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Zusammenfassung

Die Spin-Orbit Kopplung ist eine relativistische Korrektur zur Schrödinger-
gleichung, die in Anwesenheit elektrischer Felder auftritt. Der Effekt ist
ziemlich schwach und wird erst signifikant, wenn sich Elektronen in der Nähe
von Atomkernen bewegen. In Festkörpern jedoch wird dieser Effekt durch die
Kopplung der Bänder sehr verstärkt. Moderate elektrische Felder genügen,
um die Spin- und Orbital-Zustände der Elektronen zu beeinflussen.

Vor einigen Dekaden sagte Rashba et.al. die Spin-Orbit Kopplung, verur-
sacht durch die Asymmetrie des Einschlusspotentials, voraus. Während
D’yakonov et.al. prognostizierte, dass die Separation von spinpolarisiertem
elektrischem Strom durch die von Störstellen induzierte Spin-Orbit Kopplung
auftreten sollte. Kürzlich fand man beide Effekte in Experimenten. Auf der
einen Seite konnte gezeigt werden, dass die Stärke der Spin-Orbit Kopplung
in einem zweidimensionalen Elektronensystem durch die Gatespannung mod-
ifiziert werden kann. Auf der anderen Seite hat man den sogenannten extrin-
sischen Spin-Hall Effekt in Halbleitern und Metallen sogar bei Raumtemper-
atur gefunden. Diese Entdeckungen öffnen den Weg zur Spintronik, welche
bezweckt, den Spin eines elektrischen Stroms zusätzlich zu seiner Ladung zu
verwenden.

In dieser Arbeit wird der spinabhängige elektronische Transport durch
Nanodrähte in Anwesenheit der Spin-Orbit Kopplung numerisch untersucht.
Zunächst zeigen wir die Herleitung des effektiven Hamiltonoperators mit
Spin-Orbit Kopplung von der Betrachtung der Einheitszelle eines III-V-Halb-
leiters. Dann erörtern wir, wie man numerisch den elektronischen Transport
in mesoskopischen Systemen, beschrieben durch den effektiven Hamiltonop-
erator, berechnet. Zum Schluss sagen wir voraus, dass die Kombination eines
Three-Terminal Nanoscale Conductors mit Spin-Orbit Kopplung spinpolar-
isierten elektrischen Strom induzieren kann, in Abwesenheit magnetischer
Felder.
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Preface

Spin-orbit coupling is a relativistic correction to the Schrödinger equation in
the presence of electric field. The effect is very weak and becomes significant
only if electrons are traveling in the vicinity of nuclei of atoms where electric
field is extremely high. In solids, however, this effect is strongly enhanced
due to the band couplings. Moderate electric field is enough to affect the
spin and orbital states of electrons.

A few decades ago, Rashba et al. predicted the spin-orbit coupling in-
duced by the asymmetric confinement potential in two-dimensional systems
while D’yakonov et al. predicted that separation of spin polarized electric
current should occur due to the spin-orbit coupling induced by impurities.
Recently, both effects have been observed in experiments. On the one hand,
it is shown that the strength of spin-orbit coupling can be modified by gate
voltage in two-dimensional electron systems.On the other hand, the so-called
extrinsic spin Hall effect has been observed in semiconductors and metals
even at room temperature. These observations open the way to spintronics
which aims to use spin of an electric current in addition to charge of it.

In this thesis, we have numerically investigated the spin-dependent elec-
tronic transport via nanowires in the presence of spin-orbit coupling. We
firstly show the derivation of the effective Hamiltonian with spin-orbit cou-
pling from the unit cell of III-V semiconductors. Then we show how one
can numerically calculate the electronic transport in mesoscopic systems de-
scribed by the effective Hamiltonian. Finally, we have predicted that com-
bination of three-terminal nanoscale conductor and spin-orbit coupling can
induce spin polarized electric current in the absence of magnetic field.
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Chapter 1

Introduction

1.1 Nanotechnology

Nanotechnology is a field of applied science focused on the materials and de-
vices on the nanoscale. It is a technology in chemistry, biology, physics and
other scientific fields. Two main approaches are used in nanotechnology. One
is a ”bottom-up” approach where materials and devices are built up atom by
atom. The other is a ”top-down” approach where they are constructed by
removing existing material from larger entities. A unique aspect of nanotech-
nology is the significantly increased ratio of surface area to volume, which
opens new possibilities in surface-based science.

The current interest for nanotechnology has originated from new ana-
lytical tools such as the atomic force microscope (AFM) and the scanning
tunneling microscope (STM). Combined with refined processes such as elec-
tron beam lithography, these instruments allow the detailed manipulation of
nanostructures. These new materials and structures have led to the obser-
vation of novel phenomena such as the quantum size effect. This effect does
not come into play by going from macro to micro dimensions. However, it
becomes dominant when the nanometer size range is reached.

Materials reduced to the nanoscale can suddenly show very different prop-
erties compared to what they exhibit on a macroscopic scale. For example,
insulators become conductors; solids turn into liquids at room temperature;
stable materials turn combustible; inert materials become catalysts; opaque
substances become transparent. These unique quantum and surface phe-
nomena enable unique applications. Quantum dots and carbon nanotubes
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are examples of the most prominent systems and materials in the field of
nanotechnology.

1.2 Spintronics

Spintronics is a technology which uses the spin of electrons as well as their
charge state. In order to make a spintronic device, it is necessary to have
a system that can generate a spin polarized current, and a system that is
sensitive to the spin polarization of the electrons. Most devices also have a
unit that changes the magnitude of a current depending on its spin states.

The simplest spintronic device consists of two ferromagnetic layers sep-
arated by a non-magnetic spacer layer. The first layer is used to generate
a spin polarized current. If the spin direction of a spin polarized current
is parallel to the second layer, the resistance is low and a current will flow
freely. On the other hand, if the spin direction of a spin polarized current is
antiparallel to the second layer, the resistance is high and a current will not
flow very much. This effect is called a giant magnetoresistance (GMR).

GMR effect is used in a spin valve device (Fig. 1.1). In a spin valve, one
of the ferromagnetic layers is pinned while the other ferromagnetic layer is
free to rotate by an applied magnetic field. Spin valves can be designed with
soft free layers which have a very sensitive response to magnetic fields. Such
spintronic devices are used in the field of mass-storage devices. Recently,
one could compress massive amounts of data into a small area. The storage
density of hard disk drives is rapidly increasing.

Future applications may include a spin field effect transistor as we intro-
duce in the next section. This requires the development of magnetic semi-
conductors exhibiting room temperature ferromagnetism. The operation of
magnetic random access memory (MRAM) is also based on spintronic prin-
ciples.

1.3 Device applications

In this section, we briefly introduce a few spintronic device proposals based
on the so-called Rashba spin-orbit coupling (RSO). RSO is originated from
the asymmetry of the confining potential perpendicular to two dimensional
electron systems.

2



source drainspacer
layer

pinned
layer

free
layer

FM FM

high resistance

FM FM

low resistance

Figure 1.1: Schematic of the spin valve. The spin direction of a free layer
can be rotated by an external magnetic field.

The Rashba Hamiltonian is given by

Hrso =
α

h̄
(σxpy − σypx) (1.1)

where α denotes the strength of RSO, and σi and pi (i = x, y) are the
Pauli matrices and components of the momentum, respectively [1]. In the
presence of RSO, propagating electrons feel effective in-plane magnetic field
perpendicular to its traveling direction (Sec. 3.5). This effective magnetic
field induces the spin precession of propagating electrons.

1.3.1 Spin FET

One of the most important features of RSO is that one can control the
strength of RSO by gate voltage [2, 3]. In 1990, Datta and Das proposed
the spin field effect transistor (spin FET) based on this property [4]. The
transistor consists of a sample region with RSO attached to two ferromagnetic
contacts (Fig. 1.2).

The mechanism of the spin FET is as follows:

1. Spin polarized electrons are injected from a ferromagnetic source con-
tact.

3



gate
source drain

FM FM

x

y

z

Figure 1.2: Schematic of the spin field effect transistor (spin FET). The spin
precession length of electrons can be modified by gate voltage.

2. Spin precession occurs due to the effective magnetic field induced by
RSO.

3. Output current will (not) flow if spins of electrons leaving a sample
region are parallel (antiparallel) to those of a ferromagnetic drain con-
tact.

One can modify the strength of RSO so that the spin precession length and
the output current are changed.

The spin FET proposal attracted much interest on RSO and spintronics.
However, it has not been experimentally realized yet. The main obstacle
is the junction between ferromagnetic contacts and a sample region. Since
a sample region is semiconductor while contacts are metal, there is a large
mismatch at the junction and the spin polarization of current is dramati-
cally reduced [5]. In order to overcome this problem, it is necessary to use
ferromagnetic semiconductor contacts or to generate spin polarized current
without using ferromagnetic materials. Both of them are main current re-
search topics in the field of spintronics.

1.3.2 Spin interference device

In addition to the spin precession, propagating electrons will acquire the spin-
dependent phase factor in the presence of RSO (Sec. 3.6). In 1999, Nitta et
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al. proposed the spin interference device based on this property [6]. The
device consists of a sample region with RSO attached to normal contacts
(Fig. 1.3). The mechanism is the same as that of the AB oscillation except
the use of RSO instead of magnetic flux. One can control the strength of
RSO by gate voltage so that the effective flux through ring and the output
current are changed. The magnitude of the output conductance is given by

G =
e2

h

[
1 + cos

(
2πa

αm∗

h̄2

)]
, (1.2)

where a denotes the radius of a ring [6]. This spin interference device has
been experimentally realized by Koga et al. [7].

source

gate

drain

a

x

y

Figure 1.3: Schematic of the spin interference device (top view). The mag-
nitude of an effective flux through ring can be modified by gate voltage.
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Chapter 2

Bandstructure

In this chapter, we will briefly introduce how to derive the effective Hamil-
tonian for a conduction band from the atom and structure of materials. We
will start with the calculation of a band structure for a two-atoms periodic
lattice as example. Then we derive the k-dependent Hamiltonian for a unit
cell of GaAs by using the sp3s∗ model [8]. After that, we transform the basis
of Hamiltonian from orbital states to eigenstates at the Γ-point (k = 0).
Finally, we obtain the effective Hamiltonian for a conduction band in the
vicinity of the Γ-point by using the Löwdin partitioning (perturbation) [9].
These procedures are summarized as a flowchart in Fig. 2.1.

2.1 Procedure of calculating bandstructure

Firstly, let us consider the two-atoms periodic lattice in one-dimensional
system as shown in Fig. 2.2. By using one orbital per atom, the Hamiltonian

6
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quantum physics

the whole system

h(k)
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basis: orbitals
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periodicity

transformation
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Lowdin partitioning

H6c6c

the unit cell

the conduction band

3

kP model (Kane model)
basis: eigenstates at the Γ-point
size: 8∗8 (14∗14)

size: 2∗2

..

~

Figure 2.1: Flowchart of deriving the effective Hamiltonian for a conduction
band.

can be written in the matrix representation as

H =




· · · |1A〉 |1B〉 |2A〉 |2B〉 |3A〉 |3B〉 · · ·
...

. . .
...

...
...

...
...

...
〈1A| · · · EA V 0 0 0 0 · · ·
〈1B| · · · V EB V ′ 0 0 0 · · ·
〈2A| · · · 0 V ′ EA V 0 0 · · ·
〈2B| · · · 0 0 V EB V ′ 0 · · ·
〈3A| · · · 0 0 0 V ′ EA V · · ·
〈3B| · · · 0 0 0 0 V EB · · ·
...

...
...

...
...

...
...

. . .




, (2.1)

where EA and EB denotes the energy of the atom A and B, respectively.
The term V represents the hopping energy between the atom A and B in
the same unit cell while V ′ that between the atom B and the atom A of the
nearest neighbor unit cell.

By combining the elements of the matrix into (2 × 2) blocks, one can

7



1A        1B 2A        2B 3A        3B

a

Figure 2.2: Schematic of a two-atoms periodic lattice in one-dimensional
system. Unit cells including atoms A and B are replaced by the distance a.

rewrite this Hamiltonian as

H =




· · · |1〉 |2〉 |3〉 · · ·
...

. . .
...

...
...

〈1| · · · H11 H12 0 · · ·
〈2| · · · H21 H22 H23 · · ·
〈3| · · · 0 H32 H33 · · ·
...

...
...

...
. . .




, (2.2)

where

Hnn =

(
EA V
V EB

)
, Hn,n−1 =

(
0 V ′

0 0

)
, Hn,n+1 =

(
0 0
V ′ 0

)
. (2.3)

In this representation, one can obtain the following matrix equation for any
particular unit cell n,

Hn,n−1 |n − 1〉 + Hnn |n〉 + Hn,n+1 |n + 1〉 = E |n〉 . (2.4)

By using the ansatz,
|n〉 = eikna |0〉 , (2.5)

this set of equations can be simplified as
(
Hn,n−1e

−ika + Hnn + Hn,n+1e
ika
)
|0〉 = E |0〉 , (2.6)

that is
(

EA V + V ′e−ika

V + V ′eika EB

)
|0〉 = E |0〉 . (2.7)

8



By diagonalizing this (2 × 2) matrix, one can obtain the k-dependent eigen-
values,

E±(k) =
(EA + EB) ±

√
(EA − EB)2 + 4(V 2 + V ′2 + 2V V ′ cos(ka))

2
. (2.8)

We show this dispersion relation of the two-atoms periodic lattice in
Fig. 2.3. The parameters are EA = 1, EB = −1, V = 2, and V ′ = 1.
Qualitatively same dispersion relation can be obtained for a two-atoms pe-
riodic lattice made by the same atom, i.e., EA = EB. This means that the
transtion from a one-atom periodic lattice to a two-atoms one opens a band-
gap. If the Fermi energy of a material is inside this band-gap, the material
changes its property from conductor to insulator (Peierls transition).

-4

-3

-2

-1

 0

 1

 2

 3

 4

-1 -0.5  0  0.5  1

E
ne

rg
y

k (in unit of π/a)

Figure 2.3: Dispersion relation of the two-atoms periodic lattice (Eq. (2.8)).
Parameters are EA = 1, EB = −1, V = 2, and V ′ = 1.

This procedure can be easily generalized. Now let us consider any par-
ticular unit cell n coupled with several unit cells m. One can write down the
following matrix equation,

∑

m

Hnm |m〉 = E |n〉 . (2.9)

The size of the matrix Hnm depends on the number of basis functions per
unit cell.

9



By substituting the ansatz,

|m〉 = eik·dm |0〉 , (2.10)

into Eq. (2.9), one can obtain

h(k) |0〉 = E |0〉 , (2.11)

where
h(k) =

∑

m

Hnmeik·(dm−dn). (2.12)

The dispersion relation (bandstructure) can be plotted by diagonalizing the
Hamiltonian h(k) for each value of k. If we assume that the number of basis
functions per unit cell is b, it will show b branches.

2.2 Bandstructure of gallium arsenide

Gallium arsenide (GaAs) belongs to the diamond structure which has a unit
cell consisting of Ga (cation) and As (anion) atoms. For each atom, we need
to include at least four valence orbitals, that is 4s, 4px, 4py and 4pz. It is
common to include the next higher orbital (5s) as well. This is so called the
sp3s∗ model and the unit cell has 10 basis, 5 orbitals multiplied by 2 atoms.
This means that the Hamiltonian h(k) is given by (10 × 10) matrix.

Now let us consider the structure of GaAs. The diamond structure con-
sists of two interpenetrating face-centered cubic (FCC) lattice as shown in
Fig. 2.4. The lattice of As atoms can be obtained by adding (1, 1, 1)a/4 to
that of Ga atoms. As shown in Fig. 2.5, the As atom in a diamond structure
has four nearest neighbors of the Ga atoms arranged in a tetrahedron.

