
Beyond the Standard Higgs at the LHC:

present constraints on Little Higgs models

and future prospects

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik,

Informatik und Naturwissenschaften

Fachbereich Physik

der Universität Hamburg

vorgelegt von

Marco Tonini

aus

Bolzano, Italien

Hamburg

2014





Gutachter/in der Dissertation: Dr. Jürgen Reuter

Prof. Dr. Gudrid Moortgat–Pick

Gutachter/in der Disputation: Prof. Dr. Alessandro Mirizzi

Prof. Dr. Peter Schleper

Dr. Frank Tackmann

Datum der Disputation: 13. Oktober 2014

Vorsitzender des Prüfungsausschusses: Prof. Dr. Michael Rübhausen

Vorsitzende des Promotionsausschusses: Prof. Dr. Daniela Pfannkuche

Dekan des Fachbereichs Physik: Prof. Dr. Heinrich Graener





Abstract

This thesis discusses the consistency of different Little Higgs models with the collected

collider data as of the summer of 2013. Moreover, future prospects for possible discov-

eries and mass measurement methods of new physics signals at the foreseen LHC run II

with increased center–of–mass energy are presented. Little Higgs models belong to a class

of extensions of the Standard Higgs model, predicting a strong interaction regime at a

compositeness scale Λ = 4πf above the electroweak scale v. The Higgs boson arises as a

pseudo–Goldstone boson of an approximate global symmetry spontaneously broken at the

scale f . A natural hierarchy between the compositeness and the electroweak scale is in-

troduced by the Collective Symmetry Breaking mechanism: one–loop diagrams generating

the Higgs mass term are forced to be at most logarithmically sensitive to Λ. A naturally

light Higgs boson can thus be accommodated, consistently with a perturbative theory until

a scale of order 10TeV. We have probed the parameter space of three prominent examples

of Little Higgs models, namely the Simplest Little Higgs model, the Littlest Higgs model,

and the Littlest Higgs model with T–parity, against electroweak precision observables and

the collected LHC data concerning both Higgs properties and direct searches for new par-

ticles, with
√
s = 7, 8TeV and up to 25 fb−1 of integrated luminosity. Lower bounds on the

scale f are set, within a certain degree of confidence level, which allow to draw conclusions

on the “naturalness” of the different models. Optimisations of the existing direct searches

setups, assuming a Little Higgs signal, as well as dedicated mass measurement methods

designed for the foreseen LHC runs with
√
s = 13, 14TeV are thoroughly discussed and

proposed in this thesis. Special attention will be dedicated to final states including ei-

ther a large or negligible fraction of missing transverse momentum. In particular, we will

propose a dedicated collider search tailored for the discovery and mass measurement of

a top partner, exploiting jet–substructure techniques and optimised kinematical selection

cuts, as well as a mass measurement method for the topology of semi–invisibly decaying

particles, pair produced from the decay of a resonance.



Zusammenfassung

Die vorliegende Arbeit erörtert die Übereinstimmung verschiedener Little–Higgs–Modelle

mit den bis Sommer 2013 an Teilchenbeschleunigern gesammelten Daten und die Aussicht

auf mögliche Entdeckungen von und Massenbestimmungsmethoden für Anzeichen neuer

Physik durch den geplanten Betrieb des LHC mit einer höheren Schwerpunktsenergie.

Little–Higgs–Modelle gehören zu einer Klasse von Erweiterungen des Standard–(Higgs–)

Modells, die oberhalb der elektroschwachen Skala v ein Regime starker Wechselwirkung

bei einer Skala Λ = 4πf vorhersagt. Das Higgs Boson geht als Pseudo–Goldstone Bo-

son aus einer approximativen globalen Symmetrie hervor, die bei der Skala f spontan

gebrochen wird. Der kollektive Symmetrie–Brechungs–Mechanismus bewirkt dabei eine

natürliche Hierarchie zwischen den Skalen Λ und v: Die Ein–Schleifen–Diagramme, die

den Higgs–Massen–Term generieren, sind zwangsläufig höchstens logarithmisch abhänging

von Λ. Dadurch kann ein natürlicherweise leichtes Higgs Boson innerhalb einer bis zu

einer Skala von der Ordnung 10TeV perturbativen Theorie konsistent verwirklicht werden.

Der Parameterraum von drei prominenten Beispielen von Little–Higgs–Modellen, näm-

lich des Simplest Little Higgs Modells, des Littlest Higgs Modells und des Littlest Higgs

Modells mit T–Parität wurde auf Übereinstimmung mit elektroschwachen Präzisionsob-

servablen und den LHC Daten bezüglich Higgs-Eigenschaften und der direkten Suche nach

neuen Teilchen (bei
√
s = 7, 8TeV und bis zu 25 fb−1 integrierter Luminosität) unter-

sucht. Mit einer festgelegten statistischen Genauigkeit werden untere Grenzen für die Skala

f ermittelt, die es erlauben, die Natürlichkeit der verschiedenen Modelle zu beurteilen.

Ausserdem werden in dieser Arbeit Optimierungsmöglichkeiten für die direkte Suche nach

neuen Teilchen unter Annahme eines Little–Higgs–Signals sowie geeignete Methoden zur

Massenbestimmung, die auf den
√
s = 13, 14TeV Betrieb des LHC zugeschnitten sind,

vorgeschlagen und ausführlich diskutiert. Besondere Aufmerksamkeit wird Endzuständen

mit entweder sehr grossem oder verschwindend geringem Anteil von fehlendem Transversal–

Impuls geschenkt. Insbesondere wird eine eignens für die Entdeckung und Massenbestim-

mung eines Top–Partners optimierte Suche an Beschleunigern, die auf Jet-Substruktur-

Methoden und optimierten kinematischen Selektionsschnitten basiert, sowie eine Methode

zur Massenbestimmung für die Topologie von semi–unsichtbar zerfallenden Teilchen, die

paarweise durch den Zerfall einer Resonanz produziert wurden, vorgeschlagen.
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Chapter 1

Introduction

If I have seen further it is by standing on the shoulders of giants.

Bernard of Chartres

On the shoulders of giants

The story of the Standard Model of particle physics is a long and impressive sequence of

theoretical and experimental milestones, where the effort of scientists in the 20th century

contributed to formulate one of the most remarkable and well–established scientific theories

describing an aspect of Nature, namely the interactions between (massive) elementary

particles.

From the theoretical side, the modern formulation of particle physics has its roots in the

development of quantum field theory in the late 1920s: in particular, a quantum mechanical

formulation compatible with Einstein’s special relativity has been realised thanks to the

work of physicists including Bohr, Dirac, Heisenberg, Pauli and Schrödinger. This led to

the proposal of Quantum Electrodynamics as a relativistic quantum field theory of the

electromagnetic field and fermionic charges, describing many processes at lowest order of

the perturbative expansion in the electromagnetic coupling.

It was however only in the 1950s that the theoretical community was able to provide

predictions of remarkable precision within the framework of Quantum Electrodynamics,

namely only after proposing a consistent treatment of the otherwise puzzling divergences

appearing at higher orders in the aforementioned perturbative expansion. This has been

the great contribution of physicists like Tomonaga, Schwinger, Dyson and Feynman.

In the 1950s, a consistent formulation of Quantum Electrodynamics as a U(1) gauge

theory, and a further generalisation to non–abelian gauge groups like SU(2), has been

1
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developed thanks to the work of e.g. Yang and Mills. However, troubles involving the gen-

eration of mass terms for otherwise massless gauge bosons were still plaguing the proposed

theories.

The discovery by Nambu, Goldstone and others in the early 1960s that spontaneous

symmetry breaking introduces additional scalar degrees of freedom in a quantum field

theory (Nambu–Goldstone bosons), provided the final boost for the modern formulation

of the Standard Model of weak interactions. Indeed in 1964 three different collaborations

independently proposed the generalisation of spontaneous symmetry breaking to relativistic

gauge theories, namely by R. Brout and F. Englert [1], by G. Gouralnik, C. R. Hagen and

T. Kibble [2], and by P. Higgs [3,4]. The crucial idea is that the Nambu–Goldstone bosons

of a spontaneously broken gauge quantum theory become unphysical and take over the role

of the “cancellon” fields in the BRST quartets, while the longitudinal polarisations of the

gauge bosons become now physical. This allows to consistently describe a gauge quantum

theory of massive gauge bosons.

In 1967 Glashow, Salam and Weinberg formulated a model of electroweak interactions

in terms of an SU(2)⊗U(1) gauge theory, unifying the QED electromagnetic theory with

the weak interactions previously described by Fermi’s contact interaction Lagrangian. The

mechanism of spontaneous symmetry breaking allowed for the consistent introduction of

mass terms for weakW±, Z gauge bosons, accounting for the weakness of weak interactions

at low energies, while leaving massless the QED photon. This was indeed achieved by

introducing a scalar field, namely the Higgs field, whose vacuum expectation value triggers

the spontaneous breaking of the electroweak SU(2)⊗U(1) gauge symmetry to the residual

QED U(1)em symmetry. Couplings of the Higgs field to fermion fields, called Yukawa

couplings, furthermore provide a consistent mechanism to generate masses and mixings of

quarks and leptons. It is important to note that the introduction of the Z boson via the

SU(2) ⊗ U(1) gauge symmetry was only a speculative statement at that point, since no

experimental sign of short–distance neutral interactions was observed.

A parallel development was carried out for a quantum description of the spectrum of

different hadrons, especially during the 1960 thanks to the work of e.g. Gell–Mann among

others. This led to the introduction of the concept of quarks as particles transforming as

a vector under a flavour symmetry, as well as being charged under an additional quantum

number in order to be consistent with Pauli’s exclusion principle, namely the colour charge.

The quantum theory of strong interactions was formulated as Quantum Chromodynamics
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with the quarks charged under an SU(3) colour quantum number, and the gluons as the

SU(3) gauge bosons. The discovery of asymptotic freedom by Gross, Wilczek and Politzer

in 1973 then allowed to make precise predictions for the behaviour of QCD at high–energy

experiments, as well as providing a plausible understanding of the confining behaviour of

the strong force at low–energies, where bound states of quarks are created generating the

observed hadronic spectrum.

We also need to mention the crucial work of ’t Hooft and Veltman in 1971, too: by

proving the renormalisability of Yang–Mills theories, as well as introducing the tool of

dimensional regularisation for consistently calculating divergent integrals in quantum field

theory, they provided another step towards the established Standard formulation of the

electroweak and strong interactions.

From the experimental side, spectacular achievements have always been going along

the theoretical steps. Without aiming for a comprehensive list of relevant experimental

investigations of the Standard Model, we have to remember for example the 1956 experi-

ment carried out by the group led by C.–S. Wu proving CP violation in weak interactions;

the measurement proving left–handedness of weak interactions in 1957 by M. Goldhaber;

deep inelastic scattering experiments at SLAC in 1969 and later e+e− experiments at

PETRA and LEP, spectacularly confirming the structure of the strong interactions; the

discovery of neutral weak currents and the determination of the weak mixing angle in 1973

via a neutrino experiment at the Gargamelle bubble chamber at CERN, confirming the

SU(2)⊗ U(1) gauge structure of weak interactions; the charm quark discovery in 1974 at

SLAC/BNL; the discovery of the electroweak W±, Z bosons with the UA1, UA2 detectors

of the CERN Super Proton Synchrotron in 1983, as well as the countless precision exper-

iments at LEP which have explored the nature of the gauge interactions with extremely

high precision. More recently, the confirmation of the top quark in 1995 at the Tevatron

collider has further consolidated the validity of the Standard Model.

One of the few “missing pieces” of the Standard Model, waiting for a direct experimental

confirmation for nearly 50 years and only recently obtained at the LHC, has been ironically

enough the most important one, namely the Higgs boson. The Higgs boson is indeed

the quantum excitation of the Higgs field responsible for the mechanism of electroweak

symmetry breaking: while the spontaneous symmetry breaking was satisfyingly proved by

the discovery of the predicted electroweak gauge bosons, its explicit realisation through an

SU(2)–doublet scalar field had evaded so far the attempts for an experimental confirmation.
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The Large Hadron Collider era

Nowadays, with the advent of the Large Hadron Collider (LHC), a whole new range of

energies is opening up for experimental particle physics, namely the range from the elec-

troweak scale up to the multi–TeV regime. Within the first 2010–2012 run of the LHC

crucial results have been already collected, most notably indeed the discovery of a (light)

Higgs boson with mass mh ∼ 125GeV, publicly announced on the 4th of July 2012 [5, 6].

The discovery of the Higgs boson in the range of mass allowed by precision tests of LEP

can be regarded as another success of the theory. Also remarkable are the (preliminary)

measurements of the Higgs couplings and production modes, which are turning out to be

as predicted by the Standard Model: no significant sign of new phenomena has been ob-

served so far. This is starting to provide severe constraints on possible theories that differ

significantly from the Standard Model at the probed energies.

Despite this enormous success, we know that the Standard Model cannot describe all

phenomena we have observed so far. In particular, the absence of a possible candidate to

describe the Dark Energy and Dark Matter components as observed in various cosmolog-

ical and astrophysical observations, and the observation of neutrino oscillations proving

that neutrinos cannot be massless as in the minimal Standard Model, represent the main

experimental results without a “standard” description.

Furthermore, different theoretical motivations are considered as issues of the actual

Standard Model formulation above the electroweak scale. In particular we can mention: the

flavour puzzle of the Standard Model, namely the absence of a dynamical explanation or a

symmetry argument to describe the huge hierarchy among the particle masses and peculiar

mixing structure; the matter–antimatter asymmetry, since the sources of CP–violation in

the Standard Model (e.g. the phase of the CKM matrix) cannot account for a sufficient

contribution for a primordial matter–antimatter asymmetry; the absence of a consistent

formulation for the inclusion of gravitational interactions in a single unified theory at higher

energies; and last but not least, the fine–tuning problem: a light (fundamental) Higgs

boson implies large accidental cancellations between different and in principle uncorrelated

physical quantities, due to its large radiative sensitivity to possible higher scales in the

theory. In a “natural” theory, large cancellations among uncorrelated terms should either

not be present, or explained by means of symmetry arguments.

The issue of a necessary fine–tuning to account for a light Higgs boson has always been

the main guideline for possible model building of Beyond the Standard Model Physics:
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suitable new phenomena should appear around the TeV energy scale in order to sup-

press the large radiative corrections to the Higgs mass. The most sought–after solution

of the fine–tuning problem at the LHC is Supersymmetry (SUSY). In supersymmetric

extensions, the Higgs mass is protected against high–energy radiative corrections by the

non–renormalisability of an unbroken supersymmetric theory, while at low energies the

Higgs mass gets contributions which are sensitive at most to the SUSY–breaking scale.

Another appealing aspect of minimal SUSY is that it is a weakly coupled theory at any

scale, assuring perturbative calculability for any possible process.

An alternative solution is given by strongly–coupled extensions of the Standard Model.

In this class of models, a new strong interaction sector in assumed at some energy above

the electroweak scale, making the Higgs a composite object above the compositeness scale.

Since it does not make sense to speak of an elementary scalar Higgs boson above the

compositeness scale, at low energies the Higgs mass is thus at most sensitive to the value

of the compositeness scale. In this sense, assuming a strong sector as UV–completion

of the Standard Model prevents dangerous fine–tuning requirements to account for the

observed Higgs mass. In a generic strongly interacting extension of the Standard Model,

the compositeness scale would be however close to the Higgs mass, causing a conflict with

electroweak precision observables and direct searches for heavy resonances.

A consistent way to implement a strong UV–completion of the Standard Model has been

discovered to be represented by models in which the Higgs arises as Goldstone boson of

some spontaneously broken global symmetry of the strong sector. In particular, a branch

of these strongly coupled theories Beyond the Standard Model is represented by Little

Higgs models, with their Collective Symmetry Breaking mechanism generating a “natural”

hierarchy between the compositeness scale and the electroweak scale.

Measurements of the Higgs mass and its couplings represent a completely new source of

constraints which have to be satisfied by possible extensions of the Standard Model. The

more data are collected at the LHC, the more precise these observables can be measured,

increasing their discrimination power. In general, these constraints set lower bounds on

the compositeness scale, similar to usual electroweak constraints. Consequently, Higgs

precision constraints might yield lower bounds on the masses of the additional resonances

predicted by Standard Model extensions.

Analogous constraints can be obtained via direct searches for the aforementioned new

particles. An important observation is that decay chains involving new particles gener-
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ate final states which might be mimicked by different (reducible or irreducible) Standard

Model processes. The latter represent thus possible backgrounds concealing signatures

from Beyond the Standard Model signals: the experimental collaborations usually define

several search strategies (cut–and–count analyses) aiming at reducing the Standard Model

backgrounds while being sensitive to match possible new physics signals. In the best case

scenario for a Beyond the Standard Model point of view, excesses above the Standard

Model background should be observed such that evidence or discovery of new physics

might be claimed. In the null–result scenario, the direct search analysis is completely

consistent with the Standard Model prediction within the experimental uncertainties: in

this case, one could only set lower bounds on the masses and/or couplings of the assumed

signal spectrum, as with Higgs precision measurements.

Even in the absence of discrepancies with respect to Standard Model predictions, it

is of high interest to probe the parameter space of different Beyond the Standard Model

extensions by including the latest LHC data, including Higgs searches and direct searches

for new particles. If naturalness and fine–tuning have been the main motivation to develop

“natural” extensions of the Standard Model, then pushing the scale of new physics (either

compositeness– or SUSY–breaking scale or similar) to higher values should analogously

provide an indication for the validity of these models, even if the inconsistency of a model

through fine–tuning arguments can only be a qualitative statement.

The second run of the LHC with higher center–of–mass energy
√
s = 13, 14TeV and

increased integrated luminosity up to several hundreds of fb−1, will certainly shed further

light on the question of whether naturalness is the paradigm explaining the physics above

the electroweak scale. Also exciting is the possibility to probe the electroweak scale within

a completely different experimental environment, namely with possible future Linear Col-

liders exploiting e+e− collisions at much higher center–of–mass energies than the previous

LEP and LEP2 experiments at CERN. The foreseen International Linear Collider (ILC),

for example, is currently proposed to be built in Japan and performing up to
√
s = 500GeV.

Additional kinematic information from e.g. the fixed and known center–of–mass energy of

the hard–scattering, represents one of the main advantages by developing a lepton collider,

together with many different processes which can be probed thanks to the leptonic ini-

tial state not accessible at hadron colliders. A new era of particle physics experiments is

therefore already quickly approaching.
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Structure of the thesis

The main focus of this thesis is the interpretation of LHC results within the framework of

Little Higgs models, and the proposal of several dedicated analyses at the foreseen LHC

run II. In Chapter 2 we will discuss the main features of the SU(2) ⊗ U(1) electroweak

theory, underlying crucial aspects which led to the introduction of the Higgs boson for the

formulation of a phenomenologically consistent theory. The Higgs Model is introduced,

as well as a discussion of its shortcomings which represent the main motivation to study

possible extensions Beyond the Standard Model. In Chapter 3 we will first present

the general idea of a strong sector as UV–completion of the Standard Model, and then

we will focus on the Collective Symmetry Breaking mechanism introduced in Little Higgs

models as an attempt of realising a natural strongly coupled electroweak theory. A detailed

discussion of Little Higgs models which have been considered in this thesis is also presented.

In Chapter 4 we will present our main results and findings which have been published in

refs. [7–9], on the interpretation of existing experimental data within the context of different

Little Higgs models. In particular, we included in our analysis measurements of electroweak

precision observables, specific Higgs precision observables, and direct searches for new

particles. A final section describes a possible optimisation of LHC direct searches targeting

Little Higgs topologies. In Chapter 5 we turn our attention to future experimental

searches, namely considering the foreseen LHC run with increased center–of–mass energy at
√
s = 13, 14TeV. This part of our results have been published in refs. [10,11]. First, a direct

search for a top partner involving top–tagging techniques and optimised selection cuts is

presented, and the sensitivity of a top partner mass measurement method is discussed.

Secondly, a mass determination method for final states involving large fraction of missing

transverse momentum is presented. The discussed method focuses on the topology where

a semi–invisibly decaying particle with unknown mass is pair produced from the decay of

an s–channel particle. A summary of the results and possible further developments are

finally discussed in Chapter 6.





Chapter 2

The Standard Model and Beyond

This chapter provides an introduction to the Standard Model of Particle Physics, focussing

on the theoretical and experimental evidence which led to the prediction of the Higgs boson.

Particular interest will be given to the issues related to perturbative unitarity violation in

longitudinal vector boson scattering, and the presence of divergent contributions to precisely

measured observables in the electroweak theory without the Higgs boson. We will then

describe the shortcomings of the Standard Model including the Higgs boson, giving thus a

plausible motivation for different Beyond the Standard Model extensions. We will further

present the formalism to describe a quantum theory of Goldstone bosons arising from a

spontaneous symmetry breaking, and the example of the low–energy QCD Lagrangian will

be given. The main topic of the thesis is indeed concerned with strongly interacting Beyond

the Standard Model theories of the Little Higgs type, where the Higgs boson arises as a

(pseudo–) Goldstone boson of a spontaneously broken enlarged symmetry. The formalism

detailed in this chapter will be of use when describing the structure of the models under

consideration. The resources I used for this chapter are refs. [12–17].

2.1 A scalar particle ancestor

Before addressing the concepts that led to the prediction of the Higgs boson, it is worth

briefly describing the theoretical modeling of another existing scalar particle, discovered

long before the Higgs boson, namely the pion. In terms of modern quantum field theory

concepts, the pion is the lightest meson composed of first–generation quarks with mass

of roughly 135MeV and spin 0. The impressive consistency of the low–energy QCD La-

grangian as the correct model describing the experimental properties of the pion might be

9
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indeed considered as a useful guideline to understand the physics of other “light” scalar

particles such as the Higgs boson.

The crucial idea will be to consider the pion as an emerging Goldstone boson from

spontaneous breaking of an approximate global symmetry. In this way, the scalar nature

of the pion as well as its relatively light mass compared to the other observed resonances

will be straightforward to understand and to describe mathematically. We will start in

section 2.1.1 with a rather formal review of Goldstone’s theorem and its natural formalism

in quantum field theory language, namely the Callan–Coleman–Wess–Zumino (CCWZ)

formalism. The pion Lagrangian will arise as the application of the CCWZ formalism

to the case of the spontaneous breaking of the (approximate) SU(3)L ⊗ SU(3)R global

symmetry of QCD. The explicit formulation of the low–energy QCD Lagrangian, as well

as its phenomenological consequences, are discussed in section 2.1.2.

We will eventually use the discussed formalism in the context of Electroweak Symmetry

Breaking (EWSB) in section 2.2.

2.1.1 CCWZ formalism for Goldstone bosons

Consider a classical field theory with n scalar fields φA, A = 1 . . . n, with a Lagrangian

L = Lkin − V (φA) (2.1)

invariant under a Lie group G acting on the scalar fields. Let 〈φA〉 be the minimum-energy

configuration of the potential, and assume there is only a subgroup H of G under which

the vacuum configuration is invariant, i.e. h〈φA〉 = 〈φA〉 ∀ h ∈ H. The global symmetry

group G is said to be spontaneously broken to the subgroupH in the vacuum configuration.

Goldstone’s theorem states that there is a zero eigenvalue of the scalar mass matrix for

each generator of the coset G/H, namely dim(G)− dim(H) zero eigenvalues.

These flat directions of the potential define the so–called vacuum manifold made of

physically equivalent vacua: the excitations along this flat directions are called Goldstone

bosons, and in a quantum interpretation we identify these excitations as massless scalar

particles π(x).

It is therefore useful to introduce a parametrisation of the Goldstone bosons for a

generic spontaneous symmetry breaking pattern G/H. This prescription is given by the

CCWZ formalism [18,19], which we will review in the following.

Let φ(x) be a set of scalar fields transforming linearly under the continuous global
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symmetry group G:

g : φ→ g φ . (2.2)

If T a are the generators of H, and Xa are the generators of the coset G/H, the CCWZ

prescription is to parametrise φ(x) as

φ(x) = ξ(x) 〈φ〉 = eiπ
a(x)·Xa/f 〈φ〉 , (2.3)

where πa(x) are the Goldstone bosons fields, 〈φ〉 is the vacuum expectation value which

realises the breaking G → H, and f is a mass–dimension one parameter which sets the

scale of the symmetry breaking. Notice that the CCWZ definition is independent of the

particular representation of φ under G.

Naïvely one might say that even ξ(x) transforms linearly as φ(x) under the action of

g ∈ G, but this is not generically true: under a global symmetry transformation g, the

matrix ξ(x) is transformed to a new matrix g ξ(x), which is in general no longer in standard

form, namely

g : ξ(x)→ g ξ(x) 6= eiπ
′(x)·Xa/f . (2.4)

In order to have a well-defined linear transformation law for φ(x), one can use the fact

that the vacuum 〈φ〉 is invariant under H transformations, namely

h 〈φ〉 = 〈φ〉 ∀h ∈ H (2.5)

to find a matrix UH ∈ H such that g ξ(x)U †H(g, π) is in standard form:

g φ(x) = g [ξ(x) 〈φ〉] = g ξ(x)U †H(g, π)UH(g, π) 〈φ〉 = g ξ(x)U †H(g, π) 〈φ〉 !
= ξ′(x) 〈φ〉 .

(2.6)

The matrix U †H(g, π) depends on g and ξ: therefore, under a transformation g ∈ G the

Goldstone boson fields transform non-linearly as

g : ξ(x)→ g ξ(x)U †H(g, π) . (2.7)

On the other hand, ξ transforms linearly under transformations of the unbroken group H

h : ξ(x)→ h ξ(x)h−1 . (2.8)

An explicit example will show the main features of the CCWZ parametrisation. Con-

sider a theory of a single scalar field φ where the symmetry breaking pattern SU(N) →
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SU(N − 1) is realised: following the CCWZ prescription, we parametrise φ as

φ = ξ 〈φ〉 = eiπ
aXa/f 〈φ〉 = exp


i

f


π0 π1

. . .
...

π0 πN−1

π∗1 . . . π∗N−1 −(N − 1)π0






0
...

0

1

 , (2.9)

where π̄ = (π1, . . . , πN−1) are complex fields, while π0 is real, representing the 2N − 1

Goldstone bosons of the theory.

We will focus now on the transformation properties of the complex Goldstone boson

fields under the broken and unbroken symmetry groups. Under the unbroken SU(N − 1)

group, φ transforms as

φ
Ta−−→ UN−1 φ =

(
UN−1 e

iπaXa/f U †N−1

)
UN−1 〈φ〉 = e

i/f
(
UN−1 π

aXa U†N−1

)
〈φ〉 (2.10)

where in the second equality we used the fact that the vacuum 〈φ〉 is invariant under

unbroken UN−1 transformations. Therefore the Goldstone bosons transform linearly under

the unbroken SU(N − 1) group:

πaXa Ta−−→ UN−1 π
aXa U †N−1 . (2.11)

Explicitly, a generic SU(N − 1) ⊂ SU(N) transformation can be written as

UN−1 =

 ÛN−1 0

0 1

 (2.12)

and we can see that the N − 1 complex Goldstone bosons transform in the fundamental

representation of SU(N − 1): 0 π̄

π̄† 0

→ UN−1

 0 π̄

π̄† 0

U †N−1 =

 0 ÛN−1π̄

π̄†Û †N−1 0

 . (2.13)

Under a symmetry transformation of the coset G/H we have on the other hand

UG/H e
iπaXa/f 〈φ〉 = exp

i
 0 ᾱ

ᾱ† 0

 exp

 i
f

 0 π̄

π̄† 0

 〈φ〉
= exp

i
 0 ᾱ

ᾱ† 0

 exp

 i
f

 0 π̄

π̄† 0

U †H(α, π)〈φ〉

!
= exp

 i
f

 0 π̄′

π̄′ † 0

 〈φ〉 (2.14)
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defining a non–linear transformation law for the Goldstone bosons, as already discussed in

the general case. One notices that, to linear order in α, the transformation (2.14) reduces

to a shift transformation:

π̄
Xa

−−→ π̄′ = π̄ + ᾱ · f +O(α2) . (2.15)

The prescription to construct the most general effective field theory for only Goldstone

boson degrees of freedom (with all other heavy fields integrated out), is to write down all

Lorentz– and G–invariant terms with increasing number of derivatives of the Goldstone

boson matrix. However, for general G and H, this is not trivial. Consider for example the

two–derivatives term. Naïvely one would write a two–derivatives term using the field ξ(x)

in the parametrisation (2.3), i.e.

f2 Tr |∂µξ|2 , (2.16)

but in general this term is not G–invariant

f2 Tr |∂µξ|2 → f2 Tr
∣∣∣∂µ (g ξ(x)U †(x)

)∣∣∣2 6= f2 Tr |∂µξ|2 (2.17)

because of the x–dependence in U(g, π) ∈ H. Using a bit of algebra one obtains

Tr |∂µξ|2 = Tr
[(
∂µξ
†)ξξ†(∂µξ)] = Tr

[(
ξ†∂µξ

)† (
ξ†∂µξ

)]
. (2.18)

It can be shown that the object ξ†∂µξ decomposes as

ξ†∂µξ = vaµT
a + paµX

a , (2.19)

with the objects vµ ≡ vaµT a and pµ ≡ paµXa transforming as

vµ → U(vµ + ∂µ)U † , (2.20)

pµ → U pµ U
† . (2.21)

The field vµ transforms like a connection, while pµ is suitable to construct a G–invariant

two–derivatives term: the only non-trivial term is given by

L2 = f2 Tr
[
pµp†µ

]
. (2.22)

However the form of pµ and vµ heavily depends on the specific groups G and H.

Everything simplifies if the Lie algebra G/H is a symmetric space. A symmetric space

is a coset space endowed with an involutive automorphism on the generators

T a → T a , Xa → −Xa . (2.23)
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Applying the automorphism to eq. (2.19) we find that pµ is simply given by

pµ =
1

2

(
ξ†∂µξ − ξ∂µξ†

)
. (2.24)

If we then define a field Σ(x) as

Σ(x) = ξξ̃† = e2iπaXa/f , (2.25)

where ξ̃ is the image of ξ under (2.23), we can rewrite the two–derivative term of eq. (2.22)

as

L2 =
f2

4
Tr |∂µΣ|2 , (2.26)

which indeed contains the Goldstone boson kinetic term canonically normalised.

From eq. (2.7) we see that Σ transforms as

Σ→ gΣ g̃†, (2.27)

where g̃ is the image of g under (2.23). Therefore, for symmetric spaces we can construct

a Goldstone boson matrix Σ as an element of G/H but transforming linearly under G.

The most general effective field theory for G/H–Goldstone bosons can then be con-

structed by writing all Lorentz and G–invariant terms involving pµ and vµ, or ∂µΣ in case

of symmetric spaces, with increasing number of derivatives.

However, one should take care to correctly identify the finite cut–off up to which the

theory is valid. A good estimate can be obtained by naïve dimensional analysis, yielding

a relation between the cut–off Λ and the scale f of the G/H spontaneous breaking as [20]

Λ ∼ 4πf . (2.28)

The effective theory should then be trusted only for energies well below this scale.

2.1.2 Low–energy QCD: the Pion Lagrangian

The whole CCWZ machinery acquires relevance once we observe the spectrum of hadrons

with masses in the O(100 MeV) range. The lightest hadronic particles are pseudo-scalar

particles (JP = 0−, i.e. particles with total spin 0 and odd parity), with masses between

130− 550MeV, namely the eight light mesons (π±, π0,K±,K0, K̄0, η). At higher masses,

different spin structures appear, namely the ρ vector meson (JP = 1−) with mass 770MeV,

and the first spin 1/2 particles, the nucleons p and n (JP = 1/2+) with masses of roughly

940MeV.
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There is clearly a mass gap between the eight light mesons and the other resonances.

This observation led to identify the light scalar mesons, in the limit where one neglects

their masses, with Goldstone bosons of a spontaneously broken symmetry described by a

coset G/H, with G containing at least eight more generators than the unbroken group H.

The other particles with masses in the range ofO(1GeV) cannot be identified as (scalar)

Goldstone bosons. However, as long as we consider energies much smaller than O(1GeV),

these massive resonances cannot be excited and therefore produced on–shell. Therefore,

we would expect that an effective theory of light mesons should break down at the scale

O(1GeV).

Let us now consider the low-energy limit of QCD, in order to identify the global symme-

try breaking which could give rise to the eight light mesons as Goldstone bosons. Defining

the flavour vector qi = (u, d, s), we can write the three–flavour SU(3)C-invariant quark

Lagrangian for u, d, s quarks as

LQCD, 3 fl. ⊃ q̄iL i /DqiL + q̄iR i /Dq
i
R +mi(q̄

i
Lq

i
R + q̄iRq

i
L) . (2.29)

It is clear that the mass terms for the quarks mix left– and right–chiralities, but if we set the

three quark masses to zero, a large SU(3)L ⊗ SU(3)R symmetry is restored. Equivalently,

in terms of vector and axial transformations of the flavour multiplet, the chiral symmetry

of the three–flavour Lagrangian can be expressed as SU(3)V ⊗ SU(3)A.

The crucial point now is that we have a tremendous amount of phenomenological and

theoretical evidence (e.g. from lattice QCD) that the SU(3)A axial symmetry is sponta-

neously broken. The origin of this spontaneous symmetry breaking can be found in the

QCD dynamics: at low energies QCD is a strongly coupled theory, with the phenomenon

of confinement allowing the creation of bound states of quarks.

The vacuum expectation value of a quark condensate is therefore not vanishing:

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0 , (2.30)

forcing the chiral symmetry to be spontaneously broken to the vector SU(3)V subgroup

SU(3)L ⊗ SU(3)R → SU(3)V , (2.31)

under which the left– and right– chiralities transform in the same way.

We thus expect eight new Goldstone bosons associated to the symmetry breaking,

which can be identified with the eight light meson fields. SU(3)L ⊗ SU(3)R → SU(3)V is

therefore the symmetry breaking we want to describe using the CCWZ formalism.
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Notice that the coset G/H = SU(3)L⊗SU(3)R/SU(3)V is a symmetric space: the au-

tomorphism defining the symmetric space just interchanges the left– and right– generators.

Following the CCWZ prescription we introduce a Σ field

Σ(x) = e2iπaXa/f · 13×3 , (2.32)

where Xa are SU(3) generators, f is a mass dimension one parameter, and 13×3 is the

three–dimensional identity matrix. The explicit representation of the Goldstone boson

matrix is given by

πaXa =


1√
2
π3 + 1√

6
η8 π+ K+

π− − 1√
2
π3 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 , (2.33)

where we have already identified the different Goldstone boson combinations with the eight

light meson fields.

By identifying the Σ field with the quark condensate, one can infer its quantum numbers

under SU(3)L ⊗ SU(3)R, namely

Σ ∼ (3, 3̄), Σ→ LΣR† . (2.34)

The first non–trivial derivative term is given by eq. (2.26), namely

L2 =
f2

4
Tr |∂µΣ|2 , (2.35)

where the pre–factor f2/4 assures the correct normalisation for the pion kinetic term.

A possible way to identify the value of the dimensionful parameter f is by explicitly

calculating the decay width of the leptonic pion decay π+ → µ+νµ through the W+ gauge

boson. After introducing the SU(2)L ⊗ U(1)Y gauge structure as an embedding in the

SU(3) chiral symmetry

SU(2)L ⊂ SU(3)L , U(1)Y = T3R , (2.36)

one can calculate the decay rate of the aforementioned process. Restoring the pion mass in

the kinematic calculations, and with GF as the Fermi coupling constant, the result reads

Γπ+→µ+νµ =
G2
F

4π
f2m2

µmπ

(
1−

m2
µ

m2
π

)2

. (2.37)

This allows to identify f with the pion decay constant with a measured value of

f ∼ 93MeV . (2.38)
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This is exactly the value we were expecting, since our effective theory is consistent only

for energies below Λ ∼ 4πf ∼ 1GeV, which is indeed the ΛQCD scale.

A final remark which is worth mentioning, is that the SU(2)L ⊗ U(1)Y gauging is

another source of chiral symmetry breaking: loop diagrams involving a photon and the

charged meson propagator are responsible for a (small) contribution to the charged meson

masses, which is indeed consistent with the observed phenomenology.

The phenomenological success of the low–energy description of QCD gives us the

confidence to consider the CCWZ formalism as a good candidate to describe the ef-

fective theory of Goldstone bosons associated to other spontaneous symmetry breaking

patterns. As we will discuss in the next section, the most notable example will be the

SU(2)L ⊗ U(1)Y → U(1)em electroweak symmetry breaking (EWSB).

2.2 Electroweak Chiral Lagrangian

2.2.1 Hidden symmetries and Electroweak Symmetry Breaking

The entire physics discovered in high–energy experiments before the start of the LHC could

be compactly described by the Lagrangian

L = Lint + Lmass ,

Lint = − 1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GµνG

µν +

3∑
j=1

(
Ψ̄

(j)
L i /DΨ

(j)
L + Ψ̄

(j)
R i /DΨ

(j)
R

)
,

Lmass = m2
WW

+
µ W

−µ +
1

2
m2
ZZ

µZµ

−
∑
i,j

(
ū

(i)
L M

u
iju

(j)
R + d̄

(i)
L M

d
ijd

(j)
R + ē

(i)
L M

e
ije

(j)
R + ν̄

(i)
L Mν

ijν
(j)
R

)
+ h.c.

