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Abstract
In this work we investigate the semiclassics of the Sinh-Gordon model. The Sinh-Gordon model
is integrable, its explicit solutions of the classical and the quantum model are well known. This
allows for a comprehensive investigation of the semiclassical quantization of the classical model
as well as of the semiclassical limit of the exact quantum solution. Semiclassical means in this
case that the key objects of quantum theory are constructed as formal power series. A quantity
playing an important role in the quantum theory is the Q-function. The purpose of this work is
to investigate to what extend the classical integrability of the model admits of a construction of
the semiclassical expansion of the Q-function.
Therefore we used two conceptual independent approaches. In the one approach we start from
the exact nonperturbative solution of the quantum model and calculate the semiclassical limit up
to the next to leading order. Thereby we found the spectral curve, as well as the semiclassical
expansion of the Q-function and of the eigenvalue of the monodromy matrix. In the other approach
we constructed the �rst two orders of the semiclassical expansion of the Q-function, starting from
the classical solution theory. The results of both approaches coincide.

Zusammenfassung
In dieser Arbeit untersuchen wir Semiklassik des Sinh-Gordon Modells. Das Sinh-Gordon Modell
ist integrabel, die expliziten Lösungen der klassischen und der Quantentheorie sind bekannt. Das
ermöglicht eine umfassende Untersuchung sowohl der semiklassischen Quantisierung des klassis-
chen Modells als auch des semiklassischen Grenzwerts der exakten Quantenlösung. Semiklassisch
bedeutet in dem Fall, dass die entscheidenden Grössen der Quantentheorie als formale Poten-
zreihe in ~ konstruiert werden. Eine Schlüsselrolle in der Lösung der Quantentheorie nimmt die
Q-Funktion ein. Ziel der Arbeit ist es zu beantworten, inwieweit die klassische Integrabilität des
Modells eine Konstruktion der semiklassischen Q-Funktion ermöglicht.
Dabei verfolgen wir zwei konzeptionell unabhängige Wege. Zum einen gehen wir von der exakten,
nicht störungstheoretischen Lösung des Quantenmodells aus und berechnen den halbklassischen
Grenzwert bis zur nächstführenden Ordnung in ~. Wir �nden dabei die Spektralkurve, sowie die
semiklassische Entwicklung der Q-Funktion und des Eigenwerts der Monodromiematrix. Zum an-
deren konstruieren wir die ersten beiden Ordnungen der halbklassischen Q-Funktion ausgehend
von der klassischen Lösungstheorie des Modells. Die Resultate beider Herangehnsweisen stimmen
überein.
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Chapter 1

Introduction
This work deals with the semiclassical treatment of the Sinh-Gordon model in �nite volume.
For the de�nition of the Sinh-Gordon model, we take a �eld ϕ(x, t), which lives on the cylinder
(x, t) ∈ [0, R] × R and satis�es periodic boundary conditions, ϕ(x + R, t) = ϕ(x, t). Apart from
that, it has to solve the so called Sinh-Gordon equation

{ (
∂2

t − ∂2
x

)
ϕ(x, t) = −8πµb sinh(2bϕ(x, t))

ϕ(x + R, t) = ϕ(x, t) . (1.1)

The special feature of the Sinh-Gordon model is the integrability of the classical and the quan-
tum model. Integrability basically means that a model possesses as many commuting conserved
quantities as degrees of freedom and can thus be solved explicitely in terms of �rst integrals. In
the case of a �eld theory, in�nitely many degrees of freedom are present as the �eld con�guration
has to be speci�ed at every point in space-time.
In the Sinh-Gordon case, there are known solutions for the classical and the quantum model, which
will be described later. In this thesis, we examined the transition of the classical solutions to the
quantum ones and vice versa. In other words, we investigated the semiclassical quantization and
the semiclassical limit of the exact solution of the model.

1.1 Motivation
In the following we will successively motivate why one studies integrable models at all, why a
semiclassical analysis is interesting and why we are working with the Sinh-Gordon model.

1.1.1 Why integrable models
A general feature of integrable models is that they are, at least in principle, explicitely solvable.
As this is a rare property in nature, but these models nevertheless appear in a wide range of areas
like hydrodynamics, nonlinear optics, condensed matter, plasma physics, high energy physics, ...,
these models are worth to be studied in more detail.
Apart from these concrete applications integrable models are interesting also from a more theo-
retical point of view: one of the main questions of modern theoretical and mathematical physics is
the construction of nontrivial interacting quantum �eld theories. The quantum integrable models
are one of the few examples where this has been done rigorously1. Although these models are
usually de�ned in 1+1 dimensions and although there is no integrable quantum �eld theory in
3+1 Minkowski space, one can learn a lot about quantum �eld theory by studying the explicit
solutions of these integrable QFT's. The knowledge of a complete non-perturbative solution of an
interacting quantum �eld theory admits of a detailed study of perturbation theory and renormal-
ization as well as of an investigation of non-perturbative e�ects2.
From the mathematical point of view integrable models are also interesting. First of all they

1In fact, apart from the approach via integrable models, there is only the constructive �eld theory which deals
with the clean construction of nontrivial interacting quantum �eld theories, see for example [1]. Since the 1970's,
they achieved the construction of quiet some models in 2 and 3 dimensions, like the P (φ)2 models of Glimm and
Ja�e or the Yukawa model. However, until now a direct link between integrable �eld theory and constructive �eld
theory is missing.

2A famous example where nonperturbative e�ects become important is the up to now not understood problem
of the quark con�nement. In the regime where con�nement takes place perturbation theory simply breaks down.

7



8 CHAPTER 1. INTRODUCTION

constitute examples of explicitely solvable partial di�erential equations. The second point is that
there are many interesting structures connected with integrable models, like in�nite dimensional
Lie algebras and quantum groups.

1.1.2 Why semiclassics
Usually, if one has a classical �eld theory and is interested in its quantum counter part, it is
absolutely not clear how to perform a rigorous quantization. This is also true in the case of
integrable models. Therefore it is interesting to construct at least a semiclassical quantization of
the model. Semiclassical means that the key objects characterizing the quantum �eld theory are
constructed as formal power series in ~.
In this work we investigate how far the integrability at the classical level of the Sinh-Gordon model
facilitates the construction of the semiclassical quantization. In order to appraise the results of
the semiclassical quantization one should compare them to the non-perturbative solution of the
quantum Sinh-Gordon model and to its semiclassical limit. As the semiclassical expansion is only
a formal power series, it is interesting to see wether the behaviour of the full quantum solution
di�ers from the one of the semiclassical expansion. If one has understood this, one can draw
conclusions about the full quantum solution by studying the semimclassical quantization.
Another motivation for the calculation of the semiclassical limit is to get a mapping between the
classical observables and their quantum counterparts. This mapping may not be obvious, as the
exact quantization based on the integrability of a theory often produces somewhat abstract results.

1.1.3 Why the Sinh-Gordon model
The Sinh-Gordon model is one of the few models where both the classical and the quantum so-
lution are known. Thus, if one wants to study the semiclassics of an integrable model, it is the
perfect candidate.
Another motivation comes from the nonlinear σ models. In recent years, there has been a growing
interest in nonlinear sigma models with non-compact target space, as there are possible applica-
tions in string theory on curved space time and to gauge theories via the AdS-CFT correspondence.
Thereby a nonlinear sigma model describes a scalar �eld X, which takes values on a nonlinear
manifold, the target space. The Lagrangian density is given as

L =
1
2
g (∂µXa, ∂µXa)− V (X), (1.2)

where g is the Riemann metric of the target space and V is the potential.
In general, nonlinear sigma models are very hard to solve even if they are integrable. In case
of a non-compact target space, this is worse . At this point, the Sinh-Gordon model becomes
interesting as there is a qualitative similarity to some of those sigma models. So, by studying the
Sinh-Gordon model, which is much easier to handle, one hope to understand certain features of
the more di�cult nonlinear sigma models.

In the followig two sections we will introduce the basics of the classical and the quantum Sinh-
Gordon model. After that we will describe the main results of this thesis.

1.2 The classical Sinh-Gordon model
Classically, the Sinh-Gordon model has been solved by the inverse scattering method. Thereby, one
attaches to the nonlinear partial di�erential equation a linear eigenvalue problem, whose potential
is given by a solution of the original nonlinear equation. In the Sinh-Gordon case, the linear
eigenvalue problem is given by

{
∂xΨ(x, t; λ) = U(x, t; λ)Ψ(x, t, λ),
∂tΨ(x, t; λ) = V (x, t; λ)Ψ(x, t; λ), (1.3)

8



1.3. THE QUANTUM SINH-GORDON MODEL 9

where U and V are 2 × 2-matrices containing the Sinh-Gordon �eld ϕ(x, t); λ is an auxiliary
parameter, the spectral parameter. The key observation is that the spectrum of (1.3) does not
depend on time if ϕ(x, t) indeed solves the Sinh-Gordon equation. The idea is now to gain general
information about the spectrum of (1.3) by doing spectral theory; then one can start from a �xed
spectrum combined with initial conditions and determine the Sinh-Gordon �eld by an inverse
transformation. Further information can be found in the section about the classical Sinh-Gordon
theory.
An important quantity in the inverse scattering method is the monodromy matrix, which is de�ned
as the path-ordered exponential

M(t0; λ) = P exp

(∫ R

0

U(x′, t0;λ)dx′
)

. (1.4)

It is the matrix of parallel transport along the contour t = t0, 0 ≤ x ≤ R, namely it transfers the
solutions of (1.3) across this contour,

M(t0; λ)Ψ(0, t0; λ) = Ψ(R, t0; λ). (1.5)

Other important quantities are the eigenvalues of the monodromy matrix Λ(λ), Λ−1(λ), as well
as its trace T (λ) = Λ(λ) + Λ−1(λ). The peculiar thing with the eigenvalues is that they are
two-valued functions of λ ∈ C. The Riemann surface Σ, on which they are single-valued, is called
the spectral curve; it contains all the conserved quantities of the model. The curve is de�ned as

Σ : µ2 = T 2(λ)− 4. (1.6)

It is a two-sheeted covering of the punctured plane C\{0,∞} with simple rami�cation points along
the real axis. The Riemann surface has cuts between two adjacent branching points, respectively.
We will restrict our considerations to the case of the so called �nite zone solutions, i.e. to the case
of �nitely many cuts.
In order to describe the dynamics of the Sinh-Gordon model, it turned out to be useful to intro-
duce a new set of canonical variables. These 'separated variables' live on the spectral curve. After
having speci�ed the initial conditions one �nds that under time evolution they are moving around
the cuts of the spectral curve.

1.3 The quantum Sinh-Gordon model
In order to get a rigorous quantization process and a solution of the quantum Sinh-Gordon model,
A.Bytsko and J.Teschner made in [10] a lattice discretization of the model. Thereby they replaced
the space by N lattice points xn and the �elds by ϕn = ϕ(xn), Πn = ∆Π(xn), where ∆ = R

N is
the lattice spacing. These �elds get canonically quantized: They are considered as operators with
commutation relations

[ϕn,Πm] = 2πiδn,m. (1.7)

The commutation relations can be realized in the usual way on the Hilbert space H ≡ (L2(R))⊗N .
In [10] Sklyanins separation of variables method (SOV) has been the basic tool for a solution of
the lattice model. Thereby one introduces a new set of variables, which allow for a reduction of
the in�nite dimensional problem to an in�nite set of decoupled one-dimensional ones.
A quantity that plays a key role in the SOV approach is the so called Q-function. In the setting
of separated variables it plays the role of an one-dimensional wave function, as the wave function
of the model can be written in the form

〈y1, y2, . . . |Ψ〉 =
N∏

j=1

Q(yj) (1.8)

9



10 CHAPTER 1. INTRODUCTION

where the y1, y2, . . . are the separated variables and |Ψ〉 is an eigenstate of the model. The
Q-function is a generating function of all the conserved integrals; it also encodes the energy
eigenvalues of the theory. The Q-function is an analytic function in a certain stripe of the complex
plane. Its asymptotics is �xed, so its only freedom is the number and the location of the zeros
in the stripe. The position of these so called Bethe roots is not completely arbitrary; they have
to satisfy a nonlinear system of equations and are parametrized by a set of integers, the so called
Bethe numbers. All in all, the Bethe numbers determine an eigenstate completely.
In [byte06] they characterized the Q-function as a solution of a functional equation, Baxter's
equation, with speci�ed analytic properties. Thereby they found a representation of Q(λ) via
certain nonlinear integral equations. On the level of these integral equations it is possible to
perform a continous limit; thus one arrives at the solution of the continuous Sinh-Gordon model.
In the continuum Baxter's equation is given as

Q(λ)T (λ) = Q(qλ) + Q(q−1λ). (1.9)

Here T (λ) is the trace of the quantum monodromy matrix; q = eiπb2 and b2 corresponds to the
Planck constant ~.

1.4 Results
This thesis is concerned with the semiclassical regime of the Sinh-Gordon model. On the one hand
side we investigated the semiclassical limit of the full quantum theory. Here the main idea was that
there is a classical limit, where the zeros of the Q-function condense into a �nite number of real
intervals. These intervals are then taken as the cuts of a Riemann surface, the classical spectral
curve. We identi�ed sets of Bethe numbers, whose corresponding Bethe roots are expected to
condense in the limit that their number M goes to in�nity and M~ = const. Unfortunately, we
were not able to proof the condensation of the Bethe roots rigorously, but we gave strong hints
for the correctness of the statement3. Based on this conjecture we calculated the leading and the
next to leading order of several quantities like the Q-function, the Bethe ansatz equation and the
quantum eigenvalue of the monodromy matrix Λq. We could show, that the leading order of Λq

indeed coincides with the classical eigenvalue of the monodromy matrix.

On the other hand we investigated the semiclassical quantization of the model. The aim was the
determination of the semiclassical expansion of the Q-function, starting from the classical theory.
Thereby each order of Q is assumed to live on the spectral curve.
In a �rst step we quantized classical separated variables on the spectral curve and found Baxter's
equation (1.9). Having that we could easily calculate the leading order Q0 of the Q-function as
a solution of (1.9). We found, that Q0, in order to be single valued has to satisfy the Bohr-
Sommerfeld conditions

∮

aj

d log Q0 = 2πiNj for 1 ≤ j ≤ n,Nj ∈ Z. (1.10)

Here the cycle aj encircles the jth cut of the spectral curve. The Bohr-Sommerfeld conditions are
indeed quantization conditions of the spectral curve.
Baxter's equation allowed us to derive a functional equation for each order in ~, which should
be satis�ed by the corresponding order of Q. It is known that Q-functions of continuous �eld
theories have certain analytical properties. Thus we investigated, how far the functional equations
determine the semiclassical expansion of the Q-function if we demand it to have these analytical
properties. We studied in particular the next to leading order and calculated the corresponding

3It is not too surprising that this proof is so hard; the statement that the Bethe roots condense in this limit is
equivalent to the statement that the spectrum of the quantum theory becomes dense in the classical limit. In the
whole physics, such a statement could be shown rigogously only for really simple models.

10



1.4. RESULTS 11

order of the Q-function, Q1. Our result coincides with the one from the semiclassical limit, except
that in the semiclassical quantization approach Q1 is not completely �xed. An undetermined
zero mode of the functional equation remains, which takes on a concrete value in the case of the
semiclassical limit. In the concluding chapter we will make a proposal how to �x this zero mode.
Apart from this zero mode, Q1 is well de�ned without the need for further Bohr-Sommerfeld
conditions.

11



12 CHAPTER 1. INTRODUCTION

1.5 Outline of the content
In this section we will give a short survey of the content.

Chapter 2: In this chapter we will introduce the necessary mathematical background, which
will be needed for the understanding of the thesis. Thereby the focus lies on certain aspects of
Riemann surface theory.

Chapter 3: Here we will describe the classical theory in more detail. Of special importance in the
following will be the section about the eigenvalue Λ(λ). There we analyze the analytical behaviour
and determine an explicit form of Λ(λ).

Chapter 4: This chapter is concerned with the semiclassical quantization of the model. To
this aim we quantized the separated variables on the classical spectral curve and got as a result
Baxter's equation. Baxter's equation, and in addition the demand that the Q-function exhibits
certain analytical properties, allowed for a calculation of the leading order of the Q-function, and
of the derivation of a functional equation for each higher order. It turned out, that in order to
have a well de�ned leading order Q-function, one has to quantize the spectral curve by introducing
Bohr-Sommerfeld quantization conditions.
We solved the next to leading order functional equation explicitely, using two di�erent ways.
Thereby, it turned out that the next to leading order of the Q-function, Q1(λ), could be calculated
up to one zero mode of the functional equation, which couldn't be �xed at this stage. Apart from
this, Q1(λ) is well de�ned without the need for further Bohr-Sommerfeld conditions.

Chapter 5: This chapter contains a description of the rigorous quantization of the Sinh-Gordon
model. First, the model on the lattice gets quantized. Having that, one can take the continuous
limit and ends up with a quantized continuous Sinh-Gordon model.

Chapter 6: This chapter is devoted to the semiclassical limit. The main idea is that there is a
classical limit, where the roots of the Q-function condense into a �nite number of real intervals.
These intervals are then reintepreted as the cuts of a Riemann surface, the classical spectral curve.
In this chapter, we identify sets of Bethe numbers, whose corresponding Bethe roots are expected
to condense in the limit that their number M goes to in�nity and Mb2 = const. We found strong
hints in favour of this conjecture.
Based on this conjecture, we calculated the leading and next to leading order of several quantities,
like the Bethe roots, the eigenvalue of the monodromy matrix and the Q-function. The results for
the Q-function coincide with the ones from the semiclassical quantization, except that in this case
the zero mode of the next to leading order takes on a concrete value.

Chapter 7: In the conclusions we �rst summarize the results of the preceding analysis. Then we
will compare the results of the semiclassical limit to the ones of the semiclassical quantization.

12



Chapter 2

Mathematical basics
The aim of this section is to provide the necessary concepts of algebraic geometry, to the extend
they are needed in this work. Further information and proofs can be found in [2].

De�nition 2.0.1 A Riemann surface is a connected, 1-dimensional complex manifold.

De�nition 2.0.2 A Riemann surface that is homeomorphic to a sphere with g handles is called
a closed Riemann surface of genus g.

The important example for us are the hyperelliptic Riemann surfaces, which are de�ned by

Σ : µ2 =
2N+2∏

j=1

(λ− λj) (2.1)

where λi 6= λj ∀i 6= j. The genus is N. The curve is a two sheeted covering of the Riemann sphere,
i.e. there are two values of µ for each λ, depending on the sign of the root. At the so called
branching points λ1, . . . , λ2N+2, the two sheets of Σ touch each other. Close to a branching point
λj , the curve is described by hyperelliptic coordinates

µ =
√

λ− λi, λ ∈ C. (2.2)

This implies, that the di�erential dλ = 2µdµ has a simple zero at the branching point λi.
On Σ we introduce two families of closed curves {a1, . . . , aN} and {b1, . . . , bN}, which form a basis
for contour integration and are usually called 'canonical cycles'. We illustrate the general form
and position of these cycles in �gure 2.

λ 1
λ

2
λ 3

λ
4 λ 5

λ
6 λ 7

λ
8

a 1 a 2 a 3

b 3b 2

b 1

Figure 2.1: A hyperelliptic Riemann surface of genus 3, canonical a- and b-cycles

De�nition 2.0.3 A di�erential ω will be called holomorphic or abelian of the �rst kind if there
exists a representation of the form

w(λ) = f(λ)dλ (2.3)

for every point P = (µ, λ) ∈ Σ, where f(λ) is an analytical function.

