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Abstract

In this thesis, investigations of iron (Fe) nanostructures on the reconstructed (001)
and on the (111) surface of an iridium (Ir) single crystal are presented. Both sample
systems exhibit complex, non-collinear magnetic ground states which are studied by
means of spin-polarized scanning tunneling microscopy (SP-STM).

Fe atoms deposited on the (5×1)-reconstructed Ir(001) surface grow in the trenches
of the reconstruction, thereby forming chains with a width of only two atoms. High-
resolution scanning tunneling microscopy (STM) measurements allow the determina-
tion of the favorable adsorption sites of the Fe atoms, and the electronic properties of
the Fe chains are investigated using scanning tunneling spectroscopy (STS). SP-STM
measurements in an external magnetic field reveal a modulation with a periodicity
of three atomic distances along the chain axes. This modulation is visible in con-
stant current images as well as in maps of the differential conductance and can be
attributed to a spin spiral ground state. Without an external magnetic field, the spin
spiral fluctuates as a macrospin at the measurement temperature (T = 8 K) due to
thermal excitations, which leads to a vanishing contrast in SP-STM measurements.
Density functional theory (DFT) calculations reveal a combination of extremely weak
Heisenberg exchange and the antisymmetric Dzyaloshinskii-Moriya (DM) interaction
as the microscopic origin of this non-collinear ground state.

The first atomic layer of Fe on the Ir(111) surface predominately continues the
face-centered cubic (fcc) structure of the Ir single crystal which leads to a hexagonal
arrangement of the Fe atoms. In SP-STM measurements, the Fe layer exhibits an al-
most square magnetic superstructure with a unit cell consisting of approx. 15 atoms.
Measurements of four different magnetization components are superimposed and reveal
a lattice of skyrmions as the ground state of this sample system. The magnetic struc-
ture can be detected in spin-averaged STM measurements due to its non-collinearity,
which gives rise to the tunneling anisotropic magnetoresistance (TAMR). Atomically
resolved STM images with simultaneously acquired TAMR-contrast show that the
skyrmion lattice is incommensurate to the atomic lattice. DFT calculations reveal
that the Heisenberg exchange in this sample system is extremely weak, similar to the
Fe chains on the Ir(001) surface. Therefore, the DM interaction and the often neglected
four-spin interaction play crucial roles, and drive the Fe layer into the skyrmion lattice
ground state.
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Inhaltsangabe

In der vorliegenden Arbeit werden Untersuchungen an Eisen (Fe) Nanostrukturen auf
zwei unterschiedlichen Iridium (Ir) Oberflächen vorgestellt. Über Messungen mittels
der spin-polarisierten Rastertunnelmikroskopie (SP-STM) wurde in beiden Probensys-
temen ein komplexer, nicht-kollinearer magnetischer Grundzustand gefunden.

Fe-Atome, die bei Raumtemperatur auf die (5×1)-rekonstruierte Ir(001) Oberfläche
aufgebracht werden, ordnen sich in den Gräben der Rekonstruktion zu Ketten mit einer
Breite von lediglich zwei Atomen an. Die Adsorptionsplätze der Fe-Atome können
durch die hohe Ortsauflösung der Rastertunnelmikroskopie (STM) bestimmt werden,
und die elektronischen Eigenschaften werden mittels Rastertunnelspektroskopie (STS)
untersucht. In SP-STM Messungen in einem externen Magnetfeld wurden auf allen
Ketten eine Modulation mit einer Periodizität von drei atomaren Abständen entlang
der Kettenachse festgestellt. Diese Modulation ist sowohl in Konstantstrom-Bildern als
auch in Karten der differentiellen Leitfähigkeit zu sehen, und wird durch eine Spinspi-
rale hervorgerufen. Bei der Messtemperatur (T = 8 K) kann ohne ein externes Magnet-
feld kein magnetisches Signal gemessen werden, da die Spinspirale wie ein Makrospin
thermisch fluktuiert. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass
dieser nicht-kollineare Grundzustand durch das Zusammenspiel der antisymmetrischen
Dzyaloshinskii-Moriya (DM) Wechselwirkung und einer extrem schwachen Heisenberg-
Austauschwechselwirkung hervorgerufen wird.

Die erste atomare Lage Fe auf der Ir(111) Oberfläche wächst pseudomorph und
setzt die fcc Kristallstruktur fort, was zu einer hexagonalen Anordnung der Fe-Atome
führt. In SP-STM Messungen zeigt diese Fe-Lage eine fast quadratische magnetische
Überstruktur, deren Einheitszelle aus ungefähr 15 Atomen besteht. Messungen von
vier verschiedenen Komponenten der Probenmagnetisierung können zu der kompletten
Magnetisierungsdichte überlagert werden, welche durch ein Gitter von magnetischen
Skyrmionen hervorgerufen wird. Diese magnetische Struktur kann auch in spingemit-
telten STM-Messungen gemessen werden, da ihre Nichtkollinearität den anisotropen
magnetischen Tunnelwiderstand (TAMR) bedingt. STM-Bilder mit sowohl atomarer
Auflösung als auch TAMR-Kontrast zeigen, dass das Skyrmionengitter inkomensura-
bel zu dem atomaren Gitter ist. DFT-Rechnungen ergeben auch für dieses Proben-
system, ähnlich wie bei den Fe Ketten auf der Ir(001) Oberfläche, eine sehr schwache
Heisenberg-Austauschwechselwirkung. Das führt dazu, dass die DM-Wechselwirkung
und die oft vernachlässigte Vierspin-Wechselwirkung tragende Rollen spielen und für
das Skyrmionengitter als den magnetischen Grundzustand verantwortlich sind.
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1. Introduction

Magnetism and related phenomena have been known about for more than 2500 years
and were first mentioned around the same time by the Greeks and the Chinese. The
origin of the word ”magnetism” is debated, with some sources stating that it comes
from the region Magnesia in Greece, where magnetite, a magnetic iron ore, was mined.
Other sources claim that magnetism is named after its discoverer the Greek shepherd
Magnes, who found that the nails of his shoes were attracted by a stone. After its
discovery, it took around 1500 years until the first documented application of magnetic
material: A compass with a needle made of lodestone which was used by the Chinese
for navigation in the 11th century.

The investigation of magnetic phenomena did not begin until the 16th century with
the ”father of magnetism” William Gilbert, who discovered that the Earth itself be-
haves like a huge magnet. In the following centuries, the investigation and theoretical
description of macroscopic magnetic phenomena made fast advances. In the 1780s,
Charles Augustin de Coulomb formulated his inverse-square law, which describes the
distance dependence of a magnetic field. In 1802, Gian Domenico Romagnosi found
the connection between electricity and magnetism1, and in 1861/1862 James Clerk
Maxwell published his famous equations, which describe electric charges and currents
as the sources for electric and magnetic fields. Despite these advances in the descrip-
tion of magnetic fields, only two magnetic states were known, either a material was
magnetic or it was non-magnetic, and the microscopic origin of magnetic materials
remained unknown.

There have been two milestones for the understanding of magnetic order: The dis-
covery of the electron in the 1890s and the discovery of its intrinsic angular momentum,
the spin, in the 1920s. The spin causes a magnetic moment and in most materials, the
electrons and their spins arrange in a way that all magnetic moments cancel. How-
ever, in some materials it is energetically favorable for the electrons to align their
spins in a specific way, leading to magnetic order in such systems. Iron (Fe), which
is the most abundant element in the Earth, exhibits a spontaneous net magnetization
in its natural body-centered cubic (bcc) crystal structure, which is due to a parallel
alignment of the unpaired electron spins and is called ferromagnetism (from the Latin

1Romagnosi found how an electric charge can deflect a magnetic needle, but his results were not
paid attention to. In 1820, Christian Oersted published his findings of how an electric current
influences a magnetic needle, and is usually mentioned as the discoverer of electromagnetism [1].
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1. Introduction

word ferrum). However, the magnetic order of Fe structures depends sensitively on
the arrangement of the Fe atoms and their environment. For example, γ-Fe crystal-
lizes in the face-centered cubic (fcc) structure and exhibits an antiparallel alignment
between neighboring spins which leads to a vanishing net magnetization and is called
antiferromagnetic (AFM) order [2, 3]. Since the magnetic state of Fe is already very
susceptible to the symmetry and the interatomic distance in the bulk structure, Fe
nanostructures seem to be promising candidates for exotic magnetic ground states.

Numerous techniques with increasing spatial resolution have been developed in or-
der to study magnetic nanostructures. These techniques range from the use of visible
light (magneto-optical Kerr microscope) and X-ray absorption (e.g. Scanning X-ray
magnetic circular dichroism), to the use of electron beams (e.g. Scanning electron mi-
croscope with spin analysis). At the ultimate limit, the spin-sensitive investigation of
nanostructures with atomic resolution is realized by spin-polarized scanning tunneling
microscopy (SP-STM) [4]. For more than 10 years SP-STM has been a well established
technique, which allows the direct correlation of the magnetic structure with the to-
pography and the electronic properties of the sample. In particular, Fe nanostructures
have revealed interesting magnetic ground states when investigated with SP-STM. Fe
deposited on the (110) surface of a tungsten (W) crystal exhibits FM order in the
first atomic layer, while the magnetic ground state of the second atomic layer is a
very inhomogeneous spin spiral [5]. By choosing the (001) surface of the W crystal as
the substrate for Fe films, the magnetic ground state changes significantly. The first
atomic layer shows an AFM ordering [6] which is not detectable by spatially averaging
methods [7] demonstrating the advantage of the combination of spin-sensitivity and
atomic resolution in SP-STM. A much more complex magnetic ground state has been
reported for the first atomic layer of Fe on the Ir(111) surface, which has a quadratic
magnetic unit cell even though the atomic lattice is hexagonal [8, 9].

In this thesis, I present SP-STM investigations of Fe nanostructures on two different
Ir surfaces exhibiting complex non-collinear magnetic ground states. After a short
introduction to the magnetic interactions which play a crucial role in the formation of
their ground states (Ch. 2), I give a presentation of the concept of (SP-)STM (Ch. 3)
and of the instrumentation and sample preparation steps (Ch. 4). In Ch. 5 I present a
spin spiral ground state of Fe chains which self-organize on the reconstructed Ir(001)
surface. The SP-STM measurements can be understood on the basis of ab initio
calculations, and Monte-Carlo as well as Object Oriented MicroMagnetic Framework
(OOMMF) simulations give insight into temperature and finite size effects. Chapter 6
deals with the discovery of a skyrmion lattice in the first atomic layer of Fe on Ir(111).
The experimental results are in excellent agreement with ab initio calculations and
simulations with an extended Heisenberg model.
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2. Magnetic interactions

As mentioned in the previous chapter, magnetic phenomena on a macroscopic scale are
known for quite a long time, but the microscopic origin could not be explained until
the early 20th century. Only with the discovery of the electron and its inherent spin it
became possible to describe fundamental interactions which give rise to macroscopic
magnetic properties like ferromagnetism.

In this section I will give an overview of the magnetic interactions which play im-
portant roles for the investigated sample systems presented in Ch. 5 and Ch. 6.

2.1. Heisenberg exchange interaction

The Heisenberg exchange was first described independently by W. Heisenberg and
P. Dirac in the year 1926 [10, 11]. It is an electron-electron interaction which is
of purely quantum mechanical nature and in order to understand this interaction, a
quantum mechanical description of the electron itself is needed1.

Particles on the (sub-)atomic level cannot be described by the laws of classical
mechanics. For instance, the description of an atom in terms of electrons orbiting
the atomic nucleus using classical mechanics leads to a collision of the electrons with
the nucleus, and therefore prohibits stable atoms. Another example where classical
mechanics fails, is the interference pattern which occurs when a beam of particles hits a
double slit (Young’s experiment) [13]. Therefore, the behavior of sub-atomic particles,
like the electron, can only be properly described using quantum mechanics.

In quantum mechanics the state of an electron is given by its wave function ψ and
all observables, e.g. the location, the momentum or the angular momentum, are given
by operators. In this case, the term observable means, that the variable is in principle
observable, rather than the measurement result as in classical mechanics. The possible
measurement results of the observables are the eigenvalues of the operator with their
respective eigenstates. In addition to the above mentioned observables the electron
possesses an intrinsic angular momentum with a magnetic moment, the so-called spin.
The wave function ψ of the electron can be written as a product of its spatial wave
function φ and its spin function χ

ψ = φχ. (2.1)

1A very good introduction into the Heisenberg exchange can be found in Blundell’s textbook [12].
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2. Magnetic interactions

The spin can be characterized by the spin quantum number S, which has a value of
S = 1/2 in the case of an electron, with the corresponding spin component along an
arbitrary quantization axis z being mz = ±1/2 (up and down). The behavior of the
electron spin S is described by the spin angular momentum operator

S =
~
2
σ (2.2)

where ~ is the reduced Planck constant and σ = (σx, σy, σz) is a vector of the Pauli
matrices [14]. The corresponding intrinsic magnetic moment m of the electron is

m = −gµBS/~, (2.3)

with the electron g-factor g and the Bohr magneton µB.
Two electron spins can couple via a scalar interaction C, which gives rise to the

Hamiltonian

H = C · Sa · Sb, (2.4)

where Si are the spin operators for the two particles. The total spin of this coupled
system Stot = Sa + Sb can have the eigenvalues 0 or 1 and the energy eigenvalues of
the Hamlitonian are

E =

{
C/4 for S = 1
−3C/4 for S = 0.

(2.5)

The state with S = 1 is the triplet state due to its threefold degeneracy (mz can have
the values −1, 0, 1) and the state with S = 0 is the singlet state (mz=0). By inserting
Eq. 2.5 in the Hamiltonian in Eq. 2.4 the constant C can be expressed in dependence
of the triplet energy ET and singlet energy ES leading to

H = −(ES − ET )Sa · Sb. (2.6)

Due to the fermionic nature of the electron, the overall wave function of the two
electron system ψtot has to be antisymmetric with respect to exchange of particles.
Since the overall wave function is a product of the spatial and the spin function

ψtot = φtotχtot, (2.7)

either the spatial function is symmetric and the spin function has to be antisymmetric
or vice versa. While the spin function for the triplet state χT is symmetric with
respect to the exchange of particles, the singlet spin function χS is antisymmetric.
Accordingly, the spatial functions have to be antisymmetric for the triplet state (ψT )
and symmetric for the singlet state (ψS) leading to the overall wave functions

ψS =
1√
2

[φa(r1)φb(r2) + φa(r2)φb(r1)]χS (2.8)

ψT =
1√
2

[φa(r1)φb(r2)− φa(r2)φb(r1)]χT (2.9)

4



2.1. Heisenberg exchange interaction

for the two electrons at the positions r1 and r2, respectively. The energies for these
two states are ES =

∫
ψ∗SHψSdr1dr2 and ET =

∫
ψ∗THψTdr1dr2, while their difference

is given by

ES − ET = 2

∫
φ∗a(r1)φ∗b(r2)Hφa(r2)φb(r1)dr1dr2. (2.10)

By defining the exchange integral J as

J =
ES − ET

2
=

∫
φ∗a(r1)φ∗b(r2)Hφa(r2)φb(r1)dr1dr2, (2.11)

the effective Hamiltonian in Eq. 2.6 can be written as

H = −2J Sa · Sb. (2.12)

For J > 0, meaning that the triplet state is lower in energy compared to the singlet
state, the spin wave function is symmetric, hence the spins are aligned parallel or
ferromagnetic (FM). In the case of J < 0 the singlet state is energetically favored and
the spin wave function is antisymmetric leading to an antiparallel or antiferromagnetic
(AFM) alignment of the two spins. Equation 2.12 can be generalized for interactions
between more than two spins, leading to the Heisenberg model

Hexch = −
∑
ij

JijSi · Sj. (2.13)

While up to here the description of the exchange interaction was quantum mechanical,
it is common to use a classical Heisenberg model in solid state physics. In the classical
approach the spin operator S, its eigenvalue S and the direction mz are replaced by a
vector with a certain length which can point in any direction.

For many magnetic systems the exchange constant Jij can be approximated by a sin-
gle constant J for nearest neighbor spins which leads to the aforementioned (collinear)
FM or AFM ordering. However, the general solution of the classical Heisenberg model
is a (non-collinear) flat spin spiral in which the spin Si at the position ri is given by

Si = S ·

 0
sin(q · ri)
cos(q · ri)

 , (2.14)

with the spin spiral vector q. The spin spiral state occurs when also beyond-nearest
neighbor exchange is considered and it is due to frustration effects between the com-
peting interactions. For a one-dimensional crystal along the z-axis with the lattice
constant a, a cycloidal spiral given by Eq. 2.14 is characterized by q = (0, 0, q). Any
q between q = 0, which is the FM solution, and q = 0.52π

a
, which describes the AFM

state, results in a non-collinear ground state, with the characteristic spin spiral angle

5



2. Magnetic interactions

a

b

c

J J  J1 2= , =0

J J  J J1 2= , =-0.4

J J  J J1 2=- , =-0.4

Figure 2.1: Solutions of the Heisenberg model with nearest and next-nearest neighbor ex-
change. a, FM order for J1 > 0 and J2 = 0. b, Spin spiral ground state for J1 > 0 and
J2 = −0.4J1 with the spin spiral angle θ ≈ 51◦. c, For J1 < 0 and J2 = 0.4J1 the angle
results to θ ≈ 129◦.

θ = 2πq. This is illustrated in Fig. 2.1 which exemplarily shows the magnetic ground
state of the one-dimensional Heisenberg model for nearest neighbor exchange (J1) and
next-nearest neighbor interactions (J2). The constant J is assumed to be positive and
Figure 2.1 a shows the trivial solution for J1 = J and J2 = 0 which gives the FM
ground state. For J1 = J and J2 = −0.4J the resulting magnetic state is a rather
slow rotating spin spiral with θ < 90◦, see Fig. 2.1 b. When both coupling constants
are negative, J1 = −J and J2 = −0.4J the spiral rotates faster with θ > 90◦, see
Fig. 2.1 c.

2.2. Spin-orbit interaction

The spin-orbit interaction (SOI) describes any interaction of the electron’s spin with
its motion around the atom’s nucleus and is responsible for the magnetic anisotropy
energy and the Dzyaloshinskii-Moriya interaction.

2.2.1. Magnetic anisotropy energy

In the previous section the spin of the electron was regarded to be independent of and
therefore separated from the orbital momentum of the electron’s motion. In reality
the two angular momentums experience a weak coupling which lifts the degeneracy of
the electron’s energy levels with respect to the spin state and thereby gives rise to a
fine structure in the energy. This is due to a magnetic field B the electron experiences

6



2.2. Spin-orbit interaction

in its rest frame during its motion through the electric field E of the nucleus

B = −v × E

c2
, (2.15)

with the electron’s velocity v and the speed of light c. The magnetic moment of the
electron couples to the magnetic field which leads to a lower energy for one spin direc-
tion compared to the other spin direction. Since the velocity v is directly proportional
to the electron’s momentum p and the electric field is the gradient of the electric
potential V , eq. 2.15 can be written as

B ∝ 1

r

∂V (r)

∂r
r× p =

1

r

∂V (r)

∂r
L (2.16)

in the approximation of a spherically symmetric potential; L is the orbital angular
momentum. The strength of the magnetic field is directly proportional to the gradient
of the electric potential, hence the SOI has significant contributions to the energy in
heavy atoms (Ir, Pt, W, . . .) while it is almost negligible in atoms with an atomic
number Z < 30. The energy contribution of the SOI to the electron state is the
influence of B on the magnetic moment of the electron m

HSOI = m ·B ∝ 1

r

∂V (r)

∂r
L · S. (2.17)

In magnetic solid state systems the potential is determined by the crystal structure
and its symmetry. Depending on the crystallographic direction the potential varies its
shape leading to different gradients and ultimately different energies for the electron’s
spin state, the magnetic anisotropy energy (MAE). Usually the energetically most
favorable direction is called easy axis or plane and the energetically unfavored direction
is either the hard axis or plane. In the simplest case the system has a uniaxial magnetic
anisotropy, e.g. FM cobalt (Co) in its hexagonal close-packed (hcp) crystal structure
exhibits an easy axis of magnetization along the c-axis of the crystal. The spontaneous
magnetization aligns along the c-axis and upon a rotation away from the easy axis
the MAE increases with a maximum for a magnetization perpendicular to the easy
axis. This dependence of the energy on the angle ϕ between the easy axis and the
magnetization direction is usually expressed by an expansion in powers of sin2 ϕ

Eani = K1 sin2 ϕ+K2 sin4 ϕ+K3 sin6 ϕ+ . . . . (2.18)

By considering a discrete lattice of spin Si and only taking the first term of the
expansion into account, Eq. 2.18 becomes

Eani =
∑
i

K sin2 ϕi, (2.19)

7



2. Magnetic interactions

with the angle ϕi between Si at the lattice position i and the anisotropy axis. For
K < 0 the lowest energy for the spins is in a plane perpendicular to the anisotropy
axis, while for K > 0 the system exhibits an easy axis. Both sample systems presented
in Ch. 6 and Ch. 5 of this thesis bare an anisotropy with an out-of-plane easy axis.
The so-called Ising model is the limit of K � 0 in which the spins are forbidden to
point in directions different from the easy axis.

2.2.2. Dzyaloshinskii-Moriya interaction

In recent years the Dzyaloshinskii-Moriya (DM) interaction gained more and more
attention since it can play a crucial role in the formation of complex, non-collinear
magnetic structures on surfaces [15] as well as in bulk systems [16]. The DM inter-
action is an antisymmetric exchange interaction and, as the MAE, a consequence of
the spin-orbit interaction. I. Dzyaloshinskii was the first to describe this interaction
in 1958 [17] and based on symmetry arguments he could explain the weak sponta-
neous magnetization observed in antiferromagnetic crystals. α-Fe2O3, also known as
hematite, is a mineral which crystallizes in a rhombohedral structure and exhibits two
possible magnetic configurations. In both magnetic structures the magnetic moments
of the Fe atoms form an antiferromagnetic ↑↓↓↑-state in which the moments are either
aligned along the [111]-direction or slightly canted with respect to the [111]-direction.
The magnetic symmetry of these states is given by the symmetries of the crystal
with an additional symmetry element R, which describes the change of the spin sign
S(x, y, z)→ −S(x, y, z). Dzyaloshinskii showed that a spontaneous magnetic moment
may exist only when it is invariant under the action of all symmetry transformations.

By expanding the thermodynamical potential he revealed that it consists of terms
representing the Heisenberg exchange, terms which are the magnetic anisotropy and
an additional term EDM which is proportional to the cross product of neighboring
spins

EDM = −D · (Si × Sj), (2.20)

where D is the Dzyaloshinskii-Moriya vector. Due to the cross product between the
neighboring spins Si and Sj this term is minimized for a perpendicular alignment of the
spins. Two years later, T. Moriya developed a theoretical model for this interaction
based on anisotropic superexchange including spin-orbit interaction [18]. He general-
ized the work of Dzyaloshinskii for any crystal structure and showed qualitatively that
EDM becomes largest when the crystal symmetry is sufficiently low and vanishes for
highly symmetric crystals. Furthermore, he could deduce from his model the following
rules [18]:

”The two ions 1 and 2 are located at the points A and B, respectively, and
the point bisecting the straight line AB is denoted by C.
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2.3. Higher order exchange interactions

1. When a center of inversion is located at C, D = 0.

2. When a mirror plane perpendicular to AB passes through C, D ‖
mirror plane or D ⊥ AB.

3. When there is a mirror plane including A and B, D ⊥ mirror plane.

4. When a two-fold rotation axis perpendicular to AB passes through
C, D ⊥ two-fold axis.

5. When there is an n-fold axis (n ≥ 2) along AB, D ‖ AB.”

The third case applies for nanostructures on surfaces with a rectangular atomic ar-
rangement as the (001) surface of a bcc crystal, leading to a DM vector in the surface
plane [19]. For the bcc(110) surface or the fcc(111) surface the direction of the DM
vector can only be restricted to a plane perpendicular to the bond [20]. However,
additional symmetry considerations and comparison to experimental data show that
also for these surfaces the DM vector usually lies in the surface plane or has at least
an in-plane component [21, 15, 22].

2.3. Higher order exchange interactions

Beyond the Heisenberg model, higher order exchange interactions exist which can be
derived by fourth order perturbation expansion of the Hubbard model [23], namely the
four-spin interaction and biquadratic interaction. Although these two interactions are
usually very small compared to the Heisenberg exchange and therefore often neglected,
they provide a rich phase space of magnetic structures.

The energy contribution due to the four-spin interaction is given by

E4spin = −
∑
ijkl

K4,ijkl[(SiSj)(SkSl) + (SiSl)(SjSk)− (SiSk)(SjSl)], (2.21)

which occurs due to electron hopping between the four lattice sites (ijkl). Its coupling
constants K4,ijkl define the strength of the interaction and by considering only nearest-
neighbor interaction K4,ijkl reduces to one constant K4 with (ijkl) lying on adjacent
lattice sites.

In the case of a two-dimensional triangular lattice the lattice sites form the small-
est possible diamond. Depending on the sign of K4 the four-spin interaction favors
different spin configurations. For K4 > 0 the FM order and a row-wise AFM order
are energetically the most favorable structures and for K4 < 0 a structure with one
spin pointing in the opposite direction of the other three spins is favored, resulting in
alternating FM and AFM rows [24].
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2. Magnetic interactions

The biquadratic interaction is given by

Ebi = −
∑
ij

Bij(Si · Sj)2, (2.22)

where Bij couples the spins at the lattice sites i and j. Restricted to nearest neighbor
interaction, similar to the four-spin interaction, Bij reduces to one coupling constant
B. For B > 0 the biquadratic interaction favors an (anti-)parallel alignment of the
neighboring spins, either FM or AFM, while for B < 0 the spins prefer to align
perpendicular to each other, which leads to a non-collinear ground state [24].

Typically these interactions are rather small, but they can have a strong influence
on the magnetic ground state of a system when the Heisenberg exchange is small. In
Ch. 6, I show that the four-spin interaction plays a crucial role in the formation of the
magnetic ground state of the Fe ML on the Ir(111) surface.
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3. Scanning tunneling microscopy

3.1. The tunnel effect in one dimension

The working principle of the Scanning Tunneling Microscope (STM) is based on the
tunnel effect − a quantum-mechanical phenomenon − which can be explained by the
wave-particle duality. Consideration of a one-dimensional potential barrier helps in
order to understand this effect. In classical mechanics an electron with the energy
E cannot overcome a potential barrier V0 if E < V0, it will be reflected as shown in
Fig. 3.1 a. In quantum mechanics the electron has to be treated not only as a particle
but also as a wave function Ψ and thus has a finite probability to ”tunnel” through
the potential barrier even if E < V0, as is shown in Fig. 3.1 b. The wave function Ψ of
the electron has to satisfy the time-independent Schrödinger equation

− ~2

2me

·∆Ψ + V ·Ψ = E ·Ψ, (3.1)

where me is the electron mass and ~ is the reduced Planck constant. In the case of
the one dimensional rectangular barrier sketched in Fig. 3.1 b and with an Ansatz of

Ee
V0

E

0 s z

e-

a b

Figure 3.1: Tunnel effect in one dimension. a, In classical physics, an electron which is
moving in a potential will be reflected at a potential barrier if the energy of the barrier
is higher than the energy of the electron. b, In quantum mechanics the electron has
a non-zero probability to traverse any potential barrier with a finite height and width,
since the electron has to be described by a wave function Ψ which has to satisfy the
time-independent Schrödinger equation.
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3. Scanning tunneling microscopy

plane waves the wave function Ψ of the electron will be

Ψ(z) =


exp (ikz) + A exp (−ikz) for z < 0
B exp (−κz) + C exp (κz) for 0 ≤ z ≤ s
D exp (ikz) for z > s

, (3.2)

with the two constants

k =

√
2mE

~2
and κ =

√
2m(V0 − E)

~2
, (3.3)

where k is the wave number and κ is the decay constant. As depicted in figure 3.1 the
wave function of the electron has a plane wave character if E > V0. Inside the potential
barrier, in the case of E < V0, the electron wave function Ψ decays exponentially,
which means that there will always be a finite probability for the electron to cross the
potential barrier as long as V0 <∞ and s <∞.

Using the wave matching method, meaning that the wave function has to be con-
tinuously differentiable, one can derive A, B, C and D from Eq. 3.2 and thus the
transmission coefficient which is the ratio between the transmitted and the incident
current density jt and ji

T ≡ jt

ji

= |D2| = 1

1 + (k2+κ2)2

(4k2κ2)
· sinh(κs)2

. (3.4)

In the limit of κs� 1 the transmission coefficient T can be simplified to

T ≈ 16k2κ2

(k2 + κ2)2
· exp (−2κs). (3.5)

This means that the tunnel current in this model depends exponentially on the barrier
width s which equals the tip-sample separation in STM experiments. Plugging in
typical tunnel parameter (V0 − E = 4 eV and s = 5 Å) one gets an increase in the
tunnel current by almost one order of magnitude if the distance of the electrodes is
decreased by one Å. Even though this model is too simple to describe realistic STM
experiments it explains the high sensitivity to height changes in the sample topography.

3.2. Experimental realization

As indicated in the previous section the tunnel current between two electrodes is ex-
tremely sensitive to the distance between them and it is used in the STM to determine
the structural configuration of a sample. But in order to use the current as a mea-
surement signal the counter electrode, which is a very sharp, metallic tip, has to be
positioned with sub-nanometer precision. This is accomplished by using piezoelectric
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Figure 3.2: a, Working principle of an STM. The tunnel current is kept constant at a set
point Iset using a feedback loop while the tip scans laterally across the surface by applying
voltages to the x− and y−electrodes of the tube scanner. The feedback loop adjusts the
tip height until the measured current is identical to the set point. A computer records
the ∆z(x, y) points and constructs a topographic map out of those height changes. b,
Schematic drawing of the coarse approach unit. The tube scanner (gray) with the tip
is mounted in a sapphire prism (white) which is clamped by six stacks of piezoelectric
material (black). A sawtooth voltage is applied to the stacks which leads to a shear
motion of the stacks with two different speeds. Due to its inertia the prism will not follow
the motion if it is too fast and will thereby slip on the stacks. If the motion of the stacks
is slow the prism will stick to the stacks and will be moved.

actuators to control the tip-sample separation as well as the scan direction parallel to
the surface [25, 26].

The piezoelectric effect describes the ability of a material to generate electric fields
by applying mechanical stress to the material. In an STM the reverse piezoelectric
effect, stress or strain in a material due to an applied electric field, is exploited to
move the tip very precisely with respect to the sample surface. The movement of the
tip is divided in two independent motions: i.) the coarse approach and ii.) the fine
adjustment of the distance between tip and sample which is also used for scanning the
surface.

In the STMs used for this study the fine adjustment was ensured by a tube scanner
made of piezoelectric material as illustrated in Fig. 3.2 a. In this geometry the top part
of the scanner is fixed. If a voltage Uz is applied to the z-electrode inside the tube,
the whole scanner will either contract or elongate depending on the sign of the applied
voltage, which can be used to adjust the distance between the tip and the sample.
The piezoelectric material on the outside of the scanner is divided in four independent
electrodes which can be addressed by separate connections. Applying a voltage to just
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3. Scanning tunneling microscopy

one of the four electrodes, this electrode will either contract or elongate and therefore
the whole scanner will bend. This motion can be used to position the tip precisely at
one point of the surface and to scan a surface area by applying voltages Ux and Uy.

With the coarse positioning device the scanner with the STM tip can be moved away
from or closer to the sample. For this motion the scanner is fixed to a sapphire prism
which is moved by stacks made of piezoelectric material using the slip-stick mode, see
Fig. 3.2 b. In this mode a sawtooth voltage is applied to the stacks which leads to a
shearing of the stacks. At the steep edge of the sawtooth the shearing of the stacks
is so fast, that the prism will not follow the motion due to its inertia: it slips on the
piezoelectric stacks. During the gentle incline of the sawtooth voltage the surface of
the prism sticks to the surface of the stacks and therefore follows the movement of the
stacks. By repeating the cycle the scanner-tip unit can be moved macroscopically.

