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Abstract

In this thesis the study of charm production in ep and pp collisions is presented. The heavy-
quark masses provide a hard scale, allowing the application of perturbative QCD.

A measurement of D+-meson production in deep inelastic scattering with the ZEUS detector
at HERA is presented. The analysis was performed using a data sample with an integrated
luminosity of 354 pb−1. Differential cross sections were measured as a function of virtuality
Q2, inelasticity y, transverse momentum and pseudorapidity of the D+ mesons. Lifetime infor-
mation was used to reduce the combinatorial background significantly. Next-to-leading-order
QCD predictions in the fixed-flavour-number scheme were compared to the data.

This measurement was combined with other H1 and ZEUS measurements of charm produc-
tion. The combination was performed at inclusive level for the reduced charm cross sections,
which were obtained from the measured visible cross sections, extrapolated to the full phase
space using the shape of the theoretical predictions in the fixed-flavour-number scheme. The
combination method accounts for the correlations of the systematic uncertainties among the
different datasets, thus allowing cross calibration of different measurements. The combined
charm data were compared to QCD predictions in various heavy-flavour schemes and used to-
gether with the inclusive production data at HERA as input for QCD analyses to determine the
charm running mass in the MS renormalisation scheme and the optimal values of the charm-
quark mass parameters in other heavy-flavour schemes.

An additional combination of the H1 and ZEUS D∗+ visible cross sections was performed to
provide the combined cross sections without theory-related uncertainties from the extrapola-
tion procedure. This combination also provides differential cross sections as a function of the
D∗+ kinematic variables. Next-to-leading-order QCD predictions in the fixed-flavour-number
scheme were compared to the combined D∗+ cross sections and a ‘customised’ QCD calcu-
lation was introduced in order to improve the agreement between the central values of the
theoretical predictions and the data.

While the HERA charm data are sensitive to the gluon distribution in the proton at the values
of partonic fractions of the proton momenta 10−4 . x . 10−1, the production of charm quarks
at LHCb probes the region 5 × 10−6 . x . 10−4. The impact of recent LHCb measurements
of heavy-flavour production on parton distribution functions was studied in a QCD analysis
in the fixed-flavour-number scheme at next-to-leading order. Differential cross sections of
charm and beauty production obtained by the LHCb experiment were used together with the
combined inclusive and heavy-flavour production cross sections in deep inelastic scattering at
HERA. The heavy-flavour data of the LHCb experiment impose constraints on the gluon and
sea-quark distributions at very low partonic fractions of the proton momenta. This kinematic
range is currently not covered by other experimental data in QCD fits.

As the technical part of this thesis, the ZEUS Event Display program has been modified in
the context of the ZEUS data preservation project to become independent of the ZEUS Soft-
ware. The new program is a pure ROOT application. While it provides the main functionalities
that were available in the classic program, it does not require any maintenance.
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Kurzfassung

In der hier vorgestellten Arbeit wurde die Charmproduktion in ep- und pp-Kollisionen unter-
sucht. Die schweren Quarkmassen liefern eine harte Skala, die die Anwendung der perturba-
tiven QCD ermöglicht.

Eine Messung der Produktion von D+-Mesonen in der tief unelastischen Streuung wurde
mit dem ZEUS-Detektor am HERA-Speicherring durchgeführt. Für diese Analyse wurde ein
Datensatz mit einer integrierten Luminosität von 354 pb−1 benutzt. Differentielle Produktion-
swirkungsquerschnitte wurden gemessen als Funktion der Virtualität Q2, der Inelastizität y,
dem Transversalimpuls und der Pseudorapidität der D+-Mesonen. Die Lebensdauerinforma-
tion wurde genutzt, um den kombinatorischen Untergrund signifikant zu reduzieren. QCD-
Vorhersagen in nächstführender Ordnung im “Fixed-Flavour”-Schema werden mit den Daten
verglichen.

Diese Messung wurde mit anderen H1- und ZEUS-Charmproduktionsmessungen kombiniert.
Die Kombination wurde durchgeführt auf der Stufe der inklusiven reduzierten Charm-Produkti-
onswirkungsquerschnitte, die aus den gemessenen sichtbaren Wirkungsquerschnitten abgeleit-
et wurden durch Extrapolation mit der Form der theoretischen Vorhersagen im “Fixed-Flavour”-
Schema. Die Kombinationsmethode berücksichtigt die Korrelationen der systematischen Un-
sicherheiten zwischen verschiedenen Datensätzen und ermöglicht damit die wechselseitige
Kalibration der verschiedenen Messmethoden. Die kombinierten Charm-Daten wurden mit
QCD-Vorhersagen in verschiedenen schwere-Quark-Berechnungsschemata verglichen und zu-
sammen mit inklusiven Datensätzen als Eingangsdatensätze für QCD-Analysen genutzt. Diese
dienten der Bestimmung der laufenden MS-Charm-Quark-Masse und der optimalen Werte der
Charm-Quark-Massenparameter in den verschiedenen schwere-Quark-Schemata.

Eine zusätzliche Kombination der sichtbaren H1- und ZEUS-D∗+-Wirkungsquerschnitte wur-
de durchgeführt, um kombinierte Wirkungsquerschnitte ohne theoriebezogene Unsichercheit-
en aus dem Extrapolationsverfahren zu erhalten. Diese Kombination liefert auch differentielle
Wirkungsquerschnitte als Funktion der kinematischen D∗+-Variablen. QCD-Vorhersagen in
nächstführender Ordnung im “Fixed-Flavour”-Schema wurden mit den kombinierten D∗+-Wir-
kungsquerschnitten verglichen und eine ‘angepasste’ QCD-Rechnung wurde eingeführt, um
die Übereinstimmung zwischen den zentralen Werten der theoretischen Vorhersagen und den
Daten zu verbessern.

Während die HERA-Charm-Daten sensibel sind auf die Gluon-Verteilung im Proton bei
Werten des partonischen Impulsanteils des Protons von 10−4 . x . 10−1, sondiert die Pro-
duktion von Charm-Quarks in LHCb die Region 5 × 10−6 . x . 10−4. Die Auswirkungen der
neusten LHCb-Messungen von schweren Quarks auf die Parton-Verteilungsfunktionen wurden
mit einer QCD-Analyse in nächstführender Ordnung im “Fixed-Flavour”-Schema untersucht.
Differentielle Wirkungsquerschnitte der Charm- und Beauty-Produktion im LHCb-Experiment
wurden verwendet zusammen mit den kombinierten inklusiven Wirkungsquerschnitten und
den schwere-Quark-Produktionsquerschnitten in der tiefunelastischen Streuung bei HERA.
Die schwere-Quark-Daten des LHCb-Experiments liefern Einschränkungen der Gluon- und
See-Quark-Verteilungen bei sehr niedrigen partonischen Impulsanteilen des Protons. Dieser
kinematische Bereich wurde bisher nicht durch andere experimentelle Daten in den QCD-Fits
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abgedeckt.
Im technischen Teil dieser Arbeit wurde das ZEUS-Ereignisvisualisierungsprogramm im

Rahmen des ZEUS-Datensicherungsprojekts so modifiziert, dass es von der ZEUS-Software
unabhängig wurde. Das neue Programm ist eine reine ROOT-Anwendung. Während es die
wichtigsten Funktionen bietet, die im klassischen Programm zur Verfügung standen, ist es
nunmehr wartungsfrei.
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CHAPTER 1

Introduction

The Standard Model is the widely accepted theory of elementary particle physics. It describes
weak, electromagnetic and strong interactions of the particles. The most complicated and thus
one of its most interesting parts is Quantum Chromodynamics (QCD), which describes strong
interactions between quarks and gluons.

Nowadays the Standard Model is able to provide precise and robust predictions for many pro-
cesses, measured in the high energy experiments. One of its most well-known recent successes
was the observation of the Standard Model Higgs boson, predicted in the 60’s of the XXth
century and discovered at the Large Hadron Collider almost 50 years later. Other outstanding
results of the Standard Model are, e.g. a successful description of inclusive jet production at
the Tevatron over eight orders of magnitude in rate, or a consistent fit of a few hundred data
points which represent H1 and ZEUS measurements of the proton structure function with only
ten adjusted parameters.

One may ask the question, if the Standard Model is so well advanced and confirmed, why is
yet another physics analysis on this topic of interest? The answer is, any pure theory by itself,
including the Standard Model, cannot describe, and moreover predict, anything. Without any
existing experimental data, a theorist, even being a genius in the Standard Model calculations,
would not be able to predict any cross section, except making some very rough qualitative
estimations. This is because the Standard Model (and QCD in particular) has a number of free
parameters (masses of the particles, couplings etc.) which must be extracted experimentally
and then used in the calculations to describe other measurements or predict new phenomena. In
other words, free parameters can be rewritten in terms of observables which can be measured
in the experiment. Once the number of measurements exceeds the number of free parameters,
it becomes possible to test the consistency of the Standard Model. Moreover, there are still
some corners where first-principle theory cannot be applied at the present time, and thus some
phenomenology has to be used. Experimental data are the only constraint which can be used
to resolve the ambiguity of various phenomenological approaches. Thus the discovery of the
Higgs boson would not have been possible without many years of earlier measurements at
other colliders, followed by a subsequent comprehensive comparison of data and theory. There
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1 Introduction

is a rather thin line between a measurement of the free parameters and a consistency test, since
theoretical predictions require as input extremely precise values of the free parameters, which
can only be obtained from another precise measurement. Therefore the Standard Model is then
confirmed to the extent that these measurements from different physical sources agree with
each other. The most prominent aspect is that after all the Standard Model became able to
describe a great variety of physics processes, and more stringent tests are still to come.

This thesis is devoted to various aspects of heavy-flavour physics. The production of heavy
quarks in electron–proton and hadronic collisions provides one of the most difficult tests of
perturbative QCD. On the other hand, once the applicability of this theory is established, one
can use these processes as an input to improve the precision of parameters of the Standard
Model and thus its predictive power for other processes in other experiments. The current
thesis is designed in this spirit of the given discussion: it is neither a pure experimental work,
nor a theoretical contribution, but rather an amalgamation of the two. Briefly, it presents one
new measurement of charm production at HERA, which is further combined with many other
precise H1 and ZEUS charm measurements in order to obtain the most precise charm dataset
from HERA. These combined data are extensively used in a comparison of data and theory
and in a QCD analysis to extract the charm-quark mass. Another combination is performed at
the more exclusive level of D∗+ visible cross sections; in contrast to the previous one, it does
not include theory-related uncertainties. Furthermore, charm and beauty measurements from
LHCb are considered and included in a QCD analysis. They provide sensitivity to the gluon
distribution at low values of partonic fractions of the proton momenta; this is a kinematic range
that is currently completely unexplored in parton-distribution-function fits.

The thesis is organised in the following way. Chapter 2 introduces the theoretical concepts,
relevant for the subsequent contents. Chapter 3 gives a description of the experimental set-up
and existing measurements of heavy-flavour production at HERA and LHCb. Chapter 4 is
devoted to the technical task: it describes the ZEUS Event Display program and the modifi-
cation of this program in the context of the ZEUS data preservation project. Chapter 5 starts
to deal with the physics results: it presents a measurement of D+-meson production performed
with the ZEUS detector at HERA. Chapter 6 describes a combination of charm measurements
from H1 and ZEUS, performed at two levels: for D∗+ visible cross sections and for inclusive
charm reduced cross sections. Chapter 7 presents a QCD fit with the LHCb heavy-flavour data.
Finally, Chapter 8 summarises the results presented in the previous four chapters.
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CHAPTER 2

Theoretical overview

This Chapter introduces the theoretical concepts relevant for the analyses presented in this the-
sis. It starts with Section 2.1, which gives a description of deep inelastic ep scattering in terms
of the quark-parton model. In Section 2.2 the most important aspects of Quantum Chromo-
dynamics are introduced. Finally, Section 2.3 describes the current status of the theoretical
calculations for heavy-quark production in ep and pp collisions.

2.1 Deep inelastic scattering

Deep inelastic ep scattering has two main strands of interest: it can be used to investigate the
theory of strong interaction and to determine the momentum distributions of the partons within
the proton. Section 2.1.1 explains the kinematics of ep scattering and gives a definition of
deep inelastic scattering processes. Section 2.1.2 presents general expressions for the inclusive
cross sections in terms of structure functions. Finally, Section 2.1.3 gives an interpretation of
the structure functions in terms of the quark-parton model.

The review given in this Section is largely based on [1].

2.1.1 Kinematics

The generic electron–proton1 scattering process, ep→ l′X, where l′ is the scattered lepton and
X is the hadronic final state, is shown in Fig. 2.1. It occurs via the exchange of an electroweak
boson V∗2 of two types:

• a neutral γ or Z0 boson; these reactions are called neutral current (NC);

• a charged W± boson; these reactions are called charged current (CC).

1 Both electrons and positrons are referred to as electrons, unless explicitly stated otherwise.
2 The superscript ∗ denotes a virtual particle.
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2 Theoretical overview

P(p)

e(k) l′(k′)

V∗(q)

X(p′)

Figure 2.1: Schematic diagram of ep scattering.

Denoting the incoming electron and proton four-momenta with k and p, respectively, and
the scattered-lepton four-momentum with k′, the event kinematics can be described by the
following Lorentz invariant variables:

Q2 = −q2 = (k − k′)2, virtuality of the exchanged boson,

s = (k + p)2 ' 2k · p, centre-of-mass energy squared,

W2 = (p + q)2, centre-of-mass energy squared of the boson-proton system,

y =
p · q
p · k

'
2p · q

s
, inelasticity,

x =
Q2

2p · q
, Bjorken variable.

(2.1)

Neglecting the lepton and proton masses, they are connected by the following relation:

Q2 = sxy. (2.2)

Considering s fixed in the experiment, any other two variables fully determine the lepton scat-
tering kinematics.

Virtuality Q2 can be interpreted as the power with which the exchanged boson can resolve the
proton structure. Depending on Q2, the ep scattering phase space is divided into two regions:

• deep inelastic scattering (DIS), if Q2 & 1 GeV2;

• photoproduction (PHP), if Q2 ≈ 0 GeV2.

Inelasticity y defines the relative fraction of the electron energy transferred to the hadronic
system in the proton rest frame, while the Bjorken variable x determines the relative fraction
of the proton energy involved in the scattering process (this will be shown in Section 2.1.3).
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2.1 Deep inelastic scattering

2.1.2 Inclusive cross sections

The general form for the differential cross section for NC is given in terms of three structure
functions, F2, FL, xF3, as

d2σNC(ep)
dxdQ2 =

2πα2

Q4x
[Y+FNC

2 (x,Q2) − y2FNC
L (x,Q2) ∓ Y−xFNC

3 (x,Q2)], (2.3)

where Y± = 1 ± (1 − y)2 and α is the electromagnetic coupling constant (the mass terms are
ignored as appropriate at high Q2). For Q2 values much below that of the Z0 mass squared,
the parity-violating structure function xF3 is negligible and the structure functions F2, FL are
given purely by γ∗ exchange.

The CC differential cross section mediated by W± bosons (where the lepton final state is a
neutrino) is given by

d2σCC(ep)
dxdQ2 =

G2
F

4πx
M4

W

(Q2 + M2
W)2

[Y+FCC
2 (x,Q2) − y2FCC

L (x,Q2) ∓ Y−xFCC
3 (x,Q2)] (2.4)

and the correspondence to the NC case can be seen easily if the Fermi coupling constant GF is
expressed as

GF =
πα

√
2sin2θW M2

W

, (2.5)

where MW is the W± mass and θW is the weak mixing angle (known also as the Weinberg
angle). Hence at Q2 � M2

W the CC cross section is largely suppressed relative to NC:

σCC

σNC ∼
Q4

M4
W

. (2.6)

Fig. 2.2 shows the NC and CC inclusive cross sections measured by H1 and ZEUS as a
function of Q2 [2]. At low Q2, the CC cross section is largely suppressed compared to NC,
while in the region Q2 ∼ M2

W the CC and NC cross sections become similar, which can be
considered as a manifestation of electroweak unification in spacelike scattering [3].

2.1.3 Quark-parton model

The quark-parton model (QPM) grew out of the scaling that had been predicted by Bjorken [4]
and observed in the high energy DIS experiments at SLAC [5], where F2 was observed to be
independent of Q2 for x values around x ∼ 0.3. The model states that the nucleon is full of
pointlike noninteracting scattering centers known as partons. The ep reaction cross section is
approximated by an incoherent sum of elastic electron–parton scattering cross sections, shown
in Fig. 2.3.

Neglecting the transverse component of the scattered-parton momentum3 and its mass, the

3 This approximation is known as the infinite momentum frame.
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Figure 2.2: NC and CC inclusive cross section as a function of Q2 as measured by H1 and ZEUS for
electron and positron beams [2]. Predictions from the Standard Model are shown as bands.
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V∗(q)
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Figure 2.3: Schematic diagram of ep scattering in the QPM.
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2.2 Some aspects of Quantum Chromodynamics

squared four-momentum of the outgoing parton is given by

0 ≈ (ξp + q)2 = ξ2 p2 − Q2 + 2ξp · q⇒ ξ ≈
Q2

2p · q
= x. (2.7)

This interprets the Bjorken variable x as the fraction of the proton momentum carried by the
scattered parton, ξ.

The parton model had to be reconciled with the static quark model, which pictures a proton
and other baryons as being made up of three constituent quarks (suggested earlier by Gell-
Mann [6] for the classification of the existing hadrons), which give them their flavour prop-
erties. The reconciliation was effected in the QPM by considering the proton as being made
of valence quarks, which give it its flavour properties, and a “sea” of quark-antiquark pairs
which have no overall flavour. Both the valence quarks and the sea quarks and antiquarks are
identified as partons.

The significance of the structure functions can be better understood by specifying them in
terms of partons as follows:

F2(x,Q2) = F2(x) =
∑

i

e2
i [xqi(x) + xq̄i(x)], (2.8)

where the sum goes over the quark, xqi, and antiquark, xq̄i, momentum distributions contained
in the proton, multiplied by the corresponding quark charge squared, e2

i . The spin 1/2-nature
of the quarks implies that FL = 0.

Fig. 2.4 [7] shows the proton structure function F2(x,Q2) as measured by several collider
and fixed-target experiments. For x ≈ 0.1, F2 is nearly independent of Q2, thus confirming the
scaling behaviour predicted by Bjorken, while at lower and higher x the dependence on Q2 is
clearly observed.

If quarks and antiquarks carry all of the momentum of the proton, the momentum sum rule
must be obeyed:

I =

∫ 1

0
dx x

∑
i

qi(x) = 1. (2.9)

This was not confirmed; the experimental measurement of I ≈ 0.5 [8] implied that there is
more momentum in the proton, than that carried by the charged quarks and antiquarks, and
gave impetus to the development of the theory of strong interactions, in which the deficit in
momentum is carried by the gluons. This topic will be continued in Section 2.2.3.

2.2 Some aspects of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum field theory of strong interactions between
quarks and gluons. Quarks were originally proposed by Gell-Mann [6] as a classification
scheme for hadrons. The idea that quarks carry a three-fold ‘colour’ charge was introduced
to allow baryon wave-functions (e.g. the ∆++) to have simultaneously the correct permutational
symmetry and satisfy Fermi-Dirac statistics; the color charge is considered as very closely
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Figure 2.4: The proton structure function F2 measured in electromagnetic scattering of electrons and
positrons on protons (collider experiments H1 and ZEUS for Q2 ≥ 2 GeV2), in the kinematic domain
of the HERA data, and for electrons (SLAC) and muons (BCDMS, E665, NMC) on a fixed target. The
data are plotted as a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for
clarity. The H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to the x
values of these data. For the purpose of plotting, F2 has been multiplied by 2ix , where ix is the number
of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24 (x = 0.00005). The plot is taken from [7].
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2.2 Some aspects of Quantum Chromodynamics

analogous to the electric charge.

Section 2.2.1 introduces the basics of QCD, while in Sections 2.2.2 and 2.2.3 two important
aspects of perturbative QCD are described: renormalisation and factorisation.

The review given in this Section is largely based on [1, 9].

2.2.1 Basics of QCD

QCD is a non-abelian gauge theory with quark-gluon interaction generated by the SU(3) group
structure of the colour charges. The fermion wave-functions transform as

ψ(x)→ ψ′(x) = eig(t·θ(x))ψ(x), (2.10)

where g is the constant representing the coupling strength and (t · θ) represents the product of
the colour group generators with a vector of space-time phase functions in colour space. The
group generators ta satisfy

[ta, tb] = i f abctc, (2.11)

where f abc are the structure constants. The gluon field-strength tensor is

Fµν
a = δµAν

a − δ
νAµ

a + g fabcAµ
bAν

c, (2.12)

where Aa (a = 1–8) are the gluon fields and the final term represents the interaction of the glu-
ons amongst themselves as they also carry colour charges. The quark spinor fields ψi transform
as triplets under SU(3) with i = 1–3 running over the three colour indices. The Lagrangian den-
sity is given by

LQCD =
∑

f

ψ̄i
f (iγµDµ − m f )i jψ

j
f −

1
4

Fµν
a Fa

µν, (2.13)

where m f are mass parameters, the covariant derivative Dµ
i j is

Dµ
i j = δi j∂

µ + ig(ta)i jAµ
a (2.14)

and (ta)i j are 3×3 hermitian matrices, which for the fundamental triplet representation of SU(3)
are (λa)i j/2, where λa are the Gell-Mann matrices.

Note that the same coupling constant g couples the gluon fields to themselves (in Fµν
a ) and

the gluon to the quark fields through the covariant derivative (Dµ
i j). This is the major difference

between QCD and Quantum Electrodynamics (QED): in QCD the strong force quanta — the
spin-1 massless gluons — also carry colour charges and thus couple to other gluons, while in
QED the photon does not couple to other photons.
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2 Theoretical overview

2.2.2 Perturbative calculations and renormalisation

In the approach of perturbative QCD (pQCD), any physical quantity, Γ, is given as a power
series in the strong coupling constant, αs (conventionally αs = g2/4π):

Γ =

n∑
i=0

ciα
i
s, (2.15)

where n is the order of the calculation and the coefficients ci are determined using the Feynman
rules. The derivation of Feynman rules from LQCD and their use, even at the tree-level, is non-
trivial as non-Abelian gauge theories give rise to greater complications in handling quantisation
and gauge invariance than QED. Most of the tree-level results can be derived from the QED
calculation with the addition of colour factors, given by the summation over the involved states.
However, in the tree approximation, the dynamical effect of QCD does not show up and the
really important ingredient of QCD is hidden in the QCD radiative corrections to the tree
amplitudes, which necessarily include the contributions of loop diagrams.

Contributions to the perturbative expansion of scattering amplitudes beyond the leading or-
der (LO) are usually formally divergent because of the unrestricted integration over the mo-
mentum flowing around loops (ultraviolet divergencies). The way in which these divergences
are regulated is known as renormalisation4. In the renormalisation procedure there exists an
arbitrariness of how to define divergent pieces, i.e. how much of the finite pieces are to be
subtracted together with the infinities; therefore different renormalisation schemes (RS) ex-
ist. Moreover, in subtracting the divergences in any RS, an arbitrary mass scale is introduced,
known as the renormalisation scale, µr.

Because of this arbitrariness, there are many possible finite expressions for one physical
quantity depending on the choice of the RS and scale, connected by a finite renormalisation.
Since they are obtained for one physical quantity starting from the unique Lagrangian, they
describe a unique physical phenomenon and hence have to be equivalent under a finite renor-
malisation. This requirement defines the renormalisation group equations, which express the
response of renormalised parameters (e.g. coupling constant and masses) to the change of the
renormalisation scale µr.

Most commonly the modified minimal subtraction scheme, MS, is used [10, 11]. Consider-
ing the important case of the renormalised coupling, gr, the renormalisation group equation in
the MS scheme is given by

µr
dgr

dµr
= β(gr), (2.16)

where β is known as the QCD β-function; it is currently calculated in the perturbative approach

4 Although renormalisation is not necessarily directed to the elimination of divergences; there may be a finite
renormalisation, discussed later.
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2.2 Some aspects of Quantum Chromodynamics

to three loops [7]:

β(gr) = −β0g
3
r − β1g

5
r − β2g

7
r + O(g9

r ),

β0 =
1

(4π2)2 ,

β1 =
1

4π4

(
102 −

38
3

n f

)
,

β2 =
1

(4π)6

(
2857

2
−

5033
18

n f +
325
54

n2
f

)
,

(2.17)

where n f is the number of quark flavours appearing in the loops. Keeping only the one-loop
order, the running coupling is given by

g2
r =

1

β0 ln( µ2
r

Λ2
QCD

)
, (2.18)

where a constant of integration, ΛQCD, is introduced, since the boundary condition for Eq. 2.16
is not provided. ΛQCD is often referred to as the QCD scale parameter; it has to be extracted
from data and is the only adjustable parameter in QCD (except for the quark masses).

Two important notes have to be made concerning the QCD β-function:

1. the expansion parameters of the β-function, βi, fully define the RS and can be used for
labeling different RSs in the massless approach5 [12];

2. β0 and β1 are RS-independent; this is a consequence of the requirement stated above that
physical quantities must be RS-independent.

The latter means that the running of the coupling given by Eq. 2.18 is not an artefact of the
given RS but is a property of QCD.

Due to the minus sign in the β-function expansion (Eq. 2.17) the renormalised coupling tends
to decrease as the relevant momentum scale grows. This behaviour is known as asymptotic
freedom; it represents the justification that perturbative calculations are applicable for large
momentum scales (short distances). On the other hand, the coupling increases as the energy
scale decreases (long distances) and at ΛQCD the coupling diverges. Thus quarks and gluons are
not observed as free particles, because, with increasing distance between them, at some point it
is more energetically favourable for a new quark-antiquark pair to appear spontaneously; this
phenomenon is known as confinement.

In determinations of the QCD coupling one usually quotes the value of αs at the scale µ2
r =

M2
Z. The following average was obtained from the different measurements [7]:

α
n f =5
s (MZ) = 0.1185 ± 0.0006. (2.19)

5 If mass terms are present, then different ways of renormalising the mass could also affect the calculations of
physical quantities; while in massless theory different RSs mean only different variants of the renormalised
coupling [12].
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The measurements of αs as a function of the energy scale are shown in Fig. 2.5 [7]. The
running of αs follows the expectation from pQCD.

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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1000

pp –> jets (NLO)
(–)

Figure 2.5: Summary of measurements of αs as a function of the energy scale Q. The respective order
of pQCD used in the extraction of αs is indicated in brackets. The plot is taken from [7].

In the practical application of perturbation theory, the perturbative series 2.15 is truncated
at a certain order N to obtain an approximate expression of the physical quantity, [Γ]N; then
the quantity [Γ]N itself turns out to be scheme-dependent in the order of O(αN+1

s ) because
of the neglected terms. This dependence is two-fold: the arbitrariness of choosing the RS
and the arbitrariness in choosing the renormalisation scale. Just as the second arbitrariness is
characterised by the scale parameter µr, it is also possible to give an explicit parametrisation
for the first one by using suitable renormalisation parameters, e.g. the expansion parameters
βi [12]; both aspects will be referred to as the scheme dependence (although usually in practice
the choice of µr is more interesting). This scheme dependence of perturbative predictions gives
rise to serious complications in the phenomenological applications of pQCD and is discussed
in the next Section 2.2.2.1.

2.2.2.1 Prescriptions on the scale choice

The scheme dependence mentioned in Section 2.2.2 is not a QCD problem, but rather a problem
of approximation: this is the question how best to choose the RS and µr to achieve the ultimate
convergence of the perturbative series [12]6.

6 From this point of view the scheme dependence can be even thought of as a fortunate feature of the renormali-
sation procedure: there is a degree of freedom, which can be adjusted to obtain a more precise approximation
at a given order.
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2.2 Some aspects of Quantum Chromodynamics

A realistic way of circumventing this problem is to try to make the size of the neglected
orders as small as possible by varying the RS and µr.7 There are two general strategies:

1. to compare the calculated highest-order term with the lower-order ones and find the best
µr for which this ratio is minimised, so that the fast convergence of the perturbation series
is apparently guaranteed. This is also known as the fastest apparent convergence [13];

2. to require that an ideal truncated perturbative series [Γ]N has to share the property pos-
sessed by the full series, i.e. the property of RS-independence. In other words, the best
RS is determined by the requirement that [Γ]N be least sensitive to a variation of the RS
parameters. This is also known as the principle of minimal sensitivity [12, 14, 15].

In practice one usually chooses the renormalisation scale to be of the order of the energy
involved in the hard process; e.g. for inclusive DIS the renormalisation scale is often set to the
virtuality µ2

r = Q2 while for the production of heavy quarks in DIS and PHP, µ2
r = Q2 + 4m2

Q

and µ2
r = 〈p2

T 〉+m2
Q are possible choices, respectively, where mQ denotes the heavy-quark mass

and 〈p2
T 〉 is the average squared transverse momentum of the heavy quark and antiquark.

On the other hand, the scheme dependence can be used to estimate the missing higher orders,
known also as perturbative uncertainties or scale uncertainties. For this purpose, one usually
varies the renormalisation scale by some factor (conventionally a factor of 2) around the central
value and assigns the difference as the uncertainty.

2.2.2.2 Quark masses

The key quantity of heavy-quark theory is the quark mass, mQ. Since free quarks are unob-
servable, one can suggest different definitions of mQ. One of the most popular choices is the
pole quark mass, mpole

Q , defined as the position of the pole in the quark propagator in perturba-
tion theory. This quantity is introduced in a gauge invariant way and is well defined in each
finite order of perturbation theory. This convenient feature has made it very popular and widely
used in perturbative calculations, although it has an important drawback: any definition of this
quantity suffers from an intrinsic uncertainty of order ΛQCD

mQ
. The problem arises for the reason

that the pole mass is sensitive to large-distance dynamics (infrared contributions).8

Alternative mass definitions offer a solution to this problem. The most prominent example
is the MS mass, mQ(µr), which is to be evaluated at the renormalisation scale µr, where µr �

ΛQCD, and which is free of ambiguities of order ΛQCD. One benefit of theory predictions using
the MS mass is improved stability of the perturbative series with respect to scale variations as
compared to the result in the pole-mass scheme [17]. The scale dependence of the running

7 Although puristically there are no means for estimating the size of the neglected orders without calculating
these terms.

8 In other words, the pole mass is unobservable, because of confinement no free colored quarks exist. Perturbation
theory itself produces clear evidence for this non-perturbative correction to mpole

Q : the signal is the peculiar
factorial growth of the high-order terms in the αs expansion corresponding to a renormalon; for more details
see, e.g. [16] and references therein.
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mass at LO is given by

mQ(µr) = mQ(mQ)

1 − αs(µr)
π

ln
µ2

r

m2
Q

 . (2.20)

The scale dependence of the charm and beauty running masses has been measured at LEP
and HERA [18–20] and is shown in Fig. 2.6. It is found to be consistent with the QCD expec-
tation.

 [GeV]µ
1 10

) 
[G

e
V

]
µ(

c
m

0.4

0.6

0.8

1

1.2

1.4

1.6

H1 and ZEUS preliminary

HERA (prel.)

PDG with evolved uncertainty

Figure 2.6: Measurements of the charm (left) and beauty (right) MS running masses as a function of the
energy scale µ [18–20].

The relation between the pole mass mpole
Q and the MS running mass mQ(mQ), i.e. evaluated at

the scale µr = mQ, is known to three loops [21–24]; at one-loop order it is given by

mpole
Q = mQ(mQ)

(
1 +

4αs(mQ)
3π

)
. (2.21)

2.2.3 Factorisation and evolution of parton distribution functions

The field-theory realisation of the parton model is the theorem of the factorisation of the long-
distance from the short-distance dependence for DIS [25]. This theorem states that the sum
of all the diagrammatic contributions to the structure functions is a direct generalisation of the
parton-model results, Eq. 2.8, given by

F2(x,Q2) =
∑

i

∫ 1

0
dξCi

2

 x
ξ
,

Q2

µ2
r
,
µ2

f

µ2
r
, αs(µ2

r )

 fi(ξ, µ2
f ), (2.22)

where i denotes the sum over all partons (quarks, antiquarks and gluons), ξ is the momentum
fraction of the parton i, Ci

2 are the coefficient functions (known also as the hard-scattering
functions, or matrix elements), fi are the parton distribution functions (PDF) and µ f is called
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2.2 Some aspects of Quantum Chromodynamics

the factorisation scale. The factorisation scale serves to define the separation of short-distance
from long-distance effects: any propagator that is off-shell by µ2

f or more will contribute to Ci
2,

while below this scale it will be grouped into fi. It appears in the definition of the PDFs in a
fashion very similar to the way the renormalisation scale µr appears in renormalisation.

The substance of factorisation is contained in the following properties of the functions Ci
2

and fi:

• each coefficient function Ci
2 is infrared safe and calculable in perturbation theory. It

depends on the electroweak vector boson V∗, on the parton i, and on the renormalisation
and factorisation scales, but it is independent of long-distance effects. In particular it is
independent of the identity of the initial hadron; e.g. it is the same in the DIS from a
proton and a neutron and, for that matter, from a pion or kaon;

• the PDF fi, on the other hand, is specific to the hadron h. It is universal, that is, it is
independent of the particular hard-scattering process which is treated. It is the same for
the different structure functions F2, FL and F3 and it depends on neither a boson V∗,
nor even virtuality Q2, unless the factorisation scale is set to µ2

f = Q2. It is a direct
generalisation of the parton-model quark distribution.

The Ci
2 may be calculated in perturbation theory but the fi must be measured by comparing

Eq. 2.22 to experiment, given explicit expressions for the Ci
2. Once enough data have been

amassed to determine the PDFs from some standard set of cross sections, factorisation can be
exploited to provide predictions for any factorisable process, and, in particular, for the evolution
of a given process with µ f .

Such a prescription obviously involves a degree of choice. A set of rules that makes these
choices is called a factorisation scheme (e.g. MS [10, 11] or DIS [26]), by analogy to the RS
(see Section 2.2.2). Such a scheme defines the hard-scattering functions and the PDFs simul-
taneously. Once this has been done, the PDFs have no particular meaning, since they are dom-
inated by infrared effects and thus by infrared parameters that cannot be measured, although
they can be extracted from data by comparing the theoretical calculation 2.22 with measured
cross sections. The factorisation theorem ensures that the hard-scattering functions determined
in this calculation are insensitive to infrared scales and parameters, and are applicable to cross
sections calculated with phenomenologically determined PDFs.

A remarkable consequence of factorisation is that measuring PDFs for one scale µ f allows
their prediction for any other scale µ′f , as long as both µ f and µ′f are large enough that both
αs(µ′f ) and αs(µ f ) are small. The evolution of PDFs in µ f is most often, and most conveniently,
described in terms of integro-differential equations:

µ2
f

d
dµ2

f

fi(ξ, µ2
f ) =

∑
i

∫ 1

x

dξ
ξ

Pi j

(
x
ξ
, αs

)
fi(ξ, µ2

f ). (2.23)

These equations are known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tions [27–32]. The evolution kernels Pi j(x), also known as the splitting functions, are given by
perturbative expansions, beginning with O(αs); they represent the probability of a parton i to
emit a parton j carrying a fraction z = x

ξ
of the momentum of the parton i. The tree-level and
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one-loop terms in Pi j(x) are independent of the factorisation scheme used to define the PDFs.
The tree-level diagrams of the splitting functions are shown in Fig. 2.7.

q(ξ)

q(x)

Pqq( x
ξ
)

g(ξ)

q(x)

Pqg( x
ξ
)

q(ξ)

g(x)

Pgq( x
ξ
)

g(ξ)

g(x)

Pgg( x
ξ
)

Figure 2.7: The tree-level DGLAP splitting functions.

Note that the integral on the right-hand side of Eq. 2.23 begins at x. Thus, it is only necessary
to know fi(ξ, µ f

2
0) for ξ > x at some starting value of the scale µ f 0, in order to derive fi(x, µ2

f )
at a higher value µ f . This is a great simplification, since data at small x are hard to come by at
moderate energies.

At very low values of x, terms proportional to αs ln( 1
x ) may spoil the accuracy of the DGLAP

approach; there other evolution schemes, e.g. BFKL [33–35] or CCFM [36–39], might be more
appropriate to use. The difference between the schemes comes from the ordering of the emitted
partons before entering the hard-scattering process.

Similar to the RS dependence (see Section 2.2.2), if the perturbative series is truncated at
a certain order, the approximation is µ f dependent in the neglected orders. The prescriptions
how to choose the µr given in Section 2.2.2.1 can be applied for the µ f also. In practice the two
scales are often set to be equal, although it is not a requirement. To estimate the perturbative
uncertainties of the neglected higher orders, the two scales are varied around the central values,
simultaneously or independently.

2.3 Heavy-quark production in pQCD

The masses of the heavy quarks mQ � ΛQCD (mc ≈ 1.5 GeV, mb ≈ 4.5 GeV, mt ≈ 170 GeV)
provide a hard scale for pQCD calculations. On the other hand they complicate calculations,
since a new hard scale leads to appearance of terms proportional to ln( p2

T
m2

Q
) or ln( Q2

m2
Q

) (this is
known as a multi-scale problem); an ambiguity exists also for the PDF evolution and αs run-
ning, since they depend on the number of quark flavours assumed to be massless and appearing
in loops and legs.

Section 2.3.1 overviews possible treatments of heavy-quark production. Sections 2.3.2 and
2.3.3 provide information on the current status of the calculations for heavy-quark production
in different schemes in ep and pp collisions, respectively. Finally, Section 2.3.4 reviews an
important non-perturbative aspect of heavy-flavour production: the fragmentation process of
partons into hadrons.

The review given in this Section is largely based on [40] (Section 2.3.2), [41, 42] (Sec-
tion 2.3.3) and [43] (Section 2.3.4).
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2.3 Heavy-quark production in pQCD

2.3.1 Treatment of heavy flavours in pQCD

Several schemes exist for the treatment of heavy flavours in pQCD:

• In the fixed-flavour-number scheme (FFNS), heavy quarks are treated as massive at all
energy scales, thus they do not appear in the PDF evolution and αs running.9 More
precisely, the FFNS should be specified with the number of flavours that are assumed to
be massless, e.g. in the FFNS with n f = 3, only u, d and s quarks are treated as massless,
while in the FFNS with n f = 4 or n f = 5, additionally c quarks, or c and b quarks,
are treated as massless, respectively. This scheme is expected to be most precise in the
threshold region Q2 ∼ m2

Q (p2
T ∼ m2

Q), while at high Q2 (p2
T ) terms proportional to ln( Q2

m2
Q

)

(ln( p2
T

m2
Q

)) may spoil the convergence of the perturbative series.

• In the variable-flavour-number scheme (VFNS), heavy quarks are treated as massive or
massless depending on the energy scale. Different variants of VFNS exist:

– in the zero-mass variable-flavour-number scheme (ZM-VFNS) [46], heavy flavours
are treated as infinitely massive (and thus fully vanishing) below a certain threshold
and as massless above it. This scheme is expected to be appropriate at high Q2,
since the PDF evolution of the “heavy” quarks and the renormalisation of collinear
and infrared singularities provides a resummation of terms proportional to ln Q2

m2
Q

.

– in the general-mass variable-flavour-number scheme (GM-VFNS), an interpolation
is made between the FFNS and the ZM-VFNS, avoiding double counting of com-
mon terms in the PDF evolution and coefficient functions. This scheme is expected
to combine the advantages of the FFNS and ZM-VFNS, although some level of arbi-
trariness is unavoidably introduced in the treatment of the interpolation. Therefore,
different variants of the GM-VFNS are available [47–58]. Moreover, this arbitrari-
ness prevents a clear interpretation of the heavy-quark masses in terms of a specific
scheme; therefore the heavy-quark masses in GM-VFNS can be treated as effective
mass parameters.

In the present thesis in most cases the FFNS is used in comparisons of theory to the data and
QCD analyses.

2.3.2 Heavy-quark production in ep collisions

Heavy-quark production in ep collisions serves as a stringent test of pQCD; moreover, it is
directly sensitive to the gluon density of the proton and to the heavy-quark masses.

The fractions of the inclusive structure functions F2, FL, related to heavy-flavour production,
are represented by the heavy-flavour structure functions, FQQ̄

2 , FQQ̄
L (Q stands for charm or

beauty; top production is not accessible at HERA). The inclusive differential cross section of

9 Note that in some variants of the FFNS, heavy quarks contribute to the loops in the PDF evolution and αs

running (see, e.g. [44]); sometimes these variants are called the mixed-flavour-number scheme [45].
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heavy-flavour production is given in terms of these structure functions, analogously to Eq. 2.3,
as

d2σQQ̄(ep)
dxdQ2 =

2πα2

Q4x
[Y+FQQ̄

2 (x,Q2) − y2FQQ̄
L (x,Q2)], (2.24)

where the term proportional to F3 is neglected as appropriate at not too high Q2. Often it is
expressed in terms of the reduced cross sections:

σcc̄
red =

d2σcc̄

dxdQ2 ·
xQ4

2πα2 (1 + (1 − y)2)
= Fcc̄

2 −
y2

1 + (1 − y)2 Fcc̄
L . (2.25)

The heavy-flavour structure functions FQQ̄
2 , FQQ̄

L are calculated in pQCD using the factorisation
approach (Eq. 2.22).

The charm contribution to the inclusive structure function F2 at HERA lies in the range
10–30% [59], thus necessitating its understanding for any global PDF fit based on HERA DIS
data.

2.3.2.1 Calculations in FFNS

In the FFNS, the LO process (O(αs)) for heavy-flavour production in DIS is the boson–gluon-
fusion (BGF) process, gγ∗ → QQ̄, shown in Fig. 2.8.

P

e

Q̄

e′

γ∗

Q

Q

g

Figure 2.8: The BGF diagram.

Next-to-leading-order (NLO) corrections (O(α2
s)) were calculated in [60, 61]. They can be

classified into three groups:

1. real corrections to the BGF process, i.e. all processes containing an extra gluon in the
final state gγ∗ → QQ̄g;

2. virtual corrections to the BGF process coming from the interference of O(αs) and O(α3
s)

terms;
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2.3 Heavy-quark production in pQCD

3. a new process, when the virtual photon interacts with a light quark in the proton: γ∗q(q̄)→
QQ̄q(q̄).

The NLO predictions [60, 61] have been recalculated fully differentially in [62]; they are avail-
able in the HVQDIS program, which calculates double-particle inclusive cross sections. The
pole-mass definition is used in these calculations.

In a recent variant of the FFNS from the ABM group the running-mass definition in the MS
scheme is used instead [17]. This scheme has the advantage of improving the convergence
of the perturbative series (see Section 2.2.2.2). These predictions are provided for inclusive
quantities only, i.e. at the FQQ̄

2 level.
At next-to-next-to-leading order (NNLO) (O(α3

s)) only approximate calculations are avail-
able; the most comprehensive results are given in [63], which contains combined approximate
expressions for three kinematic limits: in the limit of high partonic centre-of-mass energy
squared, ŝ � m2

Q, in the threshold region, ŝ & 4m2
Q, and in the high-scale region Q2 � m2

Q.

2.3.2.2 Calculations in VFNS

In the VFNS, the LO process for heavy-flavour production in ep collisions is the QPM-like
scattering (see Fig. 2.3) at order zero in αs. At NLO, fully differential calculations exist only
in the ZM-VFNS.

The main difference between the FFNS and ZM-VFNS mechanisms can be attributed to the
fact that for heavy-quark production in the FFNS, two heavy particles appear in the final state
instead of one as in the case of the intrinsic heavy-quark approach10. This reveals itself in the
pT -distribution where for the FFNS the quark and antiquark appear back to back in the Breit
frame. The heavy-flavour data from HERA [64, 65] clearly confirm the pT -spectrum predicted
by the FFNS production mechanism.

Calculations in the GM-VFNS for heavy-flavour production in DIS exist only at the inclusive
FQQ̄

2 level. The two most popular GM-VFNS are the Thorne-Roberts (RT) [53, 54, 58] and
Aivazis-Collins-Olness-Tung (ACOT) [47, 48, 50–52] schemes. The calculations are available
at NLO and (approximate) NNLO orders. Predictions from various variants of GM-VFNS were
compared to the combined HERA charm data in [66]; they are generally found to describe the
data well in the region Q2 & 5 GeV2.

2.3.3 Heavy-quark production in pp collisions

Similar to the case of ep collisions, heavy-quark production in hadronic collisions is interesting
either as a benchmark process for the study of pQCD or as a probe of the nucleon structure [41].
Some examples of the latter include:

• Inclusive heavy-flavour production at high energy mostly probes the gluon density of the
proton, since the leading process is gg → QQ̄. This covers a wide kinematic range,
because a hard scale provided by the mass of heavy quarks allows applicability of pQCD
even at low transverse momentum pT ∼ ΛQCD.

10 In this case the other heavy quark belongs to the proton remnant and thus is effectively integrated over.
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• W± + c final states probe the strange content of the proton, since the leading production
mechanism is gs→ W±c.

• Associated production of W± and heavy-quark pairs is sensitive to gluon-splitting pro-
cesses, since the dominant production process is the production of a W± and an off-shell
gluon, which then decays to the heavy-quark pair: qq̄′ → W±g∗ → W±QQ̄.

The understanding of heavy-quark production is also important for searches of possible new
physics, where QCD-initiated heavy-quark final states provide large backgrounds for such anal-
yses.

The cross sections for heavy-flavour production in pp collisions are calculated in pQCD
using the factorisation approach, similar to Eq. 2.22:

σQQ̄ =
∑

i, j

∫ 1

0

∫ 1

0
dx1dx2 fi(x1, µ

2
f ) f j(x2, µ

2
f )σ̂i j→QQ̄(x1, x2, µ

2
f ). (2.26)

Here the sum in i, j goes over all partons, σ̂i j→QQ̄ is the perturbatively calculated partonic cross
section, independent of the initial hadrons, and fi, f j are the universal PDFs for the two protons,
introduced in Section 2.2.3.

In the FFNS at LO two processes are responsible for heavy-quark production:

qq̄→ QQ̄ and gg→ QQ̄. (2.27)

The corresponding diagrams are shown in Fig. 2.9.
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Figure 2.9: LO diagrams for heavy-quark production in pp collisions.

The total production cross section for heavy quarks is finite at LO, owing to the fact that
m2

Q is the minimum virtuality exchanged in the t-channel, therefore no poles can develop in
the intermediate propagators. This is not the case for light quarks: the total production cross
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2.3 Heavy-quark production in pQCD

section for u or d quarks is not calculable in pQCD [41]. At large partonic centre-of-mass
energy squared the qq̄ rate reduces more quickly than gg. Additionally, threshold effects for
the qq̄ channel vanish very quickly as soon as ŝ > 4m2

Q; this is related to the spin 1/2 of
quarks [41].

2.3.3.1 MNR calculations

NLO corrections come from two sources of O(α3
s) diagrams: real- and virtual-emission di-

agrams. In the first case, the corrections come from the square of the real-emission matrix
elements; in the second case, from the interference of the virtual matrix elements (of O(α4

s))
with the tree-level ones (of O(α2

s)). Ultraviolet divergences in the virtual diagrams are re-
moved by the renormalisation process. Infrared and collinear divergences, which appear both
in the virtual diagrams and in the integration over the emitted parton in the real-emission pro-
cesses, cancel each other or are absorbed in the PDFs. The complete calculations of NLO
corrections to the production of heavy-quark pairs in hadro- and in photoproduction were done
in [67, 68] (total hadroproduction cross sections), [69, 70] (one-particle inclusive distributions
in hadroproduction), [71, 72] (total and one-particle inclusive distributions in ep PHP), [73]
(two-particle inclusive distributions in hadroproduction) and [74] (two-particle inclusive dis-
tributions in ep PHP). They are known as MNR calculations and are available in the MNR
program, which calculates double- or single-particle inclusive or total cross sections. The
pole-mass definition is used in the calculations.

There are a few important remarks concerning the NLO calculations:

• no collinear singularities appear when gluons are emitted from the final-state heavy
quarks, since they are screened by the heavy-quark mass. Therefore, contrary to the
case of a light parton, the pT distribution for a heavy quark is a well-defined quantity
in NLO. For light partons, a collinear singularity would be encountered that requires the
introduction of a fragmentation function, not calculable from first principles (see also
Section 2.3.4);

• at large pT , nevertheless, large ln(pT/mQ) factors appear, signalling the increased proba-
bility of collinear gluon emission. At large pT , the massive quark looks in fact more and
more like a massless particle. These logarithms can be resummed using the fragmentation-
function formalism (see next Section 2.3.3.2);

• new processes appear at NLO which drastically change the ŝ dependence of the cross
sections and/or the kinematic distributions;

• there is evidence however that NLO is not sufficient to get accurate estimates, since a
large scale dependence is still present. This is demonstrated in Fig. 2.10, which shows
the scale dependence of the inclusive pT distribution of b quarks at the Tevatron. Large
scale dependence is a symptom of large NNLO corrections.
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Figure 2.10: Scale dependence of the inclusive pT distribution for b quarks, in pp̄ collisions at
√

s =

1.8 TeV. The plot is taken from [41].

2.3.3.2 FONLL calculations

The fixed-order plus next-to-leading-logarithms (FONLL) calculations [75] were developed for
improving the large-pT differential cross section for heavy-quark production in hadron–hadron
collisions and then were extended to PHP in ep collisions [76]. This approach is a variant of
GM-VFNS, based on the matching of NLO massive and massless calculations according to the
prescription [42]:

dσFONLL = dσFO + (dσRS − dσFOM0) ×G(mQ, pT ). (2.28)

Here FO denotes the massive NLO cross section, where a heavy quark enters only in the par-
tonic scattering through the flavour-creation processes, but not in the PDFs, and its mass is kept
as a non-vanishing parameter. The NLO partonic cross section then includes terms proportional
to ln p2

T
m2

Q
, where mQ regularises the collinear singularity, e.g. of the splitting Q→ Qg, and where

the logarithm becomes large when pT � mQ, thus spoiling the perturbative expansion in αs.
This part, which is singular in the massless limit, and the finite parts related to its different
definition in dimensional and mass regularisation are denoted FOM0 and therefore resummed
to next-to-leading-logarithm (NLL) order in the contribution denoted RS. The RS contribution
is then added to the FO calculation, while the overlap FOM0 is subtracted to avoid double
counting; this is controlled by the matching function G(mQ, pT ), which is discussed later.

The resummation relies on the perturbative fragmentation functions for the probability of a
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2.3 Heavy-quark production in pQCD

heavy quark, gluon, or light parton to go into a heavy quark [77]. The perturbative fragmen-
tation functions satisfy the DGLAP evolution equations and their initial values at the starting
scale are calculable perturbatively. The perturbative fragmentation functions are evolved to the
factorisation scale µ f and convoluted with the NLO cross sections for massless partons, sub-
tracted in the MS scheme, so that flavour-excitation processes are also included. These involve
the heavy quark also as an active parton in the PDFs.

The matching function G(mQ, pT ) must tend to unity in the massless limit pT � mQ, where
FO approaches FOM0 and the mass logarithms must be resummed. However, in FONLL its
functional form is not simply unity, but rather

G(mQ, pT ) =
p2

T

p2
T + a2m2

Q

. (2.29)

While it fulfills the above condition, the matching is not exact away from the massless limit.
This is justified by the observation that the difference RS−FOM0, although formally of NNLO
order, turns out to be abnormally large below pT = 5mQ, so that the constant a is phenomeno-
logically set to a = 5.11

Comparison of the NLO and FONLL calculations for beauty production at the Tevatron is
shown in Fig. 2.11; uncertainty bands obtained from the scale variations are also shown. In
summary, the resummation procedure indicates the presence of a small enhancement in the
intermediate-pT region, followed by a reduction of the cross section (and of the uncertainty
band) at larger pT [75]. Both uncertainty bands fully overlap in a wide pT range.

FONLL predictions for the most recent LHC data are given in [78]; they can be also obtained
using the public web interface [79].

2.3.3.3 Other GM-VFNS calculations

Other GM-VFNS calculations were originally performed in the massless limit, valid at high pT ,
and therefore include flavour-creation, gluon-splitting and flavour-excitation processes [42].
Subsequently the calculations were improved by identifying the previously omitted finite-mass
terms through a comparison with the massive NLO calculation, where together with the mass
logarithms, finite terms were also subtracted in such a way that in the limit mQ → 0 the correct
massless MS result was recovered [80]. This is necessary, since the PDFs and perturbative
fragmentation functions that are convoluted with the partonic cross sections are defined in the
ZM-VFNS. In the calculations in the S-ACOT scheme [51], heavy-quark mass terms in flavour-
excitation processes are neglected, which corresponds to a specific choice of the scheme, but
no loss in precision.

11 The choice to control such terms by means of an ad-hoc function might seem a somewhat unpleasant charac-
teristic of this approach; however, it simply portraits the freedom one has in performing the matching, and does
not represent a shortcoming of the approach [43].
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Figure 2.11: Comparison of the uncertainty bands from the scale variations of the NLO and FONLL
calculations for beauty production at the Tevatron. The plot is taken from [75].

