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Abstract

Various features of the observable universe can be understood as the result of nonequi-
librium processes during the early stages of its history, when it was filled with a hot
primordial plasma. In many cases, including cosmological freezeout processes, only a few
degrees of freedom were out of equilibrium and the background plasma can be viewed
as a large heat bath to which these couple. We study scalar and fermionic quantum
fields out of thermal equilibrium that are weakly coupled to a large thermal bath with
the goal to formulate a full quantum mechanical description of such processes. The bath
composition need not be specified. Our analysis is based on Kadanoff-Baym equations,
which are the exact equations of motion for the correlation functions in a nonequilibrium
quantum system. We solve the equations of motion for the most general Gaussian initial
density matrix, without a specific ansatz or a-priori parameterisation and for arbitrarily
large deviations from equilibrium. The solutions depend on integral kernels that contain
memory effects. These can in good approximation be solved analytically when the field
excitations have a small decay width. The full solutions are compared to results obtained
by other methods. We prove that the description in terms of a stochastic Langevin equa-
tion is equivalent to the Kadanoff-Baym equations. We show the emergence of standard
Boltzmann equations as a limit of the Kadanoff-Baym equations in a dilute gas when
coherences play no role and discuss quantum Boltzmann equations as an intermediate
step. We analyse the properties of the solutions in terms of the equation of state and
investigate the validity and implications of quasiparticle approximations. We find that
the equation of state can deviate significantly from that of a gas of quasiparticles even if
the resonances in the plasma show quasiparticle behaviour in decays and scatterings. A
detailed discussion is devoted to the influence of modified dispersion relations and widths
in the plasma on gain and loss rates. We illustrate our results in two models for the bath
composition, a scalar and a Yukawa model. In both cases we give analytic expressions
for the imaginary parts of the self energies, which govern the gain and loss rates. Finally,
we discuss applications in cosmology. Our results provide a toolkit for a full quantum
mechanical description of cosmological freezeout processes. We discuss the application
to thermal leptogenesis, where quantum effects are likely to be of great relevance. The
scalar model can also be used to describe the late phase of reheating. In this context, we
analyse under which circumstances large thermal masses can put an upper bound on the
reheating temperature.



Zusammenfassung

Viele Eigenschaften des beobachtbaren Universums lassen sich als Ergebnisse von Nicht-
gleichgewichtsprozessen in seiner Friihgeschichte verstehen. Dabei befinden sich in vielen
Fillen nur wenige Freiheitsgrade auflerhalb des thermischen Gleichgewichts und der Rest
des Plasmas fungiert als Warmebad, an das diese schwach koppeln. Um eine quantenmech-
anische Beschreibung dieser Prozesse zu ermdglichen, untersuchen wir das Verhalten von
skalaren und fermionischen Quantenfeldern auferhalb des thermischen Gleichgewichts, die
schwach an ein thermisches Bad gekoppelt sind. Die Zusammensetzung des Bads muss
fiir eine allgemeine Betrachtung nicht spezifiziert werden. Unsere Analyse basiert auf
Kadanoff-Baym Gleichungen. Diese sind exakte Bewegungsgleichungen fiir Korrelations-
funktionen von Quantenfeldern auferhalb des thermischen Gleichgewichts. Wir 16sen die
Bewegungsgleichungen fiir gaufssche Anfangsbedingungen mit beliebig grofser Abweichung
vom Gleichgewicht in voller Allgemeinheit. Die gefundenen Ausdriicke enthalten Inte-
gralkerne, die nicht-markowsche Effekte parameterisieren. Wenn die Zerfallsbreiten der
Resonanzen im Plasma klein sind, konnen diese Memory-Integrale approximativ gelost
werden. Wir vergleichen die exakten Losungen mit Ergebnissen, die mittels anderer
Verfahren gefunden wurden. Wir beweisen, dass die hiufig verwendete stochastische
Beschreibung durch eine effektive Langevin Gleichung zu den Kadanoff-Baym Gleichun-
gen dquivalent ist. Wir zeigen des weiteren, dass die klassischen Boltzmann Gleichungen
den Grenzfall der Kadanoff-Baym Gleichungen in einem verdiinnten Gas bilden, wenn
Quantenkohérenzen vernachléssigbar sind, und diskutieren den Zusammenhang zu Quan-
ten Boltzmann Gleichungen. Letztere sind effektive, von den Kadanoff-Baym Gleichungen
abgeleitete Boltzmann Gleichungen, in denen nicht-markowsche und Quanteneffekte durch
zeit- und temperaturabhéngige Stofterme parameterisiert sind. Bei der Formulierung ef-
fektiver Boltzmann Gleichungen, die deutlich einfacher zu losen sind als die Kadanoff-
Baym Gleichungen selbst, ist es von besonderem Interesse, unter welchen Umstidnden
der Einfluss des Mediums auf die Kinematik von Streuprozesen und Zerfillen in einer
Beschreibung durch Quasiteilchen parameterisiert werden kann. Dies ist der Fall, wenn
die Zerfallsbreiten der Resonanzen im Plasma klein sind und Off-Shell Effekte vernach-
lassigt werden konnen. Die Dispersionsrelationen der Quasiteilchen und die Zustands-
gleichung des Systems kénnen jedoch selbst dann stark von dem in einem Gas aus freien
Quasiteilchen zu erwartenden Verhalten abweichen. Wir illustrieren unsere Ergebnisse an-
hand eines skalaren und eines Yukawa Modells fiir die Zusammensetzung des Bads. Beide
finden direkte Anwendung in der Kosmologie. Das skalare Modell kann zur Beschrei-
bung der Reheating Phase am Ende der kosmischen Inflation verwendet werden. Mit
den Ergebnissen aus dem Yukawa Modell stehen die Mittel fiir eine quantenmechanische
Beschreibung der thermischen Leptogenese zur Verfiigung.
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Introduction

Today, there exists overwhelming evidence suggesting that the observable universe
is expanding and originates from a volume that was many orders of magnitude smaller
that its currents size (cf. [I, 2]). Consequently, the compressed matter was exposed to
enormous density, pressure and temperature in the past. Many properties of the universe
are the result of out-of-equilibrium processes during this very early, high-temperature
phase (cf. [I, B]). This includes cosmological phase transitions and the various freezeout
processes that are crucial to give many cosmological parameters the values we observe
today, in particular the creation of a matter-antimatter asymmetry, the production of
dark matter, the formation of light elements and the decoupling of photons leading to
the cosmic microwave background. Another example is the reheating after a possible
inflationary phase.

The energy densities during the very early epochs of the history of the universe by
far exceed those that can be realised in any human made experiment. Thus, the early
universe is an excellent testing ground for predictions from theories beyond the standard
model of particle physics. Hence, the study of nonequilibrium processes in the primordial
plasma is interesting from a cosmology as well as particle physics point of view.

Freezeout processes in the early universe are usually described by means of Boltzmann
equations. These are first order differential equations that describe the time evolution of
particle number densities. They have proven an extremely useful tool in describing the
creation of light elements and the decoupling of the cosmic microwave background from
the primordial plasma in good agreement with observation [4]. However, Boltzmann
equations are based on semiclassical approximations. They can be expected to hold in
a weakly coupled, dilute plasma, but not in the presence of strong interactions or at
high density. Given that the temperature of the primordial plasma increases as one goes
backwards in time, it is questionable whether Boltzmann equations correctly describe
processes that occurred earlier in the history of the universe. Furthermore, Boltzmann
equations are unable to describe quantum phenomena like coherent oscillations, which
may e.g. crucially influence the generation of a matter-antimatter asymmetry.

This makes a fully quantum mechanical treatment mandatory. Relativistic quan-
tum mechanics generally enforces the abandonment of the concept of particle numbers,
with correlation functions of quantum fields replacing them as the dynamical quantities.
Unfortunately, the resulting equations of motion in most cases cannot be solved in a
transparent way. One way to proceed is to employ numerical methods, generally at the
loss of transparency. Though Boltzmann equations usually also have to be solved numer-
ically to obtain quantitative results, they allow a better qualitative understanding of the
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results and their parameter dependence, and often an approximate analytic solution can
be obtained. In many cases numerical methods currently appear to be the only choice.
Following another strategy, one can save some of the benefits of Boltzmann equations by
modifying them to so called quantum Boltzmann equations. They can be derived from
the full quantum theory as effective equations of motion when a number of simplifying
assumptions is justified. Though being formulated in terms of particle numbers or clas-
sical phase space distribution functions, quantum Boltzmann equations include some of
the quantum and non-Markovian effects left out by ordinary Boltzmann equations. This
allows to treat complex problems without losing track of the relevant parameters.

In this work, we follow a third approach. Cosmological freezeout processes for different
particle species are technically relatively simple problems if two conditions are fulfilled.
First, it is assumed that only one or a few particle species freeze out simultaneously and
the number of degrees of freedom out of equilibrium is much smaller than the total number
of degrees of freedom in the plasma. Second, they should not coincide with other events
such as cosmological phase transitions. We furthermore assume that self interactions of
the field that is out of equilibrium are weak. However, we emphasise that we do not put
any restrictions on the deviation from equilibrium. It can be arbitrarily large. In this
case, there are three important simplifications:

(1) The system is spatially homogeneous and isotropic.

(2) In good approximation only one or a few degrees of freedom are out of equilib-
rium. The primordial plasma forms a large thermal bath to which these are weakly
coupled. The many degrees of freedom in the bath make backreaction negligible,
it approximately remains in thermal equilibrium on the timescale associated with
particle reactions. The temperature changes only slowly due to Hubble expansion.

(3) The quanta of the field which is out of equilibrium mainly scatter with quanta of
the bath fields, not amongst themselves. The occupation numbers in the bath are
determined by few parameters, the temperature 7" and chemical potentials y;, which
considerably simplifies computations of the gain and loss rates. The same applies
to decays and inverse decays.

This thesis is devoted to systems in which these conditions are fulfilled. In this case
we can solve the equations of motion for the quantum mechanical correlation functions
analytically up to an integral kernel that contains memory effects. The solutions allow
to keep track of all parameters and give a deep conceptual insight into the behaviour of
quantum fields out of thermal equilibrium. They can, if the above conditions are fulfilled,
directly be applied to a number of cosmological situations including baryogenesis, dark
matter production or the late phase of reheating. Furthermore, the improved conceptual
understanding of quantum effects in a hot plasma can also provide a guideline when
dealing with technically more complex problems.



Outline

In chapter [ we introduce the standard techniques to treat quantum systems out of
equilibrium. We briefly summarise the derivation of the standard Boltzmann equations
in Sec. [LTl and discuss the limitations of their applicability in the following section,
In Sec. [[3], the Kadanoff-Baym equations are derived from first principles. They are the
exact equations of motion for correlation functions of quantum fields out of equilibrium
and can be viewed as quantum mechanical generalisation of the Boltzmann equations.

In chapter Bl we focus on systems in which the conditions we formulated in the in-
troduction are fulfilled, namely fields that are weakly coupled to a large thermal bath.
In Sec. BTl we prove that in such systems the Kadanoff-Baym equations are equivalent
to a description in terms of a stochastic Langevin equation. Then, in Sec. EE2, we solve
the Kadanoff-Baym equations for scalars and fermions. The rest of the chapter is de-
voted to the discussion of the solutions. We first study the approach to equilibrium in
Sec. Then, in Sec. 23T and 232 we show that Boltzmann equations emerge from
the Kadanoff-Baym equations in a dilute gas and briefly discuss quantum Boltzmann
equations as an intermediate step. Finally, in Sec. EZ3] we study the plasma properties.
We in particular investigate the validity of the quasiparticle approximation and the role
effective masses in the plasma. A detailed discussion is devoted to kinematic aspects, in
particular the role of off-shell and scattering processes in the plasma.

In chapter Bl we concretise the previous discussion by considering two specific models,
a scalar coupled to a bath of two other scalars by a trilinear coupling and a fermion
with Yukawa coupling. Analytic solutions for the imaginary parts of the self energy are
provided for both cases.

In chapter @l we apply the results to two cosmological problems. Sec. BTl uses the scalar
model to study kinematic bounds on the reheating temperature after cosmic inflation. In
Sec. we use the results from the Yukawa model to formulate a framework that paves
the way to a fully quantum mechanical treatment of leptogenesis.

Chapter Bl summarises and discusses our results. Many of the results presented in this
work, in particular Sec 2], and most of Bl have previously been published in [5].

Throughout this thesis we use natural units h = ¢ = kg = 1, where kg is the Boltz-
mann constant. For the metric in Minkowski space we chose the convention
g = diag(l,—1,—1,—1).



CHAPTER

Thermodynamics of Quantum
Systems

In this chapter we review the standard methods used to describe nonequilibrium systems.
In Sec. [LTlwe briefly sketch the derivation of the standard Boltzmann equations, following
B]. Then, in Sec. [CA, we discuss when and why those can be expected to fail. In
Sec. we then introduce the Schwinger-Keldysh formalism and derive the Kadanoff-
Baym equations which provide exact equations of motion for the correlation functions of
quantum fields out of equilibrium.

1.1 Boltzmann Equations

Boltzmann equations are equations of motion for classical phase space distribution func-
tions. In abstract form they read

LIfi] = Clfi, - ful: (1.1)

Here f; are the distribution functions for n particle species and L is the Liouville operator
which in general relativity has the form

L= p"Op — 0P’ p” Op. (1.2)

Here p" is the conjugate momentum to the coordinate z* and T'), are the Christoffel

symbols or metric connection. L describes ‘the classical propagation of the system in
phase space when there are no interactions. C is the collision term that characterises the
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interactions. It is computed from S-matrix elements that are imported into the classical
framework from quantum field theory and allows for the creation and annihilation of
particles in inelastic collisions. The two sides of ([LIl) show the semiclassical nature of
Boltzmann equations. The system is understood as an ensemble of classical particles with
distribution functions f;. They move freely according to L between pointlike quantum
mechanical interactions characterised by C.

In a Friedmann-Robertson-Walker universe ([L2) reads

L = wd, — Hpd,, (1.3)

where w and p are energy and momentum and H is the Hubble parameter. The number
density can be defined as

d*p
Then ([LT)), divided by w and integrated by parts, leads to
. _ & [Ppg
hs + 3Hny — (%)3/ Poif ) (15)

gi counts the number of internal degrees of freedom of species ¢. Here we have neglected
redshifting of w because we assumed that the particles are massive and their energy
w = wp = y/p?+m? is dominated by the mass. The momentum contribution gets
redshifted, but can be neglected if the particles are heavy. For massless particles, the
3Hn term in (L) has to be replaced by 4Hn. The collision term for a process with
particles of species i ...k in the initial and w...v in the final state can be written as

i /dgpi@ .
(2m)3 wi
T( & &p
) 11 <(27:)375b> 0P+ P —Pu— - — Do)

k
ﬂa d3pa
- JI(g2)1
(M7 punfio o e fu) o (L fo) = ML i e oL Ef) (L ).
(1.6)

M are the S-matrix elements for scatterings with particles of species i... k% in the initial
and u...v in the final state. The + are + if the corresponding species is bosonic and —
if it is fermionic, in the former case enhancing the transition due to the induced effect
and in the latter case suppressing it due to Pauli blocking. Quantum mechanical concepts
as internal degrees of freedom or Bose-Einstein/Fermi-Dirac statistics have to be imple-
mented by hand. The collision term couples the Boltzmann equations for the different
species. This generally makes it difficult to solve them. Fortunately, for many cases of in-
terest there are tremendous simplifications, though numerical computations may be done
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without them. Due to phase space arguments, one usually has to consider only decays
and 2 — n scatterings. Unless many different species freeze out simultaneously, one can
in good approximation assume that all species except for the one(s) freezing out are in
equilibrium. The only change that Hubble expansion does to equilibrium distribution
functions of relativistic particles can be parameterised in a time dependent temperature.
In absence of Bose-Einstein condensation or Fermi degeneracy, the occupation numbers
are small for all momenta. One can replace 14+ f ~ 1 and use Maxwell-Boltzmann distri-
butions for all species in equilibrium, regardless of their spin. On the side of the matrix
elements, the symmetries of the interactions can often lead to simplifications. For in-
stance, in transitions that only involve C' P-invariant interactions, |M|? is invariant under
exchange of the initial and final state. If the background medium remains in equilibrium
at any time, detailed balance implies that the sum of all gain rates y; and the sum of
all loss rates y; fulfil the relation y; = e #y; and the Boltzmann equation for the
distribution function simplifies to

fi+3Hfi+Yi(fz’—ffq) =0, (1.7)

where v; = y< —v; and f;? is the distribution function in equilibrium. Since y? depend
on the various distribution functions, they are functions of time. Hubble expansion can be
viewed as an external force that acts on the system. As long as y > H, the interactions
continuously keep all species in thermal and chemical equilibrium. The state can then be
characterised by the temperature and, potentially, a chemical potential for each conserved
quantity. These few parameters uniquely dictate the abundance of particles for each
species. When v < H, v can be neglected in (7). Then the only change that n;
undergoes is due to Hubble dilution and the number of particles in a comoving volume
remains constant. Physically this means that the density of possible scattering partners
becomes so low that the corresponding species effectively decouples. While the rest of the
plasma keeps cooling, its comoving number density remains frozen roughly at the value it
had when v ~ H. The photons of the cosmic microwave background, the light elements
in the intergalactic medium, dark matter and the excess of matter over antimatter in the
universe are all relics that have been created this way.

1.2 Limitations of Boltzmann Equations

Despite their great success, Boltzmann equations have shortcomings. These affect both,
the propagation as well as the interaction of particles.

The Boltzmann equations assume that classical particles move freely between scatter-
ings. This neglects the fact that they feel the interaction with neighbouring particles at
any time, not just during scatterings. It also neglects their quantum mechanical nature
as wavepackets which becomes relevant once the average distance between two particles
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is comparable to its de Broglie wavelength. It also neglects entanglement and the possi-
bility of coherent oscillations of the quantum state during propagation, which cannot be
described in the picture of classical particles.

The scattering amplitudes are computed from S-matrix elements in vacuum. They
have no knowledge of the system’s history and ignore possible non-Markovian effects.
In addition, the computations are based on the particles’ properties in vacuum and do
not take into account possible changes due to their environment. It is a well known
phenomenon that the properties of particles are changed if they move in a medium.
Examples are the effective mass of electrons in a solid state or the Debye screening of a
charged particle in a plasma. If those effects are not too strong, they can be parameterised
by introducing a quasiparticle which resembles the properties of the screened particle seen
from some distance. Then Boltzmann equations for those quasiparticles can correctly
describe some properties of the system while ordinary Boltzmann equations give incorrect
results. These effects can be expected to become increasingly important with increasing
density.

1.2.1 Breakdown of the Particle Concept

The basic dynamical quantities in Boltzmann equations are particle numbers or phase
space distributions. In an interacting quantum field theory, particle number is not a well
defined quantity. In many situations, one can nevertheless refer to elementary excitations
of fields as particles. This is very well motivated for if they exist as asymptotically free
states. In the asymptotic limit, long before and long after a collision, the interaction can
be neglected and the theory is effectively free. In this limit, the particle number is well
defined, allowing to prepare and measure states of sharp particle number. The spectrum
is discrete, with each state corresponding to freely moving on-shell particles. The notion
of particles is still a very useful concept in an interacting theory if the spectrum, or
density of quantum mechanical states, shows sharp peaks a some points in phase space.
Those resonances can be interpreted as 'unstable particles’. If the coupling is weak, their
properties are usually very close to what would be a stable particle in absence of the
interaction.

The density of states with a given set of quantum numbers in phase space characterised
by a spectral function or spectral density p. The analytic structure of a typical spectral
function, in this case for simplicity of a scalar, is given by

ImIT} (w)

= = m? ~ TR

(1.8)

p X

Here w and q are the energy and spatial momentum components of the four vector ¢ =
(w,q). TIf is the retarded self energy. In a free theory, I is zero everywhere and p
proportional to the sum of two ¢ functions at the poles £wqy. With interaction, the poles
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of (LA) appear as the complex solutions to
w? —q* —m? — I (w) =0. (1.9)

If those lie on the real w-axis below the lowest multiparticle threshold, they give rise
to d-function shaped contributions to p that can be interpreted as stable states. When
they lie close to the real axis, they still give rise to a sharp peak of p with a width
given by their imaginary part and a height proportional to its inverse. Those can be
interpreted as unstable states, or resonances. The poles and peaks in p apart from those
corresponding to the one particle state can be interpreted as bound states. In addition,
the spectrum receives continuous contributions above the lowest multiparticle threshold
where IT shows a discontinuity across the real w axis and the numerator of (L&) becomes
non-zero. However, in vacuum the one-particle state remains the excitation with the
smallest energy, and ImII¥ is zero below the lowest multiparticle threshold.

In a plasma the spectrum becomes more complicatedﬁ . In the simplest case, when
the background plasma is in equilibrium, IT® becomes a function of a single temperature
T and, in general, chemical potentialﬂ. The self energy then can always be written as the
sum of its value in vacuum and a temperature dependent correction. The latter can give
rise to additional solutions to (L) that correspond to collective excitations in the plasma,
and the existing solutions are shifted by a temperature depended amount. Furthermore,
in general IT1* is complex along the whole w axis and all resonances, even those that are
stable in vacuum, obtain a finite width due to the possibility of scatterings with virtual
quanta in the plasma.

We now define w = g as the complex solution w(q) to (CH) that converges to wq in
the limit of vanishing coupling and i

Qq = Refy, (1.10)
Iy = 2Im€,. (1.11)

In a homogeneous and isotropic system, Qq can only depend on |q| and not on the
direction. If the width of a resonance is small, namely

Fq <8y (1.12)

!Throughout this work, we use the words ’spectrum’ and ’spectral function’ equivalently. Those
are not to be confused with the spectrum of (eigenvalues of) the full Hamiltonian which is of course
independent of the state in which the system is prepared, and therefore in particular independent of
the temperature. The temperature dependence here arises from the statistical nature of thermodynamic
systems. The resonances are not to be viewed as excitations above the ground state, but statistical
averages over excitations above states of different energies contained in the grand canonical ensemble.

2In (C3) we have written II as a function of a single four vector ¢. In general, II(z, z2) in coordinate
space depends on two four vectors independently. However, in the following we focus on the case of a
thermalised background plasma. Since thermal equilibrium is a translation- and rotation invariant state,
IT only depends on the relative coordinate z1 — x2 and its Fourier transform II,(w) on a single vector g.

3Many authors use definitions that correspond to I'q = Iqu. Here we chose the definition (ICIT)
because it relates I' to the relaxation time of the system in real time by 7 = 1/r, see SecZZ
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the spectral function shows sharp peaks at w = £{)4. Landau pointed out [6] that in this
case the system can in good approximation be understood as a gas of screened particles
with modified interactions, or quasiparticles. €)q can be interpreted as a quasiparticle’s
energy. In this case one can formulate an approximate dispersion relation that puts the
resonance quasi-on-shell, fixing its four vector to (€2q,q). The dispersion relations are
given by the real part of (C3),

wr—q®>—m?® — RquR(w) = 0. (1.13)
Then one can approximate
ImITZ(Qy)
S _#. (1.14)
q

An effective mass M [1 can be defined a&ﬁ
M(q,T) = (9 — q°)

We will in the following call €2, and other possible solutions of (LI3) for which the
dispersion relation w(q) is similar to that of a free particle free quasiparticles. This
applies if the momentum dependence of the correction due to Rell is small ﬁ, hence we
will refer to the approximation in which this dependence is neglected as free quasiparticle
approrimation.

Obviously the real part of the self energy is responsible for the temperature- and
generally momentum-dependent mass shift while its imaginary part gives rise to the finite
width. One immediate feature of quasiparticles is that they are not stable and decay with
a relaxation time of 7 = 1/r [[]. In particular they do not exist as asymptotic (free) states
because their properties are given by interactions. This in general makes the definition of
a particle number ambiguous, though useful definitions have been suggested |8, 9.

To understand the properties of the plasma, one can distinguish between three quali-
tatively different regimes.

(NI

(1.15)

1. particle regime: If the corrections to Rell® and ImII® coming from interactions
with the medium are both small with respect to the particle’s on-shell energy wq
and all mass differences to particles with the same conserved quantum numbers,

4Throughout this thesis we generally use small letters for zero temperature masses and capital letters
for thermal masses. The only exception are the masses of right handed neutrinos in SecL2 which we, in
accordance with the common notation in the literature, denote by capital letters.

>There are other possible definitions than (CIH), e.g. defining M as the momentum independent piece
of Rell” that comes from local diagrams, as the energy Qg=0 when the quasiparticle is at rest, as the
minimal possible value of Qg as a function of |q| or via the inverse curvature of Qg at its minimum as a
function of |q|. For free quasiparticles, the meaning of all of those coincides.

6Tt is by no means clear that the dispersion relation has a parabolic form if one moves away from a
minimum. The complicated band structures in condensed matter systems are an obvious counter-example.
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the influence of the plasma on particle properties is negligible. Then conventional
Boltzmann equations can be expected to describe the kinematics of the system with
sufficient accuracy. However, even in this regime, they cannot account for effects
related to the coherence of quantum states.

2. quasiparticle regime: If the correction to ReIl® due to the medium becomes non-
negligible, it can qualitatively change the shape of the spectrum. The resonances
that exist at 7' = 0 receive a temperature dependent mass shift, and new resonances
which correspond to collective excitations can appear. However, if the width of all
of them is still much smaller than their energy and their dispersion relations do not
cross or get so closed together that the finite widths overlap, all plasma waves can
be described as quasiparticles in the sense defined above. Their properties can differ
significantly from those of the particles in vacuum, but kinematically they in good
approximation behave like (generally unstable) particles. In the following we will
always refer to resonances with these "particle-like" properties as quasiparticles,
rega;clljless of whether they originate from screened particles or have a collective
originl].

3. broad resonance regime: If the width of a resonance becomes comparable to its
energy, it cannot be interpreted as a (quasi)particle with a well-defined energy any
more. This is expected in a strongly coupled system. It can also happen for a small
coupling constant if the temperature, and consequently density, become sufficiently
high that interactions with the background plasma make the lifetime of a state short,
hence its width large.

