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Abstra
tVarious features of the observable universe 
an be understood as the result of nonequi-librium pro
esses during the early stages of its history, when it was �lled with a hotprimordial plasma. In many 
ases, in
luding 
osmologi
al freezeout pro
esses, only a fewdegrees of freedom were out of equilibrium and the ba
kground plasma 
an be viewedas a large heat bath to whi
h these 
ouple. We study s
alar and fermioni
 quantum�elds out of thermal equilibrium that are weakly 
oupled to a large thermal bath withthe goal to formulate a full quantum me
hani
al des
ription of su
h pro
esses. The bath
omposition need not be spe
i�ed. Our analysis is based on Kadano�-Baym equations,whi
h are the exa
t equations of motion for the 
orrelation fun
tions in a nonequilibriumquantum system. We solve the equations of motion for the most general Gaussian initialdensity matrix, without a spe
i�
 ansatz or a-priori parameterisation and for arbitrarilylarge deviations from equilibrium. The solutions depend on integral kernels that 
ontainmemory e�e
ts. These 
an in good approximation be solved analyti
ally when the �eldex
itations have a small de
ay width. The full solutions are 
ompared to results obtainedby other methods. We prove that the des
ription in terms of a sto
hasti
 Langevin equa-tion is equivalent to the Kadano�-Baym equations. We show the emergen
e of standardBoltzmann equations as a limit of the Kadano�-Baym equations in a dilute gas when
oheren
es play no role and dis
uss quantum Boltzmann equations as an intermediatestep. We analyse the properties of the solutions in terms of the equation of state andinvestigate the validity and impli
ations of quasiparti
le approximations. We �nd thatthe equation of state 
an deviate signi�
antly from that of a gas of quasiparti
les even ifthe resonan
es in the plasma show quasiparti
le behaviour in de
ays and s
atterings. Adetailed dis
ussion is devoted to the in�uen
e of modi�ed dispersion relations and widthsin the plasma on gain and loss rates. We illustrate our results in two models for the bath
omposition, a s
alar and a Yukawa model. In both 
ases we give analyti
 expressionsfor the imaginary parts of the self energies, whi
h govern the gain and loss rates. Finally,we dis
uss appli
ations in 
osmology. Our results provide a toolkit for a full quantumme
hani
al des
ription of 
osmologi
al freezeout pro
esses. We dis
uss the appli
ationto thermal leptogenesis, where quantum e�e
ts are likely to be of great relevan
e. Thes
alar model 
an also be used to des
ribe the late phase of reheating. In this 
ontext, weanalyse under whi
h 
ir
umstan
es large thermal masses 
an put an upper bound on thereheating temperature.



ZusammenfassungViele Eigens
haften des beoba
htbaren Universums lassen si
h als Ergebnisse von Ni
ht-glei
hgewi
htsprozessen in seiner Frühges
hi
hte verstehen. Dabei be�nden si
h in vielenFällen nur wenige Freiheitsgrade auÿerhalb des thermis
hen Glei
hgewi
hts und der Restdes Plasmas fungiert als Wärmebad, an das diese s
hwa
h koppeln. Um eine quantenme
h-anis
he Bes
hreibung dieser Prozesse zu ermögli
hen, untersu
hen wir das Verhalten vonskalaren und fermionis
hen Quantenfeldern auÿerhalb des thermis
hen Glei
hgewi
hts, dies
hwa
h an ein thermis
hes Bad gekoppelt sind. Die Zusammensetzung des Bads mussfür eine allgemeine Betra
htung ni
ht spezi�ziert werden. Unsere Analyse basiert aufKadano�-Baym Glei
hungen. Diese sind exakte Bewegungsglei
hungen für Korrelations-funktionen von Quantenfeldern auÿerhalb des thermis
hen Glei
hgewi
hts. Wir lösen dieBewegungsglei
hungen für gauÿs
he Anfangsbedingungen mit beliebig groÿer Abwei
hungvom Glei
hgewi
ht in voller Allgemeinheit. Die gefundenen Ausdrü
ke enthalten Inte-gralkerne, die ni
ht-markows
he E�ekte parameterisieren. Wenn die Zerfallsbreiten derResonanzen im Plasma klein sind, können diese Memory-Integrale approximativ gelöstwerden. Wir verglei
hen die exakten Lösungen mit Ergebnissen, die mittels andererVerfahren gefunden wurden. Wir beweisen, dass die häu�g verwendete sto
hastis
heBes
hreibung dur
h eine e�ektive Langevin Glei
hung zu den Kadano�-Baym Glei
hun-gen äquivalent ist. Wir zeigen des weiteren, dass die klassis
hen Boltzmann Glei
hungenden Grenzfall der Kadano�-Baym Glei
hungen in einem verdünnten Gas bilden, wennQuantenkohärenzen verna
hlässigbar sind, und diskutieren den Zusammenhang zu Quan-ten Boltzmann Glei
hungen. Letztere sind e�ektive, von den Kadano�-Baym Glei
hungenabgeleitete Boltzmann Glei
hungen, in denen ni
ht-markows
he und Quantene�ekte dur
hzeit- und temperaturabhängige Stoÿterme parameterisiert sind. Bei der Formulierung ef-fektiver Boltzmann Glei
hungen, die deutli
h einfa
her zu lösen sind als die Kadano�-Baym Glei
hungen selbst, ist es von besonderem Interesse, unter wel
hen Umständender Ein�uss des Mediums auf die Kinematik von Streuprozesen und Zerfällen in einerBes
hreibung dur
h Quasiteil
hen parameterisiert werden kann. Dies ist der Fall, wenndie Zerfallsbreiten der Resonanzen im Plasma klein sind und O�-Shell E�ekte verna
h-lässigt werden können. Die Dispersionsrelationen der Quasiteil
hen und die Zustands-glei
hung des Systems können jedo
h selbst dann stark von dem in einem Gas aus freienQuasiteil
hen zu erwartenden Verhalten abwei
hen. Wir illustrieren unsere Ergebnisse an-hand eines skalaren und eines Yukawa Modells für die Zusammensetzung des Bads. Beide�nden direkte Anwendung in der Kosmologie. Das skalare Modell kann zur Bes
hrei-bung der Reheating Phase am Ende der kosmis
hen In�ation verwendet werden. Mitden Ergebnissen aus dem Yukawa Modell stehen die Mittel für eine quantenme
hanis
heBes
hreibung der thermis
hen Leptogenese zur Verfügung.
3
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0.2 Introdu
tion Introdu
tionToday, there exists overwhelming eviden
e suggesting that the observable universeis expanding and originates from a volume that was many orders of magnitude smallerthat its 
urrents size (
f. [1, 2℄). Consequently, the 
ompressed matter was exposed toenormous density, pressure and temperature in the past. Many properties of the universeare the result of out-of-equilibrium pro
esses during this very early, high-temperaturephase (
f. [1, 3℄). This in
ludes 
osmologi
al phase transitions and the various freezeoutpro
esses that are 
ru
ial to give many 
osmologi
al parameters the values we observetoday, in parti
ular the 
reation of a matter-antimatter asymmetry, the produ
tion ofdark matter, the formation of light elements and the de
oupling of photons leading tothe 
osmi
 mi
rowave ba
kground. Another example is the reheating after a possiblein�ationary phase.The energy densities during the very early epo
hs of the history of the universe byfar ex
eed those that 
an be realised in any human made experiment. Thus, the earlyuniverse is an ex
ellent testing ground for predi
tions from theories beyond the standardmodel of parti
le physi
s. Hen
e, the study of nonequilibrium pro
esses in the primordialplasma is interesting from a 
osmology as well as parti
le physi
s point of view.Freezeout pro
esses in the early universe are usually des
ribed by means of Boltzmannequations. These are �rst order di�erential equations that des
ribe the time evolution ofparti
le number densities. They have proven an extremely useful tool in des
ribing the
reation of light elements and the de
oupling of the 
osmi
 mi
rowave ba
kground fromthe primordial plasma in good agreement with observation [4℄. However, Boltzmannequations are based on semi
lassi
al approximations. They 
an be expe
ted to hold ina weakly 
oupled, dilute plasma, but not in the presen
e of strong intera
tions or athigh density. Given that the temperature of the primordial plasma in
reases as one goesba
kwards in time, it is questionable whether Boltzmann equations 
orre
tly des
ribepro
esses that o

urred earlier in the history of the universe. Furthermore, Boltzmannequations are unable to des
ribe quantum phenomena like 
oherent os
illations, whi
hmay e.g. 
ru
ially in�uen
e the generation of a matter-antimatter asymmetry.This makes a fully quantum me
hani
al treatment mandatory. Relativisti
 quan-tum me
hani
s generally enfor
es the abandonment of the 
on
ept of parti
le numbers,with 
orrelation fun
tions of quantum �elds repla
ing them as the dynami
al quantities.Unfortunately, the resulting equations of motion in most 
ases 
annot be solved in atransparent way. One way to pro
eed is to employ numeri
al methods, generally at theloss of transparen
y. Though Boltzmann equations usually also have to be solved numer-i
ally to obtain quantitative results, they allow a better qualitative understanding of the7



results and their parameter dependen
e, and often an approximate analyti
 solution 
anbe obtained. In many 
ases numeri
al methods 
urrently appear to be the only 
hoi
e.Following another strategy, one 
an save some of the bene�ts of Boltzmann equations bymodifying them to so 
alled quantum Boltzmann equations. They 
an be derived fromthe full quantum theory as e�e
tive equations of motion when a number of simplifyingassumptions is justi�ed. Though being formulated in terms of parti
le numbers or 
las-si
al phase spa
e distribution fun
tions, quantum Boltzmann equations in
lude some ofthe quantum and non-Markovian e�e
ts left out by ordinary Boltzmann equations. Thisallows to treat 
omplex problems without losing tra
k of the relevant parameters.In this work, we follow a third approa
h. Cosmologi
al freezeout pro
esses for di�erentparti
le spe
ies are te
hni
ally relatively simple problems if two 
onditions are ful�lled.First, it is assumed that only one or a few parti
le spe
ies freeze out simultaneously andthe number of degrees of freedom out of equilibrium is mu
h smaller than the total numberof degrees of freedom in the plasma. Se
ond, they should not 
oin
ide with other eventssu
h as 
osmologi
al phase transitions. We furthermore assume that self intera
tions ofthe �eld that is out of equilibrium are weak. However, we emphasise that we do not putany restri
tions on the deviation from equilibrium. It 
an be arbitrarily large. In this
ase, there are three important simpli�
ations:(1) The system is spatially homogeneous and isotropi
.(2) In good approximation only one or a few degrees of freedom are out of equilib-rium. The primordial plasma forms a large thermal bath to whi
h these are weakly
oupled. The many degrees of freedom in the bath make ba
krea
tion negligible,it approximately remains in thermal equilibrium on the times
ale asso
iated withparti
le rea
tions. The temperature 
hanges only slowly due to Hubble expansion.(3) The quanta of the �eld whi
h is out of equilibrium mainly s
atter with quanta ofthe bath �elds, not amongst themselves. The o

upation numbers in the bath aredetermined by few parameters, the temperature T and 
hemi
al potentials µi, whi
h
onsiderably simpli�es 
omputations of the gain and loss rates. The same appliesto de
ays and inverse de
ays.This thesis is devoted to systems in whi
h these 
onditions are ful�lled. In this 
asewe 
an solve the equations of motion for the quantum me
hani
al 
orrelation fun
tionsanalyti
ally up to an integral kernel that 
ontains memory e�e
ts. The solutions allowto keep tra
k of all parameters and give a deep 
on
eptual insight into the behaviour ofquantum �elds out of thermal equilibrium. They 
an, if the above 
onditions are ful�lled,dire
tly be applied to a number of 
osmologi
al situations in
luding baryogenesis, darkmatter produ
tion or the late phase of reheating. Furthermore, the improved 
on
eptualunderstanding of quantum e�e
ts in a hot plasma 
an also provide a guideline whendealing with te
hni
ally more 
omplex problems.8



0.3 Outline OutlineIn 
hapter 1, we introdu
e the standard te
hniques to treat quantum systems out ofequilibrium. We brie�y summarise the derivation of the standard Boltzmann equationsin Se
. 1.1 and dis
uss the limitations of their appli
ability in the following se
tion, 1.2.In Se
. 1.3, the Kadano�-Baym equations are derived from �rst prin
iples. They are theexa
t equations of motion for 
orrelation fun
tions of quantum �elds out of equilibriumand 
an be viewed as quantum me
hani
al generalisation of the Boltzmann equations.In 
hapter 2 we fo
us on systems in whi
h the 
onditions we formulated in the in-trodu
tion are ful�lled, namely �elds that are weakly 
oupled to a large thermal bath.In Se
. 2.1 we prove that in su
h systems the Kadano�-Baym equations are equivalentto a des
ription in terms of a sto
hasti
 Langevin equation. Then, in Se
. 2.2, we solvethe Kadano�-Baym equations for s
alars and fermions. The rest of the 
hapter is de-voted to the dis
ussion of the solutions. We �rst study the approa
h to equilibrium inSe
. 2.2.3. Then, in Se
. 2.3.1 and 2.3.2, we show that Boltzmann equations emerge fromthe Kadano�-Baym equations in a dilute gas and brie�y dis
uss quantum Boltzmannequations as an intermediate step. Finally, in Se
. 2.3, we study the plasma properties.We in parti
ular investigate the validity of the quasiparti
le approximation and the rolee�e
tive masses in the plasma. A detailed dis
ussion is devoted to kinemati
 aspe
ts, inparti
ular the role of o�-shell and s
attering pro
esses in the plasma.In 
hapter 3 we 
on
retise the previous dis
ussion by 
onsidering two spe
i�
 models,a s
alar 
oupled to a bath of two other s
alars by a trilinear 
oupling and a fermionwith Yukawa 
oupling. Analyti
 solutions for the imaginary parts of the self energy areprovided for both 
ases.In 
hapter 4 we apply the results to two 
osmologi
al problems. Se
. 4.1 uses the s
alarmodel to study kinemati
 bounds on the reheating temperature after 
osmi
 in�ation. InSe
. 4.2 we use the results from the Yukawa model to formulate a framework that pavesthe way to a fully quantum me
hani
al treatment of leptogenesis.Chapter 5 summarises and dis
usses our results. Many of the results presented in thiswork, in parti
ular Se
.2.1, 2.2 and most of 3.1, have previously been published in [5℄.Throughout this thesis we use natural units ~ = c = kB = 1, where kB is the Boltz-mann 
onstant. For the metri
 in Minkowski spa
e we 
hose the 
onvention
gµν = diag(1,−1,−1,−1).

9



Chapter
1

Thermodynamics of Quantum
Systems

In this 
hapter we review the standard methods used to des
ribe nonequilibrium systems.In Se
. 1.1 we brie�y sket
h the derivation of the standard Boltzmann equations, following[3℄. Then, in Se
. 1.2, we dis
uss when and why those 
an be expe
ted to fail. InSe
. 1.3 we then introdu
e the S
hwinger-Keldysh formalism and derive the Kadano�-Baym equations whi
h provide exa
t equations of motion for the 
orrelation fun
tions ofquantum �elds out of equilibrium.1.1 Boltzmann EquationsBoltzmann equations are equations of motion for 
lassi
al phase spa
e distribution fun
-tions. In abstra
t form they read
L̂[fi] = Ĉ[f1, . . . , fn]. (1.1)Here fi are the distribution fun
tions for n parti
le spe
ies and L̂ is the Liouville operatorwhi
h in general relativity has the form

L̂ = pµ∂xµ − Γµ
ρσpρpσ∂pµ . (1.2)Here pµ is the 
onjugate momentum to the 
oordinate xµ and Γµ

ρσ are the Christo�elsymbols or metri
 
onne
tion. L̂ des
ribes the 
lassi
al propagation of the system inphase spa
e when there are no intera
tions. Ĉ is the 
ollision term that 
hara
terises the10



intera
tions. It is 
omputed from S-matrix elements that are imported into the 
lassi
alframework from quantum �eld theory and allows for the 
reation and annihilation ofparti
les in inelasti
 
ollisions. The two sides of (1.1) show the semi
lassi
al nature ofBoltzmann equations. The system is understood as an ensemble of 
lassi
al parti
les withdistribution fun
tions fi. They move freely a

ording to L̂ between pointlike quantumme
hani
al intera
tions 
hara
terised by Ĉ.In a Friedmann-Robertson-Walker universe (1.2) reads
L̂ = ω∂t − Hp2∂ω, (1.3)where ω and p are energy and momentum and H is the Hubble parameter. The numberdensity 
an be de�ned as
ni = gi

∫

d3p
(2π)3

fi. (1.4)Then (1.1), divided by ω and integrated by parts, leads to
ṅi + 3Hni =

gi

(2π)3

∫

d3p
ω

Ĉ[f1, . . . , fn]. (1.5)
gi 
ounts the number of internal degrees of freedom of spe
ies i. Here we have negle
tedredshifting of ω be
ause we assumed that the parti
les are massive and their energy
ω = ωp =

√p2 + m2 is dominated by the mass. The momentum 
ontribution getsredshifted, but 
an be negle
ted if the parti
les are heavy. For massless parti
les, the
3Hn term in (1.5) has to be repla
ed by 4Hn. The 
ollision term for a pro
ess withparti
les of spe
ies i . . . k in the initial and u . . . v in the �nal state 
an be written as
gi

(2π)3

∫

d3pi

ωi
Ĉ =

−
∫ k
∏

a=i

(

ga

(2π)3

d3pa

ωa

) v
∏

b=u

(

gb

(2π)3

d3pb

ωb

)

δ(4)(pi + . . . + pk − pu − . . . − pv)

(

|M|2i...k→u...vfi . . . fk(1 ± fu) . . . (1 ± fv) − |M|2u...v→i...kfu . . . fv(1 ± fi) . . . (1 ± fk)
)

.(1.6)
M are the S-matrix elements for s
atterings with parti
les of spe
ies i . . . k in the initialand u . . . v in the �nal state. The ± are + if the 
orresponding spe
ies is bosoni
 and −if it is fermioni
, in the former 
ase enhan
ing the transition due to the indu
ed e�e
tand in the latter 
ase suppressing it due to Pauli blo
king. Quantum me
hani
al 
on
eptsas internal degrees of freedom or Bose-Einstein/Fermi-Dira
 statisti
s have to be imple-mented by hand. The 
ollision term 
ouples the Boltzmann equations for the di�erentspe
ies. This generally makes it di�
ult to solve them. Fortunately, for many 
ases of in-terest there are tremendous simpli�
ations, though numeri
al 
omputations may be done11



without them. Due to phase spa
e arguments, one usually has to 
onsider only de
aysand 2 → n s
atterings. Unless many di�erent spe
ies freeze out simultaneously, one 
anin good approximation assume that all spe
ies ex
ept for the one(s) freezing out are inequilibrium. The only 
hange that Hubble expansion does to equilibrium distributionfun
tions of relativisti
 parti
les 
an be parameterised in a time dependent temperature.In absen
e of Bose-Einstein 
ondensation or Fermi degenera
y, the o

upation numbersare small for all momenta. One 
an repla
e 1± f ≈ 1 and use Maxwell-Boltzmann distri-butions for all spe
ies in equilibrium, regardless of their spin. On the side of the matrixelements, the symmetries of the intera
tions 
an often lead to simpli�
ations. For in-stan
e, in transitions that only involve CP -invariant intera
tions, |M|2 is invariant underex
hange of the initial and �nal state. If the ba
kground medium remains in equilibriumat any time, detailed balan
e implies that the sum of all gain rates γ>
i and the sum ofall loss rates γ<

i ful�l the relation γ<
i = ±e−βωγ>

i and the Boltzmann equation for thedistribution fun
tion simpli�es to
ḟi + 3Hfi + γi(fi − f eq

i ) = 0, (1.7)where γi = γ<
i − γ>

i and f eq
i is the distribution fun
tion in equilibrium. Sin
e γ

≷
i dependon the various distribution fun
tions, they are fun
tions of time. Hubble expansion 
an beviewed as an external for
e that a
ts on the system. As long as γ ≫ H , the intera
tions
ontinuously keep all spe
ies in thermal and 
hemi
al equilibrium. The state 
an then be
hara
terised by the temperature and, potentially, a 
hemi
al potential for ea
h 
onservedquantity. These few parameters uniquely di
tate the abundan
e of parti
les for ea
hspe
ies. When γ ≪ H , γ 
an be negle
ted in (1.7). Then the only 
hange that niundergoes is due to Hubble dilution and the number of parti
les in a 
omoving volumeremains 
onstant. Physi
ally this means that the density of possible s
attering partnersbe
omes so low that the 
orresponding spe
ies e�e
tively de
ouples. While the rest of theplasma keeps 
ooling, its 
omoving number density remains frozen roughly at the value ithad when γ ≈ H . The photons of the 
osmi
 mi
rowave ba
kground, the light elementsin the intergala
ti
 medium, dark matter and the ex
ess of matter over antimatter in theuniverse are all reli
s that have been 
reated this way.1.2 Limitations of Boltzmann EquationsDespite their great su

ess, Boltzmann equations have short
omings. These a�e
t both,the propagation as well as the intera
tion of parti
les.The Boltzmann equations assume that 
lassi
al parti
les move freely between s
atter-ings. This negle
ts the fa
t that they feel the intera
tion with neighbouring parti
les atany time, not just during s
atterings. It also negle
ts their quantum me
hani
al natureas wavepa
kets whi
h be
omes relevant on
e the average distan
e between two parti
les12



is 
omparable to its de Broglie wavelength. It also negle
ts entanglement and the possi-bility of 
oherent os
illations of the quantum state during propagation, whi
h 
annot bedes
ribed in the pi
ture of 
lassi
al parti
les.The s
attering amplitudes are 
omputed from S-matrix elements in va
uum. Theyhave no knowledge of the system's history and ignore possible non-Markovian e�e
ts.In addition, the 
omputations are based on the parti
les' properties in va
uum and donot take into a

ount possible 
hanges due to their environment. It is a well knownphenomenon that the properties of parti
les are 
hanged if they move in a medium.Examples are the e�e
tive mass of ele
trons in a solid state or the Debye s
reening of a
harged parti
le in a plasma. If those e�e
ts are not too strong, they 
an be parameterisedby introdu
ing a quasiparti
le whi
h resembles the properties of the s
reened parti
le seenfrom some distan
e. Then Boltzmann equations for those quasiparti
les 
an 
orre
tlydes
ribe some properties of the system while ordinary Boltzmann equations give in
orre
tresults. These e�e
ts 
an be expe
ted to be
ome in
reasingly important with in
reasingdensity.1.2.1 Breakdown of the Parti
le Con
eptThe basi
 dynami
al quantities in Boltzmann equations are parti
le numbers or phasespa
e distributions. In an intera
ting quantum �eld theory, parti
le number is not a wellde�ned quantity. In many situations, one 
an nevertheless refer to elementary ex
itationsof �elds as parti
les. This is very well motivated for if they exist as asymptoti
ally freestates. In the asymptoti
 limit, long before and long after a 
ollision, the intera
tion 
anbe negle
ted and the theory is e�e
tively free. In this limit, the parti
le number is wellde�ned, allowing to prepare and measure states of sharp parti
le number. The spe
trumis dis
rete, with ea
h state 
orresponding to freely moving on-shell parti
les. The notionof parti
les is still a very useful 
on
ept in an intera
ting theory if the spe
trum, ordensity of quantum me
hani
al states, shows sharp peaks a some points in phase spa
e.Those resonan
es 
an be interpreted as 'unstable parti
les'. If the 
oupling is weak, theirproperties are usually very 
lose to what would be a stable parti
le in absen
e of theintera
tion.The density of states with a given set of quantum numbers in phase spa
e 
hara
terisedby a spe
tral fun
tion or spe
tral density ρ. The analyti
 stru
ture of a typi
al spe
tralfun
tion, in this 
ase for simpli
ity of a s
alar, is given by
ρ ∝ ImΠRq (ω)

|ω2 − q2 − m2 − ΠRq (ω)|2 . (1.8)Here ω and q are the energy and spatial momentum 
omponents of the four ve
tor q =
(ω,q). ΠR is the retarded self energy. In a free theory, ΠR is zero everywhere and ρproportional to the sum of two δ fun
tions at the poles ±ωq. With intera
tion, the poles13



of (1.8) appear as the 
omplex solutions to
ω2 − q2 − m2 − ΠRq (ω) = 0. (1.9)If those lie on the real ω-axis below the lowest multiparti
le threshold, they give riseto δ-fun
tion shaped 
ontributions to ρ that 
an be interpreted as stable states. Whenthey lie 
lose to the real axis, they still give rise to a sharp peak of ρ with a widthgiven by their imaginary part and a height proportional to its inverse. Those 
an beinterpreted as unstable states, or resonan
es. The poles and peaks in ρ apart from those
orresponding to the one parti
le state 
an be interpreted as bound states. In addition,the spe
trum re
eives 
ontinuous 
ontributions above the lowest multiparti
le thresholdwhere Π shows a dis
ontinuity a
ross the real ω axis and the numerator of (1.8) be
omesnon-zero. However, in va
uum the one-parti
le state remains the ex
itation with thesmallest energy, and ImΠR is zero below the lowest multiparti
le threshold.In a plasma the spe
trum be
omes more 
ompli
ated 1 . In the simplest 
ase, whenthe ba
kground plasma is in equilibrium, ΠR be
omes a fun
tion of a single temperature

T and, in general, 
hemi
al potentials2. The self energy then 
an always be written as thesum of its value in va
uum and a temperature dependent 
orre
tion. The latter 
an giverise to additional solutions to (1.9) that 
orrespond to 
olle
tive ex
itations in the plasma,and the existing solutions are shifted by a temperature depended amount. Furthermore,in general ΠR is 
omplex along the whole ω axis and all resonan
es, even those that arestable in va
uum, obtain a �nite width due to the possibility of s
atterings with virtualquanta in the plasma.We now de�ne ω = Ω̂q as the 
omplex solution ω(q) to (1.9) that 
onverges to ωq inthe limit of vanishing 
oupling and 3
Ωq = ReΩ̂q, (1.10)
Γq = 2ImΩ̂q. (1.11)In a homogeneous and isotropi
 system, Ω̂q 
an only depend on |q| and not on thedire
tion. If the width of a resonan
e is small, namely

Γq ≪ Ωq, (1.12)1Throughout this work, we use the words 'spe
trum' and 'spe
tral fun
tion' equivalently. Thoseare not to be 
onfused with the spe
trum of (eigenvalues of) the full Hamiltonian whi
h is of 
ourseindependent of the state in whi
h the system is prepared, and therefore in parti
ular independent ofthe temperature. The temperature dependen
e here arises from the statisti
al nature of thermodynami
systems. The resonan
es are not to be viewed as ex
itations above the ground state, but statisti
alaverages over ex
itations above states of di�erent energies 
ontained in the grand 
anoni
al ensemble.2In (1.9) we have written Π as a fun
tion of a single four ve
tor q. In general, Π(x1, x2) in 
oordinatespa
e depends on two four ve
tors independently. However, in the following we fo
us on the 
ase of athermalised ba
kground plasma. Sin
e thermal equilibrium is a translation- and rotation invariant state,
Π only depends on the relative 
oordinate x1 − x2 and its Fourier transform Πq(ω) on a single ve
tor q.3Many authors use de�nitions that 
orrespond to Γq = ImΩ̂q. Here we 
hose the de�nition (1.11)be
ause it relates Γ to the relaxation time of the system in real time by τ = 1/Γ, see Se
.2.214



the spe
tral fun
tion shows sharp peaks at ω = ±Ωq. Landau pointed out [6℄ that in this
ase the system 
an in good approximation be understood as a gas of s
reened parti
leswith modi�ed intera
tions, or quasiparti
les. Ωq 
an be interpreted as a quasiparti
le'senergy. In this 
ase one 
an formulate an approximate dispersion relation that puts theresonan
e quasi-on-shell, �xing its four ve
tor to (Ωq,q). The dispersion relations aregiven by the real part of (1.9),
ω2 − q2 − m2 − ReΠRq (ω) = 0. (1.13)Then one 
an approximate

Γq ≈ −ImΠRq (Ωq)

Ωq

. (1.14)An e�e
tive mass M 4 
an be de�ned as5
M(q, T ) =

(

Ω2q − q2
)

1
2 . (1.15)We will in the following 
all Ωq and other possible solutions of (1.13) for whi
h thedispersion relation ω(q) is similar to that of a free parti
le free quasiparti
les. Thisapplies if the momentum dependen
e of the 
orre
tion due to ReΠ is small 6, hen
e wewill refer to the approximation in whi
h this dependen
e is negle
ted as free quasiparti
leapproximation.Obviously the real part of the self energy is responsible for the temperature- andgenerally momentum-dependent mass shift while its imaginary part gives rise to the �nitewidth. One immediate feature of quasiparti
les is that they are not stable and de
ay witha relaxation time of τ = 1/Γ [7℄. In parti
ular they do not exist as asymptoti
 (free) statesbe
ause their properties are given by intera
tions. This in general makes the de�nition ofa parti
le number ambiguous, though useful de�nitions have been suggested [8, 9℄.To understand the properties of the plasma, one 
an distinguish between three quali-tatively di�erent regimes.1. parti
le regime: If the 
orre
tions to ReΠR and ImΠR 
oming from intera
tionswith the medium are both small with respe
t to the parti
le's on-shell energy ωqand all mass di�eren
es to parti
les with the same 
onserved quantum numbers,4Throughout this thesis we generally use small letters for zero temperature masses and 
apital lettersfor thermal masses. The only ex
eption are the masses of right handed neutrinos in Se
.4.2 whi
h we, ina

ordan
e with the 
ommon notation in the literature, denote by 
apital letters.5There are other possible de�nitions than (1.15), e.g. de�ning M as the momentum independent pie
eof ReΠR that 
omes from lo
al diagrams, as the energy Ωq=0 when the quasiparti
le is at rest, as theminimal possible value of Ωq as a fun
tion of |q| or via the inverse 
urvature of Ωq at its minimum as afun
tion of |q|. For free quasiparti
les, the meaning of all of those 
oin
ides.6It is by no means 
lear that the dispersion relation has a paraboli
 form if one moves away from aminimum. The 
ompli
ated band stru
tures in 
ondensed matter systems are an obvious 
ounter-example.15



the in�uen
e of the plasma on parti
le properties is negligible. Then 
onventionalBoltzmann equations 
an be expe
ted to des
ribe the kinemati
s of the system withsu�
ient a

ura
y. However, even in this regime, they 
annot a

ount for e�e
tsrelated to the 
oheren
e of quantum states.2. quasiparti
le regime: If the 
orre
tion to ReΠR due to the medium be
omes non-negligible, it 
an qualitatively 
hange the shape of the spe
trum. The resonan
esthat exist at T = 0 re
eive a temperature dependent mass shift, and new resonan
eswhi
h 
orrespond to 
olle
tive ex
itations 
an appear. However, if the width of allof them is still mu
h smaller than their energy and their dispersion relations do not
ross or get so 
losed together that the �nite widths overlap, all plasma waves 
anbe des
ribed as quasiparti
les in the sense de�ned above. Their properties 
an di�ersigni�
antly from those of the parti
les in va
uum, but kinemati
ally they in goodapproximation behave like (generally unstable) parti
les. In the following we willalways refer to resonan
es with these "parti
le-like" properties as quasiparti
les,regardless of whether they originate from s
reened parti
les or have a 
olle
tiveorigin7.3. broad resonan
e regime: If the width of a resonan
e be
omes 
omparable to itsenergy, it 
annot be interpreted as a (quasi)parti
le with a well-de�ned energy anymore. This is expe
ted in a strongly 
oupled system. It 
an also happen for a small
oupling 
onstant if the temperature, and 
onsequently density, be
ome su�
ientlyhigh that intera
tions with the ba
kground plasma make the lifetime of a state short,hen
e its width large.In a weakly 
oupled theory there is a simple 
lassi
al argument whi
h suggests that thequasiparti
le pi
ture should hold even in the high temperature regime T ≫ m. One should
ertainly observe quasiparti
le behaviour if the kineti
 energy is mu
h larger than thepotential, or intera
tion energy. The intera
tion energy 
an be estimated by a Coulomblaw Epot ∼ g/r where g is the gauge 
oupling 
onstant and r the distan
e between twoparti
les. This distan
e in a hot plasma is ∼ T−1, thus Epot ∼ gT . Remarkably, this result
oin
ides with a �rst order quantum �eld theoreti
al 
omputation for the thermal Debyemass [10℄. In 
ontrast, the kineti
 energy is Ekin ∼ T , hen
e g ≪ 1 implies Ekin ≫ Epot.However, this simple pi
ture does not always hold, see 2.3.3.7This deviates from the more 
ommon de�nition that restri
ts quasiparti
les to those resonan
es that
orrespond to dressed parti
les, as opposed to 
olle
tive phenomena. However, for our later dis
ussionthe origin of the plasma waves is of no relevan
e and we refer to them as quasiparti
le whenever theyhave a de�nite dispersion relation.
16