2.3.4 Fragmentation of heavy quarks

The production of hadrons in QCD can only be described by taking into account a non-
perturbative hadronisation phase, i.e. the processes which transform objects amenable to a
perturbative description (quarks and gluons) into real particles. In the case of light hadrons,
the QCD factorisation theorem [25, 81–85] allows for factorisation of these non-perturbative
effects into universal (but factorisation-scheme dependent) fragmentation functions:

dσh

dpT
(pT ) =

∑
i

∫
dz
z

dσi

dpT

( pT

z
, µ

)
Di→h(z, µ) + O

(
ΛQCD

pT

)
. (2.30)

In this equation, valid up to higher-twist corrections of order ΛQCD

pT
, the partonic cross sections

dσh
dpT

for production of the parton i are calculated in pQCD, while the fragmentation functions,
Di→h(z, µ), are usually extracted from fits to experimental data (not to be confused with the
heavy-quark perturbative fragmentation functions, introduced in Section 2.3.3.2, which initial
values at the starting scale are calculable perturbatively [77]). Due to their universality they can
be used to make predictions for different processes. The factorisation scale µ is a reminder of
the non-physical character of both the partonic cross sections and the fragmentation functions:
it is usually taken of the order of the hard scale of the process (pT ), and Di→h(z, µ) are evolved
from a low scale up to µ by means of the DGLAP evolution equations.12

This general picture becomes somewhat different for the production of heavy-flavoured
hadrons. Owing to the large masses of the charm and bottom quarks, acting as a cut-off for the

12 Note, that this scale µ it is not the µ f , which was introduced in Section 2.2.3, although the argument for its
introduction is the same: to separate long-distance effects. This scale may be called the fragmentation scale.
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collinear singularities that appear in higher orders in perturbative calculations, the perturbative
prediction for heavy-quark production can be calculated. Still, of course, the quark to hadron
transition must be described. Mimicking the factorisation theorem given above, it has become
customary to complement the perturbative calculation for heavy-quark production with a non-
perturbative fragmentation function, Dnp

Q→H(z), accounting for its hadronisation into a meson:

dσH

dpT
(pT ) =

∫
dz
z

dσpert
Q

dpT

( pT

z
,mQ

)
Dnp

Q→H(z). (2.31)

It is worth noting that at this stage this formula is not the product of a rigorous theorem, but
rather results from some sensible assumptions. Moreover, it will in general fail (or at least be
subject to large uncertainties) in the region where the mass mQ of the heavy quark is not much
larger than its transverse momentum pT , since the choice of the scaling variable, z, is no longer
unique, and O(mQ/pT ) corrections cannot be neglected.

An important characteristic of the non-perturbative fragmentation function is that the aver-
age fraction of momentum lost by the heavy quark when hadronising into a heavy-flavoured
hadron, 〈z〉np, is given by [86, 87]

〈z〉np
' 1 −

ΛQCD

mQ
. (2.32)

Since (by definition) the mass of a heavy quark is much larger than the scale ΛQCD, this amounts
to saying that the non-perturbative fragmentation function for a heavy quark from Eq. 2.31 is
very hard, i.e. the quark loses very little momentum when hadronising. This can also be seen
with a very simplistic argument: a fast massive quark will lose very little speed (and hence
momentum) when picking up a light quark of mass ΛQCD from the vacuum to form a heavy
meson.13

This basic behaviour is to be found as a common trait in all the non-perturbative heavy-quark
fragmentation functions, derived from various phenomenological models. Among the most
commonly used are the Kartvelishvili-Likhoded-Petrov [91], Bowler [92], Peterson-Schlatter-
Schmitt-Zerwas [93] and Collins-Spiller [94] functions. These models all provide some func-
tional form for the Dnp

Q→H(z) function and one or more free parameters that control its hardness.
Such parameters are usually not predicted by the models (or only very roughly), and must be
fitted to experimental data.

There are two important aspects concerning the fragmentation of heavy quarks:

1. a non-perturbative fragmentation function is designed to describe the transition from the
heavy quark to the hadron, dealing with events mainly populated by soft gluons of ener-
gies of the order of ΛQCD. However, if a heavy quark is produced in a high-energy event, it
will initially be far off-shell: perturbative hard gluons will be emitted to bring it on-shell,
reducing the heavy-quark momentum and yielding in the process large collinear loga-
rithms. The amount of gluon radiation is related to the distance between the heavy-quark
mass scale and the hard scale of the interaction, and is therefore process dependent. To

13 More modern and more rigorous derivations of this result can be found in [88–90].
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account for this dependency, different free parameters of the non-perturbative fragmen-
tation function can be used at different centre-of-mass energies or transverse momenta
(see, e.g. [95]), or the non-perturbative fragmentation function can be evolved directly by
means of the DGLAP equations, hence including the perturbative collinear logarithms.
However, this is not what non-perturbative fragmentation functions are meant for, and
doing so spoils the validity of the relation in Eq. 2.32;

2. since only the final heavy hadron is observed, both the non-perturbative fragmentation
function and the perturbative cross section for producing heavy quarks must be regarded
as non-physical objects. The details of the fitted non-perturbative fragmentation function
(e.g. the precise value(s) of its free parameter(s)) depend on those of the perturbative
cross sections: different perturbative calculations (LO, NLO, FONLL etc.) and different
perturbative parameters (heavy-quark masses, strong coupling etc.) lead to different non-
perturbative fragmentation functions. These in turn will have to be used only with a
perturbative description similar to the one within which they have been determined [96].
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CHAPTER 3

Experimental set-up and measurements
of heavy-flavour production

This Chapter introduces the experimental set-up and measurements of heavy-flavour produc-
tion at HERA and LHC, which are relevant for the remainder of this thesis.

The overview starts with a description of the HERA accelerator in Section 3.1.1; it is largely
based on [97]. Section 3.1.2 describes the two collider experiments at HERA, H1 and ZEUS; it
is largely based on [97, 98]. Techniques of charm tagging at HERA are given in Section 3.1.3,
as well as a description of selected measurements from H1 and ZEUS, which are used in
Chapter 6 for a data combination. In Section 3.2 selected measurements of charm and beauty
production from LHCb are described.

3.1 HERA collider, H1 and ZEUS experiments,
measurements of charm production at HERA

The HERA collider was the culmination of 50 years of experimentation with electron, later also
muon and neutrino, beams to explore the structure of the proton. HERA emerged from a series
of electron–proton accelerator studies in the 70’s as the highest energy ep collider possible.

3.1.1 HERA collider

HERA (German: Hadron-Elektron Ring Anlage), at DESY, Hamburg, was the first, and so far
the only, accelerator complex in which electrons and protons were collided [99]. It was built
in the 80’s with the capability to scatter polarised electrons and positrons off protons, at an
energy of the proton beam of initially 820 GeV until it was increased to 920 GeV, in 1998.
Together with an electron energy of 27.5 GeV, this resulted in a centre-of-mass energy,

√
s, of

about 320 GeV. The protons were accelerated and stored in a ring of superconducting magnets.
The electron ring was normal conducting. A schematic view of the HERA accelerator ring and
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preaccelerators is shown in Fig. 3.1.

HERA

PETRA

DORIS

HASYLAB

Hall NORTH (H1)

Hall EAST (HERMES)

Hall SOUTH (ZEUS)

Hall WEST  (HERA-B)

Electrons / Positrons

Protons

Synchrotron Radiation

360 m

779 m

Linac

DESY

Figure 3.1: A schematic view of the HERA accelerator ring and preaccelerators. The plot is taken
from [100].

Two general-purpose collider detectors with nearly 4π acceptance were proposed in 1985,
H1 [101] and ZEUS [102]. They were operated over the 16 years of HERA operation. Two
further experiments at HERA were built and run in the fixed-target mode. The HERMES
experiment [103] (1994–2007) used the polarised electron beam to study spin effects in lepton–
nucleon interactions using a polarised nuclear target. The HERA-B experiment [104] (1998–
2003) was designed to investigate B-meson physics and nuclear effects in the interactions of
the proton-beam halo with a nuclear wire target.

The first HERA data were taken in summer 1992. HERA had its first phase of operation
(referred to as HERA-I) from 1992 through 2000. In this period, the collider experiments
H1 and ZEUS each recorded data corresponding to integrated luminosities of approximately
120 pb−1 of e+ p and 15 pb−1 of e−p collisions. The energy of the electron (positron) beam was
about 27.5 GeV. The HERA collider was then upgraded to increase the specific luminosity
by a factor of about four, as well as to provide longitudinally polarised lepton beams to the
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collider experiments [105]. The second data-taking phase (referred to as HERA-II) began in
2003, after completion of the machine and detector upgrades, and ended in 2007. The H1
and ZEUS experiments each recorded approximately 200 pb−1 of e+ p and 200 pb−1 of e−p data
with electron (positron) energy of approximately 27.5 GeV and proton energy of 920 GeV.
The lepton beams had an average polarisation of approximately ±30% with roughly equal
samples of opposite polarities recorded. In the last three months of HERA operation, data with
lowered proton-beam energies of 460 GeV (referred to as LER, Low Energy Run) and 575 GeV
(referred to as MER, Middle Energy Run) were taken; each experiment recorded approximately
13 pb−1 and 7 pb−1 of the LER and MER data, respectively. The primary purpose of the LER
and MER data was the measurement of the longitudinal proton structure function FL.

HERA ceased operations in June 2007 after a long, successful data-taking period of 16
years. Analysis of these data still continue. HERA data have already had a great impact on the
understanding of the partonic structure of the proton and on the development of QCD.

3.1.2 H1 and ZEUS experiments

The collider detectors H1 [101] and ZEUS [102] were designed primarily for DIS ep scattering
at the highest virtuality Q2 and large final-state energies. Thus, much attention was paid to the
electromagnetic and hadron calorimeters. The H1 Collaboration chose liquid argon as active
material for their main calorimeter to maximise long-term reliability. The ZEUS Collaboration
chose scintillator active media and uranium as the absorber material to produce the desired
equalisation of the calorimeter “eπ” response to electrons and hadrons. The calorimeters were
complemented by large-area wire chamber systems to measure muon momentum and the tail
of hadron-shower energy. Because the electron- and proton-beam energies were very different,
the detectors were asymmetric, with extended coverage of the forward (proton-beam) direc-
tion. Drift chambers inside the calorimeters, both in H1 and in ZEUS, were segmented into
a forward and a central part. Later, in H1 starting in 1996 and in ZEUS from 2003 onwards,
silicon detectors near the beampipe were installed for precision vertexing and tracking. Both
apparatus were complemented with detector systems positioned near the beam axis in the ac-
celerator tunnel, to measure backward photons and electrons, mainly for the determination of
the interaction luminosity, and to tag leading protons and neutrons in the forward direction.
Both experiments took data for the entire time of HERA’s operation with efficiency of 70-80%.

The main components of the ZEUS detector are briefly described below in Section 3.1.2.1.
A description of the H1 detector and its main sub-detectors can be found elsewhere [101, 106–
109].

3.1.2.1 ZEUS detector

A schematic view of the ZEUS detector [102] along the beampipe and the main detector com-
ponents are shown in Fig. 3.2. The ZEUS coordinate system is a right-handed Cartesian system,
with the Z axis pointing in the proton-beam direction, referred to as the “forward direction”,
and the X axis pointing towards the centre of HERA. The coordinate origin is at the nominal
interaction point. The pseudorapidity is defined as η = − ln

(
tan θ

2

)
, where the polar angle, θ, is
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measured with respect to the Z axis. The azimuthal angle, φ, is measured with respect to the X
axis. The main detector components are briefly described below.

Figure 3.2: A schematic view of the ZEUS detector along the beampipe.

The most important sub-detector that measured energies was the calorimeter (CAL) [110–
113]. The CAL was a sampling calorimeter consisting of plates of depleted uranium inter-
leaved with plastic scintillator as active material. The ratio of absorber and scintillator thick-
ness had been chosen to achieve equal signals from hadrons and electromagnetic showers,
thereby producing the best possible resolution for hadrons. The CAL provided precise energy
measurements for hadrons and jets, an angular resolution for jets better than 10 mrad, the abil-
ity to discriminate between hadrons and electrons using their different energy depositions, and
a time resolution of 1 ns. The energy resolution for electrons and hadrons as determined under
test-beam conditions was 18%/

√
E/GeV and 35%/

√
E/GeV, respectively.

The CAL was mechanically subdivided in three parts:

• the Barrel Calorimeter (BCAL) covering polar angles from 36.7° < θ < 129.1°;

• the Forward Calorimeter (FCAL) covering polar angles from 2.2° < θ < 39.9°;

• the Rear Calorimeter (RCAL) covering polar angles from 128.1° < θ < 176.5°.
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The three sections of the calorimeter were divided into modules, which were oriented perpen-
dicularly to the beam axis in the BCAL and longitudinally to the beam axis in the FCAL and
RCAL. Each module was subdivided into towers of dimensions 20 × 20 cm2. Each tower had
a longitudinal structure of one electromagnetic section (EMC) and two (only one in RCAL)
hadronic sections (HAC1 and HAC2). Every EMC section consisted of four 5 × 20 cm2 cells
(two 10 × 20 cm2 in RCAL) to give a fine segmentation for electron reconstruction. Each cell
of the calorimeter was read out on two sides by wavelength shifters, which were coupled to
photomultiplier tubes. The energy corresponds to the sum of both photomultiplier tubes and
was therefore independent of the impact point of the particle on the cell. A comparison of both
photomultiplier tubes allowed determining the position within a cell to be reconstructed.

The momenta of charged particles were measured by the Central Tracking Detector (CTD) [114–
116] in the 1.43 T magnetic field of the solenoid [117]. The CTD was a cylindrical drift cham-
ber measuring the direction, momentum and energy loss (dE/dx). It was filled with a gas
mixture of argon, carbon dioxide and ethane. The CTD was made of 72 layers of wires, which
were grouped in 9 superlayers. The angular coverage of the CTD was 15° < θ < 164° and
the momentum resolution for the full-length tracks in the HERA-I period was determined to be
σ(pT )/pT = 0.0058 · pT/GeV ⊕ 0.0065 ⊕ 0.0014 GeV/pT

1 [118].
At the time of the HERA luminosity upgrade during the shutdown period 2000–2001, the

tracking system of the ZEUS detector was upgraded with the Microvertex Detector (MVD) [119]
(Fig. 3.3). The MVD was a silicon-strip vertex detector, mainly supposed to allow reconstruc-
tion of secondary vertices and track impact parameters from heavy-quark decays. The MVD
consisted of two sections: barrel (BMVD) with an angular coverage 30° < θ < 150° and for-
ward (FMVD), which extended the coverage to 7°. The momentum resolution of the combined
tracking system MVD+CTD for full-length tracks in the HERA-II period was determined to
be σ(pT )/pT = 0.0029 · pT/GeV ⊕ 0.0081 ⊕ 0.0012 GeV/pT [120], indicating an improved
transverse momentum resolution, although the MVD material between the interaction point
and the CTD increases the probability for multiple scattering.

The forward region of the ZEUS detector required enhanced tracking and particle identifi-
cation capabilities due to the asymmetric beam energies. It consisted of the Forward Tracking
Detector (FTD) and the Transition Radiation Detector (TRD). The purpose of the FTD was to
reconstruct low-angle tracks of ionising particles whereas the TRD separated electrons from
hadrons. During the HERA luminosity upgrade programme the TRD was replaced by the
Straw Tube Tracker (STT) [121], which improved the tracking efficiency in events with high
multiplicities. In the rear direction the Rear Tracking Device (RTD) was located. To determine
the position of the scattered electron near the beampipe, the small-angle rear tracking detector
(SRTD) [122] was used.

The Backing Calorimeter (BAC) was built to fulfill two tasks: to achieve a hermetic hadron
jet-energy measurement and to aid the tracking of muons passing through the iron yoke of the
detector. To measure the energy of hadron-shower leakages out of the CAL and to correct
jet-energy measurements, the BAC was equipped with an analog readout, giving precise infor-
mation on the deposited energy but only approximate information on the deposit position. To
enable muon tracking in the iron yoke, a complementary digital readout was designed, giving

1 The ⊕ sign indicates that the terms are added in quadrature.
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Figure 3.3: A schematic view of the ZEUS detector with installed MVD.

basically no information about the deposited energy, but exact position in two dimensions. This
information was used for better positioning of shower leakages and for discrimination between
leaking hadron cascades and muons. To identify muons, the forward muon detector (FMUON)
was located in front of the magnet yoke and the barrel and rear muon detectors (BMUON,
RMUON) [123] inside and outside the iron yoke.

The luminosity — a necessary ingredient for any cross-section measurement — was mea-
sured at ZEUS using the bremsstrahlung reaction ep → e′γp [124] by a lead-scintillator
calorimeter (PCAL) [125], located at Z = −107 m, and (after the HERA upgrade) an inde-
pendent magnetic spectrometer (SPEC) [126], located at Z = −104 m. The best achieved
relative uncertainty on the measured luminosity was 1.8%.

To reduce the event rate from the potential collision rate ≈ 10 MHz to technically acceptable
≈ 10 Hz, a three-level trigger system was used at ZEUS. The First Level Trigger (FLT) [127,
128] consisted of hardware trigger systems in individual sub-detectors, which sent the informa-
tion to the Global First Level Trigger (GFLT) to perform the decision. Events that passed the
GFLT were processed further by the Second Level Trigger (SLT), based on software triggers,
which used information on charged-particle tracks, the interaction vertex, calorimeter timing
and global energy sums [129]. Events that passed the SLT were processed by the Third Level
Trigger (TLT) [130], which took the decision based on the global information from an event.
Finally, events that passed the TLT were written to tape to be fully reconstructed offline.

Some further information on the ZEUS experiment is provided in Section 4 in the context
of the ZEUS Event Display program and in Section 5.1 in the context of the measurement of
D+-meson production with the ZEUS detector.
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3.1.3 Measurements of charm production at HERA

This Section describes tagging techniques used to measure open2 charm production at HERA
and gives an overview of the measurements in DIS done by the H1 and ZEUS experiments.
This overview is restricted to the measurements that are used for the charm combination, de-
scribed in Chapter 6.

Charm-tagging techniques used at HERA include:3

• reconstruction of D∗+ mesons in the “golden” decay channel D∗+ → D0π+s and sub-
sequently D0 → K−π+. The π+

s denotes a “slow” pion with a low momentum in the
D∗+ centre-of-mass frame, since the mass of D∗+ is only slightly above the sum of the
masses of D0 and π+. This results in a narrow peak for the mass difference ∆M =

M(K−π+π+
s ) − M(K−π+) near the threshold, accompanied with a not too large combi-

natorial background and hence the best signal-to-background ratio. This technique was
proposed in [131] and widely used in different experiments (e.g. [59, 132–135]). The
main shortcoming is that in practice D∗+ mesons can be measured in the limited kinematic
space pT (D∗+) & 1.25 GeV only, otherwise the transverse momentum of the slow pion is
too small and its track cannot be reconstructed. Another limitation comes from the fact
that all decay products have to be reconstructed in the tracking system, thus the produc-
tion of D∗+ mesons can be measured in the central region only, typically |η(D∗+)| . 1.8.
Also, the product of the branching ratios for the decay channels D∗+ → D0π+

s and
D0 → K−π+ is about 3% only [7]. However still the most precise measurements of
open charm production at HERA were obtained using this technique; they are described
in Section 3.1.3.1;

• reconstruction of weakly decaying D mesons. This technique exploits the long lifetime
of weakly decaying charm hadrons. All final decay products must be charged particles re-
constructed in the tracking system. Examples of such decay channels are D+ → K−π+π+

and D0 → K−π+. Large combinatorial background can be significantly suppressed by
applying a cut on lifetime information (e.g. track impact parameters or decay-length sig-
nificance), although since the background rises steeply towards lower values of pT (D),
a lower cut on pT (D) has to be applied; a cut on transverse momentum also improves
the effectiveness of the lifetime information. Therefore the limitations of this technique
are similar to those of the previous one: a measurement can be performed only in a fidu-
cial transverse-momentum and pseudorapidity phase space and the branching ratios are
small. Measurements performed using this technique are described in Section 3.1.3.2;

• usage of semi-leptonic decays. This technique is based on the separation of charm events
with leptonic decays from light-flavour background using discriminating variables, e.g.
the missing transverse momentum caused by a neutrino or the impact parameter of the
lepton track. The measurements benefit from large branching ratios and a better pseu-
dorapidity coverage at the cost of a worse signal-to-background ratio. Measurements
performed using this technique are described in Section 3.1.3.3;

2 When the measured final state contains only one charm quark.
3 Charge conjugation is always implied for decay channels.
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• fully inclusive analysis. In this technique, charm events are identified by reconstruction
of displaced secondary vertices based on the lifetime information. The measurements
benefit from the best phase-space coverage and largest statistics, since they are not lim-
ited by any particular branching ratio, although the signal-to-background ratio is usually
worst. Measurements performed using this technique are described in Section 3.1.3.4.

The last two tagging techniques are often used for a simultaneous measurement of charm and
beauty production, while in measurements using the first two, usually the sum of hadron pro-
duction from charm and beauty processes are measured (dominated by charm). Techniques
that rely on the usage of lifetime information require precise tracking and vertexing, thus can
be fully exploited only with the data taken with the silicon detectors near the beampipe.

Results of precise charm measurements, which provide a double-differential cross section,
are usually exploited to extract the inclusive cross section, i.e. the charm structure function Fcc̄

2
or the reduced cross section σcc̄

red. The extraction was based on the extrapolation procedure,
which used the shape of theoretical predictions, thus measurements with larger transverse-
momentum and pseudorapidity phase-space coverage are preferable (more details on the ex-
trapolation procedure are provided in Section 6.2.3 in the context of data combination).

3.1.3.1 Reconstruction of D∗+ mesons in the “golden” decay channel

Both the H1 and ZEUS experiments have measured the production of D∗+ mesons using the
“golden” decay channel using the HERA-I and HERA-II data [59, 64, 65, 134, 136, 137]. The
best phase-space coverage was achieved in the HERA-II H1 measurement [65]: pT (D∗+) >
1.25 GeV, |η(D∗+)| < 1.8.

Distributions of the reconstructed mass difference ∆M for the most precise H1 and ZEUS
HERA-II measurements [65, 137] are shown in Fig. 3.5. Note that these measurements are
performed in slightly different ranges of pT (D∗+) and η(D∗+), therefore the ZEUS measurement
has a better signal-to-background ratio and narrower peak at the cost of two times smaller
statistics. Both experiments performed a subtraction of the background using the wrong-sign
combinations, obtained by forming “D0 candidates” by combining two tracks with the same
sign.

The measured cross sections of D∗+ production as a function of Q2, y, x, pT (D∗+), η(D∗+) and
z(D∗+) = (E(D∗+) − pZ(D∗+))/(2Eey), with Ee being the incoming electron energy, E(D∗+) and
pZ(D∗+) the energy and longitudinal momentum of D∗+, respectively, are shown in Fig. 3.5 and
compared to the NLO predictions, obtained in the ZM-VFNS and FFNS (see Sections 2.3.1
and 2.3.2). The dominant experimental uncertainty is the systematic uncertainty on the track-
ing efficiency (≈ 4%); in most of the bins the statistical uncertainty is smaller than the total
systematical one. The FFNS predictions describe the data reasonably well within uncertainties,
with a possible exception for the shape of the z(D∗+) distribution. The ZM-VFNS predictions
describe the data significantly less well; in particular, they fail to describe the shape of pT (D∗+),
y and x distributions.
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Figure 3.4: Distributions of the reconstructed mass difference ∆M from the H1 [65] (left) and
ZEUS [137] (right) D∗+ measurements, respectively.

3.1.3.2 Reconstruction of weakly decaying D mesons

ZEUS measured the production of D0 [138] and D+ [139] mesons using the weak decays D0 →

K−π+ and D+ → K−π+π+, respectively. The measurement of D0 production was based on the
134 pb−1 of data from 2005 only, while the measurement of D+ production used the full HERA-
II data of 354 pb−1.4 Both measurements were performed in the phase space pT (D+,D0) >
1.5 GeV, |η(D+,D0)| < 1.6, 5 < Q2 < 1000 GeV2, 0.02 < y < 0.7. Lifetime information
was used to reduce combinatorial background substantially, applying a cut on the decay-length
significance of the secondary vertex. This technique benefits from the MVD tracking and
vertexing, that not feasible using the HERA-I data. The measurement of D+ production is one
of the physics results of this thesis, therefore it is described in detail in separate Chapter 5.

3.1.3.3 Usage of semi-leptonic decays

ZEUS measured charm and beauty production identified through their decays into muons [140].
The measurement was based on the 134 pb−1 of data from 2005. The measured observables
were cross sections of muons originating from charm and beauty. The fractions of muons
originating from charm, beauty and light flavours were extracted by exploiting three discrim-
inating variables: the muon impact parameter, the muon momentum component transverse to
the associated jet axis, and the missing transverse momentum, which is sensitive to the neutrino
from semi-leptonic decays. The kinematic space of the measurement was pT (µ) > 1.5 GeV,
−1.6 < η(µ) < 2.3, Q2 > 20 GeV2 and 0.01 < y < 0.7 (note an extended coverage of the
forward region compared to D measurements).

Distributions of the discriminating variables are shown in Fig. 3.6. Contributions from charm
and beauty production are separated from light flavours and from each other by using a global

4 The D+ measurement [139] superseded the previous measurement of D+ production in [138], based on data
from 2005.
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Figure 3.5: Differential D∗+ cross sections as a function of Q2 (a), y (b), x (c), pT (D∗+) (d), η(D∗+) (e)
and z(D∗+) (f), measured in [65]. The data are compared to NLO predictions obtained in the ZM-VFNS
and FFNS (HVQDIS). In the lower part of the figures the normalised ratio, Rnorm, of theory to data is
shown, defined in Eq. 3 of [65], which has reduced normalisation uncertainties.
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template fit to the Monte Carlo (MC) expectation. The measured muon differential cross sec-
tions as a function of pT (µ), η(µ), Q2 and x are shown in Fig. 3.7 and compared to the NLO
predictions, obtained in the FFNS, and RAPGAP MC, normalised according to the result of the
global fit. The NLO FFNS predictions describe the data well. The RAPGAP MC gives a good
description of the shape of all the differential cross sections, although this cannot be interpreted
as an independent data to theory comparison, but only as a justification of the validity of the fit
results.

3.1.3.4 Fully inclusive analysis based on lifetime information

H1 measured inclusive charm and beauty cross sections using variables reconstructed by the
vertex detector, including the impact parameter of tracks to the primary vertex and the position
of the secondary vertex [141]. The measurement was based on the 189 pb−1 of data from
2006–2007. The phase space of the measurement was 5 < Q2 < 2000 GeV2 and 0.0002 < x <
0.05. Similar to the technique used for measurements with semi-leptonic decays, described
in Section 3.1.3.3, this measurement was based on the discrimination of charm and beauty
contributions, performed with a neural network, using long-lifetime discriminating variables.
Fig. 3.8 shows the distributions of the discriminating variables, used as input for the neural
network. The measured quantities were the charm and beauty reduced cross sections as a
function of Q2 and x in the full pT and η range. The measurement [141] was then combined
with previous H1 measurements [142, 143] based on HERA-I data.

ZEUS measured the production of charm and beauty with at least one jet using the invariant
mass of the charged tracks associated with secondary vertices and the decay-length significance
of these vertices [19]. The measurement was based on the full HERA-II data of 354 pb−1. The
kinematic phase of the charm measurement was Ejet

T > 4.2 GeV, −1.6 < ηjet < 2.2, 5 < Q2 <

1000 GeV2 and 0.02 < y < 0.7, where Ejet
T is the transverse energy of the jet. Contributions

from charm and beauty production were separated from light flavours and from each other by
using a global template fit to the MC expectation. Fig. 3.9 shows the distributions of the decay-
length significance for different bins of the secondary-vertex mass, mvtx. All MC samples were
normalised according to the scaling factors obtained from the fit. A good agreement between
data and MC is observed. The first two mass bins corresponding to the region 1 < mvtx < 2 GeV
are dominated by charm events. In the third mass bin, 2 < mvtx < 6 GeV, beauty events are
dominant at high values of the decay-length significance. The measured differential cross
sections for inclusive jet production in charm events as a function of Ejet

T , ηjet, Q2 and x are
shown in Fig. 3.10 and compared to the NLO predictions obtained in the FFNS with different
proton PDFs and to the predictions from the RAPGAP MC, scaled to the ratio of the measured
visible cross section to the RAPGAP prediction. All measured cross sections are reasonably
well described by the NLO FFNS and RAPGAP MC predictions. RAPGAP provides a worse
description of the shape of the charm cross sections than the NLO FFNS calculations. The
data are typically 20–30% above the NLO predictions, but in reasonable agreement within
uncertainties. The differences between the NLO predictions using different proton PDFs are
mostly very small.
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Figure 3.6: Distributions of the discriminating variables from ZEUS muon measurement [140]: the
missing transverse momentum, pmiss||µ

T , (a), muon impact parameter, δ, (b), muon momentum component
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T , (c) and prel
T for a heavy-flavour-enriched sample (d). The

data are compared to the MC expectation with the normalisation of the charm, beauty and light-flavour,
LF, components obtained from the global fit. The charm, beauty and light-flavour contributions are
shown separately.
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Figure 3.8: Distributions of discriminating variables from the H1 vertex measurement [141]: the impact-
parameter significances, defined as the significance of the track with the highest, S 1, (top left), second
highest, S 2, (top right) and third highest, S 3, (bottom left) absolute significances, respectively, and
the secondary-vertex significance, S L, (bottom right). The data are compared to the MC expectation,
obtained after applying the scale factors from the fit to the complete data sample. The charm, beauty
and light-flavour contributions are shown separately.
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Figure 3.9: Distributions of the decay-length significance, S , for different bins of the secondary-vertex
mass, mvtx: 1 < mvtx < 1.4 GeV (top left), 1.4 < mvtx < 2 GeV (top right), 2 < mvtx < 6 GeV (bottom
left) and no restriction on mvtx (bottom right) from the ZEUS vertex measurement [19]. The data are
compared to the sum of all MC distributions. The individual contributions from the beauty, charm and
light-flavour MC subsamples are shown separately.

3.1.3.5 Summary

Different techniques have been used to measure open charm production in DIS at HERA. The
most precise results were obtained in measurements of D∗+ production using the “golden” de-
cay channel. In all cases (except for the H1 vertex measurement [141]) the measured quantities
were visible cross sections in a limited pT (Ejet

T ) and η phase space. The largest phase-space
coverage was obtained in fully inclusive analysis based on lifetime information.

All measured cross sections were compared to the theoretical predictions obtained in dif-
ferent schemes. The NLO FFNS predictions provide a good description of the data within
uncertainties in all cases, while the NLO ZM-VFNS predictions do not describe shape of some
kinematic variables well. A direct comparison of measured visible cross sections to the GM-
VFNS predictions is not possible, since the GM-VFNS calculations were done only for inclu-
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Figure 3.10: Differential cross section for inclusive jet production in charm events as a function of Ejet
T

(top left), ηjet (top right), Q2 (bottom left) and x (bottom right) measured in [19]. The data are compared
to the NLO predictions obtained in the FFNS (HVQDIS) with different input PDFs and to the predictions
from MC RAPGAP.
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sive cross sections. Comparisons to MC predictions did not aim to check theory, since in these
cases MC simulations were LO and parton showers, re-normalised to the data (more details on
the technique of MC simulations are provided in Section 5.3.1). These comparisons mainly
aimed to justify the validity of the template fit procedure or the acceptance corrections, which
exploited MC.

In general, measurements performed using different methods are complementary to each
other and thus can be combined to achieve the best precision. This is done in Chapter 6 (Sec-
tion 6.5). Such combination requires an extrapolation of the visible cross sections to the full
phase space using the shape of some theoretical calculations. Since the FFNS predictions are
consistent with the data in all kinematic regions (including high Q2), the NLO FFNS is con-
sidered as the best theoretical calculation for this extrapolation.5 After extrapolation to the full
phase space, the data can be compared to the GM-VFNS calculations (see Section 6.5).

3.2 LHC and LHCb experiment, measurements of charm
and beauty production at LHCb

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider;
its description can be found elsewhere [144]. The LHCb detector at the LHC provides unique
access to the forward-rapidity region with a detector that is tailored for flavour physics.

The LHCb detector [145] (Fig. 3.11) is a single-arm forward spectrometer covering the pseu-
dorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks. The
right-handed coordinate system adopted has the Z axis along the beam. The detector includes
a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the
pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw
drift-tubes placed downstream. The combined tracking system has a momentum resolution
(δp/p) that varies from 0.4% at 5 GeV to 0.6% at 100 GeV and an impact-parameter resolution
of 20 µm for tracks with high transverse momentum. Charged hadrons are identified using two
ring-imaging Cherenkov detectors (RICH). The RICH system [146] of the LHCb experiment
provides charged-particle identification over a wide momentum range, from 2 to 100 GeV6. It
consists of two RICH detectors that cover between them the angular acceptance of the exper-
iment, 15–300 mrad with respect to the beam axis. Photon, electron, and hadron candidates
are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors,
an electromagnetic calorimeter, and a hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multi-wire proportional chambers.

5 Although also it is the only one practically available NLO calculation for the fully differential cross sections.
6 The typical momentum (in the laboratory frame) of the decay products in two-body B decays is about 50 GeV.

The requirement of maintaining a high efficiency for the reconstruction of these decays leads to the need for
particle identification up to at least 100 GeV. The lower momentum limit of about 2 GeV follows from the
need to identify decay products from high-multiplicity B decays and also from the fact that particles below this
momentum will not pass through the dipole magnetic field (4 Tm) of the LHCb spectrometer [146].
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Figure 3.11: A schematic view of the LHCb detector along the beampipe.

3.2.1 Measurement of prompt charm production

LHCb measured D0, D+, D+
s , D∗+ and Λ+

c production using data corresponding to an integrated
luminosity of 15 nb−1 in the region of rapidity 2.0 < y < 4.5 and transverse momentum 0 <
pT < 8 GeV in pp collisions at a centre-of-mass energy of 7 TeV [135]. The analysis was based
on fully reconstructed decays of charmed hadrons in the following decay modes: D0 → K−π+,
D+ → K−π+π+, D∗+ → D0(K−π+)π+, D+

s → φ(K−K+)π+ and Λ+
c → pK−π+.

Charmed hadrons may be produced at the pp collision point either directly or as feed-down
from the instantaneous decays of excited charm resonances. They may also be produced in
decays of beauty hadrons. The first two sources (direct production and feed-down) are referred
to as prompt. Charmed particles from beauty-hadron decays are called secondary charmed
hadrons. The measurement reports the production cross sections of prompt charmed hadrons;
secondary charmed hadrons were treated as background. The measurement was performed
in two-dimensional bins of pT and y. For the Λ+

c measurement, only single-differential cross
sections as a function of pT and ywere measured. The prompt signal yields were selected using
multi-dimensional extended maximum likelihood fits to the mass and log10(IP χ2), where IP χ2

is defined as the difference between the χ2 of the primary vertex, reconstructed with and without
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the considered particle (Fig. 3.12). The dominant systematic uncertainty is the uncertainty on
the tracking efficiency, which is 3–4% per one final-state track, thus resulting in 6–10% for the
measured cross sections.
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Figure 3.12: Mass and log10(IPχ2) distributions for selected D0 → K−π+ and D+ → K−π+π+ candi-
dates from the LHCb measurement of prompt charm production [135] showing the masses of the D0

candidates (top left), log10(IP χ2) distribution of D0 candidates (top right), masses of the D+ candidates
(bottom left) and log10(IP χ2) distribution of D+ candidates (bottom right). Projections of likelihood fits
to the full data samples are shown with components as indicated in the legends.

The measured double-differential cross sections of D0, D+, D+
s and D∗+ production are shown

in Fig. 3.13 and compared to the NLO predictions obtained in the FONLL and other GM-
VFNS approach (see Sections 2.3.3.2 and 2.3.3.3). The GM-VFNS predictions are shown for
pT > 3 GeV. Predictions for D0 mesons are also compared with the GM-VFNS calculations
using PDFs with intrinsic charm [147]7. As shown in Fig. 3.13, in the phase space of the present
measurement the effect of intrinsic charm is predicted to be small. All theoretical calculations
describe the data well, although their uncertainties of the order of a factor 2 significantly exceed

7 Many non-perturbative models, particularly those based on the light-cone wave-function picture, expect an
“intrinsic charm” component of the nucleon at an energy scale comparable to the charm-quark mass. This
intrinsic-charm component, if present at a low-energy scale, will participate fully in QCD dynamics and evolve
along with the other partons as the energy scale increases; for more details see, e.g. [147] and references therein.
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the experimental uncertainties of the data.
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Figure 3.13: Differential cross sections for D0 (top left), D+ (top right), D∗+ (bottom left) and D+
s

(bottom right) from the LHCb measurement of prompt charm production [135] compared to theoretical
predictions. The cross sections for different y regions are shown as functions of pT . The y ranges are
shown as separate curves and associated sets of points scaled by factors 10−m, where the exponent m is
shown on the plot with the y range.

3.2.2 Measurement of beauty production

LHCb measured B+, B0 and B0
s production using data corresponding to an integrated luminosity

of 0.36 fb−1 in the region of rapidity 2.0 < y < 4.5 and transverse momentum 0 < pT < 40 GeV
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in pp collisions at a centre-of-mass energy of 7 TeV [148]. The analysis was based on fully
reconstructed decays of beauty hadrons in the following decay modes: B+ → J/ψK+, B0 →

J/ψK∗0 and B0
s → J/ψφ, with J/ψ→ µ+µ−, K∗0 → K+π− and φ→ K+K−. Similar to the charm

measurement [135], this measurement was performed in two-dimensional bins of pT and y.
The mass distributions of the selected candidates for one of the pT and y bins are shown in

Fig. 3.14. The dominant systematic uncertainty comes from the tracking (2–9%) and trigger
(2–8%) efficiencies and finite size of the bins (0–19%); for B0 and B0

s the branching-ratio
uncertainties are also sizeable (≈ 10%).
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Figure 3.14: Invariant mass distributions of the se-
lected candidates from the LHCb measurement of
beauty production [148] for B+ in the range 4.5 <

pT < 5.0 GeV, 3.0 < y < 3.5 (top left), B0 in the
range 4.5 < pT < 5.0 GeV, 3.0 < y < 3.5 (top
right), and B0

s in the range 4.0 < pT < 5.0 GeV,
3.0 < y < 3.5 (bottom).

The measured cross sections, integrated over pT and y, are compared to the FONLL the-
oretical predictions in Figs. 3.15 and 3.16, respectively. Similar to the results of the charm
measurement [135], the FONLL calculations describe the data well within large uncertainties.
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Figure 3.15: Differential cross sections as a func-
tion of pT for B+ (top left), B0 (top right) and B0

s
(bottom) mesons from the LHCb measurement of
beauty production [148] compared to the FONLL
theoretical predictions.
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Figure 3.16: Differential cross sections as a func-
tion of y for B+ (top left), B0 (top right) and B0
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CHAPTER 4

Modification of the ZEUS Event Display

This Chapter describes the ZEUS Event Display (also referred to as Zeus Event Visualisation,
ZeVis) program and the modification of this program in the context of the data preservation
project at ZEUS. Section 4.1 gives an introduction to the purpose of the program. Section 4.2
explains the logic of the program. In Section 4.3 an example of the usage of ZeVis is given.
In Section 4.4 the ZEUS data preservation project — the reason for the modification of ZeVis
— is introduced; this overview is largely based on [149]. Section 4.5 contains a detailed
overview of the Common Ntuples based ZeVis functionality and can be used as a program
manual. Finally, Section 4.6 gives a short summary.

4.1 Introduction

ZeVis [150] is a program for the visualisation of ep collision data at ZEUS. The ZEUS ex-
periment, as all modern high energy physics experiments, stored information about particle
collisions in the format of events. Each event contains all signals from all sub-detectors and
is supposed to correspond to a single ep collision. Recorded events are the basic units for all
physics analyses done at ZEUS.

During its data-taking operation the ZEUS experiment stored about 500 million events. Such
an enormous amount of data can be analysed only using automatic powerful pattern recognition
techniques (sampling of events, reconstruction of basic physics objects like tracks, calorime-
ter clusters, combining information from different sub-detectors etc.). The event display is an
efficient tool for adjusting and checking these techniques by looking at single typical events, al-
though it is of course not able to produce a precise quantitative estimation of measurable physi-
cal quantities. Another purpose of the event display is producing pictures for talks and papers1,
which are intuitively understandable much better than sophisticated analysis techniques.

During the HERA-I period ZEUS used the Logical Access to ZEUS Events (LAZE) event
display [153]. LAZE was written mostly in FORTRAN in monolithic architecture. Further-

1 For instance, pictures obtained with ZeVis can be found in [151, 152].
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4 Modification of the ZEUS Event Display

more, it was a platform-dependent program not portable to Linux. The HERA-II period chal-
lenged the event-display development team with major changes in the ZEUS detector: new
STT, MVD and beampipe (see Section 3.1.2.1 for the description of the ZEUS detector) needed
to be visualised in the event display. A decision was taken to develop a new program: ZeVis.

4.2 Overview of ZeVis

ZeVis is written in C++ using ROOT libraries [154]. By its architecture it is a client-server ap-
plication. A user launches a lightweight (and easily portable) Client which contacts the ZeVis
Server to get information about the detector components and the requested events. Information
from the Server to the Client is transmitted via the http protocol in the format of ROOT files.
These ROOT files can be stored on the Client part and can be opened and re-displayed in sub-
sequent sessions without contacting the Server again. The architecture of ZeVis is shown in
Fig. 4.1; this program will be referred to as classic ZeVis.

ZeVis

Client

ZeVis

Server

Raw DATA

ZEUS Analysis

Software

http

Figure 4.1: The architecture of classic ZeVis.

The main idea behind such a structure was to separate the database with information about
detectors and stored events including the relevant routines for data access and basic reconstruc-
tion, known as the ZEUS Software, from the interactive visualisation part of the program. With
this scheme, after a new release of the ZEUS Software, changes are only needed to the ZeVis
Server, while the Client part of the program remains unchanged.

ZeVis can display:

• main detector components (Fig. 4.2; see Section 3.1.2.1 for the description of the ZEUS
detector):

– the tracking system: the MVD, CTD, FTD, RTD and STT;

– the calorimeter system: the CAL consisting of the FCAL, BCAL and RCAL, and
the BAC;

– the muon system: the MUON, BMUON and RMUON;

– the beampipe;

• “low-level” analysis information:

– hits in the tracking detectors (Fig. 4.3);
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– energy deposits in the calorimeter (Fig. 4.4);

– hits in the muon chambers (Fig. 4.5);

• “high-level” analysis information (typically several kinds of these objects, reconstructed
using different analysis techniques, are available):

– tracks and vertices (Fig. 4.3);

– ZEUS Unidentified Flying Objects (ZUFOs) and jets (Fig. 4.4);

– muons (Fig. 4.5).

4.3 Analysing events with ZeVis: example from ZEUS
Z0-boson analysis

As an example of how ZeVis can be used for visualisation of analysis techniques, the ZEUS
analysis “Production of Z0 bosons in elastic and quasi-elastic ep collisions at HERA” [155]
can be considered. Although the expected rate of events is low, it is a good benchmark process
for testing the Standard Model. Moreover, this was the first observation of Z0 production in ep
collisions.

The selected process is ep → eZ0 p(∗), where p(∗) stands for a proton (elastic process) or a
low-mass nucleon resonance (quasi-elastic process). The production of Z0 bosons was mea-
sured in the hadronic decay mode. Fig. 4.6 shows a LO diagram of the process. There were 3
main event-selection criteria:

• at least two jets with ET > 25 GeV and |∆φ j| > 2 rad were required, where ET is the jet
transverse energy and ∆φ j is their azimuthal difference (since the two leading jets from
the Z0-boson decays are expected to be nearly back-to-back in the XY plane);

• to select elastic (where the proton stays intact) or quasi-elastic (where it is transformed
into a nucleon resonance p∗) processes, the cut ηmax < 3.0 was used, where ηmax is the
pseudorapidity of the energy deposit in the calorimeter closest to the proton-beam direc-
tion with energy greater than 400 MeV (noise cut);

• to suppress low-Q2 NC and direct-PHP backgrounds, the RCAL veto cut ERCAL < 2 GeV
was used, where ERCAL is the total energy deposit in the RCAL.

To measure the cross section, the invariant mass, Mjets, distribution was calculated and fitted to
the sum of the signal and background templates. A more detailed description of the analysis
can be found in [155].

From all HERA data, 54 events were selected. They were all checked and studied in ZeVis.
One of the selected events is shown in Fig. 4.7. Two back-to-back high-ET jets are clearly
recognised from the ET (η, φ) distribution in the CAL cells; furthermore, they are also visible
on the ZR view (different projections available in ZeVis are described in Section 4.5.1). The
CAL layout on the ZR view allows for a clear recognition of the gap in the forward direction
and the energy veto in the RCAL. This demonstrates the principle of the effective usage of
ZeVis in physics analises.
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4.3 Analysing events with ZeVis: example from ZEUS Z0-boson analysis

XY View ZR View

XY View ZR View

Figure 4.3: CTD and MVD hits (top) and tracks (bottom) displayed in ZeVis.
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XY View ZR View

XY View ZR View

Figure 4.4: CAL hits (top) and ZUFOs and jets (bottom) displayed in ZeVis.
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4.3 Analysing events with ZeVis: example from ZEUS Z0-boson analysis

ZR View ZR View

ZR View ZR View

Figure 4.5: Muon hits (top) and muons (bottom) displayed in ZeVis.
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_

Figure 4.6: Example of a LO diagram of Z0-boson production and subsequent hadronic decay (into
quark q and antiquark q̄) in ep→ eZ0 p.
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Figure 4.7: One of the selected events from the Z0-boson analysis [155]. The transverse energy distri-
bution ET (η, φ) in the CAL sells (left) and ZR event view (right) are shown.
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4.4 ZEUS data preservation project

The data collected by high energy physics experiments are crucial for the understanding of par-
ticle physics. Among the many high energy physics projects HERA holds a special place, since
so far it was the world’s only ep collider. All of the HERA experiments were recently consoli-
dating their respective data analysis models, including finalising the data formats for preserva-
tion of the full HERA data [149]. The DESY Data Preservation Group (DESY-DPHEP) was
established in 2009, shortly after the global DPHEP initiative was launched2. The data preser-
vation effort aims to ensure long-term availability of the data after the end of the experimental
Collaborations. Data preservation increases the physics potential of experiments, allowing a
long-term data analysis, re-using and re-analyzing the data, combining results between experi-
ments and using the data for education, training and outreach purposes.

The different data preservation models established by the DPHEP group, organised in levels
of increasing benefits, complexity and cost, are shown in Table 4.1 [149].

Preservation Model Use Case
1. Additional information Publication related information
2. Provide data in simplified format Outreach, training
3. Preserve the analysis-level software and
data format

Full scientific analysis possible, based on
existing reconstruction

4. Preserve the full simulation and re-
construction software as well as the basic-
level data

Retain the full potential of the experimen-
tal data

Table 4.1: The DPHEP preservation modes listed in order of increasing complexity. The table is taken
from [149].

The ZEUS concept fits into the preservation models 3 and 4. The ZEUS analysis model
before the end of 2012 has been based on Mini Data Summary Tapes (MDST) and contained a
lot of external dependencies, therefore it was not intended to be maintained when the available
manpower was reduced. Therefore the ZEUS analysis software was used to create common-
usage ntuples (real and MC data). The ROOT-based Common Ntuple (CN) content has been
iterated over the last few years. By their structure CN are simple ROOT files with TTree
objects only. They contain the necessary information to perform all ongoing and planned future
analyses; all ongoing and most of the recently published analyses actively use them. Some low-
level information for unplanned new analysis approaches is also included. The resulting total
ntuple size is 10–20% of the size of the MDST data. Additionally a stand-alone MC package
using existing, frozen executables is also being provided to generate small additional MC sets
in the future, foreseeing developments in theory [149].

2 For more details about the DPHEP study group see [156, 157]
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4 Modification of the ZEUS Event Display

4.5 ZeVis based on Common Ntuples

In the context of the ZEUS data preservation project described in the previous Section 4.4 the
ZeVis program must fulfill the following requirements:

• it must be independent of the ZEUS Software;

• it must read information from the CN.

This in turn means that:

• the Server part is not needed anymore;

• ZeVis becomes a pure ROOT application.

The architecture of ZeVis based on the CN (referred to as CN-ZeVis) is shown in Fig. 4.8.

ZeVis

Client

ZeVis

Server

Raw DATA

ZEUS Analysis

Software

Common

Ntuples

Figure 4.8: The architecture of CN-ZeVis.

Since the CN does not contain all information that was in the MDST files, CN-ZeVis also
cannot display some things available in classic ZeVis. A list of information which can be
displayed in CN-ZeVis is provided in Appendix A.1. A standalone version of CN-ZeVis is
available also; it is described in Appendix A.2.

4.5.1 Overview

A user can start CN-ZeVis with the command zevis-cn (production version) or zevis-cn-dev
(development version). ZeVis works by having one main window (Fig. 4.9) which contains a
Canvas and several tabs. The Canvas is divided into two subpads supposed to display two
different event views. The tabs allow a user to interact with ZeVis: specify an event to dis-
play, change the way how it is displayed, switch on/off different ingredients of the detector or
event content. Additionally interaction with the program is possible using the context menu
(available with a right-button mouse click on the Canvas) and File, Edit, View_Option,
Special_Viewers and Option menus.

The purpose of the Events tab (Fig. 4.10) is to set an event to display. There are two ways
to specify an event:

• to specify the run number, event number and CN version (for DATA only);
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Figure 4.9: The CN-ZeVis main window.

• to specify the run number, event number and CN file (both for DATA and MC).

In the ZeVis Client a user can switch between these two regimes by using the Specify CN
file check button3. There are two suitable buttons Next Event and Prev. Event to display
either a next/previous available event with a larger/lower event number (if a CN file was not
specified) or a next/previous event in the specified CN file.

There are several projections available in ZeVis (Fig. 4.11) (the description of the ZEUS
coordinate system is given in Section 3.1.2.1):

• ViewXY: projection on the cartesian plane XY;

• ViewZR: projection Z vs. R, where R is defined as R = ±R = ±
√

X2 + Y2 with the sign
depending on the azimuthal angle φ of the object to be drawn: R = +R if φ1 < φ < φ2

and R = −R otherwise;4

• View3D: three-dimensional view;

• FishEye: projection on the cartesian plane XFYF , where the cartesian coordinates XF ,
YF are calculated from the transformed spherical coordinates ρF , φF after the transfor-
mation ρF =

ρ

1+aρ , φF = φ; here a > 1 is a predefined parameter.

A user can switch between different projections for each subpad using the context menu or the
Special_Viewers menu.

3 For MC it is mandatory to set the run number to 1. If one wants to display an event from MC it is recommended
to switch to the MC regime using the DATA-MC radio buttons: in this case the run number input field will be set
to 1 automatically and become inactive.

4 φ1 and φ2 can be specified with the SetPhiRange entry from the context menu.
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Figure 4.10: The Events (left), Event Options (middle) and Detector Options (right) tabs.

There are also some special projections to display the content of the CAL cells:

• Eta-Phi Energy Distribution (ViewET): pseudorapidity η vs. azimuthal angle φ en-
ergy distribution in the cells;

• Forward Theta-Phi.

They can be selected from the Special_Viewers menu.
To specify the information to be displayed a user uses the Event Options and Detector
Options (Fig. 4.10) tabs and/or the View_Option menu and/or the Event Settings button
(the last one will open a new Easy Tool window), which are self-explanatory. The changes
can be applied either to the current subpad or to the both subpads of the Canvas depending on
the Apply to: radio button. There is a small additional tab on the right from the main Canvas
suited for changing the zooming.

4.5.2 New features

In addition to the classic ZeVis functionality, several new features have been implemented in
CN-ZeVis by the author:

• processing an event list;

• batch mode;

• support for “private mini-ntuples”;

• analysis-specific tracks and vertices;
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Figure 4.11: Different projections available in ZeVis: ViewXY (top left), ViewZR (top right), View3D
(bottom left), Eta-Phi Energy Distribution (bottom right).
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• MVD standalone TRKMSA tracks;

• using a constant magnetic field for displaying track helices;

• possibility to change the ZeVis style;

• zooming of the selected area;

• access CN on dCache from outside DESY using a Grid proxy.

They are described in Appendix A.3.

4.6 Summary

The ZeVis program has been modified in the context of the ZEUS data preservation project to
become independent of the ZEUS Software. The new CN-ZeVis, based on Common Ntuples,
is a pure ROOT application. While CN-ZeVis provides the main functionalities, which were
available in classic ZeVis, it does not require any maintenance. In addition, several new features
have been implemented in CN-ZeVis.
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CHAPTER 5

Measurement of D+ production

This Chapter is devoted to the measurement of D+-meson production with the ZEUS detector
at HERA. This is one of the charm-tagging techniques (see Section 3.1.3), based on the full re-
construction of final-state charm hadrons, which crucially depends on the precise tracking and
vertexing near the beampipe. Combinatorial background can be significantly suppressed by ap-
plying a cut on lifetime information. The previous ZEUS measurement of D+ production [138]
was performed using 134 pb−1 of data from 2005. It has demonstrated the high potential of this
tagging method, although was not really competitive in precision to other ZEUS charm mea-
surements, e.g. [136]. The present measurement benefits from ≈ 2.5 times larger data sample
and improved tracking allignment.

