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Kurzfassung

Die Arbeit, die in dieser Dissertation vorgestellt wird, hebt die An-
wendbarkeit der Bestimmung und die Interpretation der Gittersus-
zeptibilitäten in stark korrelierten Materialien auf das Niveau, das
auch der Dynamischen Molekularfeldtheorie, unterstützt durch moder-
ne zeitkontinuierliche Quantum Monte Carlo Algorithmen, zugänglich
ist.

Numerische Mittel werden vorgestellt, um diese Berechnungen für
mehrorbitalige Modelle zu ermöglichen und Interpretationen des re-
sultierenden allgemeinen Frequenz- und Wellenzahlvektor-abhängigen
orbitalen Suszeptibilitätstensors werden im Hinblick auf experimentell
beobachtbare Größen und auf intern fluktuiernde Moden diskutiert.

Dies wird angewandt auf verschiedene reale Systeme, um die orbi-
talen Beiträge zu der Spin Suszeptibilität an inkommensurablen Wel-
lenvektoren in Sr2RuO4, den Übergang des Charakters der magneti-
schen Suszeptibilität mit Dotierung in NaxCoO2 und die nichtlokalen
Ordnungsfluktuationen des

√
3×
√

3 Gitter-Reorganisationsübergangs
in LiVS2 zu diskutieren.
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Abstract

The work presented in this thesis elevates the applicability of the cal-
culation and interpretations of lattice susceptibilities of strongly cor-
related materials to a similar ground as that accessible to dynamical
mean field theory supplemented with modern continuous time quan-
tum Monte Carlo algorithms.

Numerical means are introduced to facilitate these calculations for
multiorbital models and interpretations of the resulting general fre-
quency and wave vector dependent orbital tensor susceptibility are
discussed in terms of experimental observables and intrinsic fluctuat-
ing modes.

Subsequently, these are applied to several realistic materials, to
discuss orbital contributions to the incommensurate spin susceptibility
peaks in Sr2RuO4, the cross-over of magnetic excitation character with
doping in NaxCoO2 and the non local order fluctuations of the

√
3×
√

3
lattice reconstruction transition in LiVS2.
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One

Preface

The term ‘generalized’ susceptibility is used with vastly different
meanings throughout the different fields of condensed matter physics.
While it is unambiguous that the susceptibility χ is the response of
some observable to some applied force, with the probably easiest ex-
ample being the response of the magnetization to an applied uniform
static magnetic field, the notion of a ‘generalization’ thereof depends
on what you consider standard.

Inelastic neutron scattering (INS) experiments highlight the wave-
vector q dependence of the spin susceptibility as generalized, as op-
posed to the uniform susceptibility (χ(q = 0)) available through e.g.
measurements with a superconducting quantum interference device
(SQUID) and the local susceptibility (

∑
q χ(q)) available from nuclear

magnetic resonance (NMR) experiments.

In accordance with the notion that a generalized Hubbard model
is one with several orbital degrees of freedom per site (which also is
an ambiguous notation), a orbital tensor susceptibility χijkl has been
called a generalized susceptibility [Pav14]. This quantity describes
the response of a very general field with two orbital degrees of free-
dom Flk on an equally general expectation value and is too general to
compare to experimental observables, yet contains those when traced
out correctly.

When diagrammatic schemes for the calculation of susceptibili-
ties are sought, it is necessary to also consider not only the ‘traced
out’ quantity χ(ω), but also the fermionic inner degrees of free-
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1. Preface

dom (details in section 2.1). In that context, generalized is used
[KL10, RVT12] to distinguish between the full three frequency sus-
ceptibility χ(iνn, iνn′, iωm) in fermionic (iνn, iνn′) and bosonic (iωm)
Matsubara frequencies and the traced out, physical quantity χ(iωm).

While for model studies that target one specific of these aspects,
an isolated, model based treatment might be sufficient, a physically
sound description of strongly correlated multiorbital materials has to
account for all those of the above mentioned properties that appear
in the material at hand.

This work addresses all of the above, the most general suscep-
tibility χσσ

′
ijkl(q, iνn, iνn′, iωm) and adds one more possible meaning of

what generalized means to this plethora by identifying the dominant
contribution to this general susceptibility detached from experimental
practicability, but enriched with insight about the nature of the inner
fluctuations.

After establishing the toolbox necessary for the calculation and
handling of this quantity in chapter 2, with special emphasize on a
numerical advancement in its representation through Legendre poly-
nomials in section 2.2, which greatly reduces the numerical expense
and thus facilitates the calculations in the remainder of this work, a
great part of this work thematizes the interpretation of such general
quantities, by example or by careful analysis.

Starting in chapter 3, an interpretation of a multiorbital suscep-
tibility is presented in terms of eigenmodes. This gives access to the
internal fluctuations of a system dispatched from the existence of a
corresponding experimental means of measurement.

In chapter 4, this is used to resolve the orbital contributions to
the magnetic fluctuations of Sr2RuO4, revealing non-trivial behavior
for different features throughout the Brillouin zone, of which the most
prominent is a pronounced incommensurate peak in the spin suscepti-
bility. Additionally, section 4.2 introduces a further numerical benefit
for the calculation of dynamical susceptibilities by including knowl-
edge about the structure of the fermionic degrees of freedom in the
transformation. Determining the dynamical spin susceptibility of this
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three-orbital model in a quality apt for analytic continuation would
hardly be possible otherwise.

Chapter 5 discusses a simple two-orbital model. Its fluctuating
modes are considered for illustrative purposes, giving a physical pic-
ture for all of them, thus establishing means of interpretation for the
fourth rank spin-orbital susceptibility tensor.

This work climaxes in the thorough investigation of two further
realistic strongly correlated materials, NaxCoO2 and LiVS2.

The former, discussed in chapter 6, while being seemingly innocent
with its one strongly correlated a1g-like orbital per site, has a surpris-
ingly rich multitudinousness of physical regimes, most of which will
be addressed here, namely ferromagnetic correlation for low sodium
doping, a temperature dependent cross-over to antiferromagnetic cor-
relations for high doping that lead to an A-type antiferromagnetic
phase at low temperatures, a large Seebeck coefficient with an unusual
temperature dependence and a kagome charge ordering at x = 2

3 . Ex-
perimentally, many of these properties are only observed indirectly,
e.g. the antiferromagnetic correlation at low doping by the Korringa
ratio. The full q and ω dependence adds to the physical picture by
clarifying the notion of ‘antiferromagnetic’ in this frustrated material
along the doping x and even discovering an unprecedented excitation
mode in the imaginary part of the dynamical K-point susceptibility
at unusually high energy.

The latter, LiVS2, which is discussed in chapter 7, shows fewer, yet
more intricate physical effects, that really requires the whole ‘general’
susceptibility for a complete physical picture. Below T ≈ 310K, a√

3 ×
√

3 reconstruction on the layered quasi two-dimensional trian-
gular vanadium layers appears, described by an inherently nonlocal
order parameter of vanadium t2g orbitals. In a considerable numerical
effort, this order parameter is unveiled.
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Two

Theoretical framework

2.1 On linear response

Suppose a generalized force δF ′∆(r, τ) in space coordinates r′ and imag-
inary time τ enters the Hamiltonian H by coupling to an operator
δX̂ ′∆(r, τ).1

H = H0 +HδF′∆, HδF ′∆ =

∫
drδF ′∆(r, τ)δX̂ ′∆(r, τ) .

where H0 denotes the unperturbed Hamiltonian.
δX̂(r, τ) = X̂(r, τ) −

〈
X̂(r)

〉
0

and
〈
· · ·
〉

0
denotes the thermal

expectation value in the absence of perturbation.
The simplest example is a (potentially staggered) magnetic field

in z-direction (δF ′∆(r, τ) = Hz(r, τ)) that couples through the spin

operator (δX̂ ′∆(r) = Sz(r)). Within a linear response formulation, the
effect on the deviation of an expectation value of a different operator
X̂Γ from its unperturbed reference point

δXΓ(r, τ) =
〈
X̂Γ(r, τ)−

〈
X̂Γ(r, τ)

〉
0

〉

will depend on this generalized force δF ′∆ to linear order, which is a
reasonable approximation to realistic materials as long as the general-
ized force is weak compared to the internal correlations of the system.

δXΓ(r, τ) =

∫
dr′dτ ′δF ′∆(r′, τ ′)χΓ∆(r, τ ; r′, τ ′) +O(F ′2∆ ) (2.1)

1The notations here loosely follow that of [AS10]

13



2. Theoretical framework

A very large part of this present work addresses the problem to de-
termine these susceptibilities χΓ∆ from microscopic considerations for
realistically modeled strongly correlated materials and the question
what physical insight can be gained from them once they are deter-
mined in a physically sound approximation.

To this end, it is worthwhile to note one implication already ob-
servable in equation (2.1). Later chapters will repeatedly deal with
cases in which some susceptibility χΓ∆ diverges when approaching a
critical model parameter like interaction strength or temperature. In
that cases, even an infinitesimal fluctuation in the generalized force
δF ′∆ (which will always be present in a realistic surroundings) can
lead to a sizable expectation value δXΓ, hence the system can sponta-
neously develop an non-zero expectation value δXΓ, indicating a phase
transition.

The one-particle operators X̂Γ(r, τ) and X̂ ′∆(r′, τ ′) have the second
quantized form

X̂Γ(r, τ) =
∑

AB

c†A(r, τ)X
(Γ)
ABcB(r, τ) (2.2)

X̂ ′∆(r′, τ ′) =
∑

CD

c†C(r′, τ ′)X ′(∆)
CD cD(r′, τ ′) .

The uppercase Latin indices denote some previously chosen one-
particle basis, often indicating a set of quantum numbers, e.g. spin
and orbital degree of freedom.

The action in Grassmann variables c̄ and c

S[δF ′∆, c̄, c] = S0[c̄, c] + δS[δF ′∆, c̄, c]

consists of the unperturbed action S0 and

δS ′[F ′∆, c̄, c] =

∫
dτHδF ′∆ =

∫
dr′dτ ′δF ′∆(r′, τ ′)δX̂ ′∆(r′, τ ′) .

To get the response of the expectation value

δXΓ(r, τ) = Z−1

∫
D [c̄, c] e−S0δX̂Γ(r, τ)e−

∫
dr′dτ ′δF ′∆(r′,τ ′)δX̂∆(r′,τ ′)

14



2.1. On linear response

to linear order in δF ′∆, compare

δXΓ(r, τ) =Z−1

∫
D [c̄, c] e−S0δX̂Γ(r, τ)

(1−
∫
dr′dτ ′δF ′∆(r′, τ ′)δX ′∆(r′, τ ′) +O(δF ′2∆ ))

to equation (2.1), which yields (with
〈
δX̂Γ

〉
0

= 0 by definition)

χΓ∆(r, τ, r′, τ) =−
〈(
X̂Γ(r, τ)−

〈
X̂Γ

〉
0

)(
X̂ ′∆(r′, τ ′)−

〈
X̂ ′∆
〉

0

)〉
0

=−
〈
δX̂Γ(r, τ)δX̂ ′∆(r′, τ ′)

〉
0
. (2.3)

Hereafter, within the linear response regime, all expectation values are
evaluated in the unperturbed system and the corresponding index on
the angle brackets will be dropped. In most cases of interest, the un-
perturbed expectation values

〈
X̂Γ

〉
and

〈
X̂ ′∆
〉

will be zero, e.g. when

dealing with the magnetization X̂ = Sz in a paramagnetic state.
Of more physical insight than the equation (2.3) is usually its

Fourier transform

χΓ∆(q, iωm) =

∫
d(r−r′)d(τ − τ ′)eiq(r−r′)eiωm(τ−τ ′)χΓ∆(r−r′, τ − τ ′)

where ωm = 2mπT is a bosonic Matsubara frequency and use was
made of the fact that for homogeneous materials with no explicit time-
dependence of the Hamiltonian χ(r, τ, r′, τ ′) = χ(r−r′, τ−τ ′) depends
on spatial- and (imaginary) time-differences only.

Numerical approaches (like the dynamical mean field theory
(DMFT)-like approximation explained in section 2.2, which is used
throughout this work) will produce an approximate expression for the
general susceptibility tensor

χABCD(q, iωn) = −
∫
d(r− r′)d(τ − τ ′)eiq(r−r′)eiωn(τ−τ ′)

〈
Tτc†A(r, τ)cB(r, τ)c†C(r′, τ ′)cD(r′, τ ′)

〉
.
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2. Theoretical framework

Specific susceptibilities like the spin susceptibility χm = 〈SzSz〉 or the
charge susceptibility χc = 〈δNδN〉 (δN = N − 〈N〉0 is the devia-
tion of the occupation from its unperturbed value) can be obtained by
using the corresponding operators through equation (2.2) and equa-
tion (2.3). This will be demonstrated explicitly for a simple case in
the following. Later on, in chapter 3, a more conclusive way to resolve
the relevant contributions to χABCD will be presented.

But before coming to that, it is instructive to separate flavor- and
index part of χABCD. The notation with this separation is an ongoing
source of trouble. The notation used throughout this work is that a
flavor denotes a quantity conserved for each lattice site2, in which the
susceptibility is quadratic, while it is quartic in an index. A flavor
will in all the cases discussed in this work be a spin and notation will
accordingly be σ, but in certain cases also other quantum numbers may
qualify. In cubic crystal symmetry for example, with an (somewhat
artificial) electronic interaction of the type

Hint = U
∑

i

n↑in↓i

the susceptibility will also depend only quadratic on orbitals. In that
case, an flavor will consist of a pair of spin- and orbital quantum
numbers. In all cases discussed in this work however, spins will be
the only quadratic dependence of the susceptibility and consequently,
flavor will be used synonymously to spin and index synonymously to
orbital.

The way the flavor part dependence reduces can be seen by writing
the susceptibility tensor χABCD = χσi

σ′
j
σ′′
k
σ′′′
l as a matrix χ in super-

indices (σi
σ′
j ) and (σ

′′′
l

σ′′
k ) (Note the switched order in the second super-

2In a Hubbard model, e.g. the spin per site is not a conserved quantity, in a mean-field
treatment however, it is.
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2.1. On linear response

index) which yields the structure3

χ =




↑↑ ↓↓ ↑↓ ↓↑
↑↑ A1 B1 0 0
↓↓ B2 A2 0 0
↓↑ 0 0 C1 0
↑↓ 0 0 0 C2


 .

The flavor part is explicitly noted (again the example used is for spins,
but the arguments do not rely on that) and the elements are to be un-
derstood as blocks in {ij} and {lk}. Several blocks are zero due to con-
servation of flavor, decoupling ‘longitudinal’ (σσσ′σ′) and ‘transversal’
(σσ′σ′σ) part which thus justifies to treat those separately. This work
focuses onto the longitudinal part, dropping one spin-index per super-
index, e.g. using the shorthand notation χσσ

′
ijkl ≡ χσi

σ
j
σ′
k
σ′
l .

In a paramagnetic state, A1 = A2, B1 = B2, C1 = C2 and
A1 = A1T , A2 = A2T , B2 = B2T , C1 = C1T , C2 = C2T . Thus χ is

not Hermitian in general but symmetric in the ω = 0-case, where it is
also real. Note how this matrix splits into smaller blocks

Touching ground again with experimentally observable susceptibil-
ities, the magnetic susceptibility

χm(q = Γ, ω = 0) ≡ ∂ 〈Sz〉
∂Hz

will serve as an example for the orbital contributions to these. Here,
the generalized force δF ′∆(r) = Hz couples to the magnetic moment

δX̂ ′∆(r) = Sz. Also, the variation in δXΓ(r) = 〈Sz〉 is sought.

In such a case the relevant concretion of the physical susceptibility

3Wave vector dependence and (Matsubara) frequency have been dropped in this struc-
ture discussion
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2. Theoretical framework

χσσ
′

ijkl(ω) is readily available from equation (2.3)

χm(q, iωn) =

∫
d(r− r′)d(τ − τ ′)eiq(r−r′)eiωn(τ−τ ′) 〈TτSz(r, τ)Sz(r′, τ ′)〉

=
~2

4

〈
Tτ
∑

i

(c†↑ic↑i − c
†
↓ic↓i)

∑

i

(c†↑ic↑i − c
†
↓ic↓i)

〉
q,iωn

.

The second line introduces a shorthand notation for the Fourier trans-
formation and includes the representation of the operators in line with
equation (2.2).

E.g. for a two-orbital problem

χm = χ↑↑1111 + χ↑↑1122 + χ↑↑2211 + χ↑↑2222

−χ↑↓1111 − χ↑↓1122 − χ↑↓2211 − χ↑↓2222

−χ↓↑1111 − χ↓↑1122 − χ↓↑2211 − χ↓↑2222

+χ↓↓1111 + χ↓↓1122 + χ↓↓2211 + χ↓↓2222 ,

which can be cumbersome but is straightforward.

2.2 Lattice susceptibilities from a local
approximation

After the introduction of DMFT [MV89,GK92] and the introduction
of the calculation of lattice susceptibilities [ZH90, Jar92] in a corre-
sponding manner only very shortly after, several reviews have been
given on both subjects [GKKR96, MJPH05, KSH+06], putting them
well within the canon of available formalism for the investigation of
strongly correlated materials and models.

Yet, while DMFT blossomed, only very few uses of a rigorous
calculation of lattice susceptibilities through a local approximation
to the irreducible vertex have been published (e.g. [Jar92, JMHM01,

18



2.2. Lattice susceptibilities from a local approximation

MJPH05, HAH08]) and those that were addressed problems with
one orbital per site only. Recently, a new wave of publications
[HBR+08,BHR+08,LLM08] addressing susceptibilities in DMFT (and
extensions thereof) appeared, when the two-particle Green’s function
was also identified as a vital ingredient in extensions around DMFT,
such as dual fermion [RKL08,RKLG09] and the dynamical vertex ap-
proximation (DΓA) [TKH07] and thus doubled in that role.

Similarly, although most analytic properties of the two-particle
Green’s function and vertex have been long known [AGD75], a rigorous
account of these properties for the use within DMFT and its extensions
was not until very recently [RVT12].

Even fewer publications addressed rigorous DMFT susceptibili-
ties in realistic materials [LLFH11, WLH+14]. Susceptibilities for a
two-orbital model have been studied by Kuneš et al. [KA14]. They
did so by separating the low- and high-frequency parts of the Bethe-
Salpeter equation (BSE) and consider an asymptotic form for the lat-
ter [Kun11].

The manuscript [BHF+11], that is reprinted in the following, dis-
cusses the calculation of lattice susceptibilities in a DMFT-like local
approximation and addresses the numerical challenges. It proposes an
orthogonal Legendre-polynomial based basis for the numerical repre-
sentation of the one- and two-particle Green’s function and assesses
their use on concrete examples.

Many subsequent work has directly profited from the use of this
basis for DMFT calculations of various systems [DFM+12, GPPL12,
HPW12,HWD12,HW12,KR12,KW12,NAAvdL12,FGKP13,SYŞ+13,
HA13, XRvR+13, BGJV14, BL15, GAC14, HBS+14, HWW14, NA14,
NSA14,SH14], while a widespread adoption of the Legendre basis for
two-particle quantities has yet to happen. In this work, three publi-
cations that went this route will be discussed [BL12, BL14, BLKL14]
and an additional two systems will be discussed in the following chap-
ters. This will hopefully do away with the longstanding prejudice that
such calculations are too cumbersome for realistic material focused
applications.

19



2. Theoretical framework

Additionally, some works investigate further improvements and ad-
vantages of the representation of the Green’s function also for cases
other than its Monte Carlo accumulation. Huang and Du [HD12] in-
vestigated the use of integral kernels to filter fluctuations caused by the
truncation in Legendre coefficients. This trades the property that the
transformation between the polynomial basis and Matsubara frequen-
cies is unitary for a faster converging expansion. While the unitarity
of the transformation is analytically satisfactory, the expansion for the
one-particle Green’s function does not existencially rely on it. For the
two-particle Green’s function however, this approach is not applicable.

Arsenault et al. [ALBvLM14] benefited from the small number
of parameters that carry already the full information about the one-
particle Green’s function, when applying machine learning methods to
the Anderson impurity model.

An improvement for the Legendre basis for the calculation of dy-
namical susceptibilities will be discussed in section 4.2.
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Orthogonal polynomial representation
of imaginary-time Green’s functions

Reprinted with permission from

L. Boehnke, H. Hafermann, M. Ferrero,
F. Lechermann, and O. Parcollet

Physical Review B 84, 075145 (2011) (Editor’s Suggestion).

c© 2011 by the American Physical Society

The reference numbering used in this reprinted article is only valid
within this specific article.
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Orthogonal polynomial representation of imaginary-time Green’s functions

Lewin Boehnke,1 Hartmut Hafermann,2 Michel Ferrero,2 Frank Lechermann,1 and Olivier Parcollet3
1I. Institut für Theoretische Physik, Universität Hamburg, D-20355 Hamburg, Germany

2Centre de Physique Théorique, Ecole Polytechnique, CNRS, F-91128 Palaiseau Cedex, France
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We study the expansion of single-particle and two-particle imaginary-time Matsubara Green’s functions of
quantum impurity models in the basis of Legendre orthogonal polynomials. We discuss various applications within
the dynamical mean-field theory (DMFT) framework. The method provides a more compact representation of the
Green’s functions than standard Matsubara frequencies, and therefore significantly reduces the memory-storage
size of these quantities. Moreover, it can be used as an efficient noise filter for various physical quantities within
the continuous-time quantum Monte Carlo impurity solvers recently developed for DMFT and its extensions. In
particular, we show how to use it for the computation of energies in the context of realistic DMFT calculations
in combination with the local density approximation to the density functional theory (LDA+DMFT) and for the
calculation of lattice susceptibilities from the local irreducible vertex function.

DOI: 10.1103/PhysRevB.84.075145 PACS number(s): 71.27.+a, 71.10.Fd

In recent years, significant progress has been made in
the study of strongly correlated fermionic quantum systems
with the development of methods combining systematic
analytical approximations and modern numerical algorithms.
The dynamical mean-field theory (DMFT) (for a review,
see Ref. 1) and its various extensions2–6 serve as successful
examples for this theoretical advance. On the technical side,
important progress was made in the solution of quantum
impurity problems, i.e., local quantum systems coupled to a
bath (self-consistently determined in the DMFT formalism).
In particular, a new generation of continuous-time quantum
Monte Carlo (CTQMC) impurity solvers7–10 has emerged that
provide unprecedented efficiency and accuracy (for a recent
review, see Ref. 11).

In practice, several important technical issues still remain.
First, while the original DMFT formalism is expressed in
terms of single-particle quantities (Green’s function and self-
energy), two-particle quantities play a central role in the formu-
lation of some DMFT extensions [e.g., dual fermions4,12–14 and
D�A (Ref. 3)] and in susceptibility and transport computations
in DMFT itself. They typically depend on three independent
times or frequencies, and spatial indices. Therefore, they are
quite large objects that are hard to store, manipulate, and
analyze, even with modern computing capabilities. Developing
more compact representations of these objects and using them
to solve, e.g., the Bethe-Salpeter equations is therefore an
important challenge.

A natural route is to use an orthogonal polynomial repre-
sentation of the imaginary-time dependence of these objects.
While the application of orthogonal polynomials has had
productive use in other approaches to correlated electrons,15,16

in this paper we show how to use Legendre polynomials to
represent various imaginary-time Green’s functions in a more
compact way and show their usefulness in some concrete
calculations.

A second aspect is that modern CTQMC impurity solvers
still have limitations. One well-known problem is the high-
frequency noise observed in the Green’s function and the
self-energy (see, e.g., Fig. 6 of Ref. 17). Even though this
is in general of little concern for the DMFT self-consistency

itself, it can become problematic when computing the energy,
since the precision depends crucially on the high-frequency
expansion coefficients of the Green’s function and self-energy.
An important field of application involves realistic models
of strongly correlated materials in through the combination
with the local density approximation (LDA+DMFT).18 In this
paper, we show that physical quantities such as the Green’s
function, kinetic energy, and even the coefficients of the high-
frequency expansion of the Green’s function can be measured
directly in the Legendre representation within CTQMC, and
that the basis truncation acts as a very efficient noise filter:
the statistical noise is mostly carried by high-order Legendre
coefficients, while the physical properties are determined by
the low-order coefficients.

