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Abstract

The energy band structure fundamentally influences the physical properties of a periodic
system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ul-
tracold quantum gases in optical lattices provide an ideal playground for the investigation
of a large variety of such intriguing effects. Experiments presented here address several is-
sues that require the systematic manipulation of energy band structures in optical lattices
with diverse geometries. These artificial crystals of light, generated by interfering laser
beams, allow for an unprecedented degree of control over a wide range of parameters.

A major part of this thesis employs time-periodic driving to engineer tunneling matrix
elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices.
Resonances emerging in the excitation spectrum due to the particularly strong forcing can
be attributed to multi-photon transitions that are investigated systematically. By chang-
ing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated.
In a triangular lattice this leads to geometrical frustration with a doubly degenerate
ground state as the simultaneous minimization of competing interactions is inhibited.
Moreover, complex-valued tunneling matrix elements can be generated with a suitable
breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases
mimic the presence of an electromagnetic vector gauge potential acting on charged par-
ticles. First proof-of-principle experiments reveal an excellent agreement with theoretical
calculations. In the weakly interacting superfluid regime, these artificial gauge fields give
rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex inter-
play between discrete and continuous symmetries. A thermal phase transition from an
ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the op-
posite hard-core boson limit of strong interactions the same system maps onto a quantum
spin-1/2 XY model. Owing to the quantum nature of the pseudospins, geometrical frus-
tration leads to a highly degenerate ground state which can result in exotic valence bond
spin-liquid phases. First signatures of an order-by-disorder effect emerge in this regime.

A complementary approach to the manipulation of the band structure is investigated
in a honeycomb potential. By rotating the quantization field of the system, the state-
dependent energy offset between the twofold atomic basis of the hexagonal Bravais lattice
can be adjusted. This purposeful breaking of inversion symmetry enables the continuous
opening of an energy gap at the Dirac points of the honeycomb band structure. In addition,
a striking influence of the band gap onto the lifetimes for atoms in the first excited energy
band is observed.

In the last part of the thesis, both experimental manipulation techniques are discussed
with respect to future applications for ultracold quantum gases in non-cubic optical lat-
tices.





Zusammenfassung

Die physikalischen Eigenschaften eines periodischen Potentials werden wesentlich von sei-
ner Bandstruktur beschrieben. Durch direkte Manipulation der Bandstruktur können sich
experimentell bislang nicht realisierte, hochgradig exotische Phänomene ergeben. Modell-
systeme ultrakalter Quantengase in optischen Gittern ermöglichen die Erschließung dieser
Regime aufgrund unübertroffener Möglichkeiten zur Kontrolle und Manipulation über wei-
te physikalische Parameterbereiche. Experimente im Rahmen dieser Arbeit beruhen auf
der gezielten Veränderung der Bandstruktur verschiedener optischer Gitter, künstlicher
Kristalle aus Licht, die durch interferierende Laserstrahlen erzeugt werden.

Zeitperiodisches Treiben optischer Gitter ermöglicht das Einstellen effektiver Tunnel-
matrixelemente und damit die kohärente Manipulation der entsprechenden Dispersions-
relation. Die hohe Intensität dieser experimentellen Methode führt zum Auftreten von
charakteristischen Mehrphotonenübergängen die im Rahmen dieser Arbeit systematisch
untersucht werden. Eine Vorzeichenänderung der Tunnelmatrixelemente ermöglicht die
Modellierung antiferromagnetischer Wechselwirkungen und geometrischer Frustration in
einem Dreiecksgitter, da die gleichzeitige Minimierung aller Wechselwirkungen hier un-
möglich ist. Darüber hinaus können durch das gezielte Brechen der Zeitumkehrsymmetrie
des periodischen Treibens auch komplexwertige Tunnelmatrixelemente erzeugt werden.
Die zugehörigen Peierlsphasen imitieren den Effekt eines elektromagnetischen Eichpoten-
tials auf geladene Teilchen. Im schwach wechselwirkenden Regime ergibt sich daraus ein
Ising-XY Modell mit alternierenden, voll einstellbaren magnetischen Flüssen und einem
komplexen Zusammenspiel kontinuierlicher und diskreter Symmetrien. In diesem System
konnte ein thermischer Phasenübergang von einem ferromagnetischen zu einem parama-
gnetischen Zustand nachgewiesen werden. Im gegenteiligen Grenzfall starker Wechselwir-
kung ergibt sich ein Quanten Spin-1/2 XY Modell. Geometrische Frustration führt hier zu
einem hochgradig entarteten Grundzustand aus dem sich eine exotische Quanten-Spin-
Flüssigkeitsphase ergeben kann. Erste Signaturen eines “Ordnung durch Unordnung”-
Effekts wurden beobachtet.

Ein komplementärer Ansatz zur Manipulation der Bandstruktur basiert auf einer Ro-
tation der Quantisierungsachse in einem hexagonalen Gitter. Hiermit kann ein zustands-
abhängiger Energieversatz zwischen der zweiatomigen Basis des Bravaisgitters eingestellt
werden. Diese Brechung der Inversionssymmetrie ermöglicht das kontinuierliche Öffnen ei-
ner Energielücke an den Dirac Punkten der Bandstruktur. Die Lebensdauer von Atomen
im ersten angeregten Band wird entscheidend von dieser Energielücke beeinflusst.

Im letzten Teil der Arbeit werden beide Manipulationstechniken im Hinblick auf zu-
künftige Experimente mit ultrakalten Quantengasen in nicht-kubischen optischen Gittern
diskutiert.
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1 Introduction

This chapter provides a broader context of research and discusses specific issues that

are addressed in this work. In addition, a short outline of the thesis is presented.

The Hilbert space of a quantum system grows exponentially with its size. This circum-
stance is owed to the possibility of superposition and renders the task of simulating
large quantum many-body systems with classical computers practically impossible. In
his keynote lecture on Simulating physics with computers in 1981 [6] Richard Feynman
phrased that “[...] nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.”

Indeed, as of today, the originally envisioned universal quantum Turing machine [7, 8]
is still far from being realized. Nonetheless, Feynmans seminal insight is widely regarded
as the inspiration of quantum simulation in general. Since then, tremendous advances
of creating, manipulating and detecting isolated quantum systems have been achieved.
These newly developed experimental tools provide an unprecedented degree of control over
quantum many-body systems and allow for a different approach to quantum simulation: In
contrast to quantum information processing in terms of discrete quantum logic operations,
the analog simulation of complex quantum systems relies on the direct modeling of a
specific Hamiltonian which mimics certain aspects of the behavior of other systems [9].

Interest in such tailoring of quantum model systems, coined quantum engineering, has
risen rapidly in recent years as quantum effects play an increasingly important role in
modern technology. So far, many complementary proposals and realizations for quantum
simulation of a wide range of physical problems have been conceived. Such model systems
include quantum dots [10–13], trapped ions [14–19], cavity arrays [20–22], linear optics
[23], superconducting circuits [24, 25] and nuclear spins [26, 27].

An essential and challenging aspect in the study of interacting quantum many-body sys-
tems is the understanding of solid state materials. Due to the complex interplay between
interaction effects and the underlying crystal symmetry, many intriguing phenomena of
solid state physics still remain to be explained. A particularly well suited ansatz for the
modeling of such spatially periodic systems is provided by neutral ultracold quantum
gases that are confined in optical lattices [28, 29]. These artificial crystals of light [30, 31],
generated by the interference pattern of laser beams, enable the probing of quantum
many-body physics in periodic potentials in a clean and controllable environment over a
wide range of accessible parameters.



Chapter 1 Introduction

The fast-paced theoretical and experimental developments in the field of quantum
degenerate gases were sparked by the groundbreaking achievement of Bose-Einstein con-
densation [32–34]. It marks the beginning of a new era to quantum optics, atomic and
molecular physics. Since then, spectacular progress has been made in this novel interdis-
ciplinary field of research. First fundamental studies on such macroscopic wave functions
focussed on collective excitations [35, 36], coherence properties [37], atom lasing [38] and
the formation of quantized vortices [39]. An important step towards the full control over
the physical parameters is given by the ability to precisely adjust both the sign and the
strength of interactions by means of Feshbach resonances [40, 41]. Together with the
generation of quantum degenerate Fermi gases [42–44] it enabled the investigation of the
crossover from a BEC (Bose-Einstein condensate) to the BCS (Bardeen-Cooper-Schrieffer)
phase [45–51].

Early studies of atoms confined in optical lattices had already been performed for ther-
mal ensembles [30, 31, 52, 53]. The regime of many-body physics, however, could not be
explored until the realization of quantum degenerate gases. The seminal proposal [54, 55]
and subsequent observation [56] of a quantum phase transition from a superfluid to a
Mott-insulating state opened this young field of research to the strongly correlated regime.
Further experiments include the observation of density-density correlations [57, 58], Fermi
surfaces [59] and the fermionic Mott insulator [60, 61]. Increasingly sophisticated prepa-
ration schemes and control mechanisms have since further expanded the possibilities for
quantum engineering with optical lattices. A paradigm example of this advancement is
the development of quantum gas microscopes that allow for the precise detection and
probing of lattice systems with single-site resolution [62–65]. An important aspect of this
rapid technological progress in the field of degenerate quantum gases in optical lattices is
the ability to tailor highly specified quantum many-body systems beyond the known solid
state materials. Such intriguing experiments include the observation of condensation at
nonzero quasimomenta in excited energy bands [66] and unconventional superfluidity [67–
69], the detection of an Anderson-Higgs-type amplitude mode [70, 71] and the realization
of negative absolute temperatures [72], only to name a few.

The symmetry of any kind of periodic potential has a profound influence on its proper-
ties. While first experiments with ultracold quantum gases dealt with simple cubic lattices
[73], a variety of different lattice systems have been realized so far, ranging from triangular
[74] and honeycomb [75, 76] geometries to chequerboard [66] and kagome lattices [77]. A
characteristic feature of periodic potentials in general is the emergence of an energy band
structure for allowed quasimomentum states that is closely connected to the geometry of
the lattice. A leitmotif of the experiments on ultracold atomic ensembles in optical lattices
performed within the scope of this thesis is the targeted manipulation of the energy band
structure. Hereby, different geometries and physical phenomena are explored. The main
topics of which are detailed in the following.

2
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Figure 1.1: With increasing strength of the periodic lattice driving for the four data sets, indicated

by the dimensionless forcing parameter in the upper right corners, more and more resonance features

appear in the excitation spectrum. All of these excitations can be attributed to ab initio calculations

of multi-photon transitions between the two lowest energy bands of the optical lattice (blue areas).

Periodically driven lattices

Pioneering experiments on periodically driven lattice systems have been performed within
the scope of this thesis. Time periodic modulation in general is an important concept for
the manipulation of ultracold atoms in optical lattices. Thereby, either the amplitude or
the phase of the lattice potential can be altered. Amplitude modulation of the lattice
depth is an established technique for the investigation of excitation spectra [78–80] and
pump probe experiments [81, 82]. Further applications include the realization of an or-
bital excitation blockade and algorithmic cooling [83], photon assisted tunneling [84] and
probing of correlations [85]. In contrast, phase modulation of lattice laser beams is well
suited for inducing spatial translations of the interference pattern. Here, we utilize phase
modulation for the creation of inertial time-periodic forces acting on the atomic ensemble
in the co-moving reference frame. In a time-averaged effective picture these oscillating
forces lead to a renormalization of tunneling matrix elements in both amplitude and sign
[86–92].

Tunneling suppression by periodic driving has been successfully demonstrated for ther-
mal atoms [93], Bose-Einstein condensates [94] and the superfluid to Mott insulator tran-
sition [95]. Beyond that, the tunability of tunneling matrix elements enables the coherent
manipulation of the time-averaged energy band structure. The application of this tech-
nique to a triangular lattice allowed for the striking emulation of frustrated classical
magnetism and a variety of Neél ordered phases [96].

An intriguing aspect of such time-periodic driving is the particularly strong forcing of
the quantum many-body system [97]. While this circumstance can result in detrimental
heating processes, it also opens the possibility to study the effects of strong-field physics

3
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in a quantum many-body model system. We explore the coherent manipulation of the
dispersion relation further and investigate the regime of strong forcing systematically
with respect to the emergence of multi-photon transitions (see Fig. 1.1).

Artificial gauge fields
The striking influence of gauge fields in quantum physics is impressively demonstrated by
the celebrated Aharonov–Bohm effect [98–100]. Here, a wave function is affected by an
electromagnetic field in regions that are well separated from the particles trajectory due
to the interaction with the electromagnetic vector gauge potential. This purely quantum-
mechanical effect has no Newtonian analogy. It tackles fundamental issues of quantum
physics such as the principles of locality and action. As of today, gauge fields represent
an integral constituent to physics in general.

The close ties to electromagnetism motivate the emulation of strong gauge fields with
quantum simulators, promising access to exotic condensed matter phenomena that are
predicted for extremely large field strengths such as the integer and fractional quantum
Hall effects [101–104] or the self-similar recursive energy spectrum of the so-called Hof-
stadter butterfly [105, 106].

Due to the lack of electric charge, ultracold atomic ensembles respond differently to
electromagnetic fields as, e.g., a gas of electrons. Nonetheless, neutral atoms may be uti-
lized for the mimicking of such effects. An intuitive approach for the simulation of gauge
fields is the application of rotation based on the similarity between the fictitious Coriolis
force and the Lorentz force [107–113]. However, a fundamental limitation of this tech-
nique is caused by centrifugal forces that cannot be compensated easily for high rotation
frequencies. A different method for the generation of artificial gauge fields relies on the
coupling of internal atomic states by Raman transitions. Such schemes were successfully
applied to a variety of bulk [114–116] and optical lattice systems [117–122].

Within the scope of this thesis, we have developed a new and highly versatile approach
to the creation of gauge fields: The influence of a vector gauge potential on a charged
particle in a lattice potential is described within the framework of the Peierls substitu-
tion. In analogy to the Aharonov-Bohm effect discussed above, a wave function acquires
a directional complex phase for each tunneling process between lattice sites. We have
engineered complex-valued tunneling matrix elements and, thus, emulated the presence
of a gauge field by expanding the previously described periodic driving scheme. The ad-
vantages of this technique are its independence from any internal atomic structure as well
as the tunability of the simulated vector potential. The magnetic flux corresponding to
the simulated gauge field is given by the summation of Peierls phases around a lattice
plaquette. By applying the driving scheme to a triangular optical lattice, a system of fully
tunable staggered synthetic magnetic fields with strengths on the order of a flux quan-
tum have been realized. An investigation of intrinsic discrete and continuous symmetries
gives rise to an Ising-like phase transition from an ordered to an unordered state with a
magnetization behavior similar to ferro- and paramagnetism.
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Frustrated quantum magnetism

?
Figure 1.2: Frustrated quantum antifer-

romagnetism on a triangular lattice pla-

quette. While a pair of spins may align

antiparallel, the third spin cannot be an-

tiparallel to both of them.

The simultaneous minimization of all interaction
energies in ordered many-body systems can be in-
hibited due to constraints imposed by the under-
lying geometry. Such geometrical frustration [123]
gives rise to a multitude of intriguing phenomena
in condensed matter physics. A paradigm example
is quantum antiferromagnetism on a triangular lat-
tice [124]. Here, the sign of the exchange coupling
favors an antiparallel alignment of quantum me-
chanical spins [125, 126]. The inability to fulfill
this condition, illustrated for a single triangular
plaquette in Fig. 1.2, leads to a huge ground state
degeneracy which may prevent ordering even at
zero temperature. A possible ground state of such
disordered systems emerges for the entanglement
of pairs of spins into valence bond states which
preserve the lattice symmetries [127]. These so-called valence bond spin liquids are ex-
pected to play a crucial role for high-Tc superconductivity [128–130] and may be utilized
for topological quantum computation [131].

Frustrated quantum magnetism is inherently difficult to observe in solid state materi-
als. First signatures of quantum spin liquid phases have been detected in geometrically
frustrated triangular [132–136] and kagome-ordered materials [137, 138] using spectro-
scopic methods. Nonetheless, an emulation of quantum magnetism with ultracold atoms
in optical lattices promises deep insights into such highly nontrivial states of matter. For
example, a fermionic Mott insulator can mimic quantum magnetism in terms of pseudo
spins comprised of two different internal states. However, this approach requires tempera-
tures below the weak superexchange spin coupling. While these ultra-low temperatures are
still far out of reach even for degenerate quantum gases, short-range quantum magnetism
could recently be simulated by utilizing a redistribution of entropy [139].

In experiments presented within this thesis, we pursue a fundamentally different tech-
nique for the emulation of quantum magnetism in optical lattices by mapping the site
occupation in the strongly correlated regime. Here, an antiferromagnetic exchange inter-
action can be introduced by engineering the tunneling matrix element between adjacent
lattice sites with the aforementioned periodic driving scheme [140]. In a similar context,
a phase transition of antiferromagnetic one-dimensional quantum pseudo spin chains has
been studied with ultracold atoms [141]. As of today, the striking influence of geometric
frustration and the formation of disordered quantum phases, however, remains an un-
charted territory. Experimental results hint towards the feasibility of our approach and
pave the way towards further systematic studies of artificial quantum magnetism. Beyond
that, first promising signatures of a related order-by-disorder effect could be observed.
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Figure 1.3: Tuning of Dirac points in the state-dependent honeycomb lattice. By adjusting the

effective magnetic quantum number m̃ the inversion symmetry of the lattice can be broken such that

a band gap at the vertices of the first Brillouin zone opens up.

Tuning of Dirac points

Close-packing of equal spheres is a fundamental concept of geometry with a multitude of
diverse manifestations in nature. In solid state physics, in particular the two-dimensional
honeycomb lattice has attracted an enormous amount of attention in recent years as
it is the basis for graphene [142]. This monolayer of carbon, an indefinitely large aro-
matic molecule, exhibits a variety of remarkable properties that are based on its two-
dimensionality and the peculiar honeycomb symmetry [143–145]. Owing to the twofold
atomic basis of the lattice structure, the two lowest energy bands touch at the vertices of
the Brillouin zone. These so-called Dirac points represent a topological singularity that
gives rise to massless relativistic quasiparticles [146].

The versatile possibilities for the manipulation of potential landscapes for ultracold
atoms in optical lattices enable the in situ investigation of such peculiar systems [75]. So
far, further observations include Klein tunneling [147], zitterbewegung [148], the merging
of Dirac points [76] and the mapping of the Berry phase in momentum space [149]. Only
recently, Haldane’s model [150] could be emulated by a combination of inversion- and
time-reversal symmetry breaking in a brick lattice [151].

Within the scope of this thesis we have implemented a novel technique for the manip-
ulation of a state-dependent honeycomb potential and its exceptional band structure. An
effective quantum number m̃ is created due to the projection of the state-dependent vecto-
rial light shift onto the quantization axis of the quantum many-body system. By rotating
the quantization field we tune the effective quantum number and, thus, the energy offset
between the twofold atomic basis. As illustrated in Fig. 1.3, the control over the inversion
symmetry allows the continuous opening of energy gaps at the Dirac points. Benchmark
experiments verify the applicability of the tuning scheme and probe the spatial ordering of
atoms. Further studies include the observation of decay mechanisms from excited energy
bands with respect to the presence of Dirac points. The addressed physical mechanisms
behind such decay processes still pose an open question.
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In conclusion, the research presented in this thesis addresses several unresolved issues
concerning quantum simulation of solid state systems including quantum magnetism,
spontaneous symmetry breaking, quantum phase transitions, topological band structures
and decay mechanisms. The application of novel manipulation techniques paves the way
for further investigations in this dynamic field of research.

Structure of the thesis
The second chapter provides an introduction to the experimental setup and basic concepts
concerning the optical lattice setup at hand. The main results of this work regarding
experiments in a variety of different lattice systems are presented in the chapters 3 to
6. Chapter 7 gives a short outlook towards future experiments. Additional results and
considerations are presented in the appendices. A brief outline of the contents of each
chapter is provided in the following. For the readers convenience, these abstracts are
repeated at the beginning of the respective chapters.

Chapter 2 – Ultracold Bosons in optical potentials

This chapter briefly introduces the experimental setup for the creation of Bose-Einstein
condensates and reviews the concepts of periodic optical potentials. Properties of the im-
plemented running-wave three-beam setup that generates an optical lattices with hexago-
nal geometry are discussed. Several fundamentally different realizations of the three-beam
setup, namely the state-independent triangular lattice, the state-dependent honeycomb
lattice and the purely state-dependent polarization lattice are presented together with
a short survey of other possible configurations. Furthermore, the detection scheme used
in all experiments throughout this thesis, relying on time-of-flight resonant absorption
imaging, is established.

Chapter 3 – Bose-Einstein condensates in strongly driven lattices

In this chapter we develop the concept of far off-resonant time-periodic driving of optical
lattices. We explain how this technique allows for the experimentally feasible engineer-
ing of tunneling matrix elements and, thus, of the dispersion relation in a time-averaged
effective picture. Benchmark experiments for the verification of driving schemes are pre-
sented and discussed by means of the observed momentum distribution. Beyond that, we
investigate the strong driving regime with respect to the occurrence of multi-photon tran-
sitions for different lattice dimensionality. We find an excellent agreement with ab inito

calculations of the transition energies and discuss implications to further experiments.

Chapter 4 – Engineering artificial gauge fields

Here, we experimentally realize complex-valued tunneling matrix elements in optical lat-
tices by a time-asymmetric far off-resonant driving technique that allows for the emulation
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of artificial gauge fields. The feasibility of this approach is verified with excellent agree-
ment to ab initio calculations in a proof-of-principle experiment on a one-dimensional
lattice. We extend the concept to the triangular lattice, creating fully tunable gauge in-
variant staggered fluxes. This system represents the geometrically frustrated Ising-XY
model that constitutes a generic spin model involving two coupled symmetries. Their as-
sociated order parameters are derived and analyzed with respect to the staggered flux
strength and the temperature of the atomic ensemble.

Chapter 5 – Frustrated quantum antiferromagnetism in a triangular lattice

In this chapter we investigate the possibility of emulating frustrated quantum antifer-
romagnetism on the triangular optical lattice. In the hard-core boson limit of strong
repulsive interactions the mapping of classical XY spins continuously approaches a quan-
tum spin-1/2 XY model. On-site interactions are increased by an additional perpendicular
optical lattice. We discuss limitations of the accessible parameter space for the harmonic
lattice driving in the strongly correlated regime and probe the transition from a weakly
interacting superfluid to a Mott-insulating state in both the static and the driven system.
An analysis of quantum noise correlations reveals the feasibility of our approach. First
hints towards an order-by-disorder effect in the frustrated system are observed.

Chapter 6 – Probing Dirac points in the state-dependent honeycomb lattice

Here, we present a novel method of controlling the geometry of a state-dependent honey-
comb lattice: The energy offset between the two sublattices of the honeycomb structure
can be tuned by rotating the atomic quantization axis. This enables us to continuously
tune between a homogeneous graphene-like honeycomb lattice and a triangular lattice
and to open an energy gap at the characteristic Dirac points. We probe the symmetry of
the lattice with microwave spectroscopy techniques and investigate the behavior of atoms
excited to the second energy band. We find a striking influence of the energy gap at the
Dirac cones onto the lifetimes of atoms in the excited band.

Chapter 7 – Towards the realization of exotic quantum phases by lattice driving

This chapter provides an outlook on further possibilities for the engineering of quantum
gas systems in the three-beam lattice. The previously introduced concepts of periodic
lattice driving and the rotation of the quantization field are applied to state-dependent
lattice systems. In addition, an expansion of the three-beam lattice setup is discussed that
gives rise to peculiar lattice geometries.
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2 Ultracold bosons in optical
potentials

This chapter briefly introduces the experimental setup for the creation of Bose-Einstein

condensates and reviews the concepts of periodic optical potentials. Properties of the

implemented running-wave three-beam setup that generates an optical lattices with

hexagonal geometry are discussed. Several fundamentally different realizations of the

three-beam setup, namely the state-independent triangular lattice, the state-dependent

honeycomb lattice and the purely state-dependent polarization lattice are presented

together with a short survey of other possible configurations. Furthermore, the detection

scheme used in all experiments throughout this thesis, relying on time-of-flight resonant

absorption imaging, is established.

Ultracold quantum gases in optical lattices offer the unique possibility to study many-body
physics in a clean and well controllable environment and a widely adjustable parameter
space. Since first proof of principle studies [30, 31, 52, 53], optical lattices have evolved into
a powerful tool for quantum simulation of condensed matter systems and novel quantum
regimes [28, 29, 152]. These periodic potential landscapes are generated by interfering
laser beams and consist of up to many thousands of microtraps. Atoms are confined to
such lattice sites by the electric dipole force resulting from the oscillating electric light
field acting on an induced atomic dipole moment.

In this chapter we describe the experimental setup used throughout this thesis with
special emphasis on the running-wave three-beam optical lattice system. Atom-photon
interactions leading to conservative optical dipole potentials for neutral atoms are in-
troduced with regard to polarization modes and an effective magnetic field picture. We
shortly discuss the description of non-interacting as well as interacting particles in periodic
potentials, leading to the formulation of the well-known Bose-Hubbard model. Fundamen-
tal properties of optical lattice potentials with hexagonal symmetry are developed. We
present three distinct realizations of such lattice structures arising from the three-beam
lattice setup. Finally, we describe detection schemes relying on time-of-flight absorption
imaging.

Parts of this chapter concerning the properties of the hexagonal optical lattice have
been published in [74],[75] and [5] and are presented in the theses of C. Becker [153],
P. Soltan-Panahi [154] and J. Struck [155]. Experimental data presented in section 2.5
has been acquired and processed by the author.



Chapter 2 Ultracold bosons in optical potentials

2.1 Experimental preparation of Bose-Einstein

condensates

Degenerate quantum gases of an increasing number of atomic species are routinely cre-
ated by confining a large, pre-cooled ensemble of atoms in magnetic or optical traps and
performing evaporative cooling until quantum degeneracy is reached. All experiments
described throughout this thesis start with a Bose-Einstein condensate of 87Rb atoms
in an optical dipole trap. This section briefly describes the experimental apparatus and
procedure to reach the regime of quantum degeneracy and produce stable and pure Bose-
Einstein condensates with an additional spin degree of freedom.

The apparatus on which all experiments presented in this thesis were performed was
initially conceptualized and built by M. Erhard [156] and H. Schmaljohan [157]. It was
extended further within the scope of the PhD theses of J. Kronjäger [158], C. Becker [153],
P. Soltan-Panahi [154] and J. Struck [155].

At the heart of the experiment lies the vacuum setup. As widely used in apparatuses
designed to create degenerate quantum gases it consists of a combination of two glass
chambers that are linked by a differential pumping stage. This segmentation serves the
purpose of being both able to capture large atomic ensembles while maintaining a vacuum
background pressure as small as possible in the presence of the extremely fragile ultracold
atomic ensemble. Here, the vacuum chambers are aligned vertically, whereby the upper
vacuum chamber serves as an atomic reservoir. A constant background pressure of rubid-
ium atoms at approximately 10−9 mbar is maintained by electrically heating a dispenser
that is mounted inside the chamber. At the center of the chamber, a two-dimensional
magneto-optical trap (MOT) captures and pre-cools a fraction of the background atoms
along a thin vertical line directly above the differential pumping stage. The captured
atoms are continuously transferred to the second glass cell below the narrow pumping
stage by pushing them with a nearly resonant laser beam. Due to the absence of rubidium
background gas this lower glass cell, the so-called science chamber, maintains a vacuum
pressure around 10−11 mbar which is sufficient to rule out significant loss-mechanisms re-
lated to collisions of the BEC with hot background atoms. Here, the atoms are captured
and cooled in a conventional, three dimensional MOT.

An experimental cycle for the creation of Bose-Einstein condensates always starts with
the loading of the MOT in the science chamber, which typically takes between 10 and 15
seconds collecting up to 1010 atoms. During this time, the power of both the cooling light
of the MOT and the pushing laser beam is lowered in three steps in order to minimize
heating due to radiation pressure of re-emitted photons. Subsequently, the atomic ensem-
ble is subjected to a short period of Sysiphus-cooling in an optical molasses [159–161].
All atoms are then optically pumped from the F = 2 hyperfine manifold into the F = 1
ground state manifold of 87Rb. From here, atoms in the low-field seeking hyperfine state
|F = 1,mF = −1〉 are loaded into a magnetic trap [162]. By compressing the magnetic
trap and performing radio frequency induced forced evaporation for 12 to 20 seconds the
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atomic ensemble is brought close to the critical temperature of Bose-Einstein condensation
but still remains a thermal gas. Nonetheless, with a sufficiently large phase space density
the atoms are now effectively loaded into a red-detuned crossed dipole trap. Here, the
final step of evaporative cooling is performed by exponentially lowering the dipole trap
power in approximately six seconds until a pure BEC with no discernable thermal frac-
tion is produced. Typically, the whole experimental cycle takes around 40 to 50 seconds
leading to an overall atom number of 5×105 to 3×104, depending on the loading time of
the MOT and the dipole trap configuration. Experiments presented in this thesis have
been performed in two different dipole trap setups, that will be described in the following
section.

2.2 Atom-photon interaction: dipole potentials

Conservative potential landscapes for neutral atoms can be designed by utilizing electric
dipole interactions with laser light fields. Even tough ground state atoms such as 87Rb do
not possess a permanent electric dipole moment, the presence of an oscillating electric field
of a laser leads to an induced electric dipole moment. On the other hand, the interaction
of the induced dipole moment with the electric field results in an energy shift of the atomic
states in accordance with the Stark effect (often referred to as the AC Stark shift).

2.2.1 Dressed state approach

Multi-level atomic systems interacting with a light field are well described in a fully
quantized manner by the dressed-state approach [163, 164]. Here, the energy shift of a
dressed-state, the new eigenstate of the coupled quantized systems of atom and light field,
is given by perturbation theory. To first order, the energy shift of an i-th state

∆Ei =
∑

j 6=i

| 〈j| ĤAP |i〉 |2
Ei − Ej

, (2.1)

where ĤAP = −d̂ · Ê is the atom-photon interaction Hamiltonian, Ê the electric field
operator and d̂ = −er̂ the dipole operator [154, 165]. A detailed review on the topic of
such light-matter interaction regarding optical traps is given by Ref. [166]. In the case of
87Rb the generation of strong dipole potentials can be achieved by coupling the 52S1/2

ground state to the 52P1/2 and 52P3/2 states. The two transition lines are commonly
referred to as the D1 and D2 lines at 780.24 nm and 795.98 nm respectively [167]. The
Wigner-Eckart theorem allows for the calculation of the numerator in Eq. (2.1). For the
optical detuning of the light field being comparable or larger than the hyperfine splitting
of the excited states this leads to an expression of the dipole potential for the atomic
hyperfine state |F,mF 〉 of

Vdip(r) = −πc2

2
I(r)

(

D1 + 2D2 − gFmFP(r) [D1 − D2]
)

(2.2)
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Chapter 2 Ultracold bosons in optical potentials

with the speed of light in vacuum c and the Landé g-factor gF = ∓1/2 of the atomic
ground state F = 1, 2 respectively. The electric field operator Ê in Eq. (2.1) has been
replaced by a spatially varying light field E(r) of intensity I(r) and frequency ωL. We
have used the abbreviation

D1,2 =
ΓD1,2

ω3
D1,2

(

1
ωD1,2

− ωL

+
1

ωD1,2
+ ωL

)

(2.3)

for the contributions of the D1 and D2 lines with transition frequencies ωD1,2
and their nat-

ural line widths ΓD1,2
. The different prefactors of the D1,2 stem from the Clebsch-Gordan

coefficients of the corresponding transitions. The equations (2.2) and (2.3) immediately
reveal the behavior of the dipole force. While a light field that is blue detuned with respect
to a predominant atomic transition, i.e., in the discussed case of the rubidium D-lines,
ωD1,2

> ωL exerts a repulsive dipole force on the atoms, a red detuned light field with
ωD1,2

< ωL serves as an attractive potential.
It is important to note that neither the application of the commonly used rotating wave

approximation for small detunings, i.e., |ωD1,2
− ωL| ≪ |ωD1,2

+ ωL| or setting (ωD1,2
+

ωL)−1 ≈ 0 in Eq. (2.3) nor neglecting the fine structure splitting for large detunings
are valid simplifications in the present case. Indeed for the laser wavelengths employed
in the experiments presented here, both effects are non-negligible. Other possible, but
energetically higher, transitions in rubidium with wavelengths at 420 nm and below are
omitted in the considerations as their contribution to the energy shift is well below 1%.

2.2.2 Polarization modes

In Eq. (2.2) we have introduced the polarization of the light field as

P(r) ≡ Iσ+(r) − Iσ−(r)
I(r)

(2.4)

whereby P = 0 and ±1 for π and σ± polarization respectively. In the above expression,
the light intensity I(r) was split up into separate intensity modes of different polarizations
p = {π, σ+, σ−}. They derive from an arbitrary light field according to

Ip(r) =
cǫ0

2

∫ 2π/ωL

0
|E(r, t) · εp(t)|2dt (2.5)

where ǫ0 denotes the vacuum permittivity. Here, the time-dependent electric field was
projected onto a basis polarization vector εp before time averaging. The polarization
basis is defined with respect to a quantization axis. This preferred direction is commonly
provided by a magnetic quantization field B(r) that is applied to the ensemble of atoms.
In the case of a quantization axis pointing along the (Cartesian) z-direction the three
polarization basis vectors are given by the three-dimensional Jones vectors [168]

επ = (0, 0, 1) and ε
σ

± = (1,±i, 0)/
√

2. (2.6)
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For the general description of a quantization field Bqa(r) pointing in an arbitrary direc-
tion, polarization basis vectors can be obtained by transforming the Jones vectors such
that the basis vector representing the π-polarization is again aligned in parallel to the
quantization axis, i.e., επ||Bqa(r). This transformation can be achieved by a suitable ro-
tation of the basis vectors. Such a rotation in three dimensions is described by the three
Euler angles α, β, γ [5, 154]. Much alike the aircraft principle axes yaw, pitch and roll, the
transformation corresponds to a sequence of elemental rotations by the three-dimensional
Cartesian rotation matrices Ri:

εP → Rz(γ)Rx(β)Ry(α)εP . (2.7)

As a reference for the rotation we set the default orientation of the quantization field
along the z-axis, where the Euler angles are α = β = γ = 0. A quantization axis rotated
by two of the three Euler angles is illustrated in Fig. 2.3. In section 2.4 as well as chapter
6 and 7 we will elaborate the influence of the direction of the quantization axis further.
Finally, the total light intensity I(r) as introduced in Eq. (2.2) and (2.4) is simply given
by the sum of all polarization intensity modes I(r) =

∑

p Ip(r).

2.2.3 Effective magnetic field

For a more intuitive picture of the dipole force, Eq (2.2) can be written as a sum of a
state-independent and a state-dependent part, corresponding to the potential landscape
of the total intensity Vint(r) ∝ I(r) and the intensity of the circular polarization modes
Vpol(r) ∝ I(r)P(r). Moreover, since the strength of the state-dependent part of the po-
tential depends linearly on the magnetic quantum number mF , it can be mapped onto an
effective magnetic field in close analogy to the linear Zeeman effect [5, 75, 154]

Vdip(r) ≡ Vint(r) + Vpol(r)

= Vint(r) + gFmFµBBeff(r),
(2.8)

where µB denotes the Bohr-Procopiu-magneton such that the effective magnetic field is

Beff(r) = −ηVint(r)P(r)/µB (2.9)

with

η =
D1 − D2

D1 + 2D2

. (2.10)

From Eq. (2.10) it is immediately evident that the factor η quantifying the contribution of
the effective magnetic field to the total potential vanishes for very large detunings where
the difference of both predominant atomic transition lines is not resolved and D1−D2 ≈ 0.
However, for wavelengths employed in the experiment, e.g., 830 nm in the case of the three-
beam lattice laser (see section 2.3) where η ≈ 0.13 the contribution of the state-dependent
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potential has a significant influence on the potential landscape. Effects arising from the
presence of the effective magnetic field are treated in more detail in section 2.3 and in the
chapters 6 and 7.

2.2.4 Optical dipole traps

The starting point of all experiments during this thesis is a Bose-Einstein condensate of
87Rb atoms that is confined in a far detuned optical dipole trap. With a wavelength of
1064 nm the detuning of the laser light that is used for the generation of the dipole trap
potential is large compared to all atomic transitions in 87Rb. Thus, the dipole potential
can be regarded as conservative in good approximation as well as state-independent. The
development of such far-off-resonant dipole traps constitutes a crucial prerequisite for the
investigation of physical processes in quantum gases involving the spin degree of freedom.
In contrast, magnetic traps only confine atoms in the a low field seeking hyperfine state
and yield largely differing trapping potentials for states with differing magnetic quantum
number.

Experimentally, dipole traps as well as optical lattice potentials are commonly created
by Gaussian laser beams that are focussed on the atomic ensemble. The intensity profile
of a radially symmetric Gaussian laser beam propagating along the z-direction with a
beam power P and wavelength λL is

I(ρ, z) =
2P

πw(z)2
exp

(

−2ρ
w(z)2

)

(2.11)

where w(z) = w0

√

1 + (z/zR)2 denotes the beam waist along the line of propagation with
a minimal waist of w0 at the focus of the beam. The Rayleigh range zR = πw2

0/λL gives the
distance from the focus where the cross section of the beam has doubled. As inferred by
Eq. (2.11), the trapping potential arising from such a single Gaussian beam is very asym-
metric. The intensity gradient along the axis of propagation is generally much smaller than
in the radial direction. Within the scope of this thesis experiments were thus performed
in crossed dipole trap setups that allow for more homogeneous trapping geometries. Here,
two perpendicular Gaussian laser beams with wavelengths of 1064 nm intersect in the
horizontal plane at their respective focusses. It is ensured that the frequencies of both
beams differ by at least 100 MHz in order to avoid interference effects.

Two different crossed dipole trap setups were used throughout this thesis. The first
being a circular crossed dipole trap where both Gaussian beams are identical in geome-
try and of radially symmetric shape as in Eq. (2.11). Assuming equal beam powers and
neglecting the axial confinement of each beam as z ≪ zR, the resulting intensity profile
reads

I(r) =
2P
πw2

0

exp

(

−2y2

w2
0

)[

exp

(

−2x2

w2
0

)

+ exp

(

−2z2

w2
0

)]

. (2.12)
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Figure 2.1: Wannier functions and Bose-Hubbard model. a illustrates the simple one-dimensional

optical lattice. Two counterpropagating laser beams interfere and create a sinusoidal potential with

lattice wells separated by half the laser wavelength. In accordance with the Bose-Hubbard model,

atoms can tunnel between lattice sites with the tunneling matrix element J . If more than one atom

is present at the same lattice site the energy is raised by multiples of the on-site interaction energy

U . The additional harmonic confinement is not depicted. Part b shows one-dimensional Wannier

functions for three different lattice potentials. For increasing lattice depth, the Wannier states localize

strongly at a single lattice site and the overlap to adjacent sites vanishes. The subfigure was inspired

by Ref. [153]. In c the behaviour of the on-site interaction energy and the tunneling matrix element

of a one-dimensional lattice are plotted with respect to the lattice depth V0.

The Cartesian coordinate system where the dipole trap is aligned in the xz-plane and
gravity points opposite to the y-axis is maintained throughout this thesis. For the very
weak dipole potentials used here, the gravitational pull on the trapped atoms contributes
significantly to the overall potential Vtot(r) = Vdip(r) + mgy leading to a shift of the
potential minimum away from the optical axis. This so called gravitational sag results
in a lower boundary for the beam power of an optical dipole trap and thus limits the
achievable harmonic trap frequencies ωi ≡

√

∂2
xi
Vtot(r)/m. With minimal beam waists

of both w0 ≈ 37µm the smallest possible trap frequencies of the obtained potential are
ωh = 2π×88 Hz in the horizontal directions and ωv = 2π×72 Hz in the vertical direction.

In general, it is desirable to counteract the effect of the gravitational sag in order
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to reach weaker overall harmonic confinements for the realization of more homogeneous
quantum gas systems. For this purpose, an elliptical crossed dipole trap has been set
up. Here, the two Gaussian laser beams exhibit a strong radial asymmetry. The elliptic
beam waists with a minor axis along the vertical direction of w0,v ≈ 82µm and a major
axis in the horizontal direction of w0,h ≈ 245µm allow for final trapping frequencies of
ωh = 2π × 19 Hz and ωv = 2π × 48 Hz. The elliptical crossed dipole trap was designed
by J. Struck. For a thorough treatment of the subject we refer to his thesis [155] and the
review article in Ref. [166].

2.3 Periodic optical potentials

In the previous section, optical potentials were introduced that allow for the trapping of
ultracold atoms due to the intensity gradient of Gaussian laser beams. This concept can
be extended to periodically varying intensity distributions, the so called optical lattices.

The simplest example of an optical lattice consists of two counterpropagating laser
beams with equal frequencies and (linear) polarizations, which can be easily achieved
experimentally by retro-reflection of one laser beam with a single mirror. As illustrated in
Fig. 2.1a, the interference of both beams results in a standing light wave with a sinusoidal
modulation of the light field intensity. Hence, in the case of red-detuned laser light, atoms
are confined to the intensity maxima. Due to the additional radial confinement of the
Gaussian intensity profiles this setup forms a one-dimensional lattice along the optical
axis consisting of a stack of atomic ensembles in disk-shaped ellipsoids with a lattice
spacing of a = λL/2. For deep optical potentials that can either be achieved by high
laser intensities or small optical detunings the disks are decoupled quasi two-dimensional
systems. The potential depth of the lattice scales linearly with the laser power. It is
conveniently expressed in units of the recoil energy ER = ~

2k2
L/(2m) that denotes the

kinetic energy that is transferred to an atom of mass m by absorbing a lattice photon
with wavenumber kL = 2π/λL, where ~ is the reduced Planck constant.

2.3.1 Non-interacting particles in lattice potentials

A spatially periodic lattice potential is generally invariant under translation by a Bra-
vais lattice vector R such that VLat(r) = VLat(r + R). The stationary eigenstates of the
Schrödinger equation

ĤLat |ψnq(r)〉 = En
q |ψnq(r)〉 (2.13)

with a lattice Hamiltonian ĤLat = p̂2/(2m) + VLat(r) are given by Bloch functions [169,
170]

|ψnq(r)〉 = eiqr |unq(r)〉 where |unq(r)〉 = |unq(r + R)〉 . (2.14)
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Figure 2.2: Energy spectrum of an optical lattice. In a the band gaps of an optical lattice are plotted

with respect to the lattice depth. Dashed gray lines mark the lattice depths used for plotting the

band structure in b. The single-particle dispersion relations in the reduced zone scheme are shown

for three different lattice depths. The opening of band gaps and the flattening of bands are clearly

visible as the lattice depth is increased.

Here, the index n denotes the discrete energy band of the eigenstate. The quantum num-
ber q is the quasi-momentum. Both the Bloch functions |ψnq(r)〉 = |ψnq+G(r)〉 and the
eigenenergies En

q = En
q+G are periodic in the quasimomentum with respect to a recipro-

cal lattice vector G. This periodicity in the reciprocal space allows to reduce the energy
spectrum of a particle in a periodic potential to the first Brillouin zone of the lattice as
depicted in Fig. 2.2b.

The equations (2.13) and (2.14) infer that particles occupying single Bloch states are
completely delocalized over the entire system. For strong lattice potentials, where the
atoms tend to be confined at single lattice wells. A more suitable, complete set of localized
eigenstates for the description of such systems is provided by Wannier functions [171, 172].
Wannier functions are composed of Bloch functions via the relation

wn,i(r − Ri) =
1√
N

∑

q

e−iqRi |ψnq(r)〉 . (2.15)

where wn,i(r − Ri) is the Wannier function in the n-th energy band localized at a lattice
site with index i. In the same way, Bloch functions can be constructed from a complete
set of Wannier functions. For increasing lattice depths, Wannier functions become more
and more localized at single lattice site as depicted in Fig. 2.1b.

2.3.2 Bose-Hubbard model

Confining ultracold atoms in optical lattices allows for an unprecedent control over the
role of interactions between particles. For shallow lattice potentials, the atomic ensemble
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Chapter 2 Ultracold bosons in optical potentials

is still well described within the framework of the Gross-Pitaevskii equation [173–175].
With increasing lattice depths and, thus, stronger confinement to lattice sites, interactions
between atoms start to play an increasingly important role. A mean-field treatment of in-
teractions breaks down as fluctuations cannot be treated as small perturbations anymore.

A suitable treatment of interacting bosons in a lattice potential is provided by the so
called Bose-Hubbard model [176]. Here, interactions are restricted to two-particle s-wave
scattering processes. At the low energy scales present in ultracold quantum gases this is
an appropriate approximation. Furthermore, the s-wave scattering can be modeled as a
contact interaction with an interaction potential of

Vs(r − r′) = gδ(r − r′) with g = 4π~2as/m. (2.16)

The assumption of a contact potential is justified since the de Broglie wavelength of ultra-
cold atoms is much larger than the (effective) extension of the interaction potential [28].
Here, the s-wave scattering length as completely characterizes the interaction processes
which are repulsive (attractive) for as > 0 (as < 0). Note that, in general, the scattering
length depends on the respective spin states of the pair of interacting atoms. For reasons
of simplicity, this degree of freedom is omitted in the following.

