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Zusammenfassung

In der vorliegenden Arbeit werden exakte, perturbative und mean-
field artig approximative, numerische und algebraische Methoden an-
gewendet, um die Realzeit-Dynamik und die Magnetisierungsstruktur
von nanoskaligen Spin-Systemen zu analysieren. Die Magnetisierungs-
dynamik von einzelnen Cobaltatomen auf der Oberfläche von Pla-
tin und der Relaxationsprozess des Spins von einem Eisenatom auf
der Oberfläche von Indium-Antimonid und anderen Substraten wer-
den simuliert, wobei der Einfluss eines spin-polarisierten Rastertun-
nelmikroskopes berücksichtigt wird. Dies ermöglicht eine einsichtigere
Interpretation und Vorhersage der experimentellen Daten. Der ma-
gnetische Informationstransport in Spinketten aus Eisenatomen auf
Iridium und anderen Substraten wird untersucht und Lieb-Robinson
bounds werden als obere Schranke für die Maximierung der Signalge-
schwindigkeit eingeführt. Eine exakte obere Schranke für den Fehler
von Erwartungswerten, verursacht durch physikalische Approximatio-
nen der Umgebung eines lokalen Spin-Untersystems, wird untersucht
und beispielhaft auf ein spinbasiertes Logik-Bauelement angewendet.
Approximierte KMS-Zustände werden für eine numerische Behand-
lung von vielfachen thermodynamischen Gleichgewichtszuständen von
Spin-Systemen eingeführt und kritisch diskutiert.

Abstract

The present work is devoted to the application of exact, perturba-
tive, and mean-field type approximate, numerical and algebraic meth-
ods, for the investigation of the real-time dynamics and magnetization
structures of nanoscale spin systems. The magnetization dynamics of
single cobalt atoms on the surface of platinum, and the spin relaxation
process of iron atoms on the surface of indium-antimonide and other
substrates are simulated. The influence of a spin-polarized scanning
tunneling microscope is included in the calculations. This enables a
clear interpretation and prediction of the experimental data. The mag-
netic information transfer in spin chains consisting of iron atoms on
iridium and other substrates is investigated and Lieb-Robinson bounds
are used to obtain upper limits on the enhancement of the signal speed.
An exact upper bound on expectation value errors of quantum subsys-
tems is investigated, when the environment is physically approximated,
and exemplarily applied to an all-spin based atomic-scale logic device.
Approximated KMS states are developed for a numerical handling of
multiple thermodynamic equilibrium states of spin systems and criti-
cally discussed in this work.
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1 Introduction
In February 1922, the experimental investigations of Otto Stern and Walther
Gerlach revealed a discontinuous distribution of silver atoms, when an exter-
nal magnetic field was applied. Wolfgang Pauli proposed a quantum mechan-
ical concept of spin and worked out a corresponding mathematical theory in
1927. An agreement between Pauli’s concept of spin and the Stern-Gerlach
experiment was found, which provided the foundations for upcoming spin
structure determinations and applications. The nuclear spin was found to
be helpful for structural investigations of chemical and biological systems by
using nuclear magnetic resonance spectroscopy, and properties arising from
unpaired electron spins in magnetic atoms was useful in developing hard disks
for computer systems.

The development of future spintronic devices [1–5] begins from the scale of
single magnetic atoms and is a bottom-up approach for the ongoing minia-
turization of hard disks and other computer chips. The improvement of these
devices requires the consideration of certain magnetic properties, such as, the
stability and conservation of spin structures for a sufficient length of time,
the ability to locally manipulate a spin structure by an external influence,
and lastly a faster transport of magnetic information. Theoretical investi-
gations towards the prediction and interpretation of experimental findings
assist in the quest for suitable magnetic structures that provide the required
properties adequately. As such, spin-sensitive studies of individual magnetic
adatoms and atomic ensembles on surfaces by spin-polarized scanning tun-
neling microscopy (SP-STM) [1, 6–11] have given rise to the necessity of a
quantum mechanical description of the atomic and molecular spin structures
and spin dynamics [12, 13].

A variety of numerical methods were developed to estimate expectation
values of quantum systems [14–24]. Depending on the physical situation, dif-
ferent approximations are used in these methods [25–37]. Density functional
theory (DFT) was applied as an ab-initio method to obtain the ground state
and the corresponding electronic structure, which provided fruitful progress
at the intersection of theory and experimentation; e.g., the theoretical de-
scription of the experimental findings of magnetic skyrmions in a monolayer
of iron on iridium [38]. Extremely cold systems or properties that are not
very temperature sensitive are interesting for ground state approximations
obtained by DFT. The expansion of DFT to finite temperatures has also
made progress [39]. Numerical ab-initio methods were also developed to ob-
tain parameters that enter effective Hamiltonians of Quantum Spin Systems
(QSS), which can then be further used in other numerical methods, such as
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"exact diagonalization" (ED) or Quantum Monte Carlo methods (QMC). As
the name suggests, ED enables an exact handling of QSS and is applicable to
system sizes up to ≈ twenty spin 1/2 particles, depending on the numerical
code and memory capacity of the used computer system. QMC principally
uses the MC methods to handle the multi-dimensional integrals that arise
from many-body quantum systems, and has applications to impurity models
at finite temperatures [40]. Continuous-Time (CT)-QMC provides a dynam-
ical description of these systems [41]. The mean-field theory approximates
the effect of a large number of particles on single particles as an averaged
field effect [42].

A numerical simulation of a system at inverse temperature β and Hamil-
tonian H, which is initially in thermodynamic equilibrium, is commonly per-
formed using the density matrix ρ = e−βH (or also ρ = e−βH−νN) as initial
state. For finite-dimensional QSS ρ = e−βH is the unique density matrix
which minimizes the free energy (and satisfies the maximum entropy prin-
ciple). But if the thermodynamic limit is a suitable approximation for the
considered system, there might exist other equilibrium states which can be
captured by the system. Suitable examples in spin-based nanotechnology are
the experimentally investigated nanoislands [43] which possess two different
relatively stable magnetization directions. It is evident that the density ma-
trix ρ = e−βH cannot describe both states. Thus, it is interesting to ask which
density matrix might be used instead of ρ = e−βH to describe the other ther-
modynamic equilibrium states. We will investigate this question based on the
results of the Kubo-Martin-Schwinger (KMS) states in [44] and a mean-field
type approximation. The obtained approximated KMS states are interesting
candidates to describe thermodynamically stable spin structures of finite size
which are desired in high-density data storage.

In general, the environment (often called the bath) influences the equi-
librium properties of a local subsystem and is a fundamental problem for
simulations; only a few model systems exist that can be solved exactly [45].
Therefore, one commonly uses simplified and idealized interactions for the
description of the environment (bath), e.g., itinerant electrons are assumed
to be absolutely free, or several interacting quantum spin particles are as-
sumed to form a "macro spin". The exact error produced by these physical
approximations is often difficult to estimate and remains unclear. Thus, the
quality of the obtained expectation values is often unknown, and the devi-
ation to the values one would obtain by using more realistic interactions is
uncertain. These questions will be investigated quantitatively by introducing
an exact bound ε on these errors, and a particular example will be discussed
in which the bound ε provides useful results for weakly interacting systems,
depending on the temperature. The bound also provides the maximum error
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for certain numerical approximations, due to the neglect of higher orders in
perturbation theory.

A further difficulty arises if a certain physical property, such as the signal
velocity, has to be maximized by varying several experimental parameters,
e.g., the temperature, the external magnetic field, anisotropy energies or
differently prepared initial states. While the signal speed is crucial for the
efficiency of future spintronic devices, finding the maximum velocity can be a
considerable numerical challenge and is often impossible for large and realistic
quantum systems. Even for small systems, a large number of calculations
are required until an accurate maximum value is found, which costs valuable
research time. Hence, a general upper limit on the desired physical property
that is independent of these parameters is ideal. This will be examined in
detail using particular examples of information transfer in spin chains and
using Lieb-Robinson bounds as limits on the signal speed.

Several other interesting and unanswered questions are related to the
length scale where nanotechnology operates, which is in transition between
quantum and classical physics. Classical spin systems have the advantage
that simulations can be performed with relatively large particle numbers
compared to most quantum spin models. But if quantum effects are impor-
tant, simulations using classical spin systems might lead to inaccurate pre-
dictions and complexities in the interpretation of experimental data. We will
investigate this important question by applying ensemble- and time-averaged
magnetization curves of Cobalt atoms on Platinum for the interpretation of
experimental data. A key leading to the interface between experimental re-
search activities and the algebraic framework of mathematical physics is also
found and will be discussed.

All of our investigations are based on the C∗-algebraic [46–58] reformu-
lation of Quantum Statistical Mechanics [44, 59–61]. It is a mathematical
reformulation of the original mathematical structure of Quantum Mechan-
ics from the early 1930s and provides additional analytical techniques to
the above mentioned numerical methods. The general analysis of equilib-
rium states in the mid 1960s revealed that the algebraic framework facili-
tates useful techniques for their characterization by the KMS condition. A
deep connection between the Tomita-Takesaki modular theory and the KMS
condition was found which led to powerful computational techniques. This
enabled investigations of basic physical questions, such as the problem of
"return to equilibrium" and the "stability of equilibrium states under lo-
cal perturbations", in a more wholesome analytical fashion, which numerical
methods alone could not capture. It was also found that ground states have
the tendency to be less stable than states that satisfy the KMS condition
(KMS states) at finite temperatures [44]. In 1967 Robinson introduced an
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algebraic approach to the statistical mechanics of QSS [62–64]. Since that
invention, there has been ongoing development [65–73]. It was found that
KMS states also satisfying the condition of "local thermodynamic stability"
[44]. Thus, these states provide the most stable magnetization structures. A
citation from a two pages long conclusion ensuing the 1052 page long dis-
quisition on the utility of operator algebras in quantum statistical mechanics
[44, 60] serves as an introductive overview:

"...all the basic examples such as the Heisenberg and Ising models, can be
described by C∗-dynamical systems (A, τ) and states of these systems corre-
spond to the physical states described by the model. A global viewpoint of this
type is essential if one desires understanding of such basic questions as the
nature of thermodynamic phases, mixture properties of the phases, etc., and
this is perhaps the greatest single advantage of the algebraic methods. Tradi-
tionally, equilibrium states had been described by a variety of methods, e.g.,
implicit or explicit thermodynamic limits of the Gibbs ensembles, the princi-
ple of maximum entropy, etc., but in all these methods the affine properties
of the states were unclear. Phase transitions were partially understood in
terms of nondifferentiability of the thermodynamic functions, or through lack
of clustering of the states, but no framework really existed for the definition
and characterization of pure phases and mixed phases. The realization that
the equilibrium states could in fact be identified as states over the appropriate
C∗-dynamical systems immediately provided this framework. The equilibrium
states at each fixed temperature were seen to form a convex set with the ex-
tremal points corresponding to pure phases and the mixed states to mixtures
of phases. This immediately motivated much of the analysis of decomposition
theory, invariant states, periodic states, almost periodic states, etc., described
in Chapter 4. ... The second striking feature in the algebraic description of
equilibrium phenomena is the role played by the KMS condition. Starting
from the Gibbs ensemble it is evident that this condition is satisfied but it is
completely unclear that this condition alone should characterize equilibrium.
Nevertheless, this is the case for a large class of quantum spin systems, and
also for the ideal Fermi gas. This rather surprising result is both of practical
and conceptual utility. ... On the other hand, we have seen in Chapter 5 that
the KMS condition has a variety of characterizations which emphasize differ-
ent physical features such as stability under perturbations and ergodicity in
the form of asymptotic abelanness. This clarifies to a large extent the nature
of the equilibrium states even if it does not provide any profound explanation
for their definition."

Another area of fruitful progress was founded by the derivation of physically
meaningful inequalities, i.e., values which represent the upper or lower lim-
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its of a quantitative physical property. The following achievements of the
algebraic approach to QSM are of interest to some of our purposes:

1. A well-defined and correct handling of quantum systems in the ther-
modynamic limit [44],

2. The analysis of multiple equilibrium states ωβ and the association with
thermodynamic phases [44],

3. General bounds on specific physical quantities, e.g., Lieb-Robinson
bounds on the signal velocity or bounds on the approximation of ground
states [74] and finite temperature equilibrium states, and

4. A framework to investigate the stability properties of equilibrium states
ωβ under local perturbations P [44].

It is interesting to question how far these algebraic methods would be suitable
for the assistance of experimental research activities and in supplementing
numerical methods in modern condensed matter theory. It is worthy to men-
tion that an explicit form of the KMS condition is often used in modern
numerical quantum many-body methods as a boundary condition, however,
personal conversations indicated that the algebraic characterization of equi-
librium states as KMS states and the corresponding analytical techniques are
unfamiliar in condensed matter theory. A structural application of the alge-
braic methods to experimentally investigated spin systems will be provided
by the general principle (A, τ)� (A, τP ). Some cases in which the algebraic
methods supplement the commonly used numerical methods are discussed.
The connections are illustrated in specific examples which are now briefly
introduced and elaborated further in chapters 3,4,5 and 6.

Two different magnetization directions, e.g., "up" and "down", of a mag-
netic particle serve as a storage unit, which is called a bit. Self-evidently, the
size of the magnetic particle should be as small as possible, so that a maxi-
mum density of stored data can be achieved. In 2007, SP-STM studies showed
that a magnetic STM tip could be used to switch between two non-zero mag-
netization orientations of nanoislands consisting of approximately 100 iron
atoms (a surface area of ≈ 7 nm2) placed on the surface of tungsten (110)
[43]. Interestingly, the nanoislands which were less than 100 atoms in [75]
were seemingly large enough, such that these islands could be investigated
theoretically in the thermodynamic limit. Besides the current-induced mag-
netization switching, there was a thermally activated magnetization switch-
ing. The two different magnetization directions were separated by an energy
barrier and the finite temperature was responsible for a fluctuation of the
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energy of the nanoisland. If the temperature is relatively high, the magneti-
zation switches relatively often from one direction "over the energy barrier"
to the opposite direction. It was found experimentally, that the temperature
dependence of the switching rate for Fe/W(110) nanoislands was in good
agreement with the so-called Néel-Brown law [43, 75]. Thus, a high energy
barrier in combination with a low enough temperature should provide (at
least) two stable magnetization orientations of a magnetic particle, i.e., an
appropriately low switching frequency between "up" and "down" so that the
magnetic particle can be used as a data storage unit. Single cobalt atoms on
the surface of platinum (111) possess a very high anisotropy energy barrier
of K = 9 meV. If a classical spin model is used for the description of the
Co/Pt(111) system and the temperature is sufficiently low (≈ 0.3 K), one
obtains two stable magnetization directions "up" and "down" and the Néel-
Brown law predicts a life-time of a few million years for these orientations.
From this point of view, this system seems to be an exciting candidate for
the investigation of a high density data storage device. However, the ex-
perimental SP-STM results at a temperature of T = 0.3 K and T = 4.2 K
[12] showed that there is only a single stable magnetization direction and
a switching rate of less than a few milliseconds. This discrepancy will be
clarified quantitatively in chapter 4.2 based on our results in [13], in which
quantum effects are identified for the observed discrepancy. The classical
spin description provides an agreement between the classical ensemble av-
erage and the experimentally time averaged expectation value of a single
adatom. However, the classical descriptions are unable to capture the cor-
rect dynamics of the adatom within the resolution time of the SP-STM setup.
The quantum description provides agreement for both, the ensemble- and the
time-averaged magnetization curves. There is also an interesting qualitative
algebraic explanation, because a small system (the single cobalt adatom),
which is coupled to an ideal gas of fermions (the substrate electrons of the
platinum) holds a single and, therefore, unique KMS state. This can be
checked by an application of Theorem 5.2.24. together with Corollary 5.4.5.
in [44].

As mentioned in the beginning, apart from the storage of bits, the trans-
port of magnetic information is a further crucial process for spintronic de-
vices. The all spin-based atomic-scale logic device [2] uses spin chains con-
sisting of 5 iron atoms on copper(111) to transport the magnetization infor-
mation of the input islands to the output atom. In 2012 it was found that
spin chains consisting of approximately 100 iron atoms on the surface of an
iridium(001) crystal [76] are promising systems for the transport of magnetic
information. The enhancement of the magnetic signal speed is of primary
interest for spintronic applications and there are several experimental pa-
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rameters which may influence this, such as, exchange energies, anisotropy
energies, external magnetic fields, the applied bias voltage and the initial
state. In principle, there is an infinite number of possibilities for an adjust-
ment of these parameters. We give an upper bound on the enhancement of
the signal velocity, which is independent of most of these parameters [77].

The third basic spintronic operation includes magnetization switching
by the SP-STM tip. The conversion of one stable magnetic structure into
another stable magnetic structure is a central goal in spin-based nanotech-
nology. From the algebraic point of view, the action of the magnetic tip cor-
responds to a small perturbation of the investigated sample, e.g., the norm
of the modified Tersoff-Hamann model is finite (in the C∗-algebra, and not
in the Banach space of interactions). This fact validates the application of
said algebraic techniques for the investigation of the stability of KMS states
under local perturbations, as explained in [44, 60]. Interesting connections
to experimental research activities are provided by the creation and deletion
of magnetic skyrmions [78]. Approximated KMS states are constructed for
a numerical investigation of problems concerning "stability of equilibrium
states under local perturbations" and we critically discuss problems as well
as potential future work.

Organization of the thesis
The "Mathematical basis" in chapter 2 serves as an introduction into the
algebraic language and starts with the elementary properties of C∗-algebras,
states, representations, derivations and ∗-automorphisms. These properties
are of general nature, i.e., they are valid for all physical quantum theories
which can be described using the algebraic approach. In this chapter and the
next, we also refer to parts that are shifted to the appendix, which contains
further mathematical structures for future developments.

Chapter 3 then focuses on QSS and describes the mathematical structure
of systems with a finite number of particles as well as systems in the ther-
modynamic limit (systems with an infinite number of particles). We discuss
properties of KMS states, introduce mean-field approximated KMS states
and derive simplified formulas for the latest, most general Lieb-Robinson
bound.

In chapter 4 we describe the functionality of SP-STM by a general prin-
ciple, a C∗-dynamical system (A, τ) and a related perturbed C∗-dynamical
system (A, τP ). This is the foundation of the thesis and provides the interface
between the algebraic reformulation of QSM and the experimental research
activities on magnetic quantum systems. The time-averaged measurements
are explained theoretically and then calculated to clarify and support the
experimentally found magnetization curves of single cobalt atoms on plat-
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inum(111). We also numerically investigate the relaxation process of a single
magnetic adatom and corroborate the findings with the experimental results
for Fe/InSb, thereby validating its structural application. We then discuss
how the general principle could be used to include even more fundamental
physical theories in addition to QSS, e.g., QFT, for a more realistic modeling
of the tunneling current and substrate electrons.

Chapter 5 discusses information transport in magnetic spin chains. The
exact signal propagation is investigated and a Lieb-Robinson bound is used
to examine the maximum enhancement of the signal speed when several
experimental parameters are changed.

In chapter 6 a further bound is derived which provides an exact limit
on errors that are encountered during certain physical approximations. The
bound is applied to examine quantitatively how an atomic-scale logic device
should be designed to work also at higher temperatures.

The appendix contains a brief summary of well-known results [44, 60],
which are important for some of the calculations in this work, and might be
relevant for future work. This thesis is then concluded with a summary of
achievements and an outlook towards potential future work.
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2 Mathematical basis
In this section we will introduce the elementary mathematical objects, which
are essential for the description of a quantum theory in the algebraic frame-
work [60, 79–84]. The central object is a C∗-algebra A, which constitutes
the intrinsic mathematical description of the theory. The algebraic frame-
work has special advantages for infinite-dimensional systems, which appear
in quantum field theoretical models as well as in QSS, if the thermodynamic
limit is considered. The ladder case is of notably interest for condensed mat-
ter systems.

A mathematical framework for the physical description of nature consists es-
sentially of two basic concepts: A kinematical structure describing the states
and observables at a fixed time, e.g., t = 0, and a dynamical rule describ-
ing the change of these states and observables with time. The algorithms
of this section are of general nature, i.e., valid for several physical quan-
tum theories as QSS, fermionic lattice systems (including the Hubbard and
Anderson model) as well as for QFT. This generality establish the opportu-
nity to change to physically more fundamental models without changing the
abstract mathematical framework. Therefore, several techniques based on
the general framework (see the appendix) are applicable to investigate the
change of physical properties when the level of the physical approximation is
up- or degraded. In general, there are two approaches to the algebraic struc-
ture associated with a quantum theory [44, 60]. One could start with the
Hilbert space H of vector states of the particles and subsequently introduces
algebras of bounded operators corresponding to observables of the particles.
Alternatively, one can choose a more abstract approach, starting with struc-
tural features of a C∗-algebra A, and recover the other approach by passing
through a particular representation (H, π). π maps an abstract operator
A ∈ A to a representative π(A) ∈ B(H) in a set B(H) of bounded operators
on the Hilbert space H. Before we start with introducing C∗-algebras, we will
first summarize structural differences of the original formulation of quantum
physics and the algebraic reformulation:

Quantum mechanics by the early 1930s [60]:

1. an observable is a selfadjoint operator A on a Hilbert space H;

2. a (pure) state is given by a vector ψ ∈ H;

3. the expectation value of A in the state ψ is given by (ψ,Aψ);

4. the time evolution of the system is determined by the selfadjoint Hamil-
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tonian operator H through either of the algorithms

A 7→ A(t) = eitHAe−itH , or ψ 7→ ψ(t) = e−itHψ. (1)

Algebraic reformulation:

1. a bounded observable A is a selfadjoint element of a C∗-algebra A;

2. a state ω is a positive, normalized, and linear functional on A, i.e.,
ω ∈ A∗, where A∗ is the dual of A;

3. an expectation value is given by ω(A) = (ψω, πω(A)ψω), where
πω : A→ B(H) and ψω ∈ Hω, where the index ω denotes the association
of the representation (Hω, πω) with the state ω;

4. the time evolution of the system is given by a one-parametric
(semi-) group of ∗-automorphisms τt, which is generated by a derivation
δ. Thus, the derivation δ contains the information of the Hamiltonian.
A rough estimate provides

A 7→ τt(A) = e
t
~ δ(A). (2)

For finite-dimensional systems we have

τt(A) = e
itH
~ Ae−

itH
~ . (3)

However, in the thermodynamic limit this is in general not the case, because
the Hamilton operator may becomes unbounded. In this case, the derivation
δ provides the correct description. The action of δ is described in section 2.3.

