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Abstract

Nonrelativistic QCD (NRQCD) provides a rigorous factorization scheme which describes
the production and decay of heavy quarkonia. It has been a desire for 13 years to know
the NRQCD NLO predictions for both J/ψ hadroproduction and photoproduction, in
order to be able to check the universality of the color octet long distance matrix elements
(MEs) by comparing Tevatron and HERA data. In this work we calculate for the first
time the NRQCD NLO prediction for direct photoproduction at HERA and compare
our result with recent H1 data. Our results show clear evidence that the color octet
mechanism of NRQCD is indeed realized in J/ψ photoproduction at HERA. We solved
a number of open conceptual problems, probably the most important one being the issue
of Coulomb singularities. We found a way to evaluate the virtual corrections without
having to deal with them.

Zusammenfassung

Die nichtrelativistische QCD (NRQCD) bildet einen rigorosen Faktorisierungsformalis-
mus zur Beschreibung der Produktions- und Zerfallsraten schwerer Quarkonia. Es be-
steht seit 13 Jahren der Wunsch, die NRQCD Vorhersagen zur J/ψ Hadroproduktion
und Photoproduktion in nächstführender Ordnung (NLO) in αs zu kennen, um durch
den Vergleich von Tevatron- und HERA-Daten die Universalität der Farboktett lang-
reichweitigen Matrixelemente zu testen. In dieser Arbeit berechnen wir zum ersten Mal
die NRQCD NLO Vorhersagen zur direkten Photoproduktion bei HERA und verglei-
chen die Ergebnisse mit aktuellen H1 Daten. Unsere Resultate deuten darauf hin, dass
der NRQCD Farkoktettmechanismus in der Tat zur J/ψ Photoproduktion bei HERA
beiträgt. In unserer Arbeit haben wir eine Reihe offener konzeptioneller Probleme gelöst.
Das wichtigste betrifft wohl die Coulomb-Singularitäten. Wir haben einen Weg gefunden,
die virtuellen Korrekturen zu berechnen, ohne dass sie in unserer Rechnung auftauchen.
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1. Introduction

This doctoral thesis is a contribution to the field of heavy quarkonium physics. Heavy
quarkonia are bound states of a heavy quark and its antiquark. The top quark decays
too fast to form a bound state, but there are charmonia and bottomonia. Bound by
the QCD potential, the heavy quarkonium system can be in different Fock states. Each
excitation is considered a particle of its own kind and given its own name. The lower
end of the charmonium spectrum is given in table 1. The first time a heavy quarkonium
was discovered was in 1974 with the discovery of the J/ψ, the cc system in a 1 3S1 state.
This was the first time a heavy quark was discovered at all and this discovery was very
important for establishing QCD, in particular its asymptotic freedom. Ever since then
heavy quarkonium physics has been an active field for the study of QCD. The calculation
of the mass spectrum is a key application for lattice QCD, and the calculation of the
production and decay rates has been one of the first applications of perturbative QCD.
The calculation of J/ψ production rates is of special phenomenological interest because
of its clear experimental signature with its large branching ratio Γ(J/ψ → l+l−)/Γ of its
leptonic decay modes.

Over the years different methods have been devised to calculate heavy quarkonium
production and decay rates. The classic approach is the so called color singlet model.
In that approach the cross section is simply assumed to be the cross section for the
production/decay of a quarkonium in its physical color singlet, meaning color neutral,

state. In case of the J/ψ, this is a 3S
[1]
1 state, where the upper index 1 stands for color

singlet. This cross section then has to be multiplied by the quarkonium wave function at
the origin or its derivative, in case of P wave quarkonia. These quantities are treated as
numbers extracted from experiment. However, already in the case of P wave quarkonia,

n 2S+1LJ Name Mass

1 1S0 ηc 2980 MeV
1 3S1 J/ψ 3097 MeV

1 3P0 χc0 3415 MeV
1 3P1 χc1 3511 MeV
1 1P1 hc 3526 MeV
1 3P2 χc2 3556 MeV

2 1S0 η′c 3637 MeV
2 3S1 ψ′ 3686 MeV

Table 1.1.: The lower end of the charmonium spectrum, extracted from [1].
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scaling v3 v7 v11

n 3S
[1]
1

1S
[8]
0 , 3S

[8]
1 , 3P

[8]
0/1/2 . . .

Table 1.2.: Scaling behavior of the leading long distant matrix elements 〈OJ/ψ[n]〉 as
predicted by NRQCD.

there are leftover infrared divergences [2]. This hints at theoretical inconsistencies in
this approach.

A newer method is the so called nonrelativistic quantum chromodynamics (NRQCD)
[3, 4]. This self consistent effective field theory is based on the energy scale hierarchy

Mv2,Mv � ΛQCD �M, (1.1)

which is observed in the quarkonium system. Here, M is the quarkonium mass and
v the relative velocity between the quark and the antiquark. M sets the scale of the
pointlike production/decay of the individual quarks, which is accessible in perturbative
QCD. The physics of the quarkonium as a whole is however governed by the low energy
scales Mv2, the quarkonium energy, or Mv, the quarkonium momentum scale.

The calculation of the cross section for the production of a heavy quarkoniumH within
NRQCD is based on the factorization theorem

dσ(a + b→ H +X) ∝
∑

n

dσ(a + b→ cc[n] +X)〈OH [n]〉, (1.2)

which states that the production cross section factorizes into a short distance part σ(a+
b→ cc[n]+X), which describes the production of a cc pair in a specific Fock state n and
is calculated in perturbative QCD, and so called long distance matrix elements (MEs),
which are numbers expressing the probability for this cc pair to subsequently decay into a
physical H via soft gluon radiation. The new feature of NRQCD is that the intermediate
state n does not have to be color neutral, it can be a color octet state. The MEs should
in principle be calculable in lattice simulations. But as there are currently no reliable
calculations available, they are taken to be phenomenological constants extracted by
fitting to experimental data. The sum over n is in principal an infinite sum. Fortunately,
NRQCD predicts each of the MEs 〈OH [n]〉 to scale with a certain power of v, the relative
velocity of the c and c in the physical H. This relative velocity is a small number which
serves as an expansion parameter. In case of charmonium, v2 ≈ 0.2. These velocity
scaling rules are for the case of J/ψ production summarized in table 1.2: NRQCD

predicts the leading contribution to come from n = 3S
[1]
1 . This contribution equals the

color singlet model prediction, so the color singlet model is actually incorporated into

NRQCD. The higher order contributions from n = 1S
[8]
0 , 3S

[8]
1 and 3P

[8]
0/1/2

are the so
called relativistic corrections, also referred to as the color octet contributions. All other
MEs scale with even higher powers of v, and are usually neglected in NRQCD analyses.

In this framework, the leftover infrared divergences of the P wave quarkonia are can-
celed by NRQCD radiative corrections to the MEs of S states, as will be described in
chapter 4.
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Hadroproduction 3S
[1]
1

1S
[8]
0 , 3S

[8]
1 ,3P

[8]
0/1/2

Born Baier, Rückl (1981) [7] Cho, Leibovic (1996) [5]

NLO Campbell et al. (2007) [8] ———

Photoproduction 3S
[1]
1

1S
[8]
0 , 3S

[8]
1 ,3P

[8]
0/1/2

Born Berger, Jones (1981) [9] Ko, Lee, Song (1996) [10]

NLO Krämer (1995) [11] THIS WORK

Table 1.3.: Overview of complete Born level and NLO calculations of inclusive J/ψ
hadro- and photoproduction so far. We have distinguished between color
singlet model calculations and calculations including the color octet states.
Only the first complete work of each calculation is cited.

The great breakthrough for NRQCD had been that it was able to explain the cross
section for J/ψ hadroproduction at the Tevatron [5], which is orders of magnitude larger
than the color singlet model prediction, see figure 1.1. The extracted MEs are in line
with the NRQCD velocity scaling rules. However, in order to establish NRQCD as
the correct theory for heavy quarkonium production, we must show the significance of
the color octet contributions in other high energy experiments as well and proof the
universality of the MEs. This has not been achieved so far. One way of proofing the ME
universality is to use values for the MEs which were extracted from fits to the Tevatron
data and apply them in a calculation of the photoproduction rates at HERA, another
source of high precision J/ψ production data. A summary of performed hadroproduction
and photoproduction calculations is given in table 1.3. The state of knowledge in HERA
photoproduction before our work is summarized in figure 1.2. Krämer’s color singlet
model prediction at NLO seems to describe the data very well [11]. On the other hand
Born level calculations including intermediate color octet states predict a rise in the
cross section at high z which is not observed [13, 10]. This situation does not support
the universality of the MEs. In order to clarify the situation it is urgently necessary
to perform the NRQCD calculation including the intermediate color octet states also at
NLO. And exactly that calculation is the subject of this doctoral thesis.

As can be seen from table 1.3, the seeming discrepancy between Tevatron and HERA
data was known since 1996, and is one of the open questions of particle phenomenology
which has raised much attention during the past 13 years. Nevertheless so far no one has
succeeded in evaluating that NLO correction, which certainly hints at serious difficulties.
These difficulties lie in the evaluation of the P waves, as the expressions become huge
and the virtual correction loop integrals evolve non-standard form, as well as a non-
standard divergency structure. These difficulties are first overcome in the present work.
Actually, two NLO calculations of quarkonium production with intermediate P states
have already been performed: The total J/ψ hadroproduction cross section [14] and the
inclusive J/ψ production in two-photon collisions [15]. However, the former calculation
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Figure 1.1.: Different leading order contributions to the pT distribution of inclusive J/ψ
hadroproduction at the Tevatron. This figure is taken from [6].
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Figure 1.2.: The z distribution of inclusive J/ψ photoproduction at HERA. This figure is
taken from [12] and shows the state of knowledge before our work. The open
bands represents the leading order color singlet plus color octet contributions
in direct and resolved photoproduction. The shaded band shows Krämer’s
result [11] for the NLO color singlet contribution for direct photoproduction.
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evaluates only a 2 → 1 process and in the latter one no virtual corrections to P wave
states had to be calculated.

This thesis is organized as follows: In chapter 2 we introduce the basic concepts of our
calculation. The analytic part of our calculation is described in chapters 3, 4 and 5. Each
of these chapters describes one of the three different components which build up the whole
NLO cross section: Chapter 3 explains the calculation of the Born cross sections and
the virtual corrections and also describes the implementation in our various computer
programs. In chapter 4 we calculate the loop corrections to the S wave long distance
matrix elements in NRQCD. Chapter 5 then deals with the real corrections. Here, the
partly non-standard infrared divergency structure with its cancellations is described in
detail. After that, in chapter 6 we describe our numerical evaluation, present results
and draw conclusions, before we end with a summary and an outlook in chapter 7. For
the interested reader we also add a large appendix with detailed formulas concerning
our tensor reduction, the topologies for our integration-by-parts procedure, our master
integrals, as well as explicit expressions for the Born terms as well as for the so called
soft #2 terms.
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2. Overview and basic definitions

We are evaluating the inclusive cross section for direct photoproduction of J/ψ. An
overview of the factorization formulas at work is given in figure 2.1: An on-shell brems-
strahlung photon γ, which is radiated off the incoming electron, interacts with a parton i
stemming from the incoming proton. We calculate the hadronic cross section by folding
the partonic cross section with the proton parton distribution functions (PDFs) fi/p(y)
and the Weizsäcker-Williams distribution fγ/e(x) [16] according to

dσ(e + p→ J/ψ +X) =
∑

i=g;u,u,d,d,s,s

∫

dxfγ/e(x)

∫

dyfi/p(y)

×dσ(γ + i→ J/ψ +X). (2.1)

The parton i can be a gluon or an up, down or strange quark or antiquark. The calcu-
lation of the hadronic cross section will be further elaborated in chapter 6.1.

The partonic cross section is calculated according to the NRQCD factorization theorem

dσ(γ + i→ J/ψ +X) =
∑

n

dσ(γ + i→ cc[n] +X)
〈OJ/ψ[n]〉

Ncol(n)Npol(n)
. (2.2)

Here it is necessary to divide by the number of color and polarization degrees of freedom
of the intermediate cc[n], because we sum over them in the evaluation of the short
distance cross section dσ(γ + i → cc[n] + X). This point is further addressed in [14].
Ncol(n) is 1 if n is a color singlet state and 2CACF if it is a color octet state. Here,

CA = Nc and CF = N2
c−1

2Nc
, where Nc = 3 in QCD. In four dimensions, Npol = 2J + 1,

where J is the total angular momentum quantum number of n.

e e

γ (on-shell)

p

parton i

J/ψ

X

cc[n]

X

X

PDF

pQCD

ME

Figure 2.1.: Visualization of the factorization formulas in direct photoproduction of J/ψ
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The partonic cross section to produce a cc[n] is then calculated via

dσ(γ + i→ cc[n] +X) =
1

2s
dPS

1

Ncol,inNpol,in

∑

col,pol

|M(γ + i→ cc[n] +X)|2 (2.3)

where the factor 1
2s with s ≡ (kγ + ki)

2 is the flux factor, dPS is the differential phase
space, and the squared matrix element |M(γ + i → cc[n] + X)|2 is summed over the
polarizations and colors of the final state particles and averaged over the polarizations
and colors of the initial state particles.

We calculate M(γ + i→ cc[n] +X), the amplitude to create a cc pair in a Fock state
n, by applying certain projectors onto the QCD amplitudes A for open cc production
with amputated charm spinors. We follow closely the notation of [14] and use

M
cc[1S

[8]
0 ]

= Tr [Cc8 Π0A] |q=0 (2.4)

M
cc[3S

[1]
1 ]

= EαTr [C1 Πα
1 A] |q=0 (2.5)

M
cc[3S

[8]
1 ]

= EαTr [Cc8 Πα
1 A] |q=0 (2.6)

M
cc[3P

[8]
J ]

= E (J)
αβ

d

dqβ
Tr [Cc8 Πα

1A] |q=0 (J = 0, 1, 2). (2.7)

Eα and E (J)
αβ are polarization vectors of the cc state. The color and spin projectors C and Π

are to be inserted into the open charm quark chain. The trace is understood to be taken
over the charm chain both in Dirac space and in color space. In case of intermediate S
states, we have to set the relative momentum 2q between the two external charm quarks
to zero, and in the case of intermediate P states, we have to evaluate the derivative with
respect to q at the point q = 0. The c is an open color index which is to be summed
over in the squared matrix element. The color projectors are given by

C1 =
1√
2CA

(2.8)

Cc8 =
√

2T c, (2.9)

where T c is a color matrix. We remark that our expression for C1 is different from
the one given in [14], but that is due to the fact that their normalization of the color
singlet MEs is different from the standard one. They have shifted a factor 1

2CA
from the

projectors into the color singlet MEs. But in order to be consistent with the majority of
publications we stick to the normalization in [4]. The projectors onto spin singlet states,
Π0, and onto spin triplet states, Πα

1 , are given by

Π0 =
1

√

8m3
c

(
/P

2
− /q −mc

)

γ5

(
/P

2
+ /q +mc

)

(2.10)

Πα
1 =

1
√

8m3
c

(
/P

2
− /q −mc

)

γα
(
/P

2
+ /q +mc

)

. (2.11)

The momentum of the outgoing c quark is given by P/2 + q and the momentum of the
outgoing c by P/2− q. mc is the charm quark mass.
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In our whole calculation we are regularizing all divergences in dimensional regulariza-
tion with D = 4− 2ε space-time dimensions. We will make frequent use of the symbol

Cε ≡
(

4πµ2

m2
c

e−γE
)ε

, (2.12)

where µ is the renormalization scale and γE Euler’s gamma.
When squaring the amplitude and summing over the polarizations of the external

particles, we also have to sum over the cc polarization vectors. In D dimensions we have
∑

pol

EαE∗α′ = Παα′ (2.13)

∑

pol

E (0)
αβ E

(0)∗
α′β′ =

1

D − 1
ΠαβΠα′β′ (2.14)

∑

pol

E (1)
αβ E

(1)∗
α′β′ =

1

2

(
Παα′Πββ′ −Παβ′Πα′β

)
(2.15)

∑

pol

E (2)
αβ E

(2)∗
α′β′ =

1

2

(
Παα′Πββ′ + Παβ′Πα′β

)
− 1

D − 1
ΠαβΠα′β′ (2.16)

where we have abbreviated

Παβ = −gαβ +
PαPβ
4m2

c

. (2.17)

2.1. Our treatment of γ5

Although the basic diagrams we evaluate are pure QCD diagrams, we still have to deal
with the problem of γ5 in dimensional regularization. That is because there is a γ5 in
the spin projector (2.10) onto the spin singlet state. When applying this projector to
our amplitudes we have to evaluate a spin trace

M
cc[1S

[8]
0 ]
∝ Tr[γ5γµ1 . . . γµn ] (2.18)

over one γ5 and up to eight other gamma matrices. As explained for example in [19],
the relations

{γµ, γ5} = 0 (2.19)

and

Tr[γ5γαγβγγγδ] = 4iεαβγδ (2.20)

are incompatible in D dimensions, because the mixed application of both rules leads to
ambiguous results. This would be the so called naive scheme. Therefore we implement
the ’t Hooft-Veltman or also called the Breitenlohner-Maison scheme, which was first

13



proposed in [17] and elaborated in [18]. The aspects important for this calculation
are comprehensively summarized in [19]. In this scheme, the anticommutation relation
(2.19) is no longer valid, and we evaluate (2.18) by replacing γ5 by

γ5 =
i

4!
εα1α2α3α4γ

α1γα2γα3γα4 . (2.21)

Here, the gamma matrices on the right hand side are D dimensional, but the Levi-Civita
tensor ε is a 4 dimensional object. The D dimensional Dirac trace in (2.4) can now be

performed. The squared amplitude for producing a cc[1S
[8]
0 ] state will then contain

exactly two ε tensors, which are further evaluated according to

M∗
cc[1S

[8]
0 ]
M

cc[1S
[8]
0 ]
∝ εα1α2α3α4εβ1β2β3β4 = −

∣
∣
∣
∣
∣
∣
∣
∣

g̃α1β1 g̃α1β2 g̃α1β3 g̃α1β4

g̃α2β1 g̃α2β2 g̃α2β3 g̃α2β4

g̃α3β1 g̃α3β2 g̃α3β3 g̃α3β4

g̃α4β1 g̃α4β2 g̃α4β3 g̃α4β4

∣
∣
∣
∣
∣
∣
∣
∣

, (2.22)

where the g̃αiβj are 4 dimensional metric tensors, which are contracted with other objects
according to

g̃µνg
νρ = g̃ ρ

µ (2.23)

g̃µνp
ν = p̃µ (2.24)

p̃µq
µ = p̃ · q̃ (2.25)

g̃ µ
µ = 4, (2.26)

where gνρ and pν are D dimensional and p̃µ is 4 dimensional. In order to avoid any
misunderstandings, we emphasize that our application of the ’t Hooft Veltman scheme
does not include any γ5 related counterterms.
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3. Born cross section and virtual corrections

This chapter deals with the calculations of the Born cross sections and the virtual cor-
rections. These are the parts of the calculation with two incoming and two outgoing
particles. We are dealing with the partonic level processes

γ(k1) + q(k2) → cc[n](P ) + q(k3) (q = u, u, d, d, s, s) (3.1)

γ(k1) + g(k2) → cc[n](P ) + g(k3), (3.2)

where the respective particle momenta are given in brackets. We consider the up, down
and strange quarks and antiquarks massless. We introduce the Mandelstam invariants

s ≡ (k1 + k2)
2 = 2k1 · k2 (3.3)

t ≡ (P − k1)
2 = −2k2 · k3 (3.4)

u ≡ (P − k2)
2 = −2k1 · k3 (3.5)

and additionally define

s1 ≡ s− 4m2
c = 2P · k3 (3.6)

t1 ≡ t− 4m2
c = −2P · k1 (3.7)

u1 ≡ u− 4m2
c = −2P · k2. (3.8)

To evaluate the differential phase space, we use the parameterization

k1 =

(√
s

2
, 0, 0,

√
s

2

)

(3.9)

k2 =

(√
s

2
, 0, 0, −

√
s

2

)

(3.10)

P =
(
EJ/ψ, 0, pJ/ψ sin θ, pJ/ψ cos θ

)
, (3.11)

where

EJ/ψ =
t+ u− 8m2

c

−2
√
s

, pJ/ψ =
√

E2
J/ψ − 4m2

c , cos θ =
t− u

2
√
s pJ/ψ

, (3.12)

so that the phase space in four dimensions is given by

dPS =
d3P

(2π)32EJ/ψ

1

(2π)3
d4k3θ(k3,0)δ(k

2
3)(2π)4δ(4)(k1 + k2 − P − k3)

=
1

(2π)2
1

2EJ/ψ
p2
J/ψdpJ/ψd(cos θ)2dϕ δ(s + t+ u− 4m2

c)

=
1

8π2s
dt du dϕ δ(s + t+ u− 4m2

c)

=
1

8πs
dt. (3.13)
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For the change of variables from (pJ/ψ, cos θ) to (t, u), we used the relations (3.12). We
could integrate (from 0 till π) over ϕ, the azimuthal angle of the J/ψ, because the squared
matrix element cannot depend on it. The partonic cross section (2.3) then reads

dσ(γ + q/g → cc[n] + q/g)

dt

=
1

16πs2
1

Ncol,inNpol,in

∑

col,pol

|M(γ + q/g → cc[n] + q/g)|2. (3.14)

The kinematically allowed region of the phase space is given by

4m2
c < s (3.15)

−s1 < t < 0. (3.16)

The next step is to do a perturbative expansion of the matrix elements in αs and
write M = MTree +Mvirtual, where Mvirtual denotes the virtual corrections of O(αs).
All corrections of higher order in αs are neglected. Then

∑

col,pol

|M(γ + q → cc[n] + q)|2 =
∑

col,pol

|MTree(γ + q → cc[n] + q)|2

+2Re
∑

col,pol

M∗
Tree(γ + q → cc[n] + q)Mvirtual(γ + q → cc[n] + q) (3.17)

and
∑

col,pol

|M(γ + g → cc[n] + g)|2

=
∑

col,pol∗

[

|MTree(γ + g → cc[n] + g)|2 − 2|MTree(γ + ug → cc[n] + ug)|2
]

+2Re
∑

col,pol∗

[

M∗
Tree(γ + g → cc[n] + g)Mvirtual(γ + g → cc[n] + g)

−2M∗
Tree(γ + ug → cc[n] + ug)Mvirtual(γ + ug → cc[n] + ug)

]

. (3.18)

In the evaluation of the squared matrix element for the process γ + g → cc[n] + g we
have implemented the approach of [20], which speeds up the calculation tremendously. In
that approach the gluon polarization sum is taken not only over the physical transverse
polarizations, but the complete polarization sum

∑

pol∗

εµε
∗
ν = −gµν . (3.19)

is used. In turn, the corresponding gluon ghost process contributions γ+ug → cc[n]+ug
and γ + ug → cc[n] + ug have to be subtracted. The contributions from both ghost
processes are equal due to charge symmetry, so that we arrive at (3.18).
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Figure 3.3.: Virtual correction diagrams contributing to the process γ+ g → cc+ g. The
cross is an insertion of the charm mass counterterm. ug means gluon ghost
and u up quark. 114 diagrams have not been drawn. They differ from the
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The first terms on the right hand side of (3.17) and (3.18) are the leading order,
meaning the Born contributions, which are relatively easy to be calculated. The corre-
sponding Feynman diagrams are drawn in figure 3.1. The results of the squared matrix
elements are given in appendix D.

