Characteristics based Radiative Transfer for
Parallel Adaptive Mesh Refinement
Hydrodynamics

Dissertation zur Erlangung des Doktorgrades
an der Fakultat fiir Mathematik,
Informatik und Naturwissenschaften

Fachbereich Physik

der Universitit Hamburg

vorgelegt von
Lars Buntemeyer

Hamburg, 2014



Gutachter der Dissertation:

Mitglieder der Priifungskommission:

Datum der Disputation:

Vorsitzende des Promotionsausschusses:

Leiter des Fachbereiches Physik:

Dekan der Fakultat fiir Mathematik,
Informatik und Naturwissenschaften:

Prof. Dr. Robi Banerjee
Prof. Dr. Stefan Dreizler

Prof. Dr. Robi Banerjee
Prof. Dr. Peter Hauschildt
Prof. Dr. Marcus Briiggen
Prof. Dr. Giinter Sigl

Dr. Robert Baade
16.10.2014

Prof. Dr. Daniela Pfannkuche

Prof. Dr. Peter Hauschildt

Prof. Dr. Heinrich Graener



Characteristics based Radiative Transfer for Parallel Adaptive
Mesh Refinement Hydrodynamics

ABSTRACT

We present an algorithm for solving the radiative transfer problem using adaptive mesh re-
finement and domain decomposition for massively parallel computations. The solver is based
on the method of characteristics which requires an adaptive raytracer that integrates the radiative
transfer equation. The radiation field is split into local and global components which are handled
separately to overcome the non-locality problem. The solver is implemented in the framework of
the magnetohydrodynamical computer code FLASH and is coupled to it by an operator-splitting
step. The goal is to create a numerical tool that can be used to study radiative effects in the context
of star formation simulations which requires a proper treatment of radiation physics that covers
both optically thin as well as optically thick regimes.

ZUSAMMENFASSUNG

In dieser Arbeit wird ein neuer Algorithmus vorgestellt, welcher die Strahlungstransportgle-
ichung auf adaptiven Gittern integriert und tiber die Gebietszerlegungsmethode parallelisiert ist.
Der Algorithmus basiert auf der Methode der Charakteristiken, welche die Implementierung
eines adpativen Raytracers erfordert. Das Strahlungsfeld wird dabei in eine lokale und eine glob-
ale Komponente zerlegt, welche separat berechnet und kombiniert werden, um das Problem der
Nicht-Lokalitit zu losen. Der Algorithmus ist im Framework des magneto-hydrodynamischen
Computer Codes FLASH implementiert und an diesen gekoppelt. Das Ziel der Arbeit ist es, ein
numerisches Werkzeug zu entwickeln, mit dem Strahlungseffekte in Sternentstehungssimulatio-
nen studiert werden konnen, da diese eine angemessene Handhabung von Strahlungstransport
sowohl in optisch diinnen als auch optische dichten Regionen erfordert.
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Introduction

1.1  Motivation

Astrophysics is a unique branch of theoretical physics. In many other research fields, one can
more or less exactly design an experiment, which poses a specific question to the physical nature
of the object of interest, for instance, quantum physics, particle physics and earth sciences. The
theoretical model, on which the experiment s based, is verified by comparing its predictions with
observations from the experiment and is either shown to be consistent or has to be modified or
even rejected. In Astrophysics, the object of interest is usually very remote. In-situ measurements
are very much restricted to our own solar system, and laboratory experiments usually can not
resemble the extreme conditions under which astrophysical processes take place. Theoretical
models in the field of, e.g., star formation are verified by comparing their predictions with
observations, and the astronomer has to ”take what he gets”.

While analytical models are useful to understand the basic mechanisms behind the star formation
process, detailed studies require advanced numerical computer simulations to account for a

variety of physics involved, e.g., hydrodynamics, magnetic fields, gravity, chemistry and radiative



transfer. Furthermore, these simulations have to cover a wide range of scales in space, density and
time since a star is a rather compact, tiny object compared to the interstellar medium (ISM), from
which it is formed. The outcome of these simulations is used to generate synthetic observations
in the form of, e.g., spectral energy distributions (SEDs), polarization maps, images or spectra.
Since the first hydrodynamical numerical simulations of the star formation process by Larson
(1969), a lot of advances took place in this field. Especially the subject of disc formation and
evolution have become important since they are inextricably connected to the formation of a
young star and a potential planetary system. Detailed numerical studies of protostellar and pro-
toplanetary discs gave rise to the development of advanced numerical techniques and computer
codes since they require multi-dimensional, magnetohydrodynamical (MHD) simulations on
a wide range of length and time scales. Especially the role of turbulence and magnetic fields
have been subject to many recent works (e.g. Machida et al., 20105 Seiftied et al., 2012), and these
authors solved a lot of problems concerning angular momentum transport and the formation of
protoplanetary Keplerian discs, which are frequently observed around young stars (Evans et al.,
2009).

Radiative feedback processes play another crucial role in the dynamics of star and disc formation.
Radiative transfer is the dominant cooling process during the initial stages in which the protostar
forms from the gravitational collapse inside a molecular cloud. Later on, when the young star
develops significant luminosity from accretion processes and gravitational contraction, radiation
determines the thermal structure and stability of the circumstellar disc. Finally, when the
evolutionary stage of the star has reached the main sequence and starts burning hydrogen in its
interior, the protostellar disc evolves into an irradiation dominated Keplerian disc, from which
planets might form.

Despite the obvious importance of radiative transfer, it is often ignored or substantially approx-
imated. The reason is the rather complex nature of radiative processes and their interaction with
each other and the thermodynamics of the radiating medium. The radiation field in the limit
of geometrical optics is described by an intensity field of 6 dimensions: 3 spatial dimensions,
2 directional + frequency. However, the numerical tool to study star formation is primarily
a gravo-MHD code , which solves the equations of hydrodynamics including magnetic fields
and self-gravity. Some of the current implementations of such a code (e.g. Stone et al., 1992;
Flock et al., 2013; Zhang et al., 2013; Bryan et al., 2014; Bate et al., 2013) include radiative effects
in the diffusion limit, which approximates the evolution of the radiation field by the diffusion

equation. These codes lack the ability to model radiative transfer properly in the transition



from optically thin to optically thick regimes (Kuiper et al., 2010). But turbulence, accretion
processes and disc formation are highly multi-dimensional problems, which require a proper

treatment of the anisotropic radiation field in both optically thin as well as optically thick regimes.

In this work we present a new implementation of a radiative transfer solver based on the
method of hybrid characteristics (Rijkhorst et al., 2006). The solver is implemented in the modu-
lar framework of the MHD code FLASH (Fryxell et al., 2000) and is coupled to it. Since FLASH
uses a grid with adaptive mesh refinement (AMR) (Olson et al., 1999) and domain decomposi-
tion for parallel computations, the solver has to be integrated into this architecture. The hybrid
characteristics method combines long and short characteristics and is able to properly solve the
radiation transfer problem in optically thick as well as optically thin regimes and the transition

region.

1.2 Radiative Processes in Astrophysics

Nowadays observations are mostly achieved using gigantic optical telescopes (e.g, the VLT), in-
terferometers (e.g., LOFAR, ALMA) or satellites (e.g, Hubble), which can probe different ranges
of the electromagnetic spectrum. The spectrum varies over a large range of wavelengths from the
very short gamma- and X-rays through the ultraviolet, visible and infrared, into the microwave
and radio regime. Understanding radiative processes in the different wavelength regimes has
gained enormous insight in many fields of modern astrophysics. Despite the obvious impor-
tance of optical astronomy in the visible regime, many fundamental discoveries have involved,
e.g., radio observations of quasars and AGNs (Matthews and Sandage, 1963), pulsars (Hewish,
1970) or the famous detection of the cosmic microwave background (CMB) radiation by Penzias
and Wilson (1965), X-ray observations of black holes (Bolton, 1972) and infrared photometry of
star forming regions (Dullemond and Monnier, 2010).

However, independent of the frequency regime, an observation of an astrophysical object always
resembles the outcome from many interacting physical processes, which result in the emission,
absorption or scattering of a photon, for instance, a stellar photosphere, a molecular cloud or the
CMB. Hence, the information we are interested in is somehow encrypted in the electromagnetic
wave we receive with an observational instrument. Decoding this information is the basic moti-
vation of theoretical astrophysics and requires a thorough understanding of radiative processes

and the theory of radiative transfer.



1.2.1  Electromagnetic Radiation

Electromagnetic radiation is a phenomenon that shows different behaviour at different scales.
In classical mechanics, it is described by the solutions of Maxwell’s equations for an electric and
magnetic vector field. The solutions represent planar waves propagating at the speed of light and
oscillating perpendicular to each other and on the direction of propagation. At the microscopic
level of quantum mechanics, light shows particle-like behaviour, which goes beyond the scope
of Maxwell’s equations. In quantum theory, the electromagnetic field is quantized by photons.
The photon is an elementary particle that carries a discrete energy £/ = hv depending on its fre-
quency v, and it obeys Bose-Einstein statistics. Together with the density of quantum states in an
enclosed cavity (a black body) of temperature T, the energy density of electromagnetic radiation
in thermodynamic equilibrium is given by Planck’ function
202 hv

By, T) = 2 owT T (r1)
The first factor o< % /c? describes the number of states (standing waves) per unit volume per
solid angle per frequency in the cavity. The second factor is a consequence from the quantization
of the electromagnetic field, and it describes the energy (hv) times the occupation number of
photons of this energy in the cavity. If we consider the bolometric flux of from the surface of
such a black body, which is the total radiative energy emitted by the surface into any direction,

we have to integrate Planck’s law over all frequencies and obtain the Stefan-Boltzmann law
F(T)=m / B(v,T)dv = ospTk, (1.2)
0

where ogp denotes the Stefan-Boltzmann constant. If we, for instance, measure the bolometric
flux of the sun from a satellite in an earth orbit, we can assign the sun an effective temperature of
Teg ~ 5780K, which would be the temperature of the solar photosphere if it would be a perfect
black body radiator. This idea stands at the basis of stellar classification.

Planck’s law describes the spectral distribution of thermal emission by an idealized black body
at temperature 1. However, it is not restricted to the ideal case of a closed cavity but can be
applied to any system that is in thermodynamic equilibrium, e.g., in the interior of a star, thermal
emission by dust or the CMB radiation. Planck’s law allows us to assign an effective temperature

to any emitting surface that might be approximated by a black body emitter.
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Figure 1.1: The electromagnetic spectrum from the energetic y-rays to the radio regime with a zoom-in on the optical regime.
From http://enwikipedia.org/wiki/File:EM_spectrum.svg.

Although Planck’s law is valid to describe thermal emission, it does not necessarily describe the
spectrum of the radiation field itself. Scattering processes (e.g., Rayleigh scattering, Mie scattering
or Compton scattering) can significantly change the spectral distribution of the radiation field by
the transfer of radiative energy independently of the thermal emission. In a scattering dominated
situation (e.g., a stellar atmosphere or Mie scattering on dust grains), matter and radiation are not

in thermal equilibrium any more. This requires a proper theory of radiative transfer.

1.2.2 Radiative Transfer

The theory of radiative transfer deals with the transport of energy by the propagation of light
through a medium. In astrophysics, the scales on which we deal with radiative transfer are usually
much larger than the wavelength of radiation. In this limit of geometrical optics, light propagates
along rays and is described in terms of the specific intensity /,, that is flux per steradian. If we
measure, for instance, the flux of the sun on earth and divide it by the solid angle, which the sun
covers on the sky, we get the specific intensity, which does not depend on the distance. If we
would do the same experiment on Mars, we would receive less flux but at the same time, the solid
angle that is covered by the sun would be smaller as well. Since both the flux and the solid angle

scale with 72 (where r is the distance), the flux per solid angle stays constant. Consequently, in



vacuum the specific intensity is constant along a ray of direction n which is expressed by
n-VIi,(n)=0. (1.3)

But in general, as soon as light travels through a medium, we have to take interaction processes
into account. In the limit of geometrical optics, interaction processes can be understood as be-
ing responsible for removing and/or injecting energy into a ray. If radiation is removed, this is
considered an absorption process, and the efficiency is expressed in terms of the photon mean
free path lgree. The mean free path is usually a function of frequency and depends on the den-
sity of the medium. But independently of the complexity of the physics involved to calculate the
absorption efficiency, in the theory of radiative transfer this is handled in the form of a macro-
scopic absorption coefficient, which is an inverse mean free path. This allows to define the optical
properties of an interacting medium in terms of the optical depth

r=2 (14)

- I
lfree

where L denotes the typical scale of interest. Hence, the optical depth is a geometrical property
that measures the number of mean free paths. If we consider the specific intensity entering such
a medium of thickness L with an optical depth 7, we can account for the absorbed energy and

calculate the intensity that leaves the medium according to
Tows = Iine™". (rs)

If the optical depth of the medium were 7 = 1, on average 36.8% of the photons would pass the
medium without being absorbed. This process is called extinction. If the optical depthis 7 > 1,
the medium is considered to be oprically thick while in the case of 7 < 1, it is referred to as being
optically thin.

If energy is injected into a ray, this is called an emission process, which is handled by the emissivity
7. The emissivity measures the radiative flux per solid angle per unit length, which is injected
into a ray. Both absorption and emission processes appear as source terms on the right-hand side

of Equation (1.3) to guarantee energy conservation:

n-VIi,(n)=n,—x.1,, (1.6)



where X, is the frequency-dependent extinction coefhicient. It does not only account for “true”
absorption processes, in which a photon is in fact destroyed by some interaction process, but
any process that can change the direction of propagation of a photon. This means that also scat-
tering processes are effectively handled as extinction processes although the photon is not truly
absorbed. But since scattering does remove a photon from a ray of a certain direction and adds it
to another one, it acts as an effective contribution to the extinction coefficient and the emissivity.
Formally, the time-independent radiative transfer equation (RTE, 1.6) can be solved if X, and
1, are known. However, absorption of radiation crucially affects the thermodynamical state of
the medium, which in turn determines opacities and emissivities, which we do not know in ad-
vance. Radiative cooling processes (e.g., cooling by dust), quantum states (occupation numbers)
of atoms and molecules or the chemistry and ionization physics of the ISM crucially depend on
the thermodynamical state of the matter and hence on the radiation field. This makes the so-
lution of the RTE already quite challenging, even if the medium is locally in a thermodynamic
equilibrium (LTE). But even if the temperature structure of the medium is known, the radiation
field might not only be determined by thermal emission but also by scattering contributions.
If the mean free path of a photon is significantly larger than the scale on which the temperature
changes, the radiation field decouples from the local thermodynamical properties of the medium.
In this non-LTE (NLTE) situation, the radiation field can transport energy over large distances
and affect the medium globally.

Another complexity of radiative transfer theory is the high dimensionality of the radiation field.
The complete description of the scalar field of specific intensities requires 6 dimensions: 3 spatial
dimension, 2 directional + frequency. To describe the radiation field completely, one has to con-
sider incoming radiation from the whole 47-sky at each point in space in the frequency range of
interest. E.g., one has to deal with an enormous amount of data to observe the complete CMB
radiation that is collected by instruments like WMAP or Planck only for a restricted frequency
range from our point of view at the Earth.

Further complexities arise from the large propagation speed of light (c& 2.998 x 10'® cms™)
if radiative transfer has to be solved in parallel with the hydrodynamics of the medium. The
timescale of radiative transfer is usually much shorter than the timescale of, e.g., hydrodynamics,
chemistry or ionization physics. One the one hand, this means that radiative transfer can often
reasonably be treated as being time-independent if considered on large timescales (as implied by
Equation (1.6)). On the other hand, this makes the transport of energy by radiation a highly non-

local process, which has to be solved implicitly together with the equations of hydrodynamics.



Despite or maybe even because of all these complexities, the solution of the RTE with multi-
dimensional computer simulations gave rise to a variety of different numerical techniques. Ra-
diative transfer has been playing a substantial role in the modelling of, e.g., synthetic stellar and
planetary spectra or SEDs of young stellar objects (YSOs) and circumstellar discs. These models
require a thorough understanding of LTE and NLTE radiative transfer as well as continuum and

line transfer and the time dependence of the radiation field.

1.3 The Star Formation Process

How stars are being formed in detail is one of the most challenging questions in modern
astrophysics. Stars are the key (baryonic) constituent of the universe standing at the basis of large
scale structures like our own Milky Way. Galaxies containing up to a few 10! stars form clusters
and superclusters, which make up the large scale filamentary cosmic web. In our own galaxy,
stars and star clusters show ages on a wide range of time scales from a few million years to very
old clusters observed in the galactic halo. The oldest of these clusters have ages on the order of
the age of the universe itself (e.g., ~ 10'? years), indicating that star formation has been taking
place since very early times and is still continuing. Looking at much smaller scales, it seems more
and more likely that stars typically host planetary systems as increasing confirmed observations
of extrasolar planets indicate (exoplanet.eu). The formation of planetary systems seems to be a
natural “side effect” of the formation of a host star and its circumstellar envelope and disc and is
therefore inextricably connected to the star formation process itself.

Stars have a profound effect on the ISM, from which they are formed. Since stars burn hydrogen
in their interior and produce heavier elements, they enrich the ISM’s metallicity by stellar winds
or supernova explosions. Stellar radiation heats the ISM and thus determines its thermodynamic
properties, and stellar outflows and jets during the the birth of a star inject large amounts of
kinetic energy into the ISM. The life and death of stars therefore directly influences the oncoming
generation of new stars. which form from an ISM that is crucially determined by the feedback
of passed generations.

Although the general nowadays picture of the star formation process made significant advances
in the last decades (e.g., since the first computer simulations of Larson (1969)), the detailed pro-
cesses are still rather poorly understood due to both observational and theoretical constraints.
On the one hand, YSOs in the early Class 0 phase are difhicult to observe since they are mostly

embedded in dusty envelopes, which remain after the initial formation of the YSO. Though



the ISM consists only of a small fraction of cosmic dust (about 1%), it is the main source of
continuum opacities in the optical regime. Dust absorbs the main fraction of the primary YSO’s
emission and reprocesses it into longer wavelength regimes. Therefore, observations have to
cover the near, mid and far infrared regimes from a few microns up to the (sub)millimeter wave-
lengths, which are restricted in their spatial resolution due to their relatively large wavelengths.
Recent developments in IR interferometry achieved remarkably high spatial resolutions, which
revealed details of the inner structure of protoplanetary discs on the scale of less than 1 AU for
the solar neighbourhood (e.g., a few 100 pc). These observations confirmed “standard models”
to explain the infrared excess in SEDs (Figure 1.2) observed earlier but also posed new questions
concerning details of the protostellar evolution of a star and its disc and envelope (e.g., the review
of Dullemond and Monnier (2010)).

Another difficulty in understanding the star formation process theoretically lies in the variety
of physics involved. Hydrodynamics, gravity, magnetic fields, thermodynamics, turbulence,
chemistry and radiative transfer interact with each other on a large range of different scales in
length, density and time. E.g., a computer simulation of the formation of a single star like our sun
needs to resolve roughly 6 orders of magnitude in length scale (from a few 0.1 pc (~ 10 cm)
of the initial cloud down to stellar radii (e.g., Re, ~ 109 cm), about 20 orders of magnitude in
density (from a few 10° particles per cm® to 10** per cm® and roughly 11 orders of magnitude
in time (from a few million years to seconds). It is therefore an extremely challenging task, and
until today still impossible, to model the star formation process self-consistently in its entirety

with a 3D computer simulation.

In the following, we give a brief introduction into the basic theory behind the star formation
process, the evolution of a protostar and the mechanisms behind the formation of a protostellar
disc, always with an emphasize on the effects of radiation and radiative transfer. This review is

mainly based on the textbook by Bodenheimer (2011).

1.3.1  From Molecular Clouds to Stars

Nowadays star formation takes place in giant molecular clouds (GMCs), which form the densest
part (a few 10° particles per cm®) of the diffuse ISM in a galaxy like our Milky Way. GMCs
contain a significant fraction of the total ISM mass with typically more than 10* M, per cloud

on a scale of a few 100 pc. They reveal a highly hierarchical and turbulent structure, in which the



107 T T IIIIII| T T IIIIII| T T T T T TTT
AB Aurigae

& | NIR bump |
g A A DA
- Stellar Flux
b 108 =
g | 5
>
LA t
L 4
10%1 10 100 1000

Figure 1.2: The spectral energy distribution of the Herbig Ae star AB Aurigae. Red symbols and lines show the measured emis-
sion and the blue curve is a synthetic stellar Kurucz spectrum. The infrared flux ("IR-excess”) is the thermal emission from dust
inacircumstellar disc. The near infrared (NIR) bump originates from the inner hot rim of the disc, which is approximated by the
green Planck curve of T' = 1600 K, similar to the evaporation temperature of cosmic dust. From Dullemond and Monnier
(2010).

densest parts are referred to as clumps. These clumps are gravitationally bound overdense regions
containing a few 100 M, on the scale of a few pc, from which stellar clusters might form. Single
stars or binary systems originate from the fragmentation of such a clump into gravitationally
unstable cloud cores with a typical sizes of a few tenth of a parsec and containing up to a few solar
masses.
The driving mechanism behind the collapse of such a molecular cloud core is its self-gravity. To
generally quantify gravitational instability in an isothermal and uniform medium of density py,
one has to consider gravitational and pressure forces acting against each other. This leads to the
Jeans length

A = 2 |

Gpo

(1.7)

which describes the maximum extent on which the density distribution is gravitationally stable.
The isothermal sound speed ¢, in the gas is determined by the temperature of the cloud core (e.g.,

~ 10 K). The Jeans length is directly associated with the Jeans Mass

4 PN
M, = S (5) (18)

I0



if we assume a spherical density distribution. E.g., the Jeanslength fora 10 K ISM gas of a few 10°
hydrogen atoms per cm?® is about 0.1 pc, which would be the typical scale of a core to condense
out of a molecular cloud due to its self-gravity. The timescale of the collapse is determined by
the sound speed crossing time, which dictates the hydrodynamical response of the gas on the
global scale of a core. If the gas is considered to be in a free-fall collapse by neglecting the thermal

pressure, the associated timescale is the free-fall timescale

Y . i (1.9)
32Gp0

in which G is the gravitational constant. The free-fall timescale is the typical time on which the

initial cloud collapse happens until the formation of a hydrostatic core, in which the thermal pres-
sure is able to stop the gravitational contraction.