13



14 CHAPTER 2. MATHEMATICAL BASICS

For example, the di�erentials

ωk(λ) =
λk−1

√∏2N+2
j=1 (λ− λj)

dλ, k = 1, . . . , N, (2.4)

are holomorphic on the hyperelliptic curve (2.1).
Any holomorphic di�erential is closed. One de�nes the periods for the cycles a1, . . . , aN , b1, . . . , bN

of any closed di�erential ω as

Ai =
∮

ai

ω, Bi =
∮

bi

ω, i = 1, . . . , N. (2.5)

Proposition 2.0.1 Let X be a compact Riemann surface of genus N. Then the space of holomor-
phic di�erentials is N-dimensional and, after a choice of the cycles a1, . . . , aN , possesses a unique
'canonical' basis {ν1, . . . , νN} with the property

∮

ak

νj = δj,k, ∀j, k = 1, . . . , g. (2.6)

One can express the new basis by the old one,

νj =
N∑

k=1

Cjkωk =
∑N

k=1 Cjkλk−1

√∏2N+2
l=1 (λ− λl)

dλ. (2.7)

Further we will need the notion abelian di�erential of the third kind. A di�erential ωpq is called
abelian of the third kind if it is holomorphic except for the points p, q, where it has simple poles
with residues +1,−1, respectively. In the case that all a-periods are vanishing, this di�erential
is called normalized. For any points p, q on the hyperelliptic Riemann surface, the normalized
abelian di�erential of the third kind, ωp,q, is uniquely determined.
For the canonical basis {ν1, . . . , νN} of holomorphic di�erentials, we de�ne the period matrix
B = (Bij) by

Bij =
∮

bi

νj . (2.8)

The matrix B is symmetric and has a positive de�nite imaginary part. B allows for the de�nition
of the Jacobi variety of the curve Σ:
De�nition 2.0.4 The abelian torus

J(Σ) = CN/{2πiZN + 2πiBZN} (2.9)

is called the Jacobi variety of Σ.
Amapping from Σ to J(Σ) is given by the Abel mapA : λ → A(λ) whereA(λ) = (A1(λ), . . . , AN (λ))
with

Aj(λ) = 2πi

λ∫

λ0

νj . (2.10)

Here λ0 is a �xed point on Σ; the path of integration from λ0 to λ is chosen to be the same for
all j. If another path is chosen, one had to add

∮
γ

νj to the integral, where γ is a closed contour.

Thanks to the special periods of the νj , this additional term is of the form
∮

γ

νj = 2πinj + 2πi
∑

k

Bjkmk, (2.11)
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where nj , mk ∈ Z. Thus the Abel map is well de�ned.
Now it is possible to construct the N-dimensional Θ-function of the Riemann surface,

Θ(λ; B) =
∑

k∈ZN

exp (iπ(Bk,k) + 2πi(A(λ),k)) . (2.12)

An important classical mathematical question was the problem of inverting the Abel map. This
so called Jacobi inversion problem can be stated as follows: Find N points P1, . . . , PN ∈ Σ such
that

N∑

k=1

Pk∫

P0

νj = ζj (2.13)

for a �xed point ζ = (ζ1, . . . , ζN ) ∈ J(Σ).
This problem can be solved in terms of zeros of the Θ-function, the concrete form will not be of
interest in this work. Altogether, one has a map from the Riemann surface to its Jacobi variety,
the Abel map, and its inverse, which maps the Jacobi variety to the Riemann surface.

15
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Chapter 3

The classical Sinh-Gordon theory
In this section we will give an overview of the classical solution theory of the Sinh-Gordon model
with periodic boundary conditions. The information has been taken out of [3], [4], [5]. Further
information and proofs can be found in the literature speci�ed above.

3.1 De�nition of the model
The classical Sinh-Gordon model is a dynamical system whose degrees of freedom are encoded in
the �eld ϕ(x, t). The �eld ϕ(x, t) is de�ned for
(x, t) ∈ [0, R] × R with periodic boundary conditions ϕ(x + R, t) = ϕ(x, t). The Hamiltonian is
given as

H =
∫ R

0

dx

4π

(
Π2(x, t) + (∂xϕ(x, t)2) + 8πµ cosh(2bϕ(x, t))

)
. (3.1)

The dynamics of the system can be described in Hamiltonian form with variables ϕ(x, t), Π(x, t)
and Poisson brackets

{Π(x, t), ϕ(x′, t)} = 2πδ(x− x′). (3.2)

The time-evolution of an arbitrary observable O(t) is then given as

∂tO(t) = {H, O(t)} . (3.3)

As equation of motion we �nd
{ (

∂2
t − ∂2

x

)
ϕ(x, t) = −8πµb sinh(2bϕ(x, t))

ϕ(x + R, t) = ϕ(x, t) . (3.4)

3.2 Auxiliar linear problem
To solve all soliton equations one uses an approach called the inverse scattering method. Thereby
one adjoints to the nonlinear partial di�erential equation a linear eigenvalue problem, whose po-
tential is given by a solution of the soliton equation. In the Sinh-Gordon case the linear eigenvalue
problem is given as

{
∂xΨ(x, t; λ) = U(x, t; λ)Ψ(x, t, λ),
∂tΨ(x, t; λ) = V (x, t; λ)Ψ(x, t; λ), (3.5)

where

U(x, t; λ) =
(

b
2

( .
ϕ + ϕ′

) −m
4λ exp(2bϕ(x, t)) + m

4 λ
m
4λ exp(−2bϕ(x, t))− m

4 λ − b
2

( .
ϕ + ϕ′

)
)

(3.6)

and

V (x, t; λ) =
(

b
2

( .
ϕ + ϕ′

)
+ m

4λ exp(2bϕ(x, t)) + m
4 λ

−m
4λ exp(−2bϕ(x, t))− m

4 λ − b
2

( .
ϕ + ϕ′

)
)

. (3.7)
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18 CHAPTER 3. THE CLASSICAL SINH-GORDON THEORY

λ is an auxiliary parameter, also called spectral parameter; m = 4b
√

πµ plays the role of a mass
parameter.
The Sinh-Gordon equation is encoded in system (3.5) as a compatibility condition, i.e.

∂t∂xΨ(x, t;λ) = ∂x∂tΨ(x, t; λ) (3.8)

holds only for a solution Ψ(x, t;λ) of (3.5) if ϕ(x, t) solves the Sinh-Gordon equation.
Note, that we can rewrite the �rst equation of (3.5) as a four dimensional system, where λ plays
the role of the spectral parameter,

Qf = λf. (3.9)

Therefore we introduce the following notation:

A = −2b

m

(
0

( .
ϕ + ϕ′

)
( .
ϕ + ϕ′

)
0

)
, (3.10)

B =
(

exp(−bϕ) 0
0 exp(bϕ)

)
, (3.11)

J =
4
m

(
0 1
−1 0

)
. (3.12)

Now we set

Q =
( −J 0

0 0

)
∂

∂x
+

(
A B
B 0

)
, (3.13)

f =
(

Ψ
Φ

)
. (3.14)

Inserting this into (3.9), we �nd it indeed equivalent to the �rst equation of (3.5),

Qf =
( −J ∂

∂xΨ + AΨ + BΦ
BΨ

)
=

(
λΨ
λΦ

)
. (3.15)

So for all λ 6= 0 it holds that Φ = B
λ Ψ, which directly implies the �rst equation of (3.5). If λ = 0,

then Ψ = 0, which leads to Φ = 0, i.e. there are no additional solutions in this case.
It is an important feature of (3.9) that the spectrum of Q does not depend on the time if and only
if ϕ(x, t) solves the Sinh-Gordon equation.
The idea is now to do some spectral theory for Q in order to gain general information about its
spectrum. Then one will start from a �xed spectrum combined with some initial conditions and
calculate ϕ(x, t) by an inverse transformation.
First of all we have to specify the spectral problem, i.e. we have to choose a class of functions in
that we want to solve (3.9). We choose the class of quasi-periodic functions f : [0, L) → C4 with
f(x + L) = Λf(x) for 0 ≤ x < L and �xed multiplier Λ 6= 0,∞.

3.3 Zero curvature condition
Condition (3.8) is equivalent to the famous zero curvature condition,

∂tU(x, t; λ)− ∂xV (x, t; λ) + [U(x, t;λ), V (x, t;λ)] = 0. (3.16)

The equations (3.5) and (3.16) have a natural geometric interpretation: The matrix functions
U(x, t; λ) and V (x, t; λ) can be regarded as local connection coe�cients in the trivial vector bundle

18



3.4. SPECTRAL CURVE 19

R2 × C2. Here space-time R2 is the base; C2 is the �ber where the vector function Ψ(x, t; λ) takes
values on. The equations (3.5) imply that Ψ(x, t;λ) is a covariantly constant vector, while (3.16)
shows that the (U,V)-connection has zero curvature.
Now regard the 2× 2 elementary solution Mx0(x, t0;λ) of

∂xΨ(x, t;λ) = U(x, t; λ)Ψ(x, t, λ) (3.17)

with Mx0(x0, t0; λ) = 1, 0 ≤ x0 < L, x0 ≤ x < x0 + L. The matrix Mx0(x, t0; λ) can be written as
path ordered exponential,

Mx0(x, t0; λ) = P exp
(∫ x

x0

U(x′, t0;λ)dx′
)

. (3.18)

It is the matrix of parallel transport along the contour t = t0, x0 ≤ x′ ≤ x, namely it transfers
the solutions of (3.5) across this contour,

Mx0(x, t0; λ)Ψ(x0, t0; λ) = Ψ(x, t0;λ). (3.19)

Setting x = x0 +L, we get the so called monodromy matrix Mx0(t0, λ). We will denote the entries
of the monodromy matrix as

Mx0(t0, λ) =
(

A(λ) B(λ)
C(λ) D(λ))

)
. (3.20)

Monodromy matrices for di�erent values of t0 or x0 are conjugate to each other as can easily be
shown with the zero curvature condition. Thus the trace
T (λ) = A(λ) + D(λ) of Mx0(t0, λ) depends neither on t0 nor on x0, which means that T (λ) is
a generating function for the integrals of the motion of the Sinh-Gordon model. As U(x, t; λ) is
analytical except for the points λ = 0 and λ = ∞, where it has simple poles, T (λ) is analytical
at C \ {0,∞} and develops essentiel singularities at λ = 0,∞. An asymptotic expansion of T (λ)
around these points gives two sets {Ik}k, {Jk}k, of local integrals of the motion,

log T (λ) ∼
λ→0

1
λ

+
∞∑

k=1

λkJk, log T (λ) ∼
λ→∞

λ +
∞∑

k=1

1
λk

Ik. (3.21)

It holds that T ≡ T (λ2).

3.4 Spectral curve
If Ψ is an eigenvector of Mx(t, λ) with eigenvalue Λ, Mx(t, λ)Ψ = ΛΨ, then

f(x, t; λ) =
(

Ψ
B
λ Ψ

)
(3.22)

will be a solution to the spectral problem for Q with spectral parameter λ and multiplier Λ,

Qf = λf, f(x + L) = Λf(x). (3.23)

As U(x, t; λ) is traceless it holds that detMx(t, λ) = 1. So we �nd its eigenvalues Λi(λ), i = 1, 2
satisfying

det (Λi(λ)−Mx(t, λ)) = Λ2
i (λ)− T (λ)Λi(λ) + 1 = 0. (3.24)

It follows, that λ belongs to the spectrum of Q with the multiplier Λ(λ) if and only if Λ(λ) solves
(3.24).
It is convenient to de�ne the discriminant ∆ = T 2

4 − 1. In [McKean], it is shown that the zeros of
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20 CHAPTER 3. THE CLASSICAL SINH-GORDON THEORY

∆ are of multiplicity 1 or 2. Further it turned out to be useful to introduce the Riemann surface
Σ, where Λ(λ) is single valued. This so called spectral curve can be de�ned by

Σ : µ2 = ∆(λ), (3.25)

with points P =
(
λ2,

√
∆

)
. Σ is a two sheeted curve over the punctured plane C \ {0,∞}. It has

simple rami�cation points at the simple roots of T 2(λ2)
4 = 1 and at 0,∞. We restrict ourself to

Riemann surfaces of �nite genus, i.e. we allow only for �nitely many simple zeros of T 2(λ2)
4 −1. At

the rami�cations T (λ) = ±2, i.e. Λ(λ) = ±1, which implies that the branching points correspond
to periodic or antiperiodic solutions of the spectral problem. As Q is real and symmetric all the
rami�cation points are real and positive, (we are working on the λ2−plane). Thus we can order
them, 0 < λ2

1 < λ2
2 < · · · < λ2

2n < ∞.
We represent the surface Σ as a double cover of the complex λ2-plane, where the two sheets are
connected along several cuts. One cut runs from −∞ to 0 along the negative real axis, the other
cuts run from λ2

2j−1 to λ2
2j , j = 1, . . . , n, along the positive real axis, see �gure 3.4.

λ
2
1 λ

2
2 λ

2

3
λ

2

4
λ

2

5 λ
2
6

0

a 1
a 2 a 3b 1 b 2 b 3

λ
2

Figure 3.1: The spectral curve for n = 3, represented in the λ2-plane. Here we chose another set of
b-cycles.

Another convenient representation of Σ is on the λ-plane. Eliminating the double informa-
tion due to T = T (λ2), we take the 'square root of the λ2-plane'. Thereby the upper and lower
sheet are mapped to the right and left half-plane of the λ-plane, respectively. The λ-plane is
cut along the intervals [−λ2n,−λ2n−1], . . . , [λ2n−1, λ2n], where the upper and lower sides of the
interval [−λ2j ,−λ2j−1] are identi�ed with the upper and lower sides of the interval [λ2j−1, λ2j ],
respectively, for all j = 1, . . . , n.

3.5 The eigenvalue Λ(λ)

The eigenvalues of the monodromy matrix will play an important role in the following, so it seems
reasonable to say a little bit more about them.
The eigenvalues Λi(λ), i = 1, 2, satisfy equation (3.24); a solution that is analytic away from the
cuts is

Λi(λ2) ≡ 1
2


T (λ2)± i

∏

r∈Z
(λ2 − λ2

r)

√√√√
n∏

j=1

(λ2 − λ2
+,j)(λ2 − λ2

−,j)


 . (3.26)

Here we introduced the notation

∆(λ2) = 4− T 2(λ2) =
∏

r∈Z
(λ2 − λ2

r)
2

n∏

j=1

(λ2 − λ2
+,j)(λ

2 − λ2
−,j). (3.27)
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3.5. THE EIGENVALUE Λ(λ) 21

The square root is de�ned as follows: If we approach a cut from the left and continue on its upper
side, we will pick a phase −i. If we continue on the upper side to its end and further, we will pick
another phase −i. If we do the same on the lower side, we will pick phases +i instead.
Note, that Λ1(λ2) and Λ2(λ2) are inverse to each other, as detMx(t, λ) = 1.
Proposition 3.5.1 The solutions Λ1

2
(λ) in (3.26) are analytic away from the cuts. The = log Λ1(λ)

is monotonously increasing from −∞ to ∞ as λ2 is increasing from 0 to ∞, where = log Λ2(λ)
is monotonously decreasing from ∞ to −∞ as λ2 is increasing from 0 to ∞, or vice versa. The
= log Λi(λ), i = 1, 2, is a constant multiple of π on the cuts Fr = [λ2

+,r, λ
2
−,r+1], respectivley.

The values on the cuts Fr and Fr+1 di�er by π times the number of zeros of T (λ) in the interval
[λ2

+,r, λ
2
−,r+1], disregarding the multiplicities of the zeros.

Proof It is clear that Λ1(λ), Λ2(λ) are analytic, except for the cuts Fr. It is also clear that
=Λ1

2
(λ) is zero on the cuts, i.e. = log Λ1

2
is a constant multiple of π on the cuts. We calculate for

λ ∈ R \ ∪n
r=1Fr

d

dλ2
Im log Λ1

2
(λ2) = ∓ T ′(λ2)

∏
r∈Z(λ2 − λ2

r)
√∏n

j=1(λ2 − λ2
+,j)(λ2 − λ2

−,j)
. (3.28)

T ′(λ2) has its simple zeros outside the cuts exactly at λ2
r, r ∈ Z. At λ−,j its sign is opposite to

the one at λ+,r, the same is true for√∏n
j=1(λ2 − λ2

+,j)(λ2 − λ2
−,j). So we �nd that = log Λ1

2
(λ2) is monotonous on λ ∈ R \ ∪n

r=1Fr.
Outside the cuts there are alternatingly zeros of T (λ) and zeros of =Λ(λ), which implies the last
assertion.
Note that the last argument depends on the fact that T 2(λ)− 4 = 0 has only real solutions. This
follows of the self-adjointness of the auxiliary linear problem.

3.5.1 The explicit form
Vacuum case:
We will assume that the �elds ϕ(x, t) ≡ 0 and Π(x, t) ≡ 0. In this case it is possible to calculate
T and Λ explicitely.
The auxiliar linear problem is then given as

{
d

dx
+

(
0 m

4

(
1
λ − λ

)
−m

4

(
1
λ − λ

)
0

)}
Ψ(x, t) = 0. (3.29)

This implies the monodromy matrix

M(R) =
(

cos
(
Rm

4

(
1
λ − λ

))
sin

(
Rm

4

(
1
λ − λ

))
− sin

(
Rm

4

(
1
λ − λ

))
cos

(
Rm

4

(
1
λ − λ

))
)

. (3.30)

Taking the trace we �nd

T (λ) = 2 cos
(

R
m

4

(
1
λ
− λ

))
, (3.31)

or as function of λ2

T (λ2) = 2 cos
(

R
m

4

(
1√
λ2
−
√

λ2

))
. (3.32)

As the cosine is an even function T (λ2) is single valued on the λ2 plane. It develops essential
singularities at λ2 = 0,∞. For Λi(λ2), i = 1, 2, we �nd

Λi(λ2) = exp
{
±iR

m

4

(
1√
λ2
−
√

λ2

)}
. (3.33)
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22 CHAPTER 3. THE CLASSICAL SINH-GORDON THEORY

Thus the Λi(λ2) are singlevalued on a double covering of the λ2-plane, where both sheets are
connected along the cut (−∞, 0) .
General case:
In the general case it will not be possible to evaluate the path ordered exponential in order to
calculate the monodromy matrix. But it is possible to determine d log Λ as a di�erential with
speci�ed properties. For that we only have to know its pole structure and its A-periods. As Λ(λ)
has neither poles nor zeros the di�erential d log Λ has its poles only at 0 and ∞. The character of
the poles can be read out of the vacuum case: From (3.33) we calculate

d log Λvac
i = ∓i

Rm

8

(
1

√
λ2

3 +
1√
λ2

)
dλ2. (3.34)

At 0, the local parameter is γ =
√

λ2. There the di�erential takes the form

d log Λvac
i = ∓i

Rm

4

(
1
γ2

+ 1
)

dγ. (3.35)

At ∞ the local parameter is γ = 1√
λ2 , the di�erential looks like

d log Λvac
i = ±i

Rm

4

(
1 +

1
γ2

)
dγ. (3.36)

Thus d log Λi, i = 1, 2, should have double poles at 0 and ∞, with prefactors ∓iRm
4 and ±iRm

4 ,
respectively.
As Λ(λ2) is either real positive or real negative along the cuts it holds for j = 1, . . . , n that

∮

aj

d log Λi = 0 for i = 1, 2. (3.37)

Using this we �nd

d log Λ1
2

= ∓i
Rm

8

(∏2n
j=1 λj√
λ2

3 +
λ2n

√
λ2

)
dλ2

√∏2n
j=1(λ2 − λ2

j )
+

n∑

k=1

ckνk, (3.38)

where the νk, k = 1, . . . , n are the normalized holomorphic di�erentials (2.6). The parameters ck

can be determined numerically by condition (3.37).
The explicit representation of d log Λ allows for the calculation of T (λ). This implies that all the
information of the spectral curve Σ is already contained in the reduced spectral curve Σ′, de�ned
by

Σ′ : µ2 =
n∏

j=1

(λ2 − λ2
+,j)(λ

2 − λ2
−,j). (3.39)

As a matter of fact, the speci�cation of the branching points determines the spectral curve Σ
uniquely.

3.6 Moduli space of the spectral curves
Above we have shown that the spectral curve is characterized by the 2n branching points λ+,j

and λ−,j , j = 1, . . . , n. These 2n parameters are not all independent as the Riemann surface is
constrained by the demand that Λ(λ) is single-valued, i.e.