By considering these structure, the Hamiltonian can be obtained as [8, 10]

10



h(k) =




|sa〉 |sc〉 |Xa〉 |Ya〉 |Za〉 |Xc〉 |Yc〉 |Zc〉 |s∗a〉 |s∗c〉

〈sa| Esa 4Essg0 0 0 0 4Esapcg1 4Esapcg2 4Esapcg3 0 0

〈sc| 4Essg∗0 Esc 4Epascg∗1 4Epascg∗2 4Epascg∗3 0 0 0 0 0

〈Xa| 0 4Epascg1 Epa 0 0 4Exxg0 4Exyg3 4Exyg2 0 4Epas∗cg1

〈Ya| 0 4Epascg2 0 Epa 0 4Exyg3 4Exxg0 4Exyg1 0 4Epas∗cg2

〈Za| 0 4Epascg3 0 0 Epa 4Exyg2 4Exyg1 4Exxg0 0 4Epas∗cg3

〈Xc| 4Esapcg∗1 0 4Exxg∗0 4Exyg∗3 4Exyg∗2 Epc 0 0 4Es∗apcg
∗
1 0

〈Yc| 4Esapcg∗2 0 4Exyg∗3 4Exxg∗0 4Exyg∗1 0 Epc 0 4Es∗apcg
∗
2 0

〈Zc| 4Esapcg∗3 0 4Exyg∗2 4Exyg∗1 4Exxg∗0 0 0 Epc 4Es∗apcg
∗
3 0

〈s∗a| 0 0 0 0 0 4Es∗apcg1 4Es∗apcg2 4Es∗apcg3 Es∗a 0

〈s∗c | 0 0 4Epas∗cg1 4Epas∗cg2 4Epas∗cg3 0 0 0 0 Es∗c




(2.13)
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Ga (cation)

a

a

a

(0,0,0)

As (anion)

(1,1,1)a/4

a

a

a

Figure 2.4: Schematic of the FCC lattices based on Ga and As atoms. The
lattice of As atoms is shifted from that of Ga atoms by (1, 1, 1)a/4. The
diamond structure of GaAs consists of these two FCC lattices.

Here Esa and Esc denotes the energies of the 4s-orbitals for the anion (As)
and cation (Ga), Epa and Epc the energies of the 4p-orbitals, and Es∗a, and
Es∗c the energies of the 5s-orbitals, respectively. The hopping terms between
the orbitals are given by Ess, Exx, Exy, Esapc, Epasc, Es∗apc, and Epas∗c. The
factor g0, g1, g2, and g3 are defined by

4g0 ≡ 1 + e−ik·d1 + e−ik·d2 + e−ik·d3 (2.14)

4g1 ≡ 1 + e−ik·d1 − e−ik·d2 − e−ik·d3 (2.15)

4g2 ≡ 1 − e−ik·d1 + e−ik·d2 − e−ik·d3 (2.16)

4g3 ≡ 1 − e−ik·d1 − e−ik·d2 + e−ik·d3 (2.17)

where

d1 = (0, 1, 1)a/2 (2.18)

d2 = (1, 0, 1)a/2 (2.19)

d3 = (1, 1, 0)a/2 . (2.20)

Figure 2.6 shows the bandstructure calculated by diagonalizing Eq. (2.13)
for each value of k along the Γ − X and Γ − L directions. Parameters are
summarized in Table. 2.1 [8, 10].

12



a/2

a/2

a/2
unit cell

Ga

Ga

Ga

Ga

As

Figure 2.5: Schematic of the unit cell. The As atom has four nearest neighbor
Ga atoms, one of which is in the same unit cell. They are coupled by 4s-,
4p-, and 5s-orbitals.

2.2.1 Eigenstates at the Γ-point

In typical experiments, the Fermi energy of semiconductors are lying at 10-
100 meV above (below) the edge of the conduction (valence) band. For this
reason, we are especially interested in the vicinity of the Γ-point (k = 0). At
the Γ-point, the factors g1, g2, and g3 in Eqs. (2.15)-(2.17) become equal to
zero. This means that the 4s-, 4p-, and 5s-orbitals are decoupled each other
(Fig. 2.7). The wave functions at the points 1 and 5 in Fig. 2.8 are simply
given by the linear combination of 4s-orbitals in anion (As) and cation (Ga)
atoms while those at the points 2, 3, 4 and 6, 7, 8 are given by that of
4p-orbitals. The wave function at the point 9 and 10 is given by the 5s-
orbital in cation (Ga) and that in anion (As), respectively. It shows that, in
the vicinity of the Γ-point, the 4s-orbitals are dominant in the conduction
band (blue line with No.5 at the Γ-point in Fig. 2.8) while the 4p-orbitals
are dominant in the valence band (red and green lines with No.2,3,4 at the
Γ-point in Fig. 2.8).
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Figure 2.6: The bandstructre of GaAs for k along the Γ−X (from k = (0, 0, 0)
to (1, 0, 0)2π/a) and Γ − X (from k = (0, 0, 0) to (1, 1, 1)π/a) directions.
Some bands are degenerate.

2.2.2 Conduction band

It is well known that the sp3s∗ model gives a reasonably accurate band-
structure. What happens if we ignore the contribution from 4p-orbitals or
5s-orbitals? Figure 2.9 shows the bandstructure of the conduction band of
GaAs for the restricted hopping terms. We take into account the hopping
between Ga and As atom via (1) only 4s-orbitals, (2) 4s- and 4p- orbitals,
and (3) 4s-, 4p- and 5s-orbitals (Fig. 2.10). It is shown that if we assume the
hopping via 4s-orbitals only, the conduction band becomes antiparabolic.
This is not realistic at all. By including the contribution of 4p-orbitals, the
bandstructure becomes quite accurate in the vicinity of the Γ-point, but is
not for large k.

2.3 Effect of spin-orbit couping

When electrons are traveling at very high velocities, relativistic effects be-
come significant and one need to use the Dirac equation instead of the

14



Esa -8.3431 4Ess -6.4513
Esc -2.6569 4Exx 1.9546
Epa 1.0414 4Exy 5.0779
Epc 3.6686 4Esapc 4.48
Es∗a 8.5914 4Epasc -5.7839
Es∗c 6.7386 4Esa∗pc 4.8422

4Epas∗c -4.8077

Table 2.1: Parameters for GaAs in the unit of eV.

Ga As

4s

4p

5s 5s

4p

4s

Figure 2.7: Schematic of the coupling between Ga and As atom at the Γ-point
(k = 0). The 4s-, 4p-, and 5s-orbitals are decoupled each other.

Schrödinger equation. In solids, the velocity of electrons is not so high that
one can include relativistic effects into the the Schrödinger equation by per-
turbation (see Sec. 2.6).

One of these relativistic corrections is the spin-orbit coupling,

Hso = − h̄

4m2c2
σ · (p ×∇U0(r)). (2.21)

The spin-orbit coupling is usually very weak. But it can not be ignored when
electrons are traveling around the nuclei of atoms where the electric field is
very high. If we assume the spherically symmetric atomic potential U0(r),
the spin-orbit term can be written by

Hso =
h̄

4m2c2

1

r

dU0(r)

dr
l · σ (2.22)

where l = r × p.
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Figure 2.8: The bandstructre of GaAs.

The operator l ·σ can be evaluated by the total angular momentum state∣∣∣j = l ± 1
2

〉
(l 6= 0) as [11]

l · σ
∣∣∣∣l +

1

2

〉
= l

∣∣∣∣l +
1

2

〉
, (2.23)

l · σ
∣∣∣∣l −

1

2

〉
= −(l + 1)

∣∣∣∣l −
1

2

〉
. (2.24)

Hence the spin-orbit coupling induces the band splitting for the p-orbital
(l = 1) states. In other words, the spin-orbit coupling mixes the spin up and
down states of the p-orbitals as shown in Fig. 2.11.

In the matrix representation, the spin-orbit coupling can be expressed in
terms of a single number δa for the anionic orbitals,




Xa Ya Za X̄a Ȳa Z̄a

Xa 0 −iδa 0 0 0 δa

Ya iδa 0 0 0 0 −iδa

Za 0 0 0 −δa iδa 0
X̄a 0 0 −δa 0 iδa 0
Ȳa 0 0 −iδa −iδa 0 0
Z̄a δa iδa 0 0 0 0




, (2.25)
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Figure 2.9: The conduction band of GaAs for the restricted hopping terms.
The hopping between Ga and As atom is taken into account via (1) only 4s-
orbitals, (2) 4s- and 4p- orbitals, and (3) 4s-, 4p- and 5s-orbitals (Fig. 2.10).

and in terms of a single number δc for the cationic orbitals,




Xc Yc Zc X̄c Ȳc Z̄c

Xc 0 −iδc 0 0 0 δc

Yc iδc 0 0 0 0 −iδc

Zc 0 0 0 −δc iδc 0
X̄c 0 0 −δc 0 iδc 0
Ȳc 0 0 −iδc −iδc 0 0
Z̄c δc iδc 0 0 0 0




. (2.26)

The spin-orbit splitting ∆c (or ∆a) is given by

∆c(or∆a) = 3δc(orδa). (2.27)

The values of the spin-orbit splitting is well-known from both theory and
experiment for all the atoms. For example, Ga has a spin-orbit splitting of
0.013eV while that of As is 0.38eV [8].
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(1) (2)

Ga As
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5s 5s

4p
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(3)

Figure 2.10: Schematic of the coupling between Ga and As atom for the
restricted hopping terms.

By including the effect of the spin-orbit coupling, one now need to diag-
onalize the (20 × 20) Hamiltonian given by

H0 =

( |↑〉 |↓〉
〈↑| h(k) 0
〈↓| 0 h(k)

)
+ Hso (2.28)

where h(k) is the (10 × 10) Hamiltonian in Eq. (2.13).
Figure 2.12 shows the bandstructure of GaAs including the effect of spin-

orbit coupling.

2.3.1 Eigenstates at the Γ-point

As we discussed in the previous section, the 4s-, 4p-, and 5s-orbitals are
decoupled at the Γ-point. In the presence of spin-orbit coupling, the p-
orbital (l = 1) states are further decoupled into the j = 3/2 and j = 1/2
states. We have summarized the eigenstates at the Γ-point for the p-like
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Ga As

4s

4p

5s 5s

4p

4s

4s

4p

5s 5s

4p

4s

Figure 2.11: Schematic of the coupling between Ga and As atom in the
presence of spin-orbit coupling. The up and down spin states of 4p-orbitals
are coupled by spin-orbit coupling.

conduction band (Γ8c, Γ7c), the conduction band (Γ6c), and the valence band
(Γ8v, Γ7v) in Table. 2.2 [9].
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Figure 2.12: The bandstructre of GaAs. Left: without spin-orbit coupling (as
same as Fig. 2.6). Right: with spin-orbit coupling. The spin-orbit coupling
induces the band splitting in the valence band and the p-like conduction band
at the Γ-point.

2.4 Eigenstate basis

So far, we have shown that the band structure can be obtained by diagonal-
izing the k-dependent 20×20 Hamiltonian for each value of k. However, our
main interest is the conduction band in the vicinity of the Γ-point. In this
case, it is convenient to rewrite the Hamiltonian by the basis of eigenstates
at the Γ-point instead of orbital states. In the eigenstate representation, the
coupling between bands are well described by the k ·P model or the envelope
function approximation (EFA) [9],

∑

n′,σ′

{[
En′ +

(h̄k + eA)2

2m
+ U

]
δnn′δσσ′ +

g0

2
µBσ · Bδnn′

+
1

m
(h̄k + eA) · P nn′δσσ′ + ∆nσ,n′σ′

}
cn′σ′ = Ecnσ (2.29)

where

P nn′ = 〈n|p |n′〉 (2.30)

∆nσ,n′σ′ =
h̄

4m2c2
〈nσ|p · (σ × (∇V0)) |n′σ′〉 . (2.31)

Here En denotes the eigen energy at the Γ-point for the band n, P nn′ is the
momentum matrix element between the band n and n′, and ∆nσ,n′σ′ is the
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Γ8c

∣∣∣ 3
2

3
2

〉

c′
= − 1√

2

∣∣∣∣∣
X ′ + iY ′

0

〉 ∣∣∣ 3
2

1
2

〉

c′
= 1√

6

∣∣∣∣∣
2Z ′

−(X ′ + iY ′)

〉

∣∣∣ 3
2

−1
2

〉

c′
= 1√

6

∣∣∣∣∣
X ′ − iY ′

2Z ′

〉 ∣∣∣ 3
2

−3
2

〉

c′
= 1√

2

∣∣∣∣∣
0

X ′ − iY

〉

Γ7c

∣∣∣ 1
2

1
2

〉

c′
= − 1√

3

∣∣∣∣∣
Z ′

X ′ + iY ′

〉 ∣∣∣ 1
2

−1
2

〉

c′
= − 1√

3

∣∣∣∣∣
X ′ − iY ′

−Z ′

〉

Γ6c

∣∣∣ 1
2

1
2

〉

c
=

∣∣∣∣∣
S
0

〉 ∣∣∣ 1
2

−1
2

〉

c
=

∣∣∣∣∣
0
S

〉

Γ8v

∣∣∣ 3
2

3
2

〉

v
= − 1√

2

∣∣∣∣∣
X + iY

0

〉 ∣∣∣ 3
2

1
2

〉

v
= 1√

6

∣∣∣∣∣
2Z

−(X + iY )

〉

∣∣∣ 3
2

−1
2

〉

v
= 1√

6

∣∣∣∣∣
X − iY

2Z

〉 ∣∣∣ 3
2

−3
2

〉

v
= 1√

2

∣∣∣∣∣
0

X − iY

〉

Γ7v

∣∣∣ 1
2

1
2

〉

v
= − 1√

3

∣∣∣∣∣
Z

X + iY

〉 ∣∣∣ 1
2

−1
2

〉

v
= − 1√

3

∣∣∣∣∣
X − iY
−Z

〉

Table 2.2: Eigenstates at the Γ-point for the p-like conduction band (Γ8c, Γ7c), the conduction band (Γ6c),
and the valence band (Γ8v, Γ7v).
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matrix element of spin-orbit interaction. The V0 denotes a rapidly oscillating
microscopic lattice-periodic potential while U represents a slowly varying
potential over a whole sample.

Each bands are weakly coupled for the small value of k so that one can
decouple the conduction band from the other bands by using the Löwdin
partitioning (perturbation). After the perturbation, one can finally obtain
the 2 × 2 effective Hamiltonian for the conduction band.

2.5 Calculation of effective Hamiltonian

In this section, we will show how to obtain the effective Hamiltonian for
the particular band around the particular k. Let us consider the 3 × 3 k-
dependent Hamiltonian h(k) for example. Assume that we are interested in
the band A in the vicinity of k = k0 as shown in Fig. 2.13.

E

kk0

A

B

C

k1

Figure 2.13: Schematic dispersion relation. We are interested in the band A
in the vicinity of k = k0.

The Hamiltonian at k = k0 can be written by

h(k0) =




|a0〉 |b0〉 |c0〉
〈a0| EA0 0 0
〈b0| 0 EB0 0
〈c0| 0 0 EC0


 (2.32)

where |a0〉, |b0〉, and |c0〉 are eigenstates of h(k0). Similarly, one can write
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down the Hamiltonian at k = k1 as

h(k1) =




|a1〉 |b1〉 |c1〉
〈a1| EA1 0 0
〈b1| 0 EB1 0
〈c1| 0 0 EC1


 (2.33)

where |a1〉, |b1〉, and |c1〉 are eigenstates of h(k1). The important point is
that this Hamiltonian can be also written by |a0〉, |b0〉, and |c0〉 as

h(k1) =




|a0〉 |b0〉 |c0〉
〈a0| HAA HAB HAC

〈b0| HBA HBB HBC

〈c0| HCA HCB HCC


 , (2.34)

since each set of eigenstates gives a complete and orthonormal set of the
basis. One can further rewrite the Hamiltonian by h(k0) and the additional
term,

h(k1) = h(k0) + λh′(k1) = H(λ) (2.35)

=




EA0 + λxAA λxAB λxAC

λxBA EB0 + λxBB λxBC

λxCA λxCB EC0 + λxCC


 (2.36)

where λ denotes the strength of coupling and h′(k1) the matrix elements
between each bands.

