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Summary

In this thesis, the physics of two dimensional spiral and striped phases of doped Mott-

insulators, cuprates and nickelates in particular, is investigated. The main emphasis is on

the study of the influence of dopant induced disorder on these phases.

In the first part of this work we develop a phenomenological model for the spin glass

phase of La2−xSrxCuO4. In this model it is assumed that holes doped into the CuO2 planes

localize near their Sr dopants where they cause a dipolar frustration of the antiferromagnetic

environment. In absence of long range antiferromagnetic order, the spin system can reduce

frustration, and also its free energy, by forming a state with an ordered orientation of the

dipolar moments which leads to the appearance of spiral spin correlations. To investigate

this model, a non-linear sigma model is used in which disorder is introduced via a randomly

fluctuating gauge field. A renormalization group study of this model shows that the collinear

fixed point of the model is destroyed through the disorder and that the only stable fixed

point is governed by a O(4)/O(3) symmetry. The disorder coupling leads to an additive

renormalization of the order parameter stiffness. Further, the stability of the spiral state

against the formation of topological defects is investigated with the use of the replica trick.

A critical disorder strength is found beyond which topological defects proliferate. Comparing

our results with experimental data, it is found that for a hole density x > 0.02, i. e. in the

entire spin glass regime, the disorder strength exceeds the critical threshold.

In the second part of the thesis, we derive a continuum model which allows to describe and

analyze striped phases. Using field theoretical tools, the influence of both disorder and lattice

perturbations are investigated. Besides a free phase of the stripes, which is characterized

by gaussian fluctuations, the analysis shows the existence of a disorder dominated phase

as well as the existence of a lattice pinned phase in which transversal fluctuations of the

stripes are suppressed. Comparison with experimental data from cuprates and nickelates

shows qualitative agreement with the theoretical phase diagram. Furthermore, the influence

of stripe fluctuations on spin fluctuations is investigated. Using dimensional estimates, a

depinning transition of disordered stripes subject to an externally applied field is studied.

Finally, the interplay between transverse stripe excitations and longitudinal charge and spin

fluctuations along the stripe is studied with bosonization techniques. The stability of a

phase characterized by a zig-zag form of the transverse displacements and a simultaneous

occurrence of longitudinal charge density wave order is demonstrated.



Zusammenfassung

In dieser Arbeit wird die Physik zweidimensionaler Spiral- und Streifenphasen von dotier-

ten Mott-Isolatoren, speziell von Kupraten und Nickelaten, untersucht. Der Schwerpunkt

liegt hierbei auf der Analyse des Einflusses von Unordnung, welche durch zufällig verteilte

ionisierte Donatoren erzeugt wird.

Im ersten Teil der Arbeit wird ein phänomenologisches Modell für die Spinglas-Phase

von La2−xSrxCuO4 entwickelt. In diesem Modell wird angenommen, dass die durch die Sr

Dotierung erzeugten Löcher in den CuO2-Ebenen nahe den Sr Donatoren lokalisiert sind und

dort eine dipolartige Frustration der antiferromagnetisch geordneten Umgebung hervorrufen.

In Abwesenheit von langreichweitiger antiferromagnetischer Ordnung kann das Spinsytem

die Frustration, und damit die freie Energie, minimieren, indem es die Dipole ausrichtet,

was zu spiralartigen Spinkorrelationen führt. Der Einfluss der Unordnung auf eine solche

Spiralphase wird mit Hilfe eines nichtlinearen Sigma-Modells untersucht, in welches die Un-

ordnung durch ein zufällig fluktuierendes Eichfeld eingeführt wird. Unter Verwendung einer

Renormierungsgruppen-Analyse wird das Skalenverhalten der Steifigkeit des Ordnungspara-

meters der Spiralphase sowie der Unordnungsstärke untersucht. Es wird gezeigt, dass der

kollineare Fixpunkt des Systems durch die Unordnung zerstört wird, und dass der einzige

stabile Fixpunkt des Systems eine O(4)/O(3) Symmetrie besitzt. Die Unordnung führt zu

einer additiven Renormierung der Steifigkeit des Ordnungsparameters. Weiterhin wird die

Stabilität der Spiralphase gegenüber der Ausbildung topologischer Defekte mit Hilfe des

Replika-Tricks untersucht. Die kritische Unordnungsstärke wird berechnet, jenseits derer to-

pologische Defekte durch die Unordnung induziert werden. Der Vergleich mit experimentellen

Daten zeigt, dass für eine Lochdichte x > 0.02, d. h. in der gesamten Spinglas-Phase, die

kritische Unordnungsstärke überschritten ist.

Im zweiten Teil der Arbeit leiten wir zunächst ein Kontinuumsmodel zur Beschreibung

der Streifenphase her. Mit Hilfe feldtheoretischer Methoden wird der Einfluss sowohl der

Unordnung als auch des Gitterpotentials untersucht. Neben einer freien Phase der Strei-

fen, welche durch Gausssche Quantenfluktuationen der Streifen charakterisiert ist, zeigt die

Analyse die Existenz einer ungeordneten Phase, in welcher die Streifen durch die Unord-

nung gepinnt werden, als auch die Existenz einer Gitter-gepinnten Phase, in welcher die

Streifenfluktuationen durch das korrelierte Potential des Gitters unterdrückt werden. Der

Vergleich mit Daten von Kupraten und Nickelaten zeigt eine gute qualitative Übereinstim-

mung des theoretischen Phasendiagramms mit dem Experiment. Weiterhin wird der Einfluss

der Streifenfluktuationen auf die Spinfluktationen untersucht. Ein Depinning der ungeordne-

ten Streifen aufgrund extern angelegter Felder wird mit Hilfe dimensionaler Abschätzungen

berechnet. Schließlich wird die Wechselwirkung zwischen den transversalen Streifenfluktua-

tionen und den longitudinalen Ladungs- und Spindichtefluktuationen entlang der Streifen mit

der Bosonisierungstechnik analysiert. Diese Untersuchung zeigt die Stabilität einer Zick-Zack

Form des Streifens bei gleichzeitiger Ausbildung einer longitudinalen Ladungsdichtewelle.
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Chapter 1

Introduction

This thesis is chiefly concerned with the influence of disorder on the properties of striped

and spiral states of hole doped cuprate materials, compounds which display high tempera-

ture superconductivity at moderate doping concentrations. In cuprates, the superconducting

state emerges through chemical doping of a parent compound which is insulating and shows

antiferromagnetic (AF) order with a high critical Néel temperature of typically a few hun-

dred Kelvin. As a consequence of the chemical doping, the compounds are intrinsically

disordered. Especially at weak doping concentrations disorder is experimentally known to

strongly influence the behavior of these materials. This is evident for example in the sim-

plest cuprate superconductor, La2−xSrxCuO4, where the superconducting phase emerges via

doping directly from a low temperature spin glass phase (see Fig. 1.1) and in which glassy

characteristics were detected even inside the superconducting phase.

Cuprates are layered compounds, consisting of weakly coupled CuO2 planes, and under-

standing the properties of these planes is central for a description of these materials. In the

planes, AF correlations are strong and survive also when the compound is weakly doped. As

explained in more detail in the next section, the hole doped CuO2 planes are well described

by a relatively simple model in which each Cu site carries either a spin 1
2

degree of freedom

or a spinless hole which can hop to neighboring sites. Neigboring spins interact via an AF

exchange. It is easy to understand that the mobility of holes is directly affected by the desire

of the material to form AF correlations. To illustrate this, let us briefly consider a simple toy

model mimicking the physics of the CuO2 planes, where the spin 1
2

are represented by Ising

spins and we consider a state with one missing spin, or hole. When the hole hops, it creates

a string of frustration in the AF background which strongly limits the hole’s mobility, see

Fig. 1.2. While this simple picture would suggest a localization of the hole through strings,

both transverse fluctuations of the spins and the existence of retraceable paths which do not

cause frustration [2] actually lead to a finite but small mobility.

The single hole properties seem now to be quite well understood and early theories of

high temperature superconductivity were constructed from these one-hole wave functions.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Phase diagram of La2−xSrxCuO4, from [1].

Figure 1.2: String of frustrated AF bonds (crosses) created by moving the hole three lattice

sites to the right.

Shraiman and Siggia [3, 4] proposed a theory of interacting hole-quasiparticles based on the

one-hole picture and predicted the formation of spiral correlations with a pitch proportional

to the hole density. Experiments have to date however not found any evidence of such spiral

correlations inside the superconducting phase. The pairing mechanism suggested by the

one-hole picture, arising from a dipole-dipole interaction of the holes [5], does not seem to

be a satisfactory model of the high Tc phenomenon. One shortcoming of this theory is that

it treats the spins in the semi-classical approximation which is only justified in presence of

fairly large AF correlation lengths. Generally, a homogenous distribution of a finite density

of mobile holes reduces the AF correlations and eventually this is believed to lead to the

formation of a spin liquid in which the spins are disordered by quantum fluctuations. In

such a state the scattering of the hole from spin excitations is qualitatively different than

for the case of ordered AF moments.

At sufficiently low hole concentrations where static AF correlations are still dominant,
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i. e. in the spin glass and AF phase, one nonetheless expects an approach based on the

semiclassical description of the spins to be a good approximation. In these regimes, dopant

disorder is however known to be strong and any description of these phases must account

for a quenched distribution of charges, i. e. holes. In the first part of this thesis, chapter

3, we propose a theory of the spin glass regime in which the entire charge distribution

is assumed to be quenched. Each hole, localized close to an ionized dopant, is assumed

to produce a long ranged dipolar-shaped frustration of the AF, similar to the one known

to be produced by delocalized holes. A polarization of the dipole moments leads to the

appearance of spiral correlations. Because of the quenched charge distribution, disorder is of

fundamental importance in this phase. We therefore develop a renormalization approach for

disordered spiral phases, where we study the scaling of the spin stiffness and the disorder.

The importance of topological defects of the spiral texture is analysed and their relevance

for the physics of the spin glass phase is discussed.

A large amount of theoretical work has been devoted to the properties of the supercon-

ducting phase. In most approaches, a homogeneous distribution of mobile holes is assumed.

However, one suggestion, which has been put forward by Emery and Kivelson, is that an

AF with a finite and homogeneous hole density is in fact a thermodynamically unstable

phase, the stable one being rather a phase separated state, in which hole depleted and hole

rich phases are formed. Such a clustering of holes would minimize the number of broken

bonds at the expense of the kinetic energy of the holes which favors a homogeneous distri-

bution. At present it is not clear, whether the tendency to phase separation really plays

an important role in cuprate materials. However, some experiments suggest it does. Phase

separation has been observed in oxygen doped cuprates. In these materials, stable homo-

geneous phases were only found in overdoped samples. The reason why phase separation is

observed in oxygen doped materials but not in e. g. Sr doped ones is that oxygen dopants

are relatively mobile. Thus, they can screen the long range Coulomb interaction between

holes, which would otherwise always prevent macroscopic phase separation to take place. As

argued by Emery and Kivelson, for a quenched distribution of dopants the tendency to phase

separation is therefore always frustrated, but phase separation may nonetheless appear at a

mesoscopic scale. This may lead to the formation of striped phases, in which holes cluster

into one dimensional stripes which act as AF domain walls of the undoped AF environment.

In this scenario of stripe formation, an immobile distribution of dopants is thus directly

responsible for the appearance of stripes. Experimentally, immobile dopants are however

always disordered, i. e. the disordered distribution of dopants aquires a dominant role in the

frustrated phase separated state. Therefore, in chapter 4, where we analyze the nature of

striped phases, we discuss in detail the importance of quenched disorder. We use a phenom-

enological description of the stripes to investigate the stability of stripes again both pinning

by disorder and pinning by the lattice within a renormalization group approach. We further

investigate the possibility of a depinning of disorder pinned stripes by externally applied
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electric fields. Because superconductivity in cuprate materials has been linked to dynamical

fluctuating striped phases, and because stripes in cuprates seem to be characterized by a

finite charge density, we also investigate the importance of a coupling between transverse

stripe fluctuations and the charge and spin fluctuations along the stripe in the last section

of chapter 4.

We begin with an overview over the magnetic properties of weakly doped La2−xSrxCuO4

in chapter 2, and develop a phenomenological model for the spin glass regime in chapter

3. Chapter 4, which begins with a review of some key theoretical and experimental results

on striped phases, is concerned mainly with the pinning of striped phases by either lattice

or disorder perturbation. We compare our results with data from underdoped cuprates and

also doped nickelate materials, which are known to display well developed striped phases. In

the same chapter we also discuss the interplay between stripe fluctuations and longitudinal

charge and spin fluctuations which live on the one dimensional stripes. Finally, we summarize

our results in chapter 5 which includes an outlook for possible future investigations.



Chapter 2

Primer: The magnetic phase diagram

of weakly doped La2−xSrxCuO4

La2−xSrxCuO4 (LSCO) has the simplest structure among the family of cuprate high tem-

perature superconductors (HTSC’s) and for that reason is one of its best studied members.

Common among all cuprates is their layered structure and the presence of CuO2 layers which

are widely believed to be responsible for the unusual properties of these materials. In LSCO

the CuO2 layer are isolated from each other by insulating La(Sr)O layers and the structure

is shown schematically in Fig. 2.1. Each Cu site is surrounded by octahedra of oxygen ions,

with however imperfect symmetry as the in-plane Cu-O distance (∼1.9 Å) is considerably

shorter than the out of plane Cu-O distance (∼2.6 Å). While the prime research interest in

Cu

La (Sr)

O

Figure 2.1: Chemical structure of La2−xSrxCuO4

HTSC’s is related to their superconducting properties, it is generally understood that the

magnetism of these materials should play a key role in the mechanism of superconductivity.

This has led to detailed studies of the doping dependence of magnetic properties and some

7
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surprising results.

2.1 Chemical structure

Undoped La2CuO4 is a charge transfer insulator with an antiferromagnetically ordered

groundstate. In this material, lanthanum is in an ionized La3+ (closed shell) configura-

tion, oxygen has a closed p-shell and valence state O2− while copper enters a Cu2+ state,

loosing a 4s and one of its 3d electrons. The net result is that Cu is one electron short of

a closed 3d shell and thus a hole with spin 1
2

is created at the copper site. The two px and

py oxygen orbitals and the Cu dx2−y2 orbital hybridize to form the hole state with mainly

dx2−y2 character. The undoped CuO2 planes can thus be effectively described as a simple

square lattice (representing the copper sites) with a single spin per lattice site (half filling).

A double exchange between charge carriers on neighboring copper sites then leads to an

effective antiferromagnetic interaction between neighboring spins. The magnetism of these

planes can then to a good approximation be described within a simple square lattice spin- 1
2

Heisenberg model,

HH = J
∑

〈ij〉
Si · Sj, (2.1)

with an antiferromagnetic J ∼ 1200K. The sum is over nearest neighbor pairs of sites and

Si are spin-1
2

operators.

Doping of the CuO2 planes can be achieved e.g. through Sr, which replaces La in the

lattice structure. Thus, La3+ is replaced by Sr2+ and one electron is removed from the

CuO2 planes. This extra hole is mainly localized on the oxygen shells. As argued by Zhang

and Rice [6], this extra hole then forms a singlet with the hole localized on the Cu and

thus effectively removes one spin from the Cu sites. Hence, doping can be understood as

introducing spinless holes into the half filled system. Based on this picture, they argued that

the doped CuO2 planes are well described by a t-J Hamiltonian of the form

HtJ = J
∑

〈ij〉
Si · Sj − t

∑

〈ij〉,α

{
c†iα (1− niᾱ) (1− njᾱ) cjα + h.c.

}
(2.2)

where ciα is a Fermi operator and removes one electron with spin α from site i (ᾱ has its spin

opposite to α). t is the hopping parameter and the 1− niᾱ factors forbid double occupancy.

2.2 Antiferromagnetism of the parent compound

In the study of the magnetism of La2CuO4, an approach based on the quantum-non-linear-

σ (QNLσM) model has been highly successful. It correctly describes the long wavelength

hydrodynamic modes (spin waves) of the Heisenberg model (2.1) [7]. In this continuum
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model, it is assumed that the antiferromagnetic correlation length is much larger than the

lattice spacing and the model describes slow fluctuations of the locally well defined staggered

magnetisation n (normalized such that n2 = 1) which, for Heisenberg models, is a three

component unit vector. The effective Euclidean action of the QNLσM is

Seff

h̄
=
ρS
2h̄

∫ h̄β

0
dτ
∫
d2x

{
(∂µn)2 +

1

c2
(∂τn)2

}
. (2.3)

The spin stiffness ρS and the spin wave velocity c should be viewed as phenomenological

parameters to be determined either from experiment or from other techniques such as spin

wave theory or numerical simulations. The fact that the QNLσM has two parameters already

implies that it is more general than the one-parameter model (2.1). The behavior of this

model depends strongly on the value of its isotropic coupling constant g = h̄cΛ/ρs (Λ is a high

frequency cutoff). There is a zero temperature quantum phase transition at g = gc ∼ 4π.

The model has long range order for g < gc (“renormalized classical regime”) whereas for

g > gc, the ground state is quantum disordered with only finite spin correlations and no static

magnetic order. At finite temperatures there is further an intermediate regime between these

two phases which is governed by the nearby quantum critical point and thus characterized

by a single scale set by the temperature (“quantum critical regime”) [7]. A schematic phase

diagram of the model is shown in Fig. 2.2. It is now firmly believed that the Heisenberg

model described by (2.1) has g < gc and that additional frustrating next-nearest neighbor

coupling terms are required to reach the disordered regime. Indeed, measurements of the

correlation length of La2CuO4 have been fitted extremely well with the QNLσM predictions

for the renormalized classical regime. The fit can be done without any adjustable parameters

assuming only the validity of the model (2.1) and using quantum Monte-Carlo results for ρS
and c [8].

T

gg
c

critical
Quantum

classical disordered
QuantumRenormalized

Figure 2.2: Phase diagram of the two dimensional QNLσM

The Néel temperature, which is about 300 K for La2CuO4, can also be obtained approx-

imately within a mean field approach, in which 3D ordering should appear roughly at a

temperature TN ∼ [ξ2D(TN)/a]2J⊥, where J⊥ is the antiferromagnetic coupling perpendic-

ular to the planes. Even though J⊥/J ∼ 10−4 − 10−5 is very small, TN can be fairly large

because of the dominant ξ2D ∼ exp(2πρS/T ) behavior of the 2D correlation length in the

renormalized classical regime [7].
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2.3 Magnetism at finite doping

Once holes are added to the CuO2 planes, the magnetism becomes more complicated. Fig. 2.3

summarizes the magnetic phase diagram at weak doping concentrations of La2−xSrxCuO4 and

Y1−xCaxBa2CuO4. Here, we briefly discuss the phase diagram concentrating on La2−xSrxCuO4.

For very small Sr concentration, the most dramatic effect is a rapid reduction of TN with

the complete destruction of long range order occurring at a very small critical doping value

of roughly xg ∼ 0.02. Further, a spin freezing is observed inside the AF phase below a tem-

perature Tf which scales linearly with the Sr concentration, Tf ∼ (815K)x for 0 < x < xg.

This spin freezing is inferred from a broad distribution of extremely slow relaxation times

measured with local probes such as 139La nuclear quadrupole resonance (NQR) [9] and muon

spin resonance (µSR) [10]. Surprisingly, while at higher temperatures doping leads to a

reduction of the local staggered moments, at temperatures lower than about 30 K the stag-

gered moments recover and at zero temperature they are practically doping independent and

approach the value of the undoped compound [9, 10]. However, the distribution of staggered

moments is broad at finite doping, with a variance which is again simply linear in x [11].

Both the recovery of the staggered moments and the broad distribution of relaxation times

is reminiscent of a transverse spin glass state, in which the transverse spin wave modes of

the AF freeze in a static but random pattern. Hence, there are unambiguous signatures of

disorder in the weakly doped AF phase. This is further corroborated by transport measure-

ments, which show a behavior typical for random systems. At temperatures below ∼50 K

the conductivity roughly follows variable range hopping characteristics while at higher tem-

peratures a thermally activated conductivity is observed, with activation energies of about

19 meV [12]. This indicates that the holes localize near their randomly distributed Sr donors.

Both the presence of finite staggered magnetic moments and the broad distribution of slow

relaxation times persist also above x > xg [11], where the long range AF order is destroyed.

Again, there is a recovery of the staggered moments at very low temperatures, although the

zero temperature moment is now slightly smaller than in the undoped compound. The x

dependence of Tf follows now roughly a 1/x scaling. The regime 0.02 < x < 0.05 is well

described as a conventional spin glass (SG) and shows characteristic non-ergodic behavior

[13]. The freezing transition temperature Tf in this regime can thus be identified as a SG

transition temperature Tg.

The fact that staggered moments persist also above x = 0.02 is a very important finding

and excludes the possibility that the transition at x = 0.02 is a disordering transition driven

by quantum fluctuations as described in the QNLσM formulation above. It has sometimes

been argued that upon hole doping, the reshuffeling of the spins by the mobile holes leads

to frustration and enhances quantum fluctuations of the spins. Within such a scenario, it

would be possible to reach the quantum critical point of the QNLσ model which would drive

the AF into a spin liquid phase. While a renormalization of the effective spin stiffness does
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occur, the transition at x = 0.02 is not followed by a spin liquid phase but rather a SG. The

transition therefore seems to be driven by randomness and not by quantum fluctuations.

Only recently, it was found that the short ranged magnetic order in the SG regime is

incommensurate, with a maximum of the imaginary part of the susceptibility located at the

in-plane wave vector ( 1
2
± δ√

2
, 1

2
± δ√

2
), in units of 2π

a
where a is the Cu lattice spacing [14].

Here, δ is the incommensurability which roughly follows δ ' x, see Fig. 2.4. A possible

explanation for such an incommensurability is diagonal stripe formation. We will argue

however that a more likely explanation is the formation of short ranged spiral order.

Figure 2.3: Phase diagram as seen by µ-SR, with data obtained from La2−xSrxCuO4 (open

symbols) and Y1−xCaxBa2CuO3 (closed symbols), psh is the hole concentration. (a) Dop-

ing dependence of the Néel temperature TN , freezing transition temperature Tf , spin glass

transition temperature Tg and superconducting transition temperature Tc. (b) Normalized

average internal field at T=1 K. (c) RMS deviation ∆B at T=1 K. Fig. from Niedermayer

et al. [11].

Superconductivity appears first at a critical doping concentration xc ' 0.05. It is inter-

esting that this transition occurs directly from an insulating state and not from a metallic

one. Precisely at xc, there is also a marked change in the magnetic incommensurability.

First, the incommensurability changes from diagonal to horizontal, i.e. the dominant peak

position of the neutron scattering structure factor changes from ( 1
2
± δ√

2
, 1

2
± δ√

2
) to (1

2
, 1

2
±δ)

and (1
2
± δ,1

2
). Further, while the incommensurate scattering observed in the SG regime is

quasi-elastic with the main weight located at zero frequency [14], the incommensurability
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seen in the superconducting regime is usually only observed in inelastic scattering experi-

ments with a finite energy transfer [15]. Short ranged static antiferromagnetic correlations,

although weaker, are nonetheless observable well inside the superconducting phase and seem

to disappear only at relatively high doping concentrations of about x ∼0.10-0.12 [11], as

can be seen in Fig. 2.3. Again, because of the presence of static moments also for x > xc
there is no clear-cut evidence of a sharp quantum disordering transition of the spins. The

strong decrease of static moments well inside the superconducting phase as well as the reduc-

tion of low frequency weight of the magnetic susceptibility does however indicate some slow

crossover to a spin liquid phase. The most likely scenario is that the quantum transition is

replaced by a smooth crossover in the presence of disorder.

Figure 2.4: Incommensurability of La2−xSrxCuO4, from [14]. Insets show the geometry of

the IC fluctuations in both the insulating and superconducting phases.

As an unexpected surprise came the observation of static magnetism at x = 0.12, with

an incommensurability of δ ' 1
8
. This was first observed in a co-doped La1.6−xNd0.4SrxCuO4

sample [16, 17], but later a similar static order was also found in La1.88Sr0.12CuO4 [18, 19,

20] and also in oxygen doped samples [21]. The La1.6−xNd0.4SrxCuO4 sample is further

characterized by a charge density wave with half the periodicity of the magnetic periodicity.

These experimental data are consistent with a striped phase, in which holes localize in

periodically spaced anti-phase domain walls of the antiferromagnet (AF). The presence of

stripe-like charge and spin density ordering is believed to be responsible for the anomalous

suppression of superconductivity around x = 1/8 in these materials. It is interesting, that a

similar, although weaker, suppression of Tc near x = 1/8 occurs also in La2−xSrxCuO4. This

suppression, together with the appearance of static spin density order [18], again suggest

a formation of a striped phase, although charge order in this compound has not yet been

detected.

The experimental indications of static stripe order near x = 1/8 have also led to sugges-
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tions that the incommensurabilities seen in the dynamic spin fluctuations at lower doping

levels may be signatures of fluctuating stripes, i.e. slowly fluctuating anti-phase domain

walls. The question whether or not fluctuating stripes are really present in underdoped

cuprates is to date still open. A strong evidence for fluctuating stripes would be the de-

tection of incommensurate charge density fluctuations, which are however very difficult to

observe because of the small cross section associated with the hole.
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Chapter 3

Phenomenological theory of the spin

glass phase

Understanding the very weak doping regime of cuprates, in particular the insulating AF

and SG regime, should be considerably simpler than the superconducting (SC) or metallic

regimes. This optimism is based on the belief that this regime is dominated by the behavior

of isolated holes in presence of well developed AF moments. As discussed in the beginning,

static AF moments are indeed very strong in La2−xSrxCuO4 for small x and the holes seem

to be well localized at low temperatures where transport experiments indicate a relatively

weakly bound hole with a localization length of a few lattice constants. Thus, one might

hope to gain considerable insight into these phases by solving the one-hole problem first and

to proceed from there on. Fortunately, the understanding of the behavior of one hole in

an antiferromagnetic background is by now quite mature [3, 22, 23]. The coupling of the

hole to the spin waves leads to a spin-polaron state. For the t − J model, the bottom of

the dressed hole band lies at the zone face centers k = (±π/2,±π/2) and the bandwidth

scales with J . Because of the presence of two sublattices, there are two degenerate states

per k vector and one can assign a “spin” to the quasiparticle. An important characteristic of

the hole wave function is that it describes a long ranged dipolar distortion of the AF order

which arises from a coupling of the spin current carried by the hole to the magnetization

current of the AF background [3]. It is however not at all clear whether a dipolar frustration

is also produced by localized holes. It has been argued for the case of Sr doping that a

chiral spin current is induced on the four Cu sites closest to the Sr impurity and that such a

current would induce a distortion of the AF which is Skyrmion like, where the mechanism of

frustration is again the coupling between spin and background magnetization currents [24].

The Sr impurity position, located above the center of a Cu plaquette, has a high symmetry

and couples to both sublattices in the same way (see Fig. 3.1), so that the “spin” degeneracy

mentioned above should survive also in the bound hole state. For a sufficient weakly bound

hole, it is quite likely that coupling to the background magnetization will produce frustration

15
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and in the following we shall simply assume that dipolar like frustration is produced by the

hole, without discussing the microscopic details of the hole bound state. The symmetry of

the Sr position would in fact suggest a quadrupolar frustration, which we can describe as

a superposition of two degenerate dipole states. This is similar to the just mentioned spin

degeneracy of the bound state and allows for a polarization of the dipolar moments. As we

discuss below, the dipole model can quite well explain all the important characteristics of

the magnetism of the weakly doped AF and SG phase.

Sr

Cu

Figure 3.1: Lattice position of the Sr impurity

In section 3.1 we introduce the dipolar frustration model and summarize the main results

of previous studies on this model and discuss how they compare with experiments. In section

3.2 we then first derive an extension of the model to allow for non-collinear correlations which

arise from dipole ordering and perform a RG analysis to understand the influence of disorder.

The importance of topological defects of the spin texture is analysed and finally our results

are compared with neutron scattering data on the SG phase of La2−xSrxCuO4. We find that

the SG phase can be described as a strongly disordered spiral phase in which topological

defects proliferate.