∮

bj

d log Λ(λ) = 2πiMj , Mj ∈ Z, j = 1, . . . , n− 1. (3.40)
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The number Mj is the number of zeros of T (λ) that are encircled by the cycle bj . Further we have
seen that

Im log Λ(λ) ∈ iπZ ∀λ ∈ I. (3.41)

We �x the branch of log Λ by requiring that

log Λ(λ) = − imR

4

[
λ− 1

λ

]
+ 2iλ

∫ ∞

0

ρ(γ)
λ2 − γ2

dγ, (3.42)

holds where the density ρ(λ) is given as

ρ(λ) =
Re log Λ(λ)

π
. (3.43)

A short cross-check shows that this d log Λ is indeed the same as (3.38), since it has the correct
asymptotics, no poles apart from 0 and ∞, and vanishing a-periods.
Now we are ready to parametrize the moduli space of the �nite zone solutions by the following 2n
parameters:

1. the value of Im log Λ(λ) on I1,

2.
∮

bj
d log Λ(λ) = 2πiMj , Mj ∈ Z, j = 1, . . . , n− 1 and

3. the n �lling fractions εj =
∫

Ij
ρ(λ)dλ

λ = 1
2πi

∮
aj

log Λ(λ)dλ
λ ∈ R.

3.7 The roots of ∆

We have mentioned before that the roots of ∆ are of multiplicity 1 or 2.
We will need to know the general disposition of the zeros of ∆ = (Λ(λ)−Λ−1(λ))2

4 . Therefore we
examine the vacuum where

∆ = sin2

(
mR

4

[
λ− 1

λ

])
. (3.44)

Its zeros can be found at mR
4

[
λ− 1

λ

]
= πk, k ∈ Z, i.e. at λ = 2πk

mR ±
√(

2πk
mR

)2
+ 1. Thus the zeros

are coalescing at 0 and ∞ like

λk ∼




4πk
mR , λk → ±∞,

mR
4πk , λk → ±0.

(3.45)

Now �x nontrivial (ϕ(x, t), Π(x, t)) ∈ C∞1 × C∞1 . It has been shown in [4] that along the segment
(εϕ, εΠ), 0 ≤ ε ≤ 1, the roots of ∆ keep their multiplicity. This means that a double root λ0

k of
the vacuum becomes a double root λ1

k of the excited state, or it splits into a pair of simple roots
λ−k , λ+

k . It further has been shown in [4] that the appraisals ∆ ∼ sin2
(

mR
4

1
λ

)
and ∆ ∼ sin2

(
mR
4 λ

)
remain valid for the excited states near λ = 0 and λ = ∞, respectively.

3.8 Fundamental Poisson Brackets and the r-Matrix
We suppose that ϕ(x),Π(x) are de�ned on the interval [0, L]. We regard compactly supported
functionals, i.e. functionals, that depend only on ϕ(x), Π(x) for x inside the interval. For these
functionals the poisson brackets are de�ned as

{F ,G} = −2π

∫ L

0

(
δF

δϕ(x)
δG

δΠ(x)
− δF

δΠ(x)
δG

δϕ(x)

)
dx. (3.46)
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24 CHAPTER 3. THE CLASSICAL SINH-GORDON THEORY

This directly leads to the basic Poisson brackets

{Π(x, t), ϕ(y, t)} = 2πδ(x− y), {ϕ(x, t), ϕ(y, t)} = {Π(x, t), Π(y, t)} = 0. (3.47)

Now we de�ne x′ = 1
2 (t− x), t′ = 1

2 (t + x) and

Ũ(x′, t′; λ̃) = −RU(x′ + t′, t′ − x′; λ)R, (3.48)

with

R =

(
0 e

b
2 ϕ

e−
b
2 ϕ 0

)
. (3.49)

This transformation is a kind of gauge transformation as it doesn't change the trace of the mon-
odromy matrix and hence keeps the spectral curve unchanged.
Explicitely,

Ũ(x′, t′; λ̃) =

(
− b

2Π(x′, t′) −mλ̃e−bϕ(x′,t′) + m
λ̃

ebϕ(x′,t′)

mλ̃ebϕ(x′,t′) − m
λ̃

e−bϕ(x′,t′) b
2Π(x′, t′)

)
, (3.50)

where m =
√

πb2µ and λ̃ = λ
m .

We compute {Ũ(x′, λ̃)⊗, Ũ(y′, µ̃)}, where
{Ũ(x′, λ̃)⊗, Ũ(y′, µ̃)}

= −2π

∫ L

0

(
δŨ(x′, λ̃)

δϕ(z)
⊗ δŨ(y′, µ̃)

δΠ(z)
− δŨ(x′, λ̃)

δΠ(z)
⊗ δŨ(y′, µ̃)

δϕ(z)

)
dz,

(3.51)

and �nd

{Ũ(x′, t′; λ̃)⊗, Ũ(y′, t′; µ̃)} =
mb2

8

{(
λ̃ +

1
λ̃

)
cosh bϕ(x′, t′) · σ1 ⊗ σ3

−
(

λ̃− 1
λ̃

)
sinh bϕ(x′, t′) · iσ2 ⊗ σ3

−
(

µ̃ +
1
µ̃

)
cosh bϕ(x′, t′) · σ3 ⊗ σ1

+
(

µ̃− 1
µ̃

)
sinh bϕ(x′, t′) · σ3 ⊗ iσ2

}
δ(x′ − y′).

(3.52)

A lengthy calculation shows, that the right hand side of (3.52) is of the form

(3.52) = [r(λ̃, µ̃), Ũ(x′, λ̃)⊗ I + I ⊗ Ũ(x′, µ̃)]δ(x′ − y′), (3.53)

where

r(λ̃, µ̃) =
b2

2 sinh
(
log λ̃

µ̃

)




0 0 0 0
0 cosh

(
log λ̃

µ̃

)
−1 0

0 −1 cosh
(
log λ̃

µ̃

)
0

0 0 0 0




(3.54)

is the classical r-matrix. Altogether,

{Ũ(x′, λ̃)⊗, Ũ(y′, µ̃)} = [r(λ̃, µ̃), Ũ(x′, λ̃)⊗ I + I ⊗ Ũ(x′, µ̃)]δ(x′ − y′) (3.55)

are the fundamental Poisson brackets of the Sinh Gordon model. In [3] it has been shown that
this yields the Poisson brackets for the monodromy matrix

{
M̃x′0(t

′
0, λ̃), M̃x′0(t

′
0, µ̃)

}
=

[
r(λ̃, µ̃), M̃x′0(t

′
0, λ̃)⊗ M̃x′0(t

′
0, µ̃)

]
. (3.56)
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3.9. SEPARATION OF VARIABLES 25

3.9 Separation of variables
In order to describe the dynamics of the model, it turned out to be helpful to introduce a new set
of variables, see for example [5], [3]. Therefore we regard the eigenvalues µj , j ∈ Z, of Q, where
the corresponding eigenfunction f = (f1, . . . , f4)T satis�es

f1(L) = Λ(µj)f1(0) = 0. (3.57)

This is equivalent to the condition

B(µj) = 0, (3.58)

scince

M0(t, µj)
(

0
f2(0)

)
=

(
B(µj)f2(0)
D(µj)f2(0)

)
. (3.59)

Thus the eigenfunction f has the multiplier D(µj) = Λ(µj) if and only if B(µj) = 0.
Self-adjointness of the operator Q implies that the roots of B(λ) are simple and real. Moreover
they are located on the points or intervalls where T (λ) ≥ 2 because

1 = det M0(t, µj) = A(µj)D(µj) ≤ 1
2
|A(µj) + D(µj)| = 1

2
T (µj). (3.60)

For each zero µj of B(λ) we de�ne fj = −2 log |D(µj)|. Using the fundamental Poisson brackets
it could be shown that γj = log µ2

j and fj are canonically conjugate variables ∀j ∈ Z, i.e.

{fj , γk} = δj,k, {fj , fk} = {γj , γk} = 0 ∀j, k (3.61)

with respect to the original Poisson bracket (3.46).
It also has been shown that the mapping between ϕ,Π and {γj , fj}j is 1 : 1 for any �xed spectral
curve of �nite genus. The reconstructed ϕ looks as follows,

exp (ϕ(x, t)) =
∏

j∈Z

µ2
j (x, t)
µ2

j,0

[4] (3.62)

where the µj,0 are the corresponding µj for the vacuum, or

exp (2bϕ(x, t)) =
N∏

l=1

µ2
l (x, t)√∏2N

k=1 λ2
k

[8]. (3.63)

In the latter one, only �nitely many cuts are present; the µj not belonging to a cut drop out.
In [8] they derived the following equation of motion for the µj ,

µ2
j,tx

= 2


1∓ πµb2

∏
k 6=j µ2

k(x, t)√∏2N
k=1 λ2

k




[
µ2

j (x, t)
∏2N

k=1

(
µ2

j (x, t)− λ2
k

)] 1
2

∏
k 6=j

(
µ2

j (x, t)− µ2
k(x, t)

) . (3.64)

3.10 Linearization
Equation (3.64) shows that the µj satisfy a relatively complicated dynamical system, but it turned
out that this �ow is linear on Jacobi variety of the spectral curve.
In order to show this one performs a change of variables τ± = t± x that leads to the new form of
(3.64)

(µ2
j )τ± = 2

[
πµb2

∏
l 6=j µ2

l

(
∏

k λ2
k)

1
2

](10) [
µ2

j

∏2N
k=1(µ

2
j − λ2

k)
1
2∏

l 6=j(µ
2
j − µ2

l )

]
. (3.65)
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26 CHAPTER 3. THE CLASSICAL SINH-GORDON THEORY

Then one applies the Abel map to the points µ2
1, . . . , µ

2
N and de�nes

lj(µ) = −
N∑

k=1

µ2
k∫

µ2
0,k

νj = −
N∑

l=1

Cjl

N∑

k=1

µ2
k∫

µ2
k,0

El−1

∏2N
m=1(E − λ2

m)
dE. (3.66)

Now one computes the derivatives of lj(µ) with respect to τ±,

∂lj(µ)
∂τ±

= −
∑

l=1N

Cjl

N∑

k=1

µ
2(N−l)
k∏2N

m=1(µ
2
k − λ2

m)

∂µ2
k

∂τ±
(3.67)

= −
∑

l=1N

2Cjl

N∑

k=1

[
πµb2

∏
m6=k µ2

m

(
∏

m λ2
m)

1
2

](10) µ
2(N−l)
k∏

n 6=k(µ2
k − µ2

n)
. (3.68)

It doesn't look like that, but this last term is independent of µ; thus lj(µ) �ows linearily with τ±.
In [7] it has been proven that

lj(µ2
1, . . . , µ

2
N ) = −2πµb2

[(
Cj1 +

πb2µ(−1)NCjN

(
∏

k λ2
k)

1
2

)
x (3.69)

+

(
Cj1 +

πb2µ(−1)N+1CjN

(
∏

k λ2
k)

1
2

)
t

]
+ l0j . (3.70)

The inverse transformation of the Abel map is done with the help of the Θ-function. The �nal
solution is given as

exp(bϕ(x, t)) =
Θ(l(x, t) + 1

2 ;B)
Θ(l(x, t);B)

, (3.71)

where

l(x, t) = (l1, . . . , lN ),

lj(x, t) = −2πµb2

[(
Cj1 +

πb2µ(−1)NCjN

(
∏

k λ2
k)

1
2

)
x

+

(
Cj1 +

πb2µ(−1)N+1CjN

(
∏

k λ2
k)

1
2

)
t

]
+ lj(0, 0),

l +
1
2

= (l1 +
1
2
, . . . , lN +

1
2
).

(3.72)

B is the period matrix of the curve.
In other words, �rst one maps the �ow to the Jacobi variety. There it is completely characterized
by the N phases l1(x, t), . . . , lN (x, t), each of which depends linearly on x and t. Then one maps
it back to the spectral curve, which is done by equation (3.71)
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Chapter 4

Semiclassical Quantization
In this chapter, we will develop a semiclassical quantization, based on the following input data:

1. the classical spectral curve and

2. the analytical properties of the Q-function.
The analytical properties of the Q-function are not a-priory given, but it seems sensible to take
the following into account:

1. While working with other models, one has gained the experience that a quantum Q-function
is an analytic function, i.e. it has no poles in the quantum case. In order to achieve this
property for the semiclassical Q-function we demand the absence of its poles at least at the
physical part of the spectral curve1.

2. We will see in a moment that the eigenvalue of the monodromy matrix Λ(λ) is somehow
the derivative of the leading order Q−function. This �xes the asymptotics of the classical
Q-function. We will demand that the higher orders share this asymptotics up to some
prefactor.

The classical spectral curve will allow for the derivation of Baxter's equation and thus of a func-
tional equation for each order of the Q-function. We will explore how far these functional equations,
along with the demanded analytical behaviour of Q(λ), determine the Q-function.
In the whole chapter we will work on the λ-plane.

4.1 Baxter's equation
In this section we will derive Baxter's equation. Therefore we will quantize the separated variables
on the classical spectral curve.
In the classical model the separated variables (µk, νk) are de�ned as

B(µk) = 0, νk = A(µk). (4.1)

They satisfy the Poisson-brackets

{µk, νl} = δk,lµkνk. (4.2)

Scince B(µk) = 0 it holds that A(µk) = Λ(µk); we �nd that (µk, νk) are points on the spectral
curve as

νk + ν−1
k = T (µk). (4.3)

Now we introduce the quantum counterparts ∧
µk,

∧
νk of the separated variables; they satisfy the

commutation relations
∧
µk

∧
νl = q2δk,l

∧
νl
∧
µk. (4.4)

1The physical part of the spectral curve corresponds to the upper sheet of the curve. This name can be justi�ed
from the classical limit of the quantum model: the quantum model is de�ned on an in�nite dimensional covering
of the complex plane without cuts. In the classical limit this in�nite dimensional covering is mapped to the upper
sheet of the spectral curve, which contains now all the physical information. The lower sheet is more like a relict
of the semiclassical limit, is has no physical meaning.
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28 CHAPTER 4. SEMICLASSICAL QUANTIZATION

In the so called separation of variables representation all the ∧
µk are diagonal. The commutator

relations (4.4) imply that the ∧
νk act as shift operators on the wavefunctions

Ψ(µ1, µ2, . . . ) = 〈µ1, µ2, . . . |Ψ〉,
∧
νkΨ(..., µk, ...) = Ψ(..., q2µk, ...). (4.5)

This means that the quantized equation (4.3) applied to an eigenfunction Ψt(..., µk, ...) of
∧
T (µk)

becomes
∧
T (µk)Ψt(..., µk, ...) = t(µk)Ψt(. . . , µk, . . . ) (4.6)

= (
∧
νk +

∧
νk

−1
)Ψt(..., µk, ...) (4.7)

= Ψt(..., q2µk, ...) + Ψt(..., q−2µk, ...). (4.8)

Remembering that in the setting of separated variables the wavefunctions can be written as in�nite
product

Ψt(µ1, µ2, . . . ) =
∞∏

j=1

Qt(µj) (4.9)

we �nd Baxter's equation

T (λ)Qt(λ) = Qt(qλ) + Qt(q−1λ), (4.10)

where λ2 = µ. In the following we will omit the index t of the Q-function.

4.2 Leading order
Baxter's equation implies, that

T (λ) =
Q (λq)
Q(λ)

+
Q

(
λq−1

)

Q(λ)
, (4.11)

where, as before, q is given as

q = eiπb2 . (4.12)

Since T (λ) = Λ(λ) + Λ−1(λ) in the classical theory, we assume for the moment, that

Λ(λ) = lim
b2→0

Q (λq)
Q(λ)

. (4.13)

We are going to justify this assumption later.
Taking the logarithm of (4.13) we �nd

log Λ(λ) = lim
b2→0

(
log Q(λ + iπb2λ)− log Q(λ)

)

= lim
b2→0

iπb2λ
d

dλ
log Q0(λ).

(4.14)

Here Q0(λ) is the leading order contribution of Q(λ).
In the semiclassical regime, where b2 is small, but still �nite, we get

Q0(λ) = exp

{
1

iπb2

∫ λ

dσ
log Λ(σ)

σ

}
. (4.15)
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4.3. NEXT TO LEADING ORDER 29

This formula justi�es the assumption above, because with that

lim
b2→0

T (λ) = lim
b2→0

(
Q0 (λq)
Q0(λ)

+
Q0

(
λq−1

)

Q0(λ)

)

= Λ(λ) + Λ−1(λ),

(4.16)

which de�nes Λ(λ) uniquely up to some sign convention.

We have to require, that Q(λ) is a single valued function on the λ2-plane with cuts. This leads to
the Bohr-Sommerfeld quantization conditions,

∮

aj

d log Q0(λ) = 2πiNj for 1 ≤ j ≤ n,Nj ∈ Z. (4.17)

An equivalent representation is given by

∮

aj

log Λ(σ)
dσ

σ
= −2π2b2Nj for 1 ≤ j ≤ n. (4.18)

4.3 Next to leading order

4.3.1 The functional equations

In this section, we sketch the derivation of the functional equations, that de�ne the higher orders
of the Q-function.
Therefore we need Baxter's equation and the periodicity of T = T (λ2), namely T (λ) = T (−λ).
This periodicity of T (λ) implies that Q(−λ) is a second solution of Baxter's equation,

T (λ)Q(−λ) = Q(−λq) + Q(−λq−1). (4.19)

The two Baxter equations imply

Q(λq)
Q(λ)

+
Q(λq−1)

Q(λ)
=

Q(−λq)
Q(−λ)

+
Q(−λq−1)

Q(−λ)
. (4.20)

This equation contains the functional equations, one for each order of Q, in a very condensed
form. Expanding equation (4.20) in orders of b2, we �nd that each order n of the equation is a
functional equation for Wn. Introducing the following notation,

Q(λ) = exp

(
i

b2

∞∑

k=0

b2kWk(λ)

)
, (4.21)
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30 CHAPTER 4. SEMICLASSICAL QUANTIZATION

and expanding the terms in (4.20), we �nd after a lengthy calculation (see Appendix) the functional
equation of the order b2n,

Λ(λ)
∞∑

j=1

ij

j!

∑

{αk}n
1P

αkk=kP
αk=j

(
j

α1 . . . αn

) n∏

k=1

(Rk+1(λ))αk

+ Λ−1(λ)
∞∑

j=1

ij

j!

∑

{αk}n
1P

αkk=kP
αk=j

(
j

α1 . . . αn

) n∏

k=1

(R∗k+1(λ))αk

= Λ−1(λ)
∞∑

j=1

ij

j!

∑

{αk}n
1P

αkk=kP
αk=j

(
j

α1 . . . αn

) n∏

k=1

(Rk+1(−λ))αk

+ Λ(λ)
∞∑

j=1

ij

j!

∑

{αk}n
1P

αkk=kP
αk=j

(
j

α1 . . . αn

) n∏

k=1

(R∗k+1(−λ))αk .

(4.22)

Here

Rs(λ) =
s−1∑

k=0

s−k∑

l=1

λl

l!
dl

dλl
Wk(λ)g(s− k, l), (4.23)

Λ(λ) = exp
(
−πλ

d

dλ
W0(λ)

)
(4.24)

and g(p, l) is a combinatorical factor,

g(p, l) =
∑

{βj}p
1P

βjj=pP
βj=l

(
l

β1 . . . βp

) p∏

j=1

[
(iπ)j

j!

]βj

. (4.25)

g(p, l) is replaced by its complex conjugate in R∗s(λ), λ is replaced by −λ in Rs(−λ), where λ d
dλ

is kept constant.

4.3.2 Examples
The �rst three functional equations have been calculated explicitely. We found

d(W1(λ) + W1(−λ)) = id log
(
Λ(λ)− Λ−1(λ)

)
, (4.26)

d (W2(λ) + W2(−λ))

= − iπ

2
d

{
Λ(λ) + Λ−1(λ)
Λ(λ)− Λ−1(λ)

λ
d

dλ
(W1(λ)−W1(−λ))

} (4.27)
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and
dW3(λ) + dW3(−λ) =

− iπ

2
d

{
Λ(λ) + Λ−1(λ)
Λ(λ)− Λ−1(λ)

λ
d

dλ
(W2(λ)−W2(−λ))

}

+
iπ2

8
d

{(
λ

d

dλ
(W1(λ)−W1(−λ))

)2
(

1−
(

Λ(λ) + Λ−1(λ)
Λ(λ)− Λ−1(λ)

)2
)}

+
iπ2

24
d

{(
λΛ′(λ)
Λ(λ)

)2

−
(

λ
d

dλ
log

(
Λ(λ)− Λ−1(λ)

))2
}

+
iπ2

12
d

(
λd

dλ

)2

log
(
Λ(λ)− Λ−1(λ)

)
.

