacement using Eqn. 4.2, we calculate

∂P

∂r
= −ΓQ0π

V0R

∞∑
n=1

1

λnJ2
0 (λn)

J1

(
λn

r

R

)
cos

(
λn
cst

R

){
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)}
(4.39)

and substitute Eqn. 4.39 into 4.2 in conjunction with Eqn. 4.3 to get

u(r, t) = −ΓQ0πR

V0ρ0c2
s

∞∑
n=1

1

λ3
nJ

2
0 (λn)

J1

(
λn

r

R

) [
J1

(
λn
r0

R

)
H0

(
λn
r0

R

)
−

+J0

(
λn
r0

R

)
H1

(
λn
r0

R

)]{
cos

(
λn
cst

R

)
− 1

}
. (4.40)
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The pressure acoustic waves are well behaved in the case of linear distribution.

Numerical analysis of Eqn. 4.38 and 4.40 were performed. The results obtained in the form

of plots are represented in section B.4 of Appendix B.

In Figure 4.7 shows the time evolution of pressure waves at r = 0. The maximum

peak value (which is Pmax = ΓQ0

V0
) indicated with red “ball” appears when

t = 4m
R

cs
, m ∈ Z+, (4.41)

just as it is in the case of the Dirichlet BC. Between the red “balls” in Figure 4.7 for

the Neumann BC and Figure 4.5 for the Dirichlet BC, one can easily notice the boundary

role, since the sign of reflected wave from the boundary determines the sign of the wave

amplitude.
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Figure 4.7: Plot of Pressure P (normalised by ΓQ0

V0
[Pa]) versus time (t [s]): The

evolution of induced pressure acoustic waves (by a linear distribution of energy density)

at the centre of a disc with Neumann BC
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Figure 5.1: Schematic representation of content overview for this chapter
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In an accelerator machine, a number of particles are squeezed and grouped together

to form a bunch. These bunches are equally spaced, packed and accelerated together in a

pulse train and the pulse trains are equally spaced as well. For example, at the ILC, the

distance between two consecutive trains is 0.2 s (since the pulse repetition rate is 5 Hz),

and a train contains 1312 bunches with 300 ns separating one bunch1 from the next [36].

In this chapter, our aim is to look at linear acoustic waves evolution and cumulative effect

as a result of multiple bunches hitting the same spot on the solid target material.

In general, linear waves are the result of a set of linear equations. Thus, all tools

for the analysis of linear systems are available for use. Since our aim is to investigate effects

of multiple bunches on the solid target, it is prudent to apply superposition principle. We

will consider the multiple bunch effect in both thin rod and disc approximation of the

cylindrical solid target under Dirichlet and Neumann boundary conditions (see Figure 5.1

schematic overview of the chapter). Although, in a real cylindrical solid material, the

coupled effect between the z and r will play a prominent role on how the linear acoustic

waves superimpose. Therefore, this coupled effect will contribute to the dissipation of the

energy which will reduce the acoustic wave in the longitudinal direction [21]. Since we are

mainly investigating 1D cases, this “coupled-effect” is not considered and without taking it

into account this implies that we have investigated the worst case possible. It is also worth

noting that throughout this chapter, we assume that:

p there is no damping;

p each bunch is identical and the energy deposited by each bunch is instantaneous;

p lastly, the bunches are equally spaced (let Tb represent the bunch spacing)

1There are 2 × 1010 electrons per bunch in the electron beam source



72 Chapter 5: Multiple Bunches Effect on LAW

5.1 Multi-Bunch Effect on Thin Rods

In Chapter 3, we investigated two different boundary conditions on solid target

using the thin rod approximation, and the analytical results presented there were mainly

for stress waves induced by a single bunch. Now, we are going to investigate the multiple

bunches effect for the two different boundary conditions namely, the Dirichlet and the

Neumann boundary conditions. In the subsequence of two sub-sections, we considered both

boundary conditions and derived an expression (for each case) of the pressure acoustic waves

for m-th number of bunches, which are equally spaced and pass through a thin solid target

material.

5.1.1 Dirichlet Boundary

From Eqn. 3.10, we knew that for an instantaneously deposited energy by a single

bunch, we can express the pressure acoustic waves as

P (z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz, (5.1)

where P (z, 0) is the initial condition with respect to the bunch in consideration.

So, we start off by considering the first bunch. Using Eqn. 5.1, the pressure

acoustic wave for the first bunch (P1(z, t)) can be expressed as

P1(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P1(z, 0) sin(λnz)dz. (5.2)

For clarity purpose, as stated in the assumption above, the bunches are identical, this

implies that the initial stress induced by any single bunch P (z, 0) (which is caused by the

instantaneous energy deposited), will be the same. Therefore, for the first bunch, which is

our starting point, our initial condition in terms of pressure P1(z, 0) for the first bunch can

be expressed as

P1(z, 0) ≡ P (z, 0) (5.3)
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because no stress is in the material before the first bunch pass through the target. Hence,

the pressure acoustic waves induced by the first bunch can be written as

P1(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz. (5.4)

We can describe the effect of the second bunch on the system by using Eqn. 5.1:

P2(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P2(z, 0) sin(λnz)dz. (5.5)

Since the solid target is already stressed by the first bunch, the initial condition P2(z, 0)

can not be just the second bunch instantaneous stress P (z, 0) alone. Hence, we need to

take into the account the stress state of the system P1(z, Tb) just before the second bunch

arrives. Thus, the initial condition P2(z, 0) for the second bunch will be

P2(z, 0) = P (z, 0) + P1(z, Tb). (5.6)

where Tb is the time interval between the bunches. Inserting Eqn. 5.6 into 5.5, gives

P2(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz+

+
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P1(z, Tb) sin(λnz)dz (5.7)

To define P1(z, Tb), we use Eqn. 5.4. So

P1(z, Tb) =
2

L

∞∑
m=1

cos(λmcsTb) sin(λmz)

∫ L

0
P (z, 0) sin(λmz)dz (5.8)

and we substitute Eqn. 5.8 into 5.7, leading to

P2(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz +

2

L

∞∑
n=1

cos(λncst) sin(λnz)×

× 2

L

∞∑
m=1

cos(λmcsTb)

{∫ L

0
P (z, 0) sin(λmz)dz

}∫ L

0
sin(λmz) sin(λnz)dz.

(5.9)
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Considering that ∫ L

0
sin(λmz) sin(λnz)dz =


L
2 : n = m

0 : n 6= m

, (5.10)

Eqn. 5.9 can be reduce to

P2(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz +

2

L

∞∑
n=1

cos(λncst) sin(λnz)×

× cos(λncsTb)

∫ L

0
P (z, 0) sin(λnz)dz. (5.11)

By factoring out the common factor, we can simply express the pressure acoustic wave due

to the second bunch as

P2(z, t) =
2

L

∞∑
n=1

sin(λnz) cos(λncst){1 + cos(λncsTb)}
∫ L

0
P (z, 0) sin(λnz)dz. (5.12)

Please note that the time t = 0 here (that is, the starting point for the second bunch) is

equivalent to time t = Tb in the first bunch. When considering multiple bunches with this

methodology, the first bunch expression for the pressure acoustic waves (in this case Eqn.

5.12) becomes insufficient to describe any event that happens at time t > Tb.

Next is the third bunch, which passes through the target after another time Tb.

Using the same equation we used in the last two bunches, that is Eqn. 5.1, we can write

the expression for third bunch as

P3(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P3(z, 0) sin(λnz)dz. (5.13)

Obviously, the initial condition P3(z, 0) can be defined as

P3(z, 0) = P (z, 0) + P2(z, Tb). (5.14)

Inserting the definition of P3(z, 0) into Eqn. 5.13

P3(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz+

+
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P2(z, Tb) sin(λnz)dz. (5.15)
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Using Eqn. 5.12, P2(z, Tb) is found to be

P2(z, Tb) =
2

L

∞∑
m=1

cos(λmcsTb){1 + cos(λmcsTb)} sin(λmz)

∫ L

0
P (z, 0) sin(λmz)dz. (5.16)

Substituting Eqn. 5.12 into 5.15, P3(z, t) becomes

P3(z, t) =
2

L

∞∑
n=1

cos(λncst) sin(λnz)

∫ L

0
P (z, 0) sin(λnz)dz +

2

L

∞∑
n=1

cos(λncst) sin(λnz)×

× 2

L

∞∑
m=1

cos(λmcsTb){1 + cos(λmcsTb)}
{∫ L

0
P (z, 0) sin(λmz)dz

}
×

×
∫ L

0
sin(λmz) sin(λnz)dz (5.17)

and is further reduced to

P3(z, t) =
2

L

∞∑
n=1

sin(λnz) cos(λncst)
[
1 + cos(λncsTb) + cos2(λncsTb)

]
×

×
∫ L

0
P (z, 0) sin(λnz)dz. (5.18)

Also worth pointing out is that the time t = 0 at the third bunch is equivalent to t = Tb

at the second bunch and t = 2Tb at the first bunch. Interestingly enough, looking through

Eqn. 5.4, 5.12 and 5.18 for the first, second and third bunch respectively, a specific pattern

emerges. Thus, we can now generalise as follows: for the m-th bunch, the pressure acoustic

waves can be described as

Pm(z, t) =
2

L

∞∑
n=1

sin(λnz) cos(λncst)

{
m∑
i=1

cosi−1(λncsTb)

}∫ L

0
P (z, 0) sin(λnz)dz. (5.19)

Generalising, the starting time will be shifted by (m− 1)Tb for any bunch m (and

where m > 1). This means that for a second bunch, the zeroth time is Tb relative to the

first bunch and for the third bunch, the zeroth time is 2Tb relative to first bunch and Tb

relative to the the second bunch.
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5.1.2 Neumann Boundary

In Section 3.2 of Chapter 3, we derived an equation to describe pressure acoustic

waves in a thin rod with Neumann boundary condition to be

P (z, t) =
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P (z, 0) cos(λnz)dz, (5.20)

The pressure acoustic waves as a result of the first bunch that impinge on the

target can be expressed as

P1(z, t) =
1

L

∫ L

0
P1(z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P1(z, 0) cos(λnz)dz, (5.21)

where the initial condition is P1(z, 0) = P (z, 0), since there is no stress in the system before.