2.1 C∗-algebras

A complex vector space A which is equipped with a multiplication law A ×
A −→ A, (A,B) 7→ AB, is called an algebra. The product satisfies

1. A(BC) = (AB)C,

2. A(B + C) = AB + AC,

3. αβ(AB) = (αA)(βB)

for A,B,C ∈ A, α, β ∈ C. A ∗-algebra is an algebra equipped with an
involution A 3 A 7→ A∗ ∈ A with the following properties:

1. A∗∗ = A,
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2. (AB)∗ = B∗A∗,

3. (αA+ βB)∗ = αA∗ + βB∗,

where α denotes the complex conjugate of α. The ∗ operation corresponds to
the adjoint operation † in the common fashion of quantum physics. A subset
B of A is called selfadjoint if A ∈ B implies A∗ ∈ B. A normed algebra A
is obtained if to each element A ∈ A there is associated a real number ‖ A ‖,
called the norm of A, satisfying the requirements

1. ‖ A ‖≥ 0 and ‖ A ‖= 0 if, and only if, A = 0,

2. ‖ αA ‖= |α| ‖ A ‖,

3. ‖ A+B ‖≤‖ A ‖ + ‖ B ‖,

4. ‖ AB ‖≤‖ A ‖‖ B ‖.
The norm induces a metric topology on A, called the uniform topology.
Neighborhoods in this topology are given by

U(A; ε) = {B;B ∈ A, ‖ B − A ‖< ε}, (4)

where ε > 0. If C ∈ U(A; ε), then C is said to be an ε-neighbor of A. A
normed and complete algebra with involution, satisfying ‖ A ‖=‖ A∗ ‖, is
called a Banach ∗-algebra. A C∗-algebra is then defined by

Definition 2.1. ([60], 2.1.1.): A C∗-algebra is a Banach ∗-algebra A with
the property

‖ A∗A ‖=‖ A ‖2 (5)

for all A ∈ A.

A connection from this abstract description to the Hilbert space of a
quantum theory is provided by

Theorem 2.2. ([60], 2.1.10.): Let A be a C∗-algebra. It follows that A is
isomorphic to a norm-closed selfadjoint algebra B(H) of bounded operators
on a Hilbert space H.

In our applications the operator norm of an element A ∈ B(H) is given
by

‖ A ‖= sup{‖ AΨ ‖; Ψ ∈ H, ‖ Ψ ‖= 1}. (6)

Thus, our chosen operator norm is related to the norm ‖ Ψ ‖= (Ψ,Ψ) of a
vector state in a Hilbert space. It is evident that the expectation value of A
in an arbitrary normed vector state Φ is smaller or equal than the norm of
A, i.e., (Φ, AΦ) ≤‖ A ‖.
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2.2 Representations and states

States and representations are closely related. If one starts from an ab-
stract C∗-algebra and wants to calculate an expectation value one has to pass
through a representation. As the name illustrates, a representation "repre-
sents" an abstract observable as an explicit operator, e.g., the z-component
of a spin-1/2 operator can be represented by a diagonal 2×2-matrix. In 1931
a uniqueness theorem for the representations of finite dimensional quantum
systems was obtained, called the Stone von Neumann uniqueness theorem.
However, if the thermodynamic limit is performed the system gets infinite-
dimensional and the uniqueness theorem is no longer valid, which is also
the case for a QFT. This lack of uniqueness was not generally recognized
until the 1950s when Segal, Friedrichs, and others gave examples of inequiv-
alent regular representations. A theorem which essentially showed that two
pure ground states are either equal or generate unitarily inequivalent repre-
sentations was proved by Haag in 1955. Later it was found that unitarily
inequivalent representations are also present by the non-uniqueness of KMS
states (thermodynamic equilibrium states). Thus, the Schrödinger represen-
tation suffices for the description of a finite number of particles, but other
representations of operators on Hilbert spaces are essential, if a system is
investigated in the thermodynamic limit [44, 60].

Representations

A ∗-morphism between two ∗-algebras C and B is defined as a mapping
π : A ∈ C −→ π(A) ∈ B for all A ∈ C and such that

1. π(αA+ γC) = απ(A) + γπ(C),

2. π(AC) = π(A)π(C),

3. π(A∗) = π(A)∗

for all A,C ∈ C and α, γ ∈ C. The kernel of a ∗-morphism is given by the
set

ker(π) = {A ∈ A; π(A) = 0}. (7)

The definition of a representation can now be introduced.

Definition 2.3. ([60], 2.3.2.): A representation of a C∗-algebra A is defined
to be a pair (H, π), where H is a complex Hilbert space and π is a ∗-morphism
of A into B(H). The representation is said to be faithful if, and only if, π is
a ∗-isomorphism between A and π(A), i.e., if, and only if, ker(π) = {0}.
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The space H is called the representation space and the operator exam-
ples π(A) are called the representatives of A. A faithful representation π
also satisfies ‖ π(A) ‖=‖ A ‖, for all A ∈ A. This is certainly an impor-
tant fact for the calculation of bounds, which include the operator norm,
e.g., Lieb-Robinson bounds or our bound ε on physical approximations. A
∗-isomorphism of a C∗-algebra A into itself is called a ∗-automorphism τ .
An important result for the norm of an observable during the dynamical
evolution of a physical system is given by

Theorem 2.4. ([60], 2.3.4.): Each ∗-automorphism τt of a C∗-algebra A is
norm preserving, i.e., ‖ τt(A) ‖=‖ A ‖ for all A ∈ A.

This theorem is of special interest for the derivation of dynamical bounds
(e.g. Lieb-Robinson bounds).

States

The dual of a C∗-algebra A is denoted by A∗ and consists of continuous,
linear functionals over A. The norm of any functional f over A is defined by

‖ f ‖ =̇ sup{|f(A)|; ‖ A ‖= 1}. (8)

The physical states form a convex subset of this dual and they are introduced
by

Definition 2.5. ([60], 2.3.9.): A linear functional ω over the C∗-algebra A
is defined to be positive if

ω(A∗A) ≥ 0 (9)

for all A ∈ A. A positive linear functional ω over a C∗-algebra A with
‖ ω ‖= 1 is called a state.

Starting from a state ω, we can construct a representation (Hω, πω) of A
and a vector Ωω ∈ Hω such that ω is identified as the vector state ωΩω , i.e.,
such that

ω(A) = (Ωω, πω(A)Ωω) (10)

for all A ∈ A. Existence and uniqueness of this representation is checked by

Theorem 2.6. ([60], 2.3.16): Let ω be a state over the C∗-algebra A. It
follows that there exists a cyclic representation (Hω, πω,Ωω) of A such that

ω(A) = (Ωω, πω(A)Ωω) (11)

for all A ∈ A and, consequently, ‖ Ωω ‖2=‖ ω ‖= 1. Moreover, the represen-
tation is unique up to unitary equivalence.
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The set of all states is denoted by EA and the set of pure states by
PA. Because the sets EA and PA are subsets of the dual A∗, they can be
topologized through restriction of any of the topologies of A. The uniform
topology is determined by specifying the neighborhoods of ω to be

U(ω; ε) = {ω′;ω′ ∈ A∗, ‖ ω − ω′ ‖< ε}, (12)

where ε > 0. We will derive a radius ε for an application to maximum er-
rors caused by physical approximations and apply the bound exemplarily
to the all-spin based atomic-scale logic device. In view of physical equiv-
alence between different states as well as for the analysis of different con-
vergence properties, the weak∗ topology is also of interest. This topology is
defined by neighborhoods of ω, which are indexed by finite sets of elements
A1, A2, ..., An ∈ A, and ε > 0. The neighborhoods are given by

U(ω;A1, ..., An; ε) = {ω′;ω′ ∈ A∗, |ω(Ai)− ω′(Ai)| < ε, i = 1, 2, ..., n}.
(13)

However, we will not work with this topology in this thesis. But we mentioned
it as an interesting point for future work.

2.3 Derivations and C∗-dynamical systems

For systems consisting of a finite number of particles, where each particle
has a finite number of degrees of freedoms, the states are given by rays in a
Hilbert space H. The observables act as operators on H. However, if the ther-
modynamic limit is considered, the system becomes infinite-dimensional. In
this case, the algebraic reformulation of quantum physics identifies the states
with linear functionals over the appropriate algebra A of observables. For a
finite-dimensional system, as well as for an infinite-dimensional system the
dynamics is given by a flow in a Banach space. For the finite-dimensional
quantum system it is generated by a group of unitary operators Ut on the
Hilbert space, and for the infinite-dimensional system (when the thermo-
dynamic limit was performed) it is generated by a one-parameter group of
∗-automorphisms τ of the algebra A of observables. The natural description
of the dynamics is in terms of the infinitesimal change of the system. For
a finite-dimensional quantum system, this infinitesimal change is given by a
Hamilton operator H, and for an infinite-dimensional system it is given by a
derivation δ of the associated algebra A.

Definition 2.7. ([60] Definition 3.2.21.): A symmetric derivation δ of a
C∗-algebra A is a linear operator from a ∗-subalgebra D(δ), the domain of δ,
into A with the properties that
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1. δ(A)∗ = δ(A∗), A ∈ D(D(δ)),

2. δ(AB) = δ(A)B + Aδ(B), A,B ∈ D(δ).

The two defining properties originate by differentiation, in the topology
dictated by the continuity of τ , of the relations

τt(A)∗ = τt(A
∗), τt(AB) = τt(A)τt(B). (14)

For finite-dimensional systems the Hamiltonian H and the derivation δ are
related via the action on a bounded operator A:

δ(A) = [iH,A]. (15)

For infinite-dimensional systems one usually considers derivations δn, δn(A) =
[iHn, A], of finite-dimensional subsystems AΛn and then uses the norm closure
δ̄ for the infinite case. However, this requires more detailed techniques, see
the appendix and Theorem 3.2.25. [60] for UHF algebras (Example 2.6.12.
[60]).

The flow in the Banach space, which gives the dynamics, is obtained by
the integration of the infinitesimal prescriptions and a differential equation
of the form

dAt
dt

= SAt (16)

has to be investigated under several circumstances and assumptions. In every
case the symbol A corresponds to an observable, or a state, of the physical
system and will be represented by an element of some suitable space X. The
map t ∈ R 7→ At ∈ X describes the dynamics of A and S is an operator on
X, which generates the infinitesimal change of A. Existence, uniqueness and
stability under small perturbations are of fundamental interest for solutions of
this equation. Formally, the solution is given by At = UtA, where Ut = etS.
However, there are several different types of continuity of t 7→ Ut, which
leads to a structural hierarchy. However, these continuity properties require
more detailed mathematical knowledge and we advise the mathematically
interested physicist to read [44, 60] for more details. Therefore, we will just
mention some different types of continuity and the one which is of importance
for our purpose, such that we can apply and use the required Theorems
of [44] and derive our simplified Lieb-Robinson bound. Uniform, strong,
and weak∗ continuity are of basic interest. A group {Ut}t∈R of bounded
operators on the Banach space X is uniformly continuous if, and only if,
its generator S is bounded. However, these groups are of limited use for
thermodynamic systems, because they imply that the associated Hamilton
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operators are necessarily bounded. The systems we are interested in are C∗-
dynamical systems (A, τ), where τ is a strongly continuous one-parameter
group such that most of the results in [44] are applicable. For QSS, strong
continuity can be checked by Theorem 6.2.4. [44], our favorite ones. Thus,
we keep in mind that our time-evolution group τ is strongly continuous.

2.4 Remarks on mathematical reformulations of physi-
cal theories

Empirically, most phenomena of the dead matter can be described by a phys-
ical theory. The description of a phenomenon by a physical theory consists
of three fundamental concepts:

• A physical notion of the matter, space, and time,

• a mathematical formulation of the physical notion with a (set of) basic,
physical equation(s), and

• its application to the desired problem.

The first concept visualizes the matter, e.g., as a point particle, a continuous
matter distribution, a matter wave or some other physical notion, while space
is chosen to be discrete or continuous. In the mathematical formulation we
associate with each real, existing physical object a mathematical object, e.g.,
the position of the point particle is associated with an element x, in position
space R3, or the matter wave is associated with a wave function ψ in a
Hilbert space H. Each physical theory possesses a single, or a set of basic
equations (equations of motion), which provides the dynamic behavior of the
dead matter from an initial configuration. The specific application usually
requires the solution of the equations of motion, e.g., Newton’s equations, the
Maxwell equations, the Schrödinger equation or Einstein’s field equations.
For the application to a specific problem, a variety of numerical methods are
developed to solve these differential equations.

Over the years, most of the valid physical theories where reformulated
in a newer, more general and more abstract mathematical language. This
mathematical reformulation enables, basically:

• The introduction of new and additional analytical techniques and meth-
ods,

• a more abstract and more general understanding of physical processes,

• the absolute exclusion of possibilities, which could destroy the derived
results, and
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• the elimination of mathematical impreciseness and errors.

Special Relativity in Minkowski space is an instructive example for a sustain-
able mathematical reformulation of a physical theory. We will briefly exem-
plify it’s development to evaluate some of the purposes of this doctoral thesis.
Special Relativity was formulated in 1905 by Albert Einstein and describes
the movement of matter through space and time for different observers in
uniform motion. While the physical consequences for fast moving bodies are
drastically different from Newton’s theory, the original mathematical struc-
ture of Special Relativity is surprisingly easy. In 1907, Hermann Minkowski
reformulated the physical laws of Special Relativity as a geometrical theory
in a 4-dimensional space-time, nowadays called the Minkowski space.

Hermann Minkowski, "Das Relativtätsprinzip", Annalen der Physik 352 (15):
927-938:

"Von der elektromagnetischen Lichttheorie ausgehend, scheint sich in der
jüngsten Zeit eine vollkommene Wandlung unserer Vorstellungen von Raum
und Zeit vollziehen zu wollen, die kennen zu lernen für den Mathematiker je-
denfalls von ganz besonderem Interesse sein muss. Auch ist er besonders gut
prädisponiert, die neuen Anschauungen aufzunehmen, weil es sich dabei um
eine Akklimatisierung an Begriffsbildungen handelt, die dem Mathematiker
längst äußerst geläufig sind, während die Physiker jetzt diese Begriffe zum
Teil neu erfinden und sich durch einen Urwald von Unklarheiten mühevoll
einen Pfad durchholzen müssen, indessen ganz in der Nähe die längst vortr-
efflich angelegte Straße der Mathematiker bequem vorwärts führt."

While Einstein was first disaffected to Minkowskis reformulation, he real-
ized a few years later that his formulation of General Relativity in 1916 can
further be simplified by the concept of the Minkowski space. This was the
case, because Einstein could use the "excellently developed mathematical
road" of differential geometry, from that Minkowski was talking about. In
the weak field limit of the gravitational field (the absence of massive matter
and gravitation) and for extremely local events, the Minkowski space is the
correct approximation for space-time regions of very low curvature. Today,
Einsteins original formulation of Special Relativity is mainly of historical
interest and the Minkowski space has become a standard tool in modern rel-
ativistic physics, and is also commonly being used for computer simulations
in elementary particle physics. While the physical content of Relativity is
still the same, the mathematical reformulation facilitated the development
of new techniques, e.g., the covariant formulation of wave equations, as well
as several new theoretically visualizing concepts, e.g, such as space-time di-
agrams with light cones. Finally, the mathematical road further lead to the
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navigation of satellites. The usefulness of Minkowski’s reformulation to other
parts of physics can only become evident looking backwards on its connection
to other problems, because it was not a solution of a physical problem.

The development of the mathematical reformulation of quantum physical
models [79], in terms of C∗- and W ∗-algebras, took significantly more time
and is still actual of research interest. The theory of algebras of operators
on Hilbert space is an excellently developed mathematical road for Quantum
Field Theory and Quantum Spin Systems. The foundations were laid in the
1930s by von Neumann and Murray. In between the late 1924 and the early
1925, Heisenberg and Schrödinger independently proposed explanations for
the empirical quantization rule for the experimentally observed discontinuous
energy levels for electrons in an atom. At first, these two approaches seemed
to be disparate, and nowadays this difference is reflected in the distinction
between the Heisenberg picture, where the operator A is time dependent,
i.e., A(t), and the Schrödinger picture, where the wave function ψ is time
dependent, i.e., ψ(t). The complementarity between the dynamical laws can
be expressed as follows:

(ψ,A(t)ψ) = (ψ(t), Aψ(t)). (17)

In the late 1920s and early 1930s Stone and von Neumann used algebraic
methods to clarify the connection between the above formalisms. They
provided a mathematically coherent description of quantum mechanics, and
proved that the theory was essentially unique [44]. A fruitful interplay be-
tween experimental physics, theoretical physics, and mathematical physics
was achieved which is, in some kind, contained in the above equation con-
cerning discreteness of energy levels, derived from two seemingly different
quantum mechanical descriptions and uniqueness. Despite these important
and significant results, the relevance of the theory of operator algebras to
quantum physics was not fully appreciated for more than twenty years. It
was not until 1957, when Haag emphasized the importance of the quasi-local
structure of operator algebras in quantum field theory. It was a groundbreak-
ing work in elementary particle physics and its synthesis with the theory of
relativity. Subsequently, a large field of applications were developed in cos-
mology.

In the 1960s it was found that the quasi-local structure of operator al-
gebras is also of importance for Quantum Statistical Mechanics (QSM), i.e.,
the statistical properties of many-body quantum systems. It turned out
that several problems for infinite systems can be corrected and solved by the
algebraic point of view, e.g., there is no distinguished Hilbert space. The
abstract application of operator algebras to QSS by Bratteli, Robinson and
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co-workers thereby demonstrated novel and powerful techniques for investi-
gations of magnetic quantum systems on atomic length scales (see chapter 6
[44]). However, its connection to the description of experimentally investi-
gated spin systems was still missing...
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3 Quantum spin systems
A C∗-algebra A of a QSS is a specific kind of a C∗-algebra, which possesses
a so-called quasi-local structure. Thus, the general calculation rules of the
previous chapter are still valid. First we will explain the structure of a QSS
and introduce realistic magnetic interactions. Then, we briefly discuss KMS
states as equilibrium states and its association with thermodynamic phases.
The occurrence of unique as well as the occurrence of multiple KMS states
is of central interest. The multiplicity (non-uniqueness) of KMS states is
our motivation for the derivation of approximated KMS states for a numer-
ical handling. The well-known equilibrium state e−βH is commonly used
for equilibrium situations in condensed matter systems, but not always the
best suited one. Our approximated KMS states are an extension to handle
also other states satisfying thermodynamic stability conditions. A related
problem leads us to the derivation of a bound ε on physical approximations.
In the last subsection we derive a simplified formula [85, 86] for the latest
most general Lieb-Robinson bound on signal velocities. The mathematical
structure described in this section is taken from [44]

3.1 The quantum spin algebra

Magnetic atoms placed on a substrate form a spin system on a lattice L = Zd.
The position of the magnetic atoms are described by points x ∈ Zd in the
lattice L = Zd. We associate with each point x ∈ Zd a Hilbert space Hx of
dimension 2s(x) + 1. The lattice can be equipped with a metric d(·, ·). The
typical distance d(x, y) = |x−y| between two neighboring points x, y ∈ Zd in
a realistic magnetic quantum system, as investigated in SP-STM, is typically
in the subnanometer regime. With a finite subset Λ ⊂ Zd we associate
the tensor product space HΛ =

⊗
x∈ΛHx. The local physical observables

are contained in the algebra of all bounded operators B(HΛ) acting on HΛ.
This is the C∗-algebra AΛ

∼=
⊗

x∈Λ M2s(x)+1 in which Mn denote the algebra
of n× n complex matrices. Physically, this can be interpreted as follows: at
each lattice site x there is a particle with spin quantum number s(x) and
with n = 2s(x) + 1 = dim(Hx) degrees of freedom. The well-known spin
operators Sx

i , S
y
i and Sz

i are elements of local sub-algebras AΛ, where i ∈ Λ.
While in mathematical physics the notation x and y is preferred for lattice
points, the notion i and j is preferred in condensed matter theory. But this
is just a matter of convention and we will use both notations. In every case,
the lower index of a spin operator denotes its location (the site) in the lattice,
while the upper index denotes the x-,y-, or z-component of the spin operator.
i and j are seemingly well-suited for spin chains. If Λ1 ∩ Λ2 = ∅, then
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HΛ1∪Λ2 = HΛ1 ⊗HΛ2 and AΛ1 is isomorphic to the C∗-subalgebra AΛ1 ⊗ 1̂Λ2

of AΛ1∪Λ2 , where 1̂Λ2 denotes the identity operator on HΛ2 . If Λ1 ⊆ Λ2 then
AΛ1 ⊆ AΛ2 and operators with disjoint support commute, i.e., [AΛ1 ,AΛ2 ] = 0
whenever Λ1∩Λ2 = ∅. The so called "quasi-local algebra" is obtained by the
union of all local algebras,

Aloc =
⋃

Λ⊂L
AΛ. (18)

Aloc contains the strictly local operators. However, operators of the form

A =
∞∑
i=1

e−ciSz
i , (19)

where c > 0 and ‖ A ‖< ∞ can occur in the thermodynamic limit, but
they are not contained in Aloc. They are contained in the quantum spin
algebra, which is obtained by taking the closure of the quasi-local algebra in
the uniform operator topology:

A =
⋃

Λ⊂L
AΛ

‖·‖
. (20)

This procedure means that we add limit points of uniformly converging
Cauchy sequences to Aloc. There are interesting physical examples of long-
range interactions, which provide such a limit point.

3.2 Magnetic interactions

An interaction Φ is defined to be a function from a finite subset X ⊂ Zd into
the hermitian elements of A such that Φ(X) ∈ AX . The set of interactions
forms a real vector space when equipped with the linear structure (Φ1 +
Φ2)(X) = Φ1(X) + Φ2(X) and (λΦ)(X) = λΦ(X). This vector space can
be equipped with a family of norms ‖ · ‖ξ and Bξ = {Φ; ‖ Φ ‖ξ< ∞} is a
Banach space of interactions.

