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Zusammenfassung

Ein Experiment ist in der TESLA Test Anlage (TTF) durchgeführt worden, um
Störwellenfelder zu untersuchen, die durch Elektronenpulse mit Picosekunden
Länge in engen Strahlrohren mit einer künstlich aufgerauhten Innenoberfläche
angeregt werden. In einem magnetischen Spektrometer wurde die durch die
Störwellen erzeugte Energiestruktur der Elektronenpakete analysiert. Starke har-
monische Energiemodulationen wurden beobachtet. Mit Hilfe einer longitudina-
len Phasenraumtomographie wurden die Wakepotentiale direkt vermessen. Dazu
war die Implementierung eines neuen Rekonstruktionsalgorithmus basierend auf
der Maximum-Entropie-Methode notwendig. Mit einem mm-Wellen Interferome-
ter konnte die zugehörige THz-Strahlung beobachtet werden. Die beobachteten
Effekte werden mit Modellrechnungen verglichen.

Abstract

An experiment has been carried out at the TESLA Test Facility (TTF) linac
to investigate the wake fields generated by picosecond electron bunches in nar-
row beam pipes with artificially roughened inner surface. The energy structure
imposed on the bunches by the wake fields has been analyzed with a magnetic
spectrometer. Strong harmonic wake field effects were observed. By means of
longitudinal phase space tomography the wake potentials were studied directly.
This required the implementation of a new reconstruction algorithm making use
of the maximum entropy method. With a mm-wave interferometer the corre-
sponding THz radiation was observed. The observed effects are compared with
model calculations.
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Chapter 1

Introduction

One of the fundamental principles of modern sci-
ence is the experiment. By designing sophisticated
experimental setups and analyzing the measured
data the scientist gains understanding of the prin-
ciples of nature. The 20th century has experienced
an overwhelming progress in terms of extending the
measurement techniques to step further and further
into fundamental processes.

A very successful tool is the scattering measure-
ment. It is applicable to problems in all fields of
physics and many other disciplines. By scatter-
ing elementary particles at a target it is possible
to uncover hidden properties and reactions of the
target material and sometimes the elementary par-
ticle itself. Depending on the material under study
the projectiles may be electrons, positrons, protons,
neutrons, or photons. Owing to the particle-wave
duality of quantum theory scattering is basically
equivalent to diffraction. The spacial resolution of
the scatter experiment is given by the wavelength
respectively energy of the projectile. If the energy
of the projectile is large enough the nature of inter-
action with the target may change drastically and
new particles be created. In this way the focus of
the analysis changes from the initial state of the
target to the final state of the reaction, funding a
new field of research, the particle physics. Mod-
ern elementary particle physics is mainly concerned
with the investigation of the basic constituents of
matter and their forces and interactions, and the
artificially produced second and third generation of
leptons and quarks is an essential part of experi-
mental and theoretical particle physics. Almost all
experimental data are described with high preci-
sion by the standard model of the unified electro-
magnetic and weak interactions, and the quantum
chromodynamics. One essential cornerstone is miss-
ing, however, the Higgs particle, which is thought
to be responsible for the short range of the weak
force and the lepton and quark masses.

To increase the sensitivity and to decrease the
statistical errors of the measurements a large par-
ticle flux is required. This is especially true in par-
ticle physics where interaction cross section usually

scales with the inverse square of the center of mass
energy. Closely related to the development of scat-
tering techniques is the development of particle ac-
celerators. The development of particle accelerators
led to the availability of particle beams of very high
particle flux (brightness) and particle energy. The
former leads to ever increased sensitivity, whereas
the latter leads to improved spatial resolution. In
parallel the development also leads to smaller tem-
poral resolution by shortening the beam pulses.

The TESLA (Tera Electronvolt Superconducting
Linear Accelerator) collaboration proposes to build
a machine that will be at the forefront in two very
distinct areas of research. First, it will deliver elec-
tron and positron beams for e−e+ collision exper-
iments at a center of mass energy of 0.5 TeV up
to 0.8 TeV at luminosity of 1034cm−2s−1. Sec-
ondly, included will be a X-ray free electron laser
(FEL) delivering wavelengths around 1 Å with a
peak brilliance around 1033 photons/(s mrad2 mm2

0.1% bandwidth) and pulse length of 100 fs. In this
way TESLA will carry on a long-lasting tradition
at DESY to use the accelerators built for particle
physics for entirely different research fields as well.

At DESY a test accelerator (TESLA Test Facil-
ity – TTF) has been built and operated to perform
R&D for the superconducting acceleration struc-
tures and to do an integrated system test. At
the TTF linac also an UV FEL has been oper-
ated to prove the viability of the Self Amplified
Spontaneous Emission (SASE) mode of free elec-
tron lasers. The requirements on the electron beam
quality of such a SASE-FEL are very demanding
in terms of small transverse and longitudinal emit-
tances. Especially the requirements for the longitu-
dinal phase space with 1 nC of charge concentrated
in less than 1 ps and with small energy spread are
the subject of intense theoretical and experimen-
tal studies. The very short but intense current
pulses give rise to strong wake fields and coher-
ent sychrotron radiation effects in the accelerator.
These radiation effects in turn influence the energy
distribution of the electron bunch.

One main goal of this thesis is the experimental
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investigation of the wake fields excited by the resid-
ual surface roughness inside the vacuum chamber
of the FEL undulator. The gap of this undulator
is very small (12 mm) leaving space for a vacuum
chamber of 9 mm inner diameter only. Calcula-
tions show that the rough surface in the order of
1 µm present in standard 10 mm pipes will lead to
strong wake fields by the ultrashort bunches. To-
gether with the resistive wall wake fields this dom-
inates the effects of wake fields on the performance
of the FEL. Because of the importance of the effect
and some uncertainty in the model predictions an
experiment has been conducted at the TTF linac to
study the surface roughness wake field effect.

Considering the stochastic nature of the surface
structure the model predictions may appear surpris-
ing: A resonant excitation at a certain frequency is
predicted, with the frequency determined by the ra-
dius of the beam pipe and the depth of the surface
structures. This harmonic wave could be verified
experimentally both from the energy distribution
in the bunches as well as by spectral analysis of the
emitted radiation. For measuring the energy mod-

ulation of the bunches tomographic methods have
been applied to reconstruct the longitudinal phase
space. The longitudinal phase space tomography
in a linear accelerator suffers from the limitation of
the angular range which excludes the use of con-
ventional reconstruction algorithms. A maximum
entropy method has been utilized to overcome this
limitation.

The second chapter of this thesis will give a in-
troduction to wake fields with the focus on different
models to describe surface roughness wake fields.
In chapter three the fundamentals of FEL physics
are described in the one-dimensional theory rele-
vant for the longitudinal phase space. The theory
of phase space tomography is explained in chapter
four. As an introduction to the discussion of exper-
imental findings the chapter five gives an overview
of the TTF linac and the evolution of the longitu-
dinal phase space. The sixth chapter deals with the
results of tomographic measurements of the longitu-
dinal phase space done independently of the wake
field experiment. The seventh chapter is reserved
for a detailed analysis of the data taken in the wake
field experiment.
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Chapter 2

Wake Fields

A bunch of charged particles moving in an accel-
erator carries the Coulomb field of its constituents.
In the limit of ultrarelativistic motion, i.e. the par-
ticle energies are much higher than the rest ener-
gies, the field is concentrated in a disk perpendicu-
lar to the trajectory of motion. Depending on the
structure of the environment the bunch self field is
perturbed and can be reflected onto the beam axis
and interact with the particles in the bunch itself
or with following bunches. The perturbed fields are
called wake fields. The radiated energy might im-
pair the proper functioning of the accelerator sys-
tems. Wake fields in accelerating structures can be
expanded in terms of eigenmodes of the cavities and
are then referred to as higher order modes. Depend-
ing on whether the wakes act on the bunch itself or
on the following bunches they are called short range
or long range. The former ones may degrade the
longitudinal and transversal emittances of individ-
ual bunches, the latter can cause collective instabil-
ities in the accelerator.

The short range wake fields contain wavelengths
in the order of the bunch length. In the case of
linear colliders (LC) or free electron lasers (FEL)
the bunch length is in the range of millimeters and
even below. At the same time the bunches contain
a large numbers of electrons, e.g. ∼ 1010 in the
TESLA Test Facility linac. Strong peak fields have
to be expected.

Devices to analyze the emitted wake field radia-
tion have to use the quasi-optical techniques devel-
oped for far infrared radiation.

To create long range wake fields time constants
in the order of the bunch spacing are needed. The
bunch separation in the TTF linac is 0.4 to 1 µs.
Such long fill and decay times may occur in the
superconducting cavities. With respect to the long
range wake fields for TESLA the major concern are
therefore the higher order modes of the acceleration
cavities.

In general longitudinal wake fields scale inversely
with the distance of the structures from the beam,
the transverse wake fields scale with the inverse
cube. The synchronous mode wake fields discussed

below scale with the inverse square of the radius.
Therefore the wakes generated inside the narrow
vacuum chambers of the undulator magnets of the
FEL are particularly harmful.

2.1 Introduction to wake fields

Consider a point charge q moving in free space at a
constant velocity v. The electric field in the rest
frame of the charged particle is spherically sym-
metric and drops as ∼ 1/r2, with r being the dis-
tance from the point charge in cylindrical coordi-
nates (r, ϕ, z). In an electron accelerator the beams
are highly relativistic so that the field has to be
Lorentz transformed to the laboratory frame, yield-
ing [21]

E‖(r, t) =
q

4πε0

γvt

[r2 + (γvt)2]3/2
e‖,

E⊥(r, t) =
q

4πε0

γr

[r2 + (γvt)2]3/2
e⊥, (2.1)

B⊥(r, t) =
1
c2

v ×E⊥(r, t), (2.2)

where the relativistic factor γ is defined by

γ =
1√

1− β2
withβ =

v

c
. (2.3)

The unit vector e‖ is chosen to be parallel to the
velocity v of the charge and e⊥ perpendicular to
it. Unless specified otherwise, it is assumed in the
following that the vacuum chamber is cylinder sym-
metric and that the beam is moving on its symme-
try axis. The peak value of E⊥ is reached at a time
t = 0 when the particle passes the point of mini-
mum distance to the observer,

E⊥(r, 0) =
q

4πε0

γ

r2
e⊥. (2.4)

The time interval in which the amplitude of the
transverse electric field at the radius b exceeds half
the peak value is approximately given by

4t ≈
√

2
b

γv
. (2.5)
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For γ � 1 the electric field is concentrated in a
small disk with opening angle ∼ 1/γ. In the ultra-
relativistic limit γ → ∞ the field reduces to a δ-
distribution in the z-direction

Er(r, z, t) =
qZ0c

2πr
δ(z − ct) Bϕ =

1
c
Er, (2.6)

with E⊥ = Erer, B⊥ = Bϕeϕ, and Z0 =
√

µ0/ε0

the impedance of the vacuum. Because of its ap-
pearance the electromagnetic field eq. 2.6 is some-
times referred to as “pan-cake” term.

Here I consider only wake fields with azimuthal
symmetry. Then the Helmholtz equations for the
electric field in vacuum and non conducting mate-
rials can be written as

µε

c2
∂2

t Ez =
1
r
∂r(r∂rEz) + ∂2

zEz (2.7)

µε

c2
∂2

t Er = ∂r

(
1
r
∂r(rEr)

)
+ ∂2

zEr, (2.8)

with ∂x = ∂
∂x and µ, ε the permeability and the

permittivity respectively of the material. For most
beam pipe materials it is justified to assume µ = 1,
hence this factor will be omitted. The permittivity
has to be accounted for in a beam pipe covered with
a thin dielectric layer.

Often it is advantageous to use the Fourier trans-
form of the fields

Ez/r(r, z, t) (2.9)

=
1
2π

∞∫
−∞

∞∫
−∞

Ẽz/r(r, kz, ω)ei(kzz−ωt)dωdkz.

Then the wave equation simplifies to

1
r
∂r(r∂rẼz) +

(
k2ε− k2

z

)
Ẽz = 0(2.10)

∂r

(
1
r
∂r(rẼr)

)
+
(
k2ε− k2

z

)
Ẽr = 0,

with k = ω/c. The pan-cake term transforms into

Ẽδ
r =

qZ0c

2πr
. (2.11)

When there is no charge the electric field fulfills the
Maxwell equation

∇ ·E =
1
r
∂r(rẼr) + ikzẼz = 0. (2.12)

This equation relates Ez and Er. The magnetic
field can be derived from

− µ0
∂H

∂t
= rotE

ikZ0Hϕ = ikzẼr − ∂rẼz. (2.13)

For the analysis of the influence of the wake fields on
the beam the wake potential is calculated. It repre-
sents the effective voltage seen by a particle moving
within the bunch. The coordinate ζ is the relative
longitudinal coordinate moving with the bunch

W‖(ζ) =
1
q

∫
dzEz(ζ, z), ζ = z − ct, (2.14)

The wake potential can be calculated in three steps.
First the impedance of the accelerator is calculated
from the electric field in the Fourier space. In the
ultra relativistic limit it is

Z‖(k) =
1
qc

∫
dzẼz(r = 0, kz, k)ei(kz−k)z. (2.15)

From the impedance it is possible to calculate the
wake function. It is the Green’s function, i.e. the
wake potential induced by a δ-like charge distribu-
tion.

W δ
‖ (ζ) =

c

2π

∞∫
−∞

dkZ‖(k)eikζ (2.16)

The wake potential then is the convolution of the
wake function with the line charge density ρ(ξ) of
the bunch

W‖(ζ) =

∞∫
−∞

dξW δ
‖ (ζ − ξ)ρ(ξ). (2.17)

Certain wake fields are generated continuously
along the beam pipe. The wake arising from a
dielectric layer discussed in the next section is an
example. For quasi infinite beam pipes and con-
tinuous wake generation the impedance is usually
quoted per unit length and only calculated for the
fields synchronous with the bunch

Z‖(k) =
Ez

qc
. (2.18)

In this case it may be advantageous to use the sur-
face impedance to derive the longitudinal field

Z =
Ez

Hϕ
. (2.19)

The contribution of a finite piece of the beam pipe
to the total impedance can be calculated via

Z‖(k, L) =
1
qc

L∫
0

dzẼz(r = 0, kz, k)ei(kz−k)z,(2.20)

with L the length of the considered piece of beam
pipe.
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Figure 2.1: Phase velocity of a waveguide mode in a beam
pipe with a dielectric surface layer. The phase velocity ω/kz

and the group velocity dω/dkz are shown. The pipe has a
radius of 5 mm and the layer has a thickness of 30 µm.

2.2 Waveguide coated with a
dielectric layer

A metallic beam pipe acts as a waveguide. The elec-
tromagnetic fields inside this waveguide can be ex-
panded into modes, each individually fulfilling the
wave equation 2.10 with appropriate boundary con-
ditions at the metallic walls. The solutions for this
equation can be written using Bessel functions of
the first kind [8]

Ẽz = ÊJ0(krr), (2.21)

Ẽr = − ikz

kr
ÊJ1(krr), (2.22)

H̃ϕ =
k

kzZ0
Ẽr, (2.23)

with kr =
√

k2 − k2
z . Note that this solution is even

valid for k2
r < 0. The metallic boundary is assumed

to be perfectly conducting. Hence the longitudi-
nal electric field vanishes at the surface. This can
only be accomplished if kr · b equals a root of J0,
b being the pipe radius. This yields k2

r > 0 and
hence kz < k. The phase velocity vph = c · k/kz

is larger than the speed of light for all modes in a
perfectly conducting waveguide. The particles are
always moving with a speed v < c. Even in the
ultra-relativistic limit assuming v = c the velocity
of any frequency component of the pan-cake term is
smaller than the phase velocity of the correspond-
ing waveguide mode. Thus a coupling to the mode
is not possible in the time average.

In a waveguide with dielectric coating the situ-
ation is fundamentally different. Assume a beam
pipe with a thin dielectric layer on its inner sur-
face, with a dielectric constant ε and a thickness
δ � b. Because the thickness of the dielectric layer
is much smaller than the radius of the beam pipe,
the variation of r inside the layer is negligible and

equation 2.10 simplifies to(
∂2

y + ∂2
z + εk2

)
Ẽz/r = 0, (2.24)

y ≡ b + δ − r.

This approximation is equivalent to assuming the
pipe surface being locally flat. The new variable y
has the origin at the metallic wall and is pointing
inwards. Inside the dielectric layer the solution is
found to be

Ẽdie
z = Êdie sin(κry), (2.25)

Ẽdie
r = − ikz

κr
Êdie cos(κry), (2.26)

with κr =
√

k2ε− k2
z . The fields have to match at

the boundary between the dielectric and the vac-
uum

Ẽr(b) = εẼdie
r (δ) Ẽz(b) = Ẽdie

z (δ). (2.27)

Inserting 2.23 and 2.25 into 2.27 and dividing the
two equations yields the surface impedance

Z(k, kz) =
Ẽz

H̃ϕ

(2.28)

= Z0
kzẼz

kẼr

= iZ0
κr

εk
tan(κrδ).

Without a source current inside the pipe the surface
impedance has to match the ratio Ẽz/H̃φ calculated
from (2.21) and (2.23)

Z
Z0

= i
krJ0(krb)
kJ1(krb)

. (2.29)

From this equation it is possible to derive the dis-
persion relation for the dielectrically coated waveg-
uide.

Trying to calculate kz = kz(k) one finds that
(2.29) is a transcendental equation. The dispersion
can be calculated in closed form when kr is taken as
the independent variable. Additionally one has to
assume tanκrδ ≈ κrδ which is justified due to the
small layer thickness, κrδ � 1. Then the equations
2.28 and 2.29 read

κ2
rδ

εk
=

krJ0(krb)
kJ1(krb)

(2.30)

=
2J0(krb)

bk(J0(krb) + J2(krb))
.