A gas of N interacting bosons in an external potential can be described by a many-body
Hamiltonian in second quantization:

Ĥ =
∫

Ψ̂†(r)

[

p̂2

2m
+ Vext(r)

]

Ψ̂†(r) dr +
g

2

∫

Ψ̂†(r)Ψ̂†(r′)Ψ̂†(r′)Ψ̂†(r) drdr′. (2.17)

Hereby, the external potential Vext = VLat + VH consist of the lattice potential VLat with
an additional confinement VH. In the vicinity of the center of the trap the confinement is
well described by a harmonic potential

VH(r) =
m

2

(

ω2
H,xx

2 + ω2
H,yy

2 + ω2
H,zz

2
)

(2.18)

with the harmonic trapping frequencies ωH,i along the directions i. The bosonic anni-
hilation and creation operators in Eq. (2.17), Ψ̂ and Ψ̂† respectively, fulfill the bosonic
commutation relation

[

Ψ̂(r), Ψ̂†(r)
]

= δ(r − r′). In the case of sufficiently deep optical
lattices and low temperatures, where atoms are restricted to the lowest lying energy band
one can expand the field operators in the basis of Wannier functions in the lowest band:

Ψ̂(r) =
∑

i

b̂iwi(r), (2.19)

with b̂i (b̂†i ) the annihilation (creation) operator of a particle at lattice site i that, again,
obey the bosonic commutation relation

[

b̂i , b̂
†
j

]

= δij. As the following considerations
remain restricted to the lowest energy band, the band index is omitted here. Additionally,
we have introduced the abbreviation wi(r − Ri) ≡ wi(r) for reasons of clarity. Inserting
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(2.19) into Eq. (2.17) leads to the well-known Bose-Hubbard Hamiltonian

ĤBH = −
∑

〈i,j〉

Jij
(

b̂†i b̂j + b̂†j b̂i
)

+
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i (2.20)

where n̂i = b̂†i b̂i is the boson number operator at lattice site i and 〈i, j〉 denotes the
sum over all bonds of nearest-neighboring lattice sites, i.e., 〈i, j〉 = 〈j, i〉. The first term
of Eq. (2.20) describes quantum tunneling processes between adjacent lattice sites, rep-
resenting the kinetic part of the Bose-Hubbard Hamiltonian. Jij denotes the tunneling
amplitude between a lattice site with index i and a neighboring site j. It is given by

Jij = −
∫

w⋆i (r)

[

p̂2

2m
+ Vext(r)

]

wj(r) dr. (2.21)

Note that in condensed matter physics the tunneling matrix element is also often referred
to as t instead of J . For the common case of isotropic tunneling along all lattice direc-
tions the indexing ij of lattice sites can be omitted. In conventional lattices J is generally
positive real-valued. Experimental procedures for the engineering of tunneling matrix ele-
ments in optical lattices that can be both negative and complex-valued will be introduced
in chapters 3 and 4 respectively.

The second term of the Hamiltonian (2.20) describes two-particle interactions. For
sufficiently deep lattice potentials, Wannier functions are well located at single lattice
sites. Here, the overlap between particle states at neighboring sites vanishes (see Fig. 2.1b).
In this regime, interactions are completely described by on-site processes such that the
summation of bosonic number operators can be restricted to single lattice sites. The on-
site interaction strength is given by the parameter U with

Ui = g
∫

|wi(r)|4 dr (2.22)

and g as in Eq. (2.16). As the integral over Wannier functions is usually independent of
the respective lattice site, the index i is dropped in Eq. (2.20). The third term in the
Bose-Hubbard Hamiltonian (2.20) incorporates the additional trapping confinement VH

that yields a site-dependent energy offset ǫi of

ǫi =
∫

VH(r)|wi(r)|2 ≈ VH(Ri) dr. (2.23)

with VH given in Eq. (2.18).
In the Bose-Hubbard model, the ratio between the tunneling matrix element J and

the on-site interaction U determines the physical properties of the system. The behavior
of both the amplitude of the tunneling matrix element and the on-site interaction with
respect to the optical lattice depth is plotted in Fig. 2.1c. Two distinct quantum phases can
be identified [54]. In the case of shallow lattice potentials the tunneling term in Eq. (2.20)
dominates and U/J → 0. Here, the trapped atomic ensemble occupies a superfluid state
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Chapter 2 Ultracold bosons in optical potentials

with long-range phase coherence. The ground state of the many-body system of N atoms
is given by a simple product state of zero-momentum Bloch waves

|ΨSF〉q=0

U→0∝
(

M
∑

i=1

b̂†i,q=0

)N

|0〉 (2.24)

where |0〉 is the bosonic vacuum state and M denotes the number of lattice sites in
the system. In the limit of vanishing interactions the many-body state is equivalent to
a coherent state. The expectation value of the particle number on each lattice site thus
follows a Poissonian distribution (properties of such a superfluid state in an optical lattice
are further discussed in chapter 4).

In the opposite case of deep optical potentials and strong interactions with U/J → ∞
the interaction dominates the systems behavior. Energetically costly fluctuations of the
site occupation numbers are minimized and the ground state many-body wave function
is a product of local Fock states. For a homogeneous system with filling n = N/M

|ΨMI〉n∈Z
J→0∝

M
∏

i=1

(

b̂†i
)n |0〉 . (2.25)

This so-called Mott-insulating (MI) state exhibits a vanishing phase coherence between
lattice sites as well as zero compressibility (see chapter 5).

The two regimes are linked by a zero-temperature second-order quantum phase tran-
sition which was first predicted by Fisher et al. [54]. Following the proposal by Jaksch et

al. [55], the transition was first realized in a pioneering experiment with ultracold atoms
in an optical lattice by Greiner et al. [56].

2.4 Realization of optical lattices with hexagonal

symmetry

The first seminal experiments on ultracold atomic ensembles in two- and three dimensional
optical lattice potentials were performed in cubic lattices [56, 177]. Corresponding experi-
mental setups relied on perpendicular arrays of counterpropagating laser beams that were
generated by retro-reflection. The center piece of all experiments presented in this thesis,
the running-wave three beam lattice follows a different approach in order to realize optical
lattice potentials with hexagonal symmetry. Here, three Gaussian laser beams intersect in
a plane under angles of 120° with respect to each other. Furthermore, the lattice beams
are not retro-reflected to create standing light waves but rather the running light waves
interfere with each other forming a stable intensity modulation. In the following we will
elaborate on the properties of this running-wave three-beam lattice.
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Realization of optical lattices with hexagonal symmetry

Figure 2.3: Three-beam lattice setup. The optical lattice potential with hexagonal symmetry is

created by three laser beams intersecting pairwise under angles of 120° in the xy-plane. The linear

polarization vectors all enclose an angle of θ with the xy-plane. In addition to the three beam

lattice, a conventional one dimensional lattice can be superimposed that is created by counter-

propagating laser beams along the z-axis. Gravity points opposite to the y-axis. The orientation of

the quantization field B in three dimensions can be described within the framework of Euler angles.

Here, the quantization field vector depicts a corresponding rotation for the Euler angles α and γ.

The figure was inspired by Ref. [154]. A similar figure created by the author appears in Ref. [5].

2.4.1 Three-beam lattice setup

The three-beam lattice setup was first proposed in Refs. [30] and [178] in the context
of two-dimensional optical molasses. Both the design and implementation of the three-
beam lattice setup at the experiment presented here took place within the PhD thesis of
C. Becker [153]. For a thorough treatment of the experimental setup of the lattice and
details regarding the corresponding laser system we refer to his thesis.

The Gaussian laser beams that form the three-beam setup are each derived from optical
telescopes that are directly coupled to optical fibers. By this, distortions of the beam
profiles are reduced to an absolute minimum as the intensity profile of beams exiting
an such fibers exhibit an almost perfect Gaussian shape. As depicted in Fig. 2.3, the
orientations of the beams, given by their respective wave vectors are

k1 = kL
(

0, 1, 0
)

, k2 =
kL
2

(√
3,−1, 0

)

, k3 =
kL
2

(

−
√

3,−1, 0
)

. (2.26)

Note that the wave vectors given above are merely an approximation of the actual beams
present in the experimental setup. The three beams deviate slightly within approximately
±2° from the ideal 120° alignment. The exact values for the angles between the lattice
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Chapter 2 Ultracold bosons in optical potentials

beams were experimentally determined within the Diploma thesis of C. Ölschläger [179]
and are given in appendix D. For most experiments presented in this thesis, the influence
of the deviations can be neglected. We mention the consideration of the exact lattice
vectors whenever necessary.

Close to the waists of the Gaussian beams, the light fields can be approximated by
plane waves. Assuming a real-valued amplitude of E0 for all three beams with individual
phases φi, the total resulting electric field reads

ELat(r, t) = E0

3
∑

i=1

ǫi e
i(kir−ωLt+φi). (2.27)

As it was pointed out in Ref. [30] a d-dimensional optical lattice requires a minimum
of l = d + 1 laser beams. Furthermore, the resulting interference pattern is determined
by the relative phases φi − φj of the incident electric fields. The number of independent
relative phases is l − 1 and the number of independent possible translations in space
is given by d. Hence, for an optical lattice comprised by the minimum number of laser
beams, a phase change corresponds to a global translation of the interference pattern in
space while the lattice structure itself remains rigid. This condition is obviously fulfilled
for the three-beam lattice spanning a two-dimensional Bravais lattice.

On the one hand, random fluctuations of the individual phases φi result in a randomly
moving lattice. As trapped ultracold atoms can be heated by such movements, it is highly
desirable to limit the phase-noise to an absolute minimum. For this purpose, an active
stabilization of the phases is implemented in the laser system. It relies on beating the
incoming laser light of each of the three beam paths with a small percentage of light that
is back-reflected at the end of the optical fibers attached to the lattice telescopes [153].
However, the active stabilization was abandoned within the course of this thesis since
the free running lattice system appeared to be sufficiently stable within timescales of all
experiments that have been performed. This is especially remarkable due to the very long
individual path lengths of the three lattice laser beams through the optical fibers that
deliver the light from a titanium-sapphire laser system to the science chamber.

On the other hand, a control over the phases φi allows for the precise and purposeful
translation and acceleration of the lattice potential in an experimentally feasible fashion.
This experimental technique is central in this work and will be discussed thoroughly in
chapter 3.

The reciprocal lattice of the three-beam setup is generated by the possible momentum
transfers between the lattice beams. A trapped atom can absorb a photon from the light
mode of one beam and re-emit it into another mode. With this consideration, we can
define the reciprocal lattice vectors bi as

bi = εijk (kj − kk) (2.28)
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Figure 2.4: Bravais- and reciprocal lattice of the hexagonal lattice. a shows the six-fold symmetric

real-space Bravais lattice arising from the three-beam running wave setup. Its coordination number,

indicating the number of nearest neighboring lattice sites is six. The blue arrows denote a set of

Bravais lattice vectors as given in Eq. (2.30) and the gray shaded hexagon indicates the Wigner-Seiz

cell. The lattice structure exhibits a lattice spacing of a = 2λL/3. In b the corresponding reciprocal

Bravais lattice is illustrated with the three reciprocal lattice vectors defined in Eq. (2.29). With respect

to the real-space Bravais lattice the reciprocal lattice is rotated by 90°. As in a, the gray hexagon

corresponds to the Wigner-Seitz cell of the reciprocal lattice, i.e., the first Brillouin Zone. c depicts

the first five Brillouin zones of the hexagonal lattice. d Three distinguished points of high symmetry

exist in the first Brillouin Zone. The center Γ at quasimomentum q = 0, the corner K and the

middle point of the edges M . Band structures are commonly visualized along a path between the

high-symmetry points as in Fig. 2.5 to 2.7.

where εijk ist the Levi-Civita symbol1. Each pair of the three reciprocal lattice vectors

b1 = b
(

1, 0, 0
)

, b2 =
b

2

(

−1,−
√

3, 0
)

, b3 =
b

2

(

−1,
√

3, 0
)

. (2.29)

with b =
√

3kL spans the reciprocal Bravais lattice as depicted in Fig. 2.4b. The real-
space Bravais lattice vectors ai can be calculated from pairs of the reciprocal Bravais
lattice vectors via the relation ai · bj = 2πδij [170]. Fig. 2.4a depicts the two Bravais
lattice vectors obtained with b1 and b2 from Eq. (2.29), that are

a1 = a
(

0, − 1, 0
)

and a2 =
a

2

(√
3,−1, 0

)

(2.30)

with a lattice constant of a = 2λL/3.
Inserting Eq. (2.27) into Eq. (2.5) allows for the straightforward calculation of the total

intensity distribution for all polarization modes. The resulting optical lattice potential is
given by the general description of the dipole potential in Eq. (2.2) and (2.3). As discussed
in section 2.2.3 it can be split into a state-independent and a state-dependent part where
the latter is determined by the circular polarization modes and can be mapped to an
effective magnetic field. For clarity we write in the following

VLat(r) = −V0

[

Vint(r) + Vpol(r)
]

(2.31)

1Note that the Einstein summation convention is not applied in Eq. (2.28).
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where V0 denotes the lattice depths in units of the recoil energy corresponding to a setup
created by two counter-propagating laser beams with the same properties as the three-
beam lattice lasers [5, 74, 154]. Assuming linear-polarized light with the polarization
vectors ǫi in Eq. (2.27) all enclosing an angle of θ1 = θ2 = θ3 ≡ θ with the xy-plane, the
state independent contribution of the potential reads

Vint(r) = 6 + [1 − 3 cos (2θ)]
3
∑

i=1

cos(bir − ∆φjk). (2.32)

We have incorporated the three reciprocal lattice vectors bi in the above equation such
that it can be written as the sum over cosine terms given by each vector. This simplification
was the reason for defining an otherwise redundant third reciprocal lattice vector in the
first place in Eq. (2.29). The notation for the phase difference ∆φjk = φk − φj accounts
for the definition of the reciprocal lattice vectors bi in Eq. (2.29) by circular permutation.

For a hyperfine state of |F,mF 〉 the state-dependent part of the lattice potential is
given by

Vpol(r) =
√

3(−1)FmFη cos(θ)
3
∑

i=1

Ci sin(bir − ∆φjk) (2.33)

with the proportionality factor η defined in Eq. (2.10). Here, the Landé g-Factor for the two
ground states of 87Rb is incorporated by the prefactor (−1)F . The coefficients Ci(θ, α, β, γ)
depend on both the orientation of the polarization vectors and the orientation of the
quantization axis as discussed before in section 2.2.3:

C1 = cos θ cosα cos β − 2 sin θ
(

sinα cos γ + cosα sin β sin γ
)

C2,3= cos θ cosα cos β + sin θ
(

sinα cos γ + cosα sin β cos γ (2.34)

±
√

3 [sinα sin γ − cosα sin β cos γ]
)

The equations (2.31) to (2.34) fully describe the dipole potential arising from the (ideal)
three beam setup considering the aforementioned assumptions of a) negligible harmonic
confinement, b) equal beam intensities and c) linear polarized beams with equally aligned
polarization vectors ǫi with respect to their corresponding wave vectors ki . Effects result-
ing from a rotation of the quantization field are thoroughly discussed in chapter 6. Until
then, we restrict further considerations to the case of the quantization axis pointing along
the z-direction, where C1,2,3 = cos(θ). All experiments in this thesis were performed with
a three-beam lattice of wavelength of λL = 830 nm that was derived from a titanium-
sapphire laser. In the following, we thus consider a red-detuned light field with η ≈ 0.13.

An important feature of the three-beam lattice setup is the possibility to create one-
dimensional lattices with each pair of the three laser beams. Due to the interference arising
from two running waves rather than from a retro-reflected laser beam it is experimentally
straightforward to move such a one-dimensional lattice along the lattice axis by changing
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the phase of one of the laser beams. All three one-dimensional lattices are illustrated in
Fig. 2.9a. For the case of polarization vectors aligned perpendicular to the lattice plane,
the three possible potentials are

V1D,i(r) = −V0

2

[

1 + cos(bir + ∆φjk)
]

. (2.35)

With an angle of ϑi = ∡(ki,kj) between the lattice laser beams the corresponding lattice
constant is

a1D,i(ϑi) =
λL

2 sin(ϑi/2)
≈ 479 nm (2.36)

for the case of λL = 830 nm and ϑi ≈ 120° [155]. Note that the experimentally deter-
mined exact angles between the three pairs of lattice beams are given in Tab. D.1. The
one-dimensional running-wave lattices allow for the pairwise calibration of the lattice
depth of the three-beam lattice by intensity modulation [153, 154]. Beyond that, we will
present experiments performed in the running-wave 1D-lattice utilizing the control over
the position of the lattice in chapter 3.

Taking all three lattice beams into account, the orientation of the polarization vectors
ǫi, given by the angle enclosed with the xy-plane, allows for the distinction of three
fundamentally different potential landscapes: the state-independent triangular lattice, the
state-dependent honeycomb lattice and the purely state-dependent polarization lattice.
We will discuss the properties of these optical lattice types in the following.

2.4.2 Triangular lattice

The resulting potential landscape for the case of all polarization vectors aligned perpen-
dicular to the lattice plane, i.e., ǫ1,2,3 = êz and θ = 90° is depicted in Fig. 2.5a. Potential
minima are separated by a lattice constant of a = 2λL/3 and form the hexagonally sym-
metric Bravais lattice already introduced in Fig. 2.4a. For an unambiguous notation, we
refer to this lattice as the triangular lattice throughout this thesis due to the shape of its
upwards and downwards pointing lattice plaquettes. However, in literature this Bravais
lattice is also often referred to as the hexagonal lattice due to its six-fold symmetry and
the shape of its Wigner-Seitz cell.

As immediately evident from Eq. (2.33), the state-dependent part of the potential com-
pletely vanishes for θ = 90°. The remaining state-independent potential has a global po-
larization of π. This peculiarity stems from the fact that the electric field is at all times
aligned in parallel with the quantization axis. The corresponding single-particle band
structure is plotted in Fig. 2.5b along the paths connecting points of high-symmetry as
defined in Fig. 2.4d. It exhibits a large energy gap between the two lowest bands and a
Dirac point between the second and third band. A detailed description of the underlying
solution of the single-particle eigenvalue problem in the three-beam hexagonal Bravais
lattice can be found, e.g., in Ref. [154].
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Figure 2.5: Triangular lattice. a For polarization vectors aligned perpendicular to the lattice plane,

i.e., θ = 90°, the thee beam lattice setup forms a state-independent triangular lattice with a strong

intensity modulation of the potential landscape. A blue rhombus in the illustration of the lattice

geometry indicates the unit cell. In part b the corresponding energy band structure is plotted along

the paths connecting points of high symmetry in the first Brillouin zone as defined in Fig.2.4d. The

large energy gap between the two lowest energy bands will be of importance in chapters 3 to 5.

In comparison to a square lattice comprised of similar laser beams the intensity mod-
ulation of the triangular lattice is very strong. As a result, tunneling rates decrease much
faster with increasing lattice depth.

2.4.3 State-dependent honeycomb lattice

If all polarization vectors lie in the lattice plane, i.e. θ = 0 or ǫi = Rz(π/2) ki/|ki|, the
dipole potential is inverted as compared to the triangular lattice (see Fig. 2.6a). This is
the well-known honeycomb lattice resembling graphene. It exhibits large potential maxima
and hexagonally arranged minima that are separated by comparably small potential hills.
Trapped atoms can easily move by tunneling through this shallow honeycomb channel
structure. The underlying Bravais lattice is again the hexagonally symmetric (triangular)
lattice discussed in Fig. 2.4a with the difference of having a two-fold atomic basis. In the
following, the corresponding two distinct lattice sites in a unit cell are denoted as site
A and B. Each individual lattice site is separated by a/

√
3 from its nearest neighboring

site, where a denotes the lattice constant of the Bravais lattice. With only three nearest
neighboring lattice sites, the honeycomb lattice has the smallest possible coordination
number in two dimensions. Both triangular and honeycomb lattice structures can be
commonly found in all conceivable forms in nature as they describe the close-packing of
spheres in two dimensions.

In stark contrast to the triangular lattice, the spin-dependent part of the dipole po-
tential, scaling with cos2 θ, is maximally strong. The corresponding polarization pattern
of the light field is depicted in the inset of the honeycomb potential plot in Fig. 2.6a. It
alternates from pure σ+ to pure σ− between adjacent lattice sites (thus, the net polariza-
tion of the light field in a unit cell is still π). In accordance with Eq. (2.33) and (2.34) the
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Figure 2.6: Honeycomb lattice. a For in-plane polarization, i.e., θ = 0°, the potential is inverted

and forms a honeycomb structure with shallow channels around large potential maxima. In addition,

the circular polarization alternates from pure σ+ to pure σ− between adjacent lattice sites. The blue

rhombus indicates the unit cell including a site of each sublattice A and B. b Band structure of the

honeycomb lattice plotted for a particle with mF = 0. At the K-point the two lowest energy bands

touch forming a Dirac point.

alternation lifts the degeneracy of the two-fold atomic basis for atoms in hyperfine ground
states with mF 6= 0. This breaking of the inversion symmetry has a profound influence on
the topological properties of the honeycomb lattice. In chapter 6 we will present experi-
ments in the honeycomb lattice where inversion symmetry can be broken in a controllable
way. Until then, we will restrict this introduction on the honeycomb lattice to the fully
symmetric case for atoms with mF = 0.

The two-fold atomic basis of the honeycomb lattice results in a splitting of the first
energy band, leading to the formation of Dirac points between the two lowest bands at
the vertices of the Brillouin zone (see Fig. 2.6b). Close to the Dirac point, the disper-
sion is linear in all directions. Due to the vanishing curvature within these Dirac cones
particles have an effective mass of zero and can be described as relativistic particles in
the framework of the famous Dirac equation. As each of the six Dirac points is shared
by three Brillouin zones, only two Dirac cones are inequivalent in the two-dimensional
band structure of the honeycomb lattice. They are commonly referred to as the K and
K ′ points.

2.4.4 Polarization lattice

Eq. (2.32) reveals a third distinct scenario arising from the mere alignment of the linear
polarization vectors ǫi in the three-beam lattice setup. For a polarization angle of exactly
θ = arccos(1/3)/2 ≈ 35.26°, the intensity modulation of the lattice potential vanishes,
leaving only a constant energy offset of −6V0.

The remaining modulation of the circular polarization creates a purely state-dependent
lattice given by the potential in Eq. (2.33). While atoms in hyperfine states with a magnetic
quantum number of mF = 0 experience no lattice potential at all, atoms with mF 6= 0
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Figure 2.7: Polarization lattice. a If the polarization vectors ǫi are aligned such that they all enclose

an angle of θ ≈ 35° with the lattice plane, the intensity modulation of the three-beam lattice setup

vanishes, leaving only a potential modulation for atoms in hyperfine states with mF 6= 0. The

potential is calculated for 87Rb-atoms in the |2, −2〉 state and similar laser parameters as in Fig. 2.5

and 2.6. b The shallow potential due to the relatively small proportionality factor η ≈ 0.13 results

in an almost free-particle like dispersion relation

are subjected to a triangular lattice (see Fig. 2.7a). For the presented case of relatively far
detuned laser light at 830 nm, the potential experienced by the atoms is very shallow due to
the small proportionality factor η. In Fig. 2.7a the potential and dispersion is depicted for
atoms in the |2,+2〉 hyperfine state, that are trapped at lattice sites with σ− polarization.
Accordingly, as indicated by dashed lines in the schematic drawing of Fig. 2.7a, atoms
that are trapped at the σ+-sites, e.g., |2,−2〉, experience an inverted lattice potential.
The corresponding dispersion of such a polarization lattice, depicted in Fig. 2.5, is similar
to the triangular lattice. Due to the shallow potential presented here, the band structure
in Fig. 2.7b resembles the parabolic dispersion of a free-particle. Laser wavelengths closer
to the atomic transitions, however, allow for much stronger confinements in purely state-
dependent optical potentials [180]. We will elaborate the peculiarities and experimental
prospects of the polarization lattice further briefly chapter 7 with respect to applications
for periodic driving schemes. A thorough discussion of the presented polarization lattice
potential is provided in Ref. [154].

For reasons of comparability, all potentials and dispersion relations presented in
Fig. 2.5, 2.6 and 2.7 have been calculated for the same lattice laser parameters. It is
evident that the total intensity modulation of the triangular lattice is twice as strong as
in the case of the honeycomb lattice. Note that the and asymmetric and perceptually
unadjusted color maps used throughout the potential plots of Fig. 2.5, 2.6 and 2.7 are
chosen in order to emphasize the relevant minima of the potential landscapes. A similar
figure containing parts of Fig. 2.5, 2.6 and 2.7 that was created by the author also appears
in Ref. [5].

The presented description of the running-wave three beam lattice is by far not complete.
By considering arbitrarily polarized light beams it is possible to realize a large variety of
more complex lattice configurations that are not limited to two dimensions. A promising,
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Revealing the momentum distribution by time-of-flight measurement

yet comparatively simple expansion of the three-beam lattice should be noted: Retro-
reflecting of all three beams allows for the creation of both a kagome lattice [77] as well
as a so called T3- or dice-lattice [181, 182]. A brief illustration of the potential geometries
resulting from such a six-beam setup is provided in chapter 7.

In the following section, we will detail experimental detection techniques applied for
ultracold atomic quantum gases in optical lattices.

2.5 Revealing the momentum distribution by

time-of-flight measurement

A widely applied detection technique for ultracold quantum gases in general and quan-
tum gases in optical lattices in particular is resonant time-of-flight absorption imaging.
It relies on a sudden, non-adiabatic switch off of all trapping potentials, such that the
atomic ensemble can expand freely for a certain time-of-flight tTOF while it falls under the
influence of gravity. The periodicity of the expanding Bloch waves leads to an emergence
of sharp Bragg peaks separated by the reciprocal lattice vectors. The resulting real-space
density distribution of the expanded matter wave is the density distribution ñ(k) of the
lattice in momentum space [29, 183, 184]

ñ(k) = 〈Ψ̃†(k)Ψ̃(k)〉 = |w̃(k)|2
∑

i,j

eik(Rj−Rj) 〈b̂†i b̂j〉. (2.37)

The Ψ̃(k) and w̃(k) denote the Fourier transform of the bosonic field operators introduced
in Eq. (2.19) and the Wannier function defined in Eq. (2.15) respectively. Eq. (2.37) reveals
a close connection between the momentum distribution ñ(k) and the first order correlation
function 〈b̂†i b̂j〉. For increasing lattice depth the long-range phase coherence and, thus, the
first order correlation function, decrease rapidly as discussed in section 2.3.2. Accordingly,
a Mott-insulating state in a deep optical lattice potential as defined in Eq. (2.25) which
exhibits maximally strong phase fluctuations results in an almost featureless momentum
distribution ñ(k) that is governed by the Wannier envelope |w̃(k)|2. This width of the
Fourier transformed Wannier function w̃(k) determines the extension of the momentum
distibution ñ(k). It increases for increasing lattice depth since the real-space Wannier
functions become narrower.

Detection of the density distribution n̂(r) after time-of-flight is achieved by imaging the
shadow of a resonant laser beam cast by the atoms. Together with a reference image taken
in absence of an atomic cloud this allows for the reconstruction of the optical density (OD)
along the line of sight. In the experimental setup imaging along two different directions
is possible as depicted in Fig. 2.8. Imaging perpendicular to the three-beam lattice, i.e.,
along the z-axis, reveals the characteristic hexagonally symmetric momentum peaks of
a triangular Bravais lattice. In contrast, time-of-flight imaging of a superfluid state in a
three-dimensional lattice along the x-axis results in a rectangular momentum structure.
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Chapter 2 Ultracold bosons in optical potentials

Figure 2.8: Illustration of the time-of-flight absorption imaging setup. In the experimental setup, two

imaging systems are implemented along the x- and z axis. By imaging perpendicular to the three-

beam lattice the characteristic hexagonally symmetric momentum distribution of a superfluid state in

a triangular Bravais lattice can be observed. In a three-dimensional lattice created by the additional

counterpropagating 1D lattice a rectangular density distribution is observed along the x-axis. The

figure was inspired by Refs. [56] and [153].

Due to the projection of the three beam lattice vectors and the larger wavelength used for
the counterpropagating 1D-lattice, the momentum peaks are aligned almost cubically.

A comparison between a pure BEC released from a crossed dipole trap and a superfluid
state in an optical lattice is depicted in Fig. 2.10. Here, both the change of the BECs
aspect ratio and the expansion of the Bragg momentum peaks for increasing time-of-
flight are clearly visible. The parabolic trajectories due to the influence of gravity are
used to measure the exact magnification of the imaging system.

As pointed out in Ref. [29] the observed atomic density distribution after time-of-flight
〈n̂(r)〉TOF deviates from the momentum distribution in the lattice 〈ñ(k)〉Lat:

〈n̂(r)〉TOF ≈
(

m

~tTOF

)3

〈ñ(k)〉Lat with r =
~tTOF

m
k. (2.38)

The main deviation between observed density distribution and actual momentum dis-
tribution in the lattice, however, stems from the experimentally finite time-of-flight [185].
In analogy to near-field diffraction known from classical optics, the observed density dis-
tribution exhibits a broadening of Bragg peaks. The exact momentum distribution is only
recovered in the far-field limit for tTOF → ∞. A characteristic expansion time where
density distribution resulting from time-of-flight and the in-trap momentum distribution
become indistinguishable from the ideal far-field solution is given by tFF = mlcR0/~ [185].
Here, lc is the coherence length of the state and R0 the in-situ radius of the atomic cloud.
For a coherent superfluid state, where lc ≈ R0 and a typical in-trap extension of R0 the far
field regime is reached after tFF ≈ 300 ms. In earths gravitational field this is equivalent
to a free-falling distance on the order of 0.5 m, which is unrealistically large with respect
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Figure 2.9: Time-of-flight patterns for different lattice setups. a shows three possible running-wave

1D lattice setups together with the resulting momentum distribution detected after 40 ms time-of-

flight. In the middle row, the Fourier transforms of the optical density distributions are plotted to

illustrate the real-space in-trap density distribution. Corresponding images of the three-beam lattice

in a triangular configuration are shown in b. c depicts the imaging along the x-direction after 18 ms

TOF. A rectangular momentum distribution appears for a three-dimensional lattice.

to limitations concerning vacuum setups and vanishing optical density. However, several
approaches aiming for extending expansion times are subject to current research such as
magnetic levitation (see, e.g. [186]) and experiments under microgravity [187].

The time-of-flight imaging technique reveals the momentum distribution by suddenly
all trapping potentials. In contrast, it is also possible to observe the quasimomentum

distribution. For this purpose, the lattice potential is adiabatically turned off prior to the
free-fall expansion [59, 73]. While preserving the quasimomentum q a Bloch wave in the
n-th energy band is mapped onto the free-particle momentum p in the n-th Brillouin zone
(see Fig. 2.4c). We will utilize this so called band mapping technique in chapter 6 in order
to measure band populations.

With a lattice spacing on the order of 0.5µm, the in-situ density distribution of atoms in
the optical lattice cannot be resolved by the imaging systems in our experiment. In recent
years, however, the experimental realization of single-site resolving microscope detection
setups has sparked tremendous interest [62, 63].
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Figure 2.10: Characteristic time-of-flight expansion. a A pure BEC is released from a crossed optical

dipole trap and falls under the influence of gravity. In contrast to a thermal ensemble, the aspect

ratio of the atomic cloud is inverted for increasing TOF. b the same experimental sequenced imaged

for the release of a superfluid state in a three-dimensional optical lattice.

2.6 Conclusion & outlook

In this chapter we have briefly introduced the concept of periodic optical potentials and
described the most important physical aspects for ultracold atomic ensembles confined in
such lattices. The running-wave three beam lattice setup has been described with special
emphasis on three possible realizations regarding orientation of the linear polarization
vectors of the lattice beams. With the time-of-flight absorption technique we have pre-
sented the most common detection scheme for ultracold quantum gases which will be of
importance throughout all experiments presented here. In the following chapters we will
refer to this introductory chapter and elaborate some of the presented concepts further.
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3 Bose-Einstein condensates in
strongly driven lattices

In this chapter we develop the concept of far off-resonant time-periodic driving of

optical lattices. We explain how this technique allows for the experimentally feasible

engineering of tunneling matrix elements and, thus, of the dispersion relation in a

time-averaged effective picture. Benchmark experiments for the verification of driving

schemes are presented and discussed by means of the observed momentum distribution.

Beyond that, we investigate the strong driving regime with respect to the occurrence

of multi-photon transitions for different lattice dimensionality. We find an excellent

agreement with ab inito calculations of the transition energies and discuss implications

to further experiments.

Tunneling dynamics play a key role in the behavior of quantum many-body systems
in periodic potentials. In contrast to solid state systems that are inevitably limited by
properties of the underlying atomic composition, ultracold quantum gases in optical lattice
potentials provide experimental model systems that allow for the versatile and continuous
manipulation and control of tunneling parameters and interactions in general.

A central aspect throughout most experiments performed within this thesis is the
manipulation of the tunneling matrix element Jij for ultracold quantum gases in optical
lattices as introduced in Eq. (2.20). In the preceding chapter we have discussed the concept
decreasing the amplitude of the tunneling matrix element while increasing the on-site
interaction energy U by increasing the potential depth of the optical lattice. This allowed
for the first observation of the superfluid to Mott insulator quantum phase transition [56].

In order to obtain full control over the tunneling matrix elements concerning not only
their amplitude but also their sign and, as we will see in chapter 4, their phase we uti-
lize the technique of far off-resonant time-periodic lattice driving. This approach does
not influence the on-site interaction energy and allows for the versatile manipulation of
motional degrees of freedom [92, 188, 189].

Data presented in this chapter have been obtained within the team of J. Simonet,
C. Ölschläger, S. Prelle and M. Weinberg. The theoretical treatment in section 3.1 and
experimental implementation of the lattice driving technique relies on the work of J. Struck
[155] and C. Ölschläger [179].
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3.1 Tunneling renormalization by periodic driving

In this section the basic concepts of the engineering of tunneling matrix elements by far
off-resonant lattice driving are presented. First, we provide an intuitive understanding of
the tunneling renormalization in a one-dimensional lattice. A more rigourous treatment of
the effective description of such driving is given within the framework of Floquet theory.
Here, we will extend the driving schemes to arbitrary forcing functions and lattice systems.

3.1.1 Semiclassical 1D-model

The change of the tunneling parameter due to a time-periodic force acting on the lattice
system can be understood in terms of a semiclassical single-particle model. For simplicity,
we restrict our considerations to a one-dimensional lattice in the following while the
concept can easily be extended to higher dimensions.

In the presence of an external time-dependent force F (t) the lattice system is described
by the stationary single particle Hamiltonian ĤLat(x) from Eq. (2.13) with an additional
forcing term:

Ĥ(x, t) = ĤLat(x) − xF (t). (3.1)

The solutions of the corresponding Schrödinger equation, the so called Houston states

[190, 191], exhibit a time-dependent quasimomentum qk(t) which changes according to

~
d
dt
qk(t) = F (t). (3.2)

Hence, a time-periodic force F (t) = F (t+ T ) of the form

F (t) = F0 sin(Ωt) (3.3)

results in a time-dependent shift of the quasimomentum

qk(t) = k − F0

~Ω
cos(Ωt), (3.4)

where Ω denotes the driving frequency Ω = 2π/T . This time-dependence has a profound
influence on the energy dispersion of the lattice system. The lowest band tight-binding
dispersion E(q) in a one-dimensional lattice with lattice constant a is given by

E(q) = −2Jbare cos(aq). (3.5)

In Eq. (3.5) we have labeled the undisturbed tunneling parameter as Jbare in order to
distinguish it from the effective tunneling parameter that will be described in the following
[192]. Accordingly, the width of the energy band is ∆E = 4Jbare. Bosonic atoms in the
ground state occupy the minima of the dispersion at qmin = 2πnq/a, nq ∈ Z.
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Tunneling renormalization by periodic driving

Inserting the time-dependent quasimomentum into Eq. (3.5) leads to a time-dependent
dispersion. In the limit of high driving frequencies, i.e., in the case of the energy scale
associated with the driving being large compared to the typical energy scale of the system
given by the tunneling amplitude (~Ω ≫ Jbare) the energy of a particle can be approxi-
mated by its time-average over one driving cycle. The resulting effective dispersion reads

Eeff(k) =
∫ T

0
E(qk(t′))dt′

= −2Jeff cos(ak). (3.6)

Here, we have introduced the effective tunneling matrix element Jeff which is a product
of the bare tunneling and the zeroth-order Bessel function of the first kind JB0:

Jeff = JB0(K) · Jbare with K =
aF0

~Ω
. (3.7)

The Bessel function JB0(K) in dependence to the dimensionless forcing amplitude K is
depicted in Fig. 3.1b. As Eq. (3.6) and (3.7) imply, the effective dispersion relation retains
its initial shape but exhibits a renormalized width according to the amplitude of the Bessel
function. The sign of the effective tunneling parameter and, thus, the effective dispersion
can be inverted as the Bessel function becomes negative for forcing amplitudes above
K ≈ 2.4. Now, a superfluid will occupy the new minima of the dispersion at the edges of
the Brillouin zone where qmin = 2π(nq + 1/2)/a, nq ∈ Z.

Moreover, it can be shown that in general any time-periodic forcing leads to an effective
dispersion described by

Eeff(k) = −2|Jeff| cos (ak − θ) . (3.8)

The realization of a continuous shift of the dispersion by θ/a and its implications will be
presented in the following chapter.

An intuitive picture of the inversion of the dispersion relation is illustrated in Fig. 3.1c.
Particles oscillating in quasimomentum space around a minimum of the undisturbed dis-
persion are located for longer times at positions of higher energy. In contrast, atoms
oscillating around a maximum of the dispersion at q = ±π/a reside at lower energies
for the greater part of every cycle. Therefore, time averaging results in the inversion
of the dispersion for sufficiently large amplitudes where such oscillations start to over-
lap significantly. Accordingly, in the case of even larger amplitudes when oscillations in
quasimomentum may span more than one Brillouin zone, the dispersion is inverted again
depending on the corresponding turning points of the oscillations.

3.1.2 Effective description of driven systems

The semiclassical model presented in the previous section provides an intuitive under-
standing of the tunneling renormalization in a time-averaged effective picture. However,
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Figure 3.1: Lattice driving in one dimension. a Illustration of the periodic driving for the one-

dimensional running-wave lattice. The lattice is accelerated by modulating the frequency of one

of the running laser beams. b Tunneling matrix elements renormalize with the zeroth-order Bessel

function of the first kind in dependence of the dimensionless forcing parameter K. c Oscillations

around minima (maxima) of the dispersion relation depicted by blue (red) circles results in an increase

(decrease) of energy and, hence, an inversion of the time-averaged effective dispersion Eeff(k) for

suitable forcing amplitudes.

this approach does not constitute a rigourous treatment of time-periodic driving. A the-
oretical framework for the fully quantum-mechanical description of periodically driven
systems is given by Floquet theory [193]. In general, the Floquet theorem [194] can be
applied to any periodic linear differential equation. For the present case of time-periodic
lattice driving it is used to derive conditions imposed on the forcing of the lattice and
the corresponding tunneling renormalization. In the following, we briefly introduce the
application of Floquet theory to a time-periodic quantum system. The presented consid-
erations are based on publications by Hemmerich [189], Eckardt et. al [92] and Arimondo
et. al [195]. A comprehensive review regarding the application of the Floquet formalism
to the tunneling processes in driven quantum systems is given in Ref. [196].

Applying the Floquet theorem to the Schrödinger equation

Ĥ(t) |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 (3.9)

with a time-periodic Hamiltonian Ĥ(t) = Ĥ(t + T ) leads to time-periodic solutions, the
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so-called Floquet-states, of the form

|ψα〉 = e−iεαt/~ |φα(t)〉 . (3.10)

The Floquet modes |φα(t)〉 exhibit the same periodicity as the time-dependent Hamiltonian
Ĥ(t). Unsurprisingly, these solutions are in close resemblance of the Bloch-states given
in Eq. (2.14) which are periodic in space rather than in time. The connection between
Bloch- and Floquet states gives rise to the peculiarity of driven lattice systems being
both periodic in space and in time, coined as spatiotemporal crystals [97].

With Eq. (3.9) and (3.10) the corresponding eigenvalue problem of the Floquet modes
resembles a stationary Schödinger equation

ĤF |φα(t)〉 = εα |φα(t)〉 (3.11)

with the Floquet Hamiltonian ĤF = Ĥ(t) − i~∂t. The energy spectrum given by the
solutions of Eq. (3.11) is periodic as one can construct infinitely many solutions by adding
a phase term to the Floquet modes:

|φα,l(t)〉 = e−ilΩt |φα(t)〉 with l ∈ Z. (3.12)

Hence, the energy spectrum consists of Floquet bands that are separated by ~Ω, where
Ω = 2π/T denotes the driving frequency:

εα,l = εα + l~Ω. (3.13)

Again, this so-called quasienergy spectrum can be projected onto a reduced zone scheme
εα,l ∈ [−~Ω/2,+~Ω/2[ in analogy to the Brillouin zone of quasimomenta for Bloch bands
[92].

The goal is now to obtain an effective, time-independent approximation of the Floquet
Hamiltonian ĤF . For this purpose, one can define the composite Hilbert space H ⊗HT with
H being the Hilbert space of the solutions to the Schrödinger equation (3.9). Accordingly,
HT denotes the Hilbert space of T -periodic complex-valued functions, referring to the
Floquet modes from the eigenvalue problem of Eq. (3.11). The scalar product in H ⊗ HT

is defined by the time average of the usual scalar product which we write as

〈〈·|·〉〉T ≡ 1
T

∫ T

0
〈·|·〉dt (3.14)

in the following. Transformations between the Hilbert space H and H ⊗HT can be achieved
in a very general way [189]. Let Ul(t) ≡ exp (−iQ(t) + ilΩt) be a unitary operator with a
time-periodic Hermitian operator Q(t) = Q(t + T ). A stationary, orthonormal basis |n〉
in H transforms to an orthonormal basis |n(t), l〉 in H ⊗ H as

|n(t), l〉 = Ul |n〉 . (3.15)

37



Chapter 3 Bose-Einstein condensates in strongly driven lattices

We can now calculate the matrix elements of the Floquet Hamiltonian in the composite
Hilbert space [92, 189]:

〈〈n(t), l|ĤF |n′(t), l′〉〉T = δll′〈n|Ĥeff|n′〉 + δll′l~Ω + (1 + δnn′) 〈n|Vll′|n′〉 (3.16)

where we have set U ≡ Ul=0 such that the time-averaged effective Hamiltonian is defined
as

Ĥeff ≡
〈

U †(t)ĤF(t)U(t)
〉

T
. (3.17)

The matrix representation of the Floquet Hamiltonian in Eq. (3.16) is comprised by a
block structure with blocks 〈n|Ĥeff|n′〉 + ~Ω on the main diagonal, where l = l′, that
are separated by multiples of the driving energy ~Ω and off-diagonal blocks 〈n|Vll′|n′〉
representing an additional perturbation term

Vll′ ≡
〈

ei(l′−l)ΩtU †(t)ĤF(t)U(t)
〉

T
. (3.18)

In the framework of perturbation theory, the perturbation term of Eq. (3.16) vanishes in
the limit of high frequency driving where

|〈n|Vll′|n′〉| ≪ ~Ω. (3.19)

With the criterion that the main-diagonal blocks for different l in the Floquet matrix
representation are well separated and do not overlap, i.e., if

|Ĥeff| ≪ ~Ω, (3.20)

the quasienergy spectrum of the Floquet Hamiltonian in the first energy Brillouin zone is
fully described by the energy spectrum of the effective Hamiltonian. In this limit, a suitable
choice of the Hermitian operator Q in the unitary transformation of Eq. (3.15) allows for
the complete elimination of the time-dependency in the treatment of any periodically
driven system.

3.1.3 Application to driven lattices

As introduced in chapter 2, systems of ultracold quantum gases in optical lattices can
be described within the framework of the Bose-Hubbard model in good approximation.
In addition to the Bose-Hubbard Hamiltonian ĤBH given in Eq. (2.20), driven lattice
systems in the high-frequency limit are described by an additional forcing term. The
complete time-dependent Hamiltonian reads

Ĥ(t) = ĤBH + ĤForce(t). (3.21)
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The time-periodic forcing ĤForce(t) = ĤForce(t+T ) is given by a projection of the inertial
force F(t) = −mR̈0(t), where R0 denotes the trajectory of the lattice, onto the respective
lattice vectors Ri for each lattice site:

ĤForce(t) =
∑

i

vi(t)n̂i with vi(t) ≡ −F(t) · Ri. (3.22)

In the following, we will restrict our considerations to a time-periodic forcing with vanish-
ing time-average and assume that the lattice system was at rest prior to the acceleration
starting at t = t0. The time-dependent momentum shift of each atom in the lattice is then
given by

∆p(t) =
∫ t

−∞
F(t′)dt′ (3.23)

=
∫ t

t0
F(t′)dt′ − 1

T

∫ T

0

∫ t

t0
F(t′)dt′dt (3.24)

= −mṘ0(t). (3.25)

It was shown in Ref. [92] that choosing the Hermitian operator

Q(t) =
1
~

∑

i

Wi(t)ni (3.26)

with the change in momentum projected onto the lattice vectors being

Wi(t) =
∫ t

t0
vi(t′)dt′ −

1
T

∫ T

0

∫ t

t0
vi(t′)dt′dt (3.27)

= −∆p(t) · Ri (3.28)

results in the time-averaged effective Bose-Hubbard Hamiltonian

Ĥeff = −
∑

〈i,j〉

Jeff
ij

(

b̂†i b̂j + b̂†j b̂i
)

+
U

2

∑

i

n̂i(n̂i − 1). (3.29)

This result constitutes a cornerstone for all experiments presented in this thesis that
deal with periodically driven lattice systems. Note that we have omitted the external
trapping potential in Eq. (3.29). The effective Hamiltonian is similar to the Bose-Hubbard
Hamiltonian from Eq. (2.20) with the exception of the renormalized effective tunneling
matrix elements Jeff

ij that relate to the bare tunneling matrix elements given in Eq. (2.21)
as

Jeff
ij = Jbare

ij

1
T

∫ T

0
eiWij(t)/~dt where Wij(t) ≡ Wi(t) −Wj(t). (3.30)
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With condition (3.20), the effective Bose-Hubbard Hamiltonian is valid for driving fre-
quencies that are much larger than the energy scales in the system, namely the on-site
interaction U and the bare tunneling coupling Jbare:

max
{

U, Jbare
}

≪ ~Ω. (3.31)

This condition has been verified by a number of numerical simulations in Refs. [92, 197,
198]. However, a second prerequisite for the description of driven lattice systems in terms
in the effective Bose-Hubbard picture is the validity of the single band approximation.
It is, thus, crucial to avoid couplings of any kind to higher energy bands. Hence, the
term far off-resonant driving, indicating that the driving scheme discussed here relies on
the presence of a comparatively large energy band gap of the lattice system where no
excitations are possible. However, this condition is not sufficient due to the strong forcing
of the system. In this regime, multi-photon transitions to higher bands may occur with
significant probability. We will investigate the excitation spectra of a variety of driven
lattice systems with respect to such transitions thoroughly in section 3.3.