In a weakly coupled theory there is a simple classical argument which suggests that the
quasiparticle picture should hold even in the high temperature regime 7" > m. One should
certainly observe quasiparticle behaviour if the kinetic energy is much larger than the
potential, or interaction energy. The interaction energy can be estimated by a Coulomb
law Ep,ot ~ 9/r where g is the gauge coupling constant and r the distance between two
particles. This distance in a hot plasma is ~ T, thus E,, ~ gT. Remarkably, this result
coincides with a first order quantum field theoretical computation for the thermal Debye
mass [10]. In contrast, the kinetic energy is Ey, ~ T', hence g < 1 implies Ey, > Epor.
However, this simple picture does not always hold, see P.3.3

"This deviates from the more common definition that restricts quasiparticles to those resonances that
correspond to dressed particles, as opposed to collective phenomena. However, for our later discussion
the origin of the plasma waves is of no relevance and we refer to them as quasiparticle whenever they
have a definite dispersion relation.
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1.2.2 Oscillations and Decoherence Effects

Boltzmann equations are formulated in terms of number densities for classical parti-
cles. By construction they cannot describe quantum phenomena like coherent oscillations,
which can be of great importance in the early universe. In the standard model of particle
physics the quark mass eigenstates are not identical to their flavour eigenstates, but ro-
tated by the CKM matrix [I1]. The reason is that the Yukawa couplings to the Higgs field
that give the quarks masses do not couple to the same directions in flavour space as the
SU(2) gauge coupling. A similar situation may be realised in the see-saw mechanism [T2],
see appendix [AIH . There the Yukawa coupling matrix that connects heavy neutrinos to
Higgs and leptons is generally not diagonalisable in the same basis as the charged lepton
Yukawa couplings. This can have important consequences in leptogenesis [I3], where the
CP-violating decay of a heavy Majorana neutrinos into Higgs and leptons generates a
matter-antimatter asymmetryt]l. The decay of a heavy Majorana neutrino produces lep-
tons in a coherent superposition of flavours, leading to flavour oscillations. The generated
lepton number is determined by the competition between decays and scatterings that
produce leptons and their inverse, the washout processes. Between their production and
possible absorption in a washout process, the leptons propagate through the plasma. Dur-
ing this time, flavour dependent interactions with the background plasma can destroy the
coherence of the quantum state. This has an effect on the efficiency of washout processes.
For example, if the interactions via the charged lepton Yukawa couplings happen fast,
they effectively freeze the system in the corresponding flavour state. When leptogenesis
is studied in terms of Boltzmann equations, there are two different ways to proceed. Ei-
ther one sums over all flavours and does the computations for an overall lepton number
or one computes the production rates for each flavour separately. Either way, classical
Boltzmann equations cannot take proper account of coherent oscillations and decoherence
effects.

We here chose the example of leptogenesis. These effects are of course not specific
to this example. They can be relevant whenever couplings are involved that single out
different directions in flavour or another space.

1.3 Kadanoff-Baym Equations

The previous considerations point out the need for a full quantum mechanical description
of nonequilibrium systems.

8Here we refer to the type-I see-saw mechanism. Two alternative ideas to explain the smallness of
neutrino masses are known as type-II and type-III see-saw mechanism: the addition of SU(2) triplet
Higgses [T4] and the addition of SU(2) triplet fermions [I3] to the Standard Model.

9The importance of flavour in leptogenesis has been studied by a large number of authors, see [16]
and references therein for a partial list.
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Such a description is provided by the Kadanoff-Baym equations. In this approach,
the n-point correlation functions replace the phase space distribution function as the
dynamical quantities by which a system is described. Their equations of motion are
given by the Kadanoff-Baym equations [I7]. Those can be derived closed-time-path or
Schwinger-Keldysh formalism [I8, 19, 20, 2T]. Here we briefly sketch the derivation of this
technique, mainly following [22, ).

A nonequilibrium system is not a pure quantum state and has to be described in terms
of a density matrix p. Expectation values of observables are computed as

(A) = Tr (0.A) (1.16)

The density matrix ¢ has a statistical interpretation as an ensemble of identical systems
in different quantum statedtd. (CID) involves an averaging over quantum fluctuations and
statistical initial conditions. This will become more obvious later. Direct computation
of the time evolution of p is difﬁcul, but it is equivalent to study the time evolution
of all correlation functions of the theory. The infinitely many degrees of freedom of the
initial density matrix are mapped onto their infinitely many initial conditions. Though
a full characterisation of the system in principle involves all n-point functions, it is often
sufficient to study the one- and two-point function. This in particular applies to all cases
of interest in this work.

Time ordered correlation functions can, as in field theory at vanishing temperature,
be computed from a generating functional. However, it turns out useful not to restrict
the analysis to fields with real time arguments, but instead consider a time ordering
along some general contour C' in the complex time plane. We will first derive the relevant
equations for real scalars and then for fermions. The generalisation to complex scalars and
gauge fields is straightforward, though in the latter case the treatment of the unphysical
gauge degrees of freedom can be technically challenging and the phenomenology is much
richer. For instance, in covariant gauges at finite temperature, Faddeev-Popov ghosts are
necessary to remove unphysical degrees of freedom even in abelian gauge theories, and in
non-abelian gauge theories a new mass scale, the magnetic mass, appears, see [10].

1.3.1 Bosons

Consider a real scalar field ¢ with a Lagrangian £ = L. —) where Lg.. is the Lagrangian
of the free field and V some potential that provides a self interaction. We specify the

10Note that particle number in relativistic quantum field theory is not a conserved quantity. Therefore
different states of the same system include the vacuum, pure states with an arbitrary number of quanta
and possible superpositions of states with different particle numbers.

" Generally, the von Neumann equation can only be solved perturbatively for a reduced density matrix
with an effective Hamiltonian. In most practical applications to date, a number of additional assumptions
is made that effectively makes this approach equivalent to what we refer to as quantum Boltzmann
equations in Sec. A powerful formalism of this kind has been developed in [23] and is widely used
to treat neutrino oscillations.
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Figure 1.1: Path in the complex time plane for nonequilibrium correlation functions.

contour C' as the Keldysh-contour C (cf. Figure [[]) that starts at some initial value
2 = t; + ie, runs parallel to the real 2° axis until ¢; + ie where it follows a semicircle
around z° = ¢ until 2° = ¢; — ie and then runs back to t; — ie. The parameter e shall
be thought of as infinitesimal. To include correlation functions for arbitrarily large times
after t;, we send t; — 0o. A generating functional for time ordered correlation functions
can be written as

ZelJ] = T (TC exp (2 /C d%;J(x)qs(x)) g) , (1.17)

with time ordered n-pint functions given by

1 o"
(p(x1...9(xy,)) = Z[J)idJ (x1) ... 18] (x,) 21] ’J:O

(1.18)

Here T is the time ordering along the contour C in the complex time plane and
fc d*x implies a time integration along that contour while the spatial integrations dx are
performed over the whole three dimensional space in the usual manner. The generating
functional has a path integral representation

Zel3) = [ Do Do 6l olof?) (6 Te exp ( [ s (e + J<x>¢<x>>) 9). (1.19)
c
Here <¢i[1]‘ and \¢i[2]) are eigenstates of the Heisenberg field operator ¢(t; £ i€) at the

beginning and end of C. In the limit ¢ — 0 one can represent

¢l

(@ Te exp ( [t te + J<x>¢<x>>) oy = [ Dpexp ( [t te + J<x>¢<x>>) ,

(1.20)

ol

leading to

o1
2l = [ el Do@flalef?y [ Foesp (i [ £+ S0t (20

12Here we chose the Heisenberg picture where g is time independent.
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(C20) provides the motivation for choosing the closed time path C. The integrations
Dqﬁi[l}Dqﬁi[z} correspond to an ensemble average over the initial conditions (gzﬁi[l]\g\gzﬁim) while
the Z2¢ is the usual quantum mechanical path integral averaging. The initial density
matrix can be represented as

(61 |olgy™) = e (122)
with

flo] = o + Z %/Cnda:iocn(xo, o) o(xy) (). (1.23)

The «,, contain the initial correlations and vanish for times ¢ # t; while 91 is simply a
normalisation factor. In this work we will only consider two types of initial conditions,
equilibrium and a Gaussian density matrix. For both of these, f can be absorbed in an
elegant way. Here we discuss Gaussian o, the equilibrium case is treated in Sec.

Gaussian initial conditions can be a good approximation for the physical reality in
many cases [ They can be parameterised as

1
f[Qb] = Ko + /d4$10(1($1>¢(l’1) + 5 /d4$1d4$2062($1,$2)¢(I1)¢($2), (124)
c c
giving the exponential in ([CZI]) the simple shape
. 1 1
exp <z/d4x1d4x2 (§0c2(x1,x2) + (5é4) (21 — x2)§ ((9361(9362 — m2)) qb(xl)gzﬁ(xg))
c

X exp <z / &'z (o (z) + J(2)) da) — V[(b(a:)]) . (1.25)

C

oy can be absorbed into the source, J(z) — J(x) + & (z), and ay into the mass,
5é4)(x1 — x9)m? — 5é4)(x1 — x9)m? — op(x1,72). This way the initial density matrix
formally disappears from the computations and only re-enters via the initial conditions
for the correlation functions. As in vacuum theory, in the absence of interactions, V = 0,

(C2Z3) is Gaussian and ([C2ZI)) can, after partial integration in x5 be solved as
1
Z5e[J] = M exp (—5 /d4x1d4x2J(x1)Agee(x1,xg)J(xQ)) . (1.26)
c

M’ is again a normalisation factor and AL the free propagator on the contour with
modified mass m for which, analogue to the vacuum case,

(Oy + m?) AL (2, 25) = —ids? (3, — x2). (1.27)

13Note that, even if the initial density matrix is purely Gaussian, higher order correlation functions
build up at later times.
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Here [0; = 0,0" with all derivatives with respect to the components of z;. From (C2TJ) it
is easy to see that

Zdﬂ:uxp(—{édﬁiL&;@])Z?ﬂjuﬂ. (1.28)

As in vacuum theory, one can now define the generating functional for the connected
correlation functions by

WI[J] =iln Z[J]. (1.29)
As usual, functional derivatives of W/[J| with respect to J give connected time ordered
n-point correlation functions,

"W [J]
dJ[xy] ... 0J[xy] lu=0

= ()" {Te (¢(x1) ... §(@n)))e- (1.30)

The effective action is obtained by Legendre transform,

o = /d4xJ )oe( (1.31)

and fulfils the stationarity condition
S|
6¢c(x1)

where ¢. = (¢) is the expectation value of the classical field, computable from ([L30). It
allows to define the n-point vertex functional, or one-particle irreducible n-point function

8"T' @]
dde(x1) ... 0¢c(y)

— —J(x1) (1.32)

Moy ... 2p) = = —i(¢(x1) ... d(xn))1pr (1.33)

It follows

6 6r ch /d4 /6¢c 62r[¢6]
dJ(x2) 8¢p.(1) 8J (zo 69250( ")0¢c(1)
O°T (] _ ()

AL /5J($2)5J( ) 5000 (wr) | 8J(w2) (1.34)

This, with (C33)) and (C30), implies for the connected two point function on the contour

/&ymd%fmawmg:—@ﬂm—@y (1.35)
C

I, can be written as a free part plus a self energy II, defining the latter:

Fg(xl,xg) = Fgree(xl,xg) + Hc(xl,xg). (136)
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From (C33) it is clear that ™ is the negative of the inverse free time ordered propagator
on the contour, implying

Tiee (1, 25) = (O, + m?)85) (21 — z2) (1.37)
The Dyson-Schwinger equation ([L33) can now be written in the familiar form
(O + m2) (Ae(z1, 7))o + /C 42/ Te(z1, ') (De(@, 7)) = —ide(zr —2) .. (1.38)
The propagator can be decomposed as
(A& (21, 72))e = Oc (29, 2 A (21, 19) + Oc (29, 2) A< (21, 72) . (1.39)

The 6-functions enforce path ordering along the contour C, and A~ and A< are defined
as

A7 (z1,22) = (P(21)9(22))e (1.40)
AS(z1,22) = (P(22)9(21))e- (1.41)

The self-energy can be decomposed in the same way
e (1, 20) = Oc(2), 27 (21, 22) + 0o (29, 2T (21, 72) (1.42)

In the Schwinger-Dyson equation the time coordinates of A and Ile can be on the upper
or lower branch of the contour C. To leave the contour and turn to correlation functions on
the real axis, we have to pay the price of a doubling of degrees of freedom, treating fields
on the upper and lower branch independently. We denote fields on the upper branch by
the subscript ‘4’ and those on the lower branch by ‘—’. This of course does not mean that
the number of physical degrees of freedom changes, ¢_ has to be viewed as an auxiliary
quantity. Consistency obviously implies

¢+(tf> X) = ¢— (tfa X) (143)
Using the same notation for the correlators and self energies, one can write
A_+(l’1,$2) = A> (I‘l, l’g) y A+_(I‘1, l’g) = A<(JI1,I‘2) i (144)
O (x1,20) =117 (21, 22) , T (21, 22) = U (21, 22) ,. (1.45)
A, II,, are the time-ordered and A__, II__ the anti-time-ordered two-point func-

tions and self energies. From the Schwinger-Dyson equation ([L38) one obtains for the
correlation functions A< and A~
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where the relative sign in the integrands is due to the anti-causal time ordering on the
lower branch of C.
It is convenient to introduce retarded and advanced propagators,

AR (21, 29) = 0(t; — o) (A (21, 12) — A (21, 72)) (1.48)
= 0(t1 — t2)([¢(21), O(2)])
= AJr+($1>$2) — Ay (71, 72)
— (@1, w0) = A__(21,22)
AN xy, x9) = —«9(t2 — 1) (A7 (2, 9) — AN (21, 79)) (1.49)
= —0(t2 — t1){[¢(x1), P(22)])
= Api(z1,22) — Ay (71, 72)
=Ay (21,m9) — A__(x1,29) ,
I8 (21, 29) = 0(t, — tg)(H>(x1,x2) — 115 (zy, x2))

=y (21, 29) — Ty (71, 22)

=11 (2, 29) — __(:El, 2) , (1.50)
T4 (21, 5) = —0(ty — tl)(H>(x1,x2) 1< (z1, 22))

=y (21, 29) =TIy (71, 22)

=11, (x1,29) — __(:El,xg) (1.51)

They allow, with Eqgs. (LZ6) and (C47), to formulate the Kadanoff-Baym equations for
the correlation functions A~ and A<,

(01 + m?*)A” (21, 1) = —/d4x/ (I17 (21, ) A (2, 22) + T (21, 2") A (2, 20)) , (1.52)
(O + m2)A< (21, 2) :-/d%;' (1% (a1, ') AN (2, 9) + T, 2')AS (2! 2)) . (1.53)

These can be rewritten conveniently in terms of the real symmetric and antisymmetric
correlation functions

¥ 22) = 5 ({9lm), )} (1.54)
A7 (21, 12) = i([¢(x1), d(x2)]) | (1.55)
and self-energies
I (2, 29) = —% (I (21, 29) + TT1< (21, 22)) | (1.56)
™ (21, 22) = 17 (21, x9) — IT= (21, 22) (1.57)
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which can be related the retarded and advanced self-energies,
HR(l’l, l’g) = (9(151 — tQ)H_(I'l, l’g) y HA(I'l,I'Q) == —(9(152 - tl)H_(l’l,,IQ) . (158)

One can obtain a homogeneous equation for A~ and an inhomogeneous equation for A™
by adding and subtracting the Kadanoff-Baym equations ([52) and (C53) and using

([LA3)-([L.E1) and (LA4)-(LID),

t1
Oy + M)A~ (21, 75) = — / P! / T (21, ) A (¢, 25) . (1.59)
to
t1
(O, + mH)AY (21, 25) = —/d?’x'/ dt'TT (zy, 2" ) AT (2, 15)
t;

to
+ / P! / QT (21, ) A (¢, 25) . (1.60)
t;

A~ and A* are known as spectral function and statistical propagator (cf. [8]). The time
ordered propagator on the contour can be expressed as

(Ac(z1,22))e = A (21, ) — %signc(x(l) — 2)A (21, 22) . (1.61)

A~ is, up to a factor i, the Fourier transform of the spectral function p and carries
information about the spectrum of the system while AT is related to occupation numbers
of different modes. From the definitions (C54) and (C5H) it follows that

A7 (g, 1) = —A7(x1,29) (1.62)
At (zg, 1) = A (x1,79). (1.63)

Using microcausality and the canonical quantisation condition for a real scalar field,

[B(21), p(22)]les=t, = [D(21), S(@2)][11=t, = O, (1.64)
[p(21), ¢3(932)]|t1:t2 =i0(x1 — Xa) , (1.65)

one can derive the initial conditions for A~.

A_(:El,xg)hl:tQ =0 N (166)
atlA_(xlvaMtl:tz = _at2A_(x17'r2)|t1=t2 - 6(X1 - X?) ) (167)
atlatQA_(:El,xg)hl:tQ =0. (168)

Note that they do not depend on the physical initial conditions of the system encoded in
the initial density matrix. Those enter via the initial conditions of AT the mean field (¢)
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and their derivatives with respect to time. If the involved couplings are small, IT can be
computed perturbatively from loop integrals that involve AT, A~ and (¢),

1 =TI[A", A, ()]

Feynman rules can be derived from ([28)). There are two differences to the procedure
in vacuum. First, the propagator depends on two arguments separately, not only their
difference. Second, there is a doubling of degrees of freedom since ¢, and ¢_ have to
be treated as two independent fields. ¢_ is not physical and acts like a ghost field that
only appears in the loops. Though ¢, cannot mix in vertices, they can propagate into
each other via A, and A_,. Since the couplings are local, only one type of field can
appear at each vertex. Thus there are two types of vertices. The number of diagrams
contributing to a certain process increases by a factor 2" where n is the number of internal
vertices because every vertex can be of each type. Fortunately, in practice only two of the
four propagators A are independent because with (LET) all of them can be constructed
from A" and A~.

Since our interest is motivated by cosmological problems, where the cosmological prin-
ciple applies, we can restrict the analysis to homogeneous and isotropic systems. In this
case all quantities only depend on the difference of the three vectors x; and x5. The
generalisation to inhomogeneous systems is straightforward though often computation-
ally difficult. It is convenient to perform a Fourier transformation in the relative spatial
coordinate. The correlation functions Aqi(tl, to) satisfy the two Kadanoff-Baym equations

t1

(@2 + WAL (. t2) + / AETI (1, #) AL (1 1) = 0 (1.69)

to

t1 to
(a§1+w§)A;(t1,t2)+/ﬁ dt’H;(tl,t’)A;(t’,tg)zl dt’Hg(tl,t’)A;(t’,tg), (1.70)

The initial conditions ([CHH)-(CEY) for the spectral function become

A;(tl, tQ)‘tlztg — O 5 (171)
atlAc;(tlvt2>|t1=t2 - _at2A;(t17t2)‘t1=t2 =1, (1'72)
3t15t2A;(t1, tZ)‘tlth - 0 . (173)

The physical initial conditions can in many cases be well approximated by a Gaussian
density matrix o. The most general Gaussian density matrix contains only five indepen-
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dent parameters for each mode (see [§]),

1 . iAJ’_in
(@MoloPy = (AL, exp (wq,m(gbgl =08+ x5 (0 = dam) = (8 = Pain)?)
q,in
4(AF AT — (AT )2) 41
q,in—q,in q,in
o < 8A+ ) ((QSE} - ¢q,in)2 + (¢E] - ¢q,in)2>
q,in
L(AF RS (AR ) 1
q,in—q,in q,in
+ ( N ) (65 = Pain) (95 — gzsq,in)) (1.74)
with
¢?q,in = <¢q(t1)>|t1:0a (1.75)
Gqin = O (Pq(t1))r,=o0, (1.76)
A(—;in = A(-;"l_ (t17 t2) |t1:t2=07 (177)
A‘-;iﬂ = atl A:’; (tlﬁ t2)‘t1=t2=0 = atz A(—: (t1> t2)‘t1=t2=07 (178)
Abiy = 040,00t t2)|n—1=0- (1.79)

Eq. (L) establishes the connection between the initial density matrix ¢ and the initial
conditions for A" and (¢). This is the only point where g enters, and the modified mass
obtained by absorbing the initial correlation o into m? does not affect the equations of
motion at any other time than ¢; since all o; vanish for ¢t # t;. A pure quantum mechanical
state with Tro? = 1 is realised for Al Al — (AL, )2 =1 E)

To derive the Kadanoff-Baym equations (C5Y) and (C60), we employed standard func-
tional methods known from field theory in vacuum. We formulated a generating functional
Z[J] with one source term J from which we obtained the effective action I'[¢.] that gen-
erates one-particle irreducible correlation functions. There exist an alternative derivation
(see [8]) that starts from a generating functional with n non-local sources and uses the
n-particle effective actions I'™. Those are functionals of all connected m-point functions
A(xq,...,z,) with m < n and allow to derive equations of motion for them by first order

functional derivation, using the stationarity condition

sr)
dA(xy, ..., Tpm)

= 0. (1.80)

In particular, the two-particle irreducible effective action [24] has become a standard tool
in nonequilibrium field theory. However, these methods are completely equivalent to the

141f ¢ is coupled to other fields, e.g. a thermal bath, entanglement with those will generally lead to
decoherence even if the initial density matrix p4 of ¢ corresponds to a pure state.
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approach presented here if the full perturbative series is taken into account. Differences
are technical and related to the truncation of the series. The n-particle irreducible effective
action provides a useful scheme to resum infinitely many Feynman diagrams. It also allows
to understand in an intuitive way why the formalism is free of secular terms that appear
in conventional perturbative approaches to time-dependent problems that involve more
than one time scale [8].

The above description was formulated in Minkowski spacetime and neglects Hubble
expansion. A straightforward generalisation to curved spacetimes and in particular the
Friedmann-Robertson-Walker universe has been discussed in [25].

1.3.2 Fermions

The generalisation of the above to fermions is straightforward. Analogue to Eqs. ([CZ0)
and (LA one can define

Sep(@1,19) = <‘I’oi(931)‘i’6(932)>c (1.81)
Sap(z1,@2) = —(Up(x2)Wa(z1))e (1.82)
(1.83)
as well as the spectral and statistical propagators
Ses = 1{Wal(21), Up(22)})e = i (Sgs(w1, 22) — S35, 22)) (1.84)
1 - 1
Sty = S{[Walzr), Ua(x2)])e = 5 (S7s(21, 22) + S5s(21, 72)) (1.85)

2 2

Here W is a Dirac spinor and « and [ are spinor indices which we will always suppress in
the following. The symmetry relations analogue to (L62) and (CG3)) are

S (zg, 1) = —° (S_($1,$2))T70 (1.86)
St(xy,21) = A (S+(x1,x2))T’yO. (1.87)

As for scalars, this allows to derive Kadanoff Baym equations for the spectral and statis-
tical propagators,

(10, —m)S™(z1,70) = /dgx’ /tt1 dt'S™ (x1,2)S™ (2, 23) , (1.88)

t1
(10, —m)ST(zy,20) = /d3x’/ dt'S ™ (z1,2))ST(2, 22)
t

i N
—/d3x'/ dt'ST (2, 2")S™ (2, 25) . (1.89)
t;

Here, as usual, J = 70, and the subscript ; indicates that derivatives are to be taken
with respect to the components of the vector x;.
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1.3.3 Thermal Equilibrium

Thermal equilibrium is a very special state. In the spirit of the ergodic hypothesis, any
large closed system with components that are in touch with each other should approach
equilibrium for late times and remain there on relevant time scaledd. In Sec. we
show explicitly that our solutions asymptotically approach the equilibrium state on a
characteristic time scale 7 for arbitrary initial conditions. In equilibrium, the density
matrix ¢ can without approximation be characterised by a small number of parameters
which, in the system of rest of the plasma, have a physical interpretation as temperature
and chemical potentials [27, 28]. Then o can be written as

o = exp (B (=H + 11:Q:))
“ Trexp (B (—H + 1:Qs))

(1.90)

where H is the Hamiltonian of the system, [ the inverse temperature, Q; some con-
served charges and p; the corresponding chemical potentials. In the cases we will discuss,
chemical potentials are negligible, leading to

exp (—fH)

Qeq = m. (1.91)

There exist several formalisms to treat quantum fields in equilibrium (see e.g. [10] and
[29] for a detailed list of references). They are generally based on the observation that
(CTI) formally is a time evolution operator in imaginary time [30]. Here we will use the
real-time formalism which directly connects to the discussion in the previous section. We
again consider correlation functions in the complex time plane, for a moment without
specification of a contour. Since equilibrium is a time- and space-translation invariant
state, the correlators A< only depend on relative coordinates

AZ (1, 29) — AZ(zy — 22). (1.92)

Using g, as a time evolution operator and the cyclicity of the trace in ([CI6), it is then
easy to prove that
AS(t+1if) = A~ (t) (1.93)

where we have suppressed the spatial dependence. ([[C33) is called the Kubo-Martin-
Schwinger (KMS) relation. For it to have any meaning, the functions A~ and A< should
be defined in the strips —3 < Imz° < 0 and 0 < Imz° < 3. In momentum space, the
KMS condition reads
_ — o Bw
A (w) = A7 (—w) = e A7 (w). (1.94)

15In practice, equilibration is a highly non-trivial issue. Many real systems, e.g. ferromagnets or glass,
show ergodicity breaking on relevant time scales. Also in relativistic quantum field theories approximate
non-thermal fixed points can appear, see e.g. [8, 26].
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For AT that implies

i Ow _
Af(w) = ~3 coth <7) Ay (w) - (1.95)
The same relation can be derived for the self-energies,
n i Bw\
I (w) = ~3 coth - I (w) - (1.96)

The KMS relation, which can be physically interpreted as a manifestation of detailed
balance, is unique to equilibrium and can also be used to characterise the equilibrium
state. It allows to write the time ordered propagator in a convenient form,

d4q —iq(x1—x
(Ac(z1 — 22)), = / )i 101722 (o (af — 29) + fp(W)) pa(w)- (1.97)
Here pq(w) = —iAg (w) is the spectral function and
1
fow) = - (1.98)

Again using g, as a time evolution operator, one can eliminate the initial density matrix
from the generating functional (CT),

ZelJ] = / D& (x: 1 + i6)| Ter exp (z /C s (E(x)+J(x)¢(x))) ¢ t)), (1.99)

leading to
ZelJ) = / D exp <@ /C diz (£(z) +J(x)¢(x))). (1.100)

Here, the boundary conditions are ¢(t,x) = ¢(t — i,x) and t; = t; —i. Let us now
specify the contour. It has to start at ¢; and end at ¢; —i. Furthermore, it should include
the real axis if we aim to calculate correlation functions for real time arguments and want
to avoid analytic continuations [4. There is a third condition that can be explained by
looking at A~ and performing the trace in a set of eigenstates |n) of the Hamiltonian for
energies F,, here for simplicity assumed to be discrete,

A (t —ta) = Z[0] 71y DBl (0 (1 = 0,51) | m) (m|é(t = 0,x2)|n).

(1.101)

16The first consistent treatment of quantum fields in equilibrium was formulated by Matsubara for
correlation functions with imaginary time arguments [31] and is widely used if all fields are in equilibrium.
Here we chose a real time contour because it allows to treat in- and out-of-equilibrium fields in the same
framework.
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Figure 1.2: Path in the complex time plane for thermal correlation functions.