3.1 The AF phase and dipolar frustration models

We briefly sketch here the basis of the dipolar frustration model and the results of previous

studies of this model in the collinear limit. The model as presented in this section is applicable

only for the antiferromagnetic phase in which the dipoles do not have a preferred direction.

At high temperatures, the collinear theory can then be used. We will show in the next

section however, that the collinear model is not able to describe the low temperature and/or

strong disorder regime, where non-collinear behavior emerges.

In the dipole model, it is assumed that each localized hole produces dipolar frustration.

It is then possible to study the magnetism of the hole doped materials completely ignoring

the charge degrees of freedom and to work with the spin sector only. Further, as there are

clear indications of static AF correlations for x < 0.05, the antiferromagnet should be well

described within the renormalized classical regime of the QNLσM. In this regime, quantum

fluctuations simply lead to a renormalization of the spin stiffness of the classical model. A

classical model should thus suffice to describe the relevant physics in the AF and SG regime.
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3.1.1 Ferromagnetic bonds as an example of dipolar frustration

Dipolar frustration was first discussed in the general context of insulating spin glasses by

Villain [25]. The simplest way of producing dipolar spin textures is by placing a ferromagnetic

bond in an otherwise AF magnet, whose order parameter we denote by n. At a distance x

away from the ferromagnetic bond, this leads to a deviation of the Néel order δn ∼ fµxµ/x
2.

Here, fµ is a vector both in spin and lattice space, where µ = 1,2 are the indices of the 2D

lattice vector. The spin part corresponds to the local ferromagnetic moment (with fµ ⊥ n)

produced by the bond and the lattice part corresponds to the orientation of the bond on the

lattice (see Fig. 3.2). This can be easily derived in a harmonic continuum approximation,

where the energy density of the magnet away from the impurity is proportional to [∂µ(δn)]2

and the saddle point solutions satisfy∇2(δn) = 0. For any impurity distribution, the solution

for δn can thus be written in a multipole expansion. As the Coulomb part is energetically too

expensive [25], the lowest order contributions, consistent with the symmetry of the one-bond

problem, are dipolar.

FM moment

FM bond

Figure 3.2: Dipolar distortions produced by a ferromagnetic bond

3.1.2 Collinear Model

Because of the long range nature of dipolar frustration, a continuum field theory, such as a

(classical) non-linear σ-model (NLσM), should be well suited for a treatment of this problem.

While the dipole spin structure discussed above is a saddle point solution of the harmonic

theory, it is not a solution of the saddle point equations of the 2D NLσM. Nonetheless

one can study the dipole model within the NLσM, if one introduces the dipolar frustration

through a minimal coupling scheme. As mentioned in [26], the dipolar frustration can be

reproduced (on the harmonic level) via a coupling of the dipoles to the gradient of the order
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parameter n of the NLσM. Thus, within a NLσM approach, the reduced Hamiltonian of the

model can be written as [26, 27] (the factor β = T −1 is included in the Hamiltonian and we

set kB=1)

Hcol =
ρs
2T

∫
d2x (∂µn)2 +

ρs
T

∫
d2x fµ · ∂µn , n2 = 1 (3.1)

where ρs is the spin stiffness (renormalized by quantum fluctuations), T the temperature,

n a three component unit vector representing the local staggered moment and fµ is a field

representing the dipoles. For a random distribution of localized dipoles

fµ(x) =M
∑

i

δ(x− xi)aµ(xi)Mi (3.2)

where the sum is over the impurity sites, ai are lattice unit vectors, Mi unit vectors in spin

space, and M measures the strength of the dipoles. While there is no dipole-dipole interac-

tion term in Eq. (3.1), fluctuations of the n field generate a spin wave mediated interaction.

This can be seen once short scale fluctuations are integrated out under a renormalization

procedure [26]. An integration over the short scale fluctuations up to a scale L � 1/
√
x

(but L� ξ where ξ is the 2D spin correlation length) leads to an effective interaction term

of the form

H[{Mi}] =
ρsM2

2T

∑

i,j

JijMi ·Mj (3.3)

with

Jij =
1

2πx2
ij

(
2

(xij · ai) (xij · aj)
x2
ij

− ai · aj
)
, xij = xi − xj. (3.4)

Thus, for an average separation of dipoles ∼ 1/
√
x there is a random interaction among

dipoles with a characteristic energy U ∼ ρsM2x/4π. It was further shown [26] that at

high temperatures, U � T , the presence of dipoles lead to a renormalized effective stiffness

ρeff = ρs(1−U/T ). Thus, the correlation length at high temperatures (and small x) has the

form

ξ ∼ exp
(

2πρeff

T

)
= exp

(
2πρs
T
− 2πρsU

T 2

)
. (3.5)

This result agrees to lowest order in x with that obtained by Cherepanov et al. [27] in a

related renormalization group calculation where they calculated ρeff up to order x2. From

a comparison with correlation lengths obtained from neutron scattering data at high tem-

peratures, they estimated U ∼ 20ρsx. The doping dependence of TN was also found to be

consistent with the dipole model.

A second and completely independent test of the value of U is to look at the spin relax-

ation times inside the AF phase. While the relaxation can be understood already within the
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Figure 3.3: R1 = (T ∗1 )−1 data from 139La NQR relaxation measurements for La2−xSrxCuO4

and various x < 0.02, from [9].

theoretical framework just presented, this has so far been overlooked. The relaxation rates

inside the AF phase can be explained within the dipole theory if one assumes that the relax-

ation is driven by the interaction among dipoles and hence controlled by the parameter U .

At temperatures well above the actual freezing temperature, an Arrhenius law is observed,

with a characteristic energy E = 8.9Tf ∼ 7250Kx [9] (see Fig. 3.3). The above estimate

of U correctly reproduces not only the linear scaling of the relaxation energy with x but

also can account roughly for the prefactor. With U = 20ρsx, ρs ∼ 24 meV [27] one obtains

U ∼ 5500Kx. Considering that this is a very rough approximation, the value is not too far

off from the experimental one. We mention further that the linear scaling of the width of

the distribution of local staggered moments is also consistent with a dipole model, as shown

in [28]. Thus the dipole model can describe all key experimental data on the magnetism of

the AF phase quite well.

3.2 Non-collinear correlations and dipole ordering

While the dipole model presented above can well explain the temperature and doping depen-

dence of the correlation length not just in the AF but also, to some extent, in the SG regime

[27], theoretical investigations of the model have always predicted (or rather assumed) short

ranged commensurate antiferromagnetism. The recent observation of incommensurate (IC)

correlations for the regime 0.02 < x < 0.05 requires therefore a new approach to the SG

phase [29, 30].

As a possible explanation for the presence of IC correlations a disordered striped phase

has been proposed, similar to the ordered striped phase found near x ∼ 1/8. While, as we

show in our work on the striped phase in the next section, there is indeed an instability in
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the striped phase towards a disordered phase at low x, it is unlikely that the stripes will

survive in presence of strong disorder.

In the spin glass regime, there are two competing length scales. The first is related to

the average separation between disorder centers (Sr ions) `d which scales as `d ∼ 1/
√
x. The

other is the scaling of the periodicity `s associated with the incommensurability, which scales

as `s ∼ 1/x. For small x, `d � `s. In a stripe scenario the charge distribution would also have

a (short ranged) periodicity which scales with `s. Thus, in a striped phase the charge can not

take full advantage of the disorder. The stripes must either break up into short segments or

reduce their on-stripe charge density considerably to take advantage of the disorder potential.

Instead we propose here a theory in which the charges are completely disordered and the

incommensurability exists only in the spin sector. Then, there is no conflict between the two

scales `s and `d as `s relates only to the spins whereas `d characterizes the charge distribution.

Notice that even in the case that short segments of stripes should be present, these stripes

would lose their antiphase domain wall character and instead act like a row of ferromagnetic

bonds, again causing dipolar frustration. Thus, the theory we present here applies both to

the case of localized hole states which produce dipolar frustration as it does to a system of

randomly placed stripe segments. We view the scenario of localized holes however as the

more plausible one.

3.2.1 Dipole ordering

It is easy to see how the dipole model can lead to IC correlations [4]. The Hamiltonian

Eq. (3.1) favors the formation of a spiral phase, with a non-zero average twist ∂µn of the

AF order and a simultaneous alignment of the dipoles, 〈fµ〉 6= 0, as long as the lattice and

spin degrees of freedom of the dipoles are annealed and free to orient themselves. The

lattice position of the Sr dopants (located above the center of a Cu plaquet), which pin the

holes, suggests that this freedom indeed exists. We emphasize that a spatially homogeneous

distribution of the dipoles is not required for the formation of spiral correlations.

The preferred orientation of the lattice part of the fµ vector is determined by the nature of

the localized hole state and therefore should reflect the symmetries of the underlying lattice.

Thus a discrete set of favored lattice vectors for the formation of the spiral exists. The a-b (or

square lattice) symmetry breaking associated with the formation of spiral correlations can

therefore have truly long range order. The continuous symmetry of spin space on the other

hand inhibits long range magnetic order in the 2D system for either finite temperatures or

disorder. The experimental observation of a macroscopic a-b asymmetry [31] but very short

spin correlation lengths thus clearly motivate the study of the dipole model.
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3.2.2 Continuum description of spiral phases

We here investigate the dipole model allowing for the presence of non-zero ordered moments

but assume a random spatial distribution of the dipoles. First, however, we need a proper

theoretical description of the homogeneous spiral phase.

2 π

sk

Figure 3.4: Spin texture of an AF spiral.

In collinear magnets, the rotational O(3) symmetry of the system is broken down to

a ground state with O(2) symmetry, as rotations around the magnetization axis leave the

ground state invariant (this is schematically shown on the left hand side of Fig. 3.5). The

order parameter of collinear magnets is then an element of O(3)/O(2). This group is isomor-

phic to the group of three dimensional unit vectors n, which is the representation used in the

Hamiltonian Eq. (3.1). Further, in absence of dipoles, the Hamiltonian Eq. (3.1) is invariant

with respect to O(2) rotations of the lattice variables. The spin and lattice symmetries are

decoupled and independent for the collinear AF. A spiral ground state on the other hand

breaks the O(3) spin symmetry completely. Moreover, in a spiral state the lattice symmetries

and the spin symmetries are no longer decoupled and the order parameter space of such a

state becomes more involved.

For spirals, the combined symmetry of lattice and the spin space is O(3) × O(2). As

discussed in detail by Azaria et al. [32], the coupling of the spin and lattice degrees of free-

dom in frustrated spin systems leads to an order parameter which results from a symmetry

breaking of the combined lattice and spin degrees of freedom and is in general of the form

O(3)×O(q)/O(q) where q depends on the symmetries of the lattice. For a spiral phase, it was

found q = 2 [33] and thus the order parameter of a spiral is an element of O(3)×O(2)/O(2).

A convenient representation of the order parameter is in terms of orthonormal nk, k =

1 . . . 3, with nakn
a
q = δkq. Klee and Muramatsu [33] have derived a continuum field theory for

the nk order parameters from the lattice Heisenberg model Eq. (2.1), assuming an IC spiral

state with an ordering wave vector kS = (π
a
, π
a
) + qS. Here, qS measures the deviation from

the commensurate AF wave vector. The lattice spins Si at sites ri can be parametrized in a

spiral configuration with the use of the nak as (with n3 = n1 × n2)

Si/S = n1 cos(kS · ri)− n2 sin(kS · ri). (3.6)

A perfectly ordered spiral is described by Eq. (3.6) with constant, i.e. space independent,

nk. To allow for spatial fluctuations of the spins around the spiral order, Klee and Muramatsu
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Figure 3.5: The order parameter of collinear magnets, which are invariant under rotations

around the collinear axis, can be represented by a unit vector (left), whereas non-collinear

order parameters require three orthonormal vectors (right).

introduced a slowly varying field L via (see also [34])

S(ri)

S
=

n1 cos(kS · ri)− n2 sin(kS · ri) + aL√
1 + 2a[n1 cos(kS · ri) − n2 sin(kS · ri)] · L + a2L2

(3.7)

= N + a [L− (N · L)]− a2
[
(N · L) L +

1

2
L2N− 3

2
(N · L)2 N

]
+O(a3),

where N = n1 cos(kS · ri) − n2 sin(kS · ri). The continuum theory can then be found upon

expressing in the lattice Heisenberg model the spin operators in terms of the nk and L fields,

expanding the terms up to order a2 and taking the limit a→ 0 in the end. After integrating

out the L fields, one finds an effective Hamiltonian which can be written in the classical limit

in the general form [33] (again we include the factor β = T −1 into H)

H =
1

2

∫
d2x pkµ(∂µnk)

2 + sµ

∫
d2x n1 · ∂µn2. (3.8)

This description is valid for length scales larger than |qS|−1. The stiffnesses of the order

parameter nk are given initially by p1µ = p2µ = JS2 cos(qSµa)/(2T ) and p3µ ' 0, but will

change under a renormalization of the model. We will ignore for the most part the small

anisotropy (of order |qS|2a2) in the stiffnesses pkµ and just write pk. The vector s is to

lowest order given by s = JqS/T . The term with the sµ pre-factor makes this Hamiltonian

unstable, which simply expresses the fact that the pure Heisenberg model does not support

a spiral phase ground state. The sµ term will however be cancelled by a similar term

originating from the coupling of the spins to the ordered fraction of the dipoles, relating the

incommensurability self-consistently to the ordered moment of the dipoles. In other words,

the ordered dipoles stabilize the spiral phase, as expected.

It must be stressed that because the continuum model is only valid at length scales larger

than the period of the IC structure, there is a relatively large uncertainty in the estimates of

the pkµ. There is always a fundamental problem in relating the continuum model parameters

to those of the original microscopic lattice model, but in this case this problem is especially

severe. The continuum model parameters must be obtained from an average over one period
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of the spiral which, for small incommensurabilities, can be rather large. Thus, the above

estimates for the pkµ’s should be taken with care.

3.2.3 Disorder coupling: a gauge glass model

We now must include the coupling of the dipolar frustration centers to the spiral order

parameter. While there is no microscopic derivation of this coupling at hand, the fact that the

coupling in the collinear model can be expressed within a minimum coupling scheme allows

for a simple generalization of the model to non-collinear spin states. We first observe that

the ordering wave vector of the spiral, qS, is entirely determined by the average orientation of

the dipoles. Similarly, local variations of the density or orientation of the dipoles should also

modify the local ordering wave vector. Further, to reproduce the strong canting produced by

the dipoles, the coupling should be of first order in the spatial derivative of the spiral order

parameter. To generate the frustration produced by the dipoles we thus introduce a minimal

coupling [35] in the first term of Eq. (3.8), i.e. we replace (∂µnk)2 with [(∂µ − iBµ · L)nk]2

where Bµ is a random gauge field, representing the dipoles. The components of L are 3× 3

matrix representations of angular momenta which generate rotations about the three spin

axes, with

−iBµ · L nk = Bµ × nk. (3.9)

This coupling has the advantage of relative simplicity combined with a clear physical in-

terpretation: the dipolar fields define the locally preferred wave vector of the spiral, and

fluctuations of the dipole fields lead to fluctuations of the wave vector. Further, it repro-

duces the correct form of the dipole coupling in the collinear limit, as shown below. Let us

write Bµ = [Bµ]D + Qµ so that [Qµ]D = 0, where [. . .]D is the disorder average. We then

obtain the following Hamiltonian for the spiral in presence of disorder,

H =
1

2

∫
d2xpkµ(∂µnk)

2 +
∫
d2x pk∂µnk ·Qµ × nk, (3.10)

where the ordered part of the dipole field cancels the second term in Eq. (3.8). Thus,

pkµ∂µnk · [Bµ]D × nk + sµn1 · ∂µn2 = 0. (3.11)

As qS ∝ s, this equation relates the incommensurability linearly to the density of ordered

dipoles. The remaining part of the dipole field, Qµ, is a quenched variable with zero mean

and we assume Gaussian short ranged statistics,
[
Qa
µ(x)Qb

ν(y)
]
D

= λδ(x− y) δab δµν . (3.12)

In absence of disorder, the Hamiltonian defined by Eq. (3.10) has the desired O(3) ×
O(2)/O(2) symmetry. The O(3) symmetry is associated with the spin indices a of the
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nak, while the O(2) symmetry is associated with the lattice indices k and arises because

p1µ = p2µ. Hence, the equality p1µ = p2µ is directly related and enforced by the symmetries

of the spiral. Note that if all pkµ are identical, the lattice symmetry is enhanced to O(3).

We further see now, that the model reduces to the collinear model Eq. (3.1) in the case

p1,2 = 0 with p3 = ρs/T , n3 = n and fµ = Qµ × n. Unfortunately it is not possible to reach

the collinear limit by sending qS → 0. The reason is that the parameters pkµ are, within

the approximation used in their derivation, independent of the size of the unit cell of the

spiral, i.e. in the limit qS → 0, the unit cell size diverges while the parameters pkµ remain

unaffected.

The model defined by Eq. (3.10) is in fact far more general than its derivation might

suggest. In absence of disorder it is applicable to other types of frustrated spin systems

with a non-collinear groundstate, such as e. g. the Heisenberg model on a triangular lattice

[34, 36, 32]. It is conceivable, that certain types of randomness in such lattices may be well

described by the disorder coupling employed here. More importantly, the model Eq. (3.10)

can be viewed as a general model to investigate diluted spin glasses, in which a spin system is

frustrated by a small number of impurities. There have been investigations of similar models

of spin glasses in the past, most notably by Hertz [35], but in these investigations non-

collinear correlations were not accounted for. The motivation for studying such gauge glass

models is the hope of finding a spin glass fixed point. However, as non-collinear correlations

are known to be essential in spin glasses (see, e. g. [37]), there is little hope in finding the

correct fixed point in a treatment which ignores them. Our approach has the appeal that

it can interpolate between collinear and non-collinear states and thus offers the possibility

to study the transition from an ordered collinear magnet to a disordered non-collinear one

continuously.

3.2.4 Renormalization

We will now investigate the renormalization of the model under a change of scale, with the

objective to understand the influence of the dipoles on the correlation length of the model.

For carrying out the RG calculation, it is of advantage to use a SU(2) representation of the

model [36] (see also App. A.1). We therefore write

nak =
1

2
tr
[
σagσkg−1

]
(3.13)

where σa are Pauli matrices and g ∈ SU(2). We further introduce the fields [38]

Aa
µ =

1

2i
tr
[
σag−1∂µg

]
, (3.14)

which are related to the first spatial derivatives of nk through ∂µnak = 2εijkAi
µn

a
j . Eq. (3.10)

then aquires the form,

H =
1

tµ

∫
d2x

[
A2
µ + bAz

µ
2
]

+
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+2
∫
d2x pkµ εijk εabc A

i
µ n

a
j n

c
k Q

b
µ . (3.15)

where t−1
µ = 2(p1µ + p3µ) and b = (p1µ − p3µ)/(p1µ + p3µ). At the point b = 0 the symmetry

is enhanced to O(3) ×O(3)/O(3) ' O(4)/O(3) while at b = −1 the model is collinear. For

spirals, we have initially b = 1.

We first discuss the dimensional scaling behavior of the model (3.10, 3.15). We assign the

dimension −1 to each spatial dimension (such that ∂µ has dimension 1). It then follows that

the Aµ fields, which each contain one derivative of the dimensionless fields nk, have a scaling

dimension of 1. The scaling dimension of the first term in Eqs. (3.10, 3.15) is then 2−2 = 0,

where the −2 comes from the spatial integral (for the d-dimensional case, this term would

have a scaling dimension 2 − d, hence d = 2 is the lower critical dimension). Thus, this

term is marginal and an RG analysis is required to study the scaling of the tµ, b parameters.

From this simple scaling analysis it is also evident that local terms containing more than

two Aµ terms have positive dimensions and are thus irrelevant in the sense that they scale

to zero in the long wavelength regime. Hence, such terms, while they are generated in the

perturbative expansion we discuss below, need not be considered.

As was pointed out in [27], for the disorder choice (3.12) the model defined by Eq. (3.1)

has a lower critical dimension of two and is thus renormalizable in two dimensions, as can

be shown with a general Imry-Ma type argument. The same argument can be used for the

present model. The disorder coupling in Eq. (3.10) can be rewritten in momentum space as

a random field coupling of the form

∫ d2q

(2π)2
nk(−q) · hk(q); hk(q) = ipkµqµ

∫
d2x (Qµ × nk)e

iq·x (3.16)

where the random fields hk(q) have disorder correlations with a momentum dependence[
hak(q)ha

′
k′(q

′)
]
D
∝ δ(q− q′)|q|Θ with Θ = 2. According to general arguments by Imry and

Ma [39], in models with continuous symmetries random fields will destroy long range order

as long as d < 4 − Θ. This implies that in our case d = 2 is the lower critical dimension

[27] and a renormalization group analysis of both the stiffness and the disorder coupling is

required.

The perturbative expansion of the model suffers from both infrared (IR) and ultraviolet

(UV) divergences. We need not worry about the UV divergences as they will be cut off by the

lattice of the original microscopic model. To control infrared divergences, we need to study

the renormalization of the model as we go to larger and larger length scales. We therefore

successively change the scale of the model, i.e. we look at how the parameters of the model

change if we change the lattice cutoff by a small factor Λ. This requires an integration of the

fast modes of the problem with a subsequent rescaling of fields and integration measures.

We now derive the one-loop RG equations. For this, we split the original SU(2) field g,

into slow and fast modes, g = g̃ exp(i ϕaσa) and trace out the fast modes ϕa which have

fluctuations in the range [Λ−1, 1], where we set the original UV cutoff equal to 1. For the
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one-loop calculation, we need an expansion of Eq. (3.15) up to second order in ϕa (higher

order terms will only contribute at higher loop order of the RG). For the fields nk and Aµ

the expansion reads (see App. A.2 for more details)

Ai
µ = Ãi

µ + ∂µϕ
i + εijkϕ

j∂µϕ
k + 2εijkϕ

jÃk
µ − 2Ãi

µ ϕ
2 + 2Ãµ·ϕ ϕi +O(ϕ3), (3.17)

nai = ñai + 2εijkϕ
jñak + ϕjϕkRai

jk +O(ϕ3), (3.18)

where

Rai
jk =

1

2
tr
{
σag̃

(
σjσiσk − 1

2
σjσkσi − 1

2
σiσjσk

)
g̃−1

}
. (3.19)

The expansion of the energy functional (3.15) reads

H =
1

tµ

∫
d2x

[
Ã2
µ + b

(
Ãz
µ

)2
]

+Hc0 +Hϕ +Hp (3.20)

with

Hc0 = 2
∫
d2xpkµεijk εabc Ã

i
µñ

a
j ñ

c
kQ

b
µ, (3.21)

Hp = H1 +H2 +H3 +H4 +Hc1 +Hc2 +Hc3 +Hc4. (3.22)

The first two terms in the expansion of H have exactly the same form as the original func-

tional (3.15), but are now functionals of the slow fields. Hϕ is quadratic in ϕ and has the

form

Hϕ =
1

tµ

∫
d2x

[
(∂µϕ)2 + b (∂µϕ

z)2
]

(3.23)

H1 . . .H4 are generated by the first term in Eq. (3.15) and are given by

H1 = 2t−1
µ

∫
d2x Ãi

µ∂µϕ
jϕkεijk (1− bδiz + 2bδjz) , (3.24)

H2 = 2t−1
µ

∫
d2x ∂µϕ

iÃi
µ (1 + bδiz) , (3.25)

H3 = 4bt−1
µ

∫
d2x εzjkÃ

z
µϕ

jÃk
µ, (3.26)

H4 = 4bt−1
µ

∫
d2x

[(
εzjkϕ

jÃk
µ

)2 −
(
Ãz
µ

)2
ϕ2 + Ãz

µϕ
zÃµ·ϕ

]
. (3.27)

The coupling term in Eq. (3.15) produces the Hc1 . . .Hc4 terms,

Hc1 = 4
∫
d2x pkµεijkεabc

[
εklmñ

a
j ñ

c
mÃ

i
µ + εjlmñ

c
kñ

a
mÃ

i
µ + εilmñ

a
j ñ

c
kÃ

m
µ

]
ϕlQb

µ, (3.28)

Hc2 = 2
∫
d2x pkµεijkεabc∂µϕ

iñaj ñ
c
kQ

b
µ, (3.29)

Hc3 = 2
∫
d2x pkµεijkεabc

[
Ãi
µ

(
ñajR

ck
lm + ñckR

aj
lm

)
ϕlϕm + 2ñaj ñ

c
k

(
Ãµ·ϕ ϕi − Ãi

µϕ
2
)

+ 4
(
Ãi
µεjlmεkpqñ

a
mñ

c
q + Ãm

µ εilmεkpqñ
c
qñ

a
j + Ãm

µ εilmεjpqñ
a
q ñ

c
k

)
ϕpϕl

]
Qb
µ, (3.30)

Hc4 = 2
∫
d2x pkµεijkεabc

[
2
(
εklmñ

a
j ñ

c
m + εjlmñ

a
mñ

c
k

)
∂µϕ

iϕl

+εilm∂µϕ
mϕlñaj ñ

c
k

]
Qb
µ. (3.31)
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The integration over the fast ϕ fields is performed with∫
D[ϕi] exp(−Hϕ) exp(−Hp) = e−F

∫
D[ϕi] exp(−Hϕ) (3.32)

where F is obtained from a cumulant expansion

−F = ln

∫ D[ϕi] exp(−Hϕ) exp(−Hp)∫ D[ϕi] exp(−Hϕ)
=
∞∑

n=1

(−1)n

n!

〈
Hn
p

〉
ϕc

(3.33)

and 〈. . .〉ϕc indicates that only connected diagrams are to be considered, i.e. only averages

which can not be written as a product of averages enter.

Renormalization of the spin stiffness

We ignore the (small) anisotropy of the tµ parameter and simply use the isotropic mean

ts =
√
t1t2 in the RG analysis below. We collect all terms in the perturbative expansion

which are bilinear in Ãi
µ. After performing the disorder average of F , the renormalized

stiffnesses of the Ãi
µ fields is found to be (see App. A.4.1)

1

t̃s
=

1

ts
−
[

2(1 − b)
ts

+
(2 − b+ b2)λ

t2s

]
Cx(0), (3.34)

b̃

t̃s
=

b

ts
−
[

2b(3 + b)

ts
+
b(5 + b)λ

t2s

]
Cx(0). (3.35)

With ` = ln Λ and

Cx(0) =
ts
4π

ln Λ (3.36)

one then finds the RG equations

∂

∂`

1

ts
= −1− b

2π
− (2 − b+ b2)λ

4πts
, (3.37)

∂

∂`

b

ts
= −(3 + b)b

2π
− (5 + b)bλ

4πts
. (3.38)

This yields

∂

∂`
ts =

1− b
2π

t2s +
2− b+ b2

4π
λts, (3.39)

∂

∂`
b = −b(1 + b)

π
ts −

b(1 + b)(3− b)
4π

λ. (3.40)

For λ = 0, these equations describe the RG of a clean spiral [36], while for the collinear point

b = −1, the equations reproduce the RG of the stiffness for disordered collinear models [27].

From Eq. (3.40) it is seen that there are two fixed points for b (the asymptotic freedom

of the model prevents a true fixed point in 2D as ts always diverges). The collinear point

b = −1 is unstable whereas b = 0 is stable, irrespective of the disorder. The RG flow of ts
and b is shown in Fig. 3.6 for λ = 0. The flow does not change qualitatively for finite λ as

long as λ� ts. Hence, the coupling to weak disorder does not lead to any new fixed points,

although the disorder renormalizes the stiffness.
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b

b=-1 b=0 b=1

st

Figure 3.6: RG flow of ts and b for λ = 0. For any b > −1, the flow is towards b = 0.

Renormalization of disorder coupling

As we discuss below, the renormalization of λ is given by terms proportional to λts and λ2.

