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Abstract

This thesis concerns itself with the analytic structure of scattering amplitudes in strongly
coupled N = 4 super Yang-Mills theory (abbreviated N = 4SYM) in the multi-Regge
limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4SYM
are accessible via dual calculations in a weakly coupled string theory on an AdS5×S5-
geometry, in which observables can be calculated using standard perturbation theory. In
particular, the calculation of the leading order of the n-gluon amplitude in N = 4SYM
at strong coupling corresponds to the calculation of a minimal surface embedded into
AdS5. This surface ends on the concatenation of the gluon momenta, which is a light-
like curve. The calculation of the minimal surface area can be reduced to finding the
solution of a set of non-linear, coupled integral equations, which have no analytic solution
in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit,
the n-particle generalisation of the Regge limit. This limit is especially interesting as even
in the description of scattering amplitudes in weakly coupled N = 4SYM in this limit a
certain set of Feynman diagrams has to be resummed. This description organises itself into
orders of logarithms of the energy involved in the scattering process. In this expansion
each order in logarithms includes terms from every order in the coupling constant and
therefore contains information about the strong coupling sector of the theory, albeit in a
very specific way. This raises the central question of this thesis, which is how much of the
analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we
go to the strong coupling regime. We show that the equations governing the area of the
minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain
analytic results for the scattering amplitudes. We develop an algorithm for the calculation
of scattering amplitudes in the multi-Regge limit and apply it to the special cases of the 6-
and 7-gluon amplitude. Our results show that for the cases under study the factorisation
of the amplitude as predicted by Regge theory is also preserved in the strong coupling
limit.
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1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

〈ij〉4
〈12〉 · · · 〈n1〉 . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.
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these observables are studied, as well (see for example [11–20]), it is fair to say that the
main focus still lies on the determination of scattering amplitudes. Correlation functions,
being completely off-shell objects are even more complicated and are not part of this re-
view. It should be noted that N = 4SYM is not realised in nature, of course, but it is
certainly a non-trivial gauge theory and understanding any four-dimensional gauge theory
non-perturbatively would be a great success. The hope connected with the programme of
solving N = 4SYM certainly is that the obtained results and the techniques developed
along the way have validity beyond this particular theory.

The way research on scattering amplitudes developed over the last years typically pro-
ceeded along the following steps: a difficult calculation was performed, a simple result was
obtained and once the result was understood properly, the result became almost obvious.
An example of this, similar in spirit to the Parke-Taylor formula, is a calculation per-
formed by Bern, Dixon and Smirnov [21]. In [21], the authors calculate the 4-gluon MHV
amplitude at three loops by standard methods and find that the amplitude exponentiates.
More precisely, generalising their result to the n-gluon MHV amplitude they find that

logMn(ε) := log
An

Atree
n

=
∞∑

l=1

al

(

γ
(l)
K

(lε)2
+
γ
(l)
col

lε

)
n∑

i=1

(
µ2

−(pi + pi+1)2

)lε

+ γK(a)F (1)
n + Cn(a) +O(ε), (1.2)

In this expression, µ is the renormalisation scale of the coupling constant a = αsN
2π (4πe−γ)

ε

and the Cn(a) are functions with a fixed transcendental weight (for explicit expressions

see [21]). Furthermore, γ
(l)
K and γ

(l)
col are the l-loop coefficients of the cusp and collinear

anomalous dimension, respectively. Most notably, all kinematical dependence in the IR-

finite piece is stored in F
(1)
n whose coupling dependence is determined solely by the overall

factor of the cusp anomalous dimension γK(a), which is known to all orders in perturbation
theory [22]. This finite piece can therefore be determined from a one-loop calculation.

The BDS ansatz is remarkable since not only the IR-divergent part, but also the finite
pieces of the amplitude exponentiate and it was conjectured that this is the answer to
all loop orders. As it turns out, this conjecture is wrong as was shown by an explicit
Wilson loop calculation [23], a calculation at strong coupling [24] and considerations in
the multi-Regge limit [25]. However, it was soon found that N = 4SYM has a dual
conformal symmetry. This is another conformal symmetry, unrelated to the space-time
conformal symmetry of N = 4SYM, which is not obvious from the Lagrangian and which
was found both in weak [26] and strong coupling [27] calculations. Once the presence of
this symmetry was understood it became clear that scattering amplitudes have to satisfy
an anomalous Ward identity for dual conformal symmetry [28] for which the finite piece
of the BDS ansatz provides the solution to the anomalous part. This allows us to write
any MHV amplitude as

An,MHV = Atree
n,MHVe

ABDS+R, (1.3)

where the remainder function eR must be a function of dual conformal invariants, so-called
cross ratios. Those are only available for more than five gluons, which in turn means that
the BDS ansatz in fact gives the full answer for the MHV amplitude for four and five
gluons, again nurturing the hopes that scattering amplitudes in N = 4SYM indeed can
be solved completely. In hindsight, it is therefore clear that the BDS ansatz is, up to the
remainder function, the only possible solution consistent with dual conformal symmetry,
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nicely showing the transition of very difficult calculations becoming almost trivial in the
course of a few years.

The main goal then is, of course, the determination of the remainder functions. For
the simplest case, namely the 6-point MHV amplitude, the remainder function is by now
known to four-loop order [29–31]. Reference [31] nicely shows the current state of art of
the field as no reference to any loop integration is made in the calculation. Rather, the
answer is fully fixed by understanding the class of functions that can appear in the result,
as well as using certain kinematical limits. Whether this programme can easily be lifted
to higher loop orders is still an open question, but it certainly shows the superiority of
these modern approaches over standard QFT methods.

It is important to note that the study of scattering amplitudes in N = 4SYM certainly
goes beyond just simplifying calculational methods, it has led to conceptual insights. As
a specific example, let us mention colour-kinematics duality [32]. Roughly speaking, this
duality relates L-loop integrands in gravity theories with two L-loop integrands of a gauge
theory in a specific way, see for example [4] for a proper description. While this duality is
so far only proven at tree level [33] (steps towards a proof at one-loop level are presented
in [34, 35]), it shows that gravity amplitudes might be conceptually much simpler than is
expected from a standard Feynman graph analysis and no more difficult than amplitudes
of a gauge theory. In fact, this relation to gauge theory can be used to improve the pow-
ercounting analysis of supersymmetric gravity theories which is typically too pessimistic
when using Feynman graphs [36]. It also provides a tool for performing high-loop integrals
in gravity theories, which might settle the interesting question whether N = 8 SUGRA is
a finite theory or not [37–39].

Scattering amplitudes at strong coupling

The enormous progress described in the previous paragraphs, however, is not limited to
weak coupling calculations. Through the AdS/CFT-correspondence [40], we have access to
the strong coupling regime of N = 4SYM, which, in fact, is the main focus of this thesis.
As we will explain in much more detail in chapter 2, AdS/CFT relates strongly coupled
N = 4SYM with a weakly coupled string theory on an AdS5×S5 background, which is
amenable to a standard perturbative treatment. Specialising further to the planar limit
of N = 4SYM, the theory is related to the supergravity limit of classical string theory on
this particular background, which means that observables in strongly coupled N = 4SYM
are determined by classical calculations on the string side of the correspondence. In
this framework, scattering amplitudes have first been studied in [27] and a solution is
developed in a series of papers [41–44] which relate a scattering amplitude of strongly
coupled N = 4SYM to the area of a minimal surface which is embedded into AdS5
and ends on the concatenation of the gluon momenta on the boundary of AdS5. Using
integrability, the area of this minimal surface can be calculated through the solution of a
set of complicated non-linear, coupled integral equations. These particular equations have
the form of a thermodynamic Bethe ansatz which usually appears in quantum integrable
models. In fact, it is known that the sigma model describing classical string theory on
AdS5×S5 is classically integrable, i.e. that an infinite amount of conserved charges exists
[45], supporting the suspicion that N = 4SYM is integrable for every value of the coupling
constant. In a similar way to the scattering amplitudes, form factors were studied in
strongly coupled N = 4SYM in [24] and progress towards a full solution is made in [46,47].

It should be remarked that N = 4SYM is not the only theory whose strong coupling
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behaviour can be described by a gravity dual. Another well-studied example is ABJM
theory [48], which is a three-dimensional Chern-Simons theory arising from the duality
with a string theory on AdS4 × CP3. However, very little is known about scattering
amplitudes at strong coupling in this theory, mostly because it is not clear how to realise
a fermionic T-duality at strong coupling in a similar way to N = 4SYM (see for example
the discussion in [49]).

If we want to move from high-loop order calculations at weak coupling to an all-loop
order ansatz, the strong coupling expressions derived from AdS/CFT will provide strong
constraints on a possible ansatz and it is therefore vital to carefully study strong coupling
amplitudes. In the same way, the solution to the operator dimensions in N = 4SYM was
only found after taking into account strong coupling input.

While a full solution for scattering amplitudes at strong coupling exists as mentioned
before, this is not the end of the story: the strong coupling description consists of a
set of implicit integral equations which do not allow an analytic solution for arbitrary
kinematics. This makes a comparison with weak coupling results very difficult. In this
thesis, we therefore try to solve a simpler problem by specialising to a special high-energy
regime, called the multi-Regge limit (abbreviated MRL).

Other kinematical choices are, of course, possible. For example, in [50–52] the external
momenta are restricted to a two-dimensional subspace, which in the strong coupling picture
corresponds to a minimal area embedded into an AdS3-subspace of the full AdS5. Fur-
thermore, the limit in which the boundary polygon becomes regular is studied in [53–56].
Another natural kinematical limit to consider is the collinear limit, which gives rise to an
OPE-like expansion for light-like Wilson loops [57–60]. From this approach, first all-loop
proposals emerged [61–63] based on integrability techniques for the GKP string [64, 65]
which, for example, helped to constrain the four-loop remainder function for the 6-point
amplitude in [31].

The multi-Regge limit

The multi-Regge limit is by definition the limit for a 2 → n − 2 particle amplitude in
which the rapidities of the outgoing particles are strongly ordered. This is the natural
generalisation of the well-known Regge limit s ≫ −t for four-particle scattering. This
limit has received a lot of attention as it describes high-energy scattering in QCD and is
therefore of phenomenological importance, see for example [66]. The multi-Regge limit is
special as it naturally reorganises the perturbative expansion. In fact, even if calculations
are performed at weak coupling αs, loop integrals can lead to large compensating factors
such that the dominant part of the n-loop contribution is proportional to αn

s log
n s ∼ O(1),

where s is the energy involved in the scattering process. Since this is not a small parameter,
these contributions have to be resummed. Summing the dominant diagrams leads to the
so-called leading logarithmic approximation (abbreviated LLA). The resummation of all
dominant diagrams works out in such a way that the answer looks like an effective particle
with t-dependent spin, a so-called Reggeon, is exchanged. Remarkably, if one allows for
several Reggeons to be exchanged, their evolution is described by the Hamiltonian of an
integrable spin chain [67–69]. This is already true for multi-colour QCD. How this spin
chain integrability relates to the integrability seen in N = 4SYM is a very interesting and
still open question.

The multi-Regge limit has also been studied in N = 4SYM, both employing methods
similar to those in QCD and using the modern methods developed in the last years. The
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class of functions governing the multi-Regge limit is identified in [70]. It is a special
class of harmonic polylogarithms and this basis turns out to be restrictive enough to
easily determine the expansion in the coupling constant at a given logarithmic accuracy.
Such an expansion can provide strong constraints on a general ansatz for an amplitude
and was indeed used to bootstrap the four-loop remainder function in the 6-point case.
Furthermore it is shown in [71] that this class of functions can be used to analytically
determine the coefficients in the Mueller-Navelet dijet cross section to any loop order in
LLA. In LLA, QCD and N = 4SYM give the same results, showing that the methods
developed in N = 4SYM can have direct impact in phenomenological applications. If and
how this analysis extends to NLLA in either QCD or N = 4SYM is an open problem.

Further studies in the multi-Regge limit include the study of the Wilson line picture
[72] and the study of the multi-Regge limit in colour-kinematics duality [73, 74]. In this
thesis we will focus on results obtained in [25, 75] which are based on the factorisation of
amplitudes in the multi-Regge limit. By studying the BDS ansatz in various kinematical
regimes which are defined by the signs of the Mandelstam invariants, it is shown in [25] that
the BDS ansatz does not have the correct analytic structure starting from six gluons to be
compatible with the expected factorisation of the amplitude. Practically, this means that
another term has to be present to fix the analytic structure, which is just the remainder
function mentioned before. From this framework it is furthermore possible to derive
a dispersion relation-like expression for the remainder function [76]. Physically, these
contributions arise from a Regge cut generated by the bound state of two Reggeons.
Finding the strong coupling equivalent of these Regge cut contributions will be a main
aspect of this thesis. Since they will play a major role in our investigations, we will describe
these factorisation-based methods in some detail in chapter 3.

As remarked before, due to the necessary resummation of the large logarithms, every
logarithmic order contains all-loop information in the coupling constant, albeit in a very
specific way. Hence it is a very natural question to ask how much of the all-loop information
as obtained from a weak coupling calculation in the multi-Regge limit survives as we go
to the strong coupling regime. This is the central question of this thesis and will guide us
through the following chapters.
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Organisation of this thesis

Some comments on the organisation of this thesis are in order. As explained in the last
sections, the results we find are ultimately results about the structure of a gauge theory
at strong coupling. However, the methods which lead us to these results are purely string-
theoretic. We therefore focus on the description of the string theory side and introduce
the gauge-theoretic description along the way to an extent which allows a comparison with
our results. In detail, this thesis is organised as follows:

• In chapter 2 we provide a self-contained introduction to the calculation of scattering
amplitudes via AdS/CFT, showing the relation to the calculation of minimal surfaces
and a review of the integrability techniques that lead to the set of integral equations
governing the amplitudes.

• Chapter 3 then introduces the multi-Regge limit. After a proper definition and
the introduction of the kinematical invariants we use, we derive some necessary
kinematical identities and briefly review the methods and results from weak coupling
to which we want to compare our results in later chapters.

• In chapter 4 we then combine the two subjects and study the equations governing
the strong coupling amplitudes in the multi-Regge limit. We find that the inte-
gral equations simplify drastically and allow us to obtain analytic results for the
scattering amplitudes. The results we find provide a clear path towards an explicit
algorithm which determines the amplitudes in the multi-Regge limit. These results
are originally obtained in [77].

• This algorithm is worked out in detail for a general number of gluons in chapter
5. We will find that there exists a set of Bethe ansatz equations which determine
the amplitude. In order to find the correct solution of the Bethe ansatz we have to
perform numerical calculations which are also explained.

• Following [78–80] this algorithm is then applied to the calculation of the 6- and 7-
point amplitudes in chapters 6 and 7, respectively. Our results are nicely consistent
with gauge theory calculations at weak coupling, which we review, as well.

• We conclude in chapter 8 and highlight opportunities for future work. Technical
details are collected in several appendices.



2. N = 4 super Yang-Mills

2.1. Field theory

The theory under investigation in this thesis is maximally supersymmetric N = 4 Yang-
Mills theory with gauge group SU(N). Its field content is fully fixed by extended super-
symmetry [81] and consists of a vector field Aµ, 4 Weyl fermions ψaA, ψ̄

ȧ
A with a, ȧ = 1, 2

and A = 1, . . . , 4 and 6 real scalars φAB with antisymmetric superscript. In total these
are 2 + 6 bosonic and 4 · 2 fermionic degrees of freedom. All fields are in the adjoint
representation of SU(N), which means that we can write them as matrices X = taX

a

with ta, a = 1, . . . , N2 − 1, being a set of traceless anti-Hermitian N ×N matrices which
generate the fundamental representation of the gauge group SU(N). The Lagrangian of
this theory can be obtained by dimensional reduction of ten-dimensional N = 1 super
Yang-Mills theory, which results in

S =
1

g2YM

∫

d4xTr

(

−1

4
FµνF

µν −
(
DµφAB

) (
DµφAB

)
− 1

2

[
φAB, φCD

] [
φAB, φCD

]

+ iψ̄A
ȧ σ

ȧa
µ DµψaA − i

2
ψa
A

[
φAB, ψaB

]
− i

2
ψ̄A
ȧ

[
φAB, ψ̄

ȧB
]
)

, (2.1)

with two free parameters, gYM and N , the covariant derivative Dµ and some matrices σȧaµ ,
see [82] for details. This theory has the remarkable property that the coupling constant
gYM does not run [83, 84], which implies that the classical conformal symmetry of the
theory is maintained also at the quantum level and the theory is ultraviolet finite. Since
this is a massless gauge theory, it still contains infrared divergences which we will discuss
later on.

From the Lagrangian Eq.(2.1) we could in principle deduce the Feynman rules and start
calculating scattering amplitudes or other observables. However, as already explained in
the introduction, research of the last ten years shows that there are much smarter ways
to perform calculations, which include different choices of variables, the use of symmetries
and knowledge about the class of functions governing a given observable. As we will not
perform any perturbative field theory calculation in this thesis, we refrain from going into
more details. Recent reviews of this beautiful subject include [4, 82].

2.2. AdS/CFT

The framework which allows us to go beyond pure field-theoretic weak coupling calcula-
tions in N = 4SYM is the AdS/CFT-correspondence [40, 85, 86]. Let us therefore briefly
introduce the main ideas, for detailed reviews we refer the reader to [87, 88].

AdS/CFT is a duality between a string theory and a field theory and arises from the
study of D-brane solutions. Let us therefore consider type IIB string theory with a stack
of N D3-branes in flat ten-dimensional Minkowski space. The excitations of this theory
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contain open strings which end on the branes, as well as closed strings from the excitations
of the flat space. Furthermore, the open and closed strings can interact, so that the total
effective action for this setting in the low-energy limit schematically reads

S = Sbrane + Sbulk + Sint, (2.2)

where Sbulk describes the massless excitations of the closed strings, which is just type
IIB supergravity. Sbrane describes the low-energy limit of the world-volume theory on the
D3-branes which is U(N) N = 4SYM with higher-derivative corrections. Finally, Sint
describes the interaction between the two systems. However, taking the low-energy limit
in which all dimensionless quantities are held fixed while α′ → 0, Maldacena shows in [40]
that the interaction part of Eq.(2.2) vanishes and the bulk and the brane sectors decouple.
Furthermore, this limit suppresses all higher-derivative terms in the world-volume theory
and we end up with pure U(N) N = 4SYM.

On the other hand, the branes can be interpreted as solitonic solutions of the classical
supergravity equations of motion. In fact, the solution for the case at hand is known and
the backreaction of the stack of branes on the metric is given by

ds2 = H− 1
2 ηµνdx

µdxν +H
1
2
(
dr2 + r2dΩ2

5

)
, where H = 1 +

R4

r4
(2.3)

and R4 = 4πgsα
′2N , with the string coupling constant gs. For large r this reduces to flat

ten-dimensional space. To see what happens close to the branes, we make a change of
variables z := R2

r and find

ds2 =
R2

z2
(
ηµνdx

µdxν + dz2
)
+R2dΩ2

5 (2.4)

in the limit r ≪ R, which is the metric of the product space AdS5×S5. One can then
wonder which excitations an observer at infinity would see in the low-energy limit. Firstly,
the massless excitations for r ≫ R contribute, which is just the field content of type IIB
supergravity. However, excitations from the region r ≪ R are highly redshifted due to
the redshift factor calculated from Eq.(2.3) and an observer at infinity would measure the
energy

E∞ = E0

√

gtt(r)

gtt(∞)
∼= E0

r

R
. (2.5)

Therefore, massive excitations from the region r ≪ R survive the low-energy limit and an
observer at infinity would see the full spectrum of type IIB string theory on AdS5×S5. As
it turns out, the two regions r ≶ R decouple because of the gravitational potential close
to r ∼ 0.

We see that in both interpretations of the brane system, we find a decoupled system
of type IIB supergravity. Since we started from the same situation and just interpreted
the D-brane system differently, this result suggests that we should also identify the other
decoupled systems, which gives rise to the idea that N = 4SYM is equivalent to type IIB
string theory on AdS5×S5. This is a remarkable idea as it postulates the equivalence of a
field theory with a theory of quantum gravity.

Keeping track of the parameters in the above considerations, one finds the following
correspondence,

g2YM = gs, R4 = 4πgsNα
′2. (2.6)
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In its strongest form the AdS/CFT hypothesis proposes the equivalence of the two models
for any value of gs and N . However, arbitrary values of gs and N include very quantum
regimes of either theory and it is difficult to make any progress beyond comparing static
elements such as the symmetry groups or the mapping of states. But even classical limits
lead to very non-trivial statements. Using Eq.(2.6) we see that the limit

N → ∞, with λ := g2YMN fixed, (2.7)

where λ is called ’t Hooft coupling, identifies the planar limit of the field theory with a free
string theory. Taking the λ → ∞ limit, we end up with the identification of the infinite
coupling limit of planar N = 4SYM with the SUGRA approximation of classical string
theory on AdS5×S5, which is the weakest form of the hypothesis. This is a very interesting
regime, as it provides access to the strong coupling regime of a field theory which is not
accessible from standard perturbation theory. Turning this around, the AdS/CFT duality
relates a non-perturbative string theory with a perturbative field theory, which might
actually serve as a non-perturbative definition of string theory. Of course, this virtue
of the duality also reflects the enormous difficulty in proving it - we have to face non-
perturbative effects on at least one side of the correspondence. In the N → ∞ limit
progress is made using integrability techniques (for a review see [89]), some of which we
will review below. In this thesis, we will use AdS/CFT as a computational tool, which
provides the strong coupling analogue of scattering amplitudes and compare our results
to weak coupling field theory computations. In fact, one might interpret our results as a
non-trivial check of the hypothesis in its weakest form.

2.3. Amplitudes at strong coupling

2.3.1. Finding the correct prescription

We now want to find the description of a gluon scattering amplitude in strongly coupled
N = 4SYM via AdS/CFT. The results presented below are derived in a series of papers
[24, 27, 41–44] and we closely follow those references and the review [90] in this section.

We start from the brane picture of AdS/CFT, in which N = 4SYM arises as the
world-volume theory on a stack of N D3-branes. The matter content of the theory is
represented by open strings attached to the branes, where the branes on which the open
string ends determine the colour indices of the corresponding gluon in the low-energy limit.
To calculate a gluon scattering amplitude we therefore face the problem of calculating the
scattering of open strings which end on D3-branes. Since we are calculating the scattering
amplitude of massless particles in a gauge theory, we will necessarily find IR-divergences.
We therefore introduce an IR-regulator by moving the brane on which the strings end1 a
finite distance from the stack of the remaining D3-branes. We then take the large-N and
the decoupling limit for the remaining branes on the stack, which generates the AdS5×S5

background, as discussed before. We remain with a probe D3-brane embedded into the
background

ds2 =
R2

z2
(
ηµνdx

µdxν + dz2
)
, (2.8)

1To be more general, one should consider the possibility that the strings end on different branes. In
this case, one would move all k branes to which a string is attached away from the stack, effectively
breaking SU(N + k) → SU(N) × U(k). However, the central results can be obtained already for the
case k = 1, which we therefore use in the main text.
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k1

k4 k2

k3

z = ∞
z = zIR

Figure 2.1.: Initial setup for the calculation of a colour-ordered amplitude at strong cou-
pling. We separate one D3-brane from the stack to regulate IR-divergences
and scatter strings on this brane, giving rise to a world-sheet with the topology
of a disk with vertex operator insertions.

with a fixed z-coordinate z = zIR and we neglected the S5-part of the metric. As the
branes are originally located at z = ∞, zIR is a large but finite quantity and removing the
IR-regulator would correspond to sending zIR → ∞. The asymptotic states we scatter
then are the open strings attached to the IR-brane. From a world-sheet perspective we
have the topology of a disk with vertex operator insertions on the boundary. Each ordering
of the vertex operators corresponds to a colour-ordered amplitude. This setup is shown in
figure 2.1.

A crucial observation is that for any value of the field theory momentum k of a particle
we are scattering, the proper momentum of the corresponding string kStr = k zIR

R is very
large. This means that all inner products ki,Str · kj,Str become large, which corresponds to
the regime of high-energy, fixed-angle string scattering. This regime is studied in flat space
in [91,92] with the result that the string scattering amplitude in this kinematical situation
is dominated by a saddle point of the classical action. As shown in [91, 92] this result
is largely independent of the string states which are scattered and the particular string
theory under consideration, since the dominant terms come from the universal bosonic
part. Classically, these bosonic terms just describe the area of the world-sheet, which
the saddle point then extremises. We therefore see that the leading contribution to the
amplitude we want to calculate is given by a minimal area. We now perform a coordinate
transformation

∂αy
µ = i

R2

z2
ǫαβ∂βx

µ, (2.9)

which formally looks like a T-duality transformation, but of course the xi are not periodic
directions. We furthermore invert the radial coordinate, r := R2

z , after which the metric
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reads

ds2 =
R2

r2
(
ηµνdy

µdyν + dr2
)
, (2.10)

which again is an AdS5 space with the same radius as before but the IR-brane is now
located at rIR = R2

zIR
, close to the boundary of the AdS5 space. Since this dual AdS5 space

again has an SO(2, 4) isometry group which is not the isometry group of the original
AdS5 space, this coordinate transformation hints at a hidden symmetry2, which we now
know to be dual conformal symmetry. At the time of publication these results, together
with similar observations at weak coupling [26], were the first hints of the covariance of
amplitudes in N = 4SYM under dual conformal symmetry3.

To find the boundary conditions in the new metric, recall that a T-duality interchanges
Neumann and Dirichlet boundary conditions so that the boundary of the world-sheet will
be located at fixed values in the four T-dualised directions. Furthermore, T-duality in-
terchanges momentum with winding, so that the boundary condition that the original
coordinates Xµ carry momentum ki near the operator insertions translates into the state-
ment that the boundary of the world-sheet gets shifted by an amount

∆yµ = 2πkµi , (2.11)

every time an operator with momentum ki is inserted. This naturally introduces the dual
variables yi which parametrise the positions of the cusps of the boundary curve and are
defined by the relations

ki = yi−1 − yi, (2.12)

with adjacent yi being null-separated, (yi−1 − yi)
2 = 0. These intuitive arguments can be

verified explicitly by following [95], as is nicely shown in [96]. This shows that the correct
boundary conditions for our problem in the new variables are such that the minimal area
ends on the contour of the concatenated momenta of the scattered particles. This contour
is closed because of momentum conservation and every edge is light-like since we are
scattering massless gluons. Furthermore, colour-ordering is reflected in the way the gluon
momenta are attached to each other. An example of such a contour is shown in figure 2.2.
We have reached a remarkable conclusion. The leading contribution to a gluon scattering
amplitude in N = 4SYM is given by the area of a minimal surface, which is embedded
into AdS5 and ends on the boundary of AdS5 on a closed polygon with light-like edges,

Amp. ∼ e−
√

λ
2π

Area(ki), (2.13)

where the full coupling dependence is in the prefactor of the exponent. Note again that
this is the leading contribution for any scattering amplitude and that information such as
the helicity of the gluons are subleading in

√
λ. The first subleading order would give rise

to a λ-independent prefactor in Eq.(2.13), which can be zero (as it must, for example, for
the case of amplitudes with all gluons having the same helicity). To find this prefactor,
one would have to include quantum effects in the calculation. First steps in this direction
are made for Wilson loops in [97].

2In fact, in [93] it is shown that some of the dual conformal generators correspond to the non-local
conserved quantities that appear due to the integrability of the original sigma model [45].

3We only consider bosonic coordinates in the main text. However, by defining a suitable transformation
for the fermionic directions of the superstring sigma model, this result can be lifted to account for dual
superconformal symmetry, as well [93], [94].
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y1 y2

y3
y4

k2

Figure 2.2.: Final setup for the calculation of a colour-ordered amplitude at strong cou-
pling, which is given by the area of a minimal surface embedded into AdS5,
ending on the concatenation of the gluon momenta on the boundary of AdS5.

The prescription Eq.(2.13) is formally the same as the one given for the calculation of
the expectation value of a Wilson loop via AdS/CFT [98, 99]. Note, however, that the
boundary in the case of the scattering amplitude lives in the dual AdS5 space, not in the
original AdS5 space. This shows that at strong coupling amplitudes are equivalent to the
expectation value of a light-like Wilson loop in a dual AdS5 space. After this result was
first obtained in [27], a similar result was verified also in weak coupling calculations [26]
and by now the equivalence between scattering amplitudes and light-like Wilson loops is
expected to hold at any value of the coupling [100, 101], with caveats explained in [102].
Furthermore, this amplitude ↔ Wilson loop duality was extended to a triality which also
includes correlation functions of local operators in the limit where all insertion points
become light-like separated [103–108].

