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Zusammenfassung

Astronomische Beobachtungen bei verschiedenen Wellenlängen haben sich als essentiell
für das Verständnis der grundlegendsten Fragen der Physik erwiesen. Eines der größten
Mysterien der Natur ist die Existenz der (bisher) unbestimmten Art der Materie welche
den Großteil des materiellen Universums ausmacht. Auch wenn nur wenig über deren
Natur bekannt ist, ist es sehr wahrscheinlich, dass es sich bei dieser exotischen Dunklen
Materie (DM) um sogenannte Weakly Interacting Massive Particles (WIMPs) handelt.

In der vorliegenden Arbeit untersuchen wir, welche Strategien am besten dazu ge-
eignet sind, die Frage Was ist Dunkle Materie? anzugehen. Konkret wählen wir das
WIMP-Paradigma als unser Leitprinzip und diskutieren anschließend umfassend die
Phänomenologie der aussichtsreichen Szenarien der indirekten Detektion solcher WIMPs.
Insbesondere werden dabei die um das Zentrum der Milchstraße herum erzeugten au-
ßerirdischen Gammastrahlen und Radiowellen betrachtet.

Angesichts der zwei kürzlich vieldiskutierten Behauptungen einer WIMP-Entdeckung,
nämlich der 130-GeV-Linie und des GeV-Exzesses der Gammastrahlung, benutzen wir
unsere Methoden, um diese Hypothesen zu überprüfen. Außerdem enthält unsere Un-
tersuchung Datenanalysen der Antiteilchen der Kosmischen Strahlung (Antiprotonen
und Positronen). Die Phänomenologie der indirekten DM-Detektierung mithilfe dieser
“Messenger” wird ebenfalls kurz diskutiert.

Durch die Ausnutzung des hohen Grades an Symmetrie bei typischen annihilie-
renden 2-WIMP-Anfangszuständen sind wir in der Lage, ein sehr mächtiges Instru-
ment der theoretischen Teilchenphysik einzusetzen: Das verallgemeinerte optische Theo-
rem. Dieses Theorem verknüpft die Amplitude von schleifenunterdrückten Prozessen,
wie zum Beispiel der 130-GeV-Linie für den Fall, dass diese als Produkt von WIMP-
Annihilationen interpretiert wird, mit deren Tree-Level-Prozessen, die auf dieselbe Weise
eingeschränkt sind wie es beim GeV-Exzess der Fall ist. Neuartige analytische Verfahren
zur allgemeinen Berechnung von Partialwellen-(und Helizitäts-)Wirkungsquerschnitten
werden durchgeführt und anschließend entsprechend angewendet.

Ferner wird die Möglichkeit untersucht, dass ein nichttrivialer Effekt im Teilchenmo-
dell der DM ein in Form einer Linie der Gammastrahlung auftretendes Signal verstärkt.
Wir konzentrieren uns dabei auf das fünfdimensionale Modell mit “Universal Extra Di-
mensions” (UED), welches einen passenden Kandidaten für die DM liefert. Wir zeigen,
dass die intrinsischen resonanten Eigenschaften des Modells zu Verstärkungen in den
Streuquerschnitten der Annihilation führen. Alle notwendigen Kopplungen der die KK-
Nummer verletzenden und in den Fixpunkten der Orbifaltigkeit lokalisierten Vertices
werden ebenfalls erstmalig berechnet.

Motiviert durch die Möglichkeit einer Beschleunigung von DM-Teilchen auf beliebig
große Energien durch Schwarze Löcher untersuchen wir die WIMP-Annihilation bei
großen Schwerpunktenergien im UED-Kontext.





Abstract

Multiwavelength astronomical observations have been proven to be of crucial relevance in
understanding the most fundamental questions in physics. One of the biggest mysteries
of nature is the existence of a (still) unidentified type of matter that makes up most of
the material universe. Although little is known about its nature, it is very likely that
this exotic Dark Matter (DM) is made of so-called Weakly Interacting Massive Particles
(WIMPs).

In this thesis we investigate which strategies can best address the fundamental ques-
tion: What is Dark Matter? Specifically, by following the “WIMP” paradigm as our
guiding principle, we comprehensively discuss the phenomenology of prospective “indi-
rect” detection scenarios of such WIMPs. Special consideration is given to extraterres-
trial gamma rays and radio waves produced around the center of the Milky Way.

In light of two recently highly debated claims of WIMP Dark Matter discovery,
namely the 130 GeV gamma-ray line and the GeV gamma-ray excess, we invoke our
methods to confront those hypotheses. In addition our study contains antiparticle
cosmic-ray (antiproton and positron) data analyses. The phenomenology for indirect
DM detection with these “messengers” is briefly discussed as well.

By exploiting the high degree of symmetry of typical annihilating 2-WIMP initial
states, we are able to employ a very powerful tool in theoretical particle physics: the
generalized optical theorem. This theorem relates the amplitude of loop-suppressed
processes, such as the 130 GeV line if interpreted as product of WIMP annihilations,
with tree-level process which are constrained in the same way as with the GeV excess.
Unprecedentedly reported analytical computations of partial-wave (and helicity) cross
sections with general applicability are calculated and applied.

The possibility that a non-trivial effect in the particle model for DM might enhance
the strength of a gamma-ray line signal is also explored. We focus on the five-dimensional
model with “Universal Extra Dimensions” (UED) which offers a suitable DM candidate.
We show that the intrinsic resonant properties of the model give rise to enhancements
in the annihilation cross sections. All the necessary couplings of KK-number violating
vertices localized in the orbifold fixed points are also computed for the first time.

Motivated by the possibility that black holes can accelerate DM particles up to,
in principle, arbitrarily large energies, we investigate WIMP annihilations with larger
center-of-mass energies in the UED context.
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Introduction

After CERN’s recent discovery of a boson that seems to possess all the properties of the
long-sought Higgs boson, all the pieces of the Standard Model of Particle Physics have
fallen into place. One of the next frontiers in physics is understanding the nature of the
dominant components of the Universe, namely Dark Energy and Dark Matter. While
the former still lacks a fully satisfactory theoretical elucidation, very well motivated
theories of the latter do exist. In this thesis we shall limit ourselves to exploring the
mysteries associated with the Dark Matter component –henceforth referred to as DM–
by making predictions of phenomenological relevance.

Our best handle on the physics of the early Universe, the Cosmic Microwave Back-
ground (CMB), provides us with compelling information that paves the way for hunting
for DM. Measurements of the CMB anisotropies agree with the hypothesis that most
of the (dark) matter in the Universe consists of Weakly Interacting Massive Particles
(WIMPs). Curiously, particles with exactly the same properties are anticipated by the-
ories beyond the Standard Model of Particle Physics such as Supersymmetry (SUSY)
or models with Universal Extra Dimensions (UED). This coincidence, commonly re-
ferred to as the WIMP miracle, makes the search for DM particularly interesting for the
communities of cosmology, astroparticle and particle physics.

Complementary evidence in favour of the DM hypothesis is provided by modern
observations of galaxies and galaxy-clusters. In fact, the gravitational pull of DM on the
motion of such massive astrophysical objects was observed in the 1930’s. Nevertheless,
no definite positive signal of any DM interaction has yet been found at the microscopic
level.

As we argue in this thesis, signatures of DM interactions other than gravity could po-
tentially be probed by next-generation astronomical instruments. We will mainly focus
on radio and gamma rays as eventual signals of indirect detection of DM are expected to
peak in those frequency ranges. Relevant experiments include the Low Frequency Array
(LOFAR) and the Square Kilometre Array (SKA) radio interferometers. The gamma
ray satellite Fermi Large Area Telescope (FERMI-LAT) and the Cherenkov Telescope
Array (CTA) are also expected to shed light on the nature of DM.

In the first part of this work, we provide a thorough review on the possible imprints
in the gamma ray and radio skies of prospective WIMP DM annihilation. We also
toch upon the signatures of DM in cosmic-ray antiparticle observations and two recent
claims of DM discovery, namely the “130 GeV gamma-ray line” and the “Gamma-ray
GeV excess”.

The rest of the thesis is dedicated to my original contributions to the field which led to
the three publications [I-III]. Specifically, we employ a generalized variant of the optical
theorem to constrain the model building for the 130 GeV excess. In our comprehensive
overview, we demonstrate that this theorem has a wide range of applicability in the
context of DM phenomenology.
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In addition, by using the methods for indirect DM detection reviewed here, we
confront the DM interpretation of the GeV gamma-ray excess with radio and antiparticle
cosmic-ray data.

In the last part we revisit one of the central assumptions in DM phenomenology: the
approximation of vanishing relative speed of the two annihilating WIMPs. We argue that
non-trivial effects such as resonances can play a dominant role once this approximation
is relaxed. For clarity, we focus on the five-dimensional model with Universal Extra
Dimensions (UED). Due to its mass-spectrum ladder structure such resonant effects
arise quite naturally in annihilation processes.

We also briefly discuss the so-called Bañados-Silk-West effect. According to this
effect, DM particles that are close to a Black Hole will be accelerated by the strong
gravitational field. Depending on the angular momentum of the Black Hole, DM colli-
sions could attain arbitrarily large center-of-mass energies.

This thesis is structured as follows: we begin with an overview of the theoretical
foundations of the WIMP DM, where we pay particular attention to the UED models.
In the second chapter, we introduce the relevant methodology used to search for DM
and focus on the methods of indirect detection. Then we discuss the prompt emission
of gamma rays from DM annihilation in chapter 3. In chapter 4 we comprehensively de-
scribe the synchrotron emission of electrons and positrons interacting with the Galactic
magnetic field and focus on the DM signal.

In chapter 5, we discuss the optical theorem and then we report the 130 GeV line
model building constraints that result from its application. We also discuss our limits on
the GeV excess. The last chapter discusses the DM-induced gamma ray line enhance-
ment that results from taking into account the effects of the velocity distribution of
Kaluza-Klein DM. Finally, we state our conclusions and include four appendices where
we derive some relevant formulas used in this thesis and our original results.
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Chapter 1

Preliminaries

1.1 Observational evidence of Dark Matter

Although the most compelling piece of evidence that there is a dark matter component
in the Universe is cosmological, the first indication of its existence dates back to the
1930’s. In year 1932 (1933) astronomers [31, 32] noticed that the total amount of mass,
as inferred from their observations of the Milky Way [31] (Coma Cluster [32]), did not
correspond to the mass needed to explain how stars (galaxies) rotate around the Milky
Way’s (Coma Cluster’s) halo.

Both authors attributed such discrepancies to some mysterious massive component
which they coined Dark Matter. More modern measurement techniques [1, 33] of ro-
tation curves as the ones performed in [31, 32] not only confirm the existence of Dark
Matter, as apparent in the left panel of figure 1.1, but also have become observational
probes of the DM. In such curves, the velocity (assuming circular orbits) of an observed
emitter is reported as a function of its position respect to the center of the observed
galaxy. Intriguingly, astronomers noticed that in contrast to their theoretical expecta-
tions rotation curves show a behaviour that can not be reconciled with the assumption
that the motion of the emitters is explained by the gravitational pull of the observed
matter. This anomaly is of course a manifestation that there might exist unidentified
dark objects responsible for the “odd” features in the rotation curves.

At larger scales, the evidence is more robust as larger astrophysical objects such as
galaxy clusters prove to be excellent probes of DM. In this case different measurement
strategies provide complementary information about the dynamics of the DM. The most
notorious example supporting the DM case in these scales is the Cluster 1E 0657-558,
usually referred-to as the Bullet Cluster : the collision of two galaxy clusters –see figure
right panel of fig. 1.1–. By combining information on the cluster’s gravity field as
inferred from gravitational lensing (bending of the light due to the cluster’s enormous
mass) and X-ray images of the same object, one actually observes that there should be
invisible almost non-interacting DM components that during the collision decouple from
the stronger interacting visible part that sits in the middle of the cluster.

In the next section we will briefly introduce the basic notions of Cosmology and
discuss the evidence of DM in that context.

1.2 The Lambda CDM paradigm

The probably most solid evidence of the presence of a non-baryonic dark matter com-
ponent in the Universe is cosmological, i. e. when observing the Universe at its largest
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Figure 1.1: Left: rotation curve of NGC 3198 galaxy and the two-component (Dark Matter halo +
exponential disk) mass model fit considered by the authors reference [1] from which the figure was
extracted. Right: superimposed to the “Bullet cluster” 1E0657-56 optical image are in fake colors X-ray
image from Chandra (pink) and the gravitational lensing map (blue) [2].

accesible scales (∼ 10 Gpc). Most of the physics at such scales is successfully described
by the standard model of cosmology: the Λ cold dark matter (ΛCDM) model. In the
following we will briefly introduce the most basic features of this theory focusing on the
dark sector.

At its largest scales the Universe is rather simple as to a great extent it looks the
same in every direction. Notice that at cosmological scales “small” discrete sources such
as galaxies will only represent . 10% anisotropies of the full picture of the Universe, in
pretty much the same way as the discreteness of water molecules in a glass of water are
not resolvable by the naked eye. Technically speaking, the property that our view of
the Universe does not depend on the direction at which we look is called isotropy.

This property together with the homogeinity assumption, i.e. our position in the
Universe is not special and the Universe is isotropic in all possible reference points –
Copernican principle– are the foundations of modern cosmological theories. The most
compelling evidence of this is the existence of an almost (to a degree of accuracy of the
order of 10−5) perfectly isotropic cosmic microwave background (CMB) in nature. This
radiation is the footprint of the so-called recombination epoch where –according to the
ΛCDM model– bound states formed and all matter became predominantly neutral.

In a general relativistic setup, the Copernican principle makes it straightforward to
construct a general theory for the Universe. In the General Relativity (GR) jargon we
do this in terms of a two-parameter space-time metric: the Robertson-Walker (RW)
metric

ds2 = dt2 − a2(t)

[
dr2

1− κr2
+ r2 dΩ2

]
, (1.1)

where the scale factor a(t) and the curvature parameter κ are the only quantities needed
to describe the geometry of a perfectly isotropic and homogeneous Universe. Physically,
the evolution of a(t) respect to the time coordinate t determines whether the Universe
is expanding or contracting. The sign of the second parameter κ defines the topological
properties of the RW space: sgn(κ) = −1, 0, 1 correspond to open (negative curvature),
flat (no curvature) and closed (positive curvature) spatial slices of the RW space-time.

The dynamics of the cosmological parameters is given by Einstein GR equations
Rab−1

2gabR = 8πGTab. Assuming that the Universe is a perfect fluid: T ab = diag(ρ,−p,−p,−p),
where ρ and p are the fluid’s total energy density and pressure respectively, we can –after
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some algebra– arrive to the so-called Friedmann equations(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
,

ä

a
= −4πG

3
(ρ+ 3p) , (1.2)

that together with a state equation (typically p = wρ) fully describe a Copernican
Universe within the GR framework. Notice that ρ and p are regarded as dynamical
variables in the Friedmann equations. With the exception of the case where w = −1
that we discuss below, the solutions of eqs. (1.2) are powers of the time coordinate
a(t) ∝ tα. In particular, when a(t) = 0 –e. g. at t = 0– the metric becomes singular,
defining in this way a beginning of time or the Big Bang.

Usually when refering to the dynamics of the cosmological parameters people intro-
duce the Hubble parameter

H ≡ ȧ

a
,

which essentially gives a measure of how quickly the Universe expands or contracts.
The Hubble parameter evaluated at present time is the familiar Hubble constant H0 =
100hkms−1Mpc−1, with h = 0.673 ± 0.012 cf. [34, 35]. We then define the critical
density

ρcrit ≡
3H2

8πG
,

so that the first Friedmann equation (1.2) can be rewritten as

1− Ω = − κ

H2a2
≡ Ωcurv ,

where we, in passing, defined the cosmological density parameters Ω = ρ/ρcrit and
Ωcurv = ρcurv/ρcrit with ρcurv = −3κa−2/8πG so that if ρ = ρcrit then Ωcurv = 0 and
the Universe is flat. Notice that ρcurv is not a physical density but just a convenient
mathematical artifact such that we can put the geometry and energy components of eq.
(1.2) in the same footage. For future convenience we notice that ρcurv is proportional to
a−2.

After some manipulations of eq. (1.2) and the equation of state p = wρ one can show
that analogously ρ ∝ a−3(1+w). If the Universe is mainly compossed by non-relativistic
collisionless matter we can use the equation of state of an ideal gas w ∝ kT/mp where
mp is the mass of the particles (kT is the thermal energy of the particles). Since
these are nonrelativistic kT � mp and w ' 0 and ρmatter∝ a−3. If radiation is the
leading component, then the energy-momentum tensor is given by an incoherent sum
of traceless Maxwell stress tensors. The fact that it is traceless implies that w = 1/3
and ρrad∝ a−4. In the next section we will discuss another interesting equation of state,
namely the one that results from an energy-momentum tensor that is proportional to
the metric.

1.2.1 Dark Sector

In our cosmological discussion above we did not make any assumption as to the physical
energy density ρ. In principle, ρ could stand for the energy density of invisible matter
or radiation or even something more exotic we shall call dark energy. In this section we
will introduce the concept of dark energy and discuss the necesity of introducing a dark
matter component in the cosmological model introduced above.
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1.2.1.1 Dark Energy

As already disclosed before, apart from radiation and matter an exotic component such
that its energy-momentum tensor is proportional to the metric is physical and actually
existing in nature. This component is defined by the equation of state p = −ρ (w = −1)
such that ρΛ ∝ a0. In a flat space (κ = 0) such as ours (cf. [35]) the Hubble parameter
is constant and the scale factor grows exponentially a(t) ∝ eHt.

To a big extent, the accelerated expansion defined by a(t) ∝ eHt provides the correct
description of the present-time Universe as recently confirmed by measurements of the
CMB anisotropies by the PLANCK experiment [35]. This phenomenon was already
noticed in 1998 by observations of distant Type Ia supernovae [36, 37] leading the authors
to be awarded with the 2011 Nobel prize award.

The state-of-the-art measurement of the dark energy density parameter in a flat
Universe is ΩΛ = 0.686 ± 0.020 [35]. This means that ∼70% of the Universe’s energy
budget is composed by this exotic dark energy component.

A completely equivalent interpretation of dark energy can be done in terms of the
geometrical concept of Λ: the cosmological constant. Had we introduced instead of the
dark energy term Tab = 8πGρΛgab a cosmological-constant term Λgab in the GR equa-
tions, the physics would have remained the same despite the change in the nomenclature.

From a theoretical point of view, the cosmological constant problem poses one the
strongest challenges in modern physics as no mechanism has been proposed that satis-
factorily explains the origin of Λ from first principles. The biggest limitation comes from
the fact that dimensional analysis arguments based on the hope that quantum gravity
would provide a solution to this problem (Λ has units of [mass]4 in natural units), fail
by ∼100 orders of magnitude in estimating the actual magnitude of Λ [38].

1.2.1.2 Dark Matter

In the dark-energy-dominated Universe in which we live, only ∼30% of its energy
content is composed by matter and radiation. However, by estimating the amount
of energy in form of radiation that there is in the Universe by the photon density
ρCMB = 0.25 eV/cm3 we find that1 Ωrad ' 10−4 . Therefore, the missing 30% of the
total energy density that is not associated to the dark energy introduced above, is com-
posed by massive objects.

The amount of baryonic matter can however be estimated by several methods. The
most powerful are through the constraints that result from analyzing the power spectrum
of the CMB anisotropies. However, a probably more instructive, if less accurate, method
is by measuring the abundance of nuclei synthetized a few seconds after the Big Bang in a
cosmological era called the Big Bang Nucleosynthesis and noticing that the baryon-per-
photon ratio has to be of the order of 5× 10−10 [38] for the analysis to be consistent.
This puts the baryonic density parameter to be as low as Ωbar = .05, result that is
consistent with the latest results of the PLANCK mission. Consequently there is five
times as much non-baryonic dark matter as regular matter.

It is customary to report the amount of matter in the Universe in terms of its
corresponding density parameter times the dimensionless Hubble constant squared (as
ρcrit ∝ H2). The most precise measurements of the DM and baryon density in the
Universe are respectively (cf. [34, 35]) Ωbh

2 = 0.022 07±0.000 33 and ΩDMh
2 = 0.1196±

1Other radiation degrees or freedom are neutrino and further possible dark radiation species. CMB
analyses are however able to constrain their associated density parameters.
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0.0031. In the next section we shall expand our discussion on the cosmological dark
matter.

1.2.2 The WIMP Miracle

Shortly after the Big Bang the Universe was supposed to by a very dense “soup of
relativistic particles” in thermal equilibrium. Inasmuch as the interaction rates of the
particles n(t)〈σv〉 remained larger than the expansion rate ∼ H(t), such an equilibrium
existed (n(t) is the particle-number density at time t, σ is the interaction cross section
and v is the relative speed). However, as the Universe cooled down, expansion started to
dominate and the processes DM DM→ X Y (X and Y represent particles different than
a theorized self-interacting DM particle) happened more frequently than the typically
kinematically forbidden reverse process X Y→DM DM. As a consequence, the DM par-
ticles decouple from the cosmic thermal bath and most of their dynamics is progressively
given by the expansion and their possible decay. After this freeze-out mechanism, the
abundance of such DM particles left in the present time could therefore explain why
most of the matter in the Universe is dark in a rather refined way.

Quantitatively, this phenomenon is described by a Boltzmann equation which, after
including the effects of expansion and assuming that the annihilation products follow
thermal distributions inmediately after they are produced, reads [39]

dnDM

dt
+ 3HnDM = 〈σvMøll〉(n 2

DM − neq. 2
DM ) , (1.3)

where the Møller velocity is defined in such a way that the cross section σ transforms
as a scalar rather than as an area2 and is defined as

vMøll =

√
(p1 · p2)2 −m4

χ

E1E2
= [‖v1 − v2‖2 − ‖v1 × v2‖2]1/2 , (1.4)

while

neq.
DM =

∫
d3p

(2π)3

gDM

eE/kT ±1
(1.5)

is the DM particle number density at equilibium, where gDM is the number of degrees
of freedom of the DM particle and the sign in the denominator is determined by the
particle spin (- for bosons and + for fermions).

Equation (1.3) can easily be solved numerically if we assume that such chemical de-
coupling occurs in the radiation dominated epoch (whenH(t) = 1/2t ' √geffT

2/MPlanck).
For DM masses in the range of 10 − 1000 GeV, the (relic) DM density parameter that
results from evaluating the solution of eq. (1.3) after decoupling is [39]

ΩDMh
2 ' 0.11

(
2.8× 10−26 cm3/2

〈σv〉

)
. (1.6)

Rather interestingly, in the present time DM particles have speeds of the order of
∼ 10−3 times the speed of light. If the particle interaction amongst the DM particles
is weak, i. e. σ ∼ αem/ sin2 θW /(100 GeV)2 ' 1 pb, then σv ∼ 3× 10−26 cm3/s which

2Several particle physics textbooks –including Peskin and Scrhoeder’s [40]– introduce the concept of
cross section in terms of the relative velocity vrel. = ‖v1 − v2‖ rather than the Møller velocity (1.4). In
practice, cross section calculations are carried out either in the center-of-mass frame or in the lab frame
and since v1 × v2 = 0 then vrel. = vMøll in both frames.
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is just the needed interaction strength needed for the DM to be thermally produced
shortly after the Big Bang. This coincidence is sometimes quoted as the WIMP miracle,
where WIMP stands for Weakly Interacting Massive Particle.

As a final comment on the WIMP paradigm, we notice that if we had assumed that
the DM was composed by neutrinos –as they are non-baryonic weakly-interacting mas-
sive particles–, the sum of their masses would need to be significantly larger O(100 eV)
than present estimates from neutrino oscillation observations. Moreover, at freeze-out
they would be still relativistic rendering them as hot DM. As we shall briefly discuss
in chapter 3, cosmological N-body simulations strongly favor the hypothesis that DM
was cold (non-relativistic) at freeze-out. Otherwise, present-time structures (clusters of
galaxies, galaxies and so on) would not have been able to form.

This line of argumentation completes our gross introduction to the standard model
of Cosmology: the Λ CDM model. We will discuss now these ideas are connected to
claimed solutions of utterly uncorrelated problems in particle physics, making the WIMP
paradigm the leading guiding principle for the DM searches that are investigated in this
thesis.

1.3 Particle Physics Models

The standard model (SM) of particle physics has enormous success in describing the
interactions of fundamental particles up to subnuclear scales ∼ 0.001 fm. Its latest
successful test was the discovery of a scalar boson that, to a high confidence level, bears
the properties (couplings, decay channels, etc.) of the Higgs boson as predicted by the
theory.

Nevertheless, the SM is by construction incomplete as it does not include gravity
and has unnatural radiative behaviour. The latter limitation is usually referred-to as the
hierarchy problem. Several solutions to this problem have been put forward, being the
introduction of a new symmetry that relates fermionic degrees of freedom with bosonic
ones called Supersymmetry (SUSY) the leading one.

Supersymmetric extensions of the SM not only solve the hierarchy problem in a
rather elegant way but they also unify the electro-weak and strong interactions at some
higher energy scale if SUSY is broken at the TeV scale. The price to pay is the introduc-
tion of at least the same amount of new particles as the already existing in the SM and
uncertainties associated to our ignorance about how SUSY is broken. We do not aim
to discuss the features of this theory in detail, but we will rather content ourselves with
mentioning that some SUSY extensions of the SM, in particular the Minimal Supersym-
metric Standard Model (MSSM) provide, almost accidentally, a suitable DM candidate:
the SUSY neutralino χ0

χ0 ≡ χ̃0
1 = N11B̃ +N12W̃

3 +N13H̃
0
1 +N14H̃

0
2 , (1.7)

which is a neutral Majorana fermion with couplings to SM particles that are related to
the ones of the Z and H bosons. Interestingly, the reason why minimal SUSY extensions
of the SM provide a DM candidate is motivated by pure particle physics reasons. Some
soft SUSY breaking (trilinear) terms induce simultaneous lepton and baryon number
violation that can be avoided by the introduction of the so-called R-parity symmetry.
This symmetry then stabilizes the lightest supersymmetric particle (LSP) which we
require to be neutral –otherwise we would have detected it– and thus provide us with a
strong candidate that would reveal the nature of the DM and, at the same time, solve
profound particle physics problems in an elegant way.
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Figure 1.2: Typical mass and interaction cross section of several DM candidates [3]

In the cosmological setup introduced before, for a large “hyper volume” of the MSSM
free-parameter space, the thermal average of the total annihilation rate of the neutralinos
〈σvMøll〉 is such that the DM density at present time is explained through the freeze-out
mechanism discussed before. Furthermore, a phenomenologically interesting scenario
can arise in some parameter regions where some of the assumptions leading to eq. (1.6)
fail and DM co-annihilations (annihilation of a neutralino and all other supersymmetric
particles) become important. In section 5.2 we will come across this co-annihilation
region in a completely different context.

Several other models with WIMP candidates have been constructed under the prin-
ciples of minimality: “Minimal DM”, “The Inert Doublet Model”, “Higgs Portal”, while
some others such as the MSSM are inspired by elementary particle physics. In the next
section we will discuss in detail an example of the latter type of models, namely the
effective theory that results from adding one extra dimension to the space-time where
the particles propagate.

Although the WIMP scenario is rather appealing, there are several other concrete
models that introduce different possible manifestations of the DM at microscopic scales.
Figure 1.2 roughly displays the typical particle masses and interaction cross sections of
several theories for DM.

1.3.1 Universal Extra Dimensions

Another interesting particle-physics-motivated DM candidate is the so-called Lightest
Kaluza-Klein Particle (LKP) in models with Universal Extradimensions (UED). These
models are constructed from non-renormalizable extra dimensional realizations of the
Standard Model as the four-dimensional (4D) effective field theories that result from
the compactification of such extra dimensions. In this thesis, specifically in chapter 6,
we extensively considered one such models and thus, we shall dedicate this section to
introduce these models in a fairly detailed way.

Although many of the conclusions at which we will arrive in this section apply
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to theories with several extra dimensions, we will only consider one compact extra
dimension x5. In the circular (S1) compactification the coordinate x5 can be chosen in
such a way that physics is invariant under the transformation x5 → x5 +2πR, where R is
the compactification radius, while the rest of the coordinates describe the standard 4D
space-time. In terms of field theory, the addition of an extra dimension has interesting
kinematical consequences that are also easy to derive.

Let us consider an arbitrary scalar 5D field F (x;x5) describing a free particle of
mass M . By decomposing the field in terms of its discrete Fourier modes in the extra
dimension

F (x;x5) ∼
∑

p5=n/R

Fn(x) eip5x5
,

we effectivelly introduce and infinite set of 4D scalar fields {Fn(x)} satisfying the 4D
Klein-Gordon equation of particles with masses Mn =

√
M2 + (n/R)2:(

−∂2 +
( n
R

)2
+M2

)
Fn(x) = 0 .

The towers of particles associated to the existence of extra dimensions are usually called
Kaluza-Klein mass towers after Theodor Kaluza and Oskar Klein who first proposed
the existence of extra dimensions in the context of general relativity [41, 42].

From the phenomenological point of view, this is a good start since the tower of
infinite new degrees of freedom associated to the extra dimension are effectively heavier
than the particles described by the zeroth-mode field F0(x). Notice that F0(x) is the
field that results from ignoring the existence of extra dimensions. From Heiseberg’s
uncertainty principle considering F0(x) instead of its 5D “parent” F is approximately
correct as long as ∆x � R, or equivalently ∆E � R−1, where ∆x and ∆E are the
typical length and energy uncertainties of the particle described by F . We see that R−1

naturally (owing to Heisenberg’s uncertainty principle) defines a critical energy scale
above which the effects of the compactified extra dimension can be observed.

Under these premises, it seems clear that promoting the SM fields to 5 dimensions
and modifying the SM Lagrangian accordingly will effectively result in a 4D theory em-
bedding the familiar SM and an, in principle, infinite number of states that are only
attainable at energies larger than R−1. Most of the aforementioned will actually be
true as we shall see soon. However, a simple dimensional analysis of the couplings
that one would have to introduce in a 5D SM-like theory shows that such a theory is
non-renormalizable and we should follow an effective-field-theory approach. We shall
introduce a cut-off energy scale Λ above which unknown physics takes over. As a conse-
quence only a limited subset of the tower of states associated to the compatified extra
dimension will be regarded as physical.

Our introductory discussion has so far only been concerned with scalar fields. Never-
theless, the SM features also spinor and vector fields with chiral couplings, spontaneous
symmetry breaking, etc. that need to be incorporated in the 5D model. The fact that 5
is an odd number represents a limitation in including chirality in the theory as such con-
cept does not exist in odd-dimensional space-times (all spatial reflections are equivalent
to some continuous rotation). The most direct way of getting around this is by reex-
amining the compactification scheme and introducing ad hoc some geometrical property
that is connected to the concept of chirality in the lower-dimensional space-time. For
example, by imposing certain mirror-symmetry conditions x5 → −x5 automatically re-
lating any two opposite points in a circle –e. g. x5 = 0 and x5 = πR– in the so-called
orbifold compactification.
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In this scheme out of all possible scalar fields F we “fold” the fifth dimension by de-
composing the fields in terms of their parity: F±(x5) = ±F±(−x5) and we will call them
even (+) or odd (-) depending on the sign of such identification. Notice that odd scalar
fields have no zeroth-mode component. Since the fifth component of a vector field trans-
forms as a scalar in the reduced 4D geometry, such a property will be crucial in consis-
tently constructing a model with one extra dimension and no extra unobserved scalar de-
grees of freedom associated to the SM gauge bosons. All 5D vector gauge field in this the-
ory will be such a way that A5(x, x5) is odd owing to the gauge symmetry. Their orbifold
identification will thus be the following Aµ(x, x5), A5(x, x5)→ Aµ(x,−x5),−A5(x,−x5).

The parity of the orbifold spinors are defined according to the identification Ψ(x, x5) =
±γ5Ψ(x,−x5). Notice that for spinors, both even and odd fields have non-vanishing
zeroth-mode components and moreover, in the 4D realization those the zeroth-mode
component of an even (odd) field will be left-handed (right-handed).

By promoting the SM fields to 5D fields in the orbifold with the identification rules
just discussed we can retrieve the usual 4D SM Lagrangian plus additional degrees of
freedom and interaction terms associated to the extra dimension. Without going into
the details of such decomposition (we instead refer to Ref. [43]), we only comment of
the resulting effective field theory.

SM bosons gaµ, Aµ, Zµ, W±µ H, GZ , G±W

KK(n) bosons g
a (n)
µ , B

(n)
µ , A

(n)
3µ , W± (n) H(n), a

(n)
0 , a

(n)
± B

(n)
5 , A

(n)
3 5 , W

± (n)
5

SM fermions eR, (eL, νe) (u, d)R, (u, d)L

KK(n) fermions e
(n)
s , e

(n)
d , ν

(n)
e u

(n)
s , d

(n)
s , u

(n)
d , d

(n)
d

Table 1.1: Particle spectrum of the model with one universal extra dimension. Dot-underlined fields are
non physical Goldstone bosons and we omitted ghost fields. For clarity, we neglected the mass mixing
associated to electro-weak symmetry breaking.