Here the identity J1(x)/x = 1/2 (J0(x) + J2(x))
is used to continue the function steadily around
k2

r = 0. The factor k on both sides cancels and
κ2

r = k2(ε− 1) + k2
r . Then the mode frequency ωm

is given as follows
ωm

c
= km(kr) (2.31)

=

√
2ε

(ε− 1)bδ

(
J0(krb)

J2(krb) + J0(krb)
− bδ

2ε
k2

r

)
,
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kz(km, kr) =
√

k2
m − k2

r .

vph =
km

kz
,

An example for the phase velocity is shown in figure
2.1. The phase velocity equals the speed of light
when kz = k ⇔ kr = 0. A higher phase veloc-
ity is found for k2

r > 0, a smaller phase velocity is
found for k2

r < 0. Obviously the variable kr switches
from real to imaginary values. For the calculation
of derivatives it is therefore necessary to use the
variable ξ = k2

r instead.
The group velocity can be derived from

vgr

c
=

dkm

dkz
. (2.32)

The differentials can be calculated by

dkm =
dkm

dkr

dkr

dξ
dξ (2.33)

dkz =
(

∂kz

∂kr
+

∂kz

∂km

dkm

dkr

)
dkr

dξ
dξ

Dividing the differentials yields

vgr

c
=

dkm

dkr

∂kz

∂kr
+ ∂kz

∂km

dkm

dkr

, (2.34)

where the different terms are given as follows (see
appendix A).

dkm

dkr
=

εkrb

2km(ε− 1)δ

(
J2(krb)J0(krb)

J2
1(krb)

− 2δ

bε
− 1
)

∂kz

∂kr
= −kr

kz
(2.35)

∂kz

∂km
=

km

kz

The terms dξ
dkr

cancel and have been dropped. At
k2

r = 0 there is a solvable discontinuity in this for-
mula. The equation 2.47 shows the series expansion
around this point.

With a dielectric surface layer the electromag-
netic waves are slowed down so that there is a
certain frequency at which the phase velocity of
the wave equals the speed of light. At this fre-
quency there is the possibility for a continuous en-
ergy transfer from a ultra-relativistic beam to the
waveguide mode. In the following this will be called
the synchronous mode wake field.

The frequency of the synchronous mode can be
found by calculating k for kr = 0. The right hand
side of equation 2.29 becomes b/2 in the limit kr →
0. Using again the approximation tan(x) ≈ x, one
finds

kres =

√
2ε

(ε− 1)bδ
. (2.36)

This the wavenumber of the synchronous mode.
To obtain the excitation strength and pulse form
of the mode one has to calculate the longitudinal
impedance Z‖(kz,4k).
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frequency [GHz]
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/c

Figure 2.2: Absolute value of the impedance of a dielectri-
cally coated beam pipe in the frequency-phase velocity plane
(eq 2.40). The value of the impedance is coded into the gray
scale of the picture, the coding is logarithmic to account
for the diverging behaviour when matching the waveguide
modes. The bright lines in the map correspond to the diver-
gence of the impedance at a certain waveguide mode. The
phase velocity of the lowest mode is plotted as black curve
according to eq. 2.31. Note that the impedance was calcu-
lated exactly whereas eq. 2.31 is based on an approximation
of the tangent. The two calculations deviate slightly at very
high frequencies.

The longitudinal impedance is found by evaluat-
ing the quotient Ẽz(0, kz, k)/q. To do so the surface
impedance can be utilized

Ẽz(b, kz, k) = ZH̃ϕ,total (2.37)

= Z ·
( qc

2πb
+ H̃ϕ(b, kz, k)

)
.

Inserting the general solution of the wave equa-
tion in vacuum, eq. 2.21 the longitudinal beam
impedance (per unit length) is found

qcZ0

2πb
= Ê

(
ik

kr
J1(krb) +

Z0

Z
J0(krb)

)
(2.38)

⇔ Z‖ =
Ẽz

qc

=
Z0

2πb
· 1

ik
kr

J1(krb) + Z0
Z J0(krb)

.(2.39)

Inserting the surface impedance from equation 2.28
yields

Z‖ =
Z0

2πb
· 1

ik
kr

J1(krb)− ikε
κr

J0(krb) cot(κrδ)
.(2.40)

Figure 2.2 shows the impedance map for a beam
pipe of 4 mm radius and 30 µm dielectric surface
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layer. In the case of an infinitely long beam pipe
only the impedance along the line vph = c has to
be taken into account. This is equivalent to taking
kr = 0

Z‖ = − 1
2πb

· Z
1 + ikbZ

2Z0

(2.41)

⇔ Z‖ = i
Z0

πb2
· k

k2
res − k2

. (2.42)

The longitudinal wake function can be calculated
via Fourier transform

wδ
‖(ζ) =

c

2π

∞∫
−∞

dkZ‖(k)e−ikζ

= −Z0c

πb2
cos(kresζ)Θ(ζ), (2.43)

with ζ = z − ct the relative coordinate behind the
source charge and Θ the Heaviside step function.
Note that this wake function contains a cosine term
even though the impedance is purely imaginary.

To evaluate the wake function for a finite beam
pipe one has to take into account the impedance in
the whole (kz, k)-plane. To ease the calculation of
the residua one can try to write the impedance as
a product of polynomial quotients

Z‖ =
Z0

πb2
· ik

krε
J0(krb)
J1(krb)

− (k2ε− k2
z)δ

· krb

2J1(krb)
· (k2ε− k2

z)δ

k2

=
Z0

πb2
· ik

krε
J0(krb)
J1(krb)

− k2
rδ − k2(ε− 1)δ

· krb

2J1(krb)
· (k2ε− k2

z)δ

k2

=
Z0

πb2
· ik

ε
(ε−1)bδ

[
krb

J0(krb)
J1(krb)

− bδ
ε

k2
r

]
− k2

· krb

2J1(krb)
· k2ε− k2

z

k2ε− k2

Using equation 2.31

Z‖ = i
Z0

πb2
· k

k2
m − k2

· 1

J0(krb) + J2(krb)
· k2ε− k2

z

k2ε− k2
.

(2.44)

To evaluate the Fourier integral it is preferable to
write k as function of kz, which is achieved by us-
ing the Taylor series expansion up to the 3rd order.
First one finds the series expansion of k and kz from
equation 2.31 with ξ = k2

r (See appendix A)

km

kres
= 1− 1

2
amξ −

(
a2

m

8
+

b4

384

)
ξ2 (2.45)

−
(

a3
m

16
+

amb4

768
+

b6

9216

)
ξ3 + · · ·

kz

kres
= 1− 1

2
arξ −

(
a2

r

8
+

b4

384

)
ξ2

−
(

a3
r

16
+

arb
4

768
+

b6

9216

)
ξ3 + · · ·

with

am =
b2

8
+

bδ

2ε
ar =

b2

8
+

bδ

2
(2.46)

The Taylor series then reads

km = kres +
am

ar
(kz − kres) (2.47)

+
b4 − 48 amar

48 a3
rk2

res

· (kz − kres)
2

2kres

+

(
amarb4 − 48a2

ma2
r

16 a5
rk2

res

−
48a2

rb4 − 4arb6 + b8

768 a5
rk2

res

)
(kz − kres)3

6k2
res

For small values of kz the influence of the dielec-
tric vanishes. Then a better approximation is given
by the well known formula km =

√
k2

z + α2
1/b2, with

α1 being the first zero of the Bessel function J0. The
coefficient of the first order is the group velocity
close to the synchronous mode frequency

vg = am/ar. (2.48)

Given these functions it is possible to construct the
Fourier transform of equation 2.44 in two dimen-
sions

wδ
‖(z, t) =

Z0c

πb2

∞∫
−∞

∞∫
−∞

dk√
2π

dkz√
2π

ik

k2
m − k2

(2.49)

· k2ε− k2
z

(ε− 1)kkz
· krb

2J1(krb)
· ei(kzz−kct)

The integration along k can be performed analyti-
cally using the residue theorem, if the zeros of the
Bessel function in the third factor are neglected.
They belong to distinct modes of higher order (see
the bright lines in figure 2.2) which can be analyzed
separately. Due to their high phase velocity, a cou-
pling to the beam is not to be expected. Then,

wδ
‖(ζ, l) = (2.50)

Z0c

πb2

∞∫
0

dkz
k2

mε− k2
z

(ε− 1)kmkz
· krb

2J1(krb)
· sin(∆kl)

∆k
· cos(kzζ),

where l is the position of the bunch in the beam
pipe (0 ≤ l ≤ L, ∆k = kz−km). The sine term orig-
inates from the finite duration of excitation. The in-
tegrand gives the wavelength spectrum of the radia-
tion pulse depending on the position l of the bunch.
The pulse can then be calculated numerically from

7



0 0.5 1 1.5 2 2.5 3 3.5
−20

−10

0

10

20

position ζ [mm]

am
pl

itu
de

 [a
rb

. u
ni

ts
]

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1

wavenumber 1/λ [mm−1]

am
pl

itu
de

 [a
rb

. u
ni

ts
]

0 5 10 15

-15

-10

-5

0

5

10

15

position ζ [mm]

am
pl

itu
de

 [a
rb

. u
ni

ts
]

Figure 2.3: Spectrum and wake field pulse of a dielectric layer wake. The spectrum has been calculated with eq. 2.50, the
pulse via fast Fourier transform (FFT) from the spectrum. The left hand picture shows the spectrum in the upper part and the
pulse in the lower part. W δ

‖ and wδ
‖ are shown. The momentary pulse wδ

‖ is approximately rectangular. The integrated wake

function W δ
‖ then drops linearly from the source charge to a distance vgL behind the source. The right hand picture shows the

wake calculated after 50 cm, 1 m, and 2 m of beam pipe

the spectrum. The overall effect is obtained by in-
tegration along the path of the beam,

W δ
‖ (ζ, L) =

Z0c

πb2

L∫
0

dl wδ
‖(ζ, l). (2.51)

The only quantity in the equation 2.50 that depends
on l is the term sin(∆kl)/∆k which is easily inte-
grated. Hence the overall wake function is

W δ
‖ (ζ, L) =

Z0c

πb2

∞∫
0

dkz
k2

mε− k2
z

(ε− 1)kmkz
· krb

2J1(krb)

·1− cos(∆kL)

∆2
k

· cos(kzζ). (2.52)

The momentary wake field pulse described by equa-
tion 2.50 has a roughly rectangular shape. The in-
tegrated wake function then drops linearly from the
source charge to a distance vgL behind the source
(see figure 2.3 left).

For a given longitudinal bunch profile the wake
potential is found by convolution of the wake func-
tion and the charge distribution. In figure 2.4 this
is shown for a gaussian charge distribution and sev-
eral different ratios of the wavelength and the σ of
the Gauss function. The resulting corrections to the
average and peak energy loss of the electrons in the
bunch are shown in figure 2.5.

2.3 Surface Roughness

In the previous section it has been shown that wakes
synchronous to the beam are excited if the phase ve-
locity of the waveguide modes is slowed down to the
speed of the beam. Such a wave can exist if there is
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Figure 2.4: Wake potentials for different wavelengths λ of
the synchronous mode. The inset shows a zoom into the
area around the bunch and smaller amplitudes. The dot-
ted plot gives the charge distribution, which is a gaussian
∼ exp(−z2/(2σ2)).
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a non-vanishing surface impedance, i.e. a longitu-
dinal electric field at the surface is present. Surface
roughness at the boundary surface will also produce
a longitudinal electric field. The consequences are
discussed in the following.
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Figure 2.6: Surface profile of a sandblasted beam pipe. The
right picture shows the corresponding spectrum S(k). The
normalization is such that

∫
Sdk = δ2

rms, the rms height of
the surface structures.

The figure 2.6 shows the surface profile of a beam
pipe used in the wake field experiment.

2.3.1 Surface structure with a rect-
angular shape

A first attempt to model the surface roughness may
be by means of periodic rectangular grooves. Since
the height of the surface structures is much smaller
than the radius of the beam pipe the surface is
modelled as a plane. The electric and magnetic
field components, however, are still labelled with
the subscripts r, z, ϕ. The fields of the mode at the
surface are written as

Ẽz = ZĤ H̃ϕ = Ĥ Ẽr = Z0Ĥ. (2.53)

Let the periodicity of the gaps be d, g the width
of the gaps, and δ the depth (see figure (2.7). The
fields inside the gaps can be expanded into eigen-
modes

E(n)
z (y, z) = an sin(

√
k2 − α2

ny) cos(αnz) (2.54)

E(n)
r (y, z) = − αnan√

k2 − α2
n

cos(
√

k2 − α2
ny) sin(αnz)

H(n)
ϕ (y, z) =

ikan

Z0

√
k2 − α2

n

cos(
√

k2 − α2
ny) cos(αnz)

αn =
nπ

g
.

-�
g-�
d

6
?δ

Symmetry Axis

6

b

Figure 2.7: Sketch of the rectangular surface structure. The
structures are axially symmetric.

Assuming that the wavelength of the mode inside
the beam pipe is much larger than the gap width,
one finds that the longitudinal electrical field is the
average of the field in the gaps and that it is suffi-
cient to calculate the lowest order mode inside the
gap

Ê = ZĤ =
g

d
a0 sin(kδ). (2.55)

Under this assumption it is clear that no periodicity
is required any more. The coefficient a0 can be
calculated from the boundary conditions at the gap
entrance

H(0)
ϕ = H̃ϕ, (2.56)

E(0)
z = iZ0H

(0)
ϕ (2.57)

⇔ Zrec = iZ0
g

d
tan(kδ) ≈ iZ0

g

d
kδ. (2.58)

Comparison with eq. 2.29 reveals some similarity
with the surface impedance due to the dielectric
layer when setting kz ≈ k. The effective dielectric
constant is

εeff =
d

d− g
. (2.59)

Hence wakes induced by this kind of surface rough-
ness are equivalent to the wakes due to a thin di-
electric layer. On page 76 of ref [52] the result of
the above calculation has been compared to numer-
ical calculations. Good agreement has been found
for symmetric gaps g ≈ d/2. Deviations are found
when moving away from this situation, higher order
modes have to be taken into account in this case.

Detailed numerical calculations have been per-
formed at the Technical University Darmstadt to
study the surface roughness wake fields for different
geometrical structures [33, 52, 34]. The layer thick-
ness δ is calculated from the rms height of the sur-
face structure. In many cases a permittivity ε ≈ 2
was found.

2.3.2 Smooth and shallow corruga-
tions

In [12] Dohlus derives the surface impedance due
to random corrugations. An analytical approach
is developed using different approximations for the
boundary conditions. Axial symmetry and longitu-
dinal periodicity is assumed but no restrictions on
the period length Λ. The boundary condition at the
surface of the beam pipe is given by

∇Hϕ · ~n + (iωε0Zb + (~er · ~n)/b) Hϕ = 0, (2.60)

with ~n the normal to the surface and

Zb(ω) =

√
i
ωZ0

cσ
=

1 + i

σδs
, (2.61)
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σ the conductivity and δs the skin depth. The elec-
tromagnetic field is expanded into eigenmodes up
to order N

Hϕ = Hδ
ϕ +

∑
n

CnHϕn (2.62)

Er = Eδ
r +

∑
n

CnErn (2.63)

Ez =
∑

n

CnEzn, (2.64)

with n = −N . . .N , kzn = k + nk1, k1 = 2π/Λ,

Hδ
ϕ = H̃δ

ϕeikz Hϕn = − ik

Z0krn
J1(krnr)eikznz (2.65)

Eδ
r = Ẽδ

reikz Ern = − ikzn

krn
J1(krnr)eikznz (2.66)

Ezn = J0(krnr)eikznz (2.67)

and krn =
√

k2 − k2
zn. In this notation the beam

impedance is

Zbeam =
C0

qc
. (2.68)

The left hand side of equation 2.60 can be evaluated
for each eigenmode

hδ(z) =

{
∇Hδ

ϕ · ~n +

(
ik

Zb

Z0
+

~er · ~n
R

)
Hδ

ϕ

}
R=b(z)

,(2.69)

hn(z) =

{
∇Hϕn · ~n +

(
ik

Zb

Z0
+

~er · ~n
R

)
Hϕn

}
R=b(z)

.(2.70)

The expansion coefficients Cn have to be chosen
such that the boundary condition is fulfilled. In
general there will be a deviation d which has to be
minimized

d(z) := hδ(z) +
∑

n

Cnhn(z) → 0, (2.71)

There are several ways to approximate this prob-
lem which is continuous in z. The method chosen
here is to fulfill the condition (2.71) exactly for the
Fourier coefficients Fm{d(z)} with m = −N . . .N ,
and

Fm{f} =
1
Λ

∫ Λ

0

f(z)e−imk1zdz. (2.72)

This yields the matrix equation

M̃c + ṽ = 0, (2.73)

with

(M̃)m̂,n̂ = Fm{hn}, (c)n̂ = Cn

(ṽ)m̂ = Fm{hδ}, (2.74)

where n̂ = n + N + 1 so that the numbering of the
matrix elements starts at 1. It is advantageous to
calculate the effective surface impedance first

Z(ω) =

〈
Ez(b, z)e−ikz

〉
z

〈Hϕ(b, z)e−ikz〉z
. (2.75)

This is accomplished by calculating

(M̂)m̂,n̂ =

{
(M̃)m̂,n̂ + ikπb2

qcZ0
(ṽ)m̂ if n = 0,

(M̃)m̂,n̂ otherwise
(2.76)

ĉ = −2πbM̂
−1

ṽ, (2.77)

and then

Zω = − Ĉ0

q
, Ĉn = (ĉ)n̂. (2.78)

The terms hδ(z) and hn(z) in the boundary condi-
tion can be linearized with respect to the surface
profile δr(z)

hδ(z) =
qc

2πb

(
−ikz,0δ

′
r + (1− δr/b)ik

Zb

Z0

)
eikz,0z (2.79)

hn(z) = −
[
J0(krnb)

(
1 + ikδr

Zb

Z0

)
(2.80)

+J1(krnb)

(
−i

kzn

krn
δ′r − krnδr + ik

Zb

Z0

1− δr/b

krn

)]
eikznz.

This approximation is valid if δr � b, δ′r � 1, and
| krnδr |� 1. A first order approximation for the in-
verse matrix M̂

−1
is applied. This then yields a sec-

ond order approximation for the surface impedance

Z(k) = Zb + iZ0k

N∑
n=−N

An

(
nk1 − i

1

b

Zb

Z0

)
|Fn{δr}|2,

An =

[
iJ′1(kr,nb) Zb

Z0
+ J1(kr,nb)nk1/kr,n

]
J0(kr,nb) + ikJ1(kr,nb)/kr,n

Zb
Z0

(2.81)

The influence of the surface resistivity can be fur-
ther approximated

Z(k) = Zb + iω
Z0

c

N∑
n=−N

J1(kr,nb)(nk1)
2

kr,nJ0(kr,nb)
| Fn{δr} |2

+O(‖δr‖2Zb), (2.82)

In [12] this last approximation has only been de-
rived for a sinusodial surface profile. Due to the
similarity to the case of the Fourier series this may
be generalized. With a less rigorous treatment
Stupakov [48] finds an approximation for the sur-
face impedance without using axial symmetry

Z = iωL (2.83)

L =
Z0

c

∞∫
−∞

∞∫
−∞

dκzdκxR(κz, κx)
κ2

z

κ
, (2.84)

with z parallel to the direction of the beam and x
perpendicular. R(κz, κx) is the Fourier transform
of the autocorrelation of the surface profile func-
tion δr(z, x). The integral L is regarded as surface
inductance, similar to the second term in equation
2.82.
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Figure 2.8: Beam impedance due to surface roughness. The
beam impedance is calculated using the equation 2.82. The
parameters of the pipe are radius b = 5 mm and a surface
profile as depicted in figure 2.6. The visual impression of
the spectrum is dominated by the many narrow resonances
due to the resonances of the surface impedance. Calculating
the average contribution to the power integral (right picture)
results in a single resonance at 620 GHz.