The interactions between the magnetic atoms is mostly described with the
Heisenberg interaction ΦH and the Dzyaloshinskii-Moriya interaction ΦDM.
Anisotropy energies Φani, which are induced by the substrate, and external
magnetic fields ΦB are one-body interactions, i.e., they act on each single
spin. The explicit expression for the Heisenberg term is as follows:

ΦH({x, y}) = Jxy ~Sx · ~Sy, (21)
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where ~Sx, ~Sy denote vectors of spin operators at lattice sites x, y ∈ L and
Jxy is a constant which describes the interaction strength. For systems with
strong spin-orbit coupling, the Dzyaloshinskii-Moriya interaction ΦDM be-
tween two magnetic atoms at different lattice points also needs to be consid-
ered:

ΦDM({x, y}) = ~Dxy ·
[
~Sx × ~Sy

]
, (22)

where ~Dxy ∈ R3 is the DM-vector. Metallic and semiconducting substrates
typically induce anisotropy energies of the form

Φani({x}) = K(Sz
x)

2 + E((Sx
x)2 − (Sy

x)2), (23)

where K and E are constants and Sx
x, Sy

x , and Sz
x are the x, y, and z-

components of the spin operator at site x ∈ L. In field-dependent SP-STM
experiments, there is also an external magnetic field

ΦB({x}) = gµB
~B · ~Sx, (24)

where g is a gyromagnetic constant, µB the Bohr magneton and ~B the exter-
nal magnetic field. Magnetic STM tips are experimentally used to investigate
the spin structure. The corresponding interaction (action on the investigated
magnetic atoms) is distinguished, because it can be switched on and off dur-
ing a measurement by an experimentalist. We will use the notation Htip

instead of Φtip, because the interaction has a special character. If the spin
system is not under study, this interaction is absent and does not enter into
the Hamiltonian of the system. If a measurement is started, a tunneling cur-
rent starts to flow between the tip and the magnetic atoms. The tunneling
current perturbs the spin system locally and the corresponding interaction is
often described with the modified Tersoff-Hamann model [87, 88]:

Htip({x}) = gI0Pe−2κ
√

(x−x0)2+h2
~mtip · ~Sx (25)

where g is a coupling constant, I0 is the spin-polarized current averaged over
the surface and P denotes the polarization of the tunneling current. ~mtip is
a unit vector in the direction of the tip-magnetization. The position of the
tip is given by the height h above the sample and the lattice point x0. Thus
we have g, I0,P ∈ R. The notation

P = lim
Λ→∞

∑
X⊂Λ

Htip(X) ∈ A, (26)

emphasizes the connection to the theoretical investigations of perturbations
P ∈ A in [44, 60]. Interesting analysis tools for stability properties of QSS
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under local perturbations P are stated in Corollary 5.4.7. and Proposition
5.4.10. Of course, for different purposes we can also denote other interactions
by the symbol P . The Hamiltonian of a subsystem Λ ⊂ L is given by the
sum of all interactions which are contained in Λ:

HΦ(Λ) =
∑
X⊂Λ

Φ(X). (27)

Thus, in our applications to experiments, the interactionHtip is not contained
in the Hamiltonian HΦ(Λ) and we can have HΦ(Λ) or HΦ(Λ) + Htip (also
HΦ(Λ) + P ) to describe the physical situation. The dynamical evolution
of an observable A ∈ AΛ for a finite-dimensional system with Hamiltonian
HΦ(Λ) ∈ AΛ can be described by the Heisenberg relations

τΛ
t : AΛ → AΛ, A 7→ τΛ

t (A) = e
itHΦ(Λ)

~ Ae−
itHΦ(Λ)

~ . (28)

Thus, the map t ∈ R 7→ τΛ
t is a one-parameter group of ∗-automorphisms of

the matrix algebra AΛ. The generator of the time evolution of an infinite sys-
tem is in general not an element of A. Nevertheless, classes of interactions
exist for which the dynamics of the infinite system is given by a strongly
continuous one-parameter group of ∗-automorphisms and therefore the sys-
tem can be described by a C∗-dynamical system (A, τ). A generator of this
group is given by a derivation, i.e., a linear operator δ defined on the domain
D(δ) = Aloc. The action of δ is given by

δ(A) = i
∑

X∩Λ6=∅
[Φ(X), A], A ∈ AΛ. (29)

For finite-dimensional systems, there is a connection to the Heisenberg dy-
namics:

A(t) = ei
t
~HΦ(Λ)Ae−i

t
~HΦ(Λ) = e

t
~ δ(A) = τΛ

t (A). (30)

The norm-closure δ̄ generates a strongly-continuous one-parameter group of
∗-automorphisms for a large class of interactions, which are given in Theorem
6.2.4. [44] (see also the appendix). Thus, as a generator the derivation plays
the role of the Hamiltonian in the ordinary language of quantum mechan-
ics. It is now import to know that for finite-range interactions, which are
commonly used to model realistic magnetic quantum systems, the group τΛ

converges strongly to a group of ∗-automorphisms τ , i.e.,

lim
Λ→∞

‖ τΛ
t (A)− τt(A) ‖= 0 (31)

for all A ∈ A and t ∈ R, see for example Theorem 6.2.11. [44]. The group τ
generates the time evolution over A.
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If a hermitian bounded operator P = P ∗, P ∈ AΛ, is added to the
Hamiltonian HΦ(Λ), i.e., HΦ(Λ) → HΦ(Λ) + P , a perturbed group τΛP

t is
generated and we have

τΛP
t : AΛ → AΛ, A 7→ τΛP

t (A) = e
it(HΦ(Λ)+P )

~ Ae−
it(HΦ(Λ)+P )

~ . (32)

A state ωΛ on the finite-dimensional matrix algebra AΛ is given by a
density matrix ρΛ:

ωΛ : AΛ → C, A 7→ ωΛ(A) = Tr(ρΛA), A ∈ AΛ. (33)

3.3 Thermodynamic equilibrium and KMS states

A (τ, β)-KMS state ωβ is defined to be a state, which satisfies the KMS
condition

ωβ(Aτiβ(B)) = ωβ(BA), (34)

for β ∈ R and A,B ∈ A. A mathematical precise definition requires more
technical fineness and is given by Definition 5.3.1. in [44] (see appendix).
However, the formula (34) is the same. There are several general justifica-
tions of KMS states as thermodynamic equilibrium states [44]. It is impor-
tant to mention that for QSS in the thermodynamic limit several different
states can exist satisfying the KMS condition (34), i.e., there are coexisting
different thermodynamic equilibrium states for the same system at a fixed
temperature. The equilibrium states at each fixed temperature form a con-
vex set with the extremal points corresponding to pure phases and the mixed
states to mixtures of phases. This immediately motivates much of the analy-
sis of decomposition theory, invariant states, periodic states, almost periodic
states, etc., described in [44]. The local Gibbs state ωβΛ over AΛ at inverse
temperature β is defined by the expectation values

ωβΛ(A) =
Tr(e−βHΦ(Λ)A)

Tr(e−βHΦ(Λ))
. (35)

It is also the single and unique (τΛ, β)-KMS state, because HΛ is finite dimen-
sional. These states are invariant under the action of τΛ, i.e., ωβΛ(τt(A)) =
ωβΛ(A). Perturbed KMS states ωβPΛ are (τΛP , β)-KMS states and the associ-
ated expectation values on a finite-dimensional system are given by

ωβPΛ (A) =
Tr(e−β(HΦ(Λ)+P )A)

Tr(e−β(HΦ(Λ)+P ))
A ∈ AΛ. (36)

If the thermodynamic limit is a suitable approximation for the magnetic
particle, as indicated in SP-STM experiments of magnetic nano-islands [43,
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75], the local Gibbs state is not always the best and unique description
for a QSS in thermodynamic equilibrium. This is our motivation for the
introduction of approximated KMS states on finite-dimensional systems in
the next section. However, this presupposes an investigation of KMS states
on infinite-dimensional systems. In preparation for a theorem for KMS states
on infinite-dimensional systems we will briefly discuss the entropy of a system.
The next proposition establishes, that the KMS property is preserved in the
thermodynamic limit.

Proposition 3.1. ([44], 6.2.17.): Let Φ be an interaction of a quantum spin
system, ωβΛ the local Gibbs state and τΛ the corresponding local automorphism
group. Assume that τΛ converges strongly to an automorphism group τ , i.e.,

lim
Λ→∞

‖ τΛ
t (A)− τt(A) ‖= 0 (37)

for all A ∈ A and t ∈ R.
It follows that every thermodynamic limit point ωβ of ωβΛ is a (τ, β)-KMS

state over A.

The maximum entropy principle describes equilibrium as the state of
maximum disorder compatible with a given energy or particle density, etc.
Each state ωΛ on a local subalgebra AΛ is determined by a unique density
matrix ρΛ on HΛ and we define the (von Neumann) entropy SΛ(ωΛ) of ωΛ as

SΛ(ωΛ)=̇− TrHΛ
(ρΛ log ρΛ). (38)

The function
ωΛ ∈ EAΛ

7→ ωΛ(HΦ(Λ))− β−1SΛ(ωΛ) (39)

is called the free energy of the spin system at inverse temperature β. The
local Gibbs state ωβΛ is the unique state which minimizes the free energy.
However, the occurrence of multiple magnetic equilibrium states at a fixed
temperature indicates that a complete description of equilibrium phenomena
requires extensions of this point of view. The algebraic investigation of KMS
states of QSS in the thermodynamic limit has provided comprehensive results
in this direction, which are of paramount importance for an accurate analysis
of the equilibrium phenomena of magnetic quantum systems. In order to
extend the maximum entropy principle accordingly, it is necessary to analyze
properties of the entropy SΛ(ω). However, we will just state the final results
and refer the reader to the chapter 6.2.3. of the book [44] for the details and
proofs.
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Definition 3.2. ([44] 6.2.27): Let SΛ(ω) denote the entropy of the subsystem
Λ of the QSS in the state ω ∈ EA The corresponding conditional entropy
S̃Λ(ω) is defined by

S̃Λ(ω) = lim
Λ′→Λc

(SΛ∪Λ′(ω)− SΛ′(ω)). (40)

If Λ ⊂ Λ′ is a subsystem, then the energy of interaction across the border
of Λ and Λ′ \ Λ is given by

WΦ(Λ,Λ′) =
∑

X∩Λ6=∅,X∩Λc 6=∅,
X⊆Λ′

Φ(X). (41)

The surface energy WΦ(Λ) is now defined by

WΦ(Λ)=̇ lim
Λ′→∞

WΦ(Λ,Λ′), (42)

if this expression is well-defined, i.e., the limit exists in norm ‖ WΦ(Λ) ‖<∞.
The surface energy enters the next definition and is used in the derivation of
approximated KMS states in the next subsection.

Example:
The surface energy WΦ({j}) of a point j which has two nearest neighboring
points j−1 and j+1 in a (one-dimensional) spin chain with nearest-neighbor
Heisenberg interaction and Hamiltonian

H = J
∑
i

~Si · ~Si+1 +
∑
i

(
K(Sz

i )
2 + E((Sx

i )2 − (Sy
i )2) + ~B~Si

)
(43)

is given by
WΦ({j}) = J

(
~Sj · ~Sj+1 + ~Sj · ~Sj−1

)
. (44)

Thus, the surface energy consists of the interactions which connect the point
j ∈ L with the outer regions.

Next we give a definition which relates KMS states on an infinite system
and the local Gibbs state on a finite system. In the original definition of the
"Gibbs condition with respect to βΦ" there are two conditions which have
to be satisfied. However, one of them is slightly too technical and not of
direct use for our purpose. Therefore, we state the definition with just the
one condition which is of interest for us. For completeness we mention that
the other condition states that ω has to be faithful, i.e., Ωω is separating for
πω(A)

′′ . For the mathematical properties of the weak closure πω(A)
′′ of A

and the definition of a separating vector we refer, one more time, to [44].
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Definition 3.3. ([44], 6.2.16.): Let Φ be an interaction of a QSS such that
the surface energy WΦ(Λ) is a well-defined element of A for all Λ ⊂ Zd. A
state ω over A is defined to satisfy the Gibbs condition with respect to βΦ if
the following condition is fulfilled:

1. ωPΛ = ωβΛ⊗ω̃ for all Λ ⊂ Zd, where ωβΛ is the local Gibbs state, ω̃ is
a state over AΛc, ωPΛ is the perturbation of ω constructed in Theorem
5.4.4 [44], and PΛ = βWΦ(Λ).

The foregoing definition enters the next theorem and is of use for the
derivation of the approximated KMS states in the next subsection. The next
Theorem is valid for a large class of interactions and states the equivalence
of the KMS condition and the extended maximum entropy principle, which
is also referred to as local thermodynamic stability.

Theorem 3.4. ([44] 6.2.37): Let Φ be an interaction of a QSS satisfying

‖ Φ ‖ξ=
∑
n≥0

eξn
(

sup
x∈L

∑
x3X

|X|=n+1

‖ Φ(X) ‖
)
<∞ (45)

for some ξ > 0 and let τ be the associated automorphism group (see Theorem
6.2.4. [44])

The following conditions are equivalent for each β ∈ R:

1. ω satisfies the Gibbs condition with respect to βΦ,

2. ω is a (τ, β)-KMS state,

3. ω satisfies the maximum entropy principle

S̃Λ(ω)− βω(H̃Φ(Λ)) = sup
ω′∈CωΛ

{S̃Λ(ω′)− βω′(H̃Φ(Λ))} (46)

for all Λ ⊂ L, where S̃Λ is the conditional entropy, H̃Φ(Λ) = HΦ(Λ) +
WΦ(Λ) the conditional energy, and

Cω
Λ = {ω′;ω′ ∈ EA, ω

′|AΛc
= ω|AΛc

}. (47)

Thus, if we identify different KMS states for a certain system at fixed tem-
perature, we know that these states are thermodynamic equilibrium states
and by the satisfaction of the Gibbs condition with respect to βΦ we can
derive approximated KMS states in the next subsection. As an example for
the occurrence of multiple KMS states we reflect Theorem 6.2.49. of [44]:
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Theorem 3.5. ([44] 6.2.49.): Let Φ denote the ferromagnetic, anisotropic
Heisenberg interaction

Φ({x, y}) = −Jxy
(
γ(Sx

xS
x
y + Sy

xS
y
y ) + Sz

xS
z
y

)
(48)

with nearest-neighbor coupling Jxy > 0, zero external magnetic field and γ ∈
(−1, 1). Assume dim(L) > 2 and

j = inf
x,y
Jxy > 0. (49)

It follows that there is a βc > 0 such that there exists at least two extremal
(τ, β)-KMS states for all β > βc.

Note that this result does not establish nonuniqueness of the KMS states
for the isotropic model, i.e., for the case γ = 1. In fact if dim(L) = 2
the criterion of nonzero spontaneous magnetization, ωβ(Sz

x) 6= 0, fails by
symmetry arguments [44].

3.4 Mean-field type approximated KMS-states and FΛ

A high density data storage device requires very stable magnetization struc-
tures, such that the stored information will not be lost after some time. The
algebraic reformulation of QSS led to the conclusion that the states which
possess a maximum of thermodynamic stability are KMS states. A data stor-
age unit certainly requires at least two different stable magnetization struc-
tures, which means that at least two different extremal KMS states should
exist. However, the exact analysis of KMS states can only be performed in
the thermodynamic limit, where the numerical methods often fail to work.
Therefore, we introduce approximated KMS states on finite-dimensional sys-
tems such that they can be handled with a numerical method.

The well-known density matrix ρ = e−βH describes a system with Hamil-
tonian H, which is in equilibrium at inverse temperature β. It is the com-
monly used density matrix for numerical simulations in modern condensed
matter theory. Thus, the usage of the density matrix ρ = e−βH to model a
system in equilibrium sometimes only matches a specific case. The possible
other equilibrium states are not correctly described by ρ = e−βH . Approxi-
mated KMS states are represented by density operators of finite-dimensional
systems and obtained by adding a further self-adjoint operator Rω

Λ to the
Hamiltonian. Thus, the operator Rω

Λ is responsible for the generation of the
different approximated equilibrium states.
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Mean-field type approximated KMS states

We are searching for a map Rω
Λ which maps a KMS state ωβ of the infinite-

dimensional system to a state ωβRωΛ
, which approximates ωβ on a finite-

dimensional system AΛ. The index ω on Rω
Λ means that the map depends

on the state to which it is applied. We have

Rω
Λ : EA −→ EAΛ

, ωβ 7→ Rω
Λ(ωβ). (50)

Since ρΛ = e−βHΦ(Λ) is the density matrix of the unique (τΛ, β)-KMS state
ωβΛ, we also have to modify the automorphism group τΛ. Hence, we also need
a map R̆ω

Λ on the space Aut(A) of the automorphisms on A to Aut(AΛ). This
means

R̆ω
Λ : Aut(A) −→ Aut(AΛ), τ 7→ R̆ω

Λ(τ). (51)

By Theorem 3.4 (6.2.37 [44]) and Definition 3.3 (6.2.37 [44]) we know that
for a KMS state ωβ on the infinite system, we have ωβPΛ = ωβΛ ⊗ ω̃ if PΛ =
βWΦ(Λ). For our purpose we propose a mean-field type operator Rω

Λ which is
then added toWΦ(Λ), such that we have ωβPωΛ , where P ω

Λ = β
(
WΦ(Λ)+Rω

Λ

)
.

We suggest that

Rω
Λ =

∑
X,X′;Φ(X∪X′)6=0̂

X⊆Λ,X′∩Λ=∅

Φ(X)ωβi (Φ̃X(X ′)), (52)

where 0̂ is the zero operator and Φ̃X(X ′) means that the spin operators in
Φ(X∪X ′), which are strictly located in X, are replaced by the unit operator.
For example, if Φ({i, j}) = Sz

i ⊗ Sz
j we have Φ̃{i}({j}) = 1̂i ⊗ Sz

j . Thus, the
spins outside the region Λ act as a field on the spins which are located in Λ.
Our map is now given by

ωβ 7→ Rω
Λ(ωβ) = ωβP

ω
Λ (53)

and by the Gibbs condition with respect to βΦ, Theorem 3.4 (6.2.37 [44]),
and Definition 3.3 (6.2.37 [44]), we obtain

Rω
Λ(ωβ) = ωβRωΛ

⊗ ω̃, (54)

where

ωβRωΛ
(A) =

Tr(e−β(HΦ(Λ)+RωΛ)A)

Tr(e−β(HΦ(Λ)+RωΛ))
(55)

is the approximated KMS state on AΛ. For the map R̆ω
Λ on Aut(A) we have

accordingly
R̆ω

Λ(τ) = τR
ω
Λ ⊗ τ̃ , (56)
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where τ̃ acts on AΛc , τ
RωΛ
t : AΛ −→ AΛ and

τ
RωΛ
t (A) = ei

t
~ (HΦ(Λ)+RωΛ)Ae−i

t
~ (HΦ(Λ)+RωΛ), A ∈ AΛ, (57)

is the automorphism group corresponding to the approximated KMS state
ωβRωΛ

, i.e., ωβRωΛ is the unique (τR
ω
Λ , β)-KMS state.

Example I :
If Λ = {i} contains only the single site i of a spin chain with nearest-neighbor
Ising interaction, we have

Rω
Λ = Sz

i (Ji,i−1ω
β(Sz

i−1) + Ji,i+1ω
β(Sz

i+1)). (58)

Mathematically, the action of the spins outside Λ has the same form like an
additional local magnetic field, which acts individually on the spins in Λ.

Example II :
Assume that we have a QSS which is in the KMS state ωβ and the spin-
component Sz

x at site x ∈ Λ is forced out of equilibrium by some kind of
a local magnetic field acting only on site x, given by P = BzSz

x. Then we
model the relaxation process with the function

t 7→ ωβPRωΛ
(τ
RωΛ
t (Sz

x)) =
Tr(e−β(HΦ(Λ)+RωΛ+BzSz

x)ei
t
~ (HΦ(Λ)+RωΛ)Sz

xe
−i t~ (HΦ(Λ)+RωΛ))

Tr(e−β(HΦ(Λ)+RωΛ+BzSz
x))

.

(59)
Evidently, the local magnetic field P = BzSz

x is only included in the approxi-
mated KMS state and not in the automorphism group and can of course also
be given by the modified Tersoff-Hamann model.

Example III :
We calculate ωβP

R
ωi
Λ

(τ
R
ωi
Λ

t (Sz
x)) for the two dimensional, nearest-neighbor, anisotropic

and ferromagnetic Heisenberg interaction. ωβi , i = 1, 2, 3, shall denote three
different KMS states. From Theorem 3.5 ([44] 6.2.49.), we know that at least
two extremal (τ, β)-KMS states exist for a sufficiently low temperature. At
least one of our states can be a superposition of the two different extremal
KMS states. However, we don’t know the absolute temperature and we are
therefore just interested in an exemplary behavior of the dynamical evolu-
tion. We are not able to estimate ωβi (Sz

y) exactly and assume that the values
of ωβi (Sz

y) for all spins outside Λ take the values 0 for the KMS state i = 1,
−0.006 for i = 2 and 0, 006 for i = 3. The cases i = 2 and i = 3 provide
very similar dynamical evolutions and we concentrate on i = 1 and i = 2
for simplicity. Fig. 1 (a) shows the short-time behavior of the relaxation
processes ωβPRωΛ(τ

RωΛ
t (Sz

x)) for two different equilibrium states i = 1, 2. In both
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Figure 1: Relaxation processes for two different approximated KMS states i = 1, 2.
(a) The short-time behavior is similar until ≈ 0.6 ps. (b) It can be seen that
the dynamics of the two different equilibrium states stabilizes at two different
magnetization directions.

initial states the z-component of the spin is forced into the | −2〉 state due to
the perturbation P = BzSz

x. In fig. 1 (b) one can see that the dynamics for
the two different initial states stabilizes at the two different magnetization
directions 〈Sz

x〉1 ≈ −0.2 and 〈Sz
x〉1 ≈ −1.2. This result is partially desired.

However, the dynamics of the third approximated KMS state ωβ
R
ω3
Λ

(which is
not shown on this fig.) is very similar to the dynamics of the second state
ωβ
R
ω2
Λ

and stabilizes at 〈Sz
x〉1 ≈ −1.3. This seems to be an error, which is

caused by finite size effects and the numerical method of exact diagonaliza-
tion. A stabilization of the third state at 〈Sz

x〉1 ≈ +1.2 is more desirable. For
future work we suggest to use the Lindblad-Master equation for the dynamics
of approximated KMS states,

ρ̇ = − i
~

[H, ρ] +
N2−1∑
n,m=1

hnm
(
LnρL

†
m −

1

2
(ρL†mLn + L†mLnρ)

)
, (60)

where ρ is the density matrix of the approximated KMS state, H the Hamil-
tonian, hmn are constants and Lm are operators.

The bound ε for the map FΛ.

We are now interested in a related question. We want to know in which
cases the density matrix ρ = e−βH is well-suited to describe the equilibrium
cases when several KMS states exist. Thus we are interested in the radius ε
on state space, which provides the distance between a KMS state ωβ of the
infinite system and a state which uses ρ = e−βH to model equilibrium. We
use the sup-norm eq. (8) and define

FΛ(ωβ)=̇ ‖ ωβ − ωβΛ ⊗ ω̃ ‖6 ε, (61)
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where ω̃ is some state on AΛc . Theorem 5.4.4. [44] enables us to estimate
[85]

ε =
2β ‖ WΦ(Λ) ‖

1− 2β ‖ WΦ(Λ) ‖ , (62)

where WΦ(Λ) is the surface energy as defined above.

3.5 Lieb-Robinson bounds

The theory of QSS is not based on relativity theory, which has the conse-
quence that the speed of light is not the limit speed in this theory. Indeed,
the signal speed in QSS is infinite. However, Lieb and Robinson found a
method to show, that outside an effective light-cone the signal propagation
is exponentially damped. A Lieb-Robinson bound is a mathematical bound
on velocities in the non-relativistic theory of QSS, which is in analogy to the
speed of light as maximum velocity in relativity theory. We will first present
simplified formulas for the latest, most general bound [89], while the proof
of our bound is shifted to the end of this subsection.