≡ m2
WW

+
µ W

−µ +
1

2
m2
ZZ

µZµ +
∑
i,j

Ψ̄
(i)
L MijΨ

(j)
R . (2.39)

In particular, Ψ is a collective index for the SM fermions and i, j are generation (flavour)

indices. A remarkable property of L is that while all the fundamental interactions among

the particles are symmetric under a local SU(2)L ⊗ U(1)Y symmetry, the observed mass

spectrum is not. In other words, the electroweak SU(2)L ⊗ U(1)Y symmetry is hidden by

spontaneously breaking of the vacuum.

Focussing first on the SU(2)L⊗U(1)Y transformation properties of the fermion fields,

we can show how to restore the gauge invariance to the whole Lagrangian. In particular,

under a SU(2)L transformation defined as U = exp
(
iαa(x) ·σa/2

)
, where σa are the three
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Pauli matrices, the different fermion chiralities transform as

ΨL
SU(2)−−−→ U ΨL , (2.40)

ΨR
SU(2)−−−→ ΨR . (2.41)

On the other hand, under a U(1)Y transformation exp
(
iβ(x) y/2 · 1

)
, which can be ex-

pressed in terms of the electric charge q and the isospin transformations as

exp
(
iβ(x)

y

2
· 1
)

= exp
(
iβ(x) q · 1

)
exp

(
− iβ(x) · σ

3

2

)
≡ exp

(
iβ(x) q · 1

)
V † , (2.42)

the different fermion chiralities transform as

ΨL
U(1)−−−→ exp

(
iβ(x) q · 1

)
V †ΨL (2.43)

ΨR
U(1)−−−→ exp

(
iβ(x) q · 1

)
ΨR . (2.44)

If we now introduce a new field Σ with the SU(2)L ⊗ U(1)Y transformation property

Σ
SM−−→ U ΣV † , (2.45)

it is easy to show that the term Ψ̄L ΣM ΨR is gauge invariant under the full SM group

defined by eq. (2.40), (2.41), (2.43) and eq. (2.44). To obtain the correct fermion masses

as in eq. (2.39), we need to assume that Σ acquires a finite expectation value 〈Σ〉, and the

simplest way is to assume

〈Σ〉 = 1 . (2.46)

The SU(2)L⊗U(1)Y hidden symmetry is therefore now manifest also for the fermion mass

terms, while being spontaneously broken when Σ develops its vacuum expectation value.

The electroweak symmetry is indeed spontaneously broken to the group which leaves the

expectation value 〈Σ〉 invariant under eq. (2.45), namely to the group defined by

U V † = 1 ⇒ U = V . (2.47)

Eq. (2.47) defines a left–over U(1) symmetry of the Lagrangian which is indeed eventually

identified with the QED gauge group.

Turning our attention to the gauge boson masses, we understood from the fermion

sector that we should look for a SU(2)L ⊗ U(1)Y gauge invariant Lagrangian written in

terms of the sigma field Σ. In particular, one introduces a SU(2)L ⊗ U(1)Y covariant

derivative acting on the Σ field

DµΣ = ∂µΣ + ig′ΣBµ
y

2 |q=0
+ igW a

µ

σa
2

Σ = ∂µΣ− ig′ΣBµ
σ3

2
+ igW a

µ

σa
2

Σ . (2.48)
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Once the Σ field develops the expectation value as in eq. (2.46), one can indeed show that

the gauge boson mass terms are generated from the gauge symmetric term

v2

4
Tr
[
DµΣ (DµΣ)†

]
, (2.49)

where v is identified as the electroweak scale.

At this stage we have then defined a manifestly SU(2)L⊗U(1)Y –invariant electroweak

theory, with massive gauge bosons and fermions, described by the Lagrangian

LEWχ = Lint +
v2

4
Tr
[
DµΣ (DµΣ)†

]
−
∑
i,j

Ψ̄
(i)
L ΣMijΨ

(j)
R

− µ2v2

4
Tr
[
Σ†Σ

]
− λv4

16

(
Tr
[
Σ†Σ

])2
+ h.c. . (2.50)

The second line of eq. (2.50) contains additional gauge invariant potential terms for Σ

(without derivatives) up to mass–dimension 4, with properly chosen pre–factors µ, λ. No-

tice that other SU(2)L ⊗ U(1)Y invariant terms involving the Σ field might be included

as well, but for now we will consider only the ones in eq. (2.50). However, the dynamical

generation of the vacuum expectation value of Σ is not specified.

Now the resemblance with the low–energy QCD case is manifest, e.g. eq. (2.35), where

the SU(3)L ⊗ SU(3)R → SU(3)V spontaneous symmetry breaking is substituted by the

EWSB pattern SU(2)L⊗U(1)Y → U(1)em. Therefore we will now make use of the CCWZ

formalism to parametrise the actual form of the sigma field:

Σ(x) = exp

(
i
χa(x)σa

v

)
(2.51)

where χa are the three Goldstone bosons associated with EWSB, and where Σ transforms

under SU(2)L ⊗ U(1)Y as in eq. (2.45).

The Electroweak Chiral Lagrangian of eq. (2.50) describes a manifestly SU(2)L⊗U(1)Y –

invariant field theory of massive and interacting gauge bosons and fermions, and propagat-

ing Goldstone bosons. These Goldstone bosons become the longitudinal polarisations of

the massive EW gauge bosons in the unitarity gauge defined by eq. (2.46). In a different

gauge fixing, the Goldstone boson fields propagate and can be considered as external states

of Green functions. In particular, this is an effective field theory which becomes strongly

coupled if extrapolated up to energies of the order of a cut–off scale Λ ∼ 4πv ∼ 3 TeV,

where one should also include a whole series of operators organised in a chiral expansion

in powers of (∂µ/Λ).
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It should be noted that the symmetry group acts non–linearly on the Goldstone bosons,

namely

χa(x)
SM−−→ χa(x) +

v

2
αa(x)− v

2
δa3β(x) +O

(
χ2
)
. (2.52)

For this reason, the SU(2)L ⊗ U(1)Y is said to be non–linearly realised in this setup.

This “high–scale” version of the low–energy QCD Lagrangian (where the scale f is now

identified with the electroweak scale v) is a prototype of the so–called “Technicolor models”,

where the longitudinal modes of the massive W and Z bosons are the Goldstone modes of

the condensate’s symmetry breaking, called technipions.

However, three crucial problems arise within this minimal setup, which we will describe

in the following, making this theory still inconsistent with the experimental observations.

2.2.2 The need of additional degrees of freedom

The first issue is given by a violation of perturbative unitarity in the elastic scattering of

the Goldstone boson χχ→ χχ at energies E � mW . This is particularly dangerous since,

in the E � mW limit, the aforementioned process corresponds to the physical scattering

of longitudinal W bosons, namely WLWL → WLWL (Equivalence Theorem). Specifically,

the corresponding scattering amplitude grows with E2,

A(χ+χ− → χ+χ−) =
1

v2
(s+ t) (2.53)

due to the derivative interaction among four Goldstone bosons that comes from expanding

the kinetic term of Σ,

LEWχ ⊃
v2

4
Tr
[
∂µΣ (∂µΣ)†

]
=

1

6v2

[
(χa∂µχ

a)2 − χaχa
(
∂µχ

b∂µχb
)]

+
1

2
(∂µχ

a)2 +O
(
χ6
)
. (2.54)

A partial wave projection of the amplitude in eq. (2.53) would eventually reveal a

unitarity violation of the elastic scattering at energies E ∼ 4πv. This issue is therefore

ultimately linked to the non–renormalisability of the Lagrangian.

A second issue is related to some SU(2)L ⊗ U(1)Y –invariant operators that we have
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neglected so far from the Electroweak Chiral Lagrangian (2.50), namely

∆LEWχ = aT
v2

8

(
Tr
[
Σ† (DµΣ)σ3

])2

+ aS Tr
[
Σ†W a

µν

σa

2
ΣBµν σ

3

2

]
+ . . . (2.55)

The LEP experiment sets a strong constraint on both coefficients aT , aS at the weak

scale [21,22], parametrised by the well–known S, T parameters [23,24]

∆T̂ ≡ ∆ε1 = aT (mZ) ,

∆Ŝ ≡ ∆ε3 = g2 aS(mZ) . (2.56)

Figure 2.1: Logarithmically divergent contributions to the S (left diagram) and T (right diagram)

parameters from loops of the electroweak Goldstone bosons.

Even by setting aT , aS to zero at the cut–off scale Λ, namely aT (Λ) = aS(Λ) = 0, their

values run logarithmically at lower scales due to the one–loop exchange of the Goldstone

bosons, as depicted in figure 2.1, generating a large contribution to ε1, 3 as [25]

∆ε1,3(mZ) = ∆ε1,3(Λ) + c1,3 log
Λ2

m2
Z

,

c1 = − 3

16π2

αW(mZ)

cos2 θW
c3 = +

1

12π

αW(mZ)

4 sin2 θW
. (2.57)

This log–dependence in the cut–off Λ therefore generates a huge tension with the LEP fit,

making the minimal Electroweak Chiral Lagrangian inconsistent with the observed data.

At this point it is worth noticing that eq. (2.50) is (approximately) invariant under

a larger global SU(2)L ⊗ SU(2)R symmetry group, under which Σ → UL ΣU †R. This

SU(2)L ⊗ SU(2)R group is spontaneously broken to the diagonal SU(2)c by the vacuum

expectation 〈Σ〉, and explicitly broken by g1 and Mu
ij 6= Md

ij . In the limit of vanishing

g1, the “custodial” SU(2)c implies mW = mZ , which for arbitrary g1 is replaced by the

tree–level relation

ρ ≡
m2
W

m2
Z cos2 θW

= 1 . (2.58)
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The operator proportional to aT in eq. (2.56) is invariant under SU(2)L ⊗ U(1)Y but

explicitly breaks the global SU(2)L ⊗ SU(2)R: one can therefore conclude that any ad-

ditional physics UV –completing the Electroweak Chiral Lagrangian should approximately

preserve the SU(2)c custodial symmetry, or have accidental cancellations, in order to avoid

additional dangerous contributions to ∆T .

Finally, after July 4th 2012, the (minimal) Electroweak Chiral Lagrangian is ruled out

by the discovery of an additional scalar particle which is not predicted by eq. (2.50), namely

the Higgs boson [5, 6].

2.3 Higgs Model

2.3.1 The most general Higgs Lagrangian

The Electroweak Chiral Lagrangian in its minimal setup is inconsistent, but one can clearly

extend it by introducing a (real) scalar field h(x), which is a singlet of the custodial

symmetry SU(2)c. We will call this new scalar field the Higgs boson. Assuming custodial

invariance, the most general chiral Lagrangian at the level of two derivatives is the following:

LEWSB = Lint +
v2

4
Tr
[
DµΣ (DµΣ)†

](
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
− v√

2

∑
i,j

yij Ψ̄
(i)
L Σ Ψ

(j)
R

(
1 + c

h

v
+ . . .

)

− µ2v2

4
Tr
[
Σ†Σ

]
− λv4

16

(
Tr
[
Σ†Σ

])2
+

1

2
(∂µh)2 + V (h) + h.c. (2.59)

where we have expressed the fermion masses in terms of the dimensionless Yukawa couplings

yij , and where V (h) is some potential for h(x), including a corresponding mass term.

Figure 2.2: Logarithmically divergent contributions to the S (left diagram) and T (right diagram)

parameters from loops involving the Higgs boson.

The diagrams involving the exchange of the scalar h(x) give rise to two types of effects.
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First, virtual corrections to the EW parameters ε1, ε3 are generated, see figure 2.2:

∆εi = −ci a2 log
Λ2

m2
h

i = 1, 3 . (2.60)

Combining with eq. (2.57), the net effect in the renormalisation–group running of aT,S(µ)

down to µ = mZ therefore becomes

∆εi = ci log
m2
h

m2
Z

+
(
1− a2

)
ci log

Λ2

m2
h

i = 1, 3 . (2.61)

We define an effective value of mh as

mh

∣∣
eff = mh

(
Λ

mh

)1−a2

(2.62)

such that we can express

∆εi ≡ ci log
m2
h

∣∣
eff

m2
Z

. (2.63)

From this, by setting mt = 173.2 GeV and performing a fit with two degrees of freedom,

one obtains that the LEP data require

23 GeV ≤ mh

∣∣
eff ≤ 280 GeV at 99% CL (2.64)

namely LEP data favor the presence of a light Higgs. In other words, the inclusion of

a (light) Higgs boson makes the Electroweak Chiral Lagrangian consistent with the LEP

results. In particular, for Λ = 1.2 TeV and mh = 120 GeV, the LEP bound implies that

0.63 ≤ a2 ≤ 1.72 . (2.65)

Figure 2.3: Tree–level diagrams for the elastic χ+χ− → χ+χ− scattering within the Higgs La-

grangian of eq. (2.59).

The tree–level exchange of the scalar h(x) in the χχ elastic scattering, see figure 2.3,

yields a new contribution to the amplitude of eq. (2.53), namely

A(χ+χ− → χ+χ−) =
1

v2

[
s− a2 s2

s−m2
h

+ (s↔ t)

]
=
s+ t

v2

(
1− a2

)
+O

(
m2
h

E2

)
, (2.66)
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implying that the loss of unitarity is delayed up to the scale

Λ ∼ 4πv√
|1− a2|

. (2.67)

There are other inelastic processes involving h to check versus unitarity. In particular,

the χχ → hh scattering as depicted in figure 2.4 (equivalent to the process WLWL → hh

at high energies), is described by the amplitude

A
(
χ+χ− → hh

)
=

s

v2

(
b− a2

)
+O

(
m2
h

E2

)
. (2.68)

Figure 2.4: Tree–level diagrams for the χ+χ− → hh scattering within the Higgs Lagrangian of

eq. (2.59).

Secondly, the χχ → ψψ̄ scattering as depicted in figure 2.5 (equivalent to the process

WLWL → ψψ̄ at high energies), generates the following amplitude

A
(
χ+χ− → ψ̄ ψ

)
=
M
√
s

v2
(1− ac) +O

(
m2
h

E2

)
. (2.69)

Figure 2.5: Tree–level diagrams for the elastic χ+χ− → ψψ̄ scattering within the Higgs Lagrangian

of eq. (2.59).

Both amplitudes of eq. (2.68) and eq. (2.69) therefore violate perturbative unitarity at

a high scale, too, since they are explicitly proportional to
√
s. The actual value of the scale

where the loss of perturbative unitarity is observed, depends on the particular values of the

a, b, c coefficients. This means that specific values of the Higgs couplings might ameliorate

the unitarity issue, by lifting the scale of the strong sector regime.
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2.3.2 The renormalisable Higgs Model

At this point we can notice that by tuning the Higgs couplings to

a = b = c = 1 (2.70)

the theory can be made perturbative up to arbitrary scales, see eq. (2.67), (2.68), (2.69),

and that the logarithmic divergences in aT,S(µ) exactly cancel out, see eq. (2.61), making

the contribution to the electroweak parameters finite. Both observations are intimately

connected to the fact that a theory with a = b = c = 1 is renormalisable. The conditions

given in eq. (2.70) indeed match the Electroweak Chiral Lagrangian onto the original

Standard Model formulation of the EWSB Lagrangian (from now on simply the Higgs

model), as we will show in the following.

In the Electroweak Chiral Lagrangian, the explicit parametrisation of the Goldstone

bosons was given by the non–linear embedding defined in eq. (2.51) using the CCWZ for-

malism. However, the correct pattern of EWSB does not depend on the explicit parametri-

sation of the Σ field: we could therefore choose a different parametrisation for the Goldstone

bosons. In particular, for the Higgs model defined by eq. (2.70) one can choose a linear

embedding of the Goldstone bosons, which in the basis of the Pauli matrices σa can be

expressed as

Σ(x) = 1− i

v
χa(x)σa . (2.71)

We can now further expand eq. (2.71) by including the scalar Higgs boson as quantum

excitation around the vacuum expectation value of Σ:

Σ(x)→
(

1 +
h(x)

v

)
1− i

v
χa(x)σa =

1

v

 v + h− iχ3 −χ2 − iχ1

χ2 − iχ1 v + h+ iχ3


≡
√

2

v

(
H̃, H

)
. (2.72)

In the last step we have rewritten the 2× 2 matrix as a bi–doublet in terms of the SU(2)L

complex doublet H

H =
1√
2

 −χ2 − iχ1

v + h+ iχ3

 , H̃ = −i σ2H
∗ =

1√
2

 v + h− iχ3

χ2 − iχ1

 . (2.73)
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With this identification, eq. (2.59) simplifies to the well–known form

LH = Lint +
∣∣DµH

∣∣2
−
∑
i,j

yij

(
Ψ̄

(i)
L H Ψ

(j)
R + Ψ̄

(i)
L H̃ Ψ

(j)
R

)
− µ2H†H − λ

(
H†H

)2
+ h.c.

with DµH =

(
∂µ − igW a

µσa −
i

2
g′Bµ

)
H , (2.74)

which is now manifestly renormalisable. The unitarity of the Higgs model and the absence

of divergences, other than those corresponding to a renormalisation of the Higgs wave

function and gauge kinetic terms, can therefore be traced back to its renormalisability. In

terms of H, UV–contributions to ε1,3 are indeed now parametrised only by dimension–6

operators:

ε1 ↔
(
H†DµH

)2
, ε3 ↔

(
H†WµνB

µνH
)
. (2.75)

Finally, if we expand the potential terms for the Higgs doublet of eq. (2.74) in unitarity

gauge, we can extract the relations for the mass and self–couplings of the new scalar Higgs

field h(x) after minimising the corresponding “Mexican–hat” potential, namely

LH ⊃
1

2
m2
h h

2 −
m2
h

2 v
h3 −

m2
h

8 v2
h4

with m2
h = 2λv2 = −2µ2 . (2.76)

2.4 Shortcomings of the Standard Model

We have seen that explicit mass terms for vector bosons and fermions are forbidden by the

SU(2)L⊗U(1)Y gauge symmetry. Since they have to vanish if the symmetry is unbroken,

the mass terms have to be proportional to the vacuum expectation value v. This is true at

any order in perturbation theory, because the renormalisation procedure preserves all the

symmetries. Therefore, the size of any loop correction to fermion and gauge boson masses

is controlled by their tree–level values.

This property is not shared by scalar particles. In particular, the mass of the Higgs

boson mh is an arbitrary parameter of the SM, not protected by any approximate symme-

try. This means that the Higgs mass is additively renormalised, namely getting radiative

corrections proportional to the mass of any particle it couples to.

Suppose now that the SM is a complete description of Nature, with no new phenomena

appearing at any higher energy scale.
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Figure 2.6: One–loop corrections to the Higgs two–point function involving SM particles.

The β–function for the running Higgs mass, considering only the one–loop corrections

generated by the diagrams in figure 2.6, is given by

βm2
h

=
3m2

h

8π2

(
2λ+ y2

t −
3g2

4
− g′2

4

)
, (2.77)

where λ is the Higgs–self coupling, yt is the Yukawa coupling of the top quark, and g, g′

are the SU(2)L ⊗ U(1)Y gauge couplings. There would be no reason to set the input for

the renormalisation group running at some arbitrary high scale other than the electroweak

scale: the renormalised value of the Higgs mass at the electroweak scale would not be

predicted, but determined by the experiments in a fully “natural” way. In other words,

there would not be any potentially “dangerous” sensitivity of the Higgs mass to other high

scales.

However, the SM is usually considered as an effective theory valid within a limited

energy range: at least at the Planck–scale quantum gravity effects should become rele-

vant, but there are many other hints of new physics at high energies as mentioned in the

introduction.

Suppose now the presence of some new–physics energy scale above the electroweak

scale, ΛNP > v. If the Higgs boson is coupled to the new–physics sector, then its mass gets

a correction from loops of the new heavy particles, and these corrections are quadratic in

their mass M ∼ ΛNP. This is considered as a problem for a UV completion of the SM in

which the Higgs mass is a predictable quantity. Considering for example a Dirac fermion

with mass M and Yukawa coupling y, the one–loop β–function of the running Higgs mass

would be

βm2
h
⊃ y

(4π)2

(
m2
h − 6M2

)
. (2.78)

The renormalisation group running thus generates a mass term m2
h ∼M2. The boundary

conditions for the renormalisation group equation should naturally be fixed at the high scale

ΛNP, where one imagines some UV–completion to determine the masses and couplings. The

running Higgs mass at the electroweak scale, where one should match the renormalised
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value with the experimental value, then reads

m2
h (ΛSM) ∼ m2

h (ΛNP)− cΛ2
NP log

ΛNP

ΛSM
, (2.79)

where c is a numerical factor including the different coupling constants. If the scale ΛNP

is much higher than mh, then the two contributions in (2.79) have to balance each other

out with very high accuracy in order to generate a Higgs boson mass much smaller than

ΛNP. This non–natural sensitivity of the Higgs boson mass to radiative corrections from

higher scales is commonly referred as the hierarchy or fine–tuning problem of the SM. An

accidental cancellation between the initial conditionm2
h (ΛNP) and the quantum corrections

of the order of at most one percent, would imply that the scale of new physics cannot be

higher than O(TeV).

Clearly, one possibility is to ignore the hierarchy problem and accept a fine–tuned SM:

in this case one has to find some other guideline other than naturalness to go beyond the

SM. If one insists on naturalness, still viewing the SM as an effective theory, then one has

to conclude that new Beyond the Standard Model (BSM) physics has to appear at the

TeV scale. The models that describe these phenomena can be divided into two classes,

depending on whether they are strongly coupled or weakly coupled at higher scales.

Among the weakly interacting theories beyond the SM, the main candidate is Super-

symmetry. The non–renormalisation theorem causes all quadratic divergences to cancel

out exactly above the scale of supersymmetry–breaking Λsoft. The main corrections to the

Higgs mass still come from SM–loops, but proportional to only the cut–off scale Λ2
soft.

In strongly coupled models, the Higgs boson is a resonance of some new strongly in-

teracting sector. Since it makes no sense to speak about the Higgs particle above its

compositeness scale Λcomp, it is automatically protected from Planck–scale radiative cor-

rections. The Higgs mass is therefore sensitive at most to Λ2
comp.

The main topic of the thesis is concerned with strongly interacting Beyond the Stan-

dard Model theories, in particular of the Little Higgs type. For this reason, in the next

chapters we will focus only on the strongly coupled UV–completion of the SM, assuming

the naturalness of EWSB as a guiding principle for model building of TeV–scale physics.



Chapter 3

The Little Higgs model setup

This chapter describes the relevant ideas of a class strongly coupled models Beyond the

Standard Model, namely Little Higgs models. We will first discuss how the Higgs boson

can arise as a (pseudo–) Goldstone boson of an enlarged global symmetry, and then show

how the Collective Symmetry Breaking mechanism of Little Higgs models prevents the ap-

pearance of a dangerous quadratic–sensitivity to the compositeness scale at one–loop in the

Higgs potential. The main focus of the chapter will be devoted to phenomenological conse-

quences of the most common implementations of the Little Higgs ideas. The resources used

for this chapter are refs. [15,17,26–40].

3.1 The Higgs as a pseudo–Goldstone boson

Technicolor–like models without a light Higgs scalar as the Electroweak Chiral Lagrangian

(2.50) described in the previous chapter, where the electroweak symmetry is broken dy-

namically in the same way as the SU(3)L⊗ SU(3)R chiral symmetry in low–energy QCD,

can be safely said to be ruled out by the direct observation of a Higgs–like scalar particle

by the ATLAS and CMS collaborations [5, 6].

The radiative instability of the dimension–two operator H†H in the renormalisable

Higgs Model (2.74) however gives us the confidence to look for Beyond the Standard Model

physics appearing at the TeV–scale, corroborated by the fact that perturbative unitarity

issues and electroweak precision constraints can be alleviated by a light Higgs boson even

with non–standard couplings (2.59).

Between the weekly coupled and the strongly coupled extension of the SM, let us focus

for now on the latter, namely assuming that the Higgs boson is part of a composite sector.

29
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This means that its couplings differ from the ones of a standard SU(2)L doublet, and above

the compositeness scale Λ = 4πf the theory becomes strongly interacting. In general,

unless some mechanism is generating a separation of scales, one would expect the scale f

to coincide with the electroweak scale v, and the vector and fermion resonances appearing

below this energy scale to have masses comparable with the Higgs mass. However, direct

searches for new particles at the LHC have shown neither signs of new fermions up to

masses of 600− 800GeV [41–44], nor signs of new vector bosons up to a few TeV [45,46].

The Higgs boson has therefore to be much lighter than other possible states of the

composite sector. This situation has still a convincing connection with the low–energy

QCD description, where the pions arise as a set of scalar states naturally lighter than the

compositeness scale ΛQCD, with all other resonances at higher masses. This is possible

because the pions are the Goldstone bosons associated with the spontaneous breaking of

the approximate SU(3)L ⊗ SU(3)R chiral symmetry of QCD. One can assume that also

the Higgs is a (pseudo–) Goldstone boson associated to a global symmetry breaking of the

strong sector, not necessarily the full electroweak group as in Technicolor models.

If we want to construct a viable EWSB theory including the Higgs as Goldstone boson

of a G/H spontaneous symmetry breaking, a few precautions are necessary. In particular,

at least four Goldstone bosons are needed to reproduce the SU(2)L Higgs doublet, and

the symmetry group G has to embed the SM gauge group SU(2)L ⊗ U(1)Y ≡ GSM, since

the Higgs must couple to the gauge fields. Notice that if GSM ⊂ H, then EWSB cannot

be triggered at tree–level, since H is an unbroken symmetry group. On the other hand, if

a misalignment between GSM and H is generated, as it will be at loop–level, the G → H

breaking triggers EWSB as well. Finally, one usually needs to impose that the strong sector

respects a custodial SU(2)L ⊗ SU(2)R symmetry in order to avoid large contributions to

the T–parameter.

These are the basic requirements to construct a generic Composite Higgs model, and we

can depict its symmetry structure as in figure 3.1. The minimal group satisfying these re-

quirements is SO(5)⊗U(1)X , see [13] for a review. In this minimal model there are exactly

four Goldstone bosons, namely only the Higgs doublet, living in the coset SO(5)/SO(4).

The extra U(1)X group is needed in order to correctly assign the hypercharge for all the

SM fields, with Y = T3R +X, and does not take part in the breaking.

However, if the symmetry group G would be an exact symmetry, the Higgs potential

would vanish because of the shift symmetry acting on it. As a consequence, one would have
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Figure 3.1: Diagrammatic representation of the global/gauge structure of generic G/H Composite

Higgs models. At tree–level (diagram on the left), the SM gauge group GSM ⊂ H remains unbroken.

The Higgs doublet is identified among the G/H massless Goldstone bosons. A misalignment is

generated at one–loop level from explicit breaking of the global symmetry (diagram on the right),

such that a potential for the Higgs is introduced and EWSB is triggered, with only the U(1)q as

remaining unbroken gauge subgroup. The SM gauge bosons acquire a mass of order v.

no EWSB and a perfectly massless Higgs boson. For this reason, the global symmetryG has

to be only approximate, making the Higgs a massive pseudo–Goldstone boson. Its explicit

breaking comes from the gauging of only a subgroup of G and by symmetry–breaking

Yukawa couplings: the effective potential of the Higgs field, which will not respect the

full symmetry group G, is therefore generated through radiative corrections involving SM

fields, e.g. vector bosons and top quark.

In a model with generic order one parameters, the EW scale would be again expected

to be generated at the same order of the only other scale in the theory, namely the scale

f , up to some model–dependent factor. In order to have a significant splitting between f

and the EW scale, a certain amount of fine–tuning between different terms in the potential

has to be introduced. This is the so–called little hierarchy problem.

A Little Higgs model can be generically considered as a Composite Higgs model, in the

sense that the Higgs boson arises as a pseudo–Goldstone boson of an approximate global

symmetry of a strong sector. The additional structure introduced in Little Higgs models

tries to overcome the issue of a natural separation between the electroweak scale v and the

compositeness scale Λ, namely forcing the electroweak symmetry to be broken collectively.

Heuristically, one needs to explicitly break two different symmetries to allow for mass

and potential terms for the Higgs: breaking only one of these symmetries leaves the respec-

tive other one as a global symmetry under which the Higgs field transforms non–linearly.

Because the original global symmetry group is explicitly broken, the Higgs still develops

a quadratically-sensitive mass term in the compositeness scale, due to gauge boson or
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fermion loops, but with a two–loop suppression factor. Larger global symmetry groups are

therefore required, such that residual symmetries generate a Higgs potential of the form

V (h) ∼

 small

w.r.t. f2

 · h†h+O(1) · |h†h|2 . (3.1)

We will discuss now how a shift–symmetry associated to additional pseudo–Goldstone

bosons can forbid h†h while allowing |h†h|2, as exploited in the Collective Symmetry Break-

ing mechanism.

3.2 Collective Symmetry Breaking

Little Higgs theories [47, 48] avoid quadratic divergences in the Higgs potential at one–

loop level through the Collective Symmetry Breaking (CSB) mechanism. This mechanism

has to be appropriately introduced for each Higgs–coupling contributing with a quadratic

sensitivity to the Higgs mass, namely into the scalar–, gauge– and fermion–sectors.

3.2.1 Generation of a collective quartic

Let us start with the collective generation of the quartic coupling of the Higgs. Assuming

that the Higgs is a pseudo–Goldstone boson, we have seen that the shift symmetry

h→ h+ ε (3.2)

forbids any potential for the Higgs. But suppose there is an additional degree of freedom

φ, such that the scalar potential consists of two operators (included by hand or induced

radiatively as in the Coleman–Weinberg potential):

V ⊃ λ1 f
2

∣∣∣∣φ+
h2

f

∣∣∣∣2 + λ2 f
2

∣∣∣∣φ− h2

f

∣∣∣∣2 . (3.3)

We see that this potential generates a mass term for φ, namely

mφ = f
√
λ1 + λ2 (3.4)

but the question is whether a viable potential for h can be generated as well. One should

notice that each term in the scalar potential would be invariant under the Higgs shift–

symmetry of eq. (3.2) by requiring φ to transform respectively as

λ1 :


h→ h+ ε

φ→ φ− hε+ εh

f

or λ2 :


h→ h+ ε

φ→ φ+
hε+ εh

f
.

(3.5)
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Furthermore, one can observe that, taken alone, neither λi term would generate a physical

Higgs quartic, since each individual quartic could be removed by a field redefinition

λ1 : φ+ ≡ φ+
h2

f
λ2 : φ− ≡ φ−

h2

f
. (3.6)

However, both shift symmetries of φ defined in eq. (3.5) cannot be simultaneously required,

and collectively the two operators yield a Higgs quartic term after φ is integrated out:

Veff ⊃
4λ1λ2

λ1 + λ2
h4 ≡ λeff h4 . (3.7)

For this reason, only diagrams involving both couplings λ1, λ2 can contribute to radia-

tively generate a Higgs–mass, with a mild logarithmic sensitivity to the scale Λ:

∆m2
h ∼

1

16π2
λeffm

2
φ log

Λ2

m2
φ

. (3.8)

Therefore, the resulting potential allows for a parametric separation between the elec-

troweak scale v and the scale f , as in (3.1). The degree(s) of freedom φ responsible for

canceling quadratically–divergent contributions to the Higgs mass from Higgs–self interac-

tion diagrams are called quarticons (or generically cancellons).

The quantum numbers of the quarticon field φ ∼ h2 are not specified at this point.

The possible SU(2)L representations for h2 are determined by

2⊗ 2 = 3S ⊗ 1A 2⊗ 2∗ = 3⊗ 1 , (3.9)

where the S/A subscript refers to the representation being symmetric or antisymmetric.

In a one–Higgs doublet model, the 1A representation vanishes, and the quarticon can be a

complex triplet, a real triplet, or a real singlet carrying no charges:

hihj → φij (3S) (3.10)

h†σah→ φa (3) (3.11)

h†h→ η (1) (3.12)

A complex triplet is used in the SU(5)/SO(5) Littlest Higgs [49], a real triplet is present

in the SO(9)/(SO(5) ⊗ SO(4)) model [50], while the [SU(3) ⊗ U(1)]2/[SU(2) ⊗ U(1)]2

Simplest Little Higgs [51,52] predicts a real singlet scalar.

However, a real singlet field η is potentially “dangerous”: having no non–trivial quantum

numbers, a quadratically divergent η tadpole cannot be prevented by the shift symmetries,

and is necessarily accompanied by a quadratically–divergent Higgs mass at one–loop. A
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certain amount of fine–tuning or a non–minimal setup are therefore required in models

predicting dangerous singlets. Furthermore, triplet scalars usually get vacuum expectation

values after EWSB, inducing a large correction to the T–parameter. For this reason, one–

Higgs doublet models with triplet scalars require a discrete symmetry named T–parity in

order to forbid a triplet tadpole [53–55], or extending G such that H includes a custodial

symmetry as in the already mentioned ref. [50]. The latter model is however not viable,

since it includes a dangerous singlet among the quarticon fields.

Alternatively, G/H could be expanded to include a second Higgs doublet: this permits

non–dangerous (real and complex) singlet scalars, alleviating the issue of triplet vevs with-

out introducing T–parity. If h1 and h2 carry the same hypercharge, the quarticon can be

a complex singlet with or without hypercharge:

hi1h
j
2εij → φ (1A) (3.13)

h†1h2 → φ (1) . (3.14)

It should be noted that only the hypercharge neutral complex quarticon (3.14) can generate

a viable quartic potential, and has been used in the SU(6)/Sp(6) antisymmetric condensate

model [56]. As mentioned before, the quarticon can be a real singlet, too, as long as an

extra Z2 symmetry is included, forbidding a φ tadpole

Re
[
h†1h2

]
→ φ (1) , (3.15)

as exploited in the SO(6)2/SO(6) Bestest Little Higgs [57].

The recent SO(10)/SO(5)2 model [28] is finally an example of a two–Higgs doublet

model predicting a scalar triplet among the quarticon fields, with a built–in custodial

symmetry to prevent strong constraints from electroweak precision measurements.

3.2.2 Gauge collective interactions

We will present now a pedagogical example on how to introduce gauge and fermion interac-

tions without introducing quadratic sensitivity to compositeness scale Λ at one–loop. The

(toy) model we are going to consider realises the spontaneous symmetry breaking pattern

SU(3)/SU(2).

Following the CCWZ prescription, we can write the Goldstone boson matrix as

π ≡ πaXa =


−
√

2
3 η h

−
√

2
3 η

h† 2
√

2
3 η

 (3.16)
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with Σ = exp (iπ/f) (0, 0, 1)T . At the two–derivative level, the Lagrangian of our low–

energy theory can be written as usual as L2 = f2/4Tr [∂µΣ]. For simplicity, in the following

we will not consider the quarticon field η in the Goldstone boson matrix (3.16).

Let us start with the gauge interactions. At first, two options seem available, either

gauging only the SU(2) subgroup within the global SU(3) symmetry, or gauging the whole

SU(3) group. The SU(2)–gauging however is an explicit breaking of the global symmetry

structure, and we expect an introduction of a quadratically–divergent contribution to the

Higgs mass, as in the SM. To do so, we promote ∂µ to a covariant derivative

∂µΣ→
(
∂µ − igW a

µ

σa

2

)
Σ ≡ (∂µ − igWµ) Σ , (3.17)

where σa are the SU(2) ⊂ SU(3) generators. Using the formalism we have introduced

in section A.1, namely eq. (A.1.13), we can write the quadratic contribution to the scalar

effective potential from the gauge–boson interaction at one–loop as

V1–loop(Σ) ⊃ 3

64π2
Λ2 Tr

[
Mg(Σ)†Mg(Σ)

]
=

3

64π2
Λ2 Tr


∣∣∣∣∣∣−ig2

 σa
Σ

∣∣∣∣∣∣
2


∼ g2Λ2 Tr

Σ†

 1
Σ

 = g2Λ2 h†h+ . . . (3.18)

which generates a non–vanishing quadratic–divergent contribution to the Higgs mass.

Figure 3.2: Quadratically divergent one–loop contributions to the Coleman–Weinberg scalar po-

tential from EW gauging.

On the other hand, if we gauge the entire SU(3) group, we would use the covariant

derivative

∂µΣ→
(
∂µ − ig Gaµ

λa

2

)
Σ ≡ (∂µ − ig Gµ) Σ , (3.19)

where λa are the SU(3) generators. We would thus obtain the following Λ2–contribution

V1–loop(Σ) ⊃ 3

64π2
Λ2 Tr

[
Mg(Σ)†Mg(Σ)

]
=

3

64π2
Λ2 Tr

[∣∣∣∣−igλa2 Σ

∣∣∣∣2
]

∼ g2Λ2 Tr
[
Σ† 1 Σ

]
= g2Λ2 f2 + . . . (3.20)
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which is independent on h†h. In this case, all massless Goldstone bosons have been ab-

sorbed to become the longitudinal degrees of freedom of the massive SU(3) gauge bosons.

Therefore, if we include only SU(2) covariant derivatives we re–introduce the SM quadratic

divergence, while gauging the full SU(3) turns the Higgs into a Goldstone boson which

gives mass of order f to the heavy gauge bosons: what we need is clearly a way to mix an

extended SU(3) gauge sector and a global symmetry where the Goldstone modes are not

eaten.