400 450 500 550 600 650 700 750 800
0

5

10

15

20

25

frequency [GHz]

|Z
||| [

kΩ
/m

]

(a) axisymmetric
(b) isotropic

Figure 2.9: Beam impedance due to surface roughness. The
beam impedance is calculated using the equation 2.83. The
parameters of the pipe are radius b = 5 mm and a surface
profile as depicted in figure 2.11. The beam impedance plot-
ted with a solid line results if one assumes that the rough-
ness is axially symmetric. The dashed-dotted line shows the
impedance assuming that the roughness is isotropic on the
surface.

Setting R = R(κz)δ(κx) resulting in an axisym-
metric surface, the two models can be compared.
The first and most striking difference is the depen-
dence on the pipe radius. In this sense the inter-
pretation of the surface impedance as a property of
the surface only is no longer correct. This difference
becomes important for frequencies ω > 2k1c, when
there are modes above cutoff, which are no longer
localized on the surface. In these cases there are res-
onances in the surface impedance and due to their
oscillatory behaviour also in the beam impedance.

Note: One of the major advantages of using the
surface impedances for analyzing the wake fields is
the fact that the surface impedance is finite where
there is a singularity in the beam impedance and
vice versa (see eq. 2.39). Therefore the numerical
study of the resonances is much more precise in this
way.

The figure 2.8 shows the beam impedance due to
the surface roughness measured in a pipe used for
the wake field experiment. The impedance has been

calculated using 2.82. For low frequencies k0 � k1

the term J1(krb)/(krJ0(krb)) ≈ 1/kr ≈ 1/k1. In
this case the equation 2.82 and 2.83 deliver simi-
lar results. The additional resonances lead to ad-
ditional energy losses. Therefore the resonance in
figure 2.8 is approximately 4 times wider than it
would be according to surface resistance and induc-
tivity alone.

The figure 2.9 shows the beam impedance cal-
culated using equation 2.83. The impedance
has been calculated assuming axial symmetry
and for an isotropic roughness distribution on
the surface. For isotropic surface structures the
autocorrelation function only depends on ξ =√

(x− x′)2 + (z − z′)2

K(ξ) = < δr(x)δr(x + ξ) > . (2.85)

The Fourier transform of K

R(κz, κx) =
1

4π2

∞∫
−∞

∞∫
−∞

dzdxK(ξ)e−i(κzz+κxx)(2.86)

turns into a Hankel transform

R(κ) =
1
2π

∞∫
0

ξdξK(ξ)J0(κξ). (2.87)

The figures 2.10 resp. 2.11 show the functions K
and R for the sandblasted beam pipes. The auto-
correlation function (figure 2.10) has been obtained
averaging 18 sets of 1-dimensional data only. This
leads to rather poor results for large offsets, where
the mean values are smaller than the rms. These
have been suppressed in the calculation by multi-
plying a gaussian function with a suitable σ. In
figure 2.11 the spectra R have been plotted for com-
parison. They are given such that one directly can
obtain

L =
Z0

c

∞∫
0

κdκR̂(κ). (2.88)

In the isotropic case this requires a multiplication
with κ. The integrals for the two cases differ by a
factor 0.7450, for a gaussian distribution one finds
a factor π/4 ≈ 0.785. This results in a surface in-
ductance according to Stupakov et. al. [48]

Lsymm ≈ 3.6 pH Liso ≈ 2.7 pH. (2.89)

Taking the rms value of the surface profile
δrms ≈ 10 µm as the layer thickness, this results in
effective dielectric constants

εsymm ≈ 1.4 εiso ≈ 1.27 . (2.90)
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Figure 2.10: Autocorrelation function of the surface rough-
ness averaged over 18 sample measurements. A Gauss func-
tion has been multiplied to the averaged function in order
to suppress random noise at large offsets. The sigma of the
gaussian is chosen such that it becomes efficient at the point
when the signal is as large as the RMS value of the fluctua-
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Figure 2.11: Spectral functions of the surface roughness.
The spectral functions have been calculated (a) by a Fourier
transform (axial symmetric structures) and (b) using the
Hankel transform (isotropic structures).

Assuming that the same spectrum can be used in
the model 2.82 as well, the curve in figure 2.8 was
calculated. The corresponding inductances accord-
ing to the Dohlus model are

Lsymm ≈ 3.6 pH Liso ≈ 3.0 pH, (2.91)

and the corresponding dielectric constants are

εsymm ≈ 1.4 εiso ≈ 1.31 . (2.92)

The Dohlus model (eq. 2.82) fits better with the
experimental data than the Stupakov model (eq.
2.83). See chapter 7 for reference. In the fig-
ures 2.12 and 2.13 the impedances of the surface
roughness wake in the collimator and undulator are
shown. In the undulator the surface roughness wake
adds little to the wake field due to surface resistiv-
ity.

2.3.3 Time Constants

The dielectric layer model can be applied to calcu-
late the group velocity of the roughness wake and
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Figure 2.12: Spectral functions of the surface roughness and
the corresponding impedance of the collimator. The spectral
functions have been calculated (a) by a Fourier transform
and (b) using the Hankel transform. The beam impedance
of the spoiler has been calculated assuming a constant radius
of 3 mm.
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Figure 2.13: Spectral functions of the surface roughness and
corresponding impedance of the undulator vacuum cham-
ber. The spectral functions have been calculated (a) by a
Fourier transform and (b) using the Hankel transform. The
beam impedance of the undulator has been calculated for
the radius of 4.5 mm. The surface roughness wake is a small
correction to the resistive wall wake.
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hence its pulse length. The surface inductance can
be translated into an effective dielectric constant

ε =
1

1− Lc/(δZ0)
. (2.93)

The pulse length Lp = L(c−vg)/c can be calculated
by

Lp = L

(
1− am

ar

)
= L

(
1− b2/8 + bδ/(2ε)

b2/8 + bδ/2

)
= L

ε− 1
ε

· δ/2
b/8 + δ/2

≈ L
ε− 1

ε
· 4δ

b
(2.94)

= 4L
Lc

Z0b
. (2.95)

Losses in the system are accounted for by multipli-
cation with the corresponding exponentially decay-
ing function with a characteristic decay length ζ0.
For the wake function this may result in a change
of the decay constant

W δ
‖ =

Z0c

πb2
cos(kresζ) · (1− ζ/Lp) · exp(−ζ/ζ0),

≈ Z0c

πb2
cos(kresζ) · exp(−ζ/ζ1), (2.96)

ζ1 =

(
1

Lp
+

1

ζ0

)−1

, 0 ≤ ζ ≤ Lp. (2.97)

Taking into account only the surface resistance be-
low 1 THz the damping leads to a small correction
to the lossless pulse length. The large number of
resonances in the Dohlus model causes additional
losses for the harmonic wake. This results in a
broadening of the average resonance which can be
translated into a shorter damping constant. This
shorter decay constant dominates (see figure 7.15).

2.3.4 Further Reading

In recent years the topic of surface roughness wake
fields has received considerable attention in many –
mainly theoretical – publications and contributions
to conferences. Besides the publications already
cited in the previous sections [33, 52, 34, 12, 48]
other papers are mentioned at this point. The treat-
ment in [48] is based on [47], but it should be noted
that in the latter the existence of a synchronous
mode is denied. Closely related are the publications
[4, 6, 7, 49, 50]. In connection with the dielectric
layer model [32, 5] should be mentioned. In [38]
the dielectric layer model is tested for its physical
meaning. The report [13] applies several models on
the case of the TESLA X-FEL.

6bs

6bl

�B -P, R

P
+

R
=

0

Figure 2.14: Jump in the radius of a beam pipe.

In [1] some doubt is cast on the concept of a
beam impedance per unit length. The calculations
presented there result in a slowly oscillating energy
transfer between beam and radiation field. The cen-
ter frequencies are predicted to be linearly growing
with the beam energy

kn = ±αnγ

b
, (2.98)

with αn the zeros of the Bessel function J0 and b the
radius of the beam pipe. In the wake field exper-
iment with beam energy γ ≈ 460 and pipe radius
b = 5 mm the lowest frequency would have to be
expected at 10 THz.

In [2] the surface roughness is treated as being
regular with a rectangular shape resulting in a res-
onance at

kres =
αn√
bδ

, (2.99)

independent from the roughness structure in con-
trast to the treatment in section 2.3.1. In [27] the
change of phase velocity of the waveguide modes is
calculated depending on a statistical surface rough-
ness. The conclusion drawn is that no resonant
mode exists which is in contradiction to the exper-
imental results described in chapter 7.

2.4 Stepchange in the Cross
Section

When a sudden change of the cross section of the
beam pipe occurs, wake field radiation is to be ex-
pected. In the wake field experiment jumps occur
at the entrance and exit of the test pipes. At a
reduction of the pipe radius (step in) the pan-cake
field of the bunch is reflected at the aperture. At an
expansion of the radius the pan-cake field has to be
recreated. To fulfill the boundary conditions a ra-
diation field is needed. In the first case no energy is
lost, in the latter case twice the field energy of the
self-field will be extracted from the beam. These
effects have been treated in [23] and [24].

The radiated fields in the beam pipe are

Ẽz =
∑

n

EnJ0

(
νn

r

b

)
(2.100)

Ẽr = isign(k)
∑

n

En

√
k2b2/ν2

n − 1 J1

(
νn

r

b

)
(2.101)
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Figure 2.15: Fulfilling the boundary conditions at a ‘step-
out’ transition. In this case a step from r=4 mm to 7 mm
was assumed. In the upper left picture the self-field of the
bunch has been drawn with the opposite sign to illustrate the
matching of the fields, at the metal boundary they cancel to
zero. The step in the real part of Er causes a singularity in
the real part of Ez .

with b the radius of the beam pipe and sign(k) =
±1 for fields radiated antiparallel respectively par-
allel with the beam. The radius of the smaller beam
pipe is called bs, that of the larger one bl. The con-
stants νn are the nth zeros of the Bessel function
J0.

The functions J0(νnr/b), J1(νnr/b) can be
treated as orthogonal bases of a vector space of in-
finite dimension. A scalar product can be defined
by

[f, g] =

b∫
0

rdrf(r) · g(r) (2.102)

The orthogonality of the bases can be verified easily[
J0

(νnr

b

)
, J0

(νmr

b

)]
= δnm

b2J2
1(νn)
2

(2.103)[
J1

(νnr

b

)
, J1

(νmr

b

)]
= δnm

b2J2
1(νn)
2

(2.104)

The bases are complete for axially symmetric elec-
tric fields. Any field pattern then can be written as
a linear combination of the Bessel functions which
are

f =
∑

n

fnJ0/1

(νnr

b

)
(2.105)

fn =
2

b2J2
1(νn)

[
f, J0/1

(νnr

b

)]
(2.106)

f0/1 = (f1, f2, f3, . . .)0/1 (2.107)

In this notation the wake field calculation can be
written as a system of algebraic equations. Let P

be vector of the additional pan-cake field after the
jump , R the field radiated parallel to the beam,
and B the backward reflection. Since the pan-cake
field is radial at the jump it has to be compensated
by the radial part of the radiated field. Then the
boundary and continuity conditions at a step-out
transition are

Rr = P− Br (2.108)
Rz = Bz, (2.109)

The vector P is non-zero at the additional width of
the larger pipe only (r ≥ bs), the vector B is non-
zero only in the smaller pipe. The components of P
are found by

Pn =
2

b2
l J

2
1(νn)

[
1
r
, J1

(
νn

bl
r

)]

=
2

b2
l J

2
1(νn)

bl∫
bs

drJ1

(
νn

bl
r

)
(2.110)

The components of B are used in two bases. Two
transformation matrices have to be found

(BR)n,m =
2

b2
l J

2
1(νn)

bs∫
0

drJ1

(
νn

bl
r

)
J1

(
νm

bs
r

)
(2.111)

= 2
bs

b2
l

J0(νn
bl
bs

)J1(νm)

J2
1(νm)

νm

bl(ν2
n/b2

s − ν2
m/b2

l )
,

(RB)n,m =
2

b2
l J

2
1(νn)

bs∫
0

drJ0

(
νn

bl
r

)
J0

(
νm

bl
r

)
(2.112)

The transformation from the radial to the longitu-
dinal field is

(RR)n,n = − i

sign(k)
√

k2b2
l /ν2

n − 1
(2.113)

for the larger pipe and

(BB)n,n =
i

sign(k)
√

k2b2
s/ν2

n − 1
(2.114)

for the smaller pipe. With these transformations
the boundary conditions (2.108), (2.109) can be
combined and rewritten

Rr = P−BR ·BB ·RB ·RR · Rr (2.115)
⇔ Rr = (1 + BR ·BB ·RB ·RR)−1P (2.116)

The figure 2.15 illustrates the fulfilling of the
boundary conditions. Although the agreement is
reasonable there is no perfect match at the bound-
aries. The coefficients of the modes do not converge
fast enough. For the calculation of the longitudinal
impedance this is no problem because the modes of
higher contribute ∼ 1/n with an alternating sign.
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The longitudinal impedance can be calculated
from

Z =
1
q

∞∫
−∞

dzEz(r = 0)eikz (2.117)

=
1
q

∑
n

En

∞∫
−∞

dzei(k−
√

k2−ν2
n/b2)z (2.118)

For each element of the sum the integrand is non-
zero in the intervall (−∞, 0] or [0,∞) respectively,
depending on the direction of propagation of the
corresponding wave. The integral can be performed
for the evanescent waves. For the propagating
waves the integral yields δ(k − kz) which is always
zero since they all have a phase velocity larger than
c, but assuming an infinitesimal damping the result
is finite

Z(k) = − i

q

∑
n

En

k −
√

k2 − ν2
n/b2

. (2.119)

These calculations have to repeated for every fre-
quency (see figure 2.16).

At frequencies far above cut-off the impedance
approaches a constant value which can be calcu-
lated from the energy stored in the additional self
field.

E = 2π

bl∫
bs

rdrEδ ×Hδ (2.120)

With a similar treatment the surface roughness
wake field radiation emerging out of the test pipe
can be calculated. Only the source terms have to
be modified accordingly.
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Figure 2.16: Real and imaginary part of the impedance of
a step in the cross section. The dimensions are bs = 4 mm
for the smaller and bl = 35 mm for the larger beam pipe
as it is the case for the experiment. The first five cut-off
wavenumbers have been marked for the two pipes.
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Chapter 3

Introduction to Free Electron Lasers

Figure 3.1: Working principle of a SASE FEL [51]. The
trajectory of the beam is perpendicular to the magnetic field,
to become visible in the drawing it has been turned by 90◦.

The description of the Free Electron Laser (FEL)
given here is based on [39] and [26][25]. A more
detailed description can be found in [41] and [53]
and the references therein. The basic elements of
an FEL are a bunched beam of highly relativis-
tic electrons and an undulator magnet. A planar
undulator produces a periodically oscillating dipole
magnet field

By(z) = B0 sin(kuz). (3.1)

A relativistic electron that enters the undulator will
be forced onto a sinusoidal trajectory. The undula-
tor is built such that the maximum deflection angle
ϑ ≤ 1/γ with γ the relativistic factor of the elec-
tron. It is therefore justified to assume (for the mo-
ment) the forward speed vz to be constant ≈ βc and
z = βct. Then it is easy to calculate the deviation
x from the straight orbit

x(z) =
eB0

γm0ck2
u

cos(kuz). (3.2)

Introducing the dimensionless undulator parameter

K =
eB0

m0cku
≈ 0.934 ·B0[T] · λu[cm] (3.3)

the equation 3.2 can be written as

x(z) =
K

γkuβ
cos(kuz). (3.4)

In this notation K/γ characterizes the deflection
angle in an undulator. The parameter K often is
chosen to be in the order of 1.

Calculating the velocities inside the undulator
now it is necessary to drop the assumption of con-
stant speed in z-direction

βx =
K

γ
sin(kuz), (3.5)

β2
x + β2

z = 1− 1
γ2

(3.6)

⇒ βz =

√
1− 1

γ2
− K2

γ2
sin2(kuz)

≈ 1− 1
2

[
1
γ2
− K2

γ2
sin2(kuz)

]
= 1− 1

2

[
1
γ2
− K2

2γ2
sin2(kuz)

−K2

2γ2
+

K2

2γ2
cos2(kuz)

]
= 1− 1 + K2/2

2γ2︸ ︷︷ ︸
β

+
K2

4γ2
cos(2kuz). (3.7)

Due to the oscillating motion the mean velocity βc
is slower than βc. Undulator radiation is character-
ized by the coherent addition of the radiation field
produced by a single electron at different positions
along the undulator. FEL radiation in turn is char-
acterized by coherent radiation by many electrons.

The electromagnetic wave moves parallel to the
undulator axis and is polarized in the horizontal
plane

E = exE0 cos(kz − ωt + θ0), (3.8)

with ω = kc and θ0 the phase offset between the
wave and the electron. Since the motion of the
electron in the undulator has a component parallel
to the electric field of the wave there is an energy
transfer between the electron and the wave

mc2 dγ

dt
= F · v

=
eE0Kc

γ
sin(kuz) cos(kz − ωt + θ0)
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=
eE0Kc

2γ

sin((k + ku)z − ωt + θ0︸ ︷︷ ︸
θ

)

− sin((k − ku)z − ωt + θ0)

]
.(3.9)

The first sine-term in 3.9 is slowly varying while the
second has a fast oscillation and averages to zero
[26]. Continuous energy transfer is achieved if the
ponderomotive phase θ is constant

θ = (k + ku)z − ωt + θ0 = const (3.10)
dθ

dt
= (k + ku)vz − kc =! 0. (3.11)

Using the average velocity derived above

dθ

dt
= c

[
(k + ku)

(
1− 1 + K2/2

2γ2

)
− k

]
.(3.12)

The FEL radiation has a wavelength in the order of
100 nm and below while the undulator period is in
the order of cm, therefore ku/k � 1

dθ

dt
= ck

(
ku

k
− 1 + K2/2

2γ2

)
=! 0. (3.13)

This results in the resonant condition

λ

λu
=

1 + K2/2
2γ2 . (3.14)

This is the formula for the undulator radiation in
forward direction. This confirms the close relation-
ship between undulator radiation and FEL radia-
tion which can be compared to the relation between
spontaneous and stimulated emission in lasers. The
FEL radiation is referred to as stimulated radiation,
while the undulator radiation is spontaneous radi-
ation. The resonant gamma is denoted as γ.

