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Abstract

This thesis is devoted to orbifolded quantum field theories in six spacetime dimensions.
Within the framework of T2/Z, and T?/ (Zy x 755 x 75°) we calculate the Casimir
energy, which yields an essential contribution to the modulus potential. Turning to more
phenomenological aspects, we study gaugino-mediated supersymmetry breaking in a six-
dimensional SO(10) orbifold GUT model where quarks and leptons are mixtures of brane
and bulk fields. We derive bounds on the soft supersymmetry breaking parameters and
calculate the superparticle mass spectrum. Higgs fields are bulk fields, and in general
their masses differ from those of squarks and sleptons at the unification scale. As a
consequence, at different points in parameter space, the gravitino, a neutralino or a scalar
lepton can be the lightest or next-to-lightest superparticle. We investigate the constraints
from primordial nucleosynthesis on the different scenarios. While neutralino dark matter
and gravitino dark matter with a v next-to-lightest superparticle are consistent for a
wide range of parameters, gravitino dark matter with a 7 next-to-lightest superparticle
is strongly constrained.

Zusammenfassung

Diese Arbeit beschiftigt sich mit Quantenfeldtheorien auf sechsdimensionalen Orbifolds.
Wir berechnen die Casimir-Energie auf den kompakten extradimensionalen Rdumen
T?/Zo und T?/ (Zg x Z55 x ZS€). Als eine phanomenologische Anwendung solcher The-
orien studieren wir Gaugino-Mediation in einem sechsdimensionalen SO(10) Orbifold
GUT Modell, in welchem Quarks und Leptonen Mischungen aus Brane- und Bulk-
feldern sind. Wir leiten Schranken an die weichen supersymmetriebrechenden Terme
ab und bestimmen das Massenspektrum der supersymmetrischen Teilchen. Die Higgs-
Felder sind Bulkfelder und haben im allgemeinen andere Massen an der GUT Skala
als die Squarks und Sleptonen. Daraus ergibt sich, daf in unterschiedlichen Berei-
chen des Parameterraumes ein Neutralino, ein Gravitino oder ein skalares Lepton das
leichteste beziehungsweise zweitleichteste Superteilchen sein kann. Wir untersuchen die
Einschréinkungen verschiedener Szenarien, die sich durch die korrekte Vorhersage der
Produktion leichter Elemente im frithen Universum ergeben. Wiahrend Neutralinos zum
einen und Gravitinos mit einem Sneutrino als zweitleichtestem Superteilchen zum an-
deren iiber einen grofen Parameterbereich gute Kandidaten fiir die Dunkle Materie
darstellen, ist ein Szenario, in dem Dunkle Materie aus Gravitinos mit einem Stau als
zweitleichtestem Superteilchen besteht, starken Einschréinkungen unterworfen.
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. Introduction

A few months before the start of the Large Hadron Collider (LHC), high energy physics
finds itself in a peculiar situation: On the one hand, most results from laboratory exper-
iments confirm the expectations of the standard model of particle physics, on the other
hand there are many theoretical arguments which suggest that the standard model
should not be considered the fundamental theory of nature. Recent cosmological data
support these theoretical considerations. In particular it seems impossible to incorpo-
rate the by now well-established cosmological concordance model with dark matter and
dark energy dominating the energy density of our universe. While there are quite simple
extensions of the standard model which can provide viable dark matter candidates, the
existence of dark energy will most likely require a deeper understanding of quantum
gravity and might force us to go beyond the familiar framework of quantum field theory.
All this leads to the conclusion that the standard model, though spectacularly successful
at energies currently accessible at colliders, should be regarded as a low-energy effec-
tive theory only. An immediate question resulting from this conclusion concerns the
energy scale up to which the standard model is valid. Certainly a new framework will
be required at the Planck scale, where quantum gravitational effects become important.
However there are many reasons to believe that new effects set in at a much smaller
scale. In fact, theoretical considerations suggest that there will be some deviations from
the standard model at an energy scale as low as 1TeV — precisely the region that will
be experimentally tested at the LHC.

But what kind of 'new physics’ is the LHC likely to find? Guided by the idea that
the standard model should be embedded into a more fundamental framework such as
string theory, one may hope to find imprints of this fundamental theory. However, as the
string scale is far beyond the energy scale which will be probed at the LHC we would not
expect these signatures to show any ’stringyness’. Rather we would expect some signals
which result from the low-energy limit of string theory. With this in mind it seems
sensible to look for implications this limit might have for collider searches. When trying
to connect string theory with our world at low energies, we have to account for the fact
that we experience only four spacetime dimensions, while string theory is intrinsically
higher-dimensional. Consequently, to recover the four spacetime dimensions we are used
to, the additional spacetime dimensions have to be hidden somehow. One possibility to
achieve this is via compactification of the extra dimensions, where the inverse radius of
compactification — the compactification scale — has to be large enough in order to be
compatible with current experiments. Although these extra-dimensions are essentially
invisible, they can have a profound influence on the particle spectrum and symmetries
at low energies.

Another ingredient which, like additional spacetime dimensions, is almost inevitable



Chapter I: Introduction

in string theory is supersymmetry. Although there is as yet no experimental evidence for
it, theories with low-energy supersymmetry have emerged as the strongest candidates
for physics beyond the standard model. The motivations for supersymmetric theories
are manifold. Besides solving several long standing problems of particle physics it also
provides a candidate particle for cold dark matter in form of the lightest supersymmetric
particle (LSP) if R-parity is conserved. In this thesis we will not elaborate on the basics
of supersymmetry but simply assume an elementary knowledge. The reader who is not
familiar with this subject is referred to one of the following introductory articles [1,2].

The complexity of string theory allows explicit calculations only in a very limited
number of cases and makes it difficult to extract detailed phenomenological implica-
tions. Besides it is not clear how exactly the additional space-like dimensions should
be compactified. There are however suggestions that some of these extra dimensions
could be larger than others [3]. If one assumes a string compactification which is highly
anisotropic, there exists an energy region in which the description in terms of an in-
termediate higher dimensional field theory with typically one or two extra dimensions
seems appropriate. The main focus of this thesis will be on such higher-dimensional field
theories with two additional spacetime dimensions. In particular we will be interested
in phenomenological implications for particle physics and cosmology. At this stage it
should be noted that although we motivated these higher-dimensional field theories as
an intermediate step between string theory and the standard model, they can also be
seen as an extension to the standard model with an unknown high energy completion,
which is the line of thinking we will be following here.

In the course of this thesis we will see that in order to obtain a viable phenomenology
we have to employ a particular compactification scheme which was originally invented
in string theory [4,5]. The resulting compact spaces are known as orbifolds and unlike
a smooth internal manifold they possess points where the metric becomes singular. Re-
cently these orbifolds have become popular in a purely field theoretic context [6-12].
What are the properties which make these orbifolded field theories so popular? The
symmetries and the particle content of the standard model as well as the apparent uni-
fication of gauge couplings hint towards grand unified theories (GUTs). These grand
unified theories can naturally explain the observed patterns of quarks and leptons, but
in the standard four-dimensional setup they give no clues as to why these patterns show
large hierarchies in masses and mixings. In contrast, orbifold GUTs are attractive can-
didates for unified theories explaining the masses and mixings of fermions. In addition,
features such as the doublet-triplet splitting and the absence of dimension-five operators
for proton decay, which are difficult to realise in four-dimensional grand unified theories,
are easily obtained.

Although the orbifold constructions are phenomenologically quite attractive, they suf-
fer from a problem which is generic in all higher-dimensional theories: the size and shape
of the compact space correspond to the vacuum expectation values of massless scalar
fields, called moduli fields, and these expectation values are not determined at the clas-
sical level. However, in order to avoid phenomenological problems the size and shape
moduli have to be ’stabilised’, i.e. they have to acquire a well-defined vacuum expecta-



tion value through a non-trivial potential. There are classical as well as quantum effects
which can potentially lead to such a stabilisation. One quantum contribution to the
potential which is generically present in theories with compact spaces depends on the
properties of the extra-dimensional space [13,14]. We will evaluate the resulting ’Casimir
energy’ in Chapter III and discuss its role for the stabilisation of the extra-dimensional
volume.

If supersymmetry is realised in nature, it must be broken. While it is unclear what
kind of breaking mechanism should be considered, it is desirable that the breaking is
spontaneous rather than explicit to preserve the appealing features of supersymmetry.
As of now it is generally believed that supersymmetry should be broken in a “hidden
sector” to lift the superpartner masses to a phenomenologically acceptable range. A very
natural way to achieve a separation between different sectors is through the introduction
of branes in a higher dimensional spacetime. Higher-dimensional locality then forbids
direct couplings between fields that live on different branes.! Gaugino mediation [16,17]
is an attractive way to achieve supersymmetry breaking in such higher-dimensional the-
ories. The main idea of gaugino mediation is that gauge and possibly Higgs fields live in
the bulk whereas matter fields are confined to four-dimensional branes. Supersymme-
try is broken on an additional, spatially separated brane by the non-vanishing F-term
vacuum expectation value of a chiral gauge singlet. Gauginos and Higgs fields acquire
soft supersymmetry breaking masses at tree-level, since they are bulk fields, whereas the
corresponding terms for squarks and sleptons are strongly suppressed at the compacti-
fication scale. However, in order to translate these masses at the compactification scale
into measurable quantities at the electroweak scale, one has to employ renormalisation
group techniques and the running leads to non-vanishing masses for the squarks and
sleptons too.

In order to obtain specific predictions for the superpartner mass spectrum, it seems
sensible to combine models which explain the fermion masses and mixings with mod-
els for supersymmetry breaking. In Chapter IV we consider an SO(10) theory in six
dimensions, proposed in [11,18-20], in combination with gaugino-mediated supersymme-
try breaking. The orbifold compactification of the two extra dimensions has four fixed
points corresponding to four-dimensional branes. On three of them, three quark-lepton
generations are localised. The standard model leptons and down-type quarks are lin-
ear combinations of these localised fermions and a partial fourth generation living in the
bulk. This leads to the observed large neutrino mixings. On the fourth brane, we assume
the gauge-singlet field of gaugino mediation to develop an F-term vacuum expectation
value leading to the breakdown of supersymmetry. Within this setup we calculate the
soft supersymmetry breaking terms at the compactification scale and constrain their
values by means of naive dimensional analysis [21]. These terms serve as boundary
conditions for a renormalisation group analysis which leads to the determination of the
low-energy superparticle mass spectrum.

! However, as argued in [15], this does not imply a sequestered form of the four-dimensional K#hler
potential in general.



Chapter I: Introduction

Varying the boundary conditions at the compactification scale, it turns out that there
are different candidates for the lightest supersymmetric particle in the framework of
gaugino mediation. One of them is the gravitino, whose mass only has to respect a
lower bound in gaugino mediation [22]. In addition to the gravitino, a neutralino or a
scalar lepton, T or v, could be the LSP. However, since a scalar lepton is excluded as
LSP [23,24], it can only be the next-to-lightest superparticle (NLSP) with the gravitino
as LSP, which is consistent with the lower bound on the gravitino mass. One then
obtains the G-7 and the G-V scenarios with 7 and v as NLSP, respectively. The G-7
scenario is particularly interesting, since it may allow to determine the gravitino mass
and spin at colliders [25-30|. It is well known, however, to be strongly constrained by
primordial nucleosynthesis (BBN) [31-35]. In Chapter V we therefore study the impact
of such cosmological constraints on the G-7 scenario and compare it with the other dark
matter scenarios within the setup of gaugino mediation.

To summarise, this thesis is organised as follows. In the next chapter, we will briefly
introduce the concept of an orbifold and discuss how supersymmetry as well as gauge
symmetry breaking can be achieved by the compactification. We will also supply the
necessary background that we need to calculate the Casimir energy in Chapter III.
Chapter IV is devoted to the calculation of the low-energy superpartner mass spectrum
within the framework of gaugino mediation while Chapter V will mainly be concerned
with cosmological constraints on the gaugino mediation scenario. Whereas the results
of Chapter III are unpublished as of now, Chapters IV and V are mainly based on our
references [36] and [37] respectively. For the convenience of the reader we close each
chapter with a short summary and concluding remarks. Last not least we will discuss
the impact of this work and point out possible future directions.

10



Il. Orbifold Compactifications

The idea that the unification of fundamental forces may be related to the existence of
extra-dimensions has intrigued many physicists ever since the pioneering works of Kaluza
and Klein were published in the 1920s [38,39]. Nevertheless, it took several decades
before in the mid 1980s it was realised that ten-dimensional string theory provides a
consistent quantum theory of gravity coupled to matter [40,41], and therefore is a strong
candidate for a higher-dimensional unified theory incorporating the ideas of Kaluza and
Klein. More recently the framework of higher-dimensional theories became an important
research topic also for particle phenomenologists. The tremendous interest was triggered
by the fact that these theories offer new possible solutions to long standing problems of
particle physics such as the naturalness and the hierarchy problem [42].

One obvious phenomenological constraint which was already discussed in the intro-
duction is that the extra dimensions have to be hidden in some way in order to mimic
the four-dimensional world we live in. The simplest realisation of a spacetime that looks
four-dimensional from a low energy perspective is a product space where four of these
dimensions are large while the additional dimensions form a small compact manifold. A
simple example of such a compact manifold is an n-dimensional torus, where n is the
number of extra dimensions. Of course the radius of compactification has to be small
enough so that the extra dimensions are unaccessible by current experiments. How-
ever, even for small radii there is a serious drawback which makes the resulting theory
unsuitable as a candidate for a physical theory. The problem lies within the spinor rep-
resentation in higher dimensional spacetimes. The minimal dimension of a spinor grows
rapidly with spacetime-dimension which makes it impossible to construct a theory which
is chiral from the four-dimensional point of view, when all spinor components survive
the compactification procedure. It was realised that this problem could be circumvented
by using a particular compactification scheme, known as orbifold compactification. In
this scheme the resulting compact space is not a smooth manifold but a space which
possesses singular points.

Originally orbifold compactifications were used in the context of string theory [4, 5]
but most field theory orbifold models which are on the market by now are not derived
from specific string constructions. This is why a careful discussion of the consistency of
these field theoretic orbifolds is required, since they are not directly embedded in the
consistent framework of string theories.

In this thesis we will be concerned with two-dimensional toroidal orbifold compactifi-
cations corresponding to a six-dimensional spacetime in the full setup. An orbifold is a
generalisation of a manifold which locally looks like a quotient space of R". While the
mathematical definition is wider, in physics the notion of an orbifold usually refers to a
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space which is constructed from a regular manifold by modding out a non-freely acting
discrete symmetry.t At fixed points of the discrete symmetry the metric on the orbifold
becomes singular. At non-singular points however, the orbifold is locally indistinguish-
able from the regular manifold and inherits many of its properties. Therefore we will
briefly discuss this regular manifold before we move on to the orbifold construction.

1. The Torus T2

The two-dimensional torus 7" is specified by its underlying lattice which in turn depends
on three independent real parameters. These are given by the two lengths of the lattice
vectors Ly = 2w R, Ly = 2w R, and the angle 6 between them (see Figure II.1). Points

Ly

Figure IL.1.: Lattice of the Torus with the three moduli L, Ly and 6.

which differ by a lattice vector are identified, leading to the periodicity of the torus,
(y,2) = (y+nLocost +mLy, z+nlysing), (IL.1)

where (y, z) are the extra-dimensional coordinates and m,n € Z. Sometimes it is more
convenient to express the shape and size of the torus in terms of the area modulus

A = LiLysinf and the shape modulus 7 = f—few.

Fields which live on the product space M?* x T? have to fulfill certain boundary
conditions in order to be consistent with the periodicity of the torus: They have to be
equal at the identified points up to a global or local symmetry transformation of the
Lagrangian. For example a periodic scalar field ®(z,y, z) satisfies

1 Not all orbifolds in the mathematical sense can globally be written as a regular manifold modded
out by some symmetry.

12



2. The Orbifold 72 /7Z,

O(z,y +nlycosd +mLy, z+nlysinf) = ®(z,y, 2). (I1.2)

There can also be more general boundary conditions including a complex phase, which
is known as a Scherk-Schwarz twist [43].

1.1. Mode Expansion on T2

The dependence of a field on the extra-dimensional coordinates (y, z) can be expanded
in terms of eigenfunctions of the extra-dimensional Laplacian according to

(I)(.T, Y, Z) = Z (b(m,n)<l’) : fm,n<y; Z) . (113)

m,n=—0o

The explicit form of the expansion depends on the boundary conditions of the six-
dimensional field ®(x,y,z). For periodic boundary conditions as in (II.2) the mode
expansion can be written as

1 < , — zcot
P(z,y,2) = VA Z Gmn)(T) - exp {Z <my ;CO + nn ;ne>} . (IL4)
Y z

m,n=—00

Here the normalisation is chosen such that the fields ¢ ,)(«) have a canonical ki-
netic term when integrating over the extra dimensions to obtain the effective four-
dimensional theory. Performing this integration we obtain an infinite tower of massive
four-dimensional fields - the well-known Kaluza-Klein tower. In the periodic case the
mass for the mode ¢, () is given by

In — mT}2 . (IL.5)

ey
R " R2 RyR,

m,n

9 1 m?  n®  2mncosf 42
sin? 6 ( ) Amy
We see that the Kaluza-Klein spectrum is sensitive to the volume as well as to the shape
of the extra-dimensional space. For § = /2 the Kaluza-Klein masses reduce to their well
known form for a rectangular torus lattice. As can be seen from (II.5) the Kaluza-Klein
masses are inversely proportional to the size of the extra dimensions in the rectangular
case. Since the size of the extra dimensions is usually considered to be very small, the
corresponding Kaluza-Klein masses are very heavy, leaving only the massless zero mode
in the low energy effective action.

2. The Orbifold T?/7Z

Having briefly discussed the covering space let us come to the construction of 72 /Z,, the
orbifold we will be mainly concerned with in this thesis. Note that unlike Zy rotations

13
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y
(a) Construction of the T?/Zs (b) The resulting pillow with the
orbifold through implementing four corners corresponding to the
the Zs-symmetry and gluing the four fixed points

edges.

Figure I1.2.: The Zo-Transformation acting on the Torus.

with N > 2. the reflection is always a symmetry of the lattice for any value of the moduli
A and 7 and hence they are also moduli of the resulting orbifold.

When orbifolding a quantum field theory, the symmetry group acts on coordinate
space as well as on field space. We first implement the Z,-symmetry on the internal
manifold by identifying points which are mapped onto each other by the reflection r

r:(y,2) — —(y,2). (IL.6)

This action has four fixed points,

= (0,0), (IL.7a)
— (rR,,0), (1L.7b)
= (1R, 0050 TR, sind) , (I1.7¢)
P4 = (7R, (1 + cosf), 7R, sinb) . (IL.7d)

The fundamental domain is halved and the edges are identified as sketched in Figure II.2.
Embedded into three-dimensional space, the resulting object can be thought of as a
‘pillow’ with four corners, corresponding to the four fixed points. These fixed points
lead to many new phenomena in orbifolded theories which are absent in theories that
are formulated on the original manifold. In particular 'brane fields’ can be localised at
these fixed points leading to many new possibilities for model building. Furthermore
quantum corrections of bulk fields in general lead to divergences localised at the fixed
points [44]. These divergences have to be renormalised by field operators on the branes,
inducing a running of the brane couplings with the renormalisation scale. Therefore
they cannot be set to zero at all scales and should be considered free parameters of the
theory which should be included in the action already at tree level. This means that in
addition to the intrinsic brane fields there are also brane localised terms of bulk fields.

14



2. The Orbifold 72 /7Z,

However, these brane terms are volume suppressed in comparison to the corresponding
bulk terms, and therefore they are usually considered small perturbations.

Because the orbifold reflection (I1.6) is a symmetry of the higher-dimensional Lapla-
cian, it has a natural action on its eigenfunctions. The action of the symmetry group
on field space can be written as [45]

r®(2,y, 2) = Rij®(z,—y,—2) , R’=1, (IL.8)

where R is a matrix representation of the Z, symmetry group with eigenvalues +1 and
® a vector which comprises all fields in the theory. In the diagonal basis, fields can be
classified by their respective eigenvalues, leading to a set of even and odd fields:

r:®(z,y,2) — £P;(z, —y, —2). (I1.9)

In the following we will see that the phenomenological consequences of this seemingly
innocent orbifold action are quite profound.

2.1. Mode Expansion on T?/Z,

Using the orbifold action on fields (I1.9), the toroidal mode expansion (II.4) can be re-
stricted to the orbifolded case. Special care has to be taken about the normalisation
in order to ensure a canonical kinetic term for the Kaluza-Klein modes. For later con-
venience we will give this mode expansion explicitly. In the following we will restrict
ourselves to a rectangular torus lattice. In this case the Kaluza-Klein modes for even
and odd fields can be written as?

1 o
S o L3P

n>0 m>0n=—oo

X COS <@ + %) , (IL.10a)

R, ' R.
RS ] S (2)

n>0 m>0n=—o0
X sin (% + %i) , (IL.10b)

"(a)

1

V2m Ry R,

b (z,y,2) =

respectively. From these expressions we immediately see that roughly half of the Kaluza-
Klein states are projected out at the fixed points. Only even fields retain a zero mode
while the lightest mode of an odd field already has a mass of order the compactification
scale. This is the main feature of orbifolded field theories: By assigning appropriate
boundary conditions, unwanted fields can be removed from the low energy spectrum.
It is this feature which allows for novel solutions to long-standing problems of particle

2¢f. Appendix for details.

15
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physics. For example we can now construct a theory which is chiral in four dimensions
simply by assigning different parities to the left- and right-handed components of a Dirac
spinor. Furthermore the matrix R can utilise all of the symmetries of the bulk theory,
including gauge symmetries. Hence when choosing appropriate boundary conditions,
gauge symmetries as well as supersymmetry can be broken or reduced at the fixed
points without the introduction of a complicated Higgs sector or other additional fields.
Another generic feature of orbifolded theories is the existence of ’split multiplets’, i.e.,
incomplete representations of the underlying GUT symmetry. This is why orbifolds
have been extensively used in the context of grand unified theories as first suggested
by Kawamura [6,7]. Many problems of four-dimensional GUTs such as the doublet-
triplet splitting problem or the (in)stability of the proton can be easily cured in this
higher-dimensional setup.