If k0 ' k1, each bands are weakly coupled (λ � 1) so that one can
separate them by perturbation. By applying the unitary transformation, one
can decouple the band A from the others as (Fig. 2.14)

H̃(λ) = U(λ)H(λ)U †(λ) (2.37)

=




H̃AA 0 0

0 H̃BB H̃BC

0 H̃CB H̃CC


 . (2.38)

The effective Hamiltonian for the band A around k = k0 is then given by

H̃AA = H
(0)
AA + λH

(1)
AA + λ2H

(2)
AA + λ3H

(3)
AA + · · · (2.39)
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Figure 2.14: Schematic of weakly coupled systems. The focused system (A)
can be decoupled from the others (B and C) by the unitary transformation.

for any order of λ. This decoupling of the system in interest from other
systems are called Löwdin partitioning [9].

We have summarized the value of H
(i)
AA up to i = 3,

H
(0)
AA = EA0 (2.40)

H
(1)
AA = xAA (2.41)

H
(2)
AA =

∑

l=B,C

xAlxlA

EA − El
(2.42)

H
(3)
AA =

∑

l,l′

xAlxll′xl′A

(EA − El)(EA − El′)
−
∑

l

xAlxlAxAA + xAAxAlxlA

2(EA − El)2
(2.43)

In general, an effective Hamiltonian is given by [9],

H
(0)
mm′ = H0

mm′ (2.44)

H
(1)
mm′ = H ′

mm′ (2.45)

H
(2)
mm′ =

1

2

∑

l

H ′
mlH

′
lm′

[
1

Em − El
+

1

E ′
m − El

]
(2.46)

H
(3)
mm′ =

1

2

∑

l,l′
H ′

mlH
′
ll′H

′
l′m′

[
1

(Em − El)(Em − E ′
l)

+
1

(E ′
m − El)(E ′

m − E ′
l)

]

− 1

2

∑

l,m′′

[
H ′

mlH
′
lm′′H ′

m′′m′

(Em′ − El)(Em′′ − El)
+

H ′
mm′′H ′

m′′lH
′
lm′

(Em − El)(Em′′ − El)

]
. (2.47)

where the indices m, m′, m′′ correspond to states in the focused band, and
l, l′, l′′ correspond to states in the other bands.
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2.6 Relativistic effect

2mc

E

2

Figure 2.15: Schematic band structure for the Dirac equation.

Before dealing with the multi-band Hamiltonian for semiconductor sys-
tems, we would like to review how the effective Hamiltonian for the positive
energy branch can be derived from the Dirac equation.

The Hamiltonian in the Dirac equation is defined by [12]

H =

( |+〉 |−〉
〈+| mc2 + U cσ · p′

〈−| cσ · p′ −mc2 + U

)
(2.48)

where p′ = p + eA.
In the third order perturbation, the effective Hamiltonian for the positive

energy branch in the vicinity of p = 0 can be calculated as

H̃++ = H
(0)
++ + H

(1)
++ + H

(2)
++ + H

(3)
++ (2.49)

where

H
(0)
++ = mc2 (2.50)

H
(1)
++ = U (2.51)

H
(2)
++ =

c2

2mc2
(σ · p′)(σ · p′) (2.52)

=
p′2

2m
+

eh̄

2m
σ · (∇× A) (2.53)
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H
(3)
++ =

c2

(2mc2)2

2(σ · p′)U(σ · p′) − {U(σ · p′)(σ · p′) + (σ · p′)(σ · p′)U}
2

= − h̄

4m2c2
σ · (p′ ×∇U) +

h̄2

8m2c2
∆U. (2.54)

Here, we have used the following relations,

(σ · A)(σ · B) = A · B + iσ · (A × B) (2.55)

2ABA − (BAA + AAB) = [[A, B], A] (2.56)
[
ri, pj

]
= ih̄δij. (2.57)

One can rewrite the effective Hamiltonian as

H̃++ = mc2 + U +
p′2

2m
+

g0

2
µBσ ·B +

λso

h̄
σ · (p′ ×∇U) +

h̄2

8m2c2
∆U, (2.58)

where
B = ∇× A (2.59)

and

g0 = 2 (2.60)

µB =
eh̄

2m
(2.61)

λso = − h̄2

4m2c2
. (2.62)

The band gap, the Bohr magneton, and the strength of the spin-orbit
coupling are estimated as

2mc2 ' 1MeV , (2.63)

µB ' 9.27 × 10−24JT−1 , (2.64)

λso ' −3.7 × 10−6Å
2
, (2.65)

respectively.

2.7 Effective Hamiltonian for conduction band

The main properties of electrons in semiconductors are well described only
by considering the coupling between the conduction and valence band. The
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Figure 2.16: Schematic band structure for the 8 × 8 Kane model.

multi-band Hamiltonian is given by 8 × 8 Kane model,

H8×8 =




H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v


 . (2.66)

In the third order perturbation, the effective Hamiltonian for the conduc-
tion band can be calculated as [9]

H̃6c6c = H
(0)
6c6c + H

(1)
6c6c + H

(2)
6c6c + H

(3)
6c6c (2.67)

with

H
(0)
6c6c = Ec (2.68)

H
(1)
6c6c = U +

h̄2k′2

2m
+

g0

2
µBσ · B (2.69)

H
(2)
6c6c =

h̄2

m2

∑

|8v〉

(k′ · P 6c8v)(k
′ · P 8v6c)

E0
+

h̄2

m2

∑

|7v〉

(k′ · P 6c7v)(k
′ · P 7v6c)

E0 + ∆0

=
P 2

3

(
2

E0
+

1

E0 + ∆0

)
k′2 − eP 2

3h̄

(
1

E0
− 1

E0 + ∆0

)
σ · B (2.70)
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H
(3)
6c6c

=
h̄2

m2

∑

|8v〉

2(k′ · P 6c8v)U(k′ · P 8v6c) − {U(k′ · P 6c8v)(k′ · P 8v6c) + (k′ · P 6c8v)(k′ · P 8v6c)U}
2E2

0

+
h̄2

m2

∑

|7v〉

2(k′ · P 6c7v)U(k′ · P 7v6c) − {U(k′ · P 6c7v)(k′ · P 7v6c) + (k′ · P 6c7v)(k′ · P 7v6c)U}
2(E0 + ∆0)2

=
P 2

3

(
1

E2
0

− 1

(E0 + ∆0)2

)
σ · (k′ ×∇U) +

P 2

6

(
2

E2
0

+
1

(E0 + ∆0)2

)
∆U

(2.71)

where
k′ = k +

e

h̄
A (2.72)

and

P =
h̄

m
〈S| px |X〉 . (2.73)

One can rewrite the effective Hamiltonian as

H̃6c6c = Ec + U +
h̄2k′2

2m∗ +
g∗

2
µBσ · B +

a46

e
σ · (k′ ×∇U) + γ∆U (2.74)

where

m

m∗ = 1 +
2m

h̄2

P 2

3

(
2

E0
+

1

E0 + ∆0

)
(2.75)

g∗

2
=

g0

2
− 2m

h̄2

P 2

3

(
1

E0

− 1

E0 + ∆0

)
(2.76)

a46 =
eP 2

3

(
1

E2
0

− 1

(E0 + ∆0)2

)
(2.77)

γ =
P 2

6

(
2

E2
0

+
1

(E0 + ∆0)2

)
. (2.78)

The band parameters for typical III-V semiconductors are summarized in
Table 2.3 in comparison with those of free electrons in the Dirac equation
[9].

2.8 Dresselhaus spin-orbit coupling

Let us consider the effect of the p-like conduction band (Γ7c, Γ8c) in addition
to the valence band (Γ7v, Γ8v). The multi-band Hamiltonian is given by the
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unit GaAs InAs InSb free e−

E0 eV 1.519 0.418 0.237 ' 106

∆0 eV 0.341 0.380 0.810 -
m∗ m 0.0665 0.0229 0.0139 1
g∗ - -0.44 -14.9 -51.56 2

a46 eÅ2 5.206 117.1 523.0 -3.7 ×10−6

Table 2.3: Band parameters for typical III -V semiconductors.

14 × 14 Kane model,

H14×14 =




H6c6c H6c8v H6c7v H6c7c H6c8c

H8v6c H8v8v H8v7v H8v7c H8v8c

H7v6c H7v8v H7v7v H7v7c H7v8c

H7c6c H7c8v H7c7v H7c7c H7c8c

H8c6c H8c8v H8c7v H8c7c H8c8c




. (2.79)

One can calculate the effective Hamiltonian for the conduction band in
the third order perturbation as [9]

H̃6c6c = H
(0)
6c6c + H

(1)
6c6c + H

(2)
6c6c + H

(3)
6c6c. (2.80)

The third order perturbation gives

H
(3)
6c6c =

h̄3

m3

∑

|8v〉

∑

|7c〉

(k′ · P 6c8v)(k
′ · P 8v7c)(k

′ · P 7c6c)

E0(E0 − E ′
0)

+
h̄3

m3

∑

|7v〉

∑

|8c〉

(k′ · P 6c7v)(k
′ · P 7v8c)(k

′ · P 8c6c)

(E0 + ∆0)(E0 − E ′
0 − ∆′

0)

= a42

[
σx{k′

x, k
′2
y − k′2

z} + σy{k′
y, k

′2
z − k′2

x} + σz{k′
z, k

′2
x − k′2

y}
]

(2.81)

where

k′ = k +
e

h̄
A (2.82)

a42 = −4i

3
PP ′Q

[
1

(E0 + ∆0)(E0 −E′
0 − ∆′

0)
− 1

E0(E0 −E′
0)

]
(2.83)
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Figure 2.17: Schematic band structure for the 14×14 extended Kane model.

{A,B} =
1

2
(AB +BA) (2.84)

P ′ =
h̄

m
〈S| px

∣∣X ′〉 (2.85)

Q =
h̄

m
〈X| py

∣∣Z ′〉 . (2.86)

Here we have taken the directions of coordinates as x̂ = [100], ŷ = [010],
and ẑ = [001]. The above term that arises from the third order perturbation
is called the Dresselhaus spin-orbit coupling [13]. We have summarized the
strength of Dresselhaus coupling for typical III -V semiconductors in Table 2.4
[9].
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unit GaAs InAs InSb

a42 eÅ3 27.58 27.18 760.1

Table 2.4: The strength of Dresselhaus spin-orbit coupling for typical III -V
semiconductors.
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Chapter 3

Two-dimensional systems

In this chapter, we derive the Hamiltonian for two-dimensional electron sys-
tems from the effective Hamiltonian in the previous chapter and discuss the
basic properties induced by spin-orbit coupling. The asymmetric confinement
results in the so-called Rashba spin-orbit coupling (RSO). For the Dressel-
haus spin-orbit coupling (DSO), we have considered the confinement in the
[001] direction and only focused on the k-linear term. This Hamiltonian for
2DES in the presence of RSO and DSO is a starting point of our investi-
gation. We have further described it in the matrix representation by using
the discrete lattice model for numerical simulations. The spin orientation at
the Fermi energy and the spin-dependnet effective magnetic field induced by
spin-orbit coupling are also discussed.

3.1 Rashba spin-orbit coupling

Let us separate the potential term as

U(r) = U1(x, y) + U2(z). (3.1)

From Eq. (2.74), the effective Hamiltonian for the conduction band in the
absence of magnetic field can be written by

H̃6c6c = Ec + U1 + U2 +
h̄2k2

2m∗ + γ

(
∂2U1

∂x2
+

∂2U1

∂y2
+

∂2U2

∂z2

)

+
a46

e
σz

(
kx

∂U1

∂y
− ky

∂U1

∂x

)
+

a46

e
kz

(
∂U1

∂x
σy −

∂U1

∂y
σx

)
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Figure 3.1: Flowchart of deriving the effective Hamiltonian for two-
dimensional systems.

+
a46

e

∂U2

∂z
(σxky − σykx). (3.2)

By taking the average of the z-dependent operators, one can obtain the
Hamiltonian for two-dimensional electron systems (2DES),

H2DES = Ec + U1 + 〈U2〉 +
h̄2(k2

x + k2
y)

2m∗ +
h̄2 〈k2

z〉
2m∗

+ γ

(
∂2U1

∂x2
+

∂2U1

∂y2

)
+ γ

〈
∂2U2

∂z2

〉
+

a46

e
σz

(
kx

∂U1

∂y
− ky

∂U1

∂x

)

+

〈
a46

e

∂U2

∂z

〉
(σxky − σykx) (3.3)

where 〈kz〉 = 0. Here we replace kz by ∂/i∂z. We also note that the band
parameters are modified by the confinement. More delicate approach can
be found in Ref. [14]. The last term in Eq. (3.3) is called Rashba spin-orbit
coupling (RSO) [1].

In this thesis, we have defined the Rashba Hamiltonian as

Hrso =
α

h̄
(σxpy − σypx) (3.4)

where

α =

〈
a46

e

∂U2

∂z

〉
. (3.5)
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3.2 Dresselhaus spin-orbit coupling

3.2.1 Confinement in the [001] direction

From Eq. (2.81), the Dresselhaus spin-orbit coupling (DSO) in 2DES confined
in the [001] direction is given by

H
(3)
2DES[001] = −a42

〈
k2

z

〉
(σxkx − σyky) + a42kxky(σxky − σykx). (3.6)

In this thesis, we have ignored the second term in Eq. (3.6) and defined
the Dresselhaus Hamiltonian as

Hdso =
β

h̄
(σxpx − σypy) (3.7)

where
β = −a42

〈
k2

z

〉
. (3.8)

We have compared the strength of RSO and DSO for typical III-V semi-
conductors (Table 3.1). We note that this is a rough estimation since we
directly use the band parameters for three-dimensional system (Table. 2.3).
The accurate values must be evaluated by experiments. Still, these values are
useful to know the order of the strength and explain why RSO is dominant
in InAs while is comparable with DSO in GaAs.

unit GaAs InAs InSb

α meVÅ 5.206 117.1 523.0

β meVÅ -9.93 -9.78 -273.6

Table 3.1: The comparison of the strength of Rashba and Dresselhaus spin-
orbit couplings in 2DES. We use the band parameters a46 and a42 in Table. 2.3
and assume 〈∂U2/∂z〉 = 1 mVÅ−1 [2] and 〈k2

z〉 = 3.6 × 10−4 Å−2 [15] for
evaluating α and β.

3.2.2 Confinement in the [110] direction

If one choose the direction of confinement as [110] instead of [001], DSO in
2DES can be given by

H
(3)
2DES[110] = a42

{
〈k2

z〉
2

− k2
x

2
+ k2

y

}
kxσz (3.9)
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where we set x̂ = [11̄0], ŷ = [001], and ẑ = [110]. In contrast to the DSO
confined in the [001] direction, the DSO in the [110] direction does not induce
effective in-plane magnetic field [15]. In other words, the spin precession can
be suppressed in this confinement. Especially, the DSO in the [110] direction
can be erased when a current is flowing in the y- ([001]) direction [16].

3.3 Effect of potential curvature

From Eq. (3.3), the Hamiltonian for 2DES confined in symmetric potential
is given by

H =
h̄2k2

2m∗ +
a46

e
σz

(
kx

∂U1

∂y
− ky

∂U1

∂x

)
+ U1 + γ∆U1. (3.10)

One can rewrite the Hamiltonian as

H =
h̄2

2m∗

(
k +

e

h̄
Ã

)2

− m∗a2
46

2e2h̄2




(

∂U1

∂x

)2

+

(
∂U1

∂y

)2


+ U1 + γ∆U1 (3.11)

where

Ã =
m∗a46σz

e2h̄

(
∂U1

∂y
,−∂U1

∂x
, 0

)
. (3.12)

This effective vector potential corresponds to the effective magnetic field,

B̃ = ∇× Ã (3.13)

=
(
0, 0,−m∗a46σz

e2h̄
∆U1

)
. (3.14)

This implies that electrons feel spin-dependent effective magnetic field de-
pending on the curvature of potential.