The free-fall time for a cloud core is typically on the order of a few 10° years. However, GMC’s
lifetimes from observations (e.g., by measuring velocity dispersions) reveal to be roughly one or-
der of magnitude higher than the free-fall time. This already indicates that more complex physics
are involved, e.g., turbulence and magnetic pressure, but the free-fall assumption nevertheless

gives a rough approximation of the timescale of the first collapse of a molecular cloud core.

Formation of the first Hydrostatic Core

Once a cloud core becomes gravitationally unstable and starts to collapse, it releases a large
amount of gravitational energy. Initially, this energy is radiated away freely as long as the cloud
core stays optically thin. The heating of the gas by contraction is therefore always balanced by the
rate of radiative cooling and hence, the cloud’s temperature stays constant (isothermal) typically
atafew 10 K. As inferred by Equation (1.9), the free-fall timescale decrease with increasing den-
sity, which leads to an accelerated run-away” collapse of the entire core while the inner regions
become more and more highly peaked in their density profile.

The isothermal collapse starts to decelerate as soon as the collapsing core becomes opaque and
radiation gets “trapped” inside a small region in the center of the core. At densities about
107 gem™® (Larson, 1969), the compressional heating rate starts to dominate the efficiency
of radiative cooling and consequently, the temperature and pressure in the central core start to
rise rapidly (Figure 1.3). The following contraction becomes approximately adiabatic and after

roughly one free-fall time, a central hydrostatic core of a few 10™2M, with a radius of 5 — 10 AU
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Figure 1.3: The time evolution of the density distribution of a

collapsing protostar from the 1D calculations of Larson (1969). \
Units are in CGS, and the curves are labelled in units of the free- . | . |
fall time (~ 10%3s). Note how the density distribution ap- 14 15 6 7

proaches a profile of the form p o< r2. ‘o ¢

and a central temperature of a few 100 K has formed inside the envelope. This hydrostatic core is
commonly referred to as the first core or the first protostellar core. The term ’protostar’ is some-
how not clearly fixed but we will refer to it as being any hydrostatic core that forms after the initial
isothermal collapse including a possible accretion disc.

The protostar starts accreting material from its surrounding infalling envelope and accretion disc
and the first core continues to contract. According to the virial theorem, half of the released grav-
itational energy is converted into thermal energy and the other half diffuses outward radiatively.
Shortly after the first collapse, the main bulk of the core material is still in the envelope while the

first core contains only a few 1072 M. Its luminosity is determined by

GM,M

Lacc =
R,

(r10)

of the first accretion shock front, where the infalling material is abruptly decelerated and accu-
mulated in the first core. Lyce, Ry and M, are the protostar’s accretion luminosity, core radius

and mass respectively, and M denotes the accretion rate.
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Formation of the second pre-stellar Core

Before the first core had a chance to accumulate much mass from the envelope, it continues to
contract until the central temperature reaches a value of about 2000 K with a central density
of about 1078 g ecm 3. At this point, hydrogen molecules start to dissociate. The dissociation
reduces the ratio of specific heats since atomic hydrogen lacks the possibility to be excited ro-
tationally and the pressure rises less steeply with increased density. Since most of the released
gravitational energy is consumed by the dissociation processes, the core starts to cool again and
enters another quasi-isothermal second collapse phase. As soon as nearly all hydrogen molecules
are dissociated (~ 8000 K), the central pressure rises again rapidly until a second hydrostatic core
is formed with a typical central density of 107* - 1072 g cm ™3, a few R, in radius and a central
temperature of a few 10*K for a solar-like protostar, thus approaching stellar conditions.

The second collapse inside the first hydrostatic core happens again on a free-fall timescale and
the second core initially only contains a few 10~>Mg, while the bulk of the core mass is still lo-
cated in the isothermal envelope at densities of 10718 — 1071 g cm ™3, While the second core
also develops an accretion shock front, the first core is soon depleted and accreted into the second
pre-stellar core. This second core is still embedded in a dense infalling envelope of material which
produces an accretion shock at the point where the material falls onto the central hydrostatic
core. Observationally this earliest phase in the star formation process is characterized by a source
which is extremely faint in the optical and infrared. It emits mainly in the submillimeter regime
which originates from the massive envelope’s reprocessed radiation of the protostar’s accretion
luminosity at temperatures about 15 — 30 K (Class 0 / Class I phase). Since during this phase
the envelope becomes more and more opaque to radiation and the radius of the hydrostatic core
decreases, the total luminosity of the protostar decreases and it follows an almost vertical path

down on the Hertzsprung-Russell diagram (Hayashi track, Figure 1.4).

On the Way to the Main Sequence

The subsequent evolution of the protostar evolves quasi-statically while hydrogen in the hot pre-
stellar core is ionized. However, the ionization does not alter the effective ratio of specific heat
very much since the densities are already high enough for the gas to act non-ideally. The core
therefore stays in hydrostatic equilibrium and no further collapse occurs. The pre-stellar core now
enters the main accretion phase in which the remaining mass of the massive envelope continues

to collapse on the pre-stellar core (and the accretion disc).
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Behind the accretion shock the kinetic energy of the infalling gas is almost entirely converted into
radiative energy which diffuses outward and is absorbed by the opaque envelope. The luminosity
of the protostar is therefore determined by the accretion luminosity and the intrinsic luminosity

of the contracting core
L* - Lacc + Lint- (I'H)

During the early accretion phase, the envelope is still collapsing onto the protostar and the accre-
tion luminosity dominates during another few free-fall times. Until roughly 1 million years after
the initial core collapse, the envelope is depleted and was either accumulated by the pre-stellar
core or has fallen onto the accretion disc.

The protostar has now probably developed a rotationally supported Keplerian disc and is com-
monly referred to as a pre-main-sequence (PMS) star. At this point, the star has gained about half
of its final mass while still accreting mass from the accretion disc. However, the total luminosity
of the PMS star is now mainly determined by its intrinsic luminosity due to the quasi-statical

contraction which reads
1dQq (12)
5 dr LI2

where )¢ denotes the gravitational potential of the central hydrostatic core. Since the circum-

Lint ~

stellar envelope was depleted, the subsequent evolution of the PMS star is not determined by the

free-fall timescale anymore but by the Kelvin-Helmholtz (KH) contraction timescale:

GM?
R* Lint .

lkn ~ (113)
The KH-timescale is an order of magnitude larger than the free-fall timescale ("10° years), and
because the PMS star contracts further, R, decreases, and the evolution slows down, which makes
is much easier to observe a PMS star approaching the main sequence than an early protostar on
the Hayashi track. Since the PMS star still accretes mass but is contracting, its luminosity only
increases slightly. Hence, the evolution on the KH-timescale in the HR-diagram is characterized
by an almost horizontal path until the PMS star reaches its final effective surface temperature
(Henyey track, Figure 1.4). After a few KH-timescales (e.g., 107 years), the PMS star approaches
the main sequence, and its central temperature is finally high enough (e.g., a few 10° K) to ignite
hydrogen burning. At this time, the protostellar disc has probably been depleted significantly,

and from the debris that is left, a planetary system might form (Figure 1.5).
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Figure 1.4: Schematics of the Hayashi and Henyey tracks in the Hertzsprung-Russell diagram for a star of one solar mass. The
protostar in quasi-hydrostatic equilibrium first appears above the main sequence on the Hayashi track, when the dissociation of
H2 molecules starts. Itsluminosity decreases since radiation gets trapped due to the increasing density of the gaseous envelope.
After the formation of the second pre-stellar core, the protostar maintains a more or less constant luminosity during the Kelvin-
Helmholtz contraction phase (Henyey track) until it reaches the main sequence.

Massive Star Formation

We have concealed that our review of the star formation process so far is actually the common
picture of low mass and intermediate mass star formation we have today. The formation of mas-
sive stars (2 8 M) is in some ways similar to low-mass star formation but for several reasons, the
details of the early evolutionary phases are much less well understood. The formation of massive
stars in general happens much faster than that of their low-mass counterparts, and it is therefore
less likely to observe massive stars in their early evolutionary phases. Since massive OB-Stars nat-
urally form in the most dense clumps of a GMC, containing up to a few thousand solar masses on
the scale of a few tenth of a parsec, they are deeply embedded in massive, circumstellar and dusty
envelopes, which makes them much harder to observe. Zinnecker and Yorke (2007) identify four
phases of massive star formation: compression, collapse, accretion and disruption. In the com-
pression phase, turbulence and gravitation form dense clumps in the parent GMC by localized
compression of the gas. These clumps are either disrupted again or might undergo a gravitational
collapse (collapse phase) and form several hydrostatic cloud cores. During the accretion phase, a

massive star already starts hydrogen burning in its interior while still accreting significant amount
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Figure 1.5: Schematics of the different phases of the low/intermediate mass star formation process; From Hogerheijde, M.
(1998), PhD Thesis, Leiden University, Holland.
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Figure 1.6: Various HIl region morphologies from hydrodynamical simulations of massive star cluster formation including heat-
ing by both ionizing and non-ionizing radiation. The simulations were performed with the FLASH code and the hybrid charac-
teristics method by Rijkhorst et al. (2006), image from Peters et al. (2010).

of masses from its surrounding envelope. Massive stars strongly influence their surroundings by
stellar winds, outflows and energetic UV-radiation. Hence, they significantly determine ongoing
star formation in an OB-cluster. After a shortlifetime of a few million years, OB-stars go off as en-
ergetic supernovae and may even disrupt the cloud, from which they formed, preventing further
star formation. It is still not clear how massive stars can accrete large masses of up to more than
100 M. Radiative pressure should be able to stop accretion processes while, due to energetic
UV-photons, large regions of ionized hydrogen (HII-regions, Figure 1.6) emerge around massive

stars.

1.3.2  Circumstellar Discs

During our discussion of the star formation process, we neglected the effects of rotation. Since
rotation is inherit in the Milky Way, molecular cloud cores reveal some amount of rotational
energy. Although the rotational energy makes up only a small fraction of the total energy
content of the gas (e.g., a few percent), the conservation of angular momentum becomes crucial
as soon as a clump fragments and forms stars. The importance of discs is obvious since they

are assumed to be the birthplace of planetary systems, which are believed to form from a thin
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Keplerian disc which remains after the host star has accreted its final mass.

In the following, we describe the basics of disc formation, evolution and dissolution based on
the book by Bodenheimer (2011) and the reviews by Li et al. (2014) and Dullemond and Monnier

(2010).

Disc Formation

If we consider a gas package of mass m orbiting with an angular velocity {2 in the envelope around

a recently formed protostar at distance r from the pre-stellar core, the angular momentum
I = mr*Q (r14)

is conserved during the infall of the gas package onto the protostar. Since 7 decreases during the
infall, the angular velocity €2 has to increase. The gas package is accelerated in its orbital motion
until it reaches the centrifugal barrier at which the gravitational acceleration is compensated by
the centrifugal force. Consequently, instead of falling directly on the central hydrostatic core,
momentum conservation forces a significant amount of infalling gas from the envelope to accu-
mulate into a circumstellar disc instead of being accreted directly into the pre-stellar core.

Initially, the mass of the newly formed circumstellar disc is comparable to the mass of the central
core and hence, the early disc itself might be prone to gravitational instabilities. Whether the cen-
trifugal force caused by the angular motion can counteract a gravitational instability is indicated

by the Toomre parameter (Toomre, 1964)

KCs

Ry

(.15)

where ¥ denotes the surface density of the disc (e.g., ¥ = %), and x is the epicyclic frequency,
which describes the dependence of angular momentum on radius (e.g., & = €2 in a Keplerian
disc). If () is larger than ~ 1, the gas in the disc is locally stable against gravitational instabilities
since the angular differential motion will disrupt it. Examining the Toomre parameter reveals
that even low mass discs with Myisc /M, ~ 0.1 should be gravitationally unstable and fragment
although observations indicate that discs of comparable mass typically exist around PMS stars and
that they have probably been even more massive initially. However, since the accretion of the disc

mass starts with a rather low surface density >, the Toomre parameter () is initially larger than
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1, and before () actually is near 1, gravitational instabilities can generate spiral waves. The waves
cause gravitational torques to transport angular momentum outward from the inner regions of
the disc and heat up the disc, which can stabilize the disc against fragmentation. After a few
10° years, the disc becomes stable, and angular momentum transport by gravitational torques
becomes ineffective.

Observationally, the early formation of a massive disc is difficult to observe since it happens inside
the massive gaseous envelope. Discs are more likely to be observed after they have already evolved
into Keplerian protoplanetary (see next section) discs which have already lost a significantamount
of mass to the PMS star in its center and become observable (Class II stage). The key properties

described so far are therefore mostly based on numerical simulations (e.g. Yorke et al., 1993).

Disc Evolution

The early formation process of the disc is characterized by gravitational forces and instabilities
while the disc is still massive. Such a disc is referred to as a protostellar disc (Figure 1.7). The evo-
lutionary timescale is roughly given by tgray ~ QY(M,/ ]\4disc)2 and hence, it is evolving quite
rapidly in the beginning when its mass is still comparable to that of the central stellar core. Aftera
few 10° years, when the disc has lost most of its mass to the central star, its subsequent evolution
is determined by angular momentum transport through viscous and magnetic torques which oc-
cur on a much slower timescale. Since these discs have lifetimes of a few 10° up to 107 years, there
is enough time for them to create planets, which is why they are referred to as protoplanetary
discs. Such a disc is assumed to be geometrically thin, in Keplerian rotation Q2 = (G M, /r®)'/?
and its self-gravity is negligible compared to the central star (Mgisc << M,). There are a num-
ber of analytical models to describe the evolution of a protoplanetary disc. Shakura and Sunyaev
(1973) assume the vertical sound crossing time in the disc to be much shorter than the radial drift
of gas and hence split the problem. The vertical structure is assumed to be isothermal and in hy-
drostatic equilibrium at all times, and the evolution of the surface density and the radial drift of
gas is determined by a viscosity coefficient. The idea is that the differential rotation in the disc
causes frictional torques which transport angular momentum from the inner fast rotating to the
outer slower rotating regions of the disc. This allows a gas package to loose angular momentum
and drift inwards, where it is accreted. The viscosity coeflicient also causes the disc to actively
heat itself, and Shakura and Sunyaev (1973) define a viscous heat source term which depends on

the accretion rate and the angular velocity in the disc. Approximating the disc with a black body
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emitter allows to model the temperature structure in the disc. Shakura and Sunyaev (1973) do not
explicitly define the source of viscosity but rather assume a constant parameter, the alpha viscos-
ity, which may account for all present viscosity sources. The alpha viscosity is a free parameter in
their model which can be used to fit the model to the infrared excess slope of an SED and deter-
mine the accretion rate.

Shakura and Sunyaev (1973) assume the accretion disc to be flat and infinitely large. However, a
disc has a finite size and as matter moves inward, some matter in the outer regions has to absorb
the angular momentum. This leads to a spreading of the disc (Lynden-Bell and Pringle, 1974;
Hartmann et al., 1998), and as it turns out, viscous torques alone (e.g., molecular viscosity) are
too slow to guarantee sufficient angular momentum transport.

Recent numerical simulations have shown that turbulence and magnetic fields have a profound
effect on the disc’s evolution. Turbulence acts as another source of viscosity, and especially mag-
netic fields have proven to be a rather effective mechanism to transport angular momentum out-
wards. In those simulations assuming ideal MHD (e.g. Mellon and Li, 2008; Hennebelle and
Fromang, 2008; Seifried et al., 2012; Santos-Lima et al., 2012), the magnetic field is frozen into the
gas density and hence, the densest inner regions of the protostar become strongly magnetized.
Since the magnetic field lines rotate with the gas, they get twisted by the differential rotation.
This causes a tension in the field lines which tends to slow down the inner fast rotating regions of
the disc. In fact, this mechanism is so efficient in the ideal MHD limit that simulations showed no
build-up of Keplerian discs at all, although they assume initial magnetic field strengths similar to
those obtained by observations. This so called magnetic braking catastrophe indicates that non-
ideal MHD eftects have to be taken into account (e.g., ambipolar diffusion, Ohmic dissipation
(Dapp et al., 2011) and the Hall effect) to understand the formation of Keplerian protoplanetary
discs. The magnetic braking catastrophe also emphasizes the importance of turbulence since mag-
netically driven angular momentum transport might be substantially weakened by the tangling
of field lines in a turbulent medium (Seifried et al., 2012).

The assumption of a flat disc by Shakura and Sunyaev (1973) ignores any external irradiation
since they originally aimed at modelling accretion discs around black holes. The resulting effec-
tive temperature distribution reveals to be Tog o< r~3/% which results in an infrared excess slope
of vF, o v/3. Fitting the slope with the flat disc model tends to overestimate the accretion
rates of observed SEDs of TTauri and Herbig Ae/Be stars. Chiang and Goldreich (1997) present
an analytical model of a flared disc, in which the vertical structure of the disc is determined by

the irradiation of the central star. They assume that the radiation is absorbed by dust grains in an
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Figure 1.7: Pictogram of the structure and spatial scales of a flared protoplanetary disk. Above the pictogram is shown which
instruments are capable of resolving which part of the disc. Below the pictogram is noted from which part of the disc which kind
of emission originates. From Dullemond and Monnier (2010).

outer hot surface layer (photosphere), and half of the reemitted thermal radiation then heats the
interior layer. Since the disc has a flared structure, the amount of absorbed energy depends on
the angle under which radiation enters the photosphere. A simple 1D vertical radiative transfer
model accounts for the heating of the internal layer. Chiang and Goldreich (1997) assume the
internal layer to be isothermal and derive a Gaussian vertical density distribution. In the flared
disc model, the ratio of scale height to radius increases with radius, which causes the outer layers
to intercept more radiation than in the flat disc model. This causes the temperature structure to
vary less rapidly than T o< r~3/% and fit the typical observed infrared slopes in SEDs of T Tauri
stars much better than under the assumption of a flat disc. This indicates that the outer regions of
a Keplerian protoplanetary disc is rather dominated by external radiation than by viscous heating
and emphasizes the importance of radiative transfer not only in analytical models but especially

for numerical simulations.

1.3.3 Radiative Feedback in the Star Formation Process

Radiative feedback mainly affects the ISM by heating and cooling processes. Dust is commonly
present in the ISM at temperatures below ~ 1500 K and strongly affects radiative transfer by

its continuum opacities. At higher temperatures, the dust is evaporated and line opacities of the

21



gas dominate (Semenov et al., 2003). The importance of radiative heating and cooling is analyt-

ically motivated by the Jeans length in Equation (1.7) which can be rewritten in terms of the gas

9 T\ /2
Y (-) . (116)
Gp p

temperature:

However, radiative feedback of low and intermediate mass stars does not have such a strong influ-
ence on the overall cloud structure as, e.g., the magnetic field (Price and Bate, 2010). The magnetic
pressure can have a dramatic influence on the structure of low mass star forming regions since it
can can create magnetically supported voids in the GMC. But in regions where massive star for-
mation occurs this picture dramatically changes. The most prominent example is probably the
Orion nebula in which a small number of young, luminous, massive OB stars (e.g., the five Theta
Orionis trapezium stars, Figure 1.8) is able to ionize the entire cloud. Massive stars emit a large
number of UV photons which are able to heat up their surroundings to a few 10K by ionizing
hydrogen atoms. The following build-up of large HII regions can dramatically change the cloud
structure (Figure 1.6).

Radiative feedback also becomes important during the early formation of massive stars. Since
massive stars already start hydrogen burning while still accreting mass, they exert a significant ra-
diative pressure on the infalling material. Atsome point, the radiative pressure should prevent the
star from accreting more mass and thus starving it out. It is still not clear how massive stars then
can accrete large masses of up to more than 100 M. Recent simulations of clusters of massive
stars emphasize the need for 3D effects such as accretion through a protostellar disc (e.g. Peters
et al., 2010; Kuiper et al., 2012).

However, on smaller scales, low mass and intermediate mass protostars also significantly influ-
ence their surroundings by radiative feedback. By increasing the fragmentation scale, radiative
heating (from the accretion luminosity) can completely inhibit further fragmentation in a radius
of several AU and prevent, e.g., the formation of a binary system (Price and Bate, 2010). Con-
sequently, the cloud tends to produce less but more massive stars which results in a reduction
of the star formation efficiency in the low mass regime of the initial mass function (IMF). Re-
garding the formation and evolution of protostellar and protoplanetary discs (Section 1.3.2), we
already discussed the influence of radiation on the structure of the disc (Chiang and Goldreich,

1997). Furthermore, during the early formation of the protostellar disc, radiative heating becomes

22



crucial as one can see from the temperature dependence of the Toomre parameter:

Q= 7fG—CSZ o T2, (r17)
Thus radiative heating should significantly influence the fragmentation behaviour of a self-
gravitating protostellar disc. Offner et al. (2009) investigated the IMF and the star formation
rate (SFR) by comparing 3D MHD simulations of low mass star formation with and without
the effects of radiative transfer. They found that the thermal support of a protostar’s accretion
luminosity suppresses further fragmentation in the cloud core as well as in the protostellar disc.
The SFR in their simulations is about half the value of the simulations without radiative transfer
and the mass distribution of protostars of very low mass (M, < 0.1My) is significantly reduced.
Bate (2009) finds similar effects.
The formation and evolution of a protostar up to a main sequence star with a planetary system
is inexplicably connected by the interplay of a number of effects in different stages (see Section
13.2). It is evident from observations that after a few 10° years after the initial core collapse,
gaseous rotationally supported Keplerian discs are present around low and intermediate mass
stars (Evans et al., 2009). Keplerian discs have been subject to a large number of analytical and
numerical studies and also the initial formation of massive discs during the Class 0 phase has been
investigated using hydrodynamical and MHD simulations (e.g. Yorke et al., 1993; Mellon and Li,
2008; Machida et al., 2010; Seifried et al., 2011). Seifried et al. (2013) emphasize the importance of
turbulence to explain the formation of Keplerian discs even if strong magnetic fields are present.
Despite a large number of studies, the actual transition from the early self-gravitating protostel-
lar disc (Class 0) to the Keplerian protostellar disc is still poorly understood. Recent observations
(e.g. Tobin et al., 2012) indicate that Keplerian discs might form very early during the protostel-
lar evolution and the analytic study by Forgan and Rice (2013) emphasizes the effects of radiative
processes.
However, the effects of radiative transfer have usually been neglected so far or were substantially
approximated. The self-consistent modelling of the formation and early evolution of protostellar
discs therefore creates the need for new numerical methods to make 3D radiation MHD simula-

tions feasible.
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Figure 1.8: The Theta Orionis Trapezium constellation in the Orion Nebula as observed by the Hubble space telescope; Zeﬁ:
optical image (WFPC2), rz'g/ot: infrared (NICMQOS). The five Trapezium stars resemble a relatively young cluster of massive
stars (15-30 M@) which illuminate and ionize their surroundings. Note that in the infrared many more stars are seen while in
the optical image dust absorption blocks their light.
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1.4 Numerical Radiation Magnetohydrodynamics

Depending on the level of approximation that is involved, numerical radiative transfer is a rather
costly computation compared to other numerical tasks like hydrodynamics. Although the radia-
tion field is rather straightforward to compute if all injection rates and absorption coefhicients are
known, the scattering problem or the successive thermal absorption and reemission are challeng-
ing task to deal with. Non-local problems in computational physics usually lead to large systems
of differential equations which are tightly coupled. Although these systems are linear (in terms of
radiative quantities) and could in principle be solved by inverting a coefficient matrix, this is not
practical in terms of computational costs and memory requirement since the coefficient matrix is
far from being sparse (e.g., lots of non-zero and non-diagonal entries). Since in a computer code
for radiative transfer the explicit construction of a coefficient matrix would require to compute
the radiative exchange rates of each discretization point with each other, this would very easily ex-
ceed reasonable memory requirements in 2D and 3D simulations. Furthermore, the inversion of
a highly non-sparse matrix itself would be rather costly and inefficient as well. Naive approaches
of iterating for self-consistent solutions turn out to be very inefficient because they are costly,
slow converging and may even give unreliable results. Nevertheless, in the last decades, several
powerful techniques have been developed to deal with these problems more or less accurately
and efficiently. These techniques include fundamentally different approaches like the discrete
ordinate method of long and short characteristics as well as statistical approaches, like the Monte
Carlo (MC) method, and approximate solutions, like the flux-limited diffusion (FLD) approxi-
mation, which is commonly used for radiation MHD calculations. Radiative transfer also comes
in a variety of parallelizations for high performance computations, including AMR with domain
decomposition for the FLD approximation, angular parallelization for discrete ordinate methods
or photon package parallelization in MC codes.

