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AbstratVarious features of the observable universe an be understood as the result of nonequi-librium proesses during the early stages of its history, when it was �lled with a hotprimordial plasma. In many ases, inluding osmologial freezeout proesses, only a fewdegrees of freedom were out of equilibrium and the bakground plasma an be viewedas a large heat bath to whih these ouple. We study salar and fermioni quantum�elds out of thermal equilibrium that are weakly oupled to a large thermal bath withthe goal to formulate a full quantum mehanial desription of suh proesses. The bathomposition need not be spei�ed. Our analysis is based on Kadano�-Baym equations,whih are the exat equations of motion for the orrelation funtions in a nonequilibriumquantum system. We solve the equations of motion for the most general Gaussian initialdensity matrix, without a spei� ansatz or a-priori parameterisation and for arbitrarilylarge deviations from equilibrium. The solutions depend on integral kernels that ontainmemory e�ets. These an in good approximation be solved analytially when the �eldexitations have a small deay width. The full solutions are ompared to results obtainedby other methods. We prove that the desription in terms of a stohasti Langevin equa-tion is equivalent to the Kadano�-Baym equations. We show the emergene of standardBoltzmann equations as a limit of the Kadano�-Baym equations in a dilute gas whenoherenes play no role and disuss quantum Boltzmann equations as an intermediatestep. We analyse the properties of the solutions in terms of the equation of state andinvestigate the validity and impliations of quasipartile approximations. We �nd thatthe equation of state an deviate signi�antly from that of a gas of quasipartiles even ifthe resonanes in the plasma show quasipartile behaviour in deays and satterings. Adetailed disussion is devoted to the in�uene of modi�ed dispersion relations and widthsin the plasma on gain and loss rates. We illustrate our results in two models for the bathomposition, a salar and a Yukawa model. In both ases we give analyti expressionsfor the imaginary parts of the self energies, whih govern the gain and loss rates. Finally,we disuss appliations in osmology. Our results provide a toolkit for a full quantummehanial desription of osmologial freezeout proesses. We disuss the appliationto thermal leptogenesis, where quantum e�ets are likely to be of great relevane. Thesalar model an also be used to desribe the late phase of reheating. In this ontext, weanalyse under whih irumstanes large thermal masses an put an upper bound on thereheating temperature.



ZusammenfassungViele Eigenshaften des beobahtbaren Universums lassen sih als Ergebnisse von Niht-gleihgewihtsprozessen in seiner Frühgeshihte verstehen. Dabei be�nden sih in vielenFällen nur wenige Freiheitsgrade auÿerhalb des thermishen Gleihgewihts und der Restdes Plasmas fungiert als Wärmebad, an das diese shwah koppeln. Um eine quantenmeh-anishe Beshreibung dieser Prozesse zu ermöglihen, untersuhen wir das Verhalten vonskalaren und fermionishen Quantenfeldern auÿerhalb des thermishen Gleihgewihts, dieshwah an ein thermishes Bad gekoppelt sind. Die Zusammensetzung des Bads mussfür eine allgemeine Betrahtung niht spezi�ziert werden. Unsere Analyse basiert aufKadano�-Baym Gleihungen. Diese sind exakte Bewegungsgleihungen für Korrelations-funktionen von Quantenfeldern auÿerhalb des thermishen Gleihgewihts. Wir lösen dieBewegungsgleihungen für gauÿshe Anfangsbedingungen mit beliebig groÿer Abweihungvom Gleihgewiht in voller Allgemeinheit. Die gefundenen Ausdrüke enthalten Inte-gralkerne, die niht-markowshe E�ekte parameterisieren. Wenn die Zerfallsbreiten derResonanzen im Plasma klein sind, können diese Memory-Integrale approximativ gelöstwerden. Wir vergleihen die exakten Lösungen mit Ergebnissen, die mittels andererVerfahren gefunden wurden. Wir beweisen, dass die häu�g verwendete stohastisheBeshreibung durh eine e�ektive Langevin Gleihung zu den Kadano�-Baym Gleihun-gen äquivalent ist. Wir zeigen des weiteren, dass die klassishen Boltzmann Gleihungenden Grenzfall der Kadano�-Baym Gleihungen in einem verdünnten Gas bilden, wennQuantenkohärenzen vernahlässigbar sind, und diskutieren den Zusammenhang zu Quan-ten Boltzmann Gleihungen. Letztere sind e�ektive, von den Kadano�-Baym Gleihungenabgeleitete Boltzmann Gleihungen, in denen niht-markowshe und Quantene�ekte durhzeit- und temperaturabhängige Stoÿterme parameterisiert sind. Bei der Formulierung ef-fektiver Boltzmann Gleihungen, die deutlih einfaher zu lösen sind als die Kadano�-Baym Gleihungen selbst, ist es von besonderem Interesse, unter welhen Umständender Ein�uss des Mediums auf die Kinematik von Streuprozesen und Zerfällen in einerBeshreibung durh Quasiteilhen parameterisiert werden kann. Dies ist der Fall, wenndie Zerfallsbreiten der Resonanzen im Plasma klein sind und O�-Shell E�ekte vernah-lässigt werden können. Die Dispersionsrelationen der Quasiteilhen und die Zustands-gleihung des Systems können jedoh selbst dann stark von dem in einem Gas aus freienQuasiteilhen zu erwartenden Verhalten abweihen. Wir illustrieren unsere Ergebnisse an-hand eines skalaren und eines Yukawa Modells für die Zusammensetzung des Bads. Beide�nden direkte Anwendung in der Kosmologie. Das skalare Modell kann zur Beshrei-bung der Reheating Phase am Ende der kosmishen In�ation verwendet werden. Mitden Ergebnissen aus dem Yukawa Modell stehen die Mittel für eine quantenmehanisheBeshreibung der thermishen Leptogenese zur Verfügung.
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0.2 Introdution IntrodutionToday, there exists overwhelming evidene suggesting that the observable universeis expanding and originates from a volume that was many orders of magnitude smallerthat its urrents size (f. [1, 2℄). Consequently, the ompressed matter was exposed toenormous density, pressure and temperature in the past. Many properties of the universeare the result of out-of-equilibrium proesses during this very early, high-temperaturephase (f. [1, 3℄). This inludes osmologial phase transitions and the various freezeoutproesses that are ruial to give many osmologial parameters the values we observetoday, in partiular the reation of a matter-antimatter asymmetry, the prodution ofdark matter, the formation of light elements and the deoupling of photons leading tothe osmi mirowave bakground. Another example is the reheating after a possiblein�ationary phase.The energy densities during the very early epohs of the history of the universe byfar exeed those that an be realised in any human made experiment. Thus, the earlyuniverse is an exellent testing ground for preditions from theories beyond the standardmodel of partile physis. Hene, the study of nonequilibrium proesses in the primordialplasma is interesting from a osmology as well as partile physis point of view.Freezeout proesses in the early universe are usually desribed by means of Boltzmannequations. These are �rst order di�erential equations that desribe the time evolution ofpartile number densities. They have proven an extremely useful tool in desribing thereation of light elements and the deoupling of the osmi mirowave bakground fromthe primordial plasma in good agreement with observation [4℄. However, Boltzmannequations are based on semilassial approximations. They an be expeted to hold ina weakly oupled, dilute plasma, but not in the presene of strong interations or athigh density. Given that the temperature of the primordial plasma inreases as one goesbakwards in time, it is questionable whether Boltzmann equations orretly desribeproesses that ourred earlier in the history of the universe. Furthermore, Boltzmannequations are unable to desribe quantum phenomena like oherent osillations, whihmay e.g. ruially in�uene the generation of a matter-antimatter asymmetry.This makes a fully quantum mehanial treatment mandatory. Relativisti quan-tum mehanis generally enfores the abandonment of the onept of partile numbers,with orrelation funtions of quantum �elds replaing them as the dynamial quantities.Unfortunately, the resulting equations of motion in most ases annot be solved in atransparent way. One way to proeed is to employ numerial methods, generally at theloss of transpareny. Though Boltzmann equations usually also have to be solved numer-ially to obtain quantitative results, they allow a better qualitative understanding of the7



results and their parameter dependene, and often an approximate analyti solution anbe obtained. In many ases numerial methods urrently appear to be the only hoie.Following another strategy, one an save some of the bene�ts of Boltzmann equations bymodifying them to so alled quantum Boltzmann equations. They an be derived fromthe full quantum theory as e�etive equations of motion when a number of simplifyingassumptions is justi�ed. Though being formulated in terms of partile numbers or las-sial phase spae distribution funtions, quantum Boltzmann equations inlude some ofthe quantum and non-Markovian e�ets left out by ordinary Boltzmann equations. Thisallows to treat omplex problems without losing trak of the relevant parameters.In this work, we follow a third approah. Cosmologial freezeout proesses for di�erentpartile speies are tehnially relatively simple problems if two onditions are ful�lled.First, it is assumed that only one or a few partile speies freeze out simultaneously andthe number of degrees of freedom out of equilibrium is muh smaller than the total numberof degrees of freedom in the plasma. Seond, they should not oinide with other eventssuh as osmologial phase transitions. We furthermore assume that self interations ofthe �eld that is out of equilibrium are weak. However, we emphasise that we do not putany restritions on the deviation from equilibrium. It an be arbitrarily large. In thisase, there are three important simpli�ations:(1) The system is spatially homogeneous and isotropi.(2) In good approximation only one or a few degrees of freedom are out of equilib-rium. The primordial plasma forms a large thermal bath to whih these are weaklyoupled. The many degrees of freedom in the bath make bakreation negligible,it approximately remains in thermal equilibrium on the timesale assoiated withpartile reations. The temperature hanges only slowly due to Hubble expansion.(3) The quanta of the �eld whih is out of equilibrium mainly satter with quanta ofthe bath �elds, not amongst themselves. The oupation numbers in the bath aredetermined by few parameters, the temperature T and hemial potentials µi, whihonsiderably simpli�es omputations of the gain and loss rates. The same appliesto deays and inverse deays.This thesis is devoted to systems in whih these onditions are ful�lled. In this asewe an solve the equations of motion for the quantum mehanial orrelation funtionsanalytially up to an integral kernel that ontains memory e�ets. The solutions allowto keep trak of all parameters and give a deep oneptual insight into the behaviour ofquantum �elds out of thermal equilibrium. They an, if the above onditions are ful�lled,diretly be applied to a number of osmologial situations inluding baryogenesis, darkmatter prodution or the late phase of reheating. Furthermore, the improved oneptualunderstanding of quantum e�ets in a hot plasma an also provide a guideline whendealing with tehnially more omplex problems.8



0.3 Outline OutlineIn hapter 1, we introdue the standard tehniques to treat quantum systems out ofequilibrium. We brie�y summarise the derivation of the standard Boltzmann equationsin Se. 1.1 and disuss the limitations of their appliability in the following setion, 1.2.In Se. 1.3, the Kadano�-Baym equations are derived from �rst priniples. They are theexat equations of motion for orrelation funtions of quantum �elds out of equilibriumand an be viewed as quantum mehanial generalisation of the Boltzmann equations.In hapter 2 we fous on systems in whih the onditions we formulated in the in-trodution are ful�lled, namely �elds that are weakly oupled to a large thermal bath.In Se. 2.1 we prove that in suh systems the Kadano�-Baym equations are equivalentto a desription in terms of a stohasti Langevin equation. Then, in Se. 2.2, we solvethe Kadano�-Baym equations for salars and fermions. The rest of the hapter is de-voted to the disussion of the solutions. We �rst study the approah to equilibrium inSe. 2.2.3. Then, in Se. 2.3.1 and 2.3.2, we show that Boltzmann equations emerge fromthe Kadano�-Baym equations in a dilute gas and brie�y disuss quantum Boltzmannequations as an intermediate step. Finally, in Se. 2.3, we study the plasma properties.We in partiular investigate the validity of the quasipartile approximation and the rolee�etive masses in the plasma. A detailed disussion is devoted to kinemati aspets, inpartiular the role of o�-shell and sattering proesses in the plasma.In hapter 3 we onretise the previous disussion by onsidering two spei� models,a salar oupled to a bath of two other salars by a trilinear oupling and a fermionwith Yukawa oupling. Analyti solutions for the imaginary parts of the self energy areprovided for both ases.In hapter 4 we apply the results to two osmologial problems. Se. 4.1 uses the salarmodel to study kinemati bounds on the reheating temperature after osmi in�ation. InSe. 4.2 we use the results from the Yukawa model to formulate a framework that pavesthe way to a fully quantum mehanial treatment of leptogenesis.Chapter 5 summarises and disusses our results. Many of the results presented in thiswork, in partiular Se.2.1, 2.2 and most of 3.1, have previously been published in [5℄.Throughout this thesis we use natural units ~ = c = kB = 1, where kB is the Boltz-mann onstant. For the metri in Minkowski spae we hose the onvention
gµν = diag(1,−1,−1,−1).
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Chapter
1

Thermodynamics of Quantum
Systems

In this hapter we review the standard methods used to desribe nonequilibrium systems.In Se. 1.1 we brie�y sketh the derivation of the standard Boltzmann equations, following[3℄. Then, in Se. 1.2, we disuss when and why those an be expeted to fail. InSe. 1.3 we then introdue the Shwinger-Keldysh formalism and derive the Kadano�-Baym equations whih provide exat equations of motion for the orrelation funtions ofquantum �elds out of equilibrium.1.1 Boltzmann EquationsBoltzmann equations are equations of motion for lassial phase spae distribution fun-tions. In abstrat form they read
L̂[fi] = Ĉ[f1, . . . , fn]. (1.1)Here fi are the distribution funtions for n partile speies and L̂ is the Liouville operatorwhih in general relativity has the form

L̂ = pµ∂xµ − Γµ
ρσpρpσ∂pµ . (1.2)Here pµ is the onjugate momentum to the oordinate xµ and Γµ

ρσ are the Christo�elsymbols or metri onnetion. L̂ desribes the lassial propagation of the system inphase spae when there are no interations. Ĉ is the ollision term that haraterises the10



interations. It is omputed from S-matrix elements that are imported into the lassialframework from quantum �eld theory and allows for the reation and annihilation ofpartiles in inelasti ollisions. The two sides of (1.1) show the semilassial nature ofBoltzmann equations. The system is understood as an ensemble of lassial partiles withdistribution funtions fi. They move freely aording to L̂ between pointlike quantummehanial interations haraterised by Ĉ.In a Friedmann-Robertson-Walker universe (1.2) reads
L̂ = ω∂t − Hp2∂ω, (1.3)where ω and p are energy and momentum and H is the Hubble parameter. The numberdensity an be de�ned as
ni = gi

∫

d3p
(2π)3

fi. (1.4)Then (1.1), divided by ω and integrated by parts, leads to
ṅi + 3Hni =

gi

(2π)3

∫

d3p
ω

Ĉ[f1, . . . , fn]. (1.5)
gi ounts the number of internal degrees of freedom of speies i. Here we have negletedredshifting of ω beause we assumed that the partiles are massive and their energy
ω = ωp =

√p2 + m2 is dominated by the mass. The momentum ontribution getsredshifted, but an be negleted if the partiles are heavy. For massless partiles, the
3Hn term in (1.5) has to be replaed by 4Hn. The ollision term for a proess withpartiles of speies i . . . k in the initial and u . . . v in the �nal state an be written as
gi

(2π)3

∫

d3pi

ωi
Ĉ =

−
∫ k
∏

a=i

(

ga

(2π)3

d3pa

ωa

) v
∏

b=u

(

gb

(2π)3

d3pb

ωb

)

δ(4)(pi + . . . + pk − pu − . . . − pv)

(

|M|2i...k→u...vfi . . . fk(1 ± fu) . . . (1 ± fv) − |M|2u...v→i...kfu . . . fv(1 ± fi) . . . (1 ± fk)
)

.(1.6)
M are the S-matrix elements for satterings with partiles of speies i . . . k in the initialand u . . . v in the �nal state. The ± are + if the orresponding speies is bosoni and −if it is fermioni, in the former ase enhaning the transition due to the indued e�etand in the latter ase suppressing it due to Pauli bloking. Quantum mehanial oneptsas internal degrees of freedom or Bose-Einstein/Fermi-Dira statistis have to be imple-mented by hand. The ollision term ouples the Boltzmann equations for the di�erentspeies. This generally makes it di�ult to solve them. Fortunately, for many ases of in-terest there are tremendous simpli�ations, though numerial omputations may be done11



without them. Due to phase spae arguments, one usually has to onsider only deaysand 2 → n satterings. Unless many di�erent speies freeze out simultaneously, one anin good approximation assume that all speies exept for the one(s) freezing out are inequilibrium. The only hange that Hubble expansion does to equilibrium distributionfuntions of relativisti partiles an be parameterised in a time dependent temperature.In absene of Bose-Einstein ondensation or Fermi degeneray, the oupation numbersare small for all momenta. One an replae 1± f ≈ 1 and use Maxwell-Boltzmann distri-butions for all speies in equilibrium, regardless of their spin. On the side of the matrixelements, the symmetries of the interations an often lead to simpli�ations. For in-stane, in transitions that only involve CP -invariant interations, |M|2 is invariant underexhange of the initial and �nal state. If the bakground medium remains in equilibriumat any time, detailed balane implies that the sum of all gain rates γ>
i and the sum ofall loss rates γ<

i ful�l the relation γ<
i = ±e−βωγ>

i and the Boltzmann equation for thedistribution funtion simpli�es to
ḟi + 3Hfi + γi(fi − f eq

i ) = 0, (1.7)where γi = γ<
i − γ>

i and f eq
i is the distribution funtion in equilibrium. Sine γ

≷
i dependon the various distribution funtions, they are funtions of time. Hubble expansion an beviewed as an external fore that ats on the system. As long as γ ≫ H , the interationsontinuously keep all speies in thermal and hemial equilibrium. The state an then beharaterised by the temperature and, potentially, a hemial potential for eah onservedquantity. These few parameters uniquely ditate the abundane of partiles for eahspeies. When γ ≪ H , γ an be negleted in (1.7). Then the only hange that niundergoes is due to Hubble dilution and the number of partiles in a omoving volumeremains onstant. Physially this means that the density of possible sattering partnersbeomes so low that the orresponding speies e�etively deouples. While the rest of theplasma keeps ooling, its omoving number density remains frozen roughly at the value ithad when γ ≈ H . The photons of the osmi mirowave bakground, the light elementsin the intergalati medium, dark matter and the exess of matter over antimatter in theuniverse are all relis that have been reated this way.1.2 Limitations of Boltzmann EquationsDespite their great suess, Boltzmann equations have shortomings. These a�et both,the propagation as well as the interation of partiles.The Boltzmann equations assume that lassial partiles move freely between satter-ings. This neglets the fat that they feel the interation with neighbouring partiles atany time, not just during satterings. It also neglets their quantum mehanial natureas wavepakets whih beomes relevant one the average distane between two partiles12



is omparable to its de Broglie wavelength. It also neglets entanglement and the possi-bility of oherent osillations of the quantum state during propagation, whih annot bedesribed in the piture of lassial partiles.The sattering amplitudes are omputed from S-matrix elements in vauum. Theyhave no knowledge of the system's history and ignore possible non-Markovian e�ets.In addition, the omputations are based on the partiles' properties in vauum and donot take into aount possible hanges due to their environment. It is a well knownphenomenon that the properties of partiles are hanged if they move in a medium.Examples are the e�etive mass of eletrons in a solid state or the Debye sreening of aharged partile in a plasma. If those e�ets are not too strong, they an be parameterisedby introduing a quasipartile whih resembles the properties of the sreened partile seenfrom some distane. Then Boltzmann equations for those quasipartiles an orretlydesribe some properties of the system while ordinary Boltzmann equations give inorretresults. These e�ets an be expeted to beome inreasingly important with inreasingdensity.1.2.1 Breakdown of the Partile ConeptThe basi dynamial quantities in Boltzmann equations are partile numbers or phasespae distributions. In an interating quantum �eld theory, partile number is not a wellde�ned quantity. In many situations, one an nevertheless refer to elementary exitationsof �elds as partiles. This is very well motivated for if they exist as asymptotially freestates. In the asymptoti limit, long before and long after a ollision, the interation anbe negleted and the theory is e�etively free. In this limit, the partile number is wellde�ned, allowing to prepare and measure states of sharp partile number. The spetrumis disrete, with eah state orresponding to freely moving on-shell partiles. The notionof partiles is still a very useful onept in an interating theory if the spetrum, ordensity of quantum mehanial states, shows sharp peaks a some points in phase spae.Those resonanes an be interpreted as 'unstable partiles'. If the oupling is weak, theirproperties are usually very lose to what would be a stable partile in absene of theinteration.The density of states with a given set of quantum numbers in phase spae haraterisedby a spetral funtion or spetral density ρ. The analyti struture of a typial spetralfuntion, in this ase for simpliity of a salar, is given by
ρ ∝ ImΠRq (ω)

|ω2 − q2 − m2 − ΠRq (ω)|2 . (1.8)Here ω and q are the energy and spatial momentum omponents of the four vetor q =
(ω,q). ΠR is the retarded self energy. In a free theory, ΠR is zero everywhere and ρproportional to the sum of two δ funtions at the poles ±ωq. With interation, the poles13



of (1.8) appear as the omplex solutions to
ω2 − q2 − m2 − ΠRq (ω) = 0. (1.9)If those lie on the real ω-axis below the lowest multipartile threshold, they give riseto δ-funtion shaped ontributions to ρ that an be interpreted as stable states. Whenthey lie lose to the real axis, they still give rise to a sharp peak of ρ with a widthgiven by their imaginary part and a height proportional to its inverse. Those an beinterpreted as unstable states, or resonanes. The poles and peaks in ρ apart from thoseorresponding to the one partile state an be interpreted as bound states. In addition,the spetrum reeives ontinuous ontributions above the lowest multipartile thresholdwhere Π shows a disontinuity aross the real ω axis and the numerator of (1.8) beomesnon-zero. However, in vauum the one-partile state remains the exitation with thesmallest energy, and ImΠR is zero below the lowest multipartile threshold.In a plasma the spetrum beomes more ompliated 1 . In the simplest ase, whenthe bakground plasma is in equilibrium, ΠR beomes a funtion of a single temperature

T and, in general, hemial potentials2. The self energy then an always be written as thesum of its value in vauum and a temperature dependent orretion. The latter an giverise to additional solutions to (1.9) that orrespond to olletive exitations in the plasma,and the existing solutions are shifted by a temperature depended amount. Furthermore,in general ΠR is omplex along the whole ω axis and all resonanes, even those that arestable in vauum, obtain a �nite width due to the possibility of satterings with virtualquanta in the plasma.We now de�ne ω = Ω̂q as the omplex solution ω(q) to (1.9) that onverges to ωq inthe limit of vanishing oupling and 3
Ωq = ReΩ̂q, (1.10)
Γq = 2ImΩ̂q. (1.11)In a homogeneous and isotropi system, Ω̂q an only depend on |q| and not on thediretion. If the width of a resonane is small, namely

Γq ≪ Ωq, (1.12)1Throughout this work, we use the words 'spetrum' and 'spetral funtion' equivalently. Thoseare not to be onfused with the spetrum of (eigenvalues of) the full Hamiltonian whih is of ourseindependent of the state in whih the system is prepared, and therefore in partiular independent ofthe temperature. The temperature dependene here arises from the statistial nature of thermodynamisystems. The resonanes are not to be viewed as exitations above the ground state, but statistialaverages over exitations above states of di�erent energies ontained in the grand anonial ensemble.2In (1.9) we have written Π as a funtion of a single four vetor q. In general, Π(x1, x2) in oordinatespae depends on two four vetors independently. However, in the following we fous on the ase of athermalised bakground plasma. Sine thermal equilibrium is a translation- and rotation invariant state,
Π only depends on the relative oordinate x1 − x2 and its Fourier transform Πq(ω) on a single vetor q.3Many authors use de�nitions that orrespond to Γq = ImΩ̂q. Here we hose the de�nition (1.11)beause it relates Γ to the relaxation time of the system in real time by τ = 1/Γ, see Se.2.214



the spetral funtion shows sharp peaks at ω = ±Ωq. Landau pointed out [6℄ that in thisase the system an in good approximation be understood as a gas of sreened partileswith modi�ed interations, or quasipartiles. Ωq an be interpreted as a quasipartile'senergy. In this ase one an formulate an approximate dispersion relation that puts theresonane quasi-on-shell, �xing its four vetor to (Ωq,q). The dispersion relations aregiven by the real part of (1.9),
ω2 − q2 − m2 − ReΠRq (ω) = 0. (1.13)Then one an approximate

Γq ≈ −ImΠRq (Ωq)

Ωq

. (1.14)An e�etive mass M 4 an be de�ned as5
M(q, T ) =

(

Ω2q − q2
)

1
2 . (1.15)We will in the following all Ωq and other possible solutions of (1.13) for whih thedispersion relation ω(q) is similar to that of a free partile free quasipartiles. Thisapplies if the momentum dependene of the orretion due to ReΠ is small 6, hene wewill refer to the approximation in whih this dependene is negleted as free quasipartileapproximation.Obviously the real part of the self energy is responsible for the temperature- andgenerally momentum-dependent mass shift while its imaginary part gives rise to the �nitewidth. One immediate feature of quasipartiles is that they are not stable and deay witha relaxation time of τ = 1/Γ [7℄. In partiular they do not exist as asymptoti (free) statesbeause their properties are given by interations. This in general makes the de�nition ofa partile number ambiguous, though useful de�nitions have been suggested [8, 9℄.To understand the properties of the plasma, one an distinguish between three quali-tatively di�erent regimes.1. partile regime: If the orretions to ReΠR and ImΠR oming from interationswith the medium are both small with respet to the partile's on-shell energy ωqand all mass di�erenes to partiles with the same onserved quantum numbers,4Throughout this thesis we generally use small letters for zero temperature masses and apital lettersfor thermal masses. The only exeption are the masses of right handed neutrinos in Se.4.2 whih we, inaordane with the ommon notation in the literature, denote by apital letters.5There are other possible de�nitions than (1.15), e.g. de�ning M as the momentum independent pieeof ReΠR that omes from loal diagrams, as the energy Ωq=0 when the quasipartile is at rest, as theminimal possible value of Ωq as a funtion of |q| or via the inverse urvature of Ωq at its minimum as afuntion of |q|. For free quasipartiles, the meaning of all of those oinides.6It is by no means lear that the dispersion relation has a paraboli form if one moves away from aminimum. The ompliated band strutures in ondensed matter systems are an obvious ounter-example.15



the in�uene of the plasma on partile properties is negligible. Then onventionalBoltzmann equations an be expeted to desribe the kinematis of the system withsu�ient auray. However, even in this regime, they annot aount for e�etsrelated to the oherene of quantum states.2. quasipartile regime: If the orretion to ReΠR due to the medium beomes non-negligible, it an qualitatively hange the shape of the spetrum. The resonanesthat exist at T = 0 reeive a temperature dependent mass shift, and new resonaneswhih orrespond to olletive exitations an appear. However, if the width of allof them is still muh smaller than their energy and their dispersion relations do notross or get so losed together that the �nite widths overlap, all plasma waves anbe desribed as quasipartiles in the sense de�ned above. Their properties an di�ersigni�antly from those of the partiles in vauum, but kinematially they in goodapproximation behave like (generally unstable) partiles. In the following we willalways refer to resonanes with these "partile-like" properties as quasipartiles,regardless of whether they originate from sreened partiles or have a olletiveorigin7.3. broad resonane regime: If the width of a resonane beomes omparable to itsenergy, it annot be interpreted as a (quasi)partile with a well-de�ned energy anymore. This is expeted in a strongly oupled system. It an also happen for a smalloupling onstant if the temperature, and onsequently density, beome su�ientlyhigh that interations with the bakground plasma make the lifetime of a state short,hene its width large.In a weakly oupled theory there is a simple lassial argument whih suggests that thequasipartile piture should hold even in the high temperature regime T ≫ m. One shouldertainly observe quasipartile behaviour if the kineti energy is muh larger than thepotential, or interation energy. The interation energy an be estimated by a Coulomblaw Epot ∼ g/r where g is the gauge oupling onstant and r the distane between twopartiles. This distane in a hot plasma is ∼ T−1, thus Epot ∼ gT . Remarkably, this resultoinides with a �rst order quantum �eld theoretial omputation for the thermal Debyemass [10℄. In ontrast, the kineti energy is Ekin ∼ T , hene g ≪ 1 implies Ekin ≫ Epot.However, this simple piture does not always hold, see 2.3.3.7This deviates from the more ommon de�nition that restrits quasipartiles to those resonanes thatorrespond to dressed partiles, as opposed to olletive phenomena. However, for our later disussionthe origin of the plasma waves is of no relevane and we refer to them as quasipartile whenever theyhave a de�nite dispersion relation.
16