(4.28)

Regarding these examples, it is notable that the left and the right hand sides can be written as
total di�erentials. We expect the higher orders to share this property, but the complexity of the
problem prevented the proof up to now. Furthermore we see, that W2(λ) and W3(λ) have the
same asymptotics as W1(λ). Again we expect this to hold for the higher orders, and again the
problem is too intricate for a proof.

4.3.3 Solution of the next to leading order functional equation
We will solve the leading order functional equation (4.26). The solution should belong to the class
of functions, whose members share the following analytical properties:

• They are analytic on the right halfplane, except for the cuts, where they are allowed to
branch.

• Their leading asymptotical behaviour is proportional to λ and 1
λ for

λ →∞ and λ → 0, respectively.
We found two di�erent ways of solving the functional equation. The �rst way is the more general
one, which can be also applied to the other functional equations. Thereby we use an expansion of
the right hand side into partial fractions and allocate the poles in such a way, that the solution
is regular on the right half-plane. The other method is less constructive. It uses an integral
representation, similar to the one Lukyanov has given for the vacuum.

Partial fraction decomposition

The idea is to decompose the right hand side of (4.26), id log
(
Λ(λ)− Λ−1(λ)

)
, into its partial

fractions and to attribute the singularities in such a way, that dW1(λ) is free of poles on the
right half-plane. The poles of id log

(
Λ(λ)− Λ−1(λ)

)
are located at the zeros of Λ(λ) − Λ(−λ).

Unfortunately, except for the vacuum, it is not possible to calculate the location of the zeros of
Λ(λ)−Λ(−λ) analytically. So we will explicitely calculate W1(λ) for the vacuum and make some
more general remarks for the excited states.

The vacuum case:

We start from the vacuum eigenvalue of the monodromy matrix

log Λ(λ) = −i
mR

4

(
λ− 1

λ

)
. (4.29)

Plugging this in in (4.26) and using a product expansion of the sine, we can rewrite (4.26) as
(W1(λ) + W1(−λ))

= i log

{
−2

mR

4

(
λ− 1

λ

) ∞∏

k=1

(
1−

(
mR

4πk

)2 (
λ− 1

λ

)2
)}

.
(4.30)
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Now we will de�ne a preliminary solution W̃1(λ) of (4.26), which is regular on the right halfplane.
Therefore it has to get all the poles of the left halfplane (as W̃1(−λ) has to be regular at the left
halfplane); we �nd the expression

W̃1(λ) = i log

(√
2mR

2

(
λ√
λ

+
1√
λ

))

+ i

∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}
.

(4.31)

The terms ak

(
λ + 1

λ

)
have been introduced in order to ensure the existence of the sum in (4.31),

ak = mR
4πk . Up to now, this W̃1(λ) doesn't have the correct asymptotical behaviour, as

lim
λ→0,∞

−
∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}

=
(

mR

4π

(
λ +

1
λ

))
log

(
mR

4π

(
λ +

1
λ

))
+

mR

4π

(
λ +

1
λ

)
(−1 + γE),

(4.32)

where γE = 0.577216... is the Euler constant. Taking this into account, we �nd

Proposition 4.3.1 The vacuum solution of the functional equation (4.26) is given by

W1(λ) = i log

(√
2mR

2

(
λ√
λ

+
1√
λ

))

+ i

∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}

+ i
mR

4π

(
λ +

1
λ

)(
log

mR

4π
+ γE

)
.

(4.33)

Its asymptotical behaviour is described by

lim
λ→0,∞

W1(λ) = i
mR

4π

(
λ +

1
λ

)
− i

mR

4π

(
λ +

1
λ

)
log

(
λ +

1
λ

)
. (4.34)

Proof A detailed proof can be found in Appendix A.

Remarks:

1. We could modify the asymptotics of (4.31), because the term
imR

4π

(
λ + 1

λ

) (
log mR

4π + γE

)
is a zero mode of the functional equation (4.26). By contrast,(

mR
4π

(
λ + 1

λ

))
log

(
mR
4π

(
λ + 1

λ

))
is no zero mode of (4.26), which is the reason why we end

up with the asymptotical behaviour (4.34).

2. The vacuum-W1(λ) is completely determined by the functional equation, the demanded
analytical properties and the asymptotics (4.34). This asymptotics is indeed essential for
the uniqueness of W1(λ): In the introduction of the ak

(
λ + 1

λ

)
terms in (4.31) it is somewhat

arbitrary, from which k on these terms are added, as the ones for k �nite don't in�uence the
existence of the sum. But they do contribute to the asymptotics and can thus be �xed.

3. Our result is the same, Lukyanov found in [6]2.
2In [6] Lukyanov guessed the explicit form of the vacuum Q-function and stated explicitely the semiclassical
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Another representation of W1(λ) is given by

dW1(λ) = i
1
2
Ω∞,−1 + i

1
2
Ω0,−1 + i

∞∑

k=1

{
Ω0,β+

k
+ Ω∞,β−k

− ak

(
1− 1

λ2

)
dλ

}

+ i
mR

4π
log

(
mR

4π
eγE

)(
1− 1

λ2

)
dλ.

(4.37)

Here the Ωx,y are the unique normalized abelian di�erentials of the third kind, with simple poles
at x and y with residues −1 and +1, respectively. The β+

k and β−k are de�ned as

β+
k =

1
2ak

−
√

1
4a2

k

+ 1, β−k = − 1
2ak

−
√

1
4a2

k

+ 1. (4.38)

The representation (4.37) is proven in the appendix A
It is interesting, to calculate the asymptotics of Ω0,β+

k
and Ω∞,β−k

for k →∞. Therefore we need
the asymptotics

β+
k → −ak = −mR

4πk
, β−k → − 1

ak
= −4πk

mR
, (4.39)

for k →∞. With that we �nd

lim
k→∞

Ω0,β+
k

= lim
k→∞

β+
k

λ(λ− β+
k )

dλ = −ak

λ2
dλ (4.40)

and

lim
k→∞

Ω∞,β−k
= lim

k→∞
dλ

λ− β−k
= akdλ. (4.41)

We see, that
∑∞

k=1

(
Ω0,β+

k
+ ak

λ2 dλ
)
and

∑∞
k=1

(
Ω∞,β−k

− akdλ
)
are both well de�ned sums.

Exited states:

An excited state corresponds to a �eld con�guration (ϕ,Π). We will need the notion �vacuum
limit� lim

vac
. With that, we mean the transition of the state given by (ϕ,Π) to the vacuum, via the

states (εϕ, εΠ), 1 ≥ ε ≥ 0.
In the case of exited states, it holds, that

Λ(λ)− Λ−1(λ) = i
∏

k∈Z
k/∈{i1,...,in}

(λ2 − λ2
k)

√√√√
n∏

j=1

(λ2 − λ+
ij

2
)(λ2 − λ−ij

2
), (4.42)

expansion

log Q0(γ) =− mR cosh γ

2πb2
− mR cosh γ

2π
+

mRγ sinh γ

2π

−
∞Z

−∞

dτ

2π

log
`
1− e−mR cosh τ

´

cosh(γ − τ)
+ O(b2).

(4.35)

The representation of the Q-function in the form of an in�nite product has been most important for us,

1

Q0(γ)
= e

mR cosh γ

2πb2

„
mReγE

4π

«mR cosh γ
2π √

2mR

· cosh
“γ

2

” ∞Y

n=1

8
<
:

s
1 +

„
mR

2πn

«2

+
mR cosh γ

2πn

9
=
; e−

mR cosh γ
2πn ,

(4.36)

where γE = 0.577216... is the Euler constant. Making the change of variables λ = eγ , we see that (4.36) indeed
conincides with (4.33)
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where lim
vac

λk = β
sign(k)
k .(Compare to the chapter �The roots of ∆�.) We assume, that i1 < · · · <

il < 0 and 0 ≤ il+1 < . . . , < in.
It is clear, that d log

(
Λ(λ)− Λ−1(λ)

)
is a di�erential on the spectral curve, with simple poles of

residue 1 at ±λk and ±λ±r , where k ∈ Z \ {i1, . . . , in} and r ∈ {i1, . . . , in}. So in order to de�ne
dW1(λ), we have to split the poles up: dW1(λ) gets all the poles at the branching points, but
only with residues 1

2 . (The branching points λ+
k and −λ+

k , as well as the points λ−k and −λ−k are
identi�ed. Thus we have to split the poles there symmetrically.) Also it gets all the other poles
on the left half-plane, as it should be analytic on the right halfplane. (Compare to the vacuum!)
Inspired by the expression for the vacuum, we write

dW1(λ) = i
1
2
Ω∞,λ0 + i

1
2
Ω0,λ0

+ i

∞∑

k=1
k/∈{il+1,...,in}

(
Ω0,λk

+
1
πk

dΓ0

)
+ i

−∞∑

k=−1
k/∈{i1,...,il}

(
Ω∞,λ−k

+
1
πk

dΓ∞

)

+ i
∑

k∈{il+1,...,in}

(
1
2
Ω0,λ+

k
+

1
2
Ω0,λ−k

+
1
2
Ω0,−λ+

k
+

1
2
Ω0,−λ−k

+
1
πk

dΓ0

)

+ i
∑

k∈{i1,...,il}

(
1
2
Ω∞,λ+

k
+

1
2
Ω∞,λ−k

+
1
2
Ω∞,−λ+

k
+

1
2
Ω∞,−λ−k

+
1
πk

dΓ∞

)

+ i
1
π

log
(

mR

4π
eγE

)
(dΓ0 + dΓ∞) .

(4.43)

In the �rst line lim
vac

λ0 = −1. The sums in the second line are well de�ned, as the distribution of the
roots λk for λk → 0,∞ approximates the vacuum distribution. The di�erentials dΓ0 and dΓ∞ are
the unique normalized di�erentials with double poles at 0 and ∞, respectively, with coe�cients
Rm
4 . We calculated the explicit forms analogously to d log Λ,

dΓ0 =
Rm

4

(∏2n
j=1 λj

λ2

)
dλ√∏2n

j=1(λ2 − λ2
j )

+
n∑

k=1

ckνk, (4.44)

dΓ∞ =
Rm

4
λ2n dλ√∏2n

j=1(λ2 − λ2
j )

+
n∑

k=1

ckνk. (4.45)

The zero modes
∑n

k=1 ckνk ensure, that the a-periods of dΓ0, dΓ∞ indeed vanish. The 3rd and
the 4th line of (4.43) are due to the branching points.
Remarks:

1. Of course, (4.43) will hold only, if il+1 6= 0. In the other case, one had to replace the �rst
line of (4.43) by

i
1
4
Ω0,λ+

0
+ i

1
4
Ω0,−λ+

0
+ i

1
4
Ω∞,λ+

0
+ i

1
4
Ω∞,−λ+

0

+ i
1
4
Ω0,λ−0

+ i
1
4
Ω0,−λ−0

+ i
1
4
Ω∞,λ−0

+ i
1
4
Ω∞,−λ−0

.

(4.46)

2. Again the zero modes proportional to dΓ0 and dΓ∞ are �xed only due to the demanded
asymptotics of dW1.

3. Nevertheless, the solution (4.43) is not unique: There are additional zero modes, which
in�uence the branching behaviour of dW1 at the cuts. This is described more detailed in the
next section.
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Integral representation
The following proposition gives a solution to (4.26). The proof can be found in Appendix A.

Proposition 4.3.2 The function

W1(λ) = i
mR

4π

(
λ + λ−1

)
+

log λ

π
log Λ(λ) +

iλ

π

∫ ∞

0

dλ′
log

(
1− Λ2(−iλ′)

)

λ2 + λ′2

+ λ

∫

I
dλ′

f(λ′)
λ2 − λ′2

, λ /∈ I, <λ ≥ 0,

(4.47)

solves (4.26) and has the desired properties.
Here f(λ) is an arbitrary continuous function along the cuts. The branch of log λ is chosen such
that log λ is real along the positive real axis.

The function (4.47) can be de�ned on the negative half plane by analytical continuation. Exam-
ining W1(λ), we �nd the �rst two terms in�uencing its asymptotical behaviour, the third term
containing all the poles and the last term determining the branching behaviour at the cuts. Note,
that the last term is a zero mode of the functional equation (4.26), it branches as

λ

∫

I
dλ′

f(λ′)
(λ± i0)2 − λ′2

= λP.V.

∫

I
dλ′

f(λ′)
(λ)2 − λ′2

∓ iπ

2
f(λ). (4.48)

Thus the branching of the whole function is

W1(λ + i0) = W1(λ− i0) +
2λ

π
log Λ(λ + i0)− iπf(λ) for λ ∈ I. (4.49)

At this stage we can't �x the branching behaviour of W1(λ) at the cuts. Nevertheless, the analysis
of the semiclassical limit will lead us to an assumption how one could pinpoint this zero mode.
The third term implies that the poles of e(iW1(λ)) are located on the negative real axis. In order
to proof that we do an analytical continuation of the third term from λ ∈ R to −λ along the path
λ(ϕ) = λeiϕ, ϕ ∈ [0, π]. We see, that the integrand develops a pole for λ(ϕ) = iλ at λ′ = λ, which
leads to the extra term i log(1 − Λ2(−iλ(ϕ − π

2 ))). Thus we �nd that for ϕ = π we get the term
i log

(
1− Λ2(λ)

)
. The remark that the only zeros of 1−Λ2(λ) are located on the real axis, �nishes

the proof.
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Chapter 5

The quantum Sinh-Gordon model
In this section we will describe the quantum Sinh-Gordon model in more detail. The information
has been taken out of [10], [9], [11].

5.1 Lattice model
5.1.1 Lattice discretization
In order to avoid the ultraviolet divergencies which occur during the quantization of the continuous
model, a lattice discretization is introduced. Thereby the space of radius R is replaced by N lattice
sites x1, . . . , xN with lattice spacing ∆ = R

N . The �eld variables are discretized according to the
standard recipe

ϕn ≡ ϕ(xn), Πn ≡ ∆Π(xn) (5.1)

for n = 1, . . . , N . These �elds get canonically quantized: the variables ϕn and Πn are considered
as operators with commutation relations

[ϕn,Πm] = 2πiδn,m. (5.2)

The commutation relations can be realized in the usual way on the Hilbert space H ≡ (L2(R))⊗N .
Another convenient set of variables is given by the operators fk, de�ned as

f2n ≡ e−2bϕn , f2n−1 ≡ e
b
2 (Πn+Πn−1−2ϕn−2ϕn−1). (5.3)

This change of variables is invertible for N ≡ 2L + 1 odd, thus we restrict ourselves to this case
in the following. The fn satisfy

f2n±1f2n = q2f2nf2n±1 for q = eiπb2 ,

fnfn+m = fn+mfn for m ≥ 2.
(5.4)

5.1.2 Lattice dynamics
The aim is the de�nition a suitable lattice dynamics. Therefore it turned out to be useful to
replace space-time by the cylindric lattice

L ≡ {(ν, τ), ν ∈ Z/NZ, τ ∈ Z, ν + τ = even} . (5.5)

The condition, that ν + τ = even, implies that the lattice is rhombic; the next neighbours of the
lattice point (ν, τ) are the points (ν ± 1, τ ± 1).
The variables fn are used to de�ne a discret '�eld' fν,τ : they play the role of the initial data for
the time evolution of fν,τ , i.e.

f2r,0 ≡ f2r, f2r−1,1 ≡ f2r−1. (5.6)

Time evolution is now de�ned as

fν,τ+1 =≡ f
− 1

2
ν,τ−1 · gκ(fν−1,τ )gκ(fν+1,τ ) · f−

1
2

ν,τ−1, (5.7)
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where the function g is de�ned by

gκ(z) =
κ2 + z

1 + κ2z
. (5.8)

Here κ is some scaling parameter of the theory.
In order to construct the time evolution operator U , acting as
fν,τ+1 = U−1 · fν,τ−1 · U , it is necessary to introduce the special functions ωb(x) and φ(x),

ωb(x) =
ζe

iπ
2 x2

φ(x)
, φ(x) = exp

(∫

R+i0

dt

4t

e−2itx

sinh(bt) sinh(b−1t)

)
, (5.9)

where ζ = e
iπ
24 (b2+b−2). The relevant analytic properties can be found in [10] . With these functions

one can construct the function

Gv

(
e2πbx

)
= ωb

(v

2
+ x

)
ωb

(v

2
− x

)
, (5.10)

which satis�es the functional relations
G2s(qz)

G2s(q−1z)
= gκ(z) for κ = e−πbs. (5.11)

Now we de�ne the operator U as

U =
N∏

n=1

G2s(f2n) · U0 ·
N∏

r=1

G2s(f2r−1). (5.12)

Here U0 is the parity operator acting as U0 · fk = f−1
k · U0. Thus U is indeed the time evolution

operator. It has been proven in [11] , that this time evolution is integrable.

5.2 Solution of the lattice model
5.2.1 L- and T-operators
The monodromy matrix of the lattice model is of the form

M(u) ≡ LN (u)LN−1(u) . . . L1(u), (5.13)

where each Lax-matrix Ln(u) is dedicated to the lattice site xn. One possible choice for the
L-Operator is given by

Ln(u) =

(
e

b
2Πn

(
1 + e−b(ϕn+2πs)

)
e

b
2Πn e−πbs sinh b

(
πu + ϕn

2

)

e−πbs sinh b
(
πu− ϕn

2

)
e−

b
2Πn

(
1 + eb(ϕn−2πs)

)
e−

b
2Πn

)
. (5.14)

With this de�nition the commutation relations for the matrix elements of Ln(u) can be written
in Yang-Baxter form

R12(u− v)L1n(u)L2n(v) = L2n(u)L1n(v)R12(u− v), (5.15)

where the R−matrix is

R(u) =




sinhπb(u + ib)
sinh πbu i sinπb2

i sin πb2 sinhπbu
sinhπb(u + ib)


 . (5.16)
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The T-operator is de�ned as

T (u) = trC2M(u). (5.17)

The Yang-Baxter equation above implies [T (u), T (v)] = 0 ∀u, v ∈ R.
In [10], a Hamiltonian of the lattice Sinh-Gordon model has been introduced. Its exact form is
not of interest here, but what is interesting is that it commutes with the trace of the monodromy
matrix: [H, T (u)] = 0 ∀u ∈ C. As one is, as usual, interested in the point spectrum of the
Hamiltonian we �nd the statement above to be very encouraging: Instead of solving the eigenvalue
problem for the Hamiltonian, one tries to solve the so called 'auxiliary eigenvalue problem' �rst,
namely the eigenvalue problem of T (u).

5.2.2 Q-operator
It turned out, that, in order to solve the auxiliary eigenvalue problem, it is useful to introduce an
operator Q(u) satisfying the following properties:

1. Q(u) is a normal operator: Q(u)Q∗(v) = Q∗(v)Q(u);

2. [Q(u), Q(v)] = 0;

3. [Q(u), T (u)] = 0 ;

4. Q(u)T (u) = (a(u))NQ(u− ib) + (d(u))NQ(u + ib).

The �rst two properties ensure, that all operators Q(u), u ∈ C can be simultaneously diagonalized;
their eigenvectors form a complete system of states in the Hilbert space. The last two properties
imply that T (u) and Q(u) are simultaneously diagonal. Therefore the eigenvalue problem of Q(u)
might be considered as a re�nement of the eigenvalue problem of T (u).
An operator Q(u), showing the above properties, has been constructed explicitely in [10]. Thereby
they worked in the Schrödinger representation of the Hilbert space, i.e. in the representation, where
the operators xn, n = 1, . . . , N are diagonal. We will denote the integral kernel of Q(u) in the
Schrödinger representation by Qu(x,x′), where x = (x1, . . . , xN ) and x′ = (x′1, . . . , x

′
N ).

It is useful to introduce the special function Dα(x),

Dα(x) =
ωb(x + α)
ωb(x− α)

, (5.18)

as well as the notations

σ = s +
i

b

(
b + b−1

)
, σ̄ = s− i

b

(
b + b−1

)
. (5.19)

De�nition 5.2.1 Let the Q-operator Q(u) be de�ned in the Schrödinger representation by the
following kernel

Qu(x,x′) =

= (D−s(u))N
N∏

r=1

D 1
2 (σ̄−u)(xr − x′r)D 1

2 (σ̄+u)(xr−1 + x′r)D−s(xr + xr−1).
(5.20)

The parameter s is de�ned by 1
4m∆ = e−πbs.