As a third attempt, we finally introduce the gauge couplings in a collective manner.

First we introduce two copies of the sigma field, Σj=1,2, assuming for simplicity aligned

vacuum expectation values (f1 = f2 ≡ f). The global symmetry is therefore extended to

SU(3)1 ⊗ SU(3)2. We then gauge the vector (diagonal) subgroup SU(3)V ⊂ SU(3)1 ⊗

SU(3)2, namely introducing one set of SU(3) gauge bosons and fixing g1 = g2 ≡ g:

Σj = exp

− i
f

 h

h†




0

0

1

 j = 1, 2

L2 =
f2

4
Tr |Dµ Σ1|2 +

f2

4
Tr |Dµ Σ2|2

with Dµ Σj =

(
∂µ − ig Gaµ

λa

2

)
Σj . (3.21)

Our theory consists now of two sigma fields, each representing the spontaneous breaking

of an SU(3)i global symmetry to SU(2)i, the coset being thus [SU(3)]2 / [SU(2)]2. As

before, taken alone both |Dµ Σj |2 terms do not generate a quadratic–divergent contribution

to the Higgs mass at one–loop level as in eq. (3.20):

V1–loop(Σ1,2) ∼ 2 g2Λ2 f2 + . . . (3.22)

Figure 3.3: Quadratic and logarithmically divergent one–loop contributions to the Coleman–

Weinberg scalar potential from EW gauging within the Little Higgs toy model.

However, other diagrams do contribute to the radiative generation of a Higgs potential,

as in figure 3.3, where both Σ1 and Σ2 are directly coupled through a gauge–boson loop.



3.2. Collective Symmetry Breaking 37

By counting powers of momentum, we can guess that the third diagram will only be log–

divergent, as one could check by an explicit calculation:

V1–loop(Σ1,2) ⊃ − 3g4

64π2
Tr
[∣∣∣Σ†1 Σ2

∣∣∣2] log
Λ2

µ2
+ . . . ∼ g4f2 h†h log

Λ2

µ2
+ . . . (3.23)

where we have used

Σ†1 Σ2 = f2 − 2h†h+
2

3f2

(
h†h
)2

+O
(

1

f2

)
. (3.24)

The absence of one–loop quadratic divergences is precisely the aim of the CSB mech-

anism, which we will understand now using symmetry arguments. First of all, one should

notice that the generation of a mass term for the Higgs is possible because we have intro-

duced an explicit breaking of the SU(3)1 ⊗ SU(3)2 global symmetry by gauging only its

diagonal subgroup as in eq. (3.21). Without this explicit breaking, the shift symmetries

would have prevented its generation. The two SU(3)1⊗SU(3)2 symmetries are indeed bro-

ken to the diagonal group SU(3)V, as one can directly see by checking that the Lagrangian

is now invariant only if Σ1,2 transform in the same way, namely

L2 ∼ |g GµΣ1|2 + |g GµΣ2|2
SU(3)2−−−−→ g2

∣∣∣(UGµU †) (U1Σ1)
∣∣∣2 + g2

∣∣∣(UGµU †) (U2Σ2)
∣∣∣2

!
= L2 ⇐⇒ U1 = U2 = U ≡ UV . (3.25)

We then effectively have only one exact SU(3)V global symmetry to start with, and

only one set of massless Goldstone bosons arises. On the other hand, the axial SU(3)A

symmetry is explicitly broken in the gauging process, being thus only an approximate

symmetry of the original Lagrangian: the corresponding Goldstone bosons get a mass

term from loops involving gauge bosons, namely from the SU(3)A–breaking operator of

eq. (3.23).

If we would set the gauge coupling of Σ2 to zero, we would restore the two independent

SU(3)1 ⊗ SU(3)2 symmetries, one acting on (Σ1, Gµ), and the other acting on Σ2. As a

result, we would have again two spontaneously broken exact SU(3)i groups with a total

number of ten massless Goldstone bosons, of which five are eaten via the gauging of SU(3)1,

and no mass term radiatively generated for the other five. Similarly, no mass term would

be generated by setting the gauge coupling of Σ1 to zero. Only in the presence of gauge

couplings for both Σ1 and Σ2, the SU(3)1 ⊗ SU(3)2 global symmetry is explicitly broken

to SU(3)V, and only then the pseudo–Goldstone boson Higgs can develop a potential.

Therefore, any diagram which contributes to the Higgs mass has to involve both gauge

couplings, being only log–sensitive in the compositeness scale.
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Figure 3.4: Diagrammatic representation of the global/gauge structure of Little Higgs models.

At tree–level (diagram on the left), a set of F \ H gauge bosons obtain a mass of order f from

the G/H spontaneous symmetry breaking, while the SM gauge group GSM ⊂ H remains unbroken.

The Higgs doublet is identified among the G/H massless Goldstone bosons. At one–loop (diagram

on the right), a further misalignment is generated from explicit breaking of the global symmetry,

such that a potential for the Higgs is introduced and EWSB gets triggered, with only the U(1)q as

remaining unbroken gauge subgroup. The SM gauge bosons acquire a mass of order v.

Returning to a generic G/H setup, we have seen that in Little Higgs models the gauge

group should not be a subgroup of the unbroken H group, because additional cancellon

gauge fields with mass of order f are required to be present in the theory. A diagrammatic

view of the global/gauge structure of Little Higgs models can be seen in figure 3.4. On

the other hand, in generic Composite Models where no CSB mechanism is implemented,

the gauge group of the theory might as well be identified with the SM gauge group and

spontaneously broken only at loop–level, see figure 3.1. No additional cancellon gauge

fields are indeed introduced, and the SM gauge bosons acquire a mass of order v at the

price of additional fine–tuning.

3.2.3 Top–partner as a cancellon field

The other numerically most significant quadratic divergence stems from the top quark

loop: at least the top Yukawa coupling should therefore be introduced following the CSB

prescription, namely introducing SU(3) symmetries into the Yukawa couplings which are

collectively broken. To do so, we enlarge the third generation quark doublet into a triplet,

adding a new left–handed fermion T with charge 2/3 which will mix with the SM top

Ψ =


t

b

T

 ≡
 Q

T

 . (3.26)
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To construct appropriate Yukawa couplings, we need to include the corresponding right–

handed partners tc1, bc, tc2, where tc2 is the Dirac partner of T , so that we can write

LY = λ1 Σ†1Ψ tc1 + λ2 Σ†2Ψ tc2 = (tc1, t
c
2)

 λ1Σ†1

λ2Σ†2

Ψ

⊃ λf
(

1− h†h

2f

)
T cT + λh†Qtc + . . . (3.27)

For simplicity we have set λ1 = λ2 ≡ λ/
√

2, and identified the mass eigenstates

T c =
tc2 + tc1√

2
, tc =

tc2 − tc1√
2

. (3.28)

From eq. (3.27) it is clear that we can identify λ with the SM top Yukawa coupling λt.

Furthermore, the fermion partner T has a Dirac mass λtf and a coupling to two Higgs

fields with coupling constant λt/(2f).

Figure 3.5: Quadratically divergent one–loop contributions to the Coleman–Weinberg scalar po-

tential from the top sector of the Little Higgs toy model.

Both diagrams in figure 3.5 might contribute to generate a quadratically divergent

Higgs mass, as in the SM for the top quark. This is however prevented by the collective

implementation of the Yukawa couplings in (3.27). The quadratic–divergent part of the

Coleman–Weinberg effective potential contains indeed only terms which are independent

of the Higgs mass

V1–loop(Σ) ⊃ − 2

64π2
Λ2 Tr

[
Mt(Σ)†Mt(Σ)

]
∼ λ2Λ2

(
Σ†1Σ1 + Σ†2Σ2

)
= 2λ2Λ2 f2 + . . . (3.29)

where the top mass matrix in the background of the Higgs field is

Mt(Σ) =

 λ1Σ†1

λ2Σ†2

 . (3.30)

In other words, the top partner loop quadratic divergence has compensated the contri-

bution coming from the SM loop. It should be noted that this cancellation occurs between
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same–spin particles, unlike for example in Supersymmetry where new particles with dif-

ferent spin structure are introduced to address the hierarchy problem.

The absence of quadratic divergences from top loops can be again understood analyzing

the symmetries of the Lagrangian (3.27) for the Σj fields. The term proportional to λ1

forces Σ1 and Ψ to transform identically under SU(3)1, while the term proportional to λ2

forces Σ2 and Ψ to be aligned as well. Therefore, as in the gauge sector, the effective global

symmetry structure is SU(3)V /SU(2)V , with five Goldstone bosons eaten by the heavy

SU(3) gauge bosons. Removing on the other hand one of the two Yukawa couplings restores

a residual SU(3) symmetry in the Lagrangian, because Σ1,2 can transform independently

while still leaving (3.27) invariant. Therefore, with either of the λi turned off, one would

expect two sets of Goldstone bosons: one combination becomes the longitudinal degrees of

freedom of the heavy gauge bosons, while the other set is left massless.

Figure 3.6: Logarithmically divergent one–loop contribution to the Coleman–Weinberg scalar po-

tential from the top sector of the Little Higgs toy model.

In this way, a contribution to the Higgs potential can only come from a diagram involv-

ing both couplings λi. The lowest–order fermion diagram which involves both couplings is

the loop as in figure 3.6, which is proportional to |λ1λ2|2 and only log–sensitive to Λ, as a

result of the collective introduction of the Yukawa couplings.

3.3 Overview of the considered models

In this section we will discuss in more details the three different Little Higgs models which

have been considered as explicit framework for our analyses, namely the Simplest Little

Higgs (SLH), the Littlest Higgs (L2H), and the Littlest Higgs with T–parity (LHT). This

section should not be thought as a comprehensive review, for which we refer the reader
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to [17,26]. We will present separately the scalar, gauge and fermion sectors of the models,

in order to underline the relevant phenomenological aspects.

3.3.1 Gauge and scalar sectors

Simplest Little Higgs

As discussed in our toy example, the simplest extension of the SM symmetry structure im-

plementing a collective generation of quartic and gauge interactions requires the extension

of the SU(2) gauge group to SU(3). In particular we introduce two different fields Σ1,2

each parametrising the spontaneous global symmetry breaking SU(3)i → SU(2)i in the

CCWZ formalism. In order to correctly reproduce the SM hypercharge quantum numbers,

the SLH1 prescription is to assign SU(3)i ⊗ U(1)i quantum numbers

Σi ∼ (3,−1

3
) (3.31)

and aligned vacuum expectation values f1, f2. Therefore, the global symmetry structure

could be expressed as
[SU(3)i ⊗ U(1)i]

2

[SU(2)i ⊗ U(1)i]
2 , (3.32)

giving rise to ten Goldstone bosons. The partial gauging of the diagonal subgroup SU(3)V⊗

U(1)X generates a potential for five Goldstone bosons, among which we can identify the

four degrees of freedom of the Higgs complex doublet, and a real scalar field η. The other

five Goldstone bosons remain massless and become longitudinal degrees of freedom of five

new gauge bosons after the spontaneous symmetry breaking

SU(3)V ⊗ U(1)X → SU(2)L ⊗ U(1)Y . (3.33)

The radiatively generated Higgs potential further triggers EWSB, such that three of the

four degrees of freedom of the Higgs complex doublet become the longitudinal polarisations

of the SM massive gauge bosons.

The SLH model belongs to the class of Simple Group models, because of the extension

of the EW gauge group to an enlarged simple Lie group (SU(3)).

In unitarity gauge we can express the sigma fields Σ1,2 as

Σ1(x) = exp

(
i tβ Θ(x)

f

)
0

0

f cβ

 , Σ2(x) = exp

(
− iΘ(x)

tβ f

)
0

0

f sβ

 , (3.34)

1For the original references see [51,52]. For detailed reviews see [29–33].
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where tβ = sβ/cβ = f2/f1 is the ratio of the vacuum expectation values of the sigma fields,

f =
√
f2

1 + f2
2 , and Θ(x) the Goldstone boson matrix

Θ = πaXa =
1

f

 02×2 H

HT 0

+
η√
2

13×3

 , H =

 h

0

 . (3.35)

The kinetic term for Σ1,2 is

LΣ =
2∑
i=1

|DµΣi|2 =
2∑
i=1

∣∣∣∣(∂µ + igAaµλ
a +

igx
3
Bx
µ

)
Σi

∣∣∣∣2 , (3.36)

where λa are SU(3) generators, while Aaµ and Bx
µ are the SU(3)V and U(1)X gauge fields,

respectively. The gauge couplings g and gx are fixed by the SM gauge couplings: the SU(3)

coupling g is exactly the SM SU(2)L gauge coupling, and

gx =
g′√

1− t2W
3

(3.37)

with tW ≡ tan θW, θW being the weak mixing angle.

The gauge boson mass eigenstates arising from (3.33) include a Z ′ as a linear combi-

nation of A8
µ and Bx

µ, and a complex SU(2) doublet (Y0, X
−) with masses

mZ′ =

√
2

3− t2W
gf , mX± = mY0 = mȲ0 =

gf√
2
. (3.38)

The other set of SM SU(2)L ⊗ U(1)Y gauge bosons is left massless at this point. After

EWSB, the heavy gauge bosons receive additional mass contributions of order O(v2/f2),

and in particular the Z ′ boson mixes with the analogous SM Z boson, leading to corrections

to electroweak precision observables. The SM W±, Z gauge bosons acquire masses of

mZ =
gv

2cW

(
1 +

v2

f2

(
1− t2W

)2
16

+O
(
v4

f4

))
, (3.39)

mW =
gv

2

(
1− 1

12

v2

f2

t4β − t2β + 1

t2β
+O

(
v4

f4

))
(3.40)

while the photon remains massless. Notice the presence of O(v2/f2) custodial violating

terms in eq. (3.39) and (3.40).

It is to be noted that the presence of the pseudo–scalar η and in particular of the

coupling h–Z–η is a peculiar and distinguishing feature of the Simple Group models class,

as already pointed out in [32,33].

The vacuum expectation value v of the Higgs field is radiatively generated from the

explicit breaking introduced by the gauge and Yukawa interactions. Its value is therefore
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predicted as a function of the model parameters, and we have the freedom to fix its value

to reproduce e.g. the SM prediction for the W–boson mass, namely

mSM
W =

g vSM
2

, vSM ∼ 246.26 GeV . (3.41)

Comparing eq. (3.40) and eq. (3.41) we can therefore fix

v = vSM

(
1 +

1

12

v2
SM
f2

t4β − t2β + 1

t2β

)
(3.42)

such that

mW = mSM
W +O

(
v4
SM
f4

)
. (3.43)

In the Coleman–Weinberg potential up to dimension four operators, it can be shown [30]

that only the
∣∣∣Σ†1Σ2

∣∣∣2 term generates a non–trivial potential for the pseudo–Goldstone

bosons. Another important observation is that
∣∣∣Σ†1Σ2

∣∣∣2 does not have any η–dependence:

Σ†1Σ2 = f2sβ cβ exp

[
−i
(
tβ +

1

tβ

)
η√
2f

]
cos

(
h

fcβsβ

)
, (3.44)

leaving the scalar field η massless, while a quartic coupling and a mass term for the Higgs

are generated. The presence of a massless scalar field is problematic, and any term in the

Coleman–Weinberg potential proportional to
∣∣∣Σ†iΣi

∣∣∣2n or
∣∣∣Σ†1Σ2

∣∣∣2n cannot ameliorate the

situation. This is the problem of a potentially “dangerous” singlet as already mentioned in

section 3.2.1.

A possible solution to the massless η problem is to introduce by hand a new term in

the scalar potential, namely

− µ2
(

Σ†1Σ2 + h.c.
)
. (3.45)

This term explicitly breaks the [SU(3)i]
2 global symmetry, spoiling the CSB mechanism

and reintroducing quadratically divergent corrections to the Higgs mass. However, since

this correction turns out to be numerically insignificant, this solution is commonly used in

literature and we will adopt this extension, too. But most importantly, it introduces an

explicit η dependence, allowing for the generation of a mass term for η.

The scalar potential becomes

Veff = −m2H†H + λ
(
H†H

)2
− 1

2
m2
η η

2 + λ′H†H η2 + . . . (3.46)

where all parameters have been explicitly evaluated taking into account the one–loop con-

tribution from the gauge and top Yukawa couplings [30], and assuming that the physics
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at the compositeness scale Λ does not generate additional significant contributions. The

important point is that m2 is generated with only log–sensitivity to Λ at one–loop. Min-

imising the scalar potential (3.46), one obtains the usual relations determining the value

of the vacuum expectation value v of the Higgs field and its mass mh as

v2 =
m2

λ
, mh =

√
2m. (3.47)

Including only the explicit one–loop results from the gauge and top Yukawa couplings and

the contribution from eq. (3.45), all coefficients of the Coleman–Weinberg potential (3.46)

are then known. Therefore, eq. (3.42) and eq. (3.47) represent three constraints to be

imposed on the free parameters of the SLH model.

Littlest Higgs

We can move now to the class of Product Group models, where the weak gauge group

emerges as the unbroken part of a product gauge group.

In our work we have focussed on the well–known Littlest Higgs model2 (L2H). The

global structure of the model describes the spontaneous symmetry breaking given by

SU(5)/SO(5) . (3.48)

The group SU(5) has a total of 24 generators, of which 10 (Ta) span the unbroken SO(5)

subgroup, while the remaining 14 generators (Xa) span the coset SU(5)/SO(5). Since

SU(5) is a symmetric space, with an automorphism related to the complex conjugation of

the generators, we can make use of eq. (2.25) and eq. (2.27) to define our sigma field in

the CCWZ formalism as

Σ = exp

[
2i
πaXa

f

]
〈Σ〉 . (3.49)

In here, the vacuum expectation value 〈Σ〉 is given by an SU(5) symmetric tensor field

〈Σ〉 =


02×2 02×1 12×2

01×2 1 01×2

12×2 02×1 02×2

 , (3.50)

and Σ transforms under an SU(5) transformation as [49]

Σ→ V Σ Ṽ † = V ΣV T , V ∈ SU(5) . (3.51)

2For the original reference see [49]. For a detailed review see [35].
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Since the vacuum is unchanged under an SO(5) transformation U ∈ SO(5), namely

U〈Σ〉UT = 〈Σ〉 , U = exp [iθaTa] ∈ SO(5) , (3.52)

by expanding the matrix U up to first order in θa we obtain

〈Σ〉 = 〈Σ〉+ iθa
(
Ta〈Σ〉+ 〈Σ〉TT

a

)
+O

(
θ2
)

(3.53)

which provides a recipe to identify the unbroken and broken generators Ta, Xa as

{Ta, 〈Σ〉} = 0 (3.54)

[Xa, 〈Σ〉] = 0 . (3.55)

In order to obtain a collective generation of a Higgs potential, we require two copies of

the SM gauge group to be simultaneously gauged within the global symmetry SU(5). For

this reason the Littlest Higgs belongs to the class of Product Group models. In particular,

we embed the gauge group [SU(2)i ⊗ U(1)i]
2 in SU(5) such that the generators for the

two SU(2)i are

Qa1 =
1

2

 σa 02×3

03×2 03×3

 , Qa2 =
1

2

 03×3 02×3

03×2 −σa ∗

 (3.56)

with σa the Pauli matrices, while the U(1)i generators are

Y1 =
1

10

 −3 · 12×2 02×3

03×2 2 · 13

 , Y2 =
1

10

 −2 · 13×3 02×3

03×2 3 · 12×2

 . (3.57)

It is easy to check that the following linear combinations of gauged generators

Qa =
1√
2

(Qa1 +Qa2) , Y = Y1 + Y2 (3.58)

satisfy eq. (3.54), being identified as the generators of the unbroken SM gauge group

SU(2)L ⊗ U(1)Y. On the other hand, the orthogonal combination of gauged generators

satisfy eq. (3.55): the vacuum expectation value 〈Σ〉 thus leads to the spontaneous breaking

of the gauge group to the SM group at the scale f , namely

[SU(2)i ⊗ U(1)i]
2 → SU(2)L ⊗ U(1)Y , (3.59)

such that a complete set of SU(2)⊗ U(1) gauge bosons acquires a mass of order f .

Gauge interactions are introduced by a proper definition of the [SU(2)i ⊗ U(1)i]
2 co-

variant derivative acting on the sigma field Σ, namely

DµΣ = ∂µΣ− i
2∑
j=1

[
gj
(
WjΣ + ΣWT

j

)
+ g′j

(
BjΣ + ΣBT

j

)]
(3.60)
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withWi = W a
i µQ

a
i , Bi = Bi µ Yi (i = 1, 2). The scalar kinetic term in the CCWZ formalism

reads

LΣ =
f2

8
Tr
[
|DµΣ|2

]
. (3.61)

Explicitly, the 14 Goldstone bosons arising from the SU(5)/SO(5) spontaneous sym-

metry breaking are given by

πaXa =


1
2X

1√
2
H† Φ†

1√
2
H 2√

5
η 1√

2
H∗

Φ 1√
2
HT 1

2X
∗

 (3.62)

where

X =

 χ0 − 1√
5
η

√
2χ+

√
2χ− −χ0 − 1√

5
η

 , Φ =

 φ++ 1√
2
φ+

1√
2
φ+ φ0

 , HT =

 π+

h+iπ0
√

2

 .

(3.63)

In particular, under SU(2)L ⊗ U(1)Y the Goldstone bosons decompose as

10 ⊕ 30 ⊕ 2± 1
2
⊕ 3±1 , (3.64)

where the real singlet 10 (η) and the real triplet 30 (χ) are eaten by the heavy gauge bosons

and do not appear in unitary gauge. The complex doublet 2± 1
2
(H) can be identified with

the Higgs field, while the complex triplet 3±1 (Φ) is the physical quarticon field in the

scalar sector.

The gauge boson mass eigenstates before EWSB are linear combinations ofWi, Bi with

mixing angles given by

c =
g1√
g2

1 + g2
2

, c′ =
g′1√

g′ 21 + g′ 22

. (3.65)

Only one set of SU(2)⊗ U(1) gauge bosons becomes massive,

mW±H
= mZH =

gf

2sc
, mAH =

g′f

2
√

5s′c′
, (3.66)

where we have identified

g = g1s = g2c , g′ = g′1s
′ = g′2c

′ . (3.67)

EWSB induces a further mixing, with an additional contribution of order O(v2/f2)

to the masses of the heavy gauge boson, and weak–scale masses for the SM W±, Z gauge



3.3. Overview of the considered models 47

bosons:

mZ =
gv

2

[
1− 1

2

v2

f2

(
1

6
+

1

4

(
c2 − s2

)
+

5

4

(
c′ 2 − s′ 2

)2)
+ 4

v′ 2

v2
+O

(
v4

f4

)]
, (3.68)

mW± =
gv

2cW

[
1− 1

2

v2

f2

(
1

6
+

1

4

(
c2 − s2

))
+ 2

v′ 2

v2
+O

(
v4

f4

)]
. (3.69)

Note again the presence of O(v2/f2) custodial violating terms in the SM gauge boson

masses, as well as a contribution proportional to the vacuum expectation value v′ of the

field φ0 ∈ Φ which is generated after EWSB.

As for the SLH model, we have the freedom to fix the value of the vacuum expectation

value v to reproduce the SM prediction for the W–boson mass (3.41): comparing with

(3.69) we obtain the relation

v = vSM

[
1 +

1

2

v2
SM
f2

(
1

6
+

1

4

(
c2 − s2

))
− 2

v′ 2

v2
SM

]
(3.70)

such that

mW = mSM
W +O

(
v4
SM
f4

)
. (3.71)

Gauge and Yukawa interactions explicitly break the SU(5) symmetry: a potential for

the pseudo–Goldstone bosons is radiatively generated at loop–level. As usual, one can cal-

culate the quadratic– and log–divergent contributions of the Coleman–Weinberg potential

from the different mass matrices of gauge, fermion and scalar particles in the background

of the Σ field. The dominant contribution comes from the quadratically divergent term,

which turns out to generate a potential for the Higgs field and the complex triplet as [49]

λ1f
2

∣∣∣∣Φij +
i

2f
(HiHj +HjHi)

∣∣∣∣2 + λ2f
2

∣∣∣∣Φij −
i

2f
(HiHj +HjHi)

∣∣∣∣2 . (3.72)

The coefficient λ1 includes contributions from both the gauge boson mass matrix as well as

from the fermion mass matrix, and its corresponding operator preserves an SU(3) “residual”

symmetry (embedded in the lower–right corner of the gauge generators) under which the

pseudo–Goldstone bosons shift–transform as

Hi → Hi + εi + . . .

Φij → Φij − i (εiHj + εjHi) + . . . (3.73)

The coefficient λ2 includes a contribution only from the gauge boson mass matrix, and its

corresponding operator preserves another SU(3) “residual” symmetry (embedded in the

upper–left corner of the gauge generators) acting on the pseudo–Goldstone bosons as

Hi → Hi + ηi + . . .

Φij → Φij + i (ηiHj + ηjHi) + . . . (3.74)
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These residual SU(3) symmetries are due to the implementation of the CSB mechanism

as detailed in section 3.2.1. A mass term for the triplet Φ of order gf and a quartic

interaction for the Higgs field are generated from the quadratic–part of the Coleman–

Weinberg potential, but no mass for the Higgs.

On the other hand, a dimension–two operator for the Higgs is generated at one–loop

only from the log–divergent part of the Coleman–Weinberg potential, from contributions of

gauge, fermion and scalar interactions. This is again a consequence of the CSB mechanism,

guaranteeing a natural separation between the electroweak scale and Λ. In particular,

a negative contribution to the dimension–two Higgs operator proportional to the heavy

fermion mass is generated in the log–divergent part of the Coleman–Weinberg potential:

this term dominates over the positive gauge and scalar contributions, such that EWSB can

be triggered.

Including all contributions, the scalar potential can be finally expanded as

Veff = λΦ2f2 Tr
(

Φ†Φ
)

+ iλHΦHf
(
HΦ†HT −H∗ΦH†

)
− µ2HH† + λH4

(
HH†

)2
(3.75)

where the different coefficients are functions of the fundamental parameters of the model,

and their explicit values can be found in [35]. Minimisation of the scalar potential (3.75)

leads to the generation of a vacuum expectation value for both the neutral components of

the Higgs doublet (v) and of the complex triplet (v′) as

v2 =
µ2

λH4 − λ2
HΦH/λΦ2

, (3.76)

v′ =
λHΦH

2λΦ2

v2

f2
. (3.77)

The corresponding scalar mass spectrum is given by

mh =
√

2µ , (3.78)

mΦ =

√
2mhf

v

1√
1− x2

(3.79)

where the masses of the triplet are degenerate at this order, and defining x ≡ 4v′f/v2.

Furthermore, the following relation among the vacuum expectation values has to hold in

order to obtain a positive triplet mass:

v′ 2

v2
<

v2

16f2
. (3.80)

If the coefficients in the CW potential (3.75) can be fully calculated within the model,

then eq. (3.70), eq. (3.76) and eq. (3.78) are three constraints to be imposed on the free
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parameters of the L2H model. However, it is to be noted that there could exist important

two–loop contributions to the Higgs potential, in particular of the same order as the log–

divergent terms: these two–loop contributions have not been evaluated, and therefore we

will treat the µ2 coefficient of the dimension–two Higgs operator as a free parameter of the

theory of order f2/16π2.

Littlest Higgs with T–parity

As we will detail in a following section, the original Littlest Higgs model suffers from severe

constraints from electroweak precision tests, which could only be satisfied in rather extreme

regions of the parameter space. This is especially important after the discovery of a light

Higgs boson, as there could have been a cancellation to precision observables between the

gauge states and a heavy Higgs scalar.

The most severe constraints arise from tree–level corrections to precision observables

due to the exchange of the heavy gauge bosons, as well as from the small but non–vanishing

vacuum expectation value v′ of the triplet scalar Φ. These constraints might be evaded

either by a different model building approach, including e.g. a custodial symmetry in the

theory, or with the introduction of a conserved discrete symmetry called T–parity, such

that tree–level contributions to EWPT from heavy gauge bosons and from v′ are removed.

The Littlest Higgs model with T–parity3 (LHT) shares the same global and local sym-

metry structure of the original L2H model. T–parity is originally inherited from the auto-

morphism of the Lie algebra generators [53,54], namely

T a → T a (3.81)

Xa → −Xa , (3.82)

which in the specific SU(5)/SO(5) case can be expressed as

τa → 〈Σ〉 (τa)T 〈Σ〉 (3.83)

for any generator τa.

In the gauge sector, T–parity is then introduced as an exchange symmetry between the

gauge bosons of the two different copies of the SM gauge group as

T : W a
1µ ↔W a

2µ , B1µ ↔ B2µ . (3.84)

3For the original references see [53,54]. For detailed reviews see [36–40].
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The gauge kinetic term in the CCWZ formalism (3.61) becomes T–parity invariant for

g1 = g2 =
√

2 g , g′1 = g′2 =
√

2 g′ (3.85)

or equivalently, by fixing the mixing angles in the gauge sector of eq. (3.65) to

c = c′ = s = s′ =
1√
2
. (3.86)

The gauge boson masses in eq. (3.66), (3.68), (3.69) are modified accordingly with (3.86).

The custodial symmetry violating term in (3.69) vanishes. The crucial point is that the

heavy gauge bosons are odd under a T–parity transformation (3.84), while the SM gauge

bosons are even. This transformation property holds even after EWSB, which induces a

further mixing only between states with equal T–parity.

The action of T–parity in the scalar sector is defined as a transformation acting on the

Goldstone boson matrix (3.62)

T : πaXa ≡ π → −ΩπΩ (3.87)

Ω =


12×2

−1

12×2


which gives the Higgs doublet H a positive parity, while keeping the triplet Φ odd. Being

odd under an exact discrete symmetry, the triplet Φ cannot acquire a vacuum expectation

value, namely v′ = 0, as e.g. the coupling H†ΦH in (3.75) is forbidden by T–parity. Such

a symmetry can only be broken by anomalies [58]. The scalar triplet mass (3.79) as well as

the SM gauge boson masses (3.68), (3.69), and the relation defining the vacuum expectation

value for the Higgs doublet (3.70) are modified accordingly.

3.3.2 Fermion sectors

Simplest Little Higgs

As for the simplified model of section 3.2.3, the SM fermion doublets must be expanded

into triplets of SU(3) for gauge invariance. The corresponding right–handed components

then transform as SU(3) singlets. We will present now the anomaly–free embedding of the

fermion sector of SLH, which has the upside to define an anomaly–free low–energy theory

without additional degrees of freedom [59,60].
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Each lepton family consists of an SU(3) left–handed triplet and two right–handed

singlets (no light right–handed neutrino is introduced):

LT
m = (νL, `L, iNL)m , `Rm , NRm . (3.88)

In the quark sector, the first two generations are required to contain SU(3) left–handed

conjugate triplet representations and three right–handed singlets, while the third genera-

tion is analogous to the lepton sector:

QT
1 = (dL,−uL, iDL) , dR , uR , DR (3.89)

QT
2 = (sL,−cL, iSL) , sR , cR , SR (3.90)

QT
3 = (tL, bL, iTL) , tR , bR , TR . (3.91)

The gauge representations and hypercharges for the fermion sector can be found in [31].

The Yukawa Lagrangian in the anomaly–free embedding for the quarks reads

LY ⊃ i
(
d̄1
R, d̄

2
R
)
QT

1

 λd1Σ1

λd2Σ2

+ i
(
s̄1
R, s̄

2
R
)
QT

2

 λs1Σ1

λs2Σ2

 (3.92)

+
(
t̄1R, t̄

2
R
) λt1Σ†1

λt2Σ†2

Q3 +
∑
m

λmb
Λ
d̄Rm εijk Σi

1 Σj
2Q

k
3 (3.93)

+ i
∑
m,n

λmnu
Λ

ūRm εijk Σi ∗
1 Σj ∗

2 Qkn (3.94)

where d1
R, d

2
R are linear combinations of dR, DR and analogously for

(
s1
R, s

2
R
)
,
(
t1R, t

2
R
)
.

Furthermore, dRm runs over (dR, sR, bR, DR, SR), uRm runs over (uR, cR, tR, TR), namely

with m,n = 1, 2 and i, j, k = 1, 2, 3. Dimension–five operators in eq. (3.93), suppressed by

one power of the scale Λ, are needed to generate the masses of the light quarks (u, c, b)

and to possibly generate flavour mixing effects.

The lepton Lagrangian is analogous to the third generation terms of eq. (3.93) but

without a “collective structure”, because of the non–severity of the quadratic divergences

due to the small size of the lepton Yukawa couplings:

LY ⊃ iλmN N̄Rm Σ†2 Lm +
∑
m

iλmn`
Λ

¯̀Rm εijk Σi
1 Σj

2 L
k
n . (3.95)
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Before EWSB, the heavy fermion partners get the following mass terms:

mT = f
√

(λt1)
2
c2
β + (λt2)

2
s2
β (3.96)

mD = f
√(

λd1
)2
c2
β +

(
λd2
)2
s2
β (3.97)

mS = f
√

(λs1)2 c2
β + (λs2)2 s2

β (3.98)

mN i = f sβ λ
i
N . (3.99)

After EWSB, the heavy partner masses receive other O(v2/f2) contributions, while the

SM fermions get masses proportional to the weak scale v:

mu = − v√
2

f

Λ
λ11
u , mc = − v√

2

f

Λ
λ22
u , mb = − v√

2

f

Λ
λ3
b , m` i = − v√

2

f

Λ
λii` (3.100)

mt =
v√
2

λt1λ
t
2√

(λt1)
2
c2
β + (λt2)

2
s2
β

(3.101)

md = − v√
2

λd1λ
d
2√(

λd1
)2
c2
β +

(
λd2
)2
s2
β

(3.102)

ms = − v√
2

λs1λ
s
2√

(λs1)2 c2
β + (λs2)2 s2

β

. (3.103)

With appropriate choices of the free parameters one can recover the mass values as in the

SM.

Considering only the third generation, fixing the SM top and bottom masses to their

experimental values will fix two free parameters, leaving only f, tβ and R = λt1/λ
t
2 as free

parameters. In terms of mass eigenstates we can finally obtain

LY ⊃ −mT T̄R TL −mt t̄R tL

+ λt h t̄R tL + λT h T̄R tL +
λ′T

2mT
hh T̄R TL + h.c. (3.104)

where all coefficients can be expressed in terms of the already mentioned free parameters.

In particular, the relation

λ′T = λ2
t + λ2

T (3.105)

is guaranteed by the collective structure, and allows for the cancellation of the quadratic

divergences to the Higgs mass from loops involving the top fermions. Note also that the

top Yukawa coupling (3.101) vanishes if either of the λti is set to zero, as required again by

the CSB mechanism.

Kinetic terms for all fermion fields according to the assigned gauge quantum numbers

are introduced, generating interaction terms among the different fermions and gauge bosons

of the SLH model [31].



3.3. Overview of the considered models 53

Littlest Higgs

The top partner cancellon field is introduced in the L2H model as a vector–like fermion t2

with [SU(2)i ⊗ U(1)i]
2 quantum numbers (3,1)Yi . The explicit U(1)i quantum numbers

can be found in [35]. Being vector–like, the top partner is allowed to get a bare mass

chosen to be of order f . The SM third generation quark doublet is then embedded with

the top partner t2 into an incomplete SU(5) multiplet

Ψ =


i bL

−i t1L
t2L

02×1

 ≡


qL

t2L

02×1

 . (3.106)

The collective and gauge invariant Yukawa Lagrangian for the third generation reads

LY ⊃
1

2
λ1f

(
εijk εxy Ψ̄i Σjx Σky t1R

)
+ λ2f (t̄2L t2R) + h.c. (3.107)

where the indices i, j, k are summed over 1, 2, 3, and x, y are summed over 4, 5. This

interaction satisfies the collective requirements: the λ1 operator preserves SU(3)1 and

breaks SU(3)2, while the λ2 term vice–versa.

By expanding the Σ field and including the Higgs vacuum expectation value from

EWSB, one obtains the following terms involving the top and top partner fields

LY ⊃ λ1f

(
sΣ√

2
t̄1L t1R +

1 + cΣ

2
t̄2L t1R

)
+ λ2f (t̄2L t2R) + h.c. (3.108)

= (t̄1L, t̄2L)

 λ1f sΣ/
√

2 0

λ1f (1 + cΣ) /2 λ2f

 t1R

t2R

+ h.c. (3.109)

≡ (t̄1L, t̄2L)Mt

 t1R

t2R

+ h.c. (3.110)

where cΣ = cos
(√

2(h+ v)/f
)
, sΣ = sin

(√
2(h+ v)/f

)
. Diagonalisation of the mass

matrix leads to the following spectrum for the SM top and top partner, at leading order

in the v/f expansion of Σ:

mt =
λ1 λ2√
λ2

1 + λ2
2

v , mT = f
√
λ2

1 + λ2
2 . (3.111)

Fixing the SM top mass to the experimental value leaves either λ1 or λ2 as free parameter

besides f .

An explicit calculation of the quadratic divergent term of the Coleman–Weinberg po-

tential from the top mass matrix in eq. (3.109) reveals no dependence on the Higgs mass
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operator h†h:

V1–loop(Σ) ⊃ − 2

64π2
Λ2 Tr

[
M †tMt

]
∼ Λ2f2

(
λ2

1 + λ2
2

)
. (3.112)

This is the result of the CSB mechanism implemented in the top Yukawa coupling. The

top partner T plays therefore the role of the cancellon field of the top sector of the L2H

model.