This paper is organized as follows: Section I is devoted
to single-particle Green’s functions. More precisely, in Sec.
I A, we introduce the Legendre representation of the single-
particle Green’s function and how it appears in the CTQMC
context; we then illustrate the method on the imaginary-time
(Sec. I B) and imaginary-frequency (Sec. I C) Green’s function
of a standard DMFT computation; in Sec. I D, we discuss
the use of the Legendre representation to compute the
energy in a realistic computation for SrVO3. Section II is
devoted to two-particle Green’s functions: We first present
the expansion in Sec. II A and illustrate it on an explicit
DMFT computation of the antiferromagnetic susceptibility
in Sec. II B, followed by the example of a calculation of
the dynamical wave-vector resolved magnetic susceptibility.
Additional information can be found in the appendixes.
Appendix A gives some properties of the Legendre polynomi-
als relevant for this work. Appendix B discusses the rapid de-
cay of the Legendre coefficients of the single-particle Green’s
function. Appendix C first derives the accumulation formulas
for the single-particle and two-particle Green’s functions in
the hybridization expansion CTQMC (CT-HYB) algorithm8

(while these formulas have been given before,8,17 the proof
presented here aims to explain their resemblance to a Wick’s
theorem). We then give the explicit formulas in the Legendre
basis. For completeness, we provide an accumulation formula
for the continuous-time interaction expansion (CT-INT)7 and
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auxiliary field (CT-AUX)10 algorithms in Appendix D. Finally,
in Appendix E, we derive the expression for the matrix that
relates the coefficients of the Green’s function in the Legendre
representation to its Matsubara frequency representation.

I. SINGLE-PARTICLE GREEN’S FUNCTION

A. Legendre representation

We consider the single-particle imaginary-time Green’s
function G(τ ) defined on the interval [0,β], where β is the
inverse temperature. Expanding G(τ ) in terms of Legendre
polynomials Pl(x) defined on the interval [−1,1], we have

G(τ ) =
∑
l�0

√
2l + 1

β
Pl[x(τ )] Gl, (1)

Gl = √
2l + 1

∫ β

0
dτ Pl[x(τ )] G(τ ), (2)

where x(τ ) = 2τ/β − 1 and Gl denotes the coefficients of
G(τ ) in the Legendre basis. The most important prop-
erties of the Legendre polynomials are summarized in
Appendix A.

We note that a priori different orthogonal polynomial bases
(e.g., Chebyshev instead of Legendre polynomials) may be
used, and many of the conclusions in this paper would remain
valid. The advantage of the Legendre polynomials is that
the transformation between the Legendre representation and
the Matsubara representation can be written in terms of a
unitary matrix, since Legendre polynomials are orthogonal
with respect to a scalar product that does not involve a weight
function (see below and Appendix E). In this paper, therefore,
we restrict our discussion to the Legendre polynomials.

On general grounds, one can expect the Legendre repre-
sentation of G(τ ) to be much more compact than the standard
Matsubara representation: in order to perform a Fourier series
expansion in terms of Matsubara frequencies, G(τ ) has to
be antiperiodized for all τ ∈ R, while the full information is
already contained in the interval [0,β]. As a result, the Green’s
function contains discontinuities in τ that result in a slow
decay at large frequencies (typically ∼1/νn). On the other
hand, expanding G(τ ), which is a smooth function of τ on
the interval [0,β], in terms of Legendre polynomials yields
coefficients Gl that decay faster than the inverse of any power
of l (as shown in Appendix B). As a result, the information
about a Green’s function can be saved in a very small storage
volume. As we will show in Sec. II, this is particularly
relevant when dealing with more complex objects such as
the two-particle Green’s function, which depends on three
frequencies.

CTQMC algorithms usually measure the Green’s function
G(τ ) in one of the two following ways: (i) using a very
fine grid for the interval [0,β] or (ii) measuring the Fourier
transform of the Green’s function on a finite set of Matsubara
frequencies.7,19 We show in Appendix C explicitly for the
CT-HYB8,11 algorithm that one can also directly measure the
coefficients Gl during the Monte Carlo process (we expect
our conclusions to hold for any continuous-time Monte Carlo
algorithm).
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FIG. 1. (Color online) Legendre coefficients Gl of the Green’s
function of the half-filled Hubbard model on the Bethe lattice within
DMFT. Error bars are not shown on the logarithmic plot. They are of
the order of 10−4.

As an illustration, we will focus on the Green’s function
obtained by DMFT for the Hubbard model at half-filling
described by the Hamiltonian

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

ni↑ ni↓, (3)

where c
(†)
iσ creates (annihilates) an electron with spin σ on the

site i of a Bethe lattice,1,20 and 〈ij 〉 on the sum denotes nearest
neighbors. In the following, quantities will be expressed in
units of the hopping t , and we set the on-site Coulomb
repulsion to U/t = 4 and use the temperature T/t = 1/45.
We solve the DMFT equations using the TRIQS21 toolkit and
its implementation of the CT-HYB8,11 algorithm. In Fig. 1, we
show the coefficients Gl that we obtain. Note that coefficients
for l odd must be zero due to particle-hole symmetry. Indeed,
the coefficients in our data for odd l’s all take on a very small
value, compatible with a vanishing value within their error
bars. The even l coefficients instead show a very fast decay,
as discussed above. For l > 30, all coefficients eventually take
values of the order of the statistical error bar.

Let us now discuss the specific issue of the statistical Monte
Carlo noise. We observe that the high-order Legendre coeffi-
cients have a larger relative noise than small l coefficients. On
general grounds, we expect the coefficients of the exact Green’s
function to continue to decrease faster than any power of 1/l

to zero (cf. Appendix B). Hence, physical quantities computed
from G(τ ) are likely to have a very weak dependence on the
Gl for large l. A good approximation then is to truncate the
expansion in Legendre polynomials at an order lmax and set
Gl = 0 for l > lmax. The choice for lmax has to be such that
the quantity of interest is accurately represented. On the other
hand, if lmax is too large, we would start to include coefficients
that have increasingly large error bars compared to their value,
and this would eventually pollute the calculation. A systematic
method is therefore to examine the physical quantity as a
function of the cutoff lmax. We expect that it will first reach a
plateau where it is well converged. The existence of a plateau
means that the contribution of higher-order coefficients is
indeed negligible. For larger lmax, the statistical noise in the Gl

will destabilize this plateau, whose size will increase with the
precision of the CTQMC computation. The existence of such
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FIG. 2. (Color online) Imaginary-time Green’s function G(τ ) at
four different values of τ as a function of lmax.

a plateau provides a controlled way to determine the adequate
value of lmax. In the remaining paragraphs of this section, we
will illustrate this phenomenon on different physical quantities
by studying their dependence on lmax.

B. Imaginary-time Green’s function

It is instructive to analyze the effect of lmax on the
reconstructed imaginary-time Green’s function G(τ ) [using
Eq. (1)]. In Fig. 2, we show the evolution of G(τ ) at τ = 0+,
τ = β/8, τ = β/4, and τ = β/2 with the cutoff. It is apparent
that these values very rapidly converge as a function of lmax.
We observe a well-defined and extended plateau. As the
cutoff grows bigger, noise reappears in G(τ ) because of the
comparatively large error bars in higher-order Gl’s.

In Fig. 3, the Green’s function is reconstructed on the full
interval [0,β] and compared to a direct measurement on a
1500-bin mesh. For lmax = 20, where the individual values
of G(τ ) have not yet converged to their plateau (see Fig. 2),
the resulting Green’s function is smooth but not compatible
with the scattered direct measurements. For lmax = 35 and
60, G(τ ) is smooth and nicely interpolates the scattered data.
Moreover, G(τ ) is virtually identical for both values of lmax.

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

 0  5  10  15  20  25  30  35  40  45

−0.0250

−0.0245

−0.0240

−0.0235

−0.0230

−0.0225

−0.0220

−0.0215

−0.0210

 16  18  20  22  24  26  28  30

τ

G
(τ
)

imag. time
lmax = 20
lmax = 35
lmax = 60

lmax = 2500

FIG. 3. (Color online) Imaginary-time Green’s function G(τ ) on
the interval [0,β] measured on a finite 1500-bin mesh (blue scattered
points) and computed from lmax Legendre coefficients (solid lines).
Four different choices for lmax are shown. Inset: zoom on the area
around β/2.

This is expected because both of these values lie on the plateau.
When lmax is very large, i.e., of the order of the number of
imaginary-time bins, the noise in G(τ ) eventually reappears
and begins to resemble that of the direct measurement. We
emphasize that all measurements have been performed within
the same calculation and hence contain identical statistics.
Hence the information in both measurements is identical up to
the error committed by truncating the basis.

It is clear from this analysis that the truncation of the Leg-
endre basis acts as a noise filter. We note that no information is
lost by the truncation: the high-order coefficients correspond
to information on very fine details of the Green’s function,
which cannot be resolved within a Monte Carlo calculation, as
is obvious from the noisy G(τ ).

C. Matsubara Green’s function and high-frequency expansion

It is common to use the Fourier transform G(iνn) of G(τ )
to manipulate Green’s functions. This representation is, for
example, convenient to compute the self-energy from Dyson’s
equation or to compute correlation energies. In terms of Gl ,
we can obtain the Matsubara Green’s function with

G(iνn) =
∑
l�0

Gl

√
2l + 1

β

∫ β

0
dτ eiνnτPl[x(τ )]

=
∑
l�0

TnlGl, (4)

where the unitary transformation Tnl is shown in Appendix E
to be

Tnl = (−1)n il+1
√

2l + 1 jl

(
(2n + 1)π

2

)
, (5)

with jl(z) denoting the spherical Bessel functions. Note that
Tnl is independent of β.

In Fig. 4, we display the Matsubara Green’s function as
measured directly on the Matsubara axis and as computed
from Eq. (4) with a fixed cutoff lmax. The direct measurement
of G(iνn) has been done within the same Monte Carlo
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FIG. 4. (Color online) Matsubara Green’s function obtained from
measurements made directly on the Matsubara frequencies (blue
scattered points), calculated from an imaginary-time measurement
(green scattered points) and computed from Eq. (4) with lmax = 35
(red solid line). The analytically known high-frequency tail is shown
for comparison (black solid line). Inset: Blowup of the high-frequency
region.

075145-3



LEWIN BOEHNKE et al. PHYSICAL REVIEW B 84, 075145 (2011)

simulation as the one used to compute the Gl discussed
above. It is clear from the plot that the truncation to lmax has
filtered the high-frequency noise, and that for large iνn the
Matsubara Green’s function has a smooth power-law decay.
Let us emphasize here that the Matsubara Green’s function
is obtained in an unbiased manner that does not involve any
model-guided Fourier transform (see also Ref. 22).

We will now show that the coefficients that control this
power-law decay can also be accurately computed. Let us
consider the high-frequency expansion of G(iνn),

G(iνn) = c1

iνn

+ c2

(iνn)2
+ c3

(iνn)3
+ · · · . (6)

Using the known high-frequency expansion of Tnl (cf.
Appendix D),

Tnl = t
(1)
l

iνnβ
+ t

(2)
l

(iνnβ)2
+ t

(3)
l

(iνnβ)3
+ · · · , (7)

one can directly relate the cp and the Gl . Indeed, from (4), (6),
and (7), it follows that

cp = 1

βp

∑
l�0

t
(p)
l Gl. (8)

The general expression of the coefficients t
(p)
l is shown in

(E8). For the first three moments, we have the following
expressions:

c1 = −
∑

l�0, even

2
√

2l + 1

β
Gl, (9a)

c2 = +
∑

l>0, odd

2
√

2l + 1

β2
Gl l(l + 1), (9b)

c3 = −
∑

l�0, even

√
2l + 1

β3
Gl (l + 2)(l + 1)l(l − 1). (9c)

Since t
(p)
l ∼ l2p−3/2, with the fast decay of the Gl discussed

above, we can expect a stable convergence of the cp as
a function of lmax. Note, however, that when p increases,
the coefficients grow, so we expect to need more and more
Legendre coefficients to compute the series in practice.

The convergence of the moments is illustrated in Fig. 5.
For the model we consider, the first moments are explicitly
given by

c1 = 1, c2 = 0,

c3 = 5, c4 = 0.

We see that c1 and c3 smoothly converge to a plateau. For the
higher moment c5, a larger number of Legendre coefficients
is required. A plateau is reached but is (depending on the
accuracy of the data accumulated in the QMC simulation)
quickly destabilized when lmax gets bigger and noisy Gl are
included in the calculation. This clearly shows that lmax has
to be chosen carefully to get sensitive cp. For larger cutoff
the error in the moments grows rapidly. This shows that
a large error on the high-frequency moments is committed
when measuring in a basis in which it is not possible to filter
the noise, i.e., the conventional imaginary-time or Matsubara
representation.
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FIG. 5. (Color online) Convergence of the moments c1, c3, and c5

as a function of lmax. Only points corresponding to an even cutoff are
shown because odd terms in the sum vanish. The analytically known
results for c1 and c3 are indicated by dashed lines. Even moments are
zero due to particle-hole symmetry.

Note that it is easy to incorporate a priori information on the
moments cp. For example, in the model we consider above,
we have c1 = 〈{c,c†}〉 = 1. From (9a), we see that this is a
linear constraint on the Gl coefficients, which we can therefore
enforce by projecting the Legendre coefficients onto the
(lmax)-dimensional hyperplane defined by the constraint (9a).
A correction to impose, e.g., a particular c1 is straightforwardly
found to be

Gl → Gl +
(

βc1 −
lmax∑
l′=0

t
(1)
l′ Gl′

)
t

(1)
l∑

l

∣∣t (1)
l

∣∣2 . (10)

This is easily generalized to other constraints.

D. Energy

The accurate determination of the high-frequency coef-
ficients is of central importance, since many quantities are
computed from sums over all Matsubara frequencies involving
G(iνn). Because G(iνn) slowly decreases as ∼1/(iνn) to
leading order, these sums are usually computed from the actual
data up to a given Matsubara frequency, and the remaining
frequencies are summed up analytically from the knowledge
of the cp. Thus, an incorrect determination of the cp leads to
significant numerical errors. This is a particularly delicate issue
when G(iνn) is measured directly on the Matsubara axis. In this
case, one usually needs to fit the noisy high-frequency data to
infer the high-frequency moments. As discussed above, such
a procedure is not required when using Legendre coefficients,
and the cp can be computed in a controlled manner. In
the following, we illustrate this point in an actual energy
calculation.

Based on an LDA+DMFT calculation for the compound
SrVO3,23,24 we compute the kinetic energy Ekin = (1/N)∑

k,α〈nkα〉εkα and the correlation energy Ecorr = (1/N)∑
i U 〈ni↑ni↓〉 (N denotes the number of lattice sites) resulting

from the implementation and parameters of Ref. 24. These
terms are contributions to the LDA+DMFT total energy,25

which depend explicitly on the results of the DMFT impurity
solver.
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FIG. 6. (Color online) Kinetic energy Ekin (full symbols) and
correlation energy Ecorr (open symbols) for SrVO3 as a function of
lmax, computed with the implementation and parameters of Ref. 25.
For clarity, the kinetic energy has been shifted by 384.86 eV. Error
bars are computed from 80 converged LDA+DMFT iterations.

The results are shown in Fig. 6. Here the parameter lmax,
against which these quantities are plotted, represents the num-
ber of Legendre coefficients used throughout the LDA+DMFT
self-consistency. It is also the number of coefficients used to
evaluate 〈nkα〉 from the lattice Green’s function Gk(iνn). Note
that Ecorr has been accumulated directly within the CTQMC
simulation.

In agreement with an analysis of the convergence with
respect to the number of Legendre coefficients lmax similar
to the ones shown in Figs. 2 and 5 for an individual DMFT
iteration, we find a plateau for both energies at lmax ∼ 40.
While the energy can be accurately computed within a
single DMFT iteration, the error here stems mainly from the
fluctuations between successive DMFT iterations. The plateau
remains up to the largest values of lmax. However, as lmax gets
larger, so do the error bars due to the feedback of noise from
the largest Legendre coefficients. Note that the error bars on
the correlation energy, computed directly within the CTQMC
algorithm, are of the same order of magnitude as those on
the kinetic energy. The existence of a plateau implies that
for a well-chosen cutoff lmax, the energy can be computed
in a controlled manner. We want to emphasize that such an
approach is simpler and better controlled than delicate fitting
procedures of high-frequency tails of the Green’s function on
the Matsubara axis.

II. TWO-PARTICLE GREEN’S FUNCTION

A. Legendre representation for two-particle Green’s functions

The use of Legendre polynomials proves very useful when
dealing with two-particle Green’s functions. We will show
that it brings about improvements both from the perspective
of storage size and convergence as a function of the trun-
cation. The object one mainly deals with is the generalized
susceptibility,

χ̃ σσ ′
(τ12,τ34,τ14) = χ̃ σσ ′

(τ1 − τ2,τ3 − τ4,τ1 − τ4)

= 〈T c†σ (τ1)cσ (τ2)c†σ ′(τ3)cσ ′(τ4)〉
− 〈T c†σ (τ1)cσ (τ2)〉〈T c

†
σ ′(τ3)cσ ′(τ4)〉. (11)

Let us emphasize that χ̃ is a function of three independent
time differences only. With the particular choice made above,
χ̃ is β-antiperiodic in τ12 and τ34 while it is β-periodic in τ14.
Consequently, its Fourier transform χ̃ (iνn,iνn′ ,iωm) is a func-
tion of two fermionic frequencies νn = 2(n + 1)π/β, νn′ =
2(n′ + 1)π/β, and one bosonic frequency ωm = 2mπ/β.

We introduce a representation of χ̃ (τ12,τ34,τ14) in terms of
the coefficients χ̃ll′(iωm) such that

χ̃ (τ12,τ34,τ14) =
∑
l,l′�0

∑
m∈Z

√
2l + 1

√
2l′ + 1

β3
(−1)l

′+1

×Pl[x(τ12)]Pl′[x(τ34)]eiωmτ14 χ̃ll′ (iωm). (12)

In this mixed basis representation, the τ12 and τ34 depen-
dence of χ̃ (τ12,τ34,τ14) is expanded in terms of Legendre
polynomials, while the τ14 dependence is described through
Fourier modes eiωmτ14 . The motivation behind this choice is that
many equations involving generalized susceptibilities (like the
Bethe-Salpeter equation) are diagonal in iωm. The inverse of
(12) reads

χ̃ll′ (iωm) =
∫∫∫

dτ12dτ34dτ14

√
2l + 1

√
2l′ + 1(−1)l

′+1

Pl[x(τ12)]Pl′[x(τ34)]e−iωmτ14 χ̃(τ12,τ34,τ14). (13)

We show in Appendix C how the Legendre expansion coef-
ficients of the one- and two-particle Green’s function [hence
of χ̃ll′(iωm)] can be measured directly within CT-HYB. With
the above definition, the Fourier transform χ̃(iνn,iνn′ ,iωm) is
easily found with

χ̃ (iνn,iνn′ ,iωm) =
∑
l,l�0

Tnlχ̃ll′(iωm)T ∗
n′l′ . (14)

Tnl was already defined in Eq. (4). Using the additional
unitarity property of T in Eq. (14), one can in general
easily rewrite equations involving the Fourier coefficients
χ̃ (iνn,iνn′ ,iωm) in sole terms of the χ̃ll′(iωm).

In the DMFT framework, the lattice susceptibility χ̃latt is
obtained from1,2

[χ̃latt]
−1(iωm,q) = [χ̃loc]−1(iωm)

− [χ̃0
loc

]−1
(iωm) + [χ̃0

latt

]−1
(iωm,q), (15)

where the double underline emphasizes that this is to be
thought of as a matrix equation for the coefficients χ̃

expressed either in (iνn,iνn′ ) in the Fourier representation or in
(l,l′) in the mixed Legendre-Fourier representation. The bare
susceptibilities are given by

χ̃0
loc(iνn,iνn′ ,iωm) = −Gloc(iνn + iωm)Gloc(iνn)δn,n′ ,

χ̃0
latt(iνn,iνn′ ,iωm,q) = −

∑
k

Glatt
k+q(iνn + iωm)Glatt

k (iνn)δn,n′ ,

(16)

where

Glatt
k (iνn) = [iνn + μ − εk − 
loc(iνn)]−1, (17)

and Gloc, 
loc are the Green’s function and self-energy of the
local DMFT impurity problem, respectively. The equivalent

075145-5



LEWIN BOEHNKE et al. PHYSICAL REVIEW B 84, 075145 (2011)

 10
 20

 30
 0  10  20  30

0.00

0.05

0.10

0.15

−0.02  0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

l

l′

−40
−20

 0
 20

 40 −40 −20  0  20  40

0.00

0.02

0.04

0.06

0.08

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

iνn

iνn′

FIG. 7. (Color online) Generalized local magnetic susceptibility
χ̃m

loc = 1
2 (χ̃↑↑

loc − χ̃
↑↓
loc ) at the bosonic frequency iωm = 0 computed

from the DMFT impurity problem. Upper panel: coefficients χ̃m
loc,ll′ (0)

in the mixed Legendre-Fourier representation. Lower panel: Fourier
coefficients χ̃m

loc(iνn,iνn′ ,0).

susceptibilities in the mixed Legendre-Fourier representation
are simply obtained as the inverse of Eq. (14),

χ̃0
ll′(iωm,q) =

∑
n,n′∈Z

T ∗
nlχ̃

0(iνn,iνn′ ,iωm,q)Tn′l′ , (18)

where the high-frequency behavior of Gloc(iνn) and Glatt(iνn)
can easily be considered in the frequency sums. Evaluation of
lattice susceptibilities from χ̃latt(iνn,iνn′ ,iωm) can also directly
be propagated to the mixed Legendre-Fourier representation,
abolishing altogether the need to transform back to the Fourier
representation,

χ (iωm,q) = 1

β2

∑
nn′∈Z

χ̃latt(iνn,iνn′ ,iωm,q)

= 1

β2

∑
ll′�0

(−1)l+l′
√

2l + 1
√

2l′ + 1χ̃latt,ll′ (iωm,q).

(19)

Note that χ̃latt can be written as the sum of a free two-particle
propagation χ̃0

latt, Eq. (16) (bubble part), and a connected rest
χ̃ conn

latt (vertex part). These two terms can be separately summed
in Eq. (19).

The present mixed-basis representation has been success-
fully used in a recent investigation of static finite-temperature
lattice charge and magnetic susceptibilities for the NaxCoO2
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FIG. 8. (Color online) Vertex part of the generalized magnetic
lattice susceptibility χ̃m

latt − χ̃ 0
latt at the bosonic frequency iωm = 0
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latt(iνn,iνn′ ,0) −

χ̃ 0
latt(iνn,iνn′ ,0) of the lattice susceptibility. Both plots employ the

same number of coefficients.

system at intermediate-to-larger doping x.26 A first example
for the dynamical, i.e., finite-frequency, case will be discussed
in Sec. II C.

B. Antiferromagnetic susceptibility of the three-dimensional
Hubbard model

In order to benchmark our approach, we investigate the
antiferromagnetic susceptibility of the half-filled Hubbard
model (3) on a cubic lattice within the DMFT framework. All
quantities are again expressed in units of the hopping t and with
U/t = 20 and T/t = 0.45. This temperature is sufficiently
close to the DMFT Néel temperature TN ≈ 0.30t to yield
a dominant vertex part, while still having a non-negligible
bubble contribution.

We compute the susceptibility χ̃loc of the DMFT impurity
problem using the CT-HYB algorithm. In Fig. 7, we compare
the mixed Legendre-Fourier coefficients χ̃ll′(iωm) to the
Fourier coefficients χ̃ (iνn,iνn′ ,iωm). For clarity, we focus on
the first bosonic frequency iωm = 0. We observe that the χ̃ll′ (0)
have a very fast decay except in the l = l′ direction. This
contrasts with the behavior of χ̃(iνn,iνn′ ,0), which exhibits
slower decay in the three major directions iνn = 0, iνn′ = 0,
and iνn = iνn′ .
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The generalized susceptibility in τ differences (11) has
discontinuities along the planes τ14 = 0 and τ14 = τ12 + τ34

as well as nonanalyticities (kinks) for τ12 = 0 and τ34 = 0.
These planes induce corresponding slow decay in the Fourier
representation (14).22 When it comes to the mixed Legendre-
Fourier representation (13), however, the planes τ12 = 0 and
τ34 = 0 are on the border of the imaginary-time region
being expanded in this basis, which renders the coefficients
insensitive toward these.

Computing lattice susceptibilities from Eq. (15), it is
necessarily required to truncate the matrices. This leads to
difficulties when computing the susceptibility from the Fourier
coefficients χ̃loc(iνn,iνn′ ,iωm). As we can see from Fig. 7, the
Fourier coefficients have a slow decay along three directions.
The inversion of χ̃loc(iνn,iνn′ ,iωm) is delicate because many
coefficients are involved even for large ν,ν ′. One needs to use
a very large cutoff to obtain a precise result. Alternatively,
one can try to separate the high- and low-frequency parts
of the equation and replace the susceptibilities with their
asymptotic form at high frequency (see Ref. 27). While it is
effectively possible to treat larger matrices, it is still required
to impose a cutoff on the high-frequency part for the numerical
computations.

In the mixed Legendre-Fourier representation, the situation
is different. Only the coefficients along the diagonal decay
slowly. In the inversion of the matrix, the elements on
the diagonal for large l are essentially recomputed from
themselves. One can expect that there will be a lot less mixing
and thus a much faster convergence as a function of the
truncation.