Roughly speaking, if the observables Sz
j and Sz

i (t) commute, i.e.,

‖ [Sz
i (t), S

z
j ] ‖= 0, (63)

it is implied that no signal can propagate from the lattice site i to the site
j within the time t. Certainly one can construct interactions, such that the
foregoing sentence is not true. To eliminate such possibilities, one uses Lieb-
Robinson bounds which provide an upper bound on this commutator in the
more general form

CA(t,X) = sup
B∈AX ;‖B‖=1

‖ [B, τt(A)] ‖, (64)

where A ∈ AY and AY is the C∗-algebra associated with Y ⊂ L. CA(t,X) is
a quantitative measure for the amount of information, which is propagated
from Y to X at time t. If this number is close to zero and much smaller than
the norm of A for all times t, with 0 ≤ t ≤ t′, then there can be no significant
information transport from Y to X within the time t′.

Now we will present a simplified formula [85, 86] for the latest, most
general bound [89]. Eq. (68) and (69), the next steps and the intermediate
result eq. (79) are taken from [89], but our iteration [85, 86] provides:

CA(t,X) ≤ 2 ‖ A ‖
∑

γ;X→Y

|2t|L(γ)

L(γ)!
w(γ)=̇B(t), (65)
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where L(γ) is the length of the path γ from X to Y and w(γ) is the weight
of the path, defined in eq. (81). The proof states, that only interactions on
the sets Z ∈ ∂X of the boundary of X, eq. (70), contribute and the bound is
clearly independent of one-body interactions, e.g., external magnetic fields,
anisotropy energies and the modified Tersoff-Hamann model-type interaction.
In a lattice of dimension d the number of paths with length L is bounded by
(2(2d− 1))L. For nearest neighbor Heisenberg interaction the bound B can
be simplified to [85, 86]

‖ [Sz
i (t), S

z
j (t
′)] ‖≤ s2

(
v|t− t′|
|i− j|

)|i−j|
, (66)

with v = 4e(2d− 1)Js2, where d is the dimension of the lattice and s is the
spin quantum number. In contrast to the old bound L [44], the new bound B
is independent of the arbitrary choice of a number ξ > 0 and there is no factor
|X|(2s+ 1)2|X|eξD(X) (see eq. 110) which provides an unnecessary increase of
the corresponding limit speed. The specific bound in [90] for the XY-model
is multiplied with the square n2 of the chain length n, which is certainly a
disadvantage for a large chain length. The general bounds are independent
of the undesired n2-dependence. The removal of this n2 dependency in [91]
is a further example, where a better mathematical technique can improve a
Lieb-Robinson bound.

Now we will state the proof for our bound B, in which the starting points
eq. (68) and (69), the next steps, and the intermediate result eq. (79) are
taken from [89]. We assume that each algebra AX has a time evolution
as a strongly continuous one-parameter group of ∗-automorphisms, which is
checked by Theorem 6.2.4. in [44]. There is an integral equation for the full
time evolution τt of A ∈ AΛ:

τt(A) = A+ i
∑

X∩Λ 6=∅

∫ t

0

dt′τt′([Φ(X), τultra
t−t′ (A)]), (67)

where τultra
t (AΛ) ⊂ AΛ. An iteration provides a solution under rather general

conditions for the interaction. We have

CA(t,X) = sup
B∈AX ;‖B‖=1

‖ [B, τt(A)] ‖

= sup
B∈AX ;‖B‖=1

‖ [τ−tτ
X
t (B), A] ‖ . (68)

There is a differential equation for f(t) = [τ−tτXt (B), A]:

1

i

d

dt
f(t) =

∑
Z∈∂X

[[τ−t(Φ(Z)), τ−tτ
X
t (B)], A], (69)
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where ∂X is the boundary of X, which is given by

∂X = {Z ⊂ L;Z ∩X 6= ∅, Z * X}. (70)

The Jacobi identity for double commutators states

[[τ−t(Φ(Z)), τ−tτ
X
t (B)], A] = [[τ−t(Φ(Z)), A], τ−tτ

X
t (B)]

+ [τ−t(Φ(Z)), [τ−tτ
X
t (B), A]︸ ︷︷ ︸
f(t)

], (71)

and we define
a(t)=̇

∑
Z∈∂X

[[τ−t(Φ(Z)), A], τ−tτ
X
t (B)]. (72)

The differential equation for f can now be expressed as

1

i

d

dt
f(t) = a(t) + [H(t), f(t)]. (73)

We have
1

i

d

dt
U(t) = H(t)U(t), U(0) = 1 (74)

and define
g(t)=̇U−1(t)f(t)U(t). (75)

A relation between g and a is obtained by

1

i

d

dt
g(t) =U−1(t)

1

i

d

dt
f(t)U(t)

− U−1(t)[H(t), f(t)]U(t)

=U−1(t)a(t)U(t). (76)

It follows that

g(t) = g(0) +

∫ t

0

dsU−1(s)a(s)U(s) (77)

and

f(t) = f(0) + U(t)

∫ t

0

dsU−1(s)a(s)U(s)U−1(t). (78)

Now we can state an inequality for CA(t,X), which crucially depends on a:

CA(t,X) ≤ CA(0, X) + 2
∑
Z∈∂X

∫ |t|
0

dsCA(s, Z) ‖ Φ(Z) ‖ . (79)
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The iteration involves finite sequences of sets Z1, ..., Zn with

Z1 ∈ ∂X,Z2 ∈ ∂Z1, ..., Zn ∈ ∂Zn−1, Zn ∩ Y 6= ∅, (80)

for A ∈ AY . Such a sequence is called a path γ of length L(γ) = n from X
to Y . The weight of a path is defined by

w(γ)=̇
n∏
i=1

‖ Φ(Zi) ‖, (81)

which enables us to estimate the simplified formula for the bound.
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4 Real-time dynamics of single magnetic atoms
First, the functionality and measurement process of a spin-polarized scan-
ning tunneling microscope will be described by a Hamiltonian framework.
This framework serves then as a starting point for an application of the C∗-
approach to QSM for the description of SP-STM. A general principle will
be introduced which provides the foundation of the structural application as
well as the interface between the algebraic techniques and the experimental
investigations. It states that the experimentalist basically decides whether
the C∗-dynamical system (A, τ) or (A, τP ) describes the actual real situ-
ation. The perturbation P describes the action of the magnetic tip on the
investigated sample or it can also be the interaction between the tip and sam-
ple. Examples can be chosen to be the modified Tersoff-Hamann model or a
model consisting of creation and annihilation operators. Using the numerical
method of "exact diagonalization" we calculate the dynamics of single quan-
tum spins during and after SP-STM measurement/manipulation processes
at finite temperatures. A comparison with experimental data obtained from
Fe adatoms on InSb and Co adatoms on Pt(111) shows good agreement and
verifies the validity of our model. For simplicity in this section we will neglect
the notation that the Hamiltonian HΦ(Λ) depends on Φ and Λ. The same
will be done for the local Gibbs states and the automorphism groups. Thus,
we will just write H, ωβ, ωβP , τ and τP instead of HΦ(Λ), ωβΛ, ω

βP
Λ , τΛ, and

τPΛ .

4.1 Spin-polarized scanning tunneling microscopy

H H + P

1

Figure 2: H describes the free system and H + P describes the perturbed system,
i.e. the system with interaction between the tip and the sample.

The SP-STM set-up of a finite-dimensional system is approximated by (in
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general) two different Hamiltonians in our approach. There is a Hamiltonian
H for the free QSS (Fig. 2, left) and, if a measurement is started (at t = 0),
we get an additional hermitian operator P for the interaction of the tip with
the sample (Fig. 2, right), i.e., the Hamiltonian H + P . We will use the
automorphism group τ with Hamiltonian H

τt : A→ A, A 7→ τt(A) = e
itH
~ Ae−

itH
~ . (82)

to describe the free QSS without any interaction with the magnetic tip. When
the spin-polarized current starts to flow through the system under investi-
gation, we will use the perturbed automorphism group τP with perturbed
Hamiltonian H + P :

τPt : A→ A, A 7→ τPt (A) = e
it(H+P )

~ Ae−
it(H+P )

~ . (83)

Thermal equilibrium at inverse temperature β is modeled by the Gibbs
canonical ensemble state which is also the unique (τ, β)-KMS state, denoted
by ωβ and given by

ωβ(A) =
Tr(e−βHA)

Tr(e−βH)
. (84)

These states are invariant under the action of τ , i.e., ωβ(τt(A)) = ωβ(A), but
in general not invariant under the action of τP . If the magnetic tip influenced
the QSS for a suitable long time, we will use the corresponding perturbed
(τP , β)-KMS state

ωβP (A) =
Tr(e−β(H+P )A)

Tr(e−β(H+P ))
. (85)

Now we can plug the perturbed dynamics into the unperturbed equilibrium
state

ωβ(τPt (A)) ≡ 〈A〉1(t). (86)

The brackets 〈...〉(t) shall mean that we calculate the time evolution of an
expectation value for the observable A. This corresponds to the situation
when the spin-polarized tunneling current is switched on at the time t = 0
and the system was in thermal equilibrium for t < 0. The function (86) is
used to model the process of a measurement of a magnetization curve. We
can also plug the unperturbed dynamics into the perturbed equilibrium state

ωβP (τt(A)) ≡ 〈A〉2(t). (87)

In this case a spin-polarized current is switched off at the time t = 0. The
state ωβP can be prepared with SP-STM. The function (87) can also be used
to model the process of return to equilibrium. If a certain model Hamiltonian
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is associated with H and P , the evaluation of expectation values with (86)
and (87) can be calculated with different numerical methods. Some other
examples for which this approach can be applied can be found in [92]-[88].
To make connection to the more common theoretical models for SP-STM, we
notice that P could, for example, be given by a kind of s-d interaction or the
modified Tersoff-Hamann model. The choice of P to be a local magnetic field
is an approximation of the modified Tersoff-Hamann model and appropriate
to save memory, which is needed by the calculation of a relaxation process.

A measurement in SP-STM is a time average over a time period ∆t. For
example, the time resolution of the measurement in [12] is ∆t = 10 ms. Each
point on a measured magnetization curve corresponds then to the value:

〈A〉∆t =
1

∆t

∫ ∆t

0

dt ωβ(τPt (A)), (88)

where A is a spin component, i.e., Sx, Sy or Sz.
It is worth to mention, that for infinite systems the equations (86) and

(87) are widely analyzed in mathematical physics [44], but it seems that
they were never applied to real physical spin systems. If the substitution
H � H + P is replaced by (A, τ) � (A, τP ), comprehensive mathematical
structures [44, 60], can be applied for the analysis of physical systems. The
algebraic approach to QSM provides appropriate mathematical tools to ver-
ify the dynamical relaxation of a disturbed system (return to equilibrium)
analytically [44, 93]. Particularly, it is proven that a mathematically exact
return to equilibrium is ensured if the dynamical system satisfies some form
of asymptotic abelianness and if the initial state is a perturbed KMS state
[44]. If any form of asymptotic abelianness is satisfied one finds

lim
t→∞

ωβ(τPt (A)) = ωβP (A), (89)

which motivates the application of perturbed KMS states as states which can
be prepared with an SP-STM. On the other hand

lim
t→∞

ωβP (τt(A)) = ωβ(A), (90)

which motivates the application of (87) to calculate a relaxation process after
the spin current has been switched off. Special results which are related with
these problems are Proposition 5.4.6, Corollary 5.4.7., Proposition 5.4.10.
and the following consequences on the next pages in [44]. The Møller mor-
phisms γ± are central tools in those questions [44]. Furthermore, one finds
that ground states, which are zero temperature KMS states, have a tendency
to be less stable than KMS states at finite temperature.
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The functionality of an SP-STM in the algebraic framework of QSM can
now be described with a C∗-dynamical system (A, τ) and a perturbed sys-
tem (A, τP ), see Fig. 3. The two general options for an SP-STM are now

Figure 3: The interaction between the tip and the sample is identified as a lo-
cal perturbation P of the dynamical group τ . The experimentalist who runs the
spin-polarized scanning tunneling microscope decides whether the system (A, τ) or
(A, τP ) is actually realized and she/he determines the place where P is acting.

associated as follows:

1. The tip is moved away from the sample and there is no interaction
between the tip and the sample. This corresponds to the free system

(A, τ) (91)

2. The tip is near the surface of the sample and interacts with it. This
corresponds to the perturbed C∗-dynamical system

(A, τP ). (92)

If the system was in thermal equilibrium and a measurement is started at
the time t = 0, the expectation values are given by

ωβ(τPt (A)) (93)

for t ≥ 0 and A ∈ A. Otherwise, if an interaction between the tip and the
magnetic spin system was active for a suitable long time and the interaction
is switched off at t = 0, the expectation values of the system are determined
by

ωβP (τt(A)) (94)

for t ≥ 0 and A ∈ A.
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4.2 Single atom magnetization curves of Co/Pt(111)

Magnetization curves obtained in experiments are typically described using
the expectation values of observables using a time independent, i.e., kine-
matic, Gibbs ensemble average [12, 94]. However, an SP-STM measure-
ment is a time-average of the orientation of a spin component selected by
the given spin orientation of the probe tip. Therefore, the dynamics of the
magnetization in the sample under the study remains unknown within the
experimental time resolution. It would be helpful to compensate this lack
of knowledge with theoretical investigations. Therefore, we calculate the
real-time non-equilibrium dynamics of quantum spin systems at finite tem-
peratures to investigate the dynamics of a sample for shorter times than the
time resolution of the experimental setup. When the STM tip comes to-
wards an atom or a cluster under the study, the Hamilton operator of the
system changes due to the interactions with tunneling electrons. The per-
turbed dynamics drives the state out of equilibrium and the ergodicity is not
a priory ensured. Therefore, the ergodicity of a system has to be checked for
a reliable interpretation of experimental results. A still unexplained finding
is the extremely high switching frequency of Co atoms on Pt(111) at zero
magnetic field [12]. In contrast to magnetic atoms on insulating substrates,
Co/Pt(111) possesses very strong out-of-plane anisotropy (9 meV) without
any transversal contributions. Hence, the Hamiltonian of the free system is
diagonal in the |Sz〉 basis and, therefore, the tunneling rate is zero [12]. The
anisotropy barrier is approximately 100 times larger than the temperature
used in experiments. Therefore, the Boltzmann probability to pass this bar-
rier by thermal activation is also negligible. The measured time-averaged
magnetization, in contrast, is zero at zero field even in the regime of elastic
tunneling, where the tunneling current density is minimal. Our calculated
time-averaged expectation values agree with the time-averaged experimental
data for magnetization curves. A main conclusion is that the description
of the single magnetic Co atom by a classical spin-model is unsuitable and
quantum effects are important.

Now we will apply Eq. (86) and (88) to model the STM measurement
process as a time average. As an example we take cobalt adatoms on platinum
(111) [12]. As described in the introduction the reason for zero time-averaged
magnetization of a Co adatom on Pt(111) at zero external field was still
unclear. The Hamiltonian for the cobalt atom is given by [12]

HCo = −mBzSz −K(Sz)2, (95)

with m = 3.7 µB and K = 9 meV. If a classical spin model in thermal equi-
librium is used one finds that the probability distribution ρ(z) (Boltzmann



4 REAL-TIME DYNAMICS OF SINGLE MAGNETIC ATOMS 41

distribution) between the up and the down state is nearly zero, see Fig. 4 for
the case of a zero magnetic field. In a quantum spin model a nearly vanishing
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Figure 4: In a classical spin model as used in [12], the high anisotropy energy
forces the magnetization direction in thermal equilibrium strongly in the up or
down direction. A thermal activated switching between these two states has a
vanishing probability.

probability for the states | − 3
2
〉, | − 1

2
〉, |1

2
〉 and |3

2
〉 can be found in thermal

equilibrium at low temperatures from this Hamiltonian, as indicated in Fig.
5.

If the spin has been prepared to be polarized in positive or negative z-
direction it is not a priori clear how the spin can switch in the opposite state
because of the high anisotropy barrier. The temperature of T = 0.3 K and
T = 4.2 K used in this experiment is much too low to switch the spin over the
anisotropy barrier of K = 9 meV. The Néel-Brown law predicts a switching
time of a few million years, which is in disagreement with the short time
resolution of 10 ms of the SP-STM technique used in [12]. The absence of the
transverse anisotropy term E((Sx)2−(Sy)2) in the free system prevents direct
transitions under the barrier between the |5

2
〉 and |− 5

2
〉 states. To explain the

zero expectation value of Sz
Co at zero magnetic field (see Fig. 5) a quantum

tunneling or a current induced magnetization switching mechanism has been
speculatively proposed [12]. Here, we check this proposition by numerical
calculations and our quantum mechanical approach.

The perturbation is taken to be P = J
∑

i
~S~σi +

∑
i ~mtip~σi, with the

magnetization ~mtip of the tip and the Pauli matrices corresponding to the
tunneling electrons. When the cobalt atom gets perturbed because of the
interaction with the tunneling electrons it gets out of equilibrium and the
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Figure 5: a) The high energy states | − 3
2〉, | − 1

2〉, | 1
2〉 and | 3

2〉 got a vanishing
probability in thermal equilibrium. The preferred states are those where the spin
points "up" | 5

2〉 or "down" | −5
2〉. b) The time averaged magnetization curves for

two different temperatures show agreement of Eq. (88) with the experimental data
in [12]. For high positive magnetic field mostly the | 5

2〉 state is occupied and for
high negative field it is the | −5

2〉 state.

question about the occupation probability of the states |5
2
〉,...,| − 5

2
〉 arises.

A related question is, in which way the spin gets from the |5
2
〉 to the | − 5

2
〉

state. Especially interesting is the case of zero magnetic field where the SP-
STM measurement provides a time averaged expectation value 〈Sz

Co〉∆T = 0.
Fig. 5 b) shows agreement for our quantum mechanical time-average and
the time-averaged experimental data in [12]. The classical spin description
[12] was only able to show agreement between the ensemble average and the
experimental data. Fig. 6 a), b) gives the time evolution ωβ(τPt (Sz

Co)) for
the z-component of the magnetization, for two different values of external
magnetic field Bz. In agreement with experimental data 〈Sz

Co〉∆t = 0 for
Bz = 0, while it increases with increasing Bz. As it is seen in Fig. 6 c),
d) at t = 0 the total signal is composed of the superposition of |5

2
〉 and

| − 5
2
〉. As the tunneling current is switched on the occupation probabilities

of those states start to oscillate. The amplitude of oscillations increases
with increasing parameter J and also depends on ~mtip. The appearance
of fluctuations in the occupation probabilities means that not only | ±5

2
〉

states become occupied. In other words magnetization switching occurs.
The results demonstrate that even a weak perturbation due to tunneling
electrons initiates a quantum tunneling in otherwise diagonal systems. The
expectation value of magnetization at Bz = 0 remains nearly zero.
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Figure 6: The time evolution of the adatom spin for the z-component as a function
of time are shown for a), c) Bz = 0 and b), d) Bz = 1 Tesla. The expectation value
fluctuates around thermal equilibrium at T = 4.2 K. The occupation probabilities
Pi for the states i = |52〉,...,| − 5

2〉 as a function of time are shown for c) Bz = 0 and
d) Bz = 1 Tesla.

4.3 Return to equilibrium of Fe/InSb

Predictions for relaxation times of single spins on metallic and semiconductor
surfaces are made. The magnetic STM-tip can be used to prepare a system
with desired expectation values. For the corresponding state we choose a
perturbed KMS state ωβP . Quantum fluctuations around thermal equilib-
rium will be analyzed and calculated. Approximated thermalization is found
numerically for the expectation values of the spin operators. It is generally
believed, that only large systems show a relaxation process. We demonstrate
that also expectation values of relatively small quantum spin systems, con-
taining less than 10 particles, return approximately to equilibrium when a
perturbed KMS state is used as an initial state. Especially interesting is the
theoretical analysis of the dynamics on time scales which are not accessible
for an STM. We demonstrate that the relaxation times of those quantum
objects on different substrates lie in the femto-, pico-, or nanosecond regime.
To check whether the short time dynamics has a reliable behavior, the cal-
culated relaxation time has been compared with experimentally determined
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life times for single spins [94].
Magnetic adatoms on a metallic or a semiconductor surface can often be

modeled with a Hamiltonian of the form

H =
∑
i

(
−D(Sz

i )
2 + E((Sx

i )2 − (Sy
i )2)

)
+

n∑
i,j,α

JαijS
α
j σ

α
i . (96)

The first term of the Hamiltonian describes the magnetic properties of adatoms.
The second summation approximates the interaction of magnetic atoms with
substrate electrons and is sometimes called s-d interaction. Sα are the com-
ponents α = x, y, z of the spin operators of the adatoms and σαi are Pauli
matrices corresponding to the spin components of the substrate electrons at
a lattice site i. Jαij is the strength of the Heisenberg interaction between
the adatom and the substrate electrons. The strength of |Jαij| in Eq. (96)
has been distributed randomly between 0 and 0.8 meV, corresponding to the
typical strength of exchange interaction between magnetic adatoms on con-
ducting or semiconducting surfaces. For our model calculations we choose
the perturbation

P =
∑
i,α

gµBB
αSαi , (97)

where Bα is a local magnetic mean field acting on the sample, g a gyromag-
netic constant and µB is the Bohr magneton. Thus, the choice of P corre-
sponds to the modified Tersoff-Hamann model when it’s action is restricted
to the magnetic atom directly under the tip.

It is a priori not clear, whether the described finite quantum system
is able to approach its equilibrium. It will be demonstrated that already
n = 8 substrate (or bath) electrons acting as a heat bath are sufficient, for a
single adatom at zero magnetic field, to reach thermal equilibrium, when a
perturbed KMS state is used. After a characteristic time t0, the expectation
value 〈Sz〉2(t) relaxes and fluctuates around its thermal equilibrium value,
i.e.,

ωβP (τt(S
z)) −→≈ ωβ(Sz) =

Tr
(
e−βHSz

)
Tr
(
e−βH

) . (98)

The amplitude and the form of fluctuations are temperature dependent. To
make sure that we get realistic relaxation times, we compare our calculations
with the life-time of an Fe adatom on InSb estimated in recent SP-STM
experiments [94, 95]. The corresponding parameters gFe = 2, D = 1.4 meV
(in our Hamiltonian we use −D), E = 0.22 meV and S = 1 for the iron atom
are taken from [94]. To calculate the relaxation time we use the expression
ωβP (τt(S

y
Fe)), in which the time evolution is generated by the Hamiltonian
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Figure 7: Return to equilibrium for the spin component Sy
Fe of an iron atom on an

indium antimonide surface for short and long times at T = 4.2 K. Fig. 7 a): The
experimentally estimated life-time of 800 fs is in good agreement with the calculated
relaxation process. Fig. 7 b): After the relaxation is done the expectation value
remains near thermal equilibrium ωβ(Sy

Fe) = 0.