The Yukawa interactions for the up–type quarks of the first two generations have the

same form as eq. (3.107), except that no extra vector–like quark partners
(
ui2L, u

i
2R
)
, i =

1, 2, are introduced: no collective interaction is needed for the first two generations, since

the quadratic divergent contributions to the Higgs mass are negligible. The Yukawa interac-

tions for the down–type quarks and charged leptons of the three generations are generated

by a similar Lagrangian without additional fermion partners:

LY ⊃
1

2
λdf

(
εijk εxy Ψ̄i Σ∗jx Σ∗ky d1R

)
+ h.c. (3.113)

Together with the Yukawa interactions, kinetic terms for all fermion fields are intro-

duced accordingly, generating interaction terms among the different fermions and gauge

bosons of the L2H model [35].

Littlest Higgs with T–parity

All Lagrangian terms are required to satisfy T–parity. This is achieved in the top sector

by introducing a second SU(5) incomplete multiplet

Ψ′ =


02×1

t′2L

i b′L

−i t′1L

 ≡


02×1

t′2L

q′L

 , (3.114)

as well as the right–handed counterparts q′R, t
′
2R, and by assigning the following T–parity

transformation properties

T :



Ψ↔ −〈Σ〉Ψ′ (qL ↔ −q′L , t2L ↔ −t′2L)

t1R ↔ t1R

t′2R ↔ −t′2R

Σ→ Σ̃ ≡ 〈Σ〉Ω Σ†Ω 〈Σ〉

(3.115)
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such that a T–parity invariant version of eq. (3.107) can be written as

LY ⊃
λ1f

2
√

2
εijk εxy

(
Ψ̄i Σjx Σky −

(
Ψ̄′〈Σ〉

)
i

Σ̃jx Σ̃ky

)
t1R

+ λ2f
(
t̄2L t2R + t̄′2L t

′
2R
)

+ h.c. . (3.116)

The T–parity eigenstates of the Lagrangian (3.116) are given by

qL± =
1√
2

(
qL ∓ q′L

)
, t2L,± =

1√
2

(
t2L ∓ t′2L

)
, t2R,± =

1√
2

(
t2R ∓ t′2R

)
. (3.117)

In terms of these eigenstates, upon expanding the Σ field and including the Higgs vacuum

expectation value, one obtains analogous terms as in eq. (3.108)

LY ⊃ λ1f

(
sΣ√

2
t̄1L,+ t1R,+ +

1 + cΣ

2
t̄2L,+ t1R,+

)
+ λ2f (t̄2L,+ t2R,+ + t̄2L,− t2R,−) + h.c. . (3.118)

The absence of quadratic divergences to the Higgs mass operator h†h is therefore preserved,

as for the L2H model (3.112). It is to be noted that in eq. (3.118), no mass term for

the T–odd combination t− ≡ (t1L,−, t1R,−) is generated, while the T–odd combination

T− ≡ (t2L,−, t2R,−) obtains a mass λ2f . By diagonalising the T–even mass terms one can

obtain the following mass spectrum at leading order in the v/f expansion of Σ:

mt+ ≡ mt =
λ1 λ2√
λ2

1 + λ2
2

v , mT+ = f
√
λ2

1 + λ2
2 , mT− = λ2f . (3.119)

As in the L2H model, fixing the SM top mass to the experimental value leaves either λ1 or

λ2 as free parameter besides f .

Analogous Yukawa Lagrangians are introduced for the up–type quarks of the first two

generations, but without the addition of vector–like top partners. A T–parity invariant

version of eq. (3.113) for down–quarks and charged leptons can be obtained as [38]

LY ⊃
iλdf

2
√

2
εij εxyz

(
Ψ̄′x Σiy ΣjzX −

(
Ψ̄〈Σ〉

)
x

Σ̃iy Σ̃jz X̃
)
dR . (3.120)

The SM doublet qL is now embedded as −σ2 qL in Ψ, and analogously for Ψ′.

The insertion of X is needed for gauge invariance, transforming as a singlet under

SU(2)1,2 and with U(1)1,2 charges (1/10,−1/10). X̃ is the T–parity image of X. Two

possible choices for X are used in literature, namely X = (Σ33)−1/4 and X = (Σ33)1/4,

called Case A and Case B respectively, where Σ33 is the (3,3) component of the non–linear

sigma model field Σ.
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It is necessary to introduce new operators in our theory to give rise to a mass term

for the T–odd fermion t−, since no corresponding mass term is generated via the Yukawa

interaction eq. (3.116). Another SO(5) multiplet Ψc is introduced as

Ψc =



i dc

−i uc

χc

i d̃

−i ũc


≡


qc

χc

q̃c

 , (3.121)

transforming under T–parity as

T : Ψc → −Ψc . (3.122)

Its components are called mirror fermions. A viable SU(5) and T–parity invariant La-

grangian is given by

Lκ = −κ f
(

Ψ̄′ ξΨc + Ψ̄ 〈Σ〉Ω ξ†Ω Ψc

)
+ h.c. (3.123)

where one should also add explicit Dirac mass terms for the left–over T–odd states. This

Lagrangian induces new Higgs boson interactions with up–type partners as well as the

mass terms for all the T–odd fermions qL,− (3.117):

Lκ ⊃ −
√

2κ f

[
d̄L,− d̃c +

1 + cξ
2

ūL,− ũc −
sξ√

2
ūL,− χc −

1− cξ
2

ūL,− uc

]
+ h.c.+ . . . (3.124)

where cξ = cos
(
(v + h)/

√
2f
)
, sξ = sin

(
(v + h)/

√
2f
)
. For simplicity, one can assume

that the coupling κ is diagonal and flavour independent, forcing the T–odd fermions to be

degenerate.

In particular, after EWSB, the following mass spectrum is generated at order O(v2/f2)

for each generation of quarks and leptons:

mu− =
√

2κ f

(
1− 1

8

v2

f2

)
, md− =

√
2κ f (3.125)

for a total of twelve additional T–odd fermions partners.

From the kinetic terms of the fermion fields one can obtain the gauge–fermion interac-

tions, too: a collection of Feynman Rules for the LHT model can be found e.g. in ref. [40].



Chapter 4

Lessons from collected data, so far

This chapter details the results of my research work on constraining the parameter space of

the considered Little Higgs models using the available public experimental data. A first sec-

tion is dedicated to the results obtained including Electroweak Precision observables, which

historically have always represented the most severe constraints to be taken into account.

A second section details the Little Higgs modifications involving Higgs sector observables:

the final aim is indeed the inclusion of the newly collected Higgs data to probe the Little

Higgs parameter space. A final section is dedicated to a systematic recasting procedure of

LHC direct searches for new particles, under the hypothesis of a Little Higgs signal, to

obtain a further and complementary experimental information with respect to Higgs and

Electroweak Precision data. An optimisation of the analyses assuming a Little Higgs signal

is also proposed, to possibly increase the exclusion power to otherwise unconstrained pa-

rameter space regions. The corresponding publications are [7–9]. The main resources used

for this chapter are refs. [7–9,24,37,61,62].

4.1 Electroweak Precision Tests

Not only can new physics appear as detectable external states, either directly as new

final state particles, or as intermediate steps of longer decay chains: interaction terms of

new physics with SM particles can generate sensible effects even through modifications of

SM–like couplings, or by radiative contributions at loop–level.

Precisely measured observables might thus possess a huge discrimination power against

new physics effects. In particular, two–point functions of the gauge fields have been

tightly constrained by the experiments at LEP, as we will discuss in the following. Let us

57
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parametrise the most general U(1)em–invariant Lagrangian involving only quadratic terms

of SM gauge bosons as

LV 2 = −1

2
Wµ

3 Π33(p2)W3µ −Wµ
3 Π3B(p2)Bµ −

1

2
Bµ ΠBB(p2)Bµ −Wµ

+ Π+−(p2)W−µ ,

(4.1)

where the different form factors Π(p2), in an effective low–energy point of view, get correc-

tions from both SM and possibly BSM degrees of freedom. The effective Lagrangian (4.1)

is in this sense independent of the particular high–energy completion of the SM, since it

generically parametrises any possible additional contribution to the quadratic terms.

By expanding the form factors in terms of small momenta p2 we obtain

Π(p2) = Π(0) + p2 Π′(0) +
p4

2
Π′′(0) +O(p6) , (4.2)

for a total of 12 different coefficients parametrising all possible contributions to eq. (4.1)

up to O(p6). However, some form factors are nothing but the renormalised SM parameters

which have to be matched to the experimental values. In particular Π+−(0)′,ΠBB(0)′ fix

the normalisation of the gauge kinetic terms and Π+−(0) the renormalised W mass:

Π′+−(0) = Π′BB(0) = 1 , (4.3)

Π+−(0) = −m2
W . (4.4)

Two additional constraints follow from requiring a massless photon, namely Πγγ(0) =

ΠZγ(0) = 0. In conclusion, seven are the remaining coefficients which enclose possible

electroweak corrections, and are expressed in terms of the following oblique parameters [24]:

Ŝ =
g

g′
Π′3B(0) , T̂ =

Π33(0)−Π+−(0)

m2
W

, Û = Π′+−(0)−Π′33(0) , (4.5)

V =
m2

W

2

(
Π′′33(0)−Π′′+−(0)

)
, X =

m2
W

2
Π′′3B(0) , (4.6)

Y =
m2

W

2
Π′′BB(0) , W =

m2
W

2
Π′′33(0) . (4.7)

All these parameters are predicted in the SM: for example, one–loop diagrams involv-

ing the exchange of the Higgs boson give a contribution to both Ŝ, T̂ parameters with a

log–dependence on the Higgs mass, as we already mentioned in section 2.3.1, see eq. (2.61).

From eq. (4.5) it is now easier to see how the T̂ parameter gets corrections from custo-

dial symmetry violating effects. Note that the Ŝ, T̂ , Û parameters are related by simple

rescalings to the usual S, T, U parameters defined in [23]:

S =
4s2

W Ŝ

αW
, T =

T̂

αW
, U = −4s2

W Û

αW
. (4.8)
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A relevant contribution to the oblique parameters in extensions of the SM arises from

the modified couplings of the Higgs boson to the SM gauge bosons. In the SM, due to

its renormalisability, the one–loop contribution of the Higgs boson to the vector boson

self energy exactly cancels the log–divergence arising from loops of would–be Goldstone

bosons, see eq. (2.61). As noticed in [63], due to the modified Higgs couplings to the SM

gauge bosons, the Higgs loop contribution to the self energy diagrams does not exactly

compensate the log–divergence arising from the Goldstone boson diagrams, leading to a

contribution to the oblique parameters of

Sh = − 1

6π
(1− y2

W) log
mh

Λ
, (4.9)

Th =
3

8πc2
W

(1− y2
W) log

mh

Λ
, (4.10)

where yW parametrises the shift in the Higgs–gauge bosons coupling compared to its SM

value, and Λ is the usual cut–off of the effective theory.

The main constraints on these effective form factors arise from LEP observables at

the Z–pole in e+e− annihilation and W mass measurement, from the cross sections and

asymmetries in e+e− → ff̄ at LEP2 with higher center–of–mass energy
√
s ∼ (200GeV)2,

and from low–energy measurements like neutrino–nucleon scattering, which we will call

collectively Electroweak Precision Tests (EWPT).

In general, both oblique parameters and flavour dependent corrections contribute to

the prediction of electroweak observables within a generic theory. Explicitly, flavour de-

pendent corrections to charged– and neutral–current couplings of SM gauge bosons can be

parametrised as

Lcc = − g√
2

∑
i,j

f̄i γ
µ [(hL + δhL)PL + (hR + δhR)PR] fjWµ , (4.11)

Lnc = − g

cW

∑
i

f̄i γ
µ [(gL + δgL)PL + (gR + δgR)PR] fi Zµ , (4.12)

where PL,R are the chiral projectors, hL/R, gL/R correspond to the SM values, and δhL/R, δgL/R

enclose possible new contributions.

In our analysis, we will make use of a parametrisation of 21 different EWPT observables

in terms of the oblique parameters and flavour dependent corrections as originally proposed

in [64]. The explicit experimental values and SM predictions of the 21 EWPT observables

used in our analysis are summarised in table B.1. The SM values have been obtained with

mh = 124.5GeV [22].
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The consistency test of the Little Higgs prediction with the experimental observations

is performed through a χ2 analysis: we consider the 21 different EWPT as independent

measurements to be compared to the corresponding theoretical predictions, functions of

the free parameters of the models. In this way, 95% and 99% CL exclusion contour regions

for any parameter space can be drawn.

Furthermore, it is useful to define a quantity to measure the degree of “naturalness” of

a model with respect to experimental measurements. This is identified with the required

fine–tuning necessary to accommodate the experimental measurements: the stricter the

fine–tuning required in the consistent region of parameter space, the lower the degree of

naturalness of the model. However, the definition of the fine–tuning is sort of arbitrary,

and has not an absolute physical meaning: conclusions regarding the validity of a model

based on fine–tuning arguments have to be taken with a grain of salt.

The fine–tuning can be quantified by observing how much the radiative contributions

from the heavy states to the Higgs mass squared exceed the experimental value µ2
exp =

m2
h/2, as originally proposed in [49]. If we call δµ2 the leading radiative correction to the

Higgs mass squared, we can then define the fine–tuning as

∆ =
µ2
exp

|δµ2|
. (4.13)

Lower values of ∆ clearly imply a higher degree of fine–tuning. In particular, the dominant

log–divergent contribution to µ2 arise in Little Higgs models from the top sector, and is

generically given as

δµ2 = −3λtm
2
T

8π2
log

Λ2

m2
T

(4.14)

where Λ = 4πf , λt is the SM top Yukawa coupling, and mT is the mass of the “cancellon”

top partner.

Contours of required fine–tuning will be drawn on top of the exclusion plots, too, and

will represent a possible guideline to infer the naturalness of the considered model.

In the following sections, we evaluate the contributions to the oblique parameters and

flavour dependent corrections for the three different Little Higgs models discussed in this

thesis, and derive exclusion contours from them.

4.1.1 Simplest Little Higgs

The dominant contribution to oblique parameters in SLH stems from the presence of a

Z ′ boson in the spectrum, with a custodial–violating Z–Z ′ mixing. The corrections arise
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already at tree–level, and are found to be [52,65]

SZ′ =
8s2

W

αW

m2
W

g2f2
, TZ′ =

1

αW

v2

8f2

(
1− t2W

)2
. (4.15)

Additional contributions follow from the modified Higgs couplings to the electroweak

bosons compared to their SM value, see eq. (4.10). Explicitly we evaluate them as [7]

Sh = − 1

18π

t4β − t2β + 1

t2β

v2

f2
log

mh

Λ
, (4.16)

Th =
1

8πc2
W

t4β − t2β + 1

t2β

v2

f2
log

mh

Λ
. (4.17)

Flavour dependent corrections can be obtained from the fermion–gauge interaction

Lagrangian, and we summarise our findings [7] in table 4.1 and table 4.2. In particular,

δν = − v√
2ftβ

, δZ = −
(1− t2W)

√
3− t2W

8cW

v2

f2
(4.18)

are two coefficients parametrising the rotation to the mass eigenstate basis in the fermion–

sector and neutral gauge boson–sector, respectively [29].

δhL δhR

ν` −δ2
ν/2 0

ud −δ2
ν/2 0

cs −δ2
ν/2 0

tb −δ2
ν t

4
β

(1−R2)2

2(R2+t2β)
2 0

Table 4.1: Corrections to the charged–current couplings in the SLH model.

δgL δgR

νν −δ2
ν/2 + (1/2− s2

W)δZ/
√

3− 4s2
W 0

`` (1/2− s2
W)δZ/

√
3− 4s2

W s2
WδZ/

√
3− 4s2

W

uu (−1/2 + 2/3s2
W)δZ/

√
3− 4s2

W −2/3s2
WδZ/

√
3− 4s2

W

tt −δ2
ν t

4
β

(1−R2)2

2(R2+t2β)
2 + (1/2− 1/3s2

W)δZ/
√

3− 4s2
W −2/3s2

WδZ/
√

3− 4s2
W

dd δ2
ν/2 + (−1/2 + 2/3s2

W)δZ/
√

3− 4s2
W 1/3s2

WδZ/
√

3− 4s2
W

bb (1/2− 1/3s2
W)δZ/

√
3− 4s2

W 1/3s2
WδZ/

√
3− 4s2

W

Table 4.2: Corrections of the neutral-current couplings in SLH.
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Figure 4.1: Excluded SLH parameter space regions at 95% and 99% CL from EWPT. The thick

black lines enclose regions of required fine–tuning (on the left–hand side of the lines).

The explicit oblique and flavour–dependent corrections induced by the SLH model can

be used to reconstruct the total contribution to electroweak observables, following the

EWPT parametrisation of [64]. The result of the χ2–scan in the (f, tβ) SLH parameter

space is shown in figure 4.1. In particular, f =
√
f2

1 + f2
2 is the [SU(3)]2/[SU(2)]2 sym-

metry breaking scale, while tβ = f2/f1 is the ratio of the vacuum expectation values of the

two Σ1,2 fields. We can finally extract a lower bound on f at 95% CL of

(fSLH)EWPT & 3.7TeV (95%CL) . (4.19)

Large tβ values are disfavoured because of the oblique contribution introduced by the

modified Higgs–gauge bosons coupling (4.17). The absence of a custodial symmetry, pre-

venting dangerous tree–level mixings between heavy and SM gauge bosons, clearly pushes

the symmetry breaking scale f into the O(TeV) range. A level of O(0.1%) fine–tuning is

required in the consistent region.
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4.1.2 Littlest Higgs

Historically, the most severe constraints on the parameter space of the L2H model arise

from EWPT: due to the absence of a custodial symmetry or a discrete parity like T–

parity, tree–level mixing between heavy and light (SM) gauge bosons, as well as a vacuum

expectation value for the scalar triplet Φ, cannot be forbidden. The explicit contributions to

electroweak observables from gauge mixing and from the triplet vacuum expectation value

are known in literature [34, 66]. Additional contributions due to quark loop modifications

of the light gauge boson propagators are parametrically much smaller with respect to the

aforementioned contributions, as discussed in [66], and we neglect them.

0.2% 0.1%

Exclusions

95% CL

99% CL

3500 4500 5500 6500

0.3

0.5

0.7

0.9

f @GeVD

c

L
2
H EWPT exclusion contours

Figure 4.2: Excluded L2H parameter space regions at 95% and 99% CL from EWPT. The thick

black lines enclose regions of required fine–tuning (on the left–hand side of the lines).

By analysing the explicit expressions of the 21 electroweak observables in terms of the

free parameters of the L2H model as reported in [66], we evaluate the 95% and 99% CL ex-

cluded regions within the L2H (f, c) parameter space. In particular, f is the SU(5)/SO(5)

symmetry breaking scale, while c ∈ (0, 1) is one of the mixing angles in the gauge sector

(3.65). It is to be noted that the remaining three free parameters, namely the second mix-

ing angle c′ in the gauge sector, see eq. (3.65), the ratio R of the two top–Yukawa couplings
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λ1/λ2, see eq. (3.107) (recalling that either λ1 or λ2 can be fixed by the SM top mass),

and the vacuum expectation value v′ of the triplet scalar φ0 ∈ Φ, are fitted during our χ2

evaluation, namely fixed for each (f, c) point to the corresponding values which minimise

the total χ2.

The results of our analysis are summarised in figure 4.2, from which we obtain a lower

bound on f at 95% CL of

(fL2H)EWPT & 5.1TeV (95%CL) . (4.20)

As with the SLH model, the presence of dangerous contributions to EWPT pushes the

symmetry breaking scale f into the O(TeV) range, forcing an O(0.1%) fine–tuning.

4.1.3 Littlest Higgs with T–parity

In order to overcome the intrinsic tension of the L2H model with electroweak precision

data, a discrete T–parity is implemented in all sectors of the model. In this way, no T–odd

particle can contribute as external state at tree–level, forbidding all dangerous tree–level

contributions which were plaguing the original L2H formulation: no contribution to EWPT

arises at tree–level from T–odd particles. The only T–even non–SM particle is the T–

even top partner T+: however, it might contribute at tree–level only to observables which

involve the SM top quark, for example its couplings with the SM gauge bosons. Since

these couplings are not experimentally well measured yet, no sensible constraints can be

obtained from the T+ partner at tree–level either.

On the other hand, relevant contributions to EWPT arise at loop–level, from pro-

cesses involving the two top partners T±, the T–odd heavy gauge bosons, and the T–odd

heavy mirror quarks. The main contributions to EWPT have been obtained from different

collaborations [7, 37,67,68], and we will collect here the main results.

Oblique corrections to the electroweak gauge bosons propagators induced by loop dia-

grams involving the SM top and its T–even top partner are given by [37,67]

ST+ =
s2
β

2π

[(
1

3
− c2

β

)
log xt + c2

β

(1 + xt)
2

(1− xt)2
+

2c2
βx

2
t (3− xt) log xt

(1− xt)3
−

8c2
β

3

]
, (4.21)

TT+ =
3

16π

s2
β

s2
W c

2
W

m2
t

m2
Z

[
s2
β

xt
− 1− c2

β −
2c2
β

1− xt
log xt

]
, (4.22)

UT+ = −
s2
β

2π

[
s2
β log xt + c2

β

(1 + xt)
2

(1− xt)2
+

2c2
βx

2
t (3− xt) log xt

(1− xt)3
−

8c2
β

3

]
, (4.23)

where sβ is the mixing angle in the right–handed top sector, and xt = m2
t/m

2
T+.



4.1. Electroweak Precision Tests 65

Another relevant one–loop contribution to oblique parameters would have arisen from

the heavy gauge boson loops. However, in ref. [68] it has been explicitly shown how the

log–divergent contribution to the T–parameter due to the custodial–symmetry violating

tree–level W 3
H–W±H mass splitting, completely vanishes. The left–over contributions are

parametrically much smaller compared to the contribution from the top sector, and are

therefore neglected.

The contribution from loops involving the T–odd mirror fermion partners has been first

calculated in [37], and can be expressed for each quark partner qH as

TqH = − κ2

192π2αW

v2

f2
, (4.24)

assuming for simplicity a diagonal and degenerate coupling matrix κ.

We further evaluate the modifications of the Higgs couplings to the electroweak bosons

compared to their SM value, see eq. (4.10), generating another relevant contribution to the

oblique parameters [7]:

Sh = − 1

18π

v2

f2
log

mh

Λ
, Th =

1

8πc2
W

v2

f2
log

mh

Λ
. (4.25)

Finally, we took into account possible contributions arising from new higher–dimensional

operators which parametrise the effect of UV–physics as in ref. [67], namely

SUV = cs
4m2

W

πg2f2
, TUV = −ct

m2
W

2πe2g2f2
. (4.26)

The coefficients cs, ct have O(1) values depending on the details of the UV–physics, and

are assumed equal to one for simplicity as in [67].

All the different contributions to the oblique parameters S, T, U are summed up. The

only relevant non–oblique correction which affects the EWPT is the one–loop T+ correction

to the ZbLb̄L vertex, which has been evaluated in [37] and reads

δgbb̄L =
g

cW

αW

8πs2
W

m4
tR

2

m2
Wm

2
T+

log
m2
T+

m2
t
. (4.27)

In this way, we reconstruct the total LHT contribution to electroweak observables

following the EWPT parametrisation of [64], and perform a χ2–scan in the (f,R) LHT

parameter space. In particular, f is the SU(5)/SO(5) symmetry breaking scale, while

R = λ1/λ2 is the ratio of the two top–Yukawa couplings λ1/λ2, see eq. (3.116). From now

on we will consider values of R within

0 < R ≤ 3.3 , (4.28)
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being the allowed range evaluated in [39] by estimating the tree–level unitarity limit of

the scattering amplitudes within the coupled system of (tt̄, T T̄ , bb̄, WW, Zh). It should

be noted that the remaining free parameter κ, which in the simplifying assumption of

flavour–independent mirror quark sector parametrises the masses and couplings of the

mirror fermions, see eq. (3.123), has been fitted during the χ2 evaluation.
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99% CL

400 600 800 1000 1200 1400 1600 1800 2000

0.5

1.0

1.5

2.0

2.5

3.0

f @GeVD

R

LHT EWPT exclusion contours

Figure 4.3: Excluded LHT parameter space regions at 95% and 99% CL from EWPT. The thick

black lines enclose regions of required fine–tuning (on the left–hand side of the lines).

The resulting 95% and 99% CL exclusion contours are shown in figure 4.3: we obtain

a lower bound on f at 95% CL of

(fLHT)EWPT & 405GeV (95%CL) . (4.29)

The dip in the exclusion contour around R ∼ 1.0 arises due to a partial cancellation

of the contributions to the T–parameter, as already observed in [37]. The required fine–

tuning in the allowed region is observed to be of order O(5%), still guaranteeing the status

of “natural” SM extension to the LHT model.
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4.2 Higgs Precision observables

4.2.1 Overview of LHC Higgs searches

On 4th July 2012, the ATLAS and CMS collaborations announced the discovery of a parti-

cle with mass of roughly 126GeV compatible with the predicted SM Higgs boson [5,6]. This

is a major step for particle physics, both to confirm the SM framework describing interac-

tions of elementary particles, as well as to unveil the dynamics of Electroweak Symmetry

Breaking at the TeV–scale.

Albeit no direct (tree–level) coupling of the Higgs boson to gluons is present in the SM,

since the SU(3)C symmetry of QCD is not spontaneously broken by the Higgs vacuum

expectation value, the dominant Higgs production mechanism is via gluon fusion. The LHC

is indeed usually referred to as a “gluon collider”, and in spite of the expected suppression

of the corresponding cross section by a one–loop factor
(
g2
Sλ

2
t /16π2

)2, the gluon fusion

turns out to be the dominant Higgs production process at the LHC [69–71]:

σ(pp→ h) = 14.89+7.1% +7.6%
−7.8%−7.1% pb

√
s = 7TeV mh = 126.0GeV (4.30)

σ(pp→ h) = 18.97+7.2% +7.5%
−7.8%−6.9% pb

√
s = 8TeV mh = 126.0GeV (4.31)

σ(pp→ h) = 48.80+7.5% +7.2%
−8.0%−6.0% pb

√
s = 14TeV mh = 126.0GeV (4.32)

where the two uncertainties refer to the QCD scale and PDF uncertainties, respectively.

Another relevant Higgs production cross section is the vector boson fusion process,

exploiting the large coupling of the Higgs to the weak gauge bosons, where two incoming

quarks each radiate a W or a Z which merge and produce a Higgs boson. The vector

boson fusion partonic cross section qq → qqh is proportional to the weak gauge coupling

as g6, and to an additional phase space factor for two additional jets in the final state: the

total partonic cross section turns out to be comparable with the partonic gluon fusion cross

section. On the other hand, a large difference in rate with respect to the gluon fusion pro-

duction arises from the different quark and gluon luminosities: in particular, vector boson

fusion probes high–x quark momentum fraction, while low–x gluon momentum fraction for

the gluon fusion process. The vector boson fusion cross section amounts to [69–71]

σ(pp→ qqh) = 1.211+0.3% +2.5%
−0.3%−2.1% pb

√
s = 7TeV mh = 126.0GeV (4.33)

σ(pp→ qqh) = 1.568+0.3% +2.6%
−0.1%−2.8% pb

√
s = 8TeV mh = 126.0GeV (4.34)

σ(pp→ qqh) = 4.206+0.4% +3.4%
−0.4%−3.4% pb

√
s = 14TeV mh = 126.0GeV (4.35)
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where the two uncertainties refer to the QCD scale and PDF uncertainties, respectively.

Smaller contributions to the Higgs production arise from associated production with

heavy SM particles, namely associated production with W/Z gauge bosons (also called

Higgs–Strahlung process) qq̄ → V h, and associated production with a tt̄ pair gg → htt̄.

At 14 TeV center of mass energy, the total contribution of these production mechanisms is

roughly 3 pb [69–71]:

σ(pp→Wh) = 1.485+0.8% +3.2%
−1.7%−3.2% pb

√
s = 14TeV mh = 126.0GeV (4.36)

σ(pp→ Zh) = 0.9465+4.1% +3.5%
−3.9%−3.5% pb

√
s = 14TeV mh = 126.0GeV (4.37)

σ(pp→ htt̄) = 0.5969+5.9% +8.9%
−9.3%−8.9% pb

√
s = 14TeV mh = 126.0GeV (4.38)

where the two uncertainties refer to the QCD scale and PDF uncertainties, respectively. It

should be noted that even if these processes contribute with a low production cross section,

the peculiar final state topologies are suitable for otherwise hopeless analyses dealing with

e.g. huge QCD backgrounds, if only relying on the dominant gluon fusion process.

Regarding possible decays of the Higgs boson, we can consider ourselves lucky with

an observed Higgs mass around 126GeV: this mass point allows us to observe the largest

number of different Higgs decays, while still having a reasonably high production cross

section.

At tree–level all decay rates of the Higgs in the SM are proportional to the mass of the

final state particles, because of the EWSB mechanism. The Higgs decays thus preferably to

the heaviest particles allowed by phase space: for a 126GeV Higgs the dominant branching

ratio is given by the decay into a pair of bottom quarks.

On the other hand, once the off–shell decay to WW ∗ is allowed, it dominates over the

other decay rates, being comparable with the decay into bottom pairs for masses around

126GeV (only a factor of three smaller). Because of the small mass difference between the

W and Z bosons, the decay to ZZ pairs is smaller compared to the decay into a pair of W

bosons, because of the exchange symmetry for two identical final state particles. Finally,

loop–induced decays can be sizable as well: in particular, the loop–induced decay to two

photons turned out to be crucial for the Higgs discovery.

In table 4.3 we collect part of the SM Higgs branching ratios for mh = 126.0GeV and

total width of Γh = 4.21 · 10−3 +3.87%
−3.83% GeV [69–71].

Despite the lower values of branching ratios, the Higgs boson has been first discovered

(with more than 5σ significance) in the search channels h→ γγ (focussing both on gluon
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Higgs decay BR

h→ bb̄ 5.61 · 10−1 +3.31%
−3.36%

h→ cc̄ 2.83 · 10−2 +12.19%
−12.20%

h→ ss̄ 2.39 · 10−4 +4.82%
−4.88%

h→ τ+τ− 6.16 · 10−2 +5.62%
−5.59%

h→ µ+µ− 2.14 · 10−4 +5.86%
−5.85%

h→WW ∗ 2.31 · 10−1 +4.14%
−4.08%

h→ ZZ∗ 2.89 · 10−2 +4.14%
−4.08%

h→ γγ 2.28 · 10−3 +4.88%
−4.80%

h→ gg 8.48 · 10−2 +10.13%
−9.90%

h→ Zγ 1.62 · 10−3 +8.84%
−8.84%

Table 4.3: Theoretical predictions for the SM Higgs branching ratios with mh = 126.0GeV [69–71]

fusion and vector boson fusion production modes) and in the “golden channel” h→ ZZ∗ →

4`, because of the possibility of full mass reconstruction of the Higgs boson and an easier

background suppression. The combined best fit mass for the Higgs boson has been reported

to be [72,73]

mh = 125.36 ± 0.37 (stat) ± 0.18 (syst) GeV ATLAS (4.39)

mh = 125.03 ± 0.27 (stat) ± 0.14 (syst) GeV CMS . (4.40)

Together with these channels with high mass resolution, other important channels in which

the ATLAS and CMS collaborations have been focusing to determine the properties of

the Higgs boson are h → WW ∗ → 2` 2ν, h → bb̄ (exploiting especially the associated

production with gauge bosons) and h→ τ+τ−.

Experimental collaborations usually express the results of Higgs searches in terms of a

signal strength modifier, being the factor by which the SM Higgs signal is modified, given

a particular assumption on the Higgs mass. In particular, the signal strength modifier can

be defined for each Higgs decay channel i being analysed experimentally. It is defined as

the ratio of observed signal events in the channel i, denoted by niS, divided by the expected

number of events as predicted in the SM, denoted by nSM, i
S , after the analysis–dependent

selection cuts, namely

µi =
niS

nSM, i
S

=
niS∑

p
σSM
p BRSM

i

. (4.41)
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In particular, σSM
p is the value of a specific SM Higgs production cross section p, while BRSM

i

the branching ratio of the corresponding decay i. The ATLAS and CMS collaborations

report the best–fit value µ̂i for a given hypothesis on mh, and a 1σ significance range of

consistency around the best–fit value. We display in figure 4.4 an example of the signal

strength best fits provided by ATLAS and CMS with up to 25 fb−1 of integrated luminosity

collected at
√
s = 7, 8TeV [72,73].

) µSignal strength (
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Figure 4.4: ATLAS and CMS signal strength modifier best fits for different search channels up

to 25 fb−1 of integrated luminosity collected at
√
s = 7, 8TeV [72,73].

Furthermore, the collaborations usually report the composition of the signal events in

terms of the different production modes, namely

niS = niS, p ζ
i
p ,

∑
p

ζip = 1 , (4.42)

such that eq. (4.41) becomes

µi =
∑
p

niS, p ζ
i
p

σSM
p BRSM

i

. (4.43)

Let us now assume that each Higgs production cross section within the underlying model

can be expressed as a rescaling of the corresponding SM cross section, namely

σp = cp σ
SM
p ∀ p . (4.44)
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In this way, we can further simplify the signal strength definition of eq. (4.43) to

µi =
(
cg ζ

i
g + c2

V ζ
i
V + c2

t ζ
i
t
) BRi
BRSM

i

, (4.45)

where cg, c2
V, c

2
t parametrise the rescaling of the gluon fusion, of the vector boson fusion,

and of the tt̄–Higgs production cross sections, respectively, and where BRi is the branching

ratio of the Higgs decay i evaluated within the underlying model.

New physics effects can generate modifications of the production cross sections, namely

cp 6= 1, as well as of the branching ratios BRi. One can predict the signal strength modifier

µi as a function of the free parameters of a BSM model, and constrain them to a consistent

region from the reported best fit values µ̂i. In the next section we will thoroughly present

the predictions of the different cp and BRi within the considered Little Higgs models.

The increasing integrated luminosity up to 25 fb−1 has allowed to reduce the total

uncertainties on the best fit values of the signal strength modifiers to such an extent, that

it is not far–fetched to say that a new era of Higgs precision measurements has already

begun. In other words, besides electroweak constraints, flavour measurements, and direct

searches for new particles, the Higgs sector has nowadays become a useful framework to

test the validity of BSM models.

4.2.2 Little Higgs modifications to Higgs observables

Generically, there are three possible modifications from BSM physics which can affect the

prediction of the Higgs signal strength modifiers: modifications of Higgs tree–level cou-

plings with respect to their SM values, additional contributions to loop–induced processes

involving the Higgs, and possible new Higgs decay channels if kinematically accessible.

Higgs–gauge bosons couplings

The interaction terms of the Higgs boson with electrically charged gauge bosons arise from

the expansion of the kinetic term of the sigma fields Σ, involving the covariant derivatives

of the different gauge groups: see eq. (3.36) and eq. (3.61) for the explicit expressions

within the considered models. These interaction terms can be generically parametrised as

LΣ ⊃ 2
m2

W

v
yWW

+µW−µ h+ 2
m2

VH

v
yVH V

+µ
H V −Hµ h , (4.46)

where V ±H corresponds to the additional (heavy) gauge bosons predicted within the dif-

ferent models with a non–vanishing interaction to the Higgs boson. In particular, the
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dimensionless coefficients yV can be obtained up to a specific order in the v/f expansion

of the kinetic terms:

yV =


1 +O

(
v2

f2

)
for yW

O
(
v2

f2

)
for yVH .

(4.47)

The absence of a zeroth–order v/f interaction between the heavy gauge bosons and the

Higgs boson from the expansion of the sigma fields, reflects the fact that the mass of

the heavy gauge bosons is generated at the scale f from the G/H spontaneous symme-

try breaking, with only a sub–leading v2/f2 contribution generated via EWSB. On the

other hand, the SM gauge boson mass is entirely generated via EWSB. Clearly, yW = 1

corresponds to the predicted SM value, while v2/f2 corrections are a genuine effect of the

Composite/Little Higgs structure.

We can equivalently express the Higgs–SM gauge bosons coupling by replacing the

vacuum expectation value v with its expression in terms of the SM vacuum vSM as e.g. in

eq. (3.42) and eq. (3.70):

cV ≡
yV
v
vSM = 1 +O

(
v2

f2

)
V ≡W±, Z , (4.48)

such that we can express the corresponding Lagrangian term of eq. (4.46) as

LΣ ⊃ 2
m2

W

vSM
cVW

+µW−µ h . (4.49)

The rescaling factor cV of the SM–like Lagrangian of eq. (4.49), where the SM prediction

is recovered for cV = 1, yields a tree–level modification of the vector boson fusion and

Higgs–Strahlung production cross sections as

σ(pp→ qqh)

σ(pp→ qqh)SM
=

σ(pp→ V h)

σ(pp→ V h)SM
= c2

V , (4.50)

since the new vertex normalisation can be factorised out of the amplitude of the process.

Analogously, the modified Higgs decay width into SM gauge bosons turns out to be

Γ(h→ V V ∗)

Γ(h→ V V ∗)SM
= c2

V . (4.51)

We evaluated the explicit expressions of yW, yVH and cV within the different considered

models [7, 61,62], and summarised the results up to O(v2/f2) in table 4.4.