As discussed in section 2.5, we rely on the momentum distribution as the main observ-
able for the characterization of the state present in the optical lattice. For a periodically
driven system, the momentum distribution ñ(k) ≡ ñk in the lattice reference frame is
given by Eq. (2.37). Transformation of the observable to the laboratory reference frame
can be achieved with the unitary operator [195]

UT = exp
( i
~

[

R0(t)p̂ −mR0(t)r − m

2

∫ t

0
Ṙ2

0(t′)dt′
]

)

. (3.32)

The first term of the unitary operator corresponds to a translation, the second term is
a momentum shift and the third term removes the kinetic energy Ekin = mṘ2

0/2. With
ñLab

k = UT ñkU
†
T = ñk+∆p(t)/~ the observed momentum distribution of the effective state

is given by

ñLab
k = |w̃(k + ∆p(t)/~)|2

∑

i,j

eik(Rj−Rj) 〈b̂†i b̂j〉. (3.33)

The obtained equation is similar to Eq. (2.37) with the exception of the Fourier transform
of the Wannier fuction oscillating according to the driving. Measurements revealing a non-
trivial motion of this Wannier envelope will be presented in chapter 4. For a superfluid
state in the driven system, however, the sharp superfluid momentum peaks at the minima
of the effective dispersion remain at fixed positions in the laboratory frame.

3.2 Experimental realization of periodically driven lattices

In this section we will discuss the experimental implementation of periodic driving by
means of monochromatic driving, i.e., sinusoidal driving with a single driving frequency Ω.
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Experimentally, tunneling renormalization by monochromatic periodic driving of ultracold
quantum gas lattice systems was first realized by Lignier et. al [94] and, for the case of
a single particle in a double well potential by Kierig et. al [199]. A common method to
employ periodic driving in lattice systems comprised of retro-reflected laser beams as in
Ref. [94] and more recently, e.g., in Ref. [151] relies on shifting the position of the respective
retro-reflecting mirror with piezo-electric actuators. Here, the node of the standing wave
at the mirror directly determines the position of the lattice. In contrast, working in the
running wave lattice setup permits us do shift the lattice structure in space by modulating
the frequency of a laser beam. Frequency modulation can be easily achieved with an
acousto-optic modulator that is placed in the branch of the respective laser beam at the
laser setup. A modulation of

ωi(t) = ωL + δωi(t) (3.34)

directly leads to a phase shift of the light field of

φi(t) = −
∫ t

−∞
δωi(t′)dt′. (3.35)

In the following, we will apply the concept of lattice driving to the one-dimensional
running-wave lattice that is subject to sinusoidal frequency modulation.

3.2.1 Monochromatic driving of a one-dimensional lattice

The potential of the one dimensional running-wave lattice is given by Eq. (2.35). Let the
lattice be comprised of the laser beams with wavevectors k2 and k3. The reciprocal lattice
vector is given by b1 = bêx from Eq. (2.29) such that the lattice is aligned horizontally
along the x-axis as depicted in the third row of Fig. 2.9a. This concept is illustrated in
Fig. 3.1a.

The phase φ3 is fixed and the condition prior to the start of the modulation at t0 = 0
is set to φ2(t ≤ t0) = 0. A time-dependent phase φ2(t) leads to a global shift of the lattice
potential V1D,1 ≡ V1D according to

V1D(φ2(t), x) = V1D(0, x−R0(t)) (3.36)

with R0(t) denoting the trajectory of a lattice well. Eq. (3.36) yields the connection of
phase and trajectory φ2(t) = bR0(t). A frequency modulation as in Eq. (3.34), thus, leads
to an inertial force of

F (t) = −mR̈0(t) = −mφ̈2/b (3.37)

where we have used the relation

δν2 = − φ̇2(t)
2π

=
1

ma1D

∆p(t). (3.38)
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The inversion of the effective dispersion is clearly visible in the absorption image by the absence of

a zero-momentum component as atoms occupy the edges of the Brillouin zone. c Definition of the

momentum contrast for the one-dimensional lattice.

As a result, the periodic frequency modulation of the form δν2(t) = −ν0 cos(Ωt) gives rise
to a sinusoidal forcing of

F (t) = F0 sin(Ωt) with F0 = mΩν0a1D. (3.39)

In accordance with the semiclassical picture discussed in section 3.1.1, applying the sinu-
soidal forcing to Eq. (3.30) results in the renormalization of the tunneling matrix elements
following the Bessel function in Fig. 3.1b. The dimensionless forcing amplitude K is given
by

K =
F0

~Ω
a1D =

mν0

~
a2

1D. (3.40)

The experimental procedure for the driving in the one dimensional running-wave lattice
is as follows. First, the Bose-Einstein condensate in the crossed optical dipole trap is
adiabatically loaded into the lattice by an exponential ramping of the lattice depth in a
ramping time of typically TR,Lat = 100 ms to 500 ms. Subsequently the final lattice depth
V0 is held fixed and the forcing amplitude is linearly ramped up to its final value by
increasing the amplitude of the frequency modulation ν̃0(t) = ν0t/TR,drv. Typical ramping
times for the driving of the 1D-lattice lie between TR,drv = 50 ms and 150 ms. The driving
is maintained at a constant forcing amplitude K(ν0) for holding times of TH,drv = 20 ms to
100 ms. By then, bosons have relaxed into the minima of the effective dispersion relation.
Finally, a time-of-flight measurement reveals the momentum distribution of the driven
system.
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Benchmark experiments for the monochromatic driving in the running-wave 1D lattice
are depicted in the figures 3.2 and 3.3. The experimental data in Fig. 3.3 has been obtained
by J. Struck and C. Ölschläger without the contribution of the author and is presented in
similar fashion in the Refs. [155] and [179]. The results are reproduced here as they provide
a crucial understanding of the experimental observation of the effective dispersion and the
strength of the applied forcing.

The experiments are performed in a running-wave 1D-lattice with a lattice depth
of V0 = 8ER where the atomic ensemble is in a superfluid state. Hereby, the initial
BEC is created in the round-crossed dipole trap discussed in section 2.2.4. In the lat-
tice system, the bare tunneling amplitude amounts to Jbare = 1.2×10−2 ER. With respect
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to the energy gap between the two lowest bands of the initial dispersion relation of
Egap = 3.6ER =h×12.1 kHz the driving frequency is chosen to Ω = 2π×1.5 kHz. Ramp-
ing of the lattice depth and the driving amplitude is performed in TR,Lat = 100 ms and
TR,drv = 20 ms respectively. Driving is maintained at the final forcing amplitude for an-
other TH,drv = 20 ms. Note that, in contrast to the experimental data presented in the
previous section, the absorption images in Fig. 3.2 and Fig. 3.3 are obtained after a time-
of-flight of 27 ms with a magnification of M ≈ 1.

In Fig. 3.2 the momentum distributions arising from different effective dispersions are
shown. Fig. 3.2a depicts the time-of-flight image and its corresponding column sum for
a dispersion with positive tunneling matrix elements Jeff > 0. Characteristic superfluid
momentum peaks are visible at the minima of the dispersion located at zero momentum
and multiples of 2π/a (compare Fig. 2.9). Hereby, the occupation of the momentum peaks
is determined by the Wannier envelope centered around kx = 0.

The same scenario is shown in Fig. 3.2b for an effective dispersion with negative effective
tunneling matrix elements Jeff < 0, i.e., a lattice driving amplitude K(ν0) resulting in a
negative Bessel function. Here, the inversion of the band causes the superfluid momentum
peaks to be located at the edges of the Brillouin zone in between the original minima
of the dispersion with positive tunneling. It is important to note that the total driving
time Tdrv = TR,drv + TH,drv is experimentally fine-adjusted such that the forcing function
completes a full circle in good approximation before all trapping potentials are shut off
for the time-of-flight imaging. At this point in time, the condition ∆p(Tdrv) = 0 is fulfilled
and the oscillating Wannier envelope from Eq. (3.33) coincides with the Wannier envelope
of a system at rest.

In order to extract a quantitative signature for the sign of the effective tunneling matrix
element it is useful to define a momentum occupation contrast as illustrated in Fig. 3.2c.
It is defined as the relative difference of the sum over all pixel values in regions of the
respective momentum peaks. The corresponding mask for time-of-flight images is depicted
as blue and red circles. Blue (red) regions correspond to atoms residing at the momentum
minima of a dispersion with positive (negative) tunneling. Due to the minimum at kx = 0
for Jeff > 0, the most outwards lying regions (light blue) each enter only with half their
total value in order to ensure a summation over equal surfaces. A positive (negative)
tunneling matrix element clearly results in a positive (negative) momentum contrast.

The dependence of the effective tunneling on the driving amplitude is displayed in
Fig. 3.3. Here, TOF-images have been taken for an increasing final forcing parameter.
The column sum of these images is depicted in Fig. 3.3a, showing a clear and sudden
jump between the two distinct cases of positive and negative effective tunneling. This
jump is reproduced when extracting the momentum contrast from the images (Fig. 3.3b).
Zero crossings coincide extremely well with the ab initio calculation of the corresponding
Bessel function JB0(K). Note that for the calculation of the Bessel function the exact

lattice parameters have been used. An approximation of an ideal lattice setup leads to a
shift of the Bessel function such that the zero-crossings agree less well with the measured
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data. This effect is thoroughly discussed in Ref. [179].
Remarkably, the measurements still exhibits sharp superfluid momentum peaks even

after the third zero-crossing of the Bessel function, indicating that the coherence of the
system is retained for very strong driving amplitudes. Exemplified, a forcing parameter
of K = 10 corresponds to a driving amplitude in real-space of approximately five lattice
sites [155, 179].

3.2.2 Driving of the triangular lattice

The monochromatic one-dimensional driving scheme discussed in the preceding section
can be extended to the full three beam lattice. In this section we consider far off-resonant
periodic driving of the state-independent triangular lattice. Prospects of the periodic
driving scheme applied to other two-dimensional lattice types such as the honeycomb
lattice will be discussed in chapter 7.

Tunneling between lattice sites in the triangular Bravais lattice takes place along three
distinct directions. Following a proposal by Eckardt et al. [140], monochromatic periodic
driving of the triangular lattice on an elliptical orbit allows for the tuning of effective
tunneling matrix elements as depicted in Fig. 3.4. The corresponding elliptical forcing
function F(t) with forcing amplitudes along the x- and y-axis Fx and Fy respectively is
given by

F(t) = −Fx cos(Ωt) êx − Fy sin(Ωt) êy. (3.41)

In section 2.4.1 we have discussed that the two independent relative phases determine
the position of the otherwise rigid triangular interference pattern V∆(r) of the three-beam
lattice. Hence, elliptical forcing of the running-wave three beam lattice can be achieved by
a suitable frequency modulation of each pair of laser beams. For all experiments presented
here, we modulate the beams with wave vectors k2 and k3 while keeping the frequency of
the vertical k1-beam fixed. In analogy to the one dimensional case discussed in the previous
section the real-space trajectory R0(t) is connected to the time-dependent phases φ2(t)
and φ3(t) via the relation

V∆ (φ2(t), φ3(t), r) = V∆ (0, 0, r − R0(t)) . (3.42)

Using the definition of the relative phases in Eq. (2.32) and (2.33) and setting φ1(t) = 0 ∀ t
leads to

φ2 = +b3R0(t) =
b

2

(

−Rx(t) +
√

3Ry(t)
)

(3.43)

φ3 = −b2R0(t) =
b

2

(

+Rx(t) +
√

3Ry(t)
)

(3.44)

Considerations similar to the one-dimensional case now yield the expressions for the fre-
quency modulations

δν2,3(t) = ± νx sin(Ωt) + νy cos(Ωt) (3.45)
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with the resulting forcing amplitudes given by

Fx =
√

3mΩaνx and Fy = mΩaνy (3.46)

Here, the prefactor of
√

3 in the expression for Fx stems from the projection onto the diago-
nal lattice directions. Inserting the obtained forcing in Eq. (3.28) allows for the straightfor-
ward calculation of the tunneling renormalization along all three lattice bonds according
to Eq. (3.30). These lattice bonds are described by the three Bravais lattice vectors in
Eq. (2.30). In order to ensure a clockwise path around a rightwards pointing elementary
plaquette of the triangular lattice we define the three lattice plaquette bonds di according
to the inset of Fig. 3.4a as

d21 ≡ −a1, d32 ≡ a2, d13 ≡ a1 − a2 (3.47)

in the following. Using Eq. (3.28) yields the expressions

W21(t) = −Fxa

Ω
cos(Ωt) (3.48)

W32,13(t) = − a

2Ω

(

± Fx sin(Ωt) + Fy cos(Ωt)
)

. (3.49)

Now, the time averaging in Eq. (3.30) is analytically solvable (for a thorough calculation
we refer to Ref. [155]). Similar to the one-dimensional case, the resulting tunneling renor-
malization follows a zeroth order Bessel function of first kind for all lattice bonds. Due to
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the symmetry of the system, the obtained renormalization is equal for the two diagonal
tunneling processes. We introduce the notation for the effective tunneling processes

J ≡ Jeff
21 and J ′ ≡ Jeff

32 = Jeff
13 (3.50)

in the following and write

J = JB0(K)Jbare and J ′ = JB0(K ′)Jbare (3.51)

with the dimensionless forcing parameters

K =
Fya

~Ω
=
ma2

~
νy (3.52)

K ′ =
a

2~Ω

√

3F 2
x + F 2

y =
ma2

2~

√

9ν2
x + ν2

y . (3.53)

The behavior of both independent tunneling matrix elements with respect to the ampli-
tude of the frequency modulation is plotted in Fig. 3.4b. Obviously, tunneling along the
vertical bond J is independent of νx as the projection onto the horizontal axis vanishes.
The two diagonal bonds depend on both amplitudes νx and νy, while the renormalization
along the x-direction is stronger by the factor of

√
3.

In this chapter we will present experiments performed in the monochromatically driven
triangular lattice exclusively for isotropic effective tunneling elements, i.e., J = J ′. Figure
3.5a depicts the effective lowest-band dispersion relation of the triangular driven lattice
in the case of isotropic positive and negative effective tunneling. For the case of positive
tunneling, the dispersion is similar to the lowest band shown along the path of symmetry
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points in Fig. 2.6b. A single minimum is located at k = 0 in the center of the Brillouin zone.
In analogy to the one-dimensional case, the whole dispersion is inverted if the isotropic
tunneling becomes negative. Energy minima are located at the six vertices of the Brillouin
zone. Since each corner is shared by three Brillouin zones, a total number of two degenerate
minima exist in the first Brillouin zone. The appearance of this degeneracy has a striking
influence on the physical properties of the system, which will be discussed in detail in
the subsequent chapter. Corresponding absorption images of the resulting momentum
distributions for a superfluid state taken after 32 ms time-of-flight are shown in Fig. 3.5b.
Here, data was obtained by adiabatically loading a BEC into a triangular lattice within
TR,Lat = 100 ms with a potential depth of V0 = 4.6 ± 0.1ER. The resulting bare tunneling
rate is Jbare = 4×10−3 ER and the energy gap of the undriven dispersion to the first
excited band is Egap = 3.38 ± 0.06ER =h×(11.3 ± 0.2) kHz. In the lattice, the driving at
a frequency of Ω = 2π×2.791 kHz is ramped up to its final amplitude in TR,drv = 50 ms
and maintained for approximately 3 ms. In similar fashion as in the experiments already
discussed for one-dimensional driving, the total holding time is adjusted such that the
center of the oscillating Wannier envelope is approximately located on the M -Point of the
Brillouin zone. In Fig. 3.5b this corresponds to the momentum kx = 2π/(

√
3a) and ky = 0.

Superfluid momentum peaks are clearly visible at all minima of the effective dispersion,
validating the experimental feasibility of the two-dimensional driving scheme.

3.3 Investigating strong-field excitations

In the preceding section we have demonstrated the experimental realization of monochro-
matic time-periodic driving schemes for one- and two dimensional lattices. An impor-
tant aspect of this versatile technique is the comparatively strong driving of the system
which was emphasized by the benchmark experiment of an increasing forcing parameter
in Fig. 3.3.

As a result of the strong driving necessary for the inversion of the dispersion, lifetimes
of driven systems can decrease by more than an order of magnitude (see Ref. [179]).
The limitations due to detrimental excitation processes that are accompanied by a loss
of coherence in the sample set an upper bound of the total experimentally accessible
timescales for the coherent manipulation of ultracold ensembles. It is, thus, crucial to
obtain a comprehensive, quantitative understanding of excitation processes present in
strongly driven lattice systems.

On the other hand, as we will see in the following, the strong periodic driving gives
rise to the possibility of studying strong field-induced multi-photon transitions which are
hardly accessible in other physical systems. A quantitative comparison of the presented
periodic driving scheme with regular light-matter interaction was discussed by Arlinghaus
et al. [97]. As demonstrated, e.g., in Fig. 3.3, coherent manipulation of the effective dis-
persion of an ultracold atomic ensemble in an optical lattice is possible for values of the
dimensionless forcing parameter K = aF/(~Ω) of up to K ≈ 10. This forcing strength
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can be compared to the forcing arising from light matter interaction. As an analogy we
consider an atom that is subjected to a strong laser field. Let a light field of photons with
energies of ~ωL = 5.0 eV act on a hydrogen atom with a diameter of the Bohr radius. With
an electric field strength of EL = F/e a forcing parameter of K = 5 corresponds to a total
field strength of EL ≈ 5×1011V/m which is already on the order of the electric field acting
on a ground-state electron in hydrogen. In this sense, strong-field physics can be inves-
tigated with periodically forced optical lattice systems. A central aspect of such strong
driving fields is the occurrence of multi-photon transitions which will be investigated here.

In the following, we employ strongly driven optical lattice systems for the study of
excitation spectra of a pure model system. We identify the observed resonances with
multi-photon transitions to the first excited band and compare the obtained data with ab

initio calculations of the transition energies for one- two- and three dimensional lattice
geometries.

3.3.1 Strong driving of the one-dimensional lattice

In this section we discuss experiments performed in the driven one-dimensional running-
wave lattice as introduced in section 3.2.1. Data presented here has been acquired by adia-
batically loading a BEC into the horizontally aligned optical lattice. The lattice potential
is exponentially increased to its final value in TR,Lat = 150 ms. Subsequently, the forcing
amplitude is ramped up in TR,drv = 50 ms and maintained for another TH,drv = 20 ms at
this amplitude. Finally, absorption images of the momentum distribution are taken after
40 ms time-of-flight.

Prior to the periodic forcing, all atoms of the optical lattice occupy the lowest energy
band with band index l = 0 in good approximation. Multi-photon transitions to excited
bands can occur if the condition

Emin
gap,l(k) ≤ n× ~Ω ≤ Emax

gap,l(k) with n ∈ N
∗ (3.54)

is fulfilled, whereby Egap,l denotes the energy gap between the lowest and the l-th excited
band. The momentum transfer of a driving photon of energy ~Ω onto an absorbing atom
is negligible compared to the lattice momentum. Therefore, as illustrated in Fig. 3.6b, only
transitions with ∆k = 0 have to be taken into account. The crucial aspect of excitations
regarding condition (3.54) is the width of the band gap. An opening of band gaps in the
one-dimensional lattice with respect to the lattice depth is already depicted in Fig. 2.2. In
Fig. 3.6a the energy differences between the lowest and the first excited band are shown
again in dependence of the lattice depth (considering single-photon transitions with n = 1)
with the additional energy differences corresponding to multi-photon transitions with
n = 2, 3, . . . , 10. We restrict the following considerations to transitions between the two
lowest bands which describe the data presented here in excellent agreement. Furthermore,
the increasing width of higher bands prohibits an unambiguous identification of remaining
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features in the excitation spectra as the condition (3.54) is always fulfilled for l > 1 and
n ≫ 1.

In Fig. 3.6c and d, excitation spectra of the driven 1D-lattice are shown in dependence
of the driving frequency for fixed lattice depths of V0 = 11ER and 13ER respectively.
With a final forcing parameter of K = 3.82 the renormalizing Bessel function is at its
first minimum such that the effective tunneling matrix element is J = −0.4Jbare as in
Fig. 3.2b.

Similar to Fig. 3.3 the data points are the obtained by extracting the contrast defined
in Fig. 3.2c with two decisive differences. First, the obtained signal is inverted as the
original definition of the contrast would yield negative values. Secondly, the corresponding
momentum peak masks are expanded to yet another order. For a lattice at rest, these
third-order momentum peaks are clearly negligible concerning the limited extension of the
Wannier envelope. However, as the driving frequency is changed, the Wannier envelope,
oscillating with the driving frequency, is centered at different momenta. For this data set
it is neither experimentally feasible nor necessary to fine-tune the holding-time TH,drv for
each measured frequency to ensure the condition ∆px(t) = 0 as it was done, e.g., for the
data presented in Fig. 3.2 and 3.3. The extension of the peak mask merely results in a
slight decrease of the total amplitude of the contrast due to a smaller relative signal of
counted atoms.

In addition to the (extended) contrast data, multi-photon resonance conditions ac-
cording to Eq. (3.54) are depicted in Fig. 3.6c and d by blue shaded areas. With this,
excitation resonances indicated by a loss of coherence and, thus, dips in the contrast
signal can be clearly identified for the cases of n = 3, 4 and 5. The slight asymmetry
in the resonances tending towards the lower boundary of Eq. (3.54) can be explained by
the dynamics in quasimomentum space induced by the driving of the lattice. Due to the
oscillation in momentum space, atoms reside for longer times at momenta close to the
Brillouin zone edge where the energy gap to the first excited band is minimal for the
forcing amplitude at hand (compare Fig. 3.1c). Thus, the excitation probability is higher
for transition energies closer to the lower boundary. In conclusion, the resonance positions
are in remarkable agreement with the multi-photon transition energies that are calculated
without free parameters.

In order to obtain a deeper understanding of the behavior of such strong-field multi-
photon transitions we extend the study to a variety of driving amplitudes and observe the
dependence of resonances on the lattice depth. Here, the extraction of quantitatively com-
parable resonance data for various driving amplitudes comes with the problem of a varying
contrast signal. As seen in Fig. 3.3, the contrast signal is inverted for a zero-crossing of the
Bessel function when the driving amplitude is increased. Accordingly, we have inverted
the signal for the data shown in Fig. 3.6. However, the contrast signal does not yield
meaningful results at the zero crossing of the Bessel function where the coherence of the
system is drastically reduced. We therefore define a new contrast C. as the normalized
sum over a number npix of maximum pixels of the absorption image. Thereby, we obtain
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information about the maximum optical density of the momentum distribution and, thus,
the level of coherence maintained in the driven system. The robustness and applicability
of this method is discussed in appendix A. Figure 3.7 shows excitation spectra of the
driven 1D-lattice obtained for four different driving amplitudes of K = 1.7, 2.4, 3.8, and
7.0. Preparation and experimental procedure are similar to the data shown in Fig. 3.6.
Hereby, the lattice depth has been varied from 2ER to 16ER in steps of 1ER while the
driving frequency runs from 2 kHz to 6 kHz as in Fig. 3.6c and d. The maximum-pixel
contrast C. was extracted from each images for npix = 3. As this contrast signal is still
much smaller for driving amplitudes corresponding to zero effective tunneling the magni-
tude of each data set belonging to a certain driving amplitude is additionally normalized
to a maximum value of C. = 1. The four data sets are depicted twice: In Fig. 3.7a a high-
contrast color map is chosen in order to facilitate the identification of resonances while
in 3.7b a conventional grayscale mapping is overlaid by the semi-transparent calculated
areas of possible multi-photon transitions similar to Fig. 3.6a. Transitions are indicated
in the data set of K = 7 according to the respective number n of involved photons. Note
that the band gap boundaries were calculated with the exact geometric lattice parameters
given in appendix D.

For increasing forcing amplitudes excitations are clearly enhanced and higher-order
multi-photon resonances appear that can be unambiguously identified up to a total order
of n = 9. The data exhibit an excellent agreement with the calculated resonance con-
ditions. A slight deviation of the resonance positions for n ≥ 4 at large lattice depths
above 13ER towards lower excitation frequencies in the two data sets with largest forcing
amplitude can be explained. In this regime, the available total laser power for the creation
of the lattice potential is already limited, and can lead to a lower total lattice depth than
anticipated. Measurements which are not shown here targeting even larger lattice depths
confirm this trend.

In addition, the agreement of the calculated resonance positions with the observed
data validates a high degree of precision of the employed calibration of the optical lattice
depth which relies on parametric heating via a modulation of the lattice amplitude. As the
multi-photon resonances observed here are the result of pure single-particle effects we can
rule out significant masking effects due to interaction processes for the lattice calibration.

Beyond the assigned multi-photon transitions to the first excited bands weak additional
transitions seem to appear for large forcing amplitudes and lattice depths in between the
allowed excitation regions with n = 3 to 5. Possible explanations of such features are
transitions to even higher excited bands. However, due to the larger width of higher-lying
bands, excitation profiles of such transitions should be very broad which does not seem to
be the case here. Furthermore, high-order multi-photon transitions with n ≫ 1 to higher
bands necessarily exhibit a much smaller slope in dependence of excitation energy and
lattice depth as compared to transitions to the first excited band. Considering, e.g., the
additional feature in the upper right corner of the data set obtained for a forcing amplitude
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Figure 3.8: Excitation resonances in dependence of the forcing amplitude. a High-contrast depiction

of the measured spectrum in dependence of the driving frequency and the forcing amplitude K. Data

for each second value of the forcing amplitude is interpolated. The excitation spectrum exhibits a

rich structure specifically for larger driving frequencies. b Several features of the excitation spectra -

plotted here in dependence of the frequency modulation amplitude ν0 can be assigned to multi-photon

transitions to the first excited band. Blue-shaded areas indicate the forcing-dependent boundary

conditions for multi-photon transitions.

of K = 7.0 such a behavior is not observed. Thus, the origin of these additional excitations
remains an open question.

With data presented in Fig. 3.8 we continue to investigate the influence of the driving
amplitude on the strong-field excitation spectra of the 1D-lattice. Here, both the driv-
ing frequency Ω and the driving amplitude K are varied for a fixed 1D-lattice depth of
V0 = 10ER. In analogy to Fig. 3.7 the data set is depicted twice. Note that in part b the
forcing strength is plotted with respect to the frequency modulation amplitude ν0 since
it is the experimentally adjusted parameter. It is related to the forcing parameter via
Eq. (3.40) yielding 1K = 3.18ν0(kHz). For an improved visualization of the data, every
second value for the forcing amplitude is interpolated. Data points for ν0 = 12 kHz were
not recorded and are also interpolated (such interpolation of data does not result in addi-
tional artificial features). Finally, unlike the previously discussed data, the maximum-pixel
contrast is extracted for a large value of npix = 103 included pixels. The reason for this
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rather large averaging over the maximum optical density values is a deviation of the total
signal strength for each individually measured forcing amplitude. Nevertheless, the qual-
itative behavior of the excitation spectra remains unchanged by the inclusion of a large
number of pixel values, allowing for easily comparable measurements.

Again, several resonances appearing in the obtained spectrum can be assigned to multi-
photon transitions to the first excited band as indicated by the blue shaded areas in
Fig. 3.8b. Since the lattice depth was not changed, the positions of such resonances re-
mains fixed. However, condition (3.54) has to be corrected for small driving amplitudes.
If the forcing is small, oscillations are limited to small quasimomenta such that particles
with initial quasimomenta of q = 0 never reach the point of the minimum band gap energy
at the edges of the Brillouin zone. This means that the lower boundary for multi-photon
transitions thus depends on the forcing amplitude up to the point where the whole Bril-
louin zone is scanned: Emin

gap → Emin
gap (K) for values smaller than K ≈ 3.1. Blue-shaded

areas in Fig. 3.8b include the forcing-dependent lower boundary condition. Even though
we have neglected the finite momentum spread of an ultracold bosonic ensemble in the
considerations of the forcing-dependent boundary condition, the shape of the resonance
with n = 3 follows the lower boundary. A widening of the resonance can be observed for
increasing driving amplitude. Additional excitation features that are clearly visible for
large forcing amplitudes and driving frequencies, however, remain to be understood.

3.3.2 Excitation spectra of the triangular lattice

The striking influence of an elliptical periodic driving scheme on the triangular lattice
has already been introduced in section 3.2.2. In chapters 4 and 5 experiments relying on
periodic driving of the triangular lattice are presented. For such experiments, a precise
knowledge of the corresponding excitations arising in the strong-field limit from periodic
driving is a crucial prerequisite. In the following, we thus extend the investigation of
excitation spectra to the triangular three-beam lattice and discuss the results in view of
further experiments.

Similar to the data shown in Fig. 3.5 the driving is adjusted such that the tunnel-
ing renormalization isotropic, i.e., effective tunneling along all lattice bonds amounts to
J, J ′ = −0.4Jbare. Here, the final lattice depth ranges from 2 to 6ER. With the shal-
low confinement along the third axis, the atomic ensemble forms an array of elongated
cigar-shaped tubes. Subsequently, the two frequency modulation amplitudes νx and νy are
linearly increased over a ramping time of TR,drv = 50 ms to values of 4.96 kHz and 8.59 kHz
respectively. Driving is maintained at these amplitudes for another 2 ms. Hence, the driv-
ing timescales are considerably shorter as compared to the driving in the one-dimensional
lattice. This choice takes account for the significantly reduced total lifetime of the driven
system in the triangular lattice. At a maximum forcing amplitude of K = 3.83 it is on
the order of 10 ms [155, 179].

In Fig. 3.9 the excitation spectrum of the driven triangular lattice is depicted for values
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Figure 3.9: Driving resonances in the triangular lattice in dependence of the lattice depth and the

driving frequency. Every second value of the lattice depth is interpolated to improve visualization. a

The excitation spectrum exhibits clearly distinguishable resonance features and a narrow parameter

region with a high degree of maintained coherence. b Resonances can be assigned with excellent

agreement to multi-photon transitions up to the order of n = 5.

of the driving frequency between 0.5 and 3.5 kHz. Data was obtained by extracting the
maximum-pixel contrast for npix = 3 from absorption-images taken after 40 ms time-of
flight. The total value of the whole spectrum is normalized to values between 0 and 1.
In order to improve the visualization of the observed behavior, the upper bound color
axis is limited to 0.8 and data is interpolated for each second value of the triangular
lattice depth. Similar to the running-wave 1D-lattice, excitations can be assigned with
excellent agreement to multi-photon transitions up to an order of n = 5 as depicted in
3.9b. Again, the band gap energies were calculated with the exact lattice parameters given
in appendix D. Note that the second and third bands lie closely together in the triangular
lattice (compare Fig. 2.5). For the calculation of the minimum and maximum band gap
energies, only the second band was considered.

In contrast to the one-dimensional case, however, resonances appear to be narrower as
the boundary conditions for multi-photon resonances suggest. This is the case even though
the whole Brillouin zone is already scanned for the modulation amplitudes at hand. A
possible explanation might again be the varying times that particles in momentum space
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are present at different band gap energies and the much shorter total duration of the
forcing procedure.

An important feature of the excitation spectrum is the narrow region between the
n = 4 and n = 5 where the periodic driving yields high values of the pixel contrast
and, thus, a large degree of maintained coherence of the atomic ensemble in the effective
dispersion relation. The time-of-flight image for negative effective tunneling depicted in
Fig. 3.5b was obtained precisely in this parameter region. The restriction of the accessible
parameter space is a valuable insight for experiments relying on the coherent manipula-
tion of ultracold atomic ensembles in engineered effective dispersion relations in general.
Further experiments in the triangular lattice as discussed in the subsequent two chapters
were performed exclusively in this parameter region. In particular, such restrictions in
the parameter space of periodic driving play a crucial role for experiments presented in
chapter 5.

3.3.3 Periodic driving in the 3D-lattice

As discussed in chapter 2, the three-beam lattice can be superimposed with an additional
retro-reflected one-dimensional lattice in order to form a three-dimensional lattice system
by slicing up the elongated condensate tubes. The 3D-lattice is an important prerequisite
for the study of strongly correlated many-body systems with a small number of particles
per lattice site. A paradigm example of the application of periodic driving to such systems
is the mapping to the so-called quantum XY model [140] that will be discussed in chapter
5.

Three dimensional driven systems have been realized, e.g., by Zenesini et al. [95] where
cubic lattices formed by three perpendicular pairs of counterpropagating laser beams was
sinusoidally modulated with piezoelectric actuators in order to drive the quantum phase
transition from a superfluid to a Mott-insulating state. In contrast, we perform periodic
driving solely in the triangular lattice in the presence of the additional perpendicular
static lattice. The study of the coherence properties of the driven three-dimensional lattice
system serves as a benchmark for the reaching of the strongly correlated regime in tailored
effective dispersion relations.

Figure 3.10 shows a comparison of excitation spectra obtained in the triangular lattice
with- and without the presence of an additional perpendicular 1D-lattice. For both cases,
the three-beam lattice was exponentially ramped to a final value of V0 = 4.5ER in 50 ms.
Here, the driving amplitude was linearly increased in 5 ms and maintained for another
5 ms at a fixed driving frequency of Ω = 2π×2.55 kHz. In analogy to the two-dimensional
driven triangular lattice, the short ramping procedure was chosen to take account for
the lifetime of the coherently engineered superfluid state in the three-dimensional lattice
which is limited to the order of a few ms. For black data points in Fig. 3.10, the additional
1D-lattice was exponentially ramped up prior to the ramping of the three beam lattice to
a potential depth of V0,1D = 30ER in 500 ms. With this large potential depth, tunneling
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Figure 3.10: Comparison of driving in the 2D- and 3D lattice. Excitation spectra obtained by the

maximum-pixel contrast for npix for the triangular three-beam lattice are depicted with (black data

points) and without (gray data points) an additional perpendicular 1D-lattice. The absolute level

of coherence is significantly lowered by the presence of an additional lattice along the line of sight.

However, the qualitative behavior of both spectra is quite similar. Error bars denote the standard

deviation.

processes between the formed layers are suppressed for experimentally relevant timescales.

The extreme difference between the two investigated many-body systems manifests
itself in a large difference of the absolute value of the contrast extracted from the TOF-
images while the qualitative behavior of the excitation spectrum remains relatively similar
for both cases. However, by comparing the spectra above driving frequencies of 3.5 kHz,
it is evident that several clearly distinguishable multi-photon resonances in the two-
dimensional lattice are not resolved in the three-dimensional system. This circumstance
can be attributed to the fact that the total duration of forcing was chosen to be substan-
tially shorter in the three-dimensional case.

In principle, additional excitations resulting from the periodic forcing in the lattice
plane could appear due to the fact that the 1D-lattice is not aligned precisely perpendic-
ular to the three-beam lattice plane but encloses a horizontal angle of approximately 2°

with the z-axis (Note that this inclination is intended in order to avoid the appearance of
super-lattices due to residual reflections at surfaces of the science cell.) Nevertheless, the
projection of the forcing onto the 1D-lattice, i.e., the sine of the inclination angle, yields
a negligible amount of the forcing amplitude K⊥ ≈ 0.1 along this direction, such that ad-
ditional multi-photon resonances bridging the large 1D-lattice band gap of E1D

gap = 32 kHz
can be ruled out.

In Fig. 3.11 we verify the assumption of negligible excitations in the perpendicular lat-
tice further by investigating the excitation spectra of the driven 3D-lattice in dependence
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Figure 3.11: Excitation spectrum of the three-dimensional lattice in dependence of the driving

frequency and the one-dimensional lattice depth. For an improved visualization, every second value

of the 1D-lattice depth is interpolated. The excitation spectrum depicted in a appears to be constant

with respect to the 1D-lattice depth. Transitions to excited bands of the additional lattice as indicated

by blue-shaded areas in b are not observed while the congruence with in this case constant transitions

in the triangular lattice is also less clear as shown in c.

of the 1D-lattice depth while the triangular lattice depth is held fixed at V0 = 4.25ER.
Clearly, as shown in 3.11b the excitation spectrum does not show the characteristic excita-
tion spectrum corresponding to multi-photon transitions for the one-dimensional lattice.
In contrast to the behavior of the excitation spectrum with respect to the triangular
lattice depth (compare Fig. 3.9), the excitation spectrum retains its shape for a varying
1D-lattice depths.

In Fig. 3.11c, a comparison of the excitation spectrum to possible multi-photon tran-
sitions in the triangular lattice is shown. Apparently the observed resonances are shifted
in this case, which can be attributed to interaction effects in the now strongly confined
three-dimensional system.

As the main result of the measurements in Fig. 3.11 we can clearly state that no addi-
tional driving excitations arise due to the presence of a strong 1D-lattice on the compar-
atively short timescales investigated here. Limitations arising from the short lifetime and
low level of coherence in the strongly confined driven three-dimensional lattice will be of
importance for experiments presented in chapter 5.
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3.4 Conclusion & outlook

To conclude, we have verified the experimental technique of time-periodic lattice driving
for the engineering of effective tunneling matrix elements. With this, both driving in the
running-wave 1D-lattice and the triangular lattice allows for the coherent engineering
of an effective time-averaged dispersion relation. We have furthermore established an
analog of periodic lattice driving to strong-field processes arising from a comparison of
the forcing amplitude to the strength of light-matter interactions. In accordance with
this notion we indeed observe multi-photon transitions up to an order of n = 9 that are
in excellent agreement with corresponding energies calculated without free parameters.
While these results connote an important prerequisite for the accessible parameter space
of experiments discussed in the following, additional features in the excitation spectra as
well as the influence of excitations in a strongly interacting three-dimensional lattice have
yet to be fully understood.
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Here, we experimentally realize complex-valued tunneling matrix elements in optical

lattices by a time-asymmetric far off-resonant driving technique that allows for the

emulation of artificial gauge fields. The feasibility of this approach is verified with

excellent agreement to ab initio calculations in a proof-of-principle experiment on a

one-dimensional lattice. We extend the concept to the triangular lattice, creating fully

tunable gauge invariant staggered fluxes. This system represents the geometrically frus-

trated Ising-XY model that constitutes a generic spin model involving two coupled

symmetries. Their associated order parameters are derived and analyzed with respect

to the staggered flux strength and the temperature of the atomic ensemble.

The concept of gauge fields was first introduced in the context of classical electrodynamics.
Since then, a large variety of accurate theories have been developed in many branches of
physics that rely on gauge-invariances and their underlying symmetries. Ultracold quan-
tum gases provide an ideal testing ground for the study of gauge fields in specifically
tailored scenarios.

For the investigation of ultracold quantum many body systems comprised of neutral
atoms in analogy to charged particles, it is necessary to artificially engineer the effects of
electric or magnetic fields. In this chapter we present an experimentally feasible method
for the creation of fully tunable gauge fields in driven optical lattice systems. By engineer-
ing complex-valued tunneling matrix elements it is possible to adjust the corresponding
phases, the so called Peierls phases, to all possible values ranging from 0 to 2π. In compari-
son to techniques relying on laser-assisted tunneling processes, this far off-resonant driving
allows for the creation of an easily adjustable strength of the artificial gauge field. In order
to validate our approach, we extract the value of the Peierls phase on a one-dimensional
lattice in excellent agreement with ab initio calculations.

We extend the driving technique to the triangular lattice realizing the geometrically
frustrated XY model. Here, the combination of Peierls phases for each individual lattice
plaquette gives rise to staggered magnetic fluxes. With an elementary flux quantum per
lattice plaquette the strength of the artificial magnetic field corresponds to the strong
field regime. We observe a (spontaneous) symmetry breaking between the two-fold degen-
eracy of ground states in the case of maximal staggered field strengths. Furthermore, this
discrete Z2- or Ising symmetry can be broken on purpose by tuning the staggered flux
strength. We investigate the Ising order parameter with respect to the flux and entropy
of the system. A statistical data analysis reveals a thermally driven phase transition from
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an ordered ferromagnetic- to an unordered paramagnetic state.
With the long-range phase coherence in accordance with Bose-Einstein condensation,

the system also exhibits a spontaneously broken continuous U(1) symmetry. Observed
changes in the long-range phase coherence in dependence of the staggered flux strength
hint towards a strong coupling of both the U(1) and the Z2 order parameters.

Parts of this chapter have been published in [1] and [3] as well as in the PhD thesis of
J. Struck [155]. Experiments presented here were performed within the team of J. Struck,
C. Ölschläger, J. Simonet and M. Weinberg. Analysis of data depicted in Fig. 4.3 and 4.4
was performed by C. Ölschläger.

4.1 Realization of tunable Peierls phases

In the preceding chapter we have introduced the concept of monochromatic far off-resonant
driving in order to manipulate tunneling matrix elements. In the following, we will gen-
eralize this approach to more complicated driving schemes allowing for the engineering of
complex-valued tunneling parameters that emulate the presence of vector gauge poten-
tials.

4.1.1 Peierls substitution in the tight-binding model

In electromagnetism, the kinetic part of the Hamiltonian for a particle with charge q is
modified in the presence of the vector potential A(r) according to

1
2m

p̂
2 → 1

2m

(

p̂ − qA(r)
)2
. (4.1)

This purely quantum mechanical influence of the vector potential is impressively demon-
strated by the Aharonov-Bohm effect, where the phase of a particle’s wave function is
altered despite no residual electromagnetic fields being present along its path [98, 99]. In
close resemblance, the effect of a gauge potential acting on a charged particle in a tight
binding lattice can be described in the framework of the so-called Peierls subsitution [200].
The Peierls substitution replaces real-valued tunneling matrix elements with complex ones

Jij → |Jij| eiθij (4.2)

where the Peierls phase θij between the lattice sites with indices i and j is connected to
the vector gauge potential via the integral

θij =
q

~

∫ Ri

Rj

A(r)dr. (4.3)

As the acquired phase is not independent of the path taken by the particle, the integral is
evaluated along the straight lattice bond connecting the two sites. In analogy to Eq. (4.1)
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Figure 4.1: Illustration of Peierls phases and gauge invariant fluxes. a Complex-valued tunneling
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the fluxes through elementary lattice plaquettes, shown here for b a square lattice and c a triangular

lattice. The figure was modeled after Ref. [155].

the kinetic part of the Bose-Hubbard Hamiltonian from Eq. (2.20) is altered due to the
complex tunneling:

ĤBH = −
∑

〈i,j〉

|Jij|
(

eiθij b̂†i b̂j + eiθji b̂†j b̂i
)

+
U

2

∑

i

n̂i(n̂i − 1). (4.4)

Hence, the presence of a gauge field causes a directionality of tunneling processes with
the trivial exceptions of θij = 2π×n, n ∈ Z. As depicted in Fig. 4.1a, tunneling in opposite
directions inverts the Peierls phases, such that

θji = −θij. (4.5)

The values of the Peierls phases depend on the specific gauge chosen, i.e., a global phase
of the wave function. For a one-dimensional lattice the introduction of Peierls phases leads
to a global shift of the dispersion relation. Here, a specific gauge, i.e., a suitable choice of
the reference frame, can always be found that counteracts this shift.

In contrast, as illustrated in Fig. 4.1b and c, lattices of higher dimensionality exhibit
a gauge invariant quantity: the magnetic flux Φ of a field B(r) through an elementary
lattice plaquette P . In accordance with Stokes’ theorem it is given by the sum over all
Peierls phases around a lattice plaquette

ΦP =
q

~

∫∫

SP

B(r)dSP =
q

~

∮

P
A(r)dr =

∑

P

θji (4.6)

where SP denotes the surface of the plaquette and we have used B(r) = ∇ × A(r).
Having established the connections between gauge fields, Peierls phases and the com-

plex tunneling parameters we can, so to say, put the cart before the horse: in the following,
we will discuss how to create complex-valued tunneling matrix elements in optical lattices
by employing the far off-resonant driving techniques introduced in the preceding chapter.
This allows us to directly engineer the Hamiltonian (4.4) and, thus, use neutral ultracold
atoms in order to emulate the effects of an artificial gauge field A(r) acting on charged
particles.
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4.1.2 Symmetry constraints of the forcing

In section 3.1.3 we have derived a general expression of the renormalized effective tunneling
matrix element for arbitrary forcing (see Eq. (3.30)). In order to obtain complex-valued
tunneling, the imaginary part of Eq. (3.30) must not vanish, i.e.,

Im
(

Jeff
ij /J

bare
ij

)

=
1
T

∫ T

0
sin

(

Wij(t)/~
)

dt
!

6= 0. (4.7)

This condition is only fulfilled if the underlying driving functions vij ≡ vi − vj introduced
in Eq. (3.22) break two fundamental symmetries: the shift (anti)symmetry

vij(t) = −vij(t− T/2) ∀ t (4.8)

with respect to the driving period T = 2π/Ω and the reflection-, or time-reversal symmetry

vij(t− τ) = vij(−t− τ) ∀ τ ∈ [0, T [ . (4.9)

In the case of a rigid lattice potential, the above conditions necessarily apply to the forcing
function itself as the vij(t) denotes the forcing projected onto the lattice vectors [1, 155].
However, this is only the case for a rigid lattice potential. In general, lattice geometries
with time-dependent bonds can also be generated, e.g., by shifting superlattices with
respect to each other [2]. In chapter 7 we will briefly discuss another approach for the
creation of time-dependent lattice bonds. Experiments presented in this chapter, however,
are restricted to rigid lattice potentials.

In order to break both symmetries in Eq. (4.8) and (4.9), a forcing function in-
evitably exhibits more than a single Fourier component. Hence, driving schemes leading
to complex-valued tunneling can be labeled as multichromatic forcing in contrast to the
purely sinusoidal- or monochromatic forcing employed in experiments that were presented
in the preceding chapter. As the driving itself still relies on the strong-field like forcing
of the system, the accessible parameter regime lacking multi-photon resonances is more
restricted as compared to monochromatic driving schemes.

4.1.3 Complex-valued tunneling in the one-dimensional lattice

In the following, we demonstrate the realization of a fully tunable vector gauge potential
by engineering complex-valued tunneling parameters in the one-dimensional running-wave
lattice.