3.1 Pendulum Equation

A new variable is introduced

η =
γ − γ

γ
� 1, (3.15)

γ2 =
k

ku

1 + K2/2
2

. (3.16)

Using this variable the time derivative of the phase
angle is

θ̇ = cku

(
1− k

ku

1 + K2/2
2γ2

)
= cku

(
1− 1

(1 + η)2

)
= cku

2η + η2

1 + 2η + η2

≈ 2ckuη. (3.17)

Performing the 2nd time derivative and inserting
equation 3.9 one finds

1
2cku

θ̈ = 1
1
γ

γ̇ =
eE0Kc

2γγmc2
sin θ. (3.18)

Because of its appearance this equation is referred
to as the pendulum equation. The proper deriva-
tion of the phase dynamics has to take into account
the oscillatory trajectory of the electrons instead of
using only the average velocity β. This can be done
by replacing the undulator parameter K in 3.18 by
[39][54]

K → K̃ = K

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
(3.19)

The pendulum equation is then changed to

θ̈ =
eE0K̃c2ku

γγmc2
sin θ. (3.20)

In an FEL amplifier with a significant growth of
the radiated power the value of E0 in 3.20 cannot
be regarded as constant. In this case the inhomo-
geneous wave equation for the electric field and the
FEL equations have to be solved simultaneously,(

∇2 − 1
c2

∂2

∂t2

)
~E = µ0

∂ ~J

∂t
+
∇ρ

ε0
. (3.21)

To account for the granularity of the bunches the
current and charge density are expressed as sums
over the single electrons [39]

~J = −ec
∑

j

~βj(t)δ(~r − ~rj(t)) (3.22)

and

ρ = −e
∑

j

δ(~r − ~rj(t)) (3.23)

The electric fields can be divided into two parts:
The transverse field of the FEL radiation, and the
longitudinal field due to space charge. Because of
the short modulation wavelength the space charge
forces cannot be neglected even for ultra-relativistic
beams [39]. Due to the microbunching the dominat-
ing part of the longitudinal field is periodic and can
be written as a Fourier series Ez =

∑
l Êl exp[ilθ].

Similar expressions hold for the charge and current.
The wave equation for the longitudinal field is then[

∇2
⊥ − (k + ku)2 + k2

]
Êl

= − iel

ε0

∑
j

[β̂jk − (k + ku)]e−ilθj (3.24)

For the radiation process the small differences in the
electron velocities are negligible. Using the approxi-
mation βj ≈ β ≈ 1−ku/k and (k+ku)2−k2 ≈ 2kku

the equation becomes[
∇2
⊥−

l2k2(1 + K2)

γ2

]
Êl=i

elk(1 + K2)

ε0γ2

∑
j

e−ilθj .(3.25)
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In a planar undulator the odd harmonics l =
1, 3, 5, . . . can be amplified. But here only the fun-
damental mode l = 1 is considered. The sum on the
right hand side can be abbreviated by the bunching
factor

< exp(−iθ) > =
1

Ne

∑
j

e−iθj . (3.26)

In a planar undulator only horizontally polarized
light is produced. Hence only the wave equation
for the x-component of the radiation field has to be
considered[
∇2
⊥ +

(
∂

∂z

)2

−
(

1

c

∂

∂t

)2
]

Ex =
1

ε0c2

[
∂

∂t
Jx + c2 ∂ρ

∂x

]
.

(3.27)

In the 1-dimensional theory the transverse deriva-
tive of the charge density on the right hand side can
be neglected [26].

c2 ∂ρ

∂x
� ∂

∂t
Jx (3.28)

The transverse current Jx is given by

Jx = −ecK sin(kuz)
∑

j

1

γj
δ(z − zj)δ(~x− ~xj). (3.29)

The transverse field is written as

Ex = E0 cos(kz − kct + φ), Ê =
E0

2
eiφ

= Êeik(z−ct) + Ê∗e−ik(z−ct), (3.30)

where Ê is a slowly varying complex number. The
derivatives are decomposed using

D± =
1
c

∂

∂t
± ∂

∂z
(3.31)

D+e±ik(z−ct) = 0,

D−e±ik(z−ct) = ∓2ike±ik(z−ct),(
1
c

∂

∂t

)2

−
(

∂

∂z

)2

= D+D−. (3.32)

Making use of the slowly varying nature of Ê,
| D−Ê |� k | Ê |, one can approximate

D−

[
Êeik(z−ct)

]
= −2ikÊeik(z−ct). (3.33)

This is called the slowly varying phase and ampli-
tude approximation. Additionally there is the exact
equality

D+

[
Êeik(z−ct)

]
= eik(z−ct)D+Ê. (3.34)

Combining the equations (3.28)-(3.34) equation
3.27 becomes

eik(z−ct)
(
−2ikD+ −∇2

⊥
)
Ê (3.35)

+e−ik(z−ct)
(
2ikD+ −∇2

⊥
)
Ê∗ = − 1

ε0c2

∂Jx

∂t

⇒
(
−2ikD+ −∇2

⊥
)
Ê (3.36)

+e−2ik(z−ct) (
2ikD+ −∇2

⊥
)
Ê∗ = − 1

ε0c2

∂Jx

∂t
e−ik(z−ct).

Instead of treating single electrons one would like
to handle continuous quantities. Therefore equation
3.36 is averaged by means of the following integral

1
4t

∫ t+4t

t

[. . .]dt

∣∣∣∣∣
z=const

,

over a time interval larger than one period of the
oscillation and smaller than the coherence length
λ/c � 4t � Nuλ/c. Over this interval Ê can be
regarded as constant. In the integral the second
term of the left hand side of eq. 3.36 averages out
due to its fast oscillation. The averaged equation
then reads(

2ikD+ +∇2
⊥
)
Ê

= − ikeK̃

ε0c

1
vz4t

cos(kuz)
Ne∑
j=1

1
γj

e−ik(z−ctj)δ(~x− ~xj)

= − ikeK̃

2ε0γ
ne < exp(−iθj) >, (3.37)

with the electron line density
ne = Ne/(vz4t)< δ(~x− ~xj) > and zj ≈ βctj ≈ ctj .

3.2 Dimensionless FEL Equa-
tions

In the following dimensionless equations are de-
rived. First the independent variables are changed
from (z, t) → (z, θ) and Ê(z, t) → Ẽ(z, θ).

dÊ =
∂Ê

∂z
dz +

∂Ê

∂t
dt

=
∂Ẽ

∂z
dz +

∂Ẽ

∂θ
dθ

=
∂Ẽ

∂z
dz +

∂Ẽ

∂θ
(k + ku)dz − ∂Ẽ

∂θ
ωdt (3.38)

⇔ 1
c

∂Ê

∂t
= −k

∂Ẽ

∂θ
, (3.39)

∂Ê

∂z
= (k + ku)

∂Ẽ

∂θ
+

∂Ẽ

∂z
(3.40)

Using these variables the equation 3.37 changes into(
∂

∂z
+ ku

∂

∂θ
+
∇2
⊥

2ik

)
Ẽ = −eneK̃

4ε0γ
< exp(−iθj) > .(3.41)

In 1D theory the transverse derivative is neglected(
∂

∂z
+ ku

∂

∂θ

)
Ẽ = −eneK̃

4ε0γ
< exp(−iθj) > . (3.42)
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The pendulum equations become

dθ

dz
= 2ηku,

dη

dz
=

eK̃

2γ2
0mc2

(
Ẽeiθ + Ẽ∗e−iθ

)
. (3.43)

A fundamental parameter of the FEL is the Pierce
parameter ρ [26]. It is defined as follows1

ρ = 3

√
e2K̃2ne

32ε0γ
3mc2k2

u

, (3.45)

The advantage of using the Pierce parameter will
become clear when writing down the main charac-
teristics of the FEL at the end of the calculations.
The following new variables are introduced

z → z̃ = 2kuρz, (3.46)

η → η̃ =
η

ρ
, (3.47)

Ẽ → ã =
eK̃

4γ2
0kumc2ρ2

Ẽ. (3.48)

In general there will be a detuning between the radi-
ation field and the resonant ω. Then it is reasonable
to assume that the normalized field is oscillating

ã ∝ exp(iνθ), (3.49)

corresponding to a frequency detuning of the radi-
ation ν = (ω − ω)/ω. The associated normalized
detuning is

ν̃ =
ν

2ρ
. (3.50)

With this set of variables the 1-dimensional FEL
equations can be written

dθj

dz̃
= η̃j , (3.51)

dη̃j

dz̃
= ãeiθj + ã∗e−iθj , (3.52)(

∂

∂z̃
+ iν̃

)
ã = < exp(−iθj) > . (3.53)

The parameter ρ has been chosen such that the co-
efficient on the right hand side of 3.53 is one. Two
collective variables are defined

b̃ = < exp(−iθj) > bunching parameter(3.54)

P̃ = < η̃j exp(−iθj) > energy modulation (3.55)

1Often an alternative formula is given for

ρ =
3

√√√√ 1

8π

I

IA

(
K̃

1 + K2/2

)2
γλ2

ΣA
, (3.44)

with IA = 17045 A the Alfvén current, and ΣA = 2πσ2
x the

cross sectional area of the electron beam.

to ease the notation in the following. In terms of
the collective variables the FEL equations read

db̃

dz̃
= −iP̃ , (3.56)

dP̃

dz̃
= ã, (3.57)

dã

dz̃
= −b̃− iν̃ã. (3.58)

Equation 3.56 describes the enhancement of mi-
crobunching due to the energy modulation of the
bunch. Equation 3.57 shows how the energy mod-
ulation is caused by the radiation field. Equation
3.58 describes the growth of the radiation power
due to microbunching. The second term on the
right hand side of equation 3.57 contains the av-
erage < exp(−i2θj) > and averages out. The three
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Figure 3.2: Growth rate of the FEL radiation versus normal-
ized detuning ν̃ = (ω − ω)/(2ρω).

coupled FEL equations can be solved by the ansatz

ã = a0 exp(iµz̃). (3.59)

From equations 3.56-3.58 it follows that

P̃ = − i

µ
ã b̃ =

i

µ2
ã iµã = −b̃− iν̃ã. (3.60)

Therefore the assumed solution (3.59) is only pos-
sible if

µ3 + ν̃µ2 + 1 = 0. (3.61)

There are procedures to solve such a cubic equation
[8]. The solution representing the exponential gain
of radiation corresponds to Im(µ) < 0. To find
the solution equation 3.61 is transformed into the
reduced form

µ → χ = µ + ν̃/3, (3.62)

χ3− ν̃2

3︸︷︷︸
p

χ +
2ν̃3

27
+ 1︸ ︷︷ ︸

q

= 0. (3.63)
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The required complex solution only exists if D =
(p/3)3 + (q/2)2 > 0

ν̃ > − 3
3
√

4
≈ −1.89. (3.64)

For zero detuning ν̃ = 0 the solution is

µ0 =
1
2
− i

√
3

2
. (3.65)

From numerical calculations (see fig 3.2) it can be
seen that this corresponds to the maximum growth
rate of FEL radiation. The solution for the expo-
nentially growing part is then

ã(z̃) =
1
3

(
ã(0) +

b̃(0)
µ

− iP̃ (0)µ

)
e−iµz̃.(3.66)

The first term corresponds to coherent amplifica-
tion, the other two to self amplified spontaneous
emission (SASE) generated from random noise on
the electron distributions. The above approxima-
tions are only valid for | ã |. 1. If | ã |≈ 1 satu-
ration is reached. The radiation power in this case
is

P =
1
Z0

ẼẼ∗ ≈ 1
2
ρ cγnemc2︸ ︷︷ ︸

beam power

. (3.67)

Some conclusions can be drawn [26]:

� The Pierce parameter ρ is a measure for the
efficiency of the FEL at saturation.

� From the lower graph of figure 3.3 it can be
concluded that the bandwidth of the FEL is
4ω/ω ∼ ρ.

� Without detuning the power gain length is ap-
proximately 1

Imµ0
= λu

4π
√

3ρ
.

� The saturation length can be estimated to be
Ls ∼ λu/ρ.

� the coherence length can be estimated from the
bandwidth lc ∼ λρ.

An energy loss along the undulator can be simu-
lated by changing the detuning ν̃ linearly between
ν̃0 . . . ν̃0+4̃ along the undulator. The effective gain
coefficient is then calculated by

µeff =
1
4̃

ν̃0+4̃∫
ν̃0

µ(ν̃)dν̃. (3.68)

The figure 3.3 shows the corresponding gain curves
for different detuning rates. Note that the detun-
ing is growing positively when the energy is lost.

−2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

∆=0 ∆=2

∆=4
∆=6

∆=8
∆=10

∆=12

−2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
x 10

7

∆=0

∆=2

∆=4

∆=6

ν̃

ν̃

<
Im

(µ
)
>

ex
p
(<

Im
(µ

)
>

L
s
)

Figure 3.3: Growth rate of the FEL radiation versus normal-
ized detuning assuming a constant energy loss along the un-
dulator. The different curves correspond to a certain change
of the detuning along the undulator ∆ = ν̃end − ν̃in. The
lower picture shows the corresponding amplification after 21
gain lengths (saturation).

Allowing a maximum detuning of one bandwidth
(4̃ < 1) results in

dν̃

dz
.

1
Ls

≈ ρ

λu
. (3.69)

Inserting the definition ν̃ = 4ω/(2ρω0) and us-
ing ω ∼ γ2 the condition in absolute coordinates
is found

dγ

dz
.

ρ2

λu
γ. (3.70)

Similar considerations can be made to calculate the
maximum energy gradient on the bunch. During
each period of the oscillation the radiation slips
ahead by one wavelength. Again along the slippage
length the allowed detuning is one bandwidth. The
slippage length is λ/λu · Ls and therefore

dγ

dζ
.

ρ2

λ
γ, (3.71)

with ζ = z − ct the distance from the head of the
bunch.

3.3 The TTF FEL

In Table 3.1 the main parameters of the TTF-
FEL are summarized. From these numbers the
Pierce parameter is calculated to be ρ = 2.5 · 10−3.
From this a power gain length LG,calc = 50 cm
can be calculated, the measured gain length was
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Beam energy 240-250 MeV
Bunch charge 2.7-3.3 nC
Charge in radiative part of bunch 0.1-0.2 nC
Peak current 1.3± 0.3 kA
rms energy spread 150± 50 keV
rms normalized emittance (6± 2)π mm·mrad
Bunch spacing 0.44/1 µs
Number of bunches in a train up to 70
rf pulse repetition rate 1 Hz
Undulator period λu 2.73 cm
Undulator peak field 0.47 T
Average beta function 1.2 m
Magnetic length of undulator 13.5 m
Radiation wavelength 95-105 nm
Energy in the radiation pulse 30-100 µJ

FWHM radiation pulse duration 50+50
−20 fs

Radiation peak power level 1 GW
Radiation average power up to 5 mW
Spectrum width (FWHM) 1%
Spot size at undulator exit (FWHM) 250 µm
Angular divergence (FWHM) 260 µrad

Table 3.1: TABLE I. Main parameters of the TESLA Test
Facility for FEL experiments (TTF FEL, phase 1)[3].

LG,meas = 67 ± 5cm. The difference is mainly
caused by the energy spread of the bunch. Since
many of the FEL parameters are inaccessible to the
beam diagnostics, the values in table 3.1 were cho-
sen such that simulation of the FEL is consistent
with the measured properties of the radiation pulse
.

Using equation 3.70 the maximum allowable en-
ergy loss inside the undulator is dE/dz < 2.3 ·10−4 ·
E0 ≈ 55 keV/m. This boundary is also marked in
figure 3.4. Note that the surface roughness wake
fields are not the only source of energy loss in the
undulator. Other sources are resistive wall wake
fields [44] and the FEL radiation itself.

In the design phase of the TTF-FEL, beam pa-
rameters different from those in table 3.1 were as-
sumed: A bunch length of σz = 250 µm, a nor-
malized emittance εN = 4πmm mrad, and a bunch
charge of 1 nC were planned, yielding a peak current
Ipeak=480 A, and the Pierce parameter ρ = 4·10−3.
In this scenario the limit for the energy loss would
have been dE/dz < 160 keV/m.

The design of the next evolution step of the
TTF-FEL (Phase II) foresees a beam energy of
1 GeV, a bunch length σz = 50 µm, a peak current
Ipeak = 2.4 kA, and a bunch width σx = 67 µm.
The undulator magnets will be the same as for the
first phase, only the total length of the undulator
will be increased to 30 m. The radiation wavelength
will be 6.4 nm. This results in a Pierce param-
eter ρ = 1.8 · 10−3 and a permitted energy loss
dE/dz < 120 keV/m.

For the TESLA X-FEL several beam lines with
different parameters are foreseen [51]. As an exam-
ple here only a fixed gap undulator with electron
beam energy of 25 GeV is treated. The radiation
wavelength is 0.85 Å, the undulator period 45 mm.
The Pierce parameter is ρ = 3 · 10−4, resulting in a
permitted energy loss of dE/dz < 50 keV/m.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

δ [µm]

pe
ak

 e
ne

rg
y 

lo
ss

 [k
eV

/n
C

/m
]

TTF II

TTF I
TESLA

σ=25µm σ=250µmσ=50µm

TTF I

Figure 3.4: Expected peak energy loss due to surface rough-
ness wake fields and permitted energy loss of different FELs.
The peak energy loss due to surface roughness wakes is cal-
culated according to the Dohlus model scaling the spectrum
of the surface roughness in the wake field experiment.
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Chapter 4

Longitudinal Phase Space
Tomography

In general the task of computer tomography is
to reconstruct a distribution in a space of higher
dimension from a set of projections measured in a
lower dimensional subspace. In most cases the set
of projections is generated by rotation of the ob-
ject under study. Phase space tomography is an
application of this technique to particle beams in
accelerators. In the transverse case the phase space
is the coordinate system of transverse offset and di-
vergence. The x and y profiles are measurable with
observation screens or wire scanners. Therefore the
profiles are the natural choice for the projections.
The rotation of the phase space can be achieved
with a quadrupole doublet. The profiles can be
measured via optical transition radiation (OTR)
from a metallic screen (see [15]).