Besides the usual tree–level decays of the Higgs boson into SM gauge bosons, other

Higgs decays into new gauge bosons might be kinematically accessible in particular regions

of parameter space.
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yW yVH cV

SLH 1− 1
6
v2

f2
t4β−t

2
β+1

t2β
yX± = −1

2
v2

f2
1− 1

4
v2

f2
t4β−t

2
β+1

t2β

L2H 1 + v2

f2

[
− 1

6 −
1
4

(
c2 − s2

)2 ]
yWH = −s2 c2 v2

f2
1 + 1

8
v2

f2

[
− 3 + x2 − 2

(
c2 − s2

)2 ]
LHT 1− 1

6
v2

f2
yWH = −1

4
v2

f2
1− 1

4
v2

f2

Table 4.4: Contributions to Higgs–gauge bosons couplings within different Little Higgs models.

Since EWPT already force the scale f in the range of several TeV for models without

a custodial symmetry or T–parity, see eq. (4.19) and eq. (4.20), no tree–level decays of the

Higgs into new gauge bosons are kinematically accessible for the SLH and L2H models.

The situation is completely different for the LHT model, where the presence of T–parity

reduces the constraint on the scale f to only O(500)GeV. For such a small value of f , the

heavy photon AH might be light enough to allow for a tree–level decay h → AHAH. In

particular, the partial width of the latter decay has been calculated to be [61]

Γ(h→ AHAH) =
g2
hAAm

3
h

128πm4
AH

√
1− xAH

(
1− xAH +

3

4
x2
AH

)
if xAH < 1 , (4.52)

where ghAA = −g′ 2 v/2, and xAH = 4m2
AH
/m2

h. If kinematically allowed, the Higgs decay

into two heavy photons acquires a significant branching ratio: the Higgs phenomenology

is thus extremely different in the corresponding parameter space regions.

Higgs–fermions couplings

Interaction terms of the Higgs boson to all fermions arise from the expansion of the Yukawa

Lagrangians, and can be generically parametrised as

LY ⊃ −
mψ

v
yψ ψ̄ ψ h−

mψH

v
yψH ψ̄H ψH h , (4.53)

where ψ is a collective index for the SM fermions, while ψH for the model–dependent new

heavy fermions present in the different spectra (with a non–negligible coupling to the Higgs

boson). As for the gauge sector, the v/f expansion of the Yukawa Lagrangians yields the

following dimensionless coefficients

yΨ =


1 +O

(
v2

f2

)
for yψ

O
(
v2

f2

)
for yψH .

(4.54)

In particular, yψ = 1 corresponds to the predicted SM value, and the v2/f2 corrections are

a genuine effect of the Composite/Little Higgs structure.
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A privileged role is dedicated to the third generation top and top–partner(s), because

of their role in the tuning of the Higgs mass. We evaluated the explicit expressions of yt

and yT within the different considered models [7,61,62], and summarised the results up to

O(v2/f2) in table 4.5.

yt yT

SLH 1− 1
6

[(
1+tβ

)2(
R4−R2t2β+t4β

)
t2β

(
t2β+R2

)2
]
−1

2
v2

f2
R2
(
t2β+1

t2β+R2

)2

L2H 1− v2

f2

[
2R4+R2+2

3
(

1+R2
)2 + x2

4 −
x
2

]
− R2(

1+R2
)2 v2f2

LHT 1− v2

f2

(
2R4+R2+2

3
(

1+R2
)2
)

yT+ = − R2(
1+R2

)2 v2f2
yu− = −1

4
v2

f2

Table 4.5: Contributions to Higgs–top/top partner couplings within different Little Higgs models.

Note that for the LHT model more quark partners have relevant couplings to the Higgs

boson, namely the T–even top partner T+, which is the “cancellon” field responsible for

the vanishing of dangerous quadratic divergences at one–loop, see eq. (3.116), and the up–

type T–odd mirror quarks u−, c−, t−, whose couplings to the Higgs arise from eq. (3.123).

On the other hand, the down–type mirror fermions of eq. (3.123), as well as the T–odd

partner T− arising from eq. (3.116), have no direct coupling to the Higgs of the form given

by eq. (4.53).

Furthermore, at order v/f one would expect the presence of a Higgs coupling even with

the other two charge −1/3 heavy fermion partners in the anomaly–free embedding of the

SLH model, namely D, S. However, as discussed in [29], these terms exactly vanish at this

order if the down– and strange–quark masses are neglected. For this reason, we will not

consider these couplings.

Similarly to the gauge sector, we can express the rescaling factor yψ of eq. (4.53),

which determines the couplings of the Higgs to the SM fermions, by replacing the vacuum

expectation value v with its expression in terms of the SM vacuum vSM:

cψ ≡
yψ
v
vSM = 1 +O

(
v2

f2

)
. (4.55)

In this way we can express the corresponding Lagrangian term of eq. (4.53) as

LY ⊃ −
mψ

vSM
cψ ψ̄ ψ h , (4.56)
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and evaluating a tree–level modification of the Higgs decay width into SM fermions as

Γ(h→ f̄f)

Γ(h→ f̄f)SM
= c2

ψ . (4.57)

A tree–level rescaling of the SM tt̄–Higgs associated production is analogously possible by

considering the modification of the corresponding Yukawa coupling:

σ(pp→ htt̄)

σ(pp→ htt̄)SM
= c2

t . (4.58)

We summarised our results up to O(v2/f2) in table 4.6, as in ref. [7, 61,62].

cu (u ≡ u, c) cd (d ≡ d, s, b, `)

SLH 1− 1
4
v2

f2

(
t4β+t2β+1

tβ

)
L2H 1− 1

2
v2

f2

(
7
4 + x2

4 − x
)

LHT 1− 3
4
v2

f2

Case A: 1− 1
4
v2

f2

Case B: 1− 5
4
v2

f2

Table 4.6: Contributions to Higgs–fermions couplings within different Little Higgs models.

Higgs–scalar bosons couplings

The scalar sectors of the different Little Higgs models provide further modifications which

have to be taken into account. As described in section 3.2.1, the scalar sectors are charac-

terised by new quarticon fields responsible to overcome the quadratic sensitivity at one–loop

of the Higgs mass: in particular, the SLH model predicts a new real pseudo–scalar field η,

while the L2H/LHT models include a complex scalar triplet in the spectrum.

The mass of the pseudo–scalar η is fixed by the free–parameter µ introduced in eq. (3.45):

for particular values of µ, new Higgs decays involving η might be kinematically allowed, in

particular [30,32]

Γ(h→ ηη) =
m4
η

8πv2mh

√
1− xη , if xη < 1 , (4.59)

Γ(h→ Zη) =
m3
h

32πf2

(
t2β − 1

tβ

)2 [
λ

(
1,
m2

Z

m2
h

,
m2
η

m2
h

)]3/2

, (4.60)

where xi = 4m2
i /m

2
h, and λ(1, x, y) = (1− x− y)2 − 4xy.

The complex triplet scalar predicted by the L2H/LHT models is parametrically heavier

than the Higgs boson, see eq. (3.79). Therefore, no tree–level decay of the Higgs involving
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the triplet scalar is kinematically allowed. Higgs couplings to the charged components

of scalar triplet are generated at order v/f in the CW radiative potential, and can be

parametrised as

Veff ⊃ 2
m2

Φ

v
yφ+ φ

+ φ− h+ 2
m2

Φ

v
yφ++ φ++ φ−− h , (4.61)

where we have evaluated the relative coefficients to be [7, 61, 62]

yφ+ =
v2

f2

(
−1

3
+
x2

4

)
, yφ++ = O

(
v4

f4

)
. (4.62)

One–loop processes

Finally, one–loop induced processes get additional contributions from new degrees of free-

dom. One can express the decay widths of the Higgs boson into two gluons and into two

photons, respectively, as

Γ(h→ gg) =
α2
Sm

3
h

32π3 v2

∣∣∣∣∣∑
Ψ

−1

2
F1/2(xΨ) yΨ

∣∣∣∣∣
2

, (4.63)

Γ(h→ γγ) =
α2
Wm

3
h

256π3 v2

∣∣∣∣∣∑
Ψ

4

3
F1/2(xΨ) yΨ +

∑
V

F1(xV) yV +
∑
S

F0 yS

∣∣∣∣∣
2

, (4.64)

where the following functions have been defined to parametrise the one–loop vertices [74,75]

F0(x) = x [1− x f(x)] , (4.65)

F1/2(x) = −2x [1 + (1− x) f(x)] , (4.66)

F1(x) = 2 + 3x+ 3x(2− x) f(x) , (4.67)

f(x) =


(

sin
1√
x

)−1/2

for x ≡ 4m2

m2
h

≥ 1

−1

4

(
log

1 +
√

1− x
1−
√

1− x
− iπ

)2

for x ≡ 4m2

m2
h

< 1 .

(4.68)

In particular, for Little Higgs models the sum of eq. (4.63) is extended over all possible

coloured fermionic particles Ψ included in the loop, while the sums within eq. (4.64) are ex-

tended over all electrically charged fermionic, vector or scalar particles running in the loop.

For comparison, in Supersymmetry one should instead include in eq. (4.63) the contribu-

tion from scalar coloured particles, which in Little Higgs models are usually not present.

As previously defined in this section, yΨ, yV, yS represent the dimensionless couplings to

the Higgs boson of the corresponding fermionic, vector or scalar particles.

Through eq. (4.63) and (4.64) we have been able to evaluate the Little Higgs predictions

of the corresponding widths of the one–loop processes. Moreover, we have been also able
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to evaluate the modification induced to the gluon fusion production mechanism. In the

narrow–width approximation one can relate the partonic gluon fusion cross section to the

Higgs decay width into two gluons:

σ̂(gg → h) =
π2

8m3
h

Γ(h→ gg) , (4.69)

such that we can approximate the prediction for the hadronic cross section by exploiting

the modification of the Higgs decay width into two gluons, namely

σ(pp→ h)

σ(pp→ h)SM
∼ Γ(h→ gg)

Γ(h→ gg)SM
≡ cg . (4.70)

Summary and Results

In summary, we showed how to obtain (approximate) predictions within the considered

Little Higgs models for the following observables:

• gluon fusion production cross section, eq. (4.70)

• vector boson fusion production cross section, eq. (4.50)

• Higgs–Strahlung production cross section, eq. (4.50)

• associated tt̄–Higgs production cross section, eq. (4.58)

• Higgs decay widths into light SM fermions, eq. (4.57)

• Higgs decay widths into SM gauge bosons, eq. (4.51), (4.63) and (4.64)

• possible new Higgs decays, eq. (4.52), (4.59) and (4.60).

These predictions can be tested with the observed best fits of the signal strength mod-

ifiers as defined in eq. (4.45). As for the EWPT, we performed a χ2 analysis within each

considered model, taking into account the most up–to–date experimental results made pub-

lic by the ATLAS and CMS collaborations as of the summer of 2013, with up to 25 fb−1 of

integrated luminosity at 7 and 8TeV. By including the EWPT observables in the χ2 anal-

ysis, we could obtain also a combined exclusion contours [7–9]. We catalogue in tables B.2

and B.3 the explicit values of the signal strength modifiers best fits and the corresponding

uncertainties used in our analysis.

As mentioned before, for the SLH and L2H models the scale f is already driven in

the range of several TeV by the EWPT due to the absence of a custodial symmetry or

T–parity, see eq. (4.19) and eq. (4.20). Therefore, in this “extreme” region of parameter
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space, the v2/f2 modifications to the Higgs sector observables compared to their SM val-

ues are negligible: we will call this large–f region as the SM–limit. Since the reported

measurements of the Higgs properties are consistent with the SM hypothesis within the

current uncertainties, the net effect of the inclusion of the Higgs data in our χ2 analysis

in the SM–limit region is to reduce the χ2 per degree of freedom. Therefore, it should not

surprise that the combined exclusion contours from EWPT and current Higgs data allow

for a smaller consistent value for f compared to the inclusion of EWPT only:

(fSLH)EWPT+Higgs & 3.3TeV (95%CL) , (4.71)

(fL2H)EWPT+Higgs & 4.0TeV (95%CL) . (4.72)

The corresponding 95% and 99% CL exclusion contours are shown in figure 4.5.
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Figure 4.5: Excluded SLH (left plot) and L2H (right plot) parameter space regions at 95% and

99% CL from the combination of EWPT and Higgs searches data. The thick black lines enclose

regions of required fine–tuning (on the left–hand side of the lines).

A further reduction of the uncertainties of the Higgs sector observables will increase

the sensitivity of the χ2 analysis in the SM–limit region: we expect that the inclusion of

Higgs measurements from forthcoming measurements at the LHC with higher integrated

luminosities, and possibly at linear colliders, will guarantee a stronger exclusion of the

parameter space of the SLH and L2H models.

The situation is different if we consider the LHT model. Here, a much smaller value

of the scale f is consistent with EWPT, see eq. (4.29), and for smaller values of f the

modifications to Higgs observables yield a sizable effect to the total χ2. In the following we



4.2. Higgs Precision observables 79

will present the results for the LHT model, distinguishing between the two implementations

of the down–type Yukawa Lagrangian, namely Case A and Case B.
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Figure 4.6: Excluded LHT parameter space regions at 95% and 99% CL from Higgs searches data.

The thick black lines enclose regions of required fine–tuning (on the left–hand side of the lines).

The left plot corresponds to the down–type Yukawa implementation called Case A, the right plot to

Case B.

By including only the Higgs data in our χ2 analysis, we obtain lower limits on f as:

(fLHT, A)Higgs & 607GeV (95%CL) , (4.73)

(fLHT, B)Higgs & 476GeV (95%CL) . (4.74)

A slightly smaller excluded region is observed for Case B, see figure 4.6. This is due to

the different suppression of the down–type Yukawa coupling with respect to the SM value:

in particular, for fixed f , a smaller Higgs/down–quark coupling is predicted for Case B,

see table 4.6, which in turn yields a bigger suppression of the Higgs branching ratio into

two bottom quarks and an enhancement of all other decay rates. This is more aligned

with the reported Higgs results especially by the ATLAS collaboration, where a generic

enhancement in the non–fermionic decays of the Higgs is observed.

In both cases, the results are driven by the presence of the kinematically accessible

invisible decay for the Higgs at lower values of f , namely the decay into two stable heavy

photons AH, see eq. (4.52). This two–body decay is indeed open for f . 473GeV at

mh = 125GeV, with a dominant branching ratio compared to the other SM–like decays.

As a consequence, all other SM–like decay rates are highly reduced for f . 473GeV, in
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contrast with the current observations. An enhancement in the Higgs production cross

sections would compensate this reduction in the branching ratios, but this is not the case

since we observe a generic suppression of all Higgs production modes within the LHT

parameter space.

It is interesting to notice that the LHT exclusion region from Higgs data does not

depend on the parameter R, namely on the particular value of the couplings in the top

sector. As described in [7] and references therein, this can be understood by looking at the

effective one–loop vertices of the Higgs, which are the only quantities potentially sensible

to the top sector couplings, as one can see from the explicit formulae reported before. The

effective one–loop vertices exhibit the following behaviour in terms of the mass matrices

of the particles running in the loops in the background of the Higgs field:

Leff ∼
∂

∂v
log
(

detM(h)†M(h)
)
〈h〉

. (4.75)

One can show that Composite and Little Higgs models generically predict a fermion mass

matrix with a factorisation between the non–linear sigma model expansion parameter v/f

and the other couplings of the fermion sector, namely

detM(Σ)†M(Σ) = F

(
v

f

)
× P (λi, f) . (4.76)

By substituting eq. (4.76) into eq. (4.75), we see that Leff is independent of P (λi, f): this

factorisation prevents the Higgs one–loop effective vertices to depend on the details of the

Composite and Little Higgs top sectors. In the specific LHT example one can easily show,

using the top–sector mass matrix Mt of eq. (3.109), that

detMt(Σ)†Mt(Σ) =
1

2
λ2

1 λ
2
2 f

4 sin

√
2 v

f
. (4.77)

By combining in the χ2 analysis the Higgs data with the EWPT measurements, we

obtain a stronger bound on f :

(fLHT, A)EWPT+Higgs & 694GeV (95%CL) (4.78)

(fLHT, B)EWPT+Higgs & 560GeV (95%CL) . (4.79)

The resulting 95% and 99% CL exclusion contours are shown in figure 4.7.

Based on fine–tuning arguments, we can conclude that our analysis confirmed how

models without a mechanism to prevent dangerous contributions to oblique parameters are

in huge tension with the collected EWPT data. Only large values of f might accommodate
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Figure 4.7: Excluded LHT parameter space regions at 95% and 99% CL from the combination of

EWPT and Higgs searches data. The thick black lines enclose regions of required fine–tuning (on

the left–hand side of the lines). The left plot corresponds to the down–type Yukawa implementation

called Case A, while the right plot corresponds to Case B.

the experimental results, which in turn yield large masses for the new particles and a

substantial required fine–tuning as defined in eq. (4.13), of order 0.1% for both the SLH and

L2H models. Models with T–parity, or similar custodial–symmetry preserving mechanisms,

still allow large portions of parameter space which are consistent with the observed data,

requiring only a mild degree of 5–10% fine–tuning.

Furthermore, we showed that the inclusion of Higgs data represents a fundamental

ingredient to extensively analyse the consistency of the BSM predictions: our analysis

showed that an increased precision in the Higgs observables should be highly sought after

to probe parameter space regions where the modifications from BSM physics might be

more difficult to observe.
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4.3 Direct searches for new particles

Beyond the Higgs discovery, the ATLAS and CMS collaborations have put great effort

during the 7 and 8TeV LHC runs to realise dedicated search analyses to discover possi-

ble signals of new particles above the known SM backgrounds. In particular, no relevant

discrepancies compared to the SM predictions have been observed within many different

search strategies, yet, and limits on the parameter space on certain BSM models have been

consistently set. The ATLAS and CMS collaborations have usually interpreted the direct

searches results in terms of specific SUSY scenarios, e.g. the cMSSM, or more generic sim-

plified models. However, the same information can be used to probe the parameter space

of different models which have not taken into account by the experimental collaborations

when interpreting the results. Therefore, it is of great interest to scrutinise the public

experimental results to make sure that no information might be overlooked.

The aim of this section is to describe our analysis of refs. [8, 9], where we systemati-

cally re–interpreted recent ATLAS and CMS public results of searches for BSM particles,

assuming an LHT signal. This represents an important and complementary information

with respect to the Electroweak Precision and Higgs Observables analyses of sections 4.1

and 4.2, and can be used to obtain a further constraint on the LHT parameter space.

We focussed only on the LHT model because it guarantees the consistency of a rather

small value of f with EWPT and Higgs searches: since the masses of the new particles

are proportional to the scale f , one might thus expect production cross sections which are

not severely suppressed at
√
s = 8TeV center–of–mass energy. A possible LHT signature

detectable via direct searches for new particles is therefore plausible.

Before turning our attention to the results of the recasting procedure, it is worth to

detail some more phenomenological aspects of the considered LHT model. In this way,

we will emphasise how the free parameters of the model affect the mass spectrum and

different decay branching ratios, giving rise to particular final state signatures which might

be captured by the analysed direct searches.

4.3.1 Phenomenology of the Littlest Higgs with T–parity

Within the gauge and scalar sectors, the mass spectrum is completely determined by the

mass scale f . In particular, the heavy photon AH is always the lightest T–odd gauge boson,

and can be generically considered the lightest T–odd particle for most of the parameter

space, apart from an “extreme” region where the mirror fermions are lighter than AH. This
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happens for the mirror fermion mass parameter κ . 0.1. However, we will not consider

this region since it can safely be considered as excluded, given the experimental constraints

on coloured stable particles from the LHC and from cosmological observations [76,77].

From now on, the heavy photon AH will always be the lightest T–odd particle in the

spectrum: because of T–parity conservation, no decay of the heavy photon into (T–even)

SM particles is allowed. This is not the case if T–parity is broken by anomalies [58], but

we will not consider this possibility in our study. As a consequence, only (pairs) of heavy

photons AH are allowed to appear at the end of decay chains of processes involving LHT

T–odd particles, and possibly detected from final state transverse momentum imbalance

measurements. The other heavy gauge boson partners WH, ZH are degenerate up to cor-

rections of order v2/f2, and lighter than the different components of the scalar complex

triplet Φ.
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Figure 4.8: Mass spectrum of LHT new particles: the effect of the free parameter κ, making the

mirror fermions heavier or lighter than the gauge boson partners, has the biggest impact defining

possible final state topologies to be scrutinised. We use as reference values f = 800GeV, R = 1.0

and κ = 0.4 or κ = 1.5, as in [8,9].

On the other hand, the spectrum of the fermion sector depends on the parameters

R and κ besides the mass scale f . Generically, both the cancellon top partner T+ and

its T–parity partner T− are always heavier than all gauge boson partners, if we restrict

ourselves to the considered parameter space region defined in eq. (4.28). Furthermore, the

T–even T+ partner is heavier than the T–odd T−, see eq. (3.119), with the mass splitting

proportional to R.

The T–odd partners of all SM quarks (mirror quarks q− ≡ qH) have masses proportional

to the free parameter κ, see eq. (3.125). For κ & 0.45 the mirror quarks are heavier than all



84 4.3. Direct searches for new particles

gauge boson partners, opening up e.g. the two–body decays qH → VH q (VH ≡W±H , ZH, AH).

For values κ < 0.45, only the decay qH → AH q is kinematically accessible. For the region

0.1 . κ . 0.2 the mass difference between qH and AH is rather small: we will refer to

this region as the “compressed spectrum” region, where most of the direct searches for new

particles are not feasible. As mentioned before, the region κ . 0.1, where the mirror quarks

become the lightest T–odd particles in the spectrum, is highly disfavoured by experimental

observations and will not be considered in the following.

In figure 4.8 we plot a typical mass spectrum of the new particles introduced in the

LHT model, with reference values of f = 800GeV, R = 1.0 and κ = 0.4 or κ = 1.5, as

in [8,9]: while all masses explicitly depend on these three parameters, the general pattern

of mass relations is altered only by different values of κ, as explained in the text.

We can now discuss the major production modes of LHT particles at the LHC. First of

all, one should notice that due to T–parity, only the T–even cancellon T+ can be singly–

produced in association with a SM particle. All other new particles have to be either pair–

produced, or singly–produced in association with another LHT partner, highly reducing

the available phase space with increasing masses.
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Figure 4.9: Possible production cross section of LHT mirror quarks qH at the LHC with
√
s =

8TeV, as a function of f with reference values R = 1.0 and κ = 1.0. The width of the pair

production line corresponds to values of κ ∈ [0.4, 1.0].

Among the possible production cross sections of LHT partners, the pair production of

mirror quarks qH could be the most significant due to PDF enhancement, especially if their

masses are not too large: their production is dominated by QCD processes, but also EW

processes with a t-channel heavy gauge boson diagram might significantly contribute. Fur-
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thermore, associated production with a heavy gauge boson provide additional production

channels for the mirror quarks. In figure 4.9 we show, as in [8, 9], the possible pair– and

associated–production cross sections of the mirror quarks at the LHC with
√
s = 8TeV as

a function of f , with reference values R = 1.0 and κ = 1.0. To emphasise the effect of the

parameter κ, we display the variation of the pair production cross section for κ ∈ [0.4, 1.0]

with the width of the corresponding cross–section line.
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Figure 4.10: Possible production cross section of LHT top partners at the LHC with
√
s = 8TeV,

as a function of f with reference values R = 1.0 and κ = 1.0.

Among the top sector quarks, the T–odd T− has the largest pair production cross

section, unless the mirror top tH is lighter, namely unless κ . 0.6. For large values of f ,

the single production of the T–even T+ in association with a light quark, through a diagram

involving a t–channel SM W with an initial state bottom quark, becomes comparable in

size or even larger than the T− pair production, due to phase space suppression of the

latter process. This pattern can be observed in figure 4.10, where we plot, as in [8, 9],

possible top–partner cross sections as a function of the scale f .

Production cross sections of pairs of gauge boson partners as a function of f are shown

in figure 4.11: the dependence on the parameters R and κ is milder compared to the

dependence on f , since the former might affect only the masses of the exchanged t–channel

fermion partners. The gauge boson pair production is indeed generated via s–channel

exchange of SM gauge bosons or via t–channel exchange of fermion partners.

Finally, in table 4.7 we list an overview of decay modes and branching ratios of the

LHT new particles, with reference values f = 1TeV and R = 1.0. We can observe e.g. the

different decay pattern of the mirror quarks qH depending on the particular value of κ.
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Figure 4.11: Possible production cross section of LHT gauge boson partners at the LHC with
√
s = 8TeV, as a function of f with reference values R = 1.0 and κ = 1.0.

Particle Decay BRκ=1.0 BRκ=0.4

dH W−
H u 63% 0%

ZH d 31% 0%

AH d 6% 100%

uH W+
H d 61% 0%

ZH u 30% 0%

AH u 9% 100%

T+ W+ b 46% 46%

Z t 22% 22%

H t 21% 21%

T− AH 11% 11%

T− AH t 100% 100%

φ0 AH Z 100% 100%

φP AH H 100% 100%

Particle Decay BRκ=1.0 BRκ=0.4

φ± AH W
± 100% 100%

φ±± AH W
± W∓ 99% 96%

AH stable

W±
H AH W

± 100% 2%

uH d 0% 44%

dH u 0% 27%

l±H ν 0% 13.5%

νH l
± 0% 13.5%

ZH AH H 100% 2%

dH d 0% 40%

uH u 0% 30%

l±H l∓ 0% 14%

νH ν 0% 14%

Table 4.7: Overview of the decay modes with the corresponding branching ratios of the LHT new

particles, with reference values f = 1TeV and R = 1.0. We emphasise two possible scenarios,

namely with the mirror quarks qH either lighter (κ = 0.4) or heavier (κ = 1.0) than the gauge

boson partners. The heavy leptons decay analogously to the heavy quarks and the decays involving

generic up or down quarks have to be considered as summed over all flavours.
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4.3.2 Comparison with experimental results

In a cut–and–count based analysis, several signal regions are defined with different selection

cuts, optimised for a particular signal topology to be tested. These selection cuts allow for

a high suppression of the otherwise dominant SM backgrounds, together with only a mild

suppression of the hypothesised BSM signal, such that an optimised signal over background

ratio (S/B) might be achieved.

If no deviation from the SM background is observed, namely if the number of observed

events is consistent within the uncertainties with the SM predicted number of events, the

experimental collaborations provide through a statistical procedure the 95% CL upper

limit on the possible additional signal events n95%
UL . At this point, n95%

UL is still independent

of the particular BSM signal to be tested: it is a measure of how much a generic BSM

signal might contribute above the SM prediction in order to be consistent with the observed

number of events within the uncertainties.

Given the integrated luminosity L of the analysed data, n95%
UL can be translated into

the so–called visible cross section upper limit, namely

σ95%, i
vis =

n95%, i
UL

L
, (4.80)

where the index i refers to a particular signal region. The upper limit has to be com-

pared with the visible cross section contribution of the considered BSM model. This is

given by the cross section of all possible BSM processes contributing to the desired final

state topology scrutinised in the analysis, collectively denoted as σBSM, re–weighted by the

corresponding efficiency of the analysis–dependent selection cuts εi, namely

σivis = σBSM · εi . (4.81)

One can exclude at 95% CL every BSM signal which would yield a visible cross section

above the observed experimental upper limit, i.e. if

σivis > σ95%, i
vis . (4.82)

This is indeed the procedure used by the collaborations to constrain specific SUSY scenarios

or simplified models. It should be noted that the final exclusion contours depend on the

particular assumption of the BSM signal, while the upper bound on the visible cross section

is a model–independent quantity, which can be re–interpreted within different hypotheses.

The exclusion contours of parameter space points can then be directly translated as

lower bounds on the possible masses of new particles predicted within the assumed BSM
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MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q̃)=m(g̃) 1405.78751.7 TeVq̃, g̃

MSUGRA/CMSSM 1 e, µ 3-6 jets Yes 20.3 any m(q̃) ATLAS-CONF-2013-0621.2 TeVg̃

MSUGRA/CMSSM 0 7-10 jets Yes 20.3 any m(q̃) 1308.18411.1 TeVg̃

q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV, m(1st gen. q̃)=m(2nd gen. q̃) 1405.7875850 GeVq̃

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 20.3 m(χ̃

0
1)=0 GeV 1405.78751.33 TeVg̃

g̃g̃, g̃→qqχ̃
±
1→qqW±χ̃01 1 e, µ 3-6 jets Yes 20.3 m(χ̃

0
1)<200 GeV, m(χ̃

±
)=0.5(m(χ̃

0
1)+m(g̃)) ATLAS-CONF-2013-0621.18 TeVg̃

g̃g̃, g̃→qq(ℓℓ/ℓν/νν)χ̃
0
1

2 e, µ 0-3 jets - 20.3 m(χ̃
0
1)=0 GeV ATLAS-CONF-2013-0891.12 TeVg̃

GMSB (ℓ̃ NLSP) 2 e, µ 2-4 jets Yes 4.7 tanβ<15 1208.46881.24 TeVg̃

GMSB (ℓ̃ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg̃

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ̃
0
1)>50 GeV ATLAS-CONF-2014-0011.28 TeVg̃

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ̃
0
1)>50 GeV ATLAS-CONF-2012-144619 GeVg̃

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ̃
0
1)>220 GeV 1211.1167900 GeVg̃

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg̃

Gravitino LSP 0 mono-jet Yes 10.5 m(G̃)>10−4 eV ATLAS-CONF-2012-147645 GeVF1/2 scale

g̃→bb̄χ̃
0
1 0 3 b Yes 20.1 m(χ̃

0
1)<400 GeV 1407.06001.25 TeVg̃

g̃→tt̄χ̃
0
1 0 7-10 jets Yes 20.3 m(χ̃

0
1) <350 GeV 1308.18411.1 TeVg̃

g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 20.1 m(χ̃
0
1)<400 GeV 1407.06001.34 TeVg̃

g̃→bt̄χ̃
+
1 0-1 e, µ 3 b Yes 20.1 m(χ̃

0
1)<300 GeV 1407.06001.3 TeVg̃

b̃1b̃1, b̃1→bχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)<90 GeV 1308.2631100-620 GeVb̃1

b̃1b̃1, b̃1→tχ̃
±
1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ̃

±
1 )=2 m(χ̃

0
1) 1404.2500275-440 GeVb̃1

t̃1 t̃1(light), t̃1→bχ̃
±
1 1-2 e, µ 1-2 b Yes 4.7 m(χ̃

0
1)=55 GeV 1208.4305, 1209.2102110-167 GeVt̃1

t̃1 t̃1(light), t̃1→Wbχ̃
0
1

2 e, µ 0-2 jets Yes 20.3 m(χ̃
0
1) =m(t̃1)-m(W)-50 GeV, m(t̃1)<<m(χ̃

±
1 ) 1403.4853130-210 GeVt̃1

t̃1 t̃1(medium), t̃1→tχ̃
0
1

2 e, µ 2 jets Yes 20.3 m(χ̃
0
1)=1 GeV 1403.4853215-530 GeVt̃1

t̃1 t̃1(medium), t̃1→bχ̃
±
1 0 2 b Yes 20.1 m(χ̃

0
1)<200 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV 1308.2631150-580 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1

1 e, µ 1 b Yes 20 m(χ̃
0
1)=0 GeV 1407.0583210-640 GeVt̃1

t̃1 t̃1(heavy), t̃1→tχ̃
0
1 0 2 b Yes 20.1 m(χ̃

0
1)=0 GeV 1406.1122260-640 GeVt̃1

t̃1 t̃1, t̃1→cχ̃
0
1 0 mono-jet/c-tag Yes 20.3 m(t̃1)-m(χ̃

0
1 )<85 GeV 1407.060890-240 GeVt̃1

t̃1 t̃1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)>150 GeV 1403.5222150-580 GeVt̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ̃
0
1)<200 GeV 1403.5222290-600 GeVt̃2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃01 2 e, µ 0 Yes 20.3 m(χ̃
0
1)=0 GeV 1403.529490-325 GeVℓ̃

χ̃+
1
χ̃−
1 , χ̃

+
1→ℓ̃ν(ℓν̃) 2 e, µ 0 Yes 20.3 m(χ̃

0
1)=0 GeV, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1403.5294140-465 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→τ̃ν(τν̃) 2 τ - Yes 20.3 m(χ̃

0
1)=0 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1407.0350100-350 GeVχ̃±

1

χ̃±
1
χ̃0
2→ℓ̃Lνℓ̃Lℓ(ν̃ν), ℓν̃ℓ̃Lℓ(ν̃ν) 3 e, µ 0 Yes 20.3 m(χ̃

±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1402.7029700 GeVχ̃±

1
, χ̃

0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1Zχ̃

0
1

2-3 e, µ 0 Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ̃±

1 , χ̃
0

2

χ̃±
1
χ̃0
2→Wχ̃

0
1h χ̃

0
1

1 e, µ 2 b Yes 20.3 m(χ̃
±
1 )=m(χ̃

0
2), m(χ̃

0
1)=0, sleptons decoupled ATLAS-CONF-2013-093285 GeVχ̃±

1
, χ̃

0

2

χ̃0
2
χ̃0
3, χ̃

0
2,3 →ℓ̃Rℓ 4 e, µ 0 Yes 20.3 m(χ̃

0
2)=m(χ̃

0
3), m(χ̃

0
1)=0, m(ℓ̃, ν̃)=0.5(m(χ̃

0
2)+m(χ̃

0
1)) 1405.5086620 GeVχ̃0

2,3

Direct χ̃
+
1
χ̃−
1 prod., long-lived χ̃

±
1 Disapp. trk 1 jet Yes 20.3 m(χ̃

±
1 )-m(χ̃

0
1)=160 MeV, τ(χ̃

±
1 )=0.2 ns ATLAS-CONF-2013-069270 GeVχ̃±

1

Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃
0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

GMSB, stable τ̃, χ̃
0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 15.9 10<tanβ<50 ATLAS-CONF-2013-058475 GeVχ̃0

1

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 4.7 0.4<τ(χ̃
0
1)<2 ns 1304.6310230 GeVχ̃0

1

q̃q̃, χ̃
0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃

0
1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′
311

=0.10, λ132=0.05 1212.12721.61 TeVν̃τ
LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′

311
=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ121,0 1405.5086750 GeVχ̃±

1

χ̃+
1
χ̃−
1 , χ̃

+
1→Wχ̃

0
1, χ̃

0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃

0
1)>0.2×m(χ̃

±
1 ), λ133,0 1405.5086450 GeVχ̃±

1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃

g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar gluon pair, sgluon→qq̄ 0 4 jets - 4.6 incl. limit from 1110.2693 1210.4826100-287 GeVsgluon

Scalar gluon pair, sgluon→tt̄ 2 e, µ (SS) 2 b Yes 14.3 ATLAS-CONF-2013-051350-800 GeVsgluon

WIMP interaction (D5, Dirac χ) 0 mono-jet Yes 10.5 m(χ)<80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147704 GeVM* scale

Mass scale [TeV]10−1 1
√
s = 7 TeV

full data

√
s = 8 TeV

partial data

√
s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: ICHEP 2014

ATLAS Preliminary√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Figure 4.12: 95% CL mass limits on SUSY particles from the 7 − 8TeV ATLAS searches with

up to 20 fb−1 of integrated luminosity.

model: for example, in figure 4.12 we can see the 95% CL mass limits on different SUSY

particles from the 7 and 8TeV ATLAS searches with up to 20 fb−1 of integrated luminosity.

Therefore, it is crucial to evaluate the visible cross section of a BSM model, given a

particular parameter space point to be probed. The production cross section might be

calculated up to a desired precision using dedicated tools: in particular, for SUSY cross

sections several public softwares are available, e.g. Prospino [78]. In our case, where we want

to test a possible LHT signal against the direct search results, we first implemented the LHT

model in FeynRules [79] combining the Feynman rules presented in [35, 36, 40] (focusing

in particular on the Case A implementation of the down–type Yukawa Lagrangian), in

order to obtain a viable model file with the UFO interface [80] for different Monte Carlo

(MC) generators. This model file has been validated, using e.g. the MC generator Whizard

[81–83], by reproducing the production cross sections and branching ratios of the new LHT

particles as known in literature.

We used MadGraph 1.5 [84] to evaluate the LO cross section of the considered LHT
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topologies, given a parameter space point which we are free to modify. The efficiency can be

estimated via a MC event simulation, too: if we call NMC the total number of independently

generated events, and Ni the number of events passing the cuts of the signal region i, the

efficiency is given by

εi = lim
NMC→∞

Ni

NMC
, 0 ≤ εi ≤ 1 . (4.83)

We can imagine the evaluation of the efficiency as a result of a counting experiment,

governed by a Poisson probability density function with mean value Ni: in this way, we

can express a relative statistical uncertainty on the efficiency using the Poisson coefficient

of variation, namely

δεi % =
1√
Ni

% . (4.84)

From eq. (4.84) it is clear that in order to obtain a realistic evaluation of the cut efficien-

cies, a large number of MC events has to be generated. The generation of large enough

background samples to obtain a small relative uncertainty on the cut efficiencies represents

the most time–consuming part of the recasting procedure.