The simplest example of this effect is a quasi one-dimensional wire with
parabolic confinement. The parabolic confinement U1(y) = mω2y2/2 results
in the effective magnetic field proportional to mω2σz. Spin accumulation due
to this effective field has been reported by several numerical investigations
[17, 18, 19, 20].
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3.4 Matrix representation of Hamiltonian

In order to perform numerical simulations, we would like to represent the
Hamiltonian by matrix based on the discrete lattice (tight-binding) model.

Let us consider the Hamiltonian with RSO and DSO,

H =
p2

2m∗ +
α

h̄
(σxpy − σypx) +

β

h̄
(σxpx − σypy). (3.15)

This Hamiltonian can be separated in the x- and y-directions as

H = Hx + Hy (3.16)

where

Hx =
p2

x

2m∗ +
−ασy + βσx

h̄
px (3.17)

and

Hy =
p2

y

2m∗ +
ασx − βσy

h̄
py. (3.18)

In the discrete lattice model, the kinetic term in Eq.(3.17) can be given
by [21]

p2
x

2m∗ = 2V0 − V0

(
1 0
0 1

)
(|i〉 〈i + x̂| + |i〉 〈i − x̂|) (3.19)

where V0 = h̄2/2m∗a2 with the unit lattice spacing a. The spin-orbit term
can be given by

−ασy + βσx

h̄
px = 2V0a(−θσy + φσx)

|i〉 〈i + x̂| − |i〉 〈i − x̂|
2ia

= −V0(−iθσy + iφσx)(|i〉 〈i + x̂| − |i〉 〈i − x̂|)

= −V0

(
0 −θ + iφ

θ + iφ 0

)
(|i〉 〈i + x̂| − |i〉 〈i − x̂|)

(3.20)

where α = 2θV0a and β = 2φV0a.
Now we can describe the Hamiltonian in the x-direction as

Hx = 2V0 − Vi,i+x̂ − Vi,i−x̂ (3.21)
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where

Vi,i+x̂ = V0

(
1 −θ + iφ

θ + iφ 1

)
(3.22)

and
Vi,i−x̂ = V †

i,i+x̂. (3.23)

Here Vi,i+x̂ denotes the hopping from the site i + x̂ to i.
Similarly, the Hamiltonian in the y-direction can be described by

Hy = 2V0 − Vi,i+ŷ − Vi,i−ŷ (3.24)

where

Vi,i+ŷ = V0

(
1 iθ − φ

iθ + φ 1

)
(3.25)

and
Vi,i−ŷ = V †

i,i+ŷ. (3.26)

One can summarize the Hamiltonian in the discrete lattice model as

HTB = −
∑

〈ij〉σσ′

Viσ,jσ′c†iσcjσ′ (3.27)

with Vi,i+x̂ and Vi,i+ŷ.

3.5 Spin orientation at Fermi energy

In this section, we discuss the spin orientation at the Fermi energy and the
spin precession of propagating electrons. Let us consider the Hamiltonian
with RSO and DSO,

H =
p2

2m∗ +
α

h̄
(σxpy − σypx) +

β

h̄
(σxpx − σypy) . (3.28)

The eigenvalues are given by

E± =
1

2m∗

(
p± m∗

h̄

√
α2 + β2 + 2αβ sin 2φ

)2

− m∗

2h̄2

(
α2 + β2 + 2αβ sin 2φ

)

(3.29)
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with the eigen functions,

(
↑
↓

)

±
=




1

± αeiφ̃+βeiφ√
α2+β2+2αβ sin 2φ



 (3.30)

where φ = tan−1(py/px) and φ̃ = π/2 − φ.
The magnitude of momentum at the Fermi energy is given by

|p|± =

√

2m∗EF +
m∗2

h̄2 (α2 + β2 + 2αβ sin 2φ) ∓ m∗

h̄

√
α2 + β2 + 2αβ sin 2φ.

(3.31)

Figure 3.2 shows the spin orientation at the Fermi energy in the presence
of RSO and DSO. In the presence of only RSO (A), a transport is isotropic
and the direction of effective in-plane magnetic field is always perpendicular
to that of propagating electrons. In other words, the spin precession occurs
on the plane parallel to the direction of a current. In the presence of only
DSO (B), a transport is also isotropic but the direction of effective in-plane
magnetic field depends on that of propagating electrons. On the one hand,
the plane of spin precession is perpendicular to the direction of a current when
the current is flowing along the [100] and [010] directions. On the other hand,
the plane of spin precession is parallel to the direction of a current when the
current is flowing along the [110] and [1̄10] directions.

In the presence of both RSO and DSO (C), a transport becomes anisotropic
[22]. If the strength of RSO is equal to DSO, the direction of effective in-
plane magnetic field is always parallel to the [1̄10] direction. This means
that the direction of the spin precession is fixed in the [110] direction. In
this case, the diffusion of spin direction induced by impurities (D’yakonov-
Perel’ relaxation [23]) is suppressed. Schliemann et.al have been proposed
the non-diffusive spin FET based on this property [24].

3.6 Spin-dependent effective magnetic field

In this section, we will show that RSO and DSO induce the spin-dependent
effective magnetic field perpendicular to 2DES. Let us consider the Hamilto-
nian with RSO and DSO,

H =
p2

2m∗ +
α

h̄
(σxpy − σypx) +

β

h̄
(σxpx − σypy). (3.32)
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Firstly, we derive the effective magnetic field by evaluating the time
derivative of velocity operator. The velocity operator can be calculated as

vx =
d

dt
x =

1

ih̄
[x, H] =

px

m∗ +
−ασy + βσx

h̄
(3.33)

vy =
d

dt
y =

1

ih̄
[y, H] =

py

m∗ +
ασx − βσy

h̄
. (3.34)

It clearly shows that m∗v 6= p. Similarly, the time derivative of velocity
operator can be calculated as

d

dt
v =

1

ih̄
[v, H] =

e

m∗

[
p

m∗ × B̃

]
(3.35)

where

B̃ =

(
0, 0,

2m∗2(α2 − β2)

eh̄3 σz

)
. (3.36)

Another convenient way of deriving the effective magnetic field is to esti-
mate the flux per plaquette from the Aharanov-Bohm phase. Let us consider
the Hamiltonian given by Eq. (3.27). The hopping term can be simplified as

Vi,i+x̂ = V0 exp [−i(θσy − φσx)] (3.37)

Vi,i+ŷ = V0 exp [i(θσx − φσy)] (3.38)

for an infinitesimal lattice spacing a. Let an electron initially be at (i, j) and
consider the closed path as shown in Fig. 3.3,

C = Vi,i+ŷVi,i+x̂V
†
i,i+ŷV

†
i,i+x̂

= exp [i(θσx − φσy)] exp [−i(θσy − φσx)]

× exp [−i(θσx − φσy)] exp [i(θσy − φσx)]

' exp
[
i(θ + φ)(σx − σy) + i(θ2 − φ2)σz

]

× exp
[
−i(θ + φ)(σx − σy) + i(θ2 − φ2)σz

]

' exp
[
2i(θ2 − φ2)σz

]
. (3.39)

Here we have used the Campbell-Hausdorff formula,

exp(λX) exp(λY ) = exp

(
λ(X + Y ) +

λ2

2
[X, Y ] + O(λ3)

)
(3.40)
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and have dropped terms higher than λ2. The acquired phase can be related
to an effective magnetic field as

2(θ2 − φ2)σz =
e

h̄
B̃za

2 (3.41)

that is,

B̃z =
2h̄(θ2 − φ2)

ea2
σz. (3.42)

By substituting α = 2θV0a, β = 2φV0a, and V0 = h̄2/2m∗a2, one can obtain

B̃z =
2m∗2(α2 − β2)

eh̄3 σz. (3.43)
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Figure 3.2: Spin orientation at the Fermi energy in the presence of RSO (A),
DSO (B), both RSO and DSO (C), the same strength of RSO and DSO (D).
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Figure 3.3: Closed path C inside a square lattice.
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Chapter 4

Recursive Green function
method

The measurement of an electric current is one of the most fundamental ex-
periments in order to investigate material properties. In this chapter, we will
introduce the recursive Green function method to calculate the conductance
and current distribution in mesoscopic systems for linear response regime.
We start with the one-dimensional wire in two-terminal geometry in order
to show the basic idea of the Green function method. Then we expand the
model to the finite width. Finally, we consider the multi-terminal geometry.

4.1 Two-terminal geometry

4.1.1 One-dimensional wire

Firstly, let us consider an infinite one-dimentioanl (1D) wire as shown in
Fig. 4.1. A finite sample region (•) is attached to two reservoirs via semi-
infinite ideal probes (◦).

-1 0 1 2 N-1 N N+1 N+2

Figure 4.1: Schematic of a one-dimensional wire. Black and white circles
represent a sample and ideal probe region, respectively.
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The Hamiltonian can be written by

H =
∑

i

Hia
†
iai −

∑

〈ij〉
Vija

†
iaj , (4.1)

where a†
i (ai) denotes the creation (annihilation) operator of an electron on

the site i, Hi the potential on the site i, and Vij the hopping term between
the site i and j. The hopping is restricted to nearest neighbors. Here we set

Hi =

{
Hi (1 ≤ i ≤ N)
H0 (i ≤ 0, N + 1 ≤ i)

, (4.2)

and

Vi,i+1 =

{
V (1 ≤ i ≤ N − 1)
1 (i ≤ 0, N ≤ i)

, (4.3)

respectively. The hopping in the reverse direction is given by Vi+1,i = V †
i,i+1.

The Schrödinger equation in the matrix form can be written by



. . .
. . .

. . . H0 − E −1
−1 H1 − E −V

−V †
. . .

. . .

. . .
. . . −V

−V † HN − E −1

−1 H0 − E
. . .

. . .
. . .







...
c0
c1
...
...

cN

cN+1

...




= 0 ,

(4.4)

where E denotes the Fermi energy and ci the component of the wave function
on the cite i. We note that the wave function can be decomposed into the
right- and left-going solutions which also satisfy Eq. (4.4).

Let us consider the transport from the left to the right reservoir. The
component of the right-going solution on the site −1 can be described by
that on the site 0 as

c−1 = c−1(+) + c−1(−)

= e−ikc0(+) + eikc0(−)

= e−ikc0(+) + eik(c0 − c0(+))

= eikc0 + (e−ik − eik)c0(+) , (4.5)
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where the index +(−) represents the right- (left-) going component. The
wave number k is given by

cos k =
H0 − E

2
, (4.6)

where −2 < E < 2. One can substitute Eq. (4.5) into Eq. (4.4) for the site 0
as

−c−1 + (H0 −E)c0 − c1 = 0

−{eikc0 + (e−ik − eik)c0(+)} + (H0 −E)c0 − c1 = 0

(H0 − eik −E)c0 − c1 = (e−ik − eik)c0(+) . (4.7)

Similarly, the component of the right-going solution on the site N + 2 can be
described by that on the site N + 1,

cN+2 = cN+2(+)

= eikcN+1(+)

= eikcN+1. (4.8)

By substituting Eq. (4.8) into Eq. (4.4) for the site N + 1, one can obtain

−cN + (H0 −E)cN+1 − cN+2 = 0

−cN + (H0 − eik −E)cN+1 = 0 . (4.9)

By using Eqs.(4.7) and (4.9), Eq. (4.4) for infinite sites (Fig. 4.1) can be reduced
to the equation for finite sites (Fig. 4.2),




H0 − eik − E −1
−1 H1 − E −V

−V †
.
.
.

.
.
.

.
.
.

.
.
. −V

−V † HN − E −1

−1 H0 − eik − E







c0
c1

.

.

.

.

.

.
cN

cN+1




=




(e−ik − eik)c0(+)
0

.

.

.

.

.

.

.

.

.
0




.

(4.10)

Now we define the Green function as

G ≡ 1

Hs + Σ−EI
, (4.11)
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0 1 2 N-1 N N+1

Figure 4.2: Schematic of a finite one-dimensional wire. The effects of semi-
infinite ideal probes are included into the sites 0 and N + 1.

where Hs denotes the (N + 2) × (N + 2) Hamiltonian for the sample region in
Eq. (4.10), Σ the effect of ideal probes, and I the unit matrix. The matrix element
of Σ is given by

Σij =

{
−eik (i = j = 0, N + 1)
0 (otherwise)

. (4.12)

By multiplying the Green function G to the left-hand side of Eq. (4.10), one
can obtain



c0
c1
...
cN
cN+1




=




G(0, 0) · · · G(0, N + 1)

...
. . .

...

G(N + 1, 0) · · · G(N + 1, N + 1)







(e−ik − eik)c0(+)
0
...
...
0




,

(4.13)

where G(i, j) denotes the matrix element of G.
The reflection and transmission coefficients are given by

r =
c0(−)

c0(+)
=

c0
c0(+)

− 1 = G(0, 0)(e−ik − eik) − 1 , (4.14)

t =
cN+1(+)

c0(+)
=

cN+1

c0(+)
= G(N + 1, 0)(e−ik − eik) , (4.15)

while the component of the right-going solution on the site i is given by

ci = G(i, 0)(e−ik − eik)c0(+) for 1 ≤ i ≤ N , (4.16)

where one can set c0(+) = 1. The current distribution on the site i is given by
|ci|2.

The transport from the right to the left reservoir can be evaluated simply by
changing the right-hand side of Eq. (4.10) from

(
(e−ik − eik)c0(+), 0, · · · , 0

)T
, (4.17)
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to (
0, · · · , 0, (e−ik − eik)c′N+1(−)

)T
, (4.18)

where c′N+1(−) denotes the left-going component of the left-going solution at the
site N + 1. We note that this is not the case if the magnetic field exists in ideal
probes. More careful treatment is necessary in the presence of magnetic field [25].

We summarize the reflection and transmission coefficients as the scattering
matrix,

S =

(
r t′

t r′

)

=

(
G(0, 0) G(0, N + 1)

G(N + 1, 0) G(N + 1, N + 1)

)(
e−ik − eik 0

0 e−ik − eik

)
−
(

1 0
0 1

)
,

(4.19)

where r′ and t′ represent the reflection and transmission coefficients for the left-
going transport, respectively. The corresponding right- and left-going solutions
are given by

ci = G(i, 0)(e−ik − eik)c0(+) , (4.20)

c′i = G(i,N + 1)(e−ik − eik)c′N+1(−) , (4.21)

where one can set c0(+) = c′N+1(−) = 1.

4.1.2 Quasi one-dimensional wire

Secondly, let us consider an infinite quasi one-dimentioanl (Q1D) wire as shown
in Fig. 4.3. The sample region is attached to two reservoirs via semi-infinite ideal
probes.

The Hamiltonian can be written by

Ĥ =
∑

ij

Wija
†
ijaij −

∑

ij

Vi,i+x̂; ja
†
ijai+x̂,j −

∑

ij

Vi; j,j+ŷa
†
ijai,j+ŷ + c.c. , (4.22)

where a†ij(aij) denotes the creation (annihilation) operator of an electron on the
site (i, j), Wij the potential on the site (i, j), Vi,i+x̂; j(Vi; j,j+ŷ) the hopping term
in the x(y)-direction, and c.c the complex conjugate.