Results presented in this Chapter were obtained by the author as the second analysis (a cross
check, independent from the primary analysis) in the ZEUS Collaboration. Partially these
results were described in the previous master diploma [158] of the author and, independently,
in the PhD dissertation [159] of the primary analyser. The results were published by the ZEUS
Collaboration [139]. Finalisation of the analysis was part of the work for this thesis.

Section 5.1 explains general aspects of the event reconstruction in ZEUS, relevant for the
present analysis; because the author was not involved in the development of any of these re-
construction techniques, it has rather an overview style and is largely based on [98, 159].
Section 5.2 describes the selection of DIS events. Section 5.3 introduces the technique of
MC simulations and provides information on MC samples, used in the analysis. Section 5.4
describes the reconstruction and selection of D+ candidates, while Section 5.5 explains the
procedure of the separation of these candidates into the D+ signal and background. Section 5.6
describes the cross-section determination procedure and all applied corrections. Details of
the theoretical calculations are given in Section 5.7. Finally, results of the measurement are
reported in Section 5.8, while Section 5.9 gives conclusions.

63



5 Measurement of D+ production

5.1 Event reconstruction

Each single ep collision is referred to as an event. Events passed the TLT were written to tape
as raw data in the form of signals from all sub-detectors (see Section 3.1.2.1 for the description
of the ZEUS detector). These data were used offline to reconstruct general characteristics
of events which correspond to signatures of physical objects (particles, jets etc.). Below the
reconstruction of tracks (Section 5.1.1), vertices (Section 5.1.2), hadronic final-state system
(Section 5.1.3) and DIS kinematic variables (Section 5.1.4) is described.

5.1.1 Tracking

A track is the trajectory of a charged particle in the detector. It depends not only on the inho-
mogeneous magnetic field, but also on energy loss and multiple scattering in the material; thus
the reconstruction of tracks is a complicated task. The approach adopted in ZEUS made use
of the Kalman filter [160] and offered a rigorous treatment of all factors which affect particle
trajectories [161].

5.1.1.1 Kalman filter algorithm

The Kalman filter algorithm [160] is an iterative procedure for the reconstruction of tracks
from the measured hits1. It reconstructs tracks from the outermost point of the tracking system
to the origin. Unlike other global methods which fit all the measurements to a single set of
track parameters, the Kalman filter causes the track to “follow the measurements” through the
detector [163]. A detailed description of the procedure can be found in [160] and an extended
review of its properties and advantages can be found in [163]. Briefly summarising the most
important features [163]:

• the Kalman filter method uses all the information and cannot, if used correctly, give
poorer track parameters by adding more measurements. Including additional hits would
not result in an increase in the uncertainty of the track parameters, unlike many other
track fitting methods;

• because the algorithm traces the track backwards, the parameters on the outer part of the
track are much more poorly determined than the ones on the inner part. Although this
benefits the analysis since accuracy at the production vertex is vital, it means that the
projection of the track to the outer region can be unreliable;

• the method can easily deal with gaps in which there are no measurements;

• the iterative nature of this procedure allows tracks to be fitted in pieces, e.g. tracks can
be found and fitted in the drift chambers and then projected to the silicon detector with
the full covariance matrix so that the silicon hits can be added to the fit trivially without
having to redo the entire fit.

1 Description of the ZEUS hit reconstruction procedure can be found in [162].
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5.1.1.2 ZTT tracks

In this analysis the so-called ZTT tracks were used, which combined the information from the
CTD and MVD and therefore are the most precise [159]. Tracks were reconstructed in two
stages:

• pattern recognition. The first stage was performed in multiple steps by the VCTRACK
package [162, 164]. It started from the outermost tracking detector layer, which was the
9th CTD superlayer for the central region, where the track density was lower than close
to the interaction point. Combinations of three CTD hits from axial CTD superlayers
formed the tracking seeds. A track seed was extrapolated inward, gathering additional
hits with increasing precision as the trajectory parameters were updated. A very broad
“virtual” hit was added at the beam line to guide the trajectory. After a “road” of hits
from the CTD through the MVD to the interaction point has been created, a least-squares
fit of the track was done using the selected hits on the road in order to determine the
helix parameters at the beginning of the helix. In general the tracking reconstruction
was not restricted to tracks with hits in all tracking devices; the so-called CTD-only and
MVD-only tracks have hits in only one sub-detector;

• trajectory refinement. A track fit was performed with the Kalman filter to improve the
precision of the helix parameters in the vicinity of the interaction point. As input it took
the fit output from the pattern recognition stage. The track fit was applied recursively in
three steps: prediction, filtering and smoothing. At the prediction step, the present state i
hits (i.e. hits that have already been used for the trajectory estimation) was used to predict
the position of the next (i + 1)th hit on the next detector sensor (which could be a CTD
wire or an MVD sensor). At the following filtering step the predicted and the measured
values for the (i + 1)th hit positions were combined. At the last step a smoothing of the
whole trajectory was performed and the covariance matrix was updated.

The Kalman filter examines the hits individually, whereas the least-squares fit evaluates all hits
simultaneously. Removing wrong hits from the least-squares fit requires all fits to be redone
from the start, which results in a large calculation time as the number of hits increases. There-
fore the effect of multiple scattering on a trajectory was easier to incorporate in the Kalman
filter fit. Detailed information on the mathematical framework of the track fitting with the
ZEUS detector is provided in [161]. The parametrisation of tracks, used in ZEUS, is described
in Appendix B.3.

5.1.2 Vertexing

A vertex is the point where an interaction or decay happened. The evaluation of vertices serves
two purposes [165]. The first is to evaluate the position of the primary ep interaction point
and to calculate the appropriate track momenta at that point with improved precision due to the
vertex constraint. The second purpose of using vertices is to estimate the probability that the
tracks originate from a certain vertex. This probability might be estimated from the vertex fit
quality (e.g. the χ2 of the vertex fit) and used for the event selection. The essential information
that is used in the fit consists of track parameters and their covariance matrices.
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5 Measurement of D+ production

Proper identification of both the primary point of interaction and the D+ decay vertex in an
event was of particular importance for this analysis. Their position was reconstructed first with
the VCTRACK package and further refinement was applied later [159].

The vertex pattern recognition started with a loose constraint that the primary vertex should
be found along the proton-beam line. Track pairs, that were compatible with this soft constraint
as well as with a common vertex, were combined with other track pairs. The final choice of the
primary-vertex position after the pattern recognition stage was the vertex with the best overall
χ2. To improve the precision of the vertex-position measurement, the Deterministic Annealing
Filter (DAF) [166] was used. The main feature of the DAF algorithm is that tracks with the best
quality get the largest weight in the fit, while tracks that are far from the vertex get the smallest
weight in the fit [165]. In the chosen approach the vertex position was measured iteratively by
calculating a weighted sum of the χ2 contributions from individual tracks to the vertex [159].

For the primary-vertex fit, a further improvement in precision was possible by the introduc-
tion of a constraint on the vertex position to be close to the averaged interaction point, the
beamspot. The beamspot was defined as the overlap region of the colliding beams. It had a
width of roughly 80 × 20 µm in the XY plane [167], but it was too large in the Z direction to
use this information as a constraint [159].

In the case of secondary vertices, e.g. the D+-decay vertex, the fit was made with the same
algorithm skipping the step of the pattern recognition, since the combination of tracks was cho-
sen based on its compatibility with the D+ mass. For each secondary vertex, the corresponding
reduced primary vertex was recalculated removing the secondary-vertex tracks and repeating
the standard primary-vertex fit [159].

5.1.3 Hadronic final states

To get the most precise hadronic energy measurement, information from the calorimeter and
the tracking detectors was combined into the so-called ZEUS Unidentified Flying Objects (ZU-
FOs) [168].2 Ideally each ZUFO was supposed to represent one final-state particle. The energy
resolution of the CAL developed for higher particle energies asσ(E)/E ∼ 1/E, while the track-
ing momentum resolution, parametrised by σ(pT )/pT = apT ⊕ b ⊕ c/pT , gave a better energy
estimate for lower particle momenta (see Section 3.1.2.1). For neutral particles, only CAL
information could be used, whereas for charged particles the tracking information was mainly
used below 10 GeV while calorimeter energy was used for higher energies.

ZUFOs were constructed in the following steps:

• CAL cells were clustered into two-dimensional cell islands. A cell with lower energy
deposit was connected to a cell with higher energy. The combination algorithm provided
a unique association of a cell to its highest energy neighbour. This algorithm was run in
each calorimeter part separately;

• the cell islands from the previous stage were used as an input to clustering in (θ, φ)
space. The procedure started from the outermost layer of the CAL and went inward by
calculating the angular separation between neighbouring cell islands. The separation was

2 ZUFOs are also referred to as Energy Flow Objects (EFOs) in ZEUS publications.
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5.1 Event reconstruction

used to associate the input islands together to form three-dimensional energy clusters
called cone islands. The position of a cone island was determined by the logarithmic
centre-of-gravity of the energy deposit;3

• charged tracks, that have been fitted to a vertex and passed certain requirements, were ex-
trapolated to the surface of the CAL taking into account the magnetic field. The selected
tracks should fulfill the following requirements:

◦ 0.1 < pT < 20 GeV for tracks with hits in at least 4 CTD superlayers;

◦ 0.1 < pT < 25 GeV for tracks with hits in at least 7 CTD superlayers.

A track and a cluster were matched if either the distance of the closest approach between
the track and the position of the cone island was less than 20 cm or the track was within
the area of the island. As a result of this procedure, groups of cone islands and tracks —
ZUFOs — were formed;

• the combination of the information from the CAL and the tracking system was carried
out in the following way:

◦ if one track has been matched to one cone island, the ZUFO energy was taken either
from the CAL cluster or from the matched track momentum, depending on which
measurement had better resolution;

◦ for good tracks that have not been associated to islands, the energy was derived from
the momentum measurement with the assumption that the particle was a charged
pion;

◦ cone islands that have not been matched to any track were treated as neutral particles
and the CAL energy was used;

◦ cone islands with more than three associated tracks were treated as jets and the
energy was taken from the CAL;

◦ if a track has been matched to multiple islands or two tracks have been matched to
one or two islands, the algorithm was similar to the one-to-one matching, but using
the sum of energies or momenta instead.

Further corrections were applied to account for the material budget of the detector, the in-
efficiency in the regions of cracks between the CAL sections, the presence of muons4 and the
imbalance in the compensation effect for low momentum (∼ 1 GeV) hadrons. Detailed infor-
mation on the ZUFO reconstruction can be found in [168]. In this analysis the reconstructed
ZUFOs have been used to determine the kinematics of the hadronic system as well as DIS
kinematic variables (see Section 5.1.4).

3 Using logarithmic weights instead of the linear sum took into account the exponential falloff of the transverse
shower energy distribution from the shower maximum.

4 Muons did not release all their energy in the CAL, thus if the CAL information was used the energy would be
underestimated.
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5 Measurement of D+ production

5.1.4 Scattered-electron identification and reconstruction of
kinematic variables

The identification of the scattered electron is essential for the NC DIS event selection. The
scattered electron leaves a clear signature which differentiates the NC DIS events from the CC
DIS, where the neutrino escapes undetected, and PHP, where the scattered electron escapes
through the beam hole. There have been two main electron finders developed in ZEUS: the
neural-network-based SINISTRA95 (also referred to just as SINISTRA) [169] and the prob-
abilistic EM [170]. The former was tuned for the kinematic region of the measurement pre-
sented in this thesis, whereas the latter was better for the high-Q2 region, where the electron
was reconstructed in the BCAL.

A scattered electron passing through the CAL created an electromagnetic shower, therefore
most of its energy was measured in the EMC with a small leakage in the HAC. SINISTRA
started from the search of the cells with maximum energy deposits to form candidate clusters.
These clusters were formed using the next-to-nearest neighbour algorithm on CAL towers to
produce islands and then merging the islands from different CAL sections; this algorithm al-
lowed diagonal associations in contrast to the nearest neighbour algorithm used for ZUFOs
(see Section 5.1.3). The position of the energy deposit within a cell was reconstructed from
the imbalance of the two readout photomultipliers in the cell. These energy deposits were
used to calculate the longitudinal- and transverse-energy distributions in the original shower
and this information was passed to the neural network. The neural network had been trained
using MC simulated hadronic and electromagnetic clusters in the RCAL. As an output SIN-
ISTRA returned a number between 0 and 1, which represents the probability of the cluster to
be the scattered electron. In the following only the candidate with the highest probability was
considered. The identified electron was assigned the energy of the reconstructed CAL cluster.

After the reconstruction of the scattered electron and the hadronic system in an event, the
kinematic variables Q2, x and y, introduced in Section 2.1.1, can be calculated. There were
several methods, described below.

5.1.4.1 Electron method

The electron method (el) used only the electron energy and scattering angle. The kinematic
variables were calculated as follows:

Q2
el = 2EeE′e(1 + cos θe),

yel = 1 −
E′e

2Ee
(1 − cos θe),

xel =
Q2

el

syel
,

(5.1)

where Ee is the incoming electron energy (which is known a priori), E′e and θe are the scattered-
electron energy and angle, respectively. This method relies strongly on the measurement of the
electron energy and position. Because of the characteristics of the ZEUS detector it is more
precise in the rear region, therefore it is optimal at low Q2. In addition this method is strongly
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5.1 Event reconstruction

affected by initial- and final-state photon radiation, which spoils the measurement of the lepton
energy and leads to deterioration of the results.

5.1.4.2 Jacquet-Blondel method

The Jacquet-Blondel method (JB) relied exclusively on the reconstruction of the hadronic final
state [171]. The kinematic variables were calculated as follows:

yJB =
δhad

2Ee
,

Q2
JB =

P2
T had

1 − yJB
,

xJB =
Q2

JB

syJB
,

(5.2)

where PT had and δhad are given by

PT had =

√∑
i

(Pi
x had)2 + (Pi

y had)2,

δhad =
∑

i

(Ei
had − Pi

z had),
(5.3)

where (Pi
x had, Pi

y had, Pi
z had, Ei

had) is the four-momentum of each hadronic final state and the
sum goes over all hadronic energy, excluding the scattered electron, if any. The advantage of
this method is that it does not require the scattered electron to be detected and thus can be used
in PHP or CC events, although it has poor Q2 resolution in DIS events.

5.1.4.3 Double-angle method

The double-angle method (DA) combined information from the scattered electron and the
hadronic system [172, 173]. The kinematic variables were calculated as follows:

Q2
DA = 4E2

e
cot(θe/2)

tan(θe/2) + tan(θhad/2)
,

yDA =
tan(θhad/2)

tan(θe/2) + tan(θhad/2)
,

xDA =
Q2

DA

syDA
,

(5.4)

where θhad is the hadronic angle, defined as

tan(θhad/2) =
δhad

PT had
. (5.5)
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This method exploits the fact that the angular resolution for the hadronic system is usually
better than the angular resolution for the scattered electron, while for energy it is vice versa.
Thus the DA method leads to a more precise measurement of the kinematic variables in a large
part of the phase space and was chosen as the main one for the present analysis [159].

5.2 DIS event selection

The measurement used the full HERA-II data with an integrated luminosity 354 pb−1. Both
electron–proton and positron–proton data were used, because the charm NC DIS cross sections
at not too high Q2 are invariant with respect to the lepton charge. The DIS kinematic region of
the measurement was restricted to 5 < Q2 < 1000 GeV2 and 0.02 < y < 0.7, where reliable
reconstruction of the scattered electron was possible with the ZEUS detector after the HERA-II
high-luminosity upgrade [105].

The selected events had to be triggered online by one of the inclusive DIS TLT slots:

• SPP02 for the 2004–2005 data period, or

• SPP09, or HFL17, or HPP31 for the 2006–2007 data period.

A detailed description of the TLT slots can be found in [174]. Furthermore to ensure selection
of good DIS events, the following cuts were applied offline:

• 5 < Q2
DA < 1000 GeV2, 0.02 < yDA < 0.7. These criteria selected the considered DIS

phase space;

• E′e > 10 GeV. The requirement ensured high efficiency of SINISTRA and rejected pos-
sible background PHP events with “fake” scattered electrons;

• Econe
non e < 5 GeV, where Econe

non e is the energy deposit in the CAL in the cone centered around
the scattered electron with a radius of 0.8 in the (η, φ) plane, not originating from it. This
cut is known as the electron isolation and was supposed to improve further the quality of
the scattered-electron reconstruction;

• probSINISTRA > 0.9, where probSINISTRA is the output of the SINISTRA neural network.5

This selection further ensured high efficiency in SINISTRA;

• yJB > 0.02. This requirement rejected events with the poorly reconstructed hadronic
system, for which the DA method was not precise;

• 40 < δhad < 65 GeV. The lower cut reduced the PHP contamination (when the scat-
tered electron was not detected) and the upper cut rejected events initiated by cosmic-ray
particles;6

5 Despite the notation, it is not the probability in its mathematical meaning.
6 For a fully contained NC event, δhad = 2Ee = 55 GeV.

70



5.3 Monte Carlo simulations

• −30 < Zvtx < 30 cm, where Zvtx is the Z coordinate of the primary vertex. This require-
ment rejected events initiated by beam-gas and satellite-bunch interactions;

• a set of cuts on the geometric position of the scattered electron in the CAL (xe′ , ye′ , ze′),
to remove events, in which the scattered electron passed through the regions of the CAL
poorly simulated in Monte Carlo; note that these cuts are quoted as exclusion cuts, i.e.
the events were removed if they satisfied any of the criteria:

◦ |xe′ | < 13 cm and |ye′ | < 13 cm. This requirement is known as the box cut and
removed the edges of the CAL;

◦

√
x2

e′ + y2
e′ > 175 cm. This cut rejected the region between the RCAL and BCAL;

◦ −104 < ze′ < −98.5 cm or 164 < ze′ < 174 cm. This requirement is known as the
super-crack cut and removed the regions of cracks between the RCAL, BCAL and
FCAL;

◦ 6.5 < xe′ < 12 cm and ye′ > 0, or −14 < xe′ < −8.5 cm and ye′ < 0. This requirement
is known as the module-gap cut and removed the region of gaps between halves of
the RCAL;

◦ |xe′ | < 12 cm and ye′ > 80 cm. This requirement is known as the chimney cut and
removed the region of the RCAL where cooling tubes and supply cables for the
solenoid were mounted;

◦ in addition, for a subset of the data with the run ranges 59600–60780, 61350–61580,
61800–63000 the region 11 < xe′ < 27 cm and 10.5 < ye′ < 27 cm was removed,
which was not described by the Monte Carlo simulations.

5.3 Monte Carlo simulations

Any detector has its own response to underlying physics processes. This results in a limited
acceptance, which should be taken into account for any measured cross section. To model a
detector response the Monte Carlo (MC) [175] method is widely used.

5.3.1 Technique of MC simulations

MC simulations are performed in two stages:

1. simulation of underlying physics. This stage is performed using some MC generator,
which produces a list of all particles in the final state, which are considered to be stable;7

2. simulation of detector response. At this stage the simulated particles pass through a
detector simulation.

7 i.e. which reach the detector and interact with its material.
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5 Measurement of D+ production

5.3.1.1 Simulation of underlying physics

In the generation of MC events the QCD factorisation theorem [25, 81–85] is exploited to
separate short- and long-distance effects. In Fig. 5.1 it is illustrated considering an example of
a BGF event (see also Fig. 2.8 for the BGF diagram):

• simulation of the hard scattering. Usually it is calculated at LO;

• radiation corrections (referred to also as parton showers) are modelled using some phe-
nomenological models. The difference between the fixed-order NLO calculation and LO
accompanied by parton showers is that the latter better reproduces the whole final state
(the event shape), which is important for the correct simulation of the detector response,
while the former gives a better description of inclusive quantities;8

• hadronisation is the non-perturbative QCD process of the formation of colourless hadrons
from coloured partons. It is performed by using some phenomenological models;

• particle decays. Decays of unstable particles are simulated accordingly to supplied de-
cay tables.9

Examples of event generators commonly used in ZEUS are PYTHIA [176], ARIADNE [177],
RAPGAP [178] etc.

5.3.1.2 Simulation of detector response

After the simulation of underlying physics processes, final-state particles are passed through a
simulated detector. Simulation of the ZEUS detector was performed in the MOZART program,
which is based on GEANT 3.21 [180]. Furthermore, generated events were passed through the
simulated ZEUS trigger system and the reconstruction program ZEPHYR. More details on
the ZEUS MC production system can be found in [159]. Finally, MC events were written
to tape as regular data and processed by the same reconstruction and selection algorithms,
although they contain additional information on generated particles, referred to as generated,
or true information. However, the procedure of matching between generated particles and
reconstructed ones has some complications (see Section 5.6.1.2).

5.3.2 MC samples

In the present analysis the following MC samples have been used:

• the RAPGAP charm DIS MC sample was the main sample used to determine acceptance
corrections. MC events were simulated with the RAPGAP 3.00 [178] program, interfaced
with HERACLES 4.6.1 [181] to incorporate first-order electroweak corrections. The
CTEQ5L [182] PDFs were used for the proton;

8 NLO calculations are much more complicated to be matched with parton showers. NLO accompanied by parton
showers MC generators were never used in ZEUS.

9 Some relatively long-lived particles (typically pions, kaons, muons) are usually considered as stable in an MC
generator, since they interact with a detector directly.
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5.4 Reconstruction and selection of D+ candidates

Figure 5.1: Stages of physics simulation in MC for the BGF process. The figure was taken from [179].

• the RAPGAP beauty DIS MC sample, similar to the previous one, was used to estimate
the contribution to D+ production from decays of beauty hadrons;

• the RAPGAP charm DIS MC without QED radiation was used to correct the measured
cross sections to the QED Born level;

• the ARIADNE inclusive MC sample was used for simulation of combinatorial back-
ground and optimisation of selection cuts;

• the PYTHIA PHP MC sample was used to estimate the contribution from PHP events.

5.4 Reconstruction and selection of D+ candidates

The D+ mesons were reconstructed in the decay channel D+ → K−π+π+. The underlying
principle of a full final-state reconstruction is to make combinations of all tracks with proper
charges, reconstruct, if possible, the secondary vertex (a place where the decay happened), re-
fit the considered tracks to this vertex, thus improving their reconstruction, and to calculate the
invariant mass, M(Kππ), using the energy and momentum conservation rules, implying a given
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5 Measurement of D+ production

mass hypothesis; if it is found to be close to the mass of the analysed hadron, the combination
is considered as a candidate. The tracks from the selected combinations are referred to as
daughter tracks.

Inherently such a method leads to the presence of large combinatorial background, which
is initiated from combinations of tracks not originating from the analysed hadron channel (or
from wrongly combined daughter tracks). In order to suppress this background, additional cuts
on the parameters of the daughter tracks and the quality of the secondary-vertex reconstruction
can be applied.

The measurement was performed in the D+ phase space 1.5 < pT (D+) < 15 GeV, |η(D+)| <
1.6. At lower values of pT (D+) the combinatorial background increases drastically, making the
signal determination impossible, while at higher values of pT (D+) the production cross section
becomes too small to be measured with the available integrated luminosity.10 The η(D+) range
is determined by the coverage of the tracking system, since all daughter tracks have to be
detected and well reconstructed.

This Section starts from a description of the selection of the secondary vertices (Section 5.4.1);
then all selection criteria for D+ candidates are given (Section 5.4.2).

5.4.1 Selection of secondary vertices

The relatively long lifetime of D+ mesons, cτ(D+) = 311.8 ± 2.1 µm [183], makes it possible
to reconstruct their secondary vertices with the MVD. Important characteristics of the recon-
structed secondary vertices (Fig. 5.2) include:

• χ2 of the secondary-vertex fit, χ2
sec vtx;

• the decay length, defined as the distance between the primary and secondary vertices;

• the uncertainty on the decay length;

• the collinearity of the directions from the primary to the secondary vertex and the D+

momentum.

The most efficient way of using the lifetime information is to combine the last three quantities
into the projected decay-length significance (also referred to as just the decay-length signifi-
cance), S l, defined as the ratio of the decay length, projected on the XY plane and on the D+

momentum, to the uncertainty on this quantity:

S l =
lXY

σlXY

, (5.6)

where lXY is the projected decay length, defined as

lXY =
(~S XY − ~PXY) · ~p(D+)

pT (D+)
(5.7)

10 An extension of the D+ measurement to the kinematic region pT (D+) < 1.5 GeV is presented in Appendix B.2
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5.4 Reconstruction and selection of D+ candidates

and σlXY is the uncertainty on lXY. Here ~PXY and ~S XY are the vectors pointing to the primary
and secondary vertices, respectively, and the · sign denotes a scalar product. The projection on
the XY plane was used because the resolution of the vertex position was most precise in the
transverse plane.

Figure 5.2: Production and decay of a D+ meson. The figure was taken from [159].

The optimal cuts on S l and χ2
sec vtx were determined by maximising the statistical significance

of the mass peak, S P, defined as the ratio of the signal to its statistical uncertainty, assuming a
Poisson distribution:

S P =
S

√
S + Bg

, (5.8)

where S is the number of candidates in the signal peak and Bg is the number of candidates in
the background, where the region of the signal peak is defined within three standard deviations.
The study was performed on the inclusive ARIADNE MC sample. The dependence of S P on a
lower cut on S l and an upper cut on χ2

sec vtx is shown in Fig. 5.3. The determined optimal cuts
are:

• S l > 4,

• χ2
sec vtx < 10.

5.4.2 Selection of D+ candidates

To ensure the selection of well reconstructed D+ candidates and to improve the signal-to-
background ratio, the following cuts were applied:

• 1.5 < pT (D+) < 15 GeV, |η(D+)| < 1.6, to select the D+ phase space;
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5 Measurement of D+ production

Figure 5.3: The statistical significance of the mass peak as a function of a lower cut on the decay-length
significance (left) and χ2 of the secondary vertex (right).

• S l > 4, χ2
sec vtx < 10, to reduce the combinatorial background, as explained in Sec-

tion 5.4.1;

• lXY < 1.5 cm, to ensure that selected secondary vertices were inside the beampipe, thus
did not originate from interactions with the beampipe or detector material;

• pT (K) > 0.5 GeV, pT (π) > 0.35 GeV, to further reduce combinatorial background while
still keeping the detector acceptance at a reasonable level at low pT (D+);

• |η(K, π)| < 1.75, to ensure the selection of well reconstructed daughter tracks;

• each track should have at least two MVD hits in both the Z and φ directions and pass
through at least three CTD superlayers, to improve further the quality of the daughter
tracks;

• the mass difference ∆M = M(Kππ) − M(Kπ) should not be within 0.143 < ∆M <
0.148 GeV, to reduce background from D∗+ mesons decaying in the “golden” channel
(see Section 3.1.3), which result in identical final states;

• the invariant mass of a combination of the kaon and any of two pion daughter tracks as-
suming that they are kaons, M(KK), should not be within 1.0115 < M(KK) < 1.0275 GeV.
This cut reduced background from D+

s mesons decaying in the channel D+
S → φπ+ with

subsequent φ→ K−K+, which result in similar final states with an asymmetric mass peak
(a so-called reflection).

An example of an event with a selected D+ candidate, displayed in ZeVis, can be found in
Appendix A (Fig. A.2 top).
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5.5 Extraction of D+ signal

5.5 Extraction of D+ signal

Fig. 5.4 shows the invariant mass distribution M(Kππ) of the selected D+ candidates. For
comparison, the same distribution selected without the cuts on the decay-length significance
and χ2 of the secondary vertex is also shown. The applied cuts on S l and χ2

sec vtx improved the
statistical significance by a factor of 3 (a similar conclusion can also be drawn from Fig. 5.3).
To extract the number of reconstructed D+ mesons, the mass distribution was fitted with a
function

F(M) = Fsignal(M) + Fbackground(M), (5.9)

where the signal component, Fsignal(M), is given by a modified Gaussian function:

Fsignal(M) = C exp[−0.5X1+1/(1+βX)], X =
M − M0

σM
, β = 0.5 (5.10)

and the background component, Fbackground(M), is given by a second-order polynomial. The
signal position, M0, the peak width, σM, as well as the signal normalisation parameter, C,
and parameters of the background component were free parameters in the fit. The fit was
performed using the least-squares method as implemented in the MINUIT package [184]. As
the expectation values in the χ2-function, the integrals of the fit function within each bin of
M were used. To account for possible non-linearities, the fit uncertainty was calculated as the
average of the positive and negative fit uncertainty, obtained with the MINOS algorithm [185].

The number of D+ mesons yielded by the fit is N(D+) = 8356 ± 198. The fitted position
of the peak is M0 = 1868.97 ± 0.26 MeV, where only the statistical uncertainty is quoted,
consistent with the PDG value of 1869.62 ± 0.15 MeV [183]. The peak width is σ = 12.2 ±
0.3 MeV, driven by the momentum resolution of the detector.
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Figure 5.4: Mass distribution of the reconstructed D+ candidates after final selection (left), and with-
out the cuts on the decay-length significance and χ2 of the secondary vertex (right). The solid curve
represents a fit to the sum of a modified Gaussian for the signal and a second-order polynomial for the
background.
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5.6 Cross-section determination

By definition, the cross section for a given process, σ, is determined as the ratio of the number
of events, N, to the integrated luminosity, L:

σ =
N
L
. (5.11)

In the present measurement, further corrections to the definition 5.11 come from the branch-
ing ratio, B(D+ → K−π+π+) = 9.13 ± 0.19% [183], the acceptance correction,A, the radiative
correction, Crad, and the contribution from beauty-hadron decays:

σ =
NDATA − Nreco

MC b

ALB
· Crad, (5.12)

where NDATA is the number of the reconstructed D+ mesons in the data and Nreco
MC b is the number

of D+ mesons from beauty-hadron decays, as predicted by RAPGAP. The latter was addi-
tionally scaled by 1.6, an average value which was estimated from previous ZEUS measure-
ments [186–188] of beauty production in DIS. The radiative corrections were applied to correct
the measured cross sections to the QED Born level; more details on their calculations can be
found in [159]. The determination of the acceptance corrections is described in Section 5.6.1.

The differential cross section as a function of a given observable, Y , in the ith bin was deter-
mined as

dσ
dY

=
NDATA − Nreco

MC b

ALB∆Yi
· Crad, (5.13)

where ∆Yi is the width of the ith bin.

5.6.1 Acceptance correction

MC simulations were used to determine efficiency, E, purity, P, and acceptance A. For the ith

bin these quantities are defined as

Ei =
Ngen

i
⋂

Nrec
i

Ngen
i

,

Pi =
Ngen

i
⋂

Nrec
i

Nrec
i

,

Ai =
Ei

Pi
=

Nrec
i

Ngen
i

,

(5.14)

where Ngen
i and Nrec

i are the numbers of the signal events, generated and reconstructed in the
ith bin, respectively. The notation Ngen

i
⋂

Nrec
i in the numerators means that events must be

generated and reconstructed in the same bin. Therefore, the efficiency is the portion of events
generated in a given bin, that were also reconstructed in the same bin; it determines the de-
pendence of the measurement on the MC simulations. The purity is the portion of events
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reconstructed in a given bin, that were also generated in the same bin; it determines the level of
migrations of events to different bins. Finally, the acceptance determines the correction from
detector to generator level required to calculate the cross section.

5.6.1.1 Comparison of data to MC

To get the correct acceptance, the MC simulations must describe the shapes of all kinematic
variables in the data. Indeed, the acceptance determined from the MC and integrated over some
variable, x, is given by:

A =
1
σtot

∫
A(x)

dσ
dx

dx,

σtot =

∫
σ(x)dx,

(5.15)

where the integration is performed over the full range of the variable x,A(x) is the acceptance
at a fixed value of x and dσ

dx is the differential cross section as a function of x. The correct
detector simulation guarantees the correct value of A(x), although dσ

dx is the generator-level
cross section, thus even for correct A(x) at all x, incorrect dσ

dx will lead to an incorrect total
acceptanceA.

Therefore the differential distributions of kinematic variables from the MC simulations and
from the data were compared to each other; these comparison plots are referred to as con-
trol plots. Since the MC simulations usually describe the shapes of kinematic distributions
reasonably, but not the normalisation, and moreover acceptance does not depend on the MC
normalisation, the MC distributions are re-normalised to the data. To estimate the goodness of
the description, for each control plot the χ2/ndof were calculated as follows:

χ2/ndof =
1

ndof

∑
i

(NDATA
i − NMC

i )2

σDATA
i

2
+ σMC

i
2 , (5.16)

where the sum goes over all bins, NDATA
i and NMC

i are the number of signal events in the ith bin
in the data and MC, respectively, σDATA

i and σMC
i are the corresponding statistical uncertainties

on NDATA
i and NMC

i , respectively, and ndof is the number of bins minus one11.
Fig. 5.5 shows the control plots for pT (D+), η(D+), Q2 and y. The data are compared to

the sum of charm and beauty MC; the beauty contribution was scaled by 1.6 [186–188], while
the charm contribution was re-normalised to the difference between the data and re-scaled MC
beauty.12 The beauty contribution is shown separately; typically it is below 5%. More control
plots can be found in Appendix B (Fig. B.3). The MC does not describe well the shapes of
pT (D+), η(D+) and Q2, thus the generator-level MC cross sections had to be reweighted.13 The
reweighting procedure is described in Section 5.6.1.3.

11 Because of re-normalisation of MC to the data.
12 This procedure corresponds to the measurement of charm production, when the beauty contribution is assumed

to be known a priori.
13 For a single correction one should say rather “weighting”, but the term “reweignting” is much more convenient

and will be used in this work. Moreover, this is not a single correction applied to MC in the analysis.
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Figure 5.5: Control plots for pT (D+) (top left), η(D+) (top right), Q2 (bottom left) and y (bottom right).
The data are shown as points, with bars representing the statistical uncertainty. The sum of charm and
beauty MC is shown as the light shaded area; the beauty contribution is shown separately as the dark
shaded area.

Fig. 5.6 shows control plots for S l and χ2
sec vtx, obtained before applying the cuts on these

quantities. MC simulations describe these distributions well. This fact is of crucial importance,
because the detector acceptance steeply depends on the cuts applied on S l and χ2

sec vtx, so that
an incorrect simulation of their shape would lead to large systematic uncertainty; this was the
dominant systematic uncertainty in the previous analysis [138], performed with an inferior
tracking alignment and calibration.

5.6.1.2 Data to MC matching

A general rule of the MC reweighting approach is that the kinematic weights must be applied at
the generator level only. This is straightforward for reweighting in inclusive event quantities,
e.g. Q2, although it becomes complicated if the shapes of D+ kinematic variables should be
corrected (namely pT (D+) and η(D+)), because:

• in each MC event there may be more than one generated D+ mesons;
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Figure 5.6: Control plots for S l (left) and χ2
sec vtx (right). The data are shown as points, with bars

representing the statistical uncertainty. The sum of charm and beauty MC is shown as the light shaded
area; the beauty contribution is shown separately as the dark shaded area.

• the efficiency of the D+ reconstruction in the present analysis is not very high (E =

1.5–15% depending on pT (D+); see Fig. B.2 in Appendix B), thus for a large fraction
of events, the reweighting of all generated D+ mesons will result in a reweighting of the
combinatorial background, which does not make sense and potentially may introduce an
additional systematic uncertainty.

These complications arise from the fact that according to the general rule weights must be
applied for events, while the control plots allow their determination for candidates only. If
applied for events, weights are unique for both generator and reconstructed level, while if
applied for candidates, the uniqueness is lost.

Therefore in the present analysis the procedure of matching between true and reconstructed
D+ candidates was developed. It contained two steps:

1. for each daughter track the corresponding generator-level particle was matched, if the
following criteria (motivated by the resolution of the tracking system) were fulfilled:

• |∆pT | = |p
gen
T − prec

T | < 0.2 GeV, where pgen
T and prec

T are the transverse momenta of
the generated and reconstructed particles, respectively, and

• ∆R =
√

(φgen − φrec)2 + (ηgen − ηrec)2 < 0.035, where φgen and φrec are the azimuthal
angles of the generated and reconstructed particles, respectively, and ηgen and ηrec

are the pseudorapidities of the generated and reconstructed particles, respectively;

2. if all daughter tracks were successfully matched to generator-level particles and if the
generator-level particles originated from a D+ meson in the considered decay chan-
nel14, the reconstructed D+ candidate was considered to be successfully matched to the
generator-level one.

14 The indirect decay channel D+ → K̃∗0(892)π+ with subsequent K̃∗0(892) → K−π+ was simulated in the MC
and considered in the matching procedure.

81



5 Measurement of D+ production

The efficiency of this matching procedure was found to be very close to 100% [158].15 Note
that the matching procedure is needed also to determine purity and efficiency (the numerators
in 5.14), although it is not needed for the accpetance determination).

5.6.1.3 MC reweighting

Since transverse momentum pT (D+) and virtuality Q2 are significantly correlated, reweighting
in these two variables was performed simultaneously, while the cross section in pseudorapidity
η(D+) was reweighted independently. In both cases step functions determined from the control
plots as the ratios of the number of signal events in the data to the number of signal events in the
charm MC were used as reweighting functions. The beauty MC contribution was subtracted
from the data and reweighting was applied only to the charm MC. The reweighting functions
are shown in Fig. 5.7. For the reweighting in pT (D+) and η(D+) only the matched D+ can-
didates, as explained in Section 5.6.1.2, were reweighted at the reconstruction level, because
the reweighting of non-reconstructed D+ effectively would result in a meaningless reweighting
of combinatorial background, thus producing additional statistical fluctuations. For the accep-
tance calculation according to Eq. 5.14, all D+ were reweighted at the generator level (for the
Ngen

i calculation).16
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Figure 5.7: Step functions used for MC reweighting in pT (D+)–Q2 (left) and η(D+) (right).

The control plots for pT (D+), η(D+) and Q2 after reweighting are shown in Fig. 5.8. The
reweighted MC simulations describe the data well and were used to determine acceptance
corrections. The acceptance as a function of pT (D+), η(D+), Q2 and y is shown in Fig. 5.9. It is
not high, mainly because of the strong cut applied on the decay-length significance in order to

15 The efficiency of the matching procedure is defined as the ratio of the number of matched particles to the
number of candidates in the fitted signal. This quantity is not to be confused with the efficiency defined in
Eq. 5.14.

16 Note that this procedure does not guarantee that the same weights have been applied at both levels (generator
and reconstruction), and therefore cannot a priori guarantee consistency for the determined acceptance. In
order to check it, the pT (D+)–Q2 reweighting was performed by applying the same weight, derived from the
“best” D+ (with highest pT (D+)), on both levels. The difference between the two procedures was found to be
less than 0.5%.
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5.6 Cross-section determination

reduce combinatorial background, varying from 1.5% at low pT (D+) to 15% at high pT (D+).
The same plots for purity and efficiency are provided in Appendix B (Fig. B.1 and B.2).
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Figure 5.8: Control plots for pT (D+) (top left),
η(D+) (top right) and Q2 (bottom) after reweight-
ing. The data are shown as points, with bars rep-
resenting the statistical uncertainty. The sum of
charm and beauty MC is shown as the light shaded
area; the beauty contribution is shown separately
as the dark shaded area.

5.6.2 Additional corrections

Additional corrections were applied in the MC simulations: a correction for the FLT inef-
ficiency (Section 5.6.2.1); a correction for the tracking inefficiency (Section 5.6.2.2); and a
correction to the distribution of the decay-length significance (Section 5.6.2.3); they are briefly
described below.

5.6.2.1 FLT-inefficiency correction

Most of the FLT bits used in this analysis had some requirements on the track multiplicity in
the events. The efficiency of these criteria was measured [159] using a trigger without track
requirements and the detector simulation was tuned to match the data. The trigger-inefficiency
corrections for the MC simulations were between 1–10% for different tracking requirements.
The corrections changed the overall efficiency of the triggers used in the analysis by a negligible
amount for medium-Q2 values and up to ∼ 2% for the low- and high-Q2 regions. More details
on this study can be found in [159].
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Figure 5.9: Acceptance as a function of pT (D+) (top left), η(D+) (top right), Q2 (bottom left) and y

(bottom right). Error bars represent the statistical uncertainty.

5.6.2.2 Tracking-inefficiency correction

A special study [189] was performed to assess the tracking inefficiency for charged pions due
to hadronic interactions in the detector material and how well the MC simulations reproduce
these interactions. The MC simulations were found to underestimate the interaction rate by
about 40% for pT < 1.5 GeV and to agree with the data for pT > 1.5 GeV; more details can
be found in [189] and references therein. A corresponding correction was applied to the MC
simulations. The effect of the correction on the D+-production cross section was found to be
about 3%. The effect of the correction on the D+ differential cross sections is provided in
Appendix B (Fig. B.4).

5.6.2.3 Decay-length smearing

The S l distribution was found to be asymmetric [159] with respect to zero, with charm mesons
dominating in the positive tail. Detector resolution effects cause the negative tail, which is
dominated by light-flavour events. A smearing was applied to the decay length of a small
fraction of the MC events in order to reproduce the negative decay-length data. The parameters
of the smearing had to be tuned to describe the data. The effect of the smearing is typically
below 3%. More details on this correction can be found in [159].
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5.6 Cross-section determination

5.6.3 Systematic uncertainties

The systematic uncertainties were determined by changing the analysis procedure or varying
parameter values within their estimated uncertainties and repeating the extraction of the signals
and the cross-section calculations. The following sources of systematic uncertainties were
considered with the typical effect on the cross sections given in parentheses:

• the cut on the positions |xe′ | and |ye′ | of the scattered electron in the RCAL was varied by
±1 cm in both the data and the MC simulations, to account for potential imperfections of
the detector simulation near the inner edge of the CAL (±1%);

• the reconstructed electron energy was varied by ±2% in the MC only, to account for the
uncertainty in the electromagnetic energy scale (< 1%);

• the energy of the hadronic system was varied by ±3% in the MC only, to account for the
uncertainty in the hadronic energy scale (< 1%);

• the FLT tracking-efficiency corrections for the MC were varied within their estimated
uncertainties (< 1%);17

• uncertainties due to the signal-extraction procedure were estimated by repeating the fit in
both the data and the MC using:

– an exponential function for the background parametrisation (< 1%);

– a signal parametrisation changed by simultaneously varying the β parameter of the
modified Gaussian function in the data and MC by +0.1

−0.2 from the nominal value 0.5.
The range was chosen to cover the values which give the best description of the
mass peaks in the data and MC simulations in bins of the differential cross sections
(+0.7%
−1.5%);

• uncertainties due to the decay-length smearing procedure were estimated by varying it
±50% (±1%)17. As a further cross check, the cut on the decay-length significance was
varied between 3 and 5. The resulting variations of the cross sections were compati-
ble with the variation of the decay-length smearing and were therefore omitted to avoid
double counting;

• the scaling factor for the MC beauty-production cross sections was varied by ±0.6 from
the nominal value 1.6. This was done to account for the range of the RAPGAP beauty-
prediction normalisation factors extracted in various analyses [186–188] (±2%);

• the uncertainties due to the model dependence of the acceptance corrections were esti-
mated by varying the shapes of the kinematic distributions in the charm MC sample in a
range of good description of the data:

– the shape of the η(D+) reweighting function (±2%);

– the shape of the pT (D+)–Q2 reweighting function (±4%);

17 This study was performed by Mykhailo Lisovyi; more details can be found in [159].
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5 Measurement of D+ production

• the uncertainty of the pion track inefficiency due to nuclear interactions was evaluated
by varying the correction applied to the MC by its estimated uncertainty of ±50% of its
nominal size (±1.5%);

• the contribution from the PHP processes was estimated using the PYTHIA MC sample
and found to be < 0.5%, therefore it was neglected;

• overall normalisation uncertainties:

– the simulation of the MVD hit efficiency (±0.9%);18

– the effect of the imperfect description of χ2
sec vtx < 10 was checked by multiplying

χ2
sec vtx < 10 for D+ candidates in the MC simulations by a factor 1.1 to match the

distribution in the data (+2%); 18

– the branching-ratio uncertainty (±2.1%);

– the measurement of the luminosity (±1.9%).

The size of each systematic effect was estimated bin-by-bin except for the overall nor-
malisation uncertainties. The overall systematic uncertainty was determined by adding
the above uncertainties in quadrature. The normalisation uncertainties due to the lumi-
nosity measurement and that of the branching ratio were not included in the systematic
uncertainties on the differential cross sections.

5.7 Theoretical calculations

NLO QCD predictions were obtained in the FFNS with the HVQDIS program [62] (see Sec-
tion 2.3.2.1).19 The renormalisation and factorisation scales were set to µr = µ f =

√
Q2 + 4m2

c
and the charm-quark pole mass to mc = 1.5 GeV. The FFNS variant of the ZEUS-S NLO QCD
PDF fit [190] to inclusive DIS data was used as the parametrisation of the proton PDFs. The
same charm mass and choice of scales were used in the fit as in the HVQDIS calculation. The
strong coupling constant was set to αn f =3

s (MZ) = 0.105, corresponding to αn f =5
s (MZ) = 0.116.

To calculate D+ observables, events at the parton level were interfaced with a fragmentation
model based on the Kartvelishvili function [91]. The fragmentation was performed in the γ∗p
centre-of-mass frame. The Kartvelishvili parameter, αK , was parametrised [159] as a smooth
function of the invariant mass of the cc̄ system, Mcc̄, to fit the measurements of the D∗+ frag-
mentation function by ZEUS [191] and H1 [95]: αK(Mcc̄) = 2.1 + 127/(M2

cc̄ − 4m2
c), with mc

and Mcc̄ in GeV). In addition, the mean value of the fragmentation function was scaled down
by 0.95 since kinematic considerations [192] and direct measurements [193] show that, on av-
erage, the momentum of D+ mesons is 5% lower than that of D∗+ mesons; this is due to some
of the D+ mesons originating from D∗+ decays. For the fragmentation fraction, f (c→ D+), the
value 0.2297 ± 0.0078 was used [194].

The uncertainties on the theoretical predictions were estimated as follows:

18 This study was performed by Mykhailo Lisovyi; more details can be found in [159].
19 The theoretical predictions were obtained by Mykhailo Lisovyi; more details can be found in [159].
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• the renormalisation and factorisation scales were independently varied up and down by a
factor of 2;

• the charm-quark mass was consistently changed in the PDF fits and in the HVQDIS
calculations by ±0.15 GeV;

• the proton PDFs were varied within the total uncertainties of the ZEUS-S PDF fit;

• the fragmentation function was varied by changing the functional dependence of the
parametrisation function α(Mcc̄) within uncertainties [159];

• the fragmentation fraction was varied within its uncertainties.

The total theoretical uncertainty was obtained by summing in quadrature the effects of the
individual variations. The dominant contributions originate from the variations of the charm-
quark mass and the scales. In previous studies [66] the uncertainty due to the variation of
α

n f =3
s (MZ) was found to be insignificant and therefore it was neglected here.

5.8 Results

The production of D+ mesons in the process ep → e′cc̄X → e′D+X (i.e. not including D+

mesons from beauty decays) was measured in the kinematic range:

5 < Q2 < 1000 GeV2,

0.02 < y < 0.7,
1.5 < pT (D+) < 15 GeV,
|η(D+)| < 1.6.

(5.17)

The differential cross sections are defined according to Eq. 5.13. The measured cross sections
in bins of pT (D+), η(D+), Q2 and y are listed in Table 5.1 and shown in Fig. 5.10. The cross
section falls by about three orders of magnitude over the measured Q2 range and one order
of magnitude in y; it also falls with the transverse momentum pT (D+), but is only mildly
dependent on the pseudorapidity η(D+). The measured cross sections are compared to the
results of the previous ZEUS D+ measurement [138]20, based on a subset of the HERA-II data.
The present measurement has significantly smaller uncertainties and supersedes the previous
results. The NLO QCD predictions, calculated in the FFNS, provide a good description of the
data. The experimental uncertainties are smaller than the theoretical uncertainties, apart from
the high-Q2 region, where statistics is limited.

The measured cross sections as a function of y in five Q2 ranges are listed in Table 5.2 and
shown in Fig. 5.11. The data are well reproduced by the HVQDIS calculation. The effects of
individual sources of systematic uncertainties (described in Section 5.6.3) on the cross sections
in bins of Q2 and y can be found in [139]. The measured double-differential cross section as

20 The contribution of D+ mesons from beauty decays was subtracted using the scaled RAPGAP MC predic-
tions [186–188].

87



5 Measurement of D+ production

pT (D+) dσ/dpT (D+) ∆stat ∆syst Crad dσb/dpT (D+)

[GeV] [nb/GeV] [nb/GeV]

1.5 : 2.4 2.40 ±0.26 +0.14
−0.12 1.016 0.07

2.4 : 3 1.44 ±0.12 +0.07
−0.05 1.020 0.05

3 : 4 1.00 ±0.05 +0.04
−0.04 1.023 0.03

4 : 6 0.396 ±0.017 +0.014
−0.013 1.029 0.011

6 : 15 0.0349 ±0.0018 +0.0011
−0.0010 1.054 0.0011

η(D+) dσ/dη(D+) ∆stat ∆syst Crad dσb/dη(D+)

[nb] (nb

−1.6:−0.8 1.04 ±0.09 +0.06
−0.06 1.034 0.02

−0.8:−0.4 1.67 ±0.10 +0.06
−0.06 1.025 0.05

−0.4: 0.0 1.70 ±0.10 +0.07
−0.05 1.023 0.05

0.0 : 0.4 1.63 ±0.10 +0.07
−0.07 1.017 0.06

0.4 : 0.8 1.84 ±0.12 +0.07
−0.08 1.013 0.06

0.8 : 1.6 1.81 ±0.16 +0.09
−0.09 1.016 0.05

Q2 dσ/dQ2 ∆stat ∆syst Crad dσb/dQ2

[GeV2] [nb/GeV2] [nb/GeV2]

5 : 10 0.382 ±0.022 +0.027
−0.017 1.018 0.007

10 : 20 0.150 ±0.007 +0.008
−0.010 1.016 0.003

20 : 40 0.047 ±0.003 +0.003
−0.004 1.020 0.002

40 : 80 0.0108 ±0.0008 +0.0008
−0.0009 1.025 0.0006

80 : 200 0.00192 ±0.00020 +0.00014
−0.00016 1.042 0.00016

200 :1000 0.000088 ±0.000021 +0.000006
−0.000007 1.113 0.000013

y dσ/dy ∆stat ∆syst Crad dσb/dy

[nb] [nb]

0.02: 0.1 16.9 ±0.9 +0.9
−0.8 1.038 0.1

0.1 : 0.2 13.4 ±0.6 +0.5
−0.5 1.022 0.3

0.2 : 0.3 8.5 ±0.5 +0.4
−0.4 1.025 0.3

0.3 : 0.4 6.2 ±0.5 +0.3
−0.3 1.016 0.3

0.4 : 0.5 4.0 ±0.4 +0.3
−0.2 1.008 0.2

0.5 : 0.7 2.2 ±0.3 +0.2
−0.2 0.999 0.2

Table 5.1: Differential cross sections for D+ production in bins of pT (D+), η(D+), Q2 and y. The statis-
tical and systematic uncertainties, ∆stat and ∆syst, are presented separately. Normalisation uncertainties
of 1.9% and 2.1% due to the luminosity and the branching-ratio measurements, respectively, were not
included in ∆syst. The correction factors to the QED Born level, Crad, are also listed. For reference, the
beauty cross sections predicted by RAPGAP and scaled as described in the text, σb, are also shown.
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Figure 5.10: Differential cross sections for D+ production as a function of pT (D+) (top left), η(D+) (top
right), Q2 (bottom left) and y (bottom right). The results obtained in this analysis are shown as filled
circles. The inner error bars correspond to the statistical uncertainty, while the outer error bars represent
the statistical and systematic uncertainties added in quadrature. For the cross section as a function of
pT (D+), η(D+) and Q2, the results of the previous ZEUS measurement are also shown (open triangles).
The solid lines and the shaded bands represent the NLO QCD predictions in the FFNS with estimated
uncertainties.

a function of Q2 and y has been used to extract the charm contribution to the proton structure
function Fcc̄

2 ; the results can be found in [139]. This part of the analysis is not covered in
the present chapter, but is described in Chapter 6 in the context of the charm combination
(Section 6.5).