Since the tip has to be positioned only ≈ 5 Å above the sample for measurements,
and it is also crucial not to crash the tip into the surface, the two motions described
above are executed automatically to establish a tunnel current. First, the scanner
is elongated to check if a tunnel current can be stabilized in the current position of
the prism. If no tunnel current is detected at full expansion of the scanner the tip
is retracted by contracting the scanner and the prism is moved closer to the surface
by one coarse step of the piezoelectric shear elements. The two motions are executed
alternately until the measured tunnel current between tip and sample matches the set
point Iset.

If the tunnel current between the tip and the sample is established, there are two
possible measurement modes to obtain topographic images of the sample surface.

In the constant height mode the tip is scanned over the surface at one fixed height
z while the tunnel current I is recorded. A change in the tunnel current in this
measurement mode is an indicator for a change of the distance d between the tip and
the sample and therefore it indicates a change in the topography of the sample, e.g.
a step edge (see Fig. 3.3 a). One drawback of this mode is that the distance between
the tip and the sample is not controlled which could lead to an accidental crash of
the sample and the tip. To avoid such tip-sample contacts it is much more common
to use the constant current mode where a feedback loop controls the distance between
tip and sample. A feedback loop keeps the tunnel current Iout fix to a set point Iset by
adjusting the tip height z. In this mode the tip is scanned with a constant distance and
a constant current over the surface and all the changes in the topography of the surface
lead to changes in the tip height (see Fig 3.3 b). However, a perfect constant current
mode cannot be realized in practice since the feedback loop has a finite response time.
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Figure 3.3: Two different measurement modes. a, In the constant height mode the tip
is scanned with a constant height z over the surface and the tunnel current I is the
measurement signal. Differences in the tunnel current indicate differences in the height
profile of the sample. b, In the constant current mode the tunnel current between tip
and sample is kept constant by a feedback loop and differences in the height profile of the
sample lead to a change in the z position of the tip, which is the measurement signal.

3.3. Topography

Although the model presented in Sec. 3.1 explains the exponential dependence of the
tunnel current on the separation of the two electrodes a more generalized model is
needed to interpret STM experiments. First of all the model presented in Sec. 3.1
is only one-dimensional while STM experiments are mostly carried out in three di-
mensions and secondly the electronic structure of the two electrodes is not accounted
for.

3.3.1. Time-dependent perturbation theory

To describe the tunnel current between two metallic electrodes J. Bardeen used first-
order time-dependent perturbation theory [27]. In this work the tunnel current is
described by the overlap of the electron wave functions of the two electrodes. From
the calculations of first-order perturbations the transition rate ωµν between an electron
state ΨT

ν in the tip and an electron state ΨS
µ in the sample is given by

ωµν(t) =
2π

~
δ(ET

ν − ES
µ) |Mµν |2 , (3.6)

where the δ-function guarantees the required conservation of energy. Mµν is Bardeen’s
matrix element and only depends on the wave functions ΨT

ν and ΨS
µ on a separation
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plane Σ in between the electrodes:

Mµν = − ~2

2m

∫
Σ

dS
(
ΨT∗
ν ∇ΨS

µ −ΨS
µ∇ΨT∗

ν

)
. (3.7)

From the transition rate in Eq. 3.6 it is possible to calculate the net current between
the two electrodes by summation over the states µ and ν. The current is given by

I =
4πe

~
∑
µν

[
f(ET

ν − ET
F )− f(ES

µ − ES
F)
]
|Mµν |2δ

(
ET
ν − ES

µ

)
, (3.8)

where f(. . .) is the Fermi-Dirac distribution. In this expression for the tunnel current
no voltage is applied to any of the two electrodes. Therefore the transition rate from
the tip to the sample is equal to the transition rate from the sample to the tip and
no net current flows between the electrodes. If one substitutes the summation over
discrete states by an integration over the density of states and applies a voltage to one
of the electrodes, the tunnel current can be expressed as

I =
4πe

~

∫
dε
[
f(ET

F − eU + ε)− f(ES
F + ε)

]
×ρT(ET

F − eU + ε)ρS(ES
F + ε)|M(ES

F + ε, ET
F − eU + ε)|2, (3.9)

where ρT and ρS are the density of states for the tip and the sample, respectively. This
means that the tunnel current in Eq. 3.9 depends on the electronic structure of the
sample as well as the tip. In the limit of temperature T → 0, meaning that the Fermi
distribution becomes a step function, Eq. 3.9 simplifies to

I =
4πe

~

∫ eU

0

dε ρT(ET
F − eU + ε)ρS(ES

F − ε)|M |2. (3.10)

With this Ansatz of Bardeen it is theoretically possible to exactly calculate the tunnel
current between the tip and the sample in an STM. However, one problem is the
determination of the matrix element Mµν (Eq. 3.7) since it depends on the wave
function of the tip and the sample. Since it is (almost) impossible to identify the
atomic structure of the STM tip also the wave function of the tip is unknown.

3.3.2. Tersoff-Hamann model

J. Tersoff and D. R. Hamann were the first to apply Bardeen’s model to STM ex-
periments. In order to calculate the tunnel current without the exact knowledge of
the atomic structure of the tip, Tersoff and Hamann introduced a tip which is ap-
proximated with a spherical symmetry and only s-type wave functions are allowed to
contribute to the tunnel current [28, 29]. In Bardeen’s model (Eq. 3.8) the potentials
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of the tip and the sample are (almost) negligible at the position of the separation plane
Σ. Therefore, the wave functions of the sample and the tip (ΨS

µ resp. ΨT
ν ) have to

satisfy the vacuum Schrödinger equation[
∆− κ2

]
Ψ = 0, (3.11)

with κ2 = 2m|E|/~2. With the approximation that the tip is just a single atom
which has an s-orbital as wave function, this equation has two solutions which are
the spherical, modified Bessel functions of first and second kind. Since the spherical,
modified Bessel function of first kind cannot be normalized, it can be discarded and
the solution for Eq. 3.11 is

ΨT
ν (r−R) = C

exp(−κ|r−R|)
κ|r−R|

mit |r−R| 6= 0. (3.12)

In this equation C is a normalization constant, R gives the position of the tip atom
and r points to the separation plane Σ. This configuration is depicted in figure 3.4.
The condition |r −R| 6= 0 is always fulfilled since the separation plane is in between

R
r0

d

sample

tip

Figure 3.4: Scheme of the tunnel junction geometry in the
Tersoff-Hamann model. R marks the position of the cen-
ter of a spherical tip with the radius r0 and d is the small-
est distance between the tip and the sample.

the tip and the sample. With this wave function plugged into Eq. 3.7 the solution for
the matrix element is

Mµ,s(R) = −2πC~2

κm
ΨS
µ(R), (3.13)

where the index s denotes the s-type wave function for the tip. With this matrix
element the equation for the tunnel current (Eq. 3.10) results in

I(R, U) =
16π3C2~3e

κ2m2
ρT

∫ eU

0

dε ρS
local(R, E

S
F + ε). (3.14)

A closer look to this equation shows that the tunnel current in the Tersoff- Hamann
model is directly proportional to the integrated, local density of states (LDOS) of the
sample ρS

local at the position of the tip atom.
While this model reproduces experimentally observed corrugation amplitudes for

quite open structures, where the lateral distance between two objects is a0 ≥ 6 Å, very
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well, it fails to describe corrugation amplitudes for densely packed metal surfaces,
where the distance between two atoms is a0 = 2 . . . 3 Å. Another problem of this
model is the fact that for most tip materials, which are heavy transition metals like
tungsten, platinum and iridium, the s-type orbital is not a good approximation.

3.3.3. Chen’s expansion of the Tersoff-Hamann model

The problems which arise from the Tersoff-Hamann model can be overcome by ex-
panding the model using generalized wave functions for the tip. Such an expansion
was introduced by C. J. Chen [30, 31, 32, 33] who considered the general solutions of
the vacuum Schrödinger equation (Eq. 3.11)

ΨT(r) =
∑
l,m

cl,mkl(κ|r−R|)Yl,m(|r−R|). (3.15)

In those wave functions Yl,m are the spherical harmonics and kl are the modified Bessel
functions of the second kind while cl,m is a normalization coefficient. For the simplest
case l = 0 the solution leads to the Tersoff-Hamann model. If the tip is described
by a pz-type orbital, an evaluation of the spherical harmonic and the modified Bessel
function results in the wave function

ΨT
pz(r) ∝

∂

∂Z
ΨT
s r. (3.16)

Inserting this wave function into Bardeen’s transition matrix element (Eq. 3.7) leads
to (analogous to the Tersoff-Hamann model)

Mµ,pz(R) ∝ ∂

∂Z
ΨS
µ(R). (3.17)

This means, that the matrix element is proportional to the derivative of the sample
wave function at the position of the tip, if the tip is described by a pz-type orbital.
In this way the matrix element can be derived also for higher order orbitals, which is
known as the derivative rule of Chen [31]. Using p- or d-type orbitals for the tip, the
experimentally observed corrugation amplitudes of densely packed metal surfaces can
be explained. One possible way to determine the tip apex structure experimentally
was recently proposed by Vitali et al. [34] by measuring vibrational excitation spectra
and comparing those to theoretical calculations.

3.3.4. Effects of the electronic structure of the sample

From all the theoretical considerations in the previous sections it is obvious that the
tunnel current carries information about several different sample properties. In a first
approximation (see Sec. 3.1) the tunnel current depends exponentially on the distance
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between tip and sample, see Eq. 3.5. By applying a more precise model of the tunnel
junction in Sec. 3.3.2 it becomes clear from Eq. 3.10 that also the LDOS of the sample
has an important contribution to the tunnel current. Figure 3.5 shows the tip-sample

Ft
Fs

EV

EF

U = 0

tip sample

Ft

Fs

EV

EF

U < 0

tip sample

Ft

Fs

EV

EF

U > 0

tip sample

eU
eU

a b c

Figure 3.5: Schematic drawings of the tip-sample system for three different applied bias
voltages. a, For U = 0 the Fermi energies of the tip and the sample are identical and no
tunnel current is flowing between the two electrodes. b and c, With U 6= 0 the Fermi
levels of the tip and sample are not at the same energy and depending on the polarity of
the bias voltage electrons tunnel from the sample to the tip or vice versa.

system in tunnel contact in three different states. In these schematic drawings Φn

indicates the work function of the respective electrode and EF and EV are the Fermi
energy and the vacuum energy, respectively. In Fig. 3.5 a no voltage is applied, the
system is in equilibrium and the same number of electrons tunnel from the tip to the
sample as vice versa, which leads to a vanishing net tunnel current. In this state
sample and tip have the same Fermi energy which indicates the energy of the highest
occupied state. By applying a negative voltage to the sample (Fig. 3.5 b) the Fermi
energy of the sample shifts to a higher value with respect to the Fermi energy of the
tip. This leads to a non-zero tunnel current since electrons tunnel from the occupied
states in the sample to unoccupied states in the tip. For a positive sample voltage
(Fig. 3.5 c) the situation is reversed and electrons tunnel from the occupied states of
the tip into unoccupied states of the sample. If the sample and the tip have a constant,
or flat, LDOS, the tunnel current is directly proportional to the applied bias voltage
giving rise to an ohmic behavior of the tunnel junction.

By assuming that the sample has the same height but a varying LDOS depending
on the lateral position, schematically shown in Fig. 3.6, this simplified picture breaks
down. Figure 3.6 shows schematically a scan with the tip over the sample which
is perfectly flat but has a different LDOS ρ and work function Φ depending on the
lateral position. In this example region 2 in the center has a smaller LDOS than the
surrounding regions (1). This means that the number of states in region 2, which can
contribute to the tunnel current, is reduced compared to region 1, and in order to
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Figure 3.6: Effect of electronic properties of the sample. Even though region 1 and region
2 of the sample have the same height, the differences in the local density of states ρ and
work functions Φ between the two areas lead to a different apparent height z if the STM
is operated in the constant current mode.

keep the tunnel current constant the tip has to move closer to the sample. This leads
to an apparent change in the tip height z even if the sample is flat. Since the tunnel
current also depends on the work function of tip and sample (see Eq. 3.3), a similar
effect would be observed by a locally varying work function.

Some nice examples for the contribution of the LDOS to the tunnel current are
single molecules or adsorbates which sit on top of a flat metal surface. If only the
sample profile would contribute to the tunnel current those adsorbates should appear
as protrusions in constant current images. But some of those adsorbates appear as an
indentation rather than a protrusion as e.g. CO molecules on Cu(111) [35] or single
O atoms on an Fe surface [36], which means that the LDOS above the adsorbates is
drastically reduced, so that the tip has to move closer to the adsorbate even if it is
sitting on top of the surface (see also Ref. [37]).

In Sec. 6.2.3 I present another example of how the LDOS contributes to the tunnel
current. As shown in Sec. 2.2, the spin-orbit interaction leads to a lifting of the energy
degeneracy of different spin directions. This means, that the surface atoms’ LDOS
varies depending on how their magnetic moments arrange with respect to the atomic
lattice, e.g., if the moments align along or perpendicular to the easy axis. In STM
experiments this leads to the tunneling anisotropic magnetoresistance (TAMR). By
exploiting this effect, it is possible to observe magnetic domain walls in Fe stripes on
W(110) [38] and also LDOS changes on the atomic scale due to spin spiral states [15,
19].
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3.4. Scanning Tunneling Spectroscopy

More information about the electronic structure of the sample system can be gained by
using scanning tunneling spectroscopy (STS). It is obvious from Eq. 3.10 that the tunnel
current is proportional to the integrated density of states of the sample. Differentiation
of the expression for the tunnel current with respect to the applied voltage U leads to
the differential conductance

dI

dU
=

4πe2

~
ρT(ET

F )ρS(ES
F + eU)

∣∣M(ES
F + eU,ET

F )
∣∣ . (3.18)

This approximation is only valid in the limit of eU � Φ, where Φ is the work function of
the sample given by Φ = EV−EF. Differentiating Eq. 3.14 the differential conductance
in the approximation of Tersoff and Hamann is given by

dI

dU
∝ ρTρS

local(R, E
S
F + eU). (3.19)

This means that the derivative of the tunnel current I with respect to the applied
voltage U is directly proportional to the LDOS of the sample at the position of the
tip R and the energy EF + eU . Thus it is possible to map the LDOS of the sample by
stabilizing the tip over the position of interest, given by the spatial coordinates (x0, y0),
at the stabilization parameters U0 and I0, switching off the feedback loop, and sweeping
the bias voltage (single point spectroscopy). During the voltage sweep the tunnel
current is recorded while the tip position z remains constant. The resulting I(U)-curve
contains information about the LDOS ρ(x0, y0) which can be derived by numerical
differentiation or – more commonly used – via lock-in technique. The bias voltage is
modulated by a small AC voltage Umod with a typical frequency of ν = 2 . . . 5 kHz
and a known phase and the dI/dU-signal is measured by a lock-in amplifier. This
extremely narrow band pass filters very efficiently AC voltages of different frequencies
(e.g. electrical 50 Hz noise) or other random noise and often results in a much higher
signal quality compared to the numerical differentiation of the I(U)-curve.

In contrast to the single point spectroscopy which records dI/dU(U) at a fixed
position (x0, y0), the dI/dU-map gives information about the spatial variation of the
differential conductance at a fixed energy, dI/dU(x, y). It is acquired simultaneously
to the constant current image using a lock-in amplifier, which allows direct correlation
of the sample topography with the map of differential conductance.

Spectroscopic data acquired in one of the two ways has to be analyzed very carefully
since it does not only depend on the LDOS of the sample but also on the LDOS of
the tip, see Eq. 3.19. So far the electronic structure of the tip has been assumed to be
constant, see also Fig. 3.5, which is almost never the case in a real experiment.
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3. Scanning tunneling microscopy

3.5. Spin-polarized scanning tunneling microscopy

If the tunnel current flows between two magnetic electrodes, in addition to the contri-
butions of the distance between the electrodes and their respective electronic properties
it also contains information of their magnetic properties. In Fig. 3.7 the tunnel current
between two ferromagnetic electrodes is shown schematically. Due to the exchange in-
teraction the density of states of the electrodes are split into majority electrons (↑)
and minority electrons (↓), which leads to a spin polarization at the Fermi energy of
P (EF) = (ρ↑(EF) − ρ↓(EF))/(ρ↑(EF) + ρ↓(EF)). By assuming that the electron spin
is conserved during the tunneling process, the ↑-electrons from the tip can only tun-
nel into unoccupied ↑-states in the sample; the same for the ↓-electrons. When the
magnetization directions of the two electrodes are in parallel alignment (Fig. 3.7 a) the
tunnel current is different compared to the antiparallel alignment (Fig. 3.7 b).

EF
EF

parallel configuration

tip sample

r− ( )E r¯( )E r− ( )E r¯( )E

eU

antiparallel configuration

tip sample

r− ( )E r¯( )E r− ( )E r¯( )E

EF
EF

eU

a b

Figure 3.7: Scheme of spin-polarized scanning tunneling microscopy. a, For the case of
parallel alignment of tip and sample magnetization electrons with the spin ↓ (↑) can
tunnel from the tip to unoccupied states with the spin ↓ (↑) in the sample. b, Antiparallel
alignment: since the number of unoccupied states in the sample with spin ↓ is reduced
compared to the parallel configuration, the tunnel current between tip and sample is
smaller for the same applied voltage.

M. Jullière first discovered this spin valve effect, or tunneling magnetoresistance
(TMR), in planar Fe-Ge-Co tunnel junctions which showed a decreased conductance
in the case of non-parallel alignment of the electrodes’ magnetizations compared to
the parallel case [39]. In a theoretical work, J. C. Slonczewski extended the model of
tunneling in one dimension (see Sec. 3.1) by spin-polarized electrodes [40]. In the limit
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3.5. Spin-polarized scanning tunneling microscopy

of vanishing bias voltage U and free electrons the tunnel current can be expressed by

I = I0[1 + PTPS · cos(MT,MS)], (3.20)

where I0 is the non-polarized current, P is the polarization and M is the magnetization
direction of the tip (T) and the sample (S), respectively. Assuming an electronically
homogeneous sample and a stable tip, I0, PS, PT and MT are constant for a given bias
voltage U0 and any change in the tunnel current I can be attributed to changes of MS.

This cosine dependence of the tunnel current has been experimentally verified in
planar Fe-Al2O3-Fe tunnel junctions [41], and in 1990 R. Wiesendanger et al. showed
for the first time that the TMR can also be measured in the STM geometry [42]. Since
more than 10 years, SP-STM is a well-established technique which can be used to
investigate the magnetic ground state of nanostructures down to the atomic scale [43,
44]. In the past years, the technique has been extended to study also dynamics of
magnetic systems like spin-flip processes [45, 46] or magnon excitation [47, 48] and it
has been shown that atom manipulation with a magnetic tip is feasible [49, 50]. Only
very recently SP-STM has been used to probe spin relaxations of single atoms on the
time scale of nanoseconds [51].
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4. Instrumental setup and preparation

Within the framework of my PhD thesis I conducted (SP-)STM measurements of Fe
nanostructures on Ir surfaces. Since the STM is a very surface sensitive technique, it is
crucial that the investigated sample system remains uncontaminated from adsorbates
during the measurements, which can last for hours or even days. Due to the extremely
small distances between the sample and the probe tip, adsorbates on the surface or
in the tunnel junction can lead to measurement artifacts. In Sec. 4.4.5 I will show an
example of how adsorbates affect the sample and could lead to misinterpretation of
the STM measurements.

Roughly estimated, a surface is completely covered by adsorbates within 1 s in a pres-
sure of p ≈ 10−6 mbar [52], while it remains clean for several hours at p = 10−10 mbar.
For this reason, all experiments were performed in ultra-high vacuum (UHV) condi-
tions (p < 10−10 mbar). In this chapter I will give an overview of the UHV chamber
and the instruments, which were used for the studies of Fe nanostructures on Ir sur-
faces, Sec. 4.1 and 4.2, as well as the preparation of the probe tips and the investigated
samples, Sec. 4.3 and 4.4.

4.1. UHV system

The measurements presented in chapters 5 and 6 were performed in the UHV system
presented in Fig. 4.1. It is based on a standard UHV system from Omicron [53] (see
Fig. 4.1 a) which consists of three separate UHV chambers connected by a central
distribution chamber (Fig. 4.1 b shows a schematic drawing of the system). The UHV
system has been augmented by an additional chamber which hosts a low-temperature
STM and is shown in Fig. 4.1 c (see 4.2.2). The base pressure in all chambers during
normal operation is usually p ≤ 2 · 10−10 mbar. Attached to the distribution chamber
is a fast entry load lock (LL) which allows to introduce new samples and tips, which
can be moved from one chamber to another by an elaborate shuttle system.

One of the chambers, the preparation chamber (Prep), accommodates an electron
beam heater as well as an ion sputter gun which are needed in order to clean the
sample surfaces and tips (see Sec. 4.3 and Sec. 4.4). The second chamber is mainly
used to deposit materials onto the clean surfaces or tips using molecular beam epitaxy
(MBE) and is additionally equipped with a room temperature STM, see Sec. 4.2.1.
The third chamber, the analysis chamber (Ana), is used to investigate the quality
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Figure 4.1: Overview of the UHV system. a, Photograph of the multi-chamber system as
delivered by Omicron (courtesy of Omicron [53]). b, Schematic drawing of the system
with all extensions (top view). A parking spot for tips and samples (P), an additional
preparation chamber (new Prep) and two chambers for low temperature STMs (Cryo and
new Cryo) have been attached to the main system shown in a. c, Photograph of the
cryostat which contains the low-temperature STM presented in Sec. 4.2.2.

of our samples by the standard surface characterization methods, low energy elec-
tron diffraction (LEED) and Auger electron spectroscopy (AES). While LEED is very
useful to gain insight into the symmetry of the sample surface [13, 54], AES gives
information about the chemical composition of the surface [55, 56]. In addition, an
STM for use at variable temperatures is installed in this chamber. As can be seen
in the schematic drawing, the UHV system has been extended recently with a second
preparation chamber (new Prep) as well as a second cryostat (new cryo) for (SP-)STM
measurements at T < 1 K and high magnetic fields (Bmax = 9 T).

4.2. Scanning tunneling microscopes

4.2.1. Room temperature scanning tunneling microscope

The microscope which resides in the MBE chamber (see 4.1) is a home-built STM
designed by Christian Witt [57]. This STM was specifically designed to study the
growth of deposited metal atoms on a surface and it allows the investigation of the
very same spot of the sample at different coverages. In conventional STM designs, the
sample has to be taken out of the microscope in order to deposit material onto the
surface. Therefore it is basically impossible to find the same spot on the sample again
after the deposition. To avoid that problem the sample stays in the sample stage of
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4.2. Scanning tunneling microscopes

the STM during the deposition. This is possible since the axis of the sample movement
and the scanner axis include an angle of 60◦ (see Fig. 4.2 a) allowing not only a vertical
but also a lateral movement away from the tip. With this geometry it is possible to
deposit material onto the sample when it is in the deposition position without affecting
the tip. Additionally the beam from the evaporator is almost parallel to the sample
normal which ensures a uniform growth of material on the whole sample. The MBE
chamber is equipped with four electron beam evaporators, three of them pointing at
the deposition position, which allows growth studies of many different sample systems.

a b

scanner

sample stage

prism
Figure 4.2: Photographs of the two STMs used

for the studies in this thesis. a, Room-
temperature STM used for growth studies,
taken from Ref. [58]. b, Low-temperature
STM for STS studies as well as SP-STM
measurements.

4.2.2. Low temperature scanning tunneling microscope

The low temperature (LT-) STM shown in Fig. 4.2 b was designed and built by Dr. Os-
wald Pietzsch, and Dr. André Kubetzka optimized it for spin-polarized STM measure-
ments by including a tip exchange mechanism [59, 60, 61]. It is mounted in a cryostat
consisting of a reservoir for liquid helium (lHe), a reservoir for liquid nitrogen (lN2)
and a superconducting Helmholtz coil. The STM is in thermal contact with the lHe
(T ≈ 4.2 K) which is shielded by the lN2 (T ≈ 77 K) from radiation of the surrounding.
In thermal equilibrium, the STM works at T ≈ 8 K, which is measured in the STM
directly on the sample stage. The Helmholtz coil produces a homogeneous magnetic
field at the sample position which is normal to the sample surface with a strength
of up to B = 2.5 T. Sample and tip can be exchanged using a wobble stick and are
held in place by metallic springs, which also provide the thermal and electric contact.
Compared to the room temperature STM, the LT-STM has the advantage of a much
higher energy resolution (kB · (300K) ≈ 25 meV vs. kB · (8K) < 1 meV) as well as
reduced thermal drift between tip and sample.
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4. Instrumental setup and preparation

4.3. Preparation of tips for SP-STM measurements

For SP-STM measurements it is crucial to have mechanically stable and sharp tips
which also provide a high spin-polarization. The tips used for the experiments pre-
sented in this work are made from 0.75 mm tungsten (W) wire and are prepared in
four steps.

First, the tips are etched ex situ by dipping the wire into a base solution (2 M
sodium hydroxide (NaOH)) and applying an AC voltage of 4 . . . 5 V. The lower part of
the wire is covered with an insulating material and will be the STM tip. The wire is
lowered until the insulated part is completely in the solution and the area just above
the insulation is etched. This leads to a tapering of the W wire until it breaks and
the lower part falls down. After carefully removing the insulation and cleaning the
tip from residua of the base it is mounted in a tip holder and introduced in the UHV
chamber.

The second tip preparation step consists of heating the tip inside the UHV chamber
to temperatures > 2000 K using an electron beam heater. This treatment removes
possible impurities and oxide layers from the tip. In the third step, the clean W tip is
coated with a thin film consisting of either Fe or chromium (Cr) [43]. After the depo-
sition of the magnetic material the coated tip is slightly heated to T ≈ 600 . . . 700 K
to ensure a smooth film.

After these three preparation steps the tip is inserted into the STM and can be used
for SP-STM measurements. A fourth preparation step, which is the in situ sharpening
of the STM tip, might be necessary when the tip is not sharp, unstable or consists of
multiple micro-tips. By approaching the tip to or even gently dipping it into the surface
the foremost end of the tip can be rearranged or tip atoms can be lost. Similarly, the
tip can be formed by applying voltage pulses between the tip and the sample. The
outcome of such a treatment does not need to be positive, the tip can actually get
worse, but by patiently repeating these procedures it is very likely that the tip will be
sharp some day.

Both tip coatings – Fe and Cr – have their advantages and disadvantages and are
used depending on the design of the experiment. On the one hand, tips covered with
an Fe film have the advantage that their spin polarization is usually larger than the
polarization of the Cr-coated tips. Additionally, it is from my experience easier to
get a sharp and stable Fe-coated tip compared to the Cr-coated tips. On the other
hand, the stray field of Fe-coated tips can affect a magnetic sample and thereby lead
to measurement artifacts while the stray field of Cr-coated tips is (almost) negligible
due to their antiferromagnetic ordering.

Depending on the investigated sample system and the experimental requirements
it is not only crucial that the tip is magnetic but also its behavior in an external
magnetic field becomes important. Usually, the magnetic origin of an observed SP-
STM contrast is proven by applying an external magnetic field in opposite directions.
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4.4. Sample preparation

Therefore, only one of the two electrodes – tip or sample – should be influenced by
the magnetic field, i.e. one of the two electrodes should be a hard magnet the other
one a soft magnet.

Due to the ferromagnetic order of Fe-coated tips their magnetization direction aligns
with an applied magnetic field, which makes them useful to investigate hard magnetic
samples, e.g. an antiferromagnet [6], a spin spiral [15] or ferromagnets with a large
anisotropy, which remain unaffected by the magnetic field. This leads to inverted SP-
STM contrasts in opposite magnetic field directions, which is an ultimate proof for
magnetic contrast. In a recent work it was demonstrated how an Fe-coated tip can be
aligned in any direction with a vector field magnet, thereby detecting all components
of a spin-spiral [5].

In order to study sample systems with a soft magnetization, e.g. small ferromagnetic
structures or single atoms, it is desirable that the tip magnetization is independent of
the external magnetic field. Cr-coated tips meet these demands due to their antifer-
romagnetic ordering and it was thereby possible to investigate e.g. field dependence
of Co islands on copper (Cu) [62] or record magnetization curves of single atoms or
dimers [63, 64].

While I only utilized such coated tips for the investigations presented in the following
chapters, there are different preparation procedures for magnetic tips available. It has
been shown, that an initially non-magnetic tip can become spin-sensitive by dipping
it in situ into a magnetic sample [65] or by picking up a single magnetic atom [45].
In a different approach there have been several successful attempts to utilize Cr bulk
tips for SP-STM studies [66, 67, 68].

4.4. Sample preparation

In this section I describe how to prepare Fe nanostructures on the two Ir surfaces. Since
both sample preparations are very similar I restrict the discussion to the preparation
of Fe chains on the reconstructed Ir(001) surface.

4.4.1. Preparation of Fe chains on (5×1)-reconstructed Ir(001)

The first step of the preparation of the (5×1)-reconstruction is to clean the Ir(001)
surface. Since embedded carbon (C) atoms are the main contamination of an Ir single
crystal, the creation of a surface without C atoms is the first preparation step. In
order to eliminate the C impurities, the Ir crystal is annealed using a temperature
ramp with a constant increase in temperature and a maximum temperature of 1800 K
in an atmosphere of oxygen (O2) with pO2 ranging from 10−6 to 10−7 mbar. The
elevated temperature leads to an increased mobility of the C impurities which can
move to the surface where they react with the O2 molecules to either CO or CO2. Due
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4. Instrumental setup and preparation

to the high temperature the molecules desorb from the surface and can be pumped
out of the UHV chamber by a turbo molecular pump. Many successive cycles of this
procedure lead to a large depletion zone below the surface which contains almost no
C atoms.

a b c

d e f

40 nm200 nm

200 nm 40 nm

Figure 4.3: Comparison of the (1×1)-surface and the (5×1)-reconstruction of the Ir(001)
surface. a, Overview constant current STM image (U = −500 mV, I = 0.5 nA, RT) and
b, closer view of the unreconstructed Ir(001) surface (U = +100 mV, I = 1 nA, RT). c,
photograph of the LEED pattern of the (1×1)-surface (electron energy: E = 326 eV). d - f,
Similarly, STM images and LEED pattern of the (5×1)-reconstructed Ir(001) surface (d
and e, U = −800 mV, I = 0.4 nA, RT; f, E = 325 eV).

After obtaining a carbon free surface, the preparation of the reconstructed surface
follows a standard UHV cleaning recipe. Therefore the topmost surface layers, and the
adsorbates on top of the surface, are removed by bombardment with argon (Ar) ions
(Uacc ≈ 800 V at pAr ≈ 8 · 10−5 mbar) and subsequent annealing to 1600 K to restore
the surface reconstruction. If carried out properly once, the O2-treatment does not
need to be repeated every time, e.g., I did not need to repeat it for more than two
years.

In Fig. 4.3 the differences between the unreconstructed surface and the (5×1)-
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reconstructed surface are shown:

a and d: The unreconstructed (1×1)-surface exhibits terraces, which all have a sim-
ilar width, separated by monatomic steps. In contrast, the (5×1)-surface
exhibits huge terraces separated by bunches of many steps (see also Fig. 4.4).

b and e: The reconstructed surface shows a regular arrangement of trenches on the
surface while the unreconstructed surface is – except for some defects or
adsorbates – rather flat.

c and f: The two surfaces can also be easily distinguished by their respective LEED
pattern. In addition to the spots of the (1×1)-surface, c, the reconstructed
surface exhibits higher order spots in the LEED pattern reflecting the
(5×1)-superstructure, f. Due to the crystal symmetry the reconstruction
exhibits two rotational domains perpendicular to each other1.

After the last preparation step, annealing to 1600 K, the surface was cooled down to
room temperature before Fe atoms were deposited onto the surface with a commercially
available electron beam evaporator [70]. In this setup the Fe atoms were evaporated
from a high purity Fe wire with a diameter of 2 mm. The deposition rate was controlled
by an integrated flux monitor, which measures the current of ionized Fe atoms. The
deposition rate is in good approximation directly proportional to the detected flux
current. Once calibrated, the time needed to deposit the desired amount of material
can be determined very precisely.