1.2.2 Osillations and Deoherene E�etsBoltzmann equations are formulated in terms of number densities for lassial parti-les. By onstrution they annot desribe quantum phenomena like oherent osillations,whih an be of great importane in the early universe. In the standard model of partilephysis the quark mass eigenstates are not idential to their �avour eigenstates, but ro-tated by the CKM matrix [11℄. The reason is that the Yukawa ouplings to the Higgs �eldthat give the quarks masses do not ouple to the same diretions in �avour spae as theSU(2) gauge oupling. A similar situation may be realised in the see-saw mehanism [12℄,see appendix A 8 . There the Yukawa oupling matrix that onnets heavy neutrinos toHiggs and leptons is generally not diagonalisable in the same basis as the harged leptonYukawa ouplings. This an have important onsequenes in leptogenesis [13℄, where theCP-violating deay of a heavy Majorana neutrinos into Higgs and leptons generates amatter-antimatter asymmetry9. The deay of a heavy Majorana neutrino produes lep-tons in a oherent superposition of �avours, leading to �avour osillations. The generatedlepton number is determined by the ompetition between deays and satterings thatprodue leptons and their inverse, the washout proesses. Between their prodution andpossible absorption in a washout proess, the leptons propagate through the plasma. Dur-ing this time, �avour dependent interations with the bakground plasma an destroy theoherene of the quantum state. This has an e�et on the e�ieny of washout proesses.For example, if the interations via the harged lepton Yukawa ouplings happen fast,they e�etively freeze the system in the orresponding �avour state. When leptogenesisis studied in terms of Boltzmann equations, there are two di�erent ways to proeed. Ei-ther one sums over all �avours and does the omputations for an overall lepton numberor one omputes the prodution rates for eah �avour separately. Either way, lassialBoltzmann equations annot take proper aount of oherent osillations and deoherenee�ets.We here hose the example of leptogenesis. These e�ets are of ourse not spei�to this example. They an be relevant whenever ouplings are involved that single outdi�erent diretions in �avour or another spae.1.3 Kadano�-Baym EquationsThe previous onsiderations point out the need for a full quantum mehanial desriptionof nonequilibrium systems.8Here we refer to the type-I see-saw mehanism. Two alternative ideas to explain the smallness ofneutrino masses are known as type-II and type-III see-saw mehanism: the addition of SU(2) tripletHiggses [14℄ and the addition of SU(2) triplet fermions [15℄ to the Standard Model.9The importane of �avour in leptogenesis has been studied by a large number of authors, see [16℄and referenes therein for a partial list. 17



Suh a desription is provided by the Kadano�-Baym equations. In this approah,the n-point orrelation funtions replae the phase spae distribution funtion as thedynamial quantities by whih a system is desribed. Their equations of motion aregiven by the Kadano�-Baym equations [17℄. Those an be derived losed-time-path orShwinger-Keldysh formalism [18, 19, 20, 21℄. Here we brie�y sketh the derivation of thistehnique, mainly following [22, 8℄.A nonequilibrium system is not a pure quantum state and has to be desribed in termsof a density matrix ̺. Expetation values of observables are omputed as
〈A〉 = Tr (̺A) (1.16)The density matrix ̺ has a statistial interpretation as an ensemble of idential systemsin di�erent quantum states10. (1.16) involves an averaging over quantum �utuations andstatistial initial onditions. This will beome more obvious later. Diret omputationof the time evolution of ̺ is di�ult11, but it is equivalent to study the time evolutionof all orrelation funtions of the theory. The in�nitely many degrees of freedom of theinitial density matrix are mapped onto their in�nitely many initial onditions. Thougha full haraterisation of the system in priniple involves all n-point funtions, it is oftensu�ient to study the one- and two-point funtion. This in partiular applies to all asesof interest in this work.Time ordered orrelation funtions an, as in �eld theory at vanishing temperature,be omputed from a generating funtional. However, it turns out useful not to restritthe analysis to �elds with real time arguments, but instead onsider a time orderingalong some general ontour C in the omplex time plane. We will �rst derive the relevantequations for real salars and then for fermions. The generalisation to omplex salars andgauge �elds is straightforward, though in the latter ase the treatment of the unphysialgauge degrees of freedom an be tehnially hallenging and the phenomenology is muhriher. For instane, in ovariant gauges at �nite temperature, Faddeev-Popov ghosts areneessary to remove unphysial degrees of freedom even in abelian gauge theories, and innon-abelian gauge theories a new mass sale, the magneti mass, appears, see [10℄.1.3.1 BosonsConsider a real salar �eld φ with a Lagrangian L = Lfree−V where Lfree is the Lagrangianof the free �eld and V some potential that provides a self interation. We speify the10Note that partile number in relativisti quantum �eld theory is not a onserved quantity. Thereforedi�erent states of the same system inlude the vauum, pure states with an arbitrary number of quantaand possible superpositions of states with di�erent partile numbers.11Generally, the von Neumann equation an only be solved perturbatively for a redued density matrixwith an e�etive Hamiltonian. In most pratial appliations to date, a number of additional assumptionsis made that e�etively makes this approah equivalent to what we refer to as quantum Boltzmannequations in Se. 2.3.2. A powerful formalism of this kind has been developed in [23℄ and is widely usedto treat neutrino osillations. 18
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Figure 1.1: Path in the omplex time plane for nonequilibrium orrelation funtions.ontour C as the Keldysh-ontour C (f. Figure 1.1) that starts at some initial value
x0 = ti + iǫ, runs parallel to the real x0 axis until tf + iǫ where it follows a semiirlearound x0 = tf until x0 = tf − iǫ and then runs bak to ti − iǫ. The parameter ǫ shallbe thought of as in�nitesimal. To inlude orrelation funtions for arbitrarily large timesafter ti, we send tf → ∞. A generating funtional for time ordered orrelation funtionsan be written as 12

ZC[J ] = Tr

(

TC exp

(

i

∫

C

d4xJ(x)φ(x)

)

̺

)

, (1.17)with time ordered n-pint funtions given by
〈φ(x1 . . . φ(xn)〉 =

1

Z[J ]

δn

iδJ(x1) . . . iδJ(xn)
Z[J ]

∣

∣

∣

J=0
(1.18)Here TC is the time ordering along the ontour C in the omplex time plane and

∫

C
d4x implies a time integration along that ontour while the spatial integrations d3x areperformed over the whole three dimensional spae in the usual manner. The generatingfuntional has a path integral representation
ZC[J ] =

∫

Dφ
[1]
i Dφ

[2]
i 〈φ[1]

i |̺|φ[2]
i 〉〈φ[2]
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∫
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d4x (L(x) + J(x)φ(x))

)

|φ[1]
i 〉. (1.19)Here 〈φ[1]

i | and |φ[2]
i 〉 are eigenstates of the Heisenberg �eld operator φ(ti ± iǫ) at thebeginning and end of C. In the limit ǫ → 0 one an represent

〈φ[2]
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,(1.20)leading to
ZC[J ] =

∫
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[1]
i Dφ
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i 〈φ[1]

i |̺|φ[2]
i 〉
∫ φ

[2]
i

φ
[1]
i

Dφ exp

(
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∫
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d4x (L(x) + J(x)φ(x))

)

. (1.21)12Here we hose the Heisenberg piture where ̺ is time independent.19



(1.20) provides the motivation for hoosing the losed time path C. The integrations
Dφ

[1]
i Dφ

[2]
i orrespond to an ensemble average over the initial onditions 〈φ[1]

i |̺|φ[2]
i 〉 whilethe Dφ is the usual quantum mehanial path integral averaging. The initial densitymatrix an be represented as

〈φ[1]
i |̺|φ[2]

i 〉 = Neif[φ] (1.22)with
f[φ] = α0 +

∞
∑

n=1

1

n!

∫

C

n
∏

i=1

dxiαn(x0, . . . , xi)φ(x1) . . . φ(xi). (1.23)The αn ontain the initial orrelations and vanish for times t 6= ti while N is simply anormalisation fator. In this work we will only onsider two types of initial onditions,equilibrium and a Gaussian density matrix. For both of these, f an be absorbed in anelegant way. Here we disuss Gaussian ̺, the equilibrium ase is treated in Se. 1.3.3.Gaussian initial onditions an be a good approximation for the physial reality inmany ases 13. They an be parameterised as
f[φ] = α0 +

∫

C

d4x1α1(x1)φ(x1) +
1

2

∫

C

d4x1d
4x2α2(x1, x2)φ(x1)φ(x2), (1.24)giving the exponential in (1.21) the simple shape
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d4x1d
4x2
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1

2
α2(x1, x2) + δ

(4)
C (x1 − x2)

1

2
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∂x1∂x2 − m2
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φ(x1)φ(x2)

)

× exp

(
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∫
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d4x (α1(x) + J(x)) φ(x) − V[φ(x)]

)

. (1.25)
α1 an be absorbed into the soure, J(x) → J(x) + α1(x), and α2 into the mass,
δ
(4)
C (x1 − x2)m

2 → δ
(4)
C (x1 − x2)m

2 − α2(x1, x2). This way the initial density matrixformally disappears from the omputations and only re-enters via the initial onditionsfor the orrelation funtions. As in vauum theory, in the absene of interations, V = 0,(1.25) is Gaussian and (1.21) an, after partial integration in x2 be solved as
Z free

C [J ] = N′ exp

(

−1

2

∫
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d4x1d
4x2J(x1)∆

free
C (x1, x2)J(x2)

)

. (1.26)
N′ is again a normalisation fator and ∆free

C the free propagator on the ontour withmodi�ed mass m for whih, analogue to the vauum ase,
(�1 + m2)∆free

C (x1, x2) = −iδ
(4)
C (x1 − x2). (1.27)13Note that, even if the initial density matrix is purely Gaussian, higher order orrelation funtionsbuild up at later times. 20



Here �1 = ∂µ∂
µ with all derivatives with respet to the omponents of x1. From (1.21) itis easy to see that

ZC[J ] = exp

(

−i

∫

C

d4V
[

δ

iδJ(x)

])

Z free
C [J(x)]. (1.28)As in vauum theory, one an now de�ne the generating funtional for the onnetedorrelation funtions by

W [J ] = i ln Z[J ]. (1.29)As usual, funtional derivatives of W [J ] with respet to J give onneted time ordered
n-point orrelation funtions,

δnW [J ]

δJ [x1] . . . δJ [xn]

∣

∣

∣

J=0
= (i)n+1〈TC (φ(x1) . . . φ(xn))〉c. (1.30)The e�etive ation is obtained by Legendre transform,

Γ [φc] = −W [J ] −
∫

C

d4xJ(x)φc(x), (1.31)and ful�ls the stationarity ondition
δΓ [φc]

δφc(x1)
= −J(x1) (1.32)where φc = 〈φ〉 is the expetation value of the lassial �eld, omputable from (1.30). Itallows to de�ne the n-point vertex funtional, or one-partile irreduible n-point funtion
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δnΓ [φc]

δφc(x1) . . . δφc(xn)
= −i〈φ(x1) . . . φ(xn)〉1PI . (1.33)It follows
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= −δJ(x1)

δJ(x2)
. (1.34)This, with (1.33) and (1.30), implies for the onneted two point funtion on the ontour
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d4x′(∆C(x1, x
′))cΓ2(x

′, x2) = −iδ
(4)
C (x1 − x2). (1.35)

Γ2 an be written as a free part plus a self energy Π, de�ning the latter:
Γ2(x1, x2) = Γ free

2 (x1, x2) + ΠC(x1, x2). (1.36)21



From (1.35) it is lear that Γ free
2 is the negative of the inverse free time ordered propagatoron the ontour, implying

Γ free
2 (x1, x2) = (�1 + m2)δ

(4)
C (x1 − x2) (1.37)The Dyson-Shwinger equation (1.35) an now be written in the familiar form

(�1 + m2)(∆C(x1, x2))c +

∫
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d4x′ΠC(x1, x
′)(∆C(x

′, x2))c = −iδC(x1 − x2) , . (1.38)The propagator an be deomposed as
(∆c

C(x1, x2))c = θC(x
0
1, x

0
2)∆

>(x1, x2) + θC(x
0
2, x

0
1)∆

<(x1, x2) . (1.39)The θ-funtions enfore path ordering along the ontour C, and ∆> and ∆< are de�nedas
∆>(x1, x2) = 〈φ(x1)φ(x2)〉c (1.40)
∆<(x1, x2) = 〈φ(x2)φ(x1)〉c. (1.41)The self-energy an be deomposed in the same way
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1, x

0
2)Π

>(x1, x2) + θC(x0
2, x

0
1)Π

<(x1, x2) . (1.42)In the Shwinger-Dyson equation the time oordinates of ∆C and ΠC an be on the upperor lower branh of the ontour C. To leave the ontour and turn to orrelation funtions onthe real axis, we have to pay the prie of a doubling of degrees of freedom, treating �eldson the upper and lower branh independently. We denote �elds on the upper branh bythe subsript `+' and those on the lower branh by `−'. This of ourse does not mean thatthe number of physial degrees of freedom hanges, φ− has to be viewed as an auxiliaryquantity. Consisteny obviously implies
φ+(tf ,x) = φ−(tf ,x) (1.43)Using the same notation for the orrelators and self energies, one an write

∆−+(x1, x2) = ∆>(x1, x2) , ∆+−(x1, x2) = ∆<(x1, x2) , (1.44)
Π−+(x1, x2) = Π>(x1, x2) , Π+−(x1, x2) = Π<(x1, x2) , . (1.45)

∆++, Π++ are the time-ordered and ∆−−, Π−− the anti-time-ordered two-point fun-tions and self energies. From the Shwinger-Dyson equation (1.38) one obtains for theorrelation funtions ∆< and ∆>,
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where the relative sign in the integrands is due to the anti-ausal time ordering on thelower branh of C.It is onvenient to introdue retarded and advaned propagators,
∆R(x1, x2) = θ(t1 − t2)(∆

>(x1, x2) − ∆<(x1, x2)) (1.48)
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= Π++(x1, x2) − Π−+(x1, x2)

= Π+−(x1, x2) − Π−−(x1, x2) . (1.51)They allow, with Eqs. (1.46) and (1.47), to formulate the Kadano�-Baym equations forthe orrelation funtions ∆> and ∆<,
(�1 + m2)∆>(x1, x2) = −

∫

d4x′
(

Π>(x1, x
′)∆A(x′, x2) + ΠR(x1, x

′)∆>(x′, x2)
)

, (1.52)
(�1 + m2)∆<(x1, x2) = −

∫

d4x′
(

Π<(x1, x
′)∆A(x′, x2) + ΠR(x1, x

′)∆<(x′, x2)
)

. (1.53)These an be rewritten onveniently in terms of the real symmetri and antisymmetriorrelation funtions
∆+(x1, x2) =

1

2
〈{φ(x1), φ(x2)}〉 , (1.54)

∆−(x1, x2) = i〈[φ(x1), φ(x2)]〉 , (1.55)and self-energies
Π+(x1, x2) = − i

2
(Π>(x1, x2) + Π<(x1, x2)) , (1.56)

Π−(x1, x2) = Π>(x1, x2) − Π<(x1, x2) , (1.57)23



whih an be related the retarded and advaned self-energies,
ΠR(x1, x2) = θ(t1 − t2)Π

−(x1, x2) , ΠA(x1, x2) = −θ(t2 − t1)Π
−(x1, x2) . (1.58)One an obtain a homogeneous equation for ∆− and an inhomogeneous equation for ∆+by adding and subtrating the Kadano�-Baym equations (1.52) and (1.53) and using(1.48)-(1.51) and (1.54)-(1.57),

(�1 + m2)∆−(x1, x2) = −
∫

d3x′

∫ t1

t2

dt′Π−(x1, x
′)∆−(x′, x2) , (1.59)

(�1 + m2)∆+(x1, x2) = −
∫

d3x′

∫ t1

ti

dt′Π−(x1, x
′)∆+(x′, x2)

+

∫

d3x′

∫ t2

ti

dt′Π+(x1, x
′)∆−(x′, x2) . (1.60)

∆− and ∆+ are known as spetral funtion and statistial propagator (f. [8℄). The timeordered propagator on the ontour an be expressed as
(∆C(x1, x2))c = ∆+(x1, x2) −

i

2
signC(x0

1 − x0
2)∆

−(x1, x2) . (1.61)
∆− is, up to a fator i, the Fourier transform of the spetral funtion ρ and arriesinformation about the spetrum of the system while ∆+ is related to oupation numbersof di�erent modes. From the de�nitions (1.54) and (1.55) it follows that

∆−(x2, x1) = −∆−(x1, x2) (1.62)
∆+(x2, x1) = ∆−(x1, x2). (1.63)Using miroausality and the anonial quantisation ondition for a real salar �eld,

[φ(x1), φ(x2)]|t1=t2 = [φ̇(x1), φ̇(x2)]|t1=t2 = 0 , (1.64)
[φ(x1), φ̇(x2)]|t1=t2 = iδ(x1 − x2) , (1.65)one an derive the initial onditions for ∆−.

∆−(x1, x2)|t1=t2 = 0 , (1.66)
∂t1∆

−(x1, x2)|t1=t2 = −∂t2∆
−(x1, x2)|t1=t2 = δ(x1 − x2) , (1.67)

∂t1∂t2∆
−(x1, x2)|t1=t2 = 0 . (1.68)Note that they do not depend on the physial initial onditions of the system enoded inthe initial density matrix. Those enter via the initial onditions of ∆+, the mean �eld 〈φ〉24



and their derivatives with respet to time. If the involved ouplings are small, Π an beomputed perturbatively from loop integrals that involve ∆+, ∆− and 〈φ〉,
Π = Π[∆+, ∆−, 〈φ〉].Feynman rules an be derived from (1.28). There are two di�erenes to the proedurein vauum. First, the propagator depends on two arguments separately, not only theirdi�erene. Seond, there is a doubling of degrees of freedom sine φ+ and φ− have tobe treated as two independent �elds. φ− is not physial and ats like a ghost �eld thatonly appears in the loops. Though φ± annot mix in verties, they an propagate intoeah other via ∆+− and ∆−+. Sine the ouplings are loal, only one type of �eld anappear at eah vertex. Thus there are two types of verties. The number of diagramsontributing to a ertain proess inreases by a fator 2n where n is the number of internalverties beause every vertex an be of eah type. Fortunately, in pratie only two of thefour propagators ∆±± are independent beause with (1.61) all of them an be onstrutedfrom ∆+ and ∆−.Sine our interest is motivated by osmologial problems, where the osmologial prin-iple applies, we an restrit the analysis to homogeneous and isotropi systems. In thisase all quantities only depend on the di�erene of the three vetors x1 and x2. Thegeneralisation to inhomogeneous systems is straightforward though often omputation-ally di�ult. It is onvenient to perform a Fourier transformation in the relative spatialoordinate. The orrelation funtions ∆±

q
(t1, t2) satisfy the two Kadano�-Baym equations

(∂2
t1

+ ω2
q
)∆−

q
(t1, t2) +

∫ t1

t2

dt′Π−
q
(t1, t

′)∆−
q
(t′, t2) = 0 , (1.69)

(∂2
t1 + ω2

q
)∆+

q
(t1, t2) +

∫ t1

ti

dt′Π−
q
(t1, t

′)∆+
q
(t′, t2) =

∫ t2

ti

dt′Π+
q
(t1, t

′)∆−
q
(t′, t2) , (1.70)The initial onditions (1.66)-(1.68) for the spetral funtion beome

∆−
q
(t1, t2)|t1=t2 = 0 , (1.71)

∂t1∆
−
q
(t1, t2)|t1=t2 = −∂t2∆

−
q
(t1, t2)|t1=t2 = 1 , (1.72)

∂t1∂t2∆
−
q
(t1, t2)|t1=t2 = 0 . (1.73)The physial initial onditions an in many ases be well approximated by a Gaussiandensity matrix ̺. The most general Gaussian density matrix ontains only �ve indepen-

25



dent parameters for eah mode (see [8℄),
〈φ[1]

i |̺|φ[2]
i 〉 = (2π∆+

q,in)−1/2 exp

(

iφq,in(φ[1]q − φ[2]q ) +
i∆̇+

q,in
2∆+

q,in ((φ[1]q − φq,in)2 − (φ[2]q − φq,in)2
)

−
4
(

∆+
q,in∆̈+

q,in − (∆̇+
q,in)2

)

+ 1

8∆+
q,in (

(φ[1]q − φq,in)2 + (φ[2]q − φq,in)2
)

+
4
(

∆+
q,in∆̈+

q,in − (∆̇+
q,in)2

)

− 1

4∆+
q,in (φ[1]q − φq,in)(φ[2]q − φq,in)) (1.74)with

φq,in = 〈φq(t1)〉|t1=0, (1.75)
φ̇q,in = ∂t1〈φq(t1)〉|t1=0, (1.76)
∆+

q,in = ∆+
q
(t1, t2)|t1=t2=0, (1.77)

∆̇+
q,in = ∂t1∆

+
q
(t1, t2)|t1=t2=0 = ∂t2∆

+
q
(t1, t2)|t1=t2=0, (1.78)

∆̈+
q,in = ∂t1∂t2∆

+
q
(t1, t2)|t1=t2=0. (1.79)Eq. (1.74) establishes the onnetion between the initial density matrix ̺ and the initialonditions for ∆+ and 〈φ〉. This is the only point where ̺ enters, and the modi�ed massobtained by absorbing the initial orrelation α2 into m2 does not a�et the equations ofmotion at any other time than ti sine all αi vanish for t 6= ti. A pure quantum mehanialstate with Tr̺2 = 1 is realised for ∆̈+

q,in∆+
q,in − (∆̇+

q,in)2 = 1
4
14.To derive the Kadano�-Baym equations (1.59) and (1.60), we employed standard fun-tional methods known from �eld theory in vauum. We formulated a generating funtional

Z[J ] with one soure term J from whih we obtained the e�etive ation Γ [φc] that gen-erates one-partile irreduible orrelation funtions. There exist an alternative derivation(see [8℄) that starts from a generating funtional with n non-loal soures and uses the
n-partile e�etive ations Γ (n). Those are funtionals of all onneted m-point funtions
∆(x1, . . . , xm) with m ≤ n and allow to derive equations of motion for them by �rst orderfuntional derivation, using the stationarity ondition

δΓ (n)

δ∆(x1, . . . , xm)
= 0. (1.80)In partiular, the two-partile irreduible e�etive ation [24℄ has beome a standard toolin nonequilibrium �eld theory. However, these methods are ompletely equivalent to the14If φ is oupled to other �elds, e.g. a thermal bath, entanglement with those will generally lead todeoherene even if the initial density matrix ̺φ of φ orresponds to a pure state.26



approah presented here if the full perturbative series is taken into aount. Di�erenesare tehnial and related to the trunation of the series. The n-partile irreduible e�etiveation provides a useful sheme to resum in�nitely many Feynman diagrams. It also allowsto understand in an intuitive way why the formalism is free of seular terms that appearin onventional perturbative approahes to time-dependent problems that involve morethan one time sale [8℄.The above desription was formulated in Minkowski spaetime and neglets Hubbleexpansion. A straightforward generalisation to urved spaetimes and in partiular theFriedmann-Robertson-Walker universe has been disussed in [25℄.1.3.2 FermionsThe generalisation of the above to fermions is straightforward. Analogue to Eqs. (1.40)and (1.41) one an de�ne
S>

αβ(x1, x2) = 〈Ψα(x1)Ψ̄β(x2)〉c (1.81)
S<

αβ(x1, x2) = −〈Ψ̄β(x2)Ψα(x1)〉c (1.82)(1.83)as well as the spetral and statistial propagators
S−

αβ = i〈{Ψα(x1), Ψ̄β(x2)}〉c = i
(

S>
αβ(x1, x2) − S<

αβ(x1, x2)
) (1.84)

S+
αβ =

1

2
〈[Ψα(x1), Ψ̄β(x2)]〉c =

1

2

(

S>
αβ(x1, x2) + S<

αβ(x1, x2)
) (1.85)Here Ψ is a Dira spinor and α and β are spinor indies whih we will always suppress inthe following. The symmetry relations analogue to (1.62) and (1.63) are

S−(x2, x1) = −γ0
(

S−(x1, x2)
)†

γ0 (1.86)
S+(x2, x1) = γ0

(

S+(x1, x2)
)†

γ0. (1.87)As for salars, this allows to derive Kadano� Baym equations for the spetral and statis-tial propagators,
(i6∂1 − m)S−(x1, x2) =

∫

d3x′

∫ t1

t2

dt′Σ−(x1, x
′)S−(x′, x2) , (1.88)

(i6∂1 − m)S+(x1, x2) =

∫

d3x′

∫ t1

ti

dt′Σ−(x1, x
′)S+(x′, x2)

−
∫

d3x′

∫ t2

ti

dt′Σ+(x1, x
′)S−(x′, x2) . (1.89)Here, as usual, 6∂ = γµ∂µ and the subsript 1 indiates that derivatives are to be takenwith respet to the omponents of the vetor x1.27



1.3.3 Thermal EquilibriumThermal equilibrium is a very speial state. In the spirit of the ergodi hypothesis, anylarge losed system with omponents that are in touh with eah other should approahequilibrium for late times and remain there on relevant time sales15. In Se. 2.2.3 weshow expliitly that our solutions asymptotially approah the equilibrium state on aharateristi time sale τ for arbitrary initial onditions. In equilibrium, the densitymatrix ̺ an without approximation be haraterised by a small number of parameterswhih, in the system of rest of the plasma, have a physial interpretation as temperatureand hemial potentials [27, 28℄. Then ̺ an be written as
̺eq =

exp (β (−H + µiQi))

Tr exp (β (−H + µiQi))
(1.90)where H is the Hamiltonian of the system, β the inverse temperature, Qi some on-served harges and µi the orresponding hemial potentials. In the ases we will disuss,hemial potentials are negligible, leading to

̺eq =
exp (−βH)

Tr exp (−βH)
. (1.91)There exist several formalisms to treat quantum �elds in equilibrium (see e.g. [10℄ and[29℄ for a detailed list of referenes). They are generally based on the observation that(1.91) formally is a time evolution operator in imaginary time [30℄. Here we will use thereal-time formalism whih diretly onnets to the disussion in the previous setion. Weagain onsider orrelation funtions in the omplex time plane, for a moment withoutspei�ation of a ontour. Sine equilibrium is a time- and spae-translation invariantstate, the orrelators ∆≷ only depend on relative oordinates

∆≷(x1, x2) → ∆≷(x1 − x2). (1.92)Using ̺eq as a time evolution operator and the yliity of the trae in (1.16), it is theneasy to prove that
∆<(t + iβ) = ∆>(t) (1.93)where we have suppressed the spatial dependene. (1.93) is alled the Kubo-Martin-Shwinger (KMS) relation. For it to have any meaning, the funtions ∆> and ∆< shouldbe de�ned in the strips −β ≤ Imx0 ≤ 0 and 0 ≤ Imx0 ≤ β. In momentum spae, theKMS ondition reads

∆<q (ω) = ∆>q (−ω) = e−βω∆>q (ω). (1.94)15In pratie, equilibration is a highly non-trivial issue. Many real systems, e.g. ferromagnets or glass,show ergodiity breaking on relevant time sales. Also in relativisti quantum �eld theories approximatenon-thermal �xed points an appear, see e.g. [8, 26℄.28



For ∆± that implies
∆+

q
(ω) = − i

2
coth

(

βω

2

)

∆−
q
(ω) . (1.95)The same relation an be derived for the self-energies,

Π+
q
(ω) = − i

2
coth

(

βω

2

)

Π−
q
(ω) . (1.96)The KMS relation, whih an be physially interpreted as a manifestation of detailedbalane, is unique to equilibrium and an also be used to haraterise the equilibriumstate. It allows to write the time ordered propagator in a onvenient form,

(∆C(x1 − x2))c =

∫

d4q

(2π)4
e−iq(x1−x2)

(

θC(x0
1 − x0

2) + fB(ω)
)

ρq(ω). (1.97)Here ρq(ω) = −i∆−q (ω) is the spetral funtion and
fB(ω) =

1

eβω − 1
. (1.98)Again using ̺eq as a time evolution operator, one an eliminate the initial density matrixfrom the generating funtional (1.19),

ZC [J ] =

∫

Dφ′〈φ′(x; ti + iβ)|TC exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

|φ′(x; ti)〉, (1.99)leading to
ZC [J ] =

∫

Dφ exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

. (1.100)Here, the boundary onditions are φ(t,x) = φ(t − iβ,x) and tf = ti − iβ. Let us nowspeify the ontour. It has to start at ti and end at ti− iβ. Furthermore, it should inludethe real axis if we aim to alulate orrelation funtions for real time arguments and wantto avoid analyti ontinuations 16. There is a third ondition that an be explained bylooking at ∆> and performing the trae in a set of eigenstates |n〉 of the Hamiltonian forenergies En, here for simpliity assumed to be disrete,
∆>(t1 − t2) = Z[0]−1

∑

n,m

eiEn(t1−t2+iβ)e−iEm(t1−t2)〈n|φ(t = 0,x1)|m〉〈m|φ(t = 0,x2)|n〉.(1.101)16The �rst onsistent treatment of quantum �elds in equilibrium was formulated by Matsubara fororrelation funtions with imaginary time arguments [31℄ and is widely used if all �elds are in equilibrium.Here we hose a real time ontour beause it allows to treat in- and out-of-equilibrium �elds in the sameframework. 29
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φ+ti → −∞

ti − iβ

Ret

−ti → ∞

PSfrag replaements
Figure 1.2: Path in the omplex time plane for thermal orrelation funtions.The onvergene of the sums is assumed to be governed by the exponentials, whih pro-vides the onditions

Im(x0
1 − x0

2) ≤ 0, Im(x0
1 − x0

2) + β ≥ 0 . (1.102)When onstruting a time-ordered propagator on the ontour as in (1.39), t1 is laterthan t2. Finiteness of the time ordered propagator via (1.102) therefore enfores thatthe imaginary part of the later time is smaller, meaning that the ontour an run onlydownward in Imx0 while it is free to run forward and bakward in Rex0 diretion. Tomake onnetion to the nonequilibrium disussion, we here hose the ontour Cβ shownin Fig. 1.2. The generating funtional (1.100) an be written in the same form as in thenonequilibrium ase (1.28). Cβ onsists of three parts: C1 runs along the real axis from ti,assumed to be negative without loss of generality, to −ti. C2 runs bak to ti and C3 thenparallel to the imaginary axis down to ti−iβ. It an be shown that 17 one an perform thelimit ti → −∞. Then the generating funtional ZCβ
[J ] fatorises into a part that generatesorrelation funtions on C1 ∪ C2 and one for those on C3, ZCβ

= ZC1∪C2ZC3 . Sine we arenot interested in imaginary time arguments, ZC3 is an irrelevant normalisation fator thatdrops out. The derivation of Feynman rules, inluding the doubling of degrees of freedomby introduing �elds φ± on the forward and bakward branh of the ontour, is equivalentto that for out-of-equilibrium �elds following (1.28). The omputations in equilibrium aremuh simpler than out of equilibrium beause even the dressed propagators only dependon relative oordinates. Feynman rules an be applied as in vauum, with the di�erenethat there are two types of internal verties, '+' and '−', whih ouple �elds of theorresponding kind. Pratially, omputations are done as follows: Draw all diagrams,assign '+' and '−' to eah vertex, onsidering all ombinatorial possibilities, onnettwo '+'-type verties by ∆++, two '−'-type verties by ∆−− and so on. Then performall loop integral as in vauum. To do so, one requires the four thermal propagators.They an be found from (1.97) with the knowledge of the free spetral funtion. With17There are some ambiguities related to this limit, see [10, 29℄ and referenes therein for a disussion.30



ρfreeq (ω) = 2πsign(ω)δ(q2 − m2), see (2.46), one obtains
∆++(q) = i

q2−m2+iǫ
+ fB(|ω|)2πδ(q2 − m2), ∆+−(q) = fB(ω)2πsign(ω)δ(q2 − m2),

∆−+(q) = (1 + fB(ω))2πsign(ω)δ(q2 − m2), ∆−−(q) = −i
q2−m2−iǫ

+ fB(|ω|)2πδ(q2 − m2). .(1.103)All the above expressions are omputed in the rest frame of the thermal bath and notinvariant under Lorentz transformations. The theory itself of ourse remains ovariant,and the manifest ovariane an be restored by the replaement βω → βqµu
µ, where uµis the four-veloity of the thermal bath. The bath simply singles out a frame of referenein whih omputations are partiularly simple and T = 1/β has a physial interpretationas temperature. For fermions, the anti-ommutativity of Grassmann �elds enfores adi�erent KMS relation

S<q (ω) = −e−βωS>q (ω), (1.104)leading to
S+

q
(ω) = − i

2
tanh

(

βω

2

)

S−
q

(ω) .. (1.105)It is very onvenient to express the various orrelators in terms of the spetral funtionand the distribution funtions fB,F

∆−q (ω) = iρq(ω), ∆+
q
(ω) =

(

1
2

+ fB(ω)
)

ρq(ω)
S−q (ω) = iρq(ω), S+

q
(ω) =

(

1
2
− fF (ω)

)

ρq(ω)
(1.106)where

fF (ω) =
1

eβω + 1
. (1.107)The Bose-Einstein and Fermi-Dira distributions that haraterise equilibrium arise natu-rally from the boundary onditions of the orrelation funtions. Finally, we an establishthe onnetion to usual thermodynami quantities by notiing that the generating fun-tional (1.100) for vanishing soure an be identi�ed with the partition funtion Z of agrand anonial ensemble.