Therefore, P1(z, t) can be written as

P1(z, t) =
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P (z, 0) cos(λnz)dz. (5.22)

The aftermath effect of the second bunch in terms of pressure can be rendered as

P2(z, t) =
1

L

∫ L

0
P2(z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P2(z, 0) cos(λnz)dz. (5.23)

Considering the wake of the first bunch at time Tb and adding it to the second bunch

instantaneous pressure induced leads to the following initial condition:

P2(z, 0) = P (z, 0) + P1(z, Tb). (5.24)

Substituting Eqn. 5.24 into 5.23, we have

P2(z, t) =
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P (z, 0) cos(λnz)dz+

+
1

L

∫ L

0
P1(z, Tb)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P1(z, Tb)×

× cos(λnz) dz. (5.25)
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We know the first and second term of Eqn. 5.25 above. In order to work on the third and

the last term, we use Eqn. 5.22 and define

P1(z, Tb) =
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncsTb)

∫ L

0
P (z, 0) cos(λnz)dz. (5.26)

Hence, we substitute P1(z, Tb) (in Eqn. 5.26) into the third term in Eqn. 5.25, this gives

1

L

∫ L

0
P1(z, Tb)dz =

1

L

∫ L

0

{
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncsTb)×

×
∫ L

0
P (z, 0) cos(λnz)dz

}
dz. (5.27)

Simplifying and solving the necessary integrals, leads to

1

L

∫ L

0
P1(z, Tb)dz =

1

L

∫ L

0
P (z, 0) dz +

2

L

∞∑
n=1

cos(λncsTb)
sin(nπ)

nπ
×∫ L

0
P (z, 0) cos(λnz) dz (5.28)

since

sin(nπ) = 0 ∀n ∈ Z+.

Thus, the second term of Eqn. 5.28 vanishes, leading to

1

L

∫ L

0
P1(z, Tb)dz =

1

L

∫ L

0
P (z, 0) dz. (5.29)

For the fourth term in Eqn. 5.25, we substitute for P1(z, Tb) using definition in

Eqn. 5.26. Solving all the necessary integrals, and using the orthogonality property

∫ L

0
cos(λmz) cos(λnz)dz =


L
2 : n = m

0 : n 6= m

, (5.30)

we reduce the fourth term in Eqn. 5.25 to

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P1(z, Tb) cos(λnz)dz

=
2

L

∞∑
n=1

cos(λnz) cos(λncst) cos(λncsTb)

∫ L

0
P (z, 0) cos(λnz) dz.

(5.31)
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We substitute for the third and fourth terms in Eqn. 5.6 by using Eqn. 5.29 and 5.31

respectively. Finally the second bunch effect can be given as

P2(z, t) =
2

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst){1 + cos(λncsTb)}×

×
∫ L

0
P (z, 0) cos(λnz)dz (5.32)

Following the same procedure above for the third bunch, we have

P3(z, t) =
1

L

∫ L

0
P3(z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P3(z, 0) cos(λnz)dz. (5.33)

The initial condition P3(z, 0), can be expressed as

P3(z, 0) = P (z, 0) + P2(z, Tb). (5.34)

Inserting Eqn. 5.34 into 5.33, we get

P3(z, t) =
1

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P (z, 0) cos(λnz)dz+

+
1

L

∫ L

0
P2(z, Tb)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)×

×
∫ L

0
P2(z, Tb) cos(λnz)dz. (5.35)

Using Eqn. 5.32, we define P2(z, Tb) to be

P2(z, Tb) =
2

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncsTb){1 + cos(λncsTb)}×

×
∫ L

0
P (z, 0) cos(λnz)dz. (5.36)

The third term of Eqn. 5.35 can be simplified by substituting for P2(z, Tb) (by using the

definition in Eqn. 5.36) and solving the integral. Thus we have

1

L

∫ L

0
P2(z, Tb)dz =

2

L

∫ L

0
P (z, 0) dz. (5.37)
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Simplifying the fourth term of Eqn 5.35 as we did the third term, we arrive at

2

L

∞∑
n=1

cos(λnz) cos(λncst)

∫ L

0
P2(z, Tb) cos(λnz)dz =

2

L

∞∑
n=1

cos(λnz) cos(λncst) cos(λncsTb)×

× {1 + cos(λncsTb)}
∫ L

0
P (z, 0) cos(λnz)dz. (5.38)

Substituting Eqn. 5.37 and Eqn. 5.38 into the third and fourth terms of Eqn. 5.35

respectively, will lead to

P3(z, t) =
3

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λncst){1 + cos(λncsTb) + cos2(λncsTb)}×

× cos(λnz)

∫ L

0
P (z, 0) cos(λnz)dz (5.39)

Looking at Eqn. 5.22, 5.32 and 5.39 for the case of first, second and third bunch

respectively, we again see a specific pattern. As a result, we can now generalise as follows:

for m-th bunch, the pressure acoustic waves can be expressed as

Pm(z, t) =
m

L

∫ L

0
P (z, 0)dz +

2

L

∞∑
n=1

cos(λnz) cos(λncst)

{
m∑
i=1

cosi−1(λncsTb)

}
×

×
∫ L

0
P (z, 0) cos(λnz) dz. (5.40)

5.2 Multi-Bunch Effect on Cylindrical Disc

In Chapter 4, we investigated two different boundary conditions on solid targets

using disc approximation. In this section, we derive expressions for the multiple bunch effect

for two different boundary conditions namely: Dirichlet and Neumann boundary conditions.

These derived expressions can be applied to any deposited energy distribution profile.
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5.2.1 Dirichlet Boundary

In Section 4.1, we derived the linear acoustic waves for a disc with Dirichlet BC

to be

P (r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.41)

For the first bunch,

P1(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP1(ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.42)

The initial condition for the first bunch is

P1(ξ, 0) = P (ξ, 0), (5.43)

so we can re-write Eqn. 5.42 as follows:

P1(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.44)

The disc behaviour in terms of the pressure acoustic waves can be described as

P2(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP2(ξ, 0)J0

(
λn

ξ

R

)
dξ (5.45)

where the initial condition P2(r, 0) is the contribution of the bunch itself with the wake

effect of the previous bunch, hence we have

P2(r, 0) = P (r, 0) + P1(r, Tb). (5.46)

Substituting for P2(r, 0) into Eqn. 5.45 using 5.46 leads us to

P2(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP1(ξ, Tb)J0

(
λn

ξ

R

)
dξ. (5.47)
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Using Eqn. 5.44, we define P1(r, Tb) as

P1(r, Tb) =
2

R2

∞∑
m=1

1

J2
1 (λm)

J0

(
λm

r

R

)
cos

(
λm

csTb
R

)∫ R

0
ξP (ξ, 0)J0

(
λm

ξ

R

)
dξ. (5.48)

Inserting Eqn. 5.48 into 5.47 leads to

P2(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)
2

R2

∞∑
m=1

1

J2
1 (λm)

cos

(
λm

csTb
R

)
×

×
∫ R

0
ξP (ξ, 0)J0

(
λm

ξ

R

)
dξ

{∫ R

0
ξJ0

(
λm

r

R

)
J0

(
λn

ξ

R

)
dξ

}
. (5.49)

Simplifying things further, we solve the integral in the curly bracket, by using the orthogo-

nality property, which is

∫ R

0
ξJ0

(
λm

ξ

R

)
J0

(
λn

ξ

R

)
dξ =


R2

2 J
2
1 (λn) : λn = λm

0 : λn 6= λm & J0(λn) = J0(λm)

(5.50)

Thus, Eqn. 5.49 becomes

P2(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ +

2

R2

∞∑
n=1

1

J2
1 (λn)

×

× J0

(
λn

r

R

)
cos

(
λn
cst

R

)
cos

(
λn
csTb
R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.51)

Factoring out necessary terms, we further reduce Eqn. 5.51 to

P2(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

){
1 + cos

(
λn
cst

R

)}
×

×
∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.52)

From Eqn. 5.44 and 5.52, we can deduce that the pattern in thin rod approxima-

tion is been followed here, hence, we can generalise. For m-th bunch, the pressure acoustic
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waves can be expressed as