In Chapter IV we will work within the framework of a supersymmetric orbifold GUT
model which exhibits all these features. It is an SO(10) gauge theory compactified on
T2/ (Zy x 75 x 75°). But before we familiarise the reader with the rather specific field
content of this model, we will concentrate on one basic ingredient which we will need in
the next chapter - the SO(10) vector multiplet which resides in the bulk of the theory.

2.2. From N =2 to N =1 Supersymmetry

In this section we briefly review how to implement the orbifold symmetry on the six-
dimensional vector multiplet such that a viable four-dimensional theory at low energies
emerges.® The first thing we should note at this stage is that the minimal amount of
supersymmetry in six dimensions corresponds to A/ = 2 extended supersymmetry in
four dimensions. However, it is well known that such extended supersymmetric theories
do not lead to a viable phenomenology. Therefore something needs to be done in order
to arrive at a theory which is acceptable from a phenomenological point of view.

The gauge fields Ay, with (M = p,5,6) and gauginos A » of the six-dimensional vector
multiplet can be conveniently grouped into four-dimensional A" = 1 vector and chiral
multiplets:

V= (4w A1), U= (As56A) . (IL.11)

Here V' as well as ¥ are matrices in the adjoint representation of SO(10). To promote
the Zy-symmetry to a symmetry of our theory, we have to specify the Zo-parities of
the fields as in (I1.9). The unwanted extended supersymmetry can then be broken at
the fixed points by choosing appropriate parities for the different fields. However, since
we require the theory to be invariant under the parity transformation of the fields, the
choice of parity assignments is restricted. For example invariance of the action implies
that since the derivatives 05 are odd under reflection, the two Weyl fermions \; and
Ao must have opposite parities. Taking such consistency conditions into account we

3 For more details see e.g. [11].
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3. The Orbifold T2/ (7, x ZES x 75°)

can write the parity transformation of the six-dimensional fields under the reflection
(y,Z) - (_ya _Z) as

Zy: PV(x,—y,—2)P ' =+V(s,y,2), (I1.12a)
Zy: PY(z,—y,—2)P ' =-V(z,y,2), (IL.12b)

where P is a matrix representation of the orbifold symmetry, P2 = 1. Here we choose
this matrix to act trivially in group space, P = 1. With these assignments only the
vector multiplet V' remains in the low energy spectrum while the zero modes of the
chiral field ¥ are projected out. In this way the orbifold compactification leads to an
effective four-dimensional gauge theory with AV = 1 supersymmetry.

However, with the given parity assignments the full SO(10) gauge group survives the
compactification. The simplest possibility to achieve supersymmetry as well as gauge
symmetry breaking is to introduce additional Zs-symmetries into the theory.

3. The Orbifold T?/ (Z, x 75 x 75°)

To achieve a breaking of the SO(10) gauge group we compactify the theory on an internal
space with two additional reflection symmetries, one around the point ¥’ = y + TR,
and the other around the point 2’ = z + JR.. The construction of this orbifold is
sketched in Figure I1.3. The resulting space again has four fixed points, O, = (0,0),
Ops = (mR5/2,0), Oge = (0,7Rs/2) and Oy = (7R5/2,7mRe/2), but the fundamental
domain is a factor four smaller because of the two additional reflection symmetries.
However, the main difference to the orbifold 7?/Z, we considered before is the non-
trivial action of the two additional parities on the SO(10) generators.

3.1. Breaking of the SO(10) Gauge Symmetry

Local breaking of SO(10) to the Pati-Salam group Gps = SU(4) x SU(2) x SU(2) and
to the extended Georgi-Glashow group G = SU(5) x U(1) is achieved by acting with
the additional two Z,-symmetries on the gauge fields,
75 . PosV(z,—y+7Rs/2,—2) Pt = nl.V(z,y + 7Rs5/2, 2) (I1.13a)
75 . PsV(w,—y, —z+7Rs/2)Pod = neV(z,y, 2 + 7Rs/2) . (I1.13b)

Here the P; are matrices acting non-trivially on the SO(10) generators. In the vector
representation they can be taken as [11]

o 0 0 0 0
0 o, 0 0 O

Ps=| 0 0 0 0 0 [, (IL14a)
0 0 0 o5 0
0 0 0 0 o
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Chapter II: Orbifold Compactifications

1?7, T? /(7o x 758 T? /(7 x 75 x 7.°¢
2 2

Figure IL.3.: Implementation of the three Z, symmetries on the two-dimensional torus 72
leading to the Orbifold T2/ (Zy x Z5° x ZS%). The different coloured dots mark the inequivalent
fixed points of this orbifold, as explained in the text.

—o9 0 0 0 0
0 —oop 0 0 0

Ps=| 0 0 —o0 0 0 |, (IL.14b)
0 0 0 a O
0 0 0 0 o

with oy and o, two-dimensional Pauli matrices*. The corresponding parities are chosen
to be nY, = nY, = +1. Combining the Z, symmetries, there is a fourth relation

PV (z,—y +7Rs/2,—2 + TRs/2) Pyt = V(x,y + 7Rs/2, 2z + TR /2) (I1.15)

resulting in an additional subgroup Gy = SU(5)" x U(1)" [12]. The given parity assign-
ments lead to the following pattern of remaining gauge symmetries: At O, the full SO(10)
survives, whereas at the other fixed points, Ops, Oge and Og, SO(10) is broken to its
three GUT subgroups Gys, Gge and flipped SU(5), Gg, respectively. The intersection
of these GUT groups yields the standard model group with an additional U(1) factor,
Gow = SU@B)c x SU(2), x U(1)y x U(1) y, as unbroken gauge symmetry below the
compactification scale.

3.2. Mode Expansion on T?/ (Zy x 75 x 75°)

The additional reflection symmetries also change the Kaluza-Klein expansion. For later
convenience we give this expansion explicitly for fields which are non-vanishing at the

* For notations and conventions see [11]
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2
Rl}

(Vi M) (Vs6, A2)

Clon 2, 2y 2y M Z, 15° L
(8,1,0,0) || + + + 4 (Tg_; n %) L
(3.2-50 | + + - | 4(m+om2) |- - 4
(3,2;5,0) || + + - 4 (g—g n %#) oy
(1,3;0,0) | + + + 4(7;—+g_> o
(1,1;0,0) | + + + 4(7;—+g_> o
(3,2:1,4) ||+ - — |4 ((mgﬁ + <"+;g2>2) -+ 4
W64 [+ - 4+ | a(m2ia) -+ -
(3,2;-1,—4) || + - — 1 4 ((WHI%/?)2 + (n+1;£2)2> 4 .
(1,1;-6,-4) | + — + 4 ((m+Rl§/2)2 I ?T) 4
(1,1;0,00 | + + + 4 (m + ;{_) o

Table II.1.: Decomposition of the 45-plet of SO(10) into multiplets of the extended stan-
dard model gauge group G%,, = SU(3) x SU(2) x U(1)y x U(1)x and corresponding parity
assignments. For later convenience we also give the Kaluza-Klein masses ann
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Chapter II: Orbifold Compactifications

fixed point O = (0,0),

1
(I)JrJrJr (SC, Y, Z) = \/27TRyR226n’05m’0 [ 0,m Z + Z Z

m=1n=—00

2 2
X COS < ;Zy + }Zj) , (I1.16a)

Omz+z Z] Pt ()

m=1n=—o0

2my  (2n+1)z
X +
cos( R, R

(2m, 2n
+++

O, =
++ (SL’,y,Z) \/m

) ., (IL.16b)

(I)+_+(ZL‘,y,Z) 27TR R Z Z ] 2m+1 2”) )
m=0n=—o00
X COS <(2mR+y Dy + (2}22) : (IL.16¢)
®+**<x7y72) - \/m Z Z ] ijl 2n+1)< )
m=0n=-—oo
X COS (<2mR—Z Ly + (2n];)i;1)z) . (IL.16d)

Only fields for which all parities are positive have zero modes. In the case we considered
here, they form an N’ = 1 massless vector multiplet in the adjoint representation of the
unbroken extended standard model gauge group, as can be seen in Table II.1.

Summary and Concluding Remarks

In this chapter we have introduced the concept of orbifold compactifications and provided
a basis for applications in the forthcoming chapters. In particular the explicit mode
expansions will prove useful in the calculation of the Casimir energy. We have seen that
orbifolded theories offer promising breaking schemes for supersymmetry as well as gauge
symmetries and in addition imply the existence of branes, four-dimensional subspaces
to which fields can be confined. All these features allow for novel solutions to many
problems of high energy physics and constitute a rich phenomenology, which we are
going to explore in the remainder of this work.
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I1l. Stabilisation and Casimir Energy

We argued in the introduction that possible extra dimensions have to be small in order
to be consistent with current experiments. An obvious question which results from this
phenomenological constraint is the following: If we happen to live in such a higher-
dimensional world, what determines the size of the extra dimensions and how is this size
maintained?

To address this question in a more mathematical way we note that when we naively
compactify a higher-dimensional theory, the volume of the compact space will correspond
to a massless scalar field in the low-energy theory. This means that the potential of the
field is flat and therefore the corresponding volume is arbitrary. What we encounter
here is a special case of the modulus problem, a generic problem of higher-dimensional
theories such as string theory which has attracted much attention recently. It is this
arbitrariness which immediately leads to phenomenological problems: In addition to
the problem that the extra dimensions are not small, the massless field would also
contribute to Newton’s law and result in a fifth force [46], which is not acceptable from
a phenomenological point of view. Therefore the volume of the extra dimensions has
to be fixed at some small value. It is intuitively clear that a stabilisation at non-trivial
values occurs dynamically, if there are attractive and repulsive forces which balance each
other at some finite volume. These stabilisation forces can be of classical origin, e.g. they
can be due to a scalar bulk field which has different interactions with different branes.
A prominent example of such a stabilisation mechanism can be found in [47]. In this
chapter we will be concerned with another interesting possibility namely that quantum
effects induce a non-trivial potential for the volume modulus.

1. The Energy of the Vacuum

The prediction of the Casimir force in 1948 [48| followed by its experimental verification
in 1956 |49, 50| has stimulated investigations about the zero-point energy in quantum
field theory. These investigations in turn generalised the concept of the Casimir effect to
include not only electromagnetic interactions but also other quantum fields. The occur-
rence of divergent zero-point energies in quantum field theories can be traced back to the
concept of canonical field quantisation, because this quantisation scheme does not fix
the ordering of non-commuting field operators in the Hamiltonian. In order to arrive at
a well defined theory this ambiguity is usually circumvented by the procedure of Wick’s
normal ordering which implies a formal subtraction of the zero-point energy. However,
as every form of energy gravitates, the absolute value of the vacuum energy is, in prin-
ciple, a measurable quantity and cannot be correctly defined by normal ordering [51].
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Rather a meaningful definition of the physical vacuum energy must take into account
that free quantum fields are not physical and that physical fields are in general subject
to external constraints such as interactions with other fields. One can obtain an ide-
alised description of such circumstances by forcing the fields to satisfy certain boundary
conditions. Therefore the physical vacuum energy - the Casimir energy - should depend
on these boundary conditions. In particular in the case of extra-dimensional scenarios it
should depend on global properties of the spacetime such as the topology and boundary
conditions of the compactification.

Motivated by this observation the Casimir energy is generally defined as the differ-
ence between the zero-point energy corresponding to the vacuum configuration where
the fields have to fulfil certain boundary conditions and the free vacuum configuration,
respectively. Since the computation of the Casimir energy is plagued with divergences,
this formal definition must be supplemented with a regularisation prescription in order
to obtain a finite energy difference. A convenient regularisation scheme which we will
employ in the following calculations is known under the name zeta function regularisa-
tion [52,53]. For a review and applications of zeta function regularisation see e.g. [54]. In
the framework of this thesis, we are mainly interested in the Casimir energy on toroidal
orbifolds. Casimir energies for various theories compactified on two internal dimensions
have been studied by quite a number of groups [55-57|.

In the next chapter we will consider an SO(10) gauge theory compactified on the orbi-
fold T2/ (Zy x Z5° x ZS€¢). The field content is quite complicated and will be discussed
in detail later. For the discussion of the Casimir energy we will concentrate on one ba-
sic ingredient which we already discussed in the last chapter, namely the SO(10) vector
multiplet which resides in the bulk of the six-dimensional space. The goal of this chapter
is to study the generation of a non-trivial potential for the volume modulus induced by
quantum effects of massless and massive components of this vector multiplet, which can
potentially lead to a stabilisation of the extra-dimensional volume [13,14]. To see if a
stabilisation can be achieved, we will calculate the one-loop quantum effective potential
around a constant flat background. It is obvious that the outcome of this calculation
depends on the field content and the boundary conditions of the theory. To see the
effect of gauge symmetry breaking on the modulus potential, we will start off with the
simpler example of T?/Z, where the full gauge group survives the compactification and
compare it with T?/ (Zy x 758 x 7ZS°) where also the gauge symmetries are broken.

2. The Casimir Energy on T?/7Z,

Let us start with the Casimir energy for a six-dimensional vector multiplet in the adjoint
representation of SO(10) compactified on the orbifold 7% /Z,. As long as supersymmetry
is unbroken, the Casimir energy will be identically zero [55|, provided the fields all share
the same boundary conditions. Therefore we have to specify the supersymmetry breaking
mechanism, before we can start the calculation of the Casimir energy.
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2. The Casimir Energy on T?/7Z,

A supersymmetry breaking mechanism which naturally fits into the framework of
orbifolded theories is gaugino mediation. We will postpone the detailed discussion of
this mechanism to the next chapter and only use the fact here that this leads to a brane-
localised soft supersymmetry breaking mass term for the gauginos. In general, brane
localised terms lead to a distortion of the Kaluza-Klein spectrum which also effects
the Casimir energy. However, we assume the supersymmetry breaking brane masses
to be small such that we can neglect the distortion they induce. We will place the
supersymmetry breaking field at the brane O = (0, 0), so only fields with positive parity
can couple to it. In our setup only the gauginos \; can obtain a supersymmetry breaking
mass, whereas A\, does not couple to the brane and remains massless. Therefore it
is sufficient to concentrate on the massless NV = 1 four-dimensional vector multiplet
V = (A, A1) in the following discussion.

We can express the Casimir energy of gauge fields and gauginos in terms of the Casimir
energy of a real scalar field. This can be seen after appropriate gauge fixing and essen-
tially amounts to a counting of the corresponding degrees of freedom [55]. To be explicit,
the Casimir energy for our four-dimensional fields A, and \; in the adjoint representation
of SO(10) is simply given by

Va, = +90V, | (ITL.1a)
V)q == _90‘/8 9 (III.]_b)

where V; is the Casimir energy of the real scalar field obeying the same boundary condi-

tions. Thus, it is enough to perform the vacuum energy calculation for this single scalar
field.

2.1. Casimir Energy due to a Scalar Field

The exact vacuum state of a quantum field theory, including all effects of quantum
corrections, can be obtained by minimizing the effective potential, which can be extracted
from the one-particle irreducible (1PI) effective action. The definition of the 1PI effective
action in terms of functional integrals can be found in almost any quantum field theory
textbook, see e.g. [58]. The corresponding effective potential agrees with the classical
potential to lowest order in perturbation theory, but is modified in higher orders by
quantum corrections. We will be interested in exactly these modifications, because they
lift the flatness of the classical modulus potential.

In the following we will calculate the effective potential for the compactification moduli
due to the scalar Kaluza-Klein modes around a constant flat background. We emphasize
that we do not attempt to understand how nature chooses a particular compactification
scheme. Rather we simply assume that the topology in which physics takes place is
M x T?/Z,, and within this framework we study a contribution to the potential of
the extra-dimensional radii. We start from the classical action of the four-dimensional
Kaluza-Klein modes of a scalar bulk field which one obtains by dimensional reduction.
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Chapter III: Stabilisation and Casimir Energy

Schematically this action can be written as
1
S = 3 /d4xz {au(b(m,n)aﬂ(b(m,n) _ (Mib,n + M2) (¢(m,n))2} ’ (HI.Q)

with M,, ,, the Kaluza-Klein masses and M a brane-localised supersymmetry break-
ing mass. Here we have neglected small distortions of the Kaluza-Klein spectrum in-
duced by the brane-localised mass term. Starting from its functional integral definition,
the one-loop contribution to the effective potential as a function of the classical fields
v = (¢), Ry, R, can be written as [58]

i ) B _3' 528
/d z Vertlp, Ry, R.] = 2 log det [5¢5¢} P=¢p

1
=+5 log det [Z (07 + M2, + M?)

m,n

{
= +§ Trlog Z (0% + M7, + M?)

m,n

, (I11.3)

where the dependence on the extra-dimensional radii is induced by the Kaluza-Klein
masses M%Ln Note that for the action given above, this effective potential is independent
of ¢ and therefore already corresponds to its minimum, which is equivalent to the vacuum
energy as a function of the extra-dimensional moduli.

Let us now come to the specific case of T?/Z, and calculate the contribution of the even
scalar bulk field ®,. Using the explicit form of the mode expansion (II.10), performing
the trace and Wick rotating to Euclidean space we obtain for the Casimir energy

V= [50,m2+z i]/

n>0 m>0n=—o0

d4
(2

k
W)fi log (k% + M2, ,, + M?) . (111.4)

Here the Kaluza-Klein masses are given by

= — [e*m? +n?] , (IIL.5)

where we defined ¢ = R?/R? for convenience. As mentioned above we will use zeta
function regularisation to define the divergent expression,

d
Vo= —4.¢0) (I1L.6)

s=0
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with
¢(s) = % [Z]mn/ (d4k)E (k% 7 [®m® + n?)] +M2)S
%(Qi)4ﬂzr(;(_ 2 < e *m? + nﬂ + ]\/[2) o
- 3%2;’;”8 (s - 2><s Y [Z} (e ) BT (L)

where [Y ] is shorthand for the sum given above. We defer the evaluation of the sum
in (II1.7) to the Appendix. Performing the sum, differentiating with respect to s and
setting s = 0 the Casimir energy of the massive scalar field can be written as

1 TMSR,R?
VM — _ Y2 (—11 + 12log[M
: 647T2R4{ 3 (1L 12loslM])
4 RS 32“
+ — 772 RQM Kg 27TpMR )
] R 5/2 400 . 5 R
i 4 z 2 2 P2
+;(§y) § 5/2§ m? + M2R?) 4K5/2(27rpR—y,/m + M Ry>
4 14 3
+ M*R? {Z — log(M)]
4 savm 1
p=1

Here K,(z) are modified Bessel functions of the second kind. Although it is not obvious
from this expression, the Casimir energy is symmetric under the interchange of R, and
R.. We can now use this result to obtain the Casimir energy of the vector multiplet on
T?)Zs.

2.2. Casimir Energy due to the Vector Multiplet

With the result of the last section, the Casimir energy of the vector multiplet can now
simply be written as

Viy =90 (V2 — VM) . (1IL.9)

Here M is the supersymmetry breaking mass of the gauginos. Clearly, as long as super-
symmetry is unbroken, the Casimir energy will vanish. To see the effect of supersym-
metry breaking, it will be convenient to expand the Casimir energy in a power series
inx = M\/R,R, < 1. Remember that our calculation is valid only for brane masses
which are considerably smaller than the compactification scale in order not to distort
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Chapter III: Stabilisation and Casimir Energy

the Kaluza-Klein spectrum, hence this expansion is justified.! The leading contribution
is obtained for M = 0. Here the gauge fields contribute an attractive potential while
the potential due to the gauginos is repulsive. However, this term will cancel between
fermions and bosons and therefore it is the next-to-leading term which gives the main
contribution to the Casimir energy. We defer the explicit calculation of the power series
to the Appendix again and only state the final result here,

1

_ 2
W= 327TR;1M By R
HBM2 X1 (R, ™
B N i + coth(mpR./R,) ¢ . 111.10
32W4R§;p3{Ry sinh?(mpR./R,) coth(mpR./ y>} ( )

We see that the presence of the vector multiplet leads to an attractive force. Note
however that unlike the massless case the attractive force is due to the gauginos. This
contribution clearly tends to contract the extra-dimensional volume and does not lead
to a stabilisation on its own. However, before we come to a more detailed discussion
about possible stabilisation mechanisms, let us perform the corresponding calculation
for the orbifold we will be mainly concerned with in this thesis.

3. The Casimir Energy on T?/ (Zy x 75 x 7S°)

In this section we repeat the calculation of the Casimir energy for the modified setup
of T?/ (Zy x Z5 x Z5¢). We assume again a non-vanishing F-term vacuum expectation
value localised at the fixed point O = (0,0) to be responsible for the breakdown of
supersymmetry. Then only fields which couple to this brane can obtain a supersymmetry
breaking mass term. The corresponding mode expansions are given in (I1.16). Let us
again calculate the Casimir energy of scalar bulk fields, this time with several different
boundary conditions.

3.1. Casimir Energy due to a Scalar Field

As before the Casimir energy can be written as

V=1 > /%bg (K2 + M2, + M) (I11.11)
® 2 m,n (277')4 E e ’ ‘

with [Y7] ., shorthand for the double sum and M, ,, denoting the Kaluza-Klein masses.
However, unlike the case considered before, we have to take into account several different
Kaluza-Klein masses and also two different sums, as can be seen from the mode expansion

1 Actually, the mass term can also be interpreted as a bulk mass term. In this case our result is correct
irrespectable of the size of the mass term.
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(IL.16). The explicit form of the Kaluza-Klein masses M, , for the different boundary
conditions can be found in Table II.1. Generically they can be written as
(m+a)*  (n+p)%

R R

M2, = 4 [

4
=25 [Fm+a)?+(n+8)")] , (II1.12)
where o, 6 € {0,3} and we introduced e®> = R2/R for convenience. Using again zeta
function regularisation the Casimir energy can now be written as

dc(s)

Vo= —
° ds

(I11.13)

C(s) = [Z]mn/% <kE+ % [ 2(m—|—a)2 + (n—|—5)2)} +M2) —s
! 7T2P(8 —2) [Z} o <Ri§ [®(m+a)>+ (n+ 3)%)] +M2) B

= 327:122];;25 (s — 2)1(5 —1) [Z} o ([62(771 +a)’+ (n+ 5)2)} + RZgMZ) - )
(I11.14)

We again defer the evaluation of the Casimir sum to the Appendix. For the fields with
mode expansion ¢, , and ¢, __ the sum is given by

[Z]m,n - i i : (I11.15)

m=0n=—o0

We denote the corresponding Casimir energy by VSO‘IB M Tt can be written as

afM _
Vil =

1 167w MPR?
{ - = CH(Ov a)

Am2RY 15 32

R,R3M®

Wi
2304

4 ROM?® & cos(27rpa)

[—11 4 121og(M))]

p=1

8 (R, 52 1% cos (27mps) - M2R2 ’
*p(R—y) D o2 ZO( T)

p=1

K (27Tp g—;\/(m +a)+ M2R§/4) } . (IIL.16)
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Here (y(z) is the Hurwitz zeta function. Although o = 1/2 for both fields, we kept it
general at this stage, because we will also need the expression for & = 0 in the following.