However, all the difficulties of numerical radiative transfer become even more complex when cou-
pled to the mechanical dynamics of the medium the radiation originates from. This is the topic
of radiation hydrodynamics and, including magnetic fields, radiation MHD. Handling radiative
transfer in parallel with MHD poses several problems. First, the timescales of both problems are
very different. The timescale of radiative transfer is determined by the speed of light and is much
shorter than the timescale of MHD, which mainly depends on the sound speed of the gas and
the characteristic magnetic Alfvén wave speeds. Castor (2007, Section 11.1) discusses the Courant

limit for the combined equations of radiative transfer and hydrodynamics in the diffusion limit,
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which requires that
KRAt . 160’SBT4 1 VAt
pCy(Az)2 — 3pC,TV kppAxr Az

where K is the Rosseland mean opacity, V' is the typical flow speed and C), is the heat capacity

<1, (1.18)

of the radiating fluid with temperature 7" and density p. The first factor on the right-hand
side is basically the inverse of the Boltzmann number, which gives an estimate of the relative
importance of thermal and radiative energy. The second factor is the inverse of the optical
depth of a single computational cell of linear size Az, and the third factor is the usual Courant
number of hydrodynamics. The inverse Boltzmann number is the factor that can cause the
combined Courant limit to easily exceed a factor of about 100 which makes the explicit handling
of radiative transfer unfeasible unless some “reduced speed of light” approximation is used (e.g.,
the RAMSES code (Rosdahl et al., 2013)). This leads to the idea of operator splitting in which
the problem of radiation MHD is split into a successive solution of the MHD equations and the
equation of radiative transfer one after the other. Since radiation MHD computations should be
handled on the MHD timescale, the radiative transfer step then has to be solved implicitly. Since
the radiation field is coupled to the thermodynamics of the gas mainly by heating, cooling and
momentum source terms, this leads to a large system of differential equations for the unknown

temperature of the gas.

In the following we give a brief overview of current “state-of-the-art” methods which are used

for radiation MHD computations.

The Flux-Limited Diffusion Approximation

The flux-limited diffusion approximation has been extensively used to model the evolution of
the radiation field for MHD simulations since it was introduced by (Levermore and Pomraning,
1981). The diffusion approximation treats the radiation field like a diffusive fluid that is evolved
in parallel with the thermal gas and can exchange energy and momentum. In general, this approx-
imation requires the medium to be optically thick, so that all terms o< 1/ can be neglected (x is
the opacity) in the moment equations of the RTE. This leads to Eddington’s approximation and
a system of hyperbolic equations for the radiation field. However, the large propagation speed
of light still forbids to solve this system of advection equations explicitly like it is done in MHD.
Instead the time dependence of the radiative flux is neglected which makes it only proportional

to the gradient of the radiative energy (Fick’s law). This leads to a single diffusion-like equation

26



for the radiative energy:

oLE, c
-V VE, | =4mn, — x,cE,. .
BT <3xu ) Ty — XuC (L19)
where E, and 1), are the radiative energy and emissivity respectively. The diffusion approxima-
tion in this form requires Eddington’s approximation to eliminate the radiative pressure from the

equation by assuming it to be isotropic:
P,=-F,. (1.20)

Usually the radiative pressure is a 3 X 3 tensor matrix which includes the anisotropic information
of the radiation field. Consequently, the diffusion approximation in the form of Equation (1.19)
has lost all angular information of the radiation field making it comparable to the diffusion of a
usual fluid. The loss of angular information is due to the assumption of an optically thick regime
in which radiation in fact diffuses isotropically. Despite this restriction, the diffusion approxi-
mation is also often used in optically thin regimes where an ad hoc assumption about the prop-
agation speed has to prevent the radiative flux from emerging at unphysical speeds. This leads
to the concept of flux-limiters (Levermore and Pomraning, 1981) which depend on the gradient
of the radiative energy. Eddington’s approximation then becomes the limit of the flux-limiter
A in the case of high optical depths (A = %) The FLD approximation has been implemented
in a number of Eulerian grid based MHD codes (e.g. Stone et al., 1992; Flock et al., 2013; Zhang
etal.,2013; Bryan etal., 2014) and also within SPH-Codes (Bate et al., 2013). Though the FLD ap-
proximation is very efficient in modelling the diffusion limit, it is invalid especially in transition
regions from optically thick to thin regimes. The main reason for this is the loss of the anisotropy
of the radiation field which allows the radiative energy to slowly diffuse into shadow regions.
For instance, Kuiper et al. (2010) have shown an example of an irradiated circumstellar disc with
highly anisotropic optical depths based on the benchmark by Pascucci et al. (2004). The ther-
mal structure inside the disc should mainly be determined by the reprocessed radiation from the
photosphere of the disc since only the outer layers are exposed to the primary stellar irradiation.
Kuiper et al. (2010) use a hybrid method where the stellar irradiation is followed by a raytracing
approach while the diffuse reprocessed radiation is added using FLD. Their results are in excel-
lent agreement with the Pascucci et al. (2004) benchmark, while using exclusively FLD is not able

to model the transition region in the disc’s photosphere accurately.
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Characteristics based Radiative Transfer

Characteristics based radiative transfer is a discrete ordinate method based on the geometrical
optics limit. Light propagation is described in terms of rays along which the radiative intensity
is integrated. The limit of geometrical optics is valid in regimes where spatial scales are much
larger than the wavelength of radiation, which is clearly the case in most astrophysical applica-
tions. Along with the spatial discretization, the RTE is also discretized in the angular dimension,
hence preserving the anisotropy of the radiation field. Olson et al. (1986) introduced the method
of characteristics to solve the scattering problem in a 1D plane-parallel NLTE atmosphere. For
multi-dimensional radiative transfer computations the method of characteristics is based on re-
ducing the partial differential form of the RTE to a series of ordinary differential equations along
a parameterized characteristic which covers a certain opening angle. For astrophysical computa-
tions the time dependence of the radiation field is often neglected avoiding the need for storing
the full angle-dependent field of intensities.

For radiation MHD computations, the method of characteristics is not as popular as the FLD
approximation since it is much more computationally expensive for 3D simulations. Neverthe-
less, if dominant point sources of radiation (e.g., a stellar source) are present in the computational
domain, characteristics based methods have become popular to account for at least the most en-
ergetic primary emission (e.g. Rijkhorstetal., 2006; Peters et al., 20105 Flock et al., 2013). Since the
solution of the RTE along a characteristic usually requires raytracing through the computational
domain, it is rather difficult to work in accordance with the parallel design of modern MHD
codes which combine AMR techniques with spatial domain decomposition. Nevertheless, AMR
MHD codes have been successfully combined with characteristics based radiative transfer codes
mainly in the field of stellar atmosphere physics (e.g. van Noort et al., 20025 Heinemann et al.,
2006; Hayek et al., 20105 Davis et al., 2012), though some of these approaches reduce the un-

avoidable communication overhead by using short characteristics.

The Monte Carlo method

The Monte Carlo (MC) method is a statistical approach for handling radiative transfer. Despite
the spatial one, the MC method avoids any further discretization by taking advantage of the statis-
tical nature of photon propagation. The paths of single photons or photon packages are explicitly
followed until they are either absorbed, scattered or leave the computational domain. The prob-

abilities for absorption and scattering events are calculated from optical depths and the frequency
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(re)distribution is naturally determined by Planck’s law. Several optimizations have been intro-
duced, e.g., photon package peel-off (Lucy, 1999), immediate reemission (Bjorkman and Wood,
2001) and some advancements have been made in dealing with highly optically thick regimes (Min
et al,, 2009). The MC method is rather successful in post-processing the outcome from MHD
simulations to generate synthetic SEDs, polarization maps or images but has rarely been used
for time-dependent radiation MHD simulations. The reason for this is that MC codes are usu-
ally parallelized by photon packages since each package can be followed independently from each
other. Because the path a photon package will take is determined statistically, MC codes are dif-
ficult to work with AMR MHD codes that employ domain decomposition. However, Acreman
et al. (2010) used the MC method in an SPH Code for modelling circumstellar discs with 3D
radiation hydrodynamics, and Harries (2011) presented a time-dependent algorithm for MC ra-
diative transfer, although both works were rather restricted in their spatial resolutions due to the

parallelization scheme involved.

1.5 Objectives

In this work, we present a new implementation of a radiative transfer solver based on the method
of hybrid characteristics. The solver is implemented in the framework of the MHD code FLASH,
which is a versatile well tested and widely used hydrodynamical and MHD computer code writ-
ten in Fortran. The theory behind radiative transfer and the solution of the radiative transfer
problem is presented in Chapter 2. In Chapter 3, we discuss in detail the method of hybrid char-
acteristics, the radiative transfer solver and how it is implemented in the AMR framework. Test
results from the radiation solver and its coupling to the FLASH code are presented in Chapter 4,
and results from full 3D radiation hydrodynamical simulations are shown in Chapter 5. Finally,
in Chapter 6 we summarize our work and discuss some possible improvements to optimize our

implementation.
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Radiation Hydrodynamics

In this chapter, we describe the theoretical background concerning radiative transfer (Section 2..1)
and hydrodynamics (Section 2.2). We also present the theory that lies behind our approach of
solving the radiative transfer equation (RTE). The combined equations of hydrodynamics with
radiation are discussed briefly in Section 2.3. A more detailed description of the actual coupling
of our radiative transfer solver with the FLASH code can be found in the following Chapter 3

which deals with the details of the implementation that is based on the theory in this chapter.

2.1 Radiative Transfer

The theory of radiative transfer, we describe in this section, is based on the well known work by
Mihalas and Weibel Mihalas (1984) and the textbook by Castor (2007). And last but not least,
we also got very helpful insight from the excellent lecture scripts by Prof. Dr. Cornelis P. Dulle-

mond'.

*http://www.ita.uni-heidelberg.de/ dullemond/lectures/radtrans_2o12/index.shtml

31



2.1 Radiative Quantities

In this section, we describe the basic quantities necessary to describe the transport of radiation.
Instead of dealing with rather large numbers of single photons, we use a macroscopic approach in
which the radiation field is described by the total amount of energy that is occupied by photons
in a specific range of volume, direction of propagation, frequency and time. Therefore, we will
mainly deal with radiative intensities, fluxes and mean intensities. We write scalarsin roman italics
(e.g., I,,), tensors and matrix quantities in “sans-serif” upright (e.g., P), and vector quantities are

denoted in roman bold upright (e.g., F).

Specific Intensity

Astrophysical radiative transfer is based on the concept of the monochromatic specific intensity
I,,. This approach avoids dealing with a phase space distribution function of a photon gas by
focussing on the geometry of light propagation on astrophysical scales. Strictly speaking, electro-
magnetic radiation is a problem determined by Maxwell’s equations, which is a rather complex
problem to deal with. It is, indeed, necessary when one has to compute scattering coefficients,
e.g., for dust particles. But since astrophysical scales are obviously much larger than the wave-
length of radiation, we use the approximation of geometrical optics and assume that radiation is
propagating along rays through a macroscopic medium. However, both approaches are entirely
equivalent, in fact, the definition of the specific intensity is based on the photon distribution

function f(x, p, t) as being proportional to f via

1
f(x,p,t)dp = o I(x,n,v,t), (2.1)

where p is the momentum of the photon, v is its frequency, n is the direction of propagation of
the photon, and / is Planck’s constant. Dealing with radiative transfer in the form of intensities is
an intuitive concept as we describe radiation mainly by its flux and energy, avoiding any reference
to single photons. This approach is closely connected to astronomical observations in the form
of spectra, spectral energy distributions (SEDs) or even images as they mainly describe frequency-
dependent radiative energies that are collected by an instrument during a certain exposure time.
However, the quantum mechanical characteristics of radiation in this picture come in the form of
cross sections and emissivities which determine the interaction of radiation with matter. To stay

in this macroscopic picture of radiation, we give another definition of the intensity equivalent to
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Figure 2.1: The geometrical situation for
the definition of the specific intensity 1.
The vector dz‘f is perpendicular to the
’ unit area d A and 77 describes the direc-

tion of propagation of the specific inten-
sity.

Equation (2.1):

AA
dE = I(x,n,v,t) ;2 2 dt dv. (2.2)

In this geometrical definition, the specific intensity denotes the radiative energy in the spectral
range [V, v + dv] thatis emitted in the time interval [¢, £ 4- dt] from an area A; and gathered by
another surface Ay ata distance . If 7 is much larger than the diameter of A,, the energy reaching
Ay is proportional to the opening angle df2 = % (Figure 2.1). Because the specific intensity, in
general, is not isotropic, it is a 6-dimensional scalar quantity (3 spatial dimensions, 2 directional
+ frequency). When we describe the numerical approaches in Chapter 3, we often deal with the
so called grey approximation in which we use frequency-averaged intensities and opacities. The
frequency dependence is then neglected. However, in this chapter, we deal with the theoretical
concepts of radiative transfer and for the the reader’s convenience, we will not always denote all

dimensions explicitly but follow the convention

[I/ = [(X7 1’1(¢, 9)7 v, t)? (2’3)

and emphasize specific dependencies by explicitly denoting them. Note that the units of the spe-

1

cific intensity are erg s~ ecm ™% ster ! Hz~! (*flux per solid angle”).
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2.1.2  Interaction of Radiation with Matter

Assoon as radiation propagates through a medium, itinteracts with the present matter. If we con-
sider a beam of radiation travelling through an interactive medium in a certain direction, there are
two kinds of interactions that can take place: radiative energy is removed from the beam and/or
added. The first event is called an absorption process and the latter is regarded as an emission event.
Either way, there are numerous kinds of absorption and emission processes on the molecular
or atomic level that can take place, e.g., photoexcitation, photoionization and recombination,
free-free absorption and bremsstrahlung. Photoionization is an important absorption process
responsible for the formation of large HII regions around short lived massive stars, which emit
radiation mainly in the ultraviolet and are able to ionize their surrounding atomic hydrogen gas.
The kinetic energy of free electrons from the ionization process is efficiently thermalized by in-
elastic collisions which heats up the gas to a few 10*K and emits energetic photons back into the
gas. Another important absorber in GMCs is cosmic dust. Because dust particles are a few mi-
crometer in size, they can efficiently absorb photons in the optical and reemit in the near and far
infrared regime. Despite the diversity of absorption and emission processes that can take place
in the ISM, interaction processes are usually expressed in the form of a single cross section which
includes all absorption processes of interest. Similarly, emission processes are summed up and
represented by the emissivity.

So far we discussed absorption and emission processes concerning their effect on the thermal en-
ergy of the interacting medium. However, there is another way of removing energy from a beam
of radiation without necessarily involving a photon being absorbed. Such an event is called a
scattering process, and it turns out to be a challenging task to deal with during the numerical so-
lution of the radiative transfer problem. A scattering event occurs if a photon is absorbed by
the medium while the energy of this absorption process is not converted into thermal energy.
Instead, the molecule or atom, which is excited by the absorption process (e.g. by an photoex-
citation process), immediately reemits the photon with only a slight change of its initial energy.
While the frequency of the reemitted photon more or less conserves the energy of the originally
absorbed photon, the direction of propagation is not (except in a stimulated emission event).
This has an effective contribution to the absorption cross section as well as to the emissivity since
the scattered photon is removed from a beam of a certain direction and added to another one. In
a scattering dominated medium, multiple scattering processes of a photon can transport energy

independently of the thermal energy of the medium and couple different regions to each other
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in terms of energy exchange. Consequently, the radiation field does not only depend on the local
thermal properties of the medium but also on the non-local exchange.

A similar problem occurs if a photon is absorbed, and its energy is actually converted into thermal
energy. Since the medium is heated by the photon, it will emit thermal radiation corresponding to
the new temperature. Hence, a photon at a different frequency is reemitted into the medium and
can be absorbed somewhere else. In this case, radiative transfer in the form of successive absorp-
tion and reemission processes can significantly determine the thermal structure of the medium
and is very similar to the scattering problem in a numerical sense. We will see that the scattering

problem as well as thermal absorption and reemission processes have a profound effect on the

RTE.

Extinction Coefhicient

To include absorption and scattering events into the radiative transfer model, we introduce the
extinction coefhicient, which is also often referred to as the gpaciry. The extinction coefhicient in

general contains a thermal absorption contribution as well as a scattering part:

Xv = Xy + Xo (2.4)

where x§, and x; denote the frequency-dependent coefhicients for (thermal) absorption and scat-
tering respectively. The coefficients have the dimension of an inverse photon mean free path
(1/length) and are usually calculated from a mass specific cross section k,, and the density of the
medium p by

Xv = Kup. (2.5)

If the medium is described as a collection of particles, e.g., dust-particles, the mass specific cross

section can be regarded as the cross section 0, of a single particle divided by its mass m:

K, = V. (2.6)
m

For macroscopic particles with a diameter much larger than the wavelength of the radiation in-
volved, the cross section could be regarded as the geometrical cross section, e.g., 0 = ma® (ais
the radius of a spherical particle). In this pure geometrical approach, the cross sections and opac-
ities become frequency-independent (grey). E.g., the typical size distribution of cosmic dust is

less than a few tenth of a micrometer which makes them a very efficient absorber in the optical
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regime. Nevertheless, in the near, mid and far infrared regimes, the wavelength A of radiation is
typically of the order of the size of the dust particles or less, which requires to treat their cross
sections by solving Maxwell’s equations with Mie’s theory. Other effects like Rayleigh scattering
also play a crucial role in the case of A < a. However complex the theory behind the radiative
interaction behaviour might be, the extinction coefficient is the “interface” between these theo-
ries and the model of radiative transfer.

Using the inverse mean free path in the form of Equation (2.4) allows us to define the rate of

energy density which is removed from a beam by absorption and scattering processes:

dE,; = x,1, dS2. (2.7)

Emissivity, Kirchhoft’s Law and the Source Function

If we consider a radiative medium, it can also inject radiation into a beam by an emission process.
This could be any kind of emission event we discussed above, including a scattered photon which
also has an effective contribution to the beam it is added to after the scattering event took place.
Formally, we introduce the emissivity 7, by splitting it into a (thermal) emission and a scattering

part
Ny =1, +1n, (2.8)

The total emissivity then determines the rate of radiative energy density that is injected into a

beam:

dET = n,dQ. (2.9)

If the medium acquires a radiative equilibrium state, the radiation field will be completely deter-
mined by its temperature 7" and Planck’s law B, (T") respectively. In this case, the medium will

always emit the same amount of energy it absorbs which means that

n = XVBV(T)7 (2"10)
and consequently
T _ B,(T). (2.11)
XV

Equation (2.11) is known as the Kirchhoft-Planck relation, and it states that in a radiative equi-

librium, emission and absorption actually may take place as long as their ratio satisfies Planck’s
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law. If for some reasons radiative energy is lost somewhere or an additional source of radiative
energy is present, the radiation field may deviate from Planck’s law. For these cases, it is useful
to introduce a more general quantity for the ratio of emission and absorption processes which is
known as the source function:

S, = iy (2.12)
Xl/

2.1.3 The Equation of Radiative Transfer

The RTE describes radiative energy conservation during its propagation through a medium. Itis
useful to note that the specific intensity has the dimension of ”flux per steradian”. If we consider
a detector with a finite aperture size in a certain distance 7 from a radiative source, the opening
angle which is covered by the aperture scales with r~2. At the same time, the flux which reaches
the aperture also scales with 72 so that both effects cancel out each other when we compute the
intensity. Itis, therefore, very useful to describe radiative transfer in terms of the specific intensity
and consider its change along a beam of constant direction n. As we discussed above, the intensity
of a beam of light is not supposed to change if no radiative interaction takes place, which means

that

dl,(x,n,t) = [I,(x + cdsn,n,t+dt) — I,(x,n,t)] dA dQ2 dv dt. (2.13)

The differential of the intensity is expressed in terms of the displacement ds along the beam:

dl,(x,n,t) = (aﬁlty> dt + <%{:> ds, (2.14)

and with dt = d?s,

anem) = [ (22 1 (2)] s ”

The differentiation % depends on the coordinate system in which I, is described. In a Cartesian

coordinate system, we can derive

—=n-V, (2.16)



with which we arrive at

101,

c Ot

+n-VI[, =0 in vacuum. (2.17)

Equation (2.17) is the RTE without emission and absorption terms. It is a partial differential
equation of hyperbolic type, like the advection equations of hydrodynamics, and it resembles the
Boltzmann transport equation for the photon phase space distribution function. The RTE is
the conservation law for the radiative energy and, unlike in hydrodynamics, there is no further
equation necessary for momentum or mass conservation since there is no force acting between
photons and the rest mass of a photon vanishes.