1.2.2 Os
illations and De
oheren
e E�e
tsBoltzmann equations are formulated in terms of number densities for 
lassi
al parti-
les. By 
onstru
tion they 
annot des
ribe quantum phenomena like 
oherent os
illations,whi
h 
an be of great importan
e in the early universe. In the standard model of parti
lephysi
s the quark mass eigenstates are not identi
al to their �avour eigenstates, but ro-tated by the CKM matrix [11℄. The reason is that the Yukawa 
ouplings to the Higgs �eldthat give the quarks masses do not 
ouple to the same dire
tions in �avour spa
e as theSU(2) gauge 
oupling. A similar situation may be realised in the see-saw me
hanism [12℄,see appendix A 8 . There the Yukawa 
oupling matrix that 
onne
ts heavy neutrinos toHiggs and leptons is generally not diagonalisable in the same basis as the 
harged leptonYukawa 
ouplings. This 
an have important 
onsequen
es in leptogenesis [13℄, where theCP-violating de
ay of a heavy Majorana neutrinos into Higgs and leptons generates amatter-antimatter asymmetry9. The de
ay of a heavy Majorana neutrino produ
es lep-tons in a 
oherent superposition of �avours, leading to �avour os
illations. The generatedlepton number is determined by the 
ompetition between de
ays and s
atterings thatprodu
e leptons and their inverse, the washout pro
esses. Between their produ
tion andpossible absorption in a washout pro
ess, the leptons propagate through the plasma. Dur-ing this time, �avour dependent intera
tions with the ba
kground plasma 
an destroy the
oheren
e of the quantum state. This has an e�e
t on the e�
ien
y of washout pro
esses.For example, if the intera
tions via the 
harged lepton Yukawa 
ouplings happen fast,they e�e
tively freeze the system in the 
orresponding �avour state. When leptogenesisis studied in terms of Boltzmann equations, there are two di�erent ways to pro
eed. Ei-ther one sums over all �avours and does the 
omputations for an overall lepton numberor one 
omputes the produ
tion rates for ea
h �avour separately. Either way, 
lassi
alBoltzmann equations 
annot take proper a

ount of 
oherent os
illations and de
oheren
ee�e
ts.We here 
hose the example of leptogenesis. These e�e
ts are of 
ourse not spe
i�
to this example. They 
an be relevant whenever 
ouplings are involved that single outdi�erent dire
tions in �avour or another spa
e.1.3 Kadano�-Baym EquationsThe previous 
onsiderations point out the need for a full quantum me
hani
al des
riptionof nonequilibrium systems.8Here we refer to the type-I see-saw me
hanism. Two alternative ideas to explain the smallness ofneutrino masses are known as type-II and type-III see-saw me
hanism: the addition of SU(2) tripletHiggses [14℄ and the addition of SU(2) triplet fermions [15℄ to the Standard Model.9The importan
e of �avour in leptogenesis has been studied by a large number of authors, see [16℄and referen
es therein for a partial list. 17



Su
h a des
ription is provided by the Kadano�-Baym equations. In this approa
h,the n-point 
orrelation fun
tions repla
e the phase spa
e distribution fun
tion as thedynami
al quantities by whi
h a system is des
ribed. Their equations of motion aregiven by the Kadano�-Baym equations [17℄. Those 
an be derived 
losed-time-path orS
hwinger-Keldysh formalism [18, 19, 20, 21℄. Here we brie�y sket
h the derivation of thiste
hnique, mainly following [22, 8℄.A nonequilibrium system is not a pure quantum state and has to be des
ribed in termsof a density matrix ̺. Expe
tation values of observables are 
omputed as
〈A〉 = Tr (̺A) (1.16)The density matrix ̺ has a statisti
al interpretation as an ensemble of identi
al systemsin di�erent quantum states10. (1.16) involves an averaging over quantum �u
tuations andstatisti
al initial 
onditions. This will be
ome more obvious later. Dire
t 
omputationof the time evolution of ̺ is di�
ult11, but it is equivalent to study the time evolutionof all 
orrelation fun
tions of the theory. The in�nitely many degrees of freedom of theinitial density matrix are mapped onto their in�nitely many initial 
onditions. Thougha full 
hara
terisation of the system in prin
iple involves all n-point fun
tions, it is oftensu�
ient to study the one- and two-point fun
tion. This in parti
ular applies to all 
asesof interest in this work.Time ordered 
orrelation fun
tions 
an, as in �eld theory at vanishing temperature,be 
omputed from a generating fun
tional. However, it turns out useful not to restri
tthe analysis to �elds with real time arguments, but instead 
onsider a time orderingalong some general 
ontour C in the 
omplex time plane. We will �rst derive the relevantequations for real s
alars and then for fermions. The generalisation to 
omplex s
alars andgauge �elds is straightforward, though in the latter 
ase the treatment of the unphysi
algauge degrees of freedom 
an be te
hni
ally 
hallenging and the phenomenology is mu
hri
her. For instan
e, in 
ovariant gauges at �nite temperature, Faddeev-Popov ghosts arene
essary to remove unphysi
al degrees of freedom even in abelian gauge theories, and innon-abelian gauge theories a new mass s
ale, the magneti
 mass, appears, see [10℄.1.3.1 BosonsConsider a real s
alar �eld φ with a Lagrangian L = Lfree−V where Lfree is the Lagrangianof the free �eld and V some potential that provides a self intera
tion. We spe
ify the10Note that parti
le number in relativisti
 quantum �eld theory is not a 
onserved quantity. Thereforedi�erent states of the same system in
lude the va
uum, pure states with an arbitrary number of quantaand possible superpositions of states with di�erent parti
le numbers.11Generally, the von Neumann equation 
an only be solved perturbatively for a redu
ed density matrixwith an e�e
tive Hamiltonian. In most pra
ti
al appli
ations to date, a number of additional assumptionsis made that e�e
tively makes this approa
h equivalent to what we refer to as quantum Boltzmannequations in Se
. 2.3.2. A powerful formalism of this kind has been developed in [23℄ and is widely usedto treat neutrino os
illations. 18
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tf → ∞

Figure 1.1: Path in the 
omplex time plane for nonequilibrium 
orrelation fun
tions.
ontour C as the Keldysh-
ontour C (
f. Figure 1.1) that starts at some initial value
x0 = ti + iǫ, runs parallel to the real x0 axis until tf + iǫ where it follows a semi
ir
learound x0 = tf until x0 = tf − iǫ and then runs ba
k to ti − iǫ. The parameter ǫ shallbe thought of as in�nitesimal. To in
lude 
orrelation fun
tions for arbitrarily large timesafter ti, we send tf → ∞. A generating fun
tional for time ordered 
orrelation fun
tions
an be written as 12

ZC[J ] = Tr

(

TC exp

(

i

∫

C

d4xJ(x)φ(x)

)

̺

)

, (1.17)with time ordered n-pint fun
tions given by
〈φ(x1 . . . φ(xn)〉 =

1

Z[J ]

δn

iδJ(x1) . . . iδJ(xn)
Z[J ]

∣

∣

∣

J=0
(1.18)Here TC is the time ordering along the 
ontour C in the 
omplex time plane and

∫

C
d4x implies a time integration along that 
ontour while the spatial integrations d3x areperformed over the whole three dimensional spa
e in the usual manner. The generatingfun
tional has a path integral representation
ZC[J ] =

∫

Dφ
[1]
i Dφ

[2]
i 〈φ[1]

i |̺|φ[2]
i 〉〈φ[2]

i |TC exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

|φ[1]
i 〉. (1.19)Here 〈φ[1]

i | and |φ[2]
i 〉 are eigenstates of the Heisenberg �eld operator φ(ti ± iǫ) at thebeginning and end of C. In the limit ǫ → 0 one 
an represent

〈φ[2]
i |TC exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

|φ[1]
i 〉 =

∫ φ
[2]
i

φ
[1]
i

Dφ exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

,(1.20)leading to
ZC[J ] =

∫

Dφ
[1]
i Dφ

[2]
i 〈φ[1]

i |̺|φ[2]
i 〉
∫ φ

[2]
i

φ
[1]
i

Dφ exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

. (1.21)12Here we 
hose the Heisenberg pi
ture where ̺ is time independent.19



(1.20) provides the motivation for 
hoosing the 
losed time path C. The integrations
Dφ

[1]
i Dφ

[2]
i 
orrespond to an ensemble average over the initial 
onditions 〈φ[1]

i |̺|φ[2]
i 〉 whilethe Dφ is the usual quantum me
hani
al path integral averaging. The initial densitymatrix 
an be represented as

〈φ[1]
i |̺|φ[2]

i 〉 = Neif[φ] (1.22)with
f[φ] = α0 +

∞
∑

n=1

1

n!

∫

C

n
∏

i=1

dxiαn(x0, . . . , xi)φ(x1) . . . φ(xi). (1.23)The αn 
ontain the initial 
orrelations and vanish for times t 6= ti while N is simply anormalisation fa
tor. In this work we will only 
onsider two types of initial 
onditions,equilibrium and a Gaussian density matrix. For both of these, f 
an be absorbed in anelegant way. Here we dis
uss Gaussian ̺, the equilibrium 
ase is treated in Se
. 1.3.3.Gaussian initial 
onditions 
an be a good approximation for the physi
al reality inmany 
ases 13. They 
an be parameterised as
f[φ] = α0 +

∫

C

d4x1α1(x1)φ(x1) +
1

2

∫

C

d4x1d
4x2α2(x1, x2)φ(x1)φ(x2), (1.24)giving the exponential in (1.21) the simple shape

exp

(

i

∫

C

d4x1d
4x2

(

1

2
α2(x1, x2) + δ

(4)
C (x1 − x2)

1

2

(

∂x1∂x2 − m2
)

)

φ(x1)φ(x2)

)

× exp

(

i

∫

C

d4x (α1(x) + J(x)) φ(x) − V[φ(x)]

)

. (1.25)
α1 
an be absorbed into the sour
e, J(x) → J(x) + α1(x), and α2 into the mass,
δ
(4)
C (x1 − x2)m

2 → δ
(4)
C (x1 − x2)m

2 − α2(x1, x2). This way the initial density matrixformally disappears from the 
omputations and only re-enters via the initial 
onditionsfor the 
orrelation fun
tions. As in va
uum theory, in the absen
e of intera
tions, V = 0,(1.25) is Gaussian and (1.21) 
an, after partial integration in x2 be solved as
Z free

C [J ] = N′ exp

(

−1

2

∫

C

d4x1d
4x2J(x1)∆

free
C (x1, x2)J(x2)

)

. (1.26)
N′ is again a normalisation fa
tor and ∆free

C the free propagator on the 
ontour withmodi�ed mass m for whi
h, analogue to the va
uum 
ase,
(�1 + m2)∆free

C (x1, x2) = −iδ
(4)
C (x1 − x2). (1.27)13Note that, even if the initial density matrix is purely Gaussian, higher order 
orrelation fun
tionsbuild up at later times. 20



Here �1 = ∂µ∂
µ with all derivatives with respe
t to the 
omponents of x1. From (1.21) itis easy to see that

ZC[J ] = exp

(

−i

∫

C

d4V
[

δ

iδJ(x)

])

Z free
C [J(x)]. (1.28)As in va
uum theory, one 
an now de�ne the generating fun
tional for the 
onne
ted
orrelation fun
tions by

W [J ] = i ln Z[J ]. (1.29)As usual, fun
tional derivatives of W [J ] with respe
t to J give 
onne
ted time ordered
n-point 
orrelation fun
tions,

δnW [J ]

δJ [x1] . . . δJ [xn]

∣

∣

∣

J=0
= (i)n+1〈TC (φ(x1) . . . φ(xn))〉c. (1.30)The e�e
tive a
tion is obtained by Legendre transform,

Γ [φc] = −W [J ] −
∫

C

d4xJ(x)φc(x), (1.31)and ful�ls the stationarity 
ondition
δΓ [φc]

δφc(x1)
= −J(x1) (1.32)where φc = 〈φ〉 is the expe
tation value of the 
lassi
al �eld, 
omputable from (1.30). Itallows to de�ne the n-point vertex fun
tional, or one-parti
le irredu
ible n-point fun
tion

Γn(x1 . . . xn) =
δnΓ [φc]

δφc(x1) . . . δφc(xn)
= −i〈φ(x1) . . . φ(xn)〉1PI . (1.33)It follows

δ

δJ(x2)

δΓ [φc]

δφc(x1)
=

∫

C

d4x′δφc(x
′)

δJ(x2)

δ2Γ [φc]

δφc(x′)δφc(x1)

= −
∫

C

d4x′ δ2W [J ]

δJ(x2)δJ(x′)

δ2Γ [φc]

δφc(x′)δφc(x1)
= −δJ(x1)

δJ(x2)
. (1.34)This, with (1.33) and (1.30), implies for the 
onne
ted two point fun
tion on the 
ontour

∫

C

d4x′(∆C(x1, x
′))cΓ2(x

′, x2) = −iδ
(4)
C (x1 − x2). (1.35)

Γ2 
an be written as a free part plus a self energy Π, de�ning the latter:
Γ2(x1, x2) = Γ free

2 (x1, x2) + ΠC(x1, x2). (1.36)21



From (1.35) it is 
lear that Γ free
2 is the negative of the inverse free time ordered propagatoron the 
ontour, implying

Γ free
2 (x1, x2) = (�1 + m2)δ

(4)
C (x1 − x2) (1.37)The Dyson-S
hwinger equation (1.35) 
an now be written in the familiar form

(�1 + m2)(∆C(x1, x2))c +

∫

C

d4x′ΠC(x1, x
′)(∆C(x

′, x2))c = −iδC(x1 − x2) , . (1.38)The propagator 
an be de
omposed as
(∆c

C(x1, x2))c = θC(x
0
1, x

0
2)∆

>(x1, x2) + θC(x
0
2, x

0
1)∆

<(x1, x2) . (1.39)The θ-fun
tions enfor
e path ordering along the 
ontour C, and ∆> and ∆< are de�nedas
∆>(x1, x2) = 〈φ(x1)φ(x2)〉c (1.40)
∆<(x1, x2) = 〈φ(x2)φ(x1)〉c. (1.41)The self-energy 
an be de
omposed in the same way

ΠC(x1, x2) = θC(x0
1, x

0
2)Π

>(x1, x2) + θC(x0
2, x

0
1)Π

<(x1, x2) . (1.42)In the S
hwinger-Dyson equation the time 
oordinates of ∆C and ΠC 
an be on the upperor lower bran
h of the 
ontour C. To leave the 
ontour and turn to 
orrelation fun
tions onthe real axis, we have to pay the pri
e of a doubling of degrees of freedom, treating �eldson the upper and lower bran
h independently. We denote �elds on the upper bran
h bythe subs
ript `+' and those on the lower bran
h by `−'. This of 
ourse does not mean thatthe number of physi
al degrees of freedom 
hanges, φ− has to be viewed as an auxiliaryquantity. Consisten
y obviously implies
φ+(tf ,x) = φ−(tf ,x) (1.43)Using the same notation for the 
orrelators and self energies, one 
an write

∆−+(x1, x2) = ∆>(x1, x2) , ∆+−(x1, x2) = ∆<(x1, x2) , (1.44)
Π−+(x1, x2) = Π>(x1, x2) , Π+−(x1, x2) = Π<(x1, x2) , . (1.45)

∆++, Π++ are the time-ordered and ∆−−, Π−− the anti-time-ordered two-point fun
-tions and self energies. From the S
hwinger-Dyson equation (1.38) one obtains for the
orrelation fun
tions ∆< and ∆>,
(�1 + m2)∆<(x1, x2) =

∫

d4x′ (−Π++(x1, x
′)∆<(x′, x2) + Π<(x1, x

′)∆−−(x′, x2)) ,(1.46)
(�1 + m2)∆>(x1, x2) =

∫

d4x′ (−Π>(x1, x
′)∆++(x′, x2) + Π−−(x1, x

′)∆>(x′, x2)) ,(1.47)22



where the relative sign in the integrands is due to the anti-
ausal time ordering on thelower bran
h of C.It is 
onvenient to introdu
e retarded and advan
ed propagators,
∆R(x1, x2) = θ(t1 − t2)(∆

>(x1, x2) − ∆<(x1, x2)) (1.48)
= θ(t1 − t2)〈[φ(x1), φ(x2)]〉
= ∆++(x1, x2) − ∆+−(x1, x2)

= ∆−+(x1, x2) − ∆−−(x1, x2) ,

∆A(x1, x2) = −θ(t2 − t1)(∆
>(x1, x2) − ∆<(x1, x2)) (1.49)

= −θ(t2 − t1)〈[φ(x1), φ(x2)]〉
= ∆++(x1, x2) − ∆−+(x1, x2)

= ∆+−(x1, x2) − ∆−−(x1, x2) ,

ΠR(x1, x2) = θ(t1 − t2)(Π
>(x1, x2) − Π<(x1, x2))

= Π++(x1, x2) − Π+−(x1, x2)

= Π−+(x1, x2) − Π−−(x1, x2) , (1.50)
ΠA(x1, x2) = −θ(t2 − t1)(Π

>(x1, x2) − Π<(x1, x2))

= Π++(x1, x2) − Π−+(x1, x2)

= Π+−(x1, x2) − Π−−(x1, x2) . (1.51)They allow, with Eqs. (1.46) and (1.47), to formulate the Kadano�-Baym equations forthe 
orrelation fun
tions ∆> and ∆<,
(�1 + m2)∆>(x1, x2) = −

∫

d4x′
(

Π>(x1, x
′)∆A(x′, x2) + ΠR(x1, x

′)∆>(x′, x2)
)

, (1.52)
(�1 + m2)∆<(x1, x2) = −

∫

d4x′
(

Π<(x1, x
′)∆A(x′, x2) + ΠR(x1, x

′)∆<(x′, x2)
)

. (1.53)These 
an be rewritten 
onveniently in terms of the real symmetri
 and antisymmetri

orrelation fun
tions
∆+(x1, x2) =

1

2
〈{φ(x1), φ(x2)}〉 , (1.54)

∆−(x1, x2) = i〈[φ(x1), φ(x2)]〉 , (1.55)and self-energies
Π+(x1, x2) = − i

2
(Π>(x1, x2) + Π<(x1, x2)) , (1.56)

Π−(x1, x2) = Π>(x1, x2) − Π<(x1, x2) , (1.57)23



whi
h 
an be related the retarded and advan
ed self-energies,
ΠR(x1, x2) = θ(t1 − t2)Π

−(x1, x2) , ΠA(x1, x2) = −θ(t2 − t1)Π
−(x1, x2) . (1.58)One 
an obtain a homogeneous equation for ∆− and an inhomogeneous equation for ∆+by adding and subtra
ting the Kadano�-Baym equations (1.52) and (1.53) and using(1.48)-(1.51) and (1.54)-(1.57),

(�1 + m2)∆−(x1, x2) = −
∫

d3x′

∫ t1

t2

dt′Π−(x1, x
′)∆−(x′, x2) , (1.59)

(�1 + m2)∆+(x1, x2) = −
∫

d3x′

∫ t1

ti

dt′Π−(x1, x
′)∆+(x′, x2)

+

∫

d3x′

∫ t2

ti

dt′Π+(x1, x
′)∆−(x′, x2) . (1.60)

∆− and ∆+ are known as spe
tral fun
tion and statisti
al propagator (
f. [8℄). The timeordered propagator on the 
ontour 
an be expressed as
(∆C(x1, x2))c = ∆+(x1, x2) −

i

2
signC(x0

1 − x0
2)∆

−(x1, x2) . (1.61)
∆− is, up to a fa
tor i, the Fourier transform of the spe
tral fun
tion ρ and 
arriesinformation about the spe
trum of the system while ∆+ is related to o

upation numbersof di�erent modes. From the de�nitions (1.54) and (1.55) it follows that

∆−(x2, x1) = −∆−(x1, x2) (1.62)
∆+(x2, x1) = ∆−(x1, x2). (1.63)Using mi
ro
ausality and the 
anoni
al quantisation 
ondition for a real s
alar �eld,

[φ(x1), φ(x2)]|t1=t2 = [φ̇(x1), φ̇(x2)]|t1=t2 = 0 , (1.64)
[φ(x1), φ̇(x2)]|t1=t2 = iδ(x1 − x2) , (1.65)one 
an derive the initial 
onditions for ∆−.

∆−(x1, x2)|t1=t2 = 0 , (1.66)
∂t1∆

−(x1, x2)|t1=t2 = −∂t2∆
−(x1, x2)|t1=t2 = δ(x1 − x2) , (1.67)

∂t1∂t2∆
−(x1, x2)|t1=t2 = 0 . (1.68)Note that they do not depend on the physi
al initial 
onditions of the system en
oded inthe initial density matrix. Those enter via the initial 
onditions of ∆+, the mean �eld 〈φ〉24



and their derivatives with respe
t to time. If the involved 
ouplings are small, Π 
an be
omputed perturbatively from loop integrals that involve ∆+, ∆− and 〈φ〉,
Π = Π[∆+, ∆−, 〈φ〉].Feynman rules 
an be derived from (1.28). There are two di�eren
es to the pro
edurein va
uum. First, the propagator depends on two arguments separately, not only theirdi�eren
e. Se
ond, there is a doubling of degrees of freedom sin
e φ+ and φ− have tobe treated as two independent �elds. φ− is not physi
al and a
ts like a ghost �eld thatonly appears in the loops. Though φ± 
annot mix in verti
es, they 
an propagate intoea
h other via ∆+− and ∆−+. Sin
e the 
ouplings are lo
al, only one type of �eld 
anappear at ea
h vertex. Thus there are two types of verti
es. The number of diagrams
ontributing to a 
ertain pro
ess in
reases by a fa
tor 2n where n is the number of internalverti
es be
ause every vertex 
an be of ea
h type. Fortunately, in pra
ti
e only two of thefour propagators ∆±± are independent be
ause with (1.61) all of them 
an be 
onstru
tedfrom ∆+ and ∆−.Sin
e our interest is motivated by 
osmologi
al problems, where the 
osmologi
al prin-
iple applies, we 
an restri
t the analysis to homogeneous and isotropi
 systems. In this
ase all quantities only depend on the di�eren
e of the three ve
tors x1 and x2. Thegeneralisation to inhomogeneous systems is straightforward though often 
omputation-ally di�
ult. It is 
onvenient to perform a Fourier transformation in the relative spatial
oordinate. The 
orrelation fun
tions ∆±

q
(t1, t2) satisfy the two Kadano�-Baym equations

(∂2
t1

+ ω2
q
)∆−

q
(t1, t2) +

∫ t1

t2

dt′Π−
q
(t1, t

′)∆−
q
(t′, t2) = 0 , (1.69)

(∂2
t1 + ω2

q
)∆+

q
(t1, t2) +

∫ t1

ti

dt′Π−
q
(t1, t

′)∆+
q
(t′, t2) =

∫ t2

ti

dt′Π+
q
(t1, t

′)∆−
q
(t′, t2) , (1.70)The initial 
onditions (1.66)-(1.68) for the spe
tral fun
tion be
ome

∆−
q
(t1, t2)|t1=t2 = 0 , (1.71)

∂t1∆
−
q
(t1, t2)|t1=t2 = −∂t2∆

−
q
(t1, t2)|t1=t2 = 1 , (1.72)

∂t1∂t2∆
−
q
(t1, t2)|t1=t2 = 0 . (1.73)The physi
al initial 
onditions 
an in many 
ases be well approximated by a Gaussiandensity matrix ̺. The most general Gaussian density matrix 
ontains only �ve indepen-

25



dent parameters for ea
h mode (see [8℄),
〈φ[1]

i |̺|φ[2]
i 〉 = (2π∆+

q,in)−1/2 exp

(

iφq,in(φ[1]q − φ[2]q ) +
i∆̇+

q,in
2∆+

q,in ((φ[1]q − φq,in)2 − (φ[2]q − φq,in)2
)

−
4
(

∆+
q,in∆̈+

q,in − (∆̇+
q,in)2

)

+ 1

8∆+
q,in (

(φ[1]q − φq,in)2 + (φ[2]q − φq,in)2
)

+
4
(

∆+
q,in∆̈+

q,in − (∆̇+
q,in)2

)

− 1

4∆+
q,in (φ[1]q − φq,in)(φ[2]q − φq,in)) (1.74)with

φq,in = 〈φq(t1)〉|t1=0, (1.75)
φ̇q,in = ∂t1〈φq(t1)〉|t1=0, (1.76)
∆+

q,in = ∆+
q
(t1, t2)|t1=t2=0, (1.77)

∆̇+
q,in = ∂t1∆

+
q
(t1, t2)|t1=t2=0 = ∂t2∆

+
q
(t1, t2)|t1=t2=0, (1.78)

∆̈+
q,in = ∂t1∂t2∆

+
q
(t1, t2)|t1=t2=0. (1.79)Eq. (1.74) establishes the 
onne
tion between the initial density matrix ̺ and the initial
onditions for ∆+ and 〈φ〉. This is the only point where ̺ enters, and the modi�ed massobtained by absorbing the initial 
orrelation α2 into m2 does not a�e
t the equations ofmotion at any other time than ti sin
e all αi vanish for t 6= ti. A pure quantum me
hani
alstate with Tr̺2 = 1 is realised for ∆̈+

q,in∆+
q,in − (∆̇+

q,in)2 = 1
4
14.To derive the Kadano�-Baym equations (1.59) and (1.60), we employed standard fun
-tional methods known from �eld theory in va
uum. We formulated a generating fun
tional

Z[J ] with one sour
e term J from whi
h we obtained the e�e
tive a
tion Γ [φc] that gen-erates one-parti
le irredu
ible 
orrelation fun
tions. There exist an alternative derivation(see [8℄) that starts from a generating fun
tional with n non-lo
al sour
es and uses the
n-parti
le e�e
tive a
tions Γ (n). Those are fun
tionals of all 
onne
ted m-point fun
tions
∆(x1, . . . , xm) with m ≤ n and allow to derive equations of motion for them by �rst orderfun
tional derivation, using the stationarity 
ondition

δΓ (n)

δ∆(x1, . . . , xm)
= 0. (1.80)In parti
ular, the two-parti
le irredu
ible e�e
tive a
tion [24℄ has be
ome a standard toolin nonequilibrium �eld theory. However, these methods are 
ompletely equivalent to the14If φ is 
oupled to other �elds, e.g. a thermal bath, entanglement with those will generally lead tode
oheren
e even if the initial density matrix ̺φ of φ 
orresponds to a pure state.26



approa
h presented here if the full perturbative series is taken into a

ount. Di�eren
esare te
hni
al and related to the trun
ation of the series. The n-parti
le irredu
ible e�e
tivea
tion provides a useful s
heme to resum in�nitely many Feynman diagrams. It also allowsto understand in an intuitive way why the formalism is free of se
ular terms that appearin 
onventional perturbative approa
hes to time-dependent problems that involve morethan one time s
ale [8℄.The above des
ription was formulated in Minkowski spa
etime and negle
ts Hubbleexpansion. A straightforward generalisation to 
urved spa
etimes and in parti
ular theFriedmann-Robertson-Walker universe has been dis
ussed in [25℄.1.3.2 FermionsThe generalisation of the above to fermions is straightforward. Analogue to Eqs. (1.40)and (1.41) one 
an de�ne
S>

αβ(x1, x2) = 〈Ψα(x1)Ψ̄β(x2)〉c (1.81)
S<

αβ(x1, x2) = −〈Ψ̄β(x2)Ψα(x1)〉c (1.82)(1.83)as well as the spe
tral and statisti
al propagators
S−

αβ = i〈{Ψα(x1), Ψ̄β(x2)}〉c = i
(

S>
αβ(x1, x2) − S<

αβ(x1, x2)
) (1.84)

S+
αβ =

1

2
〈[Ψα(x1), Ψ̄β(x2)]〉c =

1

2

(

S>
αβ(x1, x2) + S<

αβ(x1, x2)
) (1.85)Here Ψ is a Dira
 spinor and α and β are spinor indi
es whi
h we will always suppress inthe following. The symmetry relations analogue to (1.62) and (1.63) are

S−(x2, x1) = −γ0
(

S−(x1, x2)
)†

γ0 (1.86)
S+(x2, x1) = γ0

(

S+(x1, x2)
)†

γ0. (1.87)As for s
alars, this allows to derive Kadano� Baym equations for the spe
tral and statis-ti
al propagators,
(i6∂1 − m)S−(x1, x2) =

∫

d3x′

∫ t1

t2

dt′Σ−(x1, x
′)S−(x′, x2) , (1.88)

(i6∂1 − m)S+(x1, x2) =

∫

d3x′

∫ t1

ti

dt′Σ−(x1, x
′)S+(x′, x2)

−
∫

d3x′

∫ t2

ti

dt′Σ+(x1, x
′)S−(x′, x2) . (1.89)Here, as usual, 6∂ = γµ∂µ and the subs
ript 1 indi
ates that derivatives are to be takenwith respe
t to the 
omponents of the ve
tor x1.27



1.3.3 Thermal EquilibriumThermal equilibrium is a very spe
ial state. In the spirit of the ergodi
 hypothesis, anylarge 
losed system with 
omponents that are in tou
h with ea
h other should approa
hequilibrium for late times and remain there on relevant time s
ales15. In Se
. 2.2.3 weshow expli
itly that our solutions asymptoti
ally approa
h the equilibrium state on a
hara
teristi
 time s
ale τ for arbitrary initial 
onditions. In equilibrium, the densitymatrix ̺ 
an without approximation be 
hara
terised by a small number of parameterswhi
h, in the system of rest of the plasma, have a physi
al interpretation as temperatureand 
hemi
al potentials [27, 28℄. Then ̺ 
an be written as
̺eq =

exp (β (−H + µiQi))

Tr exp (β (−H + µiQi))
(1.90)where H is the Hamiltonian of the system, β the inverse temperature, Qi some 
on-served 
harges and µi the 
orresponding 
hemi
al potentials. In the 
ases we will dis
uss,
hemi
al potentials are negligible, leading to

̺eq =
exp (−βH)

Tr exp (−βH)
. (1.91)There exist several formalisms to treat quantum �elds in equilibrium (see e.g. [10℄ and[29℄ for a detailed list of referen
es). They are generally based on the observation that(1.91) formally is a time evolution operator in imaginary time [30℄. Here we will use thereal-time formalism whi
h dire
tly 
onne
ts to the dis
ussion in the previous se
tion. Weagain 
onsider 
orrelation fun
tions in the 
omplex time plane, for a moment withoutspe
i�
ation of a 
ontour. Sin
e equilibrium is a time- and spa
e-translation invariantstate, the 
orrelators ∆≷ only depend on relative 
oordinates

∆≷(x1, x2) → ∆≷(x1 − x2). (1.92)Using ̺eq as a time evolution operator and the 
y
li
ity of the tra
e in (1.16), it is theneasy to prove that
∆<(t + iβ) = ∆>(t) (1.93)where we have suppressed the spatial dependen
e. (1.93) is 
alled the Kubo-Martin-S
hwinger (KMS) relation. For it to have any meaning, the fun
tions ∆> and ∆< shouldbe de�ned in the strips −β ≤ Imx0 ≤ 0 and 0 ≤ Imx0 ≤ β. In momentum spa
e, theKMS 
ondition reads

∆<q (ω) = ∆>q (−ω) = e−βω∆>q (ω). (1.94)15In pra
ti
e, equilibration is a highly non-trivial issue. Many real systems, e.g. ferromagnets or glass,show ergodi
ity breaking on relevant time s
ales. Also in relativisti
 quantum �eld theories approximatenon-thermal �xed points 
an appear, see e.g. [8, 26℄.28



For ∆± that implies
∆+

q
(ω) = − i

2
coth

(

βω

2

)

∆−
q
(ω) . (1.95)The same relation 
an be derived for the self-energies,

Π+
q
(ω) = − i

2
coth

(

βω

2

)

Π−
q
(ω) . (1.96)The KMS relation, whi
h 
an be physi
ally interpreted as a manifestation of detailedbalan
e, is unique to equilibrium and 
an also be used to 
hara
terise the equilibriumstate. It allows to write the time ordered propagator in a 
onvenient form,

(∆C(x1 − x2))c =

∫

d4q

(2π)4
e−iq(x1−x2)

(

θC(x0
1 − x0

2) + fB(ω)
)

ρq(ω). (1.97)Here ρq(ω) = −i∆−q (ω) is the spe
tral fun
tion and
fB(ω) =

1

eβω − 1
. (1.98)Again using ̺eq as a time evolution operator, one 
an eliminate the initial density matrixfrom the generating fun
tional (1.19),

ZC [J ] =

∫

Dφ′〈φ′(x; ti + iβ)|TC exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

|φ′(x; ti)〉, (1.99)leading to
ZC [J ] =

∫

Dφ exp

(

i

∫

C

d4x (L(x) + J(x)φ(x))

)

. (1.100)Here, the boundary 
onditions are φ(t,x) = φ(t − iβ,x) and tf = ti − iβ. Let us nowspe
ify the 
ontour. It has to start at ti and end at ti− iβ. Furthermore, it should in
ludethe real axis if we aim to 
al
ulate 
orrelation fun
tions for real time arguments and wantto avoid analyti
 
ontinuations 16. There is a third 
ondition that 
an be explained bylooking at ∆> and performing the tra
e in a set of eigenstates |n〉 of the Hamiltonian forenergies En, here for simpli
ity assumed to be dis
rete,
∆>(t1 − t2) = Z[0]−1

∑

n,m

eiEn(t1−t2+iβ)e−iEm(t1−t2)〈n|φ(t = 0,x1)|m〉〈m|φ(t = 0,x2)|n〉.(1.101)16The �rst 
onsistent treatment of quantum �elds in equilibrium was formulated by Matsubara for
orrelation fun
tions with imaginary time arguments [31℄ and is widely used if all �elds are in equilibrium.Here we 
hose a real time 
ontour be
ause it allows to treat in- and out-of-equilibrium �elds in the sameframework. 29



φ−

φ+ti → −∞

ti − iβ

Ret

−ti → ∞

PSfrag repla
ements
Figure 1.2: Path in the 
omplex time plane for thermal 
orrelation fun
tions.The 
onvergen
e of the sums is assumed to be governed by the exponentials, whi
h pro-vides the 
onditions

Im(x0
1 − x0

2) ≤ 0, Im(x0
1 − x0

2) + β ≥ 0 . (1.102)When 
onstru
ting a time-ordered propagator on the 
ontour as in (1.39), t1 is laterthan t2. Finiteness of the time ordered propagator via (1.102) therefore enfor
es thatthe imaginary part of the later time is smaller, meaning that the 
ontour 
an run onlydownward in Imx0 while it is free to run forward and ba
kward in Rex0 dire
tion. Tomake 
onne
tion to the nonequilibrium dis
ussion, we here 
hose the 
ontour Cβ shownin Fig. 1.2. The generating fun
tional (1.100) 
an be written in the same form as in thenonequilibrium 
ase (1.28). Cβ 
onsists of three parts: C1 runs along the real axis from ti,assumed to be negative without loss of generality, to −ti. C2 runs ba
k to ti and C3 thenparallel to the imaginary axis down to ti−iβ. It 
an be shown that 17 one 
an perform thelimit ti → −∞. Then the generating fun
tional ZCβ
[J ] fa
torises into a part that generates
orrelation fun
tions on C1 ∪ C2 and one for those on C3, ZCβ

= ZC1∪C2ZC3 . Sin
e we arenot interested in imaginary time arguments, ZC3 is an irrelevant normalisation fa
tor thatdrops out. The derivation of Feynman rules, in
luding the doubling of degrees of freedomby introdu
ing �elds φ± on the forward and ba
kward bran
h of the 
ontour, is equivalentto that for out-of-equilibrium �elds following (1.28). The 
omputations in equilibrium aremu
h simpler than out of equilibrium be
ause even the dressed propagators only dependon relative 
oordinates. Feynman rules 
an be applied as in va
uum, with the di�eren
ethat there are two types of internal verti
es, '+' and '−', whi
h 
ouple �elds of the
orresponding kind. Pra
ti
ally, 
omputations are done as follows: Draw all diagrams,assign '+' and '−' to ea
h vertex, 
onsidering all 
ombinatorial possibilities, 
onne
ttwo '+'-type verti
es by ∆++, two '−'-type verti
es by ∆−− and so on. Then performall loop integral as in va
uum. To do so, one requires the four thermal propagators.They 
an be found from (1.97) with the knowledge of the free spe
tral fun
tion. With17There are some ambiguities related to this limit, see [10, 29℄ and referen
es therein for a dis
ussion.30



ρfreeq (ω) = 2πsign(ω)δ(q2 − m2), see (2.46), one obtains
∆++(q) = i

q2−m2+iǫ
+ fB(|ω|)2πδ(q2 − m2), ∆+−(q) = fB(ω)2πsign(ω)δ(q2 − m2),

∆−+(q) = (1 + fB(ω))2πsign(ω)δ(q2 − m2), ∆−−(q) = −i
q2−m2−iǫ

+ fB(|ω|)2πδ(q2 − m2). .(1.103)All the above expressions are 
omputed in the rest frame of the thermal bath and notinvariant under Lorentz transformations. The theory itself of 
ourse remains 
ovariant,and the manifest 
ovarian
e 
an be restored by the repla
ement βω → βqµu
µ, where uµis the four-velo
ity of the thermal bath. The bath simply singles out a frame of referen
ein whi
h 
omputations are parti
ularly simple and T = 1/β has a physi
al interpretationas temperature. For fermions, the anti-
ommutativity of Grassmann �elds enfor
es adi�erent KMS relation

S<q (ω) = −e−βωS>q (ω), (1.104)leading to
S+

q
(ω) = − i

2
tanh

(

βω

2

)

S−
q

(ω) .. (1.105)It is very 
onvenient to express the various 
orrelators in terms of the spe
tral fun
tionand the distribution fun
tions fB,F

∆−q (ω) = iρq(ω), ∆+
q
(ω) =

(

1
2

+ fB(ω)
)

ρq(ω)
S−q (ω) = iρq(ω), S+

q
(ω) =

(

1
2
− fF (ω)

)

ρq(ω)
(1.106)where

fF (ω) =
1

eβω + 1
. (1.107)The Bose-Einstein and Fermi-Dira
 distributions that 
hara
terise equilibrium arise natu-rally from the boundary 
onditions of the 
orrelation fun
tions. Finally, we 
an establishthe 
onne
tion to usual thermodynami
 quantities by noti
ing that the generating fun
-tional (1.100) for vanishing sour
e 
an be identi�ed with the partition fun
tion Z of agrand 
anoni
al ensemble.