Pm(r, t) =
2

R2

∞∑
n=1

1

J2
1 (λn)

J0

(
λn

r

R

)
cos

(
λn
cst

R

){ m∑
i=1

cosi−1(λncsTb)

}
×

×
∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ. (5.53)

5.2.2 Neumann Boundary

In the case of the Neumann boundary condition for a disc, the solution of linear

waves in terms of pressure was derived analytically in Section 4.2 (on page 64) as

P (r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+

∫ R

0
ξP (ξ, 0) dξ

]
. (5.54)

Using Eqn. 5.54 above, the effect of the first bunch can be expressed as

P1(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
λn
cst

R

)∫ R

0
ξP1(ξ, 0)J0

(
λn

ξ

R

)
dξ+

+

∫ R

0
ξP1(ξ, 0) dξ

]
(5.55)

where initial condition P1(r, 0) = P (r, 0), so

P1(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
λn
cst

R

)∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+

∫ R

0
ξP (ξ, 0) dξ

]
. (5.56)

For the next bunch, that is, the second bunch, the pressure acoustic waves can be

expressed as follows using Eqn. 5.54:

P2(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
λn
cst

R

)∫ R

0
ξP2(ξ, 0)J0

(
λn

ξ

R

)
dξ+

+

∫ R

0
ξP2(ξ, 0) dξ

]
(5.57)
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with the initial condition

P2(r, 0) = P (r, 0) + P1(r, Tb). (5.58)

We insert Eqn. 5.58 into 5.57:

P2(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
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R

)∫ R

0
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ξ

R

)
dξ+

+
∞∑
n=1

J0

(
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r
R

)
J2

0 (λn)
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(
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cst

R

)∫ R

0
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(
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ξ

R

)
dξ+

+

∫ R

0
ξP (ξ, 0) dξ +

∫ R

0
ξP1(ξ, Tb) dξ

]
. (5.59)

Defining P1(r, Tb) by using Eqn. 5.56:

P1(r, Tb) =
2

R2

[ ∞∑
m=1

J0

(
λm

r
R

)
J2

0 (λm)
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(
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R

)∫ R

0
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(
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ξ
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)
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+
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0
ξP (ξ, 0) dξ

]
(5.60)

and exploiting the orthogonality property2

∫ R

0
ξJ0

(
λm

ξ

R

)
J0

(
λn

ξ

R

)
dξ =


R2

2 J
2
0 (λn) : λn = λm

0 : λn 6= λm & J1(λn) = J1(λm)

(5.61)

Substituting Eqn. 5.60 and using Eqn. 5.61, we can reduce Eqn. 5.59 to

P2(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
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(
λn
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R

)
{1 + cos(λncsTb)}

∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+2

∫ R

0
ξP (ξ, 0) dξ

]
. (5.62)

From Eqn. 5.55 and 5.62, we can deduce that the pattern in the thin rod approx-

imation has been followed here, hence, we can generalise. For the m-th bunch, the pressure

2The λm and λn in this sub-section is different from the ones in the previous sub-section. Please see
Sections 4.1 and 4.2 in Chapter 4 for their definitions
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acoustic waves can be expressed as

Pm(r, t) =
2

R2

[ ∞∑
n=1

J0

(
λn

r
R

)
J2

0 (λn)
cos

(
λn
cst

R

){ m∑
i=1

cosi−1(λncsTb)

}∫ R

0
ξP (ξ, 0)J0

(
λn

ξ

R

)
dξ+

+m

∫ R

0
ξP (ξ, 0) dξ

]
. (5.63)

Remarks

An interesting characteristic is observed when one looks at all the analytical solu-

tions derived for both the thin rod and disc approximations of the cylindrical target under

both the Dirichlet and Neumann BCs. Common to them all, that is, Eqns. 5.19, 5.40, 5.53

and 5.63 is:
m∑
i=1

cosi−1(λncsTb). (5.64)

Eqn. 5.64 differentiates the analytical solutions here from that of the single bunch obtained

in Chapters 3 and 4. Basically, if Eqn. 5.64 equals 1, we have the solution for the single

bunch effect. Remarkably, since the value of a cosine ranges from -1 to +1, one can deduce

that it is probable to make Eqn. 5.64 equal zero, meaning that the superposition of the

waves can be made to be a total destructive interference. Hence, it will be a great advantage

if

0 ≤
∣∣∣∣ m∑
i=1

cosi−1(λncsTb)

∣∣∣∣ ≤ 1. (5.65)

The implication is that, by choosing the right parameters, it is theoretically possible to

construct a system of multiple bunches of particle beams in such a way that the induced

stress on the target material being hit will not pile up or superimpose additively.



Chapter 6

SLC and ILC - Overview and

Application

Overview

In this chapter we look at

p a general operational overview of SLC and ILC machines.

p positron production on each machine described with emphasis on the target.

p a test case, in which we applied the model in this study to the SLC target and confirm

the existing result.

p the application of the analytical solutions derived in this thesis to the ILC target.

85
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6.1 SLAC Linear Collider

SLAC Linear Collider (SLC) is a linear collider just as the name implies and it

was designed to collide bunches of electrons (e−) and positrons (e+) head-on at a single

interaction point (IP) with centre of mass energies of over 90 GeV/c2 [29]. SLC is the first

and still the only linear collider built up to date [32]. The construction of SLC began in

1983 and was completed in 1987 [32]. The aim of the SLC project was to use the machine

to help better understand the physics world through experiments performed. Also it was

to pioneer a new accelerator technology that can be used for synchrotron radiation sources,

free electron lasers, high brightness beam sources, etc. Another important aim of the SLC

project was to help in reducing the cost of future (e− - e+ collider) machines [29, 33].

SLC runs can be divided into two eras in terms of the detector used and also in

terms of the electron source. SLC first physics run used a Mark II detector (between 1989

and 1990) and an unpolarised electron source [25].

After the Mark II detector era, a new state of the art detector called SLAC Large

Detector (SLD) was installed during 1991 [25] and in 1992 the electron source was replaced

by a polarised electron source. Some major upgrading was done to increase the luminosity of

the beam and some other components were added for diagnosis and measurement purposes

(See Ref. [25] for details on Polarisation at SLC).

Description of the typical operation cycle of these two eras of SLC stated above

can be merged into one (see Figure 6.1 for the SLC schematic layout). Before describing a

typical cycle of SLC, here are the main components of the machine [33]:

m LINAC (Linear Accelerator)

m Transport System from the end of the LINAC to a small aperture magnet arc

m Final focus: a special focusing system near the IP (Interaction Point)
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m Positron production target

m Transport system from the positron target at the two-thirds point of the LINAC back

to the injection end of the LINAC

m A new high peak current electron gun

m Two small storage rings to reduced emittance of e+ and e− beams by radiation damping

m Pulse compressors to reduce the length of the bunches in the storage ring before injection

into the LINAC

m And other necessary instrumentation and control system for both the LINAC and collider

system.

6.1.1 Overview of Typical Operation

A cycle begins with two bunches of electrons and one positron bunch, these bunches

are accelerated to 1.2 GeV at the end of 100 m section of LINAC. Right after this LINAC, the

bunches are injected by pulsed magnets into their respective damping rings. The emittance

of each bunches (that is, e+ and e−) are reduced by radiation damping in their respective

damping rings for duration of 1/120 s. After 1/120 s, the e+ bunch is extracted from the

ring, passes through a pulse compressor which reduces the bunch length from cm to mm

range (which is the requirement for the main LINAC) and is injected into the LINAC. The

two e− bunches and the e+ bunch were kicked from their respective damping rings by the

first pulsed magnet and later pass through the second pulse compressor, which inject them

into the LINAC with the required bunch length. The e+ bunch leads, followed by the two

e− bunches. There is a distance of 15 m between the bunches in the LINAC [33].
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Figure 6.1: Schematic of SLC. Ref.:[33]



Chapter 6: SLC and ILC - Overview and Application 89

The three (two e− and one e+) bunches are accelerated down the LINAC. At two-

thirds of the LINAC (at this point, the bunches have been accelerated from 1.2 GeV to

33 GeV) the trailing electron bunch is extracted from the LINAC with a pulsed magnet

and is directed onto a positron production target. The e+ bunch and the leading e− bunch

continue to the end of the LINAC, where they reach an energy of about 50 GeV [33].

At the end of the LINAC, e− and e+ bunches are separated by a DC magnet, pass

through a transport system which matches the focusing of the LINAC to that of the main

collider arc, and then begin to travel around the arc in opposite directions. In the collider

arc, there is a small aperture magnet with very strong alternating gradient focusing to hold

down emittance growth of the bunches in the collider arcs. After emerging from the collider

arcs, the bunches pass through an achromatic matching and focusing section which focuses

the beams to a very small size at the interaction point [33].

It is worth mentioning that the electrons are produced from a special gun. During

the SLC first era, an unpolarised electron gun [29, 33] was used, and later, a polarised

gun was installed [25]. For the SLC positron production process, please see the sub-section

below.

