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Abstract

The wavelength of the Mössbauer radiation of 57Fe, λM, has been mea-
sured in an experiment using Bragg backscattering from a Si reference crys-
tal with precisely known lattice spacing. The latest measured value, ob-
tained at the 1 km beamline at SPring-8 (Hyogo, Japan) in the year 2002, is
λM = 86.025 587 (26) pm. The wavelength of the Mössbauer radiation of 57Fe
is ideal as a new length standard for atomic scales due to its unique sharp-
ness, stability and ease of reproduction. In other experiments the new length
standard has been successfully applied in the measurement of the lattice pa-
rameters of α−Al2O3 in the temperature range from 4.5 to 374 K, and in the
measurement of the wavelength of the Mössbauer radiation of the isotopes
151Eu, 119Sn, and 161Dy.

Zusammenfassung

Die Wellenlänge der Mößbauer-Strahlung von 57Fe, λM, wurde gemessen durch An-
wendung von Bragg-Rückstreuung an einem Si-Referenzkristall mit sehr genau be-
kanntem Gitterebenenabstand. Der neueste an der 1 km-Beamline bei SPring-8 (Hyo-
go, Japan) im Jahr 2002 gemessene Wert beträgt λM = 86.025 587 (26) pm. Die Wel-
lenlänge der Mößbauer-Strahlung von 57Fe ist aufgrund ihrer einzigartigen Schärfe,
Stabilität und leichten Reproduzierbarkeit ideal geeignet als Längenstandard für ato-
mare Größenordnungen. In weiteren Experimenten wurde der neue Längenstandard
erfolgreich angewendet, um die Gitterparameter vonα−Al2O3 im Temperaturbereich
von 4.5 bis 374 K sowie die Wellenlängen der Mößbauer-Strahlung der Isotope 151Eu,
119Sn und 161Dy zu messen.

i



ii



Contents

1 Introduction 1

2 Theory 7
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Chapter 1

Introduction
Length measurements belong to the most important experimental tasks,

not only in natural science but also in engineering and daily life. They are
typically performed by comparison of the length under study with a length
standard, i.e. a length that is very well known in SI units, and reproducible
with reasonable effort.

The SI unit meter is determined by referring to the definition of the speed
of light: c = 299 792 458 m s−1. Herein, the second is defined as 9 192 631 770
times the oscillation period of the radiation originating from the transition be-
tween the two hyperfine structure levels of the ground state of 133Cs atoms.

In the region of optical wavelengths there are lasers available with a rela-
tive frequency accuracy and stability of better than 10−11. The frequency f of
such devices can be measured against the frequency of the abovementioned
133Cs radiation. The wavelength of the laser radiation l = c/ f is then also
known with an accuracy of better than 10−11. In this way, the laser becomes
both a frequency and a wavelength standard. E.g. the PTBa) uses the radia-
tion of iodine stabilized helium-neon lasers with a wavelength of ≈ 500 nm as
standard devices.

In the hard x-ray region however, no such precise length standard was
available in the past. The most common length standard in use was the lat-
tice parameter of Si which is known with 2 × 10−8 uncertainty for some Si
reference crystals specially prepared for this purpose. Combined x-ray and op-
tical interferometry techniques were used to measure the ratio of the Si (2 2 0)
lattice spacing and optical wavelength standards by Bergamin et al. (1999). It
is considered possible to achieve a 10−9 uncertainty for the measurement of
the Si lattice parameter by further development of the experimental method.
However, an improvement beyond this limit is inhibited by the quality of the
Si reference crystal iself (Bergamin et al., 1999).

Obviously the Si length standard is only valid for a well defined tempera-
ture and pressure. For T = 22.500 ◦C and in vacuum, it has been determined to
be 5.431 020 88 (16) × 10−10 m (Mohr and Taylor, 2000). The need for mainte-
nance of an accurate temperature makes the experimental use of the Si length
standard quite difficult.

On the other hand, the wavelength of the Mössbauer radiation of 57Fe nu-
clei, λM ≈ 0.86 Å, is an ideal candidate for a new length standard in the hard
x-ray region. The Mössbauer radiation of 57Fe is originating from the decay of
the 57Fe nuclei from the first excited state to the ground state. The lifetime of
the excited state is τ = 141 ns, thus the energy width is determined by the un-
certainty principle Γτ = h̄ to Γ = 4.8 × 10−9 eV. Thus, with a radiation energy

a)Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
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2 CHAPTER 1. INTRODUCTION

of ≈ 14.4 keV, the relative uncertainty of λM is 3 × 10−13. Due to the so-called
hyperfine interactions between the nuclei and their environment, e.g. the elec-
trons in the atomic shell, the relative shift of the splitted line (cf. Section 2.1)
may reach up to 10−11.

Thus, even if nothing is known about the hyperfine interactions, the wave-
length of the Mössbauer radiation of 57Fe would be about 100 times more ac-
curate than the Si length standard could ever be under optimal conditions.

Although the investigation of the energy shifts of the Mössbauer radia-
tion of 57Fe due to hyperfine interactions is for decades a widely applied
technique to gather information about e.g. pressure, chemical composition, or
magnetic fields around the 57Fe nuclei, the absolute value of λM was known
only coarsely for a long time.

It was first proposed as a wavelength standard in 1965 by Bearden (1965).
However, at that time, only radioactive sources were available to generate
Mössbauer radiation. Bearden concluded that the brightness of his 200 mCi
source had to be increased by a factor of 100 to make the Mössbauer wave-
length standard experimentally feasible with an accuracy of 10−6. This was
not possible since the brightness of radioactive sources is limited due to self-
absorption.

This situation changed drastically with the possibility to generate the
Mössbauer radiation of 57Fe at synchrotron radiation sources, which was first
demonstrated by Gerdau et al. (1985) and rapidly evolved to a well established
technique in many fields of science (cf. Gerdau and de Waard, 1999/2000). To-
day, at modern synchrotron radiation facilities of the third generation, one can
create a well collimated Mössbauer radiation beam with a countrate of several
kHz simply by putting an enriched 57Fe foil into the premonochromatized
synchrotron radiation beam. Since the quanta emitted from the 57Fe foil by
means of coherent nuclear resonant forward scattering have an average delay
of about 50 ns (Shvyd’ko et al., 1991), it is easy to distinguish the Mössbauer ra-
diation from the prompt synchrotron radiation pulses with ≈ 100 ps duration
using time-resolving detectors with . 1 ns resolution.

Several experiments have been made during the recent years to measure
the wavelength of the Mössbauer radiation of 57Fe, λM, using synchrotron ra-
diation. Xiaowei et al. (2000) have measured λMwith a relative uncertainty of
0.6 × 10−6 using a method proposed by Siddons et al. (1988). The lattice pa-
rameters of several Si samples were compared with λM. The averaged result
reported by the autors is λM = 86.02557(5) pm.

This thesis will focus on another experimental technique developed in
the group of Shvyd’ko at the University of Hamburg (Germany). Here we
have measured λM using almost exact backscattering of x-rays from a cal-
ibrated Si reference crystal which is kept in an environment with pre-
cisely controlled temperature and pressure. Our result recently reported
is λM = 86.025474(16) pm; the relative uncertainty is thus 0.19 × 10−6

(Shvyd’ko et al., 2000).
These two results are already a reliable base for use of the Mössbauer wave-

length standard to measure radiation wavelengths or lattice parameters, al-
though they still differ by 1.1 × 10−6 which is outside the rated uncertainty
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range of the individual results. Furthermore, the uncertainty of the result from
Shvyd’ko et al. (2000) is not as low as one would expect from the theory for
this method. The backscattering approach for measurement of the Mössbauer
radiation wavelength of 57Fe has therefore undergone a lot of improvements
and additional experiments since the publication from Shvyd’ko et al. (2000).
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Fig. 1.0.1: Historical overview of the published results of the Mössbauer radiation wavelength
of 57Fe.

The development of measured values and uncertainties of the wavelength
of the Mössbauer radiation of 57Fe is summarized in Fig. 1.0.1, together with
the originating literature references. Herein, the value published in 1976 by
Lederer and Shirley (1976) is derived from Bearden (1965). The recent mea-
surements using synchrotron radiation by Shvyd’ko et al. (2000); Xiaowei et al.
(2000) show a remarkably improvement in their uncertainty over the past re-
sults (Firestone et al., 1996; Lederer and Shirley, 1976) obtained with classical
methods using radioactive sources.

The experimental method presented in this thesis allows to measure the
ratio between the wavelength of the Mössbauer radiation of 57Fe (or some
other Mössbauer isotope) and the lattice parameters of some single crystal.
In the first experiment, the Mössbauer radiation wavelength of 57Fe is deter-
mined in units of the lattice parameter of an almost perfect Si reference crystal
that is known with 6 × 10−8 precision at 22.5 ◦C. This result allows us to ex-
press the Mössbauer radiation wavelength of 57Fe itself in SI units. In sub-
sequent experiments deploying the same method, the Mössbauer radiation
wavelength of 57Fe is used as the length standard to measure the lattice pa-
rameters of α−Al2O3. To determine the Mössbauer radiation wavelengths of
other isotopes than 57Fe, like 119Sn, 151Eu, and 161Dy, anα−Al2O3 single crys-
tal is used, and its orientation and temperature are adjusted to back-reflect the
Mössbauer radiation of the respective isotope. By this procedure, the wave-
length of the Mössbauer radiation of one of the abovementioned isotopes is
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transferred to the interplanar distance inα−Al2O3. The latter one can then be
determined by measuring the ratio of the wavelength of the Mössbauer radia-
tion of 57Fe and the lattice parameters ofα−Al2O3 at the same temperature.
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Fig. 1.0.2: Simplified overview of the experimental setup for the measurement of the ratio
between the lattice parameters of a single crystal and the Mössbauer radiation wavelength of
57Fe.

A simplified overview of the experimental setup is shown in Fig. 1.0.2. The
basic components are an 57Fe foil in the incoming synchrotron radiation beam,
the beforementioned Si or α−Al2O3 single crystal, which can be oriented in
such a way that the incoming beam is exactly back-reflected (i.e. some set
of atomic planes (h k l) must be perpendicular to the beam), and a Si (7 7 7)
channel-cut crystal which can be rotated by an angle ψ to tune a narrow en-
ergy band selected from the incoming beam to either the energy of the back-
reflected beam or of the Mössbauer radiation of 57Fe. The angular difference
between transmission of Mössbauer radiation of 57Fe and back-reflected beam
is measured for some back-reflections with different Bragg energies. If n is the
number of independent lattice parameters in the reference crystal, then one
can calculate from n + 1 angular difference measurements the ratio between
the Mössbauer radiation wavelength of 57Fe and the lattice parameters of the
reference crystal and the Si (7 7 7) channel-cut crystal. Since the Si (7 7 7)
channel-cut crystal is used to measure differences of the wavelength λ it will be
named λ-meter in the following. The setup is accomplished by slits which are
used to collimate the beam and to adjust exact backscattering, and APDa) de-
tectors. For a Si backscattering crystal, it is necessary to perform the measure-
ments at a small deviation δθ ≈ 100 � rad from exact backscattering to avoid
the intensity loss and energy shift which are caused by multiple beam diffrac-
tion at exact backscattering.

The experimental setup will be discussed in much more detail in Chapter 4.
The measurements of the wavelength of the Mössbauer radiation of 57Fe

have been performed at the HASYLABb) beamline BW4, at the SRI-CAT 3ID
beamline at APSc), and at the BL29XUL beamline at SPring-8d). The latter ex-
perimental station was chosen because it provides a distance between undula-
tor and experiment of about 1 km, thus allowing an energy-independent beam

a)Avalanche Photo Diode
b)Hamburger Synchrotronstrahlungslabor, Hamburg, Germany
c)Advanced Photon Source, Argonne, Il., U.S.A.
d)Super Photon Ring 8 GeV, Hyogo, Japan
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collimation to 1 � rad angular width by placing two 1 mm slits at the beginning
and the end of the beam path. The lattice parameters of sapphire were mea-
sured above room temperature at SRI-CAT 3ID, and for low temperature at the
PETRAa) beamline at HASYLAB.

This thesis is organized as follows: In Chapter 2 we will discuss the the-
ory of some subjects which are important prerequisites to understand the ex-
periments described in this work. These are the generation and properties
of Mössbauer radiation, exact Bragg backscattering of x-rays, multiple beam
diffraction, and thermal expansion of solids.

Chapter 3 will first deal with the requirements on temperature stability
and accuracy which are necessary to use the Si lattice parameter as a length
standard to measure the Mössbauer radiation wavelength of 57Fe. As these
turn out to be in the mK range, a big technical effort is required to fulfill them.
This will be presented in detail, including special thermostats, selection and
calibration of temperature sensors, and a discussion of possible temperature
errors that still persist in the experimental equipment.

In Chapter 4 we will first develop the experimental method which is used
to measure the the lattice parameters of a crystal in units of the wavelength
of the Mössbauer radiation of 57Fe, or vice versa. Then the wavelength of the
Mössbauer radiation of 57Fe in units of the lattice parameter of Si will be de-
rived from the raw experimental data. This will lead to the Mössbauer wave-
length standard, i.e. the Mössbauer radiation wavelength of 57Fe in meter units,
since the lattice parameter of the Si reference crystal in use is very precisely
known. Here we will also discuss the progress of some technical aspects of the
experimental setup at different synchrotron radiation facilities, and some error
sources which are attributed to remaining technical limits in the experimental
setup.

In Chapter 5 some further experiments will be presented and discussed,
where the Mössbauer wavelength standard was applied to measure precisely
the wavelength of the Mössbauer radiations of 119Sn, 151Eu, and 161Dy, as well
as the lattice parameters ofα−Al2O3 in a broad temperature range from 4.5 K
to 374 K.

Finally, in Chapter 6, some future applications of the experimental results
will be proposed. Among them are the use of Mössbauer radiation wave-
lengths of different isotopes as a set of reference wavelengths or energies
in the hard x-ray regime, as well as the cryogenic α−Al2O3 backscattering
monochromator. Furthermore, we will discuss how one could improve the
knowledge about the value of the wavelength of the Mössbauer radiation of
57Fe over the current limit—which is finally determined by the uncertainty of
the Si lattice parameter—by coupling the Mössbauer radiation wavelength of
57Fe directly to the wavelength of optical laser radiation, using a combined
x-ray/optical resonator of the Fabry-Pérot type.

a)Positron Electron Tandem Ring Accelerator
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Chapter 2

Theory
2.1. Mössbauer radiation

The nuclear resonant radiation of 57Fe with EM ≈ 14.4 keV is originating from
the decay of 57Fe nuclei from their first excited state to the ground state. From
the lifetime of the excited state, τ = 141 ns, the energy bandwidth of the ra-
diation is determined as Γ = 4.8 × 10−9 eV by use of the uncertainty principle
Γτ = h̄. Thus, the relative linewidth of EM is only Γ/EM ≈ 3 × 10−13.

The transition wavelength may be, however, considerably affected by the
hyperfine interactions between the nuclei and their environment, e.g. the elec-
trons in the atomic shell or externally applied magnetic fields. Thus the nuclear
states of 57Fe with different magnetic quantum numbers are no longer degen-
erate, and the transition from the first excited to the ground state is split up
into 6 lines of slightly different energy. This may increase the uncertainty of
λM to about 10−11.

Closely related to the nuclear resonant radiation is the effect of recoilless nu-
clear resonance absorption of gamma radiation which was first demonstrated with
the 129 keV transition of 191Ir by Mössbauer (1958), and awarded with the
Nobel prize in 1961. It is therefore widely known as the Mössbauer effect. Scien-
tific interest switched fastly to 57Fe, not only because of the unique sharpness
of the 14.4 keV resonance and the easier experimental conditions, but also due
to the importance of iron in many fields of science, like magnetism, geology,
material science, chemistry, biology and medicine.

Typical Mössbauer experiments make
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Fig. 2.1.1: Generation of 14.4 keV
Mössbauer radiation by the radioac-
tive decay of 57Co

only use of the unique sharpness and sta-
bility of the nuclear resonance, and the fact
that the energy shifts arising from the hyper-
fine interactions can be precisely measured.
Thus, spectroscopy with ultimate energy
resolution becomes possible. An overview
of classical applications of the Mössbauer
effect is given e.g. by Gütlich et al. (1978),
and of more recent applications using syn-
chrotron radiation by Gerdau and de Waard
(1999/2000). The knowledge about the value
of the wavelength of the Mössbauer radia-
tion of 57Fe, λM, remained however rather
coarse for decades, cf. Fig. 1.0.1. The present
report will only focus on the absolute value of λM itself, but not on the wide
field of science which is opened up by the study of the hyperfine interactions.

7
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Besides 57Fe, there are many other isotopes which show nuclear resonances
with similar properties. Among them are 151Eu, 119Sn, and 161Dy, which will
be addressed later in this report, see Section 5.2.

Mössbauer radiation can be generated either by the nuclear decay of ra-
dioactive sources, or by synchrotron radiation. In the case of 57Fe, one may use
a source made of 57Co, with the decay scheme shown in Fig. 2.1.1. The bright-
ness of radioactive sources is, however, limited by self-absorption. E.g., the
spectral flux of of a 250 mCi 57Co source into a solid angle of 20 × 20 � rad2 is
only 1 photon s−1Γ−1. Furthermore, for some interesting Mössbauer isotopes
the handling of radioactive sources may become difficult if the mother isotope
has a short lifetime.
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Since the breakthrough experiment from Gerdau et al. (1985) it is also pos-
sible to generate Mössbauer radiation by means of synchrotron radiation. The
general setup of such an experiment is shown in Fig. 2.1.2. Electromagnetic
radiation is generated by electrons in a storage ring being accelerated perpen-
dicular to their flight direction while passing through a bending magnet, a
wiggler, or an undulator. The initially almost “white” spectrum is monochro-
matized to a bandwidth of 1 eV or lessa) in the 14.4 keV range, and then trans-

a)Most experiments use a pre-monochromator with ≈ 1 eV bandpass which takes the heat
load out of the beam, and a second high-resolution monochromator with only ≈ 1 meV band-
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mitted through a foil made of 57Fe. If the wavelength of the x-rays transmitted
by the monochromator coincides with the wavelength of the Mössbauer ra-
diation of 57Fe, the 57Fe nuclei are excited and emit Mössbauer photons with
coherent enhancement in the forward direction (Hastings et al., 1991; Shvyd’ko
et al., 1991) with an average delay of τ = 141 ns. The x-rays and the Mössbauer
radiation hit the detector, typically a silicon APD (Baron, 2000). Since the syn-
chrotron radiation comes in sharp pulses with less than 100 ps duration and a
delay of several 100 ns in between, and the time resolution of an APD is ≈ 1 ns,
one can easily distinguish between the x-rays in the prompt synchrotron radi-
ation pulse and the delayed Mössbauer photons by blocking the prompt pulse
electronically. A typical time structure is shown in Fig. 2.1.3. The characteristic
pattern (“beating”) in the time structure of the delayed photons is attributed
to the hyperfine splitting of the nuclear resonance energy.

At modern synchrotron radiation facilities of the third generation the
brightness of the generated Mössbauer radiation is by many orders of magni-
tude superior to radioactive sources. Typical values of the spectral flux into a
solid angle of 20 × 20 � rad2 at HASYLAB, ESRFa), APS, SPring-8, and XFELb)c)

are given in Tab. 2.1.1.

SR facility HASYLAB ESRF APS SPring-8 XFEL
Beamline BW4 PETRA 1 ID18, ID22 ID3
Flux [ s−1Γ−1] 3 × 102 2 × 103 5 × 104 5 × 104 5 × 104 2 × 107

Tab. 2.1.1: Spectral flux of Mössbauer radiation of 57Fe at different synchrotron radiation
facilities

2.2. Exact Bragg backscattering of x-rays

In the following, the dynamical theory of x-ray diffraction in perfect crystals
will be outlined with a special focus on the backscattering geometry. The dy-
namical theory of two-beam diffraction in the backscattering case was dis-
cussed by Brümmer et al. (1979); Caticha and Caticha-Ellis (1982); Graeff and
Materlik (1982); Kohra and Matsushita (1972). Some special cases of backscat-
tering where multi-beam diffraction effects are considered were addressed in
Kohn et al. (1999); Sutter (2000). A summary of the dynamical theory, with
regards to the experiments reported in this thesis, is also given in Shvyd’ko
(2002, 2004). The subsequent discussion will follow Shvyd’ko (2002).

The two-beam diffraction case will be considered first. Some expressions
will be derived which enable the evaluation of the angular, energy, and tem-

pass which cuts down the ratio between Mössbauer photons and synchrotron radiation photons
to a reasonable value that can be handled by the detector.

a)European Synchrotron Radiation Facility, Grenoble, France
b)X-ray Free Electron Laser (currently under development at DESY, Hamburg, Germany)
c)At the XFEL, the solid angle into which the x-rays are emitted is only 1 × 1 � rad2.
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perature dependence of the crystal reflectivitya). The derivation relies on the
fact that the general equations of the dynamical theory of diffraction (see von
Laue (1931), and also Azaroff et al. (1974); Batterman and Cole (1964); Pinsker
(1978); Zachariasen (1945)) are valid in the backscattering case, too. However,
the parameterα denoting the deviation from Bragg’s condition is defined dif-
ferently here. A new expression for α which is valid in backscattering geom-
etry has been reported by Caticha and Caticha-Ellis (1982). A general expres-
sion forα valid for any angle of incidence was given by Shvyd’ko and Gerdau
(1999) and used in Shvyd’ko et al. (1998). The latter expression allows using
the dynamical theory of diffraction in a generalized form, without the need to
distinguish between ”standard” and ”backscattering” regimes for the glancing
angle.

We consider scattering of a plane monochromatic electromagnetic wave

E(r, t) = E0 e i (K0·r−Et/h̄) (2.2.1)

from a perfect crystal, with the energy E and the wave vector K0, which are
related by |K0| = K = E/h̄c = 2π/λ. The wave is linearly polarized.

The crystal is a plate with the thickness d. Inside the crystal, a radiation
field with the electric vector D(r, t) = e− i Et/h̄D(r) is excited by the incident
wave. The spatial part D(r) is a solution of the wave equation

(−∇2 − K2) D(r) = K2χ(r) D(r). (2.2.2)

The wave equation is derived directly from Maxwell’s equations for a medium
with the electric susceptibility χ(r)/4π , with the assumption that the electric
field inside the crystal remains practically transverse. Since χ(r) is a continu-
ous periodic function in space with the same symmetry as the crystal lattice, it
can be written as Fourier series

χ(r) = ∑
H
χH e i H·r (2.2.3)

with the reciprocal lattice vectors H of the crystal. The Fourier components of
the electric susceptibility are

χH = −re
λ2

πV
FH (2.2.4)

with the classical electron radius re, the volume V of the unit cell, and the
structure factor of the unit cell

FH = ∑
n

fn(H) e i H·rn e−Wn(H). (2.2.5)

Herein,
fn(H) = f (0)

n (H) + f ′n(λ) + i f ′′n (λ) (2.2.6)

a)The dynamical theory allows also for the evaluation of the time dependence of diffraction
(see e.g. Shvyd’ko (2002, 2004)). This is of special interest for x-ray Fabry-Pérot resonators and
for the upcoming synchrotron radiation sources of the fourth generation, which will generate
radiation pulses of only 0.1 ps duration
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is the atomic scattering amplitude, where f (0)
n is the atomic form factor, and

f ′n(λ) and f ′′n (λ) are the anomalous scattering corrections of an atom lo-
cated at a point rn in the unit cell.a) These corrections are wavelength de-
pendent. Their values, which were computed using relativistic Hartree-Fock-
Slater wave functions, are reported in Kissel and Pratt (1990); Kissel et al.
(1995).