We decompose the sample region into a series of the slices along the y-direction
(Fig. 4.3). The Hamiltonian can be rewritten as

Ĥ =
∑

i

Hi −
∑

ij

Vi,i+x̂; ja
†
ijai+x̂,j + c.c. , (4.23)
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Figure 4.3: Schematic of a quasi one-dimensional wire. Shaded area repre-
sents the N × M sample region.

with

Hi =
∑

j

Wija
†
ijaij −

∑

j

Vi; j,j+ŷa
†
ijai,j+ŷ + c.c. . (4.24)

Here we set

Hi =

{
Hi (1 ≤ i ≤ N)
H0 (i ≤ 0, N + 1 ≤ i)

, (4.25)

and

Vi,i+x̂; j =

{
Vx (1 ≤ i ≤ N − 1)
1 (i ≤ 0, N ≤ i)

, (4.26)

Vi; j,j+ŷ =

{
Vy (1 ≤ i ≤ N − 1)
1 (i ≤ 0, N ≤ i)

. (4.27)

The Schrödinger equation in the matrix form can be written by



. . .
. . .

. . . H0 − EI −I

−I H1 − EI −V

−V †
. . .

. . .

. . .
. . . −V

−V †
HN − EI −I

−I H0 − EI
. . .

. . .
. . .







...
C0

C1

...

...
CN

CN+1

...




= 0 ,
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(4.28)

where E denotes the Fermi energy, C i = (ci1, · · · , ciM )T the M components of
the wave function on the slice i, and I the unit matrix. The matrix element of
the hopping V is given by Vij = Vxδij . We note that the wave function can be
decomposed into the right- and left-going solutions which also satisfy Eq. (4.28).

Let us consider the transport from the left to the right reservoir. Firstly,
we change the real-space representation of C i in the ideal probe to the k-space
representation Di = (di

1, · · · , di
M )T as

Di = U †
pCi (i ≤ 0, N + 1 ≤ i) , (4.29)

with
U p = (u1, · · · ,uM ) , (4.30)

where the transverse wave function uµ can be obtained by diagonalizing the Hamil-
tonian in the ideal probe,

H0uµ = Ey
µuµ (µ = 1, · · · ,M) . (4.31)

Here Ey
µ denotes the transverse confinement energy of the µ-th channel.

The components of the right-going solution on the slice −1 can be described
by those on the slice 0 as

D−1 = D−1(+) + D−1(−)

= Λ
−1D0(+) + ΛD0(−)

= Λ
−1D0(+) + Λ(D0 − D0(+))

= ΛD0 + (Λ−1 −Λ)D0(+) , (4.32)

where the matrix element of Λ is given by Λµν = exp(ikx
µ)δµν . Here the index

+(−) represents the right- (left-) going component. The wave number kx
µ of the

channel µ is given by

cos kx
µ =

Ey
µ −E

2
, (4.33)

where −4 < E < 4. Here we note that it is necessary to calculate not only the
real number of kx

µ but also the complex number of it. All wave numbers can be
obtained by solving the equation,

λ2
µ − (Ey

µ −E)λµ + 1 = 0 , (4.34)

where λµ = exp(ikx
µ). The real number of kx

µ corresponds to the propagating mode
while the complex number to the evanescent mode. Although the evanescent modes
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do not contribute to the conductance, they must be included into Λ in order to
satisfy the unitarity of the scattering matrix.

In the real-space representation, the components of the right-going solution on
the slice −1 can be described as

C−1 = UpD−1

= Up{ΛD0 + (Λ−1 −Λ)D0(+)}
= UpΛU †

pC0 + Up(Λ
−1 −Λ)U †

pC0(+) , (4.35)

where we use U †
pUp = I. By substituting Eq. (4.35) into Eq. (4.28) for the slice 0,

one can obtain

−C−1 + (H0 − EI)C0 − C1 = 0

−{UpΛU
†
pC0 + Up(Λ−1 −Λ)U†

pC0(+)} + (H0 − EI)C0 − C1 = 0

(H0 − UpΛU
†
p − EI)C0 − C1 = Up(Λ−1 −Λ)U†

pC0(+) .

(4.36)

Similarly, the components of the right-going solution on the slice N +2 can be
described by those on the slice N + 1,

CN+2 = CN+2(+)

= UpΛU †
pCN+1(+)

= UpΛU †
pCN+1. (4.37)

By substituting Eq. (4.37) into Eq. (4.28) for the slice N + 1, one can obtain

−CN + (H0 −EI)CN+1 − CN+2 = 0

−CN + (H0 − UpΛU †
p −EI)CN+1 = 0 . (4.38)

By using Eqs.(4.36) and (4.38), Eq. (4.28) for infinite slices can be reduced to
the equation for finite slices,




H0 − UpΛU
†
p − EI −I

−I H1 − EI −V

−V †
.
.
.

.
.
.

.
.
.

.
.
. −V

−V †
HN − EI −I

−I H0 − UpΛU
†
p − EI







C0

C1

.

.

.

.

.

.
CN

CN+1




=




Up(Λ−1 − Λ)U
†
pC0(+)

0

.

.

.

.

.

.

.

.

.
0




.
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(4.39)

Now we define the Green function as

Ĝ ≡ 1

Ĥs + Σ̂−EI
, (4.40)

where Ĥs denotes the M(N + 2) ×M(N + 2) Hamiltonian for the sample region
in Eq. (4.39), Σ̂ the effect of ideal probes, and I the unit matrix. The M ×M
sub-matrix of Σ̂ is given by

Σ̂(i, j) =

{
−UpΛU †

p (i = j = 0, N + 1)

0 (otherwise)
. (4.41)

Here we need to invert theM(N+2)×M(N+2) matrix in order to obtain the Green
function Ĝ. However, the direct inversion takes much time especially for a large
system since the number of numerical operations required for the inversion of the
matrix increases as L3 with L the size of the matrix. By using the recursive method
as shown in the AppendixA, one can obtain the Green function by inverting the
M ×M sub-matrices of Ĝ successively. This approach reduces the operation time
significantly.

By multiplying the Green function Ĝ to the left-hand side of Eq. (4.39), one
can obtain




C0

C1

..

.
CN

CN+1




=




G(0, 0) · · · G(0, N + 1)

..

.
. . .

..

.

G(N + 1, 0) · · · G(N + 1, N + 1)







Up(Λ−1 −Λ)U†
pC0(+)

0

...

..

.
0




,

(4.42)

where G(i, j) denotes the M ×M sub-matrix of Ĝ.
The transmission matrix element from the channel ν to µ is given by

tµν =

√
vµ

vν

dN+1
µ (+)

d0
ν(+)

=

√
vµ

vν
{U †

pG(N + 1, 0)U p(Λ
−1 −Λ)}µν , (4.43)

where di
µ(+) denotes the right-going components of the right-going solution on the

slice i with the channel µ in the k-space representation. The velocity of electrons
in the channel µ is given by [21]

vµ = 2 sin kµ . (4.44)
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The prefactor
√
vµ/vν is necessary since the current amplitude is proportional to

the square of the wave function multiplied by the veolocity [21]. Similarly, the
reflection matrix from the channel ν to µ is given by

rµν =

√
vµ

vν

d0
µ(−)

d0
ν(+)

=

√
vµ

vν
{U †

pG(0, 0)U p(Λ
−1 −Λ) − I}µν . (4.45)

The components of the right-going solution on the slice i are given by

Ci = G(i, 0)U (Λ−1 −Λ)D0(+) for 1 ≤ i ≤ N , (4.46)

where the matrix element of D0(+) = (d0
1(+), · · · , d0

M (+))T is

d0
µ(+) =

{
1 (propagating mode)
0 (decay mode)

. (4.47)

The current distribution on the slice i is given by |C i|2.
The transport from the right to the left reservoir can be evaluated simply by

changing the right-hand side of Eq. (4.39) from
(
Up(Λ

−1 −Λ)U †
pC0(+), 0, · · · , 0

)T
, (4.48)

to (
0, · · · , 0,U p(Λ

−1 −Λ)U †
pC

′
N+1(−)

)T
, (4.49)

where C′
N+1(−) denotes the left-going component of the left-going solution at the

slice N +1. We note that this is not the case if the magnetic field presents in ideal
probes [25].

We summarize the reflection and transmission matrices as the scattering ma-
trix,

Sµν =

(
r t′

t r′

)

µν

=

√
vµ

vν

{(
U †

p 0

0 U †
p

)(
G(0, 0) G(0, N + 1)

G(N + 1, 0) G(N + 1, N + 1)

)(
Up 0

0 Up

)

×
(

Λ
−1 −Λ 0

0 Λ
−1 −Λ

)
−
(

I 0

0 I

)}

µν

(4.50)

where r′ and t′ represent the reflection and transmission matrices for the left-going
transport, respectively. The corresponding right- and left-going solutions are given
by

Ci = G(i, 0)U p(Λ
−1 −Λ)D0(+) , (4.51)

C′
i = G(i,N + 1)U p(Λ

−1 −Λ)D′
N+1(−) , (4.52)
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where

d0
µ(+) , d′N+1

µ (−) =

{
1 (propagating mode)
0 (decay mode)

. (4.53)

4.2 Multi-terminal geometory

Let us consider the three-terminal geometry as shown in Fig. 4.4. The Nx × Ny

central sample region (C) is attached to three reservoirs via probes (L,R and D).
Each probe consists of a semi-infinite ideal region and a finite sample region. The
size of the finite sample region is given by Np ×M I (I = L,R and D).

Nx

NyML
MR

MD

C

L R

D

Np Np

Np

x

y

Figure 4.4: Schematic of a three terminal geometry. Shaded area represents
the sample region.

The Hamiltonian is given by

Ĥ = HC +
∑

I=L,R,D

H
I
P − V PC (4.54)

where HC denotes the Hamiltonian for the central region (C), H
I
P the Hamiltonian

for the probe I, and V PC the coupling between the probes and central region.
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The Hamiltonian for the central region (C) is given by

HC =
∑

ij

Wija
†
ijaij −

∑

ij

Vi,i+x̂; ja
†
ijai+x̂,j −

∑

ij

Vi; j,j+ŷa
†
ijai,j+ŷ + c.c. , (4.55)

where a†ij(aij) denotes the creation (annihilation) operator of an electron on the
site (i, j), Wij the potential on the site (i, j), Vi,i+x̂; j(Vi; j,j+ŷ) the hopping term
in the x(y)-direction, and c.c the complex conjugate. The hopping term is set to
be Vi,i+x̂; j = Vx and Vi; j,j+ŷ = Vy.

The Hamiltonian for the probe I is given by

H
I
P =

∑

ij

W I
ija

I
ij
†
aI

ij −
∑

ij

V I
i,i+1; ja

I
ij
†
aI

i+1,j −
∑

ij

V I
i; j,j+1a

I
ij
†
aI

i,j+1 + c.c. , (4.56)

where aI
ij
†
(aI

ij) denotes the creation (annihilation) operator of an electron on the

site (i, j), W I
ij the potential on the site (i, j), and V I

i,i+1; j(V
I
i; j,j+1) the hopping

term in the longitudinal (transverse) direction in the probe I. We decompose the
probe region into a series of the slices along the transverse direction and gather the
slices for the same longitudinal cites (Fig. 4.5). The Hamiltonian for the gathered
slice is given by

ĤP =
∑

I

H
I
P =

∑

i

Hi −
∑

i

V i,i+1 + c.c. , (4.57)

with

Hi =
∑

I

∑

j

W I
ija

I
ij
†
aI

ij −
∑

I

∑

j

V I
i; j,j+1a

I
ij
†
aI

i,j+1 + c.c. (4.58)

=




H
L
i 0 0

0 H
R
i 0

0 0 H
D
i


 , (4.59)

and

V i,i+1 =
∑

I

∑

j

V I
i,i+1; ja

I
ij
†
aI

i+1,j . (4.60)

Here we set

Hi =

{
Hi (1 ≤ i ≤ Np)
H0 (i ≤ 0)

, (4.61)

and

V i,i+1 =

{
V (1 ≤ i ≤ Np − 1)
I (i ≤ 0)

, (4.62)

54



with

V =




V L
0 0

0 V R
0

0 0 V D


 , (4.63)

where the hopping matrix element at each probe is given by V L
ij = V †

x δij , V
R
ij =

Vxδij , and V D
ij = V †

y δij .

0 1 Npi

Figure 4.5: Graphical interpretation for the Hamiltonian Hi. The i-th slices
of three probes are gathered.

Let us consider the transport from the probe L to R and D. The equation
corresponding to Eq. 4.39 in the previous section is given by




H0 − ÛpΛ̂Û
†
p − EI −I

−I H1 − EI −V

−V †
.
.
.

.
.
.

. .
.

. .
. −V

−V †
HNp

− EI −V P C

−V
†

P C
HC − EI







C0

C1

.

.

.

.

.

.
CNp

CC




=




QLUp(Λ−1 − Λ)U
†
pC0(+)

0

.

.

.

.

.

.

.

.

.
0




,
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(4.64)

where E denotes the Fermi energy and I the unit matrix. The size of the Hamilto-
nian for the gathered slice Hi is (

∑
I MI)×(

∑
I MI) while that for the central region

HC is NxNy × NxNy. The C i = (ciL1, · · · , ciLML
, ciR1, · · · , ciRMR

, ciD1, · · · , ciDMD
)T

denotes the ML +MR +MD components of the wave function at the gathered slice
i, and CC the Nx ×Ny components at the central region. The C0(+) denotes the
incoming solution at the gathered slice 0.

The matrix of the Fourier transformation Û p is given by

Ûp =




UL 0 0

0 UR 0

0 0 UD


 , (4.65)

where U I denotes the set of the transverse wave function in the probe I. The
matrix of the ideal channel propagation Λ̂ is given by

Λ̂ =




ΛL 0 0

0 ΛR 0

0 0 ΛD


 , (4.66)

with
{ΛI}µν = exp(ikI

µ)δµν , (4.67)

where kI
µ denotes the wave number of the channel µ in the probe I.

We define the projection matrix QI as

QL
ij =

{
δij (i = 1, · · · ,ML)
0 (otherwise)

, (4.68)

QR
ij =

{
δij (i = ML + 1, · · · ,ML +MR)
0 (otherwise)

, (4.69)

QD
ij =

{
δij (i = ML +MR + 1, · · · ,ML +MR +MD)
0 (otherwise)

. (4.70)

We use QL in the Eq. (4.64) since we focus on the transport from the probe L.
In the absence of magnetic field at the ideal probe region, the transport from the
probe R or D can be simply obtained by replacing QL to QR or QD.

Now we define the Green function as

Ĝ ≡ 1

Ĥs + Σ̂−EI
, (4.71)
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where Ĥs denotes the {(∑I MI)(Np + 1) +NxNy} × {(∑I MI)(Np + 1) +NxNy}
Hamiltonian for the sample region in Eq. (4.64), Σ̂ the effect of ideal probes, and
I the unit matrix. The sub-matrix of Σ̂ is given by

Σ̂(i, j) =

{
−ÛpΛ̂Û

†
p (i = j = 0)

0 (otherwise)
. (4.72)

The Green function can be efficiently calculated by recursive method (see Ap-
pendixA).

By multiplying the Green function Ĝ to the left-hand side of Eq. (4.39), one
can obtain




C0

C1

...
CNp

CC




=




G(0, 0) · · · G(0, C)

...
. . .

...

G(C, 0) · · · G(C, C)







Ûp(Λ̂
−1 − Λ̂)Û

†
pC0(+)

0

...

...
0




,

(4.73)

where G(i, j) denotes the sub-matrix of Ĝ.
The scattering matrix element corresponding to the transport from the channel

ν in the probe J to the channel µ in the probe I is given by

SIJ
µν =

√
vI
µ

vJ
ν

{
Û

†
pG(0, 0)Û p(Λ̂

−1 − Λ̂) − I
}IJ

µν
, (4.74)

where vI
µ(vJ

ν ) denotes the Fermi velocity of an electron at the channel µ(ν) in the
probe I(J). The incoming solution from the probe I is given by

CI
i = G(i, 0)QIÛp(Λ̂

−1 − Λ̂)Û
†
pC0(+) . (4.75)
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Chapter 5

Spin-dependent electronic
transport in nanowire

In this chapter, we numerically investigate the spin-dependent electron transport
through a quasi one-dimensional wire in the presence of Rashba spin-orbit coupling
(RSO) and Dresselhaus spin-orbit coupling (DSO). We consider the sample region
attached to two reservoirs via ideal probes (Fig. 5.1). The Hamiltonian for the
sample region can be written by

H =
∑

i,σ

Wic
†
iσciσ −

∑

〈ij〉 σσ′

Viσ,jσ′c†iσcjσ′ (5.1)

with

Vi,i+x̂ = V0

(
1 −θ + iφ

θ + iφ 1

)
(5.2)

and

Vi,i+ŷ = V0

(
1 iθ − φ

iθ + φ 1

)
(5.3)

where Wi denotes the random potential on the site i distributed uniformly in
[−W/2,W/2], and Vi,i+x̂(Vi,i+ŷ) the hopping matrix elements in x-(y-) directions.
The parameters θ and φ represent the strengths of RSO and DSO, respectively.
We have ignored the spin-orbit coupling induced by the random potential.