While we found a very nice geometric prescription of how to determine an amplitude
in strongly coupled N = 4SYM, it turns out to be very difficult to obtain explicit results.
In [27], the 4-point amplitude is obtained. To compare their result with the BDS ansatz,
the authors employ the strong coupling analogue of dimensional reduction, which amounts
to considering a Dp-brane with p = 3−2ε. This introduces a regularisation parameter ε, as
well as an IR-cutoff scale µ, which appears since the analytic continuation of the coupling
constant λ to an arbitrary dimension is no longer dimensionless, see [27] for details. Using
these parameters the exponent of Eq.(2.13) for the 4-point amplitude is given by

−
√
λ

2π
Area =

(

− 1

ε2
1

π

√

λµ2ε

(−s)ε − 1

ε

1

2π
(1− log 2)

√

λµ2ε

(−s)ε + (s↔ t)

)

+

√
λ

8π
log2

s

t
+

√
λ

4π

(
π2

3
+ 2 log 2− log2 2

)

. (2.14)

Noting that at strong coupling, the leading term for the cusp anomalous dimension is

given by γK =
√
λ
π + . . . [85], this result nicely matches the BDS ansatz Eq.(1.2) evaluated
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at strong coupling. In [24], a large number of light-like edges is used to mimic a space-like
Wilson loop for which the result at strong coupling is known [98,99]. In fact, the result of
this calculation is not in accord with the BDS ansatz and was one of the first hints that
the BDS ansatz fails for a large number of gluons at the time of publication. However,
other than these two results, analytic solutions for the minimal area problem are hard
to obtain and the general solution of the problem is found using integrability techniques,
as we will show in the following. Before closing, let us remark that the above results
have been generalised to include fundamental particles by incorporating a D7-brane in the
background [96, 109, 110], to amplitudes at finite temperature by adding a black hole in
the background [111,112] and to β-deformed N = 4SYM in [113].

2.3.2. General solution for AdS3

In this section we will present the general solution of the minimal area problem for the
case in which the minimal surface can be embedded into an AdS3-subspace, following [90].
This is a simpler problem, but will contain the relevant ideas for the solution of the general
case.

We start by embedding AdS3 into R
2,2 as the surface

~X. ~X := −X2
−1 −X2

0 +X2
1 +X2

2 = −1. (2.15)

In terms of these coordinates, the world-sheet equations of motion and Virasoro constraints
in conformal gauge are given by

∂∂̄ ~X −
(

∂ ~X.∂̄ ~X
)

~X = 0, ∂ ~X.∂ ~X = ∂̄ ~X.∂̄ ~X = 0. (2.16)

The boundary curve on which the minimal surface shall end is determined by the N
positions xi of the cusps, with adjacent cusps being null separated, x2i,i+1 = 0. Due to the
two-dimensional geometry of the boundary the polygon has to have an even number of
edges N = 2n, because we demand it to be closed. The polygon can then be specified by
n light-cone coordinates x+i and n light-cone coordinates x−i , where the first cusp is at the
position (x+1 , x

−
1 ) and we alternately change the x+- or x−-component. The second cusp,

for example, is at (x+1 , x
−
2 ), the third at (x+2 , x

−
2 ) and so on. Below we will introduce a

regularised area Eq.(2.24), which is invariant under dual conformal symmetry. Therefore,
it can only depend on conformal cross ratios,

χ±
ijkl :=

x±i,jx
±
k,l

x±i,kx
±
j,l

, (2.17)

where x±i,j = x±i − x±j , of which there are N − 6, since we have 2N coordinates xµi , N

relations x2i,i+1 = 0 and 6 generators of global conformal symmetry in two dimensions.

We now perform a change of variables4

α(z, z̄) = log ∂ ~X.∂̄ ~X, p2(z) = ∂2 ~X.∂2 ~X. (2.18)

Using Eq.(2.16) it is easy to show that p(z) is a holomorphic quantity, while α(z, z̄) satisfies
a generalised Sinh-Gordon equation,

∂∂̄α− eα + pp̄e−α = 0. (2.19)

4Note that the function p(z) is defined differently in [42], both definitions are, however, equivalent.
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To get a feeling for the new variables, we can express the explicitly known four-cusp
solution [27] in terms of these variables to find

p(z) = 1, α(z, z̄) = 0. (2.20)

Note that the four-cusp solution corresponds to the simplest possible case. For the case of
2n cusps, we generalise these observations by choosing p(z) to be a polynomial of degree
n− 2,

p(z) = zn−2 + an−4z
n−4 + · · ·+ a0, (2.21)

since this choice is consistent with the four-cusp result Eq.(2.20) and it is the simplest
possible choice which contains the same number of parameters as we have cross ratios,
namely n − 3 complex coefficients. In Eq.(2.21) we have used scaling and translation
invariance to set the first and second parameter to 1 and 0, respectively.

This entails that α → 1
2 log pp̄ as z → ∞ because this behaviour is both consistent

with the 4-point result Eq.(2.20) and satisfies Eq.(2.19). Using the polynomial p(z) we
can furthermore define the variable w by the relation

dw =
√

p(z)dz. (2.22)

The area we want to calculate is given in terms of these variables by

A =

∫
eα√
pp̄
d2w, (2.23)

which is just the original action written in terms of the new coordinates. In fact, we know
that this area will diverge as it approaches the boundary because the metric diverges. To
define a regularised area, we simply subtract the boundary behaviour with α = 1

2 log pp̄
and denote

Areg =

∫ (
eα√
pp̄

− 1

)

d2w. (2.24)

We focus on the regularised area in the following, the regularisation of the boundary
behaviour is explained in [42]. The virtue of the new variables is that they allow us to
introduce an integrable structure, i.e. a one-parameter family of flat connections, into the
problem, as we shall see in the following. To begin, we write down two linear auxiliary
problems, called left and right problem, for spinor fields on the world-sheet

(d+AL)ψL
a = 0, (d+AR)ψR

ȧ = 0, (2.25)

in which the new variables appear in the connections

AL
z =

(
1
4∂α

1√
2
e

1
2
α

1√
2
pe−

1
2
α −1

4∂α

)

, AL
z̄ =

(

−1
4 ∂̄α

1√
2
p̄e−

1
2
α

1√
2
e

1
2
α 1

4 ∂̄α

)

, (2.26)

AR
z =

(
1
4∂α −i 1√

2
e

1
2
α

−i 1√
2
pe−

1
2
α −1

4∂α

)

, AR
z̄ =

(

−1
4 ∂̄α i 1√

2
p̄e−

1
2
α

i 1√
2
e

1
2
α 1

4 ∂̄α

)

. (2.27)

After finding a solution to these linear equations, we can reconstruct a solution to the
original equations using

Xa,ȧ :=

(
X−1 +X2 X1 −X0

X1 +X0 X−1 +X2

)

= ψL
α,aδ

αβ̇ψR
β̇,ȧ
, (2.28)
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where indices a, ȧ denote the two independent solutions to each of the auxiliary problems
and α, β denote their components. Near the boundary, the connections simplify since
α ∼ 1

2 log pp̄ and p ∼ zn−2. With these simplifications we can explicitly solve the linear
problems for large z and schematically find

ψL
a ∼λ+a

(
1
0

)

ew+w̄ + λ−a

(
0
1

)

e−(w+w̄), (2.29)

ψR
ȧ ∼λ̃+ȧ

(
1
0

)

e−i(w−w̄) + λ̃−ȧ

(
0
1

)

ei(w−w̄), (2.30)

where w ∼ z
n
2 at large z. The first solution to the left problem grows exponentially for

Re(w) > 0, while the second grows in the other half-plane. Similarly, each of the solutions
of the right problem dominates in one of the half-planes Im(w) ≶ 0. Put together, this
shows that in each quadrant of the w-plane one solution of both ψL and ψR diverges as
z → ∞. Using Eq.(2.28) we see that this translates into the statement that for the first
quadrant of the w-plane the space-time solution behaves like Xa,ȧ ∼ λ+a λ̃

+
ȧ e

w+w̄−i(w−w̄)

and diverges in the direction specified by the spinor product, i.e. it approaches a point at
the boundary. As we change quadrants in the w-plane the dominant solution of either the
left or the right problem changes, which means that the direction along which the space-
time solution approaches the boundary changes. The fact that only one spinor changes
when changing the quadrant can be related to the result that the space-time solution
approaches a light-like curve at the boundary, as desired [42]. Since w ∼ z

n
2 we encircle

the w plane n
2 times during one rotation in the z-plane, giving rise to the 2n cusps of the

boundary curve.

We have seen before that for each of the two linear problems the w-plane splits into two
halves, leading to n such regions, as we have n

2 sheets for the w-plane. In each region we
have one solution which grows and one which decays exponentially, called large and small
solution, respectively. The small solution will play a key role in the following, because it
is well-defined up to an overall factor, while the large solution can be contaminated with

contributions from the small solution. We therefore define s
L/R
i to be the solution to the

linear problem indicated in the superscript with the fastest decay as w → ∞ in region i.
We then define the quantity

ψL
a ∧ ψL

b := ǫαβψL
α,aψ

L
β,b (2.31)

and similarly for the solutions of the right problem. Using the linear problem equations
Eq.(2.25) it is easy to see that this product is independent of the location on the world-
sheet and can be set to any value by normalising the solutions ψ accordingly. In particular,
we can choose ψL

a ∧ ψL
b = ǫab. With this product we can project out the large component

in a given region by

ψL
a ∧ sLi ∼ λia, (2.32)

where we neglected unimportant prefactors. This is a very useful identity, as it allows
us to relate the space-time boundary polygon with the quantities appearing in the linear
problems. To see this, let us introduce Poincaré coordinates on AdS3, which are related
to the embedding coordinates via

1

r
= X−1 +X2, x± =

X1 ±X0

X−1 +X2
. (2.33)
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Comparing with Eq.(2.28) we find that

x+i =
λi2
λi1
, x−i =

λ̃i
2̇

λ̃i
1̇

. (2.34)

Using Eq.(2.34) and expanding out the inner products in the numerator, we see that

x+i − x+j = −
sLi ∧ sLj

(
ψL
1 ∧ sLi

)(
ψL
1 ∧ sLj

) . (2.35)

From several such differences we can reconstruct the conformal cross ratios Eq.(2.17) and
obtain

x+i,jx
+
k,l

x+i,kx
+
j,l

=

(
sLi ∧ sLj

)(
sLk ∧ sLl

)

(
sLi ∧ sLk

)(
sLj ∧ sLl

) . (2.36)

Note that in such an expression, the overall normalisation of the small solutions, as well
as the denominator in Eq.(2.35), drop out. A similar relation with + ↔ − holds when
we replace L↔ R in Eq.(2.36). This completes the dictionary between boundary objects
and quantities of the linear problem.

A central insight is that we can introduce a spectral parameter ζ in the connection,

Az(ζ) =
1

4

(
∂α 0
0 −∂α

)

+
1

ζ

1√
2

(

0 e
1
2
α

pe−
1
2
α 0

)

, (2.37)

Az̄(ζ) =
1

4

(
−∂̄α 0
0 ∂̄α

)

+ ζ
1√
2

(

0 p̄e−
1
2
α

e
1
2
α 0

)

, (2.38)

such that this one-parameter set of connections is flat for all values of ζ,

∂Az̄(ζ)− ∂̄Az(ζ) + [Az(ζ), Az̄(ζ)] = 0. (2.39)

Note that the two connections introduced before are special cases of this deformed con-
nection with AL = A(ζ = 1), AR = A(ζ = i). We hence drop the superscript from now
on, as the left and right problem are just special cases of this more general problem.

This deformation allows us to study the linear problems with an additional dependence
on the spectral parameter ζ,

(d+A(ζ)) si(ζ) = 0, (2.40)

which also leads to a ζ-dependence of the cross ratios. Using the explicit form of the
deformed connection Eqs.(2.37,2.38) it is easy to check that

A
(
eiπζ

)
= σ3A(ζ)σ3, (2.41)

with σ3 = diag(1,−1). From Eq.(2.40) we immediately see that this entails si+1 (ζ) =
σ3si

(
eiπζ

)
, because a rotation by iπ shifts the region by one. More importantly, it follows

that
(si ∧ sj)

(
eiπζ

)
= (si+1 ∧ sj+1) (ζ), (2.42)

relating inner products at different values of ζ. Normalising s1 in such a way that s1∧s2 ≡
1, Eq.(2.42) leads to si ∧ si+1 = 1. We can now write down a Schouten identity for a
particular combination of small solutions,

(sk+1∧ s−k)(sk ∧ s−k−1)+(sk+1∧ s−k−1)(s−k ∧ sk)+(sk+1∧ sk)(s−k−1∧ s−k) = 0. (2.43)
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Introducing the objects Ts := (s0 ∧ ss+1)
(

e−i(s+1)π
2 ζ
)

for s = 0, . . . , n−2 and the notation

Ts(ζ)
± := Ts

(

e±iπ
2 ζ
)

, as well as using our choice of normalisation we see that Eq.(2.43)

leads to

T+
s T

−
s = Ts+1Ts−1 + 1, (2.44)

which are called Hirota equations. Going one step further, we define the quantities Ys :=
Ts−1Ts+1 with s = 1, . . . , n− 3, which, by their definition in terms of the small solutions,
can be thought of as generalisations of the physical cross ratios to all values of ζ5. For
these objects we obtain the equations

Y+
s Y

−
s = (1 + Ys+1)(1 + Ys−1), (2.45)

which relate Y-functions at different values of ζ through a functional relation. However,
this relation was obtained from a Schouten identity, which follows from the rather trivial
statement that in two dimensions at most two vectors can be linearly independent and
therefore Eq.(2.45) cannot fully determine the Y-functions.

Instead, we consider the limits ζ → 0,∞, in which the linear problem simplifies and
can be analysed by means of a WKB approximation. Without going into details, it is
shown in [42] that in these limits the Y-functions are well approximated by

logYs
∼= −ms cosh θ + . . . , (2.46)

where ζ =: eθ, and furthermore that the combination

ls := log

(
Ys

e−ms cosh θ

)

(2.47)

is analytic in the strip |Im θ| ≤ π
2 . The quantities ms in Eq.(2.46) are in general n − 3

complex parameters, matching the number of independent cross ratios. In Eqs.(2.46, 2.47)
we choose them to be real for simplicity, the generalisation to the complex case will be
discussed in the next section. Technically, the ms arise as integrals of

√

p(z)dz along
certain cycles. In this way the information about the polygon which is stored in the
polynomial p(z) enters the Y-functions.

Taking the logarithm of the functional relation Eq.(2.45) and adding zero cleverly, we
find that

l+s + l−s = log ((1 + Ys+1)(1 + Ys−1)) . (2.48)

Convoluting the left-hand side with the kernel

K(θ) =
1

2π

1

cosh θ
(2.49)

and choosing θ such that |Im θ| < π
2 we obtain

K ⋆ (l+s + l−s ) :=

+∞∫

−∞

dθ′

2π

ls
(
θ′ + iπ2

)
+ ls

(
θ′ − iπ2

)

cosh(θ − θ′)
=

∮

C

dθ′

2πi

ls(θ
′)

sinh(θ − θ′)
= ls(θ), (2.50)

5To see this, note that we have set some of the inner products of small solutions to one by our choice of
normalisation.
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where the contour C is the rectangle with the long sides (−∞ − iπ2 ) . . . (+∞ − iπ2 ) and
(∞ + iπ2 ) . . . (−∞ + iπ2 ), and we have used that the ls are analytic in that region in that
we have only picked up the pole of the denominator. The small sides of the rectangle can
be neglected since we know from Eq.(2.46) that ls ∼= 0 along these edges. Using Eq.(2.48)
and Eq.(2.50), we have

logYs = −ms cosh θ +K ⋆ log ((1 + Ys+1)(1 + Ys−1)) , (2.51)

which is a set of coupled, non-linear integral equations, which determines the Y-functions
and is therefore called the Y-system. It is easy to see that the expressions Eq.(2.51) satisfy
the functional relations Eq.(2.45). These equations have the form of thermodynamic Bethe
ansatz (TBA) equations which usually arise in quantum integrable models (for a review
on T- and Y-systems in integrable models see [114]). The fact that such equations arise
here shows that there is an auxiliary one-dimensional quantum integrable system which
is designed exactly in such a way that its ground state energy Eq.(2.53) calculates the
regulated area. The physical meaning of this auxiliary system is, however, unclear.

To find the value of the physical cross ratios for given values of the ms we can evaluate
the Y-functions at ζ = 1, i. Typically, we would like to solve the inverse problem -
prescribing values for the cross ratios and solve the Y-system at this kinematical point.
This is more difficult and will be a key question in chapter 5, although it should be
mentioned that there is a different version of the Y-system in which the physical cross
ratios enter as parameters [57].

We still need to evaluate the area of the minimal surface. The area is independent
of the spectral parameter ζ and again the problem simplifies when considering the limits
ζ → 0,∞. As is shown in [44], similar cycle integrals appear as in the definition of ms.
Therefore, the contributions can be extracted from a ζ-expansion of the integral equations
Eq.(2.51), with the final result given by

Areg =Aper +Afree (2.52)

=Aper(ms) +
∑

s

ms

2π

∫

dθ cosh θ log(1 + Ys(θ)), (2.53)

where Aper is a function of the ms which we do not spell out explicitly. This determines
the area in terms of the parameters ms and the Y-functions and solves the problem of
finding the area of the minimal surface. More details on the derivation can be found in
the original papers [42–44]. Note that nowhere in this derivation the explicit form of the
space-time solution entered. The integrability-based method computes the area without
knowing the surface, just using the information on the boundary polygon.

2.3.3. General solution for AdS5

The general solution for the AdS5 case is more difficult to obtain because the number of
parameters is larger and the shape of the boundary curve is more complicated, of course.
The idea, however, still is to reformulate the problem using a linear auxiliary problem,
introducing a spectral parameter which generates a symmetry of the problem and studying
the behaviour of the small solutions of the linear problem as a function of the spectral
parameter. In this way, one again obtains a set of Y-functions Ya,s(θ) which satisfy a
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set of integral equation, which we describe in the following. A derivation can be found
in [43, 44].

The general answer for the area of the minimal surface ending on an arbitrary light-like
curve is given by several terms,

Area = Adiv +ABDS−like +Aper +Afree. (2.54)

The first two terms encode the IR divergences. More specifically,

Adiv =
1

8

n∑

i=1

log2
(
ǫ2x2i,i+2

)
, (2.55)

where ǫ is a small radial cutoff of AdS5 and xi are the dual variables defined by

pi = xi−1 − xi, (2.56)

which we saw already in the construction of the boundary polygon in figure 2.2. Further-
more,

ABDS−like = −cn
n∑

i=1

(

log2 x2i,i+2 +
2K∑

k=0

(−1)k+1 log x2i,i+2 log x
2
i+2k+1,i+2k+3

)

, (2.57)

where

cn =

{
1
8 n = 4K + 2
1
4 n = 4K + 2± 1

(2.58)

We have neglected the case n = 4K in the above formula, the reason being a complication
due to a monodromy at infinity that shows up in the linear auxiliary problem. Since we
will not consider the 8-gluon amplitude in this thesis, we will not go into any detail, the
case is worked out in [115]. The BDS-like term is in fact a solution to the anomalous
conformal Ward identity [28]. To compare strong coupling results with weak coupling
field theory results, it is customary add and subtract the one-loop finite part of the BDS
ansatz in Eq.(2.54), which introduces a new quantity

∆(ui) := ABDS−like −ABDS. (2.59)

As both ABDS−like and ABDS satisfy the anomalous part of the conformal Ward identity,
their difference can only be a function of the conformal cross ratios. We will spell out the
explicit formulas when studying particular amplitudes in chapters 6 and 7.

We then turn to the most relevant piece for our studies, Afree. We begin by introducing
3n − 15 Y-functions Ya,s(θ) with a = 1, 2, 3 and s = 1, . . . , n − 5, which depend on
a complex spectral parameter θ. These Y-functions have to satisfy a set of non-linear,
coupled integral equations, the so-called Y-system, similar to Eq.(2.51),

logY1,s = −ms cosh θ − Cs −
1

2
K2 ⋆ βs −K1 ⋆ αs −

1

2
K3 ⋆ γs, (2.60)

logY2,s = −
√
2ms cosh θ −K2 ⋆ αs −K1 ⋆ βs, (2.61)

logY3,s = −ms cosh θ + Cs −
1

2
K2 ⋆ βs −K1 ⋆ αs +

1

2
K3 ⋆ γs, (2.62)



2.3. AMPLITUDES AT STRONG COUPLING 25

where 3n−15 auxiliary parameters appear, namely n−5 complex mass parametersms and
n−5 chemical potentials Cs, which, in (3, 1)-signature, are purely complex. For simplicity,
we choose the parameters ms to be real in Eqs.(2.60-2.62) and discuss the general case
later on. Furthermore, we introduced the notation K ⋆ f , which denotes the convolution
integral

(K ⋆ f) (θ) :=

∞∫

−∞

dθ′K(θ − θ′)f(θ′), (2.63)

the kernel functions

K1 =
1

2π

1

cosh θ
, K2 =

√
2

π

cosh θ

cosh 2θ
, K3 =

i

π
tanh 2θ, (2.64)

as well as certain combinations of Y-functions,

αs = log
(1 + Y1,s)(1 + Y3,s)

(1 + Y2,s−1)(1 + Y2,s+1)
, (2.65)

βs = log
(1 + Y2,s)

2

(1 + Y1,s−1)(1 + Y1,s+1)(1 + Y3,s−1)(1 + Y3,s+1)
, (2.66)

γs = log
(1 + Y1,s−1)(1 + Y3,s+1)

(1 + Y1,s+1)(1 + Y3,s−1)
. (2.67)

The integral equations Eqs.(2.60-2.62) are only valid within the fundamental strip |Im θ| ≤
π
4 . Beyond those bounds, some of the kernels become singular along the line of integration
and we have to pick up residue contributions of those poles. Instead of picking up the
poles by hand, it is also possible to use functional relations similar to Eq.(2.45), which
relate Y-functions with different imaginary parts:

Y[r]
a,s =

(

1 + Y
[r+1]
a,s+1

)(

1 + Y
[r+1]
4−a,s−1

)

Y
[r+2]
4−a,s

(

1 + 1

Y
[r+1]
a+1,s

)(

1 + 1

Y
[r+1]
a−1,s

) , (2.68)

where Y
[r]
a,s(θ) = Ya,s

(
θ + ir π4

)
denotes a shift in θ by a multiple of iπ4 . When using the

recursion relations, it should be noted that we have boundary conditions Y0,s = Y4,s = ∞,
as well as Ya,0 = Ya,n−4 = 0.
Once we allow the mass parameters to be complex, ms = |ms|eiφs , it is convenient to
introduce shifted Y-functions Ỹa,s(θ) := Ya,s(θ + iφs). Using these functions, all changes
in the Y-system can be accounted for by replacing

ms → |ms| , Ya,s(θ) → Ỹa,s(θ), Ka,a′

s,s′ (θ − θ′) → Ka,a′

s,s′
(
θ − θ′ + i(φs − φs′)

)
(2.69)

in Eqs.(2.60-2.62). A special case is the 6-point case, for which there is only one phase φ.
In this case, there are no relative phases in the kernels of Eq.(2.69) and it is sometimes
more convenient to work with the unshifted Y-functions Y(θ) and to account for the
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complex mass parameter by a shift in the driving term and a shifted integration contour,
schematically

logYa(θ) = −|m| cosh (θ − iφ) + C +
∑

a′

∫

R+iφ

dθ′Ka,a′
(
θ − θ′

)
log
(
1 + Ya′(θ

′)
)
. (2.70)

We see from Eq.(2.69) that the phases φs can also lead to a singular behaviour of the
kernels. Again, we need to pick up the residues if the differences of the phases becomes
too large. The pattern under which the Y-system changes is very interesting and has close
connections to the wall crossing phenomenon of [116]. Picking up appropriate residue
contributions will be of fundamental importance in chapter 4 and we will explain this
procedure in detail there. As in the AdS3 case, the cross ratios can be obtained from the
Y-functions at special values of θ. We will spell out these relations when needed later on.

Once we have solved the Y-system, we can finally calculate the free energy contribution
to the amplitude as

Afree =
∑

s

|ms|
2π

∫

R

dθ cosh θ

[(

1 + Ỹ1,s(θ)
)(

1 + Ỹ3,s(θ)
)(

1 + Ỹ2,s(θ)
)
√
2
]

. (2.71)

The last remaining piece of the amplitude, Aper(ms), is a function of the complex mass
parameters introduced in the free energy part. General expressions are given in [44]. We
refrain from spelling them out here and rather present the expressions for the necessary
cases in later chapters.

Having assembled all pieces of the amplitude, we define the remainder function at
strong coupling as

Amp. ∼ e−
√
λ

2π
(Adiv+ABDS+∆+Aper+Afree) =: e−

√
λ

2π
(Adiv+ABDS)+R. (2.72)

This closes our general discussion of scattering amplitudes at strong coupling and we
will start using the Y-system in chapter 4 after discussing the kinematics relevant to our
studies.



3. The multi-Regge limit

As we have seen in the last chapter, the Y-system which describes scattering amplitudes
at strong coupling is a rather complicated set of equations and it is not possible to find an
analytic solution in general kinematics. We therefore specialise our choice of kinematics
to the multi-Regge limit. So far, we have identified this somewhat sloppily with the high-
energy regime. Since our special choice of kinematics will play a key role in this thesis, we
will now present a proper definition of the limit, some kinematical considerations as well
as a brief review of weak coupling results in the multi-Regge limit to which we want to
compare our strong coupling results later on.

3.1. Definition

We are interested in 2 → n − 2 production amplitudes of gluons, for which we have two
incoming momenta −p1, −p2 and n − 2 outgoing momenta p3, . . . , pn, as shown in figure
3.1. For a n-particle amplitude there are 3n − 10 independent Mandelstam variables1.
Since we will only be interested in N = 4 SYM, we describe the independent Mandelstam
invariants in terms of dual variables,

pi = xi−1 − xi, (3.1)

which are also indicated in figure 3.1. The dual variables are cyclic, xi+n = xi and, defining
the quantities xi,j := xi − xj , we have the identity

x2i,j = (pi+1 + · · ·+ pj)
2 , (3.2)

providing the connection between the dual variables and the Mandelstam invariants. Due
to momentum conservation and cyclicity we also have that x2i,j = x2j,i. These are of
course the same variables used before in chapter 2. Furthermore, we have the constraints
x2i,i+1 = 0 because of our light-like configuration. In terms of the dual variables, we define
the following basis of Mandelstam invariants:

sr = x2r+1,r+3,

tr = x21,r+2, (3.3)

ηp =
x2p−2,px

2
p−1,p+1

x2p−2,p+1

,

where r = 1, . . . , n − 3 labels the t-channels and p = 4, . . . , n − 1 labels the produced
particles. As we discussed before, the remainder function of N = 4 SYM is invariant
under dual conformal symmetry, i.e. conformal symmetry acting on the dual variables xi.

1We have 4nmomentum components, subject to n relations p2i = 0 and we have 10 symmetry generators of
the Poincaré group. Note that momentum conservation is accounted for by the generators of translation.
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si···j

p2 p1

p3 pn

x1

x2

x3
· · · xi+1 xi+2 xi+3 · · ·

xn
ti

si

Figure 3.1.: Left: standard parametrisation of a 2 → n − 2 scattering process, together
with the location of Mandelstam invariants ti(= q2i ) and the multi-indexed
si···j = (pi+· · ·+pj)2. Right: parametrisation in terms of the dual variables xi,
together with the location of the Mandelstam invariants we use, cf. Eq.(3.3).
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Figure 3.2.: Graphical representation of the conformal cross ratios Eq.(3.4) for the 6-point
case.

Therefore, our set of variables Eq.(3.3) is actually too large and we just need 3n − 15
conformal cross ratios2. For these, we choose the following basis:

u1σ =
x2σ+1,σ+5x

2
σ+2,σ+4

x2σ+2,σ+5x
2
σ+1,σ+4

,

u2σ =
x21,σ+2x

2
n,σ+3

x2n,σ+2x
2
1,σ+3

, (3.4)

u3σ =
x22,σ+3x

2
1,σ+4

x21,σ+3x
2
2,σ+4

,

where σ = 1, . . . , n − 5. A convenient representation of the cross ratios is depicted in
figure 3.2. An important symmetry used later on is target-projectile symmetry, which, as
the name suggests, reflects the fact that the amplitude should be invariant when the two
incoming particles are swapped. In terms of the graphical representation in figure 3.2 this
symmetry amounts to a reflection on the central vertical axis of each blob. It is easy to

2The counting is: 4n coordinates for the xi, subject to n constraints x2
i,i+1 = 0 and we have 15 symmetry

generators of the dual conformal group in four dimensions.
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verify that under this symmetry the cross ratios are interchanged as

u1σ ↔ u1n−4−σ, u2σ ↔ u3n−4−σ. (3.5)

The primary goal of section 3.3 is to understand the behaviour of this choice of cross ratios
in the multi-Regge limit, but first let us properly define this limit. To do so, we define the
subenergies

si···j := (pi + · · ·+ pj)
2 = x2i−1, j . (3.6)

Note that this definition includes the total energy s = s3···n, as well as our basis elements
sr = sr+2 r+3, which are just two-particle subenergies. In terms of these variables we
define the multi-Regge limit to be the kinematical regime in which the ti remain fixed and
negative, while all subenergies go to infinity with the hierarchy

s≫ s3···n−1, s4···n ≫ s3···n−2, . . . , s5···n ≫ · · · ≫ s34, . . . , snn−1 ≫ −t1, . . . ,−tn−3. (3.7)

A formally more precise definition is that in the multi-Regge limit the rapidities of the
produced particles are strongly ordered with their transverse momenta being of the same
order. However, in terms of Mandelstam invariants this just entails our definition Eq.(3.7),
see [117] for details. In this sense, the multi-Regge limit is the generalisation of the more
familiar Regge limit s ≫ −t for 2 → 2 scattering. In terms of our basis Eq.(3.3), the
multi-Regge limit corresponds to sending all sr to infinity, while keeping both the tr and
ηp fixed.