We can now include interaction processes by using the definitions of the extinction and emission

coefhicients. Equation (2.7) and (2.9) describe sink and source terms for the intensity and are

added to the right-hand side of the RTE:

101,

c Ot

+n-VI,=n,—-x.1, in a medium. (2.18)

Conceptually, the RTE in this form could be solved with a Godunov scheme by constructing
fluxes, advecting the radiation field through time and account for the source terms with operator-
splitting. But this would have to be done on the timescale of the speed of light. However, for the
vast majority of radiative transfer problems it is actually a reasonable approximation to assume
the RTE to be time-independent. Especially if we want to solve the RTE on the timescale of
hydrodynamics, we assume the radiation field to emerge throughout the domain of interest in-
stantaneously. Furthermore, it is often useful to express the RTE in terms of the optical depth.
Using the definition of the source function, the time-independent RTE then takes a compact

form:

dI,

dr,

where d7,, = X, ds denotes the optical depth along a line element in the direction n. This is the

S, —1,. (2.19)

actual form of the RTE we will deal with during the numerical solution in Chapter 3. Although
this form of the RTE resembles a simple first-order ordinary differential equation, it requires a
proper parameterization for the optical depth in 3D. This can become quite complex if one has
to deal with special relativistic or even general relativistic spacetime coordinates. However, these
effects are beyond the scope of this work, since we are mainly interested in the radiative energy

transport on the scale of typical sound speeds in the ISM. In that case, the complexity of the
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Figure 2.2: The incoming intensity is partly extinct inside the infinitesimal disc of matter. The outgoing intensity is the sum of
the remaining incoming intensity and the emitted energy from inside the disc.

model, and hence the solution of the RTE, mainly lies in the formulation of the source function
we choose to accurately describe the current radiative transfer problem of interest. (e.g., LTE,
NLTE, grey or non-grey, anisotropy, dust continuum radiation, line transfer, etc.). Depending
on the model setup, the source function may and, in fact, often does depend on the radiation field
itself, which makes the RTE an integro-differential equation. In order to find a self-consistent
solution, one has to invoke an iteration scheme of some form. Formally however, if we assume a

known source function, the RTE in the form of Equation (2.19) is solved by the formal solution:

I(1y) = 1(m) (72— +/ S(T) e dr. (2.20)

1
The formal solution describes the intensity propagation along a line element with the optical
depth AT = 75 — 7. It contains the incoming intensity /(71 ), which may be partially absorbed,
and additional energy injected by the source function. With regard to the numerical solution
(Chapter 3), we emphasize that the RTE and the formal solution are formally linear in the spe-
cific intensity. This will play a crucial role later on in our approach of solving the RTE on a
decomposed computational domain such as the adaptive mesh refinement grid embedded in the

FLASH code.

2.1.4 The Moment Equations

The specific intensity I, contains the whole anisotropic information of the radiation field. It is
often much easier to handle radiative transfer problems by reducing this information and inte-

grate the intensity over the whole 47 unit sphere. This is, in fact, an expansion of the intensity
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into spherical harmonics. The order of the expansion determines the angular information that
is preserved during the integration. For radiative transfer, it is convenient and sufficient to only

define the zeroth, first and second order (tensor) moments of the specific intensity:

J, = P b I,(n)d<, (2.21)
1

H, = yp iﬂ n/,(n)dS, (2.22)
1

K, =-— ¢ nnl,(n)df. (2.23)
AT Jur

The zeroth moment is the angle-averaged mean intensity .J,, and does not contain any angular
information anymore but is closely connected to the radiative energy volume density F,. The
first moment is a vector quantity which describes the averaged flux of radiative energy F',, while

the second momentisa 3 X 3 matrix connected to the radiative pressure P,. The relations are

4

B, = —1, (224)
C

F, =4mH,, (2.25)
4

P, = K, (2.26)
C

where ¢ denotes the speed of light. During the computation of the radiation field, we will accu-
mulate the mean intensity J,, by successively computing the specific intensity for a large number
of directions n. This avoids the rather large memory requirement to store the complete field of
intensities.

We do the same angular expansion for the RTE (2.18), which becomes necessary to couple it with
the equations of hydrodynamics. The approach is the same: we first multiply the RTE succes-
sively with 1 and n and integrate it over solid angles. We use the expressions for the radiative

energy, flux and pressure (Equations (2.24)-(2.26)) and arrive at

oF,
ot +V- FV = 47”71/ - XVCEVv (2"2‘7)
10F,
- +¢V-P, =\, F,. (2.28)
c Ot
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We assumed that the emissivity 1), has no angle dependence so that its angular integration van-
ishes if multiplied with n in the first moment equation. Unfortunately, each moment equation
introduces the next higher moment of the intensity, e.g., in the first moment equation the sec-
ond moment (the radiative pressure tensor) appears. Hence, the set of moment equations up to
a certain order is always short of one equation in order to close the system. We will see that the
same happens with Euler’s equations of hydrodynamics although they are much easier to close if
we assume an ideal gas equation of state (EOS) which relates the thermal pressure to the internal
energy. The situation with the radiative pressure tensor and energy is much more complex be-
cause of the high-dimensionality of the radiation field. The equations must be closed by an ad
hoc relation, e.g., the Eddington approximation with is often used in the diffusion limit or by

explicitly computing the angular dependence of the K, -tensor according to Equation (2.23).

2.2 Hydrodynamics

The topic of hydrodynamics deals with the description of time-dependent or stationary flows of
fluids and gases. The equations of hydrodynamics are used in almost all fields of astrophysics,
meteorology, climate sciences, geophysics or engineering where the motion of fluids or gases
is used for modelling. In basically all these research fields, the equations of hydrodynamics are
already so complex that they can not be solved without numerical techniques. The reason for
this is that the continuum description of a fluid must include mass, momentum and energy
conservation which are coupled in a highly non-linear set of hyperbolic equations, the Euler
equations. In astrophysics, the applications reach from modelling star and planet formation, the
formation of galaxies and even the evolution of whole clusters of galaxies in the early universe
(Springel et al., 2005; Vogelsberger et al., 2014). As diverse as the applications are the methods
to solve them. In astrophysics, one typically has to deal with compressible gas motions in 3D
which might be highly supersonic and involve strong shocks. The motion of gas in the ISM
produces high density contrasts and turbulent fluid features on a wide range of length scales
which requires sophisticated numerical schemes to solve the Euler equations for such complex
environments.

Additional physics also play a crucial role in astrophysical hydrodynamics. A proper treatment of
gravity is often indispensable and not entirely trivial as an interstellar gas is usually dominated by
its self-gravity which requires the solution of the Laplace equation for the gravitational potential.

Sophisticated chemistry can influence the thermodynamics and have a profound effect on the
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hydrodynamical quantities. Furthermore, magnetic fields have been shown to play an important
role in a wide range of astrophysical problems, including stellar atmospheres, the formation
of stars, discs, planets, stellar winds and jets. Including magnetic fields in the equations of
hydrodynamics takes much more care than, e.g., the gravitational potential. Since a magnetic
field carries additional pressure, force and energy, the equations of magnetohydrodynamics
require modified solution schemes to ensure conservation of mass, energy and momentum and
guarantee a divergence-free magnetic field. Finally, including the effects of the radiation field
requires the combined solution of the Euler equations and the equation of radiative transfer.
Similar to the gravitational potential, radiative transfer on the timescale of hydrodynamics is in
general a non-local problem in contrast to the Euler equations which are entirely determined by
local fluxes of mass, momentum and energy. Like the magnetic field, the radiation field exerts
an additional pressure on and exchanges energy with the gas while radiative forces may influence

momentum conservation.

In the following sections, we describe the basic equations of hydrodynamics for an ideal fluid.
The focus lies on the coupling of the equations of hydrodynamics with the moment equations
of radiative transfer. Therefore, we neglect the effects of the magnetic field for now. However, a
detailed description of the equations of magnetohydrodynamics with radiative transfer is given

in the following Chapter 3 which focuses on numerical methods.

2.2.1  Ideal Fluids

In this work, we use the term fluid and gas interchangeably as in astrophysics one usually refers
to gases as fluids and vice versa. We focus on the description of fluids in terms of continuum me-
chanics, in which one deals with continuous quantities rather than with discrete fluid particles.
There is some freedom in the choice of a set of variables to describe fluids. Sometimes it is useful
to describe a fluid by a set of primitive variables, which are the mass density p, pressure p and
the velocity field v(u, v, w) with the x-component u, the y-component v and the z-component
w. Those are the physical variables of the fluids one actually can measure and analyze. Numer-
ically, it is rather common to use the set of conserved variables, which are the mass density p,
the x-component pu, y-component pv and z-component pw of the momentum and the energy
density (energy per unit volume) . The conserved variables appear in the fluxes of the Euler

equations and are used to evolve the dynamics of the fluid. For this work, we assume the gas to be
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ideal and characterized by its density, pressure and temperature or internal energy respectively.
For typical densities and temperatures of the ISM, the ideal gas assumption is very accurate and
widely used for astrophysical problems (except the interiors of stars or gaseous planets). For hy-
drodynamics, this has the advantage that we can use the rather simple ideal gas EOS for closing
the Euler equations. Since the conserved variables are determined by the hydrodynamics, we use
a caloric gamma EOS in which the pressure is related to the specific internal energy (energy per

unit mass) i, and density of the gas:

p= (7 —1)pein (2.29)

where 7 is the ratio of specific heats which is determined by the degrees of freedom of the particles
in the gas. We will usually assume y = 5/3 which corresponds to a mono-atomic (hydrogen) gas.

The temperature is also related to the internal energy by:

€int = CUTa (2'30)
Ky
Cy = X (2'3I>
wmyp

where £, is the Boltzmann constant, m,, the proton mass and y the mean molecular weight of
the gas.

We should note that the ideal fluid assumption is, of course, not unconditionally valid since the
uncertainty in the Boltzmann statistics is not included. Describing the fluid with the macroscopic
quantities p, p, v and e requires that we can define a certain control volume in which these quan-
tities are valid. The ideal gas assumption requires that such a control volume can be chosen to
be negligible in size compared to the typical scale of the fluid flow. At the same time, the control
volume has to be large enough so that the average of statistical uncertainties in the motion of
single atoms or molecules vanishes. This requires that the mean free path of collisions between
single particles in the gas is negligible compared to the macroscopic net flow of the fluid. Clearly,
the mean free path depends inversely on the fluid density and compared to the densities of, e.g.,
air flows in the Earth’s oceans or atmospheres, interstellar gas densities might seem fairly low (e.g.
1 particle per cm®). But because of the large scales of the overall gas motions in the ISM, we can
choose the size of a control volume to be much larger than the mean free path of an interstellar

fluid particle, and yet it will still be negligible in size compared the typical length scale of features
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in the fluid low.

2.2.2 Euler’s Equations

In continuum mechanics, the motion of an ideal fluid is entirely determined by conservation of
mass, momentum and energy. The change over time of one of these conserved variables in a
certain control volume has to compensated by a flux of the variable through the surface of this
volume. Hence, the conservation equations are naturally derived from the integral form by com-
puting net fluxes of mass, momentum and energy through the surface of the control volume.
Using Gauss’s theorem, the governing system of conservation laws is then usually expressed in a

set of partial differential equations.

Conservation of Mass

The mass of all particles has to be conserved. This means that the rate of change of the mass in
a fixed volume V" has to be compensated by the mass flux through its surface S. Integrating the

mass flux over the surface S yields the total flux so that the rate of change becomes

d

7 VpdV:—/S,OVdS. (2.32)

This has to be true for any control volume we might choose. Using Gauss’s theorem we can

express the conservation of mass in partial differential form

dp B
E +V- (lOV) - 07 (2-33)

where pv is the mass flux.

Conservation of Momentum

The conservation law for the momentum (pv, which equals the mass flux) follows in a similar
way as the conservation of mass. However, momentum can not only change because of the flux
associated with the velocity field (pvv) but also due to pressure forces p that act on the surface

of a gas parcel. In integral form, the total change of rate of momentum is again derived from
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considering a control volume V' with surface S'

d
— | pvdV = — / pVV - dS — /pdS. (2.34)
dt Jy s s

In partial differential form this becomes

0
% + V- (pvv+pl)=0. (2.35)

The term (pvv + pl) is the stress tensor of the fluid (1 denotes the unity matrix). The thermal
bulk pressure p is isotropic since it only appears in the diagonal of the stress tensor which is a
3 x 3 matrix. The bulk pressure is responsible for uniform compression or expansion of a fluid
element. In contrast, the velocity field can create shear forces which are determined by the non-
diagonal elements of the tensor product vv (which is sometimes explicitly denoted by (v ® v)).
Taking the divergence of the vv-tensor gives again a vector, and we actually get three advection
equations for each component of the momentum. To make this clear, it is useful to write the
momentum conservation law explicitly for each component of the velocity field v(u, v, w). In

Cartesian coordinates we get

Or(pu) + Op(uu + p) + 0y (uv) + 9, (uw) = 0, (2.36)
O (pv) + 0y (vu) + 9y(vv +p) + 0, (vw) =0, (2.37)
O (pw) + Op(wu) + 9y (wv) + 0, (ww + p) = 0. (2.38)

If an external force is present, it appears in the momentum equation as a source term (a momen-
tum source rate per unit volume). For our purposes, this is the self-gravity of the fluid. If the grav-
itational potential ® is known, it can be added to the fluid momentum in an operator-splitting

step. The actual momentum conservation law then reads

0
% + V- (pvv +pl) = —p V. (239)

The gravitational potential is determined by the Poisson equation
Ad = 47Gp, (2.40)
where A = V - V is the Laplace operator and G the gravitational constant.
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Conservation of Energy

The fluid can carry energy in many forms. For the formulation of its conservation law, we have
to consider internal energy and mechanical energy. The first law of thermodynamics supplies
a conservation law for the internal energy which changes due to heating and work done by the
pressure. A change of mechanical energies due to forces acting on a fluid parcel can be derived
from the momentum conservation law in Equation (2.39). Combining both, we actually end up
with an energy equation that includes the flux of internal energy and kinetic energy plus work

done by the pressure. Following our approach of considering a control volume we get

8/ ( 1 2) 1,
o [ PGt T35V dV:—/p Cint + 5V v-dS—/pv-dS. (2.41)
ot Jy, 2 s © 9 g

We again rewrite this in partial differential form and include external heat sources and changes
due to work done by gravitational forces
0E

T VAE4Dp)V=Qext — V-V, (2.42)

where E = p (e + 0.5 v?) denotes the total energy density (internal + kinetic energy per unit
volume). We should note that Euler’s equations are not the only way of describing the dynamics
of the conserved variables. They are however the equations of choice to handle the fluid dynam-
ics in a fixed rest frame like the spatial grid in a numerical discrete-volume computer code. Euler’s
equation then come in very handy since they naturally describe the change of variables by fluxes
through the surface of control volumes. Another way of handling the equations of hydrody-
namics is from a Lagrangian point-of-view. In the Lagrangian form, the motion of a fluid parcel

is described in its comoving frame and the comoving derivative
Dy=0,+v-V (2.43)

replaces advection terms due to the velocity field. The equations turn out to be slightly more
compact than Euler’s equations but are also more difficult to solve numerically using smoothed

particle hydrodynamical computer codes.

46



2.3 Hydrodynamics with Radiation

We now consider the equations of hydrodynamics including the effects of radiative transfer. We
already mentioned that the right-hand side of Equation (2.19) accounts for absorption and emis-
sion processes. To couple these source terms into Euler’s equations, we integrate them over fre-

quency to obtain the energy g and momentum g exchange rates

o= [av [ a0, - 1), (244)
g=: [dv [dont, L) (2.45)

The notation g“ indicates that the exchange rates are related to the components of the radia-
tion four-force density (Mihalas and Weibel Mihalas, 1984, Section 94) in the four-dimensional
Minkowski spacetime. In the Euler equations, the exchange rates appear on the right-hand side

of the momentum and energy equation

0

% + V- (pvv +pl) = —g,, (2.46)
oE

E—f‘V' (E+p)V= —gO—V-VCI).. (2.47)

Now we can connect the exchange rates to the frequency-integrated moment equations 2.27-2.2.8

and sum them them with the Euler equations to obtain

0 F

g (pv + 0_2) +V-(pvv+pl+P)=—pV,, (2.48)
)

a(E+ET)+V~(pEer)erV-F:—v.V<I>.. (2.49)

These are the inertial frame equations of radiation hydrodynamics where F,, F and P are the

bolometric radiative energy density, flux and pressure respectively.
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Numerical Methods

In this chapter, we present in detail our approach of solving the radiative transfer equation (RTE)
in the framework of the FLASH code. We discuss the method of hybrid characteristics (Rijkhorst
etal., 2006) thatis the basis for our solution of the radiative transfer problem in an adaptive mesh
refinement (AMR) code. We also show the substantial improvements made by others (Peters
et al., 2010) and us to make this method feasible for massively parallel radiation hydrodynamical
simulations. Although the focus of this chapter lies on the numerical methods to deal with radia-
tive transfer, we also give a brief introduction into the basics of numerical hydrodynamics with a

focus on the coupling of our radiative transfer solver with the FLASH code.

3.1 Introduction

Radiative transfer has a long tradition in the field of stellar physics where radiation plays a crucial
role in the inner radiative zone of a star as well as in the stellar atmosphere where light emerges
from the photosphere. Modelling radiative transfer is a very challenging field of computational

physics although the mathematical formalisms behind the RTE might be quite basic. In the
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inner regions of a star like our sun, radiative transfer can be described as a diffusive process since
the inner regions are highly optically thick. In the transition region from the convective zone to
the stellar atmosphere, this is no longer the case since the mean free path of a photon becomes
much larger than than the range on which temperatures change substantially. The radiation
field decouples from local thermodynamical properties of the gas which prohibits a diffusion
approximation in such an NLTE situation. However, our focus lies on radiative transfer in the
field of star formation theory, where radiative transfer plays a crucial role as an important cooling
mechanism during the formation of the protostar and the following accretion processes. If one
considers massive star formation in a cluster-like environment (e.g., Peters et al., 2010), ionizing
radiation is a highly dynamic feedback process which determines the accretion rate of the massive
star itself but also has an influence on ongoing star formation in the overall cluster. In this
context, radiative transfer is a rather costly computation compared to solving the equations of
hydrodynamics or magnetohydrodynamics (MHD). The reason for this is that the timescale
of radiative transfer is usually much shorter than those of hydrodynamics and MHD because
of the large speed of light compared to the sound speed of the gas in, e.g., a molecular cloud
or the characteristic Alfvén wave speeds of the magnetic field. The short timescale on which
radiation emerges throughout the complete computational domain makes radiative transfer a
highly non-local problem compared to hydrodynamics which is determined completely by local
thermodynamic properties of the gas. In this sense, hydrodynamics and radiative transfer are
two very different numerical tasks and very challenging to solve consistently. Modern Eulerian
MHD codes like FLASH mostly solve the Euler equations on a grid with AMR to resolve
fluid features on a wide range of length scales. These codes are parallelized by subdividing the
computational domain into several subdomains each containing a fixed number of cells. Since
the Euler equations describe local fluxes of mass, momentum and energy, all subdomains can be
handled in parallel during a hydrodynamical time step. Between the time steps, boundary values
of the subdomains are exchanged using the Message Passing Interface (MPI) for communication.
In contrast, characteristics based radiative transfer codes are usually designed very differently.
Instead of domain decomposition, these codes are parallelized exploiting the formal indepen-
dence of the RTE on the solid angle. Resolving the anisotropy of the radiation field accurately
requires a large set of characteristics each covering a discrete opening angle of the 47 unit sphere.
If all radiative quantities are assumed fixed during one solution step, characteristics of different
directions can be computed independently of each other which makes it ideal for parallelization.

However, the spatial information of the computational domain with all radiative quantities
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has to be available to the each processor computing a certain number of characteristics on the
solid angle grid. This can be a severe drawback in terms of memory requirement if high spatial
resolution is required or a large number of frequencies or both (e.g, synthetic stellar spectra).
Solving both the Euler equations and the RTE consistently requires careful approximations to
the radiative transfer problem to make the coupling of a hydrodynamical code with a radiative
transfer code feasible. van Noort et al. (2002) presented a radiation solver that is coupled to
a hydrodynamical code using AMR and domain decomposition in 2D. The radiation solver
invokes short characteristics for integrating the RTE while boundary values are communicated
between Lambda iteration steps. The focus of this approach lies on modelling the dynamics of
scattering-dominated stellar atmospheres. The short characteristics approach allows for a fast
converging Gauss-Seidel iteration scheme (.e.g., Trujillo Bueno and Fabiani Bendicho, 1995),
while non-local contributions have to be communicated by a successive exchange of boundary
values between subdomains. This approach was even extended for 3D simulations (e.g., Hayek
et al., 2010; Davis et al,, 2012). However, while the Gauss-Seidel short characteristics approach
is well suited for highly scattering dominated regimes, it introduces a lot of numerical diffusion
because a large number of upwind interpolations is necessary. Successive communication of
boundary values was also used with long characteristics in 3D (Heinemann et al., 2006) although
their approach does not include AMR.