First, by performing a correct counting of the degrees of freedom we observe that
in contrast to SUSY for every right-handed and left-handed fermion in the SM there
will be a corresponding Kaluza-Klein (KK) tower of massive Dirac spinors. Since KK
particles do not acquire their masses through spontaneous gauge symmetry breaking but
through the compactification, KK excitations of those Higgs-doublet degrees of freedom
that are non-physical in the SM will become physical. On the other hand, the missing
longitudinal degrees of freedom for the (massive) KK excitations of vector gauge fields
will be provided by their corresponding (Goldstone bosons) fifth component excitation3.

Table 1.1 provides a summary of the particle content of the model. Notice that all
KK excitations share the electro-weak group transformation properties of their corre-
sponding zeroth-level partners. For instance, es is an SU(2) singlet and therfore has
hypercharge -1. Finally, the dimensionfull gauge and Yukawa couplings in the 5D the-
ory are related to the usual dimensionless couplings of the SM by the identification
g = g5/

√
2πR.

3Strictly speaking, KK excitations of both Higgs-doublet scalars and the fifth components of electro-
weak gauge fields are linear combinations of three physical degrees of freedom and three Goldstone
bosons per KK mode.
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Figure 1.3: Lorentz violating 5D loop diagram [4].

1.3.1.1 Lightest Kaluza-Klein Particle

The UED theory as introduced before bears, by construction, the same symmetries
as the SM. In particular, the Poincaré symmetry which is the product of translation
and Lorentz invariance is an exact symmetry of the resulting 4D theory. However,
such a symmetry in the 5D setup is broken by the compactification: the fact that the
fourth spatial dimension is different than the other three breaks Lorentz invariance and
the existence of two fixed points x5 = 0, πR in the orbifold compactification breaks
translation symmetry. Since the conserved quantity associated to translations are the
corresponding momentum components –in particular, p5 = n/R for translations in the x5

coordinate–, breaking of such a symmetry results in violation of momentum conservation.
Therefore, the KK-number is not conserved in this model.

Poincaré symmetry breaking and consequently KK-number violation occurs only
globally. Locally, the compactness of the fifth dimensions is not apparent. In quantum-
field theoretical terms this means that KK-number violation will become apparent at
the loop level. However, a smaller discrete symmetry remains unbroken: KK-parity.
This is basically the flipping invariance of the extra dimension. As a consequence, the
lightest first-mode KK particle (LKP) is stable and, if the usual conditions are met, a
suitable candidate for DM.

Understanding the mass spectrum of the KK mass tower is essential in determining
which of the mode-1 KK particles is the LKP. We briefly mentioned before that the

mass of the n-th KK excitation of a scalar particle has a mass Mn =
√
M2
S + (n/R)2,

where MS is the mass of the zeroth-mode particle. By a similar argument the reader
can convince himself that also for vector excitations the same formula applies, while
for spinor fields Mf

n = Mf + n/R. If the compactification scale is orders of magnitude
greater than the mass of the mode-0 particles, then the masses of all nth-mode KK
particles lie around the same value Mn ' n/R. If we want to determine which one out
of all the mode-1 KK particles is the lightest, radiative corrections are crucial.

Since the mechanism generating the masses of the KK particles is rather unconven-
tional, we need to identify what kind of radiative phenomenon will be responsible for the
quantum corrections of the KK particles masses. Although at the beginning it might
seem rather formal and difficult to compute, radiative corrections affecting the mass of
the KK particles exclusively stem from radiative terms with explicit Poincaré-symmetry
violation.
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Both orbifold and S1 compactifications violate Lorentz symmetry, as (in a global or
topological sense) the compact extradimension is different than the other ones. Vacuum
polarization diagrams where the loop winds (see fig. 1.3) around the compact dimension
will thus be the diagrams of interest. Ref. [4] showed that these diagrams are finite and
computed them explicitely by summing over the winding number rather than over p5.

The second and, at least for large n, main contributors of radiative mass corrections
are translation violating terms that are localized in the orbifold fixed points. Vacuum
polarization diagrams also contain KK-number-violating diagrams that give rise to ki-
netic and mass mixing terms. Also Ref. [4] comprehensively studied these and in the
concrete case of UED they were able to obtain the full KK tower spectrum of physical
masses by assuming minimality. Where the minimality is imposed by requiring that
the radiative terms at the orbifold fixed points vanish at the cutoff scale where physics
beyond the UED model takes over.

Figure 1.4 portrays the mass spectrum of mode-1 KK particles if minimality is as-
sumed. Albeit using the exact formulae and methodology discussed in Ref. [4], we used
a different value for the cut-off scale ΛR = 5 [44]. Larger values are not allowed as they
would jeopardize the stability of the electroweak vacuum [45] (see also [46–49]).

We see in fig. 1.4 that the LKP is the first excitation of the U(1) gauge field Bµ
(denoted as B(1)). This is of course a suitable DM matter candidate since is neutral,
massive, weakly interacting and moreover it could have been thermally produced in the
early Universe if the compactification energy scale R−1 1.2 TeV in combination with
ΛR = 5 [50].

b2

Τ1

Τ2, ΝΤ

g

W, A3

H
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a0

B

u
Q

d

e
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Figure 1.4: Mass spectrum of the first mode particles in the minimal UED for a compactification mass
and cutoff scales R−1 = 1.2 TeV and Λ = 5.6 TeV respectively.
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Chapter 2

Strategies to search for Dark
Matter

In the previous chapter we discussed how an appealing theoretical mechanism can ex-
plain the observed abundance of DM in the Universe while at the same time providing
solutions to intrinsic problems in elementary particle physics.

In the remaining of this thesis we will follow this WIMP paradigm as our guiding
principle in searching for the DM. The hunt for WIMP DM can be divided into three
categories depending on the process in which the WIMP participates. These are collider
production, direct and indirect searches for DM. All these strategies are equally impor-
tant as they complement each other. In this thesis we will focus on the latter while in
the following we mention the basic idea behind the former strategies.

2.1 Colliders

WIMP DM has the defining property that it can be probed at the ∼ GeV−TeV scale,
which is precisely the energy scale of the CERN’s Large Hadron Collider (LHC) [51]
currently operating in the Swiss-French border near Geneva. Although there is up to
date no claimed evidence of any signal at the LHC that can be attributed to DM, there
is hope that in the next few years the LHC can shed some light on the nature of DM.

In the LHC high energy proton-proton collisions are investigated by, predominantly,
two big experiments: ATLAS [52] and CMS [53]. Early 2012 both collaborations an-
nounced the discovery [54, 55] of a boson that, according to their measurements, has
the properties of the Higgs boson of the Standard Model. After a two-year shutdown
the LHC made its restart quite recently. It will now be able to reach its maximum
centre-of-mass energy capabilities: 14 TeV.

In particle colliders such as the LHC, WIMP DM is expected to be produced quite
rarely in collisions. This limitation can be overcome if the collider has a large luminosity
which is the case of the LHC. The luminosity is, roughly speaking, a quantity that
indicates the number of collisions per unit time.

Once a WIMP pair is produced in, for instance, a proton-proton collision at the LHC,
they escape from detection. The key variable to identify events where these particles
might have been produced is the so-called missing transverse energy. Depending on the
particle physics model, other strategies are typically used to constrain the parameter
space of the model.

A model-independent approach can be implemented by means of effective field theory
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Figure 2.1: Inferred limits on the (spin-independent) WIMP-nucleon cross section from collider data.
Left: CMS [5]. Right: ATLAS [6].

–for a review the reader can refer to [56] or to the earlier work [57]–. The resulting limits
on the production cross section of WIMPS that are inferred from such analyses are then
translated, by crossing symmetry, into limits on nucleon-WIMP scattering cross sections
so that they can be compared to corresponding limits from experiments of direct DM
detection. Figure 2.1 shows how the CMS constraints on the nucleon-WIMP cross
sections [5, 6] compare to the constraints on the same process as obtained by direct
detection experiments.

2.2 Direct detection

As we show below, in the solar neighbourhood we expect that there are seizeable amounts
of DM. Therefore, interaction of ambient DM particles with experimentally monitored
atomic nuclei could lead to detectable signals. This possibility of directly detecting
DM has given rise to the birth of several dedicated experiments such as XENON100
(XENON1T) [58, 59], LUX [60], DAMA/LIBRA [61], etc. where nuclear recoils caused
by an eventual scattering of a DM particle off a nucleus are measured through the
scintillation light that is emitted in the process. Cryogenic detectors such as CDMS II
[62], CRESST [63], EDELWEISS [64] on the other hand measure the recoils by detecting
the heat that is produced when a nucleon-DM scattering takes place.

Figure 2.2 displays the limits on the scattering cross sections from different direct de-
tection experiments. The DAMA/LIBRA collaboration and its predecessor DAMA/NaI
reported an annual modulation which they interpreted as caused by DM [61]. Depending
on the WIMP model, the preferred parameter regions associated to this interpretation
are the bubbles in fig. 2.2. Similarly the CRESST collaboration interpreted in Ref. [65]
a number of anomalous events as originated by DM. These claims are however in strong
tension with other experiments.

2.2.1 Local DM density

Direct DM detection is highly dependent on the amount of DM in the Solar System: the
higher the density of DM at Earth the higher the probability of detecting it. Since this
quantity will be of great interest also for the indirect detection strategy that is discussed
below, let us say a few words about the current situation.
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Figure 2.2: Limits from several direct DM detection experiments on the spin-independent WIMP-
nucleon cross section and the sensitivity limit where atmospheric neutrino background fluxes are resolv-
able [7].

The local DM density can be measured “locally” by studying the vertical motion
of stars near the Sun [66] or “globally” by fitting mass models for the Milky Way with
rotation curve observations [67]. The usually accepted value is ρ� = 0.4 GeV/cm3,
which corresponds to ∼1 - 40 DM particles in one litre.

The second method has the advantage that the uncertainties in ρ� are smaller at
the price of making global assumptions about our DM halo (e. g. sphericity, etc.).
We will however assume a spherical halo and adopt a local density ρ� = 0.4 GeV/cm3

consistently.

2.3 Indirect detection

Another strategy to look for DM is through the byproducts of its interactions in those
astrophysical environments where it is very likely that processes such as DM annihilation
or decay occur. In this thesis we focus on these indirect DM detection methods. In
particular, we will comprehensively discuss prospective signals associated to DM in the
electromagnetic spectrum but also mention and make use of indirect detection methods
through cosmic rays.

The general method that is applied when indirectly hunting for DM consist of con-
fronting theoretical estimates of the DM signal of interest as it arrives to Earth. The
theoretical modelling is done by making educated guesses on the unknown DM distribu-
tion as well as its microscopic properties. More specifically, for each detection channel
(gamma rays, cosmic-ray antiparticles, radio, etc.) we will introduce source functions of
the type

qann.(r, Em) =
1

2

(
ρχ(r)

mχ

)2

〈σv〉
∑
c

BR c

(
dN

dEm

)
c

(2.1)

qdecay(r, Em) =
ρχ(r)

mχ
Γχ
∑
c

BR c

(
dN

dEm

)
c

, (2.2)
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where ρχ(r) represents the DM mass distribution, 〈σv〉, Γχ and mχ are respectively the
velocity-averaged annihilation rate, decay width and mass of the DM particle. The terms
summed over are the branching ratios and differential yields of the particles relevant for
detection.

N-body simulations will prove to be useful when modelling the DM distribution and
some analytical ansätze for ρ are available. It is thus customary to scan over the different
ansätze when modelling the DM signal so as to estimate the associated uncertainties.
Analogously, we get around the uncertainties from the particle physics side by assuming
BR=1 for several benchmark cases. The particle yields are obtained by software packages
such as DarkSUSY [68].

After making the aforementioned assumptions on the sources, we plug the associated
source functions (2.1-2.2) in the appropriate propagation model. Depending on the
channel of interest, additional uncertainties, e. g. the magnitude of magnetic fields,
diffusion coefficients, etc. are to be expected. In the following we briefly discuss the
particularities of several indirect detection channels of DM.

2.3.1 The electromagnetic sky

Although WIMP DM is incapable to emit radiation by its own, there exist mechanisms
where electromagnetic radiation that is associated to DM can be emitted. Due to the
hypothesized properties of these WIMPs (mass range, etc.) they are indeed unable to
produce measurable optical light. WIMP DM is almost completely black in the optical
range.

However, there are other frequency ranges in the electromagnetic spectrum where
the DM can be observed once quantum effects (DM annihilation) are taken into account.
A quick inspection to equation (2.1) allows us to realize that for the typical WIMP DM
mass ranges, photons that are produced by WIMP annihilation have energies comparable
to the DM mass (∼ 10 - 1000 GeV). These are gamma-ray energies.

Similarly, we notice that most of the photons from DM annihilation will be produced
at those sites where the DM densities are the highest. In particular, the center of our own
Galaxy is the greatest source of radiation associated to DM to which we have access. In
figure 2.3 we see the observable spectrum of radiation coming from the Galactic Center
(GC). We notice that the intermediate frequencies (from microwaves until ultraviolet
frequencies) are inaccessible because of the interstellar dust clouds. They are invisible
in the low and high frequencies.

Fortunately, gamma rays produced at the GC travel unperturbed all the way from
their sources down to Earth. They are one of the most promising observational channels
in the field of indirect DM detection. We will see in the next chapter that the spectral
properties of a typical DM-induced gamma ray signal can be such that they can not be
mimicked by any known astrophysical process, rendering them “smoking gun” indicators
of DM.

On the opposite end of the spectrum, radio measurements can also be used to search
for DM. Electrons and positrons produced by DM annihilation (or decay) will emit
synchrotron radiation while they are deflected by the Galactic magnetic field. In chapter
4 we comprehensively discuss the DM radio signal and the methods and assumptions
that enter in the associated theoretical predictions.

16



__

_
__

_
__

_

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

10
28

ν [Hz]

10
-17

10
-15

10
-13

10
-11

10
-9

ν 
S(

ν)
 [e

rg
 s

-1
 c

m
-2

]

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

E [eV]

EGRET

HESS

CHANDRA

VLT

Narayan et al.

Melia & Falcke
J1746-2851

J1745-290

Figure 2.3: Observed electromagnetic spectrum of Sgr A* (Galactic center) [8]

2.3.2 Cosmic-ray antiparticles

Cosmic-ray measurements can also hint us about the existence of wimps. Since DM
annihilation or decay produces as much particles as antiparticles, we better search for
DM signals associated to the latter so that the signal-to-background (S/B) ratio is
optimized. In particular, antiprotons and positrons are the only stable charged particles
that might be promtly produced by DM and we shall focus on their corresponding signal.
In contrast to neutral particles, antiprotons and positrons are stochastically deflected
in their journey down to Earth and it is unfortunately impossible to point back to their
sources.

2.3.2.1 Antiprotons

As predicted by almost every model, DM will annihilate or decay with a large branching
ration into hadronic channels. After the final state of the annihilation/decay undergoes a
hadronization process, created particles can start to propagate. Among these particles
there are stable high-energetic antiprotons that after interacting with the interstellar
medium arrive to Earth and are detected.

In order to describe the DM-induced antiproton signal and compare it to measure-
ments, powerful methods have been devised [30, 69] which are based on statistical fits
of cosmic-ray datasets to well motivated propagation models.

In the most general setting, the propagation of antiprotons in the Galaxy is described
by a transport equation

∂np̄E
∂t
−D(E)∇2np̄E −

∂

∂z
(Vcn

p̄
E)− ∂

∂E

(
DE(E)

∂np̄E
∂E
− b(E)np̄E

)
= Qp̄(r;E) , (2.3)

where nE is the antiproton number density per unit energy; D, DE , Vc and b(E) are
propagation variables and Q is a source function containing a contribution associated
to DM. In subsequent chapters we will use and scrutinize a similar equation in the
context of synchrotron signals of DM. In this section, we shall simply make a shallow
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discussion on the parameters entering the equation and refer to the most interesting
results reported in the literature.

The parameters D(E) and DE(E) in eq. (2.3) are the spatial and energy-space dif-
fusion coefficients while Vc and b(E) are respectively the speed of an convective wind
and the antiproton energy-loss rate. The magnitude of all parameters in this model
will be assumed to be constant within the antiproton propagation volume. The term
proportional to DE(E) in eq. (2.3) is commonly quoted as the reacceleration or Fermi
acceleration term. In a number of astrophysical setups the energy-space diffusion coef-
ficient is not independent of the spatial one and the formula

DE(E) =
2

9
V 2
a

p4

D(E)E2

is applicable [69]. Va is the drift (Alfvén) velocity of the turbulent magnetic field (see
[70] for a concrete definition) and p is the antiproton momentum. We will regard Va
as a constant parameter of the theory while we adopt the “pitch angle scattering”
parametrization of the diffusion coefficient D(E) = D0β(p/GeV)δ .

As mentioned before, the source function contains a signal term related to the anni-
hilation of DM in the halo and a background term associated to antiproton production
via cosmic-ray nuclei –typically H and He– spallation off the interstellar medium. The
signal term (2.1) is spherically symmetric respect to the center of the galaxy and sub-
dominant respect to the background terms such as for instance

QHelium = 4π

∫
dE′

(
dσ

dE

)
He′++HISM→p̄+...

nHISM
(r)ΦHe+(r;E′) , (2.4)

where ΦHe+ is the flux of cosmic-ray Helium nuclei per unit energy at a point r. In
addition to these terms, an additional term of terciary antiprotons accounting for the
annihilation of antiprotons on interstellar protons or the excitation of ∆ resonances
(inelastic scattering off interstellar protons) should also be included.

Qter. =

∫
dE′

(
dσ

dE

)
p̄(E′)+pISM→p̄(E)+...

nHISM
(r)v′p̄n

p̄
E′(r)− σp̄(E′)+pISM→p̄(E)+...nHISM

(r)vp̄n
p̄
E(r) .

(2.5)

By assuming that the interstellar gas is constrained to a thin disc of height 2h =
200 pc, neglecting energy losses and imposing cylindrical boundary conditions np̄E |edge =
0 at the edge of a cylinder of radius RD = 20 kpc and variable height L, the authors of
Ref. [69] were able to obtain analytical solutions for eq. (2.3) with no DM component.
These solutions are parametrized by five parameters D0, δ, Va, Vc and L.

Notice that since the aforementioned parameters also describe other cosmic-ray ob-
servations, they are constrained and cannot be treated as completely free parameters.
Although measurements of cosmic-ray fluxes of, for instance, heavier nuclei could po-
tentially be useful in constraining the propagation parameters, a more powerful method
considered in Ref. [71] will provide the tightest constraints on them. Namely, the ratio
of secondary boron nuclei to their progenitor primary carbon nuclei.

In Ref. [71] the authors fitted their semi-analytical solutions of transport equations
similar to (2.3) to the rather accurate boron-to-carbon (B/C) data available in year 2001.
In their analysis they found excellent agreement between their model and the data in
a parameter space that is mildly degenerate. Specifically, in the range 2 . L . 6,
variations of both L and D0 are not independent. In this regime, it is more appropriate
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to regard only the diffusion time scale L/D0 as a true free parameter [72] Therefore,
any attempt to fit the antiproton spectrum measured at Earth by means of the diffusion
model defined by eq. (2.3) should be consistent with the B/C analysis. In chapter 5
we will discuss some of these aspects in more detail and find some improved fits to the
PAMELA [23, 73] antiproton spectrum based on sophisticated statistical methods.

Another aspect that turns out to be extremely relevant for low-energy antiprotons
is the so-called solar modulation, i. e. the influence of the solar wind on the propa-
gation of the antiprotons. Before briefly discussing positrons in the context of indirect
DM searches in the next section, let us mention that the physics of solar modulation
can thoroughly be described by numerical methods that solve Boltzmann equations in
spherical coordinates respect to the Sun’s position [74]. The way solar modulation is
implemented when making predictions of antiproton fluxes arriving to Earth consists of
(i) obtaining the flux

ΦLIS(r;E) =
1

4π
np̄E(r)vp̄ ,

that arrives at the boundaries of the heliosphere –or, as usually called, the local interstel-
lar (LIS) environment– by solving eq. (2.3); (ii) use such flux as a boundary condition
to solve the equation describing the particle’s propagation within the heliosphere and
obtaining the flux at the Earth’s top of the atmosphere (TOA).

Interestingly, the effect of solar modulation on antiprotons can be shown to be equiva-
lent to a pure heliocentric electric field description [75, 76] in certain limits also discussed
in those references. Fortunately, for the antiproton energy ranges we will be concerned
in this thesis, the force-field approximation will be applicable. Under this force-field
approximation, the fluxes at the top of the atmosphere and the local interstellar envi-
ronment are related by a simple rule of three

ΦTOA(ETOA) =
p2

TOA

p2
LIS

ΦLIS(ELIS), (2.6)

where ETOA = ELIS + eφF for antiprotons and φF is an electric (Fisk) potential asso-
ciated to such effective heliocentric electric field. Its magnitude oscillates in resonance
with the ∼11 years solar cycle.

By including a DM component, the degeneracy of the B/C analysis is broken and
the results depend on L and D0 independently [30]. In other words, there exist several
choices of the propagation parameters that are consistent with the B/C but which impact
on the antiproton analysis with a DM injection can lead to rather different outcomes.
This propagation uncertainties can of course be quantified by pinpointing which set of
propagation parameters correspond to the two extreme cases where (1) the antiproton
flux is minimized (“MIN” model) and where (2) the same flux is maximized (“MAX”
model). In chapter 5.4 we specify the set of parameters that result from the “MIN -
MAX” model and we use them to put constraints on the annihilation cross section of
DM.

2.3.2.2 The positron fraction

Cosmic ray positron signals have received lots of attention recently in light of the ex-
perimental evidence of a rise in the positron fraction: the ratio of the positron flux to
the total flux of electrons and positrons “e+/(e+ + e−)”. Already hinted by the HEAT,
AMS-01 and PAMELA experiments, it was recently confirmed with high precision by
the AMS-02 mission [9] (see figure 2.4).
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Figure 2.4: AMS-02 measurements of the positron to electron and positron flux ratio as reported in
Ref. [9].

Although it is tempting to attribute the existence of the excess to a DM-related
process (e. g. annihilation or decay in the halo), an astrophysical explanation is more
likely to clarify the origin of the excess. Without going into much details, the main reason
why it is difficult reconcile the excess with a DM process is, as we shall demonstrate
in chapter 4, that positrons are not able to travel large (& kpc) distances without
losing most of their energy. Since the center of the galaxy, which is the main source
of DM-induced positrons, is much too far from the Solar System (∼ 8.5 kpc), a DM
interpretation of the strong positron fraction rise must also explain why the flux is so
large.

Several theories ranging from local sources (pulsars), supernovae dynamics down to
propagation effects have been put forward. Without having any take on the possible
explanations of the excess, the AMS-02 collaboration came up with a set parametriza-
tion templates for both the electron and positron fluxes they measured. These are
phenomenologically constructed as the sum of a source term –power-law with an expo-
nential cutoff– that is identical for electrons and positrons and independent power-law
distributions. As apparent in fig. 2.4 they manage to fit their measurements remarkably.

Φe± = C±E
−α±
e± + CSE

−β
e± e−Ee±/Ec . (2.7)

The study of the DM positron signal works pretty much as in the case of antiprotons.
We consider propagation models for the positrons and solve an equation similar to
(2.3) where owing to the positron’s lower mass, the convection term as well as the
inelastic scattering sink term (positron annihilation with the ISM) can be neglected
albeit consideration of the otherwise neglected energy loss term. In chapter 4 we will
thoroughly discuss the leading mechanisms responsible for the positron’s losses of energy,
namely synchrotron radiation, inverse Compton scattering, bremsstrahlung and for lower
energies Coulomb interactions. As far as this section is concerned, we will content
ourselves by mentioning that the propagation of positrons in our galaxy is dominated
by such energy-loss mechanisms.

Regarding the source terms participating in the positron’s propagation equation, we
can either (i) pick a particular model (pulsars, SN, etc.) explaining the positron rise
and inject the DM through an adequate function (2.1); or (ii) use the parametrization
(2.7) (with all the parameters kept as variable) as a background flux to which we add
the DM-only signal. Refs. [10, 77] obtained the up-to-date most stringent constraints
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Figure 2.5: Positron limits on the annihilation cross section of DM as deducted in Ref. [10] from the
AMS-02 2014 measurements [9].

on mχ . 300 GeV DM annihilation into leptonic channels (figure 2.5). Notice that in
analogy to the antiproton analysis, the positron flux that one obtains by solving the usual
transport equation also needs to be multiplied by a solar modulation correction factor
that fortunately can also be approximated by the force-field prescription introduced
in the previous section. In section 5 we shall revisit these concepts in the context of
model-building constraints for the claimed indication of a DM-like signal in gamma rays.
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Chapter 3

Gamma rays

Gamma-ray observations as the ones carried out by the Large Area Telescope on the
Fermi Gamma Ray Space Telescope spacecraft (FERMI-LAT) [11] are of particular
interest when searching for DM. This kind of radiation is expected to be promptly
emitted as byproducts of WIMP DM annihilation or decay. In contrast to other channels,
they do not suffer from complicated interactions with magnetic fields in their paths,
providing therefore accurate spatial information about their sources.

3.1 The Gamma-ray sky as seen by FERMI

The relatively newborn field of high energy astrophysics is as fascinating as complex.
Extreme phenomena can be accessed and theoretical models can be tested with experi-
mental probes such as the Fermi telescope. This space-borne experiment is characterized
by a large field-of-view (∼ 20% of the sky), a large energy span (30 MeV - 1 TeV) and
large collection period.

Figure 3.1: NASA/DOE/Fermi LAT collaboration [11]. Gamma-ray full-sky map.

Figure 3.1 shows the Fermi sky map of one year (2009) of observations of gamma
rays with energies larger than 300 MeV [11]. According to the present understanding,
the gamma-ray sky portrayed in fig. 3.1 is composed by three major components.

1. Resolved sources: these are mostly extragalactic Active Galactic Nuclei (AGNs)
which are extreme galaxies hosting supermassive black holes (with masses 105 -
109M·) in their rather luminous cores. They release tremendous amounts of energy
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and matter in form of jets that extend up to several hundred kiloparsecs (being the
nucleus just the size of a few parsec). Depending on their alignment respect to us,
they are also named radio galaxies (edge-on), Seyfert galaxies (almost edge-on),
quasars (jet is almost head-on) and blazars (head-on jet).

We will however be more interested in the less abundant Galactic resolved sources.
The most energetic ones are mainly supernova remnants and pulsars (short for
pulsating rotating star). The former are the residual materials of either the core
collapse or the thermonuclear explosion of a dying star, while the latter are highly
magnetized rotating neutron stars. Other sources are globular clusters, pulsar
wind nebulae and high-mass X-ray binaries.

2. Isotropic gamma ray background: unresolved extragalactic sources of high
energy radiation such as the ones mentioned in the previous entry will effectively
add to an, on average, isotropic background. However other exotic components
such as intergalactic shocks in galaxy cluster mergers can also contribute.

In DM-dominated environments, gamma rays from DM annihilation are also ex-
pected to contribute to this background. Although such analyses are beyond the
scope of this thesis, we refer the reader to recent studies on such interesting DM
signatures.

3. Galactic diffuse emission: besides the Galactic sources that can be resolved
by Fermi, a diffuse component covers most of the gamma-ray sky. The dominant
emission mechanisms are:

(a) Inverse Compton scattering: high energy comic-ray electrons may scatter
ambient low frequency radiation fields. A rather cumbersome kinematical
analysis of this process shows that if E = γmec

2 is the initial energy of the
electron, the frequency of the scattered photon can be boosted by up to a
γ2 factor. For instance, electrons of a few GeV (γ = 104) can scatter off a
background light photon ∼ eV which energy after the interaction can reach
that of a gamma ray (∼ GeV).

(b) Bremsstrahlung: analogously, diffuse cosmic ray electrons propagating in
the interstellar gas will emit braking radiation (customarily called bremsstrahlung
for historical reasons) as a reaction to their encounters with heavier nuclei.
The physical description of this type of radiation is closely related to the
Compton scattering just discussed and it is explored in more detail in the
next chapter.

(c) π0 decay: nuclear collisions between cosmic ray nuclei and the ISM will
produce showers of secondary particles including neutral pi mesons π0. Pions
are however unstable and their main decay channel is π0 → γγ. In the rest
frame of the pion, each decay photon has an energy of 70 MeV. However,
they are boosted by the pion’s momentum.

Apart from the aforementioned components, an extended structure of two giant
lobes perpendicular to the Galactic plane and with a height of about 8 kpc each (not
distinguishable in fig. 3.1), was recently discovered in the Fermi data [78]. Although
its counterparts had been already seen in X rays [79] and more recently in microwave
frequencies by WMAP [80], there is no clear explanation of the origin of these Fermi
Bubbles. In the remainder of this chapter we will discuss the morphology and spectral

24



properties of a prospective new diffuse component in the gamma-ray sky, namely the
DM component.

3.2 Gamma rays from DM

In contrast to all other messengers that are relevant to indirect DM detection, the
physical description of the propagation of gamma rays is straightforward. Namely, we
just need to line of sight integration of the gamma ray emissivity function, which at a
given point r is given –as a function of the photon’s energy– by1

Γ(r, Eγ) =
1

2

(
ρχ(r)

mχ

)2

〈σv〉
∑
c

BR c

(
dN

dEγ

)
c

.

The associated brightness is therefore given by the line of sight integral of the emis-
sivity j = 1

4πΓ(r, Eγ)Eγ . Nevertheless, gamma-ray detectors usually report their mea-
surements in units of [number of photons] × time−1 × area−1 × [solid angle]−1 ×
energy−1 in order not to propagate the systematic uncertainties of Eγ also measured in
real time. Similarly, instead of directly measuring the photon flux Φγ per unit energy,
which according to our analysis reads

dΦ

dEγ
(Eγ , ψ) =

1

4π

〈σv〉
2m2

DM

∑
c

BR c

(
dN

dEγ

)
c

∫
∆Ω

dΩ

∫
l.o.s

dl(ψ)ρ2(r) (3.1)

for DM-induced photons, gamma-ray data is usually reported in terms of the differential
flux d2Φγ/ dEγ dΩ:

d2Φ

dEγ dΩ
(Eγ , ψ) =

1

4π

〈σv〉
2m2

DM

∑
c

BR c

(
dN

dEγ

)
c

∫
l.o.s

dl(ψ)ρ2(r) , (3.2)

since the angular resolution of such detectors is energy dependent.

Formula (3.2) will be central in our study of DM-induced gamma rays. Notice that
provided that none of the effects discussed in the introductory sections of chapter 6, the
gamma-ray flux (3.2) formula can conveniently be divided into two parts. The first one
is called the astrophysical J-factor

J(ψ) =
1

4π

∫
l.o.s

dl(ψ)ρ2(r) ,

that completely describes the spatial structure of the DM signal. This factor is then
multiplied by a prefactor that only depends on the microscopic properties of the DM

K(Eγ) =
〈σv〉

2m2
DM

∑
c

BR c

(
dN

dEγ

)
c

that provides the signal’s full spectral information.

1An extra 1/2 factor is necessary if the DM particle is not its own antiparticle.
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Figure 3.2: Typical spectrum of DM-induced gamma rays [12] featuring a continuum (secondaries) and
a spectral line (primary). The line’s width is determined by the energy resolution of the gamma-ray
telescope.

3.3 Spectrum

Let us start by characterizing the spectral features of the DM signal in gamma rays.
We do this by focusing on the particle physics prefactor K(Eγ). When performing
indirect searches for DM it is customary to assume that the annihilation proceeds with
a branching ratio BR ' 1 into some specific channel. Particularly popular is the b̄b
channel. The associated coupling constants participating in the computation of the
χχ → b̄b amplitude are relatively large and, in several well-motivated models for DM,
they make this channel the dominant one. In such a scenario gamma rays are produced
as secondary particles from the fragmentation of the b̄b final state resulting in a rather
featureless spectrum.

If gamma-ray photons are generated primarily via a two body or three body final
state, then interesting spectral properties aries. The former case will manifest itself as a
monochromatic gamma-ray line whereas the latter could show bump-like features that
are of course interesting for gamma-ray searches. Figure 3.2 shows a typical (Kaluza-
Klein DM) gamma-ray spectrum from DM annihilation in the halo [43] summarizing all
these aspects. In the next few sections we will discuss them in detail.

3.3.1 Gamma-ray lines

One of the most striking signatures indicating the existence of DM through indirect
searches for it, are the so-called gamma-ray lines. These would manifest themselves
as byproducts of DM annihilations into two-body states that bear at least one photon
if they should exist in nature. Kinematics arguments assure that such a photon is
monochromatic. This is the reason why such signals are known as (gamma-ray) line
signals in the spectroscopy language. The probably most important property of these
signals is that there is no known astrophysical mechanisms capable of producing similar
ones. They are therefore “smoking gun” signatures for indirect DM searches.

The energy of such signals depends on the mass of the second final-state particle.
Namely, if mX is the mass of the accompanying particle (X is typically a Z, H boson
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or another gamma-ray photon) 4-momentum conservation requires that

dNline

dEγ
= δ(Eγ − Emono) , Emono = mχ

(
1− m2

X

4m2
χ

)
. (3.3)

There are two limiting factors that play an important role in searching for this kind
of signals, though. The first one is more fundamental as it is related to the neutrality
of the DM particle. Since DM particles do not directly couple to photons because they
are electrically neutral, processes giving rise to line signals are “loop” suppressed. The
second limitation comes from the detection performance of the experimental instruments
measuring gamma rays. In theory, the width of a gamma-ray line is infinitely narrow
–eq. (3.3)– but in practice, it is actually finite and depends on, for instance, the velocity
dispersion of the DM particles (see section 6.4.1 for a thorough discussion). Nevertheless,
the energy resolution of operating detectors at experiments such as FERMI-LAT and
HESS is not able to resolve such small widths and (if the product 〈σv〉BR γX is large
enough) they would instead measure a bump centered at Eγ = mχ(1−m2

X/4m
2
χ) and a

characteristic width ∆E determined by the detector’s energy resolution. In section 3.5
we will come across an example where certain gamma-ray dataset can be fitted in such
a way that one can accommodate a line signal to it with a fairly high confidence level.