Coming to the contribution to the Casimir energy of the remaining two fields which
couple to the supersymmetry breaking brane, namely &, ,, and ®,, , we have to use
the sum

[Z] [50mz+ > Z] (I1L.17)

m=1n=—o0

In the Appendix we show that the resulting Casimir energy, VSO‘HB ’M, can be written as
the sum of V;“I’ﬁ M and an additional piece,

VP —yapM | fesM (ITL.18)

with

N 1 R M2R2\* T3
ol (o ) [ )t

8m R? 24 MQRi i
R \" T4

4 (R, 5/2 2p2\ 5/4 2 l—ﬁ))
(i) (i) e

p=1

K5 (2 mple o +M2R2/4> } (IIL.19)

3.2. Casimir Energy due to the Vector Multiplet

From Table II.1 and the mode decomposition we can read off the total Casimir energy
of the vector multiplet on T2/ (Zy x Z5 x Z$¢). The gauge bosons remain massless
and have the same sign as the real scalar while the gauginos acquire a supersymmetry
breaking mass M and have opposite signs,

Vo= 26 (VY = VM) 24 (VYD v )

+16 - (v(l/”) Vs{}/l"’M>>+24 (v(l/“/?) 1/8{}/2’1/2’]”)). (IIL.20)

To see the effect of supersymmetry breaking, we will again expand the Casimir energy
in a power series in x = M/R,R. < 1. The corresponding calculations can be found in
the Appendix. Keeping only the terms which are O(z?) we finally obtain for the Casimir
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energy due to the vector multiplet on 7?2/ (Zy x 75 x 75°)

1 3
— i [2 — " ] {2
W 487 R? it~ g <)
M?

1
BTy Z ZE{ [13 + 8 cos(mp)] coth(mpR./R,)
Z p=1

1
+ 12[1 + cos(7p)] (1 + Wg—; COth(WpRz/Ry)> sinh(mpR. /R,
2/ 1ty
1
R (13 _ 111.21
ﬂ-Ry ( COS<7TP)) SinhQ(ﬂ'pRz/Ry) } ( )

We see that this potential again leads to an attractive force.? Therefore the Casimir
energy tends to contract the size of the extra dimensions down to the Planck length.
However, at this stage one should note that in addition to the one-loop contributions
from bulk fields, there will also be a tree-level contribution of the higher-dimensional
cosmological constant to the four-dimensional effective action. The presence of this term
is required as a zero-derivative counterterm for divergences which arise in the calculation
of the one-loop effective potential [55]. This term changes the shape of the potential and
can potentially generate a minimum at larger values of the radii.

Furthermore a realistic theory requires additional fields which will also contribute to
the Casimir energy. With the help of (II1.16) and (III.19) their effect can be easily
incorporated. A detailed study of the modulus potential (III.21) including the effect
of additional fields as well as of the higher-dimensional cosmological constant is left for
future work.

Summary and Concluding Remarks

In this chapter we have calculated the Casimir energy due to a vector multiplet in the
adjoint representation of SO(10) on the orbifolds 72 /Z, and T?/ (Zy x 75 x ZS¢). To
see the effect of supersymmetry breaking, we expanded the result in a power series,
where the leading massless terms cancelled within one supermultiplet. We found that,
for the given boundary conditions, the Casimir energy leads to an attractive force. To
avoid a contraction of the extra-dimensional space down to the Planck length, additional
contributions to the effective potential have to be taken into account. Our result for the
Casimir energy will be essential in a detailed study of the modulus potential.

2 The repulsive terms which are proportional to cos (7p) are always dominated by the attractive ones.
However, it should be noted that this is not generically the case and only valid for the specific setup
we consider here, since there are also repulsive contributions which could dominate over the attractive
ones if we had chosen different boundary conditions. For example, the field ¢ _ leads to a repulsive
force and if it were not for the (over-) compensation from fields with other boundary conditions, the
extra dimensions would expand rather than contract. Therefore one cannot make general statements
about the behaviour of the modulus potential when only knowing the field content.
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IV. Gaugino Mediation in a Supersymmetric
Orbifold GUT

Supersymmetric orbifold GUTs [6-12] are attractive candidates for unified theories ex-
plaining the masses and mixings of fermions. Features such as the doublet-triplet split-
ting and the absence of dimension-five operators for proton decay, which are difficult
to realise in four-dimensional grand unified theories, are easily obtained. Furthermore
— with the start of the LHC a few months ahead - there is an increasing interest in
specific predictions for the superparticle mass spectrum, which results from the inter-
play between fermion mass models and models for supersymmetry breaking. Following
this rationale, we consider an SO(10) theory in six dimensions, proposed in [11,20], in
combination with gaugino-mediated supersymmetry breaking [16,17].

In the next section, we briefly describe the relevant properties of the orbifold model,
further details can be found in [11,18-20]. Having outlined the basic ideas, we will com-
bine the orbifold model with gaugino mediation, a supersymmetry breaking mechanism
which can naturally be embedded into the orbifold framework. Here we are in particular
interested in the supersymmetry breaking couplings needed to calculate the mass spec-
trum of the superpartners. Moving on to Section 3, we demonstrate that the presence
of extra matter fields in the bulk leads to severe problems with flavour-changing neutral
currents (FCNCs) unless the couplings of these fields to the supersymmetry breaking
field are suppressed. Using naive dimensional analysis (NDA) in Section 4, we derive
upper bounds on the unknown couplings of the theory and thus on the non-vanishing
soft masses as well as supersymmetric Higgs mass parameter p and the soft bilinear
coupling Bu at high energy. Finally, we calculate the low-energy superparticle mass
spectrum in Section 5.

1. The Orbifold GUT Model

The symmetries and the particle content of the standard model as well as the apparent
unification of gauge couplings at Mgyr ~ 10 GeV [59] hint towards grand unified
theories. With the increasing evidence for neutrino masses, implying the existence of
a right-handed neutrino, there is also an increasing motivation for SO(10) as the GUT
gauge group’. This is because SO(10) allows for the unification of all quarks and leptons
into one irreducible spinor representation, including the right-handed neutrino.

Guided by these preliminary thoughts, we consider an N = 1 supersymmetric SO(10)
gauge theory in six dimensions compactified on the orbifold 72/ (Zy x Z5s x Z$¢) [11].

L Of course larger gauge groups which have SO(10) as a subgroup are well motivated too.



1. The Orbifold GUT Model

We already discussed some features of this model in Sections I1.2 and I1.3, in particular
how symmetry breaking is achieved by the compactification. Recall that the extended
supersymmetry is broken by the first Z, reflection, such that the zero modes of the six-
dimensional vector multiplet form a massless four-dimensional N' = 1 vector multiplet
in the adjoint representation of SO(10). Local breaking of SO(10) to the Pati-Salam
group Gps = SU(4) x SU(2) x SU(2) and to the extended Georgi-Glashow group G4 =
SU(5) x U(1)y is achieved by acting with the other two Z,-symmetries on the gauge
fields, leading to the following pattern of remaining gauge symmetries: At O the full
SO(10) survives, whereas at the other fixed points, Opg, Oge and Og, SO(10) is broken to
its three GUT subgroups Gys, G and flipped SU(5), Gg, respectively. The intersection
of these GUT groups yields the standard model group with an additional U(1) factor,
Gew = SU(3)c x SU(2), x U(1)y x U(1)y, as unbroken gauge symmetry below the
compactification scale. In this setup it is natural to identify the compactification scale
with the GUT scale.

The field content of the theory is strongly constrained by requiring the cancellation
of bulk and brane anomalies [19]: The vector multiplet V' is a 45-plet of SO(10), which
has an irreducible anomaly in six dimensions. In order to cancel this anomaly, two
additional bulk hypermultiplets H; 5 in the fundamental representation of SO(10) have
to be introduced. A bulk hypermultiplet corresponds to a chiral and antichiral superfield
from the four-dimensional perspective, H = (H, H'), but the antichiral part will always
be projected out by a condition similar to (I1.12a):

Ly : PH(xu_y7_Z):+H($7yvz>
Zo: PH'(x,—y,—z)=—H'(z,y,2) . (IV.1)

Therefore H will always refer to the N/ = 1 chiral multiplet from now on. Coming back
to the field content, the breaking of the gauge symmetry U(1)x can be achieved by
adding two 16-plets ®, ®° together with two 10-plets Hs3 4 to cancel the reintroduced
anomalies. Vacuum expectation values of ® and ®°¢ break the surviving U(1), while
the electroweak gauge group is broken by expectation values of the doublets contained
in H,; and H,. Note that the symmetry related to the difference of baryon and lepton
number, U(1)p_y, is a subgroup of the local symmetry U(1)y x U(1)x and is of course
broken simultaneously.

The fields present in the theory so far cannot account for quarks and leptons. As a
guideline for the introduction of matter we use - in addition to the condition of anomaly
cancellation — the embedding of quantum numbers into the adjoint representation of
Eg.2 This implies that only two more bulk 16-plets ¢ and ¢ together with two 10-plets
Hj ¢ are allowed [20] and therefore the three quark lepton generations have to be brane
fields. We denote the three corresponding 16-plets as ¢;, ©+ = 1,2, 3.

To summarise, the bulk contains six 10-plets, H1, ..., Hg, and four 16-plets, ®, ®°, ¢, ¢°,
as hypermultiplets. We choose the parities of ¢, ¢ and Hs, Hg such that their zero modes

2 Maybe our six-dimensional SO(10) model can be understood as a part of a higher-dimensional theory
with gauge group FEg, as it emerges in string theory.

31
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are

L:z4:<”4), chzg:(Z;l), Ge=dS, Ge=dy. (IV.2)

64 4

These zero modes act as a fourth generation of down (s)quarks and (s)leptons and mix
with the three generations of brane fields. We allocate the three sequential 16-plets to
the three branes where SO(10) is broken to its three GUT subgroups, placing ¢ at
Oga, Vo at Og and Y3 at Opg. The three “families” are then separated by distances large
compared to the cutoff scale A. Hence, they can only have diagonal Yukawa couplings
with the bulk Higgs fields. The brane fields, however, can mix with the bulk zero modes
without suppression. As these mixings take place only among left-handed leptons and
right-handed down-quarks, a characteristic pattern of mass matrices consistent with
experimental data can be obtained [20].

Having successfully incorporated the masses and mixings of fermions, the next logi-
cal step would be to calculate the corresponding quantities for the superpartners. As
with all supersymmetric quantities, they cannot be evaluated unambiguously and de-
pend crucially on the way supersymmetry is broken. Therefore, before we can start our
calculation, we should think about a suitable mechanism leading to the breakdown of su-
persymmetry. Given the higher-dimensional setup with various branes, this mechanism
involves in general bulk as well as brane fields. A supersymmetry breaking mechanism,
which naturally fits into the context of orbifold GUTs goes under the name gaugino
mediation and we will show how to combine it with our model in the next section.

2. Implementing Gaugino Mediated Supersymmetry Breaking

The underlying assumption of gaugino mediation [16,17] is that gauge fields live in
the bulk whereas matter fields — at least in the original proposal — are confined to
branes. In this scenario supersymmetry is broken by some dynamical mechanism on
an additional, spatially separated brane. In general, the corresponding source brane
Lagrangian involves all the fields required to break supersymmetry dynamically as well
as couplings to the bulk gauge fields. However, not all these terms are necessary in order
to compute the MSSM gaugino and scalar masses. In contrast, if we assume that the
leading supersymmetry breaking vacuum expectation value is acquired by the F-term
component of a gauge singlet chiral superfield, we only need terms of the effective action
which couple this singlet to the bulk gauge fields. The leading superpotential term results
in non-vanishing masses for the gauginos at the compactification scale, whereas all other
supersymmetry breaking terms are negligible. So how do squarks and sleptons obtain
their masses? Below the compactification scale the theory is effectively four-dimensional
and masses at the compactification scale have to be evolved using renormalisation group
techniques. This evolution then yields masses for all other superpartners at the weak
scale and these are the masses which can be determined experimentally, e.g. at the LHC.
A very nice feature of the simplest version of gaugino mediation with only gauge fields
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2. Implementing Gaugino Mediated Supersymmetry Breaking

in the bulk is that the problem of flavour changing neutral currents is under control,
since gauge interactions are flavour universal and we start from vanishing (and hence
diagonal) soft mass matrices at the compactification scale. In a more general setup with
various bulk fields, the situation is more complicated: In principle all fields living in the
bulk can have direct couplings to the supersymmetry breaking source and the problem
of FCNCs has to be re-addressed. However, we postpone this discussion to Section 3
and start off with implementing a suitable version of gaugino mediation into our orbifold
model.

The orbifold model has the minimal amount of supersymmetry in six dimensions, cor-
responding to N = 2 extended supersymmetry in four dimensions. As explained in the
last section, the breaking to N' = 1 supersymmetry is achieved by appropriate bound-
ary conditions acting on the bulk hypermultiplets and on the chiral adjoint superfield
U contained in the six-dimensional vector multiplet. To fully break supersymmetry we
place the gauge-singlet chiral superfield of gaugino mediation at the fixed point O. We
want the corresponding brane Lagrangian to yield gaugino masses, since they cannot be
generated radiatively when starting from a vanishing mass at the compactification scale.
Therefore, the source brane Lagrangian coupling the zero modes of the gauge fields to
the chiral field on the source brane should include a term

2
ZLs D % d’0 S WW,, +h.c. , (IV.3)
where g, is the four-dimensional gauge coupling, h is a dimensionless coupling and A
is the cutoff of the theory. The gauge singlet S as well as the field strength superfield
W< are four-dimensional ' = 1 superfields®. When the chiral superfield S acquires a
vacuum expectation value Fg, supersymmetry is broken and the gaugino obtains a mass

gihFs
2A

at the compactification scale. Other bulk fields including the fourth generation of squarks
and sleptons can also couple directly to the supersymmetry breaking source. All the re-
maining squarks and sleptons live on branes and can obtain soft supersymmetry breaking
masses only via loop contributions, which are negligible here, and via renormalisation
group running, as noted before. To study the resulting scalar masses and mixings we
first have to discuss all couplings which can lead to mass terms.

(IV4)

mije =

2.1. The Superpotential

The superpotential determines the supersymmetry conserving mass terms and Yukawa
couplings. In addition to gauge invariance the allowed terms are restricted by R-
invariance and an additional U(1); symmetry with the charge assignments given in
Table IV.1.

3 Starting from the six-dimensional theory, the effective four-dimensional fields are obtained by in-

tegrating out the two extra dimensions. This leads to a volume factor between the original six-
dimensional fields and the properly normalised fields we use here, & = VV ®s.
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[ Hy [ [ Hy [ @] Hy vi [0 Hs | Ho|S]
RloJoJo[2Jo[2]t[1[t[1[1]o

X||-2a|-2a|]-a|2a|a|-22a|a|-a|la|]2]|-2a|0

Table IV.1.: Charge assignments for the symmetries U(1)r and U(1) ¢

The most general brane superpotential without the singlet field .S is given in [20]. All
zero modes can be found in Table IV.2. Since the fields v); and ¢ have the same quantum
numbers, they can be combined to the quartet v, = (1, ). When the bulk fields are
replaced by their zero modes, only 9 of the 23 terms appearing in the superpotential
remain. They are given by

1 1
W = M*HsHq + Moo + ShigasHy + ShigatsHa + fu®aHo
hgﬁ gg D G
+ 2A wad}ﬁq)cq)c + K(I)c"l)aHE;Hl + f (I)CCI)CH?, + f (IDCDH4 . (IV5)

As discussed in [18], after the breaking of U(1)x x U(1) ¢ to a global U(1) subgroup, the
superpotential (IV.5) yields masses of order Mgyt for unwanted colour triplets contained
in &, ®°, Hy and H,. In this way, there are no additional contributions to the running
of the gauge couplings below that scale and gauge coupling unification is maintained.

Consider now terms which involve the supersymmetry breaking singlet field S. From
(IV.3) and the ordinary kinetic term
1 2 e’
1 d“0 W*W, + h.c.
for the gauge fields W we conclude that S must have U(1) ¢- and R-charge 0 to leave the
Lagrangian invariant. Therefore, terms respecting all the symmetries including U(1) ¢
are simply given by

L / d%o % W +h.c., (IV.6)

where W is the superpotential given above and where we only keep those terms of W
which are at most cubic in the fields. Note that in addition 1, has to be replaced by ¢,
since the matter fields ¢; cannot have direct couplings to the source brane. Moreover,
we are interested only in terms which are non-zero when replacing the fields by their
zero modes. To see which terms remain in the low energy theory, it is helpful to have
a look at the parity assignments and branching rules of the fundamental and spinor
representation of SO(10) [18,60]. They can be found in Table IV.2.

A brief explanation of our conventions is in order. Generically superfields in the bulk
are denoted by a capital letter, with the exception being the bulk fields which belong to
the fourth generation (cf. Eq. (IV.2)). In contrast, the brane fields ¢; are denoted by
small letters, such that the MSSM chiral superfields are written as

?/} = (qa U'Ca 607 l7 dC’ ,,,LC) . (IV7)
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2. Implementing Gaugino Mediated Supersymmetry Breaking

S0(10) 10
SMm’ (1,2,—-3,-2) | (1,23,2) | 3,1;1,-2) | (3,1;,—3,2)
He H Ge G
Zy  Z5¢ | Ly 5° Ly s 15°
H, + + + — — + - -
H, + - + + - - - +
Hs - + - + + + + -
H, - - - + + — + +
H; - + - - + + + -
Hy - — - + + - + +
S0(10) 16
SM/ (3,2;%,-1) | (1,2;-4,3) | (3,1;—-3,-1) | (3,1,3,3)
(1,1;1,-1) | (1,1;0,-5)
Q L Ue, E° D¢, N¢
ZEs o ZSe  |ZEs o 7Se |\zys o ZSe |75 7SS
P - — — + + - + +
¢ 1 — + + — - - +

Table IV.2.: Decomposition and parity assignments for the bulk 16- and 10-plets of SO(10).
The 16-plets ®¢, ¢¢ have the same parities as ® and ¢ and of course conjugate quantum numbers
with respect to the extended standard model gauge group. Only fields which have all parities
+ remain in the low energy theory.
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Here we follow a standard convention, that all chiral supermultiplets are defined in
terms of left-handed Weyl spinors, so that the conjugates of the right-handed quarks
and leptons appear in the decomposition. However, the ¢’s on these fields are part of
the name and do not denote any kind of conjugation. Rather, e.g. e = e, contained in
the SU(2);, doublet [ is the left-handed piece of a Dirac spinor, while e¢ = CeP, is the
name given to the conjugate of the right-handed piece of the Dirac spinor with C' the
charge conjugation matrix.

Coming back to the remaining terms of the zero mode source brane Lagrangian, we
note that when the 16-plets ®, ¢ acquire a vev (®) = (9°) = vy ~ Mgyr leading to
the spontaneous breakdown of U(1)g_1 we obtain (cf. Eq. (IV.2))

S /- .

Ls D — / d*o 1 (Mddjd4 + Mildi) +h.c. (IV.8)
Additional terms involving the heavy fields ®, ®¢ have been dropped. When setting the
chiral field S to its vev Fyg, the scalar components of the superfields remain, whereas the
fermionic components are projected out.

2.2. The Kaihler Potential

In addition, soft mass terms can arise from the Kahler potential. We assume the global
U(1); symmetry to be only approximate and allow for explicit breaking here. This
is necessary in order to obtain a p-term, which is not allowed in the superpotential,
since the combination H,H, is not invariant under U(1); (cf. Table IV.1). Besides, an
explicit breaking of U(1) ¢ is in fact required in order to avoid Goldstone bosons. Kéhler
potential terms which result in non-negligible effects have to involve fields which acquire
a large vev in order to compensate for the suppression by the cutoff scale A. In our case,
large vevs are acquired by ®, & and S. We find that all terms without the singlet field
S do not contribute to any soft masses but merely give corrections to the kinetic terms.
Concentrating on the terms involving S, we do not consider terms with heavy fields that
have no influence on low-energy physics. In terms of the zero modes, the relevant part
of the Kéhler potential is

St
LD — / d*e {X (aHng + b HTHE + bQH;HQ) +h.c.

1 (4 C (&
+55's [clﬂl* HE + coH} Hy + (dHoHE + h.c.)] }
, !
— [ d*%0{SSTBIB; + he. + SIS BB, Y | (IV.9)
A A2
yielding an effective u-term, soft Higgs masses, a Bu-term and soft masses for all other
bulk fields. B; (i = 1,...) stands for any bulk matter field except H; 2. Although the -

term itself is not a soft term, it is generated only after the breaking of supersymmetry via
the Giudice-Masiero mechanism [61]. Note that there would be no electroweak symmetry
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3. The Scalar Mass Matrices and FCNCs

breaking without the breaking of supersymmetry and hence no massive (s)particles at
the electroweak scale.

To see the contributions to the soft masses explicitly, we express the Lagrangian by
component fields, plugging in the F-term vev Fg and the scalar vev vy. Furthermore,
we employ the equations of motion for the auxiliary fields and assume real couplings for
simplicity. Concentrating on the fourth generation and on the Higgs fields, this results
in the following scalar mass terms:

FiF -t o=
Ls D — 5\25 [ (a® 4+ b} + 1) REThS + (a® 4 b3 + ¢2) hihs

+ (a (by + by) + d) hihy + h.c.}

FTFS Tt 7 7ct 3¢ 17 Jctie
— 15\2 [ (€3 +€)) didy + (€3 + €le) dstds + (ef +¢)) I, + (€f + €e) l4Tl4}
Falomn o o
- = [Mdd3d4 + Mildﬂ the., (IV.10)

where we have included the contribution from Eq. (IV.8) in the last line. We denote
the components of a chiral multiplet by (gz~5, ¢, Fp), with ® = H{ Hy, dy,dS, 1y, 15. Note
that the Higgs mass contribution proportional to a? is supersymmetric and hence the
soft Higgs masses are given by the terms proportional to (bi2 + c12).