The term e−Wn in Eq. 2.2.5 is the square root of the Debye-Waller factor (cf.
Ziman, 1969), which is measuring the thermal vibrations of the atoms. The
definition of the Debye-Waller factor reads

fDWn(H) = e−2 Wn(H) (2.2.7)

Wn(H) =
Bn(H)

4 d2
H

Bn(H) = 8 π2 〈u2
H〉n,

with 〈u2
H〉n the mean square displacement of the atom from its equilibrium

position in the unit cell, projected on the direction of the scattering vector H.
For hard x-rays with λ = 10 . . . 100 pm, the Fourier coefficients χH in

Eq. 2.2.3 are negative with typical values below 10−5.
The classical derivation of Eqs. 2.2.4, 2.2.5 can be found e.g. in Azaroff et al.

(1974); Batterman and Cole (1964); James (1950); Pinsker (1978); Zachariasen
(1945). Afanas’ev and Kagan (1967) have given a quantum mechanical deriva-
tion with a thorough account of the lattice vibrations.

The reciprocal lattice vectors of the crystal lattice are in general expressed
as H = hb1 + kb2 + lb3, where h, k, l are integers known as the Miller indices,
and b1, b2, b3 is a set of linear independent vectors, called reciprocal lattice
unit vectors. The atomic planes perpendicular to H are denoted as (h k l). The
interplanar distance between the atomic planes (h k l) is

d(h k l) =
2π
H

. (2.2.8)

Since χ(r) is periodic, the solution of the wave equation Eq. 2.2.2 can be
expressed as a Bloch wave (cf. Ziman, 1969):

D(r) = e i k0 ·r ∑
H

DH e i H·r = ∑
H

DH e i kH ·r (2.2.9)

with
kH = k0 + H . (2.2.10)

Thus, the radiation field inside the lattice appears as a set of plane waves with
the wave vectors kH . The vector amplitudes DH of the plane waves are the
solutions of the following system of linear algebraic equations which can be
derived by substituting Eq. 2.2.9 into Eq. 2.2.2:

k2
H − K2

K2 DH = ∑
G
χH − G DG. (2.2.11)

a)In the following, we will generally notate the real part of any complex value with a single
prime ( f ′), and the imaginary part with a double prime ( f ′′).
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Herein, the reciprocal lattice vectors H and G take all possible discrete values,
including 0. The coefficients χH − G can be interpreted as being proportional
to the probability amplitude of scattering a plane wave with wave vector kG
into another plane wave with the wave vector kH , with a momentum transfer
H − G. Scattering with a momentum transfer equal to a reciprocal lattice vec-
tor is nothing but Bragg scattering. Thus, the system of dynamical equations
Eq. 2.2.11 describes plane wave amplitudes DH which are mutually coupled
by Bragg scattering.

The number of equations in this system is in principle very large. However,
the coefficients χH − G are very small, and therefore only those components

DH are significant for which
∣∣∣k2

H − K2
∣∣∣ is also small, i.e. the resonance condition

|kH | ≈ K is valid.

2.2.1. Single beam case

In the single beam case the resonance condition is valid only for a single wave
vector k0. From Eq. 2.2.11 follows immediately k0 = K(1 + χ0/2), where

n(λ) = 1 +
χ0
2

= 1 + δ(λ) + iβ(λ) (2.2.12)

is the complex index of refraction. Since χ′0 is small and negative, the real part of
the index of refraction δ(λ) < 1. Thus, the magnitude k0 of the crystal wave
vector is smaller than the magnitude K of the vacuum wave vector, and the
wavelength inside the crystal is respectively larger:

λcryst. =
λ

1 +
χ0
2

≈ λ

(
1 + re

λ2

2π V
F′

0

)
(2.2.13)

2.2.2. Two beam case

In the following, we will discuss the case of the resonance condition being
fulfilled for two particular wave vectors k0 and kH .a) The equation system
Eq. 2.2.11 reduces then to a system of only two vector field amplitudes:

k2
0 − K2

K2 D0 = χ0 D0 + χH DH

k2
H − K2

K2 DH = χH D0 + χ0 DH

(2.2.14)

The incident wave is diffracted from the atomic planes of the crystal which are
perpendicular to the reciprocal lattice vector H. The in-crystal vectors k0 of the
incident wave and kH of the diffracted wave are associated with the vacuum
wave vectors K0 and KH , respectively. The vectors K0 and KH define the scat-
tering plane (K0, KH). The glancing angle of incidence between the wave vec-
tor K0 and the reflecting atomic planes is θ. The incidence angle δθ = π/2 −θ

a)Herein, H is a specific index, rather than a running index as in the discussions before.
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is a measure of the deviation from normal incidence to the reflecting atomic
planes. We also introduce the unit vector ẑ being the internal normal to the
front crystal surface.

The in-crystal wave vectors differ from the vacuum vave vectors because of
the crystal susceptibility. Since the tangential component of the electric field is
continuous at the crystal surface, we have k0 = K0 + δ · ẑ, i.e. the wave vectors
differ only in their components parallel to the normal of the surface (similar for
the diffracted wave). In the subsequent discussion we apply these conditions
in the following form:

k0 = K0 +
ε0 K
γ0

ẑ

kH = KH +
εH K
γH

ẑ.
(2.2.15)

Herein, the corrections ε0 and εH are unknowns which have to be determined
along with D0 and DH , while γ0 and γH are defined by the scattering geom-
etry: γ0 = K0 · ẑ/K and γH = (K0 − H) · ẑ/K are cosines between the surface
normal ẑ and the wave vectors K0 and K0 + H, respectively. With the angle
η between the crystal surface and the reflecting atomic planes, one can also
obtain the expressions γ0 = sin(θ− η) and γH = − sin(θ+ η).

The corrections ε0 and εH are dependent: Using the momentum conserva-
tion Eq. 2.2.10 in crystals, one can obtain

KH = K0 + H
(
ε0

γ0
− εH

γH

)
ẑ. (2.2.16)

Furthermore, we assume an isotropic vacuum and elastic Bragg scattering, i.e.
the magnitudes of the incident and the diffracted wave should be equal:

|KH |2 = |K0|2 = K2 . (2.2.17)

Both equations lead to the following relation:

εH =
ε0

b
+
α

2
(2.2.18)

with

α =
2 K0 · H + H2

K2 (2.2.19)

and

b =
γ0

γH
= − sin(θ− η)

sin(θ+ η)
. (2.2.20)

As a result we obtain the wave vector of the diffracted wave in vacuum

KH = K0 + H ′ with H ′ = H − K
α

2γH
ẑ. (2.2.21)

Thus, the momentum transfer H ′ for the diffracted wave in vacuum is dif-
ferent from the momentum transfer H in the crystal, cf. Eq. 2.2.10, and if H ∦ ẑ
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then also H ∦ H ′. This can be interpreted as if the crystal is reflecting from vir-
tual planes perpendicular to H ′ rather than from real atomic planes perpen-
dicular to H. Using Eq. 2.2.21 one can express the angle Ψ between the virtual
and the real reflecting atomic planes as a function ofα:

Ψ =
K |α|

2 H |γH |
sin η. (2.2.22)

The parameterα from Eq. 2.2.19 will turn out to be important since it is possi-
ble to express the reflectivity and transmissivity of the crystal as functions of
only this one parameter.

The parameter b characterizes how far the wave vectors of the incident and
reflected radiation deviate from being symmetric to the normal on the crystal
surface. It is therefore referred to as the asymmetry parameter.

Subsequently, we will discuss the Bragg-case of the scattering geometry,
where the incident and the reflected wave are on the same side of the vacuum-
crystal interface. In this case, γ0 > 0 and γH < 0, thus b < 0. If the angles of
both the incident and the diffracted wave vector with the normal to the crystal
surface are equal, which is always the case for exact backscattering (θ = π/2),
then b = −1.

Combining the previous equations with Eq. 2.2.14, neglecting terms
quadratic in ε0 and εH , one obtains:

2ε0 D
s
0 = χ0 D

s
0 + χH Cs D

s
H

(
2ε0

b
+ a

)
D

s
H = χH Cs D

s
0 + χ0 D

s
H

(2.2.23)

Herein, D
s
F with s = {π ,σ} and F = {0, H} are the linearly polarized compo-

nents of the electric vector DF = eπF D
π
F + eσFD

σ
F . The π polarization unit vector

eπF lies in the scattering plane, while theσ polarization unit vector eσF is perpen-
dicular to that plane. The polarization factors are Cπ = cos 2θ and Cσ = 1. In
the special case of backscattering there is also |cos 2θ| ≈ 1. Therefore, in the
subsequent discussion the different polarization components are ignored, and
the polarization index s is omitted.

The compatibility condition for Eq. 2.2.23 determines two possible values
for ε0:

2ε0(ν) − χ0 =
√

C2 |b| χHχH

(
−y ±

√
y2 − 1

)
, with ν = 1, 2 (2.2.24)

and

y =
χ0 (1 − b) +α b

2
√

C2 |b| χHχH

. (2.2.25)
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2.2.3. Wave fields in a crystal and in vacuum

In the following, we will discuss the two-beam case for wave fields inside a
crystal of the thickness d and in vacuum with incidence only on the front sur-
face of the crystal.

Because of the two solutions for ε0 in Eq. 2.2.24, the Bloch wave expression
Eq. 2.2.9 inside the crystal reads

D(r) = e i K0·r
(
D0(z) + DH(z) e i H·r

)
, (2.2.26)

with

D0(z) = ∑
ν=1,2

e i δνz
D0(ν), DH(z) = ∑

ν=1,2
e i δνz

DH(ν), δν =
K
γ0
ε0(ν).

(2.2.27)
From Eq. 2.2.23 one can determine the ratio of the amplitudes as

Rν =
DH(ν)

D0(ν)
=

2ε0(ν) − χ0

C χH
. (2.2.28)

The amplitudes themselves have to be determined by the boundary condition
that E on the vacuum side and D inside the crystal are equal.

For the incident beam, propagating in forward direction, the boundary
condition at the front surface r = r1 is

E
(in)
0 e i K0·r1 = D0(z1) e i K0 ·r1 . (2.2.29)

Since there is no incident beam on the rear surface, the the boundary condition
for the in-crystal reflected beam at the rear surface r = r2 is

DH(z2) e i (K0+H)·r2 = 0. (2.2.30)

With Eq. 2.2.27 one can rewrite these conditions as

D0(1) e i δ1z1 + D0(2) e i δ2z1 = E
(in)
0

DH(1) e i δ1z2 + DH(2) e i δ2z2 = 0.
(2.2.31)

This leads to the following result for the forward D0(z)and Bragg-scattered
DH(z) components of the radiation field inside the crystal at a depth z:

D0(z) = E
(in)
0

R1 e i δ2(z−z2) − R2 e i δ1(z−z2)

R1 e i δ2(z1−z2) − R2 e i δ1(z1−z2)

DH(z) = E
(in)
0

R1 R2

(
e i δ2(z−z2) − e i δ1(z−z2)

)

R1 e i δ2(z1−z2) − R2 e i δ1(z1−z2)

(2.2.32)

We will now develop some general expressions for the transmission and
reflection amplitudes of the system. From Eqs. 2.2.26, 2.2.32, the forward and
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reflected components of the radiation field at the rear and front surfaces can
be expressed as

D(r2)forward = E
(in)
0 t00 e i K0 ·r2

D(r1)reflected = E
(in)
0 r0H e i (K0+H)·r2 .

(2.2.33)

Herein,
t00 = e i δ1d R2 − R1

R2 − R1 e i (δ1−δ2) d

r0H = R1R2
1 − e i (δ1−δ2) d

R2 − R1 e i (δ1−δ2) d

(2.2.34)

are the transmission and reflection amplitudes, measured at the rear and front
surfaces, respectively. They are obtained from Eqs. 2.2.32, 2.2.33 with the crys-
tal thickness d = z2 − z1.

Because of the continuity of the wave fields at the crystal surfaces, we have
the following expressions for the transmitted and reflected wave fields at any
arbitrary point r in vacuum:

E0(r) = D(r2)forward e i K0·(r−r2)

EH(r) = D(r1)reflected e i KH ·(r−r1).
(2.2.35)

From Eqs. 2.2.33, 2.2.21 one can calculate the wave fields in vacuum as fol-
lows:

E0(r) = E
(in)
0 t00 e i K0·r

EH(r) = E
(in)
0 ρ0H e i KH ·r,

(2.2.36)

with the reflection amplitude in vacuum at the front crystal side

ρ0H = r0H e i K z1
2γH

α . (2.2.37)

The transmission amplitudes at the crystal surface and in vacuum are equal.

2.2.4. Reflectivity of thick crystals

The reflectivity R of a crystal is defined as the ratio between the fluxes of the
incident and the reflected beam. As follows from Eqs. 2.2.36, 2.2.37, using the
asymmetry parameter b, Eq. 2.2.20, it is given by

R =
1
|b| |r0H|2 . (2.2.38)

We will now discuss the case of a thick crystal with d � de, i.e. the crystal
thickness d is much larger than de = Im (δ1 − δ2)

−1, or

de(y) = Im
γ0

K
√

C2 |b| χHχH

1√
y2 − 1

. (2.2.39)
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From Eq. 2.2.34 follows that for a thick crystal the reflection amplitude does
not depend on the thickness d, but can be approximated by r0H = R1. In this
case, the reflectivity becomes R = |R1|2 / |b|. By using Eqs. 2.2.24 and 2.2.28 ad-
ditionally, we can find the following well-known expression for the reflectivity
of a semi-infinite crystal:

R =

∣∣∣∣
χH
χH

∣∣∣∣
∣∣∣∣−y ±

√
y2 − 1

∣∣∣∣
2

, (2.2.40)

which is a function of the parameter y alone. Furthermore, we assume van-
ishing photo-absorption, i.e. χ′′0 ≈ 0 and χ′′H ≈ 0. In this case there is a region
of total reflection with R = 1, given by the condition −1 ≤ y ≤ 1. We also as-
sume χH = χH which is true for centrosymmetric crystals. With the notation
y = cosφr, the reflection amplitude reads

r0H = −
√
|b| e− i φr . (2.2.41)

As y varies from −1 to 1 in the region of total reflection, the phase jump φr
changes from −π to 0.

Using Eq. 2.2.25, one can also express the region of total reflection in terms
of the parameterα:

α−1 ≤ α ≤ α+1

α±1 = αc ±
2 |CχH |√

|b|

αc = χ′0

(
1 − 1

b

)
.

(2.2.42)

Herein, the region of total reflection is centered at ac, and its width is

∆α = α+1 −α−1 =
4 |C χH |√

|b|
. (2.2.43)

The order of magnitude of χH is typically ≤ 10−5 for x-rays with energy
E ≈ 15 keV.

Thus, even tiny variations of α, and consequently E, θ, or the crystal tem-
perature T, will result in large changes in reflectivity. Such small variations
leave the components of the electric susceptibility χ0, χH , the asymmetry pa-
rameter b, and the polarisation factor C—which constitute the parameter y, cf.
Eq. 2.2.25—practically unchanged. Therefore, it should be possible to express
the reflectivity as a function of the universal parameterα. If both R(α) and the
relationα = f (θ, E, T) are known, then one can obtain immediately the reflec-
tivity as a function of the glancing angle of incidence θ, the photon energy E,
and the crystal temperature T. The relation α = f (θ, E, T) will be derived in
the following section.
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2.2.5. Parameter of deviation from Bragg’s condition

In the following, different representations and the physical interpretation of
the parameterα will be discussed.

Forα = 0, Eq. 2.2.19 reads:

2 K0 · H + H2 = 0. (2.2.44)

For geometrical reasons K0 · H = −H K sinθ, and from Eq. 2.2.8 follows
H = 2π/dH . This leads to

λ = 2 dH sinθB, (2.2.45)

which is very well known as Bragg’s law. In the kinematical theory of Bragg
diffraction (cf. James, 1950) where no multiple scattering effects are taken into
account, Bragg’s law relates the radiation wavelength λ to the Bragg angle θB,
i.e. the glancing angle of incidence at which the radiation is reflected from the
atomic planes.

It is also possible to write Bragg’s law in terms of the photon energy E:

EH = E sinθB (2.2.46)

with the Bragg energy

EH =
1
2

H h̄c =
hc

2dH
. (2.2.47)

In the kinematical theory, x-rays with energy EH are reflected exactly back-
wards.

The picture of diffraction in crystals provided by the kinematical theory is,
however, only simplified. As will be shown later, the dynamical theory will
give a slightly different relation between the glancing angle of incidence and
the radiation wavelength than Bragg’s law.

The parameter α can be interpreted as a measure for the deviation from
Bragg’s condition as long as Bragg’s law is fulfilled whenα = 0.

In the following discussion we will derive the relations between the pa-
rameter α and the physical parameters of the problem, i.e. the energy E or
wavelength λ of the incident plane wave, the glancing angle of incidence θ,
and the temperature T of the crystal. From the definition of α, Eq. 2.2.19, and
the fact that incident and reflected wave build the same angle with the atomic
planes, one obtains directly

α =
−2 H K sinθ+ H2

K2 (2.2.48)

Next, we insert the definition of the Bragg energy Eq. 2.2.47, under the assump-
tion that the interplanar distance is temperature dependent, and obtain the
following relation:

α = 4
EH(T)

E

(
EH(T)

E
− sinθ

)
, (2.2.49)
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which is valid for any glancing angle of incidence, including θ = π/2. This
is the required general dependenceα = f (E,θ, T) for any given Bragg energy
EH . It is also possible to expressα as a function of the x-ray wavelength:

α =
2 λ

dH(T)

(
λ

2 dH(T)
− sinθ

)
. (2.2.50)

With Bragg’s law Eq. 2.2.45 one can also expressα by angles:

α = 4 sinθB (sinθB − sinθ) (2.2.51)

These are exact expressions which were given by Shvyd’ko and Gerdau (1999).
In other texts about the dynamical theory, like Batterman and Cole (1964);
Pinsker (1978); Zachariasen (1945) and others, the approximation

α = 2(θB −θ) sin 2θB (2.2.52)

is used, which is valid for |θB −θ| � 1, but fails in the region of backscattering
θB = π/2. Caticha and Caticha-Ellis (1982) have shown that another approxi-
mation

α = 2
(
δθ2 − 2ε

)
, (2.2.53)

with δθ = θB −θ andε = (E − EH)/EH, is applicable for backscattering. It can
be derived from Eq. 2.2.49 under the assumptions δθ � 1 and ε� 1.

We will now take into account the temperature dependence of the Bragg
energy, which can be expressed in a small temperature range as

EH(T + δT) = EH(T) (1 − ρH(T) δT) (2.2.54)

with the linear temperature expansion coefficienta) in the direction of H

ρH(T) =
1

dH(T)

ddH

dT

∣∣∣∣
T

. (2.2.55)

This allows the generalization of Eq. 2.2.53 as follows:

α = 2 δθ2 − 4
(
δE(T)

EH(T)
+ ρH(T)δθ

)
(2.2.56)

with δE(T) = E − EH(T). This equation shows the important fact that in the
backscattering regionα varies linearly both with the x-ray energy and the crys-
tal temperature, and quadratically with the angular deviation.

From Eq. 2.2.56 one can show the equivalence of variations of x-ray energy
and temperature: Those values of E and T are considered equivalent which
result in the same reflectivity, and if the reflectivity is solely a function of α,
the equivalence relation reads:

δE = EH(T)ρH(T) δT. (2.2.57)

a)The linear temperature expansion coefficient is denoted with the letter ρ througout this
thesis, to avoid confusion with the parameterα from Eq. 2.2.19
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2.2.6. Center of the region of total reflection

With Eq. 2.2.50, which is valid for any glancing angle of incidence and photon
energy, it is possible to rewrite the expression for the center of total reflection
from Eq. 2.2.42 as follows:

2 λc

dH

(
λc

2 dH
− sinθc

)
= χ′0

(
1 − 1

b

)
. (2.2.58)

Using Eq. 2.2.4, this can be written as

2 dH sinθc = λc(1 + wH) (2.2.59)

with

wH = −χ′0
d2

H
λ2

(
1 − 1

b

)
= re

d2
H

π V
F′

0

(
1 − 1

b

)
. (2.2.60)

Similarly, the expression for the center of total reflection on the energy scale
reads:

Ec sinθc = Ec(1 + wH). (2.2.61)

Equation 2.2.59 looks similar to Bragg’s law Eq. 2.2.45, but differs by a
small, yet significant correction wH which is typically 10−4 . . . 10−6. Since
wH > 0, the peak of reflectivity is shifted to higher wavelengths or energies
than given by Bragg’s law. The relations Eqs. 2.2.59, 2.2.61 are often referred to
as the dynamical Bragg’s law. It is valid in the whole range of glancing angles,
without division into standard and backscattering regimes.

For a given Bragg reflection, the correction wH is almost constant in a rel-
atively large spectral range, since the only energy dependence arises from the
anomalous scattering correction f ′(λ) in F0, cf. Eqs. 2.2.5, 2.2.6. E.g., for the
spectral range λM − 0.01 Å ≤ λc ≤ λM + 0.01 Å, where λM = 0.86 Å is approx-
imately the wavelength of the Mössbauer radiation of 57Fe, the anomalous
scattering correction for silicon varies by no more than ±0.003 around its av-
erage value of 0.119 (Deutsch and Hart, 1988, cf.). Thus, the variation of wH is
less than 10−8, compared to the leading term 1.

The difference between Bragg angle and center of total reflection according
to the dynamical Bragg’s law is

sinθB − sin λc = wH
λc

2 dH
. (2.2.62)

Also the wavelength reflected at the center of total reflection deviates from the
wavelength given by Bragg’s law according to

λc =
1

1 + wH
. (2.2.63)

Thus, the wavelength determined by the dynamical theory is always smaller
than the wavelength determined by Bragg’s law. However, by virtue of
Eq. 2.2.13, the wavelength inside the crystal is larger than in vacuum. The cor-
rections in Eqs. 2.2.13, 2.2.63 look similar but are not equal, since there is no
λ2 dependence in wH . Only under the exact backscattering condition, where
λ = dH and b = −1, these corrections are equal.
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2.2.7. Spectral width of the region of total reflection

The spectral width of the Bragg reflection is defined as

εH =
∆λ

λ
=
∆E
E

. (2.2.64)

Using Eqs. 2.2.43 and 2.2.50, one obtains

εH =
∆α

4 sin2θ
=

|C χH |
sin2θ

√
|b|

, (2.2.65)

which is valid for all glancing angles of incidence except θ = 0. Since χH ∝ λ2,
cf. Eq. 2.2.4, we have εH ∝ λ2/ sin2θ = (2dH)2 = const., i.e. the relative spec-
tral width is constant independent of the glancing angle of incidence. The
Debye-Waller-factor and the atomic scattering amplitude, which are parts of
of χH , have the same λ/ sinθ dependence, and are therefore also constant for
a given reflection.