MadGraph 1.5 is used to generate parton level events, subsequently processed through

the Pythia 6.42 parton shower [85]. The output has been further analysed via Delphes

3.0 [86] for a fast simulation of either the ATLAS or CMS detector, depending on the

specifications of the considered analysis. A dedicated tool has been developed to evaluate

the different cut efficiencies, namely by evaluating the fraction of generated events satisfying

the signal–region dependent cuts, when applied on the reconstructed objects of each event.

For each analysis to be recasted, we need to identify the possible LHT production

modes yielding a possible final state topology matching the necessary requirements. This

is followed by the evaluation of the process cross sections and efficiencies as described

before in the text, given a particular point in the LHT parameter space.

We can then discriminate the consistency of the chosen parameter space point at 95%

CL by comparing the evaluated visible cross section with the corresponding upper bound,

see eq. (4.82). Exclusion limits can finally be presented as contours either in the (f, κ)

or (f,R) plane. Since the mirror quarks posses the largest cross section among LHT new

particles, with only a mild dependence on the parameter R as described in section 4.3.1,

we will present exclusion contours from our recasting analysis in (f, κ) planes, fixing the

value of R to a reference value R = 1.0.

Since most of the LHT final states mimick supersymmetric final states, due to the pres-

ence of an “invisible” particle at the end of most decay chains with a significant transverse
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momentum, namely the heavy photon AH, we analysed only experimental searches requir-

ing a large fraction of missing transverse energy (/ET) in the final state. Among those, we

can distinguish three different classes of analyses: monojets plus /ET, multijets plus /ET,

and multijets plus leptons and /ET. In the following, we will present the details of the

different analyses and the results of our recasting procedure.

Monojet plus /ET searches

The first class of direct searches we are going to discuss requires a low multiplicity of hard

jets in the final state, together with a large cut on /ET. Both ATLAS and CMS analysed

8TeV data specifically for final states containing exactly no isolated leptons, one hard jet, a

large fraction of /ET, and at most another second slightly hard jet with pT > 30GeV [87,88].

Different requirements on the pT of the leading jet and on the total /ET define specific signal

regions within the analyses.

The most severe SM background is represented by QCD multijet processes, where

part of the jet momenta are mismeasured or not reconstructed, yielding a non–negligible

imbalance in the total transverse momentum. In order to discriminate against this QCD

background, ATLAS requires the azimuthal separation between the /ET direction and the

second leading jet, if present, to be greater than 0.5, while CMS only keeps two–jet events

if the azimuthal separation between the jets is less than 2.5.

Monojet plus /ET searches are suitable for two LHT production modes with large cross

sections, namely pair production of mirror quarks p p → qH qH, and single production of

mirror quarks in association with the heavy photon p p→ qHAH, in particular with subse-

quent decay qH → AH q. Other possible decays of qH into the gauge boson partners WH, ZH

would yield a larger multiplicity of final state hard jets: the efficiency for these production

modes is therefore negligible. For this reason, monojet plus /ET searches guarantee the

highest exclusion power in the low–κ region 0.2 . κ . 0.6, where the mirror quarks qH are

lighter than WH, ZH. On the other hand, for higher values of κ, the branching ratio of the

decay qH → AH q is highly suppressed, see table 4.7.

In the absence of any deviation from the SM prediction, both experimental collabo-

rations report the 95% CL upper limit on the visible cross section. As anticipated, the

highest exclusion power of these searches lies in the low–κ region: we are able to exclude

nearly the whole range 0.2 . κ . 0.5 up to f = 1200GeV, as can be seen in figure 4.13.
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Monojet Searches

ATLAS-CONF-2012-147

CMS EXO-12-048
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Figure 4.13: Exclusion contours in the (f, κ) plane at 95% CL from monojet plus /ET searches

at LHC8, corresponding to different recasted ATLAS and CMS analyses.

Multijets plus /ET searches

A second class of direct searches we have analysed is dedicated to final states with a high

multiplicity of hard jets, together with a large cut on /ET. Numerous analyses within this

category have been interpreted by ATLAS and CMS using 7 and 8TeV data, in particular

in terms of supersymmetric decay chains with all–hadronic decays of squarks and gluinos.

The recasting of these searches guarantees a good discrimination power in the region of

larger κ values, too, where the decay of the mirror quarks into gauge boson partnersWH, ZH

allows for high multiplicity final state hard jets when considering all–hadronic final states.

The ATLAS search published in [89] is optimised for squark and gluino production.

Together with a requirement on the multiplicity of final state hard jets, different cuts

are introduced to discriminate against e.g. QCD background: as with the monojet plus

/ET searches, a large azimuthal separation between the /ET direction and the hard jets is

required, as well as a stringent cut on the fraction of missing transverse momentum with

respect to the hadronic transverse momenta within each event.

The ATLAS search published in [90] is on the other hand optimised for stop pair

production processes, where each stop decays into a hadronically decaying top and the

lightest supersymmetric particle. At least six hard jets are required in the final state,

of which at least two have to be tagged as b–jets. This search exploits the presence of

intermediate top quarks in the decay chain: besides the presence of at least two b–jets, it

is required that the invariant mass of two trijet systems should reconstruct the top mass.

As usual, a requirement on the azimuthal separation between the /ET direction and the
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three hardest jets is required, as well as a large cut on the missing transverse momentum

itself. Finally, to discriminate against the tt̄ SM background, the transverse mass mT

between the /ET and the b–tagged jet closest in ∆φ to the /ET direction is required to be

greater that 175GeV. For this analysis, the LHT topologies yielding the highest sensitivity

are pair production of the T–odd mirror fermion tH with subsequent stop–like decay, and

the decay qH → q ZH, with ZH → hAH and qH either associated or pair produced.

Finally, the CMS search published in [91] looks generically at squark, sbottom and

gluino production. Different signal regions are defined depending on the particular mul-

tiplicity of final state hard jets and b–jets required. Additional cuts on the transverse

momenta of the jets are included to reduce possible SM backgrounds, as well as a cut on a

dedicated variable called αT, which guarantees a good discrimination power against QCD

background with jet energy mismeasurements. For a two–jet event, the αT variable is de-

fined as the ratio of the transverse momentum of the less energetic jet over the transverse

mass of the dijet system. QCD events are usually measured with αT . 0.5, while jets

recoiling against significant, genuine /ET yield αT values larger than 0.5. A generalisation

of the definition to multi–jet events can be found in [91].

Jets & MET Searches

ATLAS-CONF-2013-047

ATLAS-CONF-2013-024

CMS SUS-12-028
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Figure 4.14: Exclusion contours in the (f, κ) plane at 95% CL from multijet plus /ET searches at

LHC8, corresponding to different recasted ATLAS and CMS analyses.

As anticipated, multijet plus /ET searches guarantee a good discrimination power for

κ & 0.5 in the LHT parameter space, providing an important complementary information

compared to searches requiring a small multiplicity of final state hard jets. The results of

our recasting analysis for multijet plus /ET searches are shown in figure 4.14.
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Multijets plus leptons and /ET searches

Finally, we consider searches dedicated to final states with high multiplicity hard jets, plus

additional tagged isolated leptons and /ET. It turns out that the requirement of leptons

in the final state does not increase the exclusion power for the LHT parameter space: for

completeness we will report here the results of the recasting analysis, even if the exclusion

contour will not be extended compared to all–hadronic analyses described before.

In particular, the ATLAS analyses published in [92, 93] both require: the presence of

exactly one isolated lepton; at least four reconstructed hard jets; a large cut on the missing

transverse momentum /ET as well as a large cut on the scalar sum of the momenta of all

the reconstructed jets; a cut on the transverse mass mT between the /ET and the isolated

lepton. Furthermore, since the analysis [93] focuses on stop pair production, with the stop

either decaying into a top quark and a neutralino, or into a bottom quark plus the lightest

chargino, additional requirements on final state tagged b–jets and a cut on the variable

mT2 are included. The latter to suppress dangerous tt̄ backgrounds. Among matching

LHT topologies, we consider mirror quark production with subsequent decays to gauge

boson partners WH, ZH generating exactly one single charged lepton in the final state: if

b–jets are required, particularly important are processes including ZH → hAH or tH → t AH

decays.

Leptons, Jets & MET Searches

ATLAS-CONF-2012-104

ATLAS-CONF-2013-037

ATLAS-CONF-2013-007
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Figure 4.15: Exclusion contours in the (f, κ) plane at 95% CL from multijet, leptons plus /ET

searches at LHC8. The different contours represent the exclusions limits from the recasted ATLAS

analyses.

On the other hand, the ATLAS analysis [94], originally optimised for gluino pair pro-

duction, looks for exactly two same–sign leptons in combination with at least three jets and
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significant missing transverse momentum in the final state. For this analysis, same charge

mirror quarks pair production with subsequent leptonic decay qH → q′WH, WH →W±AH,

represents an LHT topology which can be tested accordingly.

A similar CMS analysis [95] turns out to be inefficient for the considered LHT topology

because of the large number of required tagged b–jets in the final state.

In figure 4.15 we show the result of the recasting procedure of the described analyses: as

mentioned before, the exclusion power is smaller than the all–hadronic final state searches,

see figure 4.14.

Effective operator bound

Before showing the combined limit from the different recasted analyses, it is important

to mention another available constraining information which we have taken into account.

The T–odd mirror fermions can generate four–fermion operators via diagrams involving

the exchange of Goldstone bosons χ and η, as first described in [37]. By power–counting,

it is easy to see that, after integrating out the intermediate mirror fermions of the box

diagram, a four–fermion operator proportional to κ2 is generated, see [37]:

OLHT
4–ferm = − κ2

128π2f2
ψ̄L γ

µ ψL ψ̄
′
L γµ ψ

′
L +O (g/κ) (4.85)

where ψ, ψ′ are distinct SM fermions. An upper bound on the allowed coefficient of possible

four–fermion operators might constrain κ within a certain range, given a particular value

f . The possibility to set an upper bound on κ will be crucial to set a global limit on f

together with the results from the direct searches, the latter providing instead an exclusion

for lower values of κ.

Possible constrains on four–fermion operators at the LHC arise from operators involving

four quarks, for example searches in the angular distribution of dijets [96, 97]. However,

the most stringent bounds on four–fermion operators are still from LEP searches: given a

four–fermion operator of the form

O4–ferm =
2π

Λ2
4–ferm

ψ̄L γ
µ ψL ψ̄

′
L γµ ψ

′
L , (4.86)

the strongest constraint comes from the eedd operator [37], namely Λ4–ferm & 26.4TeV.

This is turn yields the following upper bound for κ

κ2 < 256π3 f2

Λ2
4–ferm

. (4.87)
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Combined exclusion limits

It is now possible to superimpose the different exclusion regions obtained from the recasting

of direct searches, as well as from constraints on four–fermion operators. The result of our

findings is shown in figure 4.16, as published in [8, 9].
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Figure 4.16: Exclusion contours in the (f, κ) plane at 95% CL from different recasted ATLAS

and CMS direct searches at LHC8, as well as from constraints on four–fermion operators. The

black lines display the value of the masses of the mirror quarks in GeV.

From the combined result of figure 4.16 we can extract a global lower bound on f :

(fLHT, A)direct–search. & 638GeV (95%CL) , (4.88)

which is comparable with the current bound obtained from EWPT and Higgs observables,

see eq. (4.78), although not pushing the limit much beyond. However, it is clear that direct

searches for new particles cover interesting regions of the LHT parameter space, and we

expect that further experimental analyses at higher center of mass energies, but most of

all with an increased integrated luminosity, might help to extend the current limits.
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4.3.3 Towards LHT–optimised direct searches

The setup of the direct searches we have analysed so far has been optimised by the ex-

perimental collaboration for specific assumptions on the possible underlying BSM signal.

Supersymmetric signatures involving squarks, gluinos and neutralinos are usually consid-

ered. The question we will try now to answer in this section is whether an optimisation of

the current setups might be possible with a different assumption on the underlying signal,

discussing the results published in refs. [8, 9]. In particular, we want to define new opti-

mised signal regions to increase the sensitivity of direct searches to Little Higgs parameter

space regions not constrained by the existing setup.

However, such an optimisation is sensible only to the particular kinematic signatures of

the underlying signal, e.g. different mass gaps between particles in the decay chains, since

no angular observables have been taken into account in the recasted analyses. On the

other hand, angular observables represent an important discriminant tool for the exclusion

(or discovery) of Little Higgs signals, given the different spin structure compared to super-

symmetric spectra: we expect thus a boost for possible dedicated analyses for Little Higgs

signals involving angular observables, especially in the context of future linear colliders.

The optimisation method proceeds as follows. We first generate LHT event samples

for some benchmark points in the (f, κ) parameter space, together with SM background

samples, assuming a center–of–mass energy of
√
s = 8TeV. We then vary the values

of the selection cuts of the most constraining recasted analyses within sensible domains,

evaluating the corresponding efficiencies for both signal and backgrounds as a function of

the kinematic cuts. In this way, we can obtain a map of the S/
√
B ratio as a function

of the cut values: a maximisation of this ratio allows us to identify optimised cut values,

which guarantee the highest exclusion power for the chosen signal benchmark point.

Assuming an integrated luminosity as reported in the experimental papers, we obtain

the 95% CL upper bound on the visible cross section1 using a standard CLs frequentist

approach [98]. The upper bounds on the visible cross sections are then finally translated

into exclusion regions in the (f, κ) plane.

In the following we will discuss possible optimisations of monojet plus /ET and multijets

plus /ET direct searches.

1In particular, we evaluate the expected upper bound, namely assuming that the would–be observed

number of events is equal to the predicted SM background events.
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Monojet plus /ET searches

The dominant backgrounds for monojet plus /ET searches are Z(→ νν)+ jets andW + jets,

with smaller contributions from Z/γ∗(→ `+`−) + jets, QCD multijet, tt̄ and diboson

(WW, ZZ, WZ) processes. Events for all these processes have been generated via the

Monte Carlo generation chain described in section 4.3.2, applying the detector specifica-

tions given in the experimental papers.

Benchmark f [GeV] κ

BM1 1600 0.2

BM2 2000 0.4

BM3 600 0.8

Table 4.8: Benchmark points for the optimisation of monojet plus /ET searches.

Remembering that monojet plus /ET searches are mostly constraining for lower values

of κ . 0.6, we identify three possible benchmark (f, κ) scenarios, as listed in table 4.8.

Cut Range

/ET [120, 600]GeV

pT(j1) [100, 600]GeV

pT(j2) [0, 450]GeV

Table 4.9: Cut ranges scanned to identify an optimised monojet plus /ET analysis.

We then scan within sensible ranges different values of three selection cuts required in

the monojet plus /ET searches, namely the transverse momentum of the two leading jets,

and the total amount of missing transverse momentum: the specific ranges are summarised

in table 4.9. In particular, the possible presence of a second hard jet is not included in

the original experimental searches: this requirement has been included since our assumed

signal mostly consists of two jets in the final state. In table 4.10 we report the optimised

cuts for the three different signal benchmark points, as well as one of the signal regions of

both ATLAS and CMS analyses [87,88], for comparison.

In general, we observe that the /ET and the pT cuts increase together with the mass gap

between the mirror quark and the heavy photon, which scales with κ: the larger the mass

gap, the larger the acquired transverse momenta of the decay products of qH → q AH.
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Cut BM1 BM2 BM3 ATLAS CMS

/ET 170GeV 520GeV 370GeV 120 250

pT(j1) 120GeV 470GeV 250GeV 120 110

pT(j2) 80GeV 310GeV 180GeV 7 7

Lepton veto 3 3 3 3 3

Two–jet veto 3 3 3 3 3

∆φ(/ET, j2) ≥ 0.5 0.5 0.5 0.5 7

∆φ(j1, j2) ≤ 2.5 2.5 2.5 7 2.5

S95
exp 1745 8.4 99.9 45136 3694

Table 4.10: Optimised monojet plus /ET cuts for three LHT benchmark points as in table 4.8.

In particular, the lepton veto rejects any event with an isolated electron (pT > 10GeV), muon

(pT > 10GeV) or tau (pT > 20GeV) in the final state. The two–jet veto rejects events with more

than two jets satisfying pT > 30GeV and |η| < 4.5. The last two columns show one of the signal

regions of the recasted ATLAS and CMS analysis [87, 88]. S95exp represents the (expected) upper

bound on the number of signal events.
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Figure 4.17: 95% CL exclusion contours using the optimised selection cuts summarised in table

4.10 at LHC8 with 20 fb−1. The different contours correspond to the three considered signal regions.

After extracting the expected upper bound on the visible cross section, we can obtain

the excluded regions within the LHT parameter space. In particular, in figure 4.17 we
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show the exclusion limits for each considered signal region, while in figure 4.18 we show

the corresponding combination together with the exclusion from the original ATLAS and

CMS analysis, for comparison.

Monojet Exclusion

Proposal Search

ATLAS + CMS

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f @GeVD

k

Figure 4.18: Comparison between the optimised monojet plus /ET exclusion limits and the limits

from the recasting of the ATLAS and CMS [87,88] analyses.

As expected, the optimised searches are mostly discriminant in the low–κ range, as

the original experimental searches: as detailed in section 4.3.2, for higher values of κ the

branching ratio of the interesting decay qH → q AH is too much suppressed, together with

a reduced cross section due to the higher qH mass. Furthermore, we can observe that the

optimised set of selection cuts obtained from our analysis does expand the excluded region,

especially for larger values of the scale f . This suggests that a dedicated analysis focussing

on particular kinematic regimes of the LHT model might indeed be conceivable.

Multijets plus /ET searches

The dominant background for multijet plus /ET searches areW+jets, Z+jets, tt̄, single top,

QCD multijet and diboson (WW, ZZ, WZ) processes. As with the monojet plus /ET anal-

ysis, events for all these processes have been generated applying the detector specifications

of the ATLAS analysis [89].

In this case, we choose benchmark parameter space points with higher values of κ, in

order to maximise the exclusion power for the parameter space regions where multijet final

states are accessible with higher production cross sections. In particular, we choose three

benchmark scenarios as summarised in table 4.11.
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Benchmark f [GeV] κ

BM1 600 1.0

BM2 700 2.0

BM3 1000 1.0

Table 4.11: Benchmark points for the optimisation of multijet plus /ET searches.

We then scan within sensible ranges different values of the selection cuts used in the

ATLAS analysis [89]: in its original setup, this analysis provided the most stringent limit

among the considered analyses, as shown in section 4.3.2 and figure 4.14. We focus in

particular on the ATLAS signal regions requiring at least three and at least four hard jets

in the final state, respectively.

Cut Range

njets 3 or 4

/ET [100, 500]GeV

pT(j1) [100, 400]GeV

pT(jn) [40, 100]GeV

meff [1.2, 3.0]TeV

Table 4.12: Cut ranges scanned to identify an optimised multijet plus /ET analysis.

To identify optimised selection cuts, we scan the values of the total missing transverse

momentum, the pT of the two leading jets, and of the scalar sum of the transverse momenta

of all reconstructed objects in the event (meff): the range of our scan is listed in table 4.12.

Together with the optimised cuts, we include in our analysis a lepton veto and a cut on the

azimuthal separation of the leading three (four) jets with respect to the direction of the

/ET, in order to reduce QCD background, as in the original ATLAS setup. The optimised

cuts for the three different signal benchmark points are given in table 4.13, for both the

3–jets and 4–jets final state.

We can observe that the optimised cut on the effective mass meff increases with both

f and κ, as indeed the mass gap between the mirror quarks qH and the heavy photon

becomes larger: meff ∼ 2(mqH −mAH) for pair production of mirror quarks. Analogously,

the optimised value for /ET increases with the mass gap between qH and AH.
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Cut BM13j BM23j BM33j BM14j BM24j BM34j

Lepton veto 3

njets 3 4

/ET 200GeV 340GeV 400GeV 200GeV 300GeV 400GeV

pT(j1) 120GeV 380GeV 180GeV 140GeV 320GeV 180GeV

pT(jn) 100GeV 100GeV 100GeV 70GeV 80GeV 100GeV

∆φ(j1,2,3, /ET) ≥ 0.4

meff 1.2TeV 2.8TeV 2.1TeV 1.2TeV 2.6TeV 2.1TeV

S95
exp 298 3.5 11.3 154 3.5 4.2

Table 4.13: Optimised multijets plus /ET cuts for the three LHT benchmark points as in table

4.11, for both the 3–jet and 4–jet final states. The lepton veto rejects any event with an electron

(muon) with pT > 20 (10) GeV and |η| < 2.8 (2.4). S95exp represents the (expected) upper bound on

the number of signal events.

Figure 4.19: Comparison between the optimised multijet plus /ET exclusion limits and the limits

from the recasting of the ATLAS [89] analysis.

With the extracted upper bounds on the visible cross section for each signal region

denoted in table 4.13, we are finally able to obtain the exclusion contours and compare

them with the original ATLAS setup. The result is shown in figure 4.19, where we combine

the exclusion from all optimised signal regions. In particular, we see that with the current
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setup of the analysis there is only small room for improvement in searches with multijet

plus /ET final state topologies. The improvement with our proposed optimised signal region

can be estimated to be roughly 50GeV for fixed value of κ.

SR BM SR BT SR CM SR CT SR D

ATLAS analysis [89]

Total bkg 33± 7 2.4± 1.4 210± 40 1.6± 1.4 15± 5

S95
exp 17.0+6.6

−4.6 5.8+2.9
−1.8 72.9+23.6

−18.0 3.3+2.1
−1.2 13.6+5.1

−3.5

Recasting procedure

Total bkg 30.2± 9.1 3.2± 1.6 218.5± 43.7 2.4± 1.2 15.2± 4.5

S95
exp 21.0 5.4 90.2 4.3 12.2

Table 4.14: Validation of the recasting procedure, event generation and statistical tools by com-

paring the published experimental results [89] and our findings. The labels BM, BT, CM, CT and

D refer to specific signal regions (SR) defined in [89]. In particular, the total number of background

events and the corresponding 95% CL expected upper bound on BSM signal events (S95exp) are shown.

Finally, we want to comment about the validation of our statistical procedure to extract

the upper bounds on the visible cross section, and of the recasting procedure in general. By

applying the recasted selection cuts of the original ATLAS analysis [89] on the generated

background samples, we are able to compare the expected number of background events

with the published numbers from the experimental paper, as well as the expected upper

bounds on possible BSM events. The result of the comparison is shown in table 4.14: our

findings are clearly consistent within the reported uncertainties.



Chapter 5

Prospects for LHC run II

This chapter details the results of my research work concerning the proposal of dedicated

analyses for particular BSM signatures at the foreseen
√
s = 13, 14TeV LHC run II. The

corresponding publications are [10, 11]. Different discovery strategies and mass measure-

ment methods have been developed. In particular, on the one side I have been focusing on

the discovery of a possible top partner signal: in a first section of this chapter I will present

the motivation for a dedicated top partner experimental analysis, the theoretical framework

in the context of different Composite– and Little Higgs models, and the proposed analysis

involving top–tagging techniques and optimised selection cuts accounting for the particular

kinematics of the considered process. A possible measurement of the top partner invariant

mass is furthermore described, in a final state without missing transverse momentum.

In a second section of this chapter I will present the results for a possible mass measure-

ment from a BSM signature involving a large fraction of missing transverse momentum in

the final state. In particular, the minimum symmetric event topology is considered, namely

X pair production followed by X → `N , where X and N are unknown particles with the

masses to be measured, and N is an invisible particle, focusing on the case where X is pair

produced from a resonance. After presenting a method to identify the kinematically allowed

mass regions in the (mN ,mX) plane, I will define kinematical variables on the boundary

of the allowed mass region which can be used in measuring the unknown masses. As a case

study, the process pp → A → χ̃+
1 χ̃
−
1 , followed by χ̃±1 → `± ν̃` in the Minimal Supersym-

metric Standard Model has been considered. The main resources used for this chapter are

refs. [10,11,99–102].

103



104 5.1. Top Partner Discovery in the T → tZ channel at the LHC

5.1 Top Partner Discovery in the T → tZ channel at the LHC

In this section we will discuss our results concerning the analysis presented in ref. [10],

where we propose a direct search for a charge–2/3, spin–1/2, vector–like top partner T at

the LHC with
√
s = 13TeV and 300 fb−1 of integrated luminosity. In particular, we are

interested in the top partner decay T → t Z → (q q′ b) (`+`−). This is a process that has

been ignored in the literature up to now. However, it is quite interesting as it allows a

possible full reconstruction of the invariant mass of the on–shell top partner.

We will exploit top–tagging techniques capturing the particular boosted kinematics of

the top partner decay products, as well as optimised selection cuts, in order to reduce

potentially dangerous SM background processes while retaining a large fraction of signal

events.

In the following, we will first motivate why direct searches for new particles should focus

on possible BSM top partner signals, further reviewing the current experimental status

and the proposed analyses from the theoretical community. Details about jet substructure

methods, specifically top–tagging algorithms, will be discussed as well. Furthermore, we

will present examples of possible top partners arising in different strongly coupled models,

even if we decided to use a simplified–model approach regarding the assumption on the

underlying BSM model. A recipe to match the free parameters used in our analysis to

specific BSM models will be described.

We will then detail the selection cuts of our proposed analysis, and explain the proce-

dure to fully reconstruct the four–momenta of the candidate Z and t of our signal process.

In this way, we will obtain a possible measurement of the top partner invariant mass, and

discuss a systematic procedure to evaluate the statistical significance of the top partner

signal evidence above the SM backgrounds.

5.1.1 Top partners and top tagging

General motivation

Direct searches for Supersymmetry have pushed the limit on the masses of supersymmetric

particles in simplified models above the TeV threshold. However, these limits apply to

partners of the gluons and of the light quarks, which are abundantly produced at the

LHC. On the other hand, direct limits on the top superpartners, and on the partners of

the W and Z bosons, are still below the TeV scale due to the smaller production rates,

and the more involved final states from the experimental point of view.
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Light partners of the top and of the gauge bosons are a key ingredient for the naturalness

argument of different BSM models, in order to cut off the quadratic UV–sensitivity of the

Higgs mass squared parameter: we have seen in section 3.2.3 the example of Little Higgs

models, but this is a common feature for generic Supersymmetric and Composite Higgs

models.

Contrary to sequential fourth generation quarks, which are heavily constrained already

from Higgs boson searches, since they would yield a large impact e.g. in the one–loop

induced processes like gluon fusion production and diphoton decay of the Higgs, indirect

bounds on vector–like quarks are much weaker. Their effect on the Higgs observables is

indeed less dramatic than fourth generation quarks, since their vector–like nature allow to

obtain a large Dirac mass without introducing a large Yukawa coupling to the Higgs.

Both the ATLAS and CMS collaborations have recently performed dedicated searches

for top partners [42,103–108]. Depending on the particular branching ratio under investi-

gation, the actual limits on the top partner mass, at
√
s = 8TeV and with up to 20 fb−1 of

integrated luminosity, do not exceed 700− 800GeV. Most of these experimental searches

assume the new heavy quarks to be pair produced: however, searches combining pair pro-

duction with single production through EW interactions will become an important feature

in the future. Present limits from the LHC start indeed to enter the region in which

single production becomes comparable to pair production due to the smaller phase space

suppression, even if an EW coupling is involved.

Tagging the boosted regime

Let us now focus on the kinematics of a possible top partner decay. For masses much heavier

than the top quark, the top partner decay products are produced with large spatial sepa-

ration (back–to–back decay). Furthermore, for large center–of–mass energies, these “first

generation” top partner decay products are necessarily boosted, namely with transverse

momentum pT which considerably exceeds their rest mass: this means that the subsequent

decay products are highly collimated in one area of the detector. As a rule of thumb, the

decay products of a highly boosted particle of mass m and transverse momentum pT � m

are collimated within a cone of radius

∆R ∼ 2
m

pT
, (5.1)

such that e.g. the hadronic decays of a boosted SM top with pT ∼ 250GeV are collimated

within a detector region of radius ∆R . 1.4.
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In this kinematical regime, conventional reconstruction algorithms that rely on a jet–

to–parton assignment are often “inappropriate”. Crucial ingredients for high center–of–

mass searches involving massive particles are the so called substructure methods [109,110],

to identify the top partner decay products within large “fat” jets. Generically, focusing

on hadronic decays of boosted objects, these substructure methods first reconstruct jets

with a much larger radius parameter, in order to capture the energy of the complete

hadronic decay in a single jet; then use method–dependent discriminating variables to

analyse the internal structure of the fat jets, to separate boosted objects from the large

QCD background. Jet–substructure methods which are dedicated to the identification of

possible boosted tops are generically called top–taggers.

A review on top–taggers can be found e.g. in [111]. Among possible available algo-

rithms, the two most commonly exploited are the John Hopkins top–tagger [112] (“JHTop-

Tagger”) and the Heidelberg–Eugene–Paris top–tagger [110] (“HEPTopTagger”). Similar

to the BDRS jet substructure method for boosted Higgs [109], the JHTopTagger clusters

the decay products and relevant radiations of the decaying boosted top using a large cone

radius, and then de–clusters the candidate top jet with a dedicated algorithm to find a

suitable trijet system. If the invariant mass of the trijet system satisfies criteria involving

mt and mW, the fat–jet is tagged as top–jet.

The HEPTopTagger has been developed to capture moderately boosted tops. First,

the Cambridge–Aachen clustering algorithm with large cone radius R = 1.5 is applied to

reconstruct possible fat–jets: as seen in eq. (5.1), such large R allows to access top quarks

down to pT ∼ 200GeV. The HEPTopTagger unclusters the fat–jet using an iterative

mass–drop criterion, and simultaneously employs a filtering procedure [109] to identify

three suitable hard jets reconstructing the original top, further testing them with top

kinematics. It turns out, see e.g. refs. [101, 104], that the HEPTopTagger can have a

relatively better performance: therefore, in our analysis we will adopt the HEPTopTagger

to tag boosted top quarks in the considered signal events.

In particular, top tagging techniques are crucial not only to reduce the huge SM QCD

and tt̄ backgrounds, exploiting the particular kinematical feature of the boosted decay

products, but also to avoid combinatorics in the reconstruction of the top four momen-

tum from high multiplicity final state jets. In this way, fully–hadronic top decays with a

larger branching ratio compared to leptonic final states, can be systematically exploited

for searches involving top partners.
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Models comprising top partners

All differences on the underlying top–partner model depend on the choice of the represen-

tation of the new quarks and on the assignment of the quantum numbers. We have already

discussed the example of an SU(2) singlet top partner within the LHT model, see section

3.3.2. Another relevant class of models predicting light spin–1/2 vector–like top partners

is the class of minimal Composite Higgs Models [99,113–119]. We will briefly discuss now

for comparison some examples of top partners in the context of minimal Composite Higgs

Models.

The main guiding principle of minimal Composite Higgs Models is the fact that the de-

cays and single production of the new partners are generated via mixing with the standard

quarks, induced by Yukawa interactions with the Higgs. Similarly to Little Higgs models,

the Higgs is a pseudo–Goldstone boson associated to the breaking of a global symmetry

due to a strongly interacting dynamics. In the minimal Composite Higgs scenario, the

coset structure is SO(5)/SO(4). In particular, only the right–handed top quark tR is a

fully composite state belonging to a complete multiplet (singlet) of the unbroken SO(4)

group, while the (elementary) left–handed doublet qL is assumed to be coupled linearly to

the strong sector, and embedded into an incomplete SO(5) multiplet.

The possible vector–like top partners are introduced as composite bound states be-

longing to a complete multiplet Ψ of the unbroken group SO(4): two cases are usually

considered, namely Ψ ∼ 4 or Ψ ∼ 1 under SO(4). We will refer to these two implemen-

tations as M45 and M15, respectively. In the M45 case, the multiplet Ψ includes two

charge–2/3 top partners X2/3, T , one exotic charge–5/3 top partner X5/3, and a charge–

1/3 bottom partner B: under the SM group, the four components of Ψ decompose into

two SM doublets (T, B) and (X5/3, X2/3) of hypercharge 1/6 and 7/6, respectively. In the

M15 case, only one SU(2)–singlet charge–2/3 top partner T̃ is introduced.

Assuming an embedding of the elementary doublet qL into an incomplete fundamental

representation Q5
L ∼ 5 of SO(5), the following interactions involving the top partners can

be written down [99]:

LM45 ⊃ i c1

(
Ψ̄R

)
i
γµdiµ tR + y f

(
Q̄5

L

)I
UI i Ψi

R + y c2 f
(
Q̄5

L

)I
UI 5 tR + h.c. (5.2)

LM15 ⊃ y f
(
Q̄5

L

)I
UI 5 ΨR + y c2 f

(
Q̄5

L

)I
UI 5 tR + h.c. , (5.3)

where dµ is the symbol defined in the CCWZ formalism as in section 2.1.1, U is the 5× 5

Goldstone boson matrix, y is a Yukawa coupling controlling the mixing between the com-

posite and elementary states, c1, c2 are O(1) parameters associated with the interactions
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of tR, and f is the usual symmetry breaking scale of the strong sector. For the model

M15, a direct coupling of Ψ with tR like the first term in eq. (5.2) can be removed with

a field redefinition. Note that the operators proportional to y explicitly break the SO(5)

symmetry, since qL is embedded into an incomplete SO(5) multiplet, giving rise to the

leading contribution to the Higgs potential triggering EWSB.

It turns out that the couplings of the top partners to the Goldstone bosons (φ±, φ0),

which in the high energy limit correspond to the longitudinal components of the gauge

bosons (Equivalence Theorem), and to the Higgs h, are proportional to linear combinations

of the couplings y, c [99]:

M45 :



φ+ X̄5/3 L tR :
√

2 c1 gΨ(
h+ iφ0

)
X̄2/3 L tR : c1 gΨ(

h− iφ0
)
T̄L tR : −c1

√
y2 + g2

Ψ +
c2 y

2

√
2
√
y2 + g2

Ψ

φ−B̄L tR : c1

√
2
√
y2 + g2

Ψ −
c2 y

2√
y2 + g2

Ψ

(5.4)

M15 :


(
h+ iφ0

) ¯̃TR tL :
y√
2

φ+ ¯̃TR bL : y ,

(5.5)

where gΨ = MΨ/f , MΨ being the Dirac mass of the top partner multiplet.

These couplings govern the associated production of the different top partners. In

particular we see that the SU(2)–singlet top partner T̃ can be copiously produced in

association with a b–quark: from eq. (5.5), its coupling to the W boson is given by(
mW

MT̃

)
· coeff(φ+ ¯̃TR bL) =

(
mW

MT̃

)
y ≡ g g∗√

2
, (5.6)

with y of order O(1) to reproduce the SM top mass.

Furthermore, we can easily read off from eq. (5.4) and (5.5) the different branching

ratios of all top partners. For example, in the decoupling limit of mΨ →∞, the branching

ratios of the M15 SU(2) singlet top partner T̃ are

BR(T̃ →W b) ∼ 0.5 ,

BR(T̃ → Z t) ∼ 0.25 ,

BR(T̃ → h t) ∼ 0.25 . (5.7)
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while the branching ratios of the charge–2/3 top partners of M45 are given by

BR(X2/3 → Z t) ∼ BR(T → Z t) ∼ 0.5 ,

BR(X2/3 → h t) ∼ BR(T → h t) ∼ 0.5 . (5.8)

We can now compare these results with the SU(2)–singlet top–partner T+ arising in the

LHT model. In particular, the EW coupling to the W boson which governs the associated

production of T+ with a b–quark, is given by [40]

coeff
(
W+ T̄+R bL

)
=

g√
2

R2

1 +R2

v

f
+O

(
v2

f2

)
≡ g g∗√

2
, (5.9)

expressed in the same form as eq. (5.6). The T+ decay branching ratios are given in table

4.7 for two benchmark scenarios: in particular, it shares the 2:1:1 ratio for the decays into

SM particles as in eq. (5.7), but allows for a further decay channel involving the T–odd

partner T− and the heavy photon AH with a non–negligible rate.

It is then clear that charge–2/3 vector–like top partners share similar final state topolo-

gies, with different branching ratios and single production couplings depending on the

particular underlying model. However, when looking for possible dedicated searches for

top partners at the LHC, it is important to look for mostly model independent searches,

involving for example only the mass of the top partner and its “single production” coupling

as free parameters.

Model independent parametrisation

Recently, a generic parametrisation of an effective Lagrangian for top partners has been

proposed in [100], where the authors considered vector–like quarks embedded in different

representations of the weak SU(2) group, with other minimal assumptions regarding the

structure of the couplings. In particular, vector–like quarks which can mix and decay

directly into SM quarks of all generations are included. Particularly interesting for our

purposes is the case in which the top partner is an SU(2) singlet, with couplings only to

the third generation of SM quarks. The Lagrangian parametrising the possible top partner

interactions reads [100]

LT ⊃
g∗√

2

[
g√
2
T̄LW

+
µ γ

µ bL +
g

2cW
T̄L Zµγ

µ tL −
MT

v
T̄R h tL −

mt

v
T̄L h tR

]
+ h.c. , (5.10)

where MT is the top partner mass, and g∗ parametrises the single production coupling in

association with a b– or a top–quark. In the limit of MT � mt, we have calculated the
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width of the top partner to be

ΓT '
(g g∗)2 M3

T

64πm2
W

(
1 +

1

2
+

1

2

)
, (5.11)

where the three contributions in parentheses arise from the top partner decays to W , Z

and Higgs, respectively. The different branching ratios are clearly the same as in eq. (5.7),

since we are describing effectively the same type of top partner as in M15.