In writing down (IV.10) we assume that there are no sizable contributions to the
scalar masses from D-terms, which can arise when a gauged U(1) symmetry is broken
or when there are soft supersymmetry breaking terms which lift a D-flat direction in the
scalar potential [62,63]. Having analysed all terms in the super- and Kéahler potential
which can induce gaugino and scalar masses, we are now in a position to re-address the
question of flavour changing neutral currents in our model.

3. The Scalar Mass Matrices and FCNCs

Flavour changing processes such as p — ey are known to be strongly constrained ex-
perimentally [64]. To avoid inducing such processes at the one-loop level, the squark
and slepton mass matrices have to be approximately diagonal in a basis where quark
and lepton mass matrices are diagonal®. Furthermore we should keep in mind that all
the parameters we read off from our super- and Kéhler potential are valid at the com-
pactification scale and have to be translated to quantities at the electroweak scale via
renormalisation group running. This means that the mass matrices which are diagonal
at the high scale do not necessarily remain so. However, as we will see in Section 5,

4 Another possible source for the suppression of flavour changing neutral currents are extremely heavy
scalar superpartners, but this seems discrepant with the motivation for supersymmetry as a cure
for the hierarchy problem (see Introduction). Nevertheless there have been some attempts — usually
referred to as ’split supersymmetry’ — which try to solve the supersymmetric flavour problem exactly
this way, see e.g. [65]
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the dominant renormalisation group corrections are due to gauge interactions and will
respect the flavour conserving properties. Only RG corrections originating from Yukawa
interactions can induce some flavour mixing, but these contributions are negligible.

In the following, we shall analyse the structure of squark and slepton mass matrices
in our orbifold GUT model. We have seen in the previous section that only the scalars
of the fourth generation, which are very heavy, obtain soft masses, since they are bulk
fields. We will demonstrate now that this leads to soft masses for the light scalars, too.
At the compactification scale, we integrate out the heavy degrees of freedom to obtain an
effective theory with three generations. This requires diagonalising the mass matrices,
and the corresponding transformations transmit supersymmetry breaking effects from
the fourth to the light generations.

We start our analysis of FCNCs with the diagonalisation of the fermionic mass matrices
[20]. This is achieved by a change of basis for the fermions. Transforming the scalar fields
in the same way, we can see if there are sizeable off-diagonal terms in the scalar mass
matrices leading to flavour changing neutral currents. From the zero mode superpotential
(IV.5) and the decomposition (IV.7), we find that the superpotential relevant for particle
masses is given by

1
W > damiﬁd% + eméges + nimlsvs + usmiiug + infMUnj , (IvV.11)

where m?, m® and m” are 4 x 4 mass matrices

hivg 0 0 g?”TNvd
0 hlw 0 dUN g,
d_ 22Vd 927 Vd
m = ¥ V.12
0 0 hisva 9§75 va ( )
fivn  foon fson MY
me = 0 0 vy kg | (IV.13)
My My My M
hPv, 0 0 h%vu
0 hi,v 0 hy,v
D _ 22 Yu 24Uy
m- = 0 0 hiwv, hDw, , (IV.14)
ML M, ML M
whereas m" and M are diagonal 3 x 3 matrices,
v2
hfyou 0 0 My 00
m' = 0 h%u, O ., M= 0 hé\gvTN 0 (IV.15)
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The m?, m® and m” mass matrices are all of the form

pr 0 0 m
0 125 0 [72
= ~ . V.16

My M, Ms M,
Here p;, i1; ~ v and ]\A/f, ~ Mgyr. While y; and fi; have to be hierarchical to account
for the observed particle masses, we assume no hierarchy between the M;. We have
neglected corrections of order O(vy/A). For simplicity, we assume all matrices to be

real. The up-type quark and Majorana mass matrices m" and M are diagonal 3 x 3
matrices, since the corresponding fields do not have partners in the bulk.

The 4 x 4 mass matrices m can be brought to the block-diagonal form (which is
sufficient to integrate out the heavy mass eigenstate)

m 0 2
m/:UTmV:<m ~)+O<x) V.17
amVy N o ( )

by the transformation
e—e=Vie , e—e’=¢Uy, (IV.18)

where we have chosen the charged leptons for concreteness. Here U, and Vj are the
unitary matrices

w1 My+7 My
1 0 0 Dy M
oMo+ My 2
Uy = 0 ! ’ M2 +0O z
1 w3 Ma+jiz My M?2 ’
0 0 it
_Mlﬁﬁ—ﬁlﬁzx _M2M2+ﬁ2ﬁ4 _M3M3+ﬁ3M4 1
M?2 M?2 M?2
(IV.19a)
oo _mi &
My M My M
0 M ILiy I
v, — Ma M M (IV.19b)
_M, Wi, ‘
Moas M Mas M
_i g _Mk 3L
My M My M

with M = Yo M? and Mag = /M2 + Mg [66]. The mass matrix of the three light
generations is clearly given by (cf. (IV.17))

1 (Va)1y + i1 (Va) g
m= | p2(Va)ej + i2(Va)s |- (IV.20)
13(Va)aj + 1i3(Va) 4
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The transformation Vj contributes to the desired large mixing between the left-handed
leptons. Uy, on the other hand, is close to the unit matrix, so that there is only small
mixing among the right-handed fields. Note that the situation is reversed in the down-
quark sector, where the right-handed fields are strongly mixed while the left-handed
ones are not.

As long as supersymmetry is unbroken, fermion and scalar mass matrices are directly
related. The supersymmetry conserving charged slepton mass matrices are mgL = mcim®

and mzR = m*m®. In addition, there are the soft masses mg, etc. with non-zero 44-
2

- €LR’
and [§, but it can be neglected for our purposes. For the complete mass matrices we use
the notation mZ,_,, = m? +mZ etc. Under the transformation (IV.18), they change to

element. Among them is the matrix m2 _, which arises from Eq. (IV.8) and mixes I,

M o =VimZ Vi+Vim Vi
mim 0 0 0 221
— < . JTP) +V) (0 2 ) Vi + O?) (A{ 1) , (IV.21a)
lar,
mZ oo = Ul m?2 Uy + Ul m2, Uy
w0 oL i IV.21b
“\o w2 )TOGE T ) (IV:210)

where the fourth-generation soft masses are denoted by miL and ml%m, in analogy to
those of the first three generations, although both [, and [ are SU(2);, doublets. The

matrices are block-diagonal up to rotations by angles of order v?/M? or smaller, which
can safely be neglected. Hence the heavy mass eigenstate can be integrated out, leaving
only the 3 x 3 mass matrices of the light generations. From (IV.21b) we see that the
soft masses of the light “right-handed” sleptons are highly suppressed. This is not true
however for their “left-handed” counterparts (IV.21a), whose 3 X 3 mass matrix is given
by

(M7 on)is = (M) + (Va)aui(Va)ygm? = ()i + (02, )ij - (Iv.22)
To see the implications of the term (2 );;, we first diagonalise the light fermion mass
matrix m by a second change of basis,

Mdiag = Vexm M V. (IV.23)

In the approximation p; = pz = 0, where the mass matrix m has one zero eigenvalue,
the transformation matrix V' is known explicitly [66],

My M,y M (ﬁsMS M4*H3M1224) @3 My
M12M14 ~ ﬁs@ﬂlz@N A3 Ml4
{7 — @1 E:’, MQ(ﬁSA{f@:“ﬂ@ M4) _ﬂi@ (IV24)
Mg M2g ir3 M Mi2 Mas 13 Moas
]le Mg M _ﬁSM% MS‘FILSM% M4 _@ M4 Mg;g _'_ M3 Mg M14
M2 M4 Mo n3 M2 M4 Mo fis M M4 fis M Moas
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up to a rotation of the second and third generation by a small angle ©f given by the
ratio of the 23- and 33-elements of VI mim V,

Op =~ (I} + i) /i3 < 1.
In Eq. (IV.24), we have defined ZT/[Em — M2 + Mg + ]’\‘4’72 and

M? M?2 MM,
—2  ~2 . 4 o . 34ivlg
s = [ <1 —M2> + 135 (1 —M2> 2413013 R (IV.25)

Using this matrix, we finally obtain for the charged slepton mass matrix in the basis
where the charged fermion mass matrix is diagonal

vtimim L m2 )V =
Viim'm4+ms: )V =
2012 Wva (Jia B2y — s Vs 3T
psMiy (~2 ~2 2 p3Mi2 (Ma {o3—H3M3 4) ~9 ~9 9
0 2007 </~h + pp + ml4L> FE pa+ py +my
— = — == — —\2
H3M12(ﬁ3M1223*ﬂ3M3M4) ~9 ~9 2 _9 (ﬁgMIQQS*;LgMgMAL) 9 B2 +72
0 Ve msz — m# Lad SN o)
ﬁgMS lul_'_:uZ_'_ luL, /’L3+ ﬁgM‘l l4L+O( N% )

The non-zero off-diagonal elements are of similar size as the diagonal elements, unless
mj, < fi3 ~ m,. Numerically, we find that the same is true for the 12- and 13-entries,
if p11 and o are non-zero. This leads to unacceptably large FCNCs in the lepton sector.
The situation in the down quark sector is analogous.

Unfortunately we have to conclude that the solution of the FCNC problem in the
simplest gaugino mediation scenario does not carry over to the more general case. We
expect this problem to be generic in higher-dimensional theories with mixing between
bulk and brane matter fields as long as the bulk fields can couple to the hidden sector
(cf. e.g. [67]). In the following, we shall assume that soft masses for bulk matter fields,
contrary to the bulk Higgs fields, are strongly suppressed, i.e. m; — ~ mg; - =~ 0.
Within the present framework of orbifold GUTs, the coupling of brane and bulk fields
cannot be understood dynamically. One might hope that when constructing such a model
from a top down perspective, e.g. starting from the heterotic string, such couplings turn
out to be negligible.

At this point we want to remind the reader that the aim of this chapter is to evaluate
the superparticle mass spectrum. We have learned by now that this has to be done with
the help of RG equations, which translate the high scale parameters into parameters
accessible by experiment. However, in principle these high scale parameters are free
parameters of the theory and cannot be calculated from first principles — at least not in
our effective field theory setup. This means that even after we specified the supersym-
metry breaking mechanism, we will not be able to obtain a specific prediction for the
mass spectrum. Instead we have to scan over the corresponding parameter space and see
what kind of spectra are typical for our scenario. Therefore it would be helpful to know
if the values of the parameters we scan over are constrained in any way. Fortunately it

41



Chapter IV: Gaugino Mediation in a Supersymmetric Orbifold GUT

turns out that indeed the parameters must not exceed certain bounds in order for the
effective theory to be valid up to the cutoff scale. A very useful technique, which al-
lows to estimate these bounds is 'naive dimensional analysis’ [21]. Following this line of
thinking, we derive upper bounds on the size of the corresponding operator coefficients,
before we come to the resulting mass spectrum at the electroweak scale.

4. Constraints from Naive Dimensional Analysis

The main idea of naive dimensional analysis (NDA) is that the effective theory should
remain valid up to the cutoff scale A, implying upper bounds for the unknown coefficients
of effective field theory operators®. For a strongly coupled theory one usually assumes
that all loops are equally important ('loop democracy’). For a theory which remains
calculable up to the cutoff scale the loops should contribute accordingly less. Unlike the
naive expectation, the condition of loop democracy does not imply that all couplings in
the effective theory should be < O(1) in units of A. This is because loop integrals are
kinematically suppressed by a geometrical factor of order

(p =2P7PPT(D/2) (IV.26)

which rapidly grows with the number of dimensions. This can result in large deviations
from the naive expectation.

So how does NDA work in practice? In order to derive bounds on the soft parameters,
we have to constrain the couplings of the brane field S(z) to bulk fields B(z,y). For
this purpose, we rewrite the relevant part of the six-dimensional Lagrangian

Lps = Lok (B(z,y)) + 52(34 —ys) ZLs(B(x,y),S(x)) (Iv.27)

in terms of dimensionless fields B(x,y) and S(z), and the cutoff A, up to which the
theory should be valid,

5= E;\% Lou(B(2,)) + 6*(y — ys) &f\/ o Zs(B(z,y), S(x)) . (IV.28)

Zp

Here (g = 12873, ¢, = 1672 and yg corresponds to the extra-dimensional coordinates of
the brane where the singlet field S(z) resides, ys = (0,0). The factor C' accounts for
the multiplicity of fields in loop diagrams for a non-Abelian gauge group. If the kinetic

5 Originally the authors of [21] assumed all couplings of the theory to become strong at the scale
A. They argue that this is attractive from a string theory point of view, because it is extremely
difficult to find phenomenologically viable vacua near a weak coupling regime because the theory
then generally runs away to zero couplings [68]. The strong coupling assumption in turn yields an
estimate for the parameter in question. However, we don’t want to base our calculation on this
strong coupling assumption and hence only derive upper bounds on the couplings.
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4. Constraints from Naive Dimensional Analysis

terms of the original Lagrangian (IV.27) are canonical, the rescaling of chiral bulk and
brane superfields reads

Bla,y) = ( 2%)1/23(:5,@ S@) = ( E:\/QC)W (a) . (IV.29)

Note the additional factor of v/V for the bulk field due to the proper normalisation (see
footnote 3). The combination C'/¢p gives the typical geometrical suppression of loop
diagrams. This suppression is cancelled by enhancement factors which result from the
pre-factors ¢s/C and ¢,/C in front of the Lagrangians . in Eq. (IV.28). Consequently,
all loops will be of the same order of magnitude, provided that all couplings are O(1).
Thus, according to the NDA recipe the effective six-dimensional theory remains weakly
coupled up to the cutoff A, if the dimensionless couplings in Eq. (IV.28) are smaller than
one.

Let us apply NDA to the part of the brane Lagrangian giving rise to Higgs and
Higgsino masses, which corresponds to the first two lines of Eq. (IV.9). Since df has
mass dimension 1/2, it also has to be divided by the corresponding power of the cutoff
to obtain a dimensionless expression. Using Eq. (IV.29), we obtain

S - (a8 F i + by SR + 0,81 L + hc.)

0)C | A2 0

VAC a1, et fre + o0 AL 7y
$t$ [clH1 HE + ey HH, + (dH,HS + h.c.)] . (IV.30)

A4 /i‘@ {VAQ\/&C

+
6

The NDA requirement that all couplings be smaller than one implies the following con-
straints on a, blyg, C1,2, d:

VA2/0,C
ls
(Ch Ca, d)

(a, bl,bg) <1, (IV31&)
VA2C

6

<1. (IV.31b)

Using ¢, = 167% and {5 = 12873, one then obtains upper bounds on the couplings at the
compactification scale,

3272

aab 7b < ’ IV328,

(.bb) < 556 (IV-322)
12873

(1, 2, d) < VT;TC . (IV.32b)

These inequalities translate into upper bounds on the p- and Bu-terms and on the soft
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Higgs masses,

_aF}  327%°F]

= < , IV.33a
PTTR T v (IV-332)
(a (by + by) + d) FiFg 167 \ 12873 F} F
Bu = 1 Iv.
s A2 (1 VA2> VCOAS (TV33b)
(cy 4 b3, ¢, + b2) FiFg 87 \ 12873 FLFy
(m2, m3 ) = 2T A TS (1 = AZ) VCAi (IV.33¢)

Applying the NDA recipe to those terms of Eqgs. (IV.8) and (IV.9) giving rise to soft
superparticle masses we obtain

4 2 rd ViR
fo o [ [ SO0 oy (Mgt M) e

4/ C A (/C A
4 !
+ [ V£4/CA2V{eiSTBJBi+h.c.+ STééjBi}]. (1V.34)
AZ 44/C JiJC

The resulting upper bounds on the masses can be found in Table IV.3. A similar analysis
for the gaugino mass resulting from (IV.3) has been performed in [22]. We have included
this bound in Table IV.3. Furthermore we have included the gravitino mass ms/,. When
the gaugino mass m, , is fixed, this leads to a lower bound on the gravitino mass. This
will become important in the next chapter, where we will discuss supersymmetric dark
matter candidates.

To be more explicit, we make assumptions about the values of the parameters involved.
The compactification scale is assumed to be of order the unification scale, V12 =
Mgyt = 2.5- 109 GeV. The cutoff A is given by the six-dimensional Planck scale, A =
Mg = M}*V=1/4 = 2.4.1017 GeV. We choose the group theory factor to be the quadratic
Casimir operator, which gives C' = Cy(G) = 8 for the gauge group G = SO(10). This
leads to the numerical values for the NDA bounds shown in the last column of Table IV.3.

Equipped with this knowledge of possible parameter values, we now turn to the spec-
trum of superpartners at low energies.

5. The Low-Energy Sparticle Spectrum

In order to find the spectrum at low energy, we have to take into account the running
of the parameters. Given the high scale boundary conditions as input, the correspond-
ing renormalisation group equations (RGEs) are solved numerically, where electroweak
precision data as well as successful radiative electroweak symmetry breaking are taken
into account. We employ SOFTSUSY [69] for this purpose, a program which calculates
the spectrum of superpartners in the MSSM.
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a2 = G < v < 1TeV
MG = M < &t < (2107 TeV)?
M = FM; < Zls < (2107 TeV)?
mi,, — (e B | < () Bl | < (4Tev)?
M (@B | <) B < Tev)?
. -l f’/%r:/i%, < 2TeV
(m2, m2 ) | = (o + Boer +03) 500 | < (14 ) BRI | < (4Tev)?
Bu || = (albi+bo) +d) 55 | < (14 fom) PO (5 Tev)?
a2 = 75 —~ 100 GeV

Table IV.3.: NDA constraints on mass parameters. The numerical values are valid for Fg =
4 -10%° GeV?, which is a typical scale for the F-term vev in our scenario yielding a gravitino
mass of m3/; = 100 GeV. The masses for the fields [f, dj are analogous to those of ly, d4.

Imposing m; = mj; = 0 in order to avoid unacceptably large flavour changing
l4L R dar R

neutral currents (cf. Section 3), the boundary conditions at the compactification scale

V12 = Mqyr are given by

My =My =My =myp#0, (IV.35a)

méL = miR =0 for all squarks and sleptons ¢ , (IV.35b)
Az =0 for all squarks and sleptons b, (IV.35¢)

p, Bu,mi #0 (i=1,2). (IV.35d)

Here M 23 are the soft gaugino masses, mj are the soft scalar masses and Aj is the
scalar trilinear coupling. Since we are considering an SO(10) GUT, the gaugino masses
M, 23 as well as the corresponding gauge couplings

1
glzggzggzgzﬁ, (IV.36)

are unified at Mgyr. These gauge couplings are written in GUT charge normalisation,
which means that in terms of the conventional electroweak gauge couplings g and ¢’ one

has go = g and g; = /5/3¢’.
With these boundary conditions the scalar mass matrices remain almost diagonal,
since only very small renormalisation group corrections originating from the Yukawa
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couplings induce some flavour mixing. Therefore flavour changing neutral currents are
suppressed. In writing down the boundary conditions (IV.35) we have neglected small
corrections to the scalar masses from gaugino loops [16] as well as corrections to the gauge
couplings from brane-localised terms breaking the unified gauge symmetry (see e.g. [70]).
Upper limits on the non-vanishing parameters are summarised in Table IV.3. Note
that although the boundary conditions (IV.35) were derived from our specific model,
they could also arise from other theoretical frameworks. Therefore the results from our
renormalisation group analysis are not restricted to our specific theoretical construction
and can also be applied to other scenarios. Actually the boundary conditions (IV.35)
agree with those of the usual gaugino mediation scenario with bulk Higgs fields [17].

Furthermore, for m% = 0, these boundary conditions have previously been considered

in different contexts such as no-scale models |71, 72]. Nevertheless, no comprehensive
analysis of nearly vanishing soft scalar masses m; with un-suppressed soft Higgs masses
has been performed so far.

For phenomenological considerations it is often useful to introduce the quantity tan 5 =
vy /vq, which is the ratio of the two Higgs vacuum expectation values. The conditions
for successful electroweak symmetry breaking then allow us to eliminate two of the La-
grangian parameters, |u| and By, in favour of tan [ (see e.g. [2]). The phase of i remains
undetermined however, and we have to specify the sign of p. This leads to the following
non-vanishing input parameters at the compactification scale

myjs m%l, m}gm, tan 3 and sign(u) . (IV.37)

If we choose a certain value for the universal gaugino mass my 2, this implies a lower
bound on the vev Fg according to the first row of Table IV.3. The choice is constrained
by the lower bound on the Higgs mass from LEP, m; > 114.4 GeV, because lighter
gauginos imply a lighter Higgs®. As a benchmark point for our discussion which leads
to Higgs masses above the LEP bound, we choose

mipp =500GeV, tanfB =10 and  sign(u) =+1. (IV.38)
This leads to a lower bound on Fg,

Fg >2-10* GeV?, (IV.39)
resulting directly in a lower bound on the gravitino mass

mgse > 50 GeV . (TV.40)

We use the current best-fit value m;, = 172.7 GeV [73] for the top mass. As noted above,
for given tan # and sign(u) the values of ;1 and By are determined by the conditions for

6 There is a small region in parameterspace where the experimental constraints on the supersymmetric
Higgs bosons are weaker. In this “light Higgs window” the two lightest Higgs bosons h? and A° can
be both around 90 — 100 GeV. However, the LEP bound on the Standard Model Higgs also applies
to much of the MSSM parameterspace and hence we use it here.
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electroweak symmetry breaking. We find that their numerical values at the compacti-
fication scale are well below their NDA bounds. Hence our benchmark point is viable

and the only parameters left undetermined are the two soft Higgs masses m? and m?

h1 ha”

In the following we will analyse the impact of the high-scale parameters on the su-
perparticle spectrum and determine the regions in parameterspace which result in a
viable phenomenology. In this section we will mostly be concerned with experimental
constraints from collider physics and field theoretic consistency (no tachyonic states).
Additional constraints which arise from cosmological considerations will be discussed in
the next chapter. We use SOFTSUSY to scan over the two soft Higgs masses. The al-
lowed parameter range is shown in Figure IV.1, whereas the resulting spectrum is given
in Figure IV.3. In addition to the numerical treatment, we will discuss some features of
the spectrum which can be understood analytically.