The convergence of the sums is assumed to be governed by the exponentials, which pro-
vides the conditions

Im(z9 — 29) <0, Im(2?—29)+38>0 . (1.102)

When constructing a time-ordered propagator on the contour as in (L39), ; is later
than . Finiteness of the time ordered propagator via (LI0Z) therefore enforces that
the imaginary part of the later time is smaller, meaning that the contour can run only
downward in Imz® while it is free to run forward and backward in Rez? direction. To
make connection to the nonequilibrium discussion, we here chose the contour Cs shown
in Fig. The generating functional ([CI00) can be written in the same form as in the
nonequilibrium case ([L28). Cg consists of three parts: C; runs along the real axis from ¢;,
assumed to be negative without loss of generality, to —t;. Cy runs back to ¢; and C3 then
parallel to the imaginary axis down to ¢; —i3. It can be shown that ] one can perform the
limit #; — —oo. Then the generating functional Z¢,[.J] factorises into a part that generates
correlation functions on C; U Cy and one for those on C3, Z¢, = Z¢,uc,Zc;- Since we are
not interested in imaginary time arguments, Z¢, is an irrelevant normalisation factor that
drops out. The derivation of Feynman rules, including the doubling of degrees of freedom
by introducing fields ¢4 on the forward and backward branch of the contour, is equivalent
to that for out-of-equilibrium fields following (L28)). The computations in equilibrium are
much simpler than out of equilibrium because even the dressed propagators only depend
on relative coordinates. Feynman rules can be applied as in vacuum, with the difference
that there are two types of internal vertices, '+’ and ’—’, which couple fields of the
corresponding kind. Practically, computations are done as follows: Draw all diagrams,
assign '+’ and '—’ to each vertex, considering all combinatorial possibilities, connect
two +’-type vertices by A ., two '—’-type vertices by A__ and so on. Then perform
all loop integral as in vacuum. To do so, one requires the four thermal propagators.
They can be found from ([CI7) with the knowledge of the free spectral function. With

"There are some ambiguities related to this limit, see [0, Z9] and references therein for a discussion.
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pgee(w) — 27rsign(w)6(q2 — 77’@2)7 see (m, one obtains

Aii(g) = m + fe(jw|)278(q* — m?), A, (q) = fp(w)2msign(w)d(q® — m?),
| (1.103)
A_i(q) = (1+ fp(w))2msign(w)d(q® —m?), A__(q) = g + fe(lw])2md(q* — m?).

- q2—m2—ie
All the above expressions are computed in the rest frame of the thermal bath and not
invariant under Lorentz transformations. The theory itself of course remains covariant,
and the manifest covariance can be restored by the replacement Sw — Bq,u", where u*
is the four-velocity of the thermal bath. The bath simply singles out a frame of reference
in which computations are particularly simple and 7" = 1/3 has a physical interpretation

as temperature. For fermions, the anti-commutativity of Grassmann fields enforces a
different KMS relation

Sq(w) = —e 757 (w), (1.104)
leading to
Sqlw) = —%tanh (%ﬂ) Sq (W) .. (1.105)

It is very convenient to express the various correlators in terms of the spectral function
and the distribution functions fz

Af(w) =ipg(w), Af(w)= (% + fB(w)) pq(w)
Sq(w) =ipg(w), SF(w)=(}— frw))pq(w) (1.106)
where

The Bose-Einstein and Fermi-Dirac distributions that characterise equilibrium arise natu-
rally from the boundary conditions of the correlation functions. Finally, we can establish
the connection to usual thermodynamic quantities by noticing that the generating func-
tional (CIO0) for vanishing source can be identified with the partition function z of a
grand canonical ensemble.

z=Z[J =0 (1.108)

This, in the infinite volume limit V' — oo, allows to compute thermodynamic pressure as
well as entropy-, energy- and charge-density from Z|[0]

Omnz T S oP
P=T _ 4y _ s _o®
T STV T ooT
e__lalnz o oP
~ TV o3 T o

The von Neumann-entropy can, as usual in the statistical quantum mechanics, be written
in terms of the density matrix p,
S =—(lnp). (1.109)

31



CHAPTER

Weak Coupling to a thermal Bath

The Kadanoff-Baym equations provide a tool to study the dynamics of arbitrary nonequi-
librium systems. Unfortunately, in most cases they can only be solved numerically. For the
case of interest in this work one can make a number of simplifications. These correspond
to a scenario where one field that is out of equilibrium is in contact with a large thermal
bath. They are well-motivated for various cosmological processes including leptogenesis,
the freezeout of a weakly coupled dark matter particle, some models of warm inflation
or the late phase of reheating. In this case, we can prove that the Kadanoff-Baym equa-
tions for the correlation functions are equivalent to a stochastic description in terms of a
Langevin equation for the field itself. Furthermore, in this situation we can find the most
general solution to the Kadanoff-Baym equations analytically up to an integral kernel
that contains memory effects. In the quasiparticle regime we can even solve this integral
and present a full analytic leading order result. We then use this to show how the Boltz-
mann equations emerge from the Kadanoff-Baym equations in the limit of weak coupling.
Finally, we discuss the properties of the plasma. We find that even in the quasiparticle
regime the equation of state can significantly deviate from the naive expectation. We also
point out that at high temperature, in the quasiparticle regime the phase space becomes
dynamical due to the temperature dependent plasma wave dispersion relation, which can
in the simplest case be parameterised by temperature dependent effective masses. Those
put kinematical restrictions on processes in the plasma. Beyond the quasiparticle regime
these are not effective due to significant contributions from off-shell processes.

The assumption of weak coupling to a large thermal bath in the framework of Kadanoff-
Baym equations implies that self energies are computed from equilibrium propagators of
bath fields only. For couplings that are linear in the out-of-equilibrium field, this also
corresponds to a leading order perturbative expansion in the coupling constant. Higher
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order corrections are known cause uncertainties in perturbative solutions of Boltzmann
equations at late times. The reason is that terms of higher order in the gain-and loss
rates ~ y can give non-negligible contributions when y¢ > 1. Our approach makes no
approximation on the quantum side and consistently includes all memory effects at a
given order, but in principle inherits the technical uncertainties related to a perturbative
expansion in time dependent problems. However, no explicit secular terms appear, the
equations remain consistent in the sense that they do not contain time dependent "source
terms' involving the solutions of the equations of motion at different order in the expansion
parameter. Furthermore, in the systems of consideration, possible contributions are not
only suppressed by the coupling, but mainly by the number of degrees of freedom in the
bath so that they may safely be neglected .

The assumption that the background medium equilibrates instantaneously on the time
scale of consideration of course does not take account of the details of the equilibration
process. In reality, there may be effects related to the finite equilibration time and the
finite size of the quasiparticles. For example, if a particle with M > T' decays, the released
energy will locally destroy the thermal equilibrium. If the separation of time scales is large
enough, such effects should be small since the total percentage of the plasma affected by
them is small at any time.

We first consider a real scalar field that is coupled to a bath of other fields X'. with a
Lagrangian of the form

1 1
L= 3 GO P — §m;¢2 — gpO[X] + L. (2.1)

O[X] can stand for any operator of the bath fields I, The coupling ¢ is assumed to be
much smaller than the couplings that keep the fields X" in equilibrium. Then the time scale
on which ¢ evolves is much longer than the scale 7 on which the X thermalise so that
the bath is in local equilibrium and can be characterised by a single temperature 7" at any
time. No other assumptions are made about the nature of the X and their interactions,
they could in principle represent an arbitrary number of bosonic of fermionic fields with
various types of couplings amongst each other, including gauge interactions. All of this is
included in £y. We now introduce relative and centre of mass time coordinates y = t; —t»
and t = 3(t; + t5) and write

A (ty) = Ayt =t +Y/2,tp =t —¥/2) (2.2)

and so on. Correlation functions of fields in thermal equilibrium are time translation
invariant. The self energy 17 is by assumption given by loop diagrams that only contain
X propagators. Therefore it inherits this property, 9,II* = 0. In appendix Bl we prove
that then also ;A~ = 0. Physically this is intuitive. A~ encodes the spectrum, if
backreaction is neglected, the dressing of resonances will happen only by interaction with

'We exclude the case that O is just given by a single field operator, O[X] = X.
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a time translation invariant background. Hence the spectrum has to be time translation
invariant. The Kadanoff-Baym equations (LEY) and (CZ0) then simplify to

t1
(@2 +WR)AL (h — ) + /t AFTT (1 — )AL (' — t2) =0 , (2.3)

t1 to
(afl +w§)A;(t1,t2) + /t dt'TI (ty —t’)A;(t’,tz) = /t | dt’Hj{(tl —t)AZ(t' —t2) |
(2.4)

2.1 Langevin Equation

In classical physics, a system with a few degrees of freedom that is exposed to friction
and dissipation by coupling to a large bath can be often described in terms of a Langevin
equation. Such approach is generally applicable when the many degrees of freedom in
the bath allow to neglect backreaction. This method can be generalised to quantum field
theory and has been used by various authors (cf. [32, B3, B4, 9, B5, B6, B7, BY]). Some
aspects of the connection to the Kadanoff-Baym equations has previously been discussed
in [39]. In the following we will first sketch the derivation of an effective Langevin equation
following [9] and then show its equivalence to the Kadanoff-Baym equations.

The starting point is the nonequilibrium generating functional ([C2I) We assume that
the initial density matrix factorises, ¢ = 04 ® ox, and the interaction is switched on when
the system starts evolving in time. It is important to realise that ¢ and the X have
their time arguments on different contours. The X are all in equilibrium, so their initial
correlations can be absorbed by use of the integration contour Cz. ¢ is defined on the
Keldysh contour C. We now split C into a forward and a backward part, using the ¢4
notation, and introduce sources J. for fields of the different branches. Being interested
in ¢, we initially set the sources for all X to zero.

21001 = [ DorDo; (0nslelons) [ 96,225 505 00 (2.5)

P Xj indicates the choice of boundary conditions as described in Sec. [L33 The action
of the fields ¢ and X is given by

Slow XS] = [ ' (£a(6:) + 90,0l + J16.

t;

~Lufo) = g0l ] = Lo+ [ daLa(d), (20

Cs

where Ly is the Lagrangian of a free massive field and ¢;y the fields ¢ at initial time. In
the following we choose as initial time ¢; = 0 without loss of generality. With regard to
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the integrals over X', ¢4 simply act as sources. The term

/9){  Jo, d*o(Latgd+ Ol )) <6z‘fc,_, d4r9¢+<9[*+}> (2.7)
X

has the shape of a generating functional, where the averaging is performed only over bath
fields. We now expand the exponential in (Z7) to second order in g, perform a spatial
Fourier transform and change to new coordinates in field space,

1
O(x) = 5 (604+(2) + 6 (1)) . (2.8)
R(x) = ¢:(2) = ¢-(a) . (2.9)
The fields X and R can be integrated out, a straightforward computation leaves [9]

= / Dy, Dty W( Py i) / 9@9573[5]eif d4zJ (z)®(z)

xé{ olt) +w20q(t) + /0dt’ﬂ;(t—t')@q(t')_gq(t)] . (2.10)

Here the measure P[¢] is given by

Pl = (5 [ e [T aveomie - o)) (211)

and &4(t) is a stochastic noise. It mimics the effect of the bath degrees of freedom on .
Since the backreaction of the field ® is neglected, the only relevant correlation functions
are

(&a(t)) =0, (2.12)
(Ca(t)Eq (t )) = -t —t)i(a+d) . (2.13)

®(t) in (ZI0) satisfies the initial conditions
Dq(0) = Pgin ,  Pgin(0) = Tgin - (2.14)

The function W(®yy,; i) is a functional Wigner transform of the initial density matrix,

2 Rin Rin
W(CI)in; 7Tin) — /DRine—fd%mn(x)Rm(X)Q (q)m 4 7; Dy, — 5 ) (2.15)

and encodes the initial conditions.

Correlation functions for ® can be found from (2I0) by solving the classical stochastic
Langevin equation,

(2 + w2 / QT (t — )Bq(t)) = £a(t) | (2.16)
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with the initial conditions (2T4).
The solution of the Langevin equation is conveniently expressed by an auxiliary func-
tion fy(¢) which is defined as solution of the homogeneous equation

t
(07 4+ wi) fq(t) + / dt'TI (t — ) (') =0, (2.17)
0
with the initial conditions '
f,(0) =0, f4(0)=1. (2.18)

In terms of f,(¢), the solution of the Langevin equation is

Dqy(t) = (I>q7qu(t) + Mg infq(t) + /t dt'fy(t —t")Eq(t) . (2.19)

Correlation functions can now be obtained from ([ZI0) by calculating the expectation
values

(B, (1) . D, (1)) | (2.20)

which involves averaging over the stochastic noise and the initial conditions. In a spatially
homogeneous system the two-point function can be written as

(Pq(t1)Pq (t2)) = gq(t1,12)0(a + ') = gq(t2, 11)d(a +q') - (2.21)

The Langevin equation (2I8) implies,

(07 4 w?) (Pq(t1) P (t2)) + / ! AT (1 — 1) (g () Py (£2)) (2.22)
- <5q(t1)q)q’(t2)> (2-23)
— 5(q+q) / T (8 — )Ea(t — 1) | (2.24)

and consequently
t1
(87 4+ w?) gq(t1,t2) + / dt'TI (ty — 1) gq(t', 1)
0
to
:/ dt'TIE (ty — t)fg(t' — t2) . (2.25)
0

(ZZ3) can be solved using the solution of the Langevin equation (ZTI6). When the
initial field value and its time derivative vanish,

<q)q,in> = <ci)q,in> =0, (2.26)
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the relevant averages for the two-point function can be expressed

<(I)q,inq>q,in> = 5((1 + q,)aq s (227)
(Pg,inPain) = d(a+d)0q , (2.28)
<(I)q,inq>q,in> = 5(q + q,)’y(:l . (229)

Using the solution (ZT9) and the correlations (ZZI3) one obtains

galt1,t2) = aala(t1)fa(t) + Yaf(t1) £ (22)
+ Ba (Ta(t)alt2) + fa(t1)fa(t2)

t1 to
+ / dt’ / dt"tq(ty — I (1 = t")fq(t" — t2) . (2.30)
0 0

Comparison of Egs. (ZI1) and (Z23) to (Z3]) and ([ZZ)) shows that the equations of motion
derived from the Langevin equation can be identified with the Kadanoff-Baym equations

with the replacement fq(t; —t2) = Ay (61 — t2) and gq(t1, ta) = Af (1, 2), hence we have
proven the equivalence of both approaches.

2.2 Solving the Kadanoff-Baym Equations

2.2.1 Solutions for Scalars

The equation for the Spectral Function

Let us now solve (Z3).
y
(02 +wi) Aq(y) + /0 dy'Tl, (y — ) Aq (') =0 . (2.31)
The solution can be found elegantly by performing a Laplace transformation,

Az (s) = /O dye= AL (y) | (2.32)
which yields
- 0yAq (0) +sAZ (0
A;(S): Y q() ‘S:Vq()
s+ wk + 11 (s)
where the Laplace transform of I1~ is defined analogue to A~. From (233)), it is obvious

that the general solution of (31]) depends on two parameters, the boundary conditions
of Ay and 9,A  at y = 0. An inverse Laplace transform yields

(2.33)

ds ey

b 2T s 4 w2+ 115 (s)

Az (y) = (8,A5(0) + A;(0)9,) /C (2.34)
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Here Cp is the Bromwich contour (see Figure 3): The part parallel to the imaginary axis
is chosen such that all singularities of the integrand are to its left; the second part is the
semicircle at infinity which closes the contour at Re(s) < 0. The boundary conditions for
A (y) are independent of the initial conditions and given by ([L7T) and (C72), leading to

ds e’y
A = — = . 2.35
W)= J. ami sy o + Tl () (235)

From the definition of the Laplace transform one can see that I17(s) is real on the real
s axis because II7(y) is real, but it has a discontinuity across the imaginary axis. The
definitions (CA0) and (CRI)) give rise to the spectral representations

: dpo 11" (po)
R .
w) =4 /_cO 2T w — po + i€ (2.36)
: dpo 11" (po)
A _
Fw) =1 /_co 2T w — py — i€ (237)
. [ dpo I~ (po)
(s) = /_cO 2T is — po (2.38)

from which the relations summarised in Appendix[B3 can be derived. 14 (w) and II7 (w)
all have discontinuities across the real w axis. On the axis IT17 is defined as

RellF(w) = % (TTE(w + i) + TR (w — ic)) (2.39)
ImIlf(w) = 2% (I (w + ie) — I (w — ic)) . (2.40)
Eqgs. (Z39) and (240) imply that
Il () = % (g (i ) — Tl (i —)) (2.41)
and )
Il (w) = o] (w + i€). (2.42)

These properties are analogue to the theory in vacuum. However, while in vacuum II% is
analytic below the lowest multiparticle threshold, at finite temperature it has a disconti-
nuity along the whole real w axis, as we will show in Sec. Since the integrand of
(Z34) has singularities only on the imaginary axis, the second part can be deformed to run
parallel to the imaginary axis as well: Cp — f_zjooj; + [ =7, By change of integration
variables and use of the relations in Appendix [B3 the expression ([Z33) can be brought
into the form

AL(y) =i / T e () (2.43)

oo 27T
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Res Res

Figure 2.1: Bromwich contour

where the spectral function pq(w) is given in terms of real and imaginary part of the
self-energy II7 (w),

palw) = iy (i)

i i
B (w2 — w2 — g (w) — iwe W — wi =TI} (w) + iwe)

—2ImITE (w) + 2we
= 1 : (2.44)
(w? = w?Z — Rellf(w))? + (ImIIF(w) + we)?

The inversion in the last step is trivial because we assume that ¢ either carries no other
index, such as flavour, or the self energy is diagonal with respect to such index. pq(w)
fulfils the well-known sum rule

/ dopg(w) = 1. (2.45)
The discussion following (L&) can be directly applied to (2224)). In the limit of vanishing
interaction, the spectral function reads

pgee(w) = 2msign(w)d(w® — w?) (2.46)

As pointed out previously, the spectrum is time translation invariant because we neglected
the backreaction of ¢ on the bath. In a cosmological context this is of course not exactly
true. Even if backreaction is negligible, Hubble expansion still acts as an external force on
the system. However, in many relevant cases the time scale associated with the dynamics
of the field that is out of equilibrium is much shorter than that on which the expansion
is relevant, but still much longer than the relaxation times of the stronger coupled bath
fields. Though the spectrum changes with time and 0;A~ # 0, the inequality

A (ty) < 9yA4(ty) (2.47)
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can still hold and justify to take
Aq(t1,t2) = Ag (y; T (1))

(A7) allows to replace 07 on the lhs of the first Kadanoff-Baym equation (Z3) by 0.
Locally, if the separation y between ¢; and ¢, is small, T(#) and T(“TQ) can both be
replaced by the mean value T'(45%2) = T'(t). Then @3) in relative and centre of mass
coordinates reads

(02 + )AL (ty) = — /Oydt'H;(y—t',T(t))A;(t';T(t)) (2.48)

The centre of mass time ¢ is now just an external parameter and (248]) can be solved by
Laplace transform in y as in the t-independent case. The solution has the same shape
as the spectral function at constant temperature (44]), but implicitly depends on ¢ via
TR

The self-energy IIf(w), and consequently the spectral function pg(w), are divergent
and have to be renormalised. Physical particle properties shall be defined in vacuum.
Hence, the renormalisation conditions are formulated at zero temperature. In the limit
T — 0 one then directly recovers the familiar interpretation of masses and couplings
from vacuum theory. This is possible because medium effects are not relevant at very
short distances and no UV divergences additional to those in vacuum appear in the
theory. No temperature dependent counter-terms are needed and the usual mass and wave
function renormalisation at zero temperature can be applied. In (2:24) wé is replaced by
wé(o) = m2 + q?, where my is the bare mass of the field ¢. We require that the spectral
function has a pole at w? = m* + ¢ for T = 0,

wl — W?;(o) — RquR(wq)\Tzo =0. (2.49)

The self energy is now expanded around wq and renormalisation of the wave function
allows to absorb another divergence,

Rellf(w) = Rellf (wq) |70 + (1 — Z7') (w? — w2) + Rellf(w) | (2.50)
where Reﬂf(w) is the finite part and

1 ORellf(w)

2wq ow

Zl=1- (2.51)

w=wgq,T'=0

2This procedure does of course not take proper account of memory effects. If T' changes significantly
over the time of consideration, a correct computation requires the use of a quantum Boltzmann equation
with time dependent spectrum or even a full numerical solution of the Kadanoff-Baym equations.
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The spectral function (Z44)) now takes the form

—2ZImIIE(w) + 2we
pa(w) =Z 3

: (2.52)
<w2 — w2 — ZReﬂf(w)) + (ZImIT%(w) + we)2

The renormalized spectral function p}(w) = Zpg(w) takes same shape as (Z44)) when
expressed in terms of renormalised quantities, namely the renormalized field operator
¢, = V'Z¢ and the renormalized self-energy I1%7(w) = Z1IE(w),

—2ImIT}" (W) + 2we

) = <w2 —wk - RquR’T(w)>2 + (Imef’T(w) - we>2

(2.53)

The divergences of spectral function and statistical propagator can be removed in the same
way by mass and wave function renormalisation at zero temperature. In the following we
will drop the superscript ‘r’ to keep the notation simple.

Solution for the Statistical Propagator

We now turn to the Kadanoff-Baym equation () for the statistical propagator, which
for initial time ¢; = 0 is given by

t1
(afl +w§l)Af§(t1,t2) +/ dt'TIg (ty — t’)Ag(t’,tg) = ((t1,1a) , (2.54)
0

with b
C(tt) = / QETTE ( — )AL (H — 1) (2.55)
0

The solution can be written as a sum of the solution A:(tl,tg) to the homogeneous
equation

A tl A
(07 +w2)AL(t1,t2) +/ dt'TIg (ty — )AL (t 1) =0 . (2.56)
0
and an inhomogeneous piece. The full solution is given by
A~ tl
Ag(tr,t2) = Ag(t, t2) + /0 dt' Mg (tr = 1)C(¢, 2) (2.57)
as one can easily verify. There is no derivative with respect to t5 in the homogeneous

equation. Thus, t, can be viewed as a parameter. Then ([Z58) is identical to ([Z31) with
an additional parameter ¢,. That allows to read off the general solution from (Z3d),

Ad(t1, 1) = Aq(t2) Ag (1) + Bq(t2) Ag (1) - (2.58)
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The definition of A* implies the symmetry A;r (t1,t2) = A (t2, 1), which allows to write
Ag(t2) A (1) + Bq(ta) Ag (1) = Aq(t1)Ag (t2) + Bq(t) A4 (t) - (2.59)

Use of the boundary conditions ([LTI)-(C73)), A5 (0) = A; (0) = 0 and A;(O) =1, leads
to the relations

Aq(t) = Aq(0)AG (1) + Ba(0)Ag (1), Ba(t) = Aq(0)A4 (1) + Ba(0)Ag (1) . (2.60)

Aq(t) and By(t) can be inserted into (209). The symmetry of Af{(tl,tQ) then implies

Bq(0) = Aq(0). The initial state of the system is therefore characterised by three con-
stants, which can be identified with the initial correlations appearing in (([C74)

Egs. (Z31), (Z58), 80) and the initial conditions (CT7)-([TC79) now provide the full

solution for the statistical propagator,

Ab(tits) = ALuAq(t)AL(t) + ALLA; ()AL (t2)

qQ,in q,in
+ AL (AL () + A (A (1)
+ Af pem(t1, ) (2.61)
where
t1 to
Ad em(t1,t2) = /0 dt’ /0 dt"Ag (ty — )IE (" —t") AL (" —ta) . (2.62)

This contribution to the statistical propagator, which is independent of the initial condi-
tions, is often referred to as memory integral. It can be expressed in the form

d
Bjmenltite) == [ L ot ) (269
where [9]
t
Hq(t,w):/o dye™™ YA, (y) - (2.64)

In ([ZET) three of the five parameters of the initial density matrix (7)) reappear as
initial conditions for the statistical propagator. The other two are recovered as initial
conditions for the field expectation value, or one-point function. The field ®(z) in ZH)
can be identified with the physical field expectation value [22] while R(z) is a response
field. With the knowledge of the previous section, we can write (219) as

Py (t) = <I>qu ()+<i>q,inA;(t)+/tdt’A;(t—t/)€q(t/), (2.65)
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Performing the initial ensemble, stochastic noise and quantum mechanical averages as in

(ZT0) one obtains
(Pa(t)) = dqnlg (1) + Pqinlg (2). (2.66)

The solution (Z6H) agrees with the expression found in [32, 40]. We have assumed that the
system is in a symmetric phase and the minimum of the effective potential is at (¢) = 0.
With Eqgs. (281 and (268), all initial correlations in the Gaussian initial density matrix
() are recovered.

At this point, we should note that the formalism we presented becomes more in-
volved when considering non-Gaussian initial conditions other than thermal equilibrium.
Then the Kadanoff-Baym equation for the statistical propagator ([CZ0) contains additional
terms from the initial correlations [22]. In many physically relevant cases Gaussian initial
conditions are a good approximation to the physical reality. However, they do not cover
all potentially interesting states. An obvious example is thermal equilibrium. Therefore
it is not possible by any choice of the parameters in (CZ4)) to produce a time translation
invariant solution. These problems are addressed in some detail in [A1], @2].

Let us now discuss the properties of the above solutions. A} . (t1,%2) for late times
determines the equilibrium configuration for the statistical propagator. Only the first
two lines of (ZEI) depend on the physical initial conditions. Since they are directly
proportional to A~ and its derivatives, they are damped exponentially by ImII® as one
can see from (Z53). This becomes explicitly obvious in the quasiparticle regime. In
Sec. Bl we present plots of the correlation functions for a particular model for the bath.

Quasiparticle Regime

For small width I'y, p can be well approximated by a Breit-Wigner function

Zq sign(w)l'q

Pqlw) >~ , 2.67
around the quasiparticle peaks. Here I'q is the quasi-particle width
ImITZ(Q
Fq::——Za————gﬁ—Ez, (2.68)
Qq

and

q

7 _(1_ 1 ORellf(w)
2Qq Ow

:Q>_ . (2.69)

Away from the quasiparticle peaks, pq(w) is not well-approximated by (261), but any w
integration will be strongly dominated by the peak region. This allows to perform the
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integral in (ZZ3). If £ are the only solutions to (LX), one obtains

AZ(y) ~ ZqSin(qu)e—rq\y\/z ~ Sm(qu)e—renyw/z7 (2.70)

Qq Qq
where the last step assumes that Rell” is smooth around w = . For the statistical
propagator to leading order in I'q this yields

_l’_

AT.
At (t;y) % (cos(2Qqt) + cos(qy)) e et

Q

Nt

AGl,in —Tqt
- S (cos(2Qqt) — cos(Qqy)) e @
q

Al
+ =T gin(2Qqt)e Tt
g
coth( 52& )
20,

+ cos(Q2qy) (e_rqm/2 —e Tl (2.71)

To obtain the last result, we have used Eqs. (C33) and [ZZ2) to write
15 (w) = (14 2fp(w)) ImIT(w) (2.72)

and then applied Cauchy’s theorem to perform the w integration in (ZE3). This in in
principle problematic because the factor 1 + 2fp from the KMS relation has infinitely
many poles along the imaginary axis. However, generally the integration in Hq(t,w), see
(Z87)), produces quasi-poles at ££2,. One can, as previously, argue that the w-integral
is always dominated by the regions near the poles and therefore replace w by 4 before
using Cauchy’s theorem. This approximation is questionable for ¢ < /v but reasonable
for all later times, when H; (t1, w)Hq(t2, w) develops narrow peaks around 4 and finall
approaches a form that is proportional to pq(w), an approximate d-function, see Sec. Eﬂ,
We have also neglected I'y in the arguments of the distribution functions. Thus, it can
be argued that the contributions from the poles on the imaginary axis are small except
for early timed]. This is confirmed by numerical comparison for the cases relevant for this
work.