As the disorder enters the renormalization of ts only in the combination λts (see Eq. (3.39)),

we can neglect the renormalization of λ altogether for ts � λ, i. e. at high temperatures

(we have ts ∝ T/J). However, for low temperatures the renormalization of λ must be taken

into account. To calculate the renormalization of the disorder we follow the approach used

in [27]. In this approach, the renormalized disorder variance is defined by the variance of

all terms in the perturbative expansion which couple to the quenched disorder fields and

are linear in Ãµ. Note however that there exists no symmetry argument which guarantees

that the funtional form of the disorder coupling remains unchanged under the RG. It is

thus possible that new disorder terms are generated so that a simple renormalization of λ

is not sufficient. This is indeed the situation we encounter for general b 6= 0 and discuss

in more detail below, where we find the generation of new coupling terms at order λ2. To

find the complete renormalization of the model one would have to include all generated new

terms into the original model, which is a rather laborious process which we did not pursue.

Nonetheless, as we have just shown above, there are only two possible fixed points even

in absence of disorder, b = 0 and b = −1. Rather than trying to categorize all possible

disorder couplings, we therefore focus on a discussion of the RG of the disorder near these

two possible fixed points and discuss their stability under the flow.

We begin with the collinear case, b = −1. In this case, the renormalized variance of the

terms linear in Ãi
µ is given by (see App. A.4.2, Eq. (A.23))

λ

t2s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
] (

1 − 2

π
ts ln Λ− 1

2π
λ ln Λ

)
+
(
Ãz
µ

)2 1

2π
λ ln Λ

}
. (3.41)
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What is evident from this result is that the renormalized disorder coupling is no longer of

the original form pk∂µnk ·Qµ×nk. Such a coupling has a variance which includes a prefactor

of (1 + b)2 of
(
Ãz
µ

)2
. According to Eq. (3.40), b = −1 is not changed under the influence

of the original disorder coupling. A renormalization which retains the form of the original

coupling can then not lead to a renormalized disorder variance with a finite prefactor of(
Ãz
µ

)2
at b = −1. Such a term is however present in Eq. (3.41) we conclude that a new type

of disorder coupling is generated at b = −1. This is perhaps easier to see in Fourier space,

where the original disorder coupling can be written as a correlated random field coupling

nk(−q) · hk(q), see Eq. (3.16). For the original minimal coupling one has hk(q) ∝ pk and

thus, in the collinear limit b = −1 (or p1 = 0), only n3 is affected by this coupling. We

can then interpret the finite prefactor of the
(
Az
µ

)2
term in the disorder variance as the

generation of correlated fields which couple also to n1,2 even at b = −1. It is evident that

such a coupling will drive the system away from b = −1 and thus destroy the collinear fixed

point. Thus, even if the original AF order is collinear (i.e. in absence of dipole ordering), the

disorder drives the system to a non-collinear state. An analysis which presupposes collinear

order is thus not valid in the presence of dipoles and cannot describe the low temperature

regime correctly. Physically, one would also expect the appearance of non-collinearity. The

random canting of spins leads to a random local deviation of the spins from the ordering

axis and thus destroys the remaining O(2) spin symmetry of the collinear model.

To make contact with the RG result obtained from the collinear model in [27], we note

that we can reproduce the result Cherepanov et al. obtained for the disorder renormalization

if we ignore non-collinear modes. We can then define the renormalization of λ just by the

terms which are present in a purely collinear theory, i.e. by the
[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

term in

Eq. (3.41). Then

∂

∂`

λ

t2s
= − 2λ

πts
− λ2

2πt2s
, (3.42)

which, using Eq. (3.39) leads to

∂

∂`
λ =

3

2π
λ2. (3.43)

This, together with Eq. (3.39) are the RG equations found in [27] (note that our stiffness ts
differs from the stiffness t used in [27] by a factor two). We emphasize that this result is not

correct as it ignores the role of non-collinearity in the problem.

We now turn to the point b = 0, the only remaining possible fixed point of the model. At

this highest symmetry point we find that no new coupling terms are generated. The variance

of the renormalized disorder coupling takes the form

λ

t2s

∫
d2x

{
Ã2
µ

(
1 − 4ts + 3λ

4π
ln Λ

)}
. (3.44)
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Thus,

∂

∂`

λ

t2s
= − 1

π

λ

ts
− 3

4π

λ2

t2s
(3.45)

which yields the RG equation, valid for b = 0 but any initial ratio of λ/ts,

∂

∂`
λ =

λ2

4π
. (3.46)

Using Eq. (3.39), we can simplify this through z = ts + λ/2 to get

∂

∂`
z =

1

2π
z2. (3.47)

So for b = 0 the presence of disorder leads to an additive renormalization of the stiffness,

ts → ts + λ/2. In presence of any amount of disorder, the IC correlation length ξ at T = 0

is finite, as can be inferred from an integration of the RG equation with b = 0, yielding

ξ ∝ exp(C (ts0 + λ0/2)−1) with some cutoff dependent constant C. Thus, even at T = 0,

ξ ∝ exp(2Cλ−1
0 ) is finite. While the disorder scales to strong coupling, the relative disorder

strength with respect to the stiffness, λ/ts, always scales to zero so that at long wavelengths

the disorder becomes less relevant. This is surprisingly different to the situation with b = −1

fixed [27], where the ratio λ/ts was found to diverge below a certain initial value of λ0/ts0
which was interpreted as the scaling towards a new disorder dominated regime. Thus, if one

correctly takes into account the non-collinearity, this disorder dominated phase disappears.

The absence of a a sharp cross over from a weak disorder to a strong disorder regime is

certainly surprising, especially as the experiments clearly observe a transition into a spin

glass phase at a finite temperature [13]. The finite temperature transition may be related

to the presence of inter-layer coupling. We argue below, however, that topological defects

can alter the RG behavior considerably and may be a more natural explanation for the

appearance of a strong disorder regime.

3.2.5 Topological defects: saddle point treatment

The RG results presented above do not take into account topological defects [40] of the

spiral as only spin waves excitations enter the calculation. As is well known from XY

spin models, topological defects can play an important role and drive finite temperature

transitions [41]. The neglect of topological defects has been a source of criticism towards

the NLσM approach to frustrated magnets, which gives controversial results for ε = 1, 2 in

an ε expansion around D = 2 + ε dimensions [42]. For two dimensional systems, the NLσM

results were however found to be in very good agreement with numerical simulations as

long as the temperatures were sufficiently low [43]. Only at higher temperatures, deviations

from the NLσM predictions for the temperature dependence of the correlation length was

observed. The discrepancy at higher temperatures has been attributed to the appearance
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of isolated topological defects. In the numerical simulations the high temperature region

showed some resemblance to the high temperature region of XY-models [43] which indicates

that this region is characterized by free defects. However, at present a good understanding

of the influence of such defects in non-collinear systems is still lacking [42].

The topological defects of spirals have their origin in the chiral degeneracy of the spiral,

i.e. the spiral can turn clock- or anti-clock wise [42]. Hence, at a topological defect, the

spiral changes its chirality. As the chirality can only take two possible values, the defects

can be characterized as Z2 defects, implying that a state with two defects is topologically

equivalent to a defect free state. For the calculation of the RG equations used above, we have

used an SU(2) presentation which is in fact topologically trivial. The physically destinct

chirality states should correctly be described by a SO(3) theory in which pointlike Z2 defects

are present. As SO(3) = SU(2)/Z2, topologically non-trivial solutions cannot be described

by SU(2) matrices g(x) which are single valued functions of space. Nonetheless, we can

describe defects also within the SU(2) formulation, if we use double valued fields g which

undergo a π phase shift along loops which enclose the defect.

It is then straightforward to find topological defect solutions of the saddle point equations

of a clean spiral [40]. The saddle point equations can be obtained from the perturbative

expansion of the energy density, Eqs. (3.20, 3.24-3.27). One finds that extremal solutions

must satisfy for each j = x,y,z the equations

(1 + bδjz) ∂µA
j
µ = 2bεzjkA

z
µA

k
µ, (3.48)

where j is not summed over. For b > −1 one can find solutions of the form [40]

gs(x) = exp
(
i

2
maσaΨ(x)

)
, (3.49)

where m is a space independent unit vector and Ψ(x) a scalar function. With this Ansatz,

one has Ai
µ(x) = 1

2
mi∂µΨ(x) and thus, upon insertion into Eq. (3.48), one finds for m and

Ψ the equations (j is agained not summed over)

(1 + bδjz)m
j∂2
µΨ(x) = bεzjkm

zmk (∂µΨ(x))2 . (3.50)

The weight of the configuration described by gs is given by (we set tµ = ts)

H [gs] =
1

ts

∫
d2x

[
A2
µ + b

(
Az
µ

)2
]

=
1

4ts

[
1 + b (mz)2

] ∫
d2x (∂µΨ)2 . (3.51)

We see that for b < 0, the energy is minimized for (mz)2 = 1 whereas for b > 0 the vector m

is preferably orientated within the x-y plane with mz = 0. For both cases, Eqs. (3.50) reduce

to the two dimensional Laplace equation ∇2Ψ(x) = 0. This equation allows for topological

defect solutions with Ψ(x, y) = arctan(y/x). In the left sides of Figs. 3.7 and 3.8 the spin

distribution around isolated defects is shown for both b < 0 and b > 0. Using Eq. (3.51) one
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Figure 3.7: Single topological defect (left) and topological defect pair (right) of a spiral with

b ≤ 0 (small scale AF fluctuations are not shown).

finds that the energy of a topological defect solution Ψ(x, y) diverges logarithmically with

the linear system size R,

βE =
1 + (mz)2b

2ts
π lnR. (3.52)

Because of this logarithmic divergence of the energy, isolated defects are not present in ab-

sence of disorder and at sufficiently low temperatures. It can also be shown [44], that a bound

state of defect pairs, described by g = gs1gs2 with gs1,2 = exp
[
i
2
m1,2 · σ arctan

(
y−y1,2

x−x1,2

)]
, has

a finite energy if m1 + m2 = 0. Therefore, while isolated defects may be absent, defect

pairs will be present at any finite temperature. This situation is reminiscent of the one

encountered in the XY model where at low temperatures also only defect pairs are present.

These pairs unbind at the critical Kosterlitz-Thouless temperature and above this tempera-

ture free defects can be found. Such an unbinding of defects is also plausible and expected

in the present model. The topological defects of the spiral differ however in important as-

pects from those of the XY model. Spiral defects have a Z2 charge while XY defects have

Z charges. More importantly, as the present model possesses asymptotic freedom, it has a

finite correlation length ξ at any finite temperature even in absence of free defects. This

implies that the logarithmic divergence in Eq. (3.52) appears only up to a scale R < ξ. It is

therefore unclear how a defect-unbinding would affect the system. A transition from a phase

with algebraically decaying spin correlations to a phase which shows an exponential decay,

as occurs in XY models, is clearly ruled out. Finally, while in XY models topological defects

can be relatively easily incorporated into the analysis because they can be decoupled from

the spin waves, this is not the case for frustrated Heisenberg models. If fluctuations around

the saddle point solution are taken into account, the defects of spirals couple to the spin
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Figure 3.8: Single topological defect (left) and topological defect pair (right) of a spiral with

b ≥ 0 (small scale AF fluctuations are not shown).

waves already at second order in an expansion in the fluctuations. These difficulties have to

date prevented a complete understanding of the defect unbinding in frustrated systems.

A comparison to XY models is nonetheless quite illuminating. The kind of disorder

coupling we have used for the spiral phase is closely related in spirit to XY models with

randomly fluctuating phases, where the disorder is also introduced in the form of a fluctuating

gauge [45]. If one ignores vortices, the influence of the disorder was shown to amount to a

simple renormalization of the spin stiffness, at all orders in a perturbative treatment of the

disorder coupling [46, 45] and no disordering transition as a function of the disorder strength

is found. However, once topological defects are included in the analysis, the coupling of

vortices to the random gauge field can lead to a disordered phase even at T = 0. Such a

disorder driven transition is caused by the creation of unpaired defects if the fluctuations of

the gauge field are stronger than some critical value [45, 47]. It is interesting that the critical

disorder strength beyond which such defects appear can be estimated quite accurately when

one calculates the free energy of an isolated defect in presence of disorder [45, 48]. It turns

out that a similar analysis of a single defect in a spiral in presence of disorder can be carried

out with some modifications, at least at the level of saddle point solutions. Within this

approximation, the free energy of an isolated spiral defect is given by

βF =
1 + (mz)2b

2ts
π lnR − [lnZd]D , (3.53)

where the second term contains the corrections due to the disorder coupling,

Zd =
∫
d2y exp

(
−2

∫
d2x pk εijk εabc A

i
µ n

a
j n

c
k Q

b
µ

)
(3.54)
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with Aµ, nk obtained from Eqs. (3.13), (3.14) and (3.49). With use of the replica trick

[lnZd]D = limN→0
1
N

ln
[
ZN
d

]
D

, we have, assuming b < 0,

[
ZN
d

]
D

=
∫
d2y1 . . . d

2yN exp


2λp2

1

N∑

n,n′=1

∫
d2x∂µΨn∂µΨn′


 ; (3.55)

with Ψn(x) = Ψ(x− yn). We write

∫
d2x∂µΨn∂µΨn′ = −1

2
∆nn′ + V 2, (3.56)

with V 2 ' 2πlnR and ∆nn′ ' 4πln|yn − yn′ | [47]. For large separations |yn − yn′| we

approximate ∆nn′ ' 4πlnR while for small distances ∆nn′ is negligible. To find the highest

weight configuration, the replicas are grouped together in N/m sets containing each m

replicas, with small distances between replicas within a set and large distance for replicas in

different sets.
[
ZN
d

]
D

then scales with R as

[
ZN
d

]
D
∼ R4λπp2

1N
2+maxm(2N

m
−4πλp2

1N(N−m)). (3.57)

In the limit N → 0, maximization is replaced by minimization with respect to m in the

range 0 ≤ m ≤ 1, so

βF =
[
2p1π −min0≤m≤1

(
2/m + 4λp2

1πm
)]

lnR . (3.58)

For 2λp2
1π < 1 one finds βF = 2[p1π(1− 2λp1) − 1] lnR so that for p1π(1− 2λp1) ≤ 1 free

defects are favorable. This is the phase boundary for thermal creation of defects. At low

temperatures, 2λp2
1π > 1, one obtains βF = 2πp1(1 −

√
8λ/π) lnR and a critical disorder

strength λc = π/8 beyond which the disorder favors isolated defects even at T = 0. Similar

considerations for the case b ≥ 0 lead to the same critical disorder strength and the condition

π(p1 + p3)[1− λ(p1 + p3)] ≤ 2 for thermal creation of free defects.

Let us first discuss the results for the disorder free case λ = 0. The situation is summa-

rized in Fig. 3.9, which shows the line separating the regime where free vortices exist from the

regime in which all defects are bound. Notice that the unbinding temperature goes linearly

to zero in the limit b → −1. At b = −1, free defects are present at any finite temperature.

This is expected, as at b = −1 and finite ts, the topological defects we discuss here lose their

meaning as the stiffness for rotations around the collinear ordering axis disappears and the

model becomes a O(3)/O(2) model which has no finite temperature transition. Whether or

not free defects are present exactly at the point b = −1, ts = 0 depends on how this point

is approached. To see this, we note that the symmetry of the model in the limit p3 → ∞
but finite p1 reduces to an XY symmetry as fluctuations of the n3 vector get suppressed

which forces all fluctuations of the orthonormal pair n1,2 to lie within a plane. Therefore

one obtains an XY model with stiffness p1. In terms of the b, ts parameters, this limit is
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approached as ts → 0 and b→−1 with finite (1 + b)/ts = 4p1. Thus, depending on whether

one approaches the point b = ts = 0 with a slope larger or smaller than the critical one

given by (1 + b)/ts = 4/π, one arrives at the disordered phase or the ordered phase of the

XY model. This behavior is correctly reproduced by the free energy argument. The validity

of the critical curve (1 + b)/ts = 4/π also for finite 1 + b > 0, as predicted by the free

energy argument, is quite plausible, as topological defect solutions also survive in this limit.

Below this line, the RG Eqs. (3.39, 3.40) hold and the system should scale towards the point

b = 0. We can only speculate however what happens above that line. At least for some finite

regime near b = −1 the unbinding transition would presumably drive p1 to zero, as it does

in the XY model, and affect the renormalization of p3 only weakly. Thus, the appearance

of free defects will probably modify the RG equations at high temperatures in such a way

that the system will flow back to the collinear point b = −1 as long as 1 + b remains small

enough. For larger b the nature of the RG is unclear. Numerical simulations on triangular

Heisenberg models [49, 50] have found however clear evidence for a defect unbinding transi-

tion. As the triangular Heisenberg model is believed to have initially b = 1 [36], it is likely

that an unbinding transition indeed occurs for every initial value of b. As no RG equations

are available which can describe the transition, the form of the correlation length near this

transition is unknown. It was however argued [40], that the temperature dependence of the

correlation length should cross over from the NLσM behavior to an XY behavior when the

defects unbind. Numerical results seem to support such a scenario [43].

st

bound vortices

0-1 1

π/4

free vortices

b

Figure 3.9: The critical line for the thermal unbinding of topological defects is shown in b,

ts space.

Let us now turn to the case with disorder. Disorder will lead to the formation of free de-

fects if λ > π/8. According to the free energy argument above, this critical disorder strength

is independent of the stiffnesses pk and is thus also valid in the XY limit discussed above.

Thus, if disorder is strong enough, free topological defects will exist already at T = 0, in-

validating our NLσM analysis and producing very short low-temperature correlation lengths

for the spiral. Again, we cannot make any definite statements on the RG or the correlation

length behavior in this regime. However, similar to the thermal unbinding scenario, one



36 CHAPTER 3. PHENOMENOLOGICAL THEORY OF THE SPIN GLASS PHASE

might again expect a crossover to XY behavior. If this is the case, then one would expect

the correlation length at T = 0 to behave like ξ ∝ exp(B/
√
λ − λc) (with some constant B)

near the critical disorder strength [45]. This form of the correlation length has a divergence

of ξ at λ = λc which is correct for the XY model but cannot be correct for the spiral because,

as discussed above, even without vortices, the coupling of any finite amount of disorder to

the spins will lead to a finite correlation length. The correct dependence of the correlation

length at T = 0 on the disorder is expected to be an interpolation between the NLσM result

and the XY behavior.

Certainly, the free energy argument is not expected to work as well in the present model

as it does for XY models. The parameters λ and ts flow to strong coupling and thus the

predictions of the free energy argument also become scale dependent. In other words, while

at some small scale the system might look stable against the creation of free defects, at some

larger scale the system will become unstable according to the free energy argument. There

does not seem to be a simple answer as to which scale is the correct one for applying the

argument. Note that such problems do not arise in the XY model where the stiffness remains

unchanged under the RG as long as vortices are ignored. In view of the divergence of the λ

and ts parameters in the NLσM, one possible scenario would be that free defects will always

be present at sufficiently large length scales. Numerical results do however not support such

a scenario and rather point to the existence of a finite critical temperature [50]. Below we

shall apply the free energy argument with the bare parameters, i.e. at the smallest possible

scale, which, if anything, would overestimate the stability of the system against free defect

formation.

3.3 Comparison with experiments

Let us now compare our results with experimental data on the SG phase of La2−xSrxCuO4.

Neutron scattering data [14] have revealed an incommensurability of the spins which scales

roughly linearly with x, see Fig. 2.4. Within the dipole model this is easily explained. The

linear scaling is reproduced within the dipole model if the fraction of the dipoles which are

ordered is doping independent. Only at very small x is a small deviation from the linear

dependence observed, pointing to a slight decrease of the ordered fraction. This might be

explained with the increase of the average separation between dipoles at small x and a

resulting diminished tendency of the dipoles to align.

The same experimental data also shows a strong one dimensional character of the IC

modulation, i.e. the incommensurability is observed only in one lattice direction and thus

breaks the symmetry of the square lattice. Again, this is expected for a spiral, and as

mentioned in the introduction, this symmetry breaking is expected to show long range order

because the dipoles prefer a discrete set of lattice orientations.

To judge, whether or not topological defects play a role in the LSCO SG phase, we need
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an estimate of λ. We can use as a lower bound for λ the result obtained from the collinear

analysis [27] where a disorder parameter equivalent to ours, but defined on the much smaller

scale of the AF unit cell, was used. From a fit of the x dependence of the correlation length

at x < 0.02 and large temperatures T > TN , one obtaines λ ' 20x. In this regime of x,

the low temperature phase has long range AF order and a collinear analysis is well justified.

We assume that the linear dependence of the disorder parameter on x, λ ' 20x, also holds

in the SG regime. This view is supported by measurements, which found that the width of

the distribution of internal magnetic fields (i.e. local staggered moments) increases simply

linearly with doping, with no detectable change on crossing the AF/SG phase boundary

[11], see also Fig. 2.3. It is remarkable that with our above estimate for the critical disorder

strength λc = π/8 we find a critical doping concentration xc ∼ 0.02. Considering that

λ ' 20x is a conservative lower bound of λ at the long length scales relevant to spirals,

we conclude that in the entire SG phase, free topological defects will be present already

at T = 0, leading to a strongly disordered spiral phase. Experiments have in fact shown

that the correlation lengths in the SG regime are extremely short and of the same order

as the periodicity of the IC modulation [14]. In Fig. 3.10 the neutron scattering data of a

sample with x = 0.024 is shown. While this is in accordance with the expected presence

Figure 3.10: Neutron scattering data showing the short ranged IC spin structure of

La1.976Sr0.024CuO4 (from reference [14]).

of topological defects, the correlation lengths are so short that the condition ξ � |qs|−1

is not fulfilled. The regime where spiral correlations become dominant is therefore barely

reached, and the RG scaling predictions cannot be well tested. From our discussion of the

topological defects we would expect that at T = 0 the IC correlation length roughly follows

ξ ∼ exp(B/
√

20x − λc). Further, we expect the spin fluctuations in the disordered regime

to be of XY-type. There are indeed experimental indications of XY fluctuations at low

temperatures in the SG regime [51], although these may also be related to the presence of a

small spin anisotropy.
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Thus, qualitatively the experimental data supports a description of the SG phase as a

strongly disordered spiral state, but both the extremely short correlation lengths and our

limited understanding of topological defects prevent a more quantitative comparison.

We point out, that our suggestion, that the incommensurability of the spins is related to

ordered dipolar frustration centers can be directly tested experimentally on co-doped samples

La2−xSrxZnzCu1−zO4. Zn replaces Cu in the CuO2 planes and effectively removes one spin.

Zn doping leads therefore to a dilution of the AF but does not introduce frustration. Dilution

is not very effective in destroying the AF order and pure Zn doping (with x = 0) leads to a

destruction of long range order only for concentrations in excess of 20% [52]. Surprisingly,

for very small Sr concentration x ≤ 0.02 it was found that co-doping with Zn can increase

TN [53]. This is remarkable as both kinds of impurities lead to a reduction of TN in singly

doped samples. A possible explanation for this behavior was suggested by Korenblit et al.

[54]. While Zn couples only weakly to the spin degrees of freedom in an ordered state, if

placed near a Sr donor, it disturbs the symmetry around the Sr atom and can modify the

nature of the localized hole state considerably. This can lead to a reduction or even complete

destruction of the frustration induced by the hole. Thus, the effective density of dipoles will

be renormalized to x → x(1 − γz) where γ must be calculated from a microscopic theory

(experiments indicate that γ is of order 2 [54]). Thus, co-doping with Zn will have two effects:

First, it lowers the amount of frustration in the sample and thus increases the correlation

length [54, 53]. But if the incommensurability observed in the SG phase is indeed related to

the density of ordered dipoles, then Zn doping will also lower the total amount of ordered

dipoles and thus lead to a decrease of the incommensurability by a factor 1− γz. This effect

should be observable in neutron scattering experiments.
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Striped phases

Already quite soon after the discovery of high temperature superconductivity in the cuprates,

mean field investigations of two dimensional Hubbard models indicated the somewhat exotic

possibility of so called striped phases as the ground state of hole doped copper oxide layers

[55, 56, 57, 58]. In these striped phases the charges (holes) form one dimensional lines which

act as anti-phase domain walls to the nearly undoped antiferromagnetic (AF) environment.

As stressed by several authors [55, 58, 59], these domain walls can be viewed as two dimen-

sional versions of the solitonic modes known from the one dimensional Su-Schrieffer-Heeger

Hamiltonian [60] and the striped phase resembles a soliton lattice. A schematic picture of

both a diagonal and a vertical stripe is shown in Fig. 4.1.

Contrary to the weakly doped regime discussed in the previous chapter which we argue is

dominated by the properties of isolated holes, a striped phase represents a highly collective

hole state which should only be relevant at higher doping concentrations. This, as discussed

below, is supported by experiments, which found e. g. in La2−xSrxCuO4 signatures of stripes

only for x > 0.05 and unambiguous evidence only at x = 1/8. After reviewing some key

experimental data and theoretical results on striped phases in Sec. 4.1, we develop a phe-

nomenological description of stripes based on a quantum string picture, which will allow us

to investigate the stability of the striped phase against disorder potentials, produced by the

quenched distribution of ionized donors, and lattice potentials, both of which were found ex-

perimentally to have a strong influence on the striped phase. This is the subject of Sec. 4.2,

where we further also discuss the interplay between stripe and spin fluctuations. In Sec. 4.3

we analyse a possible depinning of disordered stripes by external fields. We estimate the

depinning barrier, discuss the creep for sub-critical fields and briefly compare our predictions

with transport data obtained from the SG phase of La2−xSrxCuO4. Finally, in Sec. 4.4, we

extend the quantum string model to allow for longitudinal charge and spin excitations along

the stripe, in order to study the influence of transverse stripe fluctuations on the possible

phases of the longitudinal degrees of freedom of a stripe with a finite electron filling. This

is an important problem to address, both because stripe fluctuations have been argued to

39
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be an essential requirement for the appearance of superconductivity and because the stripes

believed to exist in cuprates have a finite on-stripe charge and spin density which allows for

longitudinal fluctuations along the stripe.

Figure 4.1: Schematic representation of a diagonal (left) and vertical (right) stripe.

4.1 Introduction to the striped phase

There is by now strong experimental evidence for the presence of striped phases in nickelate

materials and also some cuprate materials, but neither on the mechanism behind stripe for-

mation nor on the physical properties of striped phases has a consensus been established. A

possible scenario for the formation of stripes is frustrated phase separation, an idea described

and developed mainly by Emery and Kivelson (for a review see [59]). In this approach, it is

assumed that a hole doped Mott insulator has a tendency to phase separate into two phases,

a hole rich and a hole depleted phase [61]. An immobile charged background of dopants

would however prevent macroscopic phase separation because of the associated large electro-

static energies. Rather, a frustrated phase separated state forms, in which phase separation

occurs only at mesoscopic scales. In a simplified model calculation it was shown that compe-

tition between long range repulsive Coulomb interactions and short range attraction between

holes can indeed lead to the formation of stripes [62]. There have since been many efforts

to investigate the phase separation instability in t-J and Hubbard models. Whether or not

the instability to phase separation exists for a realistic choice of parameters is however still

hotly debated [63, 64]. If an instability towards phase separation is indeed present, one

would expect to observe it in systems with mobile dopants. Interstitial oxygen dopants are

relatively mobile, at least down to temperatures of about 200-300 K. The fact that phase

separation has been repeatedly observed in oxygen doped nickelates [65] and cuprates [66]

lends therefore strong support to the idea of frustrated phase separation.

The view that long range Coulomb forces are required to stabilize striped phases has

however been challenged by numerical studies of the t-J model by White and Scalapino
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[67, 63] in which striped phases were discovered in absence of long ranged interaction. Thus,

the tendency towards stripe formation may be inherent already in the short ranged physics

of the t-J model. This point of view has also found support in numerical studies by Martins

et al. [68].

While most theoretical works on stripe formation concentrated on the renormalized clas-

sical regime of spins with locally well defined AF correlations, recently the problem of stripe

formation has been looked at from the quantum disordered side, where the spins are dis-

ordered due to strong quantum fluctuations. In this approach the combined effect of long

range Coulomb repulsion of the holes and an instability of quantum disordered spins to the

formation of spin Peierls states [69, 70, 71] led to charged stripes [72, 73]. At least within the

mean field approach used in these works, Coulomb repulsion is essential to stabilize stripes.