6.1.2 Positron Source Production for SLC

SLC requires a positron production system that will produce as many positrons

as there are electrons in an accelerator. SLC positrons are produced through a conversion

target (see chapter 1 for details of positron production in general). The conversion target

is bombarded by incident electron beams, initiating an electromagnetic cascade shower of

positrons, electrons and photons. This requirement implies that one incident electron must

produce at least one positron. This is why a high energetic beam is needed and a good

positrons collection system [14, 15] is required.
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Here are the essential components in the SLC positron source [15]:

m beam transport to bring 33 GeV electrons to a target room

m conversion target

m pulsed magnet to produce a 5 T solenoid field near the target

m DC solenoid magnet of 0.5 T to provide extended focusing while the positrons are being

accelerated in 0.2 GeV accelerating structure

m high gradient accelerator

m 200 MeV beam transport line that brings positrons 2 km to the far end of the LINAC

for acceleration and subsequent damping in the damping ring

The positron production process “starts” when the 33 GeV trailing electron bunch

(recall that three bunches are accelerated at a time in the main LINAC, a positron bunch and

two electron bunches) is extracted at the two-thirds point of the LINAC. This “scavenger”

electron bunch will pass through an extraction transport line and be made to strike a

tungsten alloy target. A portion of the produced positron spectrum is carefully focused

by a pulsed solenoid (called flux concentrator) placed just downstream of the target. The

positrons are accelerated and bunched by a 1.4 m “capture” accelerator with a gradient of

40 MeV/m. The energy of positron bunch is raised to 210 MeV in the “booster region”,

enters the return line and then transported back to the injector LINAC 2 km upstream [29].

The positron bunch has to make a 180o bend downstream and upstream [33].

SLC Target for Positron Production

The hardest part of any anti-particle source production is the conversion target

development. The SLC positron production target is no exception. The target was designed
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in order to withstand the huge energy deposited by the intense high power electron beam

[29] (see Tabel 6.1). Figure 6.2 below shows the geometry of the target. The SLC target

material is a disc of 2.5 inches (0.0634 m) in diameter and 0.81 inches (0.0205 m) in thickness

(equivalent of 6 radiation length). Tungsten alloy (made-up of 75% of Tungsten and 25%

of Rhenium) was selected for the target material due to its high melting point, very high

strength, and reasonable ductility and thermal conductivity [33]. The target was slowly

rotated (or trolled) in such a way that each impinging electron beam pulse struck a different

part of the target during operation [34].

The target gave many years of reliable service [10] before it was decommissioned

in 1998 because of a failure [13]. The failure developed as a small leakage in the target

vacuum [10]. Close inspection of the target revealed not only the leakage but also showed

a considerable damage on the beam exit side of the target (see Figure 6.3) [34].

6.1.3 Stress Analysis in SLC Target

The target gave 6 years of operation; its failure was a surprise because the sim-

ulation result during the conceptual design of the SLC was interpreted to indicate that

the target “will probably last indefinitely” for 0.8 mm incident beam spot-size [33]. Many

analyses have been carried out to determine the cause of this failure, like in Ref.: [10, 13].

We applied the model in this thesis to study if we could reach the same conclusion as in

Ref.: [10] (see the stress analysis below).

Energy Deposition

Stress analysis of this nature requires that we know precisely the distribution of

energy density deposition in the material. Relativistic incident beams impinge on the target

containing 4 × 1010 electrons per bunch at 33 GeV. This beam deposits its energy within
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Figure 6.3: Rear view of SLC Decommission Target. Ref.: [18]

a matter of picoseconds [29]. It is worth noting that, to avoid the target being destroyed

by a single pulse, the incoming beam diameter has to be enlarged by a factor of two by

using a scattering foil, placed a meter in front of the target [29]. This “electron beam of

4.0× 1010 electrons/bunch at 33 Gev impinging on the target deposits 5 kW of power into

the target at a frequency of 120 Hz” [34]. The beam has a Gaussian radial distribution with

a spot size of 0.8 mm [34]. FLUKA or SLAC EGS codes can be used and have been used to

determine the energy deposition profile in the target (see Ref. [34]), but here we are going

to use a very simple analytical profile to simulate the energy profile.

Using LAW to Simulate Stress in SLC Target

The justification for using an instantaneous energy deposition can be reiterated

here, since the electron bunch deposits its energy within a matter of picoseconds and the
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material during this time scale would not react to this deposition because of its inertia.

Also worth mentioning is the rotation of the target, the frequency at which the electron

pulses strike the target and the cooling system. This ensures that two pulses will not hit

the same point on the target consecutively and the target will have been cooled down to

its nominal state before the next pulse hits the target again. Therefore, our calculation for

induced stress in the SLC target will be confined to just a single strike by a single electron

pulse.

Table 6.1: SLC Target Material and Beam Parameters.

Parameters Symbol Units Value

Target Length L m 0.0205

Target Radius R m 0.0317

Standard deviation σz m 0.0062

mean B m 0.0205

beam spot size σ mm 0.8

Peak Energy Density Dep. Q0

V0
J/m3 5.91× 108 [34]

Grüneisen Coef. Γ 2.095

Density ρ Kg/m3 19700

Speed of sound cs m/s 4671.982

Detailed analyses on how the linear acoustic waves dynamically evolve in both thin

rod and disc approximations of the cylindrical solid target have been done in Chapter 3 and 4

respectively. To serve as a test case and a proof of principle, we will now apply our analytical

solutions to the SLC target and compare the results with the existing simulation results.

Since the beam spot size on the target is extremely small compared to the target radius

(about 22 times smaller), the radial effect of the linear acoustic wave quickly dissipates and
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can be overlooked but not for being insignificant in peak value. Thus, in reality, the BC of

the thin rod approximation of the cylindrical target will be Dirichlet BC and as for the disc

approximation, it is in between the Dirichlet and Neumann BC. Hence, we applied both

the Dirichlet and Neumann BC to the disc approximation.

For a thin rod approximation with Dirichlet BC at both ends: we would use

Gaussian distribution to describe the energy density profile along the thin rod [34]. The

numerical result obtained using Eqn. 3.30 with the parameter in Table 6.1 can be seen in

Figure 6.4. The plot shows the behaviour of the acoustic waves in the body at different

time shots. At t = 0, the SLC target experiences a compressive wave (that is, positive

pressure only), which can be attributed to the instantaneous energy deposition by the

incident electron bunch. The peak amplitude appears toward the rear exit of the target. As

the time goes on, the waves are reflected (and the role of the boundary conditions becomes

visible) and negative pressure starts to appear (for example, at time t = 0.25 Lcs ).

The amplitude of the negative pressure continues to grow as the positive pressure

decreases. Since the boundary is fixed in terms of pressure (P = 0 at both ends), by the

time (that is, when t = L
cs

) the wave has travelled from the rear exit of the target to the

front, the complete inverted and reflected wave is seen (that is, negative pressure which

implies tension) and the peak amplitude appears close to the front of the target.

For disc approximation: the behaviour of linear acoustic waves here is a bit different

from the one in the thin rod approximation. One of the reasons was noted earlier which

is the fact that the region at which the energy is deposited is very small compared to

the whole disc, causing quick dissipation of the acoustic wave. This is evident, when one

compares Figures 6.5, 6.6 and either Figure 6.7 or 6.8, which show rapid decrease in the

peak amplitude of the pressure acoustic wave. Another reason is that at the centre of the

disc (that is, at r = 0), there is no displacement, which in turn implies that the pressure
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at the centre changes freely. This attribute at the centre of the disc is imposed by default,

irrespective of the boundary condition imposed at r = R. For simplicity, in our analytical

result, we described the energy density profile in the disc using the linear distribution and

applying the parameter in Table 6.1 to Eqns. 4.19 and 4.40 for both the Dirichlet and

Neumann boundary conditions respectively. Figure 6.5 shows a small region at which the

stress is induced as a result of the instantaneous energy deposition (this applies to both

boundary conditions).

Figures 6.7 and 6.8 are plots (for Dirichlet and Neumann respectively) showing

what happens in the disc just after the instantaneous deposition. The remarkable similarity

between Figures 6.7 and 6.8 can be attributed to the fact that the role of boundary condition

is not observable at t = R
cs

. The reflected wave will be inverted for the Dirichlet BC (Figure

6.7) but not for the Neumann BC (Figure 6.8). This explains why all the curves in both

plots, except the black dot-dashed curve (which is for t = R
cs

), are the same.

Summary of SLC Target Results

Based on our analysis above (see Appendix C for the time analysis plots), which

is evident in Chapters 3 and 4, we know that the absolute peak pressure induced can be

calculated by using

Ppeak =

∣∣∣∣ΓQ0

V0

∣∣∣∣ , (6.1)

irrespective of the space and time. With the parameter in Table 6.1, we estimated the

absolute peak pressure to be 1.24 GPa, which is the result obtained in Ref.: [28, 33].