Note that the solution ([ZZII) for AT does not become time translation invariant in

the limit of vanishing interaction, I'y — 0 and €0y — wq, unless one chooses A;in =0
and Ag; = Q2AL;,. Instead, it oscillates with twice the plasma frequency Qq — wq.

3Note also that the common practice to use a narrow Breit-Wigner function like ([Z817) as an approx-
imate d-function is only justified if the function that it is multiplied with under the integral does not
change rapidly (e.g. oscillates) between Qq —I'q < w < Qg+ I'q. This does not pose a problem here, but
care has to be taken when inserting A* into loop integrals.

4See corresponding discussion for fermions in [B-4l
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In this limit A can be understood as that of a free nonequilibrium propagators. They
correspond the propagators in an ensemble of states that is characterised by some Gaussian
density matrix in a free quantum field theory. However, the oscillations with ¢ are not a
consistency problem since A™ itself is not an observable. As we will see in Sec. Z3T] e.g.
the energy density eq computed from (271)) is time translation invariant in the free limit.

Eqgs. (270) and (Z710) show explicitly that the system approaches equilibrium indepen-
dent of the initial conditions after a characteristic time 7 = 1/r which is sometimes referred
to as the lifetime of a quasiparticle. This can be seen by taking the limit £ — oo. Then
Eqs. (70) and ZZI) fulfil the KMS relation (C33). Here we prefer the term relazation
time for 7 instead of lifetime. It is more precise because the abundance in the plasma
is non-zero even in equilibrium. Furthermore, if one starts with an underpopulation of
modes, equilibration actually means an overall production of quasiparticles. Examples are
the thermal production of dark matter particles or that of the heavy neutrinos in thermal
leptogenesis. Finally, the term lifetime can also be misleading because it suggests that
one starts with a given number of particles that decay one by one. In fact, in a relativistic
plasma a continuous creation and annihilation takes place with an overweight of either
that leads to equilibration and 7 should rather be seen as a relaxation time for the system
as a whole.

If (C9) has more solutions than qu and the narrow width condition ([CI2) is fulfilled
near all of them, all of those behave like quasiparticles even though they might have a col-
lective origin. The integration can still be performed and the generalisation of Eqs. ([ZZ0)
and (EZTT) is straightforward. A¥ of course implicitly depend on T via IT%,

2.2.2 Solutions for Fermions

Spectral Function The Kadanoff-Baym equations (L88) and (CBY) for fermions can
be solved in the same way as for bosons. With the assumptions made in the beginning of
this chapter, the equation for the spectral propagator reads

("0, — ¢ —m)Sq (y) = /0 y dy'Sq (y —y)Sq V), (2.73)
where ¢ = q;7". Again, we perform a Laplace transform
Sals) = /0 " dyeSy(y). (2.74)
and correspondingly for the self energy, to obtain
Sq(s) = <—2’708 +q+m+ S;(s)>
The equal-time anticommutation relations for fermions imply

S=(0) = in°. (2.76)

q

12’705(,(0). (2.75)
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As for bosons, the initial conditions for the spectral propagator do not depend on the
physical initial conditions. The back-transformation goes via the Bromwich contour,
using the same deformation as in the scalar case.

Se) =i [ Goeipg(e) 2.77)
with » »
Palw) = (q/— m — SH(w) +iey” C—m— Shw) — iev()) (2.78)

The integrand shall now be inverted. X carries two spinor indices and can be expanded
in the basis

: 1 i
Yy = Z(s)]l + Z’)/g,Z(p) + ’YMZI;V) + ’YM’Y5Z!(LA) + 50'/“/2(1«) (279)

In the simplest case, when there is no C' and P violation, the pseudoscalar and axial
vector part vanish. We assume that there is only one flavour or ¥ is diagonal in flavour
space. These simplifications have to be dropped when applying the result to leptogenesis,
where C'P violation and flavour mixing are essential. Finally we drop the tensor piece
> (1) because it will not appear in the examples we discuss in the following chapter. Then
the spectral function takes the shape

= ot () = op (M
o) --am (822

with the vector Q = q + ieu — Efv) and the scalar M = m + EFS). Here u is the four-
velocity of the thermal bath. In the system of rest of the bath u = (1,0,0,0). The Lorentz

components of ¥ can conveniently be expressed by the three scalar functions aq(w), by(w)
and cq(w),

(2.80)

Ny = ag(W)g+ bg(w)ys  Bf§) = cq(w) . (2.81)

The functions aq(w), bg(w) and cq(w) have to be computed from Feynman diagrams
contributing to ImXf (w). In the limit of vanishing interaction [Z30) simplifies to

P (w) = 2 (¢ + m)sign(w)d(q® — m®) (2.82)
Statistical Propagator The equation for the statistical propagator can be written as
t1
(1700, — ¢ —m)S (t1,12) — / dt'Sg (ty — t')Sg (' t2) = (q(t1, ta) (2.83)
0

with
q(ti,t2) = / dt'S5 (ty — 1) Sg (' — ta). (2.84)
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We follow the same strategy as in the scalar case. The full solution can be written as the
solution S (t1,t2) to the homogeneous equation

t1 R
(i00ey — ¢ — m)8E (b1, 1) — /0 A5 (0 — )55 (' 1) = 0 (2.85)

and a memory integral S; . (t1,t5). Following the same steps as in the scalar case and

using the symmetry relations (C86) and (CXD), one can find

STt ta) = =S5 (81)7°S$(0,0)7°Sg (—t2) (2.86)
and
t1
Semem(t1:t2) = — /0 dt'Sq (t1 —t')¢(t', ta), (2.87)
hence

t1 to
St t2) = =S5 (11)7°S$(0,0)7°S 4 (—t2)+ /0 dt'Sy (t1—t') /0 dt" 53 (t'—t")Sg (1" —t3).
(2.88)

The solution for the nonequilibrium statistical propagator is, to the best of our knowledge,
original and have not been known in the previous literature.

Weak Coupling We again consider the quasiparticle regime. This time we assume
for simplicity that U is sufficiently heavy and weakly coupled that one can neglect the
thermal mass correction with respect to the intrinsic massl. This is e.g. fulfilled for the
heavy neutrinos in leptogenesis or a sufficiently weakly coupled dark matter candidate.
The thermal width has to be kept because there is no large width at zero temperature
compared to which it could be neglected. Finally, let us assume that the self energy is a
pure Lorentz vector, ¥(g) = 0 and X = Eé‘v)%. We can then decompose

Si) = —5 (1= 2fr() Tq() = (1 - 2/e(w) nZA(w)

= (1= 2/p(w)) Im (aq ()¢ + ba()¥). (2.89)
Then the spectral propagator simplifies to

—m

S™(y) = e " (v cos(wqy) — L2
Wq

sin(wqy)) , (2.90)

5Here we use the term "intrinsic mass" to refer to the mass a particle has in vacuum, namely the pole
of the two-point function after renormalisation. "Effective mass" or "thermal mass" then refers to the
change of location of this pole due to the interaction with the medium.
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from which also S* can be found by insertion into (Z88). Here we have defined
. = —QImaq(w) + qu(w)

4 w

(2.91)

w=wq

The memory integral can be written in the form

t1 t2
/ Zﬁ(/ dyls—(yl)ei‘”yl) =t (w) </ dyzS_(—yz)e_W) el (2.92)
™ 0 0

We again aim to find a simple expression in terms of the parameters m and I'y. After
inserting (2290) and (289) into (Z32), the narrow width limit allows to perform the various
integrations. As for the Bose-Einstein distribution in the scalar case, care has to be taken
because 1 —2fr(w) = tanh ( ) has an infinite number of poles along the imaginary axis.
Fortunately, those do not contrlbute significantly except for early times, see Appendix
B4 To leading order in I'y the result is

tanh (Fwa/2)

St em(ti, ta) & 5
q

—T/2lt1 —to| —T/2(t1+t2)
dmem (e —e )

X ((m —q) cos(wq(ts — t2)) — ivowq sin(wq (1 — tg))) (2.93)

or

SE nem(yi ) ~ i (1+2fr(wq))

x (e — e7T) ((m — yq) cos(wqy) — i wq sin(wqy)) - (2.94)

Again, one can explicitly see the approach to thermal equilibrium by verifying that the
Fourier transforms of the propagators (2290) and (Z94) fulfil the KMS relation (LI in

the limit ¢ — oo.

2.2.3 Approach to Thermal Equilibrium

In the previous chapter we showed explicitly that the system approaches thermal equi-
librium on timescales /1 in the quasiparticle regime. We now want to derive this result
without use of the narrow width approximation. For simplicity, we will demonstrate the
equilibration for scalars, the generalisation to fermions is straightforward. Equilibrium
can be characterised by the condition that the integral

2 ' y y
A (t,w) = / dye™ A <t + E’t - 5) , (2.95)
—2t
which becomes a Fourier transform for ¢ — oo, satisfies the KMS condition asymptotically,
n o Bw\ , _
Ag(oo,w) = ~3 coth <7) Ay (w) . (2.96)
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Since Ag (t) and A; (t) fall off exponentially, at times ¢ > 1/r only the memory integral
remains, and nothing else matters. One then obtains

Af(oo,w) = Al (00, w) = —[Hq (oo, w)PILE (w) - (2.97)

q,mem

The quantity Hq(oo,w) at late times approaches the Laplace transform of the spectral
function,

Hq(oo,w):/ dTe_i(“_iE)TA;(T)
0

= A, (iw +¢€)
B 1
s2 + wg + ﬁq(s) s=iw—+e
_ ! (2.98)
 w? —w? — Rellf(w) — ilmITf(w) '
leading to
[Ha(oo0,) = 1
R (w? — w2 — Rell#(w))? + (ImITE(w))?
Pa(w) (
—__raw) 2.99)
2ImI1%(w)

Insertion of this expression into (ZJ0) and use of the KMS condition for the self-energy

as well as (Z42]),
— Y R
I (w) = 2iImll (w) ,

q

yields (cf. (Z43),[2.44)),

N - Bw ImIT (w)
A (00,w) = —coth < 5 ) (@2 — w2 — Rell&(w))? + (ImITE(w))?
= —% coth <%d) Ay (w) - (2.100)

Hence, we can confirm that the system reaches microscopical equilibrium, characterised
by the KMS condition ([C33), at late times.

In more complex systems, in particular when many degrees of freedom are out of
equilibrium, thermalisation can be a highly nontrivial aspect. In general, there is more
than one timescale involved. Subsystems can reach equilibrium before thermalising with
each other. In other cases, macroscopic characteristics of the system can reach their
equilibrium values well before microstate does, see e.g. [43], 44].
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2.3 Plasma Properties

In the previous sections we have studied thermodynamical systems in terms of correlation
functions. We now turn to physical observables that characterise the plasma properties.
In some cases, the connection between correlation functions and observables is rather
direct. For instance, the spectral function p of resonances in a medium can be measured
for mesons propagating in nuclear matter, see Fig. 224l Such mesons can be generated
in target nuclei by injection of high energetic photons. w- and ¢-mesons are short lived
enough that they do not leave the nucleus before decaying. If the decay happens into
two leptons, those can be detected and reveal information about the resonance’s energy
and momentum. The nucleus provides a medium in a close-to-equilibrium state with
low temperature and high baryon chemical potential. To explore higher temperatures,
in particular those near the QCD phase transitions, one can study similar signals in
relativistic heavy ion collisions. Inconveniently, the collision initially leaves the system
in a far-from-equilibrium state. It then undergoes phases of thermalisation and, at high
energies, hadronisation. Measured data generally involves some integration over time,
making it difficult to extract properties for a particular temperature. Another often
studied observable that can be related to the spectral function is the shear viscosity
1, which can be computed from p by n = ’ﬂ'g—f]‘wzo. Here we will focus on the energy
momentum tensor, which can be computed from the statistical propagator.

Unfortunately, none of the current laboratory experiments allows to study the condi-
tions in the early universe directly, not even for those phenomena that happen at energies
which are accessible to particle accelerators. The reason is that, due to the lack of anti-
nuclei, laboratory experiments always involve a high baryon chemical potential while in
the early universe the chemical potential was extremely tiny. It is therefore impossible to
directly obtain information about the primordial plasma. However, the relic densities of
various particles do provide us with some data. In case of the big bang nucleosynthesis,
there is a good agreement between theoretical predictions based on Boltzmann equations
and observational data [4].

In the following we study how the Boltzmann equations emerge from the Kadanoff-
Baym equations when the plasma properties are that of a dilute gas and which modifica-
tions are necessary when going beyond that regime. Thereby we will focus on kinematic
aspects as discussed in Sec. [[LZTl These are equal for bosons and fermions. For simplicity
we will study them for scalars, with straightforward generalisation to fermions. We base
our analysis on energy densities to avoid the problems related to the definition of a par-
ticle number in an interacting quantum field theory. Since we neglect backreaction, the
energy-momentum tensor 7}, of the whole system, as a Noether current resulting from
time and space translations, is not conserved in our setup. We focus on the quantity

T3, = 0,00,6 — N L., (2.101)

the contribution of ¢ to T),,. This allows to define the contribution of a mode with
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momentum q to energy density and pressure,
& = (T = 900X} = 3(6° + (Vo) + 26 q (2.102)
1 1.
Py = (Ti = 900X |a = (5(VO)* + 5 (& = (Vo) — 6%l (2.103)

In terms of correlation functions, this yields

€4(t) = 1 (0001, +w2) (A (tta) + (Galt) (0t |,y (2100
and
90 = (G + 5 (0ud = 2) ) (4301 + Gt onlt) |, ey (2:105)

for energy and momentum.

2.3.1 Comparison to Boltzmann Equations

In Sec. we discussed the limitations of Boltzmann equations. We concluded that they
can give a good physical description of weakly coupled systems when the density is low
and coherence effects are not important. Therefore the solutions of Boltzmann equations
should emerge as a low density limit of our solutions for the Kadanoff-Baym equations.
Since the former are formulated in terms of particle numbers, it is intuitive to look for a
correspondence in the regimes where this concept is meaningful, namely the particle and
quasiparticle regime. We first confirm on general grounds that in this regime, the time
evolution of a small deviation from equilibrium is governed by a Boltzmann equation [49].
The computation also shows the breakdown of this description beyond the quasiparticle
regime. We then move on to a detailed comparison based on our explicit solutions for
the spectral and statistical propagators before discussing quantum corrected Boltzmann
equations in Sec. 232

Breakdown beyond the Narrow Width Limit

We start from the Kadanoff-Baym equation for the statistical propagator (24,
t1 to
(07, +w2)AE(t1,t2) + /0 dU'TIg (t =t )AL (' ty) = /O dt'TIE (8 —t") A (t' —t3) . (2.106)

At times ¢ > 7 = 1/r, the system is already close to equilibrium. It is known that then the
deviation from thermal equilibrium fulfils a Boltzmann type equation [49]. We reproduce
this result from first principles, without making an ansatz for the shape of A*. At late
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times, the dependence on the initial values at ¢; = 0 is negligible and one can extend the
lower integration limit to —oo,

(07 +w2) A& (t1,12) +/ dt’ (Hﬁf(tl — )AL tg) + T3 (8 — t’)Ag(t’ — 1)) =0.

- (2.107)
We change to relative and centre of mass time variables,
t1 + 1o
t= 5 Y= th—ty, AL (ty)=AL(t,ta) , (2.108)
and perform a derivative expansion,
t' +ty t—t
Af{ ( 5 ;t'—tg) :A;r (t; 1 —t3) + 5 @A;r (t;t —ty) + ... . (2.109)

The expansion is justified because for ¢ > 7 the deviation from equilibrium is small and
changes only slowly. Then one finds for the Fourier transforms with respect to the relative
time,

1

(Zﬁf — iwd; — W + wé) Al (tw)

; OTIE (w) OAT (W)
— _T11R + (. _ATTT Afg. . 3 q q\H
= —II (w)Ag (tw) —illg (w)Ag (tw) 5 9, o : (2.110)

This is a complex equation. Its real and imaginary part have to be fulfilled separately.
With the relations given in Appendix [B:3 one can derive the two real equations,

(i@f —w?+ wi) Af(t,w) = —RellF(w) AL (t,w) + ITF (w)ImAL (t, w)

N lﬁlmﬂf(u)) OAL (t,w) N

S o o (2.111)
0
waA:(t, w) = ImIF (W) AL (t,w) + ITIE (w)ReAS (t, w)
ORellZ(w) OAL (1,
L L2 a() 084 () + (2.112)

2 Ow ot o

from the real and imaginary part of ([ZTT0). One can always write Al (,w) as the sum
of its equilibrium value A¥ (w) and a deviation A (¢, w),

AL(tw) = Af(w) + AL (tw) . (2.113)
Equation (ZIT2) implies

ImIIS (W) A (W) + I (w)ReAS (w) = 0, (2.114)
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which is known to be satisfied because the relations of (B.99), (B:92) and the KMS
conditions (CIH) and (TCI4).

The first equation, (ZIT1]), poses a condition on the equilibrium solution,
(w? = wl — Rellf(w)) A (w) = —II (w)ImAé(w) . (2.115)

For vanishing width, the condition is fulfilled when

w = Qq = \Jwd + RellE(2) | (2.116)

where it is important to realise that the right hand side vanishes due to Eqs. (C38) and
(ZZ2) and the definition of I'y. The finite width leads to a correction,

W=+ 60 . (2.117)
To leading order in §€)q, one obtains for (ZI13),
204024 A% () + ITH () ImAL (Qg) =0, (2.118)

which implies

Iy ImAL (Qq)

2 ReAJ(Qq)
With (B92), we can use the free spectral function,

50y = (2.119)

A (w) = 2misign(w)d(w® — QF) (2.120)

q

to find an expression for InAZ(Qq) to leading order in Iy,

1 p(w) 1
ImAY(Qq) = —— = 2.121
mA () QWP/w’—quw 4(22l ( )
With Egs. (2119), (BA1)), Z44) and (ZE8) we finally obtain
112
082q = S0, (2.122)

This shows that for I'y < (g, the leading term in the derivative expansion enforces
w = Q. This is self-consistent because we used the free spectral function in the derivation.
If finite width effects are not negligible, however, off-shell effects become important and
the derivative expansion becomes unreliable.

An equation of motion for the departure from equilibrium of the statistical propagator
can be obtained by inserting w = Q) into ([ZI12),

((1 _ iiRenR(w)\Qq) 9 iImHR(Qq)) SAL(1:0q) =0 . (2.123)



We can now compute the energy density

1
ez(t) = 5 (atlatQ + wi) A:(tlﬁ tQ)‘tlth:t
1 o RS 2 2 .
= Q—wq . dw (Zat +w” + wq) A:(tvw) ) (2124)

which approaches the equilibrium value

0= [ (4 1) e (2.125)

[e.e]

cf. (CI06). This asymptotic equilibrium state is not that of a gas of free quasiparticles,
as will be discussed in greater detail in the following. From Eqs. (ZI123)), (Z68) and (269)
one can see that the deviation from equilibrium is described by a Boltzmann equation for
quasiparticles,

(0 +Tq)€q(t) =0 (2.126)

The above derivation shows that 0;0AJ(¢;€q) ~ I'q to leading order, which implies
the Boltzmann equation ([ZI26). However, this result was found by inserting w = Qg
into (ZIT2) to obtain ([ZI23). Considering ([ZI2Z), or a simple look at (ZZ4), show
that the exact position of the pole is not at (2. When I'q is not small, Qq shifts away
from the real w-axis and the quasiparticle peaks become less sharp. The narrow width
approximation, namely replacing IIf(w) — II(Qq) in ([ZZd) when integrating over w,
becomes increasingly bad because pq(w) deviates significantly from zero away from £.
Physically this means that off-shell contributions become increasingly important - the
quasiparticle picture breaks down.
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Quasiparticle Regime

From Egs. (Z70]) and (2I04) one finds to leading order in Ty,

12

e(t) ~ ﬁ’i; (w? sin®(Qqt) + QF cos®(Qqt)) e
q
¢q,in¢q,in in(Q.t Ot 2 (02) ¢ Tat
+ Tsm( at) cos(Qqt) (wg — Q) e
q
2
+ % (w2 cos?(Qqt) + Q2 sin®(Qqt)) e
At fw? — Q2 w? + Q2
q,1n q9 a q q —Iqt
+ ( 5 cos(2Qqt) + — ) e
Al (w2 — Q2 w2 + Q2
B q,in q q _q q —Iqt
202 < 5 cos(2Qq4t) — )e
A—"_-in w2 - QQ . _
+ QL(; g 5 9 sin(2Qqt)e "o
1 w? 4+ Q2 B
+ (5 + fB(Qq)) % (1—eTa"). (2.127)
q

The first three lines in (2I27) correspond to the energy that is stored in the field value (¢)
while the remaining four lines represent the energy of its fluctuations, to be interpreted
as (quasi)particles.

In the semiclassical description in terms of Boltzmann equations this system corre-
sponds to a dilute gas of particles that move in a background field. To leading order g?
there is no coupling of the gas to the field in our model We can therefore treat them
independently and concentrate on the particle contribution to the energy density. Let us
consider the Boltzmann equation for particles of momentum q and energy Eq, where Eg
is some function of q that we expect to identify with wq at low density. The competition
between a gain and a loss term determines the change of the particle number density

Omg(t) = (14 nq(t))7g —na(t)rg (2.128)

When the medium is in equilibrium, production and decay rates satisfy the KMS relation
as the self-energy of the field ¢,

Vg =€ PPas = fy(Eq)vq - (2.129)

Vq is to be computed from scattering cross sections or, via the optical theorem, the
imaginary part of the self energy,
_Ime(Eq)

q

(2.130)
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Here E is the energy of a particle which might be identified with wq or €1, the latter
corresponding to the use of thermal masses in Boltzmann equations. Using these relations,
the Boltzmann equation (ZI28) can be written in the form

Ohng(t) = —71q(nq(t) — fs(Eq)) (2.131)
with the obvious solution
nalt) = Fo(Fq) + (nq(0) — fis(Ea)) e (2.132)
The energy density of the gas is obtained by multiplying (2I32) with Eq
62(75) = quB(Eq) + Eq (nq(o) — /B (Eq)) e ! (2-133)

and has to be be compared to (ZI27) for qu,in = (q,in = 0. Obviously neither identifying
Eq with wq nor with Q4 generally leads to equivalence. In particular, (ZI27) is the solution
to a 2nd order differential equation and shows oscillations with the plasma frequency €1
which even remain present in the limit Qg — wq.

However, a consistent comparison between a quantum mechanical and a classical ob-
servable can only be done if the quantum system is set up with a initial state has a
counterpart in the classical theory, namely one of definite initial (quasi)particle number.
The construction of such a state is not trivial. Even for 7' = 0 the definition of a particle
number is ambiguous in an interacting quantum field theory. One can define a useful
quantity by Nq(t) = ca(®)/wq. For vanishing coupling this coincides with the expectation
value of the number operator (afaq) in a free theory [9]. With the initial conditions

Pqin = 0, éq,in:O; Ay :L(%WLNq)’ Ak =0, Al :wq(%+Nq)

Qin T wg q,in q,in
one can indeed construct a state with a particle number Ny in the sense of that definition,
namely Nq(0) = Ng. Unfortunately this choice of initial conditions cannot lead to a
Boltzmann type solution since a cosine term remains present. Being in the quasiparticle
regime, we chose the initial conditions

=0 Al =0, +N,) (2.134)

q,in

¢q,in =0 éq,in =0 Al = QLq (% +Nq) A+

q,in q,in

which seem to be the natural extrapolation to a state with well defined quasiparticle num-
ber Ny. This is a convenient choice despite our technical assumption that the interaction
is switched on once the system starts evolving B. Then ZIZD) reduces to

2 2
wq+Qq

eq(t) = ((Nq — f5(Qq)) e + (% + fB(Qq))) oo (2.135)

6A strict comparison between [ZIZ7) and (ZI33) would involve a renormalisation of ZIZZ). A
consistent renormalisation of states with Gaussian initial conditions involves some technical difficulties,
see [42] .
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The term in the brackets looks like the solution (ZI32) to a Boltzmann equation for
quasiparticles with Eq = Qq, 7q = I'q and nq = Ny. However, the energy density is not
computed by multiplying this term by the quasiparticle energy €4 as suggested by (ZI33)).
When attempting to define a particle number, neither Nq nor its intuitive generalisation
ca/q take the value NV at ¢ = 0. One could be tempted to define a number operator for
quasiparticles by eq%, but it is questionable how useful this quantity is, so we prefer

to keep the discussion on a level of energy densities and simply refer to (ZI34)) as the
initial condition that lead to a Boltzmann type solution. (ZI33) shows that the total
energy density of a ¢ mode is not that of a gas of quasiparticles. It can be rewritten as

€4(t) = Qafs(0a) + 0 (Na — f5(2a) ™

w2 — 02 w2 — 02 1w? + Q2
a ar (0 q a _ 0 —Tqt |, +%a a 91
+ QQq fB( Cl) + QQq (Nq fB( Cl)) € + 2 QQq ( 36)

The first line in (ZZI36) is, by comparison with (ZI33), clearly the solution to a Boltzmann
equation for quasiparticles. The second line can be interpreted as a vacuum term. In the
particle regime, {}q — wq, it converges to %wq, the quantum mechanical vacuum energy
in the mode q. For Qq # wgq, the term depends on time and temperature and cannot
be ignored as usually done at zero temperature. Such terms have previously been found
for the case of equilibrium in [5]. (ZI36) is the nonequilibrium generalisation of the
result given there. The additional terms imply that the equilibrium configuration of an
interacting quantum field theory is not simply a Bose-Einstein distribution, neither of
particles nor of quasiparticles. Instead, one finds that the energy momentum tensor in
thermal equilibrium can be decomposed in the following way,

(T35, — goO[XD)|q = upuy (62" +13") — nuwpd” + Nk (2.137)
Here
1
o _q, (5 + nB(Qq)) , (2.138)
1q® /1
QP
pr — L (L g )) , (2.130)
T304 \2 4
wi—-02% /1
kg ¢ = % (5 - nB(Qq)) : (2.140)
q

3" and pd" agree with the corresponding expressions for a free gas, with the energy wq of
a free particle replaced by the quasi-particle energy €1y. This suggests to interpret them
as energy and pressure of a quasiparticle gas. The ‘vacuum contribution’ K;ZAC vanishes
for Q0 = wq, namely at vanishing temperature. For large thermal effects, i.e. {1q > wq or

2q < wq, the equation of state deviates significantly from that of a free gas. However, it
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should be noted that practically also €3" and p@"¥ contain a "ground state contribution".