Z = Z[J = 0] (1.108)This, in the in�nite volume limit V → ∞, allows to 
ompute thermodynami
 pressure aswell as entropy-, energy- and 
harge-density from Z[0]

P = T
∂ lnZ

∂V
=

T

V
lnZ s =

S

V
=

∂P

∂T

ǫ = − 1

V

∂ lnZ

∂β
qi =

∂P

∂µi

.The von Neumann-entropy 
an, as usual in the statisti
al quantum me
hani
s, be writtenin terms of the density matrix ̺,
S = −〈ln ̺〉. (1.109)31



Chapter
2

Weak Coupling to a thermal Bath

The Kadano�-Baym equations provide a tool to study the dynami
s of arbitrary nonequi-librium systems. Unfortunately, in most 
ases they 
an only be solved numeri
ally. For the
ase of interest in this work one 
an make a number of simpli�
ations. These 
orrespondto a s
enario where one �eld that is out of equilibrium is in 
onta
t with a large thermalbath. They are well-motivated for various 
osmologi
al pro
esses in
luding leptogenesis,the freezeout of a weakly 
oupled dark matter parti
le, some models of warm in�ationor the late phase of reheating. In this 
ase, we 
an prove that the Kadano�-Baym equa-tions for the 
orrelation fun
tions are equivalent to a sto
hasti
 des
ription in terms of aLangevin equation for the �eld itself. Furthermore, in this situation we 
an �nd the mostgeneral solution to the Kadano�-Baym equations analyti
ally up to an integral kernelthat 
ontains memory e�e
ts. In the quasiparti
le regime we 
an even solve this integraland present a full analyti
 leading order result. We then use this to show how the Boltz-mann equations emerge from the Kadano�-Baym equations in the limit of weak 
oupling.Finally, we dis
uss the properties of the plasma. We �nd that even in the quasiparti
leregime the equation of state 
an signi�
antly deviate from the naive expe
tation. We alsopoint out that at high temperature, in the quasiparti
le regime the phase spa
e be
omesdynami
al due to the temperature dependent plasma wave dispersion relation, whi
h 
anin the simplest 
ase be parameterised by temperature dependent e�e
tive masses. Thoseput kinemati
al restri
tions on pro
esses in the plasma. Beyond the quasiparti
le regimethese are not e�e
tive due to signi�
ant 
ontributions from o�-shell pro
esses.The assumption of weak 
oupling to a large thermal bath in the framework of Kadano�-Baym equations implies that self energies are 
omputed from equilibrium propagators ofbath �elds only. For 
ouplings that are linear in the out-of-equilibrium �eld, this also
orresponds to a leading order perturbative expansion in the 
oupling 
onstant. Higher32



order 
orre
tions are known 
ause un
ertainties in perturbative solutions of Boltzmannequations at late times. The reason is that terms of higher order in the gain-and lossrates ∼ γ 
an give non-negligible 
ontributions when γt ≥ 1. Our approa
h makes noapproximation on the quantum side and 
onsistently in
ludes all memory e�e
ts at agiven order, but in prin
iple inherits the te
hni
al un
ertainties related to a perturbativeexpansion in time dependent problems. However, no expli
it se
ular terms appear, theequations remain 
onsistent in the sense that they do not 
ontain time dependent "sour
eterms" involving the solutions of the equations of motion at di�erent order in the expansionparameter. Furthermore, in the systems of 
onsideration, possible 
ontributions are notonly suppressed by the 
oupling, but mainly by the number of degrees of freedom in thebath so that they may safely be negle
ted .The assumption that the ba
kground medium equilibrates instantaneously on the times
ale of 
onsideration of 
ourse does not take a

ount of the details of the equilibrationpro
ess. In reality, there may be e�e
ts related to the �nite equilibration time and the�nite size of the quasiparti
les. For example, if a parti
le with M ≫ T de
ays, the releasedenergy will lo
ally destroy the thermal equilibrium. If the separation of time s
ales is largeenough, su
h e�e
ts should be small sin
e the total per
entage of the plasma a�e
ted bythem is small at any time.We �rst 
onsider a real s
alar �eld that is 
oupled to a bath of other �elds X . with aLagrangian of the form
L =

1

2
∂µφ∂µφ − 1

2
m2

φφ2 − gφO[X ] + LX . (2.1)
O[X ] 
an stand for any operator of the bath �elds X 1. The 
oupling g is assumed to bemu
h smaller than the 
ouplings that keep the �elds X in equilibrium. Then the time s
aleon whi
h φ evolves is mu
h longer than the s
ale τX on whi
h the X thermalise so thatthe bath is in lo
al equilibrium and 
an be 
hara
terised by a single temperature T at anytime. No other assumptions are made about the nature of the X and their intera
tions,they 
ould in prin
iple represent an arbitrary number of bosoni
 of fermioni
 �elds withvarious types of 
ouplings amongst ea
h other, in
luding gauge intera
tions. All of this isin
luded in LX . We now introdu
e relative and 
entre of mass time 
oordinates y = t1−t2and t = 1

2
(t1 + t2) and write

∆−q (t; y) := ∆−q (t1 = t + y/2, t2 = t − y/2) (2.2)and so on. Correlation fun
tions of �elds in thermal equilibrium are time translationinvariant. The self energy ΠR is by assumption given by loop diagrams that only 
ontain
X propagators. Therefore it inherits this property, ∂tΠ

± = 0. In appendix B.1 we provethat then also ∂t∆
− = 0. Physi
ally this is intuitive. ∆− en
odes the spe
trum, ifba
krea
tion is negle
ted, the dressing of resonan
es will happen only by intera
tion with1We ex
lude the 
ase that O is just given by a single �eld operator, O[X ] = X .33



a time translation invariant ba
kground. Hen
e the spe
trum has to be time translationinvariant. The Kadano�-Baym equations (1.69) and (1.70) then simplify to
(∂2

t1
+ ω2

q
)∆−

q
(t1 − t2) +

∫ t1

t2

dt′Π−
q
(t1 − t′)∆−

q
(t′ − t2) = 0 , (2.3)

(∂2
t1 + ω2

q
)∆+

q
(t1, t2) +

∫ t1

ti

dt′Π−
q
(t1 − t′)∆+

q
(t′, t2) =

∫ t2

ti

dt′Π+
q
(t1 − t′)∆−

q
(t′ − t2) ,(2.4)2.1 Langevin EquationIn 
lassi
al physi
s, a system with a few degrees of freedom that is exposed to fri
tionand dissipation by 
oupling to a large bath 
an be often des
ribed in terms of a Langevinequation. Su
h approa
h is generally appli
able when the many degrees of freedom inthe bath allow to negle
t ba
krea
tion. This method 
an be generalised to quantum �eldtheory and has been used by various authors (
f. [32, 33, 34, 9, 35, 36, 37, 38℄). Someaspe
ts of the 
onne
tion to the Kadano�-Baym equations has previously been dis
ussedin [39℄. In the following we will �rst sket
h the derivation of an e�e
tive Langevin equationfollowing [9℄ and then show its equivalen
e to the Kadano�-Baym equations.The starting point is the nonequilibrium generating fun
tional (1.21) We assume thatthe initial density matrix fa
torises, ̺ = ̺φ ⊗̺X , and the intera
tion is swit
hed on whenthe system starts evolving in time. It is important to realise that φ and the X havetheir time arguments on di�erent 
ontours. The X are all in equilibrium, so their initial
orrelations 
an be absorbed by use of the integration 
ontour Cβ . φ is de�ned on theKeldysh 
ontour C. We now split C into a forward and a ba
kward part, using the φ±notation, and introdu
e sour
es J± for �elds of the di�erent bran
hes. Being interestedin φ, we initially set the sour
es for all X to zero.

Z[J+, J−] =

∫

Dφ+
i Dφ−

i 〈φi+|̺|φi+〉
∫

Dφ±DXβeiS[φ±,X ,J±] . (2.5)
DXβ indi
ates the 
hoi
e of boundary 
onditions as des
ribed in Se
. 1.3.3. The a
tionof the �elds φ and X is given by

S[φ±,X , J±] =

∫ ∞

ti

d4x (Lφ(φ+) + gφ+O[X+] + J+φ+

−Lφ(φ−) − gφ−O[X−] − J−φ−) +

∫

Cβ

d4xLX (X ) , (2.6)where Lφ is the Lagrangian of a free massive �eld and φi± the �elds φ± at initial time. Inthe following we 
hoose as initial time ti = 0 without loss of generality. With regard to34



the integrals over X , φ± simply a
t as sour
es. The term
∫

DXβe
i

R

Cβ
d4x(LX+gφ+O[X+])

=
〈

e
i

R

Cβ
d4xgφ+O[X+]

〉

X
(2.7)has the shape of a generating fun
tional, where the averaging is performed only over bath�elds. We now expand the exponential in (2.7) to se
ond order in g, perform a spatialFourier transform and 
hange to new 
oordinates in �eld spa
e,

Φ(x) =
1

2
(φ+(x) + φ−(x)) , (2.8)

R(x) = φ+(x) − φ−(x) . (2.9)The �elds X and R 
an be integrated out, a straightforward 
omputation leaves [9℄
Z[J ] =

∫

DΦinDπinW(Φin; πin)

∫

DΦDξP[ξ]ei
R

d4xJ(x)Φ(x)

× δ

[

Φ̈q(t) + ω2
q
Φq(t) +

∫ t

0

dt′Π−
q
(t − t′)Φq(t′) − ξq(t)

]

. (2.10)Here the measure P[ξ] is given by
P[ξ] = exp

(

1

2

∫ ∞

0

dt

∫ ∞

0

dt′ξq(t)Π
+
q
(t − t′)−1ξ−q(t

′)

)

, (2.11)and ξq(t) is a sto
hasti
 noise. It mimi
s the e�e
t of the bath degrees of freedom on Φ.Sin
e the ba
krea
tion of the �eld Φ is negle
ted, the only relevant 
orrelation fun
tionsare
〈ξq(t)〉 = 0 , (2.12)
〈ξq(t)ξq′(t′)〉 = −Π+

q
(t − t′)δ(q + q

′) . (2.13)
Φq(t) in (2.10) satis�es the initial 
onditions

Φq(0) = Φq,in , Φ̇q,in(0) = πq,in . (2.14)The fun
tion W(Φin; πin) is a fun
tional Wigner transform of the initial density matrix,
W(Φin; πin) =

∫

DRine
−

R

d3xπin(x)Rin(x)̺

(

Φin +
Rin

2
; Φin −

Rin

2

) (2.15)and en
odes the initial 
onditions.Correlation fun
tions for Φ 
an be found from (2.10) by solving the 
lassi
al sto
hasti
Langevin equation,
(

∂2
t + ω2

q

)

Φq(t) +

∫ t

0

dt′Π−
q
(t − t′)Φq(t

′) = ξq(t) , (2.16)35



with the initial 
onditions (2.14).The solution of the Langevin equation is 
onveniently expressed by an auxiliary fun
-tion fq(t) whi
h is de�ned as solution of the homogeneous equation
(

∂2
t + ω2

q

)

fq(t) +

∫ t

0

dt′Π−
q
(t − t′)fq(t

′) = 0 , (2.17)with the initial 
onditions
fq(0) = 0 , ḟq(0) = 1 . (2.18)In terms of fq(t), the solution of the Langevin equation is

Φq(t) = Φq,inḟq(t) + πq,infq(t) +

∫ t

0

dt′fq(t − t′)ξq(t
′) . (2.19)Correlation fun
tions 
an now be obtained from (2.10) by 
al
ulating the expe
tationvalues

〈Φq1
(t1) . . .Φqn

(tn)〉 , (2.20)whi
h involves averaging over the sto
hasti
 noise and the initial 
onditions. In a spatiallyhomogeneous system the two-point fun
tion 
an be written as
〈Φq(t1)Φq′(t2)〉 ≡ gq(t1, t2)δ(q + q

′) = gq(t2, t1)δ(q + q
′) . (2.21)The Langevin equation (2.16) implies,

(

∂2
t + ω2

q

)

〈Φq(t1)Φq′(t2)〉 +

∫ t1

0

dt′Π−
q
(t1 − t′)〈Φq(t′)Φq′(t2)〉 (2.22)

= 〈ξq(t1)Φq′(t2)〉 (2.23)
= δ(q + q

′)

∫ t2

0

dt′Π+
q
(t1 − t′)fq(t

′ − t2) , (2.24)and 
onsequently
(

∂2
t + ω2

q

)

gq(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)gq(t

′, t2)

=

∫ t2

0

dt′Π+
q
(t1 − t′)fq(t

′ − t2) . (2.25)(2.25) 
an be solved using the solution of the Langevin equation (2.16). When theinitial �eld value and its time derivative vanish,
〈Φq,in〉 = 〈Φ̇q,in〉 = 0 , (2.26)36



the relevant averages for the two-point fun
tion 
an be expressed
〈Φq,inΦq,in〉 = δ(q + q

′)αq , (2.27)
〈Φ̇q,inΦ̇q′,in〉 = δ(q + q

′)βq , (2.28)
〈Φ̇q,inΦ̇q,in〉 = δ(q + q

′)γq . (2.29)Using the solution (2.19) and the 
orrelations (2.13) one obtains
gq(t1, t2) = αqḟq(t1)ḟq(t2) + γqf(t1)f(t2)

+ βq

(

fq(t1)ḟq(t2) + ḟq(t1)fq(t2)
)

+

∫ t1

0

dt′
∫ t2

0

dt′′fq(t1 − t′)Π+
q
(t′ − t′′)fq(t

′′ − t2) . (2.30)Comparison of Eqs. (2.17) and (2.25) to (2.3) and (2.4) shows that the equations of motionderived from the Langevin equation 
an be identi�ed with the Kadano�-Baym equationswith the repla
ement fq(t1 − t2) ≡ ∆−
q
(t1 − t2) and gq(t1, t2) ≡ ∆+

q
(t1, t2), hen
e we haveproven the equivalen
e of both approa
hes.2.2 Solving the Kadano�-Baym Equations2.2.1 Solutions for S
alarsThe equation for the Spe
tral Fun
tionLet us now solve (2.3).

(

∂2
y + ω2

q

)

∆−
q
(y) +

∫ y

0

dy′Π−
q
(y − y′)∆−

q
(y′) = 0 . (2.31)The solution 
an be found elegantly by performing a Lapla
e transformation,

∆̃−
q
(s) =

∫ ∞

0

dye−sy∆−
q
(y) , (2.32)whi
h yields

∆̃−
q
(s) =

∂y∆
−
q
(0) + s∆−

q
(0)

s2 + ω2
q

+ Π̃−
q
(s)

, (2.33)where the Lapla
e transform of Π− is de�ned analogue to ∆−. From (2.33), it is obviousthat the general solution of (2.31) depends on two parameters, the boundary 
onditionsof ∆−
q
and ∂y∆

−
q
at y = 0. An inverse Lapla
e transform yields

∆−
q
(y) =

(

∂y∆
−
q
(0) + ∆−

q
(0)∂y

)

∫

CB

ds

2πi

esy

s2 + ω2
q

+ Π̃−
q
(s)

. (2.34)37



Here CB is the Bromwi
h 
ontour (see Figure 3): The part parallel to the imaginary axisis 
hosen su
h that all singularities of the integrand are to its left; the se
ond part is thesemi
ir
le at in�nity whi
h 
loses the 
ontour at Re(s) < 0. The boundary 
onditions for
∆−

q
(y) are independent of the initial 
onditions and given by (1.71) and (1.72), leading to

∆−
q
(y) =

∫

CB

ds

2πi

esy

s2 + ω2
q

+ Π̃−
q
(s)

. (2.35)From the de�nition of the Lapla
e transform one 
an see that Π̃−(s) is real on the real
s axis be
ause Π−(y) is real, but it has a dis
ontinuity a
ross the imaginary axis. Thede�nitions (1.50) and (1.51) give rise to the spe
tral representations

ΠR(ω) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

ω − p0 + iǫ
(2.36)

ΠA(ω) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

ω − p0 − iǫ
(2.37)

Π̃−(s) = i

∫ ∞

−∞

dp0

2π

Π−(p0)

is − p0
(2.38)from whi
h the relations summarised in Appendix B.3 
an be derived. ΠR,A

q
(ω) and Π−

q
(ω)all have dis
ontinuities a
ross the real ω axis. On the axis ΠR is de�ned as

ReΠR
q
(ω) =

1

2

(

ΠR
q
(ω + iǫ) + ΠR

q
(ω − iǫ)

) (2.39)
ImΠR

q
(ω) =

1

2i

(

ΠR
q
(ω + iǫ) − ΠR

q
(ω − iǫ)

)

. (2.40)Eqs. (2.39) and (2.40) imply that
ImΠR

q
(ω) =

1

2i

(

Π̃−
q
(−iω + ǫ) − Π̃−

q
(−iω − ǫ)

)

. (2.41)and
ImΠR

q
(ω) =

1

2i
Π−

q
(ω + iǫ). (2.42)These properties are analogue to the theory in va
uum. However, while in va
uum ΠR isanalyti
 below the lowest multiparti
le threshold, at �nite temperature it has a dis
onti-nuity along the whole real ω axis, as we will show in Se
. 2.3.3. Sin
e the integrand of(2.34) has singularities only on the imaginary axis, the se
ond part 
an be deformed to runparallel to the imaginary axis as well: CB →

∫ i∞+ǫ

−i∞+ǫ
+
∫ −i∞−ǫ

i∞−ǫ
. By 
hange of integrationvariables and use of the relations in Appendix B.3 the expression (2.35) 
an be broughtinto the form

∆−
q
(y) = i

∫ ∞

−∞

dω

2π
e−iωyρq(ω) , (2.43)38
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Figure 2.1: Bromwi
h 
ontourwhere the spe
tral fun
tion ρq(ω) is given in terms of real and imaginary part of theself-energy ΠR
q
(ω),
ρq(ω) = i∆̃−

q
(iω)

=

(

i

ω2 − ω2
q
− ΠA

q
(ω) − iωǫ

− i

ω2 − ω2
q
− ΠR

q
(ω) + iωǫ

)

=
−2ImΠR

q
(ω) + 2ωǫ

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω) + ωǫ)2

. (2.44)The inversion in the last step is trivial be
ause we assume that φ either 
arries no otherindex, su
h as �avour, or the self energy is diagonal with respe
t to su
h index. ρq(ω)ful�ls the well-known sum rule
∫

dωρq(ω) = 1. (2.45)The dis
ussion following (1.8) 
an be dire
tly applied to (2.44). In the limit of vanishingintera
tion, the spe
tral fun
tion reads
ρfree
q

(ω) = 2πsign(ω)δ(ω2 − ω2
q
) (2.46)As pointed out previously, the spe
trum is time translation invariant be
ause we negle
tedthe ba
krea
tion of φ on the bath. In a 
osmologi
al 
ontext this is of 
ourse not exa
tlytrue. Even if ba
krea
tion is negligible, Hubble expansion still a
ts as an external for
e onthe system. However, in many relevant 
ases the time s
ale asso
iated with the dynami
sof the �eld that is out of equilibrium is mu
h shorter than that on whi
h the expansionis relevant, but still mu
h longer than the relaxation times of the stronger 
oupled bath�elds. Though the spe
trum 
hanges with time and ∂t∆

− 6= 0, the inequality
∂t∆

−q (t; y) ≪ ∂y∆
−q (t; y) (2.47)39




an still hold and justify to take
∆−q (t1, t2) → ∆−q (y; T (t)).(2.47) allows to repla
e ∂2

t1
on the lhs of the �rst Kadano�-Baym equation (2.3) by ∂2

y .Lo
ally, if the separation y between t1 and t2 is small, T ( t1+t′

2
) and T ( t′+t2

2
) 
an both berepla
ed by the mean value T ( t1−t2

2
) = T (t). Then (2.3) in relative and 
entre of mass
oordinates reads

(∂2
y + ω2q)∆−q (t; y) = −

∫ y

0

dt′Π−q (y − t′, T (t))∆−q (t′; T (t)) (2.48)The 
entre of mass time t is now just an external parameter and (2.48) 
an be solved byLapla
e transform in y as in the t-independent 
ase. The solution has the same shapeas the spe
tral fun
tion at 
onstant temperature (2.44), but impli
itly depends on t via
T (t)2.The self-energy ΠR

q
(ω), and 
onsequently the spe
tral fun
tion ρq(ω), are divergentand have to be renormalised. Physi
al parti
le properties shall be de�ned in va
uum.Hen
e, the renormalisation 
onditions are formulated at zero temperature. In the limit

T → 0 one then dire
tly re
overs the familiar interpretation of masses and 
ouplingsfrom va
uum theory. This is possible be
ause medium e�e
ts are not relevant at veryshort distan
es and no UV divergen
es additional to those in va
uum appear in thetheory. No temperature dependent 
ounter-terms are needed and the usual mass and wavefun
tion renormalisation at zero temperature 
an be applied. In (2.44) ω2
q
is repla
ed by

ω2q(0) = m2
0 + q2, where m0 is the bare mass of the �eld φ. We require that the spe
tralfun
tion has a pole at ω2

q
= m2 + q2 for T = 0,

ω2
q
− ω2q(0) − ReΠR

q
(ωq)|T=0 = 0 . (2.49)The self energy is now expanded around ωq and renormalisation of the wave fun
tionallows to absorb another divergen
e,

ReΠR
q
(ω) = ReΠR

q
(ωq)|T=0 +

(

1 − Z−1
) (

ω2 − ω2
q

)

+ ReΠ̂R
q
(ω) , (2.50)where ReΠ̂R

q
(ω) is the �nite part and

Z−1 = 1 − 1

2ωq

∂ReΠR
q
(ω)

∂ω

∣

∣

∣

ω=ωq,T=0
. (2.51)2This pro
edure does of 
ourse not take proper a

ount of memory e�e
ts. If T 
hanges signi�
antlyover the time of 
onsideration, a 
orre
t 
omputation requires the use of a quantum Boltzmann equationwith time dependent spe
trum or even a full numeri
al solution of the Kadano�-Baym equations.40



The spe
tral fun
tion (2.44) now takes the form
ρq(ω) = Z

−2ZImΠR
q
(ω) + 2ωǫ

(

ω2 − ω2
q
− ZReΠ̂R

q
(ω)
)2

+
(

ZImΠR
q
(ω) + ωǫ

)2
. (2.52)The renormalized spe
tral fun
tion ρr

q
(ω) = Zρq(ω) takes same shape as (2.44) whenexpressed in terms of renormalised quantities, namely the renormalized �eld operator

φr =
√

Zφ and the renormalized self-energy ΠR,r
q

(ω) = ZΠ̂R
q
(ω),

ρr
q
(ω) =

−2ImΠR,r
q

(ω) + 2ωǫ
(

ω2 − ω2
q
− ReΠR,r

q (ω)
)2

+
(

ImΠR,r
q (ω) + ωǫ

)2 . (2.53)The divergen
es of spe
tral fun
tion and statisti
al propagator 
an be removed in the sameway by mass and wave fun
tion renormalisation at zero temperature. In the following wewill drop the supers
ript `r' to keep the notation simple.Solution for the Statisti
al PropagatorWe now turn to the Kadano�-Baym equation (2.4) for the statisti
al propagator, whi
hfor initial time ti = 0 is given by
(∂2

t1
+ ω2

q
)∆+

q
(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)∆+

q
(t′, t2) = ζ(t1, t2) , (2.54)with

ζ(t1, t2) =

∫ t2

0

dt′Π+
q
(t1 − t′)∆−

q
(t′ − t2) . (2.55)The solution 
an be written as a sum of the solution ∆̂+

q
(t1, t2) to the homogeneousequation

(∂2
t1

+ ω2
q
)∆̂+

q
(t1, t2) +

∫ t1

0

dt′Π−
q
(t1 − t′)∆̂+

q
(t′, t2) = 0 . (2.56)and an inhomogeneous pie
e. The full solution is given by

∆+
q
(t1, t2) = ∆̂+

q
(t1, t2) +

∫ t1

0

dt′∆−
q
(t1 − t′)ζ(t′, t2) , (2.57)as one 
an easily verify. There is no derivative with respe
t to t2 in the homogeneousequation. Thus, t2 
an be viewed as a parameter. Then (2.56) is identi
al to (2.31) withan additional parameter t2. That allows to read o� the general solution from (2.34),

∆̂+
q
(t1, t2) = Aq(t2)∆̇

−
q
(t1) + Bq(t2)∆

−
q
(t1) . (2.58)41



The de�nition of ∆+ implies the symmetry ∆̂+
q
(t1, t2) = ∆̂+

q
(t2, t1), whi
h allows to write

Aq(t2)∆̇
−
q
(t1) + Bq(t2)∆

−
q
(t1) = Aq(t1)∆̇

−
q
(t2) + Bq(t1)∆

−
q
(t2) . (2.59)Use of the boundary 
onditions (1.71)-(1.73), ∆−

q
(0) = ∆̈−

q
(0) = 0 and ∆̇−

q
(0) = 1, leadsto the relations

Aq(t) = Aq(0)∆̇−
q
(t) + Bq(0)∆−

q
(t) , Bq(t) = Ȧq(0)∆̇−

q
(t) + Ḃq(0)∆−

q
(t) . (2.60)

Aq(t) and Bq(t) 
an be inserted into (2.59). The symmetry of ∆̂+
q
(t1, t2) then implies

Bq(0) = Ȧq(0). The initial state of the system is therefore 
hara
terised by three 
on-stants, whi
h 
an be identi�ed with the initial 
orrelations appearing in (1.74)Eqs. (2.57), (2.58), (2.60) and the initial 
onditions (1.77)-(1.79) now provide the fullsolution for the statisti
al propagator,
∆+

q
(t1, t2) = ∆+

q,in∆̇−
q
(t1)∆̇

−
q
(t2) + ∆̈+

q,in∆−
q
(t1)∆

−
q
(t2)

+ ∆̇+
q;in (∆̇−

q
(t1)∆

−
q
(t2) + ∆−

q
(t1)∆̇

−
q
(t2)
)

+ ∆+
q,mem(t1, t2) , (2.61)where

∆+
q,mem(t1, t2) =

∫ t1

0

dt′
∫ t2

0

dt′′∆−
q
(t1 − t′)Π+

q
(t′ − t′′)∆−

q
(t′′ − t2) . (2.62)This 
ontribution to the statisti
al propagator, whi
h is independent of the initial 
ondi-tions, is often referred to as memory integral. It 
an be expressed in the form

∆+
q,mem(t1, t2) = −

∫ ∞

−∞

dω

2π
e−iω(t1−t2)H∗

q
(t1, ω)Hq(t2, ω)Π+

q
(ω) , (2.63)where [9℄

Hq(t, ω) =

∫ t

0

dye−iωy∆−
q
(y) . (2.64)In (2.61) three of the �ve parameters of the initial density matrix (1.74) reappear asinitial 
onditions for the statisti
al propagator. The other two are re
overed as initial
onditions for the �eld expe
tation value, or one-point fun
tion. The �eld Φ(x) in (2.8)
an be identi�ed with the physi
al �eld expe
tation value [22℄ while R(x) is a response�eld. With the knowledge of the previous se
tion, we 
an write (2.19) as

Φq(t) = Φq,in∆̇−
q
(t) + Φ̇q,in∆−

q
(t) +

∫ t

0

dt′∆−q (t − t′)ξq(t′). (2.65)42



Performing the initial ensemble, sto
hasti
 noise and quantum me
hani
al averages as in(2.10) one obtains
〈φq(t)〉 = φ̇q,in∆−q (t) + φq,in∆̇−q (t). (2.66)The solution (2.65) agrees with the expression found in [32, 40℄. We have assumed that thesystem is in a symmetri
 phase and the minimum of the e�e
tive potential is at 〈φ〉 = 0.With Eqs. (2.61) and (2.66), all initial 
orrelations in the Gaussian initial density matrix(1.74) are re
overed.At this point, we should note that the formalism we presented be
omes more in-volved when 
onsidering non-Gaussian initial 
onditions other than thermal equilibrium.Then the Kadano�-Baym equation for the statisti
al propagator (1.70) 
ontains additionalterms from the initial 
orrelations [22℄. In many physi
ally relevant 
ases Gaussian initial
onditions are a good approximation to the physi
al reality. However, they do not 
overall potentially interesting states. An obvious example is thermal equilibrium. Thereforeit is not possible by any 
hoi
e of the parameters in (1.74) to produ
e a time translationinvariant solution. These problems are addressed in some detail in [41, 42℄.Let us now dis
uss the properties of the above solutions. ∆+

q,mem(t1, t2) for late timesdetermines the equilibrium 
on�guration for the statisti
al propagator. Only the �rsttwo lines of (2.61) depend on the physi
al initial 
onditions. Sin
e they are dire
tlyproportional to ∆− and its derivatives, they are damped exponentially by ImΠR as one
an see from (2.53). This be
omes expli
itly obvious in the quasiparti
le regime. InSe
. 3.1 we present plots of the 
orrelation fun
tions for a parti
ular model for the bath.Quasiparti
le RegimeFor small width Γq, ρ 
an be well approximated by a Breit-Wigner fun
tion
ρq(ω) ≃ Zq