In our numerical simulation, we consider four different combinations of RSO
and DSO as shown in Table 5.1. We firstly show the energy dependence of the
conductance and corresponding spin polarization for the ballistic and diffusive
transport. Then we show the charge and spin distribution of the current for
the single-channel transport. We also show the dynamics of the wave packet for
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Figure 5.1: Schematic of the quasi one-dimensional wire. Shaded area rep-
resents the sample region with Rashba and Dresselhaus spin-orbit couplings.

the same system. Finally we discuss some properties obtained in our numerical
simulation by symmetry of the system, self-duality of the scattering-matrix, and
Zitterbewegung.

RSO DSO

A 0.06π 0
B 0 0.06π
C 0.04π 0.02π
D 0.03π 0.03π

Table 5.1: Combinations of Rashba and Dresselhaus spin-orbit couplings.

5.1 Conductance and spin polarization

In this section, we show the energy dependence of the conductance and corre-
sponding spin polarizations. The conductance is defined by the Landauer formula
[26]

G = G0Tr t†t (5.4)

where G0 ≡ e2/h is the quantum conductance and t denotes the transmission ma-
trix from the left to the right reservoir. We have calculated the transmission matrix
by the recursive Green function method. The corresponding spin polarizations can
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be defined by

Pi =
Tr t†σit

Tr t†t
(5.5)

where σi (i = x, y, z) represents the Pauli matrices.

5.1.1 Ballistic transport

Firstly, we study the transport in the absence of impurities (W = 0 in Eq. (5.1)).
Figure 5.2 shows the energy dependence of the conductance and corresponding
spin polarizations in the presence of RSO and DSO. In the presence of RSO (A),
the spin polarization in the y-direction can be high at the energies where new
channels are opened (E = −3.68V0,−3.30V0, . . .). The spin polarizations in the
x- and z-directions are equal to zero for any value of energy. A quite similar
result can be obtained in the presence of DSO (B) except the direction of the
spin polarization is in the x-direction. These properties can be explained by the
symmetry of the system (Sec. 5.4). Figure 5.2 (C) shows the result in the presence
of RSO and DSO. This result is similar to that of (A) since the strength of RSO is
set to be twice as that of DSO. However, there are also small polarizations in the
x- and z-directions. If the strength of RSO and DSO is set to be the same (D),
no spin polarization can be obtained.

5.1.2 Diffusive transport

Secondly, we study the transport in the presence of impurities (Fig. 5.3). The
strength of disorder is set to be W = 1 in Eq. (5.1). If the transport is multi-
channeled, the spin polarization in any directions can be obtained unless the
strength of RSO differs from that of DSO. However, one can not obtain any spin
polarization for the energy where only one channel is opened (−3.91V0 < E <
−3.68V0). We will discuss this property in Sec. 5.5. As is the case in the absence
of disorder, no spin polarization can be obtained if the strength of RSO is equal
to that of DSO (D).

5.2 Charge and spin distribution of current

In this section, we show the charge and spin distribution of a current. We focus
on a ballistic transport (W = 0 in Eq. (5.1)). The Fermi energy is set to be
E = −3.8V0 where only one channel is opened.
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A: RSO

Figure 5.4 shows the charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. It is shown that the spin
distributions of the x- and z-components are antisymmetric while that for the y-
component is symmetric about x-axis (A1). This is due to the symmetry of the
system (Sec. 5.4).

(A2) and (A3) show the charge and spin distribution of a current initially
having the up- and down-spin components, respectively. They show not only the
spin precession but also deflected trajectories. Such trajectories attribute to the
spin-dependent effective magnetic field (Sec. 3.6). The combination of the spin pre-
cession and the spin-dependent deflection results in the snake motion of a propa-
gating electron. This motion can be regarded as Zitterbewegung in semiconductors
(Sec. 5.6).

B: DSO

Figure 5.5 shows the charge and spin distribution of a current in the presence of
DSO. The strength of DSO is set to be φ = 0.06π. It is shown that the spin
distributions for the y- and z-components are antisymmetric while that for the
x-component is symmetric (B1). (B2) and (B3) show the charge and spin distribu-
tions of a current initially having the up- and down-spin components, respectively.
In contrast to the presence of RSO, the spin precession occurs in the y-z plane
(Sec. 3.5).

C: RSO + DSO

Figure 5.6 shows the charge and spin distribution of a current in the presence of
both RSO and DSO. The strengths of RSO and DSO are set to be θ = 0.04π and
φ = 0.02π, respectively. Spin-dependent deflection of electrons are weaken since
the direction of effective magneitc field induced by RSO and DSO are opposite
(Sec. 3.6). The magnitude of spin distribution in the z-direction (C1, bottom) is
thus smaller than that observed in the presence of either RSO (A1, bottom) or
DSO (B1, bottom).

D: RSO = DSO

Figure 5.7 shows the charge and spin distribution of a current for the same strength
of RSO and DSO (θ = φ = 0.03π). No spin-dependent deflection (D2, D3) and no
spin polarization in the z-direction (D1, bottom) can be observed. This is because
the direction of effective magneitc field induced by RSO and DSO cancel out each
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other (Sec. 3.6). In addition, the spin precession occurs only for electrons traveling
in the (x̂+ ŷ)-direction (Sec. 3.5).

5.3 Dynamics of wave packet

In order to visualize the snake motion of propagating electrons, we have numer-
ically investigated the dynamics of the wave packet in this section. We use the
higher-order decomposition of exponential operator for calculating the time evo-
lution (see AppendixB).

We consider the isolated system with (Nx ×Ny) = (150 × 10) (Fig. 5.8). The
range of the sample region with RSO is set to be (51 < Nx < 100). The strength
of RSO is θ = 0.06π.

The initial state of the wave packet is given by

|ψχ〉 = Neikxxe
−
(

∆kx(x−x0)

2

)2

sinkyy |χ〉 (5.6)

where N is a normalized factor and χ is a spin component. In the following
simulation, we set kx = 0.35, ky = π/Ny + 1, ∆kx = 0.15, and x0 = 25.5. We
consider the wave packet with up-spin (χ =↑). The time evolution of this wave
packet roughly corresponds to the current carrying state for E = −3.8V0 in the
previous section.

Fig. 5.8 shows the distribution of charge (upper) and of the spin z-component
(lower) at certain times. It clearly shows the snake motion of the wave packet.

One can see the more detailed dynamics of the wave packet as animation in
the attached CD. The CD includes the animations for 12 types of dynamics as
summarized in Table 5.3. The snapshots shown in this section correspond to the
type A2.

SO Initial spin state
Rashba Dressehus - ↑ ↓
0.06π 0 A1 A2 A3

0 0.06π B1 B2 B3
0.04π 0.02π C1 C2 C3
0.03π 0.03π D1 D2 D3
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5.4 Spin polarization in symmetric systems

Let us consider the symmetric multi-terminal system in the presence of Rashba
spin-orbit coupling (RSO) as shown in Fig. 5.9. The sample region is attached to
reservoirs via semi-infinite ideal probes. Here the word “ideal” means that the
system including probes is also symmetric. The Hamiltonian is given by

H =
p2

2m∗ +
α

h̄
(σxpy − σypx) + V (|y|) . (5.7)

where

α =

{
α (sample region)
0 (probe region)

. (5.8)

Since the size of the system including probes are infinite, there is an eigenfunction
of the Hamiltonian for any value of the Fermi energy, H |ψ〉 = EF |ψ〉. This
eigenfunction can be decomposed as

|ψ〉 = |ψ1〉 + |ψ2〉 + |ψ3〉 , (5.9)

where |ψI〉 denotes the incoming solution from the probe I. In the previous section,
we have already noted that each of |ψI〉 is also the eigenfunction of the Hamiltonian
and the electron injected from the probe I with the energy EF propagates through
the system via the wavefunction |ψI〉.

Now let us focus on the wavefunction |ψ1〉. In the coordinate representation,
it can be written as

|ψ1〉 =

∫ ∞

−∞

∫ ∞

−∞
dxdyc1(x, y)χ1(x, y) |x, y〉

=

∫ ∞

−∞
dx

∫ ∞

0
dyc1(x, y)χ1(x, y) |x, y〉 + c1(x,−y)χ1(x,−y) |x,−y〉 ,

(5.10)

where c1(x, y) denotes the charge component while χ1(x, y) the (2 × 1) spin com-
ponent at the coordinate (x, y). Since the system is symmetric about the x-axis,
the charge component of |ψ〉1 satisfies

|c1(x, y)| = |c1(x,−y)| . (5.11)

The considered system with RSO has the following commutation relation,

[H, σySy] = 0 , (5.12)
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where Sy denotes the Parity operator in the y-direction, Sy |x, y〉 = |x,−y〉. This
relation satisfies

σySy |ψ1〉 = ± |ψ1〉 . (5.13)

By substituting Eqs. (5.11) and (5.13) into Eq. (5.10), one can obtain

χ1(x, y) = ±σyχ1(x,−y) . (5.14)

Hence, the local expectation value of the spin x-component at the coordinate (x, y)
relates to that at (x,−y) as

〈σx〉(x,y) = |c1(x, y)|2χ1(x, y)
†σxχ1(x, y)

= −|c1(x,−y)|2χ1(x,−y)†σxχ1(x,−y)
= −〈σx〉(x,−y) . (5.15)

Similarly,

〈σy〉(x,y) = 〈σy〉(x,−y) , (5.16)

〈σy〉(x,y) = −〈σz〉(x,−y) . (5.17)

In the presence of Dresselhaus spin-orbit coupling (DSO), the Hamiltonian can
be written as

H =
p2

2m∗ +
β

h̄
(σxpx − σypy) + V (|y|) . (5.18)

In this case, the commutation relation is given by

[H, σxSy] = 0 , (5.19)

and the local expectation value of the spin component satisfies

〈σx〉(x,y) = 〈σx〉(x,−y) , (5.20)

〈σy〉(x,y) = −〈σy〉(x,−y) , (5.21)

〈σy〉(x,y) = −〈σz〉(x,−y) . (5.22)

In the presence of both RSO and DSO, there is no such a relation of the local
expectation value of the spin component.
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5.5 Self-duality and single-channel transport

The system with spin-orbit coupling belongs to the symplectic universality class
[27]. The scattering matrix in this class has the self-duality property by choosing
a proper basis.

The self-duality is defined as follows. If a particular 2 × 2 spin-dependent
element of the scattering matrix is given by

Sij =

(
A B
C D

)
, (5.23)

its reversive elements can be represented as

Sji =

(
D −B
−C A

)
. (5.24)

Now let us consider the spin polarization for the single-channel transport in
two-terminal geometry in the symplectic class. In this case, the scattering matrix
can be described by the 4 × 4 matrix,

S =

(
r t′

t r′

)
=




e 0 d −b
0 e −c a
a b f 0
c d 0 f


 . (5.25)

The spin polarization in the x-, y-, and z- directions (5.5) are given by

Px =
ac∗ + bd∗

|a|2 + |b|2 + |c|2 + |d|2 + c.c (5.26)

Py =
i(ac∗ + bd∗)

|a|2 + |b|2 + |c|2 + |d|2 − c.c (5.27)

Pz =
|a|2 + |b|2 − |c|2 − |d|2
|a|2 + |b|2 + |c|2 + |d|2 (5.28)

where c.c denotes the complex conjugate.
On the other hand, the unitarity of the scattering matrix (Eq. (5.25)) gives

|a|2 + |b|2 − |c|2 − |d|2 = 0 (5.29)

ac∗ + bd∗ = 0. (5.30)

This immediately results in
Pi = 0 (5.31)

for i = x, y, z. This explains that one cannot obtain any spin polarization for the
single-channle transport in two-terminal geometory (Sec. 5.1).

65



5.6 Zitterbewegung

Zitterbewegung is the oscillating motion of the electron which is traveling at very
high velocity. This is the interference effect between wave functions of the positive
and negative energy branch in the Dirac equation (Eq. (2.48)) [12]. As we have
already seen in Sec. 2.6, the relativistic spin-orbit coupling originates from the
coupling between the positive and negative energy branch. Although the spin-orbit
coupling in semiconductors attributes to the coupling between the conduction and
valence band, the derived effective Hamiltonian looks the same as the relativistic
one. Therefore, one can regard the snake motion of electrons observed in Sec. 5.2
as Zitterbewegung in semiconductors.
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Figure 5.2: Energy dependence of the conductance (upper) and correspond-
ing spin polarizations (lower) in the absence of disorder (W = 0). The
strengths of RSO (θ) and DSO (φ) are set to be as follows. (A) θ = 0.06π.
(B) φ = 0.06π. (C) θ = 0.04π and φ = 0.02π. (D) θ = φ = 0.03π.
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Figure 5.3: Energy dependence of the conductance (upper) and correspond-
ing spin polarizations (lower) in the presence of disorder (W = 1). The
strengths of RSO (θ) and DSO (φ) are set to be as follows. (A) θ = 0.06π.
(B) φ = 0.06π. (C) θ = 0.04π and φ = 0.02π. (D) θ = φ = 0.03π.
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Figure 5.4: (A1) Charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. (A2) Up-spin component.
(A3) Down-spin component.
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Figure 5.5: (B1) Charge and spin distribution of a current in the presence of
DSO. The strength of DSO is set to be φ = 0.06π. (B2) Up-spin component.
(B3) Down-spin component.
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Figure 5.6: (C1) Charge and spin distribution of a current in the presence
of RSO and DSO. The strength of RSO and DSO are set to be θ = 0.04π
and φ = 0.02π, respectively. (C2) Up-spin component. (C3) Down-spin
component.
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Figure 5.7: (D1) Charge and spin distribution of a current in the presence of
RSO and DSO. The strength of RSO and DSO are set to be θ = φ = 0.03π
(D2) Up-spin component. (D3) Down-spin component.
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Figure 5.8: Time evolution of the wave packet. Yellow region represents the
sample region with Rashba spin-orbit coupling. The time of each snapshot
is t = 0, 20, 40, · · · in units of h̄V −1

0 .
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Figure 5.9: Schematic of a symmetric multi-terminal system. The shaded
area represents the sample region with spin-orbit coupling.
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Chapter 6

T-shape conductor

In this chapter, we have numerically investigated the spin-dependent electronic
transport through the T-shape conductor as shown in Fig. 6.1. The sample region
contains RSO and DSO and attached to three reservoirs via ideal probes. The
Hamiltonian is given by Eq. (5.1). We have considered four different combinations
of RSO and DSO as shown in Table 5.1. The system size is set to be Nw = 10a and
Nl = 20a except Sec. 6.7. The spin-dependent transport in this system has been
originally investigated by Kiselev and Kim [28]. Our results are consistent with
their weak spin-orbit coupling results, while new properties have been observed
for strong spin-orbit coupling [29].

6.1 Conductance and spin polarization

In this section, we show the energy dependence of the conductance and corre-
sponding spin polarizations.