5.9 Summary

The production of D+ mesons has been measured in DIS at HERA in the kinematic region
5 < Q2 < 1000 GeV2, 0.02 < y < 0.7, 1.5 < pT (D+) < 15 GeV and |η(D+)| < 1.6. The
present results supersede the previous ZEUS D+ measurement, based on a subset of the data,
and exhibit significantly better precision. The improvement in precision comes from the larger
data sample, used in the present analysis and from a better control of experimental systematic
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Figure 5.11: Differential cross sections for D+ pro-
duction as a function of y in different Q2 ranges:
5 < Q2 < 9 GeV2 (a), 9 < Q2 < 23 GeV2 (b),
23 < Q2 < 45 GeV2 (c), 45 < Q2 < 100 GeV2

(d) and 100 < Q2 < 1000 GeV2 (e). The results
obtained in this analysis are shown as filled cir-
cles. The inner error bars correspond to the statisti-
cal uncertainty, while the outer error bars represent
the statistical and systematic uncertainties added in
quadrature. For the Q2 range 5 < Q2 < 9 GeV2,
the results of the previous ZEUS measurement are
also shown (open triangles). The solid lines and the
shaded bands represent the NLO QCD predictions
in the FFNS with estimated uncertainties.
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5.9 Summary

Bin Q2 y dσ/dy ∆stat ∆syst Crad dσb/dy

[GeV2] [nb] [nb]

1

5 : 9

0.02 : 0.12 5.46 ±0.59 +0.46
−0.30 1.026 0.04

2 0.12 : 0.32 3.40 ±0.31 +0.29
−0.16 1.022 0.06

3 0.32 : 0.7 1.18 ±0.17 +0.10
−0.08 1.006 0.04

4

9 : 23

0.02 : 0.12 7.02 ±0.45 +0.46
−0.49 1.028 0.05

5 0.12 : 0.32 3.72 ±0.23 +0.21
−0.26 1.017 0.09

6 0.32 : 0.7 1.36 ±0.14 +0.09
−0.10 0.998 0.06

7

23 : 45

0.02 : 0.12 2.84 ±0.27 +0.19
−0.22 1.040 0.03

8 0.12 : 0.32 1.63 ±0.12 +0.10
−0.12 1.020 0.05

9 0.32 : 0.7 0.609 ±0.097 +0.047
−0.053 1.009 0.035

10

45 : 100

0.02 : 0.12 1.14 ±0.18 +0.09
−0.10 1.046 0.03

11 0.12 : 0.32 0.867 ±0.083 +0.063
−0.074 1.024 0.050

12 0.32 : 0.7 0.313 ±0.052 +0.032
−0.037 1.012 0.033

13
100 : 1000

0.02 :0.275 0.560 ±0.085 +0.031
−0.038 1.117 0.033

14 0.275: 0.7 0.231 ±0.039 +0.020
−0.022 1.030 0.035

Table 5.2: Differential cross sections for D+ production as a function of y in five regions of
Q2. The cross sections are given in the kinematic region 5 < Q2 < 1000 GeV2, 0.02 < y < 0.7,
1.5 < pT (D+) < 15 GeV and |η(D+)| < 1.6. The statistical and systematic uncertainties, ∆stat and ∆syst,
are presented separately. Normalisation uncertainties of 1.9% and 2.1% due to the luminosity and the
branching-ratio measurements, respectively, were not included in ∆syst. The correction factors to the
QED Born level, Crad, are also listed. For reference, the beauty cross sections predicted by RAPGAP
and scaled as described in the text, σb, are also shown.

uncertainties, owing to improved tracking alignment and calibration. Predictions from NLO
QCD in the FFNS describe the measured cross sections well. The results presented here are of
similar or higher precision than measurements of charm production, previously published by
ZEUS21. The new precise data provide an improved check of pQCD and have the potential to
constrain the PDFs in the proton. Chapter 6 uses these data for the HERA charm combination
(Section 6.5).

21 At the moment when the results were being published (February 2013).
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CHAPTER 6

Combination of the HERA charm
measurements

This Chapter is devoted to a combination of the open charm measurements at HERA in DIS.
Section 6.1 explains the motivation and gives an overview of general aspects of the procedure.
Section 6.2 describes the procedure of cross-section averaging, the extrapolation to a common
phase space and the treatment of experimental uncertainties. Details of the theoretical calcula-
tions in the FFNS, which were used in the combination procedure for phase-space corrections
and for the comparison with the combined data, are given in Section 6.3. In Sections 6.4 and 6.5
the main results are presented: a combination of visible D∗+ cross sections and charm reduced
cross sections, respectively. Finally, Section 6.6 gives a summary of the obtained results.

6.1 Introduction

Measurements of open charm production at HERA provide an important input for stringent
tests of QCD. As explained in Section 2.3.2, charm quarks in ep collisions are predominantly
produced by the boson–gluon-fusion process, γg → cc̄, thus charm production is sensitive to
the gluon distribution in the proton, and charm measurements are a valuable input for global
PDF fits and for the extraction of the charm-quark mass.

The motivation to perform a data combination is the following [195]. Modern QCD fit pro-
cedures (see, e.g. [54, 196–198]) use data from a number of individual experiments to extract
the PDFs. All modern programs use both the central values and uncertainties of measured cross
sections as well as information about the correlations among the experimental data points. This
extraction procedure has some drawbacks. Firstly the number of input datasets is large consist-
ing of many individual publications. The data points are correlated through common systematic
uncertainties, within and also across the publications. Handling of the experimental data with-
out additional expert knowledge often becomes very difficult. In addition, the treatment of the
correlations produced by the systematic errors is not unique [199]. These difficulties lead to a
situation in which some global QCD analyses have to use non-statistical criteria to estimate the
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6 Combination of the HERA charm measurements

resulting uncertainties, ∆χ2 � 1 (see, e.g. [200, 201]). This is driven by apparent discrepan-
cies between different experiments which are often difficult to quantify without a consistency
check, independent of any theory.

These drawbacks can be significantly reduced by averaging of the input data in a model-
independent way before performing a QCD analysis of that data. One combined dataset of
DIS charm cross-section measurements is much easier to handle compared to a scattered set
of individual experimental measurements, overviewed in Section 3.1.3, while retaining the full
correlations between data points. The averaging method used here is unique and removes the
drawback of the offset method [202], which fixes the size of the systematic uncertainties. In
the averaging procedure the correlated systematic uncertainties are floated coherently, allowing
in some cases a reduction of the uncertainty. In addition, a study of the global χ2/ndof of
the average and the distribution of the pulls allows a model-independent consistency check
between the experiments. In case of a discrepancy between the input datasets, a localised
enlargement of the uncertainties for the average can be performed.

Summarising, the main goal of a data combination is to obtain a single consistent dataset for
a given physical process; additionally it serves as a consistency cross-check of the input mea-
surements. Note that a combination is not supposed to provide new information1; nominally
it serves as a tool which allows for the simplification of the usage of information already con-
tained in the input measurements, i.e. reduce the number of input datasets and the number of
uncertainty sources, e.g. by combining in quadrature independent (uncorrelated) uncertainties
in one source.

6.1.1 Combination of the HERA charm measurements: general
strategy

A combination requires input data in the same bins covering the same phase space. Considering
the existing charm measurements at HERA, there are two strategies for the combination:

• to combine a limited number of measurements that closely fulfill the above requirement;

• to combine all relevant measurements extrapolated to a common phase space and com-
mon bins.

The former provides a model-independent combination (or with minimised model dependency)
which delivers most of originally measured information; this strategy is followed in the com-
bination of the visible D∗+ cross sections (Section 6.4). The latter gains from a big number
of input measurements, thus on one hand has ultimate accuracy, but on the other hand is not
anymore model independent and has a sizeable theoretical uncertainty from the extrapolation
procedure; this strategy is followed in the combination of the charm reduced cross sections
(Section 6.5).

1 Although it is possible that a combination will give an extra reduction of correlated uncertainties due to usage
of information from the phase-space corners which normally would not be used in analyses or theory fits.
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6.2 Combination procedure

In this Section common aspects of the combination procedure are described: the combination
method, needed to average quantities given in a common phase space (Section 6.2.1), the treat-
ment of systematic uncertainties of input quantities in the combination method (Section 6.2.2),
and phase-space corrections, needed to translate the input quantities to a common phase space
(Section 6.2.3).

6.2.1 Combination method

This Section describes the combination method used for the H1 and ZEUS data combination.
The HERAverager package [203]2 is used for the combination of the charm data. It is an
averaging tool developed for the H1 and ZEUS data combination. The combination method is
based on the minimisation of the χ2-function which includes correlated systematic uncertainties
using the nuisance-parameter technique (known also as the Hessian method [204]).

Section 6.2.1.1 describes the method of averaging itself and the next Section 6.2.1.2 presents
and explains the χ2-function. Additional technical details on the minimisation procedure are
provided in Appendix C.

6.2.1.1 Average of several measurements

Initially consider the simplest case. Suppose there is a set of Nm measurements µi of some
quantity µ. Each measurement µi has an associated uncertainty σi. Errors on measurements
are generally well described by a Gaussian (also called normal) distribution, and the probability
density for each measurement is given by [205]

P(µi, σi; m) =
1

σi
√

2π
e−(m−µi)2/2σ2

i , (6.1)

where m is the true value of the quantity µ, referred to as a true parameter. For some sources
of uncertainties (e.g. statistical fluctuations) this is due to their nature3, while for others it is
usually argued as a consequence of the Central Limit Theorem [205]. If all µi are independent
and their uncertainties σi are Gaussian, the best estimation (consistent, unbiased and efficient)
of the average, µ, and the associated uncertainty, ∆µ, is given by

µ =

∑Nm
i=1 µi/σ

2
i∑Nm

i=1 1/σ2
i

,

∆µ =
1√∑Nm

i=1 1/σ2
i

.
(6.2)

2 HERAverager is based on the earlier program F2averager introduced in [195] and used, e.g. for the previous
HERA charm combination [66].

3 Of course, statistical fluctuations actually obey a Poisson distribution, but for a large enough sample it tends to
a Gaussian one [205].
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This can be shown from the principle of maximum likelihood, or from the principle of least
squares (LS), or from the law of combination of erros, or just from the definitions of the mean
and the variance [205]. However for the future discussion of a more general (and complicated)
situation it is convenient to stick with one of the methods; in this case the LS one will be
followed.

6.2.1.2 χ2 definition

The quantity χ2 is the squared difference between the observed values and their theoretical
predictions, suitably weighted by the errors of the measurements [205]; in the considered case
it is

χ2(m) =

Nm∑
i=1

(µi − m)2

σ2
i

. (6.3)

The minimum of the χ2 quantity, χ2
0, with respect to the parameter m of the true distribution

provides the best average value, µ:
χ2

0 = χ2(µ) (6.4)

and its variation by 1 gives the associated uncertainty, ∆µ [205]:

χ2
0 + 1 = χ2(µ + ∆µ). (6.5)

So with the LS method the results of Eq. 6.2 can be found by solving the equation:

dχ2

dm
= 0 (6.6)

(since the χ2 expression is a positive quadratic form of the true parameter µ, its extremum gives
a minimum).

The χ2-distribution depends on the number of degrees of freedom, ndof, which is the number
of points in the sum, Nm, minus the number of variables that have been adjusted to minimise
χ2 (the true parameters). The χ2-distribution has mean, χ2:

χ2 = ndof
4 (6.7)

and variance,
(
χ2 − χ2

)2
: (

χ2 − χ2
)2

= 2ndof. (6.8)

Thus one expects a χ2 per degree of freedom, χ2/ndof, of roughly one.
So far it was assumed that each measurement µi has only one individual (independent from

the others) source of uncertainty. Real measurements have many sources of systematic uncer-
tainties which may be correlated (shared) between several or all data points. As mentioned
in Section 6.1, there is no unique way to treat the correlations produced by the systematic

4 But note, that ndof is neither the mode (the most probable value) nor the median (the value separating the higher
half from the lower half) of the χ2-distribution, although they tend to it when ndof becomes large [205].
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uncertainties. In the present combination the Hessian method [204] using nuisance parame-
ters is exploited. Consider Ne sets of measurements of Nm quantities µi (e.g. from different
experiments or from one experiment, but obtained in different analises), µe

i . Each measure-
ment has one uncorrelated uncertainty, σe

i , and Ns correlated, Γ
e, j
i (1 ≤ i ≤ Nm, 1 ≤ e ≤ Ne,

1 ≤ j ≤ Ns). All correlated uncertainties are assumed to be Gaussian. Thus each measurement
can be written as

µe
i = mi + σe

i a
e
i −

Ns∑
j=1

Γ
e, j
i be, j, (6.9)

where ae
i and be, j are independent variables distributed according to the unit Gaussian distri-

bution around zero. Note that be, j are independent of i; that is, the uncertainties Γ
e, j
i are 100%

correlated for all data points denoted with the same e. The be, j are called nuisance parameters
of correlated uncertainties. Then the generalised χ2 can be written as

χ2(m,b) =

Ne∑
e=1

Nm∑
i=1

(
mi −

∑Ns
j=1 Γ

e, j
i be, j − µe

i

)2

σe
i

2 +

Ns∑
j=1

be, j2, (6.10)

where the vectors m and b denote the true parameters mi and nuisance parameters be, j, re-
spectively. Here the first term is a generalisation of 6.3, taking into account the effects of the
shifts of the correlated uncertainties; the second term is a penalty for the correlated uncertainty
shifts from their nominal (zero) values. The uncorrelated uncertainties σe

i are the total uncor-
related uncertainties which may consist of several independent components (e.g. a statistical
uncertainty and several different systematic ones, assumed to be uncorrelated between the data
points) added in quadrature, according to the law of combination of errors [205]. Note, that
some of Γ

e, j
i may be equal to 0 if the measurement µe

i is insensitive to the systematic source j.
A formal derivation of the χ2 expression 6.10 from the assumption 6.9 can be found in [206].
The averaging problem is solved by minimising χ2(m,b) w.r.t m and b, providing the aver-
age values m and the fitted nuisance parameters b; a variation of χ2(m,b) by 1 provides the
uncertainties on these values. The formulas for these quantities are obtained in Appendix C.1.

So far the form of the correlated uncertainties Γ
e, j
i was not specified. It is useful to define the

relative correlated systematic uncertainties by the ratio

γ
e, j
i =

Γ
e, j
i

µe
i
. (6.11)

Usually the relative, not absolute, systematic uncertainties are provided by the measurements.
Two types of uncertainty treatment can be considered:

• the multiplicative treatment, when the systematic uncertainties are proportional to the
true values:

Γ
e, j
i = miγ

e, j
i ; (6.12)

• the additive treatment, when the systematic uncertainties are independent of the true
value; then they are considered to be proportional to the measured values, i.e. by the
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definition 6.11, or independent of either:

Γ
e, j
i = µiγ

e, j
i (6.13)

(in other words they are constant and not changed in the combination procedure).

The same options exist for the treatment of the uncorrelated uncertainties in the denominator
of 6.10. The additive treatment is appropriate for background-dominated uncertainties, which
do not depend on the true value m, while the multiplicative treatment is appropriate for all
others.5

For the charm measurements at HERA the statistical uncertainties are mainly dominated by
background, so in the combination they were treated additively. The systematic uncertainties
are predominantly proportional to the central values and thus treated multiplicatively. So the
final χ2-function, used in the present combination, is given by

χ2(m,b) =

Ne∑
e=1

Nm∑
i=1

(
mi −

∑S
j=1 γ

e, j
i me

i b
e, j − µe

i

)2

δe
stat,iµ

e
i

2 + δe
uncor,im

e
i

2 +

Ns∑
j=1

be, j2, (6.14)

where in the denominator the statistical and uncorrelated systematic uncertainties are added in
quadrature; δe

stat,i and δe
uncor,i are the relative statistical and uncorrelated systematic uncertainties,

respectively, defined similar to 6.11:

δe
stat,i =

σe
stat,i

µe
i
,

δe
uncor,i =

σe
uncor,i

µe
i

,

(6.15)

where σe
stat,i and σe

uncor,i are the absolute statistical and uncorrelated systematic uncertainties,
respectively. In the previous round of the combination of the charm reduced cross sections [66]
the sensitivity of the result to the treatment of the uncertainties was studied and procedural
uncertainties were assigned; however they turned out to be much smaller than the other ones
(on average below 0–10% of the total uncertainty, reaching up to 40% only at few combined
points [66]) and are neglected in the present combination.

6.2.2 Treatment of systematic uncertainties

As explained in Section 6.2.1.2, in the combination procedure uncertainties are treated either as
fully uncorrelated or fully correlated between the data points of certain measurements. Neither
of these is most conservative in general. Experimental uncertainties of the input measurements

5 A special case is the signal-dominated statistical uncertainties, which obey the Poisson statistics. Their values
are scaled with the suqare root of mi:

Γ
e, j
i =

√
µimiγ

e, j
i .
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consist of statistical and systematic uncertainties. The statistical component of uncertainties
was always treated as uncorrelated between all data points.6

The systematic component of uncertainties, in general, may have mixed nature: it may be
partially correlated between the data points; moreover, the level of correlation may differ in dif-
ferent corners of a phase space. In the current combination procedure the following “common
sense” strategy was applied:

• normalisation uncertainties (reported as a single number) were treated as correlated (e.g.
luminosity and branching ratios); they are marked as ‘N’;

• those uncertainties that have smooth behaviour in the phase space were also treated as
correlated (typically these are different kinds of corrections, reweightings, inefficiencies
etc., evaluated using studies based on MC); they are marked as ‘S’;

• theory-related uncertainties that arose from the phase-space corrections (see Sections 6.2.3)
were treated as correlated; they are marked as ‘T’;

• all other uncertainties were treated as uncorrelated (typically these are uncertainties esti-
mated using cut variations in data, which are subject to statistical fluctuations).

Explicit information on the sources that were treated as correlated is given in relevant combi-
nation Sections 6.4.1.1, 6.4.2.1 and 6.5.1.

Many of the experimental systematic uncertainties are originally asymmetric and must be
symmetrised before performing a combination. For the newly included measurements [19,
137, 139] symmetrisation was performed by taking the largest deviation; no corrections to the
central values were applied. For those measurements that have been included in the previous
charm combination [66], the symmetrisation remains the same.7

6.2.3 Phase-space correction

Whenever the quantities to be averaged are measured in different phase spaces, they have to be
corrected before performing a combination. Assume that there is a measured quantity (e.g. a
cross section) in the phase space 1, σmeas

1 , which needs to be translated into the phase space 2.
The correction procedure is called extrapolation and is based on usage of theoretical calcula-
tions:

σextr
2 = σmeas

1

σth
2

σth
1

. (6.16)

6 In fact small correlations exist between inclusive measurements and those where full final states were recon-
structed (e.g. between the measurement [19], where information from secondary vertices from all charm-hadron
decays was used, and [137], where D∗+ mesons were reconstructed in the D∗+ → D0(K−π+)π+

s decay channel),
but since the corresponding branching ratios are much smaller than 1, phase-space cuts differ and statistical un-
certainties in heavy-flavour measurements are usually dominated by background, such correlations have been
neglected.

7 It was found in [66] that the results are insensitive to the details of the symmetrisation procedure.
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Here σth
1 and σth

2 are the predicted quantities in the phase spaces 1 and 2, respectively. The
closer the phase spaces 1 and 2 (the more they overlap), the less model dependency the extrap-
olated quantity, σextr

2 , has. In order to estimate the remaining model dependence, the parameters
of the theoretical calculations are varied; the resulting uncertainty is called the extrapolation
uncertainty. Naturally, in addition to the extrapolation uncertainty the extrapolated quantity
σextr

2 has an original uncertainty of σmeas
1 (which, for instance, may consist of statistical and

systematic uncertainties of the experimental measurement).
It is important to distinguish between “small” extrapolations to another region of a measured

phase space (these can be thought of rather as interpolations), known also and referred to in
the future as swimming, e.g. when a quantity is translated into a different binning scheme, and
actual extrapolation to an “extra” (unmeasured) phase space, referred to in the future just as
extrapolation. In the first case it is important that the original measurement in general covers
all the phase space where the swimming is performed, so the predictions can be compared to
the measurements in order to check the adequacy of the swimming. In contrast, in the second
case the results of the extrapolation depend on theoretical predictions in unmeasured phase-
space corners; thus in general the adequacy of the results cannot be verified unless there are
other measurements in the uncovered regions. Note that in both cases the corrections do not
depend on common normalisation factors, like a branching ratio or a fragmentation fraction.
For the combinations presented in this thesis, the combination of D∗+ cross sections requires
only swimming, while the combination of charm reduced cross sections requires extrapolation.

For the charm combination presented here, phase-space corrections were always done using
the theory introduced in Section 2.3.2.1: the NLO QCD calculations (O(α2

s)) in the 3-flavour
FFNS obtained with the HVQDIS program [62]. Details of the theoretical calculations (includ-
ing the variations which are used to estimate the extrapolation uncertainties) are given in the
next Section 6.3.

6.3 Theoretical calculations in FFNS

This Section describes the set-up of the FFNS theoretical calculations which were used for two
purposes:

• for the extrapolation and swimming corrections (Sections 6.4.1.1, 6.4.2.1, 6.5.1.3);

• for the comparison of the combined data with theory (Sections 6.4.1.3, 6.4.1.4, 6.4.2.3,
6.5.3) and QCD fits (Section 6.5.3.1).

Note that this Section describes the calculations in the FFNS only; they were always used for
extrapolation and swimming, although in the comparison of the combined charm reduced cross
sections to theory and in the QCD fits different variants of VFNS were involved; details of these
calculations are provided later.

NLO QCD predictions in the FFNS were obtained with the HVQDIS program [62]. The pa-
rameters used in the calculations, together with the corresponding variations which were used
to estimate the uncertainties, are described below.8 In the combination procedure each extrap-

8 The settings were mainly inherited from [66], although there are some differences (see also Section 6.5.1.3).
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olation uncertainty was treated as correlated between all points and all measurements. Most of
the extrapolation uncertainties (except the fragmentation fraction uncertainties) were originally
asymmetric and must be symmetrised before performing a combination. Symmetrisation was
performed by taking the largest deviation; no corrections to the central values were applied.
For the data to theory comparison, to obtain total theoretical uncertainties, all the variations
were added in quadrature; in this case the summation was performed separately for positive
and negative variations.

6.3.1 Parton-level cross sections

The parton-level cross sections were calculated using the following settings:

• the renormalisation and factorisation scales were set to µr = µ f =
√

Q2 + 4m2
c and

varied up and down by a factor of two. The variations were performed independently
if the theoretical predictions were used for comparison with data, or simultaneously if
they were used for extrapolation or swimming corrections (which are sensitive only to
the shape of the predictions);

• the pole mass of the charm quark mc = 1.50 ± 0.15 GeV [66]; since the renormalisa-
tion and factorisation scale definitions include the charm-quark mass, varying this also
slightly affected the two scales;

• the strong coupling constant αn f =3
s (MZ) = 0.105 ± 0.002, corresponding to the value

α
n f =5
s (MZ) = 0.116 ± 0.002;

• the PDFs were described by a series of 3-flavour FFNS variants of the HERAPDF1.0
set [207] at NLO, similar to those used for the cross-section extrapolations in the previ-
ous charm combination paper [66], evaluated for mc = 1.5 ± 0.15 GeV, for αn f =3

s (MZ) =

0.105 ± 0.002, and for different scales. Charm measurements were not included in the
determination of these PDF sets. For each of the parameter variations above, a different
respective PDF set was used. By default, the scales for the charm contribution to the in-
clusive data in the PDF determination were chosen to be consistent with the factorisation
scale used in HVQDIS, while the renormalisation scale in HVQDIS was decoupled from
the PDF scales, except in the cases where the factorisation and renormalisation scales
were varied simultaneously. As a cross check, instead of fitting the PDFs from inclusive
data, 3-flavour NLO variants of the ABM [197] and MSTW [200] PDFs were also used
to evaluate the cross sections. For MSTW, the variant with mc = 1.5 GeV was chosen.
The differences were found to be much smaller compared to those from other param-
eter variations, therefore the PDF uncertainties are neglected; the plots are provided in
Appendix D (Fig. D.32).

6.3.2 Fragmentation

The fragmentation model described in the previous publication [66] was used to provide hadron
cross sections, if needed. It is based on the measurements by H1 [95] and ZEUS [191] using
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the production of D∗+ mesons, with and without associated jets, in DIS and PHP. This model
uses the fragmentation function of Kartvelishvili et al. [91], controlled by the parameter αK ,
to describe the longitudinal fraction of the charm momentum transferred to the D∗+ mesons.
The fragmentation was performed in the photon-proton centre-of-mass frame by rescaling the
quark three-momentum, then the energy of the produced hadron was calculated and the hadron
was boosted to the lab frame. The calculation of the hadron energy and the Lorentz boost
were done by using the hadron mass.9 Different values of αK [66] were used for different
bins in the photon-parton centre-of-mass-frame squared energy, ŝ, and for different hadrons.
Since ground-state D mesons partly originate from decays of D∗+ and other excited mesons, the
corresponding charm fragmentation function is softer than that measured using D∗+ mesons.
From kinematic considerations [192], supported by experimental measurements [193], the ex-
pectation value for the fragmentation function of c quarks into D0, not D∗+ 10, D+ and in the mix
of charm hadrons decaying into muons, has to be reduced by ≈ 5% with respect to that for
D∗+ mesons. The values of αK for the fragmentation into ground-state hadrons, used for the
D0, not D∗+ , D+ and µ measurements, have been re-evaluated accordingly [66] and are reported
in Table 6.1. The model also implements a transverse fragmentation component by assigning
to the charm hadron a transverse momentum, kT , with respect to the charm-quark direction,
with 〈kT 〉 = 0.35 ± 0.15 GeV. If needed (for the phase-space corrections for the ZEUS muon
measurement [140]), the charm-hadron cross sections were accompanied by the semi-leptonic
decays from [208]. Fragmentation fractions were taken from [183, 194] and are listed in Ta-
ble 6.2.

ŝ range αK(D∗+) αK(g.s.) Measurement
ŝ ≤ ŝ1 6.1 ± 0.9 4.6 ± 0.7 [95] D∗+, DIS, no-jet sample

ŝ1 < ŝ ≤ ŝ2 3.3 ± 0.4 2.7 ± 0.3 [95] D∗+, DIS, jet sample
ŝ > ŝ2 2.67 ± 0.31 2.19 ± 0.24 [191] D∗+ jet PHP

Table 6.1: The αK parameters used for the longitudinal fragmentation into D∗+ mesons and in ground-
state (g.s.) charmed hadrons. The first column shows the ŝ range in which a particular value of αK is
used, with ŝ1 = 70 ± 40 GeV2 and ŝ2 = 324 GeV2. The variations of αK are given in the second and
third column. The parameter ŝ2 was not varied, since the corresponding uncertainty is already covered
by the αK variations.

In total, the following uncertainties were assigned to the fragmentation:

• the variation of αK (the upward and downward variations were performed simultaneously
for all ŝ bins and for all hadrons11);

9 As explained in Section 2.3.4, a phenomenological fragmentation model should be applied exactly in the same
way as it was measured. Here the fragmentation model follows the original H1 and ZEUS measurements [95,
191].

10 D0, not D∗+ refers to D0 that do not originate from decays of D∗+.
11 The values of αK , determined in [95, 191], are only partially correlated (the two values from [95]) or rather fully

uncorrelated (the values from [95] and [191]), nevertheless their simultaneous variation is the most conservative
way to estimate the uncertainty.
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6.3 Theoretical calculations in FFNS

f (c→ D∗+) 0.2287 ± 0.0056

f (c→ D+) 0.2256 ± 0.0077

f (c→ D0,notD∗+) 0.409 ± 0.014

B(c→ µ) 0.096 ± 0.004

f (b→ D∗+,D∗−) 0.173 ± 0.020

f (b→ D+,D−) 0.233 ± 0.017

f (b→ D0, D̄0) 0.598 ± 0.029

Table 6.2: Charm fragmentation fractions to charmed mesons and the charm branching fraction to muons
(left), and beauty branching fractions to charmed mesons (right).

• the variation of ŝ1
12;

• the variation of 〈kT 〉
13;

• the uncertainties on the fragmentation fractions (do not enter extrapolation and swimming
uncertainties, since they cancel for this purpose).

6.3.3 Beauty contribution

Most of the charm measurements report the cross sections of charm hadrons which are pro-
duced either directly or in decays of beauty hadrons. For the combination of charm reduced
cross sections the beauty contribution needed to be subtracted, while for the data to theory
comparison for D∗+-production cross sections it must be added to the charm theoretical pre-
dictions. In previous H1 and ZEUS charm analyses the beauty contribution had been obtained
from the RAPGAP MC [178], with the normalisation rescaled to dedicated beauty measure-
ments. Typical normalisation factors vary from 1.0 to 2.0 [19, 186–188, 209], thus an un-
certainty ∼ 50% has to be assigned to the beauty contribution. Propagated to the uncertainty
on charm and beauty production, this results in an uncertainty of ∼ 5% and thus becomes a
dominant uncertainty at high Q2, where the perturbative calculations are quite accurate. More-
over, conceptually this scheme provides predictions at LO accompanied by parton showers,
re-normalised to measured data.

In contrast, in the present study the beauty contribution was obtained exactly at NLO: from
the NLO QCD predictions for beauty hadrons with subsequent decays into charm hadrons.

A non-trivial ingredient of these calculations is the decay kinematics of charm to beauty
hadrons, which, since many individual decay channels are involved, has to be obtained from
some MC generator. In Fig. 6.1 the distributions of D-meson momenta in the B-hadron rest
frame as obtained from the PYTHIA [176] and EvtGen [210] MC generators are compared
with the data from CLEO [133] and ARGUS [211]. The shape from EvtGen describes the data
reasonably well, therefore it was used for the predictions.

The parameters for the beauty contribution calculations and uncertainties were:

12 In the case of extrapolation uncertainties, αK and ŝ1 variations were added in quadrature and treated as one
source, referred to as ‘longitudinal fragmentation’.

13 In the case of extrapolation uncertainties this source is referred to as ‘transverse fragmentation’.
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Figure 6.1: Distributions of D∗+ (top left and top right), D0 (bottom left) and D+ (bottom right) mo-
menta in the B-hadron rest frame as obtained from the PYTHIA [176] and EvtGen [210] MC generators
compared with the data from CLEO [133] (top left, bottom left and bottom right) and ARGUS [211]
(top right). The distributions from the event generators are normalised to the data.

• the renormalisation and factorisation scales µr = µ f =

√
Q2 + 4m2

b, varied as for
charm. The variations for charm and beauty were applied simultaneously;

• the pole mass of the beauty quark mb = 4.75 ± 0.25 GeV;

• the fragmentation model for beauty quarks based on the Peterson et al. [93] parametri-
sation with εb = 0.0035 ± 0.0020 [212];

• the fraction of beauty hadrons decaying into charm hadrons was taken from [183]
and listed in Table 6.2;

• the PDFs, described by the same set (the 3-flavour FFNS) as the one used for the corre-
sponding charm prediction.

The dominant uncertainty comes from the variation of the fraction of beauty hadrons decay-
ing into D∗+ mesons; although it reaches only ≈ 2% in the highest Q2 bins. Since the beauty
contribution itself is small (varies from 1% at low Q2 to 7% at high Q2), all other uncertainties
are almost negligible.
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6.4 Combination of visible D∗+ cross sections

6.4 Combination of visible D∗+ cross sections

This Section describes a combination of the HERA charm production measurements at the level
of visible cross sections of D∗+-meson production in DIS. The primary aim of the analysis was
to obtain one consistent dataset which presents (as close as possible) a directly experimentally
measured quantity, thus minimising dependency on the theory model used in the combination.
This needs data with the same final state covering preferentially the same visible phase space,
as explained in Section 6.1.

Among all techniques used at HERA to measure open charm production (see Section 3.1.3),
measurements of D∗+ production have the best signal-to-background ratio and hence are the
most precise. ZEUS and H1 have recently published single- and double-differential D∗+ cross
sections for inclusive D∗+-meson production in DIS from their respective final HERA-II datasets [64,
65, 137]. The measurements have been performed in very similar phase spaces and used very
similar binning schemes14 thus fulfilling the requirement stated above for a combination with
minimised theory dependence.

The phase space of HERA-II measurements in DIS is restricted compared to that of HERA-
I measurements. Due to beam-line modifications related to HERA-II high-luminosity run-
ning [105] the visible phase space of these D∗+ cross sections at HERA-II is restricted to
virtualities Q2 > 5 GeV2. This fact prevents straightforward combination with HERA-I mea-
surements for most of the single-differential D∗+ cross sections, although in the case of the
single- or double-differential D∗+ cross sections as a function of Q2, the above restriction does
not apply and the kinematic range can be extended to lower Q2 using earlier HERA-I mea-
surements. In fact only the double-differential D∗+ cross sections as a function of Q2 and y
can be combined with HERA-I measurements without applying extensive swimming correc-
tions.15 For this reason the description of the visible D∗+ cross section combination consists of
two parts: a combination of single-differential D∗+ cross sections, described in Section 6.4.1,
and a combination of the double-differential cross section, described in Section 6.4.2. While
the common method and strategy for both parts remain the same, the input measurements and
phase spaces differ.

All measurements to be combined for the single- and double-differential D∗+ cross sections
are already corrected to the QED Born level with a running fine-structure constant and include
both the charm and beauty contributions to D∗+ production.

Results reported in this Section present a first combination of the H1 and ZEUS measure-
ments of visible D∗+ cross sections. The results have been approved by the H1 and ZEUS

14 An agreement on the phase space and binning schemes was achieved between the H1 and ZEUS Collaborations
before performing the measurements.

15 Although the single-differential D∗+ cross sections as a function of Q2, in principle, also can be combined with
HERA-I measurements without applying swimming corrections, this combination is not provided, because

• information on the single-differential D∗+ cross sections as a function of Q2 can be obtained from the
double-differential D∗+ cross sections as a function of Q2 and y, provided in 6.4.2;

• to keep consistency between all the combined single-differential D∗+ cross sections, which requires the
same input data.
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6 Combination of the HERA charm measurements

Collaborations as preliminary [213]; currently their publication is being prepared.16

6.4.1 Combination of single-differential D∗+ cross sections

This Section describes the combination of D∗+ single-differential cross sections. Section 6.4.1.1
describes the input measurements, defines the combination phase space and describes details
of the combination procedure which includes all necessary corrections needed to transform the
input data to the common phase space. Section 6.4.1.2 presents and discusses the results of
the combination, the consistency of the input data and gives the combined D∗+ cross sections.
Section 6.4.1.3 presents a comparison of NLO QCD predictions to the combined data. Finally,
Section 6.4.1.4 presents a detailed comparison of data and theory and introduces a ‘customised’
theoretical calculation.

6.4.1.1 Input measurements, phase space and combination details

Table 6.3 presents the datasets used for this combination together with their visible phase space
regions and integrated luminosities. Note that the H1 Collaboration has published D∗+ cross-
section measurements separately for 5 < Q2 < 100 GeV2 (dataset I) [65]17 and for 100 <
Q2 < 1000 GeV2 (dataset II) [64] because different sub-detectors had to be employed for the
detection and measurement of the scattered electron in these two regions. Thus the overall
phase space for the combined D∗+ cross sections is given by

5 < Q2 < 1000 GeV2,

0.02 < y < 0.7,
pT (D∗+) > 1.5 GeV,
|η(D∗+)| < 1.5.

(6.17)

The combination was done for single-differential D∗+ cross sections as a function of the D∗+

transverse momentum, pT (D∗+), pseudorapidity, η(D∗+), and inelasticity, z(D∗+) = (E(D∗+) −
pZ(D∗+))/(2Eey), with Ee being the incoming electron energy, E(D∗+) and pZ(D∗+) the energy
and longitudinal momentum of D∗+, respectively, as well as of the DIS kinematic variables Q2

and y.18

Since the H1 datasets I and II are complementary to each other and give the combined phase
space 6.17, their differential D∗+ cross sections should be summed up on a bin-by-bin basis and
enter the combination as a single dataset. However, due to the limited statistics at high Q2 a
coarser binning scheme in pT (D∗+), η(D∗+), z(D∗+) and y had to be used in dataset II compared

16 After the disputation during the final preparation of this thesis for printing, the results have been publicly
released by the Collaborations [214].

17 From the two sets of measurements in [65], the one compatible with the cuts on pT (D∗+) and η(D∗+) quoted in
Table 6.3, which are compatible with the phase space of the ZEUS measurement [137], was chosen and referred
as dataset I.

18 Although all input measurements from Table 6.3 report also the single-differential cross section as a function
of the Bjorken variable x, the binning differs significantly, preventing a combination without large swimming
corrections.
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6.4 Combination of visible D∗+ cross sections

Dataset
Kinematic range L

Q2 y pT (D∗+) η(D∗+)
[GeV2] [GeV] [pb-1]

I: H1 D∗+ HERA-II (medium Q2) [65] 5 : 100 0.02 : 0.70 1.5 : ∞ −1.5 : 1.5 348
II: H1 D∗+ HERA-II (high Q2) [64] 100 : 1000 0.02 : 0.70 1.5 : ∞ −1.5 : 1.5 351
III: ZEUS D∗+ HERA-II [137] 5 : 1000 0.02 : 0.70 1.5 : 20.0 −1.5 : 1.5 363

Table 6.3: Datasets used in the combination of the visible D∗+ single-differential cross sections. For
each dataset the respective kinematic region and the integrated luminosity, L, are given.

to dataset I. This made a straightforward summation of the differential D∗+ cross sections from
the two measurements impossible. Therefore the cross section in a bin i of a given observable
integrated in the range 5 < Q2 < 1000 GeV2 was calculated according to

σi(5 < Q2/GeV2 < 1000) = σi(5 < Q2/GeV2 < 100) (6.18)

+ σNLO
i (100 < Q2/GeV2 < 1000) ·

σint(100 < Q2/GeV2 < 1000)
σNLO

int (100 < Q2/GeV2 < 1000)
.

Here σint denotes the integrated visible cross section and NLO stands for the NLO predictions
obtained from HVQDIS.19 In this calculation both the experimental uncertainties of the visible
cross section at high Q2 and the theoretical uncertainties (described in Section 6.2.3) were in-
cluded. The contribution from the region 100 < Q2 < 1000 GeV2 to the full Q2 range amounts
to 4% on average and reaches up to 50% at the highest pT (D∗+); the extrapolation uncertainty
is negligible in most of the bins compared to the corresponding experimental uncertainty; only
at the two highest pT (D∗+) bins it approaches 35% of the experimental uncertainty. Thus in
the combination procedure the extrapolation uncertainties from all theoretical parameter vari-
ations were added in quadrature and treated as an uncorrelated uncertainty. The sensitivity of
the shape to the beauty contribution was found to be negligible and therefore was ignored.

For the single-differential D∗+ cross sections as a function of Q2, the procedure described
above was not needed. However the binning schemes used for these D∗+ cross sections differ
between datasets I–II and dataset III. At low Q2 this was solved by combining the cross-section
measurements of the first two bins of dataset I into a single bin. For Q2 > 100 GeV2 no
consistent binning scheme could be defined from the single-differential cross-section measure-
ments dσ/dQ2 itself. However, the measurements of the double-differential D∗+ cross section
d2σ/dydQ2 have been performed in a common binning scheme. By integrating these D∗+ cross
sections in y, single-differential D∗+ cross sections in Q2 were obtained at Q2 > 100 GeV2

from datasets II, III which were used directly in the combination. The contribution to dataset
III from the range pT (D∗+) > 20 GeV was found to be negligible (� 1%).

Applying the procedure described above provided exactly two input measurements for each

19 Since the normalisation was taken from another measurement, not from theory predictions, this is swimming,
as explained in Section 6.2.3.
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6 Combination of the HERA charm measurements

combined bin: one from H1 (datasets I–II) and one from ZEUS (dataset III). Thus ndof is equal
to the number of combined bins. Since the data are statistically correlated between the different
distributions, each distribution was combined separately.

The branching ratios for datasets I, II were updated to the latest PDG value [183]. A full list
of considered correlated sources is provided in Appendix D (Table D.13); also input data tables
used for the combination are provided (Tables D.5 to D.9). All systematic uncertainties were
treated as uncorrelated between the H1 and ZEUS measurements, except for the branching-
ratio uncertainty; since the latter is fully correlated between all datasets, it is not changed in
the combination and technically was not included in the combination but applied as an external
uncertainty on the results.

6.4.1.2 Combined D∗+ cross sections

The results of combining the HERA-II measurements [64, 65, 137] as a function of pT (D∗+),
η(D∗+), z(D∗+), Q2 and y are given in Table 6.4, together with their uncorrelated and correlated
uncertainties. The total uncertainties were obtained by adding the uncorrelated and correlated
uncertainties in quadrature. A detailed breakdown of the correlated uncertainties can be found
in Appendix D (Tables D.14 to D.15).

The individual datasets as well as the results of the combination are shown in Fig. 6.2.
The consistency of the datasets as well as the reduction of the uncertainties are illustrated
further for the steeply falling D∗+ cross sections as a function of pT (D∗+) and Q2 in the bottom
parts. The input H1 and ZEUS datasets are similar in precision. The values of χ2, ndof and the
corresponding χ2-probabilities for the combinations of the different distributions are reported in
Table 6.5. The combinations in the different variables have the χ2-probability varying between
15% and 87%, i.e. the datasets are consistent. The pull distributions are shown in Fig. 6.3.
Considering a relatively small number of input points, the pulls are reasonably similar to unit
Gaussians. Although Fig. 6.2 indicates that the H1 data points lie on average below the ZEUS
points, the pulls in Fig. 6.3 show an overall symmetric spread of the H1 and ZEUS input data
around the combined results; this is explained by taking into account shifts of the correlated
systematic uncertainties. The shifts and reductions of the correlated sources are consistent
for the combinations of the D∗+ cross sections in different variables; they can be found in
Appendix D (Table D.13).

The combined D∗+ cross sections exhibit significantly reduced uncertainties. While the ef-
fective doubling of the statistics of the combined result reduces the uncorrelated uncertainties
(inner error bars in Fig. 6.2), the correlated uncertainties (quadratic difference of the outer
and inner error bars) of the combined D∗+ cross sections are significantly reduced through
cross-calibration effects between the two experiments. Typically, both effects contribute about
equally to the reduction of the total uncertainty.

6.4.1.3 Comparison with theoretical predictions

The combined D∗+ cross sections as a function of pT (D∗+), η(D∗+), z(D∗+), Q2 and y are com-
pared to the NLO QCD predictions in the FFNS (described in Section 6.3) in Fig. 6.4; there
is also a dotted line referred as ‘customised’ NLO QCD predictions shown there, which will
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6.4 Combination of visible D∗+ cross sections

pT (D∗+) dσ
dpT (D∗+) δunc δcor δtot

(GeV) (nb/GeV) (%) (%) (%)
1.50 : 1.88 2.35 6.4 4.7 8.0
1.88 : 2.28 2.22 4.9 4.2 6.4
2.28 : 2.68 1.98 3.7 4.0 5.5
2.68 : 3.08 1.55 3.5 3.7 5.1
3.08 : 3.50 1.20 3.7 3.5 5.1
3.50 : 4.00 9.29 ×10−1 3.2 3.4 4.7
4.00 : 4.75 6.14 ×10−1 3.0 3.5 4.6
4.75 : 6.00 3.19 ×10−1 3.1 3.3 4.5
6.00 : 8.00 1.15 ×10−1 3.8 3.7 5.3
8.00 : 11.00 3.32 ×10−2 5.4 3.7 6.5

11.00 : 20.00 3.80 ×10−3 10.4 6.4 12.2

η(D∗+) dσ
dη(D∗+) δunc δcor δtot

(nb) (%) (%) (%)
-1.50 : -1.25 1.36 5.8 4.3 7.2
-1.25 : -1.00 1.52 4.6 4.0 6.1
-1.00 : -0.75 1.59 4.6 4.0 6.1
-0.75 : -0.50 1.79 3.8 3.5 5.2
-0.50 : -0.25 1.83 3.8 3.3 5.1
-0.25 : 0.00 1.89 3.8 3.7 5.3
0.00 : 0.25 1.86 4.0 3.4 5.2
0.25 : 0.50 1.88 4.0 3.6 5.4
0.50 : 0.75 1.91 4.1 3.5 5.4
0.75 : 1.00 1.92 4.3 4.0 5.9
1.00 : 1.25 2.08 4.7 4.0 6.1
1.25 : 1.50 1.81 6.3 4.8 7.9

z(D∗+) dσ
dz(D∗+) δunc δcor δtot

(nb) (%) (%) (%)
0.00 : 0.10 3.28 9.5 5.9 11.2
0.10 : 0.20 7.35 4.8 6.3 7.9
0.20 : 0.32 8.61 3.5 4.6 5.7
0.32 : 0.45 8.92 2.7 3.9 4.7
0.45 : 0.57 8.83 1.8 4.0 4.3
0.57 : 0.80 4.78 2.4 5.1 5.6
0.80 : 1.00 6.31 ×10−1 8.1 10.2 13.0

Q2 dσ
dQ2 δunc δcor δtot

(GeV2) (nb/GeV2) (%) (%) (%)
5 : 8 4.74 ×10−1 4.0 5.0 6.4

8 : 10 2.96 ×10−1 4.3 3.8 5.8
10 : 13 2.12 ×10−1 3.8 4.0 5.6
13 : 19 1.24 ×10−1 3.2 3.8 5.0
19 : 28 7.26 ×10−2 3.5 3.6 5.0
28 : 40 3.97 ×10−2 3.7 4.0 5.5
40 : 60 1.64 ×10−2 4.4 4.7 6.4
60 : 100 7.45 ×10−3 5.2 3.9 6.5

100 : 158 2.08 ×10−3 7.2 5.3 9.0
158 : 251 8.82 ×10−4 7.6 5.0 9.1

251 : 1000 7.50 ×10−5 12.0 6.7 13.3

y dσ
dy δunc δcor δtot

(nb) (%) (%) (%)
0.02 : 0.05 12.13 5.8 9.1 10.8
0.05 : 0.09 18.84 3.9 4.6 6.0
0.09 : 0.13 16.99 3.4 4.3 5.5
0.13 : 0.18 13.35 3.7 4.2 5.6
0.18 : 0.26 11.19 3.4 3.7 5.0
0.26 : 0.36 7.65 3.7 4.2 5.6
0.36 : 0.50 4.78 4.0 5.3 6.6
0.50 : 0.70 2.65 5.6 6.4 8.5

Table 6.4: The combined single-differential D∗+ cross sections as a function of pT (D∗+), η(D∗+), z(D∗+),
Q2 and y, with their uncorrelated (δunc), correlated (δcor) and total (δtot) uncertainties.
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Figure 6.2: Single-differential D∗+ cross section
as a function of pT (D∗+) (a), η(D∗+) (b), z(D∗+)
(c), Q2 (d) and y (e). The triangles and open
squares are the D∗+ cross sections before combina-
tion, shown with a small horizontal offset for better
visibility. The filled points are the combined D∗+

cross sections. The inner error bars indicate the
uncorrelated part of the uncertainties. The outer
error bars represent the total uncertainties. The his-
togram indicates the binning used to calculate the
D∗+ cross sections. For (a) and (d), the bottom part
shows the ratio of these D∗+ cross sections with
respect to the central value of the combined D∗+

cross sections.
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6.4 Combination of visible D∗+ cross sections

Cross section ndof χ2 p(χ2,ndof)
dσ/dpT (D∗+) 11 6.9 81%
dσ/dη(D∗+) 12 7.8 80%
dσ/dz(D∗+) 7 10.9 15%
dσ/dQ2 11 6.1 87%
dσ/dy 8 5.8 67%

Table 6.5: The values of χ2, ndof and the corresponding χ2-probabilities for the combinations of the
single-differential D∗+ cross sections as a function of different variables.
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Figure 6.3: The pull distributions
for the combination of the single-
differential D∗+ cross sections as
a function of pT (D∗+) (a), η(D∗+)
(b), z(D∗+) (c), Q2 (d) and y (e).
Contributions from the individ-
ual input datasets are shown sepa-
rately.
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6 Combination of the HERA charm measurements

be discussed in the next Section 6.4.1.4. In general the predictions describe the data well. The
data reach a precision of about 5% over a large fraction of the measured phase space, while
the typical theory uncertainty ranges from 30% at low Q2 to 10% at high Q2. The data points
between the different distributions are statistically and systematically correlated, so they can
be quantitatively compared to theory only on a one-by-one basis.

The theoretical predictions describe the combined data rather well within the corresponding
uncertainty band, while the central theoretical curves underestimate the data normalisation.
The central theoretical prediction shows a somewhat softer y distribution than the data. The
central prediction for z(D∗+) is a bit wider than the measured distribution.

6.4.1.4 ‘Customised’ theoretical predictions

As mentioned in the previous Section 6.4.1.3, the theoretical uncertainties are usually larger
than the corresponding uncertainties of the combined data. Since the theoretical uncertainties
are combined from several correlated sources, it is rather difficult to make a strong statement
about agreement between the theory and the data from Fig. 6.4 itself.

In order to study the impact of the current theory uncertainties in more detail, the effect of
each separate theory variation on the predictions was studied. The most conclusive variations
on the predictions are shown separately in Fig. 6.5, compared to the same data as in Fig. 6.4.
Plots with all the variations are in Appendix D (Figs. D.27 to D.31).

The NLO prediction as a function of pT (D∗+) (Fig. 6.5a) describes the data better if either

• the charm-quark pole mass is reduced to 1.35 GeV; or

• the renormalisation scale is reduced by a factor 2; or

• the factorisation scale is increased by a factor 2.

Simultaneous variation of both scales will largely compensate and will therefore have a much
smaller effect.

The prediction for the z(D∗+) distribution (Fig. 6.5d) describes the shape of the data notice-
ably better if the fragmentation parameters are adjusted such that the bin boundary ŝ1 between
the two lowest fragmentation bins [66] is varied from the default of 70 GeV2 to its lower
boundary of 30 GeV2. This also slightly improves the shape of the y distribution (Fig. 6.5b).

The preference for a reduced renormalisation scale already observed for pT (D∗+) is con-
firmed by the z(D∗+) distribution (Fig. 6.5c). However, the shape of the z(D∗+) distribution
rather prefers variations of the charm mass and the factorisation scale in the opposite direction
to those found for the pT (D∗+) distribution. The other kinematic variables do not contribute
any additional information to these findings.

As stated before, within the large uncertainties indicated by the theory bands in Fig. 6.4,
all distributions are reasonably described. However, the above study shows that the different
contributions to these uncertainties do not only affect the normalisation but also change the
shape of different distributions in different ways. It is therefore nontrivial that a variant of the
prediction which gives a good description in one variable will also give a good description in
another.
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Figure 6.4: Single-differential D∗+ cross section as
a function of pT (D∗+) (a), η(D∗+) (b), z(D∗+) (c),
Q2 (d) and y (e). The data points are the com-
bined D∗+ cross sections. The inner error bars
indicate the uncorrelated part of the uncertainties.
The outer error bars represent the total uncertain-
ties. Also shown are the NLO predictions from
HVQDIS (including the beauty contribution), and
their uncertainty band. A customised NLO calcu-
lation (dotted line) is also shown.
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Figure 6.5: Single-differential D∗+ cross section as a function of pT (D∗+) (a), y (b) and z(D∗+) (c,d)
compared to NLO predictions with different variations: charm-quark mass mc, renormalisation scale µr,
factorisation scale µ f and fragmentation bin boundary ŝ1.
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Based on the above study, a ‘customised’ calculation was hence performed with the goal to
demonstrate that it is possible to obtain an acceptable description of the data in all variables at
the same time, for both shape and normalisation, within the theoretical uncertainties quoted in
Section 6.3.20 For this calculation

• the renormalisation scale was reduced by a factor 2, with the factorisation scale un-
changed;

• the change of the fragmentation parameter ŝ1 = 30 GeV2 was applied;

• at this stage, the resulting distributions were still found to underestimate the data normal-
isation. As the renormalisation and factorisation scales are recommended to differ by at
most a factor of two [43], the only significant remaining handle is the charm-quark pole
mass. This mass was set to 1.4 GeV, a value which was also found to be compatible with
the partially overlapping data used for a previous dedicated study [66] of the charm-quark
mass;

• all other parameters, which were found to have a much smaller impact than those treated
above, were left at their central settings as described in Section 6.3.

The result of this customised calculation is indicated as a dotted line in Fig. 6.4. Indeed
a reasonable agreement with the data is achieved in all variables at the same time. This a
posteriori adjustment of theory parameters is not a prediction, but it can be taken as a hint in
which direction theoretical and phenomenological developments might need to proceed:

• the strong improvement of the description of the data relative to the central prediction
through the customisation of the renormalisation scale indicates that NNLO calculations,
which might reduce the scale-related uncertainties to a level which matches the data
precision, should be very helpful to obtain a more stringent statement concerning the
agreement of the pQCD predictions with the data;

• the improvement from the customisation of one of the fragmentation parameters and
the still not fully satisfactory description of the z(D∗+) distribution indicate that further
dedicated experimental and theoretical studies of the fragmentation treatment, such as the
introduction of a perturbative heavy-quark fragmentation scale in the pQCD calculations,
might be helpful.

In general, the precise single-differential distributions resulting from the combination, in
particular those as a function of pT (D∗+), η(D∗+) and z(D∗+), are sensitive to theoretical and
phenomenological parameters in a way which complements the sensitivity of more inclusive
variables like Q2 and y.

20 Since several of the theory parameters (e.g. the renormalisation and factorisation scales) are not physical param-
eters, and hence their “uncertainties” have no physical relevance, a “proof of existence” rather than a detailed
fit will suffice to clarify this point. Another reason not to perform a detailed fit is that the data are statistically
correlated between the different distributions, therefore all the distributions must not be fitted simultaneously.
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Dataset
Kinematic range L

√
s

Q2 y pT (D∗+) η(D∗+)
[GeV2] [GeV] [pb-1] [GeV]

I: H1 D∗+ HERA-II (med. Q2) [65] 5 : 100 0.02 : 0.70 1.5 : ∞ −1.5 : 1.5 348 318
II: H1 D∗+ HERA-II (high Q2) [64] 100 : 1000 0.02 : 0.70 1.5 : ∞ −1.5 : 1.5 351 318
III: ZEUS D∗+ HERA-II [137] 5 : 1000 0.02 : 0.70 1.5 : 20.0 −1.5 : 1.5 363 318
IV: ZEUS D∗+ HERA-I 98–00 [136] 1.5 : 1000 0.02 : 0.70 1.5 : 15.0 −1.5 : 1.5 82 318

V: ZEUS D∗+ HERA-I 96–97 [59] 1 : 600 0.02 : 0.70 1.5 : 15.0 −1.5 : 1.5 37 300
VI: H1 D∗+ HERA-I [134] 2 : 100 0.05 : 0.70 1.5 : 15.0 −1.5 : 1.5 47 318

Table 6.6: Datasets considered for the combination of the visible D∗+ double-differential cross section.
For each dataset the respective kinematic region, the integrated luminosity, L, and the centre-of-mass
energy,

√
s, are given.