Eq. (96) and Sy
Fe denotes the y-component of the spin operator of the iron

atom, which was investigated in this experiment [94].
In Fig. 7 the agreement of the interpretation of ωβP (τt(S

y
Fe)) = 〈Sy

Fe〉2(t)
as a relaxation process with experimental data [94, 95] is verified. As one can
see from Fig. 7, the expectation value of the magnetization increases from -1
to zero and then fluctuates around thermal equilibrium. The experimental
estimation of the lifetime tl.t. of the excited state was done by the formula
tl.t. = ~

2∆E
, where ∆E is the energy difference between the states, obtained

from inelastic SP-STM[94, 95].
In Fig. 8 and 9 the calculated functions for a high temperature of T = 100

K and a low temperature of T = 4 K are shown. The short time and the long
time behavior are analyzed for different values of the parameters E and D
in Eq. (96). In Fig. 8 a)-d) the function ωβP (τt(S

z)) is plotted for different
values of E and fixed D, while E is fixed and D is varied in Fig. 9 a)-d). It
can be seen that in all cases the fluctuations decrease with increasing tem-
perature. Depending on the time scale, in all cases the evaluated function
ωβP (τt(S

z)) can be approximated by a function starting from −1 with an
exponential decay to zero. Fluctuations induced by the temperature are not
able to switch the spin back to 〈Sz〉 ≈ −1. A similar behavior has been
found experimentally in [96], where a single Fe spin was excited with a high
voltage pump, corresponding to a strong perturbation in our model, and the
relaxation process of this single spin was investigated. The magnetization
showed the exponential decay for first time period, followed by small fluctu-
ations near thermal equilibrium. The temperature was unable to switch the
spin to its initial value for t = 0. The appearance of larger fluctuations for
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Figure 8: Return to equilibrium for Sz of a single adatom spin coupled to 8 sub-
strate electrons. The relaxation is shown for temperatures of T = 4 K, T = 100
K, different values of E and fixed D = 1 meV. Fig. 8 a) and 8 c): The short
time behavior shows a faster relaxation for a higher temperature. Fig. 8 b) and
8 d): The long time behavior shows smaller quantum fluctuations around thermal
equilibrium for higher temperatures. The different time scales on the x-axis should
be noted.

a lower temperature might be explained by energy considerations. A system
at a lower temperature has less energy than a system at a higher temper-
ature. A perturbation P corresponds to an additional amount of energy.
Notice that for an infinite system this additional energy is negligible and an
exact thermalization might take place [44]. The relative ratio between the
energy of perturbation and the energy of the free system is larger at lower
temperatures. This might be a reason for the stronger fluctuations at lower
temperatures. Another important effect at low temperatures are "quantum
fluctuations", which become extinct with increasing temperature. We can
also see that for higher temperatures the quantum spin of the adatom re-
turns faster to equilibrium, i.e., the adatom relaxation time becomes shorter.
With increasing value of D the relaxation time also increases. This is in
agreement with the statement that a spin "up" or "down" state becomes
more stable with increasing anisotropy barrier. For increasing E (see Fig. 8
a,c) an inverted behavior has been observed for short times.
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Figure 9: Return to equilibrium for Sz and different values of D of a single adatom
spin coupled to 8 substrate electrons. The relaxation time grows with increasing
value of the anisotropy barrier D. Fig. 9a) and 9c): The short time behavior
shows a faster relaxation for a higher temperature. Fig. 9b) and 9d): The long
time behavior shows smaller quantum fluctuations around thermal equilibrium for
higher temperatures. The different time scales on the x-axis should be noted.

4.4 Outlook to algebraic Quantum Field Theory

Quantum field theory as well as fermionic lattice systems (FLS) can also be
formulated with a quasi-local algebra. They provide a more realistic model
system for the action of the magnetic tip on the sample than the Tersoff-
Hamann model for a QSS does. The tunneling current between the magnetic
tip and the sample can be incorporated in a more realistic fashion by the
usage of a QFT or a FLS. The modified Tersoff-Hamann model which is
used in a QSS has the mathematical structure of an exponentially declining
external magnetic field, when one is moving away from the lattice site which
is directly under the tip. While the Tersoff-Hamann model provides a basis
for explaining many STM results, it acts physically like a position dependent
magnetic field and there are no tunneling particles. There is basically no
particle reservoir which models the magnetic tip, such that electrons could
tunnel between the tip and the sample. Moreover, it is not a very realistic
model, especially if the applied bias voltage is considered. Thus, we will give
a brief explanation how a QFT can be applied to remove these weaknesses.
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Since the application of a FLS is structurally very close to that, we will just
concentrate on QFT.

The application of a QFT is made by an identification of an element of
a quasi-local algebra, P ∈ A, with the interaction between the tip of the
scanning tunneling microscope and the investigated sample with substrate.
Thus, P ∈ A contains information of the tunneling probabilities. Principally
one chooses a C∗-algebra of the form

A = A1 ⊗ A2 ⊗ A3, (99)

where A1 could be associated with electrons of the substrate, A2 corresponds
to the actually investigated magnetic atom(s) which is/are directly under
the magnetic tip, which itself is described by A3. Thus, A3 can be seen as a
particle reservoir of tip-electrons and A1 as a particle reservoir of substrate
electrons. A1 and A3 are therefore infinite-dimensional systems, while A2 is
a finite-dimensional matrix algebra. The free dynamics is then of the form

τ = τ 1,2 ⊗ τ 3, (100)

where τ 1,2 is the dynamics on A1⊗A2, which is not of tensor product structure
because there is a permanent interaction between the substrate electrons and
the investigated magnetic atom(s). τ 3 is the free dynamics of the electrons
contained in the tip. As the Tersoff-Hamann model indicates, the tunneling
current decreases exponentially with the distance ∆h between the tip and
the sample. Therefore, the tensor product structure between τ 1,2 and τ 3

is a good approximation for sufficiently large distances ∆h. If the tip is
moved towards the sample, the resulting tunneling current is responsible for
the occurrence of an interaction P ∈ A which connects A1 ⊗ A2 with A3.
Thus, the perturbed dynamics τP during a measurement is not of the Tensor
product structure as the free dynamics. A natural equilibrium state of the
free system (A, τ) is of the form

ωβµ1

1,2 ⊗ ωβµ3

3 , (101)

where β ∈ R is the inverse temperature, µ1 is the chemical potential of
the substrate, and µ3 is the chemical potential of the tip. The applied bias
voltage eV , which is an important experimental parameter, is then given by

eV = µ1 − µ3. (102)

A simple perturbation that could be chosen for a quantum field theoretic
system might be of the form∑

x

γ ~mtip

(
a∗(f1)~Sxa(g1) + a(f2)~Sxa

∗(g2) + a∗(g3)~Sxa(g4) + ...
)
, (103)
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where ~Sx is the spin operator of the investigated magnetic adatom at posi-
tion x, a∗(fi) ∈ A1 and a∗(gi) ∈ A3 are creation operators of the tip and the
substrate, while a(fi) ∈ A1 and a(gi) ∈ A3 are the corresponding annihilation
operators. See [44] for a detailed description of algebraic QFT. γ assesses
the "strength" of the tunneling current. The interpretation of the pertur-
bation P is as follows: in the first term a conduction electron "with matter
distribution g" is annihilated in the tip, then it interacts with the investi-
gated magnetic atom ~Sx and is then created with matter distribution f in
the substrate. The interpretation of the other terms is accordingly. This was
a brief discussion how AQFT can be applied for a more realistic description
of SP-STM experiments.
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5 Information transport in atomic spin chains
A fast information transfer via spin chains is crucial for the efficiency of fu-
ture spintronic devices. Iron chains on the surface of an iridium crystal and
copper(111) were experimentally identified as suitable systems for a trans-
port of magnetic information [76] [2, 76]. We perform simulations of an exact
signal propagation for the Fe/Ir(001) system and magnetic atoms on metallic
surfaces. There are different experimental parameters which can be used to
modify the information transport in magnetic quantum systems, e.g., exter-
nal magnetic fields, differently prepared states, the temperature or the bias
voltage of the STM. The enhancement of the signal velocity is of primary
interest. This naturally raises the question of a possible maximum velocity
in quantum spin systems, in analogy to the speed of light as maximum ve-
locity in relativity theory. In 1972, Lieb and Robinson provided a general
limit on signal velocities in the theory of quantum spin systems, which is
expressed as a mathematical bound [97]. While the speed of light as maxi-
mum velocity is physically realized in nature by photons, it is an interesting
question how close real velocities in magnetic quantum systems can come
to the mathematical Lieb-Robinson bound. We suggest that SP-STM is a
suitable experimental setup for a quantitative investigation of the quality
of Lieb-Robinson bounds and provide applications of Lieb-Robinson bounds
as upper limits on the enhancement of the real signal speed for information
transport in spintronic devices. It is shown, that the signal speed in a spin
chain with Heisenberg interaction can’t be increased more than a factor of
4 by varying certain experimental parameters. The observed discrepancy
between the bounds and the exact signal velocities is investigated.

Fig. 10 shows a visualized SP-STM experiment, where information is
transferred via spin chains consisting of iron atoms on the surface of an irid-
ium crystal [76]. Magnetic STM tips are experimentally used to investigate
the spin system and if a measurement is started, a tunneling current starts to
flow between the tip and the magnetic atoms. The corresponding interaction
is described by the modified Tersoff-Hamann model [87, 88],

Htip({x}) = gI0Pe−2κ
√

(x−x0)2+h2
~mtip · ~Sx, (104)

where the parameters are explained following eq. (25). We will use the
theoretical idealization, that the tip acts only on the atom which is directly
underneath the tip, i.e., P = Htip({x0}), where x0 is the position of the tip
at the beginning of the spin chain. In accordance to [13], we will distinguish
between a free spin system (the tip is moved away from the surface such
that there is no interaction between the tip and the sample) and a perturbed
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Figure 10: Example of an SP-STM experiment, where information is transported
via spin chains consisting of iron atoms on the surface of an iridium crystal [76].
A magnetic tip (upper white triangle) starts to act on lattice site x0 at time t = 0.
After some time t > 0, the signal can be detected at lattice site y.

spin system, which means that there is an interaction between the magnetic
tip and the sample. Thus, the Hamiltonian of the spin system switches
from Hchain(Λ) to Hchain(Λ) + Htip({x0}) in the moment (t = 0), when the
tunneling current starts to interact with the magnetic atoms. The action of
the magnetic tip influences the dynamics of the spin system and disturbances
start to propagate through the chain. The dynamics of the free spin system
without the action of the tip is given by the Heisenberg relations

Sz
y(t) = ei(t/~)Hchain(Λ)Sz

ye
−i(t/~)Hchain(Λ) = τΛ

t (Sz
y). (105)

The corresponding dynamics of the perturbed system with interaction be-
tween tip and spin chain is given by

τΛP
t (Sz

y) = ei(t/~)(Hchain(Λ)+Htip({x0}))Sz
ye
−i(t/~)(Hchain(Λ)+Htip({x0})). (106)

In thermal equilibrium, the state of the free spin chain is given by the Gibbs
state ωβΛ whose expectation value is given by

ωβΛ(Sz
y) =

Tr(e−βHchain(Λ)Sz
y)

Tr(e−βHchain(Λ))
, (107)

where β is the inverse temperature. The dynamics for the exact velocities is
now given by

ωβΛ(τΛP
t (Sz

y)) ≡ 〈Sz
y〉(t), (108)
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where the perturbation P is located at site x0 and the observed spin com-
ponent Sz

y is located at site y, e.g., the z-component of the output atom’s
magnetization in fig. 10. We use the numerical method of exact diagonaliza-
tion for the exact signal velocities. There is no phenomenological term for a
dissipation process.
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Figure 11: Propagation velocities (arrival times) for an iron chain on iridium at
T = 4 K. The required propagation time is not a linear function of the chain length
y.

5.1 Real-time information transfer in Fe chains on Ir(001)

The Hamiltonian of the Fe/Ir(001) spin chain is given by

Hchain =
∑
ij

(
Jij ~Si~Sj + ~Dij ·

[
~Si × ~Sj

])
+
∑
i

K(Sz
i )

2. (109)

We include nearest and next to nearest neighbor interactions between the Fe
atoms, which are modeled by particles of spin quantum number s = 1. We
use the exchange and anisotropy parameters as in the experiment [76] for a
realistic description. Our idealized, modified Tersoff-Hamann model is of the
form P = α~mtip

~Sx0 = αSz
1, where the constant α is chosen to be α = 10 meV,

corresponding to typical interaction strengths in SP-STM experiments. We
perform the simulations for the temperatures of T = 4 K and T = 100 K.
The perturbation P drives the magnetization of the first atom in the chain
at x0 = y = 1 out of equilibrium, which then influences the magnetizations
of the nearest and the next to nearest neighboring atoms at y = 2 and y = 3.
The magnetization directions of the atoms in the chain start changing after
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some time t when the signal, which was caused by the magnetic tip at position
x0, arrives at site y.

Fig. 11 shows the magnetization change 〈Sz
y〉(t), eq. (108), of the atom

at position y in the Fe/Ir(001) chain. It can be seen that the first atom (x0 =
y = 1) in the chain responds earliest. The third atom (at y = 3) responds
earlier than the second atom (at y = 2), because the interaction strength
between the next to nearest neighbor atoms is stronger than between nearest
neighbor atoms [76]. The other atoms show the same behavior, the fifth atom
responds earlier than the fourth atom. Thus, for an odd number of atoms
the signal arrives earlier at the end of the chain than for the case with one
atom less. The required propagation time is therefore not a linear function
of the chain length. However, it is difficult to define the exact speed for this
system. If we define, that the signal arrives at site y when the expectation
value 〈Sz

y〉(t) has changed by the value ≈ 0.05, we obtain the results which
are shown in table 1. The signal speed through the iron chain is on average
approximately 50 sites

ps
. Next we compare the information transport through

y t

1 0.02 ps
2 0.045 ps
3 0.04 ps
4 0.12 ps
5 0.095 ps

Table 1: Required time t for a significant change (≈ 0.05) of the spin’s z-component
expectation value 〈Sz

y〉(t) at lattice site y. The signal speed is on average approxi-
mately 50 sites

ps .

the iron chains on iridium for the two different temperatures of T = 4 K and
T = 100 K and show also the long-time behavior.

Figs. 12, 13, 14, and 15 show the magnetization change of all eight spin
1 particles in the Fe/Ir(001) spin chain as a function of time. For all eight
spins it can be seen that the magnetization starts earlier to change and the
amplitude is larger for the lower temperature of 4 K. The magnetization
of the first atom (fig. 12) which is directly influenced by the magnetic tip
changes earliest and remains aligned along the negative z-direction. The
lower temperature causes that the | −1〉 state of the first atom is relatively
more occupied after the action of the tip than in the case for the higher tem-
perature. The magnetization of the second atom in the chain (fig. 12) starts
changing into the positive z-direction with a reduced amplitude compared
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Figure 12: The magnetization change of the first atom (left fig.) and the second
atom (right fig.) in the iron spin chain on iridium for the temperatures of T = 4
K and T = 100 K.
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Figure 13: The magnetization change of the third atom (left fig.) and the fourth
atom (right fig.) in the iron spin chain on iridium for the temperatures of T = 4
K and T = 100 K.

to the first atom. For the higher temperature of T = 100 K the magneti-
zation remains more stable in that position, while the magnetization shows
more quantum fluctuations and is less stable for the lower temperature of
T = 4 K. There is a similar behavior for the third and fourth atom in fig.
13. The magnetization of the fifth, sixth, seventh, and eighth atom in fig. 14
and 15 approaches to its original equilibrium magnetization after ≈ 0.5 ps.
Numerical calculations of information transport in spin chains with a pure
Heisenberg interaction show a less stable magnetization change and more pe-
riodic oscillations. Thus, the Dzyaloshinskii-Moriya interaction is responsible
for thermalization properties.

5.2 Lieb-Robinson bounds on the signal velocity

Since the introduction in 1972, there were several investigations of Lieb-
Robinson bounds in the algebraic framework of mathematical physics [89, 98–
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Figure 14: The magnetization change of the fifth atom (left fig.) and the sixth
atom (right fig.) in the iron spin chain on iridium for the temperatures of T = 4
K and T = 100 K.
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Figure 15: The magnetization change of the seventh atom (left fig.) and the eighth
atom (right fig.) in the iron spin chain on iridium for the temperatures of T = 4
K and T = 100 K.

100]. A central aim of these investigations is the improvement of the bound,
which means a reduction of the corresponding upper mathematical limit
down to real existing velocities. The new improvements on Lieb-Robinson
bounds arose from remarks in [101] and the first two important results in
this direction were [102] and [103]. The authors in [104] derived a theoret-
ical speed limit for the Bose-Hubbard model, which was interpreted to be
some kind of a Lieb-Robinson bound, and investigated experimentally the
propagation of correlations in a one-dimensional quantum gas. However, the
general Lieb-Robinson bounds derived in mathematical physics were never
applied to real physical systems and the corresponding discrepancy between
the bound and exact velocities remained unclear. Hence, the corresponding
potential for a further improvement of the bounds as well as the maximum
enhancement of the signal speed, by varying certain experimental parame-
ters, remained unknown. The latest, most general bound [89] is presented in
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a simplified formula [85, 86] and applied to realistic interactions of magnetic
quantum systems as used in spin-based nanotechnology [105]. We derive a
bound B̃ which provides a strictly mathematical relation between the bound
B and the exact velocities eq. (108). This allows a quantitative analysis
for further improvements of Lieb-Robinson bounds and provide an upper
limit on the enhancement of exact velocities, if experimental parameters are
changed which leave the bound invariant. It is shown, that the latest, most
general bound B, is better by a factor of 100 than the old bound [44] and
approximately 4 times faster than some estimates of exact signal velocities in
atomic spin chains. Thus, the latest, most general bound derived in [89] is al-
ready in the correct order of magnitude. A specific bound which is only valid
for the XY-model [90] is incorporated into the discussion. The interaction
between the magnetic STM tip and the sample is identified as an interest-
ing experimental parameter which influences the exact signal propagation as
well as B̃, but leave B invariant. A corresponding SP-STM experiment is
simulated with explicit calculations. But first we will investigate the original
bound for a comparison and to demonstrate which kinds of improvements
were done.

The interaction norm ‖ Φ ‖ξ for the old Lieb-Robinson bound in [44] is
given by

‖ Φ ‖ξ= sup
x∈L

∑
X3x
|X|(2s+ 1)2|X|eξD(X) ‖ Φ(X) ‖< +∞, (110)

for some ξ > 0, where |X| is the number of points in X, D(X) is the diameter
of X and s is the spin quantum number. The upper limit on propagation
velocities is given by [44, 97] (Theorem 6.2.11.):

‖ [Sz
x(t), S

z
y] ‖≤ 2 ‖ Sz

x ‖‖ Sz
y ‖ e−|t|(

ξ|x−y|
|t| −2‖Φ‖ξ)=̇L(t), (111)

where L is the Lieb-Robinson bound. The proof of the related theorem
[44] states that this bound is independent of one-body interactions, e.g.,
external magnetic fields, anisotropy energies, and the Tersoff-Hamann type
interaction. Thus, for the Lieb-Robinson velocity we have to concentrate on
the Heisenberg- and the Dzyaloshinskii-Moriya interactions, while the exact
velocities also depend on the one-body interactions.

If the norm of the commutator in inequality (111) is very small, e.g.,
compared to the norm of the spin observable, the commutator can be assumed
to be zero. For table 2 and 3 the value

‖ [Sz
x(t), S

z
y] ‖≤ 10−4 ≈ 0 (112)
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was chosen, but one could also choose a smaller value. For large and complex
systems, the commutator in eq. (111) cannot be calculated with a standard
numerical procedure, but the bound on the right hand side can be calculated.
The quantum mechanical interpretation of two commuting observables is that
they can be measured independently. The latest calculated time point for
which eq. (112) is valid is denoted by tmin. Certainly tmin depends on x
and y, and tmin is interpreted to be the time which is at least needed for a
propagating signal to overcome the distance |x − y|. Therefore, the fastest
possible information transport from a point x to a point y is given by tmin.
The upper bound on velocities is then given by vL.R. =̇

|x−y|
tmin

.
Fig. 16 shows a visualized situation in a possible, experimental SP-STM

setup and the small blue and green cones in fig. 16 correspond to magnetic
atoms. The Lieb-Robinson bound states that after some time t > 0, all
magnetic disturbances which were caused by the event HΦ(Λ) → HΦ(Λ) +
Htip({x0}) are contained in a circle (green cones in fig. 16) whose center is
given by the position x0 of the tip. The radius of the circle is calculated as
a function of time, see table 2.

x0 x

Thanks to T. Stapelfeldt for the visualization
of Theorem 6.2.11!

1

Figure 16: A magnetic tip acts over the lattice site x0. After some time t, only
spins with a distance smaller than |x0 − x| (green cones) could be influenced by
the tip.

Next, we solve the Lieb-Robinson bound Eq. (111) for the spin 1/2
Heisenberg model in one, two, and three dimensions with nearest neighbor
interaction and arbitrary one-body interactions. We define

Jmax = sup
x,y∈L

| Jxy | (113)

and the Lieb-Robinson velocity vL.R. is then a function of Jmax.
Table 2 shows the fastest possible information transport for the two-

dimensional s = 1/2 quantum Heisenberg model with nearest neighbor inter-
action. |x0 − x| is the radius of the circle where the center x0 is the position
of the STM tip, as in fig. I. A signal which starts from x0 at t = 0 is after
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the time tmin contained in the circular area which is smaller than the radius
|x0 − x| obtained from the Lieb-Robinson bound.

|x0 − x| tmin

100 1.19 ps
1000 11.9 ps
10 000 119 ps
100 000 1.19 ns
1 000 000 1.19 ns
100 000 000 1.19 µs

|x0 − x| tmin

100 0.119 ps
1000 1.19 ps
10 000 11.9 ps
100 000 119 ps
1 000 000 1.19 ns
100 000 000 119 ns

Table 2: Minimum time needed to overcome the distance |x0 − x| for the two-
dimensional Heisenberg model. Left : Jmax = 0.1 meV. Right : Jmax = 1 meV.

dim(L) vL.R.

1 0.04 sites/fs
2 0.08 sites/fs
3 0.12 sites/fs

dim(L) vL.R.

1 0.4 sites/fs
2 0.8 sites/fs
3 1.2 sites/fs

Table 3: Maximum propagation velocities vmax in lattice sites per time for the
one-, two- and three-dimensional quantum Heisenberg model. Left : Jmax = 0.1
meV. Right : Jmax = 1 meV.

Table 3 shows the maximum velocities in lattice sites per time for different
values of dim(L) and Jmax. The values for Jmax were chosen to be Jmax =
0.1 meV and Jmax = 1 meV, corresponding to typical magnetic interaction
strengths. For every case there is a tmin ∝ 1

Jmax
dependence and tmin depends

linearly on the distance |x − y|. Hence, vL.R. ∝ Jmax and there is a 1
Jmax

dependence of tmin, which can also be found for exact velocities, if all Jαij = J
are equal. vmax ∝ dim(L) for the above cases.