Now the sample is prepared and can be investigated by (SP-)STM. For the prepara-
tion of a new sample one just has to repeat the steps described above. Since the Ir(001)
surface tends to form alloys with deposited metal atoms quite easily (see 4.4.3) I want
to emphasize that the crystal should not be heated if the deposited atoms are still on
the surface. This will result in a diffusion of the metal atoms into the Ir crystal bulk,
and it will be extremely difficult to obtain a clean Ir(001) surface again. Therefore,
the first step to prepare a new sample should always be a cycle of Ar+-etching.

4.4.2. Ir(001) surface and its reconstruction

The (001) surface of an iridium single crystal exhibits two different structures, the
meta-stable unreconstructed (1×1)-surface as well as the energetically more favorable
quasi-hexagonal (5×1)-reconstruction. This surface and its reconstruction have been
studied to quite some extent over the last 40 years from the experimental side [69, 71,
72] as well as from the theoretical side [69, 73]. The interest in this surface stems from

1While the (5×1)-reconstruction is energetically favorable compared to the unreconstructed surface,
it can be lifted by annealing the surface in an atmosphere of hydrogen (H2), giving rise to a clean
but metastable (1×1)-surface [69].
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the fact that the exact form of the reconstruction was under debate for a long time,
but lately the reconstruction draws attention since it is a nice template for growth of
self-organized one-dimensional nanostructures [74, 75].

inner hollow sites

outer hollow sites

zigzag

top sites

400 nm 30 nm

2 nm

a b
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d
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Figure 4.4: The (5×1)-reconstruction of the Ir(001) surface. a, Large terraces on the µm
scale are separated by step bunches (measurement parameters: U = −500 mV, I = 1 nA,
RT). b, STM image showing the trenches and hills of the reconstruction running along
the [110]-direction (U = −800 mV, I = 0.4 nA, RT). c, Atomically resolved STM image of
the reconstruction (U = −2 mV, I = 40 nA, RT). d and e, Top view and side view of the
corresponding ball model, respectively.

As it is shown in Fig. 4.4 a, the (5×1)-reconstructed Ir(001) surface exhibits huge
terraces (with a width of up to 1µm) which are separated by bunches of monatomic
steps. A closer look to one of the terraces shows a regular arrangement of paral-
lel trenches running along a 〈110〉-direction with a distance between two adjacent
trenches of 1.35 nm. The apparent depth of the trenches in the STM image in Fig. 4.4 b
is ≈ 50 pm which is in excellent agreement with LEED measurements and DFT calcu-
lations [69, 76, 77]. This buckling of the topmost surface layer is due to an additional
amount of 20 % more atoms compared to the underlying layers. In an STM image with
true atomic resolution the quasi-hexagonal arrangement of the atoms in the topmost
layer (see blue hexagon in Fig. 4.4 c) as well as the internal structure of the recon-
struction becomes visible. The hills and the trenches consist of three rows of atoms,
each, and the row of atoms in the center of the trench (hill) is sitting slightly higher
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(lower) than the two neighboring rows (see also side and top view of the ball model in
Fig. 4.4 d and e).

This arrangement of the Ir atoms in the surface reconstruction leads to several
different adsorption sites which are marked in Fig. 4.4 e. The adsorption sites in the
trench of the reconstruction are labeled with respect to the distance to the center row
of the trench (inner and outer hollow site). The mixture of the two sites is entitled
zigzag and the adsorption sites on the hill of the reconstruction are named top sites.

4.4.3. Growth of Fe on reconstructed Ir(001)

Due to its trenches the reconstructed Ir(001) surface is an ideal template for the self-
organized growth of one-dimensional nanostructures. As it has been shown before [75,
78], the growth of Fe on the reconstructed surface can be divided into four regimes:

1. If the coverage of Fe atoms does not exceed 20 to 25 % of an atomic layer (also
monolayer (ML)), Fe grows almost solely in the trenches of the reconstruction
forming bi-atomic chains (see Fig. 4.5 a).

2. For coverages between 0.25 and 0.8 ML the deposited Fe atoms start to lift the
reconstruction and a more or less ordered surface alloy is formed. The beginning
of this alloying process can be seen in Fig. 4.5 a (marked by the arrows). At
this stage the alloy is rather disordered while with increasing coverage a regular
(5×1)-superstructure develops [75].

3. The second and third atomic layers grow in the Frank-van-der-Merwe mode
forming rectangular islands with the edges along the 〈110〉-directions. Even
though the reconstruction is lifted, it still influences the growth of these islands.
All of them grow with the long edge parallel to the direction of the former
trenches [78]2.

4. Also the fourth atomic layer grows in the layer-by-layer mode, but the rectangular
islands show no preferred direction of growth as the islands of the second and
third layer [78].

In this work I concentrated on the Fe chains which form in the first growth stage
and studied their structural, electronic and magnetic properties. Since the structural
configuration of the Fe chains is not clear from previous experimental and theoretical
publications [75, 76, 77, 81], it is necessary to determine the favorable adsorption sites
of the Fe atoms. Figure 4.5 a shows an overview STM image of the reconstructed
Ir(001) surface covered by ≈ 0.15 ML of Fe. In this STM image all chains but one,

2More information about the growth of 3d-transition metals on the different Ir(001) surfaces can be
found in an overview article by K. Heinz and L. Hammer [79] and in the PhD thesis of A. Klein [80].
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Figure 4.5: Growth of Fe on Ir(001) in the submonolayer regime. a, Overview constant
current STM of Ir(001) covered by ≈ 0.15 ML of Fe (U = +50 mV, I = 0.2 nA, T = 8 K).
All chains but one (marked by the circle) appear similar and only differ in height. b,
Constant current STM image of two Fe chains grown in the inner and outer hollow site
configuration, respectively (U = +20 mV, I = 5 nA, T = 8 K). c and d, Simulated STM
images, taken from Ref. [77], of chains in the inner and outer hollow site, respectively.

which is marked by the circle, appear as a single strand, indicating that the Fe prefers
only one of the possible adsorption sites. In Fig. 4.5 b a high resolution STM image of
these two types of chains shows that the one rarely observed consists of two parallel
strands which are well separated in the STM image.

In addition to the four adsorption sites shown in Fig. 4.4 e a fifth possibility (DEC),
where the Fe atoms partially lift the reconstructed Ir surface, was proposed in Ref. [81].
From these five possible configurations we can exclude three structures by simple
arguments: The adsorption position on top of the hill of the reconstruction, which
is denoted as top sites in Fig. 4.4 e, does not occur, since STM images clearly show
that the chains are located in the trenches of the reconstruction. Also the structural
configuration denoted as DEC in Ref. [81] can be excluded, since it is known that a
restructuring of the surface from the quasi-hexagonal (5×1)-phase to the quadratic
(1×1)-phase has a rather large activation energy and once a (1×1)-patch has formed
large parts of the reconstruction are lifted [75]. This process leads to an immediate
intermixing of the deposited Fe atoms with the Ir surface atoms and surface alloy
formation as it can be seen in Fig. 4.5 a (marked with the red arrows). The third
structural configuration which we can directly exclude is the formation of zigzag chains
(see Fig. 4.4 e). Such a structure would be asymmetric with respect to the trench and
therefore it should be easily distinguishable in the STM images3.

This leaves us with two possible structural configurations which are the inner and
outer hollow sites in the trench (see Fig. 4.4 e). From Refs. [77, 81] it becomes evident

3Very rarely some parts of an Fe chain grow in the zigzag configuration as can be seen on p. 49.
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that those two configurations are very close in their total energy which could make
it possible to observe both structures at the same time. Comparing the STM image
in Fig. 4.5 b to simulated STM images for the inner and outer hollow site structural
configuration (see Fig. 4.5 c and d) we find a nice agreement and conclude that almost
all of the observed chains are in the inner hollow site and only very rarely the Fe atoms
grow in the outer hollow sites4.
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Figure 4.6: Atomic resolution of the Fe chains. a, Constant current STM image of three
Fe chains and b, the profiles corresponding to the red and green line in a, respectively
(U = −2 mV, I = 40 nA, T = 8 K). c, Ball model of an Fe chain on Ir(001) superimposed
with the atomically resolved STM image from Fig. 4.4 c. d and e, Top and side view of
the ball model with the Fe chains residing in the inner hollow site, respectively.

Further evidence for the inner hollow site as the preferred adsorption site for the
Fe atoms is shown in an atomically resolved STM image in Fig. 4.6 a. While atomic
resolution can be achieved along the chain axis (red line profile in Fig. 4.6 b), it has not
been possible to resolve the two neighboring atoms perpendicular to the chain axis, see
green line profile in Fig. 4.6 b. A ball model illustrating the structural configuration
of these Fe chains is shown in different perspectives in Fig. 4.5 c - e.

4.4.4. Electronic properties of the Fe chains

During my diploma thesis [78] I studied not only the growth of Fe on the Ir(001)
surface but also the electronic properties of the bi-atomic Fe chains which I will briefly
present in this section. Figure 4.7 a and b show a constant current STM image of a
typical sample area and the simultaneously acquired dI/dU-map, respectively. Most
strikingly, the ends of the chains appear much darker in the dI/dU-map compared to
the chain center. Since the dI/dU-signal is proportional to the LDOS (see Sec. 3.4) this
is evidence that – at this particular energy – the LDOS of the chain ends is smaller than

4The abbreviations C1 and C4 for the inner and outer hollow site growth, respectively, stem from
Ref. [76] and were also used in the following theoretical papers [77, 81].
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Figure 4.7: Electronic properties of Fe chains on the Ir(001) surface. a and b, Constant
current STM image and the simultaneously acquired dI/dU-map of a typical sample area,
respectively (U = +500 mV, I = 1 nA, Umod = 20 mV, T = 13 K). c, Spectra taken
at the chain centers (black dots) and the chain ends (red dots) (Ustab = +1500 mV,
Iset = 1 nA, Umod = 15 mV, T = 13 K). The insets show slices from the spectroscopic field
for U = 300 mV and U = 553 mV, respectively.

the LDOS of the chain center, meaning that the Fe chains develop an end state similar
to Ref. [82], which can be regarded as the zero-dimensional analog to the surface state
of bulk material. Furthermore, the LDOS seems to be independent of the chain length
since all of the chains displayed in Fig. 4.7 b show the same contrast in their center as
well as at their ends. To further investigate this intriguing difference between the ends
and the center of the chains, I recorded a full spectroscopic field at this sample spot
resulting in a three-dimensional data cube of the spatially and energetically resolved
LDOS. This spectroscopic field confirms the independence of the LDOS from the chain
length and Fig. 4.7 c shows exemplarily spectra of the chain center (black dots) and
the chain ends (red dots) averaged over several chains in Fig. 4.7 a. The insets in
Fig. 4.7 c show two slices of the spectroscopic field for U = 300 mV and U = 553 mV,
respectively, further illustrating the occurrence of end states in the Fe chains.

Closer examination of the dI/dU-map in Fig. 4.7 b reveals that the extremely short
chain in the bottom left (marked by the white arrow) which is only ≈ 1 nm long,
corresponding to ≈ 8 atoms, does not show the characteristics of a chain center, but
only consists of ends. This means, that the observed end states are not confined to
the last pair of atoms of the chain but are extended over two to three atomic distances
into the chain.

Apart from the variance at the chain ends, the LDOS does not vary for chains of
different lengths, see Fig. 4.7 b, and shows no modulation along the chain axis for any
bias voltage applied during these investigations. This is particularly important with
regard to the interpretation of the spin-resolved results presented in Sec. 5.2.
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4.4. Sample preparation

4.4.5. Sample quality and effects of contaminations

After the characterization of the growth (Sec. 4.4.3) and the electronic properties
(Sec. 4.4.4) of the Fe chains I want to discuss effects due to contaminations, which can
be easily misinterpreted as magnetic structure related signatures.

d /dI U d /dI U 25 mV50 mV

a b c

30 nm

20 nm

Figure 4.8: Fe chains displaying different periodic LDOS modulations. a, dI/dU-map, corre-
sponding to the upper constant current image in b, with (almost) all Fe chains exhibiting
a three atom periodicity (I = 0.2 nA, Umod = 4 mV, T = 13 K). c, dI/dU-map, simul-
taneously acquired with the lower constant current image in b, of Fe chains with a four
atom periodicity (I = 0.2 nA, Umod = 6 mV, T = 13 K). Note that a and c show images
of different preparations.

As shown in the previous section, the LDOS of the Fe chains is homogeneous along
the chain axis for bias voltages U > 300 mV. While this is also true for most of
the chains imaged at low voltages (U ≤ 100 mV), for some preparations the chains
exhibit periodic LDOS modulations in the low bias voltage regime. Figure 4.8 a and
c show exemplarily dI/dU-maps of two different sample preparations acquired at bias
voltages close to the Fermi level, and Fig. 4.8 b shows the respective constant current
images. All of the Fe chains in those two images show modulations along the chain
axes in the dI/dU-maps, which have periodicities of either three (4.8 a) or four (4.8 c)
atomic distances. In very rare cases a modulation with a periodicity of just two atomic
distances can be observed, see the chain marked by an arrow in Fig. 4.8 a.

As I will show in this section, these modulations are caused by contamination of the
chains with adsorbates, most probably hydrogen. The observation of the modulations
in only some of the sample preparations is a first indication that the periodic patterns
are not due to the intrinsic electronic or magnetic structure of the chains. In most cases
the chains just do not show any modulation, while the sample preparation was identical
for all measurements (see Sec. 4.4). Further evidence for adsorbates as the cause for
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4. Instrumental setup and preparation

the periodic modulations is shown in Fig. 4.9, which displays how the sample changes
its appearance in STM images over time. I prepared a typical sample of Fe chains on

a b

c d

10 nm topography 25 mV

10 nm 25 mVtopography d /dI U

2 atom periodicity

no periodicity

d /dI U

4h after prep.

42h after prep.

Figure 4.9: Time evolution of the sample system at low temperatures. a and b, Constant
current image and the simultaneously acquired dI/dU-map of the sample four hours after
the preparation. c and d, Images of the same sample but 38 h later (for all images:
I = 5 nA, Umod = 5 mV, T = 8 K).

(5×1)-reconstructed Ir(001) and studied if the time, which the sample resides in the
cryostat, has an effect on the appearance of the Fe chains. In Fig. 4.9 a, a constant
current STM image of the sample is shown four hours after the insertion into the low
temperature microscope. All of the chains look featureless in the topography channel
as well as in the dI/dU-map, see Fig. 4.9 b. The very same sample, only 38 hours
later, exhibits periodic modulations along the chain axes with different periodicities,
see Fig. 4.9 c and d, which is a strong indication that the Fe chains getter a significant
amount of adsorbates even at cryogenic temperatures. Since H2 is the most abundant
molecule in UHV, it is likely that the modulations are caused by adsorbed hydrogen
atoms.

I further studied the voltage dependence of the adsorbate induced modulations to
be able to distinguish them from periodic patterns due to complex magnetic structures
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Figure 4.10: Energy dependence of the periodic modulations. a and b, Line profiles of
a chain with periodicities of three and four atomic distances, respectively, taken from
dI/dU-maps at different voltages. The insets show dI/dU-maps of the respective chain
(a, U = 15 mV, I = 0.2 nA, Umod = 4 mV, T = 13 K; b, U = 25 mV, I = 0.2 nA,
Umod = 4 mV, T = 13 K).

which can be seen in SP-STM measurements [15]. Figure 4.10 a shows line profiles at
different bias voltages of a chain exhibiting a modulation with three atom periodicity
(see inset). The amplitude of the periodic pattern, which is very pronounced at ener-
gies close to the Fermi level (black line), becomes smaller for larger energies, until it
vanishes at bias voltages U ≥ 100 mV. Similarly, in Fig. 4.10 b the energy dependence
for a chain with the four atom periodicity is shown. While the general trend is the
same as for the chains with a periodicity of three atoms – weaker contrast for higher
voltages – the modulation is still quite pronounced at U = 100 mV (blue line) and
vanishes for voltages U > 200 mV5. In contrast to this distinct dependence of the bias
voltage, the appearance of the periodic pattern does not change much with increasing
tunnel current.

On closer examination, the periodicity of three atomic distances, shown in the inset
of Fig. 4.10 a, seems to jump at times from one scan line to the next. In order to inves-
tigate those jumps of the periodic pattern, the measurement mode was switched from
scanning a whole frame to scanning along a line on top of a chain. Though this kind
of measurement requires very stable tunneling conditions, meaning no thermal drift
or scanner creep, it increases the time-resolution significantly. While it takes around
5 minutes to scan a frame, which leads to a sampling rate of ≈ 0.003 Hz, a line scan
just takes ≈ 1/4 seconds or a rate of 4 Hz, meaning that the time-resolution regarding

5One-dimensional quantum well states, which can lead to periodic modulations in STM images [83,
84], can be ruled out from these measurements since the periodicities change neither with the
applied bias voltage nor with the chain length.
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the chain is increased by three orders of magnitude. Additionally this method has
the advantage that almost all recorded data is of interest – on top of a chain – while
around 90 % of a frame scan is on the bare Ir surface.
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Figure 4.11: Time-resolved measurements on top of an Fe chain. a, Constant current wa-
terfall plot of a single chain with the x-axis being along the white line in b and the y-axis
as the time (a, U = +5 mV, I = 0.5 nA, T = 8 K; b, U = +50 mV, I = 0.2 nA, T = 8 K).
c Profiles along the two lines in a are shown together with two cosine fits (blue and green)
to the modulation of the black line. Note, that the red line is offset with respect to the
black line for better visibility.

A typical measurement is shown in a waterfall plot in Fig. 4.11 a. The Fe chain,
which is marked by the white line in Fig. 4.11 b, lies parallel to the fast scan direction
(horizontal) and the vertical axis is the time evolution of the chain profile. This image
is recorded with an applied bias voltage of 5 mV and the modulation (with a periodicity
of three atomic distances) is clearly visible on the left as well as on right end of the
chain while a brighter region is visible in the center of the chain. The black line in
Figure 4.11 c shows a line profile along the black line in Fig. 4.11 a with a modulation
amplitude on the order of 15 to 20 pm, while the blue and green line represent cosine
fits to the modulation. The vertical lines reflect the atomic positions6 and it can be

6The atomic positions are assumed in a way that an atom is below one maximum of the modulation,
but it could very well be below a minimum since we do not know the exact adsorption position
of the hydrogen atoms. Fortunately, this uncertainty does not make the following conclusions less
valid.
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Figure 4.12: Time evolution of the same Fe chain as in Fig. 4.11 a for different voltages.
The bias voltages are displayed in the lower right corner of each STM image ( I = 0.2 nA,
T = 8 K). The switching rate increases with increasing bias voltage.
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seen that the two cosine fits exhibit a phase shift of exactly one atomic distance. This
means that the bright area in the chain center acts as some kind of domain boundary
which separates the two phase domains.

As it can also be seen in Fig. 4.11 a, in rare cases jumps of the modulation occur
from one line to the next. Comparison of two adjacent scans showing a jump, see
the black and red line profiles in Fig. 4.11 c, reveals that the modulation shifts by one
atomic distance to the left or right. Since the atoms of the Fe chain act as a periodic
potential for the adsorbates, leading to energetically preferred adsorption positions in
atomic distances, no jumps of smaller distance can be observed. These shifts could be
explained by an excitation of the periodic adsorbate structure due to interaction with
the tunneling electrons from the tip.

This explanation is corroborated by line mode measurements at different tunneling
parameters shown in Fig. 4.12. In these measurements the absolute value of the bias
voltage is increased from left to right and it can be clearly seen that the switching rate
of the modulation increases with increasing voltage until the switching is too fast to
be resolved in the line scan mode for a bias voltage of U = 100 mV.

In summary, I have shown that adsorbates can form periodic patterns on top of the
Fe chains and can be imaged using STM. Depending on the amount of adsorbates the
modulations in the constant current images as well as the dI/dU-maps have periodic-
ities of four, three or two atomic distances along the Fe chains axes. These periodic
modulations can be excited by the tunneling electrons to shift laterally, which leads
to a vanishing contrast for larger bias voltages U > 100 mV. All the measurements
presented in this section are important to judge if the sample is really clean and to
understand and interpret the SP-STM measurements presented in Ch. 5.

Even though I concentrated on studying the magnetic properties of uncontaminated
chains, the chains with adsorbates on top could be also interesting to investigate with
spin-polarized STM. In a theoretical work Vukajlovic et al. studied the magnetic
structure of single Fe chains on the unreconstructed Ir(001) surface and the influence
of hydrogen on top of these chains [85]. In their work the energy difference between
the ferromagnetic and antiferromagnetic state in dependence of the hydrogen coverage
is calculated. Interestingly, the Fe chains couple AFM along the chain axis when no
hydrogen is present, and become FM when they are covered with hydrogen. Analogous,
also the magnetic structure of the bi-atomic Fe chains on the reconstructed Ir(001)
surface could be influenced by the adsorbates.
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5. Magnetism of iron chains on
iridium(001)

5.1. Magnetism in atomic chains

5.1.1. What is special about one-dimensional magnetism?

In the 1960’s, N. D. Mermin and H. Wagner unambiguously proved that in the limit
of the Heisenberg model there is no long-range magnetic order in one- and two-
dimensional systems at a finite temperature T [86]. By introducing MAE, which leads
to the Ising model in the limit of large K, long-range magnetic order can be found
in a two-dimensional magnetic system at sufficiently low T , as it has been shown in
numerous SP-STM measurements, e.g. [87, 6]. In contrast, even in the Ising model
one-dimensional structures develop no long-range magnetic order at T 6= 0 K. Any
system tries to minimize its free energy

F (T ) = E − T · S, (5.1)

which is a competition between the energy E and the entropy S. In the limit of low
temperatures, F (0 K) = E meaning that the system tends to its magnetic ground
state, while for high temperatures F (T ) ≈ −T · S, which leads to disorder since this
maximizes S. In the one-dimensional Ising model the energy for a chain of N atoms
with their spins Szn is given by E = −2J

∑N
i=1 S

z
i S

z
i+1, and assuming FM order (J > 0)

the ground state energy is E0 = −JN/2 for Sz = ±1/2. By introducing a domain wall,
one bond of the chain becomes AFM and the system loses the energy of ∆E = J . This
is accompanied by a gain in entropy of ∆S = kB lnN . For sufficiently large systems,
i.e. in the thermodynamical limit, the entropy gain outweighs the loss in energy for
all T 6= 0 K driving the system into a magnetically disordered state. However, this
also means that for extremely short chains (small N), with a length L smaller than
the magnetization correlation length ξ(T ), the competition between E and S is won
by the energy leading to a mono-domain state at finite temperatures.

Due to the lack of long-range magnetic order, the main interest in spin chains is
not due to their ground state but rather their excitations. For instance, it has been
shown that the excitations of an AFM Heisenberg chain with S = 1/2, called spinons,
show a gapless excitation spectrum, meaning that excitations with an arbitrary small
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5. Magnetism of iron chains on iridium(001)

excitation energy exist [88, 89]. A gap between the ground state and the first excited
state can be created by the spin-Peierls distortion, which is a periodical pairing of
two neighboring spins [90, 91]. This lattice distortion causes two different exchange
constants J ± ∆J which corresponds to the formation of singlet pairs with S = 0, a
nonmagnetic ground state with an energy gap to the excited triplet state. The loss
in energy due to the lattice distortion is overcompensated by the gain in magnetic
energy1.

F. D. M. Haldane proposed that, in contrast to the gapless excitations of half in-
teger spin chains, chains with integer spins have a gap in their excitation spectra
due to complex, nonlinear quantum fluctuations [94]. Although AFM Heisenberg spin
chains with S = 1, often called Haldane chain, have been subject of many theoretical
works [95, 96], an exact solution of those chains is still lacking [97]. Haldane’s conjec-
ture is supported by inelastic neutron scattering experiments on inorganic materials
which incorporate chains of nickel (Ni) ions (S = 1), e.g. CsNiCl3 [98].

Truly one-dimensional magnetic systems remain a theoretical concept which can
be best approximated by magnetic chains in bulk systems with a very weak inter-
chain coupling [98, 99]. Since those systems are not accessible by surface sensitive
techniques as SP-STM, atomic chains deposited onto surfaces became a focal point of
recent research.

5.1.2. Magnetic chains on surfaces

In general there are two possible ways to prepare atomic chains on surfaces. By choos-
ing an adequate substrate, atoms deposited onto this surface can form one-dimensional
structures due to self-organization. It has been shown that this approach works very
well on semiconductor surfaces [82, 100, 101], and also on stepped or reconstructed
metal surfaces [102, 103]. While this preparation procedure is very fast and allows to
grow many chains simultaneously, it is not possible to control the length of the chains.
Due to the vast number of chains on the surface, this preparation procedure is ideally
suited for investigations using spatially averaging methods as XMCD as well as local
probe techniques as STM.

The second possibility is the manipulation of single atoms on a surface with the
STM tip. The feasibility of this method has also been demonstrated on numerous

1The name of the distortion reflects the similarity to the Peierls distortion, which describes a metal-
insulator transition due to the rearrangement of the lattice. The energy costs for the change of
the atomic position is more than compensated by the gain in electron energy due to a new band
structure with a gap at the Fermi energy. Rudolf Peierls first described the effect in the 1930’s in
a solid-state textbook, but did not publish his results. Ironically, the first experimental evidence
for a Peierls distortion and the resulting transition to an insulating state was found in crystals
of polymer-like molecules (TTF-TNCQ), which were expected to become superconducting at low
temperatures [92, 93].

44



5.2. SP-STM measurements on Fe chains on (5×1)-reconstructed Ir(001)

metal surfaces [104, 83] as well as on thin insulating layers [105]. Artificial chains
of well-defined length can be constructed upon employing atom manipulation, which
allows the detailed investigation of size dependent effects. However, the preparation of
a single chain is already very time consuming and it can only be studied using STM.

While the structural and electronic properties of atomic chains on surfaces have
been studied to quite some extent, to my knowledge there are only two experimental
investigations of the magnetic properties, which are also good examples for the two
aforementioned preparation methods. Co atoms deposited on a vicinal platinum (Pt)
surface form self-organized chains at the step edges of the substrate [106]. It has been
shown by XMCD magnetization curves, that these Co atoms couple ferromagnetically
along the chain axis and for T < 10 K a remanent magnetization with a relaxation time
of τ ≥ 100 s was detected. Due to a strong hybridization with the Pt substrate, the
Co chains lack the quantum mechanical behavior introduced in the previous section
and can be described within a classical model.

On the other hand, up to 10 atoms long Mn chains have been constructed from single
atoms on the Cu2N/Cu(001) surface using an STM tip [105]. Spin-flip excitations were
detected by STS which revealed an AFM coupling of the Mn atoms. This coupling
gives rise to differences between chains consisting of an even and odd number of atoms.
Due to the insulating Cu2N layer the Mn chain is almost decoupled from the metallic
surface giving rise to quantum mechanical effects. The ground state of these chains
cannot be described by a static magnetic structure, but is given by a superposition of
all possible spin configurations. The energy of the spin-flip excitations is equivalent
with the energy of the first, second, etc, excited state.

While both studies revealed intriguing magnetic properties of atomic chains, they
did not provide a real-space image of the magnetic structure, either due to the lack of
spatial resolution of XMCD in the case of the Co chains or due to quantum mechanical
fluctuations in the Mn chains. In the framework of my PhD thesis, I conducted
SP-STM measurements on Fe chains on an Ir substrate to investigate the magnetic
properties in real space with atomic resolution.

5.2. SP-STM measurements on Fe chains on
(5×1)-reconstructed Ir(001)

As discussed in Sec. 5.1, the magnetic order in one-dimensional structures is much more
prone to quantum and thermal fluctuations compared to two- or three-dimensional
structures. This makes magnetic measurements in real space especially difficult. In
addition, the observed modulation along the Fe chains due to contaminations (see
Sec. 4.4.5) can be mistaken for magnetic contrast which can appear very similar,
cf. [15]. Therefore, the SP-STM data has to be evaluated very carefully.
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5. Magnetism of iron chains on iridium(001)

As I have shown in the previous sections, the Fe chains on the reconstructed Ir(001)
surface can grow in different adsorption sites and are sometimes contaminated with
adsorbates on top of the chain. During my thesis I investigated the magnetic structure
of the clean Fe chains grown in the inner hollow sites of the reconstruction. In order
to prove that any contrast observed in SP-STM measurements is due to magnetic
contrast, I characterized the very same sample in advance using conventional STM.
For the SP-STM measurements I used W tips which were coated with either a Cr film
or an Fe film (see Sec. 4.3 for details).
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Figure 5.1: STM and SP-STM measurements on the same sample. a and b, Constant current
STM image and the simultaneously acquired dI/dU-map at B = 0 T, respectively. c, The
same sample area in an external magnetic field of B = +2 T. Similarly, d - f, SP-STM
images using an Fe-coated W tip (for all images: U = +20 mV, I = 5 nA, Umod = 2 mV,
T = 8 K). The periodic modulation is only visible when imaged with a spin-sensitive tip
in an external magnetic field.

Figure 5.1 a and b show a constant current image and the simultaneously acquired
dI/dU-map of the sample, respectively, taken with a nonmagnetic W tip at B = 0 T.
All of the chains reside in the inner hollow sites and no modulation along the chain axis
is visible in either image. In Fig. 5.1 c a dI/dU-map of the same sample area is shown,
this time at an external magnetic field of B = +2 T. Again, no periodic modulation can
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be observed. Since these measurements are performed with an applied bias voltage
of U = +20 mV, I can conclude that the Fe chains are devoid of adsorbates (see
Sec. 4.4.5). After these characterization measurements, I replaced the W tip by a
spin-sensitive, Fe-coated W tip, while the sample resided in a parking spot next to
the STM at lHe temperature, and repeated the measurement. The SP-STM images
in Fig. 5.1 d - f are recorded with the same parameters as the images in Fig. 5.1 a -
c but with the Fe-coated tip. As can be seen, also in the measurements with the
spin-sensitive tip no modulation along the chain axis is visible, but when a magnetic
field is applied a very weak periodic modulation arises on every chain, see Fig. 5.1 f.
Given that the chains do not exhibit this periodic modulation when imaged with a
nonmagnetic tip at any magnetic field, its origin is definitely the magnetic structure
of the Fe chains. A closer look into the SP-STM data in Fig. 5.1 d shows more noise
compared to the STM measurements presented in Fig. 5.1 a, which is probably due to
an increase in the adsorbate density during the time the sample was residing outside
of the STM. Since the magnetic signal in Fig. 5.1 f is very small and to avoid the
contamination of the sample during the tip exchange, I performed additional SP-STM
measurements on freshly prepared samples.

Figure 5.2 a shows an SP-STM constant current image of the Fe chains recorded
with a Cr-coated tip without an external magnetic field. As can be seen in this im-
age, the chains appear featureless, and also the simultaneously acquired dI/dU-map
in Fig. 5.2 b shows a homogeneous LDOS on the chains and no differences between
different chains. This measurement is in accordance with the measurements shown in
Fig. 5.1 b: the chains do not display any magnetic feature for these measurement pa-
rameters. The uniform appearance of the chains changes significantly when examined
with the Cr-coated tip in an external magnetic field, since all of the chains, regardless
of their length, exhibit a modulation along their axes with a periodicity of three atomic
distances (see Fig. 5.2 c and line profiles in d). In contrast to the modulation due to
adsorbates on top of the chains described in the previous section, this modulation is
not only visible close to the Fermi energy but persists over a wide range of applied
bias voltages (see also Fig. 5.4).