3.3.2 Secondaries

The resulting spectrum of processes like χχ→ b̄b can be obtained numerically through
software packages such as DarkSUSY[68] or MicrOmegas[81]. The details of such numer-
ical calculations are beyond the scope of this thesis but the reader might refer to the
documentation files and the aforementioned references for an overview on the methods
and calculational routines applied there.

Fortunately, the gamma-ray spectrum that results from DM annihilations into b̄b
is approximately universal as it resembles the corresponding spectra for annihilations
into other two-body channels (fermion and gauge boson pairs) where photons are only
produced as secondaries. Moreover, such spectrum can conveniently be parametrizing
through the formula [26]

dNsec.

dEγ
=

0.42

mχ

e−8x

x3/2 + 1.4× 10−4
. (3.4)

The only exception are annihilations into τ+τ− where the spectrum shows departures
from that formula and a numerical approach is therefore unavoidable.

3.3.2.1 Internal bremsstrahlung

The appealing possibility of finding DM through a “smoking-gun signature” is certainly
exciting. However, the loop suppression of the cross sections associated to these signals
represents a major limitation in searching for them. Therefore, it will be interesting to
extend our searching strategies by investigating “alternative” processes giving rise to
unique spectral features. One such example are photons from internal bremsstrahlung
(IB) on otherwise helicity-suppressed processes.

Motivated by SUSY models, consider an initial s-wave state of Majorana wimps. As
we discuss in section 5.2.1, such an initial state will have vanishing total angular momen-
tum and conservation of the same quantity will forbid a final state of massless Dirac
fermions. If the fermions are massive, the process is allowed and by simple dimensional
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analysis we expect that the corresponding cross section is proportional to ∼ m2
f/m

2
χ,

where mf is the mass of the Dirac fermion. If this mass is orders of magnitude smaller
than the DM particle mass, then the m2

f/m
2
χ factor will cause a suppression in the cross

section. This phenomenon is usually called helicity suppression and in sec. 5.2.1 we
shall provide a more technical explanation for it.

Interestingly, such suppression can be “lifted” radiatively, i. e. the branching ratio
of the radiative process χχ → f̄fγ can become larger than the helicity suppressed
χχ → f̄f . Notice that since the IB process is defined by a three-body final state,
an additional (suppressing) factor of ∼ αem will replace the typically smaller m2

f/m
2
χ

factor. In supersymmetric models IB processes can receive further enhancements if the
neutralino mass is close to degenerate with charged sleptons (in particular staus in the
so-called co-annihilation region). An analytical formula is even available [13] in the limit
of massless fermions

dNIB

dx
= αemQ

2
f

|g̃R|2 + |g̃L|2
64π2

[m2
χ(σv)χχ→f̄f ]−1(1− x)×

×
[

4x

µ(µ− 2x)
− 2x

(µ− x)2
+
µ(µ− 2x)

(µ− x)3
log

µ

µ− 2x

]
, (3.5)

where x = Eγ/mχ and dNIB/dx = (σv)−1
χχ→f̄f (dσv/dx)χχ→f̄fγ is e. g. defined in [13]

as the photon multiplicity. The mass of the sfermions f̃R and f̃L was assumed to be the
same, µ ≡ m2

f̃R
/m2

χ + 1 and g̃R(g̃L) are the couplings between the right (left) handed

SM fermion f with the neutralino and the corresponding sfermion.
The Feynman diagrams responsible for the helicity-suppression lifting are those

where the outgoing gamma ray couples to a virtual particle (diagrams of the type (c)
in figure 3.3). Those photons are usually called virtual internal bremsstrahlung (VIB)
photons while in those cases where diagrams of the type (a) and (b) are the dominant,
we will speak of final-state radiation (FSR). The term internal bremsstrahlung includes
of course both.

Figure 3.3: Feynman diagrams contributing to the first order QED corrections of the helicity suppressed
annihilation of WIMPs into a pair of charged fermions [13].

More generally, IB processes can be sizeable even if the “parent” process does not
suffer from helicity suppression. In those cases, FSR photons usually dominate the
emission spectrum associated to IB, specially at photon energies close to the DM mass.
This is attributed to collinearity of the radiated photon and either outgoing fermion,
when the fermion masses are vanishingly small. From fig. 3.3 it is not too surprising that
one can relate the cross section of the FSR process with the parent process χχ → f̄f
in a universal model-independent way. Namely, formula 3.6 can be used for any model
where the leading component of IB is FSR [82]:

dNFSR

dx
'
αemQ

2
f

π

1 + (1− x)2

x
log

[
4m2

χ(1− x)

m2
f

]
. (3.6)
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In particular, the UED model is an example where the FSR is not only the leading
component of the IB but from most of the continuum spectrum [83].

3.4 Spatial morphology

Numerical simulations such as Via Lactea II (VL2) [84] and Aquarius [85] provide quan-
titative insights about the DM mass distribution in galaxies like ours. In this section we
will discuss some basic ideas on what we have learned from N-body simulations about
the structure and sub-structures of DM in our Universe. These are essential ingredients
in understanding not only the spatial configuration of the DM-associated gamma-ray
signal but also of all possible indirect DM signals and in particular the ones relevant
to radio astronomy which will be the subject of the next chapter. After introducing all
those ideas, we will proceed to characterize the spatial properties of the DM signal in
gamma rays and discuss what the prospects of DM detection through gamma rays are.

The aforementioned cosmological simulations describe the mass distribution at a
galactic level, while cluster-scale simulations like Phoenix A-1 and cosmic-scale simula-
tions like DEUS FUR, Millennium, MultiDark, Horizon Run and Bolshoi are designed to
describe larger scales. Independent of the scale, all these simulations predict substruc-
tures, i. e. the DM halo mass distribution is composed by a smooth component and the
DM clumps or subhalos. Both of which are, to a very good approximation, spherically
symmetric. Let us in the following characterize these structures in more detail.

3.4.1 Smooth component

The DM density profile that is inferred from the aforementioned simulations can be
accurately fitted by the following parametrization

ρ(α,β,γ)(r) = ρ0
Rγ0
rγ

(
1 + (R0/rs)

α

1 + (r/rs)α

)β−γ
α

, (3.7)

where, for our galaxy, the normalization R0 ' 8.5 kpc (distance to the GC), ρ0 '
0.4 GeV/cm3 (local DM density) is assumed. The benchmark values for the rest of the
parameters are (α, β, γ) = (1, 3, 1) and rs ∼ 20 kpc which correspond to the Navarro-
Frenk-White (NFW) profile [86] for a Milky-Way like galaxy. However, the parameter
sets (α, β, γ) = (1.5, 3, 1.5) [87] and (α, β, γ) = (2, 2, 0) [1] are also physically interesting
and worth considering as we shall observe later. The divergent dependence ρ ∝ r−γ of
the DM profile (3.7) for small r means that the DM distribution has a cusp. However,
galactic simulations can resolve only distances that are larger than a few 10 pc and
thus, the radial dependence of the innermost region of the DM distribution and the very
existence of a cusp remains uncertain.

A cusp-less variant, which is favoured by the latest simulations [85], is the Einasto
profile

ρEin(r) = ρ0 e
− 2
α

[(
r
rs

)α
−
(
R0
rs

)α]
, (3.8)

where α = 0.17 and as before rs = 20 kpc gives the best fit to the Galactic halo.

Not surprisingly this type of distribution resembles the one defined by eq. (3.7) for
everywhere but at the center (r → 0) where no cusp is predicted. This DM profile
is favoured by the Aquarius simulation while Via Lactea II in turn favours the NFW
variant.
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We notice in passing that none of the high-resolution N-body simulations describing
the formation of DM halos include the effects of baryonic physics as no baryonic matter
is taken into account. This is certainly a good approximation in the global sense as most
of the matter is non-baryonic but locally, e. g. galaxy centers, effects such as baryonic
contraction [88] can modify the degree of cuspiness of the DM profile. The exponent γ
in eq. (3.7) could phenomenologically take into account such effects. The extreme case
γ = 1.5 mentioned before –the associated model is commonly called the Moore profile–
is such that the gamma-ray flux linked to DM annihilations at r = 0 becomes arbitrarily
large. This is of course regularized by an equilibrium density plateau ρp such that the
time scale of annihilations (mχ/ρp〈σv〉) and the age of the SMBH (108-1010 yr) sitting
at the center of the galaxy are equal

3.4.2 DM Subhalos

In characterizing the DM halo substructure we will need to introduce some relevant
quantities: virial mass and radius, concentration parameter, clump density, etc. Since
the formation of structures is a hierarchical process, the profile of the DM subhalos
ought to have the same form as their parent halos. For definiteness we will consider
only NFW profiles keeping in mind, however, that this discussion can be extended to
other halo models.

Notice that the result of integrating the DM density of an NFW profile –or, in
general, of a profile like (3.7) with β ≤ 3– over all space is formaly infinite. This does
not represent a paradox since the profile is embedded in a larger continuous distribution
that for radii larger than some characteristic virial radius Rvir starts to become the
dominant component. Determining the size of the virial radius of a clump with virial
mass M is done by multiplying the volume of a sphere with radius Rvir by the collapse
overdensity ∆cρc, where ρc = 3H2/8πG is the critical density defined in chapter 1. The
parameter ∆c can be estimated by ∆c ≈ 18π2 − 82ΩΛ − 39Ω2

Λ [89].
The definition Rvir introduces a different length scale in addition to the scale param-

eter rs. By dividing them we can define a universal variable (scale-independent) that
quantifies how concentrated the substructure is. We call this variable the concentration
parameter c = Rvir/rs. From the equation

(M =)4πρs

∫ Rvir

0

r2 dr

r
rs

(
1 + r

rs

)2 =
4π

3
∆cρcR

3
vir

we can analytically obtain the normalization ρs as a function of the concentration pa-
rameter

ρs(c) = ∆cρc
c3

3

[
log(1 + c)− c

1 + c

]−1

. (3.9)

This equation holds only for a NFW profile. For other types of profiles, ρs(c) is obtained
numerically. In all cases, however, the scale-independent parameter c and the virial mass
M describe the substructure completely.

N-body simulations are able to relate the virial mass with the concentration pa-
rameter down to masses ∼ 106M�. However, the clump masses can be much smaller
and extrapolations at larger mass scales are therefore needed. Unless very close, small
clumps are in any case usually taken into a smooth average and resembling the form of
the main halo profile.

In order to describe how subhalos are distributed in the main halo, the sub-halo
number density dN/dM is introduced: dN is the number of subhalos with masses
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Figure 3.4: The prompt gamma-ray emission profile from DM annihilations in simulated halos including
substructures [14]. Left: Aquarius. Right: Via Lactea II.

between M and M+dM . Simulations have proven that the number density distribution
follows a power law with exponent µ = 2− ε2, with ε ≈ 0 [85]:

dN

dM
=

κ

M0

(
M

M0

)−µ
. (3.10)

If larger clumps are considered boosting effects can occur for instance in the gamma-
ray flux. These are negligible when pointing at the center of the galaxy where there is
less substructures. As an illustrative example the gamma-ray sky map that results from
integrating all photon energies above 3 GeV is portrayed in fig. 3.4 for a DM candidate
of mass mχ = 40 GeV mainly annihilating into a bb̄ state with thermal annhilation rate
σv = 3× 10−26 cm3/s. The authors used the Aquarius (left panel) and the Via Lactea
II (right panel) simulations in modeling the DM halo and subhalos. These maps were
obtained in Ref. [14]

3.5 Have we already discovered DM through gamma rays?

In this section we will introduce the results of two recent analyses that showed indications
of DM signals in the gamma-ray sky. In one case the energy spectrum of some subset of
the FERMI-LAT data was shown to be compatible with the spectrum expected for a line
or a VIB signal. In the other case, the spatial structure of the background-subtracted
FERMI-LAT data and the energy spectrum seem also to be compatible with a DM
signal from secondary gamma rays.

3.5.1 The 130GeV line

Recently, an analysis of the publicly available FERMI data based on a novel method [16]
was able to tightly constrain the annihilation cross section into VIB photons while finding
and indication of a possible signal peaked at the energy of 130 GeV. When interpreted
in terms of DM annihilating into VIB photons, the DM would weight 150 GeV. A later
analysis of one of the authors of Ref. [16] showed that using the same method one can
also interpret such an excess in terms of a line signal [15].

Our discussion will mainly be concerned with such a line interpretation as we shall in
chapter 5 scrutinize this hypothesis with a theoretically quite sophisticated machinery
also discussed there. Nevertheless, most of the “line” analysis is identical to the one
carried out in Ref. [16].
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The original analysis reported in Ref. [15] was based on a 43-month FERMI-LAT
dataset, featuring gamma-ray energies between 1 and 300 GeV. The novelty about the
analysis carried out in both Refs. [15, 16] was that they developed a method that
allowed them to select target regions that optimally resolve the DM signal. This of
course depends on the DM profile and in light of the factorization property of the DM
flux discussed in section 3.2, the problem of finding such an optimal target does not
involve any consideration of the spectral shape of the DM signal.

In order to empirically be able to model the uncertain astrophysical background, the
authors of Refs. [15, 16] used a template obtained from a data subset of energies that
are uninteresting for their DM search (E < 40 GeV in [16] and E < 20 GeV in [15]) but
whose correlation to the background noise at the “interesting” energies is expected to
be large. The region of the sky that they investigate is defined by a latitude |b| < 84 ◦

and longitude |l| < 90 ◦.

Figure 3.5: Target region used in the analysis of Ref. [15]. Pixels were selected in such a way that the
DM search is optimized, following the method introduced in Ref. [16].

The algorithm they implement in order to approximately find the best target regions
is a bit involved but is discussed in detail in both references. Fig. 3.5 portrays the target
region that is optimal for DM searches if the DM distribution follows an Einasto profile
(3.8).

Once the target is fixed, the E > 20 GeV data originated there can be applied some
spectral fits. We first notice that owing to the bumpy shape of line signals in general,
only a small energy “window” around the line’s position E = mχ will be necessary
when searching for lines. This remark is of fundamental importance, since it allowed
the authors to locally model the highly non-trivial background with a power law. The
width of such sliding energy windows was adjusted according to the detector’s energy
resolution.

Figure 3.6 shows the results of fitting the data of the gamma-ray photons with
E > 20 GeV from the optimal region 3.5 to a background plus a line signal at the
130 GeV energy. An comprehensive statistical analysis also carried out in [15] shows that
the significance of the excess amounted to 4.3σ. However, since the scans over different
sliding energy windows are statistically independent from each other, the probability of
finding statistical fluctuations that resemble the line signal increases and therefore the
line’s significance effectively decreases. This fact is known as the look-elsewhere effect
and it reduces the significance of the 130 GeV line down to 3.2σ. The best-fit values
were then found to be mχ = 129.8± 2.4+7

−13GeV and 〈σv〉χχ→γγ = (1.27±+0.32+0.18
−0.28 ×

10−27)cm3/s for the Einasto profile (3.8).

An independent later analysis reported in Ref. [90] confirmed these findings with
even larger significances suggesting new gamma-ray detection strategies at FERMI –
see also [91]–. By using a slightly different dataset the Fermi collaboration also found
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Figure 3.6: Statistical fit to the count of photons coming from the optimal region (3.5) as obtained in
Ref. [15].

indications of a line-like signal at the 133 GeV energy but with a lower global significance
of 1.5σ [92].

Nevertheless, after more years of data acquisition by FERMI, the significance of the
line signal started to systematically drop as shown in figure 3.7. In section 5.2 we shall
constrain the model building for the 130 line feature with the set of parameters originally
described in Ref. [15].

Figure 3.7: Significance of the 130 GeV feature as a function of data collection time [17].

3.5.2 The GeV excess

Another highly scrutinized case for DM is the so-called GeV excess. Originally suggested
more than five years ago [93, 94] and recently revisited [24] this GeV excess could be
explained by low-mass DM annihilating in the inner galaxy.

The authors of Ref. [24] also analyzed FERMI data taken between August 4, 2008
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and December 5, 2013 and by applying a different event-selection scheme than the one
customarily used by the Fermi collaboration they were able to spot a gamma-ray excess
at the vicinity of the GC that is consistent with a DM interpretation.

In their study, they considered two different regions of interest (ROIs). The first one
(inner galaxy) is defined in galactic coordinates by |l| < 20 ◦ and 1 ◦ < |b| < 20 ◦ while
the second one (galactic center) by |l| < 5 ◦ and |b| < 5 ◦.

In both analyses after carrying out their refined event selection, they generated a
set of sky maps binned in energy. In the inner-galaxy study they masked out the ROI’s
300 brightest point sources. For several choices of the slope γ in

ργ(r) = ρ0
Rγ0
rγ

(
1 +R0/rs
1 + r/rs

)3−γ
, (3.11)

they fitted the measured photons to the sum of three spatial background-photon tem-
plates: 1) diffuse component as modelled by the FERMI collaboration, 2) isotropic
gamma-ray background and 3) Fermi bubbles. The fourth component is given by (3.2).

Figure 3.8 shows their results of their inner galaxy study. On the left panel we see
how by varying the slope γ impacts the quality of the fits in terms of their Test Statistics
(TS) variable. The preferred value was found to be γ = 1.2. In the first version a larger
ROI was considered and the preferred value there was instead γ = 1.28. In section 5.4
and in Paper [II] we use the former.

Figure 3.8: Left frame: TS as a function of the inner slope of the dark matter halo profile, γ for the
full sky (solid line) and only the southern sky (dashed line). Right frame: DM component spectrum.
A generalized NFW halo profile with an inner slope of γ = 1.26 (normalized to the flux at an angle of
5◦ from the GC) is assumed. Shown for comparison (solid line) is the spectrum predicted from WIMPs
annihilating into b̄b.

By fixing the spatial form of the DM signal through such an analysis, they fit the
energy spectrum of the resulting DM templates for a set of different main annihilation
channels and DM masses. The right panel of fig. 3.8 shows the (updated) resulting
best-fit curve for the gamma-ray spectrum of the DM component if the DM were to
annihilate mainly into bb̄ pairs.

An almost identical analysis was done in the innermost region defined by |l| < 5 ◦

and |b| < 5 ◦ (GC analysis). The only difference was that they did not include the Fermi
bubbles spatial template and instead of masking out point sources, they modelled them.
In this analysis the resulting preferred slope region is broader γ ∈ (1.04, 1.24) than the
one encountered in the inner-galaxy study: γ ∈ (1.15, 1.22).

In figure 3.9 we show in a annihilation-rate vs. DM mass parameter-space dia-
gram the preferred values of the Inner Galaxy analysis of Ref. [24] for the several
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Figure 3.9: 1, 2 and 3σ contours of the preferred regions of the GeV excess if interpreted in terms of DM
annihilating into the channels displayed in the figure. The upper ends of the bars indicate the centroids
of the same regions for the shallower slope γ = 1.04

annihilation channels considered there. The error bars indicate the propagated uncer-
tainties on the annihilation rate σv from considering the shallower profiles favoured
by their Galactic Center analysis. In practical terms the upper ends of those er-
ror bars are obtained by multiplying the each blob centroid by the numerical factor
ρ2
γ=1.24[r(3 ◦)]/ρ2

γ=1.04[r(3 ◦)] ' 3.16, where r(3 ◦) ' 445 pc is the radial distance to the
GC such that the subtended angle in relation to the Sun amounts to 3 ◦.

The possibility that the GeV excess is really an indication of DM annihilations in the
center of our galactic DM halo has certainly raised lots of interest in the community. We
actually investigated the implications of this claim in other indirect detection channels
in section 5.4. Most of the results we present there are also included in our paper [95].

Another related publication that received lots of attention and inspired some of the
modifications for the newest version of Ref. [24] was Calore et al comprehensive study of
the background model systematics [96]. The strongest result there is that the GeV excess
energy spectrum can also be well fitted by a broken power law in contrast to typical
spectra from secondary gamma-rays from DM annihilation into charged particles (see for
instance fig. 3.8). The main reason why this is possible and compatible with the findings
of Ref. [24] is that the background contribution is orders of magnitude larger than the
signal expected from DM annihilation. Even relative small changes in the background
field can lead to qualitative differences in the subdominant (DM) component.
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Chapter 4

Radio

Astronomical observations in the radio band have been essential in the development
of modern astronomy. Major discoveries in the 20th-century astronomy such as not
only the CMB but also the first quasars and pulsars, and the 21-cm hydrogen line were
achieved by radio astronomers

In this chapter we will introduce the possible imprints of WIMP DM on the radio
sky. Although the data used in this thesis to e. g. put constraints on the DM models
is not particularly new, the methods and theoretical models discussed in this chapters
are the state-of-the-art tools for DM phenomenology in these frequencies. The fact that
high-quality data from low-frequency radio interferometers such as the Low Frequency
Array (LOFAR) [97] and the planned Square Kilometre Array (SKA) [98] will become
available in the next few years, makes it crucial to deeply understand the DM signatures
in radio.

4.1 Basic facts about radioastronomy

One of the reasons why radio observations are so useful is that in analogy to the optical
radiation, for radio signals the atmosphere is transparent and, for a related reason, they
can pass through interstellar regions that are impossible to penetrate by their optical
counterpart. As a consequence, radio observations are one of our windows to e. g. the
dynamics of the center of our galaxy.

Figure 4.1: Max Planck Institute for Radio Astronomy. Full radio sky map generated by Glyn Haslam
[18].

Due to the macroscopic scale of radio wavelengths, an enormous level of engineering is
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required to attain a good angular resolution. Figure 4.1 shows the 408 MHz sky map that
results from combining measurements of the radio antennas of three radio observatories:
Jodrell Bank in England [99], the Max Plack Institute for Radioastronomy in Germany
[100] and the Parkes Observatory in Australia [101].

Analogous to gamma rays, the bright spots in fig. 4.1 are distant radio sources such
as pulsars, supernova remnants in our Galaxy and all different types of AGNs: radio
galaxies, quasars, blazars, etc. There is also an isotropic background which has been
recently characterized in Ref. [102] and investigated in the context of annihilating WIMP
DM in Ref. [103]. The rest of the emission is mostly attributed to diffuse synchrotron
radiation and thermal bremsstrahlung in interstellar nebulae.

In the next section we will describe the emission of radio waves through synchrotron
radiation in quite some detail. We will however also briefly discuss the spectral features
of the free free (bremsstrahlung) emission. As a final remark about the fascinating
physics of radio astronomy, the polarization information of the observed radio waves
can be used to learn about the interstellar magnetic field. This is done by means of the
Faraday rotation measure RM

RM =
e3

2πm2c4

∫
dsne(s)B‖(s) , (4.1)

where ne is the number density of electrons that the radio wave faces in its path. This
formula relates the axial component of the magnetic field B‖ in the line of sight of the
observed polarized source (typically a synchrotron emitter) with the observed angle of
polarization θobs. through the formula θobs.(λ)−θemit.(λ) = RMλ2. Although the original
polarization is of course not known, an spectral analysis suffices to be able to determine
RM.

4.2 Synchrotron radiation

Charged particles accelerated by magnetic fields radiate in form of synchrotron radi-
ation. Although its name refers only to laboratory experiments where this type of
radiation was first observed [104], this phenomenon is present in countless physical set-
tings. As mentioned before, several observations in radio astronomy are explained by
synchrotron emission. In particular, annihilation or decay of DM particles may produce
ultra-relativistic electrons and positrons that interact with ambient magnetic fields caus-
ing them to emit synchrotron radiation. In this section we will discuss the properties
of such synchrotron signal focusing however on ultra-relativistic cosmic-ray electrons
(positrons).

4.2.1 Angular dependence and trajectory

Given a charged particle’s trajectory r(t) its associated radiated power per unit solid
angle is obtained with aid of the Poynting vector S evaluated at a distance R→∞ and
direction n by [19]

dP (t′)
dΩ

= lim
R→∞

R2[S · n](1− β · n) , (4.2)

where the solid angle element dΩ is constructed with respect to the particle’s instanta-
neous position (see fig. 4.2), the 1− β · n factor is necessary in order for t′ to indicate
the particle’s proper time. For a particle experiencing acceleration perpendicular to its
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Figure 4.2: Right: graphical definition of the angular coordinates considered. Left: instantaneous emis-
sion profile of a ultra-relativistic synchrotron emitter. Images borrowed from J. D. Jackson’s Classical
Electrodynamics [19] and M. S. Longair’s High Energy Astrophysics [20].

velocity, the resulting power reads

dP (t′)
dΩ

=
e2

(4π)c

‖β̇‖2
1− β cos θ

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
. (4.3)

In order to better understand formula (4.3) notice that for ultrarelativistic particles
the denominators become vanishing small at θ = 0, meaning that most of the power
goes in the forward direction of the particle’s motion. It is therefore safe to expand
trigonometric functions involving θ and take the leading terms as we will do henceforth.
Right panel of figure 4.2 depicts the emission profile described by eq. (4.3). The emission
can be shown to be constricted to a narrow cone of half angle ∆θ ∼ γ−1 in the direction
of motion.

Let us now discuss the particular case of an ultrarelativistic charged particle with
charge e in a uniform magnetic field B. As it is well known, even without neglecting
energy losses due to synchrotron radiation, the motion of such particle describes an
helix around a magnetic field line1. The angular frequency is given by ωB = ecB/E, the
Larmor radius rL = β⊥c/ωB and the pitch angle α (angle between B and v) is a free
parameter. For the moment we set α = π/2 (circular motion perpendicular to B).

Notice that the angular coordinates in eq. (4.3) depend on t′. This means that
an observer sitting at a fixed position will measure pulses of synchrotron radiation
at a frequency ν0 = ωB/2π (see fig. 4.3). By integrating eq. (4.3) we obtain the
instantaneous radiated power

Psynch. =
2

3

e2‖β̇‖2
c

γ4 =
2e4B2E2

3m4
ec

7
. (4.4)

Conservation of energy implies that P (t′) = −dE/dt′. In one period

δTB = 2π/ωB =
2πE

ecB
∼ 1 h

(
B

µG

)−1( E

GeV

)
1A convincing way to realize that energy losses affect very little the particle’s orbit is by noticing

that even big variations of γ(� 1) do not affect the condition β ' 1.
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Figure 4.3: Synchrotron radiation wavefronts of ultrarelativistic charged particles in circular motion.
Image from [19].

the induced change in E is extremely small:

δE

E
= −4πe3BE2

3m4
ec

8
∼ −10−15

(
B

µG

)(
E

GeV

)2

. (4.5)

This condition certainly supports the assumption that the radiating electron’s trajectory
is well described as a perfect helix. In the following we shall focus on the frequencies
that the synchrotron radiation is able to produce.

4.2.2 Spectrum

The frequency span of the synchrotron radiation is very rich as it involves a wide range
of frequencies that can be estimated by first principles. From figure 4.3 we notice that
observers will measure an almost exact periodic emission profile with fundamental fre-
quency ω0 = ωB (c/L0 in fig. 4.3). As a consequence of the syncrhotron radiation’s
pulsating structure, the first modes of its Fourier expansion will give negligible contri-
butions while high frequencies ωc ∼ c/L (or equivalently higher-order modes ∼ L0/L)
will dominate. The discreteness property of the spectrum can therefore be disregarded
(large Fourier-mode limit).

Estimation of ωc (or L in fig. 4.3) can be done in two steps. First, observable
radiation will be emitted in a time ∆t∗ = ∆s/v ' rL∆θ/cβ, where ∆s is the distance
traveled by the particle while it emits observable radiation and v = cβ is its speed.
Second, notice that the arrival times differ from ∆t∗ due to the fact that radiation
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Figure 4.4: Graphical definition of polarization vectors and curvature radius. Image from [19].

moves at the speed of light2, and therefore

∆t =
L

c
=

(
1

β
− 1

)
rL
cγ
' rL
cγ3

=
1

γ3ω0
,

where we used ∆θ ' γ−1. As customary we define the cutoff frequency ωc ∼ 1/∆t of
the synchrotron emission as

ωc ≡
3

2

(
E

mc2

)3

ωB =
3eE2B

2m3c5
. (4.6)

With this expression we can estimate the number of photons emitted per cycle Ncyc

by multiplying eq. (4.5) by E/}ωc yielding

Ncyc = 2× 106

(
E

GeV

)
.

Interestingly, the expression is independent of B and the large number justifies the
classical treatment of this phenomenon.

A formal treatment of the spectrum of the synchrotron emission in the general α 6= 0
case can be done by considering the Fourier decomposition of eq. (4.2), which after some
amount of algebra can be written as

d2W

dω dΩ
=

e2

4π2c

∣∣∣∣∫ dtn× (n× β) eiω(t−n·r(t)/c)

∣∣∣∣2 , (4.7)

where in contrast to eq. (4.2) the solid angle element dΩ here refers to fixed direc-
tion in space. Nevertheless, owing to the localized –in angular terms– property of the
synchrotron emission both solid angle elements are the same for the times where there
will be actual radiation emitted in that direction. By choosing a system of coordinates
such that the z axis is perpendicular to the instantaneous trajectory plane and defining

2Think the pulse as a rectangular train of energy. While the front edge travels a distance c∆t∗ the
rear one will be behind the front one by a distance c∆t∗ −∆s
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Figure 4.5: Time averaged emission profile of a synchrotron emitter traveling with a pitch angle α.
Image from [21].

unitary vectors ε⊥ and ε‖ as displayed in figure 4.4, the vectorial prefactor and exponent
in eq. (4.7)’s integrand can be written as [21]

n× (n× β) = −ε‖β sin(ωB⊥t) + ε⊥β cos(ωB⊥t) sin θ ' −ε‖ωB⊥t+ ε⊥θ

ω
(
t− n·r(t)

c

)
= ω

(
t− rL

c sinωB⊥t cos θ
)
' ω

2

([
1
γ2 + θ2

]
t− ω2

B⊥
3 t3

)
[1 +O(γ−2)]

where we introduced ωB⊥ = ecB⊥/E = ωB sinα. We can thus write

d2W
dω dΩ = e2

4π2c

∣∣−ε‖A‖(ω) + ε⊥A⊥(ω)
∣∣2 (4.8)

A‖(ω) = ωB⊥
∫

dtt exp iω2

[(
1
γ2 + θ2

)
t− ω2

B⊥
3 t3

]
= i√

3ωB⊥

(
1
γ2 + θ2

)
K2/3(ξ)

A⊥(ω) = θ
∫

dt exp iω2

[(
1
γ2 + θ2

)
t− ω2

B⊥
3 t3

]
= 1√

3ωB⊥

(
1
γ2 + θ2

)1/2
K1/3(ξ)

ξ ≡ ω
3ωB⊥

(
1
γ2 + θ2

)3/2
,

where Kν(ξ) are modified Bessel functions of order ν.
The decomposition (4.8) allows us to learn about the polarization properties of the

synchrotron emission as the unitary vectors ε⊥ and ε‖ are precisely the polarization
vectors of the radiation field. By integrating (4.8) over all angles we obtain the radiated
energy per unit frequency radiated in one orbit for both polarizations:

dW⊥
dω =

√
3e2E sinα

2mc3
[F
(

ω
ωc⊥

)
+G

(
ω
ωc⊥

)
] (4.9)

dW‖
dω =

√
3e2E sinα

2mc3
[F
(

ω
ωc⊥

)
−G

(
ω
ωc⊥

)
] (4.10)

F (x) = x
∫∞
x dξK5/3(ξ) , G(x) = xK2/3(x) (4.11)
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where ωc⊥ is obtained by making the substitution B → B sinα and the angular inte-
gration was actually confined to the cone shown in figure 4.5 (dΩ → 2π sinα dθ). The
total energy radiated in one orbit per unit frequency is therefore

dW

dω
=

√
3e2E sinα

mc3
F

(
ω

ωc⊥

)
. (4.12)

After a highly non-trivial argument discussed in the appendix B the associated power
is obtained by dividing this expression by one period T = 2π/ωB yielding

dPsynch.

dω
=

√
3e3B sinα

2πmc2
F

(
ω

ωc⊥

)
, (4.13)

which, when integrated, leads to formula (4.4) modulo the transformation B → B⊥.
This formula is the central result of this section. In figure 4.6 we show in arbritrary
units and for α = π/2 such a spectrum.
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Figure 4.6: Synchrotron radiation spectrum. Dashed green and red lines graphically represent the low
(4.14) and high (4.15) frequency tails of the spectrum respectively.

