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Abstract

A new numerical method is introduced that enables a reliable study of disorder-induced
localization of interacting particles. It is based on a quantum mechanical time evolution
calculation combined with a �nite size scaling analysis. The time evolution of up to four
particles in one dimension is studied and localization lengths are de�ned via the long-time
saturation values of the mean radius, the inverse participation ratio and the center of mass
extension. A systematic study of �nite size e�ects using the �nite size scaling method is per-
formed in order to extract the localization lengths in the limit of an in�nite system size. For
a single particle, the well-known scaling of the localization length �1 with disorder strength
W is observed, �1 / W�2. For two particles, an interaction-induced delocalization is found,
con�rming previous results obtained by numerically calculating matrix elements of the two-
particle Green's function: in the limit of small disorder, the localization length increases
with decreasing disorder as �2 / W�4 and can be much larger than �1. For three and four
particles, delocalization is even stronger. Based on analytical arguments, an upper bound
for the n-particle localization length �n is derived and shown to be in agreement with the
numerical data, �n / �2

n�1

1 . Although the localization length increases superexponentially
with particle number and can become arbitrarily large for small disorder, it does not diverge
for �nite �1 and n. Hence, no extended states exist in one dimension, at least for spinless
fermions.

Zusammenfassung

Ein neue numerische Methode zur Untersuchung der Lokalisierungseigenschaften wech-
selwirkender Teilchen wird eingef�uhrt. Dabei wird die quantenmechanische Zeitentwick-
lung von Wellenpaketen mit bis zu vier Teilchen berechnet. Die S�attigungswerte des mit-
tleren Radius und der Ausdehnung in Schwerpunktsrichtung f�ur gro�e Zeiten de�nieren die
Lokalisierungsl�angen. Deren Abh�angigkeit von der Systemgr�o�e wird mit einem Skalierungs-
verfahren untersucht, das die Bestimmung der Lokalisierungsl�ange �1 im Grenzfall eines
unendlich ausgedehnten Systems erlaubt. F�ur ein einzelnes Teilchen wird die bekannte
Skalierung der Lokalisierungsl�ange mit der Unorndung W gefunden, �1 / W�2. F�ur zwei
Teilchen wird eine Vergr�o�erung der Lokalisierungsl�ange beim Einschalten der Wechsel-
wirkung beobachtet. Dies best�atigt fr�uhere Ergebnisse, die durch Berechnung von Ma-
trixelementen der Zweiteilchen Greensfunktion gewonnen wurden: Die Lokalisierungsl�ange
skaliert f�ur kleine Unordnung mit �2 / W�4 und kann damit wesentlich gr�o�er werden
als �1. Eine wesentlich st�arkere Delokalisierung ergibt sich f�ur drei und vier Teilchen.
Basierend auf analytischen �Uberlegungen wird eine obere Grenze der Lokalisierungsl�ange f�ur
n Teilchen hergeleitet und ihre �Ubereinstimmung mit den numerischenDaten wird gezeigt,
�n / �2

n�1

1 . Obwohl die Lokalisierungsl�ange st�arker als exponentiell mit der Teilchenzahl
anw�achst und im Grenzfall kleiner Unordnung beliebig gro� werden kann, divergiert sie
nicht. Dementsprechend existieren keine ausgedehnten Zust�ande in einer Dimension, zumin-
dest nicht f�ur die hier behandelten spinlosen Fermionen.
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1 Introduction

We used to think that if we know one, we knew
two, because one and one are two. We are �nding
that we must learn a great deal more about 'and'.

Sir Arthur Eddington
from The Harvest of a Quiet Eye by A. Mackay

While a lot is known about disorder-induced localization of independent, non-interacting
particles, we are just beginning to grasp the meaning of 'and', that is of correlations between
the electrons due to their mutual interaction. And it is known by now that upon considering
localization lengths of interacting particles, one and one is de�nitely not two but can be
considerably more.

The in
uence of electron-electron interaction on disorder-induced localization has at-
tracted considerable attention after the recent experimental discovery of a metal-insulator
transition in two dimensions [1, 2, 3, 4] as it cannot be explained within the conventional
scaling theory of localization [5].

One of the possible starting points to incorporate the in
uence of correlations among the
electrons is to study localization properties for two interacting particles in a one-dimensional
random system [6]. Recently, numerical results based on the two-particle Green functions
showed unambiguously that the interaction increased the localization length of two-particle
wave functions [7, 8, 9].

In this thesis, a new method to study localization e�ects of interacting particles is intro-
duced. It is based on a quantum mechanical time evolution calculation for the wave packets
combined with a �nite size scaling analysis of the saturation values in the localized regime.
With this method, localization lengths of two-, three-, and four-particle wave packets have
been calculated which can provide a �rm base for approximations necessary for larger par-
ticle numbers. The localization length increases superexponentially with increasing particle
number, one and one is more than two. But the localization length remains �nite for any
�nite disorder strength and particle number.

This thesis is organized as follows. In section 2, basic concepts and main experimental
results of disorder-induced localization are introduced. Section 3 gives an overview of theo-
retical approaches to treat disorder and interaction non-perturbatively on an equal footing,
focusing mainly on recent numerical work for small particle numbers. The new method is
laid out in section 4, with the quantum mechanical time evolution method described in 4.1
and the �nite size scaling in 4.2. Results for two interacting particles are presented in section
5, showing the reliability of the method and laying the foundation for the results for larger
particle numbers in section 6. The physical origin of the enhancement of the localization
length is discussed in section 7 after the presentation of approximate results for �nite den-
sities obtained using the time dependent Hartree-Fock equations. A summary is given in
section 8.
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2 Anderson Localization

2.1 Electronic wave functions

Electron eigenstates in free space are given by plane waves [10],

 ~k(~r) = exp(i~k~r): (1)

In the periodic potential of an ideal crystal, Bloch's theorem holds [11]: based on the trans-
lational symmetry of the Hamiltonian, the plane wave is modulated by a function that has
the periodicity of the lattice,

 ~k(~r) = u(~r) exp(i~k~r); (2)

with u(~r) = u(~r + ~R) where ~R is an arbitrary lattice vector. In real crystals, impurities,
vacancies or dislocations break the translational invariance and hence the validity of Bloch's
theorem. But only in 1958 it was shown by Anderson, that this kind of disorder can com-
pletely change the electron eigenstates and hence the physics of disordered systems [12].
In contrast to extended eigenstates in free space or in a periodic potential, electrons can
become localized in some part of the system, re
ected in a �nite return probability even
for arbitrarily long times. This happens if disorder is large or the density of states at that
energy is small. The corresponding eigenstates are characterized by the localization length
�, the exponential decay length of their envelope,

 (~r) = f(~r) exp(�j~r � ~r0j=�); (3)

with a randomly varying function f(~r). Localized and extended states exist in di�erent
energy regions, separated by the mobility edge [13].

In the following, the main theoretical results concerning this disorder-induced Anderson
localization and some physical phenomena directly related to it will be brie
y discussed.

2.2 Physics of localized states

The consequences of electron localization are most pronounced in the transport properties
of a disordered system. Localized electrons cannot contribute to transport at temperature
T =0, if the sample is larger than the localization length of the electronic states. Upon
varying the Fermi level, the system can therefore undergo a quantum phase-transition from
a metal with extended states to an insulator with localized states. At �nite temperatures,
transport in the insulating regime occurs via phonon mediated hopping between di�erent lo-
calized states. Localization e�ects can then be identi�ed by the dependence of the resistance
on temperature and dimensionality. Anderson had predicted that disorder is most e�ective
in systems with a small number of nearest neighbors leading to a small connectivity, �gure
3 in [12]. Thus it was obvious that localization e�ects would be most pronounced in low
dimensions where the number of nearest neighbors is reduced.

In one-dimensional systems, it was much easier to analyze the localization of electrons the-
oretically than to perform experiments. It was �rst argued by Mott and Twose in 1961 [14]
that in a one-dimensional system all electron states are localized. This was proven more rig-
orously in 1973 [15]. But a direct comparison to experiments was out of reach until Thouless
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extended the exact results to quasi one-dimensional geometries in 1977 [16]. One of the best
experiments on quasi one-dimensional systems was performed by Gershenson and coworkers
in 1997 [17, 18]. They measured the resistance of a couple of parallel quantum wires as a
function of temperature. The data could be �tted very well with an exponential increase of
the resistance with decreasing temperature, R(T )=exp(T0=T ), as predicted by the theory for
phonon assisted hopping between strongly overlapping localized states, in contrast to Mott's
theory on variable range hopping discussed below. The key observation was the doubling of
the localization length in a strong magnetic �eld, resulting in a decrease of T0 by a factor of
2. This had been predicted theoretically in 1983 [19, 20] and is not valid for dimensions d�2.

The experimental investigation of two-dimensional electron systems started already in the
seventies, when experimental evidence for the localized states proposed by Anderson was still
lacking. Mott predicted the following temperature dependence of the resistivity for variable
range hopping of the electrons,

� / e(T0=T )
1

d+1
: (4)

In the early experiments [21, 22, 23], reviewed in [24], the Mott-law was found for small
carrier densities, ns�2 � 1011cm�2. For larger densities, ns>nc�2 � 1011cm�2, a temperature
independent conductivity was found, indicating a metallic state with a �nite zero tempera-
ture conductivity. Since a transition from localized to extended states under variation of the
Fermi energy was expected theoretically, the metallic state was not surprising at that time.

In 1979, the scaling theory of localization predicted the absence of di�usion for non-
interacting electrons in one and two dimensions [25]. According to this theory, no extended
states were supposed to exist in two dimensions for arbitrarily small disorder and no true
metallic behavior should have been observable. This result and the general idea of the one
parameter scaling theory were supported by �eld theoretical methods [26, 27] and numerical
scaling techniques [28, 29, 30, 31].

What was wrong with the early experiments? Why was a temperature independent con-
ductivity observed? The localization length was much larger in two dimensions than in one
dimension. That made an experimental proof of the localization of all states very di�cult.
Inelastic scattering occurred before the electrons di�used up to their localization domain
and phase coherence was lost. In this regime, localization length larger than phase coher-
ence length, the disorder led only to a small correction to the classical conductivity, with a
logarithmic dependence on temperature in contrast to the strong localization regime with ex-
ponential temperature dependencies [32]. These weak-localization predictions were observed
experimentally by many authors [33, 34], reviewed in [35]. Recently, upon analyzing in detail
the crossover form strong to weak localization in GaAs/AlGaAS heterostructures even the
localization length was extracted from the experimental data and excellent agreement with
the theory was reported [36].

The overwhelming success of weak-localization theory led to the conclusion that in-
deed no true metallic state could exist in 2D. This belief started to turn around again
when Kravchenko and coworkers reported new experimental evidence for a transition in
very high mobility silicon MOSFETs [1, 37]. The mobility in their samples reached up to
7:1�104cm2V�1s�1. For temperatures below 1-2 K they observed a sharp drop of the re-
sistivity with decreasing temperature. The e�ect was stronger than the weak-localization
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correction which had been found at slightly higher temperatures. Decreasing the tempera-
ture further down to 20 mK, they found no indications for electron localization.

The described behavior occurred in samples with electron densities above 1011cm�2. In
low-density samples with an even higher in
uence of the Coulomb interaction, an insulating
behavior was observed, possibly related to the formation of a pinned electron solid. For the
lowest mobility of about 0:5�104cm2V�1s�1, no sharp drop in the resistivity was observed,
the experimental data was consistent with that of conventional silicon MOSFETs [34].

Similar observations have afterwards been reported for SiGe superlattices [38, 39, 40],
dilute GaAs-AlGaAs hole gases [4], p-type GaAs [41, 42, 43], and n-type GaAs [44]. The
importance of Coulomb correlations was demonstrated in [45]. The combination of density
scaling with electric �eld scaling [2] allowed to extract the dynamical exponent z=0:8 and the
correlation length exponent �=1:5. The suppression of the metallic state by a magnetic �eld
[46, 47, 48] and by local magnetic moments [49, 50] was possibly related to the electron spin
[51, 52]. That the system was in a real quantum state was demonstrated in [53]. An observed
re
ection symmetry indicated that the transport processes on both sides of the transition
were related [54]. A continuous transition from the new B = 0 transition to the known
quantum Hall transition at �nite magnetic �eld was demonstrated in [55]. The in
uence of
spin-orbit interaction was argued to be relevant in [56, 57, 58]. The existence of a true metallic
phase at T =0 was again questioned in [59] where quantum correction due to disorder and
interaction were found. Insulating and metallic logarithmic temperature corrections were
reported in [60]. For further experiments on this topic, see [3, 61, 62, 63, 64, 65, 66, 67, 68].

Theoretically, a number of di�erent models were used so far to explain at least some
of the experimental results. They were based on superconductor to insulator transitions
[69, 70, 71, 72], temperature-dependent impurity scattering [73], phenomenological assump-
tions about the �-function in the presence of interaction [74], percolation transition of a new
liquid phase [75, 76, 77], generalized variable range hopping [78], non-Fermi liquid behavior
[79], renormalization group theory of disorder and interaction [80, 81], based on Finkelsteins
theory [82], spin-orbit interaction [83, 84, 85], and the in
uence of electron-electron inter-
action [86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. Nevertheless, a detailed
understanding of the experiments is still missing.

In three dimensions, the scaling theory of localization [25] predicted the existence of a
metal-insulator transition. This transition was an example for a quantum phase-transition,
characterized by a fundamental change of the ground state as a function of pressure, impurity
concentration, or some other tuning parameter. Experiments were mainly performed on
doped semiconductors, see [101] and references therein. At low donor concentration, electrons
were localized in hydrogen like orbitals at the donor atoms, e. g. at P in Si. With increasing
concentration, the orbitals started to overlap and an impurity band was formed in which
metallic conduction could take place above a critical concentration. Comparison with theory
is made using the critical exponent � which described the scaling of the conductivity � as a
function of the tuning parameter x,

� = jx� xcj� : (5)

The critical exponent was considered to be universal, i. e. it should not depend on the
speci�c properties of the sample, but rather on the symmetries of the Hamiltonian. For
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compensated semiconductors values of � � 1 were reported [102, 103, 104] in contrast to
��0:5 for uncompensated semiconductors [105, 106, 107, 108]. Since without compensation
there were almost as many electrons as hopping centers, one expected a large in
uence of
electron correlations. Theoretically predicted exponents range from �= 1 [25] to �= 1:57
[109], based on theories which do not include interaction. Including it, a lower bound of
�=2=3 was derived [110]. This contradiction between theory and experiment may be solved
in the near future since in recent experiments on uncompensated samples larger values of the
critical exponents were found. Taking into account both sides of the transition, �=1:0 was
reported in Si:P [111] and �=1:6 in Si:B [112, 113]. Using a smaller critical region, �=1:2
was found in Ge:Ga [114]. But a detailed description of the in
uence of interaction e�ects
on the metal-insulator transition with predictions of the critical exponents is still missing.

To summarize, the �rst stone was laid in 1958 and in the following two decades the theory
was completed without including interaction e�ects, culminating in the success of the scaling
theory and numerical calculations. In the 1980s, the relevance of electron-electron interaction
became obvious and the latter was included perturbatively into the theory. In the metallic
regime additional terms in the weak localization correction to the conductivity were found
[32], while the Coulomb gap changed Mott's hopping law in the insulating regime [115].
Recently, it became evident that many of the above described experimental features cannot
be explained by considering disorder or interaction as a perturbation. Instead, both have to
be treated on equal footing. Problems directly related to this very active area of research are
the complete understanding of the integer and fractional quantum Hall e�ect with the missing
prove of the localization of Laughlin's quasi-particles [116], the experimentally observed
persistent currents in small metallic rings which are larger than theoretically predicted by
two orders of magnitude [117, 118], the unexplained yet observed metal-insulator transition
in two dimensions, and the question of dephasing due to electron-electron interaction in
disordered systems [119].

Since analytical calculations going beyond perturbation theory are very complicated for
interacting electrons in disordered systems, main results were found relying on numerical
calculations for a small number of particles. I will summarize the most important ones in
the next section, concentrating on the aspect of localization.

3 Localization of interacting particles

The minimum number of particles needed to study interaction e�ects is two. This rather
obvious statement tells a lot about the early approaches to study the in
uence of interaction
on disorder-induced localization. In comparison to a disordered system with �nite electron
density, a two-electron system is \simple" enough for an exact study and can still provide
useful information, necessary to construct the full theory.

In this section, results obtained following the above strategy will be discussed, concen-
trating in the �rst part on localization properties. So far, exact calculations have been
performed only for two interacting particles. In the second part, di�erent aspects of the
problem, mainly related to spectral statistics, will be discussed. These include generaliza-
tions to higher particle numbers. In the third part, other approaches to the problem of two
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and more interacting particles will be mentioned, before summarizing the main results.

3.1 Localization of two interacting particles

3.1.1 The early approaches

The �rst to study localization of two interacting electrons was Dorokhov in 1990 [120].
He considered two particles with a harmonic attraction. In the absence of a the random
potential, the center of mass motion is the sum of two plane waves, whose wave vector
depends on the total energy and the energy of the relative motion,

 (R; r) =
X
n

vn(r)[Ane
iknR +Bne

�iknR]: (6)

The main assumption for the disordered case was that only the pre-factors of the plane wave
become position dependent, An!An(R). The in
uence of the disorder on kn, on the rela-
tive motion and the coupling of the relative and the center of mass motion was neglected.
Dorokhov mapped this problem onto the one of a single particle in a quasi one-dimensional
system with a �nite number of transverse channels, being essentially the number of ener-
getically available oscillator states. For a single open channel, the localization length was
slightly larger than without interaction due to the smoothing of the random potential by
the ground state wave function of the oscillator. For a larger number of open channels, the
localization length increased strongly. The maximum value of the two-particle localization
length �2 was reported to be the square of the one-particle localization length �1, �2=kF�

2
1.

This e�ect was not appreciated until Shepelyansky found a similar result in 1994 [6].
He considered an Anderson tight binding Hamiltonian for two particles with an on-site
interaction of strength U ,

(�n1 + �n2 + U�n1;n2) n1;n2 + V ( n1+1;n2 +  n1�1;n2 +  n1;n2+1 +  n1;n2�1) = E n1;n2; (7)

with random potential energies �n1 ; �n2 and a hopping amplitude V . Transforming the Hamil-
tonian to the basis of non-interacting two-particle eigenstates �m1;m2

with energies Em1
and

Em2
yielded,

(Em1
+ Em2

)�m1;m2
+ U

X
m10 ;m20

Qm1;m2;m10 ;m20
�m10 ;m20

= E�m1;m2
; (8)

with an interaction matrix

Qm1;m2;m10 ;m20
= h�m1;m2

jU j�m10 ;m20
i = U

Z
�m1

(x)�m2
(x)�m10

(x)�m20
(x) dx: (9)

The crucial point was the following estimate of the elements of the interaction matrix. Since
the one-particle eigenstates �mi

were exponentially localized on the scale of the one-particle
localization length �1, the matrix elements were exponentially small whenever the wave
functions were located away from each other. Only if all four wave functions were centered
in a region of size �1, there was a non-negligible matrix element. It was of the order of �

�3=2
1

since the integral in (9) contained �1 non-negligible random terms of the order of ��21 , which
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was given essentially by the normalization of the wave functions. Neglecting correlations
among these elements and taking all other elements as zero, Shepelyansky showed that
the problem was equivalent to a special type of band random matrix model, see page 16.
Performing numerical calculations with this model, he found for the two-particle localization
length,

�2 ' U2

32V 2
�21: (10)

This implied that in the limit of small disorder and hence large �1, the interaction could lead
to a drastic enhancement of the localization length due to the interaction, �2=�1/ �1� 1.
Moreover, the enhancement e�ect was predicted to be insensitive to the sign of the interac-
tion which loses its in
uence during the estimation of the matrix elements.

This results was generalized by Imry [121, 122], employing the Thouless block scaling
picture [16]. One divides the system into small blocks of size L. Then, the transport
properties of the system are related only to the level separation within the blocks, �, and
the coupling to the next blocks, t. The dimensionless conductance is given by g=(t=�)2. If
the coupling to the next block is smaller than the level spacing, no extended states can be
build up. In contrast, if the coupling is larger than the level spacing, states in many blocks are
coupled and extended states exist, leading to a higher conductance. On the other hand the
scaling theory of localization [25] predicts for the conductance in one dimension g=�=L. This
follows from integrating the beta function, �(g)=d lng=d lnL=�1, valid for ��L. Imry's
main idea was to consider blocks of size L= �1, yielding g1 � 1. The inter-block coupling
between two-particle states was estimated to be t�U��3=21 using Shepelyansky's estimate of
the interaction matrix elements. The mean level spacing was simply the bandwidth divided
by the number of levels, � � B=�21 � V=�21 since the bandwidth was proportional to the
hopping term. This gave a conductance for two particles g2 = c�1(U=V )

2 with a constant
c < 1. If the single particle localization length was large enough the conductance g2 was
larger than g1 � 1. Due to the choice of the block size, g2 = �2=L= �2=�1, yielding again
Shepelyansky's result, equation (10).

In two dimensions, the delocalization was exponentially large since g = a ln(�=L) fol-
lowed from integrating �(g)=�a=g. Calculating g2 with the block scaling argument, �2=�1
depended now exponentially instead of linearly on g2,

�2=�1 / eg2=a / e(U�1)
2=(V a)2 : (11)

In three dimensions the critical disorder at which the metal-insulator transition occurs was
predicted to shift to larger disorder values by switching on the interaction.

Both arguments, the one by Shepelyansky and the one by Imry, are based essentially on
the same uncontrolled assumptions concerning the statistical properties of the interaction
matrix in the basis of non-interacting eigenstates (9). The direct proof of the enhancement
of the two-particle localization length in comparison to the one-particle one was subject of
many numerical investigations following the initial work.
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3.1.2 Transfer matrix method

First direct evidence for the interaction assisted transport was put forward by Frahm et al
[123]. The transfer matrix method [29, 30, 31] was employed to study �nite samples of size
L=100. The con�guration space of the two electrons was then a 100�100 square lattice and
the transfer matrix was calculated along one of the main axes. Averaging was performed by
studying a number of samples with di�erent random potential realization. The two-particle
localization length de�ned as the inverse of the smallest Lyapunov exponent was shown to
depend on disorder as

�2 / W�3:3 / �1:651 : (12)

In addition, the transfer matrix was calculated along the diagonal of the con�guration space,
see also [6]. The necessarily �xed transverse size was obtained by restricting the relative co-
ordinate to be smaller than a certain size, hence the name \bag model". The observed
delocalization was similar to the one reported for the �nite samples, equation (12). The
deviation from Shepelyansky's prediction, �2 / �21, were traced back to the statistical prop-
erties of the interaction matrix, section 3.3.2. Instead of being Gaussian, the distribution of
interaction matrix elements was characterized by a sharp peak at zero and very long tails.
Depending on the averaging procedure used to extract a typical value in order to improve
the block scaling picture described above, agreement with the result obtained with transfer
matrix method, equation (12), was reported.

Unfortunately it was shown later that the transfer matrix method, widely used to calculate
localization properties for non-interacting particles, su�ered from problems in the interacting
case. The main one was the failure to reproduce correctly the result without interaction,
�2=c�1, with a constant c�0:5.

First, it was shown by R�omer and Schreiber [124] that in the �nite size transfer matrix
calculation the result without interaction was enhanced compared to the one-particle local-
ization length. The on-site interaction gave only a small additional enhancement. Upon
studying systematically the system size dependence they found that both �2(U = 0) and
�2(U =1) decreased with increasing system size and that both approached the one-particle
result in the limit of in�nite system size. In a subsequent comment [125] results in favor of
the delocalization e�ect were listed without discussing the question why the method failed.
In the reply [126] the failure of the method was stressed again, leaving open the task to prove
the existence of the delocalization e�ect by some other method.