The longitudinal phase space is spanned by the
energy offset E and time offset T with respect to
a reference particle. With a magnetic spectrometer
the energy profile of the bunches can be measured.
Therefore the projections onto the energy axis are
the inputs for the reconstruction. By accelerating
the bunches at different phases ϕ of the accelerat-
ing rf field it is possible to obtain a distortion of
the phase space but not a rotation. In the linear
approximation the transformation is a shearing(

E
T

)′
=

(
1 E0ω sinϕ
0 1

)(
E
T

)
.(4.1)

In this thesis the longitudinal phase space of the
bunches in the TTF is considered when they enter
the spectrometer at the end of the linac. There is
no possibility to project the time profile onto the
energy axis and hence no possibility to obtain a
full rotation of 180◦. This has severe implications
for the tomographic reconstruction as will be seen
later. In a synchrotron or with a magnetic chicane
there are however transformations that allow for a
full rotation. See for example [40] or [17] for these
cases.

equations

F0

F1
j = 1

j = 2
j = 3

F2. . .
ss

s

Figure 4.1: Illustration of Kaczmarz’s method. By succes-
sively performing the projection onto each equation the solu-
tion is approached. One iteration is reached when all equa-
tions have been considered.

4.1 Algebraic Reconstruction

There are a number of algorithms available to recon-
struct the original 2-dimensional distribution from
a set of projections. In this context only the ART
(algebraic reconstruction technique) algorithm will
be explained as an example for a standard recon-
struction technique [31]. For the ART algorithm
the space is divided into a cartesian grid. The con-
tent of each bin in the grid is an element of a single
row vector F . The projections are written into a
row vector G. The vectors are related by a matrix
A

G = A · F. (4.2)

In most cases A will not be a square matrix. Even
if the measurement is done such that A is a square
matrix, it will be ill posed. This means that with
ideal data from simulation the reconstruction will
then yield the original distribution, but already
noise in the order of 10−3 will cause unaccept-
able errors in the reconstruction. Therefore an ap-
proximation method is used to perform the inver-
sion. The method chosen for the ART algorithm is
called Kaczmarz’s method. The basic idea of this
method is sketched in figure 4.1. Each linear equa-
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Figure 4.2: Example for the ART algorithm. The left pic-
tures show the assumed distribution. From this distribution
the projections are calculated and input into the reconstruc-
tion algorithm. The right pictures show the result of the
reconstruction. The main features of the distribution are re-
produced with good quality. There are some small artefacts
with small amplitude. These are due to the small number of
9 projections.

tion can be represented by a straight line in a multi-
dimensional vector space. The solution of the equa-
tion system is found at the intersection point of all
lines. Starting from an arbitrary point in the vector
space the solution can be approximated by succes-
sively performing the projection onto the lines.

Fj = Fj−1 +
ω

| aj |2
(
gj − aT

j Fj−1

)
aj (4.3)

j = 1 . . . N

with aj being the jth row of A, gj the jth entry

of G, Fj is the jth corrected version of F after the

jth projection. The parameter ω can be adjusted
to control the convergence of the iterations. In gen-
eral this method can be used to solve a system of
linear equations. Here it delivers a good approxi-
mation for the projections of the two dimensional
distribution (see fig. 4.2).

A common requirement of all standard algo-
rithms is the need for a set of projections cover-
ing a full rotation of 180◦. The ART algorithm
is no exception. Figure 4.3 shows a reconstruction
based on a limited set of projection angles. Two
main problems are identified. The resolution of the
measurement is reduced, i.e. the two peaks which
could be separated before now appear as one, and
the artefacts are enhanced: Especially streaks at
the maximum angles are produced. This problem
becomes even more serious for distributions which
already have a pronounced structure along this di-
rection. In the longitudinal phase space this has to
be expected.
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Figure 4.3: The result of the ART algorithm with a reduced
set of projections. In comparison to the previous example the
angle of rotation has been reduced to 90◦. The reconstruc-
tion washes out features of the distribution and the artefacts
are enhanced.

The analysis of the projections in figure 4.4 shows
why all standard algorithms fail to reconstruct the
original distribution in the “reduced angle” prob-
lem. Although artefacts appear in the two dimen-
sional reconstruction the projections are reproduced
very well in terms of a least square fit and no fur-
ther improvement can be expected. By taking the
projections alone the reconstruction algorithm very
likely only finds a relative minimum of the error
minimization resulting in severe artefacts.

There are some possible directions in which one
might look for a cure. The artefacts in the recon-
struction seem to be predictable. The number of
wiggles in the distribution is given by the number
of projections and the strongest artefacts are in the
direction of the maximum projection angle. There-
fore a spatial filter might improve the reconstruc-
tion by deconvoluting the predicted pattern from
the distribution.

The main contribution of the artefacts appear at
low amplitudes of the projection signal. A non-
linear weight of the deviations might improve the
reconstruction, the logarithmic function seems to
be a good candidate for that. The third idea is
the maximum entropy method explained in the next
section. The ART algorithm will not be used any
further in this work.

4.2 Maximum Entropy Algo-
rithm

The maximum entropy method is a general tech-
nique for data analysis. It provides procedures
based on the least possible prejudice on the mea-
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Figure 4.4: Input data for the ART algorithm. The original
and the reconstructed projections are shown. They are put
on top of each other and hardly any difference can be seen.
Only small deviations can be seen just above the baseline.

surement errors.
In the case of phase space tomography, the maxi-

mum entropy method can be utilized to reduce arte-
facts in the reconstructed distribution. The entropy
can be interpreted as a measure for the amount of
substructures in the distribution. The entropy is
maximum for the distribution with the least struc-
ture. If there are no constraints this would result
in a uniform distribution.

Interpreting the distribution as a collection of
particles the entropy has a second interpretation.
If there is no further knowledge about the system
each arrangement of particles in phase space will be
assigned the same probability (least prejudice). The
density function f is a global description of the dis-
tribution and does not distinguish the microscopic
details of the arrangement of particles. Therefore it
is possible to calculate for each density function f
the number of particle arrangements to reproduce
it. A measure for this number is the entropy of this
density function. Then it is immediately clear that
the density function with the largest entropy has
the largest probability to be realized.

For the phase space tomography the task is to
maximize the entropy while at the same time the
projections are reproduced. These are the con-
straints for the optimization problem. The proce-
dure is first described for the general case of a rota-
tional transformation of the phase space. Later it
can be generalized for non-linear transformations.
The algorithm described here was developed by
G. Minerbo [30]. A description is also found in
[11]. See figure 4.5 for an example of this algo-
rithm. A comparison with figure 4.3 shows that the
maximum entropy method is far superior to the al-

Figure 4.5: Simulated reconstruction with the MENT (max-
imum entropy) algorithm. On the left an assumed distri-
bution is shown. From this distribution the projections are
calculated and fed into the algorithm. On the right the cor-
responding reconstruction is shown. No severe artefacts are
observed, the resolution is as good as can be expected from
purely geometrical arguments (see section 4.2.2). For this
example 7 projections with a maximum angle of ±45◦ were
used.

gebraic reconstruction technique if only a limited
angular range is accessible to the measurement.

Let the original distribution F be defined in the
(x, y)-plane. A number of J projections is taken,
the projection number j consisting of M(j) bins
with the content Gjm. For each projection let s
be the axis in the projection plane and t the axis
perpendicular to it. The projection data are written
as

Gjm =

sjm+1∫
sjm

ds

∞∫
−∞

dtF(s cos θj − t sin θj , s sin θj + t cos θj),

m = 1, . . . , M(j), j = 1, . . . , J, (4.4)

where θ1, . . . θj , . . . , θJ are the projection angles,
and

sj1 < sj2 < . . . < sjM(j) (4.5)

are a set of abscissas for the jth view. They neither
have to be equally spaced nor have they to be the
same for all projections. It is assumed that the
distribution is confined in a limited area D and that
the sj cover the whole range of the distribution.

The integral 4.4 can be rewritten by introduc-
ing the characteristic function χjm of the interval
[sjm, sjm+1)

χjm(s) =
{

1, sjm ≤ s < sjm+1,
0, otherwise. (4.6)

In this way the integration can be extended across
the whole area D

Gjm =
∫ ∫

D
dx dyF(x, y)χjm(x cos θj + y sin θj).
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The original distribution F is of course unknown.
Therefore in the calculations it is replaced by the
reconstructed distribution f which is iteratively im-
proved starting from a uniform distribution

Gjm =

∫ ∫
D

dx dy f(x, y)χjm(x cos θj + y sin θj). (4.7)

The distribution f can be treated as a probability
distribution. The entropy is defined as

η(f) = −
∫ ∫

D
dx dyf(x, y) ln[f(x, y)A], (4.8)

where A is the area of the domain D. It can be
shown that η is proportional to the logarithm of
the probability of the distribution f [14, 22]. The
task is now to find the maximum of η subject to the
constraints in eq. 4.7.

This is a variational problem. To find the solution
Lagrange multipliers Λjm are introduced, one for
each constraint 4.4. Then the Lagrangian is formed
[8]

Ψ(f, Λ) = f(x, y) ln[f(x, y)A] (4.9)

+
∑

j

∑
m

Λjm [Gjm − f(x, y)χjm(x cos θj + y sin θj)] .

The functional derivative of Ψ with respect to f is
set equal to zero,

∂Ψ

∂f
= 0 (4.10)

= ln[f(x, y)A] +1−
∑

j

∑
m

Λjmχjm(x cos θj + y sin θj).

This is the Euler-Lagrange equation for this prob-
lem.

⇔ f(x, y) =
1

Ae

∏
j

∏
m

exp[Λjmχjm(x cos θj + y sin θj)]

⇔ f(x, y) =
1

A

∏
j

∏
m

H
χjm(x cos θj+y sin θj)

jm , (4.11)

with Hjm = exp(Λjm−1/J). The χjm can be zero
or one. Therefore the Hjm contribute to the prod-
uct as H0

jm or H1
jm. For given (x, y) only one Hjm

contributes. Therefore the product can be replaced
by a sum

f(x, y) =
1

A

∏
j

∑
m

Hjmχjm(x cos θj + y sin θj). (4.12)

The optimization problem is solved by finding the
Λjm respectively the Hjm.

The coefficients Hjm are determined by substi-
tuting eq. 4.12 into eq. 4.4

Gjm =
1

A

∫∫
D
dx dy

∏
k

∑
n

Hknχkn(x cos θjk − y sin θjk),

(4.13)

where θjk = θj − θk. The non-linear Gauss-Seidel
method is used to solve this system of equations.

The H0
jm are initialized with 1. If Gjm = 0, the

corresponding Hjm are set equal zero and elimi-
nated as an active variable. The solution is found
by recursively applying

Hi+1
jm =

AGjmHi
jm∫∫

D dx dy
∏
k

∑
n

Hi
knχkn(x cos θjk − y sin θjk)

.

(4.14)

The integrand is piecewise constant over polygons.
Thus the double integral can be performed exactly
in a finite number of steps. Due to the introduction
of the characteristic function it is not necessary to
calculate any logarithm or exponential function.

4.2.1 The Implementation

As mentioned above the integrand is constant over
polygons. So the task for the implementation is to
find the correct polygons. Every polygon can be
made from a set of triangles. The initial division of
the space is made up by the bins of the respective
projection. These rectangles are divided into a set
of triangles. If only linear transformations have to
be expected, two triangles are sufficient. This is the
case for the transverse phase space. In the longitu-
dinal phase space the curvature of the rf has to be
accounted for. The easiest way to do so is divid-
ing the bins into smaller rectangles over which the
transformation can be regarded as linear. The rect-
angles are then cut into two halves to obtain again
triangles.

The triangles are then fed into a recursive func-
tion which maps the corner points of the triangle to
the initial grid in front of the transformation and
maps it again to a new projection. In this way non-
linear transformations can be perfomed as well. In
the transformed grid the intersections with the new
bins are calculated and the triangles are divided ac-
cordingly. This function calls itself recursively until
either all projections have been processed or the tri-
angle leaves the valid space. The area of the final
triangle is multiplied with the corresponding Hjm

and the added to the total sum.

4.2.2 Limits of Applicability

The off-crest acceleration induces a distortion of the
longitudinal phase space, which in first order can be
described as a shearing

4E = a · 4T , (4.15)
a = E0ω0 sinϕoff .

Assuming a phase shift ϕoff = ±45◦ and a energy
gain E0 = 110 MeV,

a =
4E

4t
≈ 570 keV/ps (4.16)

25



Figure 4.6: The resolution that can be achieved by a to-
mography performed with a set of limited angles. The left
pictures show an assumed distribution which is very narrow
in time while the right picture shows a reconstructed distri-
bution. The best time resolution is achieved at the edges of
the distribution. Towards the center of the distribution 4E
increases and so does 4T . Here it may be deduced from the
inverse of the height of the maximum. Note: If the bin size
would have been adapted to the time resolution the recon-
structed distribution would show the same rectangular shape
as the original.

Two peaks in the phase space separated by 4T
are shifted by a · 4T against each other in energy.
At the same time the peaks are widened. For gaus-
sian peaks with σE and σT this can be expressed
as

σ′E =
√

σ2
E + a2σ2

T . (4.17)

This results in a degradation of the time resolu-
tion because in the projection it is impossible to
achieve the same separation of the peaks in the en-
ergy projection as it would be possible in the time
projection (this can be seen in figure 4.6). The en-
ergy resolution of the spectrometer depends on the
transverse emittance of the beam, the β-function,
and the dispersion at the location of the diagnostic
screen. The β-function at the OTR screen in the
spectrometer is smaller than 0.5 m, the dispersion
is 1 m. At 200 MeV and a normalized emittance
εN = 3 π mm mrad (slice) one expects

σx =
√

βε ≈ 62 µm ⇒ σE ≈ 12 keV (4.18)

In the experiment a resolution of

σE ≈ 25 keV (4.19)

could be verified, probably dominated by the en-
ergy spread of the beam itself. Two δ-peaks can be

distinguished when they are separated by 2σ

4T = 2
σE
a
≈ 85 fs. (4.20)

For extended structures a degradation of the time
resolution is expected. Two gaussian peaks with
width σT can be separated if

4T = 2

√
σ2
E

a2
+ σ2

T (4.21)

In general the achievable resolution depends on
the structure of the distribution under study. Struc-
tures in time can be resolved if there is at least
one projection that delivers sufficient separation in
energy. Thus the resolution depends on the mean
gradient of the distribution along the energy coor-
dinate. It should be stressed that this limitation is
derived from geometric arguments only, there is lit-
tle additional influence from the MENT algorithm.
The real distribution may be narrower than the re-
constructed one but from the available energy pro-
jections it is not justified to assume any narrower
distribution unless there is some additional infor-
mation.

Figure 4.7: Reconstruction of a bunch as expected during
the wake field experiment. On the left the simulated bunch
is depicted, on the right the tomographic reconstrution is
shown. The horizontal axis is the time in ps, the vertical
axis the energy in MeV. The head of the bunch is to the
right. The projections used in this example are plotted in
figure 4.8, the corresponding projection angles can be found
in figure 4.12.

The limitations of the tomography can be seen
also in the reconstruction of the longitudinal phase
space distribution that is expected in the TTF (see
also chapter 5). Figure 4.7 shows a simulated dis-
tribution with a bunch at maximum compression
and synchronous mode wake fields imposed on it.
The structures parallel to the energy axis are much
better resolved than the structures orthogonal to
it. This results in an ensemble of separated peaks
in the reconstruction although the original distri-
bution is continuous. The projection data and the
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Figure 4.8: Projections used for the reconstruction in figure
4.7. The top left graph without content is a place holder
for the missing time profile. The other graphs are marked
with the corresponding off-crest rf phase. The corresponding
projection angles can be found in fig. 4.12. The profiles are
produced by both the original and reconstructed phase space
distribution.

corresponding projection angles can be found in the
figures 4.8 resp. 4.12.

4.2.3 Combining Independent
Sources of Information

To overcome the problems explained in the last sec-
tion it may be useful to combine data from different
sources. Here it is appropriate to supplement the
energy spectra with a time spectrum derived from
an independent interferometric measurement. A
difficulty is that the relative time offset of the mea-
sured distributions is usually unknown. Therefore
the directly measured time profile may be shifted
with respect to the time profile reconstructed from
the energy distributions. Figure 4.9 shows the re-
sult of a combination of simulated projections. The
procedure of reconstruction is such that first a to-
mography is performed without the time profile
yielding the distribution in figure 4.7. The recon-
structed time profile and the directly measured time
profile are then matched such that the points of
maximum weight coincide in time. In the case of the
distribution in figure 4.9 the offset was only ≈200 fs.

The complete set of projections is shown in figure
4.11.

Figure 4.9: Reconstruction of the bunch from figure 4.7. In
this case the longitudinal profile of the bunch has been added
to the projection data. The origin of the coordinates has
been aligned by matching the points of maximum weight of
the longitudinal profile and the reconstruction without. See
the projections in figure 4.11.
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Figure 4.10: Reconstruction of the bunch from figure 4.7.
The bunch is moving to the right. The reconstructed profile
(dashed line) closer follows the original profile (solid line)
than the interferometer data (dotted line).

The frequency response of the time measurement
is generally different than that of the energy mea-
surement. Especially when using interferometric
data this may be the case, since the interferome-
ter suffers from low frequency cut-offs. In the sim-
ulation this is modelled by a low frequency cut-off
filter. Afterwards the low frequency amplitudes are
enhanced to ensure positive values in the bunch
shape. This is necessary because the tomography
algorithm requires non-negative projection data.
Additionally there is some uncertainty about the
real profile since the phase information of the form
factor cannot be measured directly but has to be de-
duced with the aid of the Kramers-Kronig-relation.

The figure 4.10 shows the results for the time
profile. The simulated interferometer data produce
a very narrow bunch profile. Even with this nar-
row profile the combined tomography is able to re-
produce the original profile which is considerably
longer. This is due to the fortunate situation that

27



time [ps]
-4 -2 0 2 4

0

0.02

0.04

0.06

0.08

0.1

0.12

Time Profile

energy [MeV]
-4 -2 0 2 4

0

0.01

0.02

0.03

0.04

0.05

0.06

Phase -33

energy [MeV]
-10 -8 -6 -4 -2 0 2 4

0

0.005

0.01

0.015

0.02

0.025

0.03

Phase 33

energy [MeV]
-4 -2 0 2 4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Phase -14

energy [MeV]
-6 -4 -2 0 2

0

0.005

0.01

0.015

0.02

0.025

0.03

Phase 14

energy [MeV]
-5 -4 -3 -2 -1 0 1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Phase 0

Figure 4.11: Projections used for the reconstruction in figure
4.9. The top left graph shows the time profile, which is
distorted by a low frequency cut-off in the interferometer.
The other graphs are marked with the corresponding off-
crest rf phase, see figure 4.12 for the corresponding projection
angles.

the energy measurements and the interferometer
are complementary to each other. The short bunch
head is resolved by the interferometric measurement
while the long tail of the bunch is well reproduced
in the energy profiles. This situation holds as long
as none of the projections explicitely excludes parts
of the distribution by delivering zero or negative
values.