Counsider
Q

e = 7“ + Qqn(Qq)- (2.141)

The second term looks like the classical energy of a free gas of quasiparticles with energy
(1q. The first term at zero temperature becomes “’—2‘1, the vacuum energy for the mode

q, and can be subtracted as an irrelevant constant. At finite temperature, % has a
temperature dependent piece that is not removed by the condition that the energy of the
vacuum shall be zero. This is precisely the reason why we wrote this term into the second
line in (ZT36). It should also be kept in mind that in the definition of €} we left out the
(99O[X]) contribution because it cannot uniquely be assigned to any of the fields. An
analysis of the energy density of the whole system requires a proper treatment of this term
and backreaction. ef; does not behave like the energy a quasiparticle gas. One remarkable
feature of (2I40) is that for Q?l < wi, ¢ can actually give a negative contribution to the
total pressure!

In this example, the emergence of classical Boltzmann equations is expected because
the dissipation is driven by tree level processes. If the leading order contribution to the
relevant processes occurs at quantum level, it is not obvious that they can be obtained as
a consistent limit of the Kadanoff-Baym equations [47].

2.3.2 Quantum Boltzmann Equations

Eq. (ZI33) is, as (Z10) and (Z70), Markovian in the sense that the state of the system
at any time ¢ allows to determine its state at time ¢ 4 d¢. There is no memory integral
to be performed and the gain and loss terms encoded in I'q are the same at any time,
independent of the history of the system and the initial conditions. Furthermore, it shows
no oscillations. To understand how this simple behaviour arises from the non-Markovian
second order differential equations ([C2Y) and (C6M), we revise the assumptions under
which it has been obtained. Afterwards, we discuss approaches that allow to lift some
of these restrictions within the quasiparticle regime and formulate quantum corrected
Boltzmann equations, often referred to as quantum Boltzmann equationsl.

First, the temperature has been kept constant. This is of course not strictly consistent.
When the ¢ modes exchange energy with the bath, it is brought out of equilibrium. Even
if the bath is strongly coupled and thermalises so fast that it can assumed to be in
equilibrium and characterised by a single temperature 7', this temperature changes with
time. For many cosmological applications our assumption of negligible backreaction can
be a good approximation since the bath has many more degrees of freedom than ¢, but

"There exists vast literature on quantum corrected kinetic equations. The assumptions and approxi-
mations made by different authors are generally similar, but not exactly identical. Here we focus on the
approach used in [50] to formulate quantum Boltzmann equations for leptogenesis and refer the interested
reader to [22, 29, B3] and references therein.
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the temperature will also change due to Hubble expansion. If T' changes with time, also
I'q and the effective masses in €24 depend on time. Then the first Kadanoff-Baym equation
(Z3)) can in general not be solved by Laplace transformation as done to obtain (ZZ4). If
the change of T" with time is much slower than any other timescale in the problem one
might argue that (244)) can still be an approximate solution to ([£3), with IT# depending
on time via T'(¢). Even then non-Markovian behaviour will enter through the memory
integral in (ZET).

Second, we restricted the discussion to systems with an initial state that corresponds
to a well-defined particle number. Systems that e.g. are prepared as a superposition of
states with different particle numbers cannot be well-described by Boltzmann equations.

Third, being in the quasiparticle regime, we neglected corrections of order I'q to e¢
They correspond to off-shell processes that can affect the dynamics significantly as soon
as one leaves the quasiparticle regime (see Sec. EZ33) H. Their negligence also leads to a
divergence in AT in Z7I) for 54 < 1 since

1
fola) = 5o > 1. (2.142)

The divergence also appears in the energy densities €/ in (ZI27), (ZI35) and (Z130)
computed from AT. Tt disappears when including O(T") corrections. Starting from the

KMS relation (CI06) and (244)), one can see that in equilibrium

+ — 1 1 O
Aquzo = Re (Qq (2 + fB(Qq>)> . (2143)

Here we have assumed that Cauchy’s theorem can be applied to perform the Fourier
transform in w and j:Q are the only poles. The imaginary part of Qq removes the
divergence even if the real part vanishes,

[f5(Qq)] =~

1 2
- <
16(2q + 5Tq)| — g

Furthermore, we considered only a single scalar field, hence no coherent oscillations, e.g.
in flavour space, could occur. Such purely quantum mechanical phenomena have no
correspondence in the Boltzmann approach. Finally, in the above discussion we have
assumed that j:Qq are the only two poles of pq(w). The generalisation to cases where
there are additional poles is straightforward as long as all of those have small imaginary
parts, leading to resonances with quasiparticle character.

The use of quantum Boltzmann equations allows to relax the restrictions from the
previous section while still dealing with first order differential equations for particle num-
bers. In thermal equilibrium the correlation functions (([LI06) are uniquely characterised

(2.144)

8Recent studies suggest that off-shell contributions, together with quantum interference in the thermal
bath, can have important effects even in the quasiparticle regime [A7].
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by two real valued, time independent functions pq(w) and fp p(w). pq(w) determines
the spectrum of states and fp p(w) their occupation numbers. It is intuitive to try a simi-
lar parameterisation for out-of-equilibrium states. A~ and A™ play precisely this role, but
in general they depend on two time variables ¢; and ¢y as well as two spatial positions x;
and x5 and have to be found as the solutions to coupled second order integro-differential
equations.

It is very tempting to simply replace fpr in Eqgs. (CI03) by some general, time
dependent distribution function f(w,t) to obtain nonequilibrium propagators. Based on
this ansatz, one can then formulate a perturbation theory analogue to the equilibrium
case (see Sec. [[33). This approach suffers from two problems. First, one encounters
apparent singularities due to the J-functions in ([CIO3)) [46]. Second, the particular shape
of Egs. (CI03) relies on the KMS condition via (C3Z). For a general nonequilibrium
state, there is no such condition. The first problem can be solved by a resummation,
effectively replacing the free spectral function in ([C37) by the dressed one. The finite
width then regularises the singularity. Unfortunately, this requires knowledge of the
dressed nonequilibrium spectral function, which has to be found as a solution to the
first Kadanoff-Baym equation (LZ9). The second problem can also be solved by leaving
the restriction that the distribution function shall depend on w and ¢ only. Effectively,
then one is back to AT, A~ and the Kadanoff-Baym equations and has not achieved a
simplification.

However, there are two situations in which a simple parameterisation by a single dis-
tribution function is possible. One is a free theory. Then the spectrum is, independently
of the physical state in which the system was prepared, given by the free spectral func-
tion (2240) or ([(Z8Z). In this case, the particle number in each mode is well defined and
has a sharp, time independent value. Furthermore, all particles are on-shell, hence the
system can be described by a single distribution function f(w) = f(wq) for each degree of
freedom. The the other case is, due to the KMS relation, thermal equilibrium. Continu-
ity arguments suggests that such parameterisation should provide a good description in
situations either close to thermal equilibrium or in the quasiparticle regime [48, A9, 22].
As discussed in Sec. EE3Jl in the former case the deviation from equilibrium obeys a
Boltzmann equation [49]

Let us consider a system in which the above conditions are fulfilled and all involved
fields are either close to equilibrium or very weakly coupled. If furthermore the system is in
good approximation spatially homogeneous, it seems promising from the above arguments
that an ansatz based on ([CIQ) with full spectral functions can be made in which the

90Our discussion focuses on the scalar propagators. For fermions or gauge fields, which have internal
degrees of freedom, pq(w) of course has a non-trivial Lorentz (and possibly flavour, colour...) structure.
However, the following arguments regarding the parameterisation by distribution functions remain valid.
10Gee also [52] for a discussion.
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distribution function only depends on w and ¢.

(Ac(w1, 1)), — / (§W§4e—iq<x1_:¢2> (0c(z] — 23) + f(w, 1+t2)/2)) pg(w). (2.145)

The situation simplifies further if the time dependence of p can be neglected. Differen-
tial equations for f(w,?) can then be obtained by inserting the ansatz (2143 into the
Kadanoff-Baym equations. These are the quantum Boltzmann equations. Practical com-
putations involve a number of simplifying assumptions, including a reasonable guess for
the spectral functions. Self-consistently, these have to be thermal or quasiparticle spec-
tra. For the fields in equilibrium one usually assumes free spectral functions or resummed
one-loop results which lead to thermal quasiparticle spectra. At high temperature, this
can be problematic since the precise spectrum of the Standard Model is unknown due to
the poor convergence of the perturbative series, see Sec. B33

The quantum Boltzmann equations are coupled first order differential equations for
the distribution functions f; of the various involved fields in which the damping terms
are given by integral kernels. They correspond to Boltzmann equations for quasiparticles
that include the time dependence of I'y. Coherent oscillations in flavour space can be
incorporated by parameterising correlations between different flavours in the same way.
The quantum Boltzmann equations then form a set of coupled differential equations for
the elements of a matrix in flavour space which can be related to the reduced density
matrix used in [23|. The diagonal elements of this matrix can be identified with occupation
numbers while the off-diagonal elements describe the coherences between different flavours.
They account for non-Markovian effects via the integral kernels and allow to describe
coherent oscillations as well as decays and scatterings in a common framework. When
applicable, they provide a powerful formalism to treat nonequilibrium systems. However,
in the form they have been used (see e.g. [49, B, b3, b4, K1), they rely on the assumption
that all involved fields are in the quasiparticle regime and collective resonances play no
role. Furthermore, the deviations from equilibrium are assumed to be small so that an
expansion to linear order in that deviation is justified. This, though it can be well-
motivated in many cases, is generally not true

2.3.3 Kinematics of the Resonances

In Boltzmann equations, the collision term is the quantity that characterises the inter-
action. In the Kadanoff-Baym equations, this role is taken by the self energy. It can be
related to the total cross section by the optical theorem. As in vacuum, this connection
holds at a level of single Feynman diagrams [, The self energy therefore naturally includes

1By the time of printing, qualitative differences from the results given in [50] have been found in a full
quantum mechanical computation based on Kadanoff-Baym equations [47].

12A generalisation of the Cutkosky rules [56] to systems with finite temperature and density was first
found in [57].
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all possible processes at a given order, and this is how they enter the Kadanoff-Baym equa-
tions. A leading order computation of ImIT? corresponds to a tree level computation of
cross sections at order g. Higher order contributions to II correspond to quantum cor-
rections and higher order tree graphs. Via (244, 1" governs the properties of resonances
in the plasma. Since the breakdown of Boltzmann equations is related to the breakdown
of the particle concept, we study how this shows up microscopically in single reactions.
For weak couplings cross sections and self energies in a plasma can be computed from
Feynman rules. Those are descried in Sec. [L3 In equilibrium the only differences to the
vacuum are the appearance of the auxiliary fields ¢_ and the thermal propagators given

in Eqs. (CI03),
Avi(@) = o + fe(w))2m6(6* —m?),  Ay_(q) = fp(w)27sign(w)d(q® —m?),

A—i(g) = (14 fp(w))2msign(w)d(q* —m?), A_(q) = g + f(lw])2md(¢* — m?).

T ¢?—m2—ie

The four thermal propagators share two important properties,

e They can be written as the sum of a zero temperature contribution, which vanishes
for A, _, and a temperature dependent correction.

e The thermal correction is always forced on-shell by a J-function.

These properties are not specific to scalar propagators, but also apply to fermions, see
(CI06), and gauge field propagators, see [10].

Since Feynman diagrams are computed from integrals over products of propagators,
all quantities in perturbative computations share the first property. The usual Feynman
propagator can be identified with the temperature independent part of A, ., the prop-
agator of the physical field ¢,. Regarding the second property, the d-functions ensure
energy and momentum conservation at vertices.

Leading Order: A Bath of Particles

To leading order the above means that the kinematic restrictions implied by energy and
momentum conservation in vacuum also hold at vertices that connect fields in thermal
equilibrium. However, one important difference to the vacuum lies in the possibility of
scatterings with quanta from the medium. In vacuum, a single stable particle simply
moves freely. This manifests in the fact that it corresponds to a singular pole, or 4-
function, in the spectral function because ImII* strictly vanishes at wq, ImIIf(wq) = 0.
ImIT# is only non-zero above the lowest multiparticle threshold, ¢* > w?,. The resulting
analytic structure of pq(w) is sketched in Fig. 22

At finite temperature there can be scatterings with particles from the plasma. This
implies that a particle can, even if it is the lightest particle in the theory, disappear
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Figure 2.2: Poles and cuts of the spectral function p(w) for unstable (upper plot) and
stable (lower plot) particles with q =0 at 7= 0

by Landau damping, engaging into a reaction with some particle from the plasma. At
tree level, these scatterings are only possible with real quanta from the plasma due to
the o-functions in the thermal propagators. Hence, the energies and wave vectors of
the particles have to be such that initial and final state are in accordance with energy
momentum conservation.

To demonstrate the consequences for the fate of ¢, we first consider a trilinear coupling
go X1 Xy without further specification of the A&;. This includes trilinear scalar couplings,
Yukawa couplings and the Higgs coupling to gauge bosons. Since the kinematic properties
are the same for higher spin fields, the discussion also covers gauge couplings to fermions
and the three-vertices between gauge bosons 4 The presence of the background medium
changes the analytic structure of the ¢-self-energy. The possibility of scatterings with
bath particles implies a discontinuity, hence imaginary part, below a new threshold ¢? <
w?,. This property is carried over to the spectral function, see Fig. 3 If ¢ is in the
quasiparticle regime and the only poles of the spectral function (244 are at w = €,
corresponding to dressed particles, one can set w? = Qg. The stability of ¢ quanta depends

on the position of Qq in the complex w plane. There are three different cases, see Fig. L3

(a) (.12 > Wtzm
(b) CI2 < Wt2h2

(c) Wt2h2 <¢< wt2h1-

The quasiparticles are stable in case (c¢). The stability in this region is a consequence of

13The Lagrangian (1)) limits our analysis to couplings that are linear in ¢. However, if some ¢ modes
have reached equilibrium before others, they can form a “thermal bath” for the nonequilibrium modes.
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Figure 2.3: Poles and cuts of the spectral function p(w) at leading order in the three cases
(a), (b) and (c¢) for g =0 at T" # 0.

the energy conserving J-functions in the propagators that only allow on-shell processes:
Computation of ImII® involves integrating over a product of propagators. The leading
order diagram for a trilinear coupling has the shape as shown in Fig. Bl), k) and ).
The zero temperature piece of ImII? is known to vanish below wy,,. The temperature
dependent pieces of the propagators are proportional to on-shell )-functions,
R d'p 2 2 2 2
ImlIT (w) ~ / Wd(po —wy)((w—po)” —wg_p) -+ (2.146)

and the integral vanishes unless there are points in the integration volume at which the
arguments of all d-functions vanish simultaneously. The supports of each  functions form
submanifolds in the integration volume, and the condition that those intersect leads to
the thresholds. We study this effect in a particular model in Sec. BJl There the system
with increasing temperature undergoes transitions including all three different cases (a),
(b) and (c), cf. Fig. B2 and B3

In scalar theories and non-abelian gauge theories one finds vertices that connect four
lines. Such couplings generally do not allow stable particles at finite temperature. The
reason is that couplings ¢X;X; X, allow 2 — 2 scatterings at leading order which are
always possible for appropriately chosen momenta. However, the available phase space
can still be enlarged or reduced by thermal effects. This physically intuitive result is also
demonstrated for a particular model in Sec. Bl

If (Z44) has more poles than £(), those correspond to plasma waves that have no
correspondence in vacuum. If the poles are close to the real axis, these have a well-defined
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dispersion relation and can be understood as quasiparticles. It is important to point out
that the dispersion relations, even those given by w = £)4 can be qualitatively very
different from free particles. Unless the free quasiparticle approximation holds, it can be
highly non-trivial to determine the range of allowed processes. The fact that the properties
of the poles of (244 depend on temperature makes the phase space dynamical. If the
temperature changes, the system can move from one regime into the other. Indeed, if
backreaction is not negligible, the dissipation of ¢ into the plasma or thermal production
of ¢ particles from the plasma can change the temperature. If ¢ is not in the quasiparticle
regime, kinematic restrictions do not apply since off-shell w can always give a contribution

to (2146).

A Bath of Quasiparticles

The analytic structure of the leading order expression for p in equilibrium is well-known
[1. In the following we investigate qualitative changes once one proceeds to higher order
corrections. A leading order self energy computation is based on the use of the free
propagators ([LI03). The use of free propagators for the bath fields X neglects their
interaction with each other and effectively corresponds to the assumption that all X are
in the particle regime. In the light of our initial assumptions, this is not realistic since
the bath is coupled more strongly than the particle that freezes out. The problem can
be solved consistently by using dressed X propagators and vertices when computing the
¢-self-energy. Resummed propagators can be obtained from ([C31) by replacing the free
spectral function (246) by its interacting counterpart (ZZ4]) and (282) by =0) for
fermions. If the bath fields X are in the quasiparticle regime one can neglect ImII% in
(Z24) in first approximation, leading to

pq(w) = 2msign(w)d (w? — w? — RquR(w)) . (2.147)

The spectral function remains proportional to a sum of d-functions. These discrete con-
tributions to the spectrum correspond to plasma waves that kinematically exactly behave
like particles, though their dispersion relations can be very complicated. They are given
by the solutions of
2 2 R
w” —wg — Rell(w) =0

and depend on the temperature. The previous arguments remain unchanged, but the fact
that also the modified dispersion relations for bath fields have to be taken into account
makes it practically much more difficult to take account of all possible processes. When
there are no additional poles from collective excitations, the spectral function for a scalar

reads
palw) = 2msign(w)d(w’ — 02) = —— (§(w — Q) — 6w + Q). (2.148)

q
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In the following we focus on the simplest case, when the medium-induced corrections to
the dispersion relations depend only mildly on the wave vector and the free quasiparticle
approzimation holds. Then the medium effects can be parameterised by replacing all
masses m; by temperature dependent thermal masses M;(T'). For trilinear couplings, one
can define a critical temperature T°~/** by

Mz(Tc) = Mj (Tc) + Mk(TC) (2'149)

At T =T,, decays and inverse decays of species 7 into species j and k become kinematically
forbidden at leading order. If no thermal mass is larger than the sum of the two others,
the interaction is effectively switched off.

Realistic quasiparticles always have a small finite width, but this does not have a
significant effect unless the mass spectrum is quasi-degenerate. Loop integrals are per-
formed over products of propagators, hence involve products of spectral functions. When
pq(w) is exactly a sum of d-functions, the support of each spectral function forms lower-
dimensional submanifolds in the integration volume on which the dispersion relation is
fulfilled. As discussed previously, the integral is only non-zero if there are regions where
the supports of all of them intersect. This condition gives rise to the threshold. When
there is a finite width, the support of pq(w) in principle can cover the whole integration
volume. However, if the width is small, the region where p is significantly different from
zero compared to its on-shell value only extends a distance of order I' away from the hy-
persurfaces on which the dispersion relations are fulfilled. The result of the integral will
still be very small unless those on-shell regions intersect or come very close to each other.
For the trilinear coupling, ImIIf(€q) becomes non-zero in the region wpj,, < M7 < wf,
corresponding to case (c), but is suppressed by the smallness of I'y with respect to the
regions M j > w2 and M j < w?,. The processes that were strictly forbidden at leading
order remain effectively forbidden (see Fig. B). Of course, this suppression is a relative
one in comparison to the result obtained by neglecting thermal masses. The reaction rate
can still be relevant when it is significant compared to other processes in the plasma.

The above arguments explicitly use the spectral function for scalars (ZI4d), but it
remains valid for fermions and gauge bosons. In the limit of vanishing width, their
spectral functions are also proportional to sums of d-functions. For instance, in the case
of Dirac fermions the effective masses are given by the solutions of

Q* - M*=0 (2.150)

and their complex conjugates, see (21).

Thus, we can understand the previous observation that in the quasiparticle regime the
approach to equilibrium can be understood in terms of Boltzmann equations for quasi-
particles from a microscopic point of view. The use of Boltzmann equations, however,

Note that the commonly used rule that loop integrals are dominated by the |p| ~ T region does not
apply if (almost) on-shell processes can contribute. For narrow spectral functions, the integral is always
dominated by the overlap of the on-shell regions.
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has to be treated with care since 0y and I'q generally depend on time and collective reso-
nances can appear as new particles. A simple replacement of vacuum masses by thermal
masses in the usual Boltzmann can generally not account for all medium effects, though
it can be a good approximation if all excitations are known to behave like free quasipar-
ticles. Quantum Boltzmann equations allow to include these effects if all resonances can
be treated as quasiparticles and their dispersion relations are known.

Beyond the Quasiparticle Regime

In the particle and quasiparticle regime, a sharp energy can be assigned to a resonance
and energy and momentum of the resonances are conserved in scatterings and decays.
When the width is large, one can formally still define g, but it has no meaning as a
particle’s energy because pq(w) becomes a rather smooth function that has a large off-
shell contribution away from w = 2. When computing loop integrals, the region in which
the spectral functions give significant contributions can cover large parts of the integration
volume and extend far away from (24. The result of the integration is proportional to the
weighted overlap of the spectral functions. Contributions from the off-shell regions can be
of comparable size as those from on-shell processes. Hence, smoothing out the J-function
in (C97) results in erosion of kinematic restrictions.

The apparent non-conservation of energy and momentum in scatterings can be under-
stood easily even in classical terminology. A dilute, weakly coupled gas is well-described
by particles that move freely with energies wq between scatterings. When the density
becomes high, the average distance between them is so small that they always feel the
presence of the neighbouring particles. Thus, their energy receives a contribution from
potential energies, taking them "off-shell", w # wq. Due to this coupling to the envi-
ronment, a scattering is never simply a two-body problem. The same applies to decays.
Energy and momentum are only conserved for the system as a whole, not for the subsys-
tem of the scattering particles. Exchange of energy and momentum with the environment
can make processes possible that are strictly forbidden in vacuum. This effect is known
in condensed matter and nuclear physics, where e.g. it is responsible for the G*-decay,
but has long been ignored in cosmology.

Broad Resonances and the full Spectrum

The validity of Boltzmann or quantum Boltzmann equations crucially relies on the de-
scription of the spectrum in terms of quasiparticles. It is instructive to estimate under
which circumstances this is a good approximation.

The quasiparticle picture is a useful tool whenever the width of a resonance is much
smaller than its thermal on-shell energy and the difference to the on-shell energy of all
other resonances with the same conserved quantum numbers. This is certainly true for
a weakly coupled plasma with a non-degenerate mass spectrum at low 7. For a strong
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coupling, the spectrum is modified significantly by the interaction. The resonances in
some cases might still behave like quasiparticles, even if they show little resemblance with
the particles in vacuum, but in general, this is not the case. As a result, the quasiparticle
picture and any type of Boltzmann equations fail to describe the system. One then is
usually forced to solve the Kadanoff-Baym equations with nonperturbative methods.

Here we concentrate on weak couplings. In some cases there are interactions that
give rise to local diagrams, or tadpoles, as those in Fig. Bl e) and f). Then Rell is
parametrically larger than ImII® because such diagrams are purely real. They contribute
to linear order in the coupling while the leading order contribution to the imaginary part
is quadratic. When there are no local diagrams, real and imaginary part of the self energy
appear at the same order and one has to study them in detail. At the end of Sec. [T
we presented a simple classical argument why the quasiparticle picture should hold in
weakly coupled systems even at high temperatures. This is true for a Coulomb potential
since Eyin ~ T > E,o ~ gT'. The interaction energy in non-abelian gauge theories is not
well-described by a Coulomb potential. The argument already breaks down for a simple
Yukawa coupling since it increases the interaction strength at short distances, so . at
high densities increases faster than linear in 7". Even for a pure Coulomb interaction, the
argument relies on the fact that average distance and average kinetic energy of particles
are related by a single parameter 7. This is only true in thermal equilibrium. With a
general distribution function it is possible to combine a high density with a low average
momentum. This is, for example, realised after inflation, see Sec. BTl

In general, it can be very difficult to determine the real and imaginary part of IT7
at high temperature. The main problem is that even in weakly coupled theories the
convergence of the perturbative series is poor. With increasing order in the coupling, hence
number of vertices in corresponding Feynman diagrams, also the number of temperature
dependent propagators connecting them increases. A large T can compensate for a small
coupling so that higher order contributions can be of comparable size as leading order
terms. In addition, leading order results in gauge theories by themselves are generally not
gauge invariant. In some cases the running of the coupling can be such that it improves the
convergence. This happens in a quark gluon plasma due to asymptotic freedom. However,
in our scalar model in Sec. Bl we observe a significant increase in the width while the
mass shift is small if the dissipation is caused by decay, see Fig. B This phenomenon
is known as melting of a peak and can be experimentally observed for mesons in nuclear
matter, see Fig. 24 Resummed perturbation theory allows to compute gauge invariant
results and improves the convergence of the perturbative series. The results suggest that
at high temperature Rell? ~ ¢?T?, leading to thermal mass corrections of order g7’
while T' ~ ¢?T [T0]. This would imply that the quasiparticle picture holds even at high
temperatures if g is small. These estimates are obtained by reorganising the perturbative
series and resumming infinite sets of diagrams. Such resummations are possible when it
is justified to single out classes of relevant higher order diagrams which can be computed
from the knowledge of terms at lower order. For soft external momenta ~ ¢g7T', a hard
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Figure 2.4: An example for the melting of a peak: The spectral function of a p-meson
propagating in hot nuclear matter produced in a high energetic In-In-collision, plotted
as a function of energy. The experimental data is compared to the spectral function in
vacuum (dashed line) and theoretical prediction (solid line). The width of the resonance
increases drastically without a significant mass shift. The plot is borrowed from [62].

thermal loop resummation can be employed [58]. It has been found that for very hard
momenta |q| > 7', resonances behave like free on-shell particles at w = Q4 with a slightly
modified effective mass [I0]. The result confirms the intuition that the energy of a particle
injected into a plasma with large momentum is dominated by the kinetic energy and only
minimally modified by plasma interactions. Lorentz dilation furthermore enhances an
unstable particle’s lifetime in the bath’s frame of rest. On the other hand, the realistic
quantitative computation of the energy loss in a medium has proven very difficult in the
context of heavy ion collisions, where the issue has been studied in detail [59]. For very
soft momenta it has been found that ' ~ ¢?T [60], indicating quasiparticle behaviour.
In the off-shell regime q > w Landau damping can give a large imaginary part of order
of the Debye mass I' ~ ¢T (see [61]), but this can by definition not affect the width of
the resonance. For high 7" and small chemical potential, a dimensional reduction can
simplify computations in the Matsubara formalism [3T] because the length [ of the path
in imaginary time becomes so small that field values do not change much along imaginary
time direction.

Resummation techniques indicate that the quasiparticle nature in a weakly coupled
theory is preserved at high temperature. However, as mentioned above, the validity of
these results is limited. For momenta below the so called magnetic scale g?T" even the
resummed perturbative series is known to break down and nonperturbative corrections
are of the same order as the leading order results, see [61]. Furthermore, in order to fully
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exploit the advantages of the quasiparticle approximation, knowledge of all dispersion
relations is required.

