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Abstract

This work discusses the determination of cosmological parameters, especially the Hubble con-
stant, from observations of gravitational lenses. The lens method has the advantage that it de-
pends on the understanding of only very little astrophysics. This allows very robust results and
makes estimates of the remaining uncertainties relatively simple. The most important contribu-
tion to possible errors is given by the mass models for the lensing galaxies. It is thus necessary
to obtain good estimates of these uncertainties and to reduce them as much as possible. We
present analytical calculations for a general family of power-law lens models with arbitrary an-
gular shape plus external perturbations. The latter are parametrized as external shear. To include
all constraints for optimal unresolved multiple image lens systems, we examine quadruple sys-
tems using the image positions and the three independent time-delays as constraints. It is well
known that the radial mass distribution has important effects on the determination of the Hubble
constant. Our calculations result in a generic and exact scaling relation for the dependence of
the Hubble constantH0 on the power-law exponent of the potential’s radial partβ . This scaling
is the same for all lens systems in this family of models. Systematic errors in the assumedβ will
therefore lead to a systematic error inH0. The effect of external shear is quantified by the new
concept of a ‘critical shear’. For an external shear exactly equal to this value, all time-delays
vanish.

To improve the situation, the parameters of shear and radial mass distribution have to be
measured accurately. Multiply imaged unresolved sources, which are commonly used for this
purpose, can provide only a limited number of constraints. It is therefore important to study
lens systems with extended sources, which can constrain the lens models much better. We use
the lens system JVAS B0218+357 as an example and test case. This system has a measured
time-delay and can thus be used to determineH0. We show that ‘classical’ model fits, using only
the two compact images in this system, are not sufficient to determine the position of the lensing
galaxy and cannot be used to determine the Hubble constant. To exploit the extended structure of
the Einstein ring which is part of this system, the LENSCLEAN algorithm can be used. The main
part of this thesis is devoted to this method. We discuss a number of significant improvements
of LENSCLEAN which were necessary to turn it into a useful tool for systems like B0218+357.
The parameters of an isothermal elliptical mass model can now be constrained with sufficient
accuracy to obtain a competitive result for the Hubble constant ofH0 = (71±5)kms−1Mpc−1

for an Einstein-de Sitter universe. The error bar is a 2σ confidence limit including uncertainties
of time-delay and lens model. Only slightly different results are expected for non-isothermal
models in the case of B0218+357.

We also present new VLBI observations of B0218+357 which for the first time show parts of
the jet in the doubly imaged region. We argue that these data can be used to constrain the radial
mass distribution with unprecedented accuracy. Together with the results from scheduled HST
observations, B0218+357 will soon be the system with the best constrained lens model and the
most robust result for the Hubble constant. It can then fulfill its expectations as a ‘golden lens’.



Zusammenfassung

Diese Arbeit bescḧaftigt sich mit der Bestimmung kosmologischer Parameter, insbesondere der
Hubble-Konstanten, mittels Beobachungen von Gravitationslinsen. Diese Methode hat den Vor-
teil, nur von wenigen astrophysikalischen Vorstellungen abhängig zu sein. Dadurch werden sehr
zuverl̈assige Resultate erm̈oglicht, deren restliche Unsicherheiten relativ einfach abgeschätzt
werden k̈onnen. Der wichtigste Beitrag zu möglichen Fehlern ist auf die verwendeten Linsen-
modelle zur̈uckzuf̈uhren. Es ist deshalb nötig, diese Fehlerquellen genau zu untersuchen und
sie so weit wie m̈oglich zu reduzieren. Es werden Ergebnisse analytischer Untersuchungen einer
sehr allgemeinen Familie von Linsen mit radialem Potenzgesetz und beliebiger Winkelabhängig-
keit pr̈asentiert. Sẗorungen von außen werden durch eine externe Scherung beschrieben. Um alle
Beobachtungseinschränkungen eines optimalen Systems mit kompakten mehrfach abgebildeten
Quellen untersuchen zu können, betrachten wir Vierfachsysteme, bei denen die Bildpositionen
und alle drei unabḧangigen

”
time-delays“ als Einschränkungen f̈ur die Linsenmodelle wirken.

Es ist lange bekannt, dass der radiale Dichteverlauf der Linsen einen wichtigen Effekt auf die
ermittelten Werte der Hubble-KonstanteH0 haben kann. In unseren Rechnungen finden wir eine
allgemeing̈ultige Skalierung des gemessenenH0 in Abhängigkeit vom Exponenten des Radi-
alanteils des Potentialsβ . Diese Skalierung ist für alle derartigen Linsensysteme exakt gleich.
Systematische Fehler des angenommenenβ werden deshalb in ebensolchen systematischen Feh-
lern inH0 resultieren. Um den Effekt der externen Scherung zu beschreiben, verwenden wir das
neue Konzept der

”
kritischen Scherung“. F̈ur eine externe Scherung, die diesem Wert exakt

gleich ist, verschwinden alle time-delays.
Um die Situation zu verbessern, müssen externe Scherung und radialer Dichteverlauf exakt

vermessen werden. Systeme mit mehrfach abgebildeten unaufgelösten Bildern k̈onnen immer
nur eine begrenzte Anzahl von Einschränkungen liefern. Es ist deshalb wichtig, auch ausge-
dehnte mehrfach abgebildete Quellen zu verwenden, die die Linsenmodelle deutlich besser ein-
schr̈anken k̈onnen. F̈ur unsere Untersuchungen verwenden wir das System JVAS B0218+357 als
exemplarischen Testfall. Für dieses System ist der time-delay bekannt, so daß die Bestimmung
vonH0 prinzipiell erm̈oglicht wird. Es zeigt sich, dass

”
klassische“ Linsenmodellierung, die nur

Informationen der beiden kompakten Bilder verwendet, nicht ausreichend ist um die Position
der Linsengalaxie zu bestimmen. Solche Modelle können deshalb nicht zur Bestimmung der
Hubble-Konstanten verwendet werden.

Um zus̈atzlich die Strukturen des hier ebenfalls vorhandenen Einsteinrings ausnutzen zu
können, verwenden wir den LENSCLEAN Algorithmus. Dies macht den Hauptteil dieser Ar-
beit aus. Es wird eine Anzahl von deutlichen Verbesserungen von LENSCLEAN besprochen,
die n̈otig waren, um daraus ein nützliches Verfahren f̈ur Systeme wie B0218+357 zu machen.
Hiermit können die Parameter eines elliptischen isothermen Massenmodells mit ausreichender
Genauigkeit bestimmt werden um ein konkurrenzfähiges Ergebnis für die Hubble-Konstante
von H0 = (71±5)kms−1Mpc−1 für ein Einstein-de Sitter-Universum zu erhalten. Die Fehler-
grenzen geben einen 2σ Vertrauensbereich an. In ihnen sind die Unsicherheiten aus time-delay
und Linsenmodell enthalten. In diesem speziellen Fall sind keine wesentlich unterschiedlichen
Resultate zu erwarten, wenn nicht-isotherme Modelle verwendet werden.

Zudem pr̈asentieren wir neue VLBI Beobachtungen von B0218+357, die zum ersten Mal
doppelt abgebildete Bereiche des Jets dieser Quelle zeigen. Diese Daten können die radiale
Masseverteilung mit bisher unerreichter Genauigkeit festlegen. Zusammen mit den Ergebnissen
von bereits genehmigten HST Beobachtungen wird B0218+357 das System mit dem am ge-
nauesten bekannten Linsenmodell und dem besten Ergebnis für die Hubble-Konstante werden.
B0218+357 ist damit auf dem besten Weg, seine Versprechen als

”
goldene Linse“ einzulösen.
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Chapter 1

Introduction

Gravitational lenses offer a unique possibility to determine cosmological distances and hence
the Hubble constant in a relatively simple way (Refsdal, 1964) by using light travel time-delays
between multiple images of one source as fundamental distance measure. The method avoids
using any form of distance ladder and instead determines distances at high redshift directly in
one step. Classical methods involve many possible sources of uncertainties and errors. In dis-
tance ladder methods, each step introduces its own problems, because the ‘standard candles’ or
their equivalents such as the Tully-Fisher relation have to be understood in detail. Many areas of
astrophysical research thus contribute to the results, but also to the possible errors. This includes
stellar physics, galactic dynamics, physics of supernovae, structure formation, dynamical prop-
erties of the local universe, evolution of stars and galaxies, dust formation and many other topics.
It is almost impossible to understand and estimate the possible errors (statistical and more im-
portant systematic) of all these contributions reliably. Results from different methods or groups
which are highly incompatible with each other within the error estimates are a well known prob-
lem in the history of the Hubble constant1. Though much effort has been devoted to improving
the classical methods, only during the last decade have they begun to produce consistent results.
It is very important to continue this work to obtain results from as many independent methods
as possible. This can not only provide a robust result for the Hubble constant, but can also serve
as a test of the underlying concepts of all the methods. In the end, some of the methods might
teach us more about the astrophysical problems involved than about cosmology.

Gravitational lensing is a very special method in the sense that it is almost independent of
a deeper understanding of astrophysical processes. It relies on general relativity, including the
cosmological fundament of a homogeneous Friedmann–Robertson-Walker universe, and needs
mass models of the lenses to produce results. Apart from this, no complicated astrophysics is
needed to apply the method. This has the advantage that possible statistical and systematic un-
certainties can be controlled much better than with other methods. The possible errors from
incomplete knowledge of the cosmological parameters can be estimated easily by repeating the
calculations for a range of possible values. These uncertainties are currently at the 5 % level.
More important is the influence of the mass models for the lenses. If these are based on other
astrophysical research, e.g. studies of rotation curves and radial velocity distributions of nearby
galaxies, unknown errors are again introduced, which are difficult to quantify. Even if typical
mass distributions of nearby galaxies could be determined with satisfying accuracy, the extrap-
olation to high-redshift lenses, which are at different levels of evolution from today’s galaxies,
is highly problematic. This would imply a model of structure formation, galaxy evolution and
depend e.g. on the validity of the concept of cold dark matter (CDM).

1Mould et al. (2000) still differ from Sandage (1999) or Parodi et al. (2000) by about 30 %.

1
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The importance of lens models imposes two requirements. First, the possible errors have to
be analysed by studying very general mass distributions as lens models. Analytical and numeri-
cal methods can be used to quantify uncertainties implied by unknown model parameters. With
the knowledge from this analysis, ways to improve the constraints on the relevant model param-
eters to reduce the errors can be developed. We follow the first line with analytical investigations
of a very general family of power-law models. In that part of the work, we will concentrate on
two effects. One is the radial mass distribution, which can lead to large uncertainties for all lens
systems. An important result is the fact that systematic errors introduced by the assumption of
an incorrect profile can lead to exactly the same errors for a large family of lens systems. These
errors can therefore not be detected as scatter in the results from many lenses. External perturb-
ing masses, adding to the effect of the main lens, are another important effect. We will introduce
a new concept of a ‘critical shear’ which can be used to estimate the possible errors. Even small
external perturbations can have very strong effects for certain lenses.

The effects of other cosmological parameters, besidesH0, on lensing properties can also be
used to constrain these parameters from individual lenses or small number of systems. These
cosmological tests are purely geometric and directly test the distance parameters. They do not
involve detailed astrophysical models like structure formation and a priori unknown proper-
ties of the dark matter. This is again in contrast to most other methods, including the use of
lens statistics. Two methods are known to determine cosmological parameters from individual
lenses. One relies on measured time-delays. This method can only be used if the Hubble con-
stant is known from other methods, or in combination of several lens systems which together
constrain the Hubble constantandother cosmological parameters. Unfortunately, the effects are
very small and a very high accuracy of the time-delays and lens models is needed to apply it
successfully. An alternative method gained interest during the last years. It works without a
known time delay but uses the image separation or the geometry of critical curves. This method
relies on an alternative mass determination result, e.g. from velocity dispersion measurements.
The fundamental problem with this method is that it depends very sensitively on the dynamical
model of the lensing galaxy which is used to convert the velocity dispersion to a mass scale. It
may turn out that this method is more valuable to study the dynamics of high redshift galaxies
than to determine cosmological parameters.

Although the application of the lens effect to determine cosmological parameters will possi-
bly play an important role in the future, we do not discuss it in detail in this thesis. Our work on
lens models will, nevertheless, also help in this application. This leads us to the second task, the
improvement of lens models to reduce uncertainties and errors.

The ‘golden lens’ B0218+357 serves as a test case for most of this work, although the an-
alytical methods for quadruple systems do not apply to this double. B0218+357 is a radio lens
system consisting of two bright images and an additional Einstein ring. The time-delay between
the bright components has been measured and can be used to determine the Hubble constant.
This system was used for our development of the LENSCLEAN algorithm which can be applied
to constrain lens models from radio data of lenses with extended sources. This work was moti-
vated by the only principal problem with B0218+357: It is the system with the smallest image
separation of all known lenses. Because the lens galaxy is not seen at radio wavelengths, mea-
surements of its position rely on optical observations, which are extremely difficult for such a
small system. No accurate measurement for this fundamental parameter has been possible yet.
We therefore use LENSCLEAN mainly to constrain the lens position to be able to estimate the
Hubble constant from B0218+357’s time delay. The method works successfully now and will in
the near future be used to constrain parameters of detailed lens models for several radio lenses.
One application will be a new VLBI data set of B0218+357 which provides strong constraints
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on the radial mass profile by showing rich substructure in the lensed jet of the source. This
structure probes the lensing potential at a wide range of radial distances and thus provides far
better constraints than data for multiply imaged compact sources.

Preview of this thesis

We start with theoretical considerations on model fitting and error statistics in chapter 2. An un-
derstanding of the theory of modelling is essential for the development of general lens modelling
methods, but also for radio interferometry and LENSCLEAN. We concentrate on the statistical
analysis of model fitting residuals and on confidence limits.

Chapter 3 comprises a brief introduction on gravitational lenses, including the necessary cos-
mological background. As promised, only little astrophysics is needed. The cosmology enters
only in the calculation of angular size distances. We introduce the general concepts of lens equa-
tion, deflection angle and magnification. A simple derivation of the time-delay equation is also
provided. Classical lens model fitting is discussed in chapter 4. We present the model families
that are used throughout this work and the implementation of different types of observational
constraints in the modelling process.

Many lens modelling procedures imply the inversion of the lens equation; it is necessary to
find the position of all images for a given source position. This highly non-trivial problem can be
solved analytically only in very special cases. Chapter 5 presents the new numerical algorithm
LENTIL for the inversion, which was designed to work very reliable for any kind of lens model.
Simpler alternatives are available for classical modelling. LENTIL was developed mainly for the
use with LENSCLEAN, which relies on an extreme robustness of the lens equation inversion.

The analytical work on general power-law models is presented in chapter 6. We investigate
these models for quadruply imaged systems with measurements of all three independent time
delays to analyse possible model degeneracies for lenses which provide almost the optimum of
constraints. It is shown that a very simple scaling relation exists for the dependence ofH0 on
the power-law exponent. The new concept of the ‘critical shear’ is also introduced. For external
perturbations equal to this value, all time delays vanish. This surprising fact is closely related
to the formation of possible Einstein rings and to very high image multiplicities. A simple
geometrical interpretation is presented, which can be used to obtain the critical shear directly
from the image geometry. We also compare the analytical results with numerical models for a
number of real lens systems.

Chapter 7 gives on overview of the lens B0218+357. We summarize the available obser-
vational data and possible constraints for lens models. We learn that, without the ring, the
constraints are far from sufficient to determine the lens position accurately. As a result, noH0
determination is possible without including further constraints. Published VLBI data resolve
both images and show two subcomponents each. The positions of these can be used to constrain
the radial mass distribution quite accurately.

Chapter 8 is devoted to the theory of radio interferometry, especially to the deconvolution
of radio maps. Interferometers measure the Fourier transform of the celestial emission pattern.
This measurement is not complete, so that the real brightness distribution cannot be derived
uniquely from the data. The directly produced ‘dirty maps’ are convolutions with the ‘dirty
beam’, which is the system’s response for a point source (‘point spread function’ in optical
astronomy). Several methods to solve the deconvolution problem are discussed theoretically
and with numerical experiments. Particular attention is paid to ‘CLEAN ’, which is by far the
most important method in practical work. CLEAN works by successively subtracting shifted and
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scaled versions of the dirty beam from residual maps to produce deconvolved ‘CLEAN maps’.
The modification of CLEAN for lensed sources, called LENSCLEAN, is discussed in chap-

ter 9. This should be considered as the main part of this thesis. LENSCLEAN was already
proposed by Kochanek & Narayan (1992) but is still not widely used. This is a result of the
enormous technical difficulties and the high computational demands. The basic idea is simple.
While components can be subtracted freely in unlensed CLEAN, LENSCLEAN only allows si-
multaneous subtraction of all images corresponding to a certain position in the source plane. The
emission model built in this way is exactly compatible with the given lens model and the final
residuals can be used to assess the ability of the lens model to fit the data and thus to find the
best lens model. The original algorithm has many numerical problems. A number of modifica-
tions were required to convert the elegant concept of LENSCLEAN into a valuable tool for lens
modelling in cases like B0218+357. We illustrate most of these improvements with artificial
data sets, for which the true lens model is known. It is only the combination of many improve-
ments which really helped to cope with the numerical problems of the original algorithm. The
demands on computing power are very high. Many modern PCs running in parallel were used
for the computations. LENSCLEAN is at the very limit of what can be done without special
equipment.

We use LENSCLEAN mainly to determine the lens position relative to the lensed images in
B0218+357 from a 15 GHz VLA data set. The final accuracy is much higher than the resolution
of the data, although the surface brightness of the ring is not very high and no sharp features
are present besides the two bright images. The position is then used to determine the Hubble
constant with a competitive accuracy. This is the first time that LENSCLEAN is applied to a
lens with measured time-delay to determine the Hubble constant. A second data set with higher
resolution, taken at 5 GHz with the MERLIN array, could not be used successfully to improve
the accuracy, although it was successfully used to produce the best maps of the radio ring yet.
This is partly a result of possible scattering in the lensing galaxy, which is stronger at lower
frequencies. Other problems are related to the calibration of this multi-frequency data set. The
data are nevertheless valuable for LENSCLEAN if used in combination with the 15 GHz data. We
use lens models obtained at 15 GHz and apply them to the data at 5 GHz to quantify the effects
of scattering and a possible shift in position between the two, by fitting these as free parameters.

Most of the calculations were performed for isothermal lens models. Only preliminary re-
sults, obtained with a combination of LENSCLEAN and LENTIL , are available for different
power-law models at the moment. It seems as if two effects of changes of the exponent cancel
each other to a degree. The effect of the model itself is compensated by the shift of the lens
centre induced by a modified exponent. We do therefore not expect a large error of the result for
H0 from the possibly incorrect radial profile used.

Finally, we present preliminary results of new high-resolution VLBI observations of the
system B0218+357 in chapter 10. These data reveal structure in the jet unseen before. We use
our best lens models to project the maps of both images of the jet back to the source plane to
compare them directly. The lensed images look very different, because of the combined effects
of different magnifications and finite resolution of the observations. The source plane images are
compatible with each other, if the lens model is not exactly isothermal but has a slightly different
radial exponent. This result is in agreement with the one from an older data set which does not
show the jet but only the two central subcomponents. A future analysis of the new observations
with LENSCLEAN will improve the constraints for the radial mass distribution considerably.
Together with the lower-resolution data from the VLA and MERLIN which are very sensitive
for the lens position, this will lead to very tight constraints of the possible lens models and to a
very accurate and robust result for the Hubble constant.



Chapter 2

Model fitting and error statistics

The analysis of astronomical observations often involves inverse problems. This means, that we
believe to understand how the observational data would look like if the true state of the system
under investigation was known exactly. However, the task we have to perform is the inversion of
this process: Deduce the state of the system (in our case the mass distribution of a gravitational
lens or the brightness distribution of a radio source) from the observational data. A common
approach to this kind of problems is model fitting. Given a parametrized model of the system,
we determine the observational data expected if this model would be correct. Using this, we can
minimize the deviations from the real observations to obtain the ‘best’ model.

2.1 Residuals

Suppose a model described byM parametersxν which shall be constrained by a number of
N observational quantitiesyj . Both can also be written as vectorsx and y. We assume to
understand how ideal observations (without errors) should look like if the true model was known
and write these asym (‘m’ for ‘model’). In reality, observations always have errors, which we
want to describe as additive noisen.

y = ym +n (2.1)

This approach of a noise independent of the model is only useful for sufficiently small errors.
Let the statistical properties of the noise be described by its expectation value< n >= 0 and its
covariance matrixC:1

C =
〈
nn†〉 (2.2)

Cjk =
〈
nj nk

〉
(2.3)

For Gaussian noise, the distribution is uniquely defined by these quantities.
The idea of model fitting is now to define residuals in a way to discriminate between ‘good’

and ‘bad’ models. Throughout the later work, we will always use the following definition of
the residualsR2. We use a symmetric and positive definite matrixW to weigh the residual

1With A† andx†, we generally mean the Hermitian conjugate, which is a combination of transposition and com-
plex conjugation.(A†)jk = A ?

k j. The matrices are real here, Hermitian conjugation is thus equivalent to transposition.

5
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components and add them quadratically.

R2 = (y−ym)†W(y−ym) (2.4)

= ∑
jk

Wjk (yj −ym
j )(yk−ym

k ) (2.5)

A special case of this would be a diagonal matrixW = diag(wj), which leads to a simple sum of
squares. For the (usually unknown) true modelx0, the residuals would consist of noise only:

R2 = n†Wn (2.6)

For incorrect models, the difference to the true model would also contribute to the residuals. It
is thus very likely, that the true model is located somewhere near the minimum ofR2, which
we callxfit . To quantify this statement, we want to discuss some aspects of the statistics in the
following sections.

A special case of weighting is to use the ‘natural weights’ defined byW = C−1. The residuals
R2 are then also called

χ
2 = (y−ym)†C−1(y−ym) . (2.7)

In the case of uncorrelated noise, where the covariance matrix is diagonal andCj j = σ2
j , a stan-

dard form in whichχ2 is often discussed can be recognized:

χ
2 = ∑

j

(yj −ym
j )2

σ2
j

(2.8)

The special properties ofχ2 will be discussed in detail in section 2.6.

2.2 Linear models

Linear model approaches are important in the context of this work for different reasons. First,
they are often a good approximation even for nonlinear models for parameters near the best
fit. Second, the CLEAN and LENSCLEAN algorithms, which will be described later, fit linear
brightness models to the data. An understanding of general linear models will help in the analysis
of these methods.

Using the same notation as before, the relation between model parametersx and observa-
tional quantitiesy can be written by using a matrixA:2

ym = Ax (2.9)

With this approach, it is simple to minimize the residuals analytically by setting the variation to
zero:

δR2 =−2δx†A†W(y−Ax) (2.10)

= 0 (2.11)

The solution is

xfit = (A†WA)−1A†Wy , (2.12)

R2
fit = y†M′y (2.13)

2An additional shift inx and/ory can be included in a simple way and is thus neglected in the discussion.
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with

M = WA(A†WA)−1A†W , (2.14)

M′ = W−M . (2.15)

2.3 Regularization

The solution forx is unique for ally only if the matrixA†WA is invertible. A necessary condition
for this isM≤N. Obviously, we cannot determine more parameters than we have constraints. To
define a uniquely solvable problem even in cases of a singular (or numerically close to singular)
matrix, further constraints have to be imposed on the solution. One possibility is to search for
the ‘principal solution’, defined by

x†x = minimum . (2.16)

This solution can be found in a very elegant and numerically stable way by using the method of
‘singular value decomposition’ (e.g. Press et al., 1992). Another method is the use of Lagrange
multipliers.

Even in formally invertible cases, the solutions may sometimes be very unstable and change
violently with small changes in the measurements. Clearly, we are not interested in these un-
realistic variations but in the ‘stable part’ ofx. Several regularization methods are known to
accomplish this task. The so-called ‘linear regularization’ is especially simple. The idea is to
put further (typically smoothness) constraints on the solution and modify the fundamental equa-
tions accordingly. The general approach can be written as modified residualsR′2, which then
have to be minimized instead of the true residualsR2.

R′2 = R2 +λ x†Sx (2.17)

The positive definite symmetric matrixS describes the particular kind of regularization; the con-
stantλ ≥ 0 defines to what extent the regularization should be allowed to change the solutions.
For infinitely smallλ (we will call this ‘weak regularization’ later) andS = 1, this leads to the
exact principal solution. For finiteλ , the models found in this way are not exact solutions of
minimal R2 anymore. We therefore do not only select one of the exact solutions but change
the optimization problem itself. We refer to this methods as ‘strong regularization’ later. Reg-
ularization can be interpreted as a special kind of a Bayesian prior, which will be discussed in
section 2.8.

For λ > 0, the positive definite matrixS shifts the vanishing eigenvalues ofA†WA to finite
values and thus allows to invert the equation.

xreg = (A†WA+λS)−1A†Wy (2.18)

The trade-off between small residualsR2 and ‘regularity’ of the solution is represented byλ ,
which we can choose to our needs. If we want to interpretxreg itself as a ‘best’ model and not as
a smoothed version of some solution,λ should be chosen in a way to get reasonable residuals
(see section 2.5).

2.4 The ‘Maximum likelihood’ approach

In ‘maximum likelihood’ model fitting, the ‘best’ model is defined to be the one with the highest
likelihood. The likelihood is defined as the probability that, given the model, the observations
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are within a small (but constant) interval of the ones observed in reality. The likelihood isnot the
probability of the model being correct, although this is often confused. However, it is possible
to relate the two using Bayes’ theorem and an a priori probability distribution of models.

For Gaussian noise, theχ2 derived from the true modelx0 and a set of observationsy is a
measure for the probability density of these observations. This is the case because the difference
consists of noise only and is weighted with the covariance matrix of the noise. The probability
density of a certain measurement if given by

dp ∝ e−χ2/2 ∏
j

dyj . (2.19)

Minimal χ2 therefore corresponds to maximal likelihood. We will see later, that the minimal
χ2 can be used to assess the goodness of the fit. The probability that the measuredχ2 is equal
to or less than an observed valuet is given by the cumulativeχ2-distribution. Changes ofχ2

depending onx are used to determine confidence limits of the model parameters.
We have to keep in mind, that minimizingR2 with non-natural weighting isnot equivalent

to finding the model of maximal likelihood. We can nevertheless determine confidence limits
using this alternative measure (see section 2.7).

2.5 Calculating the mean and variance ofR2

In this section we want to analyse some theoretical properties of model fitting residuals. The
results will later be used to judge the goodness of fit and to determine confidence limits. For
the analytical calculations, we assume a linear model following section 2.2. The results are
also applicable for nonlinear models, if the errors are sufficiently small. For simplicity, we
furthermore assume that the real model isx0 = 0. This can always be achieved by a shift inx

andy.
Let us now investigate the statistics for the residualsR2

fit of the best fit modelxfit , for the
residualsR2

0 of the true (unknown) modelx0 and for their difference∆R2. Using the results from
section 2.2 and the assumption that the true model isx0 = 0 and therefore alsoym

0 = 0, we can
write:

R2
0 = n†Wn (2.20)

R2
fit = n†M′n (2.21)

∆R2 = R2
0−R2

fit (2.22)

= n†Mn (2.23)

≥ 0 (2.24)

ForM andM′ we use the same definition as before in (2.14) and (2.15). For the case of arbitrary
weightsW, we only want to calculate the expectation value and the variance of these quantities.
For natural weighting, we will present the complete probability distributions in 2.6.

The mean values can be calculated trivially. We only give the results forR0, as those forR2
fit

and∆R2 can be obtained by substitutingW with M′ or M, respectively. This is also true for the
variances. 〈

R2
0

〉
= ∑

jk

WjkCjk (2.25)

= Tr WC (2.26)
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The trace of a matrix is defined as the sum of the diagonal elements,

Tr M = ∑
j

mj j . (2.27)

For diagonalW andC, equation (2.26) reads〈
R2

0

〉
= ∑

j

wj σj . (2.28)

To calculate the variances, we need the expectation value ofnj nk nl nm. To derive this, it is best
to write the covariance matrix as

C = S′†DS′ , (2.29)

= S†S , (2.30)

whereD is diagonal andS′ orthogonal. In the second step we have absorbed the eigenvaluesDj j
into S′ to formS. Using this, we can write the noise as

n = S†ξ (2.31)

with an uncorrelated and normalized noise vectorξ satisfying〈
ξj ξk

〉
= δjk . (2.32)

The needed high order covariance is now〈
nj nk nl nm

〉
= ∑

abcd

Sa j SbkScl Sdm

〈
ξa ξb ξc ξd

〉
. (2.33)

The measure forξ on the right hand side can be derived with (2.32) and symmetry arguments:〈
ξa ξb ξc ξd

〉
= δabδcd +δacδbd +δadδbc (2.34)

The indices have to be equal in pairs, otherwise at least one factor would separate and vanish.
Fora = b, c = d anda 6= c the result is< ξ 2

a ξ 2
c >= 1. In the casea = b = c = d it is 3, which is

the correct value of< ξ 4
a >. Using this, we arrive at〈

nj nk nl nm

〉
= ∑

ac
Sa j SakScl Scm+∑

ab

Sa j SbkSal Sbm+∑
ab

Sa j SbkSbl Sam , (2.35)

and, with (2.30), 〈
nj nk nl nm

〉
= CjkClm +CjlCkm+CjmCkl . (2.36)

Now we can determine the variance ofR2
0 with (2.20).

var(R2
0) =

〈
R4

0

〉
−
〈
R2

0

〉2
(2.37)

= ∑
jklm

WjkWlm

(〈
nj nk nl nm

〉
−
〈
nj nk

〉〈
nl nm

〉)
(2.38)

= ∑
jklm

WjkWlm

(
CjlCkm+CjmCkl

)
(2.39)
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Using the symmetry ofW andC, this simplifies to

var(R2
0) = 2 ∑

jklm

WjkWlmCjlCkm , (2.40)

= 2Tr(WC)2 , (2.41)

or, for diagonalW andC,
var(R2

0) = 2∑
j

w2
j σ

4
j . (2.42)

For the case of natural weighting, whereR2 = χ2 andWC = 1, the definitions ofM andM′ in
(2.14) and (2.15) can be used to prove thatP1 = MC andP2 = M′C are projection operators
with

P2
j = Pj , (2.43)

which project into a subspace. The trace of a projection operator is simply the dimension number
of the subspace:

Tr(WC)2 = Tr WC = N (2.44)

Tr(MC)2 = Tr MC = M (2.45)

Tr(M′C)2 = Tr M′C = N−M (2.46)

As a conclusion we find the most important statistical properties of the correspondingχ2 distri-
butions: 〈

χ
2
0

〉
= N var(χ

2
0) = 2N (2.47)〈

χ
2
fit

〉
= N−M var(χ

2
fit) = 2(N−M) (2.48)〈

∆χ
2〉= M var(∆χ

2) = 2M (2.49)

These can directly be used to assess the goodness of a fit and to determine confidence limits.
It can be shown, that the distributions not only have the same mean and variance as theχ2-
distributions withν = N, M andN−M but really are identical to those distributions (see also
section 2.6). The normalized (or reduced)χ2 is defined by dividing it by the mean value:

χ̄
2 =

χ2

ν
(2.50)

var(χ̄
2) =

2
ν

(2.51)

We can define an analogous quantity forR2
0 by using (2.26) and (2.41):

R̄2
0 =

R2
0

Tr WC
(2.52)

=
R2

0

∑j wj σ2
j

(for diagonalW, C) (2.53)

var(R̄2
0) =

2
ν ′0

(2.54)
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Here we used an effective number of degrees of freedomν ′0 defined by

ν
′
0 =

(Tr WC)2

Tr(WC)2 . (2.55)

In the diagonal case it becomes

ν
′
0 =

(
∑wj σ2

j

)2

∑w2
j σ4

j

. (2.56)

It can be shown, that alwaysν ′0 ≤ ν0. The two are equal only for natural weighting withwj =
σ−2

j . The variance of̄R2
0 is therefore minimized with natural weighting. Analogous derivations

are possible forχ2
fit and ∆χ2. With general (non-natural) weighting, the traces in equations

(2.26) and (2.41) can usually not be calculated easily forM andM′. It is nevertheless possible,
to find a good approximation for non-pathological cases. Let us suppose a model with only one
parameterx, which acts on theN measurements as follows:

yi = ai x (2.57)

A =

a1
...

aN

 (2.58)

For ai ≡ 1, this corresponds toyi = x, i.e. a number ofN measurements of one and the same
parameter. The best solution is then the weighted arithmetical mean. The general case can
be interpreted as finding the scaling constantx between the givenai and the corresponding
measurementsyi . It is now easy to find the following result for diagonalW andC:〈

∆R2〉= Tr MC (2.59)

=
∑j w

2
j a2

j σ2
j

∑j wj a
2
j

(2.60)

=
〈
wσ

2
j

〉′
(2.61)

The mean in (2.61) is weighted withwj a
2
j . In cases of very many measurements, we can hope

that theaj are not significantly correlated with thewj σ2
j . We can then calculate the mean with

weightswj instead ofwj a
2
j . The following generalized results forM parameters are exact in a

number of special cases.

M′ = M
〈
wσ

2
j

〉
(2.62)

= M
∑j w

2
j σ2

j

∑j wj
(2.63)

N′ = ∑
j

wj σ
2
j (2.64)〈

R2
0

〉
= N′ (2.65)〈

R2
fit

〉
≈ N′−M′ (2.66)〈

∆R2〉≈M′ (2.67)

We will use these approximations to estimate confidence limits of LENSCLEAN results in chap-
ter 9, especially section 9.7. Monte Carlo simulations for the final result in section 9.21.2 will
confirm that the accuracy is remarkably high in this case.
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2.6 Theχ2 distribution

Because theχ2 distribution is so fundamental, we want to present its derivation here. If a
random vectorn consists ofν independent random quantities with probability densitieswj , the
probability density ofn is

wn(n) =
ν

∏
j=1

wj(nj) . (2.68)

Equation (2.19) is the special form of this for Gaussian measurement errors. The probability
density of an arbitrary functionf of n can be written as

wf (t) =
∫

dνn wn(n)δ
(

f (n)− t
)

. (2.69)

In the case of uncorrelated errors,χ2 is just a sum ofν normally distributed random numbers
(2.8). In the general case, we can use (2.7) transformed to diagonal form with the same result.
The same formalism was used in section 2.5. The functionf = χ2 is therefore the sum of the
components fornj . We can now use (2.69) to calculate the (differential) probability distribution
of χ2:

wχ2(t) =
1

(2π)ν/2

∫
dνn e

−
ν

∑
i=1

n2
i /2

δ

(
ν

∑
i=1

n2
i − t

)
(2.70)

This integral can be transformed toν-dimensional spherical coordinates:

wχ2(t) =
1

(2π)ν/2
Sν

∞∫
0

dr r ν−1e−r2/2
δ (r2− t) (2.71)

HereSν is the ‘area’ of the surface of theν-dimensional unit sphere (e.g. Forster, 1984):

Sν =
2πν/2

Γ (ν/2)
(2.72)

We can now perform the integration using∫
dx f(x)δ

(
g(x)

)
= ∑

g(x0)=0

f (x0)
|g′(x0)|

, (2.73)

where the sum is taken over all zerosx0 of g within the integration interval, to get the result

wχ2(t) =
1

2ν/2Γ (ν/2)
tν/2−1 e−t/2 . (2.74)

The cumulativeχ2-probability ofχ2 being equal to or less than a certain value is then

P(χ
2|ν) =

χ2∫
0

dt wχ2(t) . (2.75)

This distribution can be written as an incomplete Gamma function. The last equation follows
the notation of Abramowitz & Stegun (1972), where tabulated values can be found as well. In
the case ofν � 1, the χ2 distribution is approximated by a Gaussian distribution, which is
completely characterized by its meanν and variance 2ν .
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2.7 Goodness of fit and confidence limits

Equally important as the knowledge of the ‘best’ solution to an inverse problem is to estimate the
accuracy of this solution and the goodness of the fit itself. To assess the latter, we can calculate
the probabilityP(χ2|ν) of χfit being equal to or less than the measured value. The number of
degrees of freedom in this case isν = N−M (see below). For many realizations, this probability
should itself be equally distributed between 0 and 1. Values very close to 1 (very highχ2) usually
mean, that the model cannot fit the data, because it is an inappropriate description of nature, or
that the errorsσj have been underestimated or are not Gaussian. Very low values, on the other
hand, are an indication for overestimated errors. As a first check, the result can be compared
with the expectation value ofν , taking into account the standard deviation of

√
2ν .

To estimate the confidence limits, we have to assume that nature can be described by the
model approach and thatχ2

fit has a reasonable value. We then use the difference∆χ2 = χ2
0 −χ2

fit
and its statistical properties to determine the range of acceptable model parameters. If we knew
the real model, the differencey−ym

0 (remember it isN-dimensional) would consist of noise
only andχ2

0 would follow the χ2-distribution with as many degrees of freedom as there are
measurements (ν = N). In the fit we minimize the residuals to obtainχ2

fit ≤ χ2
0 . It can be shown

that thisχ2
fit follows a distribution withν = N−M, whereM is again the number of parameters

of the model. For the proof, we use the linear form ofym(x) in the region of interest. We can
then apply transformations tox andy to diagonalizeC and letx influence onlyM elements of
ym. By minimizing χ2, these contributions toχ2 become zero. We are then left with a sum of
ν = N−M normally distributed quantities, leading to a distribution withν degrees of freedom.
Said in a simplified way, by fittingM parameters to ourN measurements, we were left with
N−M measurement errors inχ2

fit , while there wereN in χ2
0 . The difference therefore consists

of M errors and∆χ2 follows a distribution withν = M. For a calculation of mean and variance
of these distributions for arbitrary weighting, see section 2.5.

Knowing the distribution of∆χ2, we can define confidence regions whose boundaries have
constantχ2. The probability that∆χ2 is equal to or less than a certain value is given by
P(∆χ2|M). As an example, the 68.3% confidence limit forM = 1 is defined by∆χ2 = 1. The
confidence usually is a good approximation to the probability that the true model actually lies in
this region. To calculate real probabilities of models given the measured data, we have to apply
Bayesian statistics (see section 2.8). If we are interested in confidence limits for a subset of
m< M parameters, we have to fit the other parameters to obtain the boundary given by statistics
for ν = m in the subspace ofm parameters. In other words, we have to determine theχ2 by
varying the irrelevantM−m parameters to minimize the residuals. Only them parameters of
interest contribute to the∆χ2 statistics.

For differently weighted residualsR2, boundaries of constantR2 can still be used as confi-
dence limits. Unfortunately, the probabilities cannot be determined using a generic function of
just the number of parameters and measurements. They also depend on other properties of the
problem in question. The mean and variance ofR2 can be calculated exactly or estimated using
the results from section 2.5.

Using boundaries of constant naturally weightedχ2 optimizes the results in a certain sense.
The probability density is a monotonous function ofχ2, and the region around the maximum
likelihood limited by constantχ2 is thus the most compact one. The errors in the model pa-
rameters are minimal in this sense. The shapes of the confidence regions change for different
weighting, which can sometimes be desirable.



14 CHAPTER 2. MODEL FITTING AND ERROR STATISTICS

2.8 Bayesian statistics

The concept of maximum likelihood model fitting is somewhat arbitrary. It has proven to be
useful in many problems, but it offers no real to solution to the question that we are actually in-
terested in: Which is the mostprobablemodel and how large is the region of allowed parameters
to enclose a total probability of say 95%? Up to now, the probabilities we dealt with were of the
kind ‘probability of a certain observation given a model’, while we are really interested in the
‘probability of a certain model given an observation’. These two can actually be related to each
other using Bayes’ theorem, which can be written like this:3

P(Mj |D) =
P(Mj)P(D|Mj)

∑
k

P(D|Mk)P(Mk)
(2.76)

HereP(Mj |D) is the probability that the modelMj is the correct one, given that the observations
lead toD. P(Mj) is the so-called ‘a priori probability’ of the modelMj (also called the ‘prior’),
the probability of this model without knowing anything about the observations.P(D|Mj) is the
probability that the measurements lead toD given that a modelMj is correct. This was called
‘likelihood’ of the model before. The denominator can be thought of as a normalization constant
for the probabilities to assure∑j P(Mj |D) = 1. It is important that the normalization does not
depend on the model in question but only on the data which are fixed by the observations anyway.

Equation (2.76) is easy to prove. We start with the probability thatMj andD are true, which
can be written in two ways as the product of probabilities ofMj andD:

P(Mj ∩D) = P(D)P(Mj |D) (2.77)

= P(Mj)P(D|Mj) (2.78)

As both expressions have to be equal, we immediately arrive at (2.76), if we take into account
that

P(D) = ∑
j

P(D|Mj)P(Mj) . (2.79)

For models and observations described by continuous data, we can use the same equation for
probability densities. The sum in the denominator becomes an integral then.

For a flat prior,P(Mj) = const in the region of interest, the probability of the model is
directly proportional to the likelihood. Only in this case can the two be used exchangeably. If
the measurement errors are small, any models with significantly different a priori probabilities
will be so incompatible with the data,P(D|Mj)� 1, that they do not contribute to the result. We
can then assume a flat prior without distorting the results too much. This is why the maximum
likelihood approach works so well in most cases.

A much cleaner reasoning regarding the confidence limits is possible using Bayes statistics.
A confidence region of say 95% is simply a (notthe) region in model parameter space, whose
total integrated probability is 95%. The shape of this region can be chosen arbitrarily to our
needs, and the size is then determined by the error statistics.

3Think of a situation in everyday life: If you know that the reliability of the statements of a certain person is not
100 % and does not depend on the very subject of the statement, you would rather believe a claim like ‘It is raining
today.’ than ‘I just won 2 millions in the lottery.’, because the a priority probabilityP(Mj ) of the former is much
higher than that of the latter.
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Finally, we want to show that the linear regularization method presented in section 2.3 can
be interpreted as an application of Bayesian statistics. For natural weighting, we haveP(D|M) ∝
exp(−χ2/2). If we do not minimizeχ2 but χ2 + λx†Sx, this can be seen as finding the most
probablemodel with a priorP(M) defined by theλ andS:

P(M|D) ∝ P(M)P(D|M) (2.80)

P(D|M) ∝ e−χ2/2 (2.81)

P(M|D) ∝ e−(χ2+λx†Sx)/2 (2.82)

P(M) ∝ e−λ x†Sx/2 (2.83)

When thinking about this, more general regularization schemes come into mind. Priors of a
different form can be used to determine the most probable models. Another possibility is to
determine ameanmodel, which is defined by averaging over all possible models using the
probability density given by Bayes’ theorem. Such methods are very promising candidates for
improved deconvolution algorithms in radio astronomy. They might be used as substitutes for
CLEAN and LENSCLEAN in the future.
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Chapter 3

Gravitational lenses

3.1 Introduction

In an attempt to save both paper and the reader’s time1, we do not repeat the introduction about
gravitational lenses and the historical overview that can be found in other publications. Excellent
review articles are available on the subject that can explain the whole area of current gravitational
lens research much better (Blandford & Narayan, 1992; Refsdal & Surdej, 1994; Narayan &
Bartelmann, 1999). The textbook on gravitational lenses by Schneider, Ehlers & Falco (1992) is
also worth reading. This includes the exhaustive, though not up to date, list of references therein.
A short historical summary can also be found in Wucknitz (1996).

To remind the reader of the most fundamental equations in lensing theory, but mainly to
introduce the notation, we start with a very quick ‘derivation’ of the lens equation and the ex-
pression to calculate time-delays. Many more details can be found in Schneider et al. (1992) or
Wucknitz (1996).

3.2 Angular size distances

Only little knowledge of cosmology is needed to understand the work presented in this thesis.
Gravitational lenses have the advantage, that cosmology enters only in the definition of distances
which define the lensing geometry. These distances depend on measured quantities (redshifts)
and on the cosmological parameters. To some extent, the distances can be determined with the
lensing effect. They can then be used to derive constraints for the cosmological parameters.

In a possibly curved and certainly expanding universe, Euclidian geometry can not be used to
relate events which are separated by cosmological distances in space and/or time. At the present
level of knowledge, homogeneous and isotropic geometrical models like the Robertson-Walker
metric can be used with sufficient accuracy. In these coordinates, the Einstein field equations
lead to the Friedman equations. They control the evolution of the scale factor in the metric
and the evolution of the universe as a whole. Luckily, the complete theory isnot needed for
gravitational lens work. We will show that only very simple geometrical properties are relevant
for out work. These can all be described by the angular size distances of source and lens.

Figure 3.1 shows the fundamental diagram for the definition of angular size distances. The

1Not to mention the author’s time. . .

17



18 CHAPTER 3. GRAVITATIONAL LENSES

D’

α L

D

L α’

Figure 3.1: Definition of angular size distances. The distance parameterD is defined as
L/α, whereα (assumed small) is the angle at which an object of sizeL is seen from the
starting point (usually the observer). Note that the distance generally depends on the direc-
tion, D 6= D′.

distance parameterD is defined in a way to expand the validity of

α =
L
D

(3.1)

to non-Euclidian geometry, whereα (we assumeα � 1) is the angle under which an object of
extensionL is seen by a real or hypothetical observer at the starting point of the distance. In a
general Riemannian geometry, the distance parameter can depend on the direction in which it is
measured. Think of a universe which continues its expansion while the light is on the way from
the object to the observer. For standard Friedmann–Robertson-Walker cosmologies, the evolu-
tion changes the scale factorRonly. The normalized distancesDAB/RB are then independent of
the direction2. The relation between the distances is therefore very simple:

DAB

RB
=

DBA

RA
(3.2)

DAB

DBA
=

RB

RA
(3.3)

=
1+zA

1+zB
(3.4)

For a strictly homogeneous universe, the distances can be calculated directly from the global
Robertson-Walker metric together with the Friedmann equations.

The presence of gravitational lenses proves, that inhomogeneities can at least in some cases
be important for the light propagation in our universe. If a certain partα of the matter is dis-
tributed homogeneously, and the remaining 1−α is taken into account as the lens effect of
galaxies, clusters of galaxies etc., things become more difficult. The propagation of light bun-
dles in a so-called evacuated cone (because 1−α of the matter is removed) embedded in the
surrounding global geometry of an evolving universe must now be calculated by (generally nu-
merical) integration of a second-order differential equation. Details of this problem can be found

2DAB is the distance parameter of an object B measured from A. The angle is measured at A, the length at B.
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in the fundamental papers of Dyer & Roeder (1972, 1973) or elsewhere. The same recipe can
also be used for more general cosmological models, including e.g. a cosmological constantΛ .
See Kayser, Helbig & Schramm (1997) for the description of a code to calculate distances in
such models and an overview of the theory.

The most general cosmological model widely discussed in the last years includes a gener-
alization of the cosmological constant, called ‘quintessence’ or ‘dark energy’. The idea behind
this concept is a scalar field, which leads to an equation of state according to

pX = wρX , (3.5)

which is a special simplified case of more physically motivated scalar field theories. The con-
stant is restricted to−1≤ w < 0. The lower limit is equivalent to a cosmological constant, the
upper limit corresponds to dustlike pressureless matter. It is possible to include this new kind
of ‘matter’ in the Friedmann equations and in the Dyer-Roeder equations for the distances. For
details, we refer to the literature on the subject (e.g. Giovi & Amendola, 2001; Sereno et al.,
2001). The resulting Dyer–Roeder-like differential equation for the normalized dimensionless
distance parameter

r(z1,z2) =
H0

c
D(z1,z2) (3.6)

looks like this:

(1+z)2
(

ΩM(1+z)3 +ΩX(1+z)m+Ωk(1+z)2
)d2r

dz2

+(1+z)
(

7
2

ΩM(1+z)3 +
m+4

2
ΩX(1+z)m+3Ωk(1+z)2

)
dr
dz

+
(

3
2

αMΩM(1+z)3 +
m
2

αXΩX(1+z)m
)

r = 0

(3.7)

The parametersαM andαX describe the homogeneity of normal matter and quintessence (the
latter is assumed to be distributed evenly,αX = 1), and the indexm is related to the equation of
state bym= 3(w+ 1). The lower limit ofm= 0 corresponds to a cosmological constant, the
upper limit m= 3 to normal matter. We also used the abbreviationΩk = 1−ΩM −ΩX in the
equation. Spatially flat universes haveΩk = 0. The initial conditions for the integration are

r(z1,z)
∣∣
z1

= 0 and (3.8)

dr(z1,z)
dz

∣∣∣∣
z1

=
1

(1+z1)
√

ΩM(1+z1)3 +ΩX(1+z1)m+Ωk(1+z1)2
. (3.9)

A simple Runge-Kutta method was used to calculate distances for the cosmological models
described in Table 3.1. The Einstein-de Sitter model (EdS) serves as a reference in many cases.

3.3 The cosmological lens equation

The theory used in this work is restricted to ‘thin lenses’, in which significant light deflection
takes place only very close to the lens plane. This is not equivalent to a thin mass distribution.
For a detailed analysis of the thin lens approximation, see Wucknitz (1996). It is valid in all
cases of one-plane lenses, where all galaxies contributing to the deflection have approximately
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model ΩM ΩX m Ωk αM
flat Λ 0.3 0.7 0 0 1

flat Λ clumpy 0.3 0.7 0 0 0
noΛ 0.3 0 0.7 1
EdS 1.0 0 0 1

Quint 1 0.3 0.7 1 0 1
Quint 2 0.3 0.7 2 0 1
Quint 3 0.3 0.7 3 0 1

Table 3.1: Cosmological models used to calculate the distance parameters
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Figure 3.2: Sketch of the fundamental lensing geometry. The light ray is deflected byα∗

in the lens plane. The observer sees the source at a positionθ , which is displaced from the
true positionθs.

the same redshift. Multi plane lenses can be much more complicated, because the effects do not
superpose linearly then. Small deflection angles are assumed throughout this work.

The lens equation can be derived from the geometrical diagram in Figure 3.2. The lengthL
can be calculated from the true deflection angleα∗ and from the apparent displacementθ −θs,

α
∗Dds = (θ −θs)Ds , (3.10)

which directly leads to the lens equation

θs = θ −α (3.11)

with the apparent deflection angle

α =
Dds

Ds
α
∗ . (3.12)

All angles are two-dimensional vectors in reality.
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3.4 Magnification and amplification

The Jacobian of the lens equation provides the magnification matrixM.

∂θs

∂θ
= 1− ∂α

∂θ
(3.13)

M =
∂θ

∂θs
(3.14)

=
(

1− ∂α

∂θ

)−1

(3.15)

Sources are magnified linearly withM,

∆θ = M∆θs . (3.16)

Because the lensing effect preserves surface brightness (e.g. Schneider et al., 1992), this magni-
fication implies an apparentamplificationof unresolved sources. This amplification is given by
the area magnification, which is the determinant of the magnification matrix.

µ = |M| (3.17)

The absolute value ofµ is the flux amplification, the sign is the parity of the corresponding
image (negative for a mirror image).