With the constraints on the driving scheme established in the previous section, we
choose a function that is comprised of a train of sinusoidal pulses. It is defined over a
period as

Fx(t) =







F0 sin (Ω1t) for 0 < t < T1

0 for T1 < t < T.
(4.10)
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Figure 4.2: Engineering of Peierls phases by asymmetric driving. a A forcing function comprised

of trains of sine pulses allows for the creation of complex-valued tunneling matrix elements on a

one-dimensional lattice. b A finite Peierls phase θ results in the shift of the dispersion relation by

θ/a. The asymmetry parameter T1/T2 modifies the behavior of tunneling renormalization both for

c the Peierls phase and d the total tunneling amplitude. The figure is modeled after Ref. [1] and

appears in similar fashion in Ref. [4]. The plots in c and d have been calculated by J. Struck.

As depicted in Fig. 4.2a, T1 = 2π/Ω1 is the period of the sine pulse. T2 denotes the time
separating the sine pulses where no force is applied to the system. Accordingly, T = T1+T2

is the total period of the forcing function. It is straightforward to verify that the forcing
(4.10) breaks the two symmetry conditions (4.8) and (4.9), thus allowing for the generation
of complex-valued tunneling. Even though this forcing function has an infinite number
of Fourier components, the amplitude of higher-order components decreases rapidly such
that unwanted multi-photon transitions for these frequencies only occur with negligible
probability.

The resulting renormalization of the tunneling matrix elements can be derived with
the above forcing function according to Eq. (3.30), leading to

Jeff
i,i−1

Jbare
=
T2

T
e+iKT1/T +

T1

T
e−iKT2/TJB0(K), (4.11)

where againK is the dimensionless forcing parameter and JB0(K) denotes the zeroth-order
Bessel function as in the monochromatic case. For the case of T2/T → 0 the monochro-
matic driving as described in chapter 3 is recovered. A thorough calculation of the effective
renormalized tunneling elements and the frequency modulation of the laser beams corre-
sponding to the forcing function in Eq. (4.10) can be found in Ref. [155]. The directionality
of the tunneling is indicated by the indices in Jeff

i,i−1, describing the tunneling from the
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Figure 4.3: Realization of a fully tunable Peierls phase in the one-dimensional lattice. a Row-sums

of the momentum distribution of the 1D-lattice after time-of-flight. An increase of the asymmetric

forcing amplitude results in a shift of quasimomentum peaks. b Values of the Peierls phase θ (black

data points) extracted from the images in a span the full range between 0 and 2π and exhibit an

excellent agreement with ab initio calculations of the expected value (solid line). Error bars denoting

the standard deviation of data almost entirely lie within the data points. Similar figures appear in

Refs. [1], [4] and [155].

(i − 1)-th to the i-th lattice site. Tunneling in the opposite direction is described by the
complex-conjugate of the expression (4.11). In the following we write

J→ ≡ Jeff
i,i−1 and J← ≡ Jeff

i,i+1 (4.12)

for tunneling processes to the right and left respectively (compare to Fig. 4.1a). We define
the Peierls phase θ as the argument of tunneling to the right:

θ = arg (J→) , (4.13)

such that the effective Bose-Hubbard Hamiltonian (4.4) simplifies to

ĤBH = − |J |
∑

i

(

e+iθb̂†i b̂i−1 + e−iθb̂†i b̂i+1

)

+
U

2

∑

i

n̂i(n̂i − 1). (4.14)

In the above equation we have used the fact that the amplitude of the directional tunneling
is always equal for both directions, hence, |J⇆| ≡ |J |.

As depicted in Fig. 4.2c and d, the renormalization of the tunneling matrix element
depends heavily on the asymmetry parameter T1/T2 of the sine pulse forcing. While for
large values T1/T2 ≫ 1 the Peierls phase is modulated strongly with increasing forcing
parameter K, the absolute value of the tunneling decreases. In the opposite case of shorter
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deviation denoted by error bars that lie almost always within the data points. The theoretically
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the supplementary material of Ref. [1].

sine pulses and longer resting times, or T1/T2 < 1 the tunneling amplitude remains rel-
atively constant with respect to the forcing amplitude. However, tuning of the Peierls
phase to comparable values requires stronger forcing parameters. In order to span the full
parameter rage for the Peierls phase between 0 and 2π while avoiding large heating losses
accompanied by strong forcing amplitudes we compromise between the two extremes to
a value of T1/T2 = 2.1 (see Fig. 4.2).

Experiments presented in the following are performed in the one dimensional running-
wave lattice similar to the monochromatic forcing scheme discussed in chapter 3. A BEC
confined in the elliptical dipole trap (see section 2.2.4) is loaded into the lattice with a final
lattice depth of V0 = 10 ± 1ER. Here, the tight-binding conditions are well satisfied and
the bare tunneling amplitude amounts to Jbare = 0.7×10−2 ER. With a minimal energy
gap between the two lowest bands of Egap = h×14.4 kHz the driving frequency is set to
Ω = 2π×1 kHz, corresponding to a forcing period of T = 1 ms.

In the lattice, the driving amplitude is ramped to its final value in 120 ms and retained
for another 20 ms before all trapping potentials are switched off and absorption images
of the resulting momentum distribution are taken after 27 ms time-of-flight. Hereby, the
ramping of the forcing amplitude K(t) is adjusted such that it partially compensates the
nonlinearity of the Peierls phase θ(K) depicted in Fig. 4.2c.

In section 3.1.1 we have already argued that the presence of a finite Peierls phase results
in a shift of the effective dispersion relation

Eeff(k) = −2|Jeff| cos (ak − θ) (4.15)

as illustrated in Fig. 4.2b. We investigate the shift of the dispersion minima with respect
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to the forcing parameter K in Fig. 4.3. The positions of the superfluid quasimomentum
peaks at the minima of the effective dispersion is depicted as row-sums over the obtained
TOF images in Fig. 4.3a. They directly relate to the Peierls phase introduced via the
lattice driving according to kmin = θ/a. In Fig. 4.3b the Peierls phases, extracted by
Gaussian fits of the momentum peaks to the row sums of the TOF images, are plotted in
dependence of the forcing amplitude in the full range of possible values θ ∈ [0, 2π[. The
obtained data show an excellent agreement with the theoretically expected value that is
calculated without free parameters. A systematic deviation for small driving amplitudes
around K = 2 can be understood by means of a dynamical instability of the system
at a critical quasimomentum. The dynamical response of the system to the asymmetric
driving scheme is described in detail in Ref. [1]. Special emphasis on the understanding
of the dynamical instability arising for a critical quasimomentum is given in Ref. [155].
As sharp momentum peaks are visible in the data presented in Fig. 4.3a up to a forcing
parameter of K = 9, we can conclude that the asymmetric driving scheme does not result
in significant heating processes. Note that the discussed scheme even allows for the tuning
of the Peierls phase way beyond values of 2π for even stronger forcing without a significant
loss of coherence. However, as these values have no physical meaning, such measurements
are not discussed here.

In order to rule out time-dependent shifts of the quasimomentum peaks due to the
forcing, a time-resolved measurement of the momentum distribution for a fixed forcing
parameter is presented in Fig. 4.4. Spanning two complete driving cycles, it is clearly
demonstrated by the TOF-data depicted in Fig. 4.4a that the positions of the quasimo-
mentum peaks remain constant while the Wannier envelope oscillates, subjected to the
momentum change ∆px(t) (compare Eq. (3.33)). The extracted time-dependent position
of the Wannier envelope kw(t), obtained by a broad Gaussian fit to the row-sum of the
images is plotted in Fig. 4.4b. It shows an excellent agreement with the theoretically ex-
pected behavior according to kw(t) = k0 + ∆px(t)/~, proving that the superfluid system
accurately responds to the inertial forcing of the lattice.

4.2 Tunable gauge-invariant fluxes on the triangular

lattice

In the preceding section we have proven the experimental feasibility of engineering com-
plex valued tunneling matrix elements in optical lattices by multichromatic time-periodic
driving. The Peierls phase could be continuously tuned over the full range between 0 and
2π. In the following, we will extend this technique to the triangular lattice, allowing for
the generation of artificial staggered magnetic fields.

The presence of Peierls phases in two dimensional Bravais lattices is already sketched
in Fig. 4.1b and c. As a gauge invariant quantity, the sum of Peierls phases around a
lattice plaquette P corresponds to a magnetic flux ΦP . From the directionality of the
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complex tunneling created by periodic lattice driving according to Eq. (4.5) it is immedi-
ately evident that the summation over pairwise-parallel plaquette bonds as in the square
lattice (Fig. 4.1b) always leads to a vanishing flux through the plaquette. In contrast, the
summation of Peierls phases around a triangular lattice plaquette (Fig. 4.1c) can result in
a finite magnetic flux, as the plaquette bonds are not parallel.

This can be understood in terms of a symmetry argument: as the described global
periodic driving of the rigid lattice potential does not break the translational symmetries
of the Bravais lattices and thus, the induced magnetic flux through a primitive lattice cell
must vanish. Unlike in the square lattice, the primitive cell of the hexagonal Bravais lattice
consists of two lattice plaquettes (see Fig. 2.4), namely one triangle pointing leftwards and
one pointing rightwards, the flux through a single plaquette can have a non-zero value
as long as the flux in the complementary plaquette exhibits the same flux amplitude but
opposite sign. The result is a staggered magnetic flux pattern maintaining the periodicity
of the underlying Bravais lattice.

In recent years, many efforts for the creation of homogeneous fluxes in optical lattice
systems have been made in order to, e.g., study the quantum Hall regime with ultracold
atomic model systems. Such a rectification of staggered fluxes mostly rely on laster-assisted
tunneling processes as, e.g, in [120, 121, 201]. However, more sophisticated periodic driv-
ing schemes involving the time-dependent breaking of lattice symmetries by superlattice
potentials may also allow for the creation of homogeneous fluxes or different topological
band structures [2]. In the following, we demonstrate the creation of artificial staggered
magnetic fluxes on a triangular lattice by using global time-asymmetric periodic lattice
driving similar to the scheme discussed in the foregoing sections.

4.2.1 Time-asymmetric elliptical forcing

In analogy to the elliptic driving scheme introduced in section 3.2.2 we choose the following
forcing function

F(t) = −Fx cos(ωt) êx − Fy
(

sin(Ωt) + δ sin(2Ωt)
)

êy (4.16)

with a corresponding frequency modulation of two of the three lattice beams

δν2,3 = ± sin(Ωt) νx +
(

cos(Ωt) + δ cos(2Ωt)/2
)

νy. (4.17)

The forcing is similar to the purely elliptical one except for the additional first higher-
harmonic term δ sin(2Ωt). A control parameter of δ 6= 0 breaks the two symmetry condi-
tions in Eq. (4.8) and (4.9), thus, enables the creation of complex-valued tunneling along
the lattice bonds. The time averaging integrals for the tunneling renormalization according
to Eq. (3.30) can only be solved numerically. Similar to the monochromatic driving of the
triangular lattice, the renormalization is always equal for the diagonal plaquette bonds.
Hence, we simplify the notation of the Peierls phases along the lattice bonds depicted in
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Figure 4.5: Peierls phases and fluxes on the triangular lattice. a Illustration of Peierls phases on
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in Eq. (4.16) and (4.17) for forcing parameters of K = K ′ ≈ 3.62. c Corresponding absolute values

of the independent renormalized tunneling matrix elements J and J ′. Parts b and c of the figure are

also featured in Ref. [155] and the supplementary material of [3].

Fig. 4.1c to

θ ≡ θ21 and θ′ ≡ θ32 = θ13 (4.18)

in accordance with the notation of J and J ′ given in Eq. (3.50) and Fig. 3.4a. With this,
the flux through a lattice plaquette is given by

Φ⊲ = θ21 + θ32 + θ13 = θ + 2θ′ = −Φ⊳, (4.19)

where Φ⊲ and Φ⊳ denote the flux through the rightwards and leftwards pointing triangular
lattice plaquettes respectively. As the relation Φ⊲ = −Φ⊳ holds, we refer to the magnetic
flux as the flux strength Φ ≡ Φ⊲ in the following. In Fig. 4.5a the defined Peierls phases are
illustrated again for a primitive lattice cell consisting of both rightwards and leftwards
pointing lattice plaquettes. Fig. 4.5b and c depict the numerically calculated behavior
of the Peierls phases θ, θ′, the flux strength Φ and the amplitude of the renormalized
tunneling matrix elements |J | and |J ′|.

Experiments presented in the following were all performed in a triangular lattice with
a lattice depth 4.6 ± 0.1ER. Perpendicular to the lattice plane, only the weak harmonic
trapping confinement was present. The corresponding bare single-particle tunneling rate is
Jbare = 4×10−3ER. In this regime, the ensemble is in a superfluid state with a well defined
quasimomentum. We drive the system with a frequency of Ω = 2π×2.791 kHz (and its first
higher-harmonic of 2Ω). With a minimal energy gap of Egap = h×(11.3±0.2) kHz between
the two lowest bands the choice of the driving frequency results only in minimal heating
processes due to multi-photon resonances. In the lattice, the two driving amplitudes K
and K ′ introduced in Eq. (3.52) and (3.53) are linearly increased within TR,drv = 50 ms
to a final value of both K = K ′ ≈ 3.62. Note that, in the limit of vanishing forcing
asymmetry δ → 0, the chosen value of the homogeneous driving corresponds to the first
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minima. The figure is also featured in Ref. [155] and the supplementary material of [3].

minimum of the renormalizing Bessel function. Driving is maintained at the maximum
amplitudes for a few milliseconds, before all trapping potentials are suddenly switched off
and absorption images are taken after 32 ms time-of-flight.

The time-resolved behavior of the magnetic flux strength Φ and the magnitudes of
the two independent tunneling parameters |J | and |J ′| during the ramping procedure
is shown in Fig. 4.6 for different values of the control parameter δ. Due to the linear
increase of the driving amplitudes, all parameters vary strongly during the ramp. In
particular, the tunneling magnitudes decrease strongly before recovering to the final value
around |J |, |J ′| ≈ 0.4Jbare. Vanishing tunneling rates are accompanied with diverging
timescales of the system. Hence, the ramping process is highly non-adiabatic and coherence
is completely lost during the increase of the forcing parameters as the dispersion becomes
completely flat. However, for increasing tunneling amplitudes atoms fully recondense into
a superfluid state at the newly formed minima of the inverted dispersion until the ramping
procedure is finished.

The control parameter δ is experimentally varied over a small parameter rage δ ∈
[−0.2,+0.2]. As depicted in Fig. 4.5c, the final amplitudes |J | and |J ′| of the effective
tunneling matrix elements only deviate by a few percent within this range.

For the present lattice depth the system is well approximated by the tight binding
limit. Here, the effective dispersion relation including the presence of Peierls phases reads

Eeff(k) = −2J cos(d1k − θ) − 2J ′ cos(d2k − θ′) − 2J ′ cos(d3k − θ′), (4.20)

where we have defined the lattice bonds di forming a clockwise path around a rightward
pointing triangular plaquette as

d1 = −a1, d2 = a2, and d3 = a1 − a2 (4.21)

with the Bravais lattice vectors given in Eq. (2.30).
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4.2.2 Tuning of staggered fluxes

The deformation of the two-dimensional effective dispersion relation resulting from the
driving has been depicted already in Fig. 3.5 for the homogeneous case of δ = 0 and
θ = θ′ = π. Here, the dispersion is exactly inverted, resulting in two degenerate minima
at the vertices of the first Brillouin zone. On average, both minima are equally populated
as indicated by the averaged absorption image in Fig. 4.7b. However, single-shot measure-
ments reveal a statistically fluctuating occupation, favoring either one of the two minima.
This peculiar behavior will be discussed in detail in the following section.

The introduction of complex-valued tunneling to the system with a nonzero value of
the control parameter δ allows for the tuning of the flux strength away from its maximum
value of π. For a flux strength of Φ 6= π the degeneracy of the two minima is lifted, resulting
in a global- and a metastable minimum as depicted for reduced fluxes of φ = (1 ± 0.19)π
in Fig.4.7a that arise for a control parameter of δ = ±0.2. As can be seen from the
corresponding averaged TOF-images shown in Fig.4.7b, atoms only occupy the global

72



Emulation of the Ising-XY model

minimum of the dispersion. However, in the intermediate regime of flux strengths close
to π, significant occupations of the metastable minima can also be observed which result
from the non-adiabatic ramping process. In Fig. 4.7c and d, the tunability of the flux
strength and the corresponding occupations of the two minima in the first Brillouin zone
are demonstrated. Data are shown close to the Brillouin zone edge at kx = 2π/

√
3a. The

slight distortion of the superfluid momentum peak occupying the upper minimum for
Φ < π in Fig. 4.7d is an artifact of image processing: for an improved visualization, the
initial TOF-images were tilted by approximately 2° due to an imperfection in the imaging
setup. The occupation of the two minima is in good agreement with the expected shape
of the band structure.

4.3 Emulation of the Ising-XY model

In the previous section we have demonstrated the tunability of the staggered flux strength
Φ in a triangular lattice. The resulting dispersion relation exhibits two degenerate minima
for the homogeneous case of Φ = π which correspond to two energetically equivalent
configurations of the staggered flux pattern (see Fig. 4.8). This symmetry is broken for
flux strengths differing from π where either one of the flux configuration is energetically
favorable as one of the minima becomes a global minimum. We will, thus, investigate the
relevant symmetries of the staggered-flux system in the following.

4.3.1 Mapping to the classical XY model

The driven system is well described by the time-averaged effective Bose-Hubbard Hamil-
tonian of Eq. (4.14) as the presence of the triangular lattice with only weak perpendicular
confinement results in an array of elongated tubes. Additional spatial degrees of freedom
have been omitted in Eq. (4.14) under the assumption of phase stiffness for each lattice
site. This implies that each lattice site i can be described in terms of the number-phase
representation of a coherent state

〈b̂i〉 =
√

Ni e
iϕi (4.22)

which is characterized by its well-defined phase ϕi and the on-site particle number Ni. In
the case of equal effective tunneling matrix elements, i.e., for a homogeneous forcing with
δ = 0 and Peierls phases of θ = θ′ = π, the energy of the entire system in this regime can
be expressed in terms of the local phases of the coherent state as

E
(

{ϕi, Ni}
)

= −
∑

〈i,j〉

Jij
√

NiNj cos(ϕj − ϕi) +
U

2

∑

i

n̂i(n̂i − 1) +
∑

i

ǫin̂i. (4.23)

The local phases correspond to two-dimensional vector spins si ≡ (cosϕi, sinϕi) which
represent classical vector spins in the sense that they can continuously point in any direc-
tion within the xy-plane [96, 155]. The Thomas-Fermi density distribution of the atomic
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ensemble in the harmonic trap together with the density-weighting of spins in Eq. (4.23)
results in a reduced influence of spins close to the lattice boundary. This fading-like ef-
fect allows the approximation of the energy expression with a homogeneous counterpart:
Substituting the site-dependent particle numbers Ni with a homogeneous mean particle
number per lattice site N̄ while neglecting the on-site interaction term and the external
potential results in an energy expression of

EXY

(

{ϕi}
)

= −2N̄
∑

〈i,j〉

Jij si · sj. (4.24)

This so-called classical XY model also serves as an intuitive illustration of the long-range
ordered phase distribution of the atomic ensemble in the superfluid regime: for the case
of a homogeneous Peierls phase of π, i.e., negative effective tunneling matrix elements
Jij throughout the lattice, the local phases (XY-spins) minimize their energy by aligning
at an angle of 180° with respect to each other. Such an alternating pattern resembles
the Néel ordering of antiferromagnetically interacting spins which is present in the case
of negative absolute tunneling in the one-dimensional lattice as discussed in chapter 3
(see Fig. 3.2). However, the antiparallel Néel-alignment of vector spins is inhibited in
the triangular lattice: While pairs of adjacent lattice sites tend to align antiparallel, this
condition cannot be satisfied for all bonds of the triangular lattice plaquette at the same
time. Such a conflict between the minimization of energy and constraints imposed on the
system due to the lattice geometry is known as geometrical frustration.

As illustrated in Fig. 4.8b, the resulting ground state of long-range phase ordering in
the fully frustrated triangular lattice is a compromise: all XY-spins arrange at an angle of
120° with respect to each other. This ground state is doubly degenerate, corresponding to
the two possible staggered flux patterns discussed before. Again, by tuning the staggered
flux strength away from its maximum value of π, the degeneracy is lifted and one of the
phase configurations becomes energetically favorable.

Already for real-valued tunneling matrix elements the mapping of local phases to the
XY-vector spins enables the investigation of magnetism in a rich phase diagram: As the
vector spins can be treated as classical magnets, the independent tunability of tunneling
parameters allows for the emulation of ferromagnetic and antiferromagnetic interactions
along the lattice bonds leading to a large variety of spin configurations and phase transi-
tions [96].

4.3.2 Symmetries of the Ising-XY spin model

It is straightforward to show that the Hamiltonian (4.4) is invariant under the global
transformation

b̂i → b̂i e
iγ . (4.25)

In terms of the XY-spin representation discussed previously, this transformation corre-
sponds to a rotation of each spin {ϕi} → {ϕi + γ} by an arbitrary angle γ. Such a
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continuous rotational, or U(1) symmetry is spontaneously broken at the onset of Bose-
Einstein condensation where the local phases ϕi acquire a fixed, long range order. We
define this long-range phase coherence as the order parameter for the quantification of
the U(1) symmetry.

A second symmetry is present in the system for the case of a staggered flux strength
of Φ = 0 or π: the Hamiltonian (4.4) is invariant under a local inversion transformation

b̂i → b̂†i (4.26)

which corresponds to a local inversion of all phases {ϕi} → {−ϕi}. This discrete Z2, or
Ising symmetry is broken for flux strengths differing from 0 or π as the kinetic part of the
Bose-Hubbard Hamiltonian transforms as

Ĥ′BH

b̂j→b̂
†
j= −

∑

〈i,j〉

|Jij|
(

e−iθij b̂†i b̂j + e+iθji b̂†j b̂i
)

(4.27)

where we have used the bosonic commutation relation and the directionality θji = −θij
of the complex tunneling. Hence, the local inversion leads to an inversion of the Peierls
phases and, thus, an inversion of the staggered flux.
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An order parameter quantifying the Z2 symmetry of the system is closely related to
the staggered gauge fluxes: The conflict between the imprinted Peierls phases θij and the
orientation of the XY-spins results in a mass current ĵij along each lattice bond given by

〈 ĵij〉 = −2|Jij|
~

Im
(

eiθij 〈b†ibj〉
)

(4.28)

= −2|Jij|
~

√

NiNj sin (θij + ϕj − ϕi) . (4.29)

The derivation of the above expression relies on the evaluation of the current operator
with the Ehrenfest theorem applied to the Bose-Hubbard Hamiltonian (4.4) [155]. In
the triangular lattice this results in a staggered pattern of cyclotron-like mass currents
around each lattice plaquette as depicted in Fig. 4.8c. These currents exhibit a well-defined
chirality of either clockwise or anti-clockwise orientation for the rightwards and leftwards
pointing triangular plaquettes respectively. The total staggered current Jtot of the lattice
system is then given by

〈Jtot〉 =
2|J |
~

M
∑

s

3
∑

i=1

〈 ĵdij〉. (4.30)

In the above equation the first summation is carried out over all lattice sites M . The
second summation denotes the clockwise summation of the mass current over the three
plaquette bonds di as defined in Eq. (4.21). Furthermore, we have assumed isotropic tun-
neling amplitudes |Jij| = |J | for simplicity [3]. By evaluating Eq. (4.30) for the current
operator expressed in terms of a basis in reciprocal space the total mass current Jtot

can be linked to the experimentally observed time-of-flight momentum distribution of the
atomic ensemble:

〈Jtot〉 =
2|J |
~

∑

k

〈ñk〉X (θ, θ′,k) (4.31)

with the momentum-space observable 〈ñk〉 and a weighting function in momentum space
X (θ, θ′,k) depending on both independently engineered Peierls phases:

X (θ, θ′,k) = sin(d1k − θ) + sin(d2k − θ′) + sin(d3k − θ′). (4.32)

The derivation of Eq. (4.31) and (4.32) is thoroughly described in the PhD thesis of
J. Struck [155]. Examples of the gauge-dependent weighting mask X (θ, θ′,k) for three
different staggered flux strengths are shown in Fig. 4.9 for a section in momentum space
that corresponds to the evaluated absorption images.

With the experimentally observable expression of the total mass current we have ac-
quired an order parameter of the discrete Z2 symmetry: the chirality, or handedness of the
cyclotron mass currents around each triangular lattice plaquette. The ordering of alter-
nating fluxes, namely clockwise for rightwards pointing plaquettes and anticlockwise for
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three different flux strengths. The depicted section in momentum space corresponds to the evaluated

region of absorption images. In analogy to Fig. 3.5 and 4.7 the black hexagon indicates the borders

of the first Brillouin zone. A similar figure is presented in Ref. [155].

leftwards pointing plaquettes or vice versa defines the orientation of an Ising-type spin.
Similar to the staggered flux pattern, the two possible orientations of cyclotron currents
are degenerate for the case of a maximum flux strength of π. By tuning the flux away
form π, the Ising symmetry can be broken on purpose.

The relation between the local phase ordering, the Peierls phases and the cyclotron
currents indicated by Eq. (4.29) suggests a strong link between the continuous U(1) and
the discrete Z2 symmetries. Due to the mapping of the phases onto classical XY-spins and
the Ising-type Z2 order parameter, the tunable staggered flux system can be regarded as
a coupled Ising-XY spin model.

4.3.3 Thermally driven phase transition

For the case of classical XY models on geometrically frustrated lattice systems the ques-
tion wether the discrete Z2 and the continuous U(1) symmetries are broken simultaneously
and, thus, wether the two corresponding phase transitions occur at the same tempera-
ture has been controversially debated for the case of two-dimensional systems [202–210]
as already pointed out in Ref. [3] and [155]. Here, the breaking of the continuous U(1)
symmetry is described by a Berezinsky–Kosterlitz–Thouless transition that is character-
ized by a diverging correlation length. Only very recently, two closely lying but separated
phase transitions could be resolved by Monte-Carlo simulations of fully frustrated two-
dimensional lattice systems [211, 212].

In the following, we will, thus, investigate properties of the Ising-XY model with special
emphasis on the continuous U(1) and the discrete Ising symmetry under a thermally driven
phase transition. For this purpose, we observe the behavior of the two order parameters
under the influence of a varying flux strength for three values of entropy.

The initial entropy of the system is adjusted by leaving the atomic ensemble in the
optical lattice for three hold times of t1 = 0 ms, t2 = 80 ms and t3 = 160 ms prior to the
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in the images serve as a guide to the eye for the relative position of the momentum peaks at the

minima of the dispersion. Similar figures are also shown in Ref. [155] and the supplementary material

of Ref. [3].

initialization of lattice driving. Heating effects due to technical noise leads to increasing
values of the initial entropies S1 < S2 < S3 respectively. In Fig. 4.10a resulting averaged
absorption images are shown from the three obtained data sets for a selection of staggered
flux strength values in analogy to Fig. 4.7b, where three of the absorption images for the
smallest initial entropy were already shown. The corresponding tight-binding dispersion
for the different fluxes according to Eq. (4.20) is depicted in Fig. 4.10b. An increase in
entropy is clearly visible as contrast of the superfluid momentum peaks reduces. In the
following we will analyze both order parameters quantitatively for these data sets, each
resulting from more than 2500 individual measurements.

As a measure of the total cyclotron mass currents induced by the staggered fluxes we
extract the normalized total current

M =
∑

k

〈ñk〉X (θ, θ′,k) /
∑

k

〈ñk〉 (4.33)
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noise. Similar figures are featured in Ref. [3] and [155].

from each individual absorption image. We call this scalar value the magnetization of the
system in analogy to the magnetization of an Ising ferromagnet.

In contrast to the averaged depiction of absorption images, the extracted magnetization
and, thus, the occupation of the two minima of the dispersion exhibits strong shot-to-shot
fluctuations for low entropy (S1) at flux strengths of Φ = π. This results in a bimodal sta-
tistical distribution shown for roughly 200 consecutive measurements in Fig. 4.11a where
the system predominantly occupies one of the two possible degenerate configurations de-
picted in Fig. 4.8, thus, breaking the Z2 symmetry. Occurrences of zero magnetization are
significantly suppressed as indicated by the corresponding histogram. In appendix C the
first 99 single-shot images of Fig. 4.11 are shown in Fig. C.2, C.3 and C.4 for all three
initial entropy values and a flux strength of π as a demonstration of the fluctuations.

This bimodal behavior favoring the occupation of one of the minima in the dispersion
relation is expected in such a system. The simultaneous occupation of both degenerate
ground states for the few measured cases of zero magnetization likely occurs due to the
formation of spatial domains with different long range phase coherence patterns. The
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formation of such domains may result from the highly non-adiabatic ramping procedure
through a completely flat dispersion relation. At the boundaries of two domains consisting
of phase patterns as depicted in Fig. 4.8b, the additional domain wall energy of the system
is given by the local phases which cannot align themselves in the optimal angle of 120°

with respect to each other (compare Eq. (4.24)). Indeed, domain formation in a similar
one-dimensional model system emulating ferromagnetic interactions has recently been ob-
served by Parker et al. [213]. In principle, a coherent single-particle superposition of atoms
in both quasimomentum states may also explain the occurrence of zero magnetization in
the low-entropy measurements. However, such a state would exhibit a density modulation
in real space which is energetically highly disfavored due to repulsive interactions [155].

The discussed breaking of the Z2 symmetry leading to a finite spontaneous magne-
tization of the system is analogous to ferromagnetism described by the classical Ising
model. An increase of entropy (S2) in the system leads to a significant reduction of fluc-
tuations (see Fig. 4.11b). Finally, for even larger entropy (S3) the bimodal distribution
merge, preserving the Z2 symmetry as in Fig. 4.11c. In the Ising model, this behavior of
the spontaneous magnetization in dependence of the entropy corresponds to a thermally
driven phase transition from an ordered- ferromagnetic state to an unordered- paramag-
netic state.

In order to exclude systematic fluctuations or long-term drifts of the experimental
apparatus as the origin of the symmetry breaking, Fourier spectra of the magnetization
data are shown in Fig. 4.11d. No significant features can be identified in the Fourier spectra
which are in full agreement with white noise. However, this observation does not exclude
technical noise as the origin of the symmetry breaking process. Thus, the question wether
the symmetry is spontaneously broken or induced by technical fluctuations is impossible
to answer. Nonetheless, we demonstrate that the magnetic susceptibility is significantly
larger at lower entropies.

4.3.4 Statistical data analysis of symmetry breaking

In Fig. 4.11 the bimodal distributions of the extracted magnetization values are visualized
as histograms. Here, the suppression of zero magnetization measurements for the entropies
S1 and S2 is evident while no such suppression can be observed for the largest initial
entropy S3. However, the bin size of the histograms is an arbitrary choice. Different bin
sizes may reveal different features present in the data. Two trivial cases of bin sizes
exemplify this problem: First, the choice of a single bin for a number of n data points
obviously results in a unimodal distribution. Second, the bin size can also be chosen small
enough, such that each data point is assigned to an individual bin. In order to reliably
distinguish between the number of occupied modes in the distribution of magnetization
values it is, thus, crucial to employ a robust statistical data analysis that does not depend
on additional preprocessing constraints.

Finding an optimal partitioning of data sets is a widespread problem for a large variety
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of applications in data mining and still a matter of current research. A commonly employed
solution is the k-means clustering method [214–216]. The k-means algorithm aims to
partition a multivariate data set into a number of k clusters by minimizing the sum of
squares within each cluster. This allows for a division of the data space into Dirichlet-
Voronoi cells [217] where each centroid of a cluster serves as a generator (also referred to
as seed) of the Voronoi diagram [218].

Although the k-means problem is computationally difficult (NP-hard) it can be read-
ily solved with standard data analysis software for the rather trivial case of the one-
dimensional magnetization data space. However, observations belonging to a certain mode
can be expected to vary with a Gaussian probability distribution. As a number such dis-
tributions is likely to overlap with each other, we extend the statistical analysis of the
obtained magnetization data to a fuzzy clustering method [219]. In contrast to hard clus-
tering, where each data point is allocated unambiguously to a distinct cluster, fuzzy- or
soft clustering allows for the allocation of data points to more than one cluster in anal-
ogy to fuzzy logic. Hereby, a certain membership level of each data point indicates the
association with a particular cluster.

As a special case of fuzzy clustering, we fit a Gaussian mixture probability distribution
with kM = 1, 2, . . . modes to the one-dimensional magnetization data. With this, the
optimal number of modes describing each data set can be determined by comparing the
information criteria of the fitted probability models [3]. Information criteria provide a
measure for the likelihood of a model fitted to a data set with respect to the number of
free parameters, i.e., they weigh the goodness of the applied fit against the complexity
of the used model. In this sense, information criteria can be regarded as the statistical
equivalent to Occam’s razor.

For the comparison of models fitted to the magnetization data we rely on the Schwarz-
Bayes information criterion (SBC) extracted from the respective fits [220]. In comparison
with the also commonly used Akaike information criterion [221] the Schwarz-Bayes cri-
terion tends to penalize the number of free parameters more strongly. An application of
Akaike information criteria to the measured magnetization distributions did not not allow
for a clear distinction between the optimal number of modes. Other information criteria
such as the Hannan–Quinn- or the Deviance information criteria were not considered in
the data analysis.

The optimal model is indicated by the smallest value of the SBCkM
for a kM -modal

fit. In Fig. 4.11a the fitted Gaussian probability distributions are plotted for kM = 1
(gray solid line) and kM = 2 (red solid line) together with the magnetization histogram.
In this case, the extracted information criteria clearly favor the bimodal distribution
with SBC1 > SBC2. As the initial parameters of the probability clustering algorithm
are chosen randomly, each Gaussian mixture fit is reiterated ten times. Out of these fit
parameters the most likely fit is selected for each kM (i.e., the one with the smallest SBC).
Furthermore, the obtained parameters and information criteria are averaged ten times in
order to rule out residual fluctuations of the fitted results due to the initial randomness of
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the algorithm. Throughout all measured data sets, multimodal probability models with
kM ≥ 3 exhibit a worse likelihood compared to unimodal or bimodal fits and are omitted
from the following considerations.

In Fig. 4.12a the differences SBC1 − SBC2 of information criteria between a unimodal
and a bimodal Gaussian probability distributions are plotted for all measured flux values
and initial entropies. Values above zero (filled circles) indicate a bimodal distribution as
the optimal model, while values below zero (open circles) favor the unimodal distribution.
While for the entropies S1 and S2 bimodal distributions are clearly favored in the vicinity
of the maximum flux strength Φ = π, no bimodal distribution of the magnetization data
can be observed for the largest initial entropy S3. Insets in the upper right corner of the
plots depict the corresponding optimal Gaussian mixture fits. In Fig. 4.12b the extracted
magnetization data, roughly 2500 individual measurements for each entropy value, are
depicted as consecutive measurements similar to Fig. 4.11. Red circles indicate the posi-
tions of the fitted Gaussian mixture distribution corresponding to the occupation of the
global minimum in the effective dispersion relation. In the case of a remaining bimodal
distribution for flux strengths different from π, green diamonds indicate the position of
the smaller Gaussian mode which corresponds to the occupation of the metastable state
in the dispersion. Hereby, the size of the diamonds illustrates the relative strength of the
metastable mode as compared to the stable one. Histograms of the data are plotted in
Fig. 4.12c.

A slight asymmetry of the magnetization curves towards negative values can be ob-
served. However, this is merely an artifact which stems from a misalignment of the Wannier
envelope position. As the final envelope position lies slightly below the central vertical
position at ky = 0, negative valued regions of the weighting function shown in Fig. 4.9 are
favored over the positive ones for the given size of the Wannier envelope.

With the statistically robust data analysis, the flux-dependent measurements depicted
in Fig. 4.12 substantiate the notion of the staggered flux system undergoing an Ising-type
thermal phase transition: A tuning of the staggered flux strength away from Φ = π breaks
the Z2 symmetry of the system and emulates the presence of an external longitudinal
magnetic field in a classical Ising model. This artificial external field results in a net
magnetization of the system. For flux strengths far enough detuned from π the system
can be completely magnetized in a single mode. Intermediate fluxes and low enough
entropies (S1 and S2), however, allow for an occupation of the metastable magnetization
mode which stems from the non-adiabatic preparation process of the effective dispersion
and is a clear signature of non-equilibrium dynamics in the ferromagnetic phase. The
metastable state is stabilized against decay into the global minimum by repulsive atomic
interactions which inhibit the fragmentation of the condensate [3].

The flux-dependent data presented in Fig. 4.12b and c resembles the hysteresis behavior
known from the classical Ising model below the Curie temperature. However, with the
non-adiabatic preparation procedure of ramping directly to the desired flux value, the
occupation of metastable states in the staggered flux system is of an entirely different
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Figure 4.13: Momentum peak widths and free energy of the Ising-XY system. a Full-width-half-

maximum values extracted from the time by Gaussian fits to the central peaks of the averaged

TOF-images as depicted in Fig. 4.10 for the three initial entropies S1 < S2 < S3. Error bars denote

the residuals of the Gaussian fits. b Free energy in units of the effective tunneling amplitude per

cubic micrometer. The phase boundary between a thermal bose gas and a BEC is indicated by the

red line. Here, the free energy exhibits a non-analytic behavior. The figure also appears in Ref. [3]

and [155]. The free energy data was provided with kind permission of L. Mathey.

origin as compared to the continuous change of an external field leading to hysteresis
curves in Ising magnetism.

4.3.5 Analysis of long-range phase coherence - U(1) symmetry

The previously discussed analysis of the magnetization gives insight into the long-range
order of mass currents and, thus, the discrete Ising- or Z2 symmetry of the staggered flux
system. In the following, we will investigate the continuous U(1) symmetry for the same
set of measurements.

As we have mentioned before, the order parameter associated with the U(1) symmetry
is the long-range phase coherence. This long-range order signifies the breaking of the U(1)
symmetry as expected for Bose-Einstein condensation and corresponds to the occupation
of a single quasimomentum state. The widths of the imaged superfluid momentum peaks
will therefore be used as a measure for the degree of phase coherence. It should be noted
that in principle the fraction of condensed atoms is a more suitable observable for the
quantification of long-range phase coherence. This parameter, however, is difficult to ex-
tract from the obtained density profiles: for higher entropies fitting routines do not allow
for a reliable discrimination between the relatively large incoherent background and the
remaining coherent peak structure.

In Fig. 4.13a the full width at half maximum (FWHM) of the momentum peaks is
plotted for the three initial entropies S1 < S2 < S3 with respect to the staggered flux
strength. Values are obtained by fitting a combination of Gaussians to the row-sum of
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the central peaks (compare Fig. 4.7d). A broad Gaussian fit to the background eliminates
the influence of the Wannier envelope and residual occupations due to thermal atoms or
quantum depletion. A second Gaussian is fitted directly to the predominantly occupied
peak.

Two crucial observations can be made: First, an increase of entropy leads to the ex-
pected broadening of the momentum peaks for every data set. With this, the condition
S1 < S2 < S3 is confirmed for all values of the staggered flux strength.

Second, the sharpness of momentum peaks depends strongly on the staggered flux
strength for all three initial entropies. The tuning of the flux strength away from its
maximum value results in sharper peaks as already indicated in Fig. 4.10. Intuitively, this
effect can be understood by the behavior of the single-particle dispersion of Eq. (4.20).
For an increasing flux strength the curvature of the dispersion minima decreases leading
to an increase of the density of states and, thus, to a lower critical temperature for Bose-
Einstein condensation [155]. The critical temperature can be determined by calculating
the free energy of the system with respect to the staggered flux strength as depicted in
Fig. 4.13b: a non-analytic behavior of the free energy, depicted as a red line, indicates the
phase transition between a thermal bose gas and a BEC. Similar to the FWHM-values,
the critical temperature exhibits a pronounced cusp at the maximum flux strength Φ = π

[3].
However, in section 2.5 we have argued how the experimentally observed peak width is

actually not equal to the actual width of the momentum spread: As the time-of-flight is
not sufficiently long to reach the far-field regime, the momentum peaks are significantly
convoluted with the in-situ trap size. While the sharpness of momentum peaks still serves
as a qualitative measure for the long-range phase coherence, a quantitative analysis is
difficult. Wether the entropies at which the phase transitions related to the breaking of
the U(1) and Z2 symmetries occur coincide remains an open question.

4.4 Model-free statistical data analysis

In the preceding section we have utilized tools of statistical data analysis in order to ver-
ify the presence of (spontaneous) symmetry breaking and the occupation of metastable
modes. Although the outcome of the statistical analysis does not rely on further inter-
pretations, the treated observable itself is a model-based quantity, implying an a priori

knowledge of the model system leading to Eq. (4.33). Furthermore, the constraint to a very
small data set, i.e., the single scalar values - the magnetization - that are extracted from
each image consisting of thousands of pixels only utilizes a tiny fraction of information
contained in the data.

In general, both the reliance on such model-based inference and an a priori knowledge
of the observed physical processes as well as the limitation to a small set of parameters
extracted from experimental data are major weaknesses in the analysis and interpretation
of measurements.
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Thus, in order to exploit the entire information contained in the images without relying
on any a priori knowledge of the observed atomic state we pursue an additional approach
of a model-free statistical data analysis for the quantification of the symmetry breaking
behavior discussed above. Even though model-free analysis methods are solely based on
statistical concepts such as independence, entropy extremization and maximum-likelihood
(as for the information criteria discussed above), the interpretation of outcomes of course
still relies on the comparison with expected models by the experimenter [222].

4.4.1 Principal component analysis

We apply the multivariate statistical analysis techniques of principal component analysis

(PCA) and independent component analysis (ICA) to the data sets of images belonging
to a single initial entropy value Si and staggered flux strength Φ. These methods are well
established and successfully used in signal- and image processing over a wide spectrum of
applications such as the analysis of neural networks and artificial intelligence, classification
of galaxies, electroencephalography, face recognition, stock market predictions and blind
source separation in general [223–227], only to name a few. To the best of our knowledge,
principal- and independent component analysis methods were first used by Segal et al.

[222] in the context of quantum gas experiments and the implementation of PCA and ICA
for the analysis of symmetry breaking was sparked by their publication. We will briefly
sketch the underlying principles of the two algorithms in the following. Interestingly, a
strong link between the PCA and k-means clustering algorithms discussed in the previous
section has been discovered rather recently [228, 229].
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The principle component analysis aims to express a set of multivariate data in terms
of a set of uncorrelated variables [230]. The magnetization measurements for each initial
entropy and staggered flux strength are obtained for a comparatively large number n ≈
200 of individual time-of-flight absorption images with a number of p ≈ 2.7×104 pixels
in the experimentally relevant region around the Wannier envelope. Each CCD-pixel can
be regarded as a variable. Accordingly, we have n observations for p correlated variables
x. The images can be written into vectors xi = (x1, x2, . . . , xp) in order to construct the
centered n× p data matrix

D =



















x1 − xM

x2 − xM
...

xn − xM



















with xM =
1
n

n
∑

i=1

xi. (4.34)

PCA relies on the finding of eigenvalues of the p× p covariance matrix Q = DTD/(n− 1)
where DT denotes the transpose of D. A diagonal element Qjj of the covariance matrix
corresponds to the sample variance σ2

j of the j-th pixel. An off-diagonal element Qjk,
where k 6= j, is the covariance of the j-th and the k-th pixel. Hence, if Qjk = 0, the
pixels j and k are uncorrelated. The matrix Q is generally hard to diagonalize as the
number of pixels can be very large. The problem of finding the eigenvectors yi to the
matrix Q can be circumvented by first computing the eigenvectors zi of the n× n matrix
G = DDT/(n − 1) as n ≪ p. It is straightforward to show that eigenvectors of Q are
related to the n eigenvectors of G via yi = DTzi [231]. These eigenvectors are the principal
components of the data set. They are orthogonal (since Q is real and symmetric) and
per definitionem statistically uncorrelated. For both a large number of images and a
large number of pixels, the diagonalization is hard to compute. However, standard PCA
algorithms allow for an efficient calculation of the most significant principal components
with the largest eigenvalues.

Each original image vector xi can now be expressed in terms of the mean image xM
and a linear combination of the n principal components:

xi = xM +
n
∑

j=1

CP
ijyj. (4.35)

The eigenvalue of a principal component yj is given by the variance of its coefficients
CP
ij . It is often referred to as the strength of the principal component and reflects its

relative importance. The diagonalization of the covariance matrix Q implies that the set
of coefficients for any basis image xi is statistically uncorrelated with the set of coefficients
of any other basis image xk 6=i [222], or:

σ2
ik =

1
n− 1

n
∑

j=1

CP
ijC

P
kj

!= 0. (4.36)
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Figure 4.15: Symmetry breaking components and variance of the magnetization. a Strengths (eigen-

values) of the principal components related to symmetry breaking are plotted for each initial entropy

S1 < S2 < S3 and staggered flux strength. Open markers at a value of zero denote data sets where

no principal components associated with symmetry breaking could be identified. b Corresponding

variances of the magnetization data shown in Fig. 4.12. Solid lines are Gaussian fits to the data as a

guide to the eye. Part b of the figure also appears in the supplementary material of Ref. [3].

In Fig. 4.14 the calculated nine strongest principal components of the image sets for
the three initial entropies at maximum flux strength Φ = π are shown in descending
order of their eigenvalues. A principal component representing symmetry breaking can be
clearly identified as the first- second- and fourth component for the entropies S1, S2 and
S3 respectively (highlighted by gray frames). Here, the two possible coherent momentum
occupations exhibit opposite signs. According to Eq. (4.35) this always results in a single
mode being predominantly occupied for every linear combination of principal components.

Besides the symmetry breaking component several other principal components can be
assigned to a variety of origins in Fig. 4.14. For example, the secondly ranked component
of the initial entropy S1 and the strongest components of both S2 and S3 represent fluc-
tuations in the total particle number. Furthermore, the fifth principle component of all
three data sets is likely related to a small variation of the relative strength of all superfluid
momentum peaks. Finally, principal components exhibiting domain-like patterns such as
the third and fourth components of S1 and S3 as well as the second and third compo-
nents of the data set for S3 can be attributed to fluctuations of the overall position of the
momentum distribution in different directions.