Another completely different approach for including radiative transfer in hydrodynamical
simulations is based on the diffusion approximation of the angular moment equations. In
regions of high opacities , the diffusion approximation is an expansion of the specific intensity
in which all terms oc 1/ are neglected in the RTE. This leads to Eddington’s approximation
in which the isotropic radiation pressure is proportional to the radiation energy density. The
moment equations of the radiative intensity themselves then form a set of hyperbolic equations,
like the Euler equations of hydrodynamics. However, since those two hyperbolic systems would
still have to be handled on their individual timescales, one can even make one further step and
neglect the time dependence of the radiation flux by assuming it to be proportional to the
gradient of the radiation energy (Fick’s law). The moment equations can then be combined
into a single diffusion equation for the energy of the radiation field. Because the flux in the
diffusion approximation lost its finite propagation speed, one has to introduce a flux-limiter
to avoid unphysical propagation speeds depending on the actual opacity. This flux-limited
diffusion approximation (FLD) (Levermore and Pomraning, 1981) has been successfully used in

radiation hydrodynamical star formation simulations coupled within Eulerian grid codes (e.g.
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Krumholz et al., 2007a; Commercon et al., 2011) as well as smoothed particle hydrodynamics
(SPH) codes (e.g. Bate et al., 2013). However, the diffusion approximation is only valid in
optically thick regions where the radiation field becomes isotropic. Kuiper et al. (2010) have
shown the significant drawbacks of using FLD in the transition regions from optically thick to
optically thin regimes where the radiation field becomes highly anisotropic. Recent efforts have
been made to combine raytracing methods with FLD solvers (Kuiper et al., 2010; Flock et al.,
2013) to handle primary stellar or protostellar radiation separately from the FLD approximation
and to avoid the stellar flux from diffusing into shadow regions.

Finally, Monte Carlo (MC) methods have become increasingly popular during the last decade,
especially in post-processing MHD simulations. The MC method is a statistical approach and
treats individual photons or photon packages by following its propagation path and computing
absorption, emission and scattering probabilities. Several advances have been introduced, e.g.,
photon peel-off (Lucy, 1999), immediate reemission (Bjorkman and Wood, 2001) and diffusion
approximations (Min et al., 2009) which make the MC method a powerful tool to calculate
synthetic spectra, spectral energy distributions or polarization maps from the outcome of
MHD simulations. The angular and frequency resolution are, in principle, unlimited since the
direction of propagation of a photon package and its frequency are chosen randomly from a
continuous probability function. In that sense, the MC method always gives a quite reasonable
result even in the limit of a small number of photon packages while a low resolution shows
mainly up as statistical noise in the solution. But the statistical approach also has a severe
drawback since we do not know in advance the exact path a photon package will travel, and
how and when it is emitted or absorbed. Therefore, it is extremely difficult to implement on a
decomposed domain. MC methods are extremely successful in post-processing the outcome of
MHD simulations but are rarely used in combination with hydrodynamical simulations. Those
approaches which does include MC methods (e.g. Acreman et al., 2010) are fairly restricted in
their spatial resolution of the AMR grid, since each processor has to get a copy of the complete
computational domain to be able to follow the path of an arbitrary photon package. For our
approach, we therefore choose a discrete ordinate method using characteristics to integrate the

RTE which requires a raytracer that works on an AMR grid with domain decomposition.

In the following sections, we describe our efforts of implementing a new characteristics based
solver for the RTE. The solver is implemented in the FLASH code and is able to handle AMR as

well as domain decomposition for parallelization.
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3.2 Characteristics based Radiative Transfer

Characteristics based radiative transfer is a discrete ordinate method. In addition to the spatial
discretization, all other ordinates (e.g., angular resolution, frequency) of the radiation field are
discretized intro grid points or cells as well. The RTE is solved for each discretization point on
these grids and the full 3D and polychromatic solution is obtained. The spatial integration of the
RTE is achieved by casting a ray, or long characteristic, through the grid and integrate the RTE

along this ray. This requires a discretization of the RTE.

3.2.1 Parameterization and Discretization of the
Radiative Transfer Equation

In general, the method of characteristics is an approach of solving a partial differential equation
(PDE), justlike the RTE, by reducing it to a parameterized ordinary differential equation (ODE).
We recall the 3D RTE here:
ln-VI:S—I. (3.1)
X
In a Cartesian coordinate system we can express the position along a ray in the direction n using

an arbitrary point of origin 0 and a ray parameter s according to
X = 0+ sn, (3.2)

from which immediately follows that

ox

25 (33)

Now we can express the left-hand side of the 3D RTE in parameterized form

1 1
—n~V[:—%~V1 (3-4)
X X 0s
_l @g_i_@g_'_%g ( )
 x \0sdx  Osdy 0Os0z 35
dI
= (3.6)

=
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The partial differential 3D RTE now reduces to an ordinary differential equation in the optical

depth along the ray in direction n:

dl(n)
dr(n)

=S —1I(n). (3.7)

In order to find an accurate 3D solution, Equation (3.7) has to be solved for a large number of
rays defined by Equation (3.2) which determines the solution of the 3D RTE for a discrete point
of origin and direction. Of course, the method of characteristics it not restricted to the parame-
terization in Equation (3.2) but can be used for any other PDE with a suitable parameterization.
E.g., for the solution of the Euler equations, one usually refers to a characteristic as being the
propagation of eigen-states along the “direction” of the eigenvector, and the eigenvalues define
the propagation speed. The concept is similar in the way that the non-linear Euler equations are
reduced to the propagation of independent 1D eigen-signals while in the case of the RTE, we
reduce the 3D solution into a number of independent 1D solutions along a parameterized char-
acteristic.

Olson et al. (1986) introduced the solution of the 1D RTE by using a discretized form of the for-
mal solution 2.20. The RTE is integrated for each cell in the computational along a characteristic

according to
I(1;) = Ii—y exp (—=AT1i_1) + Al (3.8)
where AT; is the finite optical depth element given by a piecewise linear interpolation

1
ATZ' = 5()@,1 + XZ)AS

X is the opacity at the discretization point s; on the characteristic. A is the discretized coun-
terpart to the integral in the formal solution (Equation (2.20)) and is solved by either a linear or

parabolic interpolation of the form
AL = a;Si—1 + BiSi + 7iSi1. (3.9)

In the case of linear interpolation, the 7y coefficient vanishes. The coefficients «;, 3; and ; de-
pend on the optical depths between s;_1, s; and s, 1. Theyaregivenin Olson etal. (1986). Figure

3.1 shows the geometrical situation of a characteristic passing through a homogeneous grid at an
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arbitrary direction n;(6, ¢). Since the opacity and source function are stored in the cell centers
of the finite volume hydrodynamical grid (dashed lines), the cell centers define the vertices of the
radiative transfer grid (solid lines). The characteristic is traced on the radiative transfer grid us-
ing a modified version of the fast voxel traversal algorithm introduced by Amanatides and Woo
(1987). The opacity x; and the source function S; at the intersection points of the characteristic
with the grid are then interpolated bilinearly from the adjacent vertices.

Characteristics based radiative transfer is basically the attempt to approximate the radiative inter-
action of each cell with each other cell in the computational domain. Although the method of
long characteristics is very accurate in doing this, it is rather ineflicient as it requires to shoot a
large number of rays for each cell to sample the radiation field accurately in 3D. An alternative is
to use a short characteristics approach, in which only neighbouring cells are used to interpolate
incoming intensities from different directions. This requires to sweep the cells in an ordered fash-
ion to make sure that all intensities, which are required for interpolation, are available. The short
characteristics approach introduces a lot of numerical diffusion because of the large number of
interpolations involved but reduces the cost of the radiative transfer calculations significantly. Ei-
ther way, the method of characteristics requires a raytracer, which samples radiative interactions
between arbitrary regions in the computational domain to account for non-local radiative cou-
pling.

While the RTE is integrated along each direction n, the mean intensity is computed by accumu-

lating all intensities:

1
J= zn: I(n)AQ (3.10)

where A€} denotes the finite solid angle which the characteristics along n covers.

Point Sources

Depending on the anisotropy of the radiation field the resolution of the solid angle grid is crucial
to the accuracy of the solution. If the radiation field is dominated by a few compact sources, one
has to assure that each cell is connected to these sources radiatively. In those cases, it is preferable
to compute the radiative flux the other way round: Instead of tracing parallel rays for each cell,
we directly compute the intensity with respect to the source for each cell. An extreme example
would be a singular point source, e.g., a star which injects radiation into its environment in a

highly collimated manner. From the point of view of a distant observer (or cell), the intensity
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Figure 3.1: The staggered radiative transfer grid (solid lines) defined by the cell centers of
the underlying finite volume hydrodynamical grid (dashed lines). A long characteristic at
an arbitrary direction is shown which integrates the RTE for the hydro cell center at the
upper right corner of the domain. Boundary values are obtained from guard cells that
hold values from neighbouring subdomains.
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that reaches the observer at position x from a point source at position X, is

) Ly (%)
10 = 2 ey r,), (a0
where 7 denotes the distance from the observer to the star, and L} is the stellar luminosity. If the
location of a source is known it is much easier to treat it explicitly by computing the optical depth

7, to each cell and adding its intensity contribution to the mean intensity.

3.2.2  Raytracing on the decomposed AMR Grid

The integration of the RTE requires a raytracer since we have to compute path lengths and opti-
cal depths in order to do the quadrature from Equation (3.9). Figure 3.1 shows how this is done in
general on ahomogeneous grid. However, the parallel design of the FLASH framework, in which
our solver is currently implemented, forbids to raytrace over the entire domain which is neces-
sary for the method of characteristics (Figure 3.2). FLASH invokes PARAMESH (Olson et al.
(1999)), and lately also the CHOMBO library', for implementing an AMR grid. PARAMESH
uses a block structured adaptive mesh, in which the fundamental data structure is a block con-
taining cells which are logically indexed by a coordinate triple (i,j,k). The entire computational
domain consists of a number of blocks of different physical sizes ordered hierarchically in an oc-
tree data structure. Blocks at the bottom of the octree, called leaf blocks, contain valid data, and
they cover the entire physical size of the computational domain. FLASH allows for massively par-
allel computation by using the Message Passing Interface (MPI) for the communication of guard
cell information between the blocks of the AMR grid. Optimal load balancing is guaranteed by
splitting the AMR tree equally between all available MPI tasks to ensure that each task receives
more or less the same number of leaf blocks. E.g., the AMR tree of a star formation simulation
typically requires more than 10 levels of spatial resolution with up to several 10° blocks each con-
taining 8% cells. This is only possible (in terms of CPU time and memory requirements) by the
parallelization scheme described above.

The method of characteristics stays in direct contrast to the spatial parallelization of the AMR
grid. As soon as we want to raytrace on an AMR grid with domain decomposition, there are two
main problems we encounter. First, we need a raytracer that is working adaptively on the multi-

ple resolutions of an AMR grid. Second, we need to exchange boundary contributions not only

*https://seesar.Ibl.gov/anag/chombo/
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between adjacent subdomains but from all subdomains that have a significant radiative contri-
bution. For these purposes, we adapt a raytracing technique originally developed by Rijkhorst
et al. (2006) and improved by Peters et al. (2010), which uses a combination of local long char-
acteristics and a global “short-characteristics-like” interpolation of outgoing intensities from the
decomposed domains of the AMR grid. The basic idea is to split the radiation field into two

components:

e 1. Alocal component, that uses long characteristics to compute only radiative contribu-
tions from inside the subdomain (block) to both the cells inside the block as well as con-
tributions that leave the subdomain (face values). The computation is done in parallel and

in accordance with the design of the block structured AMR grid.

e 2. A global component, which is computed by communicating and accumulating the face
values. This step requires raytracing the block structure of the AMR tree and the interpo-
lation of face values, very similar to the short characteristics method (but on the level of
subdomains/blocks). After the communication of the face values and the tree hierarchy,

this step is also done in parallel.

This approach, called hybrid characteristics, only needs to communicate the face values of the sub-
domains and information about the AMR tree hierarchy but no 3D data. By this, the amount of
communicated data is reduced significantly. Originally, this method was developed by Rijkhorst
et al. (2006) to compute column densities with respect to point sources for UV ionization. The
original method required to communicate the whole AMR tree structure at the highest level of
spatial resolution during the raytracing step on the AMR block structure. This stands in contrast
to the parallel design of the FLASH code and restricts the available range of refinement levels of
the AMR tree substantially because of the large memory overhead. Peters et al. (2010) added
some major improvements to the algorithm by introducing a walk through the AMR tree, which
only requires the communication of basic AMR information and conserves the idea of shared
memory parallelization. However, raytracing on the block structure was still done on the highest
refinementlevel to conserve the proper block indexing. Obviously, this slows down the algorithm
significantly if a high range of resolution is required, even though the domain may not even have
reached the highest refinement level during the computation. For this work, we improved the
AMR tree walk by using a dynamic ray parameter during the block raytracing step. Choosing the
optimal ray parameter for each block depending on its refinement level in the tree guarantees a

fast and adaptive way of finding the blocks and their corresponding face values which are cut by
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processor O processor 1

Figure 3.2: Example for a 2D AMR grid distributed over two processors without shared memory. Local raytracing through the
domain is obviously restricted to the subdomain each processor is assigned to.

the current ray (see Figure 3.3). In addition, we implemented a new raytracer which, in addition
to the contributions from point sources, can sample the radiation field for an arbitrary number of
directions and angles. And finally, we added a full radiative transfer module which uses the ray-
tracer to compute stepwise formal solutions according to Equation (3.8) along parallel rays. This
enables us to account for the effects of the diffuse radiation field. Figure 3.4 shows a 2D example
of a simple test setup with an irradiated central density clump using adaptive mesh refinement.
The figure shows the ability of the method to create sharp shadows and to transport incoming

radiation over the entire domain.

3.2.3 The Lambda Formalism

Computing the radiation field in the form of the mean intensity in Equation (3.10) requires a
formal solution of the RTE in the way described above. Usually, this task is described in a rather

compact form by using the Lambda Operator:
J = A[S]. (3.12)

Formally, the Lambda operator for one cell in the computational domain contains the radiative
contributions from each other cell. The construction of the operator would require to explic-
itly calculate the radiative coupling between a cell and each other cell. But this is far too costly
concerning computation time and memory requirements. Instead, we do not construct the op-
erator but we approximate the Lambda step from Equation (3.12) by using the formal solution

from Equation (2.20) to compute the radiation field J from the source function S in the way de-
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Figure 3.3: The basic steps of the hybrid characteristics method for parallel rays (compare to Rijkhorst et al. (2006)); a) local
contributions as calculated with long characteristics. b) the outgoing face values which have to be communicated. c) example
for the interpolation of face values for a particular target cell after the communication step.

scribed above. The accuracy of this approximation in a 2D or 3D computation depends crucially
on the angular resolution, since it determines whether we actually "hit” each other cell during
the angular integration of the mean intensity or not. It is also a question of whether or not this
is necessary, since not each cell might have an important radiative contribution to the cell of in-
terest. We might miss some important "hot spots” which have a crucial influence on the cell of
interest while wasting computational time on cells which have a negligible contribution. E.g., we
avoid this problem partly by calculating the radiation from point sources explicitly for each cell
(Section 3.2.1).

However, the Lambda step from Equation 3.12 requires that we know the source function in
advance. If we take the temperature from FLASH’s hydro solver, we can compute the source
function simply as being S = B(T") then solve for the radiation field, couple it back to the hydro
solver and we are done. This approach assumes the gas to be in a state of thermodynamical equi-
librium but this is, of course, not always the case. If the radiation field is decoupled from the gas

temperature, we do not know the source function in advance. The solution then requires some
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Figure 3.4: The specific intensity and the optical depth computed diagonally in the xy-plane with a central density clump. The
source functionis set to unity at the left and bottom outermost boundaries and zero everywhere else. The opacity of the central
clump is one order of magnitude higher than the ambient opacity. The grid indicates the block structure of the AMR grid, units
are arbitrary.

kind of iterative procedure to account for the non-local coupling of the radiation field with the
gas. In the theory of radiative transfer, this iterative method is called Lambda iteration, which
requires iterating over Equation (3.12) until a self-consistent solution for J(.9) is found. Strictly
speaking, even in the LTE case with S = B(T), we have to iterate to find a temperature that
is consistent with the internal energy of the gas since this determines the thermal emission (see
our discussion in Section 6.2). However, the Lambda iteration may need several hundreds of
iteration steps, which is too costly and ineffective to be employed in a hydrodynamical simula-
tion. One way of resolving this problem, is to partly solve Equation (3.12) analytically by splitting
the Lambda operator. These approaches, called Accelerated Lambda iteration (ALI), have been
investigated and used extensively in the stellar atmosphere community (e.g. Trujillo Bueno and
Fabiani Bendicho, 1995). We have implemented the most simple form of ALI, the local lambda
operator, to solve radiative transfer problems even in regions of high optical depths and strong

decoupling where the classical Lambda iteration usually fails (Appendix A.1).

3.2.4 The Angular Discretization using HEALPix

The choice of the solid angle grid is equivalent to the problem of discretizing the surface of a unit
sphere. The method of characteristics requires the solution of the parameterized RTE along a

large number of directions n depending on the anisotropy of the specific intensity /(x, n). In
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Figure 3.5: The HEALPix tessellation scheme,
from Gorski et al. (2005). The Area in light
grey shows one of the eight (four north, and
four south) polar base pixels and the dark grey
area shows one of the four equatorial base

;
‘|

< «-"%‘; o,

pixels. Moving clockwise from the upper left
panel the base pixels are hierarchically subdi-
vided with the grid resolution parameter equal
to Ngide = 1, 2, 4, 8 and the total number of
pixels Npix = 12,48,192, 768.

general, this requires a homogeneous discretization of the solid angle {2 on the 47 unit sphere.
For this purpose, we use the HEALPix' scheme introduced by Gérski et al. (2005). HEALPix
ensures an optimal discretization of the unit sphere (also called pixelation or tessellation) into a
number of finite solid angles A(). HEALPix in general addresses problems in which a function
on domains of spherical topology has to be analyzed. The pixelation scheme was originally de-
veloped to handle large datasets generated by cosmic microwave background experiments (e.g.,
WMAP, Planck) and provides a software library* with numerous subroutines for spherical dis-
cretization and numerical analysis of functions or datasets on the sphere.

The HEALPix pixelation has a base resolution of 12 pixels in three rings around the poles and
the equator of the unit sphere each covering the same area. Based on these base pixels, the reso-

lution is refined by dividing each base pixel into NN, 2

ide subpixels, where Ngiqe has to be a power of

2 (Nsidze = 1,2,4,8, ...). The total number of pixels (assuming an isotropic refinement) is then

pix

"Hierarchical Equal Area isoLatitude Pixelization

*http://healpix.jpl.nasa.gov/
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3.3 Numerical Hydrodynamics

In this section, we describe the basics of the numerical methods that are used in the FLASH code
to solve Euler’s equations. These algorithms evolve the conserved variables of hydrodynamicsin a
fixed frame in contrast to SPH methods which work in the comoving frame of the fluid. The fixed
frame approach has the advantage that the evolution of density, momentum and energy can be
computed by considering the flux of these quantities through the faces of control volumes. This
approach requires a finite volume discretization in space which is very well suited to describe a
hyperbolic system of conservation laws, like Euler’s equations. The disadvantage lies in the rather
static discretization. In a finite volume code, the space is discretized and fluxes are calculated
independently of whether the fluid shows dynamic features or not. In an SPH approach, the
fluid is evolved by following particles which carry mass, momentum and energy which makes
the method naturally adaptive since particles accumulate in very dynamic regions. However, in
a finite volume code like FLASH, the spatial discretization has to be treated explicitly by using
AMR techniques.

3.3.1  Hyperbolic Equations

The equations of hydrodynamics, we introduced in Section 2.2, are a set of conservation laws
that describe the “wave-like” propagation of signals. We recall the governing equations for con-
servation of mass, momentum and energy here and write down the advection part explicitly for

all three dimensions neglecting any source terms:

Op + Ox(pu) + 0, (pv) + 0.(pw) = 0, (3.13)
Oy(pu) + 0y (uu + p) + 0y (uv) + 0.(uw) = 0, (3.14)
O:(pv) + 0z (vu) + 0y (vv + p) + 0. (vw) = 0, (3.15)

O (pw) + Oz (wu) + 0y (wv) + 9. (ww + p) = 0,
HE + 0, (u(E 4 p)) + 0,(v(E + p)) + 0. (w(E + p)) = 0.

where F is the total energy volume density (£ = p(0.5(u? + v? + w?) + €jy). This system of
partial differential equations is closed by the ideal gas equation of state (EOS, Section 2.2.1) which

relates the specific internal e;y; to the pressure

p=(v—1)peins (3.18)
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We can rewrite Euler’s equation in a very compact form if we define a state vector

p
pu

Q=] pv |, (3.19)
pw
FE

and flux vectors F(Q), G(Q) and H(Q) for the x-,y- and z-direction respectively

pu pv pw
pu® +p pUv puw
F = PUV , G=| p?+p |, H= PUW . (3.20)
puw pow pw? +p
u(E + p) v(E + p) w(E + p)

Equation (3.13)-(3.17) can now be expressed as follows:

9Q + 9,F(Q) +0,G(Q) + 9.H(Q) = 0. (.21

This form is very useful in discussing some basic properties of Euler’s equations. First of all, Euler’s
equation resemble a system of advection equations. The variables in the state vector can only
change by a flux across cell interfaces. These kind of conservation laws are called a system of
hyperbolic equations'. Second, the flux vectors are non-linear functions of the state vector. It is
therefore, in general, not possible to formulate, e.g., the flux in the x-direction as a product of a
state-independent matrix A times the state vector (e.g., F = AQ). Instead, all the complexity
in the numerical solution arises from the properties of the Jacobian of the flux vectors. In the
advection equation for the x-direction
OF

0,Q + %@Q =0, (3.22)

“The formal definition of hyperbolicity is more rigorous and requires the Jacobian to be diagonalizable with real
eigenvalues.
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the Jacobian (g—g) determines the propagation speeds of the conserved variables in the state vector
which are tightly coupled. Hence, Euler’s equations are just a special case of a system of hyperbolic

equations with a non-linear Jacobian.

3.3.2 Riemann Solvers

A central problem concerning the solution of Euler’s equations is the solution of the Riemann

problem which is defined by the 1D initial state

pL,vr,pr  forx < x,t =0

P,V D= (3.23)

PR, VR, PR forw > x9,t =0

The initial state represents two identical fluids of different constant states that are separated by a
barrier at & = x. The question at hand is: what happens when the barrier is removed instantly
att = 0? This setup resembles the most basic test for any hydrodynamical code and is referred to
as a Sod shock tube test (Sod, 1978). Figure 3.6 shows the results of such a Riemann problem for a
modified version of Sod’s problem. What happens is that a shock emerges travelling to the right
and a rarefaction wave travelling to the left. The region where there is a jump in density but nei-
ther in velocity nor in pressure is called a contact discontinuity. Figure 3.6 compares the solution
of the Riemann solver of Roe (Roe, 1981), which we implemented for testing purposes, with the
analytic solution computed with the NUMERICA software library * described in Toro (2009).
Roe’s solver is an approximate linearized characteristics Riemann solver that is based on the de-
composition of the state-vector () into its eigen-states which are evolved with their appropriate

eigen-velocities to compute the fluxes in Euler’s equation (3.22).