3.2. Kinematical identities

As a preparation for the analysis of the cross ratios in the multi-Regge limit, we need some
kinematical identities, which we obtain in the centre-of-mass system of the two incoming
particles. We introduce two light-like reference vectors p̂1 = −p1, p̂2 = −p2, for which
2p̂1p̂2 = s holds, and use them to parametrise the transferred momenta (cf. figure 3.1) as

qr = δrp̂1 + γrp̂2 + qr⊥, (3.8)

where q⊥ is a vector pointing in the plane perpendicular to the two reference vectors.
Therefore p̂1qr⊥ = p̂2qr⊥ = 0. This is called Sudakov parametrisation. It should be noted
that by our definition of the tr in Eq.(3.3), tr = q2r . Using momentum conservation, the
subenergies can be rewritten as3

s3···r+2 = (p3 + · · ·+ pr+2)
2 = (−p2 − q1 + · · ·+ qr−1 − qr)

2 = (p2 + qr)
2 , (3.9)

sr+3···n = (pr+3 + · · ·+ pn)
2 = (qr − qr+1 + · · ·+ qn−3 − p1)

2 = (p1 − qr)
2 , (3.10)

which we can use to determine the Sudakov parameters,

s3···r+2 = 2qrp2 + tr = −δrs+ tr ⇒ δr =
tr − s3···r+2

s
, (3.11)

and

sr+3···n = tr − 2qrp1 ⇒ γr =
sr+3···n − tr

s
. (3.12)

3Note that the first definition uses s3···3 = (p3)
2 = 0 for r = 1.
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We now use the strong ordering of the subenergies Eq.(3.7) and see that this, together
with the expressions Eqs.(3.11,3.12) implies a strong ordering of the Sudakov parameters

1 ≫ γ1 ≫ γ2 ≫ · · · ≫ γn−3 (3.13)

and
1 ≫ −δn−3 ≫ −δn−4 ≫ · · · ≫ −δ1. (3.14)

The above expressions also imply that in the multi-Regge limit

tr = q2r = sγrδr + q2r⊥ ∼= −s3···r+2sr+3···n
s

+ q2r⊥ ∼= q2r⊥, (3.15)

where ‘∼=’ will always denote identities that hold strictly only in the multi-Regge limit.
This means that the transverse components of qr stay finite in the multi-Regge limit and,
because of the relation pr+3 = qr − qr+1, so do the transverse components of the momenta
of the produced particles pr+3, where r = 1, . . . , n− 4. To calculate the magnitude of the
transverse momentum, we make use of the on-shell condition for the produced gluons,

0 = p2r = (qr−3 − qr−2)
2 ∼= −sγr−3δr−2 + p2r⊥ ∼= s3···rsr···n

s
+ p2r⊥, (3.16)

where we used the strong ordering of the Sudakov parameters in the first step. From this
identity we conclude that

s3···rsr···n
s

∼= −p2r⊥ = ~p 2
r⊥, (3.17)

where we introduced the two-dimensional transverse vector ~pr⊥. Similarly to Eq.(3.16) we
can now calculate the leading behaviour of the subenergies. Explicitly, we obtain

sr = (qr−1 − qr+1)
2 ∼= −sγr−1δr+1 + (pr+2 + pr+3)

2
⊥

∼= s3···r+3sr+2···n
s

+ (pr+2 + pr+3)
2
⊥ , (3.18)

where r = 2, . . . , n− 4, and

sp−1 p p+1 = (qp−4 − qp−1)
2 ∼= −sγp−4δp−1 + (pp−1 + pp + pp+1)

2
⊥

∼= s3···p+1sp−1···n
s

+ (pp−1 + pp + pp+1)
2
⊥ (3.19)

for the three-particle subenergies with p = 5, . . . , n − 2. Looking back at our basis of
Mandelstam invariants Eq.(3.3), we see that this is all we need to determine the ηp in
the multi-Regge limit. By plugging in the leading behaviour of the subenergies and using
relation Eq.(3.17) we find that

ηp =
sp−3sp−2

sp−1 p p+1

∼= −p2p⊥ = ~p 2
p⊥, (3.20)

which is indeed a finite quantity in the multi-Regge limit. We can lift our analysis to
subenergies involving more particles and obtain

sr+2···r′+3 = (pr+2 + · · ·+ pr′+3)
2 ∼= sr+2···ns3···r′+3

s
+ (pr+2 + · · ·+ pr′+3)

2
⊥

∼= sr · · · sr′
ηr+3 · · · ηr′+2

, (3.21)
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where the last step follows by using the leading terms of Eqs.(3.18,3.19) repeatedly.
Eq.(3.21) is one of the main results of this section and will be crucial for the determi-
nation of the behaviour of the cross ratios in the multi-Regge limit.

We need one last ingredient from the kinematical analysis which is the angle between
different vectors ~qi⊥, which we obtain from the relation

~p 2
r+3⊥ = (~qr⊥ − ~qr+1⊥)

2 = |tr|+ |tr+1| − 2
√

|tr||tr+1| cos θr,r+1, (3.22)

where r = 1, . . . , n− 4. From Eq.(3.20), we see that the left-hand side of Eq.(3.22) is just
equal to ηr+3 and find

cos θr,r+1
∼= |tr|+ |tr+1| − ηr+3

2
√

|tr||tr+1|
. (3.23)

Since we will need it in the following, we spell out the sine of this angle, which is given by

sin θr,r+1 =
√

1− cos2 θr,r+1
∼= λ(|tr|, |tr+1|, ηr+3)

2
√

|tr||tr+1|
, (3.24)

where we defined

λ2(|tr|, |tr+1|, ηr+3) = 2|tr||tr+1|+ 2ηr+3|tr|+ 2ηr+3|tr+1| − |tr|2 − |tr+1|2 − η2r+3. (3.25)

From the expressions Eqs.(3.23,3.24) we can obtain the angle between any two ~qi⊥ because
these are two-dimensional vectors and therefore angles are additive.

3.3. Cross ratios in the multi-Regge limit

We now have all the information we need to determine the behaviour of our basis of
cross ratios Eq.(3.4) in the multi-Regge limit. Using Eq.(3.21) and our definition of the
Mandelstam variables Eq.(3.3) we find that

u2σ =
tσ
tσ+1

x2σ+3,n

x2σ+2,n

∼= tσ
tσ+1

ησ+4

sσ+1
, (3.26)

u3σ =
tσ+2

tσ+1

x22,σ+3

x22,σ+4

∼= tσ+2

tσ+1

ησ+3

sσ+1
. (3.27)

We see that both sets of cross ratios vanish in the multi-Regge limit. However, the ratios

u2σ
u3σ

∼= tσ
tσ+2

ησ+4

ησ+3
(3.28)

are a function of quantities which remain finite in the multi-Regge limit. This leaves us
with the u1σ, whose definition Eq.(3.4) we can write in terms of Mandelstam variables as

u1σ =
sσ+2···σ+5sσ+3σ+4

sσ+3···σ+5sσ+2···σ+4
. (3.29)

Plugging in Eq.(3.21), we see that all factors cancel and we get u1σ ∼= 1. However, to
compare the behaviour of the u1σ with the other cross ratios, we want the first subleading
term, as well, which requires more work. To determine the subleading piece, we write
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down the analogue of Eq.(3.18) for the subenergy sσ+3σ+4 and expand by subenergies to
obtain

1 =
sσ+2···σ+4sσ+3···σ+5

sσ+3σ+4sσ+2···σ+5

(
1

sσ+3···σ+5

s3···σ+5sσ+3···n
s

)(
1

sσ+2···σ+4

s3···σ+4sσ+2···n
s

)

×
(

s

s3···σ+5sσ+2···n
sσ+2···σ+5

)

+
(pσ+3 + pσ+4)

2
⊥

sσ+3σ+4
. (3.30)

Note that the first factor on the right-hand side is just u−1
1σ . Inserting the leading behaviour

for the three factors multiplying u−1
1σ , we see that they are all equal to one, with corrections

of the order of the first factor in each parentheses. These are all much smaller than the
last term in Eq.(3.30) in the multi-Regge regime, because they involve subenergies with
more particles. Therefore, we can consistently replace all factors multiplying u−1

1σ with one
and only keep the last term to get the subleading piece. Solving for u1σ we find

u1σ = 1 +
(pσ+3 + pσ+4)

2
⊥

sσ+3σ+4
. (3.31)

To write the numerator of Eq.(3.31) in terms of our basis of Mandelstam variables, we use
our result from the last section that angles in the two-dimensional transverse space are
additive to write

ρσ : = (~pσ+3 + ~pσ+4)
2 = (~qσ − ~qσ+2)

2

= |tσ|+ |tσ+2| − 2
√

|tσ||tσ+2| cos (θσ,σ+1 + θσ+1,σ+2) . (3.32)

This can be rewritten with the help of Eqs.(3.23,3.24) to find the lengthy expression

ρσ(t, η) =|tσ|+ |tσ+2| − 2
√

|tσ||tσ+2|
(

|tσ|+ |tσ+1| − ησ+3

2
√

|tσ||tσ+1|
|tσ+1|+ |tσ+2| − ησ+4

2
√

|tσ+1||tσ+2|

−λ(|tσ|, |tσ+1|, ησ+3)

2
√

|tσ||tσ+1|
λ(|tσ+1|, |tσ+2|, ησ+4)

2
√

|tσ+1||tσ+2|

)

. (3.33)

This finishes our kinematical analysis. In the multi-Regge limit, our basis of cross ratios
naturally splits into triplets. Within each triplet, the cross ratios u2σ and u3σ go to zero,
while u1σ goes to one in such a way that the reduced cross ratios

ũ2σ =
u2σ

1− u1σ
, ũ3σ =

u3σ
1− u1σ

(3.34)

remain finite.

3.4. Weak coupling results

Until now we have treated the multi-Regge limit simply as given by the definition Eq.(3.7).
In this section, we want to highlight why the multi-Regge limit is a very interesting
kinematical regime and briefly review some weak coupling results. We will concentrate on
those facts relevant for our studies at strong coupling and do so mostly following references
[25, 75, 118]. Other general introductions of (multi-)Regge theory include [117,119,120].
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p2 p3

p1 p4

p2 p3

p1 p4

Figure 3.3.: Dominant one-loop diagrams in the Regge limit s → ∞ for 2 → 2 gluon
scattering in SU(Nc) gauge theory.

Let us begin our survey of the multi-Regge limit at weak coupling with a simple problem,
the calculation of the 2 → 2 gluon amplitude at one-loop level in SU(Nc) gauge theory. In
the Regge limit we are only interested in the dominant pieces as the Mandelstam variable
s→ ∞. As is shown in [117], the leading virtual corrections in this limit are given by the
two diagrams shown in figure 3.34, which give rise to the amplitude

iAai
hi

∼= iAai,tree
hi

log

(
s

−t

)

α(t) (3.35)

where

α(t) ∼= −αsNc

4π
log

(−t
µ2

)

(3.36)

for an IR-cutoff µ. Furthermore,

iAai,tree
hi

∼= −8πiαs
s

t
fa2a3cfa1a4cgµ2µ3gµ1µ4ǫ

µ1

h1
(p1)ǫ

µ2

h2
(p2)ǫ

µ3

h3
(p3)ǫ

µ4

h4
(p4) (3.37)

is the tree level amplitude with ai and hi being the colour indices and helicities of the scat-
tered gluons, respectively. Note that the suppression of the one-loop amplitude relative
to the tree level result comes with a factor αs log s. While αs will be small in a pertur-
bative expansion, we are interested in the regime s → ∞, in which the large logarithm
can compensate the smallness of the coupling constant such that αs log s ∼ O(1). Then,
however, we cannot stop at one-loop level. In fact, we know that the leading contribution
to the n-loop amplitude will be ∼ αn

s log
n s, which means that we have to identify the

relevant subset of diagrams contributing to this leading behaviour and then resum those.
This expansion is known as the leading logarithmic approximation (abbreviated LLA).
Subleading terms ∼ αn

s log
n−1 s are collected in the next-to-leading logarithmic approxi-

mation (NLLA), with an obvious generalisation to NkLLA. Note that every logarithmic
order contains information from all loop orders in the coupling constant αs.

It turns out that the relevant diagrams are given by a specific set of ladder diagrams,
which, once resummed, give the following form for the scattering amplitude of two particles
with colour indices a1, a2 and helicities h1, h2 in SU(Nc) Yang-Mills theory in dimensional
regularisation,

A2→2 = −2gsδh2,h3T
c
a2a3

s1+ω(t)

−t T c
a1a4gsδh1,h4 , (3.38)

4To be more precise, one should note that neglecting self-energy graphs and vertex corrections only gives
the correct leading contributions when working in a physical gauge.
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p2 p3

p4

p5

pn+1

p1 pn+2

q1

q2

...

qn−1

Figure 3.4.: 2 → n production amplitudes in the multi-Regge limit. The blobs represent
Lipatov vertices and the decorated propagators in the t-channels are propa-
gators for the reggeised gluons.

where g2s = 4παs, T
c
ab are the generators of the gauge group SU(Nc) and

ω(t) = −αsNc

4π2
(2πµ)2ǫ

∫

d2−2ǫk
~q 2

~k2(~q − ~k)2
∼= −αsNc

2π

(
4πe−γ

)ǫ
(

log
−t
µ2

− 1

ǫ

)

(3.39)

is the called the gluon Regge trajectory. In writing Eq.(3.39) we used that t = −~q 2
and introduced µ to be the renormalisation scale of the ’t Hooft coupling constant λ =
αsNc

2π (4πe−γ)ǫ. This is a remarkable result, as it shows that the resummation of an infinite
number of diagrams combines in such a way that it mimics the exchange of a particle
with t-dependent spin, called a Reggeon. This process is also called reggeisation of the
gluon. One way of showing the above result Eq.(3.38) uses unitarity in the form of the
Cutkosky rules, which relate the imaginary part of the desired amplitude with products
of lower loop amplitudes (see [121]). From the imaginary part, the amplitude can then
be reconstructed using a dispersion relation. The building blocks from which the LLA
of the desired amplitude can be constructed are given by production amplitudes in the
multi-Regge limit shown in figure 3.4, which take the factorised form

A2→n = −2sgsδh1,h4T
c1
a1a4

s
ω(t1)
1

(−t1)
gsC(q1, q2, k1)T

d1
c1c2

s
ω(t2)
2

(−t2)
· · · s

ω(tn)
n

(−tn)
gsδh2,h3T

cn
a2a3 , (3.40)

where the propagators are those for reggeised gluons and the vertices C(qi, qi+1, ki) are
effective vertices describing the coupling of two Reggeons to a normal gluon, see [122].
These production amplitudes will be explored from the strong coupling perspective in
later chapters. Note that both the gluon Regge trajectory ω(ti) and the so-called Lipatov
vertices C(qi, qi+1, ki) are universal quantities. Once calculated for amplitudes with a
small number of gluons as e.g. 2 → 2 and 2 → 3 gluon scattering, they can be used to
build up the 2 → n gluon amplitude as in Eq.(3.40).

As mentioned before, the MRL production amplitudes can be used to build up the
2 → 2 amplitude Eq.(3.38), with the Reggeon being a composite state of reggeised gluons.
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If the Reggeon carries vacuum quantum numbers, it is called a Pomeron. The evolution of
the Pomeron in transverse space is governed by the BFKL equation [121,123,124], which is
a Schrödinger-like equation for the Pomeron wave function whose ground state determines
the intercept of the Pomeron ∆ = ωP (0), which in LLA is given by ∆ = 4

παsNc log 2.
The intercept in turn determines the total cross section σtot ∼ s∆. Since this quantity in
LLA is positive, the cross section violates the Froissart bound σ < log2 s, which signals
a violation of unitarity. To restore unitarity, multi-Reggeon exchanges have to be taken
into account. This modifies the BFKL equation to the BKP equation, which governs the
evolution of a colourless n-Reggeon state [125,126]. Remarkably, in the limit Nc → ∞, the
BKP Hamiltonian is that of a spin chain and is therefore integrable [67–69]. Historically,
this was one of the first instances that spin chain integrability entered high-energy physics.

Having at our disposal an exact expression for the 2 → 2 and 2 → 3 amplitude in N =
4SYM through the BDS ansatz, it is a natural question to ask how the BDS ansatz behaves
in the multi-Regge regime and whether it is compatible with the factorised form Eq.(3.40).
Indeed, as is shown in [25], the 2 → 2 BDS amplitude in dimensional regularisation can
be written as5

M2→2 = Γ(t)

(−s
µ2

)ω(t)

Γ(t), (3.41)

up to higher corrections in ǫ, from which the gluon Regge trajectory ω(t) and the vertices
Γ(t) can be extracted to all-loop order in the ’t Hooft coupling λ. These formulas, however,
are lengthy and we refrain from spelling them out. They are given in [25]. As before, µ2

is the renormalisation point for λ.
Going from the elastic amplitude to the first production amplitude, [25] show that the

2 → 3 BDS amplitude can be written as

M2→3 = Γ(t1)

(−s1
µ2

)ω(t1)

Γ(t1, t2, η4)

(−s2
µ2

)ω(t2)

Γ(t2). (3.42)

As explained before, the quantities Γ(t) and ω(t) are universal and are therefore the same
as in Eq.(3.41). The new ingredient in Eq.(3.42) is the Reggeon-Reggeon-gluon vertex
Γ(t1, t2, η4) which again can be extracted to all-loop order from the general BDS ansatz.
Both Eq.(3.41) and Eq.(3.42) are originally derived for the kinematical region in which all
invariants si, ti are negative, called the Euclidean region. This is a nice kinematical regime
as all singularities in the si-planes are on the right-hand side. Therefore the amplitude is
real and it factorises nicely as in the above equations. From Eq.(3.42) it is then possible to
study expressions in other kinematical regions where some of the Mandelstam invariants si
are positive. These so-called Regge regions will be investigated in more detail in chapter
5. To study the other kinematical regions, we analytically continue in the si to reach
regions where all or some of the si are positive. For such a continuation, one starts in the
Euclidean regime with phases si = eiπ|si| and then continues the phase from π to ε to end
up above the cut on the right-hand side. As it turns out, the production amplitude M2→3

can, in all kinematical regimes, be written as

M2→3

Γ(t1)Γ(t2)
= c1

(−s1
µ2

)ω(t1)−ω(t2)(−sη4
µ4

)ω(t2)

+ c2

(−s2
µ2

)ω(t2)−ω(t1)(−sη4
µ4

)ω(t1)

(3.43)

5Recall from Eq.(1.2) that Mn corresponds to the amplitude divided by the tree level expression.
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= c1 + c2

Figure 3.5.: Graphical representation of the analytic representation of the 2 → 3 ampli-
tude in the multi-Regge limit, Eq.(3.43). In every kinematical regime, the
amplitude can be written as a sum of two terms which make the disconti-
nuities in the s-variables manifest. Note that lines indicating the s-variables
which appear in a given term are not allowed to cross as explained in the main
text.

with certain coefficients ci. These coefficients can be fixed by making an ansatz as in
Eq.(3.43) and then comparing to the BDS ansatz in the given kinematical regime. The
form of the amplitude Eq.(3.43) can be represented graphically as in figure 3.5. This is
called an analytic representation of the amplitude in [25], because the discontinuities of the
amplitude in the s-variables can be easily read off from Eq.(3.43). Eq.(3.43) is an example
of a much more general principle, namely that an amplitude in the multi-Regge limit
can only display discontinuities in non-overlapping channels. As is shown in [127, 128],
this has connections with the so-called Steinmann relations [129]. Physically, this is the
statement that a produced gluon cannot be in a bound state with two different particles
simultaneously.

We now move on the 2 → 4 amplitude. Assuming for now that the BDS ansatz gives
the full answer, the amplitude in the Euclidean region reads

M2→4 = Γ(t1)

(−s1
µ2

)ω(t1)

Γ(t1, t2, η4)

(−s2
µ2

)ω(t2)

Γ(t2, t3, η5)

(−s3
µ2

)ω(t3)

Γ(t3). (3.44)

One can then write down an ansatz for an analytic representation of the 2 → 4 amplitude,
similar to Eq.(3.43). The number of terms that have to be included in such an ansatz for
the 2 → n − 2 MHV gluon amplitude quickly grows with n and is given by the Catalan
number Cn since we are counting non-overlapping subsets. The ansatz for the 2 → 4
amplitude is then given by

M2→4

Γ(t1)Γ(t3)
= d1

(−s1
µ2

)ω(t1)−ω(t2)(−s345η4
µ4

)ω(t2)−ω(t3)(−sη4η5
µ6

)ω(t3)

+ d2

(−s3
µ2

)ω(t3)−ω(t2)(−s456η5
µ4

)ω(t2)−ω(t1)(−sη4η5
µ6

)ω(t1)

+ d3

(−s2
µ2

)ω(t2)−ω(t1)(−s345η4
µ4

)ω(t1)−ω(t3)(−sη4η5
µ6

)ω(t3)

+ d4

(−s2
µ2

)ω(t2)−ω(t3)(−s456η5
µ4

)ω(t3)−ω(t1)(−sη4η5
µ6

)ω(t1)

+ d5

(−s3
µ2

)ω(t3)−ω(t2)(−s1
µ2

)ω(t1)−ω(t2)(−sη4η5
µ6

)ω(t2)

. (3.45)
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This ansatz should be valid in all kinematical regimes. However, comparing this ansatz
to the BDS expression once we go to the mixed region in which

s, s2 > 0, s1, s3, s345, s456 < 0, (3.46)

there is no solution for the parameters di as is shown in [25]. This means that the BDS
ansatz in this kinematical region is not compatible with Regge factorisation. In fact, in
this region the BDS ansatz has the asymptotic form

M2→4

Γ(t1)Γ(t3)
= C

(−s1
µ2

)ω(t1)

Γ(t1, t2, η4)

(−s2
µ2

)ω(t2)

Γ(t2, t3, η5)

(−s3
µ2

)ω(t3)

, (3.47)

with an additional phase C, which reads

C = e
iπ
4
γK(λ)

(

log

(

~q 2
1 ~q 2

3
(~q1−~q3)

2µ2

)

− 1
ǫ

)

. (3.48)

The appearance of this phase explains the wrong analytic structure of the BDS ansatz. As
explained in [25], this phase is the one-loop approximation of a Regge cut contribution,
which appears because the BDS ansatz is one-loop exact. However, an explicit calculation
in [75] shows that starting from two loops this Regge cut piece is not contained in the BDS
ansatz. We now know that this failure starting from two loops is due to the appearance of
the remainder function, which then accounts for the Regge cut. Physically, the BDS ansatz
accounts correctly for the Regge poles. However, starting from the 2 → 4 amplitude, two
Reggeons can form a bound state in the s2-channel which then gives rise to a Regge cut
contribution.

A precise study of the Regge cut piece is carried out in [75,76] and amounts to finding
a solution to the BFKL equation in the colour octet channel, with the result that the
remainder function in the mixed region Eq.(3.46) for the 2 → 4 amplitude can be written
as

eR+iδ
∣
∣
∣
MRL

= (3.49)

cosπωab + i
λ

2

∑

n

(−1)n
( r

r∗

)n
2

∫
dν

ν2 + n2

4

|r|2iν ΦReg(ν, n)
(

−(1− u1)
√

ũ2ũ3

)−ω(ν,n)
,

where
δ = γK(λ)

π

4
log
(√

ũ2ũ3

)

(3.50)

is a phase and

ωab =
1

8
γK(λ) log

ũ3
ũ2

(3.51)

is the Regge pole contribution, which both include the cusp anomalous dimension γK .
Furthermore, we have introduced the complex quantity r which, for the n-point amplitude,
is defined as6

u2σ
1− u1σ

=:
1

|1 + rσ|2
,

u3σ
1− u1σ

=:
|rσ|2

|1 + rσ|2
, (3.52)

6Note that in the weak coupling literature this quantity is usually called wσ, cf. [130]. We choose a
different letter here to avoid confusion with the strong coupling variable wσ which we introduce in the
next chapter, as they are not equivalent.
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where σ = 1, . . . , n−5 and we omit the index in Eq.(3.49) since σ = 1 is the only possibility.
The universal quantities that feed into Eq.(3.49) are the BFKL eigenvalue ω(ν, n) and the
regularised impact factor Φreg(ν, n), which allow a perturbative expansion,

ω(ν, n) = −λ(Eν,n + λE(1)
ν,n +O(λ2)), (3.53)

ΦReg(ν, n) = 1 + λΦ
(1)
Reg(ν, n) +O(λ2). (3.54)

Note that the regularised impact factor Φreg(ν, n) is in fact an effective quantity, being
the product of two impact factors,

Φreg(ν, n)

ν2 + n2

4

= Φ∗(ν, n)Φ(ν, n), (3.55)

see [75, 76]. To show the class of functions that appear, we write out their explicit form
to NLLA accuracy [75, 76, 130]:

Eν,n =− 1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1), (3.56)

E(1)
ν,n =− 1

4

(

ψ′′
(

1 + iν +
|n|
2

)

+ ψ′′
(

1− iν +
|n|
2

)

− 2iν

ν2 + n2

4

(

ψ′
(

1 + iν +
|n|
2

)

− ψ′
(

1− iν +
|n|
2

)))

− ζ2Eν,n − 3ζ3 −
|n|
4

(ν2 − n2

4 )
(

ν2 + n2

4

)3 (3.57)

and

Φ
(1)
Reg(ν, n) = −1

2
E2

ν,n − 3

8

n2
(

ν2 + n2

4

)2 − ζ2, (3.58)

with the digamma function ψ(z) = Γ′(z)
Γ(z) and the zeta values ζn = ζ(n). By now, the BFKL

eigenvalue is known to N2LLA accuracy, while the impact factor is known to N3LLA
accuracy [31]. Furthermore, there is a proposal for all-loop expressions [131] for both
quantities from an ansatz built on the similarity of Eq.(3.49) with the OPE-expansion
of [61]. Eq.(3.49) is the form of the remainder function for which we want to find an
analogue at strong coupling.



4. The Y-system in the multi-Regge limit

We now combine the two preceding chapters by studying how the Y-system behaves in the
multi-Regge limit. We will find that there is a specific choice of the Y-system parameters
which represents the multi-Regge limit. Finding the values of the Y-system parameters
requires a careful analysis of the Y-system equations and possible modifications which arise
from residue contributions. However, our result will be worth the effort, as the Y-system
is shown to simplify drastically in this special kinematical limit.

4.1. Cross ratios and Y-functions

To begin, we need to be more explicit about the relation between our basis of cross ratios
Eq.(3.4) and the Y-functions evaluated at special values of θ. This relation is worked out
in [44] and can be easily stated by introducing the functions

U [r]
s := 1 +

1

Y
[r]
2,s

:= 1 +
1

Y2,s

∣
∣
∣
∣
θ=iπr/4

= 1 +
1

Y
[r]
2,s

∣
∣
∣
∣
∣
θ=0

, (4.1)

where we introduced the italic Y
[r]
2,s to denote the Y-functions evaluated at a multiple of

iπ4 . The cross ratios of pairs of adjacent points in dual space are then given by

U
[2p]
2k−2 =

x2−k+p,k+px
2
−k+p−1,k+p−1

x2−k+p−1,k+px
2
−k+p,k+p−1

(4.2)

if the number of cusps 2k − 2 between x−k+p and xk+p−1 is even and

U
[2p+1]
2k−1 =

x2−k+p,k+p+1x
2
−k+p−1,k+p

x2−k+p−1,k+p+1x
2
−k+p,k+p

(4.3)

if the number of cusps 2k − 1 between x−k+p and xk+p is odd. Since our basis of cross
ratios only connects pairs of points with adjacent indices, we can immediately write down
the relations with the Y-functions, which read

u1σ =
x2σ+1,σ+5x

2
σ+2,σ+4

x2σ+2,σ+5x
2
σ+1,σ+4

=
(

U
[2σ+7]
1

)−1
=

Y
[2σ+7]
2,1

1 +Y
[2σ+7]
2,1

, (4.4)

u2σ =
x2σ+3,nx

2
1,σ+2

x2σ+2,nx
2
1,σ+3

=
(

U [σ+4]
σ

)−1
=

Y
[σ+4]
2,σ

1 +Y
[σ+4]
2,σ

, (4.5)

u3σ =
x22,σ+3x

2
1,σ+4

x21,σ+3x
2
2,σ+4

=
(

U [σ+6]
σ

)−1
=

Y
[σ+6]
2,σ

1 +Y
[σ+6]
2,σ

. (4.6)
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The idea of our following analysis is simple. The right-hand side of the equations (4.4-4.6)
depends on the Y-system parameters |ms|, Cs and φs. If we demand that the cross ratios on
the left-hand side of Eqs.(4.4-4.6) show multi-Regge behaviour, i.e. the behaviour worked
out in section 3.3, this will give rise to constraints on the values the Y-system parameters
can take. We will see that these constraints are indeed powerful enough to fix 2n− 10 of
the Y-system parameters.