Z = Z[J = 0] (1.108)This, in the in�nite volume limit V → ∞, allows to ompute thermodynami pressure aswell as entropy-, energy- and harge-density from Z[0]

P = T
∂ lnZ

∂V
=

T

V
lnZ s =

S

V
=

∂P

∂T

ǫ = − 1

V

∂ lnZ

∂β
qi =

∂P

∂µi

.The von Neumann-entropy an, as usual in the statistial quantum mehanis, be writtenin terms of the density matrix ̺,
S = −〈ln ̺〉. (1.109)31



Chapter
2

Weak Coupling to a thermal Bath

The Kadano�-Baym equations provide a tool to study the dynamis of arbitrary nonequi-librium systems. Unfortunately, in most ases they an only be solved numerially. For thease of interest in this work one an make a number of simpli�ations. These orrespondto a senario where one �eld that is out of equilibrium is in ontat with a large thermalbath. They are well-motivated for various osmologial proesses inluding leptogenesis,the freezeout of a weakly oupled dark matter partile, some models of warm in�ationor the late phase of reheating. In this ase, we an prove that the Kadano�-Baym equa-tions for the orrelation funtions are equivalent to a stohasti desription in terms of aLangevin equation for the �eld itself. Furthermore, in this situation we an �nd the mostgeneral solution to the Kadano�-Baym equations analytially up to an integral kernelthat ontains memory e�ets. In the quasipartile regime we an even solve this integraland present a full analyti leading order result. We then use this to show how the Boltz-mann equations emerge from the Kadano�-Baym equations in the limit of weak oupling.Finally, we disuss the properties of the plasma. We �nd that even in the quasipartileregime the equation of state an signi�antly deviate from the naive expetation. We alsopoint out that at high temperature, in the quasipartile regime the phase spae beomesdynamial due to the temperature dependent plasma wave dispersion relation, whih anin the simplest ase be parameterised by temperature dependent e�etive masses. Thoseput kinematial restritions on proesses in the plasma. Beyond the quasipartile regimethese are not e�etive due to signi�ant ontributions from o�-shell proesses.The assumption of weak oupling to a large thermal bath in the framework of Kadano�-Baym equations implies that self energies are omputed from equilibrium propagators ofbath �elds only. For ouplings that are linear in the out-of-equilibrium �eld, this alsoorresponds to a leading order perturbative expansion in the oupling onstant. Higher32



order orretions are known ause unertainties in perturbative solutions of Boltzmannequations at late times. The reason is that terms of higher order in the gain-and lossrates ∼ γ an give non-negligible ontributions when γt ≥ 1. Our approah makes noapproximation on the quantum side and onsistently inludes all memory e�ets at agiven order, but in priniple inherits the tehnial unertainties related to a perturbativeexpansion in time dependent problems. However, no expliit seular terms appear, theequations remain onsistent in the sense that they do not ontain time dependent "soureterms" involving the solutions of the equations of motion at di�erent order in the expansionparameter. Furthermore, in the systems of onsideration, possible ontributions are notonly suppressed by the oupling, but mainly by the number of degrees of freedom in thebath so that they may safely be negleted .The assumption that the bakground medium equilibrates instantaneously on the timesale of onsideration of ourse does not take aount of the details of the equilibrationproess. In reality, there may be e�ets related to the �nite equilibration time and the�nite size of the quasipartiles. For example, if a partile with M ≫ T deays, the releasedenergy will loally destroy the thermal equilibrium. If the separation of time sales is largeenough, suh e�ets should be small sine the total perentage of the plasma a�eted bythem is small at any time.We �rst onsider a real salar �eld that is oupled to a bath of other �elds X . with aLagrangian of the form
L =

1

2
∂µφ∂µφ − 1

2
m2

φφ2 − gφO[X ] + LX . (2.1)
O[X ] an stand for any operator of the bath �elds X 1. The oupling g is assumed to bemuh smaller than the ouplings that keep the �elds X in equilibrium. Then the time saleon whih φ evolves is muh longer than the sale τX on whih the X thermalise so thatthe bath is in loal equilibrium and an be haraterised by a single temperature T at anytime. No other assumptions are made about the nature of the X and their interations,they ould in priniple represent an arbitrary number of bosoni of fermioni �elds withvarious types of ouplings amongst eah other, inluding gauge interations. All of this isinluded in LX . We now introdue relative and entre of mass time oordinates y = t1−t2and t = 1

2
(t1 + t2) and write

∆−q (t; y) := ∆−q (t1 = t + y/2, t2 = t − y/2) (2.2)and so on. Correlation funtions of �elds in thermal equilibrium are time translationinvariant. The self energy ΠR is by assumption given by loop diagrams that only ontain
X propagators. Therefore it inherits this property, ∂tΠ

± = 0. In appendix B.1 we provethat then also ∂t∆
− = 0. Physially this is intuitive. ∆− enodes the spetrum, ifbakreation is negleted, the dressing of resonanes will happen only by interation with1We exlude the ase that O is just given by a single �eld operator, O[X ] = X .33



a time translation invariant bakground. Hene the spetrum has to be time translationinvariant. The Kadano�-Baym equations (1.69) and (1.70) then simplify to
(∂2

t1
+ ω2

q
)∆−

q
(t1 − t2) +

∫ t1

t2

dt′Π−
q
(t1 − t′)∆−

q
(t′ − t2) = 0 , (2.3)

(∂2
t1 + ω2

q
)∆+

q
(t1, t2) +

∫ t1

ti

dt′Π−
q
(t1 − t′)∆+

q
(t′, t2) =

∫ t2

ti

dt′Π+
q
(t1 − t′)∆−

q
(t′ − t2) ,(2.4)2.1 Langevin EquationIn lassial physis, a system with a few degrees of freedom that is exposed to fritionand dissipation by oupling to a large bath an be often desribed in terms of a Langevinequation. Suh approah is generally appliable when the many degrees of freedom inthe bath allow to neglet bakreation. This method an be generalised to quantum �eldtheory and has been used by various authors (f. [32, 33, 34, 9, 35, 36, 37, 38℄). Someaspets of the onnetion to the Kadano�-Baym equations has previously been disussedin [39℄. In the following we will �rst sketh the derivation of an e�etive Langevin equationfollowing [9℄ and then show its equivalene to the Kadano�-Baym equations.The starting point is the nonequilibrium generating funtional (1.21) We assume thatthe initial density matrix fatorises, ̺ = ̺φ ⊗̺X , and the interation is swithed on whenthe system starts evolving in time. It is important to realise that φ and the X havetheir time arguments on di�erent ontours. The X are all in equilibrium, so their initialorrelations an be absorbed by use of the integration ontour Cβ . φ is de�ned on theKeldysh ontour C. We now split C into a forward and a bakward part, using the φ±notation, and introdue soures J± for �elds of the di�erent branhes. Being interestedin φ, we initially set the soures for all X to zero.

Z[J+, J−] =

∫

Dφ+
i Dφ−

i 〈φi+|̺|φi+〉
∫

Dφ±DXβeiS[φ±,X ,J±] . (2.5)
DXβ indiates the hoie of boundary onditions as desribed in Se. 1.3.3. The ationof the �elds φ and X is given by

S[φ±,X , J±] =

∫ ∞

ti

d4x (Lφ(φ+) + gφ+O[X+] + J+φ+

−Lφ(φ−) − gφ−O[X−] − J−φ−) +

∫

Cβ

d4xLX (X ) , (2.6)where Lφ is the Lagrangian of a free massive �eld and φi± the �elds φ± at initial time. Inthe following we hoose as initial time ti = 0 without loss of generality. With regard to34



the integrals over X , φ± simply at as soures. The term
∫

DXβe
i

R

Cβ
d4x(LX+gφ+O[X+])

=
〈

e
i

R

Cβ
d4xgφ+O[X+]

〉

X
(2.7)has the shape of a generating funtional, where the averaging is performed only over bath�elds. We now expand the exponential in (2.7) to seond order in g, perform a spatialFourier transform and hange to new oordinates in �eld spae,

Φ(x) =
1

2
(φ+(x) + φ−(x)) , (2.8)

R(x) = φ+(x) − φ−(x) . (2.9)The �elds X and R an be integrated out, a straightforward omputation leaves [9℄
Z[J ] =

∫

DΦinDπinW(Φin; πin)

∫

DΦDξP[ξ]ei
R

d4xJ(x)Φ(x)

× δ

[

Φ̈q(t) + ω2
q
Φq(t) +

∫ t

0

dt′Π−
q
(t − t′)Φq(t′) − ξq(t)

]

. (2.10)Here the measure P[ξ] is given by
P[ξ] = exp

(

1

2

∫ ∞

0

dt

∫ ∞

0

dt′ξq(t)Π
+
q
(t − t′)−1ξ−q(t

′)

)

, (2.11)and ξq(t) is a stohasti noise. It mimis the e�et of the bath degrees of freedom on Φ.Sine the bakreation of the �eld Φ is negleted, the only relevant orrelation funtionsare
〈ξq(t)〉 = 0 , (2.12)
〈ξq(t)ξq′(t′)〉 = −Π+

q
(t − t′)δ(q + q

′) . (2.13)
Φq(t) in (2.10) satis�es the initial onditions

Φq(0) = Φq,in , Φ̇q,in(0) = πq,in . (2.14)The funtion W(Φin; πin) is a funtional Wigner transform of the initial density matrix,
W(Φin; πin) =

∫

DRine
−

R

d3xπin(x)Rin(x)̺

(

Φin +
Rin

2
; Φin −

Rin

2

) (2.15)and enodes the initial onditions.Correlation funtions for Φ an be found from (2.10) by solving the lassial stohastiLangevin equation,
(

∂2
t + ω2

q

)

Φq(t) +

∫ t

0

dt′Π−
q
(t − t′)Φq(t

′) = ξq(t) , (2.16)35



with the initial onditions (2.14).The solution of the Langevin equation is onveniently expressed by an auxiliary fun-tion fq(t) whih is de�ned as solution of the homogeneous equation
(

∂2
t + ω2

q

)

fq(t) +

∫ t

0

dt′Π−
q
(t − t′)fq(t

′) = 0 , (2.17)with the initial onditions
fq(0) = 0 , ḟq(0) = 1 . (2.18)In terms of fq(t), the solution of the Langevin equation is

Φq(t) = Φq,inḟq(t) + πq,infq(t) +

∫ t

0

dt′fq(t − t′)ξq(t
′) . (2.19)Correlation funtions an now be obtained from (2.10) by alulating the expetationvalues

〈Φq1
(t1) . . .Φqn

(tn)〉 , (2.20)whih involves averaging over the stohasti noise and the initial onditions. In a spatiallyhomogeneous system the two-point funtion an be written as
〈Φq(t1)Φq′(t2)〉 ≡ gq(t1, t2)δ(q + q

′) = gq(t2, t1)δ(q + q
′) . (2.21)The Langevin equation (2.16) implies,

(

∂2
t + ω2

q

)

〈Φq(t1)Φq′(t2)〉 +

∫ t1

0

dt′Π−
q
(t1 − t′)〈Φq(t′)Φq′(t2)〉 (2.22)

= 〈ξq(t1)Φq′(t2)〉 (2.23)
= δ(q + q

′)

∫ t2

0

dt′Π+
q
(t1 − t′)fq(t

′ − t2) , (2.24)and onsequently
(

∂2
t + ω2

q

)

gq(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)gq(t

′, t2)

=

∫ t2

0

dt′Π+
q
(t1 − t′)fq(t

′ − t2) . (2.25)(2.25) an be solved using the solution of the Langevin equation (2.16). When theinitial �eld value and its time derivative vanish,
〈Φq,in〉 = 〈Φ̇q,in〉 = 0 , (2.26)36



the relevant averages for the two-point funtion an be expressed
〈Φq,inΦq,in〉 = δ(q + q

′)αq , (2.27)
〈Φ̇q,inΦ̇q′,in〉 = δ(q + q

′)βq , (2.28)
〈Φ̇q,inΦ̇q,in〉 = δ(q + q

′)γq . (2.29)Using the solution (2.19) and the orrelations (2.13) one obtains
gq(t1, t2) = αqḟq(t1)ḟq(t2) + γqf(t1)f(t2)

+ βq

(

fq(t1)ḟq(t2) + ḟq(t1)fq(t2)
)

+

∫ t1

0

dt′
∫ t2

0

dt′′fq(t1 − t′)Π+
q
(t′ − t′′)fq(t

′′ − t2) . (2.30)Comparison of Eqs. (2.17) and (2.25) to (2.3) and (2.4) shows that the equations of motionderived from the Langevin equation an be identi�ed with the Kadano�-Baym equationswith the replaement fq(t1 − t2) ≡ ∆−
q
(t1 − t2) and gq(t1, t2) ≡ ∆+

q
(t1, t2), hene we haveproven the equivalene of both approahes.2.2 Solving the Kadano�-Baym Equations2.2.1 Solutions for SalarsThe equation for the Spetral FuntionLet us now solve (2.3).

(

∂2
y + ω2

q

)

∆−
q
(y) +

∫ y

0

dy′Π−
q
(y − y′)∆−

q
(y′) = 0 . (2.31)The solution an be found elegantly by performing a Laplae transformation,

∆̃−
q
(s) =

∫ ∞

0

dye−sy∆−
q
(y) , (2.32)whih yields

∆̃−
q
(s) =

∂y∆
−
q
(0) + s∆−

q
(0)

s2 + ω2
q

+ Π̃−
q
(s)

, (2.33)where the Laplae transform of Π− is de�ned analogue to ∆−. From (2.33), it is obviousthat the general solution of (2.31) depends on two parameters, the boundary onditionsof ∆−
q
and ∂y∆

−
q
at y = 0. An inverse Laplae transform yields

∆−
q
(y) =

(

∂y∆
−
q
(0) + ∆−

q
(0)∂y

)

∫

CB

ds

2πi

esy

s2 + ω2
q

+ Π̃−
q
(s)

. (2.34)37



Here CB is the Bromwih ontour (see Figure 3): The part parallel to the imaginary axisis hosen suh that all singularities of the integrand are to its left; the seond part is thesemiirle at in�nity whih loses the ontour at Re(s) < 0. The boundary onditions for
∆−

q
(y) are independent of the initial onditions and given by (1.71) and (1.72), leading to

∆−
q
(y) =

∫

CB

ds

2πi

esy

s2 + ω2
q

+ Π̃−
q
(s)

. (2.35)From the de�nition of the Laplae transform one an see that Π̃−(s) is real on the real
s axis beause Π−(y) is real, but it has a disontinuity aross the imaginary axis. Thede�nitions (1.50) and (1.51) give rise to the spetral representations

ΠR(ω) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

ω − p0 + iǫ
(2.36)

ΠA(ω) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

ω − p0 − iǫ
(2.37)

Π̃−(s) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

is − p0
(2.38)from whih the relations summarised in Appendix B.3 an be derived. ΠR,A

q
(ω) and Π−

q
(ω)all have disontinuities aross the real ω axis. On the axis ΠR is de�ned as

ReΠR
q
(ω) =

1

2

(

ΠR
q
(ω + iǫ) + ΠR

q
(ω − iǫ)

) (2.39)
ImΠR

q
(ω) =

1

2i

(

ΠR
q
(ω + iǫ) − ΠR

q
(ω − iǫ)

)

. (2.40)Eqs. (2.39) and (2.40) imply that
ImΠR

q
(ω) =

1

2i

(

Π̃−
q
(−iω + ǫ) − Π̃−

q
(−iω − ǫ)

)

. (2.41)and
ImΠR

q
(ω) =

1

2i
Π−

q
(ω + iǫ). (2.42)These properties are analogue to the theory in vauum. However, while in vauum ΠR isanalyti below the lowest multipartile threshold, at �nite temperature it has a disonti-nuity along the whole real ω axis, as we will show in Se. 2.3.3. Sine the integrand of(2.34) has singularities only on the imaginary axis, the seond part an be deformed to runparallel to the imaginary axis as well: CB →

∫ i∞+ǫ

−i∞+ǫ
+
∫ −i∞−ǫ

i∞−ǫ
. By hange of integrationvariables and use of the relations in Appendix B.3 the expression (2.35) an be broughtinto the form

∆−
q
(y) = i

∫ ∞

−∞

dω

2π
e−iωyρq(ω) , (2.43)38
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Figure 2.1: Bromwih ontourwhere the spetral funtion ρq(ω) is given in terms of real and imaginary part of theself-energy ΠR
q
(ω),
ρq(ω) = i∆̃−

q
(iω)

=

(

i

ω2 − ω2
q
− ΠA

q
(ω) − iωǫ

− i

ω2 − ω2
q
− ΠR

q
(ω) + iωǫ

)

=
−2ImΠR

q
(ω) + 2ωǫ

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω) + ωǫ)2

. (2.44)The inversion in the last step is trivial beause we assume that φ either arries no otherindex, suh as �avour, or the self energy is diagonal with respet to suh index. ρq(ω)ful�ls the well-known sum rule
∫

dωρq(ω) = 1. (2.45)The disussion following (1.8) an be diretly applied to (2.44). In the limit of vanishinginteration, the spetral funtion reads
ρfree
q

(ω) = 2πsign(ω)δ(ω2 − ω2
q
) (2.46)As pointed out previously, the spetrum is time translation invariant beause we negletedthe bakreation of φ on the bath. In a osmologial ontext this is of ourse not exatlytrue. Even if bakreation is negligible, Hubble expansion still ats as an external fore onthe system. However, in many relevant ases the time sale assoiated with the dynamisof the �eld that is out of equilibrium is muh shorter than that on whih the expansionis relevant, but still muh longer than the relaxation times of the stronger oupled bath�elds. Though the spetrum hanges with time and ∂t∆

− 6= 0, the inequality
∂t∆

−q (t; y) ≪ ∂y∆
−q (t; y) (2.47)39



an still hold and justify to take
∆−q (t1, t2) → ∆−q (y; T (t)).(2.47) allows to replae ∂2

t1
on the lhs of the �rst Kadano�-Baym equation (2.3) by ∂2

y .Loally, if the separation y between t1 and t2 is small, T ( t1+t′

2
) and T ( t′+t2

2
) an both bereplaed by the mean value T ( t1−t2

2
) = T (t). Then (2.3) in relative and entre of massoordinates reads

(∂2
y + ω2q)∆−q (t; y) = −

∫ y

0

dt′Π−q (y − t′, T (t))∆−q (t′; T (t)) (2.48)The entre of mass time t is now just an external parameter and (2.48) an be solved byLaplae transform in y as in the t-independent ase. The solution has the same shapeas the spetral funtion at onstant temperature (2.44), but impliitly depends on t via
T (t)2.The self-energy ΠR

q
(ω), and onsequently the spetral funtion ρq(ω), are divergentand have to be renormalised. Physial partile properties shall be de�ned in vauum.Hene, the renormalisation onditions are formulated at zero temperature. In the limit

T → 0 one then diretly reovers the familiar interpretation of masses and ouplingsfrom vauum theory. This is possible beause medium e�ets are not relevant at veryshort distanes and no UV divergenes additional to those in vauum appear in thetheory. No temperature dependent ounter-terms are needed and the usual mass and wavefuntion renormalisation at zero temperature an be applied. In (2.44) ω2
q
is replaed by

ω2q(0) = m2
0 + q2, where m0 is the bare mass of the �eld φ. We require that the spetralfuntion has a pole at ω2

q
= m2 + q2 for T = 0,

ω2
q
− ω2q(0) − ReΠR

q
(ωq)|T=0 = 0 . (2.49)The self energy is now expanded around ωq and renormalisation of the wave funtionallows to absorb another divergene,

ReΠR
q
(ω) = ReΠR

q
(ωq)|T=0 +

(

1 − Z−1
) (

ω2 − ω2
q

)

+ ReΠ̂R
q
(ω) , (2.50)where ReΠ̂R

q
(ω) is the �nite part and

Z−1 = 1 − 1

2ωq

∂ReΠR
q
(ω)

∂ω

∣

∣

∣

ω=ωq,T=0
. (2.51)2This proedure does of ourse not take proper aount of memory e�ets. If T hanges signi�antlyover the time of onsideration, a orret omputation requires the use of a quantum Boltzmann equationwith time dependent spetrum or even a full numerial solution of the Kadano�-Baym equations.40



The spetral funtion (2.44) now takes the form
ρq(ω) = Z

−2ZImΠR
q
(ω) + 2ωǫ

(

ω2 − ω2
q
− ZReΠ̂R

q
(ω)
)2

+
(

ZImΠR
q
(ω) + ωǫ

)2
. (2.52)The renormalized spetral funtion ρr

q
(ω) = Zρq(ω) takes same shape as (2.44) whenexpressed in terms of renormalised quantities, namely the renormalized �eld operator

φr =
√

Zφ and the renormalized self-energy ΠR,r
q

(ω) = ZΠ̂R
q
(ω),

ρr
q
(ω) =

−2ImΠR,r
q

(ω) + 2ωǫ
(

ω2 − ω2
q
− ReΠR,r

q (ω)
)2

+
(

ImΠR,r
q (ω) + ωǫ

)2 . (2.53)The divergenes of spetral funtion and statistial propagator an be removed in the sameway by mass and wave funtion renormalisation at zero temperature. In the following wewill drop the supersript `r' to keep the notation simple.Solution for the Statistial PropagatorWe now turn to the Kadano�-Baym equation (2.4) for the statistial propagator, whihfor initial time ti = 0 is given by
(∂2

t1
+ ω2

q
)∆+

q
(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)∆+

q
(t′, t2) = ζ(t1, t2) , (2.54)with

ζ(t1, t2) =

∫ t2

0

dt′Π+
q
(t1 − t′)∆−

q
(t′ − t2) . (2.55)The solution an be written as a sum of the solution ∆̂+

q
(t1, t2) to the homogeneousequation

(∂2
t1

+ ω2
q
)∆̂+

q
(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)∆̂+

q
(t′, t2) = 0 . (2.56)and an inhomogeneous piee. The full solution is given by

∆+
q
(t1, t2) = ∆̂+

q
(t1, t2) +

∫ t1

0

dt′∆−
q
(t1 − t′)ζ(t′, t2) , (2.57)as one an easily verify. There is no derivative with respet to t2 in the homogeneousequation. Thus, t2 an be viewed as a parameter. Then (2.56) is idential to (2.31) withan additional parameter t2. That allows to read o� the general solution from (2.34),

∆̂+
q
(t1, t2) = Aq(t2)∆̇

−
q
(t1) + Bq(t2)∆

−
q
(t1) . (2.58)41



The de�nition of ∆+ implies the symmetry ∆̂+
q
(t1, t2) = ∆̂+

q
(t2, t1), whih allows to write

Aq(t2)∆̇
−
q
(t1) + Bq(t2)∆

−
q
(t1) = Aq(t1)∆̇

−
q
(t2) + Bq(t1)∆

−
q
(t2) . (2.59)Use of the boundary onditions (1.71)-(1.73), ∆−

q
(0) = ∆̈−

q
(0) = 0 and ∆̇−

q
(0) = 1, leadsto the relations

Aq(t) = Aq(0)∆̇−
q
(t) + Bq(0)∆−

q
(t) , Bq(t) = Ȧq(0)∆̇−

q
(t) + Ḃq(0)∆−

q
(t) . (2.60)

Aq(t) and Bq(t) an be inserted into (2.59). The symmetry of ∆̂+
q
(t1, t2) then implies

Bq(0) = Ȧq(0). The initial state of the system is therefore haraterised by three on-stants, whih an be identi�ed with the initial orrelations appearing in (1.74)Eqs. (2.57), (2.58), (2.60) and the initial onditions (1.77)-(1.79) now provide the fullsolution for the statistial propagator,
∆+

q
(t1, t2) = ∆+

q,in∆̇−
q
(t1)∆̇

−
q
(t2) + ∆̈+

q,in∆−
q
(t1)∆

−
q
(t2)

+ ∆̇+
q;in (∆̇−

q
(t1)∆

−
q
(t2) + ∆−

q
(t1)∆̇

−
q
(t2)
)

+ ∆+
q,mem(t1, t2) , (2.61)where

∆+
q,mem(t1, t2) =

∫ t1

0

dt′
∫ t2

0

dt′′∆−
q
(t1 − t′)Π+

q
(t′ − t′′)∆−

q
(t′′ − t2) . (2.62)This ontribution to the statistial propagator, whih is independent of the initial ondi-tions, is often referred to as memory integral. It an be expressed in the form

∆+
q,mem(t1, t2) = −

∫ ∞

−∞

dω

2π
e−iω(t1−t2)H∗

q
(t1, ω)Hq(t2, ω)Π+

q
(ω) , (2.63)where [9℄

Hq(t, ω) =

∫ t

0

dye−iωy∆−
q
(y) . (2.64)In (2.61) three of the �ve parameters of the initial density matrix (1.74) reappear asinitial onditions for the statistial propagator. The other two are reovered as initialonditions for the �eld expetation value, or one-point funtion. The �eld Φ(x) in (2.8)an be identi�ed with the physial �eld expetation value [22℄ while R(x) is a response�eld. With the knowledge of the previous setion, we an write (2.19) as