3.3.3 Godunov’s Scheme

The method of Godunov solves Euler’s equations with a conservative scheme. The idea is zor to
compute cell-centered quantities at position z; at a certain discrete time ¢,,, but to evolve cell and
time averaged quantities. This leads to a discrete volume method in which jumps in the state-
vector on cell interfaces at ;41 /2 can be regarded as Riemann problems. The solution of the
Riemann problem on the cell interfaces leads to a new state-vector for each cell. However, the

Riemann solution can lead to quite complex states in the cell since two Riemann solutions from

*http://www.ing.unitn.it/ toroe/software.html
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Figure 3.6: The solution of the Sod shocktube test using the Riemann solver of Roe with a superbee flux-limiter and with pr, =
1.0,vr, = 0.75,p, = 1.0, pr = 0.125,vp = 0.0,pr = 0.1; solid lines: analytic solution; symbols: Roe’s solver.
Solutions are compared att = 0.2 and ¢ = 0.3; units are CGS.

adjacent interfaces appear inside the cell. Instead, it is easier to interpret Godunov’s method as a
scheme in which a Riemann solver is used to calculate fluxes at cell interfaces that are used in the

conservative scheme

¢ =g — At e = (3:24)
Tiy1/2 — Ti-1/2
to evolve an arbitrary conserved quantity ¢ of the state-vector Q. The main challenge in solving
Equation (3.22) then lies in determining the interface fluxes which are coupled non-linearly to
the state-vector (Equation (3.20)). Roe’s solver (Figure 3.6) is just one possibility which is easy to
implement and can be extended to 2nd order accuracy in space with an appropriate flux-limiter.
Another method is the family of HLL-solvers proposed by Harten Lax and van Leer in 1983. The
decomposition of the state-vector in HLL-solvers is not as rigorously as in Roe’s method but uses

only two waves (HLL) or three waves (HLLC) to estimate interface fluxes. HLL-solvers more
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or less “guess” wave propagation speeds and the decomposition of the state-vector and do not
derive them from a linearized approximation of the Jacobian. They are, therefore, more flexible
which results in a large number of variations including HLL-solvers for the MHD equations by
including magnetic waves.

An important step in Godunov’s scheme is the reconstruction of the interface states from cell av-
eraged quantities since Godunov’s original method is only accurate to 1st order in space. Linear in-
terpolation usually leads to 2nd order accuracy and requires slope or flux-limiters to prevent over
and undershoot problems (Figure 3.6). However, the hydrodynamical solver in the FLASH code
uses a quadratic reconstruction based on the method by Colella and Woodward (1984), called
PPM-method ("Piecewise Parabolic Method”). In fact, the reconstruction takes place before the
solution of the Riemann problem, so the PPM-method does explicitly not linearize the Jacobian.
This makes the PPM-method very accurate and more efficient than other 2nd order algorithms
but takes considerably more effort to implement. Nevertheless, the PPM-method has proven to
be well suited to compute smooths flows as well as shocks and contact discontinuities, which is
why it is the method of choice in the FLASH code.

Choosing the Time Step

Since the update of the state vector components g; in Equation (3.24) is done explicitly, one has
to take care of the time step size. The problem is that for the non-linear Euler equations, the
solution of the Riemann problem on the cell interface is only valid within the size of the finite
volume cell. This restricts the time step so that the eigen-states can not propagate into an adjacent
cell. Since the propagation speed is determined by the eigenvalues of the Jacobian, the maximum

eigenvalue restricts the size of the time step so that

Az

)\max

Atcrr, = Cerr, , (3.25)

where Copy, is the Courant number which should obey 0 < Ccpr, < 1. This is known as
the Courant-Friedrichs-Lewy condition (Courant et al., 1928) (CFL-condition), which states that
the domain of dependence, e.g., of gt

P attime t = t,, should include the true domain of

dependence at t = ¢, or in other words: in the limit of At,, — 0, the discrete solution ¢'
should resemble the exact solution. From this criterion follows the CFL-condition that restricts

the time step according to Equation (3.25). Restricting the Courant number to a value less than
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unity guarantees that no eigen-signal (or wave) travels further than its domain of dependence,
which is the cell size given by Az. The CFL-condition is a general stability criterion which can
easily be extended to include the eigen-signals of, e.g., the MHD equations which are determined

by the Alfvén wave speeds.

3.4 FLASH/RT - Coupling the Radiation Solver

The FLASH code (Fryxell et al., 2000) is a versatile MHD computer code and is extensively used
for computational science research projects, especially in the field of theoretical astrophysics *. In
addition to the hydrodynamical and MHD solvers, FLASH contains a variety of physics mod-
ules to deal with heating and cooling processes, self-gravity, diffusion and conduction, chemistry,
the EOS and many more. The FLASH code works on an Eulerian grid with AMR and domain
decomposition (Olson et al., 1999) for high performance, massively parallel computations (see
Section 3.2.2). It is parallelized using the Message Passing Interface (MPI) to exchange boundary
information between subdomains and shows excellent scaling behaviour on any computational
infrastructure (e.g., Fryxell et al., 2000). AMR is especially important in simulations of the star
formation process since this requires to resolve a large range of length scales (Section 1.3) which
would not be feasible with a homogeneous grid. Since resolving the Jeans length from Equation
(1.7) during the collapse simulation is critical to avoid artificial fragmentation (Truelove et al.,
1997), this is often an important refinement criterion in these simulations.

For this work, we use a modified version of the FLASH 2.5 release. This version contains a num-
ber of additional modules including radiative cooling by atomic and molecular excitations as well
as radiative cooling by gas-dust coupling (Banerjee et al., 2004; Banerjee and Pudritz, 2006), heat-
ing by ionizing radiation from massive stars (Rijkhorst et al., 2006; Peters et al., 2010) ambipolar
diffusion (Duffin and Pudritz, 2008), and sink particles (Federrath et al., 2010). The sink particle
technique, first introduced by Bate et al. (1995) for SPH simulations, provides a subgrid model
for the Truelove criterion (Truelove et al., 1997). This allows to simulate the collapse of turbulent
cloud cores and to study the disc evolution for a self-gravitating system (e.g., Seifried et al., 2011,
2012) without resolving individual protostars. This modified FLASH version was also used to
study the effect of ionization feedback from young massive stars in Peters et al. (2010) and Peters
et al. (2011), where sink particle were used as point sources in the hybrid characteristics radiation

module. Our new radiation solver is included in the modular architecture of the FLASH Code

*http://flash.uchicago.edu/site/publications/flash_pubs.shtml
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and contains a number of implementations for the source function, opacities, radiative heating

and cooling processes, and Lambda iterations. We refer to this version as FLASH/RT.

3.4.1 The Radiation Solver in the FLASH Framework

Since our method is implemented in the FLASH framework, it is straightforward to couple the
radiative transfer module to the hydrodynamical and MHD modules of the FLASH code. The
coupling is done by accounting for radiative emission and absorption processes, which are deter-
mined by the thermal emission opacity x. = K.p and the thermal absorption opacity x, = Kap.
The opacities are calculated from mass specific cross sections x. and k, which we have imple-
mented in a separate module of the FLASH framework. Note that the total extinction coefficient
X, which is used for the solution of the RTE, may include an additional scattering opacity xs and
therefore X = Xo + Xs. The coupling of both the radiation and the MHD solver is achieved
by computing a source term according to Mihalas and Weibel Mihalas (1984) which describes the

total net gain or loss of energy due to radiative heating and cooling. It reads

Qrad = 47T/ XV(JV - Sy)dy. (326)
0

This source term is computed from the time-independent solution of the radiation field as de-
scribed in the previous sections and it is coupled to the MHD integrator in an operator splitting

step. Hence, the set of compressible MHD equations in dimensionless form including gravita-
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tion and radiative energy exchange are those of

continuity

dp B
5 TV (v =0, (3-27)

momentum conservation

d(pv)
ot

energy conservation

%_f+v. (V(E+ps) —B(v-B)) = pv- g+ Qraq, (3.29)

and the induction equation

%—?-VX(VXB):O, (3.30)

+V-(pvev+pl—-—B®B)=)pg (3.28)

with the gas velocity field v, the magnetic field vector B and the gravitational acceleration g.
P« is the total pressure and E the total energy density of a fluid element containing magnetic

contributions according to

BQ
D« =D+ o (3.31)
1 B?
E= §PU2 + éintp + o (3-32)

with the gas density p, the thermal pressure p and the internal specific energy e;,¢. Note that we
solve the equations of MHD and radiative transfer successively by an operator splitting step and
not simultaneously. Furthermore, for the test cases in Chapter 4, the thermal pressure dominates
the hydrodynamics, and it is several orders of magnitude larger than the radiation pressure, which
we therefore neglectin the momentum equation (3.28). Figure 3.7 shows our solver in the FLASH

framework.

Coupling the Radiation Source Term

The current coupling is done by an update of the internal gas energy e;,¢ and temperature 7'
respectively. Since we solve the time-independent RTE, there is no explicit update of the radia-

tive energy or the source function. Instead this is done in the following time step when the gas
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Figure 3.7: The radiation solver in the modular FLASH framework.

quantities have been updated. The update of the internal energy is done explicitly by

Aeiny = At Qraq- (3.33)

Due to the explicit update, we have to make some restrictions on the time step. The radiation
field does not have an explicit influence on the CFL time step in Equation (3.25) since the energy
update is done after the solution of the MHD equations. Instead, we compute a cooling time step
which is chosen if it is shorter than any other time step from a FLASH module. The cooling time
step should be chosen so that the energy contribution Ae;,; does not exceed a fixed percentage of
the internal energy. Otherwise, if the time step At is chosen too large, the total radiative energy

could become negative (e.g., Ae, > e). This leads to the following time step restriction:

€in
Ate = < ke Atopr, (3.34)
€int

where k. determines how much change in the internal energy is allowed during a time step. The
time step highly depends on the absorption coefhicient ) since it determines the optical depth of

the medium and how much radiation is absorbed and emitted during a single time step. Typically
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the choice of 0.2 > k. > 0.01 is convenient as it produces accurate results (Chapter 4) and time

steps about one oder of magnitude lower than the CFL time step.
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Tests

In this chapter, we show test results from the implementation of our radiation solver. The tests
include time-independent as well as dynamical tests in 1D and 3D in Section 4.1. We also show re-
sults from the combined FLASH/RT code in a series of 1D radiative shock calculations in Section

4.2. Finally, we investigate the performance of our implementation in Section 4.3.

4.1 Testing the Radiation Solver

In this section, we describe tests performed to exclusively examine the accuracy and performance
of the radiation solver without coupling it to other modules in FLASH. These tests include time-
independent solutions of a static scattering dominated 1D plane-parallel atmosphere, 3D thermal

dust continuum radiative transfer in a protostellar disc as well as time-dependent tests.

411  Non-LTE 1D Atmosphere

In the first test, we compute the radiation field in a grey, isothermal, scattering dominated 1D

atmosphere. This test is typically used to verify a radiation solver’s iterative performance and
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accuracy to describe non-LTE systems on a wide range of optical depths. It is also particularly
useful to ensure that the solver accurately reproduces the diffusion limit in an optically thick
regime, e.g., in the lower parts of the atmosphere. This test also requires the accelerated lambda
iteration (ALIL, Appendix A.1) since the classical lambda iteration fails to reproduce the solution
in the case of strong scattering contributions.

The amount of scattered radiation is quantified by the ratio of the thermal absorption coefficient

to the total extinction coefficient from Equation (2.4):

Xa
€= (4.1)
Xa T Xs
where we neglected the frequency dependence and € is the photon destruction probabiliry. The
grey source function in the atmosphere contains a thermal part and a scattering contribution,

and it reads

S — E — 778 + ne (42)
X Xa 1+ Xs Xa t+ Xs

— (1—€)J +€B, (4.3)

where we defined J = 1,/x; and the thermal emission is B = 7, /x,. Since the atmosphere
is isothermal, we assume that we know the temperature and normalize it so that B = 1. The
crucial part in this test is to find the source function which has to be consistent with the mean

intensity J which is
1
J =g+ 1), (4-4)

where I_ and I are the down and upward (2 stream solution) integrated specific intensity re-
spectively (according to Equation (3.8)). Since we assume a uniform mass specific opacity x and
constant temperature 7', the intensity is only a function of optical depth d7 = xdz, thermal

emission B and the photon destruction probability €. The mean intensity is then given by the

J:B(l—%\{?)) (45)

The density p of the model increases exponentially with distance from the upper boundary and

analytic solution

we assume that Y o< p but with € being constant. There is no incoming radiation at the up-

per boundary of the atmosphere at 7 = 0 while at the lower boundary the incoming radiation
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Figure 4.1: Scattering dominated 1D atmosphere problem. The solutions from the radiation solver (symbols) are compared to
the analytic solutions (lines) for five different photon destruction probabilities.

is I = B. The resulting model atmosphere provides an exponentially varying optical depth 7
which resolves the transition region from the optically thick inner LTE-regions to the optically
thin NLTE-regions at the outer boundary. We test the solver for a wide range of photon destruc-
tion probabilities from € = 107! to 10~®. The domain consists of 8 subdomains each containing
8 cells which results in a total spatial resolution of 64 cells. Figure 4.1 shows the results. In the
outer optically thin parts of the atmosphere, the scattering contribution in the source function
becomes dominant since radiation leaves the atmosphere. The numerical solution is in excellent

agreement with the analytic solution.

4.1.2  Hydrostatic Protostellar Disc

Cosmic dust is one of the most important constituents of the ISM. By mass, it makes up only

a small fraction of typically about 1%, but dust has important radiative and chemical properties.
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Dust particles have strong continuum opacities which are highly frequency-dependent. Espe-
cially in the optical regime, dust absorbs light much more efficiently than in the infrared regime.
That is why young protostars, which are surrounded by gaseous and dusty envelopes, are dif-
ficult to observe in the visible wavelengths but require infrared observations (see also Section
1.3.3). Thermal absorption and reemission of radiation by dust (a process called reprocession)
strongly determines the thermodynamical properties of a protostellar disc, especially in those re-
gions where the disc is opaque to direct stellar radiation and dominated by thermal reemission of
dust molecules. This is mainly the case near the equator of the disc because radial optical depths
with respect to the central star are typically much larger than unity (7, > 1). Therefore, mod-
elling the temperature structure requires diffuse radiative transfer to be taken into account.

In this test setup, we combine emission from a point source with the solution of the radiative
transfer equation (RTE). The goal is to determine the self-consistent temperature structure of the
gas in a protostellar disc. The setup is based on the benchmark by Pascucci et al. (2004), which
is based on the theoretical work by Chiang and Goldreich (1997). We compare our solutions
from a 3D calculation with the results from the Monte Carlo radiative transfer code RADMC3D

(Dullemond, 2012).

Thermal Radiative Transfer

A protostellar disc combines optically thick and thin regimes, which requires the computation
of primary stellar radiation and the thermal reemission from dust molecules in the disc. Our
approach follows the idea of splitting the radiation field in two components and handling each
component separately. Following the work of Dullemond (2002), the first component we com-
pute is the extinct stellar flux. This can be handled by using the original hybrid characteristics
method, which computes the optical depth with respect to a central stellar source (7). The ex-

tinct stellar flux F, at a distance r from a star of luminosity L, is given by

— L*
42

F.(x)

exp(—T.(x)), (4.6)

assuming that the star can be approximated as a point source. The amount of energy per unit

time that is absorbed this way is determined by the absorption coefficient y and given by

Q(x) = xFi(x). (4.7)
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The reemitted radiation of the dust grains in the disc is treated as a secondary component of the
radiation field, which we call the reprocessed radiation field. This component is computed with
the general transfer algorithm using parallel rays. Assuming LTE, the dust grains will acquire

an equilibrium temperature such that they emit exactly the same amount of energy which they

absorb

1
AV R S Y (4.8)
T A AT Jur

where I is the specific intensity of the reprocessed radiation field. The first term in Equation
(4.8) accounts for the direct stellar radiation while the second term describes the energy of the
reprocessed radiation field. The transfer equation for reemitted radiation by dust grains is

ol o

4

—=-1T" -1 (4.9)

or m
Hence, the source function in this setup is the frequency-integrated thermal emission from dust
grains S = U%T‘l. The task at hand is to find a temperature that is consistent with the coupled
set of Equations (4.8) and (4.9). This is done by iterating the equations until convergence is

reached (Lambda-iteration).

The Disc Model

For the simulation setup we are following the benchmark test of Pascucci et al. (2004) which
resembles a flared disc (Chiang and Goldreich, 1997). The idea is to define a radial gas surface
density distribution and to assume that the vertical density structure is only determined by the

hydrostatic equilibrium in the vertical direction. The gas density distribution is given by

fa(r) = exp (—% <%)2> 7 (4.10)
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Figure 4.2: The dust density in the xz-midplane for the Pascucci benchmark for a total optical depth of Tg;sc = 1.

where 7 is the radial distance in the disc midplane, 2 is the height above the disc, and py is the gas
density in the midplane at 7 = r4 = 500AU and z = 0. The outer disc radius is defined by
Tout = 1000 AU = 2 rq and we crop the discatan inner radius 7 = r;,. 24 determines the height
of the disc which we choose to be 0.25 r4 consistent with Pascucci et al. (2004). We choose the
central source to have solar properties with M, = 1 Mg, R, = 1 Rg and T, = 5800 K. We use
a grey opacity at the visible wavelength of A = 550 nm from the opacity tables used in Pascucci
etal. (2004) (k = 8736 cm? g~ 1).

In contrast to the Pascucci benchmark, we perform our calculations in 3D instead of 2D. There-
fore, we can not directly compare our results to the Pascucci results but instead use the results
from RADMC3D as a reference. We perform calculations for three cases of pg so that the total
radial optical depth of the disc in the midplane varies from Tgisc = 1, Tgise = 10 and 7435 = 100.
We do not explicitly distinguish between a gas and a dust temperature and assume both to be
tightly coupled and the dust density is defined as a fixed fraction of the gas density (1%). The
dust density distribution through the xz-midplane of the disc setup for the optically thin case
(Taise = 1) is shown in Figure 4.2.

The spatial resolution varies over 4 refinement levels from Az = 31.25 AU in the outer regions
to Az = 1.953 AU in the center of the disc. The solid angle integration is performed using 768

directions (nSide=8).
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Results

The resulting temperature structures and averaged midplane profiles are shown in Figure 4.3. As
it turns out, the accuracy of the solution is very sensible to the spatial resolution of the inner edge
of the disc at 7 = 74, which is a result of discretizing the inner circular rim on a Cartesian grid.
Therefore, we increase the inner radius from r;, = 10 AU, 20 AU to 40 AU for the three differ-
ent setups to guarantee sufficient resolution at the point where the disc becomes optically thick.
In the optically thin case (74isc = 1), the midplane temperature is almost entirely dominated by
the direct illumination of the central source. In the optically thick cases, the midplane tempera-
ture is dominated by the reprocessed radiation from dust in the photosphere of the disc, which
is directly illuminated by the central source. At the point where the disc becomes optically thick,
a bump emerges in the temperature profile since the dust distribution becomes dense enough to
absorb a considerable amount of radiation from the central source. Our results are in excellent
agreement with the reference computed by RADMC3D and within the 10% range of the results

from the different codes used for the Pascucci et al. (2004) benchmark.

4.1.3 Time-Dependent Radiative Transfer

In this section, we show results from time-dependent radiative transfer calculations. In order
to couple the radiative transfer solver to the FLASH code, we have to calculate the energy
contribution by the radiation field. Solving the time-dependent RTE on the timescale of the
speed of light would lead to time steps far too small for the use in a hydrodynamical simulation
on astrophysical scales. However, since we are not interested in the dynamics of the propagation
of the radiation itself but, instead, in its contribution to the energy budget of the gas, we
assume the hydrodynamical timescale to be much larger than the timescale on which radiation
is transported. This means that the radiation field emerges instantaneously everywhere, and

we assume the solution of the time-independent RTE as being convenient (see also Section 3.4.1).

Diftusion Setup

In this test, we investigate the ability of our solver to follow the flux of radiative energy into a

highly opaque medium. In this case, the propagation of the radiation field can be described by
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Figure 4.3: The solutions of the Pascucci et al. (2004) benchmark problem. Left column: the temperature structure through
the xz-midplane of the disc for total radial optical depths of 7 = 1 (top), 7 = 10 (mid), and 7 = 100 (bottom). Right
column: averaged temperature profiles in the xy-midplane in comparison with the solutions of RADMC3D. Solutions obtained
with FLASH/RT use 768 directions for the angular discretization. Monte Carlo computations with RADMC3D were performed
using 108 photon packages.
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the diffusion approximation, and we show that our approach reproduces the diffusion limit ac-
curately. The diffusion approximation is derived from the moment equations of the RTE by
invoking a closure relation between the radiative energy and the radiative pressure (e.g., the Ed-
dington approximation). The radiation equations themselves then form a hyperbolic system. By
neglecting the explicit time dependence of the radiative flux F and assuming that F oc VE,., the
flux can be eliminated from the equations. The dynamics of the radiation field J = cE,. /(4m)

can then be described in a single equation, the diffusion equation (Mihalas and Weibel Mihalas,
1984):

S v/ (iw> — cx (S —J). (4.11)
nx

where n denotes the number of dimension. We do not allow any interaction of the radiation
field with the hydrodynamics and only follow the propagation of the radiation field. Hence, the
diffusion equation becomes homogeneous since S = J. In this case, the solution to the diffusion

equation is described by the Gaussian function

B Jo X — Xg
JD(X7 t) - (47TDt)n/2 exp ( ADt ) ) (4-12')

where .Jy denotes the initial mean intensity at ¢ = ¢, and X its initial position. We use Equa-
tion (4.12) to compute the initial conditions J(x, to) for our test setup. We perform 1D and

2sr~! with

3D computations with the initial conditions Jy = J(xo,tp) = 10°ergs™!cm™
to = 107" sin3Dand t5 = 107'% s in 1D respectively, The center of the Gaussian is at x = 0,
and we evolve the radiation field until t = 20 X ¢ is reached. The length of the computational
domain is 1 cm with a homogeneous density distribution of p = 1gcm™" and a constant ab-
sorption coefficient K = 1000 cm? g~ 1, which results in a highly optically thick medium. The
temperature is constant and arbitrarily set to 7" = 1K. Since no heating or cooling is allowed,
there is no hydrodynamical response from the medium and all hydrodynamical quantities are
constant in space and time.