For a large number of gluons, the upper indices in Eqs.(4.4-4.6) will also become large.
Fortunately, we can make use of the symmetry

U [l]
s = U

[l±n]
n−4−s (4.7)

which originates in the Z4 symmetry of the Hitchin system underlying the Y-system. Using
this symmetry we can always decrease the absolute value of the upper index to be smaller
than or equal to ⌊n2 ⌋. From there, we can use the recursion relations Eq.(2.68) to express
the cross ratios in terms of Y-functions in the fundamental strip |Im θ| < π

4 . Applying the
symmetry twice, we find that

U [l]
s = U [l±2n]

s . (4.8)

This relation is in fact necessary to be consistent with the cyclicity of the dual variables
xi = xi+n.

4.2. The multi-Regge limit of the Y-system

4.2.1. The 6-point case

We will begin with the simplest case of six gluons, which was first analysed in [78]. We
review the results here to spell out some quantities which we will try to generalise in the
following. Note that in the 6-point case, the index s of the Y-functions is fixed to one and
will be dropped in the following. The three cross ratios and their associated Y-functions
are

u1 =
x23,5x

2
2,6

x23,6x
2
2,5

=
Y

[−3]
2

1 + Y
[−3]
2

, u2 =
x21,3x

2
4,6

x21,4x
2
3,6

=
Y

[−1]
2

1 + Y
[−1]
2

, u3 =
x21,5x

2
2,4

x21,4x
2
2,5

=
Y

[1]
2

1 + Y
[1]
2

. (4.9)

We know from our kinematical analysis that u1 has to go to one, while the other two cross
ratios have to approach zero. From Eqs.(4.4-4.6) it is clear that if a cross ratio vanishes,
the associated Y-function has to go to zero, as well, while a cross ratio going to one forces
the corresponding Y-function to go to infinity. Writing out schematically the equation

governing Y
[1]
2 ,

log Y2

(

i
π

4

)

= −
√
2|m| cos

(π

4
− φ

)

+
∑

a′

K2,a′ ⋆ log (1 + Ya′) , (4.10)

we see that log Y
[1]
2 has to be large and negative to make u3 small. This can certainly be

achieved if we take |m| → ∞, as long as φ ∈
(
−3π

4 ,
π
4

)
. This limit has the further virtue

that the leading contribution of the integral terms will schematically be given by

∞∫

−∞

dθ′K(θ − θ′)log
(
1 + Y(θ′)

) ∼=
∞∫

−∞

dθ′K(θ − θ′)log
(

1 + e−|m| cosh(θ′−iφ)
)

→ 0, (4.11)
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which is negligible compared to the term ∼ |m| in Eq.(4.10) in the large |m| limit. Indeed,
in [78] it is shown that the parameter choice

|m| → ∞, φ→ 0, C = const. (4.12)

reproduces the multi-Regge limit. Since we can neglect the integrals in the Y-system
equations in the fundamental strip |Im θ| < π

4 as we saw in Eq.(4.11) above, the Y-
functions simplify drastically and read

Y1(θ) ∼= e−|m| cosh(θ−iφ)−C , Y2(θ) ∼= e−
√
2|m| cosh(θ−iφ), Y3(θ) ∼= e−|m| cosh(θ−iφ)+C . (4.13)

Using these expressions and the recursion relation Eq.(2.68), we can determine the cross
ratios and find

u1 = 1−
(

w +
1

w
+ 2 coshC

)

ε+O(ε2), u2 = wε+O(ε2), u3 =
ε

w
+O(ε2), (4.14)

where we have introduced the quantities

ε = e−|m| cosφ, w = e|m| sinφ, (4.15)

which have the limits ε → 0 and w → const. in the multi-Regge limit. Eq.(4.14) shows
exactly the behaviour we have found from a purely kinematical analysis in section 3.3. We
now turn to the 7-point case to see how this result extends to more gluons.

4.2.2. The 7-point case

In the 7-point case, we now have six cross ratios given by

u11 =
x22,6x

2
3,5

x23,6x
2
2,5

=
Y

[2]
2,2

1 +Y
[2]
2,2

, u21 =
x24,7x

2
1,3

x23,7x
2
1,4

=
Y

[−2]
2,2

1 +Y
[−2]
2,2

, u31 =
x22,4x

2
1,5

x21,4x
2
2,5

=
Y

[0]
2,2

1 +Y
[0]
2,2

,

u12 =
x23,7x

2
4,6

x24,7x
2
3,6

=
Y

[−3]
2,1

1 +Y
[−3]
2,1

, u22 =
x25,7x

2
1,4

x24,7x
2
1,5

=
Y

[−1]
2,1

1 +Y
[−1]
2,1

, u32 =
x22,5x

2
1,6

x21,5x
2
2,6

=
Y

[1]
2,1

1 +Y
[1]
2,1

,

(4.16)

It is to be expected that the multi-Regge limit for the 7-point case still connected with the
large |ms|-regime1. For the moment, let us assume that we can still neglect the integrals
in the fundamental strip as described in Eq.(4.11). We will justify this once we have
determined all parameters.

To determine the correct limit, let us start by analysing the cross ratio u11 which
approaches one in the multi-Regge limit. Using the recursion relation Eq.(2.68) for the
associated Y-function, we find that

Y
[2]
2,2

∼= 1 + e−
√
2|m1| cos(π

4
−φ1)

e−
√
2|m2| cosφ2

(

1 + e|m2| cos(π
4
−φ2)−C2

)(

1 + e|m2| cos(π
4
−φ2)+C2

) → ∞. (4.17)

1For example, we can return to the 6-point case by taking a collinear limit.
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This Y-function can only diverge if every term in the denominator vanishes. Expanding
the denominator as

e−
√
2|m2| cosφ2 + e

√
2|m2| sinφ2 + 2 coshC2e

−|m2| cos(π
4
+φ2), (4.18)

this forces φ2 to lie in the interval

φ2 ∈
(

−π
2
,
π

2

)

∩ (−π, 0) ∩
(

−3π

4
,
π

4

)

=
(

−π
2
, 0
)

. (4.19)

In writing the intersection, we have assumed that φ2 stays at least in the range −π ≤
φ2 ≤ π. To determine the exact value of φ2 we analyse the fraction u21

u31
, which we know

stays finite in the multi-Regge limit. Since both cross ratios go to zero individually, we
see that the leading term for this fraction in terms of the Y-functions is given by

u21
u31

∼=
Y

[−2]
2,2

Y
[0]
2,2

∼= 1 + e−
√
2|m1| cos(π

4
+φ)

e−2
√
2|m2| cosφ2

(

1 + e|m2| cos(π
4
+φ2)−C2

)(

1 + e|m2| cos(π
4
+φ2)+C2

) → const.

(4.20)

As before, we can expand the denominator. If this expression shall converge to a constant,
at least one of the terms in the denominator has to remain finite, with all other terms going
to zero. This allows the two choices φ2 → −π

4 or φ2 → π
2 , of which the latter is excluded

by Eq.(4.19). A similar analysis determines φ1. Instead of presenting all equations and
the constraints we derive from them, it is an easier task to just show that the parameter
choice

|ms| → ∞, Cs = const.,

φ1 → 0, φ2 → −π
4

(4.21)

leads to the correct behaviour for the cross ratios. For completeness, we spell out the
remaining constraint equations in appendix B.

To check that Eq.(4.21) is indeed the correct choice of parameters, we start by defining

ε1 = e−|m1| cosφ1 , w1 = e|m1| sinφ1 ,

ε2 = e−|m2| cos(π
4
+φ2), w2 = e|m2| sin(π

4
+φ2), (4.22)

which have the limits εs → 0 and ws → const. in the multi-Regge limit. From the Y-
functions in the fundamental strip we obtain the relations

u32 =
Y

[1]
2,1

1 +Y
[1]
2,1

∼= e−
√
2|m1| cos(π

4
−φ1)

1 + e−
√
2|m1| cos(π

4
−φ1)

=
ε1
w1

1 + ε1
w1

=
ε1
w1

+O(ε2), (4.23)

u22 =
Y

[−1]
2,1

1 +Y
[−1]
2,1

∼= e−
√
2|m1| cos(π

4
+φ1)

1 + e−
√
2|m1| cos(π

4
+φ1)

=
ε1w1

1 + ε1w1
= ε1w1 +O(ε2), (4.24)

u31 =
Y

[0]
2,2

1 +Y
[0]
2,2

∼= e−
√
2|m2| cosφ2

1 + e−
√
2|m2| cosφ2

=
ε2
w2

1 + ε2
w2

=
ε2
w2

+O(ε2). (4.25)
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To obtain the other cross ratios we have to employ the recursion relation Eq.(2.68) and
find

Y
[−2]
2,2 =

1 +Y
[−1]
2,1

Y
[0]
2,2

(

1 + 1

Y
[−1]
3,2

)(

1 + 1

Y
[−1]
1,2

) ∼= 1 + ε1w1

ε2
w2

(1 + e−C2

ε2
)(1 + eC2

ε2
)
= ε2w2+O(ε2), (4.26)

from which we conclude that

u21 =
Y

[−2]
2,2

1 +Y
[−2]
2,2

∼= ε2w2

1 + ε2w2
= ε2w2 +O(ε2). (4.27)

Similarly, we get

Y
[2]
2,2

∼=
1 + ε1

w1
ε2
w2

(1 + w2e−C2) (1 + w2eC2)
, (4.28)

which leads to

u11 =
Y

[2]
2,2

1 + Y
[2]
2,2

∼= 1−
(

w2 +
1

w2
+ 2 coshC2

)

ε2 +O(ε2). (4.29)

For the last cross ratio, u11, we have to use the recursion relation Eq.(2.68) several times
and find after a straightforward calculation that

Y
[−3]
2,1 =

1 +Y
[−2]
2,2

Y
[−1]
2,1

(

1 + 1

Y
[−2]
3,1

)(

1 + 1

Y
[−2]
1,1

)

∼= (1 + ε2w2)

ε1w1

(

1 +
e−C1ε1

(

1+ 1
ε1w1

)

1+eC2ε2

)(

1 +
eC1ε1

(

1+ 1
ε1w1

)

1+e−C2ε2

) , (4.30)

from which we calculate the cross ratio to be given by

u12 =
Y

[−3]
2,1

1 +Y
[−3]
2,1

∼= 1−
(

w1 +
1

w1
+ 2 coshC1

)

ε1 +O(ε2). (4.31)

We see that we can again find the correct values of the Y-system parameters for the multi-
Regge limit. Making this parameter choice, the cross ratios split into two triplets, which
resemble a ‘double copy’ of the 6-point case. To obtain this result, it is essential that φ2 is
non-zero, as one can nicely see from Eq.(4.25). Pushing on to more gluons, again assuming
that all integrals can just naively be neglected, we see hints that in general φs = (1− s)π4
seem to be the values for the phases in the multi-Regge limit. However, as was explained
in section 2.3.3, the Y-system has to be modified once large phases enter the game. We
will therefore analyse when residue contributions from the kernels have to be picked up
before we can prove our suspicion for the values of φs.
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4.3. Large phases and residue contributions

In this section, we will make the following ansatz for the Y-system parameters:

|ms| → ∞, Cs = const., φs → (1− s)
π

4
. (4.32)

Furthermore, we introduce parameters

εs := e−|ms| cos((s−1)π
4
+φs), ws := e|ms| sin((s−1)π

4
+φs), (4.33)

where s = 1, . . . , n − 5 and as before we have that εs → 0 and ws → const. in the multi-
Regge limit. Our goal is to show that for this choice of parameters we indeed find the
correct behaviour of the cross ratios. As mentioned before, the reason this is non-trivial
is that large phases appear in our ansatz Eq.(4.32). Let us therefore begin by spelling out
the relevant Y-system formula for complex mass parameters again:

logỸ2,s(θ) = −
√
2|ms| cosh θ+

∑

a′,s′

∫

R

dθ′K2,a′

s,s′ (θ−θ′+ iφs− iφs′)log(1+Ỹa′,s′(θ
′)), (4.34)

where, as before, Ỹ2,s(θ) = Y2,s(θ+iφs). The kernels that appear in Eq.(4.34) have simple
poles along the lines Im (θ + iφs − iφs′) = ik π

4 , where k = 2(2n+1) for K1 and k = 2n+1
for K2, K3 for n ∈ Z. Whenever we cross such a line, we have to pick up a residue
contribution. However, note that the line actually has to be crossed, for θ = ik π

4 we can
still use an iε-prescription to avoid the singularities (for more details see [44] and section
5.3). Once we have accounted for all crossed poles, our Y-system equations schematically
read

logỸ2,s(θ) = −
√
2|ms| cosh θ +

∑

a′,s′

∫

R

dθ′K2,a′

s,s′ (θ − θ′ + iφs − iφs′)log(1 + Ỹa′,s′(θ
′))

+
∑

ν

nν log
(

1 + Ỹaν ,sν

(

θ + iφs − iφsν − ikν
π

4

))

, (4.35)

where we have introduced an index ν that counts all crossed poles. The coefficient nν
allows for a sign factor which depends on which kernel the crossed pole belongs to and
where it was crossed.

Since we integrate along the real axis, the Y-functions which appear in the integrand of
Eq.(4.34) are always evaluated at real values of θ′. Note that due to the structure of the Y-
system Eqs.(2.60-2.62) kernels are only non-zero if s′ = s±1 or s′ = s. However, for those
values of s′ the phase difference is always equal to ±iπ4 or zero due to our ansatz Eq.(4.32).
For those imaginary parts in the kernels we can still use an iε-prescription, which in turn
implies that for real values of θ we never have to pick up residue contributions and can
keep on using the standard form Eq.(4.34). This means that as we go to the region of
large mass parameters, we can always use the asymptotic form

Ỹ1,s(θ) ∼= e−|ms| cosh θ−Cs , Ỹ2,s(θ) ∼= e−
√
2|ms| cosh θ, Ỹ3,s(θ) ∼= e−|ms| cosh θ+Cs , (4.36)

without any additional residue contributions, allowing us to use the argument spelled out
in Eq.(4.11) to conclude that the integral contributions can always be neglected in the large



4.3. LARGE PHASES AND RESIDUE CONTRIBUTIONS 45

mass limit. Still, the integrals can leave their imprint on the Y-functions for arguments
with a non-vanishing imaginary part through the residue terms, which we have to pick up
before neglecting the integrals.

As the cross ratios are given in terms of the Y2,s-functions and not the Ỹ2,s-functions,
we shift the argument in Eq.(4.35) and find

logY2,s(θ) = −
√
2|ms| cosh (θ − iφs) +

∑

ν

nν log
(

1 + Yaν ,sν

(

θ − ikν
π

4

))

, (4.37)

where we already dropped the integral contributions. Our main task is now to figure out
which Y2,s-functions are modified by residue terms and how the cross ratios are affected
by this.

4.3.1. The 8-point case

To fill the formulas presented in the last section with some life, let us analyse the 8-point

amplitude. As a specific example, let us study Y
[−2]
2,2 , which is connected with the cross

ratio u22. Note that due to our choice of phases, this is equivalent to calculating Ỹ
[−1]
2,2 . To

find the residue contributions, imagine starting from θ = 0 where Eq.(4.34) holds without
residue terms because θ = 0 is a real value (cf. the discussion around Eq.(4.36)) and then

moving θ → −iπ4 . Looking at the kernels K2,a′

2,s′ (θ − θ′ + iφ2 − iφs′), we see that only for
s′ = 1 do we cross Im(θ + iφ2 − iφs′) = −iπ4 . The only kernel with both a singularity at

−iπ4 and a coefficient with s′ = 1 is K2,2
2,1 . Therefore we need to pick up a residue and

get a contribution ∼ log
(

1 + Ỹ2,1

(
−iπ4

))

, which, after shifting back to the Y-functions,

leads to

Y
[−2]
2,2 = e−

√
2|m2| cos(π

2
+φ2)

(

1 + Y
[−1]
2,1

)

= ε2w2

(

1 + Y
[−1]
2,1

)

. (4.38)

Note that for this specific example, the residue contribution is negligible since Y
[−1]
2,1

∼=
ε1w1. However, it serves to show how residue contributions can affect our equations and
that we have to be careful in taking them into account.

In the same way we analyse the remaining Y-functions relevant for the evaluation of the
cross ratios and present a graphical representation of our results in figure 4.1. Every node

in figure 4.1 corresponds to the three possible values Y
[k]
a,s with s and k fixed. Encircled

nodes correspond to Y-functions which receive no residue contributions. Arrows point to
nodes in which a given Y-function shows up as a residue contribution. Y-functions not
indicated above have a more complicated residue structure and should be evaluated using
the recursion relation Eq.(2.68). However, since we need it later, we explain how to read
off the residue contribution for those functions in appendix C.

Now that we have understood the residue structure, we can go ahead and calculate the

cross ratios. The quickest way to do this is to note from figure 4.1 that all Y
[−1]
a,s do not

receive any corrections from residues and that with their help we can determine the Y
[0]
a,s .

We then use the recursion relation to express all cross ratios through these six Y-functions.
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Y
[−2]
a,1 Y

[−1]
a,1 Y

[0]
a,1 Y

[1]
a,1

Y
[−2]
a,2 Y

[−1]
a,2 Y

[0]
a,2

Y
[−3]
a,3 Y

[−2]
a,3 Y

[−1]
a,3 Y

[0]
a,3

Figure 4.1.: Structure of residue contributions for the 8-point case. Every node corre-

sponds to the 3 values Y
[k]
a,s with s and k fixed. Encircled nodes correspond to

Y-functions which receive no residue contributions. Arrows point to nodes in
which a given Y-function appears as a residue contribution. Y-functions not
indicated above have a more complicated residue structure.

After a quick calculation, we find that the cross ratios are given by

u1σ = 1−
(

wn−4−σ +
1

wn−4−σ
+ 2 coshCn−4−σ

)

εn−4−σ +O(ε2),

u2σ = εn−4−σwn−4−σ +O(ε2), (4.39)

u3σ =
εn−4−σ

wn−4−σ
+O(ε2),

and nicely show the expected behaviour (cf. section 3.3). Note that target-projectile
symmetry Eq.(3.5) interchanges the parameters above as

εσ ↔ εn−4−σ, wσ ↔ 1

wn−4−σ
, coshCσ ↔ coshCn−4−σ, (4.40)

and this prescription will turn out to carry over to higher-point cases, as well.

4.3.2. The n-point case

After all the preparatory work, we are now able to tackle the general n-gluon case. As
stated before, we want to show that the cross ratios have multi-Regge behaviour if we
assume that φs = (1 − s)π4 . We use the fact that kernels in the Y-system are only non-
vanishing if s′ = s± 1 or s′ = s, which means that the imaginary parts in the arguments
of the kernels due to phase differences are always given by ±iπ4 or zero. This allows us to
lift the analysis of the residues of the 8-point case to the general case, with results shown
in figure 4.2. Figure 4.2 looks similar to figure 4.1 with some changes. Grey boxes, just
like Y-functions not shown in the figure, have a more complicated residue structure, as

explained in appendix C. If a cross ratio is determined by a given function Y
[k]
2,s we have
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u1n−6 Y
[−4]
a,1

u1n−5 Y
[−2]
a,1

u2n−5 Y
[0]
a,1

u3n−5 Y
[2]
a,1

Y
[−3]
a,2

u2n−6 Y
[−1]
a,2

u3n−6 Y
[1]
a,2

Y
[−4]
a,3

u2n−7 Y
[−2]
a,3

u3n−7 Y
[0]
a,3

Y
[4−n]
a,n−5

u21 Y
[6−n]
a,n−5

u31 Y
[8−n]
a,n−5

u11 Y
[9−n]
a,n−5

u12

Figure 4.2.: Structure of residue contributions for the n-point case. Every node corre-

sponds to the three values Y
[k]
a,s with s and k fixed. Encircled nodes corre-

spond to Y-functions which receive no residue contributions. Arrows point to
nodes in which a given Y-function shows up as a residue contribution. Grey
boxes and Y-functions not indicated above have a more complicated residue

structure. If a cross ratios is determined by a given function Y
[k]
2,s we have

indicated this by putting the cross ratio in the box instead of the Y-function.

indicated this by putting the cross ratio in the box instead of the Y-function. Note that
we have employed the shift symmetry Eqs.(4.7, 4.8) to have the cross ratios u1σ in the
first row at negative values of θ.

In the central region of figure 4.2 something remarkable happens. Along the diagonals
on which all cross ratios u2σ and u3σ lie the ‘residue flow’ is very simple. First of all,
there are two functions which do not receive any residue corrections and can be evaluated
immediately. From our general formulas

u2σ =
Y

[−(n−4−σ)]
2,n−4−σ

1 + Y
[−(n−4−σ)]
2,n−4−σ

, u3σ =
Y

[−(n−6−σ)]
2,n−4−σ

1 + Y
[−(n−6−σ)]
2,n−4−σ

(4.41)

we find that

u31 =
εn−5

wn−5
, u2n−5 = ε1w1. (4.42)

Furthermore, every Y
[k]
2,s -function (except for the two functions discussed above) along

those diagonals gets a correction by only one residue term involving Y
[k±1]
2,s∓1 and the Y-

function itself appears as a residue correction for the function Y
[k∓1]
2,s±1 , where the upper

sign is valid for the u2σ-diagonal and the lower sign is valid for the u3σ-diagonal. This
allows an iterative determination of the cross ratios. Ignoring the residue contributions
for a moment, we see that the Y-functions along the u2σ-diagonal are given by

Y
[−s]
2,s = e−

√
2|ms| cos(π

4
+(s−1)π

4
+φs) · (ResidueTerms) = εsws · (ResidueTerms) , (4.43)
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and similarly

Y
[−s+2]
2,s = e−

√
2|ms| cos(−π

4
+(s−1)π

4
+φs) · (ResidueTerms) =

εs
ws

· (ResidueTerms) . (4.44)

This allows us to obtain the first non-trivial element along the u2σ-diagonal. We find

Y
[−2]
2,2 = ε2w2 ·

(

1 + Y
[−1]
2,1

)

= ε2w2 · (1 + ε1w1) = ε2w2 +O
(
ε2
)
. (4.45)

Due to the simple residue structure along the two diagonals, this structure repeats itself
and we can conclude that

u2σ = εn−4−σwn−4−σ, u3σ =
εn−4−σ

wn−4−σ
. (4.46)

We are left with the large cross ratios u1σ which lie along the first row and therefore have
a more complicated residue structure. To determine those, consider adding another gluon
to a n-point amplitude. This introduces another triplet of Y-functions. Furthermore, all
cross ratios u1σ in the first row are shifted to the left by two boxes and a new cross ratio

u1 (n+1)−5 appears which is connected to Y
[−3]
2,1 . However, in the multi-Regge limit where

all integral contributions are negligible, the only way the new functions can influence the
values of the n-point Y-functions is through residue contributions. If a given n-point Y-
function is not affected by residues of the three new Y-functions, it will keep its old value.
Since the functions that appear in a residue term could, of course, also be affected by the
new Y-functions, the question which Y-functions keep their value is a bit subtle. Following
our analysis of the grey boxes in appendix C it turns out that a Y-function keeps its value if
it lies in or on the triangle spanned by the u2σ diagonal and the diagonal starting from u22
going to the upper left in the (n+1)-point analogue of figure 4.2. This diagonal intersects

the first row at the node Y
[13−2n]
a,1 , which, comparing with Eq.(4.4), means that the last

u1σ which is not affected by the new Y-functions is u13. In turn, this means that all cross
ratios u1σ with σ ≥ 3 take the values of the n-point cross ratios u1κ with shifted indices.
The two remaining undetermined cross ratios u11, u12 can be fixed using target-projectile
symmetry Eq.(3.5), which relates them with u1 (n+1)−5 and u1 (n+1)−4, respectively. This
fixes all cross ratios. Since we have shown explicitly for the 7- and 8-point amplitude that
the cross ratios show multi-Regge behaviour, we can now conclude that this is true for an
arbitrary number of gluons. Explicitly, the cross ratios u1σ are given by

u1σ = 1−
(

wn−4−σ +
1

wn−4−σ
+ 2 coshCn−4−σ

)

εn−4−σ. (4.47)

Comparing the results Eqs.(4.46, 4.47) with the definition of the weak coupling parameter
rσ, Eq.(3.52), we find the relation

rσ =
1

wn−4−σ
eiCn−4−σ . (4.48)

between the various parameters.
Summing up, we showed that there is a particular choice of the Y-system parameters

which leads to the behaviour expected from multi-Regge kinematics. Furthermore, we see
that the n-point multi-Regge limit is given by a (n− 5)-fold copy of the 6-point case.
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Before we close this chapter, let us mention a point that we skimmed over before. In
section 4.2.2 we analysed the 7-point case and just assumed we could neglect the integrals
without considering any residue terms. Looking at figure 4.2, we see that we were indeed
justified in doing so, as the Y-functions at θ = −iπ4 and θ = 0 for the 7-point case do
not receive residue contributions for our choice of phases and all other Y-functions were
obtained using the recursion relation Eq.(2.68).



5. Calculating amplitudes in the
multi-Regge limit

In the last chapter, we have seen that the Y-system simplifies drastically in multi-Regge
kinematics. However, this simplification was only analysed on the level of the Y-system
equations and not on the level of the amplitude. In this chapter we will therefore out-
line our method for the computation of the amplitudes and comment on the numerical
algorithms used before applying our programme to the 6- and 7-point amplitude in the
following chapters.

5.1. Excited states and Bethe ansatz

In this section, we will study the Y-system and the free energy contribution to the ampli-
tude more carefully. The other contributions are rather simple and will be discussed once
we do actual calculations.

We start from the schematic form of the Y-system equations

log Ỹa,s(θ) = −pa,s(θ) +
∑

a′,s′

∫

R

dθ′Ka,a′

s,s′ (θ, θ
′) log(1 + Ỹa′,s′(θ

′)), (5.1)

where we have allowed for a general dependence of the kernels on the variables θ, θ′

for reasons which become clear in section 5.2. pa,s(θ) will be called driving term in the
following. Once we have solved the Y-system equations, we get the free energy contribution
to the amplitude by calculating

Afree =
∑

s

|ms|
2π

∫

R

dθ cosh θ log
(

(1 + Ỹ1,s(θ))(1 + Ỹ3,s(θ))(1 + Ỹ2,s(θ))
√
2
)

. (5.2)

As we showed in chapter 4, in the multi-Regge limit the Y-functions simplify and are well
approximated by

log Ỹa,s(θ) ∼= −pa,s(θ), (5.3)

at least in the vicinity of the real axis. In principle, we could use this form of the Y-
functions to calculate the free energy contribution and we will do so in section 6.2 for the 6-
point case. However, in this setup the free energy will be zero in the multi-Regge limit. We
therefore need to be more general. In particular, we want to be able to incorporate the idea
of changing the kinematical regions as discussed in section 3.4 into our calculations. As we
explained there, changing the so-called Regge region amounts to changing the sign of some
of the Mandelstam invariants. We achieve these sign changes by an analytic continuation in
the Mandelstam invariants or, in N = 4SYM, an analytic continuation in the cross ratios.
To map this onto the strong coupling formulation recall that the kinematical configuration
of our scattering problem is parametrised by the Y-system parameters. Therefore, an
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Re(θ)

Im(θ)

Y(θ) = −1

Re(θ)

Im(θ)

Re(θ)

Im(θ)

Figure 5.1.: A solution of Y(θ) = −1 (red dashed line) approaches the integration contour
(green dashed line). Right before a solution crosses the real axis, we can
deform the integration contour to keep the functional form of the Y-system
fixed with a more complicated integration contour. However, once we rewrite
the Y-system in standard form with integration along R, we have to pick up
a residue contribution as displayed above.

analytic continuation in the cross ratios will correspond to an analytic continuation in the
parameters |ms|, φs and Cs.