By use of Eq. 2.2.39 one can now express the extinction length at the center
of total reflection as

de(0) =
γ0

K |C χH |
√
|b|

. (2.2.66)

Assuming the symmetric diffraction geometry, b = −1, the combination of
Eqs. 2.2.65 and 2.2.66 leads to

εH =
dH

π de(0)
=

1
π N∗ , (2.2.67)

with N∗ = de(0)/dH the number of reflecting planes within the extinction
length. Thus the spectral width is reciprocal to the effective number of re-
flecting planes contributing to diffraction. Since the extinction length increases
with higher x-ray energy, the relative spectral width becomes smaller, respec-
tively.

Extinction lengths of de(0) ≈ 10 . . . 100 � m are typical for x-rays with
E ≈ 14 keV, or λ ≈ 100 pm. Thus, a relative energy resolution of about
10−6 . . . 10−7, corresponding to an energy width of about 10 . . . 1 meV, is
achievable with single Bragg reflections in this energy range.a)

The fact that the relative spectral width of a given Bragg reflection is con-
stant implies that the absolute value of the spectral width, in terms of energy
units, is smallest for the lowest possible photon energy, which occurs at normal
incidence.

a)It is possible to achieve higher energy resolution by use of asymmetric Bragg reflections,
see e.g. Toellner (2000) and references therein.
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2.2.8. Angular width of the region of total reflection

Since there is no simple expression for the angular width of the region of total
reflection which is valid for the whole range of glancing angles, we will discuss
the cases θ < π/2 and θ ≈ π/2 separately. For θ < π/2, the approximation
Eq. 2.2.52 is valid, which leads to

∆θ =
∆α

2 sin(2θ)
=

2 |C χH|
sin(2θ)

√
|b|

. (2.2.68)

Since χH ∝ λ2 and sinθ/λ = const. one can deduce from Eq. 2.2.68 that the
angular acceptance ∆θ increases as tanθ with increasing glancing angle of in-
cidence θ.

In the backscattering region, however, the expression Eq. 2.2.53 should be
used. At the x-ray energy E = EH(1 −αc/4) = 2

√
|C χH |, the center of the an-

gular region of total reflection is exactly at δθ = 0, and its width is

∆θ =
√
∆α = 2

√
|C χH |. (2.2.69)

Distinct from Eq. 2.2.68, the angular width at exact backscattering is propor-
tional to the square root of |C χH |. The reason for this is the quadratic angular
dependence of λ near δθ ≈ 0. Taking into account that |χH | . 10−5, this im-
plies a drastical increase of the angular width in backscattering geometry. By
using Eq. 2.2.65 one can rewrite Eq. 2.2.69 as

∆θ = 2
√
εH , (2.2.70)

which is valid for near-normal incidence to the reflecting planes.
This relation is one of the most important features of Bragg backscatter-

ing: The angular acceptance scales with the square root of the relative spectral
width! This implies that, e.g., Bragg reflections with a relative spectral width as
narrow as εH = 10−9 are still not blurred by an x-ray beam with a divergence
of about 60 � rad.

2.3. Multiple beam diffraction

In exact backscattering geometry, it is possible that Bragg scattering does not
only occur for the single diffraction vector H which satisfies the condition
K0 = −H/2. If there is another diffraction vector G which fulfills Bragg’s law
in vector form 2 K0 · G + G2 = 0, both diffraction vectors are related by

G · H = G2. (2.3.1)

in the kinematical approximation. From (H − G) · G = G · H − G2 = 0 fol-
lows that the vectors H, G, and H − G compose a triangle with a right angle
between the vectors G and H − G. Furthermore, with F = H − G, a similar
relation F · H = F2 is valid. Thus, if a reflection fulfilling Eq. 2.3.1 exists, it is
always accompanied by another reflection with the diffraction vector

F = H − G. (2.3.2)
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The reflections described by G and F build a conjugate pair of reflections. The
fact that H, G, and F compose a right-angle triangle implies that such parasitic
reflections appear systematically in rectangular reciprocal lattices. They can also
appear in non-rectangular reciprocal lattices when there is a rectangular sub-
lattice.

Steyerl and Steinhauser (1979) have pointed out originally that in crystals
with diamond structure, like Si, parasitic reflections occur for all allowed or-
ders of reflection. There are only two reflections not affected by multiple beam
diffraction: (1 1 1) and (2 2 0). As discussed by Sutter (2000), e.g., the (12 4 0)
exact back-reflection in Si is accompanied by 22 other reflections. Together
with the incident and the back-reflected beam, this is referred to as a 24-beam
case. Due to the many new reflection channels opening up at normal incidence,
one expects a strongly reduced reflectivity in the backscattering channel, and
also a complicated energy dependence. Therefore, Si is, in general, not suitable
for diffraction experiments in the exact backscattering geometry.a)

However, in the experiment for the measurement of the wavelength of the
Mössbauer radiation of 57Fe, we have no other choice but using backscattering
from Si, since the lattice spacing of Si is the underlying length standard.

The (12 4 0) reflection of Si is used in the experiment for the determination
of the wavelength of the Mössbauer radiation of 57Fe, together with (9 7 5),
also a 24-beam case, and (9 1 1), a 6-beam case. These reflections were cho-
sen because their Bragg energy (Eq. 2.2.47) is close to the Mössbauer radiation
wavelength of 57Fe to be measured. The relative spectral width of these reflec-
tions is ' 3 × 10−7, which leads according to Eq. 2.2.70 to an angular width of
about 1 mrad. The angular region where multiple beam diffraction has a con-
siderable impact is in most cases narrower than 100 � rad (Sutter, 2000). It is
therefore possible to use Si in a near-backscattering geometry where the mul-
tiple beam diffraction almost vanishes while the the advantages of backscat-
tering are still in effect.

The offset from exact backscattering is described by the deviation δθ of the
incident wave vector from the reciprocal lattice vector of the back-reflection,
and by the azimuthal angle φ measured counterclockwise from the [0 0 1]
direction. Sutter (2000, 2001) has shown that for certain values φmult, which
are given in Tab. 2.3.1, some of the parasitic reflections are still excited if δθ
extends over a range of some mrad, even outside the angular width of the
back-reflection. This implies that by setting δθ to some small amount off exact
backscattering, one has still a case of multiple beam diffraction ifφ is set to one
of the φmult values. Therefore, the cases with φ = φmult have to be avoided if
one wants to get rid of the abovementioned disadvantages of multiple beam

a)Another reason why Si, or other materials with a cubic symmetry, are disadvantageous for
Bragg backscattering, is that the Bragg energies in such a structure are highly degenerate. With
the interplanar distance dH = a(h2 + k2 + l2)−1/2 it is easy to see that there are many reflections
with different Miller indices h, k, l but the same interplanar distance dH . Thus, the number of
distinct Bragg energies is rather low. Typically, in the energy range 10 . . . 25 keV there is only
one Bragg energy per ' 500 . . . 250 eV interval. Therefore it becomes impossible to shift the
Bragg energy to any given value by changing the temperature of the crystal. See Shvyd’ko
(2004) for further discussion of this topic.
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Back-reflection φmult [ ◦] Parasitic Reflections No. of beams

(12 4 0) 0.00 (8 4 0), (4 8 0), 8
(8 8 0), (4 4 0),
(12 0 0), (0 4 0)

19.36 (6 8 2), (6 4 2) 4
46.50 (12 2 2), (0 2 2) 4
72.45 (6 4 6), (6 0 6) 4
83.98 (8 2 6), (4 2 6) 4
96.02 (8 2 6), (4 2 6) 4

107.55 (6 4 6), (6 0 6) 4
133.49 (12 2 2), (0 2 2) 4
160.64 (6 8 2), (6 4 2) 4

(9 9 1) 33.90 (9 5 5), (0 4 4) 4
146.10 (4 0 4), (5 9 5) 4

(9 7 5) 0.00 (8 8 0), (1 1 5) 4
21.26 (7 9 1), (2 2 4) 4
87.70 (3 9 5), (6 2 0) 4

102.30 (2 8 6), (7 1 1) 4
107.12 (10 6 4), (1 1 1) 4
111.48 (10 2 0), (1 5 5) 4
113.01 (9 1 1), (0 6 6) 4
136.24 (2 0 2), (7 7 7) 4
147.77 (3 1 3), (6 6 8) 4
159.47 (7 5 3), (2 2 8) 4
161.00 (8 6 2), (1 1 7) 4

Tab. 2.3.1: Azimuthal angles of the backscattering multiple-beam cases for the back-reflections
used in the experiment for the determination of the wavelength of the Mössbauer radiation
of 57Fe. When φ = φmult, the angular width in ∆θ of the mentioned parasitic reflections is
larger than the angular width of the back-reflection.
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diffraction. Preferable are values of φ which are in the center of large gaps
between twoφmult values.

The multiple beam diffraction in backscattering geometry is a highly en-
couraging field of science which deserves in-depth studies on its own. This is,
however, far beyond the scope of the present work. The PhD Theses of Sutter
(2000) and Lerche (2004) are good starting points for further reading.

We have, however, made a short demonstration how the setup for the mea-
surement of the wavelength of the Mössbauer radiation of 57Fe could also be
used for studies on multiple beam diffraction—see Section 6.4.
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Chapter 3

Temperature measurement and

control
The setup for the measurement of the ratio between the lattice parameters

of a Si or α−Al2O3 single crystal and the wavelength of the Mössbauer radi-
ation of 57Fe was introduced in Chapter 1, and is shown in Figs. 1.0.2, 4.1.1,
and 5.1.1. There are two components in this setup which require precise tem-
perature measurement and control. These are the single crystal itself and the
Si (7 7 7) channel-cut crystal which are both affected by thermal expansion.
In this chapter we will first discuss the requirements on temperature accuracy
and stability for the two crystals. Thereafter, we will describe in great detail
the apparatus and the methods which were used to meet these requirements.

3.1. Requirements on temperature accuracy and

stability

3.1.1. Temperature requirements for the backscattering crystal

The current state of precise measurements of the Si lattice parameter is dis-
cussed in detail by Bergamin et al. (1999). The overall uncertainty of the Si
lattice parameter is reported there to be 2.2 × 10−8 and the thermal expansion
at 22.5 ◦C is ρ = 2.581(2) × 10−6 K−1.

Therefore, it is at first view desirable to know the crystal temperature well
enough, and have it controlled precise enough, to keep the lattice parameters
unchanged within ∆a/a = 2.2 × 10−8 accuracy. Therefore, the temperature ac-
curacy should be ∆T = ∆a/(aρ) ≈ 8.5 mK.

3.1.2. Temperature requirements for the λ-meter crystal

The λ-meter is used in the experiments described in this thesis to measure
wavelength differences. Its main component is a Si (7 7 7) channel-cut crystal
which transmits a narrow energy band from the incoming synchrotron radia-
tion beam. The wavelength of the transmitted radiation λc is determined, ac-
cording to Bragg’s law Eq. 2.2.45, by the glancing angle of incidence θc to the
(7 7 7) reflecting planes in the Si crystal. It is changed by rotation of the Si crys-
tal. The temperature of the Si crystal has to be kept stable during one run of the
experiment, i.e. one sequence of measurements of the Bragg angles where the
wavelength of the transmitted beam matches the wavelengths of Mössbauer
radiation or back-reflections. It is however not required to keep the tempera-
ture accurately at a predefined temperature, since the interplanar distance of

27
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the Si (7 7 7) channel-cut crystal will be an experimental result together with
the Mössbauer radiation wavelength of 57Fe.

Furthermore one has to ensure that both faces of the channelcut have the
same temperature, because otherwise the Bragg energy of the second reflection
will not match the first one, resulting in loss of intensity.

At T = 300 K, for the Mössbauer radiation of 57Fe with an energy of
14.4125 keV, the glancing angle of incidence of the Si (7 7 7) reflection planes
is 73.784847 ◦, with an angular acceptance of 1.276 � rad. The change of the
glancing angle of incidence with temperature is δθ/δT = −8.830 � rad K−1.a)

This leads to a temperature width of 0.14 K; since the peak region is again
much narrower than the bandpass one should assume ∆T ≈ 15 mK as the re-
quirement for temperature stability.

3.2. Temperature measurement setup

3.2.1. Oven
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Fig. 3.2.1: Oven for high temperature stability and accuracy of backscattering crystals. The
numbers in boxes denote different positions of additional thermocouples or PT100 sensors
which are used to measure temperature gradients inside the oven.

For the measurements of the Mössbauer radiation wavelength of 57Fe, and
of the lattice parameters of α−Al2O3 above room temperature, an oven de-
signed for high temperature stability was deployed to keep the Si reference
or α−Al2O3 crystal under study. This oven has been constructed for pre-
vious experiments on exact Bragg backscattering of x-rays (Shvyd’ko et al.,
1998), where temperature stability in the mK range is essential. It is shown in
Fig. 3.2.1.

a)These data are calculated with the reflex program from Yu.V. Shvyd’ko.
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The oven is made of a cylindrical copper block with 4.2 cm outer diameter
and about 1 cm wall thickness. A heating wire is winded on to the outer man-
tle surface of the cylinder. Due to the high thermal conductivity and capacity
of copper, an even heat distribution inside the cylinder is ensured. On the in-
ner surface a PT100a) thermoresistor is installed which is used for temperature
measurement and control, cf. Section 3.2.5 and Lucht (1998). At the open end
of the cylinder a cap with a window is mounted. Different types of caps allow
one to operate at different conditions. In experiments where the lattice param-
eters of the sample inside the oven are to be used as a length standard (cf.
Chapter 4) or to be measured (cf. Chapter 5), it is preferable to keep the crystal
in vacuum since then there is no need for pressure control. In such a case a cap
with a narrow groove on one edge is used, so that the oven is evacuated to-
gether with the outer tank. To ensure a good temperature homogeneity and to
avoid thermal radiation between the sample and the environment, some heat
conductive compound must be applied between the cylinder and the cap. The
window must also be made of some material with good thermal conductivity
and good transmission for x-rays, like Aluminum.b) In other experiments on
exact backscattering a vacuum-sealed cap is preferred which ensures some air
to remain in the oven when the outer tank is evacuated. The thermal conduc-
tion within the air will lead to a better temperature homogeneity inside the
oven.

The oven is mounted in an evacuated tank for thermal insulation against
the ambient temperature. Since the temperature control is working only by
changing the heating power (see Section 3.2.5), it is necessary to keep a temper-
ature gradient of at least some K between the tank and the oven. For a crystal
temperature setpoint around room temperature, the tank is chilled with water
flowing through a copper tube winded around the vacuum tank. For a higher
temperature setpointc) the tank is chilled good enough just by the surrounding
air.

3.2.2. Liquid Helium flow cryostat

For the measurements of the lattice parameters of α−Al2O3 in the tempera-
ture range from 4.2 K to room temperature a custom-made LHed) flow cryo-
stat was obtained from CryoVace). It was specially constructed for this experi-
ment. The main modifications from CryoVac’s standard flow cryostats are ex-
tra large windows. They allow changing the angle of incidence of the beam
on the mounted backscattering crystal by 30 ◦ in any direction from the cryo-

a)Platinum Thermoresistor with nominal resistance R = 100Ω at T = 0 ◦C
b)The use of Beryllium windows was disapproved because this material imposes high risk

of damage to health.
c)For example, at ≈ 100 ◦C which are used for exact backscattering of 57Fe nuclear resonant

quanta with the (1 3 4 28) reflection of sapphire (Shvyd’ko et al., 1998).
d)liquid helium
e)CryoVac mbH & Co. KG, Heuserweg 14, 53842 Troisdorf, Germany
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stat’s axis (see Fig. 3.2.2a)) thus selecting different sets of lattice planes in the
α−Al2O3 crystal for exact backscattering.

Both the crystal holder and the heat exchanger at the inner shell of the cryo-
stat are equipped with electric heating wires and Cernox temperature sensors
which can be used for temperature measurement and control. The tempera-
ture can be controlled either by changeing the electric power applied on the
heating wires (see Section 3.2.5) or the LHe flux in the heat exchanger; in prac-
tice it is best to use the LHe flux only for a rough temperature preset and do
the fine control electrically.

3.2.3. Temperature control setup for the λ-meter
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Fig. 3.2.3: Si (7 7 7) channel-cut crystal with holder (λ-meter). Top left panel: Side view
with approximate beam path. Other panels: Isometric views with material annotations and
positions of temperature sensors. [A],[B]: positions of PT100 thermoresistors; [1],[2]: positions
of thermocouples

a)The drawing is shown here as provided by the manufacturer. It does not reveal the details
of the heat exchanger to the customer. The tilted sample holder was added to the drawing by
the author.
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The Si (7 7 7) channel-cut crystal in the λ-meter is sitting on an aluminum
block which is mounted on a copper plate. The aluminum block holds the
Si crystal in such a way that the synchrotron radiation beam hits the reflect-
ing surfaces with an angle of incidence of about 74 ◦ when the copper plate
is parallel to the beam, cf. Fig. 3.2.3. On the bottom side of the copper plate a
heating wire is installed. The copper plate and the Si crystal are covered by a
cylindrical plastic cap (not shown in the figure) with thermal insulation made
of aluminum foil and rubber foam, and two small windows for the incoming
and outgoing beam. Several temperature sensors can be mounted on the cop-
per plate and the Si crystal, see Section 3.2.4.3 for details. The copper plate is
mounted on a bracket made of stainless steel, providing both mechanical rigid-
ity and thermal insulation. The upright part of the bracket is used to attach the
λ-meter to a goniometer.

3.2.4. Temperature sensors

3.2.4.1. Choice

The choice of a thermometer type for our experiments is first of all determined
by the fact that we want a computer based temperature control, data acquisi-
tion, and real-time remote data display. Therefore, only temperature sensors
with an electrical output signal can be used. Among them, the most important
types are thermoresistors, and thermocouples.

Thermoresistors make use of the fact that the resistance of an electrical con-
ductor is temperature dependent. If this dependence is monotonous, stable,
and has sufficient slope, while other influences on the resistance are small,
then the resistance R(T) can be used for temperature measurement. For tem-
peratures between 77 K (liquid nitrogen) and ≈ 1200 K, platinum is very well
qualified for this purpose. For lower temperatures, however, the slope of R(T)
for platinum is too small. Here some other types are preferable, like the Cernox
thin-film thermoresistors from Lake Shorea), which have a high negative slope
at cryogenic temperatures. Both types of thermoresistor can be calibrated with
5 mK accuracy (Becker, 2002; Lake Shore, 1999), and allow the detection of
temperature changes of 1 mK (Lucht, 1998) in their respective temperature
ranges. They are also very resistant to radiation environments.

A thermocouple is basically a junction between two wires made of differ-
ent metals. Over such a junction there is a contact voltage which is determined
by the electromotive force originating from the difference of the chemical po-
tentials of both materials. This contact voltage is temperature dependent. In a
closed loop of conductors there are at least two junctions between the differ-
ent materials in opposite orientation, so that the overall voltage vanishes if the
junctions are at the same temperature, and the measured voltage depends on
the temperature difference between the junctions.b) A pair of thermocouples
is therefore useful for measuring temperature differences. Absolute temper-

a)Lake Shore Cryotronics, Inc., 575 McCorkle Blvd, Westerville, Ohio 43082, USA
b)If only one thermocouple is connected to a voltage meter, then the connections between

the thermocouple wires and the voltage meter are junctions between different metals, too.
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ature values can be obtained by measurement of the difference between one
thermocouple at the point of interest and the other at some well defined tem-
perature reference, like boiling water, the triple point of water, liquid nitrogen,
or a temperature controlled oil bath. The accuracy of such a measurement is
then determined by the accuracy of the reference temperature, which is in most
cases not better than 0.1 K.

We have therefore used Platinum thermoresistors for measurements
around room temperature and above, and Cernox resistors below room tem-
perature, down to 4.2 K, the temperature of liquid helium.

3.2.4.2. Properties

For platinum thermoresistors, the temperature dependence of the resistance is
very well described by the quadratic equation

R(ϑ) = R0 · (1 + Aϑ+ Bϑ2) (3.2.1)

with ϑ the temperature in ◦C, R0 the resistance at ϑ = 0 ◦C, and the parameters
A and B which are to be determined either by calibration or standardization.
For industrially manufactured platinum thermoresistors, the parameters are
determined by the IEC 751 standard to

AIEC = 3.9083 × 10−3 K−1

BIEC = −5.775 × 10−7 K−2. (3.2.2)

The most common type is the PT100. The R(ϑ) characteristic from Eq. 3.2.2
is used in most DMMa) types that can display the temperature directly when
connected to a PT100. It is also used for computing R(ϑ) tables.

The PT100 is available in different tolerance classes, where at ϑ = 0 ◦C class
A has an accuracy of 150 mK and class B 300 mK. If better accuracy is re-
quired, the parameters R0, A, B of the individual thermoresistors have to be
determined by calibration.

If the PT100 resistance is measured using a current of I = 1 mA, the ther-
moresistor will produce a heating power of P = RI2 ≈ 0.1 mW. This is how-
ever dissipated in the copper shell of the oven (Fig. 3.2.1), and is very small
compared to the power of the heating wire which is typically > 1 W, so we
don’t consider this as a relevant error.

Cernox thermoresistors may sample out very different and thus have no
standard characteristic. They have to be calibrated in any case, with an accu-
racy to be determined by the application. This is explained in detail in Sec-
tion 3.2.4.4.

Thermocouples are available in different combinations of materials. Most
of them are standardized and indicated by a single letter type classification.
For measurements around room temperature the type K, which is constituted
of nickel-chromium and nickel-aluminum wires, is by far the most common,
and also used in the experiments described in this work. Its sensitivity is

a)Digital MultiMeter
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∆U/∆T = 40 � V · K−1. Most other types have a much smaller sensitivity and
are mainly useful at extremely low or high temperatures. Thermocouples are
usually made by welding the wire tips together at a single point, leading to a
very small temperature sensitive area.

3.2.4.3. Installation

The resistance of thermoresistors was always measured using the four wire
technique, where one pair of wires is used to apply a current of ≈ 0.96 mA to
the resistor, and the other pair is used to measure the voltage only over the
resistor but not over the wires.

The PT100 in the oven, manufactured by Thermocoaxa), is about 20 mm in
length, enclosed in a stainless steel tube with 1.6 mm diameter. It is shown as
black rectangle in Fig. 3.2.1. The tube is about 120 mm long and contains also
the connection wires. This type of thermoresistor was used successfully before
for experiments on exact Bragg backscattering onα−Al2O3 by Shvyd’ko et al.
(1998). Two considerations motivated the choice for this type:

1. It can be easily mounted in the oven by hard soldering or glueing, so
that the PT100 is inside the oven close to the crystal, and the connect-
ing wires are accessible from outside, and the oven remains vacuum-
tight. This makes it possible to keep air inside the oven which helps to
maintain a good spatial temperature homogeneity, while the oven is kept
in vacuum for better thermal insulation. The requirement for air inside
the oven was however dropped for the Mössbauer radiation wavelength
measurements, since for stability of the Si lattice parameter one needs
not only a stable temperature but also a stable pressure. This is easiest in
vacuum.