6.4.2 Combination of double-differential cross section

This Section describes a combination of the D∗+ double-differential cross section as a function
of Q2 and y. Section 6.4.2.1 describes the selection of the input measurements, defines the
combination phase space and gives details of the combination. Section 6.4.2.2 presents and
discusses the results of the combination, the consistency of the input data and gives the com-
bined D∗+ cross sections. Section 6.4.2.3 presents a comparison of NLO QCD predictions to
the combined data.

6.4.2.1 Input measurements, phase space and combination details

Since for the combination of the double-differential cross section as a function of Q2 and y the
restriction to the same phase space in Q2 does not apply, HERA-I D∗+ measurements can be
included in the combination.

Table 6.6 presents the datasets considered for the combination of the visible D∗+ double-
differential cross section.21 Comparing to Table 6.3, Table 6.6 is extended with the three most
precise HERA-I measurements; it also has an additional column which reports the centre-of-
mass energy, since the latter differs for one of the HERA-I measurements.

Inclusion of HERA-I measurements in the combination allows an extension of the kinematic
range down to lower Q2. Although all three HERA-I measurements have different lower Q2

boundaries, a reasonable compromise between them was to choose the lower Q2 equal to Q2 =

21 Same as in Table 6.3, from the two sets of measurements in [65], the one compatible with the quoted cuts on
pT (D∗+) and η(D∗+), which are compatible with the phase space of the ZEUS measurement [137], was chosen
and referred to as dataset I.
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1.5 GeV2. Thus the overall phase space for the combined D∗+ cross sections is given by

1.5 < Q2 < 1000 GeV2,

0.02 < y < 0.7,
pT (D∗+) > 1.5 GeV,
|η(D∗+)| < 1.5,
√

s = 318 GeV.

(6.19)

Some of the HERA-I measurements from Table 6.6 have a slightly different phase space and
are performed at a different centre-of-mass energy. Moreover, their binning scheme for the
double-differential cross section significantly differ from that which has been used for datasets
I–III; dataset VI reports the double-differential cross section not as a function of Q2 and y
but as a function of Q2 and x. Thus inclusion of HERA-I measurements in the combination
necessarily required applying swimming corrections.

A dedicated study was done to select those HERA-I measurements which are reasonably
compatible with the HERA-II ones. At first a common binning scheme had to be chosen.
Since the HERA-II measurements still remain the most precise in the combination, the double-
differential cross section as a function of Q2 and y was selected with the binning scheme which
is based on datasets I–III (although slightly revised to improve consistency with the HERA-I
measurements). It was extended at low Q2 with the binning scheme based on the most precise
HERA-I dataset IV. The new binning will be given together with the combined D∗+ cross
sections in Table 6.8. D∗+ cross sections in the new bins (also referred to as destination, or
output, bins) were obtained from the original bins (referred to also as input bins) using the
swimming procedure described in Section 6.2.3. For each swum bin the following quantities
were calculated:

• the fraction of the cross section of the original bin contained in the new one, efficiency,
E;

• the fraction of the cross section of the new bin contained in the original one, purity, P;

• the ratio of the swimming uncertainty to the experimental uncorrelated uncertainty in the
corresponding bin, R.

Definition of purity, efficiency, and swimming factor, Fsw, which were used to translate the
differential cross section from the original bin to the destination one, is illustrated in Fig. 6.6.
Note that in some cases for a given original bin there can be several candidates for destina-
tion bins; in this case a destination bin with maximum P, E, and minimum R was chosen.
Sometimes it was profitable to combine two input bins before swimming.

The overlap of the binning schemes for the double-differential cross section from all input
measurements and the new binning scheme is shown in Fig. 6.7. All results on the swimming
procedure are provided in Appendix D (Figs. D.1 to D.26 and Tables D.2 to D.4). Fig. 6.8
shows P vs. E, and R vs. its denominator, the experimental uncorrelated uncertainty, for all
considered datasets. Since the binning scheme was chosen to be based on the HERA-II mea-
surements, for all bins from datasets I–III purity, efficiency and the ratio satisfy P, E > 80%

117



6 Combination of the HERA charm measurements

)2 (GeV2Q
10 210 310

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Input bin

in
measσ, in

NLOσ

Output bin

out
measσ, 

out
NLOσ

in
NLOσ

out
NLOσ ∩ in

NLOσ
Purity P = 

out
NLOσ

out
NLOσ ∩ 

in
NLOσ

Efficiency E = 

in
y∆

in

2
Q∆

in
NLOσ

out
y∆

out

2Q∆

out
NLOσ

 = swFactor F

sw F

in
y∆

in

2Q∆

in
measσ

 = 

out
y∆

out

2Q∆

out
measσ

Figure 6.6: Definition of purity, efficiency and swimming factors.

and R < 10% (note that in most bins P = E = 100% and R = 0%, since the original and
destination bins exactly coincide).

Since the purpose of the combination is to provide the visible D∗+ cross sections, P and
E should not be too low and R not too large. Thus it is natural to introduce cuts on these
quantities. Several possible values for the cuts on P and E are presented in Table 6.7 together
with the number of input bins which survive the cuts. A reasonable cut was chosen to be
P, E > 50%. Then most of the input bins from dataset IV (29 of 31) survive this selection,
although it eliminates most of the bins from datasets V and VI.22 Therefore a decision was taken
to include in the combination from the HERA-I measurements only dataset IV. In addition
the cut R < 30% was introduced. This eliminated 3 other input bins from dataset IV, so
finally 26 of 31 original bins were kept. The data points removed from dataset IV mainly
correspond to the low-y region where larger bins were used for the HERA-I data; additionally
they suffer more from the swimming uncertainties, since the NLO QCD predictions at low y
have a large mass dependence. All input bins from datasets I–III survived the above cuts on
P, E and R and were kept. The swimming procedure includes the contribution to dataset IV
from the range pT (D∗+) > 15 GeV. Similar to the case of the single-differential cross-section
combination (Section 6.4.1.1), the sensitivity of the shape to the beauty contribution was found
to be negligible and thus was ignored.

The branching ratios for datasets I, II and IV were updated to the latest PDG value [183].

22 For dataset V the input bins are too large, while for dataset VI the main problem is the original differential cross
section as a function of Q2 and x.
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Figure 6.8: Purity vs. efficiency (left) and the ratio of the swimming uncertainty to the experimental
uncorrelated uncertainty vs. the latter (right) for combination of the double-differential D∗+ cross sec-
tion. Contributions from the individual input datasets are shown separately. The solid lines show cuts
P, E > 50% and P, E > 70% for (a) and R < 30% for (b).

min(P,E) (%) H1 HERA-I ZEUS 96–97 ZEUS 98–00 H1,ZEUS HERA-II
0 17 21 31 31

30 15 21 31 31
40 5 17 31 31
50 2 9 29 31
60 2 4 20 31
70 0 0 12 31
80 0 0 6 31

Table 6.7: Possible values for the cuts on P and E together with numbers of input bins from different
measurements which survive these cuts.
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A full list of considered correlated sources is provided in Appendix D (Table D.13); also in-
put data tables used for the combination are provided (Tables D.10 to D.12). Similar to the
case of the single-differential D∗+ cross sections, all systematic uncertainties were treated as
uncorrelated between H1 and ZEUS measurements, except for the branching-ratio uncertainty;
although since the latter is fully correlated between all datasets, it is not changed in the com-
bination and technically was not included in the combination but applied as an external uncer-
tainty on the results.

6.4.2.2 Combined D∗+ cross sections

The combined double-differential cross section with the uncorrelated, correlated and total un-
certainties as a function of Q2 and y is given in Table 6.8. The total uncertainties were obtained
by adding the uncorrelated and correlated uncertainties in quadrature. A detailed breakdown
of the correlated uncertainties can be found in Appendix D (Table D.16).

The individual datasets as well as the results of the combination are shown in Fig. 6.9. The
combined D∗+ cross sections exhibit significantly reduced uncertainties. The input HERA-
II H1 and ZEUS datasets are similar in precision. The precision of the ZEUS HERA-I data
is smaller; however this sample also provides valuable input in some bins. In the first two
Q2 bins, the combination is based on the HERA-I data only; note that the uncertainty on the
combined data in these bins is a bit reduced comparing to the original one because of reduction
of the correlated systematic uncertainties.

The combination has χ2/ndof = 38/48; the corresponding probability is 85%, indicating
consistency of the input measurements and, possibly, some overestimation of the experimental
systematic uncertainties. The pull distribution is shown in Fig. 6.10. It is reasonably similar to
a unit Gaussian distribution. As was seen in the results of the single-differential cross section
combination (Section 6.4.1.2), although Fig. 6.9 indicates that the H1 data points lie on average
below the ZEUS points, the pull distribution in Fig. 6.10 shows an overall symmetric spread of
all input data around the combined results. The shifts and reductions of the correlated sources
can be found in Appendix D (Table D.13).

6.4.2.3 Comparison with theoretical predictions

The combined cross section is compared to the NLO QCD predictions in the FFNS (described
in Section 6.3) in Fig. 6.11. The customised calculation (see Section 6.4.1.4) is also shown.
In general the predictions describe the data well. As seen before from the single-differential
y cross section (Section 6.4.1.3), the central theory prediction shows a somewhat softer y dis-
tribution than the data, in particular at low Q2. The data reach a precision of about 5–10%
over a large fraction of the measured phase space, while the typical theory uncertainty ranges
from 30% at low Q2 to 10% at high Q2, so higher-order calculations would be very helpful to
match the data precision. As well as the single-differential distributions, this double-differential
distribution gives extra input to test further theory improvements.
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6 Combination of the HERA charm measurements

Q2 y d2σ
dQ2dy δunc δcor δtot

(GeV2) (nb/GeV2) (%) (%) (%)
1.5 : 3.5 0.02 : 0.09 4.76 12.9 2.5 13.2

0.09 : 0.16 5.50 11.3 2.6 11.5
0.16 : 0.32 3.00 12.0 2.6 12.3
0.32 : 0.70 9.21 ×10−1 20.5 2.5 20.7

3.5 : 5.5 0.02 : 0.09 2.22 11.3 2.8 11.6
0.09 : 0.16 1.98 7.9 2.7 8.3
0.16 : 0.32 1.09 20.2 2.7 20.4
0.32 : 0.70 3.47 ×10−1 14.6 2.6 14.8

5.5 : 9 0.02 : 0.05 1.06 12.3 4.4 13.1
0.05 : 0.09 1.46 7.8 4.1 8.8
0.09 : 0.16 1.32 5.4 4.3 6.9
0.16 : 0.32 7.73 ×10−1 4.9 3.9 6.3
0.32 : 0.70 2.51 ×10−1 5.6 4.2 7.0

9 : 14 0.02 : 0.05 5.20 ×10−1 13.0 6.6 14.6
0.05 : 0.09 7.68 ×10−1 6.6 3.9 7.7
0.09 : 0.16 5.69 ×10−1 4.6 2.8 5.4
0.16 : 0.32 4.12 ×10−1 4.6 3.1 5.6
0.32 : 0.70 1.51 ×10−1 5.6 4.0 6.9

14 : 23 0.02 : 0.05 2.29 ×10−1 11.4 6.3 13.0
0.05 : 0.09 3.78 ×10−1 6.5 4.1 7.7
0.09 : 0.16 2.90 ×10−1 4.8 3.3 5.8
0.16 : 0.32 1.86 ×10−1 5.0 3.4 6.0
0.32 : 0.70 6.92 ×10−2 6.2 4.4 7.7

23 : 45 0.02 : 0.05 6.91 ×10−2 14.8 8.2 16.7
0.05 : 0.09 1.23 ×10−1 5.9 3.6 6.9
0.09 : 0.16 1.14 ×10−1 4.4 3.0 5.3
0.16 : 0.32 7.42 ×10−2 4.3 3.0 5.2
0.32 : 0.70 3.21 ×10−2 5.2 3.7 6.4

45 : 100 0.02 : 0.05 6.16 ×10−3 33.5 11.1 35.3
0.05 : 0.09 2.70 ×10−2 11.0 4.4 11.8
0.09 : 0.16 2.05 ×10−2 8.0 3.7 8.8
0.16 : 0.32 1.99 ×10−2 5.4 3.2 6.3
0.32 : 0.70 7.84 ×10−3 6.9 4.0 7.9

100 : 158 0.02 : 0.32 4.12 ×10−3 8.2 4.1 9.2
0.32 : 0.70 2.18 ×10−3 11.1 4.1 11.9

158 : 251 0.02 : 0.30 1.79 ×10−3 10.2 4.4 11.1
0.30 : 0.70 9.28 ×10−4 11.6 4.6 12.5

251 : 1000 0.02 : 0.26 1.31 ×10−4 14.5 4.7 15.3
0.26 : 0.70 1.18 ×10−4 12.7 5.0 13.6

Table 6.8: The combined double-differential D∗+ cross section as a function of Q2 and y, with its uncor-
related (δunc), correlated (δcor) and total (δtot) uncertainties.
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Figure 6.9: Double-differential D∗+ cross sections as a function of Q2 and y. The triangles, open squares
and open circles are the D∗+ cross sections before combination, shown with a small horizontal offset
for better visibility. The filled points are the combined D∗+ cross sections. The inner error bars indicate
the uncorrelated part of the uncertainties. The outer error bars represent the total uncertainties. The
histogram indicates the binning used to calculate the D∗+ cross sections.
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Figure 6.10: The pull distribution for the combination of the double-differential D∗+ cross sections as a
function of Q2 and y. Contributions from the individual input datasets are shown separately.

6.5 Combination of charm reduced cross sections

This Section describes a combination of HERA charm-production measurements in DIS at
the level of the reduced cross sections. The primary aim of the analysis was to obtain one
consistent dataset which provides information on charm production in DIS in the full phase
space, integrated over pT and η of a charm quark, because most theoretical predictions exist
only for this inclusive quantity. Since all methods used to measure charm production at HERA,
introduced in Section 3.1.3, have limited phase-space coverage and thus should be corrected to
the full phase space using theory, there are no reasons to restrict this combination to a specific
phase space and binning scheme, and all datasets from H1 [64, 65, 134, 141] and ZEUS [19,
59, 136–140] were included for which the necessary information on systematic uncertainties
needed for the combination is available and which have not been superseded.

The results reported in this Section represent an extension of the previous combination of H1
and ZEUS charm measurements [66] with three recent ZEUS datasets [19, 137, 139] which ap-
peared after the combination [66] has been performed. The intention was to keep the procedure
as close as possible to [66] to allow for a consistent comparison with the published results.

Subsection 6.5.1 introduces the combination details: the input datasets and treatment of their
experimental uncertainties (Section 6.5.1.1), definition of the reduced cross sections and the
combination Q2–x grid (Section 6.5.1.2) and extraction of the reduced cross sections from the
visible ones, needed to put the input measurements into the common grid (Section 6.5.1.3).
In Section 6.5.2 the results of the combination are presented and compared to the results
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Figure 6.11: Double-differential D∗+ cross section as a function of Q2 and y. The data points are the com-
bined D∗+ cross sections. The inner error bars indicate the uncorrelated part of the uncertainties. The
outer error bars represent the total uncertainties. Also shown are the NLO predictions from HVQDIS
(including the beauty contribution), and their uncertainty band. A customised NLO calculation (dotted
line) is also shown.
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6 Combination of the HERA charm measurements

from [66]. In Section 6.5.3 the combined data are compared to the theoretical predictions
in the FFNS and the running and pole charm masses are extracted from the data, while Sec-
tion 6.5.4 is devoted to a comparison with the theoretical predictions in different VFNS and a
determination of optimal charm-quark mass parameters for these schemes.

6.5.1 Combination details

The combination procedure closely follows the one used for the previous HERA charm com-
bination [66], referred to as ‘HERA 2012’.

6.5.1.1 Input data samples

The datasets included in the combination are listed in Table 6.9 and correspond to 209 different
cross-section measurements23 24 . The combination includes measurements of charm produc-
tion performed using different tagging techniques: the reconstruction of particular decays of
D-mesons (datasets 2–7, 9, 10), the inclusive analysis of tracks exploiting lifetime information
(datasets 1, 11) and the reconstruction of muons from charm semi-leptonic decays (dataset 8).

Datasets 1–8 have been used in the previous ‘HERA 2012’ combination, while datasets 9–
11 were newly included. Note that dataset 9 replaced one of the datasets from ‘HERA 2012’,
which is its subset.

Correlations between systematic uncertainties of different measurements were accounted
for as explained in Section 6.2.2. All experimental systematic uncertainties were treated as
independent between H1 and ZEUS. A full list of considered correlated sources is provided in
Appendix E (Tables E.1 to E.2). The total uncorrelated systematic uncertainties were obtained
by adding individual ones in quadrature.25

6.5.1.2 Reduced cross sections and common Q2–x grid

The quantities to be combined are the charm reduced cross sections, defined as follows:

σcc̄
red =

d2σcc̄

dxdQ2 ·
xQ4

2πα(Q2)2 (1 + (1 − y)2)

= Fcc̄
2 −

y2

1 + (1 − y)2 Fcc̄
L . (6.20)

The superscript cc̄ indicates the presence of a cc̄ pair in the final state, including all possible
QCD production processes. The cross section d2σcc̄/dxdQ2 is given at the Born level without

23 From the two sets of measurements in [65], the one in the wider pT (D∗+) and η(D∗+) range was chosen and
referred to as dataset I; this is another dataset from the one that was used in the combination of the D∗+ cross
sections, described in Section 6.4.

24 A misprint was found in Table 3 of [136]: for the rows 22 and 23 the y ranges should read 0.22 − 0.10 and
0.10 − 0.02, respectively. Another misprint was found in Table 2 of [140]: the Q2 range in the last row should
be 400 : 10000 GeV2.

25 For dataset 11 an additional uncorrelated systematic uncertainty was considered: an uncertainty of 100% on
∆had = Chad − 1 (Table 6 of [19]).
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6.5 Combination of charm reduced cross sections

Dataset Tagging method Q2 range N L
√

s
[GeV2] [pb−1] [GeV]

1 H1 VTX [141] Inclusive track lifetime 5 – 2000 29 245 318
2 H1 D∗+ HERA-I [134] D∗+ 2 – 100 17 47 318
3 H1 D∗+ HERA-II (med. Q2) [65] D∗+ 5 – 100 25 348 318
4 H1 D∗+ HERA-II (high Q2) [64] D∗+ 100 – 1000 6 351 318
5 ZEUS D∗+ 96-97 [59] D∗+ 1 – 200 21 37 300
6 ZEUS D∗+ 98-00 [136] D∗+ 1.5 – 1000 31 82 318
7 ZEUS D0 2005 [138] D0,noD∗+ 5 – 1000 9 134 318
8 ZEUS µ 2005 [140] µ 20 – 10000 8 126 318
9 ZEUS D+ HERA-II [139] D+ 5 – 1000 14 354 318

10 ZEUS D∗+ HERA-II [137] D∗+ 5 – 1000 31 363 318
11 ZEUS VTX HERA-II [19] Inclusive track lifetime 5 – 1000 18 354 318

Table 6.9: Datasets used in the combination of the charm reduced cross sections. For each dataset
the charm tagging method, the Q2 range, the number of cross-section measurements, N, the integrated
luminosity, L, and the centre-of-mass energy,

√
s, are given. The dataset with the D0, no D∗+ tagging

method is based on an analysis of D0 mesons not originating from detectable D∗+ decays.

QED and electro-weak radiative corrections, except for the running electromagnetic coupling,
α(Q2).

The reduced cross sections (and not the structure functions Fcc̄
2 ) were chosen for the combi-

nation because they are proportional to the directly measured double-differential cross sections.
Despite the fact that Fcc̄

2 and Fcc̄
L depend only on Q2 and x, the presence of y in definition 6.20

leads to dependence of σcc̄
redon the centre-of-mass energy,

√
s. Following the majority of the

datasets listed in Table 6.9, σcc̄
redwere defined in the combination at the centre-of-mass energy

√
s = 318 GeV.

The values of σcc̄
red for individual measurements were determined at the 52 (Q2, x) points

of a common grid, chosen such that they are close to the centre-of-gravity in Q2 and x of
the corresponding bins, taking advantage of the fact that the binning schemes used by the
H1 and ZEUS experiments are similar (the grid points were kept the same as in the ‘HERA
2012’ combination). For all but three grid points, at least 2 measurements entered into the
combination; for points in the medium Q2 bins, the number of input measurements reached 7.
The phase space of the combined cross sections is given by

2.5 ≤ Q2 ≤ 2000 GeV2,

3 × 10−5 ≤ x ≤ 5 × 10−2.
(6.21)
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6 Combination of the HERA charm measurements

6.5.1.3 Extrapolation and corrections

The results of the inclusive lifetime analysis (dataset 1) were directly taken from the original
measurement in the form of σcc̄

red. For all other measurements the inputs to the combination
were visible cross sections, σvis,bin, defined as the D-, µ- or jet-production cross sections in a
particular pT and η range, in bins of Q2 and y or x.

The reduced cross sections σcc̄
redwere obtained from the visible cross sections σvis,bin mea-

sured in a limited phase space using a common theory according to the procedure described in
Section 6.2.3: the reduced charm cross section at a reference (x,Q2) point is given by

σcc̄
red(x,Q2) = σvis,bin

σcc̄,th
red (x,Q2)

σth
vis,bin

. (6.22)

To calculate σcc̄,th
red (x,Q2) and the visible cross sections σth

vis,bin, the NLO QCD FFNS theory set-
up was used, consistent with the previous ‘HERA 2012’ combination.26 This set-up is almost
identical to the one described in Section 6.3, except for the following minor changes:

1. in the fragmentation process, calculation of the hadron energy and Lorentz boost were
done by using the charm-quark mass27;

2. if it needed to be subtracted, the beauty contribution was evaluated using the estimates of
the corresponding papers (based on MC re-normalised to data).

The extrapolation factors, R = σth
bin/σ

th
vis,bin, where σth

bin is the cross section in the full pT , η
phase space, vary in a wide range: from R & 1 at high Q2 to R ∼ 5 at low Q2 and high x. For
dataset 5 the extrapolation procedure includes also the centre-of-mass energy correction.

The extrapolation uncertainties were estimated from the variations described in Section 6.3,
and were treated as correlated between datasets 2-1128. For dataset 1 the extrapolation uncer-
tainties (except for the longitudinal fragmentation) do not appear explicitly and were covered
by the experimental systematic uncertainties. The dominant contributions arise from the varia-
tion of the renormalisation and factorisation scales (average 5–6%, reaching 15% at lowest Q2)
and from the variation of the fragmentation function (average 3–5%).

Prior to the combination, datasets 1 and 11 were transformed, when needed, from the grids
used in the original papers to the common grid using the NLO FFNS calculation. The cor-
rections were always smaller than 25% and the associated uncertainties, obtained by varying
the charm mass, the scales and the PDFs, were negligible. All D-meson cross sections were
updated using the most recent branching ratios [183].

26 The fully consistent theory set-up allowed for using existing input tables for σcc̄
redfor datasets 1–8, available

from [66], and straightforward comparison of new results of the combination with the ‘HERA 2012’ re-
sults; also note that two of three newly included ZEUS measurements (datasets 10 and 11) already published
σcc̄

redextracted from the visible cross sections using exactly this theoretical set-up.
27 Except for dataset 8.
28 The PDF uncertainties were neglected for the newly included datasets 9-11, since for the other ones they were

found to be negligibly small (1% on average) [66].
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6.5 Combination of charm reduced cross sections

6.5.2 Combined charm cross sections

In total, 209 measurements were combined to 52 reduced cross-section measurements. The
data show good consistency with χ2/ndof = 117/157; the corresponding probability is 99.3%,
indicating conservative estimation of the experimental systematic uncertainties of the input
measurements.29 The pull distribution is shown in Fig. 6.12. It is reasonably similar to a unit
Gaussian distribution.
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Figure 6.12: The pull distribution for the combination of the charm reduced cross sections. Contributions
from the individual input datasets are shown separately.

The values of the combined cross section σcc̄
redtogether with uncorrelated, correlated and total

uncertainties are given in Table 6.10. A detailed breakdown of the correlated uncertainties can
be found in Appendix E (Tables E.3 to E.4).

The individual datasets as well as the results of the combination are shown in Fig. 6.13.30 The
combined cross sections exhibit significantly reduced uncertainties. The input H1 and ZEUS
29 In this case also the uncertainties on the combined results from χ2 variation of 1 must be conservative.
30 The same plots, but separately for each Q2 bin, are available in Appendix E (Figs. E.1to E.12).
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Q2 x σcc̄
red δunc δcor δtot

(GeV2) (%) (%) (%)
2.5 0.00003 0.1215 13.5 8.2 15.8
2.5 0.00007 0.1144 8.7 8.2 11.9
2.5 0.00013 0.0940 9.6 7.8 12.4
2.5 0.00018 0.0966 9.2 7.2 11.7
2.5 0.00035 0.0586 8.6 6.5 10.8
5 0.00007 0.1568 14.9 7.7 16.8
5 0.00018 0.1594 8.0 6.0 10.0
5 0.00035 0.1208 6.9 5.6 8.9
5 0.00100 0.0839 9.2 5.2 10.6
7 0.00013 0.2333 5.5 6.7 8.7
7 0.00018 0.2088 8.7 7.1 11.2
7 0.00030 0.1833 3.7 5.2 6.3
7 0.00050 0.1673 3.5 4.7 5.8
7 0.00080 0.1249 6.1 4.4 7.5
7 0.00160 0.0958 5.3 4.7 7.1
12 0.00022 0.3279 5.8 5.9 8.3
12 0.00032 0.3041 4.5 5.6 7.2
12 0.00050 0.2470 3.3 4.1 5.3
12 0.00080 0.1882 3.0 3.9 4.9
12 0.00150 0.1586 4.2 4.3 6.0
12 0.00300 0.1106 5.5 4.9 7.3
18 0.00035 0.3306 6.3 5.4 8.3
18 0.00050 0.3030 4.0 5.7 7.0
18 0.00080 0.2685 3.1 3.6 4.7
18 0.00135 0.2134 2.6 3.8 4.6
18 0.00250 0.1723 2.7 3.7 4.5

Q2 x σcc̄
red δunc δcor δtot

(GeV2) (%) (%) (%)
18 0.00450 0.1314 5.9 5.2 7.8
32 0.00060 0.4348 14.6 4.9 15.4
32 0.00080 0.3778 3.5 4.4 5.6
32 0.00140 0.2874 2.7 3.2 4.2
32 0.00240 0.2241 3.3 3.3 4.7
32 0.00320 0.2136 5.3 3.8 6.5
32 0.00550 0.1610 4.7 3.8 6.0
32 0.00800 0.1022 9.8 5.4 11.2
60 0.00140 0.3380 4.6 3.8 5.9
60 0.00200 0.3440 3.9 2.6 4.7
60 0.00320 0.2709 3.5 3.0 4.6
60 0.00500 0.1993 3.6 3.0 4.7
60 0.00800 0.1712 6.0 3.0 6.7
60 0.01500 0.1014 9.9 4.2 10.8
120 0.00200 0.3560 6.5 4.0 7.6
120 0.00320 0.3619 9.5 2.7 9.9
120 0.00550 0.2309 5.2 3.3 6.2
120 0.01000 0.1605 4.7 2.9 5.5
120 0.02500 0.0888 13.9 3.7 14.4
200 0.00500 0.2510 6.6 3.9 7.7
200 0.01300 0.1773 5.5 3.3 6.4
350 0.01000 0.2264 8.1 4.0 9.0
350 0.02500 0.1079 10.0 4.1 10.8
650 0.01300 0.2124 9.5 5.6 11.1
650 0.03200 0.0993 11.4 7.9 13.9

2000 0.05000 0.0655 26.3 12.9 29.3

Table 6.10: The combined reduced cross sections of charm production with their uncorrelated (δunc),
correlated (δcor) and total (δtot) uncertainties.

data in total are similar in precision and contribute roughly equally to the averaged results. The
combined data are significantly more precise than any of the individual input datasets. The
uncertainty of the combined results is about 8% on average and reaches 4% in the region of
small x and medium Q2. This is an improvement of about a factor of 2.5 with respect to each
of the most precise datasets in the combination.

There are in total 78 sources of correlated systematic uncertainty, including global normali-
sations, characterising the separate datasets. The shifts and the reduction of the correlated un-
certainties can be found in Appendix E (Tables E.1 to E.2). None of these systematic sources
shifted by more than 1.3 standard deviation of the nominal value in the averaging procedure.
The influence of several correlated systematic uncertainties was reduced by more than a factor
of two, while on average the reduction factors are about 20% of the nominal standard devia-
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Figure 6.13: Combined measurements of σcc̄
red (closed circles) shown as a function of x for given values

of Q2. The input measurements are also shown with different markers. For the combined data, the inner
error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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tion. The reductions can be traced mainly to the different charm-tagging methods, and to the
requirement that different measurements probe the same cross section at each (x,Q2) point.
The reduction of systematic uncertainties propagated to the other average points, including
those which are based solely on the less precise measurements. Due to this propagation the un-
certainty on the combined data in the points, to which only one input measurement contributes,
was also reduced compared to the original one.

6.5.2.1 Comparison to previous combination

Comparing χ2/ndof = 117/157 to the ‘HERA 2012’ result, χ2/ndof = 62/103, the individual
contributions from the newly included measurements are 11/14, 30/31 and 18/18 for datasets
9, 10 and 11, respectively, and the total contribution from all three datasets is 59/63, thus the
new measurements are perfectly consistent.

The combined data are compared to the ‘HERA 2012’ results in Fig. 6.14; for a more detailed
comparison Fig. 6.15 shows the same results normalised to the ‘HERA 2012’ and Fig. 6.16
shows the comparison of the relative uncertainties. The new results are consistent with the
previously published ones, although on average they lie slightly above. This is explained by
taking into account the changes in the shifts of correlated systematic uncertainties, which affect
all points simultaneously (mainly the theory-related sources and luminosity uncertainties, see
Tables E.1 to E.2 in Appendix E).

The new combined cross sections exhibit reduced uncertainties. Typically, the reduction of
the uncorrelated and correlated uncertainties contribute about equally to the total improvement.
At medium Q2, where the new measurements contribute directly, the improvement is on av-
erage of the order of 20% of the ‘HERA 2012’ uncertainties, reaching 35% in several points,
and in the low and very high Q2 bins the improvement is 5–15% owing to the reduction of the
correlated uncertainties only.

6.5.3 Comparison to theoretical predictions and QCD analysis in
FFNS

Fig. 6.17 presents a comparison of the NLO QCD predictions in the FFNS, calculated as de-
scribed in Section 6.3, to the combined data. This is more clearly seen in the ratio to the
theoretical predictions, shown in Fig. 6.18. The predictions describe the data well within the
uncertainties in the whole kinematic range of the combination, although the central theoretical
curve underestimates the data normalisation, as observed also in the combination of the D∗+

cross sections (Sections 6.4.1.3, 6.4.1.3). The ‘customised’ NLO calculation (Section 6.4.1.4),
while it was determined mainly from the exclusive D∗+ quantities in the restricted phase space,
provides an improved description of the reduced cross-section normalisation, although it does
not improve the description of the x shape.

In Fig. 6.19 the data are compared to the predictions by the ABM group in the FFNS at NLO
and NNLO, based on the running-mass scheme [17, 215]. The uncertainties on the predictions
include the uncertainties on the charm mass, which dominate at small Q2. The predictions at
NLO and NNLO are very similar and describe the data well in the whole kinematic range of
the measurement.
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values of Q2, compared to the ‘HERA 2012’ results (open circles). The error bars represent the total
uncertainty. The inner error bars indicate the uncorrelated part of the uncertainties. For presentation
purposes, the ‘HERA 2012’ results are slightly shifted in x.

133



6 Combination of the HERA charm measurements

3

re
d

 2
0

1
2

c
c

σ
 /
 

re
d

c
c

σ

0.5

1

1.5
2

=2.5 GeV
2

Q

4 3 2

0.5

1

1.5
2

=12 GeV
2

Q

4 3 2

0.5

1

1.5
2

=60 GeV
2

Q

4
10

3
10

2
10

0.5

1

1.5 2
=350 GeV

2
Q

3

0.5

1

1.5
2

=5 GeV
2

Q

4 3 2

0.5

1

1.5
2

=18 GeV
2

Q

4 3 2

0.5

1

1.5
2

=120 GeV
2

Q

4
10

3
10

2
10

0.5

1

1.5 2
=650 GeV

2
Q

3

0.5

1

1.5
2

=7 GeV
2

Q

4 3 2

0.5

1

1.5
2

=32 GeV
2

Q

4 3 2

0.5

1

1.5
2

=200 GeV
2

Q

x

4
10

3
10

2
10

0.5

1

1.5 2
=2000 GeV

2
Q

HERA HERA 2012

Figure 6.15: Combined charm reduced cross sections (closed circles) shown as a function of x for given
values of Q2, normalised to the ‘HERA 2012’ results (open circles). The error bars represent the total
uncertainty. The inner error bars indicate the uncorrelated part of the uncertainties. For presentation
purposes the ‘HERA 2012’ results are slightly shifted in x.
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Figure 6.16: The relative uncertainties of the combined charm reduced cross sections (closed circles)
shown as a function of x for given values of Q2, compared to the ‘HERA 2012’ results (open circles).
The error bars represent the total uncertainty. The inner error bars indicate the uncorrelated part of the
uncertainties. For presentation purposes the ‘HERA 2012’ results are slightly shifted in x.
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Figure 6.17: Combined measurements of σcc̄
red (closed circles) shown as a function of x for given val-

ues of Q2, compared to the NLO QCD FFNS theoretical predictions (a solid line with a band). The
customised NLO calculation (a dotted line) is also shown.
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Figure 6.18: Combined measurements of σcc̄
red (closed circles) shown as a function of x for given val-

ues of Q2, normalised to the NLO QCD FFNS theoretical predictions (a solid line with a band). The
customised NLO calculation is also shown (a dotted line).

137



6 Combination of the HERA charm measurements

0

0.2

0

0.5

0

0.5

0

0.5

σ

re
d

 c
c_

Q
2
=2.5 GeV

2
Q

2
=5 GeV

2
Q

2
=7 GeV

2

Q
2
=12 GeV

2
Q

2
=18 GeV

2
Q

2
=32 GeV

2

Q
2
=60 GeV

2
Q

2
=120 GeV

2
Q

2
=200 GeV

2

Q
2
=350 GeV

2

10
-4

10
-3

10
-2

Q
2
=650 GeV

2

10
-4

10
-3

10
-2

Q
2
=2000 GeV

2

HERA

ABM09NNLO MS


ABM09NLO MS


10
-4

10
-3

10
-2

x

Figure 6.19: Combined measurements of σcc̄
red (closed circles) shown as a function of x for particular

Q2, compared to the prediction by the ABM group at NLO (hashed band) and NNLO (shaded band) in
the FFNS using the MS definition for the charm-quark mass.
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6.5.3.1 Extraction of pole and running charm mass

The strong sensitivity of the theoretical predictions to the charm mass suggests that a QCD fit
to determine the preferred value from the data should be carried out.

The analysis was performed with the HERAFitter program [216, 217] , which is based on
the NLO DGLAP evolution scheme [27–32] as implemented in QCDNUM [45]. The strategy
of the HERAPDF1.0 fit [66, 207] was followed. The combined H1 and ZEUS inclusive ep
NC and CC DIS cross sections [207] were used to constrain the PDFs. The analysis was
restricted to the inclusive data with Q2 > Q2

min = 3.5 GeV2 to ensure the applicability of
pQCD calculations; for the charm data this cut was not applied31. Theoretical predictions
were obtained at NLO using the FF ABM and FF ABM RUNM scheme for the heavy-quark
pole- and running-mass treatment, respectively, as implemented in OPENQCDRAD [218].
The factorisation and renormalisation scales were set to µ f = µr = Q for the light quarks and

to µ f = µr =
√

Q2 + 4m2
Q for the heavy quarks. The number of active flavours in PDFs and

αs evolution was set to n f = 3. The strong coupling constant was set to αn f =3
s (MZ) = 0.105,

corresponding to the value αn f =5
s (MZ) = 0.116. The beauty mass was set to mpole

b = 4.75 GeV
and mb(mb) = 4.18 GeV [183] for the pole- and running-mass treatments, respectively.32

The following independent combinations of PDFs were chosen in the fit procedure at the
initial scale of the QCD evolution Q2

0 = 1.4 GeV2: the valence-quark distributions xuv(x),
xdv(x), the gluon distribution xg(x) and the u-type and d-type anti-quark distributions (note
that they are identical to the sea-quark distributions), xU(x), xD(x), where xU(x) = xu(x) and
xD(x) = xd(x) + xs(x). At the scale Q0, the PDFs are represented by

xg(x) = AgxBg(1 − x)Cg − A′gxB′g(1 − x)C′g ,

xuv(x) = Auv x
Buv (1 − x)Cuv (1 + Duv x + Euv x

2),
xdv(x) = Adv x

Bdv (1 − x)Cdv ,

xU(x) = AU xBU (1 − x)CU (1 + DU x),
xD(x) = ADxBD(1 − x)CD(1 + DDx).

(6.23)

The normalisation parameters Auv , Adv , Ag were determined by the QCD sum rules, the param-
eters B are responsible for the small-x behaviour of the PDFs, and the parameters C describe
the shape of the distribution as x → 1. A flexible form for the gluon distribution was adopted
with the choice of C′g = 25 motivated by the approach of the MSTW group [53, 54]. The
s-quark distribution is expressed as x-independent strangeness fraction, fs, of the d-type sea,
xs = fsxD at Q2

0, where fs = 0.31 as in the analysis of [54]. Additional constraints BU = BD
and AU = AD(1 − fs) were imposed, with xū → xd̄ as x → 0. The parameters Duv , DŪ and
DD̄ were set to 0 for the nominal variant of the fit. In a compact way, these constraints can be

31 For the charm data the applicability of pQCD calculations is ensured by the presence of a massive charm
quark-antiquark pair in the final state; see also the scale choices.

32 For the calculation of the beauty contribution to the inclusive cross sections.
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summarised as
AU = AD(1 − fs), fs = 0.31,
BU = BD,
C′g = 25,
Duv = DU = DD = 0,∫ 1

0
[
∑

i(qi(x) + qi(x)) + g(x)]xdx = 1,∫ 1

0
[u(x) − u(x)]dx = 2,∫ 1

0
[d(x) − d(x)]dx = 1.

(6.24)

The analysis was performed by fitting the remaining 13 free parameters in 6.2333. The charm
mass was left free in the fit.

The free parameters are determined in HERAFitter by minimisation of a χ2-function as im-
plemented in the MINUIT package [184] taking into account correlated and uncorrelated mea-
surement uncertainties [217]. Systematic uncertainties are assumed to be proportional to the
central prediction values, whereas statistical uncertainties scale with the square root of the pre-
dictions. Correlated uncertainties are treated using nuisance-parameter representation [217].
To minimise biases arising from the likelihood transition to χ2 when the scaling of the errors is
applied, a logarithmic correction is added to the χ2-function [219].

The uncertainties were evaluated following the strategy of [66, 207]. These include:

• a fit uncertainty was evaluated using the Hessian method [204, 217] from a χ2 variation
of 1;34

• model uncertainties from variation of theory model parameters:

◦ fs was varied in the range 0.23 < fs < 0.38;

◦ mpole
b and mb(mb) were varied in the ranges 4.50 < mpole

b < 5.00 GeV and 4.00 <
mb(mb) < 4.40 GeV for the pole- and running-mass treatments, respectively;

◦ Q2
min was varied in the range 2.5 < Q2

min < 5.0 GeV2;

◦ α
n f =3
s (MZ) was varied in the range 0.103 < α

n f =3
s (MZ) < 0.107, corresponding to

0.114 < αn f =5
s (MZ) < 0.118;

◦ µ f and µr for heavy-flavour production were varied simultaneously by a factor of two
(the framework allows only their simultaneous variation); the largest differences in
this range were taken;

• parametrisation uncertainties:

◦ Q2
0 was varied in the range 1.0 < Q2

0 < 1.9 GeV2;

◦ the parameter Duv was released;

◦ the parameter DU was released;

◦ the parameter DD was released.

33 Note that a negative gluon distribution was allowed at the parametrisation scale.
34 For the charm-quark mass, the fit uncertainty was determined with the MINOS algorithm [185].
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The fitted values of the pole and running charm masses are

mpole
c = 1.334 +0.039

−0.043(fit) +0.013
−0.005(mod) +0.008

−0.011(αs) +0.005
−0.001(scale) +0.020

−0.001(par) GeV,
mc(mc) = 1.225 +0.034

−0.034(fit) +0.008
−0.001(mod) +0.009

−0.007(αs) +0.009
−0.005(scale) +0.015

−0.000(par) GeV.
(6.25)

For the model uncertainties the fs, mb and Q2
min variations were added in quadrature, while

the αs and scale uncertainties are quoted separately. For the parametrisation uncertainties,
the largest differences of all variations was taken. The χ2/ndof values are χ2/ndof = 656/630
and χ2/ndof = 653/630 for the pole- and running-mass treatments, respectively; the partial
contribution from the combined charm data is χ2/ndof = 66/52 in both fits. These values
indicate a good consistency of the fit, although they are slightly larger than obtained in the
previous analysis [66] with the ‘HERA 2012’ combined data (total χ2/ndof = 628/626 and
charm χ2/ndof = 44/47 for the running-mass treatment). This might indicate that the more
precise charm data require a somewhat more flexible PDF parametrisation.

The determined mc(mc) value is consistent with the ‘HERA 2012’ result mc(mc) = 1.26 ±
0.05(fit) ± 0.03(mod) ± 0.02(par) ± 0.02(αs) and has a better accuracy owing to the more
precise combined charm data used in the fit and to the usage of all Q2 bins35. The reduction
of the model, αs and scale uncertainties is attributed partially to the usage of all Q2 bins and
partially to a more stable fit result. This value also agrees reasonably well with the other
analyses of the ‘HERA 2012’ charm data performed at NLO and partial NNLO [220, 221]36:

mc(mc) = 1.15 ± 0.04(exp) +0.04
−0.00(scale) GeV NLO O(α2

s) (Alekhin),

mc(mc) = 1.24 ± 0.03(exp) +0.03
−0.02(scale) +0.00

−0.07(theory) GeV approx. NNLO O(α3
s) (Alekhin),

mc(mc) = 1.19 +0.08
−0.15 GeV NNLO O(α2

s) (CTEQ).
(6.26)

Some differences between the results are attributed to different theoretical settings and pro-
cedures of uncertainty estimation (for more details see [220, 221] and references therein).
The determined mc(mc) value is also consistent with the world average of mc(mc) = 1.275 ±
0.025 GeV [183] defined at two-loop QCD, based on lattice calculations and measurements of
time-like processes.

Finally, note that the fitted running-mass value mc(mc) = 1.225 GeV corresponds to mpole
c =

mc(mc)(1 + 4αs(mc)/3π) = 1.417 GeV, calculated using the appropriate one-loop relation 2.21,
which is reasonably consisted with the fitted value for mpole

c = 1.334 GeV, although the latter
differs significantly from the world-average pole mass mpole

c = 1.67±0.07 GeV [183], calculated
from the world-average running mass using the three-loop relation. This illustrates one of
the possible caveats in determination and usage of the pole mass in applications of pQCD,
mentioned in Section 2.2.2.2. Since no attempt has been made to estimate the non-perturbative
theoretical uncertainty on mpole

c , the presented result should be considered as extraction of the

35 Note, that for the previous ‘HERA 2012’ result the lowest Q2 bin of the charm data has not been included in
the fit; repeating the fit with the ‘HERA 2012’ data with the lowest Q2 bin gives the closer value mc(mc) =

1.228 +0.048
−0.038(fit) +0.024

−0.000(mod) +0.022
−0.006(αs) +0.025

−0.010(scale) +0.015
−0.000(par) GeV.

36 One of the four variants of the fitted mc(mc) from [220] is quoted.
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value, which is optimal for these particular data, rather than a measurement.

6.5.4 Comparison to theoretical predictions and QCD analysis in
VFNS

In Figs 6.20 and 6.21 the combined cross sections are compared with predictions of the MSTW
group in the GM-VFNS at NLO and NNLO, respectively, using the RT-standard [53, 54] and
the RT-optimised [58] interpolation procedure of the cross section at the charm-production
threshold. At NLO, the optimised prediction tends to describe the data better than the standard
one at lower Q2. The description of the data is improved at NNLO compared to NLO.

In Fig. 6.22 the data are compared to the NLO predictions based on HERAPDF1.5 [222]
extracted in the RT standard scheme using as inputs the published HERA-I [207] and the
preliminary HERA-II combined inclusive DIS data. For the central PDF set a charm-quark
mass parameter Mc = 1.4 GeV is used. The uncertainty bands of the predictions reflect the full
uncertainties on the HERAPDF1.5 set. They are dominated by the uncertainty on Mc which is
varied between 1.35 GeV and 1.65 GeV [207]. Within these uncertainties the HERAPDF1.5
predictions describe the data well. The central predictions are very similar to those of the
MSTW group for the same scheme.

In Fig. 6.23 the data are compared to the predictions in the GM-VFNS by the NNPDF
Collaboration. Both the NNPDF FONLL-A [55] and FONLL-B [56, 57] predictions describe
the data fairly well at higher Q2, while they fail to describe the data at lower Q2. The description
of the data at lower Q2 is improved in the FONLL-C [56, 57] scheme.

In Fig. 6.24 the data are compared to the predictions in the GM-VFNS by the CTEQ Col-
laboration. The CT predictions [201, 223] are based on the S-ACOT-χ heavy-quark scheme.
The NLO prediction, which is very similar to the FONLL-A scheme, describes the data well
for Q2 > 5 GeV2 but fails to describe the data at lower Q2. Similar to the FONNL-C case, the
description of the data improves significantly at NNLO.

In summary, conclusions similar to [66] can be drawn. The best description of the data is
achieved by the predictions including partial O(α3

s) corrections (MSTW NNLO), however they
do not fully describe the Q2 slope of the data at low Q2 (2.5 < Q2 < 5.0 GeV2). The predictions
including O(α2

s) terms in all parts of the calculation (NNPDF FONLL C, CT NNLO) as well
as the MSTW NLO optimal scheme also agree with the data reasonably well. The largest
deviations are observed for predictions based on O(αs) terms only (NNPDF FONLL A and CT
NLO). As investigated in the next Section 6.5.4.1, further differences can be partially explained
by the different choices for the value of the respective charm-quark mass parameter Mc.

6.5.4.1 Extraction of charm-mass parameters

Similar to the extraction of the charm-quark mass in the FFNS, described in Section 6.5.3.1,
the combined charm data were used to determine the effective parameters of the individual
VFNS.

The following implementations of the VFNS were considered: ACOT full [47, 48] as used
for the CTEQHQ releases of PDFs; S-ACOT-χ [50–52] as used for the latest CTEQ releases
of PDFs, and for the FONLL-A scheme [55] used by NNPDF; the RT standard scheme [53,
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Figure 6.20: Combined measurements of σcc̄

red (closed circles) shown as a function of x for particular Q2,
compared to the prediction by MSTW at NLO. The predictions obtained using the standard (optimised)
parametrisation are represented by the shaded bands (solid lines). The uncertainties for the optimised
parametrisation are not evaluated by the authors of the predictions but are expected to be of same size
as those for the standard parametrisation.
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Figure 6.21: Combined measurements of σcc̄

red (closed circles) shown as a function of x for particular Q2,
compared to the prediction by MSTW at NNLO. The predictions obtained using the standard (optimised)
parametrisation are represented by the shaded bands (solid lines). The uncertainties for the optimised
parametrisation are not evaluated by the authors of the predictions but are expected to be of same size
as those for the standard parametrisation.
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Figure 6.22: Combined measurements of σcc̄
red (closed circles) shown as a function of x for particular Q2,

compared to the NLO predictions based on HERAPDF1.5 extracted in the RT standard scheme. The
line represents the prediction using Mc = 1.4 GeV. The uncertainty band shows the full PDF uncertainty
which is dominated by the variation of Mc.
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Figure 6.23: Combined measurements of σcc̄
red (closed circles) shown as a function of x for particular

Q2, compared to the predictions by NNPDF. The predictions from NNPDF2.1 in FONNL-A, -B and -C
schemes are available with their uncertainties and are represented by bands with different hatch styles.
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6 Combination of the HERA charm measurements

54] as used for the MRST and MSTW releases of PDFs, as well as the RT optimised scheme
providing a smoother behaviour across thresholds [58]. The ZM-VFNS as implemented by the
CTEQ group [47, 48] was also used for comparison. In all schemes, the onset of the heavy-
quark PDFs is controlled by the parameter Mc, in addition to the kinematic constraints.

The fitting procedure was the same as in the FFNS fit, described in Section 6.5.3.1, except:

• since most of the considered VFNS at O(α2
s) fail to describe the Q2 slope of the data in

the range of 2.5 < Q2 < 5.0 GeV2, the first Q2 bin was excluded from the fit;

• the strong coupling constant was chosen αn f =5
s (MZ) = 0.1176 ± 0.0020;

• the renormalisation and factorisation scales for the heavy quarks were set to µ f = µr = Q
and not varied, since it is not technically possible in the framework;

• the preferred mass parameters were obtained from the scan, since the implementation of
the calculations does not allow for their changes in the PDF fitting procedure. The step
size 0.01 GeV was used.

In Fig. 6.25 the χ2 values as a function of Mc are shown for all schemes considered. Similar
minimal χ2-values are observed for the different schemes, albeit at quite different optimal val-
ues of the charm-mass parameter, Mopt

c . In the cases of the ACOT full and S-ACOT-χ schemes
the dependence of χ2 on Mc has small discontinuities since these schemes are implemented us-
ing K-factors.37 A smooth curve can be obtained by fitting the points with a parabolic function,
although this will not significantly change the preferred Mopt

c values.
In Table 6.11 the resulting values of Mopt

c are given together with the uncertainties and the
χ2/ndof values; for comparison the ‘HERA 2012’ results are also given. For ACOT full and
S-ACOT-χ schemes the uncertainties are not evaluated, since due to the present discontinuities
in the χ2 curves they can be misleading. The RT optimised scheme yields the best global χ2.
The fit in the S-ACOT-χ scheme results in a very low value of Mopt

c as compared to the other
schemes. In general the predictions of the different schemes become very similar for Q2 ≥

5 GeV2 and describe the data well, once the charm-mass parameters are set to the preferred
values. Note, that even the ZM-VFNS, which includes mass effects only indirectly [47, 48],
yields a reasonably good description of the combined charm data for Q2 ≥ 5 GeV2 (although
it predicts a zero cross section in the lowest Q2 bin), however ∼ 20 units of χ2 worse than the
other schemes.

Similar to the fit in the FFNS, all fitted Mopt
c values are consistent with those which have

been determined in the previous analysis [66] with the ‘HERA 2012’ combined data. Those
variants, for which the uncertainties are determined, exhibit improved precision.

Using different charm-mass parameters adjusted to the HERA data allows for a reduction
of the theoretical uncertainty due to the choice of the heavy-flavour scheme for W± and Z
production at the LHC, as was demonstrated in [66].

37 From a calculation point of view, the theoretical model consists of the numerical integration of an integro-
differential equation and multiple convolution integrals that are evaluated mostly by adaptive algorithms (K-
factors). Change of a parameter (Mc in this case) results in the appearance of an uncontrolled numerical noise.
Some details can be found also in [224].
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6 Combination of the HERA charm measurements
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Figure 6.25: The values of χ2(Mc) for the PDF fit to the combined HERA inclusive DIS and charm
measurements in different VFNS, presented by lines with different styles. The values of Mopt

c for each
scheme are indicated by the stars.

6.6 Summary

Measurements of charm production by the H1 and ZEUS experiments were combined. The
combination was done separately for the single- and double-differential visible D∗+ cross sec-
tions, and for all available measurements of open charm production extrapolated to the full
phase space. The combination was performed in the kinematic region 1.5 < Q2 < 1000 GeV2

(5 < Q2 < 1000 GeV2 for the single-differential cross sections), 0.02 < y < 0.7, pT (D∗+) >
1.5 GeV and |η(D∗+)| < 1.5 for the visible D∗+ cross sections, and in the region 2.5 ≤ Q2 ≤

2000 GeV2 and 3 × 10−5 ≤ x ≤ 5 × 10−2 for the charm reduced cross sections. The procedure
takes into account detailed information on correlations of the systematic uncertainties. For both
combinations, the data were found to be consistent, and the combined sets exhibit significantly
reduced uncertainties. The combination of visible D∗+ cross sections does not induce signif-
icant theory-related uncertainties, while the combination of the charm reduced cross sections
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6.6 Summary

presents the most precise charm dataset from HERA, although is affected by the theory-related
uncertainties from the extrapolation procedure.