Fig. 17 shows an exact change (a) of the last atom’s magnetization (site
y = 8) and the fastest possible change (b), which is given by the Lieb-
Robinson bound L(t) (right hand side of eq. (111)). For both cases a com-
parison was done for the pure Heisenberg-, the pure DM, and both interac-
tions together. In all cases the spin chains consist of 8 particles with spin
quantum number s = 1/2 and the coupling constants were chosen to be
J = D = 1 meV. It can be seen that the exact speed is nearly equal for the
pure Heisenberg and the pure DM interaction. But the Lieb-Robinson speed
is faster for the pure DM interaction than for the pure Heisenberg interac-
tion, because the interaction norm eq. (110) possesses a larger value for the
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Figure 17: The "arrival time" of some exact (a) and the Lieb-Robinson (b) veloc-
ities for a signal propagation through a spin chain of 8 atoms. For both kind of
velocities, the pure Heisenberg (green lines), the pure DM interaction (blue lines),
and both interactions together (red lines) were calculated. In all cases the coupling
constants were chosen to be of strength 1 meV.

DM interaction. For both interactions together the speed is enhanced for the
Lieb-Robinson and the exact velocity. The old Lieb-Robinson velocities are
approximately 400 times faster than the obtained exact velocities.

5.3 The latest, most general bound
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Figure 18: The old a) and the new bound b) are compared for the s = 1/2, 1, and
3/2 nearest neighbor J = 1 meV Heisenberg chain consisting of 100 quantum spins.
The Lieb-Robinson velocity of the new bound is approximately 100 times slower
and therefore 100 times closer to real existing velocities.

First we will solve the old bound L and the newer bound B, eq. (66), for
the Heisenberg interaction and compare them as a function of time. After
that we discuss the observed discrepancy. We will then solve the bound B̃
to compare the latest, most general bound B and the exact signal velocities,
eq. (108), which are generated in the simulated SP-STM experiment.
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Fig. 18 shows the Lieb-Robinson velocities concerning a) the original
bound L and b) the latest, most general bound B for the s = 1/2, 1, and 3/2
nearest neighbor Heisenberg quantum spin chain with interaction strength
J = 1 meV. The chain length is chosen to be l = 100 lattice sites. While the
old bound L(t) states for s = 1/2 (red lines) that it is impossible to transfer
information through the chain faster than 0.24 ps, the new and better bound
B(t) states that it is impossible to do this faster than 23.5 ps. The new
bound is therefore approximately 100 times slower, i.e., stays longer close to
zero with increasing time, and is 100 times closer to real existing velocities.
Note that the improved Lieb-Robinson bound is a lower bound on the ve-
locities than the original bound, which means that the arrival time (which
is shown on the figures) of the improved bound is increased. In the original
bound L the time is multiplied with the factor |X|(2s + 1)2|X|eξD(X), from
which the new bound B is independent. This factor provides an unneces-
sary increase of the corresponding speed limit. In our calculations we have
|X|(2s + 1)2|X|eξD(X) ≈ 86, 99 and ξ was chosen nearly to 1, such that L(t)
has a minimum value. Thus, the disappearance of this factor in the new
bound B provides the main contribution of the 100 fold improvement for the
Lieb-Robinson velocity vLR.

b
atom

spin chain

stable magnetic island

1

Figure 19: Example of an SP-STM experiment, where information is transported
via spin chains in an all-spin-based atomic-scale logic device consisting of iron and
cobalt atoms placed on copper(111) [2]. If the magnetization of a triangular island
is switched, a signal starts to propagate through the chain towards the output
atom.

Next we estimate some exact velocities in spin chains and include the
interaction of the magnetic tip. Our model calculations will be performed
for systems where the interaction between the atoms can be described by the
Heisenberg interaction, which is for example the case for the atomic-scale
spin-based logic device in fig. 19. A s = 1 nearest neighbor interaction
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Heisenberg quantum spin chain consisting of 8 atoms with anisotropy energy
will be used for our next example:

Hchain =
8∑

i,i+1

J ~Si · ~Si+1 +
8∑
i=1

K(Sz
i )

2, (114)

where we choose J = 1 meV and K = 2 meV, corresponding to typical values
of magnetic atoms on the surface of a metallic substrate. While the particle
number is mostly the limiting factor for numerical methods, Lieb-Robinson
bounds can be solved for an arbitrary number of quantum spin particles.

Fig. 20 shows a comparison between three different exact velocities (col-
ored lines) and the upper bound B(t) (black line). The parameter of the
modified Tersoff-Hamann model are chosen to be

‖ P ‖= gI0Pe
−2κ
√
h2

= 1, 2 and 4 meV. (115)

The speed limit, obtained from B(t), is approximately 4 times faster than
the exact velocities and independent of ‖ P ‖. This means that there is no
possibility to enhance the exact velocity above the black line, by changing the
experimental parameters temperature, external magnetic fields, anisotropy
energies, differently prepared initial states or the variables gI0Pe

−2κ
√
h2 in

‖ P ‖. The speed of the bound B as well as the speed of the exact velocities
are scaling with 1

J
.
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Figure 20: The arrival of a signal with Lieb-Robinson velocity vLR (black line) is
approximately 4 times faster than the arrival of the exact velocities (colored lines),
for the case of a Heisenberg quantum spin chain with J = 1 meV and a length of
8 lattice sites. The energy of the action of the tip is chosen to be ‖ P ‖= 4, 2, and
1 meV.

However, this comparison between the bound B and the exact velocities
eq. (108) is based on a physical interpretation instead of a mathematical
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relation. To prevent possible errors which might arise from a physical inter-
pretation without a mathematical relation, we will also introduce a strictly
mathematically related bound B̃ on the exact velocities. This is done with
the help of Proposition 5.4.1. in [44] and one obtains

| ω(τPt (Sz
i ))− ω(Sz

i ) |≤
∞∑
n=1

∫ t

0

dt1 · · ·
∫ n−1

0

dtn×

× (2 ‖ P ‖)n−1B(tn) ‖ Sz
i ‖

= ‖ Sz
i ‖
∫ t

0

dt′B(t′)×

×
∞∑
n=1

(t− t′)n−1

(n− 1)!
(2 ‖ P ‖)n−1

= ‖ Sz
i ‖

d

dλ

eλt − 1

λ
=̇B̃(‖ P ‖, t), (116)

for λ = 2 ‖ P ‖ after the differentiation in the last line. The bound B̃ depends
on the norm of the perturbation, ‖ P ‖, which contains the parameters of
the modified Tersoff-Hamann model. Thus, we have prevented potential
errors which might arise from a physical interpretation by the cost of an
additional dependence of the parameters from the modified Tersoff-Hamann
model. But still, the bound is independent of the other one-body interactions
and valid for all initial states, e.g., all temperatures. Now, we will solve the
bound B̃, eq. (116),which relates B and the exact signal velocities, eq.
(108), mathematically. B̃ contains a dependence of the perturbation ‖ P ‖=
gI0Pe

−2κ
√
h2 , but is still independent of the other experimental parameters:

external magnetic fields, anisotropy energies and differently prepared initial
states, e.g., different temperatures.

Fig. 21 shows a comparison of the improved bound B(t) (black line) and
the bounds B̃(‖ P ‖, t) (colored lines), which give a strictly mathematically
related bound on the exact velocities, but depend on the Tersoff-Hamann
model. We have used the parameters ‖ P ‖= 0.5, 1, 2, and 4 meV for the
bound B̃, as in the case of the exact velocities in fig. 20. It can be seen that
the bounds B̃(‖ P ‖, t) rise a little bit earlier than B(t), but for low energies
the increase of B̃(‖ P ‖, t) comes more and more slower. However, B̃ and B
are basically of the same order of magnitude.

There are different reasons which are responsible for the discrepancy by a
factor of approximately 4. The generality and the way of the mathematical
construction of the bounds are two of these reasons. There are two kinds
of generalities. The first generality, mentioned by the authors in [90], is the
applicability to a large class of model systems. They used this reason as
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Figure 21: The bound B(t) (black line) for the physical interpretation is compared
with the bounds B̃(‖ P ‖, t) (colored lines) which give a strictly mathematically
related bound on the exact velocities. As in fig. 20 a Heisenberg quantum spin
chain with J = 1 meV and a length of 8 lattice sites is used. The energy of the
action of the tip is chosen to be ‖ P ‖= 4, 2, 1, and 0.5 meV.

motivation for the derivation of the specific bound [90], which is only valid
for the XY-model. A reduction of this discrepancy might be obtained, if
improved bounds for more specific interactions are constructed, as for the
XY-type model in [90]. However, the specific bound for the XY-model is
questionable for a realistic description of an experimental setup. The bound
[90] is multiplied by the square n2 of the chain length n which is a disadvan-
tage for large chain lengths. But the results in [91] make the development
of specific bounds interesting. The second kind of generality is the indepen-
dence of one-body interactions and the validity for all states. Since we have
chosen the numerical method of exact diagonalization, we are able to treat
the problem quite realistically and the values which are obtained from the
calculation are exact in the framework of the chosen Hamiltonian. However,
we have to choose certain parameters of the Hamiltonian which change the
values of the exact speed but leave the bounds invariant. Furthermore, a
specific state has to be chosen for the exact numerical calculation while the
bound is valid for all states. Therefore, there is some freedom of choice on the
side of the numerical calculation, which is not on the side of the bounds. The
reflections while the signal propagates through the chain might be described
by some kind of a random walk. These reflections depend on the choice of the
state. Therefore, one might reduce the reflections in the signal propagation
by choosing a different initial state and enhance the exact speed.

Next, we will use the temperature as an example for an experimental
parameter which changes the exact signal speed, but leaves the bound B
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as well as B̃ invariant. We will also use the Heisenberg interaction without
anisotropy:

Hchain =
8∑

i,i+1

J ~Si · ~Si+1, (117)

which changes our exact signal propagation in contrast to the previous ex-
ample of fig. 20. In fig. 22 we can see the arrival time 〈Sz

8〉(t) of a signal
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Figure 22: The arrival time of the exact signal speed for the two different tempera-
tures of T = 4 K (green line) and T = 100 K (blue line). There is an enhancement
of the signal speed by a factor of ≈ 2.7, caused by the different temperatures.

propagating through an s = 1 Heisenberg spin chain with the same interac-
tion strength of J = 1 meV as above, but for the two different temperatures
of T = 4 K and T = 100 K. One finds visible deviations at ≈ 0.7 ps for the 4
K signal and at ≈ 1.9 ps for the 100 K signal. A reduction of the temperature
from 100 K to 4 K causes an enhancement of the signal speed by a factor
of ≈ 2.7. However, the amplitude of the signal traveling at T = 100 K is
relatively small, such that the functions 〈Sz

8〉(t) are just plotted up to a value
of 0.01. In this example, the influence of anisotropy energy has a less strong
influence on the signal velocity than the temperature has, i.e., the observed
signal speed in fig. 22 is similar to the signal speed in 20 (note that the scale
for the expectation value is different).

Information transport in fermionic systems

According to the bounds on velocities and magnetic information transport of
fixed magnetic atoms, we want to mention an interesting example (6.2.14A
and 6.2.14B [44]) for an information transport which is related with the
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transport of electrons in a substrate ("hopping" of the electrons). The Fermi
algebra AF is defined as the C∗-algebra generated by elements {ci, c∗i ; i ∈ Z}
satisfying the anticommutation relations

{ci, c∗j} = δi,j, {ci, cj} = 0 (118)

for all i, j ∈ Z. Now consider the Hamiltonian

Hn = HΦ([−n, n]) = 2J
n−1∑
i=−n

(c∗i ci+1 + c∗i+1ci) + h

n∑
i=−n

(2c∗i ci − 1̂), (119)

where J, h ∈ R. The infinitesimal time change is then given by

δΦ(c∗j) = lim
n→∞

i[Hn, c
∗
j ] = 2iJ(c∗j−1 + c∗j+1) + 2ihc∗j (120)

which can be integrated by Fourier transformation [44] to give

τt(c
∗
j) =

∑
i∈Z

Gt(j − i)c∗i , (121)

where

Gt(x) =
1

2π

∫ 2π

0

dθeixθeit(4J cos θ+2h). (122)

If A = c∗0c0 counts the particles at i = 0 and τj denotes the space translation
operator, e.g., τj(c0) = cj, then ‖ [τjτt(A), A] ‖ is proportional to |Gt(j)|. One
finds that |Gt(V t)| decreases exponentially with t if |V | > 4J and decreases
like |t|−1/2 if |V | < 4J [44]. It seems that there is no restriction by the
number of particles, when Gt(x) is solved.
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Figure 23: Propagation as a function of time in accordance to commutator norms
|Gt(j)| ∝‖ [τjτt(c

∗
0c0), c∗0c0] ‖ and electron hopping in metallic substrates for j = 10

lattice sites, h = 0, and J = 1 meV.
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6 Application to spin-based nanotechnology
Future spintronic devices should consist of several interacting magnetic atoms
[2, 106], which are theoretically described as quantum spin particles. While
theoretical calculations often led to a significant progress in the interpreta-
tion of experimental data obtained by SP-STM [38], the particle number of
these systems is mostly the limiting factor for quantum mechanical calcula-
tions. A variety of different numerical methods were developed to estimate
the expectation values of large quantum systems [92, 107]. Depending on
the considered problem, different physical approximations are used in these
methods. The error which is made by these approximations is difficult to
estimate and remains unknown in most cases. We examine an upper bound
on expectation values of quantum subsystems, which enables the estimation
of a limit on the error that can be made by physical approximations outside
the subsystem. This is of special interest for perturbation theory, where the
bath is commonly approximated with simplified interactions. A recently re-
alized all-spin-based atomic-scale logic device, consisting of iron atoms and
cobalt islands placed on a copper substrate, serves as a specific example for
an application of the bound. Strength and weakness of these methods will
be critically discussed. For certain cases a quantitative answer to the old
question when a small quantum system can be used instead of a large one,
will be provided.

A common approximation is the decomposition of the Hamiltonian H =
Hloc +Hint +Hbath for the full system H into a Hamiltonian for a local subsys-
tem Hloc, an environment Hbath and a term Hint (it can also be Hhyb) which
describes the interaction between the local subsystem and the environment
(bath), e.g., a quantum impurity model [41]. The interactions Hbath for the
environment are often simplified, while Hloc and Hint are treated more real-
istically. The expectation values are then estimated by numerical methods
as perturbation theory [108] and quantum Monte Carlo [41]. The exact size
of the error which is made by the approximation for the interactions in Hbath

remains unknown in most cases and the quantitative value of the result is dif-
ficult to verify. In general, one does not know whether the expectation values
of the local subsystem would change drastically, if more realistic interactions
would be used for the environment.

Motivated by the lack of knowledge of this error, we estimate an exact
upper bound on expectation values of quantum subsystems, when different
environments are coupled to the subsystem. The environment is also treated
fully quantum mechanically for the estimation of the bound. Furthermore,
the bound provides the maximum difference of the expectation value of a
quantum subsystem, when the subsystem is coupled to or decoupled from the
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environment. Thus, for certain cases the inequality enables a quantitative
answer to the old question when a small quantum system can be used instead
of a large one, to save valuable memory capacity for numerical simulations.
As in the case of a Lieb-Robinson bound B on the signal velocity [77], the
bound ε can also be solved for an arbitrary number of quantum spin particles.

6.1 The all-spin based atomic-scale logic device

The origin of the research efforts in spintronic devices might be dated to the
late 1977, where the Apple I was the invention of the first home computer. It
was developed by Steve Wozniak and sold to the public by Steve Jobs, who
founded the two-man company Apple Inc. in 1976. The reduction of size
and price of computer components made the application as home computer
possible. Influenced by the economic success of the Apple II, International
Business Machines Corp. (IBM), founded in 1896, entered the market of
home computers in 1981. In the same year the scanning tunneling microscope
was developed as a bottom up approach in the labs of IBM in Zürich. Since
that time there is an ongoing development towards smaller, cheaper and
more efficient computer devices. Subsequently, STM lead to a large progress
in experimental condensed matter physics and Binnig and Rohrer won the
Nobel price for this development in 1986. However, a STM is only able to
investigate the topography of surfaces and is unable to investigate or influence
the magnetic properties. This problem was solved by the usage of a magnetic
tip in 1990 [109].

For the specific physical application we chose an all-spin-based logic de-
vice, which was recently realized in SP-STM. The device consists of 11
RKKY-coupled iron atoms and two cobalt islands placed on the surface of
a copper substrate, see fig. 24. The Hamiltonian for the output is Hloc in
our example. Hint consists of the interactions between the output and the
nearest chain atoms and Hbath is the rest of the system, i.e., the spin chains
and the cobalt islands. The device is therefore too large for an exact nu-
merical calculation and has to be approximated by an idealized model. We
use our inequality to examine the maximum error which is made by such
approximations and investigate the functionality of the logic device for dif-
ferent temperatures. We suggest how the device can be modified to keep it
functional for higher temperatures.

The atoms in the chain and the output atom in fig. 24 are iron atoms
which are described by spin 2 particles [2, 106], placed on points i in a
mathematical lattice L, i.e., i ∈ L. There is an interaction between the
magnetic atoms on nearest neighboring points, {i, j} = X ⊂ L, which is
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Figure 24: A spin based logic device consisting of 11 RKKY-coupled iron atoms and
two cobalt islands placed on the surface of a copper substrate. The magnetization
of the output atom depends on the magnetization of the cobalt islands, which serve
as the input gates of the device [2]. The full system is too large and complex for
purely numerical methods.

described by the Heisenberg interaction

ΦH({i, j}) =
∑

α=x,y,z

JαijS
α
i S

α
j . (123)

We will also investigate the special case Jx
ij = Jy

ij = 0 and Jz
ij 6= 0, which

is the Ising interaction. The magnetization of the iron atoms agrees with
experimental data for the nearest neighbor Heisenberg and Ising interaction
Jαij/s

2, where s = 2, Jαij = 0.1 meV between atoms in the chain and Jαij =
0.025 meV between the output atom and the ends of the chain [2]. The
copper substrate induces an anisotropy energy on each single site

Φani({i}) = K(Sz
i )

2 (124)

where K ≈ 1 meV. There is also an external magnetic field which is described
by

ΦB({i}) = gµB
~B · ~Si, (125)

where g is a gyromagnetic constant, µB is the Bohr magneton and ~B the
magnetic field. The two islands, placed in the subsets Λ1 ⊂ L and Λ2 ⊂ L
(triangles in fig. 24), consist of approximately 500 and 300 cobalt atoms.
The triangle geometry and the large particle number of the islands prevent
any kind of an exact numerical calculation. The exact interaction strength
between the cobalt atoms is for our purpose not of relevance, because the
algebraically estimated value ε in eq. (131) is independent of that. The logic
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device is placed on the subset Λ ⊂ L, see fig. 24., and has the Hamiltonian
which contains all interactions in Λ:

Hlogic(Λ) =
∑
X⊂Λ

(
ΦH(X) + Φani(X) + ΦB(X)

)
. (126)

The connection to the notation mentioned above is given by

Hloc = HΦ(Λ′) = K(Sz
i )

2 + ~B~Si, (127)

where i is the site of the output atom and Λ′ = {i}.

Hint = WΦ(Λ′,Λ) =
∑

α=x,y,y

(
Jαi−1iS

α
i−1S

α
i + Jαii+1S

α
i S

α
i+1

)
, (128)

Λ′ = {i} and Hbath = H(Λ \ Λ′) contains all other interactions without the
ones contained in eq. (127) and eq. (128). The magnetization direction of
the islands, which is "up" or "down", is stable and can be switched with the
help of an external magnetic field pulse [2]. The corresponding Hamiltonian
which is responsible for the magnetization direction of the islands is therefore
given by

Hν1
ν2

=
∑
i∈Λ1

gµB
~Bν1 · ~Si +

∑
i∈Λ2

gµB
~Bν2 · ~Si, (129)

where ν1 = ±1 describes the direction of the magnetic field which switches
the island placed in Λ1; +1 means "up" and−1 means "down" magnetization.
The same for ν2 and the second island in Λ2.

The magnetization direction of the output atom serves as the output
of the logic device and is readout with a magnetic STM tip. The output
atom’s magnetization direction depends on the magnetization directions of
the cobalt islands, which are described by the numbers ν1 and ν2. If both
islands possess an "up" magnetization, i.e., ν1 = +1 and ν2 = +1, the out-
put atom possesses also an "up" magnetization [2]. If both islands possess
a "down" magnetization, i.e., ν1 = −1 and ν2 = −1, then the output atom
possesses also a "down" magnetization. For the other cases, the output atom
possesses an "up" magnetization [2]. Hence, the magnetization of the out-
put atom is controlled via the magnetization of the cobalt islands, which are
switched with external magnetic field pulses. Experimental data [12] as well
as theoretical results [13] indicate that the readout of a single atom magne-
tization state is sufficiently described by a KMS state, which is identical to
the thermal equilibrium Gibbs state for finite dimensional systems [44].

Thus, the output of the device, i.e., the magnetization of the output atom,
is given by

ωβν1

Λν2
(Sz

g) =
Tr
(
e−β(Hlogic(Λ)+H

ν1
ν2

)Sz
g

)
Tr
(
e−β(Hlogic(Λ)+H

ν1
ν2

)
) , (130)



6 APPLICATION TO SPIN-BASED NANOTECHNOLOGY 70

where Sz
g is the z-component of the output atom’s spin operator, β is the

inverse temperature and ν1, ν2 describe the magnetization directions of the
cobalt islands as above. For applications of the device, we are interested in
the estimation of the output ωβν1

Λν2
(Sz

g) for higher temperatures than in the
experiment [2], which was done at T = 0.3 K. Unfortunately, eq. (130) can’t
be calculated exactly for the logic device because of the system size. We will
use analytical techniques of operator algebras [44] as an alternative method.