Certainly, the occurrence of IC spin order by itself does not imply the existence of a

striped phase. Various other theoretical models also lead to similar incommensurabilities

for the spins, but do not predict the appearance of charge density modulations. One of

the first models to predict IC spin states was proposed by Shraiman and Siggia, who found

an instability of weakly hole doped t-J models to the formation of a spiral phase [4]. This

instability is based on the assumption that the quasiparticle associated with a hole moving

in an AF produces a long ranged dipolar distortion of the AF. While the spin order in the

superconducting region of the cuprates does not seem to be spiral [74], it is likely that a

mechanism similar to that described by Shraiman and Siggia is responsible for IC correlations

in the spin glass phase of La2−xSrxCuO4 [75, 13, 31], as discussed in the previous chapter.

Another possibility for doping induced IC spin fluctuations is based on more conventional

Fermi-nesting effects [76].

4.1.1 Stripes in nickelates

Static striped phases similar to those predicted by mean field theories [77] were first clearly

observed in doped nickelates La2−xSrxNiO4+δ [78, 79, 80]. Nickelates are very similar in

structure to the cuprates, however their electronic degrees of freedom are more complicated.

In contrast to the cuprates, undoped nickelates have high spin 1 with considerable admixture

of the Ni 3d3z2−1 orbital [81]. Upon doping, spin 1 states are replaced by spin 1/2. A

description of this compound within a simple one band model is not possible and three band

models are required [77]. Nickelates remain insulators even if strongly doped which probably

is related to the presence of a strong electron phonon coupling which is far more pronounced

in nickelates than in cuprates. This strong coupling leads to a strong polaronic character

[77] and a self trapping of charges.

Oxygen doped nickelates show a very rich phase diagram. Only certain doping levels

represent stable phases and at an arbitrary doping level phase separation into an oxygen

and hole deficient phase and several stacked phases with 2D or 3D ordering of the oxygen
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interstitials is observed. The stacked phases show stripe order in the NiO2 planes with a

periodicity locked to a value commensurate with the oxygen ordering. A good summary of

the experiments and further references can be found in [82]. At low temperature, the striped

phases encountered in the nickelates approach a periodicity which corresponds to an on-stripe

hole density of around 1, which agrees quite well with predictions of Hartree Fock calculations

[77]. However, the stripe periodicity shows a marked step like temperature dependence with

several lock in plateaus at commensurate values [82]. The stripes are oriented along the

diagonal of the Ni square lattice, an alignment which is favored by the lattice distortions

of the polaronic hole state [77, 83]. The spin and charge correlation lengths of the striped

phases in oxygen doped samples are quite large and for the oxygen concentration δ = 2/15,

the striped phase even has perfect long range order [82]. Doping with Sr has the advantage

that any hole density can be studied as phase separation is frustrated by the quenched

distribution of Sr dopants. This introduces however also a considerable amount of disorder

into the sample which competes with the pinning potential of the underlying lattice. Long

ranged ordered striped phases were therefore never observed.

While the precise mechanism of stripe formation in nickelates is not clear, there are strong

indications that phonon coupling plays an important role. The large charge gap of about

250 meV which was observed in La5/3Sr1/3NiO4 [84] is one order of magnitude larger than

the effective spin exchange as inferred from Raman scattering data [85] but comparable to

some oxygen breathing phonon modes. This, together with the commensurability effects of

the striped phase mentioned above, suggest that lattice coupling is an important ingredient

to stripe formation.

4.1.2 Cuprates

A static striped phase in a cuprate material was first observed in neutron scattering mea-

surements on co-doped La1.48Nd0.4Sr0.12CuO4 by Tranquada et al.[16]. The striped phase

observed in La1.48Nd0.4Sr0.12CuO4 differs from those observed in nickelates. First, the lattice

orientation is vertical as opposed to diagonal as in the nickelates. Secondly, the periodicity

of the stripe array in the cuprate material is roughly a factor two larger for comparable hole

concentrations. This points to a on-stripe charge density of roughly 1/4, i.e. on average only

every second site on the stripe is occupied by a hole, see Fig. 4.2. La1.6−xNd0.4SrxCuO4 has

a strongly suppressed superconducting transition temperature at the special doping concen-

tration x = 1/8 where the stripe order is best developed and stripe order seems to compete

with the SC state [86]. The preference of the system towards a stripe order near 1/8th

hole doping is believed to be caused by commensurate pinning of stripes by the underlying

lattice. Such a commensurate pinning is especially pronounced in this system as the Nd

co-doped compounds undergo a transition to a low temperature tetragonal phase (LTT) in

which the oxygen octahedra are periodically tilted which should help to pin one dimensional
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structures like stripes. Fig. 4.3 shows neutron scattering data of the 1/8 compound, the

IC magnetic order is clearly visible at low temperatures. However, while the 1/8 anomaly

is most pronounced in the LTT Lanthanum based cuprates, it has also been observed in a

variety of other cuprates and is most likely common to all cuprate materials [87]. Electrical

resistivity measurements indicate that the 60K plateau of the superconducting transition

temperature Tc, characteristic of the Y-123 compound, depends neither on the oxygen con-

tent in Y1−xCaxBa2Cu3O7−y nor on the onset of the LTT phase, but is driven by an in plane

hole concentration n ∼ 1/8 [88].

Figure 4.2: A possible stripe pattern consistent with neutron scattering data on

La1.48Nd0.4Sr0.12CuO4, from [89]. The combination of white and shaded empty circles is

used to indicate that on average, only every second site of the stripe is occupied by a hole.

Figure 4.3: Neutron scattering data showing IC magnetic correlations in the 1/8th com-

pound, from [90].

It was known for some time that the dynamic spin response of La2−xSrxCuO4 is IC [91, 92],

i.e. the finite frequency spin susceptibility has its maxima at the characteristic in-plane wave
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vectors (1
2
± δ, 1

2
), (1

2
, 1

2
± δ) (in units of 2πa−1 where a is the copper lattice spacing and δ is

the incommensurability). The incommensurability of underdoped La2−xSrxCuO4 was found

to be linear in x, linking the periodicity of the striped phase found at 1/8 continuously with

the dynamic fluctuations for more weakly doped compounds. Further, the superconducting

transition temperature of La2−xSrxCuO4 was also found to scale simply linearly with the

incommensurability of the spin fluctuations [15] (see Fig. 2.4), which suggests that the IC

fluctuations may play a central role in the mechanism of superconductivity. This point of

view is supported by the nearly critical nature of the IC spin fluctuations of La2−xSrxCuO4

at optimal doping, which indicates the proximity of a fixed point which may be associated

with a striped phase [93].

The similarity between the dynamic IC spin fluctuations observed in the SC phase of

La2−xSrxCuO4 and the static spin order seen in the LTT material was interpreted as evidence

of either thermal or quantum fluctuations of stripes in the superconducting compound [94].

As static stripe order in the LTT cuprates coincides with a suppression of superconductivity,

it was speculated that stripe fluctuations are a necessary condition for superconductivity

whereas non-fluctuating stripes would instead lead to an insulating stripe crystal, a frozen

charge- and spin wave density state [95]. Experimental results [15] indeed show that the

dynamic IC spin fluctuations in La2−xSrxCuO4 disappear near the critical doping x ∼ 0.05

where superconductivity also disappears.

4.1.3 Disorder and Stripes

Several experiments have revealed disorder to be relevant in stripe materials, both in cuprates

[90, 96, 97, 98] and in nickelates [99, 100, 82, 80]. An obvious source of disorder in these

materials are ionized dopants like Sr which are located in the planes neighboring to the NiO2

or CuO2 planes. A comparison with oxygen doped samples, which have an annealed rather

than a quenched dopant distribution, allow for an investigation of the role of disorder. In Sr

doped nickelates, the observed correlation lengths associated with the IC order are always

short ranged [101, 80], in contrast to some oxygen doped samples, where apparently long

ranged order was observed [82]. In contrast, the dynamic spin fluctuations observed in

La2−xSrxCuO4+δ are insensitive to the type of doping [93, 102].

The importance of disorder has been observed most clearly in the spin sector. Local

probes such as NMR [96, 103], NQR [99], µ-SR [11, 97] have revealed anomalously slow

relaxation times for the spins, reminiscent of spin glass behavior, in co-doped lanthanum

based cuprates with x ∼ 1/8. The width of the broad distribution of relaxation times was

almost identical to the one observed in the very weak doping regime x < 0.05 [103]. The

similarity between the weakly doped region and the point x = 1/8 extends also to the static

spin correlations observed in neutron scattering. While the spin correlation length is very

large for x = 1/8, it clearly saturates at a finite value at low temperatures, rather than
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approaching an ordered state at T = 0 [90], see Fig. 4.4. This behavior is reminiscent of the

spin glass regime, where the spin correlation length also saturates, albeit at a much smaller

length [51], and suggests a similar disordering mechanism in these two doping regimes.

Figure 4.4: Top: the integrated intensity of the IC magnetic scattering can be interpreted as

an order parameter of the striped phase. Bottom: inverse correlation length of the magnetic

scattering of the x = 1/8 compound. The correlation length is clearly seen to saturate at

low temperatures (from [90]).

4.2 Phenomenological analysis of stripes

Theoretical investigations of the striped phase have so far been largely phenomenological,

owing to the complexity of the problem. We pursue this strategy here also, so as to un-

derstand some general aspects about the influence of disorder and lattice potentials on the

striped phase and to avoid the uncertainties associated with the precise microscopic structure

of the stripes. A phenomenological treatment similar to the one we use in this section has

been pioneered in [94, 104, 105], where the influence of disorder was however not addressed.

4.2.1 Stripes as quantum strings

To begin with, let us consider a stripe filled with holes, so that there are neither charge nor

spin excitations along the stripes. The only excitations of such a stripe are its transversal
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fluctuations. To investigate the dynamics of the stripe, it is then possible to use a first

quantized formulation of the problem. The model we assume is a directed string of holes

(enumerated by the integer n) on a square lattice with lattice constant a. We further

allow only hopping of holes in the transverse direction. To account for the stripe stiffness,

we include a parabolic potential of strength K which couples adjacent holes in the stripe.

The model is then quite simple and in fact we are just investigating the dynamics of an

isolated domain wall on a lattice. A stripe (or domain wall) state can be represented as a

superposition of states

|u〉 = |. . . un−1unun+1 . . .〉 (4.1)

where un is the transverse position of the nth hole of the stripe. Because the stripe is on

a lattice, the un are integer multiples of the lattice constant a. We introduce a single site

transverse hopping of the holes and a parabolic potential for transverse displacements of the

stripe. The Hamiltonian for the stripe dynamics can then be written in the basis above as

ĤS = −t
∑

n

(
τ̂+
n + τ̂−n

)
+

K

2a2

∑

n

(ûn+1 − ûn)2 (4.2)

where t is the hopping parameter and the K term penalizes deviations of the line from a

straight configuration. The translational operators τ̂±n are defined by their action on the

states (4.1), τ̂±n |u〉 = |u± en〉 where emn = δmn . The τ̂±n operators can be written in terms of

momentum operator p̂n with commutators [ûn, p̂m] = iδnm (we use units with h̄ = kB = 1)

as τ̂±n = exp(±ip̂na) and Eq. (4.2) then takes the form

ĤS = −2t
∑

n

cos (p̂na) +
K

2a2

∑

n

(ûn+1 − ûn)2 (4.3)

In the limit t � K we can expand the cosine in Eq. (4.3) to second order and it is easy

to show then that the excitations of the stripe are simple acoustic waves with dispersion

ω = ak
√

2tK for |ka| � 1 . These are just the excitations of a harmonic quantum string

and the lattice is thus unimportant in the long wavelength limit. We shall call this the free

phase of the string. In the free phase, the system is equivalent to a continuum Gaussian field

theory with the action

S0[φ(y, τ )] =
1

2πµ

∫ β

0
dτ
∫
dy
[
1

c
(∂τφ)2 + c (∂yφ)2

]
. (4.4)

where φ(y, τ ) is now a field defined on a continuum, c = a
√

2tK is the velocity of the

acoustic excitations and µ =
√

2t/K is a parameter which controls the strength of the

quantum fluctuations. To make closer contact with the lattice model defined in Eq. (4.2) we

reintroduce the lattice via a cosine potential which favors values φ(y) which are multiples of√
π (we have rescaled the space direction for convenience), so that the action becomes

S = S0 +
g

a

∫
dτ
∫
dy cos(2

√
πφ). (4.5)
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Figure 4.5: Two stripe models: a) discrete string model; b) sine-Gordon model defined on a

continuum.

In the limit g →∞ this model becomes again a discrete model. Fig. 4.5 shows the relation

between the lattice and continuum model. The action obtained is now simply of the sine-

Gordon type which has been thoroughly studied in the literature (see e.g. [106, 107]). This

system undergoes a zero temperature roughening transition of the Kosterlitz-Thouless (KT)

type, which separates the free phase with the massless excitations discussed above from the

lattice pinned (or flat) phase in which all excitations are gapped. In the language of the

quantum string, this is simply a transition from a flat string in which transversal fluctuations

of the string become suppressed at large wavelength to a freely fluctuating string which is

characterized by logarithmical wandering, i.e. the expectation value of (φ(y)−φ(0))2 diverges

logarithmically with y. The excitations in the flat phase of the lattice model are bosonic

kink/antikink pair excitations, where the size of such a kink/antikink pair diverges at the

roughening transition. We will discuss the renormalization group (RG) equations below when

we also discuss the influence of disorder. The quantum string model can also be mapped

onto a massive Thirring model, as was shown in [108]. The critical µ at which the roughening

transition occurs is µc1 = 2/π [108, 109].

4.2.2 Influence of weak disorder

We now generalize the above simple considerations concerning the influence of the lattice

potential to discuss the influence of disorder. The question is whether there is the possibility

of a phase in which disorder is irrelevant. Results on classical strings in a disorder potential

are not encouraging. In the absence of lattice potentials and at the classical level, the long

wavelength limit of a sufficiently dilute array of stripes can be described as a membrane

with anisotropic stiffnesses, where the stiffness in the direction perpendicular to the stripes

is dominated by the entropic repulsion between neighboring stripes. In presence of disorder,

such a membrane is pinned at all temperatures, leading to a glassy striped phase [110].

Similarly, in the presence of a weak substrate lattice potential, it was found that a weakly

IC phase near a p × 1 registered phase is unstable to the formation of topological defects
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and hence a fluid if p <
√

8 [111]. As the hole stripes in the cuprates act as domain walls to

the AF background, the striped phase is topologically equivalent to an IC phase near p = 2

which led Zaanen et al. [94] to the conclusion that the striped phase in the cuprates is a

stripe liquid. The topological defects are easily pinned by disorder, again producing a glassy

stripe.

However, the instability of the membrane to both disorder pinning and formation of topo-

logical defects is rooted in the form of the entropic repulsion of classical strings embedded

in a plane. The entropic repulsion arises from a non-crossing condition of the strings and,

for classical strings in a plane, decays algebraically with the distance between the strings.

At low temperatures the fluctuations of the strings are no longer thermal but predominantly

quantum. In this case, the effective interaction between neighboring stripes decays expo-

nentially with the distance rather than algebraically. The reason for this is that a quantum

string has logarithmic divergent fluctuations rather than the algebraic divergent fluctuations

which characterize a classical string at finite temperatures.

To study the influence of disorder and lattice perturbations in the quantum regime of

the striped phase, we shall focus here on the intermediate time and length scale regime,

as e.g. probed in neutron scattering experiments, where the dynamics is dominated by a

single stripe rather than the collective and coherent membrane physics. The neighboring

stripes nonetheless play an important role as they confine the stripe wandering. That the

neighboring stripes weaken the influence of the disorder can be easily understood: to take

advantage of the disorder potential, the stripe has to meander, but meandering is frustrated

by the neighbors. The stripe therefore cannot find the optimal path through the disorder

environment. We want to make clear, however, that the very long wavelength physics will

always be influenced by disorder. What we are interested in below, is the crossover from a

regime in which the disorder becomes important only at wavelengths larger than the inter-

stripe distance, where the dynamics of the stripe array can be described within a membrane

model, to a regime where the disorder is so strong that the long wavelength membrane regime

is never reached. Formulated differently, we investigate the influence of disorder fluctuations

which happen at a scale smaller or equal to the inter-stripe distance.

We start again with the phenomenological model of a stripe on a lattice as in the previous

section but now also include a disorder potential. The Hamiltonian is therefore given by

Ĥ = ĤS + ĤD,

ĤD =
∑

n

Vn(ûn) . (4.6)

where ĤS is defined through Eqs. (4.2, 4.3) and ĤD describes the interaction of the stripe

with a disorder potential. The disorder correlations are given by

[Vn(u)Vn′(u
′)]D = ∆(u− u′) δn,n′ (4.7)
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where [...]D denotes the Gaussian average over the disorder ensemble and ∆(u) describes the

correlations between displacements. Using the fact that |u| < L it is convenient to expand

all physical quantities in Fourier series with period L, in particular,

Vn(u) =
1

L

∑

k

Vn,ke
iπku/L (4.8)

and

∆(u) =
1

L

∑

k

Dk cos(πku/L) (4.9)

where we used that ∆(u) = ∆(−u). The probability distribution of Vn,k is given as

P (Vn,k) =
1

πDk

e−|Vn,k |
2/Dk (4.10)

which yields

[Vn,kVn′,k′ ]D = δn,n′δk,−k′Dk (4.11)

and therefore leads to Eq. (4.7). Thus, Dk gives the width of the distribution of the Fourier

components of the disordered potential.

4.2.3 Derivation of the continuum action

We want to find a continuum formulation of the disorder average of the free energy functional

and to calculate the disorder average of the logarithm of the partition function

Z = tr exp
(
−βĤ

)
=
∑

{u}

〈
u| exp(−βĤ)|u

〉
, (4.12)

For the calculation of the average of [lnZ]D we employ the replica trick which relies on the

introduction of N replicas of the original system and the identity

[lnZ]D = lim
N→0

[
ZN

]
D
− 1

N
(4.13)

The disorder average is usually easy to perform for integer N , but taking the limit N → 0

is non-trivial. However, in the RG treatment we carry out below the replicas are merely a

convenience in keeping track of the correct diagrams and for the RG we are not concerned

with the mathematical not well defined limit N → 0.

We use standard techniques to convert Z into a path integral form. With ε = β/M we

write
〈
u|e−βĤ|u

〉
=
〈
u|
[
exp(−εĤ)

]M |u
〉

=
∑

{u1...uM−1}
〈u|e−εĤ |uM−1〉 . . . 〈u1|e−εĤ |u〉. (4.14)
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where now um = u(τ = εm) are τ -dependent. We rewrite the expectation values as

〈um|e−εĤ |um−1〉 '
∫ ∏

n

dpnm
2π
〈um|pm〉〈pm| : e−εĤ : |um−1〉 (4.15)

=
∫ ∏

n

dpnm
2π

∏

n

exp [ipnm∆τunm + 2tε cos (pnma)

− εK
2a2

(∆yunm−1)2 − εV (unm−1)
]
.

where we introduced ∆yunm = un+1,m − unm and ∆τunm = unm − unm−1. Using the Villain

approximation, exp(α cosφ) ' ∑q exp(−q2/(2α) + iqφ) we can rewrite Eq. (4.15) as

∫ ∏

n

dpnm
2π

∑

{qnm}

∏

n

exp

[
ipnm(∆τunm−1 + aqnm)− q2

nm

4tε
− εK

2a2
(∆yunm−1)2 − εV (unm−1)

]
.

Integration over the momentum variables shows that only configurations with ∆τunm−1 +

aqnm = 0 contribute and we obtain

〈um|e−εĤ |um−1〉 = exp

[
−
∑

n

(
1

4tεa2
(∆τunm−1)2 +

εK

2a2
(∆yunm−1)2 + εV (unm−1)

)]
.

Hence, the partition function can be written as

Z '
∑

{unm}
exp

[
−

M−1∑

m=0

∑

n

(
1

4tεa2
(∆τunm)2 +

εK

2a2
(∆yunm)2 + εV (unm)

)]
. (4.16)

Introducing i = 1, . . . , N replicas, performing the disorder average and taking the continuum

limit ε, a→ 0, we find

[
ZN

]
D

=
∫ ∏

i

D[ui(x, τ )]e−S̃
r

(4.17)

with

S̃r =
∑

i

S̃0[u
i(y, τ )] +

g

a

∑

i

∫ β

0
dτ
∫
dy cos

(
2πui(y, τ )

a

)

− 1

2a

∑

i,i′

∫
dy
∫ β

0
dτdτ ′ ∆

(
ui(y, τ )− ui′(y, τ ′)

)
. (4.18)

We here introduced the parameter g which denotes the strength of the lattice potential. The

action S̃0 is given by

S̃0[u(y, τ )] =
∫ β

0
dτ
∫
dy
(

1

4ta3
[∂τu(y, τ )]2 +

K

2a
[∂yu(y, τ )]2

)
(4.19)
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Introducing the dimensionless fields φi =
√
πui/a we arrive at our final form of the replicated

action,

Sr =
∑

i

S0[φi] +
g

a

∑

i

∫ β

0
dτ
∫
dy cos

(
2
√
πφi

)

−
∑

k

Dk

2aL

∑

i,i′

∫
dy
∫ β

0
dτdτ ′ cos

(
2
√
πδk

(
φi(y, τ )− φi′(y, τ ′)

))
(4.20)

where δ = a/(2L) is essentially the incommensurability (or stripe density) and

S0[φ] =
1

2πµ

∫ β

0
dτ
∫
dy
(

1

c
(∂τφ)2 + c (∂yφ)2

)
. (4.21)

The velocity c = a
√

2tK and the dimensionless parameter µ =
√

2t/K completely determine

the action S0 and hence the dynamics of the free stripe.

4.2.4 Renormalization of the model

We will now perform a perturbative RG analysis of the model defined by Eq. (4.20) to obtain

the scaling of its parameters. The action defined through Eq. (4.20) is in fact similar to those

describing one dimensional bosonic [112] and fermionic [113] models with disorder and we

can use similar techniques for analysing its properties.

To understand the possible phases of the system, we consider both the lattice and the

disorder, i.e. g and Dk as small parameters and treat them perturbatively. We will further

only keep the most relevant disorder contribution D = D1. It is straightforward to generalize

the results obtained below to the case with all Dk present and we will comment on this

briefly. However, the Dk for k > 1 terms are only relevant deep inside the disordered regime

which cannot be studied within the present perturbative treatment. We carry out an RG

analysis to find the flow of D and g and obtain the phase diagram. In deriving the RG

equations, we closely follow the method developed by Giamarchi and Schulz [113], which is

based on a Coulomb gas representation of the problem and on a perturbative calculation of

the correlator
〈
exp

(
i
√

2 [φi1(y1, τ1)− φi2(y2, τ2)]
)〉

to lowest non-vanishing order in g and

D, where we denote the average over the full partitation function by 〈. . .〉. For the free stripe

we find
〈
ei
√

2(φi1(y1,τ1)−φi2 (y2,τ2))
〉

0
= δi1i2e

−F (y1−y2 ,τ1−τ2) (4.22)

where 〈. . .〉0 is the average taken only with the gaussian part S0 and F is given by

F (y, τ ) =
µ

2
ln

(
y2 + c2τ 2

a2

)
+ κ cos(2θ). (4.23)

The parameter κ measures the anisotropy of the y- and cτ -direction. Initially, κ = 0 but

a finite κ, reflecting a renormalization of the velocity c, is generated in the renormalization
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procedure. To lowest order, only the expectation values diagonal in the replica indices

contribute and therefore the replica index i can be dropped below. The angle between (y, τc)

and the y-axis is denoted by θ. To second order in g and first order in D, the correlator is

Z

Z0

〈
ei
√

2(φ1−φ2)
〉
' e−F (y1−y2 ,τ1−τ2) (4.24)

+
g2

8a2

∑

ε3 ,ε4=±1

∫
dτ3dτ4dy3dy4

〈
ei
√

2φ1−i
√

2φ2+i2ε3
√
πφ3+i2ε4

√
πφ4

〉
0

+
D

4aL

∑

ε=±1

∫
dτ3dτ4dy3dy4δ(y3 − y4)

〈
ei
√

2φ1−i
√

2φ2+i2ε
√
πδφ3−i2ε

√
πδφ4

〉
0

where we used the shorthand notation φj = φ(yj, τj), Z is the full partition function and Z0

the partition function of the gaussian model. The above expectation values are simple to

evaluate and after some algebra (see App. (B.1) and App. (B.2)) one finds

〈
ei
√

2(φ(y1 ,τ1)−φ(y2,τ2))
〉
' exp

(
− µ̃

2
ln

(
(y1 − y2)2 + c2(τ1 − τ2)2

a2

)
− κ̃ cos(2θ)

)
(4.25)

with

µ̃ = µ− 1

2
Dµ2

∫

y>a

dy

a

(
y

a

)2−2πµδ2

− 1

2
G2µ2

∫

y>a

dy

a

(
y

a

)3−2πµ

κ̃ = κ+
1

4
Dµ2

∫

y>a

dy

a

(
y

a

)2−2πµδ2

(4.26)

where D = 4π2Dδ2a2/(c2L) and G = πga/c. The renormalization group equations are now

obtained following the method of Jose et al. [114]. We find under the rescaling a′ = λa,

λ = e` the flow equations (for details see App. (B.3))

d

d`
D = (3 − 2πµδ2)D (4.27)

d

d`
G = (2 − πµ)y (4.28)

d

d`
µ = −1

2
µ2(G2 +D) (4.29)

d

d`
κ =

1

4
Dµ2. (4.30)

(If we were to include all disorder correlations Dk, Eq. (4.27) would become ∂`Dk = (3 −
2πµk2δ2)D with Dk = 4π2Dkδ

2a2/(c2L), whereas in Eq. (4.29) and Eq. (4.30), D would be

replaced by
∑
kDk).

The validity of these equations is limited to intermediate length and time scales, at large

scales the network of stripes must be considered and the problem becomes considerably

more involved. However, we will show below that the physics obtained from Eqs. (4.27-4.30)

is already quite rich and gives important clues about the relevance of disorder and lattice
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perturbations. We can estimate the range of validity of our approach as follows. If we

assume short ranged interactions among neighboring stripes, the scale at which stripe-stripe

interaction becomes important can be estimated by looking for the scale at which the average

transversal fluctuations of the free stripe equal the average inter stripe distance L. The mean

square transversal wandering of the free stripe is given by

∆u(y, τ ) ' a

π

√

µ ln
y2 + c2τ 2

a2
.

This immediately yields yc = τcc ' a exp[π2/(8 δ2µ)]. Therefore, on time and length scales

smaller than yc, τc, the physics is dominated by single stripe dynamics while for larger

scales the interaction must be taken into account. Note that the crossover scales yc,τc are

exponentially large in the inverse stripe density and thus the physics we describe is relevant

at a fairly large scale.

With no disorder (D = 0), the set of Eqs. (4.28, 4.29) reduces to the conventional KT

form describing the roughening transition of the stripe at µc1 = 2/π [108]. For µ < µc1, G
diverges, signalling a pinning of the stripe by the underlying lattice. The stripe is flat on large

length scales has infinite stiffness and its excitations are massive. For µ > µc1, the lattice

potential is irrelevant and the system flows towards a gaussian fixed point with renormalized

µ∗, c∗. This fixed point is characterized by massless excitations and a logarithmic transversal

wandering of the stripe because of quantum fluctuations.

The RG equations can be solved analytically for D = 0 in the vicinity of the transition.