The conductance is defined by

GIJ = G0Tr t†IJtIJ (6.1)

where G0 ≡ e2/h is the quantum conducntace and tIJ denotes the transmission
matrix from the reservoir J to I. Transmission matrix tIJ can be calculated by
the recursive Green function method. The corresponding spin polarizations are
defined by

P IJ
i =

Tr t†IJσitIJ

Tr t†IJ tIJ

(6.2)

where σi (i = x, y, z) represents the Pauli matrices.
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Figure 6.1: Schematic of the T-shape conductor. Shaded area represents the
sample region with Rashba and Dresselhaus spin-orbit couplings.

In the following simulation, we focus on the ballistic transport (W = 0 in
Eq. (5.1)) from the bottom reservoir (J = 1) to the left reservoir (I = 2) and right
reservoir (I = 3).

6.1.1 Magnitude of spin polarization

Firstly, we focus on the magnitude of spin polarization,

|P | =
√
P 2

x + P 2
y + P 2

z . (6.3)

Figure 6.2 shows the energy dependence of the conductance and corresponding spin
polarization in the presence of RSO and DSO. It is shown that nearly 100% spin
polarization can be obtained for the energy range of the single-channle transport
in the presence of RSO (A). This result attributes to a strong spin-orbit coupling
and differs from the result obtained in the precedent work in the weak coupling
region [28]. In Sec. 6.4, we have compared the result obtained for strong RSO
with that for weak RSO. We have also discussed the condition of this 100% spin
polarization in Sec. 6.5.

The same result can be obtained for DSO (B). In the presence of both RSO
and DSO (C), the spin-dependent transport becomes anisotropic. This results in
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the different value of the spin polarization at the left and right probes. The spin
polarization is strongly reduced when the strength of RSO is equal to that of DSO
(D). We note that high polarization seems to be obtained at E = −3.7V0, but
corresponding conductance is quite small.

6.1.2 Direction of spin polarization

Secondly, we focus on the spin polarizations in the x-, y-, and z-directions. Figure
6.3 shows the energy dependence of each components of the spin polarization at
the left and the right probes in the presence of RSO and DSO. In the presence of
only RSO (A), the y- and z-components are antisymmetric while the x-component
is symmetric between the left and right probes. Similar result with x and y spin
directions interchanged are obtained in the presence of only DSO (B). This is
due to the symmetry of the system (Sec. 5.4). In the presence of both RSO and
DSO (C), the components of the spin polarization at the left and right probes are
independent each other. The x- and y-components are antisymmetric each other
in the same probe while the z-component is equal to zero for the same strength of
RSO and DSO (D).

6.2 Charge and spin distribution of current

In this section, we show the charge and spin distribution of a current. We focus
on a ballistic transport (W = 0 in Eq. (5.1)). The Fermi energy is set to be
E = −3.8V0 where only one channel is opened.

A: RSO

Figure 6.4 shows the charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. It is shown that the charge
distribution is symmetric while the spin distribution is antisymmetric (A1). This
can be explained by the symmetry of the system in Sec. 5.4.

It is well known that the direction of spin are not randomly distributed but
quantized in a certain direction. This property was originally shown by the Stern-
Gerlach experiment [11]. In the previous chapter, the direction of the spin quanti-
zation axis is set to be the z-direction, but one can arbitrarily choose this direction
if the up and down spins are degenerated. (A2) and (A3) show the charge and
spin distributions of a current initially having the up and down spin components
in the particular spin quantization axis. The up and down spins are represented
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by the spins parallel to the z-axis as

|↑〉new = cos
θ′

2
|↑〉 + sin

θ′

2
eiφ′ |↓〉 (6.4)

|↓〉new = − sin
θ′

2
|↑〉 + cos

θ′

2
eiφ′ |↓〉 (6.5)

with θ′ = 0.6978π and φ′ = −π/2.
It is clearly shown that a current with up and down spins are separated at

the junction of the T-shape conductor. This is due to the spin-dependent effective
magnetic field (Sec. 3.6). We also give the detailed analysis in Sec. 6.5.

B: DSO

Figure 6.5 shows the charge and spin distribution of a current in the presence of
DSO. The strength of DSO is set to be φ = 0.06π. The charge distribution is the
same as that of RSO while the spin distirbution is opposite since the direction of
a spin-dependent effective magnetic field is antiparallel between RSO and DSO
(Eq. (3.36)). This property can be clearly observed in the charge and spin distri-
butions of a current initially having the up and down spin components ((B2) and
(B3)). Here the up and down spins are represented by the spins parallel to the
z-axis as

|↑〉new = cos
θ′

2
|↑〉 + sin

θ′

2
eiφ′ |↓〉 (6.6)

|↓〉new = − sin
θ′

2
|↑〉 + cos

θ′

2
eiφ′ |↓〉 (6.7)

where θ′ = 0.3022π and φ′ = 0.

C: RSO + DSO

Figure 6.6 shows the charge and spin distribution of a current in the presence of
both RSO and DSO. The strength of RSO and DSO are set to be θ = 0.04π and
φ = 0.02π, respectively. The reflection at the junction are enhanced since the
strength of effective magnetic field (Eq. (3.36)) are weaken due to the coexistance
of RSO and DSO. (C2) and (C3) show the charge and spin distribution of the
current initially having the up and down spin components parallel to the z-axis,
respectively.

D: RSO=DSO

Figure 6.7 shows the charge and spin distribution of a current for the same strength
of RSO and DSO (θ = φ = 0.03π). The reflection at the junction are further
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enhanced since the strength of effective magnetic field (Eq. 3.36) is equal to zero
(D1). It is also shown that there is no spin polarization in the z-direction. (D2)
and (D3) show the charge and spin distribution for the current initially having the
up and down spin components parallel to the z-axis, respectively. In this case, the
charge distributions of up- and down-spin components are identical.

6.3 Dynamics of wave packet

In this section, we show the dynamics of the wave packet. We have considered the
isolated system which consists of the ideal probe regions and the sample region
with RSO (Fig. 6.8). The size of the probe and sample regions are set to be

(Nprobe
l ×Nprobe

w ) = (20 × 10) and (N sample
x ×N sample

y ) = (10 × 10), respectively.

The size of the ideal probe is (N ideal
l ×N ideal

w ) = (40 × 10). The strength of RSO
is set to be θ = 0.06π.

The initial shape of the wave packet is same as that given in Sec. 5.3. The
initial spin state is given by

|χ〉 = cos
θ′

2
|↑〉 + sin

θ′

2
eiφ′ |↓〉 (6.8)

where θ′ = 0.9678π and φ′ = −π/2. One can see the more detailed dynamics of
the wave packet as animation in the attached CD.

6.4 Dependence on spin-orbit coupling

Figure 6.9 shows the dependence of the conductance and the spin polarization
on the Fermi energy E for weak and strong spin-orbit couplings. We consider
the energy region for single-channel transport. For weaker spin-orbit coupling
(θ = 0.02π), high spin polarization is obtained for energies just before the sec-
ond channel opens (E ' −3.68V0). The corresponding conductance is small as
compared to G0. This result is consistent with that of the preceding investigation
[28]. Almost perfect polarization is obtained together with a conductance close to
G0 for stronger spin-orbit coupling (θ = 0.06π). Here, the polarization is almost
insensitive to the energy except near the band edge.

Figure 6.10 shows the dependence of the conductance and the spin polarization
on the strength of RSO at energy E = −3.8V0. With the increase of the strength
of RSO, Py also increases monotonically while Px and Pz oscillate. We also note
that the conductance increases together with the amplitude of the polarization.
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6.5 Condition for 100% spin polarization

What are the conditions for achieving almost perfect polarization? We define the
π-phase spin precession length Lso(|P |, Nw) = πa/2θ(|P |, Nw) where θ(|P |, Nw) is
the strength of RSO giving rise to the polarization |P | for the width Nw. From
the plot Lso(|P |, Nw) as a function of the width of the system Nw (Fig. 6.11),
one concludes that Lso(|P |, Nw) is almost linear in Nw and high polarization,
|P | > 0.99, is achieved for Lso(|P |, Nw) < Nw.

Let us use Eq.(3.42) to estimate the strength of effective magnetic field,

B̄(θ) =
4h̄θ2

πea2
=

h̄π

eL2
so

(6.9)

where we have averaged σz to be 2/π, since the variation of the expectation value
of σz is described by the cosine function. Since the kinetic energy is comparable
to the confinement energy in single-channel transport, the velocity of an injected
electron can be assumed to be

v ' h̄π

m∗Nw
. (6.10)

Then the corresponding cyclotron diameter is given by

2lB̄(θ) =
2m∗v

eB̄(θ)
=

2L2
so

Nw
. (6.11)

The cyclotron diameter becomes shorter than the wire width (2lB̄(θ) < Nw) if the
spin precession length becomes shorter than the wire width (Lso < Nw/

√
2). As a

result, electrons with opposite z–component spin are almost completely separated
at the junction and nearly perfect spin polarization is obtained (Fig.6.12). This
situation is similar to the mesoscopic cross junction in magnetic fields [30].

6.6 Influence of disorder

We now consider briefly the effect of disorder on the spin polarization (Fig. 6.13).
An ensemble average is performed over 104 samples. The suppression of the po-
larization by disorder becomes more prominent as the spin-orbit coupling becomes
stronger. The mean free path of a 2DES in the tight-binding model is described
by [25]

Lm = 48aV
3/2
0

√
E + 4V0

W 2
. (6.12)

One can use this estimate to distinguish the ballistic regime from the diffusive
one. For the present system, we obtain W ' 1.53V0 for Lm = 50a (indicated by
an arrow in Fig. 6.13). As seen in the figure, the sample size must be smaller than
the mean free path in order to obtain high spin polarization.
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6.7 Experimental realization

In order to obtain information whether or not the predicted effects are observable
in experiment, let us consider the parameters required for one of the favorable
materials, InAs, with an effective mass m∗ = 0.039m (m is the free electron mass)
and Rashba coupling α = 238 meVÅ[31]. Let us assume that the width of the
conduction band is ∆ =1 eV. This gives for V0 = ∆/2Z = 125meV (Z = 4 for
square lattice), and for the tight-binding lattice parameter a = h̄/(2m∗V0)

1/2 '
2.8 nm. Using the above numerical value of α one obtains θ = α/2V0a ' 0.01π.
This would reduce the polarization to about 10%, still a reasonable value for being
observable in experiment. The crucial point, however, is the condition that the
transport has to be in the single-channel regime. The wire width should be about
20 nm for single-channel transport when Fermi energy is of the order of 10meV.

For this reason, we have investigated the transport in the system whose sizes
are Nw = 50a (140 nm) and Nl = 50a where many channels exist. Figure 6.14
shows the dependence of the conductance and the spin polarization on the Fermi
energy E for θ = 0.01π. We focus on the energy region −3.9V0 < E < −3.6V0. In
this energy region where the number of channels increases to values ranging from
5 to 10, several channels contribute to transport. While the spin polarization is
reduced by channel mixing, it still stays higher than 10%. This indicates that we
can observe the spin polarization experimentally.
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Figure 6.2: Energy dependence of the conductance (upper) and correspond-
ing spin polarization (lower). The strengths of RSO (θ) and DSO (φ) are
set to be as follows. (A) θ = 0.06π. (B) φ = 0.06π. (C) θ = 0.04π and
φ = 0.02π. (D) θ = φ = 0.03π.
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Figure 6.3: Components of spin polarization at the upper probe (upper) and
the lower probe (lower). The strengths of RSO (θ) and DSO (φ) are set to
be as follows. (A) θ = 0.06π. (B) φ = 0.06π. (C) θ = 0.04π and φ = 0.02π.
(D) θ = φ = 0.03π.
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Figure 6.4: (A1) Charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. (A2) Left-going solution.
(A3) Right-going solution.
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Figure 6.5: (B1) Charge and spin distribution of a current in the presence of
DSO. The strength of DSO is set to be φ = 0.06π. (B2) Left-going solution.
(B3) Right-going solution.
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Figure 6.6: (C1) Charge and spin distribution of a current in the presence
of RSO and DSO. The strengths of RSO and DSO are set to be θ = 0.04π
and φ = 0.02π, respectively. (C2) Up-spin component. (C3) Down-spin
component.

87



(D1)

0

0.5

1

D
en

si
ty

X

Y

10 20 30 40 50

10

20

30

-1

0

1

<
S

z>

10 20 30 40 50

10

20

30

(D2)

0

0.5

1

D
en

si
ty

X

Y

10 20 30 40 50

10

20

30

-1

0

1

<
S

z>

10 20 30 40 50

10

20

30

(D3)

0

0.5

1

D
en

si
ty

X

Y

10 20 30 40 50

10

20

30

-1

0

1

<
S

z>
10 20 30 40 50

10

20

30

Figure 6.7: (D1) Charge and spin distribution of a current in the presence of
RSO and DSO. The strengths of RSO and DSO are set to be θ = φ = 0.03π.
(D2) Up-spin component. (D3) Down-spin component.
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Figure 6.8: Time evolution of the wave packet. Yellow region represents the
sample region with Rashba spin-orbit coupling. The time of each snapshot
is t = 0, 20, 40, · · · in units of h̄V −1

0 .
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Figure 6.9: Conductance G and spin polarization |P | as functions of the
Fermi energy E in the region of single-channel transport in the presence of
Rashba spin-orbit coupling. Almost 100% polarization is obtained together
with G ≈ G0 for stronger spin-orbit coupling (θ = 0.06π). For θ = 0.02π
high polarization is obtained only at energies just before the second channel
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Figure 6.11: The spin precession lengths Lso for |P | = 0.5, 0.75, 0.99 as
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Figure 6.12: Schematic view of the electron trajectory. A pair of the electrons
with anti-parallel spins are almost completely separated at the junction when
the cyclotron diameter becomes shorter than the wire width (2lB̄(θ) < Nw).
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Chapter 7

Cavity attached to three probes

In the experiment, it is still hard to fabricate a narrow T-shape structure such
that the transport is formed only by the lowest subband. In order to realize the
single-channel transport, it is more realistic to fabricate a structure by a quantum
dot attached to three probes via point contacts [32]. For this reason, we have
investigated the transport through the cavity attached to three reservoirs via ideal
probes as shown in Fig. 7.1 [33].

1

2

3

30

10

10

10

x

y

z

Figure 7.1: Schematic of the cavity attached to three probes. Shaded area
represents the sample region with Rashba and Dresselhaus spin-orbit cou-
plings.

The sample region contains RSO and DSO and the Hamiltonian is given by
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Eq. (5.1). We have considered four different combinations of RSO and DSO as
shown in Table 5.1.

7.1 Conductance and spin polarization

In this section, we show the energy dependence of the conductance and corre-
sponding spin polarizations. The conductance and spin polarization are defined
by Eqs. (6.1) and (6.2), respectively. In the following simulation, we focus on the
ballistic transport (W = 0 in Eq. (5.1)) from the left reservoir (J = 1) to the upper
right reservoir (I = 2) and the lower right reservoirs (I = 3).

7.1.1 Magnitude of spin polarization

Firstly, we focus on the magnitude of spin polarization (Eq. (6.3)). Figure 7.2 shows
the energy dependence of the conductance and corresponding spin polarization
in the presence of RSO and DSO. Similar to a T-shape conductor, high spin
polarization can be obtained for the energy range of the single-channel transport in
the presence of either RSO (A) or DSO (B). However, the spin polarization strongly
depends on the energy in comparison with a T-shape conductor. Anisotropic
properties is enhanced due to the scattering inside a cavity in the presence of RSO
and DSO (C). In the case of the same strength of RSO and DSO (D), the spin
polarization is smaller than above three results (A,B,C), but larger than the result
obtained for a T-shape conductor. This can also attribute to the scattering inside
a cavity.

7.1.2 Direction of spin polarization

Secondly, we focus on the spin polarizations in the x-, y-, and z-directions. Figure
7.3 shows the energy dependence of each components of the spin polarization at the
upper and lower right probes in the presence of RSO and DSO. Obtained results
are qualitatively the same as those for a T-shape conductor. Quantitatively, it
shows strong energy dependence due to the cavity structure.