The tip used for these measurements was sensitive to the out-of-plane component of
magnetization, maxima and minima along the chain axis therefore represent areas with
magnetization components pointing up or down with respect to the surface [107]. The
modulation can be explained by a spin spiral state with an angle of 120◦ between the
magnetic moments of neighboring atoms along the chain axis, as sketched in Fig. 5.2 d.
By applying a magnetic field in the opposite direction (Fig. 5.2 d) the periodic contrast
is reversed when using a Cr-coated tip. Due to the AFM ordering of the Cr-coated
tip, its magnetization direction does not change when applying magnetic fields of this
strength (see also Sec. 4.3). Thus, the inversion of magnetic contrast along the chain
axis can only be explained when the spin spiral structure of the Fe chains aligns with
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Figure 5.2: SP-STM measurements on Fe chains on Ir(001) using a Cr-coated W tip. a and
b, Constant current STM image and the simultaneously acquired dI/dU-map at B = 0 T
(U = +50 mV, I = 5 nA, Umod = 5 mV, T = 8 K). c, dI/dU-map of the same sample area
at B = +2 T (U = +400 mV, I = 5 nA, Umod = 20 mV, T = 8 K). All chains display a
periodic modulation when imaged in a magnetic field. d, Line profiles of the chain marked
by the red line in a for different values of B.

the magnetic field. When turning off the magnetic field the modulation vanishes and
the chains again appear featureless (blue line in Fig. 5.2 d).

Repeating this experiment with an Fe-coated tip, the modulation is expected to
show no phase shift between opposite magnetic fields, since the magnetic structure as
well as the magnetization of the tip align with the magnetic field (see Sec. 4.3). Similar
to Fig. 5.2, Fig. 5.3 a shows a constant current image of the sample while Fig. 5.3 b
and c are dI/dU-maps of the same area at B = 0 T and B = +2 T, respectively. As for
the Cr-coated tip, the modulation on the chains shows up when an external magnetic
field is applied, while it is not visible for B = 0 T. In Fig. 5.3 d line profiles of the
same chain in different magnetic fields are shown and the periodic modulation due to
the spin spiral does not show a phase shift for opposite magnetic fields as expected.
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Figure 5.3: SP-STM measurements with an Fe-coated tip. a, Constant current SP-STM
image and b, the simultaneously acquired dI/dU map at B = 0 T. c, The same sample
area in an external magnetic field of B = +2 T (for all images: U = +500 mV, I = 5 nA,
Umod = 20 mV, T = 8 K). d, Line profiles in opposite magnetic fields corresponding to the
red line in a.

By comparing Fig. 5.2 c to Fig. 5.3 c one observes that the magnetic contrast is much
larger when using an Fe-coated tip instead of a Cr-coated tip. However, the amplitude
of the magnetic contrast is well below 10 pm for both tips, which is a factor of 2
smaller compared to the contrast due to contaminations. Therefore, the amplitude of
the modulation is an additional indicator for the origin of the periodic pattern.

On closer examination, the amplitude of the magnetic contrast differs from chain
to chain, indicating a correlation of the contrast strength and the chain length (see
also p. 65). In addition, two chains in Fig. 5.3 a show areas where the chains exhibit
protrusions (white arrows), which appear much darker in the dI/dU-map in Fig. 5.3 b.
Since the chains widen only in one direction, these areas can be identified as a local
zigzag configuration of an otherwise inner hollow site chain.

As described in Sec. 4.4.5, the periodic modulations due to contaminations vanish in
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Figure 5.4: SP-STM measurement on an Fe chain at different bias voltages. a, Constant
current SP-STM image at B = +2 T (U = +50 mV, I = 5 nA, T = 8 K). b and c,
Constant current and dI/dU line mode measurements on top of the chain marked by the
red line in a, respectively. The modulation due to the magnetic structure persists over a
wide range of applied bias voltages, in contrast to the modulation due to hydrogen. d,
Constant current line mode measurements at U = ±600 mV on the same chain as in b. e,
dI/dU-spectra taken at spots marked with the dots in d on top of bright areas (black dots)
and dark areas (red dots) of the modulation, respectively (Ustab = −600 mV, Iset = 5 nA,
Umod = 10 mV, T = 8 K).

the STM images for voltages far away from the Fermi level. To investigate the voltage
dependence of the magnetic contrast I scanned the chain marked by the red line in
Fig. 5.4 a in the line mode at different voltages. Figure 5.4 b and c show waterfall plots
similar to Fig. 4.12 and the magnetic contrast persists over a wide range of voltages,
from close to the Fermi level (U = 50 mV) up to U = 600 mV. This acts as further
evidence that the contrast is not due to the contaminations with hydrogen described in
the previous section. The modulation shows no phase shift over the whole voltage range
displayed in Fig. 5.4 b and c, indicating that the polarization of the sample does not

50



5.3. Physical origin of the spin spiral in the Fe chains

change its sign. This is further corroborated by dI/dU-spectra on the bright and dark
areas of the modulation. Figure 5.4 d shows a line mode measurement at U = ±600 mV
on the same chain as in Fig. 5.4 b and c. The modulation, which is clearly visible at
U = +600 mV is almost vanished at the negative bias voltage. Therefore I stabilized
the tip at U = −600 mV for the dI/dU-spectra shown in Fig. 5.4 e to avoid distance
related measurement artifacts. Each spectrum is averaged over 7 single point spectra
(see black and red dots in Fig. 5.4 d). They lie perfectly on top of each other in the
negative bias range while they reveal a spin contrast for the whole positive range. The
shape of the spectra is in very good agreement to the spin-averaged dI/dU-spectra
presented in Sec. 4.4.4.

5.3. Physical origin of the spin spiral in the Fe chains

5.3.1. DFT calculations

While I have unambiguously shown that the periodic modulation along the chain axis
is due to the magnetic structure of the Fe chains, the proposed spin spiral structure
(see Fig. 5.3 d) cannot unequivocally be identified as the ground state of the system.
The three atom periodicity could also be explained by a collinear ↑↑↓-state, whose
magnetic unit cell consists of three pairs of atoms as well, with two moments pointing
up (↑) and one moment pointing down (↓). However, this state is unlikely since it has
been shown in a previous theoretical work that among the collinear states (FM, AFM
and ↑↑↓) the ↑↑↓ is not the ground state of the Fe chains [77].

The occurrence of the spin spiral state and the interplay of the different magnetic
interactions can be understood based on DFT calculations. Dr. Yuriy Mokrousov
from the Forschungszentrum Jülich performed these calculations in the local density
approximation using the FLEUR code [108]. The magnetic phase space can be explored
by calculating flat spin spirals, which are the general solution of the classical Heisenberg
model EH = −

∑
ij JijSi ·Sj for a periodic lattice, as discussed in Sec. 2.1. Such a spin

spiral, propagating along the chain, is given by Si = S(cos(qai), 0, sin(qai)), where a
is the lattice constant and q = (q, 0, 0) is the characteristic spin spiral vector. Varying
q from q = 0 (FM state) to q = ±0.5 2π

a
(AFM state), all possible spin spirals are

covered giving rise to the spin spiral dispersion energy E(q) (blue dots in Fig. 5.5 a).
Positive and negative values of q denote clockwise and counter-clockwise spin spirals,
respectively, and the dispersion is symmetric with respect to ±q, as expected from the
Coulomb interaction. It can be seen, that the FM solution is most favorable among all
states, however, the strong FM exchange found in free-standing bi-atomic Fe chains
(FM state ≈ 75 meV/Fe atom below the AFM state, see blue dashed line) is almost
completely quenched. This is due to the strong hybridization with the Ir substrate
resulting in a difference between the FM and the AFM state of only ≈ 1 meV/Fe atom.
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Figure 5.5: DFT calculations and comparison to experimental findings. a, The spin spiral
dispersion from first principles calculations: contributions from Heisenberg exchange (blue
dots) and DM interaction (black dots) and their sum (red dots). The lines represent fits
to the calculations with an extended Heisenberg model and the dashed blue line is the
Heisenberg exchange dispersion of a free-standing bi-atomic Fe chain. b and c, Comparison
of a simulated SP-STM image of a 120◦ spin spiral (gray scale inset) with experimental
data (color) and the corresponding line profiles, respectively.

Since the exchange interactions in these bi-atomic Fe chains are very small, the spin-
orbit interaction can have a strong influence on the spin spiral dispersion as proposed
in Ref. [81]. As shown in Sec. 2.2.1, the SOI gives rise to the magnetic anisotropy
energy Eani =

∑
iKi sin

2 ϕi. The easy axis of the Fe spin moments is out-of-plane
(z-axis in Fig. 4.5 b) and about 2 meV/Fe atom lower in energy than the two high-
symmetry in-plane directions. Additionally, the SOI induces the anti-symmetric DM
interaction EDM =

∑
i,j Dij · (Si × Sj), see Sec. 2.2.2. A non-vanishing EDM can only

arise when the sample system lacks inversion symmetry [17]. Since the Fe chains reside
on the Ir surface, which breaks the inversion symmetry, EDM can play a crucial role
for the magnetic structure of the Fe chains. Based on symmetry arguments, Dij aligns
along the y-axis, favoring cycloidal spin spirals where the magnetic moments rotate in
the xz-plane (cf. Fig. 4.5 b) [18, 22].

The correction to E(q) due to the DM interaction, EDM(q), is calculated by DFT
using the charge density of the spin spiral state without SOI as the starting point.
The results for EDM(q) are presented as black dots in Fig. 5.5 a, and show that the
magnitude of EDM(q) competes with the contribution from the Heisenberg exchange,
reaching as much as 10 meV. Summing up Heisenberg and DM contributions and
including an energy shift due to the MAE, we get a robust cycloidal spin spiral ground
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state several meV below the FM state, in the vicinity of q ≈ +1/3 2π
a

(red dots). This
value of the spin spiral vector corresponds to a clockwise 120◦ spin spiral, running
along the chain axis2. Owing to the antisymmetric nature of EDM(q) with respect to
±q, the counter-clockwise spin spiral state with q = −1/3 2π

a
is much higher in energy,

with ∆E ≈ 20 meV. Noticeably, the magnetic unit cell of the 120◦-state consists of
three Fe atoms along the chain axis, which is the minimal size necessary to obtain a
non-collinear solution. As shown in Fig. 5.5 b and c, a simulated SP-STM image of
such a 120◦ spin spiral based on the DFT calculations is in excellent agreement with
the experimental findings.

5.3.2. MC simulations

While the first-principles calculations find this 120◦ spin spiral as the magnetic ground
state of the Fe chains, it is still an open question why no magnetic contrast was
observed in the SP-STM experiments at B = 0 T. To understand the influence of
temperature and magnetic field on the Fe chains Dr. Robert Wieser from the University
of Hamburg performed simulations using a heat-bath Monte-Carlo (MC) method [24].
He employed an extended Heisenberg model Etot = EH+Eani+EDM+EB which includes
the effect of an out-of-plane magnetic field EB = −µsB

∑
i S

z
i , where µs is the magnetic

moment. The material parameters Jij and Dij are obtained from fits to the first-
principles calculations (see blue and black line in Fig. 5.5 a). To capture the non-trivial
dispersions of E(q) and EDM(q), Jij and Dij parameters up to six nearest neighbors
along the chain axis were included, which are displayed in Table 5.1. Due to a strong
FM coupling between the pair of Fe atoms along the y axis (Jperp ≈ 160 meV/Fe atom)
the chains can be described as a single strand of spins in the MC simulation.

nth neighbor 1 2 3 4 5 6

Jij (meV) +0.53 +1.42 −0.12 −0.34 −0.29 +0.37
Dij (meV) +2.58 −2.77 −0.07 +0.63 −0.36 −0.12

Table 5.1: Exchange constants extracted from fits to the DFT calculations of Fig. 5.5. Note
that the DM vector Dij is given by (0, Dij , 0).

Since the Fe chains observed in the experiments show a broad length distribution
ranging from only a few nm, corresponding to ≈ 10 pairs of atoms, up to several

2The energy minimum of the DFT calculations corresponds to an angle θ slightly larger than 120◦

leading to a spin spiral which is incommensurate to the underlying atomic lattice, and I will
come back to this aspect later. However, the SP-STM measurements do not allow to distinguish
between a commensurate and an incommensurate spiral.
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tens of nm, corresponding to up to 150 pairs, we chose to investigate a representative
chain consisting of 30 atoms along the chain axis with open boundary conditions.
The magnetic moment of each Fe atom and the MAE were set to their DFT value of
µs = 2.75µB and Ki = 2 meV, respectively, and for reasons of simplicity the atoms at
the ends of the chain are assumed to have the same magnetic moment and MAE as the
atoms in the chain center. The value of the time-averaged magnetization in our MC
simulations is normalized, meaning that a value of 1 corresponds to a non-fluctuating
magnetic moment, while a value < 1 indicates thermal fluctuations.

To determine the magnetic state of the Fe chain at the measurement conditions, we
started with a disordered configuration at T = 200 K in a magnetic field of B = +2 T
and cooled down the chain to T = 8 K. The resulting x-, y- and z-component of
the time-averaged magnetization for each lattice site within the chain are shown in
Fig. 5.6 a. This non-collinear magnetic state is similar to the experimentally observed
120◦ spin spiral except for small deviations of the angles, meaning that the spin spiral
is inhomogeneous and incommensurate to the atomic lattice (compare Fig. 5.2 d and
Fig. 5.6 a). The spins at the ends of the chain are aligned with the applied magnetic
field and contribute to a finite total magnetization of the chain. The analogous simu-
lation without a magnetic field also yields spin spiral order, however, while a snapshot
looks similar to Fig. 5.6 a, thermal fluctuations lead to a vanishing time-averaged mag-
netization, see also Sec. 5.4. The same behavior is observed for chains with the same
number of atoms but periodic boundary conditions, i.e. an infinite chain, at any mag-
netic field value. This means that in the finite chain the applied field locks the spin
spiral in real space via an alignment of the end spins with the magnetic field, which
underlines the importance of finite size effects for the experimental observations. Be-
cause end atoms have a lower coordination number and the end spins are therefore
less bound, they are more susceptible to an external magnetic field than the spins in
the chain center. Note that the time-averaged magnetization of the chain atoms is far
below 1, indicating that thermal fluctuations are still pronounced at the measurement
temperature of 8 K.

To gain more insight into the magnetic ordering of this finite chain, we investigate its
spatial- and time-averaged out-of-plane magnetization Mz as a function of temperature
for different values of B (see Fig. 5.6 b). Here, Mz = 1 means that all moments of the
chain point along z. For B = 0 T, Mz of the chain is zero at all T due to fluctuations,
while as soon as an external magnetic field is applied a non-vanishing out-of-plane
magnetization arises. At higher temperature this is the paramagnetic response of the
magnetic moments to the applied magnetic field (see lower inset in Fig. 5.6 b), while
upon decreasing the temperature, thermal fluctuations are reduced and the value of
Mz increases. At the threshold temperature of ≈ 30 K a crossover from paramagnetism
to the spin spiral order occurs in the chain (see upper inset in Fig. 5.6 b), leading to
a decrease of Mz for T < 30 K. The small residual net magnetization is due to the
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Figure 5.6: MC simulations for a chain 30 atoms long. a, Magnetization components of
every atom for T = 8 K and B = +2 T. b, Temperature dependence of Mz for different
external magnetic fields applied along the z-axis is displayed. The insets show the laterally
resolved magnetization for two different temperatures at B = +2 T (components similar
to a). c, Ball model of the Fe chain with the spin structure shown in a.

alignment of the end spins with the magnetic field and small distortions of the spin
spiral ground state, see Sec. 5.4.

In addition to Mz, the temperature dependence of two order parameters was calcu-
lated which bare a very interesting and unique behavior. For ferromagnetic systems
the order parameter is usually just the magnetization M of the system, which has a
finite value if T < TC and vanishes for T > TC. Since non-collinear magnetic structures
usually have a vanishing magnetization, it is common to define the order parameter
as κ ∝ Si × Sj [109], the vector spin chirality. The direction of the vector κ defines
the rotational sense of the magnetic structure and its length determines the thermal
stability. For the Fe chains we define κ as

κ = 〈 1

N

N∑
i=1

1

sin(θDFT)
(Si × Si+1)〉, (5.2)

where N is the number of atoms along the chain axis and θDFT = 122.8◦ is the angle
between neighboring moments for the DFT ground state of an infinite chain. For the
spin spiral in the Fe chains the time-averaged vector κ is always pointing along the
y-axis, similar to Dij, and can be written as κ = (0, κ, 0). A second order parameter
θ, which gives the mean angle between neighboring magnetic moments, can be defined
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as

θ = 〈 1

N

N∑
i=1

arccos(Si · Si+1)〉. (5.3)

For the spin spiral order at T = 0 K, θ will tend to θDFT, while θ = 90◦ indicates
complete magnetic disorder. Figure 5.7 a displays the temperature dependence of κ
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Figure 5.7: The two order pa-
rameters |κ| and θ as a
function of temperature.
Note that θ decays much
faster with increasing tem-
perature compared to |κ|.

and θ which both show a continuous rise with decreasing temperature. Qualitatively,
the two curves agree very well with the magnetization Mz shown in Fig. 5.6. For low
temperatures κ ≈ 1 and θ ≈ 123◦, which indicates a stable spin spiral order in the chain
and both order parameters decrease with increasing temperature. Interestingly, the
order parameter κ has still a value significantly above zero at T = 50 K, κ ≈ 0.2, while
for the other order parameter θ(T = 50 K) ≈ 90◦, indicating disorder. This means,
that even though thermal fluctuations of the spins destroy the magnetic order, the
rotational sense of the spin spiral is preserved. It can be interpreted as the fingerprint
of the DM interaction, which favors one rotational sense over the other, and it is similar
to a chiral spin liquid phase found in helical spin structures [109]. In the next section
I will present further investigations of this intriguing aspect.

5.4. Simulations of magnetization dynamics in the Fe
chains

5.4.1. The OOMMF simulation program and its extensions

To further understand the magnetization dynamics of the Fe chains I performed addi-
tional simulations using the Object Oriented MicroMagnetic Framework (OOMMF).
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OOMMF was developed at the Information Technology Laboratory (ITL) at the Na-
tional Institute of Standards and Technology (NIST) [110], and is a platform indepen-
dent open source software package written in C++. It simulates the time evolution of
micromagnetic systems by numerically solving the Landau-Lifshitz equation [111]

dM

dt
= −|γ|M×Heff −

|γ|α
M

M× (M×Heff), (5.4)

where Heff represents an effective magnetic field summing up all forces which act on
the magnetic moment M, γ is the gyromagnetic ratio and α is a damping constant.
In contrast to the MC simulations presented in the previous section, Eq. 5.4 provides
magnetization dynamics in real time which allows an estimation of the time scales in
the experiment. The magnetic system is built up by identical cuboids which allows the
investigation of basically every sample shape. These cuboids can interact with each
other via, e.g., Heisenberg exchange or stray field. Additionally it is possible to study
the response to an external magnetic field and define various magnetic anisotropies.
The program has been proven to describe very accurately the magnetization dynamics
in various micromagnetic structures.

In order to use this solver also for the dynamics of the Fe chains I had to in-
clude exchange interactions beyond the nearest neighbor interaction, which play a
crucial role in the Fe chains. Therefore, the solver had to be extended by two rou-
tines which describe the Heisenberg exchange and the DM interaction, respectively,
including these additional interactions. The two routines are based on the standard
routine uniformexchange which describes the isotropic nearest neighbor Heisenberg
exchange, given by the energy

Hexch =
∑
i,j

JijSi · Sj (5.5)

with Jij = 0 for j = i, and the resulting effective magnetic field

Aexch =
∑
i,j

JijSj. (5.6)

I adapted and modified these descriptions for the Heisenberg exchange to make it
applicable to the specific demands of the bi-atomic Fe chains, namely

• no Heisenberg exchange along z-direction (see Fig. 4.5 b) since the chains are
only one atomic layer high,

• a strong ferromagnetic coupling along the y-direction, which is in accordance to
the DFT calculations (see Sec. 5.3.1),

• Heisenberg exchange up to the tenth nearest neighbor along the x-direction.
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The source code which describes this interaction is included in the appendix A in the
files my 1dexchange.cc and my 1dexchange.h.

The DM interaction is not included at all in this framework, since it is not important
for most of the micromagnetic problems and it has been shown only very recently
that this interaction can lead to non-collinear ground states in nanostructures on
surfaces [15]. Similar to the routine described above, the DM interaction in this
routine is described by its energy

HDM =
∑
i,j

Dij · (Si × Sj) (5.7)

and the resulting effective magnetic field is given by

ADM =
∑
i,j

Dij × Sj. (5.8)

For the specific problem of the Fe chains, with Dij being parallel to the y-axis, this
interaction couples magnetic moments up to the tenth nearest neighbor only along
the x-axis (chain axis). The description of the DM interaction is attached in the
appendix A in the files my dzyamoexchange.cc and my dzyamoexchange.h. Both
routines, the Heisenberg exchange and the DM interaction, have been included into
the existing OOMMF program and tests with beyond-nearest-neighbor interaction in
one dimension have been successful. In general both routines should also work for
three-dimensional problems but this has not been tested yet.

Since the standard OOMMF program works at zero temperature I included an
additional routine which mimics the effects of a finite temperature [112, 113]. This
program introduces a randomly fluctuating magnetic field Htemp into the Landau-
Lifshitz equation 5.4 with Heff → Heff + Htemp. In this routine Htemp matches two
requirements:

1. the time average of the fluctuations 〈Htemp〉 cancels out, since the temperature
does not drive a system into a certain magnetic state,

2. the random distribution of the values of Htemp has a Gaussian shape.

5.4.2. Comparison between MC and OOMMF simulations

With all the ingredients now at hand, the program has to be tested to check, if it
can describe the Fe chains and reproduce the experimental findings as well as the
MC simulations. Therefore I included the same parameters as for the MC simulations
and calculated the time evolution of a bi-atomic chain 30 atoms long for T = 8 K at
different values of an out-of-plane magnetic field B. Each cuboid in the simulation
represents one chain atom and they were set to cubes with an edge length of 2 Å.
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The time interval between subsequent simulation steps had to be set to the very small
value of ∆t = 2 · 10−16 s, since for any larger time constant the estimated changes
of magnetization are too large and the system becomes chaotic. For each value of
the magnetic field we ran i = 108 iterations which corresponds to a simulation time of
ttot = ∆t·i = 20 ns. For each 10000th step all energies due to the different contributions
as well as the magnetization components in x-, y- and z-direction for each atom were
stored to a file.
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Figure 5.8: Comparison of simulations using OOMMF and MC for a chain of 30 atoms at
T = 8 K. a - c, Time-averaged components of magnetization 〈mi〉 for each atom of the
chain for different values of B. d, Spatially averaged z-component of the magnetization
〈Mz〉 as well as the total magnetization 〈M〉 in dependence of B. Squares and circles
represent the MC simulations and OOMMF simulations, respectively. The dashed gray
curve is the magnetization curve of a superparamagnetic particle and is fitted to the data
points. The green triangles represent the amplitude of the magnetic contrast from the
experiments.

While for every time step the magnetization m of each atom equals 1, the time-
averaged magnetization 〈m〉 =

√
〈mx〉2 + 〈my〉2 + 〈mz〉2 gives information about the

stability of the system against thermal fluctuations. In Fig. 5.8 a the time-averaged
magnetization components for each atom of the chain at B = 0.5 T are shown and
compared to the outcome of the MC simulations . It can be seen, that the two sim-
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ulation methods give almost identical results. Similarly, the methods are in excellent
agreement also for different values of B, as shown in Fig. 5.8 b and c, which justifies
the use of OOMMF to study the time evolution of the Fe chains. In addition, we
calculated the time-averaged magnetization of the whole chain, which is plotted in
Fig. 5.8 d in dependence of the magnetic field B. Again, the two simulation methods
are in good agreement.

Figure 5.8 d not only shows the comparison between MC and OOMMF simulations
but also compares these results to the experiments. The green triangles represent the
amplitude of the magnetic contrast measured along the chains for different magnetic
fields. It is scaled so that the data point for B = +2 T coincides with the total
magnetization from the OOMMF simulations. It can be seen that the simulations
agree quite well with the trend in the experimental findings, even though the data
might be insufficient to draw conclusions.

Furthermore, I used OOMMF to calculate the ground state energy (T = 0 K) of
the 30 atoms long, bi-atomic Fe chain as well as the contributions due to the different
interactions. The energy contributions agree very well with the energies from the DFT
calculations as it is shown in the appendix B in Table B.1. The comparisons of the
OOMMF simulations to the experiment, the MC simulations and the DFT calculations
show that the interactions presented in Sec. 5.4.1 are implemented correctly in the
program and validate the use of OOMMF for simulations of the bi-atomic Fe chains.

5.4.3. Thermal fluctuations

The Mermin-Wagner theorem states that no long-range magnetic order exists in one-
dimensional systems even at zero temperature. While the theorem is still valid for the
Heisenberg model, it is obvious from the MC simulations (see Fig. 5.7) that the Fe
chains exhibit the spin spiral order for temperatures below ≈ 30 K even at B = 0 T.
Below that temperature the Fe chains act like superparamagnetic particles. Since the
magnetic moments at the ends of the chain are less bound compared to the moments
of the center atoms they will try to align with the easy axis, hence they will have a
large z-component. Therefore, the chain fluctuates between two different states with
the moments at the chain ends pointing either up (1) or down (-1). This results in
a telegraph noise for the z-component of the end atoms which might be possible to
detect at sufficiently low temperatures.

In Fig. 5.9 the z-component of the magnetic moment at one of the chain ends is
shown in dependence of the simulation time for three different temperatures. For
T = 8 K the chain fluctuates quite often in the span of only 5 ns proving that it
is difficult to observe the thermal fluctuations using conventional (SP-)STM at that
temperature, see Fig. 5.9 a. This is in accordance with the SP-STM measurements
in Fig. 5.2 b and 5.3 b since the fluctuations are in the GHz regime which is way too
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Figure 5.9: Thermally activated magnetization switching for a 30 atoms long chain at differ-
ent temperatures. a - c, Time evolution of the z-component of magnetization of the first
chain atom for T = 8 K, T = 7 K and T = 4 K, respectively. Note, that the figure shows
only cutouts of the simulation.

fast for standard STM measurements with the pre-amplifier cutting off all frequencies
above ≈ 10 kHz. Figure 5.9 b and c indicate that the switching rate is drastically
decreased for lower temperatures (T = 7 K and T = 4 K, respectively), but the thermal
fluctuations at T = 4 K are still in the GHz-regime.

However, it is possible to extract the mean lifetime τ from the simulations by as-
suming that the switching of the Fe chains follows the Néel-Brown law

τ = ν−1
0 exp

(
Eb
kBT

)
. (5.9)

The attempt frequency ν0 as well as the energy barrier Eb can be obtained by fitting
the data points with an Arrhenius curve [114, 115]. This allows us to calculate a
temperature at which the thermal switching could become observable in STM mea-
surements. Comparison of the z-component of the magnetic moment of the first and
the last atom reveals that the chain switches coherently from one state to the other,
thereby validating the use of the Néel-Brown law. The mean lifetimes τ(T ) for the
3 different temperatures can be calculated by dividing the simulation time ttot by
the number of switching events in this period, and they are presented as black dots
in Fig. 5.10. Fitting these data points with Eq. 5.9 leads to an attempt frequency
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ν0 = 1.18 · 1011 Hz and an energy barrier of Eb = 1.64 meV. To check if the value for
Eb is reasonable, we can roughly estimate the energy barrier by comparing the ground
state energy to the energy of the state with the magnetic moment of one chain end
fixed along the x-axis. Since the chains switch from state 1 to state −1 by a rotation
of the spin spiral around the y-axis, this energy difference ∆E should be a good es-
timation of Eb, and for a 30 atoms long Fe chain it is ∆E = 1.54 meV, which is in
very good agreement with the fit value of Eb. Moreover, the attempt frequency has a
reasonable size given that values between 1010 Hz and 1016 Hz have been reported for
magnetic nanoparticles [115, 116].
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Figure 5.10: Temperature dependence of the mean lifetime. The black dots represent the
data points from the OOMMF simulations shown in Fig. 5.9 and the red curve is a fit to
these data points with Eq. 5.9. The green and blue lines are similar curves corresponding
to an energy barrier twice and five times as large as the fit value, respectively.

By inserting the fit values for ν0 and Eb in Eq. 5.9, τ can be plotted as function of
the inverse temperature, which is the red line in Fig. 5.10. Assuming that the best
time resolution which can be achieved by conventional STM is in the range of 1 kHz
(gray dashed line), the temperature at which a switching should be observable is in the
range of Tobs ≈ 1 K. As already stated before, these simulations have been performed
with the same magnetic moment and magnetic anisotropy energy for all atoms in the
chain, regardless of their position. However, it is very common, that these values
tend to become larger for atoms with reduced coordination [117] or for the edges
of nanostructures [118]. Therefore the OOMMF simulations, and the respective fit,
give a lower boundary for the expected mean lifetime τ . The green and red curve in
Fig. 5.10 represent mean lifetimes for the same attempt frequency as the red curve but
with an energy barrier twice and five times as large, which increases the observation
temperature to Tobs ≈ 2 K and Tobs ≈ 5 K, respectively.
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5.4. Simulations of magnetization dynamics in the Fe chains

5.4.4. Temperature dependence of the order parameter

As I have shown in Sec. 5.3.2, the order parameter κ (Fig. 5.11 a and Eq. 5.2), which
indicates the rotational sense of the spin spiral, is preserved for temperatures above
the order temperature of T ≈ 30 K. This can be evaluated quantitatively by investi-
gating the angles between neighboring magnetic moments along the chain axis from
snapshots of the simulation. In Fig. 5.11 b a histogram of the angle distribution for
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Figure 5.11: Angle distribution in a 30 atoms long Fe chain for different temperatures. a, |κ|
as a function of temperature, see also Sec. 5.3.2. b, Histogram of the angle distribution
in the xz-plane between neighboring spins. The angles are taken from 50 simulation
snapshots of a 30 atoms long chain. The colors represent different temperatures, indicated
by the colored circles in a. The inset shows the asymmetry of the angle distribution.

different temperatures is shown. For this histogram I evaluated the angles in the
xz-plane between neighboring spins in a 30 atoms long chain from 50 snapshots of
the simulations, which results in a total of 1450 angles for each temperature step.
At T = 1 K the angle distribution has a very narrow peak around θDFT (black line).
This maximum is still very pronounced for T = 8 K (blue line) which is in accor-
dance to the measurements. The peak becomes broader for higher temperatures and
is still visible at T = 50 K (green line), which is well above the order temperature.
Even at T = 200 K (red line) a distinct imbalance between positive and negative
angles can be observed from the simulations. This asymmetry can be expressed by
a = (counts+ − counts−)/(counts+ + counts−), where + and − indicate positive and
negative angles, respectively, and it is shown in the inset of Fig. 5.7 b. This further
illustrates that the DM interaction affects the thermal fluctuation even at T = 200 K,
which leads to an asymmetry of a ≈ 0.2 at this temperature.
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5. Magnetism of iron chains on iridium(001)

5.4.5. Outlook I: Chains of different lengths
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Figure 5.12: Angles in a spin spiral for different chain lengths with and without a magnetic
field T = 0 K. a, Angle between the magnetic moments of both chain ends in dependence
of the chain length. b, Mean angle of neighboring moments along the chain axis. The
black and red curve represent values for B = 0 T and B = 2 T, respectively.

Up to now, the simulations were performed only for a chain consisting of 30 pairs
of atoms. I performed additional simulations for chains of different length, in order
to study how the length affects the spin spiral structure. Therefore, I calculated the
ground state energy (T = 0 K) for different chain lengths at B = 0 T and B = +2 T.
Figure 5.12 a shows the angle enclosed by the magnetic moments of the first and the
last pair of atoms in the chain θ1,n as function of the chain length n for B = 0 T (black
line) and B = +2 T along the z-axis (red line), respectively. Since the spin spiral angle
is close to 120◦, θ1,n shows a periodic dependence of the chain length modulo 3, e.g.
θ1,20 ≈ θ1,23, with a long range pitch since the spin spiral is incommensurate to the
atomic lattice. This is true not only for B = 0 T but also for an applied magnetic
field, which (almost) does not affect θ1,n. Only for very few chain lengths – namely 16,
32 and 35 atom long chains – the magnetic field changes θ1,n significantly. This can
also be seen in the mean angle θmean shown in Fig. 5.12 b, which is the average angle
enclosed by neighboring magnetic moments along the chain axis. While θmean is almost
the same at B = 0 T and B = 2 T for most of the chain lengths, it differs for the three,
aforementioned chains. This means, that the energy of the external magnetic field
EB is quite small and cannot compete with the energy contributions from Heisenberg
exchange, DM interaction and MAE (see appendix B for the energy contributions of
the different interactions). Only for some chain lengths, EB is large enough to force
a comparably strong distortion of the spin spiral. In reverse, this means that small
variations of the spin spiral angle do not cost much energy for the three chain lengths.