3.5 Deflection angle and potential

In the thin lens approximation, the effect of the lens can be described by a two-dimensional
potential functionΦ that describes a delay of light rays in the lens plane.

y

D

α*

Figure 3.3: Deflection angleα∗ in the lens plane

Figure 3.3 can be used to calculate the deflection angle from the potential. We assume in-
coming rays parallel to the optical axis for simplicity. The result would not change for other
directions. The light travel time from the source to the observer, who is located at a cosmologi-
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cally small distanceD from the lens, is given by

T = const+
1
c

√
D2 +y2 +Φ (3.18)

≈ const+
D
c

+
1
2c

y2

D
+Φ . (3.19)

Following the theorem of Fermat (Kovner, 1990, for the cosmological case), this must be sta-
tionary:

0 =
dT
dy

(3.20)

≈ 1
c

y
D

+
dΦ

dy
(3.21)

α
∗ ≈ y

D
(3.22)

≈−c
dΦ

dy
(3.23)

This result for the deflection angle is independent ofD as expected. It can now be combined
with Einstein’s famous result of

α
∗ =

4GM
c2 r

(3.24)

for an impact parameter ofr and a compact massM (Einstein, 1915) to obtain the potential in
this case:

Φ(r) =−4GM
c3 ln r (3.25)

For a direct derivation of this result, the reader is referred to Wucknitz (1996). The potential for
an arbitrary mass distribution is a linear superposition of all its parts. Withr = (x,y) measuring
the position in the lens plane, this reads

Φ(r) =−4G
c3

∫
d2r ′ Σ(r′) ln |r−r′| , (3.26)

with the projected surface mass density

Σ(x,y) =
∫

dzρ(x,y,z) . (3.27)

It is convenient to transform the integral and the derivative/gradient from dimensional vectorsr

to angular vectorsθ usingr = Ddθ. If the deflection angle is at the same time transformed from
the true valueα∗ to the apparent oneα, the equations can be written in a very simple form:

θs = θ−α(θ) (3.28)

α(θ) = ∇θψ(θ) (3.29)

The scaled version of the potential can be calculated with

ψ(θ) =−c
Dds

DdDs
Φ(Ddθ) (3.30)

=
1
π

∫
d2

θ
′
σ(θ′) ln |θ−θ′| , (3.31)
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where the surface mass density was normalized with the so called ‘critical density’:3

σ =
Σ

Σc
(3.32)

Σc =
c2

4πG
Ds

DdDds
(3.33)

The name ‘critical density’ is due to the fact that a circular disc with a constant surface mass
density equal to this value focuses all light rays coming from the source at the observer. Gauss’
law can be used to prove that all mass inside the radiusθ can be thrown into the centre for
a radially symmetric mass distribution, without changing the deflection angle. This makes it
simple to show thatθs≡ 0 for all θ, if σ ≡ 1. The Poisson equation for the potential in angular
coordinates reads

∇θ
2
ψ = 2σ . (3.34)

3.6 Light travel times and time-delays

The physical light travel timet consists of the delayΦ in the lens plane, which is redshifted by
1+zd, and a geometrical part depending onθ andθs. We work with a scaled version oft, called
T, to eliminate the distance parameters from the equations.

t =
Deff

c
T (3.35)

Deff = (1+zd)
DdDs

Dds
(3.36)

T = Tgeom+Tpot (3.37)

Tpot =−ψ(θ) (3.38)

At this point, Fermat’s theorem can again be used:t, or equivalentlyT, must be stationary if the
lens equation is fulfilled. We thus set the gradient ofT in (3.37) to 0 and use equation (3.38)
together with the lens equation (3.28) and (3.29) to express the gradient of the geometrical part
in terms ofθ andθs:

∇θTgeom= ∇θψ (3.39)

= θ−θs (3.40)

This equation can now be integrated to obtain the absolute geometrical part. After adding the
potential part, the total light travel time is given by

T = const+
1
2
|θ−θs|2−ψ(θ) . (3.41)

Although Fermat’s theorem applies only for the real image positions, this integration is allowed
here. The expression in equation (3.41) is the only possible global solution which is quadratic
in θ andθs. Higher order terms are neglected in the approximation of small angles without
noticeable loss of accuracy. Equation (3.35) can be used to transformT to physical units.

3Often the designationκ is used instead ofσ . We useκ only for additional and constant normalized surface mass
densities.
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3.7 Applications

The best known cosmological application of gravitational lenses is the determination ofH0 with
the time-delay. This method was proposed by Refsdal (1964). If the distancesDi in (3.35) are
substituted by their normalized counterpartsdi , with

Di =
c

H0
di , (3.42)

where thedi can be calculated from the redshifts and cosmological parameters withoutH0 alone,
the equation can be written as

H0 t = deffT , (3.43)

using the effective distance parameterDeff from equation (3.36) in its normalized form. Al-
though it is not possible to measure the light travel times themselves,differencesof light travel
times for double or multiple images of one source (so-called ‘time-delays’)can be measured,
if the source is variable. Equation (3.43) can also be used to determine the Hubble constantH0
from a measured time-delay in physical units∆t and a lens model, which provides the quantity
∆T. In a simple geometrical interpretation of the equations, the time-delay is used to determine
the scale of the lens geometry. All angles in the configuration can either be measured or deter-
mined with lens models, so that the measurement of a single length, in this case the difference of
two light paths, determines all distances at once. Apart from cosmological corrections included
in the definition ofdeff, the Hubble constant is proportional to redshift divided by distance and
thereforeH0 ∝ t−1.

If both H0 and the time-delay∆t are known, the same equation can be used to constrain the
combination of distancesdeff, which depends on the cosmological parameters. This method to
determine cosmological parameters was first discussed by Refsdal (1966). Another possibility
to estimate cosmological parameters directly from the lens effect is to compare the lens models
with other methods of mass determination. A singular isothermal sphere (see section 4.1.1) with
a one-dimensional (e.g. radial) velocity dispersion ofσv has a constant apparent deflection angle
of

α0 = 4π
Ds

Dds

σ2
v

c2 . (3.44)

This deflection angle can be determined from the image configuration. If, on the other hand, the
velocity dispersion is known, the distance ratioDs/Dds can be determined and used to constrain
cosmological parameterswithout knowing a time-delay. This method was proposed by the au-
thor of this thesis (Wucknitz, 1996, 1997) and others. One problem with this idea is the high
accuracy which is needed for themass modelsand measurements ofσv to discriminate differ-
ent cosmological models and the fact that the isothermal sphere is only one possibledynamical
modelfor the lensing galaxy. If the real dynamical state differs from this simple assumption,
(3.44) is not necessarily valid anymore. This problem is discussed by e.g. Saha (2000).

With many lenses, modelled with high accuracy, it may nevertheless be possible to apply
this method in the near future. The dynamical state of the lenses may depend on their redshifts
but not on the redhift of the lensed sources. An ensemble of lenses with comparablezd but
with a wide range ofzs could therefore in principle be used to break the degeneracy. A variant
works with several sources at different redshifts, which are lensed by one and the same lens.
The combination of different redshifts replaces the dynamical mass determination and can thus
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avoid this source of uncertainty. The only known lenses for this method are massive clusters of
galaxies, which act as lenses for a high number of background sources, typically galaxies. The
difficulty lies in the measurements of the source redshifts and in determining accurate models of
the lens.

For all (cosmological and other astrophysical) applications of gravitational lensing, reliable
mass models of lenses are needed. This thesis is concerned with explaining why accurate mass
modelling is not trivial, and how the situation can be improved generally or for at least some
favourable lens systems.
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Chapter 4

Lens modelling

4.1 Models

The conventional approach in lens modelling is to use simple parametric mass models and fit the
parameters to observational data. The choice of a family of models is often determined by the
available number of constraints. This method has the advantage that unique solutions are possi-
ble in many cases, but the disadvantage that the parameter space of realistic mass distributions
is not fully probed and that possible errors can be dramatically underestimated in some cases.

An alternative approach of non-parametric mass models has been proposed by Saha &
Williams (1997) and Williams & Saha (2000). They describe the mass distribution by a large
number of discrete pixels with a priori independent and arbitrary densities. Some physically
motivated constraints are then used to reduce the freedom to a more realistic degree. These
calculations have shown (not unexpectedly), that many different mass models can describe the
observations of typical lens systems and that the uncertainties in any parameters derived from
these can by huge. Especially the large range of values allowed for the Hubble constant is
sobering.

Because it is known that some of the possible non-parametric models are still very unrealistic
mass distributions for real galaxies, some intermediate approach should be used to obtain useful
and accurate results without underestimating the errors. At least three approaches are possible.
One could start from the non-parametric models and include more constraints for the allowed
mass distributions or use more general parametric models which cover all realistic mass dis-
tributions. Alternatively, one could use analytical considerations to understand possible model
degeneracies better and find ways to break them with more and better observations. Parts of this
thesis belong to the last two categories.

Many parametrized mass models have been used during the last decades to fit known lenses.
The most popular class of models is based on the isothermal sphere. Variants of this are pseudo-
isothermal ellipsoidal mass distributions and others. These models are generally seen as very
good approximations for the mass distributions in real galaxies. We therefore start our own in-
vestigations from this base and generalize only so far as to include the most important possible
deviations. This includes more general asymmetries than simple elliptical mass distributions and
modified radial mass distributions, which can have a dramatic effect, especially on the Hubble
constant. The latter is done by using power-law potentials, which are good approximations for
even more general models. These days it is still difficult to determine the radial mass slope of
power-law models directly from lensing observations. Possible deviations from power-law mod-
els are a higher order effect, which only becomes important when the constraints are improved
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beyond the present level.
The general asymmetries are investigated by analytical calculations for semi-parametric

models (section 6). The radial density distribution is again taken as a power-law, whilst the
azimuthal dependence can have arbitrary (and thus non-parametric) forms.

The building blocks for our models will be described briefly in the following sections. More
details can be found in the literature.

4.1.1 The singular isothermal sphere

The singular isothermal sphere (SIS) has a potential, deflection angle and surface mass density
like follows (r = |z|):

ψ(z) = α0r (4.1)

α(z) = α0
z

r
(4.2)

κ(z) =
α0

2r
(4.3)

It is thus characterized by a constant absolute deflection angleα0, which is related to the measur-
able velocity dispersion by equation (3.44). The popularity of this model is not only motivated
by the accuracy with which it describes real galaxies, but also by the very convenient properties
it has for the lensing effect.

4.1.2 External shear

Perturbations of the spherical lens models can be described in several ways. On is the perturba-
tion caused by additional external masses. If the effect is sufficiently small and varies only slowly
in the regions of interest (if the masses are sufficiently far away), the effect can be described by
a quadratic approximation for the potential, which is equivalent to a linear approximation for the
deflection angle.

ψ(z) =
1
2
z†Γz (4.4)

The shear matrixΓ includes both the convergenceκ and the shearγ itself.

Γ =
(

κ− γx −γy

−γy κ + γx

)
(4.5)

γ = γ
(
cos2θγ ,sin2θγ

)
(4.6)

The constant term is irrelevant for lensing, the linear term is equivalent to a constant shift of
source positions and can be neglected as well. The direction of shearθγ is defined to point in the
direction of the perturbing mass or equivalently in the opposite direction. Another definition,
rotated byπ/2, is also commonly used in the literature.

4.1.3 Spherical power-law models

The power-law model is used as a generalization of the isothermal sphere more for analytical
than for physical reasons. Other approaches are possible, but the power-law models are much
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easier to analyse. To be as independent of astrophysical knowledge or prejudice as possible,
models should be chosen to be very general and cover all physically sensible possibilities. We
therefore favour power-law models before other generalizations. We do not discuss central mass
concentrations like central black holes, cusps or finite core radii in this thesis. Otherwise we
would have used modifications like softened power-laws, double power-laws or added point
masses. A power-law exponentβ is used for the potential:

ψ(z) = a0rβ (4.7)

α(z) = β a0 rβ−1z

r
(4.8)

κ(z) =
β 2a0

2
rβ−2 (4.9)

The limiting cases ofβ → 0 andβ = 2 correspond to a point mass and a constant surface mass
density, respectively. Isothermal models are another special case between the two withβ = 1.
We use angular coordinates, which are dimensionless quantities. If units like arcsec or mas are
used,r should be normalized by some unit length anda0 corrected accordingly.

4.1.4 Elliptical potentials

A relatively simple approximation to generalize spherical models is the elliptical potential. It
starts from the spherical potentialψ(r), which is then transformed to an elliptical radial coordi-
nate

ψ = ψ(rell) , (4.10)

rell =

√
x2

(1+ ε)2 +
y2

(1− ε)2 (4.11)

in the principal axes system. These models were analysed and compared with true elliptical
mass distributions (see next section) by Kassiola & Kovner (1993). For small ellipticitiesε, they
are a good approximation, but they lead to unphysical density functions for large ellipticities.
We compared the two families of models in many practical calculations and found very good
agreement in most cases. Elliptical potentials have the advantage that their deflection angles
are analytic and simple to calculate. This will be especially important for the LENSCLEAN

calculations (chapter 9). The deflection angle can be calculated with

α =
ψ ′(rell)

rell

(
x

(1+ ε)2 ,
y

(1− ε)2

)
, (4.12)

whereψ ′ denotes the derivative with respect to the argument. A deeper discussion of these
models can be found in Kassiola & Kovner (1993). We discuss the correspondence to elliptical
mass distributions for small ellipticities in section 6.14.

4.1.5 Elliptical mass distributions

These are considerably more complicated to handle than elliptical potentials, but they are of
course the more realistic mass distributions. We follow the complex formalism of Kassiola &
Kovner (1993) for these models. Complex quantities are written as vectorsz, real and imaginary
parts represent thex andy components, respectively. Details of this formalism are discussed in
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Wucknitz (1996). Analytical deflection angles are only known for a small number of values of
β . For pseudo-isothermal models (isothermal with a finite core radiusrc), the deflection angle
reads like this:1

R=
√

r2
c + r 2

ell (4.13)

α =
(1− ε2)α0

2i
√

ε
ln

1− ε

1+ ε
x− i

1+ ε

1− ε
y+2i

√
εR

z? +2irc
√

ε
(4.14)

ψ = z ·α−
(1− ε2)α0 rc

2
ln

(
(1− ε2)R+(1+ ε)2 rc

)2
+4εx2

(1+ ε)2(1+ ε2)
(4.15)

κ =
α0

2R
(4.16)

The expression for the potential is a significantly simplified version of the result in Kassiola &
Kovner (1993). A treatment with real vectors can be found in Kormann, Schneider & Bartelmann
(1994).

4.2 The main algorithm

Only some simple lens model families allow a direct analytical fitting of model parameters to
observations. Usually numerical methods have to be used. For these, it is necessary to define a
function, which assesses the goodness of fit. Residuals in the form of aχ2 are preferred, because
they lead to a maximum likelihood result and confidence limits can be calculated easily with the
methods discussed in section 2.7. Once the residual function is defined and implemented in the
modelling code, different minimization algorithms can be used to find the best lens model. We
generally used the Powell minimization technique, but in some very unstable cases, when the
calculation of the residual function very often fails, the more primitive downhill simplex method
was more reliable. Press et al. (1992) give a good overview of some of the standard methods.
Details depend on the constraints used in the system in question.

4.3 Constraints

4.3.1 Lens position

If the lens position is measured directly, it can either be used as fixed or it is formally included as
free parameter and the difference to the measurements is included in theχ2 function. The latter
approach is generally the preferred, but the former can be used if the measurement accuracy is
very high or to find a first model which can then be refined with the other method.

4.3.2 Image positions

These are the most fundamental lensing constraints. They can be included into the modelling
with several different methods. The conceptually simplest but numerically most complicated
and unstable method is to include the source position as parameter and calculate the positions
of all images for each tested lens model. This involves the inversion of the lens equation, which
is a highly non-trivial problem. In some cases it can be performed analytically (see section 4.5),

1Complex conjugation is denoted byz?.



4.3. CONSTRAINTS 31

but generally a numerical search is necessary. The measured image positions can then be related
to their corresponding model image positions, and theχ2 contribution can be calculated. The
numerical burden is high compared to other methods, but the residuals do exactly describe the
difference between model and measurements.

In classical lens modelling, the lens inversion is made simpler by the fact that approximate
image positions are already provided by the measurements. It is in some cases nevertheless
necessary to find anyadditional images to compare their data with measured flux limits for
possible additional images.

The new numerical algorithm LENTIL will be discussed in chapter 5. This method was
developed to solve the lens equation for very many source positions for each lens model, which
is needed for LENSCLEAN. It can also be used for classical model fitting but is not the most
effective method for this purpose.

A zero-order approximation to the full algorithm is the source plane minimization proposed
by Kayser (1990). The image positions are directly taken from the measurements and the lens
model is fitted by minimizing the dispersion of the projected sources positions from these im-
ages. There is no simple way to combine these residuals with those from other constraints, and
the projection can change the error statistics considerably. The results are thereforenot equiv-
alent to the full algorithm. We only used this very simple approach to find a first model and in
cases where the image positions were fitted exactly anyway. If the dispersion is zero, it makes
no difference if it is measured in the lens plane or in the source plane.

Kochanek (1991) proposed to project the differences back to the lens plane with the magnifi-
cation matrix, but he used the isotropic amplification to approximate the matrix. In what follows,
we generalize this method to work with the exact magnification matrix. The lens equations for
model image positionszm

i and a model source positionzm
s read

zm
s = zm

i −α(zm
i ) . (4.17)

The projected source positionszi
s for the measured imageszi are

zi
s = zi −αi , (4.18)

αi = α(zi) . (4.19)

The difference between measurement and model can be linearly approximated as

zi
s−zm

s ≈M−1
i (zi −zm

i ) , (4.20)

with the magnification matrix
Mi = M(zi) . (4.21)

With this equation, we can transform the residual contribution from the lens plane to the source
plane:

χ
2
pos= ∑

i

(zi −zm
i )†C−1

i (zi −zm
i ) (4.22)

= ∑
i

(zi
s−zm

s )†
MiC

−1
i Mi(z

i
s−zm

s ) (4.23)

Ci is the error covariance matrix of theith image position. The source position minimizing the
residuals can now be calculated easily. The resultingzm

s is a weighted mean of the individual
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projectionszi
s:

zm
s =

(
∑

i

MiC
−1
i Mi

)−1

∑
i

MiC
−1
i Mi z

i
s (4.24)

The χ2 contribution for the numerical outer minimization loop can then be calculated from
(4.23), the model image positions from the inverse of (4.20). A similar formalism was indepen-
dently developed and published by Trotter, Winn & Hewitt (2000).

With an extended formalism, it is also possible to simultaneously fit the position of the lens
centre analytically. We do not present the slightly more complicated equations here, because
this modification works not very reliably and destabilizes the algorithm in some cases.

4.3.3 Flux ratios

Measured flux ratiosfA/ fB can be compared with model values with a contribution of

χ
2
flux =

( fA/ fB−µA/µB)2

σ2 . (4.25)

In the case of double images, the inclusion of the negative sign (doubles always have different
parities) helps in rejecting certain configurations with higher multiplicities. If no information
about image parities is available, the absolute values offA/ fB andµA/µB have to be used.

4.3.4 Relative positions of subcomponents

Some lens systems show substructure of the images on a very small scale. The subcomponents
can be treated as different sources, but a linear approach is more appropriate, because these
subcomponents can directly constrain only the (relative) magnification matrices. If∆z denote
the relative displacement of subcomponents, the equations for the mapping of the model values
can be written as

∆zm
i = Mi ∆zm

s (4.26)

with i = A,B. The contribution to the residuals is

χ
2
subpos= ∑

i=A,B

(
∆zi −Mi ∆zm

s

)†C−1
i

(
∆zi −Mi ∆zm

s

)
, (4.27)

with the error covariance matricesCi . The analytical solution for∆zs is a weighted mean of the
transformed∆zi :

∆zm
s =

(
∑

i=A,B

MiC
−1
i Mi

)−1

∑
i=A,B

MiC
−1
i ∆zi (4.28)

χ
2
subpos= ∑

i=A,B

∆z†
i C−1

i ∆zi −
(
∆zm

s

)†

(
∑

i=A,B

MiC
−1
i Mi

)
∆zm

s (4.29)

4.3.5 Subcomponent shapes

If subcomponent shapes are described as ellipses, the formalism explained in appendix A.2 can
be used to exploit these data as constraints. This Cartesian formalism proved to be more stable
and reliable than the normally used polar description.
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4.3.6 Time-delays

If several time-delays are known, their ratios can be used as additional constraints in a straight-
forward way. It is then better to use the Hubble constant as additional parameter and use the
time-delays directly (not the ratios) as constraints. See chapter 6 for details and further analyti-
cal considerations.

4.4 Error estimates

To estimate the accuracy of one ore more (m) model parameters, their values can be fixed at a
range of test values and the residuals can be minimized varying only the remaining parameters.
The difference of the residuals to the minimal value follows aχ2 distribution withm degrees of
freedom. The methods discussed in section 2.7 can thus be used to calculate confidence limits
from the residuals.

More sophisticated methods have to be used for the accuracy of parameters that are not di-
rectly part of the lens model. An important example is the Hubble constant, which is determined
from a combination of other parameters and cannot be fixed easily. For parameters like this,
Lagrangian methods can be used. A multiplierλ is used to calculate confidence limits for a
parameterp by adding another contribution to the residuals:

χ
2
λ

= λ (p− p0) (4.30)

The usual Lagrange method would now minimize the totalχ2 by varying the model parameters
andλ . The result would be the best fit with the secondary conditionp= p0. This can be repeated
for a range of values ofp0 to estimate the confidence limits from theχ2 distribution.

A better approach is to use constantλ andp0 = 0. Varyingλ has the same effect as varying
the parameterp0 then and can thus be used to scan the possible values without controllingp
explicitly.

4.5 Analytical lens equation inversion

Different methods to avoid the full lens equation inversion have been discussed in section 4.3.2.
In some cases (especially for the LENSCLEAN algorithm), this is however not possible. In these
cases, certain simple lens models can be used, for which the inversion can be done analytically.

The typical problem in LENSCLEAN is to find all ‘secondary’ (additional) images of a source
position, for whichone image position is already known. This information can be used to
simplify the search for the other images. Explicit solutions have been calculated for spherical
singular isothermal models with external shear and for singular isothermal elliptical potentials.
Results for the latter will be discussed in chapter 9, so we only discuss the lens inversion for this
case here. We start with the lens equation for an elliptically modified isothermal model (sections
4.1.1 and 4.1.4). The lens equation forx andy in the principal axes system reads like follows:

xs = x

(
1−

α0

(1+ ε)2

1
rell

)
(4.31)

ys = y

(
1−

α0

(1− ε)2

1
rell

)
(4.32)

The equations can be combined by solving the first forx, the second fory and calculater 2
ell from

this. The result is a quartic equation forrell. If one solution(x1,y1) with correspondingrell1 is
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already known, it can be used to eliminate the source position. After that, the quartic polynomial
can be divided byrell− rell1 to remove the known solution from the polynomial. The resulting
cubic equations may also be useful for other applications and shall be presented here:

−(1− ε
2)4 r 3

ell

+(1− ε
2)2
(

4α0(1+ ε
2)− rell1(1− ε

2)2
)

r 2
ell

+
(

2α0 rell1(1− ε
2)2(1+2εm1 + ε

2)−α
2
0

(
4εm1(1+ ε

2)+5−2ε
2 +5ε

4)) rell

+2α
3
0 (1+2εm1 + ε

2)−α
2
0 rell1

(
4εm1(1+ ε

2)+1+6ε
2 + ε

4
)

= 0 (4.33)

m1 =
1

r 2
ell1

(
x2

1

(1+ ε)2 −
y2

1

(1− ε)2

)
(4.34)

This equation can be solved analytically. The result forrell can then be used to calculatex and
y with equations (4.31) and (4.32). This approach is more robust than most numerical methods,
but even the analytical solution sometimes fails very close to the axes.

4.6 Examples

We used the numerical methods described in the last sections as well as analytical calculations
to fit mass models for several lens systems. Most of this work is not in direct relation to the
rest of this thesis and shall only be summarized here to point the reader to the corresponding
publications.

4.6.1 HE 1104–1805

The lens system HE 1104–1805 raised some questions to the theoreticians, when the position of
the lensing galaxy could first be measured. It turned out that the centre of the lens is close to
the brighter of the two images and not to the fainter one, which simple models would demand.
First interpretations favoured a model where the brighter image consists of two unresolved very
closely separated images, probably very near to a radial critical curve. We found out, however,
that even much simpler models are able to reproduce the strange properties (Remy et al., 1998).
A singular isothermal sphere model is sufficiently modified by an external shear to adjust the
amplification ratio to the one observed.

The system remained very interesting. In Wisotzki et al. (1998), we used the dispersion mini-
mization method (Pelt et al., 1994, 1996) to determine a first time-delay from spectrophotometric
monitoring data. The best result was 0.73 years, but the accuracy was quite low. We also used
ellipsoidal mass distribution modelsplusexternal shear to estimate the (then still unknown) red-
shift of the lens from the time-delay and a canonical value forH0. If the lens galaxy is associated
with one of the absorption line systems detected in the QSO light, the one atz= 0.73 is the most
probable. Later Gil-Merino, Wisotzki & Wambsganß (2002) published a more detailed study of
the time-delay. Their methods are, however, still under discussion (Refsdal, priv. comm.).

4.6.2 RX J0911.4+0551

The system RX J0911.4+0551 was discussed in Burud et al. (1998). Our first modelling attempts
showed that this very interesting quad system can be explained with elliptical models and ex-
ternal shear. The direction of the shear is compatible with the direction of a nearby rich cluster
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of galaxies. Some more details of this systems will be discussed in section 6.13.4. Particularly
interesting is the fact that measurements of the mass of the perturbing cluster (Kneib, Cohen &
Hjorth, 2000) seem to be very low compared with the needs of the lens models.

4.6.3 HE 2149–2745

For a publication on the system HE 2149–2745 (Lopez, Wucknitz & Wisotzki, 1998), we con-
tributed first lens models that used the proposed measurement of the galaxy position. It seemed
to be located almost exactly between the two images. We developed analytical methods to study
singular isothermal ellipsoidal mass distributions with external shear in cases where the images
are located exactly on the major axis of the lens. Although it turned out later that the measured
galaxy position was highly inaccurate (Kochanek et al., 2002), these analytical calculations are
still of some interest. To the knowledge of the author, this was the first publication that discussed
possible configurations withup to eightimages for these relatively simple lens models.

4.6.4 1517+656

The BL Lac object 1517+656 is a special case. This source is not lensed but the host galaxy of
the AGN seems toactas a lens itself. Scarpa et al. (1999) reported the discovery of a fragmented
Einstein ring around the object with a radius of 2.′′4. No accurate astrometry or redshift of the
ring are available, but from the ringlike geometry and the assumption that it is indeed caused by a
lensed background object, it was possible to estimate the mass and velocity dispersion of the lens
as a function of the source redshift. The enclosed mass is of the order 2·1010M� or more, the
velocity dispersion is at least 350 kms−1. Both values have to be even much higher, if the source
redshift is 2 or less. This is, to the knowledge of the author, the only direct measurement of a
BL Lac host galaxy mass and thus of high astrophysical importance. Unfortunately, the small
size of the system and the low surface brightness make a deeper observational investigation very
difficult.
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Chapter 5

A new technique to solve the lens
equation (LENT IL )

5.1 Introduction

A fundamental building brick of many lens modelling algorithms is a method to invert the lens
equation (3.28), i.e. to find all imageszi for a given source positionzs. Only for some relatively
simple lens models can the inversion be performed analytically (see e.g. section 4.5). Generally,
numerical methods have to be used. Things are relatively simple in classical lens modelling
(chapter 4), where approximate solutions are given by the observed image positions. Refining
these to obtain exact values is a numerical standard problem. If the algorithm fails in some cases,
not all observed images are found at their correct positions, which will generally increase the
residuals for these models, and the overall minimization method will move to slightly modified
lens models that are otherwise equivalent. If this happens very often, the minimization can
become very inefficient, but failed fits are always easily identified as such.

The problem becomes much more serious when the LENSCLEAN method is used (see chap-
ter 9). In the course of this algorithm, the lens equation has to be inverted for each source
position in the source emission model and for each tested lens model. Typical model fits thus
rely on a very high number (typically 107) of lens equation inversions. In contrast to classical
lens models, incorrect results often increase the freedom of the emission models and lead to
slightly reduced residuals. If the reduction is stronger than the true variations at this stage of the
minimization, the main fitting algorithm gets stuck at one of the lens models for which only one
lens equation inversion failed.

For our model fits, we generally scanned a subspace of the possible parameter space and fit-
ted the remaining parameters. If failed fits occur only in a very small fraction of the calculations
(say a few per cent), they can again be identified and rejected from the further analysis. If the
fraction becomes too large, reliable fits are made impossible.

To summarize: An extremely reliable (failure less often than one in 108 runs) algorithm is
needed. Even analytical solutions like the one discussed in section 4.5 can reach this level of
robustness only with some extra effort. The solution of this problem is made even more difficult
by the demands on the typical execution times. If the total CPU time needed for LENSCLEAN

should increase by less than a factor of two by the use of the numerical lens equation inversion
technique, the algorithm has a budget of only a few milliseconds (typically 3 msec) for each lens
model and source position.

Most numerical methods that are in use today have problems in reliably findingall images,
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which is absolutely essential for LENSCLEAN. A discussion of some methods and the problem
in general can be found in Schneider et al. (1992).

Our solution to the problem was inspired by a tiling algorithm used in a publicly available
lens modelling software package (Keeton, 2001a,b). That algorithm is based on an adaptive
tiling of the lens plane (finer close to the critical curves). The tiles are then projected back to
the source plane, and the lens plane positions of those tiles, that enclose the source position
in question, are used as starting values for a standard numerical refinement algorithm. This
method works very efficiently and is appropriate for the needs of classical lens model fitting.
Unfortunately, the robustness is by far not sufficient for the use with LENSCLEAN (Keeton,
priv. comm.). We therefore had to develop a new algorithm that is designed to be as reliable as
possible without becoming to slow for complicated lens models.

An advantage of the LENSCLEAN application is that very many inversions have to be done
for each lens model. Some overhead in the preparation of the model (once for each model but
for all source positions) is thus acceptable.

5.2 One-dimensional root finding

The lens equation can be written as a two-dimensional function, whose roots are the solutions.
In one dimension, conceptually very simple methods are readily available. They can even be
combined with more efficient modifications of the Newton method. The idea of a robust one-
dimensional algorithm is sketched in Figure 5.1.

0

a b c

x

f (x)

f ’(x)=0

Figure 5.1: One-dimensional root finding. Shown are the bracketing of the zero betweena
andb and the stationary points withf ′(x) = 0.

Let the functionf (x) be continuous, and take the starting valuesa andb as given. Because
the signs off (a) and f (b) are different, it is known thata andb bracket (at least) one zero of
the function. One can then successively pick values ofx midway between the limits and replace
one of the old limiting values by the new value, depending on the sign off at this position. Each
step halves the size of the interval, and at the limit the zero is bracketed with infinite accuracy.
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This strategy is not very efficient but cannot fail, ifa andb bracket a solution at the beginning.
If the initial interval encloses more than one zero (e.g.a andc), the algorithm always finds

one of the solution but never both. A recipe to findall zeros could be the following: Start with
determining all stationary points (f ′ = 0). Then use as initial intervals the ones given by these
points. At the left and right side, use a sufficiently high|x| to be sure that no zeros are lost. For
each of these intervals perform the subdivision until the required accuracy is reached.

In the lensing problem, the selection of appropriate lower and upper limits forx is not prob-
lematic. More serious is the problem of finding the zeros off ′(x). In lensing, it is usually known
how many zeros can at most occur. It is then sufficient to start with points in each domain defined
by the sign off ′ (positive or negative slope off ). The domain borders, whose total number is
known, can then also be found by bracketing the zeros off ′. This strategy could not be used for
the functionf directly, because the number of domains depends on the source position. One can
then never be sure that all domain borders are included in the initial starting points and could
easily miss close double images. This is not true for the first derivative, because it only depends
on the lens model but not on the source position.

The initial search for the domain borders has to be performed only once for each lens model.
The same borders can be used as starting intervals for all values ofzs.

5.3 The basic idea of LENT IL

The idea for our new algorithm is to use as many of the ideas from the one-dimensional case as
possible. The intervals translate to tiles, which cover the lens and source plane, hence the name
Lens Tiling algorithm or ‘LENTIL ’.1

Several possibilities have been tried as generalization of the subdivision of intervals. In the
final version, triangular tiles are used for several reasons. They are the simplest possible tilings,
which makes bookkeeping less cumbersome, and they stay convex under any kind of mapping.
A convex triangle in the lens plane is always mapped onto a convex triangle in the source plane,
which is fundamental for the algorithm. Just as the intervals cover the total range in the one-
dimensional case, is the whole region of interest in the lens plane covered by the tiling. Each
point is covered by exactly one sub-tile at all stages of the algorithm.

See Figure 5.2 for how the subdivision is performed. One side (or edge) of the old tiling
is subdivided (in this case in the middle), and a new vertex is introduced at this position. This
produces four new tiles from the two old ones neighbouring the side. In the source plane, the
new vertex is not necessarily located on one of the old sides. It can even happen that it falls
outside of the two old tiles. In this case tiles with incorrect parity (different from the mapping
parity) are produced. An important difference of our algorithm from the one presented in Keeton
(2001a) is that the subdivision of a certain tile also affects the neighbouring tiles. No gaps or
doubly covered regions can therefore form in the process of successive subtiling.

5.4 The initial tiling

The first step in the one-dimensional case was to find the domain borders. The same has to be
done in the two-dimensional case. The domains are now defined by the sign of the (inverse)
amplificationµ−1 = |∂zs/∂z|, which is also called the ‘parity’ of the images. The borders are

1The german words for ‘lens’ and ‘lentil’ are the same (
”
Linse“).
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Figure 5.2: Subtiling by subdivision of one side. The left plots show the lens plane, where
the subtiling is performed. The right plots show the projection into the source plane. Solid
lines show projections of tile sides, while straight dashed lines represent the source plane
tiling.

thus lines of infinite amplification or ‘critical curves’. They can be parametrized as a sufficiently
dense collection of points.

To start, each domain has to be populated with at least one vertex. This can only be done
knowing the properties of the lens model. A point mass e.g. has a small region of negative parity
around the singularity and positive parity outside. An isothermal sphere with finite core radius
has positive parity in the centre, then a region of negative parity and again positive parity out-
side. With this knowledge, a radial search can easily find representative points for all domains.
Problems are only expected with multiple component lens models, where the other components
can disturb the search for one component. In the test models used so far, the final algorithm
always worked successfully.

This first stage of the initial tiling for an elliptical isothermal model with finite core radius
is shown in Figure 5.3. We also included an algorithm to encapsulate the centres (there can be
many for multi-component models) by successively splitting the edges of tiles that connect the
centres with outer areas. This helps to make the algorithm more efficient for singular lenses.

In the next step, those tile edges that connect vertices of different parities are split exactly at
the critical curve (Figure 5.4). This is done with a one-dimensional bracketing algorithm along
the direction of the edge. After this step, all edges connect vertices with equal parities. The
only exception are those which connect zero parity, located on the critical curves, with arbitrary
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Figure 5.3: First stage of the initial tiling. All domains are occupied by at least one vertex.
The plots also include the critical curves (left) and caustics (right). In the colour version,
green marks positive and red marks negative parity. Critical curves are blue.

Figure 5.4: Second stage of the initial tiling. Edges with different parities of the vertices
are split at the critical curve. The plots also include the critical curves (left) and caustics
(right). In the colour version, green marks positive and red marks negative parity. Critical
curves are blue.

parity.

Finally, the sampling of the critical curve is refined by successively splitting zero-zero parity
edges until a limiting length is reached (Figure 5.5). The size of this length is chosen according
to the required accuracy of finding all images close to the critical curve. Figure 5.6 illustrates
situations in which close double images can be lost near the critical curve. The sampling has
to be fine enough, that these images are either excluded anyway due to amplification limits
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Figure 5.5: Third (last) stage of the initial tiling. Edges connecting two vertices of parity 0
(on the critical curve) are split until a limiting length is reached. The plots also include the
critical curves (left) and caustics (right). In the colour version, green marks positive and red
marks negative parity. Critical curves are blue.

images
lost

1 3 13

caustic ca
us

tic

OK

Figure 5.6: If the sampling of the critical curve is too coarse, images can be lost close to the
curve. The left figure shows regions of higher multiplicity that are enclosed by the curved
caustic (solid) but not by the tiling (dashed). Images will be lost for source components
between the tiling’s edges and the critical curve. The situation at the right is different. At
the first stages, phantom images appear between edges and critical curve. They vanish in
the further subdivision.

(very close images are very bright) or that small changes of the model parameters, which would
make these images disappear, are below the required accuracy. Typical lengths of 10 mas or less
worked successful in LENSCLEAN ing B0218+357.
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5.5 Finding the images

Once the initial tiling is built, it can be used to search all images for a given source position.
First, all source plane tiles are tested if they enclose the source position (with correct or incorrect
parity). It is essential, how this test is performed to avoid loosing or doubling images close to the
edges. The test consists of three tests whether the positionzs is located to the left or right of the
straight lines connecting the vertices (the extensions of the tile’s edges). If all three tests give the
same result, the tile encloseszs. Whether the position is enclosed clockwise or anti-clockwise
usually corresponds to the parity of the mapping. Only sometimes is the handedness of the
projected tile not consistent with the mapping parity. We call these cases tiles with incorrect
parity.

If a position is located almost exactly on an edge, it makes no difference for which of the
neighbouring tiles it is counted, but the testmustbe consistent to avoid errors. The tests are
therefore always performed in the same direction, which is defined by the numbering of the
vertices. The direction of the edge relative to the tile is taken into account afterwards. With this
method, the test ‘zs is left of the line A-B’ always leads to a consistent (opposite) result with the
test ‘zs is left of the line B-A’. Problems can still occur close to the vertices, where no simple
binary decisions can be made. These cases are identified by source positions lying exactlyonat
least two edges of a tile.

Figure 5.7: Image search with the LENTIL algorithm. In addition to the initial tiling,
this plot includes the subtilings performed in the search of images for one source position,
shown as star symbols. The plots also include the critical curves (left) and caustics (right).
In the colour version, green marks positive and red marks negative parity. Critical curves
are blue.

The tiles enclosing the source position are selected for the following subdivisions. Some of
the selected tiles may still contain phantom images and/or enclose the position with an incorrect
parity. These problems vanish in the following course of further subdivisions at the centres of the
longest edges of the selected tiles. The resulting image positions are not used as starting values
for conventional refinement algorithms, which are not sufficiently reliable, but the subdivision
is continued until the required accuracy is reached.

At the end, final conservative tests are performed to assure correct image positions. In the
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(very rare) case of numerical problems, e.g. incorrect parity of one of the final tiles, the source
position is shifted by a very small amount much below the required accuracy and further attempts
are made. If secondary images for a known first image are searched for, it is the position of the
first image that is shifted, to make the final identification of the primary image from the list of
images easier.

Figure 5.7 shows the same initial tiling as before but includes the subdivision for one source
position together with the five image positions that were found with this method.

5.6 Technical details

Only the most important details shall be discussed here. There are many other small modifica-
tions in the algorithm, which either help in making it more efficient or in avoiding failure under
special circumstances. The development will probably continue when the new algorithm has
been used in more test cases. Problems are expected for special lens models. With non-exotic
models, the method has already survived very strict tests with LENSCLEAN.

5.6.1 Avoiding degeneracies

The successive subdivision can only converge, if the tiles are not degenerated, i.e. they enclose
a non-vanishing area. Figure 5.8 shows two kinds of degenerated tilings, that can occur with
LENTIL . If the tiles once start to become degenerated, the problem can become even worse
in the next subdivision steps, until the tiles become exactly one-dimensional lines. This effect
must be avoided, if failure of the algorithm in many cases can not be accepted. Several tests
are included in our algorithm for this purpose. If at the next subdivision aneighbouringtile
would become too degenerate, this neighbouring tile is split at its longest edge, before the tile in
question is subdivided itself. This is done recursively: If the neighbour of the neighbour is even
more degenerated, it is split first etc. With this approach, true problems with degeneracies occur
only very infrequently and are not considered a problem anymore.

Figure 5.8: Two kinds of almost degenerated tiles. The first kind seems to be less serious at
first sight, but it leads to degeneracies of the second kind (bottom) after further subdivision
(dashed).

5.6.2 Avoiding parity changes

In the initial tiling, all parity changing edges were split to avoid edges connecting vertices of dif-
ferent parity. During the subdivision, new vertices can again cause such problems. We therefore
shift new vertices, which would belong to parity changing edges, onto the critical curve. If this
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is not possible, because the new tiles would become degenerated, further subdivisions are made
until the problem disappears.

5.6.3 Treatment of singularities

Singularities appear regularly in ordinary lens models and have to be treated accordingly in the
algorithm. The problem can again be illustrated best in the one-dimensional case (Figure 5.9).
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Figure 5.9: One-dimensional root finding with singularities. Shown is a SIS-like (left) and
a pointmass-like singularity (right). The marked points have to be included as limits of
intervals and the central interval has to be excluded from the root search.

Two kinds of singularities are common in gravitational lenses. The first is the SIS-like
singularity, where deflection angles have a constant absolute value at the centre and do not
diverge. In this case, a small interval around the singularity inx must be excluded from the
root search. The limits, which mark the ‘cut’ or ‘pseudo-caustic’ in the source plane2, are used
as limits for the intervals close to the centre. The pointmass-like singularities have diverging
deflection angles. The same recipe can be used in this case, but thexs values of the limits
diverge. They have to be chosen large enough to cover the region of interest in the source plane.

In the two-dimensional case, LENTIL cuts small circles around the singularities and marks
all vertices inside of these as singular. These circles are treated similar to critical curves. Edges
crossing the circles are split at the circles and edges connecting vertices on the circles are sub-
divided until the sampling is sufficiently fine. In the case of SIS-like singularities, the mapping
into the source plane marks the ‘cuts’. The fineness limits are here also applied in the source
plane to assure a fine sampling of the cut. This is not necessary for pointmass-like singularities,
because the corresponding lines in the source plane are far away from the centre and outside
the region of interest. The sampling has to be dense enough only to surround the singularity
completely. All singular tiles are deleted from the list at the end to save CPU time in the later
subdivision stages. Images inside the singular circles would be deamplified so much, that they
can be treated as non-existent without loss of accuracy.

2Caustics are lines of infinite amplification. The number of images changes by two when crossing the caustic.
A ‘cut’ (Kovner, 1987) is a limiting case for SIS-like lens model singularities. When crossing a cut, the number of
images changes by one. This image has zero amplification close to the cut.
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Figure 5.10: Image search with the LENTIL algorithm for a SIS model. In addition to the
initial tiling, this plot includes the subtilings in the search of images for one source position,
shown as star symbols. The plots also include the critical curves (left) and the cut (right).
In the colour version, green marks positive and red marks negative parity. The critical curve
and cut are blue. The small circle enclosing the singularity can not be seen on this scale. It
is shown enlarged in Fig. 5.11.

Figure 5.11: Image search with the LENTIL algorithm for a SIS model, enlarged version
of the region around the singularity. Larger sections of the lens plane as well as the source
plane are shown in Fig. 5.10.

Figures 5.10 and 5.11 show the tiling for a model similar to the one used before but with a
singular centre. The projected version of the small circle enclosing the singularity marks the cut
in the source plane. Images inside of the small circle are lost.



Chapter 6

Degeneracies in general power-law lens
models

This chapter is based on a publication about lens model degeneracies (Wucknitz, 2002a). Only
half-hearted attempts have been made to change the style from a paper to a thesis’ chapter.
Some more explicit solutions of the equations are included here, as well as some thoughts about
correspondences of elliptical mass distribution and elliptical potentials. These will be needed
for the interpretation of lens modelling results.

6.1 Introduction

In this chapter, we consider a family of mass models with separable radial and angular depen-
dence of the potential. External perturbations are included as an external shear. In this way,
the different parts can be studied independently. For the radial dependence, we choose a sim-
ple power-law and are especially interested in the influence the radial slope has on the results.
Several authors (Wambsganß & Paczyński, 1994; Witt, Mao & Schechter, 1995; Wucknitz &
Refsdal, 2001) have found approximate scaling relations ofH0 ∝ 2−β for spherical models with
external shear. The same dependence was found before by Chang & Refsdal (1976) for doubles
in spherical models without shear (see also Refsdal & Surdej, 1994). The work of Williams &
Saha (2000) showed that the radial slope also has important effects in non-parametric models.
As a result of the very general nature of these models, no exact scaling law could be found for
them.

Modelling constraints provided by observational data are never sufficient to fix the (other-
wise free) mass distribution uniquely (Saha & Williams, 1997; Williams & Saha, 2000). Simple
parametric models, based on the knowledge about typical galaxies in the local universe or de-
sired mathematical properties, are normally used to overcome this difficulty. This approach,
while leading to consistent results, has the disadvantage of hiding the underlying uncertainties
and making it difficult to quantify them.

We follow an intermediate approach by using an arbitrary function only for the angular part.
The models include elliptical mass distributions and potentials as well as other shapes. It has
been observed in several lens systems that the external shear required to fit the data with simple
elliptical models is much higher than expected. This might indicate a kind of asymmetry of the
galaxy that cannot be accounted for by elliptical models. The general angular part of the potential
we use can describe this ‘internal shear’ more accurately than simple parametric approaches.

We extend and generalize the work of Witt, Mao & Keeton (2000) by including the three

47
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independent time-delays in quadruple systems as constraints for the models. We do not use
magnification ratios for several reasons. One is the observational problem of reliably measuring
correct flux ratios. Fluxes are influenced by microlensing and extinction. These effects can be
very strong in the optical and in some cases they are still significant for radio wavelengths. The
other reasons are related to our formalism and will be discussed later.

With this approach, we can derive explicit solutions for the Hubble constant as a function of
the observables, the power-law exponentβ , and the external shearγ. We use the results to find a
simple but rigorous scaling law describing the dependence ofH0∆t onβ in lenses with quadruple
images. This scaling law ofH0∆t ∝ (2−β )/β is also valid for more special parametric power-
law models within the allowed range ofβ and is therefore inherent to these models and not an
artifact of the general angular dependence we discuss.

The qualitative effect of this scaling law is easily understood when comparing it with the
2−β scaling discussed before and with the mass-sheet degeneracy, which leads toH0∆t ∝ 1−κ.
In all cases, a shallower density profile (largerβ or κ) leads to smaller values ofH0∆t. The flat
part of the density distribution (κ in the mass-sheet degeneracy) amplifies the deflection angles
but leaves the time-delays unaffected. To fit the given geometry, the total deflection angles have
to be constant, therefore the time-delays (H0 ∆t) decrease.

We also discuss the effect of the external shear on the time-delays and the measured Hubble
constant. If the shear is changed, the internal asymmetries of the mass distribution have to
be adjusted to compensate for the changes. The total effect of these two contributions will
be described by the new concept of a ‘critical shear’γc. The measured Hubble constant is a
linear function of the external shear and becomes zero forγ = γc. We will present a simple
interpretation of the critical shear in terms of the image geometry.

The main goal of this work is to investigate the uncertainties in measurements ofH0 or
cosmological parameters from time-delays in gravitational lenses. The results will also help in
minimizing possible errors, either by selecting lenses with the least uncertainties or by using
constraints of the model parameters which are lensing-independent.

Finally, we apply the formalism to several known lens systems, with and without measured
time-delays, to compare our analytical results with those from numerical model fitting using
parametric models. For 2237+0305, we compare with own numerical models and find a very
good agreement even though the time-delays are not used as constraints in this case.

Our results can be used directly to determineH0 from time-delays without explicit modelling
but should not be used as a substitute for it. They are rather meant to provide an explanation for
the degeneracies and scaling relations that have been found for several families of lens models.
Nevertheless, we show that the direct application to real systems is possible.

Additionally, we discuss possible Einstein rings in our family of models. Interestingly, in-
finitely small sources can be mapped as elliptical rings for arbitrary values of the external shear,
if the other parameters are chosen in a special way. The ellipticity of these rings is directly
determined by the shear.

6.2 The lens model

We use a power-law approach (compare with the spherical power-law models in section 4.1.3)
with a general separable angular part for the main lensing galaxy.

ψ
(g)(z) = rβ F(θ) (6.1)
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This family of models includes both elliptical mass distributions and elliptical potentials with
arbitrary radial mass indexβ . In the following, we assume all image positions as known. For the
chosen model, this implies also the knowledge of the position of the galaxy centre itself, because
coordinates are relative to this centre. Later we will see, however, that some of the equations are
translation invariant, leaving the results unchanged when shifting the galaxy. The normalized
surface mass density of the model is

σ(z) =
1
2
∇2

ψ
(g) (6.2)

=
rβ−2

2

(
β

2F(θ)+F ′′(θ)
)

. (6.3)

Here and in the rest of this chapter, primes indicate derivatives with respect toθ . A very simple
relation holds for the radial derivative of the potential which we will need in the time-delay
equations later:

z ·∇ψ
(g) = β ψ

(g) (6.4)

To account for nearby field galaxies or the contribution of a cluster, we include an external
shear plus an additional constant mass density or convergenceκ into our models. Thisκ can not
be determined from observations as a consequence of the so-called mass-sheet degeneracy, first
discussed by Falco, Gorenstein & Shapiro (1985) and Gorenstein, Shapiro & Falco (1988). In
the following, we therefore always use a fixedκ. We parametrize the shear as in section 4.1.2.
Note that this part of the potential is a special case of the power-law withβ = 2. We denote the
shear contribution to the potential byψ(γ).

6.3 Time-delays

The light travel timet for a certain image atz can be calculated for arbitrary lens models by
using equation (3.43). To eliminatedeff from the equation, we now use a scaled version of the
Hubble constant,

h =
H0

deff
, (6.5)

which includes the cosmological factors and will later be determined by the lensing effect. This
h is directly proportional to the Hubble constant itself when the cosmology is fixed. For two
imagesi and j, we get a time-delay of∆ti j with

h∆ti j = h(ti − tj) (6.6)

=
1
2

(
|αi |

2−|αj |
2
)
− (ψi −ψj) . (6.7)

By using the lens equation (3.28), we can transform this expression into a linear functional of
the deflecting potential and its derivatives. Mixed terms likezi ·αj for i 6= j can be eliminated,
so that the resulting time-delay can again be written as the difference of the light travel timesti
themselves.

hti =−1
2

r2
i +zi ·∇ψi −ψi −C (6.8)
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Although it is not immediately noticeable, this equation still is invariant under translations of
coordinates. To prove this, one has to apply the lens equation.

For the special potential we discuss here, the relation (6.4), which also holds forψ(γ) with
β = 2, can be used to eliminate the derivatives of the potential and obtain a simple expression
only depending on both parts of the potential at the image position:

hti =−1
2

r2
i − (1−β )ψ (g)

i +ψ
(γ)
i
−C (6.9)

We retain using the notion of light travel times for each image instead of time-delaysbetweenthe
images to keep the equations simple. Theti are defined except for an overall additive constant
that can be absorbed into the constantC.

The last equation was already presented in Witt et al. (2000) for the special cases ofβ = 1
including external shear and for the general shearless power-law model.

6.4 Counting constraints and parameters

Before solving the equations, we want to discuss how many parameters of the model can at most
be determined from observations of lens systems withn images, especiallyn = 4. See Table 6.1
and 6.2 for a list of parameters and constraining equations. As the time-delays do not change
when adding the same constant to allti , we have to include the constantC as parameter and thus
haven constraints with one parameter for this. We might as well have used only the (uniquely
defined)n− 1 time-delays withoutC. Both possibilities result inn− 1 more constraints than
parameters just for the time-delays.

parameters number
h scaled Hubble constant 1
γ external shear 2
β power-law exponent 1
Fi angular partF(θi) n
F ′i dF/dθ at θi n
zs source position 2
C constant in light travel times 1

total without fluxes 2n+7

Table 6.1: Parameters for the chosen family of models for a system withn images. TheF ′i
are needed in the lens equations.

constraints number
zi image positions 2n
ti light travel times n

total without fluxes 3n

Table 6.2: Constraints from observations of image positions and time-delays for a system
with n images.
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Even for systems with 4 images of one source, it will be impossible to determine all param-
eters. We therefore decide to fixβ in the following calculations so that the results can be used to
study the dependence ofh on the radial mass slope. We will see that, with fixedβ , all equations
stay linear.