As stated earlier, in reality there is a cooling system in the SLC target and the

target is rotated, so that the same spot would not be struck twice in a row, thus reducing

the impact of the induced stress. Also, the BC of the disc approximation of the SLC target



Chapter 6: SLC and ILC - Overview and Application 97

lies between the two boundary conditions, that is, Dirichlet and Neumann BC. Using this

approximation we already know the two extreme possibilities.
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Figure 6.4: SLC Thin Rod Approximation with Dirichlet BC: Variation of Pressure P

(normalised by 1.24 GPa) along the target thickness (z [m]) for different times (where

T = L
cs

).
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Figure 6.5: SLC Disc Approximation: At time t = 0, Spatial distribution of Pressure P

(normalised by 1.24 GPa) vs. r [m] for both Dirichlet and Neuman BC

����� ����� ����� �����

-���

���

���

���

� [�]

�

�=�����

�=�����

�=�����

�=�����

�=����

Figure 6.6: SLC Disc Approximation for both Dirichlet and Neumann BC: Variation of

Pressure P (normalised by 1.24 GPa) along the target radius (r [m]) for different times

(where T = R
cs

). Note, for the horizontal axis, r: 0 to R/2, since nothing happens from

R/2 to R
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Figure 6.7: SLC Disc Approximation with Dirichlet BC: Variation of Pressure P (nor-

malised by 1.24 GPa) along the target radius (r [m]) for different times (where T = R
cs

).
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Figure 6.8: SLC Disc Approximation with Neumann BC: Variation of Pressure P (nor-

malised by 1.24 GPa) along the target radius (r (m)) for different times (where T = R
cs

).



100 Chapter 6: SLC and ILC - Overview and Application

6.2 International Linear Collider

The International Linear Collider (ILC) is another e− − e+ linear collider design

that will probably be built in Japan in the near future. According to the executive summary

of the technical design report of the ILC [8] by the Global Design Effort (GDE): “ILC is

a 200 - 500 GeV (extendable to 1 TeV) centre-of-mass high luminosity linear electron-

positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating

technology.” The R&D design of ILC spans a period of 2 decades and involves worldwide

collaboration.

There are good reasons to anticipate more new discoveries because of some open

questions, like unification of all forces, supersymmetry, dark-matter, superstrings, etc. The

ILC will be able to tell us, for example, if extra-dimensions exist, which might be invisible

to LHC. Table 6.2 list some of the reactions that will be studied in various energy level at

ILC and detailed information can be found in Ref.: [8].

Figure 6.10 shows the schematic view of the accelerator as a whole, indicating the

major components, which are [8]

m polarised source for electrons and positrons;

m 5 GeV electron and positron damping rings (DR) hosted in a common tunnel;

m beam transport from the damping rings to the main LINACs, followed by a two-stage

bunch-compressor system prior to injection into the main LINACs;

m two 11 km main LINACs;

m two beam delivery systems to the IP.
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Table 6.2: Major physics cases for ILC. Ref:[8]

Energy Reaction Physics Goal

91 GeV e+e− → Z ultra-precision electroweak

160 GeV e+e− →WW ultra-precision W mass

250 GeV e+e− → Zh precision Higgs couplings

350 - 400 GeV

e+e− → tt̄ top quark mass and couplings

e+e− →WW precision W couplings

e+e− → υῡh precision Higgs couplings

500 GeV

e+e− → ff̄ precision search for Z ′

e+e− → tt̄h Higgs coupling to top

e+e− → Zhh Higgs self-coupling

e+e− → χ̃χ̃ search for supersymmetry

e+e− → AH,H+H− search for extended Higgs states

700 - 1000 GeV

e+e− →→ υῡhh Higgs self-coupling

e+e− →→ υῡV V composite Higgs sector

e+e− →→ υῡtt̄ composite Higgs and top

e+e− →→ t̃t̃∗ search for supersymmetry

6.2.1 Overview of Typical Operation

A typical operation cycle at the ILC starts from the electron source. The 90%

polarised electron beams are produced using a photocathode DC gun, which is close to the

SLC design. After production, the electrons are sent into a normal conducting structure

in which the beams are bunched together and pre-accelerated to 76 MeV and to 5 GeV

thereafter in a SCRF LINAC [3]. Next is the damping ring (DR), but before the electrons

are transported into DR, they pass through “superconducting solenoids that rotate the spin

vector into the vertical, and a separate superconducting RF structure is used for energy
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Chapter 3
The International Linear Collider
Accelerator

3.1 The ILC Technical Design
3.1.1 Overview

The International Linear Collider (ILC) is a high-luminosity linear electron-positron collider based on
1.3 GHz superconducting radio-frequency (SCRF) accelerating technology. Its centre-of-mass-energy
range is 200–500 GeV (extendable to 1 TeV). A schematic view of the accelerator complex, indicating
the location of the major sub-systems, is shown in Fig. 3.1:

central region
5 km

2 km

positron
main linac

11 km

electron
main linac

11 km

2 km

Damping Rings

e+ source

e- source

IR & detectors

e- bunch 
compressor

e+ bunch 
compressor

Figure 3.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale).

• a polarised electron source based on a photocathode DC gun;

• a polarised positron source in which positrons are obtained from electron-positron pairs by
converting high-energy photons produced by passing the high-energy main electron beam
through an undulator;

• 5 GeV electron and positron damping rings (DR) with a circumference of 3.2 km, housed in a
common tunnel;

• beam transport from the damping rings to the main linacs, followed by a two-stage bunch-
compressor system prior to injection into the main linac;

• two 11 km main linacs, utilising 1.3 GHz SCRF cavities operating at an average gradient of
31.5 MV/m, with a pulse length of 1.6 ms;

9

Figure 6.9: Schematic layout of ILC, indicating all the major components. Ref.:[8]

compression” [3].

The beam from the 5 GeV LINAC has a large emittance (both transversely and

longitudinally). In order to achieve the high luminosity (as desired) at the interaction point,

a low emittance beam is required. To reduce the large emittance beam from the 5 GeV

SCRF LINAC, the beam will be injected into the damping ring of 3.2 km circumference.

This beam will travel round the ring for about 20,000 times within a very short period of

time (200 ms to be precise) [3, 12]. This process makes the beam emit synchrotron light,

hence the radiation damping results in reducing the emittance of the beam.

The extracted electron and positron bunches, although small, still need to be

compressed before they are transported with great speed to the interaction point [3]. Im-

mediately after extraction, the electron and positron bunches are transported in opposite

directions and will travel some 15 km and later bend gently in an arc of magnets. The bunch

length is compressed from 6 mm down to 0.3 mm through a two-stage bunch compressor in

a 2 km LINAC section before the main LINAC. During the compression, the bunch is also
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accelerated from 5 GeV to 15 GeV [12].

The next step is to accelerate both the electron and positron bunches from 15 GeV

to 250 GeV (or even twice that). This is done in the main LINAC of 11 km operating at -271

◦C and utilising approximately 80001 of 1.3 GHz SCRF cavities operating at an average

gradient of 31.5 MV/m, with a pulse length of 1.6 ms [3, 12]. “Once accelerated through the

main LINAC, the positrons are ready” to be transported to the interaction point. Before

being transported to the IP, the electrons have to be used for positron production2 [12]. It

is worth mentioning that this electron pulse will collide with the positrons generated in the

previous machine pulse [12].

The beams have to travel a distance of 2.2 km from the exit of the main LINAC

to reach the IP. During the transportation the beam will pass through a series of specially

designed and arranged magnets. These magnets provide the final focus for the beam down

to a factor of about 300. Basically, these magnets are serving as focusing “lenses” in order

to bring the beams into collision with a 14 mrad crossing angle at a single interaction point,

which is occupied by two detectors in so-called “push-pull” configuration. Before collision,

the beams are extremely small3 and a great amount of care is needed for their delivery

[3, 9]. Hence, ultra-fast diagnostics and correction systems are used to analyse and correct

any small EM field fluctuations and vibrations that could make the beam wobble.

6.2.2 Positron Source Production for ILC

The ILC makes use of the 250 GeV electron beam (on its way to the IP) to generate

photons (via undulator) that will be used to produce the positrons. The major components

1Total of 16000 cavities for both main LINACs

2Details of the process are explained in the next subsection below.

3For 250 GeV centre of mass energy: nominal horizontal and vertical beam size at the interaction point
are 727 nm and 7.7 nm respectively [3].
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of the positron production unit of ILC are (see figure 6.10 for the layout)

m Superconducting Helical Undulator;

m Photon Collimator;

m Conversion Target;

m Flux Concentrator;

m Capture RF;

m Two dumps (one for the electron beam and the other for the photon beam);

m Pre-accelerator;

m SCRF Booster;

m Spin rotation solenoid;

m Energy compressor

Chapter 3. The International Linear Collider Accelerator

3.2.2 Electron source

The polarised electron source shares the central region accelerator tunnel with the positron Beam
Delivery System. The beam is produced by a laser illuminating a strained GaAs photocathode in a
DC gun, providing the necessary bunch train with 90% polarisation. Two independent laser and gun
systems provide redundancy. Normal-conducting structures are used for bunching and pre-acceleration
to 76 MeV, after which the beam is accelerated to 5 GeV in a superconducting linac. Before injection
into the damping ring, superconducting solenoids rotate the spin vector into the vertical, and a
separate Type-A superconducting RF cryomodule is used for energy compression.