We see that the synchrotron spectrum is characterized by a very broad flat part at
frequencies below ωc which can be estimated by a soft power law

dPsynch.

dω
∼ e2ωB

c

(
ω

ωB

)1/3

ω � ωc . (4.14)

At the other end of the spectrum one finds a sharp cutoff at frequencies of the order of
ωc reaching a maximum at ω ' 0.29ωc. The functional dependence of the spectrum at
the high frequency limit is given by

dPsynch.

dω
'
√

3π/2
e2ωB

2πmc3

(
ω

ωB

)1/2

e−ω/ωc ω � ωc . (4.15)
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4.2.3 Energy losses revisited

Let us, as usually done in the literature, rewrite the emitted energy –or equivalently
the absolute value of the particle energy loss rate (4.4)– in terms of the electromagnetic
energy density uEM = B2/8π

− dE

dt
= Psynch. =

2σTuEME
2 sin2 α

m2c3
, (4.16)

where σT = 8πe4/m2c4 is the total Thomson scattering cross section (between a classical
electron and an electromagnetic radiation field). For an ensemble of electrons with
random orientations, the average energy loss rate over pitch angles will also prove to be
useful: 〈

dE

dt

〉
pitch

= −2σTuEME
2

m2c3

1

2

∫ π

0
dα sinα sin2 α = −4σTuEME

2

3m2c3
, (4.17)

where the average is performed over al solid angle elements dΩ = 2π sinα dα. In the
next subsection we discuss such averaging at the fluxes level.

4.2.4 Pitch-angle average

The discussion presented in this section has so far been concerned with the synchrotron
emission of electrons in anuniform magnetic field. In practice this assumption is not
valid globaly: galactic magnetic fields are turbulent and unfortunately up-to-date there
remain countless open questions as to the details on how they are generated. We can
however make use of basic known facts in order to understand the synchrotron sig-
nals that high energetic electrons produce in the regions of interest to this work and
ultimately justify that pitch angles can be averaged out.

The central argument here is that the coherence length of the interstellar magnetic
field is O(10− 100 pc) which is several orders of magnitude larger than typical Larmor
radii of ∼ GeV electrons (∼ 10−6 pc). Therefore, locally the results just discussed
can safely be regarded as exact. In more generic cases, however, the direction of the
magnetic field will significantly vary within the observed regions as well as along the line
of sight. It is thus reasonable to assume that all synchrotron radiation that we receive
from a specific direction is produced by a randomly oriented magnetic field such that,
on average, the power radiated by a single electron synchrotron per unit frequency is
given by 〈

dP

dω

〉
pitch

=

√
3e3B

4πmc2

∫ π

0
dα sin2 αF

(
ω

γ3ωB sinα

)
. (4.18)

Such integration can be carried out analytically [105] yielding

dPrandom

dω
=

2
√

3e3B

πmc2
x2

(
K4/3(x)K1/3(x)− 3

5
x[K2

4/3(x)−K2
1/3(x)]

)
, (4.19)

with x = ω/ωc.

4.2.5 Monochromatic approximation

Formulas (4.13) and (4.19) provide a very accurate description of the physics of syn-
crhotron radiation. However, one encounters quite often cases where astronomical un-
certainties are so big that it is possible to give up the accuracy in favor of the practical,
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e. g. saving computation time. Therefore, it is common for people to assume that
the synchrotron spectrum of high energetic particles is composed by a single frequency
ω = 0.29ωc –the frequency where the power 4.13 is maximized–. In mathematical terms
this is equivalent to making the identification

F (x) = x

∫ ∞
x

dξK5/3(ξ)→ 8π

9
√

3
δ(x− 0.29) .

This approximation, besides making the calculations easier, serves as a pedagogical
tool that helps to understand complicated physical phenomena where synchrotron radi-
ation is emitted. Additionally, the fact that the synchrotron power has abrupt feature
around the critical frequency makes this approximation a bit sensible.

4.3 Diffusion-loss equation

The synchrotron radiating electrons and positrons that will interest us will scatter with
the turbulent magnetic field in a random manner while adiabatically losing their energy
–eq. (4.5) makes this evident–. Both effects are captured in a special limit of the
Boltzmann equation, namely the diffusion-loss equation. An instructive way of deriving
this equation is given in Longair’s textbook [20]. In the following we will reproduce such
a derivation.

Figure 4.7: Diagram illustrating the continuity equation in a phase-space element. Image inspired from
[20].

Let us consider an ensemble of particles in one dimension. Each particle will be
completely identified by its position x and its energy (or momentum) E. We thus
define nE(x; t) as the particle number per unit energy and per unit length and derive
an equation that describes its dynamics by requiring that the total flux of particles in a
phase-space element vanishes unless there is a mechanism injecting new particles –e. g.
DM annihilations–.

As portrayed in figure 4.7, the number of particles δn(t) = nE(x; t) dE dx in a phase-
space element can change both by (i) the inflow or outflow of particles with the same
energy from either side (left or right of x) into or out of the line element dx and by (ii)
the energy loss or gain of particles sitting at point x. Taking both effects into account
at once, plus the possibility that particles are injected leads to

d

dt
(δn(t)) = −(Φx+dx(E)− Φx(E)) dE − (ΦE+dE(x)− ΦE(x)) dx+ q(x,E; t) dx dE
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∂nE(x; t)

∂t
dx dE = −∂Φx(E; t)

∂x
dx dE − ∂ΦE(x; t)

∂E
dx dE + q(x,E; t) dx dE ,

∂nE(x; t)

∂t
= −∂Φx(E; t)

∂x
− ∂ΦE(x; t)

∂E
+ q(x,E; t) , (4.20)

where q(x,E; t) dx dE is the number of injected particles per unit time and Φx, ΦE are
the components of phase-space current density.

4.3.1 Diffusion term

The first term on the right-hand side of equation (4.20) can easily be recognized. It is
namely the one-dimensional divergence of the particle number’s current density Φx. For
a “coherent” velocity field, the familiar formula in fluid dynamics and electromagnetism
Φx = nE(x; t)v(x; t) applies. However, in the cases we will confront here, particle motion
is better described by a random walk, i. e. the number of incoming and outgoing particles
is randomly distributed. When the number of particles is large and the time scale of
interest is larger than the time scale of the random walk steps, this transport mechanism
is well described by Fick’s law

Φx = −D(x,E; t)
∂nE
∂x

. (4.21)

The diffusion coefficient D(x,E; t) in equation (4.21) encompasses all the physics of
the random walk in just one function. A rather neat way of physically understanding D
is the following: consider a single particle in a random walk, at time scales larger than
the typical random-walk time step, the average particle’s position will be unchanged
(〈∆x〉(t) = 0). Nevertheless, the dispersion 〈∆x2〉(t) will be different from zero and will
actually increase linearly with time. The proportionality constant is thus the diffusion
coefficient: the larger the diffusion coefficient the farther a particle can travel diffusively.

Fick’s law can formally be obtained from the assumption that the motion of the
particles are described by random walks. We will however content ourselves by noticing
that essentially, eq. (4.21) states that particles move from regions with larger nE to
regions with smaller nE (Φx is proportional to minus the gradient of the particle density).
In three dimensions eq. (4.21) is a tensorial equation:

Φi = −Dij
∂nE
∂xj

.

If isotropy is assumed then, Dij = Dδij . This simplifying assumption is usually taken
in the literature and proves successful in fitting cosmic ray data Although electrons and
positrons may interact with heavy particles in the ISM through Coulomb processes,
most of their diffusion is caused by the scattering driven by the turbulent interstellar
magnetic field. Relevant quantities in deriving diffusion coefficients are the magnetic
field coherence length, the Larmor radius and the pitch angle of the scattered particle.
The simplest diffusion coefficient that can be constructed with these ingredients is the
Bohm diffusion coefficient

DBohm =
1

3
rLc =

Ec

3eB
. (4.22)

This model for diffusion however fails at describing the observed cosmic ray fluxes.
Some extra degree of sophistication in the modelling of the diffusion coefficient is thus
necessary.
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Although a complete and satisfactory theoretical understanding of diffusion processes
of charged particles in a turbulent magnetic field remains an open problem, we still can
introduce an alternative model for the diffusion coefficient by e. g. relating it with the
coherence length of the turbulent magnetic field.

The way this is done is by means of the classical method of the adiabatic invariants
[106]. One can show that the pitch angle α is “scattered” by the turbulent magnetic
field by an amount δα ∝ δB/B if the fluctuations of the magnetic field occur on length
scales larger than the Larmor radius. Under these assumptions the diffusion coefficient
reads

D ' DBohm

(〈B〉
δB

)2
∣∣∣∣∣
k∼r−1

L

= D0β

(
E

GeV

)δ
. (4.23)

where k is the Fourier variable of the spatially fluctuating magnetic field. The expression
on the left hand side is customarily used in the context of cosmic ray research. The index
δ is determined by the magnetic field turbulence. Canonical theoretical models predict
δ = 1/3 (Kolmogorov) and δ = 1/2 (Kraichan). However, this index is usually regarded
as a free parameter that will be fitted with the data. For a unquestionably comprehensive
discussion about these topics we refer to the modern textbook [70] and the reference
therein.

4.3.2 Energy loss term

Let us now move to the next term in the left-hand side of eq. (4.20). This term
resembles the first one, being in this case the energy the differentiated variable. In
contrast to the previous case where we disregarded the possibility of convective transport
Φx = nE(x; t)v(x; t) in favor of diffusive one, the current density in energy space ΦE is
better described by an analog formula to the convective one ΦE = nE(x; t)b(E; t) for the
type of processes responsible for the electron’s energy losses. Following the directions of
such analogy, we identify the function b(E; t) as the energy gain or loss of single particles
(v(x; t) = dx/ dt→ b(E; t) = dE/dt). The term ∂(bnE)/∂E is known as the energy loss
term although the function b can also account for energy gains which are however rare
in the astrophysical setups that are typically considered.

A diffusion term in energy (or momentum) space has also physically interesting
applications. Not surprisingly the diffusion coefficient in momentum space will actually
be related to the spatial diffusion coefficient just discussed. For the cases of interest
in this work one can show that diffusion in momentum space is negligible respect to
either energy losses or spatial diffusion, provided that no Alfvén instabilities are present
[20, 70].

Since our main interest in this section is to describe how DM-induced electrons and
positrons propagate while they emit synchrotron radiation, we focus on the mechanisms
responsible for their energy losses in the interstellar medium. These are namely inverse
Compton scattering, synchrotron radiation, bremsstrahlung and Coulomb scattering.

The energy losses due to synchrotron radiation were extensively discussed in the
previous section and are given by formula (4.17):(

dE

dt

)
synch.

= −4σTuEME
2

3m2c3
= −2.5× 10−20

(
B

10µG

)2( E

0.01 GeV

)2

GeV/s . (4.24)

We shall in the following briefly introduce these processes and show without derivation
their corresponding energy loss rates.
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4.3.2.1 Inverse Compton Scattering

As discussed in the previous chapter, an inverse Compton scattering occurs when a high
energy electron encounters a low energy photon (typically from the CMB). In this process
most of the electron’s energy is transferred to the photon. The energy loss associated
to this kind of process has a similar functional form to the synchrotron radiation one

bICS = −4σTurad.E
2

3m2c3
. (4.25)

This is not very surprising as synchrotron radiation and ICS stem from essentially the
same process: charged particle in a background electromagnetic field. The radiation
field can vary from region to region but in most of the cases it is a safe assumption to
use the CMB energy density urad. = 0.25 eV/cm−3 in formula (4.25), i. e. assume that
the radiation field is solely composed by CMB photons.

4.3.2.2 Bremsstrahlung

Electrons may also emit radiation as a consequence of their accelerated motion when
they are scattered off by heavier particles –typically protons or helium ions– in the ISM.
Although the correct description of this process requires a quantum treatment, some
classical considerations serve as guidance.

Usually bremsstrahlung processes are better visualized in the Weizsäcker-Williams
methode of Virtual Quanta. In this method, one studies the process in the rest frame
of the incident electron (or positron). In this frame, the heavier particle moves rela-
tivistically which means that its field lines are almost perfectly transverse to its motion.
Therefore, the electron experiences a pulse of virtual radiation right when the heavier
particle passes by. The interaction between the pulse of virtual radiation and the elec-
tron can be regarded as a Thomson (Compton) scattering where a real photon is emitted
[21]

dW ′

dω′
= σT

d2W ′

dA′ dω′
, (4.26)

where d2W ′/ dA′ dω′ is the spectrum of the virtual photon in the rest frame of the
electron. Transforming back to the original frame and yields

dPbrem

dω
' 16Z2e6nion

3m2
ec

4
ln

(
0.68E2

~ωmec2

)
, (4.27)

where Z and n are respectively the charge and number density of the scattered ions.
This formula is of course only valid for soft photons (~ω � E) where the classical
description is valid. For larger frequencies, one can still use this method if instead of
the Thomson scattering differential cross section we use the corresponding (Compton
scattering) Klein-Nishina formula. The energy loss that is results from integrating eq.
(4.27) over all frequencies yields

bbrem '
16Z2e6nion0.68E2

3m3
ec

6

∫ mec2/0.68E

0
(− lnx) dx =

16Z2e6nionE

3m2
ec

4
ln

(
0.25E

mec2

)
.

(4.28)
Even though this formula is far from exact, it provides a good approximation for

the total energy loss rate due to bremsstrahlung of electrons in the interstellar gas.
The equations just derived can also be adapted to the closely related process of free
free absorption where instead, radiation is absorbed by an electron passing by a heavy
nucleus. We refer the reader to Ref. [21] for a detailed account of this interesting
phenomenon.
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4.3.2.3 Coulomb Scattering

At lower energies, bremsstrahlung ceases to be the dominant cause for the electron’s
energy loss in a electron-nucleus scattering process. Most of the energy losses of the
electron are thus due to their scattering in the Coulomb field of the nucleus. In a
ionized medium the energy loss rate is [19]

bCoul '
4πZ2e4nion

mecβ

[
ln

( √
2pc

〈Eion〉

)
− β2

]
, (4.29)

where 〈Eion〉 is the mean excitation energy of the bound state that the target nucleus
and the impinging electron would form if the former traps the latter.

4.3.3 Source (injection) term

The last term in the right-hand side of eq. (4.20) is the most important one. Without this
term, the physically interesting solutions to the diffusion-loss equation would actually
vanish. In order to better understand the injection term, let us for a moment assume
no energy transport. In this case, eq. (4.20) simply states that the particle density at a
given point in phase space increases (it decreases if q is negative: particle leakage case)
at the rate given by q(x,E; t). By promoting eq. (4.20) to three dimensions:

∂nE(r; t)

∂t
= ∇ · (D(r, E; t)∇nE(r; t))− ∂

∂E
(−b(r, E; t)nE(r; t)) +Q(r, E; t) , (4.30)

the injection function in the context of DM annihilations obtained in previous chapters
reads

Q(r, E) =
〈σv〉
2m2

χ

ρ2
χ(r)

∑
c

BRc

(
dNe

dE

)
c

, (4.31)

where, as usual, an extra factor of 1/2 should be included if the DM particle is not its
own anti-particle. In passing, we point out that, henceforth, b(r, E; t) will refer to the
particle’s energy loss rate, i. e. b is positive if the particle loses energy and negative if
it gains energy.

The solutions of interest of eq. (4.30) are those which are proportional to 〈σv〉.
Many other solutions are mathematically possible but the number density that results
from them can no longer be interpreted as originated from DM annihilation. Formally
speaking, the diffusion-loss equation is a linear inhomogeneous equation and as such,
adding any solution of the homogenous equation (the equation that results from setting
Q = 0) to a solution of the inhomogeneous one is also a solution of the latter.

4.3.4 Time scales in the diffusion-loss equation

Equation 4.30 can not be solved analytically for arbitrary functions D(r, E; t) and
b(r, E; t) and a numerical approach is needed. Software packages such as DRAGON
[107] and GalProp [108] are suitable. It will therefore become necessary to learn how
to weight each term in a way that is both motivated on physical grounds and that is
mathematically consistent. The contribution of diffusion and energy losses to the rate
defined by eq. (4.30) is effectively weighted by comparing their respective time scales
tloss, tdiff.:

∂nE
∂t
∼ nE
tdiff

+
nE
tloss

+Q ,
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where the time scale variables (tloss and tdiff) are usually estimated through a simple
dimensional analysis, i. e. tloss ' E/b and tdiff '

√
L/D where L is the problem’s

typical length scale and it is usually determined by Q. As clearly apparent by the
previous formula, the greater a time scale of a given process is, the less important
its effect on the propagation will be. Therefore, to a big extent our analyses will be
concerned with the estimation of the typical time scales of the different processes to
which the particles are subject.

4.3.5 Analytical methods

We previously mentioned that the diffusion-loss equation can not be solved analytically
for arbitrary diffusion coefficients and energy losses. However, if some conditions are
imposed, analytical methods will work. We derive in this section general analytical
solutions for those cases where it is possible.

As already mentioned, equation (4.30) is a linear inhomogeneous equation. If its
homogeneous counterpart (Q = 0) is analytically solvable (and the solutions are known),
then obtaining solution for (4.30) with general Q is straightforward. One only needs to
construct a suitable Green’s function and perform the corresponding integrations.

Let us assume that the diffusion coefficient and the energy loss function only depend
on the particle’s energy. By introducing the Syrovatskii variables λ and T [109] (see also
excercise 14.2 in Sigl’s textbook [70]) defined by

T = t− τ , where dτ = − dE

b(E)

and dλ = −D(E) dE

b(E)
,

we can reduce the number of effective variables. To see this we multiply eq. (4.30) by
b(E) and introduce f = b(E)nE . The equation then transforms to

∂f

∂t
−D(E)∇2f − b(E)

∂f

∂E
= b(E)Q(r, E; t)

∂T

∂t

∂f

∂T
+
∂λ

∂t

∂f

∂λ
−D(E)∇2f − b(E)

(
∂T

∂E

∂f

∂T
+
∂λ

∂E

∂f

∂λ
f

)
= b(E)Q(r, E; t)

∂f

∂T
−D(E)∇2f − b(E)

(
1

b(E)

∂f

∂T
− D(E)

b(E)

∂f

∂λ

)
= b(E)Q(r, E; t)

−D(E)∇2f +D(E)
∂f

∂λ
= b(E)Q(r, E; t) ,

or simply
∂f

∂λ
−∇2f = Q̃(r, λ, T ) , (4.32)

where of course Q̃(r, λ, T ) = b(E)Q(r, E; t)/D(E). This expression has two special
features. First, the T derivative dropped out and the number of effective variables is
reduced and second, the equation is analogous to the familiar –analytically solvable–
inhomogeneous heat equation.

The method just described is very general and has been applied to solve countless
problems in cosmic-ray physics. However, in order to make a physical sense of the
Syrovatskii variables it will be worthy to stick to the specific case where the particles
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are electrons generated by DM annihilations. Under this assumption we integrate the
defining equations for T and λ

T (t, E) = t−
∫ mχ

E

dE′

b(E′)
and λ(E) =

∫ mχ

E

D(E′) dE′

b(E′)
.

We observe that t − T (= τ) is essentially the time that it takes for an electron of
initial energy mχ to reach an energy E, while

√
λ is the electron’s root-mean-square dis-

placement through diffusion during that time. The most general (physically interesting)
solution can be constructed by means of the Green’s function method:

f(r, λ, T ) =

∫
dT ′ dλ′ d3 r′G(r, r′, λ, λ′, T, T ′)Q̃(r, λ) , (4.33)

where G(r, r′, λ, λ′, T, T ′) satisfies

∂G

∂λ
−∇2G = δ3(r − r′)δ(λ− λ′)δ(T − T ′) . (4.34)

The simplest solution of this equation reads

G(r, r′, λ, λ′, T, T ′) =
Θ(λ− λ′)

[4π(λ− λ′)]3/2 e
‖r−r′‖2
4(λ−λ′) δ(T − T ′) , (4.35)

excluding the Dirac delta function δ(T − T ′), this solution is usually refered to as the
heat kernel. Actually, given that all solutions to (4.34) are proportional to δ(T − T ′)
and that the injection functions under consideration are time independent, the general
solution to (4.30) is stationary (independent of t) and given by

nE(r) =
1

b(E)

∫ mχ

E
dE′

∫
d3 r′G(r, r′, E,E′)Q(r, E′) , (4.36)

where G(r, r′, E,E′) is defined through

G(r, r′, λ(E), λ′(E′), T, T ′) = G(r, r′, E,E′)δ(T − T ′) , (4.37)

and we used the fact that dλ′Q̃ = dE′Q in arriving at eq. (4.36).
The Green’s function GHK(r, r′, E,E′) –henceforth heat kernel– that results from

our prescription (4.37) to the solution given by eq. (4.35) will be the key ingredient
when constructing Green’s functions that are suitable for the geometry of the problem.
It is customary to impose Dirichlet conditions on the boundaries (nE |bound. = 0). Such
conditions are physically interpreted and usually quoted as free escape conditions in
the literature. The Dirichlet condition induces a spatial discontinuity in nE at the
boundaries and as a consequence the current density there: let z be a coordinate such
that the boundary condition can be written as z = const., then −D∂znE |bound becomes
infinite3.

As an example, the diffusion zone in our galaxy is approximately cylindrical and
in cartesian coordinates the boundary conditions nE |z=±L/2 = 0 are imposed, where L
is the height of the baryonic matter halo. One can construct a Green’s function that
satisfies G|z=±L/2 = 0 by relying on a powerful tool from electrostatics: the method of

3The current density Φz is proportional to a Dirac delta centered at the boundary. For instance if the
boundary is defined in cartesian coordinates by z = L/2, then Φz ' ϕ(x, y)δ(z−L/2) close to z = L/2.
ϕ(x, y) is thus the number of particles that escape at point (x, y, L/2) per unit surface.
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images. Since our region of interest is constrained to |z| and |z′| < L/2 we can add to the
heat kernel (4.35) solution as many solutions to the homogeneous cousin of eq. (4.34)
as we want. Particularly, we can (i) add solutions like (4.35) with shifted |z′| > L/2 so
that it solves the homogeneous equation and (ii) choose |z′| in such a clever way that the
boundary conditions are satisfied. This is in essence how the method of images work.
The shifted solution is called an “image solution” of the original one.

If the only condition to be satisfied is G|z=L/2 = 0 and our region of interest is
z < L/2, then adding an image at L− z′ suffices:

G(r, r′, E,E′) = GHK(r, x′, y′, z′, E,E′)−GHK(r, x′, y′, L− z′E,E′)

solves (after following the prescription 4.37) eq. (4.34) and it moreover fulfills the bound-
ary condition G|z=L/2 = 0. Solving for both boundaries requires an infinite ammount
of images as the reader can easialy convice themself. The images should be located at
z′n = nL+ (−1)nz′ and the resulting Green’s function reads [110]

G(r, r′, E,E′) =
∞∑

n=−∞
(−1)nGHK(r, x′, y′, z′n, E,E

′) . (4.38)

Let us now implement the results from the previous and current sections in predicting
the radio flux associated to DM annihilations.

4.4 Radio fluxes

In the previous two sections we characterized in quite some detail the radio emission of
single electrons due to synchrotron radiation and their corresponding diffusive propaga-
tion in average regions of the galaxy. We shall now put these pieces together in obtaining
a formula for the radio fluxes associated to DM-induced synchrotron-radiating electrons
and positrons that arrive to Earth.

Electrons and positrons from DM annihilation are created in a random fashion where
all directions are equally probable. With the definitions presented in the previous two
sections the emissivity jν –i. e. emitted power per unit volume, per unit solid angle and
per unit frequency– for DM-induced synchrotron radiation emitters is given by [21]

jν(r) =
1

4π

∫ mχ

me

dE2nE(r)

(
2π

dPsyn

dω

)
︸ ︷︷ ︸

(dP/dν)syn

. (4.39)

where the 1/4π factor takes into account the fact that at a given time the emitters are
isotropically distributed and the factor 2 multiplying nE ensures that both positrons
and electrons are accounted for (assuming CP conserving annihilation). The differential
radio flux Iν for a small aperture angle subtending a solid angle ∆Ω is then given by[21]

Fν =

∫
∆Ω

dΩ

∫
l.o.s.

dsjν(r(s)) , (4.40)

where, as usual, l.o.s. stands for line of sight. In the following we will encounter cases
where the emission coefficient formally diverges; for instance, for a NFW profile jν will
be a spherically symetric function with a pole at r = 0. In such cases, even though
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the emissivity as the integrand in eq. (4.40) diverges, the integral defining Iν converges
since close to the pole dΩ ds = dV/s2 ' dV/R2

source and therefore

Fν '
1

R2
s

∫
cone

dV jν(r) . (4.41)

In appendix B the general method to compute such half-cone integrals with spherical
symmetry respect to the source is provided.

Recapitulating what has been discussed so far, the emission coefficient of synchrotron
radiation indirectly produced by DM and given by eq. (4.39) can be analytically cal-
culated once the space-independent energy loss and diffusion coefficients as well as the
profile of the DM distribution, the mass of the DM, its annihilation rate and modes
are given. All these variables enter in the computation of nE(r) (eq. 4.36) while on
the other hand, the determination of the synchrotron power of single particles is quite
precise if the uncertainties on the magnetic field are under control. Therefore, in most
of the cases of interests, and as previously pointed out, using the monochromatic ap-
proximation and for instance neglecting absorption effects carry errors that are small
compared to the aforementioned uncertainties.

In the following we will apply the machinery just presented to some specific cases
with the aim of setting constraints on the DM model parameters.

4.4.1 Galactic Center

Radio observations of the galactic center (GC) provide, on the one hand, a window to the
astrophysical phenomena occurring there in as much as the dust in the GC field of view
becomes essentially transparent specially at low frequencies. On the other hand, the GC
is a tremendously active region hosting a supermassive black hole (SMBH) driving most
of its dynamics in the innermost regions. The impossibility of actually being able to see
this region in the infrared to the optical range (because of the dust) is a rather limiting
factor in characterizing it in more detail. In particular, very little is known about the
magnetic field there and one must rely on theoretical estimates based on the accretion
properties of the SMBH sitting there. Nonetheless, recent observations have provided
evidence of strong fields in the vicinity of the GC [25] we shall make use of.

As just mentioned, even though our understanding of the magnetic field in the
innermost regions of our galaxy is very limited, it seems reasonable [25] to assume
that it is a strong one. Keeping in mind that the energy losses associated to energy-
consuming processes other than synchrotron radiation are expected to be small, it will
be reasonable to assume that most of the electron energy losses will be due to the latter.
This assumption is mainly motivated by the hard power-law dependence on the magnetic
field of the synchrotron loss function (bsyn. ∝ B2). This is in contrast to the less harder
dependence on, for instance, the gas and radiation densities of the energy loss function
associated to the other processes.

Let us now concretely compare the typical time scales of energy loss and diffusion
as defined in the previous section. If we take a Bohm diffusion coefficient then

t−1
loss =

4B2E2/9m2
ec

3

E
' (4× 1017 s)−1

(
E

0.01 GeV

)(
B

10µG

)2

(4.42)

t−1
diff =

Ec/3eB

l2
' (3× 1017 s)−1

(
E

0.01 GeV

)(
B

10µG

)−1( l

pc

)−2

. (4.43)

As a mnemonic aid notice that for E = 0.01 GeV, B = 10µG and l = 1 pc both the
typical loss and Bohm diffusion times are of the order of the age of the Universe. In
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particular, the ratio of the two time scales does not depend on the particle energy and
has a strong dependence on the magnetic field

t−1
loss

t−1
diff

'
(

B

10µG

)3( l

pc

)−2

, (4.44)

where and extra factor of D/DBohm should be included if a different diffusion model
should be considered.

The next step is to make a sense of l, namely the typical length scale of the prob-
lem. Neglecting for the moment any space dependence from the D and b functions
in eq. (4.30), the only length scale in the problem is atributed to the source func-
tion or, equivalently to the DM distribution. Therefore, spatial variations in the elec-
tron density nE(r) will be only noticeable for length scales larger or of the order of
l(r) = −ρ2(r)/[ρ2(r)]′ = −ρ(r)/2ρ′(r), where ρ′(r) = dρ/ dr is assumed to be negative
(ρ monotonically decreasing). For a generalized Navarro-Frenk-White (NFW) profile
(eq. 3.7) lNFW(r) ' r/2γ close to the center, while for an Einasto profile (5.21) the
length scale is effectively the scale radius rs: lEin(r) ' (rs/2)(r/rs)

1−α.
The recent discovery of a magnetar PSR J1745-2900 at only 0.12 pc away from the

GC reported by reference [25] provides a handle on the magnetic properties of such a
complex region. The authors were able to estimate the strength of the magnetic field by
two different methods yielding in one case (simplistic calculation) a conservative limit
of 50µG. A more sophisticated method yields a lower limit of 8 mG. All these estimates
are based on multi-wavelength analyses of the emission profile of the magnetar in the
radio band.

Taking the conservative value for B at the magnetar position and the expressions just
derived for the typical diffusion and loss time scales, we observe that for an NFW profile
the ratio energy loss vs. diffusion is t−1

loss/t
−1
diff ' 53(.6)−2 ∼ 350� 1, while in the case of

an Einasto distribution t−1
loss/t

−1
diff ∼ 580� 1. We may therefore safely assume that close

to the GC electrons lose most of their energy with no effective diffusive displacement.
Turning back to the analytical method exposed before, by redefining the λ Sy-

rovatskii variable in terms of a scaling parameter ε (λ → ελ) the limit ε → 0 is equiv-
alent to neglecting the diffusion term in eq. (4.30). One can show that in that limit
GHK(r, r′, E,E′)→ δ3(r − r′) and thus

nE(r) =
1

b(E)

∫ mχ

E
dE′Q(r, E′) =

〈σv〉
2m2

χb(E)
ρ2
χ(r)

∑
c

BRcNc(E)︸ ︷︷ ︸
Ne(E)

, (4.45)

where Ne(E) is the integrated yield of electrons or positrons with energies larger than
E per annihilation. An explicit integration of eq. (4.30) in absense of the diffusion
term shows that in the solution (4.45) we can actually promote the energy loss function
b to a space dependent function. In particular, this condition allows us to extend the
description of the DM-induced synchrotron radiation discussed so far to cases where the
magnetic fields are space dependent.

4.4.1.1 Equipartition magnetic field at Sgr. A*

The presence of the SMBH at Sagitarius A* and its presumably very dynamic accretion
can give rise to strong magnetic fields. The strength of these can be estimated through
magnetohydrodynamical arguments [111–113]. Namely, assuming spherical accretion
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of a collisionless pure Hydrogen plasma the speed of the particles is given by v(r) =√
2GMBH/r, whereMBH ' 4.3× 106M� is the mass of the black hole (the Schwarzschild

radius is rS = 2GMBH/c
2 ' 4× 10−7 pc). Under these assumptions the distance at

which the surrounding gas starts to accrete into the BH is Racc ≈ 0.04 pc [112]. The
mass-loss rate of the BH due to accretion was estimated to be |Ṁ | ' 10−12M�/s [111].

Integrating the continuity equation over a sphere of radius r allow us to relate the
gas density with the mass-loss rate: 4πr2j(r) = 4πr2ρH(r)v(r) = |Ṁ |. As a consequence
the density scales like r−3/2 with the radial distance to the center of the BH. After some
fairly reasonable arguments pointed out in Ref. [111], inside the accretion region the
magnetic energy density should be comparable (and thus share the radial dependence)
with the kinetic energy of the fluid. Equating these two densities ρH(r)v2(r)/2 = B2/8π

imply B2 = |Ṁ |r1/2
S c/r5/2 (B ∝ r−5/4).

The equipartition assumption is only valid inside the accretion radius. In the outer
regions the radial dependence is expected to follow the usual magnetic-flux conserving
dependence B ∝ r−2. This ansatz for the magnetic field based on crude estimations
has been of great use in the community. We will also use this model as our reference
model whenever we investigate the synchrotron signal from DM at the GC. Specifically,
we chose –as in Ref. [114]– a specific normalization and radius after which the average
galactic magnetic field starts to become relevant:

B(r) = 7.2 mG×


(Racc/r)

5/4 r < Racc

(Racc/r)
2 Racc < r . 100Racc

10−4 r & 100Racc

. (4.46)

Before discussing further the methodology of our radio analyses, we caution the
reader that by implementing ansatz (4.46) we do not aspire to obtain predictions of high
precision. For instance, notice that in its derivation nothing about the e. g. coherence
length of the B-field is revealed. We will however be able to get an idea of the certainly
large flux of DM-associated synchrotron emission at the GC.

4.4.1.2 Radio flux formula for the GC

In a few sections before, we mentioned that our no-diffusion solution (4.45) can be con-
sistently made more general by including space dependence in the energy loss parameter
b. Since we will neglect energy losses other than the synchrotron ones, we can safely
use b(r, E) = 4E2B2(r)/9m4

ec
7. Notice that the assumption of no diffusion implies that

each electron effectively travels a distance that is small compared the typical length
scale of the DM profile. Owing to the similarities in the spatial dependence (power-law
like) of the DM profiles considered and our reference model (4.46) for the magnetic
field, electrons and positrons barely experience the non uniform features of B and the
whole formalism discussed above –based on the assumption of uniform magnetic fields–
applies.