2Ωq

sign(ω)Γq

(|ω| − Ωq)2 + 1
4
Γ2

q

, (2.67)around the quasiparti
le peaks. Here Γq is the quasi-parti
le width
Γq = −Zq

ImΠR
q
(Ωq)

Ωq

, (2.68)and
Zq =

(

1 − 1

2Ωq

∂ReΠR
q
(ω)

∂ω

∣

∣

∣

ω=Ωq

)−1

. (2.69)Away from the quasiparti
le peaks, ρq(ω) is not well-approximated by (2.67), but any ωintegration will be strongly dominated by the peak region. This allows to perform the43



integral in (2.43). If ±Ω̂q are the only solutions to (1.9), one obtains
∆−

q
(y) ≃ Zq

sin(Ωqy)

Ωq

e−
Γq|y|/2 ≈ sin(Ωqy)

Ωq

e−
Γq|y|/2, (2.70)where the last step assumes that ReΠR is smooth around ω = Ωq. For the statisti
alpropagator to leading order in Γq this yields

∆+(t; y) ≈
∆+

q,in
2

(cos(2Ωqt) + cos(Ωqy)) e−Γqt

− ∆̈+
q,in

2Ω2
q

(cos(2Ωqt) − cos(Ωqy)) e−Γqt

+
∆̇+

q;in
Ωq

sin(2Ωqt)e
−Γqt

+
coth(βΩq

2
)

2Ωq

cos(Ωqy)
(

e−
Γq|y|/2 − e−Γqt

)

. (2.71)To obtain the last result, we have used Eqs. (1.95) and (2.42) to write
Π+

q
(ω) = (1 + 2fB(ω)) ImΠR

q
(ω) (2.72)and then applied Cau
hy's theorem to perform the ω integration in (2.63). This in inprin
iple problemati
 be
ause the fa
tor 1 + 2fB from the KMS relation has in�nitelymany poles along the imaginary axis. However, generally the integration in Hq(t, ω), see(2.64), produ
es quasi-poles at ±Ωq. One 
an, as previously, argue that the ω-integralis always dominated by the regions near the poles and therefore repla
e ω by Ωq beforeusing Cau
hy's theorem. This approximation is questionable for t ≪ 1/Γ but reasonablefor all later times, when H∗

q
(t1, ω)Hq(t2, ω) develops narrow peaks around ±Ωq and �nallyapproa
hes a form that is proportional to ρq(ω), an approximate δ-fun
tion, see Se
. 2.2.33.We have also negle
ted Γq in the arguments of the distribution fun
tions. Thus, it 
anbe argued that the 
ontributions from the poles on the imaginary axis are small ex
eptfor early times4. This is 
on�rmed by numeri
al 
omparison for the 
ases relevant for thiswork.Note that the solution (2.71) for ∆+ does not be
ome time translation invariant inthe limit of vanishing intera
tion, Γq → 0 and Ωq → ωq, unless one 
hooses ∆̇+

q;in = 0and ∆+
q,in = Ω2

q
∆̈+

q,in. Instead, it os
illates with twi
e the plasma frequen
y Ωq → ωq.3Note also that the 
ommon pra
ti
e to use a narrow Breit-Wigner fun
tion like (2.67) as an approx-imate δ-fun
tion is only justi�ed if the fun
tion that it is multiplied with under the integral does not
hange rapidly (e.g. os
illates) between Ωq−Γq < ω < Ωq + Γq. This does not pose a problem here, but
are has to be taken when inserting ∆± into loop integrals.4See 
orresponding dis
ussion for fermions in B.4.44



In this limit ∆± 
an be understood as that of a free nonequilibrium propagators. They
orrespond the propagators in an ensemble of states that is 
hara
terised by some Gaussiandensity matrix in a free quantum �eld theory. However, the os
illations with t are not a
onsisten
y problem sin
e ∆+ itself is not an observable. As we will see in Se
. 2.3.1, e.g.the energy density ǫq 
omputed from (2.71) is time translation invariant in the free limit.Eqs. (2.70) and (2.71) show expli
itly that the system approa
hes equilibrium indepen-dent of the initial 
onditions after a 
hara
teristi
 time τ = 1/Γ whi
h is sometimes referredto as the lifetime of a quasiparti
le. This 
an be seen by taking the limit t → ∞. ThenEqs. (2.70) and (2.71) ful�l the KMS relation (1.95). Here we prefer the term relaxationtime for τ instead of lifetime. It is more pre
ise be
ause the abundan
e in the plasmais non-zero even in equilibrium. Furthermore, if one starts with an underpopulation ofmodes, equilibration a
tually means an overall produ
tion of quasiparti
les. Examples arethe thermal produ
tion of dark matter parti
les or that of the heavy neutrinos in thermalleptogenesis. Finally, the term lifetime 
an also be misleading be
ause it suggests thatone starts with a given number of parti
les that de
ay one by one. In fa
t, in a relativisti
plasma a 
ontinuous 
reation and annihilation takes pla
e with an overweight of eitherthat leads to equilibration and τ should rather be seen as a relaxation time for the systemas a whole.If (1.9) has more solutions than ±Ω̂q and the narrow width 
ondition (1.12) is ful�llednear all of them, all of those behave like quasiparti
les even though they might have a 
ol-le
tive origin. The integration 
an still be performed and the generalisation of Eqs. (2.70)and (2.71) is straightforward. ∆∓ of 
ourse impli
itly depend on T via ΠR.2.2.2 Solutions for FermionsSpe
tral Fun
tion The Kadano�-Baym equations (1.88) and (1.89) for fermions 
anbe solved in the same way as for bosons. With the assumptions made in the beginning ofthis 
hapter, the equation for the spe
tral propagator reads
(iγ0∂y − 6qqq − m)S−q (y) =

∫ y

0

dy′Σ−q (y − y′)S−q (y′), (2.73)where 6qqq = qiγ
i. Again, we perform a Lapla
e transform

S̃q(s) =

∫ ∞

0

dye−sySq(y), (2.74)and 
orrespondingly for the self energy, to obtain
S̃−

q
(s) =

(

−iγ0s + 6qqq + m + Σ̃−q (s)
)−1

iγ0Sq(0). (2.75)The equal-time anti
ommutation relations for fermions imply
S−q (0) = iγ0. (2.76)45



As for bosons, the initial 
onditions for the spe
tral propagator do not depend on thephysi
al initial 
onditions. The ba
k-transformation goes via the Bromwi
h 
ontour,using the same deformation as in the s
alar 
ase.
S−q (y) = i

∫ ∞

−∞

dω

2π
e−iωyρq(ω) (2.77)with

ρq(ω) =

(

i

6q − m − ΣR
q
(ω) + iǫγ0

− i

6q − m − ΣA
q
(ω) − iǫγ0

) (2.78)The integrand shall now be inverted. Σ 
arries two spinor indi
es and 
an be expandedin the basis
Σ = Σ(S)1 + iγ5Σ(P ) + γµΣ

µ
(V ) + γµγ5Σ

µ
(A) +

1

2
σµνΣ

µν
(T ). (2.79)In the simplest 
ase, when there is no C and P violation, the pseudos
alar and axialve
tor part vanish. We assume that there is only one �avour or Σ is diagonal in �avourspa
e. These simpli�
ations have to be dropped when applying the result to leptogenesis,where CP violation and �avour mixing are essential. Finally we drop the tensor pie
e

Σ(T ) be
ause it will not appear in the examples we dis
uss in the following 
hapter. Thenthe spe
tral fun
tion takes the shape
ρq(ω) = −2Im

(

1

6Q −M

)

= −2Im

( 6Q + M
Q2 −M2

) (2.80)with the ve
tor Q = q + iǫu − ΣR
(V ) and the s
alar M = m + ΣR

(S). Here u is the four-velo
ity of the thermal bath. In the system of rest of the bath u = (1, 0, 0, 0). The Lorentz
omponents of Σ 
an 
onveniently be expressed by the three s
alar fun
tions aq(ω), bq(ω)and cq(ω),
ΣR

(V ) = aq(ω) 6q + bq(ω) 6u, ΣR
(S) = cq(ω) . (2.81)The fun
tions aq(ω), bq(ω) and cq(ω) have to be 
omputed from Feynman diagrams
ontributing to ImΣR

q
(ω). In the limit of vanishing intera
tion (2.80) simpli�es to

ρfree
q

(ω) = 2π( 6q + m)sign(ω)δ(q2 − m2) (2.82)Statisti
al Propagator The equation for the statisti
al propagator 
an be written as
(iγ0∂t1 − 6q6q6q − m)S+

q
(t1, t2) −

∫ t1

0

dt′Σ−
q
(t1 − t′)S+

q
(t′, t2) = ζq(t1, t2) (2.83)with

ζq(t1, t2) = −
∫ t2

0

dt′Σ+
q
(t1 − t′)S−

q
(t′ − t2). (2.84)46



We follow the same strategy as in the s
alar 
ase. The full solution 
an be written as thesolution Ŝ+
q
(t1, t2) to the homogeneous equation
(iγ0∂t1 − 6q6q6q − m)Ŝ+

q
(t1, t2) −

∫ t1

0

dt′Σ−
q
(t1 − t′)Ŝ+

q
(t′, t2) = 0 (2.85)and a memory integral S+

q,mem(t1, t2). Following the same steps as in the s
alar 
ase andusing the symmetry relations (1.86) and (1.87), one 
an �nd
Ŝ+

q
(t1, t2) = −S−q (t1)γ

0S+q (0, 0)γ0S−q (−t2) (2.86)and
S+

q,mem(t1, t2) = −
∫ t1

0

dt′S−
q

(t1 − t′)ζ(t′, t2), (2.87)hen
e
S+

q
(t1, t2) = −S−q (t1)γ

0S+q (0, 0)γ0S−q (−t2)+

∫ t1

0

dt′S−
q

(t1−t′)

∫ t2

0

dt′′Σ+
q
(t′−t′′)S−

q
(t′′−t2).(2.88)The solution for the nonequilibrium statisti
al propagator is, to the best of our knowledge,original and have not been known in the previous literature.Weak Coupling We again 
onsider the quasiparti
le regime. This time we assumefor simpli
ity that Ψ is su�
iently heavy and weakly 
oupled that one 
an negle
t thethermal mass 
orre
tion with respe
t to the intrinsi
 mass5. This is e.g. ful�lled for theheavy neutrinos in leptogenesis or a su�
iently weakly 
oupled dark matter 
andidate.The thermal width has to be kept be
ause there is no large width at zero temperature
ompared to whi
h it 
ould be negle
ted. Finally, let us assume that the self energy is apure Lorentz ve
tor, Σ(S) = 0 and Σ = Σµ

(V )γµ. We 
an then de
ompose
Σ+

q
(ω) = − i

2
(1 − 2fF (ω))Σ−

q
(ω) = (1 − 2fF (ω)) ImΣR

q
(ω)

= (1 − 2fF (ω)) Im (aq(ω) 6q + bq(ω) 6u) . (2.89)Then the spe
tral propagator simpli�es to
S−(y) = e−

Γq|y|/2

(

iγ0 cos(ωqy) − γγγq− m

ωq sin(ωqy)

)

, (2.90)5Here we use the term "intrinsi
 mass" to refer to the mass a parti
le has in va
uum, namely the poleof the two-point fun
tion after renormalisation. "E�e
tive mass" or "thermal mass" then refers to the
hange of lo
ation of this pole due to the intera
tion with the medium.47



from whi
h also Ŝ+ 
an be found by insertion into (2.88). Here we have de�ned
Γq = −2Im

aq(ω) + ωbq(ω)

ω

∣

∣

∣

ω=ωq

. (2.91)The memory integral 
an be written in the form
∫

dω

2π

(
∫ t1

0

dy1S
−(y1)e

iωy1

)

Σ+(ω)

(
∫ t2

0

dy2S
−(−y2)e

−iωy2

)

e−iω(t1−t2). (2.92)We again aim to �nd a simple expression in terms of the parameters m and Γq. Afterinserting (2.90) and (2.89) into (2.92), the narrow width limit allows to perform the variousintegrations. As for the Bose-Einstein distribution in the s
alar 
ase, 
are has to be takenbe
ause 1−2fF (ω) = tanh
(

βω
2

) has an in�nite number of poles along the imaginary axis.Fortunately, those do not 
ontribute signi�
antly ex
ept for early times, see AppendixB.4. To leading order in Γq the result is
S+

q,mem(t1, t2) ≈
tanh (βωq/2)

2ωq (

e−
Γ/2|t1−t2| − e−

Γ/2(t1+t2)
)

×
(

(m − γγγq) cos(ωq(t1 − t2)) − iγ0ωq sin(ωq(t1 − t2))
) (2.93)or

S+
q,mem(y; t) ≈ 1

2ωq

(1 + 2fF (ωq))

×
(

e−
Γ/2|y| − e−Γt)

) (

(m − γγγq) cos(ωqy) − iγ0ωq sin(ωqy)
)

. (2.94)Again, one 
an expli
itly see the approa
h to thermal equilibrium by verifying that theFourier transforms of the propagators (2.90) and (2.94) ful�l the KMS relation (1.105) inthe limit t → ∞.2.2.3 Approa
h to Thermal EquilibriumIn the previous 
hapter we showed expli
itly that the system approa
hes thermal equi-librium on times
ales 1/Γ in the quasiparti
le regime. We now want to derive this resultwithout use of the narrow width approximation. For simpli
ity, we will demonstrate theequilibration for s
alars, the generalisation to fermions is straightforward. Equilibrium
an be 
hara
terised by the 
ondition that the integral
∆+

q
(t, ω) =

∫ 2t

−2t

dyeiωy∆+
q

(

t +
y

2
, t − y

2

)

, (2.95)whi
h be
omes a Fourier transform for t → ∞, satis�es the KMS 
ondition asymptoti
ally,
∆+

q
(∞, ω) = − i

2
coth

(

βω

2

)

∆−
q
(ω) .. (2.96)48



Sin
e ∆−
q
(t) and ∆̇−

q
(t) fall o� exponentially, at times t ≫ 1/Γ only the memory integralremains, and nothing else matters. One then obtains

∆+
q
(∞, ω) = ∆+

q,mem(∞, ω) = −|Hq(∞, ω)|2Π+
q
(ω) . (2.97)The quantity Hq(∞, ω) at late times approa
hes the Lapla
e transform of the spe
tralfun
tion,

Hq(∞, ω) =

∫ ∞

0

dτe−i(ω−iǫ)τ∆−
q
(τ)

= ∆̃−
q
(iω + ǫ)

=
1

s2 + ω2
q + Π̃q(s)

∣

∣

∣

s=iω+ǫ

= − 1

ω2 − ω2
q −ReΠR

q
(ω) − iImΠR

q
(ω)

, (2.98)leading to
|Hq(∞, ω)|2 =

1

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω))2

= − ρq(ω)

2ImΠR
q
(ω)

. (2.99)Insertion of this expression into (2.97) and use of the KMS 
ondition for the self-energyas well as (2.42),
Π−

q
(ω) = 2iImΠR

q
(ω) ,yields (
f. (2.43),(2.44)),

∆+
q
(∞, ω) = − coth

(

βω

2

)

ImΠR
q
(ω)

(ω2 − ω2
q
− ReΠR

q
(ω))2 + (ImΠR

q
(ω))2

= − i

2
coth

(

βω

2

)

∆−
q
(ω) . (2.100)Hen
e, we 
an 
on�rm that the system rea
hes mi
ros
opi
al equilibrium, 
hara
terisedby the KMS 
ondition (1.95), at late times.In more 
omplex systems, in parti
ular when many degrees of freedom are out ofequilibrium, thermalisation 
an be a highly nontrivial aspe
t. In general, there is morethan one times
ale involved. Subsystems 
an rea
h equilibrium before thermalising withea
h other. In other 
ases, ma
ros
opi
 
hara
teristi
s of the system 
an rea
h theirequilibrium values well before mi
rostate does, see e.g. [43, 44℄.49



2.3 Plasma PropertiesIn the previous se
tions we have studied thermodynami
al systems in terms of 
orrelationfun
tions. We now turn to physi
al observables that 
hara
terise the plasma properties.In some 
ases, the 
onne
tion between 
orrelation fun
tions and observables is ratherdire
t. For instan
e, the spe
tral fun
tion ρ of resonan
es in a medium 
an be measuredfor mesons propagating in nu
lear matter, see Fig. 2.4. Su
h mesons 
an be generatedin target nu
lei by inje
tion of high energeti
 photons. ω- and φ-mesons are short livedenough that they do not leave the nu
leus before de
aying. If the de
ay happens intotwo leptons, those 
an be dete
ted and reveal information about the resonan
e's energyand momentum. The nu
leus provides a medium in a 
lose-to-equilibrium state withlow temperature and high baryon 
hemi
al potential. To explore higher temperatures,in parti
ular those near the QCD phase transitions, one 
an study similar signals inrelativisti
 heavy ion 
ollisions. In
onveniently, the 
ollision initially leaves the systemin a far-from-equilibrium state. It then undergoes phases of thermalisation and, at highenergies, hadronisation. Measured data generally involves some integration over time,making it di�
ult to extra
t properties for a parti
ular temperature. Another oftenstudied observable that 
an be related to the spe
tral fun
tion is the shear vis
osity
η, whi
h 
an be 
omputed from ρ by η = π ∂ρ

∂ω

∣

∣

ω=0
. Here we will fo
us on the energymomentum tensor, whi
h 
an be 
omputed from the statisti
al propagator.Unfortunately, none of the 
urrent laboratory experiments allows to study the 
ondi-tions in the early universe dire
tly, not even for those phenomena that happen at energieswhi
h are a

essible to parti
le a

elerators. The reason is that, due to the la
k of anti-nu
lei, laboratory experiments always involve a high baryon 
hemi
al potential while inthe early universe the 
hemi
al potential was extremely tiny. It is therefore impossible todire
tly obtain information about the primordial plasma. However, the reli
 densities ofvarious parti
les do provide us with some data. In 
ase of the big bang nu
leosynthesis,there is a good agreement between theoreti
al predi
tions based on Boltzmann equationsand observational data [4℄.In the following we study how the Boltzmann equations emerge from the Kadano�-Baym equations when the plasma properties are that of a dilute gas and whi
h modi�
a-tions are ne
essary when going beyond that regime. Thereby we will fo
us on kinemati
aspe
ts as dis
ussed in Se
. 1.2.1. These are equal for bosons and fermions. For simpli
itywe will study them for s
alars, with straightforward generalisation to fermions. We baseour analysis on energy densities to avoid the problems related to the de�nition of a par-ti
le number in an intera
ting quantum �eld theory. Sin
e we negle
t ba
krea
tion, theenergy-momentum tensor Tµν of the whole system, as a Noether 
urrent resulting fromtime and spa
e translations, is not 
onserved in our setup. We fo
us on the quantity

T φ
µν = ∂µφ∂νφ − ηµνL, (2.101)the 
ontribution of φ to Tµν . This allows to de�ne the 
ontribution of a mode with50



momentum q to energy density and pressure,
ǫφ
q

= 〈T φ
00 − gφO[X ]〉|q =

1

2
〈φ̇2 + (∇φ)2 + m2φ2〉|q , (2.102)

pφ
q

= 〈Tii − gφO[X ]〉|q = 〈1
3
(∇φ)2 +

1

2
(φ̇2 − (∇φ)2 − m2φ2)〉|q . (2.103)In terms of 
orrelation fun
tions, this yields

ǫφ
q
(t) =

1

2

(

∂t1∂t2 + ω2
q

) (

∆+
q
(t1, t2) + 〈φq(t1)〉〈φq(t2)〉

)
∣

∣

t1=t2=t
(2.104)and

pφ
q
(t) =

(

1

3
q2 +

1

2

(

∂t1∂t2 − ω2q)) (∆+
q
(t1, t2) + 〈φq(t1)〉〈φq(t2)〉

)
∣

∣

t1=t2=t
(2.105)for energy and momentum.2.3.1 Comparison to Boltzmann EquationsIn Se
. 1.2 we dis
ussed the limitations of Boltzmann equations. We 
on
luded that they
an give a good physi
al des
ription of weakly 
oupled systems when the density is lowand 
oheren
e e�e
ts are not important. Therefore the solutions of Boltzmann equationsshould emerge as a low density limit of our solutions for the Kadano�-Baym equations.Sin
e the former are formulated in terms of parti
le numbers, it is intuitive to look for a
orresponden
e in the regimes where this 
on
ept is meaningful, namely the parti
le andquasiparti
le regime. We �rst 
on�rm on general grounds that in this regime, the timeevolution of a small deviation from equilibrium is governed by a Boltzmann equation [49℄.The 
omputation also shows the breakdown of this des
ription beyond the quasiparti
leregime. We then move on to a detailed 
omparison based on our expli
it solutions forthe spe
tral and statisti
al propagators before dis
ussing quantum 
orre
ted Boltzmannequations in Se
. 2.3.2.Breakdown beyond the Narrow Width LimitWe start from the Kadano�-Baym equation for the statisti
al propagator (2.4),

(∂2
t1 +ω2

q
)∆+

q
(t1, t2)+

∫ t1

0

dt′Π−
q
(t1−t′)∆+

q
(t′, t2) =

∫ t2

0

dt′Π+
q
(t1−t′)∆−

q
(t′−t2) . (2.106)At times t ≫ τ = 1/Γ, the system is already 
lose to equilibrium. It is known that then thedeviation from thermal equilibrium ful�ls a Boltzmann type equation [49℄. We reprodu
ethis result from �rst prin
iples, without making an ansatz for the shape of ∆+. At late51



times, the dependen
e on the initial values at ti = 0 is negligible and one 
an extend thelower integration limit to −∞,
(∂2

t1 + ω2
q
)∆+

q
(t1, t2) +

∫ ∞

−∞

dt′
(

ΠR
q
(t1 − t′)∆+

q
(t′, t2) + iΠ+

q
(t1 − t′)∆A

q
(t′ − t2)

)

= 0 .(2.107)We 
hange to relative and 
entre of mass time variables,
t =

t1 + t2
2

, y = t1 − t2 , ∆+
q

(t; y) ≡ ∆+
q
(t1, t2) , (2.108)and perform a derivative expansion,

∆+
q

(

t′ + t2
2

; t′ − t2

)

= ∆+
q

(t; t′ − t2) +
t′ − t1

2
∂t∆

+
q

(t; t′ − t2) + . . . . (2.109)The expansion is justi�ed be
ause for t ≫ τ the deviation from equilibrium is small and
hanges only slowly. Then one �nds for the Fourier transforms with respe
t to the relativetime,
(

1

4
∂2

t − iω∂t − ω2 + ω2
q

)

∆+
q
(t; ω)

= −ΠR
q
(ω)∆+

q
(t; ω) − iΠ+

q
(ω)∆A

q
(t; ω) − i

2

∂ΠR
q
(ω)

∂ω

∂∆+
q
(t; ω)

∂t
. (2.110)This is a 
omplex equation. Its real and imaginary part have to be ful�lled separately.With the relations given in Appendix B.3, one 
an derive the two real equations,

(

1

4
∂2

t − ω2 + ω2
q

)

∆+
q
(t, ω) = −ReΠR

q
(ω)∆+

q
(t, ω) + Π+

q
(ω)Im∆A

q
(t, ω)

+
1

2

∂ImΠR
q
(ω)

∂ω

∂∆+
q
(t, ω)

∂t
+ . . . , (2.111)

ω
∂

∂t
∆+

q
(t, ω) = ImΠR

q
(ω)∆+

q
(t, ω) + Π+

q
(ω)Re∆A

q
(t, ω)

+
1

2

∂ReΠR
q
(ω)

∂ω

∂∆+
q
(t, ω)

∂t
+ . . . , (2.112)from the real and imaginary part of (2.110). One 
an always write ∆+

q
(t, ω) as the sumof its equilibrium value ∆+

q
(ω) and a deviation δ∆+

q
(t, ω),

∆+
q
(t, ω) = ∆+

q
(ω) + δ∆+

q
(t, ω) . (2.113)Equation (2.112) implies

ImΠR
q
(ω)∆+

q
(ω) + Π+

q
(ω)Re∆A

q
(ω) = 0 , (2.114)52



whi
h is known to be satis�ed be
ause the relations of (B.99), (B.92) and the KMS
onditions (1.95) and (1.96).The �rst equation, (2.111), poses a 
ondition on the equilibrium solution,
(

ω2 − ω2
q
− ReΠR

q
(ω)
)

∆+
q
(ω) = −Π+

q
(ω)Im∆A

q
(ω) . (2.115)For vanishing width, the 
ondition is ful�lled when

ω = Ωq =
√

ω2
q

+ ReΠR
q
(Ωq) , (2.116)where it is important to realise that the right hand side vanishes due to Eqs. (1.96) and(2.42) and the de�nition of Γq. The �nite width leads to a 
orre
tion,

ω = Ωq + δΩq . (2.117)To leading order in δΩq, one obtains for (2.115),
2ΩqδΩq∆

+
q
(Ωq) + Π+(Ωq)Im∆A

q
(Ωq) = 0 , (2.118)whi
h implies

δΩq = −Γq

2

Im∆A
q
(Ωq)

Re∆A
q
(Ωq)

. (2.119)With (B.92), we 
an use the free spe
tral fun
tion,
∆−

q
(ω) = 2πisign(ω)δ(ω2 − Ω2

q
) , (2.120)to �nd an expression for Im∆A

q
(Ωq) to leading order in Γq,

Im∆A(Ωq) = − 1

2π
P
∫

ρ(ω′)

ω′ − Ωq

dω′ =
1

4Ω2
q

. (2.121)With Eqs. (2.119), (B.91), (2.44) and (2.68) we �nally obtain
δΩq =

1

8

Γ2
q

Ωq

. (2.122)This shows that for Γq ≪ Ωq, the leading term in the derivative expansion enfor
es
ω = Ωq. This is self-
onsistent be
ause we used the free spe
tral fun
tion in the derivation.If �nite width e�e
ts are not negligible, however, o�-shell e�e
ts be
ome important andthe derivative expansion be
omes unreliable.An equation of motion for the departure from equilibrium of the statisti
al propagator
an be obtained by inserting ω = Ωq into (2.112),

((

1 − 1

2Ωq

∂

∂ω
ReΠR

q
(ω)
∣

∣

Ωq

)

∂

∂t
− 1

Ωq

ImΠR
q
(Ωq)

)

δ∆+
q
(t; Ωq) = 0 . (2.123)53



We 
an now 
ompute the energy density
ǫφ
q
(t) =

1

2

(

∂t1∂t2 + ω2
q

)

∆+
q
(t1, t2)

∣

∣

t1=t2=t

=
1

2ωq

∫ ∞

−∞

dω

(

1

4
∂2

t + ω2 + ω2
q

)

∆+
q
(t; ω) , (2.124)whi
h approa
hes the equilibrium value

ǫφ
q
(∞) =

∫ ∞

−∞

ω2 + ω2
q

2ω

(

1

2
+ fB(Ωq)

)

ρq(ω), (2.125)
f. (1.106). This asymptoti
 equilibrium state is not that of a gas of free quasiparti
les,as will be dis
ussed in greater detail in the following. From Eqs. (2.123), (2.68) and (2.69)one 
an see that the deviation from equilibrium is des
ribed by a Boltzmann equation forquasiparti
les,
(∂t + Γq) ǫφ

q
(t) = 0 . (2.126)The above derivation shows that ∂tδ∆

+
q
(t; Ωq) ∼ Γq to leading order, whi
h impliesthe Boltzmann equation (2.126). However, this result was found by inserting ω = Ωqinto (2.112) to obtain (2.123). Considering (2.122), or a simple look at (2.44), showthat the exa
t position of the pole is not at Ωq. When Γq is not small, Ω̂q shifts awayfrom the real ω-axis and the quasiparti
le peaks be
ome less sharp. The narrow widthapproximation, namely repla
ing ΠR

q
(ω) → ΠR

q
(Ωq) in (2.44) when integrating over ω,be
omes in
reasingly bad be
ause ρq(ω) deviates signi�
antly from zero away from ±Ωq.Physi
ally this means that o�-shell 
ontributions be
ome in
reasingly important - thequasiparti
le pi
ture breaks down.
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Quasiparti
le RegimeFrom Eqs. (2.71) and (2.104) one �nds to leading order in Γq,
ǫφ
q
(t) ≃ φ̇2

q,in
2Ω2

q

(

ω2
q
sin2(Ωqt) + Ω2

q
cos2(Ωqt)

)

e−Γqt

+
φ̇q,inφq,in

Ωq

sin(Ωqt) cos(Ωqt)
(

ω2
q
− Ω2

q

)

e−Γqt

+
φ2

q,in
2

(

ω2
q
cos2(Ωqt) + Ω2

q
sin2(Ωqt)

)

e−Γqt

+
∆+

q,in
2

(

ω2
q − Ω2

q

2
cos(2Ωqt) +

ω2
q + Ω2

q

2

)

e−Γqt

−
∆̈+

q,in
2Ω2

q

(

ω2
q − Ω2

q

2
cos(2Ωqt) −

ω2
q + Ω2

q

2

)

e−Γqt

+
∆̇+

q;in
Ωq

ω2
q − Ω2

q

2
sin(2Ωqt)e

−Γqt

+

(

1

2
+ fB(Ωq)

)

ω2
q + Ω2

q

2Ωq

(

1 − e−Γqt
)

. (2.127)The �rst three lines in (2.127) 
orrespond to the energy that is stored in the �eld value 〈φ〉while the remaining four lines represent the energy of its �u
tuations, to be interpretedas (quasi)parti
les.In the semi
lassi
al des
ription in terms of Boltzmann equations this system 
orre-sponds to a dilute gas of parti
les that move in a ba
kground �eld. To leading order g2there is no 
oupling of the gas to the �eld in our model We 
an therefore treat themindependently and 
on
entrate on the parti
le 
ontribution to the energy density. Let us
onsider the Boltzmann equation for parti
les of momentum q and energy Eq, where Eqis some fun
tion of q that we expe
t to identify with ωq at low density. The 
ompetitionbetween a gain and a loss term determines the 
hange of the parti
le number density
∂tnq(t) = (1 + nq(t))γ

<
q
− nq(t)γ>

q
, (2.128)When the medium is in equilibrium, produ
tion and de
ay rates satisfy the KMS relationas the self-energy of the �eld φ,

γ>
q

= e−βEqγ<
q
≡ fB(Eq)γq . (2.129)

γq is to be 
omputed from s
attering 
ross se
tions or, via the opti
al theorem, theimaginary part of the self energy,
γq = −ImΠR

q
(Eq)

Eq

.. (2.130)55



Here Eq is the energy of a parti
le whi
h might be identi�ed with ωq or Ωq, the latter
orresponding to the use of thermal masses in Boltzmann equations. Using these relations,the Boltzmann equation (2.128) 
an be written in the form
∂tnq(t) = −γq(nq(t) − fB(Eq)) , (2.131)with the obvious solution

nq(t) = fB(Eq) + (nq(0) − fB(Eq)) e−γqt . (2.132)The energy density of the gas is obtained by multiplying (2.132) with Eq

ǫφ
q
(t) = EqfB(Eq) + Eq (nq(0) − fB(Eq)) e−γqt (2.133)and has to be be 
ompared to (2.127) for φ̇q,in = φq,in = 0. Obviously neither identifying

Eq with ωq nor with Ωq generally leads to equivalen
e. In parti
ular, (2.127) is the solutionto a 2nd order di�erential equation and shows os
illations with the plasma frequen
y Ωqwhi
h even remain present in the limit Ωq → ωq.However, a 
onsistent 
omparison between a quantum me
hani
al and a 
lassi
al ob-servable 
an only be done if the quantum system is set up with a initial state has a
ounterpart in the 
lassi
al theory, namely one of de�nite initial (quasi)parti
le number.The 
onstru
tion of su
h a state is not trivial. Even for T = 0 the de�nition of a parti
lenumber is ambiguous in an intera
ting quantum �eld theory. One 
an de�ne a usefulquantity by Nq(t) = ǫq(t)/ωq. For vanishing 
oupling this 
oin
ides with the expe
tationvalue of the number operator 〈a†
q
aq〉 in a free theory [9℄. With the initial 
onditions

φq,in = 0, φ̇q,in = 0, ∆+
q,in = 1

ωq

(

1
2

+ Nq

), ∆̇+
q,in = 0, ∆̈+

q,in = ωq

(

1
2

+ Nq

)one 
an indeed 
onstru
t a state with a parti
le number Nq in the sense of that de�nition,namely Nq(0) = Nq. Unfortunately this 
hoi
e of initial 
onditions 
annot lead to aBoltzmann type solution sin
e a 
osine term remains present. Being in the quasiparti
leregime, we 
hose the initial 
onditions
φq,in = 0 φ̇q,in = 0 ∆+

q,in = 1
Ωq

(

1
2 + Nq

)