Second, it was shown by Halfpap et al [127, 128] and R�omer et al [129] that also for the
bag model, the localization length in the absence of the interaction was enhanced in com-
parison to the single particle one. The in
uence of the on-site or medium range interaction
was rather weak since the behavior of the localization length was dominated by a boundary
e�ect. Although it could be interpreted as a kind of interaction, a detailed study of the dis-
order or interaction dependence of the localization length was not possible. A discretization
of the Schr�odinger equation in center of mass and relative coordinates suggested by Halfpap
et al reduced the in
uence of the boundary and of the interaction [127, 128]. While the zero
disorder limit, equation (6), could be performed in contrast to [123], again the one-particle
localization length could not be reproduced for U = 0. However, in this case it was not a
failure of the method since similar results were obtained using a quantum di�usion method
[130]. Especially, it was shown with both methods, that the localization length diverged
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exponentially for small disorder in the limit of in�nite system size [130]. Both, the problem
with the U = 0 limit and the divergence for small disorder, seemed to be related to the
discretization procedure, but that is not completely understood yet.

Since the transfer matrix method is one of the best methods to calculate localization
lengths for non-interacting particles, there is some need to understand why it does not
work for interacting particles. Therefore, I will try to clarify the issue, starting from the
overestimation of the localization length without interaction.

An in�nite quasi one-dimensional sample with N channels is characterized by a set of
N Lyapunov exponents, 
1 > : : : > 
i > : : : > 
N , describing the exponential behavior of
initial conditions. The inverse of the smallest Lyapunov exponent 
N de�nes the localization
length. Another sample with a di�erent realization of the random potential gives exactly
the same result since averaging over the random potential is performed due to the in�nite
size of the sample. For a �nite size of the sample, di�erent sets of disorder give di�erent
results, 
mi , distributed according to a distribution f
mi g for each Lyapunov exponent. In all
numerical calculations, essentially the mean value of f
mN g is calculated due to the necessary
orthogonalizations [127]. The numerical algorithm was proven to give an approximate value
of the Lyapunov exponent in the in�nite system [131]. Hence, one can assume that each
distribution f
mi g is centered around the limiting value of the in�nite size sample, 
i, with a
width, �
i , which decreases with increasing sample length. The key parameter to understand
the observed behavior is the ratio of the spacing between consecutive Lyapunov exponents,
�
, and the width of their distributions, �
i . This ratio is large for reasonable system
sizes since �
 is large in a calculation for a non-interacting system, �gure 1. The smallest

�



i

P (
i)
6

�
N

Figure 1: Qualitative distributions P (
i) for di�erent Lyapunov exponents 
i of a quasi
one-dimensional non-interacting system.

calculated Lyapunov exponent, 
mmin � min(
m1 ; : : : ; 

m
i ; : : : ; 


m
N ), coincides almost always

with 
mN . Averaging 
mmin over a number of samples is calculating the mean value of the
distribution f
mNg and hence approximates correctly the limiting value for an in�nite sample.
The calculation for a two-dimensional system in [124] gave the correct localization length up
to �2D�25, where �nite size e�ects came into play.

For two particles, the situation is di�erent. The transfer matrix calculation is performed
in con�guration space, each channel has the same disorder potential. The only di�erence
between them is the energy. In this situation, the spacing between the lowest consecutive
Lyapunov exponents is small, �gure 2. This is re
ected by the large 
uctuations as a
function of the interaction strength shown in �gure 1 in [123]. Therefore, the average of

mmin is not sampling only the distribution corresponding to the smallest Lyapunov exponent
of the in�nite system, f
mN g. Whenever another exponent 
mi6=N is smaller than 
mN , the
arithmetic mean value 
min underestimates the Lyapunov exponent for the in�nite system
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i

P (
i)
6

Figure 2: Qualitative distributions P (
i) for di�erent Lyapunov exponents 
i of the �nite
size transfer matrix calculation for two particles.


N , overestimating the localization length. Increasing the system size decreases the widths
of the distributions and correspondingly reduces the number of cases with 
mmin 6= 
mN . In the
limit of an in�nite sample, 
mmin=


m
N =
N giving the correct localization length in agreement

with the extrapolation in [124].

In the presence of an interaction between the two particles, the argument of the preced-
ing paragraph has to be modi�ed only slightly: along the direction of the transfer matrix
calculation there are paths which are not in
uenced and those which are in
uenced by the
interaction. The latter lie along the diagonal of the con�guration space and are suppressed
by a factor of

p
2 since the distance from one end of the sample to the other is longer along

the diagonal than along the coordinate axis. Hence, in addition to the situation described
above, there is another distribution corresponding to Lyapunov exponents in
uenced by the
interaction. The mean value of this distribution is supposed to be smaller than 
N , for small
enough disorder, compare with the discussion on page 12. This is the delocalization due to
the interaction. The existence of this distribution with even smaller values of 
mi reduces

min compared to 
min(U = 0), resulting in the small enhancement of �2(U = 1) compared
to �2(U = 0) [124]. However, upon increasing the system size, the calculated localization
length is reduced as described above and shown in [124]. Only for system sizes that allow
for a separation of the distributions corresponding to the channels with and without in
u-
ence of the interaction, an estimate of the two-particle localization length in the presence
of interaction is possible. In the limit of in�nite system size, the largest localization length
will be calculated and this should be the two-particle one. Unfortunately, the systems sizes
required for a numerical proof are too large. Estimates based on a careful investigation on
the distribution of Lyapunov exponents suggested sizes de�nitely larger than N=2500, more
probable are sizes around N=100000 [132].

3.1.3 Green function method

Another possibility to study the localization properties of interacting particles was needed.
For non-interacting electrons also the Green function method was very successful. The one-
particle Green function, G1, contained information about all the eigenstates of the Hamil-
tonian and a localization length could be de�ned via the exponential decay of the matrix
elements [28, 29].

G1(E; n;m) =
X
�

��(n)��(m)

E � E�

; (13)
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1

�1
= � lim

jn�mj!1

1

jn�mj ln jhnjG1jmij: (14)

The generalization of this method to the two-particle Green function G was a natural ap-
proach. Von Oppen et al [133] de�ned a two-particle localization length using matrix ele-
ments between double occupied sites,

1

�2
= � lim

jn�mj!1

1

jn�mj ln jhn; njGjm;mij: (15)

Projecting the Dyson equation G =G0+G0ÛG, where G0 denotes the two-particle Green
function in the absence of the interaction and Û =UP̂ =U

P
n jnihnj, onto double occupied

sites and solving for ~G= P̂GP̂ yielded,

~G =
~G0

U

1

1=U � ~G0

; (16)

hn; nj ~G0jm;mi =
X
�;�

��(n)��(n)��(m)��(m)

E � E� � E�
: (17)

Arguing that the �rst part of equation (16) decays on the scale �1, only the second part was
investigated, interpreting it as the Green function of some "Hamiltonian" ~G0 at \energy"
1=U . Solving �rst the non-interacting Anderson model to calculate ~G0, neglecting exponen-
tially small matrix elements in order to obtain a band matrix, and employing then e�cient
recursive Green function methods [134] to calculate ~G, the following scaling behavior was
observed,

�2
�1

= f

 
U�1
V

!
=

1

2
+ C

jU j�1
�V

; (18)

where C was a constant and V (= 1) the hopping matrix element. The U = 0 limit was
conjectured from the data. The approximation to neglect the �rst factor of equation (16)
could not be justi�ed in this limit. Though the problem of this limit still existed, at least the
extrapolation worked and the error seemed to be only an artifact of the method. However,
equation (18) contradicted the �ndings by Shepelyansky and Imry in being linear instead of
quadratic in the interaction strength. The extrapolation to U =0 could not be done within
their approaches.

In a subsequent work, the above results were generalized to an approximate treatment
of �nite densities [135]. Assuming the existence of a Fermi surface and considering the
scattering of only two particles above it without creation of additional particle-hole pairs,
the same method could be employed. The only di�erence was that for the calculation of
~G0 only states above the Fermi energy were used. For small excitation energies close to the
Fermi energy the enhancement e�ect disappeared since only a small fraction of all states
was available to build up the two-particle wave function. For larger excitation energies, the
delocalization e�ect was recovered, the relevant energy scale is the bandwidth.

Later, Song and Kim studied the localization length de�ned in equation (15), by calculat-
ing the two-particle Green's function without any approximation [8]. Without interaction,

�2(U=0;W )�70W�2:1�0:1; (19)
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slightly larger than the predicted �1=2 but with the correct disorder dependence in contrast
to the transfer matrix method results. This discrepancy was conjectured to be related to
energy averaging since only the two-particle energy was well de�ned,

h1; 1jG2(0)jM;Mi �
Z
dEh1jG1(E)jMih1jG1(�E)jMi: (20)

For U 6=0, Song and Kim used the idea of �nite size scaling, section 4.2, and obtained the
localization length in the limit of an in�nite system size,

�12 (U=1;W )�W�2:9�0:2: (21)

All data could be scaled reasonably well by assuming a scaling form

�2(U;W ) =W�2:1g(jU jW��) with � = 4:0� 0:5: (22)

This �rst numerically exact method by Song and Kim gave strong evidence for the existence
of interaction-induced delocalization. For the �rst time a direct comparison of the data with
and without interaction was possible. But the e�ect was much weaker than predicted before.

Generalizing this method, Song and von Oppen used the two-particle Green function to
de�ne a set of di�erent localization lengths, depending on the direction in con�guration
space, along which the decay of the Green function was studied [136]. Since the projection
of the Dyson equation did not work in this situation, a decimation scheme was used to get
iteratively rid of all irrelevant matrix elements of the Green function. Three main results
were obtained. First, decay lengths measured along the center of mass direction �2;a in
con�guration space were strongly enhanced by the interaction. No dependence on the �xed
relative coordinate a even for a>�1 was found. Second, for �xed center of mass coordinate
the decay along the relative coordinate was hardly in
uenced by the interaction. Third, the
one-particle decay length �f parallel to one axes in con�guration space was larger by almost
a factor of 2 than �2;a at U = 0, but increased only weakly with the interaction. Hence, a
critical Uc existed beyond which �f <�2;a. Only for U >Uc, the shape of the wave function
was highly anisotropic [137, 138, 139, 140] and the transfer matrix calculation for �nite size
systems could reveal an enhancement in the limit of large system sizes.

Another type of decimation method for evaluating the matrix elements of the two-particle
Green function was proposed by Leadbeater et al [9]. Good agreement of �2(U=0), de�ned
via equation (15), with the expected �1=2 was reported. The two-particle localization length
was only slightly larger than �1=2. A direct evaluation of the integral in equation (20)
proved the conjecture by Song and Kim [8]. For small jU j, �2 increased linearly with jU j.
For large jU j, �2 decreased again when the interaction started to split the band into lower and
upper Hubbard band. A duality between U and

p
24=U found from level statistics in [141],

section 3.2.5, was in accordance with the data only for W =5. The position of the strongest
enhancement was disorder dependent. Upon changing the energy, the sign of the interaction
became relevant and the data was consistent with �2(U;E)=�2(�U;�E) as pointed out by
Halfpap et al [128]. For a negative energy, i. e. closer to the ground state, an attractive
interaction U =�1 was more favorable for delocalization. After having applied a �nite size
scaling procedure, section 4.2, �12 (U;W )/W��(U) was reported with 2:2��(U)�3:1. Since
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after the �nite size scaling the localization length for U =0 was slightly larger than before,
all comparisons have been made with �12 (0;W ). Based on a random matrix model, which
was more appropriate than the one derived by Shepelyansky, the following �t function was
proposed in [142] which was better than equation (10) for smaller values of the localization
length,

�12 (U;W ) / �12 (0;W )�(U)
 
1 +

c

�12 (0;W )

!
: (23)

Taking into account the second term (C 6=0) improved the �ts. Values of �(U) between 1
and 1.5 were found [9]. Rewriting the �t proposed by von Oppen et al [133], page 11, as

�12 (U;W )� �12 (0;W ) / �12 (0;W )�; (24)

��2 was found for �12 (0)<10. For larger localization lengths, ��1:5 was more appropriate.
The scaling form proposed in [8], equation (22), did not work for all interaction strengths
but a reasonable scaling of all data could be obtained using

�12 (U;W )� �12 (0;W ) = g[f(U)�12 (0;W )]: (25)

The slope of g exhibited a crossover from 2 for small localization lengths to 1.5 for larger
ones. The functional dependence of f(U) could be described with a crossover from

p
U to

U for increasing U , leading to a crossover from a U to a U2 dependence for the two-particle
localization length in the regime in which the slope of g equals 2. Such a crossover was
predicted in [143], discussed on page 18, but for larger U and independent on the disorder.
The best functional form for f(U) was a logarithmic one.

The same decimation method was also used to study the delocalization e�ect for an in-
teracting electron-hole pair [144], which might be important for an experimental realization
[145]. The only di�erence was that the two particles move in di�erent random potentials.
The results were very similar to the two interacting particle problem, the only di�erence was
that scaling with equation (25) yielded a single slope of g of 1.6 for all data points.

Another method for calculating the two-particle Green function was put forward by Frahm
[7], using the relation between the Green functions with and without interaction, G0 and
G, equation (16). Essentially one just had to calculate the non-interacting two-particle
Green function G0 and multiply it with the inverse of 1� G0U . The numerical calculation
of the inverse of a matrix scaled with the third power of the matrix size and required N3

operations. It was not the limiting factor since calculation of G0 according to equation (16)
required N4 operations. Employing an elegant method to reduce this number of operations
to N3, larger system sizes could be reached. The limit of in�nite system size was reached by
an extrapolation of the data according to

1

�2(N)
� 1

�2(1)
+
C

N
: (26)

Neglecting as in [133] the exponentially small elements of G0 in equation (16) and performing
the matrix inverse by a recursive Green function technique [134, 146] the localization length
was also calculated for quasi-in�nite samples and shown to be similar to the extrapolated
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values. Without interaction, again a slight enhancement of �2 compared to �1=2 was found
as in [8, 9]. A number of di�erent �t functions was tried for U 6=0. The data was in qualita-
tive agreement with the results by von Oppen et al [133], �2=�1�0:5+0:054jU j�1. Using the
exponent of �1 as an additional �t parameter, also �2=�1 � 0:5/��1 with ��0:9 did work,
�� 1:0 was found for an o�set of 0.55. The slight deviations from linearity could also be
described by �2=�1�0:5/�1= ln(C�1) [147], see page 25. However, the best �t was obtained
using �2= a�1 + c(U)�21. A linear U -dependence as in [133] was found only for very small

interaction strengths. The correction c(U)/jU j
q
1 + (U=4)2 proposed in [148], page 18, was

also observed only for very small interaction strengths. Generalizing the arguments of [148],
c(U)�AjU j=(jU j + 1) was derived analytically and shown to give excellent agreement with
the numerical data.

Recently, the Green function method was used to study localization of two particles in a
two-dimensional system. Ortu~no and Cuevas [90] combined the approach of [7, 8, 133] with
the �nite size scaling procedure [29]. Calculating the localization length for systems of length
L=42 and width M =1 : : : 6, they reported a transition from localized to extended states.
The critical disorder was Wc = 9:3 � 0:2 and the critical exponent � = 2:4 � 0:5 for U = 1.
R�omer et al used the decimation method [9, 144] to calculate the localization length for
samples of length L=52 and widthsM=2 : : : 8 [99]. They observed a transition to extended
states for values of U � 0:4 with a critical disorder Wc / U0:36�0:03 and a critical exponent
decreasing with increasing interaction strength from 3.4 (U = 0:4) to 2.3 (U = 2:0). For
U =1, the exponent was slightly larger than reported in [90], while the critical disorder is a
bit lower. This was attributed to a di�erent de�nition of the two-particle localization length.

Both the transfer matrix method and the Green function method were proven to be
very useful for calculating the localization properties of non-interacting electrons. But as
discussed above, the transfer matrix method cannot be reliably applied to study localization
of interacting particles, while this is still possible with the Green function method. So far,
only localization lengths of two interacting particles have been calculated. A restriction
of the con�guration space to the subspace of double occupied sites led to a reduction of
the numerical e�ort. This restriction cannot be generalized to higher particle numbers.
While a generalization is in principal possible with the decimation method, one loses a
main advantage of the method, namely that the in
uence of a Hubbard type interaction is
important only at the last decimation step, close to the end of the numerical calculation.
Hence, results for di�erent interaction strengths are easily obtainable. It is also not a priori
clear, which matrix elements to calculate from the n-particle Green function in order to get
information about the localization properties.

In the main part of this thesis, I will introduce a completely di�erent method to study
localization of interacting particles. First, it is important to have a method which does not
rely on Green function in order to check the results described above. Second, our method
can be generalized straightforwardly to larger particle numbers.

In order to allow for a better classi�cation, I will �rst review some di�erent approaches
not directly related to localization. This allows to discuss di�erent aspects of the problem of
few interacting particles in a random potential and their relation to localization properties.
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3.2 Spectral statistics of interacting particles

3.2.1 Eigenstates

Direct information about the in
uence of interaction can be gained from the eigenstates of
the two-particle problem.

Weinmann et al used the Lanczos algorithm to diagonalize the two-particle Hamiltonian
for small rings [137]. A magnetic 
ux piercing the ring was used as a tool to �nd states
with a correlated motion of the two electrons. Without interaction, the energy of the states
should be h=e periodic with the magnetic 
ux. With interaction, h=2e periodic states were
observed, indicating that two electrons move coherently through the ring. The corresponding
wave functions showed a strong asymmetry, being further extended in center of mass than
in relative direction. Although the existence of correlated two electron motion was directly
demonstrated, the results did not allow more than a qualitative estimate of the two-particle
localization length.

Ara�ujo et al considered the Cooper problem and found by exact diagonalization that near
the ground state an attractive interaction led to delocalization for small disorder while it
enhanced localization for large disorder [149]. The �lled Fermi sea was modeled by calculating
�rst the non-interacting eigenstates. In diagonal representation of the eigenstates, a large
energy was added to the energy of states below EF before the Hamiltonian was transformed
back to position representation. The resulting full matrix was used to construct the two-
particle matrix.

Evangelou et al discussed di�erent types of two-particle states [150]: most of the states
were not in
uenced by the on site interaction (electrons far apart) while some states were
delocalized by the interaction (electrons close to each other). States with two tightly bound
electrons could be stronger localized due to the interaction.

3.2.2 Level curvatures

Edwards and Thouless had argued that the conductance of a disordered di�usive system of
non-interacting electrons could be related to the dependence of energy levels on a change
in the boundary conditions, the level curvature [151, 152]. The larger the level curvature,
the larger was the conductance. This relation was veri�ed numerically [153]. Although the
relation between the conductance and the level curvature was not proven for interacting
particles, it was a reasonable approach to analyze the level curvature for two particles.

This was done analytically by Akkermans and Pichard. The typical curvature was in-
creased by the interaction in the localized regime (L � �), while it was decreased in the
metallic regime (L��) [154].

These results were supported by numerical calculations by Wobst and Weinmann [155].
The increase of the curvature in the localized regime was found to be most pronounced
near the band center. Data for di�erent disorder values and system sizes were scaled onto a
common curve. The relevant scaling parameter was the typical curvature without interaction,
g(0), not size and disorder independently,

g(U)

g(0)
=

 
g(0)

gcrit

!m(U)

: (27)
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The slope of the scaling curvem(U) showed qualitatively the existence of the duality between
small and large interaction strengths [141], page 21.

3.2.3 Random matrix theory

Information on the localization properties of interacting particles can also be gained from
random matrix theory. The main idea is not to study a particular and often complicated
Hamiltonian but rather the properties of a quite general one belonging to the same sym-
metry class. Originally, only three di�erent classes of random matrices were considered,
corresponding to systems with orthogonal, unitary or symplectic symmetry. This was very
useful in the framework of nuclear physics where statistical properties of energy spectra could
be understood on the basis of random matrix theory. For example the distribution of spac-
ings between consecutive energy levels in a uranium nucleus agreed well with the predictions
of random matrix theory. In the beginning of the 1980s, the importance of random matrix
theory for understanding the properties of disordered solids was realized. Based on work by
Efetov [19], it was shown that the physics of di�usive electron transport could be described
by random matrix theory [156]. For example, the nearest neighbor level spacing statistic in
a di�usive conductor was in accordance with the predictions of random matrix theory. It
followed the famous Wigner surmise,

PW(s) =
�s

2
e��

2s2=4; (28)

with the spacing between consecutive levels s. Actually, equation (28) was derived for (2�2)-
matrices but is a very accurate approximation for the general case of (N�N)-matrices. Its
main feature is the level repulsion for small spacings, i. e. PW(s=0)=0. In contrast, for a
system with localized states, the spacing statistics is Poisson,

PP(s) = e�s; (29)

revealing a high probability to �nd consecutive levels with small spacings, PP(s = 0) = 0.
Since the transition from Wigner to Poisson statistics that takes place upon increasing the
disorder in order to drive the metal-insulator transition cannot be analyzed within the orig-
inal random matrix theory, suitable generalizations were proposed. For example, a Poisson
statistic was observed for band random matrices, characterized by having only a limited
number of 2b+1 non-zero diagonals. For b�N , these matrices were nearly �lled and display
a Wigner Dyson statistic, the eigenstates were extended. For b2�N , the matrices were more
sparse and the energy levels followed the Poisson statistic, the eigenstates were localized.
In the context of the two interacting particle problem yet another type of random matrix
was important as can already be seen from the work of Shepelyansky [6]. He mapped the
Hamiltonian in the basis of non-interacting two-particle states onto a band random matrix
with an additional, strongly 
uctuating diagonal part. The band random matrix arised from
the matrix elements of the interaction in that basis, equation (9). The additional diagonal
part was the sum of the two one-particle energies and indicated the existence of a preferential
basis. The matrix was di�erent in the basis of the non-interacting two-particle eigenstates,
while generally the statistical properties of random matrices were independent on the cho-
sen basis. Although this approach neglected completely the correlations among the matrix
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elements, it was the starting point for further investigations.

Frahm and M�uller-Groeling [157] and independently Fyodorov and Mirlin [158] derived
analytical results for the band random matrix with a preferential basis invoked by Shep-
elyansky based on earlier work for band random matrices [159, 160, 161]. These results
explained and generalized numerical work by Jacquod and Shepelyansky [162]. The local
density of states, �W, which characterized the spreading of the eigenstates over the states of
the original, preferential basis was shown to have a Breit-Wigner from,

�W(E � En) �
X
i

j i(n)j2�(E � Ei) =
�

2�[(E � En)2 + �2=4]
� �BW; (30)

where n labels the states of the preferential basis and  i(n) and Ei are the eigenstates
and corresponding energies. The spread width � gave roughly the number of states of the
preferential basis that contribute to an eigenstate. With b the bandwidth, Wb the variance
of the diagonal entries, and a variance of the o�-diagonal elements scaling with b�1=2, the
following results were obtained for the spread width �, the localization length �, de�ned
as exponential decay length of the envelope, and the inverse participation ratio �IPR in the
localized regime [123],

� =
�

3Wb

 
1� 1

3W 2
b

!
; (31)

� =
�2b2

18W 2
b

 
1� 2

3W 2
b

!
; (32)

�IPR =
�2�

12W 2
b

: (33)

Especially the last result was interesting since �IPR 6= �. This discrepancy was related to
the spiky structure of the eigenstates [162]. For the two-particle problem, one had b= �21,
Wb�V

p
�1=U and �2=�=�1 [6, 123] leading in �rst order to equation (10). The ratio of the

two-particle localization length to the one-particle localization length was,

�2
�1

=
�

�21
=
�

b
=

�

3Wb

b

Wb

�

6
= ��A = A

�

�2
; (34)

where A was a constant and � = b=Wb was the density of coupled states, given as total
number of coupled states divided by the bandwidth. For a system of size L= �1 this was
identical to the inverse of the mean level spacing �2. This leads us back to the block scaling
picture employed by Imry [121], page 7, since �= t2=�2 was estimated using Fermi's golden
rule [143]. Studying � for systems of size L=�1 can thus give information about localization
on much larger length scales, provided the mapping to the random matrix model is correct.