5.1. Renormalisation Group Equations

To obtain an analytical understanding of the results, let us consider the one-loop renor-
malisation group equations (RGEs) for the soft masses at the compactification scale [74,
75],

dam?
167T2d—tZ = 4big®mi, , (IV.41a)
m2 84 1
167T2—d;13L = _gng%/Q + 592 Tr(Ym®) + X, + Xy , (IV.41b)
2 64 4
167T2—dtR = —€g2m§/2 — ggz Tr(YmQ) +2X;, (IV.41c)
2
pomtetn 5020 2 a2y oy (IV.41d)
1 = 5 g 1/2 59 b .
dmi 36 , 3
167T2—dtTL = 5 g m1/2 592 TI‘(Y?TLZ) + XT 5 (Iv4le)
m2 2 6
167" — % = ——=g"mip + 9" Tr(Ym®) +2X; (IV.41f)
2 m%l 36 2 3 2 2
167 5 = 3 g mi, — 5g Tr(Ym?*) 43X, + X, , (IV.41g)
JAmE 36, 3
167 TQ -3 9 m1/2 + 59 Tr(Ym ) +3X,, (IV.41h)

where ¢ = In £ with the renormalisation scale i, b; = (2,1, —3) are the coefficients in
the RGEs of the gauge couplings,

dg?
167 Cf’tz = 2,g" (IV.42)
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and
1
X, = 2yt2m%2 ~ 5 (14 cot® B) m%u , (IV.43a)
Xy =2y;mi ~5-107° (14 tan® B) m? | (IV.43D)
Xr =2y2m; ~ 107" (1 +tan®5) m? . (IV.43c)

The numerical values in the previous equations represent the typical orders of magnitude
of the top, bottom and tau Yukawa couplings at high energy. We assume a not too large
tan 3, so that X, and X, are negligible at the GUT scale. However, we will see that
X, can become relevant at lower energies. The term Tr(Y'm?), often abbreviated by S,
vanishes for universal scalar masses but plays an important role in our case, if one of
the soft Higgs masses is sufficiently large. At Mgy, it is given by

Te(Ym?®) =m}; —mi . (IV.44)

The RGEs for the first and second generation scalar masses are obtained from the above
equations by omitting X;, X, and X,. We do not list the RGEs for u, Bu and the
A-terms, since they are not relevant for our discussion. We will also use

d(g2M?
16w2% = 6big*m3 sy | (IV.45a)

2
1671'2% = %gQ Tr(Ym?) . (IV.45b)

5.2. Gaugino Masses

The 1-loop RGEs (IV.41a) for the gaugino masses do not depend on the scalar masses,
so that their low-energy values remain virtually the same in all cases as long as we do
not change m;/,. Numerically, we find

M, (M) =~ 200 GeV | (IV.46a)
M3(Mz) ~ 1200 GeV . (IV.46¢)

To good approximation, the lightest neutralino is the bino and the second-lightest one
is the wino, unless m%Q is sizable. In the latter case, the electroweak symmetry breaking
conditions lead to a rather small p, so that there is significant mixing between the

neutralinos.

5.3. Allowed Parameter Space for the Soft Higgs Masses

In addition to the constraints from NDA, there are phenomenological limits on the soft
masses m% at the compactification scale, which turn out to be more restrictive. The
resulting allowed region in parameter space is shown in Figure IV.1.
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5. The Low-Energy Sparticle Spectrum

One constraint is that the running of the parameters down to the weak scale must
not produce tachyons. For scalar masses which vanish at the compactification scale this
means that their 3-function must not be positive there.” The one-loop RGE (IV.41e)
for the left-handed sleptons gives the most restrictive constraint on m%l,

mi < 12mi, +m3 . (IV.47)

The upper bounds on m%Q are due to the experimental limits on the superparticle

masses [24]. If the initial value of m%Q is too large, this mass squared crosses zero
at a rather low energy, so that its absolute value at the electroweak scale is small.
Consequently, the ;1 parameter is also small, leading to a Higgsino-like chargino with a
mass below the current limit of 94 GeV. If we increased m}g12 further, there would be
no successful electroweak symmetry breaking. This limit on m%z

almost all values of m? . Only for very small m%l, the experimental requirement that

the lighter stau be heavier than 86 GeV becomes more restrictive.

is the relevant one for

For simplicity we only consider positive soft Higgs masses at the compactification
scale.® With negative soft masses, it is possible to end up in the “light Higgs window”
at the electroweak scale, though only in a very narrow parameter range. In this window
with both mjo and m 40 around 90 — 100 GeV we can decrease m;, significantly down
to at least 250 GeV.

5.4. Dependence of the Spectrum on the Higgs Masses

Due to the large effects of the strong interaction, the squark masses experience the
fastest running and end up around a TeV. The lighter stop mass runs more slowly due
to X;, which is always sizable at lower energies, and reaches a value of about 800 GeV.
If all scalar soft masses vanish at the GUT scale, the left-handed slepton masses change
significantly in the beginning, but afterwards the evolution flattens as g2 M? and g3M3
decrease (cf. Eq. (IV.45a)). Hence, they reach intermediate values between 300 and
400 GeV at low energies. The flattening of the evolution is even more pronounced for
the right-handed slepton masses, since here it depends only on g7 M?, which decreases
faster than gsM3. As a consequence, these scalars remain lighter than the lightest
neutralino [16], which is approximately the bino: me;, (Mz) ~ 180 GeV, m,o ~ 200 GeV.
For both slepton “chiralities”, the third generation is slightly lighter than the first two
due to X,.

For mi # mi , the term involving Tr(Y'm?) is non-vanishing and can lead to import-

ant changes [17,77-79]. We shall first consider the case where it is negative (m}%1 > m}gm)

7 Strictly speaking, a scalar mass squared may arrive at a positive value at low energies even if its
[O-function is positive at the compactification scale. We do not take this possibility into account, so
that the constraints are conservative.

8 After the publication of [36] a similar work [76] appeared, were a more detailed study of the negative
soft Higgs masses can be found.
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4l Tachyon my;, = 500 GeV
T tan =10
3
o
>
[
Né:" 2 — m < 94 GeV

T NLSP

0 0.1 0.2 03 0.4 05 06 0.7 0.8
e [Tev?]

Figure I'V.1.: Allowed region for the soft Higgs masses for m;/, = 500 GeV and tan 3 = 10.
In the magenta coloured area, a neutralino is lighter than all sleptons, whereas in the green
region a stau and in the blue region a sneutrino is the lightest MSSM sparticles. In the case
of a slepton being the lightest MSSM sparticle, we demand the gravitino to be even lighter for
cosmological reasons. This is consistent with (IV.40). For the points marked by the coloured
dots, the resulting superparticle mass spectrum is shown in Figure I'V.3.

50



5. The Low-Energy Sparticle Spectrum
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Figure IV.2.: Evolution of the scalar soft masses for m%l = 2.7TeV?, m}%2 = 0 (point 2 in

Figure IV.1), m; /5 = 500 GeV, tan 3 = 10 and sign(u) = +1 at Mgur-

and saturates the bound from Eq. (IV.47) (numerically, we find a slightly stronger bound

of m —mi <27 TeV?, which we use here). Then | Tr(Y'm?)/m3 ,| ~ 10, so that the

first and second terms on the r.h.s. of the RGEs (IV.41b) — (IV.41f) can be of the
same order of magnitude. An example for the running of the scalar masses is shown in
Figure IV.2.

The most drastic change occurs in the slepton spectrum. For the largest possible
value of Tr(Y'm?), the r.h.s. of Eq. (IV.41e) vanishes exactly at the GUT scale. It turns
negative only at lower energies due to the fast decrease of | Tr(Y'm?)| (cf. Eq. (IV.45b)).
As a result, the left-handed sleptons remain relatively light, with a low-energy mass
below 200 GeV. Contrary to that, both terms in the RGE for the right-handed slepton
masses are of the same sign, leading to an unusually fast running near the GUT scale. At
lower energies, the evolution slows down quickly due to the fast decrease of both g?M?
and | Tr(Y'm?)|. The resulting masses are close to 400 GeV. The NLSP is a left-handed
sneutrino in this case [78], with a slightly heavier stau 7; due to the SU(2)y, and U(1)y
D-terms.

In the squark sector, large masses are generated again due to the strong interaction. At
high energies, there is a significant cancellation in the RGE (IV.41c) for the right-handed
up-type squark masses, while the contributions to the other squark mass RGEs add up.
Consequently, mg, and mj, run quite slowly until | Tr(Y'm?)| has decreased sufficiently.
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Afterwards, mg, runs faster and comes close to the masses of the left-handed and right-
handed down-type squarks at the electroweak scale.

It m is neither close to zero nor to its upper bound, the running of the right-
handed slepton masses is sufficiently enhanced to lift them above the lightest neutralino
mass. At the same time, the running of the left-handed slepton masses is damped
weakly enough, so that they are heavier than the lightest neutralino, too [17,78].
neutralino NLSP together with a gravitino LSP heavier than a GeV is excluded by
cosmology [32-34, 80, 81]. Therefore, this case is only viable if the neutralino is the
LSP and the gravitino is heavier. This is possible, because we only have a lower bound
on the gravitino mass. The corresponding region in parameter space is marked by the
magenta coloured area in Figure IV.1. It grows for large values of mh , since then
mixing additionally decreases the lightest neutralino mass. A neutralino LSP is also
often obtained if the compactification scale is larger than the unification scale. In this
case, the running above Mgyt tends to make the sleptons heavier than the lightest
neutralino |79, 82].

For mi > mZ , Tr(Ym?) is positive. Now the evolution of the right-handed slepton
masses is slowed down by the Tr(Ym?)-term, while that of the left-handed masses is
enhanced. Consequently, the NLSP is the predominantly right-handed 7;, with a mass
of about 100 GeV for m? = 0.5 TeV? and m%l = 0. For these values, the masses of the

left-handed sleptons are f"oughly 350 GeV.

Since m%u
are always dominated by the term proportional to g2M?Z. Consequently, the low-energy
masses are almost unchanged compared to the case of vanishing soft scalar masses at
the compactification scale, except for mg, and mj , which decrease by up to 60 GeV

due to the larger X;.

cannot be much larger than 0.5 TeV? the RGEs for the squark masses

As the dominant parts of the RGEs depend only on the difference mﬁ — , the
same is true for the spectrum to a good approximation. The sum is only relevant for
those third-generation masses whose evolution is sensitive to the X;, most notably my, .
In Figure IV.3, we show the superparticle spectra that we obtain at the four points in
parameter space marked by the coloured dots in Figure IV.1.

5.5. Dependence on the Gaugino Masses

To a first approximation, varying the high-energy gaugino mass simply leads to a rescal-
ing of the scalar spectrum. If m,/; is increased while keeping the other soft masses fixed,
the relative sizes of Tr(Y'm?) and the X; decrease. Hence, they become less important
and the spectrum comes closer to the one obtained in the minimal case of vanishing
scalar masses.

As mentioned before, the LEP bound on the lightest Higgs mass leads to a lower
bound on m; ;. Actually, with our benchmark value m,;,, = 500 GeV we obtain a Higgs
mass slightly below 114 GeV for small soft masses. However, the mass can easily be
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Figure IV.3.: Spectra of superparticle pole masses. The numbers at the bottom correspond
to the points in parameter space marked by the coloured dots in Figure IV.1. The high-energy
2 2 2

boundary conditions for the soft Higgs masses were mi =mp = 0 (point 1), mﬁ1 = 2.7TeV?,

m%Q = 0 (point 2), mh =0, m~ = 0.5 TeV? (point 3), and mB1 = 2.7TeV?, mh = 0.5 TeV?

(point 4), respectively. In all cases we used my/, = 500GeV, tan 3 = 10 and mgn(u) = +1.
As the first and second generation scalars are degenerate, only the first generation is listed in
the figure. Particles with a mass difference of less than about 3 GeV are represented by a single
line. The heavier neutralinos and the charginos have been omitted for better readability.
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pushed beyond the bound by raising the top mass by about 1.5 GeV above its present

best-fit value of 172.7 GeV. Furthermore, a non-zero mass mi also causes an increase
1

of the Higgs mass. If m%l takes the maximal value allowed by Eq. (IV.47), a unified
gaugino mass of slightly less than 400 GeV is compatible with the LEP bound (for

my = 172.7 GeV).

5.6. Dependence on tan 3

The influence of tan 5 on the results is also rather straightforward to understand. As
to the RGEs, it only enters in the parameters X;, X, and X, which play a role in the
evolution of the third-generation soft masses. Hence, a change of tan 3 leads to a change
of the mass splitting between this generation and the first two.

If tan § is significantly smaller than 10, the value used in our benchmark scenario,
X, increases. Consequently, fg and §s;, become slightly lighter. On the other hand, X,
and X, are negligible now, so that the inter-generation mass splitting in the slepton
and right-handed down-type squark sector becomes tiny. The Higgs mass bound leads
to severer restrictions now. If tan( < 8, raising the top mass to the maximal value

of 175.6 GeV allowed by experiment no longer yields mjo > 114.4 GeV for m%l =0. If

tan 3 < 6, the bound is violated even for maximal m; and m%l, i.e. a gaugino mass larger
than 500 GeV is required.

For larger values of tan 3, X, and X, become more important. Nevertheless, the
impact of the former parameter on the RG evolution remains subdominant compared to
that of the strong interaction. Hence, its increase only causes a larger splitting between
mg, and mj_, but does not lead to any new restrictions. In contrast, the lighter stau
mass decreases a lot faster at lower energies due to the larger X.. On the one hand,
this increases the parameter space region where the 7 is lighter than the neutralinos, as
shown in Figure IV.4 for tan § = 20. On the other hand, the soft scalar masses have to
satisfy severer upper bounds in order to avoid tachyons and a too light stau. As tan (3
increases beyond 20, mixing causes an additional decrease of mz, as the off-diagonal
term in the mass matrix, (m2),, ~ —vuy,, becomes comparable to the diagonal entries.
For tan § = 25, the region of parameter space where the neutralino is lighter than the
71 almost vanishes. For tan 3 = 35, the model is only viable if all soft scalar masses
vanish at the GUT scale, and for tan § > 35 the lighter stau mass always lies below its
experimental limit.®

These problems are alleviated for heavier gauginos. In order to obtain a viable model
with tan 3 = 50, one requires m,,, 2 850 GeV, if all other soft masses vanish. If they

are non-zero, the gaugino mass has to be even larger. In the resulting spectrum, only
one stau is relatively light, while the remaining superparticle masses lie above 300 GeV.

9 Valid points in parameter space may exist for negative soft Higgs masses, but even in this case the
allowed region is rather small.
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Tachyon my,, = 500 GeV
T tan =20

mé_ [Tev?]

—_— mX+<94 GeV

T, NLSP

mz < 86 GeV
0 1 1 1 1 % 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

e [Tev?]

Figure IV.4.: Allowed region for the soft Higgs masses for tan 4 = 20. Comparing this with
Fig IV.1 we see that the region in parameterspace resulting in a slepton NLSP grows with
tan (3, while the total allowed area shrinks.

As the lower bound on the gravitino mass rises with m,,, the gravitino may become
heavier than the stau, which is excluded by cosmology'®.

We conclude that the model favours 10 < tan 3 < 25. For values far outside this
range, the phenomenological bounds on the soft masses are much more restrictive than
the NDA limits, which appears unnatural.

Summary and Concluding Remarks

In this chapter we have discussed the superparticle mass spectrum resulting from the
interplay of gaugino mediated supersymmetry breaking and an SO(10) orbifold GUT
model. We found that the couplings of bulk matter fields to the supersymmetry break-
ing gauge singlet brane field have to be suppressed in order to avoid large FCNCs.
We have also determined bounds on the supersymmetry breaking parameters by naive
dimensional analysis, which turn out not to restrict the phenomenologically allowed pa-
rameter regions. The parameters relevant for the superparticle mass spectrum are the
universal gaugino mass, the soft Higgs masses, tan § and the sign of . We have analysed
their impact on the spectrum and determined the region in parameter space that results

10 This will be discussed in more detail in the next chapter. Like with most ‘no go’ situations in physics,
there is a loophole: If there exists an additional exotic superparticle (e.g. the axino) which plays the
role of the LSP, this scenario is still viable.
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in a viable phenomenology. Either the right-handed or the left-handed sleptons can be
lighter than all neutralinos. The corresponding parameter region grows with tan j3.

So far we were mainly concerned with the MSSM particle content of the theory. Nev-
ertheless we know that supersymmetry is likely to be a local symmetry if it is realised
in nature and that we necessarily have to include the gravitino in this case. We al-
ready included the gravitino mass in Table IV.3 and found that at our benchmark point
the lower bound is given by (IV.40). This admits the possibility that the gravitino is
the lightest superparticle in the parameter regions where sleptons are lighter than all
neutralinos. This is desirable from a cosmological point of view, since in this case the
gravitino could make up the dark matter.

However, the question remains if such a scenario leads to a viable phenomenology. This
is because in addition to the constraints from collider searches there are cosmological
constraints which we have not considered so far. Such cosmological constraints come
from the observed dark matter density, the observed abundance of light elements and
from distortions in the cosmic microwave background. In the next chapter we therefore
study the impact of these constraints on the different possible scenarios in gaugino
mediation.
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V. Dark Matter from Gaugino Mediation

The evidence for the existence of non-baryonic cold dark matter is compelling at all
observed astrophysical scales.! Indirect observation of dark matter ranges from rotation
curves of galaxies over signatures in the cosmic microwave background (CMB) to N
body structure formation simulations. The cold dark matter density is known to lie in
the 3 o range [84]>

0.106 < Qpuh* < 0.123 . (V.1)

Here (2py is the average energy density in non-baryonic dark matter divided by the
total critical density that would lead to a spatially flat universe, while h is the Hubble
constant in units of 100 km sec™' Mpc~!. The observed value is h? ~ 0.5 with an error
of order 10%. In addition, the distribution of dark matter can be inferred from weak
gravitational lensing [85].

Despite the detailed knowledge about the distribution and amount of dark matter in
our universe, the basic fact of being dark does not supply much information, and the
nature of dark matter is still unknown. The fact, however, that it has a large non-
baryonic component suggests that dark matter consists of elementary particles which do
not belong to the field content of the Standard Model. Furthermore, the notion ’cold’
means that during the time of structure formation these particles were non-relativistic,
which implies that they cannot be too light. So what is dark matter most likely made
of? The constraint ’cold non-baryonic’ turns out not to be overly restrictive, so that
there is no shortage of dark matter candidates. A particularly well motivated dark
matter candidate, however, arises in R parity conserving supersymmetric theories. In
such theories the lightest supersymmetric particle (LSP) is stable and cannot decay
into Standard Model particles. Hence an electrically neutral LSP might account for
cold dark matter.® In supersymmetric theories there are three obvious candidates: the
lightest neutralino, the lightest sneutrino and the gravitino. However, the possibility
of a sneutrino LSP making up the dark matter has been largely ruled out by direct
searches [23,24].

! There are alternative approaches trying to explain the observed phenomena which are usually inter-
preted as evidence for dark matter. The most prominent one assumes a deviation from the known
laws of gravitation ('modified gravity’). However, a study of colliding galaxy clusters showed that
even in a modified gravity setup, the majority of the mass must be some form of dark matter [83].

2 The analysis (labeled “All Data — LYA”) used the measurements of the CMB power spectrum
(temperature and polarisation) by WMAP (3-year data) and other experiments, the SDSS and 2dF
galaxy clustering analyses, the SDSS luminous red galaxy constraints on the acoustic peak, as well
as the Gold and the SNLS supernovae samples.

3 Even if the theory contains non-vanishing R parity violating couplings, the LSP can still account for
dark matter if it is sufficiently long-lived (see e.g. [86]).
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In the last chapter we found that varying the boundary conditions for the bulk Higgs
fields at the GUT scale, several particles could potentially be the LSP. In addition
to the gravitino, these candidates are the lightest neutralino and a scalar lepton, 7
or v. Since a scalar lepton is excluded as LSP [23,24], it can only be the next-to-
lightest superparticle (NLSP) with the gravitino as LSP. This is consistent with the
superparticle spectrum (cf. Figure IV.5) and the lower bound on the gravitino mass
in gaugino mediation (cf. (IV.40)). With the constraints from Chapter 3 and from
direct searches in mind, gaugino mediation seems to allow for four possible different
scenarios: On the one hand we have the G-7 and the G-v scenarios with 7 and v as
NLSP, respectively. On the other hand we have the standard neutralino LSP scenario and
in addition the G-y scenario with the neutralino being the NLSP. However, in Figures
IV.1 and IV.4 we have not included cosmological constraints yet. Therefore, not all of
the afore mentioned scenarios necessarily lead to a viable phenomenology. The most
important cosmological constraints arise from the observed cold dark matter density as
well as from the observed abundances of primordial light elements. The implementation
of these constraints will be the main subject of this chapter.

Both, for the constraints from BBN as well as for those from the observed cold dark
matter density, the abundance Y(xysp of the (N)LSP is essential. In the next section we
will therefore briefly discuss how and under which assumptions the abundance can be
calculated. This also gives the opportunity to familiarise the reader with some notation
we will use in the remainder of this chapter.

1. The Thermal Relic Density

In the early universe, sparticles existed in thermal equilibrium with the ordinary Stan-
dard Model particles.* As the universe expanded and the temperature dropped, heavier
sparticles could no longer be produced. They eventually annihilated or decayed into
lighter supersymmetric particles. The lightest supersymmetric particles were stable and
could only annihilate into Standard Model particles. However, these annihilation pro-
cesses were efficient only, as long as the particle density was high enough. As the density
decreased, the annihilation rate became smaller than the expansion rate of the universe.
At this point, the interactions which maintained thermal equilibrium ’froze out’ and the
thermal relic density ’froze in’.

To understand the corresponding processes more quantitatively, one must follow the
evolution of the particle’s phase space distribution function f(x,p).> This distribu-
tion function is governed by the Boltzmann equations (for details of the formalism see

4 The only exception is the gravitino, which only reaches thermal equilibrium when the Goldstino
component is sufficiently large, i.e. for very small masses. As there is a sizeable lower bound on the
gravitino mass in gaugino mediation, the corresponding coupling is too small and the gravitino will
reach thermal equilibrium only for ridiculously high temperatures.