3.2.3 Positron source

The major elements of the ILC positron source are shown in Fig. 3.4. After acceleration in the main
linac, the primary electron beam is transported through a 147 m superconducting helical undulator
that generates photons with maximum energies from ≥ 10 MeV up to ≥ 30 MeV depending on the
electron beam energy. The electron beam is then separated from the photon beam and displaced
horizontally by 1.5 m using a low-emittance-preserving chicane. The photons from the undulator are
directed onto a rotating 0.4 radiation-length Ti-alloy target ≥ 500 m downstream, producing a beam
of electron-positron pairs. This beam is then matched using an optical-matching device (a pulsed flux
concentrator) into a normal conducting (NC) L-band RF and solenoidal-focusing capture system and
accelerated to 125 MeV. The electrons and remaining photons are separated from the positrons and
dumped. The positrons are accelerated to 400 MeV in a NC L-band linac with solenoidal focusing.
Similar to the electron beam, the positron beam is then accelerated to 5 GeV in a superconducting
linac which uses modified Main Linac cryomodules, the spin is rotated into the vertical, and the
energy spread compressed before injection into the positron damping ring.

The target and capture sections are high-radiation areas which will require shielding and remote-
handling facilities.

Figure 3.4. Overall Layout of the Positron Source, located at the end of the electron Main Linac.

The baseline design provides a polarisation of 30%. Space for a ≥ 220 m undulator has been
reserved for an eventual upgrade to 60% polarisation, which would also require a photon collimator
upstream of the target.

A low-intensity auxiliary positron source supports commissioning and tuning of the positron
and downstream systems when the high-energy electron beam is not available. This is e�ectively a
conventional positron source, which uses a 500 MeV NC linac to provide an electron beam that is
directed onto the photon target, providing a few percent of the nominal positron current.

To accommodate the 10 Hz operation required to produce the required number of positrons at
centre-of-mass energies below 300 GeV (see Section 3.2.8), a separate pulsed extraction line is required
immediately after the undulator, to transport the 150 GeV electron pulse for positron-production to
the high-powered tune-up dump, located downstream in the Beam Delivery System.

14 ILC Technical Design Report: Volume 1

Figure 6.10: Layout of the Positron Source, indicating all the major components. Ref.:[3]

The 250 GeV electron beam will pass through a superconducting helical undulator.

This SC helical undulator uses the polarised electron beam to generate a circularly polarised
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photon beam with energy range of ∼10 MeV up to ∼30 MeV. The range of photon beam

energy varies with respect to the drive electron beam energy. After the primary (250 GeV)

electrons have been used to generate the photons, the former will be gently bent away

from the generated photons and they will be “displaced horizontally by 1.5 m using a

low emittance preserving chicane” [3]. The photon beam hit the Ti-Alloy target4 placed

downstream. By hitting the target, the energetic photon produces positron electron pairs.

The electrons produced and the photons that were not absorbed by the target will be

discarded in their respective dumps.

The polarised positrons produced (baseline design provides 30% polarisation and

with upgrade option of 60% by increasing the length of the undulator by a factor of two)

are captured and accelerated to 5 GeV before they are injected into their damping ring.

ILC Target for Positron Production

5 The conversion target is a wheel of titanium alloy (Ti6Al4V) that rotates at 100

m/s at the rim. The photon beam (of ≈ 300 kW) from the undulator is incident on the rim

of the spinning wheel. The diameter of the wheel is 1 m and the thickness is 0.4 radiation

lengths (1.4 cm)[3, 4, 36].

Shown in Figure 6.11 is a picture of the conceptual target layout. For cooling, the

wheel has a rotating water cooling system. The beam power is too high to allow a vacuum

window downstream of the target. The target wheels sit in a vacuum enclosure at a very

low pressure (10−8 Torr). This low pressure is needed for NC RF operation [3]. However

the motor driving the wheel will be outside the vacuum [3]. This implies that a rotating

vacuum seal is needed. This vacuum seal must be capable of operating at high velocity,

4See “ILC Target For Positron Production” for the operation description of the target.

5Everything here in this sub-sub-section is from Ref.: [3, 4]
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Chapter 5. Positron source

cryopumping is adequate provided that the number of photons with energy >10 eV striking the vessel
surface is kept su�ciently low. Extensive calculations of the undulator photon output down to these
very low energies have been carried out. These indicate that low-power photon absorbers [93] should
be placed approximately every 12 m to provide an adequate shadowing of the cold vessel surfaces.
These absorbers are in room temperature sections.

The electron-beam transport through the complete undulator system is based on a simple FODO
arrangement with quadrupole spacing of ≥ 12 m (in the room temperature sections). There are
electron beam-position monitors at every quadrupole and two small horizontal and vertical corrector
magnets per cryomodule. Simple electron-beam transport calculations have shown that excellent
relative alignment between the quadrupoles and neighboring BPMs is required. In this simple model,
quadrupole to BPM misalignment of ≥ 5 µm leads to an emittance growth of ≥2%. It is important
to note however that this is not due to the undulator but to the e�ect of the quadrupoles and is
therefore a general problem for the ILC beam transport. Dispersion-free steering-correction algorithms
will be required, similar to those used for the Main Linacs (see Part I Section 4.6).

5.5.2 Target

Figure 5.7
Overall target layout.

The positron-production target is a rotating wheel made of titanium alloy (Ti6Al4V). The photon
beam from the undulator is incident on the rim of the spinning wheel. The diameter of the wheel is
1 m and the thickness is 0.4 radiation lengths (1.4 cm). During operation the outer edge of the rim
moves at 100 m/s. The combination of wheel size and speed o�sets radiation damage, heating and
the shock-stress in the wheel from the ≥ 300 kW photon beam. A picture of the conceptual target
layout is shown in Fig. 5.7. The motor is mounted on a single shaft, with a rotating water union to
allow cooling water to be fed into the wheel. The beam power is too high to allow a vacuum window
downstream of the target. The target wheels sit in a vacuum enclosure at 10≠8 Torr (needed for NC
RF operation), which requires vacuum seals for access to the vacuum chamber. The rotating shaft
penetrates the enclosure using one vacuum passthrough. The optical matching device (OMD – see
Section 5.5.3), is mounted on the target assembly, and operates at room temperature. The motor
driving the target wheel is designed to overcome forces due to eddy currents induced in the wheel by
the OMD.

The target-wheel assembly is designed for an operational life of two years. In the event that the
target fails during a run, the assembly can be replaced by a new assembly in less than a day using a
vertically removable target remote-handling scheme [94].

A series of sensors provides information on the target behavior. An infrared camera tracks
temperatures on the wheel, to allow for quick shutdown in case of a cooling failure. Flowmeters
monitor cooling water flow in and out of the wheel (to check for leaks), and thermocouples check
ingoing and outgoing flow temperature. There is a torque sensor on the shaft, and vibration sensors

96 ILC Technical Design Report: Volume 3, Part II

Figure 6.11: Conceptual design of the target for positron production. Ref.:[3]

near a magnet (called adiabatic matching device) and in a high radiation environment. All

this has proved to be a very daunting task and various solutions have been proposed [3, 36]

Another unit mounted on the ILC target that is worth mentioning is the adiabatic

matching device (AMD). The AMD has a very strong magnetic field and it is used to

increase the positron-capture efficiency. This strong magnetic field combined with the fact

that the target is being rotated causes the eddy-current effect which in turn causes the

heating of the target. This effect has been studied and experiments have been performed.

The conclusion is that the target and motor can be designed to tolerate the eddy-current

heating.

“A series of sensors provides information on the target behaviour. An infrared

camera tracks temperatures on the wheel, to allow for quick shutdown in case of a cooling

failure. Flowmeters monitor cooling water flowing in and out of the wheel (to check for

leaks), and thermocouples check ingoing and outgoing flow temperature. There is a torque

sensor on the shaft, and vibration sensors on the wheel to monitor mechanical behaviour”
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[3].

The target-wheel assembly is designed for an operational life of two years. If the

target should fail during a run, there is a replacement that can be installed within a day by

“using a vertically removable target remote-handling scheme” [3, 36].

6.2.3 Stress Analysis in ILC Target

Based on past experience, concerns were raised with respect to possible material

damage of the target as a consequence of the intense pulses of gamma photons generated by

the undulator. As stated in Chapter 1, our aim is to calculate the amount of stress induced

on the target and to investigate the dynamic effect of the stress on the target, with special

consideration on multi-bunches. To do our calculation, we used the parameters in Table 6.3

by considering the following:

1. Boundary condition: we investigated both the so-called best and the worst case sce-

narios, that is, Dirichlet and Neumann BC respectively.

2. Geometry: we considered the cylindrical solid target in an approximation: both as a

thin rod and a disc.

3. Energy distribution: in r and z direction, we assumed the energy distribution density

to be linear and Gaussian respectively.