We will now make use the monochromatic approximation as most of the uncertainties
will come from the unresolved magnetic field and to a bigger extent –as we shall see
later– from the unsettled inner structure of the DM profile. Taking a randomly oriented
magnetic field, the synchrotron emission power of an electron per unit frequency in this
approximation reads

dPsyn

dν
=

√
3e3B

mec2
Fr(

ν

νc
) , Fr(x) ≈ 16π

27
√

3
δ(x− 1/3) , (4.47)
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where νc = ωc/2π = 3eBE2/4πm3
ec

5. We can easily check that formula (4.17) is re-
trieved after integrating over all frequencies

bsyn(r, E) =

∫
dPsyn

dν
dν =

4e4B2(r)E2

9m4
ec

7
. (4.48)

Note that dPsyn/ dν can be also written as (bsyn/νc)δ(ν/νc − 1/3). We are now
finally in position to write a formula that states how much synchrotron flux is indirectly
produced by the annihilation of DM at the center of the galaxy. We start by evaluating
the energy integral (4.39) leading to the emission coefficient

jν =
1

2π

∫
dEnE(r)

dPsyn

dν
=

1

2π

∫
dEnE(r)

bsyn

νc
δ

(
E2
ν(r)

3E2
− 1

3

)
=

1

2π

∫
dEnE(r)

bsyn

νc

δ(E − Eν)

| − 2E2
ν/3E

3
ν |

=
1

4π

bsyn

ν
EνnEν (r) . (4.49)

In the last step we defined Eν(r) =
√

4πm3
ec

5ν/eB(r) –the energy of an elec-
tron/positron synchrotron monochromatically radiating at the frequency ν– and used
the fact that ν = νsyn/3. Substituting our expression (4.45) for nE(r) in (4.49) and
plugging it into eq. (4.41) yields

Fν '
〈σv〉

8πνR2
�M2

χ

∫
cone

dV ρ2
χ(r)Eν(r)Ne[Eν(r)] . (4.50)

This simple formula will be of great use in the subsequent chapters as it will allow
us to set limits on the annihilation rate 〈σv〉 after making some assumptions on the
DM profile. In appendix B we show how to reduce the narrow observation-cone volume
integral to a radial integral.

4.4.1.3 The 408 MHz bound on Sgr A*

In chapter 2 we showed the state-of-the-art measurements of the full electromagnetic
spectrum of Sgr A* (figure 2.3). One of the key features of that spectrum was the
fact that at radio frequencies the radiation intensity strongly decreases as the frequency
becomes smaller. In particular, at the frequency of 408 MHz (wavelength of 73.5 cm) no
observable signal has been so far detected as reported in reference [115]. This fact sets
an upper limit of 50 mJy4 (the interferometer sensitivity) on the differential flux. The
inferred angular diameter of this signal θs ∝ λ2 (λ being the wavelength) that results
from the extrapolation of several measurements also carried out by the Jodrell Bank
was found to be of ∼ 8′′. This corresponds to distances of ∼ 0.17 pc from the center.

The large uncertainties in characterizing the galactic center radio emission (both from
astrophysical sources and the DM component) make it formally impossible to perform
spectral fits to the available measurements as in the case of gamma rays discussed in
the previous chapter. These signals are however useful to constrain the DM annihilation
cross section. We do this by comparing the flux that one obtains through formula (4.50)
at a given frequency where no measurable flux has been reported (408 MHz turns out
to be the optimal) and assume that the DM indirect signal is responsible for the entire
flux.

41 Jy(Jansky)=10−26 erg/s/cm2/Hz is a commonly used unit for differential spectral flux in the ra-
dioastronomy community.
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Although there have been observational updates on the radio signal at Sgr A* –a
positive signal of 0.4 Jy was claimed by the Very Large Array (VLA) Ref. [116] at the
frequency 330 MHz (91 cm) with an inferred angular diameter of ∼ 12′′ (r ∼ 0.26 pc)–
the upper limit set by the Jodrell Bank at 408 MHz remains to be particularly special
when constraining the DM cross section with synchrotron signals. Measurements at
lower frequencies have larger angular diameters (λ2 scaling) while the fluxes at higher
frequencies are much too large compared to the typical DM-associated fluxes. Refs.
[117, 118] used however a more robust measurement at that same frequency but within
a larger angular region (3 ◦) to estimate the magnetic field strength on ∼ 400 pc scales
while Ref. [119] used it in the context of indirect DM searches.

The reader should however keep in mind that even though we, on the one hand, take
the most conservative attitude by assuming no astrophysical background in modelling
the 408 MHz signal, as including it would result in stronger limits. We, on the other hand
by neglecting absorption in our derivation of formula (4.50), implicitly assumed that the
radio signal cutoff at ν . 1 GHz is not caused by the interaction of the radio wave with
the interstellar medium through the so-called free-free absorption. This mechanism is
the leading theory explaining the cutoff in the same way as interstellar scattering –which
is also not considered in our formalism– is the accepted theory explaining the observed
broadening of the angular diameter θs ∝ λ2.
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Chapter 5

Constraints on DM models

In this chapter we extend the theoretical ideas discussed in the previous chapters with
the purpose of confronting them with actual astrophysical observations. In particular,
we focus on the most recent indications of possible DM signals in the gamma-ray sky
that we introduced and discussed in section 3.5, namely the 130 GeV line and the GeV
excess.

We shall first introduce a rather general formalism based on the QFT’s optical theo-
rem that relates measurable quantities describing different processes relevant for indirect
DM searches. As we shall see, this formalism can be applied to constrain the DM model
building of spectral gamma ray line signals and as a pratical application we employ it
in the context of the 130 GeV feature.

In the last section we confront the DM interpretation of the GeV excess with up-
dated antiproton, positron and radio-wave limits on the relevant DM annihilation cross
sections. We discuss in detail the way such limits are obtained and point out ways to
improve them.

5.1 The optical theorem

One of the central results in quantum scattering theory is the so-called optical theorem.
This theorem basically states that the total cross section of a two-particle-system inter-
action is directly related to the imaginary part of the amplitude of forward scattering
of the two particles1 (see for instance Ref. [40]). In this section we will tend to be a
bit more formal than in previous sections. We will however try to make as much as
possible reference to the optical theorem’s concrete applications on DM phenomenology.
Let us start by noticing that its validity can actually be understood quite easily as it
only assumes unitarity:

Let |ab〉 be an arbitrary two-particle initial state and U = 1+iT the evolution oper-
ator of the system under consideration. Unitarity requires that U †U = 1, equivalently

i(T † − T ) = T †T ⇒ 2 Im〈ab|T |ab〉 = 〈ab|T †T |ab〉 . (5.1)

In the last step we used the property Mab→ab ≡ 〈ab|T |ab〉 = 〈ab|T †|ab〉∗. In pertur-
bation theory the quantity 〈ab|T |ab〉 is known as the scattering amplitude for forward
scattering. While 〈ab|T †T |ab〉 = ‖T |ab〉‖2 is simply the squared amplitude for any

1With forward scattering we of course mean that the final state is the same as the initial one,
regardless of whether these are momentum eigenstates or not.
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interaction. Translated to cross sections this means that

σTOT
ab =

∑
states

σab→state ∝ ImMab→ab , (5.2)

where the proportionality constant depends on the normalization of |ab〉. We will not
discuss the normalization details of the optical theorem here but we will instead intro-
duce a more general version of it in the following.

5.1.1 Generalization

In the derivation we just performed, we focused on just diagonal matrix elements
(〈ab|O|ab〉). If we consider more general matrix elements such as 〈cd|O|ab〉, then the
unitarity condition reads

− i〈cd|T |ab〉+ i〈ab|T |cd〉∗ = 〈cd|T †T |ab〉 , (5.3)

which at first sight does not look very informative. However, careful consideration of
both sides of the equation will allow us to relate different physical observables.

Let us start with the left hand side of eq. (5.3) and consider states |ab〉 and |cd〉
satisfying 〈cd|T |ab〉 = 〈ab|T |cd〉. We show in appendix C that this symmetry condition
is precissely fulfilled by quantum two-particle states with definite angular momenta. In
particular, non-relativistic s-wave DM pairs as the ones that we typically consider in
the context of WIMP DM fall into this category. Under this assumption the left hand
side of eq. (5.3) reduces to

−i〈cd|T |ab〉+ i〈cd|T |ab〉∗ = 2 Im〈cd|T |ab〉 .
The right hand side is a bit more intricate but still treateable, as we shall see. Let

us start by considering a complete basis of what we will subsequently call intermediate
states {|X〉}. We define the normalization of these states in such a way that∑

X

|X〉〈X| = 1 .

Eq. (5.3) becomes

Im〈cd|T |ab〉 =
1

2

∑
X

〈X|T |cd〉∗〈X|T |ab〉 . (5.4)

By squaring both sides of the equation and identifying 〈cd|T |ab〉 =Mab→cd, 〈X|T |ab〉 =
Mab→X and 〈X|T |cd〉 =Mcd→X , we obtain

Im[Mab→cd]
2 =

1

4

∣∣∣∣∣∑
X

M∗ab→XMcd→X

∣∣∣∣∣
2

≤ 1

4

∑
X

|Mab→X |2
∑
Y

|Mcd→Y |2 , (5.5)

where we used the Cauchy-Schwarz inequality in the last step. Expression (5.5) con-
straints the imaginary part of the amplitude relevant for the process ab → cd in terms
of the product σTOT

ab σTOT
cd . Specifically,

Im[σab→cd] ≤
β2
cds

64π2
σTOT
ab σTOT

cd , (5.6)

where βcd is the center of mass (CoM) speed of the two-particle state |cd〉 and
√
s its

CoM energy. In addition we defined Im[σab→cd] ≡ (Im[Mab→cd]2/|Mab→cd|2)σab→cd and
assumed that both |ab〉 and |cd〉 are eigenstates of the total energy -see appendix C
for details-. We shall in the next section comprehensively describe states with definite
angular momentum.
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5.1.2 Helicity eigenstates and partial waves

In QFT particle interactions are typically described in terms of asymptotic initial and
final states, which are labeled by the 4-momenta and spin of each particle participating
in the process. In this framework our initial state |ab〉 would be both eigenstate of type
“a” and “b” particles’ 4-momentum and spin component in some given direction as all
those quantities commute with each other. Moreover, by virtue of Lorentz invariance of
interactions described by QFT such 2-body states are completely labeled by the center
of mass energy ECoM =

√
s, their individual spin in some given direction σa,b and the

directive angles of, say, type “a” particle’s momentum (θ, φ): |ab〉 = |√s, θ, φ;σa, σb〉.
In analogy to single particle states, we would be interested in decomposing states

of the form |√s, θ, φ;σa, σb〉 in terms of angular momentum eigenstates. In order to do
this, let first consider the operator algebra of the total angular momentum Jαβ and the
individual particle 4-momenta Pµa , Pµb

[Jαβ, Jγδ] = i(ηαγJβδ − ηαδJβγ − ηβγJαδ + ηβδJβγ) ,

[Jαβ, Pµa,b] = i(ηαµP βa,b − ηβµPαa,b) . (5.7)

We introduce helicity opertors

Λa,b ≡
1

Pa,b
εijkJ

ijP ka,b , (5.8)

where particle momenta Pa,b are fully determined by the center of mass energy Pa =
Pb = [(s − (ma + mb)

2)(s − (ma − mb)
2)]1/2/2

√
s (ma,b are the particle masses). In

particular, commutation relations (5.7) imply that J2 = J2
ij and, say, J12 together with

P 0 and the particles’ helicities Λa,b form a complete set of commuting operators needed
to fully describe states |ab〉.2

Ref. [120] discusses in a tremendously elegant way how such helicity states of the
form |J,M, λa, λb〉 are constructed in terms of plane wave states, namely

|J,M, λa, λb〉 =

√
2J + 1

4π

∫
dΩ e−i(M−λ)φ dJM,λ(θ)|θ, φ, λa, λb〉 , (5.9)

where λ ≡ λa − λb.

5.1.2.1 Partial waves

In the same way by which we constructed the helicity basis, we can also construct a
new basis where instead of the two helicity operators Λa,b we consider instead Casimir
operators L2 and S2. These operator can easily be constructed in the non-relativistic
limit by decomposing the total angular momentum as J i = Li + Si and Si = Sia + Sib,
where Sa,b are fundamental representations of the particles’ spins. A fully relastivic
construction of L and S is more involved. However, the change of base matrix is less
intricated [120]

〈J,M ;L, S|J,M ;λa, λb〉 =

√
2L+ 1

2J + 1
C(LSJ ; 0, λ)C(SaSbS;λa,−λb) , (5.10)

2Such helicity states are perfectly covariant in the relativistic sense  they are defined in the CoM
frame. For 1-particle states helicity is of course frame-dependent
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where C(J1J2J,m1,m2) are Clebsch-Gordan coefficients. Both bases have the property
that S-matrix elements are real provided that interactions respect time reversal symme-
try as shown in appendix C and they are therefore suitable for application of formula
(5.6). In the next section we will apply this formalism to a specific case, the case where
|ab〉 = |χχ〉 and |cd〉 = |γγ〉 or |γZ〉 or |γH〉.

5.2 Model building constraints for gamma-ray lines

Equation (5.6) can be exploided in many ways. The applicability of it to processes
relevant to indirect searches for DM is particularly interesting. In this section we will
illustrate how we can set constraints on DM model building by combining information
extracted from indirect DM dectection observations in several channels with known
processes in the standard model.

The key element making formula (5.6) applicable to indirect DM detection physics is
the fact that the partial wave basis is well suited to describe DM annihilations relevant
for indirect DM detection. Namely, in the limit of vanishing speed the initial state is
well described by an s-wave, i. e. a state with L = 0.

In this section we will apply the optical theorem to constrain the model building for
gamma ray lines with DM, particular attention will of course be given to the 130 GeV
feature introduced in chapter 3. Therefore, we make in formula (5.6) the identification
|ab〉 = |χχ〉 and |cd〉 = |γγ〉 or |γZ〉 or |γH〉, where the initial state satisfies L|χχ〉 = 0.
Moreover, we will for phenomenological reasons only consider those cases where the DM
annihilation into benchmark channels (bb̄, WW , etc.) occurs with branching ratios close
to unity. In terms of our generalized version for the optical theorem, this means that
we can just disregard the sum over |X〉 states in eq. (5.3), or more formally speaking,
the sum will only run over the different quantum numbers describing |X〉. For instance,
for DM that mainly annihilate into WW pairs, the condition

Im[(σv)χχ→γZ ] ≤
β2
γZm

2
χ

16π2
(σv)χχ→WWσγZ→WW (5.11)

allows to constrain the imaginary part of the amplitude describing the γ-ray line χχ→
γZ by means of constraints on the process χχ → WW which we obtain from indirect
detection experiments. The way this method will be used is captured in figure 5.1
where the fact that a 1-loop process (χχ → γZ) is related to two tree-level processes
is apparent. In the next section we shall introduce the method we use to compute the
cross sections describing the process cd → X and of course calculate them for several
interesting choices of intermediate and final states.

5.2.1 Standard model cross sections

Here we shall rewrite the master formula (5.6) as

Im[(σv)line]

(σv)lead.
≤ βlines

64π2
σline→lead. , (5.12)

where the left hand side is constructed by physical quantities where the DM particle
participates whereas the right hand side of the equation only depends on quantities that
are independent of the model describing the DM particle. We compute in this section
such terms by only using symmetry properties and the SM Lagrangian.
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ℑ |X〉

γ

γ, Z, h

=
1

2
Σ

χ

χ

×

γ

γ, Z, h

〈X|

χ

χ

|X〉〈X|

Figure 5.1: Diagram depicting the essence of our application of the generalized optical theorem.

As motivated before, the initial state |χχ〉 will be assumed to be an s-wave. If the
DM is a scalar particle the total angular momentum J = L vanishes and there is only one
possible s-wave state, namely |χsc.χsc.〉 = |J = 0,M = 0, L = 0, S = 0〉 (= |J = 0,M =
0, λa = 0, λb = 0〉). Note that we included the CP quantum number when labeling
the state (see appendix C for a thorough discussion). This will become important when
establishing selection rules for final and intermediate states. For Majorana DM particles,
since they are their own antiparticle and they are fermions that satisfy Pauli’s exclusion
principle, there is only one possible s-wave state |χMaj.χMaj.〉 = |J = 0,M = 0, L =
0, S = 0〉 (= 1√

2
|J = 0,M = 0, ↑↑〉 − 1√

2
|J = 0,M = 0, ↓↓〉). While for Dirac fermion

DM, the state

|χ̄Dir.χDir.〉+ = |J = 1,M = 0, L = 0, S = 1〉
=

1√
3
| ↑↑〉+

1√
6
| ↑↓〉+

1√
6
| ↓↑〉+

1√
3
| ↓↓〉 (5.13)

is also possible. We will however only focus here on scalar and Majorana DM while
most of next chapter will be mainly concerned –in a rather different context, though–
with vector DM.

5.2.1.1 Selection rules

Notice that for both initial states composed by scalar or Majorana DM pairs J vanishes
and the only difference between them is their CP sign. Let us now use basic conservation
laws so as to “predict” the possible outcomes from the annihilations in the partial wave
basis.

Final states

First we notice that annihiliation into a γH state is forbiden3 by angular momentum
conservation. We therefore shall only consider γγ and γZ vector final states. Two spin-
1 particle states with vanishing total angular momentum are spanned by three helicity
eigenstates |J = 0,M = 0, λ1 = 1, λ2 = 1〉, |J = 0,M = 0, λ1 = 0, λ2 = 0〉 and
|J = 0,M = 0, λ1 = −1, λ2 = −1〉 or, equivalently, by the three possible partial waves
|J = 0,M = 0, L = 0, S = 0〉, |J = 0,M = 0, L = 1, S = 1〉 and |J = 0,M = 0, L =
−2, S = 2〉 which are related by the following transformation rule

|L = 0, S = 0〉 = 1√
3
|1, λ2 = 1〉 − 1√

3
|λ1 = 0, λ2 = 0〉+ 1√

3
|λ1 = −1, λ2 = −1〉

3In realistic terms, such process is actually suppressed by the vanishingly small relative speeds.
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|L = 1, S = 1〉 = − 1√
2
|λ1 = 1, λ2 = 1〉+ 1√

2
|λ1 = −1, λ2 = −1〉

|L = 2, S = 2〉 = 1√
6
|λ1 = 1, λ2 = 1〉+

√
2
3 |λ1 = 0, λ2 = 0〉+ 1√

6
|λ1 = −1, λ2 = −1〉 .

We omit henceforth the J and M labels which are assumed to vanish throughout. We
now observe that states |L = 0, S = 0〉 and |L = 2, S = 2〉 contain zero helicity compo-
nents and therefore, they can not be constructed neither with γγ or γZ quantum states.
However, there is a linear combination of them which can be constructed. Namely,

|fS〉 =

√
2

3
|L = 0, S = 0〉+

1√
3
|L = 2, S = 2〉 =

1√
2
| ↑↑〉+

1√
2
| ↓↓〉 . (5.14)

This state is CP-even since |L = 0, S = 0〉 and |L = 2, S = 2〉 are also CP-even
themselves. It is moreover the only allowed final 2-vector state in an annihilation of
scalar DM particles. While the state |fM 〉 = |L = 1, S = 1〉 is CP-odd and corresponds
to the complementary case where DM particles are Majorana.

Intermediate states

Particles in |X〉 can either have spin 1/2 (quarks, charged leptons) or 1 (W bosons).
In the former case, the only intermediate states with a non-vanishing matrix element
〈X|T |f〉 are

|X1/2
S 〉 = |L = 1, S = 1〉 = − 1√

2
| ↑↑〉 − 1√

2
| ↓↓〉 , (5.15)

|X1/2
M 〉 = |L = 0, S = 0〉 = 1√

2
| ↑↑〉 − 1√

2
| ↓↓〉 ; (5.16)

where we used the transformation rule defined in eq. (5.10) in deriving the coefficients
multiplying the helicity eigenstates in a two spin 1/2 particle system.

Notice that for massless Dirac (Weyl) fermions, none of such states are realizable for
a particle-antiparticle pair as the antiparticles in the Weyl representation have opposite
helicities as their counterparts. Their states are spanned by {| ↑↓〉, | ↓↑〉} and therefore
J = 0 is forbiden. If the fermions have instead a mass mf that is small compared to the
center of mass energy

√
s, the amplitude associated to the process |χχ(J = 0)〉 → |f̄f〉

will be suppressed by a factor mf/
√
s. These kind of processes are said to suffer

from helicity suppression. Determining whether a process is helicity suppressed or not is
rather straightforward and therefore helicity considerations serve as powerful cross-check
tools for cross-section calculations.

For W bosons, however, selection rules do not constrain completely the space of
possible outcomes with |fS〉 as initial state, as it will do when |fM 〉 is the initial state.
This reflects the fact that the subspace of two spin-1 particles with J = M = 0 has
dimension three (states with zero helicity play a role). Taking as a reference the selection
rules that, in the previous discussion, enabled us to derive the final states, we conclude
that |X1

M 〉 as there, is simply |L = 1, S = 1〉, while |X1
S〉 is a linear combination of

|L = 0, S = 0〉 and |L = 2, S = 2〉 or, equivalently, of transverse and longitudinal states

|t〉 ≡ 1√
2
|λ1 = 1, λ2 = 1〉+ 1√

2
|λ1 = −1, λ2 = −1〉 , |l〉 ≡ |λ1 = 0, λ2 = 0〉 . (5.17)

The coefficients occurring in such linear combinations will be obtained from the SM
interaction and therefore carry interesting physical information.
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5.2.1.2 Formulae

In appendix C a comprehensive explanation of the computation of the several cross
sections needed is carried out. The method is simple in that we know a priori what the
initial, final and intermediate states are. We write them in the helicity basis obtaining
a sum of a handful of amplitudes which we compute using the Feynman rules choosing
appropriately the polarization vectors. Tables 5.1 and 5.2 show the results of performing
such calculations (βf = 1−m2

Z/4m
2
χ and β2

X = 1−m2
f(W )/m

2
χ).

Majorana ’final’ state X =(σv)γγ
(σv)tree

=(σv)γZ
(σv)treeDM (L, S)

χχ→ f̄f (0, 0)
NcQ

4α2
emm

2
f

2m2
χ

1
βX

[tanh−1 βX ]
2 NcQ

2αemαm
2
f

cos2 θWm2
χ

[
T3
2 −Q sin2 θW

]2
×

×
βf
βX

[tanh−1 βX ]
2

χχ→W+W− (1, 1) 2α2
emβX [tanh−1 βX ]

2
4αemα cos2 θW βfβX [tanh−1 βX ]

2

Table 5.1: Ratios of the (squared) imaginary part of the loop-suppressed gamma ray line amplitude to
the total annihilation cross section for Majorana DM mainly annihilating into the channels displayed in
the fist column. These formulas were obtained in appendix C by using eq. (5.12).

Scalar ’final’ state X =(σv)γγ
(σv)tree

=(σv)γZ
(σv)treeDM (L, S)

NcQ
2αemαm

2
f

cos2 θW βfβXm
2
χ

[
T3
2 −Q sin2 θW

]2
×

χχ→ f̄f (1, 1)
NcQ

4α2
emm

2
f

2m2
χ

βX [tanh−1 βX ]2 ×

[
βX tanh−1 βX−

−(1−βf )

(
tanh−1 βX

βX
−1

)]2

|t〉≡
√

2
3
|0,0〉 α2

em
(1+β2

X)
2

2βX
[tanh−1 βX ]2

αemα cos2 θW
βXβf

[
(β2
f+β2

X ) tanh−1 βX

+ 1√
3
|2,2〉 +

(βf−β
2
X )

βX
(1−βf )

(
tanh−1βX

βX
−1

)]2

χχ→W+W− |l〉≡
√

2
3 |2,2〉 α2

em
(1−β2

X)
2

4βX
[tanh−1 βX ]2

αemα cos2 θW
2βXβf

m4
W

m4
χ

[(
1−

m2
Z

4m2
W

−

− 1√
3
|0,0〉

m4
Zβ

2
X

8m4
W

)
tanh−1βX−

m2
Z

4βXm
2
W

×

×
(

2−β2
X−

m2
Z

2m2
W

)(
tanh−1βX

βX
−1

)]2

Table 5.2: Same as Tab. 5.1, but for scalar DM. In the case that |X〉 is a W-pair, we report our results
in the {|t〉, |l〉} basis.

WW intermediate state

The total amplitude for the processes γγ → WW or γZ → WW can be computed
using any basis. Actually, the fact that

|〈X1
S |T |fS〉|2 = |〈L = 0, S = 0|T |fS〉|2+|〈L = 2, S = 2|T |fS〉|2 = |〈t|T |fS〉|2+|〈l|T |fS〉|2 ,

serves as a cross-check of our calculations. In the case of γγ → WW total amplitude
reads

〈X1
S |T |fS〉 = 16π

√
4β2

X +
3

2
γ−4
X

tanh−1 βX
βX

, (5.18)
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Figure 5.2: Relative contribution from partial waves, transverse and longitudinal internal components
to 〈WW |T |γγ〉 as a function of the mass of the DM particle.

where the state |X1
S〉 can be represented in both basis as

|X1
S〉 =

1√
3

3 + β2
X√

8β2
X + 3γ−4

X

|L = 0, S = 0〉+

√
2

3

2β2
X√

8β2
X + 3γ−4

X

|L = 2, S = 2〉 (5.19)

=

√
2(1 + β2

X)√
8β2

X + 3γ−4
X

|t〉 − 1

γ2
X

√
8β2

X + 3γ−4
X

|l〉 . (5.20)

Fig. 5.2 shows how the different components of |X1
S〉 are distributed as a function of

the mass of the DM particle. Notice that according to our assumptions γX = mχ/mW

and therefore, βX =
√

1− (mW /mχ)2.

As expected, at small βX (mχ ≈ mW ), the state is dominated by |L = 0, S = 0〉,
whereas in the ultrarelativistic limit, it is the transverse component |t〉 the one that
dominates. The asymptotic values 1/3 and 2/3 reflect the fact that

|t〉 =

√
2

3
|L = 0, S = 0〉+

1√
3
|L = 2, S = 2〉 and |L = 0, S = 0〉 =

√
2

3
|t〉 − 1√

3
|l〉 .

We notice that the shown computations agree with previous studies [121] and by
including the γZ final state, we extend them. The case where the DM particle is scalar
and the loop amplitude is dominated by W running on the loop, was studied just in the
limiting cases where mχ ≈ mW (βX → 0) and when mχ � mW (βX → 1). Here we
obtained a formula that is valid for all DM masses and of course reaches asymptotically
the values already reported in Ref. [121], as easily verified by exploiting the properties
of tanh−1 βX :

• Low energy limit: at first order in βX we can take mχ = mW and tanh−1 βX ≈
βX . Therefore,

Im[σv]γγ
(σv)WW

=
3e4βX
64π2

.
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• High energy limit: in this case we can neglect all mW /mχ rational terms and
take βX = 1 everywhere but in tanh−1 βX . We treat this function in its alternative
definition (1

2 ln[(1 + βX)/(1 − βX)]) and expand βX as 1 − 1
2(mW /mχ)2, which

implies (1 + βX)/(1− βX) ≈ 4m2
χ/m

2
W and therefore

Im[σv]γγ
(σv)WW

=
e4

32π2

[
log

(
4m2

χ

m2
W

)]2

.

5.3 Application: The 130GeV line

After analytically computing the several cross sections that we tabulated in table 5.1,
the missing ingredients for formulas like (5.11) to be applicable, are the constraints on
leading annihilation rates from indirect detection experiments (e. g. (σv)χχ→WW in eq.
(5.11). In this section we adapt, in a channel-by-channel the general methods outlined
in chapters 2-4 to the 130 GeV case so as on the one hand to obtain general limits on
such annihilation cross sections, while on the other hand to constrain the imaginary
part of the amplitude associated to the 130 GeV line by means of the optical theorem.
Consistently with Ref. [15] we shall asume the galactic halo to have a DM density given
by an Einasto profile

ρ130GeVline(r) = ρ0 exp

(
− 2

α

rα

rαs

)
, (5.21)

with α = 0.17, rs = 20 kpc and ρ0 = 1.05 GeV/cm3 which results from ρ(r = 8.5 kpc) =
0.4 GeV/cm3. The mass of the WIMP explaining the line is given by mχ = 130 GeV[1+√

1 + (mX/130 GeV)2]/2, where mX = 0,mZ or mH depending on the interpretation
(model).

general cont. gamma cont. gamma antiprotons antiprotons synchrotron synchrotron
WIMP (dwarfs) (GC) (KRA) (CON) (full cone) (r < 1 pc)

bb̄ 7.6 (8.1, 8.6) 21 (22, 23) 10.4 (11.6, 11.5) 4.2 (4.7, 4.7) 27.5 (29.6, 31.2) 89 (101, 110)

τ+τ− 16 (18, 20) 14 (15, 16) — — 25.8 (29.6, 32.7) 369 (441, 500)

µ+µ− 145 (168, 190) 28 (28, 29) — — 18.2 (21.8, 24.7) 427 (515, 589)

e+e− 89 (104, 118) 14 (11, 13) — — 16.1 (19.4, 22.2) 419 (506, 579)

W+W− 11 (12, 12) 24 (24, 26) 9.3 (9.5, 9.8) 3.8 (3.9, 4.0) 29.7 (32.5, 34.7) 122 (139, 152)

Table 5.3: Limits on the WIMP annihilation rates (in units of 10−26cm3s−1) for DM models explaining
the 130 GeV line.

5.3.1 Continuum gamma rays

In chapter 3 we explained in some detail how we can in a model-independent way search
for DM by analyzing the gamma-ray spectra of targets where we believe the DM signal
can be important. Here, we make a concrete use of them by e. g. setting a definite value
for the mass of the DM and selecting specific targets.

In Ref. [122] the Fermi-LAT collaboration investigated a catalogue of dwarf spheroidal
galaxies in the context of indirect searches for DM. We consider the bounds on the an-
nihilation rates of DM pairs that they obtained and evaluate them at the DM masses
required for the 130 GeV excess to be interpreted of DM origin. These values are shown
in Table 5.3. Even though Fermi-LAT did not report any limits on annihilation rates
where the DM particles mainly annihilate into an electron/positron pair, we make an
educated guess by rescaling the limits on DMDM→ µ−µ+ with the appropriate number
of photons produced per annihilation Nγ =

∫mDM

me
dN
dE dE.

67



Model L(kpc) δ D0(1028cm2/s) vA(km/s) γ dvc/ dz(km/s/kpc) Φ (GV)
KRA 4 0.50 2.64 14.2 2.35 0 0.67
CON 10 0.6 0.97 38.1 1.62/2.35 50 0.21

Table 5.4: Parameters of the CR propagation models used in our reference model [29]

A central assumption in the analysis of Ref. [122] was that the DM halo for each
dwarf galaxy follows an NFW profile. This certainly renders the limits stronger than
had we taken a shallower profiles like (5.21). In order to also present a conservative
angle, we complement Table 5.3 with another set of continuum gamma-ray limits from
Ref. [123], where the galactic center is targetted. In that work the authors also make
use of a different profile than eq. (5.21) but owing to the property that the DM-induced
gamma-ray flux can be expressed as the product of an astrophysical J-term and a term
containing the particle physics information, we rescale their limits by the correct J-
factor.

As a final comment, notice that the latter constraints on light leptonic channels are
stronger than the ones encountered in the former. This is because Ref. [123] included
the effects of inverse Compton scattering in their analysis as the amount of radiation
density around the GC is huge.

5.3.2 Antiprotons

DM annihilation into hadronic channels (for instance b̄b) are better constrained by an-
tiproton data. In our analysis we consider the two reference set of parameters “KRA”
and “CON” introduced in Ref. [29] –see Table 5.4–. They respectively provide the weak-
est and the strongest constraints on σv for a DM mass consistent with the 130 GeV-line
interpretation.

The resulting limits on the annihilation rates of DM pairs into b̄b and WW are also
reported in Table 5.3. The dataset that the authors of Ref. [29] used, was the one
reported by the PAMELA collaboration in Ref. [73] and the criterion to set such limits
was demanding that the minimally expected astrophysical background of secondary
antiprotons –as extracted from Ref. [30]– plus the DM signal –computed by using
DarkSUSY[68]– do not overshoot the PAMELA antiproton measurements.

Although it is not apparent in Table 5.3, our antiproton limits are only mildly
sensitive to solar modulation (Φ parameter in Table 5.4) and to convection (parametrized
by dvc/dz) since the antiproton kinetic energies that are relevant to this particular
analysis lie in the ∼ 7− 26 GeV region.

5.3.3 Radio

In table 5.3 we also report radio limits based on the 408 MHz measurement discussed in
section 4.4.1. As customarily done, we assumed no background and magnetic equipar-
tition –eq. (4.46)– when modelling the DM-induced synchrotron flux. We also assumed
that the synchrotron emission of a single electron (positron) is monochromatic, in such
a way that we could use formula (4.50):

Fν ≡
1

4πR2
�

dWsyn.

dν
≈ (σv)

8πνR2
�M2

χ

∫
Epρ

2
χ(r)Ne(Ep) dV , (5.22)

where we used DarkSUSYto obtain N(E) numerically.
The integration region is defined as the intersection of a cone of half-apperture 4 ′′,

associated to the 408 MHz measurement and a sphere of 1 pc centered at the GC inside
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which, neglecting diffusion effects is valid. The 1 pc estimate of such “validity sphere”
was obtained by means of eq. (4.44), where the typical length scale l is (rs/2)(r/rs)

1−α

for an Einasto profile (5.21). By plugging the “equipartition” magnetic field ansatz
defined by (4.46) into eq. (4.44) we obtain the desired estimate

t−1
loss

t−1
diff

' 3

(
r

pc

)−4−2α

, (5.23)

In Sec. 5.4.3 we comprehensively revisit and scrutinize the method just considered.
In particular, we notice that even qualitative modifications of the magnetic field’s profile
lead to little changes in the results shown in Table 5.3.

In table 5.3 we also include the “full-cone” radio bounds on the annihilation rates.
These are obtained by using eq. (5.22) but by integrating over the full cone. Such a
practice is customary in the literature: see e. g. Refs. [114, 119].