Since we solve the time-independent RTE, there is a problem in reproducing the time-dependent
term in Equation (4.11). Strictly speaking, the static source function vanishes since we do not
couple the radiation field to the medium through which it propagates. Consequently, the mean
intensity would also vanish in the time-independent solution. However, the time dependence

causes an implicit effective contribution in the source function (e.g. Jack et al., 2012, and also our

discussion in Section 6.1) which depends on the specific intensities of the previous time step. It
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is this implicit contribution that is evolved through time and describes the evolution of the radi-
ation field. Since we do not account for this implicit contribution, we solve the problem by op-
erator splitting using the right-hand side of Equation (4.11) to calculate the new source function
at the following time step. The evolution is done using a simple forward Euler time integration

scheme of the form

Sn = Snfl + AZfn Xc (J<tn71) - Snfl)a (4-13)

where At,, is the length of the current time step 7. Therefore the time step is restricted to be

(Section 3.4.1)

Sz’

Aty = kpaaAt,— ol
‘ 11naX(|S;_1 — Shal)

(4.14)

where max(|S;,_; — S,_,|) denotes the maximum change in the source function of all discrete
grid points 7. kyaq limits the maximum change in the source function, and we found a value of

Fraa =~ 0.1 to give stable and accurate results in 3D.

Results

The results of the 1D solutions are shown in Figure 4.4. We compare the numerical results with
the analytic solution given by Equation (4.12) and found our results to be within 1% accuracy
at a resolution larger than 32 cells. At the edge of the domain, the numerical solution deviates
from the diffusion solution as radiative energy can leave the domain and we allow no irradiation
from the outside. The results from the 3D computation are shown in Figure 4.5 and compared
to the diffusion solution along the three main axes of the domain. In the 3D case, the domain is
subdivided by the AMR grid into 4 blocks in each dimension. Each block contains 8° cells giving
a total linear resolution of 32 cells. In the 3D case, the setup consists of a Gaussian kernel around
the origin which diffuses outwards. The solutions along each coordinate axis are obviously indis-
tinguishable, emphasizing the accuracy and importance of the homogeneous angular HEALPix

tessellation. The 3D computations were performed using 192 directions.

4.2 FLASH/RT - Testing the Radiation Hydrodynamics

Solver

For the following tests, we use the full FLASH/RT Code including coupling through radiative

energy exchange. The tests include a series of 1D radiative shock calculations. Further full 3D
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Figure 4.4: Results of the 1D diffusion test for different homogeneous spatial resolutions, fop: nx=16, Mid: nx=32, bottom:
nx=64. The dashed lines show the initial conditions at ¢ = t determined by the Gaussian solution of the diffusion equation.
The initial radiative energy (symbols) is evolved and diffuses outwards untilt = 20 X tg is reached and compared to the
analytical solution (solid lines) of the homogeneous diffusion equation. For a sufficient spatial resolution, the numerical solution
stays within 1% accuracy. Atthe edge of thedomain, the radiation solver deviates from the diffusion solution as radiation leaves
the domain while the diffusion solution is valid for an infinite domain.
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Figure 4.5: Results of the 3D diffusion test along the x-, y- and z-axis of the simulation box with ahomogeneous spatial resolution
of nx=ny=nz=32 (symbols). The dashed lines show the initial conditions at t = £ determined by the Gaussian solution of the
diffusion equation. The 3D solution is not as accurate as the 1D results but still within 10% of the analytical solution. The
obvious independence of the solution on the direction axis a result from the homogeneous angular HEALPix tessellation. The
calculations were performed using 192 directions.
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radiation hydrodynamical simulation results can be found in the following Chapter s, which deals

with collapse simulations of a molecular cloud core.

4.2.1 1D Non-equilibrium Radiative Shock

Testing the radiative transfer solver for radiative shock computations is the first crucial step in
testing FLASH/RT. This test requires us to couple the radiation code to the hydrodynamical
solver in FLASH. This is done by a source term, which is determined by the energy budget of ab-
sorption and emission processes. We recall the frequency-integrated source term from Equation

(3.26) here:
Qrad = 47TXCL(J - B), (4-15)

which is coupled to the hydrodynamical solver by adding it to the right-hand side of the Euler
equation for the internal gas energy. For this test case, the emission and absorption opacities are

equal. Since the shock setup is used for test purposes, we neglect the magnetic field.

Initial Conditions

The initial conditions are consistent with the theoretical work of Lowrie and Edwards (2008).
In their work, the jump conditions and the equations of radiation hydrodynamics are given in
a dimensionless form. The equations are normalized using reference material quantities and a

constant P which arises from the normalization process and is given by

&, T4
Py = — ~20. (4.16)
Podg

The quantities denoted with a tilde are the dimensional reference material attributes (tempera-
ture TO, density py, sound speed ag) and &, is the radiation constant. The ”0”-subscript indicates
pre-shock state initial values. Py gives a measure for the relative importance of gas and radiation
pressure or alternatively, the radiative energy to the material energy (Mihalas and Weibel Mihalas,
1984). For our test setups, we choose a grey non-equilibrium shock setup with Mach numbers
of My = 1.2, My = 2 (subcritical), My = 3 (critical), and My = 5 (supercritical), which we
compute in the reference frame of the shock with Py = 107* and v = 5/3. Lowrie and Ed-
wards (2008) give a dimensionless absorption and transmission cross section, which determine

the radiative energy exchange and diffusivity of the radiating materials. Evaluating the dimen-
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sionless values of their example setup gives an absorption coefficient of , &~ 423.0 cm? /g and
a total extinction coefficient of y & 788.0 cm? /g, which results in an effective photon destruc-
tion probability of € = k,/x ~ 0.5377. The initial dimensionless pre-shock gas temperature
Tp and density pg are set to unity, the post-shock initial values (71, p1) are computed using the
Rankine-Hugoniot jump conditions. The actual dimensional initial conditions can then be cal-
culated using their dimensional reference material values (for more details we refer to Lowrie and

Edwards (2008)). Finally, the radiation temperature

. 1/4
T = (_ J) (4'17)

0SB

is initially in equilibrium with the gas temperature. For the radiation shock test problem, the
source function is determined by a thermal emission and a diffusive part. In fact, thisis equivalent

to using the isotropic scattering source function
S=(1-¢)J+eB (4.18)

with the appropriate photon destruction probability and a thermal energy contribution given
by the frequency integrated Planck emission B = U%T‘L. Since the radiation field will not be
not be in thermal equilibrium with the material throughout the simulation, we need to iterative
until a consistent solution of the mean intensity J is found. However, since € ~ 0.5377 gives
only a moderate scattering contribution and using the solution from the previous time step, the

accelerated lambda iteration usually converges after 2 or 3 iteration steps.

Results

The shocks need a few nanoseconds to relax into a static equilibrium state. Figure 4.6, 4.7, 4.8
4.9 show the resulting temperature and density profiles after 10 nanoseconds. Sufficiently far up-
stream (left) and downstream (right) of the hydrodynamical shock (at = 0), gas and radiation
are in thermodynamic equilibrium and the radiation temperatures coincides with the gas tem-
perature computed from the initial conditions. Since the total extinction coefficient ) is about
twice the thermal absorption and emission coefhicient, the temperature of the radiation field and
the gas are out of equilibrium near the shock front.

The subcritical shock with My = 1.2 (Figure 4.6) shows a hydro shock but no spike in the radi-

ation temperature. For M = 2 the so called Zel’Dovich spike in the gas temperature appears for
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Figure 4.6: Temperature and density profiles for the subcritical shock with My = 1.2inthe equilibrium state after 10 nanosec-
onds. The gas is preheated on the upstream side and cooled on the downstream side of the hydro shock front. Quantities are
nondimensionalized.

the first time as seen in Figure 4.7. The spike appears since radiation is transported through the
hydrodynamical shock from the downstream to the upstream region and heats up the inflowing
gas, which is initially in a thermal equilibrium with the radiation field in the upstream region.
After the gas has passed the hydrodynamical shock, it cools down until the radiation field and the
gas are again in thermal equilibrium on the downstream side of the shock. Since the upstream
temperature at the shock front s still less than the downstream temperature the shock is still sub-
critical. Figure 4.8 shows the solution for My = 3. In this case the shock becomes critical since
the inflowing gas is heated up until it almost reaches the value of the downstream temperature
and the spike becomes more narrow. Finally, for M, = 5, the shock becomes supercritical, and
the discontinuity in the gas temperature is restricted to the narrow range of the Zel'dovich spike
(Figure 4.9). Our solutions resemble the semi-analytical results from Lowrie and Edwards (2008)
and show the correct spike evolution. However, a closer look at the results show a slight deviation
of the shock front from its initial position (at x = 0). Especially in the supercritical case, the shock
front drifts very slowly into the downstream direction. This drift is due to the absence of the ra-
diation pressure in our approach, which becomes important for higher Mach numbers (with a
higher downstream gas temperature). While the shock front drifts very slowly, the temperature
and density profiles do not change since the radiation source term is still very well approximated

in our approach.
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shock is still well below the downstream temperature, the shock is subcritical.
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Figure 4.8: Same conditions as in Figure 4.6 but with My = 3. The temperature on the upstream side of the hydro shock front
almost reaches the downstream equilibrium value. The Zel'dovich spike gets more narrow and the shock becomes critical.

4.3 Performance

The FLASH code shows excellent scaling behaviour on any computational infrastructure (e.g.
Fryxell etal., 2000). For this work, the computations are clearly dominated by the solution of the
RTE. Hence, the scaling behaviour of the radiative transfer solver is crucial for the total perfor-
mance of the FLASH/RT calculations. We investigate the scaling performance of our radiation
code using the disc benchmark setup (see Section 4.1.2). We performed so formal solutions of the
RTE using 192 directions on a spatial range covering s refinement levels. After the initial refine-
ment, depending on the density structure and the radius, the computational domain consists of
3648 valid subdomains (leaf blocks) each containing 8° cells. The FLASH code distributes the
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Figure 4.9: Same conditions as in Figure 4.6 but with My = 5. The temperature on the upstream side of the hydro shock front
reaches the downstream equilibrium value. The Zel'dovich spike gets very narrow and the shock becomes supercritical.

blocks among all available MPI ranks using a Morton space-filling curve'. The scaling tests were
run at The North-German Supercomputing Alliance in Berlin on the Cray XC30 "Gottfried” us-
ing 12-core Xeon IvyBridge processors. Figure 4.10 and Table 4.1 show the scaling results for the
computation of the formal solution of the RTE averaged over so cycles. The scaling is normalized
to the wallclock time using 96 cores (e.g, 8 Xeon IvyBridge processors). "Gottfried” provides 2
Xeon processors with 24 cores in total per computing node, hence, adding 24 cores to the com-
putation will increase the communication overhead. Figure 4.10b shows the speedup compared
to a perfect scaling behaviour. The radiation solver scales reasonably well considering the massive
communication of non-local information, which is necessary for the solution of the RTE. Figure
4.10c shows that doubling the number of cores decreases the performance per block by approxi-
mately 10%, which we consider also as reasonable.

The cost of the radiative transfer solver from a 3D collapse simulation (see the following Chapter
s and Figure 4.10d) is comparable to the cost for the computation of the self-gravitational poten-
tial which is done by a Poisson tree-solver. However, the radiative transfer solver in this particular
simulation uses a rather moderate angular resolution of 192 directions (using the HEALPix tessel-
lation from Gérski et al. (2005)). For runs including rotation and turbulence, the angular resolu-
tion probably needs a much higher resolution of at least 768 directions or higher. Since the cost of
the radiative transfer solver scales linearly with the number of directions, it dominates the entire
simulation run compared to the calculation of self-gravity. So far, we have tested the FLASH/RT

code on our own computing cluster in Hamburg (32 nodes with 2x Intel Xeon Hexa-Core CPUs,

*http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug/
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nr. of cores | Time [s] | Speedup | Blocks per cpu | Performace per Block [%]
96 86.06 1.0 37-39 100.0

144 60.60 1.42 25-26 95.2

192 48.01 1.79 18-20 89.6

240 4111 2.09 14-16 82.6

288 34.93 2.46 12-13 81.0

336 32.98 2.60 10-12 75.5

Table 4.1: Results from the scaling test normalized to a run with 96 cpus; because of the increased communication overhead,

each cpu should handle as many block as possible in terms of memory requirements.

2.40 GHz) and at the North-German Supercomputing Alliance in Berlin on the Cray XC3o.
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Figure 4.10: Results from the parallel scaling test; In a) the total wallclock time for the formal solution averaged over 50iteration
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3D Collapse Simulations

In this section, we show results from full 3D radiation hydrodynamical simulations performed
with FLASH/RT. Since we aim to use our framework for the modelling of radiative feedback in
star formation simulations, we show the capabilities of our method in a series of self-gravitating
collapsing cloud simulations. We follow the collapse until the first hydrostatic core is formed and
before the dissociation of hydrogen molecules start (the first collapse). In Section 5.1, we show
results from a basic collapse simulation without rotation and compare the resulting profiles to
other similar works. Afterwards, we show results from more complex simulations including ro-
tation and turbulence (Section 5.2) and compare the results to a simulation without modelling
radiative transfer. In Section 5.3, we show results from simulations of the formation of a binary
system based on the work by Boss and Bodenheimer (1979). The angular resolution of the radia-
tive transfer calculations are the same for all three collapse simulations, and we use 768 directions

to compute the radiation field (nSide=8 for the HEALPix tessellation).
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Opacities

Since our solver does not yet support any frequency dependence, the source function S is only

O'SBT4
K

determined by the frequency-integrated thermal emission of the gas (S = B = ), and we
neglect any scattering processes. Consequently, we have to use frequency-integrated mean dust
opacities. For this purpose, we choose the Planck mean opacities by Semenov et al. (2003). In
their work, the dust composition model takes into account the evaporation temperatures of ice,
silicates, iron as well as their density dependencies. We coupled their subroutines’ for computing
temperature and density dependent dust opacities into FLASH, and we choose the input param-
eters for spherical homogeneous dust grains with a normal relative iron content in the silicates of

Fe/(Fe+Mg) = 0.3.

5.1 Collapse without Rotation

In this section, we study the collapse of a spherical, homogeneous, and gravitationally unsta-
ble density distribution. The initial conditions do not contain any turbulence or density per-
turbations and hence, the results are spherically symmetric. This setup represents a common
benchmark for the capabilities of a radiation hydrodynamical astrophysical computer code, and
we compare our results to similar work done by Commercon et al. (2011), Masunaga et al. (1998),

and the pioneering simulations of Larson (1969).

Initial Conditions

For the collapse simulation, we start with highly gravitationally unstable initial conditions. The
cloud of one solar mass consists of 2 homogeneous sphere with radius Ry = 7.07 x 10 cm(~
4725AU) and and density pg = 1.38 x 107 gcm ™3, which results in an initial free-fall time
(Equation 1.9) of tg ~ 56.67 kyrs. The size of the 3D computational domain is four times
the initial cloud radius Ry in each dimension. The surrounding gas density is a hundred times
less than the initial cloud density pg, and the cloud is initially in thermal equilibrium with the
ambient gas at a temperature of 7' = 10 K resulting in an initial isothermal sound speed of
¢s ~ 0.195kms™!. We use an ideal gamma equation of state (EOS) relating the internal en-

ergy and gas density to the pressure and temperature (Section 2.2.1) with the adiabatic exponent

Shttp://www.mpia-hd.mpg.de/homes/henning/
Dust_opacities/Opacities/opacities.html
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v = 5/3. Since the cloud is initially not in pressure equilibrium with its surroundings, FLASH’s
hydrodynamical solver drives a weak shock wave into the ambient gas which is soon dissipated.
To prevent our radiation solver from resolving this shock in terms of radiative energy exchange
(which would result in rather small time steps), we do not couple the radiation field to the hydro-
dynamics outside of R but rather keep the ambient gas and radiation temperature fixed.

The initial conditions result in a gravitationally unstable cloud which contains nearly two Jeans
masses. To ensure a proper resolution and avoid artificial fragmentation during the collapse, we
use the Jeans condition by Truelove et al. (1997) as the refinement criterion of the AMR grid. In
our case, we use at least Nj = 9 grid cells per Jeans length (Equation 1.7). To resolve the first hy-
drostatic core properly, we allow a maximum linear resolution of Az ~ 0.07AU which requires
the AMR grid to cover 11 levels of resolution.

The summarized initial conditions are:

Mass M =1.0Mg,
Density po = 1.38 x 107 ¥ gem ™3,
Temperature 7' = 10K,
Angular Velocity €2 = 0.0rad s
Radius R = 7.07 x 10'% cm,
Free Fall Time tg = 56.67 kyrs.

Results

The cloud core starts to collapse and as soon as the maximum density in the cloud exceeds about
10713g cm ™3, the central regions of the cloud core become optically thick. At this point, the cen-
tral temperature starts to rise rapidly and the following evolution proceeds almost adiabatically
with more gas falling onto the central hydrostatic core (see also Section 1.3.1). Since the simula-
tion does not contain any rotation or turbulence, the 3D solution is spherically symmetric, and
we present the results in the form of averaged radial profiles. The profiles for density, radial ve-
locity, temperature, optical depth, and central mass after 1.036 X ¢ are shown in Figure s.1. The
resulting hydrostatic core has a mass of My, ~ 1 X 1072My, a radius of Ry, ~ 4AU, and a
central temperature of 7, ~ 186K . The boundary of the core can be identified easily in the ve-
locity profile, where there is a sudden decrease in the infall velocity (the accretion shock). Inside

the core, the infall does not stop completely indicating that the core is only quasi-hydrostatic.
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Reference Re [AU] | Mg [Mg)] Te[K] | T¢ [K]

This work 4 1x 1072 50 186
Commercon et al. (2o11) | 8 2.1 x 1072 | 81 396
Masunaga et al. (1998) 8 ~ 1072 6o 200
Larson (1969) 4 1x 1072 - 170

Table 5.1: Comparison of simulation results; R is the radius of the first core, Mg is the core mass, T¢. the central temperature
and Ty is the temperature at R..

Our results are quantitatively very similar to those of Larson (1969) and qualitatively very similar
to the more recent works by Masunaga et al. (1998) and Commergon et al. (2o011). Table 5.1 shows
an overview of the characteristic temperature, mass and radius of the first core in comparison to
these works (the common reference point is when the maximum central density of the first core
reaches pr. &~ 2 X 107'%gcm—3). Apparently, our computations produce qualitatively similar
results, although the methods invoked in the other works are quite different and use different

initial conditions and opacity models.

5.2 Collapse with Rotation and Turbulence

This simulation run has very similar initial conditions as described in the previous section except
that we add some rotational and turbulent energy. The cloud is initially in a rigid body rotation
around the z-axis at the center of the simulation box. The ratio of rotational and gravitational
energy is given by

1R
3 GMg

We choose 8 = 0.03 which gives an initial angular velocity of Q = 1.886 x 10~ rad s~

B

(5.1)

Land

agrees with typically observed values of molecular cloud cores (Goodman et al., 1993). In addi-
tion, we superimpose a turbulent velocity perturbation on the initial uniform angular velocity
field. The construction of the velocity perturbation is based on the theory for incompressible
turbulence by Kolmogorov (1941), in which the kinetic energy F of the velocity fluctuation with

wave number £ is described by a power spectrum
E(k) o< kP. (5-2)
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10710 g cm—3 with a temperature of T, &~ 186 K, aradius of Ry, =~ 4 AU and amass of M, =~ 102 Mg
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The wave number k = 27/l is the inverse of the length scale [ of a turbulent fluctuation (some-
times called eddy). In our case, the spectrum has a power law index of p = —2 resembling a
Burgers type model of turbulent energy decay. The geometries and density distribution of the
initial cloud core are the same as for the simulation without rotation and turbulence.

In addition to the simulation run with FLASH/RT, we also run the simulation without mod-
elling radiative transfer. Instead, we use a barotropic EOS with a density-dependent effective
adiabatic exponent «y that mimics radiative cooling. The internal energy/temperature is fixed
at T = 10K as long as the gas density is less than p &~ 107" gecm™ (isothermal). Above
this threshold density, the temperature rises slowly with v = 1.1 until the adiabatic exponent
becomes v = 4/3 above p &~ 107'? gcm ™ (adiabatic). We ran the simulation including ra-
diative transfer as well as the reference run with the barotropic EOS until the formation of the
first hydrostatic core with a central density of p ~ 107" gem ™. At this point, both simula-
tions cover 9 different levels of resolution in the AMR grid with a maximum linear resolution of
Ax ~ 0.57 AU while the whole simulation box has a linear extent of 18903 AU.

The summarized initial conditions are:

Mass M =1.0Mg,
Density pp = 1.38 x 107" gem ™,
Temperature 71" = 10K,
Angular Velocity €2 = 1.886 X 107 ¥ rads™!,

Rotational Energy

B =10.03,

Gravitational Energy

Radius R = 7.07 x 10'® cm,
Free Fall Time tg = 56.67 kyrs.

Results

The rotational energy and the superimposed turbulent velocity perturbations break the symme-
try of the simulation. Figure 5.2 shows the column densities along the main axes of the inner
region where the dense first core has formed after about 60 kyrs (= 1.07 tg) with a maximum
gas density of pg, ~ 10~ g cm ™3, Because of the additional rotational and turbulent energy,
the formation of the first core is deferred and forms later than in the previous simulation (Sec-

tion s.1). The conservation of angular momentum causes the first core to be flattened roughly
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along the z-axis and the density distribution shows a flat disc-like structure revolving around the
central compact hydrostatic core. The resulting density distribution is roughly the same as in the
reference run without radiative transfer. The initial collapse which seeds the formation of the
central core does mostly occur in the isothermal phase, hence, modelling radiative feedback does
not influence the initial formation of the core significantly. However, Figure 5.3 shows the result-
ing density weighted temperature averages along the main axes in the central regions around the
first core (e.g [ pT dz/ [ pdz). The left column shows the results including radiative transfer
(FLASH/RT) while the right column shows results from the reference run. The FLASH/RT
model clearly shows how the central core heats the surrounding gas to a temperature roughly
30% higher than in the reference run (like in Price and Bate (2010)). The resulting temperature-
density distribution in comparison to the barotropic EOS is shown in Figure 5.4.