For this, we introduce εG = 2−πµ. To linear order in εG we then obtain from Eqs. (4.28, 4.29)

∂

∂`
εG '

2

π
G2, (4.31)

∂

∂`
G2 ' 2εGG. (4.32)

It follows, that

∂

∂`

(
ε2G −

2

π
G2
)

= 0 (4.33)

i.e. ε2G − 2G2/π = CG is a constant under the RG flow. The RG equation for εG can then

be written as ∂`εG = ε2G − CG. The critical line in the εG-G plane separating the RG flow

with diverging G from the region where G scales to zero is located at CG = 0. This yields a

critical value of µ for the roughening transition [115],

µc1 = 2/π + 21/2π−3/2G. (4.34)

Thus, a finite G leads to a shift of the critical value of µ linear in G. A simple integration

of the RG leads further to a pinning length Lp1 above which the string becomes flat which

scales as Lp1 ∝ exp[A/
√
µc1 − µ] (A is a constant).
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In the presence of disorder there is another instability, which for G,D ' 0 is located at

µc2 = 3/(2πδ2), see Eq. (4.27). At µc2, D becomes relevant. If µ < µc2, D flows to infinity

and the stripe is in a disordered (pinned) state. Again, we integrate the RG analytically in

the neighborhood of µc2, for the case of a vanishing lattice potential (G ' 0). To linear order

in εD = 3 − 2πδ2, Eqs. (4.27, 4.29) become

∂

∂`
D = εDD, (4.35)

∂

∂`
µ−1 =

1

2
D, (4.36)

or

∂

∂`
εD =

1

2

(
ε2D + CD

)
, (4.37)

and CD = D − 2πδ2ε2D/9 is constant under the RG. The critical line of the RG in the D-εD
space, separating the disorder pinned from the free stripe, is given by CD = 0 which yields

µc2 =
3

2πδ2
+

3D1/2

(2πδ2)3/2
(4.38)

We can define a localization or collective pinning length Lp2 of the stripe as the length scale

where the renormalized disorder strength has reached a value of order one. The asymptotic

dependence of Lp2 on the disorder strength near the critical region (and G = 0) is then found

to be given by Lp ∝ exp[−Bδ/√D0 −Dc] where D0 is the bare and Dc the critical disorder

strength and B is a constant. Even though the transverse excitations of the disorder pinned

stripe are localized, the density of states remains unaffected by the disorder. Moreover,

contrary to the lattice pinned stripe, the stiffness of the disorder pinned stripe is finite:

adding a small linear tilt to the fields φi → φi + δφ y leaves the disorder term in the action

Eq. (4.20) unchanged and the gaussian part of the action is modified only at order (δφ)2.

Hence, the change of the free energy per unit length is zero and the kink free energy vanishes

[112].

The diagram in Fig. 4.6 shows the stability regions of the stripe in the δ-µ plane, for

D,G ' 0. There are three distinct regimes: the freely fluctuating gaussian stripe (“free”),

if neither disorder nor lattice perturbations are relevant, the disordered stripe, if disorder is

relevant, and the flat stripe if the lattice is relevant and disorder is not [116]. The disordered

stripe, which exists if disorder is relevant, can be further distinguished whether or not the

lattice pinning is a relevant perturbation. Even though disorder always wins in the long

wavelength limit, the stripe is locally flat if the lattice potential is relevant (“loc. flat”) and

if Lp1 < Lp2. In the locally flat phase the sharp band edge of the massive excitations which

exist in the flat phase are washed out by the disorder and Lifshitz-like tails extend down to

zero energy. No true gap survives but the lattice pinning reduces the low energy spectral
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weight and gives rise to a pseudogap. At Lp1 ≈ Lp2 the pseudogap disappears and a crossover

to the disordered phase takes place.

In Fig. 4.6 we have plotted the different crossover lines as a function of δ and µ. Note

that δ is proportional to the doping as long as the on-stripe charge density remains constant

(which, for LSCO, is the case for small x up to ∼ 1
8

[15]).

2/π

δ

flat

dis.

loc. flat

free

µ

Figure 4.6: Phase diagram of the stripe as a function of δ = a/(2L) and µ =
√

2t/K .

4.2.5 Comparing the RG results with experiments

From our analysis, it follows that dynamical fluctuating stripe order occurs only in a situation

in which both disorder and lattice potentials are irrelevant, implying that the dynamical

striped phase believed to be present in La2−xSrxCuO4 must be insensitive to disorder. Indeed,

the IC spin fluctuations in this compound at near optical doping [93] are strikingly similar to

those found in La2Cu2O4+δ [102], which is relatively free of disorder because of the annealed

character of the interstitial oxygen dopants. Although this shows that weak disorder is

unimportant near optimal doping, at lower doping we expect from Fig. 4.6 a critical doping

xc below which the disorder will become relevant. Hence, below xc the stripes will become

pinned, which leads to a strong broadening of the IC spin fluctuations. We interpret the

observed broadening of the IC peaks near x ∼ 0.05 [15, 117], the superconductor-spin glass

phase boundary, as evidence of stripe pinning, which possibly leads to a destruction of stripes

in the spin glass phase.

In oxygen doped nickelates [65, 79, 82], the IC peak widths are always much narrower

than in the Sr doped ones, [80, 101]. Thus, disorder is relevant and, hence, µ < µc2 for

the nickelates. Furthermore, both Sr and O doped nickelates show strong commensuration

effects [82]. The stability of a commensurate state depends on the competition between the

effective stripe interactions and the strength of the lattice potential. To compare these two

effects, one must integrate over the independent stripe fluctuations which exist up to the

cutoff scale yc. If µ < µc1, the effective lattice coupling is strong and very wide commensurate

plateaus as a function of either doping or temperature are expected. This is the situation in
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the nickelates. A similar commensuration effect is observable also in the cuprates; however,

because µ > µc1, the renormalized lattice coupling strength at the scale yc is exponentially

suppressed and only a very narrow commensurate plateau exists. The striped phase is then

nearly always in a floating phase IC with the lattice. This is consistent with the very weak

Bragg peaks which are observable in La2−xSrxCuO4 only at x = 1/8 [18], and the static

striped phase of La1.6−xNd0.4SrxCuO4 which is most pronounced again at x = 1/8 [16],

whereas at other compositions the IC Bragg peaks are much weaker and broader [86].

4.2.6 Influence of stripe dynamics on spin correlations

The symmetries of a striped phase are rather different from those of a homogeneous magnet

and share some properties with spiral phases which we discussed in the first chapter of

this thesis. Both spiral and striped phases break not only the spin symmetry but also the

translational lattice symmetry. The difference is that the spin order in a striped phase is

collinear. The breaking of the translational symmetry is responsible for the presence of

optical modes at the AF wave vector, as we discuss in this section within the context of

stripes. Therefore, the dispersion of the IC peaks which we calculate is not particular to

stripes but rather a manifestation of broken translational and spin symmetry. Thus, any

ordered IC state would give rise to similar results. In the approach taken below, the two

symmetries are treated separately, the broken spin symmetry being associated with the AF

regions and the broken translational symmetry being associated with the dynamics of the

charged stripes.

To discuss how stripe fluctuations affect the experimentally observable spin fluctuations

(see also [109]), we take a simplified view on the dynamics of the stripe array, where we now

account also for weak inter-stripe interactions. As mentioned above, these interactions are

only relevant in the very long wavelength limit. We ignore here first disorder and lattice

potentials. Approximating the effective stripe-stripe coupling by a harmonic potential, the

action of the stripe array can then be written as

S =
1

2πµ

∑

m

∫ β

0
dτ
∫
dy
[
1

c
(∂τφm)2 + c (∂yφm)2

]
(4.39)

+
Uc

2πa2

∑

m

∫ β

0
dτ
∫
dy [φm − φm+1]2 .

where U is dimensionless and quantifies the strength of the inter-stripe coupling. The in-

teger m numerates the stripes and should not be confused with the replica index i used in

Eq. (4.20). The corresponding propagator for the fields φm is then given by the inverse of

the kernel in Eq. (4.39),

Γm(y, τ ) =
πµLc

β

∑

ωn

∫ d2k

(2π)2

eikxmL+ikyy−iωnτ

ω2
n + c2k2

y + 2Uc
2µ
a2 (1 − cos kxL)

(4.40)
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with UV cutoffs Λy = π/a and Λx = π/L. The Matsubara frequencies are given by ωn =

2πn/β. The propagator is massless around kx,y = 0 but the modes at the Brillouin boundary

kx = π/L show a gap 2c
√
Uµ/a. Should lattice potentials be relevant, an additional mass

would appear in the propagator. We now address the question, how the fluctuations of the

stripes affect the spin correlations of the cuprates. In the striped phase, the charged stripes

act as domain walls which separate undoped regions with opposite (probably short ranged)

staggered magnetic order. We therefore write the staggered spin density as a product of the

form M(r, τ ) = MAF (r, τ )MS(r, τ ) where MAF describes the staggered spin density of the

confined undoped regions and MS is a function which changes sign at the position of the

domain walls. We can write MS as [118]

MS(x, y, τ ) =
∑

m

(−1)mΘξ(x−mL− aφm(y, τ )/
√
π)

=
∫ dq

2π

[∑

m

(−1)meiq(x−mL−aφm(y,τ)/
√
π)Θξ(q)

]
(4.41)

where Θξ(x) =
∫ x dαδξ(α) and δξ(x) = exp[−x2/(2ξ2)]/(

√
2πξ) is a broadened delta function

of width ξ. As the stripes are separated in space from the spins in the undoped region, it is

a reasonable assumption that the dynamics of MS and MAF decouple [119] so that

〈M(r, τ )M(0, 0)〉 ' 〈MAF (r, τ )MAF (0, 0)〉
〈
MS(r, τ )MS(0, 0)

〉
(4.42)

It is then easy to show that we can write

〈MS(r, τ )MS(0, 0)〉 ' 4

L

∫ dq

2π

∑

m

(−1)meiq(mL+x)
〈
e−iqa[φm(y,τ)−φ0(0,0)]/

√
π
〉
×

× Θξ(q)Θξ(−q),
where Θξ(q) = exp(−q2ξ2/2)/(iq + ε) is the Fourier transform of the broadened Heavyside

step function. Taking the average with the action Eq. (4.39) gives
〈
e−iqa[φm(y,τ)−φ0(0,0)]/

√
π
〉

= e−q
2a2[Γ0(0,0)−Γm(y,τ)]/π

' exp
(
−q2a2Γ0/π

) (
1 + q2a2Γm(y, τ )/π

)
.

The last decomposition is only possible at T = 0 (for T 6= 0, Γ0 diverges because of the

Mermin-Wagner theorem). The exponential pre-factor in the last line is the quantum analog

of the Debye-Waller factor, with Γ0 ' πµ3/4/(4U1/4). Hence, we see that strong quantum

fluctuations of the stripes and weak stripe-stripe coupling (large µ and small U) suppress

〈MSMS〉. We can now decompose the Fourier transform of 〈MSMS〉 into an elastic and an

inelastic part to find

〈MSMS〉el (k, ω) ∝ δ(ω)δ(ky)δ(kx ± π/L) exp

[
−π

2

L2

(
ξ2 +

a2

π
Γ0

)]
(4.43)

〈MSMS〉inel (k, ω) ∝ Γkx±π/L(ky, ω) exp

[
−k2

x

(
ξ2 +

a2

π
Γ0

)]
(4.44)
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where Γkx(ky, ω) is the Fourier transform of Γm(y, τ ). Using Eq. (4.40), we see that the

inelastic part (i. e. Γkx±π/L(ky, ω)) has gapless (acoustic) modes around kx = ±π/L, and

gapped (optical) modes at kx = 0 (both with ky = 0). Because of the convolution with

〈MAFMAF 〉, as implied by Eq. (4.42), the wave vector k is measured with respect to the

commensurate AF positions (±π/a,±π/a).

aπ / aπ /

a) b)   

E
n
e
rg
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Figure 4.7: Evolution of the IC signal with energy. At low energies, the modes disperse away

from the IC position kx = π
a
± π

L
(position indicated by marks next to the π/a position).

The shaded region shows the continuum of excitations. a) Situation with freely fluctuating

stripes; b) Situation with commensurate and non-fluctuating stripes.

The acoustic modes, which are excited at low energies, will therefore give rise to IC

scattering in neutron scattering experiments. However, increasing the energy will result in

peaks that disperse away from the IC positions and finally the optical modes will be excited

which are located at the commensurate positions. Therefore, starting from low energies, one

would first see IC peaks which, with increasing energies, merge into a broad commensurate

peak. Our simple picture describes qualitatively the experimentally observed evolution of the

IC peaks in La2−xSrxCuO4 [120, 121]. In [94], a merging of the IC peaks has been explained

as a result of single stripe dispersion. In our view, the single stripe dynamics contribute

to the continuum of excitations but the lower bound of the continuum is determined by

the inter-stripe coupling. Further, as can be seen from Eq. (4.44), the dispersion away

from the IC position is not symmetric around the IC positions, because signals at large

values of kx are exponentially suppressed both by the finite thickness of the domain walls

and the quantum fluctuations of the stripes. Such an asymmetry has also been observed

experimentally [120, 121]. We have sketched the evolution with energy schematically in

Fig. 4.7a, where we assumed very soft stripe fluctuations such that Eq. (4.44) determines

entirely the dispersion of the signal. In the figure it can be seen how the IC scattering evolves

into the commensurate scattering at higher energies. As the signal at the commensurate

position corresponds to optical modes of the stripe array, one would only expect a resonance
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at the commensurate position if the stripe fluctuations are highly coherent. Recently, the

continuous evolution of the IC fluctuations into commensurate ones was indeed observed

[122], the experimentally determined dispersion is shown in Fig. 4.8. We note that the

resonance at the commensurate AF wave vector was only observed in the superconducting

state. As the optical excitations are directly related to the translational symmetry breaking,

this indicates that the stripe array is more ordered in the superconducting phase. Thus, it

seems that stripe fluctuations are coherent in the superconducting phase but incoherent once

the superconductivity is destroyed. Signatures of a transition from coherent to incoherent

stripe fluctuations at the superconducting phase transition were recently also inferred in

[123].

������������������������������

������������������������������

���������������
��������������� ������

������

������
������

��
��

��
��	�		�	

	�	





���
�
��
�
������
�����

�
��
�

��
�
��
�

���������������������������������������������������������������

���������������������������������������������������������������

������
���
������
���
������
���
��
�

������������
�������
�

��
�
��
�
��
�
  
 !�!"�"

Figure 4.8: Black squares indicate the dispersion of the IC peaks as observed in YBCO6.85,

from Bourges et al. [122].

A finite spin correlation length in the AF regions would add a gap to the spectrum, which

would result in a shift of the spectra in Fig. 4.7 to higher energies. The absence of any signal

at very low energy transfers in the neutron scattering experiments thus indicates a finite

coherence length of the spin order in the AF regions. For commensurately pinned stripes the

stripe fluctuations are suppressed, but long ranged AF order gives rise to dispersion at low

energies through spin waves. The absence of soft stripe fluctuations leads to a hardening of

the IC modes and an energy evolution as drawn qualitatively in Fig. 4.7b. Such an energy

dependence of the peak width has been measured in La2NiO4.133 [17]. We note, that at high

energies, a merging of the IC modes at the commensurate position should occur however

also in this system, as the translational symmetry is still broken. Such a merging should be

observable experimentally.

4.3 Stripe dynamics in the strongly disordered regime

While both the lattice pinned and free phase of the stripe are expected to have fairly well

developed dynamic or static stripe correlations, in the disorder pinned phase, the correlation
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length of the stripe array is expected to be very short so that a detection of stripes in

scattering experiments could be difficult or even impossible if stripe correlation lengths

become shorter than the average stripe spacing. The crossover to the disordered stripe

described above happens when the disorder becomes relevant already at scales where the

inter-stripe interaction plays no role. Thus our disorder pinned phase describes individually

pinned stripes and in a further investigation of this phase below it is legitimate to focus on

a single and isolated stripe in a disorder potential [124].

Under sufficiently strong external electrical fields, it will be possible for the stripe to

overcome the pinning potential and move freely. An interesting question relevant to exper-

iments is how large such a field would be. We shall attempt in this section an estimate on

the order of magnitude of such a depinning field and also discuss qualitatively the creep of

pinned stripes for fields smaller than the depinning field.

For La2−xSrxCuO4, the most likely regime where a picture of strongly disordered stripes

might apply is the spin glass regime and our analysis allows for a qualitative comparison

of the transport measurements in this regime with the predictions obtained below for a

disordered stripe glass in which the transport is assumed to be dominated by stripe creep.

We shall concentrate here on the case of a classical string and determine its collective pinning

lengths, the depinning field and the creep of the stripe for subcritical fields. A discussion of

the creep of stripe accounting for quantum fluctuations can be found in [125].

4.3.1 Depinning transition under an external electric field

For strongly disordered stripes, commensuration effects are negligible and thus we neglect

here the lattice pinning completely and use the continuum formulation. The free energy

describing an infinite elastic string along the y-direction, which tends to move due to the

action of an externally applied electrical field E competing against the pinning barrier Vpin
is then in the classical limit

F [u(y)] =
∫ ∞

−∞
dy


K

2a

(
∂u

∂y

)2

− Vpin −
eEu

a


 . (4.45)

The next step is to obtain an estimate for the pinning potential Vpin. Let us assume that

the pinning mechanism is produced by the ionized acceptors which sit on a plane parallel

to and close to the CuO2-plane. An impurity with two dimensional coordinates r′ produces

the Coulomb potential G(r′ − r) at the position r in the CuO2-plane - we ignore the finite

separation between the donor and the CuO2-plane - with

G(r′ − r) ' e2

ε|r′ − r| . (4.46)

The total potential felt at position r on the CuO2 planes can then be written as

Vpin(r) =
1

a2

∫
d2r′N (r′)G(r′ − r), (4.47)
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where N (r′) is the number of impurities (zero or one) at the position r′, e is the elementary

unit of charge and ε is here the (static) dielectric constant. Hence, N (r) = (N (r))2. Let us

denote the average number of impurities per lattice site [N (r)]D = x, where [. . .]D represents

again the average over the disordered impurity ensemble and 0 < x < 1. If the impurity

distribution is uncorrelated, we can write the density-density correlator as

ρ0(r, r′) = [N (r)N (r′)]D − [N (r)]D [N (r′)]D = x(1− x)δ(r− r′). (4.48)

Its Fourier-transform is a constant for any value of the wave vector k, ρ0(k) = x(1 − x) =

const. This correlator describes long-wavelength fluctuations with any k, including the small

ones. Although the small-k fluctuations are allowed by the statistics of the completely dis-

ordered state, in reality they are strongly suppressed by the long-range Coulomb interaction

of the impurities. Hence, the real correlator should be suppressed for small k at some scale

k < λco. This cut-off can be introduced by the following choice of the correlation function:

ρ(k) =
x(1 − x)

1 + λ2
co/k

2
. (4.49)

Since the only length scale in the system of the impurities is the average distance between

two neighbour impurities u = ax−1/2, the λco parameter should be estimated as λco ∼ 1/u.

Furthermore, the two-point correlator of the impurity potential is given by

K(r) = [Vpin(r)Vpin(0)]D − [Vpin(r)]D [Vpin(0)]D

=
1

a4

∫
d2r′ d2r′′G(r′′)G(r′ − r)ρ(r′, r′′).

The Fourier transform of K(r) reads

K(k) = (x− x2)

(
e2

εa

)2
4π2

(k2 + λ2
co)a

2
, (4.50)

where G(k) = 2πe2/(εk) is the 2D Fourier-transform of the Coulomb potential G(r). Rewrit-

ing then the correlator of the potential in real space we find

K(r) = 2π

(
e2

ε

)2

(x− x2)K0(λcor), (4.51)

where K0(λcor) is the modified Bessel function.

Let us now define εpin =
∫
dyVpin. If the stripe interacting with the random pinning

potential is stiff, the average pinning energy [εpin(L)]D of a segment of length L is zero. The

fluctuations of the pinning energy, however, remain finite,

[
ε2
pin

]
D

=
1

a2

∫ L

0
dydy′K(0, y − y′) ' γL (4.52)
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with

γ =
2π2ε2

c

√
x

a
. (4.53)

Here, εc = e2/εa denotes the Coulomb energy scale. The sublinear growth of
[
ε2
pin(L)

]1/2
D

is

due to the competition between individual pinning centers. To investigate the competition

between the pinning and elastic energies, we use the dynamic approach to this problem

which was introduced by Larkin and Ovchinnikov [126] in the “Collective Pinning Theory”

(CPT) for describing the dynamics of weakly pinned vortex-lines in the high temperature

superconductors. This approach was also applied in connection with the pinning problem

in charge-density-wave systems [127, 128]. The results of the CPT can be summarized as

follows [129]: Eq. (4.52) would imply that a stiff stripe is never pinned, since the pinning

force grows only sublinearly, whereas the electric driving force increases linearly with length.

This arguments ignores however the finite elasticity of the stripe and its competition with

the disorder fluctuations. Due to the elasticity, the stripe can accommodate to the potential

on some “collective pinning length” Lcp. Then, each segment Lcp of the stripe is pinned

independently and the driving force is balanced. This length Lcp can be estimated from

dimensional arguments. The evaluation of the free energy for a segment of length L with

dimensional estimates provides

F [u,L] ∼ Ku2

aL
−
√
γL− eEuL

a
. (4.54)

The collective pinning length of the stripe is then obtained from minimizing F [u,L]/L with

respect to L at zero bias field [129],

δF/L
δL

∣∣∣
Lcp

= 0, Lcp '
(
Ku2

a
√
γ

)2/3

. (4.55)

The characteristic value of the displacement u is given by the average distance between the

impurities, hence u ∼ λ−1
co ∼ a/

√
x. Using Eq. (4.53) we find

Lcp ' ax−5/6
(
K

εc

)2/3

. (4.56)

Experimentally, it is difficult to measure the collective length Lcp. However, the threshold

electric field Ec corresponding to the vanishing of the barrier is a quantity which can be more

easily experimentally determined. The critical threshold field Ec beyond which the stripe is

free to move through the sample is obtained from comparing the energy of the driving field

with the pinning energy eEuLcp '
√
γLcp. This yields

Ec =
a

eu

√
γ

Lcp
∼ x7/6εc

ea

(
εc
K

)1/3

. (4.57)
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For typical high-Tc materials, such as La2−xSrxCuO4, J ≈ 0.1 eV, a ≈ 4 Å and the

static dielectric constant ε = ε0 ≈ 30 [130]. Hence, one can estimate the elastic energy

K ∼ J ≈ 0.1 eV and the Coulomb energy εc = e2/(εa) ≈ 0.1 eV. For a doping concentration

in the insulating phase, for instance, for x ' 10−2, we obtain the collective pinning length

Lcp ≈ 102 Å and the critical electrical field Ec ≈ 104 V/cm. This field is rather strong and

it is unclear whether a stripe depinning could be clearly detected in an experiment. The

biggest obstacle for a detection of stripe depinning is the large depinning energy which in our

simple estimate is of the same order of magnitude as J . Clearly, at this fundamental energy

scale there might be many different types of processes in the cuprates, which may complicate

an unambiguous detection of stripe depinning in an experiment. While the depinning field

Ec ≈ 104 V/cm is quite large, the stripes can also move for subcritical fields, either through

thermal activation for the case of classical stripes or, at very low temperatures such that

quantum processes become important, through tunneling. The subcritical creep may offer a

simpler route for finding signatures of stripes and below we therefore investigate the nature

of the creep.

4.3.2 Stripe relaxation processes

We have estimated the threshold field Ec corresponding to a depinning of stripes. The next

step is to discuss the relaxation for a stripe subject to a subcritical field E < Ec. In this

case, the stripe is in a metastable configuration and has to overcome a finite pinning barrier

to move. This barrier can be overcome either via thermal processes in the classical limit or

via quantum tunneling. Here, we will focus on the classical creep.

Classical limit

At high temperatures, the dominant relaxation process is classical and driven by thermal

activation. In this case the decay rate Γt of the metastable configuration is given by an

Arrhenius law, Γt ∼ exp(−U/T ). To calculate the activation energy U we only need to

evaluate the free energy F at the saddle point configuration us, U = F [us]. Dynamical terms

in the free energy can be neglected as these only contribute to the prefactor multiplying the

exponential function. The activation energy U depends on the externally applied field E but

it scales with the collective energy pinning energy Uc which is a quantity independent from

E and can again be obtained from dimensional estimates. Substituting the expression for

the collective pinning length Lcp, Eq. (4.56), into the free energy Eq. (4.54) setting E = 0

yields

Uc '
√
γLcp ' x−1/6

(
Kε2

c

)1/3
(4.58)

For the case of La2−xSrxCuO4 a rough estimate for x ∼ 10−2, as used also above, we estimate

the pinning energy barrier to be at the order of 103 K with a doping dependence Uc ∝ x−1/6.
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Again, this is a rather high energy scale comparable to J .

Having obtained both the characteristic energy scale Uc and the collective pinning length

scale Lcp of the problem, we now need to look at the scaling for lengths L > Lcp. A central

parameter for this is the wandering exponent of the stripe, defined through

[〈
(u(L)− u(0))2

〉]
D
∼ u2

c

(
L

Lcp

)2ζ

, L > Lcp, (4.59)

where, for us, uc ∼ λ−1
co and [〈. . .〉]D denotes the full thermal and disorder average. For the

present case of a classical string in a disordered plane the wandering exponent ζ = 2/3 was

found by exact calculations [131, 132]. The typical energy barrier U seen by the stripe in

absence of external fields then follows from the scaling of the free energy Eq. (4.54) with

E = 0. As the elastic energy exactly balances the pinning energy, we can determine the

scaling of the free energy from the scaling of the elastic term and find

U ∼ Uc
(
L

Lcp

)2ζ−1

. (4.60)

Similarly, for E � Ec we obtain the scaling of the free energy in presence of a small external

field,

F(L) ∼ Uc

(
L

Lcp

)2ζ−1

− eELcpuc
a

(
L

Lcp

)ζ+1

. (4.61)

The problem now has been reduced to a nucleation process [133]. If a nucleus with length L

larger than some optimal length Lopt is formed, the nucleus will grow until the whole stripe

has relaxed into the new neighboring minimum. On the other hand, if the activated segment

is smaller than the optimal one, the nucleus will shrink and collapse to zero. The optimal

nucleus is found by extremizing the full free energy, ∂LF(L)|L=Lopt = 0 and we obtain

Lopt(E) ∼ Lcp

(
Ec
E

)1/(2−ζ)
. (4.62)

Inserting Eq. (4.62) back into the free energy Eq. (4.61) we find that the average barrier for

creep increases algebraically for decreasing bias field,

U(E) ∼ Uc
(
Ec
E

)µ
(4.63)

with µ = (2ζ−1)/(2−ζ) = 1/4. This behavior defines a glassy state, with diverging barriers

in the limit of vanishingly small applied electric fields.

The other interesting limit is the one with applied fields smaller but close to the critical

one, i.e. 0 < Ec − E � Ec. This case is more difficult to treat because for nearly critical

external bias the system is far removed from equilibrium. At present the creep of randomly

pinned strings in this regime is not understood. In order to gain some insights into the
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problem, we shall assume here a spatially uniform potential barrier height for the stripe, i.e.

we neglect fluctuations in the local depinning field strength around the mean value Ec. This

allows to obtain results which cast some light also on the creep in presence of disorder. To

treat the limit of applied fields close to the critical one, we therefore approximate the overall

potential arising from the pinning and the bias electric field by an effective potential which

describes a metastable configuration. The simplest form of a metastable potential which has

the property that the metastable state vanishes at E = Ec is of the form

Veff = VE

[(
u

uE

)2

−
(
u

uE

)3
]

(4.64)

with VE ∼ Vc(1 − E/Ec)3/2 and uE ∼ uc (1 − E/Ec)1/2. The critical potential barrier is

given by Vc = eEcuc/a and the critical displacement of the stripe (which is a function of the

external bias E) is given by uE. Again, we now have to analyse a nucleation process and

find the critical size of the nucleus beyond which the nucleus will expand. For the energy of

a distortion uE over a length LE we then find the energy

E(uE, LE) ∼
[
K

2

(
uE
LE

)2

+ Veff (uE)

]
LE. (4.65)

The competition is now again between the potential energy which scales like u3 ∝ (1 −
E/Ec)3/2 and the elastic energy which scales like K(uE/LE)2 ∝ (1−E/Ec). The length LES
of the saddle point nucleus therefore scales like

LES ∼ uc
√
K

Vc

(
1− E

Ec

)−1/4

∼ Lcp

(
1− E

Ec

)−1/4

. (4.66)

From Eq. (4.65) we then obtain for the energy barrier

U(E) ∼ ucVc
(
K

Vc

)1/2(
1 − E

Ec

)α
∼ Uc

(
1 − E

Ec

)α
, (4.67)

where, in absence of disorder, α = 5/4. For the random pinning one might expect that the

energy barrier for thermal activation still obeys a power law of the type above but with a

different exponent α. However, the exponent α is not known for the case of random pinning.