The one-loop diagrams needed for the virtual corrections are drawn in figures 3.2,
3.3 and 3.4. The loop integrals lead to ultraviolet (UV) divergences in the region of
large loop momenta and infrared (IR) divergences in the region of small loop momenta.
These divergences appear as 1

ε poles and, in the case of the infrared divergences, also as
1
ε2

poles. The ultraviolet divergences are cancelled by the renormalization of the charm
mass mc, the strong coupling constant gs =

√
4παs and by contributions from external

leg insertions, which enter the calculation via wave function renormalization constants.
The infrared divergences will be cancelled by complement infrared divergences of the
real corrections and by contributions from the wave function renormalization constants
as well. We renormalize the bare charm quark mass mc,0 by writing it as the sum of the
renormalized mass mc and the mass counterterm δmc,

mc,0 = mc + δmc. (3.20)

Fixing this splitting by the usual on-shell condition results in

δmc = −3g2
smc

16π2
CFCε

[
1

εUV

+
4

3

]

(3.21)

for the expression of order αs. The symbol Cε was defined in (2.12). We take care of this
counterterm by including charm mass counterterm diagrams, as can be seen in figures
3.2, 3.3 and 3.4. We renormalize the bare strong coupling constant gs,0 by introducing
the counterterm δZg via

gs,0 = (1 + δZg)gs (3.22)

and fixing it using the MS prescription, which results in

δZg =
g2
s

16π2

(

−11

6
CA +

1

3
nlf

)

Cε

[
1

εUV

− ln
µ2

m2
c

]

, (3.23)

for the order αs expression, where nlf is the number of light flavors, three in our cal-
culation, and µ the renormalization scale. As for the wave function renormalization
constants of the charm quark δZψ , the light quarks δZlq, the gluon δZA and the gluon
ghosts δZu, we fix them using the on-shell condition resulting in

δZψ = − g2
s

16π2
CFCε

[
1

εUV

+
2

εIR
+ 4

]

(3.24)

δZlq = − g2
s

16π2
CFCε

[
1

εUV

− 1

εIR

]

(3.25)

δZu =
g2
s

32π2
CACε

[
1

εUV

− 1

εIR

]

(3.26)
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δZA =
g2
s

48π2
(5CA − 2nlf)Cε

[
1

εUV

− 1

εIR

]

(3.27)

for the expressions of order αs. We take care of the strong coupling constant renormal-
ization by doing the replacement (3.22) in the Born expressions of the squared matrix
elements. The corrections due to both the strong coupling constant renormalization and
the corrections due to external leg insertions are consistently accounted for by defining
the symbolsMvirtual(γ + q/g/ug → cc[n] + q/g/ug) in (3.17) and (3.18) to be

Mvirtual(γ + q → cc[n] + q)

= Mloop(γ + q → cc[n] + q) + 2δZg + δZψ + δZlq (3.28)

Mvirtual(γ + g → cc[n] + g)

= Mloop(γ + g → cc[n] + g) + 2δZg + δZψ + δZA (3.29)

Mvirtual(γ + ug → cc[n] + ug)

= Mloop(γ + ug → cc[n] + ug) + 2δZg + δZψ + δZu, (3.30)

where Mloop means the amplitudes corresponding to the loop diagrams of figures 3.2,
3.3 and 3.4.

3.1. Implementation of the analytical calculation

An overview of the implementation of the analytical calculation of the squared matrix
elements is given in figure 3.5.

A. Generation of the diagrams: Our first step is to use FeynArts [21] to generate the
diagrams needed for all of our partonic subprocesses, at tree level, and for the virtual
corrections also the one loop diagrams and the charm mass counterterm diagrams. At
this point we already take out diagrams with massless tadpoles and with light quark
triangles with less than three gluon lines attached to it, because these diagrams will
vanish anyway. For the four and five point loops we shift the loop momenta for each
diagram already at this point, so as to simplify the propagator structure.

B. Treating the amplitudes: After that we run a Mathematica script, which reads the
FeynArts output. It separates the color structure from the rest of the amplitudes, applies
the color projectors, for color singlet and color octet states separately, and evaluates
the color factors for all combinations of diagram times complex conjugated diagram
using FeynCalc [22]. The non-color parts of the amplitudes are then further treated
by a FORM [23] script. This script applies the spin projectors onto the various cc[n]
states, squares the amplitudes, performs the polarization sums and fermion traces and
recombines the results with the previously calculated color factors.

C.1 Reduction procedure, first method: In the case of the virtual corrections, we still
have to perform the loop integrations. We have implemented two different methods
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Figure 3.5.: Overview of the implementation of our calculation
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for the reduction of the appearing tensor integrals to so called master integrals. Both
methods are implemented in a combination of different FORM scripts. In the first
method we first apply the tensor reduction procedure which is described in detail in
appendix A. It is a generalization of the Passarino-Veltman reduction [24] to the case
of linearly dependent propagator momenta, double propagator powers and an arbitrary
number of tensor coefficients. The resulting scalar integrals are then reduced further to a
set of 14 master integrals by using reduction formulas derived from integration-by-parts
relations as described in appendix B.

C.2 Reduction procedure, second method: In the second implementation we do not
perform a tensor reduction, but instead express all scalar products in the numerators
as a sum of propagators. After a cancellation we then end up with scalar integrals
having negative propagator powers. These scalar integrals are now directly reduced to
the master integrals by using the integration-by-parts reduction formulas. However, this

second method cannot be used for the production of the spin singlet state cc[1S
[8]
0 ]. The

reason is that the projector (2.10) contains a γ5. As explained in section 2.1, the scheme
we use for dealing with γ5 in D dimensions leads to 4 dimensional scalar products in the
numerators besides the usual D dimensional ones. In case of external momenta, there is
no difference between them, but a 4 dimensional loop momentum squared Q̃2 does not
necessarily equal its D dimensional counterpart Q2. Therefore we cannot cancel a Q̃2 in
the numerator against a Q2 propagator, so we cannot express tensor integrals with Q̃2

numerators only in terms of scalar integrals. If we nevertheless cancel a Q̃2 against a
Q2, we get indeed wrong results.

D. Simplification of the results: The results coming out of these FORM programs
are huge, especially for the P states, which are of the order of hundreds of megabytes
in size for each subprocess. In order to be able to process the expressions further we
use Mathematica scripts which simplify the results basically just by using the identities
(3.3) till (3.8) relating the different Mandelstam invariants. This simplification process
is the most time consuming part of the implementation of the analytic calculation, but
we gain a reduction of the expressions in size by up to a factor 2000. After that the
expressions are of manageable size. Mathematica is not able to simplify expressions of
the order of hundreds of megabyte at once, so the main job of our scripts is to chunk the
expressions automatically into suitable subexpressions, which Mathematica can simplify,
then combine the simplified expressions again into chunks of suitable size and so on.
We implemented this procedure with many Mathematica instances running parallel.
Unfortunately, our simplification procedure only worked for the 2 to 2 kinematics case.
In case of the real corrections with 2 to 3 kinematics, the size of the expressions remain
of the order of a few megabytes.

E. Analytic checks: We could analytically show that, first, the results of the two reduc-
tion methods described above are equal and, second, that all divergences, the ultraviolet
and the infrared ones separately, vanish in the sum of all contributions. Finally, we use
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Mathematica scripts to convert our results for the squared matrix elements into code for
FORTRAN routines which will be used for the numerical phase space integrations, as
described in chapter 6.

3.2. Why do we not have Coulomb singularities?

An important feature of previous calculations in the field of heavy quarkonium produc-
tion, e.g. [11, 14, 15, 25, 26], was the appearance of Coulomb singularities stemming
from diagrams with a gluon exchange between the two external heavy quarks lines. A
significant amount of effort had to be invested into their regularization and cancellation.
However, in our calculation, no Coulomb singularities appear. The reason is that in
those mentioned works the loop integration was performed before the projectors (2.4)
till (2.7) were applied. Let I(q) be a scalar diagram with a gluon exchanged between
the two external heavy quarks. Application of the spin projectors eventually means set-
ting the relative momentum 2q between the heavy quarks to 0. But after evaluation of
the loop integral, this limit can not be taken, so q has to be kept and is treated as a
regularization parameter:

lim
q→0

I(q) =
A

q2
+
B

ε
+ C, (3.31)

where B
ε is the infrared divergency and A

q2
the Coulomb divergent term. This Coulomb

singularity is then either absorbed into the quarkonium wave functions of the color
singlet model [11, 25, 26], or canceled by radiative corrections due to longitudinal gluon
exchange in the loop corrections to the MEs [14, 15] (see also our remark at the end of
chapter 4).

Our approach is different. We first apply the projectors and then perform the loop
integration. That means we directly evaluate the integrals at q = 0. The result is then
free of Coulomb divergences:

I(0) =
B

ε
+ C, (3.32)

with the same B and C as in (3.31), but without the Coulomb divergent term. It is a well
known feature that Coulomb singularities are not apparent in dimensional regularization
[27]. Our final results will still be the same as their results. Besides not having to deal
with Coulomb singularities, our approach has the advantage that after setting q to zero,
we have one mass scale less in the loop integration. However, now our Feynman integrals
consist of propagators with linear dependent momenta.

25



4. Loop corrections to the long distance

matrix elements

The long distance matrix element 〈OJ/ψ[n]〉 describes the probability for the transition
of the intermediate cc[n] state into a J/ψ plus other particles X, e.g. soft gluons. It can
be expressed as the vacuum expectation value of a so called four-fermion operators by
rewriting

〈OJ/ψ[n]〉 =
∑

X

〈
cc[n]

∣
∣J/ψ +X

〉〈
J/ψ +X

∣
∣cc[n]

〉

=
〈
0
∣
∣χ†Kni,j,aψ PJ/ψ ψ†Kni,j,aχ
︸ ︷︷ ︸

4-fermion operator OJ/ψ[n]

∣
∣0
〉
, (4.1)

where

PJ/ψ ≡
∑

X

∣
∣J/ψ +X

〉〈
J/ψ +X

∣
∣. (4.2)

Here, ψ is the Pauli field operator annihilating a charm quark and χ the Pauli field cre-
ating an anticharm quark. The factors Kni,j,a consist of Pauli matrices σi, color matrices
Ta and in case of P states also of field derivation operators. Their definitions

K
1S

[8]
0

a = Ta (4.3)

K
3S

[8]
1

i,a = σi Ta (4.4)

K
3P

[8]
0

a = − i
2

↔
D · σ Ta (4.5)

K
3P

[8]
1

i,a = − i
2

(↔
D× σ

)

i
Ta (4.6)

K
3P

[8]
2

i,j,a = − i
2

(
1

2

↔
Di σj +

1

2

↔
Dj σi −

1

3

↔
D · σδij

)

Ta (4.7)

are given in [4].
↔
Di is the ith component (i = 1, 2, 3) of the covariant derivative acting

on the spinor to the right minus the ith component of the covariant derivative acting on
the spinor to the left. The expressions for the corresponding color singlet states are the
same as (4.3) till (4.7), but without the color matrices Ta.

In this interpretation, the long distance matrix elements are viewed as cc scattering
matrix elements which have to be evaluated nonrelativistically in the cc rest frame. At
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Figure 4.1.: Loop correction diagrams for 〈OJ/ψ[n]〉

Born level,

〈OJ/ψ [3S
[8]
1 ]〉Born =

c c

c c
3S

[8]
1

p

−p

p′

−p′

= C ξ†(p′)σiTaη(−p′) η†(−p)σiTaξ(p) (4.8)

2∑

J=0

〈OJ/ψ [3P
[8]
J ]〉Born =

c c

c c
3P

[8]
0/1/2

p

−p

p′

−p′

= C p · p′ ξ†(p′)σiTaη(−p′) η†(−p)σiTaξ(p), (4.9)

where ξ is the Pauli spinor of the incoming c quark and η the Pauli spinor of the
outgoing c quark. C is a common overall factor. The expressions for the corresponding
color singlet long distance matrix elements are the same as (4.8) and (4.9), but without
the color matrices Ta.

In a consistent NLO calculation, we also have to compute the O(αs) corrections to
the MEs. The corresponding loop diagrams are shown in figure 4.1. Because of the non-
relativistic structure of the theory, we use the Coulomb gauge for the gluon propagator.
As for the charm and anticharm quark propagators and the charm-gluon couplings, we
derive the Feynman rules from the heavy quark part of the NRQCD lagrangian [4]

Lheavy = ψ†
(

iD0 +
D2

2mc

)

ψ + χ†
(

iD0 −
D2

2mc

)

χ

= ψ†
(

i∂0 +
∂2

2mc

)

ψ + gsψ
†
(

TaA0,a −
i

mc
TaAa · ∂

)

ψ

− g2
s

2mc
TaTbAa ·Abψ

†ψ + χ†
(

i∂0 +
∂2

2mc

)

χ

+gsχ
†
(

TaA0,a −
i

mc
TaAa · ∂

)

χ+
g2
s

2mc
TaTbAa ·Abχ

†χ, (4.10)

where ψ and χ are the Pauli fields defined as above, A0 is the Coulomb component and
A the transverse component of the gluon field. The indices a and b are color indices.
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Let us now explicitly calculate the loop corrections to 〈OJ/ψ[3S
[8]
1 ]〉. The contribution

of diagram 1 in figure 4.1 with transverse gluon exchange is then

M1,transv.[
3S

[8]
1 ] =

c c

c c
3S

[8]
1

transv.

= C ξ†(p′)σiTbTaη(−p′) η†(−p)σiTaTbξ(p) I, (4.11)

where

I ≡ − g2
s

m2
c

µ4−D
∫

dDk

(2π)4
pi(p

′
j − kj)

i
(
δij − kikj

|k|2
)

k2 + iε

i
p2

2mc
− k0 − (p−k)2

2mc
+ iε

× i
p′2

2mc
− k0 − (p′−k)2

2mc
+ iε

. (4.12)

We have made use of the on-shell conditions p0 = p2

2mc
and p′0 = p′2

2mc
. A crucial feature

of NRQCD calculations is that the heavy quark propagator has to be expanded in 1/mc

before integration [28, 29]. Otherwise we would get a wrong result, because NRQCD is
only valid in the region k2,p2,p′2 � m2

c . Keeping only the leading term in 1/mc and
performing a contour integration over k0 yields

I =
g2
s

m2
c

µ4−D
∫
dD−1k

(2π)3

(

p · p′ − p · k p′ · k
|k|2

)
1

2|k|3

=
αs

3πm2
c

µ4−Dp · p′
(

1

εUV

− 1

εIR

)

. (4.13)

Similarly, diagrams 2, 3 and 4 of figure 4.1 are evaluated to be

M2,transv.[
3S

[8]
1 ] = C ξ†(p′)σiTaTbη(−p′) η†(−p)σiTbTaξ(p) I (4.14)

M3,transv.[
3S

[8]
1 ] = C ξ†(p′)σiTaTbη(−p′) η†(−p)σiTaTbξ(p) I (4.15)

M4,transv.[
3S

[8]
1 ] = C ξ†(p′)σiTbTaη(−p′) η†(−p)σiTbTaξ(p) I. (4.16)

All other diagrams with transverse gluon exchange and all diagrams with Coulomb gluon
exchange vanish exactly. Consider for example diagram 5 with Coulomb gluon exchange,
which is after expansion in 1/mc

M5,Coulomb[3S
[8]
1 ] = C ξ†(p′)σiTaη(−p′) η†(−p)σiTbTaTbξ(p)

× ig2
sµ

4−D
∫

dDk

(2π)4
1

|k|2
1

(k0 + iε)(k0 − iε)
, (4.17)

which is zero in dimensional regularization. In the same way, also the heavy quark self
energy diagram is exactly zero, so that there are also no contribution due to external leg
insertions.
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Using the identity

TaTb ⊗ TbTa + TaTb ⊗ TaTb =
CF
CA

(1⊗ 1) +

(
CA
2
− 2

CA

)

(Ta ⊗ Ta) (4.18)

for tensorproducts of color matrices, the sum of (4.11), (4.14), (4.15) and (4.16) becomes

〈OJ/ψ[3S
[8]
1 ]〉loop = C ξ†(p′)σiη(−p′) η†(−p)σiξ(p) · 2CF

CA
I

+ξ†(p′)σiTaη(−p′) η†(−p)σiTaξ(p) ·
(

CA −
4

CA

)

I. (4.19)

A comparison with (4.9) shows that

〈OJ/ψ[3S
[8]
1 ]〉 = 〈OJ/ψ[3S

[8]
1 ]〉Born +

2αs
3πm2

c

µ4−D
(

1

εUV

− 1

εIR

)

×
∑

J

[
CF
CA
〈OJ/ψ[3P

[1]
J ]〉Born +

(
CA
2
− 2

CA

)

〈OJ/ψ[3P
[8]
J ]〉Born

]

. (4.20)

This bare long distance matrix operator is both ultraviolet and infrared divergent. We

remove the ultraviolet singularity by renomalizating 〈OJ/ψ[3S
[8]
1 ]〉. We have freedom in

choosing an appropriate renormalization condition, but in order to be consistent with
previous calculations [14, 15], we define

〈OJ/ψ[3S
[8]
1 ]〉ren ≡ 〈OJ/ψ[3S

[8]
1 ]〉 − 2αs

3πm2
c

(
1

εUV

+ ln 4π − γE + ln
µ2

µ2
Λ

)

×
∑

J

[
CF
CA
〈OJ/ψ[3P

[1]
J ]〉Born +

(
CA
2
− 2

CA

)

〈OJ/ψ[3P
[8]
J ]〉Born

]

, (4.21)

where the additional scale µΛ is introduced, which is called the NRQCD scale. Our final

result for 〈OJ/ψ[3S
[8]
1 ]〉, which multiplies our short distance cross section, is then

〈OJ/ψ[3S
[8]
1 ]〉Born = 〈OJ/ψ[3S

[8]
1 ]〉ren +

2αs
3πm2

c

(
4πµ2

µ2
Λ

e−γE
)ε

1

εIR

×
∑

J

[
CF
CA
〈OJ/ψ[3P

[1]
J ]〉Born +

(
CA
2
− 2

CA

)

〈OJ/ψ[3P
[8]
J ]〉Born

]

. (4.22)

Similarly, the O(αs) expression for 〈OJ/ψ[3S
[1]
1 ]〉 is evaluated to be

〈OJ/ψ[3S
[1]
1 ]〉Born = 〈OJ/ψ[3S

[1]
1 ]〉ren

+
4αs

3πm2
c

(
4πµ2

µ2
Λ

e−γE
)ε

1

εIR

∑

J

〈OJ/ψ[3P
[8]
J ]〉Born. (4.23)

The loop corrections to 〈OJ/ψ[1S
[8]
0 ]〉 and 〈OJ/ψ[3P

[8]
J ]〉 are proportional to long dis-

tance matrix elements which scale with powers of v that are already beyond the order
considered in our calculation.
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The renormalized MEs 〈OJ/ψ[3S
[8]
1 ]〉ren and 〈OJ/ψ[3S

[1]
1 ]〉ren are are actually objects

which depend on the scale µΛ. A renormalization group equation, which describes this
dependence, can be derived out of (4.22) and (4.23). However, in our calculation we
consider µΛ to be constant and assume it to be the same in all processes and experiments,
so we do not examine this scale dependence.