For the visible D∗+ cross sections, the combination was performed separately for the single-
differential cross sections using the HERA-II data only, and for the double-differential cross
section using the HERA-I and HERA-II data. Inclusion of the HERA-I data allowed an ex-
tension of the kinematic region in Q2. The combined D∗+ data were compared to NLO QCD
predictions in the FFNS. The predictions describe the data well within their uncertainties. Be-
cause the uncertainties of the combined data are smaller than the theoretical uncertainties,
higher-order calculations and an improved treatment of the fragmentation process would be
helpful to reduce the theory uncertainty to a level comparable with the data precision. These
combined data can be used further as the most precise purely experimental charm measure-
ment from HERA for stringent tests of pQCD and phenomenological approaches, e.g. of the
fragmentation process.

The combined charm reduced cross sections are consistent with the previous H1 and ZEUS
charm combination and have an improved precision owing to the inclusion of new ZEUS mea-
surements. The combined data were compared to NLO QCD predictions in the FFNS and vari-
ous VFNS. Most of the predictions describe the data well within their uncertainties. Similar to
the D∗+ combination, the uncertainties of the combined data are smaller than the theoretical un-
certainties, thus further improvement in the theoretical calculations would be helpful to match
the data precision. The best description of the data in the whole kinematic range is provided by
the approximate NNLO FFNS predictions of the ABM group. The combined charm reduced
cross sections were used as input for the QCD analysis to determine the optimal values of the
MS running charm mass and charm-quark mass parameters in different VFNS. The extracted
value of the MS running charm mass is consistent with the world-average value and has com-
petitive precision to other individual determinations in pQCD. These data can be used further
as the most precise inclusive charm measurement from HERA for stringent tests of pQCD and
in QCD analyses to constrain the gluon distribution and to determine the charm-quark mass.
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CHAPTER 7

PDF fit with LHCb heavy-flavour data

This Chapter describes a QCD analysis (PDF fit) with recent LHCb heavy-flavour forward data
and the impact of this data on PDFs. Results presented in this Section have been approved by
the PROSA Collaboration as preliminary [225]; currently their publication is being prepared.1

Section 7.1 gives an introduction to the subject and motivation for the study. Section 7.2
describes details of the theoretical calculations for the LHCb heavy-flavour data. In Section 7.3
a PDF fitting framework is described. Section 7.4 presents results of the fit, while in Section 7.5
the impact of the new data on the PDFs is discussed together with possible applications of the
study as well as further improvements.

7.1 Introduction

As introduced in Section 2.2.3, PDFs are a necessary ingredient for QCD predictions in any
process with incoming hadrons. Since they are not currently calculable from first principles,
they should be extracted from data. At the present time several groups determine PDFs (see,
e.g. [196, 197, 200, 201, 227]).

In Fig. 7.1 the gluon distributions from several modern PDF sets [56, 197, 200, 227] are
compared at the scale Q2 = 10 GeV2.2 The FFNS variants of the fits with the number of active
flavours n f = 3 were chosen. While being consistent with each other and well constrained in
the region of medium x, they have a significant spread between the central values and large
uncertainties in the low-x region3, since so far no data sensitive to gluons in this region are
included in the PDF fits. Note also that within the uncertainty bands, some of the sets predict
a negative gluon distribution in the region x . 5 × 10−5.

1 After the disputation during the final preparation of this thesis for printing, the results have been publicly
released by the Collaboration [226].

2 Unlike the rest of this thesis, in this Chapter Q2 denotes the PDF factorisation scale and not the virtuality of ep
scattering, x denotes the longitudinal fraction of the proton momentum and not the Bjorken variable, y denotes
rapidity and not inelasticity, unless otherwise stated explicitly.

3 The region x . 10−4 will be referred as low x.
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Figure 7.1: Gluon distributions at Q2 = 10 GeV2 from PDF groups [56, 197, 200, 227] with their
uncertainties, represented by bands with different hatch styles. The plot is obtained with the APFEL
program [228].

The LHCb Collaboration has recently measured charm and beauty production in the forward
rapidity region 2.0 < y < 4.5 at the centre-of-mass energy

√
s = 7 TeV [135, 148]. The

results are reported as hadron-level cross sections in the pT ranges 0 < pT < 8 GeV and
0 < pT < 40 GeV for the charm and beauty measurements, respectively. Since the dominant
process for heavy-flavour production in pp collisions at these energies is gluon–gluon fusion
(see Section 2.3.3), these data are sensitive to gluons at low x. To illustrate this, in Fig. 7.2
the kinematic regions which are covered by different HERA and LHCb data are plotted. The
precise HERA DIS data [207] are only indirectly sensitive to gluons, so they constrain the gluon
distribution well only in the region 10−3 . x . 10−1. The HERA heavy-flavour data [19, 66]
cover the region 10−4 . x . 10−2, while the LHCb data extend the coverage up to x . 5× 10−6

(low-pT forward charm) and up to x . 1 (high-pT forward beauty).4 Note that the LHCb data

4 The quoted regions are qualitatively determined in the following way. For the HERA DIS data, the x range is
indicated, where the gluon HERAPDF1.0 [207] uncertainty at Q2 = 10 GeV2 is less than 10%. For the HERA
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Figure 7.2: Kinematics in the gluon x space as covered by the different HERA and LHCb data.

are sensitive to the product of gluon densities in two non-overlapping regions: forward and
medium; since the latter is already well constrained by other data, the LHCb data should have
an impact mainly on the former.

It is worth noting that using PDFs with strongly negative gluons at low x results in nega-
tive predicted cross sections for the forward region of the LHCb charm data. To demonstrate
this, two sets of HERAPDF1.5 [222] are used: the nominal one and a variation obtained with
a negative gluon parametrisation.5 The corresponding predictions for the LHCb charm mea-
surement in the most forward y bin are shown in Fig. 7.3. The variation with negative gluons
results in non-physical negative predicted cross sections for the lowest pT bins. This motivates
the inclusion of the LHCb data in a PDF fit to constrain gluons at low x.

The general strategy of the study was to perform a PDF fit with the HERA-only data, obtain-
ing results close to HERAPDF1.0 [207], and then repeat the fit with the LHCb data included,

charm and beauty data, the LO formula x = xbj(1 + 4m2
Q/Q

2) is used, where xbj is the Bjorken variable, Q2 is
boson virtuality and mQ is the heavy-quark mass. For the LHCb charm and beauty data, the LO formula with

the assumption pz = 0 of the produced heavy quark in the parton-parton rest frame x = e±y
√

p2
T +m2

Q

Ep
is used,

where y and pT are the transverse momentum and rapidity of the heavy quark and Ep is the energy of the proton
beam.

5 The fact that HERAPDF1.5 were determined using the GM-VFNS is ignored, since at the scales Q2 ∼ m2
c they

should be reasonably valid also in the FFNS.
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thus studying potential constraints from these data.

7.2 Theoretical predictions

Theoretical predictions for the charm and beauty data were obtained using the massive NLO
O(α3

s) calculations in the FFNS [67, 69, 73] (see Section 2.3.3.1) using the MNR code [229],
implemented in the HERAFitter package [216, 217] by the author. Technical details of the
implementation are described in Appendix F.1. The parameters used in the calculations and
the corresponding variations used to estimate the uncertainties are described below in Sec-
tion 7.2.1.

7.2.1 Details of MNR calculations

7.2.1.1 Parton-level cross sections

The parton-level cross sections were calculated using the one-particle inclusive option of the
MNR calculations [69] with the following settings:

• the factorisation and renormalisation scales were parametrised as µ f = Ac
f

√
p2

T + m2
c ,

µr = Ac
r

√
p2

T + m2
c for charm production and similarly µ f = Ab

f

√
p2

T + m2
b, µr = Ab

r

√
p2

T + m2
b
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7.2 Theoretical predictions

for beauty, where mc and mb refer to the charm- and beauty-quark masses, respectively.
The conventional choice for the coefficients Ac,b

f ,r is Ac
f = Ab

f = Ac
r = Ab

r = 1 and the
variations within the range [0.5;2] (independently or simultaneously). Since the scale de-
pendence of the predictions is of the order of a factor of 2, the choice of the coefficients
Ac,b

f ,r is crucial for a successful data description and has to be carefully studied; the explicit
details are given in Section 7.3;

• the pole mass of the charm and beauty quarks mc and mb were left free in the fit;

• strong coupling constant αn f =3
s (MZ) = 0.1059±0.0005, corresponding to the PDG value

α
n f =5
s (MZ) = 0.1185 ± 0.0006 [183];

• the PDFs were left free in the fit; their parametrisation is described in Section 7.3.2.

7.2.1.2 Fragmentation

Non-perturbative fragmentation functions for charm and beauty were extracted from e+e− and
ep data (see, e.g. [95, 191, 212, 230, 231]). So far no fragmentation measurements were done
in pp collisions. Universality of the fragmentation is often assumed; however it holds only if
the perturbative part of the calculations is the same (see Section 2.3.4). Moreover, e.g. in [95]
the fragmentation-function parameters were shown to be different for two different kinematic
regions.

Since the kinematic region of the LHCb charm measurement is close to the HERA region
where measurements were done by H1 [95] and ZEUS [191], the Kartvelishvili function [91]
with αk = 4.4± 1.7 was used for the charm fragmentation, which covers the spread of the mea-
surements [95, 191]. The fragmentation was performed in the laboratory frame by rescaling
the quark three-momentum, then the energy of the produced hadron was calculated using the
hadron mass. The prescription described above was used for D∗+, D+

s mesons and Λ+
c hadrons,

while for D0 and D+ mesons the contribution from D∗+ and D∗0 mesons was treated as de-
scribed in [232]. For beauty no fragmentation measurements at HERA exist; therefore the
value αk = 11 ± 4 was used, extracted from measurements at LEP [212]. All beauty hadrons
were treated equally. The fragmentation fractions for charm hadrons were taken from [194]
and for beauty from [148].

7.2.2 Kinematics of low-pT region

The dominant channel for heavy-flavour production at LHC is gg. Fig. 7.4 shows the two-
dimensional x distribution of the two incoming gluons, as predicted for the LHCb data by the
calculations described above.6 It qualitatively confirms the rough LO estimation (see Fig. 7.2):
the main contribution comes from the two separated regions x1 ≈ 10−4.5, x2 ≈ 10−1.5 for charm
and x1 ≈ 10−4.0, x2 ≈ 10−1.2 for beauty; although for charm an additional concentrated region
is observed at x1 ≈ x2 ≈ 10−2.0-10−1.5.

6 For these particular predictions the FFNS variant of the HERAPDF1.0 set [207] was used, the factorisation

and renormalisation scale were set to µ f = µr =
√

m2
Q + p2

T and the heavy-quarks masses chosen to be mc =

1.5 GeV, mb = 4.75 GeV, although the kinematics do not strongly depend on the settings.
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Figure 7.4: The two-dimensional x distribution of the two incoming gluons for charm (left) and beauty
(right) production at LHCb via the gg channel.

The enhancement at medium x comes from a class of O(α3
s) corrections, given by the flavour-

excitation diagrams (an example is given in Fig. 7.5), which can be thought of as initial-state
gluon-splitting processes [41]. The relevant region of the phase space in this case is the one
with the heavy-quark propagator close to the mass shell (the low-pT region). In GM-VFNS
approaches these effects are reabsorbed in the evolution of the PDFs by defining a heavy-
quark density inside a proton. The use of the gQ → gQ process allows the higher-order
effects included in the evolution equations to be captured, while the use of the NLO flavour-
excitation diagrams reproduces instead more faithfully the exact kinematics and correlations
of the flavour-creation process in the region close to the threshold [41].

g

g

g

Q̄

Q

Figure 7.5: An example of the flavour-excitation diagram.

The corrections from the flavour-excitation diagrams should in no way be thought of as a
problem of the FFNS calculations, but rather as an important correction to the LO kinematics
of the process. In order to study this, Fig. 7.6 shows the median of the centre-of-mass energy
in the parton-parton rest frame,

√
ŝ, vs. transverse momentum and rapidity of the heavy quark

for the charm and beauty LHCb data. While in the case of beauty, the
√

ŝ median smoothly
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increases with increasing pT independently of y, for charm in threshold region 0 < pT . 2 GeV
a strong increase of the

√
ŝ median with increasing y is observed. This indicates that the

statement about the sensitivity of charm production at low pT and forward y to the low-x gluon
region should be taken with some caution: in fact, about 50% of contribution in the corner
region pT . 2 GeV, y & 3.5 does not come from low-x gluons.

7.2.3 Comparison to FONLL calculations

As mentioned in Section 2.3.3, one of the state of the art calculations for heavy-flavour produc-
tion in hadron collisions is the FONLL approach [75]. Briefly reminding, the FONLL approach
merges the massive NLO calculations (MNR) with massless ones using a phenomenologically
chosen matching function. Owing to resummation of the NLL part the FONLL calculations
are expected to have improved convergence of the perturbative expansion at high pT .

In Fig. 7.7 the NLO predictions obtained with MNR as described in Section 7.2.1 are com-
pared to the FONLL ones obtained using the public web interface [79]7 for parton-level charm
and beauty cross sections at LHCb. For the relevant regions of transverse momentum in the
charm and beauty data, 0 < pT (c) . 8 GeV, 0 < pT (b) . 40 GeV8 the maximum deviations of
the order of 20% in the region pT ≈ 3mQ are observed. Note that these changes are well within
the uncertainties from the scale variations.

It is also instructive to look at Fig. 2.11 (Section 2.3.3.2), taken from the original FONLL
paper [75], which shows the bands obtained from the scale variations for the NLO and FONLL
calculations for beauty production at the Tevatron. Although the central values are not shown,
the behaviour of the bands in Fig. 2.11 is very similar to the change of the central values shown
in Fig. 7.7. Note that in Fig. 2.11 a significant reduction of the uncertainty band starts only
at pT & 40 GeV. Thus the considered pT ranges of the LHCb data are not the high-pT region

7 The ‘FONLL’ option of the FONLL program was used; the settings consistently used in MNR and FONLL cal-

culations were: PDFs set is MSTW2008nlo68cl [200], µ f = µr =
√

m2
Q + p2

T , mc = 1.5 GeV, mb = 4.75 GeV.
8 The fragmentation effects do not change significantly pT regions, since the heavy-flavour fragmentation func-

tions are peaked near the scaling variable z = 1 and the cross sections are steeply falling with increasing pT .
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Figure 7.7: Comparison of NLO and FONLL predictions for the differential cross sections as a function
of pT , dσ/dpT , for charm at rapidity y = 2 (top left) and y = 4 (top right), and beauty at rapidity
y = 2 (bottom left) and y = 4 (bottom right) at LHCb. The bottom pads shows the ratio to the NLO
predictions.

where the effects of the FONLL calculations become relevant. This justifies the usage of the
NLO FFNS calculations in the present study as one of the best currently available theories for
the considered kinematic region.

Theorists are continuously making progress, and very recently9 the approximate NNLO
O(α4

s) predictions in the gg and qq̄ channels for differential cross sections for heavy-flavour
production at hadron colliders became available [233]. A prospect of their usage for an exten-
sion of this study is given in Appendix F.3.

7.3 PDF fitting framework

7.3.1 Input data

The datasets used in the PDF fit are listed in Table 7.1. The purpose of their inclusion is the
following:

9 In fact simultaneously with the moment when this thesis was being written.
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7.3 PDF fitting framework

Dataset
1 NC e−p

HERA-I DIS [207]
2 NC e+ p
3 CC e−p
4 CC e+ p
5 HERA DIS Charm [66]
6 ZEUS Vertex DIS Beauty [19]
7 D0

LHCb Charm [135]
8 D+

9 D∗+

10 D+
s

11 Λ+
c

12 B+

LHCb Beauty [148]13 B0

14 Bs

Table 7.1: Datasets used in the PDF fit. Similar entries are grouped together.

• the combined HERA-I inclusive ep NC and CC DIS cross sections [207] (datasets 1–4)
were used to constrain the core of the PDFs; the analysis is restricted to the inclusive data
with virtuality Q2 > Q2

min = 3.5 GeV2 to ensure the applicability of pQCD;

• the combined HERA charm data [66] and ZEUS beauty [19] data (datasets 5–6) were
used to constrain the gluon PDF and the charm and beauty masses;

• the LHCb charm [135] and beauty [148] data (datasets 7–14) — the main objects of the
study — were used to constrain the gluon PDF at low x.

The HERA data (datasets 1–6) were treated in the same way as they have been treated in the
original papers [19, 66, 207].10

For the LHCb data (datasets 7–14), the double-differential cross sections as a function of
pT and y, d2σ

dpT dy , were used as published in [135, 148]11. The correlations between the system-
atic uncertainties were taken into account as described in Section 3.3 of [135] and Section 4
of [148], treating as correlated those which are reported as single values for all (pT , y) bins.12

10 Except that for dataset 5 in contrast to [66] all Q2 bins were used including the lowest one Q2 = 2.5 GeV2; the
applicability of pQCD for the charm data is ensured by the presence of a massive charm quark-antiquark pair
in the final state; see also the scale choices in Section 7.3.2.

11 For the Λ+
c measurement from [135], where no double-differential distribution is available, the single-

differential cross sections dσ
dpT

and dσ
dy were used for the ‘LHCb Abs’ and ‘LHCb Norm’ approaches (see Sec-

tion 7.3.3), respectively.
12 Except that for the sources ‘Bin size’, ‘Trigger efficiency’, ‘Tracking efficiency’, ‘Muon identification’ and

‘Angular distribution’ from the beauty measurement the lowest boundaries from the respective ranges reported
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7 PDF fit with LHCb heavy-flavour data

The uncorrelated systematic uncertainty for each bin was obtained by subtracting all corre-
lated sources from the total uncertainty, reported in the original papers. The 3.5% luminosity
uncertainty was treated as correlated between the charm and beauty measurements. Addition-
ally to the experimental uncertainties, the correlated fragmentation-fraction uncertainties were
technically assigned to the data.

7.3.2 Details of PDF fit

The PDF fitting framework is similar to that which has been used for the FFNS fit with the
HERA charm combined data, described in Section 6.5.3.1. Briefly recapping, the study was
performed with the HERAFitter [216, 217] program, which is based on the NLO DGLAP
evolution scheme [27–32] as implemented in QCDNUM [45]. Theoretical predictions for the
HERA data were obtained at NLO using the FF ABM scheme in the pole-mass variant, as im-
plemented in OPENQCDRAD [218]. For the HERA data, the factorisation and renomalisation

scales were set to µ f = µr = Q for the light quarks and to µ f = µr =
√

Q2 + 4m2
Q for the heavy

quarks, where Q2 is boson virtuality. The number of active flavours in the PDFs and in the
αs evolution was set to n f = 3. The strong coupling constant was set to αn f =3

s (MZ) = 0.1059,
corresponding to α

n f =5
s (MZ) = 0.1185 [183]. The PDFs were described at the parametrisa-

tion scale Q2
0 = 1.4 GeV2 using the HERAPDF parametrisation style with 13 free parameters

(Eq. 6.23, 6.24). The charm and beauty masses were left free in the fit and determined in
HERAFitter by minimisation of a χ2-function. Afterwards, the following uncertainties were
evaluated:

• a fit uncertainty was evaluated using the Hessian method [204, 217] from a χ2 variation
of 1;

• model uncertainties from variations of theory model parameters:

◦ fs was varied in the range 0.23 < fs < 0.38;

◦ Q2
min was varied in the range 2.5 < Q2

min < 5.0 GeV2;

◦ α
n f =3
s was varied in the range 0.1059 < αn f =3

s < 0.1069;

◦ µ f and µr for heavy-flavour production in ep were varied simultaneously by a factor
of 2 (the framework allows only their simultaneous variation);

• parametrisation uncertainties:

◦ Q2
0 was varied to Q2

0 = 1.9 GeV2;

◦ the parameter Duv was released;

◦ the parameter DU was released;

◦ the parameter DD was released.

in Table 1 of [148] were taken as a correlated part of the uncertainties.
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7.3 PDF fitting framework

For the model uncertainties, all variations were added in quadrature, while for those of parametri-
sation, the largest deviation of all variations was taken.

In variants of the fit with the LHCb heavy-flavour data additional uncertainties were evalu-
ated, which are related to the uncertainties of the respective theoretical calculations; they are
referred to as the ‘MNR uncertainties’:

• variations of the fragmentation and renormalisation scales, as described later in Sec-
tion 7.3.3, and

• variations of the fragmentation parameters αk = 4.4 ± 1.7 for charm and αk = 11 ± 4 for
beauty.

The MNR uncertainties were obtained by adding these variations in quadrature.

7.3.3 Strategy of QCD analysis

The strategy of the QCD analysis was to perform several PDF fits, with and without the LHCb
data, and then compare the results. The two approaches of fitting the LHCb data were studied:
fitting the absolute cross section or the cross section normalised in y; they are described below.

7.3.3.1 Fitting absolute LHCb cross sections

In this approach, the absolute double-differential cross sections d2σ
dpT dy were fitted. These quan-

tities contain the maximum information and therefore are sensitive to all physical and non-
physical parameters of the theoretical calculations: the PDFs, heavy-quark mass, fragmenta-
tion function and especially factorisation and renormalisation scales. The scale dependence
of the predictions is of the order of a factor of 2, thus much exceeding the experimental data
uncertainties, although the PDF uncertainties from the modern groups at very low x and low
Q2 are even larger (see Fig. 7.1)13. This fact makes the study rather complicated: in order to
account for the uncertainties of the perturbative predictions, the scales should be varied, but
these external variations change the description of the data and the fit results drastically, and
thus are hard to control.

For this variant of the fit, the scale parameters Ac
f , Ac

r , Ab
f and Ab

r were therefore fitted for
the nominal (central) results, while for the estimation of the scale uncertainties the following
procedure was used: the factorisation and renormalisation scales were varied independently
one at a time in the ranges [0.50;2.00] and [0.25;1.00]14, respectively, while the other scale was
being refitted. More explicitly, the scale uncertainties include the following four variations:

• Ac
f = Ab

f = 2.00 with Ac
r , Ab

r free;

• Ac
f = Ab

f = 0.50 with Ac
r , Ab

r free;

• Ac
r = Ab

r = 1.00 with Ac
f , Ab

f free;

13 Truly speaking, the PDF uncertainties in this region should be considered as infinitive.
14 The ‘common’ range for the variations [0.50;2.00] for µr is discarded, since the χ2/ndof for Ac

r = Ab
r = 2.00

variation was found to be unacceptably large (χ2/ndof = 2497/1089).
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7 PDF fit with LHCb heavy-flavour data

• Ac
r = Ab

r = 0.25 with Ac
f , Ab

f free.

In addition, for the variation Ac
f = Ab

f = 0.50, the cut pT > 2 GeV was applied for the charm
LHCb data to ensure that the factorisation scale is above 1 GeV2, since this is technically
required in the framework.15 Note that in this procedure, each scale is varied independently by
a factor of 2, although still the whole concept is strongly data dependent. This sophisticated
procedure was necessary to give a reasonable description of the data for all variations of the fit.

7.3.3.2 Fitting normalised LHCb cross sections

In this approach, the y shape of the cross-section ratio dσ
dy /

dσ
dy0

in each pT bin was fitted, where
dσ
dy0

is the cross section in the central rapidity bin 3.0 < y0 < 3.5. The virtue is that the
observable defined in this way has a much reduced scale dependence, while it is still very
sensitive to the PDFs, namely to their x shape. This can be understood very easily: the change
in the production rate in neighboring bins of y is driven mainly by the change in the input PDFs,
while the hard-scattering process remains essentially the same. Hence the µr dependence is
reduced to ∼ 1% and the µ f to ∼ 5–10% (the renormalisation scale affects the matrix elements
only, while the factorisation scale affects both the matrix elements and the PDFs). Reduction of
the scale dependence is illustrated in Appendix F.4 (Figs. F.1, F.2). In addition, the dependence
on the heavy-quark mass and the fragmentation function is also significantly reduced. For
the mass, it is reduced almost to zero, while the fragmentation effects are still sizeable at
low transverse momentum, since the fragmentation is performed by rescaling the quark three-
momentum and thus it changes the rapidity of a massive particle.

To illustrate that the strong PDF dependence still remains in the normalised cross sections,
in Fig. 7.8 the two sets of the predictions obtained from the PDFs, based on the HERA-only
data, are shown for the most forward y bin of the LHCb charm data: the first is the nominal
fit with the HERA data only and the second is the variation that results in one of the dominant
uncertainties for gluons in the low-x and low-Q2 region. The latter is clearly disfavoured by
the data, since it predicts negative cross sections in bins with large y.

Owing to greatly reduced dependence on the scales, in this variant of the fit the ‘common’
scale choice and variations were used: for the nominal fit, the scale parameters were set to
Ac

f = Ab
f = Ac

r = Ab
r = 1 and varied independently one at a time in the range [0.5;2.0]. More

explicitly, the scale uncertainties include the following four variations:

• Ac
f = Ab

f = 2.0, Ac
r = Ab

r = 1.0;

• Ac
f = Ab

f = 0.5, Ac
r = Ab

r = 1.0;

• Ac
f = Ab

f = 1.0, Ac
r = Ab

r = 2.0;

• Ac
f = Ab

f = 1.0, Ac
r = Ab

r = 0.5.

Similar to the previous approach, for the variation Ac
f = Ab

f = 0.50, the cut pT > 2 GeV was
applied for the charm LHCb data to ensure that the factorisation scale is above 1 GeV2.
15 The QCDNUM package performs PDF evolution only in the region Q2 ≥ 1 GeV2.
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Figure 7.8: Predictions for the normalised cross sections from the LHCb measurement of D0-meson
production in the bin 0 < pT < 1 GeV, obtained with two different PDF fits to the HERA-only data as
explained in the text.

All correlated experimental systematic uncertainties and the fragmentation fractions cancel
for the normalised cross sections, whilst for a given pT bin the uncorrelated uncertainty of
the central dσ

dy0
bin was treated as correlated between the remaining y bins (because the cross

sections in the remaining y bins were divided by the same dσ
dy0

).

7.4 Fit results

In this Section the results of three fits are presented and discussed:

• the fit with the HERA-only data, referred to as ‘HERA only’ (Section 7.4.1);

• the fit with the HERA and LHCb data using the absolute LHCb cross sections, referred
to as ‘LHCb Abs’ (Section 7.4.2);

• the fit with the HERA and LHCb data using the normalised LHCb cross sections, referred
to as ‘LHCb Norm’ (Section 7.4.3).

The direct comparison of all fitted PDFs and final conclusions are given in the next Section 7.5.
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7 PDF fit with LHCb heavy-flavour data

Dataset
χ2/ndof

HERA only LHCb Abs LHCb Norm
NC DIS HERA-I combined e−p 108 / 145 108 / 145 108 / 145
NC DIS HERA-I combined e+ p 407 / 379 419 / 379 419 / 379
CC DIS HERA-I combined e−p 22 / 34 26 / 34 26 / 34
CC DIS HERA-I combined e+ p 37 / 34 39 / 34 41 / 34
cc̄ DIS HERA combined 50 / 52 78 / 52 47 / 52
bb̄ DIS ZEUS Vertex 12 / 17 16 / 17 12 / 17
LHCb D0 68 / 38 17 / 30
LHCb D+ 53 / 37 18 / 29
LHCb D∗+ 50 / 31 19 / 22
LHCb D+

s 24 / 28 11 / 20
LHCb Λ+

c 5 / 6 5 / 3
LHCb B+ 99 / 135 81 / 108
LHCb B0 66 / 95 35 / 76
LHCb B0

s 78 / 75 23 / 60

Correlated uncertainties 9 73 49
Logarithmic correction 2 −129 48
Total χ2/ndof 647 / 646 1073 / 1087 958 / 994
p(χ2,ndof) 49% 61% 79%

Table 7.2: χ2/ndof for all datasets for three variants of the fit. The contributions from correlated sources
and logarithmic correction, total χ2/ndof and the corresponding probability values are also given.

7.4.1 ‘HERA only’

Here the results of the fit with the HERA-only data (datasets 1–6) are presented. The total χ2

per degree of freedom for the fit is χ2/ndof = 647/646 indicating perfect consistency of the data.
The partial χ2/ndof for all datasets are given in Table 7.2. The fitted values for the heavy-quark
pole masses are mc = 1.34± 0.06 GeV, mb = 4.31± 0.16 GeV (the quoted uncertainties are the
fit uncertainties only; note that this study does not aim to measure the heavy-quark masses).

The individual contributions to the uncertainties of the gluon, sea and valence-quark distri-
butions at the scale Q2 = 10 GeV2 are shown in Fig. 7.9. For better visibility also the relative
individual uncertainties are shown in Fig. 7.10.16 Note the gluon uncertainties in the low-x re-
gion: since this region is not covered directly by the HERA data, the dominant uncertainties are
the parametrisation ones, namely those which come from releasing the DŪ parameter. This is
illustrated in Fig. 7.11, where all parametrisation variations are shown separately. Qualitatively

16 The same plots for Q2 = 100 GeV2 are available in Appendix F.4 (Figs. F.3, F.4).
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7.4 Fit results

it can be understood in the following way: since gluons in this region are not constrained by
the data, they are constrained only via sum rules for certain distributions of all other partons;
when the parametrisation for other partons is changed, a new solution results in a completely
different distribution for gluons in the low-x region. This also explains the large spread of the
results obtained by the different PDF groups, which was observed in Fig. 7.1: since the differ-
ent groups use different parametrisations and none of them uses data which constrain gluons
at low x, they obtain different gluon distributions in this region. Later when the impact of the
LHCb data is studied, the parametrisation variations will be used as the ‘litmus test’: a first
indication of whether constraints in the low-x region are present.
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Figure 7.9: The individual contributions to the uncertainties of the gluon (top left), u-valence (top right),
sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the fit with the
HERA-only data.
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Figure 7.10: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the
fit with the HERA-only data.
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Figure 7.11: The parametrisation variations for the gluon distribution at Q2 = 10 GeV2 in the fit with
the HERA-only data.

7.4.2 ‘LHCb Abs’

Here the results of the fit with the HERA and LHCb data (datasets 1–14) using the ‘LHCb
Abs’ approach are presented. The total χ2 per degree of freedom is χ2/ndof = 1073/1087. The
partial χ2/ndof for all datasets are given in Table 7.2. For the LHCb charm and beauty datasets
they vary from 0.9 to 1.8 and from 0.7 to 1.0, respectively, indicating an overall reasonable
description of the charm data and a perfect one of the beauty data. As an example of the data
description in the fit, in Fig. 7.12 the cross sections for D0 and B+ mesons for one of the y bins
are shown.

The fitted values for the scale parameters are:

Ac
f = 0.66,

Ac
r = 0.44,

Ab
f = 0.26,

Ab
r = 0.33.

(7.1)

Note that all values are within the range [0.25;1.00]; also note the significant difference be-
tween the fitted scales for charm and beauty. Additionally, as expected, a positive correlation
was found between Ac

f , Ac
r and Ab

f , Ab
r , respectively.

The results of the ‘litmus test’ — the parametrisation variations — are shown in Fig. 7.13
(top left). As expected, in contrast to the results obtained with the HERA-only data, gluons are
now strongly constrained in the low-x region.
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Figure 7.12: Data to theory comparison for a representative subset of the LHCb absolute cross sections:
D0 mesons, bin 3.5 < y < 4.0 (left); B+ mesons, bin 3.0 < y < 3.5 (right). In the bottom panels the
ratios theory/data for the nominal variant of the fit and the scale variations are shown. For demonstration
purpose, correlated shifts for data points obtained in the fit using nuisance parameters are applied to
theoretical predictions. Uncorrelated uncertainties for data points are shown as they are rescaled in the
fit, while total uncertainties are shown as not rescaled.

The effect of scale variations on the predictions in the fit is shown in Fig. 7.12 and their
effect on the fitted PDFs is shown in Fig. 7.13 (top right). The scale uncertainties are much
larger than the parametrisation ones, however comparing to the fit with the HERA-only data
they are a factor of 3 smaller than the total uncertainties. Another interesting observation from
Figs. 7.12 and 7.13 (top right) is that the changes for the predictions from the scale variations
are predominantly changes in their normalisation (see also Figs. F.1, F.2 in Appendix F.4);
the fit handles them by adjusting the other scale and making large shifts for the correlated
uncertainties of the data. This often results in a formally very bad χ2 value (from the probability
point of view), however the PDFs are affected less and remain reasonable, especially comparing
to the huge total ‘HERA only’ uncertainty at low x.

In addition, variations of the fragmentation-function parameters were performed, as de-
scribed in 7.2.1.2. The effect on the fitted PDFs is shown in Fig. 7.13 (bottom). All frag-
mentation variations result in a good description of the data, since relatively small changes of
the pT shape are easily compensated by adjusting the scales. The resulting uncertainties are
much smaller compared to the scale variations. However, for charm a strong tendency was
observed: the LHCb charm data prefer a harder fragmentation function; this is discussed in
more detail in Appendix F.2.

Finally, all individual contributions to the uncertainties are shown in Fig. 7.14 and the relative
uncertainties are shown in Fig. 7.15.17 The dominant uncertainties in the low-x region become
the MNR ones, in particular coming from the scale variations.
17 The same plots for Q2 = 100 GeV2 are available in Appendix F.4 (Figs. F.5, F.6).
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Afterwards, since the fit with the new data might be more sensitive to the gluon parametri-
sation, a more flexible variant for gluons was considered:

xg(x) = AgxBg(1 − x)Cg(1 + Dg + Egx2 + Fgx3) − A′gxB′g(1 − x)C′g (7.2)

and the fit repeated with the parameters Dg, Eg, Fg and C
′

g released one at a time. The obtained
changes in the PDFs were negligible.
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Figure 7.13: The parametrisation (top left), scale
(top right) and fragmentation (bottom) varia-
tions for the gluon distribution at Q2 = 10 GeV2

in the fit with the HERA and LHCb data using
the ‘LHCb Abs’ approach.
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Figure 7.14: The individual contributions to the uncertainties of the gluon (top left), u-valence (top
right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the fit
with the HERA and LHCb data using the ‘LHCb Abs’ approach.
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Figure 7.15: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the
fit with the HERA and LHCb data using the ‘LHCb Abs’ approach.
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7 PDF fit with LHCb heavy-flavour data

7.4.3 ‘LHCb Norm’

Here the results of the fit with the HERA and LHCb data (datasets 1–14) using the ‘LHCb
Norm’ approach are presented. The total χ2 per degree of freedom is χ2/ndof = 958/994. The
partial χ2/ndof for all datasets are given in Table 7.2. For the LHCb charm and beauty datasets
they vary from 0.4 to 0.918, indicating perfect description of the data and possible overestima-
tion of the uncorrelated experimental uncertainties for the y shape (this can be thought of rather
as an underestimation of correlations of the systematics). As an example of the data description
in the fit, in Fig. 7.16 the cross sections for D0 and B+ mesons for one of the y bins are shown.
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Figure 7.16: Data to theory comparison for a representative subset of the LHCb normalised cross sec-
tions: D0 mesons, bin 2.0 < pT < 3.0 GeV (left); B+ mesons, bin 3.0 < pT < 3.5 GeV (right). The
central rapidity bins are fixed to 1 by the definition of the normalised cross sections. In the bottom
panels the ratios theory/data for the nominal variant of the fit and the scale variations are shown. For
demonstration purpose, correlated shifts for data points obtained in the fit using nuisance parameters
are applied to theoretical predictions. Uncorrelated uncertainties for data points are shown as they are
rescaled in the fit, while total uncertainties are shown as not rescaled.

The results of the ‘litmus test’ are shown in Fig. 7.17 (top left). Gluons in the low-x region
remain constrained, although somewhat weaker than in the ‘LHCb Abs’ approach, but still
drastically comparing to the ‘HERA only’ results.

The effect of the scale variations on the predictions in the fit is shown in Fig. 7.16 and their
effect on the fitted PDFs is shown in Fig. 7.17 (top right). The effect of the fragmentation
variations on the PDFs is shown in Fig. 7.17 (bottom). Note that fragmentation uncertainties
obtained in this approach are larger than in the ‘LHCb Abs’ one, since the fragmentation ef-
fects are not reabsorbed in the refitted scales. All these variations result in a reasonable data
description.

18 Except for the low-statistics Λ+
c dataset, where χ2/ndof = 4.9/3.
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7.4 Fit results

Finally, all individual contributions to the uncertainties are shown in Fig. 7.18 and the relative
uncertainties are shown in Fig. 7.19.19 The dominant uncertainties in the low-x and low-Q2

region still remain the MNR ones, although they are comparable in size with the uncertainties
from other sources.

Similar to the ‘LHCb Abs’ case, the study of the gluon parametrisation was performed by
releasing the Dg, Eg, Fg and C

′

g parameters (see Eq. 7.2). The obtained changes in the PDFs
were negligible.
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(top right) and fragmentation (bottom) varia-
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in the fit with the HERA and LHCb data using
the ‘LHCb Norm’ approach.

19 The same plots for Q2 = 100 GeV2 are available in Appendix F.4 (Figs. F.7, F.8).
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Figure 7.18: The individual contributions to the uncertainties of the gluon (top left), u-valence (top
right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the fit
with the HERA and LHCb data using the ‘LHCb Norm’ approach.
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Figure 7.19: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 10 GeV2 obtained in the
fit with the HERA and LHCb data using the ‘LHCb Norm’ approach.
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7 PDF fit with LHCb heavy-flavour data

7.5 Impact of LHCb heavy-flavour data on PDFs

The PDFs obtained obtained in the ‘HERA only’, ‘LHCb Abs’ and ‘LHCb Norm’ fits are
compared at the scales Q2 = 10 GeV2 and Q2 = 100 GeV2 in Figs. 7.20 and 7.21, respectively.
Their relative uncertainties are compared in Figs. 7.22 and 7.23.

 x  
610 510 410 310 210 110 1

)
2

 x
g

(x
,Q

10

0

10

20

30

40

50

60

 

2 = 10 GeV2Q
HERA
HERA + LHCb (Abs.)
HERA + LHCb (Norm.)

PROSA Preliminary

 x  
610 510 410 310 210 110 1

)
2

 x
u

v
(x

,Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

2 = 10 GeV2Q
HERA
HERA + LHCb (Abs.)
HERA + LHCb (Norm.)

PROSA Preliminary

 x  
610 510 410 310 210 110 1

)
2

 x
S

(x
,Q

0

1

2

3

4

5

6

7

8

 

2 = 10 GeV2Q
HERA
HERA + LHCb (Abs.)
HERA + LHCb (Norm.)

PROSA Preliminary

 x  
610 510 410 310 210 110 1

)
2

 x
d

v
(x

,Q

0

0.1

0.2

0.3

0.4

0.5

 

2 = 10 GeV2Q
HERA
HERA + LHCb (Abs.)
HERA + LHCb (Norm.)

PROSA Preliminary

Figure 7.20: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 10 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data. The widths of the bands represent the total uncertainties.

The two approaches of fitting the LHCb data result in similar constraints on low-x gluons,
observed at both considered scales. Improvement is also observed for the sea density, while the
valence-quark distributions remain essentially the same. Improvement of the sea distribution
comes mainly from the connection of gluons and sea quarks via the PDF evolution equations.
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7.5 Impact of LHCb heavy-flavour data on PDFs

Quantitatively, on average, reduction of the total uncertainty for gluons and sea quarks in the
region 10−6 < x < 10−4, observed up to the scales Q2 ∼ 1000 GeV2, is of the order of a factor
of 1.5–4. The gluon distribution remains positive in the region directly covered by the data
x & 10−5.5, Q2 & m2

c ≈ 2 GeV2.
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Figure 7.21: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 100 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data. The widths of the bands represent the total uncertainties.

The distributions at medium x mainly remain unchanged, although in the ‘LHCb Abs’ ap-
proach some enlargement of the uncertainty is observed, explained by the inclusion of the scale
uncertainties, most of which do not really describe the data. No such effect is observed in the
‘LHCb Norm’ approach, where all variations describe the data well.

In addition, a noticeable improvement is observed for all partons in the region of high x.
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Figure 7.22: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 10 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data, normalised to one for a direct comparison of the uncertainties. The
widths of the bands represent the total uncertainties.
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Figure 7.23: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 100 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data, normalised to one for a direct comparison of the uncertainties. The
widths of the bands represent the total uncertainties.
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7 PDF fit with LHCb heavy-flavour data

This might be constraints of the beauty LHCb data (see Fig. 7.2) which cover this region, as
well as a side effect of the improvement at low x, transmitted via the momentum sum rule. The
PDF distributions in linear x scale are available in Appendix F.4 (Figs. F.9, F.10, F.11, F.12).

Obviously, in the fit with the absolute cross sections, more information was used to constrain
the gluons: the absolute cross sections constrain the normalisation of the product of the gluon
PDFs at low and medium x, leading to the calibration of the low-x region to the medium one.
However the uncertainty of this calibration is of the order of a factor 2, propagated from the
scale uncertainties of the absolute cross sections.

In the fit with the normalised cross sections only the y shape of the cross sections was used
and gluons at low x are calibrated to the medium-x range by the ratio of the cross sections in
the most forward y bin to the least forward one. Doing so for all pT bins and for both charm and
beauty data effectively “builds a bridge” and calibrates low-x gluons to the medium x range,
similar to the ‘LHCb Abs’ approach, although less directly. In this approach therefore, the
final impact of the LHCb data crucially depends on the presence of any x region where the
gluon density is very well constrained by other data (preferably at x ∼ 10−4–10−3). Despite
the reduced sensitivity, significantly smaller theoretical uncertainties were obtained owing to
the reduced scale dependence of the normalised cross sections, so the final results are more
precise than in the ‘LHCb Abs’ approach. Moreover, the whole theory concept is much more
conventional and data independent in this case.

The observed impact of the heavy-flavour LHCb data suggests that these data might be a
useful addition to the existing global PDF fits, although the study also demonstrates that the
provided constraints are subject to sizeable theoretical uncertainties. Currently none of the PDF
fitting groups estimate perturbative uncertainties of theoretical predictions (e.g. uncertainties
from scale variations). In this context the ‘LHCb Norm’ approach should look more attrac-
tive since the uncertainties from the scale variations are not very crucial, while in the ‘LHCb
Abs’ approach, results without the scale uncertainties will be obviously untrustworthy. On the
other hand, nowadays the inclusion of perturbative theoretical uncertainties in the PDF fits is
becoming a pressing issue. Once a general strategy is developed, both considered approaches
of fitting the LHCb heavy-flavour data can be used in the global fits.

Any improvements in the theoretical predictions, both for the perturbative and non-perturbative
parts, are very desirable to match the data precision (see also Appendix F.3). Having the scale
uncertainties under control will provide a possibility to use the LHCb heavy-flavour data also
for a precise measurement of the charm and beauty masses.

The final remark concerns the ‘LHCb Norm’ approach. As previously mentioned, the con-
straints at low x obtained in this approach crucially depend on the presence of any medium-x
region already constrained by other data. In this context, the inclusion in the PDF fit of further
datasets sensitive to gluons, e.g. jet measurements, should be very interesting. Another possi-
ble improvement may come from heavy-flavour measurements at LHC in the complementary
rapidity region (e.g. [234, 235]), which will extend the fitted y shape to the central region
0 < y < 2 and therefore to the medium range of gluon x.
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CHAPTER 8

Conclusions and outlook

In this thesis a study of charm production in ep and pp collisions is presented. The production
of heavy quarks is one of the strongest tests of QCD, because the heavy-quark masses provide
a hard scale, allowing the application of perturbative calculations even at low scales Q ∼ ΛQCD.

The production of D+ mesons has been measured in DIS at HERA in the kinematic region
5 < Q2 < 1000 GeV2, 0.02 < y < 0.7, 1.5 < pT (D+) < 15 GeV and |η(D+)| < 1.6. Differential
cross sections were measured as a function of Q2, y, pT (D+) and η(D+). The present results
supersede the previous ZEUS D+ measurement, based on a subset of the data, and exhibit sig-
nificantly better precision. The improvement in precision comes from the larger data sample
used in the present analysis and from a better control of the experimental systematic uncertain-
ties, owing to improved tracking alignment and calibration. Predictions from NLO QCD in the
FFNS describe the measured cross sections well. The new precise data provide an improved
check of pQCD and have the potential to constrain the PDFs in the proton.

This measurement was combined with all other available H1 and ZEUS measurements
of open charm production, extrapolated to the full phase space using the shape of the the-
oretical predictions in the FFNS. The combination was performed in the kinematic region
2.5 ≤ Q2 ≤ 2000 GeV2 and 3 × 10−5 ≤ x ≤ 5 × 10−2. The procedure takes into account
detailed information on correlations of the systematic uncertainties, thus allowing for their
cross calibration and significant reduction. The combined charm reduced cross sections are
consistent with the previous H1 and ZEUS charm combination and have an improved preci-
sion owing to the inclusion of new ZEUS measurements. The combined data were compared to
NLO QCD predictions in the FFNS and various VFNS. The best description of the data in the
whole kinematic range is provided by the approximate NNLO FFNS predictions of the ABM
group. The strong sensitivity of the theoretical predictions to the charm-quark mass allows its
determination using the precise combined data. The charm reduced cross sections were used
as input for a QCD analysis together with the inclusive production data at HERA to determine
the optimal values of the pole and MS running charm masses, as well as the charm-quark mass
parameters in various VFNS. The extracted value of the MS running charm mass is consistent
with the world-average value and has competitive precision to other individual determinations
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8 Conclusions and outlook

in pQCD.
The combination of many different charm measurements described above provides the ul-

timately precise one charm dataset from HERA, although it is affected by theory-related un-
certainties, arising from the extrapolation procedure. In order to have a combination with-
out this drawback, the single- and double-differential visible D∗+ cross sections measured
by H1 and ZEUS were combined. The combination was performed in the kinematic region
1.5 < Q2 < 1000 GeV2 (5 < Q2 < 1000 GeV2 for the single-differential cross sections),
0.02 < y < 0.7, pT (D∗+) > 1.5 GeV and |η(D∗+)| < 1.5. This combination does not induce
significant theory-related uncertainties, taking advantage of the fact that the phase spaces and
binning schemes of the H1 and ZEUS measurements are very similar, and provides differential
cross sections as a function of D∗+ kinematic variables also. The input datasets were found to
be consistent, and the combined data exhibit significantly reduced uncertainties. NLO QCD
predictions in the FFNS were compared to the combined D∗+ cross sections and a ‘customised’
QCD calculation was introduced in order to improve the agreement between the central values
of the theoretical predictions and the data.

For both combinations, the uncertainties of the combined data are smaller than the theoretical
uncertainties, thus higher-order calculations and an improved treatment of the fragmentation
process would be helpful to reduce the theory uncertainty to a level comparable with the data
precision. The combined D∗+ data can be used further as the most precise purely experimen-
tal charm measurement from HERA for stringent tests of pQCD and phenomenological ap-
proaches, e.g. of the fragmentation process, while the combined charm reduced cross sections
— the most precise inclusive charm measurement from HERA — also be used for stringent
tests of pQCD and in QCD analyses to constrain the gluon distribution and to determine the
charm-quark mass.

While the HERA charm data are sensitive to the gluon distribution in the proton at the values
of partonic fractions of the proton momenta 10−4 . x . 10−1, the production of charm quarks
at LHCb probes the region 5 × 10−6 . x . 10−4. The sensitivity of heavy-quark production
in pp collisions to the low-x gluon distribution was studied in a comprehensive QCD analysis
at NLO. The measurements of charm and beauty production at the LHCb experiment were
included into a PDF fit together with inclusive and heavy-quark production measurements in
DIS at HERA. FFNS theory was used for predictions of heavy-quark production in ep and pp
collisions. Two approaches to the use of the LHCb data were studied. Although the absolute
differential cross-section measurements contain more information, the resulting PDFs suffer
from large theoretical uncertainty due to uncalculated higher-order corrections, estimated by
the variation of the pQCD scales. By using only the rapidity shape information, this uncertainty
was significantly reduced. In both approaches a significant reduction of the parametrisation
uncertainty of the gluon distribution at low x was observed, as compared to the result of the
PDF fit using only HERA DIS data. The present analysis has illustrated the high potential of
the LHCb heavy-flavour measurements to constrain the gluon distribution at low x. Further
improvements in the theoretical calculations of heavy-flavour production in pp collisions, as
well as new experimental measurements in the complementary phase space, are expected to
fully exploit these constraints.

HERA data have already had a great impact on the understanding of the partonic structure
of the proton and on the development of QCD. The analysis of these data still continues and
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will continue in the future. In order to ensure the long-term availability of the ZEUS data after
the end of the experimental Collaboration, as a part of the ZEUS data preservation project,
the ZeVis program has been modified to become independent of the ZEUS Software. The new
CN-ZeVis, based on Common Ntuples, is a pure ROOT application. While CN-ZeVis provides
the main functionality that was available in classic ZeVis, it does not require any maintenance.
In addition, several new features were implemented in CN-ZeVis.
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APPENDIX A

Modification of ZEUS Event Display:
additional details

In this Appendix additional information on the modification of the ZEUS Event Display pro-
gram (Section 4) is provided.

A.1 Available information

Since the CN does not contain all information that was in the MDST files, CN-ZeVis also
cannot display some things available in classic ZeVis. Here is a list of information which can
be displayed in CN-ZeVis:

• tracks:

– ZTT for HERA-II or VCT for HERA-I (both vertex-fitted and off-vertex tracks are
available);

– analysis-specific tracks;

– GTT;

– TRKMSA;

– MC tracks;

• vertices:

– ZTT for HERA-II or VCT for HERA-I;

– analysis-specific vertices;

– GTT;

– beamspot;

• jets:
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– all possible kT jets (from A to Z);

– cone jets;

• ZUFOs;

• CAL hits;

• muons:

– BAC hits;

– muon tracks;

• event header:

– run and event number;

– date and time;

– CAL information;

– SINISTRA and EM information;

– CC JB information;

– trigger bits.

There are some limitations depending on the CN version, listed in Table A.1.

CN version v02 v06 v07 v08
CAL hits no yes yes yes
Vertex-fitted tracks before
vertexing

no yes yes yes

TRKMSA tracks no yes yes yes
GTT tracks no yes yes yes
Analysis-specific SECVTX
for different vertex types

ktJETS_A
only

yes yes yes

Correct magnetic field for
track helices

no yes yes yes

Date and time no no no yes

Table A.1: CN-ZeVis limitations in different CN versions.