In Fig. 8, we display the vertex part of the generalized
lattice susceptibility χ̃latt − χ̃0

latt obtained from Eq. (15) in
both representations. In both cases, we see that the diagonal
part quickly becomes very small. In other words, the diagonal
of the lattice susceptibility is essentially given by the bubble
part χ̃0

latt. However, while essentially all the information is
condensed close to l,l′ = 0 in the mixed Legendre-Fourier
representation, the Fourier coefficients still have a slow decay
along the directions given by iνn = 0 and iνn′ = 0. From
this figure, one can speculate that a quantity computed from
the Legendre-Fourier coefficients will converge rapidly as a
function of a cutoff lmax. However, we need to make sure that
the coefficients close to l,l′ = 0 are not affected much by the
truncation.

In order to assess the validity of these speculations, we com-
pute the static antiferromagnetic [q = (π,π,π )] susceptibility
χm(0,q) as a function of the cutoff in both representations.
It is obtained from Eq. (19) using the magnetic susceptibility
χ̃m = 1

2 (χ̃↑↑ − χ̃↑↓).
Since the diagonal of the lattice susceptibility is essentially

given by the bubble (see Fig. 8), the sums above are performed
in two steps. The vertex part shown in Fig. 8 is summed up
to the chosen cutoff, while the bubble part is summed over all
frequencies with the knowledge of its high-frequency behavior.
The result is shown in Fig. 9. It reveals a major benefit of the
Legendre representation: the susceptibility converges much
faster as a function of the cutoff. The static susceptibility is
essentially converged at lmax ∼ 12. This corroborates the idea
that the small-l,l′ part of χ̃latt,ll′ is only weakly dependent on
the further diagonal elements of χ̃loc,ll′ .

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30  35
#l,#n

χ
m A
F
M

Legendre
Matsubara

FIG. 9. (Color online) Antiferromagnetic susceptibility as a
function of the number of Legendre (l = lmax + 1) and Matsubara
(n = 2nmax + 2) coefficients, respectively, used in the calculation.

C. Dynamical susceptibility of the two-dimensional
Hubbard model

As a final benchmark, we demonstrate that our method
is not restricted to the static case. To this end, we show
the momentum resolved dynamical magnetic susceptibility
χ (ω,q) for a DMFT calculation for the half-filled two-
dimensional (2D) square lattice Hubbard model in Fig. 10.
We have chosen an on-site interaction U/t = 4 and tem-
perature T/t = 0.25, which is slightly above the DMFT
Néel temperature. The susceptibility was computed from the
Legendre representation according to Eq. (19) using 20 × 20
Legendre coefficients, which was sufficient for all bosonic
frequencies. In general, for higher bosonic frequencies, more
Legendre coefficients are needed to represent the vertex part
of the generalized magnetic lattice susceptibility. However, no
additional structure appears in the high l, l′ region. We then
analytically continued the data using Padé approximants.28

The figure shows the typical magnon spectrum6,29,30 rem-
iniscent of a spin wave in this paramagnetic state with
strongly enhanced weight at the antiferromagnetic wave vector
q = (π,π ) due to the proximity of the mean-field antiferro-
magnetic instability.

 0

 1

 2

 3

 4

 5

 0.1

 1ω

ΓΓ MX

FIG. 10. (Color online) Imaginary part of the magnetic suscepti-
bility on the real frequency axis along high-symmetry lines in the 2D
Brillouin zone.
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III. CONCLUSION

In this paper, we have studied the representation of
imaginary-time Green’s functions in terms of a Legendre
orthogonal polynomial basis. We have shown that CTQMC
can directly accumulate the Green’s function in this basis.
This representation has several advantages over the standard
Matsubara frequency representation: (i) It is much more com-
pact, i.e., coefficients decay much faster; this is particularly
interesting for storing and manipulating the two-particle
Green’s functions. Moreover, two-particle response functions
can be computed directly in the Legendre representation,
without the need to transform back to the Matsubara repre-
sentation. In particular, the matrix manipulations required for
the solution of the Bethe-Salpeter equations can be performed
in this basis. We have shown that this greatly enhances
the accuracy of the calculations, since in contrast to the
Matsubara representation, the error due to the truncation of
the matrices becomes negligible. (ii) The Monte Carlo noise
is mainly concentrated in the higher Legendre coefficients, the
contribution of which is usually very small; this allows us to
develop a systematic method to filter out noise in physical
quantities and to obtain more accurate values for, e.g., the
correlation energy in LDA+DMFT computations.
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APPENDIX A: SOME PROPERTIES OF THE
LEGENDRE POLYNOMIALS

In this appendix, we summarize for convenience some basic
properties of the Legendre polynomials. Further references
can be found in Refs. 31,33,34. We use the standardized
polynomial Pl(x) defined on x ∈ [−1,1] through the recursive
relation

(l + 1)Pl+1(x) = (2l + 1)xPl(x) − lPl−1(x), (A1)

P0(x) = 1, P1(x) = x. (A2)

Pl are orthogonal and their normalization is given by∫ 1

−1
dxPk(x)Pl(x) = 2

2l + 1
δkl . (A3)

The Pl are bounded on the segment [−1,1] by34

|Pl(x)| � 1 (A4)

with the special points

Pl(±1) = (±1)l . (A5)

The primitive of Pl(x) that vanishes at x = −1 is (cf. Ref. 31,
Vol. II, Sec. 10.10)∫ x

−1
dy Pl(y) = Pl+1(x) − Pl−1(x)

2l + 1
, l � 1. (A6)

By orthogonality or (A5), it also vanishes at x = 1. The Fourier
transform of the Legendre polynomial restricted to the segment
[−1,1] is given by formula 7.243.5 of Ref. 33,∫ 1

−1
eiaxPl(x) dx = il

√
2π

a
Jl+ 1

2
(a)

= 2iljl(a), (A7)

where J denotes the Bessel function and jl(a) = √ π
2a

Jl+ 1
2
(a)

denotes the spherical Bessel functions.

APPENDIX B: FAST DECAY OF THE
LEGENDRE COEFFICIENTS

Let us consider a function g(τ ) smooth on the segment
[0,β] (i.e., to be precise, C∞, indefinitely differentiable), and
β-antiperiodic, like a Green’s function. In this appendix, we
show that its Legendre coefficients decay faster than any power
law contrary to its standard Fourier expansion coefficients,
which decay as power laws determined by the discontinuities
of the function and its derivatives.

Let us start by recalling the asymptotics of the standard
Fourier expansion coefficients on fermionic Matsubara fre-
quencies. These coefficients are given by

ĝ(iνn) =
∫ β

0
dτ g(τ )eiνnτ (B1)

= g(τ )eiνnτ |β0
iνn

−
∫ β

0
dτ g′(τ )

eiνnτ

iνn

. (B2)

The coefficients vanish for n → ∞, and applying the same
result to g′, one obtains

ĝ(iνn) = −g(β−) + g(0+)

iνn

+ O

(
1

ν2
n

)
. (B3)

Let us now turn to the Legendre expansion. Using the same
rescaling as before, we can consider for simplicity a function
f (x) smooth on [−1,1]. We can proceed in a similar way using
the primitive of the Legendre polynomial [which is also given
by a simple formula, (A6)]. For l � 1, we have

fl√
2l + 1

=
∫ 1

−1
dx f (x)Pl(x)

= f (x)

(∫ x

−1
dy Pl(y)

)∣∣∣∣1
−1

−
∫ 1

−1
dx f ′(x)

(∫ x

−1
dy Pl(y)

)
= −

∫ 1

−1
dx f ′(x)

Pl+1(x) − Pl−1(x)

2l + 1
. (B4)

The crucial difference with the Fourier case is that, for l � 1,
the boundary terms always cancel, regardless of the function
f due to the orthogonality property of the polynomials [it can
also be checked directly from (A5)]. So we are left with just
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the integral term. Since the Legendre coefficients of f ′ vanish
at large l (by applying the previous formula to f ′), we get
instead of (B3)

fl√
2l + 1

= o

(
1

l

)
. (B5)

In both cases, the reasoning can be reproduced recursively by
further differentiating the function, as long as no singularity is
encountered. In the Fourier case, it produces the well-known
high-frequency expansion in terms of the discontinuity of the
function and its derivatives. In the Legendre case, we find
that the coefficients are o(1/lk) as soon as f is k times
differentiable. Hence if the function is smooth on [−1,1], the
coefficients decay asymptotically faster than any power law.

The only point that remains to be checked is that indeed
G(τ ) is smooth on [0,β]. It is clear from its spectral
representation

G(τ ) = −
∫ ∞

−∞
dν

e−τν

1 + e−βν
A(ν) (B6)

if we admit that the spectral function A(ν) has compact
support, by differentiating under the integral.

Finally, while this simple result of “fast decay” is enough
for our purposes in this paper, it is possible to get much
more refined statements on the asymptotics of the Legendre
coefficients of the function f , in particular when it has some
analyticity properties. For a detailed discussion of these issues,
and in particular of the conditions needed to get the generic
exponential decay of the coefficients, we refer the reader to
Ref. 35.

APPENDIX C: DIRECT ACCUMULATION OF THE
LEGENDRE COEFFICIENTS FOR THE

CT-HYB ALGORITHM

In this appendix, we describe how to compute directly the
Legendre expansion of the one-particle and the two-particle
Green’s function.

1. The accumulation formulas in CT-HYB

For completeness, let us first recall the accumulation
formula for the one-particle and the two-particle Green’s
functions in the CT-HYB algorithm,8,9,11,19 which sums the
perturbation theory in the hybridization function �ab(iνn)
on the Matsubara axis. While these formulas have appeared
previously in the literature, this simple functional derivation
emphasizes the “Wick”-like form of the higher-order correla-
tion function.

The partition function of the impurity model reads

Z =
∫

Dc†Dc exp(−Seff), (C1)

where the effective action has the form

Seff = −
∫∫ β

0
dτdτ ′∑

A,B

c
†
A(τ )G−1

0,AB(τ,τ ′)cB(τ ′)

+
∫ β

0
dτHint({c†A(τ ),cA(τ )}), (C2)

G−1
0AB(iνn) = (iνn + μ)δAB − h0

AB − �AB(iνn). (C3)

To simplify the notations, we use here a generic index A,B.
In the case in which there are symmetries, like the spin
SU(2) symmetry in the standard DMFT problem, the Green’s
functions are block-diagonal. For example, the generic index
A can be (a,σ ), where a is an orbital or site index, and the spin
index σ = ↑,↓ is the block index.

The partition function is expanded in powers of the
hybridization � as

Z =
∑
n�0

∫ n∏
i=1

dτidτ ′
i

∑
λi ,λ

′
i

w(n,{λj ,λ
′
j ,τj ,τ

′
j }), (C4)

w(n,{λj ,λ
′
j ,τj ,τ

′
j }) ≡ 1

n!2
det

1�i,j�n
[�λi,λ

′
j
(τi − τ ′

j )]

× Tr

(
T e−βHloc

n∏
i=1

c
†
λi

(τi)cλ′
i
(τ ′

i )

)
,

(C5)

where T is time ordering and Hloc is the local
Hamiltonian.8,9,11,19 |w| are the weights of the quantum
Monte Carlo (QMC) Markov chain. Introducing the short
notation C ≡ (n,{λj ,λ

′
j ,τj ,τ

′
j }) for the QMC configuration,

the partition function Z and the average of any function f

over the configuration space (denoted by angular brackets in
this section) are given by

Z =
∑
C

w(C), (C6)

〈f (C)〉 = 1

Z

∑
C

w(C)f (C). (C7)

The one-particle and two-particle Green’s functions are ob-
tained as functional derivatives of Z with respect to the
hybridization function, as

GAB(τ1,τ2) = − 1

Z

∂Z

∂�BA(τ2,τ1)
, (C8a)

G
(4)
ABCD(τ1,τ2,τ3,τ4) = 1

Z

∂2Z

∂�BA(τ2,τ1)∂�DC(τ4,τ3)
. (C8b)

To use the expansion of Z, we need to compute the
derivative of a determinant with respect to its elements. Let
us consider a general matrix �̄, its inverse M̄ ≡ �̄−1, and use
the Grassman integral representation

det �̄ =
∫ ∏

i

dηidη̄ie
∑

ij η̄i �̄ij ηj . (C9)

Using the Wick theorem, we have

∂ det �̄

∂�̄ba

=
∫ ∏

i

dηidη̄i(η̄bηa)e
∑

ij η̄i �̄ij ηj

= det �̄ × M̄ab, (C10a)

∂2 det �̄

∂�̄ba∂�̄dc

=
∫ ∏

i

dηidη̄i(η̄bηaη̄dηc)e
∑

ij η̄i �̄ij ηj

= det �̄(M̄abM̄cd − M̄adM̄cb). (C10b)

Let us now apply (C10) by introducing for each configu-
ration C ≡ (n,{λj ,λ

′
j ,τj ,τ

′
j }) the matrix �̂(C) of size n given

by

�̂(C)ij ≡ �λi,λ
′
j
(τi − τ ′

j ) (C11)
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and its inverse MC ≡ [�̂(C)]−1. We obtain

∂w(C)

∂�BA(τ2,τ1)
= w(C)

det �̂(C)

n∑
α,β=1

∂ det �̂(C)

∂�̂(C)βα

∂�̂(C)βα

∂�BA(τ2,τ1)

= w(C)
n∑

α,β=1

MC
αβ

∂�̂(C)βα

∂�BA(τ2,τ1)
(C12a)

and

∂2w(C)

∂�BA(τ2,τ1)∂�DC(τ4,τ3)

= w(C)

det �̂(C)

n∑
αβγ δ=1

∂2 det �̂(C)

∂�̂(C)βα∂�̂(C)δγ

× ∂�̂(C)βα

∂�BA(τ2,τ1)

∂�̂(C)δγ
∂�DC(τ4,τ3)

. (C12b)

Denoting

D(C)αβ

ABτ1τ2
≡ ∂�̂(C)βα

∂�BA(τ2,τ1)

= δ(τ1 − τ ′
α)δ(τ2 − τβ)δλ′

α,Aδλβ,B, (C13)

we finally obtain the accumulation formulas for the Green’s
functions,8,9

GAB(τ1,τ2) = −
〈

n∑
αβ=1

MC
αβD(C)αβ

ABτ1τ2

〉
, (C14a)

G
(4)
ABCD(τ1,τ2,τ3,τ4) =

〈 n∑
αβγ δ=1

(
MC

αβMC
γ δ − MC

αδM
C
γβ

)
×D(C)αβ

ABτ1τ2
D(C)γ δ

CDτ3τ4

〉
. (C14b)

2. Legendre expansion of the one-particle Green’s function

We take into account the time translation invariance and
the τ -antiperiodicity of the Green’s function in the following
way. A priori, in (C14a), the arguments τ1,τ2 are in the
interval [0,β]. We can, however, easily make this function
β-antiperiodic in both arguments

G̃AB(τ1,τ2)

= −
〈

n∑
αβ=1

MC
αβδ−(τ1 − τ ′

α)δ−(τ2 − τβ)δλ′
α,Aδλβ,B

〉
, (C15)

where we defined the periodic and antiperiodic Dirac comb,
respectively, by

δ±(τ ) ≡
∑
n∈Z

(±1)nδ(τ − nβ). (C16)

At convergence of the Monte Carlo Markov chain, the
Green’s function is in fact translationally invariant in imag-
inary time, and we have

GAB(τ ) = 1

β

∫ β

0
ds G̃AB(τ + s,s), (C17)

which leads to

GAB(τ ) = − 1

β

〈
n∑

αβ=1

MC
αβδ−[τ − (τ ′

α − τβ)]δλ′
α,Aδλβ,B

〉
.

(C18)

Finally, Eq. (C18) can be transformed to a measurement in the
Legendre representation according to (2),

GAB;l = −
√

2l + 1

β

〈
n∑

αβ=1

MC
αβP̃l(τ

′
α − τβ)δλ′

α,Aδλβ,B

〉
,

(C19)

where P̃ (δτ ) is defined by

P̃l(δτ ) =
{

Pl[x(δτ )], δτ > 0,

−Pl[x(δτ + β)], δτ < 0.
(C20)

3. Legendre accumulation of the two-particle Green’s function

The generalized susceptibility χ̃ of (11) can be expressed
in term of G and G(4) as

χ̃ σσ ′
abcd (τ12,τ34,τ14) = G

(4)
bσ,aσ,dσ ′,cσ ′(τ21,τ43,τ23)

−Gbσ,aσ (τ21)Gdσ ′,cσ ′(τ43), (C21)

so in this subsection we will focus on the computation of G(4).
We take into account the time translation invariance with the
same technique as for the one-particle Green’s function. First
we make the function G(4)(τ1,τ2,τ3,τ4) fully β-antiperiodic
in the four variables using the antiperiodic Dirac comb δ−
defined in (C16), and we use the time translation invariance of
the Green’s function to obtain

G(4)(τ12,τ34,τ14)

= 1

β

∫ β

0
dτ̄ G̃(4)(τ14 + τ̄ ,τ14 − τ12 + τ̄ ,τ34 + τ̄ ,τ̄ ). (C22)

From (C14b), we get
G

(4)
ABCD(τ12,τ34,τ14)

= 1

β

〈
n∑

αβγ δ=1

(
MC

αβMC
γ δ − MC

αδM
C
γβ

)
δ−(τ12 − (τ ′

α − τβ))δ−(τ34 − (τ ′
γ − τδ))δ+(τ14 − (τ ′

α − τδ))δλ′
α,Aδλβ,Bδλ′

γ ,Cδλδ,D

〉
, (C23)

where δ+ and δ− are defined in (C16). Applying (13), the accumulation formula in the mixed Legendre-Fourier basis is
straightforwardly obtained as
G

(4)
ABCD(l,l′,iωm)

=
√

2l + 1
√

2l′ + 1

β
(−1)l

′+1

〈
n∑

αβγ δ=1

(
MC

αβMC
γ δ − MC

αδM
C
γβ

)
P̃l(τ

′
α − τβ)P̃l′ (τ

′
γ − τδ)eiωm(τ ′

α−τδ )δλ′
α,Aδλβ,Bδλ′

γ ,Cδλδ,D

〉
, (C24)

where P̃ is defined in (C20).
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We note that the measurement can be factorized to speed up
the measurement process. In the Legendre measurement, only
the part involving the first product of M matrices factorizes,
as can be seen from (C24). Note, however, that the second
product of M matrices merely generates crossing symmetry, so
that the full information on this quantity is already contained
in the first term. Hence this symmetry can be reconstructed
after the simulation. In the one-band case, the second product
is proportional to δσσ ′ , so that the G(4)↑↓ component can be
measured directly. For the G(4)↑↑ component, we only measure
the term proportional to MC

↑MC
↑ and construct this component

by antisymmetrization afterwards.

APPENDIX D: ACCUMULATION FORMULA FOR THE
CT-INT AND CT-AUX ALGORITHMS

Using a notation in analogy to the previous section, the
expansion of the partition function Z, Eqs. (C1)–(C3), in the
continuous-time interaction expansion (CT-INT) method7 is
given by

Z =
∑
n�0

∫ n∏
i=1

dτi

∑
λ2i−1,λ

′
2i−1

λ2i ,λ
′
2i

w(n,{λj ,λ
′
j ,τj }) (D1)

w(n,{λj ,λ
′
j ,τj }) ≡ 1

n!
det

1�i,j�2n

[
G0λi ,λ

′
j
(τ̄i − τ̄j )

]
×

n∏
i=1

Uλ2i−1λ
′
2i−1λ2iλ

′
2i
, (D2)

where τ̄i ≡ τ�(i+1)/2� and we have assumed the interaction
part of the Hamiltonian to be of the form Hint({c†A,cA}) =∑

ABCD UABCDc
†
AcBc

†
CcD and A = (a,σ ) is a generic index

with a being the orbital or site index and σ =↑ ,↓ the spin
index.

In the CT-INT algorithm, we propose to measure the
Legendre coefficients of S ≡ 
G based on the self-energy
binning measurement originally introduced for the continuous-
time auxiliary field (CT-AUX) algorithm.10 Introducing the
matrix

Ĝ0(C)ij = G0λiλ
′
j
(τ̄i − τ̄j ) (D3)

and its inverse, MC ≡ (Ĝ0(C))−1, the self-energy binning
measurement for the CT-INT can be written as

SAB(τ ) = −
〈

2n∑
αβ=1

δ(τ − τ̄α)δAλ′
α
MC

αβG0
λβB(τ̄β)

〉
. (D4)

This can be straightforwardly transformed to a measurement
in the Legendre basis by applying (2):

SAB,l = −√
2l + 1

〈
2n∑

αβ=1

δAλ′
α
Pl(x(τ̄α))MC

αβG0
λβB(τ̄β)

〉
. (D5)

An analogous formula also applies to the CT-AUX.
In practice, translational invariance may be used to generate

multiple estimates for S within a given configuration. The
Green’s function is obtained by transforming S to Matsubara
representation and using Dyson’s equation. The moments of

G are straightforwardly computed from the moments of 
G

and the knowledge of those of G0.

APPENDIX E: EXPLICIT FORMULA FOR Tnl AND ITS
HIGH FREQUENCY EXPANSION

The transformation matrix from the Legendre to the
Matsubara representation is

Tnl ≡
√

2l + 1

β

∫ β

0
dτeiνnτPl[x(τ )], (E1)

where νn is a fermionic Matsubara frequency and l is the
Legendre index. Using (A7) and introducing the reduced
frequencies ν̄n = βνn = (2n + 1)π , we find

Tnl = (−1)n il+1
√

2l + 1 jl

(
ν̄n

2

)
. (E2)

Note that Tnl is actually independent of β.

Tnl is a unitary transformation, as can be check explicitly
using the Poisson summation formula and the orthogonality
of the Legendre polynomials (A3),

∑
n∈Z

T ∗
nlTnl′ =

√
2l + 1

√
2l′ + 1

β

∫∫ β

0
dτ dτ ′

×Pl[x(τ )]Pl′[x(τ ′)]
1

β

∑
n∈Z

e−iνn(τ−τ ′)

︸ ︷︷ ︸
=δ(τ−τ ′)

= √
2l + 1

√
2l′ + 1

∫ 1

−1

dx

2
Pl(x)Pl′ (x)

= δll′ . (E3)

We will now deduce the coefficients t
(p)
l of the expansion

of Tnl ,

Tnl =
∑
p�1

t
(p)
l

(iν̄n)p
. (E4)
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n
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FIG. 11. (Color online) |Tnl | for the first even (red) and odd (blue)
Legendre coefficients. The high-frequency tail is reproduced correctly
by t

(p)
l .
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This is straightforwardly done from a corresponding representation of the Bessel function, cf., e.g., Ref. 36, Sec. 10.1,

jl(z) = z−1

⎧⎨⎩sin(z − πl/2)

� l
2 �∑

k=0

(−1)k
(l + 2k)!(2z)−2k

(2k)!(l − 2k)!
+ cos(z − πl/2)

� l−1
2 �∑

k=0

(−1)k
(l + 2k + 1)!(2z)−2k−1

(2k + 1)!(l − 2k − 1)!

⎫⎬⎭ . (E5)

For the case at hand, this gives

Tnl = −il2
√

2l + 1

⎧⎨⎩cos

(
l

2
π

) � l
2 �∑

k=0

(l + 2k)!

(2k)!(l − 2k)!

1

(iν̄n)2k+1
+ i sin

(
l

2
π

) � l−1
2 �∑

k=0

(l + 2k + 1)!

(2k + 1)!(l − 2k − 1)!

1

(iν̄n)2k+2

⎫⎬⎭ . (E6)

The two sums can be combined to

Tnl = 2
√

2l + 1
l+1∑
p=1

(l + p − 1)!

(p − 1)!(l − p + 1)!

(−1)p

(iν̄n)p
δp+l,odd, (E7)

which immediately provides the coefficients t
(p)
l of (E4),

t
(p)
l = (−1)p2

√
2l + 1

(l + p − 1)!

(p − 1)!(l − p + 1)!
δp+l,odd. (E8)

Figure 11 shows Tnl for the first Legendre coefficients plotted
against the fermionic Matsubara frequency iν̄n. The doubly
logarithmic plot clearly shows the high-frequency 1/iν̄n

behavior for the even and the 1/(iν̄n)2 behavior for the odd
coefficients. One can see that, as expected, the structure at
very high frequencies is only carried by polynomials with
large values of l.
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2. Theoretical framework

2.3 On the CT-Hyb algorithm

To round up the set of tools used in this work, this section will briefly
introduce the hybridization expansion continuous time (CT-Hyb)
Quantum Monte Carlo (QMC) algorithm [WCD+06,WM06,GML+11]
used to solve the DMFT impurity problem. During the DMFT self-
consistency loop, CT-Hyb is used to calculate the impurity Green’s
function. After the self-consistency is reached, additionally the two-
particle Green’s function is measured.