To further illustrate the dependence of the spin spiral on the chain length, Fig. 5.13 a
and b show the angle enclosed by the magnetic moment of the first chain atom and the
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Figure 5.13: Angle of the first (red line) and last spin (black line) of the chain with respect
to the z-axis for different chain lengths. a and b, Simulations for B = 0 T and B = 2 T,
respectively. The green and blue circles indicate chain lengths whose end spins enclose the
same angle with the z-axis or x-axis, respectively. The red circles indicate chains which
do not show a specific magnetic symmetry.

z-axis θ1,z and the last atom and the z-axis θn,z at B = 0 T and B = 2 T, respectively.
The green circles in Fig. 5.13 a indicate the chain lengths for which θ1,z and θn,z are
identical. This does not mean that the first and last moment are parallel, but that
the nth moment is a mirror image of the first moment with respect to the plane per-
pendicular to the chain axis and therefore both moments have the same z-component,
mz,1 = mz,n (see inset in Fig. 5.13). This leads to a highly symmetric spin spiral,
since also the second and the (n− 1)th, the third and the (n− 2)th, ... are mirrored
(similar to Fig. 5.6 c). On the other hand, the blue circles mark the chain lengths for
θ1,z + θn,z = 180◦. Similarly, this does not mean that the moments are antiparallel
aligned, but that the moment of the last atom is a mirror image of the moment of the
first atom, this time with respect to the plane parallel to the surface. In this state the
two magnetic moments have the opposite z-component, i.e. mz,1 = −mz,n. Since the
Heisenberg and DM interaction are isotropic in the plane of the spin spiral, and the
MAE is uniaxial (along the z-axis), also this state is highly symmetric. Given that
mz,i = −mz,(n+1−i) is true for all i, this state does not possess a net magnetic mo-
ment in z-direction. The chain lengths which do not have one of the aforementioned
magnetic symmetries are marked with red circles.

With an applied magnetic field, shown in Fig. 5.13 b, all states with mz,1 = mz,n

are preserved and still symmetric, while the symmetry is lifted for all chains, which
have mz,1 = −mz,n at B = 0 T including the 16 atoms long chain. This is due to
the influence of B, which prefers the magnetic moments to align parallel, thereby
distorts the spin spiral and lifts the degeneracy of the magnetic anisotropy energy. On
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5. Magnetism of iron chains on iridium(001)

the other hand, some of the asymmetric chains become symmetric with an applied
magnetic field, including the chains consisting of 32 and 35 atom pairs, cf. Fig. 5.12.

This could also explain the different magnetic contrast levels of the chains observed
in the SP-STM measurements, cf. Fig. 5.3 c. The chains marked by a green circle in
Fig. 5.13 with mz,1 = mz,n have an intrinsic net magnetization and are therefore more
stable compared to the chains marked by a blue circle, which have only a magnetic
moment induced by the external field.

These simulations reveal that the spin spiral angle depends strongly on the chain
length and can be affected by an external magnetic field. However, I want to emphasize
that the simulations are based on the simplification that all Fe atoms in the chain have
the same magnetic moment and anisotropy. Due to these simplifications the discussion
of the length effects and the influence of an external magnetic field on the spin spiral
is rather speculative and of academic nature. Nevertheless, it might lead to a further
understanding of the interplay of the different magnetic interactions in the Fe chains.

5.4.6. Outlook II: Information transport through the chains
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Figure 5.14: Simulation of a chain with one fixed end compared to the same chain with two
open ends at B = 0 T and T = 8 K. a The time-averaged magnetization of each atom 〈m〉
and its spatial components for a chain consisting of 100 pairs of atoms, without a fixed
end. b The same chain with the magnetic moment of the left chain end fixed along the
z-axis.

In today’s computer chips, nanowires act as the connection between an input and the
output in logic devices and transport the information in form of a small electric current.
Similarly, spin chains can be utilized in future spintronic devices [50]. This implies
that the correlation length of the spin state has to be on the order of the distance
between the input and the output. To investigate the decay of the time-averaged
magnetization 〈m〉 along the chain axis due to thermal fluctuations, I simulated an
Fe chain with one end fixed while the other end is open at B = 0 T and T = 8 K.
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5.5. Summary

Figure 5.14 a shows 〈m〉 and its spatial components for a chain consisting of 100 pairs
of atoms. The time-averaged magnetization of each atom is (almost) zero due to
thermal fluctuations3. In comparison to the chain with no fixed end, Fig. 5.14 b shows
the same chain while the magnetic moment of the left end of the chain is fixed along
the z-axis, meaning 〈m〉1 = 〈mz〉1 = 1. The magnetization of the last atom does not
drop considerably, 〈m〉100 ≈ 0.8, meaning that thermal fluctuations only play a minor
role and do not destroy the magnetic ordering over a length of ≈ 25 nm. Furthermore,
〈m〉 seems to decay linearly into the Fe chain. By interpolating this trend, 50 % of
the information is preserved in a 250 atoms long chain, i.e., an atom more than 60 nm
away from the input (atom 1) has still a time-averaged magnetization of 〈m〉 = 0.5.
Such an input could be realized by, e.g., a spin-polarized current [114, 45] or a stable
magnetic particle [50].

5.5. Summary

In this chapter I presented experimental as well as theoretical investigations of the
magnetic structure of bi-atomic Fe chains on the (5×1)-reconstructed Ir(001) surface.
Using SP-STM in an external magnetic field, I was able to image a periodic magnetic
contrast which is caused by the Fe chains’ spin spiral ground state. DFT calculations
performed by Dr. Yuriy Mokrousov are in excellent agreement with the measurements
and reveal the antisymmetric Dzyaloshinskii-Moriya interaction as the driving force
behind the formation of the spin spiral. Due to this interaction the spin spiral rotates
only clockwise while the counter-clockwise rotation is much higher in energy. Even
though the magnetic contrast in the SP-STM measurements could not be obtained
without an external magnetic field, MC simulations reveal the spin spiral order for
T < 30 K at B = 0 T. At the measurement temperature of T = 8 K the magnetic
structure fluctuates as a macrospin due to thermal excitation on a time scale well
below the time resolution limit of conventional SP-STM. Simulations with OOMMF
predict that this temperature induced magnetization switching should become observ-
able at temperatures around and below 1 K. The thermal fluctuations could also be
suppressed by fixing the magnetization of one chain end with, e.g., a stable magnetic
particle. Interestingly, the simulations also reveal that the rotational sense is preserved
at temperatures well above the order temperature leading to an anisotropic, thermal
fluctuation of the Fe atoms’ magnetic moments, which can be interpreted as a spin
liquid phase.

3The simulations are very time consuming since they are performed on an ordinary desktop com-
puter. Therefore the small residual magnetization is due to an insufficient number of time steps
used in the averaging process.
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6. Magnetism of the iron monolayer
on iridium(111)

6.1. Skyrmions

6.1.1. What is a skyrmion?

The soliton is a wave packet which moves through a dispersive and nonlinear medium
without changing its shape or velocity. It was first discovered in 1834 by John Scott
Russell (1808-1882) while observing a boat in a narrow channel which was drawn by
horses. When the boat suddenly stopped, the wave caused by the boat did not, but
continued to travel at the same speed without changing its shape [119]. Solitons can
be explained by the cancellation of dispersive and nonlinear effects, e.g., a light pulse
consisting of many different frequencies which propagates in a glass will change its
shape over time, since different frequencies move with different velocities (dispersion).
The refractive index, on the other hand, changes with the amplitude for a certain fre-
quency (nonlinear Kerr effect). For a wave package with the right shape the two effects
will cancel and it will travel as a soliton with constant shape and speed [120]. Solitons
can be observed, e.g., as tidal waves in rivers or cloud formation in special atmospheric
conditions, but it has also been demonstrated that solitons, as wave packages of light,
can be used for loss-free data transmission in fiber optics [121]. Mathematically speak-
ing, they are the solution of a nonlinear partial differential equation (PDE), e.g. the
Landau-Lifshitz equation, see p. 57.

A special class of solitons are those which cannot decay into the trivial solution
due to topological protection. Those topological solitons or topological defects arise
when the solutions of the PDE are not homotopic, meaning that the soliton cannot
be continuously deformed into the trivial solution [120]. Examples for topological soli-
tons include screw dislocations in crystals, domain walls in ferromagnets or magnetic
monopoles. About fifty years ago, Skyrme used the concept of topological solitons
to describe particles (baryons) as defects of the boson field based on nonlinear field
theory [122, 123]. He showed that these topological defects, now called skyrmions, are
localized in space, are subject to attractive or repulsive interactions, assemble in or-
dered phases, undergo phase transitions and have quantized topological charges. The
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6. Magnetism of the iron monolayer on iridium(111)

charge, also known as skyrmion number or winding number, can be written as

S =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
dx dy, (6.1)

where n is the vector field. Since Skyrme’s seminal work, skyrmions have developed
into a general concept in physics of all possible length scales ranging from elemen-
tary particles [123, 124] to Bose-Einstein condensates [125], liquid crystals [126] and
the formation of cosmic structures [127]. They have been observed in quantum Hall
magnets [128, 129] and show similarities to the vortex lattice in type-II superconduc-
tors [130].

6.1.2. Skyrmions in magnetism
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Figure 6.1: Schematic drawings of a one-dimensional crystal in different magnetic states. a,
FM state with the corresponding skyrmion number S = 0. b, Two domain walls with
opposite rotational sense (S = 0) and c, two domain walls with the same rotational sense
resulting in S = +1.

Skyrmions have been predicted to exist as stable defects in magnetically ordered
systems including but not restricted to ferromagnets [131]. The concept of skyrmions
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in magnetic systems can be best illustrated for a one-dimensional crystal in which the
direction of the spins is restricted to a plane. In this case Eq. 6.1 simplifies to

S =
1

2π

∫
∂θ

∂x
dx, (6.2)

where θ is the angle between the magnetic moments of neighboring atoms. Figure 6.1
shows a one-dimensional crystal in three different magnetic states with the cones re-
presenting the direction of the magnetic moments at each lattice site. For the trivial
FM ordering, shown in Fig. 6.1 a, Eq. 6.2 has the solution S = 0 since θ = 0 for all
neighboring moments. In Fig. 6.1 b the crystal has two domain walls which separate
three magnetic domains. In this case the two domain walls have opposite rotational
sense which leads to the same solution S = 0. If a magnetic field is applied parallel to
the two outer domains, these two domains will grow while the domain in between the
walls will shrink. Due to the opposite rotation of the walls, they can cancel each other
easily and the inner domain is destroyed by the magnetic field. In contrast, the two
domain walls shown in Fig. 6.1 c have the same rotational sense resulting in a non-
vanishing skyrmion number (S = +1). The inner domain would also be shrunken by
an upwards pointing magnetic field but it cannot be annihilated since it is topologically
protected. Therefore, this magnetic configuration resembles a spin spiral which can
be interpreted as the analogon to a skyrmion in a one-dimensional magnetic crystal.

For a two-dimensional crystal the skyrmion number is given by Eq. 6.1. To illustrate

a b c

Figure 6.2: Schematic drawings of a thin magnetic film in different topological configura-
tions. a, Ferromagnetic film with S = 0, b, Single skyrmion in the film (S = +1) and c,
the corresponding antiskyrmion (S = −1).

skyrmions in two-dimensional magnetic systems, Fig. 6.2 shows a schematic represen-
tation of a thin ferromagnetic film in three different topological configurations with
the cones indicating the magnetization direction. The trivial ferromagnetic solution
is shown in Fig. 6.2 a. For this state the differentials in Eq. 6.1 are zero, which leads
to a skyrmion number S = 0. Figure 6.2 b shows a single magnetic skyrmion in the
ferromagnetic film, whose center has a magnetization antiparallel to the film. Along
the radius of the skyrmion, the magnetization rotates continuously from the center to
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6. Magnetism of the iron monolayer on iridium(111)

the edge, and according to Eq. 6.1 this magnetic configuration has a skyrmion num-
ber of S = +1. The corresponding antiparticle with the opposite topological charge
(S = −1), the antiskyrmion, is shown in Fig. 6.2 c.

One key ingredient for the formation of skyrmions is a broken space-inversion sym-
metry which is needed for a non-vanishing DM interaction, see Sec. 2.2.2. For non-
centrosymmetric magnetic crystals, skyrmion lattices were predicted to be the energet-
ically most favorable state for a certain range of external magnetic field values [131].
Recently, such lattices were observed experimentally in the bulk magnets MnSi [16],
FeCoSi [132], and FeGe [133] with a chiral crystal structure using neutron scattering
and Lorentz transmission electron microscopy, respectively. In both systems skyrmions
with diameters of about 20 and 90 nm, respectively, were induced by an external mag-
netic field out of a helical magnetic ground state. A spontaneous skyrmion-like phase
was reported in MnSi in the vicinity of the helical transition temperature [134], how-
ever, the existence of a skyrmion lattice as the spontaneous ground state of a magnetic
system has so far only been proposed theoretically [135].

6.2. Skyrmion lattice in the Fe ML on Ir(111)

6.2.1. Previous investigations of Fe/Ir(111)

Thin films of iron on the (111) surface of an iridium crystal have been studied already
in the early 90’s of the last century [136, 137]. These investigations concentrated on
the structural as well as on the magnetic properties of the films. LEED measure-
ments reveal that Fe films grow in the face centered tetragonal (fct) configuration for
a thickness up to 5 AL, while for thicker films a phase transition towards a bcc struc-
ture occurs. Investigations of the magnetic properties show that the structural phase
transition coincides with a change of the magnetic ordering. Using X-ray magnetic
circular dichroism (XMCD) [138], a FM ordering was found for the bcc phase, while no
dichroic signal was detected for thinner films indicating the absence of FM order [137].
However, the adsorption of circularly polarized light cannot distinguish between non-
magnetic structures and magnetic structures which have no net magnetization, e.g.
antiferromagnets or most non-collinear spin structures. Thus, SP-STM measurements
were performed on this sample system to identify the magnetic structure of the Fe ML
on Ir(111) [8, 9].

Fe deposited at room temperature on the clean Ir(111) surface (see Sec. 4.4.1) grows
mostly on the terraces starting at the step edges of the next higher terrace (step-flow
growth) but forms triangular islands as well, see Fig. 6.3 a. The islands appear flat in
STM images reflecting the pseudomorphic growth of the first Fe layer which can either
continue the fcc stacking of the Ir substrate or grow with a stacking fault in the hcp
phase. The different stackings can easily be distinguished using STS [9]. In Fig. 6.3 b
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Figure 6.3: Growth of Fe on Ir(111) and first SP-STM measurements. a, Overview constant
current STM image of ≈ 0.6 AL Fe on Ir(111) taken from Ref. [8]. Fe islands grow in the
fcc as well as in the hcp stacking indicated by arrow (U = +50 mV, I = 0.2 nA, T = 13 K).
b, Atomically resolved constant current image of the Fe ML grown from the step edge of
the Ir substrate (U = +5 mV, I = 30 nA, T = 8 K). The white lines are on top of Ir atoms
as well as Fe atoms, showing that the Fe ML continues the fcc stacking of the Ir surface.
The inset shows the FT of the image which clearly shows the 6 spots corresponding to
the hexagonal arrangement of the Ir and the Fe atoms. c, Constant current image SP-
STM of the Fe ML with a tip sensitive to the out-of-plane component of the sample’s
magnetization (U = +50 mV, I = 0.5 nA, T = 13 K, B = +2 T). The image shows an
almost square magnetic contrast which can also be seen by the two pairs of spots in the
FT (inset).

an atomically resolved STM image of the Fe grown from the step edge of the Ir(111)
substrate is shown. The Fe atoms continue the stacking of the Ir layer (marked by the
lines) meaning that the Fe ML at the step edge grows in the fcc phase1.

1For my thesis I concentrated on the magnetic properties of the fcc phase of the ML Fe. More
information on the hcp phase of the ML as well as the second atomic layer can be found in
Ref. [9].
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a b

10 nm

Figure 6.4: Proposed magnetic structure of the Fe ML on Ir(111). a, Top view of the
mosaic structure proposed as the magnetic ground state in Ref. [8, 9]. Each atom and
its magnetic moment is symbolized by a cone and the black lines indicate the magnetic
unit cell. b, Constant current SP-STM image recorded with a tip sensitive to the out-
of-plane component of the sample magnetization showing the three rotational domains of
the magnetic structure of the Fe ML (taken from Ref. [8], U = +50 mV, I = 0.25 nA,
T = 13 K, B = +2 T).

The fcc Fe ML, investigated by SP-STM with a tip sensitive to the out-of-plane
direction, exhibits an almost square superstructure with a ≈ b ≈ 1 nm, see Fig. 6.3 c.
Since the ML grows pseudomorphically and appears flat in STM images taken with a
non-magnetic tip, this superstructure must be due to the magnetic structure of the Fe
layer with bright and dark spots indicating opposite out-of-plane components of the
sample magnetization. In addition to the measurements with an out-of-plane sensi-
tive tip, measurements with an in-plane sensitive tip were reported in Ref. [8], which
reveal no magnetic contrast. Therefore the magnetic ground state was proposed to be
collinear – in first approximation – and by assuming a commensurate magnetic super-
structure with respect to the underlying atomic lattice, its magnetic unit cell consists
of 15 atoms. This so-called mosaic state is shown schematically in Fig. 6.4 a, with the
magnetic moments of 7 atoms pointing up (↑) and the moments of the other 8 atoms
pointing down (↓). This magnetic state would have an almost compensated magne-
tization which is consistent with XMCD measurements [137]. Due to the hexagonal
arrangement of the Fe atoms and the (almost) square magnetic unit cell, the pro-
posed mosaic state has three rotational domains, which can also be observed in the
experiment, see Fig. 6.4 b.

Can the mosaic state be the magnetic ground state of the Fe ML on Ir(111)? Since
each Fe atoms of the mosaic state has a different environment, e.g. one ↑-atom is
surrounded by six ↑-neighbors while the other ↑-atoms have only three ↑-neighbors and
three ↓-neighbors, the state is highly frustrated. This question was already discussed
at the end of Ref. [8] and it was suggested by the authors that the mosaic state might
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just be the collinear approximation of a more complex non-collinear state. However,
the lack of magnetic contrast with an in-plane sensitive tip in Ref. [8] does not support
a non-collinear magnetic ground state, which encouraged us to revisit the Fe ML on
Ir(111).

6.2.2. Reexamination of the Fe ML on Ir(111) using SP-STM

Measurements with in-plane magnetized tips

Around the same time the first SP-STM investigations of the Fe ML on Ir(111) were
published, it became apparent that the Dzyaloshinskii-Moriya interaction can play
a crucial role in thin films on surfaces and drive these systems into a non-collinear
magnetic ground state [15, 22]. Since the DM interaction is also crucial for the
formation of magnetic skyrmions, see Sec. 6.1, it was speculated if the Fe ML on
Ir(111) could be a candidate for a skyrmion lattice as the magnetic ground state [139].
Due to the lack of magnetic contrast with an in-plane magnetized tip, such a skyrmion
lattice is not supported by the SP-STM measurements in Refs. [8, 9]. Therefore we
performed new SP-STM measurements to check if the in-plane contrast is really absent
or was just overlooked. We searched for a sample area showing all three rotational
domains and investigated this area with an Fe-coated W tip. As described in Sec. 4.3
these tips are usually sensitive to the in-plane components of the sample magnetization,
while the absolute direction of the tip magnetization is unknown.

Figure 6.5 a shows a quasi-3D constant current image of the Fe ML on Ir(111)
measured with an in-plane sensitive magnetic tip. The Fe ML shows all three rotational
domains which clearly exhibit a periodic magnetic contrast. By looking more closely
on each of the three domains, Fig. 6.5 b - d, it becomes apparent that each of the
domains shows a different contrast. While the domains shown in Fig. 6.5 c and d
(domains II and III) exhibit a rather square structure with slight differences in the
shape of the bright and dark areas, the domain in Fig. 6.5 b (domain I) shows a
pattern with dark and bright stripes. The different contrasts on the three domains
stem from the projections of the sample’s in-plane magnetization components onto the
tip magnetization, see Sec. 3.5. Since the tip magnetization is the same for all three
domains we image different in-plane components of the magnetic structure of the Fe
ML. In other words, the experiment shown in Fig. 6.5 is equivalent to an SP-STM
measurement of one rotational domain with three different tips, whose magnetizations
are rotated by 120◦ with respect to each other. The square structure of domains II and
III has the same periodicity as the magnetic contrast observed with an out-of-plane
magnetized tip, cf. Fig. 6.3 c. The stripes observed in domain I run along the sides of
the square magnetic unit cell.

From these measurements we can definitely rule out the mosaic state as the magnetic
ground state of the Fe ML on Ir(111), since we observe a magnetic contrast with an
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Figure 6.5: SP-STM measurements with a tip sensitive to the in-plane component of the
sample magnetization. a, Quasi-3D plot of a constant current image of ≈ 0.8 ML of Fe
on Ir(111) (U = +5 mV, I = 0.2 nA, T = 8 K, B = 0 T). The sample area exhibits all
three rotational domains of the magnetic structure. b -d, Closer view of all three domains
indicated by the insets in a. The insets show simulated SP-STM images (see pp. 80) with
the magnetic unit cell marked by the blue lines.

in-plane magnetized tip2. More interesting than the exclusion of the mosaic state as
the ground state of the Fe ML is the question: Can the different magnetic contrasts
be explained by a lattice of skyrmions?

In the SP-STM experiments presented in Fig. 6.3 c and Fig. 6.5 b - d, we have mea-
sured the magnetization density of the Fe ML on Ir(111) projected onto four different

2On pp. 82 I will give a possible explanation why the in-plane contrast was not observed in the
previous SP-STM studies.
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6.2. Skyrmion lattice in the Fe ML on Ir(111)

directions with respect to the magnetic unit cell: the out-of-plane axis and three in-
plane directions rotated by 120◦ with respect to each other. From this information we
can construct the three-dimensional vector magnetization density using a procedure
similar to C. L. Gao et al. [140, 141]. We know the magnetization component along
one direction, defined by the tip magnetization, for each of the four measured sub-
lattices, but we do not know their phase relation, since we could not measure them
within the same sample area. Assuming a continuous vector magnetization density (in
the vacuum) we can still narrow down the possible magnetic structures as shown in
the following.

The SP-STM measurements on the three rotational domains with an in-plane mag-
netized tip are again displayed in the three panels of Fig. 6.6 a - c. Before constructing
the three-dimensional vector magnetization we performed a unit cell averaging proce-
dure as shown by insets in the lower right corner of each image. As stated above, the
measurements with one tip on three rotational domains is equivalent to measurements
with three tips on one domain. Therefore, we can rotate the unit cell averaged images
to change from the tip magnetization reference frame (Fig. 6.6 a - c) to the magnetic
unit cell reference frame in Fig. 6.6 d. In the top left, top right and bottom left corner
of Fig. 6.6 d the three domains are displayed with one of the closed packed rows (one
diagonal of the square magnetic unit cell) being horizontal. We indicate the in-plane
magnetization direction by a color code as sketched by the chromatic circle, where
the three in-plane magnetization directions probed in the experiment are given by the
projection onto the tip magnetization, which is given by the black arrows. Domain I
or sublattice I, displayed in the top left corner of Fig. 6.6 d shows stripes along the
side of the square unit cell, with yellow and blue color for opposite sample magneti-
zation components. The other two in-plane sublattices (II and III, bottom left and
top right corner of Fig. 6.6 d) are square and measured with a tip magnetization that
is rotated by ±120◦ with respect to that of sublattice I. The only way to create a
continuous magnetization density from these three sublattices is to place the green of
sublattice II and the red of sublattice III onto the position which was measured as
yellow in sublattice I, since they all have parallel magnetization components (cf. the
gradual mixing of I and II (III) at the left (top) of Fig. 6.6 d). This immediately locks
the purple of sublattice II and the cyan of sublattice III onto the blue of sublattice
I. In this way we have linked the three in-plane sublattices to form the backbone of
the magnetic structure, which is shown in Fig. 6.6 d indicated by I+II+III. We still
have a grid with a period of half of the magnetic unit cell vectors where the in-plane
component is small, indicated by circles. These must be positions where the magnetic
structure has either a large out-of-plane component or a cancellation of locally antifer-
romagnetically aligned in-plane components3. If we position our measurements of the

3 We exclude the possibility of a vanishing magnetic moment, since we have to assume nearly
constant magnetic moments for the Fe atoms due to large intra-atomic exchange.
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Figure 6.6: Vector magnetization density derived from the SP-STM measurements. a - c,
SP-STM images of the three rotational domains (denoted sublattice I to III) obtained with
an in-plane magnetized tip (data the same as in Fig. 6.5 b - d). Insets in the lower right
corner show the images after unit cell averaging. d, Color-coded images and superposition
of the three measured sublattices to derive the vector magnetization density of the sample
(close to the Fermi energy). The color indicates the in-plane magnetization direction (see
chromatic circle). In the lower right corner the determined vector magnetization density
(including the out-of-plane component) is given in comparison with the spin structure of
the skyrmion lattice. e -h, Comparison of the possible magnetic structures which could
explain the vector magnetization derived from the SP-STM measurements.
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out-of-plane magnetization (white and black for up and down, respectively) exactly
onto one of these points we obtain the vector magnetization density shown in the bot-
tom right of Fig. 6.6 d. Starting from the magnetic unit cell of the mosaic state (see
Fig. 6.4), we can rotate each Fe atom’s magnetic moment until its direction fits to this
vector magnetization density. The spin structure we derive by this procedure is shown
in the bottom right of Fig. 6.6 d, which resembles strongly a lattice of skyrmions, cf.
Fig. 6.2 b, and it is called nanoskyrmion in the following (a zoom into the structure is
shown in Fig. 6.6 e)4.

With that construction of the vector magnetization density from the experimental
data it is possible to show that an atomic-scale skyrmion lattice could be the magnetic
ground state of the Fe ML on Ir(111). However, since we neither know the phase
relation of the three in-plane components and the out-of-plane component nor the
direction of the tip magnetization we still have some uncertainties in the evaluation of
the data.

1. If the out-of-plane contrast is shifted by one half of the magnetic lattice constant
along the side of the magnetic unit cell, the resulting structure looks like a lattice
of antiskyrmions, see Fig 6.6 f. The skyrmion number of the magnetic unit cell
of the antiskyrmion lattice is S = −1 (see Eq. 6.1), while the unit cell of the
skyrmion lattice has the skyrmion number S = +1.

2. By rotating the in-plane components of the sample magnetization by 90◦ the
magnetic structure shown in Fig. 6.6 g can be constructed. It is called nanovortex
since the arrangement of the spins resembles the vortex in the center of a Landau
pattern.

3. Combining the two points mentioned above, the structure would be a lattice of
antivortices (Fig. 6.6 h). Similar to the (anti)skyrmion lattice the unit cell of the
vortex and antivortex lattice have a skyrmion number of S = +1 and S = −1,
respectively.

In conclusion, we cannot discriminate from these experiments if the magnetic ground
state of the Fe ML on Ir(111) is a lattice of vortices, skyrmions or their counterparts.
However, all of these proposed spin textures have in common, that they are topologi-
cally non-trivial with the magnetic unit cell having a skyrmion number of S = ±1.

4As I will show later, the magnetic superstructure is incommensurate to the atomic lattice. However,
to keep the discussion of the magnetic structure as simple as possible, I will use the commensurate
approximation with 15 atoms in the magnetic unit cell for the next sections and add the aspect
of the incommensurability only at the very end.
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Measurements with a defined in-plane direction of the tip magnetization

As can be seen in Fig. 6.6, it would be possible to exclude some of the proposed spin
structures if the direction of the tip magnetization would be known. By applying an
in-plane magnetic field, the tip magnetization can be aligned parallel to the surface,
similar to the application of a magnetic field perpendicular to the surface to achieve
out-of-plane contrast. This allows us to directly control the in-plane magnetization
of the tip and we can therefore assign a certain magnetic contrast to a known in-
plane component of the magnetization. An external magnetic field only influences the
magnetization direction of the tip but does not alter the magnetic structure of the
Fe ML, since this structure is completely compensated, i.e. the unit cell has no net
magnetic moment. In our STM setup we can only apply magnetic fields perpendicular
to the surface, see Sec. 4.2, and therefore we investigated the sample in a different
STM setup, which allows to apply a magnetic field in a plane perpendicular to the
sample, hence in one direction in the sample plane [142].

Before I will present those SP-STM measurements, I will shortly show how simu-
lated SP-STM images, based on the spin-polarized Tersoff-Hamann model [143], help
us to deduce the magnetic structure. In these simulations all surface atoms are con-
sidered to be chemically and electronically equivalent and their wave functions are
approximated by s-orbitals (Tersoff-Hamann model, see Sec. 3.3). Therefore, the only
contrast in the simulations is due to the relative angle between the tip and the sample
magnetization5. The validity of the simulations can be demonstrated by comparing
them to the measurements presented in the last section. The inset in Fig. 6.5 b shows
a simulated SP-STM image of the nanoskyrmion lattice. By rotating the tip magneti-
zation in the simulation we determined its direction – indicated by the arrow – for the
best match between the simulated contrast and the experimental observation. After
finding accordance between the simulation and the experiment we just rotated the tip
magnetization in the simulation by ±120◦ and compared the contrasts in the simula-
tions to the other two rotational domains. This is shown in the insets in Fig. 6.5 c and
d, and it can be seen that not only the square like contrast is reproduced but also the
shape of the bright and dark spots is in excellent agreement to the experimental find-
ings. Hence, we have additional evidence that the skyrmion lattice is the ground state
of the Fe ML on Ir(111). However, these contrasts could also be explained by the other
possible magnetic structures (see Fig. 6.6 f - h) only for a different tip magnetization
direction.

In the additional measurements the magnetization direction of an Fe-coated W-tip
is aligned along an in-plane magnetic field of B = 1 T while the magnetic structure

5The simulation program is explained in detail in Ref. [143] and it has been shown in many publica-
tions that it can very accurately reproduce the magnetic contrasts in SP-STM measurements. The
program has been extended by Prof. Dr. Stefan Heinze to simulate the contrast in conventional
STM due to spin-orbit interaction as described in Sec. 6.2.3.
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a b c d

e f

antivortexnanovortexantiskyrmionnanoskyrmion

B-field

Figure 6.7: SP-STM measurements in an in-plane and out-of-plane magnetic field and com-
parison to simulated STM images. a, Schematic drawing of the spin structure of the
skyrmion lattice. In the lower part the spin structure is superimposed with simulated
SP-STM images showing the expected magnetic contrasts of the three rotational domains
for a tip magnetization fixed along the arrow. b -d, The structure and magnetic contrasts
for the antiskyrmion, vortex and antivortex lattice, respectively. e and f, SP-STM im-
ages of the three rotational domains with an out-of-plane and in-plane magnetized tip,
respectively, as indicated by the arrow (tip magnetized along an external out-of-plane and
in-plane magnetic field of B = 1 T). The top left images display a 50 nm× 50 nm overview
image while the other three images (8 nm× 8 nm) show a closer view of the three rotational
domains (U = +50 mV, I = 0.5 nA, T = 6 K).
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of the sample remains unaffected since it does not have a net magnetic moment.
For these measurements the sample was inserted into the STM with one of the closed
packed rows along the in-plane magnetic field direction. Figure 6.7 a - d show schematic
drawings of the four possible magnetic configurations presented in Fig. 6.6 e - h. The
cones represent the direction of each Fe atom’s magnetic moment while the color code
indicates the z-component of the magnetization. The lower parts of each panel show
the respective spin structure superimposed with the simulated magnetic contrast of the
three rotational domains for the experimental configuration. The tip magnetization
direction is given by the arrow, and the simulated SP-STM images demonstrate a
difference between the four lattices, which makes them distinguishable by SP-STM
measurements. For all spin configurations one rotational domain displays a square like
contrast. While for the (anti)skyrmion lattice the two other domains show a mixture
of square and stripe contrast, the (anti)vortex lattice shows a pure stripe contrast for
the two domains. Most notably the stripes for the skyrmion and the antivortex lattice
are almost perpendicular to the tip magnetization direction (magnetic field direction)
while they are almost parallel in the case of an antiskyrmion or vortex lattice.