2. The stainless steel tube protects the PT100 against damage during
mounting or exchanging crystals.

However, during the experimental work on the measurement of the wave-
length of the Mössbauer radiation of 57Fe, which is described in Chapter 4,
it turned out that the thermal conductivity of the tube covering the connec-
tion wires is a disadvantage of this type of temperature sensor. Although the
thermal conductivity of stainless steel is small, it may still lead to considerable
measurement deterioration if the temperature gradient along the tube is large
enough. Some doubt on the impact of such a temperature gradient was still
remaining after the last experiment on the measurement of the wavelength of
the Mössbauer radiation of 57Fe which was conducted at SPring-8 in 2002. To
check for this kind of measurement errors, another type of PT100, the chip sen-
sor made by Jumob), was used. It is made of a 1 mm thick ceramic substrate
with a thin platinum layer one one surface. The smallest chip size available is
2 mm × 2.5 mm, thus allowing more flexibility in positioning the sensor, and
more precise measurement of the temperature of a tiny spot. The sensors have

a)THERMOCOAX, 40 Bld Henri Sellier, 92156 SURESNES, Cedex, France
b)Jumo GmbH & Co. KG, Moltkestr. 13–31, 36039 Fulda, Germany
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been connected with four Manganina) wires of 200 � m diameter. The thermal
conductivity of Manganin is about one order of magnitude smaller than of
copper, and the contact voltage at the connection between Manganin and cop-
per wires is neglibly small. Therefore Manganin is the ideal material for the
wires if both the errors introduced by thermal conductivity and contact volt-
ages shall be minimized. To avoid additional thermal conduction, the wires are
insulated only with a thin layer of lacquer, and no additional covering is used.
Three sensors of this type have been installed inside the oven (at the positions
[2], [4], and [5] in Fig. 3.2.1) to find temperature corrections for the reading of
the Thermocoax PT100; this will be discussed in detail in Section 3.2.6. These
sensors have to be mounted very carefully because the thin wires get easily
damaged. For sensors inside the oven it is very important to make sure that
at least some cm of the Manganin wires are also inside the oven, to make the
temperature gradient along the wires as small as possible.

During the last experiment on the measurement of the wavelength of the
Mössbauer radiation of 57Fe described on p. 51, we had already installed a pair
of thermocouples in the oven, at positions [1] and [2] as shown in Fig. 3.2.1.
These are used to measure the temperature difference between the PT100 and
the crystal surface. However, they do not allow the determination of system-
atical errors of the PT100 which may be introduced by a temperature gradient
along the connection wires.

In the LHe flow cryostat, two Cernox sensors are installed, one at the cop-
per block of the sample holder (see Fig. 3.2.2), another one somewhere at the
heat exchanger. Unfortunately the manufacturer of the cryostat does not pro-
vide information about the internals of the heat exchanger, like the locations
of the LHe tubes, the temperature sensor, and the heating wire.

On the λ-meter, the PT100 is mounted either on the copper plate (posi-
tion [A] in Fig. 3.2.3) with a clamp, or in a narrow (2 mm) gap in the Si crystal
(position [B]). The latter position has the advantage that the PT100 is measur-
ing the temperature of the Si crystal directly. It is however difficult to find a
good working set of parameters for the temperature controller in this case,
since the thermal coupling with the heating wire under the copper plate is
indirect. Therefore position [A] was preferred in the earlier experiments. Ad-
ditionally, a pair of thermocouples (positions [1] and [2]) can be installed on
the faces of the channel-cut crystal to check whether their temperatures are the
same.

a)Alloy of 86 Cu, 12 Mn, 2 Ni
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3.2.4.4. Calibration

For the determination of the Mössbauer radiation wavelength of 57Fe it is nec-
essary to have a precisely calibrated temperature sensor at 22.5 ◦C, the tem-
perature where the lattice parameter of the Si reference crystal is given.

The Thermocoax PT100 in the oven, together with the wires and the Keith-
leya) 2002 DMM used to measure its resistance, have been calibrated in the
range from 0 ◦C to 100 ◦C at the PTB. The whole oven with the built-in ther-
moresistor was submerged in a stirred, temperature controlled oil bath, and
the temperature reading of the Keithley 2002 DMMb) was compared with the
temperature measured by a reference PT25 thermometer placed as close as
possible to the PT100 under study (Becker, 2002).

The calibration procedure has been repeated three times in the years 1999
and 2001. The first calibration includes five points around 22.5 ◦C with a stated
measurement accuracy of 5 mK, and one single point at 100.243 ◦C with an ac-
curacy of 10 mK. The second calibration includes four points around 22.5 ◦C
and one point at 0 ◦C. The stated accuracy is only 50 mK due to a different mea-
surement setup. The third calibration covers a narrow range around 22.5 ◦C
with four data points, and a stated accuracy of again 5 mK.

The resulting T(R) dependence from the third calibration is shown in
Fig. 3.2.4, together with the standard IEC751 T(R) characteristic. The tempera-
ture readings obtained from the PT100 resistance by using the T(R) calibration
are about 300 mK below the readings that would result from the IEC751 curve.
This is still within the manufacturer stated accuracy and shows clearly the im-
portance of calibration.

Within the temperature range from 16 ◦C to 27 ◦C, the following linear
function has been fitted to the T(R) data points of the third calibration:

T1(R) = (−253.073 + 2.53075Ω−1 · R) ◦C. (3.2.3)

Fig. 3.2.5 displays the deviation of all the three calibrations from the IEC751
characteristic, together with their stated calibration errors. As one can see, the
results agree within ≈ 5 mK. This shows that also the results of the second
calibration are very reliable despite the worse stated accuracy given by the
PTB, and that the PT100 and the DMM are very stable over long time.

Thus is should be possible to meet the temperature requirement stated in
Section 3.1.1.

The three PT100 chip sensors from Jumo which were used for additional
temperature measurements in the oven were also calibrated at the PTB, to-
gether with the complete wiring and the Keithley 2002 DMM. The same
method as for the built-in Thermocoax sensor was applied, with the only dif-
ference that the Jumo sensors were mounted in the oven after the calibration.
The deviations between the temperature readings of the three PT100 chip sen-
sors according to the calibration and the IEC751 characteristic are shown in
Fig. 3.2.6.

a)Keithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139, USA
b)The Keithley 2002 can display temperature readings from a PT100 by measuring the resis-

tance and computing the temperature from the IEC751 characteristic internally.
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The Jumo sensors are labeled #2, #3, #4 because the label #1 was already in
use for the Thermocoax PT100. The following linear functions have been fitted
to the T(R) data points from the calibration of the respective sensor:

T2(R) = (−0.0957961 + 2.57074Ω−1 · [R − 100Ω]) ◦C (3.2.4)
T3(R) = (−0.0737399 + 2.57275Ω−1 · [R − 100Ω]) ◦C (3.2.5)
T4(R) = (−0.1146922 + 2.57204Ω−1 · [R − 100Ω]) ◦C. (3.2.6)

The Cernox sensor at the sample holder of the liquid helium flow cryostat
has been calibrated by its manufacturer Lake Shore, at 71 points in the tem-
perature range from 3.6 to 331 K, against Germanium and Platinum resistance
standards. The other Cernox sensor at the heat exchanger has only been tested
roughly at room temperature and in open dewars filled with liquid Nitrogen
or Helium. The T(R) dependence for both sensors is displayed in Fig. 3.2.7.
In Tab. 3.2.1 a summary of the calibration results of both sensors is shown, to-
gether with the stated calibration accuracy of the sensor at the sample holder.
The differences in the resistance readings of two sample Cernox sensors at the
same temperature can bee seen very clearly in the figure and the table.

Serial No. Position R [Ω] R [Ω] R [Ω]

@ T = 300 K @ T = 77 K @ T = 4.2 K
X09183 heat exchanger 52.6 184.0 2310
X09240 sample holder 63.1 255.2 5045

Stated accuracy ∆T [ mK] ∆T [ mK] ∆T [ mK]

@ T = 300 K @ T = 77 K @ T = 4.2 K
X09240 sample holder 50 25 4

Tab. 3.2.1: Calibration data of Cernox thermoresistors in the liquid helium flow cryostat

The PT100 at the λ-meter was not calibrated because here we are, as ex-
plained in Section 3.1.2, only interested in temperature stability but don’t need
to know the exact temperature value.

3.2.5. Temperature control

Keeping a temperature stability of about 1 mK is possible with the methods
described in great detail by Lucht (1998). The backscattering crystal is placed
inside an oven designed for high temperature stability (see Section 3.2.1). Its
temperature is measured with a PT100 and a DMM with an internal high res-
olution ADCa). A PIDb) controller program running on a PCc) calculates from
the measured PT100 resistance the appropriate heating voltage to keep the
temperature constant. The heating voltage is applied to the heating wire in-
side the oven by a power supply with an internal high resolution DACd). The

a)Analog to Digital Converter
b)Proportional-Integral-Differential
c)Personal Computer
d)Digital to Analog Converter
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data transfer from the DMM to the PC, and from the PC to the power supply
is made by GPIBa) interfaces. The controller program is able to control multi-
ple temperature sensors simultaneously. The setpoints and measured temper-
atures can be recorded to a file periodically. It is also possible to record the
readings of additional temperature sensors which are used for measurements
only but not for control. The same temperature control technique is applied for
the oven, the λ-meter, and the LHe cryostat.

This works well even with uncalibrated temperature sensors if the aim is to
keep the temperature stable, i.e. to make sure that it does not change by more
than 1 mK over time. If however one wants to set the temperature accurately
to a predefined value, like the 22.5 ◦C where the Si lattice parameters are very
well known, then the PT100 sensors have to be calibrated, since the devia-
tion of commercially available standard sensors from the IEC751 characteristic
(Eqs. 3.2.1, 3.2.2) may be up to 300 mK. This was discussed in Section 3.2.4.4.

3.2.6. Temperature correction

The experiment for the measurement of the wavelength of the Mössbauer ra-
diation of 57Fe has been performed four times at different synchrotron radi-
ation facilities, as described in Chapter 4. The results of the last experiment,
conducted at SPring-8 in 2002, and its comparison with the previous results,
gave reason to some doubt about the assumed temperature homogeneity in
the oven. Therefore, measurements of the temperature distribution became
necessary. These measuements lead to a temperature correction that has to be
applied to the reading of the PT100 in the oven.

It is a general problem in temperature measurements that only the tem-
perature of the thermometer itself is measured, while the aim is the knowl-
edge of the temperature of the object under study. Thus, the experimental data
achieved so far may be deteriorated not only by some difference of the tem-
perature of the PT100 and the surface of the Si backscattering crystal, but also
by the thermal conduction along the connecting wires ant the shielding of the
PT100.

In the calibration procedure described in Section 3.2.4.4, the oil bath en-
sures both a good thermal contact between the reference thermometer and the
PT100 to be calibrated, and low temperature gradients along the connection
wires. But in the real experiments performed with this oven the situation is
not like that because the oven is kept in vacuum inside a chilled tank (see Sec-
tion 3.2.1). This leads to a temperature difference of some K which may appear
along the connection wires of the PT100. Since the wires of the Thermocoax
PT100 are shielded by stainless steel, a material with low thermal conductiv-
ity, the influence of such a temperature gradient has been underestimated for
a long time.

There are two main causes of the temperature difference of the PT100 and
the crystal:

a)General Purpose Interface Bus. Also known as HP-IB or IEEE 488
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1. If the oven is chilled from outside and the temperature gradient along
the connecting wires is large enough, the PT100 will be colder than its
surrounding. Thus if we set the setpoint to the desired temperature of
the crystal, the crystal will be too warm.

2. If the oven window is not shielded well enough, some heat exchange
between the crystal and the environment may occur by means of thermal
radiation. Depending on the environmental temperature this may lead
to temperature measurement errors in either direction. However, if the
vacuum tank is strongly chilled, there may be thermal radiation from
the crystal through the window to the tank, and the crystal will be colder
than the PT100.

Without further experimental data it is hard to tell which of the effects is
dominant. Therefore the three calibrated Jumo PT100 sensors were used to de-
termine the temperature differences. They were mounted at the positions [2],
[4], and [5] shown in Fig. 3.2.1. The sensor [4] allows one to measure directly
the temperature of the spot where the synchrotron radiation beam would hit
the crystal surface.a) The difference of the readings of the sensor [4] and the
Thermocoax PT100 is the temperature correction we need to apply to the ex-
perimental data which were obtained only with the Thermocoax PT100.

The other two Jumo sensors provide additional information about the tem-
perature distribution inside the oven, and thus about the possible reason of
measurement errors of the Thermocoax PT100. From the readings of the sen-
sors [2] and [4] one can determine the temperature difference between the crys-
tal surface and the Thermocoax PT100. The sensor [5] is measuring the temper-
ature of the connection wire shielding at a point close to the outer surface of
the copper cylinder. A temperature differece along the Thermocoax PT100 it-
self is detected by the difference of the readings of the sensors [2] and [5]. This
gradient may lead to a measurement error of the Thermocoax PT100, which is
directly measured by the difference of the readings of the Thermocoax PT100
and the Jumo sensor [2].

With this setup, the temperature distribution was measured for different
operating conditions of the oven. These conditions and the measured temper-
atures of the different sensors are summarized in Tab. 3.2.2. The temperature
values shown in this table are derived from the resistance readings and the
calibrations T(R) for the respective sensor, given in Eqs. 3.2.3 to 3.2.6.

Herein, the operation at a chilling water temperature of 5 ◦C resembles the
operating conditions at the APS experiment (Shvyd’ko et al., 2000), where the
facility-wide chilling water supply without temperature control was used. In
the experiments at SPring-8 and in the measurement of the temperature dis-
tribution, a temperature control was applied to the chilling water. In the first
experiment at SPring-8, May 2001, the chilling water temperature has been set
to 5 ◦C to reproduce the conditions from APS, but in the second experiment
at SPring-8, February 2002, the setpoint of the chilling water temperature was

a)Obviously, the sensor has to be removed from the position [4] before the real experiment
with synchrotron radiation, because otherwise it would block the beam.
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Temperature settings
Chilling water [ ◦C] 5.0 18.0 19.0 20.0
Thermocoax PT100 #1 [ ◦C] 22.500 22.500 23.500 24.500
Temperature readings
Jumo PT100 #2 @ pos. [5] [ ◦C] 20.00(10) 21.70(10) 22.75(10) 23.60(10)

Jumo PT100 #3 @ pos. [2] [ ◦C] 22.63(5) 22.545(5) 23.547(5) 24.550(7)

Jumo PT100 #4 @ pos. [4] [ ◦C] 22.61(5) 22.525(5) 23.528(5) 24.535(7)

Temperature corrections
Jumo [4] - Thermocoax [ K] 0.11(5) 0.025(5) 0.028(5) 0.035(7)

Jumo [2] - Thermocoax [ K] 0.13(5) 0.045(5) 0.047(5) 0.050(7)

Jumo [4] - Jumo [2] [ K] 0.020(5) 0.020(5) 0.019(5) 0.015(7)

Jumo [5] - Jumo [2] [ K] −2.50(10) −0.70(10) −0.75(10) −0.90(10)

Tab. 3.2.2: Temperature readings of the three Jumo PT100 sensors, and corresponding tem-
perature corrections, under different operating conditions of the oven. The numbers in square
brackets denote sensor positions as displayed in Fig. 3.2.1.

4.5 K below the setpoint of the Thermocoax PT100. Under this condition the
temperature gradients in the oven have been kept low, but still large enough
for the temperature control to work stable.

The results in Tab. 3.2.2 show clearly that there is a considerable impact
of temperature gradients on the temperature measurements with the Thermo-
coax PT100. The difference between the center of the Thermocoax PT100 (pos.
[2]) and the connection point of the wires (pos. [5]) is in the range of a few
Kelvin. This leads, for a chilling water temperature of 5 ◦C, to a temperature
measurement error of the Thermocoax PT100 of about 130 mK. The temper-
auture gradient between the Thermocoax PT100 and the crystal surface (pos.
[4]) has a small effect in opposite direction. Thus, the total measurement er-
ror with respect to the crystal surface is about 110 mK, with the crystal being
warmer than the Thermocoax PT100 reads. This leads to a relative error of the
lattice parameter a of the Si reference crystal of about 2.6 × 10−7 to larger val-
ues. Thus, if we are interested in the value of a at the temperature which is
read from the Thermocoax PT100, we have to correct the measured value of a
to a lower value.

The wavelength of the Mössbauer radiation of 57Fe is calculated by
λM = a0/ã with a0 the presumed lattice parameter of the Si reference crystal
at 22.500 ◦C, and ã the lattice parameter of the Si reference crystal in units of
λM, determined by the experiment—see Section 4.3 for a detailed description
of the data evaluation procedure. Using the temperature corrected value of ã
instead of the uncorrected one will lead to a higher value of λM.

For chilling water temperatures of 18 ◦C, 19 ◦C, and 20 ◦C, the temperature
corrections which have to be applied are much smaller, about 30 mK, but still
large enough to be taken into account.
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In the sections 4.3 and 4.4 the impact of the temperature corrections on
the final results for the wavelength of the Mössbauer radiation of 57Fe will be
further discussed.

3.2.7. Temperature gradients in the λ-meter crystal

The λ-meter has also undergone some checks for temperature gradients along
the Si (7 7 7) channel-cut crystal. Such gradients could deteriorate not only the
intensity and spectral distribution of the transmitted radiation. If the gradient
varies with the environmental temperature, also the assumption that the tem-
perature of the Si (7 7 7) channel-cut crystal is constant during one run of the
experiment is violated.

Therefore some table-top experiments have been made to measure the the
temperature gradients along the surfaces of the λ-meter crystal with a pair
of thermocouples. The operating conditions from the different experiments
where the λ-meter was used at synchrotron radiation facilities have been re-
sembled in these table-top experiments. The operating conditions have been
altered by different setpoints for the temperature control, and by use of dif-
ferent insulation caps, as shown in the top rows of Tab. 3.2.3. The thin insu-
lation cap, with a PT100 resistance setpoint of 112Ω, has been used in the
experiments for the measurement of the wavelength of the Mössbauer radia-
tion of 57Fe at HASYLAB and APS. The other insulation cap, with thick rub-
ber foam and an additional aluminum foil on the inside, was used in the two
experiments at SPring-8, and also in the experiment at PETRA for the mea-
surement of the lattice parameters of α−Al2O3. With a room temperature of
about 22.5 ◦C, a setpoint of R = 109Ω (ϑ = 23.107 ◦C) is the lowest where the
temperature control is operating stable. See Chapter 4, in particular Section 4.4,
and Chapter 5 for details of these experiments.

To avoid damage of the specially prepared surfaces of the original Si (7 7 7)
channel-cut crystal by thermocouples and heat conductive compound, these
studies were performed with another Si (7 7 7) channel-cut crystal of the same
shape but with no special surface treatment.

A total of 22 different combinations of thermocouple positions, setpoints
and insulations were tested. The details of these operating conditions and the
measured temperature differences are shown in Tab. 3.2.3.

The measurements show that temperature gradients are mainly a problem
within the faces of the Si (7 7 7) channel-cut crystal (rows No. 3, 4, 5, 6, and
9). Since the beam will hit the surfaces on different spots if the λ-meter is ro-
tated, this could lead to some error in the interplanar distance, and thus, in
the glancing angle. Furthermore, with such angular errors, the direction of the
transmitted beam might slightly vary when the λ-meter is rotated.

With the thin insulation and the setpoint R = 112Ω, the temperature dif-
ferences across the faces of the channel-cut crystal come close to the tempera-
ture width of about 0.14 K which was derived in Section 3.1.2. With the thick
insulation and the setpoint R = 109Ω the temperature differences are about 5
times lower.
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Tab. 3.2.3: Measurements of the temperature distribution along the Si (7 7 7) channel-cut
crystal in the λ-meter under different operating conditions, which resemble the different ex-
periments for the measurement of the wavelength of the Mössbauer radiation of 57Fe. The top
row shows the different types of insulation caps. Center: 2 mm rubber foam; right: 25 mm
rubber foam outside and thin aluminum foil inside. The left column shows the Si (7 7 7)
channel-cut crystal viewed from the open side and from the top. A pair of thermocouples was
used to measure the temperature differences. The arrow points from the position of one thermo-
couple to the other. The head of the arrow denotes the position where the higher temperature is
measured. The temperature setpoint is given both as the resistance value R of the PT100 ther-
moresistor used for the temperature measurement, as well as the correspondung temperature
value ϑ according to Eqs. 3.2.1 and 3.2.2.
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The temperature gradients are probably caused by the fact that the heat
source is only below the crystal, and that the heat exchange between heater
and crystal works mostly through the aluminum socket where the crystal is
sitting on.

3.2.8. Recommendations for future experiments

The evaluation of the temperature distribution in the oven has shown that the
use of the Thermocoax PT100 is not suitable well enough for the high precision
temperature measurements and control which are required in experiments for
the determination of the wavelength of the Mössbauer radiation of 57Fe. Ad-
ditional temperature corrections become necessary which make the data eval-
uation more complicated and introduce possible new error sources.

For future experiments where the oven is used, it is therefore recom-
mended not to use the Thermocoax PT100 at all. Instead only the calibrated
Jumo PT100 chip sensors with Manganin connecting wires should be applied,
and installed as described in Section 3.2.4.3 on page 35. Obviously the PT100
cannot be installed at pos. [4] in Fig. 3.2.1 in a real synchrotron radiation ex-
periment. Instead, one sensor could be installed at pos. [1] to measure the tem-
perature at a spot very close to the synchrotron radiation beam, and another
one at pos. [2] in direct contact with the copper shell, for a precise temperature
control. It could also be possible to use a single Jumo PT100 sensor at pos. [3],
where it is in direct thermal contact with the copper shell and also close to the
crystal surface.

One should also think about an improvement of the temperature homo-
geneity by filling the oven with some contact gas under low pressure. The
pressure should not exceed some mbar, otherwise the uncertainty of the pres-
sure itself could also deteriorate the measurement of the lattice parameter of
the Si reference crystal. However, if we want to keep the vacuum surrounding
the oven for better thermal insulation, a vacuum-tight feed-through for the
connection wires of the temperature sensors will be necessary. While this is al-
ready the case for the Thermocoax PT100, for the Jumo PT100 an appropriate
feed-through still needs to be deployed.

The Thermocoax PT100 is still good enough in experiments where it is re-
quired to keep the temperature of a crystal inside the oven stable, while ac-
curate knowledge of the temperature is less important. In such a case the me-
chanical robustness of the Thermocoax PT100 is an advantage over the instal-
lation of Jumo sensors which is prone to damage.

In addition to the operating recommendations given at the end of Sec-
tion 3.2.7, the temperature gradients in the λ-meter could also be minimized
by other means. Instead of the insulation cap, one could use a more sophisti-
cated tank where all surfaces are temperature controlled, not only the bottom.
Furthermore, one could mount the crystal on a thermally insulated socket, so
that the heat exchange works mostly by radiation and by conduction through
the surrounding air.