3.2.4 Breit-Wigner width

This relation between the Breit-Wigner width �, introduced in equation (30), and the local-
ization length was exploited by Jacquod et al [148] who calculated � for the clean system
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analytically. With moderate disorder, i. e. large �1, � was either zero, if the particles are far
apart, or given by the value on the scale L=�1. The enhancement e�ect was then calculated
according to equation (34). Taking into account the correct two-particle density of states
�(E) [130], they reported �/U=p1 + U2 for small U and E2�U2, and �/U2 for E2�U2

and supported their results by numerical calculations of �.

To observe the U2 behavior of the localization length, one needed small U values, leading
to small �. Since the enhancement e�ect was given by ��>1 this required larger values of
�1 than available in direct studies of the localization length so far.

In a subsequent work, the study of the Breit-Wigner width was generalized to quasi-
particles [163, 164]. Upon constructing the two-particle Hamiltonian in the basis of non-
interacting eigenstates, only states above the Fermi sea were used to calculate the interaction
matrix, Em10

; Em20
� EF in equation (8). As done by von Oppen et al [135], intermediate

electron-hole excitations were neglected. For small excitation energies, a linear increase of �
was found as expected from the density of available scattering states and the enhancement
e�ect vanished. However, unexpectedly it was found that this behavior depends crucially
on the disorder strength. For slightly higher disorder, � became independent of the en-
ergy in both two- and three-dimensional systems. The reason was shown to be a failure of
the ergodic analytical estimate of � which was not understood. These results showed that
the restriction due to the Pauli principle is less severe in higher dimensions. Possibly even
parameter regions exist in which the enhancement e�ect survives for arbitrarily small exci-
tation energy. In three dimensions, evidence for a extended states, ��>1, was put forward
for disorder values larger than the critical disorder for single particles.

A slightly di�erent approach was used by Weinmann and Pichard [143]. Studying the
two-particle Hamiltonian in the basis of non-interacting eigenstates (8), they also found the
Breit-Wigner form for the local density of states (30). For a detailed analysis, they did not
calculate �W but the number variance

P
2(E), for which the knowledge of the energies was

su�cient. For energies E < � the levels were correlated and followed the Wigner Dyson
predictions. On scales E >Ec(U) � � the levels became uncorrelated. This crossover was
studied via

P
2(E), the variance of the number of levels in a given energy interval E. For

small interaction strengths, a linear increase of the crossover energy Ec with U was found.
This was related to Rabi-oscillations between just two consecutive levels for Ec <�2. For
larger interaction, Ec scaled with U2, the crossover occurred for Ec >�2. While this was
seen in two dimensions, in one dimension the considered values of �1 were too small. Before
the crossover was observed, the upper Hubbard band started to split and Ec decreased, see
page 21. The main results concerning Ec were con�rmed using a random matrix model
with a preferential basis, analyzed before in [165]. For stronger and stronger in
uence of
the preferential basis the crossover from Wigner-Dyson to Poisson behavior occurred for
lower and lower excitation energies. The dependence of this crossover on the strength of
the preferential basis, the ratio of diagonal to o�-diagonal elements, showed the same two
regimes as the two-particle problem. Relating the results for Ec to the localization length,
arguments for �2=�1�1=2/U

p
�1 in the regime of the Rabi-oscillations (small U) were given.

The approach by Weinmann and Pichard was extended to n particles by Weinmann et al
[166]. The main di�erence was that due to the two-body interaction, states directly coupled
(�(d)) were roughly �2 apart and states consecutive in energy (�3) were coupled only via
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higher order terms in a perturbation theory in the interaction strength (�(i)). In contrast
to the two-particle case, the spread width � as calculated from the Breit Wigner form of
the local density of states was not related to the energy Ec below which the spectrum shows
Wigner-Dyson rigidity. While �(i) de�ned the scale important for spectral statistics, the
local density of states was dominated by the larger of the two terms.

This hierarchy of coupled states led to the existence of three di�erent regimes, depending
on the interaction strength. For U <Uc1 again Rabi-oscillations between a few coupled states
occurred. The e�ective interaction matrix elements scaled as U e�

n /Un=2 and U e�
n /U (n+1)=2

for n even and odd, respectively. This U e�
n de�ned as before the scale below which the

Wigner Dyson rigidity existed. At Uc1, the coupling between neighboring energy levels �(i)n
was of the same order as the �n and the nearest neighbor level spacing distribution showed
a sharp crossover from Poisson (29) to Wigner-Dyson (28) behavior. At the same interaction
strength, �(d) equaled �2. This indicated a breakdown of perturbation theory since higher
order terms had the same order of magnitude than �rst order terms and the perturbation
series did not converge. However, a complete mixing of all basis states, related to ergodicity,
did not take place until at Uc2, �

(i)
n was of the order of �2, the level spacing of directly cou-

pled levels. In this regime, �(i)n /Un=(n�1) was predicted, now setting the scale for both the
local density of states and the spectral statistics. These results were con�rmed qualitatively
by numerical diagonalization of 3�3�3 systems with three particles. The nearest neighbor
level spacing distribution exhibited a crossover from Poisson to Wigner-Dyson behavior as
a function of the interaction strength related to Uc1. In order to de�ne the energy scale
at which deviations from Wigner-Dyson behavior occurred,

P
2(E) was investigated. For

U < Uc1, Ec scaled with U2, as predicted. For U > Uc1, Ec scaled with U , indicating the
breakdown of perturbation theory from which Ec / �

(i)
3 / U4 was expected. So far, there

is no explanation for this linear increase, Ec/U . Calculating �3 from the local density of
states (30), at Uc2 a crossover with increasing interaction strength from �3/U2 (as for two
particles) to �3/U3=2 (ergodic mixing) was observed. For smaller interaction strengths, �3
was dominated only by �

(d)
3 and did not show any change at Uc1.

The Breit Wigner width was also used to investigate the level statistics within the two-
body random interaction model. In this model, n fermions are located on m orbitals with
random one-particle energies �m2 [0; m]. These states are coupled via randomly distributed
two-body interaction matrix elements, Uni;nj 2 [�U;U ]. Due to the absence of hopping, this
model is conceptually simpler than the Anderson model. Nevertheless, it can provide insight
into the in
uence of a realistic interaction.

Georgeot and Shepelyansky showed that the local density of states of the two-body ran-
dom interaction model had the Breit-Wigner form and investigated the dependence of the
spread width � and of the inverse participation ratio � on the interaction strength [167].
Their numerical results were well described by the Fermi golden rule estimate �=U2�c2�=3,
with the density of coupled states �c. The inverse participation ratio was shown to follow
����n� 2U2�c�n, valid for Uc� 1=�c. At Uc, all states were well coupled and the nearest
neighbor spacing distribution shows a transition from Poisson to Wigner-Dyson behavior
[168], compare with the result for the Anderson Hamiltonian in [166]. In addition, the
behavior of the quantities above was investigated close to the Fermi energy. Taking into
account that at a low temperature T only few particles interacted and that the e�ective
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density of states was reduced near EF, a critical temperature and correspondingly a critical
excitation energy at which the transition to the Wigner-Dyson regime takes place was found
[168]. These critical quantities were related to the question of the quasi-particle lifetime in
�nite systems discussed in [169, 170, 171, 172, 173].

Studying analytically the Breit-Wigner width, Shepelyansky and Sushkov found that the
three-particle localization length scales as �3 / �31 [174]. Their argument was based on an
estimate for the average coupling in second order perturbation theory between two di�erent
three-particle states assuming that they were all within a distance �1, U�(U12U23)=(�

3
1�1).

The spread width was then roughly given by �1 � U2�3, see page 17, with �3 the density
of three-particle states inside the one-dimensional block of size �1. The three-particle local-
ization length was only a few steps away. For one of the particles, the average transition
rate had to be multiplied by the frequency of collisions involving this particle, ~�1��1�1=�2,
using the ergodicity inside the block. A di�usion rate D� ~�1�

2
1 followed since the average

transition size was �1. From the di�usion rate they estimated a localization time at which
di�usion stopped since the energy resolution became better than the mean level spacing.
This yielded the above result for the three-particle localization length. All the steps in the
argument have to be considered carefully since for example it was shown that the wave
packet did not grow di�usively, but rather logarithmically in time [139, 140], see pages 26
and 46.

3.2.5 Nearest neighbor spacing distribution P (s)

In contrast to the number variance
P

2(E) or the Breit Wigner width �, which contain
information about long-range spectral correlations, the nearest neighbor spacing distribution
P (s) provides information about short-range 
uctuations. As described in section 3.2.3, a
transition from Poisson (29) to Wigner-Dyson behavior (28) takes place if neighboring states
are strongly coupled by the interaction. Only in the insulating regime this interaction-
induced coupling of non-interacting eigenstates leads to a delocalization in real space. In
the metallic regime, the relation between eigenstates and localization lengths is much less
clear. For non-interacting particles, the transition from Poisson to Wigner-Dyson occurs with
decreasing disorder strength and the metal-insulator transition can be identi�ed investigating
the size dependence of P (s) for di�erent disorder values. In the insulating regime, P (s) moves
closer and closer to a Poisson distribution with increasing system size, in the metallic regime
it moves closer and closer to the Wigner-Dyson distribution. At the critical point, a di�erent,
size-independent distribution was observed [175]. In order to measure the distance to the
Poisson or the Wigner-Dyson distribution, a scaling variable � was de�ned that changes
smoothly from 0 (Wigner-Dyson) to 1 (Poisson),

� =

R s0
0 (P (s)� PW(s)) dsR s0
0 (PP(s)� PW(s)) ds

; (35)

with s0=0:4729 : : :, the �rst intersection point of PP(s) and PW(s). Sometimes a di�erent
measure was used,


 =
var[P (s)]� var[PW(s)]

var[PP(s)]� var[PW(s)]
: (36)



3.2 Spectral statistics of interacting particles 21

Waintal et al used this method to study the level statistics for two interacting particles
[141]. For systems of size L=�1, �(U) decreased for increasing U from 1 to a minimal value
of 0.386 at U � 2 and increased for larger U again to the Poisson value. Chaotic mixing of
the levels as described by the Wigner distribution was not reached for two particles with
an on-site interaction in one dimension. The increase of � for large U was related to the
existence of a di�erent preferential basis for U !1. For small interaction strengths, the
non-interacting eigenstates formed a preferential basis, see page 16. In the opposite limit,
the preferential basis found in [142] consisted of molecular states in the upper Hubbard
band [176] and hard core boson states in lower Hubbard band. Investigating the interaction
matrix (9) in both limits, a duality transformation U!p

24t2=U was found analytically and
con�rmed numerically by studying the Breit-Wigner width. This explained the symmetry
observed in �(U). At the \critical" interaction strength where maximum mixing of the states
occurred, �(W ) showed a similar behavior as �(U), decreasing with increasing disorder down
to a minimal value reached for �1(W )�L. For L > �1(W ), � increased back to 1. In the
regime of maximum mixing, P (s) was close to the semi-Poisson, P (s) = 4s exp(�2s), also
found at the mobility edge of the three-dimensional Anderson Hamiltonian [175]. The wave
functions exhibited a multifractal behavior.

Qualitatively the same behavior was found by Halfpap et al for 
(U) [176]. In addition,
the density of states was discussed. For small interaction strengths, it was similar to the one
of a single particle in two dimensions while for larger interactions the upper Hubbard band
with the molecular states discussed in [141, 142, 150] appeared. The density of states was
important for the detailed evaluation of � in [148], page 18. For three particles, Halfpap et
al found a density of states similar to the one of the three-dimensional one-particle problem
[130]. This �nding holds in general for n particles since for small disorder and interaction
strength only the hopping terms are relevant and they equal those of the n-dimensional one-
particle problem, page 37. Using the number variance

P
2(E), a smooth crossover to aWigner

distribution with increasing interaction strength at �xed size L� �1 was demonstrated for
n=3 [130].

For two particles in two dimension, Cuevas studied 
(W ) for long and short range inter-
actions and system sizes L�L with 6� L� 20 [91]. In both cases a critical behavior was
observed and analyzed based on the �nite size scaling method, discussed in section 4.2. For
long range interactions the critical disorder and the critical exponent were Wc=10:2� 0:2
and �=1:2� 0:2, respectively. The critical disorder increased monotonously with increasing
interaction strength. In contrast, a maximal value of Wc around U = 2 was observed for
a nearest neighbor interaction. For larger U , the critical disorder decreased again due to
the splitting of the upper Hubbard band. At the critical point, P (s) / s for s! 0 and
P (s)/exp(�s) for s!1. In addition, the inverse participation number for a small number
of states was calculated [97]. Curves for di�erent sizes crossed as a function of the disorder
strength similar to the results for 
. However, there was no common crossing point due to
�nite size e�ects and a �nite size scaling analysis could not be performed.

Shepelyansky investigated the level statistics of two Coulomb-interacting electrons via �,
but as a function of excitation energy �, the energy above the two-particle ground state. By
truncating the one-electron eigenbasis at high excitation energies, system sizes up to 24�24
could be handled [92, 177]. For small enough disorder, a common crossing point of the
curves �(�) for di�erent system sizes was found, indicating the presence of a transition as a
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function of excitation energy. At the critical excitation energy, the nearest neighbor spacing
distribution resembled the critical P (s) of the three-dimensional Anderson model.

Instead of a rather sharp transition with a common crossing point, Talamantes et al found
only a smooth crossover upon studying 
 (36) [96]. Evidence for delocalization of the wave
functions was found only at smaller disorder values. This indicated that in spite of the
presence of level mixing for �nite system sizes, its persistence in the limit of in�nite system
sizes and the relation to delocalization in real space was not obvious.

Jacquod studied level statistics via � (35) for up to 6 interacting quasi-particles in three
dimensions after projecting out low energy Slater determinants [178]. For a disorder larger
than the critical disorder for a single particle, a critical behavior was observed as a function
of the interaction strength. At the critical point, a size independent distribution was found
that depended on the number of particles. The higher the particle number, the closer the
distribution was to the Poisson distribution, indicating the possibility of a vanishing level
repulsion in the thermodynamic limit. The author supposed that this would only happen if
the disorder was in the critical regime of the one-particle Anderson model. Starting from a
localized situation, the level repulsion was expected to survive.

In a series of papers, Berkovits and coworkers investigated the level statistics of small two-
dimensional systems (up to 4�4) andN�6. When the one-particle spectrum showed Wigner-
Dyson rigidity (metallic system, � > L), the non-interacting many-body levels exhibited
a Poisson behavior except for the level spacing between the ground and the �rst excited
state, which showed still a Wigner-Dyson behavior since only a single one-particle state
was changed. In the presence of interaction, the Wigner-Dyson statistics was recovered for
the excited levels [179]. The Wigner-Dyson statistics was observed only for intermediate
excitation energies and interaction strengths and a �nite size scaling was proposed based on
the excitation energy [180, 181]. For an insulating system at larger disorder leading to a one-
particle spectrum with Poissonian statistics, a crossover in a quantity similar to � but with
di�erent limits in the integral in equation (35) was found. An explanation involving tightly
bound exciton states was proposed since the crossover was similar to the single-particle one
[182]. In contrast to the metallic situation described above, the crossover occurred rather
uniformly with increasing excitation energy or interaction strength. Detailed calculations
of the localization lengths of electron-electron pairs, electron-hole pairs and single electrons
in the strongly insulating regime led to the conclusion that only the electron-hole pairs had
an enhanced localization length due to the interaction, both single electrons and electron-
electron pairs had a suppressed localization length [183, 184]. This di�erence was related to
the di�erent density of states. While being roughly constant for the electron-hole pairs, it
was considerably smaller due to the presence of the Coulomb gap for single electrons and
electron-electron pairs.

Studying ground state local currents of 4�4 lattices with 8 electrons, Berkovits and Avishai
observed a transition from a di�usive behavior with randomly oriented local currents to a
plastic 
ow of aligned local currents with increasing interaction strength [185].

This result was corroborated by Benenti et al who studied the �rst few excited states of
4 electrons on a 6�6 lattice by exact diagonalization. For intermediate interaction strength
the ground state was neither characterized by a Fermi glass, the Anderson localized state
existing for small interaction strength, nor by a Wigner crystal for large interaction strength
[86, 94, 186]. Instead, it was characterized by an ordered 
ow of local currents in the ground
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state. For small disorder, the average current was enhanced by an order of magnitude due
to the interaction. Studying the distribution of the current amplitudes and the decay of
the typical currents as a function of the interaction strength, a phase diagram as a function
of disorder and interaction strength was proposed. Further investigations revealed that the
level spacing distribution in the intermediate phase was close to the Wigner distribution
for excitations energies of the order of the Fermi energy, indicating a breakdown of the
description in terms of weakly interacting quasi-particles. The transition from the Fermi glass
to the new phase was characterized by an alignment of local currents while the transition to
the Wigner crystal is dominated by a decreasing amplitude of the local currents [187].

Recently, Berkovits et al argued that the �ndings described above cannot be interpreted
as a signature of the metal-insulator transition since they were not directly related to zero
temperature transport properties. Based on exact diagonalizations for 4 electrons on a 6�6
lattice and investigating local tunneling amplitudes and conductances, they concluded that
the interaction enhances the insulating features [188].

3.3 Other approaches

3.3.1 Non-linear �-model

Frahm et al improved the mapping of the two-particle problem onto a randommatrix problem
by taking into account even the exponentially small matrix elements, neglecting only the
correlations among them. Then, they derived a non-linear �-model, [19, 27], that was suitable
to describe the motion of the two electrons on scales larger than �1. The motion could not
be resolved on smaller length scales. Comparing it to Efetov non-linear �-model for a
disordered metal, they obtained the following results [189]. The local density of states has a
Breit-Wigner form whose width �, related to the inverse lifetime, depended on the distance
between the two electrons. States with large electron separation had a very long lifetime.
The size of the two-electron pairs, i. e. the relative distance between the electrons, was
shown to grow logarithmically in time and the center of mass extension grew sub-di�usively,
R2/ t= ln t, until di�usion stopped at �2/�21. In a subsequent work [190], this approach was
elaborated further and the original work by Dorokhov [120] was generalized to n particles.
The localization length of n tightly bound particles was �n/�n1 , assuming that the disorder
did not couple center of mass and relative degrees of freedom.

3.3.2 Interaction matrix

The original reasoning by Shepelyansky [6] and Imry [121] as well as the application of results
from band random matrices with preferential basis [157, 158] and the non-linear �-model
[189, 190] depend crucially on assumptions about the interaction matrix in the basis of non-
interacting two-particle eigenstates, equation (9). Statistics of the matrix elements were
obtained via calculating the non-interacting eigenstates and direct evaluation of equation
(9), starting with the work by Frahm et al [123], described on page 8.

Von Oppen et al found a Lorentzian distribution for the matrix elements [133]. An
appropriate random matrix model gave qualitatively the same results as the one proposed
by Shepelyansky [6]. Xiong and Evangelou derived similar results for the two- and three-
particle interaction matrix, the latter was only more sparse than the former [191].
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The most detailed analysis was performed by R�omer et al [192]. As also observed in
[123, 133, 191], all diagonal elements were positive and depended on the sign of the inter-
action. The distribution of o�-diagonal elements was symmetric around zero but strongly
non-Gaussian, in contrast to the assumption by most authors which had mapped the two-
particle problem onto random matrix models. The rather long tails of the distribution led

to deviations of the root mean square value of the distribution urms=
q
hui from the typical

value utyp=exp[hlog(jU j)i]. The mean value was dominated by a few large matrix elements
leading to oscillations between two states. Delocalization was more appropriately described
by the typical value. In dependence on �1, they found utyp � ��1:951 and urms � ��1:51 . Using
the estimate for utyp to repeat the block scaling argument from page 7, �2/�1:11 and hence
a vanishingly small e�ect was observed [192].

This analysis shows how careful every simpli�ed estimate has to be considered. In view
of the direct numerical evidence for the delocalization by the interaction it is obvious that
the correlations among the matrix elements cannot be neglected. In a way, neglecting the
correlations is counterbalanced by a wrong estimate of the typical matrix elements.

Ponomarev and Silvestrov studied analytically the interaction matrix elements, arguing
that for small disorder the central region of the eigenstates was better described by plane
waves than by random functions. This led to a suppression of the interaction matrix el-
ements compared to the rough estimates by Shepelyansky and Imry [6, 121]. With these
re�ned estimates a more appropriate random matrix model was derived for which numerical
calculations were performed. The enhancement e�ect was described by

�2
�1
� �


(U)
1

�
1 +

c

�1

�
: (37)

Their second important result was the prove of the existence of another preferential basis for
large interaction strengths, which was used to obtain the duality between small and large
interaction strengths in [141].

Fixing the initial state �m1
(x)�m2

(x), Waintal and Pichard calculated the coupling el-
ements to all �nal states �m10

(x)�m20
(x), equation (9). They investigated 
uctuations of

these coupling terms using a multifractal analysis [193], as for one-particle wave functions
in a two-dimensional system. On length scales smaller than the one-particle localization
length, multifractal behavior of the coupling elements was observed. This is related to the
non-Gaussian statistics of all coupling elements found in [123, 192]. Due to the strong 
uctu-
ations, the e�ective density of coupled states, �e�/��1 ; ��1:75, was smaller than the na��ve
estimate �=2. From the block scaling arguments, an enhancement e�ect �2/�1:51 followed.

R�omer et al showed that the simpli�ed mapping onto a random matrix model via the
interaction matrix led to wrong results for toy models. In a two-dimensional as well as
in a one-dimensional Anderson model, an additional perturbing potential was introduced
[194]. While this was shown to decrease the localization length, using the same arguments
as Shepelyansky [6], an enhancement was predicted from a random matrix model.

These studies show that mappings onto random matrix models [6, 121, 123, 158, 189, 190]
as well as simpli�ed models like the two-body random interaction model (page 19) [167, 168]
have to be considered carefully. The same holds when evaluating the two-particle localization
length using Fermi's golden rule via the Breit-Wigner width � [143, 148, 162, 163, 166].
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These approaches yielded useful information on the in
uence of the interaction but for a
direct extraction of the localization length one should go beyond the simple estimates.

3.3.3 Kicked rotator

The kicked rotator is a standard model for chaotic systems, describing a normal pendulum on
which the gravitational force acts periodically for short moments. The quantum mechanical
version is described by an evolution operator for a single period,

Ŝ = e�i[H0(n)+V (�;t)]; (38)

and can be mapped onto the one-dimensional one-particle Anderson Hamiltonian with a
pseudo-random sequence of on-site energies [195, 196]. A generalization to two and three di-
mensions is possible [197]. Higher dimensions can be modeled e�ectively in a one-dimensional
system using a special form of the perturbation V [198, 199].

Borgonovi and Shepelyansky studied two interacting kicked rotators and found an en-
hancement of the localization length due to the interaction [200]. For an e�ective dimension
de�=2:5 they found a delocalization transition below the one-particle delocalization border
[201]. The distance between the two particles was shown to grow logarithmically with time
as predicted in [189]. This was estimated to give a logarithmic reduction of the �nal localiza-
tion length, �2/�21= ln�1 . With an additional noise term destroying the interference e�ects
that would otherwise have led to localization, the di�usion rate was strongly enhanced due
to the interaction [147]. The reason was that the average size of jumps between subsequent
decoherent processes increased from �1 to �2. A growing pair size due to the noise should
in
uence the results only for long times, but this could not be proven numerically.

3.3.4 Di�usion

The results for the kicked rotator are based on the time evolution of some initial condition.
A similar analysis was also performed for the two-particle Hamiltonian, starting with the
work by Shepelyansky who showed that the localization radius of a two-particle wave packet
was larger with interaction than without it [6].

From the knowledge of all eigenstates, Evangelou et al calculated for a single sample the
time evolution of the mean radius, equation (65). For intermediate interaction strengths
larger values were reached than for small and large interaction strengths in agreement with
the duality derived in [141].