Figure 6.7 e and f show experimental data of a sample area exhibiting all three
rotational domains imaged with an out-of-plane magnetized tip, i.e. in an external
magnetic field normal to the sample surface (Fig. 6.7 e), and with an in-plane magne-
tized tip, i.e. in an external in-plane magnetic field (Fig. 6.7 f). For the out-of-plane
magnetized tip all three rotational domains show a square like contrast which is in
accordance to the previous publications [8, 9], see also Fig. 6.4. With an external
in-plane magnetic field, one domain appears with a square-like contrast while the
other two rotational domains show a mixed contrast of stripes and squares with the
stripes almost perpendicular to the direction of the applied field. By comparing the
experimental data to the simulated SP-STM images we can definitely exclude the an-
tiskyrmion and vortex state since the direction of the stripes in the experiment do
not match the direction in the simulated images. The direction of the stripes of the
antivortex lattice match the experimental data, however, the internal structure of the
stripes does not fit well, see Fig. 6.7 d. Only the simulated SP-STM images of the
nanoskyrmion lattice match all experimental contrasts and therefore, we can identify
the skyrmion lattice as the ground state of the Fe ML on Ir(111).

Possible explanation for the missing in-plane contrast in previous measurements

While the same out-of-plane magnetic superstructure was reported in the previous
publications no magnetic signal was found for measurements with an Fe-coated tip
sensitive to the in-plane components [8, 9]. Therefore the measurements were in-
terpreted as the aforementioned mosaic state as the magnetic ground state. This
interpretation of the data needs to be revised in the light of the measurements and
simulations presented above and I will give some evidence why the in-plane component
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was not detected in the first SP-STM measurements.
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Figure 6.8: Experimentally observed corrugation variations for different tip magnetization.
a and b, Simulated and experimental (raw data) SP-STM images with an in-plane mag-
netized tip identical to the ones in Fig. 6.5 b - d and profiles along the indicated lines. The
tip magnetization direction is shown in the insets. c, SP-STM images from a previous
measurement, cf. Ref. [8] with a tip sensitive to the out-of-plane (left, B = +2 T) and the
in-plane (right, B = 0 T) component of magnetization (note that a different rotational do-
main has moved into the area) and corresponding line profiles (U = +50 mV, I = 0.5 nA,
T = 13 K).

When using Fe-coated tips at Bz = 0 T, which are typically sensitive to the in-
plane component of magnetization, many times a faint square magnetic superstructure
was observed also in the earlier measurements [144]. However, the corrugation with
an out-of-plane sensitive tip (Fe-coated tip at Bz ≥ 2 T) is typically much larger.
Previously, the authors came to the conclusion, that at Bz = 0 T the tip magnetization
is not completely in the sample surface plane but slightly canted, thereby catching
some of the out-of-plane magnetization components. As we know now, this is not
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6. Magnetism of the iron monolayer on iridium(111)

necessarily the case, since also with an in-plane sensitive tip the observation of a
square magnetic unit cell is likely (see Figs. 6.5, 6.6 and 6.7); in fact, the simulation
of SP-STM images for the skyrmion lattice shows that nearly 80 % of all possible in-
plane tip magnetizations yield a square magnetic superstructure, while only 20 % show
clear indications of stripes. Figure 6.8 a shows again the simulated SP-STM images of
Fig. 6.5 b - d, not rotated and with identical gray-scales to allow a direct comparison.
The right panel shows the profiles along the indicated line sections. It can be seen that
the square magnetic superstructures have a slightly but distinctively larger corrugation
compared to the stripe pattern. Figure 6.8 b shows SP-STM images of the three
different rotational domains of Fig. 6.5 a which is the same data as in Fig. 6.8 b -d.
Again to the right the corresponding line sections are shown. Qualitatively, the line
sections of the simulated and measured SP-STM images display the same trend of a
smaller corrugation amplitude for the stripe pattern as compared to that of the square
lattice. A quantitative analysis of the data shows that the corrugation of the stripe
pattern (≈ 4 pm) is almost a factor of 3 smaller than the corrugation of the square
pattern (≈ 10 . . . 12 pm), making the stripe pattern much more difficult to resolve. This
quantitative deviation from the simulated images may be contained in the simplicity
of the model neglecting e.g. the bias voltage and possible inelastic effects.

In Fig. 6.8 c data from the old measurements is revisited, showing a sample area
measured with an out-of-plane and an in-plane sensitive tip. While with the tip sensi-
tive to the out-of-plane component of magnetization (left, Bz > 0 T) the single domain
square magnetic superstructure is dominant in the whole area, the measurement with
the tip magnetization in the plane (right, B = 0 T) shows some areas with very weak
and other areas with no magnetic superstructure. This is due to the fact that a second
rotational domain has moved into the bottom of the scan area, which can be seen by
the rotation of the faint square pattern with respect to the out-of-plane measurement.
The corrugation of the square pattern in the in-plane measurement is only ≈ 4 pm
(blue line), meaning that the spin-polarization of the tip is considerably smaller than
the polarization of the tip used in the new measurements (Fig. 6.8 b). Using the quan-
titative analysis from Fig. 6.8 b the stripe pattern would have a corrugation of only 1
to 1.5 pm, which is at the resolution limit of the instrument and can explain the areas
of the scan region showing no magnetic contrast (green line).

6.2.3. Proof of incommensurability employing TAMR

The Fourier transformation (FT) of the SP-STM image in Fig. 6.4 b shows two pairs
of spots which we can directly assign to the square magnetic unit cell of the skyrmion
lattice. The spots are given by two vectors Q1 and Q2 which span the reciprocal
magnetic unit cell in the k-space. In the commensurate approximation these vectors
have a length of |Q1| = |Q2| = 0.277×2π/a and include an angle of θ = 92.2◦ where a =
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2.72 Å is the next nearest neighbor distance given by the Ir surface. When the skyrmion
lattice is measured at bias voltages close to the Fermi energy, we observe spots in the
FT of the SP-STM images in addition to the 4 spots corresponding to the magnetic
unit cell (Q1 and Q2). Figure 6.9 a - c and d - f show SP-STM measurements of the

a b c

d e f

3 nm+5 mV

-7 mV

Figure 6.9: SP-STM measurements of the same sample area as in Fig. 6.5 at low bias volt-
ages. a - c, Constant current images of the three rotational domains with the respective
FT for U = +5 mV. d - f, Same domains imaged at U = −7 mV. The insets show the
respective FT of the SP-STM image with the red circles marking additional spots, which
are not due to the magnetic unit cell (I = 0.2 nA, T = 8 K).

same three domains as in Fig. 6.5 at bias voltages of U = +5 mV and U = −7 mV,
respectively. The insets show the corresponding FTs, which exhibit an additional pair
of spots for U = +5 mV and two additional pairs of spots for U = −7 mV. Since
the number of spots varies for different voltages and the spots rotate accordingly to
the rotation of the magnetic domain, we exclude the possibility of a measurement or
tip-related artifact. The additional spots are linear combinations (Q1 ±Q2) of those
related to the magnetic unit cell and correspond in real space to a unit cell half the size
of the magnetic unit cell. This suggests they might be caused by spin-orbit interaction,
which leads to the tunneling anisotropic magnetoresistance (TAMR).
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Due to its electronic nature the TAMR is also observable in STM experiments with
non-magnetic tips. The simulated spin-averaged STM images of the skyrmion lattice
in Fig. 6.10 a and b assume a different dependence of the Fe atoms’ local density
of states (LDOS) on the two perpendicular in-plane directions of the local magnetic
moment and by this mimic the effect of spin-orbit coupling on the electronic structure6.
The FT in Fig. 6.10 a clearly shows the hexagonal spots corresponding to the atomic
lattice and in addition the four spots that were observed for the experimental data
in Fig. 6.9 d - f. For the simulated STM image in Fig. 6.10 b, in which an LDOS
modulation proportional to the perpendicular magnetization component is assumed,
only two spots show up. To experimentally disentangle the contributions from the
spin-polarized current and the effect of spin-orbit coupling in the measurements we
imaged the skyrmion lattice with a W tip at low bias voltages. Figure 6.10 c and
d show STM images of the same sample area at two different bias voltages, which
display not only the atomic lattice but also a superstructure due to the TAMR7. One
can clearly see a square-shaped and a uniaxial superstructure in agreement with the
simulations of Fig. 6.10 a and b. The FTs of the STM images (insets) contain the
spots corresponding to the atomic lattice as well as the additional spots, showing that
the assumption of the spin-orbit coupling effect is in excellent agreement with the
experiment.

Figure 6.10 e displays the (rotated) FT of the experimental STM image of Fig. 6.10 c
overlaid with the FT of the simulated image of Fig. 6.10 a. A comparison reveals that
the spots originating from the spin-orbit coupling effect – and thus the magnetic
period – do not exactly coincide between experimental data and simulation. This
demonstrates that the magnetic unit cell is not strictly commensurate with the atomic
lattice, but rather 10 % compressed compared to Fig. 6.6 e leading to an incommen-
surate magnetic skyrmion lattice, shown in Fig. 6.10 f. The simulated STM images
(insets of Fig. 6.10 f obtained in a similar way as for Fig. 6.10 a and b) are in good
agreement with the experimental images confirming the proposed incommensurate
skyrmion lattice.

6In the simulations the LDOS of the surface atoms ρS, see Sec. 3.3 and Eq. 3.9, is substituted by
ρS+∆ρα, where ∆ρα represents the modulation of the LDOS of atom α. The angle dependence of
the modulation ∆nα arises from the angular dependent part of the matrix element Mµν (Eq. 3.7)
due to SOC. Depending on the applied bias voltage, U , different contributions to the LDOS may
dominate the tunnel current and therefore the modulation of the LDOS may also stem from
different d-orbitals that result in a bias-voltage dependent change of the angle dependence of
∆nα(U). In contrast to spin-polarized STM where the magnetic signal depends on the cosine of
the angle between the magnetization direction of the tip and the Fe atom at site Rα, the spin-
orbit caused TAMR contrast is proportional to the square of the cosine of the angle between the
magnetization direction of the Fe atoms and the lattice vectors of the substrate.

7These additional modulations due to the effects of spin-orbit interaction should not be confused
with a structural reconfiguration of the Fe atoms. As it has been shown in Fig. 6.3 b, the Fe ML
grows perfectly pseudomorphic on the Ir(111) surface forming a flat and homogeneous overlayer.
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Figure 6.10: Additional contrast in STM images due to the spin-orbit interaction. a and
b, Simulated STM images of the skyrmion lattice assuming a different dependence of
the LDOS on the direction of the magnetic moments. In a the modulation is propor-
tional to the square of the x-component of the local magnetization (horizontal) and in
b it is proportional to the absolute square of the y-component. The simulations are su-
perimposed by the spin structure of the skyrmion lattice. c and d, STM measurements
with a non-magnetic tip showing different periodic variations in height due to the TAMR
(U = +5 mV and U = −5 mV, respectively, I = 2 nA, T = 8 K). The insets of a -d show
the FT corresponding to the respective image with the spots corresponding to the atomic
lattice marked by green circles and the spots caused by SOI indicated with red circles. The
magnetic unit cell is marked by blue lines. e, Comparison of the FTs of the experimental
(c) and the simulated STM image (a) revealing that the skyrmion lattice is incommen-
surate with the atomic lattice (red ellipse). f, Schematic drawing of the incommensurate
magnetic skyrmion lattice. The insets show simulated STM images similar to a and b.
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6.2.4. Physical origin of the skyrmion lattice

Extended Heisenberg model

To understand the microscopic origin of the skyrmion lattice as the magnetic ground
state of the Fe ML on Ir(111) we investigate the magnetic phase space employing an
extended two-dimensional Heisenberg model

Etot =Eexch + E4spin + EDM + Ebi + Eani. (6.3)

In this Hamiltonian the first term represents the Heisenberg exchange (see Sec. 2.1)
between the Fe atoms’ magnetic moments Mi with the coupling strength Jij. The
second term describes the four-spin interaction, which occurs due to electron hopping
between four lattice sites (see Sec. 2.3). For the model Hamiltonian we only consider
nearest neighbor four-spin interaction, whose strength is given by the coupling constant
K4. The third term is the Dzyaloshinskii-Moriya interaction, which is characterized
by the DM vector Dij, see Sec. 2.2.2. The direction of Dij can be determined from
symmetry considerations [17, 22], and at surfaces it lies predominantly in the surface
plane, see also Sec. 5.3.1. The last two terms represent the biquadratic exchange energy
and the magnetocrystalline anisotropy energy, see Sec. 2.3 and Sec. 2.2.1. As I will
show later, these two energy contributions are rather small, hence they are neglected
in the following to simplify the discussion.

To study the influence of the different magnetic interactions on the observed na-
noskyrmion lattice we construct an analytic solution to the model in Eq. 6.3. From
the experiment, we observe that the magnetic structure is characterized by four spots
in the reciprocal space, see Fig. 6.3 c. Each pair of reciprocal lattice vectors, ±Qi,
corresponds to a single spin spiral, which is the general solution of the Heisenberg
model on a periodic lattice, see Sec. 2.1. Since the Heisenberg model is isotropic in
space, the energy of a single spin spiral is degenerate with any superposition of spin
spirals or multi-Q state. Hence, the occurrence of a two-dimensional magnetic lattice
as observed for the Fe ML cannot be explained only by the Heisenberg exchange.

This is where the four-spin interaction comes into play. It can couple spin spirals
and thereby lift the energy degeneracy of the resulting superposition state with respect
to a single spin spiral. In order to prevent a large loss of intra-atomic exchange energy
constant magnetic moments are required at all sites. With the vectors Q1 and Q2

from the FT of the experimentally observed magnetic structure, see Fig. 6.3 c we can
construct such a multi-Q state in which the magnetic moment Mi at the position Ri

is given by

Mi = M

 sin(ϕi)
cos(ϕi) sin(ϑi)
cos(ϕi) cos(ϑi)

 (6.4)
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with ϕi = (Q1 + Q2) · Ri/2 and ϑi = (Q1 − Q2) · Ri/2. This multi-Q state is
characterized by the length Q = |Q1| = |Q2| and the opening angle θ between the
two symmetry equivalent vectors Q1 and Q2, and it consists of an equal number
of skyrmions (S = +1) and antiskyrmions (S = −1). This multi-Q state can be
transformed into the skyrmion lattice shown in Fig. 6.6 e by replacing all antiskyrmions
with skyrmions, which leads to an energetically more favorable state as shown later.
This transformation can be included in the analytical form of the magnetic structure,
Eq. 6.4, by multiplying the x-component of Mi with the factor:

cos((Q1 −Q2) ·Ri)/| cos((Q1 −Q2) ·Ri)|.
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Figure 6.11: Schematic drawings of a spin spiral and skyrmions of different rotational sense
and topological index S. a, 90◦ spin spiral (S = 0), b, clockwise skyrmion (S = +1),
c, antiskyrmion (S = −1) and d, counterclockwise skyrmion (S = +1). The size and
sign of the four-spin term is indicated by black numbers for different diamonds (shaded
areas) consisting of four adjacent lattice sites (ijkl). The in-plane projection of the DM
vector which couples spins on adjacent sites is also given by red arrows for pairs of nearest
neighbors. The value of the DM term is indicated by red numbers.

The origin of the energy gain due to the four-spin interaction of a skyrmion or
antiskyrmion with respect to a single spin spiral can be understood from the sketches
in Fig. 6.11. In each sketch there are 12 diamonds consisting of four adjacent lattice
sites (ijkl) which contribute to the four-spin interaction. As indicated in Fig. 6.11 a,
there are two different types of diamonds for a 90◦ spin spiral which both contribute
with a value of −K4, i.e. from the twelve diamonds we obtain in total Espiral = −12K4,
which holds for all planar spin spirals. For a skyrmion or antiskyrmion, shown in
Fig. 6.11 b - d, the two different types of diamonds contribute with 1/2K4 and 0, and
the total energy due to four-spin interaction is Esky/anti = −3K4. For the Fe ML on
Ir(111), we find K4 < 0 from the first-principles calculations, see p. 90, and therefore
both, a skyrmion or an antiskyrmion, gain an energy of Esky/anti −Espiral = 9K4 with
respect to the spin spiral.
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6. Magnetism of the iron monolayer on iridium(111)

While the four-spin interaction does not distinguish between skyrmions and anti-
skyrmions, the DM interaction favors skyrmions with a unique rotational sense over
antiskyrmions. For a skyrmion, the vector product (Mi×Mj) is parallel to the in-plane
projection of D for all neighbors of the central moment (Fig. 6.11 b and d) leading to a
large EDM compared to the antiskyrmion (Fig. 6.11 c). The sign of D selects skyrmions
with a unique rotational sense, i.e. whether an up-pointing moment with outward ro-
tating neighbors (Fig. 6.11 b) or with inward rotating neighbors (Fig. 6.11 d) has the
lower energy.

DFT calculations

For a quantitative application of this extended Heisenberg model (see eq. 6.3) to the
Fe ML on Ir(111), all parameters such as the exchange constants Jij, the four-spin
interaction K4, the biquadratic term B, the anisotropy constant K and the DM vector
D were obtained from first-principles calculations using the FLEUR code [108]. For
the density functional theory (DFT) calculations, performed by Dr. Gustav Bihlmayer
from the Forschungszentrum Jülich and Prof. Dr. Stefan Heinze from the Univer-
sity of Kiel, the 15 Fe atoms of the magnetic unit cell supported by 4 layers of the
Ir(111) surface were considered, resulting in a huge unit cell consisting of 75 atoms.
While the structural relaxations of the system have been performed in the generalized-
gradient approximation (GGA) of the exchange correlation potential [145], the energy
differences between magnetic configurations have been calculated in the local-density
approximation (LDA) [146]. The effects of the spin-orbit interaction are included in
second-order perturbation theory.

The exchange constants Jij have been calculated up to 8 nearest neighbors by fitting
the energy dispersion of spin spirals along the high-symmetry direction Γ − K − M
of the 2D Brillouin zone. The values are given in Table 6.1. The exchange energy
still favors a FM ground state and it is dominated by J1, however, the other exchange
constants lead to a slow rise of E(Q) in the vicinity of the FM state (Q = 0). This
means, that interactions, which are usually neglected since they are much smaller than
the Heisenberg exchange, will play crucial roles for the magnetic ground state of the
Fe ML on Ir(111).

We assume the direction of D for two nearest-neighbor Fe atoms according to the
Fert-Lévy mechanism of the DM interaction [21]. The strength of the DM interaction
has been calculated directly from the energy difference of the nanoskyrmion lattice
and the corresponding antiskyrmion lattice (∆E = 2.8D), i.e. from non-collinear
magnetic calculations with 75 atoms including spin-orbit coupling. The nanoskyrmion
lattice, which has the lowest total energy among all states we calculated within DFT,
is by 6.7 meV/Fe atom lower in total energy than the ferromagnetic state (see Ta-
ble 6.2). The antiskyrmion lattice (obtained from the multi-Q state by using the
scissor operation to cut out the patches with S = −1) is only by 1.7 meV/Fe atom
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6.2. Skyrmion lattice in the Fe ML on Ir(111)

constant J1 J2 J3 J4 J5 J6 J7 J8

value (meV) +5.7 -0.84 -1.45 -0.06 +0.2 +0.2 -0.2 +0.5

constant D K4 B K

value (meV) -1.8 -1.05 -0.2 -0.8

Table 6.1: Parameters for the extended Heisenberg model extracted from the DFT calcula-
tions. All energy values are given per Fe atom.

lower than the ferromagnetic state. From these energies we obtain an absolute value of
the nearest-neighbor DM interaction of D = −1.8 meV. The negative sign implies that
a clockwise magnetic rotation (Fig. 6.11 b) has a lower energy than a counterclockwise
one (Fig. 6.11 c). The magneto-crystalline anisotropy constant has been calculated
from comparison between the in-plane and out-of-plane ferromagnetic solution and
a value of K = −0.8 meV has been obtained, with a minus sign denoting an easy
out-of-plane magnetization direction.

To determine the strength of the four-spin and the biquadratic interaction for near-
est neighbors we have varied them to optimally reproduce the total energy differences
of all magnetic states of Table 6.2 (four different collinear magnetic structures, and two
non-collinear states). The extraction of the four-spin and the biquadratic interaction
is possible due to the fact that energy differences beyond Heisenberg exchange interac-
tion, DM interaction, and magneto-crystalline anisotropy can be accounted for only by
higher-order terms (for the collinear states there are additional smaller terms due to
spin-polarization induced in the Ir substrate). The values we find are K4 = −1.05 meV
and B = −0.2 meV.

To check how well this set of parameters reproduces the total energy DFT results
obtained by means of the FLEUR code, we compare the total energy differences with
those obtained from the Hamiltonian of the extended Heisenberg model. Both values
are shown in Table 6.2 and the energies are given in meV/Fe atom with respect to
the ferromagnetic (FM) reference state. We attribute the remaining energy differences
to our approximation of the real system by an effective two-dimensional Heisenberg
model.

Investigation of the magnetic phase space

To analyze the role of the exchange, four-spin, and DM interaction in the phase space
of skyrmion lattices we study the energy landscape by varying Q and θ. While the
exchange energy shows a very shallow minimum for Q < 0.2 × 2π/a and is nearly
independent of θ, see Fig. 6.12 b, the four-spin interaction depends strongly on both
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6. Magnetism of the iron monolayer on iridium(111)

State DFT (meV/atom) model (meV/atom)

FM 0.0 0.0
mosaic +1.9 +1.7
(4:11) -3.7 -2.7
↑↑↓↓ -5.9 -4.1
antiskyrmion -1.7 -2.0
nanoskyrmion -6.7 -7.0

Table 6.2: Comparison between energies for different states derived from DFT calculations
and from the extended Heisenberg model. The (4:11) state is similar to the mosaic state
only with four ↑-atoms and 11 ↓-atoms in the magnetic unit cell. The ↑↑↓↓ state is similar
to a row-wise AFM state with two rows of ↑-atoms and two rows of ↓-atoms.

Q and θ of the nanoskyrmion as apparent from the polar plot in Fig. 6.12 c. The
four-spin energy is minimized for an angle of θ = 90◦ and a value of Q ≈ 0.4× 2π/a.
The energy contributions due to exchange and four-spin interaction are of the same
order and their sum also displays a minimum for an angle of θ = 90◦ between Q1

and Q2. Therefore, the four-spin interaction is the microscopic origin of the square
symmetry of the observed magnetic structure. Fig. 6.12 d shows the relevant energy
contributions for the nanoskyrmion lattices with θ = 90◦ (along the dashed lines in
Fig. 6.12 b and c) as a function of Q. The competition between rising exchange energy
and decreasing four-spin energy with Q determines the energetic minimum Emin to a
value of Qmin ≈ 0.27× 2π/a, very close to the experimental finding.

In Fig. 6.12 e and f plots of the energy contributions of the different interactions
are shown in dependence of Q for a single- and the multi-Q state. By comparing
Fig. 6.12 d - f, the gain in DM energy is largest and also the rise of exchange towards
the AFM state is slowest for a single spin spiral. On the other hand, the four-spin
interaction shows no dispersion in dependence of Q for a single spin spiral, while the
gain in energy for the multi-Q state is comparable to the skyrmion lattice. For each
kind of non-collinear state we can extract a Q which corresponds to the lowest energy
(see also dashed lines in Fig. 6.12 d - f). These lowest energy states are compared
in Figure 6.12 g. From this plot it becomes apparent that the four-spin interaction
plays the crucial role to couple different spin spirals into a two-dimensional magnetic
structure, but the DM interaction makes the difference between an (anti)skyrmion
and an (anti)vortex lattice or a multi-Q state. Although the four-spin term is small
compared to pair-wise exchange interactions in typical magnets, here, it can compete
with the exchange energy as the nearest-neighbor ferromagnetic exchange coupling is
unusually small for Fe on an Ir surface due to the strong Fe-Ir hybridization.
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Figure 6.12: Contributions to the energy due to the different interactions. a, Scheme of the
two-dimensional Brillouin zone and explanation of the polar plots in b and c. b, Plot
of the Heisenberg exchange energy in dependence of Q and θ (color scale indicates the
energy in meV/Fe atom). c, Plot of the 4-spin interaction, similar to b. d - f, Energy
contributions for θ = 90◦ in dependence of Q for the skyrmion lattice, a single- and multi-
Q state, respectively. g, Comparison of the respective lowest energy state of the spin
spiral, mosaic, multi-Q, vortex and skyrmion state.

6.3. Summary

The Fe ML on the Ir(111) surface exhibits an almost quadratic magnetic superstructure
which has three rotational domains. Measurements of all three domains with the same
tip magnetization direction allow the construction of the Fe layer’s magnetization
density, which can only be explained by a complex, topologically non-trivial magnetic
structure. Comparison of the measurements to simulated SP-STM images reveal a
lattice of magnetic skyrmions as the ground state of the Fe layer. Due to its non-
collinearity, the skyrmion lattice gives rise to a periodic modulation of the electronic
density when imaged with non-magnetic tips. STM measurements with simultaneous

93



6. Magnetism of the iron monolayer on iridium(111)

atomic resolution reveal that the skyrmion lattice is incommensurate to the hexagonal
surface, meaning that the magnetic structure is almost completely decoupled from the
atomic lattice. The formation of the skyrmion lattice in the Fe ML on the Ir(111)
surface is explained by weak Heisenberg exchange in combination with the four-spin
and the DM interaction.
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7. Summary and outlook

In the framework of this thesis I conducted SP-STM and -STS measurements on Fe
nanostructures grown on two different surfaces of an Ir single crystal. In combination
with first principles calculations and simulations the complex, non-collinear magnetic
ground states of both sample systems could be unambiguously identified. The Fe
chains on the (5× 1)-reconstructed (001) surface have a spin spiral ground state with
a unique rotational sense, and the first atomic layer of Fe on the (111) surface, whose
atoms are arranged hexagonally, incorporates an almost square lattice of magnetic
skyrmions. For both sample systems not only the qualitative but also the quantitative
agreement of the SP-STM measurements and the DFT calculations is excellent, since
the observed periodicities of both magnetic structures could be reproduced. Both
ground states are enabled by extremely weak Heisenberg exchange which opens the
door for other, usually neglected interactions to become important. In the case of
the Fe ML, the four-spin interaction in combination with the DM interaction are
the driving forces behind the formation of the skyrmion lattice, while beyond-nearest
neighbor DM interaction has to be considered to describe the spin spiral in the Fe
chains.

The skyrmion lattice represents a new class of magnetic structure in ultrathin films
and it is – up to my knowledge – the first skyrmion lattice as the magnetic ground
state of a system. In the process of the data evaluation it was fascinating to see, how
it is possible to construct the complete magnetization density of the sample by super-
position of SP-STM measurements with different tip magnetizations. Simultaneous
measurements of the atomic lattice and the contrast due to the spin-orbit interaction,
TAMR, identified the incommensurability of the magnetic and atomic structure.

Even though the square skyrmion lattice as the ground state of the Fe ML is fasci-
nating enough and its beauty alone justifies all the measurements, this discovery gives
rise to further interesting questions. Since skyrmions are topologically protected it is
interesting to study the robustness of the skyrmion lattice. Could lateral confinement
or a large external magnetic field distort or even destroy the lattice? What is the
minimal island size needed to observe the lattice or a single skyrmion? Is it possible to
excite the skyrmion lattice and how would the excitations look like? Furthermore, the
Fe ML does not solely grow in the fcc but also in the hcp stacking, see Fig. 6.3, whose
magnetic ground state has not been investigated so far. Some of those questions could
be answered with the help of SP-STM measurements at lower temperatures and larger
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7. Summary and outlook

magnetic fields.
SP-STM measurements at lower temperatures could also lead to further understand-

ing of the spin spiral state in the Fe chains and could verify some of the theoretical
predictions. At temperatures below the calculated blocking temperature, it might be
possible to observe the spin spiral without an applied magnetic field. In addition, the
OOMMF simulations predict a very slow, linear decay of the magnetization in the
chain when one of the ends is fixed, which makes the chains ideal for the transport of
spin information. By fixing the magnetic moment of one end of the chain (input), the
magnetization at the other end (output), only depends on the length of the chain. For
some chain length a change in the spin spiral angle with an applied magnetic field is
predicted, meaning that the angle between the first and the last magnetic moment in
the chain could be tuned by an external magnetic field.

Besides the inner hollow site chains presented in Ch. 5, chains can also be grown in
the outer hollow sites or zigzag configuration, see Figs. 4.5 and 5.3. DFT calculations
for the outer hollow site chains predict a similarly small Heisenberg exchange as for
the inner hollow site chains [77]. Furthermore, the unreconstructed Ir(001) substrate
allows to grow Fe-Ir-Fe sandwich chains [147] and also a ML film. While the sandwich
chains are predicted to show a transition from AFM to FM order with increasing
hydrogen coverage [85] the Fe ML might be a candidate for another non-collinear
magnetic ground state [148].