Chapter 4

Measurements of the

wavelength of the Mössbauer

radiation of 57Fe
The measurement of the wavelength of the Mössbauer radiation of 57Fe

has been carried out four times in the years 1998 to 2002. The experiments
from HASYLAB in 1998 and from APS in 1999 are published by Shvyd’ko
et al. (2000). The other two experiments, which were performed at the the
1 km beamline BL29XUL (Ishikawa et al., 2001) at SPring-8, are reported for
the first time in the present thesis. In the experiment in 2001, the author has
worked with direct participation of T. Ishikawa, A.Q.R. Baron, K. Tamasaku,
and M. Yabashi from SPring-8, Yu. V. Shvyd’koa) from the University of Ham-
burg (Germany), and J. P. Sutterb) from HASYLAB (Hamburg, Germany). The
same staff from SPring-8 took part with the author’s experiment in 2002, to-
gether with M. Lerchec) and H.-C. Willed) from the University of Hamburg
(Germany).

One can use basically use the same method both to ascertain the wave-
length of the Mössbauer radiation of 57Fe, λM, from the well-known lattice
parameter of a Si reference crystal, and vice versa to measure the lattice param-
eters of some other single crystal in units of the Mössbauer wavelength stan-
dard λM. We will discuss therefore the general method in Section 4.1 and will
address the differences where appropriate. Then in Section 4.2 we will show
how to calculate the ratio between Mössbauer radiation wavelength of 57Fe
and lattice parameters from the raw data obtained in the experiment. Here
we will also discuss the possible sources of uncertainty. In Section 4.3 the data
evaluation procedure will be demonstrated by the experimental data obtained
in an experiment conducted at SPring-8 in February 2002. This will lead to a
result which is slightly different from the value of the Mössbauer radiation
wavelength of 57Fe we have published earlier as a result of a previous exper-
iment at the APS (Shvyd’ko et al., 2000). The changes in the results originate
from the technical improvements of the setup during several performances of
the experiment. These changes will be discussed in Section 4.4 together with

a)Current address: Yu. V. Shvyd’ko, Advanced Photon Source, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA

b)Current address: J. P. Sutter, SPring-8, Japan Synchrotron Radiation Research Institute
(JASRI), 1-1-1 Kouto Mikazuki-cho Sayo-gun Hyogo 679-5198, Japan

c)Current address: M. Lerche, Department of Geology, University of Illinois at Urbana
Champaign, 1301 W. Green Street, Urbana, Illinois 61801, USA

d)Current address: H.-C. Wille, Nuclear Resonance Group, European Synchrotron Radiation
Facility, BP220, 38043 Grenoble Cedex, France
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their expected or (if possible) observed impact on the uncertainty of the re-
sults.

Some issues which are dependent on changes in the setup will be ad-
dressed in general in Section 4.1 and Section 4.2, and then discussed in detail
in Section 4.4.

4.1. Experimental setup
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Fig. 4.1.1: Setup for the experiment to measure the Mössbauer radiation wavelength of 57Fe
in units of the lattice parameter of Si.

The setup of the experiment which allows one to determine the ratio of the
lattice parameter of a Si reference crystal and the wavelength of the Mössbauer
radiation of 57Fe is shown in Fig. 4.1.1.

The synchrotron radiation coming from an undulator and premonochro-
matized by a high heat load monochromator (not shown in the figure) to an
energy bandwidth of some eV is passing through two narrow vertical slits.
These are used to collimate the beam to an angular width of some � rad, and
to keep the beam direction fixed, independently from the beam energy. Even
if the direction of the outgoing radiation from the high heat load monochro-
mator should be unstable or change with energy, the slits may cut down the
intensity but the beam direction after the slits will remain the same.

The beam is passing through the λ-meter, a Si channel-cut crystal where it
is two times reflected by the symmetric Bragg reflection

(7 7 7). The angle of incidence Θ of the beam to the (7 7 7) atomic planes
is varied by rotating the channel-cut crystal by the angle ψ, thus changing
according to Bragg’s law the wavelength λ of the radiation exiting the λ-meter.
The channel-cut geometry ensures that the direction of incoming and outgoing
beam are always parallel. The temperature of the λ-meter is kept constant with
a stability of some mK—see Chapter 3 about the technical details.

The angular acceptance of the (7 7 7) Bragg reflection in Si for x-rays with
λ ≈ 86 pm is ∆E = 1.2 � rad, corresponding to an energy bandpass of 5.3 meV
and an intrinsic relative width ∆λ/λ = 3.5 × 10−7. Thus it should be possible
to measure wavelengths with a better relative accuracy than 10−7. To achieve
this goal it is necessary that both the angular divergence and the variation of
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the direction of the incident beam are below the 1.2 � rad limit imposed by the
angular acceptance of the (7 7 7) reflection. This is what the slits are used for.

If the wavelength transmitted by the λ-meter coincides with λM, it will ex-
cite coherently the 57Fe nuclei in an α-Fe foil. The foil is enriched to 95% in
57Fe, and its thickness is 6 � m. The excited nuclei emit Mössbauer radiation
in forward direction with an average delay of 141 ns.a) The synchrotron radia-
tion comes in short pulses of some 100 ns distance and about 100 ps duration.
Thus it is possible to discriminate the Mössbauer quanta from the prompt syn-
chrotron radiation pulses.

At a distance of 5 m downstream from the λ-meter the backscattering sin-
gle crystal is positioned. The backscattering geometry is used because only in
this case the angular acceptance of the reflection scales with the square root of
the relative spectral width, cf. Section 2.2.8. For the measurement of the wave-
length of the Mössbauer radiation of 57Fe, two differently shaped Si reference
crystals obtained from the PTB were in use as the backscattering crystal. Their
lattice parameters have been precisely determined beforehand (Becker, 2001;
Becker et al., 1981). To measure the lattice parameters of α−Al2O3 a sample
thereof is used as backscattering crystal.

The backscattering crystal is mounted in a thermostat—oven or cryostat,
depending on the desired temperature range. See Chapter 3 for details of these
devices. For the Si reference crystal only the oven is used since we are inter-
ested here only in a narrow temperature range around 22.5 ◦C. The thermostat
is installed on a 4-circle goniometer which allows the orientation of the crys-
tal to back-reflect with different sets of lattice planes (h k l) the x-rays having
passed the λ-meter. The λ-meter has to be rotated to establish the coincidence
of the wavelengths of the Si (7 7 7) reflection and the (h k l) back-reflection.
Back-reflections with 2dhkl close to λM are chosen.

Close to the exit of the λ-meter, an APD detector (Baron, 2000) is mounted
in the beam path. It consists of a silicon wafer of 100 � m thickness which is
semitransparent for the 14.4 keV x-rays. Thus it will let pass ≈ 50% of the in-
cident beam through, and can detect the prompt synchrotron radiation pulses
and the delayed Mössbauer quanta coming from the λ-meter, as well as the
back-reflected pulses. The time of flight of the back-reflected photons from the
APD to the reflector and back is 30 ns for a 5 m beam path in between. The
time resolution of the APD is ≈ 1 ns which allows easy discrimination of the
Mössbauer radiation and the back-reflected pulse from the prompt pulse.

An aperture close to the exit of the λ-meter is used to align precisely the
exact backscattering condition using an auto-collimation technique. The aper-
ture is first adjusted so that the incoming beam passes the hole at its center,
and then the backscattering crystal is aligned to let the reflected beam also
pass through the hole. Aperture diameters as narrow as 0.1 mm were used,
allowing to keep the deviation from exact backscattering below 10 � rad with

a)Differently from the setup shown in Fig. 4.1.1, it is also possible to install the 57Fe foil up-
stream of the λ-meter. In this case Mössbauer radiation will be generated whenever λMis within
the bandpass of the high heat load monochromator, but it will only be further transmitted if it
is also inside the bandpass of the Si (7 7 7) channel-cut crystal.
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5 m beam path.a) Apertures with larger diameters are used for a rough pre-
alignment.

With the cubic symmetry of Si, some multiple beam diffraction may occur
in the exact backscattering condition, resulting in poor intensity and energy
shifts of the reflected beam (Steyerl and Steinhauser, 1979; Sutter, 2000). There-
fore the aperture is removed after exact backscattering is adjusted, and the Si
reference crystal is rotated 100 � rad off before the wavelength measurement
with the λ-meter. See Section 2.3 for theoretical details on this subject and Sec-
tion 6.4 for experimental results where this effect is actually showing up. With
α−Al2O3, which has a hexagonal symmetry, the experiment is less affected by
such a problem. Here, many reflections are free from multiple beam diffrac-
tion, and for other reflections the angular region where multiple beam refec-
tion occurs is much narrower (Lerche and Shvyd’ko, 2004).

In one run of the experiment, the rotation anglesψ of the λ-meter are mea-
sured for the cases of transmission of Mössbauer radiation, and of transmis-
sion of back-reflected radiation for at least n + 1 reflection planes with dif-
ferent 2dhkl, where n is the number of independent lattice parameters in the
backscattering crystal to determine. The angular differences ∆ψ(h k l) between
the angular positions of the λ-meter for transmission of Mössbauer radiation
and back-reflected beam are recorded for each back-reflection. In the following
section we will discuss how to calculate the ratio between the wavelength of
the Mössbauer radiation and the lattice parameters of both the backscattering
crystal and the Si (7 7 7) channel-cut crystal from a set of n + 1 measurements
of ∆ψ(h k l).

4.2. Theory of the determination of the results

Weakly absorbing single crystals, like Si or α−Al2O3, reflect x-rays with a
glancing angle of incidenceθc to the atomic planes within a wavelength region
centered around λc which is determined by Eq. 2.2.59, which can be rewritten
as

sinθc =
λc

2d
(1 + wH) . (4.2.1)

This differs from Bragg’s law by a small but important refractive correction wH
which is given in Eq. 2.2.60. Using Eqs. 2.2.5 and 2.2.6, and assuming b = −1,
one can rewrite Eq. 2.2.60 in the form

wH =
2re d2

π V ∑
a

N
[
Za + f ′a(λ)

]
, (4.2.2)

where re is the classical electron radius, V is the unit cell volume, Na is the
number of atoms of type a in the unit cell, Za is their atomic number, and
f ′a(λ) is the real anomalous correction to their forward scattering amplitude,
respectively.

a)Note that when the deviation of the incident beam from normal incidence to the reflecting
atomic planes in the backscattering crystal is δθ, then the angle between incident and reflected
beam is 2δθ.
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To change λc the λ-meter is rotated. The rotation angle ψ, shown in
Fig. 4.1.1, is measured directly in the experiment, but may be different from the
glancing angle of incidenceθ in Eq. 4.2.1. They are identical only if the rotation
axis ψ is perfectly aligned perpendicular to the incident beam k0 and parallel
to the (7 7 7) atomic planes. Otherwise we have to apply a small correction. If
ξ is the deviation from perpendicular alignment between the rotation axis ψ
and k0, and η is the angle between ψ and the (7 7 7) planes, then the relation
betweenψ and θ reads:

sinθ = sinψ cos η cosξ + sin η sinξ . (4.2.3)

The rotation angleψ can now be expressed as

sinψ =
λc

2d?
−ζ (4.2.4)

where ζ = tan η tanξ is a parameter describing the correction by non-perfect
alignment of the λ-meter, and d? = d cos η cosξ / (1 + wH) is an instrumental
parameter of the λ-meter which is determined in the experiment. The value
of d? should be close to the Si (7 7 7) interplanar distance since the correction
terms are ≈ 1.

With Eq. 4.2.1 one can also describe the behavior of the backscattering crys-
tal. With the interplanar distance of the back-reflecting lattice planes d(h k l), and
a small deviation from exact backscattering δθ = π/2 −θ � 1, Eq. 4.2.1 takes
the form

λc = 2d(h k l)

[
1 − (δθ)2

2
− wH

]
. (4.2.5)

Because of the square dependence on δθ, the change of the center of the spec-
tral region is small even for rather coarse adjustment of exact backscattering;
e.g. if δθ ≈ 0.1 mrad then the change of the wavelength of the reflected radi-
ation is only 5 × 10−9 λc. This allows us to neglect this small correction in the
following in many cases.

As pointed out on p. 20, wH is assumed to be constant within the wave-
length range covered by the experiment.

In the experiment we measure the rotation angle ψ(h k l) of the λ-meter at
which it selects the x-ray wavelength matching the back-reflection (h k l). From
Eq. 4.2.4 and Eq. 4.2.5 one obtains

sinψ(h k l) = 2x d̃(h k l)(ã, b̃, c̃) [1 − wH ]−ζ . (4.2.6)

Herein,

x =
λM

2d?
; (4.2.7)

and d̃(h k l) = d(h k l)/λM, ã = a/λM, b̃ = b/λM, and c̃ = c/λM; where a, b, c are
the three lattice parameters in the backscattering crystal. The tilde denotes the
ratio between the respective length and the wavelength of the Mössbauer radi-
ation of 57Fe. The relation d̃(h k l)(ã, b̃, c̃) is determined by the crystal structure.
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From Eq. 4.2.4 and Eq. 4.2.7, one can find another expression for the ref-
erence angle ψM where the λ-meter selects the wavelength of the Mössbauer
radiation of 57Fe,

ψM = x −ζ . (4.2.8)

In the difference∆ψ(h k l) = ψM −ψ(h k l), the uncertainty about the zero-setting
of the λ-meter drops out, and one obtains

∆ψ(h k l) = arcsin
{

2xd̃(h k l)(ã, b̃, c̃) [1 − wH ] −ζ
}
− arcsin(x −ζ). (4.2.9)

Herein ∆ψ(h k l) is measured directly in the experiment, and ã, b̃, c̃, x,ζ are un-
knowns to be determined. Thus five independent measurements of ∆ψ(h k l)
are necessary to compute the five unknowns.

However, this number can be reduced under certain conditions. If the λ-
meter is well aligned, i.e. η < 10−2 andξ < 10−3, then ζ < 10−5. By numerical
analysis of Eq. 4.2.9 it can be ascertained that in this case the results for the
three lattice parameters do not change by more than 10−10. The λ-meter in our
experiments has been aligned even better by an auto-collimation method.

Furthermore, in the Si orα−Al2O3 backscattering crystals, the three lattice
parameters are not independent. In Si with its cubic symmetry, there is only
one independent lattice parameter, i.e. a = b = c, and the interplanar distance
is

d(h k l) =
a√

h2 + k2 + l2
. (4.2.10)

Inα−Al2O3 there is a hexagonal symmetry, with a = b. For the hexagonal base
we make use of the (h k i l) notation of the Miller indices where h + k + i = 0,
i.e. only three indices are independent. In this case, the interplanar distance
reads

d(h k i l) =
1√

4
3a2 (h2 + k2 + hk) + 1

c2 l2
. (4.2.11)

Thus, for Si the minimum number of independent measurements of
∆ψ(h k l) is reduced to two, and forα−Al2O3 to three.

The experimental technique relies on the strict fulfillment of the relations
Eq. 4.2.10 or Eq. 4.2.11, respectively. This is the case for perfect crystals, but
crystal defects may violate the periodicity of the crystal structure and thus
the d(h k l) relations. Measuring ∆ψ(h k l) for more than the minimum required
number of independent back-reflections may validate the d(h k l) relations or
give some hint on the errors in determination of the lattice constant.

Since the relative variation of λM is certainly below 10−11, cf. Section 2.1,
every subsequent measurement of ψM should lead—within a measurement
accuracy of some nrad—to exactly the same result if the experimental setup
is perfectly stable. In practice this was not the case. Thus we can determine
from the variation ofψM from run to run the measurement uncertainty arising
from setup instability. We can also check directly if additional precautions to
improve the stability have the desired effect or not.
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4.3. Results of the experiment at the 1 km beamline at

SPring-8

In this section we will present the raw measurement data from the experi-
ment conducted in February 2002 at the 1 km beamline (Ishikawa et al., 2001)
at SPring-8, and describe in detail how the value for the wavelength of the
Mössbauer radiation of 57Fe is calculated from these data.

In all of the four experiments the same data evaluation method was used.
The experiment from February 2002 should in principle lead to the most reli-
able result, not only due to the unique conditions at the 1 km beamline, but also
due to the effort that has been taken to keep control over some error sources
which showed up in the previous experiments. These technical improvements
of the setup will be further discussed in Section 4.4.

In the experiment in February 2002, 10 runs of the measurement procedure
have been performed. During one run, the Si reference crystal is aligned sub-
sequently to the back-reflections (12 4 0), (9 7 5), and (9 9 1), and the angles
ψ(h k l) at which the λ-meter selects the x-ray wavelength matching the respec-
tive back-reflections (h k l) are recorded. The angle ψM where the λ-meter se-
lects the wavelength of the Mössbauer radiation of 57Fe is also measured.

For each back-reflection, the Si reference crystal is first adjusted to exact
backscattering geometry. With a 0.2 mm aperture, the precision of this adjust-
ment is δθ ≈ 20 � rad. In this position, the intensity of the back-reflected beam
is strongly reduced, and the energy distribution of the back-reflected beam
may be slightly deteriorated, due to multiple beam diffraction in the Si refer-
ence crystal (see Section 2.3). Therefore, the aperture is removed after the first
adjustment, and δθ is set 100 � rad off. The preferable direction of this offset
with respect to the crystal axes was calculated beforehand for the respective
back-reflections by Sutter (2001); see also Section 2.3. In this geometry, the un-
advantageous effects of multiple beam diffraction almost disappear.

The temperature calibration and corrections which have been introduced
in Sections 3.2.4.4 and 3.2.6 are applied in the following discussion and in the
associated figures.

The angles ψ(h k l) measured in each run, with the Si reference crystal in
backscattering geometry with 100 � rad offset, is shown in Figs. 4.3.1, 4.3.2,
4.3.3, together with the respective temperature setting of the Si reference crys-
tal. The anglesψM from each run are displayed in Fig. 4.3.4.

Due to the limited time available for the experiment,ψ(9 9 1) has only been
measured in the first 6 runs.

The data of run No. 3 have been discarded because in this run ψM was
about 4 � rad off the averaged value from the other nine runs. The remain-
ing values for ψM show a standard deviation of 1 � rad. This is caused by the
mechanical instability of the experimental setup, since the uncertainty of the
Mössbauer radiation wavelength of 57Fe is below 10−11 and thus should not
lead to any measurable variation ofψM.

The errorbars in Figs. 4.3.1 to 4.3.4 denote the width of the respective rock-
ing curve.
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Fig. 4.3.1: Measurements of the angle
ψ(12 4 0) where the λ-meter selects the back-
reflected radiation of the (12 4 0) reflection
of the Si reference crystal (left axis), and tem-
perature setting of the Si reference crystal
(right axis)

Fig. 4.3.2: Measurements of the angle
ψ(9 7 5) where the λ-meter selects the back-
reflected radiation of the (9 7 5) reflection of
the Si reference crystal, and temperature set-
ting of the Si reference crystal
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Fig. 4.3.3: Measurements of the angle
ψ(9 9 1) where the λ-meter selects the back-
reflected radiation of the (9 9 1) reflection of
the Si reference crystal, and temperature set-
ting of the Si reference crystal

Fig. 4.3.4: Measurements of the angle
ψM where the λ-meter selects the delayed
Mössbauer radiation of the 57Fe foil. The
variation of ψM from run to run demon-
strates the stability limits of the experimental
setup. The errorbars denote the width of the
λ-meter rocking curve.
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The ratio between the lattice parameter aSi of the Si reference crystal and
the wavelength of the Mössbauer radiation of 57Fe can be calculated from a
system of nonlinear equations like Eq. 4.2.9. Since in Si there is only one in-
dependent lattice parameter (i.e. a = b = c), and the λ-meter is aligned well
enough (see p. 50), the number of unknowns to be determined is reduced to
two: ãSi = aSi/λM, and x. Thus, we need a system of two equations to deter-
mine λM. Since we have measured ∆ψ(h k l) for three different back-reflections,
we can put together three combinations of two equations of type Eq. 4.2.9 for
each run.

We will first discuss the combination of the back-reflections (12 4 0) and
(9 7 5), since this is the only one where we have experimental data for different
temperatures of the Si reference crystal. In Fig. 4.3.5 the results for aSi/λM—
calculated for each run—are shown, together with the temperature setting of
the Si reference crystal.

6.313255

6.313260

6.313265

6.313270

6.313275

6.313280

6.313285

6.313290

6.313295

6.313300

6.313305

1 2 3 4 5 6 7 8 9 10
22

22.5

23

23.5

24

24.5

25

PSfrag replacements
T [ ◦C]
T [ K]

RPT100 [Ω]
RCernox [Ω]

∆T [ K]
Slit
1

Slit
2

Si (7 7 7)
λ-meter

57Fe
APD
Detector
Oven or
Cryostat

Si orα−Al2O3
single crystal

[1 1 0]

[h k l]
ψ

X-rays

2δθ

Slit
1

Slit
2

1 mm
Si (7 7 7)
λ-meter

57Fe
APD
Detector

Oven
22.5 ◦C

Si reference crystal
[1 1 0]

[h k l]
ψ

X-rays

2δθ
50

987

988
Distance from the undulator [m]

at the beamline BL29XUL at SPring-8

993

ψ(12 4 0)

ψ(9 7 5)

ψ(9 9 1)

ψ(12 4 0)

ψ(9 7 5)

ψ(9 9 1)

ψM

(12 4 0)

(9 9 1)

(9 7 5)

(9 9 1)

(12 4 0)

(9 7 5)

(12 4 0)

(9 7 5)

ψ [ ◦]
ψ [ rad]

Run number

a S
i/
λ

M

aSi
TSi

T S
i

[◦
C

]

6.313250

6.313260

6.313270

6.313280

6.313290

6.313300

6.313310

22 22.5 23 23.5 24 24.5 25

PSfrag replacements
T [ ◦C]
T [ K]

RPT100 [Ω]
RCernox [Ω]

∆T [ K]
Slit
1

Slit
2

Si (7 7 7)
λ-meter

57Fe
APD
Detector
Oven or
Cryostat

Si orα−Al2O3
single crystal

[1 1 0]

[h k l]
ψ

X-rays

2δθ

Slit
1

Slit
2

1 mm
Si (7 7 7)
λ-meter

57Fe
APD
Detector

Oven
22.5 ◦C

Si reference crystal
[1 1 0]

[h k l]
ψ

X-rays

2δθ
50

987

988
Distance from the undulator [m]

at the beamline BL29XUL at SPring-8

993

ψ(12 4 0)

ψ(9 7 5)

ψ(9 9 1)

ψ(12 4 0)

ψ(9 7 5)

ψ(9 9 1)

ψM

(12 4 0)

(9 9 1)

(9 7 5)

(9 9 1)

(12 4 0)

(9 7 5)

(12 4 0)

(9 7 5)

ψ [ ◦]
ψ [ rad]

Run number a S
i/
λ

M

aSi

TSi

TSi [ ◦C]

Fig. 4.3.5: Ratio between lattice parameter
of Si reference crystal and wavelength of the
Mössbauer radiation of 57Fe, calculated for
each run from ψ(12 4 0) and ψ(9 7 5) (left
axis); and temperature setting of the Si ref-
erence crystal (right axis)

Fig. 4.3.6: Ratio between lattice parameter
of Si reference crystal and wavelength of the
Mössbauer radiation of 57Fe, averaged from
the results from ψ(12 4 0) and ψ(9 7 5) for
runs at the same temperature. The solid line
is a linear fit. The dotted line denotes the ref-
erence temperature of 22.500 ◦C for which
aSi is precisely known.