For a single bunch, we can calculate the absolute peak pressure in the target (by

using Eqn. 6.1 with the parameters in Table 6.3) to be approximately 2.2 MPa. Although

the value of the peak pressure here is far less than the tensile strength of Ti6Al4V, we can

not stop here because the bunch spacing Tb is less that the time taken for LAW to travel

through the target material both radially and longitudinally, therefore special attention is

given to the effect of the multiple bunches striking the same spot on the target. As we did
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Table 6.3: ILC Target Material and Beam Parameters

Parameters Symbol Units Value

Target Thickness L m 0.014

Target Radius R m 0.01

Standard deviation σz m 0.003

Mean of the Distribution B m 0.014

beam spot size r0 m 0.003

Bunch per Train Nb 1312

bunch spacing Tb ns 300

Peak Energy Density Dep. Q0

V0
J/m3 1.8× 106 [1]

Grüneisen Coef. Γ 1.262

Density ρ Kg/m3 4430

Speed of sound c m/s 5072.833

Wheel Rotation Speed v m/s 100

Ultimate Tensile Strength UTS MPa 950 [5]

in the case of the SLC target, we considered both the thin rod and disc approximations of

the ILC target just as a purely academic exercise.

Results of Thin Rod Approximation of ILC Target Material with Dirichlet BC

We assumed P = 0 at both ends of the rod. Assuming a Gaussian energy density

distribution, we applied Eqn. 5.19 in Chapter 5 and the numerical investigation revealed

results presented in Figures 6.12 to 6.15. If we assume that 100 bunches6 struck the target

at the same spot with time spacing (Tb) between the bunches, then we summarise the stages

6This assumption of 100 bunches hitting the same spot is a rough estimate based on the rotation speed
of the wheel, the bunch spacing and the spot size ( r0

Tbv
).
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of induced pressure in the target as follows:

1. Figure 6.12 shows what is going on inside the target immediately after the energy of

first bunch is deposited (Figure 6.12A) and the state of the target at time Tb = 300 ns

after the bunch left the target (Figure 6.12B). Comparing the two plots reveals that the

wave movement starts from the exit end of the target, making part of the compressive

wave reflect back and become a tensile wave. At this time, the amplitude of the tensile

wave induced is about 0.0463% of the ultimate tensile strength of the material, hence

the target is still very safe in this region.

2. If the second bunch hits the target, Figure 6.13A gives the result of the immediately

induced pressure (acoustic) wave and Figure 6.13B shows the target material state at

time Tb after the second bunch left.

3. Figure 6.14 shows the aftermath of 10 bunches hitting the target and what happens

at time Tb after the 10th bunch (Figure 6.14 A and B respectively)

4. For 100 bunches hitting the target at the same spot with time spacing (Tb), the peak

pressure induced is approximately 22 MPa (Figure 6.15).

Result of Disc Approximation of ILC Target Material

We used Eqns. 5.53 and 5.63 in Chapter 5 for numerical analysis of Dirichlet and

Neumann boundary conditions, respectively. For our investigation, we used linear energy

density distribution in both BCs. Results obtained are presented in Figure 6.16 and 6.17.

As one might have expected, the boundary effect starts playing a significant role after a

large numbers of bunches had hit the target. For example, at the 100th bunch, the peak

pressure induced in the case of Neumann BC is a factor of 1.5 higher than in the case of

Dirichlet BC. The study shows that this factor difference continues to grow as the number
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of bunches hitting the same spot on the target increases. Detailed plots of the evolution of

the pressure acoustic wave in time after 100 bunches hit the same spot is given in Section

D.2 of Appendix D.

Summary

Worth noting is the significant difference in terms of the peak pressure induced

in both the thin rod and disc, even though the same peak energy density is imposed. The

effect can be attributed to the fact that in the disc, the beam spot size is far less than the

radius of the target, whereas, in the case of the thin rod, the energy density distribution is

over the whole length of the target.
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Figure 6.12: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Thin Rod Approximation

with Dirichlet BC. (A) Spatial Distribution of the Pressure in Target for the 1st Bunch.

(B) Spatial Distribution of the Pressure in Target, at time Tb, after the 1st bunch
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Figure 6.13: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Thin Rod Approximation

with Dirichlet BC. (A) Spatial Distribution of the Pressure in Target for the 2nd Bunch.

(B) Spatial Distribution of the Pressure in Target, at time Tb, after the 2nd bunch
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Figure 6.14: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Thin Rod Approximation

with Dirichlet BC. (A) Spatial Distribution of the Pressure in Target for the 10th Bunch.

(B) Spatial Distribution of the Pressure in Target, at time Tb, after the 10th bunch



112 Chapter 6: SLC and ILC - Overview and Application

����� ����� ����� ����� ����� ����� ����� �����

-�

-�

�

�

�

�

�

��

�

����� ����� ����� ����� ����� ����� ����� �����
-�

-�

�

�

�

�

�

��

�

Figure 6.15: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Thin Rod Approximation

with Dirichlet BC. (A) Spatial Distribution of the Pressure in Target after time Tb, that

is, after 99th bunch and just before the 100th bunch. (B) Spatial Distribution of the

Pressure in Target for the 100th Bunch.
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Figure 6.16: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Disc Approximation

with Dirichlet BC.
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Figure 6.17: Pressure (normalised by 2.2 MPa) vs. z [m]: ILC Disc Approximation

with Neumann BC.



Chapter 7

Conclusion

A formalism which expresses the dynamic behaviour of induced stress in solid tar-

get materials by the incident particle beam was derived and solved analytically for various

appropriate cases. The analytical solutions (free of numerical errors) provide a good oppor-

tunity without huge simulation tools to calculate the peak stress value and to observe the

evolution of the linear stress wave in a target material in a lepton collider. Calculating this

value and observing the evolution of the stress waves is the first step in determining the

lifetime of the solid target material. To summarise, in this thesis we have studied a single

bunch effect in respect to

1. three different energy distributions (uniform, linear and normal)

2. two different approximations of cylindrical geometry (thin rod and disc)

3. two different boundary conditions (Dirichlet and Neumann BC)

and we have also derived analytical solutions (irrespective of the deposited energy den-

sity profile) to described the effect of multiple bunches in two different approximations of

cylindrical geometry and two boundary conditions.

114
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As a test case, we applied the model to the target of the former SLC machine.

The result obtained in this thesis (shown in Chapter 6) for the peak pressure (1.24 GPa)

in the SLC target was in full agreement with the existing simulation results in Refs.: [28]

and [33]. Even though we can not directly compare our result with Ref.: [34] because the

result obtained there is based on von Mises stress (which is obtained from 3D numerical

calculation) and ours is just the principal stress, we can still infer that they are in comparison

since Ref.: [28] agrees with Ref.: [34].

Based on the results obtained from both analytical and numerical analyses, we

came to the following conclusion for the International Linear Collider (ILC) positron con-

version target:

1. Since the induced stress (≈ 2.2 MPa) by a single bunch is far less than the ultimate

tensile strength (950 MPa) of the currently discussed Ti-Alloy target material, a single

bunch of the photon beam coming from the undulator will not destroy the target.

2. For a worst case scenario, when no cooling and no damping is implemented, and 100

bunches of the photons hit the same spot on the target consecutively, the peak stress

induced is about 70 MPa, which is still well below the ultimate tensile strength of

the target material. This implies that 100 bunches of photon beam impinging on the

Ti6Al4V target will not cause any immediate damage on the target.

On a general note, the results obtained from the analysis of both the thin rod and

the disc approximation of a cylindrical solid target lead to the following inferences:

1. The deposited energy density profile of the incident particle beam determines how the

compressive waves will look like at the initial state. It also determines how the wave

evolves in time.
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2. A single bunch of the incident particle beam will induce an absolute peak pressure of

|ΓQ0

V0
|, (7.1)

irrespective of the time, the geometry of the target and the boundary condition im-

posed.

3. In the case of multiple bunches, the boundary condition, the geometry and the bunch

spacing play a big role on the amplitude of the induced peak pressure. This implies

that careful considerations are required when determining the necessary parameters

for the positron source unit of the collider machine. As a rule of thumb, one wants to

keep the absolute value of
m∑
i=1

cosi−1(λncsTb) (7.2)

between zero and unity.

So far, our solution is an approximation (albeit a good one) which is valid un-

der certain conditions and regimes. In order to obtain an analytical solution which will

completely describe how a cylindrical solid target behaves under the influence of impinging

particles in reality, this project, like many others, would suggest areas that can be further

explored by including the following in future models:

m the effect of damping which can not be neglected especially when considering multiple

bunches of the particle beam. (One way to include the damping effect would be to

describe the thermal diffusion mechanism.)

m the analytical solution of the linear acoustic wave should be described in terms of the

full cylindrical geometry of the target.

m the BC description can be improved since in reality the BC behaviour is between Dirich-

let and Neumann BC, hence the improved BC should be described using Robin BC.
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Appendix A

Results of LAW in a Thin Rod

Table A.1: Typical Case Analysis: Copper Target Material Parameters (same as Table 3.1).