6.2 Bounds on approximations and modification of the
logic device

We use the bound ε from eq. (61) of subsection 3.4 in this application. One
obtains an inequality which restricts expectation values of large quantum
systems to a finite interval, a ≤ ωβν1

Λν2
(Sz

g) ≤ b. The bound ε now enables us
to estimate

‖ ωβν1

Λ\Λ′ν2
⊗ ωβΛ′ − ωβν1

Λν2
‖≤ 2β||WΦ(Λ′,Λ)||

1− 2β||WΦ(Λ′,Λ)|| = ε (131)

for 2β||WΦ(Λ′,Λ)|| < 1.
The state ωβν1

Λ\Λ′ν2
⊗ ωβΛ′ means that the small subsystem in Λ′, which is

the output atom in our case, is isolated from the rest of the system. Thus,
ωβν1

Λ\Λ′ν2
⊗ ωβΛ′ has the property, that the magnetization of the output atom

is independent of the magnetization states of the cobalt islands. Hence, the
state describes a device which does not work. In this case, the expression
(ωβν1

Λ\Λ′ν2
⊗ωβΛ′)(Sz

g) = ωβΛ′(S
z
g) can be calculated with the numerical method of

"exact diagonalization", because the large system in Λ reduces to the small
subsystem in Λ′ when an observable located in Λ′ is used. For our logic device
we obtain

ωβΛ′(S
z
g)− 2ε︸ ︷︷ ︸

lower bound a

6 ωβν1

Λν2
(Sz

g)︸ ︷︷ ︸
full system

6 ωβΛ′(S
z
g) + 2ε︸ ︷︷ ︸

upper bound b

, (132)

where the factor 2 arises from the operator norm ‖ Sz
g ‖, ε depends on the

temperature T and the interaction strength |Jij| between the output atom
and the end of the spin chains. The lower and the upper bound, a and
b, can be solved without problems and provide the borders of the interval
which restricts the expectation value of the full system. If ε is very small, the
magnetization ωβν1

Λν2
(Sz

g) of the output atom is for all magnetizations ν1, ν2 of
the cobalt islands very close to the magnetization ωβΛ′(S

z
g) of the idealized

isolated output atom. This means that we have only very little control on
the output via the input gates of the device.
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Figure 25: The controllability of the magnetization of the output atom decreases
with increasing temperature. The two cases when the output atom is coupled
via Heisenberg (red line) or Ising (green line) interaction to the chain ends are
considered. A magnetization reversal of the cobalt islands can change the output
atom’s magnetization maximally by the value 4ε.

Fig. 25 shows the bound ε on the control of the magnetization of the
output atom, when the magnetization states ν1, ν2 of the cobalt islands are
switched, as a function of temperature. The expectation value ωβν1

Λν2
(Sz

g) of
the output atom ranges ideally from −2 ("down state") to +2 ("up state"),
because it is described as a spin 2 particle. If one or both islands are
switched, the magnetization can maximally change by 4ε, because of eq.
(132). The control on the output atom’s magnetization decreases for an
increasing temperature. For decreasing ε the logic device converges to the
device ωβν1

Λ\Λ′ν2
⊗ ωβΛ′ in eq. (132), which does not work and the question is

how to avoid this problem. The extreme case ε = 0 would mean that we have
no control on the output atom’s magnetization, but this appears only in the
infinite temperature limit, which is not of experimental relevance. The value
ε only gives us the total amount for the magnetization change, but not the
specific values, from which value to which value the magnetization maximally
changes. This information is given by the values a and b in eq. (132). The
bound ε is independent of external magnetic fields, which are also applied to
the output atom during the reading process [2]. However, the bounds a and
b depend on the external magnetic field.

Fig. 26 shows the bounds a and b on the output atom’s magnetization
change as a function of the external magnetic field for a temperature of
T = 15 K. The bounds a and b are calculated for the Heisenberg interaction.
If the Ising interaction would be chosen, the black lines would be closer to the
red line, corresponding to fig. 25. The red curve is the magnetization curve
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Figure 26: The magnetization of the output atom as isolated subsystem (red
line) and the maximum change ±2ε (black lines), when this atom is connected
via Heisenberg interaction to the spin chains and the magnetization directions of
the cobalt islands are switched at T = 15 K. All possible magnetization values of
the output atom, eq. (130), are between the black lines for all values ν1, ν2.

of the output atom as isolated subsystem. The black curves are the bounds a
and b on the change of the magnetization for the real device in the experiment,
when the magnetization states of the cobalt islands are switched. All possible
expectation values for the output atom’s magnetization, eq. (130), which is
the output of the device, are between the black lines for all values ν1, ν2.
From fig. 25 we know, that the black lines come closer to the red line when
the temperature is increased. It remains to examine, how the logic device
should be modified, if it should work at higher temperatures.

Fig. 27 shows the bound ε as a function of the interaction strength Jij/s2

between the output atom and the end of the spin chains for the temperatures
T = 50 K (red line), T = 150 K (green line), and T = 300 K (blue line).
The bound on the change of the output increases with increasing interaction
strength. For lower temperatures the bound increases faster than for higher
temperatures. Thus, if the logic device shall work at higher temperatures,
ultimately up to room temperature, i.e., T = 300 K, it is evident that the in-
teraction strength between the output atom and the atoms in the spin chains
should be increased. However, nontrivial is certainly an exact quantitative
statement. Fig. 27 states that the interaction strength should at least be
increased above approximately J/s2 ≈ 1 meV, for s = 2 this means J > 4
meV. This result is exact in the sense, that it is free of errors from phys-
ical approximations which would be made by the usage of macrospins, for
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example.
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Figure 27: The upper bound ε on the maximum possible change of the output
atom’s magnetization, when the cobalt islands are manipulated. If the logic device
shall work at higher temperatures, the interaction strength Jij between the iron
atoms should at least be increased above 4 meV.

In [106] it is indicated that this large value for the interaction strength is
not achievable by a change of the distance between the RKKY-coupled iron
atoms. It seems advisable to use superexchange coupled magnetic molecules.
A spin chain consisting of planar geometric, magnetic Co-(5, 5′ − Br2 − Salophene)
molecules was recently realized [110]. The single molecules form a spin chain,
when the bromium atoms are removed to achieve a bond between two car-
bon atoms of different molecules. A further superexchange coupled molecular
spin chain was constructed with the help of cobalt phthalocyanine thin films
[111]. The phthalocyanine molecule, with empirical formula C32H18N8, has
also a planar geometry. The cobalt atom is placed in the center and a spin
chain is formed when several cobalt phthalocyanine molecules are placed on
top of each other.
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7 Conclusion
Exact, perturbative, and mean-field type numerical and algebraic methods
were applied to the description of quantum spin systems, which are influenced
by a spin-polarized scanning tunneling microscope. All of these methods were
included in the general mathematical framework of the C∗-algebraic refor-
mulation of Quantum Statistical Mechanics, which enables the application of
comprehensive analytical methods. A general principle (A, τ)� (A, τP ) was
suggested to describe the functionality of SP-STM in terms of C∗-dynamical
systems, which provided the foundation for the application of the algebraic
methods. The connection of the abstract theory to the experiments was par-
tially achieved by the numerical method of "exact diagonalization", which
was used for the real-time dynamics of the magnetic quantum systems at fi-
nite temperatures. Lieb-Robinson bounds and a bound on expectation values
of quantum subsystems supplemented this method.

The non-equilibrium dynamics of adatoms on different substrates under
the action of a magnetic STM tip has been studied. The equations (86) and
(87) are describing the time-evolution of a magnetic atom’s spin-components
during and after an interaction with the magnetic tip. A satisfactory agree-
ment of these equations with experimental data has been found, where the
perturbation has been identified as the interaction between the STM-tip and
the investigated sample. It has been shown that the application of a per-
turbed KMS state in (87) is well suited to model the relaxation dynamics of
magnetic atoms at finite temperatures. The theoretical investigation of the
spin dynamics of the sample within the experimental time resolution of the
SP-STM setup, can be achieved by an application of the perturbed dynamics
in eq. (86). We were able to reproduce the experimentally obtained time-
averages of expectation values for Co atoms on Pt(111), which clarified the
unexplained zero magnetization at zero external magnetic field in [12]. Our
quantum mechanical time-average is therefore successful, where the classical
dynamics failed to work. Fig. 7, 8, and 9 demonstrate that thermaliza-
tion can be achieved for relatively small systems, which can be calculated
using exact diagonalization. The relaxation can be approximated with an
exponential function, which is in agreement with experimental results. It is
demonstrated that the lifetime of single adatoms increases with increasing
anisotropy barrier D and decreasing temperature. It was demonstrated that
quantum fluctuations are reduced with increasing temperatures.

The exact signal transport in spin chains was investigated. For Fe/Ir(001)
spin chains an averaged signal speed of about 50 sites

ps
was found. The next to

nearest neighboring atom reacted earlier than the nearest neighboring atom.
SP-STM was identified as a suitable experimental setup for a quantitative
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investigation of Lieb-Robinson bounds. On fig. 18 it was shown that a sim-
plified version of the latest, most general bound, B, is improved by a factor
100 than compared to the old bound L. This is mainly caused by the disap-
pearance of the factor |X|(2s+1)2|X|eξD(X) in B. B̃ was derived to provide a
strictly mathematical relation between Lieb-Robinson bounds and the exact
signal velocities in the simulated experiment. In fig. 20 and 21 it is shown
that the exact signal velocities in spin chains with Heisenberg interaction are
approximately 4 times slower than the Lieb-Robinson velocity vLR (speed
limit) provided by B. This analysis showed that the Lieb-Robinson velocity
of the bound B is already on the correct order of magnitude in view of exact
velocities occurring in realistic magnetic quantum systems. The modification
and enhancement of the signal velocity by a change of experimental parame-
ters was investigated, in view of the efficiency of future spintronic devices. It
was shown that external magnetic fields, the temperature, anisotropy ener-
gies, and differently prepared initial states cannot increase the exact realistic
signal velocity by more than a factor of 4, because the speed limit is indepen-
dent of these parameters. The parameters of the modified Tersoff-Hamann
model change the output signal of the last chain atom and the bound B̃, but
leave B invariant. The derivation of improved, eventually specific, bounds
and the use of several different experimental parameters for the exact veloc-
ities would provide a further reduction of the discrepancy.

The inequality (131) gives an upper bound on the error that is made by
using simplified interactions for the environment Hbath for a numerical sim-
ulation. The bound is applicable to quantum subsystems and perturbative
techniques at finite temperature, as Quantum Monte Carlo. A logic device
investigated in SP-STM served as a specific example where this inequality
provides useful values and the functionality of the device for higher tempera-
tures was examined quantitatively. Fig. 25 shows the control on the output,
which is the magnetization of the central atom, when the input is changed
as a function of temperature. Fig. 27 shows quantitatively and exactly how
much the interaction strength should at least be increased, such that the
device can work at higher temperatures, e.g., room temperature. It is ad-
vised to use superexchange coupled molecular spin chains to achieve this. A
numerical calculation with a simplified environment of the output atom pro-
vides an expectation value, where the quality is less assured. The value ε can
be used to examine exactly and quantitatively the question, whether a small
subsystem can be used instead of the full quantum system to save memory of
a computer system for numerical simulations. While our proposed method
works well for weakly interacting systems (depending on the temperature),
it remains an open question as to how far these methods can be extended to
investigate also strongly interacting systems.
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Mean-field type approximated KMS states were introduced for a numerical
handling of the multiplicity of equilibrium states of magnetic quantum sys-
tems. In view of spintronic devices, this was motivated by the requirement of
the conversion of one thermodynamically stable spin structure into a different
thermodynamically stable spin structure. Certainly, these states are useful
if one can numerically handle a large enough spin system. However, the nu-
merical method of "exact diagonalization" yielded only a few of the desired
results. Moreover, this numerical method has also a striking unsuitability to
handle these states, because of the limited system size. The Lindblad master
equation or continuous-time quantum Monte Carlo method seem to be more
suitable numerical methods for these investigations. The relation between
the perturbed and unperturbed KMS states by the truncated functions in
Theorem 5.4.4. [44] seems to have a suitable intersection to Quantum Monte
Carlo methods for the mean-field type approximated KMS states.

Further potential future work in this area entails an estimation of a bound
for the mean-field type approximated KMS states, applications of bounds for
ground state approximations [74], and the usage of AQFT for a more realistic
modeling of the influence of the substrate and tip electrons.
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A Operator Algebras in Quantum Statistical
Mechanics

We summarize some mathematical structures of [44, 60] which are of rele-
vance for potential future work as well if one is interested in the mathematical
details, e.g., continuity properties, a relation between free and perturbed sys-
tems which is in close relation to Quantum Monte Carlo Methods, etc.. Thus,
this section does not contains own developments of the author of this thesis,
but just a little notes to experimentally investigated spin systems.

A.1 Representations

The thermodynamic limit of a QSS seems to be already a suitable approxima-
tion for magnetic nano-islands consisting of less than 100 magnetic adatoms,
because of the experimentally observed magnetization behavior in [43, 75]
and the results of KMS states in [44]. The occurrence of unitarily inequiv-
alent representations for QSS in the thermodynamic limit motivates a more
detailed analysis of representations. We summarize basic results from [60].

If (H, π) is a representation of the C∗-algebra A and H1 is a subspace of
H, then H1 is said to be invariant under π if π(A)H1 ⊆ H1 for all A ∈ A.
Note that if H⊥1 is the orthogonal complement of H1, i.e.,

H⊥1 =̇{ξ ∈ H; 〈ξ, ψ〉 = 0 ∀ψ ∈ H1}, (133)

then we have
〈ξ, π(A)ψ〉 = 0, (134)

for all A ∈ A and all ξ ∈ H⊥1 , ψ ∈ H1. If H1 is a closed subspace of H and
PH1 the orthogonal projector with range H1, then the invariance of H1 under
π implies that

[PH1 , π(A)] = 0 (135)

for all A ∈ A, i.e., the projector PH1 commutes with each of the repre-
sentatives π(A). One deduces that H1 is invariant under π if, and only if,
PH1π(A) = π(A)PH1 for all A ∈ A. Furthermore, if H1 is invariant under π
and

π1(A)=̇PH1π(A)PH1 (136)

then (H1, π1) is a representation of A. If H1 is invariant under π then H⊥1 is
also invariant under π. A second representation (H2, π2) is defined by setting
H2 = H⊥1 and π2(A) = PH2π(A)PH2 . Clearly H has a decomposition as a direct
sum, H = H1⊕H2, and each operator π(A) then decomposes as a direct sum
π(A) = π1(A)⊕π2(A). We write π = π1⊕π2 and (H, π) = (H1, π1)⊕(H2, π2).
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A representation (H, π) is said to be nondegenerate if

{ψ;ψ ∈ H, π(A)ψ = 0 ∀A ∈ A} = {0}. (137)

An important class of nondegenerate representations is the class of cyclic
representations. A vector Ω in a Hilbert space H is defined to be cyclic for
a set of bounded operators M if the set {AΩ;A ∈ M} is dense in H. This
establishes

Definition A.1. ([60], 2.3.5.): A cyclic representation of a C∗-algebra A is
defined to be a triple (H, π,Ω), where (H, π) is a representation of A and Ω
is a vector in H which is cyclic for, in H.

The generalization of a direct sum of representations of a C∗-algebra A is
given by a family (Hα, πα)α∈I of representations, where the index set I can
be countable or noncountable. The direct sum

H=̇
⊕
α∈I

Hα (138)

of the representation spaces Hα is defined in the usual manner [60] and the
direct sum representatives are defined by

π=̇
⊕
α∈I

πα (139)

and setting π(A) equal to the operator πα(A) on the component subspace
Hα. By proposition 2.3.1. in [60], the operators π(A) on H are bounded
because ‖ πα(A) ‖≤‖ π(A) ‖. Every state is a vector state for some non-
degenerate representation. The next proposition reduces the discussion of
general representations to that of cyclic representations.

Proposition A.2. ([60], 2.3.6.): Let (H, π) be a nondegenerate representa-
tion of the C∗-algebra A. It follows that π is the direct sum of a family of
cyclic subrepresentations.

The foregoing type of decomposition depends upon the existence of non-
trivial invariant subspaces. No further reduction is possible in the absence
of such subspaces. Thus we are motivated to introduce definition 2.3.7. and
proposition 2.3.8.:

Definition A.3. ([60], 2.3.7.): A set M of bounded operators on the Hilbert
space H is defined to be irreducible if the only closed subspaces of H which
are invariant under the action of M are the trivial subspaces H and {0}. A
representation (H, π) of a C∗-algebra A is defined to be irreducible if the set
π(A) is irreducible on H.
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There are two standard criteria for irreducibility:

Proposition A.4. ([60], 2.3.8.): Let M be a selfadjoint set of bounded op-
erators on the Hilbert space H. The following conditions are equivalent:

1. M is irreducible;

2. the commutant M′ of M, i.e., the set of all bounded operators on H
which commute with each A ∈M, consists of multiples of the identity
operator;

3. every nonzero vector ψ ∈ H is cyclic for M in H, or M = 0 and H = C.

We define two representations (H1, π1) and (H2, π2) to be unitarily equiv-
alent if there exists a unitary operator U from H1 to H2 such that

π1(A) = Uπ2(A)U∗ (140)

for all A ∈ A and denote this equivalence with π1 ' π2.

Purity of a state ω and irreducibility of the representation associated with
ω are intimately related which is demonstrated with the next Theorem.

Theorem A.5. ([60], 2.3.19): Let ω be a state over the C∗-algebra A and
(Hω, πω,Ωω) the associated cyclic representation. The following conditions
are equivalent:

1. (Hω, πω) is irreducible;

2. ω is pure;

3. ω is an extremal point of the set EA of states over A

Furthermore, there is a one-to-one correspondence

ωT (A) = (TΩω, πω(A)Ωω) (141)

between positive functionals ωT , over A, majorized by ω and positive operators
T in the commutant π′ of π, with ‖ T ‖≤ 1.

It follows from Theorem 2.3.16 [60] that (H1, π1) and (H2, π2) are unitarily
equivalent if, and only if, the unit vectors of H1 and H2 define the same set
of states of the C∗-algebra A. Concerning physical applications, there is
a slightly weaker but more natural concept of equivalence, which is called
quasi-equivalence of two representations.

The double commutant (π(A)′)′ = π(A)′′ of a C∗-algebra A is a von
Neumann algebra.
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Definition A.6. ([60], 2.4.25): If π is a representation of a C∗-algebra A,
then a state ω of A is said to be π-normal if there exists a normal state ρ of
π(A)′′ such that

ω(A) = ρ(π(A)) (142)

for all A ∈ A. If there are two representations π1 and π2 of a C∗-algebra A
and each π1-normal state is π2-normal and conversely, then π1 and π2 are
said to be quasi-equivalent, written π1 ≈ π2.

As a complement, π1 and π2 are said to be disjoint, written π1 > π2, if no
π1-normal state is π2-normal and conversely. Correspondingly, two positive
linear functionals ω1 and ω2 are said to be disjoint, written ω1 > ω2, if π1

and π2 are disjoint. The property π1 > π2 is true if, and only if, π1 and π2

have no quasi-equivalent subrepresentations, which is equivalent to π1 and π2

having no unitarily subrepresentations. This follows immediately from the
definition and the next Theorem, which shows that quasi-equivalence is the
same as unitary equivalence up to multiplicity.

Theorem A.7. ([60], 2.4.26): Let A be a C∗-algebra and let (H1, π1) and
(H2, π2) be nondegenerate representations of A. The following conditions are
equivalent:

1. there exists an isomorphism τ : π1(A)′′ 7→ π2(A)′′ such that τ(π1(A)) =
π2(A) for all A ∈ A;

2. π1 ≈ π2, i.e., the π1-normal and the π2-normal states are the same;

3. there exist cardinals n,m projections E ′1 ∈ nπ1(A)′, E ′2 ∈ mπ2(A)′ and
unitary elements U1 : H1 7→ E ′2(mH2), U2 : H2 7→ E ′1(mH1) such that

U1π1(A)U∗1 = mπ2(A)E ′2, (143)
U2π2(A)U∗2 = nπ1(A)E ′1 (144)

for all A ∈ A;

4. There exists a cardinal n such that nπ1 ' nπ2, i.e., π1 and π2 are
unitarily equivalent up to multiplicity.

There are several important results from decomposition theory, which
has the aim to express a complex structure as a superposition of simpler
components. The simplification procedure depends heavily on the physical
application. Concerning numerical calculations the ergodic decomposition
might be of interest, because a complicated time dependent system might be
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decomposed into some structures which are time invariant and some struc-
tures for which the calculation of the time evolution is simpler. We are
interested in basic results from orthogonal measures, central and subcentral
decomposition and mention a few results from decomposition theory:

Definition A.8. ([60], 4.1.20): If ω1, ω2 are positive linear functionals over
A which satisfy any of the three equivalent conditions of Lemma 4.1.19 [60]
then they are said to be orthogonal and we write ω1 ⊥ ω2.

The properties of this Lemma are given by

Lemma A.9. ([60], 4.1.19): Let ω1, ω2 be positive linear functionals over the
C∗-algebra A and let ω = ω1 + ω2. The following conditions are equivalent:

1. if ω′ is a positive linear functional over A satisfying ω′ ≤ ω1 and ω′ ≤ ω2

then ω′ = 0;

2. there is a projection P ∈ πω(A)′ such that

ω1(A) = (PΩω, πω(A)Ωω), ω2(A) = ((1− P )Ωω, πω(A)Ωω) (145)

3. the representation associated with ω is a direct sum of the representa-
tions associated with ω1 and ω2,

Hω = Hω1 ⊕ Hω2 , πω = πω1 ⊕ πω2 , Ωω = Ωω1 ⊕ Ωω2 . (146)

2.3.8.) and in section X about equilibrium states, we are again remem-
bered to Proposition X 4.1.19). The next Lemma demonstrates that disjoint-
ness of two positive linear functionals implies orthogonality.

Lemma A.10. ([60], 4.2.8): Let ω1, ω2 be positive linear functionals over the
C∗-algebra A, and let ω = ω1 + ω2. The following conditions are equivalent:

1. ω1 > ω2, i.e.,ω1 and ω2 are disjoint;

2. there is a projection P ∈ πω(A)′′ ∩ πω(A)′ such that

ω1(A) = (Ωω, Pπω(A)Ωω), (147)
ω2(A) = (Ωω, (1− P )πω(A)Ωω). (148)

In particular, disjointness of ω1 and ω2 implies orthogonality.
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A.2 von Neumann algebras and Tomita-Takesaki The-
orem

Beside the uniform topology several other local convex topologies exist. Thus
one is motivated to close the operator algebra in a weaker topology. There are
various different topologies on L(H) which are induced by sets of seminorms
{p}. There are seminorms of interest that can be constructed from vectors in
a Hilbert space ξ ∈ H, which are interpreted as physical states of a quantum
mechanical system. Clearly

A 7→‖ Aξ ‖≥ 0 ξ ∈ H (149)

is a seminorm on L(H). The locally convex topology on L(H) which is induced
by these seminorms is called the strong operator topology. There is a related
σ-strong operator topology which is obtained by considering all sequences
{ξn} in H such that

∑
n ‖ ξn ‖2<∞. Then the set of seminorms defined by

A 7→
[∑

n ‖ ξn ‖2
]1/2 induces the σ-strong topology. The locally convex

topology induced by the seminorms A 7→ |(ξ, Aη)| for all choices of ξ, η ∈ H
is called the weak operator topology. The related σ-weak operator topology
is obtained by the sequences {ξn}, {ηn} in H for which

∑
n ‖ ξn ‖2< ∞,∑

n ‖ ηn ‖2<∞ is valid. The corresponding seminorm is A 7→ |∑n(ξn, Aηn)|.
The topologies which are defined by the seminormsA 7→‖ Aξ ‖ + ‖ A∗ξ ‖ and
A 7→

[∑
n ‖ Aξn ‖2 +

∑
n ‖ A∗ξn ‖2

]1/2, where ∑n ‖ ξn ‖2< ∞, are called
the strong∗ and the σ-strong∗ topologies. Remember that the commutant of
any subset M ⊂ L(H) of bounded operators on a Hilbert space H is denoted
by M′. If M is selfadjoint, then M′ is a C∗-algebra of operators on H.