Even though we have argued in the preceding section that the Z2 symmetry of the
system is restored for the largest initial entropy S3, a component associated with symmetry
breaking is present in the principal components, indicating that the phase transition to a
paramagnetic state may not have been crossed entirely. With this, an important advantage
of statistical image processing is exemplified: as the PCA algorithm does not necessarily
rely on the prerequisite of a sufficient signal-to-noise ratio. Residual symmetry breaking
may very well be present in the magnetization data for the largest initial entropy as well.
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Figure 4.16: First nine principal components and eigenvalues for the lowest initial entropy S1 and

selected values of the staggered flux strength Φ. The eigenvalues decrease rapidly. Above the fourth

or fifth ranked place the principal components represent different forms of technical fluctuations,

e.g., residual changes of the absorption image position. While the symmetry breaking component is

the predominant component for a flux strength of π, its contribution rapidly decays for smaller flux

strengths.
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If, however, the fluctuation of data overwhelms the spread of each individual mode, the
distinction of both modes is impossible. On the contrary, the variance of the remaining
symmetry breaking component is extremely small (less than a percent compared to the
largest eigenvalue) such that the residual symmetry breaking can safely be neglected and
the notion of the phase transition from a ferromagnetic to a paramagnetic Ising-system
holds.

The level of symmetry breaking that is present in each subset of data according to
the principal component analysis is depicted in Fig 4.15a. Here, the eigenvalues of the
principal components associated with symmetry breaking are plotted as filled markers for
each measured entropy and flux value, while open markers indicate the absence of a clearly
identifiable symmetry breaking component in the nine largest principal components. A
distinct rise of the symmetry breaking strength towards the maximum flux of π can
be observed for the lowest initial entropy. This behavior is reproduced, although less
pronounced, for the intermediate entropy S2. As discussed, the contribution of symmetry
breaking is extremely small for the largest entropy S3. In Fig. 4.16 the corresponding
strongest principal components of the data set S1 are shown for a selection of different
flux values as an example of the decline and eventual vanishing of the symmetry breaking
basis.

For comparison, Fig. 4.15b shows the variance of the magnetization data sets from
Fig. 4.12. A similar rise of fluctuations can be observed in the vicinity of Φ = π for the
two lowest entropies while the fluctuation strength for S3 remains constantly small for
every value of the staggered flux. The similarity of the fluctuation behavior of the relevant
principal components and the magnetization data confirms the previous interpretations of
the occupation of different modes in dependence of the staggered flux strength as well as
the phase transition from a spontaneously magnetized ferromagnetic state to an unordered
paramagnetic state.

4.4.2 Independent component analysis

The second widely applied technique in signal and image processing, the independent
component analysis, applies a higher order test to the statistics of its basis coefficients
CI
ij as compared to Eq. (4.36) for the PCA. This statistical independence for the ICA

coefficients of any two images xi and xk is defined as the condition

1
n

n
∑

j=1

f
(

CI
ij

)

g
(

CI
kj

)

− 1
n2





n
∑

j=1

f
(

CI
ij

)









n
∑

j=1

g
(

CI
kj

)





!= 0 (4.37)

where f and g are any integrable functions [222]. Statistically independent coefficients
are, thus, also uncorrelated since the condition of Eq. (4.36) can be recovered by f(x) =
g(x) = x. While the higher-order decorrelation of ICA may result in more reliable signal
extraction, it is not superior compared to PCA for every task: the independent component
basis is not necessarily orthogonal. This implies that the total variance in this basis is not
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Figure 4.17: Independent components for the three measured initial entropies at a staggered flux

strength of Φ = π. In contrast to the principal component basis, all nine calculated individual basis

images present fractions of one of the two momentum modes and do not allow for the distinction of

different physical processes.

conserved as it is the case for PCA. As a consequence, independent component images
cannot be ranked by their variance. Furthermore, suitable algorithms for the calculation
of the independent component basis for large data sets, such as the FastICA algorithm
[232] are sensitive to outliers in the data.

In Fig. 4.17, bases of nine independent components calculated with FastICA are shown
for the three data sets at maximum flux strength of π and each initial entropy, in analogy
to the principal component basis depicted in Fig. 4.14. Here, every basis image represents
only fractions of one momentum mode. This indicates that the ICA is in fact not a suitable
tool for the analysis of the presented symmetry breaking measurements as the similarity
of basis images does not allow for a distinction of different fluctuation processes. The
complete partitioning of basis components into separate modes can likely be attributed
to the residual shot-to-shot movements of the entire momentum distributions which are
more significant due to the higher-order decorrelation condition.

In appendix B we will present an additional method of statistical image processing for
the quantification of the shot-to-shot fluctuations of mode occupations that relies on a
correlation analysis.

4.5 Conclusion & outlook

In conclusion, we have demonstrated the realization of fully tunable-complex valued tun-
neling matrix elements by time-asymmetric periodic driving of a one-dimensional lattice.
The presence of a Peierls phase, given by the argument of the tunneling parameter em-
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ulates the presence of a vector gauge potential for the neutral atoms in analogy to a
charged particle in a magnetic field. The method could be extended to the triangular
lattice, where the two distinct elementary plaquettes without pairwise-parallel bonds give
rise to tunable gauge invariant staggered magnetic fluxes. Hereby, the presence of more
than one distinct minimum in the effective dispersion of the triangular lattice results in
geometrical frustration.

The staggered flux system exhibits both a discrete Ising-type Z2 symmetry as well as
a continuous U(1) phase symmetry that can be mapped onto classical XY-spins. This
coupled Ising-XY spin model system allows for the study of phase transitions related to
the two fundamental symmetries with respect to their order parameters of chiral mass
currents and a long-range phase coherence. A thermal phase transition from an ordered to
an unordered state, mimicking ferromagnetism and paramagnetism respectively, could be
observed. As a non-equilibrium signature of the phase transition, a significant occupation
of metastable states with chiral currents opposing the staggered flux directions could be
evidenced. The interpretation of the phase transition, symmetry breaking and the pres-
ence of metastable modes could be confirmed by model-free multivariate statistical data
analysis. A strong interplay between the discrete Z2 and the continuous U(1) symmetry
is indicated by the dependence of the long-range phase coherence on the staggered flux
strength.

Although quantitative statements about the relative position of the two phase transi-
tions could not be extracted from the presented data due to experimental limitations, the
coupled Ising-XY model system may provide an opportunity to do so in future experi-
ments. Furthermore, the periodic driving scheme can be extended into the strongly cor-
related regime where exotic quantum phases such as a chiral Mott insulator are expected
to emerge [233–235]. In the subsequent section we will focus on the strongly correlated
regime for the case of monochromatic driving where the occupation number of lattice sites
can be mapped onto a spin-1/2 XY model of quantum magnetism [140].
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5 Frustrated quantum
antiferromagnetism in a
triangular lattice

In this chapter we investigate the possibility of emulating frustrated quantum antifer-

romagnetism on the triangular optical lattice. In the hard-core boson limit of strong

repulsive interactions the mapping of classical XY spins continuously approaches a

quantum spin-1/2 XY model. On-site interactions are increased by an additional per-

pendicular optical lattice. We discuss limitations of the accessible parameter space for

the harmonic lattice driving in the strongly correlated regime and probe the transition

from a weakly interacting superfluid to a Mott-insulating state in both the static and

the driven system. An analysis of quantum noise correlations reveals the feasibility of

our approach. First hints towards an order-by-disorder effect in the frustrated system

are observed.

Quantum magnetism describes the exchange coupling of quantum mechanical spins which
is an essential element for a larger variety of fundamental condensed matter systems. In
particular, an antiferromagnetic coupling between spins that are ordered on a regular
lattice structure can give rise to a manifold of intriguing physical phenomena. Here, the
energetically favored Néel-ordering of spins is inhibited due to the lattice geometry. As
discussed in the previous chapter, this impossibility of fulfilling several conflicting con-
straints for the minimization of energy results in geometrical frustration. The study of
such frustrated quantum antiferromagnets promises to yield valuable insights. For exam-
ple, quantum antiferromagnetism is believed to be strongly connected to high-Tc super-
conductivity as an antiferromagnetic phase always exists close to a superconducting phase
in the complex ordered cuprates [128, 129]. Furthermore, novel highly nontrivial quantum
phases are expected to appear for certain frustrated quantum antiferromagnets.

A paradigm example of such an exotic phase is the quantum spin liquid. The highly
disordered spin liquid states possess no local order parameter and are comprised by res-
onating valence bonds, where two antiparallel spins couple to a coherent superposition of
a spin-0 singlet. Beyond the absence of local order, quantum spin liquids are expected to
exhibit a hidden topological order. The robustness of this order against local perturba-
tions together with the anyonic character of excitations may allow for the utilization of
such states for quantum information processing [131].
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In the last decade, indications of spin liquids have been observed in triangular lattices
comprised of a Mott-insulating organic salt of κ−(BEDT−TTF)2Cu2(CN)3 [132–136].
More recently, strong hints towards a spin-liquid ground state in the kagome-ordered
mineral herbertsmithite ZnCu3(OH)6Cl2 were evidenced in the form of spin-state frac-
tionalization [138]. However, the realization and characterization of such compounds is ex-
tremely demanding: samples have to be cooled down to mK-temperatures and are probed
by neutron- or myon scattering.

A different approach of investigating quantum antiferromagnetic many-body systems in
a clean and well-controllable environment is the emulation of such systems with ultracold
atoms in optical lattices. Here, the natural realization of a quantum magnet is given by
a fermionic Mott insulator with two different internal hyperfine states. However, a major
disadvantage of this implementation is the demand for ultra-low temperatures below the
exchange energy. Short-range quantum magnetism could be emulated in such a system of
an ultracold potassium fermi-gas by redistributing entropy along the bonds of a dimerized
cubic lattice [139]. However, the realization of long-range (dis)ordered quantum magnets
with fermionic Mott insulators appears to be extremely difficult.

In contrast, the manipulation of motional degrees of freedom by periodic lattice driving,
can also be utilized to emulate frustrated quantum magnetism with bosonic atoms in
suitable regimes where the temperature is low compared to the relevant energy scales of
the tunneling and the on-site interaction [140]. In the preceding chapter we have shown
that a system of antiferromagnetically coupled bosons on a triangular lattice can be
mapped to a geometrically frustrated classical XY model.

Experiments presented in this chapter have been performed within the team of J. Si-
monet, C. Ölschläger, S. Prelle and M. Weinberg.

5.1 Quantum XY model

In this section, we will describe how the classical XY model approaches the quantum spin-
1/2 XY model in the hard-core boson limit of strong repulsive interaction on the basis of
Eckardt et al. [140] and discuss implications of the resulting high degree of geometric
frustration that is accompanied with a hugely degenerate ground state of the system.

5.1.1 Inverse Holstein-Primakoff mapping

In chapter 3 we have described how time-averaging over the fast periodic lattice driving
results in an effective Bose-Hubbard Hamiltonian (3.29). In the weakly interacting regime,
where U ≪ |J |, the number-phase representation of a coherent state at each lattice
site 〈b̂i〉 =

√
Ni exp(iϕi) with the local phases ϕi can be mapped onto a classical XY

model. Here, two-dimensional vector spins with a continuous rotational degree of freedom
represent the orientation of classical magnets. By neglecting the additional harmonic
confinement of the trapping potential, a homogeneous density Ni = N̄ at all lattice sites
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Figure 5.1: Mapping of the quantum spin-1/2 XY model. a In the strongly interacting regime, the

two possible on-site occupation numbers, depicted here for Ni = 1 and Ni = 2 can be associated

with the two spin-1/2 states |↑〉 and |↓〉 shown in b. In the case of a triangular lattice depicted in c,

geometrical frustration arises for antiferromagnetic coupling. For a single plaquette, the ground state

is already six-fold degenerate. d Illustration of the degeneracy of a valence bond spin liquid, where

each oval represents a singlet state comprised of a coherent superposition of two spin states.

is energetically favorable.
In the opposite limit of strong repulsive interactions, where U ≫ |J |, two site occupa-

tion numbers Ni = n and Ni = n+ 1 are possible with n ≡ [N̄ ] being the largest integer
smaller than the average on-site particle number N̄ . As the central aspect of the mapping
towards the quantum XY model, we associate these two possible occupation states |n〉i
and |n+ 1〉i with “spin-up” and “spin-down” respectively [140, 236]. An illustration of
the mapping for the case of n = 1 is given in Fig. 5.1a and b. With this, each site can be
expressed in the Bloch-sphere representation as

|ϑi, ϕi〉 ≡ cos(ϑi/2) |n〉i + sin(ϑi/2)eiϕi |n+ 1〉i . (5.1)

By applying an inverse Holstein-Primakoff transformation [237] to the bosonic annihila-
tion and creation operators b̂i and b̂†i , i.e. mapping them onto spin lowering- and raising
operators Ŝi and Ŝ†

i respectively according to

2√
n+ 1

b̂i → Ŝi ≡ σ̂xi − iσ̂yi and
2√
n+ 1

b̂†i → Ŝ†
i ≡ σ̂xi + iσ̂yi (5.2)

in the effective Bose-Hubbard Hamiltonian (3.29) yields the quantum XY Hamiltonian

ĤXY = −n+ 1
4

∑

〈i,j〉

Jeff
ij

(

σ̂xi σ̂
x
j + σ̂yi σ̂

y
j + σ̂xj σ̂

x
i + σ̂yj σ̂

y
i

)

+
1
2

∑

i

(µi + nU) σ̂zi (5.3)
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Figure 5.2: Phase diagram for ferromagnetic and antiferromagnetic coupling for a slightly asymmetric

triangular lattice. The superfluid phase with negative tunneling matrix elements is labeled a Néel-

superfluid. Due to geometric frustration, the characteristic Mott insulator lobes with integer filling

(blue shaded regions) extend further into the antiferromagnetic region. Dashed lines in the lobes

indicate the corresponding results of a mean-field calculation. In between the Mott lobes, spin-liquid

phases with half-odd-integer fillings are expected to appear for antiferromagnetic coupling (gray

bubbles). The figure was modeled after Ref. [140] with kind permission of A. Eckardt.

where the σ̂xi , σ̂yi and σ̂zi denote the spin-1/2 Pauli operators at lattice site i. The harmonic
trapping potential is incorporated by the site-dependent chemical potential µi. In contrast
to the weakly interacting regime, the local ground state of the quantum XY system cannot
be expressed as a product state since |ϑi, ϕi〉 cannot simultaneously be an eigenstate of
σ̂xi and σ̂yi .

5.1.2 Frustration and ground-state degeneracy

The mapping of occupation numbers to quantized spins has a profound influence on the
ground state of the triangular lattice. In analogy to the rotor model of phases in the
classical XY model discussed in the preceding chapter, the spins on a triangular plaquette
cannot all be aligned antiparallel with respect to each other. In the weakly interacting
regime, this geometric frustration results in a compromised alignment of local vector spins
at 120° and a two fold degenerate global ground state. In contrast, the quantized nature
of the mapping to a spin-1/2 representation in the strongly interacting regime inhibits
such a compromise as depicted in Fig. 5.1c. Instead, the ground state of a single lattice
plaquette is already six-fold degenerate as the energetically unfavorable alignment of spins
can be located at all three bonds in two different combinations, namely |↑↑〉 and |↓↓〉. The
number of degenerate ground states W grows exponentially with the number of lattice
sites Nsites according to W = exp (SNsites/kB) where S denotes the extensive entropy per
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lattice site and kB is the Boltzman constant [238]. The extensive entropy of the triangular
lattice can be calculated as

S =
2kB

π

∫ π/3

0
ln (2 cosφ) dφ ≈ 0.323 kB. (5.4)

Note that, compared to the triangular lattice, the extensive entropy of the kagome lattice
is even larger as it exhibits a particularly high degree of frustration. The large degree
of degeneracy strongly enhances fluctuations in the frustrated system and can suppress
magnetic ordering of individual spins even at zero temperature. Instead, pairs of antifer-
romagnetically interacting spins |↑〉 and |↓〉 can form spin-0 singlet states comprised of
a coherent superposition ( |↑↓〉 + |↓↑〉 ) /

√
2 in analogy to valence bonding. A fixed spa-

tial order of such singlets breaks the translational symmetry of the lattice and forms a
so-called valence bond solid. In contrast, quantum fluctuations may give rise to a super-
position state of a large variety of partitionings which preserves both translational and
spin-rotational symmetries. Such an exotic, highly disordered state - the so-called res-

onating valence bond spin liquid [127, 239], illustrated in Fig. 5.1d - is suggested to be a
possible explanation for high-Tc superconductivity in cuprates [128].

5.1.3 Quantum phases on the frustrated triangular lattice

The phase diagram of bosons on the triangular lattice incorporating both ferromagnetic
and antiferromagnetic coupling can be mapped by studying quantum fluctuations in a
generalized Bogoliubov approach [140, 240]. For moderately larger fillings than n = 1 the
bosonic annihilation and creation operators can already be approximated by the well-
known number-phase representation incorporating quantum fluctuations of both the local
phases and the local particle numbers:

b̂i ≈
√

Ni + δNi e
i(ϕi+δϕi) and b̂†i ≈

√

Ni + δNi e
−i(ϕi+δϕi). (5.5)

The calculated phase diagram of Ref. [140] resulting from a second-order expansion of
the fluctuations in the effective Bose-Hubbard Hamiltonian for a triangular lattice with
slightly asymmetric tunneling amplitudes J ′/J = 1.3 is shown in Fig. 5.2. As a striking
feature, the characteristic Mott insulator lobes [241] with integer filling extend way fur-
ther into the antiferromagnetic coupling region. This behavior is a direct consequence of
geometric frustration. In between the Mott lobes, spin-liquid phases, indicated by gray
bubbles, are expected on the antiferromagnetic coupling region for half-odd-integer fill-
ings.

In contrast to the clearly distinguishable momentum peaks in absorption images of the
Néel-superfluid which was treated in the preceding chapters, experimental time-of flight
signatures of both the frustrated Mott insulator and the spin-liquid phases are harder to
detect as the first order correlation function vanishes (see section 2.5). In the following,
we will focus on the superfluid to Mott insulator transition for ferromagnetically and
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antiferromagnetically coupled bosons and will attempt to evidence the presence of a Mott-
insulating state in both regimes by means of quantum noise correlations. An unambiguous
distinction between a Mott-insulating state and a quantum spin liquid in optical lattice
systems, however, should in principle be achievable by single-site resolved measurements
[62–65] of number fluctuations.

5.2 Characterization of the Mott-insulating phase

The main goal of experiments presented in this chapter is the realization and study of the
strongly-correlated antiferromagnetic Mott insulator (MI) phase in the triangular lattice.
Hereby, monochromatic lattice driving is used to engineer the amplitude and sign of the
coupling in accordance with the experimental techniques described in chapter 3. It is,
thus, crucial to first characterize the Mott insulator quantum phase in the static lattice
before investigating the driven lattice further. In the following section we will investigate
properties and experimental signatures of the superfluid to Mott insulator transition and
the Mott-insulating phase for a stack of decoupled, two-dimensional triangular lattice
planes.

The discussed Holstein-Primakoff mapping of particle number occupations onto quan-
tum spin-1/2 states is valid only in the hard-core boson limit of strong interactions, i.e.
U ≫ |J |. In order to reach this regime in the triangular three-beam lattice we utilize a
strongly confining retro-reflected one dimensional lattice that is aligned perpendicular to
the triangular lattice plane. For sufficiently deep 1D-lattice depths, the resulting atomic
ensemble consists of a stack of non-interacting two-dimensional layers of triangular lat-
tices. Note that we have already briefly discussed such a three-dimensional lattice array
in the context of multi-photon excitations in section 3.3.3.

5.2.1 Superfluid to Mott insulator transition

Experimentally, the strongly interacting triangular lattice layer system is prepared by first
adiabatically loading a BEC from the elliptical crossed dipole trap into the retro-reflected
1D-lattice with an exponential ramp of the lattice depth to its final value of typically
V0,1D = 30ER to 50ER in TR,1D = 500 ms. Subsequently, the three-beam lattice depth
is increased with a similar ramping shape in TR,2D = 100 ms to its final lattice depth.
This experimental sequence was chosen after various other ramp shapes such as linear
and sigmoidal ramps have been tested as well as different timescales and ordering of the
ramping procedure. It yields the optimal results concerning the adiabatic preparation
with minimum heating processes involved.

We investigate the superfluid to Mott insulator transition by varying the final triangular
lattice depth and, thereby, the ratio between the on-site interaction U and the tunneling
amplitude J . In order to account for the dimensionality of the three-dimensional system it
is convenient to describe the transition in terms of this dimensionless ratio while weighting
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the tunneling amplitudes with their respective coordination number, i.e. nc = 6 for the
triangular lattice and nc = 2 for the retro-reflected 1D-lattice.

In Fig. 5.3a, time-of-flight images are shown for an increasing triangular lattice depth
and, hence, an increasing ratio between the on-site interaction U and the weighted tun-
neling 6J2D +2J1D. As interactions become more and more dominant, the coherence of the
atomic ensemble is lost, finally leading to a featureless Gaussian density distribution. A
common observable for the quantification of the first order correlation of the time-of-flight
momentum distribution according to Eq. (2.37) is the visibility. In close analogy to the
previously introduced superfluid peak contrast of the one-dimensional lattice (see Fig. 3.2)
it is defined as the normalized difference of the number of atoms at the positions of the
first-order superfluid momentum peaks and regions in between the peaks, which have the
same distance from the center of the momentum distribution (see inset in Fig. 5.3b).

Measurements of the visibility for an increasing lattice depth are shown as blue markers
for a variety of initial atom numbers and two different 1D-lattice depths of V0,1D = 30ER

and 50ER in Fig. 5.3b. In the superfluid regime, the visibility is close to unity as the
incoherent background density is negligible. A slight depletion of the visibility signal can
be attributed to deviations from the ideal quasimomentum distribution resulting from
the finite system size and time-of-flight as discussed in section 2.5. The visibility signal
decreases as the 2D-lattice depth and with it the ratio U/(6J2D + 2J1D) is increased.
Values of the bare tunneling amplitudes J2D and J1D as well as the three-dimensional on-
site interaction energy U are calculated by evaluating the respective Wannier integrals of
Eq. (2.21) and (2.22). The smooth transition of the visibility as the phase boundary to the
MI-state is crossed stems from the inhomogeneity of the system. Harmonic confinement
of the atomic ensemble results in a site-dependent chemical potential which leads to the
continuous formation of various Mott shells in the characteristic wedding cake pattern
with superfluid regions in between Mott insulator shells with integer particle numbers
per lattice site that increase towards the center of the trap (compare vertical lines, i.e.,
increasing chemical potential, in Fig. 5.2) [55, 242–244]. For a deep triangular lattice the
phase coherence has vanished completely in accordance with the product of local Fock
states given in Eq. (2.25).

A transition point from the superfluid to the Mott-insulating state is often defined at
the ratio of U/J where the superfluid order parameter vanishes. Due to the harmonic
confinement and simultaneous presence of Mott-insulating shells and superfluid states,
the transition to a Mott-insulating state is continuous and the visibility signal exhibits a
smooth shape. It is, thus, convenient to define the transition point by the zero-crossing of
a linear fit to the region with maximal slope of the visibility signal. For the presented data
this yields a value of U/(6J2D+2J1D)SFMI ≈ 60. In contrast, we define the transition at the
ratio where the visibility signal starts to decrease linearly, since werely on the appearance
of coherent interference peaks as the main observable for the superfluid Néel ordering in
the system. Hence, the transition point is defined at a value of U/(6J2D +2J1D)SFMI ≈ 4 to
5 in the following. A detailed discussion of the superfluid to Mott insulator transition in
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Figure 5.3: Superfluid to Mott insulator transition in the 2D-layer triangular lattice. a Time-of-flight

images of the quasimomentum distribution for increasing ratio of U/(6J2D + 2J1D). The respective

values are shown in the upper right corners of each image, together with their central density profiles.

The decrease of condensate fraction (blue solid lines) and the degree of coherence is clearly visible.

For dominating interactions the density profile is well described by a single Gaussian distribution.

The optical density of each image has been normalized to its maximum value. b Visibility (blue),

condensate fraction NC (black) and incoherent thermal fraction NTh (red) are plotted against the

logarithmic ratio of on-site interaction and tunneling U/(6J2D + 2J1D) for a variety of initial atom

numbers and two different values of the perpendicular 1D-lattice depth (see legend). Error bars

denote the standard deviation of the averaged values. The definition of the visibility is exemplified

in the inset for an absorption image in the superfluid regime. Regardless of total particle number

N × 105 or 1D-lattice depth, all individual measurements coincide.
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the 2D-layered triangular lattice and its difference from the isotropic 3D-system is given
by Becker et al. [74].

Together with the visibility, the coherent condensate fraction NC and the incoherent
(thermal) fraction of the absorption images are plotted. Both values are obtained by
extracting integrals of bimodal Gaussian fits from individual absorption images. As a
central result of the depiction in Fig. 5.3b, all data coincide regardless of the systems
particle number or confining 1D-lattice depth.

5.2.2 Lifetime of the Mott-insulating state

In order to be able to investigate the time-averaged effective quantum XY model in the
hard-core boson limit of strong interactions it is crucial to ensure that the Mott-insulating
state is long-lived. Indeed, possible heating mechanisms due to technical noise as well as
scattering of lattice photons might destroy the Mott-insulating state.

However, due to the maximized phase fluctuations of the local Fock states, the time-of-
flight momentum distribution of a MI-state is a featureless Gaussian density profile that
cannot be distinguished from a density distribution of a thermal gas. We thus probe the
MI-lifetime for different maximum lattice depths by ramping the lattice back to a fixed
shallow 2D-lattice depth of 4.0ER in the superfluid regime as plotted in Fig. 5.4a. As a
consequence, long-range phase coherence is rapidly restored over the entire lattice on the
order of a tunneling time τTn = ~/J [56]. The corresponding tunneling time along the
shallow triangular lattice is τTn ≈ 7.6 ms for V0,2D = 4.0ER. In contrast, incoherent parts
of the atomic ensemble which are excited from the Mott-insulating state due to technical
heating do not contribute to the recovery of coherence. Hence, the resulting decay of
recovered visibility is a direct measure of the MI-lifetime.

Results shown in Fig. 5.4b exhibit an exponential decay of visibility with respect to
the holding time in the deep MI-lattice. Furthermore, the corresponding decay con-
stant increases rapidly for larger lattice depths above 8.0ER, corresponding to values
of U/(6J2D + 2J1D) > 150 (see inset in Fig. 5.4b). Nevertheless, the extracted MI-lifetimes
remain at values well above 100 ms even for deep lattice depths and strong interactions.

As a result, the finite lifetime of the Mott-insulating state is not a limiting factor for
the study of the quantum spin-1/2 XY model: as we will see in the following, technical
heating processes associated with far off-resonant periodic lattice driving are generally an
order of magnitude larger in the three-dimensional lattice.

5.2.3 Detecting on-site excitations

In the strongly interacting limit of U ≫ |J | the excitation spectrum of an atomic ensem-
ble in an optical lattice is significantly altered. The lowest lying excitation for a Mott-
insulating state is the creation of a particle-hole pair corresponding to an additional
energy of U [56, 241, 245]. Thus, in contrast to the smooth gapless excitation spectrum
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Figure 5.4: Mott insulator lifetime measurement. a The lifetime of the Mott-insulating state is

determined for four different lattice depths in the Mott-insulating regime by holding the system at

these depth for a variable time TH before ramping the lattice down again into the superfluid regime

at a fixed depth of 4.0 ER. b The recovered visibility is plotted in dependence of the holding time.

Error bars denote the standard deviation of averaged data. Solid lines are exponential fits to the

data. An increase of the decay constant with an increasing maximum lattice depth and, thus, ratios

of U/(6J2D + 2J1D) can be observed (see inset). Error bars of the decay constant values indicate

the 95% confidence interval of the exponential fits.

of a superfluid state, the Mott-insulating state exhibits a gapped energy spectrum with
resonances at multiples of U . The emergence of such resonances that were detected using
potential gradients between lattice wells in order to facilitate particle-hole creation was
the first unambiguous evidence for the presence of the MI-state of an ultacold bosonic
quantum gas in a deep optical lattice [56].

Here, we probe the excitation spectrum of the MI-state by using amplitude modulation
of the lattice potential. Starting from a deep optical lattice, the lattice depth is periodically
modulated for a time between 20 ms and 40 ms with an amplitude of approximately 10% to
20% of the maximum lattice depth. The frequency of the modulation is varied from shot to
shot. For modulation frequencies matching a multiple of the on-site interaction energy U
excitations are expected due to the induced creation of particle-hole pairs. Subsequently,
we ramp down the lattice potential completely, allowing the system to form a BEC. We
detect the amount of excitations generated in the system by extracting the remaining
condensate fraction with respect to an incoherent background with a bimodal Gaussian
fit.

In Fig. 5.5a excitation spectra are shown for three different modulation parameters for
an intermediately deep optical lattice of 5ER and an additional perpendicular 1D-lattice
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Figure 5.5: Experimental detection of the on-site interaction energy U in the Mott-insulating state.

a Excitation spectra obtained with amplitude modulation as illustrated in the inset. The lattice

amplitude was modulated by: 20% for 20 ms (circles), 10% for 40 ms (triangles) and 20% for 40 ms

(squares). Gray vertical lines indicate the expected resonance positions at U and 2U . b Collapse-and-

revival measurement of the bosonic matter wave field. A sudden quench into the deep Mott-insulating

regime (see inset) results in dynamic revivals of coherence on timescales of trev = h/U due to the

rephasing of local coherent states that can be detected as an increase of visibility (black circles). The

solid blue line is a fit to the data consisting of an exponentially decreasing cosine with an additional

linearly decreasing offset. Blue shaded areas around the line indicate the 95% confidence interval of

the fit.

of 30ER. An excitation resonance at the expected value of U ≈ 798 Hz can clearly be
identified. However, the spectrum is significantly broadened due to the strong modulation.
A second resonance peak as in Ref. [56] is not evident. In conclusion, the limited quality
of the amplitude modulation spectra together with the need for strong perturbations of
the robust Mott-insulating state on timescales of tens of milliseconds likely renders the
amplitude modulation technique impractical for the detection of particle-hole excitations
in the antiferromagnetic MI.

A different approach of experimentally detecting the on-site interaction energy of a
deep optical lattice is given by the dynamic behavior of a matter-wave field [246]. As
discussed in section 2.3.2, the local eigenstates of Ni atoms confined to deep optical
lattice wells i with governing on-site interaction U ≪ |J | are Fock number states |Ni〉.
According to the Bose-Hubbard Hamiltonian (2.20) the corresponding local eigenenergies
are Ei = Ni(Ni − 1)U/2. With this, the time evolution of |Ni〉 is simply given by

|Ni(t)〉 = e−iEit/~ |Ni(0)〉 . (5.6)

In contrast, the local wave functions can be expressed as coherent states |αi〉 in the
superfluid regime that exhibit a Poissonian particle number distribution. In the Fock
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basis such coherent states can be expressed as

|αi〉 = e−|α|
2/2

∞
∑

n=0

αn√
n!

|n〉 , (5.7)

where α is a complex amplitude linked to the average atom number per site N̄ = |α|2. By
suddenly quenching the optical lattice potential from the superfluid regime into a deep
lattice, the initially coherent states will evolve in time as a superposition of the new Fock
eigenstates according to

|αi(t)〉 = e−|α|
2/2

∞
∑

n=0

αn√
n!
e−in(n−1)Ut/2~ |n〉 . (5.8)

This time evolution has a profound effect on the coherence properties of the atomic matter
wave field. The different time evolutions of atom number states result in a fast collapse of
long-range phase coherence. However, all phase factors in the above equation rephase for
integer multiples of a revival time trev that is solely determined by the on-site interaction
energy trev = h/U [246–248].

In Fig. 5.5b, such measurements of initial collapse and subsequent revival of coherence
are depicted. Hereby, the optical lattice was suddenly quenched from an initially super-
fluid regime at 3.2ER to a value of 16.2ER and held there for a variable quench time
before all confining potentials are shut off and the interference visibility is evaluated after
time-of-flight. The characteristic revival behavior is observed, although less distinct as in
Ref. [246]. A fit to the data, consisting of an exponentially decreasing cosine squared with
an additional linearly decreasing background yields a revival time of trev = 788 ± 17µs,
which corresponds to an on-site interaction energy of U = 1.27 ± 0.03 kHz. This result is
significantly smaller as the theoretically expected value at the present lattice depths of
U = 1.59 ± 0.05 kHz. However, the remaining discrepancy likely stems from imperfections
of the lattice intensity regulation on such small timescales.

From the experiments discussed above we conclude that a robust Mott-insulating state
can be prepared in the three beam lattice with additional perpendicular confinement of
a deep one-dimensional lattice. In the following section we will investigate, wether the
antiferromagnetic side of the phase diagram of Fig. 5.2 can be investigated by means of
periodic lattice driving.

5.3 Realization of the antiferromagnetic Mott insulator by

lattice driving

Experimentally, a Mott-insulating state can also be prepared using the far off-resonant
time-periodic driving scheme presented in chapter 3. The ability to tune the tunneling
amplitude independently from the on-site interaction energy enables the experimenter to
reach the strongly interacting regime of U ≫ |J | without increasing the lattice depth
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the maximum amplitude of K = 3.82 for 5 ms. b A clear maximum in the remaining visibility of the

momentum distribution can be identified at a ramping time of 4 ms.

[94, 95]. Here, we explore the feasibility of this technique for the creation of an antiferro-
magnetic Mott insulator and the mapping of the phase diagram of Fig. 5.2. As the striking
consequence of the induced geometric frustration in the quantum spin-1/2 XY model, the
Mott lobes extend to larger values on the antiferromagnetic side of the phase diagram.
Hence, the observation of a shift in the transition point from an antiferromagnetic Mott
insulator to the Néel-superfluid as compared to the conventional superfluid to Mott in-
sulator transition discussed in the previous section represents a smoking-gun of the high
degree of degeneracy arising from geometric frustration.

5.3.1 Limitations of the parameter space

The coherent engineering of tunneling matrix elements by periodic driving imposes several
constraints onto the optical lattice system. In chapter 3 we have identified the emergence
of multi-photon resonances for lattice driving as the main source of detrimental heating
processes. As a consequence, time-averaged effective model Hamiltonians can only be
created in systems with a sufficiently large energy gap between the two lowest bands such
that atoms subjected to strong forcing cannot be coupled to higher energy bands. For
a homogeneous forcing amplitude of K = 3.82, yielding the largest negative tunneling
matrix element along all lattice bonds of the triangular lattice, the narrow experimentally
feasible parameter space has been mapped out in Fig. 3.9. As a central result, the coherent
engineering of maximally negative effective tunneling matrix elements is possible only
above a critical lattice depth of V2D,c ≈ 4.0ER in the triangular lattice.

Furthermore, experiments carried out in the strongly confined three-dimensional lat-
tice have to take account for the limited lifetime of the driven system on the order of a
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few milliseconds. The optimal linear ramping time of the periodic driving in the strongly
confined three-dimensional lattice is investigated in Fig. 5.6. In addition, coherence levels
are significantly reduced in the 3D-system (compare Fig. 3.10). This circumstance can be
attributed to the absence of two beneficial mechanisms in the strongly confined three-
dimensional lattice system: First, additional entropy introduced into the atomic ensemble
by the strong forcing cannot be redistributed along the axis perpendicular to the trian-
gular lattice as it is the case for the array of elongated tubes that is present without an
additional 1D-lattice. Second, the actual tunneling rates in the three-dimensional system
along the triangular lattice plane are significantly reduced in comparison to a triangular
lattice of the same potential depth comprised of an array of tubes. This peculiarity stems
from the additional Bose enhancement of tunneling between elongated tubes with a large
occupation number. Moreover, in contrast to the three-dimensional array of tubes, the
Mermin-Wagner-Hohenberg theorem explicitly forbids the formation of true long-range
phase ordering due to short-range interactions in pure two-dimensional systems [249, 250].
As a consequence, a coherent Néel-ordered superfluid as treated in chapter 4 is not ex-
pected for the stacked array of 2D-triangular lattice that is created by a strongly confining
perpendicular 1D-lattice.

The necessarily short timescales of the driving combined with relatively long tunneling
times of τTn > 5 ms along the triangular lattice plane render the engineering of a frus-
trated Mott-insulating state in the quantum spin-1/2 XY model and the mapping of the
phase diagram of Fig. 5.2 a difficult task to undertake. It should, however, be noted that,
regardless of the limited timescales, MI-states have been successfully prepared by peri-
odic driving techniques in non-frustrated cubic lattice geometries [95]. In the following,
we discuss the feasibility of creating a frustrated Mott insulator and the investigation of
the quantum phase transition to a Néel superfluid on the antiferromagnetic side of the
phase diagram depicted in Fig. 5.2.

We aim for the realization of a frustrated Mott insulator in the hard-core boson limit
of strong interactions by starting with an array of non-interacting two-dimensional super-
fluids in the triangular lattice that is created by a strong perpendicular confinement of a
1D-lattice on the order of V1D,0 = 30ER to 50ER.

Effects of the tuning of the tunneling amplitude by periodic lattice driving are exempli-
fied in Fig. 5.7a. Here, the triangular lattice depth is plotted against the forcing parameter
K and resulting ratio of U/(6J2D + 2J1D) for a confining 1D-lattice of V1D,0 = 30ER. The
dashed red line indicates the position of maximally negative tunneling at a forcing param-
eter of K = 3.82 and the gray solid lines mark triangular lattice depths of 2ER, 4.25ER

and 8ER. It is evident that an increase of the forcing amplitude and the resulting decrease
of the tunneling amplitude in the triangular lattice J2D easily allows for the creation of
dominating on-site interactions as values of U/(6J2D + 2J1D) > 100 can be reached for
all initial triangular lattice depths. Yet, the weakly interacting superfluid regime is hard
to reach for negative tunneling matrix elements: Already for an initial triangular lattice
depth of 4.25ER, where the driving scheme yields the best results (compare Fig. 3.9), the
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is expected to be in the Néel superfluid.

total reduction of the tunneling amplitude to |Jeff
2D| = 0.4Jbare at the minimum of the

renormalizing Bessel function gives a minimum value of U/(6J2D + 2J1D) = 16.1 that is
still on the Mott-insulating side of the phase diagram.

In Fig. 5.7b we explore the resulting ratio of U/(6J2D+2J1D) for the maximally negative
tunneling amplitude in dependence of both the perpendicular 1D- and the triangular 2D-
lattice depth. Here, the dashed black line indicates the optimal 2D-lattice depth of 4.25ER

while the two white lines mark the boundaries of the on-site interaction to tunneling ratios
of U/(6J2D + 2J1D) = 5 and U/(6J2D + 2J1D) = 4 where the appearance of a superfluid is
expected.

As a result of the previous considerations, the mapping of the quantum phase transition
from a strongly interacting antiferromagnetic Mott insulator to the Néel-superfluid by
increasing the periodic driving of the triangular lattice should only be possible for rather
shallow depths of the confining 1D-lattice below V1D ≈ 12ER. The system cannot be
treated as individual two-dimensional triangular lattice layers anymore in such a regime
as tunneling perpendicular to the lattice planes becomes significantly large.

However, assuming that the relatively short achievable timescales of the lattice driving
do not constitute a fundamental problem according to Ref. [95], the realization of the
strongly interacting antiferromagnetic Mott insulator appears to be an experimentally
feasible task.
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Figure 5.8: Superfluid to Mott insulator transition in the driven lattice. By increasing the periodic

forcing amplitude the ratio of on-site interaction and tunneling amplitude (see inset). The measured

visibility for different ramping times and procedures (blue data points) decreases significantly faster

as compared to the static superfluid to Mott insulator transition (black and gray data points).

5.3.2 Superfluid to Mott insulator transition in the driven lattice

As we have reasoned in the preceding section, the antiferromagnetic Mott-insulating state
of dominating on-site interaction energy U can be reached in the three-dimensional lat-
tice system by employing the far off-resonant periodic driving technique to tuning the
tunneling matrix elements of the triangular lattice to small negative values. For this pur-
pose, we prepare the atomic ensemble close to the Mott-insulating regime at a triangular
lattice depth of 4.25ER, where the driving in the purely triangular lattice has yielded the
optimal results in terms of preserved coherence. The presence of a strong perpendicular
1D-lattice of 30ER results in a stack of two-dimensional superfluid states. Here, the ratio
between on-site interaction energy and (bare) tunneling is U/(6J2D + 2J1D) = 6.7.

For the data presented in Fig. 5.8 the ratio U/|J | is gradually increased by increasing
the periodic forcing amplitude K while the lattice depths are held fixed (see ramping
procedure in the inset). Blue data points show the observed visibility for several linear
ramping times of the driving in an atomic ensemble with in total N = (4.9 ± 0.7)×105
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particles. For comparison, black and gray data points depict the visibility measurements
performed in the static 3D lattice as shown in Fig. 5.3. Ideally, data obtained for the
driving should coincide with the static case as the relevant parameter is given in both
cases by the ratio between on-site interaction and tunneling. However, it is evident that
the lattice driving scheme results in a faster decrease of visibility as compared to the static
measurements. This is also the case if the periodic driving is linearly decreased to a value
of zero before the time-of-flight imaging. In Fig. 5.8 these measurements are indicated by
a gray legend entry.

The observed behavior of the visibility puts the experimental feasibility of reaching
the antiferromagnetic Mott-insulating regime with periodic lattice driving into question.
Nevertheless, in order to prove or disprove the presence of a Mott-insulating state in the
driven system a more reliable observable than the extracted visibility is needed. Greiner
et al. have observed the appearance of a discrete excitation spectrum at integers of the
on-site interaction energy U as the unambiguous verification of a Mott-insulating state.
The excitation spectrum could be reproduced by Zenesini et al. [95] in the driven Mott
insulator by modulating the tunneling amplitude itself with an additional modulation
of the driving amplitude. This technique has the advantage of leaving all other lattice
parameters unchanged. In contrast, the lattice amplitude modulation employed for the
detection of the on-site interaction energy in the static lattice (see Fig. 5.5b) is impractical
for the driven system for two reasons: First, comparatively long timescales are needed
for the modulation that exceed the lifetime of the driven system. Second, as we have
extensively demonstrated in chapter 3, the driven system is extremely sensitive to a change
of the lattice depth which may give rise to additional multi-photon transitions.

On these grounds we have employed the modulation of the effective tunneling amplitude
used in Ref. [95] in order to detect the gapped excitation spectrum. Yet, no distinguishable
signal could be observed on the short timescales of the lattice driving. On the one hand,
the absence of such a signal could be interpreted as the absence of a Mott-insulating state
in general. On the other hand the failure of the tunneling modulation method can also be
attributed to the short timescales of the driving: as the final forcing amplitude can only
be maintained for 5 ms, the detection of an on-site interaction energy at the calculated
value of U = 720 Hz corresponds to a modulation of merely 3.6 cycles, which may not be
enough to introduce a significant amount of excitations to the system.

5.4 Quantum noise correlation analysis of the

Mott-insulating state

In the preceding section we have argued that the detection of the Mott-insulating state in
the driven system is generally difficult. Moreover, due to the absence of phase coherence
accompanied by vanishing first order correlations, the momentum distribution of such a
strongly correlated atomic ensemble does not exhibit any interference structures after the
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ballistic time-of-flight expansion. Instead, the density distribution is solely determined by
the structureless Wannier envelope in Eq. (2.37) which can be well approximated by a
Gaussian distribution in the limit of deep lattice potentials. However, the initially fea-
tureless single-shot Gaussian column density distributions contain additional information
hidden in fluctuations around their average values that originates from correlations of in-
trinsic quantum noise [57, 251]. In the following, we will discuss the underlying principles
of such quantum noise correlations and utilize them in order to verify the presence of
a Mott-insulating state in both the static and the driven strongly correlated 3D lattice
system. For a thorough treatment of the application and implementation of the noise
correlation analysis technique in the field of ultracold atomic gases we refer to Ref. [252]
and [253].

5.4.1 Hanbury Brown-Twiss interferometry

Time-of-flight imaging relies on the sudden release of an ensemble of particles and a
subsequent ballistic expansion before an integrated column density profile is obtained
by detecting the shadow cast by the expanded cloud onto a CCD camera. Considering
a bosonic Mott-insulating state consisting of atoms strongly confined to a deep optical
lattice, this corresponds to the simultaneous detection of many independent, incoherent
sources of bosons with many independent detectors, i.e., the individual CCD pixels.

Such a scenario was first investigated in the formalism of classical electromagnetic fields
in 1956 for the case of the detection of astronomical radio waves as well as visible light
sources in seminal experiments by Hanbury Brown and Twiss [254, 255]. Their findings
were soon supported by Purcell [256] and sparked the broader application of quantum elec-
trodynamics to many physical systems. In the initial experiments, the observed statistical
bunching of photons could be used to determine properties of the light source, namely the
angular size of stars. Since then, Hanbury Brown-Twiss intensity interferometry is used
for a large variety of applications.

The effect relies on the indistinguishability of particles and the interference of different
detection paths between two detectors. As a central result, the probability to simulta-
neously detect two (bosonic) particles that are emitted from two independent sources
with two independent detectors depends on the relative distance d of the two detectors.
This peculiarity can be understood by considering possible trajectories of particles for
a simultaneous detection. In Fig. 5.9a the two paths of two independent particles from
their sources, in this case the sites of an optical lattice, to the two detectors A and B
are illustrated as solid black and dashed gray arrows. As the individual probabilities of
both trajectories have to be summed due to the indistinguishability of particles, they can
interfere both constructively and destructively, depending on the relative phase between
the paths and, hence, the different path lengths.
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Figure 5.9: Hanbury Brown-Twiss correlations for atoms released from an optical lattice. a For the
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factor that is determined by the distance d between the two detectors. b Correlation amplitudes

for a one-dimensional chain of N particles calculated for N = 3, 5, 10 and 20 plotted in ascending

darkness of blue coloring respectively.