A.2 Standalone version

Information about the standalone version is available at:
http://www-zeus.desy.de/~zevis/new_oz/README
Note, that with CN-ZeVis, it is possible to access CN on dCache from outside DESY using a
Grid proxy.
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A.3 Description of new features

A.3 Description of new features

In addition to the classic ZeVis functionality, several new features have been implemented in
CN-ZeVis:

• processing an event list (Fig. A.1):

– if a user has a lot of events to display, one does not need to specify each event man-
ually. Instead one can create an event list containing information about all events in
the special format, and process it with CN-ZeVis “in one shot”;

– to use this feature a user should start ZeVis, press the Process Event List button
and select an event-list file;

– an event-list file is a text file where each line contains information about one event;
each line must contain run=..., event=... and (optionally) file=... entries
separated by an arbitrary number of spaces;

– if the file=... entry is provided, ZeVis will search for the requested event in this
CN file using the specified run and event numbers;

– if there is no file=... entry, ZeVis will assume that the requested event is DATA
and will search for it in the CN version specified in the main Client window. There-
fore a user should consider to select the correct CN version before processing an
event list;

– a user must specify the run number equal to 1 for MC;

– a user should be aware that ZeVis will take all settings concerning event reconstruc-
tion from the main Client window (the setting of using a constant magnetic field for
building track helices and the settings for analysis-specific tracks and vertices) and
should not forget to select the correct ones;

– there is a limitation that an event list cannot contain more than 300 events;

– lines in the event list may contain additional information suitable for users (e.g. Q2,
pT etc.) which will be ignored by ZeVis;

– after processing the event list a user can save the events in a ZeVis ROOT file (File
-> Save Event File as...) and then work with this file in subsequent ZeVis
sessions;

– examples of event lists with typical events from the D+ in DIS analysis (see Sec-
tion 5) for DATA and MC are available at http://www-zeus.desy.de/~zevis/
new_oz/eventlists/eventlist_dch_data and
http://www-zeus.desy.de/~zevis/new_oz/eventlists/eventlist_dch_mc;

• batch mode:

– ZeVis can be run on a system without a graphical environment;

– there are basically two uses of this mode:
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Figure A.1: Selecting (top) and processing (bottom) an event list.
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◦ to test and validate ZeVis on a new system (another operating system, compiler,
ROOT version etc.);

◦ to get some pictures even if there is no graphical interface (SSH session with
very slow connection etc.);

– a user should prepare event list and run a command:
zevis-cn-dev -b <event list> <output dir> <picture format 1> ...
The arguments <picture format 1>, ... are optional and can be ps, eps, png
or any other formats supported by ROOT (see TPad::Print() for more details);

– in the output directory the following items will be created:

◦ the ZeVis ROOT file zevis.root with all processed events (can be correctly
opened only with ZeVis);

◦ the text file zevis.txt with the dump of all objects;

◦ the pictures in the specified format(s) for each processed event;

• support for “private mini-ntuples”:

– CN-ZeVis can display information from “private mini-ntuples”1;

– to work with “private mini-ntuples” a user should check the Specify CN file
button and provide a path to the file (the same for processing event list: specify the
files with file=... entries);

– ZeVis checks the content of the input file before building the event: if some branches
are missing, ZeVis prints a warning message in the console output (“Warning during
building event: information about ... is not available due to missing branch(es): ...”);

– a user should be aware that ZeVis does not build (and display) some stuff if at
least one of the necessary branches is not available in the “private mini-ntuple” (e.g.
tracks will not be available even if only the Trk_layinner branch is missing);

• analysis-specific tracks and vertices (Fig. A.2):

– CN-ZeVis can display special analysis-specific (“analysis-level”) tracks and ver-
tices from decays of charm hadrons (information comes from ORANGE blocks DCH,
DSTAR1, DSTAR2, DZERO, DSS, DLA and SECVTX);

– to use this option, a user should press the Specify Analysis Request button and
specify the settings in a new Analysis Request window;

– a user should be aware that ZeVis can reconstruct only one combination of such
tracks and vertices, e.g. only one D+-, or D∗+-, or some other D-meson candidate
(except for the SECVTX block). This limitation is a consequence of the fact that
different combinations can have common tracks, and therefore displaying them to-
gether will be inconsistent; moreover each combination has its own reduced primary
vertex. So before requesting the event one should specify in this window which

1 CN which are produced by a user for certain purpose and may have reduced content of information (branches).
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type of analysis-specific information is needed (from which ORANGE block) and
either a certain number of the candidate or “the best one” with some cuts (“the best
one” means with minimal decay-length significance for DCH and with largest pT for
DSTAR1, DSTAR2, DZERO, DSS and DLA; this information is available in the tooltips
for the corresponding check buttons);

– after specifying (or changing) all settings a user requests an event and observes the
analysis-specific tracks and vertices (if they are present in the event; otherwise one
should check the console output for messages like “No Dch candidate” etc.);

– a user can switch them on/off from the Tracks & Vertexes tab of the Easy Tool
window or from the menu bar;

– analysis-specific vertices contain both secondary and reduced primary vertex; in
the description of a secondary vertex there is information about the mass of the
candidate, decay-length significance (for some ORANGE blocks) etc.;

– tracks from different particles can be displayed with different colors (according to
the mass hypothesis). For this option one should check the Show track types
button in the Event Options tab;

• MVD standalone TRKMSA tracks (Fig. A.3):

– CN-ZeVis can display MVD standalone TRKMSA tracks, which are not part of the
normal tracking and vertexing structure;

– a user can switch them on/off with the MVD standalone tracks (TRKMSA) check
button in the Extra options tab of the Easy Tool window or from the menu bar
(View Options -> Tracks -> Non Vertex-Fitted Tracks ->
MVD standalone tracks (TRKMSA));

– ZeVis can display these tracks either within the MVD or extrapolate them to the
CTD outer radius (check the Extrapolate to outer CTD radius (TRKMSA)
button in the Extra options tab of the Easy Tool window or from the menu bar
View Options -> Tracks -> Tracking options ->
Extrapolate to outer CTD radius (TRKMSA));

• using a constant magnetic field for displaying track helices:

– since CN version v02 does not contain information about track helices before ver-
texing (see Table A.1), tracks with this version can be built only assuming a constant
value of the magnetic field in the ZEUS detector;

– for backward compatibility with other CN versions, there is an option in CN-ZeVis
to build all tracks using this assumption;

– to build tracks with the constant value of the magnetic field (1.43 T) a user should
check the Use constant magnetic field 1.43 T for building track
helices button in the Events tab;

– if one selects the v02 version of CN in the Events tab, this option will be switched
on automatically;
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Figure A.2: Example of events with a D+ → K−π+π+ candidate from the DCH block (top) and with an
inclusive secondary vertex from the SECVTX block (bottom).
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Figure A.3: TRKMSA tracks in ZeVis.

– if one works with “private mini-ntuples” without information about track helices
before vertexing (the Trk_helpar and Trk_helmom branches) and did not switch
this option on, tracks nevertheless will be built assuming the constant magnetic field
and a warning message will be displayed in the console output;

• possibility to change the ZeVis style (Fig. A.4):

– there are two available style schemes in CN-ZeVis (Edit -> Style Scheme):

◦ “Standard” is hardcoded and is the default one;

◦ “User” is flexible and can be modified; it is stored in the .zevis.rsc file in the
user’s home directory;

– there are two ways to modify the “User” scheme:

◦ manual modification of the .zevis.rsc file;

◦ interactively a user can apply new settings either to the currently selected object
only or to all objects (need to request event again to see the effect); in the second
case actually the ZeVis style is changed and settings can be stored with File
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-> Save Settings (one should remember to switch to the User style before
doing all these operations);

◦ for some objects (jets, CAL hits and vertex error ellipses) only the manual
method works;

XY View ZR View

XY View ZR View

Figure A.4: The “Standard” (top) and modified “User” (bottom) styles in CN-ZeVis.

• zooming of the selected area (Fig. A.5):

– select area to expand with the right mouse button;

• access CN on dCache from outside DESY using a Grid proxy:

– information is provided on:
http://www-zeus.desy.de/~zevis/new_oz/README.
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Figure A.5: Zooming of the selected area in CN-ZeVis: selecting the area to zoom (top) and the resulting
view (bottom).
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APPENDIX B

Measurement of D+ production:
additional information

In this Appendix additional information on the measurement of D+ production (see Chapter 5)
is provided.

B.1 Additional plots

Fig. B.1 shows purity as a function of pT (D+), η(D+), Q2 and y.
Fig. B.2 shows efficiency as a function of pT (D+), η(D+), Q2 and y.
Fig. B.3 shows control plots for E′e, polar angle of the scattered electron, x, δhad and Zvtx.
Fig. B.4 shows effect of the tracking inefficiency correction as a function of pT (D+), η(D+),

Q2 and y
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Figure B.3: Control plots for E′e (a), polar angle of
the scattered electron, θe, (b), x (c), δhad (d) and
Zvtx (e). The data are shown as points, with bars
representing the statistical uncertainty. The sum of
charm and beauty MC is shown as the light shaded
area; the beauty contribution is shown separately
as the dark shaded area.
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B.2 Extension of analysis to low-pT(D+) region

This Section describes the extension of the D+ measurement to the kinematic region pT (D+) <
1.5 GeV. Section B.2.1 contains an introduction and motivation for this study, as well as an
overview of existing measurements in this region. Sections B.2.2 and B.2.3 present results of
the measurement in two decay channels, D+ → K0

S (π+π−)π+ and D+ → K−π+π+, respectively.
Finally, in Section B.2.4 comparison of the obtained results is presented, as well as a summary
and prospects of possible further improvements.

B.2.1 Introduction

Most of the measurements of the charm contribution to the proton structure function Fcc̄
2 (or

in terms of the charm reduced cross section σcc̄
red, see Section 2.3.2), performed at HERA,

were done extrapolating results of the measurements in a visible (by the detector) phase space,
typically very limited in pT and η.1 This extrapolation involves usage of the pT and η shape
from some theoretical predictions and results in appearance of the theory-related uncertainties
on the extracted Fcc̄

2 (see Section 6.2.3 for more details). Therefore, an additional measurement
of charm production, even not competitively precise, in the region which is not accessible for
other most precise measurements, can serve as a cross-check of the extrapolation procedure.
Moreover, it will provide a self-independent crucial test of pQCD.

So far at HERA only one measurement was done in the region pT < 1.25 GeV by ZEUS [236].
D+ and Λ+

c production has been measured using 120 pb−1 of the HERA-I data in DIS in the
kinematic region 0 < pT (D+,Λ+

c ) < 10 GeV, |η(D+,Λ+
c )| < 1.6, 1.5 < Q2 < 1000 GeV2

and 0.02 < y < 0.7. The charm hadrons were reconstructed in the decay channels D+ →

K0
S (π+π−)π+, Λ+

c → pK0
S (π+π−), Λ+

c → Λ(pπ−)π+ (note that no explicit lower cut on the
transverse momenta of the reconstructed charmed hadrons was applied). The presence of a
neutral strange hadron in the final state reduced the combinatorial background thus allowing
the extention of the measured sensitivity into the low-pT region. The differential cross sec-
tion as a function of p2

T (D+) is shown and compared to the NLO QCD FFNS predictions in
Fig. B.5. The predictions describe the data reasonably, although at low pT (D+) they differ
by about two standard deviations. The experimental uncertainty of the data in the lowest bin
0 < p2

T (D+) < 2.25 GeV2 is ≈ 30%, mainly driven by the statistical uncertainty.
Using the HERA-II data, there are two possibilities for a measurement of charm production

at low pT (D+):2

1. measurement in the decay channel D+ → K0
Sπ

+ with subsequent K0
S → π+π−, similarly

how it was done in [236] using the HERA-I data. Presence of the MVD on one hand
allows the reconstruction of the D+ secondary vertices, but on the other hand additional
material leads to a significant suppression of acceptance at low pT (D+). Additionally,

1 Formally the H1 vertex measurement [141] is an exception, although its results also contain sizeable theory-
related uncertainties, which means that the extrapolation to the full phase space has been performed implicitly.

2 Measurement of D∗+ production using the “golden” decay channel (see Section 3.1.3) is not feasible at very
low pT (D∗+), because the transverse momentum of the slow pion would be too small and its track cannot be
reconstructed.
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Figure B.5: Differential D+ cross sections as a function of p2
T (D+), as measured by ZEUS [236], com-

pared to the NLO QCD calculation (HVQDIS). The measured cross section is shown as dots and the
triangle represents the previous ZEUS result [237]. The X-axis is broken. The inner error bars show the
statistical uncertainties and the outer error bars show the statistical and systematic uncertainties added
in quadrature. The band shows the estimated theoretical uncertainty of the HVQDIS calculation.

Q2 range at HERA-II is limited to Q2 > 5 GeV2, that leads to an additional acceptance
suppression at low pT (D+). Expected advantages and disadvantages of this decay channel
can be summarised as follows:

(+) relatively small combinatorial background (almost clean K0
S signal, combined with

one additional charged track);

(−) small branching ratio (B(D+ → K0
Sπ

+) = 1.5%, B(K0
S → π+π−) = 69.2% [183]).

Measurement in this decay channel is described in Section B.2.2;

2. measurement in the decay channel D+ → K−π+π+, similarly how it is described in Chap-
ter 5. Expected advantages and disadvantages of this decay channel can be summarised
as follows:

(+) larger branching ratio (B(D+ → K−π+π+) = 9.1% [183]);

(+) better reconstruction of the D+ secondary vertices owing to the presence of three
charged daughter tracks;

(−) larger combinatorial background due to the same fact of the presence of three charged
daughter tracks.

Measurement in this decay channel is described in Section B.2.3.
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B.2.2 Reconstruction of D+ mesons in decay channel
D+ → K0

S
(π+π−)π+

The event reconstruction and selection was exactly the same as described in Chapter 5 (Sec-
tions 5.1 and 5.2).

B.2.2.1 Vertex fit

The vertex fit procedure was implemented by the author and is based on [238]. Both secondary
vertices, D+ and K0

S , were reconstructed in a simultaneous fit (Fig. B.6). An additional con-
straint was applied to ensure that the direction from the D+ to K0

S vertex is collinear to the K0
S

momentum, while the D+ momentum was independent from the D+ direction, reconstructed
from the vertices, thus providing an input for the calculation of the decay-length significance.

+
π


π

+
π

0
K

 decay length+D

Beam Spot

 sec. vtx.
+

D

 sec. vtx.
0

K

+
D

Figure B.6: Illustration of the simultaneous fit of the D+ and K0
S secondary vertices. Tracks before the

fit are shown as dotted curves. Tracks after the fit are shown as solid curves.

There are 15 measured parameters in the fit (3 final-state tracks, each parametrised with
5 helix parameters), 15 free parameters (2 secondary vertices, each has 3 coordinates, and
3 momenta of the final-state tracks at the vertices, each has 3 components), and 2 additional
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B.2 Extension of analysis to low-pT (D+) region

constraints (K0
S direction), therefore the number of degrees of freedom is ndof = 2. The fit yields

the global χ2 quantity, referred to as χ2
fit, and allows usage of the D+ lifetime information.

Similar to the previous analysis (Section 5.4.1), the most efficient way of using the lifetime
information is the D+ projected decay-length significance, S l:

S l =
lXY

σlXY

, (B.1)

where lXY is the projected decay length, defined as

lXY =
(~S XY − ~PXY) · ~p(D+)

pT (D+)
(B.2)

and σlXY is the uncertainty on lXY. Here ~PXY and ~S XY are the vectors pointing to the primary
and secondary vertices, respectively, and · sign denotes a scalar product. Projection on the XY
plane was used because the resolution of the vertex position was most precise in the transverse
plane.

B.2.2.2 K0
S

selection

This Section describes the selection of K0
S done before performing the global vertex fit, de-

scribed in the previous Section B.2.2.1. The selection closely follows [239]:

• pT (K0
S ) > 0.4 GeV;

• pT (π) > 0.12 GeV;

• |η(π)| < 1.75;

• each track should not belong to the primary vertex;

• each track should have at least two MVD hits in both the Z and φ directions and pass
through at least three CTD superlayers;

• DCAK0
S
< 2 cm, where DCAK0

S
is the closest distance between the helices of the daughter

tracks (distance of the closest approach) before the K0
S vertex fit;

• χ2
sec vtx K0

S
< 5. This cut ensures good consistency of the hypothesis that two daughter

tracks passed through the same secondary vertex;

• θ3D < 0.3, where θ3D is the three-dimensional collinearity angle between the line, con-
necting the primary vertex and the secondary vertex of K0

S , and the reconstructed K0
S

momentum;

• θ2D < 0.12, where θ2D is the two-dimensional (in the XY plane) collinearity angle be-
tween the line, connecting the primary vertex and the secondary vertex of K0

S , and the
reconstructed K0

S momentum;
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B Measurement of D+ production: additional information

• M(e+e−) > 0.05 GeV, where M(e+e−) is the invariant mass of the daughter tracks assum-
ing that they are an electron and positron. This requirement eliminates background from
photon conversion;

• M(pπ) > 1.121 GeV, where M(pπ) is the invariant mass of the daughter tracks assuming
that they are a proton and pion. This requirement eliminates background from Λ → pπ−

decays;

• lXY,K0
S
> 0.5 cm, where lXY,K0

S
is the two-dimensional (projected on the XY plane) decay

length of the K0
S secondary vertex.

The invariant-mass distribution of the reconstructed K0
S candidates, M(K0

S ), is shown in
Fig. B.7. It is fitted to the sum of a Gaussian function describing the signal and first order poly-
nomial describing the background. The fit was performed using the least-squares method as im-
plemented in the MINUIT package [184]. As the expectation values in the χ2-function, the in-
tegrals of the fit function within each bin of M were used. The number of K0

S mesons yielded by
the fit is N(K0

S ) = 1379939±1250. The fitted position of the peak is M0 = 497.513±0.005 MeV,
where only the statistical uncertainty is quoted, reasonably consistent with the PDG value of
497.614±0.024 MeV [183]. The peak width is σ = 4.088±0.004 MeV, driven by the momen-
tum resolution of the detector.

B.2.2.3 D+ selection

The selection criteria were optimised on the sum of the charm RAPGAP (for the signal com-
ponent) and inclusive ARIADNE MC (for combinatorial background) samples by maximising
the peak significance as described in Section 5.4.1. The selection criteria for D+ mesons were:

• |η(D+)| < 1.6;

• pT (K0
S ) > 0.4 GeV;

• pT (π) > 0.4 GeV;

• |η(K0
S , π)| < 1.75;

• the π track should have at least two MVD hits in both the Z and φ directions and pass
through at least three CTD superlayers;

• 0.477 < M(K0
S ) < 0.517 GeV. This requirement selects K0

S candidates in the peak region
only;

• χ2
fit < 10;

• the cut on the D+ decay-length significance depended on the D+ transverse momentum:

◦ S l > −2, if 0 < pT (D+) < 1 GeV;

◦ S l > −1, if 1 < pT (D+) < 1.5 GeV;

◦ S l > 0, if 1.5 < pT (D+) < 15 GeV;
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Figure B.7: The invariant-mass distribution of the reconstructed K0
S candidates. The solid curve repre-

sents a fit by the sum of a Gaussian for the signal and a first-order polynomial for the background.

• lXY,D+ < 1.5 cm, where lXY,D+ is the two-dimensional (projected on the XY plane) de-
cay length of the D+ secondary vertex. This requirement ensured that selected D+ sec-
ondary vertices were inside the beampipe, thus did not originate from interactions with
the beampipe or detector material.

B.2.2.4 Verification of vertex fit

The vertex-fit procedure was verified on the MC simulations. The charm RAPGAP MC sample
was used for this purpose and only matched D+ candidates were used for the study. The
matching was performed as explained in Section 5.6.1.2.

Distributions of the residuals for the D+ secondary-vertex coordinates are shown in Fig. B.8.
The residual is defined as the difference between the generated and reconstructed vertex po-
sitions. All residual distributions are approximately centered around zero. Spatial resolution
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B Measurement of D+ production: additional information

of the D+ secondary-vertex reconstruction is ≈ 400 µm in each direction.3 Distributions of the
pulls for the D+ secondary-vertex coordinates are shown in Fig. B.9. The pull is defined as
the residual divided by the uncertainty on the reconstructed secondary-vertex coordinate. All
pull distributions are reasonably close to centered around zero unit Gaussians. Distributions
of the residuals and pulls for the fitted parameters of all daughter tracks are provided in Sec-
tion B.2.5 (Figs. B.18 to B.23). These plots confirm the absence of biases in the fit procedure
and adequacy of the uncertainty estimation.
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Figure B.8: The residual distributions for the X
(top right), Y (top left) and Z (bottom) coordi-
nates of the D+ secondary vertices. The smooth
curve represents a fit by a Gaussian function.

A distribution of χ2
fit values is shown in Fig. B.10. As expected, it has the mean value

reasonably close to ndof = 2.

Finally, a distribution of the calculated S l is shown in Fig. B.11. It is assymetric with respect
to zero in the direction of positive values, as expected.

3 For the D+ secondary vertices reconstructed in the D+ → K−π+π+ decay channel spatial resiolution is better,
≈ 200 µm, owing to the presence of three tracks originating from one vertex.
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Figure B.9: The pull distributions for the X
(top right), Y (top left) and Z (bottom) coordi-
nates of the D+ secondary vertices. The smooth
curve represents a fit by a Gaussian function.
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Figure B.11: The distribution of the D+ decay-length significance for the simultaneous fit of the D+ and
K0

S vertices.

B.2.2.5 Extraction of D+ signal

The invariant-mass distribution of the D+ candidates, M(K0
Sπ), is shown in Fig. B.12. It was

fitted to the function:

F(M) = N(D+) · (Fsignal(M) + R · Freflection(M)) + Fbackground(M), (B.3)

where the signal component, Fsignal(M), is given by a Gaussian function:

Fsignal(M) =
1
√

2πσ
exp
−(M − M0)2

2σ2 , (B.4)

the background component, Fbackground(M), is given by a second-order polynomial and the re-
flection component, Freflection(M), takes into account the contribution from D+

s → K0
S K+ decays,

which results in a distorted peak in the region of D+ mass, as shown in Fig. B.13. The shape
of the reflection contribution was obtained from the charm RAPGAP MC simulations and re-
normalised to the data with the coefficient in front, N(D+) · R, where N(D+) is the number of
D+ in the signal and R is given by

R =
f (c→ D+

s )
f (c→ D+)

·
B(D+

s → K0
S K+)

B(D+ → K0
Sπ

+)
·
A(D+

s )
A(D+)

, (B.5)

where f (c → D+
s ) and f (c → D+) are the fragmentation fractions taken from [194], B(D+

s →

K0
S K+) and B(D+ → K0

Sπ
+) are the branching ratios taken from [183], and A(D+

s ) and A(D+)
are acceptance for the D+

s and D+ reconstruction, respectively, obtained from MC. Thus N(D+)
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gives the number of D+ in the signal.
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Figure B.12: The invariant-mass distribution of the reconstructed D+ → K0
S (π+π−)π+ candidates. The

solid curve represents a fit as explained in the text.

The number of D+ mesons yielded by the fit is N(D+) = 3998 ± 352. The fitted position of
the peak is M0 = 1871 ± 2 MeV, where only the statistical uncertainty is quoted, consistent
with the PDG value of 1869.62 ± 0.15 MeV [183]. The peak width is σ = 16.1 ± 2.1 MeV,
driven by the momentum resolution of the detector.

B.2.2.6 D+ mass spectra in pT(D+) bins

The invariant-mass distributions of the D+ candidates in the bins of pT (D+) are shown in
Fig. B.14. In order to extract the D+ signal in the bins of pT (D+), the invariant-mass distri-
butions in all bins were fitted simultaneously, using the same mass M0 for all bins and ratios of
the peak widthes σ fixed to the corresponding ratios from the MC simulations. This procedure
improves statistical precision of the results.

The fit yields in χ2/ndof = 430/366. The signal in the first pT (D+) bin, 0 < pT (D+) <
0.5 GeV, is not accessible, while the statistical precision of the fitted D+ yields in the bins
0.5 < pT (D+) < 1 GeV and 1 < pT (D+) < 1.5 GeV is ≈ 35% and ≈ 20%, respectively.
These results are quite encouraging, compared to the statistical precision ≈ 30% in the bin
0 < p2

T (D+) < 2.25 GeV2, obtained at HERA-I [236].

B.2.3 Reconstruction of D+ mesons in decay channel D+ → K−π+π+

The event reconstruction and selection was exactly the same as described in Chapter 5 (Sec-
tions 5.1 and 5.2).
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Figure B.14: The invariant-mass distribution of the reconstructed D+ → K0
S (π+π−)π+ candidates in the

bins of pT (D+). The solid curves represent a fit as explained in the text.
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B.2 Extension of analysis to low-pT (D+) region

B.2.3.1 D+ selection

The selection criteria are based on the given in Section 5.4.2, although they were slightly re-
optimised to maximise the peak significance in the low-pT (D+) region:

• pT (D+) > 0.5 GeV. This requirement comes from the pre-selection, performed at the CN
level (see Section 4.4);

• |η(D+)| < 1.6;

• each track should have at least two MVD hits in both the Z and φ directions and pass
through at least three CTD superlayers;

• pT (π) > 0.25 GeV;

• pT (K) > 0.35 GeV;

• χ2
sec vtx < 10;

• the cut on the D+ decay-length significance depended on the D+ transverse momentum:

◦ S l > −2, if 0.5 < pT (D+) < 1 GeV;

◦ S l > 2, if 1 < pT (D+) < 1.5 GeV;

◦ S l > 4, if 1.5 < pT (D+) < 15 GeV;

• lXY,D+ < 1.5 cm, where lXY,D+ is the two-dimensional (projected on the XY plane) decay
length of the D+ secondary vertex.

B.2.3.2 D+ mass spectra in pT(D+) bins

The invariant-mass distributions of the D+ candidates, M(Kππ), in the bins of pT (D+) are
shown in Fig. B.15. To extract the number of reconstructed D+ mesons, the mass distribution
was fitted with a function

F(M) = Fsignal(M) + Fbackground(M), (B.6)

where the signal component, Fsignal(M), is given by a Gaussian function:

Fsignal(M) = N(D+) ·
1
√

2πσ
exp
−(M − M0)2

2σ2 (B.7)

and the background component, Fbackground(M), is given by a second-order polynomial. Anal-
ogously to the case of the D+ signal extraction in the D+ → K0

S (π+π−)π+ decay channel, all
pT (D+) bins were fitted simultaneously, using the same mass M0 and ratios of the peak widthes
σ fixed to the corresponding ratios from the MC simulations.

The fit results in χ2/ndof = 333/250. The statistical precision of the fitted D+ yields in the
bins 0.5 < pT (D+) < 1 GeV and 1 < pT (D+) < 1.5 GeV is ≈ 25% and ≈ 30%, respectively.
This result is competitive to what was obtained using the D+ → K0

S (π+π−)π+ decay channel in
Section B.2.2.6.
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Figure B.15: The invariant-mass distribution of the reconstructed D+ → K−π+π+ candidates in the bins
of pT (D+). The solid curves represent a fit as explained in the text.

B.2.4 Comparison of results from two decay channels

The kinematic region of the measurement is given by

5 < Q2 < 1000 GeV2,

0.02 < y < 0.7,
0.5 < pT (D+) < 15 GeV,
|η(D+)| < 1.6.

(B.8)

The differential cross section as a function of pT (D+) in the ith bin was determined as

dσ
dY

=
NDATA

ALB∆Yi
, (B.9)

where NDATA is the number of the reconstructed D+ mesons in the data, A is the acceptance
correction, determined using the charm RAPGAP MC sample, L is the integrated luminosity,
B is the branching ratio, taken from [183] and ∆Yi is the width of the ith bin of pT (D+) (see
Section 5.6 for more details).

Acceptance as a function of pT (D+) for two decay channels is shown in Fig. B.16. It is
on average ≈ 15% and ≈ 8% for the D+ → K0

S (π+π−)π+ and D+ → K−π+π+ decay channels,
respectively. Because of the selection tuned for the low-pT (D+) region, for both decay channels
it reaches the minimum at pT (D+) ≈ 2 GeV and grows at lower and higher pT (D+). Note, that
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B.2 Extension of analysis to low-pT (D+) region

for the acceptance determination no corrections to the MC simulations have been applied.
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Figure B.16: Acceptance as a function of pT (D+) for the D+ → K0
S (π+π−)π+ (left) and D+ → K−π+π+

(right) decay channels. Error bars represent the statistical uncertainty.

Fig. B.17 shows the differential cross section as a function of pT (D+), determined using the
D+ → K0

S (π+π−)π+ and D+ → K−π+π+ decay channels. The results from two decay channels
have similar precision at low pT (D+) and are consistent in all pT (D+) range.
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Figure B.17: The differential cross section as a function of pT (D+), determined using decay channels
D+ → K0

S (π+π−)π+ (filled circles) and D+ → K−π+π+ (empty circles), shown with a small horizontal
offset for better visibility.

By combining the results from two decay channels, it might be expected to obtain statistical
precision ≈ 15–20% in the bins 0.5 < pT (D+) < 1 GeV and 1 < pT (D+) < 1.5 GeV, about
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B Measurement of D+ production: additional information

two times better than was achieved with the HERA-I data [236] for the wider lowest bin 0 <
p2

T (D+) < 2.25 GeV2. Although these results need evaluation of systematic uncertainties also,
the latter are not expected to become dominant in the low-pT (D+) region.

Further potential improvement of the measurement includes:

• improvement of the vertex-fit procedure for the D+ → K0
S (π+π−)π+ decay channel:

– perform a M(K0
S )-constrained fit, i.e. require the mass of K0

S to be fixed in the fit;

– fit the position of the primary vertex also (with possible usage of the beamspot po-
sition), requiring collinearity fot p(D+) and its decay length; further this will allow
a M(D+)-constrained fit;

• use a cut on the decay-length significance as a smooth function of pT (D+);

• use the energy-loss information for kaon identification for the D+ → K−π+π+ decay
channel.

B.2.5 Residuals and pulls for fitted track parameters

Figs. B.18, B.20, B.22 and Figs. B.19, B.21, B.23 show residual and pull distributions, respec-
tively, for the fitted a1, a2 and a5 parameters of the D+ daughter tracks (see Section B.3 for the
description of the ZEUS track parametrisation).
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B.2 Extension of analysis to low-pT (D+) region
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B Measurement of D+ production: additional information
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B.2 Extension of analysis to low-pT (D+) region
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B.3 ZEUS track parametrisation

B.3 ZEUS track parametrisation

Tracks are approximated by helices and are parametrised with 5 parameters and arbitrary two-
dimensional reference point (Xref, Yref) (Fig. B.24):

• a1 = φH (angle tangent to the helix in the XY plane at the point of the closest approach
to the reference point);

• a2 = Q/R (Q is the charge, R is the local radius);

• a3 = QDH (DH is called the impact parameter; it connects the helix to the reference point
in the XY plane);

• a4 = ZH;

• a5 = cot θ.

This is the perigee parametrisation.

Figure B.24: Parametrisation of the track helix.

Any point of the helix can be expressed as a function of the outbound path length in the XY
plane:

s(φ) = QR(φ − φH), (B.10)

where φ is the outbound tangent angle in the XY plane. The coordinate components are given
by:

X = XH + QR(sin φ − sin φH),
Y = YH + QR(cos φH − cos φ),
Z = ZH + s(φ) cot θ,

(B.11)
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B Measurement of D+ production: additional information

where (XH, YH, ZH) are the coordinates of the point of the closest approach to the reference
point:

XH = Xref + QDH sin φH,

YH = Yref − QDH cos φH,

ZH = Zref .

(B.12)
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APPENDIX C

Combination procedure: additional
details

In this Appendix additional information on the combination procedure (Section 6.2) is pro-
vided.

C.1 Minimisation method

The minimisation method described below [240, 241] is applicable if the uncertainties of the
measurements do not depend on the central values (the additive treatment); in the case of the
multiplicative treatment this method is extended with an iteration procedure described in the
next Section C.2. In this case the χ2-function 6.10 can be considered. Since χ2 in 6.10 is a
quadratic form of m and b, it may be rearranged such that it takes a simpler form similar to
equation 6.3. To show this explicitly, χ2 can be written as a Taylor series up to its second
derivatives near the minimum, (m0,b0):

χ2(m,b) =

Ne∑
e=1

Nm∑
i=1

(
mi −

∑Ns
j=1 Γ

e, j
i be, j − µe

i

)2

σe
i

2 +

Ns∑
j=1

be, j2 = χ2
∣∣∣
0

+
∂χ2

∂m

∣∣∣∣∣∣
0

(m −m0)+

∂χ2

∂b

∣∣∣∣∣∣
0

(b − b0) +
1
2
∂2χ2

∂m2

∣∣∣∣∣∣
0

(m −m0)2 +
1
2
∂2χ2

∂b2

∣∣∣∣∣∣
0

(b − b0)2 +
∂2χ2

∂m∂b

∣∣∣∣∣∣
0

(m −m0)(b − b0).

(C.1)

Notation |0 indicates that the expression is evaluated at m = m0, b = b0. Note, that this is an
exact expression, because χ2 is a quadratic form; moreover the second derivatives are constant,
i.e. ∂2χ2

∂m2

∣∣∣∣
0

=
∂2χ2

∂m2 , ∂2χ2

∂b2

∣∣∣∣
0

=
∂2χ2

∂b2 , ∂2χ2

∂m∂b

∣∣∣∣
0

=
∂2χ2

∂m∂b .

It is useful to give explicit expressions for the second derivatives and to introduce the fol-
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C Combination procedure: additional details

lowing matrix notations:

∂2χ2

∂mi∂m j
= 2δi j

Ne∑
e=1

1
σe

i
2 = 2[AM]i j, 1 ≤ i, j ≤ Nm,

∂2χ2

∂bi∂b j
= 2

δi j +

Ne∑
e=1

Nm∑
k=1

Γe,i
k Γ

e, j
k

σe
k

2

 = 2[AS]i j, 1 ≤ i, j ≤ Ns,

∂2χ2

∂mi∂b j
= −2

Ne∑
e=1

Γ
e, j
i

σe
i

2 = 2[ASM]i j, 1 ≤ i ≤ Nm, 1 ≤ j ≤ Ns,

(C.2)

where δi j is the Kronecker delta.

The minimum χ2
min = χ2

∣∣∣
0

is found by solving a system of linear equations:

∂χ2

∂m

∣∣∣∣∣∣
0

= 0 =⇒ AMm0 + ASMb0 − CM = 0,

∂χ2

∂b

∣∣∣∣∣∣
0

= 0 =⇒ ASM
T m0 + ASb0 − CS = 0,

(C.3)

where

[CM]i =

Ne∑
e=1

µe
i

σe
i

2 ,

[CS]i = −

Ne∑
e=1

Nm∑
j=1

µe
jΓ

e,i
j

σe
j
2 .

(C.4)

System of linear equations C.3 can be written in a form of one matrix equation:(
AM ASM

ASM
T AS

) (
m0
b0

)
=

(
Cm
Cs

)
. (C.5)

Although solving of this system can be performed directly by inversion of the whole matrix,
it is more convenient to take an advantage of the diagonal structure of the block AM and solve
the system using the method of the Schur complement:

b0 = A′S
−1(CS − ASM

T AM
−1CM),

m0 = AM
−1(CM − ASMb0),

(C.6)

where
A′S = AS − ASM

T AM
−1ASM. (C.7)

This method benefits from the fact, that the only non-trivial inversion to be performed is the
inversion of the block A′S. The size of this block is Ns × Ns and usually much smaller than
the total size of the system C.5, (Nm + Ns) × (Nm + Ns), therefore this method is preferable for
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C.1 Minimisation method

computation.

Obtained solution (m0,b0) solves the minimisation problem for the central values. To find
the uncertainties on (m0,b0), the χ2 expansion in Eq. C.1 can be written, taking into account
that (m0,b0) is its minimum:

χ2(m,b) = χ2
min + 〈m −m0|AM|m −m0〉 + 2 〈m −m0|ASM|b − b0〉 + 〈b − b0|AS|b − b0〉 .

(C.8)

Denoting m −m0 = m̃, b − b0 = b̃:

χ2(m,b) = χ2
min + 〈m̃|AM|m̃〉 + 2 〈m̃|ASM|b̃〉 + 〈b̃|AS|b̃〉 . (C.9)

To separate contributions from m̃ and b̃ in the term 2 〈m̃|ASM|b̃〉, introduce a variable substitu-
tion |m̃′〉 = |m̃〉 − X |b̃〉:

χ2(m,b) = χ2
min + 〈m̃′ + b̃XT |AM|m̃′ + Xb̃〉 + 2 〈m̃′ + b̃XT |ASM|b̃〉 + 〈b̃|AS|b̃〉

= χ2
min + 〈m̃′|AM|m̃′〉 + 〈b̃|AS + 2XT ASM + XT AMX|b̃〉 + 〈m̃′|2AMX + 2ASM|b̃〉 ,

(C.10)

thus choosing X = −AM
−1ASM:

χ2(m,b) = χ2
min + 〈m̃′|AM|m̃′〉 + 〈b̃|AS − ASM

T AM
−1ASM|b̃〉

= χ2
min + 〈m̃′|AM|m̃′〉 + 〈b̃|A′S|b̃〉 .

(C.11)

Here AM = (AM)T , AM
−1 = (AM

−1)T were used.

Eq. C.11 allows interpretation of matrices AM and A′S in terms of uncertainties on m̃ and b̃.
Since variation of χ2-function of 1 corresponds to one standard deviation, diagonal elements
of matrix AM gives the uncertainty on m̃′ and therefore the uncorrelated uncertainty on m0:

δuncorm0i = ([AM]ii)−1/2 =

 Ne∑
e=1

1
σe

i
2

−1/2

(C.12)

and diagonal elements of matrix A′S gives the uncertainties on the fitted values of the nuisance
parameter b0:

δb0i =
(
[A′S]ii

)−1/2 , (C.13)

which are also referred to as the reduction factors of correlated uncertainties. Propagating them
to |m̃〉 = |m̃′〉 + X |b̃〉 gives the correlated uncertainties on m0:

δcor jm0i =
(
[−AM

−1ASMA′S]i j

)−1/2
, 1 ≤ i ≤ Nm, 1 ≤ j ≤ Ns. (C.14)

In Eq. C.11 variables b̃ are still mixed because of the non-diagonal structure of matrix A′S,
so the correlated uncertainties δcor jm0i are not independent. It is possible to decompose them,
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C Combination procedure: additional details

diagonilising this matrix
UA′SU−1

= DD (C.15)

and introducing new independent (diagonalised) correlated error sources, b̃′:

b̃′ = DUb̃. (C.16)

Here U is an orthogonal matrix, composed of the eigenvectors of A′S, and D is a diagonal
matrix, composed of the corresponding square roots of eigenvalues. Using C.15 and C.16,
χ2-function from Eq. C.11 can be written as:

χ2(m,b) = χ2
min + 〈m̃′|AM|m̃′〉 + 〈b̃′|I|b̃′〉 , (C.17)

where I is the unit matrix. Thus diagonalised correlated uncertainty sources are independent
variables distributed according to the unit Gaussian distribution around zero. Propagating them
to m = m′ + Xb̃ gives the correlated uncertainties on m0:

δcor jm0i =
(
[−AM

−1ASMD−1U−1]i j

)−1/2
, 1 ≤ i ≤ Nm, 1 ≤ j ≤ Ns. (C.18)

Summarising results of C.12 and C.18, averaged quantities can be written as:

mi = m0i + δuncorm0iai −

Ns∑
j=1

δcor jm0ib j, 1 ≤ i ≤ Nm (C.19)

with ai and b j being independently distributed according to the unit Gaussian distribution
around zero.

C.2 Iterative procedure

If some of the uncertainties are treated multiplicatively, the extremum conditions C.3 do not
produce a system of linear equations, since Γ

e, j
i are functions of unknown m0. In this case the

averaging technique described in Section C.1 still can be used, but the average has to be found
in an iterative procedure [240, 241]: first equation 6.10 is used to get an initial approximation
for m0 and b0 which are used to recalculate the uncertainties as Γ

e, j
i = γ

e, j
i m0i and σe

i
2 =

δe
i,stat

2m0i
2 + δe

i,uncor
2m0i

2. Then the determination of m0i is repeated. Typically convergence is
observed after two iterations and the iteration procedure is terminated.

Note that this iterative procedure does not give the exact minimum of the χ2-function 6.14.
Although there are arguments [216, 219] that the exact minimum of 6.14 is biased, while the
iterative procedure described above gives an unbiased result.
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APPENDIX D

Combination of visible D∗+ cross
sections: additional information

In this Appendix additional information on the combination of the visible D∗+ cross sections
(see Section 6.4) is provided.

Table D.1 gives information on the high-Q2 swimming correction of the H1 HERA-II data
(see Section 6.4.1.1).

Figs. D.1 to D.26 and Tables D.2 to D.4 summarise information on the swimming for the
combination of double-differential D∗+ cross sections (see Section 6.4.2.1).

Tables D.5 to D.12 present input data tables used for the combination.
Table D.13 provides information on the fitted nuisance parameters.
The combined data with all correlations are provided in Tables D.14 to D.16.
Figs. D.27 to D.31 show comparison of the combined data to the individual theoretical vari-

ations (see Section 6.4.1.4).
Fig. D.32 shows comparison of the combined data to the theoretical variations obtained with

different PDFs (see Section 6.3).
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D Combination of visible D∗+ cross sections: additional information

dσ/dpT (D∗+)
pT (D∗+) C δ+

mc δ−mc δ+
mu δ−mu δ+

as δ−as δ+
ak δ−ak δ+

bn δ−bn δ+
kt δ−kt δ+

tot δ−tot
[GeV] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

1.50 : 1.88 1.0 −2.0 2.9 −2.1 4.6 0.3 0.4 −4.2 5.5 −1.5 3.7 −0.6 0.1 8.6 −5.3
1.88 : 2.28 1.2 −2.0 1.2 −2.8 5.0 0.1 −0.5 −4.2 5.5 −1.8 3.9 −0.3 0.2 8.5 −5.7
2.28 : 2.68 1.3 0.3 −0.1 −2.8 5.9 0.2 −0.5 −4.1 5.1 −2.8 5.0 0.1 0.3 9.3 −5.8
2.68 : 3.08 1.9 0.8 −0.6 −3.2 6.9 0.6 0.1 −3.7 5.3 −2.7 5.3 0.9 0.2 10.3 −5.6
3.08 : 3.50 2.3 1.1 −1.6 −3.2 6.2 −0.2 0.0 −4.2 4.8 −3.3 5.9 −0.1 −0.7 9.9 −6.5
3.50 : 4.00 3.2 1.0 −0.9 −2.6 5.0 0.4 0.0 −3.9 5.1 −3.4 6.1 0.1 0.2 9.4 −5.9
4.00 : 4.75 4.5 1.0 −1.9 −2.4 3.2 0.1 −0.3 −3.7 3.3 −3.2 5.0 −0.3 −0.2 6.9 −5.8
4.75 : 6.00 9.1 0.7 −0.4 0.1 1.1 −0.0 0.1 −1.8 2.1 −2.2 2.5 −0.3 0.1 3.5 −3.1
6.00 : 8.00 21.8 −0.3 0.4 2.1 −3.5 −0.1 0.1 1.5 −2.3 0.9 −3.3 −0.1 0.1 2.8 −5.3

8.00 : 11.00 37.8 −1.0 0.8 2.6 −5.3 −0.2 −0.0 5.0 −6.0 4.7 −7.2 0.2 −0.2 7.4 −10.8
11.00 : 20.00 54.0 0.4 0.1 1.7 −5.0 −0.2 0.3 7.3 −7.5 4.7 −4.6 0.7 −0.1 8.8 −10.1

dσ/dη(D∗+)
η(D∗+) C δ+

mc δ−mc δ+
mu δ−mu δ+

as δ−as δ+
ak δ−ak δ+

bn δ−bn δ+
kt δ−kt δ+

tot δ−tot
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

−1.50 : −1.25 2.5 −0.8 1.0 5.8 −7.3 −0.7 0.2 0.2 −0.5 −0.0 −0.2 −0.8 0.6 5.9 −7.4
−1.25 : −1.00 3.4 −0.4 0.3 4.6 −4.9 −0.1 0.5 0.0 −0.1 −0.1 −0.1 −0.7 0.1 4.7 −4.9
−1.00 : −0.75 3.8 −0.2 0.5 3.8 −3.8 0.1 0.7 0.0 0.2 −0.1 0.0 −0.0 0.4 3.9 −3.9
−0.75 : −0.50 4.2 −0.2 0.3 2.7 −3.0 −0.1 0.1 0.0 −0.2 −0.2 −0.1 −0.2 −0.0 2.8 −3.0
−0.50 : −0.25 4.9 −0.2 0.2 1.8 −1.9 −0.2 0.1 −0.0 0.1 −0.0 −0.3 −0.2 0.2 1.8 −1.9
−0.25 : 0.00 5.1 −0.3 0.1 0.9 −1.2 −0.1 −0.1 0.0 −0.2 −0.0 −0.2 −0.2 0.0 0.9 −1.3
0.00 : 0.25 5.1 −0.2 0.1 0.2 −0.2 0.1 0.1 −0.1 0.1 0.1 −0.2 0.0 0.1 0.3 −0.4
0.25 : 0.50 5.2 0.1 0.1 −0.8 1.1 0.0 0.1 −0.0 −0.0 0.1 0.0 0.2 0.1 1.1 −0.8
0.50 : 0.75 4.9 0.2 0.0 −1.5 1.8 0.2 −0.2 0.1 0.1 0.1 −0.0 0.2 0.1 1.8 −1.5
0.75 : 1.00 4.8 0.1 −0.5 −2.7 2.8 0.1 −0.1 0.1 0.2 0.1 0.2 0.1 −0.3 2.8 −2.8
1.00 : 1.25 3.9 0.4 −0.6 −3.3 3.4 0.1 −0.3 −0.3 −0.1 −0.1 0.3 0.1 −0.4 3.4 −3.4
1.25 : 1.50 4.3 0.7 −0.6 −4.5 5.0 0.2 −0.5 0.1 0.2 −0.0 0.3 0.8 −0.3 5.2 −4.6

dσ/dz(D∗+)
z(D∗+) C δ+

mc δ−mc δ+
mu δ−mu δ+

as δ−as δ+
ak δ−ak δ+

bn δ−bn δ+
kt δ−kt δ+

tot δ−tot
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.000 : 0.100 5.2 −2.9 2.5 −1.0 2.7 0.4 −0.1 −1.0 1.6 1.0 0.1 1.2 −0.7 4.4 −3.3
0.100 : 0.200 3.7 1.8 −1.6 −2.7 5.3 0.4 −0.3 −2.5 3.4 −1.2 1.7 0.2 −0.1 6.7 −4.2
0.200 : 0.325 3.1 2.0 −2.0 −4.6 8.2 0.3 −0.3 −4.2 5.2 −3.3 5.8 −0.1 0.0 11.5 −7.3
0.325 : 0.450 3.6 1.9 −1.9 −3.9 6.5 0.1 −0.3 −4.3 4.7 −4.2 7.0 −0.1 0.1 10.8 −7.4
0.450 : 0.575 4.0 1.0 −1.1 −1.2 1.7 −0.0 0.1 −1.9 1.5 −2.6 3.8 −0.2 0.1 4.6 −3.6
0.575 : 0.800 6.1 −1.4 1.3 4.1 −7.4 −0.3 0.2 4.6 −5.7 2.9 −6.3 −0.2 0.1 6.9 −11.4
0.800 : 1.000 7.0 −6.9 7.3 14.2 −24.3 −1.3 1.2 13.5 −13.6 15.2 −19.6 −0.1 0.1 25.9 −34.8

dσ/dy
y C δ+

mc δ−mc δ+
mu δ−mu δ+

as δ−as δ+
ak δ−ak δ+

bn δ−bn δ+
kt δ−kt δ+

tot δ−tot
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

0.02 : 0.05 0.5 −12.2 11.7 −4.8 2.5 0.5 −0.6 2.6 −3.5 2.3 −4.9 0.3 −0.1 12.4 −14.4
0.05 : 0.09 2.6 −4.4 4.0 −3.7 2.3 −0.2 −0.3 0.3 −0.4 −0.0 −0.5 −0.4 0.2 4.7 −5.8
0.09 : 0.13 3.4 −1.7 1.6 −2.4 1.7 −0.1 −0.2 −0.1 0.1 −0.2 0.1 −0.2 0.1 2.4 −2.9
0.13 : 0.18 4.0 −0.6 0.6 −1.2 0.9 0.0 0.0 −0.1 0.1 −0.2 0.0 −0.1 0.1 1.1 −1.4
0.18 : 0.26 4.2 0.1 −0.1 −0.1 0.1 −0.0 0.0 −0.1 0.1 −0.0 0.0 −0.1 0.0 0.2 −0.2
0.26 : 0.36 5.4 0.7 −0.6 0.8 −0.6 0.0 0.1 −0.1 0.1 0.0 0.1 0.0 −0.0 1.1 −0.9
0.36 : 0.50 6.6 1.1 −1.1 1.6 −1.2 −0.0 0.1 −0.0 0.1 0.0 0.1 0.1 −0.0 2.0 −1.7
0.50 : 0.70 8.1 1.9 −1.8 1.7 −0.9 0.1 0.0 0.0 −0.0 0.1 0.1 0.3 −0.2 2.5 −2.0

Table D.1: Contributions from the high-Q2 region (C) and their uncertainties for high-Q2 swimming for
H1 HERA-II measurement (see Section 6.4.1.1 for more details).
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D Combination of visible D∗+ cross sections: additional information

) 2
 (G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t b

in
:

5
:    3

.5
0
<

Q
2
<

   6
.5

0
 G

e
V

2
    0

.0
2
<

y
<

0
.0

8

O
u

tp
u

t b
in

:

5
:    3

.5
0
<

Q
2
<

   5
.5

0
 G

e
V

2
    0

.0
2
<

y
<

0
.0

9

S
w

im
m

in
g

: P
 =

 7
3
.6

%
, E

 =
 8

6
.7

%
, F

 =
 1

.0
9

U
n
certain

ties:

 v
ar.

c
   +

0
.8

%
   0

.8
%

   sw
im

m
in

g
 m

 v
ar.

f
µ,

r
µ

   0
.3

%
   +

0
.7

%
   sw

im
m

in
g
 

 v
ar.

s
α

   0
.2

%
   +

0
.0

%
   sw

im
m

in
g
 

 v
ar.

k
α

   0
.0

%
   +

0
.0

%
   sw

im
m

in
g
  b

in
 v

ar.
s

   0
.1

%
   0

.0
%

   sw
im

m
in

g
 

 v
ar.

T
   +

0
.3

%
   0

.3
%

   sw
im

m
in

g
 k

   +
1
.1

%
   0

.9
%

   s
w

im
m

in
g

 to
ta

l

   1
1
.4

%
   e

x
p

e
rim

e
n

ta
l u

n
c
o

rre
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

   0
.1

0
   s

w
im

m
in

g
/e

x
p

e
rim

e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 5

) 2
 (G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t b

in
:

6
:    3

.5
0
<

Q
2
<

   6
.5

0
 G

e
V

2
    0

.0
8
<

y
<

0
.1

8

O
u

tp
u

t b
in

:

6
:    3

.5
0
<

Q
2
<

   5
.5

0
 G

e
V

2
    0

.0
9
<

y
<

0
.1

6

S
w

im
m

in
g

: P
 =

 5
2

.4
%

, E
 =

 1
0
0
.0

%
, F

 =
 1

.1
3

U
n
certain

ties:

 v
ar.

c
   +

0
.0

%
   +

0
.3

%
   sw

im
m

in
g
 m

 v
ar.

f
µ,

r
µ

   0
.0

%
   +

0
.7

%
   sw

im
m

in
g
 

 v
ar.

s
α

   +
0
.2

%
   0

.0
%

   sw
im

m
in

g
 

 v
ar.

k
α

   0
.2

%
   0

.0
%

   sw
im

m
in

g
 

 b
in

 v
ar.

s
   0

.0
%

   0
.0

%
   sw

im
m

in
g
 

 v
ar.

T
   +

0
.2

%
   0

.3
%

   sw
im

m
in

g
 k

   +
0
.8

%
   0

.4
%

   s
w

im
m

in
g

 to
ta

l

    7
.9

%
   e

x
p

e
rim

e
n

ta
l u

n
c
o

rre
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

   0
.1

0
   s

w
im

m
in

g
/e

x
p

e
rim

e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 6

) 2
 (G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t b

in
:

7
:    3

.5
0
<

Q
2
<

   6
.5

0
 G

e
V

2
    0

.1
8
<

y
<

0
.3

3

O
u

tp
u

t b
in

:

7
:    3

.5
0
<

Q
2
<

   5
.5

0
 G

e
V

2
    0

.1
6
<

y
<

0
.3

2

S
w

im
m

in
g

: P
 =

 7
0
.5

%
, E

 =
 8

2
.7

%
, F

 =
 1

.2
0

U
n
certain

ties:

 v
ar.

c
   0

.6
%

   +
0
.4

%
   sw

im
m

in
g
 m

 v
ar.

f
µ,

r
µ

   +
0
.2

%
   0

.4
%

   sw
im

m
in

g
 

 v
ar.

s
α

   0
.3

%
   0

.2
%

   sw
im

m
in

g
 

 v
ar.

k
α

   +
0
.4

%
   0

.4
%

   sw
im

m
in

g
  b

in
 v

ar.
s

   0
.0

%
   0

.1
%

   sw
im

m
in

g
 

 v
ar.

T
   +

0
.1

%
   0

.0
%

   sw
im

m
in

g
 k

   +
0
.6

%
   0

.8
%

   s
w

im
m

in
g

 to
ta

l

   2
0
.3

%
   e

x
p

e
rim

e
n

ta
l u

n
c
o

rre
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

   0
.0

4
   s

w
im

m
in

g
/e

x
p

e
rim

e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 7

) 2
 (G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t b

in
:

8
:    3

.5
0
<

Q
2
<

   6
.5

0
 G

e
V

2
    0

.3
3
<

y
<

0
.7

0

O
u

tp
u

t b
in

:

8
:    3

.5
0
<

Q
2
<

   5
.5

0
 G

e
V

2
    0

.3
2
<

y
<

0
.7

0

S
w

im
m

in
g

: P
 =

 7
3
.9

%
, E

 =
 9

4
.8

%
, F

 =
 1

.1
4

U
n
certain

ties:

 v
ar.

c
   0

.1
%

   +
0
.3

%
   sw

im
m

in
g
 m

 v
ar.

f
µ,

r
µ

   0
.1

%
   0

.0
%

   sw
im

m
in

g
 

 v
ar.

s
α

   +
0
.1

%
   +

0
.1

%
   sw

im
m

in
g
 

 v
ar.

k
α

   +
0
.0

%
   0

.2
%

   sw
im

m
in

g
 

 b
in

 v
ar.

s
   +

0
.0

%
   0

.1
%

   sw
im

m
in

g
 

 v
ar.

T
   +

0
.0

%
   0

.5
%

   sw
im

m
in

g
 k

   +
0
.3

%
   0

.6
%

   s
w

im
m

in
g

 to
ta

l

   1
4
.7

%
   e

x
p

e
rim

e
n

ta
l u

n
c
o

rre
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

   0
.0

4
   s

w
im

m
in

g
/e

x
p

e
rim

e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 8

Figure
D

.10:T
he

continuation
ofFig.D

.9.