Another critical parameter is the external shear, which seems to be higher than expected in
many detailed lens models. Fixingγ for the moment, we will be able to investigate the influence
of any uncertainties in the external shear. In the special case ofβ = 1, it will even be possible to
determineγ from the constraints, because a number of other parameters do not contribute then.

We do not include fluxes or magnifications, because they would provide onlyn− 1 con-
straints (the independent flux ratios) and at the same time addn more parameters (the second
derivatives of the angular part of the potential at the image positionsF ′′i ). The effect that models
get less constrained, when more observations are included in the analysis, is of course unknown
in normal parametric models, where the number of parameters is fixed. Our models have an infi-
nite number of parameters, of which only a finite subset is needed to compare with observations.
The number of relevant parameters changes when we include more constraints.

Another reason (besides the difficulties in determining fluxes already discussed) is that, in
contrast to deflection angles and time-delays, magnifications and magnification ratios are non-
linear functionals of the lensing potential, complicating the equations considerably.

6.5 Lens equations

To utilize the information given by the image positions, we have to insert the power-law potential
with shear into the lens equation (3.28). The derivative of the galaxy part of the potential can be
obtained most simply by rotating its polar form to Cartesian coordinates using the transformation
matrix (

∂x

∂y

)
=
(

cosθ −sinθ/r
sinθ cosθ/r

)(
∂r

∂
θ

)
. (6.10)

Written in a form to take into account the role ofγ, Fi andF ′i as unknowns of the equations, this
leads to the following equation.

zs = (1−κ)zi − rβ−2
i

(
xi −yi
yi xi

)(
βFi
F ′i

)
+
(

xi yi
−yi xi

)(
γx

γy

)
(6.11)

It is easily seen that this set of 2n equations can be used to determineFi andF ′i , assumingγ as
known:

βFi = r−β

i

(
(1−κ) r2

i −xixs−yiys+ γx (x2
i −y2

i )+2γyxiyi

)
(6.12)

F ′i = r−β

i

(
yixs−xiys−2γxxiyi + γy(x2

i −y2
i )
)

(6.13)

6.6 The general set of linear equations

We now use (6.12) to express the galaxy potential in the time-delay equations (6.9). We decide
to use the light travel times themselves rather than theH0-independent time-delay ratios as con-
straints. In this way we can keep the equations linear and the analysis much simpler. As a result,
the following set of equations is obtained fori = 1. . .n:

(1−κ) r2
i + (x2

i −y2
i )γx + 2xiyi γy +

2β

2−β
(ti h+C) = 2

1−β

2−β
zi ·zs (6.14)
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The most interesting fact, besides the linearity, is the simple way the mass indexβ appears in
the equations. By combining information from the time-delay and lens equations the way we
did, it was possible to remove the terms withβ -dependent exponents. Nowβ only contributes
in the scaling factors of the unknown parameters. Having solved the system for one value ofβ ,
we immediately find the general solution by scalingh, zs andC with the appropriate factors.

6.7 The isothermal model

In the caseβ = 1, the equations (6.14) obviously degenerate with respect to the source position
zs. It is then impossible to constrain the latter, but the same information can now be used to
determine the external shear. In this case, the inclusion of the lens equations to determine the
parametersFi of the galaxy potential was not really necessary, becauseψ (g) does not contribute to
the time-delay equations (6.9). We can now directly invert the latter or (6.14) to obtain solutions
for hiso andγiso. Using Cramer’s rule to solve (6.14) forβ = 1, the result reads like follows:

A :=
1
2
(1−κ)

∣∣∣∣∣∣∣∣∣
t1 x2

1−y2
1 x1y1 1

t2 x2
2−y2

2 x2y2 1

t3 x2
3−y2

3 x3y3 1

t4 x2
4−y2

4 x4y4 1

∣∣∣∣∣∣∣∣∣

−1

(6.15)

hiso = A

∣∣∣∣∣∣∣∣∣
x2

1 y2
1 x1y1 1

x2
2 y2

2 x2y2 1

x2
3 y2

3 x3y3 1

x2
4 y2

4 x4y4 1

∣∣∣∣∣∣∣∣∣ (6.16)

γiso = A

−
∣∣∣∣∣∣∣∣∣
t1 r2

1 x1y1 1

t2 r2
2 x2y2 1

t3 r2
3 x3y3 1

t4 r2
4 x4y4 1

∣∣∣∣∣∣∣∣∣ , +

∣∣∣∣∣∣∣∣∣
t1 r2

1 (x2
1−y2

1)/2 1

t2 r2
2 (x2

2−y2
2)/2 1

t3 r2
3 (x2

3−y2
3)/2 1

t4 r2
4 (x2

4−y2
4)/2 1

∣∣∣∣∣∣∣∣∣

 (6.17)

The transition from exactly isothermal to nearly isothermal models deserves some attention.
Even for models withβ differing only slightly from unity,γ is a free parameter, while it is fixed
by the observational data forβ = 1. An incorrect external shear for almost isothermal models
is usually compensated for by diverging source positions andFi andF ′i , leading to unrealistic
models. It therefore seems appropriate to use the correct isothermal shear even for models
that do not exactly obeyβ = 1. However, one has to take into account possible measurement
uncertainties that introduce errors intoγiso. Especially the time-delays, which all contribute to
the solution, can introduce significant uncertainties.

6.8 Solution for the general model

In the general case withβ 6= 1, (6.14) can be solved directly to determineh for a given shearγ.
Even without writing the explicit solution, we see that

h ∝
2−β

β
(1+gx γx +gy γy) (6.18)



6.9. THE ‘C RITICAL SHEAR ’ 53

for some constantsgx andgy. The Hubble constant scales with(2−β )/β and is a linear (but
not proportional) function of the shear. Notably, the isothermal model plays no special role in
this equation, despite the fact that, strictly speaking,γ can not be chosen freely in this case.
Since the isothermal shear is usually only weakly constrained due to the limited measurement
accuracy, we may, however, use different values ofγ even forβ = 1. This is always true
when the constraints we used here are not all available. Considering this, one might well apply
equation (6.18) regardless of the value ofβ .

To obtain explicit expressions for the coefficientsg = (gx,gy), we can again use Cramer’s
rule:

h = B
2−β

β
(1+gx γx +gy γy) (6.19)

B =−1−κ

2

∣∣∣∣∣∣∣∣
t1 x1 y1 1
t2 x2 y2 1
t3 x3 y3 1
t4 x4 y4 1

∣∣∣∣∣∣∣∣
−1

g0 (6.20)

g0 =

∣∣∣∣∣∣∣∣∣
r2
1 x1 y1 1

r2
2 x2 y2 1

r2
3 x3 y3 1

r2
4 x4 y4 1

∣∣∣∣∣∣∣∣∣ (6.21)

g =
1
g0


∣∣∣∣∣∣∣∣∣
x2

1−y2
1 x1 y1 1

x2
2−y2

2 x2 y2 1

x2
3−y2

3 x3 y3 1

x2
4−y2

4 x4 y4 1

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
2x1y1 x1 y1 1

2x2y2 x2 y2 1

2x3y3 x3 y3 1

2x4y4 x4 y4 1

∣∣∣∣∣∣∣∣∣

 (6.22)

6.9 The ‘Critical shear’

Since the Hubble constant is linear inγ, there has to be a one-dimensional family of values of
the shear with vanishingh. The shear with the smallest absolute value from this family will now
be called the ‘critical shear’γc (see Figure 6.1). If we denote the shearless value withh0, we
can write the effect of external shear as

h
h0

= 1− γ ·γc

γ2
c

. (6.23)

The critical shear can be calculated using equations (6.19) to (6.22).

γc =−(1−κ)
g

g2
x +g2

y
(6.24)

If γ andγc point in the same direction, this scaling factor can be written as 1− γ/γc which
is analogous to the scaling of 1− σ for an additional mass sheetΣ with critical densityΣc

andσ = Σ/Σc. The critical shear does not dependent onβ or the time-delaysti and can be
calculated from the image positions alone. If an upper bound of the external shear calledγmax

can be assumed, this translates to a range of

h(max
min

) =
(

1± γmax

γc

)
h0 . (6.25)
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The critical shear is thus a measure for the amount of external shear that can changeh signifi-
cantly. The larger it is, the smaller the influence of uncertainties in the shear on the determined
Hubble constant. Shear in the direction ofγc contributes maximally, in a perpendicular direc-
tion the influence vanishes. With the ‘direction of shear’, we mean in this context the orientation
2θγ of the vectorγ. This isnot the direction ofθγ towards the perturbing mass, cf. eq. (4.6).
External field galaxies located perpendicular to the direction of maximal effect changeh by the
same amount but with opposite sign. There are, however, four directions where external masses
do not contribute. See section 6.13 for actual numbers of the critical shear in real observed lens
systems.

Geometrical interpretation

For constant light travel times orh = 0, equation (6.14) describes an ellipse (compare ap-
pendix A.1) whose axesa andb are related to the external shear by

γ

1−κ
=

a2−b2

a2 +b2 . (6.26)

Forγ > 1−κ, this becomes a hyperbola. The position angle of theminoraxis is the same as that
of the perturbing mass responsible for the shear (θγ ). This means that each ellipse/hyperbola
passing through all images corresponds to a value ofγ with h/h0 = 0. According to equation
(6.23), for these values

γ ·γc = γ
2
c (6.27)

holds. The values ofγ for all these conic sections span the complete subspace for whichh/h0 = 0
(see Fig. 6.1). The critical shear is the smallest of these values and can therefore be calculated
with equation (6.26) for the ‘roundest’ ellipse passing through all images. In Figure 6.2, we
show several such ellipses for the lens systems that are discussed in sections 6.13.2 to 6.13.5.
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Figure 6.1: Example critical shearγc (arrow) and values ofγ for whichh/h0 = 0 (straight
line). Note that the direction ofγ is 2θγ andnot the direction to the perturbing massθγ .

We conclude that for certain values ofγ (see Figure 6.1), e.g. forγ = γc, all observed time-
delays (or alternativelyH0) vanish. Each of the fitting ellipses can act as an Einstein ring for
the correct value ofγ if the functionF is chosen accordingly. The light travel time is the same
for all parts of such rings as Fermat’s theorem requires. In our consideration, the potential is
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Figure 6.2: Ellipses passing through all images (stars) of four lens systems. The ‘roundest’
one, which corresponds to the critical shear, is shown as solid line. The centres are shown
as crosses. For each ellipse, a shear for whichh/h0 = 0 can be calculated by using equation
(6.26). (a) Q 2237+0305, (b) PG 1115+080, (c) RX J0911.4+0551, (d) B1608+656

only constrained at the image positions and arbitrary in other directions. The Einstein ring will
therefore usually break up and form a number of discrete images with still vanishing time-delays
(see section 6.15).

6.10 Shifting the lensing galaxy

Surprisingly, most of the quantities we determined do not depend on the position of the lens
centre. A shift of the centre is equivalent to adding a constant displacement to the vectorszi and
zs. If we look at the general set of equations (6.14), we see that such a shift adds terms linear in
zi and a constant to the equations. The constant term can be absorbed inC and (forβ 6= 1) the
linear terms inzs. As C andzs are of no interest, the equations do not change when applying
this shift. The same result could be derived from the explicit solutions and using the general
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properties and rules for determinants.
This result means thath and the critical shear are translation invariant and can be determined

even if the lens position is not known. This is only true for the family of models we analyse
here. Simple parametric models usually only fit the data for a specific position of the lens
centre. Because of the degeneracy forβ = 1, the results for isothermal models in section 6.7
arenot translation invariant. This is not in contradiction with the general behaviour, because the
external shear is not a free parameter for isothermal models.

6.11 Spherical models for nearly Einstein ring systems

For spherical models, the equations are overdetermined. There are nevertheless systems, which
can be fit accurately with this kind of model. Without showing all the calculations here, we only
want to present the result

hsph

h0
=

r2−β

0

g0

∣∣∣∣∣∣∣∣∣∣
rβ

1
x1 y1 1

rβ

2
x2 y2 1

rβ

3
x3 y3 1

rβ

4
x4 y4 1

∣∣∣∣∣∣∣∣∣∣
. (6.28)

It is easy to show thathsph/h0 becomes zero forβ → 0 to cancel the vanishing denominator
in (6.18) and ensure a finitehsph. It can also be shown thatγ is parallel toγc for arbitraryβ .
Taken together, this means that for point mass models, we always haveγ = γc. The geometri-
cal interpretation can be used to determine the direction of external shear for spherical models
without calculations. It is given by the orientation of the minor axis of the roundest ellipse pass-
ing through all images. For the systems discussed below, even the absolute value ofγ can be
determined from this ellipse for point mass lenses.

For systems where then images are all located very close to the Einstein ring atr0, we
can recover another scaling relation. In this case, the power-law can be interpreted as a local
approximation toanyradial mass profile, like softened power-law spheres or other models. We
assume, that one fitting reference model is known. It is then possible to find a family of other
models which are also consistent with the observations.

This was done numerically by Wambsganß & Paczyński (1994) and led to a scaling ofhsph∝
2−β . Wucknitz & Refsdal (2001) presented a simple interpretation of this fact in terms of the
well known mass-sheet degeneracy (Gorenstein et al., 1988). If we multiply the lens equation
zs = z−α with 1−κ, we get another lens equation with the source position and lensing potential
(or deflection angle) scaled with the same factor, plus an additional constant convergenceκ. This
means that lens models given by the deflection anglesα andα̃ = (1−κ)α+κ z are equivalent,
but source positions, time-delays, etc. are scaled by 1−κ in the latter model.

As reference model, we choose an exponentβ0 = 1. This model is now transformed as
just described and then approximated locally nearr0 by a modified power law with exponentβ .
Figure 6.3 illustrates this idea. For the new exponent, we find

2−β = 1−κ . (6.29)

As time-delays, source position and external shear all scale with 1− κ, we find the general
scaling laws

zs ∝ 2−β , hsph∝ 2−β , γ ∝ 2−β (6.30)
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Figure 6.3: The deflection angles for the three equivalent lens models. The isothermal (β =
1) reference model is shown solid, the transformed model dashed and the final equivalent
power-law model dotted.

for an arbitrary mass indexβ . The time-delay ratios do not change.
With γ = γc for point mass systems, the shear for arbitraryβ becomesγ = γc(2−β )/2,

leading to a ratio of the Hubble constants for the spherical and shearless case of

hsph

h0
=

β

2
. (6.31)

The two models differ significantly for a realistic range ofβ . Systems with images very close to
an Einstein ring should therefore not be used to determineH0 because of the high uncertainties
introduced by the external shear.

6.12 Influence of the radial mass indexβ

One of the interesting properties of equation (6.18) is the very simple dependence of the results
on β . The determined value of the Hubble constanth simply scales with the factor(2−β )/β .
The most alarming fact is that this factor does not depend on the geometry of the lens, the time-
delay ratios or the amount of external shear. When using the models described here to determine
H0 from lens time-delays, the error due to the assumption of an incorrectβ will be exactly the
samefor all lens systems as long as the realβ is more or less equal for all lensing galaxies.

Witt et al. (2000) numerically found a scaling of(2−β )/β in the case of a power-law model
without external shear for orthogonal image pairs (θi − θj ≈ 90◦), while these computations
lead to 2− β for opposed images. In contrast to their work, we have used all time-delays as
constraints so that they cannot scale differently. The common scale factor of all time-delays
shows as a scaling ofh in our calculations.

The reader might feel as uneasy about the seemingly diverging time-delays orh in the limit
β → 0 as the author did. This limit is equivalent to point mass models and one should not observe
diverging time-delays for this kind of lens. The point causing trouble here is the fixed external
shear in our considerations. To fit the data with a point mass model, the shear has to be equal to
the critical shearγc. Taking this into account, the result gets multiplied by a vanishingh/h0 ∝ β

which cancels the 1/β factor. If we now change the shear by a small amount, the potential and
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thush will immediately diverge in the limit of smallβ . This has no direct physical implications,
because the mass models will become extremely unphysical to compensate for the shear effect.
Small relative differences in theFi , which will be introduced by an incorrect shear, will lead to
enormous asymmetries in the mass distribution. This is related to the fact that realistic compact
mass distributions can provide only almost spherically symmetric potentials. Any multipole
moments would radially decrease more rapidly than the monopole term and must be very strong
to have any effect. We will discuss this in more detail for a special case in section 6.13.1.

For spherical systems with images near the Einstein ring we confirmed the approximate
scaling ofhsph ∝ 2− β . This seems to be incompatible with the general scaling law ofh0 ∝
(2−β )/β at first sight. With the factor ofhsph/h0 = β/2 from equation (6.31), by which the
shear changes the result in spherical models, these two results are, however, in perfect agreement.

6.13 Application to special cases

To illustrate the results, we have presented here, and to test their relevance for real lenses, we
want to apply the formalism to systems with a special Einstein cross like symmetry and to some
of the known real systems that are either useful to actually determineH0 (1115+080, 0911+0551,
1608+656) or are interesting because they are very well studied systems like 2237+0305. The
calculations will show that both scaling relations,hsph∝ 2−β andh0 ∝ (2−β )/β , are relevant
for the determination ofH0 from time-delays. The detailed numerical models for 2237+0305
will furthermore show that the scaling also applies if the time-delays themselves are not used to
constrain the models. All time-delays scale almost exactly as predicted by our analytical work.
We will also see that parametric models may fit only for a limited range ofβ . The scaling
relations are then valid only within this range.

Besides the effects of the exponentβ , the possible strong effects of any external shear will
also be confirmed by the numerical models.

6.13.1 Symmetric Einstein cross like systems

A rather special example of systems shall be discussed explicitly in this section. We consider
a lens with vanishing time-delays of opposing image∆t12 = ∆t34 = 0 and the following image
positions:

x1,2 =±(1− ε) r0 y1,2 = 0 (6.32)

x3,4 = 0 y3,4 =±(1+ ε) r0 (6.33)

From these data, we immediately concludezs = 0. They-component of the shear does not
contribute at all and cannot be constrained. The equation determining the Hubble constant now
reads

h∆t13 = (1−κ) r2
0

2−β

β
2ε

(
1− γx

γc

)
, (6.34)

with the critical shear

γc = (1−κ)
2ε

1+ ε2 . (6.35)

The special symmetry makes it possible to choose any value of external shear even for isothermal
models. Furthermore, it is possible to exactly reproduce the data with spherically symmetric
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models plus external shear. In this case, the shear is uniquely defined:

γ = (1−κ)
(1+ ε)2−β − (1− ε)2−β

(1+ ε)2−β +(1− ε)2−β
(6.36)

= (1−κ)(2−β )ε +O(ε2) (6.37)

The time-delay equation now becomes somewhat more complicated than in the non-spherical
case:

hsph∆t13 = (1−κ) r2
0

2−β

β

(1+ ε)β − (1− ε)β

(1+ ε)β−2 +(1− ε)β−2
(6.38)

= (1−κ) r2
0 (2−β )ε +O(ε2) . (6.39)

Comparing this with (6.34), we recover the factor ofβ/2 between the spherical and shearless
case. Both models fit the data exactly and, in this special case, the models are even compatible
with highly popular elliptical mass distributions. That means that without any independent in-
formation about the external shear (or equivalently the ellipticity of the galaxy itself), we have a
factor of two uncertainty even when only considering these two simplest models forβ = 1. The
real situation may be even much worse, when we consider models with internaland external
shear. In this case, any small unknown contribution of external shear of the order ofγc (which
for very symmetric systems becomes arbitrarily small) will change the result significantly.

Witt et al. (1995) discussed exactly the same type of systems with spherical models plus
shear. Withγ fixed, they also derived a scaling law of(2−β )/β (see their equation 81). When
the shear is constrained by the lens equations, the scaling changes to the 2−β form.

We finally want to discuss the consequences of diverging time-delays in the fixed shear case
for β → 0 due to equations (6.18) and (6.34). For simplicity, we assumeγ = 0, κ = 0 andε � 1,
but the argument is generally also true for other values. We write the potential as a multipole
expansion2

β F(θ) = r2−β

0

(
1−

∞

∑
k=1

ak cos2kθ

)
. (6.40)

To be compatible with equation (6.12), the coefficients have to meet the condition

∞

∑
k=1

ak = (2−β )ε . (6.41)

We notice that densities (6.3) can become negative near the axes. To minimize the angular
density contrast, we have to keep only the monopole and quadrupole terms and set all higher
coefficients to 0. The potential is then equivalent to a density of

σ =
β

2

( r
r0

)β−2
(

1+ ε
(2−β )2(2+β )

β 2 cos2θ

)
, (6.42)

which is everywhere positive only for sufficiently high values ofβ . When using realistic mass
models, we can therefore expect a lower bound forβ to achieve acceptable fits. This applies not

1The exponent of the first term in equation (8) in Witt et al. (1995) is incorrect; it should be the same as that in
the second term. (S. Mao, private communication)

2We use an expansion for the principal axes of the lens system. The sin2kθ terms might be included as well but
they would not change the density on these axes, which is what we are interested in.
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only to this special symmetric lens system but is true in general. Numerical models presented in
the next section will confirm this result forγ = 0 (see Figure 6.5).

Another aspect of the correspondence of potential and density will be discussed in sec-
tion 6.14.

6.13.2 The Einstein cross Q 2237+0305

This lens (Figure 6.4) is not usually taken into consideration when thinking about determination
of H0, because the time-delays are expected to be very small and can therefore not be determined
easily. Here we show that even if all three time-delays were known exactly, constraints for the
Hubble constant would still be very weak.

Figure 6.4: IR and optical HST images of Q 2237+0305 (Kochanek et al., 2002)

Table 6.3 shows the distance parameters calculated with the redshifts from Huchra et al.
(1985). The small lens redshift leads to a very smalldeff and small time-delays. The high
symmetry of this system adds to this expectation.

world model dd ds dds deff dds/ds

flat Λ 0.0376 0.4077 0.3933 340 0.9645
flat Λ clumpy 0.0376 0.4729 0.4525 343 0.9568

noΛ 0.0371 0.3688 0.3504 340 0.9501
EdS 0.0368 0.2901 0.2759 338 0.9510

Quint 1 0.0373 0.3763 0.3619 339 0.9617
Quint 2 0.0371 0.3358 0.3215 338 0.9574
Quint 3 0.0368 0.2901 0.2759 338 0.9510

Table 6.3: Distance parameters for Q 2237+0305 calculated withzd = 0.0394
and zs = 1.695. See sections 3.2 and 3.6 for explanations. Units ofdeff are
kms−1Mpc−1days arcsec−2.

The degeneracy caused by the unknown mass indexβ was already discussed by Wambsganß
& Paczýnski (1994) for spherical models plus external shear. The authors found the 2−β scaling
by using numerical models. We now want to investigate how strong the assumption of a spherical
main galaxy influences these results.
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No time-delays are available for 2237+0305 and they may never be determined. We can
nevertheless calculate the critical shear defined before and compare it with the typical value one
gets for spherical models. Positions including error bars used for this were taken from Crane
et al. (1991) to make results comparable with Wambsganß & Paczyński (1994).

The critical shear as calculated from these positions3 is γc = (0.092±0.044,0.096±0.045)
or |γc| = 0.13, where the errors are 1σ bounds from Monte Carlo simulations. Numerical
modelling results in a shear of 0.0696 almost exactly parallel toγc for isothermal spherically
symmetric potentials. We therefore expect the time-delays (orh if we take ∆t as known) of
the spherical model with shear to be a factor 0.475 smaller than in the shearless case. For the
moderately small shear of≈ 0.07, this is a huge effect. This factor is in good agreement with
the expected value of 1/2 for idealized systems.

To compare results in the general case, we performed numerical model fitting with an ellip-
tical potential plus external shear.

F(θ) ∝
((cosθ

1+ ε

)2
+
( sinθ

1− ε

)2
)β/2

(6.43)

Elliptical potentials are known to be unphysical for large ellipticities. Althoughε is small in
our case, we may expect unrealistic solutions for small values ofβ , because the limit of accept-
able ellipticities vanishes forβ → 0 (cf. last section). In fact the fittedε even increases with
decreasingβ .

We decided not to use invented time-delays (calculated for a reference model) to fit the
models. In this way, we can check the validity of our results even for cases where multiple
time-delays are not used as constraints. Plots of the residuals, ellipticity, shear and time-delay
between component A and B are shown in Figure 6.5.

The non-vanishing residuals atβ → 2 might be worrying at first, because a spherical model
without external shear can fit any image configuration forβ = 2. The result would be a sheet of
constant density equal to the critical density. There would be no isolated images but an area of
constant (and very high) surface brightness. One might thus naively think that residuals should
be very small nearβ = 2. This is not the case. It is true that the deviations of the projected images
will become arbitrary small in the source plane. On the other hand, however, the magnifications
diverge in the limit, causing the deviations in the lens plane to stay finite.

Three families of models have to be discussed. First, we fixed the ellipticities at 0 to compare
with the results from Wambsganß & Paczyński (1994). The residuals are almost constant for
spherical models. The shear and the time-delays scale very accurately with 2− β as in the
idealized considerations.

More interesting in our context is the behaviour in the shearless case where we expect to
find a (2−β )/β scaling of the time-delays. Theχ2 gets unacceptably large forβ � 1. In the
other cases (β & 0.6), the agreement with the theoretical predictions also shown in Figure 6.5
is very good. For isothermal models, the ratio of time-delays calculated for the two models
(spherical/shearless) is 10–20 per cent larger than predicted by the critical shear. This is still
a very good agreement considering that the time-delays were not used as constraints for the
numerical models.

Real lensing galaxies usually are elliptical and also embedded in an external shear field.
We therefore also let bothε andγ vary freely in order to minimizeχ2. Counting the formal
number of constraints and parameters, we expect a minimum ofχ2 = 0. The fact thatχ2 does
not vanish is a confirmation of the degeneracy involving shear and ellipticity already discussed

3All coordinates in this thesis:x to east (positive right ascension) andy to north (positive declination).
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Figure 6.5: Results of numerical model fitting for Q 2237+0305. The top panel shows
the reducedχ2 for the best models. Hereβ was counted as fixed, resulting inν = 3/3/1
degrees of freedom for the spherical / shearless elliptical potential / general elliptical poten-
tial model, denoted as XS / EP / EP+XS. In the middle, both components of the shear and
ellipticity are plotted for the EP+XS model. The last panel presents the time-delay A−B
in hours forH0 = 75kms−1Mpc−1 and Einstein-de Sitter cosmology. We also included a
curve scaling with(2−β )/β to compare with the EP case.

by Witt & Mao (1997). The effective number of parameters is therefore smaller then the formal
one. Because we notice the ellipticity changing only slightly withβ , a scaling like that in the
spherical case is expected. This can indeed be seen in the plot, where the time-delay scales with
2−β . Contrary to the spherical case,γ does not scale proportional to 2−β but is additionally
shifted by a constant offset. This is due to the fact that part of the shear has been transformed to
ellipticity.

We conclude that both scaling laws forh or the time-delays can be relevant, depending on
the family of models used. In the case of 2237+0305, however, the influence of external shear is
stronger than the effect ofβ for any realistic values of the latter.
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6.13.3 PG 1115+080

Models and their degeneracies for this quadruple system (see Figure 6.6) have been studied
extensively (e.g. Courbin et al., 1997; Impey et al., 1998; Keeton & Kochanek, 1997; Saha &
Williams, 1997; Schechter et al., 1997; Zhao & Pronk, 2001), leading to a variety of more or
less realistic mass distributions and a range of values for the Hubble constant between about 40
and 80kms−1Mpc−1.

Figure 6.6: IR and optical HST images of PG 1115+080 (Kochanek et al., 2002)

All these authors agree on the importance of taking the effect of a nearby galaxy group into
account. Our formalism includes this group as an external shear of the orderγ ≈ 0.1. This shear
is not well constrained, however. Keeton, Kochanek & Seljak (1997) showed that the residuals
do not change much for ranges ofγ ≈ 0.06–0.2. With our general family of models, the effect
of unknown external shear can be quantified by using the critical shear and equation (6.23).
To calculateγc, we only need image positions relative to an arbitrary reference centre. The
uncertainty in the galaxy position, which is usually much higher than in the image positions,
does not affect the result. Using the HST observations from Impey et al. (1998) with their
claimed accuracy of 0.′′002 as a basis for Monte Carlo simulations, we obtain a critical shear of
γc = (0.142±0.002,0.167±0.003). Although the ground-based positions from Courbin et al.
(1997) are not compatible with the HST results within the formal error bars, the critical shear
from these data is about the same,γc = (0.143±0.003,0.160±0.005). This means that any
shear of the order 0.1 can change the results forH0 significantly. Since the uncertainties inγ are
of this order of magnitude, large effects onh result even for fixedβ .

The formalism we present in this chapter was not developed to directly determineH0 from
observations but to study the model degeneracies and scaling laws. One might nevertheless try
to use the prescription from section 6.7 to obtain an estimate for the Hubble constant and the
external shear for an isothermal model. The errors of the observational data of course have to be
taken into account.

Time-delays derived from the same light curves have been published by Schechter et al.
(1997) and Barkana (1997). The A component was not resolved in these observations, and time-
delays were only determined relative to the sum of A1 and A2. This is justified by the small
time-delay between the two, which is expected to be the order of hours. For our Monte Carlo
simulations, we assumed a time-delay between the A images of(0±1) days.

Results forH0 in the isothermal case differ depending on which set of time-delays and po-
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world model dd ds dds deff dds/ds

flat Λ 0.2194 0.4075 0.3019 3 257 0.7409
flat Λ clumpy 0.2210 0.4744 0.3319 3 473 0.6997

noΛ 0.2034 0.3690 0.2502 3 299 0.6781
EdS 0.1928 0.2894 0.1966 3 121 0.6794

Quint 1 0.2107 0.3761 0.2747 3 171 0.7304
Quint 2 0.2017 0.3354 0.2384 3 122 0.7106
Quint 3 0.1928 0.2894 0.1966 3 121 0.6794

Table 6.4:Distance parameters for PG 1115+080 calculated withzd = 0.310 andzs = 1.722.
See sections 3.2 and 3.6 for explanations. Units ofdeff are kms−1Mpc−1days arcsec−2.

sitions is used. With the redshiftszs = 1.722 andzd = 0.310 (Tonry, 1998), we calculated the
distance parameters given in Table 6.4. For an Einstein-de Sitter universe, we obtain values of
H0 between 47 and 58kms−1Mpc−1 with errors between 12 and 30 per cent (1σ ). The exter-
nal shear is only weakly constrained, but seems to be of the order 0.1. We have to stress that
this result includes all possible isothermal models with arbitrary angular dependence and is thus
much more general than elliptical mass distributions. As long as different determinations of the
positions and time-delays are not consistent with each other within their error bars, any results
for H0 have to be interpreted with care, of course.

6.13.4 RX J0911.4+0551

This quad, initially discovered as a triple (Bade et al., 1997), has unique geometrical properties
and is a strong candidate for time-delay determination, although no result has been published
yet4. Rapid variability has been detected in the X-ray regime, providing the possibility of a
determination of all three time-delays with unprecedented accuracy (Chartas et al., 2001). Fig-
ure 6.7 shows images of this interesting system. Our first models (elliptical potential plus shear,
χ2 ≈ 1) were presented in Burud et al. (1998). The external shear in the best-fitting model is
γ = 0.32 and points almost exactly in the direction of a nearby cluster of galaxies. The redshift
and velocity dispersion of this cluster was measured by Kneib et al. (2000) toz = 0.769 and
σv = (836+180

−200)kms−1. From this, they derive an absolute shear ofγ̃ = 0.11+0.05
−0.04 using a SIS

model for the cluster.
To compare with lens models, we have to use the reduced shearγ = γ̃/(1− κ), because

the convergenceκ caused by the cluster was not taken into account explicitly. The mass-sheet
degeneracy simply scales all parameters in (6.14) with 1/(1−κ). For SIS models,̃γ = κ holds
and we obtainγ = 0.12+0.05

−0.04. Contrary to the claim in Kneib et al. (2000), this measurement
is not in good agreement with the model from Burud et al. (1998). The reduced shear differs
by about 0.2, the direction of the two being almost identical. A possible explanation for this
discrepancy is the presence of a second galaxy close to the main lens that might change the
potential considerably. It is also possible that the internal asymmetry of the main galaxy itself
can not be described as an elliptical mass distribution.

To estimate the uncertainty in time-delays or the Hubble constant derived from them, we use
the critical shear again, which isγc = (−0.553±0.013,0.101±0.005) or |γc| = 0.56. Even
with this very large critical shear, the uncertainty in the realγ has significant effects, because it

4After finishing this work, a time-delay of∆t = (150±6)days was presented in the PhD thesis of Burud (2002).
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Figure 6.7: IR and optical HST images of RX J0911.4+0551 (Kochanek et al., 2002)

is large as well.

world model dd ds dds deff dds/ds

flat Λ 0.3567 0.3783 0.2123 9 439 0.5611
flat Λ clumpy 0.3712 0.5069 0.2401 11 640 0.4736

noΛ 0.3179 0.3601 0.1730 9 828 0.4804
EdS 0.2805 0.2563 0.1257 8 494 0.4905

Quint 1 0.3330 0.3501 0.1950 8 877 0.5571
Quint 2 0.3072 0.3083 0.1653 8 510 0.5361
Quint 3 0.2805 0.2563 0.1257 8 494 0.4905

Table 6.5: Distance parameters for RX J0911.4+0551 calculated withzd = 0.769 andzs =
2.8. See sections 3.2 and 3.6 for explanations. Units ofdeff are kms−1Mpc−1days arcsec−2.

Even though no time-delay was known when writing this chapter, we present the distance
parameters in Table 6.5. The redshift of the source is taken from Bade et al. (1997), the redshift
of the lens from a reference in Kneib et al. (2000). With these data, the expected time-delay be-
tween the widely separated images was about 210 days. Small time-delays of the order 1 day are
expected for the close triple. The short time-delays depend on the lens model more sensitively
than the longer one.

The recently measured time-delay from Burud (2002) significantly deviates from the expec-
tation. It will, together withH0 measurements from other lenses, help in determining the real
mass of the nearby cluster. The discrepancy between the lens modelling results and the dynam-
ical measurement (Kneib et al., 2000) can then probably be resolved. Detailed new modelling
efforts are necessary to acomplish this task.

6.13.5 B1608+656

This system (Figure 6.8) is the first and up to now only quad for which all three independent time-
delays have been measured (Fassnacht et al., 1999). This offers the unique possibility to apply
our method to a system providing the complete set of constraints. HST images show a main
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lensing galaxy but also a weaker second galaxy between the four images (Jackson et al., 1998).
We nevertheless apply the method to B1608+656, if only to see if the effect of a secondary
lens can be detected in this way, e.g. by pretending there is a very large external shear. Data
for the positions of the images and the main lensing galaxy were taken from Koopmans &
Fassnacht (1999). The formal accuracy of the image positions is extremely high, of the order
2–12µarcsec. For the Monte Carlo simulations, we used 1 mas scatter in each coordinate to
account for possible shifts by local density fluctuations, caused for example by globular clusters
(Mao & Schneider, 1998).

Figure 6.8: IR and optical HST images of B1608+656 (Kochanek et al., 2002). Four
images (outer ring) and two lensing galaxies (central part) are seen in the H band image.
The weaker galaxy is almost lost in the V band.

We can use the general solution in equations (6.19)–(6.21) to determine the Hubble constant
for shearless models. With the redshifts ofzd = 0.6304 andzs = 1.394 and standard Einstein-
de Sitter cosmology, we obtain a value ofH0 = (37±5)kms−1Mpc−1 for β = 1. Values for
other cosmological models can be calculated with the distance parameters in Table 6.6.

world model dd ds dds deff dds/ds

flat Λ 0.3293 0.4060 0.1817 10 067 0.4477
flat Λ clumpy 0.3386 0.4532 0.1869 11 236 0.4124

noΛ 0.2953 0.3633 0.1430 10 272 0.3935
EdS 0.2660 0.2955 0.1143 9 408 0.3869

Quint 1 0.3092 0.3750 0.1644 9 652 0.4385
Quint 2 0.2879 0.3371 0.1411 9 415 0.4185
Quint 3 0.2660 0.2955 0.1143 9 408 0.3869

Table 6.6: Distance parameters for B1608+656 calculated withzd = 0.6304 andzs = 1.394.
See sections 3.2 and 3.6 for explanations. Units ofdeff are kms−1Mpc−1days arcsec−2.

The critical shear isγc = (0.072±0.001,0.069±0.001). For isothermal models, equation
(6.17) predicts a shear of aboutγ = (−0.32±0.02,−0.11±0.01), slightly depending on which
HST image is used to determine the galaxy position. The result for the Hubble constant is
H0 = (130±15)kms−1Mpc−1 from equation (6.16).

The enormous differences in bothH0 predictions is a consequence of the large external shear
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γ � γc. No external shear at all is needed to fit the data when including the influence of the
second galaxy in the field. The models in Koopmans & Fassnacht (1999) even predict velocity
dispersions for both galaxies which are of the same order of magnitude. This is surprising, since
the secondary galaxy is much weaker in all bands in the optical images (see Figure 6.8).

6.14 Correspondence of elliptical potentials and elliptical mass dis-
tributions

Elliptical potential lens models are used as an approximation to elliptical mass distributions. To
interpret any results for these models, the correspondence has to be investigated in some detail.
Here we only want to calculate the ellipticity of the mass distribution that is approximated by a
certain elliptical potential.

For the elliptical potential, we use the approach from section 4.1.4, which in the formalism
of this chapter was presented in equation (6.43). We rewrite this expression to find an approxi-
mation for small ellipticities of the potentialεP:

ψEP = rell
β (6.44)

rell = r

√
1+ ε2

P

1− ε2
P

√
1− x2−y2

r2

2εP

1+ ε2
P

(6.45)

= r (1− εPcos2φ)+O(ε2
P) (6.46)

ψEP = rβ (1−βεPcos2φ)+O(ε2
P) (6.47)

The density responsible for this potential can now easily be calculated with equation (6.3):

σEP =
β 2

2
rβ−2

(
1+

4−β 2

β
εPcos2φ

)
+O(ε2

P) (6.48)

This must now be compared with a true elliptical mass distribution normalized to the same scale

σEMD =
β 2

2
rell

β−2 (6.49)

=
β 2

2
rβ−2

(
1+(2−β )εM cos2φ

)
+O(ε2

M) . (6.50)

The ellipticity of the mass distribution is denoted byεM in this equation. We learn that the two
models are equivalent for small ellipticities, with the relation

εM =
2+β

β
εP . (6.51)

For isothermal models (β = 1), this readsεM = 3εP. The ellipticity of the mass distribution is
three times as high as that of the potential. The axial ratio is given byb/a = (1− εM)/(1+ εM),
see also appendix A.1.

6.15 Einstein rings and high image multiplicities

An interesting property of the general power-law models we used in the main part of this paper
is the possibility to produce Einstein rings from point sources for arbitrary values of the external
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shear. For an Einstein ring parametrized byr = r(θ), all points on this ring must have the same
light travel time to meet Fermat’s theorem. For this section, we setκ andγy to 0 for simplicity.
For an arbitrary direction of the shear, we only have to replaceθ by θ −θγ . We also assume that
γ < 1.

With constant light travel times, e.g.t ≡ 0, the general equations (6.14) describe an ellipse.
This ellipse is centred on the lens in the special caseszs = 0 or β = 1.

r = r0(1+ γ cos2θ)−1/2 (6.52)

The minor and major axes arer0/
√

1± γ, compatible with equation (6.26). The potential is in
this case an elliptical one

F(θ) =
1
β

r2−β

0 (1+ γ cos2θ)β/2 . (6.53)

With respect to the tangential caustic, the effects of ellipticity and shear cancel in these mod-
els and the caustic degenerates to a point. This is qualitatively different from elliptical mass
distributions where the caustic is deformed and overlaps itself, producing areas of higher mul-
tiplicities (see below). With arbitraryzs andβ , the centre of the ellipse is shifted to a position
zER with5 (

1+ γx γy

γy 1− γx

)
zER =

1−β

2−β
zs . (6.54)

For β 6= 1, this shift can take any value ifzs is varied. To obtain a globally unique function
F(θ), the centre of the lens has to be located inside of the ellipse.

Even for lens systems with four images, it is always possible to find an ellipse passing
through all of them, which can act as an Einstein ring for the corresponding value ofγ given by
the ellipticity. Of course this does not mean that we always see an Einstein ring for this special
value of external shear. SinceF(θ) is not constrained for angles between the images, the ring
will usually break up and form only a number of discrete images.

Small deviations from the Einstein ring case can lead to an arbitrary number of images near
the former elliptical ring. Special cases of these systems (singular isothermal ellipsoidal mass
distributions with shear) with up to eight images were mentioned by us in Lopez et al. (1998), by
Witt & Mao (2000) and discussed in detail by Keeton, Mao & Witt (2000). Evans & Witt (2001)
present results for shearless models with arbitraryF(θ). From (6.12) and (6.13) we obtain the
following condition for an image of a source atzs = 0:

F ′

F
=− β γ sin2θ

1+ γ cos2θ
(6.55)

A global solution for this differential equation is given by (6.53), which leads to the elliptical
ring we discussed before. For a number of discrete images, a more general solution is possible:

F(θ) = f (θ)(1+ γ cos2θ)β/2 (6.56)

At the positions of the imagesθi , equation (6.55) has to be met, leading to the simple condition

f ′(θi) = 0 . (6.57)

As f (θ) is an arbitrary function, we can easily construct systems with any number of images.
The radial coordinates of the images can then be determined to be

r(θi) =
(
β f (θi)

)1/(2−β )(1+ γ cos2θi)
−1/2 . (6.58)

5This equation is valid for arbitrary directions ofγ.



Chapter 7

The radio lens JVAS B0218+357

Figure 7.1: 5 GHz MFS map of B0218+357 from combined MERLIN and VLA data (from
Biggs et al., 2001). See section 7.10 for details of these data.
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7.1 Introduction

The lens JVAS B0218+357 plays a central role in this work, because it was the main motivation
to start the work on the LENSCLEAN algorithm. The special properties of this system make it
uniquely valuable for cosmological applications, especially for determining the Hubble constant
H0. We will show in the following sections that the lens models cannot be constrained strongly
enough with ‘classical’ lens modelling, when only the compact images (see Fig. 7.1) are used.
Before this work was started, no good result forH0 could be obtained, despite the fact that
B0218+357 is such a well studied system with a wealth of data at different frequencies and
resolutions available. In chapter 9, we will use the LENSCLEAN algorithm to constrain all model
parameters sufficiently tight to obtain a robust and competitive result for the Hubble constant.
LENSCLEAN is able to take advantage of the rich structure of the radio ring (see Figure 7.1)
to fit mass models of the lens. This information has not been used before for this purpose.
B0218+357 is now the first system for which LENSCLEAN has been applied to determine the
Hubble constant.

7.2 Discovery

B0218+357 was discovered in the ‘Jodrell/VLA Astrometric Survey’ (JVAS), which was carried
out at 8.4 GHz to select phase calibrator sources for the MERLIN array and to search for grav-
itational lenses (Patnaik et al., 1992, 1993). With two images separated by 335 mas, it is still
the lens system with the smallest separation known. The lensed image consists of two bright
flat-spectrum compact components (A and B) and a steep-spectrum radio ring with the same
diameter as the image separation (see Figures 7.1 and 7.2). Variability of the two images was
detected soon, so that the chance to determine the Hubble constant from this system became
apparent.

The compact images are strongly polarized (up to more than 10 %) with a very high differ-
ential Faraday rotation. This is a first strong hint that the lensing galaxy probably is a spiral with
a very active interstellar medium along at least one of the light paths.

VLBA observations at 15 GHz (Patnaik, Porcas & Browne, 1995) for the first time resolved
the substructure of the two compact images. Both consist of two subcomponents each, with a
separation of about 1.4 mas (see Figure 7.3 on page 74 and the very similar maps in Figure 7.2).
The positions and to some extent also the shapes of these subcomponents can potentially provide
constraints for the lens models.

7.3 Data for classical lens model fitting

7.3.1 Image positions

The most fundamental data are the positions of the two bright images. Because there are no other
bright sources in the field and absolute astrometry is not accurate enough to compare different
measurements, only relative positions are meaningful. Unless otherwise noted, we measure all
positions relative to the A component. All coordinates are in the J2000 equinox,x is measured
positive eastwards (positive right ascension),y northwards (positive declination).

Table 7.1 (page 72) shows a compilation of known relative positions of the A and B com-
ponents. For the high-resolution VLBI data, the numbers are given for each of the two subcom-
ponents. With the exception of the 5 GHz EVN data, these results are in very good agreement
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Figure 7.2: B0218+357 at different scales from tens of arcseconds down to milliarcseconds.
Top: VLA 1.5 GHz (Patnaik et al., 1993), middle: VLA 15 GHz (Biggs et al., 1999), bottom
and bottom right: VLBA 15 GHz (Porcas & Patnaik, 1996a). Composite taken from Biggs
(1999).

with each other. An apparent shift of the source with changing frequency has been discussed for
some time (see section 7.8). In this scenario, the source should move in the direction along the
jet (from subcomponents 1 to 2) with decreasing frequency. For the change in the relative B−A
position, an effect opposite to the observed one should then be observed.

The VLBA positions for component 1 are used for our lens models. Formal statistical errors
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data set x [mas] y [mas]
5 GHz EVN a 308.5 130.3

8.4 GHz VLBI b 309.00 127.30 subcomponents B1−A1
309.32 126.37 subcomponents B2−A2

15 GHz VLBA c 309.2 127.4 subcomponents B1−A1
309.6 126.6 subcomponents B2−A2

15 GHz VLA d 310.56 127.11
optical HST e 307 126

afrom Patnaik et al. (1993), given to 0.6mas accuracy
bfrom Kemball, Patnaik & Porcas (2001), accuracy 0.09 mas in each coordinate
cfrom Patnaik et al. (1995), given to 0.6mas accuracy
down fit (uniform weighting), same data as for LENSCLEAN
efrom Leh́ar et al. (2000)

Table 7.1: Relative position of the B component with respect to A.

of positions from radio data are not very meaningful in cases like this, because calibration errors
and confusion with other parts of the source are often more important for the errors than the
thermal noise of the observations. To calculateχ2 residuals for the lens models, we use an
accuracy ofσ = 0.1mas for each coordinate. This value is not critical for the lens models and
the results do not change significantly even if very different values are used.

The VLA position was determined with model fitting of twoδ -components in DIFMAP. The
data were reweighted to uniform before, to reduce the influence of the larger scale structures of
the ring on the result. This is not critical for the position, but is of some importance for the flux
ratios.

7.3.2 Flux density ratio A/B

Determination of flux densities are difficult for several reasons. Luckily, we are only interested
in the ratio A/B, which involves less problems, and not in the absolute values. Nevertheless,
the flux density ratio in B0218+357 is still a matter of debate. The most serious problem is
its apparent dependence on the frequency. This is disturbing, given the fact that lensing is an
achromatic process. Two possible explanations for this behaviour will be discussed later: other
physical effects in the lensing galaxy and frequency dependence of the structure and position of
the source (see section 7.8).

Another problem is the different light travel time for the two components. The observations
detect the source flux at different epochs which, in combination with the strong variability, can
lead to incorrect results from single epoch observations. In the process of determining the time-
delay, the real flux ratio is obtained for free (see section 7.5), however.

A selection of different measurements is shown in Table 7.2 and Figure 7.13 (page 86). For
higher frequencies, the ratio is ca. 3.7 and goes down to 2.6 at 1.7 GHz. For our classical lens
models, we use the value 3.75, unless otherwise noted. The data do not constrain the models
uniquely anyway, therefore the exact value does not make an important difference.
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data set epoch ratio
1.7 GHz VLBI a 1992 Jun 19 2.62
5 GHz MERLIN b 1991 Aug 26 2.976
5 GHz MERLIN b 1992 Jan 13 3.23
5 GHz MERLIN b 1992 Mar 27 3.35
5 GHz EVN b 1990 Nov 19 3.185
8.4 GHz VLA b 1991 Aug 1 3.247
8.4 GHz VLA c 1996/1997 3.57 ±0.01
8.4 GHz VLA d 1996/1997 3.2 ±0.35
8.4 GHz VLBI e 1995 May 9 3.18 ±0.17

f 3.72 ±0.20
15 GHz VLA b 1991 Aug 1 3.690
15 GHz VLA g 1992 Nov 18 3.79
15 GHz VLA h 1996/1997 3.73 ±0.01
15 GHz VLA d 1996/1997 4.3 ±0.65
15 GHz VLBA i 1994 Oct 3 3.623±0.065
22 GHz VLA b 1991 Aug 1 3.636
5550Å HST j 0.14

afrom Patnaik & Porcas (1999)
bfrom Patnaik et al. (1993)
cfrom Biggs et al. (1999), simultaneously fit with time-delay, used for their models
dfrom Cohen et al. (2000), varying part simultaneously fit with time-delay
esubcomponents A1/B1 (Kemball et al., 2001)
fsubcomponents A2/B2 (Kemball et al., 2001)
gown fit (uniform weighting), same data as for LENSCLEAN
hfrom Biggs et al. (1999), simultaneously fit with time-delay
i from Patnaik et al. (1995)
jsee Table 7.5

Table 7.2: Flux density ratio A/B for different frequencies and arrays. Figure 7.13 (sec-
tion 7.8) shows a plot of the data.

7.3.3 Relative positions of subcomponents

Figure 7.3 presents a high-resolution VLBA map of the A and B components and shows that
they consist of two subcomponents each. The relative displacements of the subcomponents are
given in Table 7.3. VLBA observations at the same and at higher frequencies (15, 22, 43 GHz)
were presented by Porcas & Patnaik (1996b). Unfortunately no results for the positions of
the subcomponents were included. A more recent publication (Kemball et al., 2001) presented
results from 8.4 GHz VLBI observations, which are also included in Table 7.3.

7.3.4 Shapes of subcomponents

The subcomponents are marginally resolved in 15 GHz observations, so that there is some hope
that their shapes and sizes can also be used as lens model constraints. Patnaik et al. (1995)
fit elliptical Gaussians to the data with results given in Table 7.4 (page 75). At 8.4 GHz, the
resolution is not sufficient to determine shape parameters for both subcomponents. Kemball
et al. (2001) therefore only present numbers for the A1 and B1 component.
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Figure 7.3: 15 GHz VLBA maps of the B and A components of B0218+357 (from Patnaik
et al., 1995). Tick marks are separated by 1 mas each.

∆x [mas] ∆y [mas] ∆x [mas] ∆y [mas]
A2-A1 1.072 0.868 1.18±0.05 0.87±0.05
B2-B1 1.470 0.000 1.50±0.05 −0.06±0.02

frequency 15 GHz 8.4 GHz

Table 7.3: Relative positions of the subcomponents in A and B at 15 GHz (Patnaik et al.,
1995) and 8.4 GHz (Kemball et al., 2001)

7.3.5 Position of the lens

No radio emission has been detected from the lensing galaxy itself or from a central image so far.
The only hope to estimate the galaxy position directly (without modelling the mass distribution)
is therefore in the optical. It is, however, extremely difficult to determine the position with the
required accuracy of a few milliarcseconds. The task is made even more difficult by the two
compact images, which are of a brightness comparable to the lensing galaxy (see Table 7.5).
Especially the B component, which lies at the very close distance of about 50 mas from the
expected centre of the galaxy and which is the brighter one in the optical, is a problem. With
ground based telescopes, the situation is quite hopeless. But even the capabilities of the HST
have not been sufficient to obtain a useful result yet.