7.1.3 Energy levels of isolated system

In order to see the energy dependence of conductance and corresponding spin
polarization in detail, we have compared these dependance with energy levels of
isolated sample region. We focus on the energy dependence in the presence of RSO
(Fig. 7.2 (A)) for −3.9V0 < E < −3.7V0 (Fig. 7.4). Vertical lines are corresponding
to the energy levels of the 30 × 30 isolated sample region, which can be obtained
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directly by diagonalizing the Hamiltonian (Eq. (5.1)). It is shown that the positions
of large dips in conductance are well fitted with those of energy levels. Localization
of electrons are enhanced at these energies althogh we have considered an open
system, i.e., electrons are freely traveling from one probe to the other. Some
dips and peaks of spin polarization are also observed at the energy levels of the
isolated cavity. On the other hand, other dips and peaks seems independent from
energy levels. If we reduce the strength of coupling between the sample region and
ideal probes, such independence may disappear and transport properties can be
dominated by the energy levels of the isolated cavity. In this case, however, one
need to consider the electron-electron interaction inside the cavity.

7.2 Charge and spin distribution of current

In this section, we show the charge and spin distributions of a current. We focus
on a ballistic transport (W = 0 in Eq. (5.1)). The Fermi energy is set to be
E = −3.8V0 where only one channel is opened. Obtained results are qualitatively
the same as those of a T-shape conductor.

A: RSO

Figure 7.6 shows the charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. It is shown that the charge
distribution is symmetric while the spin distribution is antisymmetric (A1). (A2)
and (A3) show the charge and spin distribution of the current initially having the
up- and down-spin components, respectively.

B: DSO

Figure 7.5 shows the charge and spin distribution of a current in the presence
of DSO. The strength of DSO is set to be φ = 0.06π. (B2) and (B3) show the
charge and spin distribution of the current initially having the up- and down-spin
components, respectively.

C: RSO + DSO

Figure 7.7 shows the charge and spin distribution of a current in the presence
of both RSO and DSO. The strength of RSO and DSO are set to be θ = 0.04π
and φ = 0.02π, respectively. The charge distribution clearly shows an anisotropic
transport (C1). (C2) and (C3) show the charge and spin distributions of the
current initially having the up- and down-spin components, respectively.
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D: RSO = DSO

Figure 7.8 shows the charge and spin distribution of a current for the same strength
of RSO and DSO (θ = φ = 0.03π). (D2) and (D3) show the charge and spin
distribution of the current initially having the up- and down-spin components,
respectively.

7.3 Dynamics of wave packet

In this section, we show the dynamics of the wave packet. We have considered the
isolated system which consists of the ideal probe regions and the sample region
with RSO (Fig. 7.9). The size of the ideal probe and sample regions are set to be
(N ideal

x ×N ideal
y ) = (50×10) and (N sample

x ×N sample
y ) = (30×30), respectively. The

strength of RSO is set to be θ = 0.06π. The initial condition of the wave packet
is the same as that given in Sec. 5.3. One can see the more detailed dynamics of
the wave packet as animation in the attached CD.
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Figure 7.2: Energy dependence of the conductance (upper) and correspond-
ing spin polarizations (lower). The strengths of RSO (θ) and DSO (φ) are
set to be as follows. (A) θ = 0.06π. (B) φ = 0.06π. (C) θ = 0.04π and
φ = 0.02π. (D) θ = φ = 0.03π.
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Figure 7.3: Components of spin polarization at the upper probe (upper) and
the lower probe (lower). The strengths of RSO (θ) and DSO (φ) are set to
be as follows. (A) θ = 0.06π. (B) φ = 0.06π. (C) θ = 0.04π and φ = 0.02π.
(D) θ = φ = 0.03π.
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Figure 7.5: (A1) Charge and spin distribution of a current in the presence of
RSO. The strength of RSO is set to be θ = 0.06π. (A2) Up-spin component.
(A3) Down-spin component.
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Figure 7.6: (B1) Charge and spin distribution of a current in the presence of
DSO. The strength of DSO is set to be φ = 0.06π. (B2) Up-spin component.
(B3) Down-spin component.
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Figure 7.7: (C1) Charge and spin distribution of a current in the presence
of RSO and DSO. The strengths of RSO and DSO are set to be θ = 0.04π
and φ = 0.02π, respectively. (C2) Up-spin component. (C3) Down-spin
component.
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Figure 7.8: (D1) Charge and spin distribution of a current in the presence of
RSO and DSO. The strengths of RSO and DSO are set to be θ = φ = 0.03π.
(D2) Up-spin component. (D3) Down-spin component.
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Figure 7.9: Time evolution of the wave packet. Yellow region represents the
sample region with Rashba spin-orbit coupling. The time of each snapshot
is t = 0, 20, 40, · · · in units of h̄V −1

0 .
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Appendix A

Calculation of Green function

A.1 Recursive calculation
In this appendix, we show how to calculate the MN ×MN Green function recur-
sively. For example, let us consider the 4M × 4M Hamiltonian,




H1 − EI −V 0 0

−V †
H2 − EI −V 0

0 −V †
H3 − EI −V

0 0 −V †
H4 − EI






G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44




=




I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I



 ,

(A.1)

where Hi and Gij denote the M ×M sub-matrices of the Hamiltonian and the
Green function, respectively. Here we have ignored the effect of ideal probes Σ̂

since it is not necessary to explain the mathematical procedure of the recursive
method.

Firstly, we focus on the left side column of the Green function,



H1 −EI −V 0 0

−V †
H2 −EI −V 0

0 −V †
H3 −EI −V

0 0 −V †
H4 −EI







G11

G21

G31

G41


 =




I

0

0

0


 . (A.2)

By calculating from the bottom row of the Hamiltonian, one can obtain the G11

as

−V †G31 + (H4 −EI)G41 = 0

G41 = g
↑
4V

†G31 , (A.3)
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−V †G21 + (H3 −EI)G31 − V G41 = 0

−V †G21 + ((H3 −EI) − V g
↑
4V

†)G31 = 0

G31 = g
↑
3V

†G21 , (A.4)

−V †G11 + (H2 −EI)G21 − V G31 = 0

−V †G11 + ((H2 −EI) − V g
↑
3V

†)G21 = 0

G21 = g
↑
2V

†G11 , (A.5)

and

(H1 −EI)G11 − V G21 = I

((H1 −EI) − V g
↑
2V

†)G11 = I

G11 =
1

(H1 −EI) − V g
↑
2V

† . (A.6)

Here g
↑
i is defined by

g
↑
i =

1

(Hi −EI) − V g
↑
i+1V

† (g↑
5 = 0) . (A.7)

The G21 can be obtained by substituting G11 into Eq.(A.5). One can obtain G31

and G41 in sequence.
Secondly, we focus on the right side column of the Green function,




H1 −EI −V 0 0

−V †
H2 −EI −V 0

0 −V †
H3 −EI −V

0 0 −V †
H4 −EI







G14

G24

G34

G44


 =




0

0

0

I


 . (A.8)

By calculating from the top row of the Hamiltonian, one can obtain G44 as

(H1 −EI)G14 − V G24 = 0

G14 = g
↓
1V G24 , (A.9)

−V †G14 + (H2 −EI)G24 − V G34 = 0

((H2 −EI) − V †g↓
1V )G24 − V G34 = 0

G24 = g
↓
2V G34 , (A.10)
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−V †G24 + (H3 −EI)G34 − V G44 = 0

((H3 −EI) − V †g↓
2V )G34 − V G44 = 0

G34 = g
↓
3V G44 , (A.11)

and

−V †G34 + (H4 −EI)G44 = I

((H4 −EI) − V †g↓
3V )G44 = I

G44 =
1

(H4 −EI) − V †g↓
3V

. (A.12)

Here g
↓
i is defined by

g
↓
i =

1

Hi −EI − V †g↓
i−1V

(g↓
0 = 0) . (A.13)

Lastly, we focus on the intermediate column of the Green function,




H1 −EI −V 0 0

−V †
H2 −EI −V 0

0 −V †
H3 −EI −V

0 0 −V †
H4 −EI







G12

G22

G32

G42


 =




0

I

0

0


 . (A.14)

On the one hand, by calculating from the top row of the Hamiltonian, one can
have

(H1 −EI)G12 − V G22 = 0

G12 = g
↓
1V G22 . (A.15)

On the other hand, by calculating from the bottom row of the Hamiltonian, one
can have

−V †G32 + (H4 −EI)G42 = 0

G42 = g
↑
4V

†G32 , (A.16)

and

−V †G22 + (H3 −EI)G32 − V G42 = 0

−V †G22 + ((H3 −EI) − V g
↑
4V

†)G32 = 0

G32 = g
↑
3V

†G22 . (A.17)
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By substituting Eqs.(A.15) and (A.17) into the following equation, one can obtain
G22 as

−V †G12 + (H2 −EI)G22 − V G32 = I

((H2 −EI) − V †g↓
1V − V g

↑
3V

†)G22 = I

G22 =
1

((H2 −EI) − V †g↓
1V − V g

↑
3V

†)
.

(A.18)

Now we summarize the recursive calculation for theMN×MN Green function.
Firstly, calculate g

↑
i and g

↓
i for i = 1 to N ,

g
↑
i =

1

(Hi −EI) − V g
↑
i+1V

† (g↑
N+1 = 0) , (A.19)

g
↓
i =

1

(Hi −EI) − V †g↓
i−1V

(g↓
0 = 0) . (A.20)

By using them, one can obtain the M ×M diagonal sub-matrices of the Green
function as

Gii =
1

(Hi −EI) − V g
↑
i+1V

† − V †g↓
i−1V

. (A.21)

Finally, the sub-matrices of the lower and upper triangle of the Green function can
be obtained from the diagonal sub-matrices in order,

Gi+1,j = g
↑
i+1V

†Gij (i ≥ j) , (A.22)

Gi−1,j = g
↓
i−1V Gij (i ≤ j) . (A.23)

A.2 Comparison with Transfer Matrix method

Let us consider the left side column of the Green function (Eq.(A.2)) again,



H1 −EI −V 0 0

−V †
H2 −EI −V 0

0 −V †
H3 −EI −V

0 0 −V †
H4 −EI







G11

G21

G31

G41


 =




I

0

0

0


 . (A.24)

One can also calculate the G41 in the following way,

−V †G31 + (H4 −EI)G41 = 0

G31 = V (H4 −EI)G41 (V † = V −1)

= f3G41 , (A.25)
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−V †G21 + (H3 −EI)G31 − V G41 = 0

G21 = V ((H3 −EI)G31 − V G41)

= V ((H3 −EI)f3 − V )G41

= f2G41 , (A.26)

−V †G11 + (H2 −EI)G21 − V G31 = 0

G11 = V ((H2 −EI)G21 − V G31)

= V ((H2 −EI)f2 − V f3)G31

= f1G41 , (A.27)

and

(H1 −EI)G11 − V G21 = I

((H1 −EI)f1 − V f2)G41 = I

G41 =
1

(H1 −EI)f1 − V f2

. (A.28)

Here f i is defined by

f i = V ((Hi+1 −EI)f i+1 − V f i+2) (f4 = I,f5 = 0) . (A.29)

The procedure of this calculation is the same as that of the transfer matrix method
[34]. In this approach, one need to invert the M ×M sub-matrix only at the last
step of the calculation in theory. In practice, however, the inversion of the sub-
matrix is necessary at every five or six steps in order to avoid the divergence of
the evanescent mode. Still, the operation time of the transfer matrix method is
much shorter than that of the recursive Green function method.
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Appendix B

Calculation of time evolution

In order to solve numerically the time-dependent Schrödinger equations, we have
adopted the method based on the higher-order decomposition of exponential op-
erators [35]. The basic formula we have used is the fourth-order decomposition

exp[x(H1 + H2 + · · · + Hq)] = S(xp)S (x(1 − 2p))S(xp) +O(x5) , (B.1)

where
S(x) ≡ e

x
2
H1 e

x
2
H2 · · · ex

2
Hq−1 exHq e

x
2
Hq−1 · · · ex

2
H1 , (B.2)

and the parameter p is given by p = (2 − 3
√

2)−1. Here H1, . . . ,Hq are arbitrary
operators.

1 2 3 4 5 6

H3

H2

H1

Figure B.1: Schematic of the one-dimensional wire. The Hamiltonian of this
system can be decomposed into 3 parts.

In order to understand the basic idea of the method, let us consider the one-
dimensional wire with 6 sites as shown in Fig.B.1. The Hamiltonian is given by

H =
6∑

i=1

wic
†
i ci −

∑

〈ij〉
Vijc

†
i cj , (B.3)
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where c†i (ci) denotes the creation (annihilation) operator at the site i, wi the on-
site potential, Vij the hopping term. The hopping is restricted in the nearest
neighbors. In the matrix representation, it can be written as

H =




w1 −1 0 0 0 0
−1 w2 −1 0 0 0
0 −1 w3 −1 0 0
0 0 −1 w4 −1 0
0 0 0 −1 w5 −1
0 0 0 0 −1 w6




, (B.4)

where we set Vij = 1.
One can decompose the Hamiltonian of this system into 3 parts as

H = H1 + H2 + H3 , (B.5)

where

H1 =




0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0




, (B.6)

H2 =




0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 0




, (B.7)

and

H3 =




w1 0 0 0 0 0
0 w2 0 0 0 0
0 0 w3 0 0 0
0 0 0 w4 0 0
0 0 0 0 w5 0
0 0 0 0 0 w6




. (B.8)

The state at the time t+ ∆t is given by

|ψ(t+ ∆t)〉 = e−iH∆t |ψ(t)〉 , (B.9)
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where

e−iH∆t = e−i(H1+H2+H3)∆t

' S(−ip∆t)S(−ip′∆t)S(−ip∆t)
= e−iH1

p

2
∆t e−iH2

p

2
∆t e−iH3p∆t e−iH2

p

2
∆t e−iH1

p

2
∆t

× e−iH1
p′

2
∆t e−iH2

p′

2
∆t e−iH3p′∆t e−iH2

p′

2
∆t e−iH1

p′

2
∆t

× e−iH1
p

2
∆t e−iH2

p

2
∆t e−iH3p∆t e−iH2

p

2
∆t e−iH1

p

2
∆t , (B.10)

with p′ = 1 − 2p.
Since H2

i = I (i = 1, 2), the exponentials of H1 and H2 are simply given by

e−iH1∆t′ = I + (−i∆t′)H1 +
(−i∆t′)2

2!
H2

1 +
(−i∆t′)3

3!
H3

1 + · · · (B.11)

= I + (−i∆t′)H1 +
(−i∆t′)2

2!
I +

(−i∆t′)3
3!

H1 + · · · (B.12)

= cos ∆t′ I − i sin∆t′H1 (B.13)

=




cos ∆t′ i sin∆t′ 0 0 0 0
i sin∆t′ cos ∆t′ 0 0 0 0

0 0 cos ∆t′ i sin ∆t′ 0 0
0 0 i sin ∆t′ cos∆t′ 0 0
0 0 0 0 cos ∆t′ i sin∆t′

0 0 0 0 i sin∆t′ cos ∆t′




, (B.14)

and

e−iH2∆t′ =




0 0 0 0 0 0
0 cos ∆t′ i sin ∆t′ 0 0 0
0 i sin∆t′ cos ∆t′ 0 0 0
0 0 0 cos∆t′ i sin∆t′ 0
0 0 0 i sin ∆t′ cos ∆t′ 0
0 0 0 0 0 0




, (B.15)

respectively. The exponential of H3 is given by

e−iH3∆t′ =




e−iw1∆t′ 0 0 0 0 0

0 e−iw2∆t′ 0 0 0 0

0 0 e−iw3∆t′ 0 0 0

0 0 0 e−iw4∆t′ 0 0

0 0 0 0 e−iw5∆t′ 0

0 0 0 0 0 e−iw6∆t′




.(B.16)

It is straightforward to apply the method to much longer wires as well as
two-dimensional systems [36].
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