We remark that in the case of the diagram 5 and 6 of figure 4.1 with Coulomb gluon
exchange the authors of [14, 15] perform the loop integration before expanding in 1/mc.
Then these diagrams give rise to Coulomb divergent terms, which they need in order to
cancel the Coulomb divergence they encounter in their calculation of the short distance
cross sections. However their calculation is inconsistent, because in the case of transverse
gluon exchange, they do nevertheless, like us, first expand in 1/mc and then do the loop
integration, in order to produce the correct infrared singular term.
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5. Real corrections

This chapter deals with the calculation of the real correction processes, which are pro-
cesses with two incoming and three outgoing particles. At the partonic level these are

γ(k1) + q(k2) → cc[n](P ) + q(k3) + g(k4) (q = u, u, d, d, s, s) (5.1)

γ(k1) + g(k2) → cc[n](P ) + g(k3) + g(k4) (5.2)

γ(k1) + g(k2) → cc[n](P ) + q(k3) + q(k4) (q = u, d, s), (5.3)

where the momenta of the respective particles are given in brackets. We define the 2→ 3
kinematics Mandelstam invariants

s ≡ (k1 + k2)
2 = 2k1 · k2 (5.4)

s3 ≡ (k3 + k4)
2 = 2k3 · k4 (5.5)

s4 ≡ (P + k4)
2 − 4m2

c = 2P · k4 (5.6)

s5 ≡ (P + k3)
2 − 4m2

c = 2P · k3 (5.7)

t1 ≡ (P − k1)
2 − 4m2

c = −2P · k1 (5.8)

t6 ≡ (k2 − k3)
2 = −2k2 · k3 (5.9)

u6 ≡ (k1 − k3)
2 = −2k1 · k3 (5.10)

u1 ≡ (P − k2)
2 − 4m2

c = −2P · k2 (5.11)

t′ ≡ (k1 − k4)
2 = −2k1 · k4 (5.12)

u′ ≡ (k2 − k4)
2 = −2k2 · k4, (5.13)

taking over the notation of [11]. Note that the invariants s, t1 and u1 coincide with the
respective definitions (3.3), (3.7) and (3.8), where there is one outgoing parton less. Like
in the 2→ 2 kinematics case we therefore further define

s1 ≡ s− 4m2
c (5.14)

t ≡ t1 + 4m2
c (5.15)

u ≡ u1 + 4m2
c . (5.16)

Note that s, s1, s3, s4 and s5 are positive, t, t1, t6, u, u6, u1, t
′ and u′ negative. Of all

these Mandelstam variables (5.4) till (5.16), only a set of five can be linearly independent.
In contrast to the case of the virtual corrections, the evaluation of the real correction’s

squared matrix elements is straight forward and does not pose any conceptual difficulties.
But in the case of real corrections the difficulties arise in the phase space integration of
the squared matrix elements. A completely numerical integration over the three particle
phase space is not possible, because the integrals are divergent in the regions, where
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Figure 5.1.: Overview of the infrared singularity structure and its cancellations

an outgoing gluon is soft or two external light particles are collinear to each other, so
that the integrations have to be performed in D = 4 − 2ε dimensions. However, a
D dimensional analytic integration over the complete phase space is far beyond reach
of our current computational abilities. Therefore, in this work we implement a phase
space slicing method, where follow the lines of [30], which we had to adapt to our heavy
quarkonium production case. In that method we divide the phase space into three parts:

1. The soft region, in which one of the outgoing gluons is soft.

2. The hard collinear region, in which all outgoing gluons are hard, but two external
light particles are collinear to each other.

3. The hard non-collinear region, in which the outgoing gluons are hard, and no two
external light particles are collinear to each other.

The hard non-collinear region is free of divergences, therefore we perform its phase space
integration completely numerically in four dimensions, as will be described in section 5.3.
On the other hand, in the soft and hard collinear regions, certain factorization rules apply
to both phase space and squared matrix elements, which facilitate analytic phase space
integrations in D dimensions, as will be described in detail in sections 5.1 and 5.2. In
these analytic integrations, the soft and collinear divergences will become apparent as
1
ε2 and 1

ε poles, which cancel against infrared divergences stemming from different other
sources. An overview of these cancellations is depicted in figure 5.1: The so called soft
#1 divergences and the collinear divergences are cancelled by the infrared singularities
from the virtual corrections. Furthermore universal parts from the incoming collinear
divergences are absorbed into the parton distribution functions of the incoming parton
and the photon. We remark that the overlap between the soft #1 terms and the collinear
terms is the origin of the 1

ε2
poles. (We view this region as part of our soft region.) In case

of intermediate P states, there are additionally soft #2 terms, which are also cancelled

32



by infrared divergent terms of the virtual corrections, and soft #3 terms, which are

cancelled by loop corrections to the long distance matrix elements 〈OJ/ψ[3S
[8]
1 ]〉 and

〈OJ/ψ[3S
[1]
1 ]〉.

We have not yet stated precisely, what parts of the phase space we consider soft, and
what collinear. For that purpose we introduce the two slicing parameters δs and δc, and
we define that a phase space point is soft if

2E3√
s

=
s− s4 − 4m2

c

s
< δs or

2E4√
s

=
s− s5 − 4m2

c

s
< δs, (5.17)

and that it is collinear if

s3
s
< δc or

−t6
s

< δc or
−u6

s
< δc or

−t′
s

< δc or
−u′
s

< δc. (5.18)

E3 means the energy of the parton with momentum k3 and E4 the energy of the parton
with momentum k4. Now the integration results of all three integration regions will
depend on the unphysical parameters δs and δc. But if δs and δc are sufficiently small,
so that the soft and collinear approximations used are sufficiently correct, then the sum
of the integration results of the three regions must be independent of the specific choice
of δs and δc. This phase space slicing parameter independence is an important check on
our calculation.

5.1. The soft region

5.1.1. Soft amplitudes in general

Soft divergences arise from diagrams, where an external gluon is attached to another
external gluon or quark line. In the limit where that gluon is soft, the amplitude of
that diagram factorizes into the Born amplitude without the soft gluon and a so called
eikonal factor. More precisely, in the case where a soft gluon is attached to an incoming
quark, we have

p→ p− k→

k
→

c

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k A(p)(−Tc)u(p), (5.19)

where

p→ ≡ A(p)u(p). (5.20)

In the case where a soft gluon is attached to an outgoing quark, we have

p+ k→ p→

k
→

c

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k u(p)TcA(p), (5.21)
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where

p→ ≡ u(p)A(p). (5.22)

In the case where a soft gluon is attached to an outgoing antiquark, we have

p+ k→ p→

k
→

c

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k A(p)(−Tc)v(p), (5.23)

where

p→ ≡ A(p)v(p). (5.24)

In the case where a soft gluon is attached to an incoming antiquark, we have

p→ p− k→

k
→

c

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k v(p)TcA(p), (5.25)

where

p→ ≡ v(p)A(p). (5.26)

Finally, in the case where a soft gluon is attached to another gluon line, no matter if
incoming or outgoing, we have

p→ p− k→

k
→

c
b a, µ

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k εµ(p)ifbcaA

µ
a(p), (5.27)

where

p→
a, µ

≡ εµ(p)Aµa(p). (5.28)

In equations (5.19) till (5.28), Tc are color matrices and fbca the usual antisymmetric
SU(3) structure constants.
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We summarize all these cases of soft gluon insertions by introducing the abbreviated
notation used in [31]: If |A〉 denotes a Born amplitude

p→
(a)

≡ |A〉, (5.29)

then the diagrams with a soft gluon attached to an external QCD parton line i with
momentum p is given by

p→

k
→

c
(b)(a)

∣
∣
∣
∣
∣
∣
∣

k soft

= gs
p · ε∗(k)
p · k Ti|A〉. (5.30)

We call the object Ti a color operator, and it is defined by acting on the Born amplitude
|A〉 by the insertion of the color structure

Tc if i is an outgoing quark or incoming antiquark

−Tc if i is an incoming quark or outgoing antiquark

ifbca if i is a gluon

into the amplitude |A〉 at the position of parton i. Furthermore we define

〈A|TxTy|B〉 ≡ (Tx|A〉)∗ (Ty|B〉) . (5.31)

In order to prevent possible confusion, we emphasize that the bras and kets do not mean
quantum mechanical states, but are short notations for amplitudes.

5.1.2. Soft amplitudes in our heavy quarkonium production

The real correction processes which exhibit soft divergences are the two processes (5.1)
and (5.2). Let us denote the corresponding amplitudes in the limit where the gluon with
momentum k4 is soft by

P/2+q→
P/2−q→

→
k4

→k2 →k3
Real

∣
∣
∣
∣
∣
∣
∣
∣
∣
k4 soft

≡
∣
∣k4 soft

〉
, (5.32)

where the dashed line is either a gluon or a light quark (or antiquark). We evaluate
∣
∣k4 soft

〉
by attaching a soft gluon with momentum k4 in turn to the external gluon,

light quark and charm quark lines of the corresponding Born processes (3.1) or (3.2)

P/2+q→
P/2−q→

→k2 →k3
Born ≡

∣
∣Born

〉
. (5.33)
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Application of rule (5.30) for each soft gluon insertion then yields

∣
∣k4 soft

〉
= gs

((
P
2 + q

)
· ε∗(k4)

(
P
2 + q

)
· k4

Tc +

(
P
2 − q

)
· ε∗(k4)

(
P
2 − q

)
· k4

Tc

+
k2 · ε∗(k4)

k2 · k4
T2 +

k3 · ε∗(k4)

k3 · k4
T3

)

∣
∣Born

〉
. (5.34)

We evaluate the soft regions of the real corrections using the axial gauge with

∑

pol

εµ(k4)ε
∗
ν(k4) = −gµν +

Pµk4ν + k4µPν
P · k4

− P 2k4µk4ν

(P · k4)2
(5.35)

for the gluons so that

P · ε(k4) = 0. (5.36)

Then

∣
∣k4 soft

〉
∣
∣
∣
q=0

= gs

3∑

i=2

ki · ε∗(k4)

ki · k4
Ti

∣
∣Born

〉
∣
∣
∣
q=0

(5.37)

and

∂

∂qβ

∣
∣k4 soft

〉
∣
∣
∣
q=0

= gs
2ε∗β(k4)

P · k4
(Tc −Tc)

∣
∣Born

〉
∣
∣
∣
q=0

+gs

3∑

i=2

ki · ε∗(k4)

ki · k4
Ti

∂

∂qβ

∣
∣Born

〉
∣
∣
∣
q=0

, (5.38)

so that the application of the projectors (2.4) till (2.7) then yields for the real corrections
to the cc[n] production amplitudes in the limit where k4 is soft

∣
∣1S

[8]
0 , k4 soft

〉
= Tr

[
C8Π0

∣
∣k4 soft

〉]
∣
∣
∣
q=0

= gs

3∑

i=2

ki · ε∗(k4)

ki · k4
Ti

∣
∣1S

[8]
0 ,Born

〉
(5.39)

∣
∣3S

[1/8]
1 , k4 soft

〉
= εαTr

[
C1/8Πα

1

∣
∣k4 soft

〉] ∣∣
∣
q=0

= gs

3∑

i=2

ki · ε∗(k4)

ki · k4
Ti

∣
∣3S

[1/8]
1 ,Born

〉
(5.40)

∣
∣3P

[8]
J , k4 soft

〉
= E (J)

αβ

∂

∂qβ
Tr
[
C8Πα

1

∣
∣k4 soft

〉]
∣
∣
∣
q=0

=

3∑

i=2

ki · ε∗(k4)

ki · k4
Ti

∣
∣3P

[8]
J ,Born

〉

+E (J)
αβ gs

2ε∗β(k4)

P · k4
(Tc −Tc)Tr

[
C8Πα

1

∣
∣Born

〉]
∣
∣
∣
q=0

. (5.41)

36



The corresponding squared matrix elements are then evaluated to be

∣
∣Mk4 soft(

1S
[8]
0 )
∣
∣2 = S1(

1S
[8]
0 ) (5.42)

∣
∣Mk4 soft(

3S
[1/8]
1 )

∣
∣2 = S1(

3S
[1/8]
1 ) (5.43)

∣
∣Mk4 soft(

3P
[8]
J )
∣
∣2 = S1(

3P
[8]
J ) + S2(

3P
[8]
J ) + S3(

3P
[8]
J ), (5.44)

where we have abbreviated

S1(n) = gs

3∑

i,j=2

ki · ε(k4) kj · ε∗(k4)

ki · k4 kj · k4

〈
n, Born

∣
∣TiTj

∣
∣n, Born

〉
(5.45)

S2(
3P

[8]
J ) = 4g2

s

3∑

i=2

ki · ε(k4) ε
∗β(k4)

ki · k4 P · k4
EJαβ

×
〈3
P

[8]
J ,Born

∣
∣Ti(Tc −Tc)Tr

[
C8Πα

1

∣
∣Born

〉]
∣
∣
∣
q=0

(5.46)

S3(
3P

[8]
J ) = 4gs

εβ
′
(k4)ε

∗β(k4)E (J)∗
α′β′ E (J)

αβ

(P · k4)2

×Tr
[〈

Born
∣
∣Π∗α′

1 C8
]
∣
∣
∣
q=0

(Tc −Tc)(Tc −Tc)Tr
[
C8Πα

1

∣
∣Born

〉]
∣
∣
∣
q=0

.

(5.47)

We call S1(n) the soft #1 terms, which appear in both intermediate S and intermediate

P states, and S2(
3P

[8]
J ) and S3(

3P
[8]
J ) the soft #2 and soft #3 terms, which appear only

in squared amplitudes for intermediate P states.

5.1.3. Kinematics of the soft region

For the phase space integration in the soft region k4 → 0, we parameterize the momenta
in the center of mass frame of the incoming particles, which is here at the same time the
center of mass frame of the J/ψ and the outgoing parton with momentum k3:

k1 = E2(1, 0, − sin θ, − cos θ) (5.48)

k2 = E2(1, 0, sin θ, cos θ) (5.49)

P = (EJ/ψ, 0, 0, −E3) (5.50)

k3 = E3(1, 0, 0, 1) (5.51)

k4 = E4(1, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1), (5.52)

where

E2 =

√
s

2
, E3 =

s1
2
√
s
, EJ/ψ =

s+ 4m2
c

2
√
s

, cos θ =
t− u
s1

. (5.53)
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The corresponding contribution to the real correction cross section is given by

dσsoft(n) =
1

2s
dPS2→2

∫

soft
dPSk4

1

Ncol,inNpol,in

∑

col,pol

|Mk4 soft(n)|2, (5.54)

where dPS2→2 is the two particle phase space (3.13) and

∫

soft
dPSk4 ≡

∫

soft

µ4−DdD−1k4

2(2π)D−1E4

=
(πµ2)ε

(2π)3
Γ(1− ε)
Γ(1− 2ε)

∫ δs
√
s

2

0
E1−2ε

4 dE4

∫ π

0
sin1−2ε θ1dθ1

∫ π

0
sin−2ε θ2dθ2. (5.55)

We have to perform the integrations over dPSk4 analytically in D dimensions in order
to make the infrared poles explicit. In the following subsections we will need the results
of the integrals

∫

soft

dPSk4
(P · k4)2

=
1

32π2m2
c

Cε

[

−1

ε
− s+ 4m2

c

s1
ln

(
s

4m2
c

)

+ ln

(
δ2ss

m2
c

)]

(5.56)

∫

soft

dPSk4
k3 · k4 P · k4

=
1

8π2s1
Cε

[
1

ε2
− 1

ε
ln

(
s2δ2s
4m4

c

)

+
1

2
ln2

(
s2δ2s
4m4

c

)

+ 2Li2

(−s1
4m2

c

)

− π2

4

]

(5.57)

∫

soft

dPSk4
k2 · k4 k3 · k4

= − 1

4π2t
Cε

[
1

ε2
− 1

ε
ln

(−stδ2s
s1m2

c

)

+
1

2
ln2

(−stδ2s
s1m2

c

)

+ Li2

(−u
s1

)

− π2

4

]

(5.58)

∫

soft

dPSk4
k2 · k4 P · k4

= − 1

8π2u1
Cε

[
1

ε2
− 1

ε
ln

(
u2

1δ
2
s

4m4
c

)

+ ln2

(−u1

4m2
c

)

− 1

2
ln2

(
s

4m2
c

)

+
1

2
ln2

(
sδ2s
m2

)

+ ln

(
u2

1

4m2
cs

)

ln

(
sδ2s
m2
c

)

+ 2Li2

(
u

4m2
c

)

− 2Li2

(−t
u1

)

− π2

4

]

, (5.59)

which are expressed in terms of the Mandelstam variables (3.3) till (3.8).

5.1.4. Soft terms #1

Using (5.45) in combination with (5.35) and the property

〈
n, Born

∣
∣T2T2

∣
∣n, Born

〉
=
〈
n, Born

∣
∣T3T3

∣
∣n, Born

〉
, (5.60)
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the integral of the polarization and color summed soft #1 terms over the soft region of
phase space yields

∫

soft
dPSk4

∑

col,pol

S1(n) = g2
s

∑

col,pol

〈
n, Born

∣
∣T2T3

∣
∣n, Born

〉

×
∫

soft
dPSk4

(

− 2k2 · k3

k2 · k4 k3 · k4
+

2P · k2

k2 · k4 P · k4
+

2P · k3

k3 · k4 P · k4
− 2P 2

(P · k4)2

)

+ g2
s

∑

col,pol

〈
n, Born

∣
∣T2T2

∣
∣n, Born

〉

×
∫

soft
dPSk4

(
2P · k2

k2 · k4 P · k4
+

2P · k3

k3 · k4 P · k4
− 2P 2

(P · k4)2

)

. (5.61)

A direct calculation using our automated programs shows that
∑

col,pol

〈
n, Born

∣
∣T2T3

∣
∣n, Born

〉
= C1

∑

col,pol

|MBorn(n)|2 (5.62)

∑

col,pol

〈
n, Born

∣
∣T2T2

∣
∣n, Born

〉
= C2

∑

col,pol

|MBorn(n)|2 (5.63)

with

C1 ≡







1
2CA

for processes γq → cc[color octet] + qg

−CA for processes γg → cc[color singlet] + gg

−CA
2 for processes γg → cc[color octet] + gg

(5.64)

C2 ≡
{

CF for processes γq → cc[n] + qg

CA for processes γg → cc[n] + gg
. (5.65)

Plugging (5.56) till (5.59) into (5.61), then in turn plugging that result into (5.54) and
comparing with (3.14), the contributions of the soft #1 terms to the differential cross
section are finally evaluated to be

dσsoft#1(γ + g/q → cc[n] + g/q + g)

=
g2
s

8π2
C1CεdσBorn(γ + g/q → cc[n] + g/q)

×
[
1

ε

(

2− 2 ln

(
s1u1

4m2
ct

))

− ln2

(−δ2sst
s1m2

c

)

+ ln2

(−u1

4m2
c

)

− 1

2
ln2

(
s

4m2
c

)

+
1

2
ln2

(
δ2ss

m2
c

)

+ ln

(
u2

1

4m2
cs

)

ln

(
δ2ss

m2
c

)

+
1

2
ln2

(
δ2ss

2

4m4
c

)

+ 2
s+ 4m2

c

s1
ln

(
s

4m2
c

)

−2 ln

(
δ2ss

m2
c

)

− 2Li2

(−u
s1

)

+ 2Li2

(
u

4m2
c

)

− 2Li2

(−t
u1

)

+ 2Li2

(−s1
4m2

c

)]

+
g2
s

8π2
C2CεdσBorn(γ + g/q → cc[n] + g/q)

×
[

2

ε2
+

1

ε

(

2− 2 ln

(−u1sδ
2
s

4m4
c

))

+ ln2

(−u1

4m2
c

)

− 1

2
ln2

(
s

4m2
c

)
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+
1

2
ln2

(
δ2ss

m2
c

)

+ ln

(
u2

1

4m2
cs

)

ln

(
δ2ss

m2
c

)

+
1

2
ln2

(
δ2ss

2

4m4
c

)

+ 2
s+ 4m2

c

s1
ln

(
s

4m2
c

)

−2 ln

(
δ2ss

m2
c

)

+ 2Li2

(
u

4m2
c

)

− 2Li2

(−t
u1

)

+ 2Li2

(−s1
4m2

c

)

− π2

2

]

. (5.66)

We remark that in the case of the process γ + g → cc[n] + g + g there is in fact
also a contribution in the case when the gluon momentum k3 is soft. For symmetry
reasons this contribution is the same as the one when k4 is soft, so actually there is an
additional factor 2. However, there is also an additional factor 1

2 because there are now
two identical particles in the final state, so that the net effect is that no additional factor
has to be considered. This argument will apply in the same way also to the soft #2 and
the soft #3 terms.