More severely, the validity of a power law relation of type (4.67) has not been rigorously

proven and the assumption that the effective energy barrier scales with the average critical

depinning field may well be wrong.

Let us now compare briefly our results with experimental data on the transport in the

SG regime. The transport data of La2−xSrxCuO4 for 0.02 < x < 0.05 is characterized at the

lowest measured temperatures by a temperature dependence of the resistivity which follows

ρ ∝ exp(
√
T ∗/T ), with a characteristic temperature T ∗ ∼ 50K [51]. This temperature depen-

dence is characteristic for 3D variable range hopping. In contrast, for a system with a trans-

port dominated by stripe creep one would expect a temperature evolution ρ ∝ Uc
T

exp(Uc/T ),
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with approximately Uc ∼ 103K. This temperature evolution of the resistivity is not observed

and therefore the low temperature transport in La2−xSrxCuO4 is not dominated by classical

creep of charged stripes. We thus conclude that either stripes are not present in the spin

glass regime, or, if they are, the transport is not dominated by collective stripe motion but

rather by hopping of individual charge carriers between stripes. As discussed in detail in the

first section of this thesis, the magnetic data from the spin glass regime is well described by

a model in which the charge distribution is completely quenched. This strongly suggests the

absence of stripes for x < 0.05.
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4.4 Coupling of transverse and longitudinal fluctua-

tions

While we have so far focused on the dynamics of a completely charge depleted stripe (a chain

of holes), experiments on cuprates point to a finite electron filling of the stripes. Thus, stripe

excitations may involve also longitudinal charge and spin fluctuations. As an exact treatment

of the dynamics of a filled stripe seems impossible, we need to develop some approximate

scheme. For a completely flat stripe, with all transverse fluctuations completely frozen,

the excitations of the stripe are just those of a one dimensional interacting electron model.

Such models can be well studied and described with bosonization techniques. Similarly,

a completely empty stripe has only transverse modes and we have already discussed some

aspects of these in previous sections. The approach we shall follow in this section is that

we assume a weak coupling between the transverse and longitudinal modes. Using well

known perturbative techniques we will then investigate the possible phases of the filled

stripe with special attention to the experimentally most relevant case of a quarter filled

stripe. Our analysis shows that a weak coupling of the transverse and longitudinal modes

does not lead to a strong superconducting instability but rather may lead to a charge density

wave (CDW) instability exactly at quarter filling. For charge densities close to 1/4, the

excitations have solitonic character. We begin with a description of the transverse modes

using a spin-1 language and review its properties following closely the framework laid out

by Schulz [134]. The discussion of the transverse modes is rather detailed and also serves

as a brief introduction to the basic concepts of bosonization techniques. We then introduce

the coupling to the longitudinal modes and study the combined model with bosonization

techniques.

4.4.1 Transverse modes as a spin model

Our starting point for the transverse modes is again the simple chain of holes model intro-

duced previously in Eq. (4.3),

ĤS = −2t
∑

n

cos (p̂na) +
K

2a2

∑

n

(ûn+1 − ûn)2 (4.68)

Applying the unitary transformation ϕ̂n =
∑
m<n p̂m, π̂n = ûn− ûn+1, we can rewrite this as

HS = −2t
∑

n

cos (ϕ̂n+1 − ϕ̂n) +
∑

n

K

2a2
π̂2
n (4.69)

If we restrict transversal fluctuations to ûn+1 − ûn = ±1, 0, we can rewrite the Hamiltonian

in spin 1 language, using Szn = π̂n and S±n =
√

2 exp(±iϕ̂n),

ĤS1 =
∑

n

[
−t
(
SxnS

x
n+1 + SynS

y
n+1

)
− JzSznSzn+1 + d(Szn)2

]
, (4.70)
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where d ∼ K is renormalized by the S2
n = 1 constraint and we included a further SznS

z
n+1

interaction characterized by the parameter Jz (we omit here an additional
(
SznS

z
n+1

)2
“cur-

vature” term whose effect is discussed in [104]). There is a vast amount of literature on

this spin-1 Hamiltonian and while exact solutions are only known for some special parame-

ters, the zero temperature phase diagram seems well understood. A possible approach to

study this Hamiltonian is to replace the spin-1 operator by a sum of two spin 1/2 operators,

Sn = τ a(n) + τ b(n). The spin 1/2 operators allow for a Jordan-Wigner transformation into

a system of interacting fermions. The obvious drawback of the use of spin 1/2 operators is

the introduction of a local singlet (with S2
n = 0) which is absent in the original model. This

leads to some problems as we will discuss later. Using a Jordan Wigner transformation, one

can transform the spin 1/2 operators to Fermi operators,

τ+
a (n) = a†n exp

[
iπ

n−1∑

m=1

a†mam

]
, τ za (n) = a†nan −

1

2
(4.71)

with {an, a†m} = δnm and an analogous transformation for τ+
b (n) to Fermi operators bn. The

filling factor of the Fermions is directly related to the z-component of the total spin of the

spin chain, Sz =
∑N
n=1 S

z
n = Na

F + N b
F −N with Na

F =
∑
n a
†
nan and analogous equation for

N b
F , so that for Sz = 0 (a straight string) we have N a

F + N b
F = N . For symmetry reasons

and also to correctly describe the roughening transition (which in this fermion description is

driven by Umklapp scattering) we need to choose kaF = kbF . Thus, the filling factor is exactly

1/2 and the Fermi surface is at kF = ±π/2. The Hamiltonian (4.70) can then be written as

HS1 ' H +H ′ (4.72)

where H can be expressed in terms of the an, bn operators,

H =
∑

n

[
− t

2

(
a†nan+1 + a†n+1an

)
+ Jz

(
a†nan −

1

2

)(
a†n+1an+1 −

1

2

)
(4.73)

+ Jz

(
a†nan −

1

2

)(
b†n+1bn+1 −

1

2

)
+ d

(
a†nan −

1

2

)(
b†nbn −

1

2

)
+ a↔ b

]

and H ′, which cannot be simply expressed in terms of an, bn, has the form

H ′ = − t
2

∑

n

[
τ+
a (n)τ−b (n+ 1) + τ−a (n)τ+

b (n+ 1) + τa ↔ τb
]

(4.74)

The Hamiltonian H now is a standard one dimensional interacting Fermi model which can

be transformed into bosonic language with well established methods. For this, one linearizes

the dispersion of the non-interacting Fermions around kF = ±π/2 and writes the lattice

operators an, bn in terms of continuum Fermi operators for left and right moving particles,

an ' e−ikF nψa,L(rn) + eikF nψa,R(rn) (4.75)
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and an identical transformation for the bn operators. Then, H can be written in terms of

bosonic density operators ρ̃L/R,a/b(q) =
∑
k ψ
†
L/R,a/b(k + q)ψL/R,a/b(k) as

H =
πt

L
∑

k 6=0,L/R

{(
1− 2Jz

πt

) [
ρ̃R/L,a(k)ρ̃R/L,a(−k) + ρ̃R/L,b(k)ρ̃R/L,b(−k)

]

+
d− Jz
πt

[
ρ̃R/L,a(k)ρ̃R/L,b(−k) + ρ̃R/L,b(k)ρ̃R/L,a(−k)

]

−2Jz
πt

[
ρ̃R/L,a(k)ρ̃L/R,a(−k) + ρ̃R/L,b(k)ρ̃L/R,b(−k)

]

+
d− Jz
πt

[
ρ̃R/L,a(k)ρ̃L/R,b(−k) + ρ̃R/L,b(k)ρ̃L/R,a(−k)

]}
, (4.76)

where L is the length of the string. Introducing the linear combinations ρ̃L/R,± = (ρ̃L/R,a ±
ρ̃L/R,b)/

√
2 one can rewrite this in the form

H =
πt

L
∑

k 6=0,L/R

{(
1 − 3Jz − d

πt

)
ρ̃L/R,+(k)ρ̃L/R,+(−k)

+

(
1 − Jz + d

πt

)
ρ̃L/R,−(k)ρ̃L/R,−(−k) (4.77)

−3Jz − d
πt

ρ̃L/R,+(k)ρ̃R/L,+(−k)− Jz + d

πt
ρ̃L/R,−(k)ρ̃R/L,−(−k)

}

Following Schulz [134], we introduce bosonic phase fields

Ψa/b(x) = −iπL
∑

k 6=0

1

k

[
ρ̃R,a/b + ρ̃L,a/b

]
e−α|k|/2−ikx, (4.78)

χa/b(x) = =
1

L
∑

k 6=0

[
ρ̃R,a/b − ρ̃L,a/b

]
e−α|k|/2−ikx, (4.79)

where α is a necessary high energy cutoff which can be thought of as a lattice cutoff. The

fields satisfy bosonic commutation relations
[
Ψa/b(x), χa/b(y)

]
= iδ(x− y) while fields with

different a/b indices commute. The Ψa/b are related to density fluctuations of the a,b fermions

through

∂xΨa/b(x) = −π
(
ρ̃R,a/b(x) + ρ̃L,a/b(x)− 1

2

)
; (4.80)

Introducing Ψ± = (Ψa±Ψb)/
√

2 and χ± = (χa±χb)/
√

2, the full Hamiltonian HS1 can then

finally be written as HS1 = H+ +H− with

H+ =
u+

2π

∫
dx
[
K+π

2χ2
+ +K−1

+ (∂xΨ+)2
]

+
µ1

π2α2

∫
dx cos

[√
8Ψ+

]
;

H− =
u−
2π

∫
dx
[
K−π

2χ2
− +K−1

− (∂xΨ−)2
]

+
µ2

π2α2

∫
dx cos

[√
8Ψ−

]
(4.81)

+
µ3

π2α2

∫
dx cos

[√
2Θ−

]
.
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Here, Θ−(x) = π
∫ x dx′χ−(x′) u± are the velocities of the acoustic excitations of the model,

with u+ ' t
√

1 + 2(d − 3Jz)/(πt) and u− ' t
√

1− 2(d + Jz)/(πt). The dimensionless para-

meters K± are given by K+ = [1 + 2(d − 3Jz)/(πt)]−1/2 and K− = [1− 2(d + Jz)/(πt)]−1/2.

The coupling constants for the nonlinear terms are approximately given by µ1 = µ2 = Jz +d

and µ = −t. While the µ1 and µ2 terms are familiar from interacting Fermi models and rep-

resent back- and forward scattering contributions respectively, the µ3 term originates from

the non-local Fermi coupling hidden in H ′ and is a so-called disorder operator. The form of

the µ3 term as written in Eq. (4.81) is obtained from H ′ via the bosonization identity [134]

ψa/b,R =
1√
2πα

e−iΨa/b+iΘa/b and ψa/b,L =
1√
2πα

eiΨa/b+iΘa/b (4.82)

where Θa/b(x) = π
∫ x dx′χa/b(x′). With the use of Eqs. (4.75, 4.80, 4.82) one finds

exp

[
iπ

n∑

m=1

a†mam

]
∼ exp [ikFx− iΨa(x = n)] (4.83)

where we have omitted an unimportant iΨa(x = 1) term in the exponent on the right hand

side. We thus have

τ+
a (n)τ−b (n+ 1) = a†n exp

[
iπ

n−1∑

m=1

a†mam

]
exp


−iπ

n∑

j=1

b†jbj


 bn+1

∼ 1

2πα

[
eikFx−iΨa−iΘa + e−ikFx+iΨa−iΘa

]
eikFx−iΨae−ikF x+iΨb ×

×
[
e−ikF x+iΨb+iΘb + eikF x−iΨb+iΘb

]
. (4.84)

Similar expressions can be found analogously for the other terms in H ′. The most relevant

operator resulting from H ′ is cos (Θa −Θb) = cos
(√

2Θ−
)

which is the only one included in

Eq. (4.81). There are other operators which mix the (+) and (−) sectors but their scaling

dimension is such that they are never dominant. The decoupling of the (+) and (−) sector

in Eq. (4.81) is thus only approximate but should hold in the long wavelength regime.

To analyse the possible phases of the model defined through Eq. (4.81), it is convenient

to treat the non-linear terms as perturbations and look at their scaling behavior. We shall

refer to the (+) sector as the roughening sector and the (−) sector as the restructuring

sector for reason which will become evident below. The scaling dimensions of the non-linear

perturbations can be easily determined. As was shown in [135], for some constant A,B

dim[cos(AΨ± +BΘ±)] =
A2K± +B2K−1

±
4

, (4.85)

where dim[O] denotes the scaling dimension of the operator O. If the scaling dimension

is smaller than two, the operator is relevant. It follows, that the µ1 term is relevant for
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d > 3Jz. The transition at d = 3Jz is the roughening transition of the string, which can be

seen calculating the large n behavior of

Gu(n) =
〈
(u0 − un)2

〉
=

n−1∑

i,j=0

〈
Szi S

z
j

〉
0
. (4.86)

The bosonized form of Szn is

Sz(x) ' −
√

2

π
∂xΨ+ +

2

πα
eiπx cos(

√
2Ψ+) cos(

√
2Ψ−), (4.87)

Denoting by 〈. . .〉0 the average performed with the gaussian part of Eq. (4.81) we find the

equal time correlation function

Gz(x) = 〈Sz(0)Sz(x)〉0 '
2K+

π2

1

x2
+ Cze

iπx |x|−2K+−2K− (4.88)

which consists of a smooth and an oscillating part (Cz is a constant). The smooth part gives

rise to a logarithmic divergence of Gu(n) for K+ 6= 0 as is easily verified using Eq. (4.86).

However, for d > 3Jz the µ1 operator is relevant and K+ scales to zero, killing the logarithmic

divergence of Gu(n). Hence, the transition at d = 3Jz is the roughening transition.

The analysis of the restructuring sector is more complicated. The µ2 operator is relevant

for d + Jz < 0 and the µ3 operator is relevant for d + Jz > −15πt/2 [134]. Thus, the

gaussian fixed point is never stable and the restructuring sector always flows to strong

coupling. This implies that a perturbative approach starting from the gaussian model cannot

be trusted. However, it was pointed out by den Nijs [136, 134] that the (−) sector has an

Ising symmetry. It has a form identical to the continuum limit of a classical 2D XY model

Hxy =
∑
〈ij〉 cos(φi−φj) with a 2-fold (Ising) symmetry breaking term of the form cos 2φi. We

therefore expect a transition in the (−) sector of the Ising type. We can roughly locate the

critical line of the transition as the line where the scaling dimensions of the two non-linear

operators in the (−) Hamiltonian are equal, which yields d+ Jz ∼ −3tπ/2.

To analyse the properties of the phases we investigate the behavior of the equal time

correlation function G⊥(n) = 〈S+(n)S−(0)〉. Using bosonization, one finds

S+(n) = τ+
a (n) + τ+

b (n) (4.89)

∼
√

2

πα
e
− i√

2
Θ+

{
cos

[
Θ−√

2

]
+ (−1)ne−i

√
2Ψ+ cos

[
Θ−√

2
+
√

2Ψ−

]}
.

If Ψ+ is ordered (i.e. d > 3Jz), then G⊥ decays exponentially as Θ+ correlations are short

ranged. Similarly, if d < 3Jz and d+ Jz > −3tπ/2, such that Ψ− has long range order, then

Θ− correlations also are short ranged, again leading to an exponentially G⊥. However, for

d < 3Jz and d + Jz < −3tπ/2, Θ− is ordered and G⊥ decays algebraically like

G⊥(x) ∼ |x|−
1

4K+ (4.90)



72 CHAPTER 4. STRIPED PHASES

Combining the results from the (+) and (−) sectors, we then find five different phases. 1)

a gapfull flat phase, with dominant µ1 and µ3 perturbations, exponentially decaying Gz

and G⊥ correlations and a finite limit of Gu. 2) A gapless rough phase in which only µ3 is

relevant, with an algebraic decay in the smooth part of Gz, exponentially decaying G⊥ and

logarithmically divergent Gu correlations. 3) A gapless bond centered (BC) rough phase.

This phase is also gapless but differs from the rough phase in that it has an algebraic decay in

the G⊥ correlations. This phase has a local zig-zag pattern of the string (antiferromagnetic

correlation with Sz = ±1 but no Sz = 0 states). 4) A BC flat phase with dominant µ2

and µ3 perturbations. Like the BC rough phase, this phase has a zig-zag pattern which

now is however long ranged, as can be seen from Eq. (4.87). This phase is gapped. 5)

For 3Jz − d > πt/2, the present analysis cannot be applied because the diagonalization of

the quartic a, b interactions through a Bogoliubov transformation breaks down, leading to an

unphysical purely imaginary value of K+. As argued by Schulz [134], this signals a transition

to a ferromagnetic state, i.e. a diagonal stripe state.

Contrary to the the analysis by Schulz, which we have reviewed here, den Nijs [137]

has identified not five but six different phases of the model (4.70). The additional phase

found by den Nijs is a disordered flat phase (DOF), which is gapfull. This phase has, in

contrast to the flat phase, a finite density of kinks and anti-kinks (Sz = ±1 states) but the

Gu correlator does not show a logarithmic divergence, making this phase different from the

rough phase. In the DOF phase the kinks are positionally disordered, but the kinks have an

antiferromagnet order in the sense that a kink Sz = 1 is more likely to be followed by an

anti-kink Sz = −1 rather than another kink, with any number of Sz = 0 states in between

them. In spin language, the DOF phase is the valence bond phase which is responsible for

the Haldane gap.

In fact, there are signs of this transition also in the abelian bosonization approach. At

d+ Jz = 0, µ1 and µ2 changes sign. This is unimportant for µ2 as in this parameter regime

the (−) sector is dominated by the µ3 and not the µ2 operator. However, if the µ1 operator

is relevant, than a sign change of µ1 is of consequence. Typically, such a sign change is

indicative of a competition between two fixed points. A similar situation occurs in a spin-

1/2 chain with nearest and next-nearest interactions, where dimerized and antiferromagnetic

ground states compete [138]. In the present situation, the competition is between on-site

(d) and nearest neighbor interaction (Jz). A useful order parameter to distinguish between

the flat and the disorder flat phases is the parity of the steps, P = 〈cos(πun)〉, which in

bosonized form becomes P ∼ cos
√

2 (Ψ+(x)−Ψ+(0)), with x = 0 being the boundary of

the string. If the µ1 operator is relevant, the field Ψ+ is pinned and a sign change in µ1 leads

to a π phase shift of
√

8Ψ+. As a result, P shifts from zero to a finite value (if the boundary

term is left unchanged). Therefore, while the abelian bosonization approach does not allow

for a detailed study of the preroughening transition or the DOF phase, the existence of this

transition can be readily inferred. The topology of the phase diagram is shown in Fig. 4.9
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Figure 4.9: Phase diagram of spin 1 chain. It is almost identical to the phase diagram found

in [134] with the exception that we distinguish between the DOF and FLAT phases.

and the nature of the different phases is depicted in Fig. 4.10.

4.4.2 Local coupling between longitudinal modes and stripe fluc-

tuations

Having reviewed the physics of the transverse modes in detail, we now turn to the descrip-

tion of the complete model with both transverse and longitudinal modes. To describe the

longitudinal modes along the stripe, we choose a bosonic model. Short ranged electron in-

teractions can be described readily within such a scheme and, away from half filling, the

relevant long wave length physics of the purely longitudinal model can be studied with the

Hamiltonian

Hρ =
uρ
2π

∫
dx
[
Kρπ

2Π2
ρ +K−1

ρ (∂xΦρ)
2
]

;

Hσ =
uσ
2π

∫
dx
[
Kσπ

2Π2
σ +K−1

σ (∂xΦσ)2
]

+
g1

2π2α2

∫
dx cos

[√
8Φσ

]
(4.91)

where g1 is the backward scattering strength. The fields Φρ/σ = (Φ↑ ± Φ↓)/
√

2, Πρ/σ =

(Π↑±Π↓)/
√

2 are related to the Fermi fields of left- and right-moving particles through (see

Eq. (4.82))

ψ↑/↓,R =
1√
2πα

e−iΨ↑/↓+iΘ↑/↓ and ψ↑/↓,L =
1√
2πα

eiΨ↑/↓+iΘ↑/↓ (4.92)
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Figure 4.10: Representation of the string phases. Left shows real space picture and right

shows the Szn values of the spin representation.

The parameters of the bosonic model dependent on the underlying lattice model. In the

following, we shall assume that the underlying lattice model is the Hubbard model with

repulsive on-site interactions. In that case, we have Kρ < 1 and Kσ > 1. As the backward

scattering term is relevant only for Kσ < 1, it is unimportant for the case studied here.

Physically, the coupling of the transverse and longitudinal modes arises from a scattering

of the electrons which move along the stripe from transverse kinks. This interaction is local

and we can express it in terms of the longitudinal electron density ρ↑/↓ and the kink density

S2
z . We will consider only terms which couple the charge density to the kink density. Terms

which couple the kinks and the spin density are irrelevant in presence of repulsive interactions

and we thus omit them here. A local coupling of the electron density to the kink density

can thus be written as

Hc1 = γ1

∫
dx (ρ↑ + ρ↓) (Sz)2

Hc2 = γ2

∫
dxρ↑ρ↓ (Sz)2 (4.93)

with coupling constants γ1,γ2. These terms can be readily bosonized. From Hc1 one obtains

the following terms,

Hc1 ∼
2γ1

π2

∫
dx ∂xΨ+ ∂xΦρ + λ1

∫
dx ∂xΦρ cos

(√
8Ψ−

)

+ λ2

∫
dx ∂xΦρ cos

(√
8Ψ+

)
+ irrelevant terms, (4.94)

with λ1 = λ2 = γ1

(√
2π3α2

)−1
. The first term represents scattering with k ∼ 0 momentum

transfer between the acoustic transverse and longitudinal charge modes. In general, these

two modes have different velocities u+ 6= uρ and thus this interaction is retarded as can

be seen by performing a gaussian average over one of the modes. This first term and the
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gaussian parts of H+ and Hρ and can be jointly diagonalized, leading to a hybridization of

the transverse and longitudinal modes. This leads to an instability of the system which is

similar to the Wentzel-Bardeen instability in one dimensional metals coupled to phonons.

However, this instability occurs only at a very large coupling γ1 ∼ 4
√

(πK+Kρ) / (uρu+)

[139]. For small γ1, the case considered here, the k ∼ 0 interaction is not very efficient [140].

Also, as the hybridization is small for small γ1, the scaling analysis below is only weakly

affected by the hybridization and we thus ignore this correction here completely. The λ1

and λ2 terms are only important if the respective cosine terms have a finite expectation

value. If they do, these terms act like a shift of the chemical potential of the electrons, as

∂xΦρ measures the deviation from the charge density of its equilibrium value. These terms

compete however with terms generated by γ2, as will be discussed below.

Bosonization of the γ2 interaction gives the following terms,

Hc2 ∼ λ3

∫
dx ∂xΨ+ cos

(√
8Φσ

)
+ λ4

∫
dx cos

(√
8Φσ

)
cos

(√
8Ψ+

)
(4.95)

+λ5

∫
dx cos

(√
8Φρ −

√
2Ψ+ + (4kF − π)x

)
cos

(√
2Ψ−

)
+ irrelevant terms

The λ3 and λ4 terms result from scattering involving two a,b operators whereas λ5 involves

four a,b operators. While the first two terms describes processes with momentum transfer

k ∼ 0 between transverse and longitudinal modes, the λ5 term results from processes with

momentum transfer 4kF from longitudinal to transverse modes. Only at kF = π/4, i.e. at

quarter filling of the stripe is this term important, as can be seen from the oscillatory x

dependence of this term.

4.4.3 A quarter filled stripe: Possible phases

To examine the effect of the longitudinal-transversal coupling we need to examine the scaling

dimensions of the λi operators. As mentioned above, we envision strongly repulsive inter-

actions among the electrons on the stripe with Kρ < 1 and Kσ > 1. The λ4 operator is

relevant only for Kσ + K+ < 1 and thus unimportant. Similarly, λ3 can be neglected as it

relevant only for Kσ < 1/2. The λ1 operator is relevant for K− < 1/2, λ2 is relevant for

K+ < 1/2 and the λ5 operator is relevant for 2Kρ +K+ +K− < 2.

Let us assume, that initially K+ < 1, i.e. the (+) sector is massive. In that case, the

transverse modes behave at large wavelengths as if K+ = 0. Then, if 2Kρ + K− < 2, the

λ5 operator will become relevant at large scales. The λ5 term pins the longitudinal charge

modes to the transverse modes and induces a longitudinal charge density wave. This is most

easily seen for the case that K− < 1/2, i.e. in the BC flat phase, where both Ψ+ and Ψ−
have long range order. The freezing of the transverse modes in a zig-zag pattern leads to

a π periodic potential for the transverse modes and allows for Umklapp scattering of the

quarter filled stripe which causes a longitudinal 4kF charge density state. Thus, a relevant

λ5 term will make the Φρ field massive and pin in to the frozen kink-antiking pattern of the
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transverse fluctuations. Such a stripe with a frozen kink pattern and a longitudinal CDW

pinned to it is depicted in Fig. 4.11a. It is interesting, that even if K− > 1/2, i.e. in the DOF

phase, the λ5 term can be relevant for sufficiently strong repulsion (small Kρ). However, if

one assumes a Hubbard model for the longitudinal modes, the lower limit for Kρ is 1/2 so

that in the flat phase, with K− > 1, the λ5 operator is always irrelevant.

If the λ5 term is relevant, it is in direct competition with the λ1 and λ2 terms which

favor a non-zero ∂xΦρ. While an exact treatment of this competition is not possible, we can

gain some insights if we assume mean field values for the transverse fields. Deep into the BC

flat phase we may replace cos
(√

8Ψ±
)

in the λ1,2 terms by their finite expectation values〈
cos

(√
8Ψ±

)〉
and similarly the λ5 term may be written (after a possibly required phase

shift of Φρ) in the mean field approximation as

λ5

∫
dx cos

(√
8Φρ

) 〈
cos

(√
2Ψ+

)〉 〈
cos

(√
2Ψ−

)〉
(4.96)

b) c)a)

Figure 4.11: A 4 kF CDW state in the BC flat phase. The size of the circle represents the

local density of holes. a) commensurate ground state. b) CDW domain wall soliton. c)

soliton state of both the transverse and longitudinal order.

In this approximation the longitudinal charge sector has a Hamiltonian which is well

known from studies of commensurate-incommensurate transitions [141, 142]. Such a model

can be studied within a fermion description of the model in terms of spinless holons [141, 142],

in which the λ5 Umklapp term becomes quadratic rather than quartic as in the original Fermi

operators. In these models, a gapped commensurate state, which exists for small λ1,2 (i.e.

a small prefactor of the ∂xΨρ term) is followed by an incommensurate state at large values

of λ1,2 where the gap is destroyed and a small number of holons move as weakly interacting

particles through the system. These holons are solitonic in character and can be interpreted

within the present framework as point like domain “walls” of the π periodic charge density
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wave state. Such a CDW soliton state, which involves only the transverse sector, is depicted

in Fig. 4.11b. The combined nature of both transverse and longitudinal degrees of freedom

allows also for another solitonic state, which represents a domain ”wall” not only for the

longitudinal degrees of freedom but also for the transverse ones (Fig. 4.11c).

Thus, the coupling of the transverse and longitudinal degrees of freedom does not lead to

strong superconductivity or strong singlet correlations. Rather it can lead at 1/4 filling to

the appearance of a charge density wave. The presence of only weakly interacting solitonic

excitations in the stripe with an electron filling close to but a finite distance away from 1/4

filling would however allow for dominant pairing correlations if other type of modes of the

environment are included in the analysis. An exchange of spin waves of the AF environment

between such solitonic excitations would for example lead to an attractive interaction which

may trigger the pairing. To summarize, the only strong divergence we found is associated

with a 4kF CDW formation at quarter filling. This may explain why Tc is suppressed at

x = 1/8 in LSCO. We do not find a strong signature of pairing from a coupling between

tranverse and longitudinal fluctuations. It appears that a coupling to the AF environment

of the stripes is essential to obtain a pairing mechanism.
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Chapter 5

Summary and outlook

In this thesis we addressed two different theoretical models of incommensurate spin states

of the cuprates, with special emphasis on the influence of disorder on these phases. We first

review our results on the spin glass phase, which we described as a strongly disordered spiral

state, in which topological defects proliferate and render both the chirality of the spiral and

the spin correlation length short ranged.