The most common way to access the nonperturbative regime is provided by lattice
calculations (see e.g. [63]). Unfortunately, lattice computations generally have to be
performed in euclidean space. The mass of a resonance can be re-extracted from those
relatively easily as the coefficient for the exponential fall-off of the euclidean correlation
functions at large separation of arguments. Extraction of the width is significantly more
difficult. It requires an analytic continuation. On numerical data this can only be per-
formed by making a guess for the shape of the function in Minkowski space and fitting
that guess to the data. Furthermore, the precision of lattice computations is limited by
the available computation power.

In bosonic systems at high 7" one can simplify the computations by a classical ap-
proximation. This is justified because bosonic fields at large occupation numbers have a
classical limit, see e.g. [64].

Recently, a new method treat nonperturbative systems has received a lot of attention,
the so called AdS/CFT correspondence [65]. The method is based on the conjecture that
a strongly coupled conformal field theory has a dual in string theory. The low energy
limit of this dual appears as a higher dimensional theory of gravity. Strong coupling on
one side of the duality corresponds to perturbative behaviour on the other. This allows to
calculate quantities in the nonperturbative regime of the field theory via a perturbative
calculation on the gravity side that is then translated into the field theory via the duality.
Unfortunately non of the known interactions in nature is described by a conformal field
theory. Nevertheless, there is some hope that properties can be found in conformal systems
that are universal enough to be generalised to physical systems. A very popular candidate
to resemble QCD is provided by a N = 4 supersymmetric non-abelian gauge theory. The
method has been used to compute Keldysh propagators [66] and the meson spectrum
[67]. The results of course inherently suffer from uncertainties due to the transfer from
a conformal field theory to the Standard Model. At low temperatures, one can estimate
the resulting error by comparison to experimental data.

To summarise this paragraph, we conclude that it is currently not possible to make a
general quantitative statement about the behaviour of quasiparticle widths at very high
temperature, not even in a weakly coupled theory. A well-known example for qualitative
changes at high temperature are phase transitions. In the case of QCD it is theoretically
predicted and experimentally established that meson resonances broaden and melt as one
approaches the critical temperature of the QCD phase transition, see Fig. Z4l In this
example the melting is of course well understood since mesons are composite particles
and described by an effective theory. However, the distinction between effective and
fundamental theories is merely a question of the energy scale of consideration, and the
physics at high energies cannot be completely predicted from knowledge of the low energy
behaviour.
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CHAPTER

Simple Models for the Bath

Throughout the previous chapter, we have not specified the composition of the thermal
bath. The discussion of medium effects on the spectral functions does not put restrictions
on the type of interactions that generate them. In principle, the bath could consist of an
arbitrary number of fermionic and bosonic fields with various interactions amongst each
other, including gauge couplings.

In this chapter we demonstrate the results in two particular models. Both of them are
applied to cosmological problems in the following chapter.

3.1 A Scalar Field coupled to a Bath of Scalars

We consider a scalar field ¢ that is coupled to a bath consisting of two other scalars x;
and o by trilinear and quartic couplings. The Lagrangian (ZTI) then takes the shape

2

L= % L pO" ) — %m§¢2 + G%Xﬁ“xi — %W?X? - %szﬁxf) — gox1X2 + Lyins - (3.1)

i=1

The coupling g has mass dimension one and the h; are dimensionless. All of them shall
be small in the sense of perturbation theory. The couplings L, need not be specified
at this point except that it is sufficiently strong to keep the X in equilibrium. As in the
previous chapter, we neglect backreaction and take the y; in equilibrium at all times. One
could e.g. imagine that the y; have strong couplings to very many degrees of freedom in
equilibrium that immediately compensate for any exchange of energy with ¢. We assume
that the y; are in the symmetric phase, i.e. (x;) = 0, so that there are no contributions of
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Figure 3.1: Relevant Feynman diagrams, lines represent ¢ (solid), x; (dotted), xo
(dashed), Wy (solid with arrow) and W, (dashed with arrow) propagators. The gray
blobs represent resummed self-energy insertions and the crosses couplings to mean fields.

the type shown in Fig. Bl7) and j) to the self-energy of ¢ from couplings to mean fields.

3.1.1 The trilinear Coupling g

The ¢-self-energy to leading order is given by the diagram shown in Fig. Bli). We are
interested in the imaginary part that determines the gain- and loss rates. With (222)

and the KMS condition ([C3H), ImIT* can be computed from IT< via
1 w
ImIIf (w) = ZH;(W) (™ —1). (3.2)

For IT< =TI, the left vertex in Fig. Bl) is of the "—’-type and the right of the +’-type.
With the thermal Feynman rules (see Sec. [[33)) one finds

15 (w) = —ig” / %Afp(m)ﬁi—q(“’ — Do), (3.3)

with
AT (po) = fB(po)p1(po)- (3.4)
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Here, and in the following, quantities that carry an index ’i’ such as A, ITF or W(i)q
refer to x; propagators, self energies, frequencies, et cetera, while those lacking such an
index belong to ¢. To further simplify notation, we will from now on suppress the spatial
momentum whenever possible in this subsection. It shall be understood that '1’-quantities
always have momentum p while ’2’- quantities have g —p. For example, wq = (¢? —l—mi)%,

wi = (p? +m?)2 and wy = ((q — p)% + m2)2. To leading order ImII% is then given by

% / (573;2 fB(pO)f];B(E:‘J) - po)sign(po)sign(w—po)é(pg — )8 ((w—po)2—w2).

(3.5)

IquR (W) =—

Using one of the d-functions, this integral can be rewritten as

2 3

g d’p 1
ImIT%(q) = —=
m ¢(q) 2 /(27r)2 4wow

X (((f1+1)(f2+1)_f2f1)<5(w_w1_w2)_5(w+w1+w2))
+ <(f1+1)f2—(f2+1)f1)<(5(w—w1+w2)—5(w+w1—wQ)>)- (3.6)

Here f; = fp(w;) and so on. The well known result (B:6) has a clear physical interpreta-
tion: The first line represents decays ¢ — xx and their inverse yxy — ¢. The combinations
of fp make sure that the detailed balance ratio is fulfilled while the J-functions guaran-
tee energy conservation in particle reactions as discussed in Sec. 233 The second line
represents y¢ — x and xy — ¢y scatterings with quanta from the plasma. This channel
corresponds to Landau damping and does not exist in vacuum. As expected, the second
line vanishes if 7" — 0. The integral [B8) can be solved analytically |20, Q.

At this level, the quanta in the bath have been treated as free particles. Since their
self interactions are by assumption stronger than the coupling to ¢, this is inconsistent.
Higher order corrections to the one loop integral (B:f) can consistently be incorporated
by inserting resummed Y; propagators in the loop, see Fig. Bl b). This can be done
by replacing the free spectral function in ([BI) by its interacting counterpart. In the
quasiparticle regime, one can neglect ImII® and use ([ZI48) as a first approximation.
Here we consider the simplest case and assume that the dressed one-particle states are
the only resonances and corrections to their dispersion relations due to medium effects
are in good approximation independent of the wave vectors. Then the free quasiparticle
approximation can be applied and the analytic result found in [40), O] remains valid, but
with intrinsic masses replaced by thermal masses m; — M;(T). The result of ([B8]) then
reads

ImIIf (w) = 00(q) + 04(q, T) + 0v(q, T). (3.7)
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Here o0g is the contribution due to the decay process ¢ — x1x2,

9
16mq?
x ((¢%)? = 2¢* (M7} + M3) + (M} — M3)%)* | (3.8)

oo(q) = sign(w)f(q* — (M, + M,)?)

aéa) (¢) is an additional temperature dependent contribution from such processes,

b O a0
_16W‘q|ﬁs1gn(w)(9(q (M + My)*)

« (m (%) + (M o M2)) | (3.9)

and o,(q) the contribution from Landau damping

74(q)

2

9
167(q| 5
1 — e Blw-|

We have used the abbreviations

sign(w)0((M, — Ms)* — ¢°)

q
2|q?|

Wi = |“"( +ME - M2) £

27 ((¢® + MP — M3)* — 4> M7)* . (3.11)

The real part of the self energy can be computed from this using the spectral representation

Relly( :—P/ Imilg(4) (3.12)

qo — W

which follows from the Kramers-Kronig relations. It can give a positive or negative cor-
rection to the mass, see Fig. B For equal x masses, m; = my = m, and self couplings,
the result for vanishing external momentum q = 0 is particularly simple,

2

To(w) = L (1 - (QZX) ) (1+ 2f5(w)) O(w — mxf2). (3.13)

8w

The temperature dependent part leads to an amplification due to induced transitions. The

f-functions in Eqs. (BF)-(EI0) and (BI3)) appear because the spectral function (ZI48)
puts the bath particles x; on-shell, allowing only on-shell processes to contribute to I'y.

We are interested in the fate of the thermal on-shell ¢ resonance, hence we replace

w — Q. (3.14)
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Without loss of generality, we assume M, > M;. Then the three regimes defined in
Sec. 233 correspond to (a) My > My + M,, (b) My > M, + M, and (c) My < My + M,
and M, < M + M.

In the first case, energy between ¢ and the bath is exchanged via decays and inverse
decays ¢ <+ x1x2. In second one, y, decays and inverse decays, x2 < ¢x1 play that role.
In the third case none of these processes is kinematically allowed. ¢ effectively decouples
from the plasma and moves free of dissipation. The remarkable feature is that the phase
space volume becomes dynamical due to the temperature dependence of the masses. A
temperature change can bring the system from one situation into the other. Even within
the regimes where (a) or (b) are realised, temperature changes can massively increase
and decrease gain- and loss rates by changing the available phase space. In a realistic
system, such changes will of course have a backreaction on the temperature. In Fig.
we plot I'q as a function of 7" and q. Along the T" axis one can clearly see how the system
moves from regime (a) to (c¢) and finally to (b). A qualitative change along the q axis
occurs around q ~ m, when the particles become relativistic. Fig. compares the
result to the would-be value when neglecting thermal masses. It shows that I is strongly
overestimated when doing so.

As discussed in Sec. the possibility of dissipationless movement in case (c) is
caused by forcing the bath particles on-shell. It disappears when one takes the width of
the x; into account because then energy exchange between ¢ and the bath can happen
via off-shell processes. With non-vanishing widths the integral (B3)) generally has to be
solved numerically. When all fields are in the quasiparticle regime, the contribution from
off-shell processes is suppressed by the smallness of the widths. We illustrate this in
Fig. B4 where we have used a quartic self-coupling %Xf for the bath fields.
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3.1.2 The quartic Couplings h;

To leading order the contribution from the couplings %gzﬁx? to the ¢-width I'q comes from
the diagrams shown in Fig. Bk) and d). Each is, analogously to (BH), given by

1

hi [ d°p,p,p
Imﬂg(w) =T / ——1F2%3 (27r)3(5(3) (py + Py + P35 — q)78
WiWaws

12 (2m)?
x (A f) U+ L) U+ f3) = fifofs)

(O(w—w; —wy —w3) — 0(w+ wy +wy + ws))

) —
+(f1 1+ fo) (14 f5) = (14 f1) f2f3))
(O(w+w —wy —w3) — 0w —wy + ws + ws))

+((14+ f) oL+ f3) = L1+ f2) f3))
(0(w—wi +wy —w3) — 0w+ w; — ws + ws))

)
(Ao (U f3) = (L+ f1) 1+ fo) f5)
(O(w+w +wy —ws3) — §w—wy; — wy +W3)))7
(3.15)

where all w; are to be taken with x; masses, wy = /p? +m2, etc., and fi = fp(wi)

etc. The first line describes the decay of ¢ into three x and its inverse while the other
lines include all possible scatterings ¢x — xx. They are kinematically allowed for any
choice of masses. The quartic interactions always couple ¢ to the bath via scatterings.
Nevertheless, phase space arguments will influence the magnitude of I'y when thermal
masses are taken into account.

Though some approximate analytic formulae have been computed [68, 69, [70), [7T], the
integral (BID) can in general only be integrated numerically. For high 7" and q = 0 it can
be approximated by [68]

h2T2
7687rm¢

The quantitative range of validity ([BI0) has to be treated with care. It is a consistent
approximation to the integral (BIH) for large T' (see Fig. BT3)), but due to the breakdown
of perturbation theory at high temperatures, the validity of (BIH) itself is limited.

However, it can be argued on a qualitative level that contributions to I'q from scatter-
ings should further increase with 7" in the nonperturbative regime. The reasons are Bose
enhancement due to induced transitions and the fact that scattering processes should
become more frequent due to the higher density of the plasma.

(3.16)

0~
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3.1.3 Numerical Results

In this section we present a number of plots to demonstrate our previous results. Whenever
we take them into account, we model the self-interactions of the bath fields by a quartic
coupling,
s
Loim = 7 (3.17)
The thermal mass M; is to leading order given by the contribution from the tadpole
diagrams shown in Fig. BIk), f):

dgp fB(w‘) Ai
M? = m? )\i/ Yoam? 4 21T 3.18
T (2m)3  2w; Mgy (3.18)

It is independent of momentum. We estimate the y;-width by Lorentz-dilation of the
zero-mode approximation (BI6]).

Fig. shows the contribution to I'q from the g¢xix2 coupling, normalised to its
vacuum value, as a function of momentum q and temperature 7. The mass hierarchy
at T = 0 is chosen according to case (a), my > my + mo. We assumed a relatively
strong self-coupling with \s = 0.5 for xs, but only a weak coupling \; = 0.01 for x;.
We neglected the thermal y; widths. Fig. compares this result to a computation that
neglects x;-self-interactions. At low temperature, the mass hierarchy corresponds to case
(a) and ¢ receives its width from decays and inverse decays. When the thermal x,-mass
correction becomes relevant, it first suppresses and then, above a critical temperature
T2 at which M = M, + M,, completely blocks those processes. For T' > T¢~1+2
the field ¢ effectively decouples from the plasma. At a much higher temperature T2=¢+1,
when My > M; + M, decays and inverse decays of ys set in. Neglecting the y; self-
interactions leads to a dramatic overestimate of the ¢ width in all three regimes, low
temperatures excluded. We neglected the mass correction for ¢ which, due to its weak
coupling, has much less dramatic effects than that of y,. Taking it into account does not
change the picture qualitatively, but only slightly moves the boundaries of the regimes.
At low temperatures it is negligible compared to mg and at high temperatures it is small
compared to the thermal ys mass Ms,. The plots extend into the regime of very high
temperatures for illustrative purposes. There, the leading order results (Bf) and (BIX)
do not give quantitatively correct results. However, the qualitative picture remains valid
as long as the system is in the quasiparticle regime.

Fig. B4l shows the effect of off-shell processes in the quasiparticle regime. x;o are
taken equal in mass m; » = m, = 0.4m, and have a self interaction of the same strength,
A2 = A =0.1. Then their thermal masses are also equal, M; = My = M, . There is only
one critical temperature 7T,.

T. is defined by the condition (ZI49). When neglecting the thermal mass correction
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for the very weakly coupled field ¢ one finds

T? ~ % ((%)2 _ mi) . (3.19)

The kinematic arguments that forbid the ¢-decay for 7' > T, rely on the quasiparticle
nature of the involved particles, namely the smallness of the x; o-width at 7.. We want
to estimate for which choices of parameters the suppression is effective. For the q = 0
mode one can approximate, c.f. ([BI6),

\2T?
N~ ——. 3.20
X 768w M, ( )
Defining narrow width by I', < M, one can formulate the condition
A mé — 4mi me
FX(TC) ~ < MX(TC) = — (3.21)

641 me 27

A ()

The inequality ([B22) is the criterion for effective ¢-decay suppression above T,.. The
quantitative validity of this result of course relies on the convergence of the perturbative
series. The fact that T, is determined by the difference of the mass squares allows us to
bring it into the perturbative regime by choosing a small mass difference. Fig. B4 shows
that the suppression above T, is very effective in the quasiparticle regime.

The fields in the Lagrangian ([B]) are also coupled by the h;¢x? terms. In vacuum
and at low temperatures they act via the processes ¢ < yxx. For the previous choice
of parameters, m; o = 0.4m, these are forbidden. Even if allowed, they are subdominant
compared to the process ¢ < xx at low temperatures due to phase space arguments
unless h; > 9/m. Nevertheless, their contribution increases with temperature, see (B16)
and Fig. BT3, hence they can provide ¢ with a width for 7" > T..

It is instructive to estimate how efficiently this compensates for the suppression of the
trilinear interaction above T,. We compare I'q at T' =T, and T' = 0 for q = 0, assuming
that the former is dominated by xx < ¢x scatterings and the latter by ¢ < xx decays
and inverse decays. In vacuum, I'y then is given b

g° om, \ 2 2
T|r—g = e (1 - (m:) ) . (3.23)

!Some authors use a definition of I'; that deviates from ours by a factor 3 and would quote half of

2
our result for decay width in vacuum.

leading to
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Figure 3.2: T/rj;_, in the scalar model as a function of 7" and |q| for g = 0.05my, m; =
my = 0.4mg, hqy = hgy = 0, Ay = 0.01, Ay = 0.5. Corrections to the ¢-mass are very small
and, at this order, increasingly negative for high temperatures.

With (B220) one finds

Dlr=r. _ 3 (@%)2 RN (%)2 (3.24)
P|T:0 p qg 2 2\ me
The dependencies in this formula can easily be understood. The quadratic dependence
on g and h; comes from the vertices. Increasing A\ decreases T,.. At a lower temperature,
the contribution from x¢ < xx scatterings is smaller because of the smaller density of
scattering partners. Therefore increasing A decreases the ratio (B24]). The dependence on
mg and m, follows the same logic, T, increases with m, and decreases with m,. Fig.
compares the contributions from the different couplings. The parameters are chosen in a
way that there is no dissipationless regime.

With the knowledge of the self energies we can plot the various correlation functionsd.
In the following we always set hy = hy = 0 and concentrate on the trilinear coupling.
Unless stated differently, we use the value of the coupling constant g such that

r g°

- 2
Mg | T=m;=0  8wmy

=0.2

2 Figs. B BR B3 B10 B11 B2 B3 B4 and B3 are taken from [5]
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Figure 3.3: T/r|;—, in the scalar model as a function of T' for q = 0, ¢ = 0.05, my; =
my = 0.4mg, h1 = hy = 0. For the red dashed curve, yx;-self-interactions have been
neglected (A = Ay = 0), for the solid blue curve the x; have been given thermal masses
(A2 = 0.5 > A\; = 0.01). Corrections to the ¢-mass are very small and, at this order,
increasingly negative for high temperatures. The three temperature regimes corresponding
to case (a), (¢) and (b) are clearly visible in the blue curve.
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01F 1

Figure 3.4: T'/rj;—, in the scalar model to leading order (solid red line) and with resummed
propagators (dashed blue line) for hy = hy = 0, m,, = m,, = m,, Z—z =04, \{ = X =
0.1. Above a critical temperature 7,, the nonvanishing dissipation is only visible on the

logarithmic scale. For these parameters T, ~ 4.6m,.
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Figure 3.5: Contribution to ImII® in the scalar model from the quartic coupling for
h; = A; = 0.01. The numerical evaluation of (BIH), solid blue curve, is compared to the
approximation (BI0), dashed red curve.
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Figure 3.6: Total qu;}:o (solid) and the contributions from trilinear (dotted) and quartic

(dashed) couplings in the scalar model for % =04, h; = Qm%5 and A\ = 0.1.
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and set the quartic couplings hj 5 to zero everywhere except in Figs. and This
relatively large value is chosen for illustrative purposes. Furthermore, we concentrate on
the zero mode q = 0. Thermal masses and widths of the bath fields x;. are always
neglected.

Figs. B and B8 show the spectral function for ¢ at different temperatures for the cases
(a) and (b), respectively. In case (a), when ¢ already has a finite width in the vacuum,
the quasiparticle peak “melts” at relatively low temperatures without a significant change
in position. In contrast to that, in case (b) the melting is accompanied by a negative
mass shift. From the previous discussion, it follows that the broadening in Fig. B might
be much weaker if one takes the thermal masses of the bath fields x; 2 into account. The
peak could even become narrow again, and hence ¢ could enter a second quasiparticle
regime at high T, if the system enters a temperature regime in which a thermal mass
hierarchy of the type (c) is realised. The mass shift in Fig. can be understood from
Fig. B3 Rell? at Q4 and can have either sign, depending on the temperature.

Fig. shows A (y), the Fourier transform of pq(w). It oscillates with the frequency
Qq and a damping Ts/2, see (Z70). The statistical propagator Ad(t1,%,), given by (BT,
as a function of ¢; and ¢, is displayed in Fig. BTTl. We set all initial conditions in (281 to
zero to show the memory integrall. The system equilibrates along the diagonal ¢ = %—
direction and eventually becomes time translation invariant. This can be seen in detail in
Fig. and B.T3. They show AT along cuts through the ¢;-to-plane. Fig. shows A™
for different fixed t = % At all times there are characteristic oscillations in y = t; —t,.
For late ¢, AT as a function of y approaches its equilibrium shape, see Sec. Fig.
shows A™ for y = 0. The two characteristic features are the asymptotic approach to an
equilibrium value and the oscillations in ¢. The latter are a consequence of the fact
that the Kadanoff-Baym equations, in contrast to the Boltzmann equations, are second
order differential equations. The amplitude of the oscillations is of order I'y, hence they
do not appear in the memory integral term of the leading order approximation ().
Fig. BT demonstrates that the approach to equilibrium happens independently of the
initial conditions.

The energy density can be computed from A" at y = 0 using (ZI04). In Sec. 23T we
pointed out that it deviates from that of a quasiparticle gas. This is shown in Fig. B T3

3.2 A Fermion with Yukawa Couplings

We now consider a system of two fermions ¥, » and a scalar ¢. The Lagrangian is

2

Z i (G —m) W + @qu(?“qﬁ - m¢¢2 — g (U1 0y + Uy 0y) . (3.25)

3 This does not correspond to a vanishing initial particle number which would be realised by setting

Ng =0 in (ZT34).
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Figure 3.7: Spectral function pq(w) in the scalar model for q = 0; case (a) with masses
my = my = 0.2my and temperatures T; = 0.1my, T5 = 0.2m, T5 = 0.5m.
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Figure 3.8: Spectral function pq(w) in the scalar model for q = 0; case (b) with masses
mi = Mg, Mg = dMy and temperatures Ty = my, To = 2m, T5 = dmy.
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Figure 3.9: Real part of the self-energy II7(w) for q = 0; case (a) with masses my = my =
0.2m, and temperatures 77 = 0.5my (solid) and T = m,, (dashed).
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Figure 3.10: Spectral function Ag (y) for q = 0; case (b) with masses m; = mg, my = 5my
and T = 10m.
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Figure 3.11: Statistical propagator Af . (t1,t2) for g = 0; case (b) with masses m; = my,
me = dmg and T" = 10m,. Note that only the contribution from the memory integral
is plotted, which vanishes for ¢;» = 0. The boundary conditions for the full function
A:;(tl, t2) depend on the physical initial conditions and generally do not vanish for ¢, » = 0.
If one, for instance, choses vacuum initial conditions, A;r (t1,to) consistently coincides with
the non-zero dressed statistical propagator in vacuum for ¢; = ¢, = 0.

The coupling constant g in (B223) is dimensionless. When W 5 form the thermal bath and,
as previously, ¢ is out of equilibrium, we can again use the solutions (ZZ43]) and (ZGII)
for the spectral and statistical propagators A~ and A%, but with a self energy that is
computed from diagrams of the form shown in Fig. BIk). The leading order result for Iy
with g = 0 in the case of equal fermion masses m; = my = m is given by [32]

_ gw

Folw) = 8

= (2—’”) (1= 2f2(w)) O(w — 7/2). (3.26)

me

It can be compared to (BI3). The most striking difference is that I'y decreases with
increasing temperature due to the factor 1 — 2 fp(w). The physical reason is that at large
temperatures, Pauli suppression decreases the rate of decays ¢ — WW. For bosons in the
final state, (BI3]) showed that it is increased due to induced transitions.
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Figure 3.12: Memory integral Af = (¢;,t5) as function of y = t; — ¢, for q = 0; case (b)

q,mem

with my = m, my = 5m, T' = 10m and three values of t = (t; +t2)/2: myt = 15 (dashed
line), myt = 20 (dotted-dashed), myt = 60 (solid).
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Figure 3.13: Memory integral AY _ (t1,t5) as function of t = (t; +15)/2 for y = 0, q = 0;

q,mem
case (b) with masses my; = my, mg = bmy and T' = 10m,.
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Figure 3.14: Statistical propagator Al (t1,ty) with q = 0 as function of ¢ = (t; +1t5)/2 for
y = 0 and different initial conditions; case (b) with masses q = 0, my = my, my = 5my

and T = 10m.
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Figure 3.15: Energy density €, = €q/wq in the scalar model as function of temperature for
q = 0; case (b) with masses m; = mg, ma = bmy: total energy density (solid), particle
and quasi-particle energy densities (dotted), and 'vacuum’ energy density (dashed).
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Figure 3.16: Upper plot: I'/r|;—, in the Yukawa model as a function of temperature for
q=0,g9=0.1, my = 0.1m. The plot compares the approximation ([B28) (dotted black
curve) to the exact solution with negligible bath self interaction (red dashed curve) and
the exact solution with a %¢4 self coupling of strength A = 0.2 (blue curve). Since my =0
was assumed, the temperature region corresponding to case (c¢) shrinks to a point. T’
increases further with 7" beyond the plotted region and reaches very large values before it
asymptotically approaches zero at even larger temperatures, but the quantitative validity
of the leading order result is questionable in those temperature regimes. Lower plot:
U/t in the Yukawa model as a function of 7" and |q| for ¢ = 0.1, my = 0.1my with a
29" self coupling of strength A = 0.2.
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Figure 3.17: Vector and scalar part of S7 .. (t1,t2) as functions of ¢; and ¢, for q = 0,
T = 0.5m, my = mg = 0. Note that the vector part is symmetric in y while the scalar part
is antisymmetric. As in Fig. B0l only the memory integral, which vanishes for ¢, o =0,
is plotted. The full solution (287) shows similar oscillations in ¢ as in the scalar case, cf.

Fig. BTl which are not visible here because we plot the approximate solution (Z94).
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We now turn to the case that one of the fermions, ¥y, is out of equilibrium and ¢ and
U, form the bath. The spectral and statistical propagators S~ and St for ¥ are given
by (2380) and (Z8Y). The self energy ¥ in this case has to be computed from the diagram
shown in Fig. BIJ). In Appendix we present an analytic expression for Im»# in the
case of vanishing my mass that is, to the best of our knowledge, so far unknown in the
literature. It is in good agreement with numerical plots shown in [72]. The real part can

then be computed from
Im¥q(qo) Xl
ReYq(w) = —73/ o . (3.27)

qo — W

The expressions (B30)-(B35), (B79)-(B=186) for ImX7 are rather complicated, but the

resulting I'y can be well approximated by

1

2 2T22
Mo~ 14 (22 3.28
a 9167rwq<+(m1)> (3:28)

if the coupling is weak, my < T,m and |q|,7 < m. Here wq has of course to be
evaluated with m;. Fig. BI0 compares this approximation to the exact result. The
analytic structure and the interpretation of the cuts and poles are the same as in the
scalar case. The temperature regimes corresponding to case (a), (b) and (c) can be seen
in Fig. With the knowledge of > we can finally plot the correlation functions. The
Lorentz components of S (y) are damped exponentials, see (Z77), Z30). The vector
and scalar parts of the memory integral in S;r (t1,t2) in the quasiparticle approximation
Z33) are shown in Fig. BT Note the different symmetry of the scalar and vector part
in the relative time coordinate t; — to. As in the scalar case (cf. Fig. BITl), one observes
oscillations in the relative time coordinate y and equilibration in the centre of mass time .
The oscillations in ¢ that are visible in Fig. BIIl have amplitudes O(I"). Such oscillations
are not visible in Fig. BT because we plot the analytic leading order approximation (Z93)
while Fig. BTl displays a numerical evaluation of the full result (ZG1]).
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CHAPTER

Applications in Cosmology

The overall structure of the observable universe is surprisingly simple.