Φq(t) = Φq,in∆̇−
q
(t) + Φ̇q,in∆−

q
(t) +

∫ t

0

dt′∆−q (t − t′)ξq(t′). (2.65)42



Performing the initial ensemble, stohasti noise and quantum mehanial averages as in(2.10) one obtains
〈φq(t)〉 = φ̇q,in∆−q (t) + φq,in∆̇−q (t). (2.66)The solution (2.65) agrees with the expression found in [32, 40℄. We have assumed that thesystem is in a symmetri phase and the minimum of the e�etive potential is at 〈φ〉 = 0.With Eqs. (2.61) and (2.66), all initial orrelations in the Gaussian initial density matrix(1.74) are reovered.At this point, we should note that the formalism we presented beomes more in-volved when onsidering non-Gaussian initial onditions other than thermal equilibrium.Then the Kadano�-Baym equation for the statistial propagator (1.70) ontains additionalterms from the initial orrelations [22℄. In many physially relevant ases Gaussian initialonditions are a good approximation to the physial reality. However, they do not overall potentially interesting states. An obvious example is thermal equilibrium. Thereforeit is not possible by any hoie of the parameters in (1.74) to produe a time translationinvariant solution. These problems are addressed in some detail in [41, 42℄.Let us now disuss the properties of the above solutions. ∆+

q,mem(t1, t2) for late timesdetermines the equilibrium on�guration for the statistial propagator. Only the �rsttwo lines of (2.61) depend on the physial initial onditions. Sine they are diretlyproportional to ∆− and its derivatives, they are damped exponentially by ImΠR as onean see from (2.53). This beomes expliitly obvious in the quasipartile regime. InSe. 3.1 we present plots of the orrelation funtions for a partiular model for the bath.Quasipartile RegimeFor small width Γq, ρ an be well approximated by a Breit-Wigner funtion
ρq(ω) ≃ Zq

2Ωq

sign(ω)Γq

(|ω| − Ωq)2 + 1
4
Γ2

q

, (2.67)around the quasipartile peaks. Here Γq is the quasi-partile width
Γq = −Zq

ImΠR
q
(Ωq)

Ωq

, (2.68)and
Zq =

(

1 − 1

2Ωq

∂ReΠR
q
(ω)

∂ω

∣

∣

∣

ω=Ωq

)−1

. (2.69)Away from the quasipartile peaks, ρq(ω) is not well-approximated by (2.67), but any ωintegration will be strongly dominated by the peak region. This allows to perform the43



integral in (2.43). If ±Ω̂q are the only solutions to (1.9), one obtains
∆−

q
(y) ≃ Zq

sin(Ωqy)

Ωq

e−
Γq|y|/2 ≈ sin(Ωqy)

Ωq

e−
Γq|y|/2, (2.70)where the last step assumes that ReΠR is smooth around ω = Ωq. For the statistialpropagator to leading order in Γq this yields

∆+(t; y) ≈
∆+

q,in
2

(cos(2Ωqt) + cos(Ωqy)) e−Γqt

− ∆̈+
q,in

2Ω2
q

(cos(2Ωqt) − cos(Ωqy)) e−Γqt

+
∆̇+

q;in
Ωq

sin(2Ωqt)e
−Γqt

+
coth(βΩq

2
)

2Ωq

cos(Ωqy)
(

e−
Γq|y|/2 − e−Γqt

)

. (2.71)To obtain the last result, we have used Eqs. (1.95) and (2.42) to write
Π+

q
(ω) = (1 + 2fB(ω)) ImΠR

q
(ω) (2.72)and then applied Cauhy's theorem to perform the ω integration in (2.63). This in inpriniple problemati beause the fator 1 + 2fB from the KMS relation has in�nitelymany poles along the imaginary axis. However, generally the integration in Hq(t, ω), see(2.64), produes quasi-poles at ±Ωq. One an, as previously, argue that the ω-integralis always dominated by the regions near the poles and therefore replae ω by Ωq beforeusing Cauhy's theorem. This approximation is questionable for t ≪ 1/Γ but reasonablefor all later times, when H∗

q
(t1, ω)Hq(t2, ω) develops narrow peaks around ±Ωq and �nallyapproahes a form that is proportional to ρq(ω), an approximate δ-funtion, see Se. 2.2.33.We have also negleted Γq in the arguments of the distribution funtions. Thus, it anbe argued that the ontributions from the poles on the imaginary axis are small exeptfor early times4. This is on�rmed by numerial omparison for the ases relevant for thiswork.Note that the solution (2.71) for ∆+ does not beome time translation invariant inthe limit of vanishing interation, Γq → 0 and Ωq → ωq, unless one hooses ∆̇+

q;in = 0and ∆+
q,in = Ω2

q
∆̈+

q,in. Instead, it osillates with twie the plasma frequeny Ωq → ωq.3Note also that the ommon pratie to use a narrow Breit-Wigner funtion like (2.67) as an approx-imate δ-funtion is only justi�ed if the funtion that it is multiplied with under the integral does nothange rapidly (e.g. osillates) between Ωq−Γq < ω < Ωq + Γq. This does not pose a problem here, butare has to be taken when inserting ∆± into loop integrals.4See orresponding disussion for fermions in B.4.44



In this limit ∆± an be understood as that of a free nonequilibrium propagators. Theyorrespond the propagators in an ensemble of states that is haraterised by some Gaussiandensity matrix in a free quantum �eld theory. However, the osillations with t are not aonsisteny problem sine ∆+ itself is not an observable. As we will see in Se. 2.3.1, e.g.the energy density ǫq omputed from (2.71) is time translation invariant in the free limit.Eqs. (2.70) and (2.71) show expliitly that the system approahes equilibrium indepen-dent of the initial onditions after a harateristi time τ = 1/Γ whih is sometimes referredto as the lifetime of a quasipartile. This an be seen by taking the limit t → ∞. ThenEqs. (2.70) and (2.71) ful�l the KMS relation (1.95). Here we prefer the term relaxationtime for τ instead of lifetime. It is more preise beause the abundane in the plasmais non-zero even in equilibrium. Furthermore, if one starts with an underpopulation ofmodes, equilibration atually means an overall prodution of quasipartiles. Examples arethe thermal prodution of dark matter partiles or that of the heavy neutrinos in thermalleptogenesis. Finally, the term lifetime an also be misleading beause it suggests thatone starts with a given number of partiles that deay one by one. In fat, in a relativistiplasma a ontinuous reation and annihilation takes plae with an overweight of eitherthat leads to equilibration and τ should rather be seen as a relaxation time for the systemas a whole.If (1.9) has more solutions than ±Ω̂q and the narrow width ondition (1.12) is ful�llednear all of them, all of those behave like quasipartiles even though they might have a ol-letive origin. The integration an still be performed and the generalisation of Eqs. (2.70)and (2.71) is straightforward. ∆∓ of ourse impliitly depend on T via ΠR.2.2.2 Solutions for FermionsSpetral Funtion The Kadano�-Baym equations (1.88) and (1.89) for fermions anbe solved in the same way as for bosons. With the assumptions made in the beginning ofthis hapter, the equation for the spetral propagator reads
(iγ0∂y − 6qqq − m)S−q (y) =

∫ y

0

dy′Σ−q (y − y′)S−q (y′), (2.73)where 6qqq = qiγ
i. Again, we perform a Laplae transform

S̃q(s) =

∫ ∞

0

dye−sySq(y), (2.74)and orrespondingly for the self energy, to obtain
S̃−

q
(s) =

(

−iγ0s + 6qqq + m + Σ̃−q (s)
)−1

iγ0Sq(0). (2.75)The equal-time antiommutation relations for fermions imply
S−q (0) = iγ0. (2.76)45



As for bosons, the initial onditions for the spetral propagator do not depend on thephysial initial onditions. The bak-transformation goes via the Bromwih ontour,using the same deformation as in the salar ase.
S−q (y) = i

∫ ∞

−∞

dω

2π
e−iωyρq(ω) (2.77)with

ρq(ω) =

(

i

6q − m − ΣR
q
(ω) + iǫγ0

− i

6q − m − ΣA
q
(ω) − iǫγ0

) (2.78)The integrand shall now be inverted. Σ arries two spinor indies and an be expandedin the basis
Σ = Σ(S)1 + iγ5Σ(P ) + γµΣ

µ
(V ) + γµγ5Σ

µ
(A) +

1

2
σµνΣ

µν
(T ). (2.79)In the simplest ase, when there is no C and P violation, the pseudosalar and axialvetor part vanish. We assume that there is only one �avour or Σ is diagonal in �avourspae. These simpli�ations have to be dropped when applying the result to leptogenesis,where CP violation and �avour mixing are essential. Finally we drop the tensor piee

Σ(T ) beause it will not appear in the examples we disuss in the following hapter. Thenthe spetral funtion takes the shape
ρq(ω) = −2Im

(

1

6Q −M

)

= −2Im

( 6Q + M
Q2 −M2

) (2.80)with the vetor Q = q + iǫu − ΣR
(V ) and the salar M = m + ΣR

(S). Here u is the four-veloity of the thermal bath. In the system of rest of the bath u = (1, 0, 0, 0). The Lorentzomponents of Σ an onveniently be expressed by the three salar funtions aq(ω), bq(ω)and cq(ω),
ΣR

(V ) = aq(ω) 6q + bq(ω) 6u, ΣR
(S) = cq(ω) . (2.81)The funtions aq(ω), bq(ω) and cq(ω) have to be omputed from Feynman diagramsontributing to ImΣR

q
(ω). In the limit of vanishing interation (2.80) simpli�es to

ρfree
q

(ω) = 2π( 6q + m)sign(ω)δ(q2 − m2) (2.82)Statistial Propagator The equation for the statistial propagator an be written as
(iγ0∂t1 − 6q6q6q − m)S+

q
(t1, t2) −

∫ t1

0

dt′Σ−
q
(t1 − t′)S+

q
(t′, t2) = ζq(t1, t2) (2.83)with

ζq(t1, t2) = −
∫ t2

0

dt′Σ+
q
(t1 − t′)S−

q
(t′ − t2). (2.84)46



We follow the same strategy as in the salar ase. The full solution an be written as thesolution Ŝ+
q
(t1, t2) to the homogeneous equation
(iγ0∂t1 − 6q6q6q − m)Ŝ+

q
(t1, t2) −

∫ t1

0

dt′Σ−
q
(t1 − t′)Ŝ+

q
(t′, t2) = 0 (2.85)and a memory integral S+

q,mem(t1, t2). Following the same steps as in the salar ase andusing the symmetry relations (1.86) and (1.87), one an �nd
Ŝ+

q
(t1, t2) = −S−q (t1)γ

0S+q (0, 0)γ0S−q (−t2) (2.86)and
S+

q,mem(t1, t2) = −
∫ t1

0

dt′S−
q

(t1 − t′)ζ(t′, t2), (2.87)hene
S+

q
(t1, t2) = −S−q (t1)γ

0S+q (0, 0)γ0S−q (−t2)+

∫ t1

0

dt′S−
q

(t1−t′)

∫ t2

0

dt′′Σ+
q
(t′−t′′)S−

q
(t′′−t2).(2.88)The solution for the nonequilibrium statistial propagator is, to the best of our knowledge,original and have not been known in the previous literature.Weak Coupling We again onsider the quasipartile regime. This time we assumefor simpliity that Ψ is su�iently heavy and weakly oupled that one an neglet thethermal mass orretion with respet to the intrinsi mass5. This is e.g. ful�lled for theheavy neutrinos in leptogenesis or a su�iently weakly oupled dark matter andidate.The thermal width has to be kept beause there is no large width at zero temperatureompared to whih it ould be negleted. Finally, let us assume that the self energy is apure Lorentz vetor, Σ(S) = 0 and Σ = Σµ

(V )γµ. We an then deompose
Σ+

q
(ω) = − i

2
(1 − 2fF (ω))Σ−

q
(ω) = (1 − 2fF (ω)) ImΣR

q
(ω)

= (1 − 2fF (ω)) Im (aq(ω) 6q + bq(ω) 6u) . (2.89)Then the spetral propagator simpli�es to
S−(y) = e−

Γq|y|/2

(

iγ0 cos(ωqy) − γγγq− m

ωq sin(ωqy)

)

, (2.90)5Here we use the term "intrinsi mass" to refer to the mass a partile has in vauum, namely the poleof the two-point funtion after renormalisation. "E�etive mass" or "thermal mass" then refers to thehange of loation of this pole due to the interation with the medium.47



from whih also Ŝ+ an be found by insertion into (2.88). Here we have de�ned
Γq = −2Im

aq(ω) + ωbq(ω)

ω

∣

∣

∣

ω=ωq

. (2.91)The memory integral an be written in the form
∫

dω

2π

(
∫ t1

0

dy1S
−(y1)e

iωy1

)

Σ+(ω)

(
∫ t2

0

dy2S
−(−y2)e

−iωy2

)

e−iω(t1−t2). (2.92)We again aim to �nd a simple expression in terms of the parameters m and Γq. Afterinserting (2.90) and (2.89) into (2.92), the narrow width limit allows to perform the variousintegrations. As for the Bose-Einstein distribution in the salar ase, are has to be takenbeause 1−2fF (ω) = tanh
(

βω
2

) has an in�nite number of poles along the imaginary axis.Fortunately, those do not ontribute signi�antly exept for early times, see AppendixB.4. To leading order in Γq the result is
S+

q,mem(t1, t2) ≈
tanh (βωq/2)

2ωq (

e−
Γ/2|t1−t2| − e−

Γ/2(t1+t2)
)

×
(

(m − γγγq) cos(ωq(t1 − t2)) − iγ0ωq sin(ωq(t1 − t2))
) (2.93)or

S+
q,mem(y; t) ≈ 1

2ωq

(1 + 2fF (ωq))

×
(

e−
Γ/2|y| − e−Γt)

) (

(m − γγγq) cos(ωqy) − iγ0ωq sin(ωqy)
)

. (2.94)Again, one an expliitly see the approah to thermal equilibrium by verifying that theFourier transforms of the propagators (2.90) and (2.94) ful�l the KMS relation (1.105) inthe limit t → ∞.2.2.3 Approah to Thermal EquilibriumIn the previous hapter we showed expliitly that the system approahes thermal equi-librium on timesales 1/Γ in the quasipartile regime. We now want to derive this resultwithout use of the narrow width approximation. For simpliity, we will demonstrate theequilibration for salars, the generalisation to fermions is straightforward. Equilibriuman be haraterised by the ondition that the integral
∆+

q
(t, ω) =

∫ 2t

−2t

dyeiωy∆+
q

(

t +
y

2
, t − y

2

)

, (2.95)whih beomes a Fourier transform for t → ∞, satis�es the KMS ondition asymptotially,
∆+

q
(∞, ω) = − i

2
coth

(

βω

2

)

∆−
q
(ω) .. (2.96)48



Sine ∆−
q
(t) and ∆̇−

q
(t) fall o� exponentially, at times t ≫ 1/Γ only the memory integralremains, and nothing else matters. One then obtains

∆+
q
(∞, ω) = ∆+

q,mem(∞, ω) = −|Hq(∞, ω)|2Π+
q
(ω) . (2.97)The quantity Hq(∞, ω) at late times approahes the Laplae transform of the spetralfuntion,

Hq(∞, ω) =

∫ ∞

0

dτe−i(ω−iǫ)τ∆−
q
(τ)

= ∆̃−
q
(iω + ǫ)

=
1

s2 + ω2
q + Π̃q(s)

∣

∣

∣

s=iω+ǫ

= − 1

ω2 − ω2
q −ReΠR

q
(ω) − iImΠR

q
(ω)

, (2.98)leading to
|Hq(∞, ω)|2 =

1

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω))2

= − ρq(ω)

2ImΠR
q
(ω)

. (2.99)Insertion of this expression into (2.97) and use of the KMS ondition for the self-energyas well as (2.42),
Π−

q
(ω) = 2iImΠR

q
(ω) ,yields (f. (2.43),(2.44)),

∆+
q
(∞, ω) = − coth

(

βω

2

)

ImΠR
q
(ω)

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω))2

= − i

2
coth

(

βω

2

)

∆−
q
(ω) . (2.100)Hene, we an on�rm that the system reahes mirosopial equilibrium, haraterisedby the KMS ondition (1.95), at late times.In more omplex systems, in partiular when many degrees of freedom are out ofequilibrium, thermalisation an be a highly nontrivial aspet. In general, there is morethan one timesale involved. Subsystems an reah equilibrium before thermalising witheah other. In other ases, marosopi harateristis of the system an reah theirequilibrium values well before mirostate does, see e.g. [43, 44℄.49



2.3 Plasma PropertiesIn the previous setions we have studied thermodynamial systems in terms of orrelationfuntions. We now turn to physial observables that haraterise the plasma properties.In some ases, the onnetion between orrelation funtions and observables is ratherdiret. For instane, the spetral funtion ρ of resonanes in a medium an be measuredfor mesons propagating in nulear matter, see Fig. 2.4. Suh mesons an be generatedin target nulei by injetion of high energeti photons. ω- and φ-mesons are short livedenough that they do not leave the nuleus before deaying. If the deay happens intotwo leptons, those an be deteted and reveal information about the resonane's energyand momentum. The nuleus provides a medium in a lose-to-equilibrium state withlow temperature and high baryon hemial potential. To explore higher temperatures,in partiular those near the QCD phase transitions, one an study similar signals inrelativisti heavy ion ollisions. Inonveniently, the ollision initially leaves the systemin a far-from-equilibrium state. It then undergoes phases of thermalisation and, at highenergies, hadronisation. Measured data generally involves some integration over time,making it di�ult to extrat properties for a partiular temperature. Another oftenstudied observable that an be related to the spetral funtion is the shear visosity
η, whih an be omputed from ρ by η = π ∂ρ

∂ω

∣

∣

ω=0
. Here we will fous on the energymomentum tensor, whih an be omputed from the statistial propagator.Unfortunately, none of the urrent laboratory experiments allows to study the ondi-tions in the early universe diretly, not even for those phenomena that happen at energieswhih are aessible to partile aelerators. The reason is that, due to the lak of anti-nulei, laboratory experiments always involve a high baryon hemial potential while inthe early universe the hemial potential was extremely tiny. It is therefore impossible todiretly obtain information about the primordial plasma. However, the reli densities ofvarious partiles do provide us with some data. In ase of the big bang nuleosynthesis,there is a good agreement between theoretial preditions based on Boltzmann equationsand observational data [4℄.In the following we study how the Boltzmann equations emerge from the Kadano�-Baym equations when the plasma properties are that of a dilute gas and whih modi�a-tions are neessary when going beyond that regime. Thereby we will fous on kinematiaspets as disussed in Se. 1.2.1. These are equal for bosons and fermions. For simpliitywe will study them for salars, with straightforward generalisation to fermions. We baseour analysis on energy densities to avoid the problems related to the de�nition of a par-tile number in an interating quantum �eld theory. Sine we neglet bakreation, theenergy-momentum tensor Tµν of the whole system, as a Noether urrent resulting fromtime and spae translations, is not onserved in our setup. We fous on the quantity

T φ
µν = ∂µφ∂νφ − ηµνL, (2.101)the ontribution of φ to Tµν . This allows to de�ne the ontribution of a mode with50



momentum q to energy density and pressure,
ǫφ
q

= 〈T φ
00 − gφO[X ]〉|q =

1

2
〈φ̇2 + (∇φ)2 + m2φ2〉|q , (2.102)

pφ
q

= 〈Tii − gφO[X ]〉|q = 〈1
3
(∇φ)2 +

1

2
(φ̇2 − (∇φ)2 − m2φ2)〉|q . (2.103)In terms of orrelation funtions, this yields

ǫφ
q
(t) =

1

2

(

∂t1∂t2 + ω2
q

) (

∆+
q
(t1, t2) + 〈φq(t1)〉〈φq(t2)〉

)
∣

∣

t1=t2=t
(2.104)and

pφ
q
(t) =

(

1

3
q2 +

1

2

(

∂t1∂t2 − ω2q)) (∆+
q
(t1, t2) + 〈φq(t1)〉〈φq(t2)〉

)
∣

∣

t1=t2=t
(2.105)for energy and momentum.2.3.1 Comparison to Boltzmann EquationsIn Se. 1.2 we disussed the limitations of Boltzmann equations. We onluded that theyan give a good physial desription of weakly oupled systems when the density is lowand oherene e�ets are not important. Therefore the solutions of Boltzmann equationsshould emerge as a low density limit of our solutions for the Kadano�-Baym equations.Sine the former are formulated in terms of partile numbers, it is intuitive to look for aorrespondene in the regimes where this onept is meaningful, namely the partile andquasipartile regime. We �rst on�rm on general grounds that in this regime, the timeevolution of a small deviation from equilibrium is governed by a Boltzmann equation [49℄.The omputation also shows the breakdown of this desription beyond the quasipartileregime. We then move on to a detailed omparison based on our expliit solutions forthe spetral and statistial propagators before disussing quantum orreted Boltzmannequations in Se. 2.3.2.Breakdown beyond the Narrow Width LimitWe start from the Kadano�-Baym equation for the statistial propagator (2.4),

(∂2
t1 +ω2

q
)∆+

q
(t1, t2)+

∫ t1

0

dt′Π−
q
(t1−t′)∆+

q
(t′, t2) =

∫ t2

0

dt′Π+
q
(t1−t′)∆−

q
(t′−t2) . (2.106)At times t ≫ τ = 1/Γ, the system is already lose to equilibrium. It is known that then thedeviation from thermal equilibrium ful�ls a Boltzmann type equation [49℄. We reproduethis result from �rst priniples, without making an ansatz for the shape of ∆+. At late51



times, the dependene on the initial values at ti = 0 is negligible and one an extend thelower integration limit to −∞,
(∂2

t1 + ω2
q
)∆+

q
(t1, t2) +

∫ ∞

−∞

dt′
(

ΠR
q
(t1 − t′)∆+

q
(t′, t2) + iΠ+

q
(t1 − t′)∆A

q
(t′ − t2)

)

= 0 .(2.107)We hange to relative and entre of mass time variables,
t =

t1 + t2
2

, y = t1 − t2 , ∆+
q

(t; y) ≡ ∆+
q
(t1, t2) , (2.108)and perform a derivative expansion,

∆+
q

(

t′ + t2
2

; t′ − t2

)

= ∆+
q

(t; t′ − t2) +
t′ − t1

2
∂t∆

+
q

(t; t′ − t2) + . . . . (2.109)The expansion is justi�ed beause for t ≫ τ the deviation from equilibrium is small andhanges only slowly. Then one �nds for the Fourier transforms with respet to the relativetime,
(

1

4
∂2

t − iω∂t − ω2 + ω2
q

)

∆+
q
(t; ω)

= −ΠR
q
(ω)∆+

q
(t; ω) − iΠ+

q
(ω)∆A

q
(t; ω) − i

2

∂ΠR
q
(ω)

∂ω

∂∆+
q
(t; ω)

∂t
. (2.110)This is a omplex equation. Its real and imaginary part have to be ful�lled separately.With the relations given in Appendix B.3, one an derive the two real equations,
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1

4
∂2

t − ω2 + ω2
q

)

∆+
q
(t, ω) = −ReΠR

q
(ω)∆+
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(t, ω) + Π+
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(ω)Im∆A
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(t, ω)

+
1
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∂ImΠR
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(ω)
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∂∆+
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(t, ω)
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+ . . . , (2.111)
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∂
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(ω)∆+
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(t, ω) + Π+
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(ω)Re∆A
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(t, ω)

+
1

2

∂ReΠR
q
(ω)

∂ω

∂∆+
q
(t, ω)

∂t
+ . . . , (2.112)from the real and imaginary part of (2.110). One an always write ∆+

q
(t, ω) as the sumof its equilibrium value ∆+

q
(ω) and a deviation δ∆+

q
(t, ω),

∆+
q
(t, ω) = ∆+

q
(ω) + δ∆+

q
(t, ω) . (2.113)Equation (2.112) implies
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(ω)∆+

q
(ω) + Π+

q
(ω)Re∆A

q
(ω) = 0 , (2.114)52



whih is known to be satis�ed beause the relations of (B.99), (B.92) and the KMSonditions (1.95) and (1.96).The �rst equation, (2.111), poses a ondition on the equilibrium solution,
(

ω2 − ω2
q
− ReΠR

q
(ω)
)

∆+
q
(ω) = −Π+

q
(ω)Im∆A

q
(ω) . (2.115)For vanishing width, the ondition is ful�lled when

ω = Ωq =
√

ω2
q

+ ReΠR
q
(Ωq) , (2.116)where it is important to realise that the right hand side vanishes due to Eqs. (1.96) and(2.42) and the de�nition of Γq. The �nite width leads to a orretion,

ω = Ωq + δΩq . (2.117)To leading order in δΩq, one obtains for (2.115),
2ΩqδΩq∆

+
q
(Ωq) + Π+(Ωq)Im∆A

q
(Ωq) = 0 , (2.118)whih implies

δΩq = −Γq

2

Im∆A
q
(Ωq)

Re∆A
q
(Ωq)

. (2.119)With (B.92), we an use the free spetral funtion,
∆−

q
(ω) = 2πisign(ω)δ(ω2 − Ω2

q
) , (2.120)to �nd an expression for Im∆A

q
(Ωq) to leading order in Γq,

Im∆A(Ωq) = − 1

2π
P
∫

ρ(ω′)

ω′ − Ωq

dω′ =
1

4Ω2
q

. (2.121)With Eqs. (2.119), (B.91), (2.44) and (2.68) we �nally obtain
δΩq =

1

8

Γ2
q

Ωq

. (2.122)This shows that for Γq ≪ Ωq, the leading term in the derivative expansion enfores
ω = Ωq. This is self-onsistent beause we used the free spetral funtion in the derivation.If �nite width e�ets are not negligible, however, o�-shell e�ets beome important andthe derivative expansion beomes unreliable.An equation of motion for the departure from equilibrium of the statistial propagatoran be obtained by inserting ω = Ωq into (2.112),
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We an now ompute the energy density
ǫφ
q
(t) =

1

2
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∂t1∂t2 + ω2
q

)
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∣
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∫ ∞
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)

∆+
q
(t; ω) , (2.124)whih approahes the equilibrium value
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2ω
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2
+ fB(Ωq)

)

ρq(ω), (2.125)f. (1.106). This asymptoti equilibrium state is not that of a gas of free quasipartiles,as will be disussed in greater detail in the following. From Eqs. (2.123), (2.68) and (2.69)one an see that the deviation from equilibrium is desribed by a Boltzmann equation forquasipartiles,
(∂t + Γq) ǫφ

q
(t) = 0 . (2.126)The above derivation shows that ∂tδ∆

+
q
(t; Ωq) ∼ Γq to leading order, whih impliesthe Boltzmann equation (2.126). However, this result was found by inserting ω = Ωqinto (2.112) to obtain (2.123). Considering (2.122), or a simple look at (2.44), showthat the exat position of the pole is not at Ωq. When Γq is not small, Ω̂q shifts awayfrom the real ω-axis and the quasipartile peaks beome less sharp. The narrow widthapproximation, namely replaing ΠR

q
(ω) → ΠR

q
(Ωq) in (2.44) when integrating over ω,beomes inreasingly bad beause ρq(ω) deviates signi�antly from zero away from ±Ωq.Physially this means that o�-shell ontributions beome inreasingly important - thequasipartile piture breaks down.
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Quasipartile RegimeFrom Eqs. (2.71) and (2.104) one �nds to leading order in Γq,
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. (2.127)The �rst three lines in (2.127) orrespond to the energy that is stored in the �eld value 〈φ〉while the remaining four lines represent the energy of its �utuations, to be interpretedas (quasi)partiles.In the semilassial desription in terms of Boltzmann equations this system orre-sponds to a dilute gas of partiles that move in a bakground �eld. To leading order g2there is no oupling of the gas to the �eld in our model We an therefore treat themindependently and onentrate on the partile ontribution to the energy density. Let usonsider the Boltzmann equation for partiles of momentum q and energy Eq, where Eqis some funtion of q that we expet to identify with ωq at low density. The ompetitionbetween a gain and a loss term determines the hange of the partile number density
∂tnq(t) = (1 + nq(t))γ

<
q
− nq(t)γ>

q
, (2.128)When the medium is in equilibrium, prodution and deay rates satisfy the KMS relationas the self-energy of the �eld φ,

γ>
q

= e−βEqγ<
q
≡ fB(Eq)γq . (2.129)

γq is to be omputed from sattering ross setions or, via the optial theorem, theimaginary part of the self energy,
γq = −ImΠR

q
(Eq)

Eq

.. (2.130)55



Here Eq is the energy of a partile whih might be identi�ed with ωq or Ωq, the latterorresponding to the use of thermal masses in Boltzmann equations. Using these relations,the Boltzmann equation (2.128) an be written in the form
∂tnq(t) = −γq(nq(t) − fB(Eq)) , (2.131)with the obvious solution

nq(t) = fB(Eq) + (nq(0) − fB(Eq)) e−γqt . (2.132)The energy density of the gas is obtained by multiplying (2.132) with Eq