Disorder in non-collinear spin systems

In the first part of the thesis, we developed a theory for the spin glass phase of the cuprate

material La2−xSrxCuO4, with 0.02 < x < 0.05. This study was motivated by the recent

observation of incommensurate spin correlations in the spin glass regime. Our theory is

based on a phenomenological model in which doped holes, which are localized near the

randomly distributed Sr donors, are assumed to produce a dipolar frustration of the AF

texture. This model has previously been successfully applied to the AF regime x < 0.02

with the implicit assumption that the dipole orientation is completely random. Our model

is a natural extension of these earlier theories, in which we allow for dipole orientational

order. In absence of 3D AF ordering, the dipoles prefer to align which gives rise to an

average spiral twist of the spin alignment. This mechanism provides a simple explanation

for the observed incommensurability. An important characteristic of the spiral order is that

it represents a non-collinear spin state in which the O(3) spin symmetry is broken completely

and the resulting symmetry group for the spiral order parameter is O(3)×O(2)/O(2). This

leads to the appearance of a third Goldstone mode, in addition to the two transverse ones

which also exist in collinear magnets. While the incommensurability is a measure of the

average orientation of the dipoles, the short correlation length of the spin texture is caused

by the fluctuation of the disorder distribution around the mean. Because of the quenched

spatial distribution of dipoles, these fluctuations are inherent in the model.
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1. RG analysis of disordered non-collinear models: To investigate the dipole model,

we use a description based on an extension of the continuum NLσM. This approach is

inspired both by the success of the NLσM in describing the magnetism of the undoped

compound (x = 0) and by the long range character of the dipolar distortion which

makes a continuum theory a natural choice. In our model, the order parameter of the

spiral is represented by three orthonormal unit vectors nk, as opposed to the order

parameter of a collinear theory which can be represented by just one unit vector. The

dipoles couple to the order parameter via a minimal coupling scheme familiar from

gauge theories, and the fluctuations of the dipole distribution are assumed to be short

ranged.

Using a renormalization group approach which accounts for spin wave like excitations

we find that at high temperatures, the disorder has no strong effect apart from a

renormalization of the spin stiffness. Two symmetry points remain fixed under the

high temperature RG flow. The collinear O(3)/O(2) symmetry is unstable and the

presence of any non-collinear correlations will drive the system towards a O(4)/O(3)

symmetric point which is stable. This behavior of the RG is qualitatively the same as

that of a clean spiral state. At low temperatures, however, the RG of the disorder must

be taken into account. We find that, in general, under the RG disorder coupling terms

are generated which cannot be expressed within a minimal coupling scheme and that

these terms lead to a destruction of the collinear symmetry. At the fixed point with

O(4)/O(3) symmetry, the minimal coupling is however preserved under the RG and

we find that disorder leads to a simple additive renormalization of the spin stiffness.

Thus, at low temperatures, our analysis finds only one stable symmetry in presence of

disorder.

2. Importance of topological defects: The NLσM results implicitly assume the ab-

sence of topological defects in the spin texture and thus the influence of these must

be addressed within a separate framework. We investigated the stability of the spiral

against the formation of topological defects which change the spiral’s chirality using ar-

guments based on the evaluation of the free energy of an isolated defect configuration.

Similar arguments have been highly successfull in determining the phase boundaries

of disordered XY models. The free energy was evaluated within a saddle point ap-

proximation and with the help of the replica trick. We found that isolated defects can

be generated both thermally and through the coupling to disorder and computed the

respective thresholds. The appearance of isolated defects leads to a breakdown of the

NLσM RG equations and a further reduction of the spin correlation length, beyond

that which occurs already through the renormalization of spin wave modes. Because

of the non-abelian nature of the spiral symmetry group an extension of the free energy

argument beyond the saddle point level is difficult to perform and it is uncertain how



81

higher order corrections would modify the result. As presently no theoretical frame

work exists which is capable of treating defects and spin waves on an equal footing, the

precise nature of the transition, which might conceivably also be a crossover, remains

open. Numerical results on related models indicate however that the disordered spiral

phase behaves similar to the disordered phase of XY models, and we therefore expect

an XY dependence of the correlation length as a function of either disorder strength

or temperature once topological defects proliferate.

We applied our results to the spin glass phase of La2−xSrxCuO4. Both the linear scaling

of the incommensurability with doping and the breaking of the square lattice symmetry

observed in this regime are in accordance with the presence of spiral correlations,

caused by a doping independent fraction of ordered dipoles. Using previous estimates

for the strength of disorder in the weak doping regime, we compute the critical doping

concentration beyond which isolated defects will appear. We find xc ∼ 0.02, which

is very close to the spin glass-AF phase boundary. As xc ∼ 0.02 represents a lower

estimate for the critical doping concentration, we conclude that in the entire spin glass

phase, such defects are present already at T = 0.

Phenomenological analysis of the striped phase

In the second part of the thesis, we employed a phenomenological description of the striped

phase, which has been suggested to be present in the underdoped cuprate materials and

has been detected in co-doped lanthanum based cuprates and also in the chemically closely

related nickelates.

The aim of our analysis was foremost to understand the properties of a striped phase

which is subject to both lattice and disorder potentials. Both types of distortions have

experimentally been found to be relevant and both lattice and disorder pinned stripes were

detected in scattering experiments. We introduced a simple model of a chain of holes,

representing the anti-phase domain wall, in which the holes are allowed discrete steps in the

transversal direction. Kinks in the chain are penalized by a potential which is harmonic in

the relative transverse displacements of neighboring holes.

1. RG analysis of disorder and lattice potentials: Using the replica trick for the

disorder average and subsequently performing the continuum limit, the model of a

discrete stripe in a disorder potential, confined by its neighboring stripes, was mapped

onto a bosonic string model with an action similar to those encountered in 1D theo-

ries of interacting particles in a random potential. This model was then investigated

within a perturbative RG analysis in order to study the scaling of the lattice and dis-

order potential strengths. Three different regimes were identified, a freely fluctuating

gaussian stripe, with gapless excitations, which is dominant at large transverse hopping
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strengths and at small inter-stripe distances; a lattice pinned stripe which exists for

small transverse hopping strengths; and a disorder pinned stripe which arises at large

inter-stripe distances and/or weak quantum fluctuations. The lattice pinned stripe is

characterized by the absence of transverse wandering and gapped excitations whereas

the disorder pinned stripe has strong transversal wandering, induced by disorder, and

a finite density of states at zero energy. We find the asymptotic dependence of the

pinning length for both disorder and lattice pinning. Comparing our results with neu-

tron scattering data on nickelates and cuprates, we find that quantum fluctuations are

weaker in the nickelates and that this is the reason for the stronger effect of disorder

pinning in nickelates. Although disorder was found to be irrelevant at higher doping

concentrations, we predict the appearance of a disorder pinned phase at small doping

concentrations for cuprates and argue that the broadening and subsequent destruction

of the dynamic IC fluctuations on approaching x ∼ 0.05 is a manifestation thereof.

2. Influence of stripe fluctuations on spin dynamics: To understand the influence

of dynamical fluctuating stripes on the spin fluctuations, we introduced a simple model

in which the spin fluctuations in the AF ordered domains between the charged stripes

were assumed to be independent of the fluctuations of the stripes or domain walls. For

the case of irrelevant disorder and lattice potentials, the propagator of a membrane of

harmonically interacting stripes was used to qualitatively discuss the resulting disper-

sion of the incommensurate spin excitations. We found that incommensurate gapless

excitations are continously linked to gapped excitations centered at the commensurate

AF wave vector, as a result of the combined effect of broken spin symmetry and broken

translational symmetry of the striped phase. The qualitative form of the IC dispersion

agrees with the experimentally observed dispersion.

3. Depinning of disordered stripes: In the disordered pinned regime, a stripe de-

pinning by externally applied fields would allow for a detection of stripes even if the

stripe correlations are so short that they would be difficult to observe in scatttering

experiments. We have therefore used a collective pinning scaling analysis to estimate

the average pinning energy of a stripe pinned by Coulomb forces of randomly placed

donors like Sr. The critical depinning field was estimated and we calculated the scaling

of the average depinning barrier as a function of the applied field. The pinning energy

turned out to be of the order of the AF exchange J , and the associated depinning

fields are very large. We subsequently discussed the thermal stripe creep for subcrit-

ical fields. Our results were compared with transport data from the spin glass phase

of cuprates and it was found that the data does not support the presence of stripes in

the spin glass regime.

4. Coupling of transverse and longitudinal stripe fluctuations: Fluctuating stripes
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have repeatedly been connected with the appearance of superconductivity in cuprates.

As stripes in cuprates have a finite electron density, there is the possibility of trans-

port of charge and spin along the stripe and these longitudinal charge and spin density

fluctuations are expected to be coupled to the transverse excitations of the stripe.

We investigated the coupled problem to find whether or not transverse excitations,

associated with fluctuating stripes, lead to a pairing mechanism even in presence of

predominantly repulsive interactions among the electrons. We therefore rewrote the

Hamiltonian for the transverse modes as a spin-1 chain. To study the transverse

modes, we reviewed and employed a well known approximation in which one replaces

the spin-1 operators by a sum of two spin- 1
2

operators which can then be treated with a

Jordan-Wigner transformation and bosonization techniques. The longitudinal modes

were similarly described within a bosonized form.

The interaction between the longitudinal and the transverse modes was assumed to be

dominated by scattering of the longitudinal charge modes at the transverse kinks. This

interaction, once translated into bosonic form, generates several different operators.

The scaling of these operators was investigated and the possible phases of the combined

system analyzed. At the stripe filling fraction 1
4
, a value believed to be relevant for

cuprate materials, the most dominant instability found was towards the formation of a

phase with a frozen zig-zag pattern of the transverse displacements combined with a 4

kF charge density wave along the stripe. However, we did not find a strong instability

towards a superconducting phase at 1/4 filling. For fillings close to 1/4 the charge

carriers have a solitonic character and are only weakly interacting, so any kind of

further attractive interactions not included in our analysis, e. g. spin wave mediated

attraction, might conceivably lead to superconductivity.

Outlook

An interesting problem, which is related to but was not directly addressed in this thesis, is

to understand the presence of glassy behavior in the magnetism of the x = 1/8 compounds

[103]. There are intriguing similarities between these higher doped materials and the very

weakly doped spin glass regime. Both are characterized by a broad distribution of extremely

slow relaxation times and at both compositions, the correlation length saturates at finite

temperature (the correlation length of the x = 1/8 compound is however much larger).

These similarities point to the presence of random frustration also in the stripe material

and a possible cause of frustration is the presence of defects in the stripe array. It is easy

to see, that besides pinning of stripes, disorder can and should also lead to the creation of

defects. Via the creation of defects, the stripe array can locally vary the stripe density and

thus accommodate to variations in the disorder potential, see also Fig. 5.1. However, while
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the creation of defects is easy to understand their density is hard to quantify.

Figure 5.1: The stripe array configuration with a defect pair. The stripe density is reduced

within the shaded area.

The presence of defects, i. e. forks or finite stripe segments, affects not only the charge

sector but also strongly the spin sector. As an illustration, we calculate the saddle point

configuration of the spin configuration of a rather simple defect structure which couples only

to the spins. We consider an imperfect stripe, in which a part of the stripe is missing, i. e.

rather than one infinite domain wall we have two semi-finite ones. Employing again the

NLσM formalism, we have to find solutions for the non-linear saddle point equations of the

local staggered magnetization n. As shown by Polyakov [143], the n fields minimize the

action if

∂µn = εµνn× ∂νn, n2 = 1, (5.1)

where µ = x1, x2. These equations can be transformed into a simpler form via a stereograph-

ical projection [143],

nx + iny =
2w

1 + |w|2 , nz =
1 − |w|2
1 + |w|2 (5.2)

where w is a complex field. Solutions of Eq. (5.1) must then simply satisfy ∂zw = (∂1 +

i∂2)w = 0, i.e. must be harmonic in the appropriate domain. To find the solution to

our problem we must hence simply find harmonic solutions with the appropriate boundary

conditions. We imagine a domain wall extending along the x2 axis from −∞ to −1 and

from 1 to ∞. The orientation of n at infinity is given by lim|x|→∞ n
x(x1, x2) = sign(x2),

lim|x|→∞ n
y,z(x1, x2) = 0 and we require that nx changes sign at the domain wall. A solution

analytic everywhere but at the domain wall which solves these boundary conditions is w(z) =
2
π

arctan(z) and in Fig. 5.2 the resulting spin distribution is sketched. It is evident, that the

spins distribution is strongly affected.

Besides the similarity of the experimental data, a striped phase and a disordered spiral

share also some common features at the theoretical level. This is perhaps most apparent when
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Figure 5.2: Distribution of the staggered magnetization around a domain wall defect pair.

On the left, the nx and ny components are shown, the right picture shows the ny and nz

components.

looking at the topological defects which in both states have a Z2 character. Similarly, both

states involve a symmetry breaking not only of the spin but also of the translational lattice

symmetry. The main difference is the collinearity of the spin ordering in a striped phase.

While this would suggest that the spin dynamics of a striped phase can be described within

a conventional collinear O(3)/O(2) model, such a model lacks Z2 defects and also cannot

describe the modes associated with stripe fluctuations. One therefore needs to construct an

order parameter description of the striped phase which can overcome these deficiencies.

The description of spirals might in fact be closely related to stripes, however it is not

evident that the coupling of the lattice modes and spin modes is as strong in the striped

phase as it is in a spiral. With an order parameter description of the stripes at hand, an

analysis of the spin wave renormalization by disorder as well as the generation and influence

of topological defects could be carried out in a way similar as presented in the first part of

this thesis for the spin glass phase. In view of the extremely large correlation lengths found

in some stripe materials, many times larger than both the inter-stripe spacing and the spin

correlation length of the spin glass phase, the results of such an analysis could be directly

compared with already available experimental data.
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Appendix A

RG calculation for non-collinear

models

A.1 SU(2) representation

The orthonormal basis nk can be related to an element g of SU(2) through gσkg−1 = nk· σ,

or

nak =
1

2
tr
{
σagσkg−1

}
(A.1)

For the derivative one finds, using ∂µ (gg−1) = 0,

∂µn
a
k =

1

2
tr
{
σa∂µgσ

kg−1 + σagσk∂µg
−1
}

=
1

2
tr
{
σk
[
g−1σag, g−1∂µg

]}
. (A.2)

Introducing g−1∂µg = iAµ· σ and with [σi, σj] = 2iεijkσ
k one finds

∂µn
a
k = 2εijkA

i
µn

a
j . (A.3)

Therefore, we have (with p1µ = p2µ)

pkµ (∂µnk)
2 = 4pkµ

(
εijkA

i
µn

a
j

)2
= 4pkµ (εijk)

2
(
Ak
µ

)2

= 4(p1µ + p3µ)A2
µ + 4(p1µ − p3µ)

(
Az
µ

)2
=

2

tµ

[
A2
µ + b

(
Az
µ

)2
]
, (A.4)

with t−1
µ = 2(p1µ + p3µ) and bt−1

µ = 2(p1µ − p3µ).

A.2 Expanding the energy functional in ϕi

To do the RG, we introduce g = g̃ exp(iϕ · σ ), where ϕa are fast fields fluctuating with

wavelengths [Λ−1, 1] and g̃ has only slow fluctuations in the range [0,Λ−1]. For the 1-loop
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calculation, we need to expand nk and Ak
µ up to second order in ϕa. We then find

nai =
1

2
tr
{
σag̃ exp (iϕ · σ )σi exp (−iϕ · σ ) g̃−1

}

= ñai +
i

2
tr
{
σag̃

[
ϕ · σ, σi

]
g̃−1

}

+
1

2
tr
{
σag̃

(
ϕ · σ σiϕ · σ − 1

2
(ϕ · σ )2 σi − 1

2
σi (ϕ · σ )2

)
g̃−1

}
+O(ϕ3)

= ñai + 2εijkϕ
jñak + ϕjϕkRai

jk +O(ϕ3), (A.5)

where

Rai
jk =

1

2
tr
{
σag̃

(
σjσiσk − 1

2
σjσkσi − 1

2
σiσjσk

)
g̃−1

}
. (A.6)

It turns out, that in the RG we will only need the diagonal components of Rai
jk with j = k

which have the much simpler form Rai
zz = −2 (εzqi)

2 ñai (we put here j = k = z to make clear

that z is not a silent index, the equation also holds for j = x, y). Similarly, we find

Ai
µ =

1

2i
tr
{
σi exp (−iϕ · σ)

[
∂µ + g̃−1∂µg̃

]
exp (iϕ · σ)

}

= Ãi
µ +

1

2
tr
{
σi
(
∂µϕ · σ +

1

2i
[ϕ · σ, ∂µϕ · σ] + i

[
Ãµ·σ,ϕ · σ

]

+ϕ · σ Ãµ·σ ϕ · σ − 1

2
(ϕ · σ)2 Ãµ·σ − 1

2
Ãµ·σ (ϕ · σ)2

)}
+O(ϕ3)

= Ãi
µ + ∂µϕ

i + εijkϕ
j∂µϕ

k + 2εijkϕ
jÃk

µ − 2Ãi
µ ϕ

2 + 2Ãµ·ϕ ϕi +O(ϕ3). (A.7)

A.3 Propagator of the ϕi fields

As already mentioned, there is a small spatial anisotropy in the stiffnesses pkµ, i.e. pk1 6= pk2.

We shall keep here the spatial dependence of the stiffnesses pkµ up to first order in the

anisotropy, assuming that the anisotropy κ, which we define through pk1/pk2 = 1 + κ, is

independent of the k index. Thus we can absorb the anisotropy into the tµ parameter while

b remains isotropic. We then define ts =
√
t1t2 and t1,2 ' (1 ± κ/2)ts. For future use, we

also define the isotropic stiffnesses pk =
√
pk1pk2. It is not clear whether the isotropy of b is

preserved under the RG and we have made no attempt to write down the RG equations in

presence of anisotropy. In principle, if b remains isotropic, the results obtained below allow

to determine the flow of the anisotropy parameter κ under the RG. For possible future use,

we will therefore keep the perturbative expansion with the anisotropy. The results used in

the body of this work have however been obtained for an isotropic tµ=ts, i.e. κ = 0.

We need to expand the exponential exp(−HP ) and integrate out the ϕi fields. Taking the

average over the ϕi fields is done with the Gaussian term Hϕ, Eq. (3.23). The propagator
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for the ϕi is thus quite simple and becomes, to lowest order in the anisotropy κ

C i(x) :=
〈
ϕi(x)ϕi(0)

〉
ϕ

=
ts

2(1 + bδiz)

∫ d2k

(2π)2

eik·x

k2

(
1 + κ

k2
1 − k2

2

2k2

)

× (Υ(k,Λ)−Υ(k, 1)). (A.8)

The IR cutoff is provided by the function Υ(k,Λ). A sharp cutoff, Υ(k,Λ) = Θ(k−Λ−1) has

the disadvantage of producing a long ranged C i and we therefore adopt instead Υ(k,Λ) =

[1 + (kΛ)−2]−1, which renders C i short ranged. In our RG calculation we will mainly need

C i(0) which has the form

Cx(0) = Cy(0) =
ts
4π

ln Λ +O(κ2), Cz(0) =
1

1 + b
Cx(0). (A.9)

Another useful formula is

t−1
µ

∫
d2x (∂µC

x)2 =
1

2
Cx(0) +O(κ2). (A.10)

A.4 Renormalization

We can immediately discard all terms of third or higher power in Ãµ as these terms are

irrelevant in a RG sense. Terms second order in Ãµ renormalize tµ and b, whereas terms

linear in Ãµ are responsible for the renormalization of the disorder variance λ.

First, we note that the terms H2, H3 do not contribute to the renormalization, as was

pointed out for the calculation of the RG for the disorder free system in [44]. This is because

these terms are linear in ϕ while they do not involve a disorder field Qµ. For an abelian

theory, such terms cannot contribute because the fast ϕi fields and the slow Ãµ fields have

their support in orthogonal parts of the wave vector space. Here, for the non-abelian case,

this argument is not sufficient because the Ãµ fields are not linearly related to the fields g.

For the present non-abelian theory this is nonetheless true, although an explicit calculation

is required to see this. For example, H2
2 does not contribute, because its contribution is built

from terms of the form (we omit the upper i indices of C i and Ai
µ here for simplicity)

∫
d2x

∫
d2x′ Ãµ(x)Ãµ′(x

′)∂µ∂µ′C(x− x′) (A.11)

To evaluate this term, we change to center of mass (y) and relative (y′) coordinates and then

perform a gradient expansion in the relative coordinate. Only the lowest order contribution

is of interest, as higher order terms involve a local coupling of the type Aµ (∂ν)
nAµ′ with

n > 0 which are irrelevant from a scaling point of view. The lowest order term is then

−
∫
d2y Ãµ(y)Ãµ′(y)

∫
d2y′∂µ∂µ′C(y′) (A.12)
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which vanishes because the last integral is zero. In the following we will omit H2 and H3

from the analysis, because terms involving them do not contribute. This can be shown for

each term in a way similar to the one just shown.

We want to find the RG equations up to second order in tµ and λ. In the nth order of

the cumulant expansion of F , Eq. (3.33), we only need to consider terms which have a total

number of ϕ and Qµ fields less than 2n + 2. This is because each term of order n carries a

factors t−ns from the prefactors of the terms in Hp and each pair of ϕ (Qµ) produces a factor

ts (λ).

We begin first with the terms renormalizing tµ and b, where we give a detailed calculation

only for the terms up to second order in Hp. The calculation of higher order terms is

quite lengthy although conceptually easy and we therefore just present the results of the

calculation.

A.4.1 Terms which renormalize tµ and b

First order in Hp

There is only one term quadratic in Ãµ which contributes, H4 (the ϕi average over H3 is

zero).

−〈H4〉ϕc = −4
b

tµ

∫
d2x

[
εzjkεzj′k′Ã

k
µÃ

k′
µ

〈
ϕjϕj

′〉
ϕ
−
(
Ãz
µ

)2 〈
ϕlϕl

〉
ϕ

+ Ãz
µÃ

l
µ

〈
ϕzϕl

〉
ϕ

]

= −4
b

tµ

∫
d2x

[
(εzjk)

2
(
Ãk
µ

)2
Cj(0)−

(
Ãz
µ

)2∑

l

C l(0) +
(
Ãz
µ

)2
Cz(0)

]

= −4b t−1
µ

∫
d2x

[
Ã2
µ − 3

(
Ãz
µ

)2
]
Cx(0). (A.13)

Second order in Hp

Terms with odd numbers of ϕi or Qµ are zero after performing the ϕi and disorder average.

There are then only two terms we need to consider, H2
1 and H2

c1 (H2
c3 has a total of six ϕi

and Qi
µ fields and does not contribute and H2 terms do not contribute as mentioned above).

For H2
1 we have

1

2

[〈
H2

1

〉
ϕc

]

D
=

1

2

〈
H2

1

〉
ϕc

(A.14)

= 2t−1
µ t−1

µ′

∫
d2x d2x′ Ãi

µ(x)Ãi′
µ′(x

′)εijkεi′j′k′ (1− bδiz + 2bδjz)

× (1 − bδi′z + 2bδj′z)
〈
∂µϕ

j(x)ϕk(x)∂µ′ϕ
j′(x′)ϕk

′
(x′)

〉
ϕ

The four point average can be decomposed according to Wick’s Theorem. Nonzero contribu-

tions arise from the contractions 〈jk′〉 〈j ′k〉 and 〈jj ′〉 〈kk′〉. We again employ an expansion
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of H2
1 in the relative coordinate and keep only the zeroth order term of the expansion. This

yields

1

2

〈
H2

1

〉
ϕc
' 2t−2

µ

∫
d2xÃi

µÃ
i′
µεijkεi′j′k′ (1 − bδiz + 2bδjz) (1− bδi′z + 2bδj′z)

× (δjj′δkk′ − δkj′δjk′)
∫
d2y ∂µC

j(y)∂µC
k(y)

= 4t−2
µ

∫
d2x

(
Ãi
µ

)2
(εijk)

2 (1 − bδiz + 2bδjz) (1− bδiz + bδjz + bδkz)

×
∫
d2y ∂µC

j(y)∂µC
k(y). (A.15)

With use of Eq. (A.10), we finally find

1

2

〈
H2

1

〉
ϕc

= 2t−1
µ

∫
d2x

[
Ã2
µ(1 + b) +

(
Ãz
µ

)2
b(b− 3)

]
Cx(0) (A.16)

The other second order contribution is

1

2

[〈
H2
c1

〉
ϕc

]

D
= 8

∫
d2xd2x′pkµpk′µ′εijkεi′j′k′εabcεa′b′c′

{
εklmñ

a
j ñ

c
mÃ

i
µ

+εjlmñ
c
kñ

a
mÃ

i
µ + εilmñ

a
j ñ

c
kÃ

m
µ

}{
εk′l′m′ñ

a′
j′ ñ

c′
m′Ã

i′
µ′ + εj′l′m′ñ

c′
k′ ñ

a′
m′Ã

i′
µ′

+εi′l′m′ñ
a′
j′ ñ

c′
k′Ã

m′
µ′

}
δll′ C

l(x− x′)
[
Qb
µ(x)Qb′

µ′(x
′)
]
D
. (A.17)

Using
[
Qb
µ(x)Qb′

µ′(x
′)
]
D

= δbb′ δµµ′ δ(x− x′)λ, εabcεa′bc′ = δaa′ δcc′ − δac′δca′ and the orthonor-

mality of the nk, we find after some algebra

1

2

[〈
H2
c1

〉
ϕc

]

D
= 2λ b2 t−2

µ

∫
d2x

[
Ã2
µ +

(
Ãz
µ

)2
]
Cx(0). (A.18)

Higher order terms can be evaluated in much the same way as the first and second or-

der terms, although the large number of indices makes their evaluation more tedious. We

therefore refrain here from a detailed presentation of these terms and just state the results.

Third order in Hp

Terms of second order in Ã2
µ are produced by (H1 +Hc1 +Hc3)2 (Hc2 +Hc4). However, only

the terms H1(Hc1 + Hc3)(Hc2 + Hc4) have even powers of Qµ. Terms with eight or more ϕ

and Qµ fields again do not contribute to second order in λ, tµ. Thus we are left with only

H1Hc1Hc2 . We find

−
[
〈H1Hc1Hc2〉ϕc

]
D

= −2λt−2
µ b

∫
d2x

[
Ã2
µ(1 + b) +

(
Ãz
µ

)2
(b− 3)

]
Cx(0). (A.19)

We further need to consider terms of the type (Hc2 + Hc4)2H4. Only H2
c2H4 has less than

eight ϕ,Qµ fields and even powers of both fields. We find

−1

2

[〈
H2
c2H4

〉
ϕc

]

D
= −2λ b t−1

s t−1
µ

∫
d2x

[
Ã2
µ − 3

(
Ãz
µ

)2
]
Cx(0). (A.20)
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Fourth order in Hp

Possible contributions arise from the terms (H1 +Hc1 +Hc3)2(Hc2 +Hc4)2. Discarding terms

with ten or more ϕi,Qµ fields, we are left with H2
c2H

2
1 and H2

c2H
2
c1. However, the connected

part of the ϕi average ofH2
c2H

2
c1 is zero (its finite disconnected parts enter the renormalization

of the disorder, see below), and the only contribution is therefore

1

4

[〈
H2
c2H

2
1

〉
ϕc

]

D
= λt−1

s t−1
µ

∫
d2x

[
A2
µ(2 + b)(1 + b) +

(
Ãz
µ

)2
b (b− 7)

]
Cx(0).(A.21)

Terms of the form H4(Hc2 +Hc4)3 do not contribute because their disorder average is zero.