On scales > 100Mpc is appears spatially homogeneous and isotropic. Moreover, the
cosmic microwave background reveals that the density fluctuations were even smaller
before nonlinear galaxy formation created the structures we observe today [(3]. Thus,
the overall geometry can in good approximation be described by a Friedmann-Robertson-
Walker metric,

dr?

— Kkr2

ds* = g, datdz” = dt* — a*(t) (1 + 7% (d9* + sin® 19dg02)) . (4.1)

r determines the overall curvature of space, its sign is determined by the sign of Q — 1

where QO = ¢/c.. with € being the energy density and €., the critical energy density

3H?
€op = )
871G

(4.2)

Here G is Newton’s constant and H = @/a the Hubble parameter. The time evolution of
the scale factor a(t) is governed by the Friedmann equations

4
a = —gG(e + 3p)a (4.3)
K 8tG

Here contributions from a cosmological constant A have been included into energy density
e and pressure p. Based on various observations, it is possible to determine the composition
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of the energy density. The total € is very close to the critical density ¢.. and the overall
geometry of the universe therefore in good approximation flat, x = 0. It is composed of
three main ingredients, with ~ 4% baryonic matter, ~ 23% dark matter and ~ 73% dark
energyﬂ. In addition, there are small contributions from photons and neutrinos.

Extrapolating (3) and () backwards in time implies that the observable universe
originates from a volume that was many orders of magnitude smaller than its current
size. At early times, energy density and pressure were much higher than in any human
made experiment, making it an excellent laboratory for high energy physics in which the
standard model of particle physics and its possible extensions can be probed. In exchange,
particle physics can provide an underlying microscopic theory that fills the cosmological
parameters deduced from astronomical observations with a meaning. Indeed, many of
the observed features can be understood as consequences of nonequilibrium phenomena
in the early universe.

Processes in the primordial plasma are canonically studied by means of Boltzmann
equations. From the discussion in the previous sections it is clear that this approach
becomes increasingly unreliable in early epochs. However, during much of its early history
the universe is filled with a slowly cooling plasma in thermal equilibrium. As the plasma
cools down, its constituents successively fall out of equilibrium and freeze out when their
interaction rates become low. If the temperature changes slowly with respect to the
time scale associated to the particle reactions, such process can in good approximation
be described by the methods we developed in the previous chapters. In this chapter,
we apply them to two particular problems. In Sec. we discuss thermal leptogenesis
as an example for a freezeout process that requires a quantum mechanical description.
Before, in Sec. L1l we use our results from the scalar model to study the kinematics of
the reheating after inflation.

4.1 Inflaton Decay and Reheating

The homogeneity and isotropy of the observable universe on large scales pose a problem in
classical cosmology. When extrapolating Eqs. (B3)) and () backwards in time, with the
observed energy content, different patches in the sky correspond to regions in space that
have never been causally connected. This leaves the question why they have the same
temperature. Furthermore € ~ €., at present time requires € to be extremely close to €., in
the past. Without further assumptions, there is no explanation for this fine tuning. These
problems, known as horizon- and flatness-problem, can be explained by the assumption
that the universe underwent a phase of accelerated expansion at a very early stage of its
evolutionfl. Such an era of cosmic inflation would also explain the absence of topological
defects predicted by many theories of particle physics in the observable universe as a result

1See 2] for detailed numbers.
2For a review, see e.g. [74] and references therein.
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of their dilution. The rapid expansion, if it lasted sufficiently long, implies that the entire
observable universe originates from a very tiny, causally connected volume. The simplest
mechanism that can drive inflation is provided by the potential energy of a scalar field ¢,
the inflaton, which at some point dominated the energy density in the small volume from
which the observable universe originates. Here we focus on this scenario of single field
inflation. During the inflationary phase, while ¢ moves towards its potential minimum,
all other forms of energy are diluted and become negligible. When ¢ starts oscillating
around the minimum, its energy is released into all other degrees of freedom, to which we
collectively refer as X'. This process is known as reheating and leaves the universe filled
with the hot primordial plasma that forms the initial state of big bang cosmology. The
details of the ¢ dissipation and the subsequent thermalisation of the plasma are unknown,
and so is the resulting temperatureﬁ.

The temperature in the early universe is a very important cosmological parameter.
[t determines the abundance at which particles are produced thermally. This includes
dark matter candidates, leading to upper temperature bounds to avoid overproduction.
In supersymmetric theories this is in particular of interest in the context of the so called
gravitino problem [76]. In thermal leptogenesis it determines the abundance of heavy
right handed neutrinos therefore the amount of baryon asymmetry that can be generated.
This implies a lower bound on the temperature. It has also been speculated about the
importance of thermal effects for moduli decay [, [78] or destabilisation of extra dimen-
sions [79], the latter also giving rise to an upper bound on 7'. In [80)] it has been suggested
that large thermal masses of the decay products in the primordial plasma imply another
upper bound on the temperature. In this section we use our results from Sec. to
analyse the conditions under which this can happen.

In the beginning of the reheating phase almost all energy is stored in the coherent
oscillations of the g = 0 mode of the macroscopic field (¢p). Therefore ¢g;, and d)oin
reach large values while all other contributions to the energy density are small. The
energy can be transferred into other degrees of freedom in different ways. In general this
is a far-from-equilibrium process. The energy is released either into fluctuations of ¢ itself,
which can be interpreted as particles and are characterised by A%, or directly into X’s.
If () dominates the self energies II7 of the fields it couples to, effective masses are also
dominated by the oscillating field value. In this case, most of the energy transfer happens
via parametric resonance which dissipates enormous amounts of energy. This process can
approximately be described in terms of classical fields, and its collective nature can easily
allow the creation of particles with masses larger than mg, |81, 82]. Kinematic restrictions
as discussed in Sec. are certainly not valid because they only apply if the system can
be well described by the language of (quasi)particles. If there is no parametric resonance,
or if a large amounts of energy have been released into fluctuations of ¢, further dissipation
happens via perturbative decays and scatterings of ¢ quanta. When these processes are

3 For a review, see e.g. [75] and references therein.
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responsible for a significant part of the energy transfer, the kinematical considerations
from Sec. can play a crucial role.

The intrinsic mass of ¢ is usually thought to be larger than the intrinsic masses of
the X. On the other hand, it is coupled weakly to all other fields, much weaker than e.g.
the Standard Model fields amongst each other. In case the interactions within the bath
are strong enough to thermalise it fast on the time scale on which ¢ evolves, the decay
happens in the background of a thermal plasma. This can be a reasonable approximation
during the late phase of reheating [83, B0, B3] or in scenarios known as warm inflation
|84, [7T]. Pauli blocking suppresses reactions involving fermions, cf. ([B28), so that most
of the energy is dissipated into bosonic degrees of freedom. Under these conditions, the
scalar model in Sec. Bl can be used to study the influence of thermal masses and widths

During reheating backreaction is of course not negligible and the temperature not
constant. 7'(t) can be a complicated function and is determined by the struggle between
cooling by expansion and heating by ¢ decay. However, if the time scale associated with
the dynamics of ¢ is much shorter than that of the Hubble expansion, but still long
enough for the bath to be considered in equilibrium at any time, one can use the approx-
imation (248)) for the spectral function and insert equilibrium propagators to compute
the dissipation rate I'y at the given temperature in each moment.

The claim in [80] is that the thermal masses of the decay products increase with T
and effectively block further ¢-decay above a critical temperature 7T.. Any cooling of the
plasma below 7. by Hubble expansion is compensated by ¢-decay, and the temperature
remains at 7, until ¢ has dissipated its excessive energy. Then, when ¢ is in equilibrium
with all other fields, the universe enters the radiation dominated era. Based on our results
in Sec. and Bl we can confirm this claim under certain conditions.

It is clear that the arguments related to energy and momentum conservation at ver-
tices connecting resummed propagators can only hold if the involved fields are in the
quasiparticle regime. Otherwise reheating can always continue via off-shell processes. In
the quasiparticle regime, there can be a critical temperature above which further heating
by perturbative decays and scatterings becomes inefficient because ¢ effectively decouples
from the bath. Due to off-shell processes, I' is never strictly zero, but it is suppressed by
the smallness of the widths of the resonances when the on-shell decay becomes forbidden.
In general, the conditions under which on-shell reactions between the quasiparticles be-
come forbidden have to be extracted from the possibly complicated dispersion relations of
all involved plasma waves. A simple rephrasing of these conditions by replacing intrinsic
masses by thermal masses as done in [80, B3] is only valid if the free quasiparticle approx-
imation holds and medium corrections to the dispersion relations depend only mildly on
the wave vectors. In this case, the inequality (B222) allows to estimate that for trilinear
couplings that can be resembled by the scalar model from Sec. Bl the suppression above

94



T. is effective if

2
A 1— 2y < 1.
327 Mg

This condition is quantitatively valid if the critical temperature given by (BI9),

24 Mg\ 2
2 ¢ 2
Ry ((7) —mx)v

is low enough for perturbation theory to hold.

Even if these conditions are fulfilled, 2 — 2 scatterings always provide a channel to
transfer energy from ¢ into the bath if ¢ also couples to the bath fields by four-vertices.
Their efficiency depends on the coupling strength and on the value of T, see discussion
following (B24]). The importance of widths in this context has previously been pointed out
in [33], but modified dispersion relations and the possibility of scatterings were neglected.

4.2 Thermal Leptogenesis

The observable universe is purely made of matter, with a tiny fraction antimatter present
in cosmic rays which can consistently be explained by secondary emission [85]. This
requires an excess of matter over antimatter, or baryon asymmetry, in the primordial
plasma. The excess can be estimated by the baryon-to-photon ratio n = 7&/n,, which can
be determined in two ways, either from the CMB [86],

nems = (6.225 £0.170) x 10717 (4.5)

or from the abundance of light elements in the intergalactic medium, thought to be created
during big bang nucleosynthesis [87],

nean = (5.5 +£1.0) x 10717 (4.6)

In inflationary cosmology, this number can not be assigned to the initial conditions because
any pre-inflationary asymmetry is diluted during the accelerated expansion. Its value
would be negligibly small after reheating. Hence baryogenesis, the generation of an 1 # 0,
must have occurred during or after reheating. The details of the baryogenesis mechanism
are unknown, and different models have been proposed. Any possible explanation has
to be in agreement with the Sakharov conditions, namely it requires a deviation from
thermal equilibrium and processes that violate C, C'P and baryon number [88]. Here C'
and P stand for charge and parity conjugation. Baryon number B and lepton number L
are quantum numbers for baryons and leptons respectively, with value 1 for particles and
—1 for antiparticles.
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In principle all these ingredients are provided in the Standard Model by the elec-
troweak interaction [89]. It violates P and C as well as C'P through the CKM matrix
[IT]. Baryon number B and lepton number L are violated by nonperturbative transitions
between equivalent topological vacua [89, 90], the sphalerons. Those are negligible at zero
temperature, but become relevant near the electroweak phase transition. Hubble expan-
sion brings the plasma out of equilibrium. However, in order to explain the observed
1, a first order electroweak phase transition is required. In the Standard Model, this
would occur for a Higgs mass my < 45 GeV |91}, B2|, which is ruled out by experiment
M. In addition, the C'P violation in the CKM matrix is too small [93]. Thus, successful
baryogenesis requires physics beyond the Standard Model. Many possibilities to achieve
this have been explored during the past four decadeﬂ, including GUT baryogenesis [94],
Affleck-Dine baryogenesis [05] and leptogenesis [13].

Leptogenesiﬁy provides a particularly attractive scenario because it links the baryon
asymmetry to neutrino properties. If the light neutrino masses in the Standard Model
are generated by a type-I see-saw mechanism (see appendix [A), the C'P violating out-of-
equilibrium decay of the heavy neutrinos N can generate a matter-antimatter asymmetry
in the leptonic sector. In the case that the inverse processes that wash out the asymmetry
are efficient, its final value is independent of the initial conditions and given in terms
of neutrino properties. The lepton-asymmetry can then partially be transferred to the
baryonic sector by sphaleron processes.

Quantitatively, leptogenesis is usually studied by means of classical Boltzmann equa-
tions . However, the creation of a lepton asymmetry is a quantum effect as it arises from
the interference between tree level decays and higher order corrections. The description
of this quantum effect in terms of Boltzmann equations suffers from the basic conceptual
problems discussed in the previous sections. Furthermore, most leptogenesis scenarios
require a high temperature 7' ~ 10'° GeV to generate sufficiently many heavy neutrinos.
At these temperatures thermal effects in the plasma can certainly not be ignored. It is
important to understand the range of validity of the Boltzmann equations and estimate
the size of the corrections. In recent years, enormous progress has been made towards
this goal [49, @9, K0, B3|, 54, b1, mostly based on quantum Boltzmann equations.

If leptogenesis takes place after the primordial plasma has thermalised, the simplicity
of the setup can make a full quantum treatment possible. The heavy neutrinos N are in
good approximation the only fields that are out of equilibrium. They are weakly coupled
to a background plasma with slowly changing temperature. Since the number of degrees
of freedom in the bath is > 100 and n known to be tiny, backreaction is negligible.
The asymmetry only becomes relevant much later in the history of the universe. In
this scenario, the propagation and decay of N in the primordial plasma can, with some

*For a review, see e.g. [96]
°For detailed reviews, see e.g. [97].
SFor a detailed treatment in terms of Boltzmann equations see e.g. [08]
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modifications, be modelled by the Yukawa model from Sec. U, is identified with N,
W, with the Standard Model leptons [ and ¢ with the Higgs ®. The main differences can
be summarised as

(1) N is a Majorana fermion.
(2) ® and [ form weak isospin doublets.

(3) N and [ carry flavour indices. The Yukawa matrix A is generally non-diagonal in
flavour space and has complex entries.

(4) The temperature is a function of time.

The Kadanoff-Baym equations for the propagators G_(z1,72) = (Na(21)Ng(72)) and
G5s(x1,12) = —(Np(22) Na(z1)) of Majorana fermions are given in [49],

C(igh — M)G” (21, 15) = —/d4x' (27 (21,2 ) G, 2) + ZR (21, 2)G7 (2, 20)) , (4.7)
C(idh — M)G= (21, x9) = —/d4x' (Z%(21, )G, 22) + ZF (21,2 ) G (2, 22)) . (4.8)

Here C' is the charge conjugation matrix, for which we take the representation iy?+".
Following the steps in Eqs. (Lh2)-([C60), it is straightforward to derive the Kadanof-
Baym equations for the spectral and statistical propagator,

t1
Cligh — MG (21, 2) — / &y / AT (21, 2)G (o 7) | (4.9)
to
t1
Cih — M)GH(xy, 1) = / dx’ / AT (21, 2')GH (', 22)
ti
to
/d?’x'/ dt' It (z1, 2 )G (2, 22) . (4.10)
t;

Multiplication with C~' from the left gives Eqs. @3) and (EI) the same shape as
the corresponding equations for Dirac fermions (LX) and (C8Y) with the replacements
S* — G* and ¥ — C7'Z. The boundary condition ([ZTH) is modified to G (0) = i7°C~".
Thus, one can find the solutions for Majorana neutrinos from those for Dirac neutrinos
by replacement.

In the symmetric phase of the electroweak theory the modification (2) simply means
that one has to sum over the components of the weak isospin doublet when computing
the self energy. Each term has the same structure.

As a consequence of modification (3), the self energy ¥ is generally not diagonal in
flavour space. The resummed propagator is a matrix in flavour space, off-diagonal ele-
ments describe coherences between different flavours. Furthermore, due to the complex
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entries in A\, C'P is violated and the Lorentz structure is modified. ¥ cannot be decom-
posed as in (Z¥Tl) because it also has pseudo-scalar and axial-vector parts. This makes
the inversion of (ZT8) technically more difficult, but does not pose a conceptual prob-
lem. Usually X is split into a left-handed and a right-handed part each of which can be
decomposed as in (2&]). If the Majorana masses of the heavy neutrinos are strongly hi-
erarchical, the lepton asymmetry is usually generated by the decay of the lightest flavour.
The two heavier fields can then be integrated out to obtain an effective theory with only
one flavour.

The biggest challenge is posed by the time dependence of 71" because the solutions
of the Kadanoff-Baym equations were obtained under the assumption of a time transla-
tion invariant self-energy. If there is a separation of time scales, one can, analogue to
Eqs.([Z27)-([Z48), treat ¢ as an external parameter. Then the spectral propagator is given

1 1
X — c
(q/— M- C'Z(w,T(t) —iwe ¢—M—C'Zf(w,T(t) + iwe)
(4.11)
This result can be used to compute G (y;t) analogue to (Z88),

Gt ta) = =G (t1)CY°GE(0,0)07°C Gy (—t2) (4.12)

dw il — h _ iw — r2 - —iw
+ /%6 (f1t2) (/0 dy Gy (y1)e yl)c 2 (w) (/0 dy2G o (—y2)e yQ)‘

Here it has been used that the symmetry relations (CL86) and (C87) for Majorana fermions
can be written as G=(xy, 23) = T (GF (29, 21))".

The correlation functions G, G, G< and G__ can be obtained from G via the
decomposition

(Ge(z1,79))e = GH (21, 9) — %signc(a:(l) — 2)G (21, 79) (4.13)

cf. (LCEI). Since all Standard Model fields very close to equilibrium, they can be de-
scribed by thermal (equilibrium) propagators in loop integrals. Those are well-known to
leading order. Thus, knowledge of the spectral and statistical nonequilibrium propagators
G* for N allows to evaluate all relevant Feynman diagrams. In particular, C' P-violating
contributions to the lepton self energy can be computed. Those are responsible for the
generation of a matter-antimatter asymmetry in the leptonic sector. The dressed statis-
tical propagator S;; for leptons, where we have now written the flavour indices ¢ and j
explicitly, allows to define the ’lepton number matrix’

Laij(t, 1) = —tr (1°S4;(t, 1)) . (4.14)
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The asymmetry in flavour ¢ as a function of time is then given by Lg;(t,t). Computa-
tion of S;;- to fourth order in the Yukawa couplings \;; in ([(AJ)) provides a full quantum
mechanical treatment of leptogenesisﬁ. Since the Kadanoff-Baym formalism makes no
semi-classical approximations, it inherently avoids a number of complications that com-
putations based conventional Boltzmann equations have been plagued with. In particular,
there is no necessity for a subtraction of real intermediate states. Evaluation of the self
energy diagrams automatically includes all on- and off-shell processes at a given order in
the correct manner, and no apparent creation of an asymmetry in equilibrium is found.
Furthermore, if leptons and Higgs fields in loop corrections are in equilibrium, thermal
corrections to the production rates are linear in their distribution functions, as expected
from detailed balance considerationd.

However, care has to be taken at two points. First, leptogenesis takes place at a
very high temperature. Due to the breakdown of perturbation theory at large T the
spectrum of the Standard Model in this regime is unknown. The assumption that the
Standard Model fields are in the quasiparticle regime and can be described by the well-
known leading order or next-to-leading-order propagators for dressed particles is doubtful.
These problems are also neglected in all present computations that use Boltzmann or
quantum Boltzmann equations and causes an error of unknown size in all computations
to date. At the current stage, our results can be used to determine corrections due to
quantum and non-Markovian effects by comparison to Boltzmann equations under equal
assumptions regarding the spectrum. In the future, provided all relevant self energies at
the temperature of interest are known from some other source, they allow the quantitative
computation of the generated lepton asymmetry. Second, a realistic computation of course
requires a more careful treatment of the dependence on centre of mass time. In particular,
the C'P violating part of the lepton self energy is not time translation invariant due to
the deviation of the N propagators from equilibrium. Both of these aspects go beyond
the scope of this work, but will be addressed in the near futured] .

"This applies to the production and washout processes. In realistic leptogenesis, other spectator
processes in the plasma can have an influence on the final asymmetry [T00].

8This can be seen explicitly in Eqns. (88), @IF), (20) and ([B43) for the models we studied in
this work. By the time of printing, it has been confirmed in a realistic model for leptogenesis in [47],
contrasting earlier claims made in [B3], and is in discussed in detail in [B1].

9By the time of printing, there has been considerable progress towards this goal and a fully quantum
mechanical computation of the asymmetry has been published in [47] .
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CHAPTER

Conclusion

Many properties of the universe today can be explained as the result of nonequilibrium
processes during its early history. The high energy densities during those epochs also make
the early universe an excellent laboratory for the study of physics beyond the Standard
Model. Hence, nonequilibrium processes in the primordial plasma are interesting for
cosmology as well as particle physics. To date, most computations are based on Boltzmann
equations. As classical Markovian equations for phase space distribution functions, these
suffer from basic conceptual problems when quantum phenomena like coherent oscillations
or memory effects are relevant. While in some cases, e.g. big bang nucleosynthesis or
the decoupling of photons, these can in good approximation be neglected, they might
be crucial in other situations. For instance, in leptogenesis scenarios, the creation of
matter is caused by a quantum interference. Over the past years, evidence has amounted
that classical Boltzmann equations may be insufficient to correctly describe this quantum
mechanical process. Therefore it is important to understand the range of validity of the
Boltzmann equations and estimate the size of the corrections.

Quantum and non-Markovian effects can modify the properties of a dense plasma in
various ways. This includes effects that are related to the coherence of the quantum
state as well as changes in the spectrum. The Kadanoff-Baym equations offer a tool to
perform computations in a full quantum mechanical framework. However, while numerical
solutions of Boltzmann equations usually allow a simple qualitative understanding of the
results and their dependences on the model parameters, this transparency is often lost
when using Kadanoff-Baym equations. When the spectrum of resonances in the plasma
is approximately known and simple, one can derive effective Boltzmann equations from
the Kadanoff-Baym equations, the quantum Boltzmann equations.

In this thesis we discussed systems in which one can go further and directly solve the
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Kadanoff-Baym equations by analytic methods. Many important processes in the early
universe can in good approximation be described by quantum fields out of equilibrium that
are weakly coupled to a thermal bath. We solved the Kadanoff-Baym equations for scalars
and fermions for such systems in full generality, without restrictions regarding the size of
the deviation from equilibrium or making an ansatz that parameterises the propagators
in terms of distribution functions. The composition of the heatbath need not be speci-
fied. The solutions remain valid in good approximation if the bath temperature changes
slowly compared to all other timescales. Thus, they can directly be applied to a number
of cosmological problems. Furthermore, they improve the conceptual understanding of
quantum effects in a hot plasma.

We then performed a detailed comparison of our solutions to results obtained by
other methods. First, we showed that the Kadanoff-Baym equations are equivalent to a
stochastic Langevin equation. A comparison to Boltzmann equations for particles and
quasiparticles revealed how these emerge from the Kadanoff-Baym equations in the limit
of weak coupling and low temperature. We then studied the plasma properties with focus
on the applicability of Boltzmann equations in different kinematic regimes.

e In the particle regime, the effects of the plasma on the properties of resonances
are negligible. The standard Boltzmann equations hold and describe the kinemat-
ics with a high accuracy. If coherences are important, these can consistently be
incorporated by the use of quantum Boltzmann equations.

e In the quasiparticle regime, modifications of the spectrum due to the presence of
the medium become relevant. Dressed particles receive a thermal mass correction
and new resonances, which correspond to collective excitations in the plasma, can
appear. As long as all of these have small decay widths, they can effectively be de-
scribed as quasiparticles. In this regime, quantum corrected Boltzmann equations
may be used. They require the knowledge of the spectral function, including collec-
tive excitations, as a function of time. The dependence of the dispersion relations
and decay widths on temperature and time causes non-Markovian effects. The latter
can be parameterised by time-dependent collision terms. To leading order, energy
and momentum are conserved in decays and scatterings involving quasiparticles.
Hence, quasiparticles react like ordinary particles, but with modified dispersion re-
lations and widths. The dispersion relations can deviate strongly from those of free
particles. They change the available phase space volume for processes in a tem-
perature dependent, hence dynamical, way and can have a dramatic influence on
production and dissipation rates. A simple parameterisation by thermal masses is
only possible if the dependence of the corrections on the wave vector is mild, leading
to plasma waves that behave like free quasiparticles. The memory kernel can then
be integrated in the narrow width limit, leading to ordinary Boltzmann equations
with intrinsic masses replaced by thermal masses. It is important to note that,
though the system’s approach to equilibrium follows a Boltzmann-type equation,
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the equation of state can differ significantly from that of a quasiparticle gas. The
additional contributions can be interpreted as a shift in the ground state and can
even generate a negative pressure. When coherences in flavour space are relevant,
the quantum Boltzmann equations have to be formulated as matrix equations to in-
clude correlations between different flavours. Though quantum corrected Boltzmann
equations may in principle be used in this regime, they have to be derived consis-
tently either from the Kadanoff-Baym equations or, equivalently, the von Neumann
equation for the density matrix. Many often-made assumptions in current compu-
tations, including the structure of the spectral function, the parameterisation of the
propagators by distribution functions, the smallness of the deviation from equilib-
rium or the factorisation of the collision terms into a deviation from equilibrium
and a time dependent damping rate, are generally not valid and have to be justified
individually.

e In the broad resonance regime, Boltzmann equations completely fail to describe the
system. When the decay width of the resonances is large, their interpretation as
(quasi)particles becomes meaningless. Off-shell contributions to gain- and loss rates
can be of the same order as on-shell processes or even dominate over them. This
behaviour is expected for strong couplings, but can even occur in a weakly coupled
at theory at sufficiently high temperature.

We illustrated our results in a scalar and a Yukawa model. In both cases an analytic
leading order expression for the imaginary part of the self energy, which determines the
gain and loss rates, could be found. In case of the Yukawa model, the expression is, to
our knowledge, previously unknown in the literature. The nontrivial behaviour of the
self-energies as functions of temperature when including higher order corrections shows
that the validity of approximations based on resummed leading order perturbation theory
is limited.