The accumulation formulas for both quantities in general and a
Legendre representation thereof in particular have been derived in ap-
pendix C of [BHF+11] reprinted in the previous section. Unlike other
derivations for the accumulation formula for the one-particle Green’s
function, that are introduced ad-hoc [WM06] or take a round trip
through the bath Green’s functions T -matrix [Hau07], the derivation
in [BHF+11] stays within an closed path integral formulation of the
impurity problem and has the advantage of being easily generalized
to the two-particle Green’s function or higher ones.

In a similar manner, this section introduces a closed deriva-
tion of the CT-Hyb algorithm, where existing derivations [WCD+06,
GML+11] have to rely on combinatorial arguments. The derivation
borrows the basic structure and arguments from the derivation of the
dual fermion (DF) formalism [RKL08,HBR+08,RKLG09]. It is based
on discussions held with A. Rubtsov in Jülich in 2011.

For later reference the Hubbard-Stratonovich Transformation
(HST)

ec̄αbαβAβγbγδcδ = detA

∫
D
[
f̄f
]
e−fαA

−1
αβfβ+f̄αbαβcβ+c̄αbαβfβ (2.4)

The action for the Anderson Impurity model (AIM) can be decom-
posed into the free atom part and the hybridization

Simp[c̄, c] = Sat[c̄, c]−
∫
dτdτ ′c̄τ∆ττ ′cτ ′ .
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2.3. On the CT-Hyb algorithm

Applying the HST equation (2.4) to the path integral for the partition
function with A = ∆ and bαβ = δαβ yields (integrals over τ always go
from 0 to the inverse temperature β and orbital indices are neglected
for now)

Zimp =

∫
D [c̄c] e−Simp[c̄,c]

= det ∆

∫
D [c̄c]D

[
f̄f
]
e−Sate−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′e
∫
dτ ′c̄τ ′fτ ′+

∫
dτ f̄τ cτ

The idea is now to expand the last exponential and analytically solve
the path integral for f̄f for each term in this expansion. Only terms
in the sum with an equal number of f and f̄ need to be taken into
account for this.

Zimp = det ∆

∫
D [c̄c]D

[
f̄f
]
e−Sat[c̄,c]e−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′

(1 +
1

2!

∫
dτ1dτ

′
1(c̄τ1fτ1 f̄τ ′1cτ ′1 + f̄τ1cτ1 c̄τ ′1fτ ′1 + . . .)

= det ∆

∫
D [c̄c]D

[
f̄f
]
e−Sat[c̄,c]e−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′

(1 +
1

2!

∫
dτ1dτ

′
1(−fτ ′1 f̄τ1cτ1 c̄τ ′1 − fτ1 f̄τ ′1cτ ′1 c̄τ1 + . . .)

= det ∆

∫
D [c̄c]D

[
f̄f
]
e−Sat[c̄,c]e−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′

∑

k

1

k!

∫
· · ·
∫
dτ1dτ

′
1 . . . dτkdτ

′
k(−1)kfτ ′1 f̄τ1 . . . fτ ′k f̄τkcτ1 c̄τ ′1 . . . cτk c̄τ ′k

=Zat

∑

k

1

k!

∫
· · ·
∫
dτ1dτ

′
1 . . . dτkdτ

′
k (2.6)

(−1)k
〈
Tτfτ ′1 f̄τ1 . . . fτ ′k f̄τk

〉
∆−1

〈
Tτcτ1 c̄τ ′1 . . . cτk c̄τ ′k

〉
at

with

〈A〉at =Z−1
at

∫
D [c̄c]A[c̄, c]e−Sat[c̄,c]

〈B〉∆−1 =Z−1
∆−1

∫
D
[
f̄f
]
B[f̄ , f ]e−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′
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2. Theoretical framework

where

Zat =

∫
D [c̄c] e−Sat[c̄,c]

Z∆−1 =

∫
D
[
f̄f
]
e−

∫
dτdτ ′f̄τ∆−1

ττ ′fτ ′ =
1

det ∆

The expectation value 〈TτA〉∆−1 is a ‘free’ expectation value in the
sense that its action is quadratic in Grassmann variables. Using Wick’s
Theorem, equation (2.6) can be evaluated to

Zimp = Zat

∑

k

(−1)k

k!

∫
· · ·
∫
dτ1dτ

′
1 . . . dτkdτ

′
k

︸ ︷︷ ︸
≡
∑

ζ

det
[
∆̂k
ζ

] 〈
Tτcτ1 c̄τ ′1 . . . cτk c̄τ ′k

〉
at︸ ︷︷ ︸

≡wζ

∆̂k
ζ is the k × k-matrix with elements

[
∆̂k
ζ

]
AB

= ∆(τA, τ
′
B), i, j ≤ k

where the configurations of τ ’s and τ ′’s (and possibly orbital indices)
is encoded in the configuration ζ.

This establishes an formalism that expresses the impurity parti-
tion function as a sum over weights wζ of configurations ζ. How
this can be cast into a Monte Carlo algorithm has been discussed
before [WCD+06,WM06,GML+11] and will not be reviewed here.

All calculations in this work were performed using the triqs soft-
ware package [FP], supplemented by code to measure and handle the
two-particle Green’s function and evaluate lattice susceptibilities.
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Three

Susceptibilities

Even after some numerical algorithm provides an approximation to
the susceptibility tensor

χσσ
′

ijkl(q, iωn) = −
∫
d(r− r′)d(τ − τ ′)eiq(r−r′)eiωn(τ−τ ′)

〈
Tτc†σi(r, τ)cσj(r, τ)c†σ′k(r

′, τ ′)cσ′l(r
′, τ ′)

〉

one is still left with too many numbers to make sense of. The static
physical susceptibility alone for a three orbital system still has 324
components (one case discussed later chapter 7 even has nine ‘orbital’
indices, thus 26244 components in the susceptibility tensor) plus a
potentially intricate wave vector dependence q, which however is not
addressed in this chapter and thus dropped for the sake of clarity of
the equations.

A route to the physical interpretation of susceptibilities that is
complementary to the approach discussed towards the end of sec-
tion 2.1, namely to integrate out the spin- and orbital indices in a
way to gain one of the conventional observables, will be discussed in
this chapter.
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3. Susceptibilities

3.1 Extracting dominant contributions
to the susceptibility tensor

Consider the eigendecomposition of the tensor χσσ
′

ijkl(ω = 0) for the
static case written in superindices α = {σij} and β = {σ′lk}.

χαβ =
∑

l

V (l)∗
α χ(l)V

(l)
β ,

where χ(l) are the eigenvalues of χαβ and V
(l)
α are the components

of the eigenvector associated with the eigenvalue χ(l). For the real
symmetric matrix χαβ this is easily achieved.

With that, the susceptibility eigenvalues can be related to fluctu-
ations of eigenmodes

χ(l) =
∑

αβ

V (l)
α χαβV

(l)∗
lβ

=−
∑

αβ

V (l)
α 〈Tτ n̂αn̂β〉ω=0 V

(l)∗
lβ

=−
〈
Tτ
∑

α

V (l)
α n̂α

︸ ︷︷ ︸
V̂ (l)

∑

β

V
(l)∗
β n̂β

︸ ︷︷ ︸
V̂ (l)†

〉
ω=0

, (3.1)

where n̂α(τ) = c†σi(τ)cσj(τ) and n̂β(τ ′) = c†σ′l(τ
′)cσ′k(τ ′).

If the system under consideration is close to a phase transition with
wave vector Q, the susceptibility tensor can well be approximated by
just taking into account the largest eigenvalue χmax, at the same time
giving an explicit expression for the operator V̂ max, the fluctuation of
which diverges, giving the easiest excitable state. Comparing equa-
tion (3.1) to equation (2.2) makes clear that V̂ max is just a special
choice of the δX̂Γ used there (and V̂ max† for δX̂ ′∆). With that, to

first order in the field F ′max, that couples V̂ max to the Hamiltonian,
equation (2.1) becomes

〈
V̂ max(Q, 0)

〉
= χmax(Q, 0)F ′max(Q, 0) .
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3.2. The simple case of one orbital per site

Consequently,
〈
V̂ max(Q, 0)

〉
is the order parameter of the phase tran-

sition when χmax diverges.
Independently, Kuneš et al. [KA14] used a similar eigenanlaysis.

3.2 The simple case of one orbital per
site

The eigendecomposition explained above becomes particularly easy in
the case of a single orbital per site in a paramagnetic state. Only spin
degrees of freedom enter (α = σ, β = σ′), which then has the form

χαβ =

( ↑ ↓
↑ A B
↓ B A

)
,

with A,B ∈ R. This matrix has eigenvalues and eigenvectors

(
A B
B A

)(√
1/2√
1/2

)
= (A+B)︸ ︷︷ ︸

≡2χc

(√
1/2√
1/2

)

︸ ︷︷ ︸
≡
√

1/2δn
(
A B
B A

)( √
1/2

−
√

1/2

)
= (A−B)︸ ︷︷ ︸

≡~2

2 χ
m

( √
1/2

−
√

1/2

)

︸ ︷︷ ︸
≡
√

2
~ Sz

.

Only charge- and spin-fluctuations are possible in such a system in
the longitudinal channel. Correspondingly, the only possible ordered
states are magnetic and charge-ordered states. Additionally, χαβ has
a q-dependence that allows to distinguish between e.g. ferromagnetic
and anti-ferromagnetic fluctuations.
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Four

Incommensurate spin susceptibility
in Sr2RuO4

The body-centered tetragonal structure Sr2RuO4 attained a lot of at-
tention with the mid nineties due to the discovery of superconduc-
tivity [MHY+94] that, while at very low temperatures below 1K, is
an interesting research ground due to it’s unconventional character
similar to the cuprate superconductors, yet in an undoped material.

Interest was renewed by the prediction [MS99] from model-like ran-
dom phase approximation (RPA) calculations and subsequent exper-
imental verification [SBB+99] from inelastic neutron scattering (INS)
measurements of a strong peak in the spin susceptibility at the in-
commensurate Qi-point in the Brillouin zone (see figure 4.1 for the
notation).

It is still an widely open question to which extend the different
orbitals contribute to the physics of the system. Random phase ap-
proximation (RPA) comes to the conclusion [MS99, BSB+02] that a
pure nesting scenario in the quasi-onedimensional sheets in the Fermi
surface are solely responsible for the incommensurate spin susceptibil-
ity, which originate from dxz- and dyz-bands respectively for the sheet
expanding in y- and in x-direction. At Qi, these nesting conditions
meet to form a peak. Recent renormalization group studies [HRZ13]
have revived this argument to discuss the mutual exclusion of spin-
density wave and superconductivity in context to the dimensionality of
the partaking orbitals, assigning the two-dimensional Fermi surface of
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4. Incommensurate spin susceptibility in Sr2RuO4

Γ

X

R

S M

PiQi

Figure 4.1: kz = 0-cut through the Brillouin zone of Sr2RuO4 with the
high-symmetry points used in the text. The Qi point is the position
of the incommensurate magnetic peak and Pi is point where certain
approximations also see an elevated susceptibility

the dxy band (conventionally called the γ-surface) as the source of the
p-wave pairing orderparameter. This seems to be in line with recent
inelastic neutron scattering experiments by Iida et al. [IKK+11] that
found the incommensurate peak still well pronounced at room tem-
perature and from this temperature dependence drew the conclusion
that the magnetic and superconducting properties are not related.

Yet, the finding of additional features throughout the Brillouin
zone, INS data suggesting a peak near q = (0.15, 0.15) (in units of the
in-plane reciprocal unit vectors1) as well as a delicate shoulder struc-
ture [BSB+02] of the peaks, hint that the physics is more complicated

1The notation in this Brillouin zone is ambiguous at best. Often (e.g. [BSB+02]), this
point is denoted q = (0.15, 0.15, 0), which however is not entirely true because the first
and second reciprocal unit vector carry a qz component in this body-centered tetragonal
lattice, which would lay q = (0.15, 0.15, 0) away from the intended qz = 0-plane. To avoid
confusion and since this work only discusses points within this plane, the third component
will be dropped. Thus, to name some points M = (1, 0), X = (0.5, 0.5) and Qi = (0.3, 0.3).
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than a simple nesting picture.
While spin-orbit coupling might play a role for the overall physical

description of Sr2RuO4, Ng and Sigrist demonstrated from tight bind-
ing calculations including spin-orbit coupling [NS00] that it is of minor
relevance for the qualitative structure of the incommensurate peak in
the spin susceptibility. Corresponding experimental work [BSS+04]
supports this qualitative view, finds however, that peak intensities
differ strongly between in-plane and out-of-plane susceptibility. Cor-
respondingly, the following investigations will disregard spin-orbit cou-
pling as a first step. This might be revisited in future work.

The numerical calculations of this material presented here serves
two purposes. Firstly, calculating susceptibilities in an approxima-
tion beyond RPA for this inherent three-orbital problem is a valuable
missing piece of information and it will indeed be shown in this chap-
ter that not only contributions can be made to the investigation of
the intriguing peak-structure throughout the Brillouin zone but also
the orbital resolution of the dominant spin-like susceptibility shows a
non-trivial behavior. Secondly (yet first in sequence), this material
will serve as a demonstration case for a further development of the
numerical benefit of using the Legendre polynomial basis [BHF+11] to
calculate not only static but also dynamical lattice susceptibilities.

This relevant additional improvement of the calculation of suscep-
tibilities for non-static bosonic Matsubara frequencies came up only
after the publication of the use of Legendre polynomials [BHF+11]. It
makes use of the some analytically known properties of the dynamical
generalized susceptibility for elevated frequencies to further reduce the
number of Legendre coefficients necessary to reliably calculate lattice
susceptibilities. The susceptibilities for the investigation of NaxCoO2

presented in chapter 6 and specifically in reference [BL12] were still
calculated without this improvement. For one orbital this is very well
possible, albeit numerically a bit more tedious. When dynamical sus-
ceptibilities for NaxCoO2 were revisited and also calculated for lower
temperatures later on in chapter 6 and reference [BL14], this improve-
ment was used, yielding the smooth connection to the previous results
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4. Incommensurate spin susceptibility in Sr2RuO4

and more refined newer ones.

4.1 Numeric setup for Sr2RuO4

To gain an unbiased an accurate account of the kinetic part of
the Hamiltonian, a density functional theory [Koh99] (DFT) calcu-
lation in its local density approximation [PW92] (LDA) flavour as
implemented in the mixed-basis pseudopotential [MELFed] (MBPP)
code. Structural data is taken from reference [WL93]. We proceed
with LDA+dynamical mean field theory [APK+97, LK98, KSH+06]
(LDA+DMFT) calculation, employing the projection onto a maxi-
mally localized Wannier basis [MV97] and using the rotationally in-
variant Slater-Kanamori local interaction parametrization suitable for
the t2g-shell [dMG11]

Hint = (U − 3JH)
N̂(N̂ − 1)

2
− 2JHS2 − JH

2
L2 +

5

2
N̂

with N̂ the total charge operator, S the spin- and L the angular
momentum operators. The parameters for the Coulomb interaction
U = 2.3eV and Hund coupling JH = 0.4eV were chosen in accordance
with Mjavlje et al., [MAM+11] where these were determined to agree
reasonably well with constrained RPA calculations [AIG+04].

4.2 An addendum to the use of
Legendre coefficients - Shifting
frequencies

An account of analytical considerations for the structure of the gen-
eralized susceptibility in Matsubara frequency space mainly given in
reference [RVT12] but also previously discussed in [LA11]. In the
following it will be shown how this structure can be used to further
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reduce the number of Legendre coefficients for elevated bosonic fre-
quencies compared to the method detailed in [BHF+11] (which was
reprinted in full on page 22). Following that, the benefit will be shown
explicitly by performing convergence tests for Sr2RuO4. All figures in
this section are for Sr2RuO4 modeled as discussed above and at the
temperature T = 290K.

Equation (14) in reference [BHF+11]

χ̃(iνn, iνn′, iωm) =
∑

l,l′≥0

Tnlχ̃ll′(iωm)T ∗n′l′

and its inverse

χ̃ll′(iωm) =
∑

n,n′∈Z
T ∗nlχ̃(iνn, iνn′, iωm)Tn′l′

with χ̃ll′(iωm) being the generalized susceptibility in mixed Legendre
Matsubara basis and χ̃(iνn, iνn′, iωm) in pure (conventional) Matsubara
basis in fermionic (νn = (2n + 1)πT ) and bosonic (ωm = 2mπT )
Matsubara frequency. The unitary transformation

Tnl =

√
2l + 1

β

∫ β

0

dτeiνnτPl[x(τ)]

=(−1)nil+1
√

2l + 1jl

(
(2n+ 1)π

2

)

with β = 1
T the inverse temperature connects these quantities. The

notation used in this section aligns to section 2.1 and [BHF+11], hence
Pl(x) is the lth Legendre polynomial, x(τ) is the linear mapping of the
range τ ∈ [0; β] to the range x ∈ [−1; 1] and jl(z) is the lth spherical
Bessel function.

Orbital and spin indices are implicit in χ̃ll′(iωm) as well as
χ̃(iνn, iνn′, iωm) throughout this section. As the unitary transforma-
tion Tnl and the improvements thereof discussed here act solely on the
fermionic (and bosonic) degrees of freedom but leave the orbital and
spin-indices unaffected, those can be left out of the current discussion.
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4. Incommensurate spin susceptibility in Sr2RuO4

The susceptibilities are calculated as outlined in [BHF+11], by in-
verting the impurity Bethe-Salpeter equation (BSE) in the horizon-
tal particle-hole channel to get the irreducible vertex of the impurity,
which is subsequently used as an approximation for the lattice’s ir-
reducible vertex [ZH90, MJPH05] in the lattice’s BSE to obtain the
generalized susceptibility of the desired lattice wave-vector (equation
(15) in [BHF+11])

χ̃−1(q, iωm) = χ̃−1

imp
(iωm)− χ̃0

imp

−1(iωm) + χ̃0−1(q, iωm) . (4.1)

Like in [BHF+11], the double underline denotes the dependence on two
fermionic Matsubara frequencies or Legendre coefficients. Naturally in
a numerical treatment of these inversions the representing basis has to
be truncated to a finite number of coefficients C and it must be taken
care of the convergence of the general susceptibility of this number

χ̃(q, iωm) = lim
C→∞

[χ̃
C

](q, iωm)

= lim
C→∞

(
[χ̃imp

C
]−1(iωm)− [χ̃0

imp
C

]−1(iωm) + [χ̃0

C
]−1(q, iωm)

)−1

.

When calculating the physical susceptibility (equation (19) in
[BHF+11])

χ(q, iωm) ≡ χ̃(q, iωm)

= lim
C→∞

χ̃
C

(q, iωm) ,

the empty bubble part, which can be computed numerically up to very
high C can be separated to increase convergence

χ(q, iωm) = lim
C→∞

χ̃
C

(q, iωm)− χ̃0

C
(q, iωm) + χ0(q, iωm) .

While this scheme does not change with an unitary transformation
of the fermionic degrees of freedom, the details of tracing out those
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does, yielding

χ̃(q, iωm) ≡ 1

β2

∑

n,n′∈Z
χ̃(q, iνn, iνn′, iωm)

for the Matsubara case and

χ̃(q, iωm) ≡ 1

β2

∑

l,l′≥0

(−1)l+l
′√

2l + 1
√

2l′ + 1χ̃ll′(q, iωm) (4.2)

for the Legendre case and also the truncation is different

χ̃
n̂
(q, iωm) ≡ χ̃nn′ − n̂2≤n/n′< n̂

2

(q, iωm) (4.3)

for the Matsubara case and

χ̃
l̂
(iωm) ≡

∑

n,n′∈Z
T ∗nlχ̃nn′(iωm)Tn′l′

0≤l/l′<l̂
= χ̃ll′

0≤l/l′<l̂
(4.4)

for Legendre coefficients.
While the calculation of lattice susceptibilities following equa-

tion (4.1) sketches the use of the Legendre basis throughout this work
and is also the test case for the following arguments, it is impor-
tant to note that it is not limited to this use case. All diagram-
matic schemes that can be mapped to matrix operations within one
channel of two-particle properties can benefit from the Legendre ba-
sis without further ado. To this group of problems belong also i.e.
the dynamical vertex approximation [TKH07] (DΓA) and the dual
fermion [RKL08,HBR+08,RKLG09] (DF) method in most of its man-
ifestations including the ladder dual fermion approximation [HLR+09]
(LDFA). The qualitative arguments for the benefits of the Legendre
basis relies solely on the general structure of the two-particle quanti-
ties, which does not differ throughout these approaches.

Figure 4.2 shows the Γ-point (uniform) static generalized magnetic
susceptibility for the fixed orbital indices (3333) (3 here denotes the
dxy-orbital, which at the Γ-point is the most relevant one as will be dis-
cussed in section 4.4) in fermionic Matsubara coefficients and Legendre
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Figure 4.2: Static uniform generalized spin susceptibility in Matsub-
ara frequencies (left) or Legendre coefficients (right) for the indicated
orbital frequencies for T = 290K. Note the different number of coeffi-
cients in both plots

coefficients respectively. The empty bubble χ̃0m has been subtracted

to focus on the numerically demanding part.
For better comparability to the Legendre case, the Matsubara ver-

sion is not shown against Matsubara frequencies iνn, but rather against
its index n (thus using the notation χ̃nn′). Note that figure 4.2 shows
about seven times more coefficients for χ̃nn′ than for χ̃ll′.

It shows the static generalized susceptibility and thus touches
ground with figure 8 of [BHF+11], yet for the more complicated ma-
terial considered here. Accordingly, the convergence curves for these
two cases in figure 4.3 (full symbols) qualitatively match those of fig-
ure 9 of [BHF+11]. Both figures show the convergence of the physical
magnetic susceptibility against the number of coefficients used for each
fermionic degree of freedom in the its calculation as it was sketched
above. Both show that the Legendre basis yields a rapid saturation,
while the Matsubara basis does not even allow for a reliable extrap-
olation still with many more coefficients. This is consistent with the
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Figure 4.3: Convergence of the Γ-point spin susceptibility for Sr2RuO4

at T = 290K using the indicated bases. As an example for the dy-
namical susceptibility (dashed lines) iω10 = i20T was chosen as in the
preceding plots. The colors were chosen in correspondence to those
too. For these parameters, the dynamical susceptibility is expected to
be precisely zero [HvLK+14]. For the Matsubara convergence curves,
only the symmetric points (odd number of coefficients) are used

decay of the generalized susceptibility in both bases in figure 4.2.
On the other hand, the dynamical generalized susceptibility in

Matsubara coefficients has a peculiar structure with a broadened range
of slow decay along the n- and n′-direction [RVT12], clearly visible in
figure 4.4 and it also leaves a trace in the convergence curve of the
dynamical susceptibility versus the number of Matsubara frequencies
(empty blue symbols in figure 4.3), which hits a maximum around
n̂ = 20, which is just where both maxima of χ̃nn′ are included the
truncated χ̃

n̂
. After that the convergence takes the slow stance com-

parable to the static case, in line with the slow decay in the n and
n′ directions.. The Legendre coefficients carry relevant weight only
within a well contained region as opposed to this gradual decay in three
major directions. Following [HvLK+14], at the Γ-point the suscepti-
bilities for Matsubara frequencies iωm with m > 0 are χ(Γ, iωm>0) = 0,
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Figure 4.4: Dynamical (m = 10) uniform generalized spin suscepti-
bility in Matsubara frequencies (left) or Legendre coefficients (right)
for the indicated orbital frequencies. Note the different number of
coefficients in both plots

which makes this an apt test case for the convergence of this quan-
tity. Note how the point where figure 4.3 shows a well converged
Legendre-calculated dynamical susceptibility, around l̂ ≈ 33 in this
case, coincides with the region of relevant weight in figure 4.4.

The structure of the dynamical Matsubara generalized suscepti-
bility suggests to use a different a different truncation than proposed
before in equation (4.3)

χ̄
n̂
(q, iωm) ≡ χ̃nn′ − n̂2−m≤n/n′< n̂

2−m
(q, iωm) ,

which follows the structure of χ̃nn′(q, iωm). This has been employed
and discarded before [Lui11], because while it turns in to the slowly
decaying stance earlier as visible in the open red squares in figure 4.3
(already around n̂ ≈ m

2 , where the whole central structure is incorpo-
rated within the truncated region), this stance is just as bad as in the
unshifted case.
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This changes completely however when turning again to the Leg-
endre basis, considering a truncation in Legendre space of a shifted
transformation, i.e. replacing equation (4.4) by

χ̄
l̂
(q, iωm) ≡

∑

n,n′∈Z
T̄ ∗2n+m+1,lχ̃nn′(q, iωm)T̄2n′+m+1,l′

0≤l/l′<l̂
. (4.5)

Therein,

T̄o,l ≡
√

2l + 1

β

∫ β

0

dτeioπ τβPl(x(τ))

=
√

2l + 1ioiljl

(oπ
2

)

is the generalization of Tnl used before with Tnl = T̄2n+1,l. It is easy
to check using the orthogonality of the Legendre polynomials, that
T̄2n+m+1,l is unitary for each fixed m, i.e.