As can be seen from figure 4.9 as well as from
figure 4.10 the reconstruction of the phase space
still does not fit the original completely. This can
be traced back to the fact that there is still a gap
in the set of projection angles.
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Figure 4.12: Sketch of the projection angles used in figure
4.7 and 4.9. The lines in the phase space are parallel to the
paths of integration. The projection angles are plotted in
the same order as the profiles in the figures 4.8 and 4.11.
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Chapter 5

The TESLA Test Facility Linac

The TESLA Test Facility Linac is a supercon-
ducting linear accelerator for electrons. The radio
frequency (rf) of the nine-cell cavities is 1.3 GHz.
Since the machine serves as a test facility for the
TESLA collider its setup is subject to changes. Here
the setup will be described as it was used during the
wake field experiment.

While a maximum electron energy of approxi-
mately 340 MeV can be reached, the nominal work-
ing point is about 235 MeV. The electron bunches
are produced by photoemission from a Cs2Te pho-
tocathode. Ultraviolet light pulses are required for
the photoemission. They are produced by frequency
quadrupling the light from a mode-locked Nd:YLF
laser. The light pulses have an approximately gaus-
sian shape with σt ≈ 8.5 ps. The photocathode is
mounted inside a normal conducting rf cavity op-
erating with a peak field of 35 MV/m. This pro-
vides immediate acceleration of the electrons and
thus a quick compensation of the repulsive Coulomb
forces by attractive magnetic forces. Additional fo-
cusing is provided by a solenoid field inside the cav-
ity. The strength of the solenoid coils and the ac-
celeration phase of the rf gun are adjusted to op-
timize the longitudinal and transverse emittances.
For optimum conditions the normalized emittance
is εN = 3.0 ± 0.2 mm mrad [37] and the rms bunch
length is σz = 3.2± 0.2 mm (10.7± 0.7 ps) [18, 46].

Approximately 1 m behind the gun the first su-
perconducting acceleration cavity boosts the elec-
tron energy to 16.7 MeV. A beam line follows with
several quadrupoles and diagnostic screens used to
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compressor

undulator
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booster
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e - beam
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- e - beam
diagnostics

-
collimator

Figure 5.1: Schematic layout of the TESLA Test Facility (TTF). Although separated by the bunch compressor the two modules
with superconducting accelerating cavities are driven by a single klystron.

measure the transverse emittance, and a spectrome-
ter dipole to analyse the energy distribution. Due to
the nonlinear curvature of the accelerating field in
the gun and the booster cavity the bunches acquire
an energy modulation of 500 keV (rms). The resid-
ual energy spread is measured to be 25 keV (rms).
That is the energy width of each temporal slice in
the longitudinal phase space which cannot be com-
pensated by any time dependent energy modula-
tion. It is dominated by dynamic effects during the
acceleration in the gun, presumably the initial en-
ergy spread of the electrons leaving the cathode is
much smaller (in the order of eV). The measured
value is close to the resolution of the spectrometer
in the first section1. The beam dynamics in the
gun have been simulated with comparable results
[45]. Other simulations, however, yield consider-
ably smaller values [36].

The beam passes then a first module consist-
ing of eight superconducting cavities, followed by
a magnetic chicane for bunch compression. The ac-
celeration voltage of the module is approximately
110 MV. By adjusting the rf phase in the first mod-
ule a time to energy correlation is imposed on the
bunch. The path length in the bunch compres-
sor depends linearly on the particle momentum,
4z/l = −αc4p/p, lαc = 0.227 m (see figure 5.2).
In combination with the off crest acceleration this

1In the meantime the resolution of the measurement sys-
tem has been improved. Newer measurements of the energy
spread yield numbers below 5 keV (rms). These results could
not be included in this work. The main results, however, are
not affected.
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Figure 5.2: Schematic of the bunch compressor [45]. The
longitudinal and transverse dispersion functions are plotted
as function of the position in the bunch compressor. The
momentum compaction is αc = R56/l.

can be used for bunch compression. The optimum
longitudinal compression by about a factor of 5 is
achieved with an off-crest phase of φ = 12◦. Choos-
ing different phases the bunches can be shaped to
be more suitable for the wake field experiment. At
a later point this will be explained in more detail.

In the bunch compressor and in the spectrome-
ter dipole synchrotron radiation is produced. The
radiated spectrum ranges from the cut-off of the
beam pipes in the cm-wave regime up to ultravi-
olet light. Wavelengths comparable to the bunch
length or longer are radiated coherently (coher-
ent synchrotron radiation, CSR). By shortening the
bunches the coherent part of the spectrum is ex-
panded towards higher frequencies and the total
power is increased dramatically. Due to the curved
trajectory of the beam in the magnetic chicane the
radiation emitted at one point can interact with the
beam at another point. Similar to wake fields this
will lead to a modulation of the energy distribu-
tion of the bunch. But unlike wake fields CSR acts
ahead of the source particle. The energy shift of
the electrons due to CSR is proportional to the dif-
ferentiated charge distribution, therefore it is most
effective at the head of the bunch where the steepest
charge density gradients can occur.

Behind the bunch compressor the second acceler-
ation module raises the electron energy to the final
value. During the experiment the maximum energy
was 235 MeV. Owing to a shortage of equipment
the two acceleration modules are driven by only one
klystron. To maintain the stability of the beam pa-
rameters at the entrance of the bunch compressor
the rf control only stabilizes the first module. The
second module receives the same input rf power as
the first. The accelerating field depends on the dy-
namic response of the cavity resonators to the rf
input, which in turn depends on the detuning and
quality factor of the resonators. The cavity input
couplers and the waveguide tuners have been ad-

justed to obtain the same quality factors for all
16 cavities within a range of 5 %. The frequen-
cies of the cavities are adjusted with an accuracy
of ±50 Hz. The field stability in the second module
can only be maintained within 1% while it is better
than 10−3 in the first module. The reason for these
rather large variations may be cavity detuning due
to mechanical vibrations (microphonics).
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Figure 5.3: Frequency dependence of the impedance of the
collimation system. The varying radii of the collimator el-
ements have been considered. The sum of all components
yields one resonant frequency at 830 GHz. The assumed
effective dielectric constant is ε = 1.55.

The main components of the free electron laser
are three undulator modules with an upstream col-
limation system. The task of the collimator is to
protect the permanent magnets of the undulator
from radiation damage caused by beam halo. Two
stages of collimation with 90◦ betatron phase ad-
vance in between are used. Each stage consists of
a so called spoiler with narrow aperture (minimum
diameter 6 mm, see figure 5.4) and an absorber of
wider aperture which removes secondary particles
created in the spoilers. The production of geomet-
rical wakes at these structures has been reduced by
tapering the structures. The holes were made by
electro-erosion, the surface roughness is consider-
ably larger than in extruded tubes. In the spoilers
a roughness of 5 µm (rms) was measured, on the
absorbers 3 µm (rms) [43]. Therefore it is expected
that surface roughness wake fields are excited. For
the calculation of the wake frequencies the tapered
structures of the collimators have to be taken into
account. The longitudinal impedance can be deter-
mined by integrating the wake functions excited by
each part of the collimator with the correct phase

φ(z) =

L∫
z

(kz(z′)− k)dz′

Ztot
‖ (k) =

L∫
0

dz
Z0

π[b(z)]2
exp(−iφ(z)). (5.1)
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The figure 5.3 shows the resulting impedance of the
collimator assuming an effective dielectric constant
ε = 1.55 to model the surface roughness wake fields.
This value has been chosen to reproduce the mea-
sured resonant frequency of 830 GHz (see chapter
7).
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Figure 5.4: Side view of the collimator and cross sections of
the spoilers and absorbers [45].

The aluminum undulator vacuum chamber was
made by extrusion. The inner diameter of the beam
pipe is 9.5 mm. There are some wake fields to be
expected from this structure as well. Especially
the integrated effect may be strong given a total
length of 15 m. The main contributions to the ex-
pected wake fields are caused by the resistivity and
the roughness of the vacuum chamber. The sur-
face roughness in the undulator is measured to be
600 nm (rms) [16], so the harmonic wake occurs
at a frequencies between 1.6 − 5 THz, depending
on the model. Therefore the roughness wake from
the undulator like the resistive wall wake influences
mainly the head of the bunch. In the wake field ex-
periment these wakes are disregarded by measuring
only in the tail of the bunch.

The setup for the wake field experiment is
mounted behind the undulator. It consists of a set
of test pipes with varying surface treatment and ra-
dius. By means of a linear drive the different beam
pipes can be introduced into the beam axis. The
length of the beam pipes is 855 mm. The radii vary
from 3 mm to 5 mm. One meter downstream the
test pipe chamber there is a movable screen made of
two polished silicon wafers with an aluminum coat-
ing acting as a mirror. A special holder allows the
use as a closed mirror or with a central slit of up
to 10 mm width. This screen can be utilized to

deflect radiation out of the vacuum chamber into
a far infrared interferometer. At the end of the
linac there is a spectrometer dipole to analyze the
energy distribution of the bunches. A screen be-
hind the dipole is used to take images of the energy
distribution. Observing the 25 keV energy spread
already known from the injector it could be verified
that the resolution obtained in this spectrometer
is better than 10−4. This spectrometer is used to
measure the wake field induced energy modulation
of the bunches.

5.1 Simulation of the Longitu-
dinal Phase Space

A computer code has been developed to simulate
the longitudinal phase space starting from the en-
trance of the first accelerating module to the spec-
trometer. The effects of various accelerator compo-
nents on the phase space are analyzed by analytical
expressions. To ease the calculation of projections
the phase space at the end of the linac is repre-
sented on a cartesian grid. A matrix is prepared
which contains the entries for the charge density.
A second matrix contains the corresponding coor-
dinates of the bins. Instead of shifting the contents
of the density matrix according to the transforma-
tions along the linac, the coordinate matrix is trans-
formed. The components of the linac are treated in
backward direction, i.e. the physically last com-
ponent is treated first. The density matrix then is
filled with values calculated by an analytical expres-
sion for the charge density calculated as a function
of the transformed coordinates E and t.

The method works if it can be guaranteed that
the area of the bins is not changed during the trans-
formations. For linear operations such as rotation
and shearing this is immediately clear. For non-
linear operations such as cosine modulations this
could be verified as well (see figure 5.5). Note that
the transformations required in the simulation act
only on one coordinate at a time.

The initial phase space distribution is assumed to
be slightly non-gaussian. The following distribution
agrees within the errors with the measured bunch

rotation shearing non−linear

Figure 5.5: A few examples for the transformations of bins.
The nonlinear transformations are exagerated. In all cases
the area of the bins is invariant.
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length and energy profiles

ρ = ρ0 exp
(
− E2

2σ2
e

)
· exp

(
−| t |

2.5

2σ2.5
t

)
. (5.2)

Here E and t are the energy resp. time offsets from
the reference point in the phase space, σe =25 keV,
and σt =10.7 ps [45, 46]. Due to their large length
the bunches acquire an energy modulation from the
rf curvature of the accelerating field (see figure 5.6)

4E = E0 (cos(ωrf t− φ0)− cos(φ0)) . (5.3)

In the bunch compressor the particles travel on dif-
ferent trajectories depending on their energy. This
induces a longitudinal dispersion

4t =
lαc

c
E , (5.4)

which, in combination with the off-crest accelera-
tion in the first module, leads to a shortening of the
bunches (see figure 5.7).

With shorter bunch length the effects of coher-
ent synchrotron radiation have to be taken into ac-
count. Due to the curved trajectory in the dipole
magnets the synchrotron radiation moves ahead of
the source particle. The influence of CSR on the
beam energy can be expressed by [42]

dE
dz

= − qe

2πε0(3c)1/3ρ2/3

t∫
−∞

dt′

(t− t′)1/3

∂λ(t′)

∂t′
, (5.5)

with λ the normalized line charge density of the
bunch charge. The main contribution to the CSR
effects has to be expected from the third and fourth
dipole of the bunch compressor and the spectrom-
eter dipole. The bunches have been treated as if
they were already fully compressed when entering
the third dipole of the bunch compressor. The effect
of CSR in the spectrometer dipole cannot fully be
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Figure 5.6: Simulated phase space at the entrance of the bunch compressor. In the figures 5.6-5.9 the left picture corresponds
to a bunch at maximum compression and the right picture to a more moderate compression used in the wake field experiment.
At the entrance of the bunch compressor only the energy profiles differ, the time profiles are equal.

seen in the spectrometer because the electrons have
already passed a certain distance in the dipole be-
fore they change their energy. The effective length
has been approximated by half of the real length.
The corresponding simulation results are shown in
figure 5.8.

In the second module the bunches are normally
accelerated on crest. During the wake field ex-
periment the rf phase of the second module was
changed in two ways. For the energy profile mea-
surements the phase was adjusted for maximum
contrast of the peak structure, see chapter 7 for
more details. A phase of 14◦ turned out to be the
most suitable value. During the tomography mea-
surements the phase was shifted in sequences be-
tween −35◦ . . . 35◦. The phase shifter would have
allowed ±45◦ but the beam transport becomes less
efficient towards larger off crest phases.

The surface roughness of the collimator beam
pipes is of the same order of magnitude as the
roughness in the test pipes of the wake field ex-
periment (5 µm on the spoilers, 10 µm in the test
pipes). In both cases a harmonic wake is expected

4xe = W0 cos(ω0xt) exp(−xt/τ). (5.6)

Because the resonant frequency of the wake is a
priori unknown it has been derived from the exper-
imental data for both the collimator and the wake
field experiment. Similarly the time constants of
the wakes have been adjusted to reproduce the ex-
perimental data. The figure 5.9 shows the simulated
phase space after passage of the 4 mm reference pipe
resp. the 4 mm sandblasted pipe. The summary of
parameters can be found at the end of chapter 7.
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Figure 5.7: Simulated phase space at the exit of the bunch compressor. No wake or coherent synchrotron radiation has been
taken into account.

−5

0

5

∆E
 [M

eV
]

−10 −5 0 5
Time [ps]

−20 −10 0 10 20

−150

−100

−50

0

50

Time [ps]

W
ak

e 
[k

V
]

−5

0

5
∆E

 [M
eV

]

−10 −5 0 5
Time [ps]

−20 −10 0 10 20

−80

−60

−40

−20

0

20

40

Time [ps]

W
ak

e 
[k

V
]

Figure 5.8: Simulated phase space at the exit of the bunch compressor with coherent synchrotron radiation taken into account.
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Figure 5.9: Simulated phase space of a bunch passing the 4 mm reference pipe of the wake field experiment (top) and passing
the 4 mm sandblasted pipe (bottom).
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Chapter 6

Experimental Tomography

6.1 Setup

The main accelerator components for the longitu-
dinal phase space tomography are an acceleration
module and the energy spectrometer with a straight
section in between. By changing the rf phase in the
module the longitudinal phase space of the bunches
is deformed, and using the spectrometer the re-
sulting energy profiles can be measured. Provided
that there are no energy dependent effects on the
bunches along this section, the phase space distri-
bution in front of the spectrometer can be recon-
structed.

Besides nonlinear corrections in this setup only a
shearing of the phase space can be achieved. For
maximum resolution the shearing has to be maxi-
mized. In the TTF the phase offset is limited by the
fact that the two acceleration modules are driven
by a single klystron. The phase and amplitude of
the rf in the first module are kept constant while
the phase of the second module can be shifted by
a phaseshifter in the waveguide. The adjustment
range of this phase shifter is 90◦. When the rf phase
is shifted by ϕoff from the crest the energy is in first
order modulated according to

dE = E0ω0 sin(ϕoff )dt. (6.1)

The maximum energy shift of two points in the
phase space against each other is then

4E = E0ω0 [sin(ϕmin + 90◦)− sin(ϕmin)]4t,

=
√

2E0ω0 sin(45◦ − ϕmin)4t, (6.2)

with ϕmin the lowest phase of the rf and4t the sep-
aration of the two points in time. This is optimum
for a range of the phase between ±45◦ with a total
energy shift of 4E/4t = E0ω0

√
2 ≈ 570 keV/ps.

A second constraint is the beam transport along
the accelerator. Due to the phase shift the energy of
the beam changes. At φoff = 45◦ the accelerating
voltage in the second module changes by 30% and
the total electron energy changes by 15%. Without
an independent klystron for the second acceleration
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Figure 6.1: Sensitivity of the diagnostic screen in the energy
spectrometer versus position on the screen. The parameters
of the lens system have to be deduced from the observed
signals because a zoom lens was used. The focal length was
approximately 90 mm, the visible width of the screen was
37 mm. The aperture diameter was 16 mm corresponding to
an f-number of 5.6.

module this cannot be compensated by changing
the amplitude of the rf-field. The focusing onto the
diagnostic screen has to be adjusted for the differ-
ent energies to achieve the optimum spectrometer
resolution. With additional adaption of the optics
the beam transport can be optimized, but during
the measurements this turned out unnecessary.

Behind the bunch compressor the energy distri-
bution of the bunches has a total width of ap-
proximately 10 MeV. With a total bunch length of
≈ 10 ps and an additional modulation of 570 keV/ps
for the tomography the full acceptance of the mea-
surement system has to be at least 15 MeV. The
dispersion at the position of the screen was 1 m,
the total beam energy is 235 MeV.

To allow for a range of 15 MeV the OTR screen
would have to cover 65 mm, whereas the installed
screen is only 40 mm wide. At the same time the fo-
cusing of the beam would vary considerably across
the screen yielding a poor energy resolution of the
spectrometer. To overcome these difficulties the
measurement was performed such that a number
of images was taken for each projection. There-
fore two quadrupoles in front of the dipole and the
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dipole were scanned simultaneously in a predefined
sequence.

A schematic of the spectrometer section is found
in figure 6.7. The focusing is adapted with the
quadrupoles Q2 and Q3, while Q4 and Q5 are ad-
justed for zero field. The beam position monitors
BPM1 and BPM2 are used to find a reproducible
orbit as input to the spectrometer.

During the operation of the TTF some jitter of
the beam energy has been observed due to the miss-
ing rf control of module 2. Therefore the horizontal
offsets between the images have to be adjusted indi-
vidually. To ease this operation an overlap between
subsequent images is desirable. Thus a large active
area of the diagnostic screen is required. The active
area of the screen is determined by the adjustment
and acceptance of the optical system.

The screen is observed by a camera equipped with
a zoom lens. To protect the camera from high
energy photons and electrons it was necessary to
shield it with lead. Therefore the direct view on
the accelerator was blocked, and the light was de-
flected by a mirror onto the camera. The mirror
had a diameter of 75 mm in order not to restrict
the acceptance of the system. The distance of the
camera lens from the screen was 450 mm, its focal
length approximately 90 mm.