For a given Y-function Ỹa,s(θ) there are positions θ0 where

Ỹa,s(θ0) = −1. (5.4)

The location of these solutions of course depends on the values of the Y-system param-
eters. Therefore, the points θ0 where Eq.(5.4) is satisfied will move in the θ-plane as we
analytically continue the Y-system parameters. It can happen that the position of such a
solution comes close to the integration contour in Eq.(5.1). Of course, at a point where
Eq.(5.4) holds the integrand of Eq.(5.1) has a pole. Hence, if such a solution crosses the
integration contour we have to pick up the residue of the pole as depicted in figure 5.1. A
nice way to parametrise these residues is obtained by introducing objects

− 2πiKa,a′

s,s′ (θ, θ
′) =: ∂θ′ logS

a,a′

s,s′ (θ, θ
′), (5.5)

which we call S-matrices, for reasons that will become clear later. For example, the S-
matrices for the kernels Eq.(2.64), which depend only on one variable, are given by

S1(θ) = i
1− ieθ

1 + ieθ
, S2(θ) =

2i sinh θ −
√
2

2i sinh θ +
√
2
, S3(θ) = cosh 2θ. (5.6)
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We list the S-matrices for the various Y-systems we use in appendix D. Every time such
a crossing occurs, we have to modify the Y-system equations. Integrating by parts a
schematic integral contribution we find

∫

dθ′K(θ, θ′) log(1 + Ỹ(θ′)) =− 1

2πi

∫

dθ′∂θ′ logS(θ, θ
′) log(1 + Ỹ(θ′))

= +
1

2πi

∫

dθ′ logS(θ, θ′)
∂θ′Ỹ(θ′)

1 + Ỹ(θ′)
, (5.7)

where we neglected the boundary terms since we know that the Ỹ-functions decay expo-
nentially as θ′ → ±∞, cf. Eq.(2.46). From the result of Eq.(5.7) it is clear that a solution
of Ỹ(θ0) = −1 on the integration contour is a simple pole with residue

Res
θ′=θ0

(

∂θ′Ỹ(θ′)

1 + Ỹ(θ′)

)

= 1. (5.8)

Picking up such a pole in Eq.(5.7) will therefore lead to residue contributions

± logS(θ − θ0). (5.9)

Going back to the full Y-system, we can enumerate the positions of the crossed solutions
by θ0,ν and write the modified Y-system as

log Ỹ′
a,s(θ) =− p′a,s(θ) +

∑

a′,s′

∫

R

dθ′Ka,a′

s,s′ (θ, θ
′) log(1 + Ỹ′

a′,s′(θ
′))

+
∑

ν

(−sgn(Im(θ0,ν))) logS
a,aν
s,sν (θ, θ0,ν), (5.10)

where the prime just indicates that the equations we consider have changed due to the
crossing. It should be noted that the location of a crossed solution θ0,ν of course still
changes after crossing the real axis until it reaches its endpoint at the end of the analytic
continuation. Furthermore, note that the sign of the contribution depends on whether a
solution crosses into the positive or negative half-plane, as should be clear from figure 5.1.
Since the same kind of integrand appears in the free energy Eq.(5.2), it undergoes similar
modifications,

A′
free =

∑

s

|ms|′
2π

∫

R

dθ cosh θ log
(

(1 + Ỹ′
1,s(θ))(1 + Ỹ′

3,s(θ))(1 + Ỹ′
2,s(θ))

√
2
)

+
∑

ν

sgn(Im(θ0,ν))i|ms|′ sinh θ0,ν . (5.11)

Note that after analytic continuation the quantities |ms|′ are no longer necessarily real.
As mentioned before, the free energy contribution in Eq.(5.2) calculates the ground state
energy of the auxiliary one-dimensional quantum integrable system. We see from Eq.(5.11)
that the free energy has changed and now receives contributions of excited states of the
auxiliary system1. This idea is formulated in the context of integrable models in [133,134].

1The idea that the contributions come from excited states is, roughly speaking, that the functional form
of the eigenvalue problem we solve for the 1D-auxiliary quantum integrable system does not change
if we follow a closed path in the space of the system parameters. If we then find an eigenstate of the
system at the end of the continuation and the energy has changed, it must correspond to an excited
state of the original theory, cf. [132].
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At the endpoint of our continuation we always want to go back to the multi-Regge
regime, where the integrals can be dropped and the equations simplify to

log Ỹ′
a,s(θ) = −p′a,s(θ) +

∑

ν

(−sgn(Im(θ0,ν))) logS
a,aν
s,sν (θ, θ0,ν). (5.12)

We see that changing the Regge region can leave a clear signature in the equations through
the contributions of the S-matrices. In fact, in the multi-Regge limit the free energy is
dominated by the contributions of the excited states,

A′
free =

∑

ν

sgn(Im(θ0,ν))i|ms|′ sinh θ0,ν , (5.13)

as we show in detail in chapter 6. We still have to determine the endpoints of the crossed
solutions, which explicitly enter Eqs.(5.12,5.13). To do so, we evaluate the Y-system
equations for which a solution has crossed at θ0,i and use that, by definition, Ỹ′

ai,si(θ0,i) =
−1:

iπ = log
(

Ỹ′
ai,si(θ0,i)

)

= −p′ai,si(θ0,i) +
∑

ν

(−sgn(Im(θ0,ν))) logS
ai,aν
si,sν (θ0,i, θ0,ν). (5.14)

Exponentiating and rearranging these equations a bit we find

− ep
′
ai,si

(θ0,i) =
∏

ν

Sai,aν
si,sν (θ0,i, θ0,ν)

−sgn(Im(θ0,ν))) , (5.15)

which is a set of Bethe ansatz equations. For this reason, the θ0,i will also be called
Bethe roots. In its original context, the Bethe ansatz enforces single-valuedness of the
wave function of a magnon propagating on a spin-chain. The driving term represents
the momentum of the magnon, while the S-matrix factors represent the scattering of the
magnon with the particles on the spin-chain sites, thus explaining the name. The set of
equations (5.15) are called endpoint conditions in the following. Since we always end up
in a regime where the driving terms p′ai,si have a large absolute value, we already see from
Eq.(5.15) that the endpoints θ0,i need to approach zeros or poles of the S-matrices to show
the same behaviour as the driving term.

We conclude that for the scattering amplitudes we are after, there exists a set of Bethe
ansatz equations which encodes essential information for the calculation of the remainder
function. Finding the correct Bethe ansatz equations for a given amplitude will be the
crucial aspect of our programme. We will provide explicit examples in later chapters.

5.2. An alternative Y-system

In the last section, we have explained that the central part of our calculations will be the
determination of the solutions of the equations Ỹa,s(θ) = −1 which cross the integration
contour. Following these solutions through the θ-plane will be done numerically, using
the algorithm described in section 5.3. In this subsection, we prepare this discussion by
presenting an alternative form of the Y-system which is better suited for the numerical
evaluation.

A major problem in performing the analytic continuation of the Y-system is that the
paths of the Y-system parameters |ms|, φs, Cs are a priori unknown. We will therefore
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rewrite the Y-system in such a way that only quantities related to the cross ratios enter,
as was first proposed in [57]. To begin, note that the Y-functions related our choice of
cross ratios can always be expressed through the functions

Ŷa,s(0) :=

{

Ya,s(0) a+ s even

Ya,s

(
−iπ4

)
a+ s odd

(5.16)

using the recursion relation Eq.(2.68). We can now evaluate the Y-system equations at the
points Ŷ(0) and solve for the original parameters. For simplicity, we will keep the phase
parameters φs fixed to their limiting values in the multi-Regge limit (cf. Eq.(4.32)). We
will relax this condition in the 6-point case later. This leaves us with 2n− 10 parameters
to solve for. Solving the Ỹ-functions at the points Eq.(5.16) for the auxiliary parameters
we find

Cs =
1

2
log

(

Ỹ3,s(0)

Ỹ1,s(0)

)

− 1

2
K3 ⋆ γs

∣
∣
θ=0

,

|ms| =− 1

2
log
(

Ỹ1,s(0)Ỹ3,s(0)
)

− 1

2
K2 ⋆ βs

∣
∣
θ=0

−K1 ⋆ αs

∣
∣
θ=0

. (5.17)

These expressions can now be plugged into the original Y-system equations and we end up
with expressions for the Y-functions whose driving terms are functions of the cross ratios
only:

log Ỹ1,s(θ) =
1

2
log
(

Ỹ1,s(0)Ỹ3,s(0)
)

cosh θ − 1

2
log

(

Ỹ3,s(0)

Ỹ1,s(0)

)

+
∑

a′,s′

∫

dθ′K1,a′

s,s′ (θ, θ
′) log

(

1 + Ỹa′,s′(θ
′)
)

, (5.18)

log Ỹ2,s(θ) =
1√
2
log
(

Ỹ1,s(0)Ỹ3,s(0)
)

cosh θ

+
∑

a′,s′

∫

dθ′K2,a′

s,s′ (θ, θ
′) log

(

1 + Ỹa′,s′(θ
′)
)

, (5.19)

log Ỹ3,s(θ) =
1

2
log
(

Ỹ1,s(0)Ỹ3,s(0)
)

cosh θ +
1

2
log

(

Ỹ3,s(0)

Ỹ1,s(0)

)

+
∑

a′,s′

∫

dθ′K3,a′

s,s′ (θ, θ
′) log

(

1 + Ỹa′,s′(θ
′)
)

. (5.20)

Note that it was necessary to introduce the functions Ŷ(0) to ensure that the new driving
terms can be expressed through our choice of cross ratios. The relations between our cross
ratios and the Ŷ(0) will typically be solved numerically, analytic expressions are only
available in special cases. In fact, note that the relevant quantities in Eq.(5.17) are Ỹ1,s(0)
and Ỹ3,s(0). Starting from 8 gluons, the functions Ỹ1/3,3(0) will not be part of the set

Ŷa,s(0) because of our choice of phases. This, however, is not an in principle obstruction to
the construction above, as we can always determine the Ỹ1/3,s(0) = Y1/3,s(iφs) numerically

from the Ŷ(0).
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What we have gained is that we can easily prescribe the behaviour of the driving terms

during the analytic continuation. The price to pay is that the kernels Ka,a′

s,s′ appearing in
Eqs.(5.18-5.20) and the corresponding S-matrices are more complicated than those in the
original Y-system. They are spelled out for the special case of seven gluons in appendix
D. Note that, in contrast to appendix F of [57], we do not rewrite the full Y-system in
terms of the functions Ŷ, because the free energy is given by a simple integral over the
Ỹ-functions and not the Ŷ-functions. We therefore stick to the former in our description
of the Y-system.

5.3. Numerical evaluation of the Y-functions

To solve the Y-system numerically, we employ an algorithm similar to the one proposed
in [44]. We start by setting the Y-function equal to its driving terms only,

Ỹ(0)
a,s(θ) = e−pa,s(θ), (5.21)

and then iterate the integral equations by plugging the solution above in the integrand:

log Ỹ(k)
a,s(θ) = −pa,s(θ) +

∑

a′,s′

∫

R

dθ′Ka,a′

s,s′ (θ, θ
′) log

(

1 + Ỹ
(k−1)
a′,s′ (θ)

)

. (5.22)

We iterate this process until the Y-function has converged. This determines the Ỹ-
functions along the integration contour. Once the Ỹ-functions have converged we can
determine the function values for any θ in the fundamental strip, again using Eq.(5.22)
with the converged function on the right-hand side. For very large values of |Im θ| we
employ the recursion relation Eq.(2.68). The driving terms which feed into Eqs.(5.21,
5.22) are also determined numerically by solving the recursion relations for the functions
Ŷ(0) introduced earlier in terms of the cross ratios. For the multi-Regge limit, where the
driving terms are large, this convergence is rather fast. In fact, for the paths we studied
so far, the driving terms alone give the correct crossing picture, although higher iterations
are needed to produce continuous Y-functions at the points where solutions cross. Note
that some of the kernels of our rewritten Y-system Eqs.(5.18-5.20) spelled out in appendix
D have poles along the integration contour. We handle those by performing a principal
value integration and add the appropriate residue contribution of the kernel.

At every point of the continuation, we determine the position of the solutions Ỹa,s(θ) =
−1 by a standard root-finding algorithm. Whenever a solution crosses the real axis, we
have to modify our equations as described in section 5.1. Since the position of a crossed
solution explicitly enters the Y-functions through the S-matrices (cf. Eq.(5.10)), we have
to solve the Bethe ansatz at each point during the continuation after a solution has crossed.
We do so using the zeroth iteration, i.e.

Ỹ′(0)
a0,s0(θ0) = −1, (5.23)

which, depending on how many solutions have crossed, can be either a single equation or
a set of coupled equations. Towards the end of the continuation where the integrals can
be neglected, Eq.(5.23) will already give us the correct positions θ0. However, during the
continuation when the integrals still give non-negligible contributions, the position of the
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crossed solution as determined by Eq.(5.23) will receive corrections through the integral
contributions, as well. We determine those corrections by an analogous iteration procedure
as in Eq.(5.22). In chapter 7 we will find an example in which poles cross the real axis
at different times during the continuation. In such a case, it turns out to be simpler to
deform the integration contour such that no poles cross the contour rather than modifying
the integral equations several times. Once all poles have crossed the real axis, we pull the
integration contour back and pick up the appropriate residues.

In Eq.(5.10) we have shown that the contribution of the crossing solution consists of
residue contributions by partial integration. However, the locations Ỹ(θ) = −1 are not
just simple poles, they are branch points and we choose the branch cuts to point away from
the real axis. This means that once solutions have crossed the real axis and we pull back
the integration contour, the integrand in Eq.(5.10) crosses the branch cuts and we have to
keep it continuous by adding the appropriate cut contributions. This gives the same result
as deforming the integration contour such that no poles cross, as is easily shown. These
remarks become especially important when using our rewritten Y-system Eqs.(5.18-5.20),
because, as mentioned above, the kernels for this Y-system have poles on the integration
contour and we have to pick up residue contributions. When pulling back the contour,
one has to be careful on which sheet these residues are picked up and add compensating
factors. Again, the comparison with the deformed contour will always lead to the correct
result. All numerical calculations in this thesis were performed using Mathematica.

5.4. Regge regions

In section 5.1 we have discussed an algorithm to find the valid equations for the Y-system
during a given analytic continuation of the cross ratios. Let us now discuss briefly how
we identify the correct prescriptions for the analytic continuation of the cross ratios. We
start from the amplitude in the physical region where all energies si are positive2. In this
region all produced particles are outgoing and the energy component of the momentum of
those particles is positive. For each produced particle we can then analytically continue
into regions where the energy component of the momentum of the produced particle is
negative, i.e. we choose the particle to be incoming. Hence, we consider 2n−4 so-called
Regge regions for a 2 → n− 2 amplitude. A graphical representation of a Regge region is
shown in figure 5.2.

Since the amplitude is a function of the Mandelstam invariants and not the momenta,
the continuation between different Regge regions must be defined in terms of Mandel-
stam variables. Two-particle invariants of massless particles are simply inner products
of momenta sii+1 ∼ pi · pi+1. In the centre-of-mass system of particles i and i + 1, a
sign change in the energy component of particle i will hence translate into a sign change
of the Mandelstam variable sii+1. The simplest continuation for a two-particle invariant
is therefore along a path sii+1 → sii+1e

iϕ from ϕ = 0 . . . π. For Mandelstam invariants
including more particles, we can use that in the multi-Regge limit those invariants are
products of two-particle invariants, cf. Eq.(3.21). If the numerator for a given subenergy

2Note that the Y-system is originally derived in the Euclidean regime where all energies are negative.
However, as we will see in the next chapter, none of the cross ratios change as we perform the analytic
continuation from the Euclidean to the physical region with all energies being positive and we can use
the Y-system without modifications also in this physical region.
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P6,++ P6,+−

s23 → s23e
iϕ

s34 → s34e
iϕ

s123 → s123e
iϕ

Figure 5.2.: Graphical representation for the continuation from the physical regime with all
energies being positive to a Regge region in which some energies are negative.
Effectively, this corresponds to choosing one of the particles to be incoming.
The transition between the two regions is carried out by continuing the s-
variables indicated in the arrow as seiϕ from ϕ = 0 . . . π. We denote the
Regge region by P6,+−, where we indicate for each produced particle whether
it is incoming (−) or outgoing (+).

si...j in Eq.(3.21) contains an odd number of two-particle invariants which are continued,
it will be continued as si...j → si...je

iϕ, as well, otherwise we keep it fixed. The t-variables
are kept fixed during the continuation. In the graphical representation in figure 5.2 one
can read off which subenergies are analytically continued by the following mnemonic: If
the two particles spanning the subenergy lie on different sides of the central blob, the
subenergy is continued. If they lie on the same side, the subenergy is kept fixed.

Once we have figured out which Mandelstam variables we need to continue, we can feed
this information into the definition of the cross ratios Eq.(3.4) to see how the cross ratios
should be analytically continued. For the example shown in figure 5.2 we find that

u1 → u1, u2 → u2e
iϕ, u3 → u3e

−iϕ. (5.24)

Note that the choice to continue along a half-circle is made because it is the simplest
possible path which changes the sign of the energy variables. The Regge regions are only
defined by the signs of the Mandelstam invariants and the path between two regions is
somewhat ambiguous. In fact, we will see in chapter 7 that it is not always possible to
stick to this choice. We will comment on these subtleties once they become relevant.



6. The 6-point amplitude

In this chapter, we perform our first computation of the remainder function for the 6-gluon
amplitude. Remember that the 4- and 5-point amplitude are completely captured by the
BDS ansatz and that the 6-point amplitude is the first non-trivial case where deviations
from the BDS ansatz are obtained, because it is the lowest number of gluons for which we
can build conformal cross ratios out of the x2i,j . After describing the equations governing
the 6-point case, we show that the remainder function vanishes in the Euclidean regime.
We then describe different Regge regions and the corresponding analytic continuations
and go on to show that we indeed find a non-trivial remainder function in a particular
Regge region. This calculation was first carried out in [78]. However, in [79] we reconsider
the problem and identify some mistakes made in the original publication.

6.1. Equations for the 6-point case

We already discussed the general formulas and kinematics for the n-point case in chapters
3 and 4. However, since this is our first proper calculation of an amplitude, let us restate
the relevant quantities for convenience. In the 6-point case we have three independent
cross ratios which read

u1 =
x22,6x

2
3,5

x23,6x
2
2,5

=
Y

[−3]
2,1

1 + Y
[−3]
2,1

, u2 =
x24,6x

2
3,1

x23,6x
2
4,1

=
Y

[−1]
2,1

1 +Y
[−1]
2,1

, u3 =
x22,4x

2
1,5

x21,4x
2
2,5

=
Y

[1]
2,1

1 +Y
[1]
2,1

. (6.1)

We also have three Y-functions Ya,1(θ) and the corresponding Y-system parameters have
to attain the values

|m| → ∞, φ→ 0 and C = const. (6.2)

in the multi-Regge limit. Then the cross ratios can be parametrised using the quantities
ε and w (cf. Eq.(4.15)) as

u1 = 1− ε

(

w +
1

w
+ 2 coshC

)

, u2 = εw, u3 =
ε

w
. (6.3)

As there is only one triplet of Y-functions for the 6-point case, we will suppress the second
index in the following. The connection between the cross ratios and the Y-functions has
already been spelled out in Eq.(6.1). For the case at hand, we can actually use these
equations and solve the recursion relations Eq.(2.68) for the driving terms of our modified
Y-system Eqs.(5.18-5.20) in terms of the cross ratios analytically. We obtain

Y1(0) =
1

2u1

(

1− u1 − u2 − u3 −
√

−4u1u2u3 + (1− u1 − u2 − u3)
2

)

, (6.4)

Y2

(

−iπ
4

)

=
u2

1− u2
, (6.5)

Y3(0) =
1

2u1

(

1− u1 − u2 − u3 +

√

−4u1u2u3 + (1− u1 − u2 − u3)
2

)

, (6.6)
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which we can use to prescribe the behaviour of the driving terms during the continuation
to different Regge regions.

The two different sets of Y-system equations we are going to use have already been
presented in sections 2.3.3 and 5.2, respectively. We will use Eqs.(5.18-5.20) for the nu-
merical evaluation during the continuation and Eqs.(2.60-2.62) at the starting point and
the endpoint of the continuation. Once we have solved for the Y-functions, we calculate
the remainder function using the contributions

R6 = −
√
λ

2π
(Afree +Aper +∆) , (6.7)

where

Afree =
|m|
2π

∫

dθ cosh θ log
[

(1 + Ỹ1(θ))(1 + Ỹ3(θ))(1 + Ỹ2(θ))
√
2
]

, (6.8)

Aper =
1

4
|m|2 and (6.9)

∆ = −
3∑

i=1

(
1

8
log2 ui +

1

4
Li2(1− ui)

)

. (6.10)

In the form written out above, the equations are valid in the Euclidean regime, where
all Mandelstam invariants are negative, as well as in the physical regime, where all s-like
variables are positive, while t-like variables are negative. The change between these two
regions is an analytic continuation in all s-like variables. However, since the cross ratios
always involve an even number of s-variables, the change does not affect the Y-system or
the remainder function.

6.2. The remainder function R6 in the Euclidean regime

Let us first study the remainder function in the Euclidean regime. To do so, we use the
original Y-system Eqs.(2.60-2.62), as we do not need to perform any analytic continuation.
We start with the free energy contribution,

Afree =
|m|
2π

∫

dθ cosh θ log
[

(1 + Ỹ1(θ))(1 + Ỹ3(θ))(1 + Ỹ2(θ))
√
2
]

. (6.11)

For a single Y-function, we can use that in the multi-Regge limit log(1+ Ỹa(θ
′)) ∼= Ỹa(θ

′)
and find that schematically (i.e. neglecting possible factors of e±C or factors of

√
2)

|m|
2π

∫

dθ cosh θ log
(

1 + Ỹa(θ)
)
∼= |m|

2π

∫

dθ cosh θe−|m| cosh θ

=
|m|
2π

K1(|m|), (6.12)

where Kα(x) is the modified Bessel function of second kind (cf. [135]). Using its large x
behaviour,

K1(x) ∼
√

π

2x
e−x for x→ ∞, (6.13)
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we see that the contribution of a given Y-function to the Afree-part of the amplitude is
given by

|m|
2π

∫

dθ cosh θ log
(

1 + Ỹa(θ
′)
)
∼= 1

2

√

|m|
π
e−|m| (6.14)

and is therefore negligible in the multi-Regge limit |m| → ∞.
The periods part Aper can be rewritten using the definitions Eq.(4.15) as

Aper =
1

4
|m|2 = 1

4

(
log2 ε+ log2w

)
(6.15)

in the multi-Regge limit. This leaves us with ∆, which was spelled out in Eq.(6.10). To
compare it with the Aper-contribution, we use the multi-Regge form of the cross ratios
Eq.(6.3) and expand around ε = 0 to find

∆ = −1

4
log2 ε− 1

4
log2w + const.+O(ε). (6.16)

We can now assemble all pieces of the amplitude and find that

Afree +Aper +∆ = const.+O(ε), (6.17)

i.e. the remainder function is constant. In fact, the constant from the ∆-part comes from
the series expansion of the Li2-functions and therefore cancels against a term with opposite
sign in the ABDS-part. Therefore, we indeed confirm the weak coupling prediction that
the remainder function is trivial in the Euclidean regime of the multi-Regge limit [25].

6.3. Regge regions

In chapter 5 we described the general algorithm for the computation of the remainder
function in different Regge regions. Before we delve into any concrete calculation, let us
try to gain some intuition about the necessary conditions for a crossing solution to occur.
In the following, we prefer to work with the unshifted Y-functions, see the discussion
around Eq.(2.70).

If a solution Ya(θ) = −1 crosses the real axis, the corresponding Y-function has to
become of O(1) along the real axis. This, however, means that the approximation

Ya(θ) ∼= e−|m|′ cosh(θ−iφ′)±C′
(6.18)

has to fail and corrections from the integrals can no longer be neglected. From the argu-
ments given in chapter 4 it is clear that this is only possible if the driving term becomes
small, which in turn implies that C has to become of O(|m|) during the continuation,
otherwise there will be no crossing solution1.

For the special case of the 6-gluon amplitude we can be more specific because of the
exact relation

coshC =
−1 + u1 + u2 + u3

2
√
u1u2u3

, (6.19)

1One might argue that alternatively |m| could become small. However, from Eqs.(5.17, 6.4-6.6) one can
see that the leading contribution to the mass parameter is ∼ log(u2u3) which stays large throughout
all continuations studied here.
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P6,++ P6,−−

P6,+− P6,−+

Figure 6.1.: Graphical representation of the Regge regions for the 6-point amplitude.

which we obtain by using the relation

Y3(θ)

Y1(θ)
=

Y3(0)

Y1(0)
= e2C (6.20)

and Eqs.(6.4-6.6). Relation Eq.(6.20) does not hold for more external gluons because of the
appearance of the kernel K3 starting from the 7-point amplitude (cf. Eqs.(2.60)-(2.62)).
We can now plug the behaviour of the cross ratios during a given continuation in Eq.(6.19)
and see whether C becomes large or not. If it does not, there will be no crossing solutions
and the remainder function will be trivial.

For the 6-point amplitude we have the following Regge regions with the corresponding
continuation from the physical region with all energies being positive indicated:

P6,+− : u1 → u1, u2 → eiϕu2, u3 → e−iϕu3 (6.21)

P6,−+ : u1 → u1, u2 → e−iϕu2, u3 → eiϕu3 (6.22)

P6,−− : u1 → e−2iϕu1, u2 → u2, u3 → u3. (6.23)

The graphical representation of these regions is shown in figure 6.1. The first two paths
do not involve a rotation of the large cross ratio u1 and indeed it is easy to check that for
these paths C does not become large and hence there is no crossing solution. Therefore,
in these regions the remainder function is trivial, in agreement with the weak coupling
computation of [25]. This leaves us with P−−. Indeed, by plugging the paths of the
cross ratios into Eq.(6.19), we see that C becomes large around ϕ ∼ π

2 and crossing can
potentially occur. We study this path in detail in the next section.

6.4. The remainder function R6,−−

After having specified the behaviour of the cross ratios during the continuation, we have
all the information we need to determine the remainder function R6,−−. For this path,



62 CHAPTER 6. THE 6-POINT AMPLITUDE

−22 −20 −18 −16

0

2

4

6

Re log (Y3Y1) (0)

Im
lo
g
(Y

3
Y

1
)
(0
)

0 5 10 15 20

2

3

4

Re log (Y3/Y1) (0)

Im
lo
g
(Y

3
/
Y

1
)
(0
)

Figure 6.2.: Paths of the driving terms for the path Eq.(6.23). The direction of growing
ϕ is indicated by an arrow. The plots are produced for the specific starting
values |m| = 10, C = arccosh

(
3
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)
, φ = 0.

the driving terms can be inferred from Eqs.(6.4-6.6) and the behaviour we specify for the
cross ratios, Eq.(6.23). The paths of the driving terms during the continuation are shown
in figure 6.2.

6.4.1. Crossing solutions

We begin by checking whether crossing solutions exists for this path. We do so numerically,
employing the algorithm described in section 5.3. Note again that we study paths with φ
fixed throughout the continuation for simplicity, we will release this restriction later on. In
figures 6.3, 6.4 we present the results of our numerical investigations. Indeed, we see that
a pair of solutions of Y3(θ) = −1 crosses the real axis2. As described before, at this point
we have to modify our equations by picking up the appropriate residues. Furthermore, a
pair of solutions Y2(θ) approaches the origin at the end of the continuation.

Let us remark that we can calculate the paths of the original Y-system parameters using
Eq.(5.17). For the path under investigation, the results are shown in figure 6.5. We see
that we nicely reproduce the results of [78], who use the original Y-system equations and
a different numerical method to find the path of continuation for the original Y-system
parameters. While this was to be expected because the two Y-systems are equivalent,
it is of course nice to see agreement in the different approaches. Note that during the
continuation C reaches values ∼ O(|m|). As remarked in section 6.3, this is a necessary
condition for crossing solutions.

6.4.2. Symmetries of the Y-system and endpoint conditions

We now need to determine the endpoints of the solutions that have crossed the real axis.
To do so, it makes sense to relax the condition φ ≡ 0 and allow for a small deviation.
For small φ this does not spoil the picture of the crossing solutions as numerical studies
confirm, while allowing a more general statement about the endpoint positions. In the

2The reason the crossing appears in Y3 is the starting value we choose for C. Choosing −C would lead
to crossing solutions of Y1.
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Figure 6.3.: Movement of the solutions of Y3(θ) = −1 as we vary ϕ. The direction of
growing ϕ is indicated by the arrows. We switch the colour of the plot at
the point where the first solution crosses the real axis. The green dots show
the endpoints that enter in the calculation of the remainder function. The
crossing is plotted for the specific initial values |m| = 10, C = arccosh

(
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and φ = 0.

case of non-zero φ, the Y-system equations before any continuation read

logYa(θ) = −|ma| cosh (θ − iφ) +Ca +
∑

a′

∫

R+iφ

dθ′Kaa′
(
θ − θ′

)
log
(
1 + Ya′(θ

′)
)
, (6.24)

cf. Eq.(2.70), where we introduced the collective parameters

|ma| =







|m| a = 1√
2|m| a = 2

|m| a = 3

and Ca =







−C a = 1

0 a = 2

C a = 3

. (6.25)

These equations have a simple mirror symmetry

Ya(θ + iφ) = Ya(−θ + iφ). (6.26)

To prove the above symmetry we mimic the way we solve the Y-system equations numer-
ically and write

logY(k)
a (θ) = −|ma| cosh (θ − iφ) + Ca +

∑

a′

∫

R+iφ

dθ′Kaa′
(
θ − θ′

)
log
(

1 + Y
(k−1)
a′ (θ′)

)

(6.27)
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Figure 6.4.: Movement of the solutions of Y2(θ) = −1 as we vary ϕ. The direction of
growing ϕ is indicated by the arrows. We switch the colour of the plot at
the point where the first solution of Y3(θ) = −1 crosses the real axis. The
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and
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for the k-th iteration, where

logY(0)
a = −|ma| cosh(θ − iφ) + Ca (6.28)

is just the driving term without integral contributions. To start, it is obvious that the
driving terms satisfy the symmetry. If we then assume that the k-th iteration satisfies the
mirror symmetry, we can write the integral contribution at θ+ iφ to the k+1-th iteration
as
∫

R+iφ

dθ′K
(
θ + iφ− θ′

)
log
(

1 + Y(k)(θ′)
)

=

∫

R

dxK (θ + x) log
(

1 + Y(k)(−x+ iφ)
)

=

∫

R

dxK (−θ − x) log
(

1 + Y(k)(x+ iφ)
)

=

∫

R+iφ

dθ′K
(
−θ + iφ− θ′

)
log
(

1 + Y(k)(θ′)
)

,

(6.29)

where we suppressed all indices for simplicity. In the second step, we used that K(−x) =
K(x), which only holds for the kernels in the 6-gluon case, as well as our assumption that
Y(k)(θ + iφ) = Y(k)(−θ + iφ). We see that the result of Eq.(6.29) is just the integral
contribution for −θ + iφ. Therefore, each iteration obeys the symmetry Eq.(6.26) and so
does the converged solution. Again, this symmetry is special to the 6-point case because
the Y-system for more gluons contains integration kernels with shifted arguments.