5 The particle number density n is obtained by integrating the phase space distribution function f(z, p)
over the momenta and summing the spin.
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1. The Thermal Relic Density

e.g. [87]). In general, the Boltzmann equations are a coupled set of partial differential
equations for the phase space distributions of all species present. Fortunately, for many
problems, this set reduces to one differential equation for the species of interest, while
all other species will have equilibrium phase space distributions. In the following we will
especially be interested in the number density of a species which is long-lived compared
to the age of the universe when its interactions freeze out. In our scenario, this species
can be the neutralino, the stau or the sneutrino, respectively. Note that the sleptons
are sufficiently long-lived, because of the lower bound on the gravitino mass (cf. (V.18)).
Before we write down the corresponding Boltzmann equation, we should note that the
masses of the sleptons from different generations are almost degenerate in gaugino medi-
ation. Furthermore, the lightest neutralino can also be quite close in mass. If the mass
difference is of order T or smaller,® the heavier particles are thermally accessible and
the heavier particles will be nearly as abundant as the relic species. This means that
the relic abundance of e.g. the 71 is determined by not only its annihilation processes,
but also by ’'coannihilation’ processes such as 71 — 7101 [88].

Since all the heavier sparticles will finally decay into the LSP, the relevant quantity is
the total number density of the i coannihilating particles, n = >, n;. For example, in
the case that the lighter stau is the LSP, the sum is over all three coannihilating sleptons,
T1, fi1, €1 [89]. After some simplifying assumptions such as assuming a homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) universe, CP invariance and Maxwell-
Boltzmann statistics, the Boltzmann equations can be brought into a simplified form,
describing the time evolution of the particle number density n

dn

7 +3Hn = — Z(aljv) (nin; — nfqniq) , (V.2)
.3

where H is the Hubble parameter and (o;;v) is the thermally averaged annihilation cross

section times the relative velocity v of particles 7 and j. More precisely o;; is the total

annihilation cross section of i + j — X + X',

oij=» oli+j—X+X'), (V.3)

X, X/

where X, X’ denote the possible standard model particles. Furthermore, n:® is the
number density of species ¢ at thermal equilibrium. The 3 Hn-term governs the expansion
of the universe diluting the number density, while the right-hand side of (V.2) accounts
for number changing processes. The dependence of the annihilation cross section on the
temperature can be quite complicated, especially in the vicinity of a resonance [90].

In the absence of interactions, the number density evolves inversely proportional to
the spatial volume, n ~ R~3, where R is the scale factor. In order to scale out the
effect of an expanding universe, one usually considers the evolution of the number of

6 For particles which may potentially play the role of cold dark matter, the corresponding freeze out
temperature is approximately Ty ~ m/25, with m the mass of the cold relic. The mass difference
where coannihilations become important therefore corresponds to Am/m < 5%.
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Chapter V: Dark Matter from Gaugino Mediation

particles in a comoving volume. This can be realised by dividing the number density n
by a quantity which is also constant per comoving volume. We will follow a standard
convention” and use the entropy density s = 272¢,T%/45 for this purpose, with g, the
relativistic degrees of freedom and 7' the temperature. The resulting variable

y==2 (V.4)

S

is called the abundance.

In general, the evolution equation (V.2) has to be solved numerically, since no closed-
form solutions are known in the general case. We use micrOMEGAs 1.3.6 [91,92] to
calculate the abundance and the energy density of the (N)LSP. The code includes all
possible coannihilation processes and care is taken to handle poles and thresholds. The
input parameters are the soft supersymmetry breaking terms of the MSSM. As before
we determine the superpartner spectrum with the help of SOFTSUSY 2.0.6 [69].8

Now that we know how to obtain the abundances of the (N)LSPs, we can turn to
the cosmological constraints which result from the observed cold dark matter density
and from primordial nucleosynthesis. Since the BBN constraints are rather complicated,
and in part also a bit more ambiguous than the dark matter density constraint, we will
briefly discuss the current status in the following.

2. BBN Constraints on the Abundance of NLSPs

Big Bang Nucleosynthesis (BBN) offers the deepest reliable probe of the early universe,
as it is based on well-understood Standard Model physics. Given the baryon density of
the universe, the reaction rates can be calculated in the standard cosmological setup.
Predictions of the abundances of light elements synthesised during the BBN epoch are in
good overall agreement with the abundances inferred from data. Therefore, the standard
hot big bang cosmology is validated and any new physics is highly constrained, because
the predicted abundances are highly sensitive to the cosmological scenario. Nevertheless
it should be noted that at least for some of the observed abundances there are still size-
able uncertainties. This is because the abundances observed are not primordial, since
stellar processes alter the ratios of the light elements. Therefore, systematic errors are an
important and often dominant limitation to the precision with which primordial abun-
dances can be inferred. Also it should be noted, that even in the standard BBN scenario
there is some discrepancy between the BBN prediction and the observed abundance of

" Some authors also normalise with respect to the background photon number density n., = 2¢(3)7%/m>
with ¢ the Riemann zeta function. In the era of interest, the two normalisations are related by
§ >~ Tna.

8 For thg top quark pole mass, we use the latest best-fit value of 172.5GeV [93]. In addition, we
use my(mp) = 4.25 GeV and oSM MS(1/,) = 0.1187, the default values of SOFTSUSY. Some other
SM parameters are hard-coded in micrOMEGAs, aglSMMS(My) = 127.90896, Gp = 1.16637 -
107°GeV 2, and m, = 1.777 GeV.
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2. BBN Constraints on the Abundance of NLSPs

"Li [94]. This might actually be a hint at some deviation from the concordance cosmol-
ogy and despite considerable astrophysical uncertainties, there are many proposals to
resolve this discrepancy by new physics.

Primordial nucleosynthesis starts about 1s after the big bang at a temperature of
about 0.7 MeV with the freeze out of neutrons from the thermal bath. Subsequently, all
light elements are synthesised during the ’first three minutes’. In gaugino mediation it
turns out that for gravitino dark matter the NLSP decays considerably after the start
of big bang nucleosynthesis (cf. (V.18)). Since the decay products of these long-lived
particles can alter the primordial light element abundances [80,95,96], this leads to con-
straints on the released energy in such NLSP decays. The effects of both electromagnetic
and hadronic showers can be important, depending on the lifetime of the NLSP. To a
good approximation the constraints can be quantified by upper bounds on the product

Sem,had = €em,had * YNLSP - (V.5)

Here €em haq is the average electromagnetic or hadronic energy emitted in a single NLSP
decay and the abundance Yyisp is given as in (V.4) by the NLSP number density prior
to decay divided by the total entropy density.

The calculations of the bounds on electromagnetic and hadronic energy release are
rather involved and we will resort to existing results in the literature. The strength of
these bounds strongly depends on the lifetime of the NLSP.

Lets first have a look at the effects of hadronic energy release. At early times (¢t < 100s)
energetic hadrons lose their energy quite rapidly through electromagnetic interactions, so
that the direct destruction of light elements is subdominant. They can, however, change
the neutron to proton ratio via interconversion effects, which obviously also leads to
a change of the light element abundances. At later times (10% < ¢t < 107s), as the
hadrons are not stopped efficiently anymore and mesons decay before they interact with
the background nucleons, hadrodissociation processes become dominant.

We now turn to the effects of electromagnetic energy release. At early times high
energy leptons and photons emitted by late-decaying particles are thermalised quickly
through interactions with background particles. They initiate electromagnetic cascades
and the initial energy is quickly converted into soft photons. The energy distribution of
the resulting photons is highly suppressed for energies above the threshold for electron
positron pair production, E., < Fna.c. This maximal energy is inversely proportional
to the background photon temperature [97]. Therefore constraints on electromagnetic
energy release are negligible for early times (¢t < 10%s) as the maximal photon energy
is too small to destroy any light elements. At times around (10%s < ¢ < 10%) the
maximal photon energy slightly increases and elements with very low binding energies
can be destroyed. Here the main constraint is from the over-destruction of Deuterium.
For later times (¢ = 107s) the photon energy becomes large enough to photo-dissociate
“He and even a small destruction rate becomes a significant production mechanism for
D and *He. As can be seen in Figure V.1 there is a time between 10% and 107s where
the overproduction and over-destruction of Deuterium cancels. Finally we should note
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Figure V.1.: Upper limits on electromagnetic and hadronic energy release as a function of
the NLSP lifetime, adapted from Figure 9 of [98]. The solid black and red lines give the severe
electromagnetic and hadronic constraints resulting from the severe Deuterium bound (V.6).
The corresponding dash-dotted lines result from the conservative constraints.

that the branching ratios for a charged NLSP decaying into photons or leptons is usually
much larger than for the corresponding hadronic channels and therefore the constraint
on electromagnetic energy release becomes dominant for late times.

For our analysis we use the bounds compiled in Figure V.1, which is adapted from
Figure 9 of [98]. The bounds were computed in the earlier studies [80,95]. As there is
still considerable uncertainty in the measurements of the primordial element abundances,
the author of [98] used two different data sets, giving “severe” and “conservative” limits.
The observed abundances of *He, °Li and “Li are not used, since they still suffer from
large systematic uncertainties. This leaves the observed abundances of D and “He as the
only source for constraints from primordial nucleosynthesis. For our scenario with very
long-lived NLSPs the bound from D is always stronger than the one from *He. Therefore
we concentrate on bounds from Deuterium in the following. Figure V.1 shows the limits
on electromagnetic and hadronic energy release as a function of the NLSP lifetime. All
lines assume a baryon asymmetry of = 6.1 - 107!°. The red solid and dash-dotted
lines indicate the severe and conservative limits at the 95% confidence level (C.L.) for
the electromagnetic energy release. The black solid and dash-dotted lines refer to severe
and conservative constraints in the hadronic case. These bounds assume an NLSP mass
of 1'TeV, but since they are quite insensitive to this mass, we will use them here, too.
Furthermore, they assume that there is no entropy production between the decoupling
of the NLSP and the start of BBN. Both the electromagnetic and hadronic severe limits
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are derived from the 1o interval [80]
2.40 - 107° < (np/nH) pean < 3221077, (V.6)

where nx is a primordial number density. This range corresponds to the mean of the
existing observations. The conservative limits were imported from two different analyses
which use two different Deuterium bounds. In [80] the conservative limit for the hadronic
case was derived from the highest value among these observations,

3.31-107° < (np/ni)yign pag < 4-57 - 107° had , (V.7)

whereas the conservative limit for the electromagnetic case used a more conservative
observational bound, [95],

1.3-107° < (np/ns) pign em < 5-3-107° em , 20 (V.8)

Here the upper limit is considerably larger, because it is the 20 upper bound of the
highest value reliably observed. Note that although the upper bounds on the Deuterium
abundance leading to the conservative and severe constraints differ by less than a factor
of two, the resulting bounds on €y, Ynpsp differ by an order of magnitude. In general
overproduction or destruction effects from electromagnetic and hadronic energy release
can add constructively or destructively [99]. However, we assume the constraints on
hadronic and electromagnetic energy release to be independent, since sizeable cancella-
tions happen only in very special cases. We consider points in parameter space violating
the conservative limits to be “excluded”, but points violating only the severe limits to be
“disfavoured”.

We are now in a position to determine the cosmologically allowed, disfavoured and
excluded regions of our parameter space. Note that the following discussion, though
motivated by our six-dimensional orbifold model, again also applies to other theoretical
setups which lead to the same boundary conditions at the GUT scale. Since moderate
values of tan 3 are favoured in models with gaugino-mediated supersymmetry breaking,
we consider the cases tan 3 = 10 and tan 3 = 20 as before. Furthermore, we use the
same benchmark point as in Chapter IV given by m;/,, = 500 GeV and sign x4 > 0. In
the next section we will discuss neutralino dark matter and then turn to gravitino dark
matter with slepton NLSPs in Section 4.

3. Neutralino Dark Matter

3.1. Calculation of the Abundance

We first consider the case where a neutralino is lighter than all sleptons and squarks, so
that it is an LSP or NLSP candidate. In the corresponding parameter space region for
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tan 0 = 20, we find numerically

2.6-107¥ <Y, <50-107"2, (V.9a)
83.0 GeV < m, <204 GeV (V.9Db)
8.15-107% < Q h* < 0.273. (V.9¢)

For tan # = 10, the results are very similar, with a slightly larger maximal abundance of
8.7-107'2. Here the relation between neutralino relic abundance Y, and energy density
Q, h? is given by

Qe 1
Y, = 2 3641071 <LG€V) O h? (V.10)

Sy, my

with p. the critical density and s the entropy density of the universe. Note that in
the region where the neutralino has its maximal abundance, the neutralino mass almost
acquires its maximal value and hence the maximal energy density Qi“’“‘h2 is just slightly
below m**- Y. 5/p. . We now consider the cosmological constraints for the neutralino

(N)LSP case. Let us first turn to the neutralino LSP scenario.

3.2. Neutralino LSP

Gaugino mediation provides only a lower bound on the mass of the gravitino. Therefore,
it may well be quite heavy, and the lightest neutralino may be the LSP. In this case,
decays of the long-lived gravitino threaten the success of BBN, which leads to an upper
bound on the gravitino density and thus on the reheating temperature [80,95]. Of
course, this bound can be avoided if the gravitino is sufficiently heavy and therefore
decays before the start of primordial nucleosynthesis. The other superparticles decay
into the LSP before the start of BBN and do not cause problems, unless LSP and NLSP
are nearly degenerate. For example, if the NLSP is a stau, BBN constraints become
potentially important for mz — m, < 100 MeV [100]. We neglect this possibility, since
the corresponding region in the parameter space is tiny.

This leaves the observed cold dark matter density as the only constraint on the neu-
tralino LSP scenario we have to consider. We use the 30 range given in Equation (V.1).
The upper limit excludes the white regions in Figure V.2. Since the dark matter could be
made up of several components and since non-thermal production could be significant,
we have two viable regions in parameter space. In the first one, the thermal neutralino
relic density falls into the range (V.1) and hence this particle makes up all the dark
matter. This region is shown in black in Figure V.2. There the bino contributes at
least 75% (80%) to the lightest neutralino for tan 3 = 10 (tan§ = 20). The missing
25% (20%) come from the two Higgsinos, while the wino component of ~ 1% is negli-
gible. On the left edge the lightest neutralino is a pure bino. The second viable region
is shown in magenta (dark-gray) in the figure. Here the thermal neutralino density is
smaller than the lower bound in Eq. (V.1) and hence only constitutes a part of the dark
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Figure V.2.: Allowed region for the soft Higgs masses for m;/; = 500 GeV and tan 8 = 20
(tan 8 = 10). A neutralino is lighter than all sleptons in the white, black and magenta (dark-
gray) area. The upper limit on Qxh2 excludes the white region, whereas in the magenta
(dark-gray) area 2, h? is smaller than the observed cold dark matter density. The correct dark
matter density is obtained in the black region. In the green (light-gray) and blue (medium-
gray) areas a slepton is the NLSP. For the points 1 and 2 the spin-independent cross-sections
per nucleon are given in the text.
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matter density. The lightest neutralino is almost a pure Higgsino at the right edge of
the parameter space.

In most parts of the parameter space, some tuning is necessary if neutralinos are to
make up all the dark matter. This is very similar to what has been found in other
scenarios for SUSY breaking, for instance in mSUGRA (see for example [101-103]). In
part, the reason is simply that the dark matter density has been measured rather accu-
rately. For tan § = 20 and small m , the situation looks somewhat better. Apparently,

for mh < 0.1 TeV? the maximum of Q as a function of mh lies in the experimentally

allowed region. Around the maximum, a change in mi leads only to a relatively small

change in 2,, so that the energy dens1ty remains in the favoured range in a rather broad
strip of parameter space. For larger m , the maximum value of €2, is too large. Conse-

quently, it depends rather sensitively on m? in the allowed region, and thus this region

1S narrow.

h1

Discovery Potential

Before we come to the case of a neutralino NLSP let us finally comment on the prospects
of the detection of neutralino dark matter in our scenario. In direct detection exper-
iments, the interactions of neutralinos with matter are searched for, e.g. by recording
the recoil energy of nuclei, as neutralinos scatter off them when they pass through
the earth. The necessary parameters for the calculation of the corresponding signal in
the detector are the density and velocity distributions of the neutralinos as well as the
neutralino-nucleon scattering cross-section. However, the halo of our galaxy is subject to
considerable uncertainties in overall size, velocity and lumpiness, so that even if the La-
grangian parameters were known exactly, the signal rates would still be quite indefinite.
Nevertheless, the knowledge of the neutralino-nucleon cross-section is very important to
estimate the discovery potential for neutralinos. This cross-section also determines the
rate at which neutralinos accrete into the earth and sun, which is important for indirect
detection scenarios, where energetic neutrinos from neutralino annihilations are searched
for [104].

At the parton level, the neutralino can interact with a quark by exchange of squarks
in the s-channel, or Higgs scalars or a Z boson in the t-channel (see e.g. [104]). As
in the general MSSM case, the detection cross-section is suppressed for a pure bino,
since the Higgs and Z exchange require a Higgsino component. In fact, for tan g = 10,
mi =221 TeV? and m2 =0 (point 1 in Figure V.2), one obtains o, = 9-107"*nb for
the spin-independent cross-section per nucleon [105], whereas the present bound on this
cross-section is of the order of 107 nb [106]. The cross-section is larger in the region with
a larger Higgsino component, where for tan 5 = 10, m%l = 2.76 TeV?, m%Q = (.44 TeV?
(point 2 in Figure V.2), one obtains o,,, = 4-10~" nb [105]. Although the cross-section
is at least one order of magnitude below the present bounds, it could be reached by the

next generation of dark matter experiments [107].
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3.3. Neutralino NLSP

With a light gravitino, a scenario with a gravitino LSP and a neutralino NLSP is pos-
sible, too. However, it turns out that this is ruled out by the BBN constraints in our
scenario. We noticed in the last chapter that gaugino mediation gives a lower bound on
the gravitino mass. In general this bound depends on m, /5, the number of space-time di-
mensions and the compactification scale [22|. Motivated by our six-dimensional orbifold
GUT, we chose D = 6 and M¢ = Mgyt leading to mgz/, 2 0.1-mq/ 2 50GeV. As the
lower limit on mj3/, was derived using naive dimensional analysis, it can well be relaxed
by a factor of order one. We therefore also consider ms/, = 10 GeV as a conservative
lower bound. Note that varying D between 5 and 10, the lower bound ranges between
20 GeV and 0.1 GeV.

The region where m, > ms3/, + mz is certainly excluded by the hadronic BBN con-

straints for all gravitino masses we consider, since the two-body decay x? — ZG is
possible and since the hadronic branching ratio of the Z is large, BZ, ~ 0.7 33, 81].
However, the situation is less clear for lighter neutralinos when the two-body decay
into real Z bosons is kinematically forbidden. For ms,; = 50 GeV, this is the case for
m, < 141 GeV. The corresponding parameter space region lies at the right end of the al-
lowed region, where m%2 > (0.5 TeV?. In this region, the x4 parameter is rather small [36],
so that there is significant mixing between the neutralinos. The Higgsino components
of the lightest neutralino lead to a relatively large annihilation cross section and thus to
a relatively small abundance. From Figure V.1 we can read off that the severe hadronic

bound is never stronger than
€haaYnrsp S 5+ 1071 GeV (V.11)

for any NLSP lifetime. The three-body decay x? — q(jé’ through a virtual photon gives
the leading contribution to the hadronic decay mode when the two-body decay is not
allowed. With the estimate €',q ~ 2(m, — my3) - 10~° from [33], we find

1.0-107"GeV < €Yy <2.1-107" GeV (V.12)

which is well below even the stringent hadronic bound (V.11). Ergo, there are no BBN
constraints from hadronic energy release, but how does the situation look like in the
electromagnetic case?

Considering the electromagnetic decay, the main contribution comes from the two-
body decay x! — ~G. The corresponding average electromagnetic energy release is
simply given by

m2 —m?
X ~ _X 3/2 V.13
66111 - 2mX ( : )
and the width of the corresponding neutralino decay mode which fixes the neutralino
NLSP lifetime can be written as [33]

ro_ | N1y cos Oy + Nig sin Oy |> ms (1_ m§/2>3 (1+3m§/2) |

= V.14
X 487 m3 , M3 m2 m2 (V-14)
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Here x is a mixture of all different gauge eigenstates, x = Nn(—ZB) + ng(—zW)
N13Hd + N14Hu, where the Nj; are elements of the neutralino mixing matrix, so that
e.g. | N11|? is the bino fraction. Applying these equations to our scenario we obtain

L1-107"GeV < €XY, <22-107" GeV (V.15)
3.3:-10%s <7, <4.1-10"s (V.16)

for both tan 3 = 10 and tan 5 = 20. The lifetimes here are rather long because we only
consider neutralino masses below 141 GeV since otherwise the hadronic constraints are
badly violated. As mentioned above in the region where the neutralino becomes this
light it is predominantly a Higgsino and therefore gives only a small contribution to
the neutralino width (V.14). Comparing with the electromagnetic limits in Figure V.1,
we see that even the conservative BBN bound is violated. This result remains true for
mgj = 10 GeV. Thus, we conclude that a neutralino NLSP with a mass below mz +ms /s
is excluded by the BBN constraints on electromagnetic energy release. Consequently,
the lightest neutralino is not a viable NLSP candidate in gaugino mediation.

4. Gravitino Dark Matter with Slepton NLSPs

4.1. Lifetime of Slepton NLSPs

The couplings between the gravitino and the MSSM particles are highly suppressed.
Therefore, in the case of gravitino dark matter, the NLSP is typically long-lived. The
mass eigenstates of the slepton NLSPs are in general a mixture of a left- and a right-
handed part, ¢ = cos (r + sinb, {.. The slepton decay rate however is dominated by
the two-body decay into lepton and gravitino l rL — g, LG

m? m32,,\*
F2 body l 1 — 3/2 V.17
! 48mm3 /2 M3 mlg ’ ( )

which is independent of the mixture. Here m; is the slepton mass, Mp = 2.4 - 10'® GeV
is the reduced Planck mass, and the lepton mass has been neglected. With a typical
largest slepton mass of around 200 GeV in the [ NLSP region and the smallest gravitino
mass of 10 GeV this leads to a lower bound on the slepton lifetime of

772 1.8-10°s , (V.18)

which is a time where also the electromagnetic BBN constraints become stringent (cf.
Figure V.1).