In summary, due to their exotic magnetic properties the Fe nanostructures on Ir
surfaces I presented in this thesis are model systems to study and understand the in-
terplay of competing magnetic interactions on the atomic scale. They might stimulate
research for novel magnetic materials and might also trigger theoretical investigations
of barely understood magnetization dynamics in non-collinear spin systems.
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[134] C. Pappas, E. Lelièvre-Berna, P. Falus, P. M. Bentley, E. Moskvin,
S. Grigoriev, P. Fouquet, and B. Farago. Chiral Paramagnetic Skyrmion-
like Phase in MnSi . Physical Review Letters 102, 197202 (2009). 72
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denko, S. Blügel, S. Heinze, A. Kubetzka, and R. Wiesendanger,
Atomic-scale spin spiral observed in individual metallic chains, European Con-
ference on Surface Science 28, Wroc law (Poland)

112



Publications

Posters

• 26.02.2008:
M. Menzel, D. Haude, K. von Bergmann, M. Bode, and R. Wiesen-
danger, Design of a UHV-STM for applications at low temperatures and high
magnetic fields, 72nd Spring Conference, Deutsche Physikalische Gesellschaft,
Berlin (Germany)

• 11.09.2008:
M. Menzel, K. von Bergmann, A. Kubetzka, M. Bode, and R. Wiesen-
danger, Scanning tunneling microscopy and spectroscopy of self-organized bi-
atomic Fe chains on Ir(001), Summer School ”Nanomagnetism and Spintronics”,
Prague (Czech Republic)

• 23.07.2009:
M. Menzel, K. von Bergmann, A. Kubetzka, and R. Wiesendanger,
Periodic LDOS modulations in bi-atomic Fe chains, 20th International Collo-
quium on Magnetic Films and Surfaces (ICMFS), Berlin (Germany)

113



Publications

114



A. Source code for interactions in
OOMMF

1 /∗ FILE : my 1dexchange . h −∗−Mode : c++−∗−∗/
2
3 #ifndef MM 1DEXCHANGE
4 #define MM 1DEXCHANGE
5
6 #include ”oc . h”
7 #include ” d i r e c t o r . h”
8 #include ” energy . h”
9 #include ”meshvalue . h”

10 #include ” s imsta te . h”
11 #include ” t h r e e v e c t o r . h”
12
13 /∗ End in c l ud e s ∗/
14
15 class MM 1DExchange : public Oxs Energy{
16 private :
17 REAL8m A1 ;
18 REAL8m A2 ;
19 REAL8m A3 ;
20 REAL8m A4 ;
21 REAL8m A5 ;
22 REAL8m A6 ;
23 REAL8m A7 ;
24 REAL8m A8 ;
25 REAL8m A9 ;
26 REAL8m A10 ;
27
28 enum ExchangeKernel { UNKNOWN, NGBR 6} ke rne l ;
29 /// Exchange formu la t ion to use . ”unknown” i s i n v a l i d ; i t
30 /// i s de f ined f o r error d e t e c t i on .
31
32 // Ca l cu l a t i on rou t i n e s f o r each o f the
33 // aforementioned energy fo rmu la t i ons .
34 void CalcEnergy8ngbrs
35 ( const Oxs MeshValue<ThreeVector>& spin ,
36 const Oxs MeshValue<REAL8m>& Ms inverse ,
37 const Oxs RectangularMesh∗ mesh ,
38 Oxs MeshValue<REAL8m>& energy ,
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39 Oxs MeshValue<ThreeVector>& f i e l d ) const ;
40 /∗ vo id CalcEnergy2ndngbr
41 ( cons t Oxs MeshValue<ThreeVector>& spin ,
42 cons t Oxs MeshValue<REAL8m>& Ms inverse ,
43 cons t Oxs RectangularMesh∗ mesh ,
44 Oxs MeshValue<REAL8m>& energy ,
45 Oxs MeshValue<ThreeVector>& f i e l d ) cons t ; ∗/
46
47 protected :
48 virtual void GetEnergy ( const Oxs SimState& state ,
49 Oxs EnergyData& oed ) const ;
50
51 public :
52 virtual const char∗ ClassName ( ) const ; // ClassName () i s
53 /// au t oma t i c a l l y generated by the OXS EXT REGISTER macro .
54 //Oxs UniformExchange ( cons t char∗ name , // Chi ld in s tance id
55 MM 1DExchange( const char∗ name ,
56 Oxs Director ∗ newdtr , // App d i r e c t o r
57 const char∗ a r g s t r ) ; // MIF input b l o c k parameters
58 // v i r t u a l ˜Oxs UniformExchange () ;
59 virtual ˜MM 1DExchange ( ) ;
60
61 virtual BOOL I n i t ( ) ;
62 } ;
63
64
65 #endif // MMUNIFORMEXCHANGE

1 /∗ FILE : my 1dexchange . cc −∗−Mode : c++−∗−∗/
2
3 #include ”nb . h”
4 #include ” d i r e c t o r . h”
5 #include ”mesh . h”
6 #include ”meshvalue . h”
7 #include ” s imsta te . h”
8 #include ” t h r e e v e c t o r . h”
9 #include ” rectangularmesh . h”

10 //#inc l ude ”uniformexchange . h”
11 #include ”my 1dexchange . h”
12 #include ” energy . h” // Needed to make MSVC++ 5 happy
13
14 // Oxs Ext r e g i s t r a t i o n suppor t
15 OXS EXT REGISTER(MM 1DExchange) ;
16
17 /∗ End in c l ud e s ∗/
18
19
20 // Constructor
21 MM 1DExchange : : MM 1DExchange(
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22 const char∗ name , // Chi ld in s tance id
23 Oxs Director ∗ newdtr , // App d i r e c t o r
24 const char∗ a r g s t r ) // MIF input b l o c k parameters
25 : Oxs Energy (name , newdtr , a r g s t r ) ,
26 A1 ( 0 . ) , k e rne l (UNKNOWN)
27 {
28 // Process arguments
29 A1 = GetRealIn itValue ( ”A1” ) ;
30 A2 = GetRealIn itValue ( ”A2” ) ;
31 A3 = GetRealIn itValue ( ”A3” ) ;
32 A4 = GetRealIn itValue ( ”A4” ) ;
33 A5 = GetRealIn itValue ( ”A5” ) ;
34 A6 = GetRealIn itValue ( ”A6” ) ;
35 A7 = GetRealIn itValue ( ”A7” ) ;
36 A8 = GetRealIn itValue ( ”A8” ) ;
37 A9 = GetRealIn itValue ( ”A9” ) ;
38 A10 = GetRealIn itValue ( ”A10” ) ;
39 s t r i n g k e r n e l r e q u e s t = GetStr ing In i tVa lue ( ” ke rne l ” , ”6ngbr” ) ;
40 i f ( k e r n e l r e q u e s t . compare ( ”6ngbr” )==0) {
41 ke rne l = NGBR 6;
42 } else {
43 s t r i n g msg=s t r i n g ( ” I n v a l i d ke rne l r eque s t : ” )
44 + k e r n e l r e q u e s t
45 + s t r i n g ( ”\n Should be one o f 6ngbr , 12ngbr , 12 ngbrmirror , or 26

ngbr . ” ) ;
46 throw Oxs Ext : : Error ( this , msg . c s t r ( ) ) ;
47 }
48 Ver i fyAl l In i tArgsUsed ( ) ;
49 }
50
51 MM 1DExchange : : ˜ MM 1DExchange ( )
52 {}
53
54 BOOL MM 1DExchange : : I n i t ( )
55 {
56 return Oxs Energy : : I n i t ( ) ;
57 }
58
59 void
60 MM 1DExchange : : CalcEnergy8ngbrs (
61 const Oxs MeshValue<ThreeVector>& spin ,
62 const Oxs MeshValue<REAL8m>& Ms inverse ,
63 const Oxs RectangularMesh∗ mesh ,
64 Oxs MeshValue<REAL8m>& energy ,
65 Oxs MeshValue<ThreeVector>& f i e l d
66 )
67 const{
68 UINT4m xdim = mesh−>DimX( ) ;
69 UINT4m ydim = mesh−>DimY( ) ;
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70 UINT4m zdim = mesh−>DimZ( ) ;
71 UINT4m xydim = xdim∗ydim ;
72
73 const REAL8m hcoe f=−2/MU0;
74 REAL8m pre fx1 = −A1/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ; //

d e f i n e s p r e f a c t o r : A1=J1/a
75 REAL8m pre fy1 = −1e−10/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ; // s e t

to f i x , s t rong fm exchange −> b ia tomic
76 REAL8m pre f z1 = −A1/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
77 REAL8m pre fx2 = −A2/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
78 REAL8m pre fy2 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
79 REAL8m pre f z2 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
80 REAL8m pre fx3 = −A3/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
81 REAL8m pre fy3 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
82 REAL8m pre f z3 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
83 REAL8m pre fx4 = −A4/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
84 REAL8m pre fy4 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
85 REAL8m pre f z4 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
86 REAL8m pre fx5 = −A5/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
87 REAL8m pre fy5 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
88 REAL8m pre f z5 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
89 REAL8m pre fx6 = −A6/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
90 REAL8m pre fy6 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
91 REAL8m pre f z6 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
92 REAL8m pre fx7 = −A7/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
93 REAL8m pre fy7 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
94 REAL8m pre f z7 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
95 REAL8m pre fx8 = −A8/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
96 REAL8m pre fy8 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
97 REAL8m pre f z8 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
98 REAL8m pre fx9 = −A9/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
99 REAL8m pre fy9 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;

100 REAL8m pre f z9 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
101 REAL8m pre fx10 = −A10/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
102 REAL8m pre fy10 = −0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
103 REAL8m pre f z10 = −0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
104
105 for (UINT4m z =0;z<zdim ; z++) {
106 for (UINT4m y=0;y<ydim ; y++) {
107 for (UINT4m x=0;x<xdim ; x++) {
108 UINT4m i = mesh−>Index (x , y , z ) ; // i d e f i n e s l a t t i c e p o s i t i o n
109
110 REAL8m Msii = Ms inverse [ i ] ; // inv e r s e o f magnetic moment o f Si
111 i f ( Msi i == 0 . 0 ) {
112 energy [ i ] = 0 . 0 ;
113 f i e l d [ i ] . Set ( 0 . , 0 . , 0 . ) ;
114 continue ;
115 }
116
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117 ThreeVector base = sp in [ i ] ; // d e f i n e s Si
118
119 ThreeVector sum1 ( 0 . , 0 . , 0 . ) ;
120 i f (x>0) {
121 UINT4m j = i −1;
122 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
123 sum1 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
124 }
125 }
126 i f (x<xdim−1) {
127 UINT4m j = i +1;
128 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
129 sum1 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
130 }
131 }
132 sum1 ∗= pre fx1 ; //sum of atoms in x
133
134 ThreeVector temp1 ( 0 . , 0 . , 0 . ) ;
135 i f (y>0) {
136 UINT4m j = i−xdim ;
137 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
138 temp1 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
139 }
140 }
141 i f (y<ydim−1) {
142 UINT4m j = i+xdim ;
143 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
144 temp1 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
145 }
146 }
147 sum1 += pre fy1 ∗temp1 ; //sum of atoms in x and y
148
149 temp1 . Set ( 0 . , 0 . , 0 . ) ;
150 i f ( z>0) {
151 UINT4m j = i−xydim ;
152 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
153 temp1 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
154 }
155 }
156 i f ( z<zdim−1) {
157 UINT4m j = i+xydim ;
158 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
159 temp1 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
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160 }
161 }
162 sum1 += pre f z1 ∗temp1 ; //sum of a l l atoms ( x , y and z )
163
164 ThreeVector sum2 ( 0 . , 0 . , 0 . ) ;
165 i f (x>1) {
166 UINT4m j = i −2;
167 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
168 sum2 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
169 }
170 }
171 i f (x<xdim−2) {
172 UINT4m j = i +2;
173 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
174 sum2 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
175 }
176 }
177 sum2 ∗= pre fx2 ; //sum of atoms in x
178
179 ThreeVector temp2 ( 0 . , 0 . , 0 . ) ;
180 i f (y>1) {
181 UINT4m j = i−xdim−1;
182 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
183 temp2 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
184 }
185 }
186 i f (y<ydim−2) {
187 UINT4m j = i+xdim+1;
188 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
189 temp2 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
190 }
191 }
192 sum2 += pre fy2 ∗temp2 ; //sum of atoms in x and y
193
194 temp2 . Set ( 0 . , 0 . , 0 . ) ;
195 i f ( z>1) {
196 UINT4m j = i−xydim−1;
197 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
198 temp2 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
199 }
200 }
201 i f ( z<zdim−2) {
202 UINT4m j = i+xydim+1;
203 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
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204 temp2 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e
i s one

205 }
206 }
207 sum2 += pre f z2 ∗temp2 ; //sum of a l l atoms ( x , y and z )
208
209
210 ThreeVector sum3 ( 0 . , 0 . , 0 . ) ;
211 i f (x>2) {
212 UINT4m j = i −3;
213 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
214 sum3 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
215 }
216 }
217 i f (x<xdim−3) {
218 UINT4m j = i +3;
219 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
220 sum3 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
221 }
222 }
223 sum3 ∗= pre fx3 ; //sum of atoms in x
224
225 ThreeVector temp3 ( 0 . , 0 . , 0 . ) ;
226 i f (y>2) {
227 UINT4m j = i−xdim−2;
228 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
229 temp3 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
230 }
231 }
232 i f (y<ydim−3) {
233 UINT4m j = i+xdim+2;
234 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
235 temp3 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
236 }
237 }
238 sum3 += pre fy3 ∗temp3 ; //sum of atoms in x and y
239
240 temp3 . Set ( 0 . , 0 . , 0 . ) ;
241 i f ( z>0) {
242 UINT4m j = i−xydim−2;
243 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
244 temp3 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
245 }
246 }
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247 i f ( z<zdim−3) {
248 UINT4m j = i+xydim+2;
249 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
250 temp3 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
251 }
252 }
253 sum3 += pre f z3 ∗temp3 ; //sum of a l l atoms ( x , y and z )
254
255
256 ThreeVector sum4 ( 0 . , 0 . , 0 . ) ;
257 i f (x>3) {
258 UINT4m j = i −4;
259 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
260 sum4 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
261 }
262 }
263 i f (x<xdim−4) {
264 UINT4m j = i +4;
265 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
266 sum4 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
267 }
268 }
269 sum4 ∗= pre fx4 ; //sum of atoms in x
270
271 ThreeVector temp4 ( 0 . , 0 . , 0 . ) ;
272 i f (y>3) {
273 UINT4m j = i−xdim−3;
274 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
275 temp4 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
276 }
277 }
278 i f (y<ydim−4) {
279 UINT4m j = i+xdim+3;
280 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
281 temp4 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
282 }
283 }
284 sum4 += pre fy4 ∗temp4 ; //sum of atoms in x and y
285
286 temp4 . Set ( 0 . , 0 . , 0 . ) ;
287 i f ( z>0) {
288 UINT4m j = i−xydim−3;
289 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
290 temp4 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e
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i s one
291 }
292 }
293 i f ( z<zdim−4) {
294 UINT4m j = i+xydim+3;
295 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
296 temp4 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
297 }
298 }
299 sum4 += pre f z4 ∗temp4 ; //sum of a l l atoms ( x , y and z )
300
301
302 ThreeVector sum5 ( 0 . , 0 . , 0 . ) ;
303 i f (x>4) {
304 UINT4m j = i −5;
305 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
306 sum5 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
307 }
308 }
309 i f (x<xdim−5) {
310 UINT4m j = i +5;
311 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
312 sum5 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
313 }
314 }
315 sum5 ∗= pre fx5 ; //sum of atoms in x
316
317 ThreeVector temp5 ( 0 . , 0 . , 0 . ) ;
318 i f (y>4) {
319 UINT4m j = i−xdim−4;
320 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
321 temp5 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
322 }
323 }
324 i f (y<ydim−5) {
325 UINT4m j = i+xdim+4;
326 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
327 temp5 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
328 }
329 }
330 sum5 += pre fy5 ∗temp5 ; //sum of atoms in x and y
331
332 temp5 . Set ( 0 . , 0 . , 0 . ) ;
333 i f ( z>0) {
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334 UINT4m j = i−xydim−4;
335 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
336 temp5 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
337 }
338 }
339 i f ( z<zdim−5) {
340 UINT4m j = i+xydim+4;
341 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
342 temp5 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
343 }
344 }
345 sum5 += pre f z5 ∗temp5 ; //sum of a l l atoms ( x , y and z )
346
347
348 ThreeVector sum6 ( 0 . , 0 . , 0 . ) ;
349 i f (x>5) {
350 UINT4m j = i −6;
351 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
352 sum6 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
353 }
354 }
355 i f (x<xdim−6) {
356 UINT4m j = i +6;
357 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
358 sum6 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
359 }
360 }
361 sum6 ∗= pre fx6 ; //sum of atoms in x
362
363 ThreeVector temp6 ( 0 . , 0 . , 0 . ) ;
364 i f (y>5) {
365 UINT4m j = i−xdim−5;
366 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
367 temp6 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
368 }
369 }
370 i f (y<ydim−6) {
371 UINT4m j = i+xdim+5;
372 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
373 temp6 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
374 }
375 }
376 sum6 += pre fy6 ∗temp6 ; //sum of atoms in x and y
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377
378 temp6 . Set ( 0 . , 0 . , 0 . ) ;
379 i f ( z>0) {
380 UINT4m j = i−xydim−5;
381 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
382 temp6 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
383 }
384 }
385 i f ( z<zdim−6) {
386 UINT4m j = i+xydim+5;
387 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
388 temp6 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
389 }
390 }
391 sum6 += pre f z6 ∗temp6 ; //sum of a l l atoms ( x , y and z )
392
393
394 ThreeVector sum7 ( 0 . , 0 . , 0 . ) ;
395 i f (x>6) {
396 UINT4m j = i −7;
397 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
398 sum7 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
399 }
400 }
401 i f (x<xdim−7) {
402 UINT4m j = i +7;
403 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
404 sum7 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
405 }
406 }
407 sum7 ∗= pre fx7 ; //sum of atoms in x
408
409 ThreeVector temp7 ( 0 . , 0 . , 0 . ) ;
410 i f (y>6) {
411 UINT4m j = i−xdim−6;
412 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
413 temp7 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
414 }
415 }
416 i f (y<ydim−7) {
417 UINT4m j = i+xdim+6;
418 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
419 temp7 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
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420 }
421 }
422 sum7 += pre fy7 ∗temp7 ; //sum of atoms in x and y
423
424 temp7 . Set ( 0 . , 0 . , 0 . ) ;
425 i f ( z>6) {
426 UINT4m j = i−xydim−6;
427 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
428 temp7 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
429 }
430 }
431 i f ( z<zdim−7) {
432 UINT4m j = i+xydim+6;
433 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
434 temp7 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
435 }
436 }
437
438 sum7 += pre f z7 ∗temp7 ; //sum of a l l atoms ( x , y and z )
439
440
441 ThreeVector sum8 ( 0 . , 0 . , 0 . ) ;
442 i f (x>7) {
443 UINT4m j = i −8;
444 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
445 sum8 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
446 }
447 }
448 i f (x<xdim−8) {
449 UINT4m j = i +8;
450 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
451 sum8 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
452 }
453 }
454 sum8 ∗= pre fx8 ; //sum of atoms in x
455
456 ThreeVector temp8 ( 0 . , 0 . , 0 . ) ;
457 i f (y>7) {
458 UINT4m j = i−xdim−7;
459 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
460 temp8 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
461 }
462 }
463 i f (y<ydim−8) {
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464 UINT4m j = i+xdim+7;
465 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
466 temp8 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
467 }
468 }
469 sum8 += pre fy8 ∗temp8 ; //sum of atoms in x and y
470
471 temp8 . Set ( 0 . , 0 . , 0 . ) ;
472 i f ( z>7) {
473 UINT4m j = i−xydim−7;
474 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
475 temp8 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
476 }
477 }
478 i f ( z<zdim−8) {
479 UINT4m j = i+xydim+7;
480 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
481 temp8 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
482 }
483 }
484 sum8 += pre f z8 ∗temp8 ; //sum of a l l atoms ( x , y and z )
485
486
487 ThreeVector sum9 ( 0 . , 0 . , 0 . ) ;
488 i f (x>8) {
489 UINT4m j = i −9;
490 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
491 sum9 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
492 }
493 }
494 i f (x<xdim−9) {
495 UINT4m j = i +9;
496 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
497 sum9 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
498 }
499 }
500 sum9 ∗= pre fx9 ; //sum of atoms in x
501
502 ThreeVector temp9 ( 0 . , 0 . , 0 . ) ;
503 i f (y>8) {
504 UINT4m j = i−xdim−8;
505 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
506 temp9 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
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507 }
508 }
509 i f (y<ydim−9) {
510 UINT4m j = i+xdim+8;
511 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
512 temp9 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
513 }
514 }
515 sum9 += pre fy9 ∗temp9 ; //sum of atoms in x and y
516
517 temp9 . Set ( 0 . , 0 . , 0 . ) ;
518 i f ( z>8) {
519 UINT4m j = i−xydim−8;
520 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
521 temp9 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
522 }
523 }
524 i f ( z<zdim−9) {
525 UINT4m j = i+xydim+8;
526 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
527 temp9 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f t h e r e

i s one
528 }
529 }
530 sum9 += pre f z9 ∗temp9 ; //sum of a l l atoms ( x , y and z )
531
532
533 ThreeVector sum10 ( 0 . , 0 . , 0 . ) ;
534 i f (x>9) {
535 UINT4m j = i −10;
536 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
537 sum10 = ( sp in [ j ] − base ) ; // exchange to l e f t atom i f t h e r e i s

one
538 }
539 }
540 i f (x<xdim−10) {
541 UINT4m j = i +10;
542 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
543 sum10 += ( sp in [ j ] − base ) ; // exchange to r i g h t atom i f t h e r e

i s one
544 }
545 }
546 sum10 ∗= pre fx10 ; //sum of atoms in x
547
548 ThreeVector temp10 ( 0 . , 0 . , 0 . ) ;
549 i f (y>9) {
550 UINT4m j = i−xdim−9;
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551 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
552 temp10 = ( sp in [ j ] − base ) ; // exchange to lower atom i f t h e r e

i s one
553 }
554 }
555 i f (y<ydim−10) {
556 UINT4m j = i+xdim+9;
557 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
558 temp10 += ( sp in [ j ] − base ) ; // exchange to upper atom i f t h e r e

i s one
559 }
560 }
561 sum10 += pre fy10 ∗temp10 ; //sum of atoms in x and y
562
563 temp10 . Set ( 0 . , 0 . , 0 . ) ;
564 i f ( z>9) {
565 UINT4m j = i−xydim−9;
566 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
567 temp10 = ( sp in [ j ] − base ) ; // exchange to l a y e r be low i f t h e r e

i s one
568 }
569 }
570 i f ( z<zdim−10) {
571 UINT4m j = i+xydim+9;
572 i f ( Ms inverse [ j ] ! = 0 . 0 ) {
573 temp10 += ( sp in [ j ] − base ) ; // exchange to l a y e r above i f

t h e r e i s one
574 }
575 }
576 sum10 += pre f z10 ∗temp10 ; //sum of a l l atoms ( x , y and z )
577
578
579 ThreeVector sum ( 0 . , 0 . , 0 . ) ;
580
581 sum = (sum1 + sum2 + sum3 + sum4 + sum5 + sum6 + sum7 + sum8 +

sum9 + sum10 ) ;
582
583 f i e l d [ i ] = ( ( hcoe f ∗Msii ) ∗ sum) ; //im not sure , f o r c e ac t i n g on

atom j due to exchange ??
584 energy [ i ] = (sum ∗ base ) ; // exchange energy f o r atom i
585 }
586 }
587 }
588 }
589
590 void MM 1DExchange : : GetEnergy
591 ( const Oxs SimState& state ,
592 Oxs EnergyData& oed
593 ) const
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594 {
595 const Oxs MeshValue<ThreeVector>& spin = s t a t e . sp in ;
596 const Oxs MeshValue<REAL8m>& Ms inverse = ∗( s t a t e . Ms inverse ) ;
597
598 // Use supp l i e d b u f f e r space , and r e f l e c t t h a t use in oed .
599 oed . energy = oed . e n e r g y b u f f e r ;
600 oed . f i e l d = oed . f i e l d b u f f e r ;
601 Oxs MeshValue<REAL8m>& energy = ∗oed . e n e r g y b u f f e r ;
602 Oxs MeshValue<ThreeVector>& f i e l d = ∗oed . f i e l d b u f f e r ;
603
604 const Oxs RectangularMesh∗ mesh
605 = dynamic cast<const Oxs RectangularMesh∗>( s t a t e . mesh ) ;
606 i f ( mesh==NULL) {
607 throw Oxs Ext : : Error ( this , ” Import mesh to ”
608 ” Oxs UniformExchange : : GetEnergy ( ) ”
609 ” i s not an Oxs RectangularMesh ob j e c t . ” ) ;
610 }
611
612 // Note : Might want to cons ider s u b c l a s s i n g exchange energ ie s ,
613 // to r ep l a c e t h i s i f−b l o c k wi th v i r t u a l f unc t i on po in t e r s .
614 i f ( k e rne l == NGBR 6) {
615 CalcEnergy8ngbrs ( spin , Ms inverse , mesh , energy , f i e l d ) ;
616 } else {
617 throw Oxs Ext : : Error ( this , ” I n v a l i d ke rne l type detec ted . ”
618 ” ( Programming e r r o r ) ” ) ;
619 }
620
621 }

1 /∗ FILE : my dzyamoexchange . h −∗−Mode : c++−∗−∗/
2
3 #ifndef MMDZYAMOEXCHANGE
4 #define MMDZYAMOEXCHANGE
5
6 #include ”oc . h”
7 #include ” d i r e c t o r . h”
8 #include ” energy . h”
9 #include ”meshvalue . h”

10 #include ” s imsta te . h”
11 #include ” t h r e e v e c t o r . h”
12
13 /∗ End in c l ud e s ∗/
14
15 class MM DzyaMoExchange : public Oxs Energy{
16 private :
17 REAL8m D1 ;
18 REAL8m D2 ;
19 REAL8m D3 ;
20 REAL8m D4 ;
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21 REAL8m D5 ;
22 REAL8m D6 ;
23 REAL8m D7 ;
24 REAL8m D8 ;
25 REAL8m D9 ;
26 REAL8m D10 ;
27
28 enum ExchangeKernel { UNKNOWN, NGBR 6} ke rne l ;
29 /// Exchange formu la t ion to use . ”unknown” i s i n v a l i d ; i t
30 /// i s de f ined f o r error d e t e c t i on .
31
32 // Ca l cu l a t i on rou t i n e s f o r each o f the
33 // aforementioned energy fo rmu la t i ons .
34 void CalcEnergyDzyaMo
35 ( const Oxs MeshValue<ThreeVector>& spin ,
36 const Oxs MeshValue<REAL8m>& Ms inverse ,
37 const Oxs RectangularMesh∗ mesh ,
38 Oxs MeshValue<REAL8m>& energy ,
39 Oxs MeshValue<ThreeVector>& f i e l d ) const ;
40
41 protected :
42 virtual void GetEnergy ( const Oxs SimState& state ,
43 Oxs EnergyData& oed ) const ;
44
45 public :
46 virtual const char∗ ClassName ( ) const ; // ClassName () i s
47 /// au t oma t i c a l l y generated by the OXS EXT REGISTER macro .
48 //Oxs UniformExchange ( cons t char∗ name , // Chi ld in s tance id
49 MM DzyaMoExchange( const char∗ name ,
50 Oxs Director ∗ newdtr , // App d i r e c t o r
51 const char∗ a r g s t r ) ; // MIF input b l o c k parameters
52 // v i r t u a l ˜Oxs UniformExchange () ;
53 virtual ˜MM DzyaMoExchange ( ) ;
54
55 virtual BOOL I n i t ( ) ;
56 } ;
57
58
59 #endif // MMDZYAMOEXCHANGE

1 /∗ FILE : my dzyamoexchange . cc −∗−Mode : c++−∗−∗/
2
3 #include ”nb . h”
4 #include ” d i r e c t o r . h”
5 #include ”mesh . h”
6 #include ”meshvalue . h”
7 #include ” s imsta te . h”
8 #include ” t h r e e v e c t o r . h”
9 #include ” rectangularmesh . h”
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10 //#inc l ude ”uniformexchange . h”
11 #include ”my dzyamoexchange . h”
12 #include ” energy . h” // Needed to make MSVC++ 5 happy
13
14 // Oxs Ext r e g i s t r a t i o n suppor t
15 OXS EXT REGISTER(MM DzyaMoExchange) ;
16
17 /∗ End in c l ud e s ∗/
18
19
20 // Constructor
21 MM DzyaMoExchange : : MM DzyaMoExchange(
22 const char∗ name , // Chi ld in s tance id
23 Oxs Director ∗ newdtr , // App d i r e c t o r
24 const char∗ a r g s t r ) // MIF input b l o c k parameters
25 : Oxs Energy (name , newdtr , a r g s t r ) ,
26 D1 ( 0 . ) , k e rne l (UNKNOWN)
27 {
28 // Process arguments
29 D1 = GetRealIn itValue ( ”D1” ) ;
30 D2 = GetRealIn itValue ( ”D2” ) ;
31 D3 = GetRealIn itValue ( ”D3” ) ;
32 D4 = GetRealIn itValue ( ”D4” ) ;
33 D5 = GetRealIn itValue ( ”D5” ) ;
34 D6 = GetRealIn itValue ( ”D6” ) ;
35 D7 = GetRealIn itValue ( ”D7” ) ;
36 D8 = GetRealIn itValue ( ”D8” ) ;
37 D9 = GetRealIn itValue ( ”D9” ) ;
38 D10 = GetRealIn itValue ( ”D10” ) ;
39 s t r i n g k e r n e l r e q u e s t = GetStr ing In i tVa lue ( ” ke rne l ” , ”6ngbr” ) ;
40 i f ( k e r n e l r e q u e s t . compare ( ”6ngbr” )==0) {
41 ke rne l = NGBR 6;
42 } else {
43 s t r i n g msg=s t r i n g ( ” I n v a l i d ke rne l r eque s t : ” )
44 + k e r n e l r e q u e s t
45 + s t r i n g ( ”\n Should be one o f 6ngbr , 12ngbr , 12 ngbrmirror , or 26

ngbr . ” ) ;
46 throw Oxs Ext : : Error ( this , msg . c s t r ( ) ) ;
47 }
48 Ver i fyAl l In i tArgsUsed ( ) ;
49 }
50
51 MM DzyaMoExchange : : ˜ MM DzyaMoExchange ( )
52 {}
53
54 BOOL MM DzyaMoExchange : : I n i t ( )
55 {
56 return Oxs Energy : : I n i t ( ) ;
57 }
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58
59 void
60 MM DzyaMoExchange : : CalcEnergyDzyaMo (
61 const Oxs MeshValue<ThreeVector>& spin ,
62 const Oxs MeshValue<REAL8m>& Ms inverse ,
63 const Oxs RectangularMesh∗ mesh ,
64 Oxs MeshValue<REAL8m>& energy ,
65 Oxs MeshValue<ThreeVector>& f i e l d
66 )
67 const
68 {
69 UINT4m xdim = mesh−>DimX( ) ;
70 UINT4m ydim = mesh−>DimY( ) ;
71 UINT4m zdim = mesh−>DimZ( ) ;
72 UINT4m xydim = xdim∗ydim ;
73
74 const REAL8m hcoe f = −2/MU0;
75 ThreeVector DM( 0 . , 1 . , 0 ) ;
76
77 REAL8m pre fx1 = D1/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ; // perhaps

d i f f e r e n t p r e f a c t o r s
78 REAL8m pre fy1 = D1/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ; // f o r

d i f f e r e n t d i r e c t i o n s ?
79 REAL8m pre f z1 = D1/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
80 REAL8m pre fx2 = D2/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
81 REAL8m pre fy2 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
82 REAL8m pre f z2 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
83 REAL8m pre fx3 = D3/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
84 REAL8m pre fy3 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
85 REAL8m pre f z3 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
86 REAL8m pre fx4 = D4/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
87 REAL8m pre fy4 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
88 REAL8m pre f z4 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
89 REAL8m pre fx5 = D5/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
90 REAL8m pre fy5 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
91 REAL8m pre f z5 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
92 REAL8m pre fx6 = D6/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
93 REAL8m pre fy6 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
94 REAL8m pre f z6 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
95 REAL8m pre fx7 = D7/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
96 REAL8m pre fy7 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
97 REAL8m pre f z7 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
98 REAL8m pre fx8 = D8/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
99 REAL8m pre fy8 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;

100 REAL8m pre f z8 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
101 REAL8m pre fx9 = D9/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;
102 REAL8m pre fy9 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
103 REAL8m pre f z9 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
104 REAL8m pre fx10 = D10/(mesh−>EdgeLengthX ( ) ∗mesh−>EdgeLengthX ( ) ) ;