Unfortunately, our FLASH/RT simulations are very costly (see Section 4.3 for more details) and
currently, it is not feasible to continue these simulations without coupling the radiative transfer
solver to a subgrid model for the formation of the central core, e.g., sink-particles (see Section 3.4).
However, our current test simulations show the first stages of disc formation and the importance
of modelling radiative transfer accurately. Since the thermodynamics of the gas significantly in-
fluence the fragmentation behaviour of the disc, modelling radiative transfer is indispensable to

study the further evolution of the disc and the surrounding gas envelope.

5.3 Binary Formation

An important problem in the theory of star formation is the fragmentation of a molecular cloud
into at least two or more protostellar cores. This case was investigated by Boss and Bodenheimer
(1979) who addressed the problem by comparing 2D hydrodynamical simulations with two dif-
ferent numerical methods (fixed and moving mesh) but without explicitly modelling radiative
transfer. Whitehouse and Bate (2006) repeated those simulations using an SPH code and mod-
elling radiative transfer in the FLD approximation. They found that a barotropic EOS underesti-
mates the temperature by a factor of 2-3 in the density maximum and up to an order of magnitude
in other regions of the cloud. Since the temperature has an important influence on the fragmen-
tation behaviour (see Section 1.3.3), Whitehouse and Bate (2006) emphasized the importance of
modelling radiative transfer explicitly.

In this section, we show our results from a radiation hydrodynamical simulation based on the
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initial conditions by Boss and Bodenheimer (1979), which are:

Mass M = 1.0Mg,
Density po = 1.44 x 107" gem™?,
Temperature 7' = 10K,
Angular Velocity 2 = 1.6 x 1072 rads™,

Rotational Energy

B=02,

Gravitational Energy

Radius R = 3.2 x 10'%cm,
Free Fall Time tg = 17.54 kyrs.

The main difference to our previous calculations is that the initial cloud core has a much higher ro-
tational energy of 3 = 0.2. Furthermore, we do not include turbulence but a non-axisymmetric
density perturbation of mode m = 2 with an amplitude of 0.5, which depends only on the

azimuthal angle ¢:
p = po(1 4 0.5cos(29)). (5-3)

The cloud core has the same mass as in the previous runs but only about half of its radius. Hence,
the initial cloud core is about an order of magnitude denser and the initial free-fall time is shorter
(tg ~ 17.54kyrs). The fast rotation of the dense core together with the density perturbation

seed the formation of a binary system.

Results

Figure 5.5 shows the time evolution of the column densities along the rotation axis (z-axis) in the
FLASH/RT run. The initial cloud fragments and forms two cores. Figure 5.6 shows the inner
region (=~ 2000 AU) at the end of the simulation run after t ~ 21 kyrs ~ 1.2tg when both
cores have reached 2 maximum density of about 10~'! g cm?. At this point, the simulation cov-
ers 7 levels of refinement with a maximum linear resolution of Ax ~ 1 AU. The formation of
the binary system is seeded very early in the simulation through the density perturbation and the
high angular momentum of the cloud. While in this early phase the cloud is still in its isother-
mal phase, radiative feedback does not have a large impact on the early fragmentation behaviour.
However, Figure 5.7 shows a comparison between the density weighted mean temperature along

the rotation axis of both the simulation with radiative transfer (top) and with a barotropic EOS
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(bottom), and Figure 5.9 shows the resulting temperature-density distribution. Modelling the
energy transport with radiative transfer causes the cores to heat up their surroundings very sim-
ilar to the previous simulation in Section 5.2. Since the thermodynamical properties of the gas
determine its fragmentation behaviour, this has a significant influence on the fragmentation be-
haviour of a circumstellar disc.

Figure 5.8 shows the early process of disc formation around one of the cores. Again, the tempera-
ture structure reveals a hotter region where the infalling gas hits the emerging disc which can not
be modelled using the barotropic EOS. This radiation shock is caused by the infalling gas which
is abruptly slowed down when it reaches the dense disc structure. The infalling gas encounters
a hydrodynamical shock front while radiation, which is transported through the shock front,

preheats the infalling gas before and after passing the shock.

5.4 Summary

We have shown the first results from 3D radiation hydrodynamical simulations with our
FLASH/RT code which explicitly models the effects of radiative transfer in a star formation sim-
ulations. We are able to follow the collapse until about ¢ ~ 1.2t when the first hydrostatic
cores with a circumstellar disc emerge. However, modelling radiative transfer is a rather costly
computation (Section 4.3) in comparison to the solution of the Euler equations. To study the
long term evolution of the protostar including the circumstellar disc, we have to restrict the spa-
tial resolution which significantly reduces the communication overhead in the radiative transfer
solver (see also our discussion on the communication overhead in the following chapter). This
requires a subgrid model for the protostellar core evolution, e.g., by using the sink-particle imple-
mentation by Federrath et al. (2009) and the protostellar evolution model by Offner et al. (2009).
This requires to couple our radiative transfer solver to these modules in FLASH to improve the
feasibility of 3D simulations with FLASH/RT.
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Figure 5.2: Column densities along the main axes of the simulation box after the formation of the first hydrostatic core att ~
60 kyrs &~ 1.07 tg. The rotational energy forces the gas to accumulate in a circumstellar disc (in the xy-plane) around the

first core.
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Black dots show the temperature distribution from the FLASH/RT run, red dots show the temperature-density dependence of
the barotropic equation of state.
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Figure 5.9: Temperature distribution with respect to the gas density in the simulation box at the end of the binary simulation.
Black dots show the temperature distribution from the FLASH/RT run, red dots show the temperature density dependence of
the barotropic equation of state.
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Discussion

We have implemented a new radiative transfer solver based on the method of hybrid character-
istics. The solver successfully reproduces solutions of standard radiative transfer problems, in-
cluding NLTE and continuum radiative transfer as well as the diffusion limit. We proved the
feasibility of the method in a series of collapse simulation, where radiative transfer is the domi-
nant cooling process during the formation of the first protostellar core. In contrast to the FLD
approximation, our method preserves the anisotropy of the radiation field, which becomes cru-
cial in the transition from optically thin to optically thick regions (e.g, a protostellar disc). The
radiation solver is implemented in the framework of the MHD code FLASH which allows for
a straightforward coupling of both codes (e.g., the collapse simulations). Our implementation
fits very well into the parallel design of the FLASH code which combines AMR with domain
decomposition.

However, the culprit of the hybrid characteristics algorithm mainly lies in its rather large commu-
nication overhead which is caused by the communication of non-local radiative contributions.
By now, this is done without explicitly checking how large these contributions might be. One

alternative is to communicate the radiation field successively between subdomains similar to the
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method by Davis et al. (2012). We implemented this idea for testing purposes by using only guard
cell information for the irradiation of a subdomain. The communication has to be repeated until
the radiation field converges for each direction of the specific intensity field. If the whole com-
putational domain is optically thick, the radiation field converges very fast. However, especially
the transition regions from optically thin to optically thick regimes can easily require a lot of ad-
ditional communication to transport radiation through the whole domain which causes a com-
munication overhead even larger than for the hybrid characteristics method, especially if a high
angular resolution is required. However, a combination of both methods might be possible.

Our method has the significant advantage of working in an AMR framework with domain de-
composition for parallelization. Methods like Monte Carlo simulation are usually parallelized by
simulating the propagation of several photon packets at the same time, which requires informa-
tion about the whole domain to be communicated. This causes rather strong limitations concern-
ing the resolution and range of scales if a radiative transfer solver is coupled to a hydrodynamical
code. Our method overcomes this problem and gives rise to a number of possible improvements
to solve some of the problems we encountered during this work. In the following, we discuss the

most important.

6.1 The Problem with Time Dependence

This work mainly deals with the implementation of an adaptive raytracer which is used to per-
form a formal solution of the RTE. More precisely, we solve the time-independent RTE which
causes some problems, especially in the way the solver is coupled to the MHD integrator in
FLASH. First, we can not account for the transport of radiation by gas advection in the dynamic
diffusion limit (see also our discussion on reference frames in Section 6.3) since this requires the
implicit solution of the time-dependent radiative energy term in the FLD approximation (e.g.
Commercon etal.,2011; Flock etal., 2013). However, the FLD approximation causes the problems
discussed in Section 1.4 and 3.1. Therefore, it is more desirable to solve both the time-dependent
hyperbolic system of moment equations for the radiation energy and flux (Equations (2.27) and

(2.28)). This requires a closure relation in the form

P, =fE, (6.1)
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with f e dO
P nn
f=T=<_" )
B, [1dQ (62)

where f is the variable Eddington tensor. Equation (6.1) is a generalization of the Eddington ap-
proximation in which P, = 1/3E,. The Eddington tensor is 3 X 3 matrix in which the diagonal
gives the bulk radiation pressure while non-diagonal elements account for shear forces. There-
fore, it appears as a part of the stress-tensor in the combined momentum conservation Equation
(2.48). However, since the solution of the moment equations has to be done on the hydrodynam-
ical timescale, this approach requires an implicit solution scheme and a hybrid Godunov method
for radiation MHD (e.g. Sekora and Stone, 2010; Jiang et al., 2012) and a much more fundamental
modification of the hydrodynamical and MHD solvers in FLASH.

Another possibility to regain time dependence would be the time-discretization of the RTE itself
asdescribed in (Jack etal., 2012). In their approach, the implicit discretization is achieved by intro-
ducing an effective optical depth and a source function which contains intensity contributions

from the previous time step. Neglecting any relativistic terms of order v/c, the modifications are

o 1
AT = xAs = (XJrcAt) As, (6.3)
A X 11

== ——1I, 1. .
Sn )%(Sn_‘_XCAtnl) (64)

The modifications are very easy to implement since the solution scheme stays the same. But this
approach requires a lot of additional memory since the complete scalar field of angle-dependent
specific intensities has to be stored (I,,_; in the effective source function). Nevertheless, this is
an interesting approach in a code with parallelization based on domain decomposition which

reduces the memory requirement significantly.

6.2 The Problem with Energy Exchange

We already discussed the explicit energy coupling in Section 3.4.1. The coupling follows the ap-
proach by Davis et al. (2012) and requires some restrictions on the time step since the CFL time
step, in principle, can be much larger than the radiative cooling time which can lead to negative
or unphysically high internal energies in the gas. The time steps in our simulations were mostly

restricted to about one order of magnitude smaller than the CFL time step to overcome the prob-
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lem of large internal energy fluctuations. A much more robust approach is to couple the term
describing energy exchange implicitly. To emphasize this, we denote the monochromatic energy

source term from Equation (3.26) here in terms of the gas temperature:

aeint

ot

= —koc(arT* — E,). (65)

The source term is coupled to the internal specific gas energy e;n, which determines the temper-

ature itself through the equation of state (Section 2.2.1r) which reads
€t = v 1. (6.6)

Combining both, we can write the temperature in discretized form

T KqC

At Cy

(ar(T"H)* — EIY) . (6.7)

This form defines the new temperature at time step 7" implicitly. Handling the energy ex-
change in the form of Equation (6.7) is used in the context of the FLD approximation (e.g.
Commercon et al., 2011; Kolb et al., 2013). In these works, the gas-radiation energy exchange is
solved implicitly and simultaneously with the diffusion equation for the radiative energy. How-
ever, since the source term depends on the fourth power of the temperature, this requires a lin-
earization so that standard methods for solving large systems of coupled linear equations can be
used (e.g. preconditioning, successive over-relaxation). In our approach, this would require a
Lambda iteration at each time step to find a new internal energy and temperature that are con-
sistent with the radiative energy. This is not yet feasible and emphasizes the importance of using,

e.g., the VET method to handle the evolution of the radiative energy.

6.3 The Problem with Reference Frames

There is a problem in deriving the inertial frame equations of radiation hydrodynamics (Equa-
tions (2.48) and (2.49)) in the way we discussed and which is often disregarded. The emissivity
and opacities that appear in the exchange rates have values that are measured in the comoving
frame of the radiating fluid. If we use, for instance, line opacities from a table that is a result
of a laboratory experiment, those opacities are only valid in the fluid frame and 7oz in the fixed

frame of the Eulerian grid. Strictly speaking, one would have to solve the RTE in the comoving
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fluid frame and transform the solution back into the fixed frame. The correct exchange rates to
first order in 5 = v/c would then be the Lorentz transformations of Equation (2.48) and (2.49)

according to

A\
9" =90+ 3 8o (6.8)

g = g0 + V9, (6.9)

where g?o) and g are the components of the radiation four-force in the fluid frame

o) = / v / 42 (0 — °1°), (6:0)

1
go) = ;/dV/dQH(UB —xol), (6.11)

and the (0)-notation denotes quantities in the comoving fluid frame. The fluid velocity term in
Equation (6.8) originates from the work done by the force exerted on the radiation by the fluid.
The relativistic correction in the momentum exchange rate (6.9) accounts for the change of mo-
mentum caused by a relativistic increase of mass/energy. While these are the correct exchange
rates for the material momentum (2.46) and energy equations (2.47), the combined equations of
radiation hydrodynamics require a thorough derivation of the comoving moment equations of
the radiation field.

However, our approach does not solve the combined set of equations but, instead, solves the Eu-
ler equations and the RTE successively while the coupling is done according to Equation (2.47).
Furthermore, we focus on non-relativistic radiative transfer (8 < 1) and do not solve the RTE
in the fluid frame. Nevertheless, relativistic effects can still be non-negligible in regimes of high
optical depths even in the case of § < 1. To quantify the importance of relativistic effects, Mi-
halas and Weibel Mihalas (1984) define three regimes of radiation hydrodynamics dependent on

the optical depth and the relativistic speed in the fluid 8 = v/c. The cases are

T8 <K 1 streaming limit, (6.12)
7> 1, PBr <1 staticdiffusion limit, (6.13)
7> 1, [B7>1 dynamicdiffusion limit. (6.14)
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Problems arise in the dynamic diffusion limit because terms of the order of 3 in the radiation
hydrodynamical equations can no longer be neglected if they are multiplied by quantities of or-
der 7. A good example for the dynamic diffusion limit would be the interior of the sun. Typical
rotational and convective velocities are of the order of a few 0.1 c s~ while the mean free path
of a photon is about 0.01 cm (Mitalas and Sills, 1992). This means that in the dynamic diffusion
limit, radiation is principally transported by the advection of gas. In that case, terms describing
work done by radiation on the gas and the radiation enthalpy flux have to be taken into account.
However, applications handling radiative transfer in the ISM, which is dominated by dust con-
tinuum opacities, are usually well in the streaming or static diffusion limit in which we neglect
any relativistic contributions. Although this approach is widely used in radiation hydrodynam-
ical simulations in the field of star formation, it is a matter of debate if this naive approach is

actually reasonable. (see also chapter 6 of Castor (2007) and Krumholz et al. (2007b)).

6.4 The Problem with the Communication Overhead

Our method requires the communication of the face values which is the radiation leaving a subdo-
main (Section 3.2.2 and Figure 3.3). Thisis currently done using the OpenMPI implementation of
the MPI_ALLGATHER subroutine. This involves MPI to block any further computations dur-
ing the sending and receiving of data from the MPI communicator group. Figure 6.1 shows that
this results in a rather large communication overhead. The problem for this is not the actual speed
of data exchange but some MPI tasks waiting for other members of their communication group
to become ready. This is caused by the subdomain decomposition which is handled using a Mor-
ton space-filling curve. MPI tasks handling, e.g., subdomains at the upper boundary of the com-
putational domain need more time to walk through the AMR tree than MPI tasks handling the
lower boundary for rays that start at the lower boundary. Consequently, the MPI_ ALLGATHER
subroutine blocks the MPI task that are faster in their local AMR tree walk. The alternative is
to use non-blocking MPI subroutines, e.g., MPI_ISEND and MPI_IRECV, which allow MPI
task to continue computations while the data exchange is handled in the background. For test
purposes, we implemented a version of our raytracer replacing the MPI_ALLGATHER call
through a series of non-blocking MPI_ISEND and MPI_IRECYV calls so that the communica-
tion is handled in parallel with the tree walk (the tree walk is independent of the face values).
However, even though the tree walk is successfully handled in parallel with the communica-
tion, it turns out that the explicit call of successive MPI_LISEND and MPI_IRECV subroutines
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is almost an order of magnitude slower than the call of the blocking MPI_ALLGATHER sub-
routine. The communication with MPI_LISEND and MPI_IRECV requires the communica-
tion to be acknowledged by a call of the MPI_WAIT subroutine. The combined runtime of
all MPILISEND, MPI_IRECV and MPI_WAIT calls in our test cases has always been larger than
the runtime for one single blocking MPI_ALLGATHER call. The MPI_ALLGATHER subrou-
tine actually shows the best performance for handling all-to-all communication, especially when
a large number of tasks is involved and inter-node communication is required on a large super-
computer. Figure 6.2 shows the comparison of blocking and nonblocking communication for
a very simple test program. In this test program, we use 12 MPI task (6 per node) which send a
message of 160 MB to each other. Afterwards, each task has to sweep a large grid and do a simple
calculation per grid point. The upper chart in Figure 6.2 shows the runtime using a blocking
MPI_ALLGATHER call and the grid traversal is done afterwards. The lower chart shows an
approach using non-blocking MPI_ISEND and MPI_IREVC calls while traversing the grid in
between. Although the initial SEND and RECV calls are negligible in their runtime, the final
MPI_WAIT calls, required to check for consistent communication, show a larger runtime than
for the blocking MPI_ALLGATHER calls. These computations were conducted on two nodes
(each with 2x Intel Xeon Hexa-Core CPUs, 2.40 GHz) of our local computing cluster ”Golem” in
Hamburg and using the the Intel OpenMPI (version 1.4.3) implementation. We also performed
the same tests on the computing cluster "Kolob” in Heidelberg with a comparable architecture
and found similar results. Several tests with our raytracer show the same significant loss in per-
formance if non-blocking MPI communication is involved.

Instead of using non-blocking communication, we solved this problem partly by introducing a7-
gular groups. In this approach, all MPI tasks first compute their face values for a certain number
of angles before the communication step is done. By this, the different times needed for the tree
walk cancel each other out and the communication overhead is reduced. Optimally, all angles
should be computed in one single MPI_ALLGATHER step, but this is restricted by the avail-
able memory. However, in our implementation the size of the angular groups can be chosen so

that the user can optimally exploit available memory.
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Figure 6.1: The problem with the communication overhead: the plot shows fractional runtimes of the different steps involved
in the radiation transfer solver for the collapse simulations from Chapter 5. The solution is clearly dominated by a large com-
munication overhead because of the communication of face values.
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Figure 6.2: Comparison of the runtime of basic non-blocking and blocking MPI Communication with anindependent grid sweep
using 12 MPI task on 2 computational nodes. Each MPI task sends a message of 160 MB to each other task and sweeps a grid af-
terwards which is independent of the message data. Top: Using MPI_ALLGATHER to first communicate and sweep afterwards.
Bottom: Using a series of 11 MPI_ISEND and MPI_IRECV to manually exchange data while simultaneously sweeping the grid.
The non-blocking communication requires the call of the MPI_WAIT subroutine in the end to check for successful communica-
tion. Black lines in the bottom chart show the individual data exchanges between the task. MPI calls are marked in red, local
computations are marked in green.
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Appendix

A1 Accelerated Lambda Iteration

The lambda operator A describes the task to compute the radiation field from the source func-

tion. Itis usually written as

J = A[S]. (A1)

Formally, we can solve this by inverting the lambda operator. When we arrange the cells of a
3D domain successively in a 1D vector, we can write the operator as a matrix. But the complete
operator for one cell in the computational domain contains all radiative contributions from each
other cell. Hence, the Lambda matrix is far from being sparse. The explicit construction and
storage of the lambda matrix would easily reach computational limits in terms of memory re-
quirements. Furthermore, the inversion of the Lambda operator is far too costly to be used in
3D radiative transfer. Instead, the formal solution (2.20) is used. Since the source function may
depend on the mean intensity, this task requires iteration over Equations (2.18) to (2.20). This
is called lambda iteration but it usually fails in optically thick regimes. This happens because

photons can be trapped and scattered many times, if a single cell of the computational domain is
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optically thick. The ordinary lambda iteration is not able to account for these processes on scales
smaller than the spatial resolution.

The idea behind the accelerated lambda iteration (ALI), is to extract these sub-cell scattering con-
tributions from the lambda operator (and hence from the iteration), because we are not able
to resolve them anyway. The extracted part of the ordinary lambda operator is then put into a
new approximated lambda operator, which is solved quasi-analytically. Since the approximated
lambda operator usually only contains a small part of the whole lambda operator (the subgrid
part so to say), it is easy to compute, store and solve. Mathematically, the lambda operator be-

comes split

A= (A—A")+ A", (A2)

where A* denotes the approximated lambda operator. Inserting this into equation A.rand using

the source function for isotropic scattering (Equation 4.3), we get
S=eB+(1—¢€)(A—A")S+(1—¢€A*S. (A)

Since the A*-operator consists of only a small part of the whole lambda-operator, it is sparse and

easy to solve. We bring it on the left-hand side
[1—(1—€eA]S=€eB+(1—¢)(A—-A")S. (A.4)

We introduce the iteration scheme, because there is still a contribution of the source function on
the right-hand side. This remaining contribution can be regarded as the non-local contribution
of the radiation field, which is solved by iteration. Inverting the approximated lambda-operator
then yields

S =11 - (1—e)A ] (eB+ (1 —e)(A—A*)S™). (Ass)

The scheme in Equation A.s is a combination of iteration and analytic solution. The non-local
contributions (in the lambda matrix (A — A*)) are accounted for by iteration while the local
subgrid scattering is handled by an inversion of the approximated lambda operator (A*). The
computational cost of the inversion of the A*-operator depends on its bandwidth, which deter-
mines the range on which we solve analytically. Obviously, a diagonal A* is trivial to invert. But
since the diagonal part of the lambda operator describes only the local scattering in a single cell, it
is not the best choice in terms of iterative performance. Usually, a tri-diagonal operator yields the

best compromise between fast convergence and computational cost. But this requires the solu-
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tion of a coupled set of linear equations, which is complex to implement. For now, we stay with
a diagonal local A*-operator, since it is the easiest one to implement and still has a tremendous

effect on the convergence rate.
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