The width of the errorbars is determined by the uncertainty of the mea-
sured values of ψ(h k l) and ψM, which has been assumed to be 0.25 times the
width of the respective rocking curve.

For subsequent runs at the same temperature of the Si reference crystal,
averaged values of ãSi = aSi/λM have been calculated which are shown in
Fig. 4.3.6. A linear fit of the form

ãSi(T) = ã0 + ρ̃ · (T − T0) (4.3.1)
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has been applied to these three data points. Here, T0 = 22.500 ◦C is the refer-
ence temperature for which the lattice parameter of the WASO04 Si reference
crystal has been precisely measured as

a0 = 5.431 020 26(34) Å (4.3.2)

beforehand at the PTB by Becker (2001). The following fit parameters were
found:

ã0 = 6.313 262 36(19) (4.3.3)
ρ̃ = 0.000 018 8(16) K−1 (4.3.4)

This leads to the determination of the wavelength of the Mössbauer radiation
of 57Fe by

λM =
a0

ã0
= 0.860 255 75(26) Å for (12 4 0),(9 7 5). (4.3.5)

For the other possible combinations of the back-reflections a slightly differ-
ent approach has to be used, sinceψ(9 9 1) has only been measured for a single
temperature of the Si reference crystal, T = 22.525 ◦C. The values of aSi/λM
which have been calculated for each run from the back-reflections (12 4 0)
and (9 9 1) are shown in Fig. 4.3.7, and the values from (9 7 5) and (9 9 1) in
Fig. 4.3.8.
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Fig. 4.3.7: Ratio between lattice parameter
of Si reference crystal and wavelength of the
Mössbauer radiation of 57Fe, calculated for
each run from ψ(12 4 0) and ψ(9 9 1); and
temperature setting of the Si reference crys-
tal

Fig. 4.3.8: Ratio between lattice parameter
of Si reference crystal and wavelength of the
Mössbauer radiation of 57Fe, calculated for
each run fromψ(9 7 5) andψ(9 9 1); and tem-
perature setting of the Si reference crystal

For both combinations an averaged value for ãSi can be computed:

ãSi(T) = 6.313 262 2(21) for (12 4 0),(9 9 1) (4.3.6)
ãSi(T) = 6.313 260 6(19) for (9 7 5),(9 9 1). (4.3.7)
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We write Eq. 4.3.1 in the form

ã0 = ãSi(T) − ρ̃ · (T − T0) (4.3.8)

and insert the ãSi(T) values from Eqs. 4.3.6, 4.3.7, respectively, while ρ̃ is taken
from Eq. 4.3.4. This leads to

ã0 = 6.313 261 7(21) for (12 4 0),(9 9 1) (4.3.9)
ã0 = 6.313 260 2(19) for (9 7 5),(9 9 1). (4.3.10)

As in Eq. 4.3.5, the Mössbauer radiation wavelength of 57Fe can now be com-
puted to

λM = 0.860 255 83(29) Å for (12 4 0),(9 9 1) (4.3.11)
λM = 0.860 256 04(27) Å for (9 7 5),(9 9 1) , (4.3.12)

respectively. The final result for the wavelength of the Mössbauer radiation
of 57Fe is determined as the average of the three results from the different
combinations of back-reflections:

λM = 0.860 255 87(26) Å. (4.3.13)

The relative error in this result is 3 × 10−7. It is mostly attributed to
the measurement uncertainty and the scattering of the raw data for ψM
and ψ(h k l). Other important error sources which are included in Eq. 4.3.13
are the uncertainties of a0 and T. These are, however, comparably small:
δa0/a0 = 6.3 × 10−8 (cf. Eq. 4.3.2); and δT ≈ 0.01 K, which leads with a linear
thermal expansion of Si of about 2.6 × 10−6 K−1 (Mohr and Taylor, 2000) to an
additional uncertainty of 2.6 × 10−8.

Our result agrees quite well with the value reported by Xiaowei et al.
(2000): λM = 0.860 255 7(5) Å. The uncertainty of our result is about two times
smaller. However, we find some inconsistency between Eq. 4.3.13 and the
value we have reported earlier as a result of an experiment at APS where
the same method was used: λM = 0.860 255 474(16) Å (Shvyd’ko et al., 2000).
This requires some more in-depth discussion of the technical details and the
changes and improvements which have been made between the experiments
at APS and SPring-8—see Section 4.4.

From Eqs. 4.3.1 to 4.3.4 it is possible to derive the linear thermal expan-
sion coefficient of the Si reference crystal by ρ = ρ̃/ã0 = 2.99(26) × 10−6 K−1.
Due to the measurement uncertainties in ψ and the narrow temperature
range covered, this result has a quite large relative error of about 9%. Un-
fortunately, our result for ρ disagrees with other results of high-precision
experiments on the lattice spacing and the thermal expansion of Si, where
ρ = 2.581(2) × 10−6 K−1 has recently been reported by Bergamin et al. (1997)
(see also e.g. Becker et al. (1981); Bergamin et al. (1999); Mohr and Taylor
(2000)). We have to accept this as a hint on some remaining systematic error in
our experimental procedure. The investigation of the temperature distribution
inside the oven and along the Si (7 7 7) channel-cut crystal, which is described
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in the sections 3.2.6 and 3.2.7, was in fact motivated by the search for such an
error. However, with special regard to the measurement of ρ it did not lead to
any considerable change. Thus, the discrepancy between our value for ρ and
the results of precision measurements by Bergamin et al. (1997) and others is
an evidence for some remaining problem in the realization of the experimental
method, which cannot be understood only by the temperature measurements.

4.4. Historical background and improvements of the

setup

The experiment for measurement of the wavelength of the Mössbauer radia-
tion of 57Fe was conducted four times in the years from 1998 to 2002, at dif-
ferent synchrotron radiation facilities. The first experiment in 1998 was per-
formed at the wiggler beamline BW4 at HASYLAB. Here the experimental
method was verified, but the uncertainty of the result was limited to & 10−6

due to large beam divergence 12(2) � rad and low count rate of Mössbauer
photons 5 Hz. Since the method should be able to produce an accuracy better
than 10−7, the experiment was carried out a second time in 1999 at the undu-
lator beamline 3-ID at APS. Here it was possible to work with 4.5 � rad beam
divergence and 100 Hz count rate for Mössbauer photons. The result for the
wavelength of the Mössbauer radiation of 57Fe

λM = 86.025 474 (16) pm (4.4.1)

has a relative accuracy of 1.9 × 10−7. The results from HASYLAB and APS
have been reported by Shvyd’ko et al. (2000).

We expected, however, that it should be possible to get an even better accu-
racy. Beyond that, there was some disagreement between our result Eq. 4.4.1
and another result reported by Xiaowei et al. (2000): λM = 86.025 57(5) pm.
The error ranges of both results do not overlap although they are about 5
orders of magnitude broader than the natural reproducibility of λM. Thus it
seems clear that at least one of these reported experiments suffers from some
undiscovered systematical errors.

Therefore we have repeated the experiment in 2001 at the beamline
BL29XUL at SPring-8. This beamline is unique in the world since it provides
a distance between radiation source and experimental setup of about 1 km
(Ishikawa et al., 2001). Thus it is easily possible to cut down the beam diver-
gence to ≈ 1 � rad by using two 1 mm slits with a distance of 950 m, indepen-
dent from the x-ray energy.

For this experiment there have also been made some other improvements:
As Si reference crystal, a special sample was prepared by the PTB. It is part of
the WASO04 reference crystal which has a precisely determined lattice param-
eter (Becker, 2001):

a0 = 543.102 026 (34) pm at T = 22.5 ◦C in vacuum. (4.4.2)

In the experiments before, another high-quality Si sample from
the PTB was deployed as the reference crystal. Its lattice constant
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a = 5.431 020 30(36) × 10−10 m has been calibrated against the Si stan-
dard crystal (Becker et al., 1981) with a relative uncertainty of 7 × 10−8 at
22.5 ◦C in vacuum.

Furthermore, the sample from the WASO04 Si reference crystal was man-
ufactured in a special outer shape that fits well into the oven, thus eliminating
the need for an additional sample holder which might deteriorate the thermal
contact between oven and crystal. The gap of several 100 � m between oven
shell and crystal was filled with heat-conductive compound. The same was
used between the oven body and front cap, and between the cap and the win-
dow which is made of aluminum foil. The temperature measurement system
was completed by a pair of thermocouples, where one of them was placed on
the Si reference crystal surface, ≈ 5 mm off the center (pos. [1] in Fig. 3.2.1),
and another one close to the PT100 (pos. [2] in Fig. 3.2.1). These were used to
check if the temperature of the PT100 and of the crystal surface are the same.
The thermocouple wires run through a narrow groove in the cap into the inte-
rior of the oven. The groove also ensures that the oven is evacuated together
with the outer vacuum tank.

The deviation from exact backscattering was decreased from 0.3 mrad at
the APS experiment to 0.1 mrad at SPring-8. There are some unfavorable az-
imuthal directions for the deviation, where the multiple beam diffraction ef-
fects are still large for δθ = 0.1 mrad, as discussed in Section 2.3. Therefore,
Sutter (2001) has calculated in advance the azimuthal directions which are
favorable and those which are not (cf. Tab. 2.3.1), and in the experiment the
deviation from exact backscattering was adjusted according to these consider-
ations.

The refractive correction wH in Eq. 2.2.60 contains a dependence on the
so-called asymmetry parameter b = − sin(θ− η)/ sin(θ+ η) with the Bragg
angle θ and the angle η between the reflecting lattice planes and the crystal
surface. We have estimated that the uncertainty in the refractive correction in-
troduced by b may significantly deteriorate the accuracy of the measurement
results for the Si (7 7 7) reflection if η > 0.25 mrad for θ ≈ 74 ◦. The silicon
channel-cut crystal was therefore specially prepared to keep the angle η below
0.2 mrad. The refractive correction term δ in Eq. 4.2.5 is not affected by such a
consideration because b = −1 for exact backscattering.

The cylindrical thermal insulating cap on the λ-meter holder was improved
by replacing the 2 mm foam layer with 25 mm of another foam with higher
density, and adding a thin aluminum foil to the inner side of the cap. The
Si (7 7 7) channel-cut crystal was fixed on the holder with a drop of beeswax.

With the reduced beam divergence of . 0.1 mrad at the 1 km beamline it
was, in the experiment from 2001, easily possible to narrow down the angular
width of the ψM measurements to 0.9 � rad. This is even below the theoretical
intrinsic width of 1.2 � rad of the Si (7 7 7) reflection. The reason for this behav-
ior is not fully understood. Unfortunately, the reproducibility of ψM from one
run to another was worse than the beam divergence: the ψM values measured
in 15 subsequent runs were scattered within a 7 � rad interval, cf. Fig. 4.4.1 on
p. 59. Therefore, a result more accurate than given in Eq. 4.4.1 could not be ob-
tained from these data.
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Possible reasons are instabilities either in mechanics or in temperature. A
problem with temperature alone is however unlikely, since the change of the
Bragg angle with temperature is dθ/ dT = −8.83 � rad K−1 for the Si (7 7 7) re-
flection. Thus a temperature drift of 0.8 K would be required to changeψM by
7 � rad. This should not happen because the λ-meter was precisely temperature
controlled and well insulated. The mechanical strength of the λ-meter crystal
holder was however identified as the most likely weak spot. This gave reason
to a new construction of this part with improved strength (see Fig. 3.2.3). Also
an aluminum clamp was added to the crystal support which should allow bet-
ter fixation without applying too much mechanical stress to the crystal.

The PT100 was moved from the copper plate into a groove in the Si (7 7 7)
channel-cut crystal to allow even more precise control of the crystal’s temper-
ature itself. A pair of thermocouples was installed on the faces of the channel-
cut crystal, at the positions denoted in Fig. 3.2.3, to check for temperature
differences between them. By additional table-top experiments the tempera-
ture distribution inside the λ-meter was further analyzed, as described in Sec-
tion 3.2.7. It was found that with thin insulation and too high temperature set-
point there is some risk of remarkable temperature gradients within the faces
of the channel-cut crystal. Such temperature gradients do not only shift the
wavelength and angle of the two (7 7 7) reflections against each other, but
impose also the risk of mechanical stress in the crystal, at the point where the
beam is reflected, due to thermal expansion. This could violate the assumption
that the transmitted beam is parallel to the incident beam. According to the es-
timation above, this is probably only a small but considerable contribution to
the instability ofψM.

With respect to the thermal behavior of the λ-meter setup the recommen-
dation for operation is as follows: If possible, i.e. the ambient temperature
does not drift by more than ≈ 10 mK, the λ-meter should be operated with no
temperature control but in equilibrium with its environment. If the ambient
temperature stability is not that good, the setpoint of the temperature control
should be no more than ≈ 0.5 K above the environmental temperature.

Anyway, it is difficult to tell which part of the experiment is really stable
enough if it depends on microradians, even if everything is carefully selected
to be as solid and accurate as possible. So we have to consider also some other
parts of the setup as error sources. These include but are not limited to the
measurement accuracy of the λ-meter goniometer and encoder, the mechanical
stability of those devices or the tables where they are mounted on, and even
the stability of the ground where the beamline is built on.

After having improved the λ-meter support and temperature measure-
ment, the experiment was conducted a second time at the 1 km beamline at
SPring-8 in the year 2002. Here also some investigations and improvements
have been made in the meantime. The long-term stability of the λ-meter
goniometer and encoder have been measured by Tamasaku (2002). The air-
conditioning in the experimental station was set to 26.5 ◦C, and in the sur-
rounding beamline building to 25 ◦C. After closing the doors of the experi-
mental station, a drift of the encoder reading of about −4.8 � rad was observed
within one day. This shows that opening and closing the doors, which is an
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unavoidable operation in such an experiment, may have a considerable effect
on the λ-meter’s reproducibility.

Therefore we have decided to operate the air-conditioners of both the ex-
perimental station and the beamline building at the same temperature, 25 ◦C.
Thus the temperature shifts introduced by opening the doors and entering the
station should be minimized. The stated accuracy of the temperature control
of the air-conditioner in the experimental station is 0.1 K. It would also be a
good idea to wait some hours with the continuation of the experiment after
closing the door, but in practice the tight schedule does not allow this.

We have also minimized the temperature gradient between the oven and
its chilled vacuum tank. In the previous experiments the temperature of the
chilling water was about 5 ◦C, since at APS there was a facility-wide chill-
ing water supply with no temperature control available. In the experiment at
SPring-8 in 2002, the temperature setpoint of the chilling water was 4.5 K be-
low the setpoint of the Si reference crystal, i.e. 18 ◦C for the water if the Si
reference crystal is at 22.5 ◦C. This temperature difference is, by experimen-
tal analysis, the lowest where the temperature controller was operating stable.
With changes of the Si reference crystal temperature the chilling water tem-
perature was adapted to keep the difference. Due to the length of the water
pipes between cooling system and vacuum tank, the temperature difference
between vacuum tank and oven was probably even lower than 4.5 K.

With the new setup in the 2002 experiment, the measured values of ψM
from 9 subsequent runs are now scattered within a 2.8 � rad interval. This is
about 2 times narrower than before at the APS experiment, and about 2.5 times
narrower than at the first SPring-8 experiment in 2001. In Fig. 4.4.1 the scatter-
ing of ψM from run to run in the APS experiment and the two experiments at
SPring-8 is compared.

However, due to the scattering of the ψ(h k l) measurements, and the fact
that data for the (9 9 1) back-reflection were not available for different temper-
atures of the Si reference crystal, the overall uncertainty of the result for the
wavelength of the Mössbauer radiation of 57Fe Eq. 4.3.13 is not better than in
the result from Shvyd’ko et al. (2000). Furthermore, the discrepancy between



60 CHAPTER 4. MEASUREMENTS OF THE WAVELENGTH OF THE MÖSSBAUER RADIATION OF 57FE
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Fig. 4.5.1: Updated historical overview of the measured results for the Mössbauer radiation
wavelength of 57Fe, including the new result from SPring-8 in 2002, which is labeled “Lucht
et al. 2002” according to the time of measurement—it is, however, reported first in the present
thesis. The right panel shows only the recent results which were obtained with synchrotron
radiation.

our result for the thermal expansion coefficient of Si and other precision mea-
surements, discussed on p. 55, is an evidence that the result in Eq. 4.3.13 is of
limited reliability, and that the realization of the method does still need more
improvement.

4.5. Conclusion

The updated history of measurements of the wavelength of the Mössbauer ra-
diation of 57Fe is shown in Fig. 4.5.1. The results from Shvyd’ko et al. (2000);
Xiaowei et al. (2000) and from the present report are a remarkable improve-
ment over previously published values.

Obviously, there is some disagreement left between the recently reported
values which were obtained using synchrotron radiation. In the experimental
method discussed in the present report, there are still some open issues regard-
ing the stability of the λ-meter, both in temperature and in angular setting;
and also regarding the discrepancy of the measurement of the linear thermal
expansion coefficient by our most recent experiment and by other precision
experiments.

The linear thermal expansion coefficient could probably be better analyzed
if a larger temperature range were chosen, and possible problems with temper-
ature stability could be avoided by longer settling times. Apart from that, im-
proving the experimental technique significantly over the current state seems
very difficult and expensive. Therefore, up to now no attempt has been made
to gain more accurate measurements using the same method, although an im-
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provement of about one order of magnitude should be possible if everything
were perfect.

Our method is finally limited by the underlying length standard, the lat-
tice parameter of Si, which will probably never be more accurately known than
10−9 (Bergamin et al., 1999). An improvement beyond that may become pos-
sible by another method which is currently under development: A combined
x-ray Fabry-Pérot resonator for x-ray and optical wavelengths, measuring the
wavelength of the Mössbauer radiation of 57Fe in units of the wavelength of
an optical He-Ne laser which has an accuracy and stability of about 10−12. See
Section 6.3 for more details, and also Shvyd’ko (2002, 2004); Shvyd’ko et al.
(2003).
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Chapter 5

Applications
With the wavelength of the Mössbauer radiation of 57Fe a new length stan-

dard for the measurement of lattice parameters in single crystals, or of wave-
lengths in the Å range, has been introduced. In this chapter, we will present
two further experimental works carried out by our research group, which are
the first applications of the new length standard. These are:

• The measurement of the lattice parameters of α−Al2O3 in the tempera-
ture range from 4.5 K to 374 K. These are of special interest for the design
of forthcoming backscattering x-ray monochromators and resonators.
Here, precise knowledge of the lattice parameters and their temperature
dependence is required to predict the Miller indices of back-reflections
and the relevant temperature of the backscattering crystal to tune the
energy of the reflected beam to any energy in the 10 . . . 50 keV range.
While previously reported lattice parameters of sapphire differ by more
than 10−4, our measurements with the Mössbauer wavelength standard
provide an uncertainty of 10−6.

• The measurement of the wavelengths of the Mössbauer radiation of
other isotopes: 119Sn, 151Eu, and 161Dy, with sub-ppm accuracy. To-
gether with the wavelength of the Mössbauer radiation of 57Fe these
provide a set of four reference wavelengths in the hard x-ray region with
uniquely small uncertainty and easy reproducibility. The measurement
of the wavelength of the Mössbauer radiation is complementary to the
measurement of lattice parameters of α−Al2O3, and has been carried
out in the same experiment. By selecting an appropriate back-reflection
and tuning the temperature, the wavelength of the back-reflected beam,
and thus the interplanar distance in the α−Al2O3 crystal, is adjusted to
match the wavelength of the Mössbauer radiation to be measured. Then
the lattice parameters are measured at the same temperature, allowing
to calculate the interplanar distance of the reflecting atomic planes, and
thus the wavelength of the Mössbauer radiation.

Our measurements of the lattice parameters of α−Al2O3 in the tempera-
ture range from 286 K to 374 K, and the wavelength of the Mössbauer radiation
of 119Sn, 151Eu, and 161Dy, have been published by Shvyd’ko et al. (2002). The
measurements of the lattice parameters in the temperature range from 4.5 K to
250 K are reported by Lucht et al. (2003).

In the following we will describe the experimental setup and the data eval-
uation procedures for these measurements, as far as they are different from
the experiment for the measurement of the wavelength of the Mössbauer radi-
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ation of 57Fe which has already been discussed in Chapter 4. The results will
also be presented and discussed.

5.1. Measurement of the lattice parameters of sapphire

5.1.1. Motivation

The knowledge of the lattice parameters of α−Al2O3 is of interest because
α−Al2O3 is potentially a new material for x-ray crystal optics, especially at-
tractive in applications as Bragg backscattering mirrors for interferometers,
high-energy resolution monochromators, and analyzers, since it allows (un-
like silicon, cf. Section 2.3) exact Bragg backscattering with high reflectivity for
x rays in the 10 − 50 keV spectral range (cf. Shvyd’ko, 2004; Shvyd’ko and Ger-
dau, 1999; Shvyd’ko et al., 1998).

Precise values of the sapphire lattice parameters and their temperature de-
pendences are required to select suitable back-reflections and relevant crystal
temperatures for work with desired x-ray energies. However, the lattice pa-
rameters of α−Al2O3 previously reported by Aldebert and Traverse (1982);
Brown et al. (1992); Burghartz and Schulz (1994); Kirfel and Eichhorn (1990);
Lewis et al. (1982); Yim and Paff (1974) differ by more than 10−4. This imposes
large uncertainties in the prediction of the back-reflections and the relevant
crystal temperatures. To ensure more precise predictions, the lattice parame-
ters of α−Al2O3 have been measured with a relative uncertainty of less than
6 × 10−6 in the temperature range from 4.5 K to 374 K.

The temperature region below 250 K is of special interest for x-ray
backscattering because—compared to room temperature and above—the ther-
mal expansion ofα−Al2O3 is lower, leading to less strict requirements for the
stability of the temperature control for the crystals which are used as x-ray op-
tical elements. This is especially important for x-ray energies above ≈ 30 keV,
since with higher energy the bandpass of the back-reflections becomes nar-
rower and the extinction depth increases. This leads to a required temperature
stability which cannot be fulfilled with the thermal expansion of α−Al2O3 at
room temperature.

Also the thermal conductivity ofα−Al2O3 rises at low temperature, mak-
ingα−Al2O3 a potential material for high-heat-load monochromators for syn-
chrotron radiation. The thermal conductivity measured in α−Al2O3 is up to
200 W cm−1 K−1 around 30 K (Touloukian and Ho, 1970), which is higher
than the thermal conductivity of any other mono-crystalline material suitable
for x-ray optics. For temperatures above 100 K the thermal conductivity of
α−Al2O3 drops below 5 W cm−1 K−1. The unique combination of high ther-
mal conductivity and low thermal expansion of α−Al2O3 at ≈ 30 K may be-
come important at the synchrotron radiation facilities of the fourth generation
(XFEL, LCLS) which are currently under development, since such sources will
provide a beam intensity and heat load that is several orders of magnitude
higher compared with today’s facilities.

Another important application ofα−Al2O3 which depends on its low ther-
mal expansion at low temperature, are cryogenic optical resonators (CORE)
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with ultra-stable frequency in the optical range (Seel et al., 1997). Such devices
have recently been used, e.g., in the most accurate verification of special rela-
tivity (Braxmaier et al., 2001).