Finally, assuming that the 130 GeV gamma-ray feature is caused by Majorana DM
annihilation4, we report in table 5.5 our (model-building) constraints on the imaginary
part of the χχ → γγ (γZ) amplitudes. They are obtained by using formulas and
indirect detection constraints like the ones tabulated in 5.1 and 5.3 respectively. In the
next section we will make sense of such constraints by comparing them to some families
of models that could explain the 130 GeV line as DM.

Majorana cont. gamma limit antiproton limit synchrotron limit
WIMP (GC) (’KRA’, L = 4 kpc) (full cone)

bb̄ 1.0× 10−5 (3.1× 10−6) 5.1× 10−6 (1.6× 10−6) 1.4× 10−5 (4.2× 10−6)

τ+τ− 4.9× 10−5 (2.0× 10−7) — 9.1× 10−5 (4.0× 10−7)

µ+µ− 8.7× 10−7 (3.3× 10−9) — 5.7× 10−7 (2.6× 10−9)

e+e− 2.9× 10−11 (8.7× 10−14) — 3.3× 10−11 (1.5× 10−13)

W+W− 0.037 (0.21) 0.014 (0.083) 0.046 (0.28)

Table 5.5: Constraints on the ratio of the imaginary part of the squared χχ → γγ (γZ) amplitude
to the total annihilation rate of Majorana DM particles into γγ (γZ) in the DM interpretation of the
130 GeV line.

5.3.4 Discussion

The resulting limits displayed in table 5.5 are apparently rather stringent. Particularly
constrained are the models which fermionic loops dominate the line’s amplitude. This
is due to the helicity suppression in the SM processes γX → f̄f and γX → WtWt that
are relevant for the optical theorem.

To get a feeling of what our limits mean, we performed a scan over the parameter
space of the constrained MSSM and a 7-parameter phenomenological variation: the
constrained MSSM. As briefly discussed in Sec. 1.3 such models can offer a suitable
WIMP candidate: the lightest supersymmetric neutralino which is constructed by the
superpartners of the gauge bosons and the two physical Higgs bosons apparent in the
MSSM.

Fig. 5.3 displays the resulting imaginary part relative contributions to the total
gamma-ray-line amplitudes for such a scan. The color code indicates how large the
coefficients in eq. (1.7) are. More specifically, the neutralino is mostly Bino if ZB̃ ≡
|N11|2 > 0.9), Higgsino if ZH̃ ≡ |N13|2 + |N14|2 > 0.9. We indicate whether thermal
production leads to the correct relic density by shape coding.

4The corresponding constraints for scalar DM were also obtained in Ref. [III]
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Figure 5.3: Left: scan over MSSM and cMSSM models by which neutralino annihilation into a γZ state
gives rise to a gamma-ray line. In the figure we compare the total annihilation rate vs. the squared
imaginary part of the amplitude of the χχγZ process. Models where the neutralino is dominantly a
Higgsino (Bino) are indicated by blue (red) symbols; green symbols refer to mixed neutralino DM.
Models indicated with circles reproduce the correct DM density today, while upper (lower) triangles
indicate larger (smaller) relic densities. Models inside the shaded area are discussed in the text. We
also include some of the most relevant limits from Tab. 5.5. Right: Same, for neutralino annihilation
into γγ.

Note first that in the scan models reproducing the correct DM density at the present
time are unable to attain the rather large cross section associated to the 130 GeV line,
namely 〈σv〉γγ ∼ 1.27× 10−27 cm3/s (〈σv〉γZ ∼ 3.14× 10−27 cm3/s). Second, the imag-
inary parts of the loop amplitude for models with large line cross sections are always
sizeable compared with the limits we obtained. The only exceptions are found in the
so-called co-annihilation regime for annihilation into two photons (shaded area in fig.
5.3) [124]. There, the neutralino is almost a pure Bino (red coloured in fig. 5.3) and its
mass is just slightly different than the light τ̃ -slepton.

The loop amplitude for models in this coannihilation regime is roughly the sum of
the two Feynman diagrams shown in figure 5.4 [22], where only the first one participates
in the optical theorem’s decomposition illustrated in figure 5.1 while the second does
not have an imaginary part. Owing to the aforementioned mass degeneracy, diagram
(b) gets strongly enhanced5 and the imaginary part of the amplitude gets suppressed as
apparent in the left panel of figure 5.3.

Our results therefore severely challenge the model-building associated to the line
interpretation of the 130 GeV excess, allowing only models with properties that tend to
be too peculiar: accidental cancelations, mass degeneracies.

Such challenges would then favour the original [16] interpretation of the excess as
consequence of internal bremmstrahlung in DM annihilations into fermionic pairs. Notice
that this holds even in the case that we just discussed where IB process is enhanced
in exactly the same way as diagram (b) in fig. 5.4 got enhanced by virtue of mass
degeneracies between τ̃ and χ̃0 ≈ B̃.

5The topology of diagram (b) as most of its properties are similar to the VIB diagrams discussed in
chapter 3.
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Figure 5.4: Leading diagrams in neutrino annihilation into monochromatic photons [22]. Diagram (b)
completely dominates the process for almost degenerate sfermions f̃ and Bino-like neutralinos χ.

5.4 Constraints on the GeV excess

In this part we turn our attention to a different, if somehow related, problem. In
the previous part we were primarily interested in constraining DM models that could
accommodate for a gamma-ray line at the energy of 130 GeV through consideration of
the imaginary part associated to such process. Here, the strategy will be quite different.
We will instead make some sort of “consistency check” where we confront the claim of the
gamma-ray GeV excess with the information provided by complementary observation
channels. In particular, we consider antiprotons, positrons and radio waves.

In section 3.5 we discuss in quite some detail what the main features of the GeV
excess are. Just to briefly recapitulate, a recent analysis [24] of the FERMI-LAT [125]
data revealed the existence of an apparent signal around the GC that can not be ac-
commodated within the astrophysical models adopted there. The spatial morphology
and energy spectrum of such an excess can then in principle be explained in terms of
thermally produced WIMPs with masses 10–40 GeV annihilating in the galactic DM
halo.

If such a claim is true, then complementary signals in other indirect detection chan-
nels are expected6. Before discussing this in a channel-by-channel basis, let us first make
some considerations on the general assumptions that we can make when confronting the
excess hypothesis with other indirect detection channels.

In the same way that the DM interpretation of the 130 GeV excess fixes several
parameters of the theory, for instance, along our discussion of the 130 GeV line we
assumed a given set of DM masses and an Einasto profile (5.21). Analogously, according
to the original publication7, the DM interpretation of the GeV excess requires that
the DM profile should have a standard cuspy feature ρ ∝ r−γ (γ ≈ 1.04 − 1.24) for
r . 1 kpc. We use this information as an input for our theoretical models of the cosmic-
ray antiproton, positron and synchrotron fluxes discussed in the previous chapters. By
regarding the annihilation rate as a free parameter (and the mass in our positron study)
we then obtain constraints that can immediately be confronted to the DM interpretation
of the GeV excess.

6In principle, also related signals in direct and collider experiments could be observed. The likeliness
of such complementary detections is however highly model dependent.

7As mentioned in chapter 3, a newer version improved their analysis and included updated best-fit
values for γ.
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Figure 5.5: PAMELA antiproton flux measurements [23] as a function of their kinetic energy. The
solid line is the best-fit model (with no DM) while the yellow and orange bands indicate the allowed
predictions that are consistent with the B/C propagation model for the extreme values of the parameter
αnuc. The dotted and dashed lines show the contribution of a DM component.

5.4.1 Antiprotons

Following the directions given in section 2.3.2 and applied in the previous sections,
we make a likelihood ratio test to obtain for each DM mass the maximally allowed
annihilation rate that is compatible with the PAMELA dataset reported in Ref. [23].
This is a slightly different dataset than the one considered in the previous section [73].
It features a larger measurement span between June 2006 and January 2010.

There are, however, two main qualitative differences between this analysis and the
one we performed in the above section. Since the DM masses at play in this case are one
order of magnitude smaller than the ones considered there and therefore comparable to
the proton mass ∼ 1 GeV, the biggest sources of uncertainties in the antiproton analysis
discussed in Sec. 2.3.2 such as solar modulation and non perturbative QCD come into
play.

We take these effects into account and consider additionally statistical uncertainties
in the B/C propagation model. All this by introducing three free parameters φF , αprop.

and αnuc.. The first one is the Fisk potential introduced in chapter 2, while the other
two are defined in such a way that the linearly interpolate between the minimal and
maximal predictions of Ref. [30] for the secondary flux associated to propagation and
nuclear uncertainties [69] respectively.

As done in the previous section, we adopt the reference model “KRA” featured in
Ref. [29] and defined by the parameters shown in Table 5.4. Fig. 5.5 shows the 3-
parameter background (BG) fit to the (updated) PAMELA dataset [23]. The results of
adding a DM component to the fit and performing a four-parameter likelihood test are
shown in Fig. 5.6, where our exclusion criterion was varying the parameters (increasing
σv) until the best-fit value −2 lnL changed by 2.71.

Although reference model KRA is the more realistic as far as constraints from differ-
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Figure 5.6: Updated antiproton constraints on the annihilation rate of DM into quark final states from
PAMELA data [23] assuming a generalized profile of –eq. (3.7)– with Γ = 1.04 (solid lines) and Γ = 1.26
(dotted lines).

case δ D0 L Vc Va
(kpc2/Myr) (kpc) (km/sec) (km/sec)

MAX 0.46 0.0765 15 5 117.6
MIN 0.85 0.0016 1 13.5 22.4
MIN′ 0.85 0.0032 2 13.5 22.4

Table 5.6: Antiproton propagation parameters compatible with B/C analysis [30].

ent astrophysical observations on propagation parameters are concerned –see Sec. 2.3.2
for details–, in order to get a broader picture we also considered further propagation
parameter sets compatible with the B/C analysis. Particularly, we studied the extreme
cases MAX and MIN’ parametrized in Table 5.6. Parameter sets MAX and MIN had
been introduced in 2003’s Ref. [126] while the model MIN’ is an educated variation of
the rather outdated MIN model that is both consistent with current constraints on the
diffusion’s zone height L and with the B/C analysis.

Fig. 5.7 shows how the constraints of DM annihilations into b-quark pairs featured
in Fig. 5.6 can change by varying the reference propagation model in a reduced –but
interesting in terms of the GeV excess– mass interval.

5.4.2 Positrons

As mentioned earlier, the method by which we confront the DM interpretation of the
GeV excess with positron data is different than the one we have just applied in the case
of antiprotons. Namely, for a given set of branching ratios into leptonic states and b̄b,
we refit –when sensible– the energy spectrum from Ref. [24]’s fig. 3.8 with the mass and
the annihilation rate of the DM as fitting variables. We then compare the resulting rates
with the central values of the AMS-02 positron constraints on DM by [10] displayed in
fig. 2.5 and discussed in section 2.3.2.

The reason why we mainly consider DM annihilation into leptons in this section is
because of the usefulness of positron data in constraining leptophilic models. However,
we also study cases where annihilation into b-quark pairs contribute. We assumed an
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Figure 5.7: Limits on the annihilation of DM into bb̄ that result from using the “MAX”, “KRA” and
“MIN”’ propagation models as reference models. For comparison, we also include the preferred region
inferred by the inner Galaxy analysis in [24] (Γ = 1.04).
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Figure 5.8: Left: positron limits on the relative branching ratios of charged leptons in the leptophilic
DM interpretation of the GeV excess. Green regions are excluded, while the spectral fit to the GeV
excess “fails” (∆χ2 & 25) in the gray region. Right: same as left but with a small admixture of b̄b
annihilation.

inner slope γ = 1.26 in formula (3.7) and during the fit we constrained the DM mass to
be larger than 9.2 GeV so as to bypass the unaccounted effects of bremsstrahlung and
inverse Compton scattering that are expected to contribute at low energies [127].

For several values of the two independent leptonic branching ratios BR(χχ→ e+e−)
and BR(χχ → µ+µ−), we draw allowed and excluded regions by the AMS-02 analysis
in fig. 5.8.

5.4.3 Synchroton radiation

The 408 MHz upper limit analysis introduced in Sec. 4.4.1 and applied in the previous
one will also prove useful for testing the consistence of the DM interpretation of GeV
excess with radio observations at the GC. As done with antiprotons, we keep the an-
nihilation rate as a free parameter that we constrain by means of null DM searches in
the radio band at the GC. The main difference between this case and the previous one
is that the DM distribution considered above is shallower than the type of distributions
considered here. Owing to the strong dependence of the DM-induced radio signal on the
DM distribution –in contrast to the magnetic field profile– this will turn out to make a
huge difference and render the radio limits reported in this section rather strong.
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Figure 5.9: Solid line: equipartition magnetic field (4.46). Magnetic fields within the gray region are
not strong enough for diffusion to be neglected (as assumed in our analysis, cf. Eq. (5.24)). Lower limit
arrows (in red) refer to respectively “ultra-conservative” and “realistic” field inferred values from the
recently discovered magnetar PSR J1745-2900 [25] (see section 4). Horizontal arrows indicate the ranges
that are interesting for the calculation of the annihilation signal.

A näıve application of formula (5.22) in modelling the 408 MHz measurement [115]
will put too strong constraints on the annihilation rates for the masses considered here.
Although the applicability of the formula is not questioned provided the conditions
discussed in section 4.4.1 are fulfilled, N-body simulations can not resolve the radial
dependence of the DM profile in the inner 5 pc. It is precisely in this region that most
of the synchrotron signal as portrayed in fig. 5.9 is originated and such uncertainties
certainly represent a limiting factor in our analysis. In the same way as we did before,
we integrate the flux (5.22) only in those regions where the magnetic field is stronger
than a critical one

Bcrit.(r) & 4 γ2/3
(pc

r

)2/3
µG , (5.24)

which is defined by eq. (5.23) and the DM scale height corresponds to a generalized
NFW profile with inner slope γ.

In order to quantify the propagated uncertainties on the radio flux due to not knowing
the radial dependence of the DM profile inside the region defined by r . 5 pc, we consider
modifications in the inner DM profile in a way that is still consistent with both the GeV
excess’ DM interpretation and N-body simulations. Specifically, we introduce a core
radius below which the DM density remains constant and whose magnitude we take as
a variable. For several core radii the associated radio limits on τ (80%) and b-quark
(20%) pairs that we obtain by applying formula (5.22) in Fig. 5.10, where we used the
equipartition magnetic field profile (4.46) introduced in Sec. 4.4.1.

Notice that the existence of such DM core is expected if one takes into account three
effects that become important in regions where the DM density is large. Namely, self-
scattering, annihilations and the presence of a super massive black hole (SMBH) at the
center of our galaxy [128]. The scale at which this flattening is expected to occur is
however orders of magnitude smaller than the core radii that we consider here. In some
extreme cases [129, 130], though, partial flattening can occur at the 1 pc scale.
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Figure 5.10: Left: Radio limits on DM annihilation into 80% τ+τ− and 20% b̄b for a generalized NFW
profile with γ = 1.26 (lowest line). The rest of the curves correspond to the same limits but for a NFW
profile with an artificial core of size rc as indicated. Right: same as left but with an inner slope of
Γ = 1.04.

5.4.4 Discussion

Careful investigation of the consequences of claiming that the apparent GeV excess is
originated from DM annihilations led to the interesting results that we outlined in figs.
5.5, 5.8 and 5.10. Notice that depending on the messenger, some regions turn out to
be more relevant than others when estimating their associated fluxes. For instance,
high energetic cosmic-ray positrons probe only regions close to the solar system while
synchrotron signals from DM are expected to be mainly produced close to the GC.

This is better visualized in Fig. 5.11 where for an interesting set of annihilation
channels we show our limits as compared to the central values of the best-fit annihilation
rates. We also include the positron limits from Ref. [10] in the last panel. For γ =
1.26 vanishing branching ratios for DM annihilation into light leptons passed the test
performed in our analysis as apparent in the left panel of fig. 5.8, whereas for the
scenario of a less pronounced r-dependence close to the GC γ = 1.04, the limits become
more stringent and are in tension with the GeV excess interpretation. This behaviour
is exactly the opposite to what occurs with our radio constraints. This is of course a
manifestation of the previous paragraph’s point. Namely, DM-induced positron fluxes
are originated in nearby regions and scale almost exclusively with the annihilation rate
(independent of the DM profile) whereas synchrotron fluxes come from the inner few pc
of the galaxy and mostly depend on the DM profile, as stressed before.

The thorough analysis of PAMELA antiproton data where a novel strategy in ac-
counting for the uncertainties from nuclear and propagation effects proved to be quite
successful in constraining DM annihilations at the mass range relevant to the GeV excess.
We were able to fit the data nicely with our three-parameter model and consequently
to obtain strong bounds on the DM signals.

We additionally performed several checks in order to better interpret the “strength”
of our antiproton results. For instance, we re-performed the same analysis to various
subsets of data points in order to find out which data points are the most relevant. We
observed that even data points corresponding to energies as high as 20 GeV turn out
to be important. This is a bit counterintuitive since data points with energies larger
than ∼ 10 GeV are only mildly affected by the DM signal –see Fig. 5.5–. On the other
hand, cutting out several lower energy bins (with energies up to ∼ 1 GeV) also lead
to strong bounds for DM masses larger than ∼ 10 GeV. This reflects the fact that
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Figure 5.11: Summary of our updated constraints for various annihilation channels. Conveniently the
ratio of the our limits on 〈σv〉 and the corresponding one as inferred form the DM interpretation of the
GeV excess. Dashed (solid) correspond to a slope γ = 1.26 (Γ = 1.04).

the PAMELA [23] measurements of antiprotons with “intermediate” energies are quite
accurate. We also tested –and found an excellent agreement– our analytical treatment
of solar modulation against a more sophisticated numerical one. Namely, the code
HelioProp [74] which basically solves the 4D propagation equations that describe the
diffusion and drift motion along the large scale gradients of the spiralling solar magnetic
field, the heliospheric current sheet, and the radially expanding solar wind.

Our positron bounds on the model-building for the GeV excess exclude well-motivated
scenarios where the branching ratios of DM annihilation into electron-positron and muon
pairs are sizeable. In fact, 100% leptonic channels do not fit well the GeV excess’ spec-
trum: points sitting in the allowed white region in the left panel of figure 5.8 feature
∆χ2 ∼ 130. Adding sizeable branching fraction to hadronic channels such as b̄b im-
proves this. However the constraints shown in the right panel of the same figure still
pose strong challenges on the model-building.

Our radio limits serve as an example of how strong the DM signal depends on the
DM distribution. Fig. 5.10 demonstrate how radio limits span four orders of magnitude
when we only consider core radii of the DM distribution that are smaller than 10 pc.

This property fortunately does not apply to the rather uncertain magnetic field.
We tested this by considering different magnetic field models. In figure 5.12 we show
the resulting radio limits on (80%) τ pairs from considering two alternative models of
constant magnetic field. The field’s strength in such models correspond to conservative
and agresive lower limits on the GC’s inner 0.12 pc magnetic field as estimated by Ref.
[25] in the context of the recent discovery of a magnetar sitting in that region and was
also claimed in that reference.
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Figure 5.12: Radio constraints for a constant magnetic (instead of the equipartition magnetic field).
Dot-dashed lines refer to B = 50µG and dotted lines B = 8 mG (dotted lines).

The results from this test are clear: radio limits are almost insensitive to changes
in the magnetic profile, provided this is strong enough (i.e. it fulfills condition (5.24)).
One can see this analytically by taking a closer look at formula (5.22). The dependence
of the flux on B comes only from the product EN(E), let us now assume constant B so
that such a term can be pulled out of the integral. Now, observe that for all annihilation
channels considered the energy dependence of N(E) is weak if E � mχc

2, meaning that
the B-dependence in formula (5.22) is exactly the same of E –the electron’s energy
emitting frequency ν–, namely B−0.5.

Limitations in our method may then arise from non consideration of other processes
responsible for the electrons’ energy losses (ICS, bremsstrahlung). For a discussion on
these possible caveats, we refer to Ref. [131] where not only other sources of energy loss
were discussed, but also they considered advection and convection. See also [132]. A
recent study [133], however, reevaluated our radio limits on the GeV excess with the only
difference that they included electron energy losses due to inverse Compton scattering
in a point-source like radiation field. They also estimate spherical convection effects
and used a weaker magnetic field normalization. Their results are up to three orders of
magnitude less stringent. In any case, as stressed before and made clear by fig. 5.10,
most of the uncertainties in GC radio limits stem from the corresponding uncertainty
of the inner structure of the DM distribution.
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Chapter 6

Effects of non-vanishing relative
speeds

Most of the results discussed so far are based on the assumption that the relative speed
of annihilating WIMPs is negligibly small, or equivalently, the 2-WIMP initial state
is an s-wave. This is of course well justified by the fact that DM particle speeds are
typically of the order of 100 km/s1, less than 1% of the speed of light. In this chapter
we will discuss several cases where relaxation of the v = 0 condition leads to even
qualitative differences in the theoretical prediction signals relevant to indirect searches
for DM. We will then focus on gamma rays signals from the model with universal extra
dimensions introduced in section 1.3.1, where a detailed study of resonant processes
that could potentially enhance the associated line signals is given. In the last section we
introduce the rather interesting Bañados-Silk-West effect and discuss scenarios where
such an effect can lead to unique signatures in the high-energy gamma-ray sky. The
essential points of the following discussion were included in my publication [I].

6.1 Enhanced annihilation rates

In this section we shall pay special attention to the velocity dependence of the anni-
hilation rate. In particular, we discuss a number non-trivial observable effects such as
Sommerfeld ennhancement, thresholds and resonances, that in one way or another affect
the annihilation rates of WIMPs.

6.1.1 Sommerfeld enhancement

An interesting situation that we have not discussed so far is the possibility that DM
particles form bound states due to Coulomb-like interactions amongst them. Motivated
by several reasons –e. g. explaining the positron excess [134] discussed in sec. 2.3.2–
several models with this property have been put forward. Such a scenario requires
though a massless (or light) mediator that only couples to the DM particle.

The impact on the annihilation cross sections of the effectively long-range interac-
tion can be sizeable. This phenomenon, known as the Sommerfeld enhancement, is a
fascinating topic which unfortunately remains beyond the scope of this manuscript. Fol-
lowing Ref. [134], we will motivate the idea behind the Sommerfeld enhancement with
a simple classical example: consider the scattering of a sphere of radius R and mass M

1The reader can estimate such speeds by considering, for instance, the maximum escape velocity of
a DM particle in an NFW-like DM halo of our galaxy size. A rough estimate yields vmax ∼ 500 km/s
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Figure 6.1: Graphical representation of the Sommerfeld enhancement in terms of Feynman diagrams in
the particular case of DM neutralino annihilating into a two-vector state [26].

at rest and a test particle with velocity v at infinity and impact parameter b. In the
absence of long-range interactions, the cross section is simply σ0 = πR2 as the can only
collide if b < R. If they, in turn, interact gravitationally they will collide even if the test
particle R < b < bmax, where bmax is the (critical) impact parameter at which the test
particle collides with the sphere. The cross section is therefore enhanced

σ = σ0

(
1 +

v2
esc

v2

)
> σ0 ,

where v2
esc = 2GM/R is the escape velocity from the surface of the sphere. Notice that

for small speeds (v � vesc) the cross section diverges as v−2.

A similar phenomenon occurs when instead of classical objects we consider quantum
particles. There, the Sommerfeld effect starts to become important when the de Broglie
wavelength λdB ∼ 1/mχv is comparable to the Bohr radii of the coupled states ao ∼
(αφmχ)−1 (αφ = g2

φ/4π), where gφ is the coupling constant between the DM particles
and the mediator and we neglect for the moment the mass of the mediator. Defining the
parameter εv = λdB/a0 = αφ/v, the Sommerfeld factor S(v) ≡ σ/σ0 can be computed
analytically, yielding

S(v) =
π/εv

1 + e−π/εv
. (6.1)

Since this is a low energy effect, non-relativistic quantum mechanics applies. In
fact, Sommerfeld’s original results [135] are based on a quantum mechanics calculation
of a spinless electron subject to a Coulomb potential. A full quantum field theoretical
account for this effect correspond to summing over all ladder diagrams such as the
ones displayed in figure 6.1. Such a tedious computation is equivalent to solving the
radial Schrödinger equation for the two-body (s-)wave function imposing the appropriate
boundary conditions [134].

6.1.1.1 Saturation

By taking into account the mass of the mediator, we introduce a new length scale (m−1
φ )

into the problem. Since the scale defined by m−1
φ determines φ’s range of interaction,

the Sommerfeld enhancement saturates for sufficiently small speed: when λdB � m−1
φ

or εv � εφ, by defining εφ = mφ/αφmχ. Under this conditions S(v) ∼ 1/εφ, which
is constant. Rather interestingly, for a scalar mediator (Yukawa) bound states develop
giving rise to resonances at specific values (discrete spectrum) of εφ. This is summarized
in fig. 6.2
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Figure 6.2: Sommerfeld enhancement as a function of εv and εφ. Images courtesy of L. van den Aarsen
[27]

In Fig. 6.2 it is apparent that by varying εv while keeping εφ constant close to
threshold, S(v) follows the following dependence S(v) ∝ v−2 for sufficiently large v. Far
from a threshold, S(v) follows the behaviour determined by eq. (6.1): S(v) ∝ v−1.

6.1.2 Resonances

In the most general sense, when the physical conditions of a system (e. g. a two-
particle initial state) are in tune with the ones defining a quantum excitation (bound
state or particle) in the theory, then resonant phenomena are expected. These typically
manifest themselves as enhancements in the interaction probability (cross section) of
certain processes, e. g. the peaks in Fig. 6.2.

χ

χ X

X

Figure 6.3: Resonance by creating a bound state close to threshold.

Although we will mainly be interested in the so-called Breit-Wigner resonances, it is
worth mentioning other types of resonant effects that could potentially have an impact
on indirect DM searches. One example is the creation of a bound state of two particles,
such as quarkonia, close to the energy threshold (minimum energy required to create
them). Such bound state (resonance) then decays producing in this way a resonating
effect quite similar to the Sommerfeld enhancement. The theoretical treatment of this
problem is actually identical: non-relativistic quantum mechanics is equivalent to adding
an infinite number of Feynman diagrams.

6.1.2.1 Breit-Wigner resonances

Although the original work by Breit and Wigner [136] on resonances was concerned with
nuclear excitations, i. e. bound states, the term Breit-Wigner resonance in relativistic
quantum field theory is associated to s-channel processes like the one depicted in fig. 6.4.
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The center-of-mass energy can “resonate” with the mass of the virtual particle occurring
in the Feynman diagram and since the propagator in momentum space diverges, the full
amplitude also diverges at tree-level. This is of course a consequence of not considering
further terms in the perturbation series and using a propagator with bare parameters.

χ

χ X

X

Figure 6.4: Feynman diagram of a general Breit-Wigner resonance.

Owing to the optical theorem discussed in the previous chapter, full computation of
the renormalized propagator is possible at all orders of perturbation theory [40]. The
resulting cross-section close to resonance has the following shape

σ ∝
∣∣∣∣ 1

p2 −m2
res. + imres.Γres.

∣∣∣∣ , (6.2)

where Γres. is the decay width of the resonance. Eq. (6.2) resembles the resonant
scattering amplitude of neutrons with nucleons studied by Breit and Wigner close to
the resonance energy E0 at which nuclear excitations are created

f(E) ∝ 1

E − E0 + iΓ/2
,

where E is the energy of the system and Γ is the decay width of the excitation. Since
our focus will be on this type of resonances we will omit the Breit-Wigner suffix and
name them henceforth just resonances.

Before running into the particular example of Breit-Wigner resonances in the context
of Universal Extra Dimensions, we would also like to point out that there can be more
exotic situations where resonance effects can come about. For instance, consider a theory
where DM bound states and at the same time Breit-Wigner resonances can be formed.
In such cases re-scattering diagrams as the one shown in figure 6.5 are of the same order
of tree-level diagrams and should therefore be included in the calculation.

χ

χ X

X

Figure 6.5: Rescattering diagram in a Breit-Wigner resonance.

6.2 UED resonances

Let us now consider the concrete case of Universal Extra Dimensions introduced in
section 1.3.1. The particle spectrum obtained there is determined by the different modes
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that arise in the Fourier expansion of the 5D fields occurring in the model. As shown
in section 1.3.1 the bare masses of such modes are approximately integral multiples of
the compatification’s mass scale R−1, rendering radiative corrections essential in e. g.
determining what the lightest Kaluza-Klein particle (LKP) is.

An interesting consequence of this “ladder structure” of the UED particle spectrum is
the fact that owing to the particularity that mode-2 particles (KK(2)) are roughly twice
as heavy as mode-1 particles (KK(1)), the center of mass energy of two slow-moving
LKP’s (∼ 2mKK(1)) is numerically close to the rest energy (mass) of mode-2 particles
(mKK(2)). Specifically, the difference mKK(2) − 2mKK(1) is essentially proportional to
the radiative corrections determining the model’s actual masses. Since annihilations of
slow-moving WIMPs are precisely the processes relevant for indirect DM detection, we
shall study in detail the impact of this property in that context.

We already identify mode-2 particles in the UED model as potential Breit-Wigner
resonances for the annihilation rate of LKP pairs. As a next step, we shall identify
which ones of such mode-2 particles are allowed by the symmetries of the model (spin,
charges, etc.) to resonate with the initial two-LKP particle state. Then we will focus
on the decay widths of such resonances. Decay widths are essential in determining
whether a certain resonance is important or not. Most of the following discussion will
be concerned with the minimal UED –also introduced in section 1.3.1– however, our
results can easily be generalized for non-minimal (next-to-minimal) scenarios where the
LKP is the first excitation of the 5D photon field B(1).

B(1)

B(1)

B(2), A
(2)
3

γ

X = H

B(1)

B(1)

H(2), a(2)

γ

X = γ, Z

Figure 6.6: Relevant Breit-Wigner resonant diagrams for LKP annihilation in the UED model.

Charge conservation only allows mode-2 particles B(2), A
(2)
3 , H(2) and a

(2)
0 to poten-

tially resonate with a B(1)B(1) initial state producing gamma-ray lines as depicted in
figure 6.6. Notice that we neither drew diagrams where a vector resonance is connected
to a vector-vector final state nor scalar particles connected to scalar-vector final states
and no fermions occur in any of the final states. The former case is forbiden by the
Landau-Yang theorem [137, 138] if the final state is composed by two gamma rays while
the latter are forbidden by helicity conservation. Vector resonances with a γZ final state

and a
(2)
0 resonances turn out to give no contribution owing to the anomaly cancellation

property of the SM which is also applicable in UED2. Refer to appendix D for more
details on such fascinating topics.

Let us now take a closer look at the mass spectrum of mode-1 and -2 Kaluza-Klein
particles in the minimal UED (mUED) model so as to discriminate which decay channels

are available for B(2), A
(2)
3 and H(2). Figure 6.7 displays the masses in units of the

inverse compatification radius of both the relevant resonances (left bars) and mode-1
particles (dashed bars). The continous arrow indicate the dominant tree-level decay

2The a
(2)
0 is a linear combination of the fifth component of the 5D Z(2) boson and (predominantly)

the imaginary part of the Higgs-doublet lower component χ
(2)
3 , both of which participate in the anomaly

cancelation theorem (χ
(0)
3 is the Goldstone boson absorbed by Z-boson’s longitudinal degree of freedom)
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Figure 6.7: Mass spectrum of relevant 2nd-mode KK particles in the mUED scenario, in units of the
inverse compactification scale R−1 (left column and axis). The middle and right columns display the
mass spectrum of KK(1) states. The decay channels in the minimal scenario are displayed by solid
arrows. Dashed arrows indicate the dominant decay process in non-minimal regimes.

mode of A
(2)
3 while the dashed ones corresponding dominant modes in non-minimal

scenarios –if kinematics allow–. In the mUED model both B(2) and H(2) decay through
loop-suppressed KK-number violating vertices into SM particles, rendering their decay
widths rather width, potentially enhancing the cross section on resonance.