Further investigations were performed by Brinkmann et al who studied the time evolution
of electron-hole pairs using the semiconductor Bloch equations [145, 202]. While for U =0,
the saturation value of the inverse participation number was reached quickly, this saturation
value increased for �nite interaction strengths and the growth of the inverse participation
number proceeded more slowly. The growth was argued to be a di�usive process. The sign of
the interaction was shown to be important for energies away from the middle of the band, see
also Halfpap et al [128]. For energies closer to the ground state, an attractive interaction was
more favorable for delocalization than a repulsive interaction. The main new idea was that
the two particles could have di�erent masses and exist in di�erent random potentials. The
model might be relevant for optical observations using ultrashort time of 
ight experiments.
However, the results were qualitatively similar to the two electron problem, see also [144].
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De Toro Arias et al investigated in detail the short time dynamics of two electrons, con-
centrating on the center of mass extension, R(t), and the size of the pair, the relative distance
between the two particles r(t). In con�guration space, the wave packets have cigar like shapes
for long times similar to the shape of some eigenstates observed in [137]. Concerning the
dynamics, the interaction reduced the spreading along the center of mass direction for short
times during the ballistic motion. This seemed to be related to the reduction of the level
curvature in the metallic regime due to the interaction [154]. On intermediate time scales a
slow sub-di�usive growth of the center of mass extension was observed. In contrast to the
prediction of a di�usive growth from the non linear �-model [189], R(t) was not proportional
to t1=2 but rather to log(t). At the same time, a logarithmic growth of the size of the wave
packet was in agreement with the prediction in [189] and with �ndings from the kicked ro-
tator [200]. For long times, R(t) saturated. A detailed study of the saturation values was
not performed, the largest enhancement e�ect observed was R(U = 1)=R(U = 0)� 3:5. If
the initial condition corresponded to two nearby but at t= 0 not interacting particles, the
duality between small and large interaction could be seen by looking at R(t) at �xed times.
In the ballistic regime, R(t) was suppressed by an interaction and returns back to the origi-
nal value for large interaction strengths. In the sub-di�usive regime, R(t) was enhanced for
intermediate interaction strengths. If the initial condition corresponded to two interacting
particles, one probed with increasing interaction strength only the molecular states discussed
in [141, 142] and the spreading of the wave packet was suppressed.

3.3.5 Harper model

The Harper equation describes an electron in a one-dimensional quasi-periodic potential and
is related to electron motion in a two-dimensional square lattice with a strong magnetic �eld,

2� cos(�hn+ �)�n + �n+1 + �n�1 = E�n: (39)

The one-dimensional model can display both localized and metallic behavior. For �<1, the
eigenstates are extended, for �>1 they are exponentially localized and �=1 corresponds to
a critical situation with power law localized states.

Shepelyansky studied the time evolution of two interacting electrons in this quasi-periodic
potential [203]. The interaction e�ects were quite di�erent from the case of two particles in
a random potential. For �=1, he found a di�usive behavior for U =0. This di�usion was
slowed down by the interaction, the di�usion constant was reduced. It turned out that one
part of the states contributing to the initial state became localized due to the interaction
while the other part remained unchanged. The return probability was always enhanced by
the interaction and remained �nite for all values of �, even in the metallic case. The di�erent
in
uence of the interaction in comparison to the random potential was attributed to the
interaction-induced destruction of tiny resonance conditions which in the non-interacting
system allowed to tunnel between quasi-resonant sites leading to metallic behavior.

Barelli et al studied two interacting particles in the Harper model by direct diagonalization
[204]. Even for U 6=0, a big part of the spectrum resembled closely the Hofstadter butter
y,
the spectrum for a single electron described by the Harper equation. The second part was a
shifted butter
y and was shown to be related to situations in which the two particles were



3.3 Other approaches 27

close to each other. These states became localized due to the interaction. A more elaborated
version of this work together with a semi-classical analysis was given in [205].

Evangelou and Katsanos [206] studied the properties of the eigenstates for two electrons
described by the Harper equation, too. They observed molecular states as in the random
potential and found essentially the same localization properties as discussed by Barelli et al.
The di�usion was slowed down by the interaction while for a localized system, the saturation
value of the mean radius could be enhanced for intermediate interaction.

Eilmes et al employed the transfer matrix method to analyze the localization properties
of two interacting particles in the Harper model [207]. While most of the results were similar
to those discussed above [204, 205, 206], for a long range interaction a shift of the metal-
insulator transition from � = 1 to � � 0:92 was found, i. e. the region of localized states
increased due to the presence of the interaction.

3.3.6 Few impurities

Aharony et al studied a model in which the electrons interacted only at a number of im-
purities, I. In that case the exact solution could be derived by �nding the roots of a I�I
determinant [208, 209]. While apparently much easier than a direct diagonalization of an
I2�I2 matrix in case of a random system, the construction of the determinant required the
two-particle Green function without interaction and thus involved at least an I3 operation,
see page 13. Studying a single impurity, parameter regions with zero, one, and two bound
states were observed. Screening of the impurity due to the interaction with a bound state led
to characteristic resonances for the transmission of the second electron. Preliminary results
for two impurities were also reported.

3.3.7 Approximations for �nite densities

A number of attempts were made to investigate the localization properties at �nite elec-
tron densities. Apart from the few-particle calculations already discussed [86, 94, 179, 180,
181, 182, 183, 184, 185, 186, 187], page 23, all of them relied in some way or another on
approximations that were introduced to cut the exponentially growing Hilbert space of the
problem.

One of the simplest of these is the Hartree-Fock approximation, based on the assumption
that the many-body wave function can be approximated by a Slater determinant built from
single particle orbitals. This leads to a set of self-consistent equations that can be solved
numerically. In each step, the problem is solved in the one-particle Hilbert space instead of
the full n-particle Hilbert space. While the obtained ground states energy gives an upper
bound to the exact ground state energy due to the variational principle by Ritz, the meaning
of the one-particle orbitals is much less evident.

An extensive study of the interplay between disorder and interaction in three dimensions
was performed by Tusch and Logan [210]. They studied localization properties at half
�lling via the participation ratio of the single particle orbitals. An intermediate interaction
enlarged the metallic phase to stronger disorder values. For larger interaction strengths,
local moments became important, the density of states decreased at the Fermi level, and the
single particle orbitals became localized.
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Using similar methods, the occurrence of local moments in the metallic regime had been
shown previously by Milovanovi�c et al [211].

Epperlein et al found a localizing in
uence of the interaction close to the Fermi energy
in their Hartree-Fock study [212]. This was attributed to the reduced density of states due
to the Coulomb gap. Only away from EF, the interaction led to a delocalization, measured
via the participation ratio of the single particle orbitals. This results was compared to exact
diagonalizations, showing that the density of states and the localization properties close to
the Fermi level were well described by the results from the Hartree-Fock approximation [213].
The level statistics showed a transition to a metallic state only for hopping terms larger than
in the non-interacting case, attributed to the presence of the Coulomb gap.

Talamantes et al studied the level statistics of two-dimensional many electron systems
[214]. Generalizing the classical Coulomb glass without hopping to the quantum Coulomb
glass with hopping, the latter was treated as a small perturbation. Studying 72 electrons
on 144 sites, �rst the 5000 lowest energy states of the classical systems were found. In this
reduced Hilbert space, the quantum Coulomb glass matrix was set up and diagonalized.
A clear tendency for a crossover from Poisson to Wigner behavior in the nearest neigh-
bor spacing statistics was observed, which was stronger for a Coulomb than for Hubbard
interaction and related to delocalization in real space. Similar results were obtained for
three-dimensional systems [215], showing that the e�ect of electron correlations in favor of
delocalization was more important than the reduction of the density of states due to the
Coulomb gap in contrast to [212, 213].

A more reasonable restriction of the Hilbert space was employed by Vojta et al. Instead of
taking the states with the lowest classical energy, they took a certain number of low energy
Slater determinants constructed from the single particle orbitals of a Hartree-Fock calculation
[216]. Known in quantum chemistry as con�guration interaction, this method provided a
more accurate restriction to low energy states than the one employed by Talamantes et
al [214, 215] and was valid not only for small hopping terms. In this restricted basis the
Hamiltonian was exactly diagonalized [89]. The DC-conductivity was shown to be enhanced
due to the interaction only in the strongly localized regime (small hopping or large disorder).
For larger hopping, the conductivity was larger, but now the interaction had an opposite
e�ect and reduced the conductivity. Similar results were obtained for one- [217] and three-
dimensional systems [218], and using the sensitivity to a change of the boundary conditions
[219]. Investigating the return probability it was shown that the enhancement of localization
at EF was weaker than predicted by the Hartree-Fock results [212, 213]. Away from the Fermi
energy, a strong delocalization was found in agreement with earlier results [220].

Shepelyansky and Song generalized the results for two particles in two dimensions [92] to
higher particle numbers by restricting the Hilbert space to low energy Slater determinants
constructed from the non-interacting eigenstates. As in [92], page 21, they found a transition
from Poisson to Wigner behavior in the nearest neighbor spacing distribution. It occurred
at a �nite excitation energy and did not depend on system size and number of particles, as
long as the �lling factor was constant [87, 221].

Benenti et al used the con�guration interaction approach to study the opening of the
Coulomb gap in two dimensions [222]. The distribution of spacings between the ground state
and the �rst excited state showed a crossover from Poisson to Wigner-Dyson behavior as a
function of the interaction strength. Using 
 as de�ned in equation (36), a size independent



3.3 Other approaches 29

distribution was observed for a critical interaction strength which was smaller than the values
found for the phase boundaries of the intermediate phase in [94], page 23, and therefore
not related to this transition. These �ndings were associated with the crossover in the
hopping resistivity from Mott behavior, equation (4), to Efros-Shklovskii behavior in the
presence of the interaction-induced Coulomb gap. In addition, it was shown that the inverse
compressibility, the discrete second derivative of the ground state energy with respect to
the particle number, exhibited a smooth crossover from a L�2 to a L�1 decay in the size
dependence. For this reason, the theoretical analysis of addition spectra of quantum dots
based on the constant interaction model and random matrix theory failed to explain the
experiments. The behavior of the single (or many) particle excited levels was not related in
a simple way to the addition spectrum.

Waintal et al used an even more approximate method to study localization e�ects in
two-dimensional samples [88]. After calculating all non-interacting eigenstates, they �rst
neglected the low energy ones which were assumed to be related to electrons localized on
single sites characterized by exceptionally large potential 
uctuations. Then a restricted
number of low energy Slater determinants was constructed from this set and only in this
subspace the Hamiltonian was diagonalized. Three, four, and �ve particles were studied
using systems with sizes L=24; 28; 31, respectively, yielding roughly the same density. The
inverse participation number of the ground state was shown to increase with interaction
strength, a signature of interaction-induced delocalization. A localization length was de�ned
via the length scale over which a slight change in the random potential a�ected the ground
state charge density. Only short distances were considered in order to avoid boundary
problems. This localization length increased with interaction strength, the increase was
most pronounced for the system with the largest particle number. A �nite size scaling
analysis, section 4.2, revealed in the limit of an in�nite system a transition to a metallic
phase at a critical interaction strength of order one. For quasi one-dimensional samples, no
critical behavior was found [86].

3.3.8 Luttinger liquid

In strictly one dimension, the Luttinger liquid model allows for an exact treatment of the
interaction. After linearizing the dispersion relation and considering states with negative
energies to be �lled, the model can be solved analytically in terms of a Bogolubov trans-
formation. The Hamiltonian can be written in a bosonic form in terms of the collective
charge and spin density excitations [223]. While in principal being an ideal starting point
for investigating the in
uence of interaction on localization, it turns out to be very di�cult
to include disorder degrees of freedom since they lead to a non-linear Hamiltonian.

Attempts were made to include the e�ect of disorder using perturbation theory [224, 225]
and in a renormalization group study [226, 227]. A repulsive interaction strengthened local-
ization, while an attractive interaction tended to weaken it, eventually leading to a metallic
state characterized by dominating superconducting 
uctuations for su�ciently strong at-
tractive interactions.

This result is in apparent contradiction to the work for two particles where the interaction-
induced delocalization was found for attractive as well as for repulsive interaction. But
for energies closer to the ground state the attractive interaction was more favorable for
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delocalization [128, 202], indicating that this contradiction is very probably only related to
the energy chosen mostly to be in the middle of the band for the two-particle calculations.

3.3.9 Density matrix renormalization group

The results for the Luttinger model discussed above were checked numerically using the
density matrix renormalization group method pioneered by White [228]. This method allows
to calculate the ground state of a one-dimensional system with a �nite electron density. One
starts with a small building block of the total system which is diagonalized. Upon coupling
this block with an additional site, only a certain number of low energy states are considered
thus reducing the Hilbert space. Iterating this procedure, the ground state energy and
wave function can be calculated. Schmitteckert et al applied the method to interacting
fermions in a one-dimensional random potential [229, 230, 231]. Localization properties
were calculated by investigating the change of the ground state energy upon changing the
boundary conditions, the ground state phase sensitivity, page 15. As predicted, a delocalized
region was found for strong attractive interactions, while a repulsive interaction decreased the
localization length. Only for large disorder and intermediate repulsive interaction, a small
increase of the ground state phase sensitivity was observed. In contrast, single samples could
exhibit drastic variations with interaction strength. Whenever there was a reorganization of
the ground state due to the interaction, for example while going from a situation where the
electrons were localized in the deep potential 
uctuations to a situation where the ground
state was a periodic array of charges, the phase sensitivity increased dramatically up to
four orders of magnitude [232, 233]. Similar results were also obtained on a Hartree-Fock
level [234]. Recently, a localization length was de�ned using the dependence of the ground
state sensitivity on system size. A small enhancement was found for intermediate repulsive
interaction [235].

Close to the reorganizations of the ground state, the latter can be described as a superpo-
sition of two localized states which are insensitive to a change in boundary conditions. If a
state is constructed from two independent localized states, its own localization length is most
probably larger than those of the contributing states. This is the basis for the delocalization
of two-particle wave functions and also explains qualitatively the large e�ect of the ground
state reorganizations for �nite densities.

3.3.10 Quantum Monte Carlo method

Denteneer et al calculated the temperature dependent conductivity in the two-dimensional
disordered Hubbard model via the current-current correlation function with a Monte Carlo
technique [98]. At half �lling, insulating behavior was found. At quarter �lling, metallic
behavior was observed below a critical disorder strength. Preliminary results indicated
a metallic scaling with lattice size, too. Near the critical disorder, the spin susceptibility
diverged on both sides of the transition, indicating the importance of spin degrees of freedom
and possibly of local moments.

This result was in contrast to work by Yi et al who studied the Anderson Hubbard
Hamiltonian in two dimensions by means of a quantum real space renormalization group
method. An insulating ground state was reported at and away from half �lling [236].
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3.4 Summary of chapter 3

In the early approaches, the problem of two interacting particles was mapped onto di�erent,
already familiar models using some approximations. Dorokhov exploited the similarity of
two tightly bound particles in one dimension to a single particle in a quasi one-dimensional
system. Shepelyansky derived a single particle random matrix model based on the analysis
of the interaction matrix in the preferential basis of non-interacting two-particle eigenstates.
The same analysis was the base of the revival of the Thouless block scaling picture by Imry.
All approaches led to an interaction induced delocalization of two-particle wave packets.

But both mappings had their shortcomings. Upon studying numerically the bag model in
center of mass and relative coordinates, Halfpap et al demonstrated that the coupling of the
relative and the center of mass motion cannot be neglected in contrast to the key assumption
by Dorokhov. Starting from toy models in which additionally added potential elements had
been shown to decrease the localization length, R�omer et al derived Shepelyansky's random
matrix model from which an increase of the localization length followed.

Careful investigations of the interaction matrix elements indicated that correlations cannot
be neglected. This questions the simpli�ed translation of results from random matrix theory
and a non-linear �-model to two-particle localization lengths. The same problem exists for
the results obtained for the Breit-Wigner width since its only proven relation to the few
particle localization length was derived from random matrix theory. All analytic approaches
to the problem su�er from the impossibility to include correlation e�ects. This can only be
done with numerical calculations.

Numerical calculations were performed with the transfer matrix and the Green function
method. Though initial results of the transfer matrix method supported the interaction
induced delocalization, it was later shown that the method could not provide reliable results
with nowadays computing technology. For �nite samples, an unambiguous prove of the ef-
fect required too large systems. In the same way, the bag model su�ered from the failure
to produce correctly the non-interacting localization length due to a boundary e�ect. While
direct diagonalizations revealed the asymmetry of certain two-particle eigenstates, the nu-
merical breakthrough was the application of the �nite sample Green function method. This
allowed to prove unambiguously that interaction led to delocalization of two-particle wave
functions and to study the functional dependence on disorder and interaction. It also led to
the observation of a transition for two particles in two dimensions.

In addition to these direct numerical approaches to study the localization length of two
interacting particles, a lot of e�ort was spent on calculating the spectral properties, including
generalizations to larger particle numbers. But in contrast to the one-particle case where a
transition from Poisson to Wigner in the nearest neighbor spacing statistics indicated directly
the insulator to metal transition, the situation was much more complicated with interacting
particles. A direct mapping of the level statistics to the localization properties turned out
to be impossible. And the relevance of results for very small systems for the explanation of
the experimentally observed metal-insulator transition is subject to an ongoing debate.

In spite of the invested e�ort over the last years, the �eld of research on the interplay
between interaction and disorder is far from being closed soon. In order to tackle the main
issue, the metal-insulator transition in two dimensions, the two-particle calculations, es-
pecially about the localization properties, have to be extended to larger particle numbers
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and the ground state calculations for small two-dimensional systems have to be extended to
larger system sizes. This thesis bridges the gap between these two approaches. By presenting
exact results for the localization properties of up to four particles, it provides a �rm base for
the approximations which are necessary in order to extend the �nite density calculations to
larger system sizes.

In the following, a new numerical method to study few-particle localization lengths and
results for up to four particle will be presented. So far, this has been performed only in the
strongly insulating regime, by direct diagonalization of very small systems and by calculating
the ground state phase sensitivity with the density matrix renormalization group method.
Our method allows to study much larger localization lengths. It takes all states of the
spectrum into account and yields an upper bound for the conductivity.

4 Time evolution of wave packets

The time evolution of wave packets provides one of the most direct numerical tools to study
the electronic properties of disordered solids. Already in 1977 it was employed by Weaire
and Williams to calculate the inverse participation number averaged over all states within
an energy window [237].

Kramer and Weaire extended the method in order to calculate the conductivity of a
disordered system [238]. The existence of a metal-insulator transition was probed in two and
three dimensions [239]. Due to the available computing power only relatively small samples
could be treated leading to large �nite size e�ects. At that time, the time evolution was not
the right tool to judge the existence of extended states, as pointed out by De Raedt [240].
This became possible with the development of recursive methods like the transfer matrix
method or the Green function method which allowed the study of much larger samples, at
least in one direction. Thereafter, the time evolution was used to study the critical behavior
at the Anderson transition [241, 242] or the in
uence of a time dependent potential on the
motion of the electrons [243]. In both cases, an anomalous di�usion or a di�usive behavior
could be analyzed very well. Recently, the time evolution of wave packets was investigated
by direct calculation for one-dimensional Hamiltonians with long range random hopping
[244, 245]. Time evolution on percolation clusters was studied by Dr�ager and Halfpap [246].

In the following, it will be shown that the equation of motion method can be used to study
the localization properties of few-particle wave packets very accurately. In combination with
�nite size scaling, it is competitive to the calculation of matrix elements of the Green function
and thus provides a second, independent tool. More important, it can easily be generalized
to higher particle numbers as will be shown.

How can a method be competitive for the interacting case that was not at all competitive in
the absence of interaction? The reason is simple. The e�ciency of the Green function and the
transfer matrix method for calculating localization lengths in quasi one-dimensional samples
was based on a recursive calculation. There was no need to store the full Hamiltonian!
Computer time and memory requirements were reduced drastically in comparison to the time
evolution method which requires the storage of the full Hamiltonian. In contrast, as discussed
in section 3.1.3, all exact methods for the calculation of the two-particle localization length
needed the full Hamiltonian. Therefore, time evolution methods are much more competitive
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for interacting particles than in the non-interacting situation. All recursive methods are
based on suitable approximations [7, 133], which however work much better for the Green
function than for the transfer matrix method, compare the discussion about the bag model
on page 8. While concentrating on matrix elements between double occupied sites [133] or
employing elegant ways for the calculation of the matrix elements [7] might give an advantage
to the Green function methods for two particles, the time evolution method can more easily
be extended to higher particle numbers.

First, based on the instructive example of the one-dimensional Anderson tight binding
Hamiltonian for a single particle, the method is presented in the form used throughout this
thesis. Generalization to higher dimensions or larger particle numbers are given explicitly.
Then the �nite size scaling is introduced before the quantities suitable to extract the n-
particle localization length are de�ned.

4.1 Equation of motion method

Consider the Anderson tight binding Hamiltonian for a single particle in a one-dimensional
random potential: it contains a term representing the kinetic energy and another representing
the random potential,

Ĥ = Ĥkin + Ĥpot = V
X

<j 6=j0>

cyjcj0 +
X
j

"jc
y
jcj: (40)

The �rst sum is restricted to nearest neighbors on the lattice. The o�-diagonal hopping
matrix elements V =�1 de�ne the energy scale. The random potential is represented by
the diagonal elements "j, which are independently distributed at random according to a box
function, whose width W measures the disorder strength, "j2 [�W=2;W=2]. The lengths are
measured in units of the lattice constant a = 1.

The time evolution, j (t)i, of an initial condition, j (t = 0)i, is given by the unitary
transformation [10],

j (t)i = e�iĤt=�hj (t = 0)i: (41)

In contrast to methods developed earlier [239], we implement a procedure deviced by Suzuki
[247, 248, 249, 250]. First, the time t of the iteration is split into small time steps �= t=N ,

j (t)i =
 Y

N

exp
�
� i

�h
Ĥ�

�!
j (t = 0)i : (42)

This is exact since the Hamiltonian is time independent and commutes with itself. In the
next step, the Hamiltonian matrix H is split into three additive parts, H =H1 +H2 +H3,
as shown below for a one-dimensional chain with �ve sites,

0
BBBBBB@

"1 V 0 0 0
V "2 V 0 0
0 V "3 V 0
0 0 V "4 V
0 0 0 V "5

1
CCCCCCA
=

0
BBBBBB@

"1 0 0 0 0
0 "2 0 0 0
0 0 "3 0 0
0 0 0 "4 0
0 0 0 0 "5

1
CCCCCCA
+

0
BBBBBB@

0 V 0 0 0
V 0 0 0 0
0 0 0 V 0
0 0 V 0 0
0 0 0 0 0

1
CCCCCCA
+

0
BBBBBB@

0 0 0 0 0
0 0 V 0 0
0 V 0 0 0
0 0 0 0 V
0 0 0 V 0

1
CCCCCCA
: (43)
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The general decomposition can be written as

H1 =
X
j

"jc
y
jcj

H2 = � X
j2Nodd

cyj+1cj + cyjcj+1 (44)

H3 = � X
j2Neven

cyj+1cj + cyjcj+1:

Each of the three parts can be easily diagonalized and the exponential of each can be calcu-
lated analytically, yielding for example,

e�iH2�=�h =

0
BBBBBB@

cos(�V=�h) �i sin(�V=�h) 0 0 0
�i sin(�V=�h) cos(�V=�h) 0 0 0

0 0 cos(�V=�h) �i sin(�V=�h) 0
0 0 �i sin(�V=�h) cos(�V=�h) 0
0 0 0 0 0

1
CCCCCCA
: (45)

The exponential of this sum is now approximated by a product of exponentials of the parts.
A �rst order accurate approximation in � is the Trotter-Suzuki formula, familiar from the
theory of path integrals. Higher order approximation have been derived by Suzuki [247,
248, 249, 250], yielding more complicated products. In the present case a fourth order
decomposition is implemented which has been used before in the context of dephasing by
time dependent random potentials [243],

e~�(H1+H2+H3) = S(~�p)S(~� [1� 2p])S(~�p) +O(~� 4); with ~� = � i�
�h
; (46)

S(x) = eH1x=2eH2x=2eH3xeH2x=2eH1x=2; and p = (2� 3
p
2)�1: (47)

Instead of a product of three exponentials for the �rst order approximation, a product of
15 exponentials is necessary for the fourth order one. This number can be reduced to 13 by
combining neighboring terms which contain the same part of the Hamiltonian. In general,
the higher the order of the approximation, the more terms are required. There are two main
advantages of this method. First, the approximation is unitary, i. e. norm and energy of
the wave packet are conserved. Second, the deviations from the exact solution are known to
scale as jj (t)�  (4)(t)jj�c(4)t� 4, allowing � to be chosen such that the discretization error
can be neglected up to the largest times considered.