Theorem 5.2.1 The operator Q(u) satis�es all relations 1.-4.. Baxter's equation holds for Q(u)
with the following coe�cients

d(u) = a(−u) = eπb(u+i b
2 ) +

(
m∆
4

)2

e−πb(u+i b
2 ). (5.21)
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Proof The proof can be found in [10].

Now we consider an eigenstate Ψt for T (u) with eigenvalue t(u):

T (u)Ψt = t(u)Ψt. (5.22)

As Q(u) and T (u) are simultaneously diagonal, it is an eigenstate of Q(u), too:

Q(u)Ψt = qt(u)Ψt. (5.23)

It is clear from the property 4. above, that the eigenvalue qt(u) satis�es Baxter's equation:

t(u)qt(u) = (a(u))N
qt(u− ib) + (d(u))N

qt(u + ib). (5.24)

In [10] the analytical properties of qt(u) have been derived from the explicit form of the Q−operator
(5.20). It has been found that

1. qt(u) is meromorphic in C, with poles of maximal order N in Y−s ∪ Ȳs, where Ys ={
s + i

(
b+b−1

2 + nb + mb−1
)

, n, m ∈ N0

}
, Ȳs = (Ys)

∗;

2. qt(u) ∼
{

exp
(
+iπN

(
s + i

2 (b + b−1)
)
u
)
for |u| → ∞, | arg(u)| < π

2 ,
exp

(−iπN
(
s + i

2 (b + b−1)
)
u
)
for |u| → ∞, | arg(u)| > π

2 .

Altogether this implies a necessary condition for t(u) to be an eigenvalue of T (u): t(u) will only be
an eigenvalue of T (u), if there exists a meromorphic function qt(u), satisfying Baxter's equation,
with the prescribed singular and asymptotical behaviour.

5.2.3 Separation of variables
The main idea of the separation of variables approach is to introduce a representation of the
Hilbert space H, such that the o�-diagonal element of the monodromy matrix, B(u), is diagonal.
Here it is assumed, that the spectrum of B(u) is simple. This implies, that the eigenstates of B(u)
are uniquely characterized by the corresponding eigenvalue b(u). The function e−2πbNub(u) is a
polynomial of the order N in the variable λ = e−2πbu, i.e. it has N unique zeros y1, . . . , yN in the
stripe =yk ∈

(− 1
2b ,

1
2b

]
. This means, that the representation of the Hilbert space H, in which B(u)

is diagonal, can be described by wave functions Ψ(y) with y = (y1, . . . , yN ). This representation
will be referred to as the SOV representation.
In [10] it has been shown, that, using this representation, the auxiliary eigenvalue problem (5.22)
gets transformed into a system of Baxter equations:

t(yk)Ψ(y) =
[
(a(yk))N

T−k + (d(yk))N
T+

k

]
Ψ(y), k = 1, . . . , N. (5.25)

Here the operators T±k are shift operators de�ned by
T±k Ψ(y) = Ψ(y1, . . . , yk ± ib, . . . , yN ).
The �rst main advantage of the SOV representation is, that the coe�cients a(yk), d(yk) depend
only on one single variable. The second main advantage is, that the equations (5.25) are exactly the
same as the equation (5.24). Thus any function qt(u) that solves (5.24) and ful�lls the conditions
above can be used to construct Ψ(y):

Ψt(y) =
N∏

k=1

qt(yk). (5.26)

In [10] it has been shown, that the function Ψ(y) in (5.26) represents indeed an element of the
Hilbert space H.
Altogether this means, that any solution of the necessary conditions (5.24), ... de�nes an eigen-
vector |Ψt〉 of T (u) via (5.26); the conditions (5.24), .. are necessary and su�cient for t(u) to be
an eigenvalue of T (u).
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5.2.4 Integral equations
Summarizing the last two sections, we can say, that a function t(u) will be the joint eigenvalue of
the family of operators T (u) if and only if there exists a function qt(u) that

1. satis�es baxters equation

t(u)qt(u) = (a(u))N
qt(u− ib) + (d(u))N

qt(u + ib) (5.27)

with d(u) = a(−u) = eπb(u+i b
2 ) +

(
m∆
4

)2
e−πb(u+i b

2 ),

2. is meromorphic in C, with poles of maximal order N in Y−s∪Ȳs, where Ys =
{

s + i
(

b+b−1

2 + nb + mb−1
)

, n, m ∈ N0

}
,

Ȳs = (Ys)
∗;

3. has the asymptotics
qt(u) ∼

{
exp

(
+iπN

(
s + i

2 (b + b−1)
)
u
)
for |u| → ∞, | arg(u)| < π

2 ,
exp

(−iπN
(
s + i

2 (b + b−1)
)
u
)
for |u| → ∞, | arg(u)| > π

2

4. solves the quantum Wronskian relation
qt(u + iδ)qt(u − iδ) − qt(u + iδ′)qt(u − iδ′) = W (u), where 2δ = b + b−1, δ′ = δ − b and
W (u) =

(
eiπ(σ2+u2)Dσ(u)

)−N

.

The set of all solutions to this conditions speci�es the point spectrum of the model and will be
denoted Q. In [9] this set of solutions has been characterized by a set of solutions to certain integral
equations. We will describe this in the following.
First of all we will perform a change of variables and de�ne

ϑ =
π

2
u

δ
. (5.28)

Now let S be the strip S =
{
z ∈ C; |=z| ≤ π

2

}
and let ∂S be its boundary. Then we will split Q

into subsets QM , that contain all functions qt with exactly M zeros in the strip S:

QM =
{

qt(ϑ) : ∃ϑ1, . . . , ϑM ∈ S with qt(ϑa) = 0 for a = 1, . . . , M
and qt does not vanish elsewhere in S.

}
(5.29)

It has been shown, that the elements of QM are in one-to-one correspondence to the elements of
a certain set YM which is de�ned in the following.

De�nition 5.2.2 Let YM be the set of all functions Y (ϑ) that satisfy the following conditions:

1. log Y (ϑ) ∼ −i 2
π δ2N

((
ϑ± σ ∓ iπ

2

)2 − τ2
)
for |u| → ∞, | arg(±u)| < π

2 where σ = πs
2δ and

τ = πδ′
2δ ;

2. Y (ϑ) is meromorphic with poles of maximal order N in
± π

2δ (Y−s+iτ ∪ Y−s−iτ );

3. there are complex numbers ϑa ∈ S, a = 1, . . . ,M, with W (ϑ) + Y (ϑ) = 0 if ϑ = ϑa ± iπ
2 ;

4. Y (ϑ) satis�es the integral equation

log Y (ϑ) =
∫

C

dϑ′

4π
σ(ϑ− ϑ′) log(W (ϑ′) + Y (ϑ′))

−N arctan
(

cosh(ϑ + iτ)
sinhσ

)
−N arctan

(
cosh(ϑ− iτ)

sinhσ

)

−
M ′∑
a=1

log S(ϑ− ϑa − i
π

2
)− 1

2

M∑

a=M ′+1

log S(ϑ− ϑa − i
π

2
).

(5.30)
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Here we have used σ(ϑ) = 4 sin ϑ0 cosh ϑ
cosh 2ϑ−cos 2ϑ0

with ϑ0 = πb
2δ . Further we have assumed that

ϑ1, . . . , ϑM ′ ∈ S \ ∂S and ϑM ′+1 . . . , ϑM ∈ ∂S. The contour C is de�ned as C = (R + i0) ∪
(R− i0). The branch of the log is the principal value with branch cuts starting at the zeros
and poles of W (ϑ) + Y (ϑ) and running to −∞.

Demanding consistency of the third and the fourth condition the parameters ϑa, a = 1, . . . ,M
sustain severe restrictions:

π(2ka + 1)−
∫

C

dϑ

4π
τ(ϑa − ϑ) log(W (ϑ) + Y (ϑ))

+ iN arctan
(

sinh(ϑa + iτ)
i sinhσ

)
+ iN arctan

(
sinh(ϑa − iτ)

i sinhσ

)
=

−
M ′∑

b=1

arg S(ϑa − ϑb)− 1
2

M∑

M ′+1

arg S(ϑa − ϑb)

(5.31)

where τ(ϑ) = − 4 sin ϑ0 sinh ϑ
cosh 2ϑ+cos 2ϑ0

. Equations (5.31) are analogous to the famous Bethe ansatz equa-
tions. Now we are ready to quote the theorem of [9], that desrcibes the correspondence between
the sets YM and QM .

Theorem 5.2.2 There is a one-to-one correspondence between the elements
Y (ϑ) ∈ YM and the elements qt ∈ QM . This correspondence can be desribed as follows. For a
given element qt ∈ QM one gets the corresponding function Y (ϑ) via

W (ϑ) + Y (ϑ) = qt

(
ϑ + i

π

2

)
qt

(
ϑ− i

π

2

)
. (5.32)

The set {ϑ1, . . . , ϑM} is the set of zeros of qt(ϑ) within S.
Conversely, given a solution Y (ϑ) ∈ YM to the equation (5.30) with ϑa ∈ S \∂S for a = 1, . . . , M ′

and ϑa ∈ ∂S for a = M ′, . . . , M , one de�nes the corresponding element qt ∈ Q as

log qt(ϑ) =
∫

C

dϑ′

4π

log(W (ϑ′) + Y (ϑ′))
cosh(ϑ− ϑ′)

−N arctan
(

cosh ϑ

sinhσ

)

+
M ′∑
a=1

∫ ϑ

Ca

dϑ′
1

sinh(ϑ′ − ϑa)
+

1
2

M∑

a=M ′+1

∫ ϑ

Ca

dϑ′
1

sinh(ϑ′ − ϑa)
.

(5.33)

The functions qt(ϑ) de�ned above are independent of the choice of contours Ca, as long as they
run from −∞ to ϑ, avoiding the singular points ϑa, a = 1, . . . ,M .

Proof The proof can be found in [9].

5.3 Continuum limit
In [9] it has been shown, that there exists a well de�ned continuum limit on the level of the
equations (5.30), (5.31) and (5.33). The continuum limit is de�ned such that N →∞ and σ →∞,
where

mR

2 sinϑ0
= 2Ne−σ (5.34)

is kept constant. Now we are ready to give the main information about the quantum continuum
Sinh-Gordon model. This information has been taken from [9].

De�nition 5.3.1 Let YM be the set of all functions Y (ϑ) such that

1. Y (ϑ) decays faster than exponetially for |Re(ϑ)| → ∞, |Im(ϑ)| < π
2 ,
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2. Y (ϑ) is entirely analytic,

3. there is a tuple of complex numbers t = (ϑ1, . . . , ϑM ) with
ϑa ∈ S ≡ {z ∈ C| |Imz| ≤ π

2 }, a = 1, . . . , M,
such that 1 + Y

(
ϑa ± iπ

2

)
= 0,

4. Y (ϑ) satis�es the nonlinear integral equation

log Y (ϑ) + mR cosh ϑ−
∫

R

ϑ′

4π
σ(ϑ− ϑ′) log(1 + Y (ϑ′))

−
M ′∑
a=1

log S(ϑ− ϑa − i
π

2
)− 1

2

M∑

a=M ′+1

S(ϑ− ϑa − i
π

2
) = 0.

(5.35)

Here S(ϑ) is the in�nite volume twoparticle scattering phase shift

S(ϑ) =
sinh ϑ− i sin ϑ0

sinh ϑ + i sin ϑ0
(5.36)

and the kernel σ is given as σ(ϑ) = d
dϑ arg S(ϑ).

Consistency of the conditions 3. and 4. requires, that the ϑ′as obey the so called Bethe ansatz
equations

π(2ka + 1) + mR sinhϑa −
∫

R

dϑ

2π
τ(ϑa − ϑ) log(1 + Y (ϑ))

+
M ′∑

b=1

log S(ϑa − ϑb) +
1
2

M∑

b=M ′+1

S(ϑa − ϑb) = 0,

(5.37)

where τ(ϑ) ≡ −iσ(ϑ+ iπ
2 ) and k = (k1, . . . , kM ) ∈ ZM . Now we are ready to state the main claim

of [9].

Claim 1 The Hilbert space HSG of the Sinh-Gordon model contains a sector HTBA which exists
for all R > 0 and coincides with HSG both in the infrared limit R → ∞ and the ultraviolet limit
R → 0, respectively.
HTBA decomposes into subspaces HM as HTBA = ⊕∞M=0HM . The sectors HM have an orthonor-
mal basis spanned by eigenvectors ek to all the conserved quantities of the Sinh-Gordon model
which are labeled by tuples k = (k1, . . . , kM ) of integers. The eigenvalue Ek of the Hamiltonian in
the eigenstate ek can be expressed as

Ek =
M∑

a=1

m cosh ϑa −m

∫

R

dϑ

2π
coshϑ log(1 + Yt), (5.38)

where the tuple t = (ϑ1, . . . , ϑM ) contains the solutions of the Bethe Ansatz equations corresponding
to the tuple k and Yt ∈ YM corresponding to t.
In order to make the whole game more accessible to semiclassical considerations, it is useful to
reformulate the above description of the spectrum in terms of the Baxter equation. To each
function Y (ϑ) one associates a function Q(ϑ) via

log Q(ϑ) = −mR
cosh ϑ

2 sin ϑ0
+

∫

R

dϑ′

2π

log(1 + Y (ϑ′))
cosh(ϑ− ϑ′)

+
M ′∑
a=1

∫ ϑ

Ca

dϑ′
1

sinh(ϑ′ − ϑa)
+

1
2

M∑

a=M ′+1

∫ ϑ

Ca

dϑ′
1

sinh(ϑ′ − ϑa)
.

(5.39)

Note that Q(ϑ) = 0 for ϑ ∈ S i� ϑ = ϑa, a = 1, . . . ,M .
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De�nition 5.3.2 Let Q be the set of all solutions Q(ϑ) of the functional equation

Q (ϑ + iδ)Q (ϑ− iδ)−Q (ϑ + iδ′)Q (ϑ− iδ′) = 1, (5.40)

which satisfy the conditions

• Q(ϑ) is entirely analytic

• log Q(ϑ) ∼ − mR
2 sin ϑ0

cosh ϑ for |Re(ϑ)| → ∞, |Im(ϑ)| < δ.

Here we introduced the notations δ = b+b−1

2 and δ′ = δ − b.

Claim 2 The elements of Y are in one-to-one correspondence with the elements of Q.

Note, that Q is a certain set of solutions of Baxter's T-Q-relation

T (ϑ)Q(ϑ) = Q(ϑ + iϑ0) + Q(ϑ− iϑ0). (5.41)

Indeed, given Q ∈ Q and using the notation Q+(ϑ) ≡ Q(ϑ),
Q−(ϑ) ≡ Q(ϑ + iπ − iϑ0) one de�nes

T (ϑ) ≡ Q+(ϑ + iϑ0)Q−(ϑ− iϑ0)−Q+(ϑ− iϑ0)Q−(ϑ + iϑ0). (5.42)

Then one easily sees that T and Q satisfy the T-Q-relation with T (ϑ) beeing iπ − iϑ0 periodic,
T (ϑ + iπ − iϑ0) = T (ϑ).

Baxter's equation can be rewritten as

T (ϑ) =
Q(ϑ + iϑ0)

Q(ϑ)
+

Q(ϑ− iϑ0)
Q(ϑ)

. (5.43)

There is a striking similarity of the last equation with the classical
T (λ) = Λ(λ) + Λ−1(λ), so it is natural to introduce a quantum eigenvalue of the monodromy
matrix,

Λq(ϑ) =
Q

(
ϑ + iϑ0

2

)

Q
(
ϑ− iϑ0

2

) . (5.44)

With this de�nition, equation (5.43) becomes

T (ϑ) = Λq

(
ϑ + i

ϑ0

2

)
+ Λ−1

q

(
ϑ− i

ϑ0

2

)
. (5.45)
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Chapter 6

The semiclassical limit
Up to now we have studied the semiclassical quantization of the Sinh-Gordon model. It would
be interesting to compare the results with the semiclassical limit of the theory, which we are
determining in this chapter. Naturally we calculate the leading order �rst. Therefor we have
to choose appropriate tuples k = (k1, . . . , kM ) of Bethe numbers and perform the coupled limit
b2 → 0 and M →∞ with b2M = const. Afterwards we determine the next to leading order.

First of all we perform a change of variables. The quantum Sinh-Gordon model is de�ned on the
ϑ−plane, whereas the classical model lives on a double covering of the λ2−plane. The connection
between ϑ and λ is given as

λ = eϑ(1+b2), (6.1)

which is not suitable for semiclassical considerations. Hence we introduce a new variable

γ = ϑ(1 + b2), (6.2)

which simpli�es the map between the quantum plane and the classical spectral curve considerably.
As we are interested in expansions in the parameter b2, we also replace ϑ0 by

ϑ0 =
πb2

1 + b2
. (6.3)

6.1 The leading order
6.1.1 Bethe roots
The Bethe roots play a central role in the endeavour to understand the semiclassical limit of the
Sinh-Gordon theory in �nite volume. The correct choice of sets of Bethe numbers and the leading
order distribution of the corresponding Bethe roots are the essential ingredients for the formation
of the spectral curve in the classical limit. The next to leading order of the distribution of the
Bethe roots is the basis for the calculation of all the other next to leading order quantities.

We act on the assumption, that there is a semiclassical expansion of the Bethe roots, i.e. we work
with the ansatz

γa = γ0
a + πb2γ1

a + O(b4). (6.4)

Here the leading order γ0
a and next to leading order γ1

a, a = 1, . . . ,M, are determined by the
leading and the next to leading order Bethe ansatz equations, respectively. We assume, that for a
�xed number of roots, both, the leading and the next to leading order, will not scale with b2.
In the classical limit the Bethe ansatz equations reduce to

π(2ka + 1) = mR sinh γa +
M∑

b=1

{
2 arctan

(
sinh(γa − γb)

πb2

)
+ π

}
(6.5)

for a = 1, . . . , M . Is has been proven in [9] that for each choice of integers k = (k1, . . . , kM ) an
unique and real solution t = (γ1, . . . , γM ) exists.
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46 CHAPTER 6. THE SEMICLASSICAL LIMIT

The right hand side of (6.5) is strictly monotonously increasing. Thus ka > kb implies directly
that γa > γb.

In the following conjecture we identify sets of Bethe numbers, which most likely lead to the classical
�nite zone solutions.

Conjecture 1 Consider the tuple
k = (k1

1, k
2
1, . . . , k

N1
1 , k1

2, . . . , k
N2
2 , . . . , k1

n, . . . , kNn
n ) where

• k1
1 = Θ1((b2)0),

• kj
i = k1

i + j − 1 for i = 1, . . . , n and j = 1, . . . , Nj,

• ∆ki+1 ≡ k1
i+1 − kNi

i > 1 for i = 1, . . . , n− 1,

• Ni = Θ(b−2), for i = 1, . . . , n and

• ∑n
i=1 Ni = M .

Then for M → ∞, M · πb2 = c constant and Ni · πb2 → ci > 0, the Bethe roots in the tuple t
corresponding to k condense into n �nite intervals Ii on the real line.

Strong hints for the correctness of this conjecture are provided in appendix B.

We denote the union of all the cuts by I = ∪n
i=1Ii.

The conjecture 1 allows for a concretion of the notion �classical limit�.

De�nition 6.1.1 Let QM,c,k1
1,∆k2,...,∆kn,N1,...,Nn

be a quantum state, which is characterized by
M, b2 and by the set of Bethe numbers as in conjecture 1. We refer to its limit M → ∞, where
M · πb2 = c, Ni · πb2 → ci > 0 and c, k1

1, ∆ki are kept constant ∀i, as its classical limit

Kk1
1,∆k2,...,∆kn,c1,...,cn

= lim
class

QM,c,k1
1,∆k2,...,∆kn,N1,...,Nn

. (6.6)

Remarks:

1. The conjecture 1 above is equivalent to the statement, that
Kk1

1,∆k2,...,∆kn,c1,...,cn
is a classical �nite zone solution of the Sinh-Gordon equation, whose

spectral curve is speci�ed by the parameters
k1
1, ∆k2, . . . , ∆kn, c1, . . . , cn.