6.4. THE REMAINDER FUNCTION R6,−− 65

10 10.5 11 11.5

−3

−2

−1

0

Re |m|(ϕ)

Im
|m

|(ϕ
)

0 3 6 9

1

1.5

2

ReC(ϕ)

Im
C
(ϕ

)

Figure 6.5.: Paths of the original Y-system parameters during the continuation as cal-
culated from Eq.(5.17). The direction of increasing ϕ is indicated by the
arrows. The starting values for the parameters in this plot are |m| = 10,
C = arccosh
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)
and φ = 0. Note that the results nicely match those ob-

tained in [78]. Furthermore, note that while |m|(ϕ) is a real quantity at the
starting point, it becomes complex during the analytic continuation.

We can use this symmetry to determine the endpoints of the crossed solutions. In the
following we will denote the endpoint of the crossed solution of Y3(θ) = −1 with positive
(negative) imaginary part with θ+ (θ−). As we end up in a regime where the integral
contributions can be neglected, the equation for Y′

3(θ) is given by

logY′
3(θ) = −|m|′ cosh

(
θ − iφ′

)
+ C ′ + log

(
S1(θ − θ−)
S1(θ − θ+)

)

, (6.30)

where a prime always indicates a quantity at the endpoint of the continuation. Evaluating
Eq.(6.30) at the endpoint of the crossed Bethe root, we obtain the endpoint condition (cf.
Eq.(5.15))

− 1 = Y′
3(θ+) = e−|m|′ cosh(θ+−iφ′)+C′

(
S1(θ+ − θ−)

S1(0)

)

. (6.31)

As explained in general in section 5.1, the two factors on the right-hand side have to
combine into a finite product. Since we send |m|′ → ∞, this means that the Bethe roots
have to approach a pole of the S-matrix factors to compensate the exponentially decreasing
driving term. Specifically, we read off from Eq.(6.31) and the definition of S1(x), Eq.(5.6),
that

θ+ − θ− = i
π

2
. (6.32)

Since there are only two Bethe roots in the vicinity of the real axis and φ is small through-
out the continuation, we can use the symmetry Eq.(6.26) to conclude that

θ− = −θ+ + 2iφ′, (6.33)

which, together with Eq.(6.32), implies

θ± = ±iπ
4
+ iφ′. (6.34)



66 CHAPTER 6. THE 6-POINT AMPLITUDE

It is conceivable that the solutions θ± leave the fundamental strip |Im(θ − iφ′)| < π
4 , in

which case we would have to pick up residue terms of the form ∼
(
1 + Y2,1

(
θ ± iπ4

))
in

Eq.(6.30), which in principle could also compensate the divergence of the driving term in
Eq.(6.31). However, assuming that Im(θ+ − iφ′) > π

4 , we immediately see that

Im(θ− − iφ′) = Im(−θ+ + iφ′) = −Im(θ+ − iφ′) < −π
4
, (6.35)

from which we conclude that Eq.(6.30) holds as it stands for θ−. An analogous statement
is true for the case Im(θ−− iφ′) < −π

4 . Therefore, Eq.(6.30) is always the correct equation
for at least one of the Bethe roots, which suffices to conclude that the endpoints must
attain the values Eq.(6.34).

Let us now turn to the two solutions of Y2(θ) which approach each other towards the
end of the continuation. After neglecting the integrals, the equation governing Y′

2(θ) reads

logY′
2(θ) = −

√
2|m|′ cosh

(
θ − iφ′

)
+ log

(
S2(θ − θ−)
S2(θ − θ+)

)

. (6.36)

After inserting the values Eq.(6.34), we can use the same argument as before to conclude
that the Bethe roots of Y2 have to approach a pole of the function

S2
(
θ + iπ4 − iφ′

)

S2
(
θ − iπ4 − iφ′

) = coth

(
1

2
(θ − iφ′)

)2

, (6.37)

which leads to the conclusion that both solutions have to end at the point θ2 = iφ′. This,
however, is the imaginary part of the integration contour, so that the Bethe roots pinch
the contour, but never cross. Therefore, they do not give rise to additional contributions
in the Y-system or the free energy. Note that this conclusion differs from [78], where a
contribution of one of the Bethe roots of Y2(θ) to the free energy was considered.

6.4.3. Calculation of the amplitude

Now that we have understood the crossing pattern and the endpoints of the crossed so-
lutions, we can finally calculate the amplitude. As a first step, we use Eqs.(6.36,2.68) to
calculate the cross ratios at the endpoint of the continuation and obtain

u1 =
Y

′[−3]
2

1 + Y
′[−3]
2

= 1− ε′γ

(

w′ +
1

w′ − 2 coshC ′
)

+O
(
ε′2
)
, (6.38)

u2 =
Y

′[−1]
2

1 + Y
′[−1]
2

= γε′w′ +O
(
ε′2
)
, (6.39)

u3 =
Y

′[1]
2

1 + Y
′[1]
2

= γ
ε′

w′ +O
(
ε′2
)
, (6.40)

where γ = −3 − 2
√
2, ε′ := e−|m|′ cosφ′

and w′ := e|m|′ sinφ′
. By definition of our path

Eq.(6.23), the cross ratios come back to themselves at the endpoint of the continuation.
We therefore identify u′a = ua and use this identification to express the new parameters
through the old ones. We find

ε′ = γ−1ε+O
(
ε2
)
, w′ = w +O

(
ε2
)
, coshC ′ = − coshC +O

(
ε2
)
, (6.41)
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where the last equation simply follows from our analytic formula for C, Eq.(6.19). Note
that these equations can also be used to calculate the original Y-system parameters at
the end of the calculation. For example, for the case |m| = 10, φ = φ′ = 0 we find from
Eq.(6.41)

|m|′ = log γ + |m| ≈ 11.76− iπ, (6.42)

nicely matching our numerical result shown in figure 6.5. Since we will need it in the
following, let us remark that Eq.(6.42) can be turned around and, together with the
numerical result Fig.6.5 used to determine the ambiguity in the imaginary part of log γ.
For example, in this case we find

log γ = −iπ + log(3 + 2
√
2). (6.43)

The free energy part of the amplitude receives contributions from the two crossing solu-
tions,

A′
free =

|m|′
2π

∫

R+iφ′

dθ cosh(θ − iφ′) log
[

(1 + Y′
1(θ))(1 + Y′

3(θ))(1 + Y′
2(θ))

√
2
]

+ |m|′i sinh(θ+ − iφ′)− |m|′i sinh(θ− − iφ′). (6.44)

As we end up in a regime where the integrals can be neglected, the integral contributions
drop out and after inserting the endpoint positions Eq.(6.34) we end up with

A′
free

∼= −
√
2|m|′ ∼=

√
2 log ε′

=
√
2 log ε−

√
2 log γ. (6.45)

In Eq.(6.45) we used the relation |m|′ =
√

log2 ε′ + log2w′ ∼= − log ε′. The periods part
at the endpoint can be evaluated easily,

A′
per =

1

4
|m|′ 2 = 1

4
|m|′ 2 − 1

4
|m|2 +Aper

∼= −1

2
log γ log ε+

1

4
log2 γ +Aper (6.46)

and the ∆-contribution is given by

∆′ = ∆+ i
π

2
(log u1 − log(1− u1)) +

π2

2

∼= −iπ
2
log ε− π

2
i log

(

2 coshC + w +
1

w

)

+
π2

2
+ ∆, (6.47)

where in the first step we have inserted the phase from the path of continuation Eq.(6.23)
and in the second step inserted the multi-Regge behaviour Eq.(6.3). Note that since the ∆-
contribution is given directly in terms of the cross ratios, the unprimed quantities appear
in Eq.(6.47). For ∆ and Aper we have added and subtracted the respective contribution
before the continuation because we know that the original contributions cancel in the full
amplitude. The parts in the above expressions other than the original piece are therefore
the contribution due to the continuation of the cross ratios. Assembling all pieces, we find
for the pieces of the remainder function

A′
free +A′

per +∆′ + iδ′ ∼= −e2 log ε− iπe2 + const., (6.48)
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where e2 = −
√
2+ 1

2 log
(
3 + 2

√
2
)
∼ −0.533 and δ′ = π

2 log
(
2 coshC + w + 1

w

)
is a phase

that comes from the expansion of the Li2-functions appearing in the ∆-contribution. Since
the Li2-functions only appear in the ABDS-part of ∆ (cf. Eq.(2.59)), this phase cancels with
a corresponding term in the BDS ansatz and does not appear in the full amplitude. Using
the relation

ε = (1− u1)
√

ũ2ũ3 (6.49)

we can write the remainder function in terms of the cross ratios and find our final result

eR6,−−+iδ6,−−
∣
∣
∣
MRL

∼
(

−(1− u1)
√

ũ2ũ3

)
√
λ

2π
e2
. (6.50)

In Eq.(6.50) the phase on the left-hand side is given by

δ6,−− =
1

4

√
λ log

√

ũ2ũ3 =
π

4
γK log

√

ũ2ũ3, (6.51)

where in the last step we used the strong coupling expansion of the cusp anomalous

dimension γK =
√
λ
π + . . . [85]. We see that the remainder function in the region P6,−− is

indeed non-vanishing and shows nice Regge-like power-law behaviour R6,−− ∼ (1− u1)
ω.

It should be noted that our result does not vanish in the collinear limits ũs → 0. This is
in contrast to the general argument that in the collinear limit the 6-point function reduces
to a 5-point amplitude and therefore the remainder function must vanish. One might
argue that after analytic continuation we have ended up on a different sheet where this
is no longer true. However, all expressions given in [70] from a weak coupling expansion
vanish in the collinear limit even after the analytic continuation. We are probably facing
an order of limits issue here. As our numerical studies have to be performed for a generic
value of w, we should not make any statement about the collinear limits w → 0 or w → ∞.
We have checked that our result persists in the range 10−1 ≤ w ≤ 10. A more detailed
study on the collinear limit in the Regge region P6,−− is in progress.

6.4.4. Comparison with weak coupling

Let us take a moment to compare our result Eq.(6.50) with the weak coupling dispersion
relation Eq.(3.49)

eR6,−−+iδ6,−−
∣
∣
∣
MRL

= (6.52)

cosπωab + i
λ

2

∞∑

n=−∞
(−1)n

( r

r∗

)n
2

∞∫

−∞

dν

ν2 + n2

4

|r|2iν ΦReg(ν, n)
(

−(1− u1)
√

ũ2ũ3

)−ω(ν,n)

We see that both at weak and strong coupling, the remainder function shows a Regge
power-law dependence ∼ (1 − u1)

ω. Furthermore, the phase δ6,−− we find in Eq.(6.51)
nicely matches the expression in [76] once the strong coupling expansion of γK is taken
into account and the phase (−1)−ω shows up correctly.

However, there is a striking difference. While the weak coupling expression contains
an integration and a summation over the conformal quantum numbers ν and n, only one
term appears at strong coupling. The result Eq.(6.50) therefore suggests that at strong
coupling the integral is dominated by a saddle point, which lies at ν = 0, because we see
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no factor of |r| when comparing our strong coupling result Eq.(6.50) with Eq.(6.52). The
exponent e2 we find in Eq.(6.50) can then be interpreted as the strong coupling limit of
the BFKL eigenvalue. In fact, also at weak coupling the remainder function is dominated
by a saddle point at n = 1, ν = 0. While we are not sensitive to the n-dependence on the
strong coupling side as it is subleading in

√
λ, the strong coupling result shows that the

dominant saddle point is located at ν = 0 at strong coupling, as well.
The above speculations are supported by [131], where the author proposes all-loop

expressions for the BFKL eigenvalue and the impact factor. Taking the strong coupling
limit, he indeed finds a dominant saddle point with the BFKL eigenvalue e2.

Before closing this chapter, let us remark that the strong coupling results are in very
nice agreement with the analytic structure predicted at weak coupling [25] - we see a Regge
cut-like contribution the region P6,−− and no contributions in the other regions. We now
move on to the 7-point amplitude to see whether this nice matching also holds for more
external gluons.



7. The 7-point amplitude

In this chapter, we study the 7-gluon amplitude. The result of the last chapter nurtured
the hope expressed in the introduction that the analytic structure imposed by Regge
theory at weak coupling is preserved even in the strong coupling limit. The calculation
of the 7-point amplitude will provide crucial input because we know from weak coupling
predictions that the same BFKL eigenvalue is probed (i.e. the same number e2 should
appear in our remainder function) and there are four Regge regions where this number
should show up. Confirming these predictions would provide very non-trivial support for
our hypothesis.

We begin this chapter by highlighting the differences to the 6-point amplitude. This
includes a study of the Regge regions and the analytic continuations of the driving terms,
which will naturally lead us to the discussion of conformal Gram relations. We then go
on to study the crossing solutions for the four relevant Regge regions and calculate the
remainder function for the respective configurations. The 7-point amplitude in the multi-
Regge limit has also been investigated at weak coupling recently, see [136–138]. Beyond
the Regge limit, the two-loop symbol of the 7-point amplitude is determined in [139]
and the part of the remainder function containing the highest-weight functions is found
in [140] based on motivic amplitudes and the classification of the combinations of cross
ratios which appear in the remainder function [141].

7.1. Cross ratios

In the 7-point case we have six independent cross ratios,
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u12 =
x23,7x

2
4,6

x24,7x
2
3,6

=
Y

[−3]
2,1

1 +Y
[−3]
2,1

, u22 =
x25,7x

2
1,4

x24,7x
2
1,5

=
Y

[−1]
2,1

1 +Y
[−1]
2,1

, u32 =
x22,5x

2
1,6

x21,5x
2
2,6

=
Y

[1]
2,1

1 + Y
[1]
2,1

,

(7.1)

which we parametrise as

u11 = 1−
(

w2 +
1

w2
+ 2 coshC2

)

ε2, u21 = w2ε2, u31 =
ε2
w2
,

u12 = 1−
(

w1 +
1

w1
+ 2 coshC1

)

ε1, u22 = w1ε1, u32 =
ε1
w1
, (7.2)

via the quantities εs and ws defined in Eq.(4.33).



7.2. REGGE REGIONS 71

However, starting from seven points, there are actually more cross ratios than indepen-
dent ones. In particular, for the case at hand

ũ =
x22,7x

2
3,6

x22,6x
2
3,7

=
Y

[−4]
2,2

1 +Y
[−4]
2,2

(7.3)

is another cross ratio which is not part of our basis Eq.(3.4). Since there are only six
independent cross ratios, ũmust be a function of the cross ratios of our basis. The equation
relating our basis to ũ is a conformal Gram identity whose full form and derivation we
show in detail in appendix E. Here we just spell out the relation in the multi-Regge limit
setting all small cross ratios u2s = u3s = 0,

0 = (ũ− 1)(1− u11 − u12 + u11u12ũ) (7.4)

for which the non-trivial solution is given by

ũ = −1− u11 − u12
u11u12

. (7.5)

However, just like the other cross ratios, ũ is a combination of Mandelstam invariants and
can have a non-trivial behaviour during the analytic continuations. We therefore have to
make sure that we find paths of continuation that are consistent with the Gram relation.

7.2. Regge regions

Following our general discussion in section 5.4, we have 27−4 = 8 possible Regge regions.
However, we will ignore those Regge regions in which only one leg is flipped. As in the
6-point case, these involve only rotations of the small cross ratios and will not lead to a
non-trivial remainder function. This leaves us with five regions, of which the Euclidean
region again leads to a trivial result, as we show in section 7.4.1. We present the interesting
Regge regions in figure 7.1, for which the calculation of the phases for the cross ratios gives
us the following paths:

P7,+−− :u11(ϕ) = u11, u21(ϕ) = eiϕu21, u31(ϕ) = e−iϕu31,

u12(ϕ) = e−2iϕu12, u22(ϕ) = u22, u32(ϕ) = u32, ũ(ϕ) = ũ

P7,−+− :u11(ϕ) = e2iϕu11, u21(ϕ) = e−iϕu21, u31(ϕ) = eiϕu31,

u12(ϕ) = e2iϕu12, u22(ϕ) = eiϕu22, u32(ϕ) = e−iϕu32, ũ(ϕ) = e−2iϕũ

P7,−−+ :u11(ϕ) = e−2iϕu11, u21(ϕ) = u21, u31(ϕ) = u31,

u12(ϕ) = u12, u22(ϕ) = e−iϕu22, u32(ϕ) = eiϕu32, ũ(ϕ) = ũ

P ′
7,−−− :u11(ϕ) = u11, u21(ϕ) = u21, u31(ϕ) = u31,

u12(ϕ) = u12, u22(ϕ) = u22, u32(ϕ) = u32, ũ(ϕ) = e−2iϕũ.

While the first three paths look reasonable, the last path is rather odd. All cross ratios of
our basis remain fixed, while the dependent cross ratio ũ has to do a full rotation. This
is impossible, of course. The reason for this behaviour lies in our assumption stated in
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P7,−−+ P7,+−−

P7,−−− P7,−+−

Figure 7.1.: Interesting Regge regions for the 7-point amplitude.

section 5.4 that we can always perform the continuation along (semi-)circles. We now see
that this is too naive. Instead, we should choose paths that both have the same winding
number around uas = 0 as the naive paths using circles and are consistent with the Gram
relation Eq.(7.4).

Let us illustrate this for the path P ′
7,−−−. In the multi-Regge limit, we can use the

Gram relation in the approximation u12 = u11 =: u1 with all small cross ratios set to zero,
Eq.(7.5). Inverting this relation for u1, we find

u1 =
1

ũ

(

1±
√
1− ũ

)

. (7.6)

This Gram relation has two solutions for u1, of which we choose the one that has winding
number zero around u1 = 0. This specifies a path that fulfils both our requirements.
Explicitly, it is given by:

P7,−−− : u11(ϕ) = e2iϕ
(

1−
√

1− e−2iϕ
)

u11, u12(ϕ) = e2iϕ
(

1−
√

1− e−2iϕ
)

u12

ũ(ϕ) = e−2iϕũ, u2s(ϕ) = u2s, u3s(ϕ) = u3s. (7.7)

We can now study the crossing solutions for the given paths and calculate the remainder
functions. It should be kept in mind that our assumption that only the winding number
and consistency with the Gram relations and no further details of the paths are relevant
is a hypothesis.

7.3. Predictions from weak coupling

Before we begin the explicit calculation of the remainder functions at strong coupling, let
us briefly review the predictions for the analytic structure of the 7-point amplitude in the
MRL as derived in [137]. The approach taken in [137] is similar to the method outlined in
section 3.4 for the 6-point amplitude. Analysing the factorisation properties of the BDS



7.3. PREDICTIONS FROM WEAK COUPLING 73

Region Cuts Relevant variables Conformal phase δ

P7,−−+ t2 ua1
π
4γK log

(√
ũ21ũ31

)

P7,+−− t3 ua2
π
4γK log

(√
ũ22ũ32

)

P7,−−− t2 + t3 ua1 · ua2 π
4γK log

(
(1−u11)(1−u12)

1−ũ

√
ũ21ũ31ũ22ũ32

)

P7,−+− t2, t3, t2 + t3 ua1, ua2
π
4γK log

(
(1−u11)(1−u12)

1−ũ

√
ũ21
ũ31

ũ32
ũ22

)

Table 7.1.: Predictions for the structure of the 7-point remainder function in the multi-
Regge limit.

ansatz, the authors of [137] find that in some Regge regions unphysical poles appear which
need to be cancelled by a Regge cut contribution. In that way, the Regge regions in which
Regge cuts show up can be identified. In particular, for the 2 → 5 amplitude, the four
Regge regions of figure 7.1 are shown to receive the following cut contributions:

• P7,−−+: ‘short’ Regge cut in t2-channel

• P7,+−−: ‘short’ Regge cut in t3-channel

• P7,−−−: ‘long’ Regge cut in t2 + t3-channel

• P7,−+−: both short cuts and the long cut contribute

The Regge cuts in the 7-point amplitude still arise from a bound state of two Reggeons.
Therefore, it is to be expected that the universal quantities governing the 6-point case reap-
pear in the 7-point amplitude and the remainder function should have the same structure
as Eq.(6.50). Of course, we have twice as many variables as in the 6-point case. However,
the relevant variables can be identified from the cut structure. For example, in the region
P7,−−+ a cut should appear in the t2-channel, which is connected with the energy variable
s2. This variable, in turn, appears only in the triplet ua1 and we expect the remainder
function to be a function of these three variables only. Similarly, the remainder function
in the region P7,+−− should only depend on the triplet ua2. The long Regge cut in the
region P7,−−− is connected with the energy variable s234 in the notation of section 3.1.
As we know from Eq.(3.21) we have s234 ∼ s2s3 in the multi-Regge limit and therefore we
expect the remainder function to be a function of the products ua1ua2.

As we have already seen in the 6-point amplitude, the Regge cut contribution is con-
nected with a conformal phase δ. These phases are also obtained in [137]. We spell
them out, together with the other weak-coupling predictions, in table 7.1. Note that
1 − ũ = O(ε2) in the multi-Regge limit so that all conformal phases are constants in the
MRL.

The structure of the cut contributions is studied in [138]. Like in the 6-point case, every
cut contribution gives rise to a dispersion relation-like integral. In analogy with Eq.(3.49),
the remainder function in the region P7,−−+ is given by

eR7,−−++iδ7,−−+

∣
∣
∣
MRL

= (7.8)

cosπωab + i
λ

2

∑

n

(−1)n
(
r1
r∗1

)n
2

+∞∫

−∞

dν

ν2 + n2

4

Φreg(ν, n)|r1|2iν
(

−(1− u11)
√

ũ21ũ31

)−ω(ν,n)
,
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with the phase δ7,−−+ spelled out in table 7.1 and a Regge pole contribution ωab. Note
that the quantities ΦReg(ν, n) and ω(ν, n) are the same quantities governing the 6-point
case. The form of the remainder function in the region P7,+−− can be obtained from
Eq.(7.8) by applying target-projectile symmetry. This leaves us with the regions involving
the long cuts. For the region P7,−−− one obtains

eR7,−−−+iδ7,−−−
∣
∣
∣
MRL

= (7.9)

i
λ

2

∑

n1,n2

(−1)n1+n2

(
r1
r∗1

)n1
2
(
r2
r∗2

)n2
2

+∞∫

−∞

dν1dν2
(2π)2

Φ∗(ν1, n1)C(ν1, n1, ν2, n2)Φ(ν2, n2)

× |r1|2iν1 |r2|2iν2
(

−(1− u11)
√

ũ21ũ31

)−ω(ν1,n1) (−(1− u12)
√

ũ22ũ32

)−ω(ν2,n2)
+ · · ·

Again, the quantities Φ(ν, n) and ω(ν, n) are the same quantities as in the 6-point case.
However, a new vertex C(ν1, n1, ν2, n2) appears, which is calculated to leading order in
[136] and reads

Φ∗CΦ =
Γ
(
−iν1 − n1

2

)

Γ
(
1 + iν1 − n1

2

)
Γ
(
iν2 +

n2
2

)

Γ
(
1− iν2 +

n2
2

)
Γ
(
i(ν1 − ν2) +

1
2(n2 − n1)

)

Γ
(
1− i(ν1 − ν2) +

1
2(n2 − n1)

) . (7.10)

In addition to the nicely factorised expression in Eq.(7.9) further Regge pole and subtrac-
tion terms should appear, as indicated by the dots. These, however, are not relevant for
our discussion and are explained in [137,138].

The region P7,−+− should also be governed by a factorised ansatz as in Eq.(7.9). In
fact, the only difference in the dispersion relation should be that the complex conjugate
of the new production vertex appears. To leading order this vertex C is real-valued in
momentum space, therefore differences between the two regions can only appear starting
from the NLLA. Furthermore, the subtraction terms for the region P7,−+− are different
from those in the region P7,−−−.

7.4. Contributions to the remainder function

Let us begin our investigations by spelling out the explicit formulas for the contributions
to the remainder function. As in the 6-point case, the remainder function consists of three
terms

R7 = −
√
λ

2π
(∆ +Aper +Afree) . (7.11)

The free energy part Afree has standard form,

Afree =
2∑

s=1

|ms|
2π

∫

R

dθ cosh θ

[(

1 + Ỹ1,s(θ)
)(

1 + Ỹ3,s(θ)
)(

1 + Ỹ2,s(θ)
)
√
2
]

. (7.12)

Recall that Ỹa,s(θ) = Ya,s(θ + iφs). The periods part Aper is more complicated than in
the 6-point case and the phases explicitly enter:

Aper =
|m1|2
2

+
|m2|2
2

+
1√
2
|m1||m2| (cosφ1 cosφ2 + sinφ1 sinφ2) . (7.13)
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This leaves us with ∆, which is a function of the cross ratios and is written down in [142],

∆ :=ABDS−like −ABDS = −1

4

7∑

i=1

(
log2 ui + Li2(1− ui)

)
+

1

8
log u11 log

(
u21u22
ũ u32

)

+
1

8
log u12 log

(
u32u31
ũ u21

)

+
1

8
log u21 log

(
u11u32
u12u22

)

+
1

8
log u22 log

(
u11 ũ

u21u31

)

+
1

8
log u31 log

(
u12 ũ

u22u32

)

+
1

8
log u32 log

(
u12u21
u11u31

)

+
1

8
log ũ log

(
u22u31
u11u12

)

. (7.14)

7.4.1. The remainder function in the Euclidean regime

As a quick check that the above expressions are correct, let us compute the remainder
function in the Euclidean regime. We will drop the integral contributions and thereby
Afree from the beginning, since we know that their contribution is negligible (cf. section
6.2). To calculate the contributions of the other two terms, we use the parametrisation
Eq.(4.33) and the multi-Regge limit expressions Eq.(7.2). After expanding in εs and
keeping only the leading terms we find

Aper =
1

2

(
log2 ε1 + log2w1 + log2 ε2 + log2w2

+ log ε1 log ε2 + logw1 logw2 + log ε2 logw1 − log ε1 logw2) +O(ε). (7.15)

as well as

∆ =− π2

6
− 1

2

(
log2 ε1 + log2w1 + log2 ε2 + log2w2

)

− 1

2
(log ε1 log ε2 − log ε1 logw2 + log ε2 logw1 + logw1 logw2) +O(ε). (7.16)

Summing both terms, we see that only a constant remains, which actually cancels with a
constant appearing in the BDS-part of the full amplitude. Consequently, the remainder
function is trivial in the Euclidean regime, as it should.

7.5. Region P7,−−+

We now discuss the calculation of the remainder function in the region P7,−−+ for which
we identified the path

u11(ϕ) = e−2iϕu11, u21(ϕ) = u21, u31(ϕ) = u31,

u12(ϕ) = u12, u22(ϕ) = e−iϕu22, u32(ϕ) = eiϕu32, ũ(ϕ) = ũ. (7.17)

Before we present the results, let us make a remark. The Y-system we use for the numerical
investigations Eqs.(5.18-5.20) was derived under the assumption that the phases are fixed
during the continuation, as described in section 5.2. This choice amounts to setting u2s =
u3s during the continuation. Looking at the prescribed path P7,−−+ in Eq.(7.17) we see
that this condition is not satisfied, because u21

u31
is not a constant during the continuation

but rather rotates along a full circle. We can estimate the size of the error we are making
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by allowing a small shift in the phases φs = (1− s)π4 + δφs. We keep the index s variable
as the same discussion applies to the path P7,+−−. This leads to

u2n−4−s

u3n−4−s
= w2

s = e2|ms| sin(φs−(1−s)π
4
) = e2|ms|δφs = e2iϕ, (7.18)

which translates into

δφs =
iϕ

|ms|
∼ O

(
1

log εs

)

(7.19)

for the size of the phase deviation. Since the mass parameters |ms| stay very large during
the continuation, the error we are making is negligibly small and we conclude that we can
still use the Y-system for fixed phases without making a mistake. This is consistent with
the observation that in our numerical analysis of crossing solutions the rotation of the
small cross ratios has practically no effect as compared to the rotation of the large cross
ratios.

7.5.1. Continuation of the driving terms

To determine the driving terms, we solve the recursion relations Eq.(2.68) numerically
for the driving terms of the modified Y-system Eqs.(5.18-5.20), imposing the behaviour
Eq.(7.17) for the cross ratios. We find the results shown in figure 7.2.