For our proposed top partner search at the LHC we will exploit a simplified–model

approach, assuming the interactions described by the Lagrangian of eq. (5.10), where the

only free parameters will be the top partner mass MT and its “single production” coupling

g∗. In this way, our results will be straightforwardly mapped within the context of the

M15 minimal Composite Higgs Model, namely by identifying as in eq. (5.6)

y =
g g∗√

2

MT̃

mW
(M15) . (5.12)

For comparison, with y = 1 and MT̃ = 1TeV one obtains g∗ ∼ 0.17.

On the other hand, while an immediate map of g∗ to the LHT parameters is straight-

forward from eq. (5.9), namely with

g∗ =
√

2
R2

1 +R2

v

f
+O

(
v2

f2

)
(LHT) , (5.13)

the Lagrangian of eq. (5.10) does not exactly reproduce the T+ phenomenology because of

the absence of the T+ → T−AH vertex. In particular, it should be remembered that the

different branching ratios of the top partner described by eq. (5.10) slightly overestimate

the actual branching ratios of the LHT T+ partner. For comparison, fixing R = 1.0 and

f = 1TeV yields g∗ ∼ 0.17.

On the other hand, we underestimate the branching ratios of the charge–2/3 top part-

ners within the M45 model, as in eq. (5.8): our results will be conservative in this case.

Overview over top partner searches

Many different theoretical analyses involving top partners have been recently proposed,

some of them exploiting tagging techniques [99, 101,102,120–132]. In particular:

• in ref. [102] the authors proposed a
√
s = 8TeV analysis for the M15 top partner

in the T → W b channel, focusing on the single production process and requiring

exactly one isolated lepton in the final state.
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• in ref. [120] the authors investigated both decay channels T → h t and T → W b

of the M15 top partner for a possible analysis at
√
s = 8TeV. In particular, they

designed an analysis for single production of the top quark, further requiring exactly

one lepton in final state.

• in ref. [121] the author developed a search strategy for the M15 top partner, focusing

on its single production in association with a b–quark, and further decay T → h t,

with leptonic decay of the SM top. Both center–of–mass energies
√
s = 8, 14TeV

have been considered.

• in ref. [122] the authors investigated the discovery potential of searches for all–

hadronic T → h t final states at
√
s = 14TeV, with BR(h t) = 1.0, making use

of particular top–tagging (HEPTopTagger) and Higgs–tagging techniques. The same

final state has been investigated in ref. [123] for a possible
√
s = 8TeV analysis.

• in ref. [99] different search strategies are discussed in the context of both M15 and

M45 models. In particular, analyses for B → W t, T → W b and T → Z t are

presented with
√
s = 8TeV. The T → Z t search is performed in the tri–lepton

channel, without including top–tagging techniques.

• in ref. [124] the authors presented a dedicated analysis which can be sensitive to final

states which are obtained by different top partner decays in the context of minimal

Composite Higgs Models. In particular, exactly one single lepton, b–tagging and

“top–veto” requirements are exploited, together with other optimised kinematic cuts,

to improve the sensitivity of top partner searches at
√
s = 8, 14TeV. No top–tagging

algorithms have been included in the analysis.

• in ref. [125] a systematic discussion of multi–lepton final states is presented, with final

states accessible through many different production and decay channels involving top

partners in the context of minimal Composite Higgs Models. The outcome is that

single lepton final states provide the best discovery potential. No tagging techniques

have been exploited.

• in ref. [126] the authors investigate pair and single production of the X5/3 and B

partners of the M45 model, exploiting top–tagging (HEPTopTagger) and W–tagging

in a single lepton plus jets final state.
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• in refs. [127, 128] the authors scrutinised the particular same–sign lepton final state

from the X5/3 and B decays within the M45 model, considering both pair and

associated production. Mass reconstruction and observables to distinguish the nature

of the decaying partner are thoroughly presented.

• in ref. [101] the authors developed a search strategy for a bottom partner, optimised

for its pair production at
√
s = 14TeV in the all–hadronic B → W t channel, with

BR(W t) = 1.0. Top– and W–tagging techniques have been included.

• in ref. [129] the authors presented a search strategy for a top partner decay to a

charged Higgs boson and a bottom quark, focusing on the case where the charged

Higgs decays to third–generation quarks to yield a multi–b final state. This analysis

is motivated e.g. by different Little Higgs scenarios featuring extended Higgs sectors.

From this we see that the top partner decay T → Z t has not been thoroughly explored

yet, because it appears rather difficult at first glance. In particular, the all–hadronic final

state suffers from huge SM backgrounds, making the alternative T → W b channel more

suited for all–hadronic analyses due to the enhanced branching ratio and the possibility

to exploit b–tagging. Furthermore, the channel involving a leptonic decay of the Z entails

a large suppression from the Z leptonic branching ratio, namely BR(Z → `+`−) ∼ 0.067

(` ≡ e, µ).

In order to test the nature of the top partner, it is important to develop search strategies

which might cover all possible channels, especially for the foreseen LHC energy upgrade

to 13TeV. For this reason, we developed a search strategy tailored for a charge–2/3 top

partner optimised for its decay channel T → t Z → (q q′ b) (`+`−), at the LHC with

center–of–mass energy of
√
s = 13TeV and integrated luminosity of 300 fb−1. Our aim

is to develop, with minimal assumptions on the underlying model as explained before,

a method to discover a possible top partner signature with large statistical significance,

together with a precise measurement of its invariant mass.

It is to be noted that a recent ATLAS analysis [103] presented a
√
s = 8TeV search

optimised for either pair or single production of a top partner, subsequently decaying as

T → Z t with leptonic decay of the Z boson. This encouraged us to further analyse

this rather unexplored process, in order to provide an effective search strategy for the

forthcoming 13TeV LHC runs.
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5.1.2 Setup of the analysis

Event generation

As mentioned in section 5.1.1, we investigate processes involving a charge–2/3 vector–like

top partner T , inclusively pair and associated produced, with subsequent decay

T → t Z →
(
q q′ b

) (
`+`−

)
. (5.14)

The single production process is depicted in figure 5.1 together with our conditions on the

cones of the boosted objects to be defined below.

T

W±

t

Z

∆R < 1.4

∆R < 1.0
b

q q′

ℓ−
ℓ+

b
q′′
q′′′

Figure 5.1: Single production of a heavy top partner T with subsequent decay into tZ. The boosted

decay products of the latter are collected inside cones of ∆R < 1.4 and ∆R < 1.0, respectively.

We study a possible search strategy optimised for the LHC with center–of–mass energy

of
√
s = 13TeV and integrated luminosity of 300 fb−1. The clean final state and the

absence of missing transverse energy makes this channel promising for a possible mass

reconstruction of the top partner, even if the possible SM backgrounds are rather huge.

Signal and background events have been simulated using MadGraph5_aMC@NLO v2.1

(MG5_aMC) [133] interfaced with Pythia 8.183 [134] for parton–shower and fragmenta-

tion, and further analysed via Delphes 3.1 [86] for a fast detector simulation following the

specifications which we are going to detail in the following. In particular, an anti–kt jet

clustering algorithm with radius parameter of R = 0.4 is used to reconstruct jets, which

in the following we will call slim jets. The same Pythia output is simultaneously anal-

ysed through FastJet 3.0.6 [135, 136] in order to cluster the hadronic activity using the

Cambridge–Aachen algorithm with larger radius parameter of R = 1.5, reconstructing jets

which in the following we will identify as fat jets.
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The model file generating signal events according to the Lagrangian of eq. (5.10) [100],

can be found in the dedicated FeynRules model database webpage (“Singlet T Model

VLQ”) [79, 80]. The corresponding free parameters are the top partner mass MT, the

coupling g∗ which governs the top partner EW single production involving a t–channel W ,

and the rate RL of T decays into light quarks. We fix RL = 0 in order to force T to decay

only to third generation SM quarks. For our analysis we consider values in the range

MT ∈ [850, 1450] GeV , g∗ ∈ [0.05, 0.5] . (5.15)

In particular, our signal processes consist of pair and associated production of a charge–

2/3 vector–like top partner T , with subsequent decay as in eq. (5.14): in the case of

pair production we consider the inclusive decay of the second top partner according to

the branching ratios reported in eq. (5.7). The LO signal cross section is calculated via

MG5_aMC, depending on the particular choice of the free parameters which were con-

sistently updated, together with the top partner width, before the event generation. We

further rescale the signal cross section with a K–factor which we evaluate using Hathor

2.0 [137,138]. In particular, we calculate the K–factors for both top pair (NNLO) and sin-

gle productions (NLO) for different values of the top mass in the range (5.15), eventually

choosing a minimal and conservative value of K = 1.14.

The main SM background processes turn out to be Z + jets, associated Z production

with a pair of top quarks (tt̄ Z + jets), plus subleading contributions from associated Z

production with single top (t/t̄ Z + jets). All other potentially dangerous contributions

like tt̄ + jets, tt̄W± + jets and γ∗ → `+`− + jets turn out to be negligible by requiring

exactly two opposite charge and same flavour leptons in the final state with invariant mass

satisfying |m`+`−−mZ| < 10GeV. Furthermore, the largeW±Z+ jets background becomes

also negligible due to the smaller boost of the Z boson compared to the signal and the

backgrounds involving the top quark, and by exploiting b- and top-tagging.

Large samples of background events are generated using MG5_aMC, requiring up to

three, two or one additional hard jets at matrix element level for Z + jets, t/t̄ Z + jets

and tt̄ Z + jets processes, respectively. To avoid double counting of jets generated at

matrix element level and jets radiated during the parton showering process, a CKKW–L

merging procedure [139–141] is exploited. In particular, we interface, for each background

sample, the corresponding parton level MG5_aMC outputs with different multiplicities

of additional jets to Pythia 8.183 and its internally built–in routines for the CKKW–L

merging, accordingly setting the merging scale value and the number of additional jets
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available from matrix element. This procedure guarantees a correct prediction for the

(merged) cross section of the desired process.

bkg. process K–factor Ref.

Z + jets 1.20 [142]

tt̄ Z + jets 1.30 [143]

t Z + jets 1.11 [144]

t̄ Z + jets 1.09 [144]

Table 5.1: K–factors of the leading SM background processes for our analysis.

We rescale the evaluated background cross sections with appropriate K–factors, sum-

marising the values in table 5.1. It should be noted that the inclusive tt̄ Z+ jets K–factor as

given in [143] is K = 1.39: however, this value is reduced for large top transverse momenta,

as in our case. For this reason we conservatively set K = 1.30 as in table 5.1.

Reconstruction of physics objects

Final state objects reconstruction is performed mainly following the specifications detailed

in [145]. An electron candidate is required to have a transverse momentum peT ≥ 20GeV

and |ηe| < 2.47. An isolation requirement is further applied, namely the total pT of all

charged particles q satisfying pqT > 1.0GeV and ∆R(e, q) < 0.3, should be less than 10%

of peT. A muon candidate is required to satisfy pµT ≥ 10GeV and |ηµ| < 2.5. The isolation

for the muon requires that the total pT of all charged particles q satisfying pqT > 1.0GeV

and ∆R(µ, q) < 0.4, should be less than 6% of pµT.

As mentioned before, slim jets are clustered from all final state particles with |η| < 4.9,

except isolated leptons and neutrinos, using the anti–kt algorithm with a radius parameter

of R = 0.4 as implemented in Delphes 3.1. Only slim jets with pjT ≥ 20GeV are further

considered. Slim jets are possibly identified as b–jets through the built–in Delphes 3.1

dedicated routines: in particular, we set the probability to tag b–jets (b–tag efficiency) to

70%, together with a charm quark misidentification probability of 10%. Tagged b–jets are

further required to be reconstructed within |ηb| < 2.5.

Fat jets are clustered using FastJet 3.0.6 on the same final state particles with |η| < 4.9,

except isolated leptons and neutrinos, using the Cambridge–Aachen algorithm with radius

parameter of R = 1.5. Only fat jets with pjT ≥ 20GeV are further considered.
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Cutflow

Events are required to contain in the final state at least two leptons with minimum trans-

verse momentum p`T > 25GeV. Among all possible pairs of leptons, we require at least one

pair to consist of opposite charge and same flavour leptons matching the invariant mass of

the Z boson, namely such that the lepton–pair invariant mass m`+`− satisfies

|m`+`− −mZ| < 10GeV . (5.16)

We further require that for at least one pair, the separation ∆R =
√

∆φ2 + ∆η2 between

the two candidate leptons reconstructing the Z mass should satisfy

∆R(`+, `−) < ∆R(`+, `−)max = 1.0 . (5.17)

If more than one pair of leptons satisfies the previous requirements, we select the pair

with invariant mass closest to the Z boson mass. This pair of leptons allows us to fully

reconstruct the four–momentum of the candidate Z boson.

The cut of eq. (5.17) is particularly effective to suppress SM backgrounds containing a

Z boson, since it captures the expected boosted kinematics of the Z boson from the top

partner decay. According to eq. (5.1), we expect indeed highly collimated decay products

from a boosted Z. On the other hand, SM processes do not provide a large transverse

boost to the Z boson, guaranteeing a good discrimination power to eq. (5.17).

Figure 5.2: Distribution of the ∆R variable evaluated among candidate leptons reconstructing the

Z boson for different processes. The signal process assumes MT = 1TeV and g∗ = 0.1.
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We show in figure 5.2 the distribution of the variable ∆R evaluated among candidate

leptons reconstructing the Z boson, for the different background and signal processes: a

peak at smaller values of ∆R is clearly visible for signal events. Note that the signal events

used for all distribution plots shown in this section correspond to the benchmark point

MT = 1TeV and g∗ = 0.1.

Figure 5.3: Distribution of the psudorapidity |ηZ| of the reconstructed candidate Z boson for

different processes. The signal process assumes MT = 1TeV and g∗ = 0.1.

Further kinematic constraints are imposed on the candidate Z boson, again to exploit

the boosted properties of the considered signal. In particular, we require a large transverse

momentum of the candidate Z, namely

pZT > pZT,min = 225GeV , (5.18)

as well as requiring that the Z should be produced in the central region of the detector:

|ηZ| < |ηZ|max = 2.3 . (5.19)

The requirement of eq. (5.19) is useful in rejecting e.g. the SM Z + jets background, the

latter being mostly produced via a Drell–Yan process with the initial quarks yielding a

forward boost to the produced Z boson, as can be seen in figure 5.3.

In figure 5.4 we show the distribution of the transverse momentum of reconstructed Z

boson candidates as described in the text. Larger transverse momenta are observed for the

(boosted) Z from the signal process.
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Figure 5.4: Distribution of the transverse momentum pZT of the reconstructed candidate Z boson

for different processes. The signal process assumes MT = 1TeV and g∗ = 0.1.

Figure 5.5: Distribution of the scalar sum of the transverse momenta HT of the clustered slim

jets for different processes. The signal process assumes MT = 1TeV and g∗ = 0.1.

In the next step, the hadronic activity is considered for additional selection cuts. In

order to account for the large boost of the top quark, we expect the final state jets to possess

a large amount of transverse momentum. Therefore, we evaluate the HT variable, namely

the scalar sum of the transverse momenta of the reconstructed slim jets with pjT > 30GeV
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and within |ηj | < 3.0, requiring each event to satisfy

HT > HT,min = 400GeV . (5.20)

In figure 5.5 we show the HT distribution for the different considered processes. The

signal distribution has a considerable tail for larger values of HT compared to background

events, confirming the good discrimination power of eq. (5.20). It is also worth noticing

that the HT distribution for the signal in figure 5.5 displays two different visible peaks,

at O(500GeV) and at O(1.3TeV): these correspond to the top partner single and pair

production components of the signal, respectively.

Among the reconstructed final state slim jets, we further require the presence of at

least one tagged b–jet with

pbT > pbT,min = 40GeV . (5.21)

We then turn our attention to the reconstructed fat jets in the final state: our aim is

to identify one reconstructed fat jet as our top candidate. At least one fat jet is required

to be reconstructed among final state particles, satisfying the definition of fat jets given

before, and with an additional requirement on its transverse momentum being

pJT > pJT,min = 200GeV . (5.22)

Most importantly, we require at least one fat jet to be HEPTop–tagged: the presence of

a boosted SM top from the decay of a heavier resonance is indeed one of the main features of

the signal. As mentioned in section 5.1.1, top tagging is crucial not only as a discriminant

against SM backgrounds, but also to effectively deal with the combinatorics in the top

reconstruction from high multiplicity final state jets. If more than one fat jet is identified

as a (boosted) top jet via the HEPTopTagger algorithm, we identify our candidate top as

the fat jet mostly back–to–back with respect to the previously reconstructed candidate Z

direction, as we would expect from the signal topology.

To account for its boosted kinematics, we require that the transverse momentum of the

candidate top should satisfy the cut

ptT > ptT,min = 250GeV . (5.23)

The ptT distribution of signal and background processes, after applying the cut of eq. (5.23),

is shown in figure 5.6: a large fraction of signal events is observed for higher values of ptT.

Finally, to ensure that at least one of the tagged b–jets is originating from the candidate

top, and not from additional radiation or as decay product of another involved particle,
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Figure 5.6: Distribution of the transverse momentum ptT of the reconstructed candidate top for

different processes. The signal process assumes MT = 1TeV and g∗ = 0.1.

we require that the spatial separation between the candidate top and at least one of the

slim jets tagged as b–jet should satisfy

∆R(t, b) < ∆R(t, b)max = 0.8 . (5.24)

In other words, this cut ensures that at least one (slim) b–jet lies within the decay–cone

of the candidate (fat jet) top.

To summarise the applied cuts, in table 5.2 we categorise them according to the recon-

structed object on which they are applied. It should be noted that the actual values of

∆R(`+, `−)max, p
Z
T,min, |ηZ|max, HT,min, p

b
T,min are identified using an optimisation proce-

dure similar as the one described in section 4.3.3: in particular, we scan the aforementioned

cut values within appropriate ranges and evaluate the corresponding signal and background

efficiencies for each possible configuration, obtaining a signal over background (S/B) map

as a function of the cut values. We then identify the optimal cut configuration yielding

the highest S/B ratio, assuming MT = 1TeV and g∗ = 0.1 for the signal, and making sure

that the total number of events after applying the cuts would remain reasonably large for

300 fb−1 of integrated luminosity.
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selection cuts

reconstructed Z

n`+`− ≥ 1

|m`+`− −mZ| < 10GeV

∆R(`+, `−) < 1.0

pZT > 225GeV

|ηZ| < 2.3

slim jets
HT > 400GeV

nb ≥ 1, pbT > 40GeV

fat jets

nJ ≥ 1, pJT > 200GeV

HEPTop nt ≥ 1

ptT > 250GeV

∆R(t, b) < 0.8

Table 5.2: Summary of the selection cuts of the proposed analysis, sorted per type of reconstructed

object on which the cut is applied.

5.1.3 Results

The procedure detailed in section 5.1.2 has a double benefit, namely largely improving the

S/B ratio from one side, and uniquely determining the four momenta of the reconstructed

top and Z boson candidates satisfying the possible kinematics of a top partner decay.

We finally plot the distribution of the invariant mass of the (t–Z) system, which we

expect to peak at the invariant mass of the on–shell top partner for the signal process,

while described by a smoothly descending distribution for the different backgrounds, since

the reconstructed top and Z in the latter events do not originate from an on–shell decay.

We show the result in figure 5.7, where we rescale the different distributions with the

visible cross section of the corresponding processes, times an assumed integrated luminosity

of 300 fb−1. The different contributions are stacked in the plot. In this way, figure 5.7 shows

a realistic amount of events which could be observed at the LHC with
√
s = 13TeV and

300 fb−1 of integrated luminosity. For the signal we fixed MT = 1TeV and g∗ = 0.1.

A peak in the bins around MT = 1TeV, fixing the bin width to 50GeV, is clearly

visible above the background distribution, with up to 25 total events in the most significant

bin. The result of the analysis is therefore encouraging, and we support the experimental
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Figure 5.7: Stacked distribution plot of the invariant mass MT of the reconstructed top partner

for different processes. All distributions have been rescaled with the visible cross section of the

corresponding processes, times an integrated luminosity of 300 fb−1. The signal process assumes

MT = 1TeV and g∗ = 0.1. Other possible SM background processes are not shown in the plot since

their contribution turned out to be negligible.

collaborations to further analyse the discussed channel: clearly, in a real experimental

search the background estimation would be more robust and precise, e.g. via the inclusion

of reconstructed fake leptons.

It is very important to estimate the significance of the signal peak above the SM

background, in order to consistently claim the evidence for or the discovery of a top partner

signal. In particular, the hypothesis testing procedure is carried out using the public

BumpHunter code [146]. This code operates on datasets that are binned in some a–

priori fixed set of bins: in our case, the input datasets correspond to the total number

of signal+background and background–only events observed in MT–bins of 50GeV as in

figure 5.7. The BumpHunter scans the input–given data using a window of varying width,

and identifies the window with biggest excess compared to the background: the dedicated

test statistic is indeed designed to be sensitive to local excesses of data1.

1We setup the code to look for bumps in up to three consecutive bins, namely the possible mass

resolution is at worst ± 75GeV around the central value.
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The same scanning procedure is further applied to pseudo–data sampled from the

expectation of the background input2, in order to reconstruct the “expected” distribution

of the test statistic. The p–value of the test is calculated, being the probability that the test

statistic will be equal to, or greater than the test statistic obtained by comparing the actual

data to the background hypothesis. In other words, the p–value might be interpreted as a

false–discovery probability. When the distribution of the test statistic is estimated using

pseudo–experiments, as in our case, then the p–value is calculated as a binomial success

probability.

An equivalent formulation in terms of Gaussian significance is straightforwardly ob-

tained: it is common to claim that evidence for a new signal beyond the SM background

is observed if the p–value of the peak corresponds to at least 3.0σ of Gaussian significance,

while it is common to claim a discovery if the p–value corresponds to at least 5.0σ of

Gaussian significance.

By running the BumpHunter on the datasets summarised in figure 5.7, the most signifi-

cant peak is observed in the [900, 1050]GeV range, with an equivalent Gaussian significance

of 2.6+1.0
−0.9 σ. The uncertainties on the Gaussian significance of the peak are estimated by

applying a 20% uncertainty on both the signal and background event yields, which might

account for up to 30% possible further non-statistical uncertainties which we have not

taken into account.

Different hypotheses on the underlying BSM signal would alter the shape of the signal

distribution of figure 5.7. However, we expect that our analysis, although being optimised

for the signal valuesMT = 1TeV and g∗ = 0.1, should still display a peak in theMT distri-

bution even for different choices of the free parameters. In particular, a higher statistical

significance of the peak might be achieved for different signal hypotheses. For this reason,

we generate a grid of signal points for MT ∈ [850, 1450]GeV in steps of 150GeV, and for

g∗ ∈ [0.05, 0.5] in steps of 0.05, and for each combination we evaluate the corresponding

significance of the peak, if observed.

Our results are displayed in figure 5.8, where regions of possible evidence (3.0σ) or

discovery (5.0σ) of a top partner signal above the SM background are identified, assuming

2In our case, we choose to model the background expectation by a Poisson distribution with the mean

value distributed according to a Gamma distribution. The latter Gamma distribution is defined by fixing

its mean value to the actual background bin value, and variance to the squared background bin error, as

suggested in the BumpHunter manual. A total number of 108 pseudo–experiments is generated accordingly.
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Figure 5.8: Parameter space regions of possible evidence (3.0σ) or discovery (5.0σ) of a top

partner signal above the SM background, assuming the described analysis at the LHC with
√
s =

13TeV and 300 fb−1 of integrated luminosity. Also shown are bands representing the effect of a

possible further non-statistical 30% uncertainty on the visible cross section of the involved processes.

If a signal peak is observed above the SM background, a possible mass measurement of the top

partner invariant mass MT is possible with a mass resolution of at worst ± 75GeV around the

central value.

a dedicated LHC analysis as discussed in the text. Also shown are bands representing the

effect of a possible total 30% uncertainty as discussed before. We observe that a large

fraction of the considered parameter space might be probed using our proposed analysis;

in particular, the top partner mass might be measured via the described BumpHunter

procedure, with a mass resolution in our setup of at worst ± 75GeV around the central

value. The mass resolution might also be improved in a dedicated experimental setup.

5.2 Mass determination of semi–invisibly decaying particles

In the previous section, we developed a mass determination method focusing on a possible

final state without a large fraction of missing transverse momentum. The possibility of

fully reconstructing the four–momenta of the final state particles allowed us to reconstruct

the invariant masses of the intermediate on–shell particles, among which the top partner

with a–priori unknown mass.
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In the context of top partner searches, a big effort was also dedicated to analyse top

partner channels yielding missing transverse momentum in the final state. The missing

transverse momentum is measured as imbalance in the total transverse momentum of an

event: all transverse momenta of the final state particles should indeed sum up to zero

ideally, namely in the limit of perfect detector resolution, since the incoming initial state

partons possess only a longitudinal momentum component in very good approximation.

Sources of missing transverse momentum are particles which are not detected within

the different components of the detector, such that no measurement of their four–momenta

is possible: for this reason one usually refers to them as the “invisible” final state particles.

It is to be noted that if more than one invisible particle is present in the final state,

the individual transverse momenta are in principle indistinguishable, since the missing

transverse momentum corresponds only to the vector sum of their transverse momenta.

An example of invisible particles are the neutrinos of the SM: top partner decay channels

with a leptonically–decaying W boson are a corresponding example.

It is very common for many BSM models to predict additional invisible particles in their

spectra, namely because a discrete parity like R–parity in Supersymmetry or T–parity in

the LHT model is introduced as unbroken symmetry of the Lagrangian, yielding a stable

particle as lightest parity–odd state. These particles might represent viable candidates for

Dark Matter. Prime examples are the lightest neutralino χ̃0
1 in supersymmetric theories,

and the heavy photon AH in the LHT model.

The mass determination of BSM invisible particles has been always very challenging,

because they are usually pair produced at the end of BSM decay chains due to their

odd parity, and because the mass of other intermediate on–shell BSM particles is also

unknown. Therefore, a method to simultaneously measure the invariant mass of different

BSM particles involved in a decay chain is of great interest, at least for some specific final

state topologies.

In the following, we will propose a possible mass measurement method from a signal

consisting of pair production of a BSM particle X further decaying as X → `N , where

both masses (mN,mX) are a–priori unknown, and N is an invisible particle, yielding a final

state with a large fraction of missing transverse momentum. In particular, we will focus

on the case where X is pair produced from a resonance.

This mass determination method, as presented in ref. [11], relies on the identification of

particular observables defined on the boundary of the kinematically allowed mass region in
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the (mN,mX) plane: these observables will be used in measuring the unknown masses. A

specific example in the context of the Minimal Supersymmetric Standard Model (MSSM)

will be discussed as well, showing that the proposed method might provide a precise mea-

surement of the chargino and sneutrino masses at the LHC with
√
s = 14TeV and 300 fb−1

of integrated luminosity.

5.2.1 Kinematical constraints and consistent mass regions

As just anticipated, let us now consider the pair production of a BSM particle X, which

then further decays to a SM lepton plus an invisible particle N , namely X → `N . Suppose

that both masses mX and mN are a–priori unknown.

N

NX

X

`

`

N

NX

X

`

`

A

Figure 5.9: One–step decay chain of a pair produced and semi–invisibly decaying particle X.

For this rather short (one–step) decay chain, as depicted in figure 5.9, simultaneously

measuring the two unknown masses is particularly challenging. At a hadron collider, this

event topology yields a “minimal” set of constraints given by the measured visible leptonic

four–momenta pµ`1 , p
µ
`2

and the measured missing transverse momentum /pT [147–149]:

Φmin :


m̃2

X = (pµ`1 + pµN1
)2 = (pµ`2 + pµN2

)2

m̃2
N = p2

N1
= p2

N2

/p
T = pTN1

+ pTN2

(5.25)

where (m̃X, m̃N) need not coincide with the true unknown mass values (mX,mN). These

constraints represent six equations for a total of eight unknown components of (pµN1
, pµN2

):

no unique solution for a given (m̃X, m̃N) pair is possible. In other words, for this kind

of one–step decay chains it is impossible to determine both (mX,mN) by the constraints

obtained from a single event.
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Longer decay chains, where additional kinematical constraints might be introduced, can

possibly yield a simultaneous (mX,mN) measurement, see e.g. ref. [147], where the authors

considered a two–step decay chain from pair production of MSSM squarks decaying as

q̃ → q χ̃0
2 → q

(
`± ˜̀∓

)
→ q `±

(
`∓ χ̃0

1

)
, (5.26)

where in our previous notation ˜̀ ≡ X and χ̃0
1 ≡ N . One can distinguish the cases in

which X is produced on– or off–shell, and for both cases the authors provided a method

to simultaneously measure (mX,mN).

Returning to our one–step decay chain with minimal kinematic constrains Φmin, it is

anyway possible to restrict the values of (m̃X, m̃N) to a kinematically consistent region on

an event–by–event basis. Namely, the (m̃X, m̃N) hypotheses providing a physical solution

for Φmin (real momenta and positive energy) are called the kinematically consistent region.

Particularly interesting is the boundary curve of the allowed region in the (m̃X, m̃N)

plane: if the system is boosted in the transverse direction by e.g. hard initial state radiation,

one can collect the boundary curves of the allowed mass regions from different events. It

turns out that a collection of these boundary curves from a large number of events exhibits

a cusp structure at the true mass point [147,150–152].

Figure 5.10: Density plot of Φmin boundary curves for pp→ q̃q̃∗ → χ̃+
1 χ̃

−
1 qq̄ → (e+ν̃e) (e− ˜̄νe) qq̄ at

the LHC with
√
s = 14TeV. We set (mq̃,mχ̃±

1
,mν̃) = (1500, 200, 100)GeV. Parton–level momenta

are used, and no detector simulation has been included. The z–axis shows the number of boundary

curves passing through (0.06GeV2)× (0.02GeV2) bins in 104 events.

As an explicit example, we show in figure 5.10 the density of the boundary curves

projected onto the (m̃2
X − m̃2

N, m̃
2
N) plane for the process pp→ q̃q̃∗, q̃ → q χ̃+

1 , χ̃
+
1 → `+ν̃`,
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with (mq̃,mχ̃±1
,mν̃) = (1500, 200, 100)GeV, neglecting finite width effects and detector

resolution. It should be noted that the right–hand side white region in figure 5.10 represents

the intersection of all kinematically consistent regions from the different events. A cusp

structure is observed at the true mass point.

However, the density of boundary curves around the cusp is very low, and if we fur-

ther consider realistic effects like momentum mismeasurement and potential background

contamination, it is clear that a precise mass measurement from the position of the cusp

is not reliable [153,154].

Maximal extension of Φmin

A key observation is that additional constraints besides Φmin would further restrict the

kinematically allowed mass region, therefore sharpening the cusp structure at the true mass

point, and leading to a possible simultaneous measurement of (mX,mN). In refs. [148,149],

the authors studied the effect of introducing the following constraints:

Φs : s = (pµ`1 + pµN1
+ pµ`2 + pµN2

)2 (5.27)

Φz : /p
z = pzN1

+ pzN2
, (5.28)

namely assuming that the invariant mass of the process, as well as the longitudinal com-

ponent of the missing transverse momentum, could be experimentally measured. We will

call this set of constraints as Φmax ≡ Φmin + Φs + Φz. This situation might be possible in

a central exclusive process (CEP) with forward proton tagging at the LHC, or in the case

of lepton colliders. It is to be noted that while at a lepton collider the invariant mass of

the process is fixed by the center–of–mass energy of the collision, in the CEP case it is not

a–priori fixed but measured via proton tagging detectors.

For comparison, we show in figure 5.11 the density plot of boundary curves of kinemat-

ically consistent mass regions as evaluated from a semi–invisible decay process at the ILC,

namely e+e− → ẽ+ẽ− →
(
e+ χ̃0

1

) (
e− χ̃0

1

)
with (

√
s,mẽ,mχ̃0

1
) = (500, 200, 100)GeV. This

process corresponds to the kinematical constraints defined for the Φmax case. The global

allowed region reduces to a straight line between the true mass point (m2
X −m2

N,m
2
N) and

(m2
X −m2

N, 0): a simultaneous (mX,mN) measurement might thus be possible.

Let us now briefly review the method developed in refs. [148, 149] for an explicit

(mX,mN) mass determination in the Φmax case.
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Figure 5.11: Density plot of Φmax boundary curves for e+e− → ẽ+ẽ− →
(
e+χ̃0

1

) (
e−χ̃0

1

)
at the

ILC. We set (
√
s,mẽ,mχ̃0

1
) = (500, 200, 100) GeV. Parton–level momenta are used, and no detector

simulation has been included. The z–axis shows the number of boundary curves passing through

(0.06GeV2)× (0.02GeV2) bins in 104 events.

In general, any pµN1
and pµN2

satisfying /pµ = pµN1
+ pµN2

can be parametrised as

pµ
N1/N2

=
1∓ a

2
/p
µ ± b

2
pµ`1 ∓

c

2
pµ`2 ± dP

µ , (5.29)

where a, b, c, d are dimensionless constants, and Pµ ≡ εµνρσ/p
νpρ`1p

σ
`2

is a space–like vector.

The Φmax constraints can then be expressed as

Φmax :



pµX1
= pµN1

+ pµ`1

pµX2
= pµN2

+ pµ`2

m̃2
X = p2

X1
= p2

X2

m̃2
N = p2

N1
= p2

N2

(5.30)

where again (m̃X, m̃N) are test mass values which need not coincide with the true masses

(mX,mN). For a given (m̃X, m̃N), the above conditions uniquely determine the coefficients

a, b, c in eq. (5.29), together with an equation which has to be imposed to obtain the

remaining coefficient d, namely

λN =
ca

4M
λ2

∆ +
cb

2M
λ∆ +

cc
4M

+ d2λ2
P . (5.31)

In eq. (5.31) the coefficients ca, cb, cc and M are functions of the measured momenta

p`1 , p`2 and /p, and one explicitly has λN ≡ m̃2
N/(p`1 · p`2), λ∆ ≡ (m̃2

X − m̃2
N)/(p`1 · p`2), see

refs. [148,149].
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A hypothesis (m̃X, m̃N) is called consistent if eq. (5.31) leads to a solution for d with

d2 > 0, in order to obtain four–momenta pµi with real components in eq. (5.29). In other

words, the (m̃X, m̃N) hypotheses leading to d2 > 0 represent the kinematically consistent

mass region of the event, while the corresponding boundary is identified from eq. (5.31)

by setting d = 0. Furthermore, one can show that the shape of the boundary curve is a

parabola with negative curvature, containing the true mass point (mX,mN) below its apex

in the (m̃2
X − m̃2

N, m̃
2
N) plane.

One can then define possible observables along the boundary curve of the kinematically

consistent region. In particular, analytic expressions for the global maxima of m̃X and m̃N

along the boundary have been obtained in [148,149] as[
m̃max

X; Φmax

]2
=
p`1 · p`2

4M

[
cc −

(cb + 2M)2

ca

]
(5.32)

[
m̃max

N; Φmax

]2
=
p`1 · p`2

4M

[
cc −

c2
b

ca

]
. (5.33)

In ref. [11] we have further obtained the analytic expressions of new possible variables

defined along the boundary, in particular the extremal values of m̃X along the boundary

for a given hypothesis on m̃N, denoted as m̃max/min
X; Φmax

(m̃N):[
m̃

max/min
X; Φmax

(m̃N)
]2

=
p`1 · p`2
ca

[
CX ±

√
DX

]
. (5.34)

In eq. (5.34), we have defined

CX = caλN − cb, (5.35)

DX = c2
b + ca(4MλN − cc) (5.36)

λX ≡ m̃2
X/(p`1 · p`2) . (5.37)

The consistent mass region of a typical event and the kinematic variables as defined in

eq. (5.32) (5.33) and (5.34), are shown in figure 5.12. The interesting feature is that, by

definition, the aforementioned boundary variables satisfy the following relations:
m̃max

X; Φmax
≥ m̃max

X; Φmax
(mN) ≥ mX

m̃min
X; Φmax

(mN) ≤ mX

m̃max
N; Φmax

≥ mN .

(5.38)

Using the results of eq. (5.38), the authors of refs. [148,149] showed that the distributions

of m̃max
X; Φmax

and m̃max
N; Φmax

exhibit a sharp endpoint structure at the corresponding true

masses (mX,mN) when considering examples of CEP and e+e− processes, allowing thus

for a simultaneous (mX,mN) measurement.



5.2. Mass determination of semi–invisibly decaying particles 131

m̃max
N

m̃max
X

(mN , mX)

m̃min
X (mN)

mN

d2 < 0

d2 > 0

[m̃N ]
[m̃

X
]

m̃max
X (mN)

Figure 5.12: Kinematically consistent (m̃X, m̃N) region (d2 > 0 in eq. (5.31)) for a “typical”

event, defined by the four–momenta (p`1 , p`2 , /p), as published in [149]. The consistent mass region

contains by definition the true mass point (mN,mX). m̃max
N is the global maximum m̃N value, while

m̃min
X (mN) is the minimal value of m̃X given mN. Analogously for the other shown variables.