5.1.5. Soft terms #2

As for the soft #2 terms, let us first evaluate the integrals of the fraction in (5.46) over
the soft region, which becomes after using the polarization sum (5.35)

∫

soft
dPSk4

∑

col,pol

ki · ε(k4) ε
∗β(k4)

ki · k4 P · k4

=

∫

soft
dPSk4

(

− kβi
ki · k4 P · k4

+
P β

(P · k4)2
+

(P · ki)kβ4
(ki · k4)(P · k4)2

− P 2kβ4
(P · k4)3

)

=

(

P β − P 2

P · ki
kβi

)∫

soft

dPSk4
(P · k4)2

, (5.67)

where in the last transformation we have performed a simple tensor reduction. Using
(5.56), the contribution of the soft #2 terms are then

dσsoft#2(γ + g/q → cc[3P
[8]
J ] + g/q + g)

dt
=

1

2s

1

8πs

1

Ncol,inNpol,in

× g2
s

8π2m2
c

Cε

[

−1

ε
− s+ 4m2

c

s1
ln

(
s

4m2
c

)

+ ln

(
δ2ss

m2
c

)]

S(3P
[8]
J ), (5.68)

where the terms

S(3P
[8]
J ) ≡

3∑

i=2

(

P β − P 2

P · ki
kβi

)

×
∑

pol,col

E (J)
αβ

〈3
P

[8]
J ,Born

∣
∣Ti(Tc −Tc)Tr

[
C8Πα

1

∣
∣Born

〉]
∣
∣
∣
q=0

(5.69)

cannot be simplified further in a general form. In particular, they do not factorize with
a Born cross section. We evaluate the expressions (5.69) directly using our automated
programs. The results are listed in appendix E.
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5.1.6. Soft terms #3

As for the soft #3 terms, let us first evaluate the integrals of the fraction in (5.47) over
the soft phase space, which becomes using the polarization sum (5.35)

∫

soft
dPSk4

∑

col,pol

εβ
′
(k4)ε

∗β(k4)E (J)∗
α′β′ E (J)

αβ

(P · k4)2

=

∫

soft
dPSk4

(

− gββ
′

(P · k4)2
+
P βkβ

′

4 + P β
′
kβ4

(P · k4)3
− P 2kβ4 k

β′

4

(P · k4)4

)
∑

col,pol

E (J)∗
α′β′ E (J)

αβ

=
D − 2

D − 1

(

−gββ′
+
P βP β

′

P 2

)
∫

soft

dPSk4
(P · k4)2

∑

col,pol

E (J)∗
α′β′ E (J)

αβ

=
D − 2

(D − 1)2
Npol(

3P
[8]
J )

(

−gαα′ +
PαPα′

P 2

)∫

soft

dPSk4
(P · k4)2

. (5.70)

Here, in the second transformation we have performed a simple tensor reduction, and
in the third step we have evaluated the polarization sum over the E tensors according

to formulas (2.14) till (2.16), where the symbol Npol(
3P

[8]
J ) is the number of polarization

degrees of freedom in D dimensions, which is given by

Npol(
3P

[8]
J ) =

∑

pol

E (J)∗
µν E (J)µν =







1 if J = 0
1
2(D − 1)(D − 2) if J = 1
1
2(D + 1)(D − 2) if J = 2

. (5.71)

Using (5.70) and recalling (2.13) together with the definition of the projector onto the
3S

[8]
1 state (2.6), the phase space integral of the complete polarization and color summed

soft #3 terms (5.47) over the soft region then is
∫

soft
dPSk4

∑

col,pol

S3(n) = 4g2
s

D − 2

(D − 1)2
Npol(

3P
[8]
J )

∫

soft

dPSk4
(P · k4)2

×
∑

col,pol

〈
3S

[8]
1 , Born

∣
∣(Tc −Tc)(Tc −Tc)

∣
∣3S

[8]
1 , Born

〉
(5.72)

Using our programs we could explicitly show that at least for the processes γ + g/q →
cc+ g/q the relation

∑

col,pol

〈
3S

[8]
1 , Born

∣
∣(Tc −Tc)(Tc −Tc)

∣
∣3S

[8]
1 , Born

〉

=
∑

col,pol

(
C2
A − 4

CA

∣
∣MBorn(

3S
[8]
1 )
∣
∣2 + 8CACF

∣
∣MBorn(

3S
[1]
1 )
∣
∣2
)

(5.73)
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is true. Therefore, using (5.56),
∫

soft
dPSk4

∑

col,pol

S3(n)

=
g2
s

36π2m2
c

Npol(
3P

[8]
J )Cε

[

−1

ε
− s+ 4m2

c

s1
ln

(
s

4m2
c

)

+ ln

(
δ2ss

m2
c

)

− 1

3

]

×
∑

col,pol

(
C2
A − 4

CA

∣
∣MBorn(

3S
[8]
1 )
∣
∣2 + 8CACF

∣
∣MBorn(

3S
[1]
1 )
∣
∣2
)

, (5.74)

so that finally

dσsoft#3(γ + g/q → cc[3P
[8]
J ] + g/q + g)

=
g2
s

36π2m2
c

Npol(
3P

[8]
J )Cε

[

−1

ε
− s+ 4m2

c

s1
ln

(
s

4m2
c

)

+ ln

(
δ2ss

m2
c

)

− 1

3

]

×
(
C2
A − 4

CA
dσBorn(γ + g/q → cc[3S

[8]
1 ] + g/q)

+8CACF dσBorn(γ + g/q → cc[3S
[1]
1 ] + g/q)

)

. (5.75)

This infrared divergence will be cancelled by the contributions due to the loop cor-

rections of the operator matrix elements 〈OJ/ψ[3S
[8]
1 ]〉 and 〈OJ/ψ[3S

[1]
1 ]〉, given by (4.22)

and (4.23). In the following we proof this cancellation and calculate the finite remainder.

We do not consider the 〈OJ/ψ[3P
[1]
J ]〉 term, because this operator matrix element scales

with a power of v which is beyond the order we consider in our calculation, as can be
seen in table 1.2. Plugging (4.22) into (2.2) yields

dσ〈OJ/ψ [3S
[8]
1 ]〉 corr.

(γ + g/q → J/ψ + g/q)

=
g2
s

12π2m2
c

C2
A − 4

CA

(
4πµ2

µ2
Λ

e−γE
)ε

1

ε

2∑

J=0

〈OJ/ψ[3P
[8]
J ]〉

Ncol(3S
[8]
1 )Npol(3S

[8]
1 )

×dσBorn(γ + g/q → cc[3S
[8]
1 ] + g/q)

=
g2
s

36π2m2
c

C2
A − 4

CA

1

2CACF
Cε

[
1

ε
+ ln

(
m2
c

µ2
Λ

)

+
2

3

] 2∑

J=0

〈OJ/ψ[3P
[8]
J ]〉

×dσBorn(γ + g/q → cc[3S
[8]
1 ] + g/q), (5.76)

where we have used that Npol(
3S

[8]
1 ) = D − 1 in D dimensions. Similarly,

dσ〈OJ/ψ [3S
[1]
1 ]〉 corr.

(γ + g/q → J/ψ + g/q)

=
4g2
s

36π2m2
c

Cε

[
1

ε
+ ln

(
m2
c

µ2
Λ

)

+
2

3

] 2∑

J=0

〈OJ/ψ[3P
[8]
J ]〉

×dσBorn(γ + g/q → cc[3S
[1]
1 ] + g/q). (5.77)
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The sum of all contributions from soft #3 terms to the partonic J/ψ production cross
section is given by

dσall soft#3(γ + g/q → J/ψ + g/q + g)

=

2∑

J=0

dσsoft#3(γ + g/q → cc[3P
[8]
J ] + g/q + g)

〈OJ/ψ[3P
[8]
J ]〉

Ncol(3P
[8]
J )Npol(3P

[8]
J )

. (5.78)

Using (5.75), the sum of (5.76), (5.77) and (5.78) is finally given by

dσall soft#3(γ + g/q → J/ψ + g/q + g) + dσall ME corr.(γ + g/q → J/ψ + g/q)

=
g2
s

36π2m2
c

(

−s+ 4m2
c

s1
ln

(
s

4m2
c

)

+ ln

(
δ2ss

µ2
Λ

)

+
1

3

) 2∑

J=0

〈OJ/ψ[3P
[8]
J ]〉

×
(
C2
A − 4

CA

1

2CACF
dσBorn(γ + g/q → cc[3S

[8]
1 ] + g/q)

+4 dσBorn(γ + g/q → cc[3S
[1]
1 ] + g/q)

)

, (5.79)

which is indeed finite.

5.2. The hard collinear region

Diagrams, in which a massless line splits into two massless external lines give rise to
collinear divergences in the phase space region in which the respective two external
particles are collinear. In the following we will consider separately the three different
cases of collinear divergences in our calculation: The divergences due to the splitting of
the initial parton line, the ones due to the splitting of the initial photon line and the
ones due to the splitting of the outgoing parton line. The considerations of this section
follow the lines of [30].

5.2.1. Splitting of the initial QCD parton

Let us first consider the phase space region in which the incoming QCD parton (which
we just call parton 2) is collinear to the outgoing QCD parton with momentum k4 (which
we just call parton 4). In this limit the divergent contributions stem from the diagrams
with 2→ 2′ + 4 splitting

Born

→ k4

→ k3

→P

k1→

k2→ k′2→ . (5.80)

We will have to distinguish clearly between the photon - parton 2 invariant mass

s12 ≡ (k1 + k2)
2 (5.81)
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and the photon - parton 2’ invariant mass

s12′ ≡ (k1 + k′2)
2 = xbs12, (5.82)

where xb is the splitting parameter, that is the fraction of the parton 2 momentum which
is taken away by parton 2’. In the collinear limit k2 ‖ k4, we use the parameterization

k1 =

(√
s12
2

, 0, 0, −
√
s12
2

)

(5.83)

k2 =

(√
s12
2

, 0, 0,

√
s12
2

)

(5.84)

k′2 =

(

xb

√
s12
2

+
p2
⊥

xb
√
s12

, 0, p⊥, xb

√
s12
2

)

(5.85)

k4 =

(

(1− xb)
√
s12
2

+
p2
⊥

(1− xb)
√
s12

, 0, −p⊥, (1− xb)
√
s12
2

)

(5.86)

for the external momenta. p⊥ is a small transverse momentum which we allow the
partons 2’ and 4 to have despite their collinearity. At leading order in p⊥,

k′2 = xbk2 (5.87)

k4 = (1− xb)k2 (5.88)

u′ = −2k2 · k4 = − p2
⊥

1− xb
. (5.89)

The phase space of parton 4 can in the collinear limit be written as

dPSk4 =
µ2εdD−1k4

2(2π)D−1E4

=
(4πµ2)ε

8π2Γ(1− ε)
2

(1− xb)
√
s12

p1−2ε
⊥ dp⊥ dk4,z

=
(4πµ2)ε

16π2Γ(1− ε)
(
−(1− xb)u′

)−ε
dxb du

′. (5.90)

For the change of variables in the second transformation we have used (5.86) and (5.89),
and we have kept only terms of the leading order in p⊥.

At the same time, the matrix element of the process γ + 2 → cc[n] + 3 + 4 factorizes
according to

1

Ncol,in(k1, k2)Npol,in(k1, k2)

∑

col,pol

∣
∣M2→2′4(γ + 2→ cc[n] + 3 + 4)

∣
∣2

= − 2g2
s

xbu′
(
P2′2(xb) + εP ′

2′2(xb)
) 1

Ncol,in(k1, k′2)Npol,in(k1, k′2)

×
∑

col,pol

∣
∣MBorn(γ + 2′(xb)→ cc[n] + 3)

∣
∣2, (5.91)
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where the squared matrix element of the Born process γ+2′ → cc[n] + 3 depends on xb.
The functions P2′2(xb) and P ′

2′2(xb) are the D dimensional versions of the Altarelli-Parisi
splitting functions [32]

Pqq(z) = CF
1 + z2

1− z (5.92)

P ′
qq(z) = −CF (1− z) (5.93)

Pgq(z) = CF
1 + (1− z)2

z
(5.94)

P ′
gq(z) = −CF z (5.95)

Pgg(z) = 2CA

(
z

1− z +
1− z
z

+ z(1− z)
)

(5.96)

P ′
gg(z) = 0 (5.97)

Pqg(z) =
1

2

(
z2 + (1− z)2

)
(5.98)

P ′
qg(z) = −z(1− z), (5.99)

where g stands for a gluon and q for a quark.
Now let us express the partonic hard collinear cross section

dσ2→2′4,hard(γ + 2→ cc[n] + 3 + 4) =
1

2s12
dPS2→2

∫

hard coll.
dPSk4

× 1

Ncol,in(k1, k2)Npol,in(k1, k2)

∑

col,pol

∣
∣M2→2′4(γ + 2→ cc[n] + 3 + 4)

∣
∣2 (5.100)

in terms of

dσBorn(γ + 2′(xb)→ cc[n] + 3) =
1

2s12′
dPS2→2

1

Ncol,in(k1, k′2)Npol,in(k1, k′2)

×
∑

col,pol

∣
∣MBorn(γ + 2′(xb)→ cc[n] + 3)

∣
∣2. (5.101)

Plugging (5.90) and (5.91) into (5.100) and comparing with (5.101) results in

dσ2→2′4,hard(γ + 2→ cc[n] + 3 + 4)

=

(

1− δ3,4
2

)
g2
s

8π2

(4πµ2)ε

Γ(1− ε)

∫ 0

−δcs12
(−u′)−1−εdu′

∫ 1−δsδ4,Gluon

xb,min

dxb (1− xb)−ε

×
(
P2′2(xb) + εP ′

2′2(xb)
)
dσBorn(γ + 2′(xb)→ cc[n] + 3)

=

(

1− δ3,4
2

)
g2
s

8π2

(
4πµ2

δcs12

)ε
1

Γ(1− ε)

(

−1

ε

)∫ 1−δsδ4,Gluon

xb,min

dxb (1− xb)−ε

×
(
P2′2(xb) + εP ′

2′2(xb)
)
dσBorn(γ + 2′(xb)→ cc[n] + 3). (5.102)

The factor (1− δ3,4
2 ) takes care about the additional factor 1

2 in the case of two external
gluons in the final state. The upper limit of the xb integration is 1 if parton 4 is a quark
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and 1 − δs if it is a gluon. The reason is that we have to exclude the soft region in the
hard collinear integration. Thereby the prescription xb < 1 − δs follows directly from
(5.17) when we make use of the relation s5 = s12′ − 4m2

c , which is true in the collinear
limit k2 ‖ k4. The lower limits xb,min will be determined later in chapter 6.1 in the
context of the hadronic cross section.

The collinear divergence in (5.102) is universal, which means process independent, and
is absorbed into the bare proton parton distribution function f2′/p(x) used in the Born
process γ + 2′ → cc[n] + 3: We define the scale dependent parton distribution function

f2′/p(x, µf ) ≡ f2′/p(x)−
∑

parton 2

g2
s

8π2

(

−1

ε

)(

4πµ2

µ2
f

)ε
1

Γ(1− ε)

×
∫ 1

xb,min

dxb
xb

P2′2(xb)f2/p

(
x

xb

)

(5.103)

following the MS convention, where µf is the factorization scale and x the fraction of
the proton momentum which the parton 2′ takes away, so that x

xb
is the fraction of the

proton momentum which parton 2 takes away. The additional second term is called the
mass factorization counterterm. Summing its contribution and (5.102) eventually yields

dσ2→2′4,hard(γ + 2→ cc[n] + 3 + 4) + dσmass fact.CT(γ + 2′ → cc[n] + 3)

=

(

1− δ3,4
2

)
g2
s

8π2

∫ 1−δsδ4,Gluon

xb,min

dxb

(

P2′2(xb) ln

(

δcs12′(1− xb)
xbµ

2
f

)

− P ′
2′2(xb)

)

×dσBorn(γ + 2′(xb)→ cc[n] + 3)

+

(

1− δ3,4
2

)
g2
s

8π2
Cε

[

1

ε
− ln

(

µ2
f

m2
c

)]
∫ 1

1−δsδ4,Gluon

dxbP2′2(xb)

×dσBorn(γ + 2′(xb)→ cc[n] + 3). (5.104)

The integral of the first term is evaluated numerically. The infrared divergent second
term appears due to the fact that in (5.103) the complete collinear divergence is sub-
tracted, including the terms arising from the soft collinear region, which are not part of
our hard collinear terms. If parton 4 is a quark, then these terms are zero. If it is a
gluon, then we can directly calculate them after replacing the Altarelli-Parisi splitting
functions P2′2 by their plus-regularized versions [32]

P+
qq(z) = CF

(
1 + z2

(1− z)+
+

3

2
δ(1 − z)

)

(5.105)

P+
gg(z) = 2CA

(
z

(1− z)+
+

1− z
z

+ z(1− z)
)

+

(
11

6
CA −

1

3
nlf

)

δ(1 − z),

(5.106)
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so that the integrals converge and yield

∫ 1

1−δs
P+
qq(xb)dσBorn(γ + 2′(xb)→ cc[n] + 3)

= CF

(

2 ln(δs) +
3

2
− 2δs +O(δ2s )

)

dσBorn(γ + 2′(xb = 1)→ cc[n] + 3) (5.107)

and
∫ 1

1−δs
P+
gg(xb)dσBorn(γ + 2′(xb)→ cc[n] + 3)

=

(

2CA ln(δs) +
11

6
CA −

1

3
nlf − 2CAδs +O(δ2s)

)

×dσBorn(γ + 2′(xb = 1)→ cc[n] + 3). (5.108)

5.2.2. Splitting of the initial photon

The collinear divergences of the phase space region in which k1 is collinear to k4 stem
from the diagrams

Born

→ k4

→ k3

→P

k1→ k′1→
k2→

, (5.109)

in which the incoming photon splits into a quark 1’ and the outgoing quark 4. The
kinematical situation is very similar to the case of the initial parton’s splitting. Therefore
here we will be less detailed in the derivation of the respective expressions. We define
xa to be the fraction of the photon momentum which is taken away by quark 1’, so that

k′1 = xak1 (5.110)

k4 = (1− xa)k1 (5.111)

and

s12 ≡ (k1 + k2)
2 (5.112)

s1′2 ≡ (k′1 + k2)
2 = xas12. (5.113)

The phase space of quark 4 is given by

dPSk4 =
(4πµ2)ε

16π2Γ(1− ε)
(
−(1− xa)t′

)−ε
dxa dt

′ (5.114)
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and the squared matrix element factorizes in the limit k1 ‖ k4 according to

1

Ncol,in(k1, k2)Npol,in(k1, k2)

∑

col,pol

∣
∣M1→1′4(γ + 2→ cc[n] + 3 + 4)

∣
∣2

= −
2e2Q2

q

xat′
(
Pqγ(xa) + εP ′

qγ(xa)
) 1

Ncol,in(k
′
1, k2)Npol,in(k

′
1, k2)

×
∑

col,pol

∣
∣MBorn(1′(xa) + 2→ cc[n] + 3)

∣
∣2, (5.115)

where Qq is the electric charge of the quark q in units of the elementary charge e and

Pqγ(xa) = CA
(
x2
a + (1− xa)2

)
(5.116)

P ′
qγ(xa) = −2CAxa(1− xa). (5.117)

The hard collinear partonic cross section is then given by

dσ1→1′4,hard(γ + 2→ cc[n] + 3 + 4) =
e2Q2

q

8π2

(
4πµ2

δcs12

)ε
1

Γ(1− ε)

(

−1

ε

)

×
∫ 1

xa,min

dxa (1− xa)−ε
(
Pqγ(xa) + εP ′

qγ(xa)
)
dσBorn(1

′(xa) + 2→ cc[n] + 3).