∆̇+
q,in = 0 ∆̈+

q,in = Ωq

(

1
2 + Nq

) (2.134)whi
h seem to be the natural extrapolation to a state with well de�ned quasiparti
le num-ber Nq. This is a 
onvenient 
hoi
e despite our te
hni
al assumption that the intera
tionis swit
hed on on
e the system starts evolving 6. Then (2.127) redu
es to
ǫφ
q
(t) =

(

(Nq − fB(Ωq)) e−Γqt +

(

1

2
+ fB(Ωq)

))

ω2
q

+ Ω2
q

2Ωq

(2.135)6A stri
t 
omparison between (2.127) and (2.133) would involve a renormalisation of (2.127). A
onsistent renormalisation of states with Gaussian initial 
onditions involves some te
hni
al di�
ulties,see [42℄ . 56



The term in the bra
kets looks like the solution (2.132) to a Boltzmann equation forquasiparti
les with Eq = Ωq, γq = Γq and nq = Nq. However, the energy density is not
omputed by multiplying this term by the quasiparti
le energy Ωq as suggested by (2.133).When attempting to de�ne a parti
le number, neither Nq nor its intuitive generalisation
ǫq/Ωq take the value Nq at t = 0. One 
ould be tempted to de�ne a number operator forquasiparti
les by ǫq

2Ωq

ω2
q
+Ω2

q

, but it is questionable how useful this quantity is, so we preferto keep the dis
ussion on a level of energy densities and simply refer to (2.134) as theinitial 
ondition that lead to a Boltzmann type solution. (2.135) shows that the totalenergy density of a φ mode is not that of a gas of quasiparti
les. It 
an be rewritten as
ǫφ
q
(t) = ΩqfB(Ωq) + Ωq (Nq − fB(Ωq)) e−Γqt

+
ω2

q
− Ω2

q

2Ωq

fB(Ωq) +
ω2

q
− Ω2

q

2Ωq

(Nq − fB(Ωq)) e−Γqt +
1

2

ω2
q

+ Ω2
q

2Ωq

(2.136)The �rst line in (2.136) is, by 
omparison with (2.133), 
learly the solution to a Boltzmannequation for quasiparti
les. The se
ond line 
an be interpreted as a va
uum term. In theparti
le regime, Ωq → ωq, it 
onverges to 1
2
ωq, the quantum me
hani
al va
uum energyin the mode q. For Ωq 6= ωq, the term depends on time and temperature and 
annotbe ignored as usually done at zero temperature. Su
h terms have previously been foundfor the 
ase of equilibrium in [5℄. (2.136) is the nonequilibrium generalisation of theresult given there. The additional terms imply that the equilibrium 
on�guration of anintera
ting quantum �eld theory is not simply a Bose-Einstein distribution, neither ofparti
les nor of quasiparti
les. Instead, one �nds that the energy momentum tensor inthermal equilibrium 
an be de
omposed in the following way,

〈T φ
µν − gφO[X ]〉|q = uµuν

(

ǫQP
q

+ pQP
q

)

− ηµνp
QP
q

+ ηµνκ
VAC
q

. (2.137)Here
ǫQP
q

= Ωq

(

1

2
+ nB(Ωq)

)

, (2.138)
pQP
q

=
1

3

q2

Ωq

(

1

2
+ nB(Ωq)

)

, (2.139)
κVAC

q
=

ω2
q
− Ω2

q

2Ωq

(

1

2
+ nB(Ωq)

)

. (2.140)
ǫQP
q

and pQP
q

agree with the 
orresponding expressions for a free gas, with the energy ωq ofa free parti
le repla
ed by the quasi-parti
le energy Ωq. This suggests to interpret themas energy and pressure of a quasiparti
le gas. The `va
uum 
ontribution' κVAC
q

vanishesfor Ωq = ωq, namely at vanishing temperature. For large thermal e�e
ts, i.e. Ωq ≫ ωq or
Ωq ≪ ωq, the equation of state deviates signi�
antly from that of a free gas. However, it57



should be noted that pra
ti
ally also ǫQP
q

and pQP
q


ontain a "ground state 
ontribution".Consider
ǫQP
q

=
Ωq

2
+ ΩqnB(Ωq). (2.141)The se
ond term looks like the 
lassi
al energy of a free gas of quasiparti
les with energy

Ωq. The �rst term at zero temperature be
omes ωq

2
, the va
uum energy for the mode

q, and 
an be subtra
ted as an irrelevant 
onstant. At �nite temperature, Ωq

2
has atemperature dependent pie
e that is not removed by the 
ondition that the energy of theva
uum shall be zero. This is pre
isely the reason why we wrote this term into the se
ondline in (2.136). It should also be kept in mind that in the de�nition of ǫφ

q
we left out the

〈gφO[X ]〉 
ontribution be
ause it 
annot uniquely be assigned to any of the �elds. Ananalysis of the energy density of the whole system requires a proper treatment of this termand ba
krea
tion. ǫφ
q
does not behave like the energy a quasiparti
le gas. One remarkablefeature of (2.140) is that for Ω2

q
< ω2

q
, φ 
an a
tually give a negative 
ontribution to thetotal pressure!In this example, the emergen
e of 
lassi
al Boltzmann equations is expe
ted be
ausethe dissipation is driven by tree level pro
esses. If the leading order 
ontribution to therelevant pro
esses o

urs at quantum level, it is not obvious that they 
an be obtained asa 
onsistent limit of the Kadano�-Baym equations [47℄.2.3.2 Quantum Boltzmann EquationsEq. (2.135) is, as (2.70) and (2.71), Markovian in the sense that the state of the systemat any time t allows to determine its state at time t + δt. There is no memory integralto be performed and the gain and loss terms en
oded in Γq are the same at any time,independent of the history of the system and the initial 
onditions. Furthermore, it showsno os
illations. To understand how this simple behaviour arises from the non-Markovianse
ond order di�erential equations (1.59) and (1.60), we revise the assumptions underwhi
h it has been obtained. Afterwards, we dis
uss approa
hes that allow to lift someof these restri
tions within the quasiparti
le regime and formulate quantum 
orre
tedBoltzmann equations, often referred to as quantum Boltzmann equations7.First, the temperature has been kept 
onstant. This is of 
ourse not stri
tly 
onsistent.When the φ modes ex
hange energy with the bath, it is brought out of equilibrium. Evenif the bath is strongly 
oupled and thermalises so fast that it 
an assumed to be inequilibrium and 
hara
terised by a single temperature T , this temperature 
hanges withtime. For many 
osmologi
al appli
ations our assumption of negligible ba
krea
tion 
anbe a good approximation sin
e the bath has many more degrees of freedom than φ, but7There exists vast literature on quantum 
orre
ted kineti
 equations. The assumptions and approxi-mations made by di�erent authors are generally similar, but not exa
tly identi
al. Here we fo
us on theapproa
h used in [50℄ to formulate quantum Boltzmann equations for leptogenesis and refer the interestedreader to [22, 29, 45℄ and referen
es therein. 58



the temperature will also 
hange due to Hubble expansion. If T 
hanges with time, also
Γq and the e�e
tive masses in Ωq depend on time. Then the �rst Kadano�-Baym equation(2.3) 
an in general not be solved by Lapla
e transformation as done to obtain (2.44). Ifthe 
hange of T with time is mu
h slower than any other times
ale in the problem onemight argue that (2.44) 
an still be an approximate solution to (2.3), with ΠR dependingon time via T (t). Even then non-Markovian behaviour will enter through the memoryintegral in (2.61).Se
ond, we restri
ted the dis
ussion to systems with an initial state that 
orrespondsto a well-de�ned parti
le number. Systems that e.g. are prepared as a superposition ofstates with di�erent parti
le numbers 
annot be well-des
ribed by Boltzmann equations.Third, being in the quasiparti
le regime, we negle
ted 
orre
tions of order Γq to ǫφ

q
.They 
orrespond to o�-shell pro
esses that 
an a�e
t the dynami
s signi�
antly as soonas one leaves the quasiparti
le regime (see Se
. 2.3.3) 8. Their negligen
e also leads to adivergen
e in ∆+ in (2.71) for βΩq ≪ 1 sin
e

fB(Ωq) ≃
1

βΩq

≫ 1 . (2.142)The divergen
e also appears in the energy densities ǫφ
q
in (2.127), (2.135) and (2.136)
omputed from ∆+. It disappears when in
luding O(Γ) 
orre
tions. Starting from theKMS relation (1.106) and (2.44), one 
an see that in equilibrium

∆+
q
|y=0 = Re( 1

Ω̂q

(

1

2
+ fB(Ω̂q)

)

)

. (2.143)Here we have assumed that Cau
hy's theorem 
an be applied to perform the Fouriertransform in ω and ±Ω̂q are the only poles. The imaginary part of Ω̂q removes thedivergen
e even if the real part vanishes,
|fB(Ω̂q)| ≃

1

|β(Ωq + i
2
Γq)| ≤

2

βΓq

. (2.144)Furthermore, we 
onsidered only a single s
alar �eld, hen
e no 
oherent os
illations, e.g.in �avour spa
e, 
ould o

ur. Su
h purely quantum me
hani
al phenomena have no
orresponden
e in the Boltzmann approa
h. Finally, in the above dis
ussion we haveassumed that ±Ω̂q are the only two poles of ρq(ω). The generalisation to 
ases wherethere are additional poles is straightforward as long as all of those have small imaginaryparts, leading to resonan
es with quasiparti
le 
hara
ter.The use of quantum Boltzmann equations allows to relax the restri
tions from theprevious se
tion while still dealing with �rst order di�erential equations for parti
le num-bers. In thermal equilibrium the 
orrelation fun
tions (1.106) are uniquely 
hara
terised8Re
ent studies suggest that o�-shell 
ontributions, together with quantum interferen
e in the thermalbath, 
an have important e�e
ts even in the quasiparti
le regime [47℄.59



by two real valued, time independent fun
tions 9: ρq(ω) and fB,F (ω). ρq(ω) determinesthe spe
trum of states and fB,F (ω) their o

upation numbers. It is intuitive to try a simi-lar parameterisation for out-of-equilibrium states. ∆− and ∆+ play pre
isely this role, butin general they depend on two time variables t1 and t2 as well as two spatial positions x1and x2 and have to be found as the solutions to 
oupled se
ond order integro-di�erentialequations.It is very tempting to simply repla
e fB,F in Eqs. (1.103) by some general, timedependent distribution fun
tion f(ω, t) to obtain nonequilibrium propagators. Based onthis ansatz, one 
an then formulate a perturbation theory analogue to the equilibrium
ase (see Se
. 1.3.3). This approa
h su�ers from two problems. First, one en
ountersapparent singularities due to the δ-fun
tions in (1.103) [46℄. Se
ond, the parti
ular shapeof Eqs. (1.103) relies on the KMS 
ondition via (1.97). For a general nonequilibriumstate, there is no su
h 
ondition. The �rst problem 
an be solved by a resummation,e�e
tively repla
ing the free spe
tral fun
tion in (1.97) by the dressed one. The �nitewidth then regularises the singularity. Unfortunately, this requires knowledge of thedressed nonequilibrium spe
tral fun
tion, whi
h has to be found as a solution to the�rst Kadano�-Baym equation (1.59). The se
ond problem 
an also be solved by leavingthe restri
tion that the distribution fun
tion shall depend on ω and t only. E�e
tively,then one is ba
k to ∆+, ∆− and the Kadano�-Baym equations and has not a
hieved asimpli�
ation.However, there are two situations in whi
h a simple parameterisation by a single dis-tribution fun
tion is possible. One is a free theory. Then the spe
trum is, independentlyof the physi
al state in whi
h the system was prepared, given by the free spe
tral fun
-tion (2.46) or (2.82). In this 
ase, the parti
le number in ea
h mode is well de�ned andhas a sharp, time independent value. Furthermore, all parti
les are on-shell, hen
e thesystem 
an be des
ribed by a single distribution fun
tion f(ω) = f(ωq) for ea
h degree offreedom. The the other 
ase is, due to the KMS relation, thermal equilibrium. Continu-ity arguments suggests that su
h parameterisation should provide a good des
ription insituations either 
lose to thermal equilibrium or in the quasiparti
le regime [48, 49, 22℄.As dis
ussed in Se
. 2.3.1, in the former 
ase the deviation from equilibrium obeys aBoltzmann equation [49℄10.Let us 
onsider a system in whi
h the above 
onditions are ful�lled and all involved�elds are either 
lose to equilibrium or very weakly 
oupled. If furthermore the system is ingood approximation spatially homogeneous, it seems promising from the above argumentsthat an ansatz based on (1.97) with full spe
tral fun
tions 
an be made in whi
h the9Our dis
ussion fo
uses on the s
alar propagators. For fermions or gauge �elds, whi
h have internaldegrees of freedom, ρq(ω) of 
ourse has a non-trivial Lorentz (and possibly �avour, 
olour...) stru
ture.However, the following arguments regarding the parameterisation by distribution fun
tions remain valid.10See also [52℄ for a dis
ussion. 60



distribution fun
tion only depends on ω and t.
(∆C(x1, x2))c →

∫

d4q

(2π)4
e−iq(x1−x2)

(

θC(x0
1 − x0

2) + f(ω, (t1+t2)/2)
)

ρq(ω). (2.145)The situation simpli�es further if the time dependen
e of ρ 
an be negle
ted. Di�eren-tial equations for f(ω, t) 
an then be obtained by inserting the ansatz (2.145) into theKadano�-Baym equations. These are the quantum Boltzmann equations. Pra
ti
al 
om-putations involve a number of simplifying assumptions, in
luding a reasonable guess forthe spe
tral fun
tions. Self-
onsistently, these have to be thermal or quasiparti
le spe
-tra. For the �elds in equilibrium one usually assumes free spe
tral fun
tions or resummedone-loop results whi
h lead to thermal quasiparti
le spe
tra. At high temperature, this
an be problemati
 sin
e the pre
ise spe
trum of the Standard Model is unknown due tothe poor 
onvergen
e of the perturbative series, see Se
. 2.3.3.The quantum Boltzmann equations are 
oupled �rst order di�erential equations forthe distribution fun
tions fi of the various involved �elds in whi
h the damping termsare given by integral kernels. They 
orrespond to Boltzmann equations for quasiparti
lesthat in
lude the time dependen
e of Γq. Coherent os
illations in �avour spa
e 
an bein
orporated by parameterising 
orrelations between di�erent �avours in the same way.The quantum Boltzmann equations then form a set of 
oupled di�erential equations forthe elements of a matrix in �avour spa
e whi
h 
an be related to the redu
ed densitymatrix used in [23℄. The diagonal elements of this matrix 
an be identi�ed with o

upationnumbers while the o�-diagonal elements des
ribe the 
oheren
es between di�erent �avours.They a

ount for non-Markovian e�e
ts via the integral kernels and allow to des
ribe
oherent os
illations as well as de
ays and s
atterings in a 
ommon framework. Whenappli
able, they provide a powerful formalism to treat nonequilibrium systems. However,in the form they have been used (see e.g. [49, 50, 53, 54, 51℄), they rely on the assumptionthat all involved �elds are in the quasiparti
le regime and 
olle
tive resonan
es play norole. Furthermore, the deviations from equilibrium are assumed to be small so that anexpansion to linear order in that deviation is justi�ed. This, though it 
an be well-motivated in many 
ases, is generally not true 11 .2.3.3 Kinemati
s of the Resonan
esIn Boltzmann equations, the 
ollision term is the quantity that 
hara
terises the inter-a
tion. In the Kadano�-Baym equations, this role is taken by the self energy. It 
an berelated to the total 
ross se
tion by the opti
al theorem. As in va
uum, this 
onne
tionholds at a level of single Feynman diagrams 12. The self energy therefore naturally in
ludes11By the time of printing, qualitative di�eren
es from the results given in [50℄ have been found in a fullquantum me
hani
al 
omputation based on Kadano�-Baym equations [47℄.12A generalisation of the Cutkosky rules [56℄ to systems with �nite temperature and density was �rstfound in [57℄. 61



all possible pro
esses at a given order, and this is how they enter the Kadano�-Baym equa-tions. A leading order 
omputation of ImΠR 
orresponds to a tree level 
omputation of
ross se
tions at order g. Higher order 
ontributions to ΠR 
orrespond to quantum 
or-re
tions and higher order tree graphs. Via (2.44), ΠR governs the properties of resonan
esin the plasma. Sin
e the breakdown of Boltzmann equations is related to the breakdownof the parti
le 
on
ept, we study how this shows up mi
ros
opi
ally in single rea
tions.For weak 
ouplings 
ross se
tions and self energies in a plasma 
an be 
omputed fromFeynman rules. Those are des
ried in Se
. 1.3. In equilibrium the only di�eren
es to theva
uum are the appearan
e of the auxiliary �elds φ− and the thermal propagators givenin Eqs. (1.103),
∆++(q) = i

q2−m2+iǫ
+ fB(|ω|)2πδ(q2 − m2), ∆+−(q) = fB(ω)2πsign(ω)δ(q2 − m2),

∆−+(q) = (1 + fB(ω))2πsign(ω)δ(q2 − m2), ∆−−(q) = −i
q2−m2−iǫ

+ fB(|ω|)2πδ(q2 − m2)..The four thermal propagators share two important properties,
• They 
an be written as the sum of a zero temperature 
ontribution, whi
h vanishesfor ∆+−, and a temperature dependent 
orre
tion.
• The thermal 
orre
tion is always for
ed on-shell by a δ-fun
tion.These properties are not spe
i�
 to s
alar propagators, but also apply to fermions, see(1.106), and gauge �eld propagators, see [10℄.Sin
e Feynman diagrams are 
omputed from integrals over produ
ts of propagators,all quantities in perturbative 
omputations share the �rst property. The usual Feynmanpropagator 
an be identi�ed with the temperature independent part of ∆++, the prop-agator of the physi
al �eld φ+. Regarding the se
ond property, the δ-fun
tions ensureenergy and momentum 
onservation at verti
es.Leading Order: A Bath of Parti
lesTo leading order the above means that the kinemati
 restri
tions implied by energy andmomentum 
onservation in va
uum also hold at verti
es that 
onne
t �elds in thermalequilibrium. However, one important di�eren
e to the va
uum lies in the possibility ofs
atterings with quanta from the medium. In va
uum, a single stable parti
le simplymoves freely. This manifests in the fa
t that it 
orresponds to a singular pole, or δ-fun
tion, in the spe
tral fun
tion be
ause ImΠR stri
tly vanishes at ωq, ImΠR

q
(ωq) = 0.

ImΠR is only non-zero above the lowest multiparti
le threshold, q2 > ω2
th1. The resultinganalyti
 stru
ture of ρq(ω) is sket
hed in Fig. 2.2.At �nite temperature there 
an be s
atterings with parti
les from the plasma. Thisimplies that a parti
le 
an, even if it is the lightest parti
le in the theory, disappear62



ωth1

ω

ω

m

Figure 2.2: Poles and 
uts of the spe
tral fun
tion ρ(ω) for unstable (upper plot) andstable (lower plot) parti
les with q = 0 at T = 0.by Landau damping, engaging into a rea
tion with some parti
le from the plasma. Attree level, these s
atterings are only possible with real quanta from the plasma due tothe δ-fun
tions in the thermal propagators. Hen
e, the energies and wave ve
tors ofthe parti
les have to be su
h that initial and �nal state are in a

ordan
e with energymomentum 
onservation.To demonstrate the 
onsequen
es for the fate of φ, we �rst 
onsider a trilinear 
oupling
gφX1X2 without further spe
i�
ation of the Xi. This in
ludes trilinear s
alar 
ouplings,Yukawa 
ouplings and the Higgs 
oupling to gauge bosons. Sin
e the kinemati
 propertiesare the same for higher spin �elds, the dis
ussion also 
overs gauge 
ouplings to fermionsand the three-verti
es between gauge bosons 13. The presen
e of the ba
kground medium
hanges the analyti
 stru
ture of the φ-self-energy. The possibility of s
atterings withbath parti
les implies a dis
ontinuity, hen
e imaginary part, below a new threshold q2 <
ω2

th2. This property is 
arried over to the spe
tral fun
tion, see Fig. 2.3. If φ is in thequasiparti
le regime and the only poles of the spe
tral fun
tion (2.44) are at ω = ±Ωq,
orresponding to dressed parti
les, one 
an set ω2 = Ω2q. The stability of φ quanta dependson the position of Ω̂q in the 
omplex ω plane. There are three di�erent 
ases, see Fig. 2.3,
(a) q2 > ω2

th1

(b) q2 < ω2
th2

(c) ω2
th2 < q2 < ω2

th1.The quasiparti
les are stable in 
ase (
). The stability in this region is a 
onsequen
e of13The Lagrangian (2.1) limits our analysis to 
ouplings that are linear in φ. However, if some φ modeshave rea
hed equilibrium before others, they 
an form a �thermal bath� for the nonequilibrium modes.63



ωth1

(b)

(a)

ω

ω

ωth2

√
m2 + ReΠR

(c)

ωFigure 2.3: Poles and 
uts of the spe
tral fun
tion ρ(ω) at leading order in the three 
ases(a), (b) and (
) for q = 0 at T 6= 0.the energy 
onserving δ-fun
tions in the propagators that only allow on-shell pro
esses:Computation of ImΠR involves integrating over a produ
t of propagators. The leadingorder diagram for a trilinear 
oupling has the shape as shown in Fig. 3.1a), k) and l).The zero temperature pie
e of ImΠR is known to vanish below ωth1. The temperaturedependent pie
es of the propagators are proportional to on-shell δ-fun
tions,
ImΠR

q
(ω) ∼

∫

d4p

(2π)4
δ(p2

0 − ω2p)δ((ω − p0)
2 − ω2q−p) . . . , (2.146)and the integral vanishes unless there are points in the integration volume at whi
h thearguments of all δ-fun
tions vanish simultaneously. The supports of ea
h δ fun
tions formsubmanifolds in the integration volume, and the 
ondition that those interse
t leads tothe thresholds. We study this e�e
t in a parti
ular model in Se
. 3.1. There the systemwith in
reasing temperature undergoes transitions in
luding all three di�erent 
ases (a),(b) and (
), 
f. Fig. 3.2 and 3.3.In s
alar theories and non-abelian gauge theories one �nds verti
es that 
onne
t fourlines. Su
h 
ouplings generally do not allow stable parti
les at �nite temperature. Thereason is that 
ouplings φXiXjXk allow 2 → 2 s
atterings at leading order whi
h arealways possible for appropriately 
hosen momenta. However, the available phase spa
e
an still be enlarged or redu
ed by thermal e�e
ts. This physi
ally intuitive result is alsodemonstrated for a parti
ular model in Se
. 3.1.If (2.44) has more poles than ±Ωq, those 
orrespond to plasma waves that have no
orresponden
e in va
uum. If the poles are 
lose to the real axis, these have a well-de�ned64



dispersion relation and 
an be understood as quasiparti
les. It is important to point outthat the dispersion relations, even those given by ω = ±Ωq 
an be qualitatively verydi�erent from free parti
les. Unless the free quasiparti
le approximation holds, it 
an behighly non-trivial to determine the range of allowed pro
esses. The fa
t that the propertiesof the poles of (2.44) depend on temperature makes the phase spa
e dynami
al. If thetemperature 
hanges, the system 
an move from one regime into the other. Indeed, ifba
krea
tion is not negligible, the dissipation of φ into the plasma or thermal produ
tionof φ parti
les from the plasma 
an 
hange the temperature. If φ is not in the quasiparti
leregime, kinemati
 restri
tions do not apply sin
e o�-shell ω 
an always give a 
ontributionto (2.146).A Bath of Quasiparti
lesThe analyti
 stru
ture of the leading order expression for ρ in equilibrium is well-known[7℄. In the following we investigate qualitative 
hanges on
e one pro
eeds to higher order
orre
tions. A leading order self energy 
omputation is based on the use of the freepropagators (1.103). The use of free propagators for the bath �elds X negle
ts theirintera
tion with ea
h other and e�e
tively 
orresponds to the assumption that all X arein the parti
le regime. In the light of our initial assumptions, this is not realisti
 sin
ethe bath is 
oupled more strongly than the parti
le that freezes out. The problem 
anbe solved 
onsistently by using dressed X propagators and verti
es when 
omputing the
φ-self-energy. Resummed propagators 
an be obtained from (1.97) by repla
ing the freespe
tral fun
tion (2.46) by its intera
ting 
ounterpart (2.44) and (2.82) by (2.80) forfermions. If the bath �elds X are in the quasiparti
le regime one 
an negle
t ImΠR

X in(2.44) in �rst approximation, leading to
ρq(ω) = 2πsign(ω)δ

(

ω2 − ω2
q
− ReΠR

q
(ω)
)

. (2.147)The spe
tral fun
tion remains proportional to a sum of δ-fun
tions. These dis
rete 
on-tributions to the spe
trum 
orrespond to plasma waves that kinemati
ally exa
tly behavelike parti
les, though their dispersion relations 
an be very 
ompli
ated. They are givenby the solutions of
ω2 − ω2

q
− ReΠR

q
(ω) = 0and depend on the temperature. The previous arguments remain un
hanged, but the fa
tthat also the modi�ed dispersion relations for bath �elds have to be taken into a

ountmakes it pra
ti
ally mu
h more di�
ult to take a

ount of all possible pro
esses. Whenthere are no additional poles from 
olle
tive ex
itations, the spe
tral fun
tion for a s
alarreads

ρq(ω) = 2πsign(ω)δ(ω2 − Ω2
q
) =

π

Ωq

(δ(ω − Ωq) − δ(ω + Ωq)) . (2.148)65



In the following we fo
us on the simplest 
ase, when the medium-indu
ed 
orre
tions tothe dispersion relations depend only mildly on the wave ve
tor and the free quasiparti
leapproximation holds. Then the medium e�e
ts 
an be parameterised by repla
ing allmasses mi by temperature dependent thermal masses Mi(T ). For trilinear 
ouplings, one
an de�ne a 
riti
al temperature T i↔j+k
c by

Mi(Tc) = Mj(Tc) + Mk(Tc). (2.149)At T = Tc, de
ays and inverse de
ays of spe
ies i into spe
ies j and k be
ome kinemati
allyforbidden at leading order. If no thermal mass is larger than the sum of the two others,the intera
tion is e�e
tively swit
hed o�.Realisti
 quasiparti
les always have a small �nite width, but this does not have asigni�
ant e�e
t unless the mass spe
trum is quasi-degenerate. Loop integrals are per-formed over produ
ts of propagators, hen
e involve produ
ts of spe
tral fun
tions. When
ρq(ω) is exa
tly a sum of δ-fun
tions, the support of ea
h spe
tral fun
tion forms lower-dimensional submanifolds in the integration volume on whi
h the dispersion relation isful�lled. As dis
ussed previously, the integral is only non-zero if there are regions wherethe supports of all of them interse
t. This 
ondition gives rise to the threshold. Whenthere is a �nite width, the support of ρq(ω) in prin
iple 
an 
over the whole integrationvolume. However, if the width is small, the region where ρ is signi�
antly di�erent fromzero 
ompared to its on-shell value only extends a distan
e of order Γ away from the hy-persurfa
es on whi
h the dispersion relations are ful�lled. The result of the integral willstill be very small unless those on-shell regions interse
t or 
ome very 
lose to ea
h other14.For the trilinear 
oupling, ImΠR

q
(Ωq) be
omes non-zero in the region ω2

th2 < M2
φ < ω2

th1
orresponding to 
ase (
), but is suppressed by the smallness of Γq with respe
t to theregions M2
φ > ω2

th1 and M2
φ < ω2

th2. The pro
esses that were stri
tly forbidden at leadingorder remain e�e
tively forbidden (see Fig. 3.4). Of 
ourse, this suppression is a relativeone in 
omparison to the result obtained by negle
ting thermal masses. The rea
tion rate
an still be relevant when it is signi�
ant 
ompared to other pro
esses in the plasma.The above arguments expli
itly use the spe
tral fun
tion for s
alars (2.147), but itremains valid for fermions and gauge bosons. In the limit of vanishing width, theirspe
tral fun
tions are also proportional to sums of δ-fun
tions. For instan
e, in the 
aseof Dira
 fermions the e�e
tive masses are given by the solutions of
Q2 −M2 = 0 (2.150)and their 
omplex 
onjugates, see (2.80).Thus, we 
an understand the previous observation that in the quasiparti
le regime theapproa
h to equilibrium 
an be understood in terms of Boltzmann equations for quasi-parti
les from a mi
ros
opi
 point of view. The use of Boltzmann equations, however,14Note that the 
ommonly used rule that loop integrals are dominated by the |p| ∼ T region does notapply if (almost) on-shell pro
esses 
an 
ontribute. For narrow spe
tral fun
tions, the integral is alwaysdominated by the overlap of the on-shell regions. 66



has to be treated with 
are sin
e Ωq and Γq generally depend on time and 
olle
tive reso-nan
es 
an appear as new parti
les. A simple repla
ement of va
uum masses by thermalmasses in the usual Boltzmann 
an generally not a

ount for all medium e�e
ts, thoughit 
an be a good approximation if all ex
itations are known to behave like free quasipar-ti
les. Quantum Boltzmann equations allow to in
lude these e�e
ts if all resonan
es 
anbe treated as quasiparti
les and their dispersion relations are known.Beyond the Quasiparti
le RegimeIn the parti
le and quasiparti
le regime, a sharp energy 
an be assigned to a resonan
eand energy and momentum of the resonan
es are 
onserved in s
atterings and de
ays.When the width is large, one 
an formally still de�ne Ωq, but it has no meaning as aparti
le's energy be
ause ρq(ω) be
omes a rather smooth fun
tion that has a large o�-shell 
ontribution away from ω = Ωq. When 
omputing loop integrals, the region in whi
hthe spe
tral fun
tions give signi�
ant 
ontributions 
an 
over large parts of the integrationvolume and extend far away from Ωq. The result of the integration is proportional to theweighted overlap of the spe
tral fun
tions. Contributions from the o�-shell regions 
an beof 
omparable size as those from on-shell pro
esses. Hen
e, smoothing out the δ-fun
tionin (1.97) results in erosion of kinemati
 restri
tions.The apparent non-
onservation of energy and momentum in s
atterings 
an be under-stood easily even in 
lassi
al terminology. A dilute, weakly 
oupled gas is well-des
ribedby parti
les that move freely with energies ωq between s
atterings. When the densitybe
omes high, the average distan
e between them is so small that they always feel thepresen
e of the neighbouring parti
les. Thus, their energy re
eives a 
ontribution frompotential energies, taking them "o�-shell", ω 6= ωq. Due to this 
oupling to the envi-ronment, a s
attering is never simply a two-body problem. The same applies to de
ays.Energy and momentum are only 
onserved for the system as a whole, not for the subsys-tem of the s
attering parti
les. Ex
hange of energy and momentum with the environment
an make pro
esses possible that are stri
tly forbidden in va
uum. This e�e
t is knownin 
ondensed matter and nu
lear physi
s, where e.g. it is responsible for the β+-de
ay,but has long been ignored in 
osmology.Broad Resonan
es and the full Spe
trumThe validity of Boltzmann or quantum Boltzmann equations 
ru
ially relies on the de-s
ription of the spe
trum in terms of quasiparti
les. It is instru
tive to estimate underwhi
h 
ir
umstan
es this is a good approximation.The quasiparti
le pi
ture is a useful tool whenever the width of a resonan
e is mu
hsmaller than its thermal on-shell energy and the di�eren
e to the on-shell energy of allother resonan
es with the same 
onserved quantum numbers. This is 
ertainly true fora weakly 
oupled plasma with a non-degenerate mass spe
trum at low T . For a strong67