5.1.2. Introduction

The experimental method that was used to measure the lattice parameters
of α−Al2O3 is very similar to the technique that was used to measure the
wavelength of the Mössbauer radiation of 57Fe (see Chapter 4). The differ-
ences are, first, that the Si reference crystal is now replaced by the α−Al2O3
crystal under study, and second, that the complementary problem has to be
solved: to determine the unknown lattice parameters in terms of the known
wavelength. The crystal structure of α−Al2O3 can be described by a hexago-
nal structure with two independent lattice parameters a and c. For symmetry
reasons, in the hexagonal structure the Bragg reflections are denoted by four
indices (h k i l). Obviously, only three of the indices are independent, and the
relation h + k + i = 0 is always valid.

Since there are now two independent lattice parameters, the number of
unknowns to determine by the experiment, and thus the number of necessary
independent measurements of ψ(h k i l), is increased by one compared to the
case of Si. In the data evaluation, we have to solve a nonlinear system of three
equations of type Eq. 4.2.9, with δθ < 100 � rad, ζ ≈ 0 (see p. 50), and ã = b̃
(see Eq. 4.2.11) for the unknown parameters ã, c̃, x. In ã = a/λM and c̃ = c/λM
we presume λM as known from our other experiments (see Chapter 4 and
Shvyd’ko et al. (2000)) and are thus able to compute a and c in SI units.

Thus, one run of the measurement of the lattice parameters requires mea-
surements ofψM, andψ(h k i l) for at least three different back-reflections (h k i l).
Four back-reflections were selected for the experiment by their Bragg wave-
length λB = 2d(h k i l)(1 − wH) being in the proximity of λM. They are listed in
Tab. 5.1.1.

(h k i l) λB
̂[0001][hkil] ̂[1010][hkil] ∆E

[ pm] [ ◦] [ ◦] [ meV]

(0 0 0 30) 86.60572 0.0 0.0 13.2
(1 6 7 22) 86.07066 43.2162 52.4109 1.8
(1 3 4 21) 85.97935 22.0934 46.1021 6.1
(2 6 8 20) 85.81588 48.6577 46.1021 4.5

Tab. 5.1.1: Miller indices (h k i l) of selected back-reflections in α−Al2O3 with Bragg wave-
lengths λB = 2d(h k i l)(1 − wH) close to λM. The λB values are calculated by using the lattice
parameters at T = 287.3 K as obtained in the experiment at APS (Shvyd’ko et al., 2002). The
angular deviation of the diffraction vector from the main crystallographic directions, as well as
the expected theoretical energy widths of the back-reflections are also shown.

The hexagonal structure ofα−Al2O3 is less symmetric than the cubic struc-
ture of Si, leading to a less frequently occurence of multiple beam diffraction
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in backscattering geometry. As pointed out by Lerche and Shvyd’ko (2004), for
the (1 3 4 21) back-reflection we have a four beam case, but the excitation of
the parasitic reflections can be easily suppressed by a deviation of only 12 � rad
from the exact backscattering condition.

5.1.3. Experimental setup for the measurement of lattice

parameters

The experiment was carried out at two synchrotron radiation facilities, APS
and PETRA. Due to the large temperature range to be covered, two differ-
ent thermostat devices, an oven and a cryostat, were used for the α−Al2O3
crystal. The setup, which is basically the same as for the measurement of the
wavelength of the Mössbauer radiation of 57Fe is shown in Fig. 5.1.1.
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Fig. 5.1.1: Setup for the experiment to measure the lattice parameters ofα−Al2O3 in units of
the wavelength of the Mössbauer radiation of 57Fe.

The measurements in the range from 286 K to 374 K (Shvyd’ko et al., 2002)
were taken at the SRI-CAT 3ID beamline at APS. Theα−Al2O3 was kept in an
oven similar to the one that was used for the measurements of the wavelength
of the Mössbauer radiation of 57Fe (see Fig. 3.2.1). The α−Al2O3 crystal has
the shape of a disc with 15 mm diameter and 1 mm thickness. It was grown
by the heat-exchange method (Schmid et al., 1994). The dislocation density in
the sample was measured to be 4 × 103 cm−2 with white-beam backscattering
x-ray topography (Chen et al., 2001; Tuomi et al., 1974).

The α−Al2O3 sample was adapted to the oven with a specially designed
sample holder. To maintain a good thermal contact between oven and crystal,
and to keep temperature gradients low, the oven was filled with air at room
pressure and closed with a vacuum-tight cap. Thus the air remains in the oven
when the surrounding vacuum tank is evacuated. The oven is operated with
a temperature control which allows to maintain the crystal at a fixed tempera-
ture with a stability of ≈ 1 mK (Lucht, 1998). See also Chapter 3 for details on
temperature measurement and control.

In the experiment at APS, a total of 13 runs of the experiment was per-
formed at different temperature settings of the α−Al2O3. The temperature
settings were partly determined by the measurement of the wavelengths of
the Mössbauer radiation of 119Sn, 151Eu, and 161Dy, which was in fact a part
of same experiment, but will be discussed later in Section 5.2.
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The measurements from 4.5 K to 250 K (Lucht et al., 2003) were per-
formed at the PETRA-1 beamline, which is one of two synchrotron radia-
tion beamlines at the single undulator at the PETRA-II storage ring at HA-
SYLAB (cf. Franz et al., 2000; Hahn et al., 1997; Kracht et al., 1995). The
α−Al2O3 sample was installed in the cryostat described in Section 3.2.2. Five
runs of the experiment were made with theα−Al2O3 kept at temperatures of
250 K, 200 K, 150 K, 100 K, and 4.5 K.

This method allows absolute measurement of the lattice parameters a and c
in units of λM. For a change of the back-reflection of theα−Al2O3 or the x-ray
wavelength transmitted by the λ-meter the goniometers have to be moved
over large angular distances. However, the movements of the goniometers are
very slow, and so the procedure takes up a great deal of time.

Therefore, in the range from 100 K to 4.5 K a technique of relative
measurements was used additionally. It allows a faster data acquisition
with smaller temperature steps. The relative change of the inter-planar
distance d(0 0 0 30) was measured by using the (0 0 0 30) back-reflection.
Beginning at 100 K, the α−Al2O3 temperature was changed in steps of
∆T = −5 K. For each temperature step, the angle ψ(T) where the λ-
meter transmits the back-reflected radiation is recorded. This procedure
is repeated with the α−Al2O3 at the (1 6 7 22) back-reflection to deter-
mine the relative change of the inter-planar distance d(1 6 7 22). The change
∆d(h k i l)(T) = d(h k i l)(T) − d(h k i l)(100 K) against the absolutely measured
inter-planar distance at 100 K is calculated from the corresponding change in
the angle of the λ-meter ∆ψ(h k i l)(T) = ψ(h k i l)(100 K) −ψ(h k i l)(T) by

∆d(h k i l)(T) = dSi(7 7 7) ·∆ψ(h k i l)(T) · cos [ψ(h k i l)(100 K)]. (5.1.1)

In both experiments, the λ-meter was mounted on a high-resolution angu-
lar rotation stage Kohzua) KTG-15 which has a step width of 25 nrad. The ro-
tation angle ψ is measured with a Heidenhainb) ROD800C angle encoder and
an IK320 interpolation electronics, rendering an absolute angular resolution of
43 nrad.

For a perfectly stable setup, the angle ψM where the λ-meter selects the
Mössbauer radiation should be constant during all runs of the experiment,
since the relative stability of the wavelength of the Mössbauer radiation is
about 10−13, while the intrinsic relative width of the Si (7 7 7) reflection is
about 3.5 × 10−7 for x-rays with λ ≈ 0.86 Å. As shown in Fig. 5.1.2, in practice
this is not the case. Thus we can see the stability of our setup from the variation
ofψM from run to run.

The angular acceptance of the (7 7 7) Bragg reflection in Si for x-rays with
λ ≈ λM is 1.2 � rad, corresponding to an energy bandpass of 5.3 meV and an
intrinsic relative width ∆λ/λ = 3.5 × 10−7. Thus it should be possible to mea-
sure wavelengths with a better relative accuracy than 10−7. To achieve this
goal it is necessary that both the angular divergence and the variation of the

a)KOHZU Precision Co, Ltd., 2-6-15 Kurigi, Asao-ku, Kawasaki City, Kanagawa Prefecture
215-8521, Japan

b)DR. JOHANNES HEIDENHAIN GmbH, Postfach 1260, 83292 Traunreut, Germany
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Fig. 5.1.2: Variation from run to run of the angle ψM where the λ-meter selects the wave-
length of the Mössbauer radiation of 57Fe for the experiment at APS (left panel) and for the
experiment at PETRA-1 (right panel). The errorbars denote the width of the respective rocking
curve.

direction of the incident beam are below the 1.2 � rad limit imposed by the
angular acceptance of the (7 7 7) reflection.

Two vertical slits in the beam path, between beam source and λ-meter, were
used to narrow down the beam divergence close to this limit. At APS, they
were installed at distances of 32.4 m and 59 m from the undulator which acts
as the radiation source. The aperture of both slits was 60 � m. This should, for
geometrical reasons, provide an angular divergence of 2.3 � rad. At PETRA-1,
there were two slits installed about 107 m and 121 m from the source with a
vertical aperture of 200 � m. A beam divergence of 1.7 � rad was expected.

Unfortunately, the beam divergence—determined from the width (FWHM)
of the angular reflection curve measured with Mössbauer radiation, which also
is shown in Fig. 5.1.2—was much broader at both beamlines: 9 � rad at APS,
and about 10 � rad at PETRA-1. This large divergence deteriorates the accuracy
of the measurements. It may be attributed to scattering from the beryllium
windows in the beam path, or—at PETRA-1—from the components of the high
heat load monochromator (diamond (1 1 1) in Laue geometry, and Ge (2 2 0))
which are located about 10 m upstream of the second slit. The quality of the
λ-meter Si crystal is probably not the origin of this problem, since the same
crystal provided a beam divergence of about 1 � rad at the 1 km beamline at
SPring-8 (see p. 57).

The APD detector was of the same type that was used in the experiment
on the measurement of the Mössbauer radiation wavelength of 57Fe, cf. p. 47.
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5.1.4. Results of the lattice parameter measurements

For each crystal temperature, the angular differences ∆ψ(h k i l) = ψ(h k i l) −ψM
have been measured for four different (h k i l) back-reflections as listed in
Tab. 5.1.1. This allows us to compose four different sets, each with three equa-
tions of type Eq. 4.2.9, yielding its own solution for the three free parameters
a, c, and d? of the problem. An iteration procedure is used to solve these non-
linear systems of equations.

From the four independent solutions, the averaged values of a and c and
their standard errors can be computed. However, we have ignored the solution
resulting from the combination of (0 0 0 30), (2 6 8 20), and (1 6 7 22) reflec-
tions, since it yields systematically significantly different values—see Fig. 5.1.5.
The average values were computed only from the three remaining combina-
tions. This is attributed to the fact that the (2 6 8 20) and (1 6 7 22) atomic
planes are only ≈ 7 ◦ apart from each other (cf. Tab. 5.1.1), which—together
with non-perfect crystal quality and temperature gradients—may increase the
error.

Mean values and relative errors of a and c are given in Tab. 5.1.2 for differ-
ent temperatures in units of λM and units of Å. In the unit conversion from λM
to Å the value λM = 0.860 254 74(16) Å from Shvyd’ko et al. (2000) was used.
The errors of ã and c̃ are primarily due to the averaging process, as described
above. The error introduced by the uncertainty in T is about two orders of
magnitude smaller. The relative errors of the lattice parameters in metric units,
a and c, are slightly larger than the errors of ã and c̃ because the relative error
of λM, which is 1.9 × 10−7, must also be considered.

The smaller relative error in the determination of the lattice parameter c
compared with that of the a is evidently due to the fact that all reciprocal lattice
vectors of the back-reflections used in the measurements are much closer to the
c-axis of the crystal.

5.1.5. Discussion

In the Debye model of thermal expansion, the linear expansion coefficient ρ
has a T3 dependence for T → 0, and is constant for T > ΘD, where ΘD is the
Debye temperature (Ashcroft and Mermin, 1976). We have fitted the following
function that resembles this behavior to the data we have measured:

x(T) =
(

x44T4 + x04
)

w(T) + (x11T + x01) [1 − w(T)]

w(T) = 1

1 + exp

√
T −

√
Θx√

∆Θx

. (5.1.2)

Herein, x takes the values a or c, respectively. The polynomial terms in paren-
theses represent the asymptotic temperature dependences of ρ as described
above, and w(T) and 1 − w(T) are weighting factors that provide a smooth
transition between the T → 0 and T → ∞ regions. For T = 0, the second
weighting factor vanishes, and for T → ∞ the first one. The transition region
is centered around Θx where both weighting factors equal 0.5, and the width
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T[ K] ã[λM] c̃[λM] a[ Å] c[ Å] δã/ã δc̃/c̃
374.287(10) 5.534804 15.109758 4.761341 12.998241 6.3×10−7 0.77×10−7

373.304(10) 5.534768 15.109658 4.761310 12.998155 2.1×10−7 0.77×10−7

371.339(10) 5.534699 15.109478 4.761251 12.998000 6.3×10−7 1.5 ×10−7

361.661(9) 5.534379 15.108467 4.760976 12.997130 6.3×10−7 0.77×10−7

351.836(9) 5.534064 15.107456 4.760705 12.996261 16.8×10−7 2.3 ×10−7

342.010(9) 5.533741 15.106472 4.760427 12.995414 10.5×10−7 1.5 ×10−7

332.184(9) 5.533428 15.105504 4.760158 12.994581 8.4×10−7 1.5 ×10−7

322.359(9) 5.533110 15.104526 4.759884 12.993740 6.3×10−7 0.77×10−7

312.533(9) 5.532822 15.103584 4.759636 12.992930 10.5×10−7 1.5 ×10−7

288.108(8) 5.532106 15.101369 4.759020 12.991024 16.8×10−7 3.1 ×10−7

287.125(8) 5.532083 15.101278 4.759001 12.990946 21.0×10−7 3.9 ×10−7

286.968(8) 5.532080 15.101262 4.758998 12.990932 18.9×10−7 3.1 ×10−7

286.143(8) 5.532056 15.101192 4.758977 12.990872 8.4×10−7 1.5 ×10−7

250.0 5.5310735 15.0982130 4.7581322 12.9883093 4.7×10−6 8.1 ×10−7

200.0 5.5300551 15.0948850 4.7572561 12.9854463 4.2×10−6 8.0 ×10−7

150.0 5.5293469 15.0925178 4.7566469 12.9834100 2.2×10−6 4.5 ×10−7

100.0 5.5290080 15.0912297 4.7563553 12.9823018 4.3×10−6 9.4 ×10−7

100.0 5.5290324 15.0912367 4.7563763 12.9823079 5.9×10−6 4.1 ×10−6

95.0 5.5290134 15.0911419 4.7563600 12.9822264 6.0×10−6 4.0 ×10−6

90.0 5.5289856 15.0910917 4.7563361 12.9821832 5.9×10−6 4.1 ×10−6

85.0 5.5289794 15.0910209 4.7563308 12.9821223 5.9×10−6 4.1 ×10−6

80.0 5.5289735 15.0909606 4.7563257 12.9820703 6.0×10−6 4.1 ×10−6

75.0 5.5289658 15.0909087 4.7563191 12.9820257 5.9×10−6 3.6 ×10−6

70.0 5.5289413 15.0909148 4.7562980 12.9820310 5.9×10−6 4.2 ×10−6

65.0 5.5289384 15.0908806 4.7562954 12.9820015 5.9×10−6 4.1 ×10−6

60.0 5.5289078 15.0908808 4.7562691 12.9820018 5.7×10−6 4.1 ×10−6

55.0 5.5289012 15.0908693 4.7562634 12.9819919 5.7×10−6 4.2 ×10−6

50.0 5.5289011 15.0908634 4.7562634 12.9819867 5.8×10−6 4.1 ×10−6

45.0 5.5289063 15.0908324 4.7562679 12.9819601 5.7×10−6 4.1 ×10−6

40.0 5.5289057 15.0908153 4.7562674 12.9819454 5.7×10−6 4.1 ×10−6

35.0 5.5289047 15.0908079 4.7562665 12.9819390 5.8×10−6 4.1 ×10−6

30.0 5.5289001 15.0908002 4.7562625 12.9819324 5.7×10−6 4.1 ×10−6

30.0 5.5288962 15.0908002 4.7562592 12.9819324 5.6×10−6 4.1 ×10−6

30.0 5.5288960 15.0908002 4.7562590 12.9819324 5.5×10−6 4.1 ×10−6

25.0 5.5289025 15.0907940 4.7562646 12.9819271 5.6×10−6 4.0 ×10−6

25.0 5.5288896 15.0908062 4.7562535 12.9819375 5.7×10−6 4.0 ×10−6

25.0 5.5289293 15.0908062 4.7562876 12.9819375 5.9×10−6 4.0 ×10−6

20.0 5.5289209 15.0908316 4.7562804 12.9819594 5.9×10−6 4.2 ×10−6

20.0 5.5289331 15.0907962 4.7562909 12.9819289 5.9×10−6 4.0 ×10−6

15.0 5.5289219 15.0908227 4.7562813 12.9819517 5.8×10−6 4.3 ×10−6

15.0 5.5289343 15.0907928 4.7562919 12.9819260 5.8×10−6 3.9 ×10−6

10.0 5.5289227 15.0908102 4.7562819 12.9819410 5.9×10−6 4.2 ×10−6

4.5 5.5289188 15.0908190 4.7562786 12.9819485 5.9×10−6 4.2 ×10−6

Tab. 5.1.2: Lattice parameters ofα−Al2O3 in units of λM and Å. For the unit conversion the
λM value from Shvyd’ko et al. (2000) was used. The double line separates the results from the
experiments at APS (above) and PETRA-1 (below). The single line separates the results from
PETRA-1 which were obtained with the direct (above) or the relative (below) measurement
method. Refer to Tab. 3.2.1 for the accuracy of the temperature readings at PETRA-1.
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Fig. 5.1.3: Lattice parameters a and c in α−Al2O3. Left panels: Results for the whole tem-
perature range. Right panels: Detailed view on the results for temperatures below 100 K. The
solid lines are fits with functions Eq. 5.1.2 and the parameters from Eq. 5.1.5
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Fig. 5.1.4: Deviation of the measured lattice parameters a and c in α−Al2O3 from the fit
function Eq. 5.1.2 with parameters from Eq. 5.1.4.
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of the transition region is indicated by ∆Θx. The square root dependency in
the weighting factors makes the transition region asymmetric, extending more
to higher than to lower temperature. This provides a remarkably better fit than
with a symmetric transition, i.e. without the square root. Since the weighting
factor of the low temperature term extends far into the range above Θx, the
Debye temperature is expected to be ΘD � Θx. The Debye temperature can
be estimated to be 995 K for the sub-lattice of O atoms, and 890 K for the Al
sub-lattice (see Shvyd’ko, 2002, p.63).

From Eq. 5.1.2 one can now calculate the linear thermal expansion coeffi-
cients for the limiting cases of low and high temperaturea):

ρx(T) = 4 x44/x(0 K) · T3 for T → 0
ρx(T) = x11/x(374 K) for T � Θx.

(5.1.3)

One expects that the fit for a(T) and c(T) should lead to Θa ≈ Θc, and
∆Θa ≈ ∆Θc.

The best fit parameters were found to be

a04 = 4.756274(4) ×10−10 m
a44 = 1.5(1.0) ×10−22 m · K−4

a01 = 4.7501(4) ×10−10 m
a11 = 2.95(9) ×10−15 m · K−1

Θa = 193(30) K
∆Θa = 1.0(3) K

c04 = 12.981943(4)×10−10 m
c44 = 5.8(1.1) ×10−22 m · K−4

c01 = 12.9633(5) ×10−10 m
c11 = 9.2(1) ×10−15 m · K−1

Θc = 187(7) K
∆Θc = 0.99(9) K

(5.1.4)

The solid lines in Fig. 5.1.3 are the fit functions, Eq. 5.1.2, with the parameters
from Eq. 5.1.4.

The fit curves are shown in Fig. 5.1.3 together with the measured results for
a and c. Figure 5.1.4 shows the deviation of the measured results from the fit.
As we can see there the relative accuracy of the fit is about 4 × 10−6 which is
close to the measurement uncertainty at low temperature, but worse than the
uncertainty of the measurements at higher temperature.

The better accuracy of the APS measurements is directly related to the
error which is introduced by averaging over different combinations of back-
reflections. In Fig. 5.1.5 the results for the lattice parameters are shown sepa-
rately for each of the four possible combinations. The figure shows three re-
markable results:

a)The value 374 K in the second line in Eq. 5.1.3 is the maximum temperature used in the
determination of the fit.
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Fig. 5.1.5: Deviation of the measured lattice parameters a and c in α−Al2O3 from the fit
function Eq. 5.1.2 with parameters from Eq. 5.1.4, shown separately for the results from the
four different combinations of back-reflections.
2 : (1 3 4 28), (0 0 0 30), (1 6 7 22); 3: (1 3 4 28), (0 0 0 30), (2 6 8 20);
4: (1 3 4 28), (1 6 7 22), (2 6 8 20); ◦ : (0 0 0 30), (1 6 7 22), (2 6 8 20).

The ◦ values are ignored in computing the average since they are systematically significantly
different from the other values.

1. The values of the lattice parameters for different combinations of back-
reflections are scattered over a broader range in the low temperature re-
gion (below 250 K) than in the high temperature region.

2. The lattice parameters resulting from the combination
(0 0 0 30) (1 6 7 22) (2 6 8 20) are significantly different from the
results of the other combinations. Therefore, they were ignored in
computing the averaged lattice parameters, as discussed on p. 69.

3. For the combination (0 0 0 30) (1 6 7 22) (2 6 8 20), in the low tempera-
ture region the results for a are higher and the results for c are lower than
the results from the other combinations, while in the high temperature
region the order is reversed.

Since the major difference between the low and high temperature experiments
is the device which was used to control the temperature of theα−Al2O3 crys-
tal, it is possible that these effects are a consequence of different temperature
gradients across the crystal which are resulting from the respective construc-
tion of the cryostat and the oven, cf. Sections 3.2.1 and 3.2.2.