(5.118)

This collinear divergence is actually only canceled when we include NLO corrections
to the resolved photoproduction process

dσresolved(γ + 2→ cc[n] + 3) =
∑

parton 1′

dσBorn(1
′(xa) + 2→ cc[n] + 3)f1′/γ(xa)dxa

(5.119)

in our calculation, because then this collinear singularity can be absorbed into the parton
distribution function f1′/γ(xa) of the photon. We make use of this absorption, although
we do actually not yet compute the resolved photoproduction case, and redefine

f1′/γ(xa, µf ) ≡ f1′/γ(xa)−
e2Q2

q

8π2

(

4πµ2

µ2
f

)ε
1

Γ(1− ε)

(

−1

ε

)

P1′γ(xa). (5.120)

The second term is again called the mass factorization counterterm. The sum of its
contribution and (5.118),

dσ1→1′4,hard(γ + 2→ cc[n] + 3 + 4) + dσresolved,mass fact. CT(γ + 2→ cc[n] + 3)

=
e2Q2

q

8π2

∫ 1

xa,min

dxa

(

Pqγ(xa) ln

(

δcs1′2(1− xa)
xaµ

2
f

)

− P ′
qγ(xa)

)

×dσBorn(1
′(xa) + 2→ cc[n] + 3), (5.121)

is finite. The lower limit xa,min will be determined in chapter 6.1 in the context of the
hadronic cross section. The integral will be performed numerically. We do not have to
take special care about the soft collinear limit, because parton 4 is a quark.
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5.2.3. Splitting of the final state QCD parton

The collinear divergences of the phase space region in which k3 is collinear to k4 stem
from the diagrams

Born

→ k4

→ k3

→P

k1→

k2→ k′3→ , (5.122)

in which the parton 3’ splits into the two outgoing partons 3 and 4, whose momenta we
parameterize as

k3 =

(

zP +
p2
⊥

2zP
, 0, p⊥, zP

)

(5.123)

k4 =

(

(1− z)P +
p2
⊥

2(1 − z)P , 0, −p⊥, (1− z)P
)

(5.124)

so that

s3 = 2k3 · k4 =
p2
⊥

z(1 − z) (5.125)

at leading order in p⊥. The phase space factorizes according to

dPS2→3 =
µ2εdD−1P

2(2π)D−1EJ/ψ

µ2εdD−1k3

2(2π)D−1E3

µ2εdD−1k4

2(2π)D−1E4

×(2π)Dδ(D)(k1 + k2 − P − k3 − k4)

= dPS∗
2→2 × dPS∗

k4 (5.126)

with

dPS∗
2→2 ≡ µ2εdD−1P

2(2π)D−1EJ/ψ

µ2εdD−1k3′

2(2π)D−1k3′,0
(2π)Dδ(D)(k1 + k2 − P − k3′) (5.127)

dPS∗
k4 ≡ µ2εdD−1k4

2(2π)D−1E4

k3′,0

E3
. (5.128)

Here, we have just done a change of variables from k3 to k3′ = k3 + k4 and regrouped
the terms. In the collinear limit k3 ‖ k4, we further evaluate dPS∗

k4
to be

dPS∗
k4 =

(4πµ2)ε

16π2Γ(1− ε) (z(1− z)s3)−ε dz ds3, (5.129)

where we have made use of (5.124) and (5.125). The squared matrix element factorizes
according to

∑

col,pol

∣
∣M3′→34(γ + 2→ cc[n] + 3 + 4)

∣
∣2 =

2g2
s

s3

(
P33′(z) + εP ′

33′(z)
)

×
∑

col,pol

∣
∣MBorn(γ + 2→ cc[n] + 3′)

∣
∣2, (5.130)
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so that

dσ3′→34,hard(γ + 2→ cc[n] + 3 + 4) =

(

1− δ3,4
2

)

dσBorn(γ + 2→ cc[n] + 3′)

× g2
s

8π2

(4πµ2)ε

Γ(1− ε)

∫ δcs

0
ds3s

−1−ε
3

∫ zmax

zmin

dz (z(1 − z))−ε
(
P33′(z) + εP ′

33′(z)
)

=

(

1− δ3,4
2

)

dσBorn(γ + 2→ cc[n] + 3′)
g2
s

8π2

(
4πµ2

δcs

)ε
1

Γ(1− ε)

(

−1

ε

)

×
∫ zmax

zmin

dz (z(1− z))−ε
(
P33′(z) + εP ′

33′(z)
)
. (5.131)

The factor (1− δ3,4
2 ) takes care about the additional factor 1

2 in the case of two external
gluons in the final state. The upper and lower limits of the z integration depend on
whether the partons 3 and 4 are gluons or quarks, because, again, we have to exclude
the soft region in the hard collinear integration. Making use of (5.17) we see that

zmin =

{

0 if 3 is a quark
δss
s1

if 3 is a gluon
(5.132)

zmax =

{

1 if 4 is a quark

1− δss
s1

if 4 is a gluon
. (5.133)

Integrating (5.131) analytically results in

dσ3′→34,hard(γ + q → cc[n] + q + g) = dσBorn(γ + q → cc[n] + q)

×g
2
sCF
8π2

Cε

[
1

ε

(

2 ln

(
δss

s1

)

+
3

2

)

−
(

2 ln

(
δss

s1

)

+
3

2

)

ln

(
δcs

m2
c

)

− ln2

(
δss

s1

)

+
7

2
− π2

3
+O

(
δss

s1

)]

(5.134)

for q → q + g splitting,

dσ3′→34,hard(γ + g → cc[n] + g + g) = dσBorn(γ + g → cc[n] + g)

×g
2
sCA
8π2

Cε

[
1

ε

(

2 ln

(
δss

s1

)

+
11

6

)

−
(

2 ln

(
δss

s1

)

+
11

6

)

ln

(
δcs

m2
c

)

− ln2

(
δss

s1

)

+
67

18
− π2

3
+O

(
δss

s1

)]

(5.135)

for g → g + g splitting and

dσ3′→34(γ + g → cc[n] + q + q) = dσBorn(γ + g → cc[n] + g)

× g2
s

24π2
Cε

[

−1

ε
+ ln

(
δcs

m2
c

)

− 5

3
+O

(
δss

s1

)]

(5.136)

for g → q + q splitting.
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5.2.4. Summary of all hard collinear terms

To summarize this section, the hard collinear cross sections of our real correction pro-
cesses (5.1), (5.2) and (5.3) plus their respective mass factorization counterterms are
given by

dσhard coll.(γ + q → cc[n] + q + g) + mass fact. CTs

= Born + Born + Born

+ Born (5.137)

dσhard coll.(γ + g → cc[n] + g + g) + mass fact. CTs

= Born k3→
k4→

+ Born k4→
k3→

+ Born

(5.138)

dσhard coll.(γ + g → cc[n] + q + q) + mass fact. CTs

= Born + Born + Born

+ Born + Born , (5.139)

where each diagram stands for one of the respective expressions (5.104), (5.121) or
(5.134). The formulas (5.104) and (5.121), which were actually derived for the collinear
limits k4 ‖ k1 and k4 ‖ k2, also describe the limits k3 ‖ k1 and k3 ‖ k2.
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5.3. The hard non-collinear region

The integration of the real corrections over the hard non-collinear region does not lead to
divergences. Therefore we can perform the phase space integration in four dimensions.
As described in [33], we insert the identity

1 = ds3d
4k3′δ(k

2
3′ − s3)δ(4)(k′3 − k3 − k4) (5.140)

into the three particle phase space

dPS2→3 =
d3P

2(2π)3EJ/ψ

d3k3

2(2π)3E3

d3k4

2(2π)3E4
(2π)4δ(4)(k1 + k2 −P − k3 − k4), (5.141)

so that it factorizes according to

dPS2→3 =
1

(2π)5
ds3 × dPS∗∗

2→2 × dPS′
1→2 (5.142)

where

dPS∗∗
2→2 ≡ d3P

2EJ/ψ
d4k3′θ(k3′,0)δ(k

2
3′ − s3)δ(4)(k1 + k2 − P − k3′) (5.143)

dPS′
1→2 ≡ d3k3

2E3
d4k4θ(k4,0)δ(k

2
4)δ(4)(k3′ − k3 − k4). (5.144)

We calculate dPS∗∗
2→2 in the center of mass system of the incoming particles, and like

in the 2 to 2 kinematics case we use the parameterization

k1 =

(√
s

2
, 0, 0,

√
s

2

)

(5.145)

k2 =

(√
s

2
, 0, 0, −

√
s

2

)

(5.146)

P =
(
EJ/ψ, 0, pJ/ψ sin θ, pJ/ψ cos θ

)
(5.147)

where

EJ/ψ =
t+ u− 8m2

c

−2
√
s

, pJ/ψ =
√

E2
J/ψ − 4m2

c , cos θ =
t− u

2
√
s pJ/ψ

. (5.148)

After integration over the first delta function we arrive at

dPS∗∗
2→2 =

1

2EJ/ψ
p2
J/ψdpJ/ψd(cos θ)2dϕ δ(s + t+ u− 4m2

c − s3)

=
1

2s
dt du dϕ δ(s + t+ u− 4m2

c − s3), (5.149)

where we have made a change of variables from (pJ/ψ, cos θ) to (t, u). As the squared
matrix element cannot depend on ϕ, the azimuthal angel of the J/ψ, we integrate over
it (from 0 till π) and integrate over the delta function as well, so that

dPS∗∗
2→2 =

π

2s
dt. (5.150)

52



As for dPS′
1→2, we calculate it in the rest frame of the particles 3 and 4, in which we

use the parameterization

k1 = E′
1

(
1, 0, sin θ′1, cos θ′1

)
(5.151)

k2 =
(

E′
2, 0, −E′

1 sin θ′1, p
′
J/ψ −E′

1 cos θ′1
)

(5.152)

P =
(

E′
J/ψ, 0, 0, p′J/ψ

)

(5.153)

k3 =

√
s3
2

(
1, sin θ′ sinϕ′, sin θ′ cosϕ′, cos θ′

)
(5.154)

k4 =

√
s3
2

(
1, − sin θ′ sinϕ′, − sin θ′ cosϕ′, − cos θ′

)
(5.155)

for the respective momenta, where

E′
1 =

s+ t1
2
√
s3
, E′

2 =
s3 − t
2
√
s3
, E′

J/ψ =
s− s3 − 4m2

c

2
√
s3

,

p′J/ψ =
√

E′2
J/ψ − 4m2

c , cos θ′1 =
1

p′J/ψ

(

E′
J/ψ +

t1
2E′

1

)

,

cos θ′ =
1

p′J/ψ

(
s4√
s3
−E′

J/ψ

)

, cosϕ′ =
1 + u6√

s3E′
1
− cos θ′1 cos θ′

sin θ′1 sin θ′
. (5.156)

Integrating over the first delta function in (5.144) leads to

dPS′
1→2 =

k3,0

2
dk3,0d(cos θ

′)2dϕ′δ(s3 − 2
√
s3k3,0)

=
1

4
d(cos θ′)dϕ′. (5.157)

Plugging (5.150) and (5.157) into (5.142) and using (2.3) we arrive at

dσ(γ + i→ cc[n] + j + k)

dt
=

1

2s

1

256π4s
ds3d(cos θ

′)dϕ′

×
(

1− δ3,4
2

)
1

Ncol,inNpol,in

∑

col,pol

|M(γ + i→ cc[n] + j + k)|2. (5.158)

The factor (1− δ3,4
2 ) is added for the case of the process γ + g → cc[n] + g+ g, in which

there are two identical particles in the final state.
To summarize, in comparison to the 2 to 2 kinematics case, there are three additional

integrations: Over s3, cos θ′ and over ϕ′. For given s and t their integration ranges are
given by

0 < s3 < t+
st

t1
, −1 < cos θ′ < 1, 0 < ϕ′ < π. (5.159)

For our actual calculation, however, we will use another expression for the upper limit
of s3 which we will derive in chapter 6.1 in the context of the hadronic cross section.
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For the squared matrix elements, we do not make any approximation, but evaluate
the Feynman diagrams drawn in figures 5.2, 5.3 and 5.4 directly using our automated
programs. Thereby we will need the expressions of all Mandelstam invariants (5.4)
till (5.13) in terms of the integration variables. The corresponding relations are easily
derived from the formulas (5.151) till (5.156). In the evaluation of the process γ + g →
cc[n] + g + g we again apply the full polarization sum

∑

pol∗

εµε
∗
ν = −gµν , (5.160)

but subtract all gluon ghost contributions according to
∑

col,pol

|M(γ + g → cc[n] + g + g)|2

=
∑

col,pol∗

[

|M(γ + g → cc[n] + g + g)|2 − 2|M(γ + ug → cc[n] + ug + g)|2

−2|M(γ + ug → cc[n] + g + ug)|2 − 2|M(γ + g → cc[n] + ug + ug)|2
]

.

(5.161)

It is the integration over the hard non-collinear part which is the most time consuming
part of the numerical integration.
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Figure 5.2.: Tree level diagrams of the process γ + q → cc + q + g. 14 diagrams have
not been drawn. They differ from the drawn ones only by an exchange of
the external c and c lines or the external q and q lines. The diagrams of
the process γ + g → cc+ q + q can be inferred just by crossing the external
particles accordingly.
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6. Numerical evaluation and results

The numerical phase space integrations are implemented in FORTRAN. The underlying
integration routine used is VEGAS [34]. Due to the large size of the hard non-collinear

part of the real corrections, especially to the partonic processes γ+g → cc[3P
[8]
J ]+g+g,

the calculation was quite extensive. About 200 processes were running for three weeks.
In section 6.1 we derive the expressions for the actual quantities we are going to calculate
along with the integration limits. In section 6.2, we specify the parameters used in our
calculation before presenting our final results in section 6.3.

6.1. The hadronic cross sections

Up to this point we have dealt primarily with the partonic cross sections and learned
how to calculate the different contributions to dσ(i + j → J/ψ + X)/dt. We already
know that the hadronic cross section is calculated according to (2.1), but in this section
we want to examine in detail how to relate dσ(i+j → J/ψ+X)/dt to the experimentally
accessible quantities.

We investigate the general kinematical situation depicted in figure 6.1. In the center of
mass frame of the incoming electron (with momentum ke) and proton (with momentum
kp), a bremsstrahlung photon with momentum k1 = xγke is radiated off the electron.
This photon then emits a parton 1’ with momentum k ′1 = xak1. On the other hand, the
parton 2 with momentum k2 = xBkp stemming from the proton, itself emits another
parton 2’ with momentum k′2 = xbk2. The partons 1’ and 2’ then take part in the actual
partonic reaction and produce, among other particles, the J/ψ with momentum P . In

X

X

X

X

J/ψ

ee

p

→
k1

→
k′1

→
k2

→
k′2

→P

→ke

→kp

Figure 6.1.: Overview of the kinematics of the hadronic cross section
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particular, we use the parameterization

ke =

√
SH
2

(1, 0, 0, 1) (6.1)

k1 = xγ

√
SH
2

(1, 0, 0, 1) (6.2)

k′1 = xγxa

√
SH
2

(1, 0, 0, 1) (6.3)

kp =

√
SH
2

(1, 0, 0, −1) (6.4)

k2 = xB

√
SH
2

(1, 0, 0, −1) (6.5)

k′2 = xBxb

√
SH
2

(1, 0, 0, −1) (6.6)

P = (mT cosh η, pT cosφ, pT sinφ, mT sinh η) (6.7)

for the momenta, where

mT ≡
√

p2
T + 4m2

c , (6.8)

and we call SH the hadronic center of mass energy, pT the transverse momentum of the
J/ψ and η its rapidity.

The Mandelstam variables of the partonic process are then given by

s = (k′1 + k′2)
2 = xγxaxBxbSH (6.9)

t = (P − k′1)2 = 4m2
c − xγxa

√

SHmT e
−η (6.10)

u = (P − k′2)2 = 4m2
c − xBxb

√

SHmT e
η, (6.11)

so that

xγxa =
xBxb

√
SHmT e

η − 4m2
c + s3

xBxbSH −mT

√
SHe−η

(6.12)

xBxb =
xγxa

√
SHmT e

−η − 4m2
c + s3

xγxaSH −mT

√
SHeη

. (6.13)

This is the general form, which is valid for the real corrections with 2 to 3 kinematics.
To get the corresponding expressions in the case with just two external particles, simply
set s3 = 0 in (6.12) and (6.13).

The general form of the hadronic cross section is given by

dσ(e + p→ J/ψ +X)

dxγdxadxBdxbdt
=

∑

parton i

∑

parton j

∑

parton k

fγ/e(xγ)fi/γ(xa)fj/p(xB)fk/j(xb)

×dσ(i+ k → J/ψ +X)

dt
(6.14)

The symbol fj/p(xB) is the parton distribution function which gives the probability
to find the parton j inside the proton with a momentum fraction xB . We use the
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scale dependent proton PDFs, which additionally depend on the factorization scale µf .
The function fγ/e(xa) is the distribution of bremsstrahlung photons radiated off the
incoming electron in the equivalent photon approximation. We use the Weizsäcker-
Williams formula [16]

fγ/e(xγ) =
e2

8π2

(
1 + (1− xγ)2

xγ
ln

(
Q2

max

Q2
min

)

+ 2m2
exγ

(
1

Q2
max

− 1

Q2
min

))

(6.15)

with

Q2
min ≡

m2
ex

2
γ

1− xγ
. (6.16)

Qmax is the maximum virtuality we allow the photon to have in the photoproduction
limit and me the electron mass. In direct photoproduction, which we consider in this
project,

fi/γ(xa) = δ(1 − xa) and fk/j(xb) = δ(1 − xb). (6.17)

However, as described in section 5.2, in the calculation of the initial state collinear
singularities, we have to consider k1 → k′1 and k2 → k′2 splitting: The expression (5.121)
is equal to dσBorn(1

′ + 2→ cc[n] + 3) evaluated with

fi/γ(xa) =
e2Q2

i

8π2

(

Piγ(xa) ln

(

δcs(1− xa)
xaµ2

f

)

− P ′
iγ(xa)

)

(6.18)

fk/j(xb) = δ(1 − xb). (6.19)

And the first term in (5.104) is equal to dσBorn(γ + 2′ → cc[n] + 3) evaluated with

fi/γ(xa) = δ(1 − xa) (6.20)

fk/j(xb) =
g2
s

8π2

(

Pkj(xb) ln

(

δcs(1− xb)
xbµ

2
f

)

− P ′
kj(xb)

)

×
(

1− δ3,4
2

)

θ(1− δsδ4,Gluon − xb). (6.21)

In photoproduction cross sections, the two additional quantities

W ≡
√

(k1 + kp)2 =
√

xγSH (6.22)

z ≡ P · kp
k1 · kp

=
mT e

η

xγ
√
SH

(6.23)

are defined. W is the photon-proton invariant mass. In the proton rest frame, z is the
fraction of the photon energy which is transferred to the J/ψ. After a change of variables
from (xγ , xB , t) to (W, z, p2

T ) in (6.14), the hadronic cross section reads

dσ(e + p→ J/ψ +X)

dWdz dp2
Tdxadxb

=
∑

i,j,k

fγ/e(xγ)fi/γ(xa)fj/p(xB)fk/j(xb)

×2xBW (t− 4m2
c)

zSH(t+ p2
T )

dσ(i + k → J/ψ +X)

dt
. (6.24)
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Our final goal is to calculate the differential cross sections

dσ

dp2
T

=

∫ zmax

zmin

dz

∫ √
SH

Wmin

dW

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb
dσ

dWdz dp2
Tdxadxb

(6.25)

dσ

dz
=

∫ p2t,max

0
dp2

T

∫ √
SH

Wmin

dW

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb
dσ

dWdz dp2
Tdxadxb

(6.26)

dσ

dW
=

∫ p2
′
t,max

0
dp2

T

∫ z′max

z′min

dz

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb
dσ

dWdz dp2
Tdxadxb

(6.27)

dσ

dWdz dp2
T

=

∫ 1

xa,min

dxa

∫ 1

xb,min

dxb
dσ

dWdz dp2
Tdxadxb

, (6.28)

where

xb,min =
xγxa

√
SHmT e

−η − 4m2
c

xγxaSH −mT

√
SHeη

(6.29)

xa,min =

√
SHmT e

η − 4m2
c

xγ
(
SH −mT

√
SHe−η

) (6.30)

Wmin =

√

p2
T

z(1− z) +
4m2

c

z
(6.31)

zmin =
1

2SH

(

SH + 4m2
c −

√

(SH − 4m2
c)

2 − 4SHp
2
T

)

(6.32)

zmax =
1

2SH

(

SH + 4m2
c +

√

(SH − 4m2
c)

2 − 4SHp2
T

)

(6.33)

p2
t,max = (1− z)

(
zSH − 4m2

c

)
(6.34)

z′min =
1

2W 2

(

W 2 + 4m2
c −

√

(W 2 − 4m2
c)

2 − 4W 2p2
T

)

(6.35)

z′max =
1

2W 2

(

W 2 + 4m2
c +

√

(W 2 − 4m2
c)

2 − 4W 2p2
T

)

(6.36)

p2′

t,max =

(
W 2 − 4m2

c

)2

4W 2
. (6.37)

All of these integrations are performed numerically. In the calculation of the hard non-
collinear region of the real corrections further three integrations over s3, cos θ′ and ϕ′

have to be performed, see (5.158). Thereby the integration range of s3 is

0 < s3 < xbW
2 (xa − z)−

xam
2
T

z
+ 4m2

c . (6.38)

Please note that all the integration limits given describe only the kinematically accessible
parameter space. In the actual integrations we will apply additional cuts on W , pT and
z, in order to compare our results with the corresponding experimentally measured
quantities.
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Figure 6.2.: Renormalization scale µr and factorization scale µf dependence of dσ(ep→
J/ψ +X)/dW at W = 100 GeV.

6.2. Parameters used in our analysis

At HERA, electrons with an energy of 27.6 GeV are colliding with protons with an
energy of 920 GeV. We use the same kinematical ranges like the H1 group used in their
analyses [35, 36], with which we will compare our results: We take Q2

max to be 2 GeV2

and apply the integration cuts

60 GeV < W < 240 GeV (6.39)

0.3 < z < 0.9 (6.40)

1 GeV2 < p2
T . (6.41)

At lower values of z the cross sections should be dominated by resolved photoproduction
and in the range z ≈ 1 diffractive processes are expected to dominate. But in the given
region of z it is sensible to compare our direct photoproduction results with the data.