oupling, the spe
trum is modi�ed signi�
antly by the intera
tion. The resonan
es insome 
ases might still behave like quasiparti
les, even if they show little resemblan
e withthe parti
les in va
uum, but in general, this is not the 
ase. As a result, the quasiparti
lepi
ture and any type of Boltzmann equations fail to des
ribe the system. One then isusually for
ed to solve the Kadano�-Baym equations with nonperturbative methods.Here we 
on
entrate on weak 
ouplings. In some 
ases there are intera
tions thatgive rise to lo
al diagrams, or tadpoles, as those in Fig. 3.1 e) and f). Then ReΠR isparametri
ally larger than ImΠR be
ause su
h diagrams are purely real. They 
ontributeto linear order in the 
oupling while the leading order 
ontribution to the imaginary partis quadrati
. When there are no lo
al diagrams, real and imaginary part of the self energyappear at the same order and one has to study them in detail. At the end of Se
. 1.2.1we presented a simple 
lassi
al argument why the quasiparti
le pi
ture should hold inweakly 
oupled systems even at high temperatures. This is true for a Coulomb potentialsin
e Ekin ∼ T ≫ Epot ∼ gT . The intera
tion energy in non-abelian gauge theories is notwell-des
ribed by a Coulomb potential. The argument already breaks down for a simpleYukawa 
oupling sin
e it in
reases the intera
tion strength at short distan
es, so Epot athigh densities in
reases faster than linear in T . Even for a pure Coulomb intera
tion, theargument relies on the fa
t that average distan
e and average kineti
 energy of parti
lesare related by a single parameter T . This is only true in thermal equilibrium. With ageneral distribution fun
tion it is possible to 
ombine a high density with a low averagemomentum. This is, for example, realised after in�ation, see Se
. 4.1.In general, it 
an be very di�
ult to determine the real and imaginary part of ΠRat high temperature. The main problem is that even in weakly 
oupled theories the
onvergen
e of the perturbative series is poor. With in
reasing order in the 
oupling, hen
enumber of verti
es in 
orresponding Feynman diagrams, also the number of temperaturedependent propagators 
onne
ting them in
reases. A large T 
an 
ompensate for a small
oupling so that higher order 
ontributions 
an be of 
omparable size as leading orderterms. In addition, leading order results in gauge theories by themselves are generally notgauge invariant. In some 
ases the running of the 
oupling 
an be su
h that it improves the
onvergen
e. This happens in a quark gluon plasma due to asymptoti
 freedom. However,in our s
alar model in Se
. 3.1 we observe a signi�
ant in
rease in the width while themass shift is small if the dissipation is 
aused by de
ay, see Fig. 3.7. This phenomenonis known as melting of a peak and 
an be experimentally observed for mesons in nu
learmatter, see Fig. 2.4. Resummed perturbation theory allows to 
ompute gauge invariantresults and improves the 
onvergen
e of the perturbative series. The results suggest thatat high temperature ReΠR ∼ g2T 2, leading to thermal mass 
orre
tions of order gTwhile Γ ∼ g2T [10℄. This would imply that the quasiparti
le pi
ture holds even at hightemperatures if g is small. These estimates are obtained by reorganising the perturbativeseries and resumming in�nite sets of diagrams. Su
h resummations are possible when itis justi�ed to single out 
lasses of relevant higher order diagrams whi
h 
an be 
omputedfrom the knowledge of terms at lower order. For soft external momenta ∼ gT , a hard68
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tral fun
tion of a ρ-mesonpropagating in hot nu
lear matter produ
ed in a high energeti
 In-In-
ollision, plottedas a fun
tion of energy. The experimental data is 
ompared to the spe
tral fun
tion inva
uum (dashed line) and theoreti
al predi
tion (solid line). The width of the resonan
ein
reases drasti
ally without a signi�
ant mass shift. The plot is borrowed from [62℄.thermal loop resummation 
an be employed [58℄. It has been found that for very hardmomenta |q| ≫ T , resonan
es behave like free on-shell parti
les at ω = Ωq with a slightlymodi�ed e�e
tive mass [10℄. The result 
on�rms the intuition that the energy of a parti
leinje
ted into a plasma with large momentum is dominated by the kineti
 energy and onlyminimally modi�ed by plasma intera
tions. Lorentz dilation furthermore enhan
es anunstable parti
le's lifetime in the bath's frame of rest. On the other hand, the realisti
quantitative 
omputation of the energy loss in a medium has proven very di�
ult in the
ontext of heavy ion 
ollisions, where the issue has been studied in detail [59℄. For verysoft momenta it has been found that Γ ∼ g2T [60℄, indi
ating quasiparti
le behaviour.In the o�-shell regime q > ω Landau damping 
an give a large imaginary part of orderof the Debye mass Γ ∼ gT (see [61℄), but this 
an by de�nition not a�e
t the width ofthe resonan
e. For high T and small 
hemi
al potential, a dimensional redu
tion 
ansimplify 
omputations in the Matsubara formalism [31℄ be
ause the length β of the pathin imaginary time be
omes so small that �eld values do not 
hange mu
h along imaginarytime dire
tion.Resummation te
hniques indi
ate that the quasiparti
le nature in a weakly 
oupledtheory is preserved at high temperature. However, as mentioned above, the validity ofthese results is limited. For momenta below the so 
alled magneti
 s
ale g2T even theresummed perturbative series is known to break down and nonperturbative 
orre
tionsare of the same order as the leading order results, see [61℄. Furthermore, in order to fully69



exploit the advantages of the quasiparti
le approximation, knowledge of all dispersionrelations is required.The most 
ommon way to a

ess the nonperturbative regime is provided by latti
e
al
ulations (see e.g. [63℄). Unfortunately, latti
e 
omputations generally have to beperformed in eu
lidean spa
e. The mass of a resonan
e 
an be re-extra
ted from thoserelatively easily as the 
oe�
ient for the exponential fall-o� of the eu
lidean 
orrelationfun
tions at large separation of arguments. Extra
tion of the width is signi�
antly moredi�
ult. It requires an analyti
 
ontinuation. On numeri
al data this 
an only be per-formed by making a guess for the shape of the fun
tion in Minkowski spa
e and �ttingthat guess to the data. Furthermore, the pre
ision of latti
e 
omputations is limited bythe available 
omputation power.In bosoni
 systems at high T one 
an simplify the 
omputations by a 
lassi
al ap-proximation. This is justi�ed be
ause bosoni
 �elds at large o

upation numbers have a
lassi
al limit, see e.g. [64℄.Re
ently, a new method treat nonperturbative systems has re
eived a lot of attention,the so 
alled AdS/CFT 
orresponden
e [65℄. The method is based on the 
onje
ture thata strongly 
oupled 
onformal �eld theory has a dual in string theory. The low energylimit of this dual appears as a higher dimensional theory of gravity. Strong 
oupling onone side of the duality 
orresponds to perturbative behaviour on the other. This allows to
al
ulate quantities in the nonperturbative regime of the �eld theory via a perturbative
al
ulation on the gravity side that is then translated into the �eld theory via the duality.Unfortunately non of the known intera
tions in nature is des
ribed by a 
onformal �eldtheory. Nevertheless, there is some hope that properties 
an be found in 
onformal systemsthat are universal enough to be generalised to physi
al systems. A very popular 
andidateto resemble QCD is provided by a N = 4 supersymmetri
 non-abelian gauge theory. Themethod has been used to 
ompute Keldysh propagators [66℄ and the meson spe
trum[67℄. The results of 
ourse inherently su�er from un
ertainties due to the transfer froma 
onformal �eld theory to the Standard Model. At low temperatures, one 
an estimatethe resulting error by 
omparison to experimental data.To summarise this paragraph, we 
on
lude that it is 
urrently not possible to make ageneral quantitative statement about the behaviour of quasiparti
le widths at very hightemperature, not even in a weakly 
oupled theory. A well-known example for qualitative
hanges at high temperature are phase transitions. In the 
ase of QCD it is theoreti
allypredi
ted and experimentally established that meson resonan
es broaden and melt as oneapproa
hes the 
riti
al temperature of the QCD phase transition, see Fig. 2.4. In thisexample the melting is of 
ourse well understood sin
e mesons are 
omposite parti
lesand des
ribed by an e�e
tive theory. However, the distin
tion between e�e
tive andfundamental theories is merely a question of the energy s
ale of 
onsideration, and thephysi
s at high energies 
annot be 
ompletely predi
ted from knowledge of the low energybehaviour. 70



Chapter
3

Simple Models for the Bath

Throughout the previous 
hapter, we have not spe
i�ed the 
omposition of the thermalbath. The dis
ussion of medium e�e
ts on the spe
tral fun
tions does not put restri
tionson the type of intera
tions that generate them. In prin
iple, the bath 
ould 
onsist of anarbitrary number of fermioni
 and bosoni
 �elds with various intera
tions amongst ea
hother, in
luding gauge 
ouplings.In this 
hapter we demonstrate the results in two parti
ular models. Both of them areapplied to 
osmologi
al problems in the following 
hapter.3.1 A S
alar Field 
oupled to a Bath of S
alarsWe 
onsider a s
alar �eld φ that is 
oupled to a bath 
onsisting of two other s
alars χ1and χ2 by trilinear and quarti
 
ouplings. The Lagrangian (2.1) then takes the shape
L =

1

2
∂µφ∂µφ − 1

2
m2

φφ2 +
2
∑

i=1

(

1

2
∂µχi∂

µχi −
1

2
m2

i χ
2
i −

hi

4!
φχ3

i

)

− gφχ1χ2 +Lχint . (3.1)The 
oupling g has mass dimension one and the hi are dimensionless. All of them shallbe small in the sense of perturbation theory. The 
ouplings Lχint need not be spe
i�edat this point ex
ept that it is su�
iently strong to keep the X in equilibrium. As in theprevious 
hapter, we negle
t ba
krea
tion and take the χi in equilibrium at all times. One
ould e.g. imagine that the χi have strong 
ouplings to very many degrees of freedom inequilibrium that immediately 
ompensate for any ex
hange of energy with φ. We assumethat the χi are in the symmetri
 phase, i.e. 〈χi〉 = 0, so that there are no 
ontributions of71
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PSfrag repla
ementsFigure 3.1: Relevant Feynman diagrams, lines represent φ (solid), χ1 (dotted), χ2(dashed), Ψ1 (solid with arrow) and Ψ2 (dashed with arrow) propagators. The grayblobs represent resummed self-energy insertions and the 
rosses 
ouplings to mean �elds.the type shown in Fig. 3.1 i) and j) to the self-energy of φ from 
ouplings to mean �elds.3.1.1 The trilinear Coupling gThe φ-self-energy to leading order is given by the diagram shown in Fig. 3.1a). We areinterested in the imaginary part that determines the gain- and loss rates. With (2.42)and the KMS 
ondition (1.96), ImΠR 
an be 
omputed from Π< via
ImΠR

q
(ω) =

1

2i
Π<

q
(ω)

(

eβω − 1
)

. (3.2)For Π< = Π−+ the left vertex in Fig. 3.1a) is of the '−'-type and the right of the '+'-type.With the thermal Feynman rules (see Se
. 1.3.3) one �nds
Π<q (ω) = −ig2

∫

d4p

(2π)4
∆<

1p(p0)∆
<
2p−q(ω − p0), (3.3)with

∆<
1 (p0) = fB(p0)ρ1(p0). (3.4)72



Here, and in the following, quantities that 
arry an index 'i' su
h as ∆<
i , ΠR

i or ω(i)qrefer to χi propagators, self energies, frequen
ies, et 
etera, while those la
king su
h anindex belong to φ. To further simplify notation, we will from now on suppress the spatialmomentum whenever possible in this subse
tion. It shall be understood that '1'-quantitiesalways have momentum p while '2'- quantities have q−p. For example, ωq = (q2 +m2
φ)

1
2 ,

ω1 = (p2 + m2
1)

1
2 and ω2 = ((q− p)2 + m2

2)
1
2 . To leading order ImΠR is then given by

ImΠRq (ω) = −g2

2

∫

d4p

(2π)2

fB(p0)fB(ω − p0)

fB(ω)
sign(p0)sign(ω−p0)δ(p

2
0−ω2

1)δ((ω−p0)
2−ω2

2).(3.5)Using one of the δ-fun
tions, this integral 
an be rewritten as
ImΠR

φ (q) = −g2

2

∫

d3p

(2π)2

1

4ω2ω1

×
(

(

(

f1 + 1
)(

f2 + 1
)

− f2f1

)(

δ(ω − ω1 − ω2) − δ(ω + ω1 + ω2)
)

+
(

(

f1 + 1
)

f2 −
(

f2 + 1
)

f1

)(

δ(ω − ω1 + ω2) − δ(ω + ω1 − ω2)
)

)

. (3.6)Here f1 = fB(ω1) and so on. The well known result (3.6) has a 
lear physi
al interpreta-tion: The �rst line represents de
ays φ → χχ and their inverse χχ → φ. The 
ombinationsof fB make sure that the detailed balan
e ratio is ful�lled while the δ-fun
tions guaran-tee energy 
onservation in parti
le rea
tions as dis
ussed in Se
. 2.3.3. The se
ond linerepresents χφ → χ and χ → φχ s
atterings with quanta from the plasma. This 
hannel
orresponds to Landau damping and does not exist in va
uum. As expe
ted, the se
ondline vanishes if T → 0. The integral (3.6) 
an be solved analyti
ally [40, 9℄.At this level, the quanta in the bath have been treated as free parti
les. Sin
e theirself intera
tions are by assumption stronger than the 
oupling to φ, this is in
onsistent.Higher order 
orre
tions to the one loop integral (3.6) 
an 
onsistently be in
orporatedby inserting resummed χi propagators in the loop, see Fig. 3.1 b). This 
an be doneby repla
ing the free spe
tral fun
tion in (3.5) by its intera
ting 
ounterpart. In thequasiparti
le regime, one 
an negle
t ImΠR and use (2.148) as a �rst approximation.Here we 
onsider the simplest 
ase and assume that the dressed one-parti
le states arethe only resonan
es and 
orre
tions to their dispersion relations due to medium e�e
tsare in good approximation independent of the wave ve
tors. Then the free quasiparti
leapproximation 
an be applied and the analyti
 result found in [40, 9℄ remains valid, butwith intrinsi
 masses repla
ed by thermal masses mi → Mi(T ). The result of (3.6) thenreads
ImΠRq (ω) = σ0(q) + σa(q, T ) + σb(q, T ). (3.7)73



Here σ0 is the 
ontribution due to the de
ay pro
ess φ → χ1χ2,
σ0(q) =

g2

16πq2
sign(ω)θ(q2 − (M1 + M2)

2)

×
(

(q2)2 − 2q2(M2
1 + M2

2 ) + (M2
1 − M2

2 )2
)

1
2 , (3.8)

σ
(a)
β (q) is an additional temperature dependent 
ontribution from su
h pro
esses,

σa(q) =
g2

16π|q|β sign(ω)θ(q2 − (M1 + M2)
2)

×
(

ln

(

1 − e−βω+

1 − e−βω−

)

+ (M1 ↔ M2)

)

, (3.9)and σb(q) the 
ontribution from Landau damping
σ

(b)
β (q) =

g2

16π|q|β sign(ω)θ((M1 − M2)
2 − q2)

×
(

ln

(

1 − e−β|ω−|

1 − e−β|ω+|

)

+ (M1 ↔ M2)

)

. (3.10)We have used the abbreviations
ω± =

|ω|
2q2

(q2 + M2
1 − M2

2 ) ± |q|
2|q2|

(

(q2 + M2
1 − M2

2 )2 − 4q2M2
1

)
1
2 . (3.11)The real part of the self energy 
an be 
omputed from this using the spe
tral representation

ReΠq(ω) =
1

π
P
∫

dq0
ImΠq(q0)

q0 − ω
, (3.12)whi
h follows from the Kramers-Kronig relations. It 
an give a positive or negative 
or-re
tion to the mass, see Fig. 3.9. For equal χ masses, m1 = m2 = mχ and self 
ouplings,the result for vanishing external momentum q = 0 is parti
ularly simple,

Γ0(ω) =
g2

8πω

(

1 −
(

2mχ

m

)2
)

1
2

(1 + 2fB(ω)) θ(ω − mχ/2). (3.13)The temperature dependent part leads to an ampli�
ation due to indu
ed transitions. The
θ-fun
tions in Eqs. (3.8)-(3.10) and (3.13) appear be
ause the spe
tral fun
tion (2.148)puts the bath parti
les χi on-shell, allowing only on-shell pro
esses to 
ontribute to Γq.We are interested in the fate of the thermal on-shell φ resonan
e, hen
e we repla
e

ω → Ωq. (3.14)74



Without loss of generality, we assume M2 > M1. Then the three regimes de�ned inSe
. 2.3.3 
orrespond to (a) Mφ > M1 + M2, (b) M2 > Mφ + M1 and (
) Mφ < M1 + M2and M2 < M + M1.In the �rst 
ase, energy between φ and the bath is ex
hanged via de
ays and inversede
ays φ ↔ χ1χ2. In se
ond one, χ2 de
ays and inverse de
ays, χ2 ↔ φχ1 play that role.In the third 
ase none of these pro
esses is kinemati
ally allowed. φ e�e
tively de
ouplesfrom the plasma and moves free of dissipation. The remarkable feature is that the phasespa
e volume be
omes dynami
al due to the temperature dependen
e of the masses. Atemperature 
hange 
an bring the system from one situation into the other. Even withinthe regimes where (a) or (b) are realised, temperature 
hanges 
an massively in
reaseand de
rease gain- and loss rates by 
hanging the available phase spa
e. In a realisti
system, su
h 
hanges will of 
ourse have a ba
krea
tion on the temperature. In Fig. 3.2we plot Γq as a fun
tion of T and q. Along the T axis one 
an 
learly see how the systemmoves from regime (a) to (
) and �nally to (b). A qualitative 
hange along the q axiso

urs around q ≈ mφ when the parti
les be
ome relativisti
. Fig. 3.3 
ompares theresult to the would-be value when negle
ting thermal masses. It shows that Γq is stronglyoverestimated when doing so.As dis
ussed in Se
. 2.3.3 the possibility of dissipationless movement in 
ase (
) is
aused by for
ing the bath parti
les on-shell. It disappears when one takes the width ofthe χi into a

ount be
ause then energy ex
hange between φ and the bath 
an happenvia o�-shell pro
esses. With non-vanishing widths the integral (3.3) generally has to besolved numeri
ally. When all �elds are in the quasiparti
le regime, the 
ontribution fromo�-shell pro
esses is suppressed by the smallness of the widths. We illustrate this inFig. 3.4 where we have used a quarti
 self-
oupling λi

4!
χ4

i for the bath �elds.
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3.1.2 The quarti
 Couplings hiTo leading order the 
ontribution from the 
ouplings hi

4!
φχ3

i to the φ-width Γq 
omes fromthe diagrams shown in Fig. 3.1c) and d). Ea
h is, analogously to (3.6), given by
ImΠR

q
(ω) = π

h2
i

12

∫

d9p1p2p3

(2π)9
(2π)3δ(3)(p1 + p2 + p3 − q)

1

8ω1ω2ω3

×
(

(

(1 + f1) (1 + f2) (1 + f3) − f1f2f3

)

(δ(ω − ω1 − ω2 − ω3) − δ(ω + ω1 + ω2 + ω3))

+
(

f1 (1 + f2) (1 + f3) − (1 + f1) f2f3)
)

(δ(ω + ω1 − ω2 − ω3) − δ(ω − ω1 + ω2 + ω3))

+
(

(1 + f1) f2 (1 + f3) − f1 (1 + f2) f3)
)

(δ(ω − ω1 + ω2 − ω3) − δ(ω + ω1 − ω2 + ω3))

+
(

f1f2 (1 + f3) − (1 + f1) (1 + f2) f3)
)

(δ(ω + ω1 + ω2 − ω3) − δ(ω − ω1 − ω2 + ω3))
)

, (3.15)where all ωi are to be taken with χi masses, ω1 =
√p2

1 + m2
χ1

et
., and f1 = fB(ω1)et
. The �rst line des
ribes the de
ay of φ into three χ and its inverse while the otherlines in
lude all possible s
atterings φχ → χχ. They are kinemati
ally allowed for any
hoi
e of masses. The quarti
 intera
tions always 
ouple φ to the bath via s
atterings.Nevertheless, phase spa
e arguments will in�uen
e the magnitude of Γq when thermalmasses are taken into a

ount.Though some approximate analyti
 formulae have been 
omputed [68, 69, 70, 71℄, theintegral (3.15) 
an in general only be integrated numeri
ally. For high T and q = 0 it 
anbe approximated by [68℄
Γ0 ≈ h2

i T
2

768πmφ
. (3.16)The quantitative range of validity (3.16) has to be treated with 
are. It is a 
onsistentapproximation to the integral (3.15) for large T (see Fig. 3.1.3), but due to the breakdownof perturbation theory at high temperatures, the validity of (3.15) itself is limited.However, it 
an be argued on a qualitative level that 
ontributions to Γq from s
atter-ings should further in
rease with T in the nonperturbative regime. The reasons are Boseenhan
ement due to indu
ed transitions and the fa
t that s
attering pro
esses shouldbe
ome more frequent due to the higher density of the plasma.
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3.1.3 Numeri
al ResultsIn this se
tion we present a number of plots to demonstrate our previous results. Wheneverwe take them into a

ount, we model the self-intera
tions of the bath �elds by a quarti

oupling,
Lχiint =

λi

4!
χ4

i . (3.17)The thermal mass Mi is to leading order given by the 
ontribution from the tadpolediagrams shown in Fig. 3.1e), f):
M2

χ = m2
i + λi

∫

d3p
(2π)3

fB(ωi)

2ωi
≈ m2

i +
λi

24
T 2. (3.18)It is independent of momentum. We estimate the χi-width by Lorentz-dilation of thezero-mode approximation (3.16).Fig. 3.2 shows the 
ontribution to Γq from the gφχ1χ2 
oupling, normalised to itsva
uum value, as a fun
tion of momentum q and temperature T . The mass hierar
hyat T = 0 is 
hosen a

ording to 
ase (a), mφ > m1 + m2. We assumed a relativelystrong self-
oupling with λ2 = 0.5 for χ2, but only a weak 
oupling λ1 = 0.01 for χ1.We negle
ted the thermal χi widths. Fig. 3.3 
ompares this result to a 
omputation thatnegle
ts χi-self-intera
tions. At low temperature, the mass hierar
hy 
orresponds to 
ase(a) and φ re
eives its width from de
ays and inverse de
ays. When the thermal χ2-mass
orre
tion be
omes relevant, it �rst suppresses and then, above a 
riti
al temperature

T φ↔1+2
c at whi
h M = M1 + M2, 
ompletely blo
ks those pro
esses. For T > T φ↔1+2

c ,the �eld φ e�e
tively de
ouples from the plasma. At a mu
h higher temperature T 2↔φ+1
c ,when M2 > M1 + M , de
ays and inverse de
ays of χ2 set in. Negle
ting the χi self-intera
tions leads to a dramati
 overestimate of the φ width in all three regimes, lowtemperatures ex
luded. We negle
ted the mass 
orre
tion for φ whi
h, due to its weak
oupling, has mu
h less dramati
 e�e
ts than that of χ2. Taking it into a

ount does not
hange the pi
ture qualitatively, but only slightly moves the boundaries of the regimes.At low temperatures it is negligible 
ompared to mφ and at high temperatures it is small
ompared to the thermal χ2 mass M2. The plots extend into the regime of very hightemperatures for illustrative purposes. There, the leading order results (3.6) and (3.18)do not give quantitatively 
orre
t results. However, the qualitative pi
ture remains validas long as the system is in the quasiparti
le regime.Fig. 3.4 shows the e�e
t of o�-shell pro
esses in the quasiparti
le regime. χ1,2 aretaken equal in mass m1,2 = mχ = 0.4mφ and have a self intera
tion of the same strength,

λ1,2 = λ = 0.1. Then their thermal masses are also equal, M1 = M2 = Mχ. There is onlyone 
riti
al temperature Tc.
Tc is de�ned by the 
ondition (2.149). When negle
ting the thermal mass 
orre
tion77



for the very weakly 
oupled �eld φ one �nds
T 2

c ≈ 24

λ

(

(mφ

2

)2

− m2
χ

)

. (3.19)The kinemati
 arguments that forbid the φ-de
ay for T > Tc rely on the quasiparti
lenature of the involved parti
les, namely the smallness of the χ1,2-width at Tc. We wantto estimate for whi
h 
hoi
es of parameters the suppression is e�e
tive. For the q = 0mode one 
an approximate, 
.f. (3.16),
Γχ ≈ λ2T 2

768πMχ
. (3.20)De�ning narrow width by Γχ ≪ Mχ one 
an formulate the 
ondition

Γχ(Tc) ≈
λ

64π

m2
φ − 4m2

χ

mφ
≪ Mχ(Tc) =

mφ

2
, (3.21)leading to

λ

32π

(

1 −
(

2mχ

mφ

)2
)

≪ 1. (3.22)The inequality (3.22) is the 
riterion for e�e
tive φ-de
ay suppression above Tc. Thequantitative validity of this result of 
ourse relies on the 
onvergen
e of the perturbativeseries. The fa
t that Tc is determined by the di�eren
e of the mass squares allows us tobring it into the perturbative regime by 
hoosing a small mass di�eren
e. Fig. 3.4 showsthat the suppression above Tc is very e�e
tive in the quasiparti
le regime.The �elds in the Lagrangian (3.1) are also 
oupled by the hiφχ3
i terms. In va
uumand at low temperatures they a
t via the pro
esses φ ↔ χχχ. For the previous 
hoi
eof parameters, m1,2 = 0.4m, these are forbidden. Even if allowed, they are subdominant
ompared to the pro
ess φ ↔ χχ at low temperatures due to phase spa
e argumentsunless hi ≫ g/m. Nevertheless, their 
ontribution in
reases with temperature, see (3.16)and Fig. 3.1.3, hen
e they 
an provide φ with a width for T > Tc.It is instru
tive to estimate how e�
iently this 
ompensates for the suppression of thetrilinear intera
tion above Tc. We 
ompare Γq at T = Tc and T = 0 for q = 0, assumingthat the former is dominated by χχ ↔ φχ s
atterings and the latter by φ ↔ χχ de
aysand inverse de
ays. In va
uum, Γq then is given by1

Γ|T=0 =
g2

8πmφ

(

1 −
(

2mχ

mφ

)2
)

1
2

. (3.23)1Some authors use a de�nition of Γq that deviates from ours by a fa
tor 1

2
and would quote half ofour result for de
ay width in va
uum. 78



Figure 3.2: Γ/Γ|T=0 in the s
alar model as a fun
tion of T and |q| for g = 0.05mφ, m1 =
m2 = 0.4mφ, h1 = h2 = 0, λ1 = 0.01, λ2 = 0.5. Corre
tions to the φ-mass are very smalland, at this order, in
reasingly negative for high temperatures.With (3.20) one �nds

Γ|T=Tc

Γ|T=0

=
∑

i

(

hi

g

mφ

2

)2
1

2λ

√

1 −
(

2mχ

mφ

)2

. (3.24)The dependen
ies in this formula 
an easily be understood. The quadrati
 dependen
eon g and hi 
omes from the verti
es. In
reasing λ de
reases Tc. At a lower temperature,the 
ontribution from χφ ↔ χχ s
atterings is smaller be
ause of the smaller density ofs
attering partners. Therefore in
reasing λ de
reases the ratio (3.24). The dependen
e on
mφ and mχ follows the same logi
, Tc in
reases with mφ and de
reases with mχ. Fig. 3.1.3
ompares the 
ontributions from the di�erent 
ouplings. The parameters are 
hosen in away that there is no dissipationless regime.With the knowledge of the self energies we 
an plot the various 
orrelation fun
tions2.In the following we always set h1 = h2 = 0 and 
on
entrate on the trilinear 
oupling.Unless stated di�erently, we use the value of the 
oupling 
onstant g su
h that

Γ

mφ

∣

∣

∣

T=mi=0
=

g2

8πm2
φ

= 0.22 Figs. 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15 are taken from [5℄79
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and set the quarti
 
ouplings h1,2 to zero everywhere ex
ept in Figs. 3.1.3 and 3.1.3. Thisrelatively large value is 
hosen for illustrative purposes. Furthermore, we 
on
entrate onthe zero mode q = 0. Thermal masses and widths of the bath �elds χ1,2 are alwaysnegle
ted.Figs. 3.7 and 3.8 show the spe
tral fun
tion for φ at di�erent temperatures for the 
ases(a) and (b), respe
tively. In 
ase (a), when φ already has a �nite width in the va
uum,the quasiparti
le peak �melts� at relatively low temperatures without a signi�
ant 
hangein position. In 
ontrast to that, in 
ase (b) the melting is a

ompanied by a negativemass shift. From the previous dis
ussion, it follows that the broadening in Fig. 3.7 mightbe mu
h weaker if one takes the thermal masses of the bath �elds χ1,2 into a

ount. Thepeak 
ould even be
ome narrow again, and hen
e φ 
ould enter a se
ond quasiparti
leregime at high T , if the system enters a temperature regime in whi
h a thermal masshierar
hy of the type (
) is realised. The mass shift in Fig. 3.8 
an be understood fromFig. 3.9. ReΠR at Ωq and 
an have either sign, depending on the temperature.Fig. 3.10 shows ∆−
q
(y), the Fourier transform of ρq(ω). It os
illates with the frequen
y

Ωq and a damping Γq/2, see (2.70). The statisti
al propagator ∆+
q
(t1, t2), given by (2.61),as a fun
tion of t1 and t2 is displayed in Fig. 3.11. We set all initial 
onditions in (2.61) tozero to show the memory integral3. The system equilibrates along the diagonal t = t1+t2

2
-dire
tion and eventually be
omes time translation invariant. This 
an be seen in detail inFig. 3.12 and 3.13. They show ∆+ along 
uts through the t1-t2-plane. Fig. 3.12 shows ∆+for di�erent �xed t = t1+t2

2
. At all times there are 
hara
teristi
 os
illations in y = t1− t2.For late t, ∆+ as a fun
tion of y approa
hes its equilibrium shape, see Se
. 2.2.3. Fig. 3.13shows ∆+ for y = 0. The two 
hara
teristi
 features are the asymptoti
 approa
h to anequilibrium value and the os
illations in t. The latter are a 
onsequen
e of the fa
tthat the Kadano�-Baym equations, in 
ontrast to the Boltzmann equations, are se
ondorder di�erential equations. The amplitude of the os
illations is of order Γq, hen
e theydo not appear in the memory integral term of the leading order approximation (2.71).Fig. 3.14 demonstrates that the approa
h to equilibrium happens independently of theinitial 
onditions.The energy density 
an be 
omputed from ∆+ at y = 0 using (2.104). In Se
. 2.3.1 wepointed out that it deviates from that of a quasiparti
le gas. This is shown in Fig. 3.15.3.2 A Fermion with Yukawa CouplingsWe now 
onsider a system of two fermions Ψ1,2 and a s
alar φ. The Lagrangian is

L =
2
∑

i=1

iΨ̄i ( 6∂ − mi) Ψi +
1

2
∂µφ∂µφ − 1

2
m2

φφ
2 − gφ

(

Ψ̄1Ψ2 + Ψ̄2Ψ1

)

. (3.25)3 This does not 
orrespond to a vanishing initial parti
le number whi
h would be realised by setting
Nq = 0 in (2.134). 82
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q,mem(t1, t2) for q = 0; 
ase (b) with masses m1 = mφ,

m2 = 5mφ and T = 10mφ. Note that only the 
ontribution from the memory integralis plotted, whi
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onditions for the full fun
tion
∆+q (t1, t2) depend on the physi
al initial 
onditions and generally do not vanish for t1,2 = 0.If one, for instan
e, 
hoses va
uum initial 
onditions, ∆+q (t1, t2) 
onsistently 
oin
ides withthe non-zero dressed statisti
al propagator in va
uum for t1 = t2 = 0.The 
oupling 
onstant g in (3.25) is dimensionless. When Ψ1,2 form the thermal bath and,as previously, φ is out of equilibrium, we 
an again use the solutions (2.43) and (2.61)for the spe
tral and statisti
al propagators ∆− and ∆+, but with a self energy that is
omputed from diagrams of the form shown in Fig. 3.1k). The leading order result for Γqwith q = 0 in the 
ase of equal fermion masses m1 = m2 = m is given by [32℄

Γ0(ω) =
g2ω

8π

(

1 −
(

2m

mφ

)2
)

3
2

(1 − 2fF (ω)) θ(ω − m/2). (3.26)It 
an be 
ompared to (3.13). The most striking di�eren
e is that Γq de
reases within
reasing temperature due to the fa
tor 1− 2fF (ω). The physi
al reason is that at largetemperatures, Pauli suppression de
reases the rate of de
ays φ → ΨΨ. For bosons in the�nal state, (3.13) showed that it is in
reased due to indu
ed transitions.85
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Figure 3.17: Ve
tor and s
alar part of S+
q,mem(t1, t2) as fun
tions of t1 and t2 for q = 0,

T = 0.5m1, m2 = mφ = 0. Note that the ve
tor part is symmetri
 in y while the s
alar partis antisymmetri
. As in Fig. 3.11, only the memory integral, whi
h vanishes for t1,2 = 0,is plotted. The full solution (2.87) shows similar os
illations in t as in the s
alar 
ase, 
f.Fig. 3.11, whi
h are not visible here be
ause we plot the approximate solution (2.94).
89



We now turn to the 
ase that one of the fermions, Ψ1, is out of equilibrium and φ and
Ψ2 form the bath. The spe
tral and statisti
al propagators S− and S+ for Ψ1 are givenby (2.80) and (2.88). The self energy Σ in this 
ase has to be 
omputed from the diagramshown in Fig. 3.1l). In Appendix B.2 we present an analyti
 expression for ImΣR in the
ase of vanishing m2 mass that is, to the best of our knowledge, so far unknown in theliterature. It is in good agreement with numeri
al plots shown in [72℄. The real part 
anthen be 
omputed from

ReΣq(ω) =
1

π
P
∫

dq0
ImΣq(q0)

q0 − ω
. (3.27)The expressions (B.30)-(B.35), (B.79)-(B.86) for ImΣR are rather 
ompli
ated, but theresulting Γq 
an be well approximated by

Γq ≈ g2 m2
1

16πωq (1 +

(

2T

m1

)2
)

1
2 (3.28)if the 
oupling is weak, mφ ≪ T,m1 and |q|, T . m1. Here ωq has of 
ourse to beevaluated with m1. Fig. 3.16 
ompares this approximation to the exa
t result. Theanalyti
 stru
ture and the interpretation of the 
uts and poles are the same as in thes
alar 
ase. The temperature regimes 
orresponding to 
ase (a), (b) and (
) 
an be seenin Fig. 3.16. With the knowledge of Σ we 
an �nally plot the 
orrelation fun
tions. TheLorentz 
omponents of S−

q
(y) are damped exponentials, see (2.77), (2.90). The ve
torand s
alar parts of the memory integral in S+

q
(t1, t2) in the quasiparti
le approximation(2.93) are shown in Fig. 3.17. Note the di�erent symmetry of the s
alar and ve
tor partin the relative time 
oordinate t1 − t2. As in the s
alar 
ase (
f. Fig. 3.11), one observesos
illations in the relative time 
oordinate y and equilibration in the 
entre of mass time t.The os
illations in t that are visible in Fig. 3.11 have amplitudes O(Γ). Su
h os
illationsare not visible in Fig. 3.17 be
ause we plot the analyti
 leading order approximation (2.93)while Fig. 3.11 displays a numeri
al evaluation of the full result (2.61).
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Chapter
4