∑

n

T̄ ∗2n+m+1,lT̄2n+m+1,l′ = δll′

∑

l

T̄ ∗2n+m+1,lT̄2n′+m+1,l = δnn′

Please note that in equation (4.5) (just as in equation (4.4)), the
n-sums are just formally executed, no approximation or truncation
enters at that point. The only truncation is in Legendre basis. In-
stead, an accumulation formula for the shifted Legendre basis quan-
tity χ̄

l̂
imp(iωm) can be readily derived from the accumulation formula

in imaginary time (equation (C.23) in [BHF+11])

G
(4)
ABCD(τ12, τ34, τ14) =

1

β

〈 k∑

αβγδ=1

(M ζ
αβM

ζ
γδ −M

ζ
αδM

ζ
γβ)

δ−(τ12 − ταβ)δ−(τ34 − τγδ)δ+(τ14 − ταδ)
δλα,Aδλβ ,Bδλγ ,Cδλδ,D

〉
.
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G(4) refers to the two-particle Green’s function, uppercase Latin letters
to a complete set of local characterizing quantities (e.g. spin- and
orbital indices), τ12 = τ1 − τ ′2, δ

±(τ) is the 1
T -(anti)periodic Dirac

function, M ζ is the inverse of the matrix ∆̂(ζ)ij ≡ ∆λi,λ′j(τi − τ ′j) for
the configuration ζ = (k, λj, λ

′
j, τj, τ

′
j), which in turn is composed of a

perturbation order k and a set of spins/orbitals and imaginary times
({λ, τ}) for the k creation operators and a set of spins/orbitals and
imaginary times ({λ′, τ ′}) for the k annihilation operators generated
by the Markov process. ∆AB(τ) is the hybridization matrix of the
impurity problem. All this is discussed in greater detail in appendix C
of [BHF+11].

The simple dependence of imaginary time of just three δ functions
allows for a easy transformation to a different basis, e.g. the Matsub-
ara basis

G
(4)
ABCD(iνn, iνn′, iωm) =

1

β

〈 k∑

αβγδ=1

(M ζ
αβM

ζ
γδ −M

ζ
αδM

ζ
γβ)

eiνnταβeiνn′τγδeiωmταδ

δλα,Aδλβ ,Bδλγ ,Cδλδ,D

〉
.

From there, the desired accumulation formula in the shifted Legendre
basis is just obtained by applying the transformation equation (4.5)

Ḡ
(4)
ABCDll′(iωm) =

√
2l + 1

√
2l′ + 1

β
(−1)l

′+1

〈 k∑

αβγδ=1

(M ζ
αβM

ζ
γδ −M

ζ
αδM

ζ
γβ)

P̃l(x(ταβ))P̃l′(x(τγδ)e
−iωm2 (ταβ+τγδ)eiωmταδ

δλα,Aδλβ ,Bδλγ ,Cδλδ,D

〉
.

Comparing that with the accumulation formula for non-shifted Leg-
endre basis given in equation (C.24) in [BHF+11], the only difference
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is a shift of the time associated with the third time difference

ταδ → ταδ −
ταβ + τγδ

2
,

which obviously has a negligible impact on the time for the numeri-
cal accumulation of this quantity. Yet, the numerical benefit is big,
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Figure 4.5: Dynamical (m = 10) uniform generalized spin susceptibil-
ity in shifted Legendre coefficients (left) and together with the empty
bubble part (right) for the indicated orbital frequencies. Note the
different number of coefficients in both plots and also compared to
figure 4.4

as is clearly visible when comparing figure 4.5 to figure 4.4 (note the
different number of coefficients used in both figures). The compact ap-
pearance is preserved, yet its size of this region in Legendre coefficients
is further decreased, in the actual example from roughly 33 to as little
as roughly 17 coefficients each for l and l′. In most cases it is not neces-
sary to increase the number of Legendre coefficients for the dynamical
case beyond that necessary already for m = 0 when calculating the
susceptibility for a number of bosonic Matsubara frequencies suffi-
cient to yield a physically sound analytic continuation [VS77] to the
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real frequency domain. The right plot in figure 4.5 shows the structure
of the whole generalized susceptibility χ̃(iω10,Γ) including the trivial

part which, as in the static case, adds primarily to a dominantly di-
agonal region, stabilizing the inversions to obtain this quantity. The
convergence curve in figure 4.3 (empty green circles) is consequential.

The only additional points that need revisiting when compared to
the scheme presented in [BHF+11] is the construction of the empty
bubble part of the susceptibility χ̄

ll′
(iωm), which now also uses the

shifted transformation T̄ol
2

χ̄0
ll′(iωm) = −

∑

nn′

T̄ ∗2n+m+1,lG

(
i(2n+ 2m+ 1)

π

β

)
G

(
i(2n+ 1)

π

β

)
T̄ ∗2n′+m+1,l′

and the calculation of the physical susceptibility, which however turns
out to stay unaltered compared to equation (4.2)

χ̄(q, iωm) ≡ 1

β2

∑

l,l′≥0

(−1)l+l
′√

2l + 1
√

2l′ + 1χ̄ll′(q, iωm)

4.3 Dynamical spin susceptibility
spectrum for Sr2RuO4

With the numerical instruments developed above, one is finally
equipped to calculate the dynamical spin susceptibility for a realisti-
cally modeled system with the full t2g-shell in the correlated subspace
without the fear to include systematic errors due to truncation in Mat-
subara frequency coefficients that enter the analytic continuation in
uncontrolled ways.

The temperatures used in the remainder of this chapter range down
to T = 193K (β = 60 1

eV) which, while of course high above the super-
2This formula is to be understood as a template for these empty bubble susceptibilities.

They appear as q-dependent as well as impurity quantities, correspondingly with the usual
additional k-sums and k-dependent Green’s functions or just with the impurity quantities.
Details can be found in equation (16) of [BHF+11]
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conducting transition temperature of few Kelvin, allows for a valuable
insight into the spin-dynamics of the system.
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Figure 4.6: Dynamical spin susceptibility throughout the Brillouin-
zone for T = 290K. The notation for the high-symmetry points is
given in figure 4.1. The X2-point lies above the X-point on level with
the upper surface of the Brillouin zone

Figure 4.6 shows the dynamical spin susceptibility spectrum. Con-
stant energy cuts through certain partial paths of this are at hand from
INS measurements [BSB+02,IKK+11], that compare well on a qualita-
tive level. The experimentally observed incommensurate peak in the
dynamical susceptibility is clearly visible, it shows equally pronounced
at the ΓX-, the XM - and the ΓX2-path. These points lie on the same
qz-line due to the sheared stacking of the Brillouin zones, so the rela-
tive similarity of these peaks just highlights the two-dimensionality of
the material. The peak position at ω̂ ≈ 27meV is not resolved by but
consistent with aforementioned INS data, which covers energy ranges
up to 10meV.
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4.4 Orbital contributions to the spin
susceptibility

Inelastic neutron scattering experiments that were applied to Sr2RuO4

provide a measure for the magnetic spin susceptibility, while the cal-
culation of the full susceptibility tensor χσσ

′
ijkl allows to determine the

leading eigenmodes of the fluctuation independent of an experimen-
tal instruments fit to measure these. The corresponding tools were
developed in section 3.1 and are congruously used on the static sus-
ceptibility in this section.
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Figure 4.7: Map of the dominating eigenvalue in the irreducible wedge
of the qz = 0-Brillouin zone (figure 4.1) for T = 193K. The path used
in figure 4.6 and figure 4.8 is marked in green

The dominant eigenvalue for each q-point for a rather low tem-
perature T = 193K for the in-plane irreducible wedge of the Brillouin
zone is shown in figure 4.7. Nicely seen are the two most prominent
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features, the peaks at the discussed incommensurate point Qi and its
counterpart at on the XM -path.
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Figure 4.8: Dispersion of the dominant eigenvalue of the susceptibil-
ity tensor for several temperatures along the same way through the
Brillouin zone that was used in figure 4.6.

A more refined account of the structure and in particular a evolu-
tion of the peak-structure with temperature can be found in figure 4.8.
While for elevated temperatures (T = 580K, red curve) only a rather
flat structure is visible (even there though the rather high background
is noteworthy), only at lower temperatures develop the shoulder struc-
ture [BSB+02] at the ΓX-path and asymmetric decay towards Γ-point
and X-point. The determined peak position of Qi = (0.30, 0.30)
matches perfectly with experimental findings [BSB+02].

The orbital contributions to the dominant fluctuating eigenmode
vary across the Brillouin zone. At the Γ-point, the dominant eigen-
vector (compare section 3.1) is (all results in this section are for
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T = 193K)

V max(q = Γ) =

↑

dxz dyz dxy( )dxz 0.33 0.00 0.00
dyz 0.00 0.34 0.00
dxy 0.00 0.00 0.52

↓

dxz dyz dxy( )dxz −0.36 0.00 0.00
dyz 0.00 −0.34 0.00
dxy 0.00 0.00 −0.52

.

So the dominant Γ-eigenmode is not Sz, but Sz-like in the sense (nu-
merical deviations in the second decimal have been discarded here)

V̂ max ∝ vxzS
z
xz + vyzS

z
yz + vxyS

z
xy vxz = vyz ≈ 0.34 vxy ≈ 0.52 ,

while a pure Sz excitation would have a equal relative weights vxz,
vyz, vxy, v

2
xz + v2

yz + v2
xy = 0.5. The observation that V max is diagonal

in orbital indices (which holds true throughout the whole Brillouin
zone) is not trivial and the interpretation if this is not the case will be
discussed in the next chapter.

Following the relative weights of the orbital contributions to the
respective dominant eigenmode (figure 4.9) provides an understanding
of the susceptibility peaks. First, the simple nesting condition [MS99]
is residual in these plots, showing increased weight of the dxz orbital
(yellow) in vertical planes (perpendicular to the qz-direction) crossing
Qi and increased weight of the dyz orbital (cyan) in horizontal planes
(perpendicular to the qy-direction) also crossing Qi. There are however
strong alterations of the weight along these planes, undermining a pure
nesting picture.

Also the dxy orbital (magenta), the Fermi surface of which (the γ-
sheet) does not fulfill a nesting condition holds the highest contribution
to the susceptibility and does so also in regions where the magnitude
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Figure 4.9: Orbital contribution of the dxz-like (top, yellow), dyz-like
(middle, cyan) and dxy-like (bottom, magenta) orbital to the dominant
eigenmode of the susceptibility tensor. Parameters and notation as in
figure 4.7
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of the excitation (4.7) is still high, namely at the aforementioned point
q = (0.15, 0.15) and (together with the dyz orbital) at Pi.

Probably most important however is the observation that at the
incommensurate point Qi, all three orbitals contribute equally within
numerical accuracy

V max(q = Qi) =

↑

dxz dyz dxy( )dxz 0.41 0.00 0.00
dyz 0.00 0.41 0.00
dxy 0.00 0.00 0.40

↓

dxz dyz dxy( )dxz −0.41 0.00 0.00
dyz 0.00 −0.41 0.00
dxy 0.00 0.00 −0.41

,

making this particular point a pure Sz-fluctuation without orbital dis-
crimination. This too points against a pure nesting picture.

4.5 Outlook

This chapter developed numerical techniques to accurately deter-
mine dynamical lattice susceptibilities for multiorbital systems and
demonstrated their use on the numerically challenging t2g compound
Sr2RuO4, reproducing experimental observations from inelastic neu-
tron scattering experiments of an incommensurate peak in the mag-
netic susceptibility. The orbital contributions to the magnetic sus-
ceptibility are resolved throughout the Brillouin zone, revealing unex-
pected nontrivial behavior.

Still this investigation leaves room for future research. A more
thorough comparison of the frequency dependence of the dynamical
susceptibility is desirable. Fixed energy experimental data for low
as well as reasonably high temperature is available for many paths
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4.5. Outlook

through the Brillouin zone [BSB+02, IKK+11], an systematic identifi-
cation of experimental findings and the numerical work presented here
will help the assessment of the approximation of a local irreducible ver-
tex as an apt treatment of Sr2RuO4. This will be of particular interest
for the shoulders of the incommensurate (Qi-point) peak, at the Pi-
point and at q = (0.15, 0.15), for which experimental and theoretical
work is still debatable.

The orbital resolution can help to understand the source of the
incommensurate peak, opening again the discussion as to how far it
is connected in nature with the superconducting phase found at very
low temperatures.
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Five

Ordering tendencies on
the square Hubbard bilayer

To gain further insight into the physical interpretation of the eigenbasis
determined by the eigendecomposition of the susceptibility tensor χ

(compare section 3.1), a fairly simple and well understood example
will be investigated in this chapter with the developed set of tools.

t

t

t⊥

Figure 5.1: Hubbard bilayer with in-plane nearest neighbor hopping t
and inter-plane hopping t⊥

The square bilayer model (figure 5.1) consists of two square lat-
tice planes of a conventional form, additionally allowing a hopping
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5. Ordering tendencies on the square Hubbard bilayer

in between the layers on-site. A plain Hubbard U -term is taken into
account.

The hamiltonian is given by

H =−
∑

σ〈ij〉
t
(
c†σ1icσ1j + c†σ2icσ2j

)

−
∑

σi

t⊥
(
c†σ1icσ2i + c†σ2icσ1i

)

+
∑

i

U (n̂↑1in̂↓1i + n̂↑2in̂↓2i)

with 〈ij〉 denoting sums over nearest neighbors. The number in the
index names the layer. With the choice t = t⊥ = 0.25, one can think
of this model as two slabs cut out of a simple cubic lattice and this
investigation will be restricted to the half-filled case. Consequently,
the antiferromagnetic tendency from that model is also visible in this
bilayer.

Phase diagrams of bilayer models have been discussed before
[HKL09], showing a paramagnetic metal for small interaction param-
eter U and low t⊥

t . With increasing U , it is well established that the
bilayer undergoes a transition to an antiferromagnetic metal at low t⊥

t

and a transition to a singlet state at larger t⊥
t . For small t⊥

t and even
further increased U , the system will eventually hit a antiferromagnetic
insulating phase.

In this section, this model is investigated for illustrative purposes
for the properties of the susceptibilities of a simple, yet multi-orbital
system. The paramagnetic metal to antiferromanetic metal transition
serves this purpose well. A more thorough investigation of also the
other transitions in this model promises to be an interesting task, yet
to be undertaken.

Lattice susceptibilities in a DMFT-like approximation are calcu-
lated along the lines of section 2.2 and chapter 3.

The right part of figure 5.2 shows the largest eigenvalue throughout
the Brillouin zone (at U = 0.9), indicating that ordering tendencies
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Figure 5.2: Left: All eigenvalues of the susceptibility tensor χ at the

K-point for T = 0.05 and U = 0.9 and varying interaction strength.
Right: Largest eigenvalue troughout the Brillouin zone

only appear in a K-point “anti”-pattern, while the left part shows the
evolution of all eigenvalues at said K-point with a parameter, in this
case the interaction strength, approaching the ordered phase.

This does not yet giving away the local state that will be contin-
ued alternatingly upon a divergence of this largest eigenvalue. For
this, the eigenvector corresponding to the largest eigenvalue has to be
considered

V (1) =
↑
(

0.5 0.0
0.0 −0.5

)

↓
(
−0.5 0.0

0.0 0.5

) .

Thus the fluctuating eigenmode is

V̂ (1) = 0.5(n̂1↑ − n̂1↓ − n̂2↑ + n̂2↓) ∝ Sz1 − Sz2 .
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5. Ordering tendencies on the square Hubbard bilayer

Figure 5.3: The antiferromagnetically coupled antiferromagnetic
planes favoured in this model

The ordering pattern that realizes at the divergence of this eigen-
mode is visualized in figure 5.3

The ordering of this model in a DMFT-like approximation is settled
with that and nicely reproduces the earlier results in an unbiased way.
Additional insight however about the model and about the types of
results the eigendecomposition of the susceptibility tensor can give, it
is worthwhile to also consider the eigenvectors corresponding to the
lower lying eigenvalues.

Table 5.1 and table 5.2 gather all those eigenvectors in the order
they appear at U = 0.9. Besides the already discussed V (1), which is
associated with a antiparallel spin ordering of the two sites per lattice
site, some other states are easily identifiable. V (3) is a local parallel
coupling, the ordered phase if the eigenvalue for this eigenvector would
diverge would be a S = 1 antiferromagnet. This eigenvalue could be
enhanced by introducing a Hund coupling to the hamiltonian. The
contribution of V (3) to the susceptibility tensor is just the conventional
spin susceptibility.
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V (1) =
↑
(

0.5 0.0
0.0 −0.5

)

↓
(
−0.5 0.0

0.0 0.5

)

V (2) =
↑
(

0.0 0.5
−0.5 0.0

)

↓
(

0.0 −0.5
0.5 0.0

)
(
1
i

) (
1
−i

)

V (3) =
↑
(

0.5 0.0
0.0 0.5

)

↓
(
−0.5 0.0

0.0 −0.5

) ⇒ χm

V (4) =
↑
(

0.0 0.5
−0.5 0.0

)

↓
(

0.0 0.5
−0.5 0.5

)
(
1
i

) (
1
−i

)

Table 5.1: The first four eigenvalues of the susceptibility tensor of the
square nearest neighbor bilayer for t = t⊥ = 0.25, U = 0.9
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5. Ordering tendencies on the square Hubbard bilayer

V (5) =
↑
(

0.0 0.5
0.5 0.0

)

↓
(

0.0 0.5
0.5 0.0

)
(
1
1

) (
1
−1

)

V (6) =
↑
(

0.0 0.5
0.5 0.0

)

↓
(

0.0 −0.5
−0.5 0.0

)
(
1
1

) (
1
−1

)

V (7) =
↑
(

0.5 0.0
0.0 −0.5

)

↓
(

0.5 0.0
0.0 −0.5

) ⇒ χo

V (8) =
↑
(

0.5 0.0
0.0 0.5

)

↓
(

0.5 0.0
0.0 0.5

) ⇒ χc

Table 5.2: The second part of table 5.1 with the fifth to eighth eigen-
vector
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V (7) and V (8) are the density counterparts of the magnetic orders
V (1) and V (3) respectively, with V̂ (7) ∝ n̂1 − n̂2 (n̂a = n̂↑a + n̂↓a) the
orbital moment and its fluctuation resulting in what is convention-
ally called the orbital susceptibility χo and v̂(8) ∝ n̂1 + n̂2 giving the
charge susceptibility (χc) contribution. These two would increase in
relevance with a nearest neighbor interaction term

∑
〈ij〉 V n̂in̂j in the

hamiltonian, which favors charge ordering for sufficiently large V (see
e.g. [HABW14]).

Slightly harder to grasp are the eigenmodes with off-diagonal com-
ponents, V (2), V (4), V (5) and V (6), as they are not readily represented
in the form

∑
σa vσan̂σa, that encouraged an intuitive interpretation in

the preceding chapter for the case of Sr2RuO4. Equation (3.1) pro-
vides a formal expansion of the susceptibility tensor in the fluctuating
operators V̂ (l) irrespective of the one-particle basis in which they are
represented. The other way around, the actual representation provides
the one-particle basis in which the operator V̂ (l) takes the desired form.

Rewriting the operators V̂ (l) in equation (3.1)

V̂ (l) =
∑

σij

c†σiV
(l)
σijcσj = c†σiU

(l)?
ii′︸ ︷︷ ︸

c
(l)†
i′

U
(l)
i′aV

(l)
σabU

(l)?
bj′︸ ︷︷ ︸

V
′(l)
σi′j′

U
(l)
j′jcσj︸ ︷︷ ︸
c
(l)

j′

with a unitary matrix U (l) allows a easy interpretation of the eigen-
modes with off-diagonal components. When U (l) is chosen to be the
eigenbasis of V (l) such that V ′(l) becomes diagonal (with respect to the
orbital indices i and j), the one-particle basis c(l)†/c(l) is the appro-
priate basis to express the eigenmode as occupation-like fluctuations.
The respective orbital weights contributing to the fluctuation are given
by the eigenvalues of V (l).

V (6) for example describes an antiparallel spin-alignment between
the even and the odd superposition of the site-orbitals. For all cases
(V (2), V (4), V (5) and V (6)), table 5.1 and table 5.2 show the local
ordering and give the appropriate eigenbasis.

While such a direct interpretation of the eigenbasis of the fluctuat-
ing mode will not always be possible for arbitrary systems, it is worth-
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5. Ordering tendencies on the square Hubbard bilayer

while to note that it is a general property of such, that off-diagonal
components in the orbital indices of the fluctuating mode indicate a
fluctuation of molecular orbital like mode.
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Six

Lattice correlations and
thermal properties of NaxCoO2

In 2008, Lang et al. [LBA+08] performed 23Na T1 relaxation and 23K
Knight shift NMR measurements to establish a “phase” diagram map-
ping the predominant correlation regimes throughout sodium content
and temperature. The combination of these two measurements into
the Korringa ratio, to which T1 contributes information about the ‘lo-
cal’ spin susceptibility at the position of the sodium core and 23K cap-
tures the ‘uniform’ spin susceptibility, allowed to distinguish between
the sodium-rich region, which features ferromagnetic correlations in-
dicated by a Korringa ratio significantly smaller than zero and an well
developed Curie tail in the uniform susceptibility and the sodium-poor
region with a basically flat uniform susceptibility, yet a remarkably
large Korringa ratio, reminiscent of a strong non uniform spin fluctu-
ations, that were in total labeled as antiferromagnetic.

This came as a surprise, as previous studies, e.g. by Foo et al.,
that only had access to the uniform susceptibility, had established no
hallmark of strong correlation in the low-doping region, which itself
has been subject to speculations [MK07], as the vicinity of the integer
filling open d-shell x = 0 would have suggested otherwise.

In that context, Marianetti and Kotliar [MK07] introduced an ef-
fective three-band hamiltonian for the study of NaxCoO2 and showed
that it is necessary to add an binary disorder potential mimicing
the different sodium positions and averaging over the hybridizations
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6. Lattice correlations and
thermal properties of NaxCoO2

of the two distinct impurity types in a dynamical mean field the-
ory [GKKR96] (DMFT) calculation in order to gain qualitative agree-
ment of their impurity magnetic susceptibility with the experimen-
tal [FWW+04] uniform susceptibility.

In [BL12], which is reprinted in the following, the full wave-vector
and frequency dependent susceptibility was calculated throughout
the full Brillouin zone and for sodium doping contents ranging from
x = 0.3 to x = 0.9. This allows a thorough comparison of the cor-
relation regimes with the experimental findings of Lang et al. The
general doping dependence and the cross-over between anti- and fer-
romagnetic correlations is well captured, including the temperature
dependence of that cross-over. It is shown that the antiferromagnetic
correlations are of K-point type for very low doping but shift to M
around x = 0.5. In the case of the Korringa ratio, a quantity that has
to be derived from the dynamical susceptibility, even the quantitative
comparison holds.

Wilhelm et al. [WLH+14] confirmed the findings for the dynam-
ical susceptibility and built on that to incorporate the coupling of
quasiparticles to collective magnetic excitations employing the dual
fermion method [RKL08,BHR+08] into the calculations to find traces
of spin-polarons.

Encouraged by the success of the mean-field description in [BL12]
that grounds the physical properties of NaxCoO2 on strong correla-
tions effects in the Co-layer for all sodium contents instead of dis-
order effects of the sodium positions, it was a natural next step to
review in a similar manner the high thermopower in this material,
that was attributed to the interplay of disorder and correlations be-
fore [WTSH11]. To that end, in [BL14], which also is reprinted in
the following, a three-orbital model is used incorporating the e′g bands
and a charge self-consistent [GPPL12,Gri13] (CSC) local density ap-
proximation (LDA)+DMFT scheme is used. Sodium content enters
by considering a fractional charged pseudopotential in the LDA cal-
culations [MELFed], i.e. in a effective way. Yet the single-particle
spectra and the Seebeck coefficient follow with great agreement with
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Based on dynamical mean-field theory with a continuous-time quantum Monte Carlo impurity solver, static as
well as dynamic spin and charge susceptibilites for the phase diagram of the sodium cobaltate system NaxCoO2

are discussed. The approach includes important vertex contributions to the q dependent two-particle response
functions by means of a local approximation to the irreducible vertex function in the particle-hole channel. A
single-band Hubbard model suffices to reveal several charge- and spin-instability tendencies in accordance with
experiment, including the stabilization of an effective kagome sublattice close to x = 0.67, without invoking the
doping-dependent Na-potential landscape. The in-plane antiferromagnetic-to-ferromagnetic crossover is addi-
tionally verified by means of the computed Korringa ratio. Moreover an intricate high-energy mode in the trans-
verse spin susceptiblity is revealed, pointing toward a strong energy dependence of the effective intersite exchange.