The time evolution of a single particle wave function in a one-dimensional random po-
tential is shown in the left plot of �gure 3, presenting log j (j)j2 for di�erent times. To get
typical amplitudes, logarithmic averaging over 100 disorder realizations has been performed.
The wave packet spreads with time over the lattice and reaches a stationary state for long
times. This indicates the complete localization of all states in the spectrum. The expo-
nential localization is clearly visible, �(W =7)� 2:5, taking into account that the absolute
square instead of the modulus is plotted. The localization length depends on the strength
of the disorder, right plot in �gure 3. In order to extract the localization length of the wave
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Figure 3: Left: time evolution of a typical wave packet in a one-dimensional random poten-
tial. Initially,  (j) = hjj (t= 0)i= �j;0. Snapshots taken at t= 0:1; 1; 10; 30; 60; 100; 1000;
and 10000, inner to outer curves. Right: stationary states for di�erent disorder values,
W =3; 4; 5; 7; and 9 (top to bottom), localization lengths are 15.7, 7.9, 4.7, 2.5, and 1.5.

packet directly from the data, useful quantities are the mean radius, MR(t), and the inverse
participation ratio, IPR(t),

MR(t) =
q
h (t)jj2j (t)i � (h (t)jjj (t)i)2; (48)

IPR�1(t) =
X
j

jhjj (t)ij4: (49)

The time evolution of both quantities is shown in �gure 4 for di�erent disorder values. Here
and in the following, these quantities are already averaged over di�erent disorder realizations.
Two regimes are visible. For short times, the mean radius increases ballistically, MR(t) / t.
For long times, it saturates. The saturation values de�ne localization lengths �MR and �IPR.

The generalization to higher dimensions or more particles is straightforward. In fact, both
are directly related. To account for the interaction, a third part is added to the Anderson
tight binding Hamiltonian, equation (40). Di�erent types of interaction have been studied,

Ĥint = U
X

<j 6=j0>

cyjcjc
y
j0cj0 ; (nearest neighbor); (50)

Ĥint = U
X
j

cyjc
y
jcjcj ; (on-site); (51)

Ĥint = U
X
j;j0

cyjcjc
y
j0cj0

jj � j 0j (Coulomb): (52)
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Figure 4: Time dependence of mean radius (left) and inverse participation ratio (right) for
di�erent disorder values, W =3; 4; 5; 7; and 9, top to bottom curves.

The n-particle Hamiltonian in one dimension is equivalent to an n-dimensional one-particle
Hamiltonian upon going to con�guration space. The mapping is straightforward for dis-
tinguishable particles. The indistinguishability of quantum mechanical particles constrains
the possible wave functions in con�guration space to those with a certain spatial symmetry,
discussed below. For two distinguishable particles, the L2 basis states in con�guration space
are given by cyj;kj0i= ayjb

y
kj0i, where cyj;k creates a two-particle state in con�guration space.

This is equivalent to creating one particle on site j 2 [1;L] (ayj) and the other on site k 2 [1;L]

(byk) in real space. Written in the con�guration space operators, the Hamiltonian reads,

Ĥ =
X
j;k

["j + "k + U(j; k)]cyj;kcj;k +
X

hj;k 6=j0k0i

cyj;kcj0;k0; (53)

where the second sum is restricted to nearest neighbors on the two-dimensional lattice. The
resulting matrix is extremely sparse, as the one of the two-dimensional Anderson Hamilto-
nian. The only di�erence is the non-trivial form of the diagonal elements, which include the
sum over the single particle potential values and the interaction energy U(j; k). The latter
is given by U�j;k�1 (nearest neighbor), U�j;k (on-site), or U=jj � kj for Coulomb interaction.

The generalization to n particles is straightforward. The o�-diagonal hopping elements
are those of the n-dimensional Anderson Hamiltonian. The diagonal elements are a sum
over the n one-particle potential values and the n(n� 1)=2 two-body interaction energies,

hj1 : : : jnjĤjj1 : : : jni =
nX
i=1

"ji +
nX

i;k=1
i<k

U(ji; jk): (54)

The Hamiltonian is then decomposed as before. The �rst matrix is again the diagonal part,
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equation (54). The o�-diagonal part is split into 2n matrices of the form,

Ĥ2i�1 =
X

j1;:::;ji;:::;jn
ji2Nodd

cyj1;:::;ji+1;:::;jncj1;:::;ji;:::;jn + cyj1;:::;ji;:::;jncj1;:::;ji+1;:::;jn; (55)

Ĥ2i =
X

j1;:::;ji;:::;jn
ji2Neven

cyj1;:::;ji+1;:::;jncj1;:::;ji;:::;jn + cyj1;:::;ji;:::;jncj1;:::;ji+1;:::jn; (56)

compare with equation (44). The n-particle problem has not only a larger Hilbert or con-
�guration space, in addition it requires a decomposition into more parts for calculating the
time evolution.

Working in con�guration space, one must not forget that quantum mechanical particles
are indistinguishable. This requires a wave packet in con�guration space that is symmetric
(or antisymmetric) under exchange of any two coordinates. Only initial wave packets ful-
�lling this condition are allowed. Due to the symmetry of the Hamiltonian, this property
is maintained during the time evolution. For numerical purposes, it is useful and neces-
sary for larger particle numbers to restrict the calculation to one of the symmetric parts
in con�guration space. This reduces the actual system size by a factor of n! and allows to
enlarge the maximally reachable one-dimensional system size L by a factor of n

p
n!. Since

the numerically achievable system size decreases drastically with increasing particle number,
the implementation of the symmetry is very important for an accurate investigation of �nite
size errors. The latter is crucial for obtaining reliable results especially for more than two
particles. Approaches to solve this problem will be described in the following.

4.2 Finite size scaling

There are several ways to deal with �nite size e�ects. The simplest is to neglect them
and to use the largest possible system size. In order to justify this approach, the size
dependence of the results has to be studied. Then one can try to extrapolate the results
for �nite system to that of the in�nite system, see for example the work by Frahm [7],
discussed on page 13, equation (26). This has to be done separately for each point in the
disorder interaction parameter space. In contrast, the �nite size scaling analysis, widely
used for studying localization lengths in the absence of interaction, takes the whole data set
to extract the localization length of the in�nite system. The main assumption is that the
reduced localization length, �(W;L) � �(W;L)=L, is a function of a single variable. This
scaling variable is the ratio of the localization length in the in�nite system, �1, depending
only on the disorder strength, and the system size L,

�(W;L) = f

 
�1(W )

L

!
: (57)

There are two limiting regimes for the function f . If no �nite size e�ects exist, i. e. very
large ratio of system size to localization length, the localization lengths �(W;L) for di�erent
system sizes are equal. Consequently, �(W;L) = �1(W )=L and f(x) = x. If instead the
localization length �1(W ) is larger than the system size, the measured length �(W;L) will
be proportional to the system size and �(W;L)= f(x)� const. Between these two limiting
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regimes, the functional form of �W (L) is the same for all disorder values W , leading to a set
of similar curves in the �W ; L coordinate system, left part of �gure 5. By an appropriate
rescaling of the argument, L, with the scaling parameter �1(W ), all curves fall on top of
each other and form a single scaling curve f , right part of �gure 5. The rescaling is done
best on a logarithmic scale where it amounts to shift the curves for di�erent disorder values
by ln�1(W ). It is performed numerically by a least square �t involving the complete data
set [29]. A free parameter remains since the whole curve can be shifted arbitrarily. This
parameter is �xed by extrapolating the results for the largest disorder to in�nite system sizes
or assuming that �nite size e�ects are negligible in this case.

For a single particle, the complete data set and the resulting scaling curve is shown in
�gures 5 and 6 for the mean radius and the inverse participation ratio, respectively. The
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Figure 5: Left: data set for the mean radius, disorder valuesW =1; 1:5; 2; 3; 4; 5; 6; 7; 8; and 9
(top to bottom), system sizes L=100; 200; 300; 400; 600; 800; 1000; 1200; 1400 (right to left).
Right: corresponding scaling curve.

quality of the scaling curves, right plot in �gure 5 and left plot in �gure 6, reveals the validity
of the �nite size scaling assumption. Since rather large system sizes can be reached, the main
part of the scaling curves is in the regime f(x) = x. The main result is the right part of
�gure 6, showing the resulting localization lengths for the in�nite system. While the result
for the mean radius is in agreement with the known W�2 dependence of the single particle
localization length for small disorder, strong deviations exist for the inverse participation
ratio. This can be understood by expanding the initial condition in terms of eigenstates �i,

j (t = 0)i =X
i

cij�ii =) j (t)i =X
i

cie
�iEit=�hj�ii: (58)

Inserting this into the de�nition of the mean radius, equation (48), one obtains in the sta-
tionary, time averaged limit in which oscillating terms of the form exp[i(Ei � Ej)t=�h] are
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Figure 6: Left: scaling function for the inverse participation ratio, parameters as in �gure
5. Right: disorder dependence of the localization lengths �1MR (solid line) and �1IPR (dashed
line). Short lines indicate slopes of W�2 (solid) and W�1:4 (dashed).

negligible,

�2MR =
X
i

jcij2(h�ijj2j�ii�h�ijjj�ii2)+
X
i

jcij2h�ijjj�ii2�
X
i;i0
jcici0j2h�ijjj�iih�i0jjj�i0i: (59)

The �rst sum is an average over the mean radii of individual eigenstates weighted with the
expansion coe�cients. The last sum gives the expectation value of the position operator
and is zero upon averaging since j 2 [�L=2;L=2] and hjj (t = 0)i = �j;0. The second sum
can be estimated to be of the order of an averaged localization length squared. To perform
this estimate, one assumes that all values h�ijjj�ii 2 [�L=2;L=2] can occur and that the
expansion coe�cients decay exponentially with distance from the origin,

�MR(t!1) �
"X

i

jcij2MR2
�i
+O(��2)

#1=2
: (60)

For the inverse participation ratio, the situation is more complicated since the product of
four exponentials introduces further terms,

IPR�1(t!1) =
X
j

0
@X

i

jci�ij4 +
X
i6=i0
jci�ij2jci0�i0j2

1
A : (61)

An upper estimate for IPR�1 is obtained by neglecting the second term which cannot be
expressed in terms of the inverse participation ratio of individual eigenstates,

�IPR = IPR(t!1) � 1P
i jcij4=IPR�i

: (62)
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Even if the mean energy of the initial condition is chosen in the middle of the band, equation
(58) reveals that all eigenstates of the system contribute. Depending on the energy, they
have di�erent localization lengths. Those in the middle of the band will have a larger one
than those close to the band edges. It is even more important that the strongly localized
states close to the band edges scale di�erently with disorder strength [251]. The averaging
performed during the calculation of the mean radius favors states with large localization
lengths and deviations from the usual W�2 scaling are negligible. In contrast, the inverse
participation ratio is dominated by states in the band tails with very small localization
lengths. This is the reason for the di�erent behavior of the two quantities as a function
of the disorder strength. Based upon a detailed analysis, a logarithmic correction, �IPR =
�=(a ln�+ b) was proposed [252]. Valid in the regime ��1, it �ts the low disorder data of
�gure 6.

If one could restrict the states contributing to the initial wave packet to a certain energy
range, their localization lengths would be similar and inverse participation ratio and mean
radius of the wave packet should give similar results. This restriction can be done by applying
the operator [1̂�(E1̂�Ĥ)2=E2

max]
m to the initial wave packet. The energies taken into account

are then situated in the interval E�Emax

p
1� 2�1=m [28, 237]. The analysis described above

was repeated with a small energy window (m=10000) around the middle of the band, E=0.
The results are displayed in �gure 7. Now, both quantities behave indeed very similar, a
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Figure 7: Left: scaling function for the inverse participation ratio (left curve, shifted by -2)
and the mean radius obtained using a small energy window around E = 0, parameters as
in �gure 5. Right: disorder dependence of the localization lengths �1MR (+) and �1IPR (�).
Solid and dashed lines are power law �ts for W 2 [1;4], equations (63) and (64).

power law �t �1(W )=aW b gives for W �4,

�1MR = (126� 4)W�2:00�0:04; (63)
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�1IPR = (164� 6)W�2:03�0:05: (64)

Estimating the goodness Q of the �ts with the �2 test [253] gives Q=0:392 and Q=0:387 for
the mean radius and the inverse participation ratio, respectively. Note that both quantities
increase upon selecting an energy window in the middle of the band since eigenstates with
smaller localization lengths cannot contribute anymore to the averaging in equations (60)
and (62). While the disorder dependence is in agreement with the theory, the absolute
value is larger than expected. This di�erence is related to the application of the operator
[1̂�(E1̂�Ĥ)2=E2

max]
m, which increases (decreases) the expansion coe�cients if the energy of

the eigenstate is inside (outside) the energy interval [138]. The initial wave packet is spread
onto the lattice before the time evolution starts. Larger initial values of the mean radius
result in larger saturation values.

There is one main di�erence between the �nite size scaling described above and the
original approach used for quasi one-dimensional samples, see [29] for a detailed description.
Originally, the length scale L was the transverse size of the system. Along the transfer
direction, the systems were essentially in�nite, M�L. While thus very large localization
lengths M��(W;L)�L could be reliably studied, the anisotropic increase of the system
size with the scaling variable has been criticized. In our case, the system size is �xed in
all directions in con�guration space, L=M . While leading to an isotropic increase of the
system with the scaling variable, every resulting localization length larger than the system
size has to be considered with great care. This should be kept in mind for the remaining
part of this thesis. It also has to be considered upon analyzing the results for two particles
in two dimensions. Finite size e�ects that could be interpreted as a metallic branch of the
scaling curve can easily be produced numerically if the localization length is much larger
than the system size.

4.3 Extracting n-particle localization lengths

Quantities quite similar to the mean radius and the inverse participation ratio of one-particle
wave packets can be used to extract an n-particle localization length from the time evolution
of n-particle wave packets. Equations (48) and (49) can easily be generalized to the n-
dimensional con�guration space,

MR(t) =
1p
n

vuuth (t)j nX
i=1

j2i j (t)i �
nX
i=1

(h (t)jjij (t)i)2; (65)

IPR�1=n(t) =
X

j1;:::;jn

jhj1; : : : ; jnj (t)ij4: (66)

In the absence of interaction, all directions in con�guration space are equivalent and the
above quantities are well suited for studying localization of n-particle wave packets. However,
it will be shown that in the presence of interaction, the extension of the wave packet in
con�guration space depends strongly on the direction considered. Since the interaction is
most important when the particles are close to each other, the mean extension in center of
mass direction turns out to be a very useful quantity,

CM(t) =
1p
n

vuuth (t)j( nX
i=1

ji)2j (t)i �
 
h (t)j

nX
i=1

jij (t)i
!2

: (67)
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The pre-factor is chosen in such a way that the result can directly be compared to the one-
particle localization length. Strictly speaking, the center of mass is de�ned as CM=(

Pn
i=1 ji)=n

leading to a 1=n pre-factor in equation (67). This reduction of the localization length related
to the higher total mass is neglected in order to allow for a better comparison of the data
for di�erent particle numbers. For two particles, the mean distance between them has been
calculated, too,

RD(t) =
1p
2

q
h (t)j(j1 � j2)2j (t)i � (h (t)jj1 � j2j (t)i)2: (68)

These quantities not only probe the spatial anisotropy of the wave packet. The center of
mass extension for example is related to the conductivity of the n-particle system. This can
be seen upon coupling the full Hamiltonian to an external �eld,

Ĥext = �e
c

Z
j(r)A(r; t)dr ; (69)

and applying time dependent perturbation theory. The term linear in the �eld de�nes the
conductivity and a straightforward calculation yields

�(!) / !
X
i

jh�0jRj�iij2�("i � "0 � �h!): (70)

Here, j�0i and j�ii are the ground and excited n-electron states with energies "0 and "i,
respectively, and R=

P
i xi=n is the center of mass coordinate. For ! ! 0 only excited states

very close to the ground state contribute. An upper bound is

�(!) � ! const h�0jR2j�0i: (71)

As long as the expectation value remains �nite, the conductivity vanishes for ! ! 0. The
calculated localization length �CM, equation (60), includes the ground state expectation
value and thus gives an upper bound for the conductivity. As long as �CM remains �nite,
the conductivity will vanish in the zero frequency limit.

The arguments about the relation of the quantities measured during the time evolution to
the individual eigenstates remain valid for n particles, too. Hence, a diverging �CM indicates
that at least one eigenstate in the system has an in�nite localization length while a diverging
�IPR requires an in�nite localization length of all contributing eigenstates. This follows from
the di�erent averages, equations (60) and (62), respectively.

5 Two interacting particles

In the preceding section, the time evolution method was introduced. The important quan-
tities like the mean radius and the center of mass extension of n-particle wave packets were
de�ned. And it was shown that single particle localization lengths can be reliably studied
with this method.

The results for two interacting particles that will be presented in this section reveal
that the time evolution method in combination with a �nite size scaling analysis is also
suited well for the study of the localization properties of interacting particles. First, it will
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be demonstrated that in the absence of interaction the results agree with the predictions.
Hence in contrast to the transfer matrix method, any enhancement e�ect is related to the
interaction. Second, the observed enhancement of the localization length in the presence of
the interaction is shown to be in agreement with results obtained via the Green function
method.

The time evolution for two interacting particles can easily be calculated using the methods
described in section 4.1. A typical spreading of the wave packet in con�guration space
with time is shown in �gure 8. Initially, the in
uence of the interaction can hardly be

Figure 8: Time evolution of a two-particle wave packet without interaction (top) and for a
nearest neighbor interaction of strength U=1 (bottom) for times t=10; 100; 1000; and 10000
(left to right). The plots show the typical amplitude j j1;j2(t)j2, averaged over 30 disorder
realizations. Grey scale coding from white (f(x)=1) to black (f(x)=0) is performed using
a step function f(x)=[�(x� 0:1) + �(x� 0:01) + �(x� 0:001)]=3.

seen, t� 100, �rst two columns of �gure 8. Only after the one-particle localization domain
has been explored, the interaction leads to a further growth of the wave packet. The fact
that this growth persists only along the center of mass direction in con�guration space
reveals a correlated motion of the two particles due to the interaction as underlying physical
mechanism. For a time much larger than the one-particle localization time, this growth
stops, revealing as for a single particle the localization of all states in the spectrum.

In the following, after a few necessary technical remarks, the time evolution and the
di�erent localization lengths de�ned above, are discussed. They reveal the reliability of the
new method for the calculation of localization lengths for interacting particles.
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5.1 Initial conditions

The choice of suitable initial conditions is very important for the investigation of the in-
teracting particle problem. If the initial wave packet corresponds to two particles far away
from each other, no e�ect is expected. Only if the two particles are close to each other, a
major contribution to the wave packet comes from two-particle eigenstates with an inter-
action induced larger localization length. In addition, the delocalization mechanism should
be most e�cient for large enough single particle localization lengths, that is for energies in
the middle of the band. This can only be achieved if the total energy is in the middle of
the band, too. However, restricting the energy distribution of the states that build up the
initial wave packet, the relative distance between the electrons grows. This disadvantage is
larger than the advantage due to the energy selection. For this reason, it is reasonable to
consider initial states without energy selection. Nevertheless, the mean energy should be in
the middle of the band. Then, due to the van Hove singularity in the density of states at
E=0, �gure 9, most of the contributing eigenstates will indeed have energies in the middle
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Figure 9: Density of states of two-particle wave functions. Interaction energies U =1; 5; 10
(yellow, green, and red line) are compared to the density of states for a two dimensional
tight binding lattice (blue line).

of the band, even if there is no direct energy selection.
How can the mean energy be �xed? For strongly localized initial states where each particle

occupies a single lattice site, the energy of the wave packet is only given by the potential
energies at these sites plus maybe a contribution from the interaction energy. A mean energy
in the middle of the band can be obtained by choosing the potential energies at the initial
sites adequately, e. g. "0="2=0.

The remaining question is the initial distance between the two particles. As long as it is
shorter than the one-particle localization length, the long time dynamics is independent of
the initial condition. Only the short time dynamics is in
uenced. For a symmetric spatial
wave function, i. e. particles with opposite spins, initial conditions with two particles on the
same sire and on neighboring sites were analyzed [140]. For two particles on the same site,
the ratio between the center of mass and the relative extension showed that the interaction
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suppressed the motion in center of mass direction for short times. This suppression was
related to the fact that sites along the center of mass direction in con�guration space had
on average an energy di�erence of U and were thus harder to reach. A similar behavior was
observed for two particles initially being on neighboring sites.

This reduction of the ballistic motion is less pronounced if the disorder is chosen such
that it compensates the interaction locally in order to achieve a mean energy in the middle
of the band. In simple words, the short range interaction de�nes a wall in con�guration
space. This wall does not hinder the relative spreading, but the one along the center of mass
direction. This e�ect is weaker when the local compensation introduces holes into the wall.
Note that the center of mass and the relative extension de�ned in [140] always start from
zero at t=0, even if the two particles are located far from each other. They di�er slightly
from equations (67) and (68) which measure really the center of mass extension and the
distance between the two particles and hence can have di�erent starting values. In this case,
a more adequate measure than the ratio of center of mass and relative coordinate is given
by a direct comparison of results with and without interaction, e. g. the time evolution of
CM(U =1)=CM(U =0) or CM(U =1)� CM(U =0) using the same disorder realizations for
both calculations.

5.2 Time evolution

One advantage of the quantum di�usion method for studying localization properties is that
the time evolution yields important information about the physical mechanism leading to
the interaction-induced delocalization.

In �gure 10, the time evolution of the center of mass extension is shown with and without
interaction for di�erent disorder values. Note the logarithmic scale on the time axis which
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Figure 10: Time dependence of center of mass extension for U =0 (left) and U =1 (right)
for disorder values, W =2; 3; 4; 5; 6; 7 and 10 (top to bottom) and a system size L=139.

turns out to be most suitable for representing the data, see �gure 11. The interaction-induced
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delocalization is obvious, leading to larger saturation values of the center of mass extension
in the presence of interaction. After the single particle localization time is reached (arrows in
�gure 10), the center of mass extension grows very slowly such that a logarithmic time-scale
is appropriate. In contrast to the situation without interaction, where only a crossover from a
ballistic to a localized regime takes place, �gure 4, the interaction establishes an intermediate
regime characterized by a logarithmically slow growth of the center of mass extension with
time. These three regimes are visible in �gure 11, showing the size dependence of the results
for a single disorder value. The ballistic regime is most obvious in the right plot, where

0

20

40

60

80

0 2500 5000 7500 1 10 100 1000

1

10

80

1 10 100 1000

CM

t t t

Figure 11: Time dependence of center of mass extension for U =1 and W =1:75 for system
sizes L = 39; 59; 79; 99; 119; 139; 159; 179; 199; 219; 239; 259; 299; and 399 (bottom to top):
normal scale (left), logarithmic time-scale (middle) and double logarithmic scale (right).