ǫφ
q
(t) = EqfB(Eq) + Eq (nq(0) − fB(Eq)) e−γqt (2.133)and has to be be ompared to (2.127) for φ̇q,in = φq,in = 0. Obviously neither identifying

Eq with ωq nor with Ωq generally leads to equivalene. In partiular, (2.127) is the solutionto a 2nd order di�erential equation and shows osillations with the plasma frequeny Ωqwhih even remain present in the limit Ωq → ωq.However, a onsistent omparison between a quantum mehanial and a lassial ob-servable an only be done if the quantum system is set up with a initial state has aounterpart in the lassial theory, namely one of de�nite initial (quasi)partile number.The onstrution of suh a state is not trivial. Even for T = 0 the de�nition of a partilenumber is ambiguous in an interating quantum �eld theory. One an de�ne a usefulquantity by Nq(t) = ǫq(t)/ωq. For vanishing oupling this oinides with the expetationvalue of the number operator 〈a†
q
aq〉 in a free theory [9℄. With the initial onditions
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)one an indeed onstrut a state with a partile number Nq in the sense of that de�nition,namely Nq(0) = Nq. Unfortunately this hoie of initial onditions annot lead to aBoltzmann type solution sine a osine term remains present. Being in the quasipartileregime, we hose the initial onditions
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) (2.134)whih seem to be the natural extrapolation to a state with well de�ned quasipartile num-ber Nq. This is a onvenient hoie despite our tehnial assumption that the interationis swithed on one the system starts evolving 6. Then (2.127) redues to
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q
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(2.135)6A strit omparison between (2.127) and (2.133) would involve a renormalisation of (2.127). Aonsistent renormalisation of states with Gaussian initial onditions involves some tehnial di�ulties,see [42℄ . 56



The term in the brakets looks like the solution (2.132) to a Boltzmann equation forquasipartiles with Eq = Ωq, γq = Γq and nq = Nq. However, the energy density is notomputed by multiplying this term by the quasipartile energy Ωq as suggested by (2.133).When attempting to de�ne a partile number, neither Nq nor its intuitive generalisation
ǫq/Ωq take the value Nq at t = 0. One ould be tempted to de�ne a number operator forquasipartiles by ǫq

2Ωq

ω2
q
+Ω2

q

, but it is questionable how useful this quantity is, so we preferto keep the disussion on a level of energy densities and simply refer to (2.134) as theinitial ondition that lead to a Boltzmann type solution. (2.135) shows that the totalenergy density of a φ mode is not that of a gas of quasipartiles. It an be rewritten as
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2

ω2
q

+ Ω2
q

2Ωq

(2.136)The �rst line in (2.136) is, by omparison with (2.133), learly the solution to a Boltzmannequation for quasipartiles. The seond line an be interpreted as a vauum term. In thepartile regime, Ωq → ωq, it onverges to 1
2
ωq, the quantum mehanial vauum energyin the mode q. For Ωq 6= ωq, the term depends on time and temperature and annotbe ignored as usually done at zero temperature. Suh terms have previously been foundfor the ase of equilibrium in [5℄. (2.136) is the nonequilibrium generalisation of theresult given there. The additional terms imply that the equilibrium on�guration of aninterating quantum �eld theory is not simply a Bose-Einstein distribution, neither ofpartiles nor of quasipartiles. Instead, one �nds that the energy momentum tensor inthermal equilibrium an be deomposed in the following way,
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. (2.140)
ǫQP
q

and pQP
q

agree with the orresponding expressions for a free gas, with the energy ωq ofa free partile replaed by the quasi-partile energy Ωq. This suggests to interpret themas energy and pressure of a quasipartile gas. The `vauum ontribution' κVAC
q

vanishesfor Ωq = ωq, namely at vanishing temperature. For large thermal e�ets, i.e. Ωq ≫ ωq or
Ωq ≪ ωq, the equation of state deviates signi�antly from that of a free gas. However, it57



should be noted that pratially also ǫQP
q

and pQP
q

ontain a "ground state ontribution".Consider
ǫQP
q

=
Ωq

2
+ ΩqnB(Ωq). (2.141)The seond term looks like the lassial energy of a free gas of quasipartiles with energy

Ωq. The �rst term at zero temperature beomes ωq

2
, the vauum energy for the mode

q, and an be subtrated as an irrelevant onstant. At �nite temperature, Ωq

2
has atemperature dependent piee that is not removed by the ondition that the energy of thevauum shall be zero. This is preisely the reason why we wrote this term into the seondline in (2.136). It should also be kept in mind that in the de�nition of ǫφ

q
we left out the

〈gφO[X ]〉 ontribution beause it annot uniquely be assigned to any of the �elds. Ananalysis of the energy density of the whole system requires a proper treatment of this termand bakreation. ǫφ
q
does not behave like the energy a quasipartile gas. One remarkablefeature of (2.140) is that for Ω2

q
< ω2

q
, φ an atually give a negative ontribution to thetotal pressure!In this example, the emergene of lassial Boltzmann equations is expeted beausethe dissipation is driven by tree level proesses. If the leading order ontribution to therelevant proesses ours at quantum level, it is not obvious that they an be obtained asa onsistent limit of the Kadano�-Baym equations [47℄.2.3.2 Quantum Boltzmann EquationsEq. (2.135) is, as (2.70) and (2.71), Markovian in the sense that the state of the systemat any time t allows to determine its state at time t + δt. There is no memory integralto be performed and the gain and loss terms enoded in Γq are the same at any time,independent of the history of the system and the initial onditions. Furthermore, it showsno osillations. To understand how this simple behaviour arises from the non-Markovianseond order di�erential equations (1.59) and (1.60), we revise the assumptions underwhih it has been obtained. Afterwards, we disuss approahes that allow to lift someof these restritions within the quasipartile regime and formulate quantum orretedBoltzmann equations, often referred to as quantum Boltzmann equations7.First, the temperature has been kept onstant. This is of ourse not stritly onsistent.When the φ modes exhange energy with the bath, it is brought out of equilibrium. Evenif the bath is strongly oupled and thermalises so fast that it an assumed to be inequilibrium and haraterised by a single temperature T , this temperature hanges withtime. For many osmologial appliations our assumption of negligible bakreation anbe a good approximation sine the bath has many more degrees of freedom than φ, but7There exists vast literature on quantum orreted kineti equations. The assumptions and approxi-mations made by di�erent authors are generally similar, but not exatly idential. Here we fous on theapproah used in [50℄ to formulate quantum Boltzmann equations for leptogenesis and refer the interestedreader to [22, 29, 45℄ and referenes therein. 58



the temperature will also hange due to Hubble expansion. If T hanges with time, also
Γq and the e�etive masses in Ωq depend on time. Then the �rst Kadano�-Baym equation(2.3) an in general not be solved by Laplae transformation as done to obtain (2.44). Ifthe hange of T with time is muh slower than any other timesale in the problem onemight argue that (2.44) an still be an approximate solution to (2.3), with ΠR dependingon time via T (t). Even then non-Markovian behaviour will enter through the memoryintegral in (2.61).Seond, we restrited the disussion to systems with an initial state that orrespondsto a well-de�ned partile number. Systems that e.g. are prepared as a superposition ofstates with di�erent partile numbers annot be well-desribed by Boltzmann equations.Third, being in the quasipartile regime, we negleted orretions of order Γq to ǫφ

q
.They orrespond to o�-shell proesses that an a�et the dynamis signi�antly as soonas one leaves the quasipartile regime (see Se. 2.3.3) 8. Their negligene also leads to adivergene in ∆+ in (2.71) for βΩq ≪ 1 sine

fB(Ωq) ≃
1

βΩq

≫ 1 . (2.142)The divergene also appears in the energy densities ǫφ
q
in (2.127), (2.135) and (2.136)omputed from ∆+. It disappears when inluding O(Γ) orretions. Starting from theKMS relation (1.106) and (2.44), one an see that in equilibrium
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q
|y=0 = Re( 1
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2
+ fB(Ω̂q)

)

)

. (2.143)Here we have assumed that Cauhy's theorem an be applied to perform the Fouriertransform in ω and ±Ω̂q are the only poles. The imaginary part of Ω̂q removes thedivergene even if the real part vanishes,
|fB(Ω̂q)| ≃

1

|β(Ωq + i
2
Γq)| ≤

2

βΓq

. (2.144)Furthermore, we onsidered only a single salar �eld, hene no oherent osillations, e.g.in �avour spae, ould our. Suh purely quantum mehanial phenomena have noorrespondene in the Boltzmann approah. Finally, in the above disussion we haveassumed that ±Ω̂q are the only two poles of ρq(ω). The generalisation to ases wherethere are additional poles is straightforward as long as all of those have small imaginaryparts, leading to resonanes with quasipartile harater.The use of quantum Boltzmann equations allows to relax the restritions from theprevious setion while still dealing with �rst order di�erential equations for partile num-bers. In thermal equilibrium the orrelation funtions (1.106) are uniquely haraterised8Reent studies suggest that o�-shell ontributions, together with quantum interferene in the thermalbath, an have important e�ets even in the quasipartile regime [47℄.59



by two real valued, time independent funtions 9: ρq(ω) and fB,F (ω). ρq(ω) determinesthe spetrum of states and fB,F (ω) their oupation numbers. It is intuitive to try a simi-lar parameterisation for out-of-equilibrium states. ∆− and ∆+ play preisely this role, butin general they depend on two time variables t1 and t2 as well as two spatial positions x1and x2 and have to be found as the solutions to oupled seond order integro-di�erentialequations.It is very tempting to simply replae fB,F in Eqs. (1.103) by some general, timedependent distribution funtion f(ω, t) to obtain nonequilibrium propagators. Based onthis ansatz, one an then formulate a perturbation theory analogue to the equilibriumase (see Se. 1.3.3). This approah su�ers from two problems. First, one enountersapparent singularities due to the δ-funtions in (1.103) [46℄. Seond, the partiular shapeof Eqs. (1.103) relies on the KMS ondition via (1.97). For a general nonequilibriumstate, there is no suh ondition. The �rst problem an be solved by a resummation,e�etively replaing the free spetral funtion in (1.97) by the dressed one. The �nitewidth then regularises the singularity. Unfortunately, this requires knowledge of thedressed nonequilibrium spetral funtion, whih has to be found as a solution to the�rst Kadano�-Baym equation (1.59). The seond problem an also be solved by leavingthe restrition that the distribution funtion shall depend on ω and t only. E�etively,then one is bak to ∆+, ∆− and the Kadano�-Baym equations and has not ahieved asimpli�ation.However, there are two situations in whih a simple parameterisation by a single dis-tribution funtion is possible. One is a free theory. Then the spetrum is, independentlyof the physial state in whih the system was prepared, given by the free spetral fun-tion (2.46) or (2.82). In this ase, the partile number in eah mode is well de�ned andhas a sharp, time independent value. Furthermore, all partiles are on-shell, hene thesystem an be desribed by a single distribution funtion f(ω) = f(ωq) for eah degree offreedom. The the other ase is, due to the KMS relation, thermal equilibrium. Continu-ity arguments suggests that suh parameterisation should provide a good desription insituations either lose to thermal equilibrium or in the quasipartile regime [48, 49, 22℄.As disussed in Se. 2.3.1, in the former ase the deviation from equilibrium obeys aBoltzmann equation [49℄10.Let us onsider a system in whih the above onditions are ful�lled and all involved�elds are either lose to equilibrium or very weakly oupled. If furthermore the system is ingood approximation spatially homogeneous, it seems promising from the above argumentsthat an ansatz based on (1.97) with full spetral funtions an be made in whih the9Our disussion fouses on the salar propagators. For fermions or gauge �elds, whih have internaldegrees of freedom, ρq(ω) of ourse has a non-trivial Lorentz (and possibly �avour, olour...) struture.However, the following arguments regarding the parameterisation by distribution funtions remain valid.10See also [52℄ for a disussion. 60



distribution funtion only depends on ω and t.
(∆C(x1, x2))c →

∫

d4q

(2π)4
e−iq(x1−x2)

(

θC(x0
1 − x0

2) + f(ω, (t1+t2)/2)
)

ρq(ω). (2.145)The situation simpli�es further if the time dependene of ρ an be negleted. Di�eren-tial equations for f(ω, t) an then be obtained by inserting the ansatz (2.145) into theKadano�-Baym equations. These are the quantum Boltzmann equations. Pratial om-putations involve a number of simplifying assumptions, inluding a reasonable guess forthe spetral funtions. Self-onsistently, these have to be thermal or quasipartile spe-tra. For the �elds in equilibrium one usually assumes free spetral funtions or resummedone-loop results whih lead to thermal quasipartile spetra. At high temperature, thisan be problemati sine the preise spetrum of the Standard Model is unknown due tothe poor onvergene of the perturbative series, see Se. 2.3.3.The quantum Boltzmann equations are oupled �rst order di�erential equations forthe distribution funtions fi of the various involved �elds in whih the damping termsare given by integral kernels. They orrespond to Boltzmann equations for quasipartilesthat inlude the time dependene of Γq. Coherent osillations in �avour spae an beinorporated by parameterising orrelations between di�erent �avours in the same way.The quantum Boltzmann equations then form a set of oupled di�erential equations forthe elements of a matrix in �avour spae whih an be related to the redued densitymatrix used in [23℄. The diagonal elements of this matrix an be identi�ed with oupationnumbers while the o�-diagonal elements desribe the oherenes between di�erent �avours.They aount for non-Markovian e�ets via the integral kernels and allow to desribeoherent osillations as well as deays and satterings in a ommon framework. Whenappliable, they provide a powerful formalism to treat nonequilibrium systems. However,in the form they have been used (see e.g. [49, 50, 53, 54, 51℄), they rely on the assumptionthat all involved �elds are in the quasipartile regime and olletive resonanes play norole. Furthermore, the deviations from equilibrium are assumed to be small so that anexpansion to linear order in that deviation is justi�ed. This, though it an be well-motivated in many ases, is generally not true 11 .2.3.3 Kinematis of the ResonanesIn Boltzmann equations, the ollision term is the quantity that haraterises the inter-ation. In the Kadano�-Baym equations, this role is taken by the self energy. It an berelated to the total ross setion by the optial theorem. As in vauum, this onnetionholds at a level of single Feynman diagrams 12. The self energy therefore naturally inludes11By the time of printing, qualitative di�erenes from the results given in [50℄ have been found in a fullquantum mehanial omputation based on Kadano�-Baym equations [47℄.12A generalisation of the Cutkosky rules [56℄ to systems with �nite temperature and density was �rstfound in [57℄. 61



all possible proesses at a given order, and this is how they enter the Kadano�-Baym equa-tions. A leading order omputation of ImΠR orresponds to a tree level omputation ofross setions at order g. Higher order ontributions to ΠR orrespond to quantum or-retions and higher order tree graphs. Via (2.44), ΠR governs the properties of resonanesin the plasma. Sine the breakdown of Boltzmann equations is related to the breakdownof the partile onept, we study how this shows up mirosopially in single reations.For weak ouplings ross setions and self energies in a plasma an be omputed fromFeynman rules. Those are desried in Se. 1.3. In equilibrium the only di�erenes to thevauum are the appearane of the auxiliary �elds φ− and the thermal propagators givenin Eqs. (1.103),
∆++(q) = i

q2−m2+iǫ
+ fB(|ω|)2πδ(q2 − m2), ∆+−(q) = fB(ω)2πsign(ω)δ(q2 − m2),

∆−+(q) = (1 + fB(ω))2πsign(ω)δ(q2 − m2), ∆−−(q) = −i
q2−m2−iǫ

+ fB(|ω|)2πδ(q2 − m2)..The four thermal propagators share two important properties,
• They an be written as the sum of a zero temperature ontribution, whih vanishesfor ∆+−, and a temperature dependent orretion.
• The thermal orretion is always fored on-shell by a δ-funtion.These properties are not spei� to salar propagators, but also apply to fermions, see(1.106), and gauge �eld propagators, see [10℄.Sine Feynman diagrams are omputed from integrals over produts of propagators,all quantities in perturbative omputations share the �rst property. The usual Feynmanpropagator an be identi�ed with the temperature independent part of ∆++, the prop-agator of the physial �eld φ+. Regarding the seond property, the δ-funtions ensureenergy and momentum onservation at verties.Leading Order: A Bath of PartilesTo leading order the above means that the kinemati restritions implied by energy andmomentum onservation in vauum also hold at verties that onnet �elds in thermalequilibrium. However, one important di�erene to the vauum lies in the possibility ofsatterings with quanta from the medium. In vauum, a single stable partile simplymoves freely. This manifests in the fat that it orresponds to a singular pole, or δ-funtion, in the spetral funtion beause ImΠR stritly vanishes at ωq, ImΠR

q
(ωq) = 0.

ImΠR is only non-zero above the lowest multipartile threshold, q2 > ω2
th1. The resultinganalyti struture of ρq(ω) is skethed in Fig. 2.2.At �nite temperature there an be satterings with partiles from the plasma. Thisimplies that a partile an, even if it is the lightest partile in the theory, disappear62
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Figure 2.2: Poles and uts of the spetral funtion ρ(ω) for unstable (upper plot) andstable (lower plot) partiles with q = 0 at T = 0.by Landau damping, engaging into a reation with some partile from the plasma. Attree level, these satterings are only possible with real quanta from the plasma due tothe δ-funtions in the thermal propagators. Hene, the energies and wave vetors ofthe partiles have to be suh that initial and �nal state are in aordane with energymomentum onservation.To demonstrate the onsequenes for the fate of φ, we �rst onsider a trilinear oupling
gφX1X2 without further spei�ation of the Xi. This inludes trilinear salar ouplings,Yukawa ouplings and the Higgs oupling to gauge bosons. Sine the kinemati propertiesare the same for higher spin �elds, the disussion also overs gauge ouplings to fermionsand the three-verties between gauge bosons 13. The presene of the bakground mediumhanges the analyti struture of the φ-self-energy. The possibility of satterings withbath partiles implies a disontinuity, hene imaginary part, below a new threshold q2 <
ω2

th2. This property is arried over to the spetral funtion, see Fig. 2.3. If φ is in thequasipartile regime and the only poles of the spetral funtion (2.44) are at ω = ±Ωq,orresponding to dressed partiles, one an set ω2 = Ω2q. The stability of φ quanta dependson the position of Ω̂q in the omplex ω plane. There are three di�erent ases, see Fig. 2.3,
(a) q2 > ω2

th1

(b) q2 < ω2
th2

(c) ω2
th2 < q2 < ω2

th1.The quasipartiles are stable in ase (). The stability in this region is a onsequene of13The Lagrangian (2.1) limits our analysis to ouplings that are linear in φ. However, if some φ modeshave reahed equilibrium before others, they an form a �thermal bath� for the nonequilibrium modes.63
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ImΠR

q
(ω) ∼

∫

d4p

(2π)4
δ(p2

0 − ω2p)δ((ω − p0)
2 − ω2q−p) . . . , (2.146)and the integral vanishes unless there are points in the integration volume at whih thearguments of all δ-funtions vanish simultaneously. The supports of eah δ funtions formsubmanifolds in the integration volume, and the ondition that those interset leads tothe thresholds. We study this e�et in a partiular model in Se. 3.1. There the systemwith inreasing temperature undergoes transitions inluding all three di�erent ases (a),(b) and (), f. Fig. 3.2 and 3.3.In salar theories and non-abelian gauge theories one �nds verties that onnet fourlines. Suh ouplings generally do not allow stable partiles at �nite temperature. Thereason is that ouplings φXiXjXk allow 2 → 2 satterings at leading order whih arealways possible for appropriately hosen momenta. However, the available phase spaean still be enlarged or redued by thermal e�ets. This physially intuitive result is alsodemonstrated for a partiular model in Se. 3.1.If (2.44) has more poles than ±Ωq, those orrespond to plasma waves that have noorrespondene in vauum. If the poles are lose to the real axis, these have a well-de�ned64



dispersion relation and an be understood as quasipartiles. It is important to point outthat the dispersion relations, even those given by ω = ±Ωq an be qualitatively verydi�erent from free partiles. Unless the free quasipartile approximation holds, it an behighly non-trivial to determine the range of allowed proesses. The fat that the propertiesof the poles of (2.44) depend on temperature makes the phase spae dynamial. If thetemperature hanges, the system an move from one regime into the other. Indeed, ifbakreation is not negligible, the dissipation of φ into the plasma or thermal produtionof φ partiles from the plasma an hange the temperature. If φ is not in the quasipartileregime, kinemati restritions do not apply sine o�-shell ω an always give a ontributionto (2.146).A Bath of QuasipartilesThe analyti struture of the leading order expression for ρ in equilibrium is well-known[7℄. In the following we investigate qualitative hanges one one proeeds to higher orderorretions. A leading order self energy omputation is based on the use of the freepropagators (1.103). The use of free propagators for the bath �elds X neglets theirinteration with eah other and e�etively orresponds to the assumption that all X arein the partile regime. In the light of our initial assumptions, this is not realisti sinethe bath is oupled more strongly than the partile that freezes out. The problem anbe solved onsistently by using dressed X propagators and verties when omputing the
φ-self-energy. Resummed propagators an be obtained from (1.97) by replaing the freespetral funtion (2.46) by its interating ounterpart (2.44) and (2.82) by (2.80) forfermions. If the bath �elds X are in the quasipartile regime one an neglet ImΠR

X in(2.44) in �rst approximation, leading to
ρq(ω) = 2πsign(ω)δ

(

ω2 − ω2
q
− ReΠR

q
(ω)
)

. (2.147)The spetral funtion remains proportional to a sum of δ-funtions. These disrete on-tributions to the spetrum orrespond to plasma waves that kinematially exatly behavelike partiles, though their dispersion relations an be very ompliated. They are givenby the solutions of
ω2 − ω2

q
− ReΠR

q
(ω) = 0and depend on the temperature. The previous arguments remain unhanged, but the fatthat also the modi�ed dispersion relations for bath �elds have to be taken into aountmakes it pratially muh more di�ult to take aount of all possible proesses. Whenthere are no additional poles from olletive exitations, the spetral funtion for a salarreads

ρq(ω) = 2πsign(ω)δ(ω2 − Ω2
q
) =

π

Ωq

(δ(ω − Ωq) − δ(ω + Ωq)) . (2.148)65



In the following we fous on the simplest ase, when the medium-indued orretions tothe dispersion relations depend only mildly on the wave vetor and the free quasipartileapproximation holds. Then the medium e�ets an be parameterised by replaing allmasses mi by temperature dependent thermal masses Mi(T ). For trilinear ouplings, onean de�ne a ritial temperature T i↔j+k
c by

Mi(Tc) = Mj(Tc) + Mk(Tc). (2.149)At T = Tc, deays and inverse deays of speies i into speies j and k beome kinematiallyforbidden at leading order. If no thermal mass is larger than the sum of the two others,the interation is e�etively swithed o�.Realisti quasipartiles always have a small �nite width, but this does not have asigni�ant e�et unless the mass spetrum is quasi-degenerate. Loop integrals are per-formed over produts of propagators, hene involve produts of spetral funtions. When
ρq(ω) is exatly a sum of δ-funtions, the support of eah spetral funtion forms lower-dimensional submanifolds in the integration volume on whih the dispersion relation isful�lled. As disussed previously, the integral is only non-zero if there are regions wherethe supports of all of them interset. This ondition gives rise to the threshold. Whenthere is a �nite width, the support of ρq(ω) in priniple an over the whole integrationvolume. However, if the width is small, the region where ρ is signi�antly di�erent fromzero ompared to its on-shell value only extends a distane of order Γ away from the hy-persurfaes on whih the dispersion relations are ful�lled. The result of the integral willstill be very small unless those on-shell regions interset or ome very lose to eah other14.For the trilinear oupling, ImΠR

q
(Ωq) beomes non-zero in the region ω2

th2 < M2
φ < ω2

th1orresponding to ase (), but is suppressed by the smallness of Γq with respet to theregions M2
φ > ω2

th1 and M2
φ < ω2

th2. The proesses that were stritly forbidden at leadingorder remain e�etively forbidden (see Fig. 3.4). Of ourse, this suppression is a relativeone in omparison to the result obtained by negleting thermal masses. The reation ratean still be relevant when it is signi�ant ompared to other proesses in the plasma.The above arguments expliitly use the spetral funtion for salars (2.147), but itremains valid for fermions and gauge bosons. In the limit of vanishing width, theirspetral funtions are also proportional to sums of δ-funtions. For instane, in the aseof Dira fermions the e�etive masses are given by the solutions of
Q2 −M2 = 0 (2.150)and their omplex onjugates, see (2.80).Thus, we an understand the previous observation that in the quasipartile regime theapproah to equilibrium an be understood in terms of Boltzmann equations for quasi-partiles from a mirosopi point of view. The use of Boltzmann equations, however,14Note that the ommonly used rule that loop integrals are dominated by the |p| ∼ T region does notapply if (almost) on-shell proesses an ontribute. For narrow spetral funtions, the integral is alwaysdominated by the overlap of the on-shell regions. 66



has to be treated with are sine Ωq and Γq generally depend on time and olletive reso-nanes an appear as new partiles. A simple replaement of vauum masses by thermalmasses in the usual Boltzmann an generally not aount for all medium e�ets, thoughit an be a good approximation if all exitations are known to behave like free quasipar-tiles. Quantum Boltzmann equations allow to inlude these e�ets if all resonanes anbe treated as quasipartiles and their dispersion relations are known.Beyond the Quasipartile RegimeIn the partile and quasipartile regime, a sharp energy an be assigned to a resonaneand energy and momentum of the resonanes are onserved in satterings and deays.When the width is large, one an formally still de�ne Ωq, but it has no meaning as apartile's energy beause ρq(ω) beomes a rather smooth funtion that has a large o�-shell ontribution away from ω = Ωq. When omputing loop integrals, the region in whihthe spetral funtions give signi�ant ontributions an over large parts of the integrationvolume and extend far away from Ωq. The result of the integration is proportional to theweighted overlap of the spetral funtions. Contributions from the o�-shell regions an beof omparable size as those from on-shell proesses. Hene, smoothing out the δ-funtionin (1.97) results in erosion of kinemati restritions.The apparent non-onservation of energy and momentum in satterings an be under-stood easily even in lassial terminology. A dilute, weakly oupled gas is well-desribedby partiles that move freely with energies ωq between satterings. When the densitybeomes high, the average distane between them is so small that they always feel thepresene of the neighbouring partiles. Thus, their energy reeives a ontribution frompotential energies, taking them "o�-shell", ω 6= ωq. Due to this oupling to the envi-ronment, a sattering is never simply a two-body problem. The same applies to deays.Energy and momentum are only onserved for the system as a whole, not for the subsys-tem of the sattering partiles. Exhange of energy and momentum with the environmentan make proesses possible that are stritly forbidden in vauum. This e�et is knownin ondensed matter and nulear physis, where e.g. it is responsible for the β+-deay,but has long been ignored in osmology.Broad Resonanes and the full SpetrumThe validity of Boltzmann or quantum Boltzmann equations ruially relies on the de-sription of the spetrum in terms of quasipartiles. It is instrutive to estimate underwhih irumstanes this is a good approximation.The quasipartile piture is a useful tool whenever the width of a resonane is muhsmaller than its thermal on-shell energy and the di�erene to the on-shell energy of allother resonanes with the same onserved quantum numbers. This is ertainly true fora weakly oupled plasma with a non-degenerate mass spetrum at low T . For a strong67



oupling, the spetrum is modi�ed signi�antly by the interation. The resonanes insome ases might still behave like quasipartiles, even if they show little resemblane withthe partiles in vauum, but in general, this is not the ase. As a result, the quasipartilepiture and any type of Boltzmann equations fail to desribe the system. One then isusually fored to solve the Kadano�-Baym equations with nonperturbative methods.Here we onentrate on weak ouplings. In some ases there are interations thatgive rise to loal diagrams, or tadpoles, as those in Fig. 3.1 e) and f). Then ReΠR isparametrially larger than ImΠR beause suh diagrams are purely real. They ontributeto linear order in the oupling while the leading order ontribution to the imaginary partis quadrati. When there are no loal diagrams, real and imaginary part of the self energyappear at the same order and one has to study them in detail. At the end of Se. 1.2.1we presented a simple lassial argument why the quasipartile piture should hold inweakly oupled systems even at high temperatures. This is true for a Coulomb potentialsine Ekin ∼ T ≫ Epot ∼ gT . The interation energy in non-abelian gauge theories is notwell-desribed by a Coulomb potential. The argument already breaks down for a simpleYukawa oupling sine it inreases the interation strength at short distanes, so Epot athigh densities inreases faster than linear in T . Even for a pure Coulomb interation, theargument relies on the fat that average distane and average kineti energy of partilesare related by a single parameter T . This is only true in thermal equilibrium. With ageneral distribution funtion it is possible to ombine a high density with a low averagemomentum. This is, for example, realised after in�ation, see Se. 4.1.In general, it an be very di�ult to determine the real and imaginary part of ΠRat high temperature. The main problem is that even in weakly oupled theories theonvergene of the perturbative series is poor. With inreasing order in the oupling, henenumber of verties in orresponding Feynman diagrams, also the number of temperaturedependent propagators onneting them inreases. A large T an ompensate for a smalloupling so that higher order ontributions an be of omparable size as leading orderterms. In addition, leading order results in gauge theories by themselves are generally notgauge invariant. In some ases the running of the oupling an be suh that it improves theonvergene. This happens in a quark gluon plasma due to asymptoti freedom. However,in our salar model in Se. 3.1 we observe a signi�ant inrease in the width while themass shift is small if the dissipation is aused by deay, see Fig. 3.7. This phenomenonis known as melting of a peak and an be experimentally observed for mesons in nulearmatter, see Fig. 2.4. Resummed perturbation theory allows to ompute gauge invariantresults and improves the onvergene of the perturbative series. The results suggest thatat high temperature ReΠR ∼ g2T 2, leading to thermal mass orretions of order gTwhile Γ ∼ g2T [10℄. This would imply that the quasipartile piture holds even at hightemperatures if g is small. These estimates are obtained by reorganising the perturbativeseries and resumming in�nite sets of diagrams. Suh resummations are possible when itis justi�ed to single out lasses of relevant higher order diagrams whih an be omputedfrom the knowledge of terms at lower order. For soft external momenta ∼ gT , a hard68
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exploit the advantages of the quasipartile approximation, knowledge of all dispersionrelations is required.The most ommon way to aess the nonperturbative regime is provided by lattiealulations (see e.g. [63℄). Unfortunately, lattie omputations generally have to beperformed in eulidean spae. The mass of a resonane an be re-extrated from thoserelatively easily as the oe�ient for the exponential fall-o� of the eulidean orrelationfuntions at large separation of arguments. Extration of the width is signi�antly moredi�ult. It requires an analyti ontinuation. On numerial data this an only be per-formed by making a guess for the shape of the funtion in Minkowski spae and �ttingthat guess to the data. Furthermore, the preision of lattie omputations is limited bythe available omputation power.In bosoni systems at high T one an simplify the omputations by a lassial ap-proximation. This is justi�ed beause bosoni �elds at large oupation numbers have alassial limit, see e.g. [64℄.Reently, a new method treat nonperturbative systems has reeived a lot of attention,the so alled AdS/CFT orrespondene [65℄. The method is based on the onjeture thata strongly oupled onformal �eld theory has a dual in string theory. The low energylimit of this dual appears as a higher dimensional theory of gravity. Strong oupling onone side of the duality orresponds to perturbative behaviour on the other. This allows toalulate quantities in the nonperturbative regime of the �eld theory via a perturbativealulation on the gravity side that is then translated into the �eld theory via the duality.Unfortunately non of the known interations in nature is desribed by a onformal �eldtheory. Nevertheless, there is some hope that properties an be found in onformal systemsthat are universal enough to be generalised to physial systems. A very popular andidateto resemble QCD is provided by a N = 4 supersymmetri non-abelian gauge theory. Themethod has been used to ompute Keldysh propagators [66℄ and the meson spetrum[67℄. The results of ourse inherently su�er from unertainties due to the transfer froma onformal �eld theory to the Standard Model. At low temperatures, one an estimatethe resulting error by omparison to experimental data.To summarise this paragraph, we onlude that it is urrently not possible to make ageneral quantitative statement about the behaviour of quasipartile widths at very hightemperature, not even in a weakly oupled theory. A well-known example for qualitativehanges at high temperature are phase transitions. In the ase of QCD it is theoretiallypredited and experimentally established that meson resonanes broaden and melt as oneapproahes the ritial temperature of the QCD phase transition, see Fig. 2.4. In thisexample the melting is of ourse well understood sine mesons are omposite partilesand desribed by an e�etive theory. However, the distintion between e�etive andfundamental theories is merely a question of the energy sale of onsideration, and thephysis at high energies annot be ompletely predited from knowledge of the low energybehaviour. 70