Relaxing one of the hypotheses

We can now turn our attention to our results published in ref. [11]. In particular, the

aim is to extend the mass determination method presented in refs. [148, 149], relaxing

one of the kinematical hypothesis defining the Φmax constraints, to reflect a more realistic

LHC scenario. At the LHC, a significant and unknown proportion of the energy of the

incoming hadrons in each event escapes down the beam pipe: therefore, the longitudinal

and energy components of the missing four–momentum are not determined. In this way,

the Φz constraint of eq. (5.28) cannot be imposed to identify the kinematically consistent

mass region.

N

NX

X

`

`

N

NX

X

`

`

A

Figure 5.13: Pair production of a particle X from an s–channel particle A, followed by semi–

invisible X decays.
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On the other hand, the Φs constraint of eq. (5.27) can still be included, if the particles

X are e.g. pair produced from an s–channel particle A of mass mA. In this case, the

invariant mass of the process is fixed to m2
A. Therefore, as in ref. [11], we focus now on

the Φmin +Φs case, developing a mass measurement method of (mX,mN) for event samples

with the topology shown in figure 5.13. As a specific example, we investigate the process

pp→ A→ χ̃+
1 χ̃
−
1 → (`+ν̃`) (`− ˜̄ν`) at the LHC, with A the MSSM CP–odd Higgs boson.

Figure 5.14: Density plot of the Φmin +Φs boundary curves for pp→ A→ χ̃+
1 χ̃

−
1 → (`+ν̃`) (`− ˜̄ν`)

at the LHC with
√
s = 14TeV. We set (mA,mχ̃±

1
,mν̃) = (500, 200, 100)GeV. Parton–level mo-

menta are used, and no detector simulation has been included. The z–axis shows the number of

boundary curves passing through (0.06GeV2)× (0.02GeV2) bins in 104 events.

For comparison, we show in figure 5.14 the density plot of boundary curves of kinemat-

ically consistent mass regions for the aforementioned process. In particular, we imposed

(mA,mχ̃±1
,mν̃) = (500, 200, 100)GeV. One can see that the kinematically allowed region,

given by the lower white triangle, is more restricted with respect to the Φmin case of fig-

ure 5.10: the cusp structure at the true mass point is more pronounced and more easily

identified, reflecting the additional kinematical information which has been included.

In order to obtain possible expressions of the observables defined on the boundary of the

kinematically allowed mass region for the Φmin + Φs case, we proceed as follows. Since the

analytical expressions of the desired observables, as defined for the Φmax case in eq. (5.32)

(5.33) and (5.34), are functions of the now unknown /p0 and /pz, we scan the corresponding
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expressions over values of /p0 and /pz satisfying the constraint Φs. In doing so we define

m̃max
X (m̃N) = max

{/p0,/pz}; Φs

[
m̃max

X; Φmax
(m̃N)

]
(5.39)

m̃min
X (m̃N) = min

{/p0,/pz}; Φs

[
m̃min

X; Φmax
(m̃N)

]
(5.40)

m̃max
X = max

{/p0,/pz}; Φs

[
m̃max

X; Φmax

]
(5.41)

m̃max
N = max

{/p0,/pz}; Φs

[
m̃max

N; Φmax

]
. (5.42)

By analogous relations to eq. (5.38), we can conclude that
m̃max

X ≥ m̃max
X (mN) ≥ mX

m̃min
X (mN) ≤ mX

m̃max
N ≥ mN .

(5.43)

In particular, we will show how the observables m̃max
X (mN) and m̃max

N possess the highest

sensitivity for a simultaneous (mX,mN) mass measurement in the Φmin + Φs case.

5.2.2 Results

The mass measurement method presented in section 5.2.1 is independent of the particular

underlying model. However, to illustrate its main features, we consider as a case study

the MSSM pair production of charginos χ̃±1 from an on–shell CP–odd Higgs boson A, in

association with two initial state radiation b–jets. To match the desired final state topology

as in figure 5.13, we consider the decay of the charginos into a SM lepton plus a sneutrino.

The diagram of the considered process is shown in figure 5.15.

χ̃+
1

χ̃−
1

ν̃l

l+

l−

A

b̄

b̄

b

g

g

b̄

˜̄νl

Figure 5.15: Feynman diagram for the MSSM p p → Abb̄ → χ̃+
1 χ̃

−
1 bb̄ → (`+ν̃`) (`− ˜̄ν`) bb̄ process

considered in our analysis as a case study.
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Event generation

As a benchmark MSSM parameter space point for the BSM event generation, we fix mA =

800GeV, mχ̃±1
= 350GeV and mν̃ = 200GeV. Furthermore, we have chosen the values

tanβ = 50 and µ = 400GeV, the former to increase the production cross section of the

CP–odd Higgs for a given mass, the latter to increase its branching ratio to two charginos.

It is to be noted that the CP–odd Higgs dominantly decays into two bottom quarks, but

we assume that its mass mA has already been measured within 10% uncertainty from a

dedicated study of the A→ τ+τ− channel, as in [155].

Background contamination from SM and other MSSM processes are taken into account.

In particular, the dominant processes consist of MSSM direct χ̃+
1 χ̃
−
1 + jets production, and

SM tt̄ and W+W−+ jets, with leptonic decays of the W bosons. The corresponding cross

sections are calculated as follows, for the foreseen LHC runs at
√
s = 14TeV. Regarding

the MSSM processes, the associated CP–odd Higgs cross section is evaluated via FeynHiggs

2.9.5 [156], while for the χ̃+
1 χ̃
−
1 + jets process we use the χ̃+

1 χ̃
−
1 LO cross section evaluated

via MadGraph 1.5 [84] plus up to two matrix–element additional hard partons, matched to

the Pythia 6.42 parton shower via MLM merging scheme implemented in the MadGraph5–

Pythia 6.42 interface [84,85]. The cross sections for the considered SM processes are given

in [157, 158] at order NLO+NNLL for tt̄, and NLO for WW . We summarise the cross

section values in table 5.3.

Abb̄ χ̃+
1 χ̃
−
1 + jets tt̄ WW+ jets

σ · BR [pb] 0.023 0.079 40.92 5.80

Table 5.3: Cross sections at LHC14 for the considered signal and background processes.

We further set the branching ratio of the chargino to a SM charged lepton and MSSM

sneutrino to 1.0: we do not consider chargino decays either to a SM W plus a neutralino,

or to a charged slepton plus a neutrino, since these topologies would be categorised in the

Φmin case. It should be noted that our procedure is valid for both a long–lived sneutrino,

or for the case in which the sneutrino decays to invisible particles.

A set of selection cuts is chosen to reduce the background contamination while retaining

a large fraction of signal events. In particular, each event should consist of exactly two

opposite sign leptons within |η`| < 2.5, and two tagged b–jets satisfying pbT > 20GeV and

|ηb| < 2.5. Furthermore, we exploit large cuts on the total missing transverse momentum



5.2. Mass determination of semi–invisibly decaying particles 135

(/ET > 130GeV), on the pT of the two leptons (p`1T > 80GeV, p`2T > 40GeV), and on the

mT2 variable [159]3 (mT2 > 120GeV), too.

MadGraph 1.5 is used to generate all parton–level events, further interfaced with the

Pythia 6.42 parton shower. The Pythia output is then analysed via Delphes 3.0 [86] for a

fast simulation of the ATLAS detector, following the specifications as in [155].

The generated signal and background events, corresponding to an integrated luminosity

of 300 fb−1 and passing the described selection cuts, are then used as input for the mass

measurement method described in section 5.2.1, as we will detail in the following.

Mass determination method at work

Given the relations of eq. (5.43), we claim that a possible measurement of the invisi-

ble mass mN is possible by measuring the endpoint of the m̃max
N distribution, namely

identifying mexp
N = [m̃max

N ]endpoint. Analogously, we can simultaneously determine the

chargino mass mX by measuring the endpoint of the m̃min
X (mexp

N ) distribution, identifying

mexp
X =

[
m̃min

X (mexp
N )

]endpoint.

We developed a numerical procedure to evaluate the endpoints of the considered dis-

tributions, for details see ref. [11]. In particular, the aim of the numerical procedure is

to minimise any potential bias in extracting the endpoints. Besides the position of the

endpoint, this procedure allows us to determine an estimate of the steepness of the slope

of any distribution at its endpoint: this information will become crucial for our attempt

to measure the mass of the intermediate particle A, too.

In figure 5.16 we show typical distributions of the aforementioned variables defined on

the boundary of the kinematically consistent mass region. In particular, in the left plot

we show the m̃max
N distribution from a simulated LHC14 event generation with 300 fb−1

of integrated luminosity: the left–hand side endpoint corresponds to the “experimental”

measure of mexp
N . By simulating 100 independent LHC measurements, we obtain an aver-

aged mexp
N value, and estimate a statistical uncertainty as standard deviation from the 100

measurements: the result is remarkably close to the true value mN = 200GeV, namely

mexp
N = 195.9± 2.5GeV . (5.44)

On the other hand, in the right plot of figure 5.16 we show the m̃min
X (mexp

N ) distribution

from a simulated LHC14 event generation with 300 fb−1 of integrated luminosity, where we

3We used the public code described in ref. [147] to evaluate mT2 for each event.
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Figure 5.16: Distribution plots of boundary observables evaluated on a single full simulation at

the LHC with
√
s = 14TeV and 300 fb−1 of integrated luminosity. The label “Total” refers to

the signal plus background event sample, while the label “BG” refers to the distribution of only

background events. We set mA = 800GeV, mχ̃±
1

= 350GeV and mν̃ = 200GeV. In particular, the

left plot shows the distribution of the m̃max
N variable, while the right plot shows the distribution of

the m̃min
X (mexp

N ) variable, for which we have fixed mexp
N as in eq. (5.44).

fixed mexp
N to its measured value as in eq. (5.44). In this case, the right–hand side endpoint

corresponds to the “experimental” measure of mexp
X . By simulating 100 independent LHC

measurements, we obtain a result again close to the true value mX = 350GeV:

mexp
X = 362.0± 4.6GeV . (5.45)

From eq. (5.44) and eq. (5.45), we observe a slight offset of the measured endpoints

compared to the true mass values. This might be traced back to detector effects and to

background contamination, which tend to smear the endpoints of the distributions, as well

as to possible limitations of the developed edge–finding method. This small effect might

anyway be corrected for in a dedicated experimental analysis, by comparing the measured

endpoint values with the corresponding simulation.

Including uncertainties on mA

In a realistic collider analysis, the mass of the intermediate s–channel particle A might

be known only within a certain uncertainty. In the mass determination method we have

discussed so far,mA has been fixed to the ideal value as used in the event generation, namely

mA = 800GeV. We are now interested to understand how an experimental uncertainty on

mA might affect the endpoint determination for the observables m̃max
N and m̃min

X (mexp
N ).

This effect is studied by changing the input value of mA in the analytical relations of
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Figure 5.17: Endpoint measurements of the m̃max
N (m̃A) distribution (left plot) and of the

m̃min
X (m̃A,m

exp
N ) distribution (right plot) for different m̃A hypotheses. The uncertainties on the

single endpoints correspond to the standard deviations from 100 different LHC simulations. A

band showing the effect of a 10% uncertainty on mA is also shown.

eq. (5.40) and eq. (5.42): the used mass hypothesis will be called m̃A, in order to distinguish

it from the true value mA.

The endpoints of the m̃max
N (m̃A) and m̃min

X (m̃A,m
exp
N ) distributions, as evaluated for

different hypotheses on the input value m̃A, are shown in figure 5.17, in the left and right

plot, respectively. On both plots, it is shown how a 10% uncertainty on mA might affect

the two endpoint measurements, namely introducing a 20% uncertainty.

The uncertainty on a single endpoint value corresponds to the standard deviation from

100 different LHC simulations. Furthermore, we illustrate the position of the measured

mexp
N and mexp

X , as given by eq. (5.44) and (5.45), respectively.

Finally, let us discuss a method to infer a possible measurement for the s–channel mass

mA as well. The key observation is that if a “wrong” value for mA is used as input for the

determination of the boundary observables, then the Φs constraint no longer corresponds

to the correct event kinematics, and one cannot expect the different distributions to display

a sharp endpoint structure.

For example, one would expect the slope of m̃max
N (m̃A) at the endpoint to become

steeper as the input m̃A value approaches the true value mA, where one expects a sharper

endpoint structure. Therefore, it is interesting to plot the steepness of the m̃max
N (m̃A)
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Figure 5.18: Slope measurement at the endpoint of the m̃max
N (m̃A) distribution, for different values

of m̃A. The values are normalised to the largest measured steepness. Note that the maximum of

the distribution is observed near m̃A = mA.

distribution at the corresponding endpoint, as a function of m̃A.

In figure 5.18 we show the corresponding distribution of the “endpoint steepness” as

a function of m̃A, normalised to the largest measured steepness. A possible measure of

mexp
A might therefore be identified with the m̃A hypothesis yielding the largest endpoint

steepness: by averaging over the 100 different event simulations we obtain

mexp
A = 776.4± 34.3GeV . (5.46)

The relatively large statistical uncertainty on the central value indicates that this method

should be used only as a guide to infer the mass of the particle A, although a more precise

procedure in evaluating the steepness of the distribution might reduce the uncertainty.
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Conclusions

Exclusion limits on Little Higgs parameter space

Together with the huge quantity of collected and analysed LHC data by the experimental

collaborations, the physics community should always try to develop new tools to gain

the highest sensitivity to possible new physics signals, as well as being able to scrutinise

the available information in such a way that no evidence of new physics could possibly

be overlooked. This has been our motivation to thoroughly investigate the compatibility

of the parameter space of different Little Higgs models using the available experimental

collider data.

Many observables are altered by the Little Higgs structure: Higgs couplings to SM par-

ticles are generically modified with respect to their SM values, and completely new Higgs

couplings to new particles are present, yielding possible additional Higgs decay channels

or changes in its production rates. Furthermore, electroweak and low–energy observables,

measured with high precision, are hugely sensitive to new physics contributions. Generi-

cally, the aforementioned modifications scale as powers of v/f : large values of f allow to

recover the SM predictions, but the large–f limit represents a “decoupling” regime where

one cannot consider the BSM model as a natural SM extension anymore. A rather large

fine–tuning is reintroduced to obtain the correct Higgs mass. Therefore, it is of high in-

terest to identify the lower bound on the scale f consistent with experimental results, in

order to define the left–over degree of naturalness of the considered model.

In Chapter 4 we considered three well–known implementations of the Little Higgs

paradigm, namely the Littlest Higgs (L2H), the Littlest Higgs with T–parity (LHT) and the

Simplest Little Higgs (SLH) models, and explicitly evaluated the modifications to specific

observables which might be probed with the current collider data. We then set a lower
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bound on the symmetry breaking scale f within the considered models, up to a certain

degree of compatibility with the data. In particular, we performed a χ2 analysis including

the best fit values of the Higgs signal strength modifiers as measured by both ATLAS and

CMS collaboration, and 21 different electroweak and low–energy precision observables.

For the Higgs observables, we have considered the most up–to–date experimental results

as of the summer of 2013, with 7 and 8TeV center–of–mass energies and up to 25 fb−1 of

integrated luminosity. We obtained at 95% confidence level the following lower bounds:

(fSLH)EWPT+Higgs & 3.3 TeV

(fL2H)EWPT+Higgs & 4.0 TeV

(fLHT, A)EWPT+Higgs & 694 GeV

(fLHT, B)EWPT+Higgs & 560 GeV .

These bounds are among the major findings of this thesis, and represent the most up–

to–date results in literature concerning the consistency of the aforementioned models in

light of LHC data. These constraints have been considered as new reference values for

many different phenomenological analyses performed by the Little Higgs community, as

well as for an experimental CMS analysis involving L2H topologies.

Furthermore, we have confirmed that models not providing a custodial symmetry, or

another type of cancellation of additional contributions to oblique parameters, are in ten-

sion with the observed data, with the symmetry breaking scale pushed into the multi–TeV

regime. On the other hand, the LHT model with both implementations of the down–

Yukawa Lagrangian Case A and B, is found to be still consistent with the collected data

down to values of f ofO(500GeV), requiring thus only a rather small amount of fine–tuning

to accommodate a naturally light Higgs boson.

We expect that these bounds will be further probed by the forthcoming LHC upgrade to

higher center–of–mass energies and higher values of integrated luminosity. An even stronger

exclusion potential will be guaranteed by reduced relative uncertainties on e.g. the best fit

signal strength modifiers.

The consistency of a rather small value of f with EWPT and Higgs searches provides the

possibility to study the phenomenology of LHT partners not only through indirect effects

to precision observables, but also as possible signatures detectable via direct searches for

new particles. Since the masses of these new particles are proportional to the scale f , one

might indeed still expect production cross sections which are not severely suppressed even
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at
√
s = 8TeV center–of–mass energy.

For this reason, in Chapter 4 we identified three main types of direct searches which

can be matched onto LHT signal topologies, namely monojet with /ET, multijet with /ET,

and multijet, leptons with /ET. For each of these final state topologies we recasted the

most recent ATLAS and CMS analyses as of the summer of 2013 with up to 20 fb−1

of integrated luminosity, originally tailored for supersymmetric processes, reinterpreting

the results assuming an LHT signal. By comparing the experimental upper bounds on the

visible cross section with the LHT yields, we have been able to identify regions of parameter

space which are excluded up to a certain confidence level. In particular, by combining the

different direct search results, we obtained at 95% confidence level the following lower

bound on the scale f :

(fLHT, A)direct–search. & 638GeV .

We see that with the current amount of collected data, direct searches are starting

to become competitive with analyses involving only precision observables. This gives us

the confidence that the forthcoming LHC runs will be crucial in probing the parameter

space of the LHT model, even for particular kinematic configurations in certain regions

of the parameter space. Therefore, we concluded Chapter 4 with a proposal of possible

optimisations of the considered direct searches, in order to increase the sensitivity to LHT

signatures. In particular, we have showed that there is room for a possible improvement

within the current setups especially for the monojet plus /ET topology.

Dedicated analyses for LHC run II

After focusing on the exclusion–information gathered from collected data, we turned our at-

tention to the proposal of possible discovery methods for the foreseen experimental searches

starting in 2015. In particular, if a signal of a new BSM particle will be observed, one of

the first measured properties will be its mass. The mass measurement method will depend

on the considered final state topology: a big discriminant for different methods will be

represented by the possible presence of large fractions of missing transverse momentum.

In Chapter 5 we developed two possible dedicated LHC run II analyses with 300 fb−1 of in-

tegrated luminosity, aiming for mass measurements of BSM particles in final states yielding

large or negligible fractions of missing transverse momentum, respectively.

First we considered the production and decay of a possible BSM top partner into a

final state involving a hadronically–decaying SM top plus a leptonically–decaying SM Z
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boson at
√
s = 13TeV, exploiting a simplified–model approach. We have identified this

final state because of its clean topology for a possible mass measurement. Both pair and

single production of the top partner have been considered. Free parameters of our study

are the mass of the top partner, and a dimensionless parameter g∗ governing the rate of

the single production cross section, namely the top partner coupling to SM bosons.

The main peculiarity of the considered signal topology is the highly boosted kinematics

of the top partner decay products, namely the SM top and Z boson, in contrast to the SM

background processes for which a large transverse boost for the top and Z is not expected.

Jet–substructure methods and optimised kinematic selection cuts have been exploited to

identify and reconstruct the candidate top partner from signal events, together with a

large suppression of the otherwise dominant background processes. We showed that a large

portion of parameter space of our simplified model, namely up to masses of 1450GeV, can

be probed to claim possible evidence or discovery of a top partner signal. Within our

setup we evaluated the resolution of the mass measurement to be at worst ±75GeV, but

a dedicated experimental analysis including additional sources of systematic uncertainties

might realise more precise and robust results. Our study is indeed to be intended as a

possible guideline for an actual experimental analysis, showing the feasibility of a possible

top partner discovery and mass measurement.

In the second proposed analysis of Chapter 5 we discussed a mass determination method

for the minimum symmetric event topology, namely pair production of a particle X with

unknown mass, followed by its semi–invisible decay X → `N , where ` is a SM charged

lepton, and N is an invisible particle with a–priori unknown mass. As a specific topology,

we considered the case in which X is pair produced from the decay of an s–channel particle.

By considering the boundary of the kinematically consistent mass region identified by

the experimentally measured final state momenta, we defined kinematic variables which

can be used in measuring the unknown mX, mN masses. We applied the discussed method

to the specific example of a Minimal Supersymmetric Standard Model process, namely

pp → A → χ̃+
1 χ̃
−
1 followed by χ̃±1 → `± ν̃`, where A is the s–channel CP-odd Higgs

decaying into a pair of lightest charginos χ̃±1 . In particular, we showed that our method

provides a precise measurement of the chargino and sneutrino masses considering a possible

LHC analysis with
√
s = 14TeV and 300 fb−1 of integrated luminosity, with the mass of the

s–channel particle A as the only additional kinematic information to be included besides

the measured final state momenta.
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Summary and Outlook

In this thesis we have systematically analysed the consistency of different Little Higgs

models in light of the recent data collected in collider experiments. The lack of specific

analyses by the experimental collaborations within the framework of Little Higgs models

motivated us to reinterpret the results to either strengthen the existing exclusion limits

on the parameter space of the models, or to develop additional optimised searches. This

gave us the opportunity to propose tailored analyses aiming at the discovery of specific

new signals beyond the SM background.

From our results, many observations and questions arise. First of all, it is clear how the

foreseen LHC runs with higher center–of–mass energy and integrated luminosity will boost

the sensitivity to different “unexplored” regions of BSM parameter spaces, such that a semi–

definitive conclusion on the naturalness of the considered models will be achieved. We have

indeed shown that already 8TeV searches are constraining the models without custodial

symmetry protection to high fine–tuning regimes. In this regard, Higgs searches and direct

searches are quickly becoming competitive with respect to existing limits from electroweak

precision observables, making thus our analysis particularly attractive for forthcoming

LHC measurements. The lack of indications of possible BSM signals should also motivate

broader model–independent searches. However, it is still unclear how to uniquely associate

a possible discovered BSM signal at the LHC to a specific model: studies involving angular

observables will most probably be needed to disentangle different signal hypotheses, but

their effective use within specific LHC analyses has to be clarified.





Appendix A

Additional topics

A.1 Coleman–Weinberg potential

We will discuss now an alternative way of presenting the hierarchy problem, which tuns

out to be useful in order to show how different BSM implementations might represent

viable natural extensions of the SM. Consider a quantum field theory of a scalar field φ,

in the presence of an external source J(x). One can define [160] the generating functional

of connected correlation functions W [J ] by

Z[J ] = eiW [J ] =

∫
Dφ exp

[
i

∫
d4x (L[φ] + Jφ)

]
≡
∫
Dφ exp [i (S[φ] + Jφ)] . (A.1.1)

The functional derivative of W [J ] with respect to the auxiliary function J(x) in different

points x, y produces e.g. the connected correlator for the field φ between the points x, y

δ2W [J ]

δJ(x) δJ(y)
= −i〈φ(x)φ(y)〉conn . (A.1.2)

The functional derivative ofW [J ] with respect to a single auxiliary function J(x) produces

on the other hand the vacuum expectation value of the field φ in the presence of a non–zero

source J(x):
δW [J ]

δJ(x)
= −i〈φ(x)〉J ≡ φcl(x) (A.1.3)

where φcl(x) is called the classical field, representing a weighted average of the quantum

field φ(x) over all possible fluctuations.

Given a functional W [J ] we can perform a Legendre transform to obtain a functional
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Γ [φcl] known as the effective action

Γ [φcl] = W [J ]−
∫
d4xJ(x)φcl(x) ≡W [J ]− J φcl =

=

∫
d4x

[
−Veff (φcl) + Z(φcl) (∂φcl)

2 + . . .
]

(A.1.4)

where in the last equality we have expanded the effective action in powers of derivatives

with respect to the classical field. In the absence of an external source J(x), one can show

that the x–independent vacuum expectation value of φ(x), namely φcl, can be determined

by minimizing Veff (φcl):
∂

∂φcl
Veff = 0 . (A.1.5)

For this reason Veff is called the effective potential of our quantum field theory, where

all–order quantum contributions are included.

Now, all of these formal manipulations are not worth much if we cannot evaluate W [J ]

and therefore Veff. In most cases we can only evaluate Z[J ] (A.1.1) in the steepest descent

approximation, namely by expanding around the φs(x) solution of

δ (S[φ] + Jφ)

δφ(x)
∣∣
φs

=
δS[φ]

δφ(x)
∣∣
φs

+ J(x) = 0 . (A.1.6)

By writing the integration variable in (A.1.1) as φ = φs + φ̃, and expanding to quadratic

order in φ̃ one obtains (re–introducing the ~–dependence)

Z[J ] ∼
∫
Dφ̃ exp

i

~

(S(φs) + Jφs) +
δ
(
S[φ̃] + Jφ̃

)
δφ̃(x)

∣∣
φs

φ̃+
1

2

δ2S[φ̃]

δφ̃(x)δφ̃(y)
∣∣
φs

φ̃2


=

(
exp

i

~
[S(φs) + Jφs]

) ∫
Dφ̃ exp

i

~

[
1

2

δ2S[φ̃]

δφ̃(x)δφ̃(y)
φ̃2

]

=

(
exp

i

~
[S(φs) + Jφs]

)
det

[
δ2S[φ̃]

δφ̃(x)δφ̃(y)

]− 1
2

= exp

(
i

~
[S(φs) + Jφs]−

1

2
Tr log

[
δ2S[φ̃]

δφ̃(x)δφ̃(y)

])
. (A.1.7)

From eq. (A.1.7) we thus have (writing for simplicity φ instead of φ̃)

W [J ] = S(φs) + Jφs +
i~
2
Tr log

[
δ2S[φ]

δφ(x)δφ(y)

]
+O(~2)

= S(φcl) + Jφcl +
i~
2
Tr log

[
δ2S[φ]

δφ(x)δφ(y)

]
+O(~2) (A.1.8)
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where in the last equality we observed that φcl = φs +O(~). Finally, from eq. (A.1.4) we

obtain

Γ[φcl] = W [J ]− J φcl = S(φcl) +
i~
2
Tr log

[
δ2S[φ]

δφ(x)δφ(y)

]
+O(~2) =

=

∫
d4x [−Veff(φcl) + . . .] (A.1.9)

and it is straightforward to conclude that the effective potential can be written as

Veff(φ) = V (φ)− i~
2
Tr log

[
δ2S[φ]

δφ(x)δφ(y)

]
+O(~2) (A.1.10)

known as the Coleman–Weinberg effective potential [161]. What we have computed is the

order ~ correction to the classical tree–level potential V (φ).

For a scalar field φ with Lagrangian L = 1
2 (∂φ)2 − V (φ) one can evaluate the effective

potential (A.1.10), after a proper Wick–rotation, as

Veff(φ) = V (φ)− i~
2

∫
d4 k

(2π)4
log

[
k2 − V ′′(φ)

k2

]
+O(~2) . (A.1.11)

This divergent integral can be calculated using a momentum cut–off Λ, obtaining

Veff(φ) = Vtree(φ) + ~V1–loop(φ) +O(~2)

= V (φ) + ~

(
Λ2

32π2
V ′′(φ)− [V ′′(φ)]2

64π2
log

e
1
2 Λ2

V ′′(φ)

)
+O(~2) . (A.1.12)

This result can be extended by considering a generic field ψ which couples to the scalar φ

with an interaction term like M(φ)ψ̄ ψ, where M(φ) is a model–dependent function of the

scalar field:

V1–loop(φ) =
Λ2

64π2
Str
[
M †(φ)M(φ)

]
− 1

64π2
Str
[(
M †(φ)M(φ)

)2
]

log
Λ2

µ2
(A.1.13)

where the super–trace Str is defined as the sum over the contributions of particles with

spin s, weighted by (2s+ 1) · (−1)2s.

Let us consider the top–Yukawa coupling in the SM as an example. The Lagrangian

term is given by

LH ⊃
Yt√

2
t̄L tRH + h.c. ⇒ M(H) =

 0 H Yt√
2

H Yt√
2

0

 (A.1.14)

from which we can evaluate the contribution of the top loop to the Higgs potential using

eq. (A.1.13) to be

V1–loop(H) ⊃ Nc · 2 · (−1)Tr
[
1
Y 2
t

2
H2

]
Λ2

64π2
= − 3

32π2
Y 2
t Λ2H2 . (A.1.15)
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The Higgs potential therefore has a quadratic sensitivity in the momentum cut–off once

we consider the one–loop correction given by the top Yukawa. Including the one–loop

contributions generated by the diagrams in figure 2.6 one can finally obtain the total Λ2

contribution to the Higgs potential as

V1–loop(H) ⊃ 1

2

[
1

4

(
9g′ + 3g′2

)
− 6Y 2

t + 6λ

]
3

32π2
Λ2H2 . (A.1.16)

which needs to be highly fine–tuned against the bare mass term of the Higgs in order to

correctly reproduce the experimental value, if we assume a large cut–off scale Λ above the

electroweak scale.



Appendix B

Experimental Data

B.1 Electroweak Precision data

Observable Experimental value SM prediction Description

ΓZ [GeV] 2.4952 ± 0.0023 2.4961 ± 0.0010 total Z width

σhad [nb] 41.541 ± 0.037 41.477 ± 0.009 σ(e+e− → ff̄) at Z pole

Re 20.804 ± 0.050 20.744 ± 0.011 Γ(Z → had)/Γ(Z → e+e−)

Rµ 20.785 ± 0.033 20.744 ± 0.011 Γ(Z → had)/Γ(Z → µ+µ−)

Rτ 20.764 ± 0.045 20.789 ± 0.011 Γ(Z → had)/Γ(Z → τ+τ−)

Rb 0.21629 ± 0.00066 0.21576 ± 0.00004 Γ(Z → bb̄)/Γ(Z → had)

Rc 0.1721 ± 0.0030 0.17227 ± 0.00004 Γ(Z → cc̄)/Γ(Z → had)

AeFB 0.0145 ± 0.0025 0.01633 ± 0.00021 F/B asymm. in e+e− → e+e−

AµFB 0.0169 ± 0.0013 0.01633 ± 0.00021 F/B asymm. in e+e− → µ+µ−

AτFB 0.0188 ± 0.0017 0.01633 ± 0.00021 F/B asymm. in e+e− → τ+τ−

AbFB 0.0992 ± 0.0016 0.1034 ± 0.0007 F/B asymm. in e+e− → bb̄

AcFB 0.0707 ± 0.0035 0.0739 ± 0.0005 F/B asymm. in e+e− → cc̄

ALR 0.15138 ± 0.00216 0.1475 ± 0.0010 L/R asymm. in e+e− → e+e−

Apol(τ) 0.1439 ± 0.0043 0.1475 ± 0.0010 τ–polarization asymmetry

Ae(Pτ ) 0.1498 ± 0.0049 0.1475 ± 0.0010 joint FB/LR asymmetry

mW [GeV] 80.420 ± 0.031 80.381 ± 0.014 pole W mass

g2L 0.3009 ± 0.0028 0.3040 ± 0.0002 (ν N → ν X) scattering

g2R 0.0328 ± 0.0030 0.03001 ± 0.00002 (ν N → ν X) scattering

gνeV -0.040 ± 0.015 -0.0398 ± 0.0003 (ν e→ ν e) scattering

gνeA -0.507 ± 0.014 -0.5064 ± 0.0001 (ν e→ ν e) scattering

QW (Cs) -73.20 ± 0.35 -73.23 ± 0.02 atomic parity violation in Cs

Table B.1: Experimental and SM values of 21 EW and low–energy precision observables [22].
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B.2 Higgs Precision data: ATLAS

Channel µ̂ (7TeV) ζ
(g,V,t)
i (%) µ̂ (8TeV) ζ

(g,V,t)
i (%) Refs.

bb̄ (VH) combination — −0.42+1.05
−1.05 (0, 100, 0) [162]

bb̄ (ttH) 3.81± 5.78 (0, 30, 70) — — [163]

ττ combination — 0.7+0.7
−0.7 (20, 80, 0) [164]

WW (0j) 0.06± 0.60 inclusive 0.92+0.63
−0.49 inclusive

WW (1j) 2.04+1.88
−1.30 inclusive 1.11+1.20

−0.82 inclusive [165]

WW (2j) — — 1.79+0.94
−0.75 (20, 80, 0)

ZZ combination — 1.7+0.5
−0.4 inclusive [166]

γγ(L) (uc|ct) 0.53+1.37
−1.44 (93, 7, 0) 0.86+0.67

−0.67 (93.7, 6.2, 0.2)

γγ(H) (uc|ct) 0.17+1.94
−1.91 (67, 31, 2) 0.92+1.1

−0.89 (79.3, 19.2, 1.4)

γγ(L) (uc|ec) 2.51+1.66
−1.69 (93, 7, 0) 2.51+0.84

−0.75 (93.2, 6.6, 0.1)

γγ(H) (uc|ec) 10.39+3.67
−3.67 (65, 33, 2) 2.69+1.31

−1.08 (78.1, 20.8, 1.1)

γγ(L) (c|ct) 6.08+2.59
−2.63 (93, 7, 0) 1.37+1.02

−0.88 (93.6, 6.2, 0.2)

γγ(H) (c|ct) −4.40+1.80
−1.76 (67, 31, 2) 1.99+1.50

−1.22 (78.9, 19.6, 1.5)

γγ(L) (c|ec) 2.73+1.91
−2.02 (93, 7, 0) 2.21+1.13

−0.95 (93.2, 6.7, 0.1)

γγ(H) (c|ec) −1.63+2.88
−2.88 (65, 33, 2) 1.26+1.31

−1.22 (77.7, 21.2, 1.1) [167]

γγ (c|trans.) 0.35+3.56
−3.60 (89, 11, 0) 2.80+1.64

−1.55 (90.7, 9.0, 0.2) [168]

γγ (dijet) 2.69+1.87
−1.84 (23, 77, 0) — —

γγ (mjj high loose) — — 2.76+1.73
−1.35 (45, 54.9, 0.1)

γγ (mjj high tight) — — 1.59+0.84
−0.62 (23.8, 76.2, 0)

γγ (mjj low) — — 0.33+1.68
−1.46 (48.1, 49.9, 1.9)

γγ (Emiss
T ) — — 2.98+2.70

−2.15 (4.1, 83.8, 12.1)

γγ (lepton tag) — — 2.69+1.95
−1.66 (2.2, 79.2, 18.6)

Table B.2: ATLAS best fits on signal strength modifier µ with signal compositions ζpi (if pro-

vided) for gluon (g), vector (V ), and top (t) initiated production. If inclusive is denoted, the cut

efficiencies have been neglected when evaluating µ, see [8,9,169], while if combination is denoted,

only the 7+8TeV combined result is available.
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B.3 Higgs Precision data: CMS

Channel µ̂ (7TeV) ζ
(g,V,t)
i (%) µ̂ (8TeV) ζ

(g,V,t)
i (%) Refs.

bb̄ (VBF) — — 0.7+1.4
−1.4 (0, 100, 0) [170]

bb̄ (VH) combination — 1.0+0.5
−0.5 (0, 100, 0) [171]

bb̄ (ttH) −0.81+2.05
−1.75 (0, 30, 70) — — [172]

ττ (0/1j) combination — 0.74+0.49
−0.52 inclusive

ττ (VBF) combination — 1.38+0.61
−0.57 (0, 100, 0) [173]

ττ (VH) combination — 0.76+1.48
−1.43 (0, 100, 0)

WW (0/1j) combination — 0.76+0.21
−0.21 inclusive

WW (2j) combination — −0.05+0.73
−0.56 (17, 83, 0) [174]

WW (VH) combination — −0.31+2.24
−1.96 (0, 100, 0)

ZZ (untagged) combination — 0.84+0.32
−0.26 (95, 5, 0) [175]

ZZ (dijet tag) — — 1.22+0.84
−0.57 (80, 20, 0)

γγ (no tag 0) 3.78+2.01
−1.62 (61.4, 35.5, 3.1) 2.12+0.92

−0.78 (72.9, 24.6, 2.6)

γγ (no tag 1) 0.15+0.99
−0.92 (87.6, 11.8, 0.5) −0.03+0.71

−0.64 (83.5, 15.5, 1.0)

γγ (no tag 2) −0.05+1.21
−1.21 (91.3, 8.3, 0.3) 0.22+0.46

−0.42 (91.7, 7.9, 0.4)

γγ (no tag 3) 1.38+1.66
−1.55 (91.3, 8.5, 0.2) −0.81+0.85

−0.42 (92.5, 7.2, 0.2)

γγ (dijet) 4.13+2.33
−1.76 (26.8, 73.1, 0.0) — — [176]

γγ (dijet loose) — — 0.75+1.06
−0.99 (46.8, 52.8, 0.5)

γγ (dijet tight) — — 0.22+0.71
−0.57 (20.7, 79.2, 0.1)

γγ (MET) — — 1.84+2.65
−2.26 (0.0, 79.3, 20.8)

γγ (Electron) — — −0.70+2.75
−1.94 (1.1, 79.3, 19.7)

γγ (Muon) — — 0.36+1.84
−1.38 (21.1, 67.0, 11.8)

Table B.3: CMS best fits on signal strength modifier µ with signal compositions ζpi (if provided)

for gluon (g), vector (V ), and top (t) initiated production [169]. If inclusive is denoted, the cut

efficiencies have been neglected when evaluating µ, see [8,9,169], while if combination is denoted,

only the 7+8TeV combined result is available.
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