The detected optical transition radiation is very
directional. The maximum intensity is found at
an opening angle 1/γ. Due to the narrow open-
ing angle of the transition radiation the active area
of the screen equals the effective aperture of the
lens system. The optical system has to be adjusted
such that the active area is centered on the screen.
In absence of an alignment system the adjustment
only could be verified using OTR itself. The cam-
era could be moved horizontally via remote control.
The vertical adjustment was done manually.

In the spectrometer dipole synchrotron radiation
is produced. The OTR screen acts as a mirror for
the synchrotron radiation and deflects it into the
camera. Since its origin is far out of the focal plane
it is not focused but appears as a brightening of the
background. Since the origin of the synchrotron ra-
diation is distributed along the orbit of the electrons
the radiation cannot be subtracted directly. To sup-
press it the camera was equipped with a polarizing
filter transmitting the vertical polarization only and
hence suppressing the synchrotron radiation which
is polarized horizontally.

Figure 6.1 shows the experimentally determined
relative sensitivity of the screen. The relative sen-
sitivity is measured by shifting the beam in small
steps across the screen. With this the spectrom-
eter was calibrated at the same time. The active
width of the screen corresponds to 370 pixels on
the CCD. The calibration of the spectrometer was

171 pixels per 1% energy shift. Thus the energy ac-
ceptance was approximately 2%. From the sensitiv-
ity measurement it was deduced that the aperture
of the camera lens was 16 mm corresponding to an
f-number of 5.6 at a focal length of 90 mm. Mean-
while a high-resolution macro lens was obtained
with an f-number of 2.8. It was used to measure
the energy profiles shown in figure 7.4. The cor-
rect horizontal shift of the images while scanning
the spectrometer can be found by calculating the
cross-correlation of two subsequent images. The
maximum of the correlation function is found at
the correct offset. It is sufficient to apply the cross-
correlation to the projection of the image. After
finding the correct offset the images were scaled to
correct for intensity fluctuations.

The signal to noise ratio in figure 6.1 is poor. A
substantial contribution to the noise in the energy
profiles comes from x-rays hitting single pixels of the
CCD. Obviously the shielding of the camera was in-
sufficient. By eliminating isolated pixels from the
image the noise was drastically reduced. The elim-
ination of isolated pixels was done parallel to the
direction of projection. In this way no degradation
of the resolution is expected.

6.2 Measurements

The measurements were done with the bunch com-
pressor and acceleration module 1 adjusted for max-
imum compression of the bunches. This is achieved
by setting the phase of the rf field to −12◦. The
correct setting is verified with a far infrared de-
tector measuring coherent transition radiation from
the bunches.

In the TTF an unexpected phenomenon is ob-
served: When the accelerator is adjusted for very
short bunch lengths the energy spectrum of the
bunches is split into several peaks. The investiga-
tion of this effect was the first motivation to per-
form the longitudinal tomography. Figure 6.2 shows
the result of the first tomography to study this ef-
fect. Note that this measurement was done before
the camera alignment was optimized and without
scanning the spectrometer. Therefore the accep-
tance and resolution was lower than in later mea-
surements.

Simultaneously with the tomography the longi-
tudinal profile was measured by interferometry of
the coherent transition radiation.The interferome-
ter has been described in [15]. Since then the setup
has been considerably improved by replacing the
pyroelectric detectors with Golay-cell detectors. In
this way a smooth response of the interferometer is
achieved. In the interferometer the autocorrelation
function of the CTR is obtained. The Fourier trans-
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Figure 6.2: Longitudinal phase space of a TTF bunch at
maximum compression [19]. The lines indicate the sensitive
area. By better aligning the camera and scanning the spec-
trometer the sensitive area could be enlarged substantially
(compare chapter 7).

form of the autocorrelation function is the square of
the form factor of the bunch (see figure 6.4). There-
fore the interferometer is principally unable to de-
termine the phase of the bunch form factor. To
reconstruct the longitudinal profile from the far in-
frared spectrum of the CTR the Kramers-Kronig
relation is used to compute the phase as a function
of frequency. Due to the symmetry of the autocorre-
lation function it is impossible to decide which is the
head or the tail of the reconstructed bunch profile.
This has to be deduced from additional information
(simulation or measurement). Below approximately
60 GHz the interferometer shows a cut-off of the in-
tensities, this has to be taken into account when
comparing the result of the interferometry and the
tomography (figure 6.3). An considerable enhance-
ment of the low frequency intensities is required as
can be seen in figure 6.4.

Meanwhile a streak camera with a temporal res-
olution of 200 fs is available. It has been used
to measure the duration of the synchrotron radi-
ation pulse created in the spectrometer dipole. The
results are shown in figure 6.5. The tomography
yields a shorter tail than the streak camera. In
part this may be explained by different beam con-
ditions in the two measurements, which were done
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Figure 6.3: Longitudinal profile of bunches in the TTF mea-
sured with tomography (a) and interferometry (b) [51]. The
data for the two methods was taken in the same week in
April 2000. The fully reconstructed phase space is shown
in figure 6.2. The interferometer data suffer from a low fre-
quency cut-off which cuts away the tail of the bunch as can
be seen on the lowest curve. For a better comparison low
frequency components have been extrapolated (c).

with a delay of two years. More important may
be the limited acceptance discussed above. Note
that this is a problem which has been fixed by the
measures described above (see figure 6.6). Unfor-
tunately since then no measurement has been done
at maximum compression of the bunches, therefore
a bunch profile at medium compression measured
during the wake field experiment is shown.
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of the coherent transition radiation produced by a bunch at
maximum compression. To obtain the reconstructed bunch
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Figure 6.5: Longitudinal profile of bunches in the TTF mea-
sured with a streak camera [46] in March 2002. In these
plots the head of the bunch is on the left side. The upper
plot (A) shows single shot profiles, the lower plot (B) shows
the average and the result from tomography. The shorter
tail measured by tomography may in part be due to differ-
ent beam conditions or due to reduced acceptance.
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Chapter 7

The Wake Field Experiment

For the surface roughness wake field experiment
test beam pipes with a known roughness of the in-
ner surface have been prepared. The wakes excited
by the test pipes have been analyzed using two dif-
ferent observables, the energy modulation of the
beam and the radiated electromagnetic fields. For
a clear separation of the surface roughness wakes
from other effects such as coherent synchrotron ra-
diation in the bunch compressor and undulator or
wake field effects in other elements of the accelera-
tor a difference measurement was performed.

A special ultra-high vacuum chamber [29] was
constructed to house an ensemble of beam pipes
with radii between 3 and 5 mm and with dif-
ferent surface preparations (smooth, sandblasted,
grooved, see table 7.1). The chamber was mounted
behind the undulator. Via a linear movement each
beam pipe could be positioned on the beam axis.
Due to the limited space in the accelerator the
length of the beam pipes was limited to 855 mm.
To increase the effects the test pipes were prepared
with an enhanced surface roughness in compari-
son with the standard undulator vacuum chambers.
The pipes were composed of two half cylinders ma-
chined into two flat aluminum plates. In this way a
controlled surface preparation by sand-blasting or
grooving was possible. The surface roughness has
been measured with a tracer type measuring de-
vice featuring a resolution of 0.02 µm. The wake
fields created by the two narrow longitudinal gaps
are known to be negligible [10].

Seven beam pipes were prepared. One beam pipe
with inner radius 8 mm was foreseen for the nominal
linac operation. Its aperture was large enough to al-
low for transmission of beam pulses with the max-
imum possible average power. Three beam pipes
with an inner radius of 4 mm have been prepared.
The first of these has a smooth surface and served
as a reference for all measurements. After machin-
ing the respective half pipes their inner surface were
cleaned with NaOH. Their surface profile was mea-
sured to have an rms height of 1.6 µm. The second
pair of half pipes has been sandblasted after ma-

chining and finally cleaned with NaOH. Their sur-
face profile was measured to have an rms height of
10 µm. The third pair of half pipes was treated
by sparking erosion to achieve regular grooves on
the surface with a period of 150 µm and a depth
of 60 µm. There were two additional beam pipes
treated by sand-blasting with radii of 3 mm and
5 mm, and one beam pipe with grooves on the sur-
face had a radius of 5 mm.

7.1 Energy profiles

Figure 7.1 shows the energy profiles as obtained
when the beam passes the reference pipe and a
sandblasted pipe, respectively. The accelerator
was adjusted for a moderate compression of the
bunches, 6.5◦ off-crest in module one instead of
12◦ as required for optimal compression. In this
way the bunches were shaped such that they had
a steep rising edge (∼ 100 fs) and a long, slowly
decaying tail (∼ 10 ps). Then a 14◦ off-crest accel-
eration in the second module generates a correlated
energy-position distribution in the tail of the bunch
(see figure 7.2). The synchronous mode wake fields,
which are mainly produced by the sharp front peak
of the bunch, can then be observed via the imposed
energy modulation in the long tail. There is some
resemblance to the pump-and-probe technique in
laser physics. Note that coherent synchrotron ra-
diation in the bunch compressor, as well as wake
fields caused by resistive walls and cross sectional
changes, act mainly on the sharp front peak of the
bunch but have little influence on the long tail.

The figure 7.1 shows only the tail of the bunches,
the head is left of the border of the plot due to
its lower energy. A clear difference of the profiles
can be observed. When passing the smooth refer-
ence pipe the bunches show a wide and smooth en-
ergy spectrum. Superimposed is a slight structure
which possibly can be assigned to wake field effects
upstream of the experiment. This question will be
discussed later in more detail.

The solid curve shows the energy distribution
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pipe number 1 2 3 4 5 6 7
radius 8 mm 4 mm 5 mm 4 mm 3 mm 5 mm 4 mm
preparation dummy reference sandbl. sandbl. sandbl. grooves grooves
δ rms 1.4 µm 1.4 µm 10 µm 10 um 10 um (60 µm) (60 µm)

Table 7.1: Parameters of the beam tubes. The parameter δ is the rms depth of the roughness. For the grooved pipes the depth
of the grooves is printed instead of the rms height.
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Figure 7.1: Difference measurement of smooth and rough
beam pipes [20]. The dashed curve shows the energy pro-
file after passing the reference pipe, whereas the solid curve
shows the energy profile when passing a pipe of same geom-
etry but sandblasted surface.

when the beam has passed the sandblasted beam
pipe of the same radius r = 4 mm. In this case
a regular peak structure is visible which can be as-
signed to a harmonic wake potential: each peak can
be identified with a zero crossing of the wake poten-
tial with negative slope (see figure 7.2). It should
be emphasized that the only difference between the
two cases is the different surface roughness of the
two pipes. Figure 7.4 demonstrates that the regu-
lar peak structure becomes much more pronounced
when the rough pipe of 3 mm radius is inserted.

A precise determination of the time structure of
the distribution is achieved by varying the rf phase
of the second acceleration module. This has no im-
pact on the longitudinal bunch profile nor on the
wake fields. By measuring the resulting changes in
the energy separation of the peaks it is possible to
resolve their separation in time without making any
assumptions about the initial energy distribution.
The method works as follows. Consider two peaks
in the energy profile which are separated in energy
by Esep and in time by τ . When the rf phase φ in
module 2 is changed by ∆φ the change in separation
energy is

∆Esep = ωτEmodule (sin(φ + ∆φ)− sin(φ)) (7.1)

with Emodule being the maximum energy gain in
the module and ω the rf angular frequency. From
the measured values ∆φ and ∆Esep the time sep-
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Figure 7.2: Simulation of a bunch in longitudinal phase space
in the presence of a synchronous mode wake field. The up-
per left part shows the bunch in phase space, the lower left
the projection onto the time axis, and the upper right the
projection onto the energy axis. The lower right plot shows
the harmonic wake field. The periodic energy shift together
with the time-energy correlation generates the peaks in the
energy distribution.

aration τ of the two peaks can be derived with an
accuracy of better than 120 fs. Then fw = 1/τ is
the frequency of the harmonic wake.

Using this method it was verified that the peaks
seen behind the rough test pipes (figures 7.1 and
7.4) have indeed equidistant spacing in time, im-
plying that they are caused by a harmonic modu-
lation of the particle energies. The experimentally
determined wake frequencies for the different rough
test pipes are summarized in table 7.1 and plot-
ted in figure 7.3 as a function of the pipe radius.
Good agreement with the 1/

√
r behaviour of equa-

tion 2.36 is found. The fact that the time separation
of the peaks changes with the pipe radius rules out
the vague possibility that the observed regular peak
might be due to an initial modulation of the bunch
which is only enhanced by the rough pipes.

The observed harmonic wake frequencies agree
with the dielectric layer model prediction for a di-
electric constant εeff ≈ 1.55 while the numerical
calculations in ref. [52] prefer εeff ≈ 2, corre-
sponding to ≈ 20% lower frequencies. In the surface
roughness model of ref. [48] higher wake frequen-
cies are predicted (εeff ≈ 1.27) but it should be
remarked that the small angle approximation for
the irregularities, used in this paper, is not fully
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justified for the sandblasted beam pipes of the ex-
periment.
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Figure 7.3: The frequency of the synchronous mode plotted
versus the radius of the beam pipe.

It has been shown that the frequencies of the
harmonic wakes can be determined in a model-
independent way, applying the method described
above. Their strengths can be derived with a longi-
tudinal phase space tomography, which is an ex-
tension of this method. For an estimate of the
wake field amplitude a numerical simulation of the
whole experiment is carried out with the program
described in chapter 5. The wake field effect in
the rough test pipe is imposed as a damped har-
monic wave using the frequency determined above.
The simulation model yields the following values
for the maximum energy shift which an electron in
the tail of the bunch experiences during its pas-
sage through one of the 800 mm long roughened
test pipes: 39 keV for r = 5 mm, 60 keV for r = 4
mm, and 105 keV for r = 3 mm. The amplitudes
of the wake functions required to achieve these val-
ues agree well with the predictions Z0c/(πb2) from
the wake field models. The damping constants are
4.8 ps for r = 5 mm, 4.0 ps for r = 4 mm, and
3.4 ps for r = 3 mm.

To account for possible surface-roughness wakes
in the collimator and undulator section, which may
be the origin of the peak structure observed behind
the smooth reference test pipe, another dielectric-
layer wake is used in the simulation whose frequency
and amplitude is adjusted to yield a reasonable de-
scription of the energy profile measured with the
reference pipe. Simulation parameters like the ini-
tial charge distribution and the rf phases in modules
1 and 2 are allowed to vary within the experimen-
tal uncertainty. The dashed curves in figure 7.4 are
the predictions of the model simulation for an opti-
mized parameter set. The main parameters are an
accelerating voltage of 107 MV in both modules, an
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Figure 7.4: Energy profiles in the tail of the bunch measured
behind different test tubes.a), b), c): sandblasted tubes of
3, 4, resp. 5 mm radius, d): smooth reference tube of 4 mm
radius. The solid curves show the profiles measured with
the spectrometer at the end of the linac. The dashed curves
show the simulated distributions. The simulation includes
the off-crest acceleration, bunch compression, and surface
roughness wake fields generated in the test beam pipes and
in the collimator upstream of the setup. The spectrometer
resolution is also taken into account.
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off-crest phase of −6◦ in the first, and −14◦ in the
second module. With the latter the contrast in the
energy profiles behind the 3 mm sandblasted test
pipe was optimized. The agreement with the mea-
sured profiles is quite satisfactory indicating that
the basic physics processes are well understood.

It should be noted that the determination of the
wake frequency, the damping constants and the
maximum energy shift is independent of any spe-
cific wake field model.

7.2 Tomography

For a more precise understanding of the wake field
effects the longitudinal phase space of the bunches
has been analyzed via tomography (see chapter 4).
During the tomography measurements the setup
was chosen slightly different from the one described
in the previous section. Instead of setting the phase
of the first acceleration module lower than required
for maximum compression here it is set higher.
Again the result is a moderately compressed bunch
but the tail now lies at low energies. The peaks
in the energy distribution correspond to the points
where the wake potential crosses zero with positive
gradient. Due to the limited angle of observation
in the tomography they appear as peaks in the re-
constructed phase space as well. By determining
the distance of the peaks in time domain the fre-
quencies of the wakes can be measured. The error
of this time measurement is smaller than 120 fs. It
is the same as for the energy profile measurement
described in the last section. In figure 7.5 the recon-
structed phase space is shown as it appears when
the beam passes the 4 mm reference beam pipe.
In figure 7.7 the phase space with 1 nC is shown
again with the contours of a simulated bunch plot-
ted on top. Obviously there is a regular structure
on the bunch. In particular note the enhanced den-
sity at (0 ps, 2.4 MeV). At energie deviations below
0 MeV the dark spots correspond to zero crossings
of the wake potential with positive slope. Above
2 MeV the dark spots are found where the wake
potential crosses zero with negative slope. The fre-
quency of the corresponding harmonic wake field
is determined to be 830 ± 60 GHz. Having estab-
lished the main features of surface roughness wake
fields in the last section, it appears that the regular
structure on the bunch most probably is caused by
surface roughness wake fields. The reference pipe
itself is ruled out as a source for this wake: The
surface structure is too smooth and changing to a
pipe of 8 mm radius does not change the structure
on the energy profile.

Owing to their narrow aperture the undulator
vacuum chamber or the collimator section might

Figure 7.5: Reconstructed phase space behind the reference
beam pipe. The left plot corresponds to a bunch charge of
0.75 nC, the right plot to a charge of 1.0 nC. At energie
deviations below 0 MeV the dark spots correspond to zero
crossings of the wake potential with positive slope. Above
2 MeV the dark spots are found where the wake potential
crosses zero with negative slope. Between 0 and 2 MeV the
distribution is not reconstructed correctly (see chapter 4).
From the distance between the spots a wake frequency of
830±60 GHz can be deduced. With increasing bunch charge
the wake get stronger. This can be seen in the right by the
stronger tilt of the dark spots.

have caused the wake in question. The sur-
face roughness of the undulator chamber is .
0.7µm (rms) at a pipe radius of 4.5 mm yielding
wake frequencies of 1.6-5 THz depending on the
model. Should the undulator by some unknown
reason excite wakes with a resonance frequency of
830 GHz, the wake field would have to be much
stronger than observed because the effect would be
integrated along the large length of 15 m. Therefore
the undulator can be ruled out as a source of this
structure.

In chapter 5 it has been shown that a harmonic
wake at 830 GHz can be explained by surface rough-
ness wakes produced in the collimator. Therefore
the collimator is most likely the origin of the reg-
ular structures observed in the longitudinal phase
space.