For the running strong coupling constant αs(µ
2
r) we employ the one-loop (two-loop)

formula for the Born (NLO) cross sections with nlf = 3 active flavors. For the parton
distribution functions we use QTEC6L1 (QTEC6M) [37] for the Born (NLO) cross sec-

tions, and we use their Λ
(4)
QCD = 215 MeV (326 MeV), so that Λ

(3)
QCD = 249 MeV (388.5

MeV). As renormalization and factorization scales we use µ2
r = µ2

f = p2
T + 4m2

c and for
the NRQCD scale µΛ = mc. We have investigated the dependence of our cross sections
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Figure 6.3.: Numerical verification of the phase space slicing mechanism at one typical
point in (W,pT , z) space. We set δs = δ and δc = δ/100.

on the renormalization and factorization scales by varying them around their default
values. The corresponding graphs for dσ(ep→ J/ψ +X)/dW are drawn in figure 6.2.

Furthermore we use the values

α =
e2

4π
=

1

137.036
(6.42)

me = 0.51100 keV (6.43)

mc ≡
MJ/ψ

2
=

3.0969 GeV

2
(6.44)

from the particle data group [1].
Our cross sections are independent of the unphysical slicing parameters. We have

checked this independence numerically by a variation of the slicing parameters over a
large range of small values, as is shown in figure 6.3. For our actual analysis we use the
values δs = 10−3 and δc = 10−5.

As for the color singlet long distance matrix element, we calculate it as usual from the
J/ψ decay width into an electron positron pair Γee:

〈OJ/ψ(3S
[1]
1 )〉 =

81m2
c

8πα2

Γee

1− 16αs(4m2
c)

3π

, (6.45)

where we set the NLO correction term 16αs(4m2
c)

3π in (6.45) to zero when calculating Born
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cross sections. We use Γee = 5.55 keV [1], so that

〈OJ/ψ(3S
[1]
1 )〉 = 0.81 GeV3 (6.46)

in the Born case and

〈OJ/ψ(3S
[1]
1 )〉 = 1.38 GeV3 (6.47)

in the NLO case.

6.2.1. The values of the color octet long distance matrix elements

The great uncertainty of the whole analysis lies in the values of the color octet long
distance matrix elements (MEs). They are usually extracted by fitting predictions for
J/ψ hadroproduction to Tevatron data. In the process of this fitting, not all color octet
matrix elements are considered as independent fit parameters. First, due to the spin
symmetry of the cc system, we have

〈OJ/ψ(3P
[8]
J )〉 = J〈OJ/ψ(3P

[8]
0 )〉. (6.48)

Second, the contributions of intermediate 1S
[8]
0 and 3P

[8]
J states to the pT distribution of

the hadroproduction are highly correlated, as they have a very similar slope, see figure
1.1. Therefore it has become common to define the linear combination

MJ/ψ
r ≡ 〈OJ/ψ(1S

[8]
0 )〉+ r

m2
c

〈OJ/ψ(3P
[8]
0 )〉 (6.49)

and use the three quantities 〈OJ/ψ(3S
[8]
1 )〉, MJ/ψ

r and r as fit parameters. Of course, con-

sidering just (6.49), the values of 〈OJ/ψ(1S
[8]
0 )〉 and 〈OJ/ψ(3P

[8]
0 )〉 are not unambiguously

determined. We will assume the democratic split

〈OJ/ψ(1S
[8]
0 )〉 =

M
J/ψ
r

2
(6.50)

〈OJ/ψ(3P
[8]
0 )〉 =

M
J/ψ
r m2

c

2r
. (6.51)

For a consistent NLO analysis, we would have to use color octet long distance matrix
elements obtained by fitting an NLO prediction for hadroproduction to Tevatron data.
Unfortunately, currently only leading order fits are on the market, as a complete NLO
calculation is so far not available. However, we expect the NLO corrections to be rather
large and positive, as can already be inferred from the NLO calculation of the color
singlet model prediction [8]. An increase of both color singlet and color octet short
distance coefficients would significantly decrease the values of the color octet MEs.

We decide to use the values obtained in [38] form fitting to CDF data [39]. That
analysis has two advantages: First, besides doing a thorough leading order fit, they
present values for so called “higher order improved” MEs, which are obtained by using
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the results of the Monte Carlo simulation analysis [40] for multi gluon radiation in color
octet hadroproduction processes. The second advantage is that the values they use for
the color singlet long distance matrix elements in their leading and higher order fits are
consistent with our values (6.46) and (6.47). Of course, there are fits to more recent
Tevatron data available, but we note that the theoretical uncertainties of the short
distance cross sections are much larger than the experimental precision gained since the
analysis [38], as can be seen in the results of the recent fit published in [41] to Tevatron
Run II data [42].

To be concrete, we use the values

〈OJ/ψ(3S
[8]
1 )〉 = 3.94 · 10−3 GeV3 (6.52)

M
J/ψ
3.7 = 6.52 · 10−2 GeV3 (6.53)

r = 3.47 (6.54)

of [38] for our color octet contributions. We indicate the expected decrease of the color
octet MEs in a thorough NLO fit by shaded bands, where we use the values of their
“higher order improved” long distance matrix elements, namely

〈OJ/ψ(3S
[8]
1 )〉 = 2.73 · 10−3 GeV3 (6.55)

M
J/ψ
3.54 = 5.72 · 10−3 GeV3 (6.56)

r = 3.54, (6.57)

for the lower end of that band.

6.3. Final results and conclusions

The figures 6.4 till 6.6 show our results for the differential cross sections dσ(ep →
J/ψ +X)/dp2

T , dσ(ep→ J/ψ +X)/dW and dσ(ep→ J/ψ +X)/dz for direct photopro-
duction. The lower graphs show the contributions of the various intermediate states to

the respective NLO cross sections. 3P
[8]
0/1/2 means the sum of all P wave contributions.

We do not give results for the three P wave states separately, as the ratios of their long
distance matrix elements are fixed by cc spin symmetry anyway. In the upper graphs we
have plotted the Born and the NLO predictions for the intermediate color singlet state
alone and for the sum of intermediate color singlet and color octet states. The shaded
bands indicate the expected decrease of the color octet MEs in an NLO fit to Tevatron
data as explained in section 6.2.1. We compare our predictions to H1 data, namely to
the published results of the HERA I run [35] and to the preliminary analysis of a part
of the HERA II data [36].

The first conclusion we can draw from our analysis is that the color singlet contribution
alone is not sufficient to explain the photoproduction data. The data points are about
a factor 4 larger than the prediction, which is an indication for the significance of color
octet states. This seems to be in contrast to Krämer’s NLO color singlet model analysis
[11, 6], which suggests good agreement with data. But this disagreement is due to a
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Figure 6.4.: The differential cross section dσ(ep → J/ψ +X)/dp2
T of direct J/ψ photo-

production at HERA. Upper graph: Born and NLO predictions compared
to H1 data, for the color singlet contributions only and for the sum of color
singlet and color octet contributions. Lower graph: The contributions of the
different intermediate states to the NLO prediction.
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Figure 6.5.: The differential cross section dσ(ep → J/ψ +X)/dW of direct J/ψ photo-
production at HERA. Upper graph: Born and NLO predictions compared
to H1 data, for the color singlet contributions only and for the sum of color
singlet and color octet contributions. Lower graph: The contributions of the
different intermediate states to the NLO prediction.
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to H1 data, for the color singlet contributions only and for the sum of color
singlet and color octet contributions. Lower graph: The contributions of the
different intermediate states to the NLO prediction.
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different set of parameters used, different factorization and renormalization scales and
older PDFs. In fact, when we repeat our calculation for the color singlet states using
Krämer’s parameters, scales, PDFs and kinematic ranges, we obtain exact agreement
with his results. Furthermore, recently another NLO color singlet model analysis for J/ψ
photoproduction has been published [44], which shows color singlet model predictions
well below ZEUS data.

The second conclusion is that in case of the dσ(ep → J/ψ + X)/dp2
T and dσ(ep →

J/ψ + X)/dW differential cross sections the sum of NLO color singlet and color octet
contributions describes the data fairly well. The shape is very similar and the data
points lie in the region we expect the NLO cross sections to be after we will have
more accurate color octet long distance matrix elements. Unfortunately, in case of
dσ(ep → J/ψ + X)/dz the sharp increase at high z is even sharper than already in
the Born case. Nevertheless, also here the data points still lie within our NLO band.
In the low z region, the data points even lie above our predictions. But below about
z = 0.45 we expect significant contributions from resolved photoproduction processes
with intermediate color octet states, which have not yet been considered in the present
analysis. So we expect the cross section to rise in the low z region after including the
resolved processes.

A third conclusion is that the contribution of intermediate 3S
[8]
1 states are phenomeno-

logically not significant for photoproduction. In contrast to hadroproduction, the pho-

toproduction cross section is insensitive to 〈OJ/ψ(3S
[8]
1 )〉. Therefore the universality of

〈OJ/ψ(3S
[8]
1 )〉 can not be tested by comparing Tevatron and HERA data. On the other

hand, in case of dσ(ep → J/ψ + X)/dp2
T and dσ(ep → J/ψ + X)/dz, there is a slight

difference in the slope of the 1S
[8]
0 and the 3P

[8]
0/1/2 contributions, and the data seems to

prefer a stronger 1S
[8]
0 contribution. Unfortunately, the hadroproduction cross section is

insensitive to the ratio of 〈OJ/ψ(3S
[8]
1 )〉 and 〈OJ/ψ(3P

[8]
0 )〉. Therefore the only quantity

whose universality can actually be tested by comparing HERA and Tevatron data is the

linear combination M
J/ψ
r defined in (6.49).
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7. Summary and outlook

Nonrelativistic QCD provides a rigorous factorization theorem for the production and
decay of heavy quarkonia. A key feature is the inclusion of intermediate color octet,
meaning color charged, states. These color octet states are needed for the description of
the pT distribution of the J/ψ hadroproduction cross section at the Tevatron. In order
to establish NRQCD as the correct theory for hadroproduction, it is however necessary
to show the significance of the color octet contributions in other high energy experiments
as well, for example in the J/ψ photoproduction at HERA, and proof the universality
of the long distance color octet matrix elements (MEs).

As for the state of knowledge before our work, for both photoproduction and hadropro-
duction, NLO calculations existed only for intermediate color singlet states. The rela-
tivistic corrections, meaning the contributions of the color octet states, were only known
at leading order in αs. It seemed that the color singlet model prediction described the
HERA data fairly well, whereas the NRQCD prediction overshooted the data. Therefore
it has been a desire for 13 years to know the NLO corrections to both photoproduction
and hadroproduction, in order to decide more clearly whether the NRQCD factorization
mechanism is realized in nature or not. We have now for the first time succeeded in
calculating the full NLO corrections to direct J/ψ photoproduction including the color
octet states.

We have solved a series of conceptual difficulties:

1. We found a way to evaluate the virtual corrections without having to deal with
Coulomb divergences.

2. We have derived systematic formulas for an extension of the Passarino-Veltman
reduction to the case of linear dependent propagator momenta, double propagator
powers and an arbitrary number of Lorentz indices in the numerator.

3. We found a way to systematically evaluate the numerous different scalar Feynman
integrals by applying the integration-by-parts reduction procedure, most frequently
used in multi loop calculations.

4. We have systematically analyzed the non-standard infrared divergency structure
in case of the P states and its cancellations.

Our calculation has passed a series of checks:

1. We could reproduce the Born results published in the literature.

2. We could analytically show the cancellation of all ultraviolet and all infrared di-
vergences.
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3. As for the evaluation of the virtual correction loop integrals, we have implemented
two different reduction methods and could analytically proof that the results of
both methods are equal.

4. We could check our analytic expressions for the real correction squared matrix
elements by comparing them with the numerical results of MadOnia, a quarkonium
version of MadGraph [43], which is an automatic program for numeric tree level
calculations.

5. We could numerically show that our results are independent of the unphysical
phase space slicing parameters, which is a test on our soft and collinear limits and
the kinematics used.

6. We could reproduce Krämer’s NLO results for the color singlet state [11] (when
using his parameters, PDFs, scales and cuts).

The comparison of our results with HERA data shows that the color singlet contri-
butions alone are not sufficient to describe HERA photoproduction. This result seems
to contrast Krämer’s conclusions, but is in agreement with another recent calculation
of the color singlet contributions at NLO [44]. The sum of color singlet and color octet
contributions, on the other hand, seems to describe the data much better. Unfortu-
nately, the NRQCD prediction is still hampered by the large uncertainty associated
with the values of the long distance matrix elements, which are extracted from fitting
the hadroproduction predictions to Tevatron data.

In order to reduce this uncertainty it will be necessary to calculate the complete NLO
predictions for J/ψ hadroproduction, so as to extract more precise values for the color
octet MEs. This will be the subject of our future research. Thereby we will have to find
more efficient ways to evaluate the real corrections, because in our current method huge
amounts of computational ressources are needed for the numerical phase space integra-
tions of the hard non-collinear region of the real corrections. We are going to follow two
strategies: The first strategy is to implement a subtraction mechanism, extending the
usual dipole subtraction scheme [31] to the case of heavy quarkonium production and
our non-standard divergency structure. In a subtraction method we would need just
about 10% of the integration precision needed in our phase space slicing method, so that
the hadroproduction would be calculable at an acceptable time scale. The other strategy
is to find an algorithm to simplify the expressions for the real correction squared ma-
trix elements, or to use a completely different approach to compute the squared matrix
elements, for example the helicity projection method.

We are also going to calculate the J/ψ polarization in both photoproduction and
hadroproduction at NLO, because in both cases neither the leading order NRQCD pre-
diction, nor the NLO color singlet model prediction is able to describe the J/ψ polar-
ization at high pT [44, 45].
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A. Our tensor reduction

The application of the spin projectors in (2.4) till (2.7) leads to tensor integrals with
linearly dependent propagator momenta, and in the case of P states also to double
propagator powers due to the derivative with respect to the relative momentum 2q
between the charm and the anticharm. A simple example integral would be

Iexample =
(2πµ)4−D

iπ2

∫
dDQ QµQν

Q2
[
(Q+ P

2 )2 −m2
c

] [
(Q− P

2 )2 −m2
c

]2 . (A.1)

A direct application of the Passarino-Veltman reduction formulas [24] is not possible, as
we would have to call for example the integral (A.1) a D function, something like

Iexample,PV = Dµν

(
P

2
,−P

2
,−P

2
, 0,mc,mc,mc

)

. (A.2)

This would lead to zero Gram determinants, by which we would have to divide in the
course of the reduction procedure. For our calculation we have therefore generalized the
Passarino-Veltman formulas to the case of propagators with linear dependent propagator
momenta and double propagator powers. The basic idea behind this extensions is simply
that we classify the integrals not according to the number of propagators, but according
to the number of independent momenta appearing in them, so we would call the integral
(A.1) a B function, to be precise,

Iexample = Bµν

(
P

2
, 0,mc;−1,mc, 2, 1

)

(A.3)

in the notation we are going to introduce below. Our formulas allow for an arbitrary
number of Lorentz indices in the numerators. They are general enough to reduce all
tensor integrals appearing in our calculation to scalar ones.

We remark that the mentioned problem of vanishing Gram determinants is different
from the one studied in [46]. In that paper the problem of numerical instabilities due to
small Gram determinants is addressed and not the case of zero Gram determinants.

A.1. Definition of the tensor integrals and tensor

decomposition

Let us start by defining the naming convention for our generalized tensor integrals as

Aµ1 ...µp(m0;m5, x, y) ≡
(2πµ)4−D

iπ2

∫
dDQ Qµ1 . . . QµP

[
Q2 −m2

0

]y[
Q2 −m2

5

]x (A.4)
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Bµ1...µp(p1,m0,m1; a,m5, x, y)

≡ (2πµ)4−D

iπ2

∫
dDQ Qµ1 . . . QµP

[
Q2 −m2

0

]y[
(Q+ p1)2 −m2

1

][
(Q+ ap1)2 −m2

5

]x (A.5)

Cµ1...µp(p1, p2,m0,m1,m2; a, b,m5, x, y)

≡ (2πµ)4−D

iπ2

∫
dDQ Qµ1 . . . QµP

[
Q2 −m2

0

]y[
(Q+ p1)2 −m2

1

][
(Q+ p2)2 −m2

2

]

× 1
[
(Q+ ap1 + bp2)2 −m2

5

]x (A.6)

Dµ1...µp(p1, p2, p3,m0,m1,m2,m3; a, b, c,m5, x, y)

≡ (2πµ)4−D

iπ2

∫
dDQ Qµ1 . . . QµP

[
Q2 −m2

0

]y[
(Q+ p1)2 −m2

1

][
(Q+ p2)2 −m2

2

]

× 1
[
(Q+ p3)2 −m2

3

][
(Q+ ap1 + bp2 + cp3)2 −m2

5

]x , (A.7)

where Q is the loop momentum, the pi external momenta, mi particle masses, µi Lorentz
indices and a, b, c, x and y numbers. We impose the restrictions that

1. p1, p2 and p3 must be linearly independent and not zero.

2. x = 0 and y = 1.

3. a 6= 0 in B functions, b 6= 0 in C functions, c 6= 0 in D functions.

These conditions are not very restrictive, so that we can identify each tensor integral
appearing in our calculation (in some cases after a simple transformation of the loop
momentum) as one of the integrals (A.4) till (A.7).

Once we have identified our tensor integrals, we perform a tensor decomposition, that
means we rewrite the integrals as the sum of all possible Lorentz structures which can
appear, multiplied by so called tensor coefficient functions, according to

Aµ1 ...µP ≡
{

0 if P odd
{
gP/2

}µ1...µp
AP/2 if P even

(A.8)

Bµ1...µP ≡
P DIV 2∑

n=0

{

gn pP−2n
1

}µ1...µp
Bn,P−2n (A.9)

Cµ1...µP ≡
P DIV 2∑

n=0

P−2n∑

m=0

{

gn pm1 pP−2n−m
2

}µ1...µp
Cn,m,P−2n−m (A.10)

Dµ1...µP ≡
P DIV 2∑

n=0

P−2n∑

m=0

P−2n−m∑

k=0

{

gn pm1 pk2 p
P−2n−m−k
3

}µ1...µp
Dn,m,k,P−2n−m−k ,

(A.11)
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where P DIV 2 means the integer part of P2 , and {ga pb1 pc2 pd3}µ1...µP with 2a+b+c+d = P
stands for the sum of all different terms which can be constructed by distributing the P
Lorentz indices µ1 . . . µP over the a g’s, the b p1’s, the c p2’s and the d p3’s. This short
notation becomes clearer if we consider the concrete example

Bµνρσ = pµ1p
ν
1p
ρ
1p
σ
1 B0,4 +

(
gµνpρ1p

σ
1 + gµρpν1p

σ
1 + gµσpν1p

ρ
1 + gνρpµ1p

σ
1 + gνσpµ1p

ρ
1

+gρσpµ1p
ν
1

)
B1,2 +

(
gµνgρσ + gµρgνσ + gµσgνρ

)
B2,0. (A.12)

Now, the purpose of the tensor reduction is to express all tensor coefficient functions
AP/2, Bn,P−2n, Cn,m,P−2n−m and Dn,m,k,P−2n−m−k in terms of coefficient functions A0,
B0,0, C0,0,0 and D0,0,0,0, which are scalar integrals. This is achieved by the successive
application of reduction formulas, which will be derived in the following subsections.

A.2. Tensor reduction of the generalized A functions

We multiply the right hand sides of (A.4) and (A.8) with gµ1µ2 and solve the resulting
equation for AP/2. If y > 1, we obtain

Ar+1 =
1

D + 2r

(

Ar
(
m0;m5, x, y − 1

)
+m2

0Ar

)

. (A.13)

If y = 1 and x > 0, we obtain

Ar+1 =
1

D + 2r

(

Ar
(
m0;m5, x− 1, 1

)
+m2

5Ar

)

. (A.14)

If y = 1 and x = 0, we obtain

Ar+1 =
m2

0

D + 2r
Ar. (A.15)

In the cases, where we omitted explicit function arguments, the arguments are meant to
be (m0;m5, x, y).