7.5.2. Crossing solutions

We now study how the locations of the solutions Ỹa,s(θ) = −1 move in the θ-plane during
the continuation, using the algorithm described in section 5.3 and find the behaviour shown
in figure 7.3. We see that the crossing behaviour looks very similar to the one studied in
the 6-point case in section 6.4.1. We have one pair of crossing solutions of Ỹ3,2 and one
pair of solutions of Ỹ2,2 which approaches the origin towards the end of the calculation.
All other Ỹ-functions do not come close to the real axis. We can then spell out the set of
equations at the end of the continuation by picking up the appropriate S-matrices,

log Ỹ′
1,s(θ) = −|ms|′ cosh θ − C ′

s +
∑

a′,s′

∫

dθ′K1,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S1,3
s,2 (θ − θ− + iφ′s − iφ′2)

S1,3
s,2 (θ − θ+ + iφ′s − iφ′2)

, (7.20)

log Ỹ′
2,s(θ) = −

√
2|ms|′ cosh θ +

∑

a′,s′

∫

dθ′K2,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S2,3
s,2 (θ − θ− + iφ′s − iφ′2)

S2,3
s,2 (θ − θ+ + iφ′s − iφ′2)

, (7.21)

log Ỹ′
3,s(θ) = −|ms|′ cosh θ + C ′

s +
∑

a′,s′

∫

dθ′K3,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S3,3
s,2 (θ − θ− + iφ′s − iφ′2)

S3,3
s,2 (θ − θ+ + iφ′s − iφ′2)

. (7.22)
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Figure 7.2.: Paths of the driving terms during the analytic continuation for the path
Eq.(7.17). For this plot, the specific starting values for the parameters are
|m1| = 10, |m2| = 9, C1 = arccosh

(
3
5

)
, C2 = arccosh

(
4
7

)
. Note that some

axes have been shifted and rescaled. The direction of growing ϕ is indicated
by the arrows.

Note that, despite the fact that the numerical analysis was performed for fixed phases,
we keep the phases φ′ general in Eqs.(7.20-7.22). This is consistent because the crossing
picture does not change for small deviations of the phases. One should, however, be careful
about taking collinear limits of our results, as explained in section 6.4.3.

After neglecting the integrals, the functions above for the triplet Ỹa,2 in which the
Y-functions with crossing solutions live are the same as in the 6-point case for fixed phase
φ′ = 0. This means that the endpoint conditions are the same, as well, and we can
conclude without any further calculation that

θ± = ±iπ
4

(7.23)

are the endpoints for the crossing solutions of Ỹ3,2 and the solutions of Ỹ2,2 pinch the
contour but never cross. Note that the second triplet Ỹa,1 plays no role in the deter-
mination of the endpoints because no solutions of Y-functions in that triplet cross. For
completeness, we also show the behaviour of the original Y-system parameters during the
continuation in figure 7.4.
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Figure 7.3.: Left: Crossing solutions of Ỹ3,2(θ) = −1 during the continuation Eq.(7.17).
One pair of solutions crosses the real axis and approaches ±iπ4 . Right: One

pair of solutions of Ỹ2,2(θ) = −1 approaches the origin, but does not contribute
to the remainder function. The direction of growing ϕ is indicated by the
arrows.

7.5.3. Calculation of the remainder function R7,−−+

Now that we know the endpoints of the crossing solutions, we can use the expressions given
in section 7.4 to calculate the remainder function in this region. First, let us determine the
cross ratios at the end of the continuation by evaluating the Y′-functions at the appropriate
values of θ (cf. Eq.(7.1)). Neglecting the integrals and shifting the argument, we find the
relevant formulas for the Y′-functions from Eqs.(7.20-7.22):

Y′
1,s(θ) =

(

e−|ms|′ cosh(θ−iφ′
s)−C′

s

) S1,3
s,2 (θ + iπ4 − iφ′2)

S1,3
s,2 (θ − iπ4 − iφ′2)

, (7.24)

Y′
2,s(θ) =

(

e−
√
2|ms|′ cosh(θ−iφ′

s)
) S2,3

s,2 (θ + iπ4 − iφ′2)

S2,3
s,2 (θ − iπ4 − iφ′2)

, (7.25)

Y′
3,s(θ) =

(

e−|ms|′ cosh(θ−iφ′
s)+C′

s

) S3,3
s,2 (θ + iπ4 − iφ′2)

S3,3
s,2 (θ − iπ4 − iφ′2)

. (7.26)

From these equations, we calculate the cross ratios and find1

u′11 = 1− γε′2

(

w′
2 +

1

w′
2

− 2 coshC ′
2

)

, u′21 = γw′
2ε

′
2, u′31 = γ

ε′2
w′
2

,

u′12 = 1 + ε′1

(
1

γ
w′
1 +

1

w′
1

+ 2
1√−γ sinhC ′

1

)

, u′22 = −1

γ
w′
1ε

′
1, u′32 = − ε′1

w′
1

, (7.27)

where γ = −3− 2
√
2, and all above expressions are valid up to corrections of O(ε′ 2). As

before, we define

ε′s = e−|ms|′ cos((s−1)π
4
+φ′

s), w′
s = e|ms|′ sin((s−1)π

4
+φ′

s). (7.28)

1Note that in evaluating the cross ratios, we set φ′
s = φs in the S-matrices because any small deviation

from the strict value in the multi-Regge limit would lead to a subleading contribution (cf. Eq.(7.19)
and the discussion in section 6.4.2).
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Figure 7.4.: Behaviour of the original Y-system parameters during the continuation
Eq.(7.17). Note that C2 starts and ends on the imaginary axis and quickly
attains a large real part, as in the 6-point case (cf. figure 6.5), while C1 is
considerably smaller. The mass parameters |ms| stay large throughout the
continuation. The direction of growing ϕ is indicated by the arrows.

By our choice of the path Eq.(7.17), we have to identify u′22 = −u22, u′32 = −u32 and
u′as = uas for all other cross ratios. This identification relates the primed parameters with
the original parameters and gives

ε′1 =
√
γε1, w′

1 =
√
γw1, coshC ′

1 =

√

1−
(

w1 +
1

w1
+ coshC1

)2

,

ε′2 =
1

γ
ε2, w′

2 = w2, coshC ′
2 = − coshC2. (7.29)

Using Eq.(4.33) we can analytically calculate the |ms|′, which are nicely consistent with
our numerical results in figure 7.4. We now turn to the individual terms of the remainder
function, beginning with A′

per,

A′
per =

1

2

(
log2 ε′1 + log2w′

1 + log2 ε′2 + log2w′
2

+ log ε′1 log ε
′
2 + logw′

1 logw
′
2 + log ε′2 logw

′
1 − log ε′1 logw

′
2

)
, (7.30)

Using Eq.(7.29) we obtain

A′
per −Aper =

1

4
log2 γ − 1

2
log γ log ε2. (7.31)
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As always, the free energy part A′
free is dominated by the residue contributions, which we

worked out in section 7.5.2. Inserting the information that one pair of solutions of Ỹ3,2

crosses and approaches ±iπ4 , we find

A′
free

∼=− |m2|′
2π

(

2πi sinh
(

−iπ
4

)

− 2πi sinh
(

i
π

4

))

=−
√
2|m2|′ = −

√
2
√

log2 ε′2 + log2w′
2

∼=+
√
2 log ε′2 = +

√
2 (log ε2 − log γ) . (7.32)

Note that in going from the second to the third line in Eq.(7.32) it is important to choose
the correct sign in the square root. The last missing piece is ∆′ which is a function of the
cross ratios and therefore is easy to obtain. Performing the rotation in the cross ratios we
have to pick up some cut contributions and end up with

∆′ =∆+ i
π

4
(2 log u11 + log u12 + log ũ− 2 log(1− u11))

+
1

4
(Li2(1− u22)− Li2(1 + u22) + Li2(1− u32)− Li2(1 + u32)) + const.

∼=− i
π

2
log ε2 − i

π

2
log

(

w2 +
1

w2
+ 2 coshC2

)

+ const. (7.33)

Adding up all pieces, we find

A′
free +A′

per +∆′ + iδ′7,−−+
∼= −e2 log ε2 − iπe2 + const., (7.34)

where δ′7,−−+ = π
2 log

(

w2 +
1
w2

+ 2 coshC2

)

is a phase similar to the one we found in the

6-point case and e2 = −
√
2 + 1

2 log
(
3 + 2

√
2
)
, as before. We rewrite this result using the

relations

ε2 =
√

ũ21ũ31(1− u11), w2 =

√
u21
u31

, (7.35)

which of course only hold in the multi-Regge limit. After exponentiation, we obtain our
final result

eR7,−−++iδ7,−−+

∣
∣
∣
MRL

∼
(

−(1− u11)
√

ũ21ũ31

)
√
λ

2π
e2
. (7.36)

Rewriting the phase in terms of the cross ratios we find

δ7,−−+ =

√
λ

4
log
(√

ũ21ũ31

)

=
π

4
γK log

(√

ũ21ũ31

)

, (7.37)

where we again used the leading strong coupling behaviour γK =
√
λ
π . A closer look at our

result Eq.(7.36) shows a remarkable similarity with the 6-point result. In fact, the only
difference is that in the region P7,−−+, the 6-point result is evaluated on one triplet only,

R7,−−+(uas) = R6,−−(u11, u21, u31). (7.38)

Furthermore, the phases match nicely, as well. In this section we have only considered
the region P7,−−+. Yet it is clear that the region P7,+−− should be related to the region
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studied here, by target-projectile symmetry Eq.(3.5). This is indeed true and we show by
explicit calculation in appendix F that

R7,+−−(uas) = R6,−−(u12, u22, u32), (7.39)

and the conformal phase is given by

δ7,+−− =

√
λ

4
log
(√

ũ22ũ32

)

=
π

4
γK log

(√

ũ22ũ32

)

. (7.40)

We have now determined the remainder function for the regions in which two legs are
bend down. As we saw, the crossing picture is very similar to the 6-point case and so is
the result, although the intermediate calculations are somewhat different. We now turn
to the region P7,−−− in which new effects start to appear.

7.6. Region P7,−−−

In this section, we investigate the region with all three produced particles flipped, for
which we identified the path

u11(ϕ) = e2iϕ
(

1−
√

1− e−2iϕ
)

u11, u21(ϕ) = u21, u31(ϕ) = u31, (7.41)

u12(ϕ) = e2iϕ
(

1−
√

1− e−2iϕ
)

u12, u22(ϕ) = u22, u32(ϕ) = u32, ũ(ϕ) = e−2iϕũ,

in section 7.2.

7.6.1. Continuation of the driving terms

This region differs from the two studied before in that it is invariant under target-projectile
symmetry, Eq.(3.5). Due to that symmetry, we can actually find analytic formulas for the
driving terms which are approximately correct and which generate the desired winding
behaviour. The formulas read

Y2±1,1(0) =
1

2

1

1− u11 − u12 − u31

(
− 1 + u12 + u11u32 + u22 (7.42)

∓
√

−4u12u22u32(−1 + 2u11 + u31) + (−1 + u22 + u12 + u11u32)2
)
.

A similar formula holds for Y2±1,2

(
−iπ4

)
, which can be obtained by applying target-

projectile symmetry to the right-hand side of Eq.(7.42). We obtain Eq.(7.42) by solving
the recursion relation Eq.(2.68) for the special kinematical point u11 = u12, u21 = u32,
u31 = u22. We then reconstruct which of the cross ratios appears by demanding that
taking the strict multi-Regge limit, i.e. u1s = 1, u2s = 0, u3s = 0, in one triplet should
reduce to the 6-point formulas Eqs.(6.4-6.6) for the other triplet. For example, the strict
multi-Regge limit for the triplet ua1 reduces Eq.(7.42) to the 6-point case Eqs.(6.4-6.6).
This leaves some ambiguities in the above formulas, which, however, are subleading. From
this result, we obtain the behaviour of the driving terms shown in figure 7.5.
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Figure 7.5.: Paths of the driving terms during the analytic continuation for the path
Eq.(7.41). The direction of growing ϕ is indicated by the arrows. The
curves shown correspond to the specific choice |m| = |m1| = |m2| = 10,
C = C1 = −C2 = arccosh

(
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)
at the starting point.

7.6.2. Crossing solutions

Let us now perform the analytic continuation and study the crossing solutions. We choose
to study the crossing behaviour mostly for the specific case

|m| := |m1| = |m2|, C := C1 = −C2, (7.43)

which gives rise to an additional exact symmetry

Ỹa,1(θ) = Ỹ4−a,2(−θ). (7.44)

We choose this special kinematical point for convenience and have made sure that the
crossing picture presented below persists for the non-symmetric case |m1| 6= |m2|, C1 6=
−C2. The analytic arguments which determine the endpoints of the crossing solutions will
be valid for the non-symmetric case, as well.

We present our results in figure 7.6. For the first time, we see crossing solutions for
more than one Y-function. In fact, we have two pairs of crossing solutions, one from
Ỹ1,2 and one from Ỹ3,1, whose positions we denote by θ12± and θ31±, respectively. Note
that the solutions of the Ỹ-functions do not cross simultaneously, which introduces some
numerical complications. Since no other solutions cross the real axis, we can write down
the Ỹ-equations at the endpoint of the continuation:

log Ỹ′
1,s(θ) =− |ms|′ cosh θ − C ′

s +
∑

a′,s′

∫

dθ′K1,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S1,1
s,2 (θ − θ12− + iφ′s − iφ′2)

S1,1
s,2 (θ − θ12+ + iφ′s − iφ′2)

S1,3
s,1 (θ − θ31− + iφ′s − iφ′1)

S1,3
s,1 (θ − θ31+ + iφ′s − iφ′1)

, (7.45)

log Ỹ′
2,s(θ) =−

√
2|ms|′ cosh θ +

∑

a′,s′

∫

dθ′K2,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S2,1
s,2 (θ − θ12− + iφ′s − iφ′2)

S2,1
s,2 (θ − θ12+ + iφ′s − iφ′2)

S2,3
s,1 (θ − θ31− + iφ′s − iφ′1)

S2,3
s,1 (θ − θ31+ + iφ′s − iφ′1)

, (7.46)
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Figure 7.6.: Crossing solutions for the function Ỹ1,2(θ) (left) and Ỹ3,1(θ) (right) during
the continuation Eq.(7.41). The mirror symmetry is due to our choice of
parameters, cf. Eq.(7.44). The arrows indicate the direction in which the
solutions move. We change colours once the first solution crosses the real axis.
The plots correspond to the specific choice |m| = 10 and C = arccosh

(
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)
at

the starting point.

log Ỹ′
3,s(θ) =− |ms|′ cosh θ + C ′

s +
∑

a′,s′

∫

dθ′K3,a′

s,s′
(
θ − θ′ + iφ′s − iφ′s′

)
log
(

1 + Ỹ′
a′,s′(θ

′)
)

+ log
S3,1
s,2 (θ − θ12− + iφ′s − iφ′2)

S3,1
s,2 (θ − θ12+ + iφ′s − iφ′2)

S3,3
s,1 (θ − θ31− + iφ′s − iφ′1)

S3,3
s,1 (θ − θ31+ + iφ′s − iφ′1)

. (7.47)

We now need to understand the endpoints of the crossed solutions. Due to the symmetry
Eq.(7.44) we know that θ12± = −θ31∓. Furthermore, it seems obvious from figure 7.6 that
the differences of the locations of the solutions satisfy

θ12+ − θ12− = i
π

2
, θ31+ − θ31− = i

π

2
, (7.48)

but their absolute position does not seem to correspond to a special position in the θ-
plane. This problem is due to the fact that our choice of the mass parameter |m| is still
too far away from the multi-Regge limit |m| → ∞. For all other paths studied so far, this
was not an issue as only one triplet contained a crossing solution. The fact that we now
find two large Ỹ-functions seems to spoil the fast convergence we see for the other paths.
Nevertheless, since we have control over the driving terms at the endpoint via Eq.(7.42),

log
(

Ŷ1,s · Ŷ3,s

)

(0)
∣
∣
∣
ϕ=π

= −2|ms|+ 2πi, (7.49)

we can study the solutions of the Bethe ansatz at the endpoint numerically as a function
of the initial mass parameters, which explicitly enter in Eq.(7.49). Indeed, we find that
both θ12+ and θ31+ approach iπ4 , as shown in figure 7.7. The paths of the original Y-
system parameters |m| and C during the continuation is shown in figure 7.8. Let us now
try to understand the endpoints analytically. We begin by writing out the usual endpoint
conditions

− 1 = Ỹ1,2(θ12±) = Ỹ3,1(θ31±), (7.50)
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Figure 7.7.: Convergence of the crossing solutions θ12+ and θ31+ against iπ4 . The green
dots indicate the position of the endpoints in figure 7.6. The starting point
corresponds to an initial value for the mass parameter of m = 10. We then
increase the initial mass parameter up to m = 2000 to see the convergence
against iπ4 .

which, however, only enforce the constraints Eq.(7.48). To find the absolute endpoints,
note that for the case of four crossing solutions we have the possibility to construct non-
trivial quotients of Bethe ansatz equations,

1 =
Ỹ1,2(θ12−)

Ỹ1,2(θ12+)
= e|m2|′(cosh θ12++i sinh θ12+)

(
1 + cosh(θ12+ − θ31+) + i sinh(θ12+ − θ31+)

−1 + cosh(θ12+ − θ31+) + i sinh(θ12+ − θ31+)

)

=
Ỹ3,1(θ31−)

Ỹ3,1(θ31+)
= e|m1|′(cosh θ31++i sinh θ31+)

(−1 + cosh(θ12+ − θ31+) + i sinh(θ12+ − θ31+)

1 + cosh(θ12+ − θ31+) + i sinh(θ12+ − θ31+)

)

,

(7.51)

where we already used Eq.(7.48). They, too, give rise to endpoint conditions. We see that
the S-matrix factors in Eq.(7.51) are inverses of each other. Since the S-matrix factors
have to either diverge or go to zero in the infinite mass limit, this means that the S-matrix
factors of one of the equations (7.51) diverge while the S-matrix factors for the other
equation go to zero. This is fulfilled for

θ12+ = θ31+. (7.52)

This still leaves us with one undetermined position. We can, however, take the product
of both equations in Eq.(7.51) and use Eq.(7.52) to find

1 = e(|m1|+|m2|)(cosh θ12++i sinh θ12+), (7.53)

from which we conclude that the driving term has to vanish. This finally gives

θ12+ = i
π

4
(7.54)

and we conclude that all pole positions lie on ±iπ4 .
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at the starting point.

7.6.3. Calculation of the remainder function R7,−−−

While the determination of the endpoints and the numerical investigation was much more
difficult for this region, the calculation of the remainder function is as simple as for the
other regions. We start from the Y′-equations at the endpoint of the continuation,

Y′
1,s =

(

e−|ms|′ cosh(θ−iφ′
s)−C′

s

) S1,1
s,2 (θ + iπ4 − iφ′2)

S1,1
s,2 (θ − iπ4 − iφ′2)

S1,3
s,1 (θ + iπ4 − iφ′1)

S1,3
s,1 (θ − iπ4 − iφ′1)

, (7.55)

Y′
2,s =

(

e−
√
2|ms|′ cosh(θ−iφ′

s)
) S2,1

s,2 (θ + iπ4 − iφ′2)

S2,1
s,2 (θ − iπ4 − iφ′2)

S2,3
s,1 (θ + iπ4 − iφ′1)

S2,3
s,1 (θ − iπ4 − iφ′1)

, (7.56)

Y′
3,s =

(

e−|ms|′ cosh(θ−iφ′
s)+C′

s

) S3,1
s,2 (θ + iπ4 − iφ′2)

S3,1
s,2 (θ − iπ4 − iφ′2)

S3,3
s,1 (θ + iπ4 − iφ′1)

S3,3
s,1 (θ − iπ4 − iφ′1)

, (7.57)

which, evaluated at the corresponding values of θ, give us the cross ratios

u′11 = 1 + ε′2

(
1

w′
2

+ γw′
2 + 2

√−γ sinhC ′
2

)

, u′21 = −γw′
2ε

′
2, u′31 = − ε′2

w′
2

, (7.58)

u′12 = 1 + ε′1

(

w′
1 +

γ

w′
1

+ 2
√−γ sinhC ′

1

)

, u′22 = −w′
1ε

′
1, u′31 = −γ ε

′
1

w′
1

. (7.59)

For the path under consideration Eq.(7.41), we impose u′as = uas at the endpoint and
obtain the new parameters

ε′1 =
ε1√
γ
, w′

1 = −√
γw1, coshC ′

1 = − sinhC1, (7.60)

ε′2 =
ε2√
γ
, w′

2 = − w2√
γ
, coshC ′

2 = sinhC2, (7.61)
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where again γ = −3−2
√
2. This gives rise to the following contributions to the remainder

function:

A′
free

∼=
√
2 log ε1 +

√
2 log ε2 −

√
2 log γ, (7.62)

A′
per −Aper

∼= −1

2
(iπ + log γ) log (ε1ε2)−

iπ

2
log

(
w1

w2

)

+ const. (7.63)

For ∆′, a small subtlety appears due to the non-trivial rotation of ũ, which gives rise to
contributions ∼ log(1 − ũ) and ∼ log ũ. ũ appears explicitly in the answer. However, we
will not replace it with an expression in terms of the εs and ws, but just use the fact that
1− ũ ∼ O(ε2) as can be seen from Eq.(7.5). This allows us to drop the term ∼ log ũ and
we obtain

∆′ −∆ ∼= −iπ
2
log (ε1ε2) +

iπ

2
log

(
w2

w1

)

− i
π

2
log (1− ũ) + const.

From figure 7.8 we see that the ambiguity for log γ for this path is resolved by

log γ = log(3 + 2
√
2)− 3iπ, (7.64)

see also the discussion around Eq.(6.43) in the 6-point case. Adding all contributions, we
find

A′
free +A′

per +∆′ + iδ′7,−−− ∼= −e2 log (ε1ε2) + const., (7.65)

where e2 = −
√
2 + 1

2 log(3 + 2
√
2), as before. After using the relations

ε1 =
√

ũ22ũ32(1− u12), w1 =

√
u22
u32

(7.66)

and the corresponding relations for the other triplet we find the remainder function to be
given by

eR7,−−−+iδ7,−−−
∣
∣
∣
MRL

∼
(

(1− u11)(1− u12)
√

ũ21ũ31ũ22ũ32

)
√
λ

2π
e2
, (7.67)

where

δ7,−−− =

√
λ

4
log

(
(1− u11)(1− u12)

1− ũ

√

ũ21ũ31ũ22ũ32

)

+

√
λ

4
log

(
ũ21
ũ31

ũ32
ũ22

)

. (7.68)

Remarkably, we find that the remainder function for the region P7,−−− is just the sum of
the remainder functions for the regions P7,−−+ and P7,+−−,

R7,−−−(uas) = R7,−−+(uas) +R7,+−−(uas). (7.69)

This ends our study of this path and we turn to the last remaining region for the 7-point
amplitude.
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Figure 7.9.: Paths of the driving terms during the analytic continuation Eq.(7.70). Note
that some axes have been shifted. The direction of growing ϕ is indicated by
the arrows.

7.7. Region P7,−+−

7.7.1. Continuation of the driving terms

The remaining Regge region we want to investigate is P7,−+−, for which we identified the
path

u11(ϕ) = e2iϕu11, u21(ϕ) = e−iϕu21, u31(ϕ) = eiϕu31,

u12(ϕ) = e2iϕu12, u22(ϕ) = eiϕu22, u32(ϕ) = e−iϕu32, ũ(ϕ) = e−2iϕũ. (7.70)

This again is a path which is target-projectile symmetric and we can use the analytic
formulas Eq.(7.42) to describe the driving terms. We find the results depicted in figure
7.9.

7.7.2. Crossing solutions

Studying the movement of the solutions to Ỹa,s(θ) = −1 during the continuation, we find
that no solution crosses the real axis, as shown in figure 7.10.



88 CHAPTER 7. THE 7-POINT AMPLITUDE

−0.5 −0.25 0 0.25 0.5

−0.5

0

0.5

Re θ

Im
θ

−0.5 −0.25 0 0.25 0.5

−0.5

0

0.5

Re θ

Im
θ

Figure 7.10.: Movement of the solutions Ỹa,s(θ) = −1 for the path Eq.(7.70). Specifically,
we show the results for Ỹ1,2(θ) (left) and Ỹ3,1(θ) (right). The solutions
Ya,s(θ) = −1 of all other Y-functions do not approach the vicinity of the real
axis. The direction of growing ϕ is indicated by the arrows.

7.7.3. Calculation of the remainder function R7,−+−

The fact that we see no crossing solutions means that the Y-system equations at the
endpoint of the continuation are just given by the original equations. Since this is the
same situation as in the Euclidean regime, we conclude that the remainder function is
almost trivial in this Regge region. The only difference stems from the fact that we have
followed a non-trivial path in the cross ratios which can give rise to cut contributions in
∆. To be precise, we find

∆′ ∼= ∆+ i
π

2
log

(
(1− u11)(1− u12)

u22u31(1− ũ)

)

+ const. (7.71)

This gives rise to a phase contribution

δ7,−+− =
π

4
γK log

(
1

(1− ũ)

1

ũ22ũ31

)

, (7.72)

which combines with the otherwise trivial remainder function,

eR7,−+−+iδ7,−+−
∣
∣
∣
MRL

∼ 1. (7.73)

7.8. Comparison with weak coupling predictions

We have finished the calculation in all relevant Regge regions. Let us therefore now
compare our results to the weak coupling predictions presented in section 7.3. For the
regions P7,−−+ and P7,+−− we find full consistency with the weak coupling predictions.
The remainder function in these Regge regions has the same structure as the 6-point
result presented in chapter 6. Furthermore, the strong coupling analogue of the BFKL
eigenvalue shows up with the same value and all phases match perfectly. It should be
noted that this is non-trivial, as the contributions to the remainder function have a more
complex dependence on the kinematical variables, of which we have twice as many as in
the 6-point case. The additional variables also show a non-negligible movement during the
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analytic continuation (cf. figure 7.4), which, however, does not lead to a crossing solution
and allows us to obtain the same structure as in the 6-point case.

Turning to the region P7,−−− we faced a new situation with two pairs of crossing
solutions and more complicated paths for the cross ratios. Still we are able to confirm
the weak coupling prediction that a product of 6-point structures shows up also at strong
coupling. Comparing Eq.(7.68) and table 7.1 we see that we do not find the same conformal
phase δ7,−−−. In fact, we find an additional conformally invariant contribution. This,
however, is not necessarily a problem, as the Regge cut piece at weak coupling, which is
still not fully known, can contain additional phases through prefactors (see e.g. Eq.(4.59)
of [137]) or the production vertex C.

In region P7,−+− the weak coupling analysis predicts that all three cuts contribute.
Alas, at strong coupling we find no crossing solutions and the remainder function is a
pure phase. The origin of this discrepancy is not understood. The strong coupling result
looks like there is a cancellation between the three cut pieces we expect, since they all
come with the same prefactor e2 in logR7,−+− and the long cut is given by the product
of the two short cuts. Furthermore, the rotation sense of the u1s is opposite to that
of ũ. However, such a cancellation would be difficult to accommodate from the weak
coupling perspective, where we expect a sum of terms which exponentiate as we go to
strong coupling, not an exponential of a sum. It may well be that the choice of our path
is too naive. For example, the right prescription might be to approach the relevant region
in a stepwise process P7,+++ → P7,−−− → P7,−+−. It would certainly be interesting to
see whether the crossed solutions found in the transition to the region P7,−−− cross back
over the real axis. Furthermore, this process would test our hypothesis that the transition
between Regge regions is defined by the winding numbers and the Gram relations only,
and not by details of the path. This interesting question will be explored in future work.



8. Conclusions and outlook

Let us summarise our results. In this thesis we have studied the remainder function of
scattering amplitudes in strongly coupled N = 4SYM. As the general prescription in
terms of the Y-system is too difficult to solve analytically, we specialised to the multi-
Regge limit.

A central result we found was that the non-linear integral equations simplify drastically
in this kinematical limit. In fact, all integral contributions can be dropped and the multi-
Regge limit is governed by algebraic equations. This simplification is necessary to obtain
analytic expressions for the remainder function. We then developed an algorithm for
the computation of the remainder function in the multi-Regge limit in various Regge
regions with the result that in each region there exists a set of algebraic Bethe ansatz
equations which contain all necessary information to calculate the remainder function.
The identification of the correct solution of the Bethe ansatz equations, however, requires
a numerical analysis.

We applied this algorithm to the 6- and 7-point amplitude and found that the analytic
structure predicted from field theory calculations also holds in the strong coupling limit.
The results we find have exactly the structure expected from the dispersion relation-like
results at weak coupling and suggest that at strong coupling a saddle point dominates the
integrals appearing at weak coupling. Remarkably, we find that the universal quantities
governing the 6-point case show up in the 7-point case, as well, exactly as predicted by
Regge theory. Furthermore, our results suggest that there is a nice dictionary between
Regge cut contributions at weak coupling and crossing solutions at strong coupling. For
every triplet of variables appearing in the dispersion relation of the Regge cut contribution,
we find a pair of crossing solutions and in Regge regions where no cut contributions is
present, there are no crossing solutions.