242



)
2

 (
G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t 

b
in

:

9
: 

  
 6

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  
  
0
.0

2
<

y
<

0
.0

8

O
u

tp
u

t 
b

in
:

1
0
: 

  
 5

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  
  
0
.0

5
<

y
<

0
.0

9

S
w

im
m

in
g

: 
P

 =
 5

0
.8

%
, 

E
 =

 5
0
.2

%
, 
F

 =
 1

.0
9

U
n
ce

rt
ai

n
ti

es
:

 v
ar

.
c

  
 +

4
.9

%
  
 

4
.2

%
  
 s

w
im

m
in

g
 m

 v
ar

.
f

µ, r
µ

  
 +

0
.4

%
  
 +

3
.6

%
  
 s

w
im

m
in

g
 

 v
ar

.
s

α
  
 +

0
.4

%
  
 +

0
.2

%
  
 s

w
im

m
in

g
 

 v
ar

.
k

α
  
 

0
.3

%
  
 +

0
.8

%
  
 s

w
im

m
in

g
 

 b
in

 v
ar

.
s

  
 +

0
.0

%
  
 +

0
.2

%
  
 s

w
im

m
in

g
 

 v
ar

.
T

  
 +

1
.2

%
  
 

0
.7

%
  
 s

w
im

m
in

g
 k

  
 +

6
.3

%
  
 

4
.3

%
  
 s

w
im

m
in

g
 t

o
ta

l

  
 1

2
.4

%
  
 e

x
p

e
ri

m
e
n

ta
l 
u

n
c
o

rr
e
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

  
 0

.5
1
  
 s

w
im

m
in

g
/e

x
p

e
ri

m
e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 9

)
2

 (
G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t 

b
in

:

1
0
: 

  
 6

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  
  
0
.0

8
<

y
<

0
.2

5

O
u

tp
u

t 
b

in
:

1
1
: 

  
 5

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  

  
0
.0

9
<

y
<

0
.1

6

S
w

im
m

in
g

: 
P

 =
 4

8
.9

%
, 

E
 =

 6
4
.9

%
, 
F

 =
 1

.3
0

U
n
ce

rt
ai

n
ti

es
:

 v
ar

.
c

  
 

0
.6

%
  
 +

0
.7

%
  
 s

w
im

m
in

g
 m

 v
ar

.
f

µ, r
µ

  
 +

0
.1

%
  
 

0
.6

%
  
 s

w
im

m
in

g
 

 v
ar

.
s

α
  
 +

0
.4

%
  
 

0
.2

%
  
 s

w
im

m
in

g
 

 v
ar

.
k

α
  
 +

0
.4

%
  
 

0
.1

%
  
 s

w
im

m
in

g
  b

in
 v

ar
.

s
  
 

0
.1

%
  
 

0
.1

%
  
 s

w
im

m
in

g
 

 v
ar

.
T

  
 +

0
.1

%
  
 +

0
.1

%
  
 s

w
im

m
in

g
 k

  
 +

0
.9

%
  
 

0
.9

%
  
 s

w
im

m
in

g
 t

o
ta

l

  
 1

1
.3

%
  

 e
x
p

e
ri

m
e

n
ta

l 
u

n
c
o

rr
e
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

  
 0

.0
8
  
 s

w
im

m
in

g
/e

x
p

e
ri

m
e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 1
0

)
2

 (
G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t 

b
in

:

1
1
: 

  
 6

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  

  
0
.2

5
<

y
<

0
.7

0

O
u

tp
u

t 
b

in
:

1
3
: 

  
 5

.5
0
<

Q
2
<

  
 9

.0
0
 G

e
V

2
  
  
0
.3

2
<

y
<

0
.7

0

S
w

im
m

in
g

: 
P

 =
 6

8
.5

%
, 

E
 =

 6
4
.7

%
, 
F

 =
 0

.8
9

U
n
ce

rt
ai

n
ti

es
:

 v
ar

.
c

  
 +

0
.5

%
  
 

0
.3

%
  
 s

w
im

m
in

g
 m

 v
ar

.
f

µ, r
µ

  
 

1
.1

%
  
 +

1
.6

%
  
 s

w
im

m
in

g
 

 v
ar

.
s

α
  
 +

0
.2

%
  
 

0
.1

%
  
 s

w
im

m
in

g
 

 v
ar

.
k

α
  
 

0
.0

%
  
 +

0
.2

%
  
 s

w
im

m
in

g
 

 b
in

 v
ar

.
s

  
 +

0
.1

%
  
 

0
.0

%
  
 s

w
im

m
in

g
 

 v
ar

.
T

  
 +

0
.7

%
  
 +

0
.1

%
  
 s

w
im

m
in

g
 k

  
 +

1
.8

%
  
 

1
.1

%
  
 s

w
im

m
in

g
 t

o
ta

l

  
 1

9
.1

%
  
 e

x
p

e
ri

m
e
n

ta
l 
u

n
c
o

rr
e
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

  
 0

.1
0
  
 s

w
im

m
in

g
/e

x
p

e
ri

m
e
n

ta
l

Z
E

U
S

 9
8
0

0
 b

in
 1

1

)
2

 (
G

e
V

2
Q

1
1

0
2

1
0

3
1

0

y

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Z
E

U
S

 9
8
0

0

H
E

R
A

 c
o

m
b

in
e

d

In
p

u
t 

b
in

:

1
2
: 

  
 9

.0
0
<

Q
2
<

  
1
4
.0

0
 G

e
V

2
  
  
0
.0

2
<

y
<

0
.0

8

O
u

tp
u

t 
b

in
:

1
5
: 

  
 9

.0
0
<

Q
2
<

  
1
4
.0

0
 G

e
V

2
  
  
0
.0

5
<

y
<

0
.0

9

S
w

im
m

in
g

: 
P

 =
 5

1
.5

%
, 

E
 =

 7
6
.9

%
, 
F

 =
 1

.0
1

U
n
ce

rt
ai

n
ti

es
:

 v
ar

.
c

  
 +

4
.8

%
  
 

4
.0

%
  
 s

w
im

m
in

g
 m

 v
ar

.
f

µ, r
µ

  
 +

0
.7

%
  
 +

2
.4

%
  
 s

w
im

m
in

g
 

 v
ar

.
s

α
  
 +

0
.0

%
  
 +

0
.2

%
  
 s

w
im

m
in

g
 

 v
ar

.
k

α
  
 

0
.4

%
  
 +

0
.9

%
  
 s

w
im

m
in

g
 

 b
in

 v
ar

.
s

  
 

0
.0

%
  
 +

0
.4

%
  
 s

w
im

m
in

g
 

 v
ar

.
T

  
 +

0
.9

%
  
 

0
.1

%
  
 s

w
im

m
in

g
 k

  
 +

5
.5

%
  
 

4
.0

%
  
 s

w
im

m
in

g
 t

o
ta

l

  
 1

0
.3

%
  
 e

x
p

e
ri

m
e
n

ta
l 
u

n
c
o

rr
e
la

te
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

  
 0

.5
3
  
 s

w
im

m
in

g
/e

x
p

e
ri

m
e
n

ta
l

Z
E

U
S

 9
8

0
0

 b
in

 1
2

Fi
gu

re
D

.1
1:

T
he

co
nt

in
ua

tio
n

of
Fi

g.
D

.9
.

243
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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Input bin Output bin P [%] E [%] Fsw δ+Fsw δ−Fsw [%] δuncor [%] δFsw/δuncor [%]
1 9 83.1 100.0 0.948 0.3 −0.0 28.4 1.1
2 10 83.2 100.0 0.949 0.2 −0.3 13.3 2.3
3 11 83.2 100.0 0.949 0.2 −0.4 7.3 5.9
4 12 83.2 100.0 0.950 0.1 −0.3 6.7 4.4
5 13 83.1 100.0 0.948 0.2 −0.3 7.5 3.8
6 14 100.0 100.0 1.000 0.0 −0.0 16.1 0.0
7 15 100.0 100.0 1.000 0.0 −0.0 7.8 0.0
8 16 100.0 100.0 1.000 0.0 −0.0 6.4 0.0
9 17 100.0 100.0 1.000 0.0 −0.0 5.5 0.0
10 18 100.0 100.0 1.000 0.0 −0.0 7.5 0.0
11 19 100.0 100.0 1.000 0.0 −0.0 16.9 0.0
12 20 100.0 100.0 1.000 0.0 −0.0 7.3 0.0
13 21 100.0 100.0 1.000 0.0 −0.0 6.2 0.0
14 22 100.0 100.0 1.000 0.0 −0.0 6.4 0.0
15 23 100.0 100.0 1.000 0.0 −0.0 8.4 0.0
16 24 100.0 100.0 1.000 0.0 −0.0 32.6 0.0
17 25 100.0 100.0 1.000 0.0 −0.0 7.4 0.0
18 26 100.0 100.0 1.000 0.0 −0.0 5.5 0.0
19 27 100.0 100.0 1.000 0.0 −0.0 5.3 0.0
20 28 100.0 100.0 1.000 0.0 −0.0 6.7 0.0
21 29 100.0 100.0 1.000 0.0 −0.0 40.5 0.0
22 30 100.0 100.0 1.000 0.0 −0.0 12.6 0.0
23 31 100.0 100.0 1.000 0.0 −0.0 8.7 0.0
24 32 100.0 100.0 1.000 0.0 −0.0 6.6 0.0
25 33 100.0 100.0 1.000 0.0 −0.0 8.5 0.0
26 34 93.0 100.0 1.023 0.2 −0.2 12.2 1.9
27 35 100.0 87.4 1.052 0.2 −0.0 17.0 1.3
28 36 100.0 100.0 1.000 0.0 −0.0 14.5 0.0
29 37 100.0 100.0 1.000 0.0 −0.0 17.5 0.0
30 38 92.6 100.0 0.983 0.5 −0.0 25.1 1.9
31 39 100.0 95.2 1.015 0.0 −0.2 21.8 1.1

Table D.2: Purity (P), efficiency (E), swimming factors (Fsw), swimming uncertainties (δ+Fsw, δ−Fsw),
uncorrelated experimental uncertainties (δuncor) and the ratio of the swimming uncertainty to the exper-
imental uncorrelated one (δFsw/δuncor) for the D∗+ double-differential cross sections for datasets I–III.
The bin numbering scheme is consistent with Figs. D.1 to D.26.
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D Combination of visible D∗+ cross sections: additional information

Input bin Output bin P [%] E [%] Fsw δ+Fsw δ−Fsw [%] δuncor [%] δFsw/δuncor [%]
1 1 100.0 100.0 1.000 0.0 −0.0 13.0 0.0
2 2 81.4 100.0 1.046 0.1 −0.5 11.3 4.1
3 3 95.4 82.8 1.080 0.7 −0.5 12.1 5.6
4 4 100.0 94.8 1.027 0.2 −0.2 20.7 0.9
5 5 73.6 86.7 1.094 1.1 −0.9 11.4 9.6
6 6 52.4 100.0 1.127 0.8 −0.4 7.9 10.5
7 7 70.5 82.7 1.200 0.6 −0.8 20.3 4.1
8 8 73.9 94.8 1.145 0.3 −0.6 14.7 3.8
9 10 50.8 50.2 1.091 6.3 −4.3 12.4 50.5
10 11 48.9 64.9 1.304 0.9 −0.9 11.3 8.2
11 13 68.5 64.7 0.895 1.8 −1.1 19.1 9.7
12 15 51.5 76.9 1.007 5.5 −4.0 10.3 53.4
13 16 62.0 100.0 1.062 0.2 −0.5 8.4 6.5
14 17 85.8 67.2 1.194 1.0 −1.5 17.1 8.8
15 18 100.0 84.7 1.088 0.3 −0.5 17.6 3.1
16 20 53.5 71.0 1.007 4.9 −4.0 11.0 44.9
17 21 61.8 92.2 1.019 0.6 −0.1 10.7 5.6
18 22 85.5 62.5 1.137 0.8 −1.1 27.1 4.0
19 23 100.0 77.4 1.053 0.8 −0.6 28.6 2.8
20 25 51.3 97.6 1.053 2.5 −2.3 11.3 21.7
21 26 51.5 81.7 1.080 0.7 −0.6 8.6 7.9
22 27 75.2 53.7 1.137 0.1 −1.1 11.6 9.9
23 28 92.4 82.3 1.035 0.6 −0.7 14.7 4.9
24 31 43.1 67.5 0.915 3.2 −2.8 11.8 27.1
25 32 79.0 72.4 0.799 0.3 −0.3 17.8 1.8
26 33 79.2 90.0 0.812 0.7 −0.2 24.7 2.7
27,28 34 61.1 88.8 1.130 0.6 −0.3 25.8 2.2
29 35 51.3 99.5 1.082 0.1 −0.9 32.4 2.7
30 38 59.8 76.7 0.730 0.8 −0.8 25.6 3.1
31 39 62.1 95.1 0.746 0.4 −0.5 26.1 1.8

Table D.3: Purity (P), efficiency (E), swimming factors (Fsw), swimming uncertainties (δ+Fsw, δ−Fsw),
uncorrelated experimental uncertainties (δuncor) and the ratio of the swimming uncertainty to the exper-
imental uncorrelated one (δFsw/δuncor) for the D∗+ double-differential cross sections for dataset IV. The
bin numbering scheme is consistent with Figs. D.9 to D.9.
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ZEUS 9697 (dataset V)
Input bin Output bin P [%] E [%] Fsw δ+Fsw δ−Fsw [%] δuncor [%] δFsw/δuncor [%]
1 1 54.4 95.8 0.910 0.7 −2.6 21.9 11.9
2 3 36.4 57.4 0.642 1.5 −1.6 26.2 6.2
3 4 44.1 96.2 0.694 0.9 −1.1 21.5 5.1
4 5 59.2 96.0 1.195 0.5 −1.8 22.6 7.9
5 6 38.2 64.9 1.392 0.9 −0.7 22.4 4.0
6 8 43.5 95.9 0.862 1.9 −1.5 18.5 10.1
7 11 39.7 54.7 0.963 5.0 −3.7 22.4 22.2
8 12 54.9 62.2 2.157 1.6 −3.4 20.5 16.7
9 15 46.5 95.6 1.098 2.9 −3.0 17.8 16.9
10 17 51.4 51.6 0.753 2.2 −1.7 24.9 8.9
11 18 61.0 95.6 0.794 1.7 −2.2 18.0 12.2
12 20 47.6 88.5 1.083 2.6 −3.0 23.6 12.8
13 21 48.2 59.9 1.218 1.5 −0.2 28.8 5.2
14 23 61.3 87.9 0.767 3.0 −1.3 34.9 8.5
15 25 45.7 92.6 1.110 2.6 −2.1 20.9 12.6
16 27 48.2 47.8 0.756 1.4 −1.1 18.3 7.4
17 28 57.8 92.7 0.772 2.2 −0.8 18.2 12.2
18 31 35.7 87.1 1.033 1.5 −2.1 17.4 12.2
19 33 63.0 85.8 0.761 1.0 −0.8 28.0 3.6
20 34 61.4 68.8 1.182 2.0 −0.3 23.1 8.7
21 35 42.2 94.2 1.056 0.0 −1.3 28.4 4.5

H1 HERA-I (dataset VI)
Input bin Output bin P [%] E [%] Fsw δ+Fsw δ−Fsw [%] δuncor [%] δFsw/δuncor [%]
4, 5 2 37.6 58.9 1.338 1.2 −0.9 13.1 8.8
3 3 67.4 38.1 1.385 1.3 −0.4 10.8 11.9
1, 2 4 62.1 64.6 1.101 1.0 −1.1 26.4 4.1
9 11 39.1 71.2 0.898 1.0 −1.1 12.1 9.0
8 12 44.4 76.8 0.833 1.6 −1.2 12.5 12.6
6, 7 13 40.5 91.9 0.667 2.0 −1.4 15.9 12.9
12 15 33.9 74.6 1.551 1.3 −1.8 15.2 12.1
10 18 31.5 42.1 0.845 2.8 −2.6 12.5 22.1
11, 14 22 36.7 80.3 1.396 0.4 −0.7 11.7 6.3
13 23 68.6 31.7 1.865 1.4 −1.5 24.8 6.2
15 27 21.3 39.0 0.416 2.5 −2.5 13.8 18.4
17 31 27.2 99.5 0.929 1.0 −1.1 15.5 6.9
16 33 36.7 81.7 0.484 2.3 −2.0 21.5 10.7

Table D.4: Purity (P), efficiency (E), swimming factors (Fsw), swimming uncertainties (δ+Fsw, δ−Fsw),
uncorrelated experimental uncertainties (δuncor) and the ratio of the swimming uncertainty to the exper-
imental uncorrelated one (δFsw/δuncor) for the D∗+ double-differential cross sections for datasets V and
VI. The bin numbering scheme is consistent with Figs. D.17 to D.23.
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
Z

E
U

S
H

E
R

A
-II(datasetIII)

Q
2

y
d

2σ
dQ

2d
y

δ
stat

δ
uncor

δ
12

δ
13

δ
14

δ
15

δ
16

δ
17

δ
18

δ
19

δ
20

δ
21

δ
22

δ
24

δ
25

δ
26

δ
27

δ
28

[G
eV

2]
[nb

/G
eV

2]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
[%

]
5
.5

:9
.0

0
.02

:0
.05

0
.099573

23
.0

16
.6

2
.0
−

4
.2

1
.8

12
.3

0
.0

0
.1

0
.0

2
.5

2
.5

2
.2

1
.9

0
.0
−

0
.2

0
.1

0
.1
−

0
.2

5
.5

:9
.0

0
.05

:0
.09

0
.231647

10
.0

8
.8

2
.0
−

2
.3

5
.1

4
.0

0
.0
−

0
.8
−

0
.1

2
.4

2
.1
−

1
.6

1
.9

0
.3

0
.1
−

0
.1

0
.1
−

0
.2

5
.5

:9
.0

0
.09

:0
.16

0
.349456

6
.0

4
.2

2
.0

0
.8

4
.0

3
.4

0
.0
−

1
.5

0
.1

2
.3

1
.8
−

2
.0

1
.9
−

0
.0

0
.4
−

0
.1

0
.1
−

0
.2

5
.5

:9
.0

0
.16

:0
.32

0
.457092

5
.3

4
.1

2
.0

0
.9

2
.9

0
.9

0
.5
−

1
.8

0
.0

2
.2

1
.8

0
.7

1
.9

0
.1

0
.1

0
.0

0
.1
−

0
.2

5
.5

:9
.0

0
.32

:0
.70

0
.378328

6
.8

3
.1

2
.0

0
.4

1
.9

1
.7

2
.4
−

1
.5

0
.0

2
.0

1
.9

3
.1

1
.9

0
.3

0
.1

0
.1

0
.1
−

0
.2

9
.0

:14
.0

0
.02

:0
.05

0
.108000

14
.0

7
.9

2
.0
−

4
.7

−
7
.3

11
.0

0
.0
−

0
.7

0
.1

2
.2

2
.4

1
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

9
.0

:14
.0

0
.05

:0
.09

0
.178000

6
.5

4
.3

2
.0
−

1
.5

−
1
.9

3
.2

0
.0
−

1
.2

0
.0

2
.2

2
.0
−

1
.6

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

9
.0

:14
.0

0
.09

:0
.16

0
.220000

5
.8

2
.8

2
.0
−

0
.1

−
0
.3
−

0
.6

0
.0
−

1
.7
−

0
.2

2
.1

1
.7
−

2
.0

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

9
.0

:14
.0

0
.16

:0
.32

0
.352000

5
.1

2
.1

2
.0

0
.7

−
0
.5
−

0
.5

0
.1
−

1
.9
−

0
.1

2
.1

1
.8

0
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

9
.0

:14
.0

0
.32

:0
.70

0
.307000

7
.2

2
.0

2
.0
−

0
.5

1
.1
−

3
.8

1
.6
−

2
.0

0
.3

1
.9

1
.8

2
.8

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

14
.0

:23
.0

0
.02

:0
.05

0
.065100

15
.0

7
.7

2
.0
−

2
.7

−
6
.4

11
.5

0
.0
−

0
.8

0
.2

2
.1

2
.4

1
.7

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

14
.0

:23
.0

0
.05

:0
.09

0
.160000

6
.4

3
.5

2
.0
−

1
.1

−
3
.8

3
.9

0
.0
−

1
.9

0
.1

2
.1

2
.0
−

1
.7

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

14
.0

:23
.0

0
.09

:0
.16

0
.205000

5
.6

2
.6

2
.0

0
.4

−
0
.8

1
.3

0
.0
−

2
.3
−

0
.1

2
.0

1
.7
−

2
.0

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

14
.0

:23
.0

0
.16

:0
.32

0
.267000

5
.9

2
.5

2
.0

1
.3

−
0
.6
−

0
.9

0
.3
−

2
.6

0
.2

1
.9

1
.7

0
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

14
.0

:23
.0

0
.32

:0
.70

0
.249999

7
.4

3
.9

2
.0

0
.4

1
.7
−

2
.9

1
.9
−

2
.7

0
.2

1
.9

1
.8

2
.9

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

23
.0

:45
.0

0
.02

:0
.05

0
.037100

29
.0

15
.0

2
.0
−

0
.4
−

11
.5

9
.5

0
.0
−

0
.6
−

0
.3

1
.9

2
.2

1
.7

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

23
.0

:45
.0

0
.05

:0
.09

0
.134000

7
.0

2
.3

2
.0
−

2
.4

−
4
.8

4
.6

0
.0
−

1
.6
−

0
.3

1
.8

1
.9
−

1
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

23
.0

:45
.0

0
.09

:0
.16

0
.196000

5
.3

1
.5

2
.0
−

0
.3

−
1
.8

1
.1

0
.0
−

1
.7

0
.3

1
.8

1
.6
−

2
.1

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

23
.0

:45
.0

0
.16

:0
.32

0
.275000

5
.1

1
.5

2
.0

0
.1

0
.4
−

1
.2

0
.2
−

1
.8

0
.2

1
.8

1
.8

0
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

23
.0

:45
.0

0
.32

:0
.70

0
.283998

6
.1

2
.8

2
.0

0
.2

−
1
.1
−

3
.5

1
.3
−

1
.7
−

0
.2

1
.8

1
.8

2
.4

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

45
.0

:100
.0

0
.02

:0
.05

0
.014200

38
.0

13
.9

2
.0
−

3
.4

18
.2

26
.2

0
.0
−

2
.2

0
.0

1
.5

2
.0

3
.5

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

45
.0

:100
.0

0
.05

:0
.09

0
.072101

11
.6

5
.0

2
.0
−

0
.2

−
4
.0

4
.2

0
.0
−

1
.4

0
.1

1
.5

1
.8
−

1
.6

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

45
.0

:100
.0

0
.09

:0
.16

0
.086998

8
.4

2
.4

2
.0

0
.0

−
2
.4

1
.1

0
.0
−

1
.9

0
.3

1
.5

1
.5
−

2
.1

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

45
.0

:100
.0

0
.16

:0
.32

0
.182002

5
.7

3
.4

2
.0

0
.0

−
1
.9
−

0
.7

0
.0
−

2
.3

0
.7

1
.6

1
.5

0
.2

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

45
.0

:100
.0

0
.32

:0
.70

0
.174996

7
.6

3
.8

2
.0

0
.7

−
0
.8
−

3
.2

0
.9
−

2
.7

0
.7

1
.7

1
.6

2
.9

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

100
.0

:158
.0

0
.02

:0
.32

0
.074570

11
.0

5
.2

2
.0
−

0
.2

−
4
.4

1
.7
−

0
.2
−

1
.3

0
.0

1
.3

1
.4
−

0
.2

1
.9
−

0
.2
−

0
.2

0
.0

0
.0
−

0
.0

100
.0

:158
.0

0
.32

:0
.70

0
.051533

16
.0

5
.6

2
.0

0
.4

−
2
.5
−

5
.3

1
.1
−

1
.3

3
.2

1
.4

1
.5

2
.9

1
.9
−

0
.1
−

0
.1
−

0
.1

0
.0
−

0
.1

158
.0

:251
.0

0
.02

:0
.30

0
.049788

14
.0

3
.8

2
.0

0
.6

−
4
.3

0
.8

0
.1
−

0
.9

1
.0

1
.2

1
.3

0
.1

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

158
.0

:251
.0

0
.30

:0
.70

0
.037312

17
.0

4
.0

2
.0

0
.5

0
.6
−

2
.6

1
.0
−

1
.0

0
.7

1
.4

1
.4

3
.0

1
.9
−

0
.0
−

0
.0
−

0
.0

0
.0
−

0
.0

251
.0

:1000
.0

0
.02

:0
.26

0
.026341

24
.0

7
.3

2
.0
−

1
.0

−
5
.9

2
.2

0
.0

0
.1

1
.3

1
.2

1
.3
−

0
.3

1
.9
−

0
.3
−

0
.3
−

0
.1

0
.1

0
.1

251
.0

:1000
.0

0
.26

:0
.70

0
.049167

21
.0

5
.8

2
.0
−

0
.5

−
3
.8
−

4
.3

1
.4
−

1
.0

0
.1

1
.4

1
.4

0
.9

1
.9
−

0
.1
−

0
.1

0
.1

0
.1
−

0
.1

Table
D

.11:Inputdata
Z

E
U

S
H

E
R

A
-II(datasetIII)used

forthe
com

bination
ofthe

D
∗
+

double-differentialcross
section

as
a

function
of

Q
2

and
y.T

he
table

reports
foreach

bin
the

inputdifferentialcross
section

(
d

2σ
dQ

2d
y )togetherw

ith
its

statistical(δ
stat ),uncorrelated

(δ
unc )and

allcorrelated
(allother

δ
... )uncertainties.

268



ZEUS 9800 (dataset IV)
Q2 y d2σ

dQ2dy δstat δuncor δ23 δ24 δ25 δ26 δ27 δ28

[GeV2] [nb/GeV2] [%] [%] [%] [%] [%] [%] [%] [%]
1.5 : 3.5 0.02 : 0.09 0.654477 7.4 10.7 2.2 −0.0 0.0 0.0 0.0 −0.0
1.5 : 3.5 0.09 : 0.16 0.755615 6.6 9.2 2.2 −0.2 0.3 0.1 0.2 −0.2
1.5 : 3.5 0.16 : 0.32 0.940910 8.3 8.8 2.2 −0.3 0.6 −0.1 0.1 0.1
1.5 : 3.5 0.32 : 0.70 0.687336 11.1 17.4 2.2 −0.1 0.2 −0.0 0.1 −0.0
3.5 : 5.5 0.02 : 0.09 0.305303 6.8 9.1 2.2 0.8 −0.7 −0.2 0.1 0.3
3.5 : 5.5 0.09 : 0.16 0.271557 6.5 4.6 2.2 −0.3 −0.7 0.2 0.2 0.3
3.5 : 5.5 0.16 : 0.32 0.342211 9.0 18.2 2.2 −0.6 0.4 −0.3 0.4 0.1
3.5 : 5.5 0.32 : 0.70 0.258784 12.1 8.4 2.2 −0.3 −0.1 0.1 0.2 0.5
5.5 : 9.0 0.32 : 0.70 0.296152 10.3 16.1 2.2 0.5 −1.6 0.2 0.2 0.7

9.0 : 14.0 0.09 : 0.16 0.187517 7.0 4.6 2.2 −0.3 0.4 −0.1 0.2 −0.2
9.0 : 14.0 0.16 : 0.32 0.312658 9.6 14.2 2.2 −0.8 1.4 −0.1 0.3 −0.2
9.0 : 14.0 0.32 : 0.70 0.265379 13.8 10.9 2.2 −0.2 0.4 −0.1 0.2 −0.2

14.0 : 23.0 0.09 : 0.16 0.171290 6.1 8.7 2.2 −0.2 −0.1 0.3 0.4 0.3
14.0 : 23.0 0.16 : 0.32 0.234964 11.0 24.8 2.2 −0.6 0.8 −0.1 0.4 −0.4
14.0 : 23.0 0.32 : 0.70 0.177335 16.9 23.1 2.2 −0.4 0.6 0.2 0.3 −0.4
23.0 : 45.0 0.05 : 0.09 0.097058 7.1 8.8 2.2 2.4 0.3 0.1 0.6 0.1
23.0 : 45.0 0.09 : 0.16 0.159526 6.9 5.1 2.2 −0.6 −0.5 −0.1 0.1 −0.2
23.0 : 45.0 0.16 : 0.32 0.265285 7.8 8.6 2.2 −0.8 0.7 0.3 0.2 −0.3
23.0 : 45.0 0.32 : 0.70 0.252602 11.5 9.2 2.2 −0.4 0.7 −0.0 0.2 −0.2
45.0 : 100.0 0.16 : 0.32 0.149621 9.8 14.8 2.2 0.3 0.1 0.2 0.1 0.1
45.0 : 100.0 0.32 : 0.70 0.129460 14.2 20.3 2.2 0.4 −0.5 0.1 0.1 −0.1

100.0 : 158.0 0.02 : 0.32 0.083083 11.3 13.9 2.2 0.2 0.4 0.1 0.1 0.3
100.0 : 158.0 0.32 : 0.70 0.032379 23.3 22.4 2.2 0.5 0.5 0.4 0.1 0.2

251.0 : 1000.0 0.02 : 0.26 0.037960 22.0 13.0 2.2 0.7 −0.2 −0.2 0.6 0.2
251.0 : 1000.0 0.26 : 0.70 0.052195 18.4 18.6 2.2 0.3 −0.3 −0.1 0.3 0.1

Table D.12: Input data ZEUS 98–00 (dataset IV) used for the combination of the D∗+ double-differential
cross section as a function of Q2 and y. The table reports for each bin the input differential cross
section ( d2σ

dQ2dy ) together with its statistical (δstat), uncorrelated (δuncor) and all correlated (all other δ...)
uncertainties.
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D Combination of visible D∗+ cross sections: additional information

Desc- Da-
Name

Ty- Refe- dσ
dQ2

dσ
dy

dσ
dpT (D∗+)

dσ
dη(D∗+)

dσ
dz(D∗+)

d2σ
dQ2dy

riptor taset pe rence sh red sh red sh red sh red sh red sh red
δ1 I,II H1 CJC efficiency S H1 Col. 0.8 0.9 0.3 0.9 0.5 0.9 0.5 0.9 0.4 0.9 0.6 0.8
δ2 I,II H1 luminosity N H1 Col. 0.5 0.9 0.4 0.9 0.6 0.9 0.6 0.9 0.4 0.9 0.1 0.9
δ3 I,II H1 MC PDF S H1 Col. 0.1 1.0 0.1 1.0 0.2 1.0 0.2 1.0 0.1 1.0 0.0 1.0
δ4 I,II H1 electron energy S H1 Col. 0.2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.7 0.9 0.0 0.8
δ5 I,II H1 electron polar angle S H1 Col. 0.2 1.0 0.1 1.0 0.1 1.0 0.2 1.0 0.2 1.0 0.3 0.9
δ6 I,II H1 hadronic en. scale S H1 Col. 0.1 1.0 0.2 0.9 0.0 1.0 0.0 1.0 -1.0 0.7 0.0 1.0
δ7 II H1 frag. thres., high Q2 S H1 Col. 0.0 1.0 0.0 1.0
δ8 I,II H1 alternat. MC model S H1 Col. 0.4 0.9 0.4 0.9 0.1 1.0 0.0 1.0 −1.0 0.8 1.2 0.7
δ9 I,II H1 alternat. MC frag. S H1 Col. 0.0 1.0 0.0 1.0 0.0 1.0 −0.1 1.0 0.2 1.0 0.3 0.9
δ10 I,II H1 frag. thresh. S H1 Col. 0.0 1.0 −0.4 0.9 0.2 1.0 0.0 1.0 0.6 0.9 0.2 0.8
δ11 I H1 high Q2 uncertainty N [64] 0.1 1.0 0.0 0.9 0.1 1.0 0.1 1.0
δ12 III ZEUS hadron. en. scale S [137] 0.0 1.0 −0.1 0.8 0.0 1.0 0.0 1.0 −0.9 0.9 −0.5 0.7
δ13 III ZEUS electron en. scale S [137] 0.1 0.9 0.2 0.9 0.0 1.0 0.2 1.0 0.0 1.0 0.4 0.7
δ14 III ZEUS pT (πs correction S [137] −0.1 1.0 −0.1 1.0 −0.1 1.0 −0.3 1.0 0.0 1.0 −0.7 0.9
δ15 III ZEUS M(Kπ) cut var. S [137] −0.3 0.8 −0.7 0.8 0.4 0.6 −0.3 0.7 0.5 0.8 −0.7 0.9
δ16 III ZEUS track. efficiency S [137] −0.2 0.9 −0.4 0.9 −0.4 0.9 −0.2 0.9 −0.2 0.9 −0.7 1.0
δ17 III ZEUS b MC norm. S [137] 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.1 1.0 0.0 1.0
δ18 III ZEUS PHP MC norm. S [137] 0.0 1.0 −0.1 1.0 0.0 1.0 −0.1 1.0 0.1 1.0 −0.3 1.0
δ19 III ZEUS diffr. MC norm. S [137] 0.0 1.0 0.1 0.9 0.2 1.0 0.0 1.0 0.0 1.0 0.7 0.9
δ20 III ZEUS MC rew. pT , Q2 S [137] 0.3 0.9 0.0 1.0 −0.1 1.0 0.0 1.0 0.0 1.0 0.6 0.9
δ21 III ZEUS MC rew. η S [137] 0.0 1.0 0.0 0.8 −0.2 1.0 −0.3 1.0 −0.2 1.0 0.4 0.8
δ22 III ZEUS lum. (HERA-II) N [137] −0.2 1.0 −0.1 1.0 −0.2 1.0 −0.2 1.0 −0.1 1.0 −0.7 0.9
δ23 IV ZEUS lum. (98-00) N [136] 0.8 0.9
δ24 I-IV Theory mc variation T Theory 0.0 1.0
δ25 I-IV Theory µr, µ f variation T Theory 0.0 1.0
δ26 I-IV Theory αs variation T Theory 0.0 1.0
δ27 I-IV Theory longitud. frag. T Theory 0.1 1.0
δ28 I-IV Theory transverse frag. T Theory 0.0 1.0

Table D.13: Sources of bin-to-bin correlated uncertainties considered in the combination of the visible
D∗+ cross sections. For each source the affected datasets, name, type (see Section 6.2.2) and reference
to the place, where information can be found, are given, together with the shift (sh) and reduction
factor (red) in the combination obtained after the first iteration. For sources which do not affect the
combination of a given differential cross section, no shifts and reductions are quoted.
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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D Combination of visible D∗+ cross sections: additional information
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Figure D.32: Single-differential D∗+ cross section
as a function of pT (D∗+) (a), η(D∗+) (b), z(D∗+) (c),
Q2 (d) and y (e) compared to NLO predictions with
various PDFs [197, 200, 207].
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APPENDIX E

Combination of charm reduced cross
sections: additional information

In this Appendix additional information on the combination of the charm reduced cross sections
(see Section 6.5) is provided.

Tables E.1 to E.2 provide information on the fitted nuisance parameters.
The combined data with all correlations are provided in Tables E.3 to E.4.
Figs. E.1 to E.12 show the combined data with the input measurements for individual values

of Q2.

281



E Combination of charm reduced cross sections: additional information

Descriptor Datasets Name Type Reference shift [%] reduction [%]
δ1 1 H1 VTX resolution S H1 Col. −0.1 0.9
δ2 1–4 H1 CJC efficiency S H1 Col. 0.2 0.8
δ3 1 H1 CST efficiency S H1 Col. 0.1 1.0
δ4 1 H1 B multiplicity S H1 Col. −0.2 0.9
δ5 1–11 NLO, c longitudinal fragmentation T Theory −1.3 0.7
δ6 1,3,4 H1 PHP background S H1 Col. 0.4 0.9
δ7 1 H1 multiplicity D+ S H1 Col. 0.1 1.0
δ8 1 H1 multiplicity D0 S H1 Col. −0.1 1.0
δ9 1 H1 multiplicity Ds S H1 Col. 0.1 1.0
δ10 1 H1 VTX b frag. S H1 Col. −0.1 1.0
δ11 1 H1 VTX rew. x S H1 Col. −0.1 0.9
δ12 1 H1 VTX rew. pT S H1 Col. 0.1 0.7
δ13 1 H1 VTX rew. η S H1 Col. −0.1 0.8
δ14 1 H1 VTX uds background S H1 Col. −0.5 0.4
δ15 1 H1 VTX φ of c quark S H1 Col. 0.1 0.9
δ16 1 H1 hadronic energy scale S H1 Col. 0.1 0.8
δ17 1 H1 VTX F2 normalisation S H1 Col. −0.1 1.0
δ18 3,4 H1 primary-vertex fit S H1 Col. 0.2 1.0
δ19 2–4 H1 e energy S H1 Col. 0.3 0.7
δ20 2–4 H1 e θ S H1 Col. 0.2 0.7
δ21 3,4 H1 luminosity HERA-II N H1 Col. −0.4 0.8
δ22 3,4 H1 trigger HERA-II S H1 Col. −0.1 1.0
δ23 3,4 H1 MC fragmentation S H1 Col. −0.2 0.9
δ24 2–7,10 br(D∗+ → Kππ) N [183] 0.4 1.0
δ25 2–6,10 f f (c→ D∗+) T [194] 0.6 0.9
δ26 2,3 H1 MC efficiency S H1 Col. 0.3 0.7
δ27 2–11 NLO, mc T Theory 0.6 0.6
δ28 2–11 NLO, scale T Theory −0.9 0.4
δ29 2–11 NLO, c transverse fragmentation T Theory 0.1 0.7
δ30 2–4 NLO, PDF T Theory 0.9 0.9
δ31 2–11 NLO, αs(MZ) T Theory −0.2 0.7
δ32 2 H1 luminosity 96–97 N H1 Col. −0.0 1.0
δ33 2 H1 trigger 96–97 S H1 Col. −0.0 0.9
δ34 2 H1 MC alternative frag. S H1 Col. −0.2 0.7
δ35 8 ZEUS µ B/RMUON efficiency S [140] −0.3 0.9
δ36 8 ZEUS µ FMUON efficiency S [140] 0.2 1.0
δ37 8 ZEUS µ energy scale S [140] 0.0 0.8
δ38 8 ZEUS µ pmiss

T calibration S [140] 0.2 0.7
δ39 8 ZEUS µ hadronic resolution S [140] 0.6 0.7

Table E.1: Sources of bin-to-bin correlated uncertainties considered in the combination of the charm re-
duced cross sections. For each source the affected datasets, name, type (see Section 6.2.2) and reference
to the place, where information can be found, are given, together with the shift and reduction factor in
the combination obtained after the first iteration.
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Descriptor Datasets Name Type Reference shift [%] reduction [%]
δ40 8 ZEUS µ IP resolution S [140] −0.3 1.0
δ41 8 ZEUS µ MC model S [140] 0.3 0.9
δ42 8 f f (c→ µ) T [183] 0.2 1.0
δ43 7–11 ZEUS luminosity HERA-II N [19, 137, 139] −0.6 0.9
δ44 5 ZEUS luminosity 96–97 N [59] 0.7 0.9
δ45 6 ZEUS luminosity 98–00 N [136] 0.9 0.9
δ46 7 ZEUS D0 lifetime significance S [138, 242] 0.9 0.5
δ47 7 f f (c→ D0) T [194] 0.2 1.0
δ48 9 f f (c→ D+) T [194] −0.1 0.9
δ49 9 ZEUS D+ electron energy scale S [139] 0.3 1.0
δ50 9 ZEUS D+ hadronic energy scale S [139] −0.1 1.0
δ51 9 ZEUS D+ trigger inefficiency S [139] 0.3 0.9
δ52 9 ZEUS D+ decay length smearing S [139] 0.2 1.0
δ53 9 ZEUS D+ MC b normalisation S [139] 0.1 0.9
δ54 9 ZEUS D+ MC rew. pT –Q2 S [139] −0.6 0.8
δ55 9 ZEUS D+ MC rew. η S [139] 0.5 0.7
δ56 9 ZEUS D+ tracking inefficiency S [139] −0.2 1.0
δ57 9 ZEUS D+ MVD hit efficiency S [139] −0.0 1.0
δ58 9 ZEUS D+ χ2

sec.vtx. distribution S [139] −0.1 1.0
δ59 9 br(D+ → Kππ) N [183] −0.1 1.0
δ60 10 ZEUS D∗+ hadronic energy scale S [137] 0.1 0.5
δ61 10 ZEUS D∗+ electron energy scale S [137] −0.3 0.6
δ62 10 ZEUS D∗+ pT (πs) S [137] −1.0 0.9
δ63 10 ZEUS D∗+ tracking inefficiency S [137] −0.8 0.9
δ64 10 ZEUS D∗+ PHP background S [137] −0.4 1.0
δ65 10 ZEUS D∗+ diffractive backgr. S [137] 0.4 0.9
δ66 10 ZEUS D∗+ MC rew. pT , Q2 S [137] 0.5 0.9
δ67 10 ZEUS D∗+ MC rew. η S [137] 0.4 0.8
δ68 10 ZEUS D∗+ MC b normalisation S [137] −0.4 0.8
δ69 11 ZEUS VTX trigger inefficiency S [19] −0.3 0.9
δ70 11 ZEUS VTX tracking inefficiency S [19] 0.3 1.0
δ71 11 ZEUS VTX jet energy scale S [19] 0.6 0.7
δ72 11 ZEUS VTX electron energy scale S [19] 0.1 1.0
δ73 11 ZEUS VTX c MC rew. Q2 S [19] 0.3 0.9
δ74 11 ZEUS VTX b MC rew. Q2 S [19] −0.1 1.0
δ75 11 ZEUS VTX c MC rew. η S [19] 0.0 1.0
δ76 11 ZEUS VTX b MC rew. η S [19] −0.5 1.0
δ77 11 ZEUS VTX c MC rew. ET S [19] 0.0 1.0
δ78 11 ZEUS VTX b MC rew. ET S [19] −0.1 1.0

Table E.2: The continuation of Table E.1.
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Figure E.1: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

2.5 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.2: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 = 5 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.3: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 = 7 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.4: Combined measurements ofσcc̄
red (closed circles) shown as a function of x for Q2 = 12 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.5: Combined measurements ofσcc̄
red (closed circles) shown as a function of x for Q2 = 18 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.6: Combined measurements ofσcc̄
red (closed circles) shown as a function of x for Q2 = 32 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.7: Combined measurements ofσcc̄
red (closed circles) shown as a function of x for Q2 = 60 GeV2.

The input measurements are also shown with different markers. For the combined data, the inner er-
ror bars indicate the uncorrelated part of the uncertainties and the outer error bars represent the total
uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.8: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

120 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.9: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

200 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.10: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

350 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.

295



E Combination of charm reduced cross sections: additional information

x

2
10

re
d

c
c

σ

0.1

0.2

0.3
2

=650 GeV
2

Q

HERA H1 VTX
*+

H1 HERAI D
*+

ZEUS 9800 D
0

ZEUS 2005 D
*+

ZEUS HERAII D

*+
H1 HERAII D µZEUS 2005 

*+
ZEUS 9697 D

+
ZEUS HERAII D ZEUS HERAII VTX

Figure E.11: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

650 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.
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Figure E.12: Combined measurements of σcc̄
red (closed circles) shown as a function of x for Q2 =

2000 GeV2. The input measurements are also shown with different markers. For the combined data,
the inner error bars indicate the uncorrelated part of the uncertainties and the outer error bars represent
the total uncertainties. For presentation purposes each individual measurement is shifted in x.
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APPENDIX F

PDF fit with LHCb heavy-flavour data:
additional information

In this Appendix additional information on the PDF fit with the LHCb heavy-flavour data
(Section 7) is provided.

F.1 MNR calculations in HERAFitter: details of
implementation

A PDF fit in the framework described in Section 7.3.2 typically requires several thousands of
iterations to converge. In each iteration the theoretical predictions for each dataset must be
recomputed. Since computation of the NLO predictions is usually very time consuming, this
requires a “smart” implementation of the calculations with separating the bottleneck parts from
the iterative procedure. Another popular solution is to use “fast” techniques, such as K-factors
or precomputed perturbative grids (see, e.g. [243–247]). Although “fast” techniques are widely
used by modern PDF groups, they usually have shortcomings, since they do not allow changing
parameters of the calculations, like the factorisation and renormalisation scales or heavy-quark
masses.

The MNR calculations (one-particle inclusive variant) as implemented originally in the
FORTRAN code [229] require about several hours to calculate one set of the predictions for
one of the considered LHCb datasets.1 Numerical multi-dimensional integration over the phase
space is done with the MC method using the VEGAS algorithm [248]. The main advantage of
the MC integration is that it can be suitably performed for any configuration of the phase space;
the only number to be adjusted to reach the desired accuracy is the total number of iterations.
The disadvantage is that all parts of the calculations have to be repeated in each iteration.

Therefore in HERAFitter numerical multi-dimensional integration for the MNR calculations

1 The timing depends on the number of bins, desired accuracy of the predictions and CPU; the quoted one is for
40 bins from [135], 1% inaccuracy and Intel Core i7-3520M.
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was implemented as nested loops using the trapezoidal rule for each one-dimensional integra-
tion. This allows for separation of the most time consuming parts in the top loop(s). The
one-particle inclusive variant of the calculations was used. All flexibility of the original MNR
code was retained: the factorisation and renormalisation scales, heavy-quark mass, strong cou-
pling constant, fragmentation function and PDFs may be changed in each iteration (in other
words, may be treated as fit parameters). The typical timing to calculate one set of the predic-
tions for the considered LHCb datasets is ∼ 1 s and the inaccuracy of the predictions is less
than 1% comparing to the results obtained with the original MNR code. This allows a PDF fit
with these data to converge typically within a few hours. Additionally the results were cross
checked with the NLO predictions as calculated by the (semi)independent FONLL program,
using the public web interface [79]2, and differences were found to be within 1–3%.

However note that the integration loops were adjusted for this particular configuration; an-
other phase space and/or binning will need their readjustment.

F.2 Study of charm fragmentation function

In the ‘LHCb Abs’ fit the following tendency was observed: the LHCb charm data prefer a
harder fragmentation function than was measured at HERA, since the variation of αk to upper
values results in better χ2. This can be seen even from the nominal fit: predictions for the bins
1 < pT < 3 GeV are on average above the data, while the bins with higher pT are below; this
non-perfect description of the pT shape actually explains the somewhat large χ2 values for the
LHCb charm datasets in Table 7.2.

In order to investigate this further the fragmentation-function parameter for charm was re-
leased in the fit. The fit converged to a very large αk value which corresponds to an almost z ' 1
parton to hadron transition. Another check was done by using the BCFY fragmentation func-
tion [249] with r = 0.1 extracted from e+e− colliders within the FONLL approach [231], which
corresponds approximately to αk = 12. A much better description of the charm data was found
than with the fragmentation function derived from the HERA data. This study qualitatively
confirms the recipe for heavy-flavour fragmentation provided in [43]: since FONLL resumma-
tions of NLL provide evolution of the perturbative part of the fragmentation function to the
scale ∼ mQ, with NLO QCD predictions for hadro- and electroproduction of heavy flavours
for the pT region close to the threshold it would be more appropriate to use a fragmentation
function extracted at FONLL (e.g. those from e+e− at the Z0 resonance), while for the high-pT

region it is more appropriate to use a fragmentation function extracted at the NLO approach.
However such a study is beyond the purpose of this thesis, so the QCD analysis was limited to
the usage of the fragmentation function measured at HERA.

For beauty no tendencies were observed: the LHCb data clearly prefer the value αk ≈ 11
similar to that extracted from the LEP data.

2 The ‘NLO’ option of the FONLL program was used.
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F.3 Prospects of usage of approximate NNLO calculations

Recently a novel public code for the calculation of the one particle inclusive differential cross
sections for heavy-quark pair production at hadron colliders has become available in the DiffTop
package [233]. The cross sections are calculated at approximate NNLO O(α4

s), by using meth-
ods of threshold resummation (for more details see [250] and references therein). Since in the
current study the dominant uncertainties on the impact of the heavy-flavour LHCb data on the
PDFs come from the scale variations, changing the perturbative order from NLO to NNLO
should give a great improvement of the results.

In this Section a short prospect of a possible extension of the current QCD analysis with
these calculations is given in the form of a list of things to do and to study:

• currently the DiffTop package [233] provides either single-differential cross sections as a
function of pT for the full y phase space or single-differential cross sections as a function
of y for the full pT phase space. Though calculations of the double-differential cross
sections as a function of pT and y is possible in principle, they should be implemented in
the package;

• the contribution from the qg channel currently is not implemented in the DiffTop pack-
age [233] and should be added separately;

• the partial NNLO calculations are even more time consuming than the NLO ones (MNR),
so their direct implementation in HERAFitter might not be realistic. Thus a workaround
based on “fast” techniques, e.g. FastNLO [243–245]3 has to be adopted and grids for the
charm and beauty LHCb data should be prepared;

• the treatment of the inclusive and heavy-flavour HERA data, as well as the PDF evolu-
tion, also should be moved to NNLO. For the light flavours and the PDF evolution it is
rather straightforward and the NNLO option is already available in HERAFitter, while
for the heavy quarks approximate NNLO calculations [63] are available only in the stan-
dalone OPENQCDRAD package [218], thus this should be implemented and tested in
HERAFitter;

• the fragmentation functions for charm and beauty should be rederived (reestimated) at
NNLO, which has never been done before.

F.4 Additional tables and plots

Table F.1 presents the fitted parameters.
Figs. F.1, F.2 show the scale dependence of the NLO QCD predictions for the absolute and

normalised LHCb cross sections.
3 The FastNLO technique might not allow for the adjustment of the scales used in the ‘LHCb Abs’ approach,

although with the NNLO predictions it might not be need.
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Figs. F.3 to F.8 show individual contributions to the uncertainties and individual relative
uncertainties for the distributions at Q2 = 100 GeV2, obtained in the ‘HERA only’, ‘LHCb
Abs’ and ‘LHCb Norm’ fits.

The PDFs obtained obtained in the ‘HERA only’, ‘LHCb Abs’ and ‘LHCb Norm’ fits are
compared using the linear x scale at Q2 = 10 GeV2 and Q2 = 100 GeV2 in Figs. F.9 and F.10,
respectively. Their relative uncertainties are compared in Figs. F.11 and F.12.

Parameter HERA only LHCb Abs LHCb Norm

Bg −0.08 ± 0.14 −0.135 ± 0.069 −0.075 ± 0.095

Cg 7.3 ± 1.1 6.83 ± 0.31 5.23 ± 0.34

A′g 1.99 ± 0.60 1.74 ± 0.22 1.29 ± 0.32

B′g −0.15 ± 0.11 −0.194 ± 0.044 −0.155 ± 0.050

Buv 0.688 ± 0.025 0.668 ± 0.020 0.649 ± 0.021

Cuv 4.75 ± 0.24 4.99 ± 0.23 4.98 ± 0.23

Euv 10.1 ± 2.4 12.2 ± 2.4 13.5 ± 2.7

Bdv 0.86 ± 0.10 0.928 ± 0.093 0.959 ± 0.088

Cdv 4.95 ± 0.53 5.50 ± 0.56 5.59 ± 0.55

CU 1.79 ± 0.35 1.63 ± 0.21 1.63 ± 0.24

AD 0.1466 ± 0.0088 0.1727 ± 0.0068 0.1579 ± 0.0073

BD −0.1663 ± 0.0081 −0.1462 ± 0.0058 −0.1551 ± 0.0067

CD 4.6 ± 1.8 10.4 ± 2.5 15.1 ± 4.2

mc [GeV] 1.344 ± 0.055 1.709 ± 0.024 1.257 ± 0.014

mb [GeV] 4.31 ± 0.16 4.673 ± 0.079 4.19 ± 0.13

Ac
f 0.659 ± 0.020 1.0

Ab
f 0.262 ± 0.007 1.0

Ac
r 0.444 ± 0.021 1.0

Ab
r 0.335 ± 0.024 1.0

Table F.1: The fitted parameters for the QCD analysis. The listed uncertainties are the fitting uncertain-
ties only. Uncertainties are not quoted for parameters that are fixed.
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Figure F.1: NLO QCD predictions for charm LHCb data with different scale choices for absolute (top)
and normalised (bottom) cross sections. Bottom parts indicate the ratio of predictions to the central
scale choice. The predictions were obtained by using the FFNS variant of MSTW 2008 PDFs [200]
with n f = 3; the charm mass was set to mc = 1.5 GeV.
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Figure F.2: NLO QCD predictions for beauty LHCb data with different scale choices for absolute (top)
and normalised (bottom) cross sections. Bottom parts indicate the ratio of predictions to the central
scale choice. The predictions were obtained by using the FFNS variant of MSTW 2008 PDFs [200]
with n f = 3; the beauty mass was set to mb = 4.5 GeV.
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Figure F.3: The individual contributions to the uncertainties of the gluon (top left), u-valence (top right),
sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in the fit with
the HERA-only data.
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Figure F.4: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in
the fit with the HERA-only data.
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Figure F.5: The individual contributions to the uncertainties of the gluon (top left), u-valence (top right),
sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in the fit with
the HERA and LHCb data using the ‘LHCb Abs’ approach.
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Figure F.6: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in
the fit with the HERA and LHCb data using the ‘LHCb Abs’ approach.
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Figure F.7: The individual contributions to the uncertainties of the gluon (top left), u-valence (top right),
sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in the fit with
the HERA and LHCb data using the ‘LHCb Norm’ approach.
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Figure F.8: The individual contributions to the relative uncertainties of the gluon (top left), u-valence
(top right), sea (bottom left) and d-valence (bottom right) distributions at Q2 = 100 GeV2 obtained in
the fit with the HERA and LHCb data using the ‘LHCb Norm’ approach.
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Figure F.9: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 10 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data. The widths of the bands represent the total uncertainties.
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Figure F.10: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 100 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data. The widths of the bands represent the total uncertainties.
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Figure F.11: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 10 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data, normalised to one for a direct comparison of the uncertainties. The
widths of the bands represent the total uncertainties.
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Figure F.12: The gluon (top left), u-valence (top right), sea (bottom left) and d-valence (bottom right)
distributions at Q2 = 100 GeV2 obtained in the fit with the HERA-only, HERA and LHCb absolute, and
HERA and LHCb normalised data, normalised to one for a direct comparison of the uncertainties. The
widths of the bands represent the total uncertainties.
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