Higher order terms in Hp do not contribute because they either involve more than four

Qµ terms and are therefore of higher order than λ2 or they do not contain finite connected

parts. For example, the term 〈H4H4
c2〉ϕc decomposes into products of averages of 〈H4〉ϕc or

〈H4H2
c2〉ϕc and 〈H2

c2〉ϕc.

A.4.2 Terms which renormalize λ

To find the renormalization of the variance of the disorder distribution, we first collect all

connected terms linear in Ãi
µ. We list the contributions order by order below.

First order in Hp

Only three terms are linear in Ãi
µ, H1, Hc1 and Hc3. However, both H1 and Hc1 have a zero

ϕi average and only 〈Hc3〉ϕc contributes.

Second order in Hp

At second order there are contributions from 〈Hc1Hc2〉ϕc and 〈H1Hc4〉ϕc. There is no contri-

bution to second order in λ, tµ of the disorder renormalization from 〈Hc3Hc4〉ϕc because this

term has six Qi
µ, ϕi.

Third order in Hp

There are contributions from 〈Hc1Hc2Hc4〉ϕc, 〈Hc3H2
c2〉ϕc and 〈H1H2

c2〉ϕc. The terms 〈Hc3H2
c4〉ϕc

and 〈H1H2
c4〉ϕc do not contribute, as they contain eight or more Qi

µ, ϕi fields.

Fourth order in Hp

Only one term contributes, 〈H1H2
c2Hc4〉ϕc. All other terms have ten or more Qi

µ, ϕ
i fields

or more than three Qµ fields and thus do not contribute. The same argument applies to all

terms generated by higher order of Hp.
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A.4.3 Calculating the renormalized disorder variance

We now must calculate the variance of all terms at the new length scale Λ−1 which are

linear in Ãi
µ. These are the terms just found above plus Hc0. Thus, we need to calculate the

variance of

−Hc0 − 〈Hc3〉ϕc + 〈Hc1Hc2〉ϕc + 〈H1Hc4〉ϕc − 〈Hc1Hc2Hc4〉ϕc −
1

2

〈
H2
c2Hc3

〉
ϕc

−1

2

〈
H2
c2H1

〉
ϕc

+
1

2

〈
H1H

2
c2Hc4

〉
ϕc

(A.22)

To order λ2, the following terms contribute to the variance.
[
H2
c0

]
D

= λt−2
µ

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

+
(
Ãz
µ

)2
(1 + b)2

}
,

2
[
〈Hc3〉ϕcHc0

]
D

= 8λt−2
µ

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b

−
(
Ãz
µ

)2
2b(1 + b)

}
Cx(0),

−2
[
〈H1Hc4〉ϕcHc0

]
D

= −4λt−2
µ

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

(1 + b)

+
(
Ãz
µ

)2
(1− b)2(1 + b)

}
Cx(0),

2
[
〈Hc1Hc2Hc4〉ϕcHc0

]
D

= 2λ2t−3
µ

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b(1 + b)

+
(
Ãz
µ

)2
2b(b2 − 1)

}
Cx(0),

[〈
H2
c2Hc3

〉
ϕc
Hc0

]

D
= 4λ2t−2

µ t−1
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b

−
(
Ãz
µ

)2
2b(1 + b)

}
Cx(0),

−
[〈
H1H

2
c2Hc4

〉
ϕc
Hc0

]

D
= −2λ2t−2

µ t−1
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

(1 + b)(2 + b)

+
(
Ãz
µ

)2
2(1 + b)(1 − b)2

}
Cx(0),

[
〈Hc1Hc2〉2ϕc

]
D

= 2λ2t−2
µ t−1

s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b2

+
(
Ãz
µ

)2
(2 + tst

−1
µ )b2

}
Cx(0),

1

4

[〈
H1H

2
c2

〉2

ϕc

]

D
= λ2t−1

µ t−2
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

(1 + b)2

+
(
Ãz
µ

)2
(1− b)2

}
Cx(0),

−
[〈
H1H

2
c2

〉
ϕc
〈Hc1Hc2〉ϕc

]

D
= −2λ2t−2

µ t−1
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b(1 + b)

+
(
Ãz
µ

)2
2b(b− 1)

}
Cx(0).
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The sum of the above terms is (we now again set tµ = ts)

λt−2
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
](

1 +
4(b− 1)ts + (b2 − 3)λ

ts
Cx(0)

)

+
(
Ãz
µ

)2
(

(1 + b)2 − 4(1 + b)3ts + (3 + 6b + b2)λ

ts
Cx(0)

)}
. (A.23)

On the calculation of disorder terms

As an illustration, we give details for the calculation of the variance terms for a relatively sim-

ple term,
[
〈Hc3〉ϕcHc0

]
D

, and a more involved one,
[
〈Hc1H2

c2Hc4〉ϕcHc0

]
D

. For
[
〈Hc3〉ϕcHc0

]
D

we have

[
〈Hc3〉ϕcHc0

]
D

= 8
∫
d2xd2x′pkµpk′µ′εijkεi′j′k′εabcεa′b′c′C

l(0)ña
′
j′ ñ

c′
k′Ã

i′
µ′ ×

{
2εjlmεklqñ

a
mñ

c
qÃ

i
µ + 2εilmεklqñ

c
qñ

a
j Ã

m
µ + 2εilmεjlqñ

a
q ñ

c
kÃ

m
µ

−ñaj ñckÃi
µ

(
(εilm)2 + (εjlm)2 + (εklm)2

)} [
Qb
µ(x)Qb′

µ′(x
′)
]
D

= 16λ
∫
d2xpkµpk′µεijkεi′j′k′εabcεa′bc′ñ

a′
j′ ñ

c′
k′Ã

i′
µ ×

{(
εjlmεklqñ

a
mñ

c
qÃ

i
µ + εilmεklqñ

c
qñ

a
j Ã

m
µ + εilmεjlqñ

a
qñ

c
kÃ

m
µ

)
C l(0)

−ñaj ñckÃi
µ

(
2 + (1 + b)−1

)
Cx(0)

}

= 16λ
∫
d2x (εijk)

2
(
Ãi
µ

)2 {
pkµpjµC

i(x) + p2
kµC

i(x) + pkµpiµC
j(x)

+pkµpiµC
k(x) + p2

kµC
k(x) + pkµpjµC

k(x)

−
(
2 + (1 + b)−1

)
Cx(0)

(
p2
kµ + pkµpjµ

)}
, (A.24)

where we again used the orthonormality of the nk. Performing the summation over the silent

indices, one finally obtains

= 16λ
∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
] (
p2

1µ − p2
3µ

)
+
(
Ãz
µ

)2 (
4p3µp1µ − 4p2

1µ

)}
Cx(0)

= 4λt−2
µ

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
b−

(
Ãz
µ

)2
2b(1 + b)

}
Cx(0).

We now turn to the more lengthy evaluation of
[
〈H1H2

c2Hc4〉ϕcHc0

]
D

. We have

H1H
2
c2Hc4 = 16

∫
d2xd2x′d2x′′d2x′′′pkµt

−1
µ′ pk′µ′pk′′µ′′pk′′′µ′′′εijkεi′j′k′εi′′j′′k′′εi′′′j′′′k′′′ ×

εabcεa′b′c′εa′′b′′c′′εa′′′b′′′c′′′Ã
i′
µ′ (1 − bδi′z + 2bδj′z) ñ

a′′
j′′ ñ

c′′
k′′ ñ

a′′′
j′′′ ñ

c′′′
k′′′ ×{

2∂µϕ
iϕd

(
εkdlñ

c
l ñ

a
j + εjdlñ

a
l ñ

a
k

)
+ ϕd∂µϕ

lεidlñ
a
j ñ

c
k

}
×

∂µ′ϕ
j′ϕk

′
∂µ′′ϕ

i′′∂µ′′′ϕ
i′′′Qb

µQ
b′′
µ′′Q

b′′′
µ′′′ . (A.25)
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We now need to perform the average over the ϕ fields. For convenience, we split H1H2
c2Hc4 =

A+B into two terms, where A corresponds to the part of H1H2
c2Hc4 which involves the first

term in the curly brackets in Eq. (A.25) and B corresponds to the second term in the curly

brackets. For 〈A〉ϕc, we need to calculate the average

〈
∂µϕ

i(x)ϕd(x)∂µ′ϕ
j′(x′)ϕk

′
(x′)∂µ′′ϕ

i′′(x′′)∂µ′′′ϕ
i′′′(x′′′)

〉
ϕ
, (A.26)

which can be easily done via Wick’s Theorem. However, not all possible permutations of

pairings will contribute. All terms involving either of the contractions 〈id〉 or 〈j ′k′〉 vanish

as ∂µCx(0) = 0. Although not immediately apparent, terms involving the pairing 〈i′′i′′′〉
also do not contribute to one loop order. This can be seen only after the computation of

the disorder average
[
〈A〉ϕcHc0

]
D

and a gradient expansion similar to the one employed

below Eq. (A.11). Using the same arguments as we used for the term (A.11), all 〈i′′i′′′〉
contractions can then be shown to give no contribution. Furthermore, all contractions which

are identical up to a permutation of the indices i′′ and i′′′ will give the same contributions

after the disorder average is taken, as discussed below. We therefore only write down half

of the permutations and indicate the others by {′′ ↔ ′′′}. Thus, we only need to keep the

following terms,
〈
∂µϕ

i(x)ϕd(x)∂µ′ϕ
j′(x′)ϕk

′
(x′)∂µ′′ϕ

i′′(x′′)∂µ′′′ϕ
i′′′(x′′′)

〉
ϕ
→

δij′δdi′′δk′i′′′∂µ∂µ′C
i(x− x′)∂µ′′C

d(x− x′′)∂µ′′′C
i′′′(x′ − x′′′)

+δik′δdi′′δj′i′′′∂µC
i(x− x′)∂µ′′C

d(x− x′′)∂µ′∂µ′′′C
i′′′(x′ − x′′′)

+δii′′δdj′δk′i′′′∂µ∂µ′′C
i(x− x′′)∂µ′C

d(x− x′)∂µ′′′C
i′′′(x′ − x′′′)

+δii′′δdk′δj′i′′′∂µ∂µ′′C
i(x− x′′)Cd(x− x′)∂µ′∂µ′′′C

i′′′(x′ − x′′′)

+ {′′ ↔ ′′′} (A.27)

Let us now perform the disorder average
[
〈A〉ϕcHc0

]
D

. For this, we need to calculate

[
Qb̃
µ̃(x̃)Qb

µ(x)Qb′′
µ′′(x

′′)Qb′′′
µ′′′(x

′′′)
]
D

(A.28)

where the variables carrying a tilde arise from the Hc0 term. Again, we can use Wick’s

Theorem to decompose the average. Of the three possible permutations of pairings, two

involve either of the two contractions 〈bb′′〉 or 〈bb′′′〉. Neither permutation contributes. This

is easily seen for the 〈bb′′〉 contraction and the explicitly written terms in (A.27) because

they all involve after the contraction a derivative of Cx(0) and thus vanish. The same terms

also do not contribute for the case of a 〈bb′′′〉 contraction, which again can be seen with a

gradient expansion and using arguments analogous to those below Eq. (A.11). Therefore,

only one term of the disorder average must be kept,
[
Qb̃
µ̃(x̃)Qb

µ(x)Qb′′
µ′′(x

′′)Qb′′′
µ′′′(x

′′′)
]
D
→ λ2δbb̃δb′′b′′′δµµ̃δµ′′µ′′′δ(x− x̃)δ(x′′− x′′′) (A.29)
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The terms in (A.27) which only differ by a permutation of the double primed and triple

primed variables give then identical contributions, as such a permutation simply relabels the

variables associated with the two Hc2 terms in
[
〈A〉ϕcHc0

]
D

. With (A.27, A.29) we then

have
[
〈A〉ϕcHc0

]
D

= 128λ2
∫
d2xd2x′d2x′′t−1

µ′

(
p2
k′′µ′′ + pk′′µ′′pj′′µ′′

)2
(εi′′j′′k′′)

2 εi′j′k′Ã
i′
µ′ ×

(1 − bδi′z + 2bδj′z)
{
−Ãk

µpiµpkµεkdi + Ãk
µpdµpkµεidk − Ãj

µp
2
dµεijd

−Ãj
µpiµpdµεjdi

}
×

[
δij′δdi′′δk′i′′∂µ∂µ′C

i(x− x′)∂µ′′C
d(x− x′′)∂µ′′C

i′′(x′ − x′′)

+δik′δdi′′δj′i′′∂µC
i(x− x′)∂µ′′C

d(x− x′′)∂µ′∂µ′′C
i′′(x′ − x′′)

+δii′′δdj′δk′i′′∂µ∂µ′′C
i(x− x′′)∂µ′C

d(x− x′)∂µ′′C
i′′(x′ − x′′)

+δii′′δdk′δj′i′′∂µ∂µ′′C
i(x− x′′)Cd(x− x′)∂µ′∂µ′′C

i′′(x′ − x′′)
]
. (A.30)

The integration over x′′ can now be performed with

t−1
µ′′

∫
d2x′′∂µ′′C

x(x− x′′)∂µ′′C
x(x′ − x′′) =

1

2
Cx(x− x′) +O(κ2). (A.31)

The remaining double integral over x and x′ can then again be approximated with a gradient

expansion in the relative coordinate and employing Eq. (A.31). We then obtain (we denote

the center of mass coordinate again by x)
[
〈A〉ϕcHc0

]
D
' 16λ2ts

∫
d2x

(
p2
k′′ + pk′′pj′′

)2
(εi′′j′′k′′)

2 εi′j′k′Ã
i′
µ (1 − bδi′z + 2bδj′z)×

βiβdεidk
{
Ãk
µpiµpkµ + Ãk

µpdµpkµ + Ãj
µp

2
dµ + Ãj

µpiµpdµ
}
×

[δij′δdi′′δk′i′′βk′ − δik′δdi′′δj′i′′βj′ − δii′′δdj′δk′i′′βk′ + δii′′δdk′δj′i′′βj′]×
×Cx(0). (A.32)

where βk is defined through β1 = β2 = 1, β3 = (1 + b)−1 and pkts/tµ = pkµ. After some

straightforward algebra, one finally finds
[
〈A〉ϕcHc0

]
D
' 32λ2t−2

µ t3s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]
×

(
(p1 + p3)2 +

4p2
1

1 + b

) (
(p1 + p3)2 + 2p2

1 + 2p1p3

)
+

(
Ãz
µ

)2
8(1 − b)

(
p2

1 + p1p3

)
(p1 + p3)2

}
Cx(0). (A.33)

The calculation of
[
〈B〉ϕcHc0

]
D

can be done in much the same way as just shown for
[
〈A〉ϕcHc0

]
D

. One arrives at

[
〈B〉ϕcHc0

]
D
' −32λ2t−2

µ t3s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
](

(p1 + p3)2 +
4p2

1

1 + b

)
(p1 + p3)2

+
(
Ãz
µ

)2
8(1 − b)p2

1 (p1 + p3)2
}
Cx(0). (A.34)
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Finally, expressing all pk through b and ts, one obtains for
[
〈A+ B〉ϕcHc0

]
D

[〈
H1H

2
c2Hc4

〉
ϕc
Hc0

]

D
= 2λ2t−2

µ t−1
s

∫
d2x

{[(
Ãx
µ

)2
+
(
Ãy
µ

)2
]

(1 + b)(2 + b)

+
(
Ãz
µ

)2
2(1 + b)(1− b)2

}
Cx(0). (A.35)
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Appendix B

RG calculation for disordered stripes

B.1 Evaluation of integrals

We want to evaluate the integrals in Eq. (4.24). We begin with

P =
∑

ε3,ε4=±1

∫
dτ3dτ4dy3dy4

〈
ei
√

2φ1−i
√

2φ2+i2ε3
√
πφ3+i2ε4

√
πφ4

〉
0

(B.1)

which has nonzero contributions only for ε3 + ε4 = 0. Thus,

P = e−F (y1−y2 ,τ1−τ2)
∑

±

∫
dτ3dτ4dy3dy4e

−2πF (y3−y4 ,τ3−τ4)±
√

2πF (y1−y3 ,τ1−τ3) ×

×e∓
√

2πF (y1−y4 ,τ1−τ4)∓
√

2πF (y2−y3 ,τ2−τ3)±
√

2πF (y2−y4 ,τ2−τ4). (B.2)

The dominant contributions to the integral come from small |x3 − x4| where we introduced

xj := (cτj, yj) (it can be shown that contribution arising from e. g. small x1−x3 and x2−x4

cancel at the lowest order with the contributions arising from small x2−x3 and x1−x4 [144]).

We therefore introduce R = 1
2

(x3 + x4) and expand in the relative coordinate r = x3 − x4.

We obtain

P ' 2

c2
e−F (x1−x2)

∫
d2Rd2re−2πF (r)

[
1 + π (r · ∇R [F (x1−R)− F (x2−R)])2

]

= P1 + P2 (B.3)

The first term P1 is proportional to the volume
∫
d2R but it is canceled by the perturbative

expansion of Z−1 present in Eq. (4.24), see also [144]. The remaining term P2 can then be

written, after taking the angular average of r and performing a partial integration, as

P2 =
π

c2
e−F (x1−x2)

∫
dr r3e−2πF (r)

∫
d2R [F (x1−R)− F (x2−R)]×
×∇2

R [F (x2−R)− F (x1−R)] . (B.4)
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Using ∇2F (x) = 2πµδ(x) we obtain

P2 =
4π2a4µ

c2
e−F (x1−x2)F (x1 − x2)

∫ dr

a

(
r

a

)3−2πµ

. (B.5)

We now turn to the other integral in Eq. (4.24),

Q =
∑

±

∫
dτ3dτ4dy3dy4δ(y3 − y4)

〈
ei
√

2φ1−i
√

2φ2±i2
√
πδφ3±i2

√
πδφ4

〉
0

= e−F (x1−x2)
∑

±

∫
dτ3dy3dτ4e

−2πδ2F (0,τ3−τ4)e±
√

2πδF (y1−y3 ,τ1−τ3)∓
√

2πδF (y1−y3 ,τ1−τ4)

×e∓
√

2πδF (y2−y3 ,τ2−τ3)±
√

2πδF (y2−y3 ,τ2−τ4). (B.6)

We introduce T = 1
2
(τ3 + τ4) andτ = τ3 − τ4 and expand Q in τ ,

Q ' 2e−F (x1−x2)
∫
dτdT dye−2πδ2F (0,τ) ×

[
1 + πδ2τ 2 (∂T [F (y1 − y, τ1 − T )− F (y2 − y, τ2 − T )])2

]

= Q1 +Q2. (B.7)

Again, the volume term Q1 can be shown to cancel a similar term from Z−1 and we need

only consider Q2. We go to isotropic variables R = (X,Y ) = (cT , y), introduce x = cτ and

write

Q2 '
πδ2

c2
e−F (x1−x2)

∫
dxe−2πδ2F (x)x2

∫
d2R [F (x1 −R)− F (x2 −R)]×

×
[(
∂2
X + ∂2

Y

)
+
(
∂2
X − ∂2

Y

)]
[F (x1 −R)− F (x2 −R)] . (B.8)

Using [113]
∫
d2R ln |x1 −R|

(
∂2
Y − ∂2

X

)
ln |x2 −R| = π cos (2θx1x2) , (B.9)

where θx1x2 is the angle between x1 − x2 and the y axis, we find

Q2 '
8π2a3δ2µ2

c2
e−F (x1−x2)

[
ln |x1 − x2| −

1

2
cos (2θx1x2)

] ∫
d
(
x

a

)(
x

a

)2−2πµδ2

.(B.10)

B.2 Calculation of renormalized parameters

Combining Eq. (4.24, B.5, B.10) we have

〈
ei
√

2(φ1−φ2)
〉
'

〈
ei
√

2(φ1−φ2)
〉

0

(
1 +

g2π2µ2a2

2c2
ln |x1 − x2|

∫ dr

a

(
r

a

)3−2πµ

+
2π2a2δ2µ2D

c2L
ln |x1 − x2|

∫
d
(
x

a

)(
x

a

)2−2πµδ2

−π
2a2δ2µ2D

c2L
cos (2θx1x2)

∫
d
(
x

a

)(
x

a

)2−2πµδ2
)
. (B.11)
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Re-exponentiating the term in brackets, we thus find Eq. (4.25),

〈
ei
√

2(φ(y1,τ1)−φ(y2,τ2))
〉
' exp

(
− µ̃

2
ln

(
(y1 − y2)2 + c2(τ1 − τ2)2

a2

)
− κ̃ cos(2θ)

)
(B.12)

and

µ̃ = µ− 1

2
Dµ2

∫

x>a
d
(
x

a

)(
x

a

)2−2πµδ2

− 1

2
G2µ2

∫

x>a
d
(
x

a

)(
x

a

)3−2πµ

(B.13)

κ̃ = κ+
1

4
Dµ2

∫

x>a
d
(
x

a

)(
x

a

)2−2πµδ2

(B.14)

with D = 4π2δ2a2D/(c2L) and G = πga/c.

B.3 Derivation of scaling equations

To obtain the scaling equations, we look at how µ̃ and κ̃ change under a rescaling a→ λa.

We therefore introduce ϕ = x/a and split the integrals
∫
x>a d(x/a) . . . =

∫ λ
1 dϕ . . . +

∫∞
λ . . .

so that e. g.

∫

x>a
d
(
x

a

)(
x

a

)2−2πµδ2

=
∫ λ

1
dϕ ϕ2−2πµδ2

+
∫ ∞

λ
dϕ ϕ2−2πµδ2

=
λ3−2πµδ2 − 1

3− 2πµδ2
+ λ3−2πµδ2

∫ ∞

1
dϕ ϕ2−2πµδ2

' lnλ +
(
1 + lnλ

[
3 − 2πµδ2

]) ∫ ∞

1
dϕ ϕ2−2πµδ2

. (B.15)

We thus can rewrite Eq. (B.14) as

κ̃ = κλ +
1

4
Dλµ2

λ

∫ ∞

1
dϕ ϕ2−2πµδ2

, (B.16)

where

κλ = κ+
1

4
Dµ2 lnλ, (B.17)

Dλµ2
λ = Dµ2 +Dµ2

[
3− 2πµδ2

]
lnλ. (B.18)

Similarly, we can rewrite Eq. (B.13) as

µ̃ = µλ −
1

2
Dλµ2

λ

∫ ∞

1
dϕ ϕ2−2πµδ2 − 1

2
G2
λµ

2
λ

∫ ∞

1
dϕ ϕ3−2πµ, (B.19)

with

µλ = µ− 1

2
Dµ2 lnλ− 1

2
G2µ2 lnλ, (B.20)

G2
λµ

2
λ = G2µ2 + G2µ2 [4− 2πµ] lnλ. (B.21)
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For λ = e`, `� 1, Eqs. (B.17, B.18, B.20, B.21) can be written in differential form as

∂

∂`
κ =

1

4
Dµ2, (B.22)

∂

∂`

(
Dµ2

)
=

(
3− 2πµδ2

)
Dµ2, (B.23)

∂

∂`
µ = −1

2
µ2
(
D + G2

)
, (B.24)

∂

∂`

(
G2µ2

)
= (4− 2πµ)G2µ2. (B.25)

To linear order in G2 and D, these equations reduce to Eqs. (4.27-4.30).



Bibliography

[1] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

[2] S. A. Trugman, Phys. Rev. B 37, 1597 (1988).

[3] B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988).

[4] B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 62, 1564 (1989).

[5] B. I. Shraiman and E. D. Siggia, Phys. Rev. B 40, 9162 (1989).

[6] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, R3759 (1988).

[7] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).

[8] R. J. Birgeneau et al., Phys. Rev. B 59, 13788 (1999).

[9] F. C. Chou et al., Phys. Rev. Lett. 71, 2323 (1993).

[10] F. Borsa et al., Phys. Rev. B 52, 7334 (1995).

[11] C. Niedermayer et al., Phys. Rev. Lett. 80, 3843 (1998).

[12] C. Y. Chen et al., Phys. Rev. B 51, 3671 (1995).

[13] S. Wakimoto, S. Ueki, Y. Endoh, and K. Yamada, Phys. Rev. B 62, 3547 (2000).

[14] M. Matsuda et al., Phys. Rev. B 62, 9148 (2000).

[15] K. Yamada et al., Phys. Rev. B 57, 6165 (1998).

[16] J. M. Tranquada et al., Nature (London) 375, 561 (1995).

[17] J. M. Tranquada, P. Wochner, and D. J. Buttrey, Phys. Rev. Lett. 79, 2133 (1997).

[18] T. Suzuki et al., Phys. Rev. B 57, R3229 (1998).

[19] H. Kimura et al., Phys. Rev. B 59, 6517 (1999).

103



104 BIBLIOGRAPHY

[20] H. Kimura et al., Phys. Rev. B 61, 14366 (2000).

[21] Y. S. Lee et al., Phys. Rev. B 60, 3643 (1999).

[22] G. F. Reiter, Phys. Rev. B 49, R1536 (1994).

[23] A. Ramsak and P.Horsch, Phys. Rev. B 57, 4308 (1998).

[24] R. J. Gooding, Phys. Rev. Lett. 66, 2266 (1991).

[25] J. Villain, Zeit. f. Phys. B 33, 31 (1979).

[26] L. I. Glazman and A. S. Ioselevich, Zeit. f. Phys. B 80, 133 (1990).

[27] V. Cherepanov, I. Y. Korenblit, A. Aharony, and O. Entin-Wohlman, Eur. Phys. J. B

8, 511 (1999).

[28] C. Goldenberg and A. Aharony, Phys. Rev. B 56, 661 (1997).

[29] N. Hasselmann, A. H. Castro Neto, and C. Morais Smith, to appear in Europhys. Lett. ,

Preprint cond. mat. 0005486, (2001).

[30] N. Hasselmann, A. H. Castro Neto, and C. Morais Smith, “Studies of High Tempera-

ture Superconductors”, inv. contr., Ed. A. V. Narlikar, Nova Science Pub. 34, (2000).

[31] M. Matsuda et al., Phys. Rev. B 61, 4326 (2000).

[32] P. Azaria, B. Delamotte, F. Delduc, and T. Jolicoeur, Nucl. Phys. B 408, 485 (1993).

[33] S. Klee and A. Muramatsu, Nucl. Phys. B 473, 539 (1996).

[34] T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).

[35] J. A. Hertz, Phys. Rev. B 18, 4875 (1978).

[36] W. Apel, M. Wintel, and H. U. Everts, Zeit. f. Phys. B 86, 139 (1992).

[37] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

[38] A. M. Polyakov, Phys. Lett. 59B, 79 (1975).

[39] Y. Imry and S. K. Ma, Phys. Rev. Lett. 35, 1399 (1975).

[40] M. Wintel, H. U. Everts, and W. Apel, Europhys. Lett. 25, 711 (1994).

[41] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, L97 (1973).

[42] H. Kawamura, J. Phys.: Condens. Matter 10, 4707 (1998).



BIBLIOGRAPHY 105

[43] M. Wintel, H. U. Everts, and W. Apel, Phys. Rev. B 52, 13480 (1995).

[44] M. Wintel, PhD thesis, Univ. Hannover 93U7008 (1993).

[45] S. Scheidl, Phys. Rev. B 55, 457 (1997).

[46] D. S. Fisher, Phys. Rev. B 31, 7233 (1985).

[47] T. Nattermann, S. Scheidl, S. E. Korshunov, and M. S. Li, J. Phys. I France 5, 565

(1995).

[48] M.-C. Cha and H. A. Fertig, Phys. Rev. Lett. 74, 4867 (1995).

[49] B. W. Southern and A. P. Young, Phys. Rev. B 48, 13170 (1993).

[50] B. W. Southern and H.-J. Xu, Phys. Rev. B 52, R3836 (1995).

[51] B. Keimer et al., Phys. Rev. B 46, 14034 (1992).

[52] S.-W. Cheong et al., Phys. Rev. B 44, 9739 (1991).
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the Los Alamos National Laboratory.