4.2. Stau NLSP

The G-7 scenario is particularly interesting, since it may allow to determine the gravitino
mass and spin at colliders [25-30]. It is well known, however, to be strongly constrained
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by primordial nucleosynthesis (BBN) [31-35]. In this section we therefore study the

impact of such constraints on the GG-7 scenario in gaugino mediation. As before the
crucial quantity in calculating these constraints is the relic stau abundance.

Relic Stau Abundance

For both values of tan 3, imposing the lower bound from collider searches [24], we find
that the stau mass varies between

86 GeV < mz < 203 GeV (V.19)

in the 7 NLSP region. The upper limit on the stau mass within this region only depends
on the mass of the lightest neutralino at the boundary between the two NLSP regions and
is therefore almost independent of tan 3. With the gravitino masses ms/, = 50 GeVand
mg/2 = 10 GeV, this mass range corresponds to the range

55-10°s < 77 <1.6-10%s  mge = 50 GeV
1.7-10°s < 72 < 1.3-10"s  myjp = 10GeV (V.20)

for the lifetimes. If we restrict ourselves to stau masses above 100 GeV, the upper bound
is lowered to 4.6 - 10%s and 6.1 - 10%s respectively.

The stau abundance in the G-7 scenario is shown in Figure V.3. For tan (8 = 20 we
find

1.3-108 <¥3<6.2-1071 . (V.21)

The abundance is smallest in those parts of the parameter space where the lightest stau
masses are reached. These are the lower right corner of the bottom region and the upper
border of the upper region. Conversely, we find the largest values close to the neutralino
NLSP region, where ms is largest. Both qualitatively and quantitatively, the situation
is very similar for tan § = 10, except that in this case the top 7 NLSP region does not
exist. The approximation

~12.1078 ("7
Y~ 1.2-10 (100 Gev> (V.22)
gives the stau abundance with a relative error of less than 10% for the largest part
(> 80%) of the parameter space, where coannihilation with the neutralino is less im-
portant (i.e. the part not too close to the neutralino LSP region). However, the first two
generation sleptons are always close in mass to the stau, therefore we also have coan-
nihilation with them. Although these coannihilation processes reduce the abundance of
each lighter charged slepton species (€, /i), the net abundance of staus becomes larger
since each lighter selectron or smuon will finally decay into a stau NLSP. Therefore
our approximation (V.22) gives a yield which is a factor two larger than the one given
in [33|. For the left-handed sleptons this increase is even more pronounced. Usually
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Figure V.3.: Stau abundance obtained numerically with micrOMEGASs in the 7 NLSP region.
The area below (lower region) and above (upper region, in the case of tan § = 10 non existing)

the black line is excluded by the conservative electromagnetic BBN constraints for mg/,; =
50GeV and €emy = 0.5F ;.
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the abundance for left-handed sleptons is much less than for right-handed ones, because
they have a larger annihilation cross-section. However, in our setup this turns out not
to be the case and the abundance is as large as for the right-handed fields as can be seen
in Figure V.3.

Constraints from BBN

We have seen in the last section that there are regions in parameterspace where the stau
is extremely long-lived. Therefore these regions are subject to the very restrictive BBN
constraints at late times.

Turning to the hadronic constraints first, we see that they are not overly restrictive
in this case. The two-body decay 7 — 7 G gives no contribution to the hadronic energy
release, although the emitted tau is unstable and decays partly into mesons. But since
their electromagnetic interaction time is significantly shorter than their hadronic one,
these mesons basically transfer all their kinetic energy into electromagnetic showers
[108]. Furthermore, in our range of stau lifetimes, the stopped mesons finally decay
before they induce interconversion effects. Therefore the leading hadronic constraints
for late times are governed by three- and four-body decays. The three-body decays 7 —
7ZG, vW G produce hadronic energy when the Z or 1V boson decays hadronically. When
the three-body decay is kinematically forbidden, the four-body decay 7 — 7 ¢ ¢ G may
become important, although this radiative decay producing ¢q pairs via an intermediate
gauge boson has only a small branching ratio. In order to obtain the hadronic energy
release, the branching ratio as well as the energy spectrum of the emitted hadrons has
to be calculated. The corresponding calculations for a right-handed stau with a bino
as lightest neutralino have been performed in [98]. The result relevant for us is that
the corresponding average hadronic energy release e,,q never exceeds 2 - 1072 GeV for
stau masses around 200 GeV [98]. Combining this bound with our result for the stau
abundance we see that

TR €haaYr $2-107 GeV (V.23)

so that even the stringent hadronic BBN bound (V.11) is easily satisfied in the case
of the right-handed stau. We can directly apply this result to the case of tan 3 = 10,
where the stau is predominantly right-handed in the region where it is the NLSP and
also to the lower region of the tan 3 = 20 parameterspace (cf. Figures IV.1 and IV.4).
However, in the upper region the stau is mainly left-handed, which generally leads to
a larger hadronic branching ratio and therefore to stronger constraints. Unfortunately
there is no calculation of the hadronic branching ratio for left-handed staus. This sce-
nario is more complicated than the right-handed case, since also the W boson can be
exchanged and more final states are possible. However, as we are a factor twenty below
the severe hadronic constraint for the right-handed stau, we don’t expect the bound to
be violated even in the left-handed case. Furthermore, since the hadronic constraints are
almost independent of the NLSP lifetime, the severe hadronic bound could be marginally
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relevant only in the small region close to the neutralino LSP, where coannihilations lead
to a much larger abundance of staus (cf. Figure V.3).

The electromagnetic bounds are significantly more constraining. In this case the two-
body decay 7 — 7 G gives a large contribution. The energy of the 7 produced in this
decay is given by

mz —mg, +m?

E, = . (V.24)

Qm;

Although the tau has a time-delated lifetime, it does not scatter off the background
plasma before its decay and not the full initial tau energy ends up in an electromagnetic
shower. This is because there will be always at least one neutrino emitted in the tau
decay which carries away a sizable fraction of the energy [31]. To account for this energy
loss, the electromagnetic energy release can be written as

€em = TE; | (V.25)

with 0.3 <z <1 the fraction of the initial tau energy which ends up in an electromag-
netic shower. The precise value of x is in principle calculable, once the chirality and mass
of the decaying stau as well as the gravitino mass is specified. However, as the variation
in z is relatively small compared to other effects, we will simply assume x = 0.5 in the
following. Combining again the average energy release €., with the abundance Y; and
scanning over the parameter space of gaugino mediation we find for tan 5 = 20

1.9-1072GeV < €emYs < 3.0- 107" GeV . (V.26)

The results for tan 3 = 10 fall into the same range, but with a slightly smaller spread.
In Figure V.4, we plot points from the 7 NLSP region for tan 3 = 10 in the €, Y7 — 7+
plane. We also show the severe and conservative electromagnetic BBN constraints from
Figure V.1. The red (dark-gray) points are the results for a gravitino mass of 50 GeV. We
find that the severe constraints are always violated, while the conservative constraints
can be satisfied. The same can be seen from Figure V.3 for the case of tan 3 = 20, where
the solid black lines mark the boundary between the parameter space regions allowed
and excluded by the conservative BBN bounds. In the lower region, the area below and
to the right of the line is excluded. In the upper region, this is the case for the area
above the black line. Thus, it turns out that actually the largest part of the parameter
space is allowed. The remaining part is typically excluded not because of an unusually
large stau abundance but because of a too long lifetime due to a relatively small stau
mass.

The severe BBN bounds can be satisfied, if the NLSP lifetime is shorter. This is the
case for smaller gravitino masses. For mg/» = 10 GeV, we see from the green (light-gray)
points in Figure V.4 that large parts of the stau NLSP region are allowed by the severe
constraints. The conservative constraints are always satisfied in this example.

The motivation for our benchmark gaugino mass of m,;,, = 500 GeV was that this
results in the lightest superparticle mass spectrum compatible with the LEP bound on
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Figure V.4.: Points from the 7 NLSP region (tan = 10) in the €ep, Y5 — 77 plane for x = 0.5
and my /o = 500 GeV, obtained by scanning over m%l and m%12 with a step size of 5- 1073 TeV?
in both parameters. We show the results for two values of the gravitino mass, mz/; = 50 GeV
(red or dark-gray) and ms/, = 10 GeV (green or light-gray). The solid black and dash-dotted
orange lines show the severe and conservative electromagnetic BBN constraints from Figure 9
of [98]. (Only the constraints derived from the Deuterium abundance are shown, since those

from the *He abundance are not relevant in the 7 NLSP region.)
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the Higgs mass. Increasing the unified gaugino mass m,;, leads essentially to a rescaling
of the superparticle spectrum. Since the NLSPs become heavier, their yield is larger.
As an example, let us consider m,/, = 1TeV and mg/,, = 100 GeV. Here the gravitino
mass obviously corresponds to the NDA bound mg/ 2 0.1 - m,/ again. For tan 8 = 10
this leads to

281078 <yz<1.1-1071, (V.27)
1.0- 107" GeV < emYs < 1.1-107° GeV . (V.28)

As before, the estimate (V.22) works pretty well, so that Yz and €., Yz grow by about
a factor of two and four, respectively. On the other hand, the upper bound on the stau
lifetime decreases significantly, since it depends on ml55m§ /2

55-10°s < 72 < 5.7-10"s . (V.29)

As a consequence, a larger part of the 7 NLSP region is compatible with the electromag-
netic BBN constraints. However, the hadronic constraints become more severe, since
the hadronic branching ratio of the NLSP strongly depends on the mass difference to
the LSP. As the stau mass increases from 100 GeV to 1TeV, also the branching ratio
increases by an order of magnitude [98]. Nevertheless the hadronic constraints are still
easily satisfied unless the stau mass is close to a TeV.

Catalysed BBN

Recently it has been argued that metastable charged particles might form bound states
with positively charged nuclei [109-112]. This effect potentially modifies the nuclear
reaction rates during the time of primordial nucleosynthesis. In particular the process
(*HeX )+ D —SLi+X~ can lead to an enhanced production of °Li, which can be orders
of magnitude above the observed value. Therefore this scenario could lead to significantly
more restrictive constraints on the allowed relic abundance of these charged particles
than those we considered here. In [113] bound-state effects in the CMSSM and mSUGRA
are studied. The conclusion is reached that 7 NLSPs with lifetimes longer than 10® - 10%s
are excluded. If it turns out that this statement also holds in a more general framework
than the CMSSM, the G-7 scenario will be ruled out for ms/, 2 10 GeV unless there is
sizeable entropy production between the decoupling of the staus from the thermal bath
and the start of BBN [114]. Another possibility which leads to shorter stau lifetimes and
therefore evades this constraint is to allow for small R-parity violating couplings [86].

4.3. Sneutrino NLSP

The region where the sneutrino becomes the NLSP corresponds to a large down-type
soft Higgs mass m%l (cf. Figures IV.1 and IV.4). The sneutrino masses and lifetimes lie
roughly in the same range as those of the staus, but with a somewhat larger minimal
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mass. We find that the relic abundance for both tan 3 = 10 and tan § = 20 lies within
the narrow window

1.3-1078 <VY; <4.6-1071 | (V.30)

which is almost the same range as in the case of the stau NLSP. However, we expect

that here the constraints from BBN are drastically relaxed in comparison to a charged
NLSP.

Indeed, the BBN bounds on a sneutrino NLSP turn out to be rather weak, since the
neutrinos emitted in the dominant two-body decay 7 — vG interact much less with
the light nuclei than charged particles. Nevertheless, the very energetic neutrinos may
scatter off the background leptons via the weak interactions, leading to the pair produc-
tion of several kinds of particles. Most of these particles induce only electromagnetic
cascades, but processes like vigg — 77~ also provide pions, which in principle could
induce processes like 77n — 7’p. However, as discussed before, interconversion effects
are negligible at late times. The electromagnetic effects of the highly energetic neutri-
nos emitted in the two-body decay could potentially have a more severe effect on the
light element abundances. For example the anti-neutrinos (neutrinos) produced in such
a decay can annihilate with the background neutrinos (anti-neutrinos) and give rise to
ete” pairs which contribute to electromagnetic showers. The effects of highly energetic
(anti-)neutrinos on BBN have been studied in [115,116] and [117], but in the last ref-
erence only for the specific case of an unstable gravitino decaying into sneutrino and
neutrino. Assuming (np + nsye)/nu S 4 - 107 gives Yx < 4 - 10712 [116] for a general
relic with mass around 200 GeV and lifetime 107 s decaying equally into neutrinos and
anti-neutrinos. Shorter lifetimes are not discussed in this work, but according to [115] all
constraints disappear for lifetimes shorter than 10°s, since at those earlier times high-
energy photons thermalise efficiently scattering off the CMB before having the chance to
interact with the light nuclei. Also the limits relax for longer lifetimes, since the density
of background neutrinos becomes more diluted. The maximal abundance (V.30) is an
order of magnitude below the limit of [116]. Therefore there are no restrictions on our
parameterspace from energy released in the 2-body decay.

Nevertheless there could be constraints from three and four-body decay processes.
For the electromagnetic case we have 7 — vG//, but as for the case of the 7 NLSP,
such a radiative decay producing ¢/ pairs via an intermediate gauge boson has only a
small branching ratio giving €., safely below 0.1 GeV. Therefore the effects of this decay
channel is negligible even for our maximal value of Y.

This leaves the suppressed hadronic four-body decay v — Véqq as the only possible
source for non-negligible constraints in our setup. Indeed, a recent analysis [118] found
that despite the small branching ratio, the most stringent constraints on the sneutrino
abundance is given by this process. For the case of a thermal relic density and ms/, =
50 GeV the authors of [118] give an upper bound from Deuterium on the sneutrino mass
of ~ 400 GeV. However, on the one hand they use an approximate expression similar
to (V.22) to compute the sneutrino abundance, which always underestimates it in our
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case, due to the importance of coannihilations. On the other hand the Deuterium bound
they use is even more constraining than our severe bound. In their analysis the authors
of [118] also show the hadronic branching ratios in the m;,, —my plane. We can read off
that for gravitino masses between 10 and 50 GeV and a sneutrino mass of 200 GeV the
hadronic branching ratio is Bp,q < 107%. Using this information to derive a strict upper
bound on the maximal hadronic energy release in the sneutrino NLSP region we obtain

€had " Y5 < Bhad * (M2 —myp) - YE* ~ 107 GeV . (V.31)

Of course we made a rather cruel simplification here, since by far not all of the sneutrino
energy ends up in the hadronic shower. Rather we would have to calculate the energy
spectrum of the emitted quark-antiquark pairs. Taking this into account can lead to a
large deviation from our rough approximation. Nevertheless our estimate is sufficient
to see that at our benchmark point the hadronic energy release is well below the se-
vere hadronic bound. For larger gaugino masses the hadronic energy release becomes
more constraining. This is because the hadronic branching ratio increases fast with the
sneutrino mass |118].

All in all, we can conclude that the G- scenario is essentially unconstrained. The
severe hadronic limits could be marginally relevant and are worth a more careful inves-
tigation if the superpartners turn out to be heavier than considered here.

4.4. Constraints from the Dark Matter Density

Having discussed the constraints on the gravitino LSP scenario which originate from
the observed light element abundances, we now turn to other astrophysical constraints.
One constraint we already discussed for the case of the neutralino LSP is that the dark
matter density has to be compatible with observations. Gravitinos are produced non-
thermally via the NLSP decays. The corresponding energy density has to be smaller
than the observed cold dark matter density,

ms/2
MNLSP

Q59 R? = QW ph? < Qpy < 0.123 . (V.32)

For my/, = 500 GeV and tan 3 = 20, we find

1.8-107° < Q595™h* <84-107°. (V.33)
For tan 8 = 10 the maximal energy density is slightly smaller. Generally, Qg;’g'th is
largest in the part of the 7 NLSP region which is closest to the x LSP region. Here we
also find the largest NLSP abundance (cf. Figure V.3). In the G-v scenario, the maximal
value for Qg‘/)g‘tth is just slightly smaller than in the 7 NLSP case. All in all we find
that the non-thermal gravitino energy density is far below the bound (V.32).

Note that a value of Qg%l‘tth which is so much smaller than the observed cold dark
matter density is unproblematic, since there are several potential gravitino production
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mechanisms, such as thermal gravitino production.® Therefore the overall gravitino

density can be much larger than the gravitino density resulting from NLSP decays and
the observed dark matter density can be reached. Furthermore, as discussed in the case
of a neutralino LSP, dark matter could be made up of several components and therefore
even if there is no sizeable additional gravitino production, the scenario is still viable.

4.5. Constraints from CMB Distortions

In addition to bounds from the observed cold dark matter density there are constraints
coming from distortions of the cosmic microwave background. These distortions can
arise when part of the electromagnetic energy resulting from NLSP decays is trans-
ferred to background photons, because this changes the corresponding photon energy
distribution. After the energy injection the CMB can re-thermalises through Comp-
ton scattering (ye — ~ve), double-Compton scattering (ye — ~7ye) and bremsstrahlung
(eX — eX#). Early NLSP decays can fully be thermalised, leading to a Planckian spec-
trum with vanishing chemical potential, however, distortions produced by late decays
cannot. In particular, if the double-Compton scattering and bremsstrahlung processes
become inefficient, the photon number will not be changed and electromagnetic energy
release leads to a non-vanishing chemical potential.

From measurements of the FIRAS instrument aboard the COBE satellite it is well
known that the CMB is very close to a blackbody distribution with zero chemical po-
tential [119],

lu| <9-107° (at 95% C.L.). (V.34)

This upper limit on |u| can be translated into an upper limit on late electromagnetic
energy release €ey [120]. However, the limit found in [120] is based on an approximation
which turned out to be reliable only for stau masses above 500 GeV in an improved anal-
ysis [121]. For lighter staus, the bounds become considerably weaker. As a consequence,
they are less constraining than the BBN bounds in our case [98].

4.6. Constraints on the Reheating Temperature

It is likely that in the early universe there was a period of inflation, driven by the non-
vanishing potential energy of a scalar field, the inflaton. Assuming such an inflationary
period any initial abundance of gravitinos is diluted away by the exponential expansion
of the universe during the slow-roll phase. After the end of inflation the gravitino
abundance is (re-)created in a phase of reheating in which a reheating temperature
Ty is reached. In our scenario with gravitino masses mj/,» 2 10GeV the gravitinos

~

are extremely weakly coupled and are therefore not in thermal equilibrium with the

9 In contrast, in many cosmological scenarios one often encounters a gravitino overproduction problem.
To avoid the overproduction of gravitinos one has to restrict the allowed reheating temperatures, cf.
Section 4.6.
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primordial plasma for any reasonable value of the reheating temperature. Rather, the
gravitinos are produced by thermal scatterings at these high temperatures. The resulting
energy density has to be calculated in a consistent finite-temperature approach and is
approximately given by [122,123]

T 100 GeV ms >
Ol p2~0.2 R g V.35
3l =027 (1010 GeV ms /o 1Tev) (V-35)

where m; is the running gluino mass evaluated at low energy. It is obvious from (V.35)
that if the gravitino energy density is known this relation can be used to derive an
upper limit on the reheating temperature and that the maximal possible Ty is obtained
for the heaviest allowed gravitino mass. The maximal reheating temperature in turn
has profound implications on the generation of the observed baryon asymmetry in our
universe. As with the gravitino relic density any initial baryon asymmetry is washed
out after inflation. However, if the reheating temperature is high enough, heavy right-
handed neutrinos can be produced by thermal reactions.'® It is well known that the
CP violating out-of-equilibrium decays of these heavy neutrinos can create a lepton
asymmetry which then can be converted to a baryon asymmetry by sphaleron processes
[125]. This mechanism is known as thermal leptogenesis and can explain the observed
baryon asymmetry for reheating temperatures T > 2 - 10° GeV.

For our benchmark value of the unified gaugino mass, m;,, = 500 GeV, the renor-
malisation group running results in a gluino mass of m; ~ 1150 GeV. We found that
in the G-7 scenario, the gravitino mass is strongly constrained by BBN. The largest
value consistent with our conservative constraint is around ms,; ~ 70 GeV. Using this
upper limit and taking as lower bound ms/,; = 10GeV, we can calculate an allowed
range for the reheating temperature, assuming that all the dark matter is made up of
gravitinos. Since the non-thermal contribution is negligible (cf. Eq. (V.33)), one obtains

from le}z < Qpwm and Eq. (V.1)

3-10°GeV < Tk <3-10°GeV . (V.36)
This is marginally compatible with the minimal temperature required for thermal lep-
togenesis [126]. Increasing the unified gaugino mass m/, essentially leads to a rescaling

of the gluino and gravitino masses, which lowers the upper bound on Ty as can be seen
from (V.35). Therefore a small gaugino mass is needed for a high reheating temperature.

The G- scenario is less constrained by BBN and therefore allows for a much heavier
gravitino. The only restriction is that the gravitino be lighter than the sneutrino, ms/,; <
200 GeV. This leads to a larger allowed range for the reheating temperature,

3-10°GeV < T <7-10°GeV (V.37)

which is consistent with thermal leptogenesis.

10 A strong argument for the existence of these heavy right-handed neutrinos comes from the smallness of
the left-handed neutrino masses, which can naturally be explained in terms of the see-saw mechanism
[124].
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Summary and Concluding Remarks

In this chapter we have investigated cosmological constraints on different scenarios in
gaugino mediation. The leading constraints came from the observed cold dark matter
density and from primordial nucleosynthesis. From the sparticle spectrum which was
calculated in Chapter IV we knew that there were four possible different scenarios in our
setup. The resulting viable dark matter candidates are summarised in Figure V.5 We
found that although a neutralino NLSP is excluded by BBN, a neutralino LSP as the
dominant component of dark matter is a viable possibility. Furthermore gravitino dark
matter with a stau NLSP is strongly constrained and is consistent for a wide range of
parameters only with the conservative BBN constraints. The severe BBN bounds require
a gravitino mass close to the bound from naive dimensional analysis. If the constraints
from catalysed BBN are taken at face value, the gravitino stau scenario is ruled out,
unless there is sizeable entropy production after the stau decoupling. Gravitino dark
matter with a sneutrino NLSP can also be realised in gaugino mediation and is essen-
tially unaffected by all constraints. We therefore conclude that the G-v scenario seems
more natural than the GG-7 scenario in the framework of gaugino mediation. However
one should keep in mind that we assumed strict R-parity conservation in our analysis.
Relaxing this condition can considerably weaken the constraints while still allowing the
LSP to make up all the dark matter.
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Figure V.5.: Allowed parameter space for the soft Higgs masses in gaugino mediation. In the
black and magenta (dark-gray) coloured regions a neutralino is the LSP, whereas in the green
(light-gray) and blue (medium-gray) regions the gravitino is the LSP with either a stau or a
sneutrino being the NLSP. All white areas are excluded by bounds from the observed dark
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matter density and the “conservative” constraints from primordial nucleosynthesis.
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VI. Conclusions and Outlook

This thesis was devoted to supersymmetric orbifold GUTs in six spacetime dimensions
and their application to particle physics and cosmology. Symmetries and symmetry
breaking effects are at the heart of high energy physics and theories with additional
spacetime dimensions offer promising breaking schemes for supersymmetry as well as
gauge symmetries. Nevertheless, despite these attractive features, there is one compli-
cation which is generic to all higher-dimensional theories: The volume and shape of the
extra dimensions have to be stabilised in order to avoid severe phenomenological prob-
lems. An interesting possibility is that quantum effects induce a non-trivial potential for
the extra-dimensional moduli fields. Following this line of thinking, we have calculated
the Casimir energy due to a vector multiplet in the adjoint representation of SO(10)
on the toroidal orbifolds 7?/7Zy and T?/ (Zy x 755 x 7$°). Expanding the result in a
power series we found that the Casimir energy leads to an attractive force. To avoid a
contraction of the extra-dimensional space down to the Planck length, additional con-
tributions to the effective potential have to be taken into account. A detailed study of
the modulus potential where our result for the Casimir energy will be essential is left for
future work.