CM(t) / t yields the straight line for t � 10. The intermediate regime is revealed on the
logarithmic time-scale in the middle plot, indicating a growth CM(t)�a log(t)+b. The scale
is important since only the logarithmic time-scale really reveals the saturation of the growth,
and hence the third regime.

To analyze better the in
uence of the interaction, the di�erence between the results
with and without interaction is shown in �gure 12 for a relatively large system size. For
short times, the interaction suppresses the motion, most pronounced for the center of mass
extension. After the single particle localization time is reached (F (U =0)= const:), a slow
logarithmic growth,

F (U=1)� F (U=0) = c1 log(t) + c2; (72)

is observed for all quantities for more than an order of magnitude in time. This can also be
demonstrated by looking directly at the intermediate regime which exists with interaction,
left part of �gure 12. The presented data clearly indicates that the growth along the center of
mass direction is not di�usive, F (U=1)=c1

p
t+c2, in contrast to all theoretical predictions.

This observation questions the validity of the underlying theory discussed in section 3.
For times longer than the two-particle localization time, the spreading of the wave packet

stops and an asymptotic shape is reached. The pro�le of the wave packet in this asymptotic
limit along the two important axis in con�guration space is shown in �gure 13. To obtain a
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Figure 12: Left: time dependence of di�erence F (U = 1) � F (U = 0) for the mean radius
(solid), the center of mass extension (dashed), the relative distance (short dashed), and the
inverse participation ratio (dotted line). System size is L=279, disorder is W = 2. Right:
F (U =1) in the intermediate regime for IPR, CM, MR, RD (top to bottom), L=399 and
W =1. Straight lines are �ts with c1 log(t) + c2 in both cases.
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Figure 13: Typical wave packet pro�les for long times along center of mass (left) and relative
direction (right). Disorder strength: W =3, system size: L=279 and interaction strengths:
U=0:0 (red), 0.5 (green), 1.0 (blue), and 4.0 (magenta), bottom to top.

typical shape, logarithmic averaging is performed over 50 disorder realizations. Along both
the relative and the center of mass direction, the wave packet is exponentially localized.
While the interaction hardly in
uences the localization length along the relative direction, it
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increases strongly the localization length along the center of mass direction. In the vicinity of
the starting point, the curves are similar, dominated by the single particle localization length.
Only for distances larger than �1(�11), the two-particle localization length is relevant. Note
that the localization length increases further even for U=4. This indicates that the duality
described on page 21 for an on-site interaction and a symmetric wave packet does not hold
in the case of a nearest neighbor interaction. The interaction dependence will be analyzed
in detail below.

A high resolution plot of the full wave packet at saturation is shown in �gure 14. Six

Figure 14: Two-particle wave packet after the localized regime is reached, L= 800, U = 2,
and W = 2. Amplitude coding is described in the text.

orders of magnitude are shown. The mean value of j (i; j)j2 is de�ned to be one. From
the center, white indicates �rst order of magnitude, 100< j (i; j)j2�1000, black indicates
second order, 10< j (i; j)j2�100. In the following, white, black, white, and black indicate
each the decrease of j (i; j)j2 by another order of magnitude. The central region reveals
still the quadratic structure of a non-interacting wave packet, only beyond the one-particle
localization border, the interaction-induced delocalization leads to the asymmetric shape, as
seen already in �gure 13.
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5.3 The two-particle localization length

As for the one-particle calculations, the long-time saturation values of the quantities de�ned
in equations (65, 66, 67, 68) determine the di�erent two-particle localization lengths. To
obtain these values from the disorder averaged time evolution of �gures 10 and 11, the
complete long-time behavior is taken into account instead of only the value for the largest
time. This procedure increases the quality of the results for two reasons. First, small
oscillations around the saturation value are average out. Second, as can best be seen in the
middle plot of �gure 11, saturation might not be complete for the lowest disorder values.
Fitting the complete long-time behavior then gives a reasonable extrapolation. That long
enough times have been considered in the calculations presented her can be seen from the
fact, that the extrapolated saturation values are within the statistical error bars of the
disorder averaged value for the longest times considered. This statistical error is smaller
than 1% for the most important low disorder values. As the same number of samples was
used for the larger disorder values W �6 for which the wave packets explore a much smaller
number of lattice sites, the relative accuracy is only around 3% in this case. This is the
reason for the small scatter in the large disorder region of the scaling plots. For the results
without interaction, an exponential ansatz of the form

f(t) = c1
�
1� e�c2t

c3
�

(73)

was used due to its 
exibility. With interaction, based on the knowledge that the intermediate
regime is best described by a logarithmic growth,

g(t) = [c1 log(t) + c2]e
�t=c3 + c4

�
1� e�t=c3

�
(74)

is used. The use of g(t) instead of f(t) for the interacting case enhances the quality of
the �ts. The non-linear �tting was performed with the Levenberg-Marquardt method [253].
For most of the �ts, the time range t2 [100;10000] was considered, in some cases the lower
bound had to be shifted slightly to ensure a good �t. For the large disorder results one is
deep in the asymptotic regime for the times considered. Since the logarithmic growth is not
very pronounced problems with g(t) can occur. In that case an average over the asymptotic
regime provides the most accurate result for the saturation value. The quality of the �ts is
demonstrated in �gure 23. The resulting localization lengths in dependence of system size
and disorder strength have then been used for the �nite size scaling analysis.

5.3.1 Mean radius and inverse participation ratio

Figure 15 displays the results for the mean radius without interaction. Calculations were
performed for disorder strengths W =1:25; 1:5; 1:75; 2:0; 2:5; 3:0; 4:0; 5:0; 6:0; 7:0; 8:0; 9:0; and
10:0, top to bottom in left plot in �gure 15. System sizes were L = 39; 59; 79; 99; 119;
and, 139 (right to left), su�cient for an accurate calculation of localization lengths up to
70. The resulting localization lengths scale with disorder as the transfer matrix results of
the one-particle localization length, only the absolute value is by a factor of 1.22 larger than
expected na��vely, �gure 17. This di�erence is related to the averaging over the single particle
energies (20), conjectured in [8] and proven in [9]. This result demonstrates that the quantum
di�usion method is well suited for studying interaction e�ects on the localization properties
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Figure 15: Finite size scaling for the mean radius for U = 0. Left: raw data; right: corre-
sponding scaling curve.

of few-particle wave packets because it gives the correct results for the non-interacting case,
in contrast to the transfer matrix method. The scaling for the saturation values of the
mean radius with interaction is shown in �gure 16. The disorder values are apart from an
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Figure 16: Same as �gure 15 for U=1.

extra point at W = 1 the same as above. Due to the larger localization lengths, the range
of system sizes is enlarged, L = 39; 59; 79; 99; 119; 139; 159; 179; 199; 219; 239; 259; 299; 399.
Figure 17 demonstrates the increase of the localization length with the interaction. The
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Figure 17: Mean radius localization length in the in�nite system for U = 1 (+) and U = 0
(�). Solid line: equation (75), dashed: 1:22�1.

data can be perfectly �tted with a crossover from the one-particle localization length �1 to
�21 for decreasing disorder,

�1MR(U = 1;W ) = (1:225� 0:008)�1(W ) + (0:051� 0:002)�21(W ): (75)

In order to obtain the errors of the �t parameters, error bars for the scaling parameter �1MR

are necessary. Estimated from the slope of the scaling curve, the error is small for large
disorder values where the data points are in a region of the scaling curve with a slope close
to one. It gets larger for smaller disorder values with data points in the 
at region of the
scaling curve. The goodness of the �t as estimated with a �2 analysis [253] is roughly Q=0:3.
For the U =0 data, a �t with equation (75) leads to a negative sign and a very large error
for the �21 term, indicating its irrelevance for describing the data.

In the literature, a power law �t for the low disorder behavior was widely used to quantify
the enhancement e�ect. In the rangeW 2 [1;3], �1MR(U=1;W ) / W�2:94�0:04 is found, similar
to results obtained with the Green function method [8, 9], see section 3.1.3. The original
prediction by Shepelyansky �2 / �21 is dominant only for disorder values W � 1 but the
crossover to that regime is visible.

The results for the inverse participation ratio are displayed in �gure 18. As for the mean
radius, the �nite size scaling ansatz works and the localization length is enhanced due to
the interaction. Discrepancies exist between the U=0 data and the one-particle localization
length, even though they are smaller than for a single particle without energy selection, �gure
6. The logarithmic singularity in the density of states provides a kind of energy selection.
The remaining di�erence is as for a single particle related to the averaging over eigenstates
performed upon calculating the inverse participation ratio of the wave packets, page 40.
However, even if the energy would have been restricted, an average over all single particle
energies is performed, see equation (20). Nevertheless, the data can still be described using
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Figure 18: Finite size scaling for the inverse participation ratio. Left: scaling curves for
U =0 (left, data shifted by -1) and U =1 (right). Right: localization length in the in�nite
system for U = 1 (+) and U = 0 (�) compared to the one-particle localization length �1
(dashed line). Solid line is equation (77).

the logarithmic correction introduced on page 40.
Considering as for the mean radius only low disorder values and �tting the data for U=1

with a power law yields,

�1IPR(U = 1;W ) = (682� 19)W�3:11�0:05; W 2 [1; 2:5] (76)

compared to the crossover �t

�1IPR(U = 1;W ) = (1:94� 0:04)�1(W ) + (0:06� 0:01)�21(W ); W 2 [1; 10]: (77)

Both the mean radius and the inverse participation ratio are insensitive to the spatial
shape of the wave packet in con�guration space. As can be seen already from the plots of
the time evolution (�gure 8), from the cross sections of the stationary wave packets (�gure
13) and from the shape of the wave packet in the long time limit (�gure14), along di�erent
directions in con�guration space the localization lengths di�er. This anisotropy will be
analyzed in the next section.

5.3.2 Anisotropic localization

The result for the saturation value of the center of mass extension is shown in �gure 19. As
expected, the delocalization is more pronounced than for the mean radius and the inverse
participation ratio, compare with �gures 17 and 18. For U=0, again a very good agreement
with the one-particle localization length is observed, strengthening the applicability of the
method. To perform the scaling in the presence of the interaction, the smallest sample
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Figure 19: Finite size scaling for the saturation value of the center of mass extension. Left:
scaling curves for U =0 (left, shifted by -2) and U =1 (right). Right: localization length in
the in�nite system for U=1 (+), �tted with equation (79) (solid line), and U=0 (�), �tted
with 1:08�1 (dashed line).

sizes have been left out for the lowest disorder values since they showed dominant �nite size
errors. Along the center of mass direction, the largest localization lengths and consequently
the largest �nite size errors are observed. Leaving out the sample sizes with dominant �nite
size errors reduces the error bars for the localization length and yields a more reliable scaling
curve. The resulting localization length can be �tted with,

�1CM(U = 1;W ) = (987� 40)W�3:60�0:06; W 2 [1; 2:5]; (78)

�1CM(U = 1;W ) = (0:93� 0:01)�1(W ) + (0:11� 0:003)�21(W ); W 2 [1; 10]: (79)

The in
uence of the �21 term is more pronounced than for all other quantities, indicating
the proximity to the regime �2 / �21 predicted by Shepelyansky. This proximity is also seen
from the slope of �3:6� 0:06 for the low disorder power law �t, very close to the predicted
value of �4.

For comparison, the results for the extension in relative direction are shown in �gure 20.
As expected from the cross sections of the wave packets at saturation, right plot in �gure
13, the relative extension is hardly in
uenced by the interaction. Only a very small e�ect
is visible, which is related to the logarithmically slow increase of the pair size predicted in
[189, 200] and observed in [140] and �gure 12. Fitting as above yields,

�1RD(U = 1;W ) = (195� 2)W�2:32�0:02; W 2 [1; 2:5]; (80)

�1RD(U = 1;W ) = (1:42� 0:02)�1(W ) + (0:0094� 0:0008)�21(W ); W 2 [1; 10]: (81)
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Figure 20: Finite size scaling for the extension in relative direction. Left: scaling curves for
U=0 (left, data shifted by -1.5) and U=1 (right). Right: localization length in the in�nite
system for U=1 (+), �tted with equation (81) (solid line), and U=0 (�), �tted with 1:35�1
(dashed line).

The comparison with the extensions in center of mass directions indicates the importance of
the interaction. A larger localization length is only observed along directions in con�guration
space where the interaction is relevant. Thus the short range interaction leads to a highly
anisotropic con�guration space. The in
uence of a long range interaction will be discussed
in the next part.

5.3.3 In
uence of the interaction

In �gure 21, the in
uence of a Coulomb, U(i; j) = 1=ji � jj, and a random interaction,
U(i; j)2 [�1;1], is shown. For the random interaction, no anisotropy in con�guration space
is found. Considered system sizes are L= 39; 59; 79; 119; 159; 199 for the Coulomb interac-
tion and L=39; 59; 79; 119; 159; 199; 239; 299; 399 for the random interaction. The long range
Coulomb interaction shows a larger delocalization e�ect than a short range interaction both
for the center of mass extension and the relative distance, but qualitatively the results are
similar. A di�erent result is obtained for a random interaction which does not provide a
preferred direction of propagation in con�guration space. The large enhancement of the
localization length in comparison to the other interaction potentials can be understood be-
cause the spatial correlations in the random potential, see equation (53), lose importance if a
random interaction is present everywhere in con�guration space. In the zero disorder limit,
the Hamiltonian is that of a single particle in two dimensions with the interaction strength
replacing the disorder strength.

Having discussed the in
uence of the interaction range and form, what about its strength?
For an on-site interaction and the necessarily spatially symmetric two-particle wave function,
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Figure 21: Finite size scaling for di�erent kinds of interaction potentials. Left: from right to
left: scaling curves for a random interaction (MR) and for a Coulomb interaction (CM and
RD, shifted by -2 and -4). Right: localization length for the random, �1MR (+�, blue line),
and Coulomb interaction, �1CM (+, red) and �1RD (�, green), compared to �1CM and �1RD for
a nearest neighbor interaction, red and green line, respectively.

a duality between the small and large interaction limits was predicted and observed for
the level statistics in [141]. For the localization length, qualitative but not quantitative
agreement with the duality prediction was reported [9], the maximum of the localization
length for example depended on the disorder strength in contrast to the prediction. The
results of calculations with a nearest neighbor interaction and an antisymmetric spatial
wave function are shown in �gure 22. The �nite size scaling analysis for the nearest neighbor
interaction has been performed with system sizes L=39; 79; 119; 159; 199; 239; 279. Even for
the largest interaction strength considered, the localization length continued to increase,
neglecting the little scatter for large disorders related to the disorder averaging. No sign
of the duality is observed. Apparently, it is valid only for the special case of an on-site
interaction, see the right plot in �gure 22, comparing both interactions for a single disorder
value and system size. This observation indicates that one has to be careful with simpli�ed
predictions about the dependence of the localization length on interaction strength because
a very small di�erence in the interaction range can drastically alter the results. So far, there
is no theoretical understanding of the interaction-induced delocalization that can explain
these di�erences. In a mapping to a random matrix model, both interactions would give
the same results! Maybe this di�erence can be resolved by investigating both interactions in
perturbation theory. Such an approach revealed a di�erent in
uence of a nearest neighbor
and an on-site Hubbard interaction on the persistent current [254].

The interaction dependence in the right plot of �gure 22 seems to be logarithmic, the
curves resemble straight lines for U � 1. For the nearest neighbor interaction the increase
with interaction strength seems to be even slower than logarithmic. These are only qualita-
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Figure 22: Finite size scaling for di�erent strengths of the nearest neighbor in-
teraction. Left: center of mass localization length in the in�nite system for
U=0:0; 0:25; 0:05; 0:75; 1:0; 1:25; 1:5; 2:0; 4:0; 8:0 (bottom to top curves). Right: �CM(U) for
an on-site interaction (symmetric wave function,+) and a nearest neighbor interaction (anti-
symmetric wave function,�) for a �nite sample of size L=119 and disorder strength W =3.

tive statements due to the limited number of data points but a similar observation was made
in [9]. The di�culty to explain the numerical data on the interaction dependence justi�es
to consider only a �xed interaction value for higher particle numbers. In addition, a huge
amount of computing power would be needed to obtain the results of �gure 22 for more than
two particles.

In this chapter, the time evolution method in combination with �nite size scaling has been
used to study the localization properties of two-particle wave packets. These investigations
allowed for an independent check of the results obtained with the di�erent versions of the
Green function method with a positive outcome. This agreement demonstrates that our
method is well suited for studying localization properties of interacting particles. Having thus
established the new method, it will now be applied to higher particle numbers, which cannot
be treated easily with the Green function method. For the �rst time, a direct and numerically
exact investigation of the localization properties of few-particle wave packets is performed.
In addition, the results presented in the following chapter provide an exact starting point for
the approximations which are necessary in order to achieve a better understanding of the
metal-insulator-transition in two dimension.

6 More than two particles

What are the changes in the results when the particle number is increased? As already
discussed, the time evolution method is well suited for calculating the localization length of
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few-particle wave packets, employing the generalization discussed in section 4.
First, results for three particles are presented. Three particles are much stronger delo-

calized than two particles. The delocalization is even stronger than predicted previously by
studying the Breit-Wigner width [174] and by generalizing Dorokhovs approach [190]. Based
on the hierarchical structure of the con�guration space, an upper bound for the n-particle lo-
calization length is derived. Predicting a superexponential increase of the localization length
with increasing particle number, the upper bound is in agreement with the three-particle
results. Increasing the already substantial numerical e�ort even further, localization lengths
for four-particle wave packets are calculated and shown to be in accordance with the the-
ory. Finally, the scaling with particle number is demonstrated and the numerical e�ort is
discussed in detail.

6.1 Three-particle wave packets

Examples for the time evolution of three-particle wave packets are shown in �gure 23, com-
pared to the two-particle results. The three-particle wave packets have much larger satu-
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Figure 23: Time dependence of center of mass extension for two (left) and three particles
(right) for disorder values W =3; 4; 5; 6; 7; and 10 (top to bottom). All curves are �tted for
t2 [100;10000] with equation (74), saturation values are within the error bars due to disorder
averaging.

ration values than the two-particle ones, indicating a stronger in
uence of the interaction.
The system sizes for the two-particle wave packets in the left plot of �gure 23 were chosen in
correspondence to those of the three-particle ones in the right plot, being L=103 for W =3,
97 for W =4, 71 for W = 5and W =6, 55 for W =7 and 47 for W =10.

In order to quantify the in
uence of the interaction, again a complete one parameter
scaling analysis was performed. To prove the reliability of the method, �gure 24 shows the
results for non-interacting particles. Only relatively small system sizes L=23; 31; 39; 47 have



58 6 MORE THAN TWO PARTICLES

-4

-3

-2

-1

0

-4 -3 -2 -1 0
1

10

100

3 6 9

ln
�

ln�1 � lnL

�1

W

Figure 24: Finite size scaling and localization lengths for three-particle wave packets without
interaction. Left: scaling curves for IPR (left, data shifted by -1), MR (middle), and CM
(right, shifted by 1). Right: localization lengths in the in�nite system, IPR (�), MR (+),
and CM (+�) compared to the one-particle localization length �1 (solid line).

been used. With such small sizes, it is important to realize that due to the antisymmetry of
the wave function, the real volume in con�guration space is not L3, but rather L(L�1)(L�2).
This has to be taken into account when calculating the reduced localization length. The
agreement with the disorder dependence of the one-particle localization length proves as
for two particles the reliability of the method. Small deviations are visible only for large
disorder values. These deviations are related to the initial diameter of the wave packet which
is comparable to the localization length in the large disorder regime. All three localization
lengths scale with disorder like W�2, as observed for two particles.

To investigate the in
uence of the interaction on the localization length, much larger
system sizes had to be studied to perform an accurate �nite size scaling analysis. Figure 25
displays raw data and scaling curve for the mean radius. System sizes L=23, 31, 39, 47, 55,
63, 71, 79, 87, 95, 103 have been considered. The resulting localization length is shown in
�gure 26, compared to the result without interaction.

The in
uence of the interaction on the localization length is much more pronounced for
three than for two particles. An enhancement factor �1MR(U=1)=�1MR(U=0)�4:6 is observed
at W = 3 for the mean radius, compared to 1.42 for two particles. To observe such large
enhancement factors for two particles, disorder values as low as W = 1:25 are necessary.
Fitting the three-particle result with equation (75) fails for disorder values smaller than
W =4. Instead, the third power has to be taken into account,

�1MR = (1:47� 0:03)�1 � (0:03� 0:02)�21 + (0:03� 0:003)�31; (82)

see �gure 25. The large uncertainty in the pre-factor of the second order term indicates
its irrelevance. Indeed, the data can also be described without this term. The goodness of
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Figure 25: Finite size scaling for the mean radius of a three-particle wave packet for U =1.
Left: raw data; right: corresponding scaling curve.
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Figure 26: Mean radius localization length in the in�nite system for U = 1 (+) and U = 0
(�). Solid line is a �t c1�1 + c2�

2
1 + c3�

3
1, equation (75), dotted line is again �1.

both �ts is Q=0:44. A power law �t for the low disorder regime W 2 [3;4] yields a slope of
�3:96 � 0:03, much larger than observed for two particles at these disorder values. There,
the slope was roughly �2:49.

The corresponding results for the inverse participation ratio are displayed in �gure 27.
The observation are very similar to those for the mean radius. The enhancement e�ect is
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Figure 27: Finite size scaling for the inverse participation ratio, U =1. Left: scaling curve;
right: localization length in the in�nite system (+) compared to the non-interacting results
from �gure 24 (�). Solid line is equation (83), dotted line is �1.

much stronger than for two particles, �1IPR(U=1)=�1IPR(U=0)=8:2 at W =3, compared to
1.4. Fitting with a second order expansion in �1 produces deviations for disorders W � 4:5.
The third order �t

�1IPR = (3:2� 0:1)�1 � (0:65� 0:08)�21 + (0:17� 0:01)�31; (83)

reproduces the data perfectly with a goodness Q= 0:41. A power law �t yields a slope of
�5:9 � 0:2 for W 2 [3;4]. A second order expansion in �1 yielding a maximum slope of �4
is insu�cient to �t the data.

As for two particles, the mean radius and the inverse participation ratio average over all
possible direction in con�guration space. If the delocalization is related to a coherent motion
of the three particles, the most pronounced e�ect is observable along the center of mass
direction. The corresponding results are given in �gure 28. The strongest delocalization
occurs along this direction, with a ratio �1CM(U = 1)=�1CM(U = 0) = 19:9 at W = 3:25,
compared to 1.6 for two particles and to 4.6 and 8.2 for the mean radius and the inverse
participation ratio for three particles, respectively. Since the center of mass extension is the
most delocalized quantity, �nite size e�ects are most pronounced for this quantity and the
scaling could not be completed for the lowest disorder value considered. Extrapolating from
the �t in �gure 28, equation (85), a localization length around 400 is found at W =3, too
large to be reliably detectable with system sizes L�103. In contrast to the mean radius and
the inverse participation ratio, a third order �t (dashed line in �gure 28) could not describe
the data for the lowest disorder values. A fourth order �t (solid line) works much better, as
indicated by the goodness of the �ts, being Q=0:32 and Q=0:38, respectively,

�1CM = (1:2� 0:2)�1 � (0:25� 0:17)�21 + (0:16� 0:03)�31; (84)
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Figure 28: Finite size scaling for the center of mass extension, U = 1. Left: scaling curve;
right: localization length in the in�nite system (+) compared to the non-interacting results
from �gure 24 (�). Dashed and solid lines are equations (84) and (85), dotted line is �1.

�1CM = (�0:04� 0:2)�1 + (1:28� 0:24)�21 � (0:39� 0:09)�31 + (0:05� 0:008)�41: (85)

The occurrence of negative terms reveals that too many �t parameters are used. Important
in this context is only that the highest order contribution is positive. A power law �t for
the lowest disorder values yields a slope of �8:8� 0:4 in this case. While the error is rather
large the slope itself is much larger than �6, the slope expected on the base of the analytical
prediction, �3 / �31 [174, 190].