Definition A.11. ([60], 2.4.8.) A von Neumann algebra on H is a ∗-
subalgebra M of L(H) such that

M = M′′. (150)

A von Neumann algebra is called a factor if it has a trivial center.

We introduce a few basic results of the Modular Theory, because of the
relation to the KMS condition and the occurrence in the stability analysis
under local perturbations (for example the action of a magnetic STM tip on a
monolayer of magnetic atoms on the surface of a metallic or semiconducting
substrate).

Let M be a von Neumann algebra acting on a Hilbert space H. Define
the conjugation operator J , on H, by

JAΩ = A∗Ω, (151)

where A ∈M and Ω ∈ H.
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Definition A.12. ([60], 2.5.2): Let M be a von Neumann algebra on a
Hilbert space H. A subset K ⊆ H is separating for M if for any A ∈ M,
Aξ = 0 for all ξ ∈ K implies A = 0.

Proposition 2.5.3. in [60] establishes that, if Ω is cyclic and separating
for M then it is also cyclic and separating for M′. Hence the two antilinear
operators S0 and F0, given by

S0AΩ = A∗Ω (152)

and
F0A

′Ω = A′∗Ω (153)

for A ∈ M and A′ ∈ M′ are both well defined on the dense domains
D(S0) = MΩ and D(F0) = M′Ω. It follows that S0 and F0 are closable
(see Proposition 2.5.9. [60]). The closures of S0 and F0 are denoted by S
and F . A closed operator has a unique polar decomposition:

S = J∆1/2. (154)

∆ is called the modular operator associated with the pair {M,Ω} and J is
called the modular conjugation.

Proposition A.13. ([60], 2.5.11): The following relations are valid:

∆ = FS, ∆ = SF, (155)

S = J∆1/2, F = J∆−1/2, (156)
J = J∗, J2 = 1, (157)

∆−1/2 = J∆1/2J. (158)

A fundamental theorem is given by

Theorem A.14. Tomita-Takesaki Theorem. ([60]) Let M be a von Neu-
mann algebra with cyclic and separating vector Ω, and let ∆ be the associated
modular operator and J the associated modular conjugation. It follows that

JMJ = M′ (159)

and, moreover,

∆itM∆−it = M, (160)
∆itM′∆−it = M′, (161)

for all t ∈ R.
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The modular automorphism group σt, defined by σt(A) = ∆itA∆−it, sat-
isfies a condition which had already been used in mathematical physics to
characterize equilibrium states in Quantum Statistical Mechanics and Quan-
tum Field Theory - the Kubo-Martin-Schwinger (KMS) condition.

Continuity and analytic elements.

Let F denote a norm-closed subspace of the dual X∗ of a Banach space X
such that either F = X∗ or X = F ∗. We denote with σ(X,F ) the locally
convex topology on X induced by the functionals in F .

Definition A.15. ([60], 2.5.17.): A one-parameter family t ∈ R 7→ τt of
bounded, linear maps of X into itself is called a σ(X,F )-continuous group of
isometries of X if

1. τt1+t2 = τt1τt2 , t1, t2 ∈ R, and τ0 = ι;

2. ‖ τt ‖= 1, t ∈ R;

3. t 7→ τt(A) is σ(X,F )-continuous for all A ∈ X, i.e., t 7→ η(τt(A)) is
continuous for all A ∈ X and η ∈ F ;

4. A 7→ τt(A) is σ(X,F )-σ(X,F )-continuous for all t ∈ R, i.e., η◦τt ∈ F ,
for η ∈ F .

Definition A.16. ([60], 2.5.20.): Let t 7→ τt be a σ(X,F )-continuous group
of isometries. An element Y ∈ X is called analytic for τt if there exists a
strip

Iλ = {z, |Imz| < λ} (162)

in C, a function f : Iλ 7→ X such that

1. f(t) = τt(A) for t ∈ R,

2. z 7→ η(f(z)) is analytic for all η ∈ F .
Under these conditions, we write

f(z) = σz(A), z ∈ Iλ. (163)

Definition A.17. ([60], 3.1.17.): Let S be an operator on the Banach space
X. An element A ∈ X is defined to be an analytic element (entire analytic
element) for S if A ∈ D(Sn), for all n = 1, 2, ..., and if∑

n≥0

tn

n!
‖ SnA ‖< +∞ (164)

for some t > 0 (all t > 0).
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Remark Theorem 6.2.4. [44] states that for a large class of QSS Aloc

is a norm-dense *-subalgebra of analytic elements of the closure δ̄ of the
derivation δ. Manganese atoms in a galliumarsenid semiconductor possess
theoretically infinite-range interactions, such that the associated elements are
not contained in the algebra Aloc.

Let j : M → M′ be the antilinear ∗-morphism defined by j(A) = JAJ and
let M, Ω, ∆ and J be as in the Tomita-Takesaki theorem. A mathematical
key object P is defined by

Definition A.18. ([60], 2.5.25): The natural positive cone P associated
with the pair (M,Ω) is defined as the closure of the set

{Aj(A)Ω;A ∈M}. (165)

This cone has several interesting properties which are of relevance for a
stability analysis. The vector of a perturbed KMS state is contained in the
natural positive cone of the corresponding KMS state, see Corollary 5.3.9
[44] and page 157 in [44]. Therefore, we mention some of the properties:

Proposition A.19. ([60], 2.5.26): The closed subset P ⊆ H has the follow-
ing properties:

1. P is a convex cone;

2. ∆itP = P for all t ∈ R;

3. if f is a positive-definite function then f(log ∆)P ⊆ P;

4. if ξ ∈ P, then Jξ = ξ;

5. if A ∈M, then Aj(A)P ⊆ P.

Proposition A.20. ([60], 2.5.30, Universality of the cone P):

1. If ξ ∈ P then ξ is cyclic for M if, and only if, ξ is separating for M.

2. If ξ ∈ P is cyclic, and hence separating, then the modular conjugation
Jξ and the natural positive cone Pξ associated with the pair (M, ξ)
satisfy

Jξ = J Pξ = P. (166)
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A.3 Quasi-local algebras

Operator algebras of QSS as well as in QFT possess so-called quasi-local
structures. We give a precise definition and mention two interesting and
special algebras.

Definition A.21. ([60], 2.6.3.): A quasi-local algebra is a C∗-algebra A and
a net {Aα}α∈I of C∗-subalgebras such that the index set I has orthogonality
relation and the following properties are valid:

1. if α ≥ β then Aα ⊇ Aβ;

2. A =
⋃
αAα

‖·‖
, where the bar denotes the uniform closure;

3. the algebras Aα have common identity 1;

4. there exists an automorphism σ such that σ2 = ι, ι(Aα) = Aα, and
[Ae

α,A
e
β] = {0}, [Ae

α,A
o
β] = {0}, {Ae

α,A
o
β} = {0} whenever α ⊥ β,

where Ao
α ⊆ Aα and Ao

α ⊆ Aα and Ae
α ⊆ Aα are the odd and even

elements with respect to σ.

The brackets {A,B} = AB +BA denote the anti-commutation relation.
If σ = ι, then Ae

α = Aα and condition (4) simplifies to the condition

[Aα,Aβ] = {0} (167)

whenever α ⊥ β. In applications to quantum physics σ = ι corresponds
to Bose statistics but for Fermi statistics σ 6= ι. Aα is interpreted as the
algebra of physical observables for a subsystem localized in the region α.
In applications to SP-STM these are usually spin observables of magnetic
adatoms placed on the substrate at location α. If also algebraic quantum
field theory is used, a so called Haag-Araki counter could be introduced to
count the tunneling electrons from the tip. This is related with the measured
dI/dU signal, where I is the electronic current and U is the applied voltage.

In [44] it is supposed that the commutant algebra Ecω and the algebra at
infinity E⊥ω might have a particular physical significance. The corresponding
subcentral decomposition would be of interest. Especially in high density
data storage invariant and stable properties of condensed matter systems are
of interest.

Definition A.22. ([60], 2.6.4.): If ω is a state over the quasi-local algebra
A then we define the commutant algebra Ecω, of the associated representation

(Hω, πω,Ωω), (168)
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by
Ecω =

⋂
α∈I

(πω(Aα)
′ ∩ πω(A))

′′
(169)

and the algebra at infinity E⊥ω by

E⊥ω =
⋂
α∈I

( ⋃
α⊥β

πω(Aβ)

)′′
. (170)

A.4 Equilibrium states, perturbations, and asymptotic
abelianness

We state the mathematical exact definition of KMS states and mention some
of the important and general properties related to KMS states [44].

Definition A.23. ([44] 5.3.1): Let (A, τ) be a C∗-dynamical system. The
state ω over A is defined to be a (τ, β)-KMS state, if

ω(Aτiβ(B)) = ω(BA) (171)

for all A, B in a norm dense, τ -invariant ∗-subalgebra Aτ .

If A = Mn is the algebra of n × n matrices acting on the n-dimensional
Hilbert space Hn and for H = H∗ ∈Mn the τ is given by

τt(A) = eitHAe−itH , (172)

then the Gibbs state

ωβ(A) =
Tr(e−βHA)

Tr(e−βH)
(173)

is the unique (τ, β)-KMS state (see [44], 5.3.31.).
The next proposition establishes that the center of a von Neumann alge-

bra M is contained in the set of all observables which are invariant under the
dynamics of the system,i.e., τt(A) = A. A von Neumann algebra πω(A)′′ of a
pure thermodynamic phase ω is a factor, i.e., the only invariant observable
is the trivial observable which is proportional to the identity.

Proposition A.24. ([44] 5.3.28.): Let (M) be a von Neumann algebra with
a cyclic unit vector Ω, ω the corresponding state, and τ a σ-weakly continuous
one-parameter group of ∗-automorphisms of M. Let

Mτ = {A ∈M : τt(A) = A ∀t ∈ R} (174)
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be the fixed-point algebra of τ and let

Zω = {A ∈M : ω(AB) = ω(BA) ∀t ∈ R} (175)

be the centralizer of ω.
If ω is a τ -KMS state then it follows that

Zω = Mτ . (176)

In particular
M ∩M′ ⊆Mτ (177)

anf if M is abelian, one has τt = ι, for all t ∈ R

Theorem A.25. ([44] 5.3.9): Let (A, τ) be a C∗-dynamical system, ω a
(τ, β)-KMS state on A, β ∈ R, and (Hω, πω,Ωω) the corresponding cyclic
representation. It follows that Ωω is separating for πω(A)

′′.

Theorem A.26. ([44], 5.3.30.): Let (A, τ) be a C∗-dynamical system and
assume that A has an identity. For β ∈ R let Kβ be the set of (τ, β)-KMS
states.

It follows that:

1. Kβ is convex and weak∗-compact.

2. Kβ is a simplex.

3. ω ∈ Kβ is an extremal point of Kβ if, and only if, ω is a factor state.

4. Let ω1 and ω2 be extremal points of Kβ, then ω1 and ω2 are either equal
or disjoint.

5. If ω ∈ Kβ, the unique maximal measure on Kβ corresponding to ω is
identical to the central measure corresponding to ω.

For the investigation of perturbations we have to introduce perturbed
groups of ∗-automorphisms. The perturbed group is introduced with

Proposition A.27. ([44], 5.4.1): Let (A, τ) be a C∗-dynamical system and
let δ denote the infinitesimal generator of τ . Furthermore, for each P =
P ∗ ∈ A define the bounded derivation δP by D(δP ) = A and δP (A) = i[P,A]
for A ∈ A. It follows that δ + δP generates a one-parameter group of ∗-
automorphisms τP of A given by

τPt (A) = τt(A)+
∑
n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn[τtn(P ), [· · · [τt1(P ), τt(A)]]].

(178)
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Moreover, one has
τPt (A) = ΓPt τt(A)ΓP∗t , (179)

where ΓPt ∈ A is a one-parameter family of unitary elements, determined by

ΓPt = 1̂ +
∑
n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnτtn(P ) · · · τt1(P ) (180)

ΓPt = 1̂ +
∑
n≥1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnτ
P
t1

(P ) · · · τPtn(P ). (181)

which satisfies the co-cycle relation

ΓPt+s = ΓPt τt(Γ
P
s ). (182)

All integrals converge in the strong topology for the C∗-system. The integrals
define norm-convergent series of bounded operators and

‖ τPt (A)−τt(A) ‖≤ (e|t|‖P‖−1) ‖ A ‖, ‖ ΓPt −1 ‖≤ (e|t|‖P‖−1). (183)

The next corollary states properties of the group for a system acting on
a Hilbert space.

Corollary A.28. ([44], 5.4.2.): Adopt the assumptions of Proposition X
([44], 5.4.1.) but also assume that A acts on a Hilbert space H and

τt(A) = UtAU
∗
t , (184)

where Ut = eitH is a strongly continuous one-parameter group of unitary
operators.

It follows that

τPt (A) = UP
t AU

∗
t , ΓPt = UP

t U−t, (185)

where
UP
t = eit(H+P ). (186)

If, finally, Pn is a sequence of selfadjoint elements of A which converges
strongly, then

lim
n→∞

‖ (ΓPnt − Γt)ψ ‖= 0, lim
n→∞

‖ (τPnt (A)− τt(A))ψ ‖= 0, (187)

for all ψ ∈ H and A ∈ A, uniformly for t in finite intervals of R.

Perturbed and unperturbed KMS states are related by
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Theorem A.29. ([44], 5.4.4.): Let (A, τ) be a C∗-dynamical system acting
on a Hilbert space H such that

τt(A) = UtAU
∗
t , (188)

where Ut = exp{itH} is a strongly continuous one-parameter unitary group,
and Ω a normalized U-invariant cyclic vector such that the associated vector
state, ω(A) =

(
Ω, AΩ

)
, is a (τ, β)-KMS state. The following statements are

valid:

1. If P = P ∗ ∈ A, then Ω ∈ D(P(z)), where

P(z) = τzn(P ) · · · τz1(P ) = eiznHPei(zn−1−zn)HP · · · Pe−iz1H for all
z = (z1, ..., zn) in the tube D

(n)
−1/2 defined by D

(n)
α = {z;α < Imz1 <

· · · < Imzn < 0}. The vector-valued function P(z)Ω is holomorphic
in the tube D

(n)
−1/2, strongly continuous and uniformly bounded on its

closure D
(n)
−1/2, and

sup
z∈D(n)

−1/2

‖ P(z)Ω ‖≤‖ P ‖n . (189)

2. If P = P ∗ ∈ A, then Ω ∈ D
(
e(H+P )/2

)
and the vector ΩP = e(H+P )/2Ω

has the strongly convergent perturbation expansion

ΩP = Ω +
∑
n≥1

∫
−1/2≤s1≤···≤sn≤0

ds1 · · · dsnτisn(P ) · · · τis1(P )Ω. (190)

Moreover, the state ωP defined by

ωP (A)=̇
(ΩP , AΩP )

(ΩP ,ΩP )
(191)

is a τP -KMS state and it is the unique τP -KMS normal state if, and
only if, A′′ is a factor.

3. For each A ∈ A and P = P ∗ ∈ A, the truncated function

FA(t1, ..., tn) = ωT (A, τtn(P ), ..., τt1(P )) (192)

is the boundary value of a function FA(z) = ωT (A, τzn(P ), ..., τz1(P ))

which is holomorphic in the tube D(n)
−1 , continuous and uniformly bounded

on its closure D
(n)
−1 , and

sup
z∈D(n)

−1

|FA(z)| ≤ 2nn! ‖ P ‖n‖ A ‖ . (193)
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Moreover, if 2 ‖ P ‖< 1 the perturbed state ωP is determined by the
uniformly convergent series

ωP (A) = ω(A) +
∑
n≥1

∫
−1≤s1≤···≤sn≤0

ds1 · · ·dsnωT (A, τisn(P ), ..., τis1(P ))

(194)
and hence

lim
α
‖ ωPα − ω ‖= 0 (195)

for each net Pα = P ∗α ∈ A such that ‖ Pα ‖→ 0

The conclusions of Theorem 5.4.4. extend for any β ∈ R to (τ, β)-KMS
states by rescaling. Hence, for each (τ, β)-KMS state ω there is a unique
(τP , β)-KMS vector state ωP , which can be constructed with the foregoing
procedures. The properties of the map ω 7→ ωP is summarized with

Corollary A.30. ([44], 5.4.5): Let (A, τ) be a C∗- or a W ∗-dynamical sys-
tem and for P = P ∗ ∈ A, β ∈ R, associate with each (τ, β)-KMS state ω a
(τP , β)-KMS state ωP by

ωP (A) =
(ΩP , πω(A)ΩP )

(ΩP ,ΩP )
(196)

and

ΩP = Ωω +
∑
n≥1

(−1)n
∫ β/2

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsnπω(τisn(P ) · · · τis1(P ))Ωω.

(197)
It follows that the map γPτ ;ω 7→ ωP is an isomorphism of the set of (τ, β)-

KMS states onto the set of (τP , β)-KMS states which maps extremal points
into extremal points. The inverse map is given by (γPτ )−1 = γ−Pτ .

Return to equilibrium properties are investigated by asymptotic abelianes.

Proposition A.31. ([44], 5.4.6): If (A, τ) is asymptotically abelian in the
norm sense, i.e., if limt→∞ ‖ [A, τt(B)] ‖= 0 for all A,B ∈ A and if ωP is a
(τP , β)-KMS state for β ∈ R∪{±∞} and if ω is a weak∗-limit point of τ ∗t ωP
as t tends to infinity, then ω is a (τ, β)-KMS state.

Note that this proposition does not establish the existence of the limit
point of τ ∗i ωP , but if there is a unique (τ, β)-KMS state, this follows because
all limit points must be equal [44].
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Corollary A.32. ([44], 5.4.7): Let ωP be an extremal (τP , β)-KMS state
for β ∈ R \ {0} and assume that (A, τ) is asymptotically abelian in the norm
sense.

It follows that the limit

ω(A) = lim
t→∞

ωP (τt(A)) (198)

exists for all A ∈ A, and ω is the unique (τ, β)-KMS vector state of ωP .

The last result on asymptotic abelianness we mention requires

Definition A.33. ([44], 5.4.8.) A C∗-dynamical system (A, τ) is defined to
be L1(A0)-asymptotically abelian if∫ ∞

−∞
dt ‖ [A, τt(B)] ‖<∞ (199)

for all A,B in the norm-dense ∗-subalgebra A0.

Consequences of an L1(A0)-asymptotically abelian system are stated in

Proposition A.34. ([44], 5.4.10): Let (A, τ) be an L1(A0)-asymptotically
abelian C∗-dynamical system. It follows that the limits

γ±(A) = lim
t→±∞

τP−tτt(A) (200)

exist in norm for all A ∈ A and P = P ∗ ∈ A0. The γ± are norm-preserving
∗-morphisms of A which satisfy the intertwining relations

γ±τ = τPγ±. (201)

If A has an identity, then the adjoints γ∗± are affine transformations of the
states EA into EA with the following properties:

1. The γ∗± map τP -invariant states into τ -invariant states and extremal
τP -invariant states into extremal τ -invariant states.

2. The γ∗± map (τP , β)-KMS states into (τ, β)-KMS states and extremal
(τP , β)-KMS states into extremal (τ, β)-KMS states for all β ∈ (R ∪
{±∞}) \ {0}.

3. If β ∈ R \ {0} then the maps γ∗± coincide in restriction to the (τP , β)-
KMS states.
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A.5 Quantum spin systems II

The original definition of the local Gibbs condition is

Definition A.35. ([44], 6.2.16.): Let Φ be an interaction of a quantum spin
system such that the surface energy WΦ(Λ) is a well-defined element of A for
all Λ ⊂ Zd. A state ω over A is defined to satisfy the Gibbs condition with
respect to βΦ if the following conditions are fulfilled:

1. ω is faithful, i.e. Ωω is separating for πω(A)
′′

2. ωPΛ = ωΛ⊗ω̃ for all Λ ⊂ Zd, where ωΛ is the local Gibbs state, ω̃ is
a state over AΛc, ωPΛ is the perturbation of ω constructed in Theorem
5.4.4 [44], and PΛ = βWΦ(Λ).

For an application of algebraic QFT to the description of substrate elec-
trons we mention

Lemma A.36. ([60], 6.2.55.): Let A be a C∗-algebra of the form

A = Mn ⊗ A0, (202)

where Mn is the full complex n × n matrix algebra and A0 is an arbitrary
C∗-algebra. Let ω1 and ω2 be states on A such that

ω1 |A0= ω2 |A0 . (203)

It follows that ω1 and ω2 are quasi-equivalent.

An interesting example for derivations on UHF algebras is:

Example A.37. ([60], 3.2.25.): Let A denote a UHF algebra (see Example
2.6.12. [60]). Thus A is the norm closure of a family {AΛ}Λ∈If , of full-
matrix subalgebras AΛ, where If denotes the finite subsets of an index set
I. If Λ1 ∩ Λ2 = ∅ then AΛ1 and AΛ2 commute. Now let {Λn}n≥1 be any
increasing family of subsets of If such that

⋃
n Λn = I and choose elements

Hn = H∗n ∈ AΛn such that Hn −Hn−1 commutes with An−1. One can define
a symmetric derivation δ of A by

D(δ) =
⋃

Λ∈If
AΛ (204)

and
δ(A) = i lim

n→∞
[Hn, A], A ∈ D(δ), (205)

because the commutativity condition for Hn − Hn−1 ensures that the limit
exists. But D(δ) is invariant under the square root operation because each
AΛ has this invariance.
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Last but not least we state one of our favorite theorems to check strong
continuity of our time-evolution groups in SP-STM experiments and check
analyticity properties of the spin operators. This is of importance for our
general principle of the functionality of a SP-STM, because the next theorem
states that our considered systems are C∗-dynamical systems. This provides
the foundation for an application of a lot of the contents in [44] to our SP-
STM experiments.

Theorem A.38. ([44], 6.2.4): Let Φ be an interaction of a quantum spin
system satisfying the requirement

‖ Φ ‖ξ=
∑
n≥0

eξn
(

sup
x∈Zd

∑
X3x,
|X|=n+1

‖ Φ(X) ‖
)
< +∞ (206)

for some ξ > 0, and define a derivation δ by

D(δ) =
⋃

Λ⊂Zd
AΛ (207)

and
δ(A) = i

∑
X∩Λ6=∅

[Φ(X), A], A ∈ AΛ. (208)

It follows that D(δ) is a norm-dense ∗-subalgebra of analytic elements of the
closure δ of δ. Therefore, δ generates a strongly continuous one-parameter
group of ∗-automorphisms τ of A and

lim
Λ→∞

‖ τt(A)− τΛ
t (A) ‖= 0 (209)

for all A ∈ A, uniformly for t in compacts, where

τΛ
t (A) = eitHΦ(Λ)/~Ae−itHΦ(Λ)/~. (210)
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