6.2.1 Decay witdhs

As discussed in section 1.3.1.1, stability of the electroweak vacuum and thermally pro-
duced abundance of DM can be achieved in a rather narrow parameter space in the
UED model [44]. As a benchmark, we use

ΛR = 5, R−1 = 1.2 TeV (6.3)

whenever we state numerical results.
In the UED model tree-level couplings preserve KK number and can easily be derived

from the 5D picture (see, e. g., Refs. [43, 139] for a list of Feynman rules). KK-number
violating effective couplings are however more involved. In general, these are of radiative
origin as they counterterms located on the orbifold fixed points are KK-number violating.
Besides calculating the radiative corrections to the vertex on the brane, we will have to
take into account kinetic and mass mixing effects between states of different KK number.
For instance, in the mUED case the coupling of a generic gauge field Aµ to chiral SM
fermions f ,

Leff ⊃ gAf̄feff A(2)
µ af̄

(0)γνT a
1± γ5

2
f (0) , (6.4)

is given by

gAf̄feff =
g√
2

[
δ̄(m2

A(2))

m2
2

− 2
δ̄(mf (2))

m2

]
, (6.5)

where g is the corresponding coupling between zero modes, mn ≡ n/R and δ̄(m) refers
to radiative mass corrections due to terms localized on the brane.
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6.2.1.1 B(2) decay

In the mUED model the B(2) is the lightest of all level-2 KK particles. Its only kine-
matically possible decay is directly into SM particles and it’s described by KK-number
violating effective vertices. The leading decay channel is B(2) → q̄q has a branching

ratio of around 99% [140]. The mass corrections of B(2) and f
(1)
s,d are given by [4, 140]

δ̄m2
B(2)

m2
2

= −g
′2

6

log Λ2

µ2

16π2
, (6.6)

δ̄m
f

(1)
s

m2
=

(
9

4
Y 2
fsg
′2 + 3g2

s−
3

2
y2
f

)
log Λ2

µ2

16π2
, (6.7)

δ̄m
f

(1)
d

m2
=

(
9

4
Y 2
fd
g′2 +

27

16
g2 + 3g2

s −
3

4
y2
f

)
log Λ2

µ2

16π2
,

(6.8)

where Y refers to the hypercharge, g′ [g] denotes the U(1) [SU(2)] coupling constant
and y the Yukawa coupling. The term proportional to the strong coupling constant gs
only appears for quarks. Using eq. (6.5), this translates into the vertex relevant for
B(2) → f̄f (as reported in Ref. [140])

Leff ⊃ −f̄γµ
(
gLeff

1− γ5

2
+ gReff

1 + γ5

2

)
fB(2)

µ , (6.9)

gLeff =
g′Yfd√

2

[
g′2

6
(1+27Y 2

fd
) +

27

8
g2 + 6g2

s −
3

2
y2
f

]
log Λ2

µ2

16π2
,

(6.10)

gReff =
g′Yfs√

2

[
g′2

6
(1+27Y 2

fs) + 6g2
s − 3y2

f

]
log Λ2

µ2

16π2
. (6.11)

The decay rate is then

ΓB(2)→f̄f
mB(2)

=
1

12π

(
1−

4m2
f

m2
B(2)

) 1
2

× (6.12)

×
[(

1 +
2m2

f

m2
B(2)

)
g2
V +

(
1−

4m2
f

m2
B(2)

)
g2
A

]
,

where gV ≡ (gReff +gLeff)/2 and gA ≡ (gReff−gLeff)/2. Adopting the values stated in eq. (6.3)
gLeff = 0.09 and gReff = 0.11, and the decay rate amounts to ΓB(2) ≈ 0.813GeV.

When allowing for arbitrary mass splittings on the other hand B(2) would instead
mainly decay into a pair of first-KK-level charged leptons; the corresponding rate is then
given by

Γ
B(2)→l̄(1)

s l
(1)
s

mB(2)

=
Y 2
ls
g′2

4π

1−
4m2

l
(1)
s

m2
B(2)

 1
2
1 +

2m2

l
(1)
s

m2
B(2)

 . (6.13)

In such case, the existence of a tree-level rather than loop-suppressed coupling typi-
cally over-compensates the additional phase-space suppression, and the decay happens
considerably faster (with Γ ∼ 10GeV).
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6.2.1.2 A
(2)
3 decay

In the mUED model, A
(2)
3 is considerable more massive thanB(2). As a result, kinematics

allows for six different decay dominant channels into first-level leptons ¯̀(1)
s,d`

(1)
s,d. By

making the identification Y g′ → g/
√

2, the corresponding decay rate is described by
Eq. (6.13). The total decay rate is Γ

A
(2)
3

≈ 70 GeV.

In non-minimal scenarios, mass splittings may kinematically not allow the A
(2)
3 to

decay into first-KK-level states, but only into SM particles. Assuming that non-trivial
mass and kinetic boundary terms are added at the cut-off scale, in analogy to Eq. (6.9),

the radiative vertex that couples A
(2)
3 to SM fermion is given by

Leff ⊃ −gLefff̄γ
µ 1− γ5

2
fA

(2)
3µ , (6.14)

gLeff =
gT3f√

2

[
9Y 2

fL

2
g′2 − 33

8
g2 + 6g2

s −
3

2
y2
f

]
log Λ2

µ2

16π2
,

(6.15)

where T3f is the fermion weak isospin charge. In deriving this, we used again formula
(6.5) and also [4]

δ̄m2
W (2)

m2
2

=
15

2

g2

16π2
log

Λ2

µ2
. (6.16)

The total width becomes numerically Γ
A

(2)
3

≈ 0.8 GeV, with branching ratios of

11.2% for t̄t, 11.4% for b̄b, 18.0% for other quark-antiquark pairs and 0.9% for every
lepton pair.

6.2.1.3 H(2) decay

If we assume minimality, the only possible tree-level decay of the second KK-level Higgs

is H(2) → a
(1)
0 B(1). This decay is kinematically forbidden for R−1 . 1 TeV. Therefore,

H(2) is also metastable and decays predominantly into top anti-top pairs due to a ra-
diatively generated vertex Leff ⊃ geffH

(2)t̄t, where (λh being the quartic coupling of the
Higgs potential) 3 [140]

geff =
yt
12

[
16g2

s +
33

4
g2 +

23

6
g′2 − 9y2

t + 3λh

]
log Λ2

µ2

16π2
.

From this, the decay rate follows as

ΓH(2)→t̄t
mH(2)

=
3g2

eff

8π

(
1− 4m2

t

m2
H(2)

) 3
2

.

The factor 3 accounts for the number of colors. Numerically, we find geff = 0.0189 and
thus a decay rate of ΓH(2) ≈ 0.383GeV.

In non minimal scenarios, if H(2) has a sufficiently large it will mainly decay into

t̄
(1)
s t

(1)
d and t̄

(1)
d t

(1)
s pairs. In this case, one has an axial scalar coupling with

geff = 2g
mf

mW
. (6.17)

Numerically, this gives ΓH(2) ∼ 160GeV, i.e. a much faster decay than in the mUED
scenario.

3Here, we corrected a similar formula found in [140] by including scalar-vector-fermion loops.
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6.2.2 Vertices

The blobs in figure 6.6 refer to all possible Feynman diagrams connecting the particles
attached to them. While we provide in appendix D a detailed account for these, it is
instructive to make some general comments about their computation.

We first notice that we can decompose the computation of the diagrams 6.6 into two
decoupled parts (blobs) according to the following formulas for the amplitudes

iMVec = εµ1 ε
ν
2L

ρ
Vecµν

−ηρσ +
PρPσ
m2

Vec

s−m2
Vec + imVecΓVec

R σ
Vecαε

α
γ , (6.18)

iMH(2) = εµ1 ε
ν
2LH(2)µν

1

s−m2
H(2) + imH(2)ΓH(2)

RH(2)αβε
α
γ ε
β
X . (6.19)

In contrast to the blobs on the left hand side of the diagram, the right blobs are
KK-number violating. As mentioned in section 1.3.1 –and used in the last section– such
symmetry is broken by the orbifold’s compactification and it does not manisfest itself at
tree-level but at the loop-level. In the appendix (D) we specify which Feynman diagrams
participate in the computation of RγX

H(2)αβ
(X = γ, Z) and RγHVecαβ and in table 6.1 we

indicate their relative strength by calculating the decay widths associated to such blobs.
Concretely, we square decay amplitudes such as for example MH(2)→γγ = RγH

H(2)αβ
εα1 ε

β
2

and average over photons’ helicities.

Resonance Y (2) B(2) A
(2)
3 H(2)

Y (2) → γX
γH γH γγ, γZ

(Γ∼10−4) (Γ∼10−4) (Γ∼10−4, 10−3)

Γmain
Y (2) (mUED)

f̄SMfSM l̄
(1)
d l

(1)
d t̄t

(Γ∼0.8) (Γ∼70) (Γ∼0.1)

Γmain
Y (2) (non-mUED)

f̄
(1)
d, sf

(1)
d, s f̄SMfSM t̄

(1)
d,st

(1)
s,d

(Γ∼15) (Γ∼0.8) (Γ∼160)

B(1)B(1)Y (2) ∼ g′3mt ∼ g′2gmt ∼ g′2v

Table 6.1: Decay channels and couplings for the resonances shown in Fig. 6.6. The decay rates are in
GeV.

Left blobs preserve KK-number and as a matter of fact for the diagram with the
H(2) s-channel there exists an EW symmetry-breaking tree-level coupling (iLH(2)µν =

ig′2vηµν/2) that connects the resonance with the two inital LKPs. In the case of the
vector s-channel diagram, there are no tree-level BBB (or BBA3) couplings as they
would violate 5D gauge invariance. Nevertheless, the fermion loop diagrams connecting

the B(2) and A
(2)
3 with the two B(1)s are finite and were computed in the appendix

with the aid of the computer software package FeynCalc [141]. For the LKP masses we
are considering here, the resulting L ρ

µν tensors defined in eq. 6.18 are approximately
proportional to mt and, as expected, they vanish once EW symmetry is restored4. Last

4In 4D fermion loops with three gauge bosons lead to anomalous (gauge-symmetry violating) cou-
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Figure 6.8: Resonant-diagram contributions to the B(1)B(1) → γX annihilation rates in the minimal
regime of the UED model as a function of the relative speed of the WIMPs (the curves associated with

the B(2) and A
(2)
3 resonances are multiplied by factors 106 and 109 respectively). The horizontal dashed

line indicates the value of σvγγ in the zero-velocity limit.

row of table 6.1 indicates for each resonance a rough estimate of the corresponding left
blobs numerical value in terms of the relevant coupling constants.

6.2.3 Evaluation of the cross sections

Figure 6.8 graphically summarizes the results of the resonant cross section calculations
we performed in the appendix D [142] and numerically evaluated with LoopTools [143].
The H(2) resonance is clearly the most prominent in light of its “metastability” (small
width) and its tree-level coupling to the initial two-particle state. We observe a ∼ 10−8

and ∼ 10−11 relative suppression of respectively the B(2) and A
(2)
3 resonances respect to

H(2). This can easily be explained in terms the elements of table 6.1. We observe that
right blobs are roughly of the same order in all cases while the decay widths differ and
specially the left blobs substantially and for instance the ratio between B(2) and H(2)

peak-values can be correctly estimated as (ΓB(2)/ΓH(2))−2(g′2/4π)(4π)−2Y 6
tR
∼ 10−8 (the

(4π)−2 is a standard estimate of the 1-loop integration prefactor which affects only the
B(2)-resonance).

For the Higgs resonance it is the γZ channel the dominant one in accordance to the
numerical values on the first row of table 6.1. Comparing the computed values of the
annihilation rate on resonance with the ones that results from considering box diagrams
in the γγ channel with v = 0 [12] (dashed line in fig. 6.8) we see a strong enhancement.
Even at v = 0 the H(2) s-channel diagram contributes at the same order as other relevant
diagrams for the γZ channel. Owing to the small branching ratio ΓH(2)→γZ/ΓH(2) ∼
1% no rescattering effects are present and unitarity is not compromised by such large

enhancements. Related to this, in this model τ
(1)
s τ

(1)
d bound states can be created

close to threshold through a H(0) s-channel that could potentially be another source
of enhancement due to the large probability of such state to decay into a γ pair. This
interesting posibility remains beyond the scope of this thesis. Notice that in order to

plings in the presence of chirality. In 5D there is no such thing as chirality and no anomalous couplings:
a BBB triangle-loop vanishes in the free theory unless, of course, the U(1)Y symmetry is spontaneously
broken. We exploited this property when computing L ρ

µν in appendix D.
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reach such threshold LKP need larger velocities (see e. g. fig. 6.7) than the ones required
to excite the Breit-Wigner resonances investigated in this chapter (∼ 20% of the speed
of light).

As a final comment on the extension of our results to more general cases, we ob-
serve that the location of the resonance is highly sensitive to the radiative corrections
determining the mass spectrum of the particles in the model. Even small departures
from minimality will slightly change the parameters (in particular, the masses) of the
model which in turn might shift the characteristic relative speed at which the inital two
LKP state resonates with mode-2 particles without changing too much the height of the
peaks in e. g. fig. 6.8. The only exception is when the mixing angle between mode-1 top

quarks α
(1)
t gets appreciably affected by non-minimal terms as it enters quadratically in

the cross sections (D.3), (D.4).

6.2.4 Higher order resonances

In the last section of this chapter we will discuss the possibility that DM interactions
occur with arbitrarily large center of mass energy. Such posibility makes it a bit more
challenging to make predictions for signals that are relevant to indirect DM searches
as it makes it more model-dependent. Universal extra dimension models bear special
features at high energies that are specially interesting to be investigated. Specifically,
the model has a sort of tower structure which –näıvely reasoning– should be reflected
in, for instance, the associated gamma-ray flux from annihilations of relativistic LKP.
This will indeed be the case as we will demonstrate below.

Let us for simplicity consider the already familiar B(1) annihilations into γZ as it was
the channel that received the strongest enhancement in the previous section. There, we
noticed that both the narrow width and the tree-level coupling to B(1)B(1) of the H(2)

resonance is responsible of such sizeable effect. It is then reasonable to assume that at
higher energies similar resonances will play a major role. We show this figure 6.9 where
we observe how H(2k) (k = 1, 2, . . .) resonances can affect the B(1)B(1) → γZ cross
section in the mUED model at higher energies. The figure illustrates a striking property
that is particular to the UED model. Namely, the spectrum of the annihilation cross
section is composed by multiple narrow peaks separated almost equidistant in energy,
being ∆Eγ ' 2R−1 the separation.

Peak contributions from superior resonances H((2k) (k > 1) are however a few orders
of magnitude off the corresponding H(2) contribution. This reflects the fact that (i) de-
cay widths for superior resonances become larger and larger as more and more possible
decay channels become available: ΓH(2k)/mH(2k) � ΓH(2)/mH(2) and (ii) B(1)B(1)H2k

vertices are no longer KK-number conserving (k > 1) and therefore, they only exist
in the orbifold fixed points. In the minimal scenario they are determined by radia-
tive corrections, introducing thus an extra suppression when compared to the tree-level
B(1)B(1)H2 coupling. Notice that owing to this property, diagrams with vector reso-

nances B((2k) and A
((2k)
3 (k > 1) are not allowed as Λ� mEW.

In appendix D we obtain for the cases that interested us a number of KK-number
violating operators from radiative corrections in the 5D theory. Some of the expressions
we obtained there have also been implicitely used in previous sections (e. g. when
computing H(2)’s life time). As a final comment, we remind the reader that these
results can qualitatively change if the minimality assumption is broken. For instance by
allowing larger KK-number violating vertices while making vertices of the type H(2k)t̄t
smaller would definitely boost such resonances in such a way that they are comparable
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Figure 6.9: Contributions of the H(2) resonances (k = 1, 2, . . .) to σvγZ as a function of
√
s/2mB(1)

in the mUED scenario. We take ΛR = 20 so as to allow for larger modes. The dashed line is an
extrapolation (∝ s−1) of the annihilation rate that results from neglecting resonances and v 6= 0.

to the corresponding H(2) resonance.
A more complete analysis should also include secondary photons from processes with

larger branching ratios where the H(2k) resonances (and also possibly bound-states) can
play a major role. Such secondaries are thus also expected, to a lesser extent though,
to inherit the comb-like features encountered in fig. 6.9

6.3 Gamma-ray flux from slow-moving-DM annihilation

In order to account for the effects just discussed when making predictions of DM-induced
gamma rays, we should unavoidably consider the velocity distribution Pr(v) of DM by
averaging out the cross section –refer to appendix A–

dΦ

dEγ
(Eγ , ψ) =

1

8π

∫
dΩ

∆ψ

∫
l.o.s

dl(ψ)ρ2(r)
1

m2
DM

〈
σvrel

∑
f

BRf
dNf

γ

dEγ

〉
v

, (6.20)

where the bracket notation 〈. . .〉v stands for relative-speed averaging; i. e. for a generic
function f(r,vrel.)

〈f(r,vrel)〉v ≡
∫

d3v1 d3v2Pr(v1)Pr(v2)f(r,v2 − v1) (6.21)

=

∫
d3vrelPr,rel(vrel)f(r,vrel)

≡
∫

dvrel pr,rel(vrel)f(r, vrel) (6.22)

We implicitely assumed that center of mass velocities are sufficiently small so that
the non-relativistic analysis is valid and by defining

Pr,rel(vrel) ≡
∫

d3vCMPr(vCM + vrel/2)Pr(vCM − vrel/2) , (6.23)

pr,rel(vrel) = 4πv2
relPr,rel(vrel) , (6.24)
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we are left with just one integral (6.22) out of the original six in eq. (6.21) if ergodicity
(pr(v) is isotropic in velocity space) is assumed. Otherwise, a vCM-dependent red shift
factor would have to be taken into account5 for Eγ .

By comparing formula (6.20) with (3.1), we immediately notice that the useful factor-
ization property encountered for the DM-associated gamma-ray prompt emission (refer
to section 3.3) is lost. This in turn means that the DM annihilation cross section spec-
tral features will be distorted by the non-trivial velocity distribution in the gamma-ray
flux.

6.3.1 Velocity distributions

Despite the N-body simulations great successes in describing the spatial structure of
the DM halos in our Universe, more detailed refinements are still needed if one wants
to obtain an accurate sample of the DM velocities at all possible positions in the halo.
Some studies [144–146] have been however carried out in order to estimate such distri-
bution at the Sun’s position both numerically and observationally. Creators of the
N-body simulation Via Lactea II performed in Ref. [144] an analysis of a one billion
particle simulation to obtain such estimate while Ref. [145] used Rhapsody [147, 148]
and Bolshoi [149] simulations. Ref. [146] in turn fitted galaxy rotation observations with
an analytical (King) model.

Given a DM spatial profile assumed to bear spherical symmetry and ergodicity,
Eddington’s formula allows us to obtain the full phase-space distribution function (DF)
F (r, v) = F̃ (ε), with ε = v2/2 + ϕ(r) (energy per unit mass) and ϕ(r) the gravitational
potential. Concretely, after performing a change of variable ϕ→ r

F̃ (ε) =
1√
8π2

∫ ϕ0

ε

dϕ̃√
ϕ̃− ε

d2ρχ
dϕ̃2

.

For instance, solving this equation for a profile ρ(r) ∝ 1/r2 yields to

F̃ (ε) =
ρ(r)

(2πσ2
0)3/2

exp

(
− v2

2σ2
0

)
= ρ(r)pMB(v) ,

where pMB(v) is the Maxwell-Boltzmann distribution with constant velocity dispersion
σ0, which of course can be identified with an r-independent temperature: σ2

0 = kT/m.
This system is known as a singular isothermal sphere (SIS) and its associated DF resem-
bles the DM ones (regardless their r → 0 behaviour) at radii close to the scale radius:
formally the SIS has a r−2 dependence while the “pseudo-isothermal sphere” that has
been extensively used to describe the DM halo [1] satisfies ρ(r)→ ρ0 when r → 0.

Application of Eddington’s formula to some cases of interest (NFW, Einasto and
Burkert DM profiles) were computed in Ref. [150], finding that at radii far away from
the scale radius, departures from the Maxwell-Boltzmann are apparent. Nevertheless,
the Jeans analysis where the velocity distribution is taken to be maxwellian but with
r-dependent dispersion

pr(v) =
1

(2πσ2
r )

3/2
exp

(
− v2

2σ2
r

)
(6.25)

proves to be accurate enough in a wide range of distances. Both methods however over-
look non-spherical effects such as substructure and the gravitational potential of baryonic

5As discussed in appendix A in the relativistic case it is the Møller velocity the one that is relevant.
The change of variables (v1,v2)→ (vCM,vMøl.) is therefore different to the one adopted here.
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matter, inducing uncertainties that overshoot the non-gaussianities encountered in the
analysis carried out in [150]. We therefore only consider MB distributions in this work.
Notice that interestingly for Maxwell-Boltzmann distributions, the associated relative
velocity DF (6.23) is also maxwellian with dispersion

√
2σv.

6.4 Enhanced gamma-ray lines from Kaluza-Klein DM an-
nihilation

From the discussion in the previous section we have learned that for some models there
might exist several special situations where enhancement in the annihilation cross section
is expected. In this section we will focus on the particular case where the annihilation
proceeds into two-body states with one monochromatic gamma-ray photon. In the
context of indirect DM searches such processes would give rise to gamma-ray lines and
as discussed in chapter 2 they are the smoking-gun signatures for indirect DM searches.
If in the model’s particle spectrum there are new particles with masses resonating with
available center of mass energies of the annihilating DM particles, then signals relevant
for indirect DM detection and, particularly, line signals will be enhanced making it more
feasible for gamma-ray astronomers to spot them.

We will find that in Universal Extra Dimensional (UED) models introduced in sec-
tion 1.3.1, resonant effects of the Breit-Wigner type might be sizable depending on
the UED model’s parameters. We shall however particularly focus on the simplest one
featuring one orbifold extra dimension for definiteness.

Before going into the details of how the Breit-Wigner resonances in the UED model
can affect the relative strength of gamma-ray line signals in the sky, let us generally
discuss how the gamma-ray-line flux is affected by such a resonance.

6.4.1 Enhanced gamma-ray line by a Breit-Wigner resonance

In section 3.3 we noticed that in the v = 0 approximation, spectral features apparent
in the DM annihilation cross section –such as monochromaticity– remain unaltered in
the associated gamma-ray flux owing to the factorization property in formula (3.1).
As briefly mentioned before, considering a non trivial velocity DF can modify the flux
spectrum when compared to the raw spectrum from the annihilation cross section. Of
particular interest are monochromatic photons. At the cross section level these are
characterized in spectral terms according to dN/dEγ = δ(Eγ −

√
s/2), where

√
s is the

center of mass energy of the annihilating DM particles and for simplicity we neglect the
mass of the second particle produced in the annihilation. In the v = 0 limit,

√
s = 2mχ

and the line signal remains monochromatic at the flux level6 while in the general DF-
dependent case the line will be smeared out by the DF7:

(σlinev)δ(Eγ −mχ)→ 〈(σlinev)δ(Eγ −
√
s(v)/2)〉v .

Let us now consider the case where DM annihilation excites a Breit-Wigner resonance
of mass mres and decay width Γres. We can decompose the cross section as σline =
σ0 + σres, with

σres '
σ̃resΓ

2
resm

2
res

(s−m2
res)

2 + Γ2
resm

2
res

6Gamma-ray detectors of course do not measure exact monochromaticity but instead very pron-
nounced features with narrow energy widths determined by the detector’s energy resolution.

7We will omit henceforth the subscript “res” when referring to relative speeds.
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and σ0 the non-resonant contribution. We assume σres|√s=mres
= σ̃res � σ0|√s=mres

and also that (mres− 2mχ)/mres � 1 so that the non-relativistic approximation is valid
(
√
s = 2mχ if v = 0). Under such assumptions we can invert eq. (1.4) –Møller’s velocity–

and write
√
s(= 2Eγ) in terms of v

√
s ' 2mχ

(
1 +

1

8
v2

)
. (6.26)

Performing the velocity averaging by means of eq. (6.22) is trivial after making the
identification δ(Eγ −

√
s/2) → (4/mv)δ(v − vline), where vline =

√
8
√
Eγ/mχ − 1 is

obtained from eq. (6.26). The gamma-ray line flux (6.20) then reads

dΦres

dEγ
' J̃line(Eγ)

8πm3
χ

[
(σ0vline) +

(σ̃resvline) Γ2
resm

2
res

(4E2
γ −m2

res)
2 + Γ2

resm
2
res

]
, (6.27)

with J̃line(Eγ) ≡ 1

∆Ω

∫
∆Ω

dΩ

∫
l.o.s.

dl

∫
ρ2(r)

pr,rel(vline)

vline/4
. (6.28)

Before entering into the concrete case of UED, let us make some general remarks on
the previous equation:

1. For the singular isothermal sphere (SIS) introduced in section 6.3.1 the factor J̃line

is proportional to the usual J-factor encountered in the standard v = 0 analysis
as the DF in such case does not have any r-dependence. For simplicity let us take
a velocity distribution of a SIS with most probable speed v0.

2. We observe that eq. (6.27) contains two multiplicative and competitive terms.
The energy dependent part of the first term J̃line peaks at a certain energy EMB =
mχ(1 + v2

0/8) and for larger energies it falls off exponentially. The second one is
the Breit-Wigner term which obviously peaks at the energy Eres = mres/2 but falls
off less drastically ∝ E−4

γ .

3. The effect of the resonance is maximal when Eres = EMB, or equivalently

∆m

mres
' mres − 2mχ

2mχ
=

1

8
v2

0 . (6.29)

4. As a consistency check we can prove that in general –i. e. DM models without
the special properties discussed in section 6.1 in astrophysically understood envi-
ronments (no DM acceleration by gravity)– the v = 0 approximation is very good.
Namely, the theoretical width of a gamma-ray line due to uncertainties in the
velocity DF can be estimated as ∆EMB/Eγ ≈ v2

0/8 which for typical DM speed
v0 ∼ 1× 10−3 gives ∆E/Eγ ∼ 10−7 which is negligible compared to the Doppler
shift correction.

6.4.2 Gamma ray flux from Kaluza-Klein DM

Although this section will be mainly concerned with DM from Universal Extra Dimen-
sions, the methodology and the results presented here are quite general. In section 6.2
we found ∼ 103 enhancements in the minimal UED model’s DM annihilation cross sec-
tions for relative speeds of the order of 10−1c. We pointed out there that even small
departures from minimality can, to a great extent, affect the relative speed at which the
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resonance becomes important without altering too much the resonance characteristic
width.

Let us now compare at the flux level the impact of the H(2) resonance encountered
in section 6.2 by using eq. (6.27). We shall henceforth consider generic H(2) resonances
from not necessarily minimal UED models. This allows us to keep the mass differences
between the resonance and the sum of the initial-state particle masses as a variable.
Additionally and as anticipated before, we will simply consider maxwellian velocity
distributions (6.25) with no r dependence.

In figure 6.10 we use formula (6.27) to obtain the ratio (flux enhancement) Φenh/Φ0

of the “peak” flux corresponding to the prediction that includes the H(2)-resonance term
to the flux without a resonance.
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Figure 6.10: Taking the position of the H(2) resonance –parametrized by (mH(2) − 2mB(1))/2mB(1)–
and the most probable DM velocity v0 of a MB distribution as variables, we perform a contour plot of
the enhancement factor in color scale.

We observe enhancements of more than one order of magnitude in the mUED model
(dashed line) for DM velocity dispersions σv & .05c. For smaller mass differences the
enhancement is more pronounced, boosting the signal up to about a factor of 103. Notice
that as expected the region where the enhancement is most efficient is defined by eq.
(6.29) (straight line with slope 2 in the logarithmic scale of fig. 6.10).

On the other hand, since DM velocity dispersions in our galaxy are of the order of
v ∼ 10−3c, there is little hope of observing this effect on the galactic scale. Even if
the difference between the H(2) mass and the sum of the LKP masses is of the order
of 10−3mH(2) such that the line signal is optimally enhanced, current [151] and next-
generation [152] experiments will not be able to easily spot such signal in our galaxy.
At larger scales the situation is different, as larger velocity dispersions v ∼ 10−2c in
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for instance galaxy clusters are available. As discussed in chapter 2 galaxy clusters
are promising targets for DM searches since enormous boost factors are expected due
to their rich substructure hierarchy [153]. Moreover, In cosmological epochs when the
temperature was large enough to excite these resonances, their effects also need to be
taken into account [140].

6.5 DM acceleration mechanisms

The fact that DM particles do not interact too much makes them poorly capable of being
accelerated by other mechanisms than gravity. However, the background gravitational
potential (almost fully determined by the DM distribution) does not act as an efficient
accelerator: the maximum allowed velocities remain non relativistic as inferred from
N-body simulations. Different types of mechanisms, if any, would be necessary for
accelerating DM particles in the cosmos. We discuss nextly an example where DM can
be strongly accelerated by the gravitational field of a black hole.

6.5.1 Bañados-Silk-West effect

This effect occurs when DM particles that are very close to a rotating supermassive
black hole (SMBH) annihilate. Since the trajectories (and velocities) of the interacting
particles are affected by the gravitational pull of the SMBH, the center of mass energy
of such interaction can be arbitrarily large.

The Bañados-Silk-West (BSW) effect [28] is restricted to a maximally rotating
BH. However, it will be instructive to instead consider the also interesting case of a
Schwarzschild BH .

According to our assumptions, DM particles are solely influenced by gravity. This
means that their trajectories are those of the BH metric geodesics which are parametrized
by the energy and angular momentum parameters ε and l respectively. We furthermore
consider only in-falling geodesics that are at rest at infinity (ε = 0).

Since we are interested in the annihilation of the DM particles, we shall consider two
geodesics that meet at a given point. Particularly interesting will be the regions that
are close to the horizon, as particle acceleration is expected to be optimized there. A
careful computation of the center-of-mass energy of two colliding particles at a distance
r from the BH yields

E2
cm = 2m2

χ

r2(2r − rS)− l1l2(r − rS)−
√
rSr2 − l21(r − rS)

√
rsr2 − l22(r − rS)

r2(r − rS)
,

(6.30)
where rS = 2GMSMBH is the Schwarzschild radius of the BH, mχ the mass of the
DM particle and l1, l2 are the angular momentum parameters of the two geodesics.
The energy is maximized when r → rS and l1 = −l2 = ±2rS and it takes the value
Emax =

√
5(2mχ).

Figure 6.11 shows the possible center-of-mass energies of colliding particles as a
function of the distance to the BH for the Schwarzschild case as for a rotating one. The
latter was investigated in Ref. [28], where it was noticed that if the BH is maximally
rotating –its angular momentum parameter reaches the critical value a = rS– then, the
center-of-mass energy of two particles meeting close to the horizon can be arbitrarily
large provided that the angular-momentum parameter of one of the particles is l = rS .
This is of course apparent in the left panel of fig. 6.11 (see blue line).
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Figure 6.11: Center of Mass energies of two annihilating DM particles close to the horizon of a
Schwarzschild black hole (left) and a maximally rotating Kerr black hole (right) [28].
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Conclusions

One of the most puzzling enigmas in contemporary science was addressed in this thesis:
the origin and nature of non-baryonic Dark Matter (DM). Guided by the successful
Λ Cold Dark Matter (ΛCDM) cosmological model, we focused our attention on the
phenomenology of a special family of theories for DM. Namely we assumed in this thesis
that most of the DM in the Universe consists of Weakly Interacting Massive Particles
(WIMPs).

Our studies primarily concentrated on the quantitative description of signals associ-
ated with DM in the electromagnetic (EM) spectrum of the sky. Since the WIMPs are
expected to emit electromagnetic radiation in the radio and gamma frequency bands as
the result of their self-annihilation, we focused on those ranges.

We showed how astronomical gamma ray observations are excellent probes for in-
direct detection of DM. Spefically, a positive DM signal would allow us to learn about
both the spectral and spatial properties of the DM. We also provided a comprehensive
overview of the synchrotron radiation in the general astrophysical context and in the
context of DM annihilation.

The optical theorem proved useful in confronting the DM interpretation of the line-
like 130 GeV excess at the Galactic Center with other signals of phenomenological rele-
vance. This method is based on fundamental principles such as symmetry and unitarity
which we also discussed in this thesis. As a spin-off, we derived a number of unprece-
dented analytical formulas of general applicability.

Non-detection limits of gamma-ray continuum and radio signals associated to DM
enabled us to constrain the model building for the 130 GeV gamma-ray line. Comple-
mentarily, exclusion limits of charged cosmic-ray antiparticles (antiproton and positron)
were considered as well. These proved to be particularly interesting in testing the DM
interpretation of the GeV excess. We also included a fairly extensive review of the
phenomenology of these messengers, focusing on the DM signals.

By taking into account the effects of the velocity dispersions of the DM distribution
in halo, we showed that the spectral gamma ray line signal that is inferred from the
annihilation of Kaluza-Klein (KK) DM pairs is enhanced. Since radiative effects needed
to be considered, e.g. in order to consistently incorporate effective vertices localized at
the orbifold’s fixed points, some lengthy calculations were necessary. We were in addition
able to correct some formulas previously reported in the literature. Finally, we discussed
the interesting possibility that DM gets accelerated in the vicinity of supermassive black
holes and showed that the associated annihilation cross section has a comb-like structure.

We seem to be on the verge of hopefully discovering the (microscopic nature of) DM
in the next few years. The next generation of experiments searching for DM have a
strong potential of being able to make this happen. They will otherwise be able to set
stringent constraints on the WIMP annihilation cross sections and life times.
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Appendix A

DM injection function

Consider a volume element δV with N DM particles moving at non-relativistic speeds.
In the rest frame of one of the N -th particle, the rest of the particles will travel in many
directions with velocity vectors {vi}N−1

i=1 . The probability that in a time interval δt the i-
th and the N -th particle annihilate with each other is (by definition of the cross section)
δPi↔N = σann/δA⊥ i = viδtσann/δV where δA⊥ i is the differential surface element that
is perpendicular to the velocity vector vi. Summing over all N − 1 particles with which
the N -th particle can annihilate yields

δPN =

N−1∑
i=1

Pi↔N =
N − 1

δV
〈σann.v〉δt , (A.1)

where the average 〈σv〉 is defined as 1
N−1

∑
σivi. To obtain the total number of DM

annihilations N within the volume δV we need to add all annihilation probabilities
δPi↔j making sure that we do not count twice:

δN =
∑
i<j

δPi↔j × 1 =
N − 1

δV
〈σann.vrel.〉δt+

N − 2

δV
〈σann.vrel.〉δt+ . . .