2. Since Ek =
∑M

a=1 m cosh ϑa−m
∫
R

dϑ
2π cosh ϑ log(1+Yt) in the quantum theory, the conjecture

above is also equivalent to the statement, that the spectrum becomes dense in the classical
limit and con�nes to a �nite set of real intervals.

As the Bethe roots are assumed to condense in the classical limit, it is sensible to introduce a
density ρc(γ) to describe their distribution. We de�ne the density as

ρc(γ) = lim
class

πb2

γa − γa−1
(6.7)

where γ = lim
class

γa. The density allows for the transformation of certain sums into integrals,

πb2
M∑

a=1

f(γa) →
∫

I
f(γ)ρc(γ)dγ. (6.8)

Further information can be found in the appendix B.
1Θ is a Landau symbol.
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6.1.2 Eigenvalue of the monodromy matrix
A quantity, which plays a key role in the classical model, is the eigenvalue of the monodromy matrix
Λ(λ). Here we calculate the classical limit Λc(γ) of its quantum counterpart Λq(ϑ). Analyzing
Λc(γ)′s analytical behaviour, we �nd that Λc and Λ coincide.

Determination of Λc(γ)

In order to determine Λc(γ), we take the explicit form of Q(ϑ) and get

log Λc(ϑ) = lim
ϑ0→0
M→∞

{
log Q

(
ϑ +

iϑ0

2

)
− log Q

(
ϑ− iϑ0

2

)}
(6.9)

= lim
ϑ0→0
M→∞

{
− mR

2 sin(ϑ0)

[
cosh

(
ϑ + i

ϑ0

2

)
− cosh

(
ϑ− i

ϑ0

2

)]
+

+
M∑

a=1

[∫ ϑ+i
ϑ0
2

Ca

dϑ
′

sinh(ϑ′ − ϑa)
−

∫ ϑ−i
ϑ0
2

Ca

dϑ
′

sinh(ϑ′ − ϑa)

]}
.

(6.10)

This gives us the leading order term

log Λc(γ) = −i
mR

2
sinh(γ) + lim

b2→0
M→∞

M∑
a=1

iπb2

sinh(γ − γa)
(6.11)

for γ 6= γa∀a. Going to the continuum as in App B we �nd for γ /∈ I

logΛc(γ) = −i
mR

2
sinh(γ) + i

n∑

k=1

∫

Ik

ρc(γ′)
sinh(γ − γ′)

dγ′. (6.12)

Properties of Λc(γ)

Proposition 6.1.1 It holds, that

ρc(γ) =
< log Λc(γ + i0)

π
, (6.13)

i.e. the density of the Bethe roots may be calculated from the classical eigenvalue of the monodromy
matrix.

Proof This is a direct consequence of equation (6.12) and the identity
1

sinh(γ − γ′ ∓ i0)
= P.V.

1
sinh(γ − γ′)

± iπδ(γ − γ′). (6.14)

By the same argument we see, that the real part of log Λc is discontinuous at the cuts,

< log Λc(γ + i0) = −< log Λc(γ − i0) ∀γ ∈ I. (6.15)

In contrast, the imaginary part of log Λc is continuous. In the following proposition we will show,
that it is also related to the Bethe roots.

Proposition 6.1.2 It holds that

π

(
k1
1 +

i∑

l=2

(∆kl − 1)

)
= = log Λc(γ) for γ ∈ Ii (6.16)

and tuples k as in conjecture 1.
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Proof The Bethe ansatz equations imply to leading order

2π

(
k1
1 +

i∑

l=2

(∆kl − 1)

)
= mR sinh γj

i − 2πb2
n∑

k=1

Nk∑

l=1
(l,k)6=(j,i)

1
sinh(γj

i − γl
k)

(6.17)

for i = 1, . . . , n and j = 1, . . . , Ni and where ∆kl = k1
l − k

Nl−1
l−1 . Observe that the left hand side is

independent of j, i.e. it is a characteristic of the interval Ii. Transformig the sums into integrals
by using the leading order of the density (6.7) one �nds for γ ∈ Ii

2π

(
k1
1 +

i∑

l=2

(∆kl − 1)

)
= mR sinh γ − 2

n∑

k=1

P.V.

∫

Ik

ρc(γ′)
sinh(γ − γ′)

d γ′. (6.18)

Comparing (6.18) with (6.12) �nishes the proof.

Proposition 6.1.3 We claim, that Λc(γ) is an analytical function away from the cuts and away
from ±∞. At ±∞ it exhibits essential singularities, at the cuts it branches like

Λc(γ − i0) =
1

Λc(γ + i0)
∀γ ∈ I. (6.19)

Λc(γ) doesn't have neither poles nor zeros.

Proof As Λc(γ) solves the functional equation T (γ) = Λ(γ) + Λ−1(γ) and T (γ) is regular away
from ±∞, Λc(γ) clearly doesn't have any poles or zeros. In order to proof the remainder we regard

Λc(γ) = cos

(
−mR

2
sinh γ +

n∑

k=1

∫

Ik

ρ(γ′)
sinh(γ − γ′)

dγ′
)

+i sin

(
−mR

2
sinh γ +

n∑

k=1

∫

Ik

ρ(γ′)
sinh(γ − γ′)

dγ′
)

.

(6.20)

This representation clearly implies the analyticity and the appearance of the essential singularities.
In order to understand the branching behaviour, we make an analytical continuation of (6.20) from
γ − i0 to γ + i0 for γ ∈ I. Using once more the identity (6.14), we �nd

Λc(γ + i0) = cos

(
−mR

2
sinh γ +

n∑

k=1

P.V.

∫

Ik

ρ(γ′)
sinh(γ − γ′)

dγ′ − iπρ(γ)

)

+i sin

(
−mR

2
sinh γ +

n∑

k=1

∫

Ik

ρ(γ′)
sinh(γ − γ′)

dγ′ − iπρ(γ)

)
.

(6.21)

Because of proposition 6.1.2, we get

Λc(γ + i0) = cos (= log Γ(γ)) (cosh(πρ(γ)) + sinh(πρ(γ))) . (6.22)

By the same arguments we �nd

Λc(γ − i0) = cos (= log Γ(γ)) (cosh(πρ(γ))− sinh(πρ(γ))) . (6.23)

The statement, that cos2 (= log Γ(γ)) = 1 for γ ∈ I �nishes the proof.

Proposition 6.1.4 Λc(γ) is already wellde�ned and singlevalued on a truncated surface Σ′, which
is represented as the strip {γ ∈ C||=γ| ≤ π} \ I with identi�cations

I + i0 ≡ I + iπ − i0,

I− i0 ≡ I− iπ + i0,

R \ I + iπ − i0 ≡ R \ I− iπ + i0.

(6.24)
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Proof From the representation (6.20) it follows that Λc(γ + iπ) = Λ−1
c (γ) ∀γ /∈ I. This is the

case, as one never has to cross a cut while analytically continuing from γ to γ + iπ. Together with
the proposition above this implies that ∀γ ∈ I

Λc(γ ± i0) = Λc(γ ± iπ ∓ i0), (6.25)

which proves the assertion.

This truncated Riemann surface Σ′ is homeomorphic to the classical double covered λ2−plane via
the identi�cation λ2 = exp(2γ). Thus we can regard Λc as a function on the λ2-plane

Corollary 1 The classical limit Λc(λ2) of Λq(ϑ) and the classical eigenvalue of the monodromy
matrix of the according spectral curve coincide.

Proof As the analytical behaviour like analyticity, the asymptotics, the branching behaviour and
the occurrence of poles or zeros coincide, the functions by themselves coincide.

Corollary 2 There are ∆ki+1 − 1 simple zeros of T (γ) between the intervals Ii and Ii+1 ∀i.

Proof From the chapter about the classical Sinh-Gordon model we know that = log Λ(γ) counts
the zeros of T (γ). As Λc and Λ coincide, the quotation of proposition 6.1.2 �nishes the proof.

6.1.3 Q-function
The leading order term of the Q−function is

log Q(γ) = −mR
cosh γ

2πb2
+

M∑
a=1

∫ γ

Ca

1
sinh(γ′ − γa)

. (6.26)

In the continuum limit this gives for γ /∈ I

log Q(γ) = −mR
cosh γ

2πb2
+

1
πb2

∫

R
dγ′ρ0(γ′)

∫ γ

Cγ′

dγ′′

sinh(γ′′ − γ′)
. (6.27)

Using (6.12) we �nd

log Q(γ) = − i

πb2

∫ γ

0

log Λc(γ′)dγ′ +
C

πb2
(6.28)

where C = −mR
2 +

∫
I dγ′ρ0(γ′)

∫ 0

Cγ′
dγ′′

sinh(γ′′−γ′) .
We demand that Q(γ) is single valued on the spectral curve. This leads us to the Bohr-Sommerfeld
condition

∮

aj

d log Q(γ) = 2πiNj , Nj ∈ Z, j = 1, . . . , n. (6.29)

The interpretation is the following. As long as πb2 = c
M is still �nite, Q(γ) is an analytic function,

i.e. Nj is the number of zeros of Q(γ) in Ij . In the classical limit b2 → 0, Q(γ) develops essential
singularities along the cuts and condition (6.29) becomes meaningless. We change equation (6.29)
to

∮

aj

log Λc(γ)dγ = −2π2b2Nj = −2cπ
Nj

M
, (6.30)

which makes still sense in the classical limit. We see, that in the classical limit the right hand side
of (6.30) might be any real number.
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6.1.4 The spectral curves
Proposition 6.1.5 If conjecture 1 is correct, our classical limit will reproduce the whole moduli
space of the classical �nite zone spectral curves.

Proof We saw in the chapter about the classical Sinh-Gordon model, that a �nite zone spectral
curve is characterized by the following quantities:

1. the value of Im log Λ(γ) ∈ πZ on I1,

2.
∮

bj
d log Λ(γ) = 2πiMj , Mj ∈ Z, j = 2, . . . , n and

3. the n �lling fractions εj =
∫

Ij
ρ(γ)dγ = − 1

2π

∮
aj

log Λ(γ)dγ, which are real numbers with

n∑

j=1

εj = c. (6.31)

In the preceding we found, that

1. Im log Λ(γ) = πk1
1 on I1,

2.
∮

bj
d log Λ(γ) = #zeros of T (γ) between Ij and Ij+1=∆kj+1 − 1,

3. εj = lim
class

cNj

M .

As long as we respect the conditions above, we are completely free to set k1
1, ∆kj and lim

class

cNj

M to
whatever values we want. This �nishes the proof.

6.2 The next to leading order
6.2.1 Bethe roots
The next to leading order Bethe ansatz equations are found to be

mR

(
γ1

a −
γ0

a

π

)
cosh γ0

a −
1
π

∫

R
dγ

sinh(γ0
a − γ)

cosh2(γ0
a − γ)

log
(

1− Λ2

(
γ − iπ

2

))

+ 2b2
M∑

c=1
c 6=a

{
1

sinh(γ0
a − γ0

c )
+ π(γ1

a − γ1
c )

cosh(γ0
a − γ0

c )
sinh2(γ0

a − γ0
c )

−(γ0
a − γ0

c )
cosh(γ0

a − γ0
c )

sinh2(γ0
a − γ0

c )

}
= 0.

(6.32)

In contrast to the leading order system, which is highly nonlinear, this is a linear system of
equations for γ1

a. We can reformulate system (6.32) as

~γ1 = A~γ1 +~b (6.33)

where ~γ1 = (γ1
1 , γ1

1 , . . . , γ1
M )T , ~b = ... and A is the M ×M matrix with

(A)cd =
2πb2

cosh γ0
c


 cosh(γ0

c − γ0
d)

sinh2(γ0
c − γ0

d)
(1− δcd)− δcd

M∑
a=1
a 6=c

cosh(γ0
c − γ0

a)
sinh2(γ0

c − γ0
a)


 . (6.34)
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The form of the matrix A (6.34) implies directly that 1−A is diagonally dominant, i.e. that

|(1−A)aa| >
M∑

b=1
b 6=a

|(1−A)ab|. (6.35)

A result from linear algebra states, that diagonally dominant matrices are invertible. This ensures
the existence and uniqueness of the solution ~γ1 = (1−A)−1~b.
Going to the continuum limit, system (6.32) will change into the linear integral equation

2f(γ)
d

dγ
= log Λ(γ) = − 1

π

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρ0(γ′)
sinh(γ − γ′)

+ 2
d

dγ
P.V.

∫

R
dγ′

f(γ′)ρ0(γ′)
sinh(γ − γ′)

,

(6.36)

with

f(γ) = γ1(γ)− γ

π
. (6.37)

The unique regular solution f(γ) with γ ∈ I has been calculated in appendix B. We found

f(γ)ρc(γ) =
1
π2

√√√√
n∏

k=1

tanh
(

γ − bk + i0
2

)
tanh

(
γ − ak + i0

2

)

·
∑

k

P.V.

∫

Ik

g(γ′)
sinh(γ − γ′)

dγ′√∏n
k=1 tanh

(
γ′−bk

2

)
tanh

(
γ′−ak

2

)
(6.38)

with

g(γ) = −
∫ γ

−∞
dγ′′

{
1
π

∫

R
dγ′

sinh(γ′′ − γ′)
cosh2(γ′′ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρc(γ′)
sinh(γ′′ − γ′)

}
.

(6.39)

6.2.2 Eigenvalue of the monodromy matrix
The next to leading order of Λq is calculated in appendix B. We found

log Λ1(γ) = i
mR

2
γ cosh γ +

i

2

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2
c

(
γ′ − iπ

2

))

− iπb2 d

dγ

M∑
a=1

πγ1
a − γ0

a

sinh(γ − γ0
a)

+ iπb2γ
d

dγ

M∑
a=1

1
sinh(γ − γ0

a)

− iπb2
M∑

a=1

1
sinh(γ − γ0

a)
.

(6.40)

Going to the continuum we get for γ /∈ I

log Λ1(γ) = −γ
d

dγ
log Λc(γ) +

i

2

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2
c

(
γ′ − iπ

2

))

− i
d

dγ

∫

I

ρc(γ′)
sinh(γ − γ′)

(πγ1(γ′)− γ′)dγ′ − i

∫

I

ρc(γ′)
sinh(γ − γ′)

dγ′.
(6.41)
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Having that, we �nd the imaginary part of log Λ1(γ),

= log Λ1(γ) =
1
2

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2
c

(
γ′ − iπ

2

))

− d

dγ
P.V.

∫

I

ρc(γ′)
sinh(γ − γ′)

(πγ1(γ′)− γ′)dγ′ − P.V.

∫

I

ρc(γ′)
sinh(γ − γ′)

dγ′.
(6.42)

It is interesting to compare this to (6.36). We see, that

2f(γ)
d

dγ
= log Λ(γ) = − 2

π
= log Λ1(γ). (6.43)

As = log Λ(γ) is constant at the cuts we get the condition that

= log Λ1(γ) = 0 for γ ∈ I. (6.44)

We could take this as the de�ning equation for γ1(γ).

6.2.3 Q-function
The next to leading order of the Q−function is calculated in appendix B. We found for the �rst
two orders of log Q

log Q(γ) = −mR
cosh γ

2πb2
−mR

cosh γ

2π
+

mR

2π
γ sinh γ

−
∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

+
M∑

a=1

{∫ γ

Ca

1
sinh(γ′ − γa)

dγ′ + b2

∫ γ

Ca

cosh(γ′ − γa)
sinh2(γ′ − γa)

(γ′ − γa)dγ′

−b2

∫ γ

Ca

1
sinh(γ′ − γa)

dγ′
}

+ O(b4),

(6.45)

where γ 6= γa∀a. Going to the continuum, we �nd for γ /∈ I

log Q(γ) = − iπ

b2

∫ γ

0

log Λc(γ′)dγ′ +
C

b2

−mR
cosh γ

2π
+ i

γ

π
log Λ(γ)−

∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

−
∫

I
dγ′

ρ0(γ′)
sinh(γ − γ′)

(
γ1(γ′)− γ′

π

)
+ O(b2).

(6.46)

Note that the next to leading order of Q(γ) is single valued on the spectral curve without the need
for any further conditions.
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Chapter 7

Conclusions
This work is concerned with the semiclassics of the Sinh-Gordon model. We investigated, how far
the integrability of the model determines its semiclassical quantization. We tackled this problem
following two conceptual independent approaches. In the one approach we studied the semiclassical
limit of the full quantum solution, in the other one we semiclassically quantized the classical theory.
In the following we will give a short summary of our results and afterwards compare the results
of the semiclassical quantization to ones of the semiclassical limit.

7.1 Semiclassical quantization
The purpose was the determination of the semiclassical expansion of the Q-function, starting from
the classical theory. This means, that the Q-function is constructed as a formal power series in ~,
where each orders. of Q is de�ned on the spectral curve.
In a �rst step, we quantized the spectral curve and got Baxter's equation. Having Baxter's
equation, we could easily calculate the leading order Q0 of the Q-function,

Q0(λ) = A exp

{
1

iπb2

∫ λ

dσ
log Λ(σ)

σ

}
, (7.1)

where Λ is the classical eigenvalue of the monodromy matrix and A is an integration constant.
We found, that Q0, in order to be single valued on the spectral curve, has to satisfy the Bohr-
Sommerfeld conditions ∮

aj

d log Q0(λ) = 2πiNj for 1 ≤ j ≤ n,Nj ∈ Z, (7.2)

which are indeed quantization conditions of the spectral curve.
Baxter's equation allowed us further to derive a functional equation for each order in ~, which
should be satis�ed by the respective order of the Q-function.
While working with continuous quantum integrable models, one has gained the experience that
Q-functions are analytic functions, whose asymptotical behaviour is dominated by the leading
term in the semiclassical expansion.
Taking this into account, we investigated how far the functional equations determine the semi-
classical expansion of the Q-function, if we demand that the higher orders of the Q-function are
analytic on the physical part of the spectral curve, and that their asymptotical behaviour is given
by the one of the classical Q0. We laid particular emphasis on the next to leading order functional
equation and calculated its solution, the next to leading order of the Q-function Q1, explicitely,
using two di�erent ways. We found

log Q1(λ) = −mR

4π

(
λ + λ−1

)
+ i

log λ

π
log Λ(λ)− λ

π

∫ ∞

0

dλ′
log

(
1− Λ2(−iλ′)

)

λ2 + λ′2

+ iλ

∫

I
dλ′

g(λ′)
λ2 − λ′2

, λ /∈ I, <λ ≥ 0,

(7.3)

where g(λ) is an arbitrary continuous function along the cuts. We see, that Q1 could be determined,
except for the term containing g(λ), which is a zero mode of the functional equation in�uencing
the branching behaviour of Q1. This zero mode will be discussed later.
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7.2 Semiclassical limit
The aim was to calculate the classical limit and the �rst order corrections in ~ of the quantum
Sinh-Gordon model's nonperturbative solution. The �rst step was to de�ne a limit, where the
roots of the Q-function condense into a �nite number of real intervals. These intervals are taken
as the cuts of a hyperelliptic Riemann surface, the spectral curve.
In order to de�ne this limit, we had to identify sets of Bethe numbers whose dedicated Bethe roots
show the designated behaviour in the case that their number M → ∞ and M · ~ = const. We
proposed that the tuples
k = (k1

1, k
2
1, . . . , k

N1
1 , k1

2, . . . , k
N2
2 , . . . , k1

n, . . . , kNn
n ), where

• k1
1 = O((b2)0),

• kj
i = k1

i + j − 1 for i = 1, . . . , n and j = 1, . . . , Nj ,

• ∆ki+1 ≡ k1
i+1 − kNi

i > 1 for i = 1, . . . , n− 1,

• Ni = O(b−2), for i = 1, . . . , n and

• ∑n
i=1 Ni = M ,

do the job, but unfortunately we were not able to prove the condensation of the Bethe roots
rigorously; we rather gave strong hints for the correctness of the statement.
Assuming that the Bethe roots indeed condense in the classical limit, it was sensible to introduce
a density ρc(γ), describing their distribution. Note, that the quantum variable γ is related to the
classical λ by λ = eγ .
Having that, we calculated the leading and the next to leading order of several quantities like
the Bethe roots, the eigenvalue Λq of the monodromy matrix and the Q-function. We found the
leading order of Λq to be speci�ed by

logΛc(γ) = −i
mR

2
sinh(γ) + i

n∑

k=1

∫

Ik

ρc(γ′)
sinh(γ − γ′)

dγ′. (7.4)

and

π

(
k1
1 +

i∑

l=2

(∆kl − 1)

)
= = log Λc(γ) for γ ∈ Ii. (7.5)

Note that the equations (7.5) are the leading order limit of the Bethe ansatz equations. We could
show that Λc(γ) corresponds indeed to the classical eigenvalue of the monodromy matrix Λ(λ).
For the Q-function we found

log Q0(γ) = − iπ

b2

∫ γ

0

log Λc(γ′)dγ′ +
C

b2
, (7.6)

where C is an integration constant. Again the leading order of the Q-function satis�es the Bohr-
Sommerfeld condition (7.2). In this case the number Nj is speci�ed in advance by the choice of a
tupel of Bethe roots.
The next to leading order is given by

log Q1(γ) = −mR
cosh γ

2π
+ i

γ

π
log Λ(γ)−

∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

−
∫

I
dγ′

ρ0(γ′)
sinh(γ − γ′)

(
γ1(γ′)− γ′

π

)
+ O(b2).