Lehár et al. (2000) presented results from NICMOS observations, which are not considered
very reliable by the authors themselves. We cite the positions only for completeness in Table 7.6.
The difference between the results from two observations is 46 mas, much more than can be
tolerated forH0 determination. The images themselves are shown in Figures 7.4 (page 76)
and 7.5 (page 77). Especially the residuals after subtraction of the compact images may be
more illuminating than any formal statistical errors. Although the infrared-sensitive NICMOS
detector may be better suited to determine the lens position, WFPC2 is able to produce more
pleasing pictures. We present the H band image in Figure 7.6 on page 77.

The conclusion is that no useful position of the lensing galaxy is available and that this
parameter must be determined from other lensing constraints. This is the main problem with
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major axis[mas] minor axis[mas] p.a. [deg]
A1 a 0.58± 0.05 0.28±0.05 −37± 5
A2 a 1.02±0.05 0.54±0.05 −47± 5
B1 a 0.36±0.05 0.16±0.05 −65±15
B2 a 0.61±0.05 0.23±0.05 83±10
A1 b 1.90±0.30 1.12±0.30 157± 6
A2 b ≥ 2.0 ≥ 2.0
B1 b 0.72±0.30 0.35±0.04 73±12
B2 b ≥ 0.73 ≥ 0.73

a15 GHz (Patnaik et al., 1995)
b8.4 GHz (Kemball et al., 2001)

Table 7.4: Shapes of the subcomponents

band A B galaxy
H=F160W 17.52±0.03 16.94±0.03 17.50±0.04
I =F814W 21.83±0.11 19.39±0.03 20.06±0.18
V=F555W 23.28±0.21 21.11±0.06 21.95±0.29

Table 7.5: Optical magnitudes measured with the HST (Kochanek et al., 2002; Lehár et al., 2000)

B0218+357, because almost all information from the radio observations is needed to determine
the lens position and very little is left for other parameters. Because the radio data are potentially
sufficient to constrain very general mass models, if only the position of the mass centre was
known, every effort should be made to obtain better optical images of the system. Observations
with the new ACS camera on board the HST are planned for this purpose (PI: Neal Jackson) and
will by carried out in cycle 11. Extensive simulations were performed to estimate the possible
accuracy, with the result that the position can be determined with uncertainties of about 5–
10 mas. When these images are available, more detailed models can be used and lead to the best
constrained mass model of all time-delay lenses and to a very robust and accurate determination
of the Hubble constant.

7.4 Redshifts and the lensing galaxy

Redshifts of the lens and source are needed to calculate the distance parameters, which provide
the scaling factor to determine the Hubble constant from time-delays and lens model parameters
(see section 3.6). If velocity dispersion measurements are available as independent constraints
of the mass scale of the lens, the redshift of the lens alone is sufficient (eg. Wucknitz, 1996).

Browne et al. (1993) published a measurement of the lens redshift from narrow emission
and absorption lines in optical spectra of B0218+357. Their result ofzd = 0.6847 motivated the
search for HI absorption in radio spectra, which was found by Carilli, Rupen & Yanny (1993)
at z = 0.68466± 0.00004. Wiklind & Combes (1995) and other groups later found strong
absorption by different molecules at the same redshift.
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component x [mas] y [mas]
A 0 0
B 307± 3 126± 3

galaxy 181±30 69±30 mean
178±25 46±25 NIC2
184 92 NIC1

Table 7.6: Positions for the lensing galaxy from HST/NICMOS observations Lehár et al.
(2000). The images used for these results are shown in Figures 7.5 (NIC2) and 7.4 (NIC1,
Jackson et al., 2000).

NICMOS/160W NICMOS/subtracted

Figure 7.4: NIC1 images from Jackson et al. (2000) used for the results in Table 7.6

We conclude that the lensing galaxy is a late-type gas-rich disk galaxy, presumably a spi-
ral. The inclination seems to be low, so that we do not expect large ellipticities of the mass
distribution.

Ground based optical observations (Grundahl & Hjorth, 1995) showed the first sign that in
optical bands B is more prominent than A. The hypothesis, which is consistent with the optical
data and the molecular absorption lines, is that the A component is covered by a molecular cloud
in the lensing galaxy, which causes the absorption lines and an optical extinction of several
magnitudes. This cloud may also be responsible for the scattering at low radio frequencies.

The redshift of the source was determined by Lawrence (1996) aszs = 0.96. With these data,
we can eventually calculate the normalized angular size distances and the cosmological scaling
factordeff (see sections 3.2 and 3.6). Results are shown in Table 7.7 on page 78.

7.5 The time-delay

The first estimate of a time-delay between the A and B components was presented by Corbett,
Browne & Wilkinson (1996) at about the same time as the final assessment of the time-delay
in B0957+561 (Kundic et al., 1997). These authors used percentage polarization at 15 GHz
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Figure 7.5: NIC2 images from Leh́ar et al. (2000) used for the results in Table 7.6

Figure 7.6: WFPC2 image (Kochanek et al., 2002)

observed with the VLA. This measure has the advantage that the a priori unknown amplification
ratio has no influence, which reduces the number of parameters to fit. This allows a time-
delay determination even from a linear trend in the curves, without any other features. This
simple picture is, however, not exactly true in B0218+357, because the A component seems to
be depolarized by the inhomogeneous interstellar medium in the lensing galaxy. Different parts
of the image suffer different Faraday rotation, which in the integrated measurements reduces the
total polarization.

The result of these first efforts was∆t = (12±3)days, with A leading, where the error is
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world model dd ds dds deff dds/ds

flat Λ 0.3411 0.3819 0.0887 20 773 0.2322
flat Λ clumpy 0.3523 0.4052 0.0890 22 674 0.2198

noΛ 0.3050 0.3394 0.0693 21 111 0.2043
EdS 0.2725 0.2915 0.0573 19 609 0.1965

Quint 1 0.3195 0.3547 0.0800 20 028 0.2256
Quint 2 0.2964 0.3239 0.0692 19 618 0.2136
Quint 3 0.2725 0.2915 0.0573 19 609 0.1965

Table 7.7: Distance parameters for B0218+357 calculated withzd = 0.6847 andzs = 0.96.
See sections 3.2 and 3.6 for explanations. Units ofdeff are kms−1Mpc−1days arcsec−2.

the 1σ confidence interval. This accuracy is not sufficient for an accurate determination of the
Hubble constant, of course.

A great improvement was brought by Biggs et al. (1999), who performed an extensive anal-
ysis of different kind of ‘light curves’. They used VLA monitoring data from between October
1996 and January 1997 at 15 and 8.4 GHz. Data were analysed for total flux density, percentage
polarization and polarization angle. All these measures at 15 GHz and total flux density only at
8.4 GHz were used to determine the time-delay. In the separate results, all but the one from per-
centage polarization agree very well with each other. For the latter, however, the fit is not very
good at all, so that the formal error bars might be underestimated. The result of the combined
analysis is

∆t = (10.5±0.4)days , (7.1)

where the error is the 2σ (95 %) confidence interval. At the 1σ level, the expected error is
0.2 d. The time-delay is between 10.0 and 11.1 d with 99 % confidence. At the current level
of uncertainties of the lens models, this accuracy of the time-delay (2 % at 1σ ) is sufficient for
the determination ofH0. When better data are available for the modelling, more effort might be
needed to improve the time-delay, too.

Figure 7.7 shows the combined light curves, in which the time-delay was applied to the
A data and results were corrected for the flux density ratio, depolarization fraction in A and
for differential Faraday rotation. These plots might be even more convincing than any formal
error statistics. Agreement between the shifted A and the B curve is very good in all cases.
For percentage polarization, the noise is so large that the constraints on the time-delay are only
weak.

The flux density ratios, which are another result of the analysis, are 3.73 for 15 GHz and
3.57 for 8.4 GHz with 1σ errors of 0.01 for both. These can be used as constraints for the lens
models, because they are not disturbed by source variability.

Biggs et al. (1999) also presented a preliminary lens model (singular isothermal ellipsoidal
mass distribution) constrained by the result for the 8.4 GHz flux ratio and the 15 GHz VLBI sub-
structure (positions and shapes of the subcomponents) with the mass centre as a free parameter.
Their result isx0 = 252+15

− 9 mas andy0 = 115+4
−6 mas (1σ limits) with a corresponding Hubble

constant ofH0 = (69+13
−19)kms−1Mpc−1.

With exactly the same constraints, we cannot confirm these results in our own calculations
(see section 7.6). Their best model is compatible with the data, but the uncertainties seem to be
underestimated significantly.



7.5. THE TIME -DELAY 79

Figure 7.7: Combined ‘light curves’, produced by delaying the A component by 10.5 d.
(from Biggs et al., 1999). (a) Total flux density, 15 GHz, (b) Percentage polarization,
15 GHz, (c) Polarization position angle, 15 GHz, (d) Total flux density, 8.4 GHz. Com-
ponent A and B measurements are represented by open and filled squares respectively.

Cohen et al. (2000) presented the analysis of an independent data set, taken at the same
epoch with the same instrument at the same frequencies. Their result of∆t = (10.1+1.5

−1.6)days
(95 % confidence) is compatible with the result from Biggs et al. (1999), but the error bars are
much larger. This is partly due to the more general model of source variability and partly due
to the different method in determining the time-delay. They assumed that the measured fluxes
really consist of two parts: a constant part (probably due to parts of the ring) and the variable
part (probably the variable core of the source). The flux ratios for the two are independent free
parameters, because the amplification of the core might be different from parts of the ring which
contaminate the measurements. It is also possible that the varying part is more or less obstructed
by the molecular cloud in front of A than the non-varying part.

The data reduction of Cohen et al. (2000) is more sophisticated, because they try to correct
for bias effects from varyinguvcoverage by calculating correction factors with an ideal data set
convolved with the beam of each observation.

For the ratio of the variable part, the authors obtain 4.3+0.5
−0.8 at 15 GHz and 3.2+0.3

−0.4 at
8.4 GHz. Within the error bars, the two are compatible with each other. The difference (es-
pecially of the error bars) to the earlier result is easy to understand; Biggs et al. (1999) use the
total flux to determine the ratio, while Cohen et al. (2000) only use the varying part, which is a
relatively small (ca. 10 %) part of the total flux. Parts of the flux can be shifted from the varying
to the constant parts and vice versa without changing the light curves significantly. In other
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words: A scaled light curve looks very similar to one with an added offset. Hence, there is a
degeneracy between the ratio of both parts. It is not clear (and doubtable), whether this fact is
also responsible for the larger uncertainty in the time-delay of Cohen et al. (2000).

7.6 ‘Classical’ lens models

B0218+357 has the advantage that the expected external shear is very small. Lehár et al. (2000)
estimate the convergence and shear caused by field galaxies and the cosmic shear caused by the
large scale structure. The values are the smallest for all ten systems discussed in that publication.
The contribution from field galaxies is expected to beκ = 0.023 andγ = 0.014, a typical value
for the cosmic shear for these redshifts isγ = 0.02. All these contributions are very small
compared to the accuracy that is typically achievable for the lens models. We therefore neglect
external shear and convergence and work with a single galaxy lens model. The low level of
external shear is consistent with the low ellipticity of the ring. It was shown in section 6.15
that the ellipticity of Einstein rings caused by small sources is a direct measure for the external
shear. The ring in B0218+357 is not infinitely narrow and the accuracy of the general argument
is therefore limited to the ring width.

In classical modelling, the number of constraints is too small to determine all parameters of
detailed models uniquely. By far the largest uncertainty is caused by the unknown lens position.
Other details of the model will only become relevant when the galaxy position can be determined
accurately. To investigate the possibility of determining this parameter, we concentrate mainly
on isothermal lens models.

Because of the high accuracy of the image positions, the linear source plane approximation
(see section 4.3.2) can be used without noticeable changes of the results. This method is much
more stable than full lens plane model fitting and was used to produce all plots in this con-
text. One might even have used an exact source plane solution for the images. This is possible,
because changes of the image positions within their error bars do not change the otherχ2 contri-
butions significantly. Even in full numerical fits, the measured image positions are reproduced
almost exactly.

7.6.1 Isothermal models

There is strong observational and theoretical evidence that isothermal mass distributions are a
good approximation for real galaxies. Isothermal elliptical lens models are thus a very realistic
approach. The number of parameters (not counting the source position here) is 5; 2 for the lens
position, 2 for the ellipticity and position angle and one for the total mass scale. Without the
VLBI data, the number of constraints is only 3; 2 for the relative position of the images1 and one
for the flux density or amplification ratio. If the effective numbers are the same as the real ones
(no further degeneracies), two model parameters can be chosen freely and only the remaining 3
are constrained by the observations.

The most natural choice of the independent parameters to investigate the lens models for
B0218+357 is the lens position. Mass scale and ellipticity can then be determined for each
possible lens position. A much less realistic but very simple approach would be to use only
spherically symmetric lens models.

1One might as well countboth image positions as constraints. In that case, the source position has to be counted
as parameter, too. The difference of the numbers of constraints and parameters does not change in this interpretation.
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For models exactly fitting the data, explicit numerical modelling is not even necessary to
determine the Hubble constant. This fact was first made clear explicitly by Witt et al. (2000).
Chapter 6 presented a deeper analysis of the properties of a superset of the elliptical isothermal
models (see also Wucknitz, 2002a). Equation (6.9) provides a relation between the product of
time-delay and Hubble constant, called∆T, and the image positions. This relation becomes par-
ticularly simple for isothermal, possibly elliptical, models without external shear. For absolute
image positionszi and a galaxy position ofz0, the model’s time-delay has the following form:

∆T = TB−TA (7.2)

=
|zA −z0|2−|zB−z0|2

2
(7.3)

= (zB−zA) ·
(

z0−
zA +zB

2

)
(7.4)

In the case of B0218+357, the image positionszi are known with very high accuracy. The
Hubble constant is then a linear function of the unknown galaxy positionz0. If the lens centre
is located exactly midway between A and B,∆T becomes 0.

An upper limit of ∆T can be calculated without constraints forz0, because the lens centre
has to be located somewhere between the images in a standard lensing scenario2.

|∆T| ≤ 1
2
|zA −zB|

2 (7.5)

= 0.0558arcsec2 (7.6)

For an Einstein-de Sitter universe, this corresponds to a maximal possible Hubble constant of
|H0| ≤ 104kms−1Mpc−1. Figure 7.8 shows the Hubble constant as function of the lens position
together with some estimates of the latter.

To have at least a chance to constrain the position of the lens centre, more observations have
to be included into the modelling. The best data available are the positions of the subcomponents
from VLBI observations (see Table 7.3). The subcomponents are separated so closely, that a
linear mapping between the images can be used for the calculations. The relative displacements
do constrain the relative magnification matrix. To include them in the modelling, the methods
from section 4.3.4 are used.

The observational constraints consist of two 2-dimensional vectors, but two more parameters
(the displacement in the source plane) have to be included in the models on the other hand.
This effectively results in two additional constraints for the mass model. If no degeneracies are
present, this should be sufficient to constrain the two parameters of the lens centrez0 at least
to some degree. We have to keep in mind, however, that the flux ratio, which is also a function
of the relative magnification matrix, is already included. In addition, isothermal models have a
constant magnification of unity in certain directions (radial directions in spherical models). If
the lens is moved along these lines, no changes of the magnification matrix are expected.

Figure 7.9 shows the results with the subcomponent positions as further constraints. The
standard value of 3.75 was used for the flux ratio in both cases. The most striking result is, that
the aforementioned degeneracy does indeed prevent sufficient constraints for the lens position.
In the radial direction, almost along the straight line connecting A and B, the residuals are
more or less constant. Perpendicular to this direction, the position is constrained quite tightly.
Unfortunately, it is the radial direction which is important to determineH0. The results for

2This rule is obeyed in all known lens systems, although there are theoretically possible exceptions.
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Figure 7.8: H0 in units of kms−1Mpc−1 as a function of the galaxy position. Shown are
also different estimates forz0. NIC1 and NIC2 are optical positions from Lehár et al.
(2000). At the upper left are the results from Biggs et al. (1999) as well as the centre of the
ring (Patnaik et al., 1993). The labelled positions on the dashed line connecting components
A and B are spherical models for flux density ratios of 3.0 to 4.5.

Figure 7.9: Residuals of classical lens model fits for B0218+357 without using the shapes
of the subcomponents as constraints. Both plots use the VLBI subcomponent positions
from Table 7.3. (a) is for the 15 GHz data (Patnaik et al., 1995), (b) for the 8.4 GHz data
(Kemball et al., 2001). Contour lines are plotted forχ2 = 12,22,32,52,72,92, . . . ,172. The
dashed curve separates allowed regions with two images in the central parts of the plot
from regions where models consistent with the data of the two observed images would
additionally show two more images. The same dashed curve was used for (a) and (b),
because the differences of the real curves are very small.

the two subcomponent data sets are very similar. Close to the minimum, theχ2 residuals are
less than 1. The uncertainties for the 8.4 GHz data (Kemball et al., 2001) are smaller than
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for the 15 GHz data (Patnaik et al., 1995). This leads to faster increase ofχ2 and to better
constraints with the former data. The results can be compared with those in Fig. 5 of Lehár et al.
(2000). Their conclusion, that the classical constraints are not sufficient to determine the Hubble
constant, is confirmed by our calculations. This is even true if the subcomponents shapes are
included in the modelling.

Our plot also shows the line separating regions where double images are possible from re-
gions where the lens would produce quadruple images. The latter have very high residuals
anyway. Otherwise they should have been excluded explicitly. A formal negative amplification
ratio (−3.75) was used in the numerical calculations, because double images systems always
have different parities. This automatically excludes most of the quadruple lenses, when doubles
are possible.

Biggs et al. (1999) present a lens model with much smaller error bars (see Figure 7.8). They
used the shapes of the subcomponents as additional constraints. We repeated the calculations
with the inclusion of these data as well. To allow robust and reliable model fits, the Cartesian
linear formalism explained in appendix A.2 was used. To calculate the ellipse matrices for the
subcomponents, a Monte Carlo approach was used. A large number (106) of noise realizations
following the data in Table 7.4 was used to calculate the Cartesian ellipticity parametersR±, Rx

andRy. Mean values and the covariance matrix were then calculated for these results. Simple
linear error propagation would lead to very similar results. With this approach, the best source
component shapes and the contribution to the residuals can be calculated with standard linear
least-squares methods.

Figure 7.10: Residuals of classical lens model fits for B0218+357 including shapes of the
subcomponents as constraints. Subcomponent positions are from Table 7.3, shape parame-
ters from Table 7.4. (a) is for the 15 GHz data (Patnaik et al., 1995), (b) for the 8.4 GHz data
(Kemball et al., 2001). Contour lines are plotted forχ2 = 32,52,72,92, . . . ,172. As before,
the dashed line separates the double image region in the central part from quadruple image
models.

Results are shown in Figure 7.10. For numerical reasons, the lens models were fitted without
the shape constraints, and their contribution toχ2 was added later. Tests on a coarser grid proved
that this does not change the results significantly, but the algorithm works more reliable then.

We learn that the subcomponent shapes do not help in constraining the galaxy position. We
can therefore not confirm the result from Biggs et al. (1999). Their best fitting lens model may
well be the correct one, but the possible errors are greatly underestimated.

The fact that even the residual minimum is quite high, is not regarded as a problem. Estimat-
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ing uncertainties of subcomponent shapes from VLBI data is a very difficult task and the results
can be affected by confusing components which are not included in the model fitting.

It is easy to understand, why the relative magnification matrix cannot constrain the lens
position well. If the lens is located exactly on the straight line connecting A and B, the non-
diagonal elements of the magnification matrices have to vanish because of the symmetry. There
is no radial magnification, because isothermal models have constant deflection angles. The
tangential magnification, on the other hand, is already included in the models with the flux ratio.
Any changes of the non-diagonal elements withz0 are only of second order in the displacement.
Because the real lens position has to be very close to this ‘line of no information’, it is not
possible to constrain the lens position from small-scale substructure of the images. For larger
structures, the second order effects become significant, which improves the situation.

As a conclusion, we have to admit that the Hubble constant cannot be determined from
B0218+357’s time-delay with classical lens modelling alone. In a central part of this thesis, we
will show that the ring can be used to constrain the lens position andH0 with the LENSCLEAN

method (chapter 9).

7.6.2 Non-isothermal models

The disadvantage of the radial direction of the subcomponents is, that the relative magnification
is not affected by the lens position for isothermal models. This can be turned into an advantage
for non-isothermal models. If the radial mass distribution is described by a power-law model
(see section 4.1.3), the radial magnification is influenced by the power-law exponentβ and the
lens position. The fact that the data can be fitted quite well with isothermal models already gives
evidence that the true mass distribution is not far from isothermal. To illustrate the influence of
β on the residuals, we fitted model parameters for a range of fixedβ andx0 values. The results
are shown in Figure 7.11. As before, the subcomponent shapes do not help in constrainingβ

and were thus not used. Power-law models withβ > 1 can produce a central image, which is not
observed in B0218+357. The plot also shows a flux limit of the central image offcentral/ fA ≤
4.3 · 10−4. This is a 5σ limit from 5 GHz MERLIN data (Norbury et al., 2000 and Norbury,
priv. comm.). For models with moderateχ2 residuals, this limit plays no role. If the radial mass
distribution is slightly different near the centre than further outwards, the limit does not apply,
anyway. Cuspy models are able to suppress the central image very effectively even for high
values of the outerβ .

For realistic values ofx0 ≈ 0.26, the constraints onβ are quite strong. If the lens centre can
be determined by other means, e.g. optical observations (HST/ACS observations will be done
soon, see section 7.3.5) or with the LENSCLEAN algorithm (see chapter 9), the limits forβ can
become even better. Figure 7.12 shows results for fixed lens positions from Tables 9.2 and 9.3
for demonstrative purposes. Please note that the best LENSCLEAN results will also shift with
varyingβ (see section 9.26). These plots are thereforenotmeant as final results but only to show
how strong the constraints can be. The realβ will, however, not be far from the minima in the
plots, because the minima are very insensitive to small shifts ofz0. We also included statistical
1σ limits for the 8.4 GHz data with the UNI lens model.

In the future, much better constraints can be calculated from new VLBI data (see chapter 10).
These data show not only two subcomponents in each image but several ones with very different
relative displacements. A preliminary analysis favours a value ofβ ≈ 1.04, which would be
compatible with the discussion above. With these new data, it may even be possible to constrain
more general models than simple power laws.
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Figure 7.11: Residuals of classical lens model fits for B0218+357. The power-law expo-
nentβ andx0 were fixed for each fit. Subcomponent positions are from Table 7.3. (a) is for
the 15 GHz data (Patnaik et al., 1995), (b) for the 8.4 GHz data (Kemball et al., 2001). For
β > 1, the models produce a third central image. The dashed line marks the flux limit for
this image. The dotted line shows the bestβ for eachx0.
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Figure 7.12: Results of classical lens model fits for B0218+357. The position of the lens
centre was fixed at the values given in Table 9.2 (UNI model) and 9.3 (NAT model). (a)
residuals, 1σ limits for 8.4 GHz UNI, (b) amplification ratiofcentral/ fA with the observa-
tional upper limit. The different VLBI data are indistinguishable in (b).

7.7 Exploiting the extended emission

Several methods have been developed to use extended emission as constraints for lens models.
The most natural and simple approach seems to be the ‘ring cycle’ (Kochanek et al., 1989), which
is based on work by Kayser & Schramm (1988). The idea is to use the fact that lensing preserves
surface brightness. If certain regions of the source are multiply imaged and well resolved, the
observed surface brightness should be the same in all images.

The ring cycle algorithm samples the lens and source plane on a regular grid and calculates
as figure of merit the scatter of observed multiple images corresponding to the same source posi-
tion. Some more constraints are put on the brightness distribution and the lens model parameters
to stabilize the minimization. Kochanek et al. (1989) apply the algorithm to the Einstein ring
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MG 1131+0456 and are able to constrain the lens models very well.
Unfortunately, the method relies on the fact that measured surface brightnesses represent the

true ones very well. This is not the case, if unresolved or marginally resolved components are
present in the source. The observed surface brightness maps are then a convolution of the true
brightness distribution with a CLEAN beam (or PSF in optical observations). Using such maps
with the ring cycle would lead to serious bias effects and errors.

We tried to apply the algorithm to the MERLIN/VLA 5 GHz maps without much success.
The two bright images are so dominant, that their smearing by the beam destroys the signal from
the ring completely. This result was confirmed with artificial data, which included the resolution
effects. The ring cycle was not able to recover the lens model used to build the data.

7.8 Frequency dependent flux ratios

One astrophysically interesting property of B0218+357 is the fact that the flux density ratio of
the compact images A and B shows a strong and systematic dependence on the frequency at
which it is observed (see Figure 7.13 and Table 7.2 on page 73). Two possible explanations
have been proposed for this effect, which both have relevant consequences in the context of lens
model fitting with LENSCLEAN.
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Figure 7.13: Flux density ratio A/B for different frequencies (data from Table 7.2, page 73)

One possibility is, that the interstellar medium, which is more dense and optically active in
front of the A component, produces scattering in this light path and effectively removes some
of the flux density and thus causes extinction. The effect on the refractive index of a plasma is
proportional toλ 2, which will generally produce a stronger effect for lower frequencies. This
could explain the smaller flux ratio. We know that the A component is broadened (probably by
scattering) at lower frequencies on scales of milliarcseconds resolved by VLBI, because the peak
in the maps is higher in B than in A. For resolved sources, the intensity in the map resembles
the surface brightness and woulds be equal in the two components. For unresolved sources, on
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the other hand, the map’s peak is a measure of the total flux and should therefore be higher in
A, whose total flux density is higher by a factor of∼ 3. The very high Faraday rotation is also
good evidence for a very active interstellar medium in the lensing galaxy.

In the optical, the flux ratio is 1:7 (V band, see Tab. 7.2 and 7.5). The extinction relative to
the 15 GHz ratio is thus almost a factor of 30 or 3.m6. Even in the H band, it is still a factor of 6
or 2 mag.

For LENSCLEAN, the possible extinction has to be taken into account, because the fitted
lens models will otherwise not reproduce the real amplification ratio but the one distorted by the
extinction.

The other possible explanation is a frequency-dependent structure and size of the source,
which in combination with the strong amplification gradients near the A and B image can pro-
duce significant changes in the observed flux ratio. In this scenario, the ratio would not only
depend on the frequency but also on the resolution of the observations. The simplest source
structure would consist of two components (or groups of subcomponents). The one close to the
core would naturally have a flatter spectral index, while the other one would be part of the jet
and have a steeper spectrum. The source would then shift ‘down the jet’ when the frequency
decreases and be located in regions with a smaller amplification ratio.

Figure 7.14: Relative amplification (A/B) in a best fitting lens model for B0218+357 with
x0 = 0.′′26. We only show regions surrounding the two components. The filled circles repre-
sent the A1/2 and B1/2 components, the arrows extend in the same direction and symbolizes
the jet (compare with Fig. 7.3).

Figure 7.14 shows the relative amplifications for a best fitting lens model, which was derived
for a fixedx coordinate of the lens positionx0 = 0.′′26. This value is close to the best results from
LENSCLEAN, see section 9.21.2. We used the data given in section 7.3 as constraints for this
model. The resulting lens centre is

z0 =
(
0.′′26,0.′′1175

)
, (7.7)

the residuals areχ2 = 1.8. We see, that even though the relative amplification gradient is quite
high, a very large source shift of the order 10 mas is needed to explain the decrease of the flux
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B A

Figure 7.15: 5 GHz VLBI maps of the B and A component from the first Caltech–Jodrell
Bank VLBI survey CJ1 (Wilkinson, priv. comm.)

ratio from 3.75 to ca. 2. If this shift is caused by the effect explained above, the source com-
ponents which become dominant at lower frequencies should also be seen at higher frequencies
with deep observations. Comparison of VLBI observations at 5, 8.4 and 15 GHz (shown in
Fig. 7.15, 10.2, 7.3), however, show the same structure of two relatively compact subcompo-
nents with distances of the order 1.5 mas (unresolved at 5 GHz). There is no reason to believe
that these components are not the same at all frequencies. Otherwise the 5 GHz components
should at least be detectable at higher frequencies and vice versa. The resolution of all the maps
is better than the required shift of ca. 10 mas, so that a simple shift of centroids of the same
components would not be sufficient to explain the observed change of the flux ratio. A small
shift of the source was estimated by Porcas & Patnaik (1996a). It seems as if the the centroids
at 5 GHz are located about midway between the subcomponents 1 and 2, while they shift to the
position of 2 at 1.7 GHz. This shift of the order 1 mas would clearly not be sufficient to explain
the observed flux ratio changes.

Another explanation for a possible source shift is refraction by the interstellar medium in
the lensing galaxy. This should show in the relative position B−A, while no significant shift is
detected in the data. If the shift is real at all, it has to be about the same in A and B. It therefore
must be caused very close to the observer, in the interstellar medium of our own galaxy. Very
strong gradients of the refractive index are necessary for this scenario, probably far beyond
realistic values.

7.9 The 15 GHz VLA data

This data set was used for the LENSCLEAN work which will be presented in chapter 9. It is part
of a larger program of VLA observations (Program ID AB 631, PI: A. Patnaik). Observations
were done in the widest (A) configuration of the VLA. Total on-source integration time was
slightly less than 6 hours in full polarization. The initial 10 sec integrations were further binned
to 1 min in our calculations to reduce the amount of data and the computation times.
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7.10 The 5 GHz MERLIN/VLA data

Biggs et al. (2001) presented a very high quality map made from a combined MERLIN+VLA
observation at 5 GHz (see Figure 7.1). The combination of the two arrays with very different
baselines and the multi frequency synthesis technique (MFS) resulted in a very gooduv cover-
age. VLA observations were done at two frequencies (4.835 and 4.885 GHz) in August 1995.
Three frequencies (4.546, 4.866 and 5.186 GHz, later referred to as 1,2,3) were used with MER-
LIN in June 1995. Since theuv values are the product of telescope spacing and frequency, the
MFS technique can improve theuvcoverage considerably.

Unfortunately, this data set has some disadvantages for LENSCLEAN. While the resolution
is better than in the 15 GHz VLA data, and the flux in the ring is higher due to the lower fre-
quency, it was not possible to obtain reliable constraints for the lens model with LENSCLEAN.
One problem is the possibility of significant scattering at 5 GHz, which might change the struc-
ture of the ring and, more important, change the flux ratio of the two compact components by
introducing an effective extinction in the A component. This possible extinction must be taken
into account in LENSCLEAN, which adds at least one more free parameter to the problem. An-
other very serious problem is the frequency-dependence of the emission, which is different for
the ring and the compact images. Biggs et al. (2001) approximately corrected for this effect by
first mapping the three frequencies independently. The CLEAN components responsible for the
compact images were than subtracted from the data so that only the ring remains. The three data
sets were rescaled in amplitude to obtain a consistent total flux density at all frequencies. Fi-
nally, the compact components from the central frequency were added back to the complete data
set. This process may introduce some distortions to the lowest and highest frequencies, because
it combines data for the ring from these frequencies with data for the compact components from
the central frequency. No such corrections were necessary for the VLA data set, because the fre-
quencies are not as different as in the MERLIN data. The combined data were then successively
mapped and self-calibrated to obtain the final data set and the map in Figure 7.1.

We used the resultinguvdata set as basis for our computations. The spectral index correction
seems to work very well in making maps, but introduces errors in LENSCLEAN which are very
difficult to analyse.

Since we are mainly interested in the high resolution of the data, we did generally not use
the VLA part. It would provide no further information about the lens model but might introduce
further calibration problems in combination with the MERLIN part.

7.10.1 Correcting the weights

The weights in theuv data set were taken from the scatter in 32 sec intervals over which the
visibilities were integrated. This leads to some visibilities with unrealistically high weights,
which showed in striping in the dirty beam. To correct the weights, we first used DIFMAP
to build emission models for the three frequencies and LL and RR polarizations separately.
We then completely rejected the old weights and used the difference between the model and
the measured visibilities as basis for a statistical analysis. We fitted these errors with station-
based weights constant over time. This means that the weight of each visibility on a baseline
consisting of the telescopesi and j was set to the product of the corresponding station weights,
wi j = wiwj . A χ2 minimization was used to find the optimal station weights. The true RMS
scatter could be reproduced by this approach with an accuracy of 5–9 %. The resulting weights
showed the expected dependence on the quality and size of the telescopes, which was used as
another plausibility check.
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Another iteration of this procedure, using an emission model built with the corrected data
set, did not introduce significant changes to the weights and was therefore not used for the
computations.

When producing maps with DIFMAP and the corrected data of the three frequencies sepa-
rately (without self-calibration), typical values ofχ2 were 1.03 for Stokes I and 0.985 for LL
and RR. The value for I is slightly larger than for LL and RR, which is probably due to different
calibration errors in LL and RR. The combination of the two cannot be fitted with normal emis-
sion models as well as the two separately. Using the complete MFS data set, residuals increased
to 1.030, 1.591 and 1.379 for Stokes LL, RR and I. The combination should therefore be treated
with particular caution in LENSCLEAN.

7.10.2 Differences of the sub-data sets

We will see later (section 9.22.2), that the results of the LENSCLEAN algorithm differ signifi-
cantly for the three frequencies and Stokes parameters. To get a feeling for the differences in the
data, we used exactly the same automated DIFMAP-procedure to make maps from the sub-data
sets. More attention was paid to treat all sub-data sets equally than to produce the best maps
possible.

The result for all three frequencies (plus all combined) and Stokes LL, RR and I is shown
in Figure 7.16. Especially the differences between the frequencies are obvious. Simultaneous
self-calibration for all frequencies might help in obtaining a consistent complete data set, but
this does not help in constraining the lens models, which is the main goal of our work.
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Figure 7.16: Naturally weighted maps from the 5 GHz MERLIN data set, produced with
DIFMAP. From left to right, we show Stokes LL, RR, I. The first three rows are calculated
for frequencies 1, 2, 3, the bottom row for the combined MFS data set.
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Chapter 8

Radio interferometry

To help in understanding the LENSCLEAN algorithm which will be described in chapter 9, we
want to give a brief introduction to the theory of radio interferometry. The intention is not to
explain all technical details that are important in the reduction of radio data, nor to provide
instructions for calibration and mapping. We merely want to make the following chapters acces-
sible for scientists working on gravitational lenses but without experience in radio astronomy.
We therefore skip everything that is, in our opinion, not required to know in the context of this
work. To actually prepare a dataset for the use with LENSCLEAN or to produce a map using
the standard techniques, a lot more has to be known about the technical details and possible
problems of interferometric data.

For a deeper discussions of many aspects of radio interferometry, we refer the reader to the
NRAO synthesis imaging summerschool proceedings (Perley, Schwab & Bridle, 1986, 1989;
Taylor, Carilli & Perley, 1999) and other textbooks on the subject (e.g. Thompson, Moran &
Swenson, 1986).

8.1 Why radio interferometry?

The main reason for using interferometers for radio observations of gravitational lenses is reso-
lution. A single, diffraction limited, telescope of a diameterD observing at a wavelengthλ has
an angular resolution of about

θ ≈ λ

D
, (8.1)

where the exact value depends on how it is defined. For the largest fully steerable telescopes
(D = 100m) operating at a typical wavelength ofλ = 6cm, the resolution would be of the order
2′. This is about the effective resolution of the human eye and a factor of a few hundred worse
than achievable with optical telescopes and needed for gravitational lens study, where typical
image separations are of the order 1′′.

Because it is technically difficult and prohibitively expensive to build single radio telescopes
of the required size, the idea of combining several telescopes of moderate size at different loca-
tions was born. One might think of the elements of a radio interferometer as sections of a giant
parabolic reflector. Since the telescopes are usually not located on the surface of a paraboloid,
electronic delay lines have to be used to compensate for the different travel lengths of the ra-
diation. With a single telescope, the radiation (be it optical or radio) interferes at the focus to
form an image of the celestial radiation pattern. With interferometers, the signals are combined
electronically and in the computer to produce a similar result.

93
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8.2 Visibilities measured by an interferometer

Let us for simplicity assume monochromatic radiation with a wavelength ofλ coming from
an infinitely distant point source. Radiation of a broad bandwidth from extended sources can
later be described as a superposition of these plane monochromatic waves. If the position of
the source on the celestial sphere is denoted by the unit vectork̂ = (l ,m,n), the electrical (or
likewise the magnetic) field at a positionr = (x,y,z) at the timet can be written as

E(r, t) = E0ei (k·r+ω t) , (8.2)

where the length of the wave vector is

k =
2π

λ
. (8.3)

In reality, the electrical field is a vector, but the polarization components1 can be described
independently as scalar fields in this context. We think ofE as a complex quantity, the real part
of which is the physical electrical field itself.

In the following, we always assume that the relevant emission is confined to a small area on
the sky near̂k = (0,0,1), therefore|l | � 1, |m| � 1 andn≈ 1. This assumption is well justified
in lensing studies. If we now have two telescopes, measuring the field at different positionsr1
andr2, we can combine the signals from the two in the following form, whereE? denotes the
complex conjugate of the fieldE.〈

E(r1, t)E?(r2, t)
〉

= |E0|
2ei k·(r1−r2) (8.4)

Mathematically speaking, this expectation value (or mean value over a limited time interval,
typical 1sec) is the correlation of the two fields. For strictly monochromatic radiation, the av-
eraging would not be necessary, because the product is constant then. The device that measures
this quantity is called a correlator. For connected element interferometers, like the VLA or MER-
LIN, this is done in real-time during the observations, while VLBI correlators read the recorded
signals of the different stations from magnetic tape and compute the correlations weeks after the
observations. We now define the so-calleduv-coordinates of the baseline as

u =
x1−x2

λ
, v =

y1−y2

λ
, w =

z1−z2

λ
, (8.5)

and can then define the measured ‘visibility’ as

Ĩ(u,v) =
〈
E(r1)E?(r2)

〉
e−2π i wn . (8.6)

Writing the squared electrical field|E0|2 as intensityI0 in appropriate units and usingn≈ 1, we
can combine (8.4) and (8.6) to obtain

Ĩ(u,v) = I0e2π i (ul+vm) . (8.7)

The correlator provides us with measurements of the visibilities determined using (8.6), which
will now be used to infer the properties of the source using (8.7).

For fixed telescope positions, the productE1E?
2 is independent of timet. In reality, the

telescopes move as a result of the rotation of the earth. This has two important effects. First,

1We only need left-handed and right-handed circular polarization in this work, denoted by Stokes LL and
Stokes RR, respectively. The total intensity, Stokes I, can be calculated byI = (LL+RR)/2.
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the correlator has to compensate for the effect of changingw coordinate during the integration
interval. Second (and more relevant in our context), we do not only measure a visibility for
fixeduv-coordinates but for a number of integrations on a track of slowly changingu andv. The
movement of the telescopes also limits the allowed averaging intervals to typical values of a few
seconds or less.

To return to the analogue of segments of a large paraboloid, we can think of the exp(−2π i w)
factor in (8.6) as a compensating delay which is applied by the correlator to correct for the
deviations of the telescope position from a true paraboloid2.

8.3 Finite bandwidth

Let us now think of two superposed signalsEA andEB with different circular frequenciesωA
andωB. The correlation of the two is then, analogously to (8.4), given by the following equation:〈(

EA(r1, t)+EB(r1, t)
)(

EA?
(r2, t)+EB?

(r2, t)
)〉

=
(
|EA

0 |2 + |EB
0 |2
)

ei k·(r1−r2) +2Re
(

EA
0 EB

0
?〈

ei (ωA−ωB) t〉) eik·(r1−r2) (8.8)

≈ (IA
0 + IB

0 )eik·(r1−r2) (8.9)

We see that the electrical field adds in quadrature and the intensity linearly, as long as the in-
tegration interval is much larger than 1/bandwidth to make the second term in (8.8) negligibly
small.

For finite bandwidth signals, the phase factor exp(−2π i w) in equation (8.6) is very different
for the contributing frequencies. In real correlators, it must therefore be applied as a delay of the
signals to retain coherence.

8.4 Visibilities as Fourier transform

The results from the previous section show, how the visibilities are related to the properties of a
point source. An area of extended (incoherent) emission can be thought of as a superposition of
infinitely many point sources. SInce the visibilities depend linearly on the sources flux density,
we can simply integrate the contributions from these point sources to obtain the visibility for a
brightness distributionI(l ,m):

Ĩ(u,v) =
∫∫

dl dm I(l ,m)e2π i (ul+vm) (8.10)

We notice that the visibilities are a simple Fourier transform of the real brightness distribution.
The inverse transform reads

I(l ,m) =
∫∫

dudv Ĩ(u,v)e−2π i (ul+vm) . (8.11)

For some fundamentals of Fourier transforms, see appendix B. Unfortunately, it is not possible
to use the inverse transform directly to determine the brightness distribution from the visibilities.

2This is not exactly true, since the correction factor becomes unity if the telescopes are located on a plane andnot
on a paraboloid. The paraboloid is only used to combine the radiation in the focus with constant signal travel time.
In radio interferometry, the signals are detected directly at the telescopes, so the ideal positions would be on a plane.
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The visibilities are known only for a discrete subset of theuvplane and the integral in (8.11) can
therefore not be computed.

The coverage of theuv plane (also known as ‘aperture coverage’) depends on the number
of telescopes used, their positions on the earth, the position of the source on the sky, the time
and duration of the observations, and on the frequencies used. ForN telescopes, we measure
N(N−1)/2 (the number of pairs of telescopes) independent visibilities per integration interval
and frequency band. A typical coverage of theuv-plane for the VLA is shown in Figure 8.1.

Figure 8.1: UV coverage of the 15 GHz VLA observations of B0218+357, which will
be use with LENSCLEAN later. The tracks are due to the rotation of the earth during the
observations, which continuously changes the antenna positions relative to the source. The
baselines involving the telescope N72 are highlighted in the colour version.

8.5 Noise statistics

The equations presented in the last sections are valid only in absence of calibration errors and
noise. We want to fit models to the data using a maximum likelihood approach later. To allow
this, we have to understand the noise and its statistical properties. The so-called thermal noise
in radio data is a combination of contaminating emission (from the ground, the telescopes them-
selves, and the atmosphere) and noise originating from the receivers and amplifiers. All these
contributions have in common that they act on the signals from the telescopes directly and not
on the correlated baseline signals. We do not take into account errors caused by the correlator
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itself, which are usually negligible compared to thermal noise.
Let us assume a monochromatic thermal noise contribution toEj described by the complex

quantity nj with a vanishing mean and a variance ofσ2
j . Since the noise is incoherent and

uncorrelated with the signal, we can study the noise independently from the signal here (cf.
section 8.3). The noise contribution to the visibilityĨ jk of a baselinej,k is then

njk = e−2π i (wj−wk) njn
?
k . (8.12)

The phase factor can be absorbed in the station based noise without changing its statistical
properties. We therefore do not include it in the following equations.

We see immediately that the noise in the visibilities of different baselines is not independent.
For N telescopes withN(N−1)/2 visibilities, we have onlyN independent noise signals. Nev-
ertheless, it can be shown that the correlations of the noise of different baselines vanish, even for
monochromatic noise. This is not true for higher order correlations, e.g. the correlation of the
magnitude (absolute value) of the noise.

Real noise consists of a wide spectrum of independent monochromatic contributions. Any
higher order correlations remain only for noise contributions of the same frequency and are thus
negligible for typical bandwidths∆ν of a few MHz and integration intervals∆T of the order a
second. The correlations are suppressed by factors of 1/(∆T ∆ν)≈ 10−7.

We can therefore treat the noise of different baselines as independent and, using the formal-
ism from chapter 2, write the residualsR2 for a modelĨ m as

R2 = ∑
j

wj |Ĩ j − Ĩ m
j |2 , (8.13)

where the sum is taken over all baselines andwj are the (diagonal) weights of the visibilities. We
do not need thew component of theuv coordinates anymore and can therefore use the symbol
for the weights. For ‘natural weighting’ we usewj = σ−2

j to obtain a normalχ2.

To calculate the statistics correctly,σ2 has to be the variance of the real or imaginary part
which is half the total varianceσ2 =

〈
|n|2
〉
/2. The number of independent contributions to the

sum is twice the number of visibilities. Another subtlety is related to the symmetry of visibilities.
A measurement with a baseline of telescopesj andk can either be included as baselinej − k
or ask− j. The two visibilities are complex conjugates of each other, see equation (B.13).
The most elegant approach to take this into account is to useboth possible measurement but
divide the corresponding weights by 2. This does not change the residuals but assures that the
dirty beams and dirty maps, defined in the next section, will always be real quantities. A lot of
trouble with otherwise necessary selection of real parts can be saved with this approach, which
is therefore used in all following calculations. The symmetric completion doubles the number
of visibilities which is then equal to the number of real constraints. This modification of the
weights cancels with the one discussed before, so thatwj = σ−2 = 1/

〈
|n|2
〉

can be used for
natural weighting. This formalism can also be applied for visibilities with zero spacing. It then
automatically corrects for non-vanishing imaginary parts which would not be compatible with
any brightness distribution.

8.6 Dirty beam and dirty map

We remember from section 8.4, that the real brightness distribution is the inverse Fourier trans-
form of the visibilities. The only problem with this is the incompleteuv coverage. A crude
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approximation to the real brightness distribution can be calculated by using only the known
visibilities. In this way, the integral of the transformation becomes a discrete sum over all the
discrete visibilities. This approximation resembles the true brightness distribution only very
crudely. It is thus called the ‘dirty map’:

ID(x) =
1

∑j wj
∑

j

wj Ĩ j e
−2π i uj ·x (8.14)

Here we used the notatioñI j = Ĩ(uj), x = (l ,m) anduj = (uj ,vj). The weightswj assigned to
the visibilities are the same as in the definition of the residualsR2 in equation (8.13). We will
see later that this leads to a very useful formalism.

Another important concept is that of the ‘dirty beam’ which is defined to be the dirty map
of an ideal point source of unit flux density located atx = 0. The visibilities for this would be
Ĩ j ≡ 1, leading to a dirty beam of

B(x) =
1

∑j wj
∑

j

wj e
−2π i uj ·x . (8.15)

The normalization with the sum of weights is conventionally applied to obtain a unity peak of
the dirty beam. In this way the dirty map directly shows an approximation of point source flux
densities in real units.

Without the symmetric completion of visibilities (previous section), we would have to take
the real part in the definitions of dirty map and beam. An example of dirty beams and maps
together with CLEAN maps using 15 GHz VLA data of B0218+357 is shown in Figure 8.2.

8.6.1 Noise in the dirty map

If the visibilities consist of uncorrelated noise only, with vanishing mean and variances ofσ2,
the mean of the dirty map will also vanish. Its variance will be

var(ID) =
∑j w

2
j

〈∣∣Ĩ j e
−2π i uj ·x

∣∣2〉(
∑j wj

)2 (8.16)

=
∑j w

2
j σ2

j(
∑j wj

)2 . (8.17)

The square root of this is the RMS noise. It can be shown easily that the noise is minimal for
natural weighting withwj ∝ σ−2

j . The variance then becomes

var(ID) =
1

∑j σ−2
j

. (8.18)

Since the number of visibilities scales proportionally with the observation time but approxi-
mately quadratically with the number of telescopes, it is more effective to use more telescopes
for a shorter time than less telescopes for a longer time, if the cost of the correlator is not taken
into account.

To interpret the maps, the correlation of the noise must also be analysed. This will be done
with a simple matrix formalism in section 8.8.1.



8.6. DIRTY BEAM AND DIRTY MAP 99

Figure 8.2: From left to right: Dirty beam, dirty map and a very crude CLEAN map of
B0218+357 (VLA 15 GHz). The upper row is with natural, the lower one with uniform
weighting (see section 8.7).

8.6.2 Shape and size of the dirty beam

The resolution of the observations is determined by the central part of the dirty beam (see sec-
tion 8.11.2). The centre ofB always is stationary (∇B = 0), the second derivatives (the Hessian
matrix ofB) can be calculated easily using equation (8.15).

∂2B
∂x2 =−4π2 1

∑j wj
∑

j

wj

(
u2

j ujvj

ujvj v2
j

)
e−2π i uj ·x (8.19)

In the centre, it reads
∂2B
∂x2

∣∣∣∣
u=0

=−4π2
( 〈

u2
j

〉 〈
ujvj

〉〈
ujvj

〉 〈
v2

j

〉 ) , (8.20)

where the mean values are calculated with the weightswj . We see that the central part of the
beam is related to the distribution of visibilities in a very simple way. As expected, the beam
becomes more compact and centrally concentrated, when more high-frequency visibilities (high
|u|) are present or when the weights of these visibilities are increased.
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We will later need a ‘CLEAN beam’ with the same properties of the centre as the dirty beam.
Conventionally, a Gaussian with a central peak of unity is used:

G(x) = e−x†Gx/2 (8.21)

The shape of this beam is described by the symmetric and positive definite matrixG. To have
the same second derivatives at the centre as the dirty beam, the coefficients have to be

Gxx = 4π2〈u2
j

〉
, (8.22)

Gyy = 4π2〈v2
j

〉
, (8.23)

Gxy = 4π2〈uj vj

〉
. (8.24)

The major and minor axes can be calculated using the eigenvaluesλ of G,

λmax/min=
Gxx+Gyy±

√
(Gxx−Gyy)2 +4G2

xy

2
, (8.25)

the area of the ellipse is proportional to|G|−1/2. The FWHM3 are then

FWHM =

√
8 ln2

λ
. (8.26)

For radially symmetric beams (< u2
j >=< v2

j >=< |u|2 > /2 and< uj vj >= 0), this becomes

FWHM =
1
π

√
4 ln2〈
|u|2

〉 . (8.27)

The DIFMAP software uses an approximation of the factor and thus underestimates beam sizes
by about 7 %.

The position angleθ of the major axis, measured in a mathematical sense from positivex to
positivey, can be calculated using

sin2θ ∝−2Gxy , (8.28)

cos2θ ∝−(Gxx−Gyy) . (8.29)

The astronomical position angle (north through east) is p.a.= π/2−θ .

8.7 Weighting schemes

The most natural weights from a statistical point of view arewj = σ−2
j . With this choice, the

noise is minimized (see section 8.6.1). Another important weighting scheme is the so-called
‘uniform weighting’, in which the weights are normalized with the local density of visibilities
in the uv plane. In this way, a constant weight density is achieved in theuv regions where
measurements are available. This usually increases the weights in the outer parts relative to
the central parts and thus increases the resolution. The price paid for this is an increased noise.
There are different possibilities to include the real statistical weightsσ−2

j in the calculation of the
uniform weights. Uniform weighting also has some nice analytical properties because the dirty

3‘Full Width Half Maximum’, the width at a level of half the peak.
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beam becomes a projection operator. The dirty map and beam are invariant under convolution
with the dirty beam then.

An intermediate approach called ‘robust weighting’ is often used in practical work. This is
very similar to uniform weighting, but the weights are not divided by the density of visibilities
itself but by the density plus some constant. In this way, one avoids to assign very high weights
to very noisy visibilities, only because the local density is low.

8.8 The deconvolution problem

8.8.1 Formalism

In Fourier space, the dirty map is the product of the dirty beam (the weights) and the real bright-
ness distribution (the visibilities). This becomes a convolution in image space:

ID(x) = (I ∗B)(x) (8.30)

In general, the solution of the deconvolution problem is not unique. It is always possible to
add a brightness distribution with Fourier transform vanishing at the positions of measured vis-
ibilities without changing the dirty map (‘invisible solutions’). Uniqueness can be achieved by
regularization or by confining the flux to a limited region of the map.