=
(N − 1)(N − 2)

2δV
〈σann.vrel.〉δt , (A.2)

where we transformed eq. (A.1) back to the original frame (v → vrel.).
In the limit of large N , the total number of annihilations δN in time interval δt

within a volume δV is given by

δN =
1

2
n2
χ〈σann.v〉δV δt , (A.3)

where nχ = N/δV is the number density of DM particles in the volume element.

A.1 Møller velocity

In deriving eq. (A.3) we made two simplifying assumptions that we can now examine.
First, we assumed that the system is non-relativistic so that we could use the simple
Galilean transformation rule v → vrel.. We can relax this assumption by noticing that
the annihilation rate density

Γ ≡ d2N

dV dt
=

1

2
n2
χ〈σann.v〉 (A.4)
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transforms as a Lorentz scalar (dtdV is a Lorentz pseudo-scalar). Next, we know that nχ
transforms as the zeroth component of a 4-vector and σann. can be defined to transform
as a scalar1. Under these conditions the covariant realization of the relative speed is the
Møller velocity [39]

vMøll =

√
(p1 · p2)2 −m4

χ

E1E2
= [‖v1 − v2‖2 − ‖v1 × v2‖2]1/2 , (A.5)

as already introduced in eq. (1.4) of chapter 1.

A.2 DM particle-antiparticle annihilations

The second assumption was that the DM “self”-annihilates, i.e. the DM antiparticle
is the DM particle itself. By relaxing this condition and introducing N and N̄ as the
number of DM particles and antiparticles in our equations, the prefecture N − 1 in
formula (A.1) is changed to N̄ and (A.2) becomes

δN̄ =
N

δV

N̄

δV
〈σann.vrel.〉δtδV '

1

4
n2
χ+χ̄〈σann.vrel.〉δtδV , (A.6)

where in the last step we assumed that there are as much DM antiparticles as DM
particles. In practice, this means that we consider when DM models where the DM
antiparticle is not the DM particle itself, we have to include an extra factor of 1/2 in
eq. (A.4).

A.3 Particle yields

Since we will mostly be interested in the production rate of photons and electrons per
unit particle energy, we introduce the particle yield function

Y (E) =
1

σTOT
ann.

dσann.

dE
=
∑
c

BR c

(
dN

dE

)
c

,

where E is the energy of the messenger of interest (gamma ray, electron/positron, etc.)
and the index c counts all possible annihilation channels of the DM. The injection
(source) function Q is obtained by simply multiplying the yield with the rate density
(A.4):

Q =
1

2m2
χ

ρ2
χ〈σann.v〉

∑
c

BR c

(
dN

dE

)
c

. (A.7)

As a final comment, notice that in arriving to the previous formula, we assumed
that the mass density is related to the number density by ρχ = mχnχ. In a relativistic
treatment this assumption is no longer appropriate. As mentioned before, under Lorentz
transformations, number densities nχ transform as zeroth components of 4-vectors while
ρχ transforms an energy density: first diagonal component of a rank-two Lorentz tensor.

1The cross section can also be defined in such a way that it transforms as an area. See textbook [40]
for such an alternative definition.
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Appendix B

Radio flux technicalities

B.1 Emitted vs. “Observed” power

Eq. 4.12 very accurately determines the emitted energy dW of waves with frequencies
in the range ω and ω + dω in one cycle from synchrotron radiation of an electron in
an uniform magnetic field. In order to transform this into a power, we näıvely divide
dW by one period T :

dPe =
1

T
dW =

ωB
2π

dW ,

such that
dPe
dω

=

√
3e3B sinα

2πmc2
F

(
ω

ωc sinα

)
. (B.1)

This formula however overlooks the fact that the source of the radiation pulses is in
average traveling in a well defined direction (along the magnetic field lines). The time
of arrival of the pulses at an observation point at infinity is thus Doppler shifted. Figure
B.1 captures this phenomenon in a graphic way. The observed period TA thus satisfies

cTA = cT (1− β‖ cosα) ' cT (1− cos2 α) = cT sin2 α

while the actual observed power is [19]

dPo
dω

=

√
3e3B

2πmc2 sinα
F

(
ω

ωc sinα

)
. (B.2)

We notice in passing that by construction the total observed power P =
∫

dω dP
dω is

independent of the pitch angle.
Along this work we however used our näıve formula (B.1) for the power rather than

the “correct” one (B.2). This is because when we make predictions of the synchrotron
radiation emitted by a large ensamble of cosmic-ray electrons in an astrophysical set up,
we need to take into account statistical effects. Typical synchrotron-radiation-emitting
regions in astrophyics are localized and move with only moderate velocities. This in turn
means that in stationary conditions there are on average as many radiating particles
moving towards the observer –emitting pulses with contracted period (1 − cos2 α)T–
as “invisible” particles moving away. The latter emit pulses with dilated period (1 +
cos2 α)T . Since their emission region (half cone) is directed opposite to the observer, he
will not be able to track them. We conclude that for an average particle only a fraction
(see problem 6.3 in the classical textbook [21])

f =
1− cos2 α

1− cos2 α+ 1 + cos2 α
=

1

2
sin2 α
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Figure B.1: Illustration of how the Doppler effect affects the amount of “observed” power respect to
the “emitted”. Image from [21].

of the time will emit observable synchrotron radiation in such a way that the average
power per unit frequency is indeed given by (B.1) and (4.13).

B.2 Cone Integration

Let us consider a half-cone with an aperture angle γ0 which axis is defined by the
line that joins the GC and the Solar System as depicted in the picture below. We
consider spherical coordinates around the GC and divide the integration volume into
three regions. Since we are assuming spherical symmetry, the angular variables can be
integrated out: let f(r) be an arbitrary function and let us compute its integral in this
volume; then, for regions (I) and (III) we have

((((((((((((((((((((((((((((((((((((((((((((((

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

l
r

γ r⊙

I

II

III

θ

robs

γ0
�

Figure B.2: Integration regions

JI =

∫
I
f(r)dV = 2π

∫ r�

robs

r2f(r)

∫ arcsin
robs
r
−γ0

0
sin θ dθ dr , (B.3)

JIII =

∫
III
f(r)dV = 2π

∫ ∞
robs

r2f(r)

∫ π

π−arcsin
robs
r
−γ0

sin θ dθ dr , (B.4)
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where robs ≡ r� sin γ0 ≈ r�γ0 ≈ 0.14 pc. Integration over θ for JI (eq. B.3) yields∫ arcsin
robs
r
−γ0

0
sin θ dθ = 1− cos

(
arcsin

robs

r
− γ0

)
= 1−

√
1−

(robs

r

)2
cos γ0 −

robs

r
sin γ0

≈ 1−
√

1−
(robs

r

)2
.

Similarly, for JIII∫ π

π−arcsin
robs
r
−γ0

sin θ dθ = 1− cos γ0

√
1−

(robs

r

)2
+
robs

r
sin γ0

≈
∫ arcsin

robs
r
−γ0

0
sin θ dθ .

Therefore, assuming f(r & r�)→ 0, γ0 � 1, etc.

JI ≈ JIII = 2π

∫ ∞
robs

r2

(
1−

√
1−

(robs

r

)2
)
f(r) dr .

Finally, angular integration on region (II) is straightforward:

JII = 4π

∫ robs

0
r2f(r) dr . (B.5)

The final expression for J = JI + JII + JIII is hence

J = 4π

∫ ∞
0

r2

1−Θ(r − robs)

√
1− r2

obs

r2


︸ ︷︷ ︸

1−λ(r)

f(r) dr +O(γ0) , (B.6)

and eq. (4.50) becomes

νFν =
〈σv〉
2M2

χ

∫ ∞
0

drr2(1− λ(r))Eν(r)ρ2
χ(r)Ne[Eν(r)] . (B.7)
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Appendix C

The optical theorem

C.1 Optical theorem for angular momentum states

In this section we shall prove that if CP symmetry (or equivalently time reversal sym-
metry owing to the CPT theorem) is not violated in a process described by the matrix
T , then its matrix elements in helicity and in the partial wave basis are symmetric.

First note that the defining property of the time-reversal symmetry is

〈cd|T TT |ab〉 = 〈ab|T |cd〉 , (C.1)

where we denoted the time-reversal operator as T .
Second, decomposition of two-particle states with definite angular momentum (both

helicity states and partial waves) in states with definite linear momentum in terms of
the Wigner functions allows one to show that for such states [120]

T |J,M〉 = (−1)J−M |J,−M〉 , (C.2)

where we omitted helicity or spin and orbital angular momenta labels.
The final argument uses the fact that conservation of angular momentum (Lorentz

symmetry) implies

〈J ′,−M ′|T |J,−M〉 = 〈J ′,M ′|Rz(−π)T Rz(π)|J,M〉 = 〈J ′,M ′|T |J,M〉 , (C.3)

where we implicitely used conservation of angular momentum (M ′ = M , J ′ = J) in the
last step.

From eq. (C.3) follows

〈cd|T TT |ab〉 = 〈cd|T |ab〉 , (C.4)

which combined with eq. (C.1) results in the claimed statement. Namely,

〈cd|T |ab〉 = 〈ab|T |cd〉 . (C.5)

C.2 Computation of amplitudes

Using the selection rules that the Lorentz and CP symmetries set on our states of
interest, we can now write formulas for the tree-level |f〉 → |X〉 amplitudes in terms of
corresponding helicity amplitudes which, in turn, will be derived in terms of plane wave
amplitudes. These are calculated by means of the Feynman rules.
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The rest of this section concerns the calculation of amplitudes 〈X|T |f〉 in a case-to-
case basis, where the set of initial (|f〉) and final (|X〉) states are the ones derived in the
previous section. We denote the helicity amplitudes as Mh

λγ ;λX
, where it is understood

that

Mh
λf ;λX

= 〈J = 0, M = 0, λ1 = λX , λ2 = λX |T |J = 0, M = 0, λ1 = λf , λ2 = λf 〉 .

Having clarified the notation, we show below expressions for the amplitudes of in-
terest in terms of their helicity counterparts:

• CP-even photon annihilation into fermions (Scalar DM)

〈X1/2
S |T |fS〉 = −1

2
(Mh

1;1/2 +Mh
−1;1/2 +Mh

1;−1/2 +Mh
−1;−1/2) . (C.6)

• Partial wave components of CP-even photon annihilation into W bosons (Scalar
DM)

〈L = 0, S = 0|T |fS〉 = 1√
6

(Mh
1;1+Mh

−1;1−Mh
1;0−Mh

−1;0+Mh
1;−1+Mh

−1;−1) ; (C.7)

〈L = 2, S = 2|T |fS〉 = 1√
12

(Mh
1;1+Mh

−1;1+2Mh
1;0+2Mh

−1;0+Mh
1;−1+Mh

−1;−1) . (C.8)

• Transverse and longitudinal components of CP-even photon annihilation into W
bosons (Scalar DM)

〈t|T |fS〉 =
1

2
(Mh

1;1+Mh
−1;1 +Mh

1;−1 +Mh
−1;−1) ; (C.9)

〈X|T |fS〉 =
1√
2

(Mh
1;0 +Mh

−1;0) . (C.10)

• CP-odd photon annihilation into fermions (Majorana DM)

〈X1/2
M |T |fM 〉 = −1

2
(Mh

1;1/2 −Mh
−1;1/2 −Mh

1;−1/2 +Mh
−1;−1/2) . (C.11)

• CP-odd photon annihilation into W bosons (Majorana DM)

〈X1
M |T |fM 〉 =

1

2
(Mh

1;1 −Mh
−1;1 −Mh

1;−1 +Mh
−1;−1) . (C.12)

C.3 Calculation of helicity amplitudes

Our next task consists in writing the helicity amplitudes in terms of plane waves with
spins pointing in the direction of motion. We begin by performing such decomposition
on the states, i.e.

|J,M, λ1, λ2〉 =

√
2J + 1

4π

∫
d2k̂′dJM,λ(θ′) e−i(M−λ)ϕ′ |k̂′;λ1, λ2〉 ,

where λ ≡ λ1 − λ2 and (θ′, ϕ′) are the angles defining k̂′ respect to some arbitrary
cartesian system of coordinates. The functions dJM,λ(θ′) are defined in Ref. [120].

The fact that J = 0 and, consequently λ = 0, implies that

|J = 0,M = 0, λ1 = λ0, λ2 = λ0〉 =

∫
d2k̂′√

4π
|k̂′;λ0, λ0〉 , (C.13)
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Notice that we are using a convention such that d0
0,0 = 1. Therefore, we may write

Mh
λf ;λI

=

∫
d2k̂′√

4π
〈J = 0,M = 0, λI , λI |T |k̂′;λf , λf 〉 .

Owing to spherical symmetry of the state |J = 0,M = 0, λX , λX〉 and rotational invari-
ance of the interaction, we see that if U

k̂′
is some unitary rotation that transforms the

state |ẑ;λf , λf 〉 into |k̂′;λf , λf 〉, then

〈J = 0,M = 0, λX , λX |T |k̂′;λf , λf 〉 = 〈λX , λI |TUk̂′
|ẑ;λf , λf 〉

= 〈λX , λX |Uk̂′
T |ẑ;λf , λf 〉 = 〈λX , λX |T |ẑ;λf , λf 〉 .

Therefore,

Mh
λγ ;λX

=
√

4π〈J = 0,M = 0, λX , λX |T |ẑ;λf , λf 〉 =

∫
d2p̂〈p̂;λX , λX |T |ẑ;λf , λf 〉 .

In the last step we used the dual form of eq. (C.13). We can make one further simpli-
fication by using the fact that the projection of the total angular momentum in the z
direction of the state |ẑ;λγ , λγ〉 is zero and convincing ourselves that the integrand does
not depend on the azimuthal angle. Integrating out this angle we obtain

Mh
λf ;λX

= 2π

∫ π

0
Mλf ;λX (θ) sin θ dθ . (C.14)

Mλf ;λX (θ) is the Feynman amplitude for two photons with equal helicities and oppo-
site momenta that annihilate into some pair of charged particles with opposite spins par-
allel to their linear momenta, θ being the angle between the different momenta/helicities.

C.4 Final expressions

With the machinery just discussed, we will be able to derive in a fairly simple way the set
of amplitude that interests us. Notice that up to this point, apart from the symmetry
considerations, we have not specified details about any interaction whatsoever. This
means that our analysis can be applied generally.

In order to obtain kinematical expressions, we need of course to know the details of
the interactions and compute, by means of the Feynman rules, amplitudes Mλf ;λI (θ).
Since in eqs. (C.6-C.12) it is the bare helicity amplitudes the ones at play, extra caution
must be paid when using the Feynman rules and choosing polarization vectors, spinors,
etc as overall signs, phases in the amplitudes do matter.

Taking all the aforementioned subtleties into account, the Feynman amplitudes for
γγ and γZ annihilation into fermions and W bosons are:

Mγγ→f̄f
λf ;λ1/2

(θ) =
2(eQ)2(β + 2λ1/2λf )

γ(1− β2 cos2 θ)
,

MγZ→f̄f
λf ;λ1/2

(θ) = geQ
γ[1−(mZ/2γmf )2] cos θW

1

1− β2 cos2 θ

(
CfV

[
(1− (mZ/2γmf )2 cos2 θ)β+

+[1− (mZ/2γmf )2]2λ1/2λf

]
+ λfC

f
A(β + 2λ1/2λf )[1− (mZ/2γmf )2] cos θ

)
,

Mγγ→W+W−

λf ;λW
(θ) =

2e2(2λ2
W + 2λWλfβ − γ−2)

(1− β2 cos2 θ)
,
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MγZ→W+W−

λf ;λW
(θ) =

2eg cos θW (2λ2
W + 2λWλfβ − γ−2)

(1− β2 cos2 θ)
;

where β is the velocity in natural units of the outgoing particles as measured in the
center of mass frame, and γ = (1− β2)−1/2.

Integration over θ is straightforward:∫ π

0

sin θ dθ

1− β2 cos2 θ
=

1

β

∫ β

−β

dx

1− x2
=

1

β
ln

(
1 + β

1− β

)
=

2

β
tanh−1 β ,∫ π

0

sin θ cos θ dθ

1− β2 cos2 θ
= 0 ,

∫ π

0

sin θ cos θ dθ

1− β2 cos2 θ
=

2

β2

(
tanh−1 β

β
− 1

)
,

leading to

Mh
γγ→f̄f = 8π(eQ)2(β + 2λ1/2λγ)

tanh−1 β

γβ
, (C.15)

Mh
γZ→f̄f =

4πgeQ((T3)L − 2 sin θWQ)

γβ cos θW

[(
β

1− (mZ/2γmf )2
+ 2λ1/2λγ

)
tanh−1 β−

− (mZ/2γmf )2

1− (mZ/2γmf )2

(
tanh−1 β

β
− 1

)]
, (C.16)

Mh
γγ→W+W− = 8πe2(2λ2

W + 2λWλfβ − γ−2)
tanh−1 β

β
, (C.17)

Mh
γZ→W+W− = 8πge cos θW (2λ2

W + 2λWλfβ − γ−2)
tanh−1 β

β
. (C.18)

The last step consists of just plugging the amplitudes (C.15) and (C.18) into eqs.
(C.6-C.12). The final expressions for the amplitudes are sorted according to the type of
DM particle and the different f annihilation channels.

Scalar DM

• γγ annihilation into fermions

〈X1/2
S |T |fS〉 = −1

2

(
8π(eQ)2 tanh−1 β

γβ

)
[(1 + β) + (−1 + β) + (−1 + β) + (1 + β)] =

= −16π(eQ)2

γ
tanh−1 β . (C.19)

• γZ annihilation into fermions

〈X1/2
S |T |fS〉 = −4πgeQ((T3)L − 2 sin θWQ)

γβ cos θW

[
(β/βf + 1 + β/βf − 1) tanh−1 β−

− 2(mZ/2γmf )2

βf

(
tanh−1 β

β
− 1

)]
= (C.20)

= − 8πgeQ((T3)L−2 sin θWQ)
γββf cos θW

[
β tanh−1 β−

(
mZ

2mχ

)2(tanh−1 β

β
− 1

)]
.
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• Annihilation into W bosons (partial waves)

〈L = 0, S = 0|T |fS〉 =
1√
6

(
8πe2 tanh−1 β

β

)
2[(2 + 2β − γ−2) + (C.21)

+γ−2 + (2− 2β − γ−2)]

=
16π√

6
(4− γ−2)e2 tanh−1 β

β
=

√
2

3
(3 + β2)8πe2 tanh−1 β

β
,

〈L = 2, S = 2|T |fS〉 =
1√
12

(
8πe2 tanh−1 β

β

)
2[(2 + 2β − γ−2)− (C.22)

−2γ−2 + (2− 2β − γ−2)]

=
32π√

3
(1− γ−2)e2 tanh−1 β

β
=

32π√
3
e2β tanh−1 β .

• Annihilation into W bosons (transverse and longitudinal components)

〈t|T |fS〉 =
1

2

(
8πe2 tanh−1 β

β

)
2[(2 + 2β − γ−2) + (2− 2β − γ−2) =

= 16π(2− γ−2)e2 tanh−1 β

β
= 16π(1 + β2)e2 tanh−1 β

β
, (C.23)

〈l|T |fS〉 =
1√
2

(
8πe2 tanh−1 β

β

)
2(−γ−2) = −8

√
2πe2 tanh−1 β

γ2β
. (C.24)

Majorana DM

• γγ annihilation into fermions

〈I1/2
M |T |fM 〉 = −1

2

(
8π(eQ)2 tanh−1 β

γβ

)
2[(1 + β)− (−1 + β)] =

= −16π(eQ)2 tanh−1 β

γβ
. (C.25)

• γZ annihilation into fermions

〈I1/2
S |T |fS〉 = −4πgeQ((T3)L − 2 sin θWQ)

γβ cos θW
(β/βf + 1− β/βf + 1) tanh−1 β

= − 8πgeQ((T3)L − 2 sin θWQ)

cos θW

tanh−1 β

γβ
. (C.26)

• Annihilation into W bosons

〈I1
M |T |fM 〉 =

1

2

(
8πe2 tanh−1 β

β

)
2[(2 + 2β − γ−2)− (2− 2β − γ−2)] =

= 32πe2 tanh−1 β . (C.27)
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Appendix D

Effective vertices in the UED
model

D.1 Annihilation amplitudes

In this Appendix, we compute of the relevant amplitudes describing the resonant anni-
hilation of LKP pairs discussed in chapter 6. The diagrams in fig. 6.6 can compactly be
written as

iAV = εµ1 ε
ν
2L

ρ
Vµν

−ηρσ +
PρPσ
M2

V

s−M2
V + iMVΓV

R σ
Vαε

α
γ , (D.1)

iAS = εµ1 ε
ν
2LSµν

1

s−M2
S + iMSΓS

RSαβε
α
γ ε
β
Z , (D.2)

where V and S stand for vector (B(2), A
(2)
3 ) and scalar (H(2), a

(2)
0 ) resonances respec-

tively. The tensors LV,S , RV,S encode the physical information of the left and right
blobs of the diagrams. In the following, we will focus our discussion on these tensors in
a final-state-to-final-state basis.

D.1.1 B(1)B(1) → γγ

The Feynman diagram for this process is

B(1)

B(1)

H(2)

γ

γ

where in this case Lµν = igB(1)B(1)H(2)ηµν = i(g′2v/2)ηµν , v is the vacuum expectation
value of the Higgs field (do not confuse with the LKPs’ relative speed) and the blob on
the right-hand-side is the superposition of several triangle Feynman diagrams:
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H(2)

γ

γ
t
(1)
1

t
(1)
1

t
(1)
1

H(2)

γ

γ
t
(1)
2

t
(1)
2

t
(1)
2

We then decompose the corresponding loop-integrals in terms of Passarino-Veltman

functions [154] finding (assuming that t
(1)
1 and t

(1)
2 have the same mass)

Rγγ
H(2)αβ

= −αemQ
2
t

π

4igmt sin 2α
(1)
t

mW

mt(1)

s
× (D.3)

×
(

[2−(s−4m2
t(1))C0(0, 0, s,m2

t(1) ,m
2
t(1) ,m

2
t(1))][sηαβ−2k1αk2β −2k1βk2α]−

−4
[
2B0(s,m2

t(1) ,m
2
t(1))− 2B0(0,m2

t(1) ,m
2
t(1)) + sC0(0, 0, s,m2

t(1) ,m
2
t(1) ,m

2
t(1))

]
k1αk2β

)
.

where k1 and k2 are the outgoing momenta, s = (k1 + k2)2, αem ≈ 1/128 is the fine-
structure constant at the TeV scale and Qt = 2/3 is the charge of the top-quark. The
angle α(1) quantifies the mixing between first KK-level flavour and mass eigenstates; in
the mUED case this angle is only non negligible for the KK excitations of the top quark

(with α
(1)
t ≈ 0.071). Notice that RH(2)αβ manifestly satisfies the Ward identities both,

namely kα1RH(2)αβ = kβ2RH(2)αβ = 0.

D.1.2 B(1)B(1) → Zγ

This process is analog to the one just discussed. Besides a change in the coupling
constants we need to take into account that the Z boson is massive and that it has
axial-vector couplings. As a consequence, two more diagrams have to be added in the
computation:

H(2)

γ

Z
t
(1)
2

t
(1)
1

t
(1)
1

H(2)

γ

Z
t
(1)
1

t
(1)
2

t
(1)
2

These however cancel out if we assume m
t
(1)
1

= m
t
(1)
2

. In total, we find

RγZ
H(2)αβ

= − egQt
π2 cos θW

igmt

mW

mt(1) sin 2α
(1)
t

s−m2
Z

(
B [(s−m2

Z)ηαβ − 2k1βk2α] + (D.4)

C [k2β−
2m2

Z

s−m2
Z

k1β]k1α

)
, (D.5)

where

B =
(
YtL sin2 θW − 1

4 cos 2θW
)

[2− (s−m2
Z − 4m2

t(1))C0(0,m2
Z , s,m

2
t(1) ,m

2
t(1) ,m

2
t(1))−

− 2m2
Z

s−m2
Z

[B0(s,m2
t(1) ,m

2
t(1))− B0(m2

Z ,m
2
t(1) ,m

2
t(1))]]

118



C =2
(
YtL sin2 θW− 1

4 cos 2θW
)

[2 + (s+m2
Z + 4m2

t(1))C0(0,m2
Z , s,mt(1) ,mt(1) ,mt(1))

+2
2s+m2

Z

s−m2
Z

B0(s,m2
t(1) ,m

2
t(1))− 2

s+2m2
Z

s−m2
Z

B0(m2
Z ,m

2
t(1) ,m

2
t(1))− 2B0(0,m2

t(1) ,m
2
t(1))] .

D.1.3 B(1)B(1) → Hγ

This process is dominated by Feynman diagrams of the form

f

f
(1)
1,2

B(2)

H

γ

B(1)

B(1)

f
(1)
1,2 t

(1)
1,2

t
(1)
1,2

t
(1)
1,2

The A
(2)
3 resonance may contribute as well but in the minimal UED model its contribu-

tion is severely suppressed. Top quark contributions dominate the computation of tensor
RV due to their large Yukawa couplings. For the calculation of LV we apply a simpli-
fying “trick” that follows from the anomaly cancellation in the SM:

∑
f L

ρ
fµν |mf→0 ∝∑

f (Y 3
R + Y 3

L ) = 0 implies that Lρµν =
∑

f L
ρ
fµν ' Lρtopµν − Lρtopµν |mt→0. The resulting

expression for Lρµν is much too lengthy to be displayed here, though. However, the

tensor RγH
B(2)αβ

is a bit less intricate:

RγH
B(2)αβ

= −eg
′Qt(YtL + YtR)

2π2

igmt

mW

mt(1) sin 2α
(1)
t

(s−m2
H)3

(
B[(s−m2

H)ηαβ − 2k1βk2α] +

+[C2k2β − C1k1β]k1α

)
, (D.6)

where

B = (s−m2
H)([2 + (s−m2

H + 4m2
t(1))C0(0,m2

H , s,m
2
t(1) ,m

2
t(1) ,m

2
t(1))](s−m2

H)

−2s[B0(s,m2
t(1) ,m

2
t(1))− B0(m2

H ,m
2
t(1) ,m

2
t(1))])

C2 =−2(s−m2
H)[(s−m2

H)[2 + (s+m2
H + 4m2

t(1))C0(0,m2
H , s,mt(1) ,mt(1) ,mt(1))]

+2(s+ 2m2
H)[B0(s,m2

t(1) ,m
2
t(1))

−B0(m2
H ,m

2
t(1) ,m

2
t(1))] + 2(s−m2

H)[B0(s,m2
t(1) ,m

2
t(1))− B0(,m2

t(1) ,m
2
t(1))]

C1 = 4[m2
H(s−m2

H)[2 + (s+ 2m2
t(1))C0(0,m2

H , s,mt(1) ,mt(1) ,mt(1))]+

+2m2
H(2s+m2

H)[B0(s,m2
t(1) ,m

2
t(1))

−B0(m2
H ,m

2
t(1) ,m

2
t(1))] + (s2 −m4

H)[B0(s,m2
t(1) ,m

2
t(1))− B0(,m2

t(1) ,m
2
t(1))] .

In order to obtain RγH
A

(2)
3 αβ

, one simply needs to replace sin 2α
(1)
t (YtL + YtR) in eq. (D.6)

with (1/4) sin 4α
(1)
t .

D.2 H(2k) resonances

Analogous to H(2), higher excitations of the Higgs boson will decay via KK-number
violating processes. These decays have however larger widths as more and more kine-
matically allowed decay states become available. In order to derive these rates we shall
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consider the effective vertices and kinetic terms in the fixed points of the orbifold.

δLeff = L3/2

(
δ(x5) + δ(x5 − L)

2

)
yt√

2

1

64π2
log

Λ2

µ2
×

×
[
fHt̄d

1 + γ5

2
ts + faHt̄d

1− γ5

2
ts + h.c.

]
, (D.7)

where x5 is just the fifth space coordinate, L = πR is the length separating the orbifold
fixed points and fL,R are given by

f = 8g2
s −

3

2
g2 − 1

6
g′2 ,

fa = −2yt(yt + yb) ≈ −2y2
t .

The kinetic and mass radiative mixing terms read [4]

δL ⊃ L
(
δ(x5) + δ(x5 − L)

2

)
1

64π2
log

Λ2

µ2
×

×[bs,d1 t̄s,di�∂ts,d;+,− + bs,d2 (t̄s,d
←−
∂ 5ts,d;+,−+ (D.8)

+t̄s,d;+,−∂5ts,d) + c1
1

2
(∂µH)2 + c2

1

2
H∂2

5H] ,

where bs,d1,2 and c1,2 (shown below) were computed in the aforementioned reference. We
adopt the notation t± for right and left handed top quark fields.

bs1 =
4

3
g2
s + Y 2

tR
g′2 + 2y2

t , (D.9)

bd1 =
4

3
g2
s +

3

4
g2 + Y 2

tL
g′2 + y2

t , (D.10)

bs2 = 5

(
4

3
g2
s + Y 2

tR
g′2
)
− 2y2

t , (D.11)

bd2 = 5

(
4

3
g2
s +

3

4
g2 + Y 2

tL
g′2
)
− y2

t , (D.12)

c1 = −g′2 − 2g2 , (D.13)

c2 =
1

2
g′2 + g2 − 2λh . (D.14)

D.2.1 H(4) decay

Let us now illustrate the general method that is used to compute the decay rates of
H(2k) in the minimal scenario by explicitly calculating the decay rate of H(4). The
main difference H(2) and H(4) is that whereas the former decays with branching ratio
∼ 1 into top quark-antiquark pairs, the latter has the following decay modes H(4) →
t̄
(1)
s t

(1)
d (t̄

(1)
d t

(1)
s ), t̄

(2)
s,dt

(0) (t̄(0)t
(2)
s,d) and t̄t. The decay H(4) → t̄

(1)
s,dt

(1)
d,s is induced by the

effective vertex

δL ⊃ yt
64π2 log Λ2

µ2H
(4)

[(
154
9 g2

s + 41
16g

2 + 697
432g

′2 − 23
4 y

2
t + 8

3λh

)
t̄
(1)
s t

(1)
d +

+

(
69
9 g

2
s − 29

16g
2 − 157

432g
′2 + 3

4y
2
t

)
t̄
(1)
s γ5t

(1)
d + h.c.

]
,
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Figure D.1: Relevant Feynman diagrams for eq. (D.15). Contributions from fermion loops vanish
provided that H couples to mixed doublet and singlets.

which was obtained by decomposing (D.7) in terms of the KK modes and by including

the kinetic and mass mixing terms with t
(3)
s,d, t

(5)
s,d, H

(0) and H(2). For Λ = 5/R the decay

rate of H(4) is ΓH(4) = 3.1GeV.

D.2.2 B(1)B(1)H(2k) effective vertices

The same arguments from the previous section apply in this case. We need thus to
obtain the relevant vertices in the fixed points of the orbifold. Namely

δL ⊃ L
(
δ(x5) + δ(x5 − L)

2

)
g′2v

2

fS
64π2

log
Λ2

µ2
HBµB

µ (D.15)

The kinetic and mass mixing terms read

δL ⊃ L
(
δ(x5) + δ(x5 − L)

2

)
1

64π2
log

Λ2

µ2
[−aB1

1

4
BµνB

µν

−aB2
1

2
(Bµ∂

2
5B

µ) + c1
1

2
(∂µH)2+c2

1

2
H∂2

5H] . (D.16)

The coefficients in the previous expression were computed in [4], while the coefficient
fS in (D.15) can easily be computed by isolating the divergent contributions of the
Feynman diagrams D.1 and adding them. In the Feynman gauge we obtain

fS =
3

4
g′2 +

9

4
g2 + 12λh . (D.17)

To check the correctness of this result, one can obtain the corresponding effective
vertices and mixing terms for the A3 field –this must be done with care, since additional
types of Feynman diagrams (ghosts, W loops, etc) need to be considered– and then

verify that couplings for vertices such as A
(0)
µ Z(0)µH(2k) or A

(0)
µ A(0)µH(2k) vanish as

required by gauge invariance (Aµ represents the photon field).
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some café in Altona, Hamburg and in Oslo. I acknowledge the financial support of the
Deutsche Forschungs Gemeinschaft (DFG) through the Emmy Noether Program BR
3954/1-1 “From Dark Matter Properties to the Fundamental Theory” in the last few
months of my PhD program. I would also like to thank the staff members of the theory
group at the University of Oslo for their tremendous hospitality.

I am also very grateful for the Günter’s reliance towards my skills as a scientist
and as a teacher. It was a great pleasure for me to contribute in some of his lectures
and to co-supervise the Bachelor’s thesis of Robin Reuben, whom I also would like to
acknowledge and congratulate hereby. Our discussions enabled me to further enrich the
scientific contents of this manuscript. The research summarized in this manuscript was
almost fully covered by the Forschungsstiftung Hamburg through the exchange program
“Astroparticle Physics with Multiple Messengers”. I thank Julien Devriendt and Dimitri
Semikoz who hosted several of the meetings of this program at Oxford University and
Astroparticule et Cosmologie, Paris respectively.

My scientific collaborators Chiara Arina, Masaki Asano, Christoph Weninger and
Joe Silk have been a great influence for me as a researcher and for this thesis. I am
therefore very happy that I had the opportunity to interact with everyone of them as I
currently do with Ma. Vittoria Garzelli, Carmelo Evoli and Natacha Leite. I am also
indebted to several colleagues at my home University (Simón Boĺıvar), in particular to
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