(7.7)
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The unknown function γ1(γ) is �xed by the next to leading order of the Bethe ansatz equations,

2f(γ)
d

dγ
= log Λ(γ) = − 1

π

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρ0(γ′)
sinh(γ − γ′)

+ 2
d

dγ
P.V.

∫

R
dγ′

f(γ′)ρ0(γ′)
sinh(γ − γ′)

,

(7.8)

with

f(γ) = γ1(γ)− γ

π
. (7.9)

There is an interesting connection with the eigenvalue of the monodromy matrix: it holds that on
the cuts of the spectral curve

2f(γ)
d

dγ
= log Λ(γ) = − 2

π
= log Λ1(γ). (7.10)

As = log Λ(γ) is constant at the cuts we �nd the condition

= log Λ1(γ) = 0 for γ ∈ I. (7.11)

Thus the function γ1(γ) is determined by (7.11).

7.3 Semiclassical quantization versus semiclassical limit
In this section we will compare the results from the semiclassical quantization with the ones of
the semiclassical limit.
It is su�cient to compare the Q-functions as the play the key role in the description of quantum
integrable models. Regarding the leading order, we see that, after a change of variables from λ to
γ, both Q0 coincide up to a constant and both satisfy the Bohr-Sommerfeld conditions (7.2).
Going to the next to leading order we �nd the Q1 from (7.3) and (7.7) almost coinciding: the �rst
three terms are the same, respectively, which can be seen easily after a change of variables. The
fourth terms also correspond to each other, except that in the case of (7.7) the integrand takes on
a concrete value, thanks to the Bethe ansatz equations.
The equations (7.5) and (7.11), which both follow from the Bethe ansatz equations of the respective
order, suggest the proposal that (7.5) holds for the whole quantum eigenvalue,

= log Λq(γ) = π

(
k1
1 +

i∑

l=2

(∆kl − 1)

)
(7.12)

for γ ∈ Ii. Taking this condition in addition to the other ones in the semiclassical quantization
approach, one could �x the zero modes that in�uence the branching behaviour of Q and thus
determine at least Q1 completely. However, we still have to proof (7.12) coming from the quantum
theory and to �nd a semiclassical justi�cation for it.

7.4 Outlook
Based on this work there are several natural open questions on could pursue next.
First of all on should investigate how far the identity = log Λq ∈ πZ on the cuts holds true and
how one could justify such a demand semiclassically.
Another thing one could analyze is how far out semiclassical approach can be used to determine
the higher orders of the Q-functions. The question is, wether the functional equations, together
with (7.12) and the demand that the Q-function is analytic on the physical branch of the spectral
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curve and has a prescribed asymptotics, determine the higher orders of the Q-function completely.
It would be also interesting to apply this semiclassical quantization method to other integrable
models. On the one hand side one should apply this to models whose full quantum solution is
known, in order to understand the general applicability of the method. On the other hand side it
should be applied to models with unknown full quantum solution, as one could learn something
about this solution.
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Appendix A

Semiclassical quantization
A.1 Derivation of the functional equations
We will describe the derivation of the functional equations in more detail. What remains to be
done is the expansion of the equation

Q(λq)
Q(λ)

+
Q(λq−1)

Q(λ)
=

Q(−λq)
Q(−λ)

+
Q(−λq−1)

Q(−λ)
. (A.1)

Starting from

Q(λ) = exp

(
i

b2

∞∑

k=0

b2kWk(λ)

)
(A.2)

we will expand Q(λq)
Q(λ) in powers of b2. First we calculate

Wk(λq)−Wk(λ) = Wk


λ




∞∑

j=0

(iπb2)j

j!





−Wk(λ)

=
∞∑

l=1

λl

l!
d

dλ
Wk(λ)




∞∑

j=1

(iπb2)j

j!




l

.

(A.3)

Sorting this according to powers of b2, we �nd

(A.3) =
∞∑

l=1

λl

l!
dl

dλl
Wk(λ)

∞∑

r=l

b2r
∑

{βj}r
1P

βjj=rP
βj=l

(
l

β1 . . . βr

) r∏

j=1

[
(iπ)j

j!

]βj

=
∞∑

p=1

b2p

p∑

l=1

λl

l!
dl

dλl
Wk(λ)g(p, l),

(A.4)

where

g(p, l) =
∑

{βj}p
1P

βjj=pP
βj=l

(
l

β1 . . . βp

) p∏

j=1

[
(iπ)j

j!

]βj

(A.5)

is a combinatorical factor. Now we calculate
∞∑

k=0

b2k (Wk(λq)−Wk(λ)) =
∞∑

s=1

b2s
s−1∑

k=0

s−k∑

l=1

λl

l!
dl

dλl
Wk(λ)g(s− k, l)

=
∞∑

s=1

b2sRs(λ),

(A.6)
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where we introduced the abbreviation

Rs(λ) =
s−1∑

k=0

s−k∑

l=1

λl

l!
dl

dλl
Wk(λ)g(s− k, l). (A.7)

Finally we arrive at

Q(λq)
Q(λ)

= exp

(
i

b2

∞∑
s=1

b2sRs(λ)

)

= exp
(
−πλ

d

dλ
W0(λ)

)
·
∞∑

j=0

(
i
∑∞

s=1 b2sRs+1(λ)
)j

j!

= Λ(λ) + Λ(λ)
∞∑

r=1

b2r
∞∑

j=1

ij

j!

∑

{αk}r
1P

αkk=kP
αk=j

(
j

α1 . . . αr

) r∏

k=1

(Rk+1(λ))αk ,

(A.8)

with

Λ(λ) = exp
(
−πλ

d

dλ
W0(λ)

)
. (A.9)

From (A.8) we can deduce the form of the other terms of (A.1). When q is replaced by q−1 in
(A.8), one has to substitute the combinatorical factor g(p, l) by its complex conjugate and Λ(λ) by
Λ−1(λ). When λ is replaced by −λ, one has to make the change in (A.8) too, where λ d

dλ remains
unchanged. Thus we get the functional equations (4.22).

A.2 Solution to the leading order functional equation
A.2.1 Partial fraction decomposition: The vacuum
For the vacuum we have an easy and explicit form of the eigenvalue of the monodromy matrix
Λ(λ),

log Λ(λ) = −i
mR

4

(
λ− 1

λ

)
, (A.10)

which implies directly that

Λ(λ)− 1
Λ(λ)

= −2 sin
(

mR

4

[
λ− 1

λ

])
. (A.11)

The product expansion of the sine is given as

sinx = x

∞∏

k=1

(
1− x2

k2π2

)
. (A.12)

Thus we can rewrite (4.26) as

(W1(λ) + W1(−λ))

= i log

{
−2

mR

4

(
λ− 1

λ

) ∞∏

k=1

(
1−

(
mR

4πk

)2 (
λ− 1

λ

)2
)}

.
(A.13)
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Now we have to split the set of poles on the right hand side of the equation above into the poles
on the left real real axis and the ones on the right real axis. Therefore we rewrite the �rst factor
of the product as

−2
mR

4

(
λ− 1

λ

)
= −2mR

1
2

(
λ√
λ

+
1√
λ

)
1
2

(
λ√
λ
− 1√

λ

)
. (A.14)

Let's introduce the abbreviation

ak =
mR

4πk
. (A.15)

With that we can treat the other terms of the product and get
(

1− ak

(
λ− 1

λ

))(
1 + ak

(
λ− 1

λ

))

= −a2
k

λ2

(
λ− β+

k

) (
λ− β−k

) (
λ + β+

k

) (
λ + β−k

)
,

(A.16)

where we introduced the notation

β+
k =

1
2ak

−
√

1
4a2

k

+ 1, β−k = − 1
2ak

−
√

1
4a2

k

+ 1. (A.17)

Dividing the set of poles we get

W1(λ) = i log

(√
2mR

2

(
λ√
λ

+
1√
λ

))

+ i

∞∑

k=1

log
{

ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

} (A.18)

Up to now, the sum in (A.18) is not well de�ned, we will regularize it by substracting the linear
terms in 1

k . As these terms are zero modes of (4.26), this is possible. We arrive at

W1(λ) = i log

(√
2mR

2

(
λ√
λ

+
1√
λ

))

+ i

∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}
.

(A.19)

In principle this looks nice, but it still doesn't have the correct asymptotics. In order to �x
the asymptotics, we will calculate the asymptotics of the sum �rst. Therefore we introduce the
abbreviations x = 1

2 (λ + 1
λ ) and a = mR

2π . We rewrite the sum as

∞∑

k=1

ax

k
− log

(√
1 +

a2

k2
+

ax

k

)
(A.20)

and calculate its asymptotics for x →∞. We calculate
∞∑

k=1

ax

k
− log

(√
1 +

a2

k2
+

ax

k

)
=

∞∑

k=1

∫ x

dx
a

k

(
1− 1

1 + ax
k

)
(A.21)

=
∫ x

dxa2x

∞∑

k=1

1
k2 + axk

(A.22)
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The last sum can be found in the literature, for example in [12]:
∞∑

k=1

1
k2 + axk

=
1
ax

(
d

d(ax)
log Γ(ax + 1) + γE

)
, (A.23)

where γE = 0.577216... is the Euler constant. With that (A.22) becomes

(A.22) = log Γ(ax + 1) + axγE . (A.24)

An asymptotic expansion of the Γ-function is given by Stirlings formula,

log Γ(ax + 1) ∼ (ax) log(ax)− ax. (A.25)

So all together the original sum has an asymptotical behaviour for λ → 0,∞ like

−
∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}

∼
(

mR

4π

(
λ +

1
λ

))
log

(
mR

4π

(
λ +

1
λ

))
+

mR

4π

(
λ +

1
λ

)
(−1 + γE)

(A.26)

Altogether we �nd for W1(λ)

W1(λ) = i log

(√
2mR

2

(
λ√
λ

+
1√
λ

))

+ i

∞∑

k=1

{
log

(
ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
− ak

(
λ +

1
λ

)}

+ i
mR

4π

(
λ +

1
λ

)(
log

mR

4π
+ γE

)
.

(A.27)

Its asymptotics for λ → 0,∞ is given by

W1(λ) ∼ i
mR

4π

(
λ +

1
λ

)
− i

mR

4π

(
λ +

1
λ

)
log

(
λ +

1
λ

)
. (A.28)

It is bene�cial to represent W1 in di�erential form,

dW1(λ) = i
1
2
Ω∞,−1 + i

1
2
Ω0,−1 + i

∞∑

k=1

{
Ω0,β+

k
+ Ω∞,β−k

− ak

(
1− 1

λ2

)
dλ

}

+ i
mR

4π
log

(
mR

4π
eγE

)(
1− 1

λ2

)
dλ.

(A.29)

Here the Ωx,y are the unique normalized abelian di�erentials of the third kind, with simple poles
at x and y with residues −1 and +1, respectively. In order to prove (A.29), we calculate

d log
(

λ√
λ

+
√

λ

)
=

1
2

1
λ + 1

dλ− 1
2λ

1
λ + 1

dλ

=
1
2
Ω∞,−1 +

1
2
Ω0,−1.

(A.30)

Further we calculate

d log
(

ak

(
λ +

1
λ

)
+

√
1 + 4a2

k

)
=

(
− 1

λ
+

1
λ− β+

k

+
1

λ− β−k

)
dλ

= Ω0,∞ + Ω∞,β+
k

+ Ω∞,β−k

= Ω0,β+
k

+ Ω∞,β−k
,

(A.31)

which proves the representation above.
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A.2.2 Integral representation
We will proof the following proposition.
Proposition A.2.1 The function

W1(λ) = i
mR

4π

(
λ + λ−1

)
+

log λ

π
log Λ(λ) +

iλ

π

∫ ∞

0

dλ′
log

(
1− Λ2(−iλ′)

)

λ2 + λ′2

+ λ

∫

I
dλ′

f(λ′)
λ2 − λ′2

, λ /∈ I, <λ ≥ 0,

(A.32)

solves the functional equation (4.26) and has the desired properties:
1. It is analytic on the physical part of the λ−plane, i.e. on the positive halfplane, except for

the cuts.

2. It has the leading asymptotical behaviour of W0(λ), i.e. ∼ λ and ∼ 1
λ for λ →∞ and λ → 0,

respectively.
Here f(λ) is an arbitrary continuous function along the cuts. The branch of log λ is chosen such
that log λ is real along the positive real axis.

Proof The �rst thing, we will verify, is that (A.32) indeed solves the functional equation (4.26).
Therefore we will do an analytical continuation from λ to −λ along a path P, that crosses the
imaginary axis only once on its positive side and avoids all the cuts. With this analytical con-

λ 2 λ 3 λ 4 λ 5 λ
6

λ 1
−λ 2

−λ 3
−λ 4

−λ 5
−λ

6
− λ 1

−λ

λ

Figure A.1: Path P from λ to −λ

tinuation the �rst term of (A.32) is trivially a zero mode of equation (4.26). The second term
gives

− log λ

π
log Λ(λ)− i log Λ(λ). (A.33)

The third term behaves most interesting under analytical continuation. Its integrand has a
pole as soos as λ is purely imaginary. This pole contributes to W1(−λ) with the extra term
i log

(
1− Λ2(λ)

)
. As the path P avoids all the cuts, the fourth term doesn't make any problems

and is also a zero mode. Altogether we �nd

W1(−λ) = −i
mR

4π

(
λ + λ−1

)− log λ

π
log Λ(λ)− i log Λ(λ)

− iλ

π

∫ ∞

0

dλ′
log

(
1− Λ2(−iλ′)

)

λ2 + λ′2
+ i log

(
1− Λ2(λ)

)− λ

∫

I
dλ′

f(λ′)
λ2 − λ′2

.

(A.34)
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Adding (A.32) and (A.34), we �nd the functional equation (4.26), which proves the assertion.
The next things we have to check are the desired properties of W1(λ).
The asymptotical behaviour is clearly OK.
It is also clear, that the �rst three terms are analytic in the positive half plane, except for the
cuts, where the second term branches. The integrand of the fourth term has a pole for λ ∈ I
and is regular elsewhere. But this pole doesn't imply poles of W1(λ) itself; it in�uences only the
branching behaviour of W1(λ) as it branches as

λ

∫

I
dλ′

f(λ′)
(λ± i0)2 − λ′2

= λP.V.

∫

I
dλ′

f(λ′)
(λ)2 − λ′2

∓ iπ

2
f(λ) (A.35)

for λ ∈ I. This �nishes the proof.
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Appendix B

Semiclassical limit
B.1 The continuous limit
B.1.1 The density
In the chapter we will introduce the density ρ(γ) of the Bethe roots. Therefor we will work with
the ansatz

γa = γ0
a + πb2γ1

a + O(b4). (B.1)
Here the leading order γ0

a and next to leading order γ1
a, a = 1, . . . ,M, are determined by the

leading and the next to leading order Bethe ansatz equations, respectively. We assume, that for a
�xed number of zeros both the leading and the next to leading order will not scale with b2.
We introduce the spacing

∆a ≡ γa − γa−1

= ∆0
a + πb2∆1

a + O(b4)
(B.2)

and de�ne the �discrete density�

ρd(γa) ≡ πb2

∆a
. (B.3)

Using the geometric series we �nd

ρd(γa) =
πb2

∆0
a

−
(

πb2

∆0
a

)2

∆1
a + O(b6)

≡ ρ0
d(γ

0
a) + πb2ρ1

d(γ
0
a) + O(b4),

(B.4)

i.e.

ρ0
d(γ

0
a) =

πb2

∆0
a

(B.5)

and

ρ1
d(γ

0
a) = −∆1

a

∆0
a

ρ0
d(γ

0
a). (B.6)

The main assumption is now, that the discrete density remains a well de�ned and regular object
in the classical limit, where πb2 = M−1 → 0. In this case we de�ne the classical density ρc(γ) as

ρc(γ) = lim
b2→0

ρd(γ). (B.7)

Now we regard the next to leading order, which is de�ned as

ρ1(γ) = lim
class

ρd(γ)− ρc(γ)
πb2

. (B.8)

We will assume, that the next to leading order corrections to the Bethe roots γ1
a = γ1(γ0

a) build a
continuous function γ1(γ) in the case of continuously distributed Bethe roots. If this function is
also di�erentiable, then the density correction will be given as

ρ1(γ) = −ρ0
c(γ)

d

dγ
γ1(γ). (B.9)
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B.1.2 The Riemannian sum
In this section we will calculate the semiclassical approximation of

πb2
M∑

a=1

f(γa) (B.10)

up to the next to leading order. Here f is an arbitrary, at least one time continuously di�erentiable
function. The de�nition of the density (B.3) implies directly

πb2f(γa) = f(γa)ρd(γa)∆a. (B.11)

Taylor expansion leads to

(B.11) =
(
f(γ0

a) + πb2γ1
af ′(γ0

a)
) (

ρ0
d(γ

0
a) + πb2ρ1

d(γ
0
a)

) (
∆0

a + πb2∆1
a

)
+ O(b4) (B.12)

and thus

(B.11) = f(γ0
a)ρ0

d(γ
0
a)∆0

a (B.13)
+ πb2

(
γ1

af ′(γ0
a)ρ0

d(γ
0
a)∆0

a + f(γ0
a)

[
ρ1

d(γ
0
a)∆0

a + ρ0
d(γ

1
a)∆1

a

])
+ O(b4). (B.14)

Using (B.6) we see that the term in the square brackets vanishes. We �nd

πb2
M∑

a=1

f(γa) =
M∑

a=1

f(γ0
a)ρ0

d(γ
0
a)∆0

a + πb2
M∑

a=1

γ1
af ′(γ0

a)ρ0
d(γ

0
a)∆0

a + O(b4), (B.15)

i.e. in the continuous approximation we get

πb2
M∑

a=1

f(γa) →
∫

I
f(γ)ρc(γ)dγ + πb2

∫

I
γ1(γ)f ′(γ)ρc(γ)dγ + O(b4). (B.16)

Here I is the support of the condensed Bethe roots.

B.2 Bethe ansatz equations
B.2.1 Formation of the spectral curve
In this section we will give strong hints, that conjecture 2 is true.

Conjecture 2 Consider the tuple
k = (k1

1, k
2
1, . . . , k

N1
1 , k1

2, . . . , k
N2
2 , . . . , k1

n, . . . , kNn
n ) where

• k1
1 = O((b2)0),

• kj
i = k1

i + j − 1 for i = 1, . . . , n and j = 1, . . . , Nj,

• ∆ki+1 ≡ k1
i+1 − kNi

i > 1 for i = 1, . . . , n− 1,

• Ni = O(b−2), for i = 1, . . . , n and

• ∑n
i=1 Ni = M .