As outlined in section 3, the assumptions leading to this analytical result are questionable.
The numerical evidence of an even stronger delocalization puts forward the task to improve
the theory and to derive the correct dependence of the localization length on the particle
number.

6.2 Upper bound for the n-particle localization length

In order to understand the above results, consider the n-electron problem in the n-dimensional
con�guration space. Without interaction, the random potential is correlated such that one
obtains the one-particle localization length, �1(W ), apart from pre-factors. The correlations
originate from �xing Ln site energies using only L random numbers, since the potential is
still one-dimensional, "

(n)
j1:::jn=

Pn
i=1 "ji, equation (54). Each direction can be considered inde-

pendently since all directions are equal and the one-particle localization length is obtained,
as expected. This separability is destroyed by the interaction. For two particles, the inter-
action is relevant along lines in con�guration space de�ned by x1=x2�1. Along these lines,
the site energies in con�guration space are essentially uncorrelated. The interaction creates
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a quasi one-dimensional subspace of the con�guration space with uncorrelated disorder. The
transverse size of this subspace can be estimated. Only when the relative distance between
the two electrons is smaller than or comparable to �1, the electrons feel the interaction.
Hence, the transverse extension of the quasi one-dimensional part of the con�guration space
is of the order �1. The localization length of a quasi one-dimensional system is given by
the product of the one-dimensional localization length multiplied by the number of channels
NCH��1, yielding �2 / �21. Along other directions in con�guration space, the localization
length will be di�erent [136] but only the largest one is relevant for transport and this is the
one of the two-particle mode along the CM direction.

For three particles, the interaction a�ects the di�usion within planes in the 3D con�gu-
ration space, de�ned by xi = xj � 1. However, if two particles are far away from the third
one, the situation is as above since the third particle is completely decoupled. But along
the CM direction, if all three particles are within a mutual distance of �1, again a quasi
one-dimensional subspace of the con�guration space with an uncorrelated potential exists,
now with transverse dimension two. The number of transverse channels, NCH, is larger than
for two particles. This leads to the enhancement of the localization length with increasing
particle number, �3��2. To be precise, the increase of NCH is not only due to the higher
transverse dimension, but also due to the growing transverse size. The latter is not limited
by �1 since two particles close to each other can reach the third particle even if the latter
is at a distance �2��1. Hence, NCH is roughly �2�1, the area covered by the two particle
wave packet. Again, there are many other modes with localization lengths smaller than that
of the CM mode.

While in [174] only coupling between two general three-particle states is taken into ac-
count, the above estimate considers the hierarchical structure of the con�guration space
induced by the interaction. Points in con�guration space corresponding to two nearby parti-
cles being a distance �2 away from the third one can contribute to transport along the center
of mass direction since the two particles can reach the third one. In the estimate given in
[174], page 20, this situation is not distinguished from the general one with all particles
further away than �1 from each other and hence does not give an additional contribution.
In addition, the estimate by Shepelyansky is based on a di�usive growth of the wave packet
in contrast to the observations on page 46 and �gure 23.

The hierarchical structure of the wave packet in con�guration space is sketched in �gure
29, showing a cross section perpendicular to the center of mass direction. The cross section
reveals as for two particles the number of contributing channels. Along the symmetry lines,
the two body interaction leads to an enhanced propagation, limited by �2 � �

(CM)
2 . Per-

pendicular to that, only an extension of the order of �1��(RD)2 is reached. To observe this

structure in a calculation, the ratio �
(CM)
2 =�

(RD)
2 has to be su�ciently large. More speci�cally,

the angle � in the left part of �gure 29 has to be smaller than �=6 = 30�. Otherwise, single
particle di�usion perpendicular to the symmetry axis smears out the indicated structure.
Relating the angle to the localization lengths yields the constraint

�
(CM)
2

�
(RD)
2

>
1

tan(�=6)
� 1:732; (86)

which is ful�lled only for W � 2:0 according to the two-particle data. Extrapolating from
equation (85), for this disorder the three-particle localization length is larger than 1000 and
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Figure 29: Sketch of the cross section perpendicular to the center of mass direction of the
three-particle wave packet for �2=�1 small (left) and large (right).

cannot be calculated reliably with the available system sizes. Nevertheless, the calculation
reveals that the cross sections sketched in �gure 29 are correct, as can be seen in �gure
30. The cross section of the wave packet is not circular as it would be if all directions are.

x2 x3

x1

Figure 30: Cross section of a three-particle wave packet forW =2 and L=159 perpendicular
to the center of mass direction. Points are drawn if value of wave function is larger than 1.7
times the mean value. Averaging is performed over 30 realizations of the random potential.
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Even more, the bumps along the six symmetry axis indicate the preferred propagation along
these directions. This can best be seen with some distance to the plot. The relationship
to pointilism is obvious, the plot is based on roughly 200000 out of four million possible
points. The cross section shown in �gure 30 can be constructed from the two particle wave
packet displayed in �gure 14 by placing two copies rotated by 60� and 120� on top of it.
The important point is that only the �rst two orders of magnitude shown in �gure 14, white
center and black surrounding, are within the available system size for three particles. This
emphasizes the di�culties to observe the cross sections of �gure 29. The system size L=159
for three particles has to be compared with the maximal system size of 113�113�113 for
which exact diagonalizations of the three-dimensional Anderson Hamiltonian were performed
[255, 256]. Keep in mind that the symmetry reduces the Hilbert space and that the time
evolution contains information about the whole spectrum while only a the few eigenstates
are calculated with the Lanczos algorithm.

x2

x3

x1

Figure 31: Center of mass direction of a three-particle wave packet for W =2 and L=159.
Points are the same as in �gure 30.

The cigar like shape of the wave packet is shown in �gures 31 and 32. In contrast to the
two-particle situation [137], it is a real cigar, not a 
at one. However, the plot of the cross
section, �gure 30, reveals that smoking would be di�cult due to the hexagonal rather than
circular cross section. Along the symmetry axis, the interaction exists and the wave packet
reaches further than along the other directions, indicated by the little bumps at the corners.
Unfortunately, as discussed above, the shape of the right plot of �gure 29 is only observable
for smaller disorder values. In any case, the number of channels will not be proportional to
�21, but rather to �2�1, even for the left plot in �gure 29.

Extending these arguments to n > 3 yields,

�n � c �1NCH � cn �1[�n�1�n�2 : : : �1] � cn0 �
2n�1

1 : (87)

The localization length increases superexponentially with increasing particle number. The
modes with the largest localization lengths are associated with quantum di�usion in quasi
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Figure 32: Three-particle wave packet for W =2 and L=159. Every �fth points along x1
and x2 is drawn if the value of wave function is larger than twice the mean value.

one-dimensional sub-spaces of �nite cross-sectional areas in con�guration space. However,
equation (87) suggests that for interactions of �nite range the n-particle states remain local-
ized for any �nite n and �1 although the localization length can become arbitrarily large.

Being derived for an energy in the middle of the band, the sign of the interaction is
irrelevant. Closer to the ground state, only an attractive interaction leads to a signi�cant
delocalization [128, 202]. Nevertheless, the \delocalized" ground state found for an attractive
interaction in [229] on the basis of a density matrix renormalization group study, contradicts
the result above. The energy change upon changing the boundary conditions, page 15, times
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the system size was shown to be insensitive to the system size. This insensitivity corresponds
to a 
at region in a �nite size scaling curve. For a disorder W = 1 and the large number of
particles considered, the localization lengths can easily be larger than the system size by a
factor of 1000, according to equation (87). Thus, the apparent divergence of the localization
length upon approaching the phase boundary [257], could well be the signature of too small
system sizes available. Small system sizes are also the limiting factor for the analysis of
four-particle wave packets discussed in the next part.

6.3 Four-particle wave packets

In spite of the enormous, superexponential increase of the localization length with increas-
ing particle number predicted by equation (87) and the limited system sizes available due to
the exponentially growing con�guration space with particle number, it will be shown in the
following that the four particle localization length is in accordance with the predictions.

To prove equation (87) poses a twofold problem: �rst, an increasing localization length
requires larger system sizes since only localization lengths of the order of the system size can
be calculated reliably. Second, the numerical e�ort for the calculation scales with the volume
of the con�guration space, that is the system size to the power of the particle number, Ln. In
addition, the number of elementary matrix operations needed for a single time step increases
with the particle number according to equations (54), (55), and (56). This twofold problem
can only be tackled by optimizing the numerical routines as good as possible and using up
to date computing technology, discussed in more detail below.

As in the preceding sections, results in the absence of interaction are presented �rst,
strengthening the reliability of the method. Then, three- and four-particle wave packets
with interaction are compared for �nite systems, before the results of the complete �nite size
scaling analysis are given. Keep in mind that equation (87) holds only for the extension in
center of mass direction.

The main results without interaction are shown in �gure 33. As for three particles, only
relatively small system sizes L=15; 23; 31; 39; 47 have been used. Again, the real volume of
the con�guration space was taken into account, L(L�1)(L�2)(L�3) instead of L4. Only
for the center of mass extension an agreement with the one-particle localization length is
observed. The mean radius and the inverse participation ratio increase slower with decreasing
disorder strength. This discrepancy is related to the in
uence of the initial condition. Four
particles outside the range of their mutual two-body nearest neighbor interaction can at
most sit on next nearest places. Therefore, the initial value for both the mean radius and the
inverse participation ratio is larger than two. This initial value is larger than the localization
length for W = 9 and 10 and comparable to the localization length in the whole disorder
regime considered. Keep in mind that �1(W =4)=6:2 and �1(W = 3) = 10:3, section 4.2,
and that the results for the center of mass extension which is not a�ected by the initial
condition are only slightly larger. This o�set changes the slope of the scaling curve and
leads to observed deviations for the localization length.

Correcting for this o�set produces a much better agreement with the single particle local-
ization length, see �gures 35 and 37. It remains only a slight deviations for all three quantities
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Figure 33: Finite size scaling and localization lengths for four-particle wave packets in the
absence of interaction. Left: scaling curves for IPR (left, data shifted by -1), MR (middle),
and CM (right, shifted by 1). Right: localization lengths in the in�nite system, IPR (�),
MR (+), and CM (+�) compared to the single particle localization length �1 (solid line).

for the smallest disorder value which is attributed to too small system sizes considered. But
it does not in
uence the main observation that even for the four-particle wave packets, the
time evolution method produces the expected results in the non-interacting limit.

In the presence of interaction, system sizes L=15; 23; 31; 39; 47; 55; 63; 71 have been used,
allowing a reliable detection of localization lengths up to 100. A direct comparison between
three- and four-particle wave packets is given in �gure 34. Fitting with equation (74) works
very well for the four-particle data, too. For the lowest disorder values, the saturation value
exceeds in some cases the 1% statistical error bar related to disorder averaging by a factor
of 1.5. Although one extrapolates a little bit further for four than for three particles the
extrapolation is still reliable since the chosen �t function describes accurately more than
90% of the time evolution.

While the average behavior is again logarithmic in time, it seems that the slope changes
during the time evolution. This can best be seen at the top curves in �gure 34, arrows
in the right plot, and occurs roughly at the saturation values obtained for smaller particle
numbers. A similar observation can be made for three particles, see the top curve of �gure
23. This indicates the existence of a hierarchy of time scales: for short time scales di�usion
is dominated by single particle motion, then by two-particle coherent motion and only af-
terwards by three- and then four-particle coherent motion. Unfortunately this assumption
can only be proven by considering much smaller disorder values for which the di�erences
between these time scales is more pronounced. Only then it is meaningful to �t the slopes
in the di�erent regimes and perform an analysis like in the two-particle case, see �gure 12.
The data above is more a series of crossovers between the di�erent regimes, which are each
smaller than a decade in time.
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Figure 34: Time dependence of center of mass extension for three (left) and four particles
(right) for disorder values, W =4; 4:5; 5; and 6 (top to bottom) and system size L=71. All
curves are �tted for t2 [800;10000] with equation (74).

Even though the complete analysis of the time evolution is impossible with nowadays
computing technology, the localization properties can be analyzed accurately, at least for
not too small disorder values. Raw data and scaling for the mean radius are presented in
�gure 35. The resulting localization length is compared to the result without interaction in
�gure 36.

The scaling with the complete data set, left scaling curve and open symbols in the right
plot of �gure 35, yields already an enhancement factor of �1MR(U=1)=�1MR(U=0)=4:24 at
W =4 in comparison to 2.46 for three particles.

Correcting for the initial o�set discussed above, right scaling curve in �gure 35 and �lled
symbols in �gure 36, the enhancement factor is 5.43. For the lowest disorder values in this
case, the reduced localization length increases initially with increasing system sizes before
decreasing for larger system sizes (not shown). To avoid an in
uence of this obvious �nite
size e�ect, the corresponding data points have not been used for scaling. The scaling with
the corrected data is more reliable since the U =0 result is in much better agreement with
the one-particle localization length.

While this result strongly indicates an even more pronounced delocalization than for two
and three particles, a third order �t remains su�cient to describe the data. Higher order
terms would be necessary only for smaller disorder values. For these values the localization
lengths cannot be calculated reliably due to the limitations in the available system sizes.
The data in �gure 36 is �tted with

�1MR = (0:93� 0:03)�1 + (0:17� 0:007)�31; Q = 0:31: (88)

A power law �t in the region W 2 [4;6] results in a slope of �3:9 � 0:1 compared to an
average slope of �2:9� 0:1 for three particles in the same regime.
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Figure 35: Finite size scaling for the mean radius of a four-particle wave packet for U =1.
Left: raw data; right: scaling curves for raw data (left) and after subtracting the o�set and
ignoring the smallest system sizes as discussed in the text (right, shifted by 1).
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Figure 36: Mean radius localization length in the in�nite system for U = 1 (open squares)
and U=0 (open circles). Filled symbols are the more reliable results obtained by subtracting
the o�set before the scaling. Solid line is �1, dotted line a third order �t, equation (88).

The results for the inverse participation ratio are very similar, �gure 37. Again, the U=0
result is much better when the initial o�set is subtracted before the scaling procedure. As
above, data points for the smallest disorder and system sizes that show obvious �nite size
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Figure 37: Finite size scaling for the inverse participation ratio, U=1. Left: scaling curve for
the original data set (left) and after subtracting the o�set and ignoring the smallest system
sizes (right, shifted by 2). Right: localization lengths in the in�nite system compared to the
non-interacting result, symbols and lines as in �gure 36, dashed line is equation (89).

e�ects were excluded from the scaling. Enhancement e�ects as large as �1IPR(U=1)=�1IPR(U=
0)=4:59 at W =4 compared to 2:73 for three particles are observed. The localization length
is �tted by,

�1IPR = (2:16� 0:05)�1 + (0:29� 0:01)�31; Q = 0:35: (89)

The slope for W 2 [4;6] is �4:3� 0:1 compared to �3:2� 0:2 for three particles. Although
a third order �t is su�cient to describe the data, the slope indicates the dramatic increase
of the localization length with increasing particle number. This increase becomes most
pronounced for the center of mass extension.

As for two and three particles, the strongest delocalization is observed for the center of
mass extension. Only for the localization length along this direction equation (87) is valid.
In contrast to the mean radius and the inverse participation ratio, no initial o�set has to be
taken into account. Figure 38 displays the main results. In order to check the accuracy of
the scaling, it was performed for the complete data set, right scaling curve, open symbols in
right plot, as well as for a reduced data set ignoring as above some of the smallest disorder
and system sizes for which dominant �nite size e�ects were observed. As can be seen from
the time evolution data, these values show hardly any error due to disorder averaging (not
shown). Therefore, �nite size e�ects scale di�erently than in the disorder dominated regime
of interest. Indeed, the quality of the scaling curve is enhanced a bit in comparison to
the scaling curve calculated from the complete data set. The localization length is slightly
smaller, �lled squares in �gure 38. For both data sets, the scaling failed for the smallest
disorder value W = 4. As for three particles, this is related to the fact that for the most
delocalized quantity, �nite size e�ects are most pronounced and eventually too strong to
perform a reliable scaling. At W = 4:5, enhancement factors are 16.29 and 7.41, for the
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Figure 38: Finite size scaling for the center of mass extension, U =1. Left: scaling curves
for the complete data set (right) and a reduced data set (left, shifted by -1.5), see text.
Right: localization length in the in�nite system for the complete (open squares) and reduced
(closed squares) data set, compared to the non-interacting result (open circles). Solid line is
�1, dotted lines are fourth order �ts, equations (90) and (91) for open and closed symbols,
respectively.

complete and reduced data set, in comparison to 3.03 for three particles. In contrast to the
mean radius and the inverse participation ratio, a fourth order �t is necessary to describe
the data,

�1CM = (�4:7� 0:4)�1 + (8:6� 0:6)�21 � (4:0� 0:3)�31 + (0:69� 0:04)�41; Q = 0:4; (90)

�1CM = (0:7� 0:3)�1 + (0:5� 0:2)�21 + (0:06� 0:01)�41; Q = 0:2; (91)

for the complete and reduced data set, respectively. However, equations (90) and (91) are
only one way to �t the data. For the limited disorder range available for four particles one
can see a stronger delocalization than for two and three particles. Higher orders in �1 as
predicted by equation (87) yield similar results, �gure 39 and equations (92) and (93). A
clear distinction will only be possible smaller disorder values. Fitting the low disorder range,
W 2 [4:5;6], with a power law yields �7:4 � 0:5 and �5:11 � 0:08, compared to �4:1 � 0:1
for three particles. The comparison with the mean radius and the inverse participation ratio
reveals again the anisotropy in con�guration space, the largest localization length is found
along the center of mass direction.

For a general comparison of the enhancement e�ect, �gure 39 displays the results for the
center of mass extension for two-, three-, and four-particle wave packets. The localization
length increases dramatically with the number of particles. However, according to the esti-
mate made above, equation (87), for any �nite number of interacting particles and any �nite
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Figure 39: Center of mass extension for two-, three-, and four-particle wave packets, �tted
with equations (79),(85),and (92), open circles, �lled squares and �lled circles, respectively,
compared to �1 (solid line).

amount of disorder, the localization length will remain �nite and no transition to a metallic
state will occur in one dimension.

To demonstrate this scaling with particle number, �gure 40 shows the reduced localization
lengths �1n =cn�

2n�1

1 , with an adjustable constant cn. According to the estimated upper bound
of the n-particle localization length, equation (87), curves for di�erent particle numbers
should converge towards a �nite value in the low disorder regime. This convergence works
perfectly for two and three particle. For four particles, the regime dominated by the leading
power of �1 just begins at the smallest disorder value. In order to approach it as close as
possible, two scaling curves including all disorder values are presented in �gure 40. They are
necessarily extrapolations since as discussed above, the scaling fails for the lowest disorder
valueW =4. The scaling is done by hand such that a smooth scaling curve is obtained. This
has been performed for the complete and a reduced data set ignoring system sizes that show
obvious �nite size e�ects as discussed above. The di�erence between the two localization
lengths is relevant only for the three smallest disorder values. Both localization lengths were
then �tted with a polynomial in �1. Due to the limited number of data points, only a few
terms have been considered,

�1CM = (0:93� 0:07)�1 + (0:29� 0:03)�31 + (0:00018� 0:00003)�81; Q = 0:40 (92)
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�1CM = (0:84� 0:06)�1 + (0:34� 0:02)�31 + (2:1� 0:8)10�5�81; Q = 0:37; (93)

for the complete and the reduced data set, respectively. This demonstrates that the four-
particle localization length is in accordance with the prediction of equation (87). These �ts
and the estimated error bars are given in �gure 40. For two and three particles, the crossover
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Figure 40: Scaling with particle number for the center of mass extension, U=1. Localization
lengths divided by the predicted low disorder behavior, equation (87); two particles (open
squares), three particles (open circles), and four particles, closed squares and circles for
complete and reduced data set, �tted according to equations (92) and (93) respectively.
Inset: four-particle scaling curves for the complete data set (right) and a reduced data set
(left, shifted by -1.5), including the lowest disorder value.

to a constant value of �1CM=cn�
2n�1

1 for low disorders is obvious, indicating the validity of
equation (87). For four particles, only the crossover is visible, more data points would be
needed to enter the limiting regime. Unfortunately, extending the four-particle calculations
to lower disorder values is not that easy. In order to understand the problems, the numerical
e�ort needed to obtain these results, will be brie
y discussed in the following.

6.4 Numerical e�ort

As discussed in section 4.1, The CPU-time requirement increases with the system size to
the power of the localization length. In addition, there is an n dependent pre-factor which
is simply the number of matrix multiplication necessary for performing a single time step,
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which is 2n + 1, equations (54), (55), and (56). Making use of the symmetry of the wave
function gives a reduction of n!,

CPU-time / (2n+ 1)Ln

n!
or CPU-time / (2n+ 1)

n!

n�1Y
i=0

(L� i) ; (94)

where the second term takes the the anti-symmetry of the wave function properly into
account. Given maximum system sizes of L=1400; 399; 103; and 71 for one, two, three, and
four particles, equation (94) yields factors of 4:2�103, 2:38�105, 8:84�105, and 6:80�106. This
indicates that the e�ort spent for the calculations has increased with the number of particles.
The simple underlying reason is the strong enhancement e�ect, leading to a localization
length which increases more than exponentially with the particle number, �n/ �2n�11 . The
larger the particle number, the more important it is to reach the maximal possible system
sizes. In addition, more powerful computers became available when the larger particle
numbers were reached.

The initial calculations have been performed on the VMS-cluster of DEC-alpha worksta-
tions at the PHYSnet of the university of Hamburg. In the beginning, one DEC 3000=400
AXP, one DEC 3000=600 AXP, three AlphaStation 255/233, and two AlphaStation 255/300
were available. While the �rst �ve showed an approximately equal performance, the last
two are faster by a factor of 1.17 for a large system size and a three-particle wave packet.
This has to be compared to the SPEC benchmarks [258] of 5.09 and 5.81 for optimized

oating point operations, yielding an enhancement of 1.14. Soon afterwards two AlphaS-
tation 500/333 (SPEC benchmark: 12.5) were included into the network, one of them was
purchased directly for the project described here. They are a factor of 2.45 faster than an
AlphaStation 255/233, exactly as predicted by the benchmarks. The main calculations for
two and three particles have been performed on this cluster.

For the set-up of a new Unix-cluster, up to date workstations were purchased in the
last 18 months. This enabled calculations on seven Personal Workstations 433AU (SPEC
benchmark: 18.1) and one Professional Workstation XP1000 (SPEC benchmark: 65.5).
Without these, a reasonable scaling for the four particles would have been impossible. Even
though being a factor of 1.40 and 5.04 faster than an AlphaStation 500/333, the calculation
of a single sample for four particles and L = 71 takes roughly �ve days on a Personal
Workstations 433AU. The good agreement with the benchmarks indicates that memory
requirements are not the important. On all workstations, the calculations can be performed
without swapping. For the heaviest four-particle calculations, only up to 67MB of memory
are needed. Crucial for the calculations is the speed of the memory system, the use of cache,
and the operating frequency, i. e. exactly the quantities relevant for the SPEC benchmarks.

Taking into account that not all workstations have been available from the beginning,
the largest sample size alone required almost a year of calculations due to the disorder
averaging needed. An extrapolation of equation (93) yields at W =3:5 localization lengths
�1CM�2300 and �1CM�400 for the complete and reduced scaling curve. Going down toW =3
gives localization lengths 24000 and 3000, respectively. Keeping in mind that for a reliable
calculation of the localization length, the system size has to be of the same order, L=400
is the minimal requirement that has to be ful�lled, L = 2000 is much more appropriate.
According to equation (94), such a system size yields an additional factor of 1000 (or more
appropriately 6:84�105) in CPU-time. In addition, for these system sizes the code has to be
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parallelized because memory requirements can only be ful�lled on parallel computers. This
has already been done, but not used so far since the speedup is not superlinear. Hence, due
to the disorder averaging required, it is more e�ective to distribute the samples on di�erent
processors and calculate them at the same time than to use the parallel version and calculate
the samples one after the other. But not only the parallelization will reduce the e�ciency,
apparently also larger times would be required to perform a reliable extrapolation to the
saturation value. Even if one could gain a factor of 100 by performing calculations on a
supercomputer, the calculations would still take too long. The results displayed in �gures 39
and 40 are based on state of the art computing. Doing better is impossible in the moment due
to the tremendous, superexponential increase of the localization length with particle number,
�n/�2n�11 .