It is enlightening to write the deconvolution problem in terms of the general linear model
fitting of chapter 2, especially section 2.2. For convenience, we write the model brightness
distributionI(x) as a vectorI,

I(x) = ∑
ν

Iνδ (x−xν) , (8.31)

where we allow emission at theM positionsxν .4 Other shapes thanδ functions may be used
for the components, leading to interesting alternative deconvolution methods. A continuous
model is included in this approach as a limiting case. The model visibilities for a givenI can be
calculated with (8.10), which in the new formalism reads

Ĩ m
j = ∑

ν

Ajν Iν (8.32)

with the Fourier transform matrix

Ajν = e2π i uj ·xν . (8.33)

The number of real measured quantitiesN is the same as that of the symmetrically completed
complex visibilities. We can now use the formalism of chapter 2 with a better understanding of
what the terms in the equations actually mean.

B =
1

Tr W
A†WA (8.34)

Bµν = B(xµ −xν) (8.35)

ID =
1

Tr W
A†W Ĩ (8.36)

(ID)ν = ID(xν) (8.37)

4We use greek indices on the model side and latin indices on the measurement side.
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The normalization factor is written as trace of the matrixW now. For the diagonal errors in radio
interferometry,

∑
j

wj = Tr W (8.38)

holds. In one dimension with a regular grid, the dirty beam matrixB has the structure of a
Toeplitz matrixBµν = bµ−ν , which can help in inverting the matrix more efficiently. Even in
two dimensions, a regular grid helps in keeping the number of independent components ofB to
a minimum.

description general description here chapter 2 here dimensions
model vector brightness distrib. x I M
obs. vector visibilities y Ĩ N
model matrix Fourier transform A A N×M
weight matrix weights W W N×N

dirty beam ∝ A†WA B M×M
dirty map ∝ A†Wy ID M

Table 8.1: Comparison of the general notation (chapter 2) and the one used here.N is
the number of symmetrically completed visibilities and thus equal to the number of real
measurements.

An overview of the important quantities in terms of the general considerations and of the
radio deconvolution problem can be found in Table 8.1. It is an interesting fact, that the varying
part of the residuals can be written completely in terms of the image plane:

R2 = (Ĩ−AI)†
W(Ĩ−AI) (8.39)

= Ĩ
†
WĨ+I†A†WAI−2I†A†WĨ (8.40)

= Ĩ
†
WĨ+Tr W

(
I†BI−2I†ID

)
(8.41)

The first term in (8.41) only depends on the measurements and not on the model. It can therefore
be neglected in the fitting process. The simple form of the residuals written in terms of quantities
in image space suggests that suitable fitting algorithms might work using the image plane alone,
without referring to the visibilities directly. An example of this is CLEAN (see section 8.8.3). To
have a minimum ofR2, the equation

BI = ID (8.42)

has to be fulfilled. In the case of a regular grid, this is equivalent to the convolution equa-
tion (8.30). If |B| 6= 0, the beam matrix can be inverted and the equation has a unique solution.
Obviously, the rank ofB cannot be larger thanM or N. A unique solution is therefore never
possible ifM > N (more model components than visibilities). To define a unique solution, reg-
ularization as described in section 2.3 can be used. Linear regularization with a matrixS is
equivalent to addingλS to the dirty beamB. The factorλ is now scaled by 1/Tr W with respect
to (2.17).

Several possible methods to solve the deconvolution problem will be discussed in the fol-
lowing sections. The most important algorithm for practical work is still the classical CLEAN
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method. More direct algebraic methods like NNLS have gained interest recently, because the
computing power available to astronomers now allows the application of these methods to re-
alistic problems. In this thesis, we are mainly interested to findonesolution of the problem
(see chapter 9) and determine the residuals. Since the problem of findingthe bestsolution is so
important in radio interferometry in general, we want to present some thoughts about the prob-
lem here. This is also important in the reconstruction of the true source brightness distribution,
which we want to perform later (see section 9.24).

Finally we want to use the matrix formalism to calculate the noise correlation properties of
the dirty map. If the dirty map consists of noise only, the autocorrelation function ofID can be
calculated directly from the properties ofn.〈

IDID
†〉=

1
(Tr W)2A†W

〈
nn†〉WA (8.43)

In the case of natural weighting, 〈
nn†〉= W−1 (8.44)

holds, and the autocorrelation function can be expressed by the dirty beam and the variance of
ID taken from equation 8.18: 〈

IDID
†〉=

1
(Tr W)2A†WA (8.45)

= var(ID)B (8.46)

For arbitrary weighting, the autocorrelation function is a dirty beam calculated with modified
weights ofw′j = w2

j σ2
j . Note that the autocorrelation function of the dirty map is not the same

as that of the final deconvolved map. The latter is much more difficult to analyse, especially for
non-linear algorithms like CLEAN.

8.8.2 (Non-)Equivalence of image space anduv space residuals

For the interpretation of fits, it is important to understand the difference of image space anduv
space residuals. If the model is already subtracted from the measured visibilitiesĨ and the dirty
mapID, the two kinds of residuals are defined as

R2
uv = ∑

j

wj |Ĩ j |
2 , (8.47)

R2
image= ∑

ν

|IDν
|2 . (8.48)

For a first comparison, we consider the gridded visibilities and the corresponding periodic image
(see appendix B.2). The gridding intervals are∆x and∆u = 1/(n∆x) and the grid points are at
xν = ν ∆x anduj = j ∆u. We use a one-dimensional grid for simplicity.

IDν
=

1

∑j wj
∑

j

wj Ĩ j e
−2π i ν j/n (8.49)

This expression can be used to find a relation between the two kinds of residuals:

R2
image=

1(
∑j wj

)2 ∑
j j ′

wjwj ′ Ĩ j Ĩ
?
j ′ ∑

ν

e2π i ν( j− j ′)/n (8.50)

=
n(

∑j wj

)2 ∑
j

w2
j |Ĩ j |

2 (8.51)
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In the last step, the relation

∑
k

e2π i ν( j− j ′)/n = nδj j ′ (8.52)

was used. All sums are taken over a range from 0 ton− 1. We learn that the residuals are
exactly proportional only ifwj = w2

j for all j. Because thewj represent the gridded weights, this
is equivalent to uniform weighting. One has to keep in mind, however, that theuvspace residuals
in this case are not exactly the usualχ2, because they are summed over the gridded visibilities
and not the measured visibilities themselves. For an optimal fit, they therefore become zero. This
would not be the case for the measured ungridded visibilities, because the gridded emission can
usually not represent all ungridded visibilities. This is the reason whyχ2 does not approach zero
in normal CLEAN but becomes close to unity if normalized.

For general weighting, the above formalism is not very meaningful, because the gridded
weights are related to the ungridded weights in a complicated way. In the following, we want
to repeat the same calculations without referring to a grid. We start with the dirty map from
(8.14) and apply it again to the difference between data and model. We use a one-dimensional
formalism which can be generalized trivially for two dimensions. We assume that the dirty map
is sampled infinitely fine in an intervalL/2≤ x≤ L/2:

R2
image=

1(
∑j wj

)2 ∑
j j ′

wjwj ′ Ĩ j Ĩ
?
j ′

L/2∫
−L/2

dx e2π i (uj−u
j′ )x (8.53)

=
L(

∑j wj

)2 ∑
j j ′

wjwj ′ Ĩ j Ĩ
?
j ′ sincL(uj −uj ′) (8.54)

The sinc function is defined in equation (B.25) in appendix B. In the limit of very largeL
(infinitely large field), only equaluj contribute to the sum:

R2
image=

L(
∑j wj

)2 ∑
j

w2
j |Ĩ j |

2 (8.55)

Compared with theuv space residuals in (8.47), we see again that the weights are modified.
Image space residuals weighted withwj are equivalent touv space residuals weighted withw2

j .
This may be the reason, why weighting withwj = σ−1

j instead ofσ−2
j often leads to more

pleasing results in image space. The image space residuals are then equivalent to naturally, and
thus in a way optimally, weighteduvspace residuals.

For finiteL, the convolution of the visibilities with the sinc function corresponds to an opti-
mal gridding convolution with total alias suppression. The image space residuals are equivalent
to theuv space residualsafter convolutionand with modified weights. For small fields, even
optimal image space solutions cannot represent the visibilities exactly. Theuv space residuals
are therefore always non-vanishing due to the small-scale scatter of the measured visibilities.
The same effect can be seen in a reducedχ2 of approximately unity even if the image space
residuals are almost zero. The result of equivalence of both kinds of residuals in the case of
uniform weighting can also be recovered from this very general formalism.

8.8.3 The CLEAN algorithm

The CLEAN algorithm was invented as a heuristic method to deconvolve dirty maps (Högbom,
1974). The simple idea is very obvious when one is looking at dirty maps and beams, e.g. Fig-
ure 8.2 on page 99. The dirty maps of B0218+357 are dominated by two scaled copies of the
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dirty beam, shifted to the positions of the bright images of this source. If the system consisted
only of these two images, nothing but noise should be left when the beams are subtracted. Oth-
erwise, the remaining structure should become more distinct. If more compact components are
visible in the residual map, then further dirty beams can be subtracted at their positions. This
leads directly to the CLEAN method, which works as follows.

• Start with a residual map equal to the dirty map, with an empty list of CLEAN components,
and iterate the following loop until the residuals become sufficiently small.

– Find the peak in the residual map.

– Shift the dirty beam to the peak position and scale it to match the flux density of the
peak.

– Subtract the scaled and shifted beam from the dirty map.

– Add the position and flux density to the list of CLEAN components.

• Build the CLEAN map from the list of CLEAN components by adding the so-called CLEAN

beam at the given positions with the given flux densities. This is equivalent to a convolu-
tion with the CLEAN beam.

• Add the final residual map to the CLEAN map, if the residuals are still not negligible.

The convolution with the CLEAN beam is performed to reduce the high frequencies in the map,
which cannot be reconstructed from the observations reliably. The canonical CLEAN beam is
a Gaussian whose central part is fitted to the dirty beam to resemble its resolution (see sec-
tion 8.6.2). Ideally, the resulting CLEAN map is then a convolution of the true brightness distri-
bution with the CLEAN beam.

In practical work, the dirty beams to subtract are not scaled to 100 % of the peak flux density
but to a fractionγ, which is called the loop gain and is of the order 0.1 or smaller. This helps
to avoid ringlike residuals around bright compact images and generally leads to more realistic
results.

If the algorithm converges, which it always does for non-pathological beams, the resulting
clean map before the final convolution is obviously one solution of the deconvolution problem.
It is optimized in a way to produce a solution which is a collection of a moderate number of
point sources. No rigorous mathematical formulation of this is known to date.

8.8.4 Mathematical foundation of CLEAN

If we want to modify classical CLEAN as a tool for lens modelling, we first have to understand its
mathematical foundation, which was laid by Schwarz (1978). For an algorithm of successively
subtracted dirty beams, we have to give reasons to choose the position and flux density of the
peak in the residual map for the next component to subtract. The idea is to minimize the residuals
in each iteration.

Let the residual dirty map before the next subtraction be given byID(x), the residual visibili-
ties byĨ and use the same notation as in section 8.6. The residuals after subtracting a component
atx0 with flux densitySare given by

R2 = ∑
j

wj

∣∣∣Ĩ j −Se2π i uj ·x0

∣∣∣2 . (8.56)
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To minimize these residuals, we first rewrite them using the definition of the dirty map (8.14):

R2 = R2
0−∑wj ∆R2 (8.57)

R2
0 = ∑

j

wj |Ĩ j |
2 (8.58)

∆R2 = 2SID(x0)−S2 (8.59)

The termR2
0 does not depend onx0 or Sand can therefore be neglected here. For a given position

x0, the residuals are minimized for maximal∆R2, which leads to

S= ID(x0) (8.60)

and

∆R2 = I 2
D (x0) . (8.61)

We learn that the optimal position is the highest absolute peak in the map and that the optimal
flux density is the residual flux at this peak. This is exactly the rule used by CLEAN. If we take
into account the loop gainγ in selecting the optimal positionx0, the result would still be the
same. One might also think of adding or subtracting (depending on the sign of the residuals) a
constant but very small flux density. The result forx0 would still be the same. The best maps
are usually produced by choosing a very small loop gain and going to the limit of a continuous
process.

The considerations in this section used continuous functions for the maps instead of applying
the formalism developed in section 8.8.1. This is not necessary and was only done to make the
modifications that are later needed for LENSCLEAN (chapter 9) more straightforward. In the
algebraic framework, CLEAN can be interpreted as follows. In the first iterations, only the
one component ofI with maximal gradient of the residuals is changed in the direction towards
minimal residuals. At some point, another component reduces the residuals more effectively
and is therefore changed next. For very small loop gain, the first component will then again
be more effective, so that the two are alternately changed. This is effectively equivalent to
changing the two in the direction of strongest descent of the residuals. At some point, a third
component comes into play, and so on. All in all, CLEAN always minimizes in the direction
of the constrained gradient forn components until the next component becomes more effective.
It then continues withn+ 1 components and so on. The formal calculations in the algebraic
formalism are presented in the context of LENSCLEAN in section 9.23.1.

The flux may be confined to only a limited region in thelm plane or to the points of a grid
(or both). The strategy does not change then. Confining the flux to a limited number of positions
can be used to obtain a unique solution of the deconvolution problem and usually gives better
results when a priori knowledge of where emission is expected exists.

Apart from LENSCLEAN, an analysis of the CLEAN algorithm is very important to be able
to interpret its results. To the knowledge of the author, no general mathematical definition of
the optimization problem solved by CLEAN has been published yet5. It is clear that the CLEAN

result before the final convolution isonesolution of the convolution equation (8.30).Whichof
these solution is produced by CLEAN and especially the error properties are not fully understood
but an analysis is greatly desired. See section 8.9 for numerical examples of CLEAN and other
methods.

5See Marsh & Richardson (1987) for one step in this direction.
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8.8.5 The principal solution

The definition of the principal solution was already presented in 2.3. It is the one solution that
minimizes∑ I2

µ and can be calculated by using equation (2.17) withS = 1 and smallλ . The
convolution equation (8.42) is then modified to become

(B+λ S)I = ID . (8.62)

For positive definiteS, it is invertible uniquely. The result forI is a linear function ofID or the
measured visibilities, making the analysis of this solution simpler than for CLEAN.

The SSC method (smoothness stabilized CLEAN), proposed by Cornwell (1983), is closely
connected to this approach. A CLEAN algorithm is used to solve (8.62) for finiteλ . The only
difference to standard CLEAN is the modified dirty beamB. The addition of a scaled unit matrix
is equivalent to adding aδ -peak to the dirty beamB(x). However, the idea behind SSC isnot
to find the exact principal solution, but to switch from the normal dirty beam to the modified
one with certain values ofλ to stabilize the results. Due to Cornwell (1983), real convergence
should not be aimed for.

8.8.6 Strong linear regularization

The principal solution can, in some cases, be very sensitive to noise in the visibilities. To reduce
the effects of noise, we may use the same equation (8.62) but now with finiteλ . This parameter
should be chosen in a way to obtainuv residuals in the expected range. In this way, an optimal
solution in the sense of minimizing noise and systematic errors to the same level is found. For
large λ , significant bias effects will occur. The resultingI will have systematically too low
fluxes.

One possible way to reduce this bias is to modify the method and find the solution with
minimal difference to an a priori expected solutionIp:

R′2 = R2 +λ (I−Ip)
†(I−Ip) Tr W (8.63)

The approach used before is equivalent to a prior ofIp = 0. Minimizing the modifiedR′2 leads
to the equation

(B+λ1)I = ID +λIp (8.64)

or equivalently

(B+λ1)(I−Ip) = ID−BIp . (8.65)

This last equation gives a simple recipe to find the wanted solution. First subtract the prior
convolved with the dirty beam from the dirty map, then find the strongly regularized solution
for this modified dirty beam, finally add the prior back to the solution. The result depends onIp

only for finite values ofλ . The modification does not make a difference for weak regularization.

8.8.7 The NNLS solution

The non-negative-least-squares method (NNLS) was for the first time used in radio interferom-
etry by Briggs (1995). The idea is to regularize the problem by using a the physically motivated
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constraint of non-negative fluxes. The NNLS solution is a non-negativeI with minimal residuals
R2 as in equation (8.41).

R2 ∝ const.+I†BI−2I†ID (8.66)

This isnot the same as minimizing the image space residuals

R′2 = |BI−ID|2 (8.67)

= const.+I†B2I−2I†BID , (8.68)

which was used by Briggs (1995). They are equivalent only for uniform weighting, where
B2 = B, and in cases where an exact fit can be found. See section 8.8.2 for a discussion of the
difference of residuals in image anduvspace.

Further regularization as for the unconstrained direct inversion is possible by adding aλS-
term toB. This is less necessary than in the unconstrained inversion, because the non-negativity
constraint already reduces the freedom of the models.

8.9 Numerical experiments in one dimension

To compare some deconvolution methods, numerical experiments were performed. The data
used for these experiments are shown in Figure 8.3. A one-dimensional setting was used for two
reasons. First, the computations are much faster in one dimension. No sophisticated optimiza-
tion was needed for the experiments. Direct algebraic inversion of the convolution equation is
possible on normal PCs here. Second, the results can be interpreted more easily in one dimen-
sion, because the data can be shown as curve plots.

As true brightness distribution we used a simple rectangular function which is a quite hard
test for all of the methods. It tests the behaviour at sharp edges, constant surface brightness
regions and empty regions around the sources. Other brightness distributions lead to different
results.

We used a very fine sampling of the image plane withM = 100 for all the methods to come
close to the continuous limit. Auvcoverage withN = 10 as shown in Figure 8.3(d) was used. To
simulate a realisticuv-coverage, a gap near zero spacings was included, and the visibility density
is higher near the centre than for larger spacings. To show the effect of thermal noise, we also
included deconvolution results for noisy data which are also shown in Figure 8.3(c)+(d). The
expecteduv-residuals from the noise properties areχ2 = 20±6.3. Calculated from the actual
noise realization, they areχ2 = 15.2. The expected RMS noise in the dirty map is 0.63, the real
noise 0.58.

The results of the deconvolutions are shown in Figures 8.4 to 8.11 (pages 113–120). Here is
the extended caption for these plots:

(a) Reconstructed map (as is), noiseless and noisy data compared with true brightness distri-
bution.

(b) Same as (a) but convolved with CLEAN beam.
(c) Difference of reconstructed and true map. Noiseless and noisy data as well as difference

between the two to show the effect of noise.
(d) Same as (c) but convolved with CLEAN beam.
(e) Fourier transform of reconstructed map compared with true Fourier transform. For an

exact fit (converged CLEAN or no strong regularization), these should be equal.
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Figure 8.3: Data for one-dimensional experiments. (a) True brightness distribution
(‘map’), as is and convolved with CLEAN beam. (b) Dirty beam and centrally fitted CLEAN

beam. (c) Dirty map from noiseless and noisy data and difference of the two. (d) Fourier
transform of the brightness distribution (lines) and the measured visibilities with noise
(symbols). The vertical dotted lines show theu-positions of the measured visibilities.

(f) Residuals in image spaceID−B∗ Im. These vanish for an exact fit.
(g) Fourier transform of difference between reconstructed and true map (noiseless case). This

should vanish at the measureduv-spacings for an exact fit.
(h) Same as (g) but for noisy data. Points give the noise of the visibilities. For an exact fit,

they are located on the lines.

The vertical dotted lines in (e), (g) and (h) show theu-positions of the measured visibilities.
Some important numerical properties of the results are shown in Table 8.2.

As the main goal of our work is to constrain lens models and not to produce the very best
map of the source, we do not present results for other parameter combinations here. However,
a much deeper analysis of the properties of different methods should be performed in the future
to be able to extract all information from interferometry data.

8.9.1 CLEAN with small gain

Most observers agree that small loop gainsγ generally produce ‘better’ maps. We therefore used
a gain ofγ = 0.01, which leads to results very similar to the limiting case of infinitely smallγ.
For the experiment in Figure 8.4 (page 113), we used 107 iterations to come sufficiently close
to convergence. An interesting result of our numerical experiments with different parameters
was the strong dependence of the required numbers of iterations on the number of measured
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method χ2 residuals RMS diff. RMS diff. Figure
(RMS) (as is) (convolved)

line 1 noiseless
line 2 noisy
line 3 noise only

CLEAN 4.520e−05 3.446e−06 9.243e−01 1.208e−01 8.4
107 its. 5.239e+00 4.500e−04 2.245e+00 7.315e−01

9.764e+00 2.232e+00 6.694e−01
CLEAN 1.238e−02 5.691e−03 9.234e−01 1.309e−01 8.5
5000 its. 6.757e+00 4.003e−02 8.254e−01 5.281e−01

8.076e+00 6.710e−01 5.070e−01
princ. sol. 1.938e−15 5.605e−13 1.256e−01 1.166e−02 8.6
λ = 10−12 2.199e+00 2.158e−08 2.158e+04 6.395e+03

1.280e+01 2.158e+04 6.395e+03
lin. reg. 1.287e+01 7.844e−01 1.588e−01 1.130e+00 8.7
λ = 1.6 1.979e+01 7.636e−01 1.720e−01 1.454e+00

2.449e+01 5.620e−02 4.729e−01
lin. reg. 1.372e+01 6.044e−01 1.874e−01 1.464e+00 8.8

λ = 0.85 1.882e+01 6.109e−01 2.201e−01 1.368e+00
Ip(x)≡ 1 1.870e+01 7.034e−02 4.950e−01
NNLS 2.840e−14 1.302e−08 1.043e+00 3.355e−04 8.9

7.682e+00 1.699e−01 1.402e+00 5.209e−01
7.151e+00 1.922e+00 5.208e−01

NNLS 8.596e−15 1.269e−08 2.247e−02 1.074e−05 8.10
lin. reg. 7.682e+00 1.699e−01 1.402e+00 5.209e−01

λ = 10−12 7.151e+00 1.401e+00 5.209e−01
NNLS 8.550e+00 7.084e−01 1.318e−01 7.073e−01 8.11
lin. reg. 1.874e+01 7.666e−01 1.372e−01 9.839e−01
λ = 1.4 1.711e+01 3.981e−02 3.651e−01

g/h f c d subfigure

Table 8.2: Numerical results of the one-dimensional experiments, which are shown in Fig-
ures 8.4 to 8.11. Residuals inuv spaceχ2 (noiseless/noisy/noisy result− true), image
plane residualsID−B∗ Im (noiseless/noisy/noisy− noiseless), RMS of image plane differ-
ence (reconstructed− true) as is and convolved with CLEAN beam (noiseless/noisy/noisy
− noiseless). The last row points to the panel number of the plots.

visibilities. For equal brightness distributions, a number ofN = 5 leads to∼ 105 iterations to
reach a residual level of 10−10, but forN = 10 (as used in the shown results), even 108 iterations
cannot push the residuals below 1.5 · 10−6 (noiseless) and 2· 10−4 (noisy). These numbers
are much larger than the number of CLEAN iterations used in any realistic mapping process.
Interestingly, the results look better long before convergence is reached in some cases. This can
bee seen in comparison of Figures 8.4 (107 iterations) and 8.5 on page 114 (5000 iterations).
In image space, the latter represents the true brightness distribution much better then the first
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(subfigure c+d). Especially for noisy data, the results get worse with too many iterations6. Even
though theuvand image plane residuals are smaller with more iterations, the difference between
the reconstructed and the true brightness distribution in image space gets worse if too many
iterations are performed. The RMS difference in the noisy case is 2.25 for 107 iterations, but
only 0.83 for 5000. Convolved with the CLEAN beam, these numbers are 0.73 and 0.58.

With the fine sampling used here, the direct results of CLEAN shown in Figures 8.4(a) and
8.5(a) do not represent the true brightness distribution very well, since they consist of a number
of well separated positive and negative peaks. These peaks (especially in the noisy case and far
from the source) get stronger when reaching convergence. In Figure 8.4(a) they are almost as
strong as on the source itself. With less iterations, Figure 8.5(a), these noisy peaks are much
weaker. After convolution with the CLEAN beam, the peaks vanish and the result is consistent
with the convolved true brightness distribution, Figures 8.4(b) and 8.5(b). We have to keep in
mind that CLEAN used in this way does not provide a fit to the true brightness distribution itself
but to the smoothed map.

The non-linearity of CLEAN has the effect that the noise can not be calculated independent
of the signal itself. Figures 8.4(c)+(d) and 8.5(c)+(d) show that the noise properties are not
constant along thex axis. The noise seems to be higher in regions with significant flux. The
interpolation of the visibilities performed by CLEAN, see Figure 8.4(e),(g),(h) and 8.5(e),(g),(h)
is quite good. The extrapolation to higheru is on the other hand poor (see the outer parts of
subfigures e). Therefore the convolution with the CLEAN beam is absolutely essential to obtain
useful results.

The uv residuals get close to zero in the noiseless case and reachχ2 = 5.2/6.8 for noisy
data (see Table 8.2). Even the latter is less than the expected residuals. We can interpret CLEAN

with a finite number of iterations (and including the CLEAN beam convolution) as a method to
find a strongly regularized solution of the deconvolution problem. This kind of regularization is
not easy to analyse mathematically. The number of iterations plays the role of a regularization
parameter. The less iterations, the stronger the regularization. The approach of adjusting the
number of iterations to obtain residuals in the expected range has not been used so far but might
be useful to understand the kind of regularization performed by CLEAN better.

8.9.2 Principal solution and strong linear regularization

For this experiment we used equation (8.62) to calculate the weakly regularized solution. The
results obtained withλ = 10−12 are shown in Figure 8.6 (page 115). To find the solution we used
the method of LU decomposition (Press et al., 1992). For this method, the wholeB matrix and
its decomposition matrices have to be kept in memory. This is not a problem for our examples
with M = 100. For realistic two-dimensional problems, this approach would be very ineffective.
Other methods like conjugate gradients are more appropriate then.

We see from Figure 8.6, that weak regularization works very well for the noiseless data.
Theuv residuals now reach their theoretical limit ofχ2 = 2.2. Even measured in terms of the
difference between the reconstructed and true brightness distribution, this solution is superior to
CLEAN. The RMS difference is 0.13 (0.012 in the convolved case).

In uv space, we notice the far better interpolation and extrapolation than with CLEAN. In
image space, the solution shows weak oscillations superposed on the correct brightness distribu-
tion. The sharp edges cannot be reproduced exactly. After convolution with the CLEAN beam,

6This isnot the well known effect of gridding errors leading to diverging CLEAN results. For our experiments,
we performed the Fourier transform directly, without any gridding. Nevertheless, numerical errors might play a role
for very many iterations.
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these oscillation become very small and the solution is almost perfect.
For noisy data, the solution shows ridiculously strong fluctuations in image space, even

though the fit is quite good in terms ofuv residuals (χ2 = 2.2). The noise is amplified extremely
and shifted to frequencies which are not measured. We can use strong regularization to reduce
these effects and still keepχ2 sensibly small. For Figure 8.7 (page 116), we usedλ = 1.6 to bring
χ2 (19.8 for noisy data) close to the expected value. Unfortunately, the result now shows a strong
bias in the direction of low fluxes/visibilities. This is noticeable in image space, where it leads to
stronger oscillations around the correct flux, and in Fourier space, where the reconstructed values
are systematically too low, especially for small spacings, where the gap in the measurements
makes an accurate interpolation of the visibilities difficult. Although systematic effects and the
noise should contribute in equal parts to the errors (the residuals are in their theoretical range),
the deviations in image space seem to be dominated by the strong regularization (see subfigure
d).

To show the bias effect, we include in Figure 8.8 the result of another strongly regularized
solution which was calculated as described in section 8.8.6. As prior, a constantIp(x) ≡ 1 was
used. This corresponds to the plateau of the rectangular function of the real data. A regular-
ization parameter ofλ = 0.85 was used to produce residuals comparable to the solution for an
empty prior (compare with Figure 8.7). The bias to small fluxes on the plateau is now sup-
pressed. Now we have a bias to positive fluxes in the empty regions.

8.9.3 NNLS solution

We used the algorithm of Lawson & Hanson (1974) as given in Briggs (1995). The results are
shown in Figure 8.9 (page 118). The direct solution shows spikes similar to CLEAN, but the
convolved version is (in the noiseless case) now much better than the CLEAN result. With noise,
the convolved result is comparable to prematurely stopped CLEAN. The image space residuals
are 0 without noise and≤ 0 with noise. This is due to the fact that the gradient of the residuals
has to be zero for components where the non-negativity constraint is not active (regions with
positive flux) and negative for regions with zero flux.

Figure 8.10 (page 119) shows a weak regularization withS = 1 andλ = 10−12. Even without
the CLEAN beam convolution, the solution for the noiseless case represents the true brightness
distribution very well. To achieve the same even for the noisy data, we usedλ = 1.3 for Fig-
ure 8.10. As in the unconstrained strongly regularized case, we see a bias to small fluxes. The
oscillations in the empty regions are now suppressed by the non-negativity constraint. At the
plateau, the constraint is not active, and the oscillations are still noticeable.

8.9.4 Summary

Without the CLEAN beam convolution, CLEAN is not competitive with the other methods. With-
out noise, NNLS with weak regularization is by far the best. With noise, strong regularization
has to be used. Strongly regularized NNLS is now the best method, but the direct linear de-
convolution is almost as good. With NNLS, the noise is shifted from the empty regions to the
regions with true flux, while with unconstrained deconvolution, the noise is independent from
the true signal (linearity of the method).

After convolution with the CLEAN beam, NNLS with weak regularization is best, but pure
NNLS is almost as good and the principal solution is also very good. Including noise, the weakly
and unregularized NNLS have the smallest RMS error, but the prematurely stopped CLEAN is
almost as good.
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Figure 8.4: One-dimensional experiment using CLEAN. 107 iterations. For details, see
section 8.9, especially page 108 and section 8.9.1.
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Figure 8.5: One-dimensional experiment using CLEAN. 5000 iterations. For details, see
section 8.9, especially page 108 and section 8.9.1.
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Figure 8.6: One-dimensional experiment using the principal solution (weakly regularized
with λ = 10−12). For details, see section 8.9, especially page 108 and section 8.9.2.
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Figure 8.7: One-dimensional experiment using direct algebraic inversion strongly regular-
ized withλ = 1.6. For details, see section 8.9, especially page 108 and section 8.9.2.
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Figure 8.8: One-dimensional experiment using the strongly regularized (λ = 0.85) solu-
tion around constant 1. For details, see section 8.9, especially page 108 and section 8.9.2.
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Figure 8.9: One-dimensional experiment using NNLS without regularization. For details,
see section 8.9, especially page 108 and section 8.9.3.



8.9. NUMERICAL EXPERIMENTS IN ONE DIMENSION 119

Figure 8.10: One-dimensional experiment using NNLS, regularized withλ = 10−12 (prin-
cipal NNLS solution). For details, see section 8.9, especially page 108 and section 8.9.3.
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Figure 8.11: One-dimensional experiment using NNLS, regularized withλ = 1.3. For
details, see section 8.9, especially page 108 and section 8.9.3.
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For the reconstruction of the source in a lensing scenario (section 9.24), we would like
a method that works without explicit convolution with a CLEAN beam. Strongly regularized
direct inversion and strongly regularized NNLS can both be used then. Although the errors with
NNLS are slightly smaller, the statistical properties of direct linear inversion are much simpler
and the method might thus provide the more robust results.

8.10 Technical details of CLEAN

8.10.1 Gridding and FFT

The calculation of the dirty map and dirty beam with equations (8.14) and (8.15) (direct Fourier
transform) is computationally very expensive. If the number of visibilities is not very small,
another strategy can be faster by orders of magnitude, although it is conceptually more compli-
cated. The idea is to apply the method of ‘fast Fourier transform’ (FFT), which is very efficient
in the case of many components. While direct Fourier transform (DFT7) needs of the ordern2

steps to compute a complete transform ofn components, FFT needs only∝ nlogn steps. In
typical applications, FFT is almost always much faster. For details about Fourier transforms,
see appendix B and references therein.

The disadvantage of the FFT algorithm is that it only works on a regular grid in both Fourier
and image space. We therefore have to put the measured visibilities on a grid and cope with
the symmetry properties of regular grids. The Fourier transform of a regularly sampled function
always is periodic. The same is true in the opposite direction; Fourier transforms on regular
grids can only describe periodic functions.

We now have to find a regular sampled approximation to the true collection of irregularly
distributed visibilities. The most simple gridding consists in overlaying the visibilities with the
grid and assign the (weighted) mean of all visibilities lying inside a pixel to this grid point. This
approach is not only difficult to analyse but also has some disadvantageous properties.

For continuous visibilities, an optimal gridding procedure would be the sampling at the
regularly spaced grid points. Unfortunately, the measured visibilities are discrete. They first
have to be approximated by a continuous function, which can be done by convolution. The
standard recipe is the following.

• Convolve the measured visibilities (interpreted as a collection ofδ -functions) with a ‘grid-
ding convolution function’C̃.

• Sample the convolved visibilities with a regular spacing of∆u on n points (∆u×∆u on
n×n points in the two-dimensional case).

• Apply the FFT to generate a first approximation of the dirty map and beam.

• Divide dirty beam and map byC, the inverse Fourier transform of̃C, to compensate for
theuv-space convolution with̃C. This is called the grid-correction, although it does not
correct for the sampling step but for the convolution. ‘Convolution correction’ would be
a more appropriate term.

Without the sampling step, the division at the end would exactly cancel with the convolution in
the first step, provided thatC has no zeros. The choice ofC̃ would therefore not be critical.

7The acronym DFT is also used for ‘discrete Fourier transform’. In our context, all numerical Fourier transforms
are discrete anyway.
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Several points deserve attention here. First, the discrete grid has to be large enough to cover
all measured visibilities to avoid loosing some of the data. If the maximal absoluteu-spacing is
calledumax, this condition can be written as the equation8

n∆u≥ 2umax (8.69)

or equivalently

∆x≤ 1
2umax

, (8.70)

where the factor of 2 is due to the fact that the visibilities are symmetric aroundu = 0 and the
grid has an extension of onlyn/2 in each direction. The last equation can be interpreted in terms
of the Nyquist theorem. The grid has to be fine enough to allow at least two samples even for the
highest frequencies. Especially for high dynamic range data with unresolved components, a finer
sampling can improve the results considerably. For compact components lying between the grid
points, the gridded representation would consist of a large number of alternating positive and
negative components extending far beyond the true position. These oscillations can deteriorate
the deconvolution results significantly and should be avoided.

The regular sampling inuv space has the consequence that the image always is periodic.
Emission at a positionx would have the same effect on the visibilities as emission at another
positionx+ kn∆x for arbitraryk. This emission outside thelm grid would therefore be folded
(‘aliased’) into the mapping area. Aliased sources can be detected as such by changing the
gridding parameters, which leads to a shift of these components but leaves the emission inside
the map unaffected. Very strong confusing sources near the limits of the primary antenna beams
can even be more problematic, because their effective antenna gains would differ from station to
station, leading to incorrect visibility measurements.

Let I and Ĩ represent the true brightness distribution,ID the correct dirty map andB andB̃
the dirty beam anduvcoverage function. Theuvsampling function is called̃X and has a period
∆u. Its inverse transformX has an image space period ofn∆x. The approximated dirty map
can then be written as follows.

ID
FFT =

FT−1

((
(Ĩ B̃)∗C̃

)
X̃

)
C

(8.71)

=

(
(I ∗B)C

)
∗X

C
(8.72)

=
(IDC)∗X

C
(8.73)

The last equation shows that the correct dirty map (consisting of the sourcesand their side-
lobes) is multiplied withC, periodically replicated and then divided byC, not by the periodic
replicate ofC. The functionC can therefore be chosen in a way to suppress the aliased copies
of ID. Ideally, C shifted by one period and divided by the unshiftedC should be as close to
zero as possible. Unfortunately, a rapidly decliningC would imply a very extended convolution
function C̃. On the other hand, the convolution function should be very compact to allow an
efficient numeric convolution. This trade-off is mathematically equivalent to one aspect of the
Heisenberg uncertainty relation.C andC̃ cannot both be arbitrarily compact at the same time.

8The same equations hold for thev or y direction.
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For very extended̃C, the convolution would need more CPU time than is saved by the FFT
algorithm. Tabulated and highly compact (total size of only a few pixels) convolution functions
are normally used. They can still be optimized for maximal alias reduction. Figure 8.12 shows
three possible convolution functions together with their Fourier transform. The pillbox function
is most simple to realize but has the worst alias reduction. The truncated Gaussian is used by
the DIFMAP software. Near the field edges, it is inferior to an optimally truncated Gaussian
multiplied with a sinc function. Other, more efficient, convolution functions (e.g. spheroidal
functions) are commonly used.

For details of the gridding procedure and other aspects of the imaging process (before
CLEAN ing), see Sramek & Schwab (1989) and Briggs, Schwab & Sramek (1999).

8.10.2 Field size limitation

When using FFT to obtain the dirty beam and dirty map, both have the same size. In each
iteration of CLEAN, the shifted beam must be subtracted from the residual map. To be able to
cover the complete map with the shifted beam, the ‘active’ area of the residual map and therefore
the area of the CLEAN map has to be reduced to the central quarter (half the side length) of the
total map. Even stricter reductions are often useful to reduce the effect of aliasing, which is
strongest near the field edges.

8.10.3 The Clark algorithm

A variant of CLEAN was proposed by Clark (1980). In its minor cycle, it consists of Högbom’s
classical CLEAN, but uses only a small patch of the dirty beam which includes the centre and the
highest sidelobe. When a certain limit is reached in the minor cycle, a major cycle is performed,
in which all components from the minor cycle are collected, transformed with a FFT, multiplied
with the gridded weights (equivalent to convolution with the dirty beam), transformed back and
subtracted from the residual map. This major cycle corrects for the errors introduced by the
approximation of the dirty beam by using only a small patch. The only advantage of the Clark
algorithm is speed, because the subtraction in the minor cycles is much faster than with the
complete beam. The convolution in Fourier space is so efficient, that the total time needed for a
certain number of iterations is still smaller than with standard CLEAN.

8.10.4 The Cotton-Schwab algorithm

In this algorithm (Schwab, 1984), the subtraction of CLEAN components in the major Clark
cycle is performed on the ungridded visibilities using a direct Fourier transform or FFT with
interpolation. The residual visibilities are then again gridded. This process corrects for the
errors introduced by using regular grids to compute the dirty maps. Without this correction, the
convolution equation (8.30) can often not be satisfied exactly, because of the gridding errors,
which leads to diverging CLEAN results. Depending on the number of visibilities, the Cotton-
Schwab algorithm can sometimes be significantly slower than the simpler Clark CLEAN.

The direct algebraic inversion methods, which have been discussed before, should usually
not be applied to data obtained with FFT of gridded visibilities. Even without noise, the dirty
map is in this case not exactly given by the true brightness distribution convolved with the
dirty beam. Strategies similar to Cotton-Schwab must be used in cases where the direct Fourier
transform is prohibitively expensive.
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Figure 8.12: Three possible gridding convolution functions. (a) The functions inuv-space,
(b) the inverse Fourier transform, (c) the logarithmic response (alias rejection). This is (b)
with included ‘gridding correction’, i.e. division by the central period ofC(x). This function
should be as low as possible outside the central period.

8.10.5 Weighting with CLEAN

Strong statistical arguments vote for natural weighting, because it minimizes the noise in the
dirty map. There is, however, no reason to use the same weighting scheme during the whole
CLEAN process. In the beginning, theS/N ratio is usually very high. In the limit of noiseless
data, no weighting scheme is preferred for the others for statistical reasons. It is therefore appro-
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priate to start with a non-natural weighting, which can improve the resolution and go to natural
weighting only later, when theS/N comes close to unity. This is in fact done by many expe-
rienced observers. The mapping process is started with uniform weighting or a variant thereof
and switches to natural weighting later, if the theoretical limit of the dynamic range should be
reached. Maps produced with this strategy seem to be superior to ones with constant natural
weighting. Thinking conservative, the naturally weighted CLEAN beam should be used at the
end to produce the CLEAN map. This is, however, a matter of debate, since the definition of the
CLEAN beam is rather arbitrary anyway.

8.10.6 Using CLEAN windows and non-negativity constraints

If it is known that the emission is confined to a certain region of the map, this a priori information
should be used in the mapping process to reduce the freedom of the fit. This is especially true in
combined mapping/self-calibration iterations.

Another physically motivated constraint is to disallow negative fluxes in the map. Some-
times this is implemented by stopping the CLEAN iteration when the first negative component
is reached or by deleting negative components after some iterations. There is no theoretical
foundation for this approach. Especially when changing the weighting or if strong compact
components are present, negative components are often essential to fit the data, either to correct
for too strong components added earlier or to represent components located not exactly on a grid
point.

Another approach is to use only the positive components and disregard the others. All these
approaches donot find the best non-negative solution. Other methods like NNLS have to be
used to include the constraint in a rigorous way.

8.11 Conventional CLEAN beam convolution and alternatives

The normal procedure after producing a list of CLEAN components is to convolve it with a
Gaussian CLEAN beam which is fitted to the central part of the dirty beam (see section 8.6.2).
This beam is scaled to a peak of 1, so that the peaks in the CLEAN map are direct measurements
of the total flux densities of unresolved components. The units of the map are therefore measured
per beam. The level for resolved emission depends on the size of the beam. Another convention
would be to scale the CLEAN beam to an integrated flux density of unity. The units would then be
emission per unit area and the CLEAN map would provide a convolved surface brightness. Total
flux densities could be derived by integrating the map. For point sources, the conventionally used
former approach is more convenient, while the latter might be more useful for heavily resolved
sources and for varying beams as in LENSCLEAN (see discussion in section 9.24).

8.11.1 Normalized beams

The integral over a beam following equation (8.21) can be calculated by writing it with coordi-
natesx′ in the principal axes system ofG so thatx†Gx = x′†x′. Without the irrelevant rotation,
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the transformation readsx = λ−1/2
min

x′ andy = λ−1/2
max y′, whereλ are the Eigenvalues ofG.

∫
d2x e−x†Gx/2 =

∣∣∣ ∂x

∂x′

∣∣∣∫ d2x′ e−x′†x′/2 (8.74)

=
1√
|G|

∫∫
dxdy e−(x2+y2)/2 (8.75)

=
2π√
|G|

(8.76)

The normalized CLEAN beam can then be written as

G(x) =

√
|G|

2π
e−x†Gx/2 . (8.77)

If varying (either with position or CLEAN iteration number) beams are to be used, only the
normalized beams produce meaningful results. The maps are then smoothed surface brightness
maps with conservation of total flux. This would not be the case with the conventional beams
with unity peak. Total flux densities would then depend on the beam size and constant surface
brightness regions would not be shown as such, because the intensity in the CLEAN map would
depend on the beam size.

8.11.2 Positional accuracy

The size of the beam should somehow resemble the accuracy of the corresponding CLEAN com-
ponent position. To justify convention or develop a better approach, it is necessary to understand
this accuracy. A very simple analysis is possible for a toy model which consists of only one com-
ponent. The residuals after subtraction of a component with optimal flux at positionx0 are (see
e.g. section 8.8.4):

R2 = R2
0−∑

j

wj I
2

D (x0) (8.78)

To estimate the accuracy of the positionx0, the residual difference∆R2 relative to the optimum
has to be analysed.

∆R2 = ∑
j

wj

(
I 2
D (x0)− I 2

D (x)
)

(8.79)

For natural weighting, the 1σ confidence limit can be calculated from theχ2 distribution. It is
at ∆R2 = 1 for one coordinate and∆R2 = 2.3 for the combination of both coordinates. If the
data consist of only one point source and if theS/N is not too low, the dirty map is approxi-
mately equal to the dirty beam scaled with the source fluxS. If the beam is parametrized with a
Gaussian, the equation is especially simple to solve for∆x� FWHM:

∆R2 = S2 8ln2∆x2

FWHM2 ∑
j

wj (8.80)

Remembering equation (8.18), which gave the noise asN = 1/
√

∑wj , the positional accuracy
can be written as

∆x =

√
∆R2

8ln2
FWHM

S/N
. (8.81)
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The first factor is of the order 1. We recover the well known fact that the positional accuracy is
the size of the beam divided by the signal to noise ratio.

We learn that the normal CLEAN beam, which is fitted to the dirty beam, is appropriate for
low signal to noise but actually obstructs information from high dynamic range observations of
well separated point sources by smoothing the map far to strongly. No better approach has been
developed yet, because the situation is more complicated in the case of extended emission or
multiple very close point sources.

For well separated point sources, a simple idea for improvement would be to resize the
CLEAN beam according to the magnitude of the peak in the dirtymapand convolve the com-
ponent with that beam. For a point source, these beams would grow larger in the course of
CLEAN ing, because the peak would decrease and the positional accuracy become worse. This
leads to the alternative of using a deconvolution function that resembles the resized beam only
after summation over all CLEAN components at this position. This function can easily be calcu-
lated analytically.

Unfortunately, this approach is only sensible for well separated point sources but not for
extended emission where the accuracy of positions does not only depend on theS/N but also
on the shape of the dirtymaparound the CLEAN component. Even without noise (and therefore
infinitely small resized beams), CLEAN beam convolution is absolutely necessary for extended
source. This was already shown in the numerical experiments in section 8.9.1, see Figures 8.4
and 8.5.

8.11.3 Size of CLEAN beam from the dirty map

Another more consistent approach is to resize the CLEAN beam according directly to the dirty
map instead of thebeamand use (8.79). With the same formalism as in section 8.6.2, slightly
modified to include the position and the measured visibilities, it is easy to fit a Gaussian to the
dirty map at the peak position directly using the visibilities. Alternatively, the fit can also be
done in the image plane. For separated point sources, this Gaussian would resemble the CLEAN

beam scaled to the peak flux, but can be much more extended for extended sources. In fact, it
can grow without limit which is clearly not very useful in practical mapping procedures. The
beam is fitted to the map only locally and should therefore not become very large only because
the local curvature is small.

It is known from experience that the CLEAN beam fitted to the dirty beam works well in
most cases. Hence, this beam should be taken as a limit for the modified beam. For bright point
sources, the beam should become very compact, and approach the limit of the classical CLEAN

beam for very extended emission. The simplest idea to achieve this, is to add theG matrices for
both beams to obtain the final beam. For circular beams, this is equivalent to

FWHMfinal =
FWHMbeamFWHMmap√
FWHM2

beam+FWHM2
map

, (8.82)

where FWHMbeamstands for the normal CLEAN beam fitted to the dirty beam and FWHMmap

for the beam derived locally from the dirty map. The latter becomes smaller for higher flux
levels. This approach uses approximately the smaller of the two beams, with a smooth transition.
Maybe a correction has to be applied to assure that the final beam is never smaller than any of
the two beams from which it was built. This can be achieved by taking the arithmetical mean
of theG matrices instead of the sum. The expression in equation (8.82) is then modified by a
factor of

√
2.
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8.11.4 Using the mean instead of the best solution

Another idea that might be worthwhile following, is independent from the CLEAN method.
Usually, the goal is to produce thebestmap consistent with the data and subject to some reg-
ularization constraint. Alternatively, one might think of finding themeanof all possible maps,
weighted with their Bayesian probability. If the map is parametrized by the values of all its pix-
els, the probability density for a flat prior would be proportional to e−χ2/2 (see e.g. section 2.8).
This is a multidimensional Gaussian. Hence, the mean would be exactly the same as the min-
imum, because of the symmetry. The method becomes more interesting, if alternative priors
are used. Even very simple approaches, like exponential distributions for non-negative fluxes,
might lead to improved results, when compared with the normal CLEAN solution. We have
already started working on the integration, but the analytical difficulties are considerable.

8.12 Self-calibration and hybrid mapping

The details of preparing and calibrating interferometric data are far beyond the scope of this
thesis. We nevertheless want to touch the topic of self-calibration, because it will be important
for LENSCLEAN later.

To understand the problem, we have to go back to equation (8.6), which tells us how the
visibilities are calculated in the correlator. If we now include possible phase shifts and gain errors
of the atmosphere/receiver system, we can easily calculate how this changes the visibilities.
Writing Ĩ uncal for the uncalibrated visibilities andgi for the complex gain factor of telescopei at
a certain time, we can write

Ĩ uncal
i j = gi g

?
j Ĩi j . (8.83)

Phase and amplitude errors can be caused by the atmosphere and the receiver system. Amplitude
errors are usually only varying slowly, while phases can shift on shorter timescales. With the
observation of reference sources, only the slow variations can be corrected to a certain degree.
For high dynamic range imaging, another method has to be used to reach the theoretical noise
level.

One possible approach is to use only certain combinations of visibilities, which are indepen-
dent of gain errors, the so-called closure phases and amplitudes. One example is the expression

Ĩ uncal
i j Ĩ uncal

jk Ĩ uncal
ki = |gi |

2 |gj |
2 |gk|

2 Ĩi j Ĩ jk Ĩki , (8.84)

whose phase is independent of calibration errors. Unfortunately, all closure quantities are non-
linear combinations of several visibilities, which makes direct mapping very difficult. Fits of
simple models are nevertheless possible.

A better approach is to include the gain corrections explicitly in the calculations and fit both
the brightness modeland the gain factors to the data. For each integration interval,n(n−1)/2
independent complex visibilities are available for an array ofn stations. Then complex gain
factors consist of 2n−1 independent real parameters, because a global phase shift in allgi does
not change anything. Without calibration errors,n(n−1) real equations would be provided by
the data. After (implicitly or explicitly) solving for the gain factors, we are left withn(n−
3)+ 1 real equations to fit the brightness model. Forn� 1, we therefore do not loose much
information in this process. In reality, the situation is even better, because gain factors do not
change arbitrarily fast. Form integrations, the number of visibilities scales withm, but the
number of gain factors scales more weakly.
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The method of fitting the gain factors to a brightness model of the object in question itself
is called ‘self-calibration’, because the data are used to calibrated themselves. Practically, the
complete method works like follows:

• Start with an initial calibration using reference sources or self-calibration with a simple a
priori model.

• Mapping: Build a brightness model from these data with a method like CLEAN, NNLS
or MEM (maximum entropy).

• Self-calibrating: Fit the gain factors numerically to minimize the residuals between model
and measured data. Possible variants include fixing the amplitudes or using a smoothed
version of the best fits.

• Continue with mapping until the changes become insignificant.

In most situations, this mapping/self-calibrating loop converges to a sensible solution. When
convergence is reached, the solution is automatically an optimal fit of the gain factorsandbright-
ness model to the data. For details, see Cornwell & Fomalont (1989, 1999) and Fomalont &
Perley (1999).

Correction of phase errors is equivalent to adaptive optics in optical observations, where
phase shifts are corrected by deforming optical elements of the instrument. The advantage in
radio astronomy is, that the complete data, including the phases, of all stations (corresponding
to different parts of the mirror in optical telescopes) can be recorded electronically. The phase
corrections can thus be applied later in combination with the deconvolution process.
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Chapter 9

L ENSCLEAN

In the last chapter we discussed the reconstruction of arbitrary sources from radio interferometry
data. We now want to modify one of the methods discussed before to adapt it for lensed images.
We will start with a given lens model and try to find the ‘best’ brightness distribution which is
exactly compatible with the given lens model. Secondary results will be a model of the unlensed
source and, much more important for the following step, the residuals itself. We will then vary
the lens model to minimize these residuals. In this way we find the best model for the mass
distribution of the lens which is our main goal. The produced maps of the lensed and unlensed
source are also presented but will not be discussed in detail. They are nevertheless interesting
results that will help in the understanding of radio sources.