Finally, we discussed applications of our results in cosmology. They can be used for
a quantum mechanical treatment of a wide range of phenomena, in particular freezeout
processes. We focused on two examples. In the context of reheating, our analysis allows
to understand under which circumstances the appearance of large thermal masses can
put an upper bound on the reheating temperature. This is the case if a significant part
of the energy transfer from the inflaton modes into the primordial plasma happens via
perturbative decay, quanta of the involved fields have dispersion relations corresponding
to quasiparticles and Landau damping by scatterings is subdominant. In thermal lepto-
genesis scenarios, our results provide a toolkit for a full quantum mechanical computation
of the generated lepton asymmetry. The full computation goes beyond the scope of this
work, but will be addressed in the near future.
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APPENDIX

Right Handed Neutrinos and the
Seesaw Mechanism

One of the simplest possible modifications of the Standard Model that can explain the
observed neutrino oscillations is provided by its extension by three singlet fermions Ng;,
often referred to as right handed neutrinos,

< 7 Y DS
L= ESM + ZNRiaNRi — )\ijliiNqu)I — §M1]N§{ZNR] + h.c.. (Al)
Here N§, = CN% and & = —i (q)TO—Q)T. ¢ and j are flavour indices and I marks the

components of the weak isospin doublet. The fields Nr are usually referred to as right
handed neutrinos. Adding them is in agreement with all symmetries of the Standard
Model. While the first term after Lg), in the above Lagrangian is simply the kinetic
term for the right handed neutrinos, the second and third term provide Yukawa couplings
analogue to those of the charged leptons. The last term is a Majorana mass term for
the Ng;. In general, it is not possible to diagonalise \;;, M;; and the Yukawa coupling
matrix of the charged leptons simultaneously in flavour space. In the following we chose
a flavour base in which M;; and the charged lepton Yukawa couplings are diagonal, the
latter corresponding to a mass eigenstate base for the charged leptons after electroweak
symmetry breaking. We now write the weak isospin doublet /£, as

I = ( Zi ) (A.2)

103



After electroweak symmetry breaking, v obtains a Dirac mass term (mp);; = \;ju where
v id the Higgs expectation value. Then the mass terms for Nz and v, can be written as

5 Cm N (L ) (). (A3

Here each entry is of course a 3 x 3 flavour matrix, we suppressed flavour indices for
notational simplicity. The physical neutrinos correspond to the mass eigenstates and
are superpositions of Nz and vy. If one assumes M > mp, those superpositions are
approximately

Vi & Z(UT)Z-]- ((VLj — (v3)%) — (ml\/liDM)]Z (N = NRi)) .

and
m i c .
Ni & Z frin)y I\/EZ-)J (i + (v25)°) + (Ng; + Ngi) (A.5)
J

where the sum is to be taken over j only and U is the PNMS matrix [T0T} T02] that relates
the neutrino mass and flavour eigenstates. Since M > mp, the mass matrix for the states
v, is approximately

2
mp
- A6
oy e 2 (A.6)
and are very light compared to the /V; with masses

The neutrinos are Majorana particles, meaning they are their own antiparticles in the
sense that Nf = N; and v{ = —v,;. The fact that large M lead to small m, gives the
mechanism the name seesaw mechanism. If the (mp);; are chosen at the electroweak
scale, the experimental datall implies M;; ~ 10 GeV. This is close to the expected scale
of Grand Unification. Since M is not protected by any symmetry, it is expected to have
a value at that scale.

Finally, it should be pointed out that, on experimental ground, at this point it is
not necessary to introduce three generations of Ng because only mass differences for the
known neutrinos have been measured. If the lightest active neutrino is massless, two Ny
are sufficient to explain the observed mass differences.

1See [ for recent values.
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APPENDIX

Some explicit Computations

B.1 Time Translation Invariance of A~

In [5] it has been proven that A~ (zy,z3) is time translation invariant if it is analytic and
the self energy is time translation invariant. Here we present an alternative proof. The
initial conditions of A~ (x1,xs) do not depend on the initial conditions of the system, but

are given by Eqgs. (CG0)-(LC6Y),
A™ (21, 72)|1=1, = 0,
3t1A_(931,$2)|t1:t2 = —3t2A_(171>272)|t1:t2 = 5(X1 - X2) )
@ﬁtQA_(ml,xQ)hl:tQ = O .

I~ (21, z5) is antisymmetric under exchange of the four vectors x; and x5,
I (21, 29) = —I1" (29, 21). (B.1)
The thermal bath is invariant under translations in space and time
0 (21, m9) =117 (27 — x2) (B.2)
and its properties are also invariant under the spatial parity transformation x; < x5
I (x1 — Xxg,t1 — to) =17 (x9 — %1, 11 — ta). (B.3)

In combination this implies that II~ is antisymmetric under an exchange of the time
components:

H_(Xl — Xg,tl — tg) = —H_(Xl — Xg,tg — tl) (B4)
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From the Kadanoff Baym equation it is know that

t1
A~ (2’0)(x1,t1; X2,t2)+w2A_(X1, ti; x2,t2)+/ dt'TI™ (% —x';t1 —t") AT (X', t'; %9, 19) = 0,

to
(B.5)
which in a spatially homogeneous system simplifies to

to

t1
A~ (2’0)(X1—X2;tl,t2)+w2A_(X1—X2;tl,t2)+/ dt'TT (x—x's 11—t ) A7 (X' —xa9; 11, t2) = 0.
)
A Fourier transform in spatial momentum yields
t1
Ay PO (ty, ) + WAy (t, t) +/t dt'TIL (41, t) Ay (', t2) = 0. (B.7)
2

The above properties of A~ imply

(th t2)‘h=t2 =0 ( )
(tb t2)‘h=t2 =1 ( )
(tlv t2)‘t1=t2 = -1 ( 0)
(tlth)‘t1=t2 =0 ( 1)
(n ™ (tlv t2)‘t1=t2 - _A(; (m.n) (th t2)|t1=t2 (B 12)
Here Aq (™) means that the derivative of A, is taken n times with respect to the first
time argument and m times with respect to the second. If A~ is analytic on the real axis
it can be Taylor expanded in ¢; and ¢, and is equal to its Taylor series,

(e}

— tntm n,m
A, (i, ts) = ZO n‘ni‘A J(t1,t2)|ty=ta=0 (B.13)

In order to prove that A~ is translation invariant one has to show that it does not depend
on the center of mass coordinate, meaning

0

L AT (1) = ATAO (4 ) + AZOD (g, ¢ B.14
O(t1 + 1) q(t1,t2) a (tite) £ AT (G, 1) ( )

must vanish for any ¢; and ¢5. Expanding A~ according to (B.I3) yields

A;(LO) (tl, tQ) + A;(O’l) (tl, tg) =

e
Z 102 (A_(m'l’m)(tl,t2)|t1:t2:0+A;("’m"_l)(tl,t2)‘t1:t2:0). (B.15)

q
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For the rest of this section we will use the short notation
T A W (P 2 Py (B.16)
One can see from (B.II) that it is now sufficient to prove that
AHLm| g Almtl)| — (B.17)

for all m and n. The advantage of the expansion is that it allows to use the equal time
commutation relations. The proof from now on goes along the following line: We assume
that

AP 4 APt = (B.18)

for all p < n, ¢ < m. From that and (B.) we can then proof that
ACFEm)| g At = 0, (B.19)
Applying the operator 2 + g—é to (B leads to
1

A(p+2’q)(t1,t2) — —w2A(p’q)(t1,t2)

p—u s

P
SSONTS T BB (1) T I (1 — 1) AP (1 1)

u=1 s=0 t=0

q q—k 1
+ Z Z Z B{ "Bl (—1)T M IR0 (1) — ) AR (1 )
k=1 [=0 r=0
(oo - N A= (4l
+/ dt (@ + @) (I, (tr — ") A, (', 12)) - (B.20)
to 1 2

Here B;- is the binomial coefficient (;) The integral term will vanish for ¢; = ¢5. It follows
that

A(n—l—l,m)‘ + A(n,m+l)| — 2 <AA(”_1’m)\+(n—2,m+1)‘>

3
=

s
(]
MN

(BBl (=) IO gy — 1) AR 1y, 1,) )

>

t1=t2

3 =
i
iy
TO
=

&
&

<Blm+1_kBl (=)™ IRt pn-2emb =k (g Y AU=Thr=D) g t2))

k=1 =0 r=0 ti=t
n—2n—2—u s
=30 3 Y (BB (1) IO — 1) AT (1 1)
u=1 s=0 t=0 t1=t2
n—1ln—1-u s
. (B;L—l—uBf (_1)8—t H(u+s—1)(t1 . tl)A(n—l—u—s,m) (tla t2)>
u=1 s=0 1=0 t1=ta
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The k =m + 1 term in the third line and the v = n — 1 term in the fifth line cancel each
other. The first line is zero by assumption (BIS). Therefore the whole expression can be
rewritten as

m m—k 1
2 ( > BB (1) IR D gy ) AR (1, 1)

k=1 \ 1=0 r=0
m+l1—k 1
n Blm—H_kBi (_1)m+1—k—l H(n—2+m+1—k’—l) (tl — t2)A(l_T’k+T_1)(t2, t2)>
=0 r=0 her
n—=2 n—2—u s
_ Br 2By (—1) T D (1 — ) A2 e s D (g )
u=1 s=0 t=0
n—l-u s
- Byt By (1) T IO (1 — gy ) Al (g tz>)
s=0 t=0 =t
(B.21)

Now the sum over ¢ in the last two lines can be performed. It can be checked that

Zs:(—l)s‘th ={ (1) for  s=0 " (B.22)

otherwise
t=0

Using this one can see that the last two lines never contribute due to (BIS). The upper
two lines can now be summarized as

m m—k
Z ( Z Z Ban(n—l-l-m—k—l) (tl _ tz)A(l—r,k—l-r—l) (t27 tg) ( (_1)m—k—l Blm—k’
k=1 =0 r=0

+ (_1)m—k—l+1 an—k+1>

r=0 t1=t2

m—k+1
n Z B:n+1—kH("—2)(t1—t2)A(m_k+1_r’k+r_l)(t2vt2)>

(B.23)
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which equals

- (n—2) ok (0,k—1)
> =D (t) — ) at;n—kHA’ (ta, to)

k=1

3

M

—k gm—hk—1+1 L
( tm k— l+1H(n_2)(tl _t2)) <atl AOk_l)(t2>t2)) Blm_k—Irl

=0
m—k am—k—l—i—l (n_2) a (0k—1) .
— ———— 1" (ty — t A ) (ty, t B~ (B.24
This can be simplified to
- o ht (n—2) (0,k—1)
Z oEm—FT (11 (t1 —12)A (2, t2))
k=1 2
9 m—k am—k—l a
— A R A(Ok D¢ Bm K B.25
and furthermore
m am—k-{-l ) 1
Z m—k+1 (H(”— )(tl - t2)A(0’ a )(t2at2)>
— oth
+i <8m—k (H("_2)(t1 _ t2)A(0,k—1)(t2 tz))) (B.26)
atl at;n—k ’ t1=t2
which is equal to
0 0\ = Ok
— T2 (t) — o) AU (1, ¢ B.27
(o, an) 2 gt (1770 — A )| (B27)
This equals
Z — H(" Dty —ta) (AP V(tg, 1) + AP (15, 15))) (B.28)
1 t t1=t2
The sum in the bracket is zero due to (BI8). Therefore
A(n+1,m)| + A(n,m-ﬁ-l)‘ -0 (B29)

Obviously the whole proof relies on (BI8). This is certainly true for p = 0, ¢ = 0. It can
also be verified easily for p = 1,¢ = 0. From (B:20) it can be seen that (BIS) only needs
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to be fulfilled for all p < n. Therefore ([B20) allows to conclude that ([B29) is fulfilled
for n + 1 if it is known to be true for n. Starting from A9 | A1O| and A1O| it can be

proven for all
A(n-ﬁ-l,O)‘ +A(n,1)"

meaning one can "go up" in derivatives with respect to the first argument. In contrast to
that it relies on (BI8) for all ¢ < m. To prove the statement for a certain order derivative
in the second argument it has to be known to be valid for that order derivative and not
only for lower orders. Hence one cannot recursively conclude for (or "go up" to) higher
derivatives in the second argument. But due to

Am) | = —_A(mn) |

one can find arbitrary A®"*Y| and A®™| and then again proceed step by step to higher
order derivatives in the first argument. This way it becomes clear that all coefficients in
the Taylor series (B.13) are zero and A (t1,1,) is really time translation invariant.

B.2 The Fermion Self Energy

We translate the parameterisation (EZXTI)
Nl = aq(W)g+bg(w)y, X5 = cq(w)

into the quantities

A = Gtr(q/zg(w))) (B.30)
B = Gtrwz?(w))) (B.31)
c = Gtr(zg(w))) (B.32)

from which one can obtain aq(w), bq(w) and cq(w) via

Bqu — Au?
T g (B:33)
—Bq? + Aqu
" e .
c = C (B.35)

where qu = q,u* etc. The quantities defined above are generally complex scalars that can
be decomposed as a = ag + tay etc., where ay is defined via the discontinuity.

4y = Tmag(w) = 2% (aq(w + i€) — ag(w — i€)) (B.36)
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We perform the computation in the rest frame of the bath where v = (1,0,0,0). From

(CI08) it follows that

S7(p) = (1= fr(po))pu(p) (B.37)
A%(p) = (L+ f5(po))ps(p)- (B.38)

From the KMS condition (([CI04) and the relation (B.99) one obtains
discEl (w) = (e7™ + 1) 37 (w), (B.39)

leading to

d4
discXi(w) = —ig® (77 + 1) / P 57 (p)A~ (g —p)
dp

(2m)*
= —ig2fF(—w)_1/ 27)? (1= fr(po))(1 + fr(w — po))sign(po)sign(w — po) (¥ + m>)

x 8(p* — m3)8((q — p)* —m3)

= it e [ G0 )L+ fal ~ p)sn(msinte — ) /4 m)
X (6(po — w1) + 0(po + w1)) (8(w — po — wa) + d(w — po + wo)) (B.40)

with wy = (p2 + m2)? and wy = ((q — p)? + mé)%. Performing the py integration leads to

p L[ Pp 1
—ig Jr(-w) / 27V 2n 2,
(1= Fr) (@ + fslw — wn))sign(w — wi) (wir” = py + m)
X (6(w — w1 —ws) + 8w — wy + wo))
— (1= fr(=w))(1 + f(w + wi))sign(w + wi) (w17’ = py + my)

X (5(w +wi —wy) +6(w 4wy +w2))>

(B.41)
Each d-function can only be non-zero for one sign of w — w;. Now we define
np(w) = fo(lw)), nrw) = fe(lwl) . (B.42)
We use
fe(—w) + fp(w) = -1 (B.43)
fr(=w) + fr(w) = 1 (B.44)
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and relations as sign(w —wq) f(w—w1)d(w—w1 —wq) = f(wa)d(w—w1 —ws) etc. to rewrite

discX (w) = —ig” / %m
(1= nplen) + ) (17 7+ )5 — 1
+ (@7 + Py = m)d(w +wi +w2) )
+ (np(@) +np()) (@0 =Py + m)ow - wi + wp)
+ (17" +py — m)d(w + wr — wz>))
(B.45)

This expression can be compared to (B) and agrees with (3.6) in [72]E.With an application
in thermal leptogenesis in mind, we can set my, = 0, leading to

e =Cr=(Ss) =0. (B.46)

From this one can find for Ay

d? 2
A = _g2/ (2753 8w17rw2 ( (1= ny + no) ((wwr — gp)d(w — wy — wo)

+ (ww1 + qp)d(w + wy + ws))
+(n1 + n2) ((wwr — gqp)d(w — wi + wo)
+ (wwy + gp)d(w + wy — (.dg)))
(B.47)

with the notation ny = np(w;) and ny = ng(ws). This expression is as a whole antisym-
metric in w and allows to rewrite

Ay = — z/ (;lﬂl;g 8317;2 ( wor (1= ny +12) (61 + 62) + (ny + n2) (55 + 64))

—sign(w)qp((l —ny +n2)(01 — &) + (1 +n2) (04 — 53)))
(B.48)

where

(51:(5(|w\—w1—w2), 52:5(\w|—|—w1 +C<J2),

B.49
55 = (jw| + wn —wa), 64 = 3(|w| — wi + ) (B.49)

'Eq.([BZ5) differs from (2.22) in [7] by a difference in the projectors, probably due to a typo.
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At this point it is already clear that d, can not contribute. We change to spherical
coordinates ¢, ¥, |p|. The ¢ integration is trivial and due to my = 0 one has |p| = w.
Introducing = = |p||q| cos(¥) = pq one can write

wllCll
Ar= 167r\q\ / e / 0z = zo1) (wwi (1 = ny +n2) — sign(w)z(1 — ny + ny))

wilq|
+(5(:E — To3) (wwl(m + ng) + sign(w)z(n1 + ”2))

+0(z — 2o4) (wwr (n1 + n2) — sign(w)z(n; + nz)))

(B.50)
where we used 0; = wod(x — ;). The zg; can easily be determined as
1
Top = §(q2 — w4 mi) + wi|w| (B.51)
1
Toz3 = §(q2 —w?+m}) — wi|wl (B.52)
Toga = To1- (B53)

This allows to perform the x integration,

9 </1dw1 (wfi+g1) + /3dw1 (wfs—g3) + /4dw1 (W/fa +g4)>. (B.54)

" 167]q]

Here the subscript at the fl indicates which 9; determines integration limits for the w;
integration. The f; and g; are given by

fi = wi(l—np(w)+np(jw| —wr)) (B.55)
fs = wi(np(w) +np(jw] +wr)) (B.56)
fi = wi(np(w) +nplw —|w])) (B.57)

(B.58)

g1 = Sign(w)(%(w2 — o’ —mj) —wilw|) (1 = np(w) + np(jw| —w1)) (B.58
g = sign(w) (%(uﬂ — = m2) + wrlw]) (@) + s (lw] + o)) (B.59)
g1 = Sign(w)(%(w2 — o’ —mj) — wilw|) (nr(wr) + np(ws — |w|)) (B.60)

(B.61)

It is easy to see from Eqs. (B30), (B31) and (B.20) that

B, = 16_T9|2q|</1dw1f1 n /3dw1f3 n /4dw1f4) (B.62)
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f1 and g; are contributions from decay and inverse decays ¥; < Wy¢ and can lead to a
zero temperature part if my > mg. f3, f1, g3 and g4 come from scatterings in the plasma.
It is interesting to note that

fi = (B.63)
g1 = ga (B.64)

despite the fact that they originate from different processeﬂ. The f; are symmetric in w,
the g; antisymmetric. In the rest frame of the bath (B33l ff) can be written as

Bw - A

p = 2B g (B.66)
q

c = C (B.67)

B; is symmetric in w while A; is antisymmetric. As a consequence, a; is antisymmetric
while b7 is symmetric which is consistent with [I03] . The stem functions of all f;, g; are
known analytically, so the only remaining difficult task is the determination of the proper
integration limits. This shall be done now.

d(Jw| = wy —ws) : In order for zg; to be a zero point, the condition
lw] —w; >0 (B.68)

has to be fulfilled. In any case,
w1 > my = 0. (B69)

In order for the z-integral to be non-zero it requires

|$01| < wl\q|. (B?O)
The solutions to |z¢;| = wi|q| are
1% —m2
wi = §T¢(\W| +|q]) (B.71)

with ¢ = w? — . One has to distinguish three different regimes: For 0 < |w| < |q| and
w1 > 0 only wy is a solution, and it puts a lower bound on w; in order for the inequality
(B.10) to be fulfilled, leading to w; > wy. On the other hand the condition (B.6S)) has

2Note that despite the equalities (B:63) and (B:64) the Landau damping terms fy, g4 never lead to a
contribution to ¥ at zero temperature while the decay and inverse decay parts fi and g; can contribute
as expected. The reason lies in the different integration limits, see (B:6R) and (B.Z0)
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to be fulfilled, and since for |w| < |q| always w; > |w]|, there is no contribution to the
integral from this region. For |q| < |w| < (g? +m§,)% both wy < 0 and non of them makes

(BT3) an equality. For |w| > (q® + mé)% both w. are always smaller than |w| and (BZ75)
leads to w_ < |w| < wy. Therefore

wt

/1 dor = (¢ — m2) /w do (B.72)

d(Jw| +wy —wq) : Here the three conditions

lw|+w; > 0 (B.73)
w; > m=020 (B74)
|[zos| < wilq| (B.75)

have to be fulfilled. In this case (B73) is made an equality for w; = —wy. Again the same
regimes have to be distinguished. For |w| < |q| only —w_ makes (B7H) an equality while
—w, is negative and not a solution. —w_ is positive as required by (B.Z4) and forms a
lower bound. For |q| < |w| < (¢? —|—m35)% both —wy are positive and solutions. Due to its
first order pole at |w| = |q| the solution —w, is now the larger one and forms an upper
limit, leading to —w_ < w; < —wy. For |w| > (g* +m§,)% both —w. are negative and not
solutions of (B.7H)) as an equality. Then there is no contribution to the integral from that
region. Therefore

[aon=oc-e) [ dwn oo -y [ (B.76)

—W— —W—

d(Jw|—wi4wsz) : The situation here is exactly the same as for 41, in particular zoy = oy,
except that the condition |w| —w; > 0 has to be replaced by

lw| —wy <0, (B.77)

enforcing wy > |w|. Again for |w| < |q| only w, fulfils (BZ0), imposing a lower bound on
wy and for |w| > (q® + mé)% both w,y are solutions. w; is the upper and w_ the lower
bound here. For 0 < ¢* < mJ none of w. is a valid solution. This time the condition
([B7D) selects out the region ¢* < 0, hence the integral is

/4dw1 = 0(—q¢) /:o dw, (B.78)

+
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The combined expressions are

Ar = 16_75;1‘ (9(q2 —mj) [WFl + Gl}:i
+ 0(—¢%) [ng - Gg]

io + (9(q2)9(m§j — %) [ng — Gg] ::+

+ O |whi+ ] )

and
5= (o o]
+ 0(=¢") [F?,]io +0())0(mE — ) | ::i
+ 0(—¢%) [F4]i>
with

(B.79)

(B.80)

1
F, = %(ln <eﬁw1 + 1) —In (1 _ eﬂ(wl—\w\))) + ?<Li2< _ eﬂw) — Liy <eﬁ(w1—|w|))>

(B.81)

Py = ﬂ(ln(1_eﬁ<w1+lwl>) ~In (eﬁw1+1)) +%<Li2(eﬁ(‘”+“’)) —Lig(—eﬁ“’l)>

g
F, = R
and
m2 — ¢
Gy = sign(w) ¢2 < —In (14 %) +1n (e — 6ﬁlwl))
+ %(m (1= by 1 (14 ™))
+ % <Li2(eﬁ(“1_|w|)) — Lig(— eﬁ“’l)>
2 _ 2
G3 = sign(w) m¢2 1 <]n (1 + eﬁ‘%) —1In (eﬂ(wl-i-\w\) _ 1))
+ %(ln (1 - eﬁ(“1+|w|)) —In (1 + eﬁ“’l)>
+ % (Lia (7 tD) — Lig(— 1))
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(B.85)



Gy=G,. (B.86)

Liy is the dilogarithm function. The F; as displayed here are not real in all areas of
the parameter space due to the choice of different branches of the (di)logarithms, but
the imaginary terms always cancel since the choice of branch is always the same at both
integration limits in (BZ9), (B:R0). This analytic result for InXf is in agreement with
numerical plots shown in [72] as well as our own numerical cross-checks. The #-functions
are, as in (B1), a consequence of energy- and momentum conservation. We have neglected
interactions within the bath by using bare Ws- and ¢-propagators. In the quasiparticle
regime, those can to leading order be included by the replacement mg — My(T), cf.
Sec. B-TTland the discussion in Sec 2233 Note that the analytic structure we find disagrees
with [7]. The author there claims that ImXf(w) = 0 for ¢* < —|mj — mj|. We cannot
confirm this.

B.3 Analytic Properties of Propagators and Self Ener-
gies

In the following we list a number of well-known, but convention-dependent relations for
the propagators and self energies in equilibrium. All relations are not affected by the
three-dimensional Fourier transform. We therefore drop the argument q or x. The prop-
erties of the fermionic propagators S and self-energies > are analogue.

Propagators:

AT(w) = -A"(w), (B.87)
At(w)* = 4+(w), ) (B.88)
A(w) = %A‘(w)—? / Z%i, E”w) (B.89)
AR(W) = ——A 73/ ‘;‘;i _“’L; , (B.90)
ReAt(w) = —ReAR(w)=-A"(w), (B.91)
mAY(w) = mARW) =P / Z:Zi — (B.92)
A —w) = ARW). (B.93)
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Self-energies:

I (W) = -1 (W), (B.94)

I (w)* = H+( ), (B.95)

M (w) = ——H P/Qmw — (B.96)

M) — p/zm - —w) , (B.97)

RellA(w) = ReHR( ) =P / 2—7”5 E“’w) : (B.98)

Ml (w) = —ImIR(w) = %H‘(w) | (B.99)

M(~w) = % w). (B.100)

Relation to the Laplace transform:

M (s=—iw+e) = Iw) (B.101)

(s =—iw—¢€) = Hé(w) (B.102)

B.4 ST in the narrow Width Limit and the use of Cauchy’s
Theorem

When performing the w integration, all terms can be dissected into pieces that, as func-
tions of w, are proportional to expressions of the form

> dw etitw k Buw
/_mﬂ (@ +i0)? = wl) ((w — D)2 - w3) ta“h( 2 ) (B.103)

where k£ can be zero, one or two and + indicate different alternatives. The integrand is
finite along the real axis. Along the imaginary axis, the first factor grows on one side and
falls on the other due to the exponential. The tanh has an infinite number of poles along
the imaginary axis. To tackle the problem, we expand it in an infinite series,

:I:ztw k ﬁw
/ Z . (B.104)
(w+iT)? —w?) ((w—il)? — w2) (22)2 + (£ + nr)?
All poles are of first order. In addition to the four poles wq £I" there are infinitely many

poles at i%(l + 2n)m. To determine the integral along the real axis, we apply Cauchy’s
theorem. The exponential determines in which halfplane the contour has to be close, and
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out of the four poles wq & ¢I' always two contribute. For even k their contribution to
the integral is

: : 4
Im <e”(i“"‘+zr) (wq & 4T)* ! tanh (M)) (B.105)

4l wq 2

Here the £ in the three places at which it shows up in (B.J03) has to be chosen in
accordance with the sign of the exponential in (BI03). For odd & the contribution is

1
4T'w

, , £
Re <e”(i“’q+w) (wq £ i0)* ! tanh <M)) . (B.106)

q

In addition there is an infinite number of contributions from the poles of the tanh which
are represented by the terms in ([BI04)). The contribution from the n-th therm is

2 eiiwntwk
47— n
"B (@n +10)2 — w2) ((wn — iT)? — w2)

(B.107)
i
Wy, = iBW(1+2n). (B.108)

This allows to determine the integral with arbitrary precision by taking into account
sufficiently many terms. Obviously their contribution decreases sharply with increasing
n. Numerical checks show that for I'qy < m, the contributions from the poles of the tanh
are always many orders of magnitude smaller than those from +wq &+ ¢I". Simply using
the latter gives results in very good agreement with exact numerical solutions.
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