Having discussed one important contribution to the stabilisation potential, we turned
to more phenomenological aspects of higher-dimensional theories. To this end we have
investigated gaugino-mediated supersymmetry breaking in a six-dimensional SO(10)
orbifold GUT model where quarks and leptons are mixtures of brane and bulk fields.
We found that the couplings of bulk matter fields to the SUSY breaking gauge singlet
brane field have to be suppressed in order to avoid large FCNCs. The compatibility of
the SUSY breaking mechanism and orbifold GUTs with brane and bulk matter fields
is a generic problem which requires further studies. We have also determined bounds
on the SUSY breaking parameters by naive dimensional analysis, which turn out not to
restrict the phenomenologically allowed parameter regions. The parameters relevant for
the superparticle mass spectrum are the universal gaugino mass, the soft Higgs masses,
tan 3 and the sign of . We have analysed their impact on the spectrum and determined
the region in parameter space that results in a viable phenomenology. The model favours
moderate values of tan 3 between about 10 and 25. The gaugino mass at the GUT scale
should not be far below 500 GeV in order to satisfy the LEP bound on the Higgs mass.
For a gaugino mass of 500 GeV, the lightest neutralino is typically bino-like with a mass
of 200 GeV, and the gluino mass is about 1.2 TeV. For intermediate values of the down-
type soft Higgs mass the neutralino is the LSP. For a small or large down-type soft
Higgs mass either the right-handed or the left-handed sleptons can be lighter than the
neutralinos. The corresponding region in parameter space grows with tan . In the
region where sleptons are lighter than all other MSSM particles, the gravitino has to be
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the LSP with the 7 or the 7., as the NLSP.

Motivated by the sparticle spectrum at low energies we also discussed dark matter
candidates in theories with gaugino-mediated supersymmetry breaking. In particular
we investigated constraints from the observed cold dark matter density and primordial
nucleosynthesis on the different scenarios. The resulting viable dark matter candidates
in gaugino mediation are summarised in Fig. V.5. A neutralino LSP as the dominant
component of dark matter is a viable possibility. Gravitino dark matter with a 7 NLSP
is marginally consistent for a wide range of parameters only with the “conservative” BBN
constraints. Furthermore, if the constraints from catalysed °Li production are taken at
face value the BBN bounds require either a gravitino mass close to the lower bound in
gaugino mediation, entropy production after 7 decoupling or R parity violation. Finally,
gravitino dark matter with a ¥ NLSP can also be realised and is essentially unaffected
by all constraints.

All in all we conclude that the framework of supersymmetric orbifold GUTs is the-
oretically very attractive and exhibits many phenomenologically appealing features. It
can provide an interesting low-energy superpartner mass spectrum as well as promising
candidates for cold dark matter, both of which could lead to distinct signatures at the
upcoming Large Hadron Collider.
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A. Appendix

1. Mode Expansion of Fields

1.1. Mode Expansion on T2

The mode expansion of fields which live on the product space M x T? where T2 is a
rectangular two torus can be written as

mn my nz
N T w?R R, m_ZOO n_Zoo¢ exp{ (RT, i R_>} /

with the two radii R, R, and m,n € Z. We now want to specialise this mode expansion
to the case of an orbifold with reflection symmetries. In order to be able to apply the
orbifold symmetries, it is convenient to rewrite the mode expansion on the torus in the
following way,

1 1
() Y, 2) = ———————— (0, 0) + On mZ/Rz + (0,—n) —mz/Rz
(#:9.2) V2m2R, R, \/2 {‘b ;0 " ]

+ Z [(b(m,O)(x)eimy/Ry + (b(fm,O)efimy/Ry}

m>0

+ Z Z |:¢(m,n) <x>€imy/Ry einz/RZ + (b(m,fn) (x)eimy/Ry efinz/Rz

m>0 n>0

+¢(—m,n) (:L,)e—imy/Ry einz/Rz + ¢(—m,—n) ($)e—imy/Ry6—inz/Rz:| }

1 {1 00
T 2rPR,R. V2

e () £ (7).

n>0

ey ot () v (5)

m>0

S [ (L g )+ (4 )

m>0 n>0
(m,—n) my nz (m—n) o (T 2
+oy cos <Ry Rz) + ¢ sin (Ry Rz) } }
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where we defined

o0 () = 60 (x)

(mm) () — L (glmam) () 4 g (g
) = 5 (6@ + 6 a)
0" (@) = —= (6 (@) — o (@)

V2

This rewriting in terms of sines and cosines is particularly useful to display the symmetry
properties of the field. Having this expression at hand, it will be easy to obtain the mode
expansion on an orbifold.

1.2. Mode Expansion on T?/Z,

We first consider fields which are even under the orbifold action. This leads to the
following relation between the expansion coefficients

¢! (z) = o (x)

so that only ¢ (z) is nonzero. Using this relation we can write the mode expansion
for even fields as follows,

1 0.0 0m) (5 nz
(I)+(x7y7z)_\/w{\/— +nz>o¢ COS <R2>
+Z¢(m0 cos( ) ZZ{ mn) ) cos (7;y+2z)

m>0 m>0 n>0

e e ()]}

1 00 (4 o) (m)
= + COS
\/ 7T2R R {\/_ nz>0¢ Rz
m,n) m nz
+ E 5 ¢( COS (R—j + R_z) }

m>0n=—o0

e T (3
™R, R >0 20n.0 R,
303 e eon (2 E)}

m>0n=—o0
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so that we can finally write the mode expansion for even fields as

1 o
BrloE) = V/2m2 R, R, 25000 léo’m S ]

n>0 m>0n=—oo

X qs(j”")(x) cos (%j + %i) : (A.1)

Now we consider the mode expansion of fields which are odd under the orbifold action.
The corresponding coefficients satisfy

67 @) = 6
so that only ¢"™™ (z) is nonzero. Performing a similar analysis as before we obtain

0T 3|

n>0 m>0n=—o0

x ™™ (1) sin (% + %) . (A2)

b _(z,y,2) =

\/27T2R R,

1.3. Mode Expansion on T?/(Zy x 75 x 7Z5°)

Let us now consider the action of the two additional Z,-parities on the mode expansion.
The action of the other two Zs-symmetries on bulk fields is given by a reflection around
y' =y + $R, for Z5° and a reflection around 2’ = z + TR, for Z3¢ respectively. Lets
start with the Z5® reflection. Using the result for &, and rewriting it in terms of ¢ in
order to see the action of the orbifold symmetry we obtain

1
) = e 5 3

m=1n=—o0

mn) my  nz mxw
xqﬁsr (x)cos(Ry +R—z_7) .

It is obvious that this will be even under ' — —%’ if m is an even integer and odd if m
is an odd integer. Therefore the mode expansion for fields which are even under the first
Zo-symmetry and even or odd with respect to the second Z,-symmetry can be written
as

X 00
(I)-H-(xa Y, Z) = \/QWQRszQ&L,O(Sm,O [50,771 Z " Z Z ]

n>0 m>0n=—o0

mn 2m nz
N
Yy z

Z Z] L) )COS((QmRt 1)y+%i)

m=0n=—o0

(I>+_(l‘, Y, Z)

\/2 7T2R R,
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Performing an analogous approach for all other combinations of parities we finally obtain
for the mode expansion on T2/ (Zqy x 755 x ZS¢)

(2m, 2n
o+

1
b,y (2,y,2) = \/Qﬂ'RyRZ25n,O5m,O lomz+z Z

m=1n=—oco

2 2
X COS < ;ZJ?/ + }Zj) , (A.3a)
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++ (5571%2) \/m
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O (r,y,2) = \/m Z Z] Cmt2m) ()
m=0n=—o0
2m+1)y  (2n)z
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m=0n=—o0
X COS <<2mR—Z Dy + (Qn};—zl)z) : (A.3d)
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2 2
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2. Evaluation of the Casimir Sums

Before we evaluate the Casimir sums, let us consider two sums which will prove partic-
ularly useful for this calculation.

F(s;a, c)

The first sum which we will need is given by

sac EZ T+ a) +02]S

m=0

This is a series of the generalised Epstein-Hurwitz zeta type. The result can be found
in [127] and is given by

—S

~ o mr
F(s;a,c) Z (m + 5) ¥y (—2m, a)

=0
P(S %) 1 2s

2I(s)
21

+ = F(s) A sZps Y2 cos(2mpa) K51 2(27pc)

VT

where ( (s, a) is the Hurwitz zeta function. For us it will be important that ((—2m,0) =
C(—2n,1/2) = 0 for m € N and n € Ny. Therefore the first term in F(s; a, ¢) collapses
in our case. For a = 1/2 we can drop the first term completely and for a = 0 only the
first term in the sum contributes with (4 (0,0) = +1/2. In this case the first line is
simply given by +1/2¢™%.

F(s;a, c)

A related sum which we will also need frequently is

o0

B 1
Fsiad= 2, Goraprrar

m=—0oQ

By observing that
Cu(—2m,a) = —Cy(—2m,1 — a)
for m € N and that

F(s:a,c) = F(s;a,¢) + F(s;1 —a,c)
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we can easily obtain F'(s;a,c) as a particular case of ﬁ(s; a,c),

F(s;a,c) = \{7)\ 72T (s — 3) +42@08(27@@)(771)|c|)3’%K37%(27rp\c\)

p=1

Equipped with these formulas we come back to the calculation of the Casimir energy in
our specific setup. Let us start with the Casimir energy on T?/ (Zy x Z5° x ZS¢). Albeit
more involved, we can easily restrict the result to the case of T2 /Z,.

2.1. Casimir Sum on T?/ (Zy x Z5 x Z$°)
Case 1

We first consider the case where

DIES DI

m=0n=—o0

In this case the sum can be written as

ZZ 2(m+a) + (n+B)°) +p’]

m=0n=—o0

where we rescaled s — s + 2 and defined p? = RTEM 2. Using the expression of F'(s;a, c)
we can perform the sum over n,

ZZ *(m+a)’+ (n+8)°) +p’]

m=0n=—o0

1

=

+ 42 cos(2mpf3) (7Tp Vver(m+ a)? + ,MZ)Si2 Ks_%(%p Ver(m+a)® + MQ)} }
[(s— 1) &

:\/E 2 2(62(m+a)2+,u2)1/2_8

1 s

(Wp)s_% (\/62(m +a)? + MZ) 2

K.y (2mp /it )+ 1)
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Let us concentrate on fi(s) for now. The sum over m can be performed with the help
of F(s;a,c),

fi(s) = 2 Z (m+ ) + )

m=0

A~ 2) ( e ) ol 25{ (%)1_28CH(0,06)

D(s—1) ,\2-2
VT = 1/2)”

1T s—1/2

+W 1 SZpS ' cos(2mpa) K1 (27p (H))}

A (0. 0)
T MZ_QS
2(s—=1) e

2m* —s, 1—s - s5—
I(s) e st Zp ! cos(2mpa) K_1(2mp (£))
p=1

+

+

Remembering the shift in s we can now write ((s) as

(6 =z (1) oV e eu0.0)

Rr2 \R2)  (s)(s+1) He)
2—2s
+ L
2(s—=1) e
2m* sulsipslcos(%pa)[( (27p (%))
F(S) 2 s—1 e

=

—S

4T XX N =3 ’
F\(_SF);COS(%M ;0<7Tp> 2 <\/e2(m—|—04)2—|—,u2)

K, y(2np /)|

Now we have to differentiate with respect to s and set s = —2. Since I'(—2) = oo, the
derivative only has to act on I'(s) if the corresponding term is inversely proportional to
['(s). Note that
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Performing the differentiation we obtain

d
&C(S)

s=—2

1 1 16m
_727T2R§§{ 15 M Cu (0, )
W 2
+ 360 [—11+ 6log(4/R2) + 121og(u)]

4 = cos(2mpa
+ et Y O g oy (2)

p=1

“+00 [e’e]
+ 5Y IS (Pl )+ )

2
s
p=1 m=0

ot

Ks)5(2mp \/62(m +a)? + MQ)}

where we used K,(z) = K_,(z). Replacing again e = R,/R, and y = R,M /2 we finally
obtain for the Casimir energy in the case 1

. 1 167 M°R?
Vs,f&M = { - CH<O7 Oé)

~ 4n?R! 15 32
R,R>M*
2304
4 ROMP i cos(2mpay)

K MR
2 8R§ = p3 a(p v)

+7 [—11 + 121log(M)]
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8 (R.\"*& cos(2mpf3) 5 M2R2\1
ra(m) SRS (e )

p=1 m=0

K2 (27? p R—\/ (m + a)? + M2R?2 /4) } . (A.4)
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Case 2

This time we consider the case where

)5 5p o]}

m=1n=—o0

In this case the sum can be written as

=> [+ (n+ 8 +p7]

n=0
- Z Z —Om.0 Z [ (m+a)*+ (n+B)*+p] ",
m=0n=—o0 n=-—09,

where we again rescaled s — s + 2 and set y? = RTEM 2, The double sum corresponds
to the case 1 we already calculated. Let us now evaluate the additional piece, which we
denote by f3(s). Note that

> [+ 57+ + 7]

= [(n+ﬁ) + e%a? +,u +Z n+1— +62a2+u2]
n=0

n=0

—S

Then it is easy to see that f3(s) can be written as'

i ” +1—0)?%+e*?+ U } 5
n=0
= (62042+M2) (0,1 - 3)
_ﬁréizg);) (202 + )1/2 s
_ % (e2a2 + u 1/4—3/2 g;psm cos(2mp(1 — 5))[(5—1/2(27@ 2a? + 12)

!Note that (x(0,1) = —1/2 and (g (—2m,1) =0
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We will now evaluate the contribution of f3(s) to ((s) and denote it (3(s).
1 1 AN 2o oy
C3(S)Z—Wﬁ (ﬁ) {(604 +1) " Cu(0,1 - 5)

1
—2s
TG ()) TS
2m? 1/2-5 s—1/2
+ ——ve2a? + p? Zp cos(2mp(1 — 3)) Ks—_12(2mpr/€2a? + pi?)
()

Now we perform the differentiation again and set s = —2. For terms which are propor-
tional to the inverse of I'(s) the derivative has to act only on the Gamma function as
before.

ng(S)
ds |,__,
1 2 2 22 |3 2
== 47T2R4 (6 o +M ) 5 —lOg(G a +M ) log(4/Rz) CH(Ovl _ﬁ)
5/2

-1 (e o + p?)

4 5/4 = cos(27p(1 — 3
+— (P +42%) )y o ))K5/2(27Tp 62a2+u2)}

p=1

where we used I'(—5/2) = —8/15/7. Replacing again e = R, /R, and u = R,M/2 we
finally obtain for the Casimir energy in the case 2
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2.2. Casimir Sum on T?/7Z,

The summation can be performed exactly as in the case of T?/ (Zy x 75 x 7S¢). How-
ever, since we already evaluated the more involved case, this will not be necessary for
all terms which are proportional to I'(s)'. In this case we see by comparison that the
result for the Casimir energy of the scalar field ®, on 7?/Z, can be obtained from the
corresponding expression on 12/ (Zy x 75 x 75%). We just have to rescale VS(‘IIIB M) by
1/16 replace M by 2M and set « = 3 = 0. The remaining two terms are also easily
calculated.

3. Power Series of the Casimir Energy

Here we will perform the power series of the Casimir energy in x = M /R, R, < 1. The
leading terms will be O(z°), but they will cancel within one supermultiplet. The first
non-vanishing terms will be O(z?).

3.1. T2/Z,

We denote the terms of the Casimir energy by V¢, i = 1, ..., 5. Clearly, only the second,
third and fifth term will give a contribution which is O(2?). Let us look at these three
cases in turn.

VZ
To expand the V2 we use that

3/2
172, _ _© _
K (2mpe™'Pz) = e +O(z) .

We concentrate on the second term in the expansion which will lead to a term O(z?).
Using the expansion given above, V2 can be written as

1

Viep——
+28807TR;

M?R,R, , (A.6)

where we used

$i-x
4—_.
= 90
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V3
We can expand the Bessel function including its prefactor as

5
2\ 1
<m2 + x—) K59 (27Tp e'?vem? + xQ)
e

g — {3 + 6mpme + 47*p*m?e? 1+ 2mpme O(x4)} '

8m2pP/2eb/2 - Apl/2¢3/2 X

Inserting this expansion, the corresponding term can be written as

1 8 (R.\"? & 1+ 27mpme
34 - F [ —27pme 2
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— T
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1§ e s LG
V5
With the help of
Kso(2mpet/z) = Ww‘f’p — Wx_l/Q + O(z*?)

the last term can be written as

¢(3) 2
vy SU app g A.
AR, Y (4-8)

where we used
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Collecting all terms and remembering the factor 90, the Casimir energy of the vector-
multiplet on 72 /Zs is given to leading order in z = M /R, R, by

1

_ 2
Vo = = g R
45M2 21 [R. p
ey + coth(mpR./Ry) b . A9
327T4Rgpzl p3{Rysinh2(7TpRz/Ry) coth{npR./ y>} (4.9)

3.2. T2/ (Zy x 75 x 75°)

As before we denote the terms of the Casimir energy by Vi, i = 1,...,7. The first two
terms of the Casimir energy clearly do not contribute.

V3
For the third term we need the expansion

ge3/2 /2
K —124) = - —+0
3 (ﬁpe SL’) e Rl + O(x)

Inserting this expression into the third term and performing the sum over p we obtain

1 Rz 4 . —_2mic . TiQ
V=g () MRR: [Lise ) 4 L]

where we used

. cos(2mpa 1. om . io

Z ( p ) _ - [L14(6 2ma)+L14(627r )} )
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p=1

Here Liy a polylogarithm. From this expression we can extract the expressions for

a=0,1/2,

1
P o= M*R,R, A10
Va—O + 7207TR§ RyR ) ( )
VA - ' _ApRR (A.11)

=2 BT60rRET YT '
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V4

Here we need the expansion

( 2 2 Ry 5/4[( 9Bz 2 2 Ity
m+a) +$E 5/2 WpR—y (m—i—a) +.T4R
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w62 (r. /Ry O )

Plugging the second term of this expansion back in we obtain
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A2 R 2
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Let us now come to the particular values of o and (.

e o, =(0,0)
M 1 R, 1
Vo5 1+ coth(mpR. /R A12
a=0,8=0 — 167T4R2 Z { + coth(mpl./Ry) + 7TpRy sinh?(mpR, /Ry) } ( )
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(e 9]

M2 1 1 R, coth(mpR./R,)
v ) itz 2y Al
a=1/2,4=0 — 167T4R2 Z { su]h(ﬂ'pR /R )) + ﬂ-pRy sinh(ﬂpRz/Ry) ( 3)

o a,3=(0,1/2)

M &
4
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™ R, sinh®(1pR./R,) } ( )

96



o a,f=(1/2,1/2)

[e o]

2 1 cos(7p)
4
Vazi/2,6=1/2 = 1671 R? Z {Smh(WPR /R >)

R, cos(mp) coth(mpR,/R,)

G A15
L R, sinh(mpR,/R,) } ( )

V5’6

The fifth and sixth term are only non-zero for « = 1/2 and therefore do not contribute
to the Casimir energy.

V7
For the last term we need the expansion

22\ °/4
<a2 + @) Kso(mpe'*Vdea? + 12)

_ —2mpea [ 3+ Bmpea + Ar*p*e*a® 1+ 27pea 240t}
8 2pb/2e5/? T epieesz”

Then V7 can be written as

— cos?wp - f o—2mpea
Vi=- WR—ﬁZ devmmea s 1 ampea)

=1

p
1 R,
— _ 16W4R R_:L, {7T€Oz Ll ( 727r(eoz+zﬁ)) —|—L1 ( —2m(ear— zﬁ)))

. (Li3(6_2”(8a+w)) n Lig(e—Qﬂ(ea—iﬂ))) } :

1
2

We only have to consider the case v = 0 here. Choosing 5 = 0,1/2 we obtain

- M?
. e
Vicip =+ o 70 3) (A.17)

Collecting all the terms and taking into account that the fermionic contribution comes
with a minus sign we obtain

97



Appendix A: Appendix
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1 1
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1
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720nRL 64m R?
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7
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M K1 R, cos(mp)
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7
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M X1 cos(mp) R, cos(mp) coth(mpR./R,)
~ 167'R2 Z}E sinh(mpR,/R )) * "PR, sinh(mpR,/R,) '
E— 2/ 1ty y 2/ 1y

With these expressions the final result for the Casimir energy of the vector multiplet on
T2/ (Zy x 75 x Z$°) to leading order in = M /R, R, is given by

1 1
M?R,R, + — = M?((3)

Vy=—
" 48R} 211 R2

M? 3 %{ [13 + 8 cos(mp)] [1 + coth(mpR./R,)]

 8m2R?
p=1
1
+ 12[1 + cos(7p)] (1 + i coth(ﬂpR /R, )) b (R TR)
2y
1
+ 78 (1348 : A.18

This expression still looks quite complicated. However, in practice only the first few
terms of the sum contribute.
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