From Eqs. 5.1.3 and 5.1.4 we obtain the following approximate expressions
for the thermal expansion coefficients in the limiting cases:

ρa = 1.3(1.0) × 10−12 K−1 · (T/ K)3 for T → 0
ρc = 1.79(35) × 10−12 K−1 · (T/ K)3 for T → 0
ρa = 6.2(2) × 10−6 K−1 for T � 200 K
ρc = 7.07(8) × 10−6 K−1 for T � 200 K

(5.1.5)

Independently from our work, a result for the thermal expansion of
α−Al2O3 at low temperature was recently published by Seel et al. (1997). By
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modulating the temperature of a cryogenic optical resonator and observing the
resulting change in resonator frequency, they have determined the thermal ex-
pansion of α−Al2O3 in c-direction at 1.9 K as 5 × 10−12 K−1. The uncertainty
was not reported. By extrapolation of our results using Eq. Eq. 5.1.5 in the low
temperature range, we obtain 12.3(2.4)× 10−12 K−1, which is more than twice
as high as the result of Seel et al. (1997). This difference is remarkably large;
however, the results are difficult to compare because of the following reasons:
Firstly, our value for the thermal expansion ofα−Al2O3 in c-direction at 1.9 K
is not the result of a direct measurement at that temperature, but of an extrap-
olation from measurements over a broad temperature range at higher temper-
atures, under the assumption that the Debye model is valid. Secondly, in the
work of Seel et al. (1997) the thermal expansion was measured directly at 1.9 K,
but no error was reported. Since only one significant digit is given in the re-
sult, one must assume that the error is at least 10%. Thirdly, the accuracy of our
method for the measurement of the lattice parameters is about 10−6 in the low
temperature region. The difference between the the thermal expansion coeffi-
cients of α−Al2O3 in c-direction at 1.9 K reported by Seel et al. (1997) and the
value extrapolated from our measurements would, however, lead to a change
in the lattice parameter c of only about 10−11. Thus, our method seems to be
too insensitive to detect such a small difference, and the extrapolation using
Eq. 5.1.5 should be considered only as an approximation.

We have also applied a 6th order polynomial fit to the lattice parameters
measured in the 285.9 . . . 374.3 K temperature range (cf. Shvyd’ko et al., 2002):

a[Å] =
6

∑
i=0

pi (T[ K])i c[Å] =
6

∑
i=0

qi (T[ K])i

=

p0 = 16.59120 q0 = 13.05720
p1 = −0.2219875 q1 = −8.895871 · 10−4

p2 = 1.7306085 · 10−3 q2 = 3.922787 · 10−6

p3 = −7.1775855 · 10−6 q3 = −7.039581 · 10−9

p4 = 1.6704009 · 10−8 q4 = 4.768008 · 10−12

p5 = −2.0681896 · 10−11 q5 = −5.355554 · 10−19

p6 = 1.0643281 · 10−14 q6 = 6.789434 · 10−22

(5.1.6)

Within this temperature range, the accuracy of the fit is about 10−6, which is
four times better than the accuracy of Eqs. 5.1.2 and 5.1.4. However, Eq. 5.1.6 is
inapplicable for extrapolation outside the 285.9 . . . 374.3 K temperature range,
and does not correspond to any theoretical model of thermal expansion. From
Eq. 5.1.6 one can compute the following values for the lattice parameters of
α−Al2O3 at room temperature, T = 295.65 K:

aRT = 4.759 213(8) Å
cRT = 12.991 586(4) Å.

(5.1.7)

In Fig. 5.1.3 one can see a large variation of a at 25 K. This is corresponding
to a drift ofψ(1 6 7 22) of about 9 � rad which was directly observed in three sub-
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sequent measurements at the same temperature of the backscattering crystal.
Approximately the same variation was observed in the measurements of ψM,
cf. Fig. 5.1.2. This may be attributed to the sensitivity of the λ-meter table or
the high heat load monochromator to changes in environmental temperature,
which are originating from insufficient shielding of the beamline building.

5.1.6. Demonstration of the prediction of the relevant crystal

temperature for backscattering

As a demonstration how the results from this experiment can be used, on
can make an estimation where the (1 6 7 22) back-reflection will reflect the
delayed Mössbauer photons from 57Fe. By inserting Eq. 5.1.2 for both lat-
tice parameters a(T) and c(T) with the fit parameters from Eq. 5.1.4 into
Eq. 4.2.11 with (h k i l) = (1 6 7 22), one can find numerically that the relation
2 d(1 6 7 22)(T) · (1 − wH) = λM should be fulfilled for T = 159 K. The uncer-
tainty of this predicted temperature is assumed to be in the range of 1 K, since
the linear thermal expansion coefficients are about 10−6 K−1, and the measure-
ment accuracy of the lattice parameters is also about 10−6. Thus, a change of
the temperature by 1 K would change the lattice parameters only within their
measurement uncertainty.

According to these considerations, in the last few hours of the experiment
at PETRA we have tried to find at which temperature the α−Al2O3 crystal in
(1 6 7 22) backscattering position would indeed reflect the delayed Mössbauer
photons from the 57Fe foil. With temperature scans in the proximity of the
expected temperature the backscattering of Mössbauer photons was found at
158.8 K. The final scan, which covers a temperature interval of 0.6 K, is shown
in Fig. 5.1.6.

Together with (1 3 4 28) which was used in previous experiments
(Shvyd’ko et al., 1998), we have now two back-reflections in α−Al2O3 which
are suitable for experiments with Mössbauer radiation from 57Fe. The relation
between the interplanar distance of these back-reflections and the wavelength
of the Mössbauer radiation of 57Fe is shown in Fig. 5.1.7.

In applications where a single back-scattering α−Al2O3 crystal is to be
used as a monochromator, the (1 6 7 22) back-reflection is more favorable be-
cause its energy bandpass is only about 1.9 meV, compared to 5.8 meV for
(1 3 4 28). On the other hand, the (1 3 4 28) reflection has a higher reflectiv-
ity of 0.87 while the reflectivity of the (1 6 7 22) reflection is only 0.63. Thus,
(1 3 4 28) is preferred in applications like the x-ray Fabry-Pérot resonator (see
Section 6.3), where high reflectivity is important.

However, in the measurement of (1 6 7 22) shown in Fig. 5.1.6 the tem-
perature width corresponds only to an energy width of about 5 meV. This is
probably not only attributed to the crystal quality, but also to the fact that the
cryostat used in the experiment is not optimized for good temperature homo-
geneity across the crystal. Another cryostat which should yield better results
is currently under development, cf. Section 6.2.
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[Å

]

Fig. 5.1.6: Temperature scan of Mössbauer
photons from 57Fe reflected by the (1 6 7 22)
back-reflection in α−Al2O3. The sampling
time was 60 s per data point.

Fig. 5.1.7: Temperature dependence of se-
lected interplanar distances in α−Al2O3
where 2 d(h k i l)(1 − wH) is in the proxim-
ity of the Mössbauer radiation wavelength
of 57Fe, λM. At the intersection between the
2 d(h k i l) curve and the λM line the back-
reflection (h k i l) will reflect the Mössbauer
radiation from 57Fe.

5.2. Measurement of the wavelengths of the

Mössbauer radiation of 119Sn, 151Eu, and 161Dy

Besides 57Fe, there are many other isotopes which can be used to generate
Mössbauer radiation with uniquely low energy bandwidth and high stabil-
ity. This can be achieved by exciting the appropriate nuclear transitions with
synchrotron radiation. Attractive canditates are transitions to the low-lying
excited states in 119Sn, 151Eu, and 161Dy. The properties of the Mössbauer ra-
diation from these isotopes are summarized in Tab. 5.2.1 (cf. Firestone et al.,
1996), together with the composition of targets which can be used to generate
the Mössbauer radiation.

Isotope EM τ Γ Target
[ keV] [ ns] [ neV]

57Fe 14.4 141.2 4.7 α-57Fe
151Eu 21.5 13.8 47.5 151EuO
119Sn 23.8 26.0 25.3 119Sn2O
161Dy 25.6 41.0 15.7 161Dy (at 20 K)

Tab. 5.2.1: Excitation energy EM, lifetime τ , and natural energy width Γ of selected Mössbauer
nuclei.
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Fig. 5.2.1: Temperature dependence of selected
interplanar distances in α−Al2O3 where
2 d(h k i l)(1 − wH) is in the proximity of the
wavelength of the Mössbauer radiation of
151Eu, 119Sn, or 161Dy. At the intersec-
tions between the 2 d(h k i l) curves and the λM
lines the back-reflection (h k i l) will reflect the
Mössbauer radiation from the respective iso-
tope.

Isotope (h k i l) T ∆T ∆E ∆E
(exp.) (exp.) (theory)

[ K] [ mK] [ meV] [ meV]
57Fe (1 3 4 28) 371.582(8) 66 6.5 5.8
151Eu (3 2 5 43) 287.125(8) 67 8.3 0.6
119Sn (6 5 11 40) 286.968(10) 109 14.5 1.1
161Dy (3 2 5 52) 374.624(40) 46 7.6 0.7

Tab. 5.2.2: Miller indices (h k i l), measured crystal temperature T and temperature width ∆T,
and energy width ∆E of back-reflections in α−Al2O3 for the Mössbauer radiation of 57Fe,
151Eu, 119Sn, and 161Dy. Targets which can be used to generate the Mössbauer radiation with
synchrotron radiation are also shown.

The wavelengths of the Mössbauer radiation of these isotopes could pro-
vide a set of reference wavelengths in the hard x-ray region.

For each isotope, a back-reflection inα−Al2O3 was selected with its Bragg
wavelength λB = 2d(h k i l)(1 − wH) being in the proximity of the wavelength of
the Mössbauer radiation of the respective nucleus. They are listed in Tab. 5.2.2.
As illustrated in Fig. 5.2.1, by tuning the temperature of theα−Al2O3 crystal it
is possible to match the spectral range of a certain back-reflected radiation and
the wavelength of the Mössbauer radiation of the respective isotope. These
temperature values are shown in Tab. 5.2.2 too.

With the measured temperature dependence of the lattice parameters of
sapphire (Tab. 5.1.2, Eq. 5.1.6), the crystal temperatues for backscattering of
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Isotope ˜λM[λM,57Fe] δ ˜λM/ ˜λM[10−7] λM[ Å] δλM/λM[10−7] EM[ eV]
57Fe 1.0 0 0.86025474(16) 1.9 14412.497(3)
151Eu 0.66905978(28) 4.1 0.57556185(27) 4.7 21541.418(10)
119Sn 0.60355158(43) 7.1 0.51920811(39) 7.4 23879.478(18)
161Dy 0.56186073(18) 3.3 0.48334336(19) 4.0 25651.368(10)

Tab. 5.2.3: Wavelengths λM and energies EM of the Mössbauer radiation of 151Eu, 119Sn, and
161Dy, as determined by exact backscattering from aα−Al2O3 crystal. The λM and EM data
for 57Fe are from Shvyd’ko et al. (2000).

Mössbauer radiation (Tab. 5.2.2), and Eqs. 4.2.11, 4.2.5, it is now possible to de-
termine wavelengths of the wavelength of the Mössbauer radiation of 151Eu,
119Sn, and 161Dy. The results are presented in Tab. 5.2.3.

Our results agree well with the Mössbauer energy values pre-
viously reported by Koyama et al. (1996): EM = 21541.49(16) eV
and Leupold et al. (1996): EM = 21541.7(5) eV for 151Eu, by Kikuta
(1994) for 119Sn : EM = 23879.5(5) eV, and by Koyama et al. (1996) for
161Dy : EM = 25651.29(16) eV. The relative uncertainty of our data is by more
than one order of magnitude smaller.

The relative error in the determination of the wavelengths of the
Mössbauer radiation is about 4 . . . 7 × 10−7. The major source of errors for the
˜λM values are the uncertainties in the in the lattice parameters of α−Al2O3.

The uncertainty in λM and EM includes additionally the uncertainty of λM,57Fe.
The accuracy of the wavelengths of the Mössbauer radiation is deteriorated
mostly by the large divergence of the incoming beam, which was about 9 � rad
instead of the expected 2 � rad, and by crystal lattice defects in the α−Al2O3
crystal. If everything were perfect the measurement accuracy could be im-
proved by one order of magnitude.



Chapter 6

Outlook
6.1. Mössbauer radiation wavelengths of different

isotopes as a set of reference wavelengths

The wavelengths of the Mössbauer radiation of 57Fe, 151Eu, 119Sn, and 161Dy
(see Chapter 4, and Section 5.2) provide a set of reference wavelengths in the
hard x-ray region. The advantages of Mössbauer radiation as a wavelength
standard have already been discussed in the introduction of this thesis, and
have been successfully demonstrated in the experiments described in Chap-
ter 5, see also Lucht et al. (2003); Shvyd’ko et al. (2002). With the Mössbauer
radiation of the abovementioned isotopes, there are now four reference wave-
lengths available which have a high accuracy of better than 10−6, and are easy
to reproduce. Besides the measurement of lattice parameters, they could also
be useful for the calibration of high-resolution monochromators at synchrotron
radiation facilities.

6.2. Cryogenic backscattering monochromator

Recent experiments with exact Bragg backscattering of x-rays (Lerche and
Shvyd’ko, 2004; Lucht et al., 2003; Shvyd’ko et al., 1998, 2001, 2000, 2002) have
used a temperature between ≈ 10 ◦C and ≈ 100 ◦C of the α−Al2O3 crystal,
depending on the wavelength of the radiation to be reflected, and the appro-
priately selected reflex (h k i l). Within this region, the effort which is necessary
for the temperature control with mK stability is expected to remain manage-
able. However, for some applications the region from about 75 K to 250 K is of
special interest, cf. Section 5.1.1. The cryostat (cf. Section 3.2.2) which was used
for the measurement of the lattice parameters of α−Al2O3 is, however, diffi-
cult to operate in this temperature region if high stability is required. This is
mostly because the LHe flux and the two heaters have to be controlled simul-
taneously, and may influence each other due to the large temperature gradient
between LHe and heaters. Also the cryostat is not optimized for good temper-
ature homogeneity across the crystal.

A general disadvantage of LHe flow cryostats is the requirement for addi-
tional bulky equipment which is needed for operation. This includes the liquid
helium containers and two vacuum pumps. Some experimental stations which
are suitable for backscattering are too narrow to place this equipment close to
the cryostat (e.g. BW4 at HASYLAB).
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Therefore, another cryostat has been constructed which uses LN2
a) as the

chilling medium, and a single heater. This device is shown in Fig. 6.2.1.
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Fig. 6.2.1: Liquid Nitrogen flow cryostat forα−Al2O3 backscattering experiments at temper-
atures between 77 K and room temperature

The design of the LN2 flow cryostat follows the concept of the oven which
was described in Section 3.2.1. The main difference is of course the LN2 heat
exchanger which is integrated in a thin shell between the outer vacuum tank
and the inner sample holder. The latter one is made of copper and can hold
samples with a diameter of up to 27 mm. The angle of the sample surface to
the cryostat axis can be pre-adjusted by exchangeable copper blocks inside the
sample holder. An electric heating wire is mounted on the outer surface of
the copper shell. Together with a PT100 thermoresistor inside, it is possible to
control the temperature of the sample using the same method as in the oven
(Lucht, 1998). The minimum temperature (with heating off) is, in the ideal case,
determined by the 77 K of the LN2 in the heat exchanger. Since the sample is
embedded in a thick copper shell, the temperature homogeneity is expected
to be superior to the LHe cryostat where the sample is attached on the outer
surface of a copper block.

Despite the larger diameter of the sample holder and the additional heat
exchanger in the LN2 cryostat, its outer diameter is the same as with the oven.
Thus it is possible to use the same proven type of goniometer to hold the re-
spective device and to orient the crystal.

At the time of writing, there is only very few experience how well the cryo-
stat is working. First tests have shown that there is some considerable direct
heat exchange between the inner copper block and the outer tank of the cryo-
stat. Thus the temperature inside the sample holder remains higher than the
temperature of the heat exchanger. One should examine further the heat trans-
port processes inside the cryostat, using multiple temperature sensors. This

a)liquid nitrogen
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will probably lead to some modifications of the construction. Also the temper-
ature homogeneity inside the sample holder should be verified experimentally.

6.3. X-Ray Fabry-Pérot resonator

The unique sharpness of the Mössbauer radiation of at least 10−11 is, unfortu-
nately, not fully exploited in the present experiments. Thus the accuracy of the
application of the Mössbauer wavelength standard remains several orders of
magnitude below the intrinsic width of the Mössbauer radiation. This is not
only due to the limits of the experimental method, but also due to the uncer-
tainty of the underlying Si length standard itself, which is not better known
than 10−8 (Bergamin et al., 1999). In the following a different approach is pre-
sented which could make it possible to overcome these restrictions.

In the visible spectral region (λ ≈ 400 . . . 800 nm) of the electromagnetic
radiation, Fabry-Pérot resonators (Fabry and Pérot, 1899) are well established
instruments for high-precision wavelength measurements in many fields of
natural science, such as atomic spectroscopy, astrophysics, laser physics, and
life sciences (Born and Wolf, 1980; Vaughan, 1989).

Recently, a prototype of a Fabry-Pérot resonator for hard x-rays has been
successfully demonstrated by Shvyd’ko et al. (2003). Using the (0 0 0 30) reflec-
tion of two back-reflectingα−Al2O3 mirrors at E = 14.315 keV, the measured
width of the Fabry-Pérot transmission resonances was 0.76 � eV.

Since α−Al2O3 is transparent for visible light, it should be possible to
realize combined mirrors for optical and x-ray wavelengths by coating the
α−Al2O3 crystal with a thin metal film. A Fabry-Pérot resonator made of two
such mirrors, as shown in Fig. 6.3.1, could be used for a direct measurement of
the wavelength of the Mössbauer radiation of 57Fe in terms of the wavelength
of an optical He-Ne laser, which has a relative accuracy and stability of about
10−11.

Such an experiment will exploit the fact that the Fabry-Pérot reso-
nances appear every time when the spacing between the mirrors is changed
by d = m · λ/2,a) where d is the gap width between the two mirrors, λ
the wavelength of the incident laser beam or x-rays, respectively, and
m = 0,±1,±2,±3 . . .. If the distance between the mirrors is varied by an
amount which is a few times larger than the wavelength of the laser beam,
one could directly count how many Mössbauer radiation wavelengths fit into
one laser wavelength (Shvyd’ko, 2002). The uncertainty of such a measure-
ment of the x-ray wavelength is basically limited by the accuracy of the laser
wavelength, and thus by several orders of magnitude better than our current
results which are based on the Si length standard.

Although this concept is in principle very simple, one has to face a lot of
technical challenges, like the following: For the Mössbauer radiation of 57Fe to

a)Provided that the beams are perfecty perpendicular to the reflecting surfaces of the mir-
rors, otherwise an angular correction has to be applied. For optical and x-ray wavelengths, the
gaps between the mirrors are slightly different, but since we deal only with the change of the
gap, this uncertainty drops out.
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Fig. 6.3.1: Combined x-ray Fabry-Pérot resonator for the comparison of the wavelength of the
Mössbauer radiation and the wavelength of an optical He-Ne laser

be backreflected, the (1 3 4 28) back-reflection has to be used, and the surface of
the optical mirror has to be prepared to be precisely parallel to the x-ray reflect-
ing atomic planes. Both mirrors must be aligned parallel with nrad accuracy,
and this alignment must remain stable when the gap between the mirrors is
varied over a � m distance. The temperature of the mirrors must be stabilized
within a few mK at ≈ 100 ◦C to tune the wavelength of the back-reflected
x-rays to the wavelength of the Mössbauer radiation of 57Fe (Shvyd’ko et al.,
1998). This temperature region is not a good operating condition for the high-
precision micro-motors which are necessary for the alignment and movement
of the mirrors. The motors will also produce some additional heat during op-
eration. This may deteriorate the temperature control for the mirrors, and, due
to thermal expansion effects, the alignment of the setup. These problems have
to be solved step-by step, and therefore some years of development will still be
necessary to get the combined optical/x-ray Fabry-Pérot resonator working.

6.4. Experimental studies on multiple beam diffraction

In the experiment for the determination of the wavelength of the Mössbauer
radiation of 57Fe, we had to cope with multiple beam diffraction as an un-
wanted side effect of Bragg backscattering. This effect may lead to energy shifts
and strongly reduced intensity of the reflected beam if one comes too close to
the exact backscattering geometry (see Section 2.3). Multiple beam diffraction
deserves, however, some comprehensive experimental studies on its own, and
with the setup described in Chapter 4 one has everything at hand to do so.

In the experiment conducted at the 1 km beamline at SPring-8 in May 2001,
we have attempted a short demonstration of the experimental observation of
the effects described in Section 2.3. After adjusting exact backscattering for the
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(9 7 5) reflection with an accuracy of about 10 � rad by using a 100 � m pinhole,
the pinhole was removed and the raw data shown in Fig. 6.4.1 were measured.
Herein, with the rotation angle ψ of the λ-meter the energy of the radiation is
varied according to Bragg’s law. The intensity scale shows the ratio between
detected incident photons before they pass the λ-meter, and reflected photons
from the Si reference crystal.

In the large figure one can see clearly the difference in the energy depen-
dence between the exact backscattering case with δθ = 0 and another case
which is slightly off backscattering with δθ ≈ 105 � rad. In exact backscat-
tering, the curve is not only broadened and has less peak intensity, but the
peak is also shifted on the energy/angle scale and some non-pronounced side
peak is showing up. The small figures show the energy dependence for near-
backscattering cases with different azimuthal angles. The Si reference crys-
tal was rotated around two axes Ω and α, which are perpendicular to each
other and to the beam. For exact backscattering, δΩ = 0 and δα = 0. Then
the azimuthal angle φ = arctan(δα/δΩ) +φ0 with φ0 ≈ 15.8 ◦, and the devi-
ation from exact backscattering δθ =

√
δΩ2 + δα2. For most azimuthal angles

the abovementioned side effects of multiple beam diffraction vanish, and the
curves are sharp and have high intensity. But there are some directions of φ
where, with δθ & 100 � rad, the curves are broad, less intense, and sometimes
even with pronounced additional peaks.

Due to the tight schedule of the experiment this study had to remain in-
complete. The angles Ω and α were just varied in fixed steps, and no attempt
was made to find theφmult values given in Tab. 2.3.1 exactly or to keep δθ con-
stant. It is, however, evident that this experimental setup is suitable for the di-
rect observation of the effects of multiple beam diffraction on Bragg backscat-
tering. More detailed studies on this topic are desirable.
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E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, and J.P. Hannon.
Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet.
Phys. Rev. Lett, 54:835, 1985.

W. Graeff and G. Materlik. Milli-electronvolt energy resolution in Bragg
backscattering. Nucl. Instrum. Methods Phys. Res., 195:97, 1982.

P. Gütlich, R. Link, and A. Trautwein. Mössbauer spectroscopy and transition
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Exact Bragg backscattering of x-rays. Phys. Rev. B, 57:4968—4971, 1998.

Yu.V. Shvyd’ko, M. Gerken, H. Franz, M. Lucht, and E. Gerdau. Nuclear reso-
nant scattering of synchrotron radiation from 161Dy at 25.61 keV. Europhys.
Lett., 56:309—315, 2001.
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Rüter, H.-C. Wille, P. Becker, E.E. Alp, W. Sturhahn, J. Sutter, and T.S. To-
ellner. γ-ray wavelength standard for atomic scales. Phys. Rev. Lett., 85:
495—498, 2000.

Yu.V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, H. D. Rüter, E. E. Alp, and
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Mössbauer radiation of 57Fe. Without his ideas and his support I would never
have progressed so far. During many experiments he tought me how to work
with synchrotron radiation on my own responsibility.

I am grateful to Prof. Erich Gerdau, the former leader of the hyperfine in-
teractions research group, not only for his ongoing interest in the progress of
this work, but also for his support in times where the situation of the research
group was not easy. In this context, I have to thank Prof. Jochen Schneider,
the research director at HASYLAB, who provided me with an employment of
six months which gave me the oportunity to work out the results of the last
experiments and the temperature corrections.
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