Then for M → ∞, M · πb2 = c constant, the Bethe roots in the tuple t corresponding to k will
condense into n �nite intervals Ii on the real line.
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Hints for the correctness: Unfortunately, we didn't �nd a rigorous proof of this conjecture.
Nevertheless, we could proof parts of with additional assumptions, which are legitimated by a
numerical analysis.
Remember, that the classical Bethe ansatz equations are of the form

π(2ka + 1) = mR sinh γa +
M∑

b=1

{
2 arctan

(
sinh(γa − γb)

πb2

)
+ π

}
. (B.17)

We will need the functional relation for the arctan,

arctan
1
x

= sign(x)
π

2
− arctanx, (B.18)

and its expansion for x < 1,

arctanx =
∞∑

k=0

(−1)k x2k+1

2k + 1
. (B.19)

Indication, that the intervals Ij are at least of �nite size:

We will work with the special case, that there is only one interval I. Assume, that the length of
I scales with b2 as γM − γ1 = xb2y, y > 0. Then it holds that kM − k1 = M and thus

2πM = mR
(
sinh(γ1 + xb2y)− sinh γ1

)

+ 2
M∑

c=1

(
arctan

(
sinh(γ1 + xb2y − γc)

πb2

)
− arctan

(
sinh(γ1 − γc)

πb2

))
.

(B.20)

The �rst term in (B.20) is maximal if γc = γ1; the second term is minimal if γc = γM . Altogether,
it holds that

2πM ≤ mR
(
sinh(γ1 + xb2y)− sinh γ1

)
+ 4M arctan

(
xb2y

πb2

)

= mR
(
sinh(γ1 + xb2y)− sinh γ1

)
+ 2πM − 4M arctan

(
πb2

xb2y

)
.

(B.21)

Using the expansion of the arctan and M = c
b2 , we �nd

4c
π

x

1
b2y

+ O(b2(2−3y)) ≤ mR
(
sinh(γ1 + xb2y)− sinh γ1

)
, (B.22)

which is a contradiction, at least as long γ1 remains �nite in the limit b2 → 0.
In order to check wether γ1 → ±∞ is possible we regard the Bethe ansatz equations. They directly
imply that π(2k1 + 1) ≥ sinh γ1, which excludes the possibility of γ1 → +∞. They also imply
that π(2k1 + 1) ≤ sinh γM , thus γM → −∞ is forbidden. Together with the assumption that the
interval is of vanishing length in the limit b2 → 0, this contradicts γ1 → ±∞.

Now we would like to prove that there the intervals Ij are also at most of �nite size, but this
turned out to be not so easy. The main problem is to show that the Bethe roots are homogeniously
distributed, i.e. that all the distances γa+1 − γa, for γa, γa+1 in the same interval, scale with the
same power of b2.

Hints that the intervals Ij are of �nite length under the additional assumption of homogeniously
distributed Bethe roots:

Again, we will work with the special case where only one interval I is present.
The assumption that the Bethe roots are homogeniously distributed, together with the statement
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that the intervals are at least of �nite size, imply that the average distance of the Bethe roots
scales with b2 as b2z, where z ≤ 1.
We will assume that γM − γ1 = xby with y ≤ 0. As before, equation (B.20) holds. Using the
addition theorem for the arctan,

arctanx− arctan y = π + arctan
(

x− y

1 + xy

)
for xy < −1, x > 0, (B.23)

we �nd

mR (sinh(γM )− sinh γ1) (B.24)

= 4π + 2
M∑

c=1

arctan


 sinh (γM − γc) + sinh (γc − γ1)

πb2
(

sinh(γc−γ1) sinh(γ1−γc+xby)
(πb2)2 − 1

)

 (B.25)

≤ 4π + 2
M∑

c=1

arctan


 sinh (xby)

πb2
(

sinh(γc−γ1) sinh(γ1−γc+xby)
(πb2)2 − 1

)

 . (B.26)

The 4π are there because (B.23) is true only for x, y 6= 0; the last inequality holds because
sinh(a− b) + sinh(b− c) ≤ sinh(a− c) for c < b < a; a, b, c ∈ R.

It is plausible that the sum in (B.26) is �nite:
regard the terms with γc−γ1 = O(bz) or γM −γc = O(bz), z ≤ 2. Each of these terms contributes
to the sum with the order max(O(b2), O(b2−z))1. By assumption, the distance of two adjacent
Bethe roots is at least of the order b2; thus there are at most min(O(b−2), O(bz−2))2 many Bethe
roots with a distance of γ1, γM of the order bz. This implies that sum of their contributions is
�nite.
So, all we have to do is to split the line between γ1 and γM into �nitely many sectors Sz, each
sector Sz having a distace O(bz) of the boundary points γ1, γM . As the contribution of each sector
is �nite, the sum in (B.26) is also �nite. This implies that the interval is of �nite length.

Numerical analyses

Since a decent proof is lacking for conjecture 2, we studied the solution of the classical Bethe
ansatz equations numerically, using Mathematica. We investigated the case where n = 1, k1

1 = 1
and M · πb2 = 1; M varied from 1 to 8003. In the following scheme we list the results.

M γ1 γM γM − γ1
γM−γ1

M

1 1.86230 1.86230 0 0
25 0.69527 2.60158 1.9063 0.076
50 0.62426 2.64105 2.0168 0.040
100 0.57891 2.66609 2.0872 0.021
150 0.56050 2.67624 2.1157 0.014
200 0.55012 2.68195 2.1318 0.011
400 0.53189 2.69199 2.1601 0.0054
512 0.52717 2.69458 2.1674 0.0042
600 0.52452 2.69604 2.1715 0.0036
700 0.52219 2.69732 2.1751 0.0031
800 0.52037 2.69832 2.1780 0.0027

It seems that the length of the interval, γM − γ1, converges to some �nite number.
1Terms for Bethe roots with z ≤ 0 contribute with the order O(b2).
2There is only a total of O(b−2) Bethe roots.
3800 is the upper bound, up to which the available computers were able to solve the nonlinear system of Bethe

ansatz equations.
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It is instructive to investigate how the average spacing of the Bethe roots, γM−γ1
M , depends on 1

M
for M → ∞. Therefore we regard �gure B.2.1; we see a linear behaviour, the �tting line has the
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��������

1

M

0.005

0.010

0.015

0.020

�����������������������������

ΓM - Γ1

M

Figure B.1: The average spacing of Bethe roots, γM−γ1
M

, over 1
M

; the dots are the data points, the
line is the best linear �t.

equation

f(x) = 2.09798 x + 0.00015. (B.27)

As the absolute term in (B.27) is near to 0 it will most likely vanish for M →∞; this would imply
that the intervals are indeed of �nite length.
Altogether, the numerical results support the claim of conjecture 2.

B.2.2 Next to leading order
In order to perform the semiclassical limit on the γ−plane we will need

τ (γa − γ) = −2πb2sinh (γ0
a − γ)

cosh2(γ0
a − γ)

+ O(b4) (B.28)

and

argS(γa − γb) = 2πΘ(γ0
a − γ0

b )− 2πb2

sinh(γ0
a − γ0

b )
+

2πb4

sinh(γ0
a − γ0

b )

+
2π2b4(γ1

a − γ0
a

π − γ1
b − γ0

b

π )cosh(γ0
a − γ0

b )
sinh2(γ0

a − γ0
b )

+ O(b6).

(B.29)

With that we calculated the next to leading order of the Bethe ansatz equations and found

mR

(
γ1

a −
γ0

a

π

)
cosh γ0

a −
1
π

∫

R
dγ

sinh(γ0
a − γ)

cosh2(γ0
a − γ)

log
(

1− Λ2

(
γ − iπ

2

))

+ 2b2
M∑

c=1
c 6=a

{
1

sinh(γ0
a − γ0

c )
+ π(γ1

a − γ1
c )

cosh(γ0
a − γ0

c )
sinh2(γ0

a − γ0
c )

−(γ0
a − γ0

c )
cosh(γ0

a − γ0
c )

sinh2(γ0
a − γ0

c )

}
= 0.

(B.30)
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Another way of representing this is

mR

(
γ1

a −
γ0

a

π

)
cosh γ0

a −
1
π

∫

R
dγ

sinh(γ0
a − γ)

cosh2(γ0
a − γ)

log
(

1− Λ2

(
γ − iπ

2

))

+ 2b2
M∑

c=1
c 6=a

1
sinh(γ0

a − γ0
c )
− 2b2(πγ1

a − γ0
a)

d

dγ0
a

M∑
c=1
c6=a

1
sinh(γ0

a − γ0
c )

+ 2b2 d

dγ0
a

M∑
c=1
c6=a

(πγ1
c − γ0

c )
1

sinh(γ0
a − γ0

c )
= 0.

(B.31)

Going to the continuum as usual we �nd for γ ∈ I

2f(γ)
d

dγ
= log Λ(γ) = − 1

π

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρ0(γ′)
sinh(γ − γ′)

+ 2
d

dγ
P.V.

∫

R
dγ′

f(γ′)ρ0(γ′)
sinh(γ − γ′)

,

(B.32)

with

f(γ) = γ1(γ)− γ

π
. (B.33)

As the left hand side of (6.36) is zero on the cuts, equation (B.32) reduces to

0 = − 1
π

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρc(γ′)
sinh(γ − γ′)

+ 2
d

dγ
P.V.

∫

R
dγ′

f(γ′)ρc(γ′)
sinh(γ − γ′)

∀γ ∈ I.
(B.34)

B.2.3 Solution of the integral equation
In this section we will solve equation (B.34). In principal we have to solve an equation of the type

g(γ) = P.V.

∫

R
dγ′

f(γ′)ρc(γ′)
sinh(γ − γ′)

(B.35)

with

g(γ) = −
∫ γ

−∞
dγ′′

{
1
π

∫

R
dγ′

sinh(γ′′ − γ′)
cosh2(γ′′ − γ′)

log
(

1− Λ2

(
γ′ − iπ

2

))

+
2
π

P.V.

∫

R
dγ′

ρc(γ′)
sinh(γ′′ − γ′)

}
.

(B.36)

In order to solve such an equation, we de�ne for γ1 /∈ I

U(γ1) := − 1
2πi

n∑

k=1

∫

Ik

dλ
f(λ)ρ0(λ)

sinh(γ1 − λ)
. (B.37)

It holds trivially that

U(γ ± i0) = − 1
2πi

n∑

k=1

P.V.

∫

Ik

dλ
f(λ)ρ0(λ)
sinh(γ − λ)

± 1
2
f(γ)ρ0(γ) (B.38)

for γ ∈ Ik for one k, i.e.

U(γ + i0)− U(γ − i0) = f(γ)ρ0(γ) (B.39)
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and

U(γ + i0) + U(γ − i0) = − 1
iπ

n∑

k=1

P.V.

∫

Ik

dλ
f(λ)ρ0(λ)
sinh(γ − λ)

= −g(γ)
iπ

.

(B.40)

The idea is to solve the boundary problem (B.40) for U(γ1) and to determine f(γ) then by (B.39).
In order to solve (B.40) we de�ne

V (γ1) :=
U(γ1) exp

(
1
2

∑n
k=1

∫
Ik

dλ
sinh(γ1−λ)

)

∏n
k=1 tanh

(
γ1−ak

2

) , (B.41)

where the division by
∏n

k=1 tanh
(

γ1−ak

2

)
ensures the regularity of the �nal solution.

So (B.40) is equivalent to

V (γ − i0) = V (γ + i0) + g1(γ), (B.42)

with

g1(γ) = −
g(γ) exp

(
1
2

∑n
k=1 P.V.

∫
Ik

dλ
sinh(γ−λ)

)

π
∏n

k=1 tanh
(

γ1−ak

2

) . (B.43)

Note that

exp

(
1
2

n∑

k=1

P.V.

∫ bk

ak

dλ

sinh(γ − λ)

)
= i

n∏

k=1

√√√√ tanh
(

γ−ak

2

)

tanh
(

γ−bk

2

) , (B.44)

as

P.V.

∫ bk

ak

dλ

sinh(γ − λ)
= log


 tanh

(
γ−ak

2

)

tanh
(

γ−bk

2

)

 for γ /∈ Ik (B.45)

and

P.V.

∫ bk

ak

dλ

sinh(γ − λ)
= log


 tanh

(
γ−ak

2

)

tanh
(

bk−γ
2

)

 for γ ∈ Ik. (B.46)

It follows that

g1(γ) = − ig(γ)

π
∏n

k=1

√
tanh

(
γ−ak

2

)
tanh

(
γ−bk

2

) . (B.47)

The solution of (B.42) is

V (γ1) =
1

2πi

n∑

k=1

∫

Ik

g1(λ)dλ

sinh(λ− γ1)
. (B.48)

The zero modes are given by the set of single valued functions. We demand the zero modes to be
analytic and zero at ∞, so there are no zero modes at all.
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Calculating U(γ1) we �nd

U(γ1) = V (γ1)
n∏

k=1

tanh
(

γ1 − ak

2

)
exp

(
−1

2

∑

k

∫

Ik

dλ

sinh(γ1 − λ)

)
(B.49)

=

√√√√
n∏

k=1

tanh
(

γ1 − bk

2

)
tanh

(
γ1 − ak

2

)

· 1
2π2

∑

k

∫

Ik

g(λ)
sinh(γ1 − λ)

dλ√∏n
k=1 tanh

(
λ−bk

2

)
tanh

(
λ−ak

2

) .

(B.50)

The square root is de�ned to be positive above the cuts . Now we �nd the solution
f(γ)ρ0(γ) = U(γ + i0)− U(γ − i0) (B.51)

=
1
π2

√√√√
n∏

k=1

tanh
(

γ − bk + i0
2

)
tanh

(
γ − ak + i0

2

)

·
∑

k

P.V.

∫

Ik

g(λ)
sinh(γ − λ)

dλ√∏n
k=1 tanh

(
λ−bk

2

)
tanh

(
λ−ak

2

) .

(B.52)

for γ in the cuts. Note that this is the unique solution that is regular at the end of the cuts.

B.3 Eigenvalue of the monodromy matrix
B.3.1 The next to leading order
In order to calculate the next to leading order, we have to expand the di�erence log Q

(
γ + iπb2

2

)
−

log Q
(
γ − iπb2

2

)
. We will start from the discrete semiclassical expansion of log Q,

log Q(γ) = −mR
cosh γ

2πb2
−mR

cosh γ

2π
+

mR

2π
γ sinh γ

−
∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

+
M∑

a=1

{∫ γ

Ca

1
sinh(γ′ − γa)

dγ′ + b2

∫ γ

Ca

cosh(γ′ − γa)
sinh2(γ′ − γa)

(γ′ − γa)dγ′

−b2

∫ γ

Ca

1
sinh(γ′ − γa)

dγ′
}

+ O(b4).

(B.53)

For the calculation we will need

cosh
(

γ + i
πb2

2

)
− cosh

(
γ − i

πb2

2

)
= iπb2 sinh γ + O(b6), (B.54)

(
γ + i

πb2

2

)
sinh

(
γ + i

πb2

2

)
−

(
γ − i

πb2

2

)
sinh

(
γ − i

πb2

2

)

= iπb2 sinh γ + iπb2γ cosh γ + O(b4)
(B.55)

and

cosh−1

(
γ − γ′ + i

πb2

2

)
− cosh−1

(
γ − γ′ − i

πb2

2

)
(B.56)

= −iπb2 sinh(γ − γ′)
cosh2(γ − γ′)

+ O(b6). (B.57)
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Further we will need
(∫ γ+i πb2

2

Ca

−
∫ γ−i πb2

2

Ca

)
dγ′f(γ′) = iπb2f(γ) + O(b6), (B.58)

which holds as long as f is regular at γ. So we �nd for the next to leading order of log Λq for
γ 6= γa∀a

log Λ1(γ) = i
mR

2
γ cosh γ +

i

2

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2
c

(
γ′ − iπ

2

))

− iπb2 d

dγ

M∑
a=1

πγ1
a − γ0

a

sinh(γ − γ0
a)

+ iπb2γ
d

dγ

M∑
a=1

1
sinh(γ − γ0

a)

− iπb2
M∑

a=1

1
sinh(γ − γ0

a)
.

(B.59)

Going to the continuum we get for γ /∈ I

log Λ1(γ) = −γ
d

dγ
log Λc(γ) +

i

2

∫

R
dγ′

sinh(γ − γ′)
cosh2(γ − γ′)

log
(

1− Λ2
c

(
γ′ − iπ

2

))

− i
d

dγ

∫

I

ρc(γ′)
sinh(γ − γ′)

(πγ1(γ′)− γ′)dγ′ − i

∫

I

ρc(γ′)
sinh(γ − γ′)

dγ′.
(B.60)

B.4 Q-function
The ϑ−plane Q−function is given as

log Q(ϑ) = −mR
cosh ϑ

2 sin ϑ0
+

∫

R

dϑ′

2π

log(1 + Y (ϑ′))
cosh(ϑ− ϑ′)

+
M∑

a=1

∫ ϑ

Ca

dϑ′

sinh(ϑ′ − ϑa)
. (B.61)

We will calculate its semiclassical limit on the γ−plane. Therefor we will use the following expan-
sions,

cosh
γ

1 + b2
= cosh γ − b2γ sinh γ + O(b2), (B.62)

1
sin ϑ0

=
1

πb2
+

1
π

+ O(b2) (B.63)

and
1

sinh(ϑ′ − ϑa)
= sinh−1

(
γ′ − γa

1 + b2

)
(B.64)

=
1

sinh(γ′ − γa)
+ b2(γ′ − γa)

cosh(γ′ − γa)
sinh2(γ′ − γa)

+ O(b4). (B.65)

Further we will need the integral
∫ ϑ

Ca

1
sinh(ϑ′ − ϑa)

dϑ′ =
∫ γ

Ca

sinh−1

(
γ′ − γa

1 + b2

)
dγ′

1 + b2

=
∫ γ

Ca

1
sinh(γ′ − γa)

dγ′ + b2

∫ γ

Ca

(γ′ − γa)
cosh(γ′ − γa)
sinh2(γ′ − γa)

dγ′

− b2

∫ γ

Ca

1
sinh(γ′ − γa)

dγ′ + O(b4).

(B.66)
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It holds that

1 + Y (γ) =
1

1− Λ2
(
γ − iπ

2

) + O(b2). (B.67)

Altogether we �nd as semiclassical expansion of (B.61)

log Q(γ) = −mR
cosh γ

2πb2
−mR

cosh γ

2π
+

mR

2π
γ sinh γ

−
∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

+
M∑

a=1

{∫ γ

Ca

1
sinh(γ′ − γa)

dγ′ + b2

∫ γ

Ca

cosh(γ′ − γa)
sinh2(γ′ − γa)

(γ′ − γa)dγ′

−b2

∫ γ

Ca

1
sinh(γ′ − γa)

dγ′
}

+ O(b4).

(B.68)

Going to the continuous limit like in ... we �nd for γ /∈ I

log Q(γ) = −mR
cosh γ

2πb2
−mR

cosh γ

2π
+

mR

2π
γ sinh γ

−
∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)
+

1
πb2

∫

R
dγ′ρ0(γ′)

∫ γ

Cγ′

dγ′′

sinh(γ′′ − γ′)

+
∫

R
dγ′γ1(γ′)ρ0(γ′)

∫ γ

Cγ′

cosh(γ′′ − γ′)
sinh2(γ′′ − γ′)

dγ′′

+
1
π

∫

R
dγ′ρ0(γ′)

∫ γ

Cγ′
dγ′′(γ′′ − γ′)

cosh(γ′′ − γ′)
sinh2(γ′′ − γ′)

− 1
π

∫

R
dγ′ρ0(γ′)

∫ γ

Cγ′

dγ′′

sinh(γ′′ − γ′)
+ O(b4).

(B.69)

Using integration by parts we calculate
∫ γ

Cγ′

cosh(γ′′ − γ′)
sinh2(γ′′ − γ′)

(γ′′ − γ′)dγ′′ = − γ − γ′

sinh(γ − γ′)
+

∫ γ

Cγ′

dγ′′

sinh(γ′′ − γ′)
. (B.70)

Subsumed we �nd for γ /∈ I

log Q(γ) = −mR
cosh γ

2πb2
+

1
πb2

∫

R
dγ′ρ0(γ′)

∫ γ

Cγ′

dγ′′

sinh(γ′′ − γ′)

−mR
cosh γ

2π
+ i

γ

π
log Λ(γ)−

∫

R

dγ′

2π

log(1− Λ2(γ′ − iπ
2 ))

cosh(γ − γ′)

−
∫

R
dγ′

ρ0γ′)
sinh(γ − γ′)

(
γ1(γ′)− γ′

π

)
+ O(b2).

(B.71)

The function γ1(γ) is determined in the appendix about the integral equation.
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