Our method of choice, LENSCLEAN, was first proposed by Kochanek & Narayan (1992) and
Ellithorpe, Kochanek & Hewitt (1996). We use a slightly different formalism, which is more
general and covers arbitrary weighting schemes. In contrast to our derivations, the treatment
in the aforementioned publications is only valid for uniform weighting. Surprisingly, several
approximations used in these papers for non-uniform weighting cancel each other, so that our
exact result does not differ from the previous ones in the end.

In the original publication (Kochanek & Narayan, 1992) the computations were done with
a CLEAN map as basis, which was then deconvolved with the CLEAN beam. This introduced
bias effects, which are corrected by the ‘visibility LENSCLEAN ’ method proposed by Ellithorpe
et al. (1996). We follow this approach by doing all the statistics inuv space, where the noise
properties are much better understood than in image space. Image space CLEAN is only used
as approximation foruv space calculations. Corrections for the errors introduced by this are
applied by different means.

Our developments on LENSCLEAN have been done over a long period and improved the
algorithm and the implementation successively, until the quality proved sufficient to use it for
lens model fitting for the system B0218+357. We started with the original algorithm, which
was not successful with our test case B0218+357. The improvements introduced by several
changes of the algorithm were each very small, which made the development difficult. Only the
combination of many modifications improved LENSCLEAN significantly and made it useful for
B0218+357. We do not try to describe this evolution here and omit most of the unsuccessful
blind alleys we reached during this course. To illustrate the effects of the improvements, we use
an artificial reference data set, the details of which will be described later. It was built using the
best LENSCLEAN results for a VLA data set of B0218+357. Comparisons will not be made with
the original algorithm but with the optimal version. This helps in interpreting the properties of
all changes but hides most of the development difficulties. The value of a small improvement is
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always more significant when compared with the optimal algorithm than when compared with a
very imperfect version.

9.1 Previous work

Only a small number of articles has been published about the LENSCLEAN method and results.
The publications mentioned before were for the systems PKS 1830–211 (Kochanek & Narayan,
1992) and MG 0414+0534 and MG 1654+1346 (Ellithorpe et al., 1996).

Chen, Kochanek & Hewitt (1995) used LENSCLEAN with CLEAN maps of the system
MG 1131+0456. They worked with smoothed power-law and de Vaucouleurs models. For the
power-law models, the best exponent isβ = 0.6±0.2, significantly different from isothermal.
The core radius of the best model is very high,rc = 0.′′19± 0.′′007. The large core radius is
required to explain emission close to the lens position which could be interpreted as a central
image. The authors take the result that the best models in factdo produce a central image as
evidence that this interpretation is correct. The same result would, however, be expected if the
observed emission is not a central image but instead caused by the lens galaxy. It would be
interesting to repeat the calculations with subtraction of the central emission. We expect that the
exponentβ would shift in the direction of isothermal models whilerc would become compat-
ible with zero. It is very suspicious that the smallβ can be interpreted as a correction for the
large core radius in the outer regions. Chen et al. (1995) perform such calculations only with a
fixed value ofβ . Without allowing changes ofβ simultaneously withrc, the results are not very
meaningful. It is not surprising, that the best core radius is again very high, because it may be
needed as compensation for the possibly incorrectβ .

The error statistics is calculated in image space and takes into account the regions of different
image multiplicities. We prefer theuv space statistics for different reasons (see section 8.8.2
for a comparison of image space anduv residuals). The expected residuals can be calculated
numerically with mock data sets which consist of noise only. We can thus avoid the rather
arbitrary calculations of the effective number of parameters of the emission models.

Kochanek (1995) presented results of the image plane algorithm for MG 1654+134. Dif-
ferent models (de Vaucouleur, different types of power-law models) are tried. The power-law
models are generally better fits to the data than de Vaucouleur, which is a clear hint for dark
matter in the lensing galaxy. Small values ofβ need relatively large core radii, while isothermal
models are happy with small core radii, even compatible with zero. The best fits are ellipsoidal
almost isothermal models. If the lensing galaxies in MG 1654+134 and MG 1131+0456 are
similar, these results are at least compatible with our aforementioned interpretation of the results
from Chen et al. (1995).

An alternative method to the LENSCLEAN inversion, based on the maximum entropy method
(MEM), was proposed by Wallington, Kochanek & Narayan (1996) under the name LENS-
MEM. This method is complementary to LENSCLEAN in the same sense as MEM is com-
plementary to CLEAN in the unlensed situation. MEM generally works better with smooth
extended emission, while CLEAN is superior for ensembles of point sources. These properties
are easy to understand. MEM and LENSMEM optimize the solution by adding an entropy term
to the residuals. This can be interpreted as a very specific kind of regularization, which is highly
inappropriate for compact sources. The LENSMEM algorithm calculates the residuals in the
image plane, which is equivalent touv space residuals only in certain cases (see section 8.8.2).
Because of this and the expected problems with a system like B0218+357, which is dominated
by two bright point-like images, we prefer LENSCLEAN before LENSMEM.
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9.2 Point sources

We start with the discussion of a lensed point source. Arbitrary sources will later be approxi-
mated by a collection of (very many) such sources at different positions. For a point source at
positionzs with (unlensed) flux densityS, the given lens model predicts the number of images
n, the positions of the imageszk and their (absolute) amplificationsµk. All these parameters,
includingn, depend on the source position. For the given source, we therefore expectn images
with the given positions and apparent flux densitiesSk = µk S. The measured visibilities for this
source would be

Ĩ m(u) = S
n

∑
k=1

µke
2π i u·zk . (9.1)

If the fitting method puts a component at a positionzk, this corresponds to a source com-
ponent atzs. If this source component may be multiply imaged, the method has to include the
other images of the same source component as well. Otherwise, the brightness model would be
incompatible with the given lens model.

9.3 LENSCLEAN in a nutshell

Explained in a short and simplified way, LENSCLEAN works like follows.

• Start with the dirty map and iterate the following loop, just as in standard CLEAN.

– Find the peak1 in the residual map.

– Use the given lens model to determine the positions and amplifications of all images
corresponding to the same source position as the given peak.

– Shift the dirty beam to all these image positions and scale it proportionally to the
amplification.

– Subtract the scaled and shifted beams from the dirty map.

– Add the positions and flux densities to the list of CLEAN components. If needed,
also build a list of components in the source plane.

• Build the CLEAN map from the list of components by adding the CLEAN beam at the
given positions with the given flux densities. This is equivalent to a convolution with the
CLEAN beam.

• Add the final residual map to the CLEAN map, if the residuals are still not negligible.
This last step is only useful if the residuals consist of noise only. Residuals which are
incompatible with the lens model should never be included in the CLEAN map.

The residuals, quantified in an appropriate way, can be used to judge the lens model itself. The
model parameters are then varied to minimize the residuals. In this way the best fitting lens
model is found. We now want to describe the details and give a mathematical justification for
the algorithm.

1This is a very crude simplification. Details will be explained later.
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9.4 The lens model and our test case

The main reason for our LENSCLEAN work was the lens system B0218+357, which was dis-
cussed before. Without LENSCLEAN, it has not been possible to constrain the position of the
galaxy centre with sufficient accuracy to determine the Hubble constant. We therefore devel-
oped a new version of LENSCLEAN, working on the available data for B0218+357. To keep
things simple, most of this work was done with the singular isothermal ellipsoidal potential lens
models (‘SIEP’).

We used these models for two reasons. The first is a practical one; the lens equation can
be inverted analytically for SIEP models (see section 4.5), which greatly reduces the burden of
coding and computation. The numerical LENTIL algorithm, which allows the use of arbitrary
lens models, was developed only after the main work for LENSCLEAN was finished. We will
present some preliminary results for other lens models later.The second reason is the fact that
the main problem of lens models for B0218+357, the unknown lens position, has its full impact
already for this family of models. Effects of more general mass models can only be relatively
small corrections to the SIEP results.

We already discussed the problems with B0218+357 earlier (section 7.6). If we only use the
two compact components as constraints, we have two two-dimensional positions and two flux
densities to constrain the lens models. The position and flux density of the unlensed source have
to be included in the models implicitly or explicitly, so that the compact images can provide only
three effective constraining equations for the mass models. This is true regardless of the method
we use to utilize the constraints. LENSCLEAN without the ring would therefore just as classical
model fitting not be able to determine all five parameters (total mass scaleα0, ellipticity ε, and
the lens centre’s position) of the model. Here the ring comes into play. It provides a number
of additional constraints which make the unique definition of the best lens model possible. The
flux density from the ring is much smaller than from the compact components, however. We
therefore have to take extreme care to avoid any errors or bias effects introduced by the compact
images, because even small residual errors from these could easily dominate the total residuals.
The effects of the ring would then be obscured by numerical noise.

9.5 Strategy to fit lens models for B0218+357

Numerical noise and bias effects, which were still very strong in the original LENSCLEAN al-
gorithm, made it impossible to perform a straightforward fit of all five model parameters simul-
taneously. The three constraints from the compact images are so strong compared to the ones
from the ring, that the eigenvalues of the curvature matrix of the residual function have very
different orders of magnitude. In other words the residual function has very narrow valleys in
the five-dimensional parameter space. In two directions, the gradients are very steep, while they
are shallower by several orders of magnitude in other directions. This, in combination with the
fact that these valleys are not straight but curved, poses extreme difficulties for any minimiza-
tion algorithm. Even very small numerical noise can be much stronger than the shallow slopes
locally, making it impossible to follow the curved valleys to finally find the global minimum.
For most calculations we used the downhill-simplex minimization algorithm (Press et al., 1992).
More sophisticated methods like Powell’s algorithm do not work well with LENSCLEAN resid-
uals because of the numerical noise. Downhill-simplex is quite robust and proved to be at least
as efficient and reliable as other methods in our case.

To overcome the difficulties, a very primitive but powerful approach was used. We scanned



9.6. TESTS OF DIFFERENT L ENSCLEAN VARIANTS 135

the plane of possible lens centre positionsz0 with a regular grid and performed fits of the other
parameters for all these positions. In the LENSCLEAN model fitting, thez0 are fixed, so that
only three parameters have to be determined by LENSCLEAN. The information from the bright
compact images alone is sufficient to constrain these parameters very well, so that the minimiza-
tion algorithm now has much less problems to find the minimum. Interpreted in the picture of
finding the lowest point of a narrow and curved valley, we perform cuts through the valley. We
can then easily find the centre in each of these cuts. Later we plot the values of all this central
points to find the globally lowest point.

The plots of residuals of the best fitting lens models for different centre positions proved to
be valuable not only for finding the global minimum, but also to detect numerical difficulties and
other fundamental problems. A two-dimensional plot provides much more information than its
minimum alone.

The disadvantage of this method is obvious; we have to perform LENSCLEAN fits for
eachz0, which typically means some 100 fits for each plot, each fit taking about 100 itera-
tions of LENSCLEAN, each iteration with several thousand CLEAN loops or up to about 108

LENSCLEAN loops for one plot. Each of these loops is much more costly than a non-lensed
CLEAN loop, one taking approximately 0.1 sec. In one example, we needed 41 days of CPU
time on modern PCs (Intel Pentium II-III with 200–800 MHz) to produce one plot of 212 points
with about 70 iterations and 2000 LENSCLEAN loops each.

Very many of such plots as well as other calculations had to be done, mainly to improve the
algorithm and perform extensive tests of all its aspects. In total ca. 14 years of CPU time have
been used. Almost all of the calculations were done on normal PCs. Parallelization was easy for
most of the calculations, so that up to about 30 PCs at a time could be used for one run. This
use of normal PCs, mainly during the night time or in otherwise idle periods, provided enough
flexibility to do all the development work. With the finished algorithm, final ‘production runs’
should better be done on faster machines. For these runs, it does not matter if the jobs have to
be queued for several days before execution, which would be deadly in the development phase.

9.6 Tests of different LENSCLEAN variants

To study the effects of several LENSCLEAN modifications, we produced an artificial data set with
similar properties as the 15 GHz VLA data set (Stokes LL part). It was built from an emission
model which is the result of LENSCLEAN ing the real data with one of the best lens models. The
lens model parameters are the following:

z0 =
(
0.′′264174,0.′′121697

)
(9.2)

α0 = 0.′′158213 (9.3)

ε = (−0.009231,−0.083508) (9.4)

One version of the data set was used directly, while Gaussian noise with the same properties as
in the real data was added to the second version. No calibration errors were included for most
of the calculations.

To keep the numerical effort reasonable, only a one-dimensional family of lens models was
tested with this data set. Comparison of the results is also easier with one-dimensional curves
than with two-dimensional maps. The lens centres of this models were chosen to be located on
a straight line connecting the best fitting spherical model from equation (9.21)–(9.23) and the
correct model (9.2). The range was extended in both directions beyond these two models. We



136 CHAPTER 9. LENSCLEAN

Figure 9.1: Residuals for the test data set. (a) and (b) (top) show uniformly weighted results
for the fitted models (5000 iterations), (c) and (d) (bottom) are naturally weighted residuals
for the same lens models (10000+5000 iterations). (a) and (c) (left) are direct plots. The
positions for the fits are marked by dots. (b) and (d) (right) are a smoothed/interpolated
version of the same data with contour lines (confidence limits of 0.1,1,2,3, . . . ·σ ). The
straight line marks the one-dimensional family of lens models used for the numerical tests.
The circle marks the correct model.

then performed a complete LENSCLEAN lens model fit of the other parameters for 128 positions
on this line. The best version of LENSCLEAN as described later was used for this purpose.

Figure 9.1 shows a two-dimensional map of residuals with the one-dimensional family of
models and the correct lens model marked. The smoothed version was calculated by performing
a local quadratic fit. This was done by fitting a quadratic polynomial to the complete data set
with Gaussian weights depending on the distance to the position for which the interpolation is
calculated. The Gaussian’sσ was chosen as the radius of the smallest circle which encloses at
least 6 data points. 6 is the number of parameters of the quadratic form. This form of smoothing
proved to be superior to other approaches, especially to global polynomial fits. Any kind of
simple convolution smoothing would smear the minimum. This is not the case for the local
quadratic fit.

With uniform weighting, the minimum of residuals is displaced from the correct lens model
by about 2.5mas. This is the remaining error of even the best LENSCLEAN variant. On the line
of test models, the minimum is located more or less at the correct model.
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Figure 9.2: Lens models for the numerical tests of different LENSCLEAN variants.x0 was
used as independent variable,z0 is located on a straight line. The parametersα0 andε were
fitted for eachz0 to minimize the residuals. Dots show these fits, lines show a smoothed
interpolation. The two are indistinguishable in these plots. The vertical lines mark the
spherical (left) and correct (right) model.

With natural weighting (LENSCLEAN performed with 10 000 uniformly weighted iterations
followed by another 5000 with natural weighting), the error is slightly larger, ca. 3.5mas.

The residuals as well as the model parameters are rather smooth functions ofx0, which was
used as independent variable. To prevent the remaining fluctuations from affecting the results,
we also calculated a smoothed version of the model parameters (see Figure 9.2). A local cubic fit
was used for this purpose2. With modified LENSCLEAN versions, we then calculated residuals
for these fixed models. In this way, we could avoid very expensive complete LENSCLEAN fits for
each test. Of course, this approach relies on the assumption, that the LENSCLEAN version used
to determine the models is close to optimal. Extensive numerical tests with real and artificial
data confirm this assumption.

The fits were performed with 5000 iterations and uniform weighting. To illustrate the effect
of smoothing the lens model parameters, we also calculated residuals with exactly the same
LENSCLEAN algorithm as in the fits but with the smoothed lens models. This was done with
uniform weighting for 10 000 iterations before switching to natural weighting and performing
another 5000 iterations. Figure 9.3 shows the residuals for the fits and for the smoothed models.

The most prominent feature in the residual plots is the minimum very close to the correct

2Numerically, we performed a global cubic fit to the data for eachx0 position with Gaussian weights for all data
points. A Gaussianσ of 2mas was used.
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Figure 9.3: LENSCLEAN residuals for the test models, calculated with the optimal
LENSCLEAN version and noiseless data (logarithmic). The nearly spherical models are
shown magnified in the bottom panels. The maximalε in this range is very small (ca. 0.004).
The vertical lines mark the spherical (left) and correct (right) model.

model. The accuracy inx0 is much better than 1 mas. The difference between the residuals of
the fits and the residuals for the smoothed parameters is small and (most important) shows no
systematic effect near the minimum. The minimum becomes more prominent for more itera-
tions. Qualitatively, the behaviour is the same for natural and uniform weighting, apart from a
decline for very highx0 with natural weighting.

We also notice strange peaks near the spherical model. For models very close to the spherical
case, the residuals are much higher than for more elliptical models. After more iterations the
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effect becomes more prominent, but the region in which the results are affected becomes smaller.
This behaviour is suspicious, because spherical models are more simple than elliptical ones. We
would therefore prefer to trust the results for spherical models and interpret the lower residuals
for other models as an artifact of the algorithm. This simple picture is not correct, however. We
will see later in section 9.13 that an amplification limit is responsible for this behaviour. Without
the limit, the strange peak disappears, but the residuals become slightly more noisy then.

10-5
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10-3

0.2638 0.2640 0.2642 0.2644 0.2646
x0

R2 (noiseless)

fit
fixed parameters

Figure 9.4: LENSCLEAN residuals for the test models with fixed parametersα andε cal-
culated for noiseless data. The result for the fitted parameters is also shown for comparison
(see Fig. 9.3). The vertical line marks the correct model. Note the highly magnified scale
of x0.

The residuals in Figure 9.3 are mainly determined by the ring, because the two compact
components can always be fitted exactly. The accuracy of LENSCLEAN, of the order a few
mas is impressive, given the low resolution of the data (ca. 90mas) and the absence of sharp
features in the ring. To illustrate the potentially even higher accuracy in the presence of compact
emission, we present results for the same lens centres with the other parameters (α andε) fixed
in Figure 9.4. With these lens models, the two compact bright components themselves also
contribute to the residuals and produce a very sharp minimum. The accuracy in this case is
about 0.01mas in the noiseless as well as in the noisy case.

The effect of noise can be seen in Figure 9.5, which was calculated with the same lens models
but with noisyuv data. We notice that the uniformly weighted residuals with enough iterations
show the same behaviour as in the noiseless case. The minimum is still very well defined and
located at the same correct position. The direct comparison with the shifted noiseless residuals
for 5000 iterations shows that the slope of the curve becomes steeper in the noisy case, which
appears unnatural at first sight. Naively, we expect deeper minima without noise. A possible
explanation is, that the efficiency of LENSCLEAN is reduced by noise, and this effect is stronger
for incorrect lens models where many more iterations are needed to achieve a low residual level.

For natural weighting, we notice a significant shift of the minimum in the one-dimensional
cut. This is mainly due to the change of shape in Figure 9.1. In this plot, we see that the
confidence region shrinks quite drastically in one direction for natural weighting, while it is
more or less unaffected in the other direction, which is more important forH0, see Figure 7.8
on page 82. Other numerical experiments showed that uniform weighting is generally superior
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Figure 9.5: LENSCLEAN residuals for the test models, calculated with the optimal
LENSCLEAN version and noisy data (5000 iterations, uniform weighting). A shifted version
of the noiseless case is included for comparison. The ‘noise only’ curve was calculated with
a data set consisting of noise only without a signal. The vertical lines mark the spherical
(left) and correct (right) model.

to natural weighting regarding the accuracy of determined lens models. The formal statistical
errors may be smaller for natural weighting, but possible bias effects are often larger. In some
cases, they can then dominate the errors, making formal statistical error measures meaningless.
To some extent, this can even be seen in Figure 9.1. For uniform weighting, the true error is well
inside the 1σ -limit, while it is almost at the 2σ -limit for natural weighting. The true error is
slightly smaller for uniform weighting in this case.

With changing lens model parameters, the effective number of emission parameters will
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generally change as well, because the regions of different image multiplicities depend on the
lens model. Singly imaged regions leave more freedom for the emission model than multiply
imaged regions. The limit of maximal freedom is reached with no lens at all. To estimate the
bias effects from the varying effective number of model components, we included results for a
noise only data set in Figure 9.5. For very many iterations, these residuals are surprisingly larger
than the total ones near the correct model. This is an effect of the non-linearity of LENSCLEAN.
The slope of the noise only curve is shallow enough to be neglected in the determination of the
best fit. A correction can to first order be applied by subtracting the noise-only residuals from
the real residuals. The shift inx0 would be smaller than 1 mas.

9.7 Accuracy

With natural weighting, the accuracy of the results can be estimated easily, using the results from
section 2.7. The fit ofM parameters leads to a residual minimum lower by∆χ2 than the residuals
for the correct lens model. The difference∆χ2 follows aχ2-distribution withν = M, which has
a mean ofM and a variance of 2M. For the normalized residuals, the expected difference is
M/N. Our data have 104007 good complex visibilities, which meansN = 208014. For the
lens centre’s position, the relevant parameters arex0 andy0, which meansM = 2. The other
parameters are not relevant for the residual difference here (see section 2.7). The limiting values
for the 68.4%, 95.4%, and 99.73% confidence intervals (corresponding to 1, 2, and 3σ of a
Gaussian distribution) forM = 2 are∆χ2 = 2.30, 6.17, and 11.8.

We show the confidence limits for our test data set in Figure 9.6. Please note thaty0 is
not the optimal one but chosen to be located on a straight line. We merely present this plot to
give a crude estimate of the accuracy. The error limits of the real results will be discussed in
section 9.21.2.

For uniform weighting, we use the approximation explained in section 2.5, especially equa-
tion (2.67). We simply scale the expected residual differences∆χ2 from above with the ex-
pected∆R2/R2 for one parameter, which in the case of our data set is 3.355·10−5 (compared
with ∆χ2/χ2 = 1/N = 4.807·10−6). We note that the real error is much smaller for uniform
weighting, whereas the expected errors are smaller for natural weighting. For natural weighting,
the true error is at the 1σ limit. For uniform weighting, it is much smaller than the expected
error. This might indicate that the error limit estimate for uniform weighting is too conservative.
This is, of course, small number statistics of the worst kind (n = 1).

Monte Carlo simulations were used to count the effective number of parameters of the emis-
sion model. We performed 100 LENSCLEAN runs with the (fixed) correct lens model and the
artificial uv data set with different noise realizations. We compared the residualsχ2

0 for the true
emission model, as it was used in building the data set, and the resulting LENSCLEAN residuals
(5000 iterations for uniform, 10000+ 5000 iterations for natural weighting). The result of the
former isχ̄2

0 = 0.9982, the expected value is̄χ2
0 = 1±0.003. The mean difference of∆χ2 = 416

correspondstoM = 416 parameters for the emission model. The expected scatter of this value is
then 28.8, almost equal to the numerical value of 29.2. This confirms that LENSCLEAN residuals
have the same statistical properties as real fits of the emission model.

If we assume that the number of free parametersM can be approximated by the number of
beams filling the total map area, the diameter of these beams would be about 71mas, which is
smaller than the FWHM of even the uniformly weighted beam (about 83mas) but of the same
order of magnitude.

The uniformly weighted residuals arēR2 = 1.0047±0.0084 (mean and RMS scatter) com-
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Figure 9.6: LENSCLEAN residuals for the test models, calculated with the optimal
LENSCLEAN version and noisy data. The upper plot is uniformly weighted (5000 itera-
tions), the lower one naturally (15 000 iterations in total). Error limits (1, 2, 3σ ) are in-
cluded in both plots, the limits for uniform weighting are estimates. The vertical line marks
the correct model.

pared to the theoretical expectation ofR̄2 = 1±0.0091. The numerical result for the difference
is ∆R̄2 = 0.0179±0.0023. This is in moderately good agreement with the approximated expec-
tation of∆R̄2 = 0.014 fromM = 416 with equation (2.67).

As expected,χ2
0 and∆χ2 are uncorrelated for natural weighting. For uniform weighting,

there is a significant correlation betweenR2
0 and∆R2.

9.8 The original LENSCLEAN component selection

In unlensed CLEAN, the next component to subtract is always the peak in the residual dirty
map. We have to generalize this selection scheme for the lensed case. To do this, we go back
to the mathematical foundations of standard CLEAN (section 8.8.4) and try to apply the same
concept for lensed sources. The idea in standard CLEAN was to select as next component the
one which minimizes the residualsin this stepand multiply the optimal flux with a small loop
gainγ (section 8.8.3) to stabilize the algorithm and improve the resulting maps.

Analogously to (8.56), we calculate the residuals after the subtraction of a source component
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as described in section 9.2.
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wj Ĩ j

n

∑
k=1

e−2π i uj ·zk +S2 ∑
j

wj

∣∣∣∣∣ n

∑
k=1

e2π i uj ·zk

∣∣∣∣∣
2

(9.6)

We can split this in the constant and variable parts:

R2 = R2
0−∑wj ∆R2 (9.7)

R2
0 = ∑

j

wj |Ĩ j |
2 (9.8)

∆R2 = 2S
n

∑
k=1

µkIk−S2
n

∑
k=1

n

∑
k′=1

µkµk′Bkk′ (9.9)

Here we used the definitions

Ik = ID(zk) , (9.10)

Bkk′ = B(zk−zk′) (9.11)

for the dirty map and dirty beam. Please remember thatn as well as thezk andµk depend on the
source position. For givenzs, the optimal source plane flux is

S=

n

∑
k=1

µkIk

n

∑
k=1

n

∑
k′=1

µkµk′Bkk′

, (9.12)

with resulting residual difference

∆R2 =

(
n

∑
k=1

µkIk

)2

n

∑
k=1

n

∑
k′=1

µkµk′Bkk′

. (9.13)

The positionzs now has to be chosen in a way to maximize∆R2. This is the generalization of
finding the peak in the dirty map, which is used in standard CLEAN. If we apply a loop gainγ
to the optimal fluxS, the residual reduction in (9.9) scales with a factorγ(2− γ).

LENSCLEAN now continues by subtracting the shifted beam at all positionszk simultane-
ously with flux densitiesγ µkS. In contrast to standard CLEAN, the image plane residuals do
not usually converge to zero, because an exact fit will not always be possible. Several stopping
criteria for the algorithm have been discussed. The most simple one, which we regularly use, is
a constant number of iterations. A limiting value for∆R2 or other criteria can also be used.

9.9 Unbiased LENSCLEAN

The recipe of the last section can be used to find one of the best fitting solutions and determine
the residuals, if very many iterations can be performed. There are, however, several problems
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with this approach. First, some regions of the lens plane are CLEANed with higher priorities
than others, depending on the lens model. This certainly leads to bias effects, when compared
to unlensed CLEAN results with the same data. In some cases, they may improve the results and
are thus advantageous, but usually they deteriorate the produced maps significantly.

Another aspect, which is even more important in our context, is the fact that CLEAN and
LENSCLEAN usually converge extremely slowly in the later stages (remember the numerical ex-
periments of section 8.9.1). We therefore have to worry, if the remaining residuals after stopping
the CLEAN ing, say after a fixed number of iterations, are really representative for the residuals
of the converged result. We later want to use these residuals to judge the ability of the lens
model itself to fit the data and have to assure that this can be done reliably with the numerically
calculated residuals. The residuals depend only very weakly on the lens model parameters, and
even weak bias effects have to be avoided.

To improve the selection of CLEAN component positions and fluxes, we try to achieve equal
reductions of the residuals for equivalent lens models in each step. We can then be sure that,
after a fixed number of iterations, equivalent lens models lead to the same residuals. This can
not be done for arbitrary lens models and source brightness distributions in a simple way. Since
compact emissions are CLEANed away very quickly and most bias problems we encountered
in our work were related to more or less smooth extended emission, we will concentrate on the
latter.

The most simple source in this context consists of a constant surface brightnessI in the
region of interest. As lensing conserves surface brightness,all lens models are equivalent in
this case. This includes the case of no lens at all. The residual reduction in one iteration can
then be calculated following (9.13). It depends on the dirty beam and (via the image positions
and amplifications) on the lens model and the source component position. To understand this
dependence better, we can approximate∆R2 for well separated images, for which the dirty beams
do not overlap significantly andBkk′ ≈ δkk′ . If the amplifications of then images are furthermore
all equal, the residual reduction is

∆R2 ≈ γ(2− γ)nI , (9.14)

if we include a loop gainγ. In this case LENSCLEAN will preferably remove images of higher
multiplicities to reduce the residuals more quickly. Since the success of CLEAN relies on the
uniformity of component selection, the resulting maps will not only be worse than without a lens,
but they will also depend on the lens model parameters, even though all models are equivalent.
Even more important for us is the fact that the residuals will depend on the lens model. They are
therefore no good measure for the goodness of fit of the lens model itself. This problem made it
impossible to obtain useful results for B0218+357 with the originally published LENSCLEAN.
We call this old version ‘KNE-LENSCLEAN ’ from now on (standing for the authors of Kochanek
& Narayan, 1992 and Ellithorpe et al., 1996).

We tried several methods to correct for this bias effects. The most simple idea was to adjust
the loop gainγ to correct for the factorn in equation (9.14). The best solution so far exactly
corrects for the lens model dependence for constantI . This is done by applying a correction
factor to∆R2 which only depends on the lens model and image position, but not on the residual
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map:
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Here we have applied a factorg that plays the role of a loop gain. We now have to adjust the
source plane fluxS to achieve exactly this∆R2

corr after subtracting the components withγµkS.
Since the residuals are quadratic inS, two solutions are possible. We choose the smaller one
which converges to zero ifg gets very small.

Scorr = γ S (9.17)
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This expression cannot be interpreted easily. Because CLEAN works best for small loop gains
anyway, we also want to present the limiting case for smallg:
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The last expression has a simple interpretation; the source plane flux is a weighted (withµ2
k )

mean of the individual source plane fluxesIk/µk scaled with the loop gain factor. This method to
reduce the bias effects is a rigorous and uniquely defined choice for constant surface brightness
sources. In other cases it should at least reduce the errors and seems to be the optimal way to
handle this problem in the framework of LENSCLEAN. Please note that both manifestations of
the bias problem are corrected by the adaptive loop gain: the uneven CLEAN ing and the biased
residuals.

Another derivation of the same component selection scheme can be obtained by using the
subtraction of a fixed small total flux density in the lens plane. The optimal position is then the
same as in the maximum of equation (9.16). The source plane flux is then given by the fixed lens
plane total flux divided by the sum of amplifications. The adaptive loop gainγ for this approach
differs from our unbiased method, of course.
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9.9.1 Effects on the quality of maps

To test the effect on the quality of the produced maps, we performed tests with a noiseless ar-
tificial data set. For the lens, we used a SIEP model without external shear. It is centred on
z0 = (0,0) and hasα0 = 0.158 andε = (−0.009,−0.084), which is very similar to the best
LENSCLEAN models for B0218+357. For the source, we used a constant surface brightness
disc aroundz0 with radius 80mas to produce a wide smooth ring. For the numerical calcula-
tions, the disc was approximated by about 5000 components, leading to about 12 000 lens plane
components. We performed runs with 5000 LENSCLEAN iterations and a gain ofγ = 0.05 for
KNE-LENSCLEAN andg = 0.2 for the unbiased algorithm. These values are equivalent for
n = 2 equally bright and well separated images, cf. (9.20). Theuv coverage and weights were
taken from the 15 GHz VLA data set.

Figure 9.7 shows the image multiplicities (number of images corresponding to the same
source position), the bias factor, which is the reciprocal of the correction factor in (9.15), the am-
plification of the images, and the sum of amplifications for all images corresponding to the same
source position. We see that KNE-LENSCLEAN especially favours CLEAN ing in the quadruple
image regions.

Figures 9.8 and 9.9 (page 148 and 149) show the∆R2 and squared residual map after 0,
200, 1000, and 5000 iterations with the noiseless artificial data set. We realize that∆R2 is
initially dominated by the bias factor (compare with Figure 9.7b). The quadruply imaged region
is preferably CLEANed, leading to a negative imprint of the bias factor on the residual map after
200 iterations. This shape is still noticeable at later stages. The non-uniform CLEAN ing can
potentially deteriorate the result at the end.

Results of analogous calculations are shown for our new unbiased LENSCLEAN technique
in Figures 9.10 and 9.11 (page 150 and 151). The CLEAN ing is much more uniform now. Hints
of effects of the lens model are only noticeable at later stages at a far smaller residual level.

The results for the final CLEAN map are compared in Figure 9.12 on page 152. We present
the real model which was used to build the artificialuv data set, a non-lensed CLEAN result
produced with DIFMAP with 10 000 iterations andγ = 0.05 to achieve a residual level very
similar to the LENSCLEAN results, and finally the results from KNE-LENSCLEAN and the
unbiased modification. The latter is a far better approximation to the true model, as can be
seen by the smaller residuals in the background. Surprisingly, the unlensed CLEAN map is
even slightly superior to the best LENSCLEAN result in this case. One should keep in mind,
however, that all residuals seen in Figure 9.12 are very small and would be hidden in the noise
in most cases. The bias effects in standard LENSCLEAN are therefore not a major problem for
the produced maps. The more important effect on the fitted lens model will be investigated next.

9.9.2 Effects on the residuals

The main goal in this work is to use LENSCLEAN to constrain mass models of gravitational
lenses. To be able to judge the goodness of fit of the lens model, we have to calculate mean-
ingful residuals. The final residuals after convergence of LENSCLEAN are not affected by the
bias effect and could therefore be used to find the best model. Unfortunately, convergence is
extremely slow, and small bias effects on the rate of residual decline are a matter of concern. If
we stop the iteration after a fixed number of loops or use any other simple stopping criterion, the
residual differences can be dominated by the bias effect.

To compare our unbiased LENSCLEAN with the KNE algorithm, we use the models from
section 9.6. The results presented there were calculated with the best version of unbiased
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Figure 9.7: Data for the test lens model, which is very similar to the best model for
B0218+357. (a) image multiplicities, (b) the bias factor in standard LENSCLEAN, (c) ampli-
fication, (d) sum of amplifications of all images corresponding to the same source position.
Only pixels with amplifications less than 100 were used. The pixels near the critical curve
are the ones rejected by this criterion.

LENSCLEAN. Residuals calculated for the same lens models but with KNE-LENSCLEAN are
shown in Figure 9.13 and 9.14 on page 153 and 154.

In the noiseless case, three effects are visible for the old algorithm. First, the residuals are
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Figure 9.8: Progress in a typical KNE-LENSCLEAN run. The left side shows∆R2, the
right side the squared residual dirty map. Top: before the first iteration, bottom: after 200
iterations.

much higher even for a large number of iterations. Second, the minimum shows a small but
nevertheless significant shift. The KNE-LENSCLEAN method is therefore not able to recover
the correct lens model with the same accuracy as unbiased LENSCLEAN. This effect would be
shown even stronger in a true lens model fit with the KNE algorithm. Finally, the curve shows
bad fluctuations near the peak of the spherical models. Even far from the peak, the curve is
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Figure 9.9: Progress in a typical KNE-LENSCLEAN run. The left side shows∆R2, the
right side the squared residual dirty map. Top: after 1000, bottom: after 5000 iterations.

much more bumpy than the unbiased one. For very symmetrical lenses, this makes a reliable
fit impossible, because the minimization routine would get stuck at one of the local minima.
The plots show only a one dimensional cut through the five-dimensional parameter space of
the residual function. In the complete space, the fluctuations would be even more harmful.
Qualitatively the same effects are visible in the results for noisy data (Figure 9.14).
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Figure 9.10: Progress in a typical unbiased LENSCLEAN run. The left side shows∆R2, the
right side the squared residual dirty map. Top: before the first iteration, bottom: after 200
iterations.

We mentioned before that both variants of LENSCLEAN should lead to the same results in
the limit of convergence. Even a few thousand iterations are difficult to perform for fits because
of the huge amount of CPU time needed. To get a feeling of the numerical behaviour for very
many iterations, we calculated residuals for up to 106 iterations for two lens models with both
variants. The results in Figure 9.15 (page 155) show that the residuals decrease much faster



9.9. UNBIASED L ENSCLEAN 151

Figure 9.11: Progress in a typical unbiased LENSCLEAN run. The left side shows∆R2, the
right side the squared residual dirty map. Top: after 1000, bottom: after 5000 iterations

.

with the unbiased algorithm than with KNE-LENSCLEAN. For an incorrect lens model, both
results become very similar from about 10 000 iterations on. For the correct model, on the other
hand, the difference is very significant. To reach the level of unbiased LENSCLEAN with 5000
iterations (R2 = 2.7·10−6), the classical KNE algorithm needs about 240 000 iterations!
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Figure 9.12: Comparisons of the final CLEAN maps. (a) The true model data set (ideal
solution), (b) CLEAN map produced with DIFMAP, (c) KNE-LENSCLEAN, (d) our new
unbiased LENSCLEAN method

The simulations were calculated withγ = 0.1 for KNE, g= 0.38 for unbiased LENSCLEAN

andγ = 0.21 for CLEAN without a lens. These gains are equivalent in the case of two equally
bright and well separated images, leading to very similar residuals in the beginning. The appear-
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Figure 9.13: LENSCLEAN residuals for the test models, calculated with the KNE (biased)
LENSCLEAN version (solid lines) and noiseless data (logarithmic). The unbiased results
are shown dashed for comparison. The nearly spherical models are shown magnified in the
bottom panels. The vertical lines mark the spherical (left) and correct (right) model.

ance of the double-logarithmic plot would not change considerably with different gains.

The peak near spherical models and the numerical problems of the KNE-algorithm near this
peak are not of real concern here, because the best model is sufficiently far away to be influenced
only insignificantly. For systems with very small real ellipticities, more serious problems have
to be expected. To investigate this subject, we built another artificial data set as before, this time
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Figure 9.14: LENSCLEAN residuals for the test models, calculated with the KNE (biased)
LENSCLEAN version (solid lines) and noisy data. The unbiased results are shown dashed
for comparison. The vertical lines mark the spherical (left) and correct (right) model.

using the best fitting spherical lens model which has the following parameters:

z0 =
(
0.′′245489,0.′′100476

)
(9.21)

α0 = 0.′′167418 (9.22)

ε = 0 (9.23)

With these data, we again fitted the parametersα0 andε, usingz0 on a straight line as before.
The fit was performed with noiseless data. We then smoothed the parameter functions as before
and recalculated the residuals for these models, using noiseless and noisy data and both variants
of LENSCLEAN. Some of the results are shown in Figure 9.16 on page 156.

In the noiseless case, the minimum of the residuals is very close to the correct position with
unbiased LENSCLEAN. The peak for spherical models has vanished, but the residual function
still is more noisy in this region than for elliptical models. We also note relatively low residuals
for larger x0 which are probably a result of the data set which was built from the real data.
The real data are best fitted with elliptical models lying exactly in this region. Bias effects are
therefore not unexpected. The curve for the KNE-algorithm has strong discontinuities near the
correct model and shows no nicely defined parabolic minimum at all.

With the noisy data, strange effects become apparent. The global minimum now jumps to
very elliptical models close to the best results for B0218+357. This is not an effect of the noisy
alone. In Figure 9.16 we also show residuals for a data set consisting of noisy only (exactly
the same noise as in the data+noise set). This curve has a peak near spherical models, but does
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Figure 9.15: Residuals for up to 106 LENSCLEAN iterations for the correct model (two
thick dashed lines) and for an alternative model from the one dimensional family used
before (x0 = 0.254, two thin dashed/dotted lines). The unbiased LENSCLEAN variant is by
far superior to KNE-LENSCLEAN for the correct model and in discriminating between the
models. CLEAN without a lens is also included for comparison (solid line). The noiseless
artificial data set was used for this simulation.

not decrease as strong for largerx0 as the other data set. Even more confusing is the fact that
the residuals are larger for noise only than for the complete data set for some ranges ofx0.
The contributions from noise and signal seem to combine in a strange and non-linear way. As
the noise is statistically independent from the signal, we expect additivity of the contributions
in the limit of convergence. Unfortunately, LENSCLEAN converges much too slow to test this
hypothesis. This problem therefore has to wait for a direct algebraic deconvolution method to
be solved. For the moment, we should keep in mind possible problems with all variants of
LENSCLEAN for nearly spherical lenses.

9.10 Working in the lens plane

A regular grid in the source plane is not an appropriate approach for possible emission compo-
nents because of the non-homogeneous magnification effects of the lens. Near the caustics, the
magnification is very high (infinite in the limit) and the grid would have to be very dense.

We used a regular grid in the lens plane to overcome this difficulty. The resolution is then the
same for the whole map, just as in the measured data. For each pixel, the corresponding source
position can be calculated from the lens equation. The other solutions of the lens equation are
the secondary images which are normally not located exactly on the grid. The multiply imaged
regions of the source plane are also multiply mapped with this approach, which introduces some
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Figure 9.16: LENSCLEAN residuals for the spherical test data set, calculated with 5000
iterations and uniform weighting. (a) noiseless, (b) noisy, unbiased LENSCLEAN (including
a noise only result), (c) noisy, KNE-LENSCLEAN (including a noise only result). The
vertical line marks the spherical model used to build the data set.

computational overhead. An adaptive grid in the source plane would be more efficient but is
conceptually more complicated. It may be tried in the future.

With non-lensed CLEAN, the grid must be fine enough to sample the image plane with the
Nyquist frequency. Even finer grids are superior for very bright and compact components. For
LENSCLEAN, the grid must also be sufficiently fine to resolve all features of the lens model, i.e.
the critical curves and amplification gradients. As usual, there is a trade-off between the accuracy
of the calculations and the numerical effort. For our B0218+357 data, we used a standard pixel
size of 5 mas and a map size of 512×512 pixels3. Only the central quarter of this field can be

3Nyquist sampling requires only a pixel size five times larger than this, ca. 25 mas.
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used for CLEAN components, because of the limited size of the dirty beam. This active area has
a size of 1.′′28×1.′′28 and is large enough to cover the emission of the ring, but does not include
the outer parts of the jet. These outer parts do not provide information about the lens model,
because they are only singly imaged.

9.11 Continuous fits of the compact components

The gridding, which is used in CLEAN and LENSCLEAN, can cause serious numerical problems.
Most of these are greatly reduced by the modifications of LENSCLEAN that are discussed below.
The remaining errors can still be of concern, however. The problem is not so much the shift of
the minimum of residuals but the bumps in the residual function, which produce many local
minima. The algorithm to find the best model can easily be fooled by these local minima and
produce incorrect results.

With B0218+357, most of this numerical noise is caused by the two bright compact compo-
nents, which are much stronger than the ring. Therefore, the noise can be reduced by removing
these compact components with a continuous algorithm. We do this by starting with one grid-
less LENSCLEAN step with a very high loop gain to remove the compact components almost
completely. To determine the best position and flux for this first step, we use a direct Fourier
transform to calculate samples of the dirty map and beam at arbitrary positions. A numerical al-
gorithm is then used to optimize the positions. This first pair of components must be subtracted
from the ungridded visibilities to avoid gridding errors.
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Figure 9.17: LENSCLEAN with and without the first continuous step (5000 iterations, uni-
form weighting). The vertical lines mark the correct lens model.
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The compact components are more or less point-like and can therefore be removed in one
step with a high gain. We use a loop gain ofγ = 0.98 for the VLA data set and 0.95 with
the MERLIN data (see section 9.22). With this gain, we avoid removing parts of the ring with
this first LENSCLEAN step. Numerical experiments show that this is the optimal approach.
Figure 9.17 compares the results with and without the first continuous step. The bumps in
the residual curves are greatly reduced by the modification and the minimum becomes more
prominent.

Experiments with the real data set showed the same behaviour. The improvement is therefore
not an artifact of using one algorithm with the artificial data produced with the other one.

9.12 The inclusion of negative components

Real radio sources are not expected to have components with negative fluxes. One might there-
fore try to reduce the freedom of the models by imposing a non-negativity constraint. This can be
done in a natural way in algebraic deconvolution with the NNLS method. CLEAN itself can be
modified by allowing only positive components. Unfortunately, this non-negative CLEAN does
not find an optimal non-negative solution of the deconvolution problem (see section 8.10.6).

With non-lensed CLEAN, negative components are sometimes needed to represent compact
components which are not located exactly on grid points. With LENSCLEAN, these negative and
positive components are then mapped into the source plane differently. Especially in regions of
large amplification gradients, this is a problem. The combination of components might describe
the data very well, but the structures in the source plane can become unphysical and be a very
bad representation of the real source structure.

The best way to avoid this would be a real lensed NNLS version. This approach is, however,
numerically very problematic as we will discuss in section 9.23.3. For the moment, we have
to use variants of LENSCLEAN. Extensive numerical experiments have shown that the non-
negativity constraint can in some cases improve the sensitivity of LENSCLEAN in the sense of
more significant differences between the residuals of correct and incorrect lens models. In other
cases, the constraint introduces serious bias effects and produces bumps in the residuals function.
For the final modelling, we used the unconstrained version for this reason.

We compare LENSCLEAN runs with and without including negative components in Fig-
ure 9.18. We see that a small but significant shift of the minimum and an asymmetry of the
curve is introduced by the non-negativity constraint. This is due to the fact that LENSCLEAN

cannot be used to find the best non-negative solution.

9.13 Amplification limits

The gridding in the lens plane leads to discontinuities of the residual function. Especially pixels
with very high amplification can produce significant jumps for values of model parameters where
they appear or vanish. To smoothen the residual function, it sometimes helps to exclude all
pixels with amplifications above a certain limit. We used a limit of 100 and excluded not only
the pixels themselves but also ones for which thesecondaryimages have amplifications above
the limit. In the case of the B0218+357 data, the residual function does not change very much
near the minimum. The limit thus reduces numerical problems without altering the results. A
disadvantage of excluding high amplifications arises when real compact emission is present in
these areas. This does not seem to be the case for B0218+357.
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Figure 9.18: The reference version of LENSCLEAN (above) compared with the non-
negative variant (below). 5000 iterations with uniform weighting were used. The vertical
line marks the correct lens model.
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Figure 9.19: LENSCLEAN with and without amplification limit (5000 iterations, uniform
weighting). The peak is an artifact of the limit and almost vanishes without it. The vertical
line marks the spherical model.

Near the spherical lens models, the amplification limit excludes all pixels with image mul-
tiplicities of four. This reduces the model’s freedom so much that the peak in the residual
functions, which was already observed in section 9.6, is produced. Without the limit, the peak
shrinks and becomes very narrow. See Figure 9.19 for a comparison. No systematical changes
can be seen near the best models.
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9.14 Interpolation and uv-space subtraction

With non-lensed CLEAN, the only errors introduced by using FFT on gridded data are the
wraparound error to produce a periodic function and the aliasing. With LENSCLEAN, the prob-
lem is much more serious. Even if we place the primary images exactly on a regular grid,
secondary images of the same source positions do not normally coincide with grid points. This
means that the dirty beam and dirty map have to be interpolated to select the optimal pixel.
Some kind of correction also has to be used when subtracting the shifted beam for non-grid
positions. We combined two ideas to solve the problem. The most important one is to use a
modified Cotton-Schwab algorithm and subtract the components at their true (ungridded) posi-
tions from the ungridded visibilities at certain intervals and recompute the residual maps from
these corrected visibilities. Extensive tests were performed to analyse how many iterations can
be performed between these subtractions without deteriorating the results. Subtractions after
20, 50, 200, 1000, and 5000 iterations were normally performed. Smaller intervals changed the
results only insignificantly.
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Figure 9.20: LENSCLEAN with interpolation (int) anduvspace subtraction (subt), without
uvspace subtraction and without both (5000 iterations, uniform weighting). The upper plot
also includes results without interpolation anduv space subtraction and without the first
continuous step. The vertical line marks the correct lens model.

To select the optimal pixels, we used an implicit interpolation scheme. The primary images
are always located exactly on grid points and are kept as they are. The secondary images are
shared between the four nearest grid points. The amplification is distributed over the pixels in a
way to achieve an effective bilinear interpolation. Forn true images, we therefore perform the
computations for 4n−3 virtual gridded images. Subtraction in image space is also done with
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these virtual images. This interpolation scheme transforms the point-like images into small but
nevertheless extended approximations. The residual errors left by the algorithm are corrected
with the aforementioneduv space subtraction. Without interpolation, this had to be done much
more often, leading to very slow computations.

Figure 9.20 shows the residuals with interpolationand uvspace subtraction, with interpo-
lation but without subtraction and without both, using the nearest grid position to select the
pixel and to subtract the dirty beam. The largest part of the errors is introduced by the very
bright compact components, which are already subtracted gridless (see section 9.11). Without
this continuous subtraction, interpolation anduv space subtraction are absolutely essential to
produce meaningful results at all. The uppermost curve in Fig. 9.20 shows results without inter-
polation,uv space subtraction and the first continous step. The numerical noise is so dominant
in this case, that the curve ist useless to find the best model. The example of these modifica-
tions illustrates how some of the improvements of LENSCLEAN reach their full impact only in
combination.
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Figure 9.21: LENSCLEAN with different pixel sizes between 20 and 2.5mas (5000 itera-
tions, uniform weighting). The standard pixel size is 5 mas. The upper panel shows results
with, the lower one without the first continuous step. In the latter case, small pixels are
even more important than in the former one. Note the different scale ofx0 in the plots. The
vertical line marks the correct lens model.
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9.15 Choosing the pixel size

The discontinuities in the numerical residual function have their reasons in the discrete nature of
the CLEAN algorithm. This is partly due to the gridding. Some modifications of the algorithm
to reduce this effect have been discussed in the previous sections. To improve the results further,
a fine grid with small pixels has to be used.

The Nyquist theorem gives an upper limit of 25 mas for possible pixel sizes with the 15 GHz
VLA data, if we do not want to loose parts of the high-resolution visibilities. As discussed
before, the grid must also be fine enough to resolve all important features of the lens. Figure 9.21
shows a comparison of results for different pixel sizes between 2.5 and 20 mas. The 20 mas
pixels are definitely too large, but there is not much improvement for sizes much smaller than a
few mas, where other sources of numerical noise dominate. Our standard of 5 mas seems to be
a good compromise. Larger pixels do not lead to systematic errors, but the increased numerical
noise of the residual function makes reliable fits increasingly difficult.

Without the first continuous LENSCLEAN step, even the compact components would have
to be represented by the regular grid. In this case, too large pixels have an even stronger effect.
5 mas is at the limit of useful values then, the results with 20 mas are absolutely meaningless.

9.16 Choosing the gain

The second source of discontinuities in the residual function is the finite loop gain in the discrete
iterations. To reduce the errors, a small loop gain with very many iterations should be used.
Unfortunately, LENSCLEAN is numerically very expensive and small gains can not be used on
a regular basis. Our standard loop gain parameter for unbiased LENSCLEAN is g = 0.38. Forn
well separated equally bright images, this corresponds to

γ = 1−
√

1− g
n

. (9.24)

For n = 1/2/4 images, the loop gain is thereforeγ ≈ 0.2/0.1/0.05. About 2000 to 5000 itera-
tions are usually needed with this gain to obtain useful residuals.

A comparison of 5000 iterations at this standard value with 25 000 iterations atg = 0.076
(γ ≈ 0.04/0.02/0.01) is shown in Figure 9.22. The total level of the residuals is comparable,
as expected. The much smoother curve for the smaller gain shows, how important the effect is.
Unfortunately, we cannot do all the calculations with a gain much smaller thang= 0.38 with the
available equipment. This large gain does not introduce systematic effects besides the numerical
noise.

9.17 Classical pre-fits

The calculation of best-fit residuals for a given lens positionz0 is numerically very expensive
with the full LENSCLEAN-algorithm. A fit of the remaining three lens model parameters has to
be performed, which typically takes 150 iterations. We tried several ideas to avoid these full fits,
without much success.