Parameters Symbol Unit Value

Length L m 0.12

Standard deviation σz m 0.037

Mean B m 0.12

Speed of sound cs m/s 3570

120
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A.1 Dirichlet BC with Uniform Energy Distribution

A.1.1 P (Pa) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.1.2 u (m) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.1.3 P (Pa) versus t (s) for different z (m)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.1.4 u (m) versus t (s) for different z (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.2 Dirichlet BC with Linear Energy Distribution

A.2.1 P (Pa) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.2.2 u (m) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters)
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A.2.3 P (Pa) versus t (s) for different z (m)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.2.4 u (m) versus t (s) for different z (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.3 Dirichlet BC with Normal Energy Distribution

A.3.1 P (Pa) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.3.2 u (m) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.3.3 P (Pa) versus t (s) for different z (m)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.3.4 u (m) versus t (s) for different z (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.4 Neumann BC with Linear Energy Distribution

A.4.1 P (Pa) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.4.2 u (m) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.4.3 P (Pa) versus t (s) for different z (m)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.4.4 u (m) versus t (s) for different z (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.5 Neumann BC with Normal Energy Distribution

A.5.1 P (Pa) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.5.2 u (m) versus z (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the thin rod (z [m]) and at different time shots (t [s]). The

label at the top of each plot represents the time shot, where L is the length of the rod and

cs is the speed of sound in the material (see Table A.1 for parameters).
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A.5.3 P (Pa) versus t (s) for different z (m)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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A.5.4 u (m) versus t (s) for different z (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different points in the thin rod. The label at

the top of each plot represents the point in the thin rod, where L is the length of the rod

and cs is the speed of sound in the material (see Table A.1 for parameters).
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Appendix B

Results of LAW in a Disc

Table B.1: Typical Case Analysis: Copper Target Material Parameters (same as Table 4.1)

Parameters Symbol Unit Value

Radius R m 0.004

Spot size r0 m 0.001

Speed of sound cs m/s 3570
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B.1 Dirichlet BC with Uniform Energy Distribution

B.1.1 P (Pa) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.1.2 u (m) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.1.3 P (Pa) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table B.1 for parameters).
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B.1.4 u (m) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave

u (normalised by ΓQ0

ρ0V0c2s
[Pa]) in time t [s] and at different radial points in the disc (r [m]).

The label at the top of each plot represents the point in the disc, where R is the radius of

the disc (see Table B.1 for parameters).
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B.2 Dirichlet BC with Linear Energy Distribution

B.2.1 P (Pa) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.2.2 u (m) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.2.3 P (Pa) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table B.1 for parameters).
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B.2.4 u (m) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave

u (normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different radial points in the disc (r [m]).

The label at the top of each plot represents the point in the disc, where R is the radius of

the disc (see Table B.1 for parameters).
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B.3 Neumann BC with Uniform Energy Distribution

B.3.1 P (Pa) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.3.2 u (m) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave u

(normalised by ΓQ0

ρ0V0c2s
[m]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.3.3 P (Pa) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table B.1 for parameters).
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B.3.4 u (m) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave

u (normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different radial points in the disc (r [m]).

The label at the top of each plot represents the point in the disc, where R is the radius of

the disc (see Table B.1 for parameters).
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B.4 Neumann BC with Linear Energy Distribution

B.4.1 P (Pa) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the pressure acoustic wave P

(normalised by ΓQ0

V0
[Pa]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.4.2 u (m) versus r (m) for different t (s)

Each plot in this subsection depicts variation of the displacement acoustic wave

(normalised by ΓQ0

ρ0V0c2s
[m]) along the radius of the disc r [m] and at different time shots (t

[s]). The label at the top of each plot represents the time shot, where R is the radius of the

disc and c is the speed of sound in the material (see Table B.1 for parameters).
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B.4.3 P (Pa) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave (nor-

malised by ΓQ0

V0
[Pa]) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table B.1 for parameters).
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B.4.4 u (m) versus t (s) for different r (m)

Each plot in this subsection depicts evolution of the displacement acoustic wave

u (normalised by ΓQ0

ρ0V0c2s
[m]) in time t [s] and at different radial points in the disc (r [m]).

The label at the top of each plot represents the point in the disc, where R is the radius of

the disc (see Table B.1 for parameters).

0 5.×10-71.×10-61.5×10-62.×10-6

-1.0

-0.5

0.0

0.5

1.0

0

0 5.×10-71.×10-61.5×10-62.×10-6
0.00000
0.00002
0.00004
0.00006
0.00008
0.00010
0.00012

R

20

0 5.×10-71.×10-61.5×10-62.×10-6
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

3R

20

0 5.×10-71.×10-61.5×10-62.×10-6
0.00000

0.00005

0.00010

0.00015

0.00020

R

4

0 5.×10-71.×10-61.5×10-62.×10-6

0.00000

0.00005

0.00010

0.00015

7R

20

0 5.×10-71.×10-61.5×10-62.×10-6
-0.00005

0.00000

0.00005

0.00010

0.00015

9R

20

0 5.×10-71.×10-61.5×10-62.×10-6
-0.00005

0.00000

0.00005

0.00010

0.00015

11R

20

0 5.×10-71.×10-61.5×10-62.×10-6
-0.00005

0.0000

0.00005

0.0001

13R

20

0 5.×10-71.×10-61.5×10-62.×10-6
-0.00005

0.0000

0.00005

0.0001

3R

4

0 5.×10-71.×10-61.5×10-62.×10-6

0.0000

0.00005

0.0001

17R

20

0 5.×10-71.×10-61.5×10-62.×10-6

-0.00002
-0.00001

0
0.00001
0.00002
0.00003
0.00004

19R

20

0 5.×10-71.×10-61.5×10-62.×10-6

-0.00002
-0.00001

0
0.00001
0.00002
0.00003
0.00004

19R

20



Appendix C

Simulation Results for SLC Target

Table C.1: SLC Target Material and Beam Parameters. Ref.:[34] (same as Table 6.1)

Parameters Symbol Units Value

Target Length L m 0.0205

Target Radius R m 0.0317

Standard deviation σz m 0.0062

mean B m 0.0205

beam spot size σ mm 0.8

Peak Energy Density Dep. Q0

V0
J/m3 5.91× 108 [34]

Grüneisen Coef. Γ 2.095

Initial Press. ΓQ0

V0
Pa 1.24× 109

Density ρ Kg/m3 19700

Speed of sound cs m/s 4671.982
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C.1 Thin Rod Approximation

C.1.1 Dirichlet BC with Normal Energy Distribution: P (Pa) versus t

(s) for different z (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by 1.24 GPa) in time t [s] and at different points in the thin rod (z [m]). The

label at the top of each plot represents the point in the thin rod, where L is the thickness

of the target (see Table C.1 for parameters).
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C.2 Disc Approximation

C.2.1 Dirichlet BC with Linear Energy Distribution: P (Pa) versus t (s)

for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by 1.24 GPa) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table C.1 for parameters).
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C.2.2 Neumann BC with Linear Energy Distribution: Pressure (Pa) ver-

sus time (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by 1.24 GPa) in time t [s] and at different radial points in the disc (r [m]). The

label at the top of each plot represents the point in the disc, where R is the radius of the

disc (see Table C.1 for parameters).

� ��� �/� �/� ��� �/� � �/�

-���

-���

���

���

���

���

���

���

�

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

�

��

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

�

�

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

����

��

��

� ��� �/� �/� ��� �/� � �/�
-����

-����

����

����

����

����

��

�

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

����

��

��

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

��

�

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

�

�

� ��� �/� �/� ��� �/� � �/�

-����

����

����

����

��

�

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

����

��

��

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

����

��

�

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

����

���

��

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

����

��

�

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

���

��

� ��� �/� �/� ��� �/� � �/�

-����

-����

����

����

����

����

�



Appendix D

Simulation Results for ILC Target

Table D.1: ILC Target Material and BeamParameters (same as Table 6.3)

Parameters Symbol Units Value

Target Thickness L m 0.014

Target Radius R m 0.01

Standard deviation σz m 0.003

mean B m 0.014

beam spot size r0 m 0.003

bunch spacing Tb ns 300

Peak Energy Density Dep. Q0

V0
J/m3 1.8× 106 [1]

Grüneisen Coef. Γ 1.262

Density ρ Kg/m3 4430

Initial Press. ΓQ0

V0
Pa 2.2× 106

Speed of sound c m/s 5072.833

Ultimate Tensile Strength UTS MPa 950 [5]
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D.1 Thin Rod Approximation

D.1.1 Dirichlet BC with Normal Energy Distribution: P (Pa) versus t

(s) for different z (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by 2.2 MPa) in time t [s] and at different points in the thin rod (z[m]) after

100 bunches are deposited on the target. The label at the top of each plot represents the

point in the thin rod, where L is the thickness of the target (see Table D.1 for parameters).
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D.2 Disc Approximation

D.2.1 Dirichlet BC with Linear Energy Distribution: Pressure (Pa) ver-

sus time (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure acoustic wave P

(normalised by 2.2 MPa) in time t [s] and at different radial points in the disc (r [m]) after

100 bunches are deposited on the target. The label at the top of each plot represents the

point in the disc, where R is the radius of the disc (see Table D.1 for parameters).
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D.2.2 Neumann BC with Linear Energy Distribution: Pressure (Pa) ver-

sus time (s) for different r (m)

Each plot in this subsection depicts evolution of the pressure (P [Pa]) acoustic

wave (normalised by 2.2 MPa) in time t [s] and at different radial points in the disc (r [m])

after 100 bunches are deposited on the target. The label at the top of each plot represents

the point in the disc, where R is the radius of the disc (see Table D.1 for parameters).
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