DOI: 10.1103/PhysRevB.85.115128 PACS number(s): 71.27.+a, 71.10.Fd, 71.30.+h, 75.30.Cr

I. INTRODUCTION

The investigation of finite-temperature phase diagrams of
realistic strongly correlated systems is a quite formidable
task due to the often tight competition between vari-
ous low-energy ordering instabilities. In this respect the
quasi-two-dimensional (quasi-2D) sodium cobaltate system
NaxCoO2 serves as a notably challenging case.1,2 Here
x ∈ [0,1] nominally mediates between the Co4+(3d5, S = 1

2 )
and Co3+(3d6, S = 0) low-spin states. Thus the Na ions
provide the electron doping for the nearly filled t2g states of the
triangular CoO2 layers up to the band-insulating limit x = 1.
Coulomb correlations with a Hubbard U up to 5 eV for the
t2g manifold of bandwidth W ∼ 1.5 eV3 are revealed from
photoemission.4 Hence with U/W � 1 the frustrated metallic
system is definitely placed in the strongly correlated regime.

Various different electronic phases and regions for temper-
ature T versus doping x are displayed in the experimental
sodium cobaltate phase diagram (see Fig. 1), for instance,
a superconducting dome (Tc ∼ 4.5 K) stabilized by inter-
calation with water close to x = 0.3.5 Pauli-like magnetic
susceptibility is found in the range x < 0.51 with evidence
for 2D antiferromagnetic (AFM) correlations.2,6 For x > 0.5,

spin fluctuations and increased magnetic response show up
for 0.6 < x < 0.67, including the evolution to Curie-Weiss
(CW) behavior1 for 0.6 < x < 0.75 and the eventual onset
of in-plane ferromagnetic (FM) order. The ordered magnetic
structure in the doping range 0.75 < x < 0.9 with TN ∼ 19–
27 K7–10 is of A-type AFM for the FM CoO2 layers. As
the local spin-density approximation (LSDA) is not sufficient
to account for the AFM-to-FM crossover with x,3 explicit
many-body approaches are needed.11–13

Several theoretical works have dealt with the influence
of the sodium arrangements on the electronic properties of
NaxCoO2, both from the viewpoint of disordered sodium
ions12 as well as from orderings for certain dopings.14–16

However, whether such sodium patterns are due to sole
(effective) single-particle potentials or mainly originating
from many-body effects within the CoO2 planes is still a
matter of debate.17,18

In this paper, we report the fact that a large part of the
electronic (spin and charge) phase diagram of sodium cobaltate

may be well described within a Hubbard model using realistic
dispersions and without invoking the details of the sodium ar-
rangement. Therefore most of the observed crossovers and in-
stabilities are truly driven by strong correlation effects and can
scarcely be described by a weak-coupling expansion around
the noninteracting case. The theoretical study is elucidating the
two-particle correlations in the particle-hole channel computed
within dynamical mean-field theory (DMFT) including vertex
contributions (for a review, see, e.g., Refs. 19 and 20). So far the
latter have been neglected in cobaltate susceptibilities based on
LSDA21,22 and the fluctuation-exchange approximation.22,23

Our dynamical lattice susceptibilities allow us to reveal
details of the AFM-to-FM crossover with T and of the
intriguing charge-ordering tendencies, both in line with recent
experimental data.2,24 Moreover, insight in the (x,q) dependent
spin excitations at finite frequency is provided.

II. MODELING AND METHOD

Since we are mainly interested in the x > 0.5 part of the
phase diagram, the low-energy band dispersion of sodium
cobaltate is described within an a1g-like single-band approach,
justified from photoemission25 and Compton scattering26

experiments. We primarily focus on the in-plane processes
on the effective triangular Co lattice with tight-binding
parameters up to the third-nearest-neighbor (NN) hopping,
i.e., (t,t ′,t ′′) = (−202, 35, 29) meV27 for the 2D disper-
sion. Although intersite Coulomb interactions might play a
role,13 the canonical modeling was restricted to an on-site
Coulomb interaction U = 5 eV. Our calculations show that
already substantial nonlocal correlations originate therefrom.
The resulting Hubbard model on the triangular lattice is
solved within DMFT for the local one-particle Green’s
function G(τ12) = −〈Tτ c(τ1)c†(τ2)〉 with τuv = τu − τv and
Tτ being the time-ordering operator. The DMFT problem is
approached with the continuous-time quantum Monte Carlo
methodology28,29 in its hybridization-expansion flavor29 as
implemented in the TRIQS package.30 Additionally we imple-
mented the computation of the impurity two-particle Green’s
function31 G(2)(τ12,τ34,τ14) = −〈Tτ c

†(τ1)c(τ2)c†(τ3)c(τ4)〉 to
address explicit electron-electron correlations. In the approx-
imation of a purely local particle-hole irreducible vertex,
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M

K

FIG. 1. (Color online) Left: Sketched NaxCoO2 diagram of
dominating correlations and stable phases, based on Ref. 2. Right: M

point ordering (top) and K point ordering (bottom) on the triangular
lattice separating the lattice into a triangular sublattice (squares) and
a kagome, honeycomb sublattice (thick lines).

G(2) allows us to also determine lattice susceptibilities.19,20,31,32

These susceptibilities, e.g., for spin (s) and charge (c), written
as

χs/c(iω,q,T ) = T 2
∑
νν ′

(
χ̃

(0)
s/c,νν ′ (iω,q,T ) + vs/c,νν ′ (iω,q,T )

)
,

(1)
where ω (ν) marks bosonic (fermionic) Matsubara frequencies,
consist of two parts. Namely χ̃

(0)
s/c,νν ′ denotes the conventional

(Lindhard-like) term, built up from the (renormalized) bubble
part, which is mainly capable of detecting Fermi-surface-
driven instabilities close to T = 0, but the second part vs/c,νν ′

(the vertex term) includes properly the energy dependence
of the response behavior due to strong local interactions in
real space. It proves important for revealing, e.g., magnetic
instabilities at finite T due to the resolution of the two-particle
correlations governed by an implicit intersite exchange J . Note
that all numerics take advantage of the recently introduced
orthogonal polynomial representation31 of one- and two-
particle Green’s functions to provide the needed high accuracy
and to eliminate artifacts often stemming from truncating the
Fourier-transformed G(2) in Matsubara space.

Within the first Brillouin zone (BZ) of the triangular coordi-
nation with lattice constant a, the coherent � point instability
signals FM order in the case of χs and phase separation
for χc. Additionally important here are the instabilities at
the the K and M points. The associated orderings give rise
to distinct sublattice structures in real space (cf. Fig. 1).
The M point ordering leads to a triangular and a kagome
sublattice with lattice constant aeff = 2a, while the K point
ordering establishes a triangular and a honeycomb sublattice
with aeff = √

3a, respectively.

III. RESULTS

A. Static properties

We will first discuss the static [χs/c(ω = 0,q,T )] response
(read off from the zeroth bosonic Matsubara frequency),
directly reflecting the system’s susceptibility to an order
of the (q-resolved) type. The cobaltate intralayer charge
susceptibility χc(0,q,T ) shows pronounced features in q
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FIG. 2. (Color online) Static in-plane charge (top) and spin
(bottom) susceptibility χ (0,q,T ) with doping at T = 386 K.

space with doping x (see Fig. 2). Close to x = 0.3 our
single-band modeling leads to increased intensity inside the
BZ, pointing toward longer-range charge-modulation (e.g.,
3 × 3, etc.) tendencies in real space. That Na1/3CoO2 is indeed
prone to such 120◦-like instabilities has been experimentally
suggested by Qian et al.33 Toward x = 0.5 the susceptibility
for short-range charge modulation grows in χc, displaying
a diffuse high-intensity distribution at the BZ edge with a
maximum at the K point for x = 0.5. No detailed conclusive
result on the degree and type of charge ordering for the latter
composition is known from experiments; however, chainlike
charge disproportionation that breaks the triangular symmetry
has been verified.34,35 The present single-site approach cannot
stabilize such symmetry breakings, but a pronounced χc at
the K point at least inherits some stripelike separation of the
two involved sublattices. Near x = 0.67, the χc maximum has
shifted to the M point, in line with the detection of an effective
kagome lattice from nuclear magnetic resonance (NMR)
experiments.24 For even higher doping, this q dependent
structuring transmutes into a � point maximum, pointing
toward known phase-separating tendencies.36 Figure 2 also
exhibits the x dependent intralayer spin susceptibility, starting
with strong AFM peaks at x = 0.3 due to K point correlations.
With reduced intensity these shift to the M point at x = 0.5,
consistent with different types of spin and charge orderings
at this doping level.35 For x > 0.5, χs(q,T ,0) first develops
broad intensity over the full BZ before forming a pronounced
peak at the � point above x ∼ 0.6. Thus the experimentally
observed crossover of the in-plane AFM-to-FM tendencies in
the spin response is reproduced.

Lang et al.2 revealed from the Na NMR that this crossover
is T dependent with x, resulting in an energy scale T ∗
below which AFM correlations are favored (cf. Fig. 1). The
slope ∂T ∗/∂x turns out negative, in line with the general
argument that FM correlations are most often favored at
elevated T because of the entropy gain via increased transverse
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FIG. 3. (Color online) Temperature dependence of the spin
susceptibility at the �, M , and K point for x = 0.55, 0.58, and 0.82.
For the latter, values at the A point are also included. Vertical lines
indicate extrapolated transition temperatures for � (FM) spin ordering
and A (A-type AFM) spin ordering respectively for x = 0.82. The
inset shows the doping dependence of the uniform (q = �) in-plane
spin susceptibility χs for various T . Note the largely increased
magnitude of χs for x � 0.75 in this log-scale plot.

spin fluctuations. In this respect, Fig. 3 shows the (x,T ,q)
dependence of the computed χs . For x = 0.55, 0.58, a
maximum in the � point susceptibility is revealed, which has
been interpreted by Lang et al.2 as the criterion for a change
in the correlation characteristics, thereby defining the T ∗ line.
While the temperature scale exceeds the experimental value
in the present mean-field formalism, the qualitatively correct
doping behavior of the T ∗ line is obtained.

Beyond the experimental findings our calculations allow
us to further investigate the nature of the magnetic crossover.
Figure 3 reveals that at lower T and x closer to x = 0.5 the
susceptibility at � is ousted by the one at M , while χs at K is
mostly dispensable. The M susceptibility can be understood
due to the proximity of the striped order at x = 0.5,1,17,37 which
is, however, not realized until much lower temperatures.

The inset of Fig. 3 follows the T dependent � point
susceptibility through a vast doping range. Note the subtle
resolution around x = 0.5 as well as the large exaggeration,
especially for lower temperatures in the experimentally veri-
fied in-plane FM region. The main panel of Fig. 3 additionally
shows for x = 0.82 the spin susceptibility at the A point [i.e.,
at kz = (0,0, 1

2 ) in the BZ), which denotes the A-type AFM
order. While � and A show CW behavior, the extrapolated
transition temperature is ∼7% higher at A than at �, verifying
the experimental findings of A-type order.7–10 In the tempera-
ture scan we additionally introduced a nearest-layer interplane
hopping t⊥ = 13 meV;9,13,38 however, the previous in-plane
results are qualitatively not affected by this model extension.
Due to known charge disproportionation the inclusion of
long-range Coulomb interactions, e.g., via an intersite V ,13,16

seems reasonable. This was abandoned in the present single-
site DMFT approach, resulting generally in reduced charge

response. Without V , charge fluctuations are substantially
suppressed for large U /W , while the intersite spin fluctuations
are still strong due to superexchange.

B. Dynamical properties

Aside from the static response, our method allows access to
the dynamic regime. Figure 4 shows the dynamical transverse
spin susceptibility for fixed T = 580 K for selected x. Note
the broad q dependence and small excitation energy in the
low-doping regime. In contrast, the FM correlations near
x = 0.82 are reflected by strong paramagnon-like gapless
excitation at � combined with very little weight and rather
high excitation energies at AFM wave vectors. Interestingly,
a comparably strong and sharp K-type high-energy excitation
(∼1 eV) for larger x below the onset of in-plane FM order
is revealed. Its amplitude is strongest at x = 0.67 while its
energy increases with x and it is worthwhile to note that the
mode is neither visible when neglecting vertex contributions
nor in a plain triangular Hubbard model with NN hopping
only. Thus it reflects a strong energy dependence of the
intersite exchange coupling J = J (x,q,ω) that obviously
changes character for x ∼ 0.67 with q and ω. The predicted
high-energy feature could be probed experimentally and also
studied in time-dependent measurements. We propose the use
of modern laser-pulse techniques39 to address this problem.

Experimentally, the evidence for significant q �= 0 fluctua-
tions is drawn2,40 from the Korringa ratio41–44

KT
x = h̄

4πkB

(
γe

γN

)2 1

T1T K2
S

,

1

T1T
= lim

ω→0

2kB

h̄2

∑
q

|A(q)|2 �χ−+
s (ω,q,T )

ω
, (2)

KS = |A(0)|γe�χ−+
s (0,0,T )

γNh̄2 ,

where 1/T1 is the nuclear relaxation rate, KS is the NMR
field shift, γe (γN ) is the electronic (nuclear) gyromagnetic
ratio, A(q) is the hyperfine coupling, and kB is the Boltzmann
constant. �χ−+

s and �χ−+
s denote the real and imaginary parts

of the transverse spin susceptibility, respectively. Roughly
speaking, K > 1 signals AFM correlations, K < 1 points
to FM tendencies in χs , and the term “Korringa behavior”

h̄
ω
(e
V
)

Γ M K

h̄
ω
(e
V
)

Γ M K Γ

x = 0.40 x = 0.58

x = 0.67 x = 0.82

FIG. 4. (Color online) Imaginary part of the dynamical spin
susceptibility for T = 580 K for selected dopings.
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FIG. 5. (Color online) Korringa ratio versus doping for T =
580 K. The experimental data, extracted from Refs. 40 and 2, were
obtained for lower temperatures. The inset shows the evolution of
the bubble-diagram contribution from the analytically known value
K = 1 for the noninteracting (U = 0) case41 to the fully interacting
(U = 5 eV) calculation.

generally denotes the regime K(T ) ∼ 1. In single-atom unit
cells, A(q) becomes q independent.

Note that 1/T1 especially is numerically expensive, as it
requires calculation of χ−+

s on many Matsubara frequencies
with subsequent analytical continuation to the real frequency
axis for contributions beyond the bubble diagram. Figure 5
finally shows the AFM-to-FM correlation crossover captured
by the Korringa ratio over a wide doping range. The overall
agreement with experimental results is conclusive. Relevant
deviations in the low-doping regime probably originate from
the smaller temperatures studied in the experiment. The
difference at x = 0.58 might be of the same origin, but since
charge ordering occurs for x > 0.5, which was not included
explicitly here, neglecting the q dependence of A(q) might
be also questionable.45 One can see that the bubble-only
calculation yields a nearly flat Korringa ratio with doping and
thus fails completely in explaining the experimental findings.
In particular it does not reflect the strong FM correlations
for high doping. This further proves the importance of strong
correlations on the two-particle level, asking for substantial

vertex contributions.43 Note that the recently suggested lower-
energy effective kagome model16 including the effect of charge
ordering is not contradicting the present modeling, since here
the effective kagome lattice naturally shows up and also the key
properties of the spin degrees of freedom seem well described
on the original triangular lattice.

IV. CONCLUSION

In summary, the DMFT computation of two-particle ob-
servables including vertex contributions based on a realistic
single-band Hubbard modeling for NaxCoO2 leads to a faithful
phase-diagram examination at larger x, including the kagome-
like charge-ordering tendency for x ∼ 0.67 and the in-plane
AFM-to-FM crossover associated with a temperature scale
T ∗. Thus it appears that many generic cobaltate features are
already governed by a canonical correlated model, without
invoking the details of the doping-dependent sodium-potential
landscape or the inclusion of multiorbital processes. Of
course, future work has to concentrate on quantifying further
details of the various competing instabilities (and their mutual
couplings) within extended model considerations. Beyond
equilibrium physics, we predict a strong energy dependence
of the effective intersite exchange resulting in an K-type
high-energy mode around x = 0.67, which could be probed
in experimental studies.
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Sodium cobaltate NaxCoO2 as dopable strongly correlated
layered material with a triangular sublattice still poses a
challenging problem in condensed matter. The intriguing
interplay between lattice, charge, spin, and orbital degrees of
freedom leads to a complex phase diagram bounded by a
nominal Mott (x¼ 0) regime and a band-insulating (x¼ 1)
phase. By means of the charge self-consistent density
functional theory (DFT) plus dynamical mean-field theory
(DMFT) scheme, built on a pseudopotential framework
combined with a continuous-time quantum Monte-Carlo
solver, we here study the one-particle spectral function A(k,
v) as well as the thermopower S(T). The computations may

account for the suppression of the e0g pockets in A(k,v) at lower
doping in line with photoemission experiments. Enhancement
of the thermopower is verified within the present elaborate
multi-orbital method to treat correlated materials. In addition,
the two-particle dynamic spin susceptibility xsðv;qÞ is
investigated based on a simplified tight-binding approach,
yet by including vertex contributions in the DMFT linear
response. Besides the identification of paramagnon branches at
higher doping, a prominent high-energy antiferromagnetic
mode close to x¼ 0.67 is therewith identified in xsðv; qÞ, which
can be linked to extended hopping terms on the CoO2

sublattice.

� 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The quasi two-dimensional sodium
cobaltate system NaxCoO2 marks one milestone in the
investigation of realistic strongly correlated electron
systems. It consists of stacked triangular CoO2 layers, glued
together by Na ions inbetween. Depending on the doping x,
the nominal oxidation state of the cobalt ion lies between
Co4þ(3d5) and Co3þ(3d6). While the x¼ 1 compound is a
band insulator with a filled low-spin Co(t2g) subshell, for
x¼ 0 a single hole resides therein. Stimulated by findings of
large thermoelectric response at higher doping x [1, 2] and
superconductivity for x�0.3 upon intercalation with
water [3], the phase diagram of NaxCoO2 attracted enormous
interest, both experimentally as well as theoretically, in the
pre-pnictide era of the early 2000 century. The relevance of
strong correlation effects due to the partially filled Co(3d)
shell for x< 1 has been motivated by several experiments,
e.g. from optics [4], photoemission [5–8] and transport [9]
measurements.

Although much progress has been made in the
understanding of layered cobaltates, after more than 10 years
of extensive research many problems are still open. We here
want to address selected matters of debate, namely the nature

of the low-energy electronic one-particle spectral function,
the peculiarities of the dynamic spin response as well as the
temperature- and doping-dependent behavior of the Seebeck
coefficient.

2 Theoretical approach Effective single-particle
methods based on the local density approximation (LDA)
to density functional theory (DFT) are known to be
insufficient to cover the rich physics of strongly correlated
materials. Tailored model-Hamiltonian approaches to be
treated within a powerful many-body technique such as
dynamical mean-field theory (DMFT) are thus useful to
reveal important insight in the dominant processes at high
and low energy. Nowadays, the DFTþDMFTmethodology
(see, e.g. [10] for a review) opens the possibility to tackle
electronic correlations with the benefit of the fully interlaced
LDA materials chemistry.

In this work, a charge self-consistent DFTþDMFT
scheme [11] built up on an efficient combination of a mixed-
basis pseudopotential framework [12] with a hybridization-
expansion continuous-time quantum Monte-Carlo solver
[13–16] is utilized to retrieve spectral functions and the
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thermopower. Thereby, the correlated subspace consists of
the projected [17, 18] t2g orbitals, i.e. a three-orbital many-
body treatment is performed within the single-site DMFT
part. The generic multi-orbital Coulomb interactions include
density-density as well as spin-flip and pair-hopping terms,
parametrized [19, 20] by a Hubbard U¼ 5 eV and a Hund’s
exchange J¼ 0.7 eV. Since the physics of sodium cobaltate
is intrinsically doping dependent, we constructed Na
pseudopotentials with fractional nuclear charge in order to
cope therewith in DFTþDMFT. A simplistic structural
approach was undertaken, utilizing a primitive hexagonal
cell allowing for only one formula unit of NaxCoO2, with the
fractional-charge Na in the so-called Na2 position. Thus,
note that therefore the bilayer splitting does not occur in the
electronic structure. Our calculations are straightforwardly
extendable to more complex unit cells and geometries,
however the present approach suits already the purpose of
allowing for some general qualitative statements.

The resulting 3� 3 DFTþDMFT Green’s function in
Bloch space with one correlated Co ion in the primitive cell
hence reads here [11]

Gblðk; ivnÞ ¼ ½ðivn þ mÞ1� eKSk
�P†ðkÞ � DSimpðivnÞ � PðkÞ��1 ;

ð1Þ

where eKSk denotes the Kohn–Sham (KS) dispersion part,m is
the chemical potential and P(k) the t2g projection matrix
mediating between the Co correlated subspace and the
crystal Bloch space. The impurity self-energy term DSimp

includes the DMFT self-energy modified by the double-
counting correction. For the latter the fully-localized form
[21] has been utilized. To extract the one-particle spectral
function Aðk;vÞ¼�p�1ImGblðk;vÞ as well as the thermo-
power, an analytical continuation of the impurity self-energy
term DSimp in Matsubara space vn was performed via Padé
approximation. Note that via the upfolding procedure within
Eq. (1), the resulting real-frequency self-energy term in
Bloch space carries k dependence, i.e. DSbl ¼ DSblðk;vÞ.

For the investigation of the thermoelectric response, the
Seebeck coefficient is calculated within the Kubo formalism
from

S ¼ � kB
jej

A1

A0
; ð2Þ

where the correlation functions An are given by

An ¼
X
k

Z
dvbnðv� mÞn � @f m

@v

� �

� Tr vðkÞAðk;vÞvðkÞAðk;vÞ½ �:
ð3Þ

Here, b is the inverse temperature, vðkÞ denotes the Fermi
velocity calculated from the charge self-consistent KS part
and fm marks the Fermi–Dirac distribution. Due to subtle
refinements in the low-energy regime close to the Fermi level

within the charge self-consistent DFTþDMFT scheme,
computing An through Eq. (3) for the three-orbital system at
hand is quite challenging. It requires great care both in the
handling of the frequency dependence of the spectral
function through the analytical continuation of the local self-
energy term as well as the evaluation of the k sum. The
difficulty with the latter is the sharp structure of the
summand especially for low temperatures. Even a tetrahe-
dron summation is problematic due to the double appearance
of the spectral function in the sum [22]. We overcome this
problem by using an adaptive numerical integration method
separately for each An, where DS

blðk;vÞ, vðkÞ and eKSk are
linearly interpolated in reciprocal space. Since all these
quantities are relatively smooth in k, the resulting An show
only weak dependence on the underlying mesh for these
interpolations.

Finally, the expensive two-particle-based dynamic spin
response with relevant local vertex corrections was studied.
Thereby, a simplified single-band tight-binding parametri-
zation [23] of the realistic dispersion, including hopping
integrals up to third-nearest neighbor, entered the DMFT
self-consistency cycle. For more details on the utilized
DMFTþ vertex technique see Refs. [16, 24].

3 One-particle spectral function The low-energy
electronic states of NaxCoO2 close to the Fermi level eF have
been subject to many discussions. LDA calculations for
single-formula-unit cells reveal a threefold bandstructure of
about 1.5 eV total bandwidth, dominantly originating from
the Co 3d(t2g) states [25]. The resulting LDA Fermi surface
(FS) consists of an a1g-like hole sheet with additional e’g-like
hole pockets near the K-point of the hexagonal 1. Brillouin
zone (BZ). For larger doping these hole pockets become
more and more filled and their existence for x � 0:6 subtly
depends on the very structural details [26]. Not only displays
the measured spectral function A(k,v) from angle-resolved
photoemission (ARPES) experiments a much narrower
dispersion very close to eF, but also the FS at lower doping
lacks the hole-pocket sheets for any doping x [6, 27, 7, 8].
Usually, LDA works surprisingly well for the FS of strongly
correlated metals, even if the method does not allow for the
proper renormalization and the appearance of Hubbard
sidebands. Hence, sodium cobaltate seems to belong to rare
cases of correlated metals where the LDA FS topology does
not agree with experiment.

Many attempts have been elaborated in order to either
explain the non-existence of the hole pockets or to prove the
ARPES data wrong. Without going into the very details of
this rather long story, no definite final decision has been
made on either line of argument. Concerning proper correla-
ted methodologies, DFTþDMFT without charge self-
consistency, i.e. in the traditional post-processing manner,
may even increase the strength of the hole pockets (see, e.g.
[28]). It appeared that the size of the a1g � e0g crystal-field
splitting plays an important role when turning on
correlations [29, 28]. From an LDAþGutzwiller study by
Wan et al. [30] it became clear that charge self-consistency
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may has a relevant influence on the correlated FS and the
hole pockets indeed disappeared for x> 0.3 in their work.