A.3. Tensor reduction of the generalized B functions

We multiply the right hand sides of (A.5) and (A.9) in turn with gµ1µ2 and p1,µ1 . In the
two resulting relations, we extract two equations by comparing the coefficients of the
specific tensor structure

gµ3µ4 . . . gµ2r+1µ2r+2 p
µ2r+3

1 . . . pµP1 ,

respectively

gµ2µ3 . . . gµ2rµ2r+1 p
µ2r+2

1 . . . pµP1 .
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Solving these equations for Br+1,P−2r−2 and Br,P−2r results in

Br+1,s =
1

D + 2r + s− 1

(

SB,0r,s − SB,1r,s+1

)

(A.16)

Br,s+1 =
1

p2

(

SB,1r,s − sBr+1,s−1

)

, (A.17)

where

SB,0i,j ≡ Bi,j(/0) +m2
0Bi,j (A.18)

SB,1i,j ≡ 1

2

(

Bi,j(/1)−Bi,j(/0)− (p2
1 −m2

1 +m2
0)Bi,j

)

. (A.19)

Here, Bi,j(/n) stands for the coefficient of the tensor structure {gi pj1}µ1...µ2i+j of the
tensor integral Bµ1...µ2i+j with the power of the nth propagator (the one with mass mn)
decreased by one. In the following we present explicit formulas for the different cases
which appear, starting with Br,s(/1). In the case x = 0 and s > 0,

Br,s(/1) = 0. (A.20)

If x = 0 and s = 0,

Br,s(/1) = Ar
(
m0; 0, 0, y

)
. (A.21)

If x > 0,

Br,s(/1) = asBr,s
(
ap1,m0,m5; 1,m5, x− 1, y

)
. (A.22)

As for Br,s(/0), if y > 1,

Br,s(/0) = Br,s
(
p1,m0,m1; a,m5, x, y − 1

)
. (A.23)

If y = 1 and (x = 0 or a = 1),

Br,s(/0) = (−1)sAr
(
m1;m5, x, 1

)
. (A.24)

If y = 1 and x > 0 and a 6= 1,

Br,s(/0) =

s∑

α=0

(
s

α

)

(−1)α(a− 1)s−αBr,s−α
(
(a− 1)p1,m1,m5; 1,m5, x− 1, 1

)
. (A.25)

Whenever we have omitted explicit function arguments in this section, the arguments
are meant to be (p1,m0,m1; a,m5, x, y).
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A.4. Tensor reduction of the generalized C functions

We multiply the right hand sides of (A.6) and (A.10) in turn with gµ1µ2 , p1,µ1 and p2,µ1 .
In the three resulting relations, we extract three equations by comparing the coefficients
of the specific tensor structure

gµ3µ4 . . . gµ2r+1µ2r+2 p
µ2r+3

1 . . . p
µ2r+s+2

1 p
µ2r+s+3

2 . . . pµP2 ,

respectively

gµ2µ3 . . . gµ2rµ2r+1 p
µ2r+2

1 . . . p
µ2r+s+1

1 p
µ2r+s+2

2 . . . pµP2 .

Solving these equations for Cr+1,s,P−2r−s−2, Cr,s+1,P−2r−s−1 and Cr,s,P−2r−s results in

Cr+1,s,t =
1

D + 2r + s+ t− 2

(

SC,0r,s,t − SC,1r,s+1,t − S
C,2
r,s,t+1

)

(A.26)

(
Cr,s+1,t

Cr,s,t+1

)

=
1

∣
∣
∣
∣

p2
1 p1 · p2

p1 · p2 p2
2

∣
∣
∣
∣

×
(

p2
2 −p1 · p2

−p1 · p2 p2
1

)(

SC,1r,s,t − sCr+1,s−1,t

SC,2r,s,t − t Cr+1,s,t−1

)

, (A.27)

where

SC,0i,j,k ≡ Ci,j,k(/0) +m2
0Ci,j,k (A.28)

SC,1i,j,k ≡
1

2

(

Ci,j,k(/1)−Ci,j,k(/0)− (p2
1 −m2

1 +m2
0)Ci,j,k

)

(A.29)

SC,2i,j,k ≡
1

2

(

Ci,j,k(/2)−Ci,j,k(/0)− (p2
2 −m2

2 +m2
0)Ci,j,k

)

. (A.30)

Here, Ci,j,k(/n) stands for the coefficient of the tensor structure {gi pj1 pk2}µ1 ...µ2i+j+k of
the tensor integral Cµ1...µ2i+j+k with the power of the nth propagator (the one with mass
mn) decreased by one. In the following we present explicit formulas for the different
cases which appear, starting with Cr,s,t(/2). If x = 0 and t > 0,

Cr,s,t(/2) = 0. (A.31)

If x = 0 and t = 0,

Cr,s,t(/2) = Br,s
(
p1,m0,m1; 0, 0, 0, y

)
. (A.32)

If x > 0 and a = 0,

Cr,s,t(/2) = bt Cr,s,t
(
p1, bp2,m0,m1,m5; 0, 1,m5, x− 1, y

)
. (A.33)
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If x > 0 and a 6= 0,

Cr,s,t(/2) =

s∑

m=0

(
s

m

)

as−mbt

× Cr,m,s+t−m
(
p1, ap1 + bp2,m0,m1,m5; 0, 1,m5, x− 1, y

)
. (A.34)

As for Cr,s,t(/1), if (x = 0 or a = 0) and s > 0,

Cr,s,t(/1) = 0. (A.35)

If (x = 0 or a = 0) and s = 0,

Cr,s,t(/1) = Br,t
(
p2,m0,m2; b,m5, x, y

)
. (A.36)

If x > 0 and a 6= 0,

Cr,s,t(/1) =
t∑

m=0

(
t

m

)

asbt−m

× Cr,m,s+t−m
(
p2, ap1 + bp2,m0,m2,m5; 0, 1,m5, x− 1, y

)
. (A.37)

Finally, we present the formulas for Cr,s,t(/0). If y > 1,

Cr,s,t(/0) = Cr,s,t
(
p1, p2,m0,m1,m2; a, b,m5, x, y − 1

)
. (A.38)

If y = 1 and (x = 0 or a+ b = 1),

Cr,s,t(/0) =

s∑

α=0

(
s

α

)

(−1)sBr,s+t−α
(
p2 − p1,m1,m2; b,m5, x, 1

)
. (A.39)

If y = 1 and x > 0 and a+ b 6= 1 and a = 1,

Cr,s,t(/0) =

s∑

α=0

t∑

m=0

(
s

α

)(
t

m

)

(−1)sbt−m

× Cr,s−α+m,t−m
(
p2 − p1, bp2,m1,m2,m5; 0, 1,m5, x− 1, 1

)
. (A.40)

And if y = 1 and x > 0 and a+ b 6= 1 and a 6= 1,

Cr,s,t(/0) =

s+t∑

α=0

s+t−α∑

m=0

Min(m,t)
∑

w=Max(0,α−s+m)

(
t

w

)
s!

α! (m− w)! (s − α−m+ w)!

× (−1)α+m−w(a− 1)s−α−m+wbt−w

× Cr,m,s+t−α−m
(
p2 − p1, (a− 1)p1 + bp2,m1,m2,m5; 0, 1,m5, x− 1, 1

)
. (A.41)

Whereever we have omitted explicit function arguments in this section, the arguments
are meant to be (p1, p2,m0,m1,m2; a, b,m5, x, y).
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A.5. Tensor reduction of the generalized D functions

We multiply the right hand sides of (A.7) and (A.11) in turn with gµ1µ2 , p1,µ1 , p2,µ1

and p3,µ1 . In the four resulting relations, we extract four equations by comparing the
coefficients of the specific tensor structure

gµ3µ4 . . . gµ2r+1µ2r+2 p
µ2r+3

1 . . . p
µ2r+s+2

1 p
µ2r+s+3

2 . . . p
µ2r+s+t+2

2 p
µ2r+s+t+3

3 . . . pµP3 ,

respectively

gµ2µ3 . . . gµ2rµ2r+1 p
µ2r+2

1 . . . p
µ2r+s+1

1 p
µ2r+s+2

2 . . . p
µ2r+s+t+1

2 p
µ2r+s+t+2

3 . . . pµP3 .

Solving these equations for Dr+1,s,t,P−2r−s−t−2, Dr,s+1,t,P−2r−s−t−1, Dr,s,t+1,P−2r−s−t−1

and Dr,s,t,P−2r−s−t results in

Dr+1,s,t,u =
1

D + 2r + s+ t+ u− 3

×
(

SD,0r,s,t,u − SD,1r,s+1,t,u − S
D,2
r,s,t+1,u − S

D,3
r,s,t,u+1

)

(A.42)





Dr,s+1,t,u

Dr,s,t+1,u

Dr,s,t,u+1



 =
1

∣
∣
∣
∣
∣
∣

p2
1 p1 · p2 p1 · p3

p1 · p2 p2
2 p2 · p3

p1 · p3 p2 · p3 p2
3

∣
∣
∣
∣
∣
∣

×





p2
2 p

2
3 − (p2 · p3)

2 p1 · p3 p2 · p3 − p1 · p2 p
2
3 p1 · p2 p2 · p3 − p1 · p3 p

2
2

p1 · p3 p2 · p3 − p1 · p2 p
2
3 p2

1 p
2
3 − (p1 · p3)

2 p1 · p2 p1 · p3 − p2 · p3 p
2
1

p1 · p2 p2 · p3 − p1 · p3 p
2
2 p1 · p2 p1 · p3 − p2 · p3 p

2
1 p2

1p
2
2 − (p1 · p2)

2





×






SD,1r,s,t,u − sDr+1,s−1,t,u

SD,2r,s,t,u − tDr+1,s,t−1,u

SD,3r,s,t,u − uDr+1,s,t,u−1




 , (A.43)

where

SD,0i,j,k,l ≡ Di,j,k,l(/0) +m2
0Di,j,k,l (A.44)

SD,1i,j,k,l ≡
1

2

(

Di,j,k,l(/1)−Di,j,k,l(/0)− (p2
1 −m2

1 +m2
0)Di,j,k,l

)

(A.45)

SD,2i,j,k,l ≡
1

2

(

Di,j,k,l(/2)−Di,j,k,l(/0)− (p2
2 −m2

2 +m2
0)Di,j,k,l

)

(A.46)

SD,3i,j,k,l ≡
1

2

(

Di,j,k,l(/3)−Di,j,k,l(/0)− (p2
3 −m2

3 +m2
0)Di,j,k,l

)

. (A.47)

Here, Di,j,k,l(/n) stands for the coefficient of the tensor structure {gi pj1 pk2 pl3}µ1...µ2i+j+k+l

of the tensor integral Cµ1...µ2i+j+k+l with the power of the nth propagator (the one with
mass mn) decreased by one. In the following we present explicit formulas for the different
cases which appear, starting with Dr,s,t,u(/3). If x = 0 and u > 0,

Dr,s,t,u(/3) = 0. (A.48)
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If x = 0 and u = 0,

Dr,s,t,u(/3) = Cr,s,t(p1, p2,m0,m1,m2; a, b,m5, 0, y). (A.49)

If x > 0 and a = 0 and b = 0,

Dr,s,t,u(/3) = cuDr,s,t,u

(
p1, p2, cp3,m0,m1,m2,m5; 0, 0, 1,m5, x− 1, y

)
. (A.50)

If x > 0 and a 6= 0 and b = 0,

Dr,s,t,u(/3) =

s∑

m=0

(
s

m

)

as−mcu

× Dr,m,t,s+u−m
(
p1, p2, ap1 + cp3,m0,m1,m2,m5; 0, 0, 1,m5 , x− 1, y

)
. (A.51)

If x > 0 and a = 0 and b 6= 0,

Dr,s,t,u(/3) =
t∑

k=0

(
t

k

)

bt−kcu

× Dr,s,k,t+u−k
(
p1, p2, bp2 + cp3,m0,m1,m2,m5; 0, 0, 1,m5, x− 1, y

)
. (A.52)

If x > 0 and a 6= 0 and b 6= 0,

Dr,s,t,u(/3) =
s∑

m=0

t∑

k=0

(
s

m

)(
t

k

)

as−mbt−kcu

× Dr,m,k,s+t+u−m−k
(
p1, p2, ap1 + bp2 + cp3,m0,m1,m2,m5;

0, 0, 1,m5, x− 1, y
)
. (A.53)

As for Dr,s,t,u(/2), if (x = 0 or b = 0) and t > 0,

Dr,s,t,u(/2) = 0. (A.54)

If (x = 0 or b = 0) and t = 0,

Dr,s,t,u(/2) = Cr,s,u
(
p1, p3,m0,m1,m3; a, c,m5, x, y

)
. (A.55)

If x > 0 and b 6= 0 and a = 0,

Dr,s,t,u(/2) =

u∑

k=0

(
u

k

)

btcu−k

× Dr,s,k,t+u−k
(
p1, p3, bp2 + cp3,m0,m1,m3,m5; 0, 0, 1,m5, x− 1, y). (A.56)

If x > 0 and b 6= 0 and a 6= 0,

Dr,s,t,u(/2) =
s∑

m=0

u∑

k=0

(
s

m

)(
u

k

)

as−mbtcu−k

× Dr,m,k,s+t+u−m−k
(
p1, p3, ap1 + bp2 + cp3,m0,m1,m3,m5;

0, 0, 1,m5, x− 1, y). (A.57)
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As for Dr,s,t,u(/1), if (x = 0 or a = 0) and s > 0,

Dr,s,t,u(/1) = 0. (A.58)

If (x = 0 or a = 0) and s = 0,

Dr,s,t,u(/1) = Cr,t,u
(
p2, p3,m0,m2,m3; b, c,m5, x, y

)
. (A.59)

If x > 0 and a 6= 0 and b = 0,

Dr,s,t,u(/1) =

u∑

k=0

(
u

k

)

ascu−k

× Dr,t,k,s+u−k
(
p2, p3, ap1 + cp3,m0,m2,m3,m5; 0, 0, 1,m5, x− 1, y

)
. (A.60)

If x > 0 and a = 0 and b 6= 0,

Dr,s,t,u(/1) =

t∑

m=0

u∑

k=0

(
t

m

)(
u

k

)

asbt−mcu−k

× Dr,m,k,s+t+u−m−k
(
p2, p3, ap1 + bp2 + cp3,m0,m2,m3,m5;

0, 0, 1,m5, x− 1, y
)
. (A.61)

Finally, for Dr,s,t,u(/0), if y > 1,

Dr,s,t,u(/0) = Dr,s,t,u

(
p1, p2, p3,m0,m1,m2,m3; a, b, c,m5, x, y − 1). (A.62)

If y = 1 and (x = 0 or a+ b+ c = 1),

Dr,s,t,u(/0) =

s+t+u∑

α=0

s−α∑

m=0

s!

a!m! (s− α−m)!
(−1)s

× Cr,m+t,s+u−α−m
(
p2 − p1, p3 − p1,m1,m2,m3; b, c,m5, x, 1

)
. (A.63)

If y = 1 and x > 0 and a+ b+ c 6= 1 and a = 1 and b = 0,

Dr,s,t,u(/0) =
s+t+u∑

α=0

s+t−α∑

m=t

s+t+u−α−m∑

k=Max(0,s+t−α−m)

(
u

α+m+ k − s− t

)

× s!

α! (m − t)! (s+ t− α−m)!
(−1)scs+t+u−α−m−k

× Dr,m,k,s+t+u−α−m−k
(
p2 − p1, p3 − p1, cp3,m1,m2,m3;

m5, 0, 0, 1,m5 , x− 1, 1
)
. (A.64)
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If y = 1 and x > 0 and a+ b+ c 6= 1 and a 6= 1 and b = 0,

Dr,s,t,u(/0) =

s+t+u∑

α=0

s+t+u−α∑

m=t

s+t+u−α−m∑

k=0

Min(k,u)
∑

w=Max(0,−s−t+α+m+k)

(
u

w

)

× s!

α! (m − t)! (k − w)! (s+ t− α−m− k + w)!

× (−1)α+m−t+k−w(a− 1)s+t−α−m−k+wcu−w

× Dr,m,k,s+t+u−α−m−k
(
p2 − p1, p3 − p1, (a− 1)p1 + cp3,m1,m2,m3,m5;

0, 0, 1,m5, x− 1, 1
)
. (A.65)

If y = 1 and x > 0 and a+ b+ c 6= 1 and a = 1 and b 6= 0,

Dr,s,t,u(/0) =
s+t+u∑

α=0

s+t+u−α∑

m=0

s+t+u−α−m∑

k=0

Min(m,t,α+m+k−s)
∑

z=Max(0,α+m−s,α+m−s+k−u)

(
t

z

)

×
(

u

α+m− z + k − s

)
s!

α! (m− z)! (s− α−m+ z)!
(−1)sbt−zcs+u−α−m−k+z

× Dr,m,k,s+t+u−α−m−k
(
p2 − p1, p3 − p1, bp2 + cp3,m1,m2,m3,m5;

0, 0, 1,m5, x− 1, 1
)
. (A.66)

And if y = 1 and x > 0 and a+ b+ c 6= 1 and a 6= 1 and b 6= 0,

Dr,s,t,u(/0) =

s+t+u∑

α=0

s+t+u−α∑

m=0

s+t+u−α−m∑

k=0

Min(m,t)
∑

z=0

Min(k,u)
∑

w=Max(0,−s+α+m−z+k)

(
t

z

)(
u

w

)

× s!

α! (m− z)! (k − w)! (s− α−m+ z − k + w)!

× (−1)α+m−z+k−w(a− 1)s−α−m+z−k+wbt−zcu−w

× Dr,m,k,s+t+u−α−m−k
(
p2 − p1, p3 − p1, (a− 1)p1 + bp2 + cp3,m1,m2,m3,m5;

0, 0, 1,m5, x− 1, 1
)
. (A.67)

79



B. Use of integration-by-parts

The method of integration-by-parts was originally proposed in [47]. Its aim is to express
a large number of scalar diagrams which belong to a certain topology to a small, distinct
set of master integrals. Topology here means a class of Feynman integrals which only
differ in propagator powers. The method is based on the properties

0 =
∂

∂Qµ
Qµi f(Q1, . . . , Qn, p1, . . . , pm)

0 =
∂

∂Qµ
pµi f(Q1, . . . , Qn, p1, . . . , pm) (B.1)

of any dimensionally regularized Feynman integral f with loop momenta Qi and external
momenta pi. If we apply (B.1) to a diagram with general propagator powers λi (which
can even be negative), we obtain relations between different members of the correspond-
ing topology. Particular linear combinations of these relations can then express integrals
in terms of others with lower (or less negative) propagator powers.

Usually, integration by parts is used in multi loop calculations, as one loop integrals
which appear in normal QCD calculations are already master integrals. In the case
of our integrals with linearly dependent propagator momenta and double propagator
powers, however, this method is very effective. The reason is that we now have each
time several possibilities to express scalar products in the numerator, which appear as a
result of the derivations in (B.1), in terms of the propagators. This increases the number
of integration-by-parts relations drastically.

In the following we list the different topologies, for which we have implemented our
integration-by-parts procedure. Every scalar integral appearing in our calculation can
be expressed as one of the following functions. The notation is the one we use in our
actual implementation. It is actually somewhat redundant, as in fact, there are only four
different topologies, the rest of the topologies differs from these four only by permutation
of the external momenta k1, k2 and −k3.

T1(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
−k3−→

k2−→

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q− P

2 )2 −m2
c

]λ3

× 1
[
(Q+ P

2 + k3)2 −m2
c

]λ4
[
(Q− P

2 + k1)2 −m2
c

]λ5
(B.2)
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T4(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
−k3−→

k1−→

k2−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q− P

2 )2 −m2
c

]λ3

× 1
[
(Q+ P

2 + k3)2 −m2
c

]λ4
[
(Q− P

2 + k2)2 −m2
c

]λ5
(B.3)

T5(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
k2−→

−k3−→

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q− P

2 )2 −m2
c

]λ3

× 1
[
(Q+ P

2 − k2)2 −m2
c

]λ4
[
(Q− P

2 + k1)2 −m2
c

]λ5
(B.4)

T7(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
−k3−→

k2−→

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

]λ1
[
(Q+ P

2 )2
]λ2
[
(Q− P

2 )2
]λ3
[
(Q+ P

2 + k3)2
]λ4

× 1
[
(Q− P

2 + k1)2
]λ5

(B.5)

T8(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
−k3−→

k1−→

k2−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

]λ1
[
(Q+ P

2 )2
]λ2
[
(Q− P

2 )2
]λ3
[
(Q+ P

2 + k3)2
]λ4

× 1
[
(Q− P

2 + k2)2
]λ5

(B.6)
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T9(λ1, λ2, λ3, λ4, λ5) ≡ λ1

λ2
λ4

λ5
λ3

c

c
k1−→

−k3−→

k2−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

]λ1
[
(Q+ P

2 )2
]λ2
[
(Q− P

2 )2
]λ3
[
(Q+ P

2 − k1)2
]λ4

× 1
[
(Q− P

2 + k2)2
]λ5

(B.7)

T2(λ1, λ2, λ3, λ4, λ5) ≡
λ1λ2

λ3

λ4 λ5

c

c
k2−→

−k3←−

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q+ P

2 − k2)2 −m2
c

]λ3

× 1
[
(Q− P

2 − k3)2 −m2
c

]λ4
[
(Q− k3)2

]λ5
(B.8)

T6(λ1, λ2, λ3, λ4, λ5) ≡
λ1λ2

λ3

λ4 λ5

c

c
−k3−→

k2←−

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q+ P

2 + k3)2 −m2
c

]λ3

× 1
[
(Q− P

2 + k2)2 −m2
c

]λ4
[
(Q+ k2)2

]λ5
(B.9)

T12(λ1, λ2, λ3, λ4, λ5) ≡
λ1λ2

λ3

λ4 λ5

c

c
−k3−→

k1←−

k2−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q+ P

2 + k3)2 −m2
c

]λ3

× 1
[
(Q− P

2 + k1)2 −m2
c

]λ4
[
(Q+ k1)2

]λ5
(B.10)
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T3(λ1, λ2, λ3, λ4, λ5) ≡
λ5λ4

λ3

λ1 λ2

c

c
−k3−→

k1←−

k2−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q+ k2)2

]λ3
[
(Q+ P − k1)2

]λ4

× 1
[
(Q+ P

2 − k1)2 −m2
c

]λ5
(B.11)

T10(λ1, λ2, λ3, λ4, λ5) ≡
λ5λ4

λ3

λ1 λ2

c

c
k1−→

k2←−

−k3−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q− k3)2

]λ3
[
(Q+ P − k2)2

]λ4

× 1
[
(Q+ P

2 − k2)2 −m2
c

]λ5
(B.12)

T11(λ1, λ2, λ3, λ4, λ5) ≡
λ5λ4

λ3

λ1 λ2

c

c
k2−→

−k3←−

k1−→

=
(2πµ)4−D

iπ2

∫
dDQ

[
Q2
]λ1
[
(Q+ P

2 )2 −m2
c

]λ2
[
(Q+ k1)2

]λ3
[
(Q+ P + k3)2

]λ4

× 1
[
(Q+ P

2 + k3)2 −m2
c

]λ5
(B.13)

In our approach, we first derive all integration-by-parts relations for all topologies with
FORM. Then we use these relations as input for the MAPLE based program AIR [48],
which makes use of the Laporta algorithm [49], to derive expressions for every member
of the topologies (in a given range of propagator momenta) explicitly in terms of the
corresponding master integrals. Then we use a Mathematica script to simplify these
expressions and expand them in ε. The resulting expressions are then included into the
implementation of our automatic calculation.
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For example in case of the topology T1, all scalar diagrams are reduced to the master
integrals

T1(0, 0, 1, 1, 0), T1(0, 0, 1, 1, 1), T1(0, 1, 0, 0, 0), T1(0, 1, 0, 0, 1),

T1(0, 1, 0, 1, 1), T1(0, 1, 1, 0, 1), T1(0, 1, 1, 1, 0), T1(0, 1, 1, 1, 1),

T1(1, 0, 0, 0, 1), T1(1, 0, 0, 1, 0), T1(1, 0, 0, 1, 1), T1(1, 0, 1, 0, 1),

T1(1, 0, 1, 1, 0), T1(1, 0, 1, 1, 1).