The remaining parameters for fixedz0 can be determined easily with LENSCLEAN, because
the two bright components provide enough constraints for them. The ring modifies the model
only to a small extent but is the main factor for the best fit residual level. Its effect becomes
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Figure 9.22: LENSCLEAN with the standard loop gain parameterg= 0.38 (5000 iterations)
and withg = 0.076 (25 000 iterations) for comparison. Uniform weighting was used for
both calculations. The higher gain produces more numerical noise but no systematic shift
of the minimum position. The vertical line marks the correct lens model.

important when the residuals for differentz0 are compared to find the best lens position. These
differences are defined only by the ring.

The most simple idea was to do a classical lens model fit for a fixed lens position, using the
positions and flux densities of the compact components alone. This method is in the standard
algorithm only used to find the starting values for the numerical LENSCLEAN fit.

The classically fitted models are a good approximation for the full LENSCLEAN fits and
might thus be used as a substitute4. Of course LENSCLEAN still has to be used to calculate the
final residuals for the classically fitted lens model. The recipe of an accelerated algorithm is
the following: Choose a lens position, do a classical model fit and performoneLENSCLEAN

run for the best fitting lens model. This reduces the number of LENSCLEAN runs needed for
eachz0 from about 150 to 1. Unfortunately, LENSCLEAN is so sensitive to small deviations
of the lens model, that the residuals are not a very good measure for the goodness of fit of
the lens model. This problem is partly due to the difficulties of determining the positions and
fluxes of the compact components with high accuracy. This leads to small but nevertheless
significant errors in the classical lens model fit. In a fit of the components, the parts of the ring
near the components are always included in the fit, leading to small errors in the positions and
flux densities. Since these errors depend on the weighting, we tried to reduce them by using
uniform weighting to reduce the effect of smalluv spacings where the ring is stronger than at
larger spacings5. We still expect contributions from the ring at the level of some mJy. From
our noiseless artificial data set, we obtained a relative position B−A of (310.552,127.095)mas
and flux densities of 0.76234 and 0.20156. With natural weighting, the positions shift by about
0.5mas, and the fluxes increase by about 15mJy each. The flux ratio decreases from 3.78 to
3.56.

Figure 9.23 shows residuals for the samez0 values as before but with classically fitted model
parameters using the data given above. We also included the results for slightly different values

4The deviations are typically less than 1mas inα0 and much less than 0.001 inε.
5DIFMAP does all model fitting with natural weighting, regardless of the assigneduvweight. Uniformly

weighted fitting was performed with our own software and with reweighted data in DIFMAP.



164 CHAPTER 9. LENSCLEAN

0.987

0.988

0.989

0.990

0.991

0.992

0.993

0.994

0.240 0.245 0.250 0.255 0.260 0.265 0.270
x0

R2 (noisy)

best models
best classical fits

alt. classical fits

Figure 9.23: LENSCLEAN residuals calculated for classically fitted lens models (5000 iter-
ations, uniform weighting). Two data sets for the compact components where used, which
differed by only about 0.1mas in position and 0.02% in flux ratio. The vertical line marks
the correct lens model.

(shift of about 0.1mas and change of flux ratio of about 0.02%) for comparison. We see that
even these small changes produce very different results, and (even worse) both classically fitted
results do not represent the residual curve for the LENSCLEAN models.

This high sensitivity to small changes of the models is mainly a result of the compact com-
ponents themselves. Since the information from them was already used in the classical fit, we
should exclude them from the following LENSCLEAN somehow.

9.17.1 Correction by free fit of compact components

One possibility to exclude the compact components from the LENSCLEAN process is to replace
the continuous first LENSCLEAN step by a free (without a lens model) fit and subtraction of
the two bright components. With this modification, small deviations in the lens model do not
change the residuals caused by the compact components. They only influence the CLEAN ing
of the ring. As the ring is much weaker and very resolved, the influence should be reduced by
a large amount. A serious problem remains; subtracting the fitted compact components also
removes parts of the ring near the images and thus changes its structure significantly. How
strongly this changes the results is difficult to estimate in advance.

Figure 9.24 shows results with free fits and total (gain=1) subtraction of the compact com-
ponents. Using the classically fitted lens models instead of the best LENSCLEAN results does
not change the residuals significantly, which proves that the free fits reduce the influence of
small model changes as intended. However, the perturbations of the ring are so strong that the
residual curve cannot be used to determine the best lens model. The similarity of the curves in
Figure 9.24 with those in Figure 9.23 for the classically fitted models are no coincidence. The
free fit removes the compact components at the same positions and with the same flux densi-
ties that were used for the classical fits. In the case of the latter, the compact components are
then removed by the lensed fit of the compact components, leading to approximately the same
residuals.

The failure of this approach is partly due to the difficulties in the determination of the ‘true’
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Figure 9.24: LENSCLEAN residuals with free continuous fit and subtraction of the compact
components (gain=1) performed for the best models and classically fitted models (5000 it-
erations, uniform weighting). The vertical line marks the correct lens model.

positions and flux densities of the compact components and partly due to the fact that calculating
the residuals for models which fit the compact images optimally is not equivalent to optimize the
models for the compact images and the ringsimultaneouslyand use these residuals to determine
the best lens model.

9.17.2 Correction by cutting out the compact components

Another idea is to switch off the lens for small regions around the compact components and
allow free (unlensed) CLEAN ing in these regions. Formally, this can be done by deleting all
secondary images for primary images inside of small circles around the bright images. With
this change, the regions around A and B can be CLEANed independently. Small changes in the
lens model should then not influence the residuals caused by the compact images but by the ring
only. The problems of the method discussed above can be avoided with this variant, because any
modifications of the ring by free fits of the compact components can now be corrected at later
stages.

We tried different sizes of circles and present the results in Figure 9.25. The upper panel
shows results for the best LENSCLEAN models, the lower one for the classically fitted models.
From the former, we see that cut radii larger than 20mas change the shape of the residual func-
tion and begin to shift the minimum. A lower limit for the radii can be determined from the lower
plot for classically fitted models. For 5mas, the residuals are too high, because components con-
fined to this small circle cannot reproduce the compact emission very well. Even the 20mas
curve shows a minimum shift of about 2mas. The results for 50mas radius seem to reproduce
the direct fit results quite well, but the significantly changed shape of the residual function for
the fitted models (upper panel in Fig. 9.25) tells us to interpret the results with caution.

That LENSCLEAN before reaching convergence is not a true fit to the data, can be seen from
the fact that the residuals in the upper plots are generally larger for the modified LENSCLEAN

version, although the emission model has more freedom in this case, which should reduce the
residuals after convergence. This is caused by the decrease in efficiency of the modified algo-
rithm. It takes very many iterations for LENSCLEAN to actually take advantage of the added
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Figure 9.25: LENSCLEAN with allowing free CLEAN inside of circles around the compact
images (5000 iterations, uniform weighting). The upper panel shows results for the best
LENSCLEAN models, the lower one for classically fitted models. The vertical line marks
the correct lens model.

freedom.
The fact that the optimal cut radius can only be determined from numerical experiments

and comparison with the full LENSCLEAN fit results and the difficulty of estimating the errors
rules out the use of the modified algorithm on a regular basis. Maybe a better way to exclude
the compact emission from the LENSCLEAN process can be found in the future. This would
result in an acceleration of LENSCLEAN fits by up to two orders of magnitude in the case of
B0218+357.

9.18 Windows

In unlensed CLEAN, windows are normally used, outside of which no emission is allowed. These
windows accelerate the CLEAN process and can improve the results considerably, especially
when used in self-calibration loops. If any dubious features are present in the initial maps, the
observer can try to exclude this emission from the windows and try to produce a map that is
consistent with the self-calibrated data and does not show the dubious emission. If this is not
possible, the features are either real or caused by other problems with the data, which can not be
removed with self-calibration.

The purpose of LENSCLEAN is to find the best lens model. The decision to use windows
should therefore depend on the influence on the residuals. Confining the emission to regions
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where it is expected, gives the emission models less freedom and should therefore increase
the sensitivity for small changes of the lens models. On the other hand, bias effects may be
introduced by the windows. For B0218+357, the advantages are very small, while potential bias
effects can be strong.
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Figure 9.26: LENSCLEAN with and without windows (5000 its, uniform weighting). In
the upper plot (noiseless data), the windowless residuals were shifted by 0.0066 to help
comparing the two. In the lower plot (noisy data), the shift is 0.0176. We also included
results for a noise-only data set for comparison. The bias is only partly explained by the
behaviour of this data. The vertical lines mark the correct lens model.

Figure 9.26 shows the results with rather conservatively large windows, which cover the
emission from the ring and the compact images. The windows are given by two overlapping
circles with radius 0.′′35 around(0.′′179,0.′′103) and (0.′′309,0.′′143). Emission is allowed, if
the primary image is inside of the windows, regardless of the position of the secondary images.
Without noise, the residual curve becomes a bit steeper with the windows, but this does not
help in determining the minimum, because the numerical noisy increases, too. No shift of the
minimum is noticeable. With noise, things are less promising. We notice a significant shift of
the minimum, which is caused by the combination of noise and windows. When the lens models
change, the effective area of the windows also changes as a result of shifts of the secondary
images. The fraction of noise that can be removed by LENSCLEAN therefore depends on the
lens model, leading to a bias. To test this interpretation, we also include residuals for a noise-only
data set with the same lens models and the same windows. When subtracting these noise-only
residuals, the minimum still is displaced from the correct position. This is partly due to the
non-linearity of LENSCLEAN before convergence.

We conclude that windows are not helpful in the case of B0218+357. No windows are
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therefore used in our standard algorithm and for the final results.

9.19 Extinction

The flux ratio A/B in B0218+357 shows significant variations with wavelength (see section 7.8).
One possible explanation is an effective (possibly scattering induced) extinction of the A com-
ponent at lower frequencies. If LENSCLEAN is used to find the best lens model, this effect has
to be taken into account. Otherwise the lens model will be adjusted to have the same effect on
the flux ratio as the extinction, leading to significant errors. Two ideas were tested to accomplish
this. One is to compensate for this effect by adding emission to A (or subtracting from B) be-
fore LENSCLEAN is started. A difficulty with this approach is the determination of the correct
position of the component. Even small errors can influence the results. The other idea may be
more accurate when the extinction is not confined to a very small region in component A but to
a larger area, so that the ring is also affected. We can take the effect into account by artificially
reducing the amplifications given by the lens model near the A component. The size and shape
of the absorbing region is not known, of course.

Even without real extinction, small corrections may be needed to correct for flux ratio errors
due to flux variations in combination with the time-delay. For the 15 GHz data set, we performed
the fits with both corrections and with different values for the extinction. The position of the best
lens model shifts with the extinction, but the best value for the correction seems to be compatible
with 0. Corrections of the order 5 % increase the residuals significantly. We conclude that
extinction can be neglected at 15 GHz, just as expected. We will come back to this subject later,
when we discuss the 5 GHz MERLIN data.

9.20 Self-calibration

Tests show that calibration errors can shift the residual minimum by a few mas. This effect is
not suprising given the high dynamic range of the B0218+357 data. Calibration errors scale
with the very high total flux, while the relevant signal is only proportional to the flux density
of the ring. To take into account possible miscalibration, a loop of alternating LENSCLEAN

and self-calibration with the LENSCLEAN brightness model should be used for each tested lens
model. Unfortunately, even small changes in how the self-calibration is performed can change
the residuals quite drastically. We nevertheless performed some tests with this approach, but
learned that the whole process becomes very unstable. The residuals for data sets self-calibrated
with different lens models cannot be compared directly with each other for several reasons. One
reason is the fixing of the flux scale that is necessary to prevent the solutions to converge to
zero with zero residuals. Every lens model would be compatible with no emission at all. This
step has the effect that the visibilities after self-calibration are proportional to the best solution
(with smallest residuals) but are not exactly the same and that the residuals are thereforenot
minimized. Different flux scale corrections for different lens models can then lead to strong
variations of the residuals which are not related to the ability of the lens models to explain the
observations.

As a compromise, we performed self-calibration not for each test lens model, but only for
the best fitting models (including the fit ofz0). In this way, we only compare residuals obtained
from one and the same self-calibration procedure in each iteration, avoiding the aforementioned
problems. The process works like follows:
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• Map and self-calibrate the data in a standard way with AIPS or DIFMAP with initial self-
calibration against a point source model to produce an initially self-calibrateduvdata set.
This step is important, because it can in exactly the same way also be performed with
artificial data. The initial self-calibration with a point source model destroys all previous
calibration steps, so that the real and artificial data start in the same state. Only then can
the results be compared.

• Change the weights of the data to obtain effective uniform weighting when natural weight-
ing is chosen in DIFMAP. Self-calibration in DIFMAP always used natural weighting,
which in combination with the uniform weighting in LENSCLEAN would not converge to
a self-consistent solution. Uniform is superior to natural weighting in LENSCLEAN, as
was shown before.

• Do LENSCLEAN lens model fits for a range of fixed lens positions. Determine the model
parameters of the minimum by fitting a polynomial to the central part (around the mini-
mum) of the grid of lens positions. This procedure reduces the effects of numerical noise
on the resulting lens model drastically.

• Perform a LENSCLEAN/self-calibration loop with this fixed lens model by iterating the
following loop 50 to 100 times:

– Use LENSCLEAN to build an emission model with the given lens model and the
latest version of theuv data. The non-negative variant is generally used for this, as
allowing negative components is known to give self-calibration to much freedom.

– Use this brightness model to self-calibrate theinitial data set with DIFMAP6. Phase
and amplitude are corrected with a solution interval of 0 with fixing the flux scale
(selfcal true,false,0 in DIFMAP). The integration bins of the 15 GHz VLA-
data are 1 minute. This gives the process much more freedom than most observers
would say is necessary. We nevertheless used this massive self-calibration to be sure
to remove all calibration errors. Comparison with results for artificial data can be
used to estimate the errors. Regarding the lens models, this is a very conservative
approach.

We always used the initial data set as basis for the self-calibration to prevent round-
ing errors from accumulating. The solutions would diverge after many iterations
otherwise.

• Repeat the loop with the newuv data set. Find a new best lens model and continue until
the shape of the residual function (and especially the position of the minimum) does not
change any more.

To be sure, that this process does not introduce strong bias effects, we performed the same pro-
cess with artificial data. After a few steps, the minima do not shift any more, proving the stability
of the approach. We also performed tests with a data set which was initially LENSCLEAN–self-
calibrated with anincorrect lens model. With this data set, the minimum shifted slightly in the
direction of the incorrect model. After some iterations, however, it moved back to the correct
model, which proves the reliability of this approach.

6We used a patched version of the DIFMAP software, which does not change the weights in the course of self-
calibration. Otherwise the weights would decrease in each iteration to minimize the residuals, leading to diverging
solutions.
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Figure 9.27: Residuals at all stages of the LENSCLEAN/self-calibration iteration for an
artificial data set (direct plot of the data). (a) no self-calibration, (b) self-calibration without
lens, (c)–(f) self-calibration with LENSCLEAN. The plus signs mark the model used to
produce the artificial data, the asterisk the residual minimum, and the cross-hair the lens
model used for the next self-calibration. In (b) this is an arbitrary incorrect model, in the
other cases, it is the residual minimum.
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Figure 9.28: Residuals at all stages of the LENSCLEAN/self-calibration iteration for an
artificial data set (interpolated and smoothed plot of the data with confidence limits of
0.1,1,2,3, . . . · σ ). (a) no self-calibration, (b) self-calibration without lens, (c)–(f) self-
calibration with LENSCLEAN. The plus signs mark the model used to produce the artificial
data, the asterisk the residual minimum (smoothed data), and the cross-hair the lens model
used for the next self-calibration. In (b) this is an arbitrary incorrect model, in the other
cases, it is the residual minimum of the direct data.
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In Figures 9.27 and 9.28 we show the results for an artificial data set. We started the loop
with a self-calibrated (without lens) data set and used an incorrect lens model for the next step.
We then performed a few iterations, in which the best lens model from the previous steps were
used for the next self-calibration step. We used a lens centre of(0.′′265466,0.′′123222) to build
the data set. The residual minimum at the end (smoothed version) is at(0.′′263636,0.′′123600).
The error in the result is only 1.9mas.

2000 iterations with included negative components (also for the self-calibration) were used
for these test runs. As LENSCLEAN is not fully converged at 2000 iterations, the confidence
limits in Figure 9.28 may be a bit optimistic.

The shifts induced by incorrect self-calibration were only small (especially when comparing
the final result with the result without self-calibration), so that the whole self-calibration is only a
small correction. Otherwise the residuals for the finaluvdata set could not be used to determine
confidence limits, because the are only fits of the lens model parameters but not of the gain
factors in self-calibration.
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Figure 9.29: LENSCLEAN results with self-calibrated data sets. The upper line shows
the residuals without self-calibration (5000 iterations, uniform weighting). The other three
curves are calculated with data sets self-calibrated with three different lens models (marked
by vertical lines). The right one of these is the correct lens model used to build the synthetic
data set.

To make the collection of one-dimensional calculations complete, we also present self-
calibration results for the same models as in the last sections in Figure 9.29. Self-calibration
was performed with 2000 iterations without negative components with the uniformly reweighted
data set. The shift of the minimum is of the order 1mas when the correct model is used for self-
calibration and much smaller than 50 % of the displacement of the lens centre for incorrect lens
models. This leads to very rapid convergence of the LENSCLEAN/self-calibration iterations. We
also notice that the curvature of the residual function, which is used to estimate confidence lim-
its, is not reduced significantly with self-calibration. The final function is therefore a very good
representation for the residuals without calibration errors and can be used to determine the final
model parameter uncertainties.

The stable behaviour of self-calibration is mainly due to the very gooduv-coverage of the
long-track VLA data. With MERLIN data, self-calibration introduces many problems.
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9.21 Results for the 15 GHz VLA data for B0218+357

9.21.1 Stokes LL and RR separately

We performed several LENSCLEAN/self-calibration loops as described in the last section, to
obtain results for the lens models which are not influenced by initial calibration errors. The LL
and RR polarization data sets were used independently to cross-check the results and to get a
better feeling for the accuracy. The results for LL polarization are shown in Figures 9.30 and
9.31. On the first page, we plotted the fit results directly (grey values chosen with respect to the
fit closest to each point), while the results were interpolated and smoothed for the second page.
The same algorithm as for Figure 9.1 was used for the smoothing (see explanation on page 136).
The results for RR polarization can be found in Figures 9.32 and 9.33 (page 176 and 177).

As described before, we started with a conventionally prepared and self-calibrated data
set. Even this initial step was done independently for LL and RR. To produce these results
LENSCLEAN was used in our ‘standard version’:

• FFT for dirty beam and maps, truncated exp·sinc as gridding convolution function (see
section 8.10.1)

• unbiased LENSCLEAN component selection (see section 9.9)

• continuous fits of the compact components with gainγ = 0.95 (see section 9.11)

• negative components allowed (see section 9.12)

• amplification limit of 100 (see section 9.13)

• interpolation for secondary images (see section 9.14)

• exact subtraction from ungridded visibilities after 20, 50, 200, 1000 and 5000 iterations
(see section 9.14)

• 5000 iterations with a loop gain ofg = 0.38 (see section 9.16)

• 512×5mas field size (see section 9.15)

• classical model fits as starting values, full fit with LENSCLEAN (see section 9.17)

• no CLEAN windows (see section 9.18)

• no extinction correction (see section 9.19)

In iterations 0 to 3, the lens model used for self-calibration was simply the one with the
smallest residuals from the initial data set and the previous results. For iteration 4, we per-
formed a third-order polynomial fit of the residuals in an area close to the minimum and used
the minimum of this polynomial. In this way we reduced the effects of numerical noise on the
results. The lens model parameters can be found in Table 9.1 on page 178.

In the LENSCLEAN runs which produced the emission models for the self-calibration steps
we used almost the same variant as described above. The only modifications are a smaller num-
ber of iterations (2000) and the exclusion of negative components. A number of 50 alternating
LENSCLEAN/self-calibration iterations were used.

For the final result (Figure 9.34 on page 179), we used the best-fitting models from the
fifth self-calibration iteration, fitted a fourth-order polynomial to the parameters and calculated
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Figure 9.30: Residuals at all stages of the LENSCLEAN/self-calibration iteration for the
LL polarization 15 GHz B0218+357 VLA data set (direct plot of the data). In the first four
plots, the marked models (used for the next self-calibration steps) are the best fits. In the
lower ones, they are minima of polynomial fits.
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Figure 9.31: Residuals at all stages of the LENSCLEAN/self-calibration iteration for the
LL polarization 15 GHz B0218+357 VLA data set (interpolated and smoothed plot of the
data, confidence limits of 0.1,1,2,3, . . . ·σ ). In the first four plots, the marked models (used
for the next self-calibration steps) are the best fits. In the lower ones, they are minima of
polynomial fits.
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Figure 9.32: Residuals at all stages of the LENSCLEAN/self-calibration iteration for the
RR polarization 15 GHz B0218+357 VLA data set (direct plot of the data). In the first four
plots, the marked models (used for the next self-calibration steps) are the best fits. In the
lower ones, they are minima of polynomial fits.
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Figure 9.33: Residuals at all stages of the LENSCLEAN/self-calibration iteration for the
RR polarization 15 GHz B0218+357 VLA data set (interpolated and smoothed plot of the
data, confidence limits of 0.1,1,2,3, . . . ·σ ). In the first four plots, the marked models (used
for the next self-calibration steps) are the best fits. In the lower ones, they are minima of
polynomial fits.
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Stokes iteration model z0 α0 ε

LL initial best
0.′′264283
0.′′122534

0.′′157992
−0.008729
−0.088092

LL 1 best
0.′′265809
0.′′122534

0.′′157064
−0.012809
−0.090813

LL 2 best
0.′′265809
0.′′122534

0.′′157044
−0.012861
−0.090751

LL 3 best
0.′′265762
0.′′122534

0.′′157061
−0.012743
−0.090694

LL 4 fit
0.′′265092
0.′′122443

0.′′157506
−0.010974
−0.088910

LL 5 fit
0.′′264288
0.′′121972

0.′′158117
−0.009165
−0.084942

RR initial best
0.′′253520
0.′′120938

0.′′163704
+0.012713
−0.063850

RR 1 best
0.′′261151
0.′′124272

0.′′159380
−0.000436
−0.091045

RR 2 best
0.′′264204
0.′′125938

0.′′156975
−0.007711
−0.106740

RR 3 best
0.′′262608
0.′′125605

0.′′158197
−0.003322
−0.101163

RR 4 fit
0.′′263185
0.′′125101

0.′′157962
−0.004882
−0.099760

RR 5 fit
0.′′263055
0.′′124870

0.′′158117
−0.004541
−0.098240

Table 9.1: Lens models used in the LENSCLEAN/self-calibration iterations for the 15 GHz
B0218+357 VLA data. See Figures 9.30 to 9.33.

LENSCLEAN residuals on a finer grid, using the polynomial fits for the parameters. The minima
for LL and RR are not exactly at the same position, but are both compatible with the mean of
the two. A preliminary version of these results was presented in Wucknitz (2002b).

The normalized residuals in the last self-calibration iteration are 0.7708 and 0.7988 for LL
and RR polarization. The expected value without self-calibration would be 1±0.009,7 as can
be calculated with equation (2.54). The scatter is of no practical value here, because the weights
are never known with an accuracy better than a few per cent. The values are significantly smaller
than 1, because the self-calibration is able to remove parts of the noise. Tests with CLEAN and
self-calibration in DIFMAP (without a lens) resulted in residuals of ca. 0.78, very similar to (and
within the 1σ limit compatible with) our results. The LENSCLEAN/self-calibration loop with
artificial data also led to residuals of 0.78. These results show that the data are consistent with
the assumed lens model, producing residuals exactly in the expected range.

We nevertheless have to keep in mind that this test is not very sensitive, because of the

7We neglected the number of free parameters of the emission model here, which is approximately the number of
independent beams in the map or the area of the field divided by area of the beam, which is of the order a few 102

and therefore much smaller than the number of measurements (ca. 2·105). A more accurate estimate of this number
of parameters is therefore not necessary, as long as we can be sure that it does not vary much with the lens model.
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Figure 9.34: Final residuals for the 15 GHz B0218+357 VLA data set for LL and RR
polarization. The results are shown directly as greyscale and are smoothed for the contour
lines (confidence limits of 0.1,1,2,3, . . . ·σ ). The cross hairs mark the residual minima for
LL and RR, the asterisk the mean of the two. The increased density of contour lines in the
edges is an artifact of the interpolation.

inaccuracy of the weights, which makes the normalization of residuals difficult. We will see
later that the residual map shows no significant structure correlated to the lens model. This is
probably a better measure for the goodness of fit in this case than the formal error statistics.

9.21.2 Stokes I final result

To reach the highest possible accuracy, we returned to the combined Stokes I data set. The
emission model in the self-calibration loop was built with LENSCLEAN for Stokes I (mean of
LL and RR), but the self-calibration with DIFMAP was performed for LL and RR separately.
Differences in the calibration errors of different Stokes parameters could be corrected in this way.
Only positive components were allowed in building the emission model for self-calibration of the
uniformly weighted data. For natural weighting, we started with 3000 iterations with uniform
weighting and switched to natural for another 2000 iterations. Because of this combination,
negative components were also allowed.

For the LENSCLEAN model fitting, negative components were allowed in both cases for
reasons discussed before (section 9.12). 5000 iterations were used for uniform and 3000+3000
for natural weighting. This brings the algorithm so close to convergence, that the shape of the
residual function would not change significantly with more iterations.

As a starting model, we used the mean of the bestz0 for LL and RR, selected the other
parameters for this lens position separately from the fits of both polarizations and used again the
mean of LL and RR. This provides a better starting model than taking the mean of the best LL
and RR models directly. Convergence of the LENSCLEAN/self-calibration iteration was very
fast. After three loops, the lens model did not change any more within small fractions of the
accuracy.

Figure 9.35 shows the final results for both weighting schemes. The confidence regions are
significantly smaller than in the separate LL and RR results. The results for uniform and natural
weighting are not exactly equal, but there exists a model between the two which is consistent
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Figure 9.35: Final residuals for the 15 GHz B0218+357 VLA data set for Stokes I. The
results are shown directly as greyscale and are smoothed for the contour lines (confidence
limits of 1,2,3, . . . ·σ ). (a) uniform, (b) natural weighting. The cross hairs mark the respec-
tive residual minima, the asterisk marks the minimum for the other weighting scheme.

with both weightings within the 1σ confidence region. The formal uncertainty is smaller for
uniform weighting and we also expect smaller systematic errors in this case. The secondary
local residual minimum nearz0 = (0.′′273,0.′′126) in the naturally weighted results can be ruled
out as a realistic lens model by using the uniformly weighted results. The lens model parameters
together with confidence limits are presented in Table 9.2 and 9.3.

parameter best 1σ 2σ 3σ

x0 0.′′259335
+0.′′0018
−0.′′0007

+0.′′0033
−0.′′0022

+0.′′0063
−0.′′0047

y0 0.′′121048
+0.′′0007
−0.′′0003

+0.′′0017
−0.′′0013

+0.′′0027
−0.′′0023

α0 0.′′161631
+0.′′0004
−0.′′0010

+0.′′0012
−0.′′0020

+0.′′0023
−0.′′0039

εx +0.004318
+0.0013
−0.0032

+0.0038
−0.0066

+0.0073
−0.0130

εy −0.070718
+0.0022
−0.0060

+0.0083
−0.0132

+0.0152
−0.0230

|ε| 0.070850
θ −43.◦253

∆T
[arcsec2]

0.039260
+0.0006
−0.0003

+0.0012
−0.0009

+0.0022
−0.0018

Table 9.2: Parameters of the best fitting lens models for B0218+357 (final result for VLA
15 GHz Stokes I data, uniform weighting).

Note that the confidence limits are calculated for one parameter each and not for the combi-
nation of all parameters. The limits (especially 1σ ) are not expected to be extremely accurate,
because they were calculated by taking the range of all allowed lens models on a 0.5×0.5mas2

grid for z0. For uniform weighting, this included only 7 lens models. The 3σ limits for natural
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parameter best 1σ 2σ 3σ

x0 0.′′254764
+0.′′0022
−0.′′0038

+0.′′0062
−0.′′0063

+0.′′0222
−0.′′0093

y0 0.′′119141
+0.′′0011
−0.′′0024

+0.′′0031
−0.′′0039

+0.′′0081
−0.′′0054

α0 0.′′163402
+0.′′0016
−0.′′0011

+0.′′0026
−0.′′0034

+0.′′0035
−0.′′0171

εx +0.009143
+0.0039
−0.0030

+0.0066
−0.0098

+0.0084
−0.0611

εy −0.058528
+0.0126
−0.0072

+0.0196
−0.0221

+0.0261
−0.0889

|ε| 0.059238
θ −40.◦561

∆T
[arcsec2]

0.037961
+0.0008
−0.0015

+0.0023
−0.0025

+0.0078
−0.0036

Table 9.3: Parameters of the best fitting lens models for B0218+357 (final result for VLA
15 GHz Stokes I data, natural weighting).

weighting include the secondary residual minimum.
We also calculated residuals for a noise-only data set with the same lens models to estimate

the effect of the varying effective number of parameters. If the real residuals are corrected for
this bias effect, the minimum shifts by less than 1mas, which is well within the expected error
bars. The correction was thus not included in the results presented here.

To check the accuracy of our error estimates for uniform weighting (it is straightχ2 statistics
for natural weighting), we performed Monte Carlo simulations with a known lens model and
artificial data with the same noise characteristics as the real data. The results of 21 runs are
shown in Figure 9.36. 17 (81 %) of the results lie within the 1σ limit and all within 2σ . The
small number of realizations is not sufficient for a very robust statistics, but the error limits
from the residual statistics seem to be a very realistic estimate. They are at least not excessively
optimistic.

It is now possible, to calculate the amplification ratio for the best lens models. This depends
slightly on the exact image positions; possible values are between ca. 3.77 and 3.83. This result
is not affected by the ring emission and is thus more reliable than direct measurements of the
flux ratio.

The relatively high ellipticity of the mass model might be a reason to treat this results with
caution. From equation (6.51), we know that the ellipticity of the mass distribution is approxi-
mately three times as high as that of the potential. If this is then converted to an axial ratio of
the mass, the result isa/b = 1.54 for the uniformly weighted result and 1.43 for the naturally
weighted. The optical images (see Figures 7.5 and 7.6) look more spherical, but they can only
represent the luminous matter and not all matter responsible for the lensing effect. We also have
to keep in mind that the accuracy of the ellipticity is not very high, and that the data are also
compatible with less elliptical mass distributions.

If the ellipticity is due to a tilted symmetrical disc, the inclination angle has to be 45–50◦ (0◦

would be face-on, 90◦ edge-on). But this model is not very realistic, given the expectation that
most of the mass is hidden in the dark matter halo of the galaxy.
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Figure 9.36: Results of Monte Carlo simulations for the 15 GHz B0218+357 VLA data
(Stokes I). We picked one of the runs with a minimum (star) close to the model used to
build the data (crosshair) for the greyscale and contour (confidence limits of 1,2,3, . . . ·σ )
plot. The Monte Carlo results are shown as crosses.

The position angle of the major axis is between−43◦ and−41◦ in a mathematical sense and
between−47◦ and−49◦ as an astronomical p.a. This should be compared with the p.a. of the
image separation (67.◦8 astronomical). The projected axis of the galaxy is close to perpendicular
to the image separation, which would lead to only small differences in the radial velocities of
absorption lines in the spectra. Measurements for both components have not been possible yet
but are expected for the near future (see e.g. Menten & Reid, 1996). Such measurements could
help in constraining the circular velocity of the disc and the inclination angle. It would then be
possible to separate the effect of the disc and the halo to some degree and break the disc/halo
degeneracy.

9.21.3 The Hubble constant

The∆T value for the LENSCLEAN models are included in Tables 9.2 and 9.3. A very conserva-
tive approach to estimate the errors is to use the minimum from natural and the maximum from
uniform weighting. This leads to a 2σ region of∆T = 0.035461–0.04046arcsec2, e.g. equation
(7.4). The accuracy is thus 6.6 %. The 2σ uncertainty of the uniformly weighted result alone is
only 2.7 %.

The time-delay of∆t = (10.5±0.4)days from section 7.5 and the distance parameters from
Table 7.7 for the Einstein-de Sitter cosmological model(deff = 19609kms−1Mpc−1days arcsec−2)
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can be used to translate this to

H0 = (70.9±5.4)kms−1Mpc−1 , (9.25)

see equation (3.43). The errors are the formal 2σ confidence limits from the uncertainty in the
lens modeland the time-delay. This value is in very good agreement with the results from the
HST key project (Mould et al., 2000) of 71±6 (1σ ) but is incompatible with Parodi et al. (2000)
and Sandage (1999), who determine values of 58.5±6.3 (90 %) and 53±7 (1σ ), respectively.
See also Tammann et al. (2002) for an up-to-date overview of the SN Ia results of this group
(60±5).

One should keep in mind, however, that this result is only valid for the singular isothermal
ellipsoid lens model. We will discuss the effect of a different radial mass distribution in sec-
tion 9.26. The preliminary results for different models give some evidence that the additional
error will only be of the order 1% for B0218+357.

The Hubble constant will be about 6 % higher (75±6) for a flatΛ cosmological model (see
Table 7.7). The uncertainties from the time-delay, the unknown cosmological parameters and
the lens model are thus all of the same order of magnitude. To improve the results, all three
factors have to be constrained with better accuracy.

We can now determine the age of the universeTU from this result. For the Einstein-de Sitter
universe it can be calculated by

TU(EdS) =
2
3

1
H0

(9.26)

= 9.2·109years . (9.27)

The higher value ofH0 for the flatΛ model is more than compensated by the change of the
former factor 2/3:

TU(flat Λ) = 0.964
1

H0
(9.28)

= 12.5·109years (9.29)

We omit the details of how these ages are calculated. They can be found in any textbook on
classical cosmology.

A preprint published after this work was finished (Kochanek, 2002) claims that time delays
of lenses with reliable models are compatible with the rather high values ofH0 from the HST key
project only if the mass concentration is as compact as the light distribution (β < 1 in the picture
of power-law models). Our result for B0218+357 does not confirm this view. The isothermal
models lead exactly to the value preferred in that publication. The method of comparing values
of H0 from other methods with lensing results to learn more about the lens models, is in our
opinion only of limited value because the results depend on so many astrophysical assumptions.
We prefer to constrain the mass models with the lensing effect or by direct measurements. Sys-
tems with extended sources provide the possibility to measure the mass distribution relatively
accurate. For B0218+357, we refer to the discussion in sections 7.6.2 and 10.2. The data are not
compatible withβ < 1 but favour values ofβ = 1.04. This is in contradiction with the interpre-
tation from Kochanek (2002) that mass follows light more than it follows standard dark matter
models.
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9.22 The 5 GHz MERLIN data set

9.22.1 Self-calibration

This data set and its problems are explained in more detail in section 7.10. Another problem
concerns self-calibration. Although theuv coverage is quite good in the combined data set, the
number of telescopes of the MERLIN part is onlyn = 6, which gives self-calibration too much
freedom. We nevertheless tried the same approach as with the 15 GHz VLA data set, alternating
LENSCLEAN model fitting and self-calibration with the best lens models, see section 9.20. Un-
fortunately, it showed that the shift of the best model introduced by self-calibration is of the same
order of magnitude as the error in the lens model used. This means that the LENSCLEAN/self-
calibration iteration does not converge very well and that there is at least the possibility that it
converges to an incorrect limit. We therefore did not use self-calibration with this data set for
the results we want to present below. The 5 GHz VLA data were not included in the analysis to
avoid the calibration problems of the combination.

9.22.2 Fits without self-calibration

Because self-calibration does not work well with LENSCLEAN and the MERLIN data, we used
the data set directly as it was prepared by Andy Biggs when he produced the high-quality maps.

Experiments with different parameter sets for the LENSCLEAN algorithm showed that the
problems become worse when more iterations are used. This means that the problems (calibra-
tion errors, absorption in parts of the system, emission from the lens galaxy itself) are significant
only on small flux scales and do not show in earlier stages of the LENSCLEAN iteration. The
best results were produced with 2000 iterations and the same algorithm as with the 15 GHz VLA
data. The only difference is a smaller gain of 0.95 (compared to 0.98 for VLA) for the subtrac-
tion of the compact components in the first continuous step. The gain was decreased, because the
ring is relatively stronger at 5 GHz, so that a smaller part of the bright images can be subtracted
before emission from the ring is affected.

Results for Stokes LL, RR and I and for the three frequencies separately and combined are
shown in Figure 9.37. No extinction correction was applied for these results. The residuals were
smoothed with the usual locally weighted quadratic fit with a Gaussianσ of 5mas to produce
the plots. We notice several problems with the data. No nice quadratic minima are present
and the results for the sub-data sets are not compatible with each other. The formal error bars
are extremely small but cannot be believed. The behaviour of the combined data set, where
a secondary minimum begins to appear, is not understood yet. It probably is related to small
differences in the calibration of the different frequencies. The small errors do not affect the
classical mapping considerably, but they seem to confuse LENSCLEAN.

9.22.3 Artificial MERLIN data

Figure 9.38 (page 186) shows results for an artificial data set, which was built to represent the
complete MERLIN data set (all three frequencies, Stokes I). The emission model of the source
was a best fit of the real data, the same extinction of about 20 % was used in LENSCLEAN and
in producing the data set. We show results for uniform and natural weighting. The models
used for the plot are again a locally weighted quadratical fit to results from LENSCLEAN model
fitting. The same models were used for uniform and natural weighting. This procedure does not
change the results significantly, but reduces the computing time to produce the plots. Because of
numerical noise, the residuals have to be smoothed and interpolated to determine the minimum.
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Figure 9.37: LENSCLEAN residuals for the 5 GHz B0218+357 MERLIN data set. From
left to right, we show Stokes LL, RR, I. The first three rows are calculated for frequen-
cies 1, 2, 3, the bottom row for the combined MFS data set. Fits were performed at the
position marked by points. The greyscale and contour lines (formal significance levels of
1,5,15,20,25,30,35σ ) use a smoothed and interpolated version.
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Figure 9.38: LENSCLEAN residuals for an artificial data set resembling B0218+357 at
5 GHz with MERLIN (all three frequencies, Stokes I). (a) uniform weighting 2000 iter-
ations, (b) natural weighting 2500+ 2500 iterations. The results are shown directly as
greyscale and are smoothed for the contour lines (confidence limits of 1,2,3, . . . ·σ ). The
asterisk marks the residual minimum (smoothed version), the cross marks the model used
to build the data setz0 = (0.′′2551,0.′′1151).

This was done with a local Gaussian weighted quadratical fit (σ = 1mas). The error in the result
for the lens centre is 0.585 mas for uniform and 0.255 mas for natural weighting. Both results
are well within the formal 1σ limit. The errors forα0 are 0.065 and 0.093 mas, for the ellipticity
they are 0.0020 and 0.0006.

These impressively accurate results show that the MERLIN data setcanprovide very strong
constraints, once the calibration problems are solved. We plan to do a new reduction of the data
from the beginning and perform the self-calibration and correction for spectral index differences
in a way appropriate for LENSCLEAN. The small number of telescopes will, however, always
introduce too much freedom for the models if self-calibration is used, even if the complete MFS
data set is used.

Other calculations also showed that, in the absence of calibration errors, the extinction can
be determined from the MERLIN data alone with a precision of a few per cent. The extinction
also shifts the lens centre by about 3 mas for 10 % for simulated data.

9.22.4 Determining the source shift and extinction

The fact that the same lens model must be responsible for the apparent images at all frequencies
(provided that no significant refraction in the lens plane is present) can be used to estimate the
possible extinction and shift at lower frequencies. Less information is needed for this purpose
than for a complete lens model fitting, so that the 5 GHz MERLIN data can be used for this
purpose, despite their problems with free LENSCLEAN.

As substitute for a real simultaneous fit of the lens models to the VLA and MERLIN data,
we used best fitting lens models from LENSCLEAN ing the 15 GHz VLA data and applied the
same lens models to the 5 GHz data, allowing for a possible shift and an extinction in the A
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component. Formally, we fixed the data but varied the lens centre freely. Since all coordinates
are measured relative to the A component, a shift ofz0 relative to A is equivalent to the same
shift of the lensed source relative to the then fixed position of the lensing galaxy, but in the
opposite direction.

The VLA data are relative to the J2000 equinox, while the MERLIN data are in the B1950
system. To avoid changing theuv data set, we applied the precession to the VLA lens model
before fitting it with the MERLIN data. The shift of the coordinate system is not relevant,
because all positions are relative to A. The rotation, on the other hand, must be applied. In terms
of the astronomical position angle, the lens model must be rotated like follows:

p.a.1950= p.a.2000−0.◦1964 (9.30)

This rotation corresponds to a shift of about 1 mas of the B component, which is highly signifi-
cant and definitely has to be taken into account to achieve correct results.

Several lens models from LENSCLEAN ing the VLA data were used in this procedure to
estimate the accuracy of the results. We also performed the fits with subsets of the MERLIN
data, consisting of the three frequencies and LL/RR polarization separately. Calibration errors
of the data act differently at different frequencies and can be detected in this way. We used
a range of extinction values for the numerical fits. In the process of model fitting (only the
parameterz0), the extinction was used as a fixed parameter. Finally, the residuals are plotted
against the extinction to find the best model and to detect possible problems.

The extinction was taken into account by reducing the amplifications given by the lens model
near the A component. A circular Gaussian with FWHM of 20 mas was used for the shape. Other
methods to apply the extinction lead to very similar results. The size of the absorbing region is
also not critical.

Figure 9.39 shows the results for one lens model and different sub-data sets of the MERLIN
data (500 iterations, uniform weighting). The curves look very similar and the minimum is
almost at the same extinction in all curves. Only for frequency 1, the optimal extinction is
somewhat smaller than for the others. This confirms the view that possible small calibration
errors (maybe caused by the spectral index correction) do not change the result for the extinction.
There are still noticeable problems, e.g. the very different residual levels. Residuals are very high
for the combined data set, especially for RR polarization and total intensity I. This is a property
of the data itself and not of LENSCLEAN. Compare with the discussion in section 7.10.1. The
similarity of the residual curves gives some confidence in the result for the extinction when it is
compared with the prominent differences for free LENSCLEAN model fitting in Figure 9.37.

The influence of the VLA lens model itself is shown in Figure 9.40 on page 189, were sev-
eral different lens models were used. These models are results at different (partly preliminary)
stages of the VLA model fitting and self-calibration process. The details are shown in Table 9.4
(page 190). The models marked with+ and−were derived from the ‘UNI pre’ model by chang-
ing the corresponding parameters within their total 1σ error bars. The confidence limits were
calculated for the total five free parameters. Concerning the shift of the minimum (one param-
eter), this is equivalent to more than 2σ . For theα±, εx± andεy±, the other parameters were
fixed. Forx0± andy0±, the error ellipse of real fits was used. This collection should cover all
possible lens models. In the result the minimum does shift significantly for some model variants,
but it is in no case consistent with no extinction.

Figure 9.41 (page 190) shows the relative shift of the lens centre (MERLIN−VLA). As
noted before, this is equivalent to the opposite shift of the (lensed) source relative to A. If the
real extinction should be small, the source has to be shifted eastwards at 5 GHz. The shift would
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Figure 9.39: Residuals for 5 GHz MERLIN data vs. extinction in A. Lens models were
fitted with free lens position and all other parameters fixed to one of the best fitting VLA
models (called ‘I UNI 1’ in Fig. 9.40 and Tab. 9.4). From left to right: Stokes LL, RR and
I. From top to bottom: Frequencies 1, 2, 3 and 1–3. 500 iterations with uniform weighting
were used.

therefore approximately be down the jet (compare Figure 7.14). The fact that the zero positions
of ∆x0 and∆y0 are both at the same extinction level, which itself is compatible with the residual
minima near 20 %, is a strong hint, that the frequency dependent flux ratios are not caused by an
effective shift of the source but by extinction in the A component. If a shift was the reason for
the observed effect, the zeros would not necessarily be at the same position and the minimum
would be close to zero extinction.

Nevertheless, we should keep in mind that if the A component is significantly dimmed by
extinction, similar effects have to be expected at other positions of the lens plane as well. This
means that any LENSCLEAN results of the 5 GHz data have to be interpreted with caution. In
any case, the results are clearlynot compatible with no extinction at all.

The final decision about frequency dependent source positions in B0218+357 has to wait
for the analysis of multi-frequency VLBI (VLBA+Effelsberg) observations that were taken in
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Figure 9.40: Residuals for 5 GHz MERLIN data vs. extinction in A. Lens models were
fitted with free lens position and all other parameters fixed to some of the best fitting VLA
models. For a description of the lens models, see Table 9.4. 500 iterations with uniform
weighting were used with the complete MFS data set (Stokes I). The minima cluster around
an extinction of about 20 %. None of the curves are compatible with zero extinction.

January 2002 (PI: Richard Porcas). These observations include phase referencing with several
calibrator sources and should lead to more than sufficiently accurate absolute astrometry of both
components at 1.6, 2.3, 5, 8.4, and 15 GHz. Any potential shift can then be measured directly.
A uniform analysis of the data taken at one epoch can also provide better measurements of the
frequency dependent flux densities of both components.

9.23 Algebraic LENSCLEAN

For future work and to reconstruct the source map, a more formal analysis of LENSCLEAN is
required. The idea is to apply the general linear least squares theory (section 2.2) to the lensed
scenario in the same way as it was done for the unlensed case in section 8.8.1. The lens model is
kept fixed for the moment, and the relevant model parameters are now the emission components
in the source plane. It is then possible to transform the concept of dirty map and dirty beam to
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name description
LL final result Stokes LL, uniform weighting, see Fig. 9.34
RR final result Stokes RR, uniform weighting, see Fig. 9.34

UNI pre preliminary result Stokes I, uniform weighting
α0± UNI pre with modifiedα0 (±0.05mas)
εx± UNI pre with modifiedεx (±0.000150)
εy± UNI pre with modifiedεy (±0.000400)
x0± like UNI pre but max/minx0 of error ellipse (y0 free)
y0± like UNI pre but max/miny0 of error ellipse (x0 fixed)

UNI final final result Stokes I, uniform weighting
NAT final final result Stokes I, natural weighting

Table 9.4: VLA lens models used for the fits with MERLIN data (see Figure 9.40)
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Figure 9.41: Relative shift of the lens centre (MERLIN−VLA) for different values of the
extinction. The VLA-lens models ‘UNI final’ and ‘NAT final’ were used for the calculations
with 500 iterations and uniform weighting with the complete MFS data set (Stokes I). The
other lens models from Tab. 9.4 lead to very similar results. The shift of the source relative
to the galaxy is the inverse of the values shown here.

the source plane and apply the known theory of CLEAN there.

9.23.1 Discrete formalism

In section 8.8.1 the emission components in the image plane (there was no lens then) acted as
model parametersx ≡ I. This image plane brightness distribution (as collection ofδ -compo-
nents)I can now in the lensed case be derived from the brightness distribution in the source
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planeIs by means of the lens model. This can be formally written as

I = LIs . (9.31)

If the positions in the lens and source planes are calledzν andzsνs,
8 the matrix has non-vanishing

elements only for those indicesν ,νs for which the lens equation is satisfied:

zsνs = zν −α(zν) (9.32)

The values ofL at these indices are the amplificationsµ at the corresponding image positionszν .
The parametrization must be complete, therefore exactly oneνs with non-vanishingLννs exists
for eachν (one source position for each image). For fixedνs, theν with non-vanishing matrix
elements represent all the images for this source position (potentially several images for each
source position). For each image position the corresponding source position and all secondary
images of the same source position have to be included in the parametrization.

Lννs =

{
µ(zν) if zsνs = zν −α(zν)
0 otherwise

(9.33)

If the model is now calculated in the source plane, a new matrixAs has to be used, that transforms
the model into a measurement.

Ĩ = AI (9.34)

= ALIs (9.35)

= AsIs (9.36)

As = AL (9.37)

With this new matrix, the generalized dirty beam and dirty map in the source plane can be
defined analogously to equations (8.34)–(8.37):

Bs =
1

Tr W
As

†WAs (9.38)

= L†BL (9.39)

Bs(νs,ν
′
s) = ∑

ν(νs)
ν ′(ν ′s)

µ(ν)µ(ν ′)B(ν ,ν ′) (9.40)

ID s =
1

Tr W
As

†W Ĩ (9.41)

= L†ID (9.42)

ID s(νs) = ∑
ν(νs)

µ(ν) ID(ν) (9.43)

The sums in (9.40) and (9.43) are over all imagesν of the source positionνs and analogous
for the primed indices. The indices are written as arguments to make the equations more read-
able. Contrary to the unlensed situation, the source plane dirty beam is not translation invariant
anymore and multiplication with it is not a convolution.

As consistency check, the same procedure as in non-lensed CLEAN can now be performed:
Find the position with the highest residual reduction if flux at this position is subtracted. We

8Indicesν in the lens plane andνs in the source plane.
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start without a lens to derive the CLEAN recipe from the matrix formalism. The residuals can be
calculated as follows:

R2 = (Ĩ−AI)†
W(Ĩ−AI) (9.44)

= Ĩ
†
WĨ−2I†A†WĨ+I†A†WAI (9.45)

CLEAN removes one component at a time. This corresponds to aI consisting of only of one
componentν , leading to

R2 = Ĩ
†
WĨ−2Iν (A†WĨ)ν + I2

ν (A†WA)νν . (9.46)

The optimal flux is

Iν =
(A†WĨ)ν

(A†WA)νν

(9.47)

=
IDν

Bνν

. (9.48)

Dirty beam and map were normalized to a beam peak ofBνν = 1, so the optimal flux is given by
the dirty map at this position. With this flux, the residuals are

R2 = Ĩ
†
WĨ− (A†WĨ)ν

2

(A†WA)νν

(9.49)

= Ĩ
†
WĨ−Tr W

ID
2
ν

Bνν

, (9.50)

the optimum is again the peak of the dirty map. This formalism can without changes directly
be transformed to LENSCLEAN. The optimal position is the maximum ofI 2

D s(νs)/Bs(νs,νs),
the optimal flux isID s(νs)/Bs(νs,νs). With (9.40) and (9.43) this is recognized as the result for
KNE-LENSCLEAN given in equations (9.13) and (9.12).

9.23.2 Continuous formalism

In some contexts, it may be more convenient to use continuous functions for the brightness
distribution in source and lens plane. The sum in the Fourier transform (8.32) now becomes an
integral:

Ĩ m
j =

∫
d2z A(uj ,z) I(z) (9.51)

A(uj ,z) = e2π i uj ·z (9.52)

In contrast to the amplifications of point sources, surface brightness is conserved in lensing, so
that it is directly mapped with the lens equation:

I(z) = Is(zs) (9.53)

=
∫

d2zs L(z,zs) Is(zs) (9.54)

L(z,zs) = δ
2(z−α(z)−zs

)
(9.55)
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The dirty beam in the source plane can now be calculated analogously to (9.42).

ID s(zs) =
∫

d2z L(z,zs) ID(z) (9.56)

To carry out the integration, we have to transform theδ -function from the source plane to the
lens plane by using the following equation:

δ
2(z−α(z)−zs

)
= ∑

k(zs)

∣∣∣∣∣∣∣∂zs

∂z
(zk)

∣∣∣−1
∣∣∣∣δ 2(z−zk) (9.57)

The sum is taken over all images for the given source position. The result is the same as in the
discrete case in (9.43).