133



A. Source code for interactions in OOMMF

105 REAL8m pre fy10 = 0/(mesh−>EdgeLengthY ( ) ∗mesh−>EdgeLengthY ( ) ) ;
106 REAL8m pre f z10 = 0/(mesh−>EdgeLengthZ ( ) ∗mesh−>EdgeLengthZ ( ) ) ;
107
108 for (UINT4m z =0;z<zdim ; z++) {
109 for (UINT4m y=0;y<ydim ; y++) {
110 for (UINT4m x=0;x<xdim ; x++) {
111 UINT4m i = mesh−>Index (x , y , z ) ; // i d e f i n e s l a t t i c e p o s i t i o n
112
113 REAL8m Msii = Ms inverse [ i ] ; // inv e r s e o f magnetic moment o f Si
114 i f ( Msi i == 0 . 0 ) {
115 energy [ i ] = 0 . 0 ;
116 f i e l d [ i ] . Set ( 0 . , 0 . , 0 . ) ;
117 continue ;
118 }
119
120 ThreeVector base = sp in [ i ] ; // d e f i n e s Si
121
122 REAL8m sum1 = 0 ; // energy par t
123 ThreeVector f i e l d p a r t 1 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
124 i f (x>0) {
125 UINT4m j = i −1;
126 i f ( Ms inverse [ j ] !=0) {
127 sum1 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
128 f i e l d p a r t 1 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
129 }
130 }
131 i f (x<xdim−1) {
132 UINT4m j = i +1;
133 i f ( Ms inverse [ j ] !=0) {
134 sum1 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
135 f i e l d p a r t 1 += (DM ˆ sp in [ j ] ) ;
136 }
137 }
138
139 sum1 ∗= pre fx1 ;
140 f i e l d p a r t 1 ∗= pre fx1 ;
141
142 REAL8m temp1 = 0 ;
143 ThreeVector f i e ld temp1 ( 0 . , 0 . , 0 . ) ;
144 i f (y>0) {
145 UINT4m j = i−xdim ;
146 i f ( Ms inverse [ j ] !=0) {
147 temp1 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
148 f i e ld temp1 = ( sp in [ j ] ˆ DM) ;
149 }
150 }
151 i f (y<ydim−1) {
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152 UINT4m j = i+xdim ;
153 i f ( Ms inverse [ j ] !=0) {
154 temp1 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
155 f i e ld temp1 += (DM ˆ sp in [ j ] ) ;
156 }
157 }
158
159 sum1 += temp1 ∗ pre fy1 ;
160 f i e l d p a r t 1 += f i e ld temp1 ∗ pre fy1 ;
161
162 temp1 = 0 ;
163 f i e ld temp1 . Set ( 0 . , 0 . , 0 . ) ;
164 i f ( z>0) {
165 UINT4m j = i−xydim ;
166 i f ( Ms inverse [ j ] !=0) {
167 temp1 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
168 f i e ld temp1 = ( sp in [ j ] ˆ DM) ;
169 }
170 }
171 i f ( z<zdim−1) {
172 UINT4m j = i+xydim ;
173 i f ( Ms inverse [ j ] !=0) {
174 temp1 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
175 f i e ld temp1 += (DM ˆ sp in [ j ] ) ;
176 }
177 }
178
179 sum1 += temp1 ∗ pre f z1 ;
180 f i e l d p a r t 1 += f i e ld temp1 ∗ pre f z1 ;
181
182
183 REAL8m sum2 = 0 ; // energy par t
184 ThreeVector f i e l d p a r t 2 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
185 i f (x>1) {
186 UINT4m j = i −2;
187 i f ( Ms inverse [ j ] !=0) {
188 sum2 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
189 f i e l d p a r t 2 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
190 }
191 }
192 i f (x<xdim−2) {
193 UINT4m j = i +2;
194 i f ( Ms inverse [ j ] !=0) {
195 sum2 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
196 f i e l d p a r t 2 += (DM ˆ sp in [ j ] ) ;
197 }
198 }
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199
200 sum2 ∗= pre fx2 ;
201 f i e l d p a r t 2 ∗= pre fx2 ;
202
203 REAL8m temp2 = 0 ;
204 ThreeVector f i e ld temp2 ( 0 . , 0 . , 0 . ) ;
205 i f (y>1) {
206 UINT4m j = i−xdim−1;
207 i f ( Ms inverse [ j ] !=0) {
208 temp2 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
209 f i e ld temp2 = ( sp in [ j ] ˆ DM) ;
210 }
211 }
212 i f (y<ydim−2) {
213 UINT4m j = i+xdim+1;
214 i f ( Ms inverse [ j ] !=0) {
215 temp2 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
216 f i e ld temp2 += (DM ˆ sp in [ j ] ) ;
217 }
218 }
219
220 sum2 += temp2 ∗ pre fy2 ;
221 f i e l d p a r t 2 += f i e ld temp2 ∗ pre fy2 ;
222
223 temp2 = 0 ;
224 f i e ld temp2 . Set ( 0 . , 0 . , 0 . ) ;
225 i f ( z>1) {
226 UINT4m j = i−xydim−1;
227 i f ( Ms inverse [ j ] !=0) {
228 temp2 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
229 f i e ld temp2 = ( sp in [ j ] ˆ DM) ;
230 }
231 }
232 i f ( z<zdim−2) {
233 UINT4m j = i+xydim+1;
234 i f ( Ms inverse [ j ] !=0) {
235 temp2 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
236 f i e ld temp2 += (DM ˆ sp in [ j ] ) ;
237 }
238 }
239
240 sum2 += temp2 ∗ pre f z2 ;
241 f i e l d p a r t 2 += f i e ld temp2 ∗ pre f z2 ;
242
243 REAL8m sum3 = 0 ; // energy par t
244 ThreeVector f i e l d p a r t 3 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
245 i f (x>2) {
246 UINT4m j = i −3;
247 i f ( Ms inverse [ j ] !=0) {
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248 sum3 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
249 f i e l d p a r t 3 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
250 }
251 }
252 i f (x<xdim−3) {
253 UINT4m j = i +3;
254 i f ( Ms inverse [ j ] !=0) {
255 sum3 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
256 f i e l d p a r t 3 += (DM ˆ sp in [ j ] ) ;
257 }
258 }
259
260 sum3 ∗= pre fx3 ;
261 f i e l d p a r t 3 ∗= pre fx3 ;
262
263 REAL8m temp3 = 0 ;
264 ThreeVector f i e ld temp3 ( 0 . , 0 . , 0 . ) ;
265 i f (y>2) {
266 UINT4m j = i−xdim−2;
267 i f ( Ms inverse [ j ] !=0) {
268 temp3 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
269 f i e ld temp3 = ( sp in [ j ] ˆ DM) ;
270 }
271 }
272 i f (y<ydim−3) {
273 UINT4m j = i+xdim+2;
274 i f ( Ms inverse [ j ] !=0) {
275 temp3 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
276 f i e ld temp3 += (DM ˆ sp in [ j ] ) ;
277 }
278 }
279
280 sum3 += temp3 ∗ pre fy3 ;
281 f i e l d p a r t 3 += f i e ld temp3 ∗ pre fy3 ;
282
283 temp3 = 0 ;
284 f i e ld temp3 . Set ( 0 . , 0 . , 0 . ) ;
285 i f ( z>2) {
286 UINT4m j = i−xydim−2;
287 i f ( Ms inverse [ j ] !=0) {
288 temp3 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
289 f i e ld temp3 = ( sp in [ j ] ˆ DM) ;
290 }
291 }
292 i f ( z<zdim−3) {
293 UINT4m j = i+xydim+2;
294 i f ( Ms inverse [ j ] !=0) {
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295 temp3 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
296 f i e ld temp3 += (DM ˆ sp in [ j ] ) ;
297 }
298 }
299
300 sum3 += temp3 ∗ pre f z3 ;
301 f i e l d p a r t 3 += f i e ld temp3 ∗ pre f z3 ;
302
303
304 REAL8m sum4 = 0 ; // energy par t
305 ThreeVector f i e l d p a r t 4 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
306 i f (x>3) {
307 UINT4m j = i −4;
308 i f ( Ms inverse [ j ] !=0) {
309 sum4 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
310 f i e l d p a r t 4 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
311 }
312 }
313 i f (x<xdim−4) {
314 UINT4m j = i +4;
315 i f ( Ms inverse [ j ] !=0) {
316 sum4 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
317 f i e l d p a r t 4 += (DM ˆ sp in [ j ] ) ;
318 }
319 }
320
321 sum4 ∗= pre fx4 ;
322 f i e l d p a r t 4 ∗= pre fx4 ;
323
324 REAL8m temp4 = 0 ;
325 ThreeVector f i e ld temp4 ( 0 . , 0 . , 0 . ) ;
326 i f (y>3) {
327 UINT4m j = i−xdim−3;
328 i f ( Ms inverse [ j ] !=0) {
329 temp4 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
330 f i e ld temp4 = ( sp in [ j ] ˆ DM) ;
331 }
332 }
333 i f (y<ydim−4) {
334 UINT4m j = i+xdim+3;
335 i f ( Ms inverse [ j ] !=0) {
336 temp4 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
337 f i e ld temp4 += (DM ˆ sp in [ j ] ) ;
338 }
339 }
340
341 sum4 += temp4 ∗ pre fy4 ;
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342 f i e l d p a r t 4 += f i e ld temp4 ∗ pre fy4 ;
343
344 temp4 = 0 ;
345 f i e ld temp4 . Set ( 0 . , 0 . , 0 . ) ;
346 i f ( z>3) {
347 UINT4m j = i−xydim−3;
348 i f ( Ms inverse [ j ] !=0) {
349 temp4 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
350 f i e ld temp4 = ( sp in [ j ] ˆ DM) ;
351 }
352 }
353 i f ( z<zdim−4) {
354 UINT4m j = i+xydim+3;
355 i f ( Ms inverse [ j ] !=0) {
356 temp4 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
357 f i e ld temp4 += (DM ˆ sp in [ j ] ) ;
358 }
359 }
360
361 sum4 += temp4 ∗ pre f z4 ;
362 f i e l d p a r t 4 += f i e ld temp4 ∗ pre f z4 ;
363
364
365 REAL8m sum5 = 0 ; // energy par t
366 ThreeVector f i e l d p a r t 5 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
367 i f (x>4) {
368 UINT4m j = i −5;
369 i f ( Ms inverse [ j ] !=0) {
370 sum5 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
371 f i e l d p a r t 5 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
372 }
373 }
374 i f (x<xdim−5) {
375 UINT4m j = i +5;
376 i f ( Ms inverse [ j ] !=0) {
377 sum5 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
378 f i e l d p a r t 5 += (DM ˆ sp in [ j ] ) ;
379 }
380 }
381
382 sum5 ∗= pre fx5 ;
383 f i e l d p a r t 5 ∗= pre fx5 ;
384
385 REAL8m temp5 = 0 ;
386 ThreeVector f i e ld temp5 ( 0 . , 0 . , 0 . ) ;
387 i f (y>4) {
388 UINT4m j = i−xdim−4;
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389 i f ( Ms inverse [ j ] !=0) {
390 temp5 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
391 f i e ld temp5 = ( sp in [ j ] ˆ DM) ;
392 }
393 }
394 i f (y<ydim−5) {
395 UINT4m j = i+xdim+4;
396 i f ( Ms inverse [ j ] !=0) {
397 temp5 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
398 f i e ld temp5 += (DM ˆ sp in [ j ] ) ;
399 }
400 }
401
402 sum5 += temp5 ∗ pre fy5 ;
403 f i e l d p a r t 5 += f i e ld temp5 ∗ pre fy5 ;
404
405 temp5 = 0 ;
406 f i e ld temp5 . Set ( 0 . , 0 . , 0 . ) ;
407 i f ( z>4) {
408 UINT4m j = i−xydim−4;
409 i f ( Ms inverse [ j ] !=0) {
410 temp5 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
411 f i e ld temp5 = ( sp in [ j ] ˆ DM) ;
412 }
413 }
414 i f ( z<zdim−5) {
415 UINT4m j = i+xydim+4;
416 i f ( Ms inverse [ j ] !=0) {
417 temp5 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
418 f i e ld temp5 += (DM ˆ sp in [ j ] ) ;
419 }
420 }
421
422 sum5 += temp5 ∗ pre f z5 ;
423 f i e l d p a r t 5 += f i e ld temp5 ∗ pre f z5 ;
424
425
426 REAL8m sum6 = 0 ; // energy par t
427 ThreeVector f i e l d p a r t 6 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
428 i f (x>5) {
429 UINT4m j = i −6;
430 i f ( Ms inverse [ j ] !=0) {
431 sum6 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
432 f i e l d p a r t 6 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
433 }
434 }
435 i f (x<xdim−6) {
436 UINT4m j = i +6;
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437 i f ( Ms inverse [ j ] !=0) {
438 sum6 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
439 f i e l d p a r t 6 += (DM ˆ sp in [ j ] ) ;
440 }
441 }
442
443 sum6 ∗= pre fx6 ;
444 f i e l d p a r t 6 ∗= pre fx6 ;
445
446 REAL8m temp6 = 0 ;
447 ThreeVector f i e ld temp6 ( 0 . , 0 . , 0 . ) ;
448 i f (y>5) {
449 UINT4m j = i−xdim−5;
450 i f ( Ms inverse [ j ] !=0) {
451 temp6 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
452 f i e ld temp6 = ( sp in [ j ] ˆ DM) ;
453 }
454 }
455 i f (y<ydim−6) {
456 UINT4m j = i+xdim+5;
457 i f ( Ms inverse [ j ] !=0) {
458 temp6 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
459 f i e ld temp6 += (DM ˆ sp in [ j ] ) ;
460 }
461 }
462
463 sum6 += temp6 ∗ pre fy6 ;
464 f i e l d p a r t 6 += f i e ld temp6 ∗ pre fy6 ;
465
466 temp6 = 0 ;
467 f i e ld temp6 . Set ( 0 . , 0 . , 0 . ) ;
468 i f ( z>5) {
469 UINT4m j = i−xydim−5;
470 i f ( Ms inverse [ j ] !=0) {
471 temp6 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
472 f i e ld temp6 = ( sp in [ j ] ˆ DM) ;
473 }
474 }
475 i f ( z<zdim−6) {
476 UINT4m j = i+xydim+5;
477 i f ( Ms inverse [ j ] !=0) {
478 temp6 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
479 f i e ld temp6 += (DM ˆ sp in [ j ] ) ;
480 }
481 }
482
483 sum6 += temp6 ∗ pre f z6 ;
484 f i e l d p a r t 6 += f i e ld temp6 ∗ pre f z6 ;
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485
486
487 REAL8m sum7 = 0 ; // energy par t
488 ThreeVector f i e l d p a r t 7 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
489 i f (x>6) {
490 UINT4m j = i −7;
491 i f ( Ms inverse [ j ] !=0) {
492 sum7 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
493 f i e l d p a r t 7 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
494 }
495 }
496 i f (x<xdim−7) {
497 UINT4m j = i +7;
498 i f ( Ms inverse [ j ] !=0) {
499 sum7 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
500 f i e l d p a r t 7 += (DM ˆ sp in [ j ] ) ;
501 }
502 }
503
504 sum7 ∗= pre fx7 ;
505 f i e l d p a r t 7 ∗= pre fx7 ;
506
507 REAL8m temp7 = 0 ;
508 ThreeVector f i e ld temp7 ( 0 . , 0 . , 0 . ) ;
509 i f (y>6) {
510 UINT4m j = i−xdim−6;
511 i f ( Ms inverse [ j ] !=0) {
512 temp7 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
513 f i e ld temp7 = ( sp in [ j ] ˆ DM) ;
514 }
515 }
516 i f (y<ydim−7) {
517 UINT4m j = i+xdim+6;
518 i f ( Ms inverse [ j ] !=0) {
519 temp7 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
520 f i e ld temp7 += (DM ˆ sp in [ j ] ) ;
521 }
522 }
523
524 sum7 += temp7 ∗ pre fy7 ;
525 f i e l d p a r t 7 += f i e ld temp7 ∗ pre fy7 ;
526
527 temp7 = 0 ;
528 f i e ld temp7 . Set ( 0 . , 0 . , 0 . ) ;
529 i f ( z>6) {
530 UINT4m j = i−xydim−6;
531 i f ( Ms inverse [ j ] !=0) {
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532 temp7 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
533 f i e ld temp7 = ( sp in [ j ] ˆ DM) ;
534 }
535 }
536 i f ( z<zdim−7) {
537 UINT4m j = i+xydim+6;
538 i f ( Ms inverse [ j ] !=0) {
539 temp7 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
540 f i e ld temp7 += (DM ˆ sp in [ j ] ) ;
541 }
542 }
543
544 sum7 += temp7 ∗ pre f z7 ;
545 f i e l d p a r t 7 += f i e ld temp7 ∗ pre f z7 ;
546
547
548 REAL8m sum8 = 0 ; // energy par t
549 ThreeVector f i e l d p a r t 8 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
550 i f (x>7) {
551 UINT4m j = i −8;
552 i f ( Ms inverse [ j ] !=0) {
553 sum8 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
554 f i e l d p a r t 8 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
555 }
556 }
557 i f (x<xdim−8) {
558 UINT4m j = i +8;
559 i f ( Ms inverse [ j ] !=0) {
560 sum8 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
561 f i e l d p a r t 8 += (DM ˆ sp in [ j ] ) ;
562 }
563 }
564
565 sum8 ∗= pre fx8 ;
566 f i e l d p a r t 8 ∗= pre fx8 ;
567
568 REAL8m temp8 = 0 ;
569 ThreeVector f i e ld temp8 ( 0 . , 0 . , 0 . ) ;
570 i f (y>7) {
571 UINT4m j = i−xdim−7;
572 i f ( Ms inverse [ j ] !=0) {
573 temp8 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
574 f i e ld temp8 = ( sp in [ j ] ˆ DM) ;
575 }
576 }
577 i f (y<ydim−8) {
578 UINT4m j = i+xdim+7;
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579 i f ( Ms inverse [ j ] !=0) {
580 temp8 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
581 f i e ld temp8 += (DM ˆ sp in [ j ] ) ;
582 }
583 }
584
585 sum8 += temp8 ∗ pre fy8 ;
586 f i e l d p a r t 8 += f i e ld temp8 ∗ pre fy8 ;
587
588 temp8 = 0 ;
589 f i e ld temp8 . Set ( 0 . , 0 . , 0 . ) ;
590 i f ( z>7) {
591 UINT4m j = i−xydim−7;
592 i f ( Ms inverse [ j ] !=0) {
593 temp8 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
594 f i e ld temp8 = ( sp in [ j ] ˆ DM) ;
595 }
596 }
597 i f ( z<zdim−8) {
598 UINT4m j = i+xydim+7;
599 i f ( Ms inverse [ j ] !=0) {
600 temp8 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
601 f i e ld temp8 += (DM ˆ sp in [ j ] ) ;
602 }
603 }
604
605 sum8 += temp8 ∗ pre f z8 ;
606 f i e l d p a r t 8 += f i e ld temp8 ∗ pre f z8 ;
607
608
609 REAL8m sum9 = 0 ; // energy par t
610 ThreeVector f i e l d p a r t 9 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
611 i f (x>8) {
612 UINT4m j = i −9;
613 i f ( Ms inverse [ j ] !=0) {
614 sum9 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
615 f i e l d p a r t 9 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
616 }
617 }
618 i f (x<xdim−9) {
619 UINT4m j = i +9;
620 i f ( Ms inverse [ j ] !=0) {
621 sum9 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
622 f i e l d p a r t 9 += (DM ˆ sp in [ j ] ) ;
623 }
624 }
625
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626 sum9 ∗= pre fx9 ;
627 f i e l d p a r t 9 ∗= pre fx9 ;
628
629 REAL8m temp9 = 0 ;
630 ThreeVector f i e ld temp9 ( 0 . , 0 . , 0 . ) ;
631 i f (y>8) {
632 UINT4m j = i−xdim−8;
633 i f ( Ms inverse [ j ] !=0) {
634 temp9 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
635 f i e ld temp9 = ( sp in [ j ] ˆ DM) ;
636 }
637 }
638 i f (y<ydim−9) {
639 UINT4m j = i+xdim+8;
640 i f ( Ms inverse [ j ] !=0) {
641 temp9 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
642 f i e ld temp9 += (DM ˆ sp in [ j ] ) ;
643 }
644 }
645
646 sum9 += temp9 ∗ pre fy9 ;
647 f i e l d p a r t 9 += f i e ld temp9 ∗ pre fy9 ;
648
649 temp9 = 0 ;
650 f i e ld temp9 . Set ( 0 . , 0 . , 0 . ) ;
651 i f ( z>8) {
652 UINT4m j = i−xydim−8;
653 i f ( Ms inverse [ j ] !=0) {
654 temp9 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
655 f i e ld temp9 = ( sp in [ j ] ˆ DM) ;
656 }
657 }
658 i f ( z<zdim−9) {
659 UINT4m j = i+xydim+8;
660 i f ( Ms inverse [ j ] !=0) {
661 temp9 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
662 f i e ld temp9 += (DM ˆ sp in [ j ] ) ;
663 }
664 }
665
666 sum9 += temp9 ∗ pre f z9 ;
667 f i e l d p a r t 9 += f i e ld temp9 ∗ pre f z9 ;
668
669
670 REAL8m sum10 = 0 ; // energy par t
671 ThreeVector f i e l d p a r t 1 0 ( 0 . , 0 . , 0 . ) ; // f i e l d par t
672 i f (x>9) {
673 UINT4m j = i −10;
674 i f ( Ms inverse [ j ] !=0) {
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675 sum10 = ( DM ∗ ( base ˆ sp in [ j ] ) ) ; // va r i e s between 0 and 2
676 f i e l d p a r t 1 0 = ( sp in [ j ] ˆ DM) ; //maybe f i l l in +1 or −1 to

o f f s e t to zero ??
677 }
678 }
679 i f (x<xdim−10) {
680 UINT4m j = i +10;
681 i f ( Ms inverse [ j ] !=0) {
682 sum10 += (DM ∗ ( sp in [ j ] ˆ base ) ) ; // ro t a t ed due to symmetry

reasons
683 f i e l d p a r t 1 0 += (DM ˆ sp in [ j ] ) ;
684 }
685 }
686
687 sum10 ∗= pre fx10 ;
688 f i e l d p a r t 1 0 ∗= pre fx10 ;
689
690 REAL8m temp10 = 0 ;
691 ThreeVector f i e ld temp10 ( 0 . , 0 . , 0 . ) ;
692 i f (y>9) {
693 UINT4m j = i−xdim−9;
694 i f ( Ms inverse [ j ] !=0) {
695 temp10 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
696 f i e ld temp10 = ( sp in [ j ] ˆ DM) ;
697 }
698 }
699 i f (y<ydim−10) {
700 UINT4m j = i+xdim+9;
701 i f ( Ms inverse [ j ] !=0) {
702 temp10 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
703 f i e ld temp10 += (DM ˆ sp in [ j ] ) ;
704 }
705 }
706
707 sum10 += temp10 ∗ pre fy10 ;
708 f i e l d p a r t 1 0 += f i e ldtemp10 ∗ pre fy10 ;
709
710 temp10 = 0 ;
711 f i e ld temp10 . Set ( 0 . , 0 . , 0 . ) ;
712 i f ( z>9) {
713 UINT4m j = i−xydim−9;
714 i f ( Ms inverse [ j ] !=0) {
715 temp10 = (DM ∗ ( base ˆ sp in [ j ] ) ) ;
716 f i e ld temp10 = ( sp in [ j ] ˆ DM) ;
717 }
718 }
719 i f ( z<zdim−10) {
720 UINT4m j = i+xydim+9;
721 i f ( Ms inverse [ j ] !=0) {
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722 temp10 += (DM ∗ ( sp in [ j ] ˆ base ) ) ;
723 f i e ld temp10 += (DM ˆ sp in [ j ] ) ;
724 }
725 }
726
727 sum10 += temp10 ∗ pre f z10 ;
728 f i e l d p a r t 1 0 += f i e ldtemp10 ∗ pre f z10 ;
729
730
731 ThreeVector f i e l d p a r t ( 0 . , 0 . , 0 . ) ;
732 REAL8m sum = 0 ;
733
734 sum = (sum1 + sum2 + sum3 + sum4 + sum5 + sum6 + sum7 + sum8 +

sum9 + sum10 ) ;
735 f i e l d p a r t = ( f i e l d p a r t 1 + f i e l d p a r t 2 + f i e l d p a r t 3 + f i e l d p a r t 4 +

f i e l d p a r t 5 + f i e l d p a r t 6 + f i e l d p a r t 7 + f i e l d p a r t 8 +
f i e l d p a r t 9 + f i e l d p a r t 1 0 ) ;

736
737 f i e l d [ i ] = hcoe f ∗Msii ∗ f i e l d p a r t ;
738 energy [ i ] = sum ;
739 }
740 }
741 }
742 }
743
744 void MM DzyaMoExchange : : GetEnergy
745 ( const Oxs SimState& state ,
746 Oxs EnergyData& oed
747 ) const
748 {
749 const Oxs MeshValue<ThreeVector>& spin = s t a t e . sp in ;
750 const Oxs MeshValue<REAL8m>& Ms inverse = ∗( s t a t e . Ms inverse ) ;
751
752 // Use supp l i e d b u f f e r space , and r e f l e c t t h a t use in oed .
753 oed . energy = oed . e n e r g y b u f f e r ;
754 oed . f i e l d = oed . f i e l d b u f f e r ;
755 Oxs MeshValue<REAL8m>& energy = ∗oed . e n e r g y b u f f e r ;
756 Oxs MeshValue<ThreeVector>& f i e l d = ∗oed . f i e l d b u f f e r ;
757
758 const Oxs RectangularMesh∗ mesh
759 = dynamic cast<const Oxs RectangularMesh∗>( s t a t e . mesh ) ;
760 i f ( mesh==NULL) {
761 throw Oxs Ext : : Error ( this , ” Import mesh to ”
762 ” Oxs UniformExchange : : GetEnergy ( ) ”
763 ” i s not an Oxs RectangularMesh ob j e c t . ” ) ;
764 }
765
766 // Note : Might want to cons ider s u b c l a s s i n g exchange energ ie s ,
767 // to r ep l a c e t h i s i f−b l o c k wi th v i r t u a l f unc t i on po in t e r s .
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A. Source code for interactions in OOMMF

768 i f ( k e rne l == NGBR 6) {
769 CalcEnergyDzyaMo ( spin , Ms inverse , mesh , energy , f i e l d ) ;
770 } else {
771 throw Oxs Ext : : Error ( this , ” I n v a l i d ke rne l type detec ted . ”
772 ” ( Programming e r r o r ) ” ) ;
773 }
774
775 }
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B. Ground state energies for different
chain lengths

length Etot/atom Eexch/atom EDM/atom Eani/atom EB/atom

6 −3.280 +3.054 −7.162 +0.828 +0.000
7 −3.597 +3.322 −7.794 +0.875 +0.000
8 −3.920 +3.467 −6.820 +0.766 +0.000
9 −4.185 +3.445 −8.477 +0.846 +0.000
10 −4.352 +3.495 −8.747 +0.900 +0.000
11 −4.543 +3.550 −8.986 +0.893 +0.000
12 −4.694 +3.531 −9.093 +0.868 +0.000
13 −4.774 +3.570 −9.256 +0.912 +0.000
14 −4.890 +3.614 −9.412 +0.907 +0.000
15 −4.993 +3.596 −9.470 +0.881 +0.000
16 −5.044 +3.569 −9.523 +0.909 +0.000
17 −5.118 +3.636 −9.663 +0.910 +0.000
18 −5.193 +3.637 −9.721 +0.891 +0.000
19 −5.231 +3.609 −9.746 +0.906 +0.000
20 −5.277 +3.657 −9.846 +0.912 +0.000
21 −5.335 +3.668 −9.901 +0.899 +0.000
22 −5.365 +3.640 −9.910 +0.905 +0.000
23 −5.395 +3.677 −9.986 +0.914 +0.000
24 −5.440 +3.690 −10.036 +0.905 +0.000
25 −5.467 +3.664 −10.036 +0.905 +0.000
26 −5.486 +3.693 −10.096 +0.917 +0.000
27 −5.522 +3.708 −10.140 +0.910 +0.000
28 −5.547 +3.683 −10.136 +0.907 +0.000
29 −5.558 +3.707 −10.185 +0.920 +0.000
30 −5.587 +3.722 −10.224 +0.915 +0.000
31 −5.610 +3.699 −10.218 +0.908 +0.000
32 −5.616 +3.718 −10.257 +0.922 +0.000
33 −5.641 +3.733 −10.292 +0.919 +0.000
34 −5.662 +3.713 −10.285 +0.910 +0.000
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B. Ground state energies for different chain lengths

length Etot/atom Eexch/atom EDM/atom Eani/atom EB/atom

35 −5.664 +3.727 −10.316 +0.925 +0.000
36 −5.685 +3.741 −10.348 +0.922 +0.000
37 −5.705 +3.725 −10.342 +0.912 +0.000
38 −5.710 +3.703 −10.332 +0.919 +0.000
39 −5.723 +3.739 −10.385 +0.923 +0.000
40 −5.741 +3.735 −10.390 +0.914 +0.000
41 −5.747 +3.713 −10.378 +0.918 +0.000
42 −5.755 +3.740 −10.419 +0.923 +0.000
43 −5.772 +3.743 −10.432 +0.916 +0.000
44 −5.779 +3.722 −10.419 +0.918 +0.000
45 −5.784 +3.745 −10.453 +0.924 +0.000
46 −5.799 +3.751 −10.468 +0.918 +0.000
47 −5.806 +3.731 −10.455 +0.918 +0.000
48 −5.809 +3.750 −10.483 +0.925 +0.000
49 −5.822 +3.758 −10.500 +0.924 +0.000
50 −5.830 +3.738 −10.487 +0.918 +0.000

100 −6.011 +3.779 −10.715 +0.926 +0.000

DFT −6.130 +3.788 −10.918 +1.000 +0.000

Table B.1: Ground state energies extracted from OOMMF simulations for bi-atomic Fe
chains of different lengths at T = 0 K without an external magnetic field. The chain
length is given in atoms (first column). The second column displays the total energy per
Fe atom and the contributions due to Heisenberg exchange, DM interaction, MAE and
magnetic field are shown in the third to sixth column. All energies are given in meV.
The last row lists the energy values from the DFT calculations, i.e., an infinite chain.
For longer chains, the values of the energy contributions from the OOMMF simulations
approach the DFT values.
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length Etot/atom Eexch/atom EDM/atom Eani/atom EB/atom

6 −3.295 +3.045 −7.149 +0.825 −0.016
7 −3.620 +3.320 −7.791 +0.875 −0.023
8 −3.920 +3.467 −8.254 +0.867 −0.000
9 −4.197 +3.441 −8.469 +0.843 −0.012
10 −4.369 +3.494 −8.744 +0.898 −0.017
11 −4.543 +3.550 −8.986 +0.893 −0.000
12 −4.704 +3.528 −9.086 +0.864 −0.010
13 −4.786 +3.571 −9.254 +0.910 −0.013
14 −4.891 +3.611 −9.406 +0.905 −0.001
15 −5.003 +3.593 −9.464 +0.878 −0.009
16 −5.048 +3.614 −9.569 +0.918 −0.011
17 −5.118 +3.639 −9.664 +0.908 −0.001
18 −5.201 +3.635 −9.716 +0.888 −0.009
19 −5.232 +3.612 −9.748 +0.907 −0.002
20 −5.278 +3.660 −9.848 +0.911 −0.001
21 −5.342 +3.666 −9.896 +0.896 −0.008
22 −5.366 +3.641 −9.911 +0.906 −0.002
23 −5.396 +3.679 −9.987 +0.913 −0.001
24 −5.447 +3.689 −10.032 +0.903 −0.007
25 −5.468 +3.664 −10.037 +0.906 −0.001
26 −5.487 +3.695 −10.097 +0.916 −0.001
27 −5.529 +3.707 −10.137 +0.909 −0.007
28 −5.547 +3.683 −10.137 +0.907 −0.001
29 −5.558 +3.708 −10.185 +0.919 −0.001
30 −5.594 +3.721 −10.222 +0.913 −0.006
31 −5.611 +3.700 −10.218 +0.908 −0.001
32 −5.613 +3.676 −10.212 +0.923 −0.000
33 −5.646 +3.732 −10.290 +0.917 −0.006
34 −5.662 +3.713 −10.285 +0.910 −0.001
35 −5.667 +3.688 −10.274 +0.920 −0.001
36 −5.690 +3.741 −10.347 +0.921 −0.005
37 −5.705 +3.725 −10.342 +0.912 −0.001
38 −5.711 +3.700 −10.327 +0.918 −0.002
39 −5.727 +3.748 −10.394 +0.924 −0.005
40 −5.742 +3.735 −10.390 +0.914 −0.001
41 −5.749 +3.710 −10.374 +0.917 −0.002
42 −5.759 +3.742 −10.421 +0.924 −0.004
43 −5.772 +3.744 −10.432 +0.916 −0.000
44 −5.781 +3.720 −10.415 +0.917 −0.002
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B. Ground state energies for different chain lengths

length Etot/atom Eexch/atom EDM/atom Eani/atom EB/atom

45 −5.787 +3.703 −10.452 +0.924 −0.004
46 −5.799 +3.751 −10.468 +0.918 −0.000
47 −5.808 +3.728 −10.451 +0.917 −0.002
48 −5.812 +3.749 −10.483 +0.925 −0.003
49 −5.822 +3.758 −10.500 +0.920 −0.000
50 −5.833 +3.736 −10.484 +0.917 −0.002

100 −6.012 +3.778 −10.713 +0.925 −0.002

Table B.2: Magnetic energies extracted from OOMMF simulations for bi-atomic Fe chains
of different lengths at T = 0 K with an external magnetic field of B = +2 T along the
z-axis. The columns are similar to Table B.1.
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