Figure 7.6 shows the reconstructed phases space
of a bunch having passed a sandblasted beam pipe
of 4 mm radius (equal to the reference pipe). In
figure 7.8 it is shown again together with the con-
tours of a simulated phase space distribution. The
overall form of the distribution is that of a sickle as
it is expected from simulations of the beam trans-
port through the bunch compressor (see chapter 5).
Superimposed is an energy modulation of the elec-
trons. Within the limitations of the tomography
it can be identified as being caused by a harmonic
wave (see figure 4.7 for comparison). The ampli-
tude of the modulation is much larger than in figure
7.5. The energy modulation is larger than the en-
ergy difference between the zero crossings, leading
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Figure 7.6: Reconstructed phase space having passed the
sandblasted pipe with radius b=4 mm. At energie deviations
below 0 MeV the dark spots correspond to zero crossings of
the wake potential with positive slope. Above 2 MeV the
dark spots are found where the wake potential crosses zero
with negative slope. Between 0 and 2 MeV the distribution
is not reconstructed correctly (see chapter 4). From the dis-
tance between the spots a wake frequency of 575 ± 30 GHz
can be deduced.

Figure 7.7: Tomographic reconstruction of the bunch having
passed the reference pipe. The distribution from figure 7.5
has been plotted together with the contours of the simulated
distribution from figure 5.9.

to a double peak structure where the peaks belong
to the maximum respectively minimum of the sine
function. The frequency of the modulating wave
can be determined from the distance of the points
of higher density in the reconstruction. It is found
to be 575 ± 30 GHz in good agreement with other
measurements described in the previous and follow-
ing sections.

7.3 Microwave Measurements

Surface roughness wakes are special waveguide-
modes propagating in the beam pipe. At the exit
of the test pipes they are radiated into the larger
vacuum chamber of the accelerator. At the TTF

Figure 7.8: Tomographic reconstruction of the bunch behind
the 4 mm sandblasted pipe. The distribution from figure 7.6
has been plotted together with the contours of the simulated
distribution from figure 5.9.

linac a diffraction radiation screen was used to de-
flect the radiated fields through a quartz window
out of the vacuum. In a far infrared interferometer
the wake fields then were analyzed. A detailed de-
scription of the interferometer can be found in [15].
The diffraction radiator screen was divided into two
parts giving the opportunity to open a slit of 10 mm
width. At the exit of the test beam pipes and at the
screen also coherent diffraction radiation(CDR) re-
spectively transition radiation (CTR) is produced
yielding radiation in the same frequency range as
the wakes. Therefore the analyzed spectrum con-
tains a wide, continuous spectrum from the CDR
resp. CTR and single spectral lines from the har-
monic wakes.
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Figure 7.9: Far infrared spectrum with the 4 mm refer-
ence pipe (a) and the 4 mm sandblasted pipe (b). Around
560 GHz the two spectra clearly deviate. At 550 GHz and
750 GHz there are some absorption lines due to water vapour
(see figure 7.10). The spectra were taken with the screen
opened by 10 mm.
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To separate the effects the spectra from the ref-
erence pipe and the roughened pipes can be com-
pared. The figure 7.9 shows the comparison of two
spectra obtained with pipes of equal radius of 4 mm.
One spectrum corresponds to the reference pipe
with smooth surface, the second to a sandblasted
beam pipe with a rms roughness of 10µm. Around
550 GHz the power spectrum from the sandblasted
pipe shows a clear enhancement. A problem is that
at 560 GHz a narrow gap occurs caused by water
vapour absorption. See the figure 7.10 for reference.
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Figure 7.10: Atmospheric transmission at far infrared fre-
quencies. The transmission has been simulated by the pro-
gram atm cso [28, 9]. It plots the zenith atmospheric trans-
mission on the summit of Mount Mauna Kea in Hawaii. The
amount of water vapour in the air can be given as input
parameter by quoting the effective column height. For a col-
umn height of 185 µm the program delivers similar results
to [35]. The plot shown here has been obtained for a col-
umn height of 30 µm which was estimated to be present at
a relative humidity of 60%, a temperature of 22◦C, normal
pressure, and a path length of 2.5 m in the interferometer.
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Figure 7.11: Radiated wake fields from three different sand-
blasted beam pipes. The radii of the pipes are (a) 3 mm,
(b) 4 mm, and (c) 5 mm. The spectra were taken with the
screen closed. Additionally there is a water absorption line
at 560 GHz. For the reference spectrum two different expo-
nential fits were used as can be seen in the left pictures.
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Figure 7.12: Autocorrelation function and corresponding
spectrum with the r = 4 mm grooved beam pipe inserted.
The corresponding functions from the reference pipe are
shown in the same plots with the amplitude scaled such,
that the spectra outside the resonance coincide.

In figure 7.11 the spectral lines of three different
sandblasted pipes are shown. In this measurement
a worse signal to noise ratio was obtained. This is
because the measurements were done with the cen-
tral slit of the screen opened to 10 mm. In this way
the spectral lines of the wakes should be enhanced
in comparison to the CDR spectrum. But due to
the poor signal to noise ratio the reference spectrum
delivers no reliable data at the relevant frequencies.
Instead an exponential fit to the spectra from fig-
ure 7.9 served as a reference. Two different fits were
used, one only based on the data close to 500 GHz,
the other one based on the data from 200 GHz to
600 GHz. In figure 7.11 the fits are shown in the
corresponding left graphs.

At first sight the relative strength of the spectral
lines is opposite to what can be expected from cal-
culation and from the measurements of the beam
energy. Without losses the pulse energy W should
drop with the beam pipe radius like W ∝ 1/b2 and
increase with the frequency like W ∝ f4 whereas
the spectral lines tend to be slightly weaker for
higher frequencies. In the lossless case the pulse
length τ would be decreasing with the radius τ ∝
1/b while from the Dohlus model and the measure-
ments presented in table 7.2 a different behaviour
is found: τ ∝ b. If this is taken into considera-
tion the radius dependence is compensated, so the
energy contained in the wake field pulse should be
independent of b. Within the errors this is found in
figure 7.11. The weakness of the middle line most
probably is caused by the atmospheric absorption.

Much clearer signals have been observed from the
grooved beam pipes. In figure 7.12 an autocorrela-
tion function and the corresponding spectrum are
shown for the 4 mm test pipe with grooves on the
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Figure 7.13: Autocorrelation function with the 4 mm grooved
beam pipe inserted. In the lower plot the spectrum is plotted
in columns taking into account the autocorrelation function
between the corresponding point on the x-axis and the end.

surface. A strong harmonic modulation of the au-
tocorrelation function is observed. The resonance
frequencies are found at 200± 10 GHz for b=4 mm
and 177±10 GHz for b=5 mm. At the central peak
the autocorrelation function with wake exceeds that
without wake by 50 %. This means that the total
energy in the wake field radiation pulse is approxi-
mately half as much as in the CTR pulse.

Given this ratio the autocorrelation is dominated
by the front peak of the CTR1 scanning the har-
monic function of the wake field radiation. In figure
7.13 the autocorrelation function is plotted for pos-
itive offset in one interferometer arm over a large
range. The corresponding spectra are plotted verti-
cally taking into account only part of the autocor-
relation function. Therefore the spectra were calcu-
lated between a starting offset z1 and the maximum
offset zmax = 55 mm.

S(k, z1) =
1

zmax − z1

zmax∫
z1

A(z) exp(ikz)dz, (7.2)

with A the autocorrelation function. Moving from
zmin < z1 < zmax the relevant part is further and
further cut. At approximately z1 ≈ 26 mm the
intensity of the 200 GHz harmonic wake starts to
drop and vanishes at 30 mm. From the group veloc-
ity derived in chapter 2 a pulse length of L ≈ 23 mm
=̂77 ps is expected, which is in good agreement with
this observation.

7.4 Summary

The results of the wake field experiment are listed
in table 7.2. The figure 7.14 shows the correspond-
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Figure 7.14: Inductance versus the height of the surface
roughness. The experimental data from the wake field ex-
periment and collimator are shown. The behaviour of the
inductance derived from the linear boundary approximation
(Dohlus) are shown for roughness spectra similar to (a) those
in the collimator (b) those in the wake field experiment. The
dielectric layer model with ε = 2 and ε = 1.55 (Novokhatski
et al.) is shown.

ing surface inductances for the pipes with stochas-
tic surface structure. The pipes with a regular and
60 µm deep structures are well described by the
dielectric layer model with ε = 2. This supports
the treatment in section 2.3.1 whereas [2] deviates
by 20%. The harmonic wakes in the sandblasted
pipes can be described with an ε ≈ 1.6 yielding fre-
quencies right in the middle between the predicted
ε = 2 and the calculations according to Dohlus. For
the smaller surface roughness in the collimator the
Dohlus model fits within 15%.

The amplitudes of the wake functions have the
same value Z0c/(pib2) in all wake models and are
in good agreement with the observations. The time
constants agree best with the predictions by a com-
bination of the Dohlus model and the dielectric
layer model (see figure 7.15). From the group veloc-
ity of the modes (described for dielectric layers) the
radius dependence should be opposite to the obser-
vations. Among all models discussed in this thesis
the Dohlus model [12] delivers the best description
of surface roughness wakes in case of shallow sur-
face structures. Very deep surface structures are
best described by the dielectric layer models with
ε = 2. Hence these two models can be regarded as
the two limiting cases.
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preparation r/mm δ rms fw/GHz εeff ampl./kV τ/ps
reference 4 1.4 µm - - - -
sandblasted 5 10 µm 480± 27 1.64 39± 5 4.8
sandblasted 4 10 µm 564± 32 1.55 60± 5 4.0
sandblasted 3 10 µm 658± 40 1.53 105± 10 3.4
grooves 5 60 µm 177± 10 1.94 - -
grooves 4 60 µm 200± 10 1.90 - 77
collimator 3 5.7 µm 830± 60 1.55 - -

Table 7.2: Summary of results for different beam tubes. The parameter δ is the rms depth of the roughness except for the
eroded pipes where it is the depth of the grooves. The wake frequencies fw have been determined from the energy distribution
of the electron bunches and verified with the interferometer. The 6th column gives the amplitude of the wake potential and the
last column the decay constant resp. pulse length.
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Figure 7.15: Time constants of the surface roughness wake. Predictions made by different models are plotted for comparison.
Only the combination of the Dohlus model with a dielectric layer wake model yields reasonable agreement with the measurement.
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Chapter 8

Conclusion and Outlook

Surface roughness wake fields are a significant
concern for the performance of high gain free elec-
tron lasers. The worry is that already micrometer-
size structures on the inner surface of the undulator
beam pipes could severely degrade the energy dis-
tribution inside the bunches. The waveguide modes
inside the beam pipe are slowed down by a rough
surface and at a certain characteristic frequency en-
ergy can be transfered resonantly from the beam to
a radiation field. A similar effect happens in beam
pipes covered with a dielectric layer. Although the
surface roughness wake fields have received a con-
siderable theoretical attention, no convincing con-
clusion had been found since the energy losses pre-
dicted by the theories differed by orders of magni-
tude.

To clarify the situation an experiment has been
conducted at the TESLA Test Facility to study the
surface roughness wake fields. By introducing beam
pipes with an enhanced roughness of the inner sur-
face strong wake fields could be excited that allowed
a detailed investigation. Two methods were em-
ployed to detect the wake fields: The wake field
radiation was measured in a far infrared interfer-
ometer and the influence of the wakes on the beam
was investigated by measuring the energy profiles
of the bunches and applying the methods of tomog-
raphy to it. In this way it was possible to measure
the longitudinal phase space of the bunches. At the
TESLA Test Facility no rotation of the longitudi-
nal phase space was possible. To obtain reliable
results a tomography algorithm based on the maxi-
mum entropy method was applied. It is a powerful
tool to study processes in the longitudinal phase
space like bunch compression, wake fields, and co-
herent synchrotron radiation. The suppression of
artefacts achieved by the maximum entropy method
makes the algorithm attractive also for the trans-
verse phase space. There it can lead to a reduction
of required quadrupole currents, a relaxation of con-
straints on rotation angles, and a reduction of the
number of required images.

Harmonic wake fields were detected in accordance
with a dielectric layer model. For stochastic surface

structures which were produced by sand-blasting
the observed frequencies can be explained assum-
ing an effective dielectric constant in the order of
1.6. In numerical studies made for periodic and rel-
atively large structures an ε of approximately 2 was
predicted, yielding resonance frequencies 20% lower
than measured, whereas with a linear approxima-
tion of the surface structures resonance frequencies
are calculated which are 20% higher than the mea-
sured values. The two different calculation methods
can be regarded as the asymptotic solutions for very
large respectively very shallow surface structures.
The surface structures in the wake field experiment
with an rms height of 10 µm lie in between, the sur-
face structures with an rms height of 6 µm in the
collimator are already well described by the linear
boundary approximation.

The observed time constants in the order of a
few ps of the wakes are a strong hint that the linear
boundary approximation according to Dohlus [12]
is the correct description for surface roughnesses in
the order of micrometers and below. For the un-
dulator vacuum chamber with a measured surface
roughness of approximately 600 nm this model pre-
dicts that the roughness wake is negligible in com-
parison with the resistive wall wakes. Therefore it
can be concluded that for the surface roughness the
preparation of the undulator vacuum chambers as
it was described in [16] is sufficient for future FEL
projects.

It should be remarked that the Dohlus model
was derived for axially symmetric surface struc-
tures only. The transition to an isotropic surface
roughness was done in analogy to the Stupakov
model. Deriving this more rigorously may improve
the agreement between calculations and measure-
ments.

Instead of regarding the wake fields as a para-
sitic effect they may also be utilized in future FEL
projects. They may be used as a radiation source
of their own. Or – due to the variation of the wake
field strength along the bunch – they may be used
to shorten the photon pulse by impeding the FEL
process in parts of the bunches.
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Appendix A

Derivatives

Group velocity

k =
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=
ε

(ε− 1)bδk
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Series expansion of km and kz

According to equation 2.31 km is

km =

√
2ε

(ε− 1)bδ

(
J0(krb)

J2(krb) + J0(krb)
− bδ

2ε
k2

r

)
(A.4)

Inserting the series expansion of the Bessel functions

J0(x) = 1− x2

4
+

x4

64
− x6

2304
. . . (A.5)

J1(x) =
x

2
− x3

16
+

x5

384
− x7

9216
. . . (A.6)

into A.4 taking into account that ξ = b2k2
r

km =

√√√√ 2ε

(ε− 1)bδ

(
1− b2ξ

4 + b4ξ2

64 − b6ξ3

2304 . . .

1− b2ξ
8 + b4ξ2

192 −
b6ξ3

4608 . . .
− δ

2bε
ξ

)
(A.7)

Performing the polynomial division

=

√
2ε

(ε− 1)bδ

(
1− b2ξ

8
− b4ξ2

192
− b4ξ3

4608
. . .− bδ

2ε
ξ

)
(A.8)

With kres =
√

2ε
(ε−1)bδ

= kres

√
1− b2ξ

8
− b4ξ2

192
− b6ξ3

4608
. . .− bδ

2ε
ξ. (A.9)
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The terms with ξ1 are grouped with the abbreviation am = b2

8 + bδ
2ε

= kres

√
1− amξ − b4ξ2

192
− b6ξ3

4608
. . .. (A.10)

Now inserting the expansion

√
1− x = 1− x

2
− x2

8
− x3

16
. . . (A.11)

One find the series for km

x = amξ +
b4

192
ξ2 +

b6

4608
ξ3 . . .

x2 = a2
mξ2 +

amb4

96
ξ3 . . .

x3 = a3
mξ3 . . .

km = kres

(
1− am

2
ξ −

(
a2

m

8
+

b4

384

)
ξ2 −

(
a3

m

16
+

amb4

768
+

b6

9216

)
ξ3 . . .

)
(A.12)

The series for kz is found by solving kz =
√

k2
m − k2

r with

k2
m = k2

res

(
1− amξ − b4ξ2

192
− b6ξ3

4608
. . .

)
(A.13)

⇔ k2
m − k2

r = k2
res

(
1−

(
am +

1
k2

res

)
ξ − b4ξ2

192
− b6ξ3

4608
. . .

)
(A.14)

(A.15)

With the abbreviation

ar = am +
1

k2
res

=
b2

8
+

bδ

2
(A.16)

the expansion of kz is found in analogy to km

kz = kres

(
1− ar

2
ξ −

(
a2

r

8
+

b4

384

)
ξ2 −

(
a3

r

16
+

arb
4

768
+

b6

9216

)
ξ3 . . .

)
(A.17)

Series expansion of km vs kz

With the knowledge from the last section it is now possible to calculate the Taylor series expansion of km(kz).
To do so one has to know the derivatives of the function km(kz)

dkm

dkz
=

dkm

dξ

dξ

dkz
=

dkm

dξ

dkz

dξ

(A.18)

d2km

dk2
z

=
d
dξ

dkm

dξ

dξ

dkz
=

d2km

dξ2
dkz

dξ −
dkm

dξ
d2kz

dξ2

(dkz

dξ )3
(A.19)

d3km

dk3
z

=
d3km

dξ3 (dkz

dξ )2 + 3dkm

dξ (d2kz

dξ2 )2 − 3d2km

dξ2
dkz

dξ
d2kz

dξ2 − dkm

dξ
dkz

dξ
d3kz

dξ3

(dkz

dξ )5
(A.20)

Inserting the coefficients calculated above

dkm

dkz
=

am

ar
(A.21)

d2km

dk2
z

=
8

a3
rkres

(
a2

mar

8
+

b4ar

384
− ama2

r

8
− b4am

384

)
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=
b4 − 48amar

48a3
rk

3
res

(A.22)

d3km

dk3
z

=
32

a5
rk

2
res

[
a2

r

4

(
3a3

m

8
+

amb4

128
+

b6

1536

)
+3

am

2

(
a4

r

16
+

a2
rb

4

384
+

b8

36864

)
−3

ar

2

(
a2

ma2
r

16
+

a2
mb4

768
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a2
rb

4

768
+

b8

36864

)
−amar

4

(
3a3

r

8
+

arb
4

128
+
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1536

)]
=

amarb
4 − 48a2

ma2
r

16a5
rk

4
res

− 48a2
rb

4 − 4arb
6 − b8

768a5
rk

4
res

. (A.23)

The Taylor series then reads

km = kres +
am

ar
(kz − kres) (A.24)

+
b4 − 48 amar

48 a3
rk

2
res

· (kz − kres)2

2kres

+
(

amarb
4 − 48a2

ma2
r

16 a5
rk

2
res

− 48a2
rb

4 − 4arb
6 + b8

768 a5
rk

2
res

)
(kz − kres)3

6k2
res

Or in analogy (with ar and am swapped)

kz = kres +
ar

am
(k − kres) (A.25)

− b4 − 48 amar

48 a3
mk2

res

· (k − kres)2

2kres

−
(

amarb
4 − 48a2

ma2
r

16 a5
mk2
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− 48a2
mb4 − 4amb6 + b8

768 a5
mk2
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)
(k − kres)3

6k2
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