From our results, many interesting new questions emerge: For a better understanding
of the connection between Regge cut contributions and crossing solutions, it would be in-
teresting to study the 8-point amplitude. In this case, a Regge cut which is generated from
a bound state of three Reggeons appears for the first time. Studying this cut contribution
from the strong coupling side would provide the analogue of the new BFKL eigenvalue at
strong coupling and is amenable to an analysis very much similar to the cases studies in
this thesis. It would be very interesting to see whether this quantity is somehow related
to the BFKL eigenvalue we determined in this thesis and if speculations about the strong
coupling BFKL eigenvalue for a bound state of n Reggeons can be made. Furthermore,
this contribution is still unknown at weak coupling and would serve to show that the
difficulty of the computation grows less with the number of gluons at strong coupling as
compared to a weak coupling analysis.

We also found a discrepancy of the weak coupling prediction with our strong coupling
result for the Regge region P7,−+−. This region is more complicated than the other three
Regge regions of the 7-point case since it is expected to contain contributions from all
three possible Regge cuts. A full analysis at weak coupling is still missing, but on general
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grounds one would expect the difference between P7,−−− and P7,−+− to be given only by
a different phase for the production vertex of the central gluon. It may well be that the
choice of our path for this region is too naive and it would certainly be interesting to study
more sophisticated paths for this region.

As we mentioned before, our result for the 6-point amplitude does not vanish in the
collinear limit and we have also identified a potential reason for this discrepancy in the way
we obtain our numerical results. Understanding this phenomenon will require new methods
as our numerical investigations are not suitable for taking limits, since they are always
carried out for finite parameters. This is a very interesting question to investigate as it
would open a connection with the Wilson loop OPE programme of [61] from which an all-
loop proposal for the universal quantities in the multi-Regge limit emerged recently [131].
Understanding this connection properly might help to introduce N = 4 integrability in
the description of the dispersion relation Eq.(3.49), which, in turn, might lead to an
understanding for intermediate couplings and for any number of gluons. As our results
crucially depend on the existence of a gravity dual and the planar limit, understanding it
from a field theory perspective would be very relevant for potential generalisations to less
symmetric theories. All this is left for future work.

We hope it has become clear throughout this thesis that the major virtues of the multi-
Regge limit lie in the fact that the perturbative expansion is not just an expansion in the
coupling constant but that every logarithmic order contains all-loop order information in
the coupling constant and therefore probes the structure of the theory at all couplings.
Furthermore, the scaling to higher-point amplitudes is accessible, as some of the universal
quantities can be lifted to cases with more gluons. This serves to show that the multi-
Regge limit is a rich and important kinematical regime which is and will continue to
be an essential ingredient in the programme of determining all scattering amplitudes in
N = 4SYM.
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B. Determination of the phases φs for the
7-point amplitude

In this appendix, we provide the formulas for the constraints on the Y-system parameters
in the 7-point case which are left out in the main text in section 4.2.2. As for the formulas
presented in the main text, we indicate the desired behaviour of the cross ratio along
with the behaviour of the Y-function that is needed and the constraints on the Y-system
parameters this entails. For those cross ratios related to a Y-function in the fundamental
strip, we easily find:

u31 → 0 =⇒ Y
[0]
2,2

∼= e−
√
2|m2| cosφ2 → 0 ⇒ φ2 ∈

(

−π
2
,
π

2

)

u32 → 0 =⇒ Y
[1]
2,1

∼= e−
√
2|m1| cos(π

4
−φ1) → 0 ⇒ φ1 ∈

(

−π
4
,
3π

4

)

u22 → 0 =⇒ Y
[−1]
2,1

∼= e−
√
2|m1| cos(π

4
+φ1) → 0 ⇒ φ1 ∈

(

−3π

4
,
π

4

)

Since the remaining cross ratios involve values of the Y-functions outside the fundamental
strip we must use the recursion relations Eq.(2.68). This gives:

u21 → 0 =⇒ Y
[−2]
2,2 =

1 +Y
[−1]
2,1

Y
[0]
2,2

(

1 + 1

Y
[−1]
3,2

)(

1 + 1

Y
[−1]
1,2

)

∼=
e
√
2|m2| cosφ2

(

1 + e−
√
2|m1| cos(π

4
+φ1)

)

(

1 + e|m2| cos(π
4
+φ2)−C2

)(

1 + e|m2| cos(π
4
+φ2)+C2

) → 0

⇒ φ2 ∈ (−π, 0) ∪
(π

2
, π
)

u11 → 1 =⇒ Y
[2]
2,2 =

1 +Y
[1]
2,1

Y
[0]
2,2
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1 + 1

Y
[1]
3,2

)(
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e
√
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√
2|m1| cos(π

4
−φ1)
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1 + e|m2| cos(π
4
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)(

1 + e|m2| cos(π
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) → ∞

⇒ φ2 ∈
(

−π
2
, 0
)
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To determine the precise values of φs in the multi-Regge limit, we look at the finite ratios:

u22
u32

→ const. =⇒
Y

[−1]
2,1

Y
[1]
2,1

=
e−

√
2|m1| cos(π

4
+φ1)

e−
√
2|m1| cos(π

4
−φ1)

= e2|m1| sinφ1 → const.⇒ φ1 → 0

u21
u31

→ const. =⇒
Y

[−2]
2,2

Y
[0]
2,2

=
e2

√
2|m2| cosφ2

(

1 + e−
√
2|m1| cos(π

4
−φ1)

)

(

1 + e|m2| cos(π
4
+φ2)−C2

)(

1 + e|m2| cos(π
4
+φ2)+C2

) → const.

⇒ φ2 → −π
4

∣
∣
∣
∣φ2 →

π

2

Taking all constraints into account, we see that the phases have to attain the values
φ1 → 0, φ2 → −π

4 .



C. Residue structure for the large cross
ratios in the MRL

Y
[−4]
a,1 Y

[−3]
a,1 Y

[−2]
a,1 Y

[−1]
a,1

Y
[−3]
a,2 Y

[−2]
a,2

Figure C.1.: Graphical representation of the residue structure of Y
[−4]
a,1 , cf. Eq.(C.1). All

Y-functions which are not contributing are hidden for simplicity.

A central issue in finding the multi-Regge limit in the Y-system parameters is the
residue structure of the Y-functions. In the main text, we concentrated on those Y-
functions with a simple residue structure. However, to establish the correct expressions
for the u1σ we need to understand the residue structures of the grey boxes in the first row
of figure 4.2, too.

As a specific example, we present the residue structure of Y
[−4]
2,1 for the n ≥ 7-amplitude.

As in the main text, we start from the equivalent calculation of Ỹ
[−4]
2,1 and consider the

equation for θ = 0, which receives no residue contributions. We then move θ towards −iπ.
In this process, we cross the lines Im θ = −3iπ4 ,−iπ2 ,−iπ4 , as well as Im (θ + iφ1 − iφ2) =
−iπ2 ,−iπ4 , on which poles lie. Shifting back to the Y-function, this gives rise to

Y
[−4]
2,1 = ǫ−

√
2

1 ·

(

1 + Y
[−3]
2,2

)

(

1 +Y
[−3]
3,1

)(

1 +Y
[−3]
1,1

)

︸ ︷︷ ︸
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4

·

(

1 +Y
[−2]
3,2

)(

1 +Y
[−2]
1,2

)

(

1 +Y
[−2]
2,1

)2

︸ ︷︷ ︸

Residues at−iπ
2

· 1
(

1 +Y
[−1]
3,1

)(

1 +Y
[−1]
1,1

)

︸ ︷︷ ︸

Residues at−i 3
4
π

. (C.1)

This shows that there is a simple graphical representation of the residue structure of the
grey boxes, as well. For our specific example, this is shown in figure C.1 - all Y-functions
in the same row and the row below to the right of the function we want to determine can
give rise to a residue contribution, with the rightmost Y-functions being those that do not
receive any residue contribution themselves. A subtle point is that the Y-functions which
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appear in residue contributions can receive residue corrections themselves. In the example

given above, Y
[−3]
2,2 would be such a function. However, note that residue contributions

always come from Y-functions that are to the right and/or below the Y-function we are
interested in. This means that the Y-function with the highest s′ that can influence a

given Y-function Y
[k]
a,s with k negative lies on the intersection point of the two diagonals

Y
[k+i]
a,s+i and Y

[−j]
a,j .



D. Kernels and S-matrices

D.1. Kernels

In this appendix we list the explicit expressions for the Y-system kernels Ka,a′

s,s′ of the
rewritten version Eqs.(5.18-5.20) used in the numerics in terms of the kernels of the original
Y-system Eqs.(2.64) for the 7-point case. In the following, s±1 denotes the unique possible
choice for s′ in a given kernel. Furthermore, if a formula holds for both a′ = 1 and a′ = 3
we just write a′ = 2± 1.

K1,2±1
s,s (θ, θ′) = K1(θ

′) cosh θ −K1(θ − θ′)

K1,2
s,s (θ, θ

′) = K2(θ
′) cosh θ −K2(θ − θ′)

K1,2
s,s±1(θ, θ

′) = −K1(−θ′ + iφs − iφs±1) cosh θ +K1(θ − θ′ + iφs − iφs±1)

K1,1
s,s±1(θ, θ

′) =
1

2

(
K2(θ − θ′ + iφs − iφs±1)−K2(−θ′ + iφs − iφs±1) cosh θ

)

+
1

2
(−1)s+1

(
K3(θ − θ′ + iφs − iφs±1)−K3(−θ′ + iφs − iφs±1)

)

K1,3
s,s±1(θ, θ

′) =
1

2

(
K2(θ − θ′ + iφs − iφs±1)−K2(−θ′ + iφs − iφs±1) cosh θ

)

+
1

2
(−1)s

(
K3(θ − θ′ + iφs − iφs±1)−K3(−θ′ + iφs − iφs±1)

)

K2,2±1
s,s (θ, θ′) =

√
2K1(θ
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′) =
√
2K2(θ

′) cosh θ − 2K1(θ − θ′)

K2,2
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√
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K2,2±1
s,s±1 (θ, θ

′) = − 1√
2
K2(−θ′ + iφs − iφs±1) cosh θ +K1(θ − θ′ + iφs − iφs±1)

K3,2±1
s,s (θ, θ′) = K1(θ

′) cosh θ −K1(θ − θ′)

K3,2
s,s (θ, θ

′) = K2(θ
′) cosh θ −K2(θ − θ′)

K3,2
s,s±1(θ, θ

′) = −K1(−θ′ + iφs − iφs±1) cosh θ +K1(θ − θ′ + iφs − iφs±1)
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D.2. S-matrices

Corresponding to the new set of kernels written out above, we also have a new set of S-
matrices. Since the kernels presented above are linear combinations of the original kernels,
possibly with prefactors, the S-matrices too should be constructable from the original S-
matrices Eqs.(5.6). Recall the definition of the S-matrices,

− 2πiK(θ, θ′) =: ∂θ′ logS(θ, θ
′). (D.1)

Using this definition, we see that for a kernel of the schematic form

K(θ, θ′) = f(θ)K1(θ, θ
′) + g(θ)K2(θ, θ

′) + . . . (D.2)

the S-matrix is given by

S(θ, θ′) = S1(θ, θ
′)f(θ) · S2(θ, θ′)g(θ) · . . . (D.3)

As explicit examples, we write out the S-matrices for a crossed solution of Ỹ3,1 in the
rewritten Y-system:

S2,3
1,1(θ, θ

′) = S1(θ
′)
√
2 cosh(θ)S2(θ − θ′) (D.4)

S2±1,3
1,1 (θ, θ′) = S1(θ

′)cosh(θ)S1(θ − θ′) (D.5)

S1,3
2,1(θ, θ

′) =
S2(−θ′ + iφ2 − iφ1)

1
2
cosh(θ)S3(−θ′ + iφ2 − iφ1)

1
2

S2(θ − θ′ + iφ2 − iφ1)
1
2S3(θ − θ′ + iφ2 − iφ1)

1
2

(D.6)

S2,3
2,1(θ, θ

′) = S2(θ
′ − iφ2 + iφ1)

− 1√
2
cosh(θ)

S1(θ − θ′ + iφ2 − iφ1)
−1 (D.7)

S3,3
2,1(θ, θ

′) =
S2(−θ′ + iφ2 − iφ1)

1
2
cosh(θ)S3(θ − θ′ + iφ2 − iφ1)

1
2

S2(θ − θ′ + iφ2 − iφ1)
1
2S3(−θ′ + iφ2 − iφ1)

1
2

(D.8)

Since the remaining expressions are lengthy and can be easily obtained from the expressions
for the kernels in section D.1, we refrain from spelling out the other S-matrices.



E. Conformal Gram relations

In this appendix we describe the construction of the conformal Gram relations. Gram
relations are not only available for conformal theories, but appear already on the level of
the Mandelstam invariants. Since the latter are simpler, we describe them first. We start
from a very simple, but powerful fact: there are at most four linearly independent vectors
in four dimensions. Choosing p1,. . . , p4 to be a basis, this means that for a n-particle
amplitude we have n− 4 relations

1,...,4,k
∑

i

ckipi = 0 (E.1)

for some non-vanishing coefficients cki. Multiplying Eq.(E.1) with pj , we obtain a linear
relation between the Lorentz invariants pipj . Choosing j = 1, . . . , 4, l for l > 4 we obtain a
set of five linear relations for the five variables cki. This set of equations has a non-trivial
solution for the cki only if the determinant of the coefficient matrix

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 p1p2 p1p3 p1p4 p1pk
p2p1 0 p2p3 p2p4 p2pk
p3p1 p3p2 0 p3p4 p3pk
p4p1 p4p2 p4p3 0 p4pk
plp1 plp2 plp3 plp4 plpk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (E.2)

The zeros along the diagonal are a consequence of the fact that we are scattering gluons.
Since Eq.(E.2) is symmetric in l and k we get 1

2(n − 4)(n − 5) relations, which, together
with momentum conservation1, reduce the number of independent Lorentz invariants pipj
to

1

2
n(n− 1)− n− 1

2
(n− 4)(n− 5) = 3n− 10, (E.3)

which indeed is the correct number of independent variables.

We now follow a similar argument to find the Gram relations for the conformal cross
ratios. This discussion follows [143]. The essential trick is to lift the four-dimensional
momenta to six-dimensional objects, which in light-cone coordinates are given in terms of
the dual variables xi (cf. Eq.(3.1)) by

XA
i := (1, x2i , x

µ
i ). (E.4)

The four-dimensional dual conformal symmetry group SO(2, 4) simply acts linearly as a
rotation symmetry on these objects. For the XA

i we can now repeat our above argument

1Momentum conservation counts as n relations below because we have a relation pipn = −
∑

k 6=n

pipk for

every i.
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by saying that at most six vectors can be linearly independent. Choosing X1, . . . , X6 as a
basis, this leads to relations

1,...,6,k
∑

i

ckiXi = 0. (E.5)

Observing that
X2

i = 2(1 · x2i )− 2xµi xiµ = 0, (E.6)

as well as
Xi ·Xj = x2j + x2i − 2xi · xj = (xi − xj)

2 = x2i,j , (E.7)

this translates into the statement that the determinant of the matrices













0 x21,2 x21,3 x21,4 x21,5 x21,6 x21,k
x21,2 0 x22,3 x22,4 x22,5 x22,6 x22,k
x21,3 x22,3 0 x23,4 x23,5 x23,6 x23,k
x21,4 x22,4 x23,4 0 x24,5 x24,6 x24,k
x21,5 x22,5 x23,5 x24,5 0 x25,6 x25,k
x21,6 x22,6 x23,6 x24,6 x25,6 0 x26,k
x21,l x22,l x23,l x24,l x25,l x26,l x2k,l














(E.8)

has to vanish, for a total of 1
2(n − 5)(n − 6) relations among the x2i,j . These relations

are invariant under dual conformal symmetry by construction and can easily be converted
into expressions involving only the cross ratios. For the 7-point case, the unique Gram
relation in arbitrary kinematics is given by

aũ2 + bũ+ c = 0 (E.9)

with lengthy coefficients

a =u11u12 (−1 + u12u21 + u11u32) , (E.10)

b =− 1

2
+ u11 +

1

2
u11u12 + u12u21 − 2u11u12u21 − u212u21 + u22 − u11u22

− 2u12u21u22 + u11u12u21u22 + u212u
2
21u22 −

1

2
u22u31 + u12u21u22u31

+
1

2
u11u12u21u32 +

1

2
u11u12u21u22u31u32 + (target ↔ projectile), (E.11)

c =
1

2
− u11 − u21 + u11u21 + u12u21 − u22 + u11u22 + u21u22 − u11u21u22

+ u12u21u22 − u12u
2
21u22 +

1

2
u22u31 + u21u22u31 − 2u12u21u22u31

− u21u
2
22u31 + u12u

2
21u

2
22u31 +

1

2
u21u32 − u11u21u32 − u21u22u31u32

+ u11u21u22u31u32 +
1

2
u21u

2
22u

2
31u32 + (target ↔ projectile) , (E.12)

where (target ↔ projectile) means that the same expression after applying a target-projectile
transformation, including the constant terms, should be added.



F. The remainder function R7,+−−

In this appendix, we briefly spell out the results for the region P7,+−−. Since practically
everything works as for the region P7,−−+, we will be brief. The path of continuation for
the region P7,+−− is defined via

u11(ϕ) = u11, u21(ϕ) = eiϕu21, u31(ϕ) = e−iϕu31,

u12(ϕ) = e−2iϕu12, u22(ϕ) = u22, u32(ϕ) = u32, ũ(ϕ) = ũ. (F.1)

The numerical solution for the driving terms is shown in figure F.1. By comparison with
figure 7.2 for the path P7,−−+, we see that the two triplets have changed their roles. From
this observation it is clear that the crossing solutions will appear in the other triplet, as
well. Indeed, we find a pair of crossing solutions for the function Ỹ3,1 which approaches
±iπ4 , as shown in figure F.2. Furthermore, a pair of solutions of Ỹ2,1 approaches the origin,
which do not contribute, as before. We can then spell out the equations at the endpoint
of the analytic continuation, after dropping the integrals:

Y′
1,s(θ) =

(

e−|ms|′ cosh(θ−iφ′
s)−C′

s

) S1,3
s,1 (θ + iπ4 − iφ′1)

S1,3
s,1 (θ − iπ4 − iφ′1)

, (F.2)

Y′
2,s(θ) =

(

e−
√
2|ms|′ cosh(θ−iφ′

s)
) S2,3

s,1 (θ + iπ4 − iφ′1)

S2,3
s,1 (θ − iπ4 − iφ′1)

, (F.3)

Y′
3,s(θ) =

(

e−|ms|′ cosh(θ−iφ′
s)+C′

s

) S3,3
s,1 (θ + iπ4 − iφ′1)

S3,3
s,1 (θ − iπ4 − iφ′1)

, (F.4)

Using these equations, we determine the cross ratios and find

u′11 = 1 + ε′2

(

w′
2 +

1

γw′
2

+ 2
1√−γ sinhC ′

2

)

, u′21 = −w′
2ε

′
2, u′31 = −1

γ

ε′2
w′
2

,

u′12 = 1− γε′1

(

w′
1 +

1

w′
1

− 2 coshC ′
1

)

, u′22 = γw′
1ε

′
1, u′32 = γ

ε′1
w′
1

. (F.5)

Setting u′21 = −u21, u′31 = −u31 and u′as = uas for the remaining cross ratios we find

ε′1 =
1

γ
ε1, w′

1 = w1, coshC ′
1 = − coshC1,

ε′2 =
√
γε2, w′

2 =
1√
γ
w2, coshC ′

2 =

√

1−
(

w2 +
1

w2
+ coshC2

)2

(F.6)

By comparison with the corresponding equations for the path P7,−−+ in Eqs.(7.27,7.28), we
see that the results are related by target-projectile symmetry. Since the terms appearing
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Figure F.1.: Paths of the driving terms during the analytic continuation for the path
Eq.(F.1). Note that some axes have been rescaled and shifted. The direction
of growing ϕ is indicated by the arrows. The plots were generated for the
specific choice |m1| = 10, |m2| = 9, C1 = arccosh
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Figure F.2.: Movement of the solutions to Ỹ3,1(θ) = −1 during the continuation Eq.(F.1).
We find one pair of crossing solutions. The direction of movement is indicated
by arrows on the plot. For convenience, we change the colour when the pair
of solutions crosses the real axis.
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in the remainder function are all invariant under this symmetry, the rest of the calculation
is exactly the same as for the path P7,−−+ and we can immediately conclude that

eR7,+−−+iδ7,+−−
∣
∣
∣
MRL

∼
(

−(1− u12)
√

ũ22ũ32

)
√

λ
2π

e2
(F.7)

where

δ7,+−− =

√
λ

4
log
(√

ũ22ũ32

)

=
π

4
γK log

(√

ũ22ũ32

)

. (F.8)



G. Zusammenfassung

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der analytischen Struktur von Streuamplituden
in stark gekoppelter N = 4 super Yang-Mills-Theorie (kurz N = 4SYM) im multi-
Regge Limes. Dank der AdS/CFT-Korrespondenz können Observablen in stark gekop-
pelter N = 4SYM durch duale Rechnungen in einer schwach gekoppelten, und daher
mit normaler Störungstheorie beschreibbaren, Stringtheorie auf einer AdS5×S5-Geometrie
berechnet werden. Insbesondere entspricht die Berechnung der führenden Ordnung der
n-Gluon Amplitude in N = 4SYM bei starker Kopplung so der Berechnung einer Mini-
malfläche in AdS5, wobei die Fläche auf der Aneinanderreihung der Gluonimpulse, und da-
her auf einer lichtartigen Kurve, enden muss. Die Berechnung der Minimalfläche kann auf
die Lösung eines Satzes von nichtlinearen, gekoppelten Integralgleichungen zurückgeführt
werden. Diese Gleichungen haben jedoch keine analytische Lösung in allgemeiner Kine-
matik. Wir untersuchen sie in dieser Arbeit daher im multi-Regge Limes, der n-Teilchen
Verallgemeinerung des Regge-Limes. Dieser Limes ist besonders relevant, da selbst in
der Beschreibung von Streuamplituden in schwach gekoppelter N = 4SYM in diesem
Limes eine bestimmte Klasse von Feynman-Diagrammen resummiert werden muss. Diese
Beschreibung organisiert sich in Ordnungen von Logarithmen der im Streuprozess vorhan-
denen Energie. Jede Ordnung in Logarithmen enthält dabei Terme aus allen Ordnungen
in der Kopplungskonstante und damit auch spezifische Informationen über das Regime
starker Kopplung der Theorie. In dieser Arbeit untersuchen wir daher die Frage, in-
wiefern die Struktur der Streuamplitude im multi-Regge Limes erhalten bleibt, wenn wir
in den Limes starker Kopplung gehen. Wir zeigen, dass sich die Gleichungen, die die
Minimalfläche beschreiben, im multi-Regge Limes für eine beliebige Anzahl von Gluonen
stark vereinfachen, was eine analytische Auswertung der Streuamplituden ermöglicht. Wir
entwickeln einen Algorithmus zur Berechnung von Streuamplituden im multi-Regge Limes
und wenden diesen auf die 6- und 7-Gluon Amplitude an. Unsere Ergebnisse zeigen, dass
die von Regge-Theorie vorhergesagte Faktorisierung der Amplitude für die betrachteten
Fälle auch bei starker Kopplung gilt.
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Summary

This thesis concerns itself with the analytic structure of scattering amplitudes in strongly
coupled N = 4 super Yang-Mills theory (abbreviated N = 4SYM) in the multi-Regge
limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4SYM
are accessible via dual calculations in a weakly coupled string theory on an AdS5×S5-
geometry, in which observables can be calculated using standard perturbation theory. In
particular, the calculation of the leading order of the n-gluon amplitude in N = 4SYM
at strong coupling corresponds to the calculation of a minimal surface embedded into
AdS5. This surface ends on the concatenation of the gluon momenta, which is a light-
like curve. The calculation of the minimal surface area can be reduced to finding the
solution of a set of non-linear, coupled integral equations, which have no analytic solution
in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit,
the n-particle generalisation of the Regge limit. This limit is especially interesting as even
in the description of scattering amplitudes in weakly coupled N = 4SYM in this limit a
certain set of Feynman diagrams has to be resummed. This description organises itself into
orders of logarithms of the energy involved in the scattering process. In this expansion
each order in logarithms includes terms from every order in the coupling constant and
therefore contains information about the strong coupling sector of the theory, albeit in a
very specific way. This raises the central question of this thesis, which is how much of the
analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we
go to the strong coupling regime. We show that the equations governing the area of the
minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain
analytic results for the scattering amplitudes. We develop an algorithm for the calculation
of scattering amplitudes in the multi-Regge limit and apply it to the special cases of the 6-
and 7-gluon amplitude. Our results show that for the cases under study the factorisation
of the amplitude as predicted by Regge theory is also preserved in the strong coupling
limit.

This thesis is based on the following publications:

• J. Bartels, V. Schomerus and M. Sprenger, Heptagon Amplitude in the Multi-Regge
Regime, arXiv:1405.3658, submitted to JHEP.

• J. Bartels, J. Kotanski, V. Schomerus and M. Sprenger, The Excited Hexagon
Reloaded, arXiv:1311.1512, submitted to JHEP as erratum to JHEP 1101 (2011)
069.

• J. Bartels, V. Schomerus and M. Sprenger, Multi-Regge Limit of the n-Gluon Bubble
Ansatz, JHEP 1211 (2012) 145.
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[129] O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und
den retardierten Kommutatoren, Helv. Phys. Acta 33 (1960) 257.

http://xxx.lanl.gov/abs/1011.6339
http://xxx.lanl.gov/abs/0712.3491
http://xxx.lanl.gov/abs/1010.1344
http://xxx.lanl.gov/abs/1004.3983
http://xxx.lanl.gov/abs/0907.3987
http://xxx.lanl.gov/abs/hep-ph/9503226
http://xxx.lanl.gov/abs/1104.4709


114 Bibliography

[130] V. Fadin and L. Lipatov, BFKL equation for the adjoint representation of the
gauge group in the next-to-leading approximation at N = 4 SUSY, Phys.Lett. B706

(2012) 470–476, [arXiv:1111.0782].

[131] B. Basso, “Flux-tube methods for scattering amplitudes in planar N=4 SYM
theory .” Talk at the ‘Scattering Amplitudes & the Multi-Regge Limit 2014’ in
Madrid, 2014.

[132] P. Dorey, “Exact finite-size effects in relativistic field theories.” Talk at the ‘IGST
2008’ in Utrecht, slides available at
http://testweb.science.uu.nl/IGST08/pdf/Dorey.pdf, 2008.

[133] P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations,
Nucl.Phys. B482 (1996) 639–659, [hep-th/9607167].

[134] P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field
theories, Nucl.Phys. B515 (1998) 575–623, [hep-th/9706140].

[135] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, ed., NIST Handbook
of Mathematical Functions. Cambridge University Press, 2010.

[136] J. Bartels, A. Kormilitzin, L. Lipatov, and A. Prygarin, BFKL approach and 2 → 5
maximally helicity violating amplitude in N = 4 super-Yang-Mills theory,
Phys.Rev. D86 (2012) 065026, [arXiv:1112.6366].

[137] J. Bartels, A. Kormilitzin, and L. Lipatov, Analytic structure of the n = 7
scattering amplitude in N = 4 SYM theory at multi-Regge kinematics: Conformal
Regge pole contribution, Phys.Rev. D89 (2014) 065002, [arXiv:1311.2061].

[138] J. Bartels, A. Kormilitzin, and L. Lipatov, in preparation, .

[139] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N=4
super Yang-Mills, JHEP 1112 (2011) 066, [arXiv:1105.5606].

[140] J. Golden, M. F. Paulos, M. Spradlin, and A. Volovich, Cluster Polylogarithms for
Scattering Amplitudes, arXiv:1401.6446.

[141] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, Motivic
Amplitudes and Cluster Coordinates, JHEP 1401 (2014) 091, [arXiv:1305.1617].

[142] G. Yang, A simple collinear limit of scattering amplitudes at strong coupling, JHEP
1103 (2011) 087, [arXiv:1006.3306].

[143] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, Constructing the
correlation function of four stress-tensor multiplets and the four-particle amplitude
in N = 4 SYM, Nucl.Phys. B862 (2012) 450–503, [arXiv:1201.5329].

http://xxx.lanl.gov/abs/1111.0782
http://testweb.science.uu.nl/IGST08/pdf/Dorey.pdf
http://xxx.lanl.gov/abs/hep-th/9607167
http://xxx.lanl.gov/abs/hep-th/9706140
http://xxx.lanl.gov/abs/1112.6366
http://xxx.lanl.gov/abs/1311.2061
http://xxx.lanl.gov/abs/1105.5606
http://xxx.lanl.gov/abs/1401.6446
http://xxx.lanl.gov/abs/1305.1617
http://xxx.lanl.gov/abs/1006.3306
http://xxx.lanl.gov/abs/1201.5329


Eidesstattliche Erklärung
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