5.4.2 Noise correlation observable in time-of-flight images

For the two-dimensional optical density images obtained after time-of-flight such spatial
correlations can be analyzed by calculating the second-order density-density autocorrela-
tion function CD(d) in dependence of the detector distance vector d according to

CD(d) =
∫

〈

n̂(r − d/2)n̂(r + d/2)
〉

d2r, (5.9)

where n̂(r) = b̂†(r)b̂(r) denotes the density operator at position r [57, 253]. The expression
CD(d) is conveniently scaled by the expectation value for uncorrelated particles

CU(d) =
∫

〈

n̂(r − d/2)
〉〈

n̂(r + d/2)
〉

d2r (5.10)

such that the normalized observable for spatial noise correlations can be defined as

CN(d) =
CD(d)
CU(d)

− 1. (5.11)

With this, a value of CN > 0 indicates density-density correlations in the image noise,
while CN < 0 corresponds to anti-correlations in analogy to the bunching (antibunch-
ing) of bosons (fermions) in the Hanbury Brown-Twiss effect. By expressing the density
operator n̂(r) = b̂†(r)b̂(r) in terms of the local wave functions that can be well approxi-
mated by spherically-symmetric Gaussians in strongly confining three-dimensional lattice
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potentials, a calculation of the normalized correlation function yields the result

CN(d) =
1
N2

∣

∣
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∣
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Nsites
∑
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eimRj ·d/(~t)Nj

∣

∣

∣

∣

∣

∣

2

, (5.12)

where Rj denotes the position of lattice site j with local particle number Nj [253]. As the
positions of lattice sites is per definitionem periodic, the above expression represents a
Fourier sum with a periodicity of the reciprocal lattice vectors. The resulting correlation
signal is plotted in Fig. 5.9b for a one-dimensional lattice with a single atom at each site for
different total numbers of lattice sites, while the detector distance d is scaled according to
the time-of-flight tTOF. The emergence of extremely sharp peaks for an increasing system
size is evident.

5.4.3 Experimental implementation of the noise correlation analysis

In order to extract the spatial quantum noise correlations from a set of typically 50 to
100 CCD images, one has to evaluate the integrals of Eq. (5.9) and (5.10). Hereby, the
corresponding density-density autocorrelation function of each image matrix MI has to
be determined according to

CI(d) =
∫

MI(r − d/2)MI(r + d/2) d2r = (MI ∗MI) (d), (5.13)

where the ∗ denotes the convolution of two functions. The computationally hard proce-
dure of the above equation can be significantly simplified by substituting the convolution
integral with corresponding Fourier transformations according to the relation

F (f ∗ g) = F (f) · F∗ (g) (5.14)

which yields the easily computable consecutive Fourier transformations

CI = F−1
(

|F (MI)|2
)

. (5.15)

With this, the numerator of Eq. (5.11) is given by the sum over all individual auto-
correlation functions. Accordingly, the denominator of Eq. (5.11) can be determined by
calculating the autocorrelation function of the average of all individual images.

For extracting the quantum noise correlations from a set of optical density images,
several requirements have to be met: First, the level of uncorrelated noise that is funda-
mentally limited by photon shot noise should be smaller than the correlated noise [251].
For optical densities close to unity and a large quantum efficiency of the CCD camera
(which is on the order of 90% for imaging of the triangular lattice plane) this condition
is readily fulfilled for the experimental setup. Second, all additional sources of correlated
noise beyond the atomic quantum noise correlations should be as small as possible. Origins
of such correlated noise include fluctuations in the detected particle number and detection
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intensity, residual movements of the atomic cloud and interference fringes in the optical
density image. Typically, residual interference signals result from slight variations of the
imaging setup, e.g., vibrations, in between the absorption imaging of the atomic cloud
and the recording of the corresponding reference image without atoms.

In order to minimize fluctuations in particle number, detection intensity and position,
the obtained images are thoroughly pre-processed before the autocorrelation function of
each image is calculated: The first step in preprocessing the images is to cancel intensity
variations by normalizing each image with its individual intensity offset. This offset is
extracted from a rectangular frame outside the respective region of interest containing an
atomic signal. Secondly, a Gaussian is fitted to the featureless atomic density distribution.
The image is then divided by its integral in order to normalize the observed particle
numbers. Hereby, images yielding a deviation in the width of the obtained Gaussian
above ±10% from the total mean value of all images are excluded from the analysis.
Furthermore, the cloud is shifted to a fixed, centered position according to the position of
the fitted Gaussian such that residual movements of the atomic cloud are compensated.
A commonly employed practice for noise correlation image preprocessing is the manual

exclusion of images that exhibit residual interference fringes and other periodic noise [57,
58]. In principle, however, it is desirable to avoid such choices made by the experimenter
for reasons of reproducibility of results and applicability to large data sets. Instead, we
solely rely on automated processing of data in order to reduce the influence of unwanted
periodic noise. For this purpose, each individual image is filtered by a high-pass Hamming-
window function prior to the calculation of the autocorrelation function. Nonetheless, the
finally obtained correlation signal matrix CN still exhibits unwanted high-frequency noise
components. The strongest components of such noise are additionally filtered out by
applying a series of Gaussian notch filters to each pixel value above a certain amplitude
threshold in the spectral density of the correlation signal. This procedure is exemplified
Fig. A.3 of appendix A.

In Fig. 5.10 obtained correlation signals are shown for a Mott-insulating state in the
static three dimensional lattice at lattice depths of V2D,0 = 10ER and V1D,0 = 30ER,
corresponding to a ratio of U/(6J2D + 2J1D) ≈ 190. Here, Fig. 5.10a and c depict exam-
ples of an optical density image along both imaging directions of the experimental setup
(compare Fig. 2.8 and 2.9). Clearly, no residual first order correlations due to superfluid
interference are present in the density distributions along both directions. The featureless
Gaussian density profile resulting from the absence of phase ordering of local Fock states
is exemplified by the blue line profiles at the sides of the optical density images that
depict the pixel values along the respective hair crosses in the images. The red lines are
Gaussian fits to the data, emphasizing the presence of noise fluctuations around the mean
value. Note that the difference in size of the images stems from the fact that the xy-plane
in Fig. 5.10a was imaged after tTOF = 38 ms of ballistic expansion while the zy-plane is
imaged after tTOF = 18 ms. The relative strength of the correlation signal is expected to
increase quadratically with the time-of-flight [57].
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Figure 5.10: Quantum noise correlations in the static Mott insulator at U/(6J2D + 2J1D) ≈ 190.

a and c show examples of optical density images of the Mott insulator along both implemented

imaging directions, i.e., the z-axis and the x-axis respectively. In addition, the featureless Gaussian

density profiles are depicted by the blue line plots at the sides of the images that correspond to the

pixel values along the hair crosses in both images. Red lines indicate a Gaussian fit to the data,

emphasizing the statistical noise around the mean value. In b and d the corresponding correlation

signals are shown that were extracted from a data set of approximately 100 individual images. Beyond

the strong autocorrelation peak, the noise correlations at the expected positions of the reciprocal

lattice vectors are clearly visible. The line plots at the sides of the correlation images depict the

correlation signal along the hair crosses. Hereby, the correlations along the deep one-dimensional

lattice (z-direction in d) are the most pronounced as well as the most narrow signal due to the larger

lattice depth of V1D,0 = 30 ER along this direction as compared to V2D,0 = 10 ER in the triangular

lattice plane. Note that in the vertical direction of the correlation signal of b, noise correlations are

expected only at the second order momentum positions.
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The corresponding correlation matrices CN obtained from an initial data set of approx-
imately 100 individual images for each imaging direction are shown in Fig. 5.10b and d.
As expected, both images feature a strong autocorrelation peak at zero distance as well
as clearly distinguishable quantum noise correlation peaks at the positions of the recip-
rocal lattice vectors. The positive correlation signals are also visible in the respective line
profiles of the correlation signal at the sides of the images. Hereby, correlations along the
perpendicular 1D-lattice (z-direction) are the most prominent as well as narrow features.
This is due to the fact that the confining lattice is significantly deeper in this direction:
As it was pointed out in Ref. [257], the width of the correlation peaks rapidly decreases
for a decreasing of the ratio U/|J |. Indeed, as U/|J | increases, larger Mott-shells form and
more atoms contribute to the density-density correlations. In analogy to Fig. 5.9b this
leads to a decrease of the width of correlation peaks.

A strong oscillation of the correlation amplitude can be observed around the noise
correlation peaks as well as the autocorrelation peak at zero position, yielding negative

values of CN . This behavior can be attributed to residual fluctuations of the position of
the atomic cloud that were not compensated in the pre-processing of images. However,
the signal-to-noise ratio of the correlation peaks is of limited quality as, e.g., compared to
the results presented by Fölling et al. [57]. Moreover, correlation signals spanning larger
distances than a single reciprocal lattice vector are significantly reduced in amplitude.
Ideally, such correlation signals should span the entire region of the analyzed image (see
Fig. 5.9b) as the Fourier sum of Eq. (5.12) is not spatially limited by any envelope function.
The extension of the correlation peaks is, thus, only limited by the ratio of correlated atom
noise to residual photon shot noise which appears to decrease rather rapidly for larger
distances in the analyzed images.

5.4.4 Noise correlations in the antiferromagnetic Mott insulator

In order to investigate the strongly interacting many-body state in the quantum spin-1/2

regime of antiferromagnetic interactions, we have applied the analysis of quantum noise
correlations to the driven three-dimensional lattice. Thereby, lattice driving is performed
at potential depths of V2D,0 = 4.55ER and V1D,0 = 30ER while the periodic forcing am-
plitude is chosen as K = 2.57 such that the homogeneous effective tunneling renormalizes
to Jeff = −0.08Jbare. Similar to the investigated static system, these parameters yield a
ratio of U/(6|Jeff

2D| + 2J1D) ≈ 190.
In Fig. 5.11 the resulting quantum noise correlation signal, extracted from a data set

of 100 individual images, is depicted for the imaging of the 2D-lattice plane (compare
Fig. 5.10a and b). Similar to the static system, the density distribution shown for a single
image in Fig. 5.11a is well described by a featureless Gaussian already after the short
timescales of the periodic driving. The calculated quantum noise correlations are also
clearly visible. They exhibit comparable amplitudes and the same positions of the recip-
rocal lattice vectors as in the static lattice.

115



Chapter 5 Frustrated quantum antiferromagnetism in a triangular lattice

a b

x (mm)

0-0.4 0.4 0.6-0.6 -0.2 0.2 0-0.4 0.4-0.2 0.2

0

-0.4

0.4

0.6

-0.6

-0.2

0.2

0

-0.4

0.4

-0.2

0.2

y
 (

m
m

)

x (mm)
y

 (
m

m
)

-1

0

1
x10-3

0

1
OD

0

0

Figure 5.11: Quantum noise correlations in the antiferromagnetic Mott-insulating regime of

the driven three-dimensional lattice for a ratio of on-site interaction to (effective) tunneling of

U/(6|Jeff
2D| + 2J1D) ≈ 190. a Individual absorption images, shown here in the triangular lattice plane

again correspond to a featureless Gaussian density distribution with additional noise. b Extracted

noise correlations reveal the same peak structure as in the static lattice.

In conclusion, the characteristic quantum noise correlations presented in Fig. 5.10 and
5.11 verify the presence of an ensemble of incoherent sources of bosons confined to the
three-dimensional lattice sites. On the one hand, this observation agrees perfectly with the
Mott-insulating state. In principle, however, such noise correlations could also appear in
the case of an incoherent thermal gas such that the observation of second-order correlations
alone is ambivalent.

With the ability to restore coherence from the investigated strongly interacting system,
the presence of a thermal gas as the source of noise correlations can be ruled out for the
static lattice. Due to the strong forcing of the lattice and the absence of the beneficial
Bose enhanced tunneling and redistribution of entropy along additional dimensions in
the three-dimensional lattice, such restoration of coherence could not be observed in the
driven system owing to the lifetime being limited to a few milliseconds. Together with
the observed rapid decrease of visibility for increasingly dominant on-site interactions
(see Fig. 5.8) we have argued that the experimental feasibility of the realization of an
antiferromagnetic Mott insulator by lattice driving is at least questionable. Yet, we do
not observe any quantum noise correlations in a similar data set for an initially thermal
gas (a result that is also reported in Ref. [57]). Therefore, the observed correlation signal
in Fig. 5.11 likely stems from a Mott-insulating state.

Nonetheless, more observations are needed for an unambiguous verification of the an-
tiferromagnetic Mott insulator. What can, however, be concluded from the positions of

116



Order-by-disorder signature of the frustrated antiferromagnet

correlation peaks in the driven system is that the symmetry of the lattice is preserved in
this state: An ordered occupation of sites which breaks the translational symmetry of the
triangular lattice would give rise to additional correlation peaks at half the reciprocal lat-
tice vectors which we do not observe. The appearance of such additional correlation peaks
due to a larger lattice unit cell were, e.g., reported in Ref. [141] for a one-dimensional lattice
with alternating occupation number corresponding to a Néel ordering of antiferromagnetic
spins. Even though it breaks the translational symmetry, a valence-bond solid, however,
should not lead to additional peaks owing to the entanglement of pairs of pseudo-spin
states.

5.5 Order-by-disorder signature of the frustrated

antiferromagnet

As discussed before, an unambiguous signature of the frustrated antiferromagnetic Mott
insulator in the second-order correlations of time-of-flight images is inherently elusive.
In the following, we will investigate wether signatures of geometric frustration can be
detected in absorption images by considering a so-called order-by-disorder effect.

Following Eckardt et al. [140], the general idea is that the occupation of the dispersion
relation with its two degenerate minima of the driven system with negative, real valued
tunneling matrix elements (see Fig. 3.5 and 4.7) changes as interactions become dominant.
An increase of interaction is accompanied by an increase of quantum fluctuations. In the
weakly interacting regime, this circumstance is well described within the framework of
Bogoliubov theory as an increase of quantum depletion, i.e., the fraction of the many-body
wave function that is not represented by the macroscopic single-particle wave function of
a Bose-Einstein condensate [258].

For a wave function occupying one of the two possible minima of the dispersion relation
small quantum fluctuations towards momenta with higher energies will be distributed sym-
metrically in momentum space. For larger fluctuations, however, their shape will become
increasingly asymmetric, tending towards the neighboring minimum: Here, the dispersion
relation is less steep, such that fluctuations require fewer energy along this direction. As
a consequence, the total wave functions will tend to join the two minima for increasing
quantum fluctuations. In the extreme case of sufficiently strong quantum fluctuations the
wave functions will merge at the position in between the minima. With only a single
possible occupation in the first Brillouin zone, this system does not exhibit any frustra-
tion but rather a regular 180° Néel-ordering of local vector spins in a rhombic pattern
(compare Ref. [96]). With this, an increase in fluctuations should lead to the ordering
of a previously frustrated system, hence the term “order by disorder”. In Ref. [140] these
findings are supported by thorough numerical calculations based on the variational ansatz
sketched in section 5.1.3.

We investigate this effect by analyzing residual peak positions of the driven three-
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Figure 5.12: Order-by-disorder behavior for increasing interactions. a Time-of-flight images of the

frustrated 3D-system for increasing ratios of U/(6|Jeff
2D| + 2J1D) indicated by numbers in the images.

b Extracted central intensity profiles of the images (small circles) are fitted with three Gaussians

(solid lines) in order to extract the distances between the central peaks. c The resulting distances

are plotted against the ratio of on-site interaction and tunneling U/(6|Jeff
2D| + 2J1D). Vertical error

bars indicate the 95% confidence intervals of the fit in b. Horizontal error bars reflect an estimated

uncertainty of the lattice depths of 5% for the calculation of the tunneling amplitudes and the on-

site interaction. The solid line is a linear fit to the data and the green square indicates the distance

of degenerate minima in the ideal dispersion relation of 3π/(2a). The peak shift due to increased

quantum fluctuations is illustrated in the inset.

dimensional system in a regime of intermediately strong interactions where a first-order
correlation peak structure in the three-dimensional lattice can still be identified. With a
triangular lattice depth of V2D,0 = 4.25ER the driving is ramped to its maximally negative
value, yielding a homogeneous effective tunneling matrix element of Jeff = −0.4Jbare. Dif-
ferent interaction strengths are chosen by varying the perpendicular 1D-lattice depth from
V1D,0 = 5ER to 30ER in steps of 5ER such that all other parameters remain unchanged.
The corresponding time-of-flight images, averaged over many individual realizations, are
shown in Fig. 5.12a in ascending order of the ratio U/(6|Jeff

2D| + 2J1D). Central profiles, de-
picted in Fig. 5.12b, are extracted from the images by a summation over vertical stripes.
The distance between the two central peaks is analyzed by fitting the line profiles with
three Gaussians - a broad background and one for each residual peak. The resulting dis-
tances are depicted in Fig. 5.12c together with the expected peak distance of 2π/(3a) for
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an ideal superfluid state.
Here, uncertainties for the calculated ratio between on-site interaction energy and tun-

neling is indicated by horizontal error bars. They are determined for an assumed precision
of the calibrated lattice depth of ±5%. This value is a quite conservative estimate, as the
measurements of multi-photon resonances presented in chapter 3 verify an excellent agree-
ment with the calculated band structure. As predicted, all extracted peak distances are
smaller than the theoretical value and a decrease of the distance can be observed for in-
creasing interactions. However, the observed effect is extremely weak as compared to the
error margins of the fit given by the corresponding 95% confidence intervals. Furthermore,
the validity of the fitting function with as many as nine free parameters remains to be
tested.

It should also be noted that the directionality of the expected peak shift is initially
not distinguished: As shown in Fig. 3.5 and 4.7 the two minima of the dispersion relation
are located at the six vertices of the first Brillouin zone and, thus, have three nearest
neighboring minima. Accordingly, the observation of the vertical minima in Fig. 5.12 is
an arbitrary choice that was made due to the position of the Wannier envelope. Hence,
in contrast to the simplified explanation of a two-well system used above (see inset in
Fig. 5.12c), the shift in the wave function due to quantum fluctuations should also be
present along the other two possible directions connecting each two minima. A distinction
of these directions can, however, be induced by slight asymmetries of the lattice potential.
Indeed, as the angles of the three-beam lattice are not aligned at exactly 120° with respect
to each other (see appendix D) such asymmetries do appear in the dispersion as described
in Ref. [96] and may result in a preferred directionality of the peak shift. In order to
investigate the directionality of the shift it is necessary to evaluate the peak positions
along the other possible directions for images with a suitably adjusted position of the
oscillating Wannier envelope.

Numerical calculations presented in Ref. [140] indicate that the merging of peaks due
to quantum fluctuations should become stronger for asymmetric effective tunneling pa-
rameters J ′ > J as the energy barrier between the two minima becomes shallower in this
case (this effect is thoroughly described in Ref. [96]).

5.6 Conclusion & outlook

The investigation of the strongly correlated regime in the layered triangular lattice system
presented in this chapter has yielded the following results: First, the creation of a robust
Mott-insulating state in deep static lattice potentials could be demonstrated. Second, the
realization of an antiferromagnetic Mott-insulating state by far off-resonant lattice driving
should be experimentally feasible. An analysis of quantum noise correlations provides
quantitatively similar results of spatial density-density correlations for static as well as
strongly driven systems, hinting towards the successful engineering of a frustrated Mott
insulator with unbroken translational symmetry. In addition, first signatures of an order-
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by-disorder effect resulting from an increase in quantum fluctuations could be observed.
However, further measurements are necessary in order to verify the profound influences

of the high degree of frustration arising from the mapping to a quantum spin-1/2 model in
the hard-core boson limit of strong interactions and to map out the corresponding phase
diagram for antiferromagnetic interactions. A promising experimental technique for the
investigation of this phase transition is the melting of the Mott insulator by adiabatically
lowering the chemical potential, i.e., transferring the system into a very shallow trapping
potential. An additional method of reaching the Néel superfluid in sufficiently deep lattices
is the continuous lowering of the interaction strength by using Feshbach resonances. Due
to the absence of experimentally applicable Feshbach resonances in 87Rb, this approach
should be more is suitable for, e.g., a system comprised of 39K.

Finally, a systematic dependence of the peak distance on the interaction strength as
well as the asymmetry of the tunneling directions remains to be investigated in the driven
lattice, promising deep insights into order-by-disorder effects and geometric frustration.
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6 Probing Dirac points in the
state-dependent honeycomb
lattice

Here, we present a novel method of controlling the geometry of a state-dependent

honeycomb lattice: The energy offset between the two sublattices of the honeycomb

structure can be tuned by rotating the atomic quantization axis. This enables us to

continuously tune between a homogeneous graphene-like honeycomb lattice and a tri-

angular lattice and to open an energy gap at the characteristic Dirac points. We probe

the symmetry of the lattice with microwave spectroscopy techniques and investigate

the behavior of atoms excited to the second energy band. We find a striking influence

of the energy gap at the Dirac cones onto the lifetimes of atoms in the excited band.

The honeycomb lattice structure can be found in a large variety of manifestations in
nature as it represents the two-dimensional close-packing of spheres. It is the basis of many
intriguing systems of condensed matter. The most prominent example thereof is graphene,
a flat monolayer of carbon with sp2 hybridization bonding. Since its first realization in
2004 [142], graphene has opened a completely new field of research and already represents
a promising candidate for revolutionary technological applications. In 2010 the Nobel prize
in physics was awarded to A. Geim and K. Novoselov “for groundbreaking experiments
regarding the two-dimensional material graphene” [259, 260].

The two dimensional honeycomb structure of graphene gives rise to an unusual elec-
tronic spectrum of massless, ultra-relativistic electrons as the two lowest energy bands
touch at the vertices of the hexagonal Brillouin zone such that the dispersion relation
becomes linear. For low energies this results in the formation of new quasiparticles that
are accurately described by the 3-dimensional Dirac equation [146]. The touching point
of the bands, the so-called Dirac point exhibits a topological singularity, resulting in a
localized Berry flux of π. Together with its extremely strong bonding and two-dimensional
nature, the extraordinary topology of graphene gives rise to a large variety of fascinating
phenomena, such as the anomalous quantum Hall effect and exceptional charge, heat and
spin transport characteristics, only to name a few [143, 261].

Ultracold atoms in unconventional optical lattices provide an ideal testing ground for
many of such intriguing aspects. Here, the clean environment and high degree of control of
internal and external system parameters allow for the engineering of model systems aim-
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ing at a deeper understanding of the behavior of single- and many particle systems with
respect to symmetry and topology. For example, Klein-tunneling has been demonstrated
for the presence of a Dirac point in a one-dimensional lattice [147] and the relativistic zit-

terbewegung was evidenced in a Bose-Einstein condensate [148]. The complex interplay of
symmetry and interactions allowed for the observation of a Néel ordering of spin compo-
nents in the state-dependent honeycomb lattice with striking influences on the superfluid
to Mott insulator quantum phase transitions [75]. Moreover, ensembles of quantum degen-
erate fermionic atoms in a brick lattice, that is topologically equivalent to a honeycomb
lattice, have been used to study the merging of Dirac cones [76]. Recently, the singular
Berry flux in an optical honeycomb lattice could be mapped using interferometric meth-
ods [149] and the Haldane model was engineered with periodic driving techniques similar
to those discussed in the preceding chapters [151].

In this chapter we investigate a graphene-like honeycomb lattice with a state-dependent
component that allows us to continuously tune the symmetry of the lattice structure. The
change of the lattice symmetry is accomplished by adjusting the energy offset between
the diatomic basis of the honeycomb lattice. As one of the two sublattice sites becomes
energetically favorable the inversion symmetry of the lattice is broken and changed from
a homogeneous honeycomb lattice to a triangular one. With this, an energy gap can be
created and tuned at the aforementioned Dirac cones. Thus, in contrast to experiments
presented in the chapters 3, 4 and 5, the band structure is altered by a change of the
lattice structure in real space rather than engineering effective time-averaged potentials.

In the following, we will present experiments probing the state-dependent honeycomb
lattice with respect to the opening of the band gap at the Dirac point. We explain the
method used to control the lattice symmetry and, thus, the band structure by rotat-
ing the magnetic quantization field. We verify the effect of the rotation on the lattice
structure by performing band-selective microwave spectroscopy that is in good agreement
with theoretical calculations. Finally we utilize this spectroscopy technique to excite the
atomic ensemble to the second lowest energy band, enabling us to probe the dynamic
behavior of the atomic ensemble with respect to the presence of an energy gap at the
Dirac cones. Time-resolved measurements of the population of the excited band reveal a
striking influence of the presence of a Dirac point.

Experiments presented in this chapter have been performed within the team of C. Staar-
mann, C. Ölschläger, J. Struck, J. Simonet and M. Weinberg. The leitmotif of manipu-
lating the inversion symmetry of the state-dependent honeycomb lattice by changing the
orientation of the quantization axis as well as the numerical mean-field treatment of in-
teraction effects relies on the work of P. Soltan-Panahi [154]. Parts of this chapter have
been published in Ref. [5].
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6.1 State-dependent honeycomb lattice

In chapter 2 we have already briefly introduced the basic properties of the state-dependent
honeycomb lattice that is generated for an in-plane alignment of the linear polarization
vectors ǫi of the three-beam lattice setup, i.e., for the case of θ = 0. The orientation of
the polarization vectors gives rise to an alternating pattern of circular polarization in the
resulting light field (compare Fig. 2.6) which stems from the projection of the oscillating
electric field onto the quantization axis as defined in Eq. (2.5). In chapter 2 we have
described the orientation of the quantization axis by means of the three Euler angles

that unambiguously define the orientation of a rigid body in three dimensions. In this
section we will investigate the basic properties of the state-dependent potential for the
case of a quantization axis aligned perpendicular to the lattice plane along the z-axis,
corresponding to Euler angles of α, β, γ = 0. For this case the total lattice potential,
comprised of a state-independent and a state-dependent part, reads

V2D(r) = 2V0

3
∑

i=1

cos(bir) −
√

3V0(−1)FmFη
3
∑

i=1

sin(bir), (6.1)

where the relative strength of the state-dependent potential is given by the proportionality
factor η that is determined by the detuning of the lattice light with respect to the atomic
transitions. In chapter 2 we have argued that, due to its linear dependency on the magnetic
quantum number mF , the state-dependent part of the potential, represented by the second
term in the above equation, can be expressed as an effective magnetic field resembling the
linear Zeeman effect:

V2D(r) = VInt(r) + gFmFµBBeff(r). (6.2)

Hence, for magnetic quantum numbers different from zero, the alternating pattern of
circular polarizations results in the potential energy of one of the two sublattice sites
being lifted while the other one is lowered. Wether an atom in a hyperfine state |F,mF 〉
is predominantly confined at a lattice site with σ+ or σ− polarization depends on the sign
of its magnetic quantum number and the respective Landé factor gF . The sign change of
the Landé factor in the ground-state manifold of 87Rb is incorporated in Eq. (6.1) by the
prefactor (−1)F . Accordingly, an atom in the hyperfine state |1,−1〉 experiences the same
potential as an atom in the state |2,+1〉.

In Fig. 6.1 the state-dependency of the honeycomb lattice is depicted for the three cases
of mF = 0,±1. In analogy to Fig. 2.6 the respective potentials are shown in Fig. 6.1a, b and
c. The underlying lattice geometry, together with a calculation of the absolute square of the
lowest-band Bloch function at zero quasimomentum and a cut through the two sublattice
sites are depicted in the parts d, e and f. The resulting band structure is plotted in g, h
and i. The potential is clearly unaffected by the polarization light field for mF = 0 and
the two distinct sublattice sites are degenerate, preserving the honeycomb structure. The
corresponding Bloch function of the lowest energy band is evenly distributed on all lattice
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Figure 6.1: State-dependency of the honeycomb lattice for three magnetic quantum numbers mF =

0, ±1. Parts a, b and c depict the state-dependent honeycomb lattice potential for 87Rb atoms in

the three hyperfine states |F = 1, mF = 0, ±1〉 respectively. While the lattice is symmetric for zero

magnetic quantum number, the degeneracy between the two sublattices is clearly lifted for mF = ±1

where atoms are either trapped at the sites with σ+ or σ− light. In parts d, e and f the absolute

squares of the corresponding lowest-band Bloch functions are plotted together with an illustration

of the lattice geometry and a one-dimensional cut through the potential at the two sublattice sites

A and B. Dashed lines in the illustration of the lattice geometry indicate next-nearest neighbor

tunneling processes along the occupied sublattices. The influence of the energy offset between the

sites is clearly reflected in the shape of the two lowest lying Bloch functions shown in purple and

cyan. The corresponding band structures are shown in parts g, h and i. While the two lowest bands

of the symmetric honeycomb lattice touch at the K-points of the first Brillouin zone forming a Dirac

point, an energy gap opens up at the K-point for the asymmetric cases. Illustrations in parts d, e

and f are based on Ref. [68].
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sites and a finite density along the honeycomb channel structure can still be observed. At
the corners of the first Brillouin zone the two lowest lying energy bands touch, forming a
Dirac point surrounded by a linear dispersion relation.

In contrast, the potential is strongly affected by the circular polarized light field for
the cases of magnetic quantum numbers mF = ±1, where each state is trapped at the
sublattice sites with σ+ or σ− light respectively, thereby forming a triangular lattice with
occupations at every second honeycomb lattice site with shallow local minima in between.
Accordingly, the band-structure exhibits an energy gap at the K-point. The strong con-
finement of the lowest-band Bloch function (first band), accompanied by an increased
density at the deeper lattice sites is clearly evident. In addition, the Bloch function in the
first excited band (second band) exhibits a larger amplitude at the shallower lattice site.

Note that we have changed the notation of the potential lattice depth in comparison to
chapter 2: the tunneling processes in the honeycomb lattice take place along the shallow
channel structure rather than through the large potential hills in the middle of each
hexagon. Therefore, we define the honeycomb lattice depth as the potential barrier height
along the channel structure between the minima of the symmetric honeycomb lattice.
As indicated in Fig. 6.1, this physically relevant lattice depth amounts to one eighth of
the initial lattice depth that was defined as the difference between the minima and the
global maximum of the potential. Accordingly, the potentials and band structures plotted
in Fig. 6.1 correspond to a physical lattice depth of V2D,0 = 1ER rather than 8ER. This
convention is used throughout the chapter.

6.2 Inversion symmetry breaking by rotating the

quantization axis

In the preceding section we have discussed the inversion symmetry breaking in the state-
dependent honeycomb lattice for the cases of non-vanishing magnetic quantum numbers.
The band structure is strongly influenced by the energy offset between the twofold atomic
basis due to the presence of an alternating circularly polarized light field. Mixtures of dif-
ferent hyperfine states loaded into the state-dependent honeycomb lattice are profoundly
influenced by this effect. For example, repulsive interactions between a mixture of two hy-
perfine states that are trapped at different basis sites leads to a strong tunneling blockade

in both triangular sublattices [75]. In addition, such binary spin mixtures can give rise to
a new quantum phase in the superfluid regime. It is characterized by a phase twist of the
complex superfluid order parameter and results in a symmetry breaking in momentum
space [68].

The mechanism responsible for the inversion symmetry breaking of the lattice potential,
however, is discrete as it scales with the integer differences between the magnetic quantum
number mF . In the following, we will present an elegant and experimentally feasible
method to continuously as well as dynamically control the energy offset between lattice
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sites and discuss the implications on the band structure.

6.2.1 Effective magnetic quantum number

From section 2.2.2 we can recall that the three polarization modes p = {π, σ+, σ−} of the
laser light field arise from the projection of the oscillating electric field onto the three-
dimensional Jones vectors according to

Ip(r) ∝ |E(r) · εp|2. (6.3)

The Jones vectors επ and ε
σ

± , given in Eq. (2.6), are determined by the orientation of the
systems quantization axis. Experimentally, this axis is defined by a homogeneous magnetic
field Bqa(r) with a strength of 1 G. A change in orientation of the quantization axis requires
a transformation of the Jones vectors, as the Jones vector επ always has to be aligned
in parallel to the quantization field. In section 2.2.2 we have described the orientation of
the quantization axis in terms of the three Euler angles α, β, and γ. The corresponding
rotational transformations of the Jones vectors have led to the general description of
the three-beam lattice potential for arbitrary orientations of the quantization field given
in Eq. (2.32) and (2.33). Here, the shape of the state-dependent part of the potential is
determined by the three coefficients Ci of Eq. (2.34) that only depend on the Euler angles
and the angle θ of the linear laser polarization with respect to the lattice plane. Previously,
we have discussed the case of a quantization axis aligned in parallel to the z-axis, i.e.,
perpendicular to the three-beam lattice plane and α, β, γ = 0. In the following, we will
treat the orientation of the quantization axis with respect to the variable Euler angle α,
while we set β = 0. As the honeycomb potential is created for θ = 0, all three coefficients of
Eq. (2.34) are then given by Ci = cos(α). Note that the honeycomb potential is unaffected
by the third Euler angle as all components of the coefficients in Eq. (2.34) incorporating
γ also scale with sin θ. However, as imperfections in the alignment of the polarization
angles θ and the lattice beams cannot be ruled out completely, we also set γ = 0 such
that the rotation of the quantization axis takes place in the xz-plane. This allows to
re-formulate the expression for the state-dependent potential of Eq. (6.2) in terms of an
effective magnetic quantum number m̃ that incorporates the magnetic quantum number,
the respective Landé-factor and the rotation of the quantization field:

m̃ = (−1)FmF cos(α). (6.4)

As the central result, the strength of the energy offset between the twofold basis of the
honeycomb lattice can be continuously tuned for a single hyperfine state by rotating the
quantization field by the Euler angle α around the y-axis.

6.2.2 Opening of Dirac points

The effect of the rotation of the quantization field onto the total lattice potential and its
band structure is shown in Fig. 6.2 for the case of the 87Rb hyperfine states |1,+1〉 or
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Figure 6.2: Effective magnetic quantum number and continuous opening of Dirac points. a A rotation

by the Euler angle α continuously changes the effective magnetic quantum number m̃ allowing for

the precise adjustment of the circular polarization component of the light field and, thus, the energy

offset between sublattice sites. b Illustration of the quantization field in the defined coordinate system

with two Euler angles α and γ. The three-beam lattice is aligned in the xy -plane. Parts c and d

depict the continuous opening of the Dirac point at the K-point of the Brillouin zone for a lattice

depth of 1 ER. A similar figure can be found in Ref. [5].

|2,−1〉. As depicted in Fig. 6.2a, the potential energy for these states is always lowered
for σ+. Now, by rotating the quantization field Bqa(r) away from its initial orientation
parallel to the z-axis for an angle of α = 0 (see part b of the figure) the strength of the
circular polarization components in the light field decreases as, e.g., for the case of α = 60°

and m̃ = −0.5. With this, both the energy differences between the twofold basis of the
honeycomb lattice decreases as well as the energy gap between the two lowest bands. If
the quantization field is exactly aligned in the xy-plane of the lattice, i.e., α = 90° and
m̃ = 0, the polarization of the light field is everywhere π. Now the two sublattices are
energetically degenerate such that the perfectly symmetric honeycomb lattice is restored
and the two lowest energy bands touch at the vertices of the first Brillouin zone forming
Dirac cones. Rotating the quantization field further re-opens the energy gap while the
circular polarization pattern is interchanged: Sites with previously σ+ polarization exhibit
a σ− polarization and vice versa.

The corresponding band structure and opening of the Dirac points in dependence of
the effective magnetic quantum number is plotted in Fig. 6.2b and c for a lattice depth of
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Figure 6.3: Opening of the band gap for increasing lattice depths. a The band gap at the K-point
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deeper potentials that is not reproduced for mF = ±1. b The linear slope of the band gap opening

close to α = 90° is plotted in dependence of the lattice depth in units of ER per degree.

V2D,0 = 1ER. While the energy gap is perfectly closed for an effective quantum number
of m̃ = 0 it amounts to Egap ≈ 0.6ER for m̃ = ±1 which corresponds to approximately
2 kHz.

It is evident that the opening of the band gap is quite sensitive to the orientation of
the quantization axis as the presented case is calculated for a comparatively shallow total
lattice depth. We explore the quantitative behavior of the energy gap opening with respect
to the Euler angle α in Fig. 6.3. In part 6.3a the calculated band gap at the K-points of
the Brillouin zone are plotted for increasing lattice depths up to 10ER in dependence
of α for initial magnetic quantum numbers of mF = ±1 and mF = ±2. Hereby, white
and red lines indicate a lattice depth of 2ER and 4ER respectively. For relatively small
potentials the band opening scales linearly with the magnetic quantum number, i.e. the
energy gap is always twice as large for mF = ±2 as compared to mF = ±1. For deeper
potentials, however, a clear cusp in the behavior of the band gap emerges around α = 60°

for mF = ±2 that is not observed for mF = ±1.
Nevertheless, the band gap increases linearly close to angles of α = 90° for all lattice

depths. The corresponding slope of the band opening is plotted for both initial magnetic
quantum numbers in Fig. 6.3b in units of ER per degree of α for increasing lattice depths.
Once more, the sensitivity of the band gap on the angle of the quantization axis becomes
notable. For example, a lattice depth of 4ER results in a band opening slope of 0.11ER/°

and 0.37ER/° formF = ±1 andmF = ±2 respectively, corresponding to values of 368 Hz/°
and 1223 Hz/°. For an accurate control over the opening and closing of the dirac cone
it is, thus, crucial to be able to precisely adjust the Euler angle α. The quantization
field is experimentally aligned by a set of Helmholtz coils. Residual stray fields can be
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compensated fairly well up to the order of mG with an additional set of Helmholtz coils
similar to the three pairs of quantization coils [153]. As can be deduced from Fig. 6.3b,
a stray field of 1 mG perpendicular to the lattice plane corresponds to a band gap of
approximately 20 mHz/ER for a hyperfine state with mF = ±1 at a quantization angle of
α = 90°.

6.2.3 Experimental realization of the rotation

The three pairs of Helmholtz coils used for the rotation of the quantization field in the
experiment are aligned along the x, y and z-axis and have inductances of L = 115µH,
L = 440µH and L = 150µH respectively and a resistance of R ≈ 0.6 Ω. With this, the
timescale for a rotation of the magnetic field around the y-axis by π/2 was chosen to
tπ/2 = 550ms. The experimental limitation of the timescales for the rotation procedure
due to the finite inductances of the Helmholtz coils is by far not close to the fundamental
limitation defined by the Larmor precession frequency of 87Rb in the given magnetic field
that is on the order of 0.77 MHz/G.

Nevertheless, we investigate the possibility of any residual influences of the rotation
procedure onto the hyperfine state. For this, an atomic ensemble in the |1,−1〉 state is
adiabatically loaded into the state-dependent honeycomb lattice with a depth of V2D,0 =
3ER and an additional perpendicular one-dimensional lattice of V1D,0 = 10ER. Here, a full
rotation of the quantization field that is initially aligned parallel to the z-axis is performed
by α = 360° around the y-axis in 4tπ/2 = 2.2ms. Thereby, the field is rotated by changing
the current through the Helmholtz coils aligned along the z-axis and the y-axis according
to

Iy(α) = sin(α), Iz(α) = cos(α) with α(t) ∈ [0, 2π] . (6.5)

Subsequently, the hyperfine state is probed by a Stern-Gerlach separation in time-of-flight.
Measurements showed no influence of the rotation procedure onto the population of the
hyperfine states. A similar procedure of rotating the quantization axis by 180° and back
to α = 0° yields the same results. Hence, it could be verified that the atomic ensemble
adiabatically follows the rotation of the quantization field.

6.3 Band-selective microwave spectroscopy

The influence of the orientation of the quantization axis onto the lattice geometry can
be elegantly probed by a band-selective microwave spectroscopy. This versatile technique
was previously applied to investigate interaction effects and the spatial ordering of spin-
mixtures in the state-dependent honeycomb lattice [75]. For a thorough discussion of the
mechanism and implications we refer to the PhD thesis of P. Soltan-Panahi [154]. In the
following, we briefly describe the basic principles and experimental procedure of band-
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selective microwave spectroscopy in the state-dependent honeycomb lattice and apply the
method to investigate the tunability of the effective magnetic quantum number m̃.

6.3.1 Theoretical description

A microwave pulse can drive transitions between the two ground-state hyperfine manifolds
F = 1, 2 of 87Rb. The corresponding energy structure for the twofold atomic basis in the
state-dependent honeycomb lattice is shown in Fig. 6.4a. While the two manifolds are
separated by approximately 6.8GHz, the Zeeman splitting due the external quantization
field between adjacent magnetic sublevels amounts to 0.7 MHz. In order to understand
the resulting spectroscopy we have to consider the preparation and initial state of the
atomic ensemble in the state-dependent lattice.

The atomic ensemble in an initial hyperfine state |F,mF 〉 is adiabatically loaded into a
relatively shallow optical lattice of V2D,0 = 3ER to 4ER with an additional perpendicular
1D-lattice of V1D,0 = 10ER. As the ensemble is still in the superfluid regime, it occupies
the lowest Bloch band of the lattice at zero quasimomentum ψ0

q=0(r) (see section 2.3.1).
In the following, we use the notation ψns (r) for the n-th Bloch wave function at zero quasi-
momentum in the hyperfine state s ≡ |F,mF 〉. In Fig. 6.4a and previously in Fig. 6.1 these
states are indicated by the purple density distribution in the one-dimensional sketch of the
two-fold atomic basis. From the initial state in the zeroth Bloch band ψ0

s(r) transitions
can be driven to other Bloch bands ψns′(r). According to the Franck-Condon principle
best known from vibronic transitions in molecules, the probability of these transitions is
determined by the overlap between initial and final wave functions.

As the Bloch bands are well separated close to zero quasimomentum and, similar to
the multi-photon transitions discussed in chapter 3, the momentum transfer onto atoms
by microwave photons can safely be neglected in comparison to the reciprocal lattice
momentum. Hence, the microwave spectroscopy can be treated as a two-level problem
such that transitions are described as a Rabi oscillation between the initial state ψ0

s(r)
and the final state ψns′(r). The ratio of transferred atoms is then given by

N ′ (ωMW, t)
N

=
|ΩFC|2

|ΩFC|2 + ∆ω2
· sin2

(

√

|ΩFC|2 + ∆ω2 · t/2
)

(6.6)

where the frequency detuning ∆ω = ωMW − ∆ωψ′ψ is determined by the microwave fre-
quency ωMW and the frequency difference ∆ωψ′ψ between the initial and the final hyperfine
state in its respective Bloch band. ΩFC denotes the Rabi-frequency of the transition that
relates to the on-resonance Rabi-frequency of free atoms ΩR according to

ΩFC = ΩR

∫

ψns′

∗(r) ψ0
s(r) d3r. (6.7)

The spatial integral in the above equation defining the overlap between initial and final
wave function is known as the Franck-Condon factor.
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Figure 6.4: Microwave spectroscopy. a The energy level structure of the two ground-state hyperfine

manifolds is shown for the twofold atomic basis in the state-dependent honeycomb lattice. The

two lowest Bloch bands are plotted for each magnetic substate. b Experimental procedure of the

microwave spectroscopy and rotation of the magnetic field (not to scale). After the lattice (dark

blue line) is ramped to its final intensity in 100ms the quantization axis angle (light blue) is rotated

in approximately 0.5ms by changing the currents Iy (green) and Iz (gray) through the Helmholtz

coils. Subsequently, a microwave pulse (red) is applied to the atomic ensemble. Before the dipole

trap (dashed green line) is shut off the lattice is completely ramped down in 1 ms, transferring the

quasimomentum distribution into real momenta (band mapping). The quantization axis is rotated

back to its initial orientation during the time-of-flight before a Stern-Gerlach gradient field is applied

for 12 ms that separates the spin components.

6.3.2 Experimental procedure

The experimental procedure for the band-selective microwave spectroscopy in the hon-
eycomb system including the rotation of the quantization axis is illustrated in Fig. 6.4b.
Note that the time axis is plotted not to scale with the actual durations of subsequent
experimental steps used in the experiment for clarity. First, a Bose-Einstein condensate
is prepared in a single hyperfine state in the crossed dipole trap . Prior to this, the RF-
evaporation in the magnetic trap is performed in the |1,−1〉 state (see section 2.1). If
necessary, the atomic ensemble can be completely transferred into all other magnetic sub-
states of the ground state hyperfine manifold by a combination of microwave pulses and
radio frequency sweeps (adiabatic passages). Details concerning the initial state prepara-
tion technique can be found in Refs. [153, 158, 262]. Note that, in contrast to experiments
discussed in the preceding chapters 3 to 5 experiments are performed in the round crossed
dipole trap (see section 2.2.4).

After the initial state preparation in the dipole trap the lattice is adiabatically ramped
up to a final potential depth between V2D,0 = 3ER and 4ER in 100 ms. Simultaneously
to the three-beam lattice, the perpendicular 1D-lattice (not depicted in the figure) is
ramped to a depth between V1D,0 ≈ 10ER and 50ER. In the three-dimensional lattice,
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Figure 6.5: Microwave spectroscopy and spin dynamics. a Time-of-flight images of magnetic sub-

states separated by a Stern-Gerlach field. The efficient transfer from the initial |1, −1〉 state into the

|2, 0〉 state is demonstrated in the crossed dipole trap (first three images). The increased density in

the optical lattice gives rise to additional hyperfine components due to spin-changing collisions (last

image). b Microwave spectra for the transition obtained in the 1D and the 3D-lattice. While the

transition in the state-independent 1D-lattice is exactly at the same position as for the free dipole

trap (zero position of the frequency difference) the transition in the state-dependent potential is

clearly shifted to larger frequencies.

the quantization axis is rotated around the y-axis. The angle α is linearly tuned to its
final value (light blue line) as depicted for the case of α = 90° by changing the currents
Iy and Iz (gray and green lines) in the respective Helmholtz coils according to Eq. (6.5).