Applications in Cosmology

The overall stru
ture of the observable universe is surprisingly simple.On s
ales > 100Mp
 is appears spatially homogeneous and isotropi
. Moreover, the
osmi
 mi
rowave ba
kground reveals that the density �u
tuations were even smallerbefore nonlinear galaxy formation 
reated the stru
tures we observe today [73℄. Thus,the overall geometry 
an in good approximation be des
ribed by a Friedmann-Robertson-Walker metri
,
ds2 = gµνdxµdxν = dt2 − a2(t)

(

dr2

1 − κr2
+ r2

(

dϑ2 + sin2 ϑdϕ2
)

)

. (4.1)
κ determines the overall 
urvature of spa
e, its sign is determined by the sign of Ω − 1where Ω = ǫ/ǫcr with ǫ being the energy density and ǫcr the 
riti
al energy density

ǫcr =
3H2

8πG
. (4.2)Here G is Newton's 
onstant and H = ȧ/a the Hubble parameter. The time evolution ofthe s
ale fa
tor a(t) is governed by the Friedmann equations

ä = −4π

3
G(ǫ + 3p)a (4.3)

H2 +
κ

a2
=

8πG

3
ǫ. (4.4)Here 
ontributions from a 
osmologi
al 
onstant Λ have been in
luded into energy density

ǫ and pressure p. Based on various observations, it is possible to determine the 
omposition91



of the energy density. The total ǫ is very 
lose to the 
riti
al density ǫcr and the overallgeometry of the universe therefore in good approximation �at, κ = 0. It is 
omposed ofthree main ingredients, with ∼ 4% baryoni
 matter, ∼ 23% dark matter and ∼ 73% darkenergy1. In addition, there are small 
ontributions from photons and neutrinos.Extrapolating (4.3) and (4.4) ba
kwards in time implies that the observable universeoriginates from a volume that was many orders of magnitude smaller than its 
urrentsize. At early times, energy density and pressure were mu
h higher than in any humanmade experiment, making it an ex
ellent laboratory for high energy physi
s in whi
h thestandard model of parti
le physi
s and its possible extensions 
an be probed. In ex
hange,parti
le physi
s 
an provide an underlying mi
ros
opi
 theory that �lls the 
osmologi
alparameters dedu
ed from astronomi
al observations with a meaning. Indeed, many ofthe observed features 
an be understood as 
onsequen
es of nonequilibrium phenomenain the early universe.Pro
esses in the primordial plasma are 
anoni
ally studied by means of Boltzmannequations. From the dis
ussion in the previous se
tions it is 
lear that this approa
hbe
omes in
reasingly unreliable in early epo
hs. However, during mu
h of its early historythe universe is �lled with a slowly 
ooling plasma in thermal equilibrium. As the plasma
ools down, its 
onstituents su

essively fall out of equilibrium and freeze out when theirintera
tion rates be
ome low. If the temperature 
hanges slowly with respe
t to thetime s
ale asso
iated to the parti
le rea
tions, su
h pro
ess 
an in good approximationbe des
ribed by the methods we developed in the previous 
hapters. In this 
hapter,we apply them to two parti
ular problems. In Se
. 4.2 we dis
uss thermal leptogenesisas an example for a freezeout pro
ess that requires a quantum me
hani
al des
ription.Before, in Se
. 4.1, we use our results from the s
alar model to study the kinemati
s ofthe reheating after in�ation.4.1 In�aton De
ay and ReheatingThe homogeneity and isotropy of the observable universe on large s
ales pose a problem in
lassi
al 
osmology. When extrapolating Eqs. (4.3) and (4.4) ba
kwards in time, with theobserved energy 
ontent, di�erent pat
hes in the sky 
orrespond to regions in spa
e thathave never been 
ausally 
onne
ted. This leaves the question why they have the sametemperature. Furthermore ǫ ≈ ǫcr at present time requires ǫ to be extremely 
lose to ǫcr inthe past. Without further assumptions, there is no explanation for this �ne tuning. Theseproblems, known as horizon- and �atness-problem, 
an be explained by the assumptionthat the universe underwent a phase of a

elerated expansion at a very early stage of itsevolution2. Su
h an era of 
osmi
 in�ation would also explain the absen
e of topologi
aldefe
ts predi
ted by many theories of parti
le physi
s in the observable universe as a result1See [2℄ for detailed numbers.2For a review, see e.g. [74℄ and referen
es therein.92



of their dilution. The rapid expansion, if it lasted su�
iently long, implies that the entireobservable universe originates from a very tiny, 
ausally 
onne
ted volume. The simplestme
hanism that 
an drive in�ation is provided by the potential energy of a s
alar �eld φ,the in�aton, whi
h at some point dominated the energy density in the small volume fromwhi
h the observable universe originates. Here we fo
us on this s
enario of single �eldin�ation. During the in�ationary phase, while φ moves towards its potential minimum,all other forms of energy are diluted and be
ome negligible. When φ starts os
illatingaround the minimum, its energy is released into all other degrees of freedom, to whi
h we
olle
tively refer as X . This pro
ess is known as reheating and leaves the universe �lledwith the hot primordial plasma that forms the initial state of big bang 
osmology. Thedetails of the φ dissipation and the subsequent thermalisation of the plasma are unknown,and so is the resulting temperature3.The temperature in the early universe is a very important 
osmologi
al parameter.It determines the abundan
e at whi
h parti
les are produ
ed thermally. This in
ludesdark matter 
andidates, leading to upper temperature bounds to avoid overprodu
tion.In supersymmetri
 theories this is in parti
ular of interest in the 
ontext of the so 
alledgravitino problem [76℄. In thermal leptogenesis it determines the abundan
e of heavyright handed neutrinos therefore the amount of baryon asymmetry that 
an be generated.This implies a lower bound on the temperature. It has also been spe
ulated about theimportan
e of thermal e�e
ts for moduli de
ay [77, 78℄ or destabilisation of extra dimen-sions [79℄, the latter also giving rise to an upper bound on T . In [80℄ it has been suggestedthat large thermal masses of the de
ay produ
ts in the primordial plasma imply anotherupper bound on the temperature. In this se
tion we use our results from Se
. 2.3.3 toanalyse the 
onditions under whi
h this 
an happen.In the beginning of the reheating phase almost all energy is stored in the 
oherentos
illations of the q = 0 mode of the ma
ros
opi
 �eld 〈φ〉. Therefore φ0,in and φ̇0,inrea
h large values while all other 
ontributions to the energy density are small. Theenergy 
an be transferred into other degrees of freedom in di�erent ways. In general thisis a far-from-equilibrium pro
ess. The energy is released either into �u
tuations of φ itself,whi
h 
an be interpreted as parti
les and are 
hara
terised by ∆±, or dire
tly into X s.If 〈φ〉 dominates the self energies ΠR of the �elds it 
ouples to, e�e
tive masses are alsodominated by the os
illating �eld value. In this 
ase, most of the energy transfer happensvia parametri
 resonan
e whi
h dissipates enormous amounts of energy. This pro
ess 
anapproximately be des
ribed in terms of 
lassi
al �elds, and its 
olle
tive nature 
an easilyallow the 
reation of parti
les with masses larger than mφ [81, 82℄. Kinemati
 restri
tionsas dis
ussed in Se
. 2.3.3 are 
ertainly not valid be
ause they only apply if the system 
anbe well des
ribed by the language of (quasi)parti
les. If there is no parametri
 resonan
e,or if a large amounts of energy have been released into �u
tuations of φ, further dissipationhappens via perturbative de
ays and s
atterings of φ quanta. When these pro
esses are3 For a review, see e.g. [75℄ and referen
es therein.93



responsible for a signi�
ant part of the energy transfer, the kinemati
al 
onsiderationsfrom Se
. 2.3.3 
an play a 
ru
ial role.The intrinsi
 mass of φ is usually thought to be larger than the intrinsi
 masses ofthe X . On the other hand, it is 
oupled weakly to all other �elds, mu
h weaker than e.g.the Standard Model �elds amongst ea
h other. In 
ase the intera
tions within the bathare strong enough to thermalise it fast on the time s
ale on whi
h φ evolves, the de
ayhappens in the ba
kground of a thermal plasma. This 
an be a reasonable approximationduring the late phase of reheating [83, 80, 33℄ or in s
enarios known as warm in�ation[84, 71℄. Pauli blo
king suppresses rea
tions involving fermions, 
f. (3.26), so that mostof the energy is dissipated into bosoni
 degrees of freedom. Under these 
onditions, thes
alar model in Se
. 3.1 
an be used to study the in�uen
e of thermal masses and widthsDuring reheating ba
krea
tion is of 
ourse not negligible and the temperature not
onstant. T (t) 
an be a 
ompli
ated fun
tion and is determined by the struggle between
ooling by expansion and heating by φ de
ay. However, if the time s
ale asso
iated withthe dynami
s of φ is mu
h shorter than that of the Hubble expansion, but still longenough for the bath to be 
onsidered in equilibrium at any time, one 
an use the approx-imation (2.48) for the spe
tral fun
tion and insert equilibrium propagators to 
omputethe dissipation rate Γq at the given temperature in ea
h moment.The 
laim in [80℄ is that the thermal masses of the de
ay produ
ts in
rease with Tand e�e
tively blo
k further φ-de
ay above a 
riti
al temperature Tc. Any 
ooling of theplasma below Tc by Hubble expansion is 
ompensated by φ-de
ay, and the temperatureremains at Tc until φ has dissipated its ex
essive energy. Then, when φ is in equilibriumwith all other �elds, the universe enters the radiation dominated era. Based on our resultsin Se
. 2.3.3 and 3.1, we 
an 
on�rm this 
laim under 
ertain 
onditions.It is 
lear that the arguments related to energy and momentum 
onservation at ver-ti
es 
onne
ting resummed propagators 
an only hold if the involved �elds are in thequasiparti
le regime. Otherwise reheating 
an always 
ontinue via o�-shell pro
esses. Inthe quasiparti
le regime, there 
an be a 
riti
al temperature above whi
h further heatingby perturbative de
ays and s
atterings be
omes ine�
ient be
ause φ e�e
tively de
ouplesfrom the bath. Due to o�-shell pro
esses, Γ is never stri
tly zero, but it is suppressed bythe smallness of the widths of the resonan
es when the on-shell de
ay be
omes forbidden.In general, the 
onditions under whi
h on-shell rea
tions between the quasiparti
les be-
ome forbidden have to be extra
ted from the possibly 
ompli
ated dispersion relations ofall involved plasma waves. A simple rephrasing of these 
onditions by repla
ing intrinsi
masses by thermal masses as done in [80, 33℄ is only valid if the free quasiparti
le approx-imation holds and medium 
orre
tions to the dispersion relations depend only mildly onthe wave ve
tors. In this 
ase, the inequality (3.22) allows to estimate that for trilinear
ouplings that 
an be resembled by the s
alar model from Se
. 3.1, the suppression above
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Tc is e�e
tive if
λ

32π

(

1 −
(

2mχ

mφ

)2
)

≪ 1.This 
ondition is quantitatively valid if the 
riti
al temperature given by (3.19),
T 2

c ≈ 24

λ

(

(mφ

2

)2

− m2
χ

)

,is low enough for perturbation theory to hold.Even if these 
onditions are ful�lled, 2 → 2 s
atterings always provide a 
hannel totransfer energy from φ into the bath if φ also 
ouples to the bath �elds by four-verti
es.Their e�
ien
y depends on the 
oupling strength and on the value of Tc, see dis
ussionfollowing (3.24). The importan
e of widths in this 
ontext has previously been pointed outin [33℄, but modi�ed dispersion relations and the possibility of s
atterings were negle
ted.4.2 Thermal LeptogenesisThe observable universe is purely made of matter, with a tiny fra
tion antimatter presentin 
osmi
 rays whi
h 
an 
onsistently be explained by se
ondary emission [85℄. Thisrequires an ex
ess of matter over antimatter, or baryon asymmetry, in the primordialplasma. The ex
ess 
an be estimated by the baryon-to-photon ratio η = nB/nγ, whi
h 
anbe determined in two ways, either from the CMB [86℄,
ηCMB = (6.225 ± 0.170) × 10−10 (4.5)or from the abundan
e of light elements in the intergala
ti
 medium, thought to be 
reatedduring big bang nu
leosynthesis [87℄,

ηBBN = (5.5 ± 1.0) × 10−10. (4.6)In in�ationary 
osmology, this number 
an not be assigned to the initial 
onditions be
auseany pre-in�ationary asymmetry is diluted during the a

elerated expansion. Its valuewould be negligibly small after reheating. Hen
e baryogenesis, the generation of an η 6= 0,must have o

urred during or after reheating. The details of the baryogenesis me
hanismare unknown, and di�erent models have been proposed. Any possible explanation hasto be in agreement with the Sakharov 
onditions, namely it requires a deviation fromthermal equilibrium and pro
esses that violate C, CP and baryon number [88℄. Here Cand P stand for 
harge and parity 
onjugation. Baryon number B and lepton number Lare quantum numbers for baryons and leptons respe
tively, with value 1 for parti
les and
−1 for antiparti
les. 95



In prin
iple all these ingredients are provided in the Standard Model by the ele
-troweak intera
tion [89℄. It violates P and C as well as CP through the CKM matrix[11℄. Baryon number B and lepton number L are violated by nonperturbative transitionsbetween equivalent topologi
al va
ua [89, 90℄, the sphalerons. Those are negligible at zerotemperature, but be
ome relevant near the ele
troweak phase transition. Hubble expan-sion brings the plasma out of equilibrium. However, in order to explain the observed
η, a �rst order ele
troweak phase transition is required. In the Standard Model, thiswould o

ur for a Higgs mass mH < 45 GeV [91, 92℄, whi
h is ruled out by experiment[4℄. In addition, the CP violation in the CKM matrix is too small [93℄. Thus, su

essfulbaryogenesis requires physi
s beyond the Standard Model. Many possibilities to a
hievethis have been explored during the past four de
ades4, in
luding GUT baryogenesis [94℄,A�e
k-Dine baryogenesis [95℄ and leptogenesis [13℄.Leptogenesis5 provides a parti
ularly attra
tive s
enario be
ause it links the baryonasymmetry to neutrino properties. If the light neutrino masses in the Standard Modelare generated by a type-I see-saw me
hanism (see appendix A), the CP violating out-of-equilibrium de
ay of the heavy neutrinos N 
an generate a matter-antimatter asymmetryin the leptoni
 se
tor. In the 
ase that the inverse pro
esses that wash out the asymmetryare e�
ient, its �nal value is independent of the initial 
onditions and given in termsof neutrino properties. The lepton-asymmetry 
an then partially be transferred to thebaryoni
 se
tor by sphaleron pro
esses.Quantitatively, leptogenesis is usually studied by means of 
lassi
al Boltzmann equa-tions 6. However, the 
reation of a lepton asymmetry is a quantum e�e
t as it arises fromthe interferen
e between tree level de
ays and higher order 
orre
tions. The des
riptionof this quantum e�e
t in terms of Boltzmann equations su�ers from the basi
 
on
eptualproblems dis
ussed in the previous se
tions. Furthermore, most leptogenesis s
enariosrequire a high temperature T ∼ 1010 GeV to generate su�
iently many heavy neutrinos.At these temperatures thermal e�e
ts in the plasma 
an 
ertainly not be ignored. It isimportant to understand the range of validity of the Boltzmann equations and estimatethe size of the 
orre
tions. In re
ent years, enormous progress has been made towardsthis goal [49, 99, 50, 53, 54, 51℄, mostly based on quantum Boltzmann equations.If leptogenesis takes pla
e after the primordial plasma has thermalised, the simpli
ityof the setup 
an make a full quantum treatment possible. The heavy neutrinos N are ingood approximation the only �elds that are out of equilibrium. They are weakly 
oupledto a ba
kground plasma with slowly 
hanging temperature. Sin
e the number of degreesof freedom in the bath is > 100 and η known to be tiny, ba
krea
tion is negligible.The asymmetry only be
omes relevant mu
h later in the history of the universe. Inthis s
enario, the propagation and de
ay of N in the primordial plasma 
an, with some4For a review, see e.g. [96℄5For detailed reviews, see e.g. [97℄.6For a detailed treatment in terms of Boltzmann equations see e.g. [98℄96



modi�
ations, be modelled by the Yukawa model from Se
. 3.2. Ψ1 is identi�ed with N ,
Ψ2 with the Standard Model leptons l and φ with the Higgs Φ. The main di�eren
es 
anbe summarised as(1) N is a Majorana fermion.(2) Φ and l form weak isospin doublets.(3) N and l 
arry �avour indi
es. The Yukawa matrix λ is generally non-diagonal in�avour spa
e and has 
omplex entries.(4) The temperature is a fun
tion of time.The Kadano�-Baym equations for the propagators G>

αβ(x1, x2) = 〈Nα(x1)Nβ(x2)〉 and
G<

αβ(x1, x2) = −〈Nβ(x2)Nα(x1)〉 of Majorana fermions are given in [49℄,
C(i6∂1 − M)G>(x1, x2) = −

∫

d4x′
(

Σ>(x1, x
′)GA(x′, x2) + ΣR(x1, x

′)G>(x′, x2)
)

, (4.7)
C(i6∂1 − M)G<(x1, x2) = −

∫

d4x′
(

Σ<(x1, x
′)GA(x′, x2) + ΣR(x1, x

′)G<(x′, x2)
)

. (4.8)Here C is the 
harge 
onjugation matrix, for whi
h we take the representation iγ2γ0.Following the steps in Eqs. (1.52)-(1.60), it is straightforward to derive the Kadano�-Baym equations for the spe
tral and statisti
al propagator,
C(i6∂1 − M)G−(x1, x2) =

∫

d3x′

∫ t1

t2

dt′Σ−(x1, x
′)G−(x′, x2) , (4.9)

C(i6∂1 − M)G+(x1, x2) =

∫

d3x′

∫ t1

ti

dt′Σ−(x1, x
′)G+(x′, x2)

−
∫

d3x′

∫ t2

ti

dt′Σ+(x1, x
′)G−(x′, x2) . (4.10)Multipli
ation with C−1 from the left gives Eqs. (4.9) and (4.10) the same shape asthe 
orresponding equations for Dira
 fermions (1.88) and (1.89) with the repla
ements

S± → G± and Σ → C−1Σ. The boundary 
ondition (2.76) is modi�ed to G−q (0) = iγ0C−1.Thus, one 
an �nd the solutions for Majorana neutrinos from those for Dira
 neutrinosby repla
ement.In the symmetri
 phase of the ele
troweak theory the modi�
ation (2) simply meansthat one has to sum over the 
omponents of the weak isospin doublet when 
omputingthe self energy. Ea
h term has the same stru
ture.As a 
onsequen
e of modi�
ation (3), the self energy Σ is generally not diagonal in�avour spa
e. The resummed propagator is a matrix in �avour spa
e, o�-diagonal ele-ments des
ribe 
oheren
es between di�erent �avours. Furthermore, due to the 
omplex97



entries in λ, CP is violated and the Lorentz stru
ture is modi�ed. Σ 
annot be de
om-posed as in (2.81) be
ause it also has pseudo-s
alar and axial-ve
tor parts. This makesthe inversion of (2.78) te
hni
ally more di�
ult, but does not pose a 
on
eptual prob-lem. Usually Σ is split into a left-handed and a right-handed part ea
h of whi
h 
an bede
omposed as in (2.81). If the Majorana masses of the heavy neutrinos are strongly hi-erar
hi
al, the lepton asymmetry is usually generated by the de
ay of the lightest �avour.The two heavier �elds 
an then be integrated out to obtain an e�e
tive theory with onlyone �avour.The biggest 
hallenge is posed by the time dependen
e of T be
ause the solutionsof the Kadano�-Baym equations were obtained under the assumption of a time transla-tion invariant self-energy. If there is a separation of time s
ales, one 
an, analogue toEqs.(2.47)-(2.48), treat t as an external parameter. Then the spe
tral propagator is givenby
G−(t1, t2) =

∫

dω

2π
e−iω(t1−t2)

×
(

1

6q − M − C−1ΣA
q
(ω, T (t)) − iωǫ

− 1

6q − M − C−1ΣR
q
(ω, T (t)) + iωǫ

)

C−1.(4.11)This result 
an be used to 
ompute G+(y; t) analogue to (2.88),
G+q (t1, t2) = −G−q (t1)Cγ0G+q (0, 0)γ0C−1G−q (−t2) (4.12)

+

∫

dω

2π
e−iω(t1−t2)

(
∫ t1

0

dy1G
−q (y1)e

iωy1

)

C−1Σ+q (ω)

(
∫ t2

0

dy2G
−q (−y2)e

−iωy2

)

.Here it has been used that the symmetry relations (1.86) and (1.87) for Majorana fermions
an be written as G±(x1, x2) = ∓ (G±(x2, x1))
T .The 
orrelation fun
tions G++, G>, G< and G−− 
an be obtained from G± via thede
omposition

(GC(x1, x2))c = G+(x1, x2) −
i

2
signC(x0

1 − x0
2)G

−(x1, x2) , (4.13)
f. (1.61). Sin
e all Standard Model �elds very 
lose to equilibrium, they 
an be de-s
ribed by thermal (equilibrium) propagators in loop integrals. Those are well-known toleading order. Thus, knowledge of the spe
tral and statisti
al nonequilibrium propagators
G± for N allows to evaluate all relevant Feynman diagrams. In parti
ular, CP -violating
ontributions to the lepton self energy 
an be 
omputed. Those are responsible for thegeneration of a matter-antimatter asymmetry in the leptoni
 se
tor. The dressed statis-ti
al propagator S+

ij for leptons, where we have now written the �avour indi
es i and jexpli
itly, allows to de�ne the 'lepton number matrix'
Lqij(t, t

′) = −tr
(

γ0S+qij(t, t
′)
)

. (4.14)98



The asymmetry in �avour i as a fun
tion of time is then given by Lqii(t, t). Computa-tion of S+
ij to fourth order in the Yukawa 
ouplings λij in (A.1) provides a full quantumme
hani
al treatment of leptogenesis7. Sin
e the Kadano�-Baym formalism makes nosemi-
lassi
al approximations, it inherently avoids a number of 
ompli
ations that 
om-putations based 
onventional Boltzmann equations have been plagued with. In parti
ular,there is no ne
essity for a subtra
tion of real intermediate states. Evaluation of the selfenergy diagrams automati
ally in
ludes all on- and o�-shell pro
esses at a given order inthe 
orre
t manner, and no apparent 
reation of an asymmetry in equilibrium is found.Furthermore, if leptons and Higgs �elds in loop 
orre
tions are in equilibrium, thermal
orre
tions to the produ
tion rates are linear in their distribution fun
tions, as expe
tedfrom detailed balan
e 
onsiderations8.However, 
are has to be taken at two points. First, leptogenesis takes pla
e at avery high temperature. Due to the breakdown of perturbation theory at large T thespe
trum of the Standard Model in this regime is unknown. The assumption that theStandard Model �elds are in the quasiparti
le regime and 
an be des
ribed by the well-known leading order or next-to-leading-order propagators for dressed parti
les is doubtful.These problems are also negle
ted in all present 
omputations that use Boltzmann orquantum Boltzmann equations and 
auses an error of unknown size in all 
omputationsto date. At the 
urrent stage, our results 
an be used to determine 
orre
tions due toquantum and non-Markovian e�e
ts by 
omparison to Boltzmann equations under equalassumptions regarding the spe
trum. In the future, provided all relevant self energies atthe temperature of interest are known from some other sour
e, they allow the quantitative
omputation of the generated lepton asymmetry. Se
ond, a realisti
 
omputation of 
ourserequires a more 
areful treatment of the dependen
e on 
entre of mass time. In parti
ular,the CP violating part of the lepton self energy is not time translation invariant due tothe deviation of the N propagators from equilibrium. Both of these aspe
ts go beyondthe s
ope of this work, but will be addressed in the near future9 .

7This applies to the produ
tion and washout pro
esses. In realisti
 leptogenesis, other spe
tatorpro
esses in the plasma 
an have an in�uen
e on the �nal asymmetry [100℄.8This 
an be seen expli
itly in Eqns. (3.6), (3.15), (3.26) and (B.45) for the models we studied inthis work. By the time of printing, it has been 
on�rmed in a realisti
 model for leptogenesis in [47℄,
ontrasting earlier 
laims made in [55℄, and is in dis
ussed in detail in [51℄.9By the time of printing, there has been 
onsiderable progress towards this goal and a fully quantumme
hani
al 
omputation of the asymmetry has been published in [47℄ .99



Chapter
5

Conclusion

Many properties of the universe today 
an be explained as the result of nonequilibriumpro
esses during its early history. The high energy densities during those epo
hs also makethe early universe an ex
ellent laboratory for the study of physi
s beyond the StandardModel. Hen
e, nonequilibrium pro
esses in the primordial plasma are interesting for
osmology as well as parti
le physi
s. To date, most 
omputations are based on Boltzmannequations. As 
lassi
al Markovian equations for phase spa
e distribution fun
tions, thesesu�er from basi
 
on
eptual problems when quantum phenomena like 
oherent os
illationsor memory e�e
ts are relevant. While in some 
ases, e.g. big bang nu
leosynthesis orthe de
oupling of photons, these 
an in good approximation be negle
ted, they mightbe 
ru
ial in other situations. For instan
e, in leptogenesis s
enarios, the 
reation ofmatter is 
aused by a quantum interferen
e. Over the past years, eviden
e has amountedthat 
lassi
al Boltzmann equations may be insu�
ient to 
orre
tly des
ribe this quantumme
hani
al pro
ess. Therefore it is important to understand the range of validity of theBoltzmann equations and estimate the size of the 
orre
tions.Quantum and non-Markovian e�e
ts 
an modify the properties of a dense plasma invarious ways. This in
ludes e�e
ts that are related to the 
oheren
e of the quantumstate as well as 
hanges in the spe
trum. The Kadano�-Baym equations o�er a tool toperform 
omputations in a full quantum me
hani
al framework. However, while numeri
alsolutions of Boltzmann equations usually allow a simple qualitative understanding of theresults and their dependen
es on the model parameters, this transparen
y is often lostwhen using Kadano�-Baym equations. When the spe
trum of resonan
es in the plasmais approximately known and simple, one 
an derive e�e
tive Boltzmann equations fromthe Kadano�-Baym equations, the quantum Boltzmann equations.In this thesis we dis
ussed systems in whi
h one 
an go further and dire
tly solve the100



Kadano�-Baym equations by analyti
 methods. Many important pro
esses in the earlyuniverse 
an in good approximation be des
ribed by quantum �elds out of equilibrium thatare weakly 
oupled to a thermal bath. We solved the Kadano�-Baym equations for s
alarsand fermions for su
h systems in full generality, without restri
tions regarding the size ofthe deviation from equilibrium or making an ansatz that parameterises the propagatorsin terms of distribution fun
tions. The 
omposition of the heatbath need not be spe
i-�ed. The solutions remain valid in good approximation if the bath temperature 
hangesslowly 
ompared to all other times
ales. Thus, they 
an dire
tly be applied to a numberof 
osmologi
al problems. Furthermore, they improve the 
on
eptual understanding ofquantum e�e
ts in a hot plasma.We then performed a detailed 
omparison of our solutions to results obtained byother methods. First, we showed that the Kadano�-Baym equations are equivalent to asto
hasti
 Langevin equation. A 
omparison to Boltzmann equations for parti
les andquasiparti
les revealed how these emerge from the Kadano�-Baym equations in the limitof weak 
oupling and low temperature. We then studied the plasma properties with fo
uson the appli
ability of Boltzmann equations in di�erent kinemati
 regimes.
• In the parti
le regime, the e�e
ts of the plasma on the properties of resonan
esare negligible. The standard Boltzmann equations hold and des
ribe the kinemat-i
s with a high a

ura
y. If 
oheren
es are important, these 
an 
onsistently bein
orporated by the use of quantum Boltzmann equations.
• In the quasiparti
le regime, modi�
ations of the spe
trum due to the presen
e ofthe medium be
ome relevant. Dressed parti
les re
eive a thermal mass 
orre
tionand new resonan
es, whi
h 
orrespond to 
olle
tive ex
itations in the plasma, 
anappear. As long as all of these have small de
ay widths, they 
an e�e
tively be de-s
ribed as quasiparti
les. In this regime, quantum 
orre
ted Boltzmann equationsmay be used. They require the knowledge of the spe
tral fun
tion, in
luding 
olle
-tive ex
itations, as a fun
tion of time. The dependen
e of the dispersion relationsand de
ay widths on temperature and time 
auses non-Markovian e�e
ts. The latter
an be parameterised by time-dependent 
ollision terms. To leading order, energyand momentum are 
onserved in de
ays and s
atterings involving quasiparti
les.Hen
e, quasiparti
les rea
t like ordinary parti
les, but with modi�ed dispersion re-lations and widths. The dispersion relations 
an deviate strongly from those of freeparti
les. They 
hange the available phase spa
e volume for pro
esses in a tem-perature dependent, hen
e dynami
al, way and 
an have a dramati
 in�uen
e onprodu
tion and dissipation rates. A simple parameterisation by thermal masses isonly possible if the dependen
e of the 
orre
tions on the wave ve
tor is mild, leadingto plasma waves that behave like free quasiparti
les. The memory kernel 
an thenbe integrated in the narrow width limit, leading to ordinary Boltzmann equationswith intrinsi
 masses repla
ed by thermal masses. It is important to note that,though the system's approa
h to equilibrium follows a Boltzmann-type equation,101



the equation of state 
an di�er signi�
antly from that of a quasiparti
le gas. Theadditional 
ontributions 
an be interpreted as a shift in the ground state and 
aneven generate a negative pressure. When 
oheren
es in �avour spa
e are relevant,the quantum Boltzmann equations have to be formulated as matrix equations to in-
lude 
orrelations between di�erent �avours. Though quantum 
orre
ted Boltzmannequations may in prin
iple be used in this regime, they have to be derived 
onsis-tently either from the Kadano�-Baym equations or, equivalently, the von Neumannequation for the density matrix. Many often-made assumptions in 
urrent 
ompu-tations, in
luding the stru
ture of the spe
tral fun
tion, the parameterisation of thepropagators by distribution fun
tions, the smallness of the deviation from equilib-rium or the fa
torisation of the 
ollision terms into a deviation from equilibriumand a time dependent damping rate, are generally not valid and have to be justi�edindividually.
• In the broad resonan
e regime, Boltzmann equations 
ompletely fail to des
ribe thesystem. When the de
ay width of the resonan
es is large, their interpretation as(quasi)parti
les be
omes meaningless. O�-shell 
ontributions to gain- and loss rates
an be of the same order as on-shell pro
esses or even dominate over them. Thisbehaviour is expe
ted for strong 
ouplings, but 
an even o

ur in a weakly 
oupledat theory at su�
iently high temperature.We illustrated our results in a s
alar and a Yukawa model. In both 
ases an analyti
leading order expression for the imaginary part of the self energy, whi
h determines thegain and loss rates, 
ould be found. In 
ase of the Yukawa model, the expression is, toour knowledge, previously unknown in the literature. The nontrivial behaviour of theself-energies as fun
tions of temperature when in
luding higher order 
orre
tions showsthat the validity of approximations based on resummed leading order perturbation theoryis limited.Finally, we dis
ussed appli
ations of our results in 
osmology. They 
an be used fora quantum me
hani
al treatment of a wide range of phenomena, in parti
ular freezeoutpro
esses. We fo
used on two examples. In the 
ontext of reheating, our analysis allowsto understand under whi
h 
ir
umstan
es the appearan
e of large thermal masses 
anput an upper bound on the reheating temperature. This is the 
ase if a signi�
ant partof the energy transfer from the in�aton modes into the primordial plasma happens viaperturbative de
ay, quanta of the involved �elds have dispersion relations 
orrespondingto quasiparti
les and Landau damping by s
atterings is subdominant. In thermal lepto-genesis s
enarios, our results provide a toolkit for a full quantum me
hani
al 
omputationof the generated lepton asymmetry. The full 
omputation goes beyond the s
ope of thiswork, but will be addressed in the near future.
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Appendix
A

Right Handed Neutrinos and the
Seesaw Mechanism

One of the simplest possible modi�
ations of the Standard Model that 
an explain theobserved neutrino os
illations is provided by its extension by three singlet fermions NRi,often referred to as right handed neutrinos,
L = LSM + iN̄Ri 6∂NRi − λij l̄

I
LiNRjΦ̃

I − 1

2
MijN̄

c
RiNRj + h.c.. (A.1)Here Nc

R = CN̄T
R and Φ̃ = −i

(

Φ†σ2

)T . i and j are �avour indi
es and I marks the
omponents of the weak isospin doublet. The �elds NR are usually referred to as righthanded neutrinos. Adding them is in agreement with all symmetries of the StandardModel. While the �rst term after LSM in the above Lagrangian is simply the kineti
term for the right handed neutrinos, the se
ond and third term provide Yukawa 
ouplingsanalogue to those of the 
harged leptons. The last term is a Majorana mass term forthe NRi. In general, it is not possible to diagonalise λij , Mij and the Yukawa 
ouplingmatrix of the 
harged leptons simultaneously in �avour spa
e. In the following we 
hosea �avour base in whi
h Mij and the 
harged lepton Yukawa 
ouplings are diagonal, thelatter 
orresponding to a mass eigenstate base for the 
harged leptons after ele
troweaksymmetry breaking. We now write the weak isospin doublet lILi as
lLi =

(

νLi

eLi

)

. (A.2)
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After ele
troweak symmetry breaking, ν obtains a Dira
 mass term (mD)ij = λijv where
v id the Higgs expe
tation value. Then the mass terms for NR and νL 
an be written as

− 1

2

(

ν̄L N̄c
R

)

(

0 mD

mT
D M

)(

νc
L

NR

)

. (A.3)Here ea
h entry is of 
ourse a 3 × 3 �avour matrix, we suppressed �avour indi
es fornotational simpli
ity. The physi
al neutrinos 
orrespond to the mass eigenstates andare superpositions of NR and νL. If one assumes M ≫ mD, those superpositions areapproximately
νi ≈

∑

j

(UT )ij

(

(νLj − (νLj)
c) − (mD)ji

Mii
(Nc

Ri − NRi)

) (A.4)and
Ni ≈

∑

j

(mD)ji

Mii
(νLj + (νLj)

c) + (Nc
Ri + NRi) (A.5)where the sum is to be taken over j only and U is the PNMS matrix [101, 102℄ that relatesthe neutrino mass and �avour eigenstates. Sin
e M ≫ mD, the mass matrix for the states

να is approximately
mν ≈ m2

D

M
(A.6)and are very light 
ompared to the Ni with masses

Mi ≈ Mii. (A.7)The neutrinos are Majorana parti
les, meaning they are their own antiparti
les in thesense that N c
i = Ni and νc

i = −νi. The fa
t that large M lead to small mν gives theme
hanism the name seesaw me
hanism. If the (mD)ij are 
hosen at the ele
troweaks
ale, the experimental data1 implies Mii ≈ 1015 GeV. This is 
lose to the expe
ted s
aleof Grand Uni�
ation. Sin
e M is not prote
ted by any symmetry, it is expe
ted to havea value at that s
ale.Finally, it should be pointed out that, on experimental ground, at this point it isnot ne
essary to introdu
e three generations of NR be
ause only mass di�eren
es for theknown neutrinos have been measured. If the lightest a
tive neutrino is massless, two NRare su�
ient to explain the observed mass di�eren
es.
1See [4℄ for re
ent values. 104



Appendix
B

Some explicit Computations

B.1 Time Translation Invarian
e of ∆
−In [5℄ it has been proven that ∆−(x1, x2) is time translation invariant if it is analyti
 andthe self energy is time translation invariant. Here we present an alternative proof. Theinitial 
onditions of ∆−(x1, x2) do not depend on the initial 
onditions of the system, butare given by Eqs. (1.66)-(1.68),

∆−(x1, x2)|t1=t2 = 0 ,

∂t1∆
−(x1, x2)|t1=t2 = −∂t2∆

−(x1, x2)|t1=t2 = δ(x1 − x2) ,

∂t1∂t2∆
−(x1, x2)|t1=t2 = 0 .