ID s(zs) = ∑
z(zs)

µ(z) ID(z) (9.58)

The same formalism can be used to recover (9.40) in the continuous form from

Bs(zs,z
′
s) =

∫
d2z
∫

d2z′ L(z,zs)B(z,z′)L(z′,z′s) . (9.59)

The result in the continuous formalism is

Bs(zs,z
′
s) = ∑

z(zs)
z′(z′s)

µ(z)µ(z′)B(z,z′) . (9.60)

Hence, the shape of the dirty beam and map do not depend on the sampling in the source plane.
This fact is important when the dirty beam is used as model for the CLEAN beam.

9.23.3 Direct numerical inversion

Several methods of direct algebraic inversion of the unlensed convolution equations have been
discussed in section 8.8. Some of them seem to be superior to CLEAN, so that similar approaches
might also be useful in the lensed situation. The formalism to develop such algorithms is given
in the last sections. No attempts to actually perform such calculations have been carried out so
far because of the huge numerical burden. LENSCLEAN itself is at the limit of what can be done
with normal computers these days and the direct methods even have greater demands on CPU
time and memory. The problems are only partly the same as in the unlensed situation.

As discussed in section 9.14, the errors introduced by gridding and using FFT (see sec-
tion 8.10.1) are much more serious in the lensed case, because it is not possible to use a regular
grid for the emission model in the lens plane. This problem was overcome in LENSCLEAN

by subtracting the components from the ungridded visibilities in certain intervals. This ap-
proach is appropriate for an iterational algorithm like LENSCLEAN. For direct methods, the
same approach would mean to iterate alternating inversion anduv space subtraction, which is
prohibitively expensive. Even only one direct inversion is at the very limit of today’s computers
capabilities.

As a result of the gridding problems, it is necessary to calculate the dirty beam and dirty map
with the very inefficient DFT. This is possible for dirty maps with a moderate number of pixels
n. For the dirty beam, however, the number of elements is of the ordern2 and thus extremely
large. In the unlensed case, the beam is translation invariant, so that the number of independent
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elements on a regular grid is much smaller, of the order 4n in two dimensions (each difference
of positions in the dirty map is a possible coordinate for the dirty beam). This is only true in the
case of regular sampling of the image plane and therefore not applicable in a lensed situation.

Serious effort should be spent on this problem in the future, because a direct inversion of
lensed sources is highly desirable. Especially the non-negativity constraint or other kinds of
regularization have a potentially very high value in lens modelling. They will restrict the freedom
of LENSCLEAN to produce unrealistic emission models without rejecting physically possible
source structures and thus improve the capability to distinguish between good and bad lens
models.

9.24 Reconstruction of the source

Even with unlensed CLEAN, the final CLEAN beam convolution is a somewhat arbitrary ap-
proach to reduce high frequencies that are not present in the measurements. This procedure
nevertheless works very well in most cases and is conventionally used in almost all cases. It
shall therefore also be used as basis for the reconstruction of the source here.

9.24.1 The source plane CLEAN beam

Things are simple in singly imaged regions with only slowly varying magnifications. The fi-
nal CLEAN map of the source should be equal to the lens plane CLEAN map projected into
the source plane. This is equivalent to projecting the CLEAN components and using projected
CLEAN beams for the convolution. If the lens plane CLEAN beam is given by the matrixG
(see section 8.6.2), the corresponding beam in the source plane can be calculated by applying
equation (A.17) with the symmetric local magnification matrixM:

Gs = MGM (9.61)

Magnifications and source plane beam sizes will not be constant in realistic lenses. To assure flux
conservation, the normalized beams (section 8.11.1) have to be used. The normalization factors
of source and image plane Gaussians have a ratio ofµ = |M|. Together with the amplification
used to calculated the lens plane flux from the source plane flux, this assures surface brightness
conservation.

Lenses used for LENSCLEAN will generally have multiply imaged regions. Otherwise
LENSCLEAN would not make much sense. The task is now to construct a source plane beam
from several projected lens plane beams of images belonging to one source position. These
beams will usually have different sizes and shapes. A very conservative approach would be a
large beam which covers all the single beams, but this would clearly hide information in the
CLEAN maps. Kochanek & Narayan (1992) used circular beams and chose the size so that they
just cover the intersection of all the projected single beams. With this approach the combined
beam is in each direction larger or equal to the smallest of the single beams and does not intro-
duce spurious small scale features, which should be smoothed out by the beams. This procedure
is well justified for equal magnifications, but becomes very inaccurate for high amplification
ratios. In this case the projected beams should somehow be weighted according to the lens plane
flux densities which are proportional to the amplifications of the images. Images with very low
amplification should not contribute significantly to the resulting source plane beam.

To find a better solution, we start with the source plane dirty beam as given in (9.40) and
consider only a small neighbourhood of the source positionz′s as possible map positionszs.
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With this assumption, the number of images for both positions is equal and the image plane
displacement of corresponding images∆z = z−z′ can be calculated linearly from the source
plane displacement∆zs = zs−z′s:

∆z = M∆zs (9.62)

If ν andν ′ count the images ofzs andz′s (same index for corresponding images), the beam reads

Bs(∆zs) = ∑
νν ′

µν µν ′ B(zν −zν ′ +Mν ∆zs) . (9.63)

Here it was assumed thatµ and M are constant in the small regions of interest around each
image. As a last approximation, we assume that the images are well separated, so that the lens
plane dirty beams do not overlap forν 6= ν ′. All the approximations are well justified, if the
images are located sufficiently far from the critical lines. Close to them, magnification gradients
would become large and images would move very closely together. For the approximated result
we obtain

Bs(∆zs) =
∑
ν

µ2
ν B(Mν∆zs)

∑
ν

µ2
ν

. (9.64)

It is normalized toBs(0) = 1 for B(0) = 1. The source plane dirty beam thus is a weighted sum
of the projected lens plane dirty beams. To fit a Gaussian to the centre of this beam, only the
centres of the lens plane beams are needed. They are already approximated by a GaussianG.

Bs(∆zs) =
∑
ν

µ2
ν e−zs

† Mν GMν zs/2

∑
ν

µ2
ν

(9.65)

Close to the centre, this sum of Gaussians can again be fitted by one combined Gaussian. The
coefficients can be calculated by comparing the second derivatives, which are given by the pro-
jectedG and which add linearly:

Gs =
∑
ν

µ2
ν MνGMν

∑
ν

µ2
ν

(9.66)

In the case of equal magnifications, this approach is very similar to the one used by Kochanek &
Narayan (1992). For circular beams (or in an arbitrary but fixed direction for arbitrary beams),
the calculation of the mean in equation (9.66) approximately chooses the smallest of the beams.
The same formalism as in equation (8.82) applies here.

Our choice of CLEAN beams in the source plane is arbitrary in some respects. It should work
well for separated images, where the approximations are valid and where the linear transforma-
tion of beams is sensible. Problems are expected close to the caustics, where the linear theory
should not be used. Convolution with any beam can spill emission across caustics to regions
of different image multiplicity, even if the data rule out any emission there. This problem was
already recognized by Kochanek & Narayan (1992). It can only be solved with an alternative
reconstruction technique which is non-linear in the positions.

The modification that is introduced by using the unbiased LENSCLEAN variant (section 9.9)
is not considered a problem here. In the framework of the approximations used, the correction
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factors are almost constant across the regions for which the beam was calculated and should
therefore not introduce significant changes.

To solve the problem of source plane image reconstruction optimally, other methods should
be developed in the future. Similar problems have been discussed for the unlensed situation in
section 8.11. The idea of adaptive CLEAN beams, calculated from the residual dirty map is very
promising (see section 8.11.3). The same approach can be used for LENSCLEAN.

9.24.2 Superresolution in the image plane

The combination of different beams in the source plane to form a combined beam usually im-
proves the resolution, because in each direction the smallest of the beams dominates the com-
bined beam. The improvement is thus achieved not by the magnification alone but by the combi-
nation of different projected beams. This improvement can be brought back to the lens plane by
projecting the combined source plane beam (9.66) back to the image plane at the image positions
and use these beams to produce the final CLEAN map.

This map can then also be used to suppress the spilling problem discussed above, which was
mainly caused by projecting the beams linearly in regions where this is not appropriate. If we
now project the final CLEAN map, built with the superresolved beam, back to the source plane
(pixel by pixel), the resulting source plane map should be almost devoid of the disturbing spilled
flux. In free interpretation of (9.58), a mean weighted with the amplifications should be used to
reconstruct the source plane in multiply images regions.

9.25 Maps of the source and lens plane for B0218+357

9.25.1 15 GHz VLA data

We now apply the methods developed in the last sections to produce maps of the source and lens
plane using the LENSCLEAN results. For the 15 GHz VLA data, the best fitting lens model for
uniformly weighted data was used. To produce the final LENSCLEAN component list, 20 000
iterations with the self-calibrated data set on a grid of 512× 5mas with the usual algorithm
were performed to CLEAN sufficiently deep below the noise level. Figure 9.42 shows the lens
plane maps made with unlensed CLEAN and LENSCLEAN. The two maps are almost indistin-
guishable. Hence LENSCLEAN with the best lens model is able to reproduce the data as well
as unlensed CLEAN. The residual map would be zero after many more iterations in the singly
imaged outer regions. In the presented map, small residuals are visible in the central part. These
are not higher than expected for the theoretical noise limit. The lowest contour lines mark 2σ

of the expected noise of 0.14mJy/beam or 1.44·10−8Jy/mas2.
We also present a superresolved lens plane map. This result is, however, difficult to interpret

because of the varying resolution. The apparent small scale structure close to the critical curve
is mainly a result of the small local restoring beam.

The source plane results are shown in Figure 9.43 on page 198. The superresolved version
shows radially stretched details which are artifacts of the stretched restoration beams. The same
is true for the ellipticity of the core component. The version reconstructed with circular beams is
easier to interpret. The inner jet, defined by the inner subcomponents (not resolved in the maps),
is directed eastwards. The jet then bends in a southern direction and crosses the caustic on its
way. It is this part of the source which forms the Einstein ring in the lensed image.

A lower limit of 20 mas was used for the size of all beams. This does not change the results
significantly but helps avoiding minor numerical problems.
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Figure 9.42: Resulting lens plane maps for the 15 GHz VLA data (uniform weighting). (a)
Classical unlensed CLEAN map, produced with DIFMAP (with residuals). (b) LENSCLEAN

map reconstructed with the same CLEAN beam (without residuals). (c) Residuals for the
LENSCLEAN result. Significant residuals are only seen in the multiply imaged region near
B. Even these are below the expected noise. Flux density units for (a), (b) and (c) are
Jy/beam. (d) Superresolved LENSCLEAN map (without residuals) with varying ellipti-
cal beams. Units are not Jy/beam but Jy/mas2. The scaling factor is 9751mas2/beam.
Subplots (b) to (d) also show the (tangential) critical curve of the lens model. The loga-
rithmic contour lines start with 2σ of the expected lens plane noise of 0.14mJy/beam or
1.44·10−8Jy/mas2.
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Figure 9.43: Source plane LENSCLEAN maps for the 15 GHz VLA data (uniform weight-
ing). (a) Reconstructed with the local combined beams (superresolved). (b) Reconstructed
with local circular beams (size of the major axis of the elliptical beam) to achieve isotropic,
but only approximately homogeneous, resolution. Units are not Jy/beam but Jy/mas2.
The scaling factor is 9751mas2/beam. The logarithmic contour lines start with 2σ of the
expected lens plane noise of 1.44· 10−8Jy/mas2. Also included is the diamond shaped
(tangential) caustic and the elliptical ‘cut’ (Kovner, 1987) or ‘pseudo-caustic’.

9.25.2 5 GHz MERLIN/VLA data

The problems with LENSCLEAN ing the MERLIN MFS data set have already been discussed
before. Here we are not interested in finding the best lens model but only in the resulting lens
and source plane maps. We can therefore use one of the best models from the VLA data and
apply it to the MERLIN data set. It was shown in section 9.22.4 that the MERLIN data are
only compatible with the VLA lens models if extinction of the order 20% for the A component
is taken into account. The exact value of the extinction if not very well defined, which makes
using the MERLIN data more difficult. If the hypothesis of extinction in A is correct, no shift
of the 5 GHz source relative to 15 GHz is needed to explain the differing flux density ratios. We
therefore assume that the shift is exactly zero.

The results for the shift as a function of different extinction values can now be used to find the
best extinction for a zero shift. An optimal extinction of 24 % can be estimated from Figure 9.41
for this case. The best lens model for this extinction (VLA reference model ‘UNI final’) was
then fixed and used for fits to the MERLIN data. The other parameters were varied freely
to minimize the residuals. A LENSCLEAN/self-calibration loop (2000 LENSCLEAN iterations
without negative components, uniform weighting, 50 loops) was then performed with this fixed
lens model to calibrate the data optimally. As for the final VLA results, the emission model
was built for Stokes I and LL and RR were independently self-calibrated with this model. This
process was repeated twice to correct for calibration errors as good as possible. The second
iteration did not change the results significantly and was therefore not used for the maps.

We have to keep in mind that the data do have there problems with LENSCLEAN. The no-
shift hypothesis might be incorrect and the model of a Gaussian area of 24 % extinction around
the A component can only be a crude approximation of the real effects. We also noticed that
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Figure 9.44: Resulting lens plane maps for the 5 GHz MERLIN data (uniform weight-
ing). (a) Classical unlensed CLEAN map, produced with DIFMAP (with residuals). (b)
LENSCLEAN map reconstructed with the same CLEAN beam (without residuals). (c) Resid-
uals for the LENSCLEAN result. Flux density units for (a), (b) and (c) are Jy/beam. (d)
Superresolved LENSCLEAN map (without residuals) with varying elliptical beams. Units
are not Jy/beam but Jy/mas2. The scaling factor is 2346mas2/beam. Subplots (b) to (d)
also show the (tangential) critical curve of the lens model. The logarithmic contour lines
start with 2σ of the expected lens plane noise of 0.16mJy/beam or 6.91·10−8Jy/mas2.

the self-calibration residuals for LL polarization are much smaller than for RR. This is probably
related to the preprocessing of the data. The effect is only present for the complete MFS data set.
For single-frequency sub-data sets, the residuals are almost equal. The resulting maps should in
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Figure 9.45: Source plane LENSCLEAN maps for the 5 GHz MERLIN data (uniform
weighting). (a) Reconstructed with the local combined beams (superresolved). (b) Recon-
structed with local circular beams (size of the major axis of the elliptical beam) to achieve
isotropic, but only approximately homogeneous, resolution. Units are not Jy/beam but
Jy/mas2. The scaling factor is 2346mas2/beam. The logarithmic contour lines start with
2σ of the expected lens plane noise of 6.91·10−8Jy/mas2. Also included is the diamond
shaped (tangential) caustic and the elliptical ‘cut’.

any case be interpreted with caution.
Results for the lens and source plane are shown in Figures 9.44 and 9.45, respectively. The

results for classical CLEAN and LENSCLEAN are similar, but there are nevertheless some no-
ticeable differences. We have to keep in mind, however, that the final calibration of the data
was performed with emission models built with LENSCLEAN. The unlensed CLEAN is thus not
completely independent of the LENSCLEAN results. A lower limit for the beam sizes of 10 mas
was used for these plots.

In contrast to the VLA results (section 9.25.1), significant residuals above the noise level
remain for the MERLIN data. No detailed analysis of the properties of LENSCLEAN residual
maps has been done yet, but larger than average residuals are expected in the regions of very
small amplification (in fact de-amplifications) close to the lens centre, because noise will partly
be transferred from image positions corresponding to the same source positions, but with higher
amplifications. One should therefore not naively interpret the positive residuals near the centre
as evidence for a central image or emission from the galaxy itself. Monte Carlo simulations can
be used in the future to obtain a statistical measure of the significance of these positive residuals.
This has to wait for the recalibration of the data, however.

The source plane maps strengthen the interpretation of a curved jet emerging in the direction
of the inner 1 and 2 components and then bending southwards. To investigate the jet’s structure
further outwards, the VLA part of the 5 GHz data set was used. The first calibration is sufficiently
good, so that no LENSCLEAN/self-calibration is necessary. The CLEAN area was enlarged to
enclose the outer parts of the jet. 20 000 LENSCLEAN iterations were used for the uniformly
and 10000+ 10000 for the naturally weighted data. The results are shown in Figures 9.46 to
9.49 (pages 201–204). They were produced as before with a beam size limit of 20 mas.
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Figure 9.46: Resulting lens plane maps for the 5 GHz VLA data (uniform weighting). (a)
Classical unlensed CLEAN map, produced with DIFMAP (with residuals). (b) LENSCLEAN

map reconstructed with the same CLEAN beam (without residuals). (c) Residuals for the
LENSCLEAN result. Flux density units for (a), (b) and (c) are Jy/beam. (d) Superre-
solved LENSCLEAN map (without residuals) with varying elliptical beams. The sharp elon-
gated features at the top are artifacts of the mapping algorithm. Units are not Jy/beam but
Jy/mas2. The scaling factor is 90160mas2/beam. Subplots (b) to (d) also show the (tan-
gential) critical curve of the lens model. The logarithmic contour lines start with 2σ of the
expected lens plane noise of 0.067mJy/beam or 7.43·10−10Jy/mas2.
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Figure 9.47: Source plane LENSCLEAN maps for the 5 GHz VLA data (uniform weight-
ing). (a) Reconstructed with the local combined beams (superresolved). (b) Reconstructed
with local circular beams (size of the major axis of the elliptical beam) to achieve isotropic,
but only approximately homogeneous, resolution. Units are not Jy/beam but Jy/mas2. The
scaling factor is 90160mas2/beam. The logarithmic contour lines start with 2σ of the
expected lens plane noise of 7.43· 10−10Jy/mas2. Also included is the diamond shaped
(tangential) caustic and the elliptical ‘cut’.

9.26 Non-isothermal lens models

Serious indications for deviations from an isothermal potential were already discussed in sec-
tion 7.6.2. Probable exponents for power-law ellipsoids are of the orderβ ≈ 1.05. For a fixed
lens position, the scaling of the Hubble constant would approximately conform toH0 ∝ 2−β

in B0218+357, leading to an overestimate of the Hubble constant by about 5 % if isothermal
models are assumed. It is not sensible, however, to use a fixed lens position for an estimate of
the influence ofβ , because the positional constraints derived from LENSCLEAN are only valid
for isothermal models withβ = 1. More complicated lens models, for which the inversion of the
lens equation can not be done analytically, could not be used with LENSCLEAN until our recent
development of a sufficiently reliable numerical algorithm (see chapter 5).

Only preliminary results are available at the moment because of the high computational bur-
den. About 50–100 % more CPU time is needed with LENTIL and general lens models than with
simpler lens models which are treatable analytically. As a first application, LENSCLEAN model
fits were done for a number of fixed values ofβ close to 1. LENTIL works sufficiently reliable,
so that almost no fits fail because of incorrect inversion of the lens equations. Unfortunately,
the LENSCLEAN model fitting becomes much more unstable withβ > 1 than with isothermal
models. At the moment, about 5 % of the fits get stuck at local minima and do not converge
to the global minimum. The reason for this bad performance is currently under investigation.
It seems to be a generic problem of the specific lens models and not of the LENTIL algorithm.
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Figure 9.48: Resulting lens plane maps for the 5 GHz VLA data (natural weighting). (a)
Classical unlensed CLEAN map, produced with DIFMAP (with residuals). (b) LENSCLEAN

map reconstructed with the same CLEAN beam (without residuals). (c) Residuals for the
LENSCLEAN result. Flux density units for (a), (b) and (c) are Jy/beam. (d) Superre-
solved LENSCLEAN map (without residuals) with varying elliptical beams. The sharp elon-
gated features at the top are artifacts of the mapping algorithm. Units are not Jy/beam but
Jy/mas2. The scaling factor is 219300mas2/beam. Subplots (b) to (d) also show the (tan-
gential) critical curve of the lens model. The logarithmic contour lines start with 2σ of the
expected lens plane noise of 0.022mJy/beam or 1.00·10−10Jy/mas2.
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Figure 9.49: Source plane LENSCLEAN maps for the 5 GHz VLA data (natural weighting).
(a) Reconstructed with the local combined beams (superresolved). (b) Reconstructed with
local circular beams (size of the major axis of the elliptical beam) to achieve isotropic, but
only approximately homogeneous, resolution. Units are not Jy/beam but Jy/mas2. The
scaling factor is 219300mas2/beam. The logarithmic contour lines start with 2σ of the
expected lens plane noise of 1.00· 10−10Jy/mas2. Also included is the diamond shaped
(tangential) caustic and the elliptical ‘cut’.

For future regular use of more general models, LENSCLEAN has to work more reliable in these
cases. Because of this still unsolved problems, we only present very preliminary results from an
older self-calibration data set. The results should only be compared with each other but not with
results from differentuvdata sets.

β x0 y0 relativeH0 2−β

0.98 0.′′2630 0.′′1228 1.010 1.02
1.00 0.′′2646 0.′′1221 1.000 1.00
1.02 0.′′2672 0.′′1216 0.997 0.98

Table 9.5: Preliminary LENSCLEAN results for different power-law lens models for
B0218+357. H0 is given relative to the result forβ = 1. The last column presents the
expected value for a fixed galaxy position.

Table 9.5 shows some of the results for the best galaxy position and the derived Hubble
constant. We notice that the variations of the galaxy position cancel most of the direct effect of
β , so that the deviations from the isothermal result are expected to be of the order 1 % or even
less forβ ≈ 1.05. Whether this is just coincidence or a general property of power-law models
for systems like B0218+357 has not been analysed yet. More serious effects are seen for the
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lens position, which shifts by about 1mas for 1 % change inβ .
The minimal residuals for the different power-law exponents between 0.98 and 1.02 vary

only within the 1σ limits. The accuracy ofβ derived from these residuals would therefore be
of the order a few per cent. Much tighter constraints are expected from detailed LENSCLEAN

modelling of new 8.4 GHz VLBI data (see chapter 10). Together with the 15 GHz VLA data or
other medium resolution data sets to determine the galaxy position, very good constraints for the
lens model and the Hubble constant will be possible.
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Chapter 10

New VLBI observations of B0218+357

10.1 The 8.4 GHz global VLBI data set

These data and their implications will be discussed in detail in Biggs et al. (2002). This short
description is based on that publication.

Observations took place in November 2000 with a global VLBI network including the ten
VLBA antennas (25 m each), six telescopes from the European VLBI network EVN (Effelsberg,
Medicina, Noto, Onsala, Westerbork and Yebes), the phased inner nine telescopes of the VLA,
which was in its widest A configuration and could thus not be used in total due to its small syn-
thesized beam, and the two 70 m Deep Space Network (DSN) antennas Goldstone and Robledo.
Observations started on 11 Nov. 20h UT for the European antennas and ended on 12 Nov. 9h UT
for the VLBA.

The frequency of 8.4 GHz was chosen as an optimum between higher resolution and less
effect of scattering at higher frequencies and higher sensitivity at lower frequencies. Two of
the telescopes (Yebes and Owens Valley of the VLBA) did not deliver data because of technical
problems. Apart from Noto and Onsala, which only recorded right-handed circular polarization,
both senses were recorded at all telescopes, allowing full polarization data to be produced by the
correlator.

As a result of serious amplitude calibration problems, the Westerbork data could not be used
for the maps. The remaining data were mapped and self-calibrated in a standard way. For details,
the reader is referred to Biggs et al. (2002). The resulting off-source noise of 30µJy/beam
is close to the theoretical expectations. The very gooduv coverage for Stokes I is shown in
Figure 10.1 for illustration. For uniform weighting the beam shape is almost Gaussian with only
weak sidelobes.

The reduced data became available when the bulk of work for this thesis had already been
finished. A detailed LENSCLEAN analysis will be done in the future. This will be more difficult
than the analysis of the VLA and MERLIN data, because the number of visibilities is higher and
two separated CLEAN windows have to be used to cover the regions of interest with the required
resolution.

The sensitivity of the data is not sufficient to see the ring with its very low surface brightness
at small scales. The main goal was to detect more jet components close to the core image, to
obtain more constraints for the lens models. Another objective was to either detect a third central
image or emission from the centre of the lensing galaxy itself. Both would provide extremely
accurate constraints for the position of the galaxy. If, as was actually the case, no emission could
be detected close to the expected lens centre, the data can at least give a strict upper limit for
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Figure 10.1: UV coverage of the 8.4 GHz VLBI observations of B0218+357

the flux of the central image. This would provide valuable information about the central density
profile of the lens, in particular about the core radius.

Although some calibration problems had to be solved, the data are of a very good quality.
Even preliminary maps showed a jet extending from the 1 and 2 central components both in A
and B.

10.2 Projection into the source plane

Before doing the complete LENSCLEAN modelling, the data can at least be used as a consistency
check of the existing lens models. In the first attempts, we used a classically fitted lens model
with the lens centre from equation (7.7) to project the maps from the lens plane near A and B
back to the source plane. These independent source maps can then be compared. As lens plane
emission model we used a CLEAN component list kindly provided by Andy Biggs, which is
the result of uniformly weighted mapping and self-calibrating the data with two windows, one
around A and one around B.

Figure 10.2 (top) shows maps produced from this component lists and convolved with the
beam of 1.36× 0.41mas2 at p.a.= −7.◦53. The residuals were not included in these maps,
because we are mainly interested in the projection in the source plane. The CLEAN ing was deep
enough to produce meaningful maps even without the residuals. In the bottom part, all CLEAN

components were projected into the source plane using the lens model. The CLEAN beam size
and shape was transformed using equation (9.61) for each component position. The resulting
beams are noticeable in the outer parts of the maps where only isolated components are present.
Variations of the projected beams are strongest in the western part of the B map, close to the
centre of the lensing galaxy. The logarithmic colour/greyscale encoding was chosen in a way to
make structures near the noise level more apparent. The contour lines are the better indicator for
the higher surface brightness regions.
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Figure 10.2: Top: Lens plane CLEAN maps without residuals (B and A). Bottom: Direct
projection in the source plane. CLEAN beams are projected locally. Units are Jy/mas2 and
not Jy/beam. The scaling factor is 0.6318mas2/beam. Contour lines and colour/greyscale
coding of the surface brightness is the same in all maps. Coordinate zeros are the positions
of the (projected) A1 and B1 components.

Constant source plane beams were used to produce Figure 10.3. For the upper maps they
where used directly as calculated for the core components of A and B independently. Compari-
son of the two is still difficult because of the very different resolution. For the lower maps, the
same beam was used for A and B. It was chosen to be at least as large as both A and B in all
directions but otherwise as small as possible. The resulting beam is very similar to the projected
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Figure 10.3: Projected source plane maps (B and A). Top: Beams projected at the core
images. Bottom: Same beam for A and B. The arrows mark some corresponding features
in A and B. Units are Jy/mas2 and not Jy/beam. The scaling factor is 0.6318mas2/beam
in the lens plane. Contour lines and colour/greyscale coding of the surface brightness is
the same in all maps. Coordinate zeros are the positions of the (projected) A1 and B1
components.

B beam but slightly wider. The nominal resolution is now the same in A and B. Given the very
different lens plane images (Figure 10.2 top), the source plane maps look remarkably similar.
There are still some small but interesting differences in the details. The A component seems to
be slightly smeared when compared with B. This can not be a residual effect of the different lens
plane beams, because the resolution in A, which has the smaller projected beams, should be at
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least as high as that of B then. The opposite effect is observed. The most probable explanation is
the presence of significant scatter broadening in A. This would be compatible with the frequency
dependent flux ratios and other observed effects like peak fluxes smaller in A than in B at lower
frequencies (see section 7.8).

A closer comparison of the A and B source plane maps shows that the B jet seems to be
stretched by about 10 % relative to the A jet. This can only be explained with a different radial
mass distribution, because the jet is directed more or less radially relative to the galaxy’s centre.
The 10 % effect can be explained by a power-law potential withβ ≈ 1.04. This is in very good
agreement with the results from the central components 1 and 2 in section 7.6.2.

In the lower part of Figure 10.3, the B map was demagnified by 11 % to achieve the same
visual appearance in A and B without repeating the projection with another lens model. The
arrows mark some of the jet components that can be identified in A and B and which can be used
as constraints for the lens models. A close comparison shows that some of the weak components
are present in only one of the images and are probably noise, whilst others are very similar in
both maps. The relative stretching seems to be the same for the whole visible jet. The two
independent maps can also be used to study the source itself. A very interesting feature is the
extension to the north west of the core, which is present in both maps and which may be a first
hint of a counter jet.

We also repeated the same calculations with the best lens model from our LENSCLEAN

analysis of the 15 GHz VLA data. The resulting source plane maps are very similar to the ones
we have presented here.

No quantitative analysis has been done for the 8.4 GHz VLBI data yet. Model component
fitting and classical lens modelling can be used to constrain the mass distribution much better
than before. The accuracy of positions from model fitting are, however, difficult to estimate. A
final analysis will therefore be based on LENSCLEAN, which can exploit the information without
explicit assumptions for the source structure. We expect very precise and robust results for the
radial mass distribution from this analysis.

Another goal of the observations was to detect a possible central image. No emission above
the noise level is visible in the data near the expected position. This result can later be used to
constrain the central mass concentration (core radius, cuspy density profile) with high accuracy.
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Chapter 11

Discussion

The work presented here consisted of two main parts. The smaller one is chapter 6 which deals
with model degeneracies in quadruple lens systems. We used a very general semi-parametric
lens model approach to study the changes of time-delays and the determined Hubble constant
with the assumed radial density slope, quantified by the radial mass indexβ . The use of a
linear formalism made the study of theβ dependence easy. For fixed external shear in quadruple
lenses, this resulted in the simple scaling lawH0 ∝ (2−β )/β , independent of the lens geometry,
the time-delay ratios or the external shear. This means that a systematic error in the assumed
β will have exactly the same effect on all lenses and will not show as scatter in the results.
The good agreement betweenH0 measurements from different lenses (Koopmans & Fassnacht,
1999) should therefore not be taken as evidence for an accurate determination ofH0. It merely
shows that all lensing galaxies seem to have more or less the sameβ .

In nearly isothermal models, a systematic error of only 10 per cent inβ will result in an
error of about 20 per cent in the deduced Hubble constant. To compare the results from lensing
not only with each other but also with results derived from other methods, this possible source
of error has to be taken into account. Furthermore, it is important not only to be aware of this
effect, but to try and obtain better constraints on the radial mass profile. Work in this direction
constitutes the second part of this thesis.

We also quantified the effect of external shear by introducing the concept of a ‘critical shear’
γc. The effect ofγ on H0 is linear and strongest in the direction ofγc. For a fixed direction, its
amount is proportional toγ/γc. The value ofγc can be found in a geometrical way. It is given by
the ellipticity of the roundest ellipse passing through all images. Forγ = γc and non-vanishing
β , the time-delays∆t (or alternatively the Hubble constantH0) become zero. This is also true
for a whole family of models which are represented by the less symmetric ellipses fitting the
images. The models with vanishing time delays can be modified slightly to allow complete
Einstein rings, the ellipticity of which is determined by the shear. Small perturbation of Einstein
ring systems can lead to configurations with a very high number of images of one source.

The effect of shear is also the clue in understanding the compatibility of the general scaling
law with the simpler one ofH0 ∝ 2− β for spherical models. In spherical models close to
Einstein ring cases, the shear is constrained by the observational data to beγ = γc(2−β )/2.
This special value of external shear changes the product of time delays and Hubble constant by
a factor ofβ/2 relative to the shearless models.

Interestingly, the values of the critical shear and the Hubble constant in the general model
(with arbitrary but fixed shear) do not depend on the position of the lensing galaxy. This may be
of use for systems where this position cannot be determined accurately.
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When using more general models or less constraints than in our calculations, the scaling laws
still apply. They are only valid for a subset of the possible models then and one would have to
expect even larger uncertainties when using the whole set. This also applies for lenses with less
than four images. More special models on the other hand, like parametrized elliptical power-law
models, may be able to constrain the range of possible results much better. Nevertheless, the
scaling laws still apply for the range of models that are compatible with the constraints. Even in
these cases, our results may be used to determineH0 without explicit modelling.

The main part of our work is concerned with lens models for one of the most promising
lens systems for cosmological applications, B0218+357. Classical model fits for this lens are
presented in section 7.6. We showed that it is not possible to determine the position of the lens-
ing galaxy because of a parameter degeneracy. The initial hope that the VLBI substructure can
be used as constraint for this most important model parameter has not been fulfilled. This is a
consequence of a special property of the isothermal models used. Because they do not magnify
the source radially, the subcomponents, which are separated almost exactly in the radial direc-
tion, cannot constrain the position in this direction. Unfortunately, this is exactly the direction
of the gradient ofH0, so that a very wide range of the Hubble constant is compatible with the
observations. Even negative values cannot be ruled out from these data alone. In the direction
perpendicular to this, the constraints are much tighter.

B0218+357 is the lens with the smallest image separation of all galaxy mass systems. The
small separation of only 0.′′33, which is the same as the diameter of the Einstein ring, makes
direct optical measurements of the galaxy position very difficult. Existing observations are far
too inaccurate to provide useful constraints forH0. This will hopefully change with scheduled
HST observations in the near future.

A significant fraction of this thesis is devoted to the LENSCLEAN method. We started the
development mainly to exploit the radio ring of B0218+357 to refine the lens models. It showed
that this system is a particularly hard test case for LENSCLEAN because of the high dynamic
range. Even small residuals from the bright compact images can dominate the effects from
the ring unless extreme care is taken and the algorithm is used in its optimal version. We
discussed a number of improvements which were necessary to make LENSCLEAN a useful
method for lens models of B0218+357. The final version was used to determine the position
of the lens galaxy from a 15 GHz VLA data set, which was possible with an accuracy of a few
milliarcseconds for isothermal ellipsoidal lens models. The result for the Hubble constant is
H0 = (71±5)kms−1Mpc−1 for an Einstein-de Sitter universe orH0 = (75±6)kms−1Mpc−1

for the current standard model of a flat low-density universe with a cosmological constant. The
error bars are 2σ confidence limits and include the uncertainty of the lens model and the time de-
lay. Preliminary results for non-isothermal model provide evidence that deviations of the radial
exponent of the order 5% do not change the results forH0 significantly. The direct effect from
the lens model and the indirect effect from small induced shifts of the galaxy centre compensate
to a large fraction.

A data set with higher resolution, which was taken in combination of the MERLIN array
and the VLA at 5 GHz, could not be used to improve the results further for two reasons. One is
given by serious calibration problems which affect LENSCLEAN much stronger than the normal
mapping process. The data were indeed used to produce the best maps of the overall structure of
B0218+357 yet (Biggs et al., 2001). Possible scattering in the lensing galaxy is another reason
for the failure of LENSCLEAN model fits with these data. The effects are much more important
at 5 GHz than at 15 GHz. For some time several theoretical ideas have been under discussion to
explain the frequency-dependent flux ratios of the compact images. One is the strong effect of
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scattering in the A component which acts effectively as extinction. Another is a possible shift or
change of structure of the source itself with frequency. Spectral index effects can produce small
shifts of the visible ‘core’ components along the direction of the jet for decreasing frequencies.
This shift, together with the strong differential amplification gradient of the lens, can produce
an effect similar to the one observed. The comparison of models from 15 GHz data with data at
5 GHz including possible extinction and shifts made it possible to estimate these two effects. The
results give strong evidence that the extinction of the A component is real and that no significant
relative shift is present.

This result will be tested with a (yet unreduced) VLBI observation at five frequencies which
can be used to measure the positions of the compact components with high accuracy in an
absolute reference frame. Shifts much smaller than the ones expected without extinction can be
detected with these data.

The probable extinction in the A component of ca. 24 % is, unfortunately, bad news for the
application of LENSCLEAN for VLBI observations of B0218+357 at lower frequencies, which
could otherwise provide very good constraints for the lens models. If such a high extinction is
present at one position of the lens plane, it cannot be ruled out, that other regions with similarly
strong effects exist. It is impossible to correct for this in a simple way.

Deep VLBI observations at 8.4 GHz, presented in chapter 10, are affected by the scattering
to a lesser degree. Maps of the data show the jet at a scale of 10 mas for the first time. Many
well defined features in the maps offer the possibility to determine the radial mass exponent with
very high accuracy. As a preliminary analysis, we showed maps of the source plane calculated
by projecting the maps of the A and B components. It shows that the source plane maps are in
very good agreement only if the mass exponent is not exactly unity (isothermal) butβ ≈ 1.04.
LENSCLEAN will be the method of choice for the final and quantitative analysis. This will
provide not only the best-fit value but also reliable estimates of the uncertainty. The determi-
nation of the lens position will then be repeated with the best value ofβ , or the complete lens
model will preferably be fitted simultaneously to the VLBIandVLA data. This will lead to the
best constrained model of any time delay lens and to a very robust determination of the Hubble
constant.

Further improvements of the results for B0218+357 will rely on progress in all three fields
which contribute to the uncertainty. Possible errors from the time delay, the lens model and
the cosmological parameters are of the same order of magnitude at the moment. All of these
therefore have to be reduced to achieve significantly more accurate results. For the time delay,
new monitoring data and a reanalysis of the old data can help in reducing the errors. It may
also be possible to confirm the time delay in the optical or even at X-ray wavelengths where fast
variations are common for BL Lac objects like B0218+357.

The lens models can be improved by better medium-resolution data to tighten the constraints
for the galaxy position. These may be taken with the extended versions of the VLA or MERLIN
or with the already existing VLA–Pie Town link. The results from observations with the new
ACS detector on board the HST will provide a completely independent measurement of this
parameter. Together, they can be used to cross-check the results or to constrain other parameters.

The lens galaxy is a gas-rich spiral which allows to study the kinematics of the disc with
spectroscopic observations of absorption lines in the emission from the background source. Sep-
arate spectra for the two components are expected at radio wavelengths in the near future. It will
also be investigated whether or not the spectral and spatial resolution of optical observations is
sufficient to obtain useful information about the disc kinematics. Combined with shape param-
eters of the disc from optical observations, which can be used to infer the inclination and its
position angle, an independent measure of the mass distribution will then be available. Together
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with the lens models, a partial breaking of the disc/halo degeneracy might even be possible.
Such data will at the very least provide a very important cross-check of the lensing results.

Even more important than future improvements of the B0218+357 models will be the ap-
plication of LENSCLEAN for as many radio systems with extended or multi-component sources
as possible. Results of individual systems can always be impaired by several effects, e.g. small
scale mass clumps like globular clusters in the lensing galaxy, unseen secondary galaxies close
to the line of sight, cosmic shear or untypical properties of the individual lenses. To be able to
detect such effects and to obtain reliable and representative results, detailed modelling efforts
have to be spent for many systems. This should not only be done for time-delay lenses but
also for other applicable systems. Most important for the Hubble constant is the radial mass
distribution, which can only be constrained well with extended sources. LENSCLEAN is thus
the method of choice for this problem. Our analytical work also showed that external shear can
have significant effects in certain lens systems. Ellipticities of the main lenses and the external
shear should therefore also be inspected precisely. The results will not only be important for
cosmological applications but also for the study of high-redshift lensing galaxies, whose mass
distributions cannot be investigated by other means.

We conclude that LENSCLEAN will probably play an important role in future lens work. It
is currently by far the best method available to utilize the information from arbitrary, possibly
extended, radio sources to determine mass models of gravitational lenses.



Appendix A

Parametrization and mapping of
ellipses

A.1 General

Ellipses occur in several contexts in this work. They are used to describe mass distributions and
potentials, components of lensed sources, Einstein rings and locations of images. A well-chosen
parametrization of these curves can greatly help in the analytical and numerical calculations.
An ellipse with major half axisa in the x direction and minor half axisb in the y direction is
described by

x2

a2 +
y2

b2 = 1 , (A.1)

or in polar coordinates:

x = r cosφ (A.2)

y = r sinφ (A.3)

r0 = ab

√
2

a2 +b2 (A.4)

e=
a2−b2

a2 +b2 (A.5)

r(φ) = r0(1−ecos2φ)−1/2 (A.6)

For elliptical potentials, a parametrization of the ellipticity withε according to

a ∝ 1+ ε , (A.7)

b ∝ 1− ε (A.8)

is also used. The parametrization with the axial ratioq = b/a (e.g. Kormann et al., 1994) has
the disadvantage of breaking the symmetry of the equations. The relations between the different
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measures of ellipticity are as follows:

q =
√

1−e
1+e

=
1− ε

1+ ε
=

b
a

1−q2

1+q2 = e =
2ε

1+ ε2 =
a2−b2

a2 +b2

1−q
1+q

=
1−

√
1−e2

e
= ε =

a−b
a+b

(A.9)

For the description of elliptical source components and to calculate how they project in the
lensing process, we have to generalize for arbitrary orientation of the ellipses. The orientation is
measured by the orientation angleθ of the major axis, in mathematical sense from the positive
x direction through the positivey direction. With the approach

z†E−1z = 1 , (A.10)

the elements of the matrixE can be calculated either by starting from the polar form (A.6),
subtractingθ from φ and using simple trigonometric formulas to separate theφ andθ parts, or
by starting with the matrixE in the system of the main axis and apply a rotation matrix toz.
This rotation ofz is equivalent to a transformation ofE with the rotation matrix applied from
the left and the inverse from the right side. The following parametrization of the matrix proves
to be convenient:

E−1 =
1

a2b2

(
R+−Rx −Ry

−Ry R+ +Rx

)
(A.11)

E =
(

R+ +Rx Ry

Ry R+−Rx

)
(A.12)

R± =
a2±b2

2
(A.13)

Rx = R− cos2θ (A.14)

Ry = R− sin2θ (A.15)

The parametersR+, Rx, Ry and the matrixE have the advantage that they are regular even for de-
generated ellipses. In the case of elliptical Gaussian components, they are direct measures of the
second order brightness moments and are thus related to observations in a direct and linear way.
This is essential for a simple error propagation from the measurements to the ellipse parameters.
The inverse matrixE−1 does not share this nice properties. If the measurement errors of the
second order moments are of the same order of magnitude as the moments themselves, linear
error propagation would not be possible forE−1, because parameters would diverge within the
allowed range. This is not a problem forE.

Please note that this formalism is the same as the one used to parametrize the CLEAN beam
in equation (8.21). The matrixE−1 = G describes the ellipse at which the beam has fallen to
1/e of its peak.
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A.2 Lens mapping

For lensing applications, the mapping of ellipses has to be investigated, e.g. the mapping from
the source to the lens plane. If coordinates map like

z = Mzs , (A.16)

the ellipticity matrixE is correspondingly transformed like

E−1
s = M†E−1M (A.17)

or

Es = M−1E(M†)−1 . (A.18)

This mapping becomes especially simple in the case of orthogonal mappings (rotations) or sym-
metric matricesM as they are given in the case of a lens mapping. For fixedM, the matricesE
andE−1 transform linearly, which is another advantage of this parametrization. The relations to
the parameters that were used before are given by

r0 =

√
R2

+−R2
−

R+
, (A.19)

e=
R−
R+

. (A.20)

For lens model fitting we need the linear transformation explicitly. With the normal inverse
magnification matrix

M−1 =
(

1−κ + γx γy

γy 1−κ− γx

)
, (A.21)

and the magnificationµ = |M|=
(
(1−κ)2− γ2

)−1
, the transformation

E = MEsM (A.22)

can be written as R+
Rx

Ry

= A

Rs
+

Rs
x

Rs
y

 , (A.23)

with

A = µ
2

(1−κ)2 + γ2
x + γ2

y −2(1−κ)γx −2(1−κ)γy

−2(1−κ)γx (1−κ)2 + γ2
x − γ2

y 2γxγy

−2(1−κ)γy 2γxγy (1−κ)2− γ2
x + γ2

y

 . (A.24)

This equation can be used with standard linear least-squares techniques (see section 2.2) to fit
source component parameters to multiple image components and calculateχ2 contributions for
lens modelling purposes (section 4.3.5).



220



Appendix B

Fourier transforms and Fourier series

The properties of Fourier transforms and series are well known and can be found in a number of
text books. The most important equations are summarized here to provide a reference list and
to introduce the notations that is used in the main part of this thesis. We start with continuous
Fourier transforms inIRn and interpret the Fourier series as a special case.

B.1 Continuous Fourier transforms

The Fourier transform (FTorFT) of an ‘arbitrary’1 function f (x) (x∈ IRn) is defined as follows:

F = FT f (B.1)

F(u) =
∫

dnx e2π i u·x f (x) (B.2)

The variable in Fourier space is alson-dimensional (u ∈ IRn). With this definition, the inverse
transform is very similar to the transform itself:

f = FT−1F (B.3)

f (x) =
∫

dnu e−2π i u·xF(u) (B.4)

Definitions without the 2π factor in the exponents are also possible, but they would introduce a
scaling factor in either or both transforms. With the definitions for (one-dimensional) convolu-
tion and correlation,

( f ∗g)(x) =
∫

dx′ f (x−x′)g(x′) , (B.5)

Corr( f ,g)(x) =
∫

dx′ f ?(x′−x)g(x′) , (B.6)

1We do not claim true mathematical accuracy here. Most important is the integrability off (x). Generalizations
can be treated with the formalism of distributions (eg. Forster, 1984; Wucknitz, 1996). The technical details can be
very important in some contexts but shall not be copied from mathematical text books here.
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the following relations can be derived:

function Fourier transform

f (x) F(u) (B.7)

g(x) G(u) (B.8)

f (ax)
1
|a|

F
(u

a

)
(B.9)

f (x−x0) F(u)e2π i ux0 (B.10)

( f ∗g)(x) F(u)G(u) (B.11)

Corr( f ,g)(x) F?(u)G(u) (B.12)

The generalization for then-dimensional case is straightforward. For real functionsf , the FT
shows the symmetry

F(−u) = F?(u) . (B.13)

The Wiener-Khinchin theorem for the autocorrelation

FT Corr( f , f ) = |F |2 (B.14)

leads directly to the Parseval theorem:

∫
dx | f (x)|2 =

∫
du |F(u)|2 (B.15)

A Gaussian transforms to a Gaussian:

f (x) =
1√

2πσx
e−x2/(2σ2

x ) (B.16)

F(u) = e−u2/(2σ2
u ) (B.17)

σu =
1

2πσx
(B.18)

The full width at half maximum (FWHM) is defined as

f

(
FWHMx

2

)
=

f (0)
2

, (B.19)

F

(
FWHMu

2

)
=

F(0)
2

, (B.20)

and is related toσ via

FWHM =
√

8ln2σ . (B.21)

FWHM in image and Fourier space have the following relation:

FWHMu =
4ln2

π

1
FWHMx

(B.22)
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The transform of a pillbox function is a sinc:

f (x) =

{
1 for |x|< X

0 for |x|> X
(B.23)

F(u) = 2X sinc(2uX) (B.24)

sincx =
sinπx
πx

(B.25)

For generalized functions (distributions) the following pairS of functions/transforms follow triv-
ially:

f (x) = δ (x) F(u)≡ 1 (B.26)

f (x)≡ 1 F(u) = δ (u) (B.27)

For shiftedδ -functions the translation theorem (B.10) can be applied. The ‘Sha’-function

X (x) =
∞

∑
k=−∞

δ (x−k) (B.28)

is its own Fourier transform,

X̃ (u) =
∞

∑
k=−∞

e2π i ku (B.29)

=
∞

∑
k=−∞

δ (u−k) . (B.30)

B.2 Fourier series and discrete Fourier transforms

As for the continuous Fourier transform, several different conventions are used for Fourier series.
We use the one most appropriate in the radio interferometry context.

Let us assume thatf (x) is L-periodic, i.e.f (x) = f (x+L). To calculate the Fourier transform
of this function, we can start with the transform of one period off , say 0< x< L. The complete
function can be constructed from this period by convolving it with a modified Sha-function
X (x/L)/L. Since this convolution inx-space is a multiplication inu-space with the transform
of the modifiedX , the transform can be written as follows:

F(u) = X (uL)
L∫

0

dx e2π i ux f (x) (B.31)

The X selects multiple frequencies of 1/L. The transform and its inverse can therefore be
written as

F(u) =
∞

∑
k=−∞

Fk δ

(
u− k

L

)
, (B.32)

f (x) =
∞

∑
k=−∞

Fk e−2π i kx/L , (B.33)
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with

Fk =
1
L

L∫
0

dx e2π i kx/L f (x) . (B.34)

This transformation for periodic functions is called a Fourier series; theFk are the Fourier coef-
ficients. See e.g. Forster (1983) for details. Discrete functionsf with n samples per period can
be written as

f (x) =
n−1

∑
j=0

f j δ

(
x− jL

n

)
(B.35)

in the interval 0< x < L. This can be combined with equation (B.34) to obtain the Fourier
coefficients

Fk =
1
L

n−1

∑
j=0

f j e
2π i k j/n . (B.36)

These are periodic withFk = Fk+n, analogously tof j . The inverse transform in the discrete case
is

f j =
L
n

n−1

∑
k=0

Fk e−2π i k j/n . (B.37)

Abstracting, from the continuous functions we can think offk as a discrete function with discrete
Fourier transformLFk. The regular sampling inx-space leads to periodicity inu-space and vice
versa. Table B.1 summarizes the sampling intervals and periods inx andu-space.

interval period

x ∆x = L/n L = n∆x

u ∆u = 1/L n/L = 1/∆x

Table B.1: Sampling interval and period in image and Fourier space for the discrete Fourier transform

A FT of n terms can be split into the sum of two FTs withn/2 terms each. Splitting recur-
sively untiln= 1, leads to the very efficient FFT algorithm which needs of the order log2n steps
to calculate oneFk, while the direct calculation would needn. For largen the saving in CPU
time is remarkably high.
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theorie, Sitzungsber. Preuß. Akad. Wissensch., erster Halbband, p. 831. 22

Ekers, R. D., Fanti, C. & Padrielli, L. (eds): 1996,Extragalactic Radio Sources, IAU Symp.
175. 236

Ellithorpe, J. D., Kochanek, C. S. & Hewitt, J. N.: 1996, Visibility LensCLEAN and the relia-
bility of deconvolved radio images, ApJ464, 556. 131, 132, 144

Evans, N. W. & Witt, H. J.: 2001, Are there sextuplet and octuplet image systems?, MNRAS
327, 1260. 68

Falco, E. E., Gorenstein, M. V. & Shapiro, I. I.: 1985, On model-dependent bounds onH0 from
gravitational images: Application to Q0957+561A,B, ApJ289, L1. 49

Fassnacht, C. D., Pearson, T. J., Readhead, A. C. S., Browne, I. W. A., Koopmans, L. V. E.,
Myers, S. T. & Wilkinson, P. N.: 1999, A determination ofH0 with the CLASS gravitational
lens B1608+656. I. Time delay measurements with the VLA, ApJ527, 498. 65

Fomalont, E. & Perley, R. A.: 1999, Calibration and editing,in Taylor et al. (1999), p. 79. 129

Forster, O.: 1983,Analysis 1, 4th edn, Vieweg. in german. 224

Forster, O.: 1984,Analysis 3, 3rd edn, Vieweg. in german. 12, 221

Gil-Merino, R., Wisotzki, L. & Wambsganß, J.: 2002, The Double Quasar HE 1104–1805: A
case study for time delay determination with poorly sampled lightcurves, A&A381, 428. 34

Giovi, F. & Amendola, L.: 2001, The distance-redshift equation in quintessence cosmology and
the estimation ofH0 through time delays, MNRAS325, 1097. 19

Gorenstein, M. V., Shapiro, I. I. & Falco, E. E.: 1988, Degeneracies in parameter estimates for
models of gravitational lens systems, ApJ327, 693. 49, 56

Grundahl, F. & Hjorth, J.: 1995, The optical appearance of the gravitational lens system
B0218+357, MNRAS275, L67. 76
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