Each of the master integrals of all topologies is easily identified with one (or a simple
linear combination of two) of the 14 super master integrals listed in appendix C.

One feature of the integration-by-parts procedure is that after the reduction we can not
distinguish between ultraviolet and infrared singularities any more. This can be seen for
example from the fact that the reduced expressions contain terms like T1(1, 0, 0, 1, 0)/ε,
where T1(1, 0, 0, 1, 0) is a scalar bubble diagram with an 1

ε ultraviolet pole. Here, the
resulting 1

ε2
singularity must of course be infrared, but we cannot say anything about the

nature of the resulting 1
ε singularities. In order to distinguish between ultraviolet and

infrared singularities we therefore extract the ultraviolet singularities from the scalar
integrals before the application of the integration-by-parts reduction formulas.
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C. The 14 super master integrals

At the end of the reduction procedure, the loop corrections are expressed in terms of 14
super master integrals: One tadpole, four bubbles, five triangles and four boxes. In this
appendix we list their results. Please note that we neglect all imaginary parts, as only
the real parts contribute to the squared amplitudes.

The tadpole diagram reads

MasterA ≡ (2πµ)4−D

iπ2

∫
dDQ

Q2 −m2
c

= Cεm
2
c

[
1

ε
+ 1 +

(

1 +
π2

12

)

ε

]

. (C.1)

The bubble diagrams are

MasterB1(−k3) ≡
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

][
(Q+ P + k3)2 −m2

c

]

= Cε

[
1

ε
+ 2 +

√
s1
s

ln

(√
s−√s1√
s+
√
s1

)]

(C.2)

MasterB2(k1) ≡
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

]
(Q+ P

2 − k1)2

= Cε

[
1

ε
+ 2− t1

t1 + 2m2
c

ln

(

− t1
2m2

c

)

+
π2

12
ε+

t1
t1 + 2m2

c

(

ln2

(

− t1
2m2

c

)

−2 ln

(

− t1
2m2

c

)

− ln

(

− t1
2m2

c

)

ln

(∣
∣
∣
∣
1 +

t1
2m2

c

∣
∣
∣
∣

)

− Li2

(

− t1
2m2

c

)

+
8m2

c

t1

+
π2

6
+ 4

)

ε

]

(C.3)

MasterB3(k1) ≡
(2πµ)4−D

iπ2

∫
dDQ

Q2(Q+ P − k1)2

= Cε

[
1

ε
+ 2− ln

(−t
m2
c

)

+

(
1

2
ln2

(−t
m2
c

)

− 2 ln

(−t
m2
c

)

− π2

12
+ 4

)

ε

]

(C.4)

MasterB4 ≡ (2πµ)4−D

iπ2

∫
dDQ

Q2(Q+ P )2

= Cε

[
1

ε
+ 2− 2 ln 2 +

(

2 ln2 2− 4 ln 2− 7

12
π2 + 4

)

ε

]

. (C.5)
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The triangle diagrams read

MasterC1(−k3) ≡
(2πµ)4−D

iπ2

∫
dDQ

[
Q2 −m2

c

][
(Q+ k1)2 −m2

c

][
(Q+ k1 + k2)2 −m2

c ]

= −Cε
1

s

[

Li2

(
2
√
s√

s+
√
s1

)

+ Li2

(
2
√
s√

s−√s1

)]

(C.6)

MasterC2(k2) ≡
(2πµ)4−D

iπ2

∫
dDQ

Q2
[
(Q− P

2 − k3)2 −m2
c

][
(Q+ P

2 − k1)2 −m2
c ]

= Cε
2

s1 − t1

[

Li2

(

1 +
t1

2m2
c

)

− Li2

(

1 +
s1

2m2
c

)]

(C.7)

MasterC3(k1) ≡
(2πµ)4−D

iπ2

∫
dDQ

Q2
[
(Q+ P

2 )2 −m2
c

][
(Q+ P

2 − k1)2 −m2
c

]

= Cε
2

t1

[

−Li2

(

1 +
t1

2m2
c

)

+
π2

6

]

(C.8)

MasterC4(−k3) ≡
(2πµ)4−D

iπ2

∫
dDQ

Q2
[
(Q− P

2 )2 −m2
c

][
(Q+ P

2 + k3)2 −m2
c

]

= Cε
2

s1

[

Li2

(

1− s

2m2
c

)

− Li2

(
s1 + s

s1 +
√
ss1

)

+ Li2

( −4m2
c

s1 +
√
ss1

)

= −Li2

(
s1 + s

s1 −
√
ss1

)

+ Li2

( −4m2
c

s1 −
√
ss1

)

+
π2

12

]

(C.9)

MasterC5(k1) ≡
(2πµ)4−D

iπ2

∫
dDQ

Q2
[
(Q− P

2 )2 −m2
c

]
(Q− P + k1)2

= Cε
2

t1

[
1

2
ln2

( −t
2m2

c

)

+ Li2

(

1− 2m2
c

t

)

+ Li2

(
t

4m2
c

)

−Li2

(
2(2m2

c − t)
−t

)

+
5

12
π2

]

. (C.10)

And the box diagrams are

MasterD1(−k3, k1)

≡ (2πµ)4−D

iπ2

∫
dDQ

Q2
[
(Q− P

2 )2 −m2
c

][
(Q− P

2 + k1)2 −m2
c

][
(Q+ P

2 + k3)2 −m2
c

]

= Cε
4√
sts1t1

[

Li2

( √
s1t−

√
st1√

s1t+
√
s1t1

)

+ Li2

( √
s1t−

√
st1√

s1t−
√
s1t1

)

−Li2

( √
s1t+

√
st1√

s1t+
√
s1t1

)

− Li2

( √
s1t+

√
st1√

s1t−
√
s1t1

)]

(C.11)
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MasterD2(−k3, k1)

≡ (2πµ)4−D

iπ2

∫
dDQ

Q2(Q− k3)2
[
(Q− P

2 − k3)2 −m2
c

][
(Q− P

2 − k3 + k1)2 −m2
c

]

= Cε
2

s1t1

[
1

ε2
+

2

ε

(

ln

(−u1

2m2
c

)

− ln

(−t1
2m2

c

)

− ln

(
s1

2m2
c

))

+ 2 ln2
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MasterD3(k1, k2)

≡ (2πµ)4−D
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We have calculated the tadpole and the bubble diagrams ourselves and compared
the results up to O(ε0) with [11]. The expressions for the triangle diagrams as well
as of the box diagrams MasterD1, MasterD2 and MasterD3 are taken over from [11].
The expression for MasterD4 is taken over from [15, 50]. The triangle diagrams and
the box diagram MasterD1 are finite, so that we could check their analytic expressions
numerically using LoopTools [51].

MasterA, MasterB2, MasterB3 and MasterB4 have been expanded up to O(ε), be-
cause, as a result of the integration-by-parts procedure, they will be multiplied with 1

ε
terms, as already mentioned at the end of appendix B. All other super master integrals
are expanded only up to O(ε0).

The results of the super master integrals for different permutations of the external
momenta k1, k2 and −k3 can easily be derived by exchanging the Mandelstam invariants
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according to

k1 ↔ k2: exchange t↔ u and t1 ↔ u1

k1 ↔ −k3: exchange s↔ t and s1 ↔ t1
k2 ↔ −k3: exchange s↔ u and s1 ↔ u1.

In the case when the invariants are replaced in arguments of logarithms, these have to
be analytically continued into the physical regions s, s1 > 0 and t, t1, u, u1 < 0. Special
care must be taken when exchanging the invariants within the arguments of squared
logarithms. Here, the imaginary part of the logarithm must not be neglected, because
it can lead to an extra term −π2, as for example

ln2(t± iε) = ln2(−t)± 2iπ ln(−t)− π2. (C.15)
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D. The Born squared matrix elements

In this appendix we list the explicit analytic expressions for all partonic Born squared
matrix elements appearing in our calculation, summed (not averaged) over all color and
polarization degrees of freedom of all incoming and outgoing particles. We present the
results expanded up to the O(ε2), as they will be multiplied with 1

ε and 1
ε2

poles.
The results for the processes γ + q → cc[n] + q are given by

∑

col,pol
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We have calculated the following results for the processes γ+ g → cc[n] + g according
to (3.18). We have taken the complete polarization sum (3.19) and subtracted the
respective ghost contributions.
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1 − 3094u2u7

1 + 263uu8
1 + 18u9

1)
)
ε

− 64C2
ACFQ

2
ce

2g4
s

27m3
cs

4
1t

2t41u
4
1

(
8u6(u− u1)

3u2
1(−2u+ u1)

2 + t101 (8u3 − 24u2u1 − 9uu2
1

+27u3
1) + 2t91(40u

4 − 144u3u1 + 25u2u2
1 + 165uu3

1 − 81u4
1)

+4t1u
4(u− u1)

2u1(308u
5 − 966u4u1 + 1024u3u2

1 − 537u2u3
1 + 174uu4

1

−30u5
1) + t81(344u

5 − 760u4u1 − 231u3u2
1 + 1525u2u3

1 − 1259uu4
1 + 405u5

1)

+2t71(416u
6 + 744u5u1 − 4068u4u2

1 + 4425u3u3
1 − 2203u2u4

1 + 974uu5
1
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−270u6
1) + t61(1240u

7 + 11744u6u1 − 42033u5u2
1 + 45065u4u3

1 − 18674u3u4
1

+3650u2u5
1 − 1361uu6

1 + 405u7
1) + 2t51(584u

8 + 13432u7u1 − 50015u6u2
1

+63254u5u3
1 − 33433u4u4

1 + 5802u3u5
1 + 357u2u6

1 + 112uu7
1 − 81u8

1)

+t21u
2(32u9 + 8040u8u1 − 38548u7u2

1 + 72744u6u3
1 − 69907u5u4

1

+35917u4u5
1 − 8509u3u6

1 − 281u2u7
1 + 606uu8

1 − 94u9
1) + 2t31u(112u

9

+10984u8u1 − 48564u7u2
1 + 82125u6u3

1 − 67690u5u4
1 + 26574u4u5

1

−2223u3u6
1 − 1865u2u7

1 + 595uu8
1 − 47u9

1) + t41(680u
9 + 32264u8u1

−130783u7u2
1 + 193761u6u3

1 − 131378u5u4
1 + 35968u4u5

1 + 1855u3u6
1

−2605u2u7
1 + 221uu8

1 + 27u9
1)
)
ε2 (D.12)

For the calculation of the hard collinear part of the real corrections due to the splitting
of the initial photon, we also need the Born level squared matrix elements of the processes
q + g → cc[n] + q and q + q → cc[n] + g. We present their results expanded only up to
O(ε), as they are multiplied only by 1

ε poles, see (5.104).

|MBorn(q + g → cc[3S
[1]
1 ] + q)|2 = 0 (D.13)

|MBorn(q + g → cc[1S
[8]
0 ] + q)|2 =

4(4− C2
A)CF g

6
s

mcuu2
1

(2t2 + 2tu1 + u2
1) (D.14)

|MBorn(q + g → cc[3S
[8]
1 ] + q)|2 =

+
CF g

6
su

4m5
cst

(3t2 + 2t21 + t(−4t1 + u1))

+
CAC

2
F g

6
s

2m5
cst

(−t3 + t2t1 + tt1u1 + t1u
2
1)

− C2
ACF g

6
s

4m5
cstu

2
1

(
8t5 − 16t4(t1 − u1) + 2t21u

2
1(−t1 + u1) + t3(12t21 − 28t1u1 + 13u2

1)

+tu1(−4t31 + 10t21u1 − 7t1u
2
1 + u3

1) + t2(−4t31 + 16t21u1 − 21t1u
2
1 + 6u3

1)
)

(D.15)

|MBorn(q + g → cc[3P
[8]
0 ] + q)|2 =

+
4(4 −C2

A)CF g
6
s

3m3
cuu

4
1

(2u− 3u1)
2(2t2 + 2tu1 + u2

1) (D.16)

|MBorn(q + g → cc[3P
[8]
1 ] + q)|2 =

+
8(4 −C2

A)CF g
6
s

m3
cu

4
1

(2t2(−t+ t1) + 2tt1u1 + (3t− t1)u2
1 + u3

1) (D.17)
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|MBorn(q + g → cc[3P
[8]
2 ] + q)|2 =

+
8(4 −C2

A)CF g
6
s

3m3
cuu

4
1

(2u4 − 14u3u1 + 31u2u2
1 − 24uu3

1 + 6u4
1 + 2t21(u

2 − 6uu1

+6u2
1) + 2t1(2u

3 − 13u2u1 + 18uu2
1 − 6u3

1)) (D.18)

The corresponding results for the processes q+q → cc[n]+g can be obtained from (D.13)
till (D.18) simply by crossing the external particles accordingly. Just exchange s ↔ u
and s1 ↔ u1 and add an overall factor (−1).
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E. Explicit results for the soft #2 terms

In this appendix we list the explicit results of the S terms defined in (5.69), which build
up the soft #2 terms. The expressions listed here are expanded up to O(ε), because S
will be multiplied by the 1

ε pole in (5.68).
The results for the processes γ + q → cc[n] + q + g are

S(3P
[8]
0 ) =

16(C2
A − 4)CFQqQce

2g4
ss

3mcs1t21u1

(
t31 + 4u2(u1 − u) + t21(u+ u1)

−2t1(2u
2 − 4uu1 + u2

1)
)

+
16(4 − C2

A)CFQqQce
2g4
s

9mcs1t
2
1u1

(
t31 + 8u2(u− u1)− 2t21(u+ u1)

−4t1(u
2 − 2uu1 + 2u2

1)
)
ε (E.1)

S(3P
[8]
1 ) =

16(4 − C2
A)CFQqQce

2g4
s

mcs1t21u1

(
t31 + t21(6u− 4u1) + t1(11u

2 − 16uu1 + 7u2
1)

+2(3u3 − 7u2u1 + 6uu2
1 − 2u3

1)
)

+
32(C2

A − 4)CFQqQce
2g4
s

mcs1t21u1

(
t31 + 4u3 + t21(5u − 3u1)− 8u2u1 + 6uu2

1 − 2u3
1

+2t1(4u
2 − 5uu1 + 2u2

1)
)
ε (E.2)

S(3P
[8]
2 ) =

16(4 − C2
A)CFQqQce

2g4
s

3mcs1t21u1

(
t31 + 26u3 + 2t21(5u− 4u1)− 50u2u1 + 36uu2

1

−12u3
1 + t1(29u

2 − 40uu1 + 13u2
1)
)

+
16(C2

A − 4)CFQqQce
2g4
s

9mcs1t21u1

(
t31 + 4t21(4u− 5u1) + 4t1(17u

2 − 25uu1 + 7u2
1)

+4(20u3 − 38u2u1 + 27uu2
1 − 9u3

1)
)
ε. (E.3)

The results for the processes γ + g → cc[n] + g + g are given by

S(3P
[8]
0 ) =

−256C3
ACFQ

2
ce

2g4
smcsu

3s41t
3
1u

4
1

(
t61(4u− 6u1) + 4u4u1(2u

2 − 3uu1 + u2
1)

+t51(28u
2 − 60uu1 + 26u2

1) + t41(76u
3 − 208u2u1 + 177uu2

1 − 55u3
1)

+2t31(50u
4 − 162u3u1 + 205u2u2

1 − 131uu3
1 + 33u4

1)

+t21(64u
5 − 226u4u1 + 384u3u2

1 − 388u2u3
1 + 201uu4

1 − 41u5
1)

+2t1(8u
6 − 24u5u1 + 55u4u2

1 − 88u3u3
1 + 73u2u4

1 − 30uu5
1 + 5u6

1)
)
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+
512C3

ACFQ
2
ce

2g4
smcsu

9s41t
3
1u

4
1

(
t61(2u− 3u1) + t51(14u

2 − 30uu1 + 13u2
1)

+t41(38u
3 − 104u2u1 + 96uu2

1 − 35u3
1)

−2u2u1(4u
4 − 18u3u1 + 26u2u2

1 − 15uu3
1 + 3u4

1)

+t31(50u
4 − 159u3u1 + 232u2u2

1 − 179uu3
1 + 51u4

1)

+t21(32u
5 − 110u4u1 + 231u3u2

1 − 287u2u3
1 + 165uu4

1 − 34u5
1)

+t1(8u
6 − 36u5u1 + 112u4u2

1 − 184u3u3
1 + 145u2u4

1 − 54uu5
1 + 8u6

1)
)
ε (E.4)

S(3P
[8]
1 ) =

−256C3
ACFQ

2
ce

2g4
smc

s41t
3
1u

4
1

(
2t71(u

2 − 3uu1 + u2
1)

+t61(16u
3 − 55u2u1 + 39uu2

1 − 8u3
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−2u4u1(6u
4 − 17u3u1 + 19u2u2

1 − 10uu3
1 + 2u4

1)

+t51(52u
4 − 210u3u1 + 215u2u2

1 − 85uu3
1 + 12u4

1)

+t41(88u
5 − 428u4u1 + 561u3u2

1 − 314u2u3
1 + 81uu4

1 − 8u5
1)

+t31(82u
6 − 496u5u1 + 794u4u2

1 − 562u3u3
1 + 197u2u4

1 − 33uu5
1 + 2u6

1)

+t21u(40u
6 − 321u5u1 + 616u4u2

1 − 525u3u3
1 + 227u2u4

1 − 49uu5
1 + 4u6

1)

+t1u
2(8u6 − 104u5u1 + 239u4u2

1 − 238u3u3
1 + 121u2u4

1 − 32uu5
1 + 4u6

1)
)

+
256C3

ACFQ
2
ce

2g4
smc

s41t
3
1u

4
1

(
2t71(u

2 − 6uu1 + 2u2
1)

+t61(16u
3 − 101u2u1 + 77uu2

1 − 16u3
1)

−2u4u1(14u
4 − 37u3u1 + 39u2u2

1 − 20uu3
1 + 4u4

1)

+t51(52u
4 − 364u3u1 + 405u2u2

1 − 165uu3
1 + 24u4

1)

+t41(88u
5 − 722u4u1 + 1019u3u2

1 − 582u2u3
1 + 153uu4

1 − 16u5
1)

+t31(82u
6 − 840u5u1 + 1422u4u2

1 − 1006u3u3
1 + 349u2u4

1 − 59uu5
1 + 4u6
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+t21u(40u
6 − 565u5u1 + 1120u4u2

1 − 933u3u3
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1 − 79uu5
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2(8u6 − 200u5u1 + 459u4u2
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ε

(E.5)

S(3P
[8]
2 ) =

256C3
ACFQ

2
ce

2g4
smc

3s41t
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1u

4
1
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2t71(u

2 + 3uu1 − 3u2
1)
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)
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