Chapter
3

Simple Models for the Bath

Throughout the previous hapter, we have not spei�ed the omposition of the thermalbath. The disussion of medium e�ets on the spetral funtions does not put restritionson the type of interations that generate them. In priniple, the bath ould onsist of anarbitrary number of fermioni and bosoni �elds with various interations amongst eahother, inluding gauge ouplings.In this hapter we demonstrate the results in two partiular models. Both of them areapplied to osmologial problems in the following hapter.3.1 A Salar Field oupled to a Bath of SalarsWe onsider a salar �eld φ that is oupled to a bath onsisting of two other salars χ1and χ2 by trilinear and quarti ouplings. The Lagrangian (2.1) then takes the shape
L =

1

2
∂µφ∂µφ − 1

2
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φφ2 +
2
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i χ
2
i −
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4!
φχ3

i

)

− gφχ1χ2 +Lχint . (3.1)The oupling g has mass dimension one and the hi are dimensionless. All of them shallbe small in the sense of perturbation theory. The ouplings Lχint need not be spei�edat this point exept that it is su�iently strong to keep the X in equilibrium. As in theprevious hapter, we neglet bakreation and take the χi in equilibrium at all times. Oneould e.g. imagine that the χi have strong ouplings to very many degrees of freedom inequilibrium that immediately ompensate for any exhange of energy with φ. We assumethat the χi are in the symmetri phase, i.e. 〈χi〉 = 0, so that there are no ontributions of71
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PSfrag replaementsFigure 3.1: Relevant Feynman diagrams, lines represent φ (solid), χ1 (dotted), χ2(dashed), Ψ1 (solid with arrow) and Ψ2 (dashed with arrow) propagators. The grayblobs represent resummed self-energy insertions and the rosses ouplings to mean �elds.the type shown in Fig. 3.1 i) and j) to the self-energy of φ from ouplings to mean �elds.3.1.1 The trilinear Coupling gThe φ-self-energy to leading order is given by the diagram shown in Fig. 3.1a). We areinterested in the imaginary part that determines the gain- and loss rates. With (2.42)and the KMS ondition (1.96), ImΠR an be omputed from Π< via
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(ω)
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)

. (3.2)For Π< = Π−+ the left vertex in Fig. 3.1a) is of the '−'-type and the right of the '+'-type.With the thermal Feynman rules (see Se. 1.3.3) one �nds
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1 (p0) = fB(p0)ρ1(p0). (3.4)72



Here, and in the following, quantities that arry an index 'i' suh as ∆<
i , ΠR

i or ω(i)qrefer to χi propagators, self energies, frequenies, et etera, while those laking suh anindex belong to φ. To further simplify notation, we will from now on suppress the spatialmomentum whenever possible in this subsetion. It shall be understood that '1'-quantitiesalways have momentum p while '2'- quantities have q−p. For example, ωq = (q2 +m2
φ)

1
2 ,

ω1 = (p2 + m2
1)

1
2 and ω2 = ((q− p)2 + m2

2)
1
2 . To leading order ImΠR is then given by
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2).(3.5)Using one of the δ-funtions, this integral an be rewritten as
ImΠR
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)

)

. (3.6)Here f1 = fB(ω1) and so on. The well known result (3.6) has a lear physial interpreta-tion: The �rst line represents deays φ → χχ and their inverse χχ → φ. The ombinationsof fB make sure that the detailed balane ratio is ful�lled while the δ-funtions guaran-tee energy onservation in partile reations as disussed in Se. 2.3.3. The seond linerepresents χφ → χ and χ → φχ satterings with quanta from the plasma. This hannelorresponds to Landau damping and does not exist in vauum. As expeted, the seondline vanishes if T → 0. The integral (3.6) an be solved analytially [40, 9℄.At this level, the quanta in the bath have been treated as free partiles. Sine theirself interations are by assumption stronger than the oupling to φ, this is inonsistent.Higher order orretions to the one loop integral (3.6) an onsistently be inorporatedby inserting resummed χi propagators in the loop, see Fig. 3.1 b). This an be doneby replaing the free spetral funtion in (3.5) by its interating ounterpart. In thequasipartile regime, one an neglet ImΠR and use (2.148) as a �rst approximation.Here we onsider the simplest ase and assume that the dressed one-partile states arethe only resonanes and orretions to their dispersion relations due to medium e�etsare in good approximation independent of the wave vetors. Then the free quasipartileapproximation an be applied and the analyti result found in [40, 9℄ remains valid, butwith intrinsi masses replaed by thermal masses mi → Mi(T ). The result of (3.6) thenreads
ImΠRq (ω) = σ0(q) + σa(q, T ) + σb(q, T ). (3.7)73



Here σ0 is the ontribution due to the deay proess φ → χ1χ2,
σ0(q) =

g2

16πq2
sign(ω)θ(q2 − (M1 + M2)

2)

×
(

(q2)2 − 2q2(M2
1 + M2

2 ) + (M2
1 − M2

2 )2
)

1
2 , (3.8)

σ
(a)
β (q) is an additional temperature dependent ontribution from suh proesses,

σa(q) =
g2

16π|q|β sign(ω)θ(q2 − (M1 + M2)
2)

×
(

ln

(

1 − e−βω+

1 − e−βω−

)

+ (M1 ↔ M2)

)

, (3.9)and σb(q) the ontribution from Landau damping
σ

(b)
β (q) =

g2

16π|q|β sign(ω)θ((M1 − M2)
2 − q2)

×
(

ln

(

1 − e−β|ω−|

1 − e−β|ω+|

)

+ (M1 ↔ M2)

)

. (3.10)We have used the abbreviations
ω± =

|ω|
2q2

(q2 + M2
1 − M2

2 ) ± |q|
2|q2|

(

(q2 + M2
1 − M2

2 )2 − 4q2M2
1

)
1
2 . (3.11)The real part of the self energy an be omputed from this using the spetral representation

ReΠq(ω) =
1

π
P
∫

dq0
ImΠq(q0)

q0 − ω
, (3.12)whih follows from the Kramers-Kronig relations. It an give a positive or negative or-retion to the mass, see Fig. 3.9. For equal χ masses, m1 = m2 = mχ and self ouplings,the result for vanishing external momentum q = 0 is partiularly simple,

Γ0(ω) =
g2

8πω

(

1 −
(

2mχ

m

)2
)

1
2

(1 + 2fB(ω)) θ(ω − mχ/2). (3.13)The temperature dependent part leads to an ampli�ation due to indued transitions. The
θ-funtions in Eqs. (3.8)-(3.10) and (3.13) appear beause the spetral funtion (2.148)puts the bath partiles χi on-shell, allowing only on-shell proesses to ontribute to Γq.We are interested in the fate of the thermal on-shell φ resonane, hene we replae

ω → Ωq. (3.14)74



Without loss of generality, we assume M2 > M1. Then the three regimes de�ned inSe. 2.3.3 orrespond to (a) Mφ > M1 + M2, (b) M2 > Mφ + M1 and () Mφ < M1 + M2and M2 < M + M1.In the �rst ase, energy between φ and the bath is exhanged via deays and inversedeays φ ↔ χ1χ2. In seond one, χ2 deays and inverse deays, χ2 ↔ φχ1 play that role.In the third ase none of these proesses is kinematially allowed. φ e�etively deouplesfrom the plasma and moves free of dissipation. The remarkable feature is that the phasespae volume beomes dynamial due to the temperature dependene of the masses. Atemperature hange an bring the system from one situation into the other. Even withinthe regimes where (a) or (b) are realised, temperature hanges an massively inreaseand derease gain- and loss rates by hanging the available phase spae. In a realistisystem, suh hanges will of ourse have a bakreation on the temperature. In Fig. 3.2we plot Γq as a funtion of T and q. Along the T axis one an learly see how the systemmoves from regime (a) to () and �nally to (b). A qualitative hange along the q axisours around q ≈ mφ when the partiles beome relativisti. Fig. 3.3 ompares theresult to the would-be value when negleting thermal masses. It shows that Γq is stronglyoverestimated when doing so.As disussed in Se. 2.3.3 the possibility of dissipationless movement in ase () isaused by foring the bath partiles on-shell. It disappears when one takes the width ofthe χi into aount beause then energy exhange between φ and the bath an happenvia o�-shell proesses. With non-vanishing widths the integral (3.3) generally has to besolved numerially. When all �elds are in the quasipartile regime, the ontribution fromo�-shell proesses is suppressed by the smallness of the widths. We illustrate this inFig. 3.4 where we have used a quarti self-oupling λi

4!
χ4

i for the bath �elds.
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3.1.2 The quarti Couplings hiTo leading order the ontribution from the ouplings hi

4!
φχ3

i to the φ-width Γq omes fromthe diagrams shown in Fig. 3.1c) and d). Eah is, analogously to (3.6), given by
ImΠR

q
(ω) = π

h2
i

12

∫

d9p1p2p3

(2π)9
(2π)3δ(3)(p1 + p2 + p3 − q)

1

8ω1ω2ω3

×
(

(

(1 + f1) (1 + f2) (1 + f3) − f1f2f3

)

(δ(ω − ω1 − ω2 − ω3) − δ(ω + ω1 + ω2 + ω3))

+
(

f1 (1 + f2) (1 + f3) − (1 + f1) f2f3)
)

(δ(ω + ω1 − ω2 − ω3) − δ(ω − ω1 + ω2 + ω3))

+
(

(1 + f1) f2 (1 + f3) − f1 (1 + f2) f3)
)

(δ(ω − ω1 + ω2 − ω3) − δ(ω + ω1 − ω2 + ω3))

+
(

f1f2 (1 + f3) − (1 + f1) (1 + f2) f3)
)

(δ(ω + ω1 + ω2 − ω3) − δ(ω − ω1 − ω2 + ω3))
)

, (3.15)where all ωi are to be taken with χi masses, ω1 =
√p2

1 + m2
χ1

et., and f1 = fB(ω1)et. The �rst line desribes the deay of φ into three χ and its inverse while the otherlines inlude all possible satterings φχ → χχ. They are kinematially allowed for anyhoie of masses. The quarti interations always ouple φ to the bath via satterings.Nevertheless, phase spae arguments will in�uene the magnitude of Γq when thermalmasses are taken into aount.Though some approximate analyti formulae have been omputed [68, 69, 70, 71℄, theintegral (3.15) an in general only be integrated numerially. For high T and q = 0 it anbe approximated by [68℄
Γ0 ≈ h2

i T
2

768πmφ
. (3.16)The quantitative range of validity (3.16) has to be treated with are. It is a onsistentapproximation to the integral (3.15) for large T (see Fig. 3.1.3), but due to the breakdownof perturbation theory at high temperatures, the validity of (3.15) itself is limited.However, it an be argued on a qualitative level that ontributions to Γq from satter-ings should further inrease with T in the nonperturbative regime. The reasons are Boseenhanement due to indued transitions and the fat that sattering proesses shouldbeome more frequent due to the higher density of the plasma.
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3.1.3 Numerial ResultsIn this setion we present a number of plots to demonstrate our previous results. Wheneverwe take them into aount, we model the self-interations of the bath �elds by a quartioupling,
Lχiint =

λi

4!
χ4

i . (3.17)The thermal mass Mi is to leading order given by the ontribution from the tadpolediagrams shown in Fig. 3.1e), f):
M2

χ = m2
i + λi

∫

d3p
(2π)3

fB(ωi)

2ωi
≈ m2

i +
λi

24
T 2. (3.18)It is independent of momentum. We estimate the χi-width by Lorentz-dilation of thezero-mode approximation (3.16).Fig. 3.2 shows the ontribution to Γq from the gφχ1χ2 oupling, normalised to itsvauum value, as a funtion of momentum q and temperature T . The mass hierarhyat T = 0 is hosen aording to ase (a), mφ > m1 + m2. We assumed a relativelystrong self-oupling with λ2 = 0.5 for χ2, but only a weak oupling λ1 = 0.01 for χ1.We negleted the thermal χi widths. Fig. 3.3 ompares this result to a omputation thatneglets χi-self-interations. At low temperature, the mass hierarhy orresponds to ase(a) and φ reeives its width from deays and inverse deays. When the thermal χ2-massorretion beomes relevant, it �rst suppresses and then, above a ritial temperature

T φ↔1+2
c at whih M = M1 + M2, ompletely bloks those proesses. For T > T φ↔1+2

c ,the �eld φ e�etively deouples from the plasma. At a muh higher temperature T 2↔φ+1
c ,when M2 > M1 + M , deays and inverse deays of χ2 set in. Negleting the χi self-interations leads to a dramati overestimate of the φ width in all three regimes, lowtemperatures exluded. We negleted the mass orretion for φ whih, due to its weakoupling, has muh less dramati e�ets than that of χ2. Taking it into aount does nothange the piture qualitatively, but only slightly moves the boundaries of the regimes.At low temperatures it is negligible ompared to mφ and at high temperatures it is smallompared to the thermal χ2 mass M2. The plots extend into the regime of very hightemperatures for illustrative purposes. There, the leading order results (3.6) and (3.18)do not give quantitatively orret results. However, the qualitative piture remains validas long as the system is in the quasipartile regime.Fig. 3.4 shows the e�et of o�-shell proesses in the quasipartile regime. χ1,2 aretaken equal in mass m1,2 = mχ = 0.4mφ and have a self interation of the same strength,

λ1,2 = λ = 0.1. Then their thermal masses are also equal, M1 = M2 = Mχ. There is onlyone ritial temperature Tc.
Tc is de�ned by the ondition (2.149). When negleting the thermal mass orretion77



for the very weakly oupled �eld φ one �nds
T 2

c ≈ 24

λ

(

(mφ

2

)2

− m2
χ

)

. (3.19)The kinemati arguments that forbid the φ-deay for T > Tc rely on the quasipartilenature of the involved partiles, namely the smallness of the χ1,2-width at Tc. We wantto estimate for whih hoies of parameters the suppression is e�etive. For the q = 0mode one an approximate, .f. (3.16),
Γχ ≈ λ2T 2

768πMχ
. (3.20)De�ning narrow width by Γχ ≪ Mχ one an formulate the ondition

Γχ(Tc) ≈
λ

64π

m2
φ − 4m2

χ

mφ
≪ Mχ(Tc) =

mφ

2
, (3.21)leading to

λ

32π

(

1 −
(

2mχ

mφ

)2
)

≪ 1. (3.22)The inequality (3.22) is the riterion for e�etive φ-deay suppression above Tc. Thequantitative validity of this result of ourse relies on the onvergene of the perturbativeseries. The fat that Tc is determined by the di�erene of the mass squares allows us tobring it into the perturbative regime by hoosing a small mass di�erene. Fig. 3.4 showsthat the suppression above Tc is very e�etive in the quasipartile regime.The �elds in the Lagrangian (3.1) are also oupled by the hiφχ3
i terms. In vauumand at low temperatures they at via the proesses φ ↔ χχχ. For the previous hoieof parameters, m1,2 = 0.4m, these are forbidden. Even if allowed, they are subdominantompared to the proess φ ↔ χχ at low temperatures due to phase spae argumentsunless hi ≫ g/m. Nevertheless, their ontribution inreases with temperature, see (3.16)and Fig. 3.1.3, hene they an provide φ with a width for T > Tc.It is instrutive to estimate how e�iently this ompensates for the suppression of thetrilinear interation above Tc. We ompare Γq at T = Tc and T = 0 for q = 0, assumingthat the former is dominated by χχ ↔ φχ satterings and the latter by φ ↔ χχ deaysand inverse deays. In vauum, Γq then is given by1

Γ|T=0 =
g2

8πmφ

(

1 −
(

2mχ

mφ

)2
)

1
2

. (3.23)1Some authors use a de�nition of Γq that deviates from ours by a fator 1

2
and would quote half ofour result for deay width in vauum. 78



Figure 3.2: Γ/Γ|T=0 in the salar model as a funtion of T and |q| for g = 0.05mφ, m1 =
m2 = 0.4mφ, h1 = h2 = 0, λ1 = 0.01, λ2 = 0.5. Corretions to the φ-mass are very smalland, at this order, inreasingly negative for high temperatures.With (3.20) one �nds

Γ|T=Tc

Γ|T=0

=
∑

i

(

hi

g

mφ

2

)2
1

2λ

√

1 −
(

2mχ

mφ

)2

. (3.24)The dependenies in this formula an easily be understood. The quadrati dependeneon g and hi omes from the verties. Inreasing λ dereases Tc. At a lower temperature,the ontribution from χφ ↔ χχ satterings is smaller beause of the smaller density ofsattering partners. Therefore inreasing λ dereases the ratio (3.24). The dependene on
mφ and mχ follows the same logi, Tc inreases with mφ and dereases with mχ. Fig. 3.1.3ompares the ontributions from the di�erent ouplings. The parameters are hosen in away that there is no dissipationless regime.With the knowledge of the self energies we an plot the various orrelation funtions2.In the following we always set h1 = h2 = 0 and onentrate on the trilinear oupling.Unless stated di�erently, we use the value of the oupling onstant g suh that

Γ

mφ

∣

∣

∣

T=mi=0
=

g2

8πm2
φ

= 0.22 Figs. 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15 are taken from [5℄79
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and set the quarti ouplings h1,2 to zero everywhere exept in Figs. 3.1.3 and 3.1.3. Thisrelatively large value is hosen for illustrative purposes. Furthermore, we onentrate onthe zero mode q = 0. Thermal masses and widths of the bath �elds χ1,2 are alwaysnegleted.Figs. 3.7 and 3.8 show the spetral funtion for φ at di�erent temperatures for the ases(a) and (b), respetively. In ase (a), when φ already has a �nite width in the vauum,the quasipartile peak �melts� at relatively low temperatures without a signi�ant hangein position. In ontrast to that, in ase (b) the melting is aompanied by a negativemass shift. From the previous disussion, it follows that the broadening in Fig. 3.7 mightbe muh weaker if one takes the thermal masses of the bath �elds χ1,2 into aount. Thepeak ould even beome narrow again, and hene φ ould enter a seond quasipartileregime at high T , if the system enters a temperature regime in whih a thermal masshierarhy of the type () is realised. The mass shift in Fig. 3.8 an be understood fromFig. 3.9. ReΠR at Ωq and an have either sign, depending on the temperature.Fig. 3.10 shows ∆−
q
(y), the Fourier transform of ρq(ω). It osillates with the frequeny

Ωq and a damping Γq/2, see (2.70). The statistial propagator ∆+
q
(t1, t2), given by (2.61),as a funtion of t1 and t2 is displayed in Fig. 3.11. We set all initial onditions in (2.61) tozero to show the memory integral3. The system equilibrates along the diagonal t = t1+t2

2
-diretion and eventually beomes time translation invariant. This an be seen in detail inFig. 3.12 and 3.13. They show ∆+ along uts through the t1-t2-plane. Fig. 3.12 shows ∆+for di�erent �xed t = t1+t2

2
. At all times there are harateristi osillations in y = t1− t2.For late t, ∆+ as a funtion of y approahes its equilibrium shape, see Se. 2.2.3. Fig. 3.13shows ∆+ for y = 0. The two harateristi features are the asymptoti approah to anequilibrium value and the osillations in t. The latter are a onsequene of the fatthat the Kadano�-Baym equations, in ontrast to the Boltzmann equations, are seondorder di�erential equations. The amplitude of the osillations is of order Γq, hene theydo not appear in the memory integral term of the leading order approximation (2.71).Fig. 3.14 demonstrates that the approah to equilibrium happens independently of theinitial onditions.The energy density an be omputed from ∆+ at y = 0 using (2.104). In Se. 2.3.1 wepointed out that it deviates from that of a quasipartile gas. This is shown in Fig. 3.15.3.2 A Fermion with Yukawa CouplingsWe now onsider a system of two fermions Ψ1,2 and a salar φ. The Lagrangian is

L =
2
∑

i=1

iΨ̄i ( 6∂ − mi) Ψi +
1

2
∂µφ∂µφ − 1

2
m2

φφ
2 − gφ

(

Ψ̄1Ψ2 + Ψ̄2Ψ1

)

. (3.25)3 This does not orrespond to a vanishing initial partile number whih would be realised by setting
Nq = 0 in (2.134). 82
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Γ0(ω) =
g2ω

8π

(

1 −
(

2m

mφ

)2
)

3
2

(1 − 2fF (ω)) θ(ω − m/2). (3.26)It an be ompared to (3.13). The most striking di�erene is that Γq dereases withinreasing temperature due to the fator 1− 2fF (ω). The physial reason is that at largetemperatures, Pauli suppression dereases the rate of deays φ → ΨΨ. For bosons in the�nal state, (3.13) showed that it is inreased due to indued transitions.85
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Figure 3.17: Vetor and salar part of S+
q,mem(t1, t2) as funtions of t1 and t2 for q = 0,

T = 0.5m1, m2 = mφ = 0. Note that the vetor part is symmetri in y while the salar partis antisymmetri. As in Fig. 3.11, only the memory integral, whih vanishes for t1,2 = 0,is plotted. The full solution (2.87) shows similar osillations in t as in the salar ase, f.Fig. 3.11, whih are not visible here beause we plot the approximate solution (2.94).
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We now turn to the ase that one of the fermions, Ψ1, is out of equilibrium and φ and
Ψ2 form the bath. The spetral and statistial propagators S− and S+ for Ψ1 are givenby (2.80) and (2.88). The self energy Σ in this ase has to be omputed from the diagramshown in Fig. 3.1l). In Appendix B.2 we present an analyti expression for ImΣR in thease of vanishing m2 mass that is, to the best of our knowledge, so far unknown in theliterature. It is in good agreement with numerial plots shown in [72℄. The real part anthen be omputed from

ReΣq(ω) =
1

π
P
∫

dq0
ImΣq(q0)

q0 − ω
. (3.27)The expressions (B.30)-(B.35), (B.79)-(B.86) for ImΣR are rather ompliated, but theresulting Γq an be well approximated by

Γq ≈ g2 m2
1

16πωq (1 +

(

2T

m1

)2
)

1
2 (3.28)if the oupling is weak, mφ ≪ T,m1 and |q|, T . m1. Here ωq has of ourse to beevaluated with m1. Fig. 3.16 ompares this approximation to the exat result. Theanalyti struture and the interpretation of the uts and poles are the same as in thesalar ase. The temperature regimes orresponding to ase (a), (b) and () an be seenin Fig. 3.16. With the knowledge of Σ we an �nally plot the orrelation funtions. TheLorentz omponents of S−

q
(y) are damped exponentials, see (2.77), (2.90). The vetorand salar parts of the memory integral in S+

q
(t1, t2) in the quasipartile approximation(2.93) are shown in Fig. 3.17. Note the di�erent symmetry of the salar and vetor partin the relative time oordinate t1 − t2. As in the salar ase (f. Fig. 3.11), one observesosillations in the relative time oordinate y and equilibration in the entre of mass time t.The osillations in t that are visible in Fig. 3.11 have amplitudes O(Γ). Suh osillationsare not visible in Fig. 3.17 beause we plot the analyti leading order approximation (2.93)while Fig. 3.11 displays a numerial evaluation of the full result (2.61).
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Chapter
4

Applications in Cosmology

The overall struture of the observable universe is surprisingly simple.On sales > 100Mp is appears spatially homogeneous and isotropi. Moreover, theosmi mirowave bakground reveals that the density �utuations were even smallerbefore nonlinear galaxy formation reated the strutures we observe today [73℄. Thus,the overall geometry an in good approximation be desribed by a Friedmann-Robertson-Walker metri,
ds2 = gµνdxµdxν = dt2 − a2(t)

(

dr2

1 − κr2
+ r2

(

dϑ2 + sin2 ϑdϕ2
)

)

. (4.1)
κ determines the overall urvature of spae, its sign is determined by the sign of Ω − 1where Ω = ǫ/ǫcr with ǫ being the energy density and ǫcr the ritial energy density

ǫcr =
3H2

8πG
. (4.2)Here G is Newton's onstant and H = ȧ/a the Hubble parameter. The time evolution ofthe sale fator a(t) is governed by the Friedmann equations

ä = −4π

3
G(ǫ + 3p)a (4.3)

H2 +
κ

a2
=

8πG

3
ǫ. (4.4)Here ontributions from a osmologial onstant Λ have been inluded into energy density