Π−(x1, x2) is antisymmetri
 under ex
hange of the four ve
tors x1 and x2,
Π−(x1, x2) = −Π−(x2, x1). (B.1)The thermal bath is invariant under translations in spa
e and time
Π−(x1, x2) = Π−(x1 − x2) (B.2)and its properties are also invariant under the spatial parity transformation x1 ↔ x2

Π−(x1 − x2, t1 − t2) = Π−(x2 − x1, t1 − t2). (B.3)In 
ombination this implies that Π− is antisymmetri
 under an ex
hange of the time
omponents:
Π−(x1 − x2, t1 − t2) = −Π−(x1 − x2, t2 − t1). (B.4)105



From the Kadano� Baym equation it is know that
∆− (2,0)(x1, t1;x2, t2)+ω2∆−(x1, t1;x2, t2)+

∫ t1

t2

dt′Π−(x1−x′; t1−t′)∆−(x′, t′;x2, t2) = 0,(B.5)whi
h in a spatially homogeneous system simpli�es to
∆− (2,0)(x1−x2; t1, t2)+ω2∆−(x1−x2; t1, t2)+

∫ t1

t2

dt′Π−(x1−x′; t1−t′)∆−(x′−x2; t1, t2) = 0.(B.6)A Fourier transform in spatial momentum yields
∆− (2,0)

q
(t1, t2) + ω2∆−

q
(t1, t2) +

∫ t1

t2

dt′Π−
q
(t1, t

′)∆−
q
(t′, t2) = 0. (B.7)The above properties of ∆− imply

∆− (0,0)
q

(t1, t2)|t1=t2 = 0 (B.8)
∆− (1,0)

q
(t1, t2)|t1=t2 = 1 (B.9)

∆− (0,1)
q

(t1, t2)|t1=t2 = −1 (B.10)
∆− (1,1)

q
(t1, t2)|t1=t2 = 0 (B.11)

∆− (n,m)
q

(t1, t2)|t1=t2 = −∆− (m,n)
q

(t1, t2)|t1=t2 (B.12)Here ∆
− (n,m)
q means that the derivative of ∆−

q
is taken n times with respe
t to the �rsttime argument and m times with respe
t to the se
ond. If ∆− is analyti
 on the real axisit 
an be Taylor expanded in t1 and t2 and is equal to its Taylor series,

∆−
q (t1, t2) =

∞
∑

m,n=0

tn1 tm2
n!m!

∆−(n,m)
q (t1, t2)|t1=t2=0 (B.13)In order to prove that ∆− is translation invariant one has to show that it does not dependon the 
enter of mass 
oordinate, meaning

∂

∂(t1 + t2)
∆−

q
(t1, t2) = ∆−(1,0)

q
(t1, t2) + ∆−(0,1)

q
(t1, t2) (B.14)must vanish for any t1 and t2. Expanding ∆− a

ording to (B.13) yields

∆−(1,0)
q

(t1, t2) + ∆−(0,1)
q

(t1, t2) =
∞
∑

m,n=0

tn1 t
m
2

n!m!

(

∆−(n+1,m)
q

(t1, t2)|t1=t2=0 + ∆−(n,m+1)
q

(t1, t2)|t1=t2=0

)

. (B.15)106



For the rest of this se
tion we will use the short notation
∆(n,m)| = ∆−(n,m)

q
(t1, t2)|t1=t2=0. (B.16)One 
an see from (B.15) that it is now su�
ient to prove that

∆(n+1,m)| + ∆(n,m+1)| = 0 (B.17)for all m and n. The advantage of the expansion is that it allows to use the equal time
ommutation relations. The proof from now on goes along the following line: We assumethat
∆(p+1,q)| + ∆(p,q+1)| = 0 (B.18)for all p < n, q ≤ m. From that and (B.7) we 
an then proof that

∆(n+1,m)| + ∆(n,m+1)| = 0. (B.19)Applying the operator ∂p

∂tp1
+ ∂q

∂tq2
to (B.7) leads to

∆(p+2,q)(t1, t2) = −ω2∆(p,q)(t1, t2)

−
p
∑

u=1

p−u
∑

s=0

s
∑

t=0

Bp−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(p−u−s,q)(t1, t2)

+

q
∑

k=1

q−k
∑

l=0

l
∑

r=0

Bq−k
l Bl

r (−1)q−k−l Π(p+q−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

+

∫ t1

t2

dt′
(

∂p

∂tp1
+

∂q

∂tq2

)

(

Π−
q (t1 − t′)∆−

q (t′, t2)
)

. (B.20)Here Bi
j is the binomial 
oe�
ient (i

j

). The integral term will vanish for t1 = t2. It followsthat
∆(n+1,m)| + ∆(n,m+1)| = −ω2

(

∆∆(n−1,m) |+(n−2,m+1)|
)

+
m
∑

k=1

m−k
∑

l=0

l
∑

r=0

(

Bm−k
l Bl

r (−1)m−k−l Π(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

t1=t2

+

m+1
∑

k=1

m+1−k
∑

l=0

l
∑

r=0

(

Bm+1−k
l Bl

r (−1)m+1−k−l Π(n−2+m+1−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

t1=t2

−
n−2
∑

u=1

n−2−u
∑

s=0

s
∑

t=0

(

Bn−2−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−2−u−s,m+1)(t1, t2)

)

∣

∣

∣

t1=t2

−
n−1
∑

u=1

n−1−u
∑

s=0

s
∑

t=0

(

Bn−1−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−1−u−s,m)(t1, t2)

)

∣

∣

∣

t1=t2
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The k = m + 1 term in the third line and the u = n− 1 term in the �fth line 
an
el ea
hother. The �rst line is zero by assumption (B.18). Therefore the whole expression 
an berewritten as
m
∑

k=1

(

m−k
∑

l=0

l
∑

r=0

Bm−k
l Bl

r (−1)m−k−l Π(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

+

m+1−k
∑

l=0

l
∑

r=0

Bm+1−k
l Bl

r (−1)m+1−k−l Π(n−2+m+1−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

)
∣

∣

∣

∣

∣

t1=t2

−
n−2
∑

u=1

(

n−2−u
∑

s=0

s
∑

t=0

Bn−2−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−2−u−s,m+1)(t1, t2)

+
n−1−u
∑

s=0

s
∑

t=0

Bn−1−u
s Bs

t (−1)s−t Π(u+s−1)(t1 − t1)∆
(n−1−u−s,m)(t1, t2)

)
∣

∣

∣

∣

∣

t1=t2 (B.21)Now the sum over t in the last two lines 
an be performed. It 
an be 
he
ked that
s
∑

t=0

(−1)s−t Bs
t =

{

1 for s = 0
0 otherwise

. (B.22)Using this one 
an see that the last two lines never 
ontribute due to (B.18). The uppertwo lines 
an now be summarized as
m
∑

k=1

(

m−k
∑

l=0

l
∑

r=0

Bl
rΠ

(n−1+m−k−l)(t1 − t2)∆
(l−r,k+r−1)(t2, t2)

(

(−1)m−k−l Bm−k
l

+ (−1)m−k−l+1 Bm−k+1
l

)

+
m−k+1
∑

r=0

Bm+1−k
r Π(n−2)(t1 − t2)∆

(m−k+1−r,k+r−1)(t2, t2)

)

∣

∣

∣

∣

t1=t2 (B.23)
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whi
h equals
m
∑

k=1

(

Π(n−2)(t1 − t2)

(

∂m−k+1

∂tm−k+1
2

∆(0,k−1)(t2, t2)

)

+
m−k
∑

l=0

(

∂m−k−l+1

∂tm−k−l+1
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k+1
l

−
m−k
∑

l=0

(

∂m−k−l+1

∂tm−k−l+1
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k
l

)

∣

∣

∣

t1=t2
.(B.24)This 
an be simpli�ed to

m
∑

k=1

(

∂m−k+1

∂tm−k+1
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

+
∂

∂t1

m−k
∑

l=0

(

∂m−k−l

∂tm−k−l
2

Π(n−2)(t1 − t2)

)(

∂l

∂tl2
∆(0,k−1)(t2, t2)

)

Bm−k
l

)

∣

∣

∣

t1=t2
(B.25)and furthermore

m
∑

k=1

(

∂m−k+1

∂tm−k+1
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

+
∂

∂t1

(

∂m−k

∂tm−k
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

)

)

∣

∣

∣

t1=t2
(B.26)whi
h is equal to

(

∂

∂t1
+

∂

∂t2

) m
∑

k=1

∂m−k

∂tm−l
2

(

Π(n−2)(t1 − t2)∆
(0,k−1)(t2, t2)

)

∣

∣

∣

t1=t2
. (B.27)This equals

m
∑

k=1

∂m−k

∂tm−l
2

(

Π(n−2)(t1 − t2)
(

∆(1,k−1)(t2, t2) + ∆(0,k)(t2, t2)
))

∣

∣

∣

t1=t2
. (B.28)The sum in the bra
ket is zero due to (B.18). Therefore

∆(n+1,m)| + ∆(n,m+1)| = 0 (B.29)Obviously the whole proof relies on (B.18). This is 
ertainly true for p = 0, q = 0. It 
analso be veri�ed easily for p = 1,q = 0. From (B.20) it 
an be seen that (B.18) only needs109



to be ful�lled for all p < n. Therefore (B.20) allows to 
on
lude that (B.29) is ful�lledfor n + 1 if it is known to be true for n. Starting from ∆(0,0)|, ∆(1,0)|, and ∆(1,0| it 
an beproven for all
∆(n+1,0)| + ∆(n,1)|,meaning one 
an "go up" in derivatives with respe
t to the �rst argument. In 
ontrast tothat it relies on (B.18) for all q ≤ m. To prove the statement for a 
ertain order derivativein the se
ond argument it has to be known to be valid for that order derivative and notonly for lower orders. Hen
e one 
annot re
ursively 
on
lude for (or "go up" to) higherderivatives in the se
ond argument. But due to
∆(n,m)| = −∆(m,n)|one 
an �nd arbitrary ∆(0,n+1)| and ∆(1,n)| and then again pro
eed step by step to higherorder derivatives in the �rst argument. This way it be
omes 
lear that all 
oe�
ients inthe Taylor series (B.15) are zero and ∆−

q (t1, t2) is really time translation invariant.B.2 The Fermion Self EnergyWe translate the parameterisation (2.81)
ΣR

(V ) = aq(ω) 6q + bq(ω) 6u, ΣR
(S) = cq(ω)into the quantities

A =

(

1

4
tr
(

6qΣRq (ω)
)

) (B.30)
B =

(

1

4
tr
(

6uΣRq (ω)
)

) (B.31)
C =

(

1

4
tr
(

ΣRq (ω)
)

) (B.32)from whi
h one 
an obtain aq(ω), bq(ω) and cq(ω) via
a =

Bqu − Au2

(qu)2 − q2u2
(B.33)

b =
−Bq2 + Aqu

(qu)2 − q2u2
(B.34)

c = C (B.35)where qu = qµu
µ et
. The quantities de�ned above are generally 
omplex s
alars that 
anbe de
omposed as a = aR + iaI et
., where aI is de�ned via the dis
ontinuity.

aI = Imaq(ω) =
1

2i
(aq(ω + iǫ) − aq(ω − iǫ)) (B.36)110



We perform the 
omputation in the rest frame of the bath where u = (1, 0, 0, 0). From(1.106) it follows that
S>(p) = (1 − fF (p0))ρΨ(p) (B.37)
∆>(p) = (1 + fB(p0))ρφ(p). (B.38)From the KMS 
ondition (1.104) and the relation (B.99) one obtains
discΣRq (ω) =

(

e−βω + 1
)

Σ>q (ω), (B.39)leading to
discΣRq (ω) = −ig2

(

e−βω + 1
)

∫

d4p

(2π)4
S>(p)∆>(q − p)

= −ig2fF (−ω)−1

∫

d4p

(2π)2
(1 − fF (p0))(1 + fB(ω − p0))sign(p0)sign(ω − p0)( 6p + m2)

× δ(p2 − m2
2 )δ((q − p)2 − m2

φ)

= −ig2fF (−ω)−1

∫

d4p

(2π)2

1

2ω12ω2
(1 − fF (p0))(1 + fB(ω − p0))sign(p0)sign(ω − p0)( 6p + m2)

×
(

δ(p0 − ω1) + δ(p0 + ω1)
)(

δ(ω − p0 − ω2) + δ(ω − p0 + ω2)
) (B.40)with ω1 = (p2 + m2

2 )
1
2 and ω2 = ((q− p)2 + m2

φ)
1
2 . Performing the p0 integration leads to

−ig2fF (−ω)−1

∫

d3p
(2π)2

1

2ω12ω2
(

(1 − fF (ω1))(1 + fB(ω − ω1))sign(ω − ω1)(ω1γ
0 − pγpγpγ + m2)

×
(

δ(ω − ω1 − ω2) + δ(ω − ω1 + ω2)
)

− (1 − fF (−ω1))(1 + fB(ω + ω1))sign(ω + ω1)(−ω1γ
0 − pγpγpγ + m2)

×
(

δ(ω + ω1 − ω2) + δ(ω + ω1 + ω2)
)

) (B.41)Ea
h δ-fun
tion 
an only be non-zero for one sign of ω − ω1. Now we de�ne
nB(ω) = fB(|ω|), nF (ω) = fF (|ω|) . (B.42)We use

fB(−w) + fB(w) = −1 (B.43)
fF (−w) + fF (w) = 1 (B.44)111



and relations as sign(ω−ω1)f(ω−ω1)δ(ω−ω1−ω2) = f(ω2)δ(ω−ω1−ω2) et
. to rewrite
discΣRq (ω) = −ig2

∫

d3p
(2π)2

1

2ω12ω2
(

(1 − nF (ω1) + nB(ω2))
(

(ω1γ
0 − pγpγpγ + m2)δ(ω − ω1 − ω2)

+ (ω1γ
0 + pγpγpγ − m2)δ(ω + ω1 + ω2)

)

+ (nF (ω1) + nB(ω2))
(

(ω1γ
0 − pγpγpγ + m2)δ(ω − ω1 + ω2)

+ (ω1γ
0 + pγpγpγ − m2)δ(ω + ω1 − ω2)

)

) (B.45)This expression 
an be 
ompared to (3.6) and agrees with (3.6) in [72℄1.With an appli
ationin thermal leptogenesis in mind, we 
an set m2 = 0, leading to
cI = CI =

(

Σ̂(S)

)

I
= 0. (B.46)From this one 
an �nd for AI

AI = −g2

∫

d3p
(2π)3

2π

8ω1ω2

(

(1 − n1 + n2)
(

(ωω1 − qp)δ(ω − ω1 − ω2)

+ (ωω1 + qp)δ(ω + ω1 + ω2)
)

+(n1 + n2)
(

(ωω1 − qp)δ(ω − ω1 + ω2)

+ (ωω1 + qp)δ(ω + ω1 − ω2)
)

) (B.47)with the notation n1 = nF (ω1) and n2 = nB(ω2). This expression is as a whole antisym-metri
 in ω and allows to rewrite
AI = −g2

∫

d3p
(2π)3

2π

8ω1ω2

(

ωω1

(

(1 − n1 + n2)(δ1 + δ2) + (n1 + n2)(δ3 + δ4)
)

−sign(ω)qp((1 − n1 + n2)(δ1 − δ2) + (n1 + n2)(δ4 − δ3)
)

)(B.48)where
δ1 = δ(|ω| − ω1 − ω2), δ2 = δ(|ω|+ ω1 + ω2),
δ3 = δ(|ω|+ ω1 − ω2), δ4 = δ(|ω| − ω1 + ω2)

(B.49)1Eq.(B.45) di�ers from (2.22) in [7℄ by a di�eren
e in the proje
tors, probably due to a typo.112



At this point it is already 
lear that δ2 
an not 
ontribute. We 
hange to spheri
al
oordinates ϕ, ϑ, |p|. The ϕ integration is trivial and due to m2 = 0 one has |p| = ω1.Introdu
ing x = |p||q| cos(ϑ) = pq one 
an write
AI =

−g2

16π|q| ∫ ∞

0

dω1

∫ ω1|q|
−ω1|q| dx

(

δ(x − x01)
(

ωω1(1 − n1 + n2) − sign(ω)x(1 − n1 + n2)
)

+δ(x − x03)
(

ωω1(n1 + n2) + sign(ω)x(n1 + n2)
)

+δ(x − x04)
(

ωω1(n1 + n2) − sign(ω)x(n1 + n2)
)

)(B.50)where we used δi = ω2δ(x − x0i). The x0i 
an easily be determined as
x01 =

1

2
(q2 − ω2 + m2

φ) + ω1|ω| (B.51)
x03 =

1

2
(q2 − ω2 + m2

φ) − ω1|ω| (B.52)
x04 = x01. (B.53)This allows to perform the x integration,

AI =
−g2

16π|q|(∫1

dω1 (ωf1 + g1) +

∫

3

dω1 (ωf3 − g3) +

∫

4

dω1 (ωf4 + g4)
)

. (B.54)Here the subs
ript at the ∫
i
indi
ates whi
h δi determines integration limits for the ω1integration. The fi and gi are given by

f1 = ω1

(

1 − nF (ω1) + nB(|ω| − ω1)
) (B.55)

f3 = ω1

(

nF (ω1) + nB(|ω| + ω1)
) (B.56)

f4 = ω1

(

nF (ω1) + nB(ω1 − |ω|)
) (B.57)

g1 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) − ω1|ω|
)(

1 − nF (ω1) + nB(|ω| − ω1)
) (B.58)

g3 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) + ω1|ω|
)(

nF (ω1) + nB(|ω| + ω1)
) (B.59)

g4 = sign(ω)
(1

2
(ω2 − q2 − m2

φ) − ω1|ω|
)(

nF (ω1) + nB(ω1 − |ω|)
) (B.60)(B.61)It is easy to see from Eqs. (B.30), (B.31) and (B.50) that

BI =
−g2

16π|q|(∫1

dω1f1 +

∫

3

dω1f3 +

∫

4

dω1f4

) (B.62)113



f1 and g1 are 
ontributions from de
ay and inverse de
ays Ψ1 ↔ Ψ2φ and 
an lead to azero temperature part if m1 > mφ. f3, f4, g3 and g4 
ome from s
atterings in the plasma.It is interesting to note that
f1 = f4 (B.63)
g1 = g4 (B.64)despite the fa
t that they originate from di�erent pro
esses2. The fi are symmetri
 in ω,the gi antisymmetri
. In the rest frame of the bath (B.33 �) 
an be written as

a =
Bω − Aq2

(B.65)
b =

ω(A − Bω)q2
+ B (B.66)

c = C (B.67)
BI is symmetri
 in ω while AI is antisymmetri
. As a 
onsequen
e, aI is antisymmetri
while bI is symmetri
 whi
h is 
onsistent with [103℄ . The stem fun
tions of all fi, gi areknown analyti
ally, so the only remaining di�
ult task is the determination of the properintegration limits. This shall be done now.
δ(|ω| − ω1 − ω2) : In order for x01 to be a zero point, the 
ondition

|ω| − ω1 > 0 (B.68)has to be ful�lled. In any 
ase,
ω1 > m2 = 0. (B.69)In order for the x-integral to be non-zero it requires
|x01| < ω1|q|. (B.70)The solutions to |x01| = ω1|q| are

ω± =
1

2

q2 − m2
φ

q2
(|ω| ± |q|) (B.71)with q2 = ω2 − q2. One has to distinguish three di�erent regimes: For 0 < |ω| < |q| and

ω1 > 0 only ω+ is a solution, and it puts a lower bound on ω1 in order for the inequality(B.70) to be ful�lled, leading to ω1 > ω+. On the other hand the 
ondition (B.68) has2Note that despite the equalities (B.63) and (B.64) the Landau damping terms f4, g4 never lead to a
ontribution to Σ at zero temperature while the de
ay and inverse de
ay parts f1 and g1 
an 
ontributeas expe
ted. The reason lies in the di�erent integration limits, see (B.68) and (B.77)114



to be ful�lled, and sin
e for |ω| < |q| always ω+ > |ω|, there is no 
ontribution to theintegral from this region. For |q| < |ω| < (q2 +m2
φ)

1
2 both ω± < 0 and non of them makes(B.75) an equality. For |ω| > (q2 + m2

φ)
1
2 both ω± are always smaller than |ω| and (B.75)leads to ω− < |ω| < ω+. Therefore

∫

1

dω1 = θ(q2 − m2
φ)

∫ ω+

ω−

dω1 (B.72)
δ(|ω|+ ω1 − ω2) : Here the three 
onditions

|ω| + ω1 > 0 (B.73)
ω1 > m2 = 0 (B.74)

|x03| < ω1|q| (B.75)have to be ful�lled. In this 
ase (B.75) is made an equality for ω1 = −ω±. Again the sameregimes have to be distinguished. For |ω| < |q| only −ω− makes (B.75) an equality while
−ω+ is negative and not a solution. −ω− is positive as required by (B.74) and forms alower bound. For |q| < |ω| < (q2 +m2

φ)
1
2 both −ω± are positive and solutions. Due to its�rst order pole at |ω| = |q| the solution −ω+ is now the larger one and forms an upperlimit, leading to −ω− < ω1 < −ω+. For |ω| > (q2 +m2

φ)
1
2 both −ω± are negative and notsolutions of (B.75) as an equality. Then there is no 
ontribution to the integral from thatregion. Therefore

∫

3

dω1 = θ(−q2)

∫ ∞

−ω−

dω1 + θ(q2)θ(m2
φ − q2)

∫ −ω+

−ω−

(B.76)
δ(|ω|−ω1+ω2) : The situation here is exa
tly the same as for δ1, in parti
ular x04 = x01,ex
ept that the 
ondition |ω| − ω1 > 0 has to be repla
ed by

|ω| − ω1 < 0, (B.77)enfor
ing ω1 > |ω|. Again for |ω| < |q| only ω+ ful�ls (B.70), imposing a lower bound on
ω1 and for |ω| > (q2 + m2

φ)
1
2 both ω± are solutions. ω+ is the upper and ω− the lowerbound here. For 0 < q2 < m2

φ none of ω± is a valid solution. This time the 
ondition(B.77) sele
ts out the region q2 < 0, hen
e the integral is
∫

4

dω1 = θ(−q2)

∫ ∞

ω+

dω1 (B.78)
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The 
ombined expressions are
AI =

−g2

16π|q|(θ(q2 − m2
φ)
[

ωF1 + G1

]ω+

ω−

+ θ(−q2)
[

ωF3 − G3

]∞

−ω−

+ θ(q2)θ(m2
φ − q2)

[

ωF3 − G3

]−ω+

−ω−

+ θ(−q2)
[

ωF4 + G4

]∞

ω+

) (B.79)and
BI =

−g2

16π|q|(θ(q2 − m2
φ)
[

F1

]ω+

ω−

+ θ(−q2)
[

F3

]∞

−ω−

+ θ(q2)θ(m2
φ − q2)

[

F3

]−ω+

−ω−

+ θ(−q2)
[

F4

]∞

ω+

) (B.80)with
F1 =

ω1

β

(

ln
(

eβω1 + 1
)

− ln
(

1 − eβ(ω1−|ω|)
)

)

+
1

β2

(

Li2
(

− eβω1
)

− Li2
(

eβ(ω1−|ω|)
)

)(B.81)
F3 =

ω1

β

(

ln
(

1 − eβ(ω1+|ω|)
)

− ln
(

eβω1 + 1
)

)

+
1

β2

(

Li2
(

eβ(ω1+|ω|)
)

− Li2
(

− eβω1
)

)(B.82)
F4 = F1 (B.83)and

G1 = sign(ω)
m2

φ − q2

2β

(

− ln
(

1 + eβω1
)

+ ln
(

eβω1 − eβ|ω|
)

)

+
ωω1

β

(

ln
(

1 − eβ(ω1−|ω|)
)

− ln
(

1 + eβω1
)

)

+
ω

β2

(

Li2
(

eβ(ω1−|ω|)
)

− Li2
(

− eβω1
)

) (B.84)
G3 = sign(ω)

m2
φ − q2

2β

(

ln
(

1 + eβω1
)

− ln
(

eβ(ω1+|ω|) − 1
)

)

+
ωω1

β

(

ln
(

1 − eβ(ω1+|ω|)
)

− ln
(

1 + eβω1
)

)

+
ω

β2

(

Li2
(

eβ(ω1+|ω|)
)

− Li2
(

− eβω1
)

) (B.85)116



G4 = G1. (B.86)
Li2 is the dilogarithm fun
tion. The Fi as displayed here are not real in all areas ofthe parameter spa
e due to the 
hoi
e of di�erent bran
hes of the (di)logarithms, butthe imaginary terms always 
an
el sin
e the 
hoi
e of bran
h is always the same at bothintegration limits in (B.79), (B.80). This analyti
 result for ImΣR is in agreement withnumeri
al plots shown in [72℄ as well as our own numeri
al 
ross-
he
ks. The θ-fun
tionsare, as in (3.7), a 
onsequen
e of energy- and momentum 
onservation. We have negle
tedintera
tions within the bath by using bare Ψ2- and φ-propagators. In the quasiparti
leregime, those 
an to leading order be in
luded by the repla
ement mφ → Mφ(T ), 
f.Se
. 3.1.1 and the dis
ussion in Se
.2.3.3. Note that the analyti
 stru
ture we �nd disagreeswith [7℄. The author there 
laims that ImΣR

q
(ω) = 0 for q2 < −|m2

φ − m2
2 |. We 
annot
on�rm this.B.3 Analyti
 Properties of Propagators and Self Ener-giesIn the following we list a number of well-known, but 
onvention-dependent relations forthe propagators and self energies in equilibrium. All relations are not a�e
ted by thethree-dimensional Fourier transform. We therefore drop the argument q or x. The prop-erties of the fermioni
 propagators S and self-energies Σ are analogue.Propagators:

∆−(ω)∗ = −∆−(ω) , (B.87)
∆+(ω)∗ = ∆+(ω) , (B.88)
∆A(ω) =

i

2
∆−(ω) −P

∫ ∞

−∞

dω′

2π

∆−(ω′)

ω′ − ω
, (B.89)

∆R(ω) = − i

2
∆−(ω) − P

∫ ∞

−∞

dω′

2π

∆−(ω′)

ω′ − ω
, (B.90)

Re∆A(ω) = −Re∆R(ω) =
i

2
∆−(ω) , (B.91)

Im∆A(ω) = Im∆R(ω) = −P
∫ ∞

−∞

dω′

2πi

∆−(ω′)

ω′ − ω
, (B.92)

∆A(−ω) = ∆R(ω) . (B.93)
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Self-energies:
Π−(ω)∗ = −Π−(ω) , (B.94)
Π+(ω)∗ = Π+(ω) , (B.95)
ΠA(ω) = −1

2
Π−(ω) + P

∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.96)

ΠR(ω) =
1

2
Π−(ω) + P

∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.97)

ReΠA(ω) = ReΠR(ω) = P
∫

dω′

2πi

Π−(ω′)

ω′ − ω
, (B.98)

ImΠA(ω) = −ImΠR(ω) =
i

2
Π−(ω) , (B.99)

ΠA(−ω) = ΠR(ω) . (B.100)Relation to the Lapla
e transform:
Π̃−(s = −iω + ǫ) = ΠR

q
(ω) (B.101)

Π̃−(s = −iω − ǫ) = ΠA
q
(ω) (B.102)B.4 S+ in the narrowWidth Limit and the use of Cau
hy'sTheoremWhen performing the ω integration, all terms 
an be disse
ted into pie
es that, as fun
-tions of ω, are proportional to expressions of the form

∫ ∞

−∞

dω

2π

e±itωωk

(

(ω + iΓ)2 − ω2q) ((ω − iΓ)2 − ω2q) tanh

(

βω

2

)

, (B.103)where k 
an be zero, one or two and ± indi
ate di�erent alternatives. The integrand is�nite along the real axis. Along the imaginary axis, the �rst fa
tor grows on one side andfalls on the other due to the exponential. The tanh has an in�nite number of poles alongthe imaginary axis. To ta
kle the problem, we expand it in an in�nite series,
∫ ∞

−∞

dω

2π

∞
∑

n=0

e±itωωk

(

(ω + iΓ)2 − ω2q) ((ω − iΓ)2 − ω2q) βω

(βω
2

)2 + (π
2

+ nπ)2
. (B.104)All poles are of �rst order. In addition to the four poles ±ωq±iΓ there are in�nitely manypoles at ± i

β
(1 + 2n)π. To determine the integral along the real axis, we apply Cau
hy'stheorem. The exponential determines in whi
h halfplane the 
ontour has to be 
lose, and118



out of the four poles ±ωq ± iΓ always two 
ontribute. For even k their 
ontribution tothe integral is
i

4Γωq Im

(

eit(±ωq+iΓ)(ωq ± iΓ)k−1 tanh

(

β(ωq ± iΓ)

2

)) (B.105)Here the ± in the three pla
es at whi
h it shows up in (B.105) has to be 
hosen ina

ordan
e with the sign of the exponential in (B.103). For odd k the 
ontribution is
1

4ΓωqRe

(

eit(±ωq+iΓ)(ωq ± iΓ)k−1 tanh

(

β(ωq ± iΓ)

2

))

. (B.106)In addition there is an in�nite number of 
ontributions from the poles of the tanh whi
hare represented by the terms in (B.104). The 
ontribution from the n-th therm is
±i

2

β

e±iωntωk
n

(

(ωn + iΓ)2 − ω2q) ((ωn − iΓ)2 − ω2q) (B.107)
ωn = ± i

β
π(1 + 2n). (B.108)This allows to determine the integral with arbitrary pre
ision by taking into a

ountsu�
iently many terms. Obviously their 
ontribution de
reases sharply with in
reasing

n. Numeri
al 
he
ks show that for Γq ≪ m, the 
ontributions from the poles of the tanhare always many orders of magnitude smaller than those from ±ωq ± iΓ. Simply usingthe latter gives results in very good agreement with exa
t numeri
al solutions.
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