7 Finite densities: time-dependent Hartree-Fock

In the preceding chapter, the time evolution method in its exact form was used to calculate
the localization properties of up to four interacting particles. Reliable results for larger
particle numbers are out of reach due to the limitations in the system size posed by nowadays
computing technology and the superexponential increase of the localization length with
particle number. Therefore, one has to rely on some approximation in order to arrive at
�nite densities. A possible approach is outlined in the last part of this thesis. It is based
on the time-dependent Hartree-Fock equations, which can be solved with methods similar
to those used for the exact few-particle calculations in the previous sections [250, 259].

The time evolution method will be generalized to time dependent Hamiltonians. This
generalization enables us to treat the interaction during the time evolution on a Hartree-
Fock level. On this level of approximation, the dimension of the Hilbert space is signi�cantly
reduced, allowing the treatment of �nite densities up to half �lling for system sizes of up to
L = 640.

After a short introduction of the time-dependent Hartree-Fock equations, the generaliza-
tion of the time evolution method to time dependent Hamiltonians will be presented. In
the second part, results for two particles will be compared to the exact two-particle results
discussed in section 5 and results for �nite densities are shown. The analysis of the devia-
tions between the approximate and the exact results gives further insight into the physical
mechanism underlying the interaction-induced delocalization.

7.1 Method

In the time-dependent Hartree-Fock approximation, the many-body wave function is a Slater
determinant constructed from single particle wave functions. These wave functions are cho-
sen such that at every time step the deviation between the real and the approximate wave
function is minimized. For fermions with spin subject to an on-site interaction, the time-
dependent Hartree-Fock equations are

i�h
@ s;�(i; t)

@t
= � s;�(i+ 1; t)�  s;�(i� 1; t) + "i s;�(i; t) + U��s(i; t) s;�(i; t); (95)
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with the spin index s, the lattice sites labeled by i and the di�erent wave functions denoted
by �. The on-site interaction with the other electrons is described by the charge density
�s(i; t)=

P
�  

�
s;�(i; t) s;�(i; t).

On �rst glance, the solution of the problem is straightforward: start with a given set of
orthonormal one-particle wave functions and calculate the Hartree-Fock potential U�s. Then,
calculate a single time step is for all particles, evaluate the new Hartree-Fock potential is
and so on. Unfortunately, it is not that simple since in this case the energy is not conserved.
Instead, the problem has to be solved in several steps.

The underlying theory was derived by Suzuki [250]. He generalized the approximations
valid for time independent Hamiltonians to time-dependent problems. Any formula valid
for time independent Hamiltonians can be directly transferred to time dependent ones if all
time-dependent matrices are evaluated at the mid-point of the time interval. In the �rst
guess above, the value of the Hamiltonian at the initial point is used which yields only a �rst
order accurate result, independent of the approximation scheme used. The problem for the
time dependent Hartree-Fock equations (95) is the a priori unknown mid-point value. This
mid-point value has to be approximated �rst.

The solution proceeds as follows. First, the time evolution is calculated with the initial
Hamiltonian. Since this calculation yields only a �rst order accurate result in the small time
step �t anyway, a �rst order approximation is su�cient,

T exp
�
� i

�h

Z tl+1

tl

dt0H1(t)+H2(t)
�
= exp

�
� i

�h
H1(tl)�t

�
exp

�
� i

�h
H2(tl)�t

�
+0

�
(�t)2

�
; (96)

where T is the time ordering operator. Instead of dividing the one dimensional Hamiltonian
into three parts as discussed in section 4, equation (44), the diagonal part is included into
one of the o�-diagonal parts.

H1 = � X
j2Nodd

cyj+1cj + cyjcj+1 +
X
j

"jc
y
jcj; (97)

H2 = � X
j2Neven

cyj+1cj + cyjcj+1: (98)

As before, the exponentiation of H1 and H2 reduces to the calculation of the exponential of
2�2 matrices, in the case ofH1 with disorder dependent eigenvalues. Since the diagonalization
of a 2�2 matrix amounts to solving a quadratic equation the exponentials of H1 and H2

can be written down explicitly. However, in the case of H1, the formula is much more
complicated than for H2, which is given by the example in equation (45). The reduction of
the number of matrices needed for the calculation of a single time step is thus compensated
by the increased e�ort to calculate the exponential of H1.

Equation (96) determines the wave functions and consequently the Hamiltonian at the end
point of the time step accurate to �rst order in �t [259]. In a second step, the Hamiltonian at
the mid-point of the interval is estimated by interpolating linearly between the Hamiltonian
at the initial and �nal points giving a �rst order accurate result. This interpolation yields
the required approximation of the Hamiltonian at the mid-point of the time interval. In a
third step an expansion accurate up to second order in the time interval �t is performed
with the �rst order accurate mid point value of the Hamiltonian. This expansion yields a
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second order accurate time evolution [259],

T exp
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�
; (99)

which is used in the following. Higher order approximation can be derived iteratively using
equation (99) to calculate second order approximations of the Hamiltonian at intermediate
points as input for a third order decomposition scheme [259] and so on. The advantage of
this scheme is that as for the time independent Hamiltonian the time evolution operator is
approximated by a unitary operator. Thus, the one-particle wave functions remain orthonor-
mal once they are chosen orthonormal initially and the energy is conserved much better than
in the simpli�ed approach discussed in the beginning.

7.2 Results

In order to compare with the exact results discussed in section 5, �rst results for just two
particles are presented. However, among the quantities de�ned in section 4, only the mean
radius remains useful. For a many-body wave function being a single Slater determinant,
no preferred direction in con�guration space exists. The wave packet is a product of single
particle wave functions and cannot contain correlation e�ects. Extensions along the center
of mass direction and relative direction are equal as can be seen upon inserting a slater
determinant into the de�nitions, equations (67) and (68). This observation already reveals
that the time dependent Hartree-Fock calculation cannot reproduce the results of the exact
two-particle calculation.

The time dependence of the mean radius is shown in �gure 41 for di�erent disorder
values and interaction strengths. In the absence of interaction, a crossover from a ballistic
to a localized regime is observed as for the exact calculations. In this case, there is no
approximation and the time-dependent Hartree-Fock equations are correct. Localization
lengths can be de�ned via the saturation values for long times. With interaction present, a
crossover from a ballistic to a sub-di�usive regime takes place. The spreading of the wave
packets with time in the sub-di�usive regime can be described by a power law, MR(t) / tc

with c < 0:5, in contrast to the logarithmically slow increase of the mean radius with time
observed in section 5. Up to the longest times considered, the time-dependent Hartree-Fock
calculation yields no saturation of the mean radius. This observation is in even sharper
contrast to the �ndings from the exact calculations, where the mean radius saturated for
long times indicating the complete localization of all states in the spectrum.

The power-law exponents in the sub-di�usive regime are given in table 1. The values
are quite small in comparison to 0:5, the value for a di�usive spreading. The results for
�nite particle densities are very similar. The left plot of �gure 42 displays the results for a
density of 0:25 for 6 di�erent system sizes. As for the few-particle calculations, the mean
radius increases ballistically for short times t < 10. For long times, it saturates for smaller
systems, while it continues to grow for the largest system sizes. The saturation values do
not depend on the disorder strength and increase linearly with system size. Hence this
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Figure 41: time-dependent Hartree-Fock results for two particles in a system of size L=600
and di�erent interaction strengths. Disorder values are W =2; 4; 6; 8 and 10, top to bottom
curves.

W=2 W=4 W=6 W=8 W=10

U=1 0.150�0.002 0.167�0.004 0.174�0.008 0.213�0.011 0.186�0.007
U=2 0.155�0.003 0.159�0.005 0.140�0.006 0.181�0.009 0.160�0.005
U=4 0.170�0.001 0.169�0.002 0.161�0.002 0.160�0.002 0.149�0.002

Table 1: Anomalous di�usion exponent c as a function of disorder (left to right) and inter-
action strength (top to bottom)

saturation is purely a �nite size e�ect. The growth of the mean radius for larger system
sizes is sub-di�usive as for just two particles, MR(t) / tc with c < 0:5 in contrast to the
logarithmically slow growth observed for the exact few-particle calculations. Even for much
larger disorder values, the treatment of the interaction on the level of the time dependent
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Figure 42: time-dependent Hartree-Fock results for W =3 and U=1. Left: time dependence
of the mean radius for a �xed density, n=0:25, and system sizes L=20; 40; 80; 160; 320; 640
(bottom to top on the right). Right: time dependence for a �xed system size L=320 and
densities n=0:0625; 0:125; 0:25; 0:5 (bottom to top on the right).

Hartree-Fock equations leads to a sub-di�usive growth of the mean radius. The right plot in
�gure 42 reveals the in
uence of the density on the time evolution. For a lower density, the
sub-di�usive growth is reached later in time than for the higher densities. This retardation
is related to the initial condition. At t = 0, all particles are placed on equidistant lattice
positions. For a smaller particle number it takes some time until the interaction comes into
play. Once the sub-di�usive regime is reached, the growth is very similar for all densities.
Table 2 gives the exponents of power law �ts in the sub-di�usive regime. The exponents are

40 80 160 320 640

0.0625 0.1292�0.0024 0.2601�0.0025 0.3277�0.0007 0.3519�0.0012 0.3607�0.0011
0.125 0.1706�0.0083 0.2702�0.0011 0.3148�0.0008 0.3417�0.0005 0.3578�0.0002
0.25 0.1769�0.0030 0.2582�0.0007 0.3093�0.0003 0.3340�0.0005 0.3522�0.0001
0.5 0.1775�0.0010 0.2615�0.0009 0.3136�0.0003 0.3371�0.0004

Table 2: Anomalous di�usion exponent c as a function of system size (left to right) and
particle density (top to bottom)

larger than those observed for just two particles. Nevertheless, the in
uence of the density
is rather weak. There is some in
uence of the system size but this has to be considered with
care. For the smaller sizes the power law �t could only be performed in the crossover region
before the saturation. This regime is relatively small for L= 40and L= 80 leading to strong
dependencies of the exponents on the �t range.
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There are two main di�erences between the exact and the approximated results. First, the
spreading is sub-di�usive rather than logarithmically in time. Second, there is no saturation
observed once the system sizes are large enough. For two particles, these di�erences are
obvious. For a larger particle number, the estimate of the error is much less clear. It
could well be that for a �nite density of particles the localization length is so large, that
no saturation can be observed, at least for the system sizes considered. Keep in mind the
superexponential increase of the localization length with particle number found from the
exact calculations, equation (87), and that up to 320 particles are considered. Hence, the
error made by using the time-dependent Hartree-Fock equation might not be that large for
larger particle numbers.

Trying to understand the di�erences between the two approaches helps a bit to estimate
the error made at �nite particle density and yields useful information about the mechanism
underlying the interaction-induced delocalization. Let us start with the sub-di�usive spread-
ing. This spreading is related to the phase memory of the electrons. Without interaction, the
phase is conserved and interference e�ects lead to localization. In the presence of interaction,
the potential depends on time due to the motion of the other electrons and the one-particle
wave functions have no well de�ned phase throughout the iteration. Interference e�ects for
the single particle wave functions are suppressed and consequently a di�usive motion sets in.
This motion is similar to the motion of a single particle in a random potential under iterative
measurement [260]. In a way, the other electrons measure the position of the electron under
consideration due to the interaction. However, an iterative measurement of the position of a
single electron leads exactly to a di�usive motion, MR(t) / t0:5. This iterative measurement
can be simulated numerical. Before the measurement the wave function can be written in
the complete eigenbasis of the measuring operator,

j i =X
l

jli hlj j i =X
l

cl jli : (100)

After the measurement the coe�cients cl are simply multiplied by random phase factors
[261]

j i =X
l

cle
i�l jli : (101)

Implementing this multiplication into the time evolution for a single particle, Anderson
localization is completely destroyed. Instead, a di�usive spreading of the wave packet takes
place, see �gure 43. For times larger than the measurement period T , the spreading is
di�usive. The di�erence to the Hartree-Fock results is that no constant period T can be
addressed for the Hartree-Fock calculation. Instead, the period seems to be an increasing
function of time leading to a sub-di�usive growth. The increasing period is related to an
e�ective interaction,

Ue�(t) = U
X
i

j s;�(i; t)j2��s(i; t) =
X
i

X
�

j s;�(i; t)j2j �s;�(i; t)j2; (102)

measuring the in
uence of the other particles. Being a sum over cross participation ratios
of di�erent wave functions that spread with time, Ue�(t) is a decreasing function with time.
The more delocalized the particles are, the smaller is the overlap and hence the in
uence
of the interaction. Thus the reduction of the exponent c in comparison to the iterative
measurement and consequently the sub-di�usive behavior.
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Figure 43: Single particle in a one-dimensional random potential under iterative measure-
ment: period T =1 (solid line), 10 (dotted line), 1 (short dashed line), and 0.1 (long dashed
line). Short solid line indicates slope MR(t) / t0:5

The further reduction to a logarithmically slow growth for the exact few-particle calcu-
lations is unexplained so far, see the discussion in section 5. All theories predict a di�usive
behavior, maybe with a logarithmic correction to it. A logarithmic growth was observed
in percolating system subject to an external �eld [262] and was recently related to broad
waiting-time distributions [263], but the relation to the present problem has not been clari�ed
so far.

Simpler is the explanation of the �nal saturation in the exact calculation. This satura-
tion is related to the fact that the phase of the complete n-particle wave function remains
well de�ned throughout the entire calculation in contrast to the time-dependent Hartree-
Fock approximation. Thus, the saturation is simply related to the localization of all exact
n-particle eigenstates. Nevertheless, the interaction can still be viewed as a kind of measure-
ment process randomizing single electron phases, thus delocalizing the wave packet. Since
the di�usion describes a non-equilibrium process, there is no direct relation to the debate on
zero temperature dephasing due to electron-electron interaction [264, 265, 266, 267].

8 Summary

The experimental discovery of a metal-insulator transition in two dimensions has renewed
the theoretical interest on the in
uence of interaction on disorder-induced localization. Two
main approaches have been used to tackle this problem numerically. Interaction e�ects have
been studied for just two particles and relatively large system sizes as well as for small
samples with larger particle number. Only in the �rst case, low disorder values could be
reached and a coherent motion of the two electrons resulting in a much larger localization
length than for a single electron was observed. In the second case, only strong disorder could
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be studied since the single particle localization length had to be smaller than the system size
in order to reduce �nite size e�ects.

From the experimental point of view, the transition is only observed in very clean systems
with small electron densities. This situation is better recovered by the �rst approach even
though it is not directly related to ground state properties. Our aim was to generalize the
two-particle approach to higher particle numbers, maintaining the low disorder regime which
we think is more relevant with respect to the experimental situation.

In the �rst part of this thesis a short introduction to the topic of localization and inter-
action was presented. An overview on theoretical approaches to the combined problem of
electron-electron interaction and disorder-induced localization was given, focusing mainly on
recent numerical work for small particle numbers n� 2. The failure of the transfer matrix
method was discussed as well as the success of methods calculating matrix elements of the
two-particle Green function. A variety of other approaches to the two-particle problem was
presented which however did not allow for a direct calculation of localization properties.
Finally, results for �nite densities were discussed, obtained for very small system sizes and
particle numbers or relying on more or less appropriate approximations. The tendency to
delocalization due to the interaction, found for n=2, seems to persist for �nite densities.

On the one hand, the analytical estimates of the few-particle localization lengths all had
their shortcomings and the numerical calculation did not go beyond the two-particle prob-
lem. On the other hand, the results at �nite densities were obtained for very small system
sizes and their relation to the experimentally observed metal-insulator transition in two di-
mension is therefore questionable.

In the second part of the thesis, a new numerical tool to calculate the localization length of
few-particle wave packets was introduced: the calculation of the time evolution of wave pack-
ets in combination with a �nite size scaling analysis of the saturation values in the localized
regime. The methods were presented using the example of a particle in a one-dimensional
random potential. This example revealed the possibility to use the time evolution method
for studying disorder-induced localization.

In the next step, the method was generalized in order to calculate the localization prop-
erties of two interacting particles. The zero interaction limit, �2(U =0)/�1, was correctly
reproduced and the results in the presence of interaction were in qualitative agreement with
the �ndings obtained by calculating matrix elements of the two-particle Green function,
�2=a�1+b�

2
1. These results established the combination of a quantum di�usion calculation

and a �nite size scaling analysis of the saturation values of the mean radius and related
quantities as a second, independent method for analyzing the localization properties of few
interacting particles.

Main advantages of the new method were a simple generalization to more than two par-
ticles and the additional information that was gained about the time evolution. This in-
formation helped to understand the physical mechanism underlying the interaction-induced
delocalization. The delocalization of a two-electron wave function was shown to proceed
very slowly, i. e. logarithmically in time, in contrast to analytical predictions of a di�usive
spreading. This observation indicated once more that one has to be very careful with sim-
pli�ed analytical estimates.
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After the new method was established, extensive numerical calculations were performed
to determine the localization lengths for three and four particles. This regime with relatively
weak disorder and more than two particles was not reached before.

The localization length of few-particle wave packets was shown to increase strongly with
increasing particle number. The originally proposed scaling �n / �n1 , section 3, could not
describe the three-particle data. The observed localization length was larger than predicted.
Taking into account the hierarchical structure of the con�guration space, an upper bound
for the n-particle localization length was derived, �n/�2n�11 . Although increasing superex-
ponentially with increasing particle number, the localization length remained �nite for any
non-zero disorder and any �nite particle number. The predicted upper bound was shown to
be in agreement with the three-particle localization length. Furthermore, the shape of the
wave function in con�guration space revealed the hierarchical structure of the con�guration
space and supported the argument leading to the upper bound.

In spite of the exponential increase of the con�guration space with particle number and the
superexponential increase of the localization length with particle number, the four-particle
localization length was calculated in order to collect further evidence for the proposed scaling
of the localization length with particle number. This result could only be obtained due to
a huge numerical e�ort. Although being restricted to relatively large disorder values for
computational reasons, the four-particle localization length was shown to be in accordance
with the proposed scaling, �n / �2

n�1

1 . In spite of the numerical limitations, the regime
dominated by the leading power of �1 could be reached. To collect stronger evidence by
performing calculations at lower disorder values is unfortunately out of reach with nowadays
computing technology.

Applying the same arguments that led to the upper bound for the localization length in
one dimension to the two-dimensional case, the propagation in CM direction is equivalent
to a one-particle system with a �nite number of coupled planes. Since the number of planes
is �nite for any non-zero disorder and any �nite particle number, no \real" transition can
be expected, although the localization length can be arbitrarily large. This �nding provides
some evidence that spin degrees of freedom which have not been considered for the exact
calculations are relevant for the theoretical explanation of the metal insulator transition in
two dimensions, in agreement with recent experiments.

In the last part of the thesis, a possible approximation for higher particle numbers up
to �nite particle densities was proposed. As discussed above, the exact method reached its
computational limits with the four particle calculation due to the tremendous increase of
the localization length and the con�guration space.

After having generalized the quantum di�usion method to time dependent Hamiltonians,
it could be applied to the time-dependent Hartree-Fock equations. A comparison for just
two particles revealed two di�erences. First, the propagation was sub-di�usive rather than
logarithmic. Second, no saturation could be observed up to the longest times considered.
Similar results were obtained for �nite densities. The di�erences for two particles could be
understood by looking at the phase of the electron wave function. This analysis helped to
understand the underlying mechanism of the delocalization on a qualitative level. In some
sense, one electron "measures" the position of the other due to the interaction and as a
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consequence, the single electron phase is not well de�ned throughout the time evolution in
contrast to the phase of the n-electron wave packet in the exact calculation. For the �nite
density calculations, it might well be that the large number of particles considered yields
localization lengths far beyond the numerically reachable system sizes. But extrapolating
from the data, a saturation of the mean radius is expected for the exact calculation since the
phase of the n-electron wave packet is well de�ned. Since this phase is unde�ned within the
time-dependent Hartree-Fock approximation no saturation is expected. But the real error
made due to the approximation is di�cult to estimate.
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96 A DATA TABLES

Erkl�arung gem�a� Promotionsordnung x6 (4)

Hiermit erkl�are ich, da� ich die Arbeit selbst�andig angefertigt und nur die angegebenen
Quellen (siehe Sektion \References" und Hilfsmittel (siehe Sektion 6.4) benutzt habe. Die
Stellen, die im Wortlaut anderen Werken entnommen sind, habe ich als solche gekennzeich-
net.

A Data tables

W MR MR(E=0) IPR IPR(E=0)
9.0 1.80 2.20 3.38 3.07
8.0 2.14 2.52 3.85 3.49
7.0 2.58 3.28 4.45 4.25
6.0 3.22 3.91 5.31 5.17
5.0 4.35 5.54 6.66 7.06
4.0 6.22 8.14 8.60 10.20
3.0 10.29 14.08 12.30 17.71
2.0 21.96 30.40 21.13 38.31
1.5 38.21 54.56 31.90 70.12
1.0 83.61 132.99 58.27 173.32

Table 3: One-particle localization lengths.

W MR IPR RD CM CM (U=0)
10.0 1.83 3.13 2.08 1.50 1.36
9.00 2.09 3.47 2.32 1.78 1.64
8.00 2.44 3.94 2.64 2.14 2.02
7.00 3.01 4.64 3.18 2.75 2.53
6.00 3.89 5.82 4.03 3.66 3.18
5.00 5.42 7.93 5.41 5.41 4.47
4.00 8.80 12.47 8.36 9.15 6.95
3.00 18.00 25.03 15.35 20.46 12.70
2.50 29.70 41.16 23.14 37.30 17.65
2.00 56.83 77.82 38.97 79.89 26.80
1.75 86.81 118.06 54.33 127.06 34.89
1.50 140.58 190.79 74.80 229.63 45.19
1.25 239.85 335.06 115.79 454.56 61.14
1.00 483.41 716.75 199.33

Table 4: Two-particle localization lengths.
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W MR IPR CM CM (U=0)
10.00 2.19 3.62 1.61 1.36631
9.000 2.56 4.17 2.03 1.64172
8.000 3.02 4.77 2.46 2.01213
7.000 3.86 6.07 3.39 2.49595
6.000 5.24 7.94 5.02 3.11337
5.500 6.39 9.64 6.91 3.65236
5.000 8.46 13.18 10.23 4.59848
4.750 9.67 15.28 12.97 5.09416
4.500 11.42 18.78 16.83 5.56029
4.250 13.88 23.94 23.46 6.10027
4.000 17.34 31.93 34.28 7.43717
3.750 22.22 43.92 57.44 8.08082
3.500 29.13 66.27 104.84 9.40344
3.250 39.36 105.59 230.92 11.5654
3.000 54.36 183.58 13.5174

Table 5: Three-particle localization lengths.

W MR IPR CM CM (red.) CM (U=0)
10.0 1.79 3.84 2.10 2.10 1.68
9.00 2.11 4.62 2.71 2.71 1.88
8.00 2.77 5.82 3.58 3.59 2.31
7.00 3.85 7.73 5.19 5.14 2.93
6.00 7.29 12.82 9.97 10.30 3.72
5.50 9.84 18.99 17.58 16.40
5.00 14.32 27.07 36.69 25.91 5.17
4.50 22.22 43.33 101.98 52.59
4.00 38.01 75.69 331.03 105.85 7.45
3.00 11.89

Table 6: Four-particle localization lengths for the more reliable scaling curves, �lled symbols
in �gures 36 and 37. For the center of mass, results including the extrapolation (�gure 40)
are given, using the full data set and a reduced one.