ǫ and pressure p. Based on various observations, it is possible to determine the omposition91



of the energy density. The total ǫ is very lose to the ritial density ǫcr and the overallgeometry of the universe therefore in good approximation �at, κ = 0. It is omposed ofthree main ingredients, with ∼ 4% baryoni matter, ∼ 23% dark matter and ∼ 73% darkenergy1. In addition, there are small ontributions from photons and neutrinos.Extrapolating (4.3) and (4.4) bakwards in time implies that the observable universeoriginates from a volume that was many orders of magnitude smaller than its urrentsize. At early times, energy density and pressure were muh higher than in any humanmade experiment, making it an exellent laboratory for high energy physis in whih thestandard model of partile physis and its possible extensions an be probed. In exhange,partile physis an provide an underlying mirosopi theory that �lls the osmologialparameters dedued from astronomial observations with a meaning. Indeed, many ofthe observed features an be understood as onsequenes of nonequilibrium phenomenain the early universe.Proesses in the primordial plasma are anonially studied by means of Boltzmannequations. From the disussion in the previous setions it is lear that this approahbeomes inreasingly unreliable in early epohs. However, during muh of its early historythe universe is �lled with a slowly ooling plasma in thermal equilibrium. As the plasmaools down, its onstituents suessively fall out of equilibrium and freeze out when theirinteration rates beome low. If the temperature hanges slowly with respet to thetime sale assoiated to the partile reations, suh proess an in good approximationbe desribed by the methods we developed in the previous hapters. In this hapter,we apply them to two partiular problems. In Se. 4.2 we disuss thermal leptogenesisas an example for a freezeout proess that requires a quantum mehanial desription.Before, in Se. 4.1, we use our results from the salar model to study the kinematis ofthe reheating after in�ation.4.1 In�aton Deay and ReheatingThe homogeneity and isotropy of the observable universe on large sales pose a problem inlassial osmology. When extrapolating Eqs. (4.3) and (4.4) bakwards in time, with theobserved energy ontent, di�erent pathes in the sky orrespond to regions in spae thathave never been ausally onneted. This leaves the question why they have the sametemperature. Furthermore ǫ ≈ ǫcr at present time requires ǫ to be extremely lose to ǫcr inthe past. Without further assumptions, there is no explanation for this �ne tuning. Theseproblems, known as horizon- and �atness-problem, an be explained by the assumptionthat the universe underwent a phase of aelerated expansion at a very early stage of itsevolution2. Suh an era of osmi in�ation would also explain the absene of topologialdefets predited by many theories of partile physis in the observable universe as a result1See [2℄ for detailed numbers.2For a review, see e.g. [74℄ and referenes therein.92



of their dilution. The rapid expansion, if it lasted su�iently long, implies that the entireobservable universe originates from a very tiny, ausally onneted volume. The simplestmehanism that an drive in�ation is provided by the potential energy of a salar �eld φ,the in�aton, whih at some point dominated the energy density in the small volume fromwhih the observable universe originates. Here we fous on this senario of single �eldin�ation. During the in�ationary phase, while φ moves towards its potential minimum,all other forms of energy are diluted and beome negligible. When φ starts osillatingaround the minimum, its energy is released into all other degrees of freedom, to whih weolletively refer as X . This proess is known as reheating and leaves the universe �lledwith the hot primordial plasma that forms the initial state of big bang osmology. Thedetails of the φ dissipation and the subsequent thermalisation of the plasma are unknown,and so is the resulting temperature3.The temperature in the early universe is a very important osmologial parameter.It determines the abundane at whih partiles are produed thermally. This inludesdark matter andidates, leading to upper temperature bounds to avoid overprodution.In supersymmetri theories this is in partiular of interest in the ontext of the so alledgravitino problem [76℄. In thermal leptogenesis it determines the abundane of heavyright handed neutrinos therefore the amount of baryon asymmetry that an be generated.This implies a lower bound on the temperature. It has also been speulated about theimportane of thermal e�ets for moduli deay [77, 78℄ or destabilisation of extra dimen-sions [79℄, the latter also giving rise to an upper bound on T . In [80℄ it has been suggestedthat large thermal masses of the deay produts in the primordial plasma imply anotherupper bound on the temperature. In this setion we use our results from Se. 2.3.3 toanalyse the onditions under whih this an happen.In the beginning of the reheating phase almost all energy is stored in the oherentosillations of the q = 0 mode of the marosopi �eld 〈φ〉. Therefore φ0,in and φ̇0,inreah large values while all other ontributions to the energy density are small. Theenergy an be transferred into other degrees of freedom in di�erent ways. In general thisis a far-from-equilibrium proess. The energy is released either into �utuations of φ itself,whih an be interpreted as partiles and are haraterised by ∆±, or diretly into X s.If 〈φ〉 dominates the self energies ΠR of the �elds it ouples to, e�etive masses are alsodominated by the osillating �eld value. In this ase, most of the energy transfer happensvia parametri resonane whih dissipates enormous amounts of energy. This proess anapproximately be desribed in terms of lassial �elds, and its olletive nature an easilyallow the reation of partiles with masses larger than mφ [81, 82℄. Kinemati restritionsas disussed in Se. 2.3.3 are ertainly not valid beause they only apply if the system anbe well desribed by the language of (quasi)partiles. If there is no parametri resonane,or if a large amounts of energy have been released into �utuations of φ, further dissipationhappens via perturbative deays and satterings of φ quanta. When these proesses are3 For a review, see e.g. [75℄ and referenes therein.93



responsible for a signi�ant part of the energy transfer, the kinematial onsiderationsfrom Se. 2.3.3 an play a ruial role.The intrinsi mass of φ is usually thought to be larger than the intrinsi masses ofthe X . On the other hand, it is oupled weakly to all other �elds, muh weaker than e.g.the Standard Model �elds amongst eah other. In ase the interations within the bathare strong enough to thermalise it fast on the time sale on whih φ evolves, the deayhappens in the bakground of a thermal plasma. This an be a reasonable approximationduring the late phase of reheating [83, 80, 33℄ or in senarios known as warm in�ation[84, 71℄. Pauli bloking suppresses reations involving fermions, f. (3.26), so that mostof the energy is dissipated into bosoni degrees of freedom. Under these onditions, thesalar model in Se. 3.1 an be used to study the in�uene of thermal masses and widthsDuring reheating bakreation is of ourse not negligible and the temperature notonstant. T (t) an be a ompliated funtion and is determined by the struggle betweenooling by expansion and heating by φ deay. However, if the time sale assoiated withthe dynamis of φ is muh shorter than that of the Hubble expansion, but still longenough for the bath to be onsidered in equilibrium at any time, one an use the approx-imation (2.48) for the spetral funtion and insert equilibrium propagators to omputethe dissipation rate Γq at the given temperature in eah moment.The laim in [80℄ is that the thermal masses of the deay produts inrease with Tand e�etively blok further φ-deay above a ritial temperature Tc. Any ooling of theplasma below Tc by Hubble expansion is ompensated by φ-deay, and the temperatureremains at Tc until φ has dissipated its exessive energy. Then, when φ is in equilibriumwith all other �elds, the universe enters the radiation dominated era. Based on our resultsin Se. 2.3.3 and 3.1, we an on�rm this laim under ertain onditions.It is lear that the arguments related to energy and momentum onservation at ver-ties onneting resummed propagators an only hold if the involved �elds are in thequasipartile regime. Otherwise reheating an always ontinue via o�-shell proesses. Inthe quasipartile regime, there an be a ritial temperature above whih further heatingby perturbative deays and satterings beomes ine�ient beause φ e�etively deouplesfrom the bath. Due to o�-shell proesses, Γ is never stritly zero, but it is suppressed bythe smallness of the widths of the resonanes when the on-shell deay beomes forbidden.In general, the onditions under whih on-shell reations between the quasipartiles be-ome forbidden have to be extrated from the possibly ompliated dispersion relations ofall involved plasma waves. A simple rephrasing of these onditions by replaing intrinsimasses by thermal masses as done in [80, 33℄ is only valid if the free quasipartile approx-imation holds and medium orretions to the dispersion relations depend only mildly onthe wave vetors. In this ase, the inequality (3.22) allows to estimate that for trilinearouplings that an be resembled by the salar model from Se. 3.1, the suppression above
94



Tc is e�etive if
λ

32π

(

1 −
(

2mχ

mφ

)2
)

≪ 1.This ondition is quantitatively valid if the ritial temperature given by (3.19),
T 2

c ≈ 24

λ

(

(mφ

2

)2

− m2
χ

)

,is low enough for perturbation theory to hold.Even if these onditions are ful�lled, 2 → 2 satterings always provide a hannel totransfer energy from φ into the bath if φ also ouples to the bath �elds by four-verties.Their e�ieny depends on the oupling strength and on the value of Tc, see disussionfollowing (3.24). The importane of widths in this ontext has previously been pointed outin [33℄, but modi�ed dispersion relations and the possibility of satterings were negleted.4.2 Thermal LeptogenesisThe observable universe is purely made of matter, with a tiny fration antimatter presentin osmi rays whih an onsistently be explained by seondary emission [85℄. Thisrequires an exess of matter over antimatter, or baryon asymmetry, in the primordialplasma. The exess an be estimated by the baryon-to-photon ratio η = nB/nγ, whih anbe determined in two ways, either from the CMB [86℄,
ηCMB = (6.225 ± 0.170) × 10−10 (4.5)or from the abundane of light elements in the intergalati medium, thought to be reatedduring big bang nuleosynthesis [87℄,

ηBBN = (5.5 ± 1.0) × 10−10. (4.6)In in�ationary osmology, this number an not be assigned to the initial onditions beauseany pre-in�ationary asymmetry is diluted during the aelerated expansion. Its valuewould be negligibly small after reheating. Hene baryogenesis, the generation of an η 6= 0,must have ourred during or after reheating. The details of the baryogenesis mehanismare unknown, and di�erent models have been proposed. Any possible explanation hasto be in agreement with the Sakharov onditions, namely it requires a deviation fromthermal equilibrium and proesses that violate C, CP and baryon number [88℄. Here Cand P stand for harge and parity onjugation. Baryon number B and lepton number Lare quantum numbers for baryons and leptons respetively, with value 1 for partiles and
−1 for antipartiles. 95



In priniple all these ingredients are provided in the Standard Model by the ele-troweak interation [89℄. It violates P and C as well as CP through the CKM matrix[11℄. Baryon number B and lepton number L are violated by nonperturbative transitionsbetween equivalent topologial vaua [89, 90℄, the sphalerons. Those are negligible at zerotemperature, but beome relevant near the eletroweak phase transition. Hubble expan-sion brings the plasma out of equilibrium. However, in order to explain the observed
η, a �rst order eletroweak phase transition is required. In the Standard Model, thiswould our for a Higgs mass mH < 45 GeV [91, 92℄, whih is ruled out by experiment[4℄. In addition, the CP violation in the CKM matrix is too small [93℄. Thus, suessfulbaryogenesis requires physis beyond the Standard Model. Many possibilities to ahievethis have been explored during the past four deades4, inluding GUT baryogenesis [94℄,A�ek-Dine baryogenesis [95℄ and leptogenesis [13℄.Leptogenesis5 provides a partiularly attrative senario beause it links the baryonasymmetry to neutrino properties. If the light neutrino masses in the Standard Modelare generated by a type-I see-saw mehanism (see appendix A), the CP violating out-of-equilibrium deay of the heavy neutrinos N an generate a matter-antimatter asymmetryin the leptoni setor. In the ase that the inverse proesses that wash out the asymmetryare e�ient, its �nal value is independent of the initial onditions and given in termsof neutrino properties. The lepton-asymmetry an then partially be transferred to thebaryoni setor by sphaleron proesses.Quantitatively, leptogenesis is usually studied by means of lassial Boltzmann equa-tions 6. However, the reation of a lepton asymmetry is a quantum e�et as it arises fromthe interferene between tree level deays and higher order orretions. The desriptionof this quantum e�et in terms of Boltzmann equations su�ers from the basi oneptualproblems disussed in the previous setions. Furthermore, most leptogenesis senariosrequire a high temperature T ∼ 1010 GeV to generate su�iently many heavy neutrinos.At these temperatures thermal e�ets in the plasma an ertainly not be ignored. It isimportant to understand the range of validity of the Boltzmann equations and estimatethe size of the orretions. In reent years, enormous progress has been made towardsthis goal [49, 99, 50, 53, 54, 51℄, mostly based on quantum Boltzmann equations.If leptogenesis takes plae after the primordial plasma has thermalised, the simpliityof the setup an make a full quantum treatment possible. The heavy neutrinos N are ingood approximation the only �elds that are out of equilibrium. They are weakly oupledto a bakground plasma with slowly hanging temperature. Sine the number of degreesof freedom in the bath is > 100 and η known to be tiny, bakreation is negligible.The asymmetry only beomes relevant muh later in the history of the universe. Inthis senario, the propagation and deay of N in the primordial plasma an, with some4For a review, see e.g. [96℄5For detailed reviews, see e.g. [97℄.6For a detailed treatment in terms of Boltzmann equations see e.g. [98℄96



modi�ations, be modelled by the Yukawa model from Se. 3.2. Ψ1 is identi�ed with N ,
Ψ2 with the Standard Model leptons l and φ with the Higgs Φ. The main di�erenes anbe summarised as(1) N is a Majorana fermion.(2) Φ and l form weak isospin doublets.(3) N and l arry �avour indies. The Yukawa matrix λ is generally non-diagonal in�avour spae and has omplex entries.(4) The temperature is a funtion of time.The Kadano�-Baym equations for the propagators G>

αβ(x1, x2) = 〈Nα(x1)Nβ(x2)〉 and
G<

αβ(x1, x2) = −〈Nβ(x2)Nα(x1)〉 of Majorana fermions are given in [49℄,
C(i6∂1 − M)G>(x1, x2) = −

∫

d4x′
(

Σ>(x1, x
′)GA(x′, x2) + ΣR(x1, x

′)G>(x′, x2)
)

, (4.7)
C(i6∂1 − M)G<(x1, x2) = −

∫

d4x′
(

Σ<(x1, x
′)GA(x′, x2) + ΣR(x1, x

′)G<(x′, x2)
)

. (4.8)Here C is the harge onjugation matrix, for whih we take the representation iγ2γ0.Following the steps in Eqs. (1.52)-(1.60), it is straightforward to derive the Kadano�-Baym equations for the spetral and statistial propagator,
C(i6∂1 − M)G−(x1, x2) =

∫

d3x′

∫ t1

t2

dt′Σ−(x1, x
′)G−(x′, x2) , (4.9)

C(i6∂1 − M)G+(x1, x2) =

∫

d3x′

∫ t1

ti

dt′Σ−(x1, x
′)G+(x′, x2)

−
∫

d3x′

∫ t2

ti

dt′Σ+(x1, x
′)G−(x′, x2) . (4.10)Multipliation with C−1 from the left gives Eqs. (4.9) and (4.10) the same shape asthe orresponding equations for Dira fermions (1.88) and (1.89) with the replaements

S± → G± and Σ → C−1Σ. The boundary ondition (2.76) is modi�ed to G−q (0) = iγ0C−1.Thus, one an �nd the solutions for Majorana neutrinos from those for Dira neutrinosby replaement.In the symmetri phase of the eletroweak theory the modi�ation (2) simply meansthat one has to sum over the omponents of the weak isospin doublet when omputingthe self energy. Eah term has the same struture.As a onsequene of modi�ation (3), the self energy Σ is generally not diagonal in�avour spae. The resummed propagator is a matrix in �avour spae, o�-diagonal ele-ments desribe oherenes between di�erent �avours. Furthermore, due to the omplex97



entries in λ, CP is violated and the Lorentz struture is modi�ed. Σ annot be deom-posed as in (2.81) beause it also has pseudo-salar and axial-vetor parts. This makesthe inversion of (2.78) tehnially more di�ult, but does not pose a oneptual prob-lem. Usually Σ is split into a left-handed and a right-handed part eah of whih an bedeomposed as in (2.81). If the Majorana masses of the heavy neutrinos are strongly hi-erarhial, the lepton asymmetry is usually generated by the deay of the lightest �avour.The two heavier �elds an then be integrated out to obtain an e�etive theory with onlyone �avour.The biggest hallenge is posed by the time dependene of T beause the solutionsof the Kadano�-Baym equations were obtained under the assumption of a time transla-tion invariant self-energy. If there is a separation of time sales, one an, analogue toEqs.(2.47)-(2.48), treat t as an external parameter. Then the spetral propagator is givenby
G−(t1, t2) =

∫

dω

2π
e−iω(t1−t2)

×
(

1

6q − M − C−1ΣA
q
(ω, T (t)) − iωǫ

− 1

6q − M − C−1ΣR
q
(ω, T (t)) + iωǫ

)

C−1.(4.11)This result an be used to ompute G+(y; t) analogue to (2.88),
G+q (t1, t2) = −G−q (t1)Cγ0G+q (0, 0)γ0C−1G−q (−t2) (4.12)

+

∫

dω

2π
e−iω(t1−t2)

(
∫ t1

0

dy1G
−q (y1)e

iωy1

)

C−1Σ+q (ω)

(
∫ t2

0

dy2G
−q (−y2)e

−iωy2

)

.Here it has been used that the symmetry relations (1.86) and (1.87) for Majorana fermionsan be written as G±(x1, x2) = ∓ (G±(x2, x1))
T .The orrelation funtions G++, G>, G< and G−− an be obtained from G± via thedeomposition

(GC(x1, x2))c = G+(x1, x2) −
i

2
signC(x0

1 − x0
2)G

−(x1, x2) , (4.13)f. (1.61). Sine all Standard Model �elds very lose to equilibrium, they an be de-sribed by thermal (equilibrium) propagators in loop integrals. Those are well-known toleading order. Thus, knowledge of the spetral and statistial nonequilibrium propagators
G± for N allows to evaluate all relevant Feynman diagrams. In partiular, CP -violatingontributions to the lepton self energy an be omputed. Those are responsible for thegeneration of a matter-antimatter asymmetry in the leptoni setor. The dressed statis-tial propagator S+

ij for leptons, where we have now written the �avour indies i and jexpliitly, allows to de�ne the 'lepton number matrix'
Lqij(t, t

′) = −tr
(

γ0S+qij(t, t
′)
)

. (4.14)98



The asymmetry in �avour i as a funtion of time is then given by Lqii(t, t). Computa-tion of S+
ij to fourth order in the Yukawa ouplings λij in (A.1) provides a full quantummehanial treatment of leptogenesis7. Sine the Kadano�-Baym formalism makes nosemi-lassial approximations, it inherently avoids a number of ompliations that om-putations based onventional Boltzmann equations have been plagued with. In partiular,there is no neessity for a subtration of real intermediate states. Evaluation of the selfenergy diagrams automatially inludes all on- and o�-shell proesses at a given order inthe orret manner, and no apparent reation of an asymmetry in equilibrium is found.Furthermore, if leptons and Higgs �elds in loop orretions are in equilibrium, thermalorretions to the prodution rates are linear in their distribution funtions, as expetedfrom detailed balane onsiderations8.However, are has to be taken at two points. First, leptogenesis takes plae at avery high temperature. Due to the breakdown of perturbation theory at large T thespetrum of the Standard Model in this regime is unknown. The assumption that theStandard Model �elds are in the quasipartile regime and an be desribed by the well-known leading order or next-to-leading-order propagators for dressed partiles is doubtful.These problems are also negleted in all present omputations that use Boltzmann orquantum Boltzmann equations and auses an error of unknown size in all omputationsto date. At the urrent stage, our results an be used to determine orretions due toquantum and non-Markovian e�ets by omparison to Boltzmann equations under equalassumptions regarding the spetrum. In the future, provided all relevant self energies atthe temperature of interest are known from some other soure, they allow the quantitativeomputation of the generated lepton asymmetry. Seond, a realisti omputation of ourserequires a more areful treatment of the dependene on entre of mass time. In partiular,the CP violating part of the lepton self energy is not time translation invariant due tothe deviation of the N propagators from equilibrium. Both of these aspets go beyondthe sope of this work, but will be addressed in the near future9 .

7This applies to the prodution and washout proesses. In realisti leptogenesis, other spetatorproesses in the plasma an have an in�uene on the �nal asymmetry [100℄.8This an be seen expliitly in Eqns. (3.6), (3.15), (3.26) and (B.45) for the models we studied inthis work. By the time of printing, it has been on�rmed in a realisti model for leptogenesis in [47℄,ontrasting earlier laims made in [55℄, and is in disussed in detail in [51℄.9By the time of printing, there has been onsiderable progress towards this goal and a fully quantummehanial omputation of the asymmetry has been published in [47℄ .99



Chapter
5

Conclusion

Many properties of the universe today an be explained as the result of nonequilibriumproesses during its early history. The high energy densities during those epohs also makethe early universe an exellent laboratory for the study of physis beyond the StandardModel. Hene, nonequilibrium proesses in the primordial plasma are interesting forosmology as well as partile physis. To date, most omputations are based on Boltzmannequations. As lassial Markovian equations for phase spae distribution funtions, thesesu�er from basi oneptual problems when quantum phenomena like oherent osillationsor memory e�ets are relevant. While in some ases, e.g. big bang nuleosynthesis orthe deoupling of photons, these an in good approximation be negleted, they mightbe ruial in other situations. For instane, in leptogenesis senarios, the reation ofmatter is aused by a quantum interferene. Over the past years, evidene has amountedthat lassial Boltzmann equations may be insu�ient to orretly desribe this quantummehanial proess. Therefore it is important to understand the range of validity of theBoltzmann equations and estimate the size of the orretions.Quantum and non-Markovian e�ets an modify the properties of a dense plasma invarious ways. This inludes e�ets that are related to the oherene of the quantumstate as well as hanges in the spetrum. The Kadano�-Baym equations o�er a tool toperform omputations in a full quantum mehanial framework. However, while numerialsolutions of Boltzmann equations usually allow a simple qualitative understanding of theresults and their dependenes on the model parameters, this transpareny is often lostwhen using Kadano�-Baym equations. When the spetrum of resonanes in the plasmais approximately known and simple, one an derive e�etive Boltzmann equations fromthe Kadano�-Baym equations, the quantum Boltzmann equations.In this thesis we disussed systems in whih one an go further and diretly solve the100



Kadano�-Baym equations by analyti methods. Many important proesses in the earlyuniverse an in good approximation be desribed by quantum �elds out of equilibrium thatare weakly oupled to a thermal bath. We solved the Kadano�-Baym equations for salarsand fermions for suh systems in full generality, without restritions regarding the size ofthe deviation from equilibrium or making an ansatz that parameterises the propagatorsin terms of distribution funtions. The omposition of the heatbath need not be spei-�ed. The solutions remain valid in good approximation if the bath temperature hangesslowly ompared to all other timesales. Thus, they an diretly be applied to a numberof osmologial problems. Furthermore, they improve the oneptual understanding ofquantum e�ets in a hot plasma.We then performed a detailed omparison of our solutions to results obtained byother methods. First, we showed that the Kadano�-Baym equations are equivalent to astohasti Langevin equation. A omparison to Boltzmann equations for partiles andquasipartiles revealed how these emerge from the Kadano�-Baym equations in the limitof weak oupling and low temperature. We then studied the plasma properties with fouson the appliability of Boltzmann equations in di�erent kinemati regimes.
• In the partile regime, the e�ets of the plasma on the properties of resonanesare negligible. The standard Boltzmann equations hold and desribe the kinemat-is with a high auray. If oherenes are important, these an onsistently beinorporated by the use of quantum Boltzmann equations.
• In the quasipartile regime, modi�ations of the spetrum due to the presene ofthe medium beome relevant. Dressed partiles reeive a thermal mass orretionand new resonanes, whih orrespond to olletive exitations in the plasma, anappear. As long as all of these have small deay widths, they an e�etively be de-sribed as quasipartiles. In this regime, quantum orreted Boltzmann equationsmay be used. They require the knowledge of the spetral funtion, inluding olle-tive exitations, as a funtion of time. The dependene of the dispersion relationsand deay widths on temperature and time auses non-Markovian e�ets. The latteran be parameterised by time-dependent ollision terms. To leading order, energyand momentum are onserved in deays and satterings involving quasipartiles.Hene, quasipartiles reat like ordinary partiles, but with modi�ed dispersion re-lations and widths. The dispersion relations an deviate strongly from those of freepartiles. They hange the available phase spae volume for proesses in a tem-perature dependent, hene dynamial, way and an have a dramati in�uene onprodution and dissipation rates. A simple parameterisation by thermal masses isonly possible if the dependene of the orretions on the wave vetor is mild, leadingto plasma waves that behave like free quasipartiles. The memory kernel an thenbe integrated in the narrow width limit, leading to ordinary Boltzmann equationswith intrinsi masses replaed by thermal masses. It is important to note that,though the system's approah to equilibrium follows a Boltzmann-type equation,101



the equation of state an di�er signi�antly from that of a quasipartile gas. Theadditional ontributions an be interpreted as a shift in the ground state and aneven generate a negative pressure. When oherenes in �avour spae are relevant,the quantum Boltzmann equations have to be formulated as matrix equations to in-lude orrelations between di�erent �avours. Though quantum orreted Boltzmannequations may in priniple be used in this regime, they have to be derived onsis-tently either from the Kadano�-Baym equations or, equivalently, the von Neumannequation for the density matrix. Many often-made assumptions in urrent ompu-tations, inluding the struture of the spetral funtion, the parameterisation of thepropagators by distribution funtions, the smallness of the deviation from equilib-rium or the fatorisation of the ollision terms into a deviation from equilibriumand a time dependent damping rate, are generally not valid and have to be justi�edindividually.
• In the broad resonane regime, Boltzmann equations ompletely fail to desribe thesystem. When the deay width of the resonanes is large, their interpretation as(quasi)partiles beomes meaningless. O�-shell ontributions to gain- and loss ratesan be of the same order as on-shell proesses or even dominate over them. Thisbehaviour is expeted for strong ouplings, but an even our in a weakly oupledat theory at su�iently high temperature.We illustrated our results in a salar and a Yukawa model. In both ases an analytileading order expression for the imaginary part of the self energy, whih determines thegain and loss rates, ould be found. In ase of the Yukawa model, the expression is, toour knowledge, previously unknown in the literature. The nontrivial behaviour of theself-energies as funtions of temperature when inluding higher order orretions showsthat the validity of approximations based on resummed leading order perturbation theoryis limited.Finally, we disussed appliations of our results in osmology. They an be used fora quantum mehanial treatment of a wide range of phenomena, in partiular freezeoutproesses. We foused on two examples. In the ontext of reheating, our analysis allowsto understand under whih irumstanes the appearane of large thermal masses anput an upper bound on the reheating temperature. This is the ase if a signi�ant partof the energy transfer from the in�aton modes into the primordial plasma happens viaperturbative deay, quanta of the involved �elds have dispersion relations orrespondingto quasipartiles and Landau damping by satterings is subdominant. In thermal lepto-genesis senarios, our results provide a toolkit for a full quantum mehanial omputationof the generated lepton asymmetry. The full omputation goes beyond the sope of thiswork, but will be addressed in the near future.
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Appendix
A

Right Handed Neutrinos and the
Seesaw Mechanism

One of the simplest possible modi�ations of the Standard Model that an explain theobserved neutrino osillations is provided by its extension by three singlet fermions NRi,often referred to as right handed neutrinos,
L = LSM + iN̄Ri 6∂NRi − λij l̄

I
LiNRjΦ̃

I − 1

2
MijN̄

c
RiNRj + h.c.. (A.1)Here Nc

R = CN̄T
R and Φ̃ = −i

(

Φ†σ2

)T . i and j are �avour indies and I marks theomponents of the weak isospin doublet. The �elds NR are usually referred to as righthanded neutrinos. Adding them is in agreement with all symmetries of the StandardModel. While the �rst term after LSM in the above Lagrangian is simply the kinetiterm for the right handed neutrinos, the seond and third term provide Yukawa ouplingsanalogue to those of the harged leptons. The last term is a Majorana mass term forthe NRi. In general, it is not possible to diagonalise λij , Mij and the Yukawa ouplingmatrix of the harged leptons simultaneously in �avour spae. In the following we hosea �avour base in whih Mij and the harged lepton Yukawa ouplings are diagonal, thelatter orresponding to a mass eigenstate base for the harged leptons after eletroweaksymmetry breaking. We now write the weak isospin doublet lILi as
lLi =

(

νLi

eLi

)

. (A.2)
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After eletroweak symmetry breaking, ν obtains a Dira mass term (mD)ij = λijv where
v id the Higgs expetation value. Then the mass terms for NR and νL an be written as

− 1

2

(

ν̄L N̄c
R

)

(

0 mD

mT
D M

)(

νc
L

NR

)

. (A.3)Here eah entry is of ourse a 3 × 3 �avour matrix, we suppressed �avour indies fornotational simpliity. The physial neutrinos orrespond to the mass eigenstates andare superpositions of NR and νL. If one assumes M ≫ mD, those superpositions areapproximately
νi ≈

∑

j

(UT )ij

(

(νLj − (νLj)
c) − (mD)ji

Mii
(Nc

Ri − NRi)

) (A.4)and
Ni ≈

∑

j

(mD)ji

Mii
(νLj + (νLj)

c) + (Nc
Ri + NRi) (A.5)where the sum is to be taken over j only and U is the PNMS matrix [101, 102℄ that relatesthe neutrino mass and �avour eigenstates. Sine M ≫ mD, the mass matrix for the states

να is approximately
mν ≈ m2

D

M
(A.6)and are very light ompared to the Ni with masses

Mi ≈ Mii. (A.7)The neutrinos are Majorana partiles, meaning they are their own antipartiles in thesense that N c
i = Ni and νc

i = −νi. The fat that large M lead to small mν gives themehanism the name seesaw mehanism. If the (mD)ij are hosen at the eletroweaksale, the experimental data1 implies Mii ≈ 1015 GeV. This is lose to the expeted saleof Grand Uni�ation. Sine M is not proteted by any symmetry, it is expeted to havea value at that sale.Finally, it should be pointed out that, on experimental ground, at this point it isnot neessary to introdue three generations of NR beause only mass di�erenes for theknown neutrinos have been measured. If the lightest ative neutrino is massless, two NRare su�ient to explain the observed mass di�erenes.
1See [4℄ for reent values. 104



Appendix
B

Some explicit Computations

B.1 Time Translation Invariane of ∆
−In [5℄ it has been proven that ∆−(x1, x2) is time translation invariant if it is analyti andthe self energy is time translation invariant. Here we present an alternative proof. Theinitial onditions of ∆−(x1, x2) do not depend on the initial onditions of the system, butare given by Eqs. (1.66)-(1.68),

∆−(x1, x2)|t1=t2 = 0 ,

∂t1∆
−(x1, x2)|t1=t2 = −∂t2∆

−(x1, x2)|t1=t2 = δ(x1 − x2) ,

∂t1∂t2∆
−(x1, x2)|t1=t2 = 0 .