In order to touch base with these results, we computed
the one-particle spectral function A(k,v) within charge self-
consistent DFTþDMFT for x¼ 0.3 and x¼ 0.7. Thereby
within our simplified structural treatment the apical oxygen
position was chosen such to allow for a single-sheet a1g-like
hole FS within LDA at x¼ 0.7. Though the impact of charge
order onto the spectral function is believed to be also
important [31], we here neglect this influence and
concentrate on the multi-orbital interplay and its impact
on the correlated Fermi surface. Figure 1 shows the obtained
three-orbital spectral functions close to the Fermi level. Note
that there is also a lower Hubbard band, but due to the strong
doping from half filling it is located in the energy range
[�6,�4] eV. As expected, the less-doped x¼ 0.3 case shows
a stronger total renormalization of the t2g derived manifold.
The most important observation is the clear shift of the
potential pocket-forming e0g-like quasiparticle bands away
from eF compared to the LDA result. This here amounts to a
(nearly complete) vanishing of the pockets for x¼ 0.3,
where they are still sizable in LDA. Even if there are some
ambiguities concerning possible modifications due to
structural details, the main trend that charge self-consistent
DFTþDMFT (notably without invoking long-range order)
tends to suppress the e0g derived pockets is evident.
Additionally the e0g-like states exhibit a substantial
broadening also with (nearly) total filling, a multi-orbital
effect discussed already for filled t2g states in LaNiO3 [32].
This altogether brings the theoretical description in line with
the available ARPES data. Thus, charge self-consistency can
be an important ingredient in the calculations, accounting
for shifts of the level structure in sensitive crystal-field
environments.

4 Transport: Seebeck coefficient The increased
thermoelectric response at larger doping x marks one of the
NaxCoO2 key aspects [1, 2, 33, 34]. Although the more
complex related so-called misfit cobaltates appear to display
even larger thermopower and increased figure of merit (see,
e.g. [35] for a recent review), the sodium cobaltate system

still holds most of the main physics ready in its simplest
structural form. There have been various theoretical
modelings of the Seebeck coefficient for this system [36–
42], ranging from the use of Heikes formula, Boltzmann
equation approaches as well as Kubo formula oriented
modelings. Albeit for a full account of thermoelectricity
details may matter [41, 42], for the doping regime
0.6< x< 0.75 nearly all different theoretical descriptions
yield thermopower values within the ranges of the
experimental data. However open modeling questions
remain for the highly increased Seebeck values in the
regime of vary large doping x> 0.8 [34, 40] as well as for
lower dopings x90:5, where, e.g. a nonmonotonic S(T)with
decreasing temperature is observed [33].

Here, we exhibit results for the thermopower as obtained
within our charge self-consistent DFTþDMFT-based
Kubo-formalism approach which builds up on the t2g
correlated subspace for NaxCoO2. Data is provided for
x¼ 0.7 and x¼ 0.75 in Fig. 2, the other more challenging
doping regimes concerning the thermoelectric response will
be addressed in future studies. For instance, we expect that
the low-lying e0g bands leave some fingerprints in the
thermopower for small x. Longer-ranged FM spin fluctua-
tions and charge-ordering tendencies [31] may influence
S(T) for x> 0.8. Our in-plane Seebeck values are in good
agreement with experimental data of Kaurav et al. [33]. The
increased response for x¼ 0.75 compared to x¼ 0.7 is also
verified, albeit the experimental tendency towards stronger
enhancement with increased doping is still somewhat
underestimated from theory. In addition to the in-plane
values, Fig. 2 depicts the S(T) tensor part along the c-axis of
the system. Besides the n-like response with a change of
sign, the absolute value becomes reduced at larger T, related
to the different (rather incoherent) transport between layers
at elevated temperature [5].

5 Two-particle function: dynamic spin suscepti-
bility Besides the one-particle spectral properties and the
thermopower, a further intriguing cobaltate issue is the
magnetic behavior with doping. Within the frustrated
triangular CoO2 layers superexchange may dominate the

Figure 1 DFTþDMFT spectral function A(k,v) for x¼ 0.3 (left) and x¼ 0.7 (right) at temperature T¼ 290K. For comparison, the LDA
band structure is drawn in white. The apical oxygen position was chosen such that an LDA single-sheet FS barely exists for x¼ 0.7.
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low-doping regime due to nominal Mott proximity, but
competing exchange processes set in at larger doping.
The work by Lang et al. [43] based on nuclear-magnetic-
resonance measurements nicely summarized the magnetic
phase diagram of NaxCoO2 with temperature T, showing the
inplane crossover from antiferromagnetic (AFM) to ferro-
magnetic (FM) correlations with the eventual onset of
A-type AFM order for x> 0.75.

In line with the results for the spectral function we
computed the spin susceptibility xsðv; q; TÞ for an effective
single-band model using DMFT with local vertex contri-
butions [24]. This allows for the theoretical verification of
the AFM-to-FM crossover. It can directly be retrieved from
the shift of maxima in the static part xs(v¼ 0; q; TÞ for q at
the BZ K-point at small x towards maxima at q¼ 0 (G-point)
at larger doping. Figure 3 displays the full dynamic spin
susceptibility with increasing x in the paramagnetic regime.

Below x¼ 0.5 the strong two-particle spectral intensity close
to M and K at the BZ boundary is indeed visible. For rather
large doping the intensity accumulates at small frequency v
near the G-point, with clear paramagnon branches due to the
proximity towards in-plane FM order. We note that the
vertex contributions are essential for the qualitative as well
as quantitative signatures in the doping-dependent spin
susceptibility [24].

Most interestingly, there also is a high-intensity mode
near the K-point with maximum spectral weight well located
around the commensurable doping x¼ 0.67 on the frustrated
CoO2 triangular lattice. The corresponding excitation energy
of about 1 eV for T¼ 580K is decreasing with lowering the
temperature. Thus, albeit the low-energy spin excitations for
that larger doping have already shifted towards FM kind, a
rather stable finite-v AFM-like mode becomes available.
This intriguing doping and frequency dependence of the
effective exchange J can be linked to the specific hopping-
integral structure of sodium cobaltate. In this respect, Fig. 4
shows the dynamic spin susceptibility at x¼ 0.67 for the
Hubbard model on the triangular lattice with only nearest-
neighbor hopping �t. While the FM paramagnon modes
close to G seem even strengthened in that case, the high-
energy feature close to K is now completely absent. It hence
may be that the 1 eV scale for this excitation is linked to the
energy difference between the correlated a1g bonding-
antibonding peaks (the upper one stemming from the higher
hopping integrals). A Stoner-like spin-flip mechanism acting
on the nonlocal doublet state at the commensurable x¼ 0.67
doping level [44] might be the second ingredient for the
observed high-energy mode.

6 Summary We have presented a state-of-the-art
DFTþDMFT investigation of the multi-orbital one-particle
spectral properties as well as the thermoelectric behavior of
NaxCoO2. The charge self-consistent scheme brings the one-
particle spectral function concerning the correlated Fermi
surface and the broadening of the occupied part in good
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Figure 2 Seebeck coefficient S(T) within charge self-consistent
DFTþDMFT for larger doping. Full lines correspond to the in-
plane thermopower, dashed lines to S(T) along the c-axis.

Figure 3 Doping-dependent dynamic spin susceptibility xsðv;q;TÞ. The lower row shows the results for reduced T for the same
respective doping as directly above.
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agreement with available ARPES data. Further extensions of
the realistic methodology towards the proper inclusion of
charge-order effects, eventually with incorporating relevant
intersite Coulomb terms, are still needed for a comprehen-
sive understanding. Nonetheless the present framework is
capable of addressing the temperature- and doping-depen-
dent thermopower in line with experimental data for the
larger doping regime. Detailed studies of the more critical
regions in this respect at low and very high dopings are
envisaged. Through the inclusion of sophisticated vertex
contributions in a simplified tight-binding-based approach,
details of the dynamic spin susceptibility, e.g. the prediction
of a rather stable high-energy AFM-like mode close to
x¼ 0.67, have been revealed. Additional experimental work
is needed to verify our results and to stimulate future work.
Eventually, the investigation of the direct impact of two-
particle correlations on the one-particle spectrum is a
challenging goal, but therefore it will be necessary to go
beyond the local-correlation viewpoint of DMFT.

Acknowledgements We thank D. Grieger, A. I. Lichten-
stein, and O. E. Peil for helpful discussions. Financial support from
the DFG-SPP1386 and the DFG-FOR1346 is acknowledged.
Computations were performed at the local computing center of the
University of Hamburg as well as the North-German Super-
computing Alliance (HLRN) under the grant hhp00026.

References

[1] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56,
R12685 (1997).

[2] T. Motohashi, E. Naujalis, R. Ueda, K. Isawa, M. Karppinen,
and H. Yamauchi, Appl. Phys. Lett. 79, 1480 (2001).

[3] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi,
R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53 (2003).

[4] N. L. Wang, P. Zheng, D. Wu, Y. C. Ma, T. Xiang, R. Y. Jin,
and D. Mandrus, Phys. Rev. Lett. 93, 237007 (2004).

[5] T. Valla, P. D. Johnson, Z. Yusof, B. Wells, Q. Li, S. M.
Loureiro, R. J. Cava, M. Mikami, M. Y. Y. Mori, and
T. Sasaki, Nature (London) 417, 627 (2002).

[6] M. Z. Hasan, Y. D. Chuang, D. Qian, Y. W. Li, Y. Kong,
A. Kuprin, A. V. Fedorov, R. Kimmerling, E. Rotenberg,
K. Rossnagel, Z. Hussain, H. Koh, N. S. Rogado, M. L. Foo,
and R. J. Cava, Phys. Rev. Lett. 92, 246402 (2004).

[7] H. B. Yang, Z. Wang, and H. Ding, J. Phys. Condens. Matter
19, 355004 (2007).

[8] J. Geck, S. V. Borisenko, H. Berger, H. Eschrig, J. Fink,
M. Knupfer, K. Koepernik, A. Koitzsch, A. A. Kordyuk, V. B.
Zabolotnyy, and B. Büchner, Phys. Rev. Lett. 99, 046403
(2007).

[9] M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He,
R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 92, 247001 (2004).

[10] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[11] D. Grieger, C. Piefke, O. E. Peil, and F. Lechermann, Phys.
Rev. B 86, 155121 (2012).

[12] B. Meyer, C. Elsässer, F. Lechermann, and M. Fähnle,
FORTRAN 90, Program for Mixed- Basis-Pseudopotential
Calculations for Crystals, Max-Planck-Institut für Metal-
lforschung, Stuttgart, unpublished.

[13] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys.
Rev. B 72, 035122 (2005).

[14] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[15] M. Ferrero and O. Parcollet, TRIQS: A Toolbox for Research
in Interacting Quantum Systems.

[16] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and
O. Parcollet, Phys. Rev. B 84, 075145 (2011).

[17] B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O.
Wehling, and A. I. Lichtenstein, Phys. Rev. B 77, 205112
(2008).

[18] V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A.
Nekrasov, Z. V. Pchelkina, J. W. Allen, S. K. Mo, H. D. Kim,
P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov,
X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).

[19] C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rev. B 18,
4945 (1978).

[20] R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).
[21] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyyk,

and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
[22] G. Palsson, Computational studies of thermoelectricity in strongly

correlated electron systems, PhD thesis, New Brunswick,
Rutgers, The State University of New Jersey (2001).

[23] H. Rosner, S. L. Drechsler, G. Fuchs, A. Handstein, A. Wälte,
and K. H. Müller, Braz. J. Phys. 33, 718 (2003).

[24] L. Boehnke and F. Lechermann, Phys. Rev. B 85, 115128
(2012).

[25] D. Singh, Phys. Rev. B 61, 13397 (2000).
[26] M. D. Johannes, D. A. Papaconstantopoulos, D. J. Singh, and

M. J. Mehl, Europhys. Lett. 68, 433 (2004).
[27] D. Qian, L. Wray, D. Hsieh, L. Viciu, R. J. Cava, J. L. Luo,

D. Wu, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. 97,
186405 (2006).

[28] C. A. Marianetti, K. Haule, and O. Parcollet, Phys. Rev. Lett.
99, 246404 (2007).

[29] F. Lechermann, S. Biermann, and A. Georges, Prog. Theor.
Phys. Suppl. 160, 233 (2005).

[30] G. T. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 101,
066403 (2008).

[31] O. E. Peil, A. Georges, and F. Lechermann, Phys. Rev. Lett.
107, 236404 (2011).

[32] X. Deng, M. Ferrero, J. Mravlje, M. Aichhorn, and A. Georges,
Phys. Rev. B 85, 125137 (2012).

[33] N. Kaurav, K. K. Wu, Y. K. Kuo, G. J. Shu, and F. C. Chou,
Phys. Rev. B 79, 075105 (2009).

Figure 4 Dynamic spin susceptibility xsðv; q; T¼ 580K) for only
nearest-neighbor hopping �t at x¼ 0.67.

Phys. Status Solidi A 211, No. 6 (2014) 1271

www.pss-a.com � 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Invited

Article



[34] M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi,
R. A. Pascal, R. J. Cava, and N. P. Ong, Nature Mater. 5, 537
(2006).

[35] S. Hébert, W. Kobayashi, H. Muguerra, Y. Bréard, N.
Raghavendra, F. Gascoin, E. Guilmeau, and A. Maignan,
Phys. Status Solidi A 210, 69 (2013).

[36] W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236601
(2001).

[37] H. J. Xiang and D. J. Singh, Phys. Rev. B 76, 195111 (2007).
[38] N. Hamada, T. Imai, and H. Funashima, J. Phys.: Condens.

Matter 19, 365221 (2007).

[39] K. Kuroki and R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007).
[40] M. R. Peterson, B. S. Shastry, and J. O. Haerter, Phys. Rev. B

76, 165118 (2007).
[41] P. Wissgott, A. Toschi, H. Usui, K. Kuroki, and K. Held,

Phys. Rev. B 82, 201106(R) (2010).
[42] G. Sangiovanni, P. Wissgott, F. Assaad, A. Toschi, and

K. Held, Phys. Rev. B 86, 035123 (2012).
[43] G. Lang, J. Bobroff, H. Alloul, G. Collin, and N. Blanchard,

Phys. Rev. B 78, 155116 (2008).
[44] C. Piefke, L. Boehnke, A. Georges, and F. Lechermann, Phys.

Rev. B 82, 165118 (2010).

1272 L. Boehnke and F. Lechermann: Getting back to NaxCoO2

� 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-a.com

p
h

ys
ic

a ssp st
at

u
s

so
lid

i a



Seven

Hidden spin-orbital hexagonal ordering
induced by strong correlations in LiVS2

LiVS2 is numerically and conceptually by far the most demanding
material that is dealt with in this work. The difficulty arises because
several equally challenging aspects that can occur in the investigation
of strongly correlated materials come together to mutually reinforce
their respective complexity.

LiVS2 features an intriguing ordered state that is based on an ex-
plicit participation of all three correlated orbital in the t2g

2-shell. Ex-
perimentally, a

√
3×
√

3-reconstruction of the quasi two-dimensional
triangular layers in this material is observed [KUH+09]. What how-
ever became clear only during this numerical investigation of the lat-
tice susceptibilities is that this comes along with the formation of
states intrinsically living on this reconstructed supercell, which voids
a purely local (single-site) approximation for the determination of fluc-
tuations even above the transition temperature. Yet, this investiga-
tion evaluates susceptibilities in this unordered phase to avoid a bias
in the search for the divergent fluctuation. Ultimately, [BLKL14] uses
the approach to deliberately break translational invariance of the two-
particle Green’s function and thus the susceptibility just slightly above
the transition temperature while keeping the translational symmetry
of the one-particle Green’s function unbroken.

This leads a total of nine effective orbitals in the solution of the
Bethe-Salpeter equation (BSE). At this point it is worthwhile to

89
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strong correlations in LiVS2

cherish again the use of Legendre coefficients for the fermionic de-
grees of freedom in the handling of the two-particle quantities in the
BSE. 30 Legendre coefficients were necessary for the representation
of each fermionic degree of freedom for T = 258K, the temperature
for which the supercell eigenmodes are shown in figure 5 and figure
6 of [BLKL14]. Thus, the matrices used in the inversion of the BSE
even for the static case have a dimension of 4860 × 4860, which im-
plies a memory-requirement of ≈ 360MB each, which makes this post-
processing feasible on a ordinary desktop computer. Assuming a con-
servative guess of ≈ 300 Matsubara frequencies to gain a reasonable
convergence (compare section 4.2), the required memory per matrix
would reach ≈ 36GB.

A detailed account of the scientific goals of the investigation,
the physical considerations and numerical calculations undertaken to
reach those is given in the manuscript [BLKL14], which is reprinted in
full in the following. Following that, a rough interpretation of the fluc-
tuating eigenmode will be given in section 7.1, going a similar route
as for the bilayer problem in chapter 5.
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Hidden spin-orbital hexagonal ordering induced by strong correlations in LiVS2
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1I. Institut für Theoretische Physik, Universität Hamburg, D-20355 Hamburg, Germany
2Institute for Molecules and Materials, Radbound University Nijmegen, NL-6525 AJ Nijmegen, The Netherlands

The investigation of nature’s various mechanisms to transform a given material from a metal
to an insulator has been a salient research endeavor since the early area of quantum solid state
physics. In seminal works, Slater and Mott developed two different routes for prominent driving
forces in chemically ordered states that can result in an insulating phase. Either dominant exchange
processes yield an magnetically ordered Slater insulator, or strong correlations localize electrons
within a paramagnetic insulator of Mott type. In complex compounds with manifest multi-orbital
character and apparent geometrical frustration the many-body physics underlying the competition
between metallic and insulating state may be more intricate. Here we present a first-principles
many-body analysis of multi-orbital lattice susceptibilities based on advanced correlated electronic
structure methods to reveal a highly entangled spin-orbital hexagonal ordering (SOHO) originating
in the metallic phase of the quasi-twodimensional compound LiVS2 that eventually leads to an
intriguing insulating phase at low temperature.

At low-enough temperature most solid-state systems
enter a long-range ordered phase due to various instabil-
ities. While the characterization of these ordered phases
is in many cases obvious and an order parameter may
be readily identified, for some materials a microscopic
specification remains nebulous. Apart from the canonical
magnetic, charge, orbital, structural and superconduct-
ing types of ordering more complicated phenomena have
been discussed in certain materials. The famous ‘hidden
order’ state in the heavy-fermion compound URu2Si2 [1–
3] stands out as a prominent example thereof. As we
will show, physics prevalent in the vanadium sulfide
LiVS2 can harbor hidden order with the need for a man-
ifest multi-site description. This is due to the nature
of interacting 3d electrons stemming from multi-orbital
sites on a geometrically frustrated lattice. From model-
Hamiltonian studies it is known that quantum S = 1

2
spins on a frustrated lattice may give rise to many dif-
ferent stable phases, ranging from (anti)ferromagnets to
(resonating) valence-bond solids [4]. Adding itinerancy
and further orbital differentiation entangles charge, or-
bital, spin as well as lattice degrees of freedom in an
intriguing way and allows for unusual metallicity with
proximity to unconventional ordering modes.

The physics of the effective triangular-lattice com-
pound LiVS2 naturally addresses this sophisticated en-
tanglement of different degrees of freedom. Within the
LiVX2, X=(O,S,Se) series the oxide is an insulator ex-
hibiting an ordering transition at a critical temperature
Tc ∼ 500 K (compare Fig. 1). The selenide has metal-
lic character throughout the studied temperature regime.
Upon cooling only the sulfide displays a metal-insulator
transition (MIT) at TMIT ∼ 310 K from a paramagnetic
metal to an insulating state with vanishing uniform mag-
netic susceptibility [5, 6]. In the insulator a spin-peierls-
like lattice distortion occurs [5], leading to a trimerization
in the quasi-twodimensional arrangement of VS6 octahe-
dra. Orbital ordering has long been suggested to be a vi-

FIG. 1. Sketch of the generic LiVX2, X=(O,S,Se) phase dia-
gram (based on Ref. 5) with the P3̄m1-LiVS2 crystal structure
in the metallic state as an inset.

tal ingredient of the low-temperature phase in many lay-
ered vanadates [7] and experimental evidence appeared
recently [8, 9]. Profound questions exist in view of the
temperature depending electronic states and in general
concerning the interplay of the various degrees of freedom
in vicinity to the MIT in the case of LiVS2. Namely the
role of excitations and possible fingerprints of the ordered
state within the metallic regime is of vital importance for
the general understanding of metal-insulator transitions
beyond the traditional Mott- and Slater-type scenarios.
Moreover the VS2-layer building block is also a object of
interest in the context of novel time-dependent electronic
structure studies [10].

It is important to realize that the MIT in LiVS2 may
not readily be understood from a weak-coupling nest-
ing picture. At elevated temperatures large local V mo-

ar
X

iv
:1

40
7.

47
95

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  1

7 
Ju

l 2
01

4



2

ments are revealed in the paramagnetic phase of LiVO2

by x-ray-absorption spectroscopy [11]. After their find-
ing of anomalous metallicity above the ordering transi-
tion, Katayama et al. [5] categorize the sulphur com-
pound as a correlated paramagnetic metal at high T .
Strong local Coulomb interactions within the nominal
3d2 valence of the V3+ ion are therefore a main driv-
ing force behind the materials’ phenomenology. Pre-
vious model studies for these systems from the model
many-body viewpoint were based on low-order pertur-
bation arguments [7], on exact-diagonalization investi-
gations [7, 11, 12] as well as on classical Monte-Carlo
and Hartree-Fock examinations [13]. The first-principles
electronic structure has also been addressed by density
functional theory (DFT), and static strong-correlation
aspects therein via the DFT+ Hubbard U methodol-
ogy [12, 14]. For the intricate low-temperature trimerized
phase of LiVS2, the model approaches favored two possi-
ble orbitally-ordered spin-state candidates, that both ac-
count for the vanishing spin susceptibility. First, a trimer
singlet state connecting to the experimentally revealed
dominant high-spin S = 1 multiplet for the V ion in the
metallic phase [7, 11]. Second, a trimer state with low-
spin S = 0 for each V ion, i.e. violating Hund’s rule [13].
Note that the latter proposition is different from a weak-
coupling band-insulating state with unpolarized bonding
orbitals.

In order to have a full account of the realistic quantum
many-body problem, we go beyond the model perspec-
tive as well as static strong-correlation investigations. We
show that by lowering the temperature T for LiVS2 the
optimal compromise between multi-orbital correlations
driven by Hubbard U and Hund’s JH as well as the given
hopping processes on the effective triangular lattice is
provided by an even more challenging ordering beyond
these suggestions. Namely, by means of advanced first-
principles many-body theory a spin-orbital hexagonal or-
dering (SOHO) is identified to originate from the metallic
high-symmetry phase. Therewith for multi-orbital frus-
trated lattice systems a conclusive connection is drawn
between a local high-spin phase at elevated T and a global
low-spin phase at low T .

LOCALIZED BASIS AND ONE-PARTICLE
SPECTRUM

The LiVS2 compound has the underlying P3̄m1 space
group (a=3.38 Å, c/a=1.82) [18] with an 1T -type ion-
stacking along the c-axis. The sandwich VS2 layer has
ideal triangular symmetry. LDA calculations place the
Fermi level εF within the isolated three-band manifold of
dominant 3d(t2g) character and bandwidth W ∼ 2.1 eV
(see Fig. 2a). These bands host the two electrons of the
low-spin V(3d2) filling. For this threefold a maximally-
localized Wannier-function (WF) basis [19] may be de-

(a)
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FIG. 2. (a) Low-energy interacting LDA+DMFT[15–17] spec-
tral function of LiVS2 slightly above the transition temper-
ature with comparison to the LDA bands (full lines) shown
along the path through the Brillouin zone noted in the left
inset. The represented spectral weight differentiates between
the three correlated-subspace contributions using an subtrac-
tive color scheme based on the color coding for the Wannier
functions, which is shown in the right inset. (b) Low-energy
degenerate t2g-like Wannier functions (with specific color cod-
ing: magenta, yellow, cyan).

rived with the low-energy WFs directed along the canon-
ical directions towards neighboring vanadium ions (see
Fig 2b). The nearest-neighbor (NN) hopping within this
degenerate basis amounts to tNN = −290 meV along the
facing orbitals of the respective axes.

To include realistic electronic correlations beyond the
static limit we continue the investigation in the state-
of-the-art DFT + dynamical mean-field theory (DMFT)
framework [15–17] by utilizing the derived WF basis as
the correlated subspace. The resulting orbital-dependent
strong electronic correlations significantly modify the
LDA-derived electronic structure. Interestingly, since
there are two electrons in three orbitals, LiVS2 falls in
the category of an Hund’s metal where besides the Hub-
bard U the local interorbital (Hund’s) exchange JH has a
dominant influence on the strong-correlation physics (see
e.g. [20] for a recent review). Figure 2 displays band-
narrowing, transfer of spectral weight as well as lifetime
effects in the one-particle spectral function A(~k, ω) due
to the rotational-invariant multi-orbital Coulomb inter-
actions on each V site. Especially along ΓK and the
corresponding AH direction at kz = 0.5 in the Brillouin
zone (BZ) the renormalization leads to intricate very low-
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FIG. 3. Local t2g LDA density of states of the insulating
structurally distorted low-temperature compound. Local or-
bital ordering via the dominant occupation of the yellow and
the cyan orbital (for the choice of the V site adumbrated in
the inset) is observable.

energy susceptible many-body states close to εF. Notably
the electron pocket at Γ and the hole pocket at K get
shifted towards the Fermi level. The WF-character con-
tribution varies strongly in the inplane k directions and
band-like coherency is quickly lost away from the Fermi
level, specifically in the unoccupied higher-energy region.