Following the rotation of the quantization field, a rectangular microwave pulse is applied
for a typical duration of 1 ms. Before the dipole trap (green dashed line) is switched off,
both lattice potentials are quickly ramped down. Thereby, it is possible to project the
occupation of the final Bloch state onto real momenta in the corresponding Brillouin
zone. For this band mapping technique the duration of the ramp TBM has to be small
compared to the external trapping frequencies ωh and ωv such that a redistribution of
momenta during the ramping procedure can be neglected. However, it is also required
that the ramping timescale is much larger than the minimum band gap between the
observed energy bands in the lattice as shorter ramping times will not allow the atomic
state to adiabatically follow the eigenstate of the decreasing lattice potential such that
other Bloch bands are populated [53, 73, 263]. Hence, the constraints onto the timescale
of the ramping can be formulated as

~ωh,v ≪ h/TBM ≪ Egap. (6.8)

For experiments presented here, we employ a ramping time of TBM = 0.5 ms which satisfies
the above condition for the given trapping frequencies and lattice depths.

After the lattice potentials are completely ramped down the crossed dipole trap is
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switched off and the atoms fall freely under gravity. During the time-of-flight the quanti-
zation axis is rotated back to its initial orientation parallel to the z-axis. Now, a magnetic
field gradient is applied to the atoms that spatially separates the different magnetic sub-
states in analogy to the well known Stern-Gerlach experiment. Hereby, the additional
rotation of the quantization field is required since the gradient field is applied along the
z-axis of the coordinate system such that a different orientation of the quantization field
would result in an unwanted projection of the obtained hyperfine states onto the direction
of the field gradient.

Absorption imaging of the separated hyperfine states allows to easily determine the
relative transferred particle number of the final state. Note that the Stern-Gerlach sepa-
ration along the z-axis and the subsequent imaging in the yz-plane does not allow for the
observation of the actual band populations in the honeycomb lattice. For the microwave
spectroscopy presented here, we are primarily interested in the transferred percentage of
atoms. The band mapping is applied nonetheless as it allows for an easier way of compar-
ing the initial and final particle numbers.

6.3.3 Spin-changing collisions

In Fig. 6.5 an example of the Stern-Gerlach separation is shown together with obtained
microwave spectra for the transition from the initial state |1,−1〉 to |2, 0〉. The first three
time-of-flight images in Fig. 6.5a depict the Stern-Gerlach separation for a microwave pulse
applied to a free atomic ensemble in the crossed dipole trap. Here, the frequency-dependent
transfer of atoms from the |1,−1〉 to |2, 0〉 state is clearly visible. If the microwave fre-
quency is on-resonance with the atomic transition, the entire atomic ensemble can be
transferred to the |2, 0〉 state (third image from above). In the last Stern-Gerlach image
of Fig. 6.5a a similar situation is depicted for the three-dimensional lattice where a signif-
icant population of a third magnetic substate can be observed. However, this population
cannot result from any additional microwave transition as the energy differences between
the different substates are large compared to the width of the microwave pulse. Instead,
the additional component represents a population of the |2,−1〉 state that stems from
spin-changing collisions between atoms that were transferred into the |2, 0〉 state. As this
state is not stretched, such spin changing collisions, i.e,

2 × |F ′,mF ′〉 → |F ′,mF ′ − 1〉 + |F ′,mF ′ + 1〉 (6.9)

can occur with finite probability. This effect is not observed in the crossed dipole trap
as on the timescales used in the experiment collisions are less frequent due to the much
lower density as compared to an optical lattice system [74]. In order to determine the
actual ratio of the transferred atoms the additional spin component has to be taken
into account. As indicated in Fig. 6.5a, atoms in the |2,+1〉 state as the complementary
product of the spin-changing collisions are hidden in the residual |1,−1〉 component due
to the opposite signs of their respective Landé-factors, the total number of transferred
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atoms N ′ is determined by N ′ = N(|2, 0〉) + 2N(|2,−1〉). As other spin changing collision
processes such as 2 × |2, 0〉 → |2,−2〉 + |2,+2〉 and 2 × |2,±1〉 → |2, 0〉 + |2,±2〉 may also
occur in the lattice system, the additional Stern-Gerlach components for N(|2,±2〉) are
also included in the evaluation of the transferred particle number.

The resulting microwave spectra of the transition from |1,−1〉 to |2, 0〉 are shown in
Fig. 6.5b for the cases of only the state-independent 1D-lattice present and for the total
three-dimensional lattice setup including the state-dependent honeycomb lattice with a
quantization axis aligned along the z-axis. The ratio of transferred particles in the case
of the 1D-lattice shows a single resonance and follows the sinc-function of Eq. (6.6) as
shown by the black solid line. Note that the resonance position is exactly the same as
for the free atomic ensemble in the crossed dipole trap indicated by the zero frequency
difference. In contrast, the resonance position in the 3D-lattice is clearly shifted due to
the state-dependency of the potential and exhibits a bimodal structure. This shift can
be attributed to a transition of ψ0

|1,−1〉 → ψ1
|2,0〉 into the first excited Bloch band of the

lattice as indicated by the inset in Fig. 6.5b with a residual transfer into the lowest Bloch
band. In the following, we will investigate the microwave spectra in the honeycomb lattice
systematically with respect to the orientation of the quantization axis and the resulting
Franck-Condon overlaps.

6.3.4 Microwave spectra in the tunable honeycomb lattice

With the established band-selective microwave spectroscopy technique the rotation of
the quantization axis or, in other words, the influence of the effective magnetic quantum
number m̃ onto the state-dependent honeycomb lattice can be probed. In Fig. 6.6 two
different scenarios are investigated with respect to the orientation of the quantization
axis. The spectra presented in Fig. 6.6a are obtained for an initial state with magnetic
quantum number mF = 0 that is independent of any circular polarization of the lattice
light field while the final state with mF ′ = −1 is strongly influenced by the rotation of
the quantization field. Hereby, the honeycomb lattice depth amounts to V2D,0 = 4.0ER

and the additionally confining 1D-lattice depth is V1D,0 = 9.6ER. In contrast, the spectra
shown in Fig. 6.6b are obtained for the opposite case of a state-independent final hyperfine
state and a state-dependent initial state. While the honeycomb lattice depth is also set to
V2D,0 = 4.0ER, the 1D-lattice potential of V1D,0 = 46.3ER significantly increases on-site
interaction effects.

Nonetheless, the spectroscopy signal of both cases is the same for the quantization axis
being aligned exactly in the lattice plane, i.e, for α = 90°. Indicated by the respective
insets, both the initial and final state are similar as the twofold atomic basis of the
honeycomb lattice is completely degenerate and the effective magnetic quantum number
is always m̃ = 0. Here, only a single resonance is observed that corresponds to a transition
into the lowest Bloch function of the final state. Another resonance at larger frequency,
corresponding to a transition into the second Bloch state is not observed as the Franck-
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Figure 6.6: Microwave spectra of the tunable honeycomb lattice. a The transition from |1, 0〉 to

|2, −1〉 is shown for a honeycomb lattice depth of V2D,0 = 4.0 ER and an additional 1D-lattice of

V1D,0 = 9.6 ER. A shift of the transition between lowest Bloch state towards smaller frequencies can

clearly be observed for increasing energy offset between the final two-fold atomic basis. In addition,

a second transition into the first excited Bloch state appears for a strong energy difference (see red

arrows in the inset). b A transition from |1, −1〉 to |2, 0〉 is shown for the same honeycomb lattice

depth but a strong 1D-lattice of V1D,0 = 46.3 ER. Again, a transition to the first excited Bloch state

emerges for increasing energy offset while a residual transition to the lowest Bloch state remains.

Condon overlap between the initial and final wave functions vanishes as both potentials
are similar. This circumstance, however, significantly changes for an effective magnetic
quantum number different from zero.

Let us first consider the transition |1, 0〉 → |2,−1〉 in Fig. 6.6a. If the quantization axis
is rotated out of the lattice plane the resonance position for the transition between lowest
bands first gets shifted towards smaller frequencies as evident for the case of α = 60°. This
behavior can be understood as the final Bloch state ψ0

|1,−1〉 becomes more deeply trapped
at the now stronger confining sublattice site. Hence, the energy difference between initial
and final state decreases due to the light shift. For even larger energy offsets between the
twofold atomic basis this behavior continues and the resonance is shifted further towards
smaller frequencies as observed in the spectra for α = 30° and 60°. In addition, a second
resonance appears that indicates a transition into the second Bloch state. This transition
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Figure 6.7: Bloch functions of the two lowest bands. a The first two Bloch functions of the final state
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triangular state to a symmetric honeycomb sate is evident. The influence of the rotation of the

quantization axis on the shape of the Bloch functions is even stronger for larger magnetic quantum

number as depicted in b. Note that the small imaginary components of the initially complex wave

function have neglected in the depiction in order to illustrate the sign change and nodes of the second

band.

emerges since the initial and final potentials now strongly differ such that the respective
Bloch functions of initial and final state are no longer orthonormal. In Fig. 6.7a the two
final Bloch states are plotted for various values of α. Here, the change from an asymmetric
triangular state to a symmetric honeycomb state is evident as the energy offset between
the sublattice sites decreases. Similar Bloch functions for the even more asymmetric state
|2,−2〉 are shown in Fig. 6.7b.

The corresponding microwave spectra of the investigated |1,−1〉 → |2, 0〉 transition
are shown in Fig. 6.6b. A similar emergence of a transition to the second Bloch state can
be observed for an increasing energy offset. Moreover, an expected shift of this resonance
towards higher transition frequencies is evident. This shift that can be understood as
now the energetically lower initial state of the F = 1 hyperfine manifold rather than the
final state becomes increasingly confined such that the transitions are further separated.
Strikingly, a similar shift of the transition to the first Bloch state is not reproduced. While
the resonance position remains relatively constant for an increasing energy offset, it quickly
becomes broader and vanishes. In contrast to the previously discussed |1, 0〉 → |2,−1〉
transition such a behavior cannot be understood in a simple single-particle picture. In
the following, we will therefore include interaction effects between the initial and the final
state in the interpretation of the obtained excitation spectrum.

6.3.5 Interaction effects

The microwave spectroscopy process involves at least two atomic states, i.e., an initial
state ψ0

s and a final state ψns′ which interact repulsively with each other. Already for the
moderate lattice depths at the presented experiments, such interaction effects can strongly
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influence the energy spectrum of theses states. Here, we employ a mean-field ansatz to
investigate such interaction effects. This numerical method is based on the interpretation
of excitation spectra in the state-dependent honeycomb lattice by P. Soltan-Panahi. For a
comprehensive discussion of the employed algorithms and extensive applications we refer
to his thesis [154]. In the following, the principle of the mean-field approach is briefly
sketched and numerical calculations are applied to the observed excitation spectra of
|1,−1〉 → |2, 0〉.

The influence of interactions can be described in the weakly interacting regime by an
effective potential that arises from the mean-field interaction between the involved spin
states:

V s
eff(r) =

∑

s′

gs,s′|ψns′|2 with gs,s′ =
4π~2

m
as,s′ . (6.10)

In analogy to the single-component case of Eq. (2.16) the interaction strength gs,s′ between
the hyperfine states s and s′ is determined by the respective scattering length as,s′ . With
this, the system for the spin-state s is described by the effective Hamiltonian

Ĥs = Ĥs
0 + V s

eff(r), with Ĥs
0 = − ~

2

2m
∆ + V s

Lat(r) (6.11)

that represents the time-independent Gross-Pitaevskii equation [175, 192]. For the mi-
crowave spectroscopy discussed here, the final state is initially not occupied such that
the contribution of ψns′(r) to the mean-field interaction can be neglected [154]. The corre-
sponding equations then simplify to

[

− ~
2

2m
∆ + V s

Lat(r) + gs,s |ψ0
s(r)|2

]

ψ0
s(r) = Es ψ

0
s (r) (6.12)

[

− ~
2

2m
∆ + V s′

Lat(r) + gs,s′|ψ0
s(r)|2

]

ψns′(r) = Es′ψns′(r) (6.13)

such that the initial state ψ0
s(r) is not influenced by the final state ψns′(r). In this case, the

additional repulsive interaction term of Eq. (6.12) only results in a small broadening of the
initial wave function. In contrast, the final state is strongly influenced by the effective po-
tential arising from the repulsive interaction with the initial state. This result is confirmed
by the unexpected behavior of the excitation spectra for the transition |1,−1〉 → |2, 0〉
depicted in Fig. 6.6b. As the initial state exhibits a strong asymmetric confinement to a
single lattice sites for a significant amount of the circular polarized light field, also the
final state is strongly influenced. In contrast, the excitation spectrum of the transition
|1, 0〉 → |2,−1〉 shown in Fig. 6.6a is not influenced by interaction effects as the initial
state with mF = 0 is always distributed homogeneously over the twofold atomic basis.

As the effective potential in Eq. (6.10) is determined by the periodic spatial density
distribution of the atoms in the lattice it can be expanded in a discrete Fourier series in
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Figure 6.8: Quantitative investigation of microwave spectra. a Calculated Franck-Condon factors

for the two investigated transitions (and the extracted values for the strongly interacting system)

are plotted in dependence of α. As expected the Franck-Condon overlap for the transitions to the

second Bloch state vanishes for both cases in the symmetric honeycomb lattice at α = 90° where

initial and final states are similar. b Ab initio calculations of the resonance positions reproduce the

extracted values (circles and triangles). While interaction effects are omitted for the calculations of

the |1, 0〉 → |2, −1〉 transition, the |1, −1〉 → |2, 0〉 transition is investigated by the iterative Gross-

Pitaevskii method described in the text. Dashed lines indicate the calculated resonance positions

neglecting interaction effects for the transition |1, −1〉 → |2, 0〉.

order to solve the Gross-Piaevskii equations. The exact numerical solution can be obtained
by an iterative calculation of the effective potential with the initial condition V s

eff(r) = 0.
For each iteration i, the ground-state wave function is calculated such that the interaction
term can be determined:

[

Ĥs
0 + V s

eff,i(r)
]

ψ0
s (r) = Es ψ

0
s (r) V s

eff,i+1(r), V s′

eff,i+1(r) (6.14)
[

Ĥs′

0 + V s′

eff,i(r)
]

ψns′(r) = Es′ψns′(r) (6.15)

iteration i+ 1

In Fig. 6.8 the calculated Franck-Condon factors and the resonance positions of the
first two Bloch states are shown for the transitions |1, 0〉 → |2,−1〉 and |1,−1〉 → |2, 0〉
together with the data extracted from the microwave spectra in Fig. 6.6. Note that the
Franck-Condon overlaps for |1, 0〉 → |2,−1〉 are not depicted: Spectra shown in Fig. 6.6a
have been obtained for varying pulse durations and microwave intensities such that a
comparison of Franck-Condon overlaps that are given by the respective areas under the
resonance curves is not possible. In Fig. 6.8a the characteristic vanishing of the Franck-
Condon factor in the case of similar initial and final potentials, i.e., α = 90° is reproduced
for both transitions. Hereby, numerical calculations for the |1, 0〉 → |2,−1〉 transitions
did not include any interaction effects. The finite spread of the calculated wave function
overlap and the resonance positions indicate an assumed uncertainty of the calibrated
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lattice depths by ±5%. As we have discussed in the preceding chapter, this is a quite
conservative assumption. The observed resonance positions, indicated by circles (triangles)
for the transition to the first (second) Bloch state are in good agreement with the ab initio

calculations.
Franck-Condon overlaps and resonance positions for the |1,−1〉 → |2, 0〉 transition

were calculated using the iterative Gross-Pitaevskii approach discussed above due to two
reasons: First, with a potential depth of V1D,0 = 46.3ER the additional confining 1D-lattice
was chosen to be significantly stronger as compared to the |1, 0〉 → |2,−1〉 transition
(9.6ER). Second, the interaction-dependent effective potential acting on the final state is
significantly stronger as the initial state is confined to a single lattice site for quantization
axis angles different from α = 90°. For the calculations, homogeneous average filling
of N = 2.5 to 3.5 particles per lattice site was estimated while the calibrated lattice
depths were assumed to be exact. This initial occupation number strongly affects the
influence of the effective interaction potential giving rise to the areas of uncertainty in the
depicted calculations. The qualitative behavior of both the Franck-Condon overlaps can
be reproduced although the observed strong decrease of the transition to the first Bloch
state is not recovered by the calculations. Nonetheless, in comparison to calculations
neglecting interaction effects (dashed lines) the obtained values represent a significant
improvement. Moreover, the observed shift of resonance frequencies for an increasing
site-offset is confirmed by the iterative mean-field method in stark contrast to the non-
interacting case.

In conclusion, the investigated microwave spectra are in excellent agreement with the
expected behavior of atomic ensembles in the state-dependent honeycomb lattice under
the rotation of the quantization axis. Thus, the experimental technique of continuously
tuning the band structure by altering the potential in real-space could be verified. More-
over, strong influences of interaction effects could be reproduced by means of an additional
effective mean-field potential that is calculated by an iterative Gross-Pitaevskii approach.

6.4 Probing inter-band dynamics

In the decade following the first realization of ultracold atoms in optical lattices, exper-
iments have primarily concentrated on the Bose-Hubbard regime of atoms in the lowest
energy band. However, orbital degrees of freedom - especially for topologically non-trivial
systems - constitute an important aspect to many intriguing physical effects in solid state
materials such as the colossal magnetoresistance, high-temperature superconductivity or
topological semimetals.

Ultracold atom systems provide an ideal playground for the study of novel effects
related to multiorbital systems that may give rise to supersolid quantum phases [264, 265],
quantum stripe ordering in the triangular lattice [266], incommensurate superfluidity [267]
and, specifically in the honeycomb lattice, flat bands and Wigner crystallization [268] only
to name a few.
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Chapter 6 Probing Dirac points in the state-dependent honeycomb lattice

So far, experiments with bosonic quantum gases in optical lattice have successfully
achieved the addressing of excited bands where Bose-Einstein condensation at nonzero
quasimomenta could be observed in a three-dimensional cubic lattice [269] as well as in a
bipartite chequerboard lattice [66, 67]. In the latter case, evidence for a complex valued
chiral order parameter was found and a topologically avoided band transition could be
investigated [270, 271]. Moreover, an unconventional twisted superfluid phase has been
observed for spin mixtures in the state-dependent honeycomb lattice that arises due to
an interaction-induced admixture of higher bands to the ground state wave functions.

Simultaneously, higher energy bands could also be populated in fermionic systems by
interaction-induced transitions between Bloch bands [59] and momentum-resolved mod-
ulation spectroscopy [80] that allowed the investigation of particle-hole dynamics [82].
Moreover, Landau-Zener-Stückelberg transitions between the two lowest bands of a brick
lattice were used in order to probe tunable Dirac cones and [76] and topological phases
[151].

While the interest in multi-orbital systems of ultracold atoms has increased tremen-
dously in recent years, corresponding investigations of decay channels are relatively sparse
and interband relaxation processes still lack a deeper understanding in quantum gas sys-
tems. For example, Heinze et al. [82] report a striking influence of the scattering length
on the lifetime of a particle-like excitation in the second energy band of single-component
fermi gas. In contrast to solid state systems where a variety of mechanisms may induce
band decay processes (e.g., charge carrier multiplication or exchange of energy with spin
degrees of freedom), only two possible decay channels have been identified in (bosonic)
quantum gas systems until now: First, a collision of atoms in the excited band can lead
to one atom being promoted into a higher energy band while the other atom decays into
the lowest band [272], thus, conserving energy and momentum. Second, both atoms may
decay into the lowest band if the excess energy can be redistributed into an available
degree of freedom [273].

In the following, we aim to investigate decay mechanisms of excited bands in the
tunable honeycomb lattice with respect to the presence of Dirac cones by utilizing the
possibility to continuously alter both the real-space lattice potential as well as the energy
band structure.

6.4.1 Excitation mechanism

In the preceding section the potential structure of the state-dependent honeycomb lattice
has been investigated by a band-selective microwave spectroscopy. Transition resonances
to the two lowest Bloch states corresponding to distinct energy bands of the optical
lattice could be observed. We now employ this experimental technique and the knowledge
about the respective transition properties in order to probe the dynamics of atoms in
excited Bloch bands. By applying the previously discussed band mapping procedure,
information of the momentum-resolved band population can be obtained. In the preceding
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Figure 6.9: Microwave transition to excited bands. The microwave spectrum of the transition from

the |2, −2〉 to the |1, −1〉 state (see inset) exhibits three distinct resonances that can be attributed to

the four lowest energy bands. Band mapping images reveal the characteristic shape and population

of the corresponding Brillouin zone, where the third and fourth band are simultaneously populated

as they are degenerate at the Γ point. The solid red line indicates a theoretical calculation of the

transition spectrum with the only free parameter being the absolute height of the transition.

investigations of microwave spectra, band mapping was primarily used to facilitate the
determination of the relative final state population: The decrease of the lattice depths
on sufficiently large timescales inhibits the expansion of the atomic cloud with its initial
quasimomentum components as the eigenstates of the ensemble adiabatically follow the
lattice potential.

We will investigate the band population of the state-dependent honeycomb lattice in
more detail in the following. Hereby, in contrast to the preceding measurements, the atomic
ensemble is imaged perpendicular to the three-beam lattice plane, thus, allowing a direct
observation of the band populations after time-of-flight. Note that the Stern-Gerlach field
gradient for the separation of magnetic substates in time-of-flight is now applied along
the y-axis.

In Fig. 6.9 a microwave spectrum of the transition from the |2,−2〉 state into the |1,−1〉
state is shown for a large frequency range in the case of a maximum energy offset between
the respective sites, i.e., a quantization field aligned along the z-axis. It is obtained at
lattice depths of V2D,0 = 3.0ER and V1D,0 = 4.0ER. Here, a variety of transitions to
different Bloch bands can be identified that we will use in the following experiments. As
the final state is energetically lower as the initial state, the largest observed resonance
is the transition to the lowest Bloch band. In analogy to the microwave spectra treated
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in section 6.3 it is shifted towards lower transition frequencies in comparison with the
free transition in the crossed dipole trap: Initial and final state are shifted closer to each
other in the state-dependent lattice as the confinement to a single lattice site that is
accompanied by a lowering of potential energy is larger for the energetically higher state
(see inset). The corresponding band mapping image clearly reproduces the hexagonal
shape of the first Brillouin zone as introduced in Fig. 2.4. A schematic drawing of the first
four Brillouin zones is again shown in Fig. 6.9.

While the transition to the lowest Bloch state is relatively weak due to the small spatial
overlap between the wave functions that are primarily confined to different lattice sites,
the transition to the second Bloch state is strongly pronounced. Here, the band mapping
image shows the characteristic hexagram (depicted in blue in the schematic drawing).
For even smaller transition frequencies, a broad transition into both the third and the
fourth energy band can be observed. These transitions occur simultaneously as they are
always degenerate at zero quasimomentum (see Fig. 6.1). Again, the time-of-flight band
mapping image clearly shows the population of the respective Brillouin zones. Note that,
in contrast to the spectroscopy signal itself, the shown images were obtained by a sweep

of the microwave frequency over the resonance (indicated by gray areas). With this, an
optimal transfer into the given state can be achieved.

The solid red line in Fig. 6.9 indicates a theoretical calculation of the transition spec-
trum. Despite the relatively small lattice depths, mean-field interaction effects have been
taken into account, whereby the initial on-site occupation number has been weighted ac-
cording to the in-trap Thomas-Fermi density profile. In order to reproduce the shape of
the transition, sinc-profiles determined by Eq. (6.6) have been summed for all four lowest
transitions at every evaluated frequency. With the absolute height of the transition being
the only free parameter in the numerical calculations the obtained signal is in excellent
agreement with the experimental data.

6.4.2 Time-resolved band decay

By sweeping the microwave pulse frequency through a transition to a final Bloch state, we
have described a suitable technique to transfer an atomic ensemble with high efficiency into
excited Bloch bands of an optical lattice. In the following, we employ this method in order
to investigate the dynamical behavior of atoms excited to the second Bloch band with
respect to the presence of Dirac cones between the two lowest bands that can be adjusted
by the discussed rotation of the quantization axis. Thereby, the dynamical occupation of
the bands can be observed by performing the band-mapping procedure described above.

In Fig. 6.10a time-dependent occupations of the first two Brillouin zones are shown
for the two fundamentally different scenarios: First, a maximally opened band gap at
the K-point of the Brillouin zone is created by the inversion symmetry breaking between
the sublattices due to the strong energy offset for a perpendicularly aligned quantization
axis, i.e., for the final states of |1,−1〉 and |2,−1〉 with an angle of α = 0°. Second, a
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Figure 6.10: Band decay dynamics in the presence of Dirac cones. a The time-dependent relative

population of the first (second) Brillouin zone is depicted by circles (triangles) for the two fundamen-

tally different scenarios of a maximally opened band gap (red and purple markers) and closed Dirac

points (blue and gray markers). Data is obtained by summing the atom numbers in the respective

Brillouin zones. A striking difference of the lifetimes in the first excited Bloch band can be observed:

While for both cases a finite fraction of atoms remains in the second Brillouin zone at all times, the

initial decay to the first Brillouin zone is roughly an order of magnitude larger in the case of closed

Dirac points. Error bars correspond to the standard deviation of multiple measurements. The two

sets of blue markers stem from two independent measurement series. Solid lines represent double-

exponential fits to the data. b Corresponding time-of-flight images of the observed band populations

for the opened band gap and final state |2, −1〉. c Comparison of time-of-flight images of the final

state |1, −1〉 for opened (closed) Dirac points at α = 0° (90°).
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completely intersecting Band structure with Dirac cones at both K-points is investigated
where the energy offset between the two sublattices is zero as the effective magnetic
quantum number vanishes (here, for |1,−1〉 and α = 90°). In addition, a similar system
with a perpendicular quantization axis but zero magnetic quantum number (|2, 0〉 and
α = 0°) is also investigated. Measurements were performed in the three-dimensional lattice
with potential depths of V2D,0 = 3.0ER and V1D,0 = 3.7ER. The time axis depicted in
the figure corresponds to the waiting time in the lattice system following the microwave
sweep of 1 ms duration before the band mapping procedure. Band populations are counted
by summing over the area of the respective Brillouin zone (see Fig. 6.9). Hereby, the
boundaries of the respective Brillouin zone in the experimental time-of-flight images can
be determined with high accuracy by the position of the superfluid quasimomentum peaks
that arise for a sudden switch-off of the lattice potential.

The two scenarios exhibit a strikingly different behavior. While atoms transferred to
the excited Band that is clearly separated by an energy gap to the lowest band only slowly
decay to the first Brillouin zone (purple and red data points), this decay is significantly
faster for the case of a closed Dirac point (blue and black data). Examples of the corre-
sponding band-mapping images obtained after time-of-flight are shown in Fig. 6.10b for
the final state |2,−1〉 at α = 0°. In Fig. 6.10c the difference of the decay timescales between
the two scenarios is emphasized as time-of-flight images for the same initial state with
opened and closed bands are shown. The different size in comparison to the |2,−1〉 state
stems from the different Landé-factors of these hyperfine states: As mentioned above, the
magnetic Stern-Gerlach field gradient is applied along the vertical direction such that the
two states are observed for different total time-of-flights in order to simultaneously image
both the initial as well as the final state of the microwave sweep on the CCD-camera.
While in the case of a broken inversion symmetry, i.e., α = 0° and m̃ = +1 the first
Brillouin zone is populated by a majority of atoms after waiting times larger than 10 ms,
this intersection appears already at times of approximately 1.5 ms for the case of closed
Dirac points.

As a closing of Dirac points corresponds to an energy gap of zero between the in-
vestigated bands, the condition for the adiabaticity of the band mapping procedure in
Eq. (6.8) cannot be fulfilled for an effective magnetic quantum number of m̃ = 0. Thus,
in order to avoid an additionally induced transfer of atoms between the respective bands,
we rotate the quantization axis back to its initial perpendicular orientation prior to the
band mapping process instead of performing this step during the time-of-flight (compare
Fig.6.4). By this, the constraint h/TBM ≪ Egap imposed on the lattice ramping time TBM

is fulfilled such that no additional inter-band transfers occur. The duration of the lattice
rotation is reflected in the data as measurements start for a finite waiting time of 1 ms in
this case (blue markers). For the same reason, the validity of observations corresponding
to a final state of |2, 0〉 (gray markers) is limited: The band gap cannot be opened in this
case.
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Figure 6.11: Possible inter-band decay mechanism and total atom number for the two lowest energy

bands. a Band structures of the investigated system in Fig. 6.10 are plotted for the cases of effective

quantum numbers m̃ = ±1 and m̃ = 0. In stark contrast to the symmetric honeycomb lattice with

intersecting lowest energy bands, a large energy gap between the first Bloch bands is opened for

m̃ = ±1, i.e., mF = ±1 and α = 90°. b Energy differences between the second band and all other

bands are plotted. The difference from the second to the first band is shown as a dashed red line.

An intersection of transitions for m̃ = ±1 enables the decay channel of a simultaneous excitation to

the fourth band. c Total atom number in the first two Brillouin zones for the measurements with a

final state of |1, −1〉 reveal a constant behavior for both the opened and the closed band gap.

6.4.3 Decay mechanisms

In the preceding section the strong influence of the decay mechanism with respect to the
presence of Dirac points in the honeycomb lattice has been demonstrated. The corre-
sponding time-dependent populations of the first two Brillouin zones are well reproduced
by double-exponential fits to the data that are depicted in Fig. 6.10a as solid lines. In the
following, we discuss possible mechanisms for the observed decay processes.

As mentioned earlier, two distinct decay mechanisms have been identified for bosonic
atoms in higher bands of optical lattices. A collision of atoms in the first excited Bloch
band can either result in both atoms decaying into the lowest energy band or one atom be-
ing excited into a higher band while the other atom decays into the lowest band whereby
both processes clearly are only allowed if energy and momentum can be conserved. In
the former case the excess energy of the band gap is expected to be redistributed into
an additional degree of freedom that can, e.g., be given by excitations along a weakly
confining axis. However, experiments were performed in a true three-dimensional lattice
with an additional perpendicular 1D-lattice confinement on the same order as the hon-
eycomb lattice depth such that spatial excitations can be ruled out as the reservoir of
excess energy. In the latter case, one expects the total number of atoms in the two lowest
Bloch bands to decrease over time, while increasing population of the higher energy band
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should be revealed by an increasing population of the corresponding Brillouin zone.
The scenario of exciting one atom into a higher Bloch band while another one decays

into the lowest band is further investigated in Fig. 6.11. The band structure of the state-
dependent honeycomb lattice is shown in Fig. 6.11a for the two distinct cases of an effective
quantum number of m̃ = ±1 and m̃ = 0. The close-lying lowest bands for the symmetric
lattice and the large opened band gap for a maximum energy offset between the sublattices
are clearly visible. In part b of the figure, the corresponding energy differences between
the second Bloch band and all other bands are plotted. Hereby, the difference between
the second and the first band is emphasized as a dashed red line. Energy conservation of
the discussed decay process requires the band difference to coincide with a transition to
a higher band. While no such transitions exists for the case of m̃ = 0 the band difference
of the two lowest bands intersects with the excitation from the second to the fourth
Bloch band such that the decay process is possible at these momenta. However, two
observations contradict the presence of this decay mechanism: First, no increase of higher-
band populations could be observed for any measurement series depicted in Fig. 6.10.
Second, the combined atom number in the first and second Brillouin zone remains constant
for the measurements of the |1,−1〉 as depicted in Fig. 6.11b. However, this is not the case
for the seemingly similar |2,−1〉 measurement shown in Fig. 6.11c.

In principle, a third relaxation process is possible, that we have neglected so far: Under
the influence of the external trapping potential, the momentum of atoms can oscillate
in the excited band. For an oscillation through the minimal band gap atoms can, thus,
undergo a Landau-Zener-Stückelberg transition into the lowest band. Yet, simulations
of such transitions with the harmonic trapping frequencies present in the system yield
timescales of such decay processes that are at least an order of magnitude larger as the
observed lifetimes such that this transition process can safely be ruled out while the am-
bivalent results of the above considerations prohibit any further unambiguous statements
regarding the relevant decay processes in the three-dimensional system.

6.5 Conclusion & outlook

In conclusion, we have successfully demonstrated a novel approach to continuously alter
both the real-space lattice potential as well as the energy band structure of a state-
dependent honeycomb lattice. Moreover, by breaking the inversion symmetry of the lat-
tice, an energy gap can at the Dirac points can be opened and adjusted continuously.
As this experimental technique solely relies on a change of the orientation of the systems
quantization field it opens up new possibilities in both the static as well as the dynamic
engineering of state-dependent optical potentials in a clean and easily controllable way.

In proof-of-principle experiments, the applicability of the implemented technique could
be verified by an in situ probing of the state-dependent potential with band-selective
microwave spectroscopy. The resulting spectra are in good agreement with numerical
calculations of transition frequencies. Furthermore, interaction effects could be described
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by means of an effective potential in the mean-field regime. Extensive ab initio simulations
of a microwave spectrum over a large frequency range yield an excellent agreement with
the obtained data by including the in-trap density distribution of atoms.

The study of decay mechanisms from the first excited Bloch band revealed a striking
influence of the lifetime in the excited Band with respect to the presence of Dirac points.
However, further systematic investigations are necessary in order to solve open questions
regarding the identification of decay mechanisms.

Beyond the discussed experiments, the newly implemented technique offers many other
possible applications. For example, the ability to quickly rotate the quantization axis could
allow for excitation schemes similar to Ref.[66] and [67], where the sudden change of the
anisotropy of sublattices enabled the coherent population of higher Bloch bands.

In a combination with time-reversal symmetry breaking induced by periodic lattice
driving as presented in chapter 4 the inversion symmetry breaking due to the rotation
of the quantization axis could be utilized to investigate topological phase transitions in
the framework of the Haldane model [151] or to engineer non-Abelian gauge fields [2].
Moreover, the rotation itself can also be utilized for periodic driving schemes in analogy
to the spatial translation discussed in the previous chapters. Here, a modulation of the
sublattice energy offset may give rise to exotic dynamics in quantum spin-mixtures. In
the following chapter we will investigate the rotation of the quantization field further with
respect to the fully state-dependent polarization lattice.
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quantum phases

This chapter provides an outlook on further possibilities for the engineering of quantum

gas systems in the three-beam lattice. The previously introduced concepts of periodic

lattice driving and the rotation of the quantization field are applied to state-dependent

lattice systems. In addition, an expansion of the three-beam lattice setup is discussed

that gives rise to peculiar lattice geometries.

In contrast to the triangular lattice, the honeycomb lattice described in the preceding
chapter does not exhibit geometric frustration for antiferromagnetic interactions. Instead,
the two sublattices will each feature a single spin alignment, resulting in a perfectly
staggered Neél ordering of spins in the combined lattice. This situation changes dras-
tically when processes beyond nearest neighbor tunneling become significantly large. A
paradigm example is Haldane’s model, where an intrinsic quantum Hall effect emerges in a
two-dimensional honeycomb lattice for suitable complex next-nearest-neighbor tunneling
[150, 274]. Recent studies conclude that the honeycomb lattice with next-nearest-neighbor
tunneling may give rise to a variety of exotic states such as spin-liquids or Bose metals

[275, 276] and topological phase transitions [277].
In this chapter we investigate possible applications of far off-resonant driving in the

honeycomb lattice with respect to nearest- and next-nearest-neighbor tunneling renor-
malization. By adjusting the ratio of these tunneling amplitudes, a highly degenerate
exotic band structure emerges within the framework of the tight-binding approximation.
Furthermore, the presence of an energy-offset between the two sublattices as discussed in
the preceding chapter with additional next-nearest-neighbor tunneling along the shallow
sublattice could yield topological quantum spin Hall insulator phases for time-asymmetric
driving schemes [2].

Beyond the next-nearest-neighbor tunneling effects, driving schemes relying on the
rotation of the quantization axis in the purely state-dependent polarization lattice are
briefly discussed with an emphasis on the generation of artificial gauge fields. In contrast
to the previously implemented driving scheme for the realization of gauge fields, this
approach relies on the staggered rotation of state-dependent lattice sites that emulates a
Lorentz force acting on charged particles. Finally, an outlook concerning the expansion
of the three-beam lattice setup is given that enables the creation of exotic lattices. In
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this context, possible applications for the engineering of tunneling matrix elements are
discussed.

7.1 Periodic inertial forcing in the honeycomb lattice

Due to the twofold atomic basis, the honeycomb lattice is comprised of two sublattices.
Tunneling between nearest-neighboring lattice sites, thus, corresponds to a change of
the occupied sublattices A and B. As depicted in Fig. 7.1a, the corresponding vectors
describing the bonds of the honeycomb lattice are

h1 =
a√
3

(

−1, 0, 0
)

, h2 =
a

2

(

1/
√

3,−1, 0
)

, h3 =
a

2

(

1/
√

3, 1, 0
)

, (7.1)

where a denotes the lattice constant of the triangular Bravais lattice. Tunneling to the
next-nearest neighboring site preserves the occupied sublattice. Such tunneling processes
take place along the bonds di of the underlying triangular Bravais lattice as defined
in Eq. (4.21). In the following, in accordance with the well-known J1J2 quantum spin
model including nearest- as well as next-nearest spin-spin interactions, we choose the
notation J1 and J2 for the nearest- and next-nearest-neighboring tunneling matrix element
respectively. Note that the notation t and t′ is also common for these tunneling matrix
elements.

7.1.1 Tight-binding description

Within the framework of the Bose-Hubbard model, a Hamiltonian including next-nearest-
neighbor tunneling processes in the state-dependent honeycomb lattice is given by

Ĥ = −
∑

〈i,j〉

(

J1,ij b̂
†
i b̂j + J1,jib̂

†
j b̂i
)

−
∑

〈〈i,j〉〉

(

J2,ij b̂
†
i b̂j + J2,jib̂

†
i b̂j
)

+
∆AB

2

∑

i∈A

b̂†i b̂i − ∆AB

2

∑

i∈B

b̂†i b̂i ,
(7.2)

where the additional harmonic confinement as well as the on-site interaction energy have
been omitted. The notation 〈〈i, j〉〉 in the second term of the Hamiltonian indicates the
summation over next-nearest-neighboring sites including both sublattices A and B. The
last two terms take account for an energy offset of ∆AB between the two sublattices. For
complex tunneling matrix elements J2, Eq. (7.2) corresponds to the Haldane Hamiltonian.
In the following, we will restrict our considerations to a homogeneous honeycomb lattice
with degenerate sublattices (∆AB = 0) and real-valued tunneling along all lattice direc-
tions, i.e., Jij = Jji. Nonetheless, an expansion of the discussed models to lattices with
broken inversion symmetry and complex inhomogeneous tunneling is straightforward. A
thorough treatment of such systems within the framework of the tight-binding approxima-
tion can be found, e.g., in [278] or, in the context of optical lattices, in the supplementary
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material of [151]. With isotropic nearest-neighboring (NN) and next-nearest-neighboring
(NNN) tunneling, the Hamiltonian (7.2) simplifies to

Ĥ = −J1

∑

〈i,j〉

(

b̂†i b̂j + b̂†j b̂i
)

− J2

∑

〈〈i,j〉〉

(

b̂†i b̂j + b̂†i b̂j
)

. (7.3)

Indeed, the same inverse Holstein-Primakoff mapping applied in chapter 5 maps the
Hamiltonian (7.3) onto the well known XY model discussed in the chapters 4 and 5
with an additional next-nearest-neighbor interaction [275].

With the set of three lattice bonds hi and sublattice bonds di depicted in Fig. 7.1a,
the Hamiltonian can be re-written as a sum over one of the two sublattices given by the
set of triangular lattice vectors d:

Ĥ =
∑

d∈A

3
∑

i=1

[

J1

(

b̂†d+hi
b̂d + b̂†db̂d+hi

)

+ J2

(

b̂†d+di
b̂d + b̂†db̂d+di

)

+ J2

(

b̂†d+h1+di
b̂d+h1

+ b̂†d+h1
b̂d+h1+di

)

]

.

(7.4)

In order to obtain the energy band structure in of the honeycomb lattice, it is convenient
to express the creation and annihilation operators in quasimomentum space by applying
a Fourier transformation:

b̂†
A/B,q =

1√
N

∑

d∈A/B

eiq·d b̂†d, b̂
A/B,q =

1√
N

∑

d∈A/B

e−iq·d b̂d. (7.5)

Now, the Hamiltonian in quasimomentum space can be written as a sum of 2×2 matrices

Ĥq = ψ̂†
q

[

ĤNN
q + ĤNNN

q

]

ψ̂ T
q with ψ̂†

q =
(

b̂†
A,q, b̂

†
B,q

)

, ψ̂q =
(

b̂
A,q, b̂B,q

)

. (7.6)

The corresponding matrix representations of the NN-tunneling and the NNN-tunneling
are

ĤNN
q = −J1







0 w1(q)

w∗1(q) 0





 , ĤNNN
q = −J2







w2(q) 0

0 −w2(q)





 (7.7)

with the components

w1(q) =
3
∑

i=1

eihiq (7.8)

and

w2(q) = v2(q) + v∗2(q) with v2(q) =
3
∑

i=1

eidiq. (7.9)
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Figure 7.1: Next-nearest-neighbor tunneling in the honeycomb lattice. a The two sublattices A and

B of the honeycomb lattice are connected by the nearest-neighbor bonds hi. While tunneling along

these bonds (solid lines) changes the occupied sublattice, next-nearest-neighbor tunneling (dashed

lines) along the triangular bonds di takes place within the same sublattice. b Renormalization of the

nearest-neighboring tunneling J1 along the three bonds hi for elliptical lattice driving. Due to the

shorter length of the bonds, the renormalization is weaker as compared to J2 depicted in c. Note

that the axes of the modulation frequencies have been exchanged due to the differing orientation of

bonds. Part c of the figure is also shown for the similar case of the renormalization in the triangular

lattice in Fig. 3.4.

It is straightforward to obtain the eigenvalues of the Hamiltonian in Eq. (7.6) analytically
by calculating the determinant of the total 2 × 2 matrix. The result yields the dispersion
of the two lowest energy bands

E∓(q) = J2w2(q) ∓ |J1w1(q)|

= 2J2

3
∑

i=1

cos (di q) ∓
∣

∣

∣J1

3
∑

i=1

eihiq
∣

∣

∣.
(7.10)

The sign of the NN-tunneling J1 is irrelevant to the outcome due to the particle-hole sym-
metry of the honeycomb lattice [275]. If the NNN-tunneling J2 vanishes, the dispersion
corresponds to the one discussed in chapter 6 for the homogeneous state-dependent hon-
eycomb lattice. Here, the two bands touch at the K and K’-points of the band structure
forming Dirac cones.

In general, the amplitude of the NNN-tunneling in the honeycomb lattice is compar-
atively small. A corresponding calculation of the Wannier functions in the Honeycomb
lattice yields ratios of J2/J1 < 0.05 [5]. However, the periodic driving schemes introduced
in chapter 3 allow for an adjustment of the ratio between nearest- and next-nearest neigh-
bor tunneling to arbitrary values. In the following, we will explore the behavior of the
band structure with respect to the ratio J2/J1 for the obtained tight-binding dispersion
of Eq. (7.10).
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7.1.2 Tuning of next-nearest-neighbor tunneling

The properties of the Bose-Hubbard Hamiltonian (7.3) are governed by the ratio between
the nearest- and the next-nearest-neighbor tunneling J2/|J1| as well as the sign of J2. If J2

is chosen to be negative and real valued and the |J1| is small, the magnetic flux strength
through a triangular plaquette spanned by any of the two sublattices is Φ = π and the
system is maximally frustrated.

In Fig. 7.2 a series of tight-binding dispersions calculated from Eq. (7.10) are shown for
different ratios of J2/|J1| and negative NNN-tunneling J2 as discussed, e.g., in Ref. [279].
A striking feature emerges if J2/|J1| < −1/6. Here, the lowest energy band E−(q) exhibits
an infinitely degenerate minimum along a ring-shaped contour in momentum space. For
decreasing ratios of J2/|J1| the minimum contour grows towards larger quasimomenta.
It finally crosses the boundaries of the first Brillouin zone and closes around the Dirac
points which remain closed at all ratios of J2/|J1|. Accompanied by the formation of the
degenerate contour ring, an energy maximum in the dispersion emerges at the Γ-point
which continuously grows. The shape of the resulting lowest energy band resembles the
isotropic Rashba spin orbit coupling [279–284].

Due to the diverging single-particle density of states at the minimum contour, a weakly
interacting ultracold bosonic ensemble is not expected to condense at a certain point in
quasimomentum space. Instead, the presence of a one-dimensional contour in quasimo-
mentum space bears similarities to a Tonks-Girardeau gas [285–287]. For sufficiently large
repulsive interactions, however, the degeneracy of the minimum contour may be lifted.

A variety of exotic physical phenomena are suggested for the presented dispersion
relation. These include fermionization in the context of a Chern-Simmons gauge field
[279], order-by-disorder effects [276, 288], Bose-metals [275] and other novel spin-liquid
phases [276, 289]. In the following, we will investigate the experimental feasibility of
engineering such dispersion relations by means of periodic lattice driving.

In analogy to the triangular lattice, far off-resonant lattice driving can be employed in
the honeycomb lattice in order to adjust both the ratio J2/|J1| as well as the sign of J2

in order to generate the required condition for the creation of a dispersion relation with
degenerate contour lines shown in Fig. 7.2.

The absolute necessity for a sufficiently large band gap for these driving schemes has
been shown in chapter 3 as the driving frequency has to be chosen such that any multi-
photon transitions to higher bands can be neglected. In contrast to the triangular lattice,
no such band gap exists between the two lowest bands in the homogeneous honeycomb
lattice. Nevertheless, a large gap is present between the second and the third band for
suitable lattice depths (compare, e.g., Fig. 6.11a). At these frequencies, the coherent ma-
nipulation of tunneling matrix elements by periodic driving should be experimentally
feasible without causing detrimental excitations.