Π−(x1, x2) is antisymmetri under exhange of the four vetors x1 and x2,
Π−(x1, x2) = −Π−(x2, x1). (B.1)The thermal bath is invariant under translations in spae and time
Π−(x1, x2) = Π−(x1 − x2) (B.2)and its properties are also invariant under the spatial parity transformation x1 ↔ x2

Π−(x1 − x2, t1 − t2) = Π−(x2 − x1, t1 − t2). (B.3)In ombination this implies that Π− is antisymmetri under an exhange of the timeomponents:
Π−(x1 − x2, t1 − t2) = −Π−(x1 − x2, t2 − t1). (B.4)105



From the Kadano� Baym equation it is know that
∆− (2,0)(x1, t1;x2, t2)+ω2∆−(x1, t1;x2, t2)+

∫ t1

t2

dt′Π−(x1−x′; t1−t′)∆−(x′, t′;x2, t2) = 0,(B.5)whih in a spatially homogeneous system simpli�es to
∆− (2,0)(x1−x2; t1, t2)+ω2∆−(x1−x2; t1, t2)+

∫ t1

t2

dt′Π−(x1−x′; t1−t′)∆−(x′−x2; t1, t2) = 0.(B.6)A Fourier transform in spatial momentum yields
∆− (2,0)

q
(t1, t2) + ω2∆−

q
(t1, t2) +

∫ t1

t2

dt′Π−
q
(t1, t

′)∆−
q
(t′, t2) = 0. (B.7)The above properties of ∆− imply

∆− (0,0)
q

(t1, t2)|t1=t2 = 0 (B.8)
∆− (1,0)

q
(t1, t2)|t1=t2 = 1 (B.9)

∆− (0,1)
q

(t1, t2)|t1=t2 = −1 (B.10)
∆− (1,1)

q
(t1, t2)|t1=t2 = 0 (B.11)

∆− (n,m)
q

(t1, t2)|t1=t2 = −∆− (m,n)
q

(t1, t2)|t1=t2 (B.12)Here ∆
− (n,m)
q means that the derivative of ∆−

q
is taken n times with respet to the �rsttime argument and m times with respet to the seond. If ∆− is analyti on the real axisit an be Taylor expanded in t1 and t2 and is equal to its Taylor series,

∆−
q (t1, t2) =

∞
∑

m,n=0

tn1 tm2
n!m!

∆−(n,m)
q (t1, t2)|t1=t2=0 (B.13)In order to prove that ∆− is translation invariant one has to show that it does not dependon the enter of mass oordinate, meaning

∂

∂(t1 + t2)
∆−

q
(t1, t2) = ∆−(1,0)

q
(t1, t2) + ∆−(0,1)

q
(t1, t2) (B.14)must vanish for any t1 and t2. Expanding ∆− aording to (B.13) yields

∆−(1,0)
q

(t1, t2) + ∆−(0,1)
q

(t1, t2) =
∞
∑

m,n=0

tn1 t
m
2

n!m!

(

∆−(n+1,m)
q

(t1, t2)|t1=t2=0 + ∆−(n,m+1)
q

(t1, t2)|t1=t2=0

)

. (B.15)106



For the rest of this setion we will use the short notation
∆(n,m)| = ∆−(n,m)

q
(t1, t2)|t1=t2=0. (B.16)One an see from (B.15) that it is now su�ient to prove that

∆(n+1,m)| + ∆(n,m+1)| = 0 (B.17)for all m and n. The advantage of the expansion is that it allows to use the equal timeommutation relations. The proof from now on goes along the following line: We assumethat
∆(p+1,q)| + ∆(p,q+1)| = 0 (B.18)for all p < n, q ≤ m. From that and (B.7) we an then proof that

∆(n+1,m)| + ∆(n,m+1)| = 0. (B.19)Applying the operator ∂p

∂tp1
+ ∂q

∂tq2
to (B.7) leads to

∆(p+2,q)(t1, t2) = −ω2∆(p,q)(t1, t2)

−
p
∑

u=1

p−u
∑

s=0

s
∑

t=0

Bp−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(p−u−s,q)(t1, t2)

+

q
∑

k=1

q−k
∑

l=0

l
∑

r=0

Bq−k
l Bl

r (−1)q−k−l Π(p+q−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

+

∫ t1

t2

dt′
(

∂p

∂tp1
+

∂q

∂tq2

)

(

Π−
q (t1 − t′)∆−

q (t′, t2)
)

. (B.20)Here Bi
j is the binomial oe�ient (i

j

). The integral term will vanish for t1 = t2. It followsthat
∆(n+1,m)| + ∆(n,m+1)| = −ω2

(

∆∆(n−1,m) |+(n−2,m+1)|
)

+
m
∑

k=1

m−k
∑

l=0

l
∑

r=0

(

Bm−k
l Bl

r (−1)m−k−l Π(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

t1=t2

+

m+1
∑

k=1

m+1−k
∑

l=0

l
∑

r=0

(

Bm+1−k
l Bl

r (−1)m+1−k−l Π(n−2+m+1−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

t1=t2

−
n−2
∑

u=1

n−2−u
∑

s=0

s
∑

t=0

(

Bn−2−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−2−u−s,m+1)(t1, t2)

)

∣

∣

∣

t1=t2

−
n−1
∑

u=1

n−1−u
∑

s=0

s
∑

t=0

(

Bn−1−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−1−u−s,m)(t1, t2)

)

∣

∣

∣

t1=t2
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The k = m + 1 term in the third line and the u = n− 1 term in the �fth line anel eahother. The �rst line is zero by assumption (B.18). Therefore the whole expression an berewritten as
m
∑

k=1

(

m−k
∑

l=0

l
∑

r=0

Bm−k
l Bl

r (−1)m−k−l Π(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

+

m+1−k
∑

l=0

l
∑

r=0

Bm+1−k
l Bl

r (−1)m+1−k−l Π(n−2+m+1−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

∣

∣

t1=t2

−
n−2
∑

u=1

(

n−2−u
∑

s=0

s
∑

t=0

Bn−2−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−2−u−s,m+1)(t1, t2)

+
n−1−u
∑

s=0

s
∑

t=0

Bn−1−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−1−u−s,m)(t1, t2)

)
∣

∣

∣

∣

∣

t1=t2 (B.21)Now the sum over t in the last two lines an be performed. It an be heked that
s
∑

t=0

(−1)s−t Bs
t =

{

1 for s = 0
0 otherwise

. (B.22)Using this one an see that the last two lines never ontribute due to (B.18). The uppertwo lines an now be summarized as
m
∑

k=1

(

m−k
∑

l=0

l
∑

r=0

Bl
rΠ

(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

(

(−1)m−k−l Bm−k
l

+ (−1)m−k−l+1 Bm−k+1
l

)

+
m−k+1
∑

r=0

Bm+1−k
r Π(n−2)(t1 − t2)∆

(m−k+1−r,k+r−1)(t2, t2)

)

∣

∣

∣

∣

t1=t2 (B.23)
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whih equals
m
∑

k=1

(

Π(n−2)(t1 − t2)

(

∂m−k+1

∂tm−k+1
2

∆(0,k−1)(t2, t2)

)

+
m−k
∑

l=0

(

∂m−k−l+1

∂tm−k−l+1
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k+1
l

−
m−k
∑

l=0

(

∂m−k−l+1

∂tm−k−l+1
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k
l

)

∣

∣

∣

t1=t2
.(B.24)This an be simpli�ed to

m
∑

k=1

(

∂m−k+1

∂tm−k+1
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

+
∂

∂t1

m−k
∑

l=0

(

∂m−k−l

∂tm−k−l
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k
l

)

∣

∣

∣

t1=t2
(B.25)and furthermore

m
∑

k=1

(

∂m−k+1

∂tm−k+1
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

+
∂

∂t1

(

∂m−k

∂tm−k
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

)

)

∣

∣

∣

t1=t2
(B.26)whih is equal to

(

∂

∂t1
+

∂

∂t2

) m
∑

k=1

∂m−k

∂tm−l
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

∣

∣

∣

t1=t2
. (B.27)This equals

m
∑

k=1

∂m−k

∂tm−l
2

(

Π(n−2)(t1 − t2)
(

∆(1,k−1)(t2, t2) + ∆(0,k)(t2, t2)
))

∣

∣

∣

t1=t2
. (B.28)The sum in the braket is zero due to (B.18). Therefore

∆(n+1,m)| + ∆(n,m+1)| = 0 (B.29)Obviously the whole proof relies on (B.18). This is ertainly true for p = 0, q = 0. It analso be veri�ed easily for p = 1,q = 0. From (B.20) it an be seen that (B.18) only needs109



to be ful�lled for all p < n. Therefore (B.20) allows to onlude that (B.29) is ful�lledfor n + 1 if it is known to be true for n. Starting from ∆(0,0)|, ∆(1,0)|, and ∆(1,0| it an beproven for all
∆(n+1,0)| + ∆(n,1)|,meaning one an "go up" in derivatives with respet to the �rst argument. In ontrast tothat it relies on (B.18) for all q ≤ m. To prove the statement for a ertain order derivativein the seond argument it has to be known to be valid for that order derivative and notonly for lower orders. Hene one annot reursively onlude for (or "go up" to) higherderivatives in the seond argument. But due to
∆(n,m)| = −∆(m,n)|one an �nd arbitrary ∆(0,n+1)| and ∆(1,n)| and then again proeed step by step to higherorder derivatives in the �rst argument. This way it beomes lear that all oe�ients inthe Taylor series (B.15) are zero and ∆−

q (t1, t2) is really time translation invariant.B.2 The Fermion Self EnergyWe translate the parameterisation (2.81)
ΣR

(V ) = aq(ω) 6q + bq(ω) 6u, ΣR
(S) = cq(ω)into the quantities

A =

(

1

4
tr
(

6qΣRq (ω)
)

) (B.30)
B =

(

1

4
tr
(

6uΣRq (ω)
)

) (B.31)
C =

(

1

4
tr
(

ΣRq (ω)
)

) (B.32)from whih one an obtain aq(ω), bq(ω) and cq(ω) via
a =

Bqu − Au2

(qu)2 − q2u2
(B.33)

b =
−Bq2 + Aqu

(qu)2 − q2u2
(B.34)

c = C (B.35)where qu = qµu
µ et. The quantities de�ned above are generally omplex salars that anbe deomposed as a = aR + iaI et., where aI is de�ned via the disontinuity.

aI = Imaq(ω) =
1

2i
(aq(ω + iǫ) − aq(ω − iǫ)) (B.36)110



We perform the omputation in the rest frame of the bath where u = (1, 0, 0, 0). From(1.106) it follows that
S>(p) = (1 − fF (p0))ρΨ(p) (B.37)
∆>(p) = (1 + fB(p0))ρφ(p). (B.38)From the KMS ondition (1.104) and the relation (B.99) one obtains
discΣRq (ω) =

(

e−βω + 1
)

Σ>q (ω), (B.39)leading to
discΣRq (ω) = −ig2

(

e−βω + 1
)

∫

d4p

(2π)4
S>(p)∆>(q − p)

= −ig2fF (−ω)−1

∫

d4p

(2π)2
(1 − fF (p0))(1 + fB(ω − p0))sign(p0)sign(ω − p0)( 6p + m2)

× δ(p2 − m2
2 )δ((q − p)2 − m2

φ)

= −ig2fF (−ω)−1

∫

d4p

(2π)2

1

2ω12ω2
(1 − fF (p0))(1 + fB(ω − p0))sign(p0)sign(ω − p0)( 6p + m2)

×
(

δ(p0 − ω1) + δ(p0 + ω1)
)(

δ(ω − p0 − ω2) + δ(ω − p0 + ω2)
) (B.40)with ω1 = (p2 + m2

2 )
1
2 and ω2 = ((q− p)2 + m2

φ)
1
2 . Performing the p0 integration leads to

−ig2fF (−ω)−1

∫

d3p
(2π)2

1

2ω12ω2
(

(1 − fF (ω1))(1 + fB(ω − ω1))sign(ω − ω1)(ω1γ
0 − pγpγpγ + m2)

×
(

δ(ω − ω1 − ω2) + δ(ω − ω1 + ω2)
)

− (1 − fF (−ω1))(1 + fB(ω + ω1))sign(ω + ω1)(−ω1γ
0 − pγpγpγ + m2)

×
(

δ(ω + ω1 − ω2) + δ(ω + ω1 + ω2)
)

) (B.41)Eah δ-funtion an only be non-zero for one sign of ω − ω1. Now we de�ne
nB(ω) = fB(|ω|), nF (ω) = fF (|ω|) . (B.42)We use

fB(−w) + fB(w) = −1 (B.43)
fF (−w) + fF (w) = 1 (B.44)111



and relations as sign(ω−ω1)f(ω−ω1)δ(ω−ω1−ω2) = f(ω2)δ(ω−ω1−ω2) et. to rewrite
discΣRq (ω) = −ig2

∫

d3p
(2π)2

1

2ω12ω2
(

(1 − nF (ω1) + nB(ω2))
(

(ω1γ
0 − pγpγpγ + m2)δ(ω − ω1 − ω2)

+ (ω1γ
0 + pγpγpγ − m2)δ(ω + ω1 + ω2)

)

+ (nF (ω1) + nB(ω2))
(

(ω1γ
0 − pγpγpγ + m2)δ(ω − ω1 + ω2)

+ (ω1γ
0 + pγpγpγ − m2)δ(ω + ω1 − ω2)

)

) (B.45)This expression an be ompared to (3.6) and agrees with (3.6) in [72℄1.With an appliationin thermal leptogenesis in mind, we an set m2 = 0, leading to
cI = CI =

(

Σ̂(S)

)

I
= 0. (B.46)From this one an �nd for AI

AI = −g2

∫

d3p
(2π)3

2π

8ω1ω2

(

(1 − n1 + n2)
(

(ωω1 − qp)δ(ω − ω1 − ω2)

+ (ωω1 + qp)δ(ω + ω1 + ω2)
)

+(n1 + n2)
(

(ωω1 − qp)δ(ω − ω1 + ω2)

+ (ωω1 + qp)δ(ω + ω1 − ω2)
)

) (B.47)with the notation n1 = nF (ω1) and n2 = nB(ω2). This expression is as a whole antisym-metri in ω and allows to rewrite
AI = −g2

∫

d3p
(2π)3

2π

8ω1ω2

(

ωω1

(

(1 − n1 + n2)(δ1 + δ2) + (n1 + n2)(δ3 + δ4)
)

−sign(ω)qp((1 − n1 + n2)(δ1 − δ2) + (n1 + n2)(δ4 − δ3)
)

)(B.48)where
δ1 = δ(|ω| − ω1 − ω2), δ2 = δ(|ω|+ ω1 + ω2),
δ3 = δ(|ω|+ ω1 − ω2), δ4 = δ(|ω| − ω1 + ω2)

(B.49)1Eq.(B.45) di�ers from (2.22) in [7℄ by a di�erene in the projetors, probably due to a typo.112



At this point it is already lear that δ2 an not ontribute. We hange to spherialoordinates ϕ, ϑ, |p|. The ϕ integration is trivial and due to m2 = 0 one has |p| = ω1.Introduing x = |p||q| cos(ϑ) = pq one an write
AI =

−g2

16π|q| ∫ ∞

0

dω1

∫ ω1|q|
−ω1|q| dx

(

δ(x − x01)
(

ωω1(1 − n1 + n2) − sign(ω)x(1 − n1 + n2)
)

+δ(x − x03)
(

ωω1(n1 + n2) + sign(ω)x(n1 + n2)
)

+δ(x − x04)
(

ωω1(n1 + n2) − sign(ω)x(n1 + n2)
)

)(B.50)where we used δi = ω2δ(x − x0i). The x0i an easily be determined as
x01 =

1

2
(q2 − ω2 + m2

φ) + ω1|ω| (B.51)
x03 =

1

2
(q2 − ω2 + m2

φ) − ω1|ω| (B.52)
x04 = x01. (B.53)This allows to perform the x integration,

AI =
−g2

16π|q|(∫1

dω1 (ωf1 + g1) +

∫

3

dω1 (ωf3 − g3) +

∫

4

dω1 (ωf4 + g4)
)

. (B.54)Here the subsript at the ∫
i
indiates whih δi determines integration limits for the ω1integration. The fi and gi are given by

f1 = ω1

(

1 − nF (ω1) + nB(|ω| − ω1)
) (B.55)

f3 = ω1

(

nF (ω1) + nB(|ω| + ω1)
) (B.56)

f4 = ω1

(

nF (ω1) + nB(ω1 − |ω|)
) (B.57)

g1 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) − ω1|ω|
)(

1 − nF (ω1) + nB(|ω| − ω1)
) (B.58)

g3 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) + ω1|ω|
)(

nF (ω1) + nB(|ω| + ω1)
) (B.59)

g4 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) − ω1|ω|
)(

nF (ω1) + nB(ω1 − |ω|)
) (B.60)(B.61)It is easy to see from Eqs. (B.30), (B.31) and (B.50) that

BI =
−g2

16π|q|(∫1

dω1f1 +

∫

3

dω1f3 +

∫

4

dω1f4

) (B.62)113



f1 and g1 are ontributions from deay and inverse deays Ψ1 ↔ Ψ2φ and an lead to azero temperature part if m1 > mφ. f3, f4, g3 and g4 ome from satterings in the plasma.It is interesting to note that
f1 = f4 (B.63)
g1 = g4 (B.64)despite the fat that they originate from di�erent proesses2. The fi are symmetri in ω,the gi antisymmetri. In the rest frame of the bath (B.33 �) an be written as

a =
Bω − Aq2

(B.65)
b =

ω(A − Bω)q2
+ B (B.66)

c = C (B.67)
BI is symmetri in ω while AI is antisymmetri. As a onsequene, aI is antisymmetriwhile bI is symmetri whih is onsistent with [103℄ . The stem funtions of all fi, gi areknown analytially, so the only remaining di�ult task is the determination of the properintegration limits. This shall be done now.
δ(|ω| − ω1 − ω2) : In order for x01 to be a zero point, the ondition

|ω| − ω1 > 0 (B.68)has to be ful�lled. In any ase,
ω1 > m2 = 0. (B.69)In order for the x-integral to be non-zero it requires
|x01| < ω1|q|. (B.70)The solutions to |x01| = ω1|q| are

ω± =
1

2

q2 − m2
φ

q2
(|ω| ± |q|) (B.71)with q2 = ω2 − q2. One has to distinguish three di�erent regimes: For 0 < |ω| < |q| and

ω1 > 0 only ω+ is a solution, and it puts a lower bound on ω1 in order for the inequality(B.70) to be ful�lled, leading to ω1 > ω+. On the other hand the ondition (B.68) has2Note that despite the equalities (B.63) and (B.64) the Landau damping terms f4, g4 never lead to aontribution to Σ at zero temperature while the deay and inverse deay parts f1 and g1 an ontributeas expeted. The reason lies in the di�erent integration limits, see (B.68) and (B.77)114



to be ful�lled, and sine for |ω| < |q| always ω+ > |ω|, there is no ontribution to theintegral from this region. For |q| < |ω| < (q2 +m2
φ)

1
2 both ω± < 0 and non of them makes(B.75) an equality. For |ω| > (q2 + m2

φ)
1
2 both ω± are always smaller than |ω| and (B.75)leads to ω− < |ω| < ω+. Therefore

∫

1

dω1 = θ(q2 − m2
φ)

∫ ω+

ω−

dω1 (B.72)
δ(|ω|+ ω1 − ω2) : Here the three onditions

|ω| + ω1 > 0 (B.73)
ω1 > m2 = 0 (B.74)

|x03| < ω1|q| (B.75)have to be ful�lled. In this ase (B.75) is made an equality for ω1 = −ω±. Again the sameregimes have to be distinguished. For |ω| < |q| only −ω− makes (B.75) an equality while
−ω+ is negative and not a solution. −ω− is positive as required by (B.74) and forms alower bound. For |q| < |ω| < (q2 +m2

φ)
1
2 both −ω± are positive and solutions. Due to its�rst order pole at |ω| = |q| the solution −ω+ is now the larger one and forms an upperlimit, leading to −ω− < ω1 < −ω+. For |ω| > (q2 +m2

φ)
1
2 both −ω± are negative and notsolutions of (B.75) as an equality. Then there is no ontribution to the integral from thatregion. Therefore

∫

3

dω1 = θ(−q2)

∫ ∞

−ω−

dω1 + θ(q2)θ(m2
φ − q2)

∫ −ω+

−ω−

(B.76)
δ(|ω|−ω1+ω2) : The situation here is exatly the same as for δ1, in partiular x04 = x01,exept that the ondition |ω| − ω1 > 0 has to be replaed by

|ω| − ω1 < 0, (B.77)enforing ω1 > |ω|. Again for |ω| < |q| only ω+ ful�ls (B.70), imposing a lower bound on
ω1 and for |ω| > (q2 + m2

φ)
1
2 both ω± are solutions. ω+ is the upper and ω− the lowerbound here. For 0 < q2 < m2

φ none of ω± is a valid solution. This time the ondition(B.77) selets out the region q2 < 0, hene the integral is
∫

4

dω1 = θ(−q2)

∫ ∞

ω+

dω1 (B.78)
115



The ombined expressions are
AI =

−g2

16π|q|(θ(q2 − m2
φ)
[

ωF1 + G1

]ω+

ω−

+ θ(−q2)
[

ωF3 − G3

]∞

−ω−

+ θ(q2)θ(m2
φ − q2)

[

ωF3 − G3

]−ω+

−ω−

+ θ(−q2)
[

ωF4 + G4

]∞

ω+

) (B.79)and
BI =

−g2

16π|q|(θ(q2 − m2
φ)
[

F1

]ω+

ω−

+ θ(−q2)
[

F3

]∞

−ω−

+ θ(q2)θ(m2
φ − q2)

[

F3

]−ω+

−ω−

+ θ(−q2)
[

F4

]∞

ω+

) (B.80)with
F1 =

ω1

β

(

ln
(

eβω1 + 1
)

− ln
(

1 − eβ(ω1−|ω|)
)

)

+
1

β2

(

Li2
(

− eβω1
)

− Li2
(

eβ(ω1−|ω|)
)

)(B.81)
F3 =

ω1

β

(

ln
(

1 − eβ(ω1+|ω|)
)

− ln
(

eβω1 + 1
)

)

+
1

β2

(

Li2
(

eβ(ω1+|ω|)
)

− Li2
(

− eβω1
)

)(B.82)
F4 = F1 (B.83)and

G1 = sign(ω)
m2

φ − q2

2β

(

− ln
(

1 + eβω1
)

+ ln
(

eβω1 − eβ|ω|
)

)

+
ωω1

β

(

ln
(

1 − eβ(ω1−|ω|)
)

− ln
(

1 + eβω1
)

)

+
ω

β2

(

Li2
(

eβ(ω1−|ω|)
)

− Li2
(

− eβω1
)

) (B.84)
G3 = sign(ω)

m2
φ − q2

2β

(

ln
(

1 + eβω1
)

− ln
(

eβ(ω1+|ω|) − 1
)

)

+
ωω1

β

(

ln
(

1 − eβ(ω1+|ω|)
)

− ln
(

1 + eβω1
)

)

+
ω

β2

(

Li2
(

eβ(ω1+|ω|)
)

− Li2
(

− eβω1
)

) (B.85)116



G4 = G1. (B.86)
Li2 is the dilogarithm funtion. The Fi as displayed here are not real in all areas ofthe parameter spae due to the hoie of di�erent branhes of the (di)logarithms, butthe imaginary terms always anel sine the hoie of branh is always the same at bothintegration limits in (B.79), (B.80). This analyti result for ImΣR is in agreement withnumerial plots shown in [72℄ as well as our own numerial ross-heks. The θ-funtionsare, as in (3.7), a onsequene of energy- and momentum onservation. We have negletedinterations within the bath by using bare Ψ2- and φ-propagators. In the quasipartileregime, those an to leading order be inluded by the replaement mφ → Mφ(T ), f.Se. 3.1.1 and the disussion in Se.2.3.3. Note that the analyti struture we �nd disagreeswith [7℄. The author there laims that ImΣR

q
(ω) = 0 for q2 < −|m2

φ − m2
2 |. We annoton�rm this.B.3 Analyti Properties of Propagators and Self Ener-giesIn the following we list a number of well-known, but onvention-dependent relations forthe propagators and self energies in equilibrium. All relations are not a�eted by thethree-dimensional Fourier transform. We therefore drop the argument q or x. The prop-erties of the fermioni propagators S and self-energies Σ are analogue.Propagators:

∆−(ω)∗ = −∆−(ω) , (B.87)
∆+(ω)∗ = ∆+(ω) , (B.88)
∆A(ω) =

i

2
∆−(ω) −P

∫ ∞

−∞

dω′

2π

∆−(ω′)

ω′ − ω
, (B.89)

∆R(ω) = − i

2
∆−(ω) − P

∫ ∞

−∞

dω′

2π

∆−(ω′)

ω′ − ω
, (B.90)

Re∆A(ω) = −Re∆R(ω) =
i

2
∆−(ω) , (B.91)

Im∆A(ω) = Im∆R(ω) = −P
∫ ∞

−∞

dω′

2πi

∆−(ω′)

ω′ − ω
, (B.92)

∆A(−ω) = ∆R(ω) . (B.93)
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Self-energies:
Π−(ω)∗ = −Π−(ω) , (B.94)
Π+(ω)∗ = Π+(ω) , (B.95)
ΠA(ω) = −1

2
Π−(ω) + P

∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.96)

ΠR(ω) =
1

2
Π−(ω) + P

∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.97)

ReΠA(ω) = ReΠR(ω) = P
∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.98)

ImΠA(ω) = −ImΠR(ω) =
i

2
Π−(ω) , (B.99)

ΠA(−ω) = ΠR(ω) . (B.100)Relation to the Laplae transform:
Π̃−(s = −iω + ǫ) = ΠR

q
(ω) (B.101)

Π̃−(s = −iω − ǫ) = ΠA
q
(ω) (B.102)B.4 S+ in the narrowWidth Limit and the use of Cauhy'sTheoremWhen performing the ω integration, all terms an be disseted into piees that, as fun-tions of ω, are proportional to expressions of the form

∫ ∞

−∞

dω

2π

e±itωωk

(

(ω + iΓ)2 − ω2q) ((ω − iΓ)2 − ω2q) tanh

(

βω

2

)

, (B.103)where k an be zero, one or two and ± indiate di�erent alternatives. The integrand is�nite along the real axis. Along the imaginary axis, the �rst fator grows on one side andfalls on the other due to the exponential. The tanh has an in�nite number of poles alongthe imaginary axis. To takle the problem, we expand it in an in�nite series,
∫ ∞

−∞

dω

2π

∞
∑

n=0

e±itωωk

(

(ω + iΓ)2 − ω2q) ((ω − iΓ)2 − ω2q) βω

(βω
2

)2 + (π
2

+ nπ)2
. (B.104)All poles are of �rst order. In addition to the four poles ±ωq±iΓ there are in�nitely manypoles at ± i

β
(1 + 2n)π. To determine the integral along the real axis, we apply Cauhy'stheorem. The exponential determines in whih halfplane the ontour has to be lose, and118



out of the four poles ±ωq ± iΓ always two ontribute. For even k their ontribution tothe integral is
i

4Γωq Im

(

eit(±ωq+iΓ)(ωq ± iΓ)k−1 tanh

(

β(ωq ± iΓ)

2

)) (B.105)Here the ± in the three plaes at whih it shows up in (B.105) has to be hosen inaordane with the sign of the exponential in (B.103). For odd k the ontribution is
1

4ΓωqRe

(

eit(±ωq+iΓ)(ωq ± iΓ)k−1 tanh

(

β(ωq ± iΓ)

2

))

. (B.106)In addition there is an in�nite number of ontributions from the poles of the tanh whihare represented by the terms in (B.104). The ontribution from the n-th therm is
±i

2

β

e±iωntωk
n

(

(ωn + iΓ)2 − ω2q) ((ωn − iΓ)2 − ω2q) (B.107)
ωn = ± i

β
π(1 + 2n). (B.108)This allows to determine the integral with arbitrary preision by taking into aountsu�iently many terms. Obviously their ontribution dereases sharply with inreasing

n. Numerial heks show that for Γq ≪ m, the ontributions from the poles of the tanhare always many orders of magnitude smaller than those from ±ωq ± iΓ. Simply usingthe latter gives results in very good agreement with exat numerial solutions.
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