It is evident that DFT+DMFT describes a strongly
correlated metal at elevated temperatures. A large lo-
cal magnetic moment on the V ions associated with
〈S2

loc〉 ∼ 1.96 is retrieved. As outlined, by lowering T
an intriguing Mott scenario sets in that involves nearly
all available system degrees of freedom. LDA calcula-
tions in the low-temperature

√
3 ×
√

3 phase with the
experimentally observed lattice distortion on the quasi-
twodimensional triangular VS2 lattice [6] indeed reveal
an insulating state (see Fig. 3). This nonmagnetic band
insulator in LDA displays a band gap of the order of
200 meV. On each V site of the isolated triangles, re-
spectively, the t2g orbitals pointing along the triangle
edges are most strongly occupied. However this effective
single-particle band-insulating solution is motivated from
the sole observed symmetry reduction from the structural
distortion. It cannot grasp the full truth, since e.g. the
sophisticated fate of the high-T paramagnetic local spin
degree of freedom close to and in the ordered phase is left
unexplained from this simplistic viewpoint and thus fails
to reveal the electronic mechanism behind the trimeriza-
tion.

FROM TWO-PARTICLE SUSCEPTIBILITIES TO
THE HIDDEN-ORDER PARAMETER

The remaining challenge to shed light on the LiVS2

ordering relies in the combination of nonlocal physics,
i.e. real-space order parametrization that involves corre-
lations among different lattice sites, with manifest multi-

orbital degrees of freedom. To tackle this we advance
the DFT+DMFT approach by appending a two-particle-
susceptibility formalism that includes generic multi-
orbital vertex contributions. This allows to study quan-
tum fluctuations leading to nonlocal ordering tendencies
in the correlated metallic high-temperature regime above
TMIT, in principle without breaking translational symme-
try in real- or reciprocal space. Hence instead of address-
ing the broken-symmetry phase directly, we remain in the
metallic state and examine multi-orbital two-particle re-
sponse functions upon lowering the temperature. That
approach is indeed adequate in the present context, since
diffuse scattering hinting towards precursive manifesta-
tions of the ordered state has been noticed in the electron-
diffraction pattern of metallic LiVS2 [5].

In general, phase transitions are indicated by a diver-
gence of the static susceptibility associated with the un-
derlying ordering parameter and with a wave vector sig-
naling the real-space pattern of the ordered phase. Be-
yond former single-band studies [21, 22], we here have ac-
cess to the complete three-orbital particle-hole suscepti-
bility tensor χσσ

′
mm′m′′m′′′(~q, ω) at finite temperature, with

full generality concerning its frequency-dependent struc-
ture [23]. It allows an evaluation of all experimentally
measurable susceptibilities and even explicit determina-
tion of dominant excitation modes.

In the case of models with a single correlated or-
bital per site, the longitudinal particle-hole channel al-
lows for 2 susceptibilities, namely the (~q-dependent) spin-
and charge response [23]. For a three-orbital t2g shell
however, there are 18 such independent possible sus-
ceptibilities and not much problem-tailored physical in-
sight may be gained by monitoring each of those. A
much more promising route to examine susceptibilities
in multi-orbital materials is to focus in a first step on
the eigenvalues/modes of the susceptibility tensor χαβ
in the superindeces α = {σmm′} and β = {σ′m′′m′′′}
with m,m′m′′,m′′′=1,2,3 and σ, σ′ =↑, ↓. From such an
analysis

χ(l)(~q, ω=0) =

〈
Tτ
∑

α

v̂(l)α (~q)
∑

β

v̂?
(l)
β (~q)

〉
(1)

=
〈
Tτ V̂ (l)(~q)V̂ ?(l)(~q)

〉
(2)

is the lth eigenvalue and V̂ (l) =
∑
σmm′ v

(l)
σmm′c†σmc

σ
m′

is the corresponding eigenmode (v
(l)
α is the lth eigenvec-

tor of the susceptibility tensor χαβ). This makes V max

the dominant fluctuating excitation upon approaching

the phase transition and θ =
〈
V̂ max

〉
a natural order

parameter for the ordered phase. Here this eigenmode-
assessment is elaborated for the realistic three-orbital
manifold of LiVS2.

Figure 4 shows the eigenvalue-evolution of
χσσ

′
mm′m′′m′′′(K,ω=0) with temperature. The K point
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FIG. 4. Temperature dependence of all particle-hole-based
susceptibility eigenvalues at the K point in the 1. Brillouin
zone. The inset shows a contour plot of the largest eigenvalue
throughout the Brillouin zone, emphasizing that relevant sus-
ceptibilities reside at the K point. The vertical line marks
T = 258 K as the temperature used for the inset and for all
other calculations throughout the work, if not stated other-
wise.

being the position of the prominent maximum, as visible
in the inset of Fig. 4. There a single eigenvalue diverges,
indicating a phase transition at roughly Tcrit ∼ 150 K,
undershooting the experimentally observed transi-
tion temperature TMIT ∼ 310 K. However this is
expected [24], given the fact that our model neglects
phonon contributions and thus does not allow for the
lattice distortions that accompany the transition [5].

The eigenmode associated with the diverging eigen-

value χmax(K) can be identified as V̂ (max)(K) ∝ Ŝ
(tot)
z .

Thus the dominant multi-orbital K point instability to-
wards

√
3 ×
√

3 translational symmetry breaking of the
frustrated triangular lattice has an intricate magnetic
character. To reveal the details thereof one needs to
go beyond the given susceptibility representation. The
experimentally observed lattice reconstruction suggests
a possible interatomic molecular-orbital like recombina-
tion within the triangular supercell, which is naturally
not captured by studying the ~q-dependence of single-site
correlation functions. On the other hand, a thorough cal-
culation of two-particle Green’s functions for a full three-
site triangular supercell with three orbitals per site is up
to now infeasible.

Having uncovered the
√

3 ×
√

3 ordering pattern, in
a second step of our particle-hole susceptibility inves-
tigation we proceed to deliberately break translational
symmetry of the lattice two-particle Green’s function.
Thereto we solve the supercell (SC) Bethe-Salpeter equa-
tion (BSE)

χ̃−1SC( ~Q=Γ) = χ̃
(0)
SC
−1( ~Q=Γ) + γSC (3)

on the LiVS2 triangular lattice build from a minimal
triangle three-site basis with superlattice wave vector
~Q = Γ (compare Fig. 6c). All quantities in eq. (3)

carry the full inner fermionic degrees of freedom, with
a Legendre representation replacing fermionic Matsub-
ara frequencies [23] which renders this calculation both
accurate and numerically feasible. The undistorted one-
particle Green’s function is used for the bare polarization
χ̃(0) to take into account that our investigations still deal
with temperatures above the transition to the disordered
phase. The constructed irreducible supercell vertex func-
tion γc remains site-diagonal. That way we anticipate the
translational symmetry breaking of the high-temperature
susceptibility shown in Fig. 4.

Analysis of the 162 eigenmodes of the resulting super-
cell susceptibility tensor reveals two degenerate largest
eigenvalues, being partners in a two-dimensional irre-
ducible representation of the triangular building block.
These eigenmodes are visualized in the right part of
Fig. 5, for convenience rotated into the most prudent ba-
sis of the two-dimensional eigenspace, diagonalizing the
120◦ rotation, which results in a complex order parame-
ter. Only one of the two eigenmodes is shown, its partner
is its complex conjugated. Also, vmax

↓mm′ = −vmax
↑mm′ as is

typical for spin-like excitations. The interesting feature
is the intricate orbital degree of freedom. The large diag-
onal parts with the ei

2
3π, i.e. 120◦-degree, phase shift be-

tween lattice sites is reminiscent of a K-point excitation
on a triangular lattice. The same pattern can be observed
in models without orbital anisotropy. On the other hand,
the appearance of relevant non site-diagonal elements re-
flects the building of a triangular supercell molecular or-
bital on the periodic supercell as sketched in Fig. 6a. A
key feature of this ordering mode is the phase relation be-
tween the different onsite and intersite spin-orbital parts
on the elementary triangle. As seen in Fig. 6a,b, the re-
spective phases form a hexagon in the complex plane and
hence the overall state may be accurately related to as
‘spin-orbital hexagonal order (SOHO)’.

This traceless hidden-excitation mode does not imprint
a finite magnetic moment to the supercell. Also apply-
ing a magnetic field to this robust system does not easily
affect the total supercell spin arrangement. That ren-
ders our proposed order consistent with the observation
of dramatic decrease of uniform magnetic susceptibility
in the ordered phase [5] despite the large local magnetic
moment in the disordered phase. In other words, the
large vanadium local moment at elevated temperature
becomes locked in a valence-bond-like fashion within the
insulator, therefore not allowing for couplings to moder-
ate applied magnetic fields.

It is important to explicitly break the translational
symmetry within the BSE. An eigenmode analysis of a
three-site supercell susceptibility obtained from a single-
site BSE does not reveal the non-site-diagonal contribu-
tions.

As we concentrate on the structurally undistorted lat-
tice, the observed fluctuating order maintains equal oc-
cupations of the orbitals. Orbital-symmetry breaking fol-
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FIG. 5. Site-orbital resolved maximum eigenmode contribu-
tions. Only the ↑-part vmax

↑mm′ is shown with m and m′ the
adumbrated orbital indices on the supercell. Color codes
the phase of the complex values according to Fig. 6b, sat-
uration the absolute value. The ↓-part is obtained through
vmax
↓mm′ = −vmax

↑mm′ .

lows already on the LDA level (compare Fig. 3 and the
corresponding discussion) as soon as the trimerization
and the accompanying lattice distortion set in. The dis-
tinguished effective t2g orbital which is weakly-occupied
on each V atom in the insulating phase (e.g. the magenta
orbital in Fig. 3) does not have relevant non site-diagonal
elements (see Fig. 5). Thus it does not participate in the
build-up of supercell molecular orbitals and we do not ex-
pect a relevant alteration from the fluctuating excitation
to the realized broken translational-symmetry state.

After the characterization of the obtained complex or-
dering, we also want to touch base with the ordered-
state propositions from previous works on the LiVX2,
(X=O,S) compounds. The present findings for the or-
der parameter of the trimerization phase transition en-
ables us to assess the overlap with other suggested ground
states |ψ〉 by readily evaluating the ordering amplitude

θtrial =
〈
ψ
∣∣∣V̂ max

∣∣∣ψ
〉

. Specifically, the onsite low-spin

scenario proposed by Yoshitake et al. [13] evaluates to
zero, thus does not constitute a viable option. This is not
surprising, because a key ingredient of our ordering mode
is the intact local S = 1 vanadium spin. On the other
hand, Pen et al. [11] proposed an onsite high-spin ordered
state in the form of a product wave function of three local
triplets on each equilateral triangle of V(3d2) ions. In-
deed such a state yields a non-zero expectation value for
the ordering amplitude θtrial. But it does so solely based

Γ

K

Γ

R

I

(a)

(b) (c)

FIG. 6. Identified LiVS2 order at low temperature. (a)
Visualization of the maximum spin-orbital resolved eigen-
mode contribution vmax

σmm′ (compare Fig. 5) (left: σ =↑, right:
σ =↓). (b) Colorcoding of the complex values used in Fig. 5
and in part a of this figure. Lines highlight the hexagonal
phase relation between the major contributions to the order
parameter. (c) Original lattice Brillouin zone (red) and su-
perlattice Brillouin zone (blue). The original lattice K point
coincides with the superlattices Γ point.

on the diagonal elements vmax
σmm of the dominant fluctuat-

ing superlattice excitation, in line with the purely local
picture. The relevant intersite terms are missing and thus
that state serves only as an approximant to the true more
complicate order. In the model picturing of [11] a strong
Hund’s JH seems to overrule the nearest-neighbor inter-
site exchange JNN (here not simply assumed to be in the
Heisenberg-limit of the Hubbard model) in a complete
fashion. Whereas our findings reveal a subtle interplay
between local and nonlocal exchange processes that give
rise to substantial interorbital intersite terms in the de-
scription of the ordered state.

CONCLUSIONS

The present work enriches the plethora of categories
in the physics of metal-insulator transitions by revealing
the challenging connection between the high-temperature
metallic phase with large magnetic susceptibility and the
low-temperature ordered phase with zero magnetic sus-
ceptibility in a frustrated multi-orbital compound sub-
ject to strong correlations. To this end, a powerful first-
principles many-body analysis of multi-orbital lattice sus-
ceptibilities in the disordered state is introduced to inves-
tigate phase transitions in correlated materials. It com-
plements existing approaches employed directly in the
ordered phase and may be applied to further solid-state
problems of strong correlations. For LiVS2 a complex
SOHO mode originating in the metal leads to a trimer-
ized insulator with a unique electronic structure beyond
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standard Mott-insulating mechanisms. The identified

phase-sensitive S
(tot)
z = 0 ordered state generalizes the

valence-bond concept of single-orbital S = 1
2 systems

to multi-orbital S = 1 problems on a frustrated lattice.
Electron- or hole doping of that new state is believed
to lead to fascinating metallicity with unique transport
properties. Moreover investigating LiVS2 under pressure
or applying directional strain most likely results in emerg-
ing net-moment magnetism due to unlocking of spins on
the equilateral base structure.

METHODS

The theoretical study builds up on crystal-structure
data from experiment [18]. We employ the combina-
tion of density functional theory (DFT) with dynamical
mean field theory (DMFT) (see [25] for a review)), i.e.
the DFT+DMFT [15, 16] approach (see [17] for a re-
view). The local density approximation (LDA) within a
mixed-basis pseudopotential coding [26] is used to cope
with the DFT part. Maximally-localized Wannier func-
tions [19, 27] are employed to construct the low-energy
Kohn-Sham Hamiltonian within the t2g-like correlated
subspace. Consequently the Kohn-Sham Hamiltonian
given in the symmetry-adapted Wannier basis is tai-
lored for the calculation as well as the interpretation
of the physics. For the DMFT part an hybridization-
expansion continuous-time (CT-Hyb) [28, 29] quantum
Monte Carlo (QMC) impurity solver as implemented in
the TRIQS package [30] is utilized. Therein advantage is
taken of the orthogonal-polynomial representation for the
one-particle and two-particle Green’s functions [23]. A
three-orbital Hubbard Hamiltonian in Slater-Kanamori
parametrization with full rotational invariance is ap-
plied for the interactions in the correlated subspace. It
reads [31]

Ĥint = (U −3JH)
N̂(N̂ − 1)

2
−2JH~S

2− JH
2
~L2 +

5

2
N̂ (4)

with N̂ is the total charge operator, ~S the spin- and ~L
the angular momentum operators. We chose U = 3.5 eV
and JH = 0.7 eV, appropriate for vanadium sulfides [32].

At DMFT self-consistency, also the full multi-orbital
susceptibility tensor is evaluated in a DMFT-like ap-
proximation, e.g. assuming the locality of the two-
particle particle-hole irreducible vertex in the Bethe-
Salpeter equation (BSE) in this channel, as valid in the
infinite-dimension limit [33]. This approximation has
successfully been used for (effective) single-orbital prob-
lems [21, 22]. Note that already on the latter level the
calculations are numerically extremely demanding. The
inversion of the BSE requires the Monte-Carlo accumu-
lation and the handling of the two-particle Green’s func-
tion with its four orbital dependencies and full account

of also the inner fermionic Matsubara frequencies. For
the latter we employ the Legendre representation [23], as
its better convergence helps tremendously in solving the
superlattice BSE (eq. (3)).

In the BSE, the longitudinal and the transversal sus-
ceptibilities are decoupled, allowing a sole investigation
of the longitudinal components (orbitally resolved Ŝz and
n̂-like excitations).

We thank H. Takagi for helpful discussions. The
work benefits from financial support through the DFG-
FOR1346 and the DFG-SFB925. Calculations were per-
formed at the North-German Supercomputing Alliance
(HLRN).
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[26] B. Meyer, C. Elsässer, F. Lechermann, and M. Fähnle,
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7. Hidden spin-orbital hexagonal ordering induced by
strong correlations in LiVS2

7.1 The fluctuation eigenbasis

[BLKL14] gives a representation of the fluctuation in terms of the
t2g states of the supercell sites (figure 5 of that publication). The
structure of this has been discussed, most prominently the relevant
offdiagonal components connecting facing orbitals between different
sites of the supercell.

Going beyond the general remark that these components describe
cluster-states as opposed to site-states (also compare chapter 5), this
section will give a quantitative, yet approximate, evaluation of the
eigenbasis of the dominant fluctuating mode.

To ease the interpretation of this eigenbasis, it is convenient to
restrict the matrix in figure 5 of [BLKL14] to the diagonal elements and
the six largest non-diagonal ones. This mainly discards site-diagonal
orbital-offdiagonal elements (e.g. { , }), which would obfuscate the
relevant structure of eigenstates of the dominant fluctuating mode by
introducing small admixtures of the different orbitals of the same site.

Leaving those aside, the task comes down to finding the eigenbases
of the real part of the complex eigenmode

<Smax
mm′ =<(V max

↑mm′ − V max
↓mm′) (7.1)

=




−0.40 0 0 0 0 0 0 0 0
0 −0.40 0 0 0 0 0 −0.10 0
0 0 −0.40 0 0 0 0 0 0
0 0 0 0.40 0 0 0.10 0 0
0 0 0 0 0.40 0 0 0 0
0 0 0 0 0 0.40 0 0 0
0 0 0 0.10 0 0 0 0 0
0 −0.10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



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7.1. The fluctuation eigenbasis

and its imaginary part

=Smax
mm′ ==(V max

↑mm′ − V max
↓mm′) (7.2)

=




−0.23 0 0 0 0 0 0 0 0
0 −0.23 0 0 0 0 0 0.06 0
0 0 −0.23 0 0 −0.12 0 0 0
0 0 0 −0.23 0 0 0.06 0 0
0 0 0 0 −0.23 0 0 0 0
0 0 −0.12 0 0 −0.23 0 0 0
0 0 0 0.06 0 0 0.46 0 0
0 0.06 0 0 0 0 0 0.46 0
0 0 0 0 0 0 0 0 0.46




With the approximation to only include these elements, the eigen-
bases of <Smax

mm′ and =Smax
mm′ take the simple form that each eigenvector

is a linear combination of at most two facing orbitals, e.g.

cos(α) + sin(α)

Instead of giving a table of the eigenvalues and vectors, it is more

Figure 7.1: The eigenbases of the real (left) and imaginary (right) part
of the dominant fluctuation in LiVS2

instructive to visualize them. This has been done in figure 7.1.
Each line in that figures represents one eigenvector, encoding all

its information. The orientation of the line obviously identifies the
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7. Hidden spin-orbital hexagonal ordering induced by
strong correlations in LiVS2

two facing orbitals, the position on the edge of the triangle encodes
the phase of the superposition, going from α = 0 if full relative weight
is on one of the orbitals to α = π

2 for the other.
If the constituents enter with equal sign, thus forming an even-

like superposition, the line is shifted to the outside of the triangle,
in the other case, for an odd-like superposition, the line is shifted to
the inside of the triangle. Eigenvectors that are formed from just one
site orbital are not shifted. Finally, the length of the line indicates
the eigenvalue corresponding to the eigenvector, green for a positive
eigenvalue, red for a negative one.

The ‘outer’ orbitals that do not have a facing neighbor within the
supercell only ever appear isolated, a property that is also obvious
from just inspecting equation (7.1) and equation (7.2) since they do
not couple to other orbitals anymore in this approximation.

While merely illustrative due to its approximative nature, figure 7.1
helps to clarify the notion of the formation of cluster molecular orbital
like states for the dominant order fluctuating mode. It becomes clear
that while some states are still site-like, the order parameter carries
inherently nonlocal contributions.

Figure 7.1 shows the eigenbasis of the real- and imaginary part
of the complex eigenmode, therewith of two representatives of the
manifold of easily excitable (and eventually self-exciting) states, hence
figure 7.1 is basically showing the spin-imprint of the excitation, being
periodically continued on the superlattice.

Whether one of these representatives or some other element of this
manifold distinguishes itself to give an unambiguous ordered state
upon divergence of the corresponding susceptibility, thus breaking
apart the, or whether it persists and indeed the physics of the phase
transition in LiVS2 has an inherently complex valued order parameter
when in more refined studies further effects like the supposedly impor-
tant [KUH+09] electron-phonon coupling or the feedback of collective
excitations on the quasi-particles is considered (e.g. using the dual
fermion method [RKL08, TKH07]), is an interesting question, prob-
ably with impact way beyond this specific material, that should be
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addressed in future work.
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Conclusion

It is said that once you find the right language to talk about a phe-
nomenon, you are almost guaranteed to find new physics [R.13].

The prime example is of course the incorporation of local temporal
correlations within the dynamical mean field theory (DMFT), which
proved to be the right language to talk about a wide class of effects
based on strong correlation such as Mott physics.

The work presented in this thesis has contributed to the right lan-
guage to talk about numerical aspects of the calculation of general
lattice susceptibilities for strongly correlated models as well as their
interpretation in context of experimental observables or inherent fluc-
tuating modes.

The Legendre polynomial based basis has been developed and iden-
tified as the right language for the numerical treatment of those de-
grees of freedom of many-body Green’s functions that do not them-
selves carry an immediate physical meaning. It was shown that for the
one-particle Green’s function and even more so for the two-particle
Green’s function, the unnecessary luxury to work in the analytically
pleasant fermionic Matsubara frequency representation can be traded
in for an numerically pleasant basis that greatly reduces systematic er-
rors in the determination of physically meaningful observables and for
two-particle quantities enables calculations in previously unreachable
domains.

A decomposition of the orbital susceptibility tensor was introduced
that highlights that while of course finding agreement with experimen-
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8. Conclusion

tal observables in the investigation of strongly correlated realistically
modeled materials is desirable, the right language to talk about dom-
inant correlation regimes is not limited to that. Instead, it is possible
to isolate the dominant fluctuating mode and directly base a physical
interpretation on that quantity, possibly in terms of the eigenbasis of
that mode.

Consequently, finding new physics is inevitable for the models and
materials investigated here. For Sr2RuO4, the correlations are identi-
fied as purely spin-like, yet the orbital contributions contradict a plain
nesting picture for the incommensurate peak in the spin susceptibility.
Also, these orbital contributions at the other features in the Brillouin
zone constitute interesting findings on their own, especially in direct
comparison with the inelastic neutron scattering exeriments for this
material.

While for NaxCoO2 the identification of the susceptibility eigen-
modes trivially turns out as pure charge- and spin susceptibility, the
richness of the phase diagram with doping more than makes up for
that in terms of complexity. Using the susceptibility as the prime ob-
servable already is the right language in itself, given the experimental
findings about the tuneability from anti- to ferromagnetic correlations
with an non-trivial cross-over. That an unexpected high-energy mode
in the dynamical spin susceptibility of yet not completely understood
origin becomes visible in that data adds to the mystery but confirms
that this is the right approach.

And finally, in LiVS2 the right language to get insight about the
nature of the ordered state upon cooling turns out to be to allow
a correlation-level lattice reformation still in the undistorted phase,
which allowed to identify the correlation eigenmode as an intrinsically
non-local quantity.

Especially the last-mentioned material reached the limits of numer-
ical feasibility, with its intriguing order fluctuations of three correlated
orbitals at considerably low temperature and its inversion of an effec-
tive nine orbital Bethe-Salpeter equation. Hence, giving an outlook of
prosperous further possible investigations will have to stay within this

106



realm until drastically higher computational resources are available.
Luckily, also this realm holds interesting physical challenges.

For example, the story of the puzzling spin susceptibility in the
Srn+1RunO3n+1 Ruddlesden-Popper series, of which only the n = 1
member was discussed in this thesis, is not yet fully told. Upon re-
placing strontium by calcium in this n = 1 member, eight more incom-
mensurate peaks in the magnetic susceptibility appear [SFS+11], four
each in qx and qy-direction, that seem related to the γ-sheet. Similar
peaks have been observed in the n = 2 member [CFH+03], which in
turn can be brought to exhibit an incommensurate peak on the diag-
onal path in the Brillouin zone by replacing a share of the ruthenium
by titanium [SFP+09]. A thorough theoretical investigation that can
not only map the spin susceptibility through the Brillouin zone but
also attribute respective orbital contributions might shed some light
on the mutual relations of effects in this materials system.

Finally, it will be a worthwhile task to apply the Legendre poly-
nomial representation for the two-particle Green’s function to dual
fermion calculations, opening those to the same larger range of han-
dleable materials including all of the above-mentioned. This will be
interesting especially for Sr2RuO4, as it is unpredictable as of now,
what surprises for the spectral function the coupling to the strong
incommensurate collective spin excitation holds.
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