In the following, we will focus on monochromatic driving as employed in experiments
presented in the chapters 3 and 5. Here, the tunneling matrix elements renormalize with
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Figure 7.2: Energy bands in the honeycomb lattice with next-nearest-neighbor tunneling. a The two

lowest energy bands obtained from Eq. (7.10) are plotted for different ratios of J2/|J1|. If the condition

J2/|J1| < −1/6 is fulfilled, the lowest energy band exhibits an infinitely degenerate minimum along

a contour in momentum space (red line) that grows towards the boundaries of the Brillouin zone

with decreasing values of J2/|J1|. The contour closes around the Dirac points which remain present

for all ratios. The lowest energy band is shown as a contour plot in b. The hexagon in the plot for

J2/|J1| = 0 depicts the borders of the first Brillouin zone. For all calculations the nearest-neighboring

tunneling amplitude was held fixed at a value of J1 = 1.

a zeroth-order Bessel function of the first kind JB0(K) whereby the dimensionless forcing
parameter K depends on the projection of the forcing onto the lattice bonds (see section
3.1). In Fig. 7.1b the tunneling renormalization is shown for the nearest-neighbor tunneling
along the honeycomb bonds hi in dependence of the horizontal and vertical frequency
modulation amplitudes ν0,x and ν0,y. In comparison with the renormalization of the next-
nearest-neighbor tunneling along the triangular Bravais lattice bonds di (see Fig. 7.1c)
the renormalization is weaker by a factor of

√
3 due to the projection of the forcing onto

the respective lattice bonds with differing lengths.
Similar to the triangular lattice, the homogeneous forcing condition ν0,x = ν0,y/

√
3 ≡ ν0

leads to an isotropic renormalization of the NN and NNN tunneling matrix elements along
all lattice bonds. Due to the different total renormalization of J1 and J2 it is, thus, possible
to adjust the ratio J2/|J1|. The corresponding Bessel functions for homogeneous forcing are
shown in Fig. 7.3a. In the physically relevant region of J2 < 0, the renormalization function
of J1 has a zero-crossing. Hence, arbitrary ratios of J2/|J1| can be reached by tuning
frequency modulation amplitude (see inset). As the ratio between the initial tunneling
amplitudes Jbare

1,2 depends on the lattice depth, the obtained ratio J2/|J1| is calculated in
dependence of Jbare

2 /Jbare
1 in Fig. 7.3b for values of up to Jbare

2 = 0.1Jbare
1 .

The tunability of J2/|J1| comes at the cost of very small absolute tunneling amplitudes.
In turn, this results in extremely long timescales that may not be accessible experimentally.
Thus, the realization of sufficiently large next-nearest neighbor tunneling parameters with
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Figure 7.3: Engineering next-nearest-neighbor tunneling. a Renormalization of nearest-neighbor tun-

neling J1 (green solid line) and next-nearest-neighbor tunneling J2 (blue dashed line) for circular

forcing. In the physically relevant region of J2 < 0 the ratio J2/|J1| can be tuned to arbitrary values

due to the zero-crossing of the renormalizing Bessel function for J1 (see inset). b The ratio J2/|J1|
is plotted in the vicinity of the first zero crossing of J1 for different initial ratios of the two bare tun-

neling matrix elements Jbare
1,2 . The critical boundary at J2/|J1| = −1/6 where a degenerate contour

minimum in the lowest energy band appears is highlighted in red.

simple monochromatic far off-resonant driving appears to be difficult. However, recent
studies suggest that an enhancement of tunneling by periodic driving is generally possible
[290]. A different approach for increasing the amplitude of next-nearest-neighbor tunneling
processes may be given by a coupling of energy bands with near-resonant driving as, e.g.,
in Ref. [213].

7.1.3 Topologically non-trivial bands

The engineering of nearest- and next-nearest-neighbor tunneling processes in the hon-
eycomb lattice gives access to a manifold of physical systems. Beyond the previously
discussed realization of a ring-shaped minimum contour in the energy dispersion it is,
e.g., possible to create a topological insulator and a quantum spin Hall insulator in a
state-dependent honeycomb lattice. The underlying experimental scheme, illustrated in
Fig. 7.4a, is thoroughly described in Ref. [2]. Here, a hyperfine state with mF 6= 0 is
trapped at deeper B-sites while next-nearest-neighbor tunneling takes place only with
in the shallow A sublattice. The value of the energy offset ∆AB between the sublattices
is chosen to energetically suppress tunneling along nearest-neighboring bonds. Thus, the
sublattices A and B are decoupled.

Nearest-neighbor tunneling can be restored by resonant periodic forcing of the lattice
potential at a driving frequency Ω corresponding to an integer multiple of the sublattice
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Figure 7.4: Engineering lattice geometries with next-nearest-neighbor interactions. a For a suffi-

ciently large energy offset between A and B sites in the state-dependent honeycomb lattice, next-

nearest-neighbor tunneling appears only along the shallow A sublattice (blue solid lines). Restoring

of nearest-neighbor tunneling with resonant driving together with the generation of staggered mag-

netic fluxes through the plaquettes of the A sublattice (red crosses and blue areas) may give rise to

topologically non-trivial bands. b An area of zig-zag lattices can be generated in the homogeneous

honeycomb lattice by suppressing several tunneling processes (dashed blue lines) while the vertical

tunneling elements Jy1 and Jy2 remain substantially large. c The ratio between vertical tunneling

elements Jy1 and Jy2 is shown in dependence of the horizontal and vertical frequency modulation

amplitudes ν0,x and ν0,y respectively. In addition, regions where the unwanted tunneling elements

shown in b are suppressed by 90% are emphasized in gray.

energy offset n~Ω = ∆AB, n = 1, 2, . . . Together with such AC-induced tunneling [188]
the adjustment of artificial magnetic fluxes through the sublattice plaquettes of A by
time-asymmetric driving (see chapter 4) can give rise to energy bands with a nontrivial
Chern number ±1 and allows for the moving and merging of Dirac cones. In a similar
context this behavior is also discussed in, e.g., in [291] and [76]. A filling of the lowest
bands with fermions in a single spin state |↑〉 gives rise to a topological insulator (see, e.g.,
[292–294]). Furthermore, for a mixture of two opposing spin state |↑〉 and |↓〉 that fills the
lowest band, a quantum spin Hall-insulating state [274] emerges due to the interchanged
roles of the A and B sublattices [2].

7.1.4 Zig-zag lattice arrays

An entirely different geometry can be engineered from the honeycomb lattice with NNN-
hopping for a suitable suppression of tunneling along several lattice bonds. If tunneling
along the horizontal NN-bonds and the diagonal NNN-bonds is suppressed (corresponding
to the vectors h3 and d2,3 in Fig. 7.1a respectively) an array of zig-zag lattices remains.
As depicted in Fig. 7.4b, is comprised of the nearest-neighbor bonds with vertical com-
ponents h1,2 and the next-nearest neighbor bonds d1. For antiferromagnetic interactions
these chain of triangular plaquettes exhibit geometric frustration similar to the triangular
lattice. However, owing to the reduced coordination number of nc = 4 a variety of intrigu-
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ing effects may arise in this geometry even for weakly interacting bosons [295] including
a transition from a Haldane insulator to pair-superfluidity.

A static zig-zag lattice can also be realized by superimposing a triangular three-beam
lattice and a repulsive one-dimensional lattice with a lattice constant of a1D = (3

√
3/2)a⊳.

Here, tunneling along each third triangular lattice row is suppressed due to the periodicity
of the 1D-lattice. However, spatial periodic driving of such a superposition lattice in
order to engineer negative valued tunneling matrix elements is inherently difficult as the
relative position both lattices with respect to each other has to remain unchanged. In
contrast, the suppression of lattice bonds described above does not require additional
control mechanisms as the total lattice potential is rigid per definitionem.

The possibility of an experimental realization of the zig-zag lattice array with elliptic
far-off resonant driving is explored in Fig. 7.4c. Here, the ratio of the remaining nearest-
and next nearest-neighbor tunneling is plotted in dependence of the two frequency mod-
ulation amplitudes. In addition, regions where the tunneling along the horizontal NN-
and diagonal NNN-bonds (blue dashed lines in Fig. 7.4b) is suppressed to a factor smaller
than 0.1 Jbare are highlighted in gray. Regimes of geometric frustration and simultaneous
suppression of additional tunneling are accessible. However, since the bare NNN-tunneling
amplitude is much smaller than NN-tunneling, the horizontal bond along h3 has to be sup-
pressed entirely in order to ensure a sufficiently large relative contribution of the remaining
vertical NNN-tunneling Jy2 . This condition further narrows the accessible parameter re-
gions shown in Fig. 7.4c. In addition, the tunneling suppression, yet again, comes at the
cost of small total tunneling amplitudes such that the feasibility of the elliptical driving
approach remains to be investigated experimentally.

7.2 Homogeneous gauge fields in a stirred polarization

lattice

Within this thesis we have established versatile phase modulation schemes for the periodic
driving of the three-beam lattice. An entirely different approach to periodic driving is
provided by the state-dependency of the lattice potential: In chapter 6 we have investigated
the striking influence of the orientation of the quantization axis onto the state-dependent
honeycomb lattice which enabled a controlled breaking of inversion symmetry. Atoms are
expected to follow the quantization field on timescales well below the respective Larmor
frequency, which is already on the order of MHz for the employed field strength of 1 G.
Hence, a periodic rotation of the quantization axis should allow for an application of
driving schemes similar to the spatial translation induced by phase modulation.

In contrast to the effective engineering of dispersion relations by inertial forcing, this
driving scheme directly alters the optical potential experienced by the atoms. It promises a
high degree of stability, i.e., low technical noise levels, as no change of the light field itself
is required. Furthermore, the application of the driving to spin-mixtures that respond
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Figure 7.5: Generation of staggered vortices by rotating the quantization field. A rotation of the

quantization field B(r) inside the lattice plane results in a vortex-like rotation of pairs of sublattice

sites A and B with σ− and σ+ polarizations respectively. The rotation of the atomic basis vector

connecting two sublattice sites is emphasized with a red arrow. For certain angles γ, in this case 30°,

90° and 150°, the coordination number of both triangular sublattices changes from initially nc = 6

to 4 as tunneling along one of the three plaquette bonds is restricted by the other sublattice.

differently to the AC-Stark shift opens new possibilities for the study of interspecies
dynamics. For example, a spin mixture of |1,±1〉 atoms in the state-dependent honeycomb
lattice interchanges the occupied sites twice for every revolution of the quantization field
in the xz-plane perpendicular to the lattice. A thorough investigation of the dynamics
induced by the offset energy modulation in dependence of the driving frequency and the
involved spin-mixtures could provide valuable insights into spin transport phenomena.
For a state-independent case, the scenario of a harmonic modulation of the energy offset
between the sublattices of a chequerboard lattice is explored in Ref. [189], yielding a similar
behavior of tunneling renormalization between A and B sites as for the periodic forcing
approach.

A particularly suitable optical lattice potential for the application of quantization field
induced periodic driving is given by the purely state-dependent polarization lattice. As
discussed in section 2.4, it emerges if the linear polarization of the three running-wave
lattice beams are aligned at angles of θ = arccos(1/3)/2 ≈ 35.26° with respect to the lat-
tice plane. In this case, the resulting light field intensity modulation of Eq.(2.32) vanishes
completely. However, while the light field exhibits a constant intensity it still possesses
an alternating pattern of circular polarization which will act as a lattice potential onto
atoms with nonzero magnetic quantum number due to the AC-Stark shift. For the case
of a quantization field pointing along the z-axis this kind of potential is illustrated in
Fig. 2.7. The qualitative properties of the polarization lattice are thoroughly described in
the PhD thesis of P. Soltan-Panahi [154], parts of which are published in Ref. [5].

So far, ultracold quantum gases in purely state-dependent polarization lattices have
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been experimentally investigated in order to explore thermometry [180] and study inter-
action effects [296, 297]. However, a dynamic rotation of the quantization field offers novel
intriguing possibilities for the in situ manipulation of the potential. In the following, we
will briefly discuss the experimental realization of the three-beam polarization lattice and
elaborate a particular driving scheme.

Owing to the large detuning of the lattice light with respect to atomic transitions and,
thus, a small proportionality factor η ≈ 0.13 in Eq. (2.33), the resulting potential shown
in Fig. 2.7 is extremely shallow. Experimentally, a sufficiently deep polarization lattice
can, however, be created at magical wavelengths located between two atomic transitions.
Here, the attractive and repulsive contributions to the lattice potential arising from the
simultaneous blue- and red detuning of the lattice laser light exactly cancel each other,
leaving only a polarization-dependent component. For the case of the D1 and D2 lines
in 87Rb the magic wavelength is readily calculated with the condition D1 = −2D2 from
Eq. (2.2) and (2.3). The obtained value of λM = 790.7 nm has, e.g., been verified for the
creation of a polarization lattice in Ref. [180]. Beyond the larger accessible total potential
depths, a lattice detuning to the magic wavelength has the advantage of an additional
suppression of residual intensity-dependent potentials due to a slight misalignment of the
laser polarization. While the small total detuning with respect to atomic transitions comes
at the cost of larger spontaneous scattering lengths, the generation of suitable polarization
lattices is experimentally feasible.

Due to the purely state-dependent nature of the three-beam polarization lattice, the
rotation of the quantization field alters the entire potential rather than only a compar-
atively small percentage as in the state-dependent honeycomb lattice. A change in the
direction of the quantization field can have a striking influence on the potential landscape.
A scenario where the field is rotated inside the lattice plane yields a peculiar behavior
of the lattice sites. The respective Euler angles in this case are α = 90°, while the in-
plane angle γ is variable and the third angle β is irrelevant. In this case, the resulting
polarization potential can be written as

Vpol(r) = V0

√

2
3

(−1)FmFη
3
∑

i=1

Ci sin(bir) (7.11)

with the truncated coefficients of Eq. (2.34) given by

C1 = −2 cos γ and C2,3 = cos γ ±
√

3 sin γ. (7.12)

In Fig. 7.5 the potential (7.11) is depicted for different values of the Euler angle γ. Strik-
ingly, the rotation of the quantization axis gives rise to a rotation of the twofold atomic
basis as pairs of σ+ and σ− sites revolve around each other. The two triangular sublattices,
however, retain their rigid shape and are only shifted with respect to each other. For cer-
tain angles γ, both sublattices are aligned along lattice bond such that the coordination
number of both triangular sublattices changes from nc = 6 to 4 as one tunneling direction
is blocked by the other (repulsive) sublattice.
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This peculiar behavior results in an array of microscopic vortices with the size of a
single lattice plaquette. The rotation mimics the behavior of charged particles subjected
to a Lorentz force (recall the similarity with the Coriolis force). Hence, the rotation of
the magnetic quantization field gives rise to an artificial magnetic field. In contrast to
the artificial gauge fields that were emulated in the triangular lattice (see chapter 4),
this field is not staggered but homogeneous, as the rotation of both sublattices A and B

is oriented in the same way. For sufficiently deep lattices and large rotation frequencies,
the emulated magnetic flux through a lattice plaquette can as well reach values of a
fundamental flux quantum [189, 298, 299], a regime that appears impossible to access for
stirred bulk systems as, e.g., in Refs. [39, 107, 108] due to the increasing centrifugal forces
that drag atoms out of the trap. In a similar context, arrays of locally rotating potentials
have been realized in an optical lattice in order to reach the fractional quantum Hall limit
[112].

In conclusion, the purely state-dependent polarization lattice derived from the three-
beam setup is a promising candidate for the emulation of strong gauge fields that could
allow for the investigation of physical regimes that are hard to access with solid state sys-
tems due to the comparatively small plaquette sizes. Only recently, large magnetic fluxes
through two-dimensional Moiré superlattices have enabled a first glimpse into such strong
field physics and the recursive Hofstadter energy spectrum [300–302]. Wether such regimes
can be realized experimentally in the polarization lattice remains to be investigated.

7.3 From three- to six-beam lattices

Throughout this thesis we have explored a variety of lattice geometries that can be re-
alized with the running-wave three beam lattice as introduced in section 2.4. Hereby,
all considerations were restricted to linear polarized lattice beams. This description of
the running-wave three beam lattice is far from being complete. By considering arbitrar-
ily polarized light beams it is possible to realize a large variety of more complex lattice
configurations that are not limited to two dimensions as, e.g., a truly three-dimensional
hexagonal close-packed (hcp) lattice.

In the following, however, we will briefly explore an expansion of the running-wave
three-beam lattice setup that allows for the generation of peculiar two-dimensional lattice
geometries while being comparatively easy to implement: Retro-reflection of all three
lattice beams as depicted in Fig. 7.6c according to Refs. [182, 303, 304].

While we have argued in chapter 2 that a configuration of more than d+1 laser beams in
d-dimensions does not yield a stable interference pattern [30], the experimental realization
of such a six-beam setup in two dimensions may very well be feasible for sufficiently stable
retro-reflecting mirrors which unambiguously define the phases of the laser beams. In
contrast the same reasoning does not necessarily hold for more than d + 1 running-wave

laser beams. This circumstance renders the realization of optical quasicrystals as, e.g., in
Ref. [305] highly difficult as no defining points for the relative phases exist.
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An intriguing state-independent potential landscapes arises for a configuration with
all six individual laser beams being linearly polarized within the lattice plane, i.e., for
polarization vectors ǫi = Rz(π/2) ki/|ki| or θ = 0 similar to the state-dependent honey-
comb lattice. In Fig. 7.6a and d the resulting potential is plotted for red- and blue-detuned
lattice beams respectively that will be described in the following.

7.3.1 Kagome lattice

A red-detuned light field of the retro-reflected six-beam setup yields a kagome lattice that
is distinguished by corner-sharing triangular plaquettes as illustrated in Fig. 7.6b. This
type of two-dimensional lattice is of central interest in many condensed matter systems as
it exhibits the highest known degree of geometric frustration in two dimensions (compare
section 5.1.2) and quantum spin liquids or valence bond solids have been proposed as
possible ground states [130, 306]. The underlying triangular Bravais lattice of the kagome
lattice exhibits a three-fold atomic basis A, B and C. All three individual lattice sites
possess a coordination number of nc = 4 as each site is shared by two triangular plaquettes.
As a striking feature, the energy band structure of the kagome lattice exhibits a flat
band in between the two (other) lowest bands which touch at Dirac cones similar to the
honeycomb lattice. Demand for the realization of geometrically frustrated kagome lattices
in model systems has been growing steadily due to the difficult spectroscopic probing of
such systems in solid state materials [138, 307].

While an optical kagome lattice has recently been realized for ultracold atoms by a
superposition of two commensurate triangular lattices [77], geometrical frustration, re-
quiring the engineering of negative tunneling matrix elements, has not been realized so
far. The presented setup, together with the application of periodic forcing could provide
a pathway towards the study of frustration effects in this highly peculiar lattice and may
enable the population of the flat band for a suitable engineering of the tunneling matrix
elements.

7.3.2 Dice lattice

If the lattice setup described above is blue-detuned with respect to the relevant atomic
transition lines, the kagome potential is inverted and its dual lattice emerges as shown in
Fig. 7.6d. Due to its specific shape, this T3-lattice is mostly referred to as the dice lattice
which was first studied in Ref. [181].

Similar to the kagome lattice, the dice lattice has a three-fold atomic basis and an
underlying triangular Bravais lattice (see Fig. 7.6e). Moreover, the lattice structure is
comprised by two honeycomb sublattices that are occupied by the A and B sites with a
coordination number of nc = 3. The hub-sites C, the larger potential minima in Fig. 7.6d,
with a coordination number of nc = 6 connect these two sublattices.

An exceptional effect arises for the dice lattice due to its geometry: If charged particles
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Figure 7.6: Kagome and dice lattice in the six-beam setup. a For a red detuned light field in the

six-beam configuration (as shown in c), the resulting optical potential gives rise to a kagome lattice.

It exhibits a three-fold atomic basis A, B and C depicted in b. The translation vectors d1,2 form a

triangular Bravais lattice with a unit cell highlighted as a blue rhombus. NNN-tunneling directions are

exemplarily illustrated as dashed green lines. d For blue detuned laser light, the potential landscape

gives rise to a Dice lattice emphasized by solid white lines in the lower left corner. e The dice lattice

is comprised of two honeycomb sublattices highlighted in green and red with the same triangular

Bravais lattice as in a.

in this lattice are subjected to a magnetic field with a strength of one-half flux quantum
per plaquette, the emergence of so-called “Aharonov-Bohm cages” bounds particles to
single lattice sites and restricts any motion [308]. This extreme localization mechanism
results in the formation of three completely flat bands. Such a dispersionless spectrum
corresponds to a macroscopic degeneracy that remains intact for finite interactions and
may be lifted by the formation of a unique vortex lattice due to an order-by-disorder
effect [309, 310]. Further proposed phenomena connected to the intriguing band structure
of the dice lattice include the formation of Dirac-Weyl fermions [182] and exotic fractional
quantum Hall effects [311].

An emulation of the required flux strength of Φ = π/2 with ultracold atoms in the
optical dice lattice could enable access to such intriguing phenomena. However, all lat-
tice plaquette bonds of the dice lattice are pairwise parallel. Hence, the periodic driving
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technique employed for the generation of artificial magnetic fluxes in chapter 4 cannot
directly be applied to the dice lattice.

7.4 Conclusion & outlook

Periodically driven lattice model systems provide an ideal playground for the emulation of
exotic quantum phenomena that are yet to be explored. Both the engineering of tunnel-
ing matrix elements in the state-dependent honeycomb lattice as well as the realization of
plaquette vortices by a rotation of the quantization field in the purely state-dependent po-
larization lattice promise valuable insights into fundamental unresolved problems. Beyond
that, the engineering of peculiar geometries as the geometrically frustrated kagome lat-
tice and the dispersionless dice lattice with a retro-reflected setup represents a promising
prospect for future experiments with ultracold atoms in unconventional driven lattices.

The presented considerations on possible future applications of periodic driving schemes
are far from being complete and the mentioned proposals for the realization of novel
exotic quantum many-body phenomena merely scratch the surface of the vast possibilities
provided by the fast-paced theoretical and experimental progress in the field of ultracold
quantum gases in optical lattices.
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A Data analysis and representation

In this chapter we discuss central aspects concerning data evaluation and presentation.

The behavior of crucial observables such as the maximum-pixel contrast is investigated

in comparison with the peak-contrast and its robustness is verified. Furthermore, de-

fringing algorithms that were utilized for data evaluation of time-of flight images are

described and issues arising for the visualization of data are discussed.

The analysis and representation of data is a crucial aspect to almost every part of natural
sciences. In the following, we discuss specific issues concerning evaluation and represen-
tation of data that are relevant to this thesis.

A.1 Comparison of contrast methods

In chapter 2 we have made use of two very different methods of extracting a measure for
the level of coherence from obtained absorption images. The first one being the momentum

distribution contrast and the latter being the so-called maximum-pixel contrast. As shown
on Fig. 3.2, the momentum contrast relies on the knowledge of the positions of superfluid
momentum peaks. Atoms in these regions are summed and subtracted by a sum over
regions in between the peaks, where no atoms should reside for an ideal superfluid. On the
one hand this method has two decisive advantages: To begin with, it yields per definitionem

a normalized signal due to the summation and normalization over equal surfaces of the
absorption image. Furthermore, the obtained contrast value does not only reveal the level
of coherence in the system but also gives rise to a sign change of the signal if the dispersion
is inverted as it is, e.g., the case for the monochromatic driving schemes discussed in
chapter 3 and 5. However, it can become impractical to evaluate large contrast masks
if the Wannier envelope of the momentum distribution oscillates over a large area due
to periodic driving. The quality of the signal is also prone to fluctuations of the image
position as the location of the superfluid momentum peaks has to be exactly defined. On
the other hand, the maximum pixel contrast is insensitive to such disturbances as simply
a number of pixels with the largest values are averaged in order to obtain a measure
for the degree of coherence in the system. Although this method does not yield any
information concerning the dispersion itself it is, thus, an excellent tool for measuring
excitation processes for systems that result in an overall loss of coherence. To verify the
applicability of the maximum-pixel contrast in comparison with the momentum contrast,
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Figure A.1: Comparison of contrast methods. Spectra shown in a and b depict multi-photon reso-

nances in the driven running-wave 1D-lattice similar to Fig. 3.6c and d. Data for the maximum-pixel

contrast (black) and the momentum peak contrast (gray) match very well.The standard deviation

for the maximum-pixel contrast depicted by error bars is slightly larger compared to the momentum

peak contrast.

data obtained with the two methods is depicted in Fig. A.1. These spectra depict multi-
photon resonances in a driven running-wave 1D-lattice and have already been shown
in Fig. 3.6c and d. For both cases, the maximum-pixel contrast depicted by black data
points is extracted for a number of included pixels of npix = 3. Gray data points depict
the corresponding momentum peak contrast. In order to compare the signals qualitatively,
all data sets have been normalized to a maximum contrast value of 1. Additionally, data
points are connected with lines to emphasise the behavior at the resonances. Clearly, data
sets for both measurements are in good agreement with each other, thus validating the
applicability of the maximum pixel contrast for the extraction of excitation spectra.

The number npix = 3 of included pixels that are averaged to obtain the maximum-
pixel contrast is arbitrary. A small number of pixels may result in a signal that is very
sensitive to even small excitations in the investigated system but may also give rise to a
larger sensitivity to detrimental fluctuations such as faulty CCD-pixels. In chapter 3 we
have mainly employed a very small npix as the analyzed images were not prone to large
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Figure A.2: Maximum-pixel contrast behavior of an excitation spectrum in dependence of the number

of included pixels. Spectra for each value of included pixels are shown as colored lines with a color-

coding corresponding to the color bar on the right hand side. The red line indicates the normalized

standard deviation of the contrast data for a value of npix = 1.

fluctuations. However, it was necessary to include a large number of npix = 103 pixels
in order to obtain comparable spectra of individual measurements in Fig. 3.8. In Fig. A.2
we investigate an excitation spectrum with respect to the number of included pixels in
order to justify this large varying of the data analysis method. The excitation spectrum at
hand is obtained for an isotropically driven triangular lattice over a comparatively large
range of driving frequencies. The maximum-pixel contrast is plotted for npix ranging from
1 to 105 according to the depicted color coding. Although the total value of the contrast
necessarily declines for larger numbers of included pixels, the relevant features indicated
by cusps in the spectrum are clearly retained even for very large npix. Accordingly, it is
legitimate to include even very large numbers of pixels in the contrast evaluation for the
extraction of excitation spectra.

A.2 Color-coded data visualization

Data presented in this thesis is frequently color-coded by mapping scalar values to color,
e.g., for the case of time-of-flight absorption images, potential landscapes and any other
two-dimensional scalar arrays. The sole purpose of such color-coded data visualization is
the unambiguous, easily recognizable depiction of proportions. Nonetheless, the excessive
use of color-codings which explicitly contradict this purpose is still considered a persistent
and wide spread problem in many fields of natural science [312–314]. A paradigm example
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of falsely applied color-coding in data visualization is the use of the so-called rainbow

colormap. Due to its lack of perceptual ordering and its luminance gradients, data is
obscured and additional artifacts may arise from Mach bands. Within this thesis, two such
perceptually unadjusted colormaps have been used, namely for the depiction of the three-
beam lattice potential (see Fig. 2.5, 2.6 , 2.7, 6.1, 6.2, 7.2, 7.5, 7.6) and the two-dimensional
dispersion relation (see 3.5, 4.7, 4.10). Here, the application of distorted colormaps was
chosen in order to emphasize the often rather shallow, but physically relevant minima of
the depicted data. Nonetheless, in most cases the color map is accompanied by equidistant
contour lines which allow for a realistic estimation of the actual data.

All other divergent and sequential color schemes employed within this thesis are ad-
justed with respect to gradients in perception and luminescence. However, they are still
not adjusted to color vision deficiency.

A.3 Defringing algorithms

Time-of-flight absorption images may exhibit a significant amount of interference fringes
that arise from the coherence properties of the detection light. In order to minimize the
detrimental effects of such unwanted fringes onto the signal-to-noise ratio of the obtained
data, two different defringing algorithms have been applied to sets of time-of-flight images
within the scope of this thesis. The basic principle of both approaches is the construction
of a suitable basis from a given set of absorption images that yields optimal pseudo-
reference images which minimize fringes with respect to the corresponding absorption
images. Hereby, the algorithm should be able to extrapolate the fringes appropriately into
the region of interest, i.e., the area of the images where atoms are present.

The first method is based on an iterative construction of the basis set according to a
Gram-Schmidt process [156, 158]. While the algorithm yields good results it is computa-
tionally costly for large image sets and, hence, comparatively slow such that additional
selection processes have to be applied for the basis construction. The second method is
closely related to the independent component analysis discussed in chapter 6 and follows
a suggestion of Ockeloen et al. [315]. Here, the employed calculation of a set of linear
equations is reasonably fast even for large data sets on the order of ∼ 500 images.

A.4 Automated notch-filtering of correlation data

In chapter 5 second-order density density correlations were extracted from sets of time-
of-flight images. In order to ensure reproducibility of the extracted data, all processing
routines have been applied automatically to all sets of data without any selection of images
by the experimenter. Post-processing of data included selection concerning particle num-
ber and width. Furthermore, a normalization and centering procedure of the single-shot
time-of-flight images has been applied as well as filtering with a suitable Hamming fre-
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Figure A.3: Notch-filtering of correlation data. a In the first image, the unfiltered power spectrum

of a correlation signal in the Mott-insulating regime of a staggered 2D-system in the triangular

lattice is shown. Hereby, correlation peaks in the signal correspond to the shallow triangular pattern

that is visible throughout the spectrum. Frequency components with larger amplitudes, e.g., the two

predominant features in the spectrum, correspond to unwanted noise. In the second image, these

regions of the spectrum are filtered out by applying a series of Gaussian notch filters with a width of

three pixels to each pixel above a certain threshold. b Corresponding correlation images of the two

power spectra in a. The filtered image exhibits substantially fewer noise while the noise correlation

peaks remain visible.

quency window function. However, the obtained correlation data still exhibit a significant
amount of periodic noise.

In order to filter such noise from the final correlation matrix, an automated notch filter-
ing procedure is applied to the power spectrum. Here, Gaussian notch filters with a width
of three pixels are applied for each pixel above a certain threshold value. This process is
exemplified in Fig. A.3a where the predominant sources of noise can be easily identified
as localized features in the spectrum in contrast to the extended shallow triangular pat-
tern corresponding to the correlation signal. With the smooth Gaussian notch filtering
of selected pixels rather than pre-defined regions, the resulting correlation image exhibits
reasonably fewer noise while the correlation peaks remain visible as depicted in Fig. A.3b.
Due to the considerable computational expense for the calculation of large numbers of
individual Gaussian filters the method is applied only to the final correlation data rather
than to each individual component of the data set.
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B Correlation analysis of symmetry
breaking

In this chapter we apply the correlation analysis method that was introduced in section

5.4 for the detection of quantum noise correlations to the data sets obtained for the

coupled Ising-XY model presented in chapter 4. The appearance and behavior of anti-

correlation peaks can be attributed to symmetry breaking in accordance with the

interpretation of a thermally driven phase transition.

In chapter 4 we have employed several statistical data analysis tools for the verification of
a (spontaneous) symmetry breaking in the coupled Ising-XY model, namely the Gaussian
probability mixture clustering for the magnetization data of Fig. 4.11 and the model-free
principal- and independent component image analysis. While the independent component
analysis turned out to be impractical for the distinction of different physical processes, the
principal component analysis revealed strong evidence for the entropy-dependent degree
of symmetry breaking at staggered flux strengths close to π.

Here, we present additional evidence of entropy- and flux-dependent symmetry breaking
in the Ising-XY model that relies on the correlation analysis. In section 5.4 this statistical
analysis technique was used in order to detect quantum noise correlations in the deep
Mott-insulating regime of the static and the driven three-dimensional lattice. We can,
however, also employ the correlation analysis for the chiral Néel-superfluid of the weakly-
interacting staggered flux system. In contrast to the deep Mott insulator, the first-order
correlations do not vanish in this regime. Accordingly, the source of correlations in the
Ising-XY data sets are fluctuations in the occupations of the superfluid quasimomentum
peaks (see single-shot images presented in Fig. C.2 to C.4) rather than the second-order
noise correlation signal: The local wave functions of the superfluid can be described as a
superfluid state according to Eq. (5.7) which does not yield any second-order correlations
[316]. With the appearance of first order coherence at the transition from a thermal en-
semble to a Bose-Einstein condensate, second order correlations are completely suppressed
[317–319].

In Fig. B.1 correlation signals of the data sets for all three initial entropies at a max-
imum staggered flux strength of Φ = π. Similar to the noise correlation analysis, the
single shot images have been subjected to a Hamming filter before being processed. How-
ever, no additional notch filtering has been applied to the obtained Fourier spectrum of
the correlation signal as the total correlation magnitude resulting from the occupation
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Figure B.1: Correlation analysis of symmetry breaking for the data sets at maximum staggered

flux strength Φ = π and the three initial entropies S1 < S2 < S3. In addition to the strong positive

correlation signals of the superfluid momentum peaks, negative anti-correlation peaks can be observed

for the two lowest entropies S1 and S2, while no such anti-correlation is present for the largest initial

entropy value S3. Plots of blue solid lines at the sides of the correlation images depict the signal

along the hair cross. Gray lines in the vertical signal indicate the expected positions of anti-correlation

peaks at ky = ±4π/(3a) and ky = ±8π/(3a).

of the superfluid momentum peaks is large compared to the remaining sources of noise.
For all three initial entropies strong correlation signals are evident at the positions of the
superfluid momentum peaks. Cross-shaped fringes with a negative correlation amplitude
around the correlation peaks can be attributed to residual movements of the single-shot
images.

Additionally, a striking feature is evident in the correlation signals: Negative anti-
correlation peaks appear in between the expected positive correlation peaks for the two
lowest initial entropies S1 and S2. Since experiments were performed with a bosonic su-
perfluid, the presence of these signals can only be attributed to the observed symmetry
breaking process as anti-correlations resulting from Hanbury-Brown-Twiss interference of
quantum particles can only arise for fermionic atoms as in Ref. [58]. If one of the two
possible degenerate ground states is occupied, the superfluid atomic ensemble is present
in a single quasimomentum mode corresponding to one of the minima in the dispersion
relation. As the other minimum is not occupied, this results in an anti-correlation be-
tween nearest neighboring superfluid momentum peaks which is clearly visible. Plots at
the sides of the correlation images in Fig. B.1 depict the respective correlation signal along
the centered hair cross in the images. The expected positions of anti-correlations for the
vertical signal at ky = ±4π/(3a) and ky = ±8π/(3a) are indicated by gray lines.

Anti-correlations are strongly pronounced for the lowest initial entropy S1, indicat-
ing a strong symmetry breaking process in accordance with the observed fluctuations of
the magnetization signal (see Fig. 4.12) and the strength of the corresponding principal
component (Fig. 4.14). Similarly, for the intermediate initial entropy S2, anti-correlation
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Figure B.2: Anti-correlation behavior for different flux strengths at all three initial entropies. For

the two lowest entropies S1 and S2, anti-correlation peaks resulting from a bimodal occupation of

the two minima in the engineered dispersion relation are visible for staggered flux strengths close

to the maximum value of π while they vanish for stronger detunings of the magnetic flux. No anti-

correlations can be observed for the largest initial entropy S3 at any value of the flux strength.

peaks are still clearly visible but also less pronounced. In the case of the largest entropy
S3 the anti-correlation signal vanishes completely while the magnitude of the positive
correlation signals decreases only by roughly a factor of two as compared to the low-
est entropy data. However, positive correlation peaks at the positions of the previously
negative anti-correlations cannot be observed as it would be expected by a simultaneous
coherent occupation of both superfluid momentum states. This circumstance can be in-
terpreted in two ways: Either, the obtained signal stems exclusively from quantum noise
correlations of incoherent atoms. The positions of the noise correlations will remain un-
changed due to the lattice driving as they originate from interferences between particles
from the real-space lattice sites as illustrated in Fig. 5.9. Or, the suppression of posi-
tive correlations between nearest neighboring momentum peaks due to the absence of
long-range phase ordering between the two simultaneously occupied modes. In this case,
residual fluctuations of the occupations of nearest neighboring peaks still remain uncor-
related. Nonetheless, the observations of the vanishing of anti-correlations confirms the
interpretation of the thermally driven phase transition from an ordered ferromagnetic to
an unordered paramagnetic phase, which results in the Ising-Z2 symmetry being fully
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restored for the maximum staggered flux strength.
In Fig. B.2 correlation images are depicted for additional data sets of flux strengths dif-

fering from Φ = π. In Accordance with the symmetry breaking behavior, anti-correlation
peaks remain visible for the two lowest entropies even for flux strengths close, but different
to π. For flux strengths far enough detuned from π the system is completely magnetized
in one mode and anti-correlation signal vanishes. Again, anti-correlations are absent for
the largest initial entropy at all flux values.

To conclude, the second-order correlation analysis that was originally employed for the
detection of noise correlations in the Mott-insulating regime also serves as a reliable model-
free statistical analysis tool for the verification of symmetry breaking of the staggered-flux
superfluid in the Ising-XY model. Findings concerning the behavior of anti-correlation
signals substantiate the interpretation of symmetry breaking and the thermally driven
phase transition from an ordered ferromagnetic to an unordered paramagnetic phase.
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C Single-shot symmetry breaking
images

Here we show examples of the single-shot images resulting from the Ising-XY model

system at maximum flux strength that were used in the respective data sets shown in

chapter 4.

The (spontaneous) breaking of the Z2 symmetry in the coupled Ising-XY model discussed
in chapter 3 was evidenced by single-shot fluctuations of quasimomentum mode occu-
pations in the time-of-flight images. Both the magnetization data extracted from the
absorption images as well as a statistical model-free data analysis revealed the increase
of fluctuations corresponding to a breaking of the Z2 symmetry close to the maximum
flux strength of Φ = π for sufficiently low initial entropies. As an example of the analyzed
experimental signal, the first 99 single-shot optical density images, obtained at a maxi-
mum flux strength of π, that contribute to the data shown in Fig. 4.10 to Fig. 4.17 are
presented in the following for all three values of the initial entropy.

For the first two data sets with initial entropies S1 and S2, symmetry breaking was
evidenced by various data processing methods while the largest initial entropy S3 did
not show such a behavior. Fig. C.1 depicts nine single-shot images for the three initial
entropies for comparison.
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Figure C.1: Single-shot images for the three initial entropies at a staggered flux strength of Φ = π.
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Figure C.2: Single-shot images at a staggered flux strength of Φ = π and an initial entropy S1.
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Figure C.3: Single-shot images at a staggered flux strength of Φ = π and an initial entropy S2.
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Figure C.4: Single-shot images at a staggered flux strength of Φ = π and an initial entropy S3.
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D Experimental imperfections

In this chapter we describe several experimental imperfections of the BEC-apparatus

that may lead to detrimental influences on the experiments presented throughout this

thesis.

Experimental setups are always subject to a certain amount of imperfections. Due to
their fragile nature, ultracold quantum gases are extremely prone to any kind of detri-
mental imperfections. In particular, destructive detection techniques such as time-of-flight
absorption imaging require a high degree of stability: All such experiments rely on the
reproducibility of conditions for the initially generated quantum gas for each experimental
cycle.

In the following, we will briefly discuss two major imperfections of the experimental
setup used throughout this thesis and evaluate their respective influences on the performed
studies.

D.1 Measured three-beam lattice geometry

The running-wave three-beam lattice setup exhibits slight deviations from the ideal 120°

configuration. It should be noted, however, that the main reason for such deviations is not
an imperfect alignment of the lattice laser beams but rather limitations of the accessible
geometries due to the shape of the vacuum setup and the magnetic compensation- and
quantization field Helmholtz coils.

Wave vectors Angles Lattice constants

∡(k1,k2) 120.4° ± 0.4° |a1| = 560.6 ± 1.0 nm

∡(k2,k3) 117.1° ± 0.2° |a2| = 545.9 ± 0.8 nm

∡(k1,k3) 122.4° ± 0.4° |a1 − a2| = 554.3 ± 1.0 nm

Table D.1: Measured angles and lattice constants of the three-beam lattice. Values were determined

by evaluating a set of linear equations arising from the positions of quasimomentum peaks of Fig. D.1.

Deviations form the ideas case of all ∡(ki, kj 6=i) = 120° and |ai| = 553.3 nm are evident.
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Figure D.1: Kaptiza-Dirac diffraction patterns of the optical lattice. a The diffraction pattern of

the triangular lattice can be used to determine the relative angles between the three lattice beams.

c Similar diffraction patterns for pairs of lattice beams imaged along the lattice plane. The dashed

line indicates ideal lattice plane orientation. Slight misalignments with respect to the ideal plane are

evident.

The actual experimental alignment of laser beams can be derived from a Kapitza-Dirac
diffraction of the ultracold atomic ensemble [320–322]. For this purpose, a Bose-Einstein
condensate in a crossed dipole trap is subjected to a short pulse duration τKD of the lattice
potential on the order of τKD ≈ 10µs. The diffraction of atoms on the interference pattern
populates many higher momentum components as shown in Fig. D.1a. The large number
of momentum peaks allow for a reliable calculation of the three-beam lattice angles that
are listed in Tab. D.1. In Addition, the resulting lattice constants of the running-wave 1D-
lattice are shown. Note that all experiments that were performed in such a lattice within
this thesis (see chapter 3) have employed the lattice comprised of the k2 and k3 laser
beams. The determination of the three-beam lattice angles has initially been performed
by C. Ölschläger [179].

An central assumption that is applied for the calculation of the values in Tab. D.1
is that all lattice beams are perfectly aligned in the xy-plane of the lattice. However,
this condition is not exactly fulfilled as evident from the corresponding Kapitza-Dirac
diffraction patterns of running-wave 1D-lattices imaged along the x-axis that are shown
in Fig. D.1b. Hereby, the ideal lattice plane orientation is determined by the time-of-flight
trajectory of atoms. The 1D-lattice comprised of the k2 and k3 beams cannot be imaged
in this direction (as it solely extends along the x-direction). Nonetheless, the deviations
from the ideal lattice plane are small and the assumption of a perfectly aligned plane
can be justified a posteriori: The use of the experimentally determined three-beam lattice
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Residual oscillations in the crossed dipole trap
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Figure D.2: Oscillations of the crossed dipole trap. a Time resolved measurement of vertical (black)

and horizontal (gray) positions of a BEC in the elliptical crossed dipole trap. Oscillations in the

vertical direction are clearly visible. b The Fourier spectrum of the data in a reveals a clear peak

for the vertical oscillation at a frequency of 50 Hz. c Quadrupole-like oscillations of the condensate

width in both directions with a phase-shift of π. d The corresponding Fourier spectrum for data in

c exhibits distinct peaks at 50 Hz for both components.

alignment for calculations concerning the band structure and the Bessel-renormalization
for the driving experiments in chapter 3 lead to an excellent agreement with the obtained
data.

D.2 Residual oscillations in the crossed dipole trap

The harmonic confinement of the elliptical crossed dipole trap that has been used in most
experiments throughout this thesis is chosen as small as possible in order to minimize the
inhomogeneity of the atomic ensemble. Due to the small final laser power of the dipole
trap, the Bose-Einstein condensate is extremely sensitive to variations of the laser power.
Occasionally, we observe residual oscillations of the condensate along the vertical direction
in the dipole trap while the horizontal position remains constant (see Fig. D.2a).
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With a pronounced frequency of 50 Hz in the Fourier spectrum (Fig. D.2b) these os-
cillations likely stem from detrimental induction effects of the line voltage at the same
frequency. Accompanied by the vertical oscillation of the BEC position are quadrupole
oscillations of the condensate width with opposing phases as shown in Fig D.2c. Similar
to the vertical oscillations they exhibit a distinct peak at 50 Hz in the Fourier spectrum
of Fig. D.2d.

The appearance of these dynamics may result in unwanted excitations in the optical
lattice and special care has to be taken in order to avoid such oscillations caused by the
line voltage.
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E Physical constants and rubidium
line data

In the following we summarize physical constants relevant to this thesis. In addition,

transition data of the utilized D-lines in 87Rb is presented.

In the following, physical constants used for calculations throughout this thesis are sum-
marized. Values are taken from the 2010 list of the Committee on Data for Science and

Technology (CODATA) [323]. Furthermore, properties and relevant transition line data
of 87Rb are presented stem from Ref. [167] and references therein.

List of physical constants:

Quantitiy Symbol Value

Speed of light in vacuum c 2.9979245 × 108 m/s

Permeability of vacuum µ0 4π × 10−7N/A

Permittivity of vacuum ǫ0 8.8541878 × 10−12F/m

Planck’s constant
h 6.6260696 × 10−34 Js

~ 1.0545717 × 10−34 Js

Elementary charge e 1.6021765 × 10−10 C

Electron mass me 9.109382 × 10−31 kg

Bohr radius aB 0.5291772 × 10−10 m

Bohr-Procopiu magneton µB
9.27400866 × 10−24 J/T

h · 1.3996246 MHz/G

Atomic mass unit u 1.6605388 × 10−27 kg

Boltzmann’s constant kB 1.3806504 × 10−23 J/K

Gravitational acceleration g 9.80665 m/s2
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Physical properties of rubidium 87:

Atomic number Z 37

Relative natural abundance η(87Rb) 27.83 %

Atomic mass m
86.9091805 u

1.4431606 × 106 kg

Nuclear spin I 3/2

s-wave scattering length a0, . . ., a2F for F = 1 a0 110.0 ± 4.0 aB

a2 107.0 ± 4.0 aB

s-wave scattering length a0, . . ., a2F for F = 2 a0 89.4 ± 3.0 aB

a2 94.5 ± 3.0 aB

a4 106.0 ± 4.0 aB

Rubidium 87 D2 (52S1/2 → 52P3/2) transition properties:

Frequency ω0 2π · 384.2304844685 THz

Transition energy ~ω0 1.589049439 eV

Wavelength (vacuum) λ0 780.241209686 nm

Wave number (vacuum) kL/2π 12816.54938993 cm−1

Lifetime τ 26.24 ns

Decay rate/
Γ

38.11e6 × 106 s−1

Natural line width (FWHM) 2π · 6.065 MHz

Rubidium 87 D1 (52S1/2 → 52P1/2) transition properties:

Frequency ω0 2π · 377.1074635 THz

Transition energy ~ω0 1.55959099 eV

Wavelength (vacuum) λ0 794.9788509 nm

Wave number (vacuum) kL/2π 12578.950985 cm−1

Lifetime τ 27.70 ns

Decay rate/
Γ

36.10 × 106 s−1

Natural line width (